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PREFACE

The purpose of this Explanatory Supplement is to provide the users of The
Astronomical Ephemeris (prior to 1960 entitled The Nautical Almanac and Astro­
nomical Ephemeris) and The American Ephemeris and Nautical Almanac with fuller
explanations of their content, derivation, and use than can conveniently be included
in the publications themselves. A rigorous treatment is given of the fundamental
basis of the tabulations; this is supplemented by a detailed derivation, showing
how each tabulated quantity is obtained from basic data. The use of the ephemer­
ides is also explained and illustrated, but completeness is not attempted. Auxiliary
tables, lists of constants, and miscellaneous data are added, partly for convenience
of use with the Ephemeris and partly for reference.

By its nature this Supplement must primarily be a reference book. However,
it is hoped that certain sections will come to be regarded as full, connected, and
authoritative treatments of the subjects with which they deal, and that the tables
and other data will prove of general use in astronomical computing. An account
of its origins and much inform~tion of a general nature about the purpose and
scope of the unified Ephemeris is given in section I, " Introduction".

Although published in the United Kingdom, the Explanatory Supplement has
been prepared jointly by the Nautical Almanac Office, United States Naval
Observatory, under the immediate supervision of its Director, Edgar W. Woolard,
and by H.M. Nautical Almanac Office, Royal Greenwich Observatory, under the
immediate supervision of its Superintendent, D. H. Sadler. It has been edited
by G. A. Wilkins, assisted by Miss A. W. Springett.

B. L. GURNETTE,
Captain, U.S. Navy,
Superintendent, Naval Observatory,
Washington.

R. v. d. R. WOOLLEY,
Astronomer Royal,

Royal Greenwich Observatory,
Herstmonceux Castle, Sussex.

- -- - -
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NOTE ON 1974 REPRINT

It is regretted that it has not been possible to revise this Explanatory Supple­
ment to take account of the many changes that have been made in The Astronomical
Ephemeris and The American Ephemeris and Nautical Almanac since the editions for
1960. The Supplement to the A.E. I968 has, however, been reprinted, with change
of pagination, before the Index of this volume; it includes a specification of the
lAD system of astronomical constants, an account of its introduction into the
almanacs for 1968, a list of the principal consequential changes in this Explanatory
Supplement, and a list of the known errors in the original edition. The errata and
corrections listed on pages 520 to 521 have all been carried through, or otherwise
noted, on the relevant pages of this edition. Some other amendments have also
been made; in particular, some of the reference data given in section 18 have been
brought up to date. The changes described on pages 514 to 519 have not been
made, although attention has normally been drawn in footnotes to the changes that
would be appropriate to the new system of constants.

All changes in the bases of the ephemerides have been mentioned in the Pre­
faces to the editions in which they were first made, and corresponding changes have
been made in the Explanations at the ends of the volumes. Even apart from these
changes, this Explanatory Supplement is now out of date in a number of respects,
and so should be used with care. In particular, the following points should be
noted:

(a) Even where the basis of an ephemeris has not been changed, an improved
method of computation may have been used, so that the numerical example may
not define precisely the technique used.

(b) For certain purposes the printed fundamental ephemerides are of inade­
quate precision, but improved ephemerides are now available. Further details can
be obtained from the Bureau International d'Information sur les Ephemerides
Astronomiques, 3 Rue Mazarine, Paris (6e), France.

(c) The second of the intern::ltional system (51) of units is now defined in
terms of the frequency of a particular caesium resonance, and a scale of "inter­
national atomic time" is currently available for reference purposes. As from 1972
January I the principal time signals are hased on a scale (UTC) that differs from
IAT by an exact number of seconds and from UTI by an amount that does not
normally exceed 0'7 seconds.

It is hoped that, in spite of these deficiencies, this Explanatory Supplement will
continue to be of value to all who require information in the fields that it aims to
cover until such time as a completely revised edition can be prepared. General
suggestions concerning the nature of such a revision, as well as notes on specific
amendments, should be sent to the Superintendent of H.M. Nautical Almanac
Office (G. A. Wilkins), Royal Greenwich Observatory, or to the Director of the
Nautical Almanac Office (R. L. Duncombe), U.S. Naval Observatory.

January, 1973

Vl
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1. INTRODUCTION

A. ORIGIN OF THE SUPPLEMENT

The Nautical Almanac for 1931 was completely redesigned; for the first time it
included a comprehensive Explanation and a Derivation illustrating the calculation
of every quantity tabulated in the Almanac. Although the Derivation was dis­
continued after that year, the Explanation was continued in full and was gradually
expanded. This was the consequence partly of newly-added matter, requiring
detailed explanation, and partly of more comprehensive illustrations of the use of
the tabulated data, such as, for example, in the case of eclipses. The Almanacs for
the years 1937,1938,1939, and 1940 contained (with appendices) 951, 940, 912, and
920 pages respectively. All of this added material was (and much still is) of con­
siderable value, but much was inappropriate for the day-to-day use of the Almanac
as an astronomical ephemeris; and much was of permanent rather than ephemeral
interest. Many practical astronomers complained of the unwieldy volume and
more than one suggested the separation of the permanent tables and explanations
from the purely ephemeral data. The omission of most of the apparent places of
stars in the edition for 1941, consequent on the introduction of the international
volume of Apparent Places of Fundamental Stars, reduced the number of pages to
759. At this juncture a drastic cut was imposed on the overall size of subsequent
editions by the exigencies of war. The opportunity was taken of inaugurating a
policy that had been under consideration on its own merits. To quote from the
Preface to the edition for 1942:

" It is intended that in future, starting with this edition, the Nautical Almanac should in
general contain, in addition to the ephemeral data which will continue to be printed in the
established form, only such auxiliary tables and explanations as are necessary for the user to
extract the ephemeral data in the form he requires. In previous editions considerably more
auxiliary tables and more detailed explanations than have been required for this purpose have
been given and, although these have been of considerable benefit to some users, they have
detracted from the convenience of the Almanac for the majority of routine observers and
computers. As it has not been possible to include all the auxiliary tables, illustrations and
explanations required in the application of the tabulated ephemeral data, the Almanac has
never been completely self-contained; with this in mind, it is further intended to publish a
separate supplement, which will be of a permanent character and which will contain all the
permanent tables and explanations previously given, together with such added information
as can be included in the rather wider scope provided by a separate publication. It is
considered that this separation of the ephemeral data from the permanent tables and
explanation wili not only lead to a desirable reduction in the size of the Almanac, but will
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also add to the convenience of the user requiring both books; it is easier to refer to two books
at once than to two different places in the same book.

" It is possible that publication of the Supplement will be delayed for some time; in the
meantime reference should be made to the relevant portions of previous editions."

It was, unfortunately, not possible to take any active steps towards the prepara­
tion of the promised" Supplement" until several years after the end of the war. At
one time it was hoped that it would be possible to issue the Supplement to relate to
The Nautical Almanac for 1952, and much work was actually done, particularly in
the preparation of detailed examples of eclipse calculation; but this hope could not
be fulfilled.

With the introduction ofthe concept of ephemeris time at the Paris (1950) Con­
ference on the Fundamental Constants of Astronomy, it became clear that substan­
tial changes in the Almanac could not be long delayed. This view was confirmed
at the Rome (1952) General Assembly of the International Astronomical Union,
when a series of recommendations involving fundamental changes in the ephemer­
ides was agreed, to become effective as from 1960. The advantages of still further
delaying the Supplement were evident; by relating it to the edition of 1960 it could
present the new system as a unified whole, without the complication of a detailed
explanation of the old. And it was accordingly agreed to introduce the Supplement
as from 1960.

In 1954 the first steps were taken to achieve the" conformity" of The Nautical
Almanac and The American Ephemeris and Nautical Almanac; and this has eventually
led to their complete unification as from 1960. The plans for the publication of the
Supplement naturally affected the contents of the unified Ephemeris, particularly
in regard to the explanation and auxiliary tables; and as the Supplement would
apply equally to The American Ephemeris it was natural that it should become a
joint production.

This Supplement has accordingly been prepared jointly by the Nautical
Almanac Office, U.S. Naval Observatory, and by H.M. Nautical Almanac Office.
Although the latter has perforce accepted editorial responsibility, and the general
work of compilation has been shared, the principal authors have been as follows:

In H.M. Nautical Almanac Office:

D. H. Sadler, Flora M. McBain Sadler, J. G. Porter, G. A. Wilkins, and
H. W. P. Richards. H. M. Smith (Time Department) prepared section 15.

In Nautical Almanac Office, U.S. Naval Observatory:

G. M. Clemence, E. W. Woolard, Simone D. Gossner, and A. Thomas.

In both Offices other members of the staff, not named individually, have shared
in the work of compilation and proof reading.

The note on page vi indicates the policy that has been adopted in the editing of this
reprint of the original edition, and draws attention to its current deficiencies.
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The brief histories that follow are concerned solely with the major changes of
form and content, and are intended as a general introduction to the detailed analyses
given in section 7.

I. The Astronomical Ephemeris
" The Commissioners of Longitude, in pursuance of the Powers vested in them by a late

Act of Parliament, present the Publick with the NAUTICAL ALMANAC and ASTRONOMICAL
EPHEMERIS for the Year 1767, to be continued annually; a \Vork which must greatly con­
tribute to the Improvement of Astronomy, Geography, and Navigation. This EPHEMERIS
contains every Thing essential to general Use that is to be found in any Ephemeris hitherto
published, with many other useful and interesting Particulars never yet offered to the
Publick in any Work of this Kind. The Tables of the Moon had been brought by the late
Professor MAYER of Gottingen to a sufficient Exactness to determine the Longitude at Sea,
within a Degree, as appeared by the Trials of several Persons who made Use of them. The
Difficulty and Length of the necessary Calculations seemed the only Obstacles to hinder
them from becoming of general Use: To remove which this EPHEMERIS was made; the
Mariner being hereby relieved from the Necessity of calculating the Moon's Place from the
Tables, and afterwards computing the Distance to Seconds by Logarithms, which are the
principal and only very delicate Part of the Calculus; so that the finding the Longitude
by the Help of the EPHE:\1ERIS is now in a Manner reduced to the Computation of the Time,
an Operation .... "

" All the Calculations of the EPHEMERIS relating to the Sun and Moon were made from
;vIr. MAYER'S last manuscript Tables, received by the Board of Longitude after his Decease,
which have been printed under my Inspection, and will be published shortly. The Calcula­
tions of the Planets were made from Dr. HALLEY'S Tables; and those of .... "

The above extracts from the Preface to the first edition, for 1767, of The Nautical
Almanac and Astronomical Ephemeris were written by Nevil Maskelyne, then
Astronomer Royal. The main incentive for, and the main emphasis of, the
publication was the determination of longitude at sea using the method of lunar
distances. The ephemerides were all given in terms of apparent solar time, for
the reasons given in the Explanation.

" It may be proper first to premise, that aU the Calculations are made according to
apparent Time by the Meridian of the Royal Observatory at Greenwich."

" What has been shewn concerning the Equation of Time chiefly respects the Astro­
nomer, the Mariner having little to do with it in computing his Longitude from the l\100n's
Distances from the Sun and Stars observed at Sea with the Help of the Ephemeris, all the
Calculations thereof being adapted to apparent Time, the same which he will obtain by the
Altitudes of the Sun or Stars in the Manner hereafter prescribed.

"But if Watches made upon Mr. John Harrison's or other equivalent Principles should
be brought into Use at Sea, the apparent Time deduced from an Altitude of the Sun must be
corrected by the Equation of Time, and the mean Time found compared with that shewn
by the Watch, the Difference will be the Longitude in Time from the Meridian by which the
Watch was set; as near as the Going of the Watch can be depended upon."

Apart from many changes in the sources of the data, and in particular the tables
from which the Moon's position was calculated, the main pages of the Almanac
remained essentially unchanged until 1834. Forthat year, to quote from the Preface:
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" The NAUTICAL ALMANAC and ASTRONOMICAL EPHEMERIS for the Year 1834, has been
constructed in strict conformity with the recommendations of the ASTRONOMICAL SOCIETY of
LONDON, as contained in their Report ... ; and will, it is believed, be found to contain almost
every aid that the Navigator and Astronomer can require."

The changes were both fundamental and substantial, and involved almost
doubling the size. The most fundamental change was to replace apparent time
by mean time as the argument of the ephemerides. In the words of the Report:

" The attention of the Committee was, in the first instance, directed to a subject of
general importance, as affecting almost all the results in the Nautical Almanac; viz., whether
the quantities therein inserted should in future be given for apparent time (as heretofore), or
for mean solar time. Considering that the latter is the most convenient, not only for every
purpose of Astronomy, but also (from the best information they have been able to obtain) for
all the purposes of Navigation; at the same time that it is less laborious to the computer, and
has already been introduced with good effect into the national Ephemerides of Coimbra and
Berlin, the Committee recommend the abolition of the use of apparent time in all the
computations of the Nautical Almanac; excepting .... "

The direction of at least some of the other changes was influenced by the view
that was expressed in the Report as:

" And here perhaps it may be proper to remark, that, although in these discussions the
Committee have constantly kept in view the principal object for which the Nautical Almanac
was originally formed, viz., the promotion and advancement of nautical astronomy, they have
not been unmindful that, by a very slight extension of the computations, and by a few
additional articles (of no great expense or labour), the work might be rendered equally
useful for all the purposes of practical astronomy."

The requirements of the navigator were by no means overlooked; in particular
the number and presentation of " lunar distances", including distances from the
planets, was greatly improved. However, the Explanation and Use of the previous
editions, which had still been based on Maskelyne's, was replaced by a completely
new Explanation in which little reference was made to the use of the ephemerides
for navigation; tables of refraction were excluded and no example was given of
clearing an observed lunar distance for the effects of semi-diameter, parallax, and
refraction.

Apart from the omission of lunar distances in 1907 the first part of the Almanac,
containing the ephemerides of the Sun and Moon, remained unchanged in form,
though of course based from time to time on different data and tables, until 1931.
At various dates other matter was added, particularly ephemerides of the Moon and
planets at transit on the Greenwich meridian and the apparent places of many more
stars; later, ephemerides for physical observations were added and in 1929, anticip­
ating the redesign in 193 I, ephemerides of the Sun referred to the standard equinox
of 1950'0 were given for the years 1928 and 1929.

Much of the added matter was of no interest to the practical navigator, and in
1896 " Part I (containing such data as are more particularly required for naviga­
tional purposes) " was" also published separately for the convenience of sailors".
This consisted of a straight reprint of the monthly pages comprising the first part of
the Almanac, with selections from the other data and a few pages specially prepared.

~ -- --------~~
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In the Preface to the edition for 1914 it was announced briefly that" Part I has been
remodelled for the convenience of sailors"; thus was introduced The Nautical
Almanac, Abridged for the Use of Seamen, which was specially designed for its
purpose. This Almanac was redesigned in 1929 and again in 1952, when it was
renamed The Abridged Nautical Almanac; it was rearranged in a different form in
1958 and, as from 1960, it takes on the appropriate portion of the original title,
namely The Nautical Almanac.

Prior to the revision in 1931 a fundamental change, requiring consequential
changes in the Almanac, had taken place in the measure of mean solar time.
Before 1925 the astronomical day was considered to start at noon, and the principal
ephemerides had been given for 011, i.e. noon, on each day. As from 1925 January 1
the tabular day was brought into coincidence with the civil day and was
considered to start at midnight; the ephemerides were still given for Oh, now
indicating midnight.

The revision of 1931 was much more than a rearrangement of the same data in a
different form; the changes of page size, of presentation, of provision for interpol­
ation, and of content were less important than the complete break with the century­
old lay-out designed primarily for navigation for which the Almanac had ceased to
provide. The new form could be, and was, designed for the astronomer without
the necessity for considering the requirements of navigation. Its arrangement has
remained basically unchanged, though there has been frequent change in content
of the less fundamental matter.

Major changes were introduced in the edition for 1960 when the Almanac was
unified with The American Ephemeris, the principal one being the use of ephemeris
time, instead of universal time (mean solar time on the meridian of Greenwich),
as the argument for the fundamental ephemerides. This change still further
emphasized the unsuitability of the volume for navigation, and led to the adoption
for its new title of the appropriate part of the original full title, namely The Astro­
nomical Ephemeris. The changes are fully described in the Preface to the edition
for 1960. *

2. The American Ephemeris and Nautical Almanac

During the first half of the nineteenth century, The Nautical Almanac remained
in general use on American ships and among astronomers and surveyors in the
United States. However, with the continued development of the country, and
its growth as a maritime nation, an increasing need for a national almanac was felt
and eventually led to the establishment of a Nautical Almanac Office in the
Navy Department by an Act of Congress approved in 1849. The Office was set up
in Cambridge, Massachusetts, where library and printing facil.ities were available,
and began work during the latter part of 1849. The first volume of The American
Ephemeris and Nautical Almanac was for the year 1855, and was published in 1852.
The Office was moved to Washington in 1866, but was not located at the Naval
Observatory until 1893.

*Some additional notes on the history of The Astronomical Ephemeris are given on pages
ix-xviii of the volume for 1967, the two-hundredth anniversary edition.
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For the years 1855-1915 inclusive, the volume was divided at first into two
parts, then, beginning with 1882, into three. The first part during this entire
period was an ephemeris for the use of navigators that was also reprinted separately,
with the inclusion of a few pages from the remainder of the volume, as The American
Nautical Almanac. It comprised 12 monthly sections, for the meridian of Green­
wich, each containing ephemerides of the Sun, Moon, and lunar distances for the
month; following the monthly sections were ephemerides of Venus, Mars, Jupiter,
and Saturn for the year, and, beginning with 1882, of Mercury, Uranus, -and
Neptune.

The second part of the volume contained ephemerides of the Sun, Moon,
planets, and principal stars, for meridian transit at Washington; and data on eclipses,
occultations, and a few other phenomena, which in 1882 were formally grouped as a
third part with the title" Phenomena". The explanatory sections and a few miscel­
laneous tables completed the volume.

During the period 1855-1915, few changes were made in the form or content.
The nautical part remained virtually unaltered; lunar distances were omitted,
beginning with 1912, but a page explaining how to calculate them continued to be
included. The principal revisions in the other parts of the volume were in 1882
and 1912-1913. The rearrangement of the 1882 volume was accompanied by
some additions and omissions. The principal omission was the ephemeris of
Moon-culminating stars for determining longitude. The principal additions were:
the physical ephemerides of Mercury and Venus, in place of the former meagre
data for the apparent disks, for the reduction of meridian and photometric obser­
vations; daily diagrams of the configurations of the four great satellites of Jupiter;
and ephemerides for the identification of the satellites of Mars, Saturn, Uranus,
and Neptune. In the volume for 1912, the ephemerides of the satellites were
extended to include tables for determining the approximate position angle and
apparent distance; in 1913, physical ephemerides were added for the Sun, Moon,
Mars, and Jupiter. These revisions, and minor additions, omissions, and rearrange­
ments, are described in more detail in section 7.

In the volume for 1916, the first to be issued under the international agreements
resulting from the Paris Conference of 19II, extensive revisions were made in the
form and arrangement that had been retained essentially unchanged since 1882;
but the content remained substantially the same. The arrangement of the Green­
wich ephemerides of the Sun and Moon by monthly sections was discontinued,
and replaced by annual ephemerides. At the same time, The American Nautical
Almanac was no longer a reprint of part of The American Ephemeris, but a separately
prepared volume especially designed for the navigator.

In 1925, the astronomical reckoning of time from 011 at noon was replaced by
the civil reckoning from midnight.

During the interval from 1916 until the fundamental revisions in 1960 when The
American Ephemeris was unified with The Astronomical Ephemeris, the revisions of
form and content were mostly only in details; but a few major changes occurred,
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and in the volumes for 1934-1937 a number of further subdivisions and rearrange­
ments of the contents were made. In 1937, the volume had become formally
divided into seven parts; the part constituting the ephemeris for Washington had
been reduced to only ephemerides of the Sun, Moon, and planets for meridian
transit at Washington, all the other material having been transferred to other parts
and referred to the Greenwich meridian.

Because of the limited usefulness of the Washington-transit ephemerides except
to observers on the Washington meridian, the publication of this part was discon­
tinued beginning with the 1951 volume. Otherwise, the general form and arrange­
ment adopted in 1937 were retained until 1960. The other principal changes in
content during 1916-1959 were the following: In 1919, tables of the rising and
setting of the Sun and the Moon were added. In 1941, the number of stars for
which apparent places were given, after having reached 887, was decreased to 212
when Apparent Places of Fundamental Stars was first published; in 1957, apparent
places were omitted entirely, but precise mean places of 1551 stars which had been
given beginning with 1951 were continued. The elements and predictions of
occultations were successively extended to more and fainter stars, and to additional
standard stations, because of their importance for determining the departures of
the Moon from gravitational theory that are due to variations in the rotation of the
Earth. An ephemeris of Pluto was added to the planetary ephemerides in 1950;
and ephemerides of Ceres, Pallas, Juno, and Vesta in 1952.

C. HISTORY OF INTER ATIONAL CO-OPERATION

Formal co-operation may be regarded as dating from the International
Meridian Conference held in Washington in October 1884 at the invitation of the
Government of the United States. The resolutions of that conference included:

" ... the adoption of the meridian passing through the centre of the transit instrument at
the Observatory of Greenwich as the initial meridian for longitude."

" That from this meridian longitude shall be counted in two directions up to ISO degrees,
east longitude being plus and west longitude minus."

". . . the adoption of a universal day for all purposes for which it may be found
convenient ... "

" That this universal day is to be a mean solar day; is to begin for all the world at the
moment of mean midnight of the initial meridian, coinciding with the beginning of the
civil day and date of that meridian; and is to be counted from zero up to twenty-four hours."

" That the Conference expresses the hope that as soon as may be practicable the astro­
nomical and nautical days will be arranged everywhere to begin at mean midnight."

Although the other resolutions are now in use, it has been customary for many
years in astronomy, but not in all other related sciences, to treat west longitude as
positive, and east longitude as negative. This is the convention adopted in the
Ephemeris.

At the invitation of the Bureau des Longitudes the directors of the national
ephemerides, and other astronomers, met in Paris in May 1896 for the Conference
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Internationale des Etoiles Fondamentales. In addition to adopting resolutions
concerning the fundamental catalogue, and the calculation and publication of
apparent places of stars, the Conference adopted the following fundamental
constants:

Nutation 9"'21
Aberration 20"'47
Solar parallax 8" ·80

which are still in operation. It also agreed to adopt Newcomb's definitive values
(which were not then in final form) of luni-solar and planetary precession.

Active co-operation between the offices of the national ephemerides dates from
the Congres International des Ephemerides Astronomiques held at the Paris
Observatory in October 1911. This conference was called, on the initiative of the
Bureau des Longitudes, by B. Baillaud, Director of the Observatory and President
of the Comite International Permanent de la Carte Photographique du Ciel. Its
purpose was" d'etablir une entente permettant d'augmenter, sans nouveaux frais,
la masse des donnees numeriques fournies annuellement aux observateurs et aux
calculateurs ". Although the Conference was primarily concerned in obtaining a
greatly increased list of apparent places of stars, it extended its attention to all the
ephemerides of bodies in the solar system. Its comprehensive recommendations
covered the distribution of calculations between the five principal ephemeris offices
(France, Germany, Great Britain, Spain, and the United States), specified standards
of calculation and presentation, arranged for publication of additional data, and
fixed the values of two further constants to be used in the ephemerides: the flat­
tening of the Earth (1/297) and the semi-diameter of the Sun at unit distance for
eclipse calculations (15' 59" ·63). Most of these recommendations are still in force.

Official approval was in some cases necessary for the adoption of these recom­
mendations, as illustrated by the following extract from the Act of Congress of
August 22, 1912 (37 Stat. L., 328, 342):

" The Secretary of the Navy is hereby authorized to arrange for the exchange of data
with such foreign almanac offices as he may from time to time deem desirable, with a view to
reducing the amount of duplication of work in preparing the different national nautical and
astronomical almanacs and increasing the total data which may be of use to navigators and
astronomers available for publication in the American Ephemeris and Nautical Almanac:
Provided . . ."

Here follows a number of provisions, the most important astronomically being the repeal
of the proviso in the appropriation Act of September z8, 1850 (9 Stat. L., 513, 515) that
" hereafter the meridian of the observatory at Washington shall be adopted and used as the
American meridian for all astronomical purposes, and that the meridian of Greenwich shall
be adopted for all nautical purposes".

Such exchange agreements have been carried out in spite of international diffi­
culties.

In 1919 the International Astronomical Union was founded; Commission 4
(Ephemerides), which numbers among its members the directors of the national
ephemerides, thereafter provided the formal contacts by which the previous agree­
ments could be continued and extended.

Flattening the Earth?
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The 191 I agreements had been directed almost entirely to the reduction of the
total amount of work by the avoidance of duplicate calculation. In 1938 Commis­
sion 4 recommended that the principle should be extended to the avoidance of
duplicate publication by the collection in a single volume of the apparent places of
stars then printed in each of the principal ephemerides. This recommendation,
coupled with the adoption of the Dritter Fundamentalkatalog des Berliner Astro­
nomischen Jahrbuchs (FK3), was implemented for 1941 by the publication, under
the auspices of the International Astronomical Union, of the international volume
Apparent Places of Fundamental Stars. By this means astronomers gained access
to the apparent places of stars in one volume, and the individual ephemeris offices
were saved the work of the compilation and proof reading, as well as the cost of
type setting, of most of the stars which they previously published.

Continuing the precedents of the 1896 and 19II conferences, the Director of
the Paris Observatory (Professor A. Danjon) convened a further conference that
was held in Paris in March 1950 to discuss the fundamental constants of astronomy.
The leading recommendation was" .... that no change be made in the convention­
ally adopted value of any constant". But the recommendations with the most
far-reaching consequences were those which defined ephemeris time and brought
the lunar ephemeris into accordance with the solar ephemeris in terms of ephemeris
time. These recommendations were addressed to the International Astronomical
Union and were formally adopted by Commission 4 and the General Assembly of
the Union in Rome in September 1952.

Commission 4 had, at various times, made arrangements for the redistribution
of calculations between the ephemeris offices; for example, the Institute for
Theoretical Astronomy in Leningrad contributed apparent places of stars to the
international volume for the years 1951-1959. With the availability of fast auto­
matic calculating machines it is now both practicable and efficient for large blocks
of work, such as the calculation of apparent places of stars, to be done in one office;
and at the 1955 General Assembly of the Union in Dublin, a general redistribution
of calculations on these lines was agreed by the directors of the national ephemerides
and confirmed by Commission 4. Full details of these agreements, of changes in
the bases of the ephemerides, and of the discussions leading to the introduction of
Apparent Places of Fundamental Stars are given in the reports of Commission 4 in
Transactions of the International Astronomical Union.

The logical development of this co-operation would appear to be a single
international ephemeris; this is not yet practicable. Following the successful
unification of the navigational almanacs, and greatly assisted by the common
language, it was however agreed in 1954 to unify the British and American
ephemerides as from the year 1960; and this has now been done. In reporting
this agreement to Commission 4, it was announced that reproducible material for
the whole Ephemeris, with the exception of the short introductory section, would
be made available to other ephemeris offices through H.M. Stationery Office at a
small fee. And the hope was expressed that use would be made of this facility to
effect a considerable saving of type setting and proof reading, while still preserving
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Assembly
Rome 1922
Cambridge, England 1925
Leiden 1928
Cambridge, Mass. 1932
Paris 1935
Stockholm 1938
Zurich 1948
Rome 1952
Dublin 1955
Moscow 1958
Berkeley 196 I

Hamburg 1964
Prague 1967
Brighton 1970

for each country its own ephemeris with its own language headings and explan­
ations and its own selection of mattrial.

The Berliner Astronomisches Jahrbuch (published annually since 1776) and the
Astronomisch-Geodtitisches Jahrbuch (introduced for the year 1947) ceased public­
ation with the years 1959 and 1957 respectively; in Germany either the British
or American editions of the unified Ephemeris will be used and there will be no
separate German edition.

References
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conferences referred to above have been published as follows:-

Protocols of the Proceedings of the International Conference held at lVashington for the
purpose of fixing a Prime Meridian and a Universal Day. October 1884. Washington, D.C.,
1884.
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Paris, Bureau des Longitudes, 1896.

Congres International des Ephimerides Astronomiques tenu al'Observatoire de Paris du 23
au 26 Octobre 191 I. Paris, Bureau des Longitudes, 1912. A full account, with English trans­
lations of the resolutions, is given in M.N.R.A.S., 72, 3~2-345, 1912.

Colloque International sur les Constantes Fondamentales de l'Astronomie. Obser­
vatoire de Paris, 27 Mars-ler Avril 1950. Colloques Internationauxdu Centre National de la
Recherche Scientifique, 25, 1-131, Paris, 1950. The proceedings and recommendations are
also available in Bull. Astr., IS, parts 3-4, 163-292, 1950. *

The reports and recommendations of Commission 4 of the International Astronomical
Union have been published as follows:

Trans.I.A.U.,
1,159,207; 1923·
2, 18-19, 178,229; 1926.
3, 18, 224, 300; 1929.
4, 20, 222, 282; 1933.
5, 29-33, 281-288, 369-37 1 ; 1936.
6, 20-25, 336, 355-363; 1939.
7,61, 75-83; 1950.
8,66-68,80-102; 1954.
9, 80-91 ; 1957·

10,72,85-99; 1960.
II, A, 1-8; 1962. B, 164-167,441-462; 1962.
12, A, 1-10; 1965. B, 101-105, 593-625; 1966.
13, A, 1-9; 1967. B, 47-53, 178-182; 1968.
14, A, 1-9; 1970. B, 79-85, 198-199; 1971.

D. SCOPE AND PURPOSE OF THE EPHEMERIS

The Astronomical Ephemeris and The American Ephemeris and Nautical Almanac
are identical in content and presentation, apart from a few preliminary pages.
Except in the few cases where distinction is desirable. they will be referred to
collectively as " the Ephemeris" or by the initials A.E.

Scope. Now that other publications provide for the practical requirements of
navigators and surveyors, the Ephemeris need no longer do so. Its content is

*See page 174 for references to proceedings, of later conferences on the system of astrono­
mical constants.
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accordingly restricted to providing fundamental ephemerides of the Sun, Moon,
and planets to the highest precision, and ephemerides derived from them for the
requirements of the practical astronomer.

Fundamental ephemerides. The main purpose of the fundamental ephemerides *
of the Sun, Moon, and planets is to provide a rigorous continuous reference system,
to which observations, if necessary spread over many years, can be referred. In
order to achieve this the ephemerides should be calculated strictly in accordance
with a self-consistent theory, which can be specified precisely in regard to both
form and numerical constants. It will suffice that the adopted constants be close
enough to their true values for any possible variations to lead to linear changes in
the ephemerides; but it is important that all known physical forces and effects be
fully incorporated.

The ephemerides are calculated in accordance with the Newtonian law of
gravitation, modified by the theory of general relativity. The values of the adopted
constants are given partly in section 6 and partly in section 4 under the individual
body concerned; most are collected together in section 18. The independent
variable of the ephemerides is ephemeris time, which is independent of the unpre­
dictable variations in the speed of rotation of the Earth. The highest standard of
precision in the calculations is achieved for the five outer planets Jupiter, Saturn,
Uranus, Neptune, and Pluto; the calculations for the Sun, Mercury, Venus, and
Mars do not at present reach the same standard. For the Moon other requirements
are very severe; extremely accurate values of the Moon's motion, over short
intervals of time, are required for tre determination of relative positions on the
Earth through observations of eclipses and occultations; consistent positions of
the Moon over long intervals (say 10 years) of time are needed for the practical
determination of the length of the fundamental unit of time, the ephemeris second.
But the precision of the ephemeris is reasonably adequate for the present.

It is convenient, but not necessary, that the fundamental ephemerides should
give positions sufficiently close to the actual positions to provide for the observ­
ational astronomer and as a basis for further predictions. The ephemerides are,
in fact, amply close enough for this secondary purpose in terms of ephemeris
time; but the correction to universal time is large enough to make its application
necessary for the ephemeris of the Moon.

Other data. The only other data of a fundamental character given in the
Ephemeris are those required for the calculation of apparent places of stars; these
include the values of precession and nutation required to specify the observational
frame of reference. Apparent places themselves are not included as they are given
in Apparent Places ofFundamental Stars. Some deduced data, such as the Besselian
elements of eclipses, are of the highest precision; but generally all other ephemeral
data are intended to assist observation and are not of adequate accuracy for precise
comparison with observations. In particular the theories on which the orbits of
the satellites are based are too imperfect to provide ephemerides of a fundamental
character.

*In most cases new ephemerides of higher precision and accuracy are now available, but
the ephemerides in the A.E. provide a useful common standard of reference.
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E. SCOPE AND PURPOSE OF THE SUPPLEMENT *

As stated in the Prefau the purpose of this Explanatory Supplement is to
provide users of the Ephemeris with fuller explanations of its content, derivation,
and use than can conveniently be included in the Ephemeris itself. To a limited
extent it also provides the auxiliary tables and reference data required in the
application of the data tabulated in the Ephemeris; but, because of the availability
of other publications and of changing methods of calculation, these requirements
are much less than when the Supplement was first proposed in 1940.

In particular it has been decided not to include a section on observatories, as
originally planned. The list of observatories in the editions of The Nautical
Almanac prior to 1942 changed little from year to year, and formed one of the
motivations for a separate supplement; in recent years, however, the rapid increase
in the number of observatories, both optical and radio, together with more frequent
changes of position, make any list incomplete and out-of-date in one or two years.
The list of observatories in A.E., pages 434-452 in 1960, contains full details of
place, description, positions, and certain derived constants for use in the reduction
of observations, for some 320 optical and 27 radio observatories; the list includes
only major observatories and those specifically engaged on observations requiring
an accurate knowledge of position for their reduction. It is necessarily prepared
some two years before the year of the Ephemeris in which it is printed, and is
out-of-date to that extent. A full description of the list and an explanation of the
quantities tabulated are given in the Ephemeris itself.

The data in the Ephemeris will suffice for most requirements for the reduction
of current observations. Much more detailed information about the equipment,
programmes of ob3ervation, and staff of observatories is given in the publication
Les Observatoires Astronomiques et les Astronomes by F. Rigaux, published in 1959
by l'Observatoire Royal de Belgique under the auspices of the International Astro­
nomical Union. As with all such lists the data, particularly as regards individual
astronomers, are rapidly becoming out of date. No derived constants are given,
and the positional data are not always complete or specific. In any case, users who
require precise positions for the reduction of observations should obtain positions
for the particular telescope used.

It was originally planned to include a comprehensive list of former observa­
tories, on the lines of the lists published in the editions of The Nautical Almanac for
the years 1929 to 1938 inclusive. Changes of position of several observatories
have added to this list in recent years. But the small amount of additional data
hardly justifies the re-publication of data that must now be rarely, if ever, used.

The Ephemeris does not contain all ephemerides of position. Ephemerides
of the stars, of minor planets, of comets, and of other bodies are tabulated in other
publications, mainly for the general convenience of users; it is proper to regard
these as forming an integral part of the totality of astronomical ephemerides. The

*See also note on page vi regarding the 1974 reprint.
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scope of the Supplement is accordingly extended to include reference to such
ephemerides; but, generally, less detailed explanations and derivations are given
for these.

It is a necessary preliminary to the main purpose to define frames of reference
and systems of coordinates with some care. In doing so the text-book approach
has been deliberately avoided: all elementary definitions and proofs have in general
been omitted. An attempt has been made to combine complete rigour of treatment
with practical requirements, giving the errors of all approximate procedures; but
no attempt has been made to be comprehensive.

The treatment of the main sections varies according to the nature of their
content, particularly as to whether they refer to fundamental data, or derived
quantities, or to ephemerides in the Ephemeris or elsewhere.

In one section only, that on Systems of Time Measurement, has an attempt
been made to give a completely exhaustive, and authoritative, treatment of the
subject. This subject is fundamental to the whole purpose of the Ephemeris and
is one of extreme difficulty, especially in view of the many recent changes in both
conception and practical determination. It is hoped that this section will be
regarded as providing authoritative and precise statements as to the definitions of
Universal Time, Sidereal Time, and Ephemeris Time and of the relationships
between them.

The most important specific function of the Supplement is to define precisely,
for each individual ephemeris: the quantity tabulated; the fundamental data on
which it is based; and how it is derived from those data. No such definition can be
regarded as complete, or as free from possible misunderstanding, until it is illus­
trated by a numerical example in which every figure is derived from the stated
fundamental data by means of the stated procedure and formulae; only by such
means can ambiguities of wording be clarified, and procedures and formulae
verified. To achieve this purpose fully, numerical examples should be chosen so
as together to cover all cases and to avoid accidentally-small contributions in which
significant errors of principle might lead to negligible numerical differences. In
principle the tabulated values should be reproduced exactly; but in practice there
must always be a small, and almost always negligible, area of uncertainty in which a
real difference of principle may be masked by legitimate variations of procedure and
by accumulation of rounding-off errors owing to differences in computing methods.

Although the "derivation", as understood above, of every ephemeris is
illustrated numerically in the Supplement no claim is made to have achieved
complete coverage. The single examples given cannot cover every case and may
sometimes leave uncertainties due to unsuitable choice of date and time; this is
especially so as a fixed epoch (1960 March 7 at Oh E.T.) has been adopted for most
of the examples. Moreover, the examples have been calculated on a desk calcu­
lating machine one stage at a time, recording intermediate results where necessary;
the final results may therefore differ both from the values printed in the Ephemeris,
which are calculated systematically on punched-card machines, and from those

IE. INTRODUCTION 13
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obtained by adopting different stages in the calculation. None of these deficiencies
is likely to be serious, or to result in difficulties of interpretation, provided the
limitations are understood. It is intended that every printed figure should be
obtainable directly, correctly rounded off, from the stated formula using the actual
printed values of the basic data and intermediate results quoted; however, with a
calculating machine, there are different methods of accumulating products and of
doing continuous multiplications, and in a few cases, by oversight, the rounding-off
of an intermediate or final result may differ from that formally obtained. Similarly,
values of trigonometric functions may differ according to the interval and number
of figures in the tables used.

The numerical examples are designed primarily to illustrate unambiguously
the formulae quoted, and they do not necessarily indicate either the best method of
calculation or the method actually used. It is not possible to illustrate numerically
many of the actual methods used for systematic calculation on punched-card and
electronic computing machines.

Details of methods of calculation are omitted from the numerical examples; a
short note on computing techniques, particularly in regard to the solution of
spherical triangles, is given in section 16A.

F. OTHER PUBLICATIONS OF RELEVANCe

For convenience of reference, there are listed below the full titles, descriptions,
and adopted abbreviations of British, American, and other publications which are
likely to be of interest to astronomers; the British publications may be obtained
through H.M. Stationery Office and the American publications through the
Superintendent of Documents, U.S. Government Printing Office.

r. Unified publications; British and American editions
The Nautical Almanac (N.A.) (about 276 + xxxv pages) contains data for astronomical

navigation at sea. Of astronomical interest are: the Greenwich Hour Angle (G.H.A.) and
Declination (Dec.) to 0"1 for each hour for the Sun, Moon, Venus, Mars, Jupiter, and
Saturn; times of sunrise, sunset, and beginning and end of civil and nautical twilights for
latitudes N. 72° to S. 60° for every third day; times of moonrise and moonset for
latitudes N. 72° to S. 60° for every day.

The Air Almanac (A.A.) (four-monthly edition, about 242 + 90 pages) contains data
for astronomical navigation in the air. Chief astronomical interest lies in the tabulations of
G.H .A. and Dec. of the Sun ( to °'. I ) , and of the Moon and three planets ( to I'), for
each lOrn.

Sight Reduction Tables for Marine Navigation, U.S. Naval Oceanographic Office, H.O.
Pub. No. 229, six volumes each covering ISO of latitude, 1970 onwards. Reproduced as
(British) Hydrographic Department, N.P. 4°1, 1971 onwards. These tables give altitude
to 0"1, with variations for declination, and azimuth to 0°'1, with arguments latitude, hour
angle, and declination, all at I ° interval. They provide all solutions of the spherical triangle,
given two sides and the included angle, to find a third side and adjacent angle.
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Sight Reduction Tables for Air Navigation, U.S. Naval Oceanographic OfficeH.O.Pub.No.
249, reproduced as (British) Air Publication; A.P. 3270; vol. I, Selected Stars (epoch
1975'0),1973; vols. 2 and 3, Declinations 0°-29°,1953. Volume I contains the altitude to
I' and the azimuth to 1

0 for the seven most suitable stars for navigation, for each degree
of latitude and for each degree of local sidereal time. Volumes 2 and 3 give similar data
for each degree of declination to 29° and for each degree of hour angle; tabulations extend
to depressions of at least 5° below the horizon.

2. British publications

The Star Almanac for Land Surveyors (S.A.) (about 90 pages) is designed for topo­
graphical surveyors. Its principal interest lies in the apparent places (to 0·' I and I ") of 685
stars, including all stars not fainter than magnitude 4'0.

Planetary Co-ordinates for the years 1960-1980 referred to the equinox of 1950'0

(Planetary Co-ordinates) 180 pages, 1958;I'(Earlier volumes covering the years 1900-1940 and
1940-1960 were published in 1933 and 1939, respectively.) These volumes are intended
mainly for the calculation of perturbations of comets and minor planets. They give helio­
centric, spherical and rectangular coordinates, referred to the standard equinox of 1950'0, of
the planets, together with auxiliary tables, explanations, and illustrations; the volume for the
years 1960-1980 also contains a comprehensive collection of formulae.

Interpolation and Allied Tables (I.A.T.) 80 pages, 1956;tis a collection of interpolation
tables and formulae of numerical analysis, with explanations and illustrations, designed as a
working handbook for the computer.

Subtabulation, 54 pages, 1958, contains descriptions and tables for various methods of
subtabulation, many of which .:Ire used in the compilation of the Ephemeris.

Seven-figure Trigonometrical Tablesfor every Second of Time, 101 pages, 1939, reprinted
1961.

Five-figure Tables of Natural Trigonometrical Functions (for every 10"), 123 pages, 1947,
reprinted 1969.

Greenwich Observations. A complete list of the appendices and special investigations
included in the annual volumes of Observations made at the Royal Observatory, Greenwich,
and a list of the separate publications of the Observatory are given in the volume for 1946,
published in 1955. In particular:

" Reduced observations of lunar occultations for the years 1943-1947 ", published in
1952, as an appendix to the Observations for 1939.

Royal Observatory Annals (R.O. Ann.). This series of publications includes:
Number I," Nutation 1900-1959 ", 1961; values based on E. W. Woolard's series, see section
2C. There are also Royal Observatory Bulletins (R.O. Bull.).

Annals of Cape Observatory. This series includes many papers and much observational
data that are also of relevance to the ephemerides.

3. American publications

The Ephemeris, U.S. Department of the Interior, Bureau of Land Management, 30 pages.
For surveyors.

Improved Lunar E-phemeris, 1952-1959. A Joint Supplement to The American Ephemeris
and The (British) Nautical Almanac (I.L.E.), xiv + 422 pages, 1954. Extends the lunar
ephemeris in A.E. backwards to 1952, and includes a detailed account of the basic comput­
ation from Brown's theory. It also gives revised values of nutation and aberration for
1952-1959 and an account of their calculation.

*Reprinted 1962.
j- Reprinted 1972.

Highlight
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Tables of Sunrise, Sunset, and Twilight, Supplement to The American Ephemeris, 1946
(S.S. T.), 196 pages, 1945. Contains permanent and comprehensive tables of the times of
sunrise, sunset and twilight for each degree of latitude to 75 0

; variations are given by which
times can be calculated simply for any year and any place.

Astronomical Papers prepared for the use of The American Ephemeris and Nautical
Almanac (A.P.A.E.). Introduced in 1882, there are now sixteen volumes, almost every part
of which is of direct interest to users of the Ephemeris. A full list of the contents follows:

Volume I.

I. Simon Newcomb. "On the recurrence of solar eclipses, with tables of eclipses
from B.C. 700 to A.D. 2300". 1879.

II. Simon Newcomb, aided by John Meier. "A transformation of Hansen's lunar
theory, compared with the theory of Delaunay". 1880.

III. Albert A. Michelson. "Experimental determination of the velocity of light
made at the United States Naval Academy, Annapolis". 1880.

IV. Simon Newcomb. "Catalogue of 1098 standard clock and zodiacal stars". 1882.

V. George W. Hill. "On Gauss's method of computing secular perturbations, with
an application to the action of Venus on Mercury". I 88 I.

VI. Simon Newcomb. "Discussion of observed transits of Mercury, 1677-1881".
1882.

Volume II.

I. Simon Newcomb and John Meier. "Formulae and tables for expressing corrections
to the geocentric place of a planet in terms of symbolic corrections to the elements of the
orbits of the Earth and planet". 1883.

II. Truman Henry Safford. "Investigation of corrections to the Greenwich planetary
observations, from 1762 to 1830". 1883.

III. Simon Newcomb. "Measures of the velocity of light made under the direction of
the Secretary of the Navy during the years 1880-1882". 1885.

IV. Albert A. Michelson. "Supplementary measures of the velocities of white and
colored light in air, water, and carbon disulphide, made with the aid of the Bache fund of
the National Academy of Sciences". 1885.

v. Simon Newcomb. "Discussion of observations of the transits of Venus in 1761
and 1769". 1890.

VI. Simon Newcomb. "Discussion of the north polar distances observed with the
Greenwich and Washington transit circles, with a determination of the constant of nutation ~'.

1891.

Volume III.

I. Simon Newcomb. "Development of the perturbative function and its derivatives,
in sines and cosines of multiples of the eccentric anomalies, and in powers of the eccentricities
and inclinations". 1884.

II. George W. Hill. "Determination of the inequalities of the Moon's motion which
are produced by the figure of the Earth". 1884.

III. Simon Newcomb. "On the motion of Hyperion". 1884.

IV. George W. Hill. "On certain lunar inequalities due to the action of Jupiter and
discovered by Mr. E. Neison". 1885.

v. Simon Newcomb. "Periodic perturbations of the longitudes and radii vectores of
the- four inner planets of the first order as to the masses". 1 89 I.

Volume IV.

G. W. Hill. "A new theory of Jupiter and Saturn". 1890.



Volume V.
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I. Simon Newcomb. "Development of the perturbative function in cosines of
multiples of the mean anomalies and of angles between the perihelia and common node and
in powers of the eccentricities and mutual inclination". 1895.

II. Simon Newcomb. "Inequalities of long period, and of the second order as to the
masses, in the mean longitudes of the four inner planets". 1895.

III. Simon Newcomb. "Theory of the inequalities in the motion of the Moon
produced by the action of the planets". 1895.

IV. Simon Newcomb. "Secular variations of the orbits ofthe four inner planets".

v. Simon Newcomb. " On the mass of Jupiter and the orbit of Polyhymnia".

"Tables of the heliocentric motion of Mercury". 1895.

" Tables of the heliocentric motion of Venus". 1895.

" Tables of the heliocentric motion of Mars ". 1898.

["

Volume VI. Tables of the four inner planets.

I. Simon Newcomb. "Tables of the motion
the Sun". 1895.

II. Simon Newcomb.

III. Simon Newcomb.

IV. Simon Newcomb.

of the Earth on its axis and around

"Tables of Saturn, constructed in accordance with the

"Tables of Jupiter, constructed in accordance with the

Volume VII.

I. George William Hill.
methods of Hansen". 1895.

II. George William Hill.
methods of Hansen". 1895.

III. Simon Newcomb. "Tables of the heliocentric motion of Uranus ".
IV. Simon Newcomb. "Tables of the heliocentric motion of Neptune".

Volume VIII.

I. Simon Newcomb. "A new determination of the precessional constant with the
resulting precessional motions". 1897.

II. Simon Newcomb. "Catalogue of fundamental stars for the epochs 1875 and 1900
reduced to an absolute system". 1899.

III. Henry B. Hedrick. "Catalogue of zodiacal stars for the epochs 1900 and 1920
reduced to an absolute system". 1905.

Volume IX.

I. Simon Newcomb. "Researches on the motion of the Moon. Part II". 1912.

II. Frank E. Ross. "New elements of Mars and tables for correcting the heliocentric
positions derived from Astronomical Papers, Vol. VI, Part IV". 1917.

III. W. S. Eichelberger and Arthur Newton. "The orbit of Neptune's satellite and
the pole of Neptune's equator ". 1926.

Volume X.

I. W. S. Eichelberger. "Positions and proper motions of 1504 standard stars for the
equinox 1925'0". 1925.

II. James Robertson. "Catalog of 3539 zodiacal stars for the equinox 195°'°". 1940.

Volume XI.

I. G. M. Clemence.

II. G. M. Clemence.

"The motion of Mercury, 1765-1937 ".

" First-order theory of Mars". 1949.
1943·
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" Coordinates of the center of mass of the Sun and the five
1953·

"Perturbations of the five outer planets by the four inner

III. H. R. Morgan. "Definitive positions and proper motions of primary reference
stars for Pluto". 1950.

IV. Paul Herget, G. M. Clemence, and Hans G. Hertz. "Rectangular coordinates of
Ceres, Pallas, Juno, Vesta, 1920-1960 ". 1950.

Volume XII.

W. J. Eckert, Dirk Brouwer, and G. M. Clemence. "Coordinates of the five outer
planets, 1653-2060". 1951.

Volume XIII.

I. A. J. J. van Woerkom. "The motion of Jupiter's fifth satellite, 1892-1949 ". 1950.
II. Dirk Brouwer and A. J. J. van Woerkom. "The secular variations of the orbital

elements of the principal planets". 1950.

III. H. R. Morgan. "Catalog of 5268 standard stars, 1950'0, based on the normal
system N30". 1952.

IV. G. M. Clemence.
outer planets, 1800-2060 ".

v. G. M. Clemence.
ones". 1954.

Volume XIV.

Paul Herget. "Solar coordinates 1800-2000". 1953.

Volwne XV.

I. Edgar W. Woolard. "Theory of the rotation of the Earth around its center of
mass". 1953.

II. Hans G. Hertz. "The mass of Saturn and the motion of Jupiter 1884-1948 ".
1953·

III. Paul Herget. "Coordinates of Venus 1800-2000". 1955.

Volume XVI.

I. Raynor L. Duncombe. "The motion of Venus, 1750-1949". 1958.
This list is continued on page 522.

4. Other publications

The following are international volumes published under the auspices of the
International Astronomical Union.

Apparent Places of Fundamental Stars (A.P.F.S.), about xl + 500 pages, contains the
apparent places of the 1535 stars in FK3'!' It contains explanations in English, French,
German, Russian, and Spanish. From its inception in 1941 until 1959 it was compiled by
H.M. Nautical Almanac Office and published by H.M. Stationery Office, London. It is
now compiled and issued by the Astronomisches Rechen-Institut in Heidelberg, and is
published by Verlag G. Braun, Karl-Friedrich-Strasse 14, Karlsruhe, Germany.

Ephemerides of the Minor Planets (E.M.P.), about 170 pages, contains elements a~d

search ephemerides of all known minor planets. A brief introduction in English is given,
and a full translation of the Russian text is also available. It is now compiled by the Institute
of Theoretical Astronomy, Leningrad, and is published by the Academy of Sciences of
U.S.S.R. From 1898 to 1946 it was prepared by the Astronomisches Rechen-Institut,
Berlin, and from 1947 to 1951 Doth by the Minor Planet Center, Cincinnati, and by the
Institute of Theoretical Astronomy.

Notes on other publications and circulars giving current ephemerides of minor

* FK4 in A.P.F.S. 1964 onwards.
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planets, comets, and satellites are given in the relevant sections of this Supplement.

The following tables may be used for approximate calculation of astronomical
phenomena for dates in the past or future for which no fundamental ephemerides
are available.

Schoch, K. Planeten-Tafeln fur Jedermann, Berlin-Pankow, Linser-Verlag G.m.b.H.,
1927·

Ahnert, P. Astronomisch-chronologische Tafeln filr Sonne, Mond and Planeten, Leipzig,
Barth, 1960.

Neugebauer, P. V. Astronomische Chronologie, 2 volumes, Berlin and Leipzig, Walter de
Gruyter, 1929.

Baehr, U. Tafeln Zllr Behandlung chronologischer Probleme, Veroff. Astr. Rechen-Inst. zu
Heidelberg, no. 3, 1955·

Neugebauer, P. V. Tafeln zur astronomischen Chronologie, 3 volumes, Leipzig, 1912­
1925. Some of the tables in these volumes have been superseded or corrected by tables in
the preceding two references.

5. A note on references

In addition to the abbreviations given above the following are used in this
Supplement in references to astronomical journals and publications.

A.J. The Astronomical Journal
Ast. Nach. Astronomische Nachrichten
Bull. Astr. Bulletin Astronomique, Paris
J.B.A.A. Journal of the British Astronomical Association
M.N.R.A.S. Monthly Notices of the Royal Astmnomical Society
Mem. R.A.S. Memoirs oj the Royal Astronomical Society
P.A.S.P. Publications of the Astronomical Society of the Pacific
Trans. I.A. U. Transactions of the International Astronomical Union

G. SUMMARY OF NOTATIONS

In general, notations are defined and explained as they occur, and no attempt
is made to adopt a consistent system throughout the Supplement. The adopted
symbols may differ from those recommended by the International Astronomical
Union (Trans. I.A. U., 6, 345, 1939), and may also differ in different sections.

Symbols are generally used to denote the physical quantities which they
represent rather than the numerical expression of those quantities in some particular
units. Thus the day numbers C, D are angular displacements which may be
expressed in seconds of arc, in seconds of time, or in radians. Where it is desired
to use a symbol for the numerical value, this is either specifically stated or the unit
used is indicated after the symbol: for example, nS and n" are the numbers of
seconds of time and arc in the annual general precession in declination n. Angles
are otherwise expressed in radians, so that powers of small angles occurring in
expansions do not require to be modified by powers of sin I", as is often done;
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occasionally the square of a small angle, say 82, may be written as 8 sin 8 to emphasise
this point.

The following summary refers to those symbols and notations that are used
consistently throughout the Supplement.

" for mean equinox of date".

Where necessary to avoid confusion or circumlocution, or merely to assist interpre­
tation, the following subscripts are used consistently to indicate the reference
system to which the coordinates are referred. Positions may be geometric,
apparent, or astrometric according to the corrections applied for aberration, and
subscripts are adopted for all combinations of reference systems and positions
that are in use:

e

s

I
d

1\

,
R

astrometric

A

*

Position
apparentReference system geometric

Mean equinox of 195°00 S
Mean equinox of beginning of year B

Mean equinox of date M, C

True equinox of date T

C is used as an alternative to M for ecliptic coordinates.

* No symbol is used for this combination, although it is implicitly used as an
intermediate step in the calculation of apparent places of stars.

I. Subscripts for reference systems

The reference system for equatorial or ecliptic coordinates is defined by the
equinox and either the equator or the ecliptic; there are four such systems in
general use. In many applications it suffices to specify the reference system in
precise terms such as:

" referred to the mean equinox and equator (or ecliptic) of date"

and thereafter to use appropriate symbols without subscripts to denote the reference
system; this specification may be abbreviated in later references in the same
application to:

2. Symbols for heliocentric and geocentric coordinates

Heliocentric:

spherical ecliptic I, b, r } with appropriate
rectangular equatorial x,y, z subscripts
rectangular ecliptic, geometric

for mean equinox of date Xc, Yc, Zc

Geocentric:

spherical ecliptic II, j3, Ll } with appropriate
spherical equatorial a, 0, Ll

subscripts
rectangular equatorial g, 'Y), ~

rectangular equatorial (Sun) X, Y,Z

Highlight

Highlight
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3. Precession and nutation

ifi = annualluni-solar precession in longitude
p = annual general precession in longitude
m = annual general precession in right ascension
n = annual general precession in declination
€ = obliquity of the ecliptic

LJifi = (total) nutation in longitude
difi = short-period terms of nutation in longitude
LJ€ = (total) nutation in obliquity
d€ = short-period terms of nutation in obliquity

21
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4. Fundamental epochs and measures of time

. Ephemeris time. The fundamental epoch to which the elements of the Sun,
Moon, and planets are referred is:

1900 January 0 at I2h ephemeris time
= 1900 January 0'5 E.T. = J.E.D. 241 5020'0 E.T.

Ephemeris time is measured conventionally in years, months, days, and sub­
divisions of a day. The interval T of ephemeris time from the fundamental
epoch contains:

T Julian centuries of 36525 days, each of 86400 ephemeris seconds;
d, or 10000 D, ephemeris days (d = 36525 T; D = 3.6525 T).

When desirable to emphasise that these relate to an interval of ephemeris time, a
subscript E is added thus: TE, dE' DE'

Universal time. The fundamental epoch which is used in the definition and
derivation of universal time is:

1900 January 0 at I2h universal time
= 1900 January 0'5 D.T. = J.D. 241 5020'0 D.T.

The interval Tv of universal time from this epoch contains:
Tv Julian centuries of 36525 days, each of 86400 seconds of D.T.;
du, or 10000 Du, days of D.T. (dv = 36525 Tv; Du = 3.6525 Tv).

The subscript u is always used, unless the context makes it superfluous.

E.T. - U.T. At any instant the measure of ephemeris time (epoch + TE ) is
equal to the measure of universal time (epoch + Tv) + LJ T; thus:

LJT = E.T. - D.T. = TE - Tu
L1 T is most conveniently expressed in seconds of time.

It must be emphasised that the fundamental epochs used for ephemeris time
and universal time, although denoted by the same measure, do not correspond to
the same instant of time; in fact at each epoch LJ To is about - 48

, i.e. the epoch of
E.T. is 48 later than that of D.T. The interval of time between two instants, the
later one being indicated by a prime, can be expressed as:

T~ - TE of ephemeris time
or as: T~ - Tv = (T~ - TE ) - (LJT' - LJT) of universal time

--

.~
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The difference in the two measures involves the values of .1 T at both instants; It IS
only because the two fundamental epochs have the same measure that it is possible
to write:

The Besselian solar year. For certain applications it is more convenient to
measure time in units of tropical centuries of 36524'21988 ephemeris days, the
fundamental epoch being the beginning of the Besselian (fictitious) solar year
19°0'0, or 1900 January Od·813 E.T. In the great majority of such cases the
difference in length of the century is not significant: the same symbol T is accord­
ingly used, though always with a specific explanation. The difference between the
lengths of the Besselian solar year and the tropical year (os. 148 T) can always be
neglected and multiples of ° ·01 in T thus relate to the beginning of the corresponding
Besselian year (see section 2B).

The fraction of the tropical year is denoted by T, measured backwards or
forwards from the beginning of the Besselian year; a unit difference in T corresponds
to a difference of 0'01 in T.

An interval of time measured in tropical years is denoted by t. Initial and
general epochs are denoted by to and t respectively. The context will indicate the
meaning to be attached to to and t:

t - 1950'0 clearly implies that t is an epoch, e.g. 196o,°
1950'0 + t clearly indicates that t is an interval, e.g. 10'0

In some contexts the epoch to is used for that of 19°0'0 + To, and the epoch t for
that of 19°0'° + To + T; to = 100 To and t = 100 T are both intervals, but are
used conventionally to describe epochs.

Other notations jor time. T is also used to denote light-time in the application
of corrections for aberration.

Special notations for time, defined as they occur, are used in the sections on
eclipses and occultations, and in respect of some of the satellites. No attempt has
been made to adhere to a single uniform notation throughout.

A,B,C,D,E
j,g, G, h, H, i
j ' I G',g,

a, b, c, d

a', b/, c' , d '

I

I'

5. Day numbers and star-constants

Besselian day numbers

Independent day numbers

Independent day numbers (short-period terms)

Star constants in right ascension

Star constants in declination

Second-order day number in right ascension

Second-order day number in declination

For derivation and formulae see section 5C.
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6. Figure of the Earth

<P = geographic, or geodetic, latitude-see special note in section 2F
<P' = geocentric latitude tan <P' = (I - e2

) tan <P

<PI = parametric latitude tan <PI = (I - f) tan <P

e = ellipticity, or eccentricity, of the Earth's meridian

f = flattening I - f = (I - e2)~

p = geocentric distance in units of the Earth's equatorial radius

S, C = auxiliary functions such that p sin 4>' = S sin 4>
p cos 4>' = C cos cP = cos 4>1

For other relations and formulae see sections 2F and 9B.



2. COORDINATE AND REFERENCE SYSTEMS

A. COORDINATE SYSTEMS

The fundamental astronomical reference systems are based on the celestial
equator, coplanar with the Earth's equator, and the ecliptic, the plane*of the Earth's
orbit round the Sun. The angular coordinates in these planes are measured from
the ascending node of the ecliptic on the equator, or the point at which the Sun in
its annual apparent path round the Earth crosses the equator from south to north;
and they are measured positively to the east, that is in the direction of the Sun's
motion with respect to the stars. The ascending node of the ecliptic on the equator
is referred to as " the vernal equinox", "the first point of Aries", or simply as
" the equinox". The axes of the corresponding rectangular coordinate systems
are right-handed, i.e. the x-axis is directed towards the equinox, the y-axis to a point
90° to the east, while the z-axis is positive to the north.

The position of a point in space may be specified astronomically by reference
to a wide variety of coordinate systems; and it may be given by means of (among
other less usual systems) either spherical coordinates, consisting of a direction and a
distance, or rectangular coordinates, consisting of the projections of the distance on
three rectangular axes. The systems are determined by the two following
characteristics:

(a) Origin of coordinates-and designation.

(i) The observer-topocentric.

(ii) The centre of the Earth-geocentric.

(iii) The centre of the Sun-heliocentric.

(iv) The centre of mass of the solar system-barycentric.

(b) Reference planes and directions-and designation of spherical coordinates.

(i) The horizon and the local meridian-azimuth and altitude.

(ii) The equator and the local meridian-hour angle and declination.

(iii) The equator and the equinox-(equatorial) right ascension and declination.

(iv) The ecliptic and the equinox-(ecliptic or celestial) longitude and
latitude.

(v) The plane of an orbit and its equatorial or ecliptic node-orbital longitude
and latitude.

24

"'More strictly, the mean plane of the orbital motion, ignoring periodic perturbations.
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Barycentric coordinates are often referred to the centre of mass of the Sun and
the inner planets, and less often to other combinations. The equator, the ecliptic,
and the equinox are constantly in motion due to the effects of precession and
nutation, and must be further specified; this is done in sub-sections Band C.
A notation to distinguish the· various systems in current use is introduced in
section IG.

The reduction from geocentric to topocentric coordinates depends on the
figure of the Earth, and is considered in detail in sub-section F. In most cases of
astronomical interest, the differences are so small that they can be applied as first­
order differential corrections.

Positions may be of several kinds, including: the geometric position derived
from the actual position at the time of observation; the apparent position in which
an observer, situated at the origin of coordinates, would theoretically see the
object; and the astrometn"c position, in which corrections have been made for
some small terms of aberration in order that it may be directly comparable with the
tabulated catalogue positions of stars. The apparent position is derived from the
geometric position by the application of corrections for aberration, and where
relevant for refraction. However, refraction is dependent on the observer's local
reference system and is invariably treated as a correction to the observation rather
than to the ephemeris position; exceptions only occur for phenomena that are
essentially topocentric, such as rising and setting and (in principle, though the
correction is neglected in practice) for eclipses and occultations. For geocentric
coordinates the apparent position is the direction in which an observer at the
centre of the Earth would see the object, and refraction does not enter. Aberration
is dealt with in sub-section D and refraction briefly in sub-section E.

In the present sub-section the effects of precession, nutation, aberration,
refraction, and parallax are ignored in order to present the relationships between
the coordinate systems. The general notation used is restricted to this purpose
and should not be confused with the more detailed notation in section I G
necessary to distinguish between the different kinds of position.

Not all combinations of (a) and (b) occur and many are not used in the
Ephemeris; (a) (iv), in particular, is therefore not referred to again. Moreover, if
corrections for parallax be deferred, there is no difference between (a) (i) and
(a) (ii), which can be treated together.

For geocentric spherical coordinates there are thus the four practical reference
systems of:

(i) azimuth (A) measured from the north through east in the plane of the
horizon, and altitude (a) measured perpendicular to the horizon; in astronomy the
zenith distance (z = 90° - a) is more generally used, but the altitude is retained in
the formulae for reasons of symmetry;

(ii) hour angle (h) measured westwards in the plane of the equator from the
meridian, and declination (8) measured perpendicular to the equator, positive
to the north;
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(iii) right ascension (a) measured from the equinox eastwards in the plane of
the equator, and declination (8);

(iv) longitude (,\) measured from the equinox eastwards in the plane of the
ecliptic, and latitude (fJ) measured perpendicular to the ecliptic, positive to the north.

The formulae connecting these coordinates are:

Azimuth/altitude Hour angle/declination

cos a sin A -cos 8 sin h
~a~A ~8~~-~8~h~~

~a ~8~~+~8~h~~

cos 8 sin h -cos a sin A
~8~h ~a~~-~a~A~~

~8 ~a~~+~a~A~~

where ~ is the latitude of the observer. Note that the conversion corresponds to a
simple rotation of the frame of reference through an angle 90° - ~ in the plane of
the meridian.

Hour angle/declination Right ascension/declination

The two systems are identical apart from the origin, and direction, of measure­
ment of hour angle and right ascension, which are connected by the relation:

h = local sidereal time - a

since local sidereal time is the hour angle of the equinox.

Right ascension/declination Longitude/latitude

cos 8 cos a = cos fJ cos ,\
cos 8 sin a = cos fJ sin ,\ cos € - sin fJ sin €

sin 8 = cos fJ sin ,\ sin € + sin fJ cos €

cos fJ cos ,\ cos 8 cos a

cos fJ sin ,\ = cos 8 sin a cos € + sin 8 sin €

sin fJ -cos 8 sin a sin € + sin 8 cos €

where € is the obliquity of the ecliptic (corresponding to the particular equator and
ecliptic used). Geocentric longitude and latitude are used now only for the Sun
and Moon. Note that the conversions correspond to a simple rotation round the
x-axis through an angle €.

The corresponding equatorial rectangular coordinates and distance are denoted
by X, Y, Z, and R for the Sun and by g, TJ, " and Ll for the planets; they are
derived from the spherical coordinates by the formulae:

X/R or giLl = cos 8 cos a

Y/R or TJ/Ll = cos 8 sin a

Z/R or '/Ll = sin 8

Geocentric ecliptic rectangular coordinates are rarely (if ever) used.

For heliocentric coordinates there are only the two practical reference systems­
the equatorial and the ecliptic; and in the equatorial system only rectangular
coordinates are used. The relationships between the ecliptic rectangular

- 1"-"'..
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coordinates (xc, Yc, zc), the ecliptic longitude, latitude, and distance (I, h, r),
and the equatorial rectangular coordinates (x, y, z) are:

Xc = r cos b cos I x

Yc = r cos b sin I +y cos € + z sin €
Zc = r sin b .- y sin € + z cos €

X = Xc = r (cos b cos I)
Y =ycCOs€ - zc sin € = r(cosbsinlcos€ - sinbsin€)
z = Yc sm € + Zc cos € = r (cos b sin I sin € + sin b cos €)

The conversion from heliocentric to geocentric coordinates is performed in terms
of equatorial rectangular coordinates through:

t=x+X
7)=Y+Y
t=z+Z

where X, Y, Z are the geocentric coordinates of the Sun.

The calculation of the sph~rical coordinates from the rectangular coordinates,
or from the known direction cosines, typified by:

Ll cos 0 cos a = t
Ll cos S sin a = 7)
Ll sin 8 = t

is performed by:
tan a = 7)lt cot a = g/7)

Ll = (g2 + 7)2 + '2)~ sin 0 = tiLl
The quadrant of a is determined by the signs of t and 7), and that of 0 by the sign
of ~; LI and Ll cos 0 are always positive. The formulae for a and 0 may be written:

a = tan- l 7)lt or arctan 7)lt
= cot-1g/7) or arccot tl7)

o = sin-ItlLl or arcsin tiLl
provided that the appropriate values, and not necessarily the principal values, of
the multi-valued functions are taken.

Notes on the technique of practical calculation using these formulae, and on
the most suitable trigonometric tables to use, are given in section I6A.

Many of the conversions above correspond to a simple rotation of the frame of
reference about one of its axes. These are special cases of the general conversion
from a set of axes designated by x, y, z to a set designated by x', y', z'; the two
systems are connected by the formulae:

x = II x' + 12 y' + 13 z' x' = II X + m i Y + n i z
y = mi x' + m2 y' + m3 z' y' = 12 X + m2 Y + n2 z
z = n i x' + n2 y' + n3 z' z' = l3 X + m3 Y + n3 z

where II, mI, nI ; 12, m2, n2 ; 13, m3, n3 are the direction cosines of x', y', z' referred to
the system x, y, z. The direction cosines satisfy the relations typified by:

Ii + mi + ni = I Ii + l~ + l~ = I

12 l3 + m2 m3 + n2 n3 = 0 m i n i + m2 n2 + m3 n3 = 0
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These mne quantities can be expressed in terms of the Eulerian angles
e, ep, If by:

11 + cos ep cos () cos If - sin ep sin If
12 - cos ep cos () sin If - sin ep cos If
la + cos ep sin ()

m1 + sin ep cos () cos If + cos ep sin If
m2 - sin ep cos () sin If + cos ep cos If
ma + sin ep sin ()

n1 - sin () cos If
n2 + sin () sin If
na +cos ()

In this case the conversion corresponds to a rotation ep about the z-axis, () about
the new position of the y-axis, and If about the new (and final) position of the
z-axis. The transformation is equivalent to a single rotation about some line not
in general coincident with one of the axes; but such single rotations are not
frequently encountered in astronomical practice.

B. PRECESSION

The equator and the ecliptic, and hence the equinox, are continuously in
motion. The motion of the equator, or of the celestial pole, is due to the gravita­
tional action of the Sun and Moon on the equatorial bulge of the Earth: it consists
of two components, one luni-solar precession being the smooth long-period motion
of the mean pole of the equator round the pole of the ecliptic in a period of about
26,000 years, and the other nutation being a relatively short-period motion that
carries the actual (or true) pole round the mean pole in a somewhat irregular curve,
of amplitude about 9" and main period 18·6 years. The motion of the ecliptic,
that is of the mean plane of the Earth's orbit, is due to the gravitational action of
the planets on the Earth as a whole and consists of a slow rotation of the ecliptic
about a slowly-moving diameter, the ascending node of the instantaneous position
of the ecliptic on the immediately preceding position being in longitude about
1740

; this motion is known as planetary precession and gives a precession of the
equinox of about 12" a century and a decrease of the obliquity of the ecliptic of
about 47" a century.

In this sub-section the effects of the motions of only the mean poles of the
equator and ecliptic, known as general precession, are considered; the effect of
nutation is dealt with separately in sub-section C. The treatment is restricted to
the development of formulae for the practical application of corrections to coordin­
ates and orbital elements.



2B. COORDINATE AND REFERENCE SYSTEMS 29

Rigorous formulae

The effect of precession on the coordinates of a fixed object is illustrated in
figure 2.1, in which the position of a star S is referred at an initial time to to a system
of equatorial axes defined by the mean pole of the equator Po and the mean equinox
Xo; at this initial epoch the pole of the ecliptic is at Co' P, X, and C are the
respective positions of these points at a subsequent time t. Although at any
instant P moves, owing to luni-solar precession, in a direction perpendicular to the
colure CP, i.e. towards X, the arc PoP is not perpendicular either to CoP0 or to CP;
owing to planetary precession C is itself in motion along a curve which is always
convex to CP. This complex motion is specified by means of the three angles
'0' z, 8 (where 90° - {o is the right ascension of the ascending node of the equator
of epoch t on the equator of to reckoned from the equinox of to, 90° + z is the right
ascension of the node reckoned from the equinox of t, and 8 is the inclination of
the equator of t to the equator of to) together with the corresponding values of the
obliquity of the ecliptic E.

Figure 2.1. Precession-polar diagram

In the figure:

'0 = xoPoP { = 90° - PoPCo
z = 90° - PoPC {- CoPC = { - ,\
8 = PoP The great circle PoP is not the actual path taken by the moving pole.

PoCoP = luni-solar precession in longitude in the interval t - to
CoC = planetary precession in longitude in the interval t - to

A= CoPC = planetary precession on the equator in the interval t to
EO = CoP0 = obliquity of the ecliptic at to
E = CP = obliquity of the ecliptic at t

E1 = CoP

Figure 2.1 has been drawn for an epoch t for which ,\ is negative, i.e. for which z
is greater than {.



where To, T are measured in tropical centuries; the small secular changes in the
coefficients of T2 are here ignored.

The series given are for the conversion from the mean equinox of the initial
epoch to an epoch T centuries later; it can be verified that ~o, Z, 8, for initial epoch
to and interval T, are identically equal to - z, - ~o, - 8, respectively, for epoch
to + T and interval - T. When values are tabulated for reduction from the mean
equinox of to to that of t, the same values can therefore be used for reduction from
the mean equinox of t to that of to by replacing ~o, z, 8 (for to) by - z, - ~o, - 8.

Values for the reduction from the mean equinox of the beginning of the
current year to the standard equinox of 1950'0 are given in A.E., page 50, and for
a selection of years in the three volumes of Planetary Co-ordinates; the reduction
from the standard equinox of 1950'0 can be obtained by the simple substitution
mentioned above.

Positions referred to the reference system specified by the mean pole P, the
mean equinox X, and the pole of the ecliptic C at time t are designated formally
as being referred to "the mean equinox and equator (or ecliptic) of epoch t".
Where no confusion can be caused this is abbreviated to " mean equinox of epoch
t". In practice three reference systems are used: the mean equinox of 1950'0
(occasionally referred to as the" standard" equinox), the mean equinox of the
beginning of the Besselian year, and the mean equinox of date (i.e. the epoch of the
reference system is the same as the date and time for which the position is given).
Where necessary quantities referred to these systems are distinguished by subscripts
s or R, B, M or C respectively. (See section I G).

The beginning of the Besselian (fictitious) solar year is the instant when the
right ascension of the fictitious mean sun, affected by aberration and measured
from the mean equinox, is 18h 40m, This instant always occurs near the beginning
of the calendar year and is denoted by the notation '0 after the year; for example,
as given in A.E., page 2, the beginning of the Besselian solar year 1960 is January
I d'345 E.T. = 196o,°. Because of the excess of the secular acceleration of the
right ascension of the fictitious mean sun over the mean longitude of the Sun (see
section 3B) the Besselian year is shorter than the tropical year by the amount
oB'148T, where T denotes the time in centuries after 1900. However, it is usual
to ignore this insignificant difference and to regard the length of the Besselian
solar year as the same as that of the tropical year.

Newcomb (see references below) gives constants, based partly on theoretical
considerations but mainly on observation, from which the following numerical
expressions for ~o, z, 8 can be deduced. These depend only to a small extent on
the initial epoch.

Initial epoch, to: 19°0'0 + To Final epoch, t: 19°0'0 + To + T

~o = (2304"'250 + 1"'396 To)T + 0"'302 T2 + 0"'018 T3

z = ~o + 0"'791 T2
8 = (2004"·682 - 0"·853 To)T - 0"'426 T2 - 0"'°42 T3

3° EXPLANATORY SUPPLEMENT
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Values of '0' z, 0 and related precessional elements M, N are given in table 2.1
for years 1900 to 1980 at intervals of one year. The main tabulation is given for
reduction to the initial epoch 1950'0 but appropriate formulae are given with the
table so that it may be used for reductions between any two epochs. Values for
reduction from the mean equinox of selected years back to 1755 to that of the current
year are given in A.E., Table III.

Rigorous formulae for the reduction of positions from one epoch to another
are easily deduced from figure 2. I; in triangle PoPS:

PoS=900- 00 PPoS=ao+'o PPo=O
PS = 90" - 8 PoPS = 180° - (a - z)

where ao, 80 and n, 8 are right ascension and declination for the initial and final
epochs respectively. Then a, 0 are given by:

cos 0 sin (a - z) = cos 00 sin (ao + '0)
cos 0 cos (a - z) = cosO cos 00 cos (ao + '0) - sin 0 sin 00
sin 0 =, cos 0 sin 00 + sin 0 cos 00 cos (ao + '0)

The rigorous formulae for a, 0 may be written in the form:

( r) q sin (ao + '0)tan a - ao - ':>0 - Z =
I - q cos (ao + '0)

where q = sin 0 { tan 00 + tan io cos (ao + 'o)}

tan i (0 - 00) = tan io {cos (ao + '0) - sin (ao + '0) tan i (a - ao - '0 - z)}

which permits expansion in terms of the small quantities '0' z, 0, and thus in a series
in the interval T, the coefficients being functions of ao, 00 only. These coefficients
have been tabulated, for various epochs and adopted precessional constants, with
arguments ao and 0o; they are given explicitly in fundamental star catalogues,
where however they generally include the effect of proper motion.

The equatorial rectangular axes defined by the positions of the poles of the
equator and ecliptic (P, C) at the final epoch can be derived from those (defined by
Po, Co) at the initial epoch by rotations of: - '0 about the zo-axis (Po); 0 about the
y-axis; and - z about the z-axis (P). The direction cosines of one set' of axes
referred to the other may be expressed in terms of '0' z, 0 (see sub-section A); m
particular the direction cosines of the initial axes referred to the final axes are:

X", = cos '0 cos 0 cos z - sin '0 sin z
Y", -sin '0 cos 0 cos z - cos '0 sin z
Z", -sin 0 cos z
Xv cos '0 cos 0 sin z + sin '0 cos %

Y v -sin '0 cos 0 sin z + cos '0 cos z
Z v = - sin 0 sin z
X z = cos '0 sin 0
Y z = -sin '0 sin 0
Zz = cos 0

where, for example, Y", is the direction cosine of the initial y-axis referred to the
final x-axis.
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FOR REDUCTION TO 1950·0 OR OTHER EPOCHS

Date ~o z sin 8 cos 8 - I M N = 8 N =8
to Unit = 10-8

s • • • .
II)00-O +76.814 +76-827 +48 5892 -1180 + 153-640 +66-81 5 + 1002-23
I 1)0I 75-278 75'291 47 61 74 1133 15°'568 65'479 982'18
I902 73'742 73'754 466455 1088 147'495 64- 142 962'14
I903 72'206 72'218 45 6737 1043 144'423 62·806 942'°9
I 1)04 70·670 70 -681 44 7018 999 141'35° 61'469 922'°4
I1)05'0 +69- 134 +69'145 +4373°0 956 + 138'278 +60'133 + 9°2'00
I 906 67'598 67.608 42 7581 9 14 135'206 58 -797 881'95
I 1)07 66'062 66-072 41 7862 873 132'133 57'460 861'91
II)08 64'526 64'535 4081 44 833 129'°61 56 '124 841.86
I909 62'99° 62'999 398426 794 125'988 54'787 821·81
I9IO'0 +61'454 +61'462 +388707 756 + 122'916 +53'45 1 + 801'77
I9H 59-918 59'926 378989 718 119.843 52 '115 781'72
I9I2 58 '382 58 '389 36 9270 682 116'771 5°'778 761·68
I9I 3 56 .845 56 .853 35 9552 646 113.698 49'442 741.63
I9I 4 55'3°9 55'3 16 34 9834 612 110·626 48-105 721 '59
I9I 5'0 + 53'773 +53'780 +34°116 579 + 1°7'553 +46 '769 + 7°1'54
I9I6 52'237 52'243 33°397 545 104'480 45'433 681'49
I9I7 5°'7°1 5°'7°7 320679 513 101'4°8 44'°97 661'45
I9I8 49'164 49'170 31 0961 483 98 -335 42-760 641'4°
I9I 9 47·628 47'634 30 1243 453 95'263 41'424 621'36

I920'0 +46 '°92 +46 '097 +29 1525 424 + 92'19° +40'088 + 601'3 1
I92I 44'556 44'561 28 1807 397 89'117 38'75 1 581'27
I922 43'°20 43'°24 27 2089 37° 86-044 37'415 561'22
I923 41'484 41-488 26 2371 344 82-97 1 36-079 541'18
I924 39'948 39'95 1 25 2653 319 79·899 34'742 521 '13
I925'0 + 38'411 +38'415 +24 2935 295 + 76.826 +33'4°6 + 5°1'°9
I926 36.875 36 ,878 23 3217 272 73'753 32'070 481'°5
I927 35'339 35-341 223499 25° 7°·680 3°'733 461 -00
I928 33·802 33.8°5 21 3781 229 67-607 29'397 44°-96
I929 32'266 32 '268 20 4064 208 64'534 28-061 42°'91

I930.0 +3°-73° +3°'732 + 194346 189 + 61'462 +26'725 + 400 .87
I93I 29'193 29- 195 18 4628 17 1 58-389 25'388 380.82

I932 27·657 27-659 17 49 11 153 55-3 16 24'°5 2 360-78
I933 26'121 26'122 16 5193 137 52'243 22'7 16 34°'74
I934 24'584 24-5 86 15 5476 121 49- 170 21'379 320-69
I935-0 +23-°48 +23'°49 + 145758 106 + 46 '°97 +2°'°43 + 3°0 .65
I936 21'5 11 21'512 13 604 1 93 43-024 18'707 280·60
I937 19'975 19'976 12 6323 80 39-95 1 17'371 26°-56
I938 18'439 18-439 II 6606 68 36-878 16'°34 24°-52
I939 16'902 16-903 106888 57 33 ·805 14.698 22°'47
I940-0 + 15'366 + 15-366 + 9 7171 47 + 3°'732 + 13'362 + 200'43
I94I 13·829 13.83° 87454 38 27.659 12-026 18°'39
I 942 12'293 12'293 77737 3° 24'586 10·69° 160'34
I 943 1°'756 10-756 68019 23 21'512 9'353 14°'3°
I 944 9'220 9'220 58302 [7 18'439 8'017 120'26

I945'O + 7.683 + 7, 683 + 4 8585 12 + 15'366 + 6,681 + 100'21
1:946 6'146 6- 146 3 8868 8 12'293 5'345 80'17
1:947 4·610 4.610 29151 4 9'220 4'°°9 60'13
1:948 3'°73 3'°73 I 9434 2 6'146 2·672 4°'°9
1:949.0 + 1'537 + 1'537 + ° 9717 ° + 3'°73 + 1'336 + 20'°4

_._----.,-
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FOR REDUCTION TO 1950·0 OR OTHER EPOCHS

Date ~o z sin 8 cos 8 - I M N = 8 N = 9
to Unit 10-8

195°.0 0'000 0·000 ° ° 0'000 0'000 0·00
1951 1'537 1'537 9717 ° 3'°73 1'336 20'°4
1952 3'°73 3'°73 I 9434 2 6'147 2.672 4°'08
1953 4.610 4.610 2915 I 4 9'220 4'°°8 60'13
1954 6'147 6'147 3 8867 8 12'293 5'345 80'17

1955'° 7.683 7.683 48584 12 15'367 6·681 100'21
1956 9'220 9'220 5 8301 17 18'44° 8'017 120'25
1957 10'757 1°'757 68017 23 21'5 13 9'353 14°'3°
1958 12'294 12'293 77734 3° 24'587 10·689 160'34
1959 13.83° 13.83° 87450 38 27·660 12'025 18°'38
1960,° -15'367 - 15'367 97 167 47 3°'734 - 13'361 2°°'42
1961 16'9°4 16'9°3 10 6883 57 33.8°7 14.698 22°'46
1962 18'441 18'44° I I 6600 68 36 .881 16'°34 24°'5°
1963 19'977 19'977 12 6316 80 39'954 17'37° 26°'55
1964 21' 514 21'5 13 13 6032 93 43'°28 18'7°6 28~.. 59
1965.0 -23'°5 1 -23'°5° - 145749 106 46. 101 -20'°42 3°0 .63
11)66 24'5 88 24'587 15 5465 121 49'175 21'378 320 .67
1967 26· 125 26' 123 165181 137 52'248 22'7 14 34°'7 1
1968 27.662 27·660 174897 153 55'322 24'°5° 36°'75
1969 29'199 29'197 18 4613 17 1 58 '395 25'386 38°'79
197°'0 -3°'736 -3°'733 - 19433° 189 61'469 -26'722 4°°.83
1971 32 '273 32 '27° 20 4046 208 64'543 28'°58 420.87
1972 33.809 33·8°7 21 3762 229 67.616 29'394 44°'92
1973 35'346 35'344 22 3477 25° 7°.690 3°'73° 46°'96
1974 36 .883 36 .880 23 3193 272 73'764 32'066 481 '°0

1975'° -38'420 -38'417 -24 2909 295 76 .837 -33'402 5°1'°4
1976 39'957 39'954 25 2625 319 79'91 I 34'738 521 '08
1977 4 1'494 4 1'49 1 26 2341 344 82'985 36 '°74 541' 12
1978 43'°3 1 43'°27 27 2056 37° 86'°59 37'410 561' 16
1979 44'568 44'564 28 1772 397 89' 133 38 '746 581 '20
1980.0 -46'106 .-46 '101 -29 1488 424 92'206 -4°'°82 601'24

These values are for the reduction from the epoch to, in the left-hand argument colUIIUl,
to the epoch 1950'0. For reduction from 1950'0 to to enter the table with to as argument,
reverse the signs of all respondents except cos 8 - I, and interchange ~o and z.

For reduction from the epoch to + L1t to 1950'0 + L1t, and vice versa, take out values
from the table using argument to, and multiply:

~o, z, M by (I + 0'0000 06 L1t)

and

N, 8, sin 8 by (I - 0'000004 L1t).

Over the range of the table tan t 8 can be taken as t sin 8.

Formulae for the reduction of equatorial spherical coordinates include:

a - ao = M + N sin t (a + ao) tan t (8 + 80)

8 - 80 = N cos t (a + ao)

where no, 80 are for epoch to, and a, 8 are for epoch 1950'0.
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Rectangular coordinates x, y, z referred to the final epoch t can thus be
expressed in terms of rectangular coordinates xo, Yo, Zo referred to the initial epoch
to by:

x = X,.xo + Y",Yo + Z",zo
Y = X lI X O + Y ll yo + ZlI Z O

Z = Xzxo + Yzyo + Zzzo
These formulae are precisely equivalent to those connecting the spherical coordin­
ates above.

In systematic computation these and similar formulae are often modified so as
to give the reductions (x - xo), (y - Yo), (z - zo) to be applied to the known
xo, Yo, Zo to give x, y, z; e.g. the first formula is written as:

x = X o + (X", - I)Xo + Y",yo + Z",zo

For reduction from the epoch t to the epoch to:
Xo = X"'x + Xyy + Xzz = + X"'X - Y",y Z",z
Yo = Y",x + Yyy + Yzz = - XyX + Y ll y + Zyz
Zo = Z", x + ZyY + Zzz = - Xzx + Yzy + Zzz

in which the first set of formulae is rigorous, but the second (which has been
largely used) depends on the approximate equality of X y and - Y",; X. and - Z"';
and Y z and ZlI; the approximation is so good that the numerical values are identical.
For reduction from the mean equinox of 1950'0 + To to that of 1950'0 + To + 1':

X. - I = - (29696 + 26 To) T" - 13 ra
Y. = -X. = - (2234941 + 1355 To) T - 676 T2 + 221 ra
Z. = -X. = - (97 1690 - 414 To) T + 207 T" + 96 T3

Y. - I = - (24975 + 30 To) T" - 15 ra
Y. = Z. = - (I 0858 + 2 To) T2

Z. - 1 = - (4721 - 4 To) T"

where To, l' are measured in tropical centuries, and the coefficients on the right­
hand side are in units of the eighth decimal. Numerical values for reduction from
(and to) the equinox of 1950'0 to (and from) the mean equinox of the beginning
of the year are given at various intervals for the years 1800 to 1980 in the three
volumes of Planetary Co-ordinates.

For reduction from 1950'0 to the mean equinox of date it is more convenient
to have these expressions in terms of days (d) measured from some convenient
zero near the epoch of the standard mean equinox of 1950'0; this is chosen to be
J.D. 243 3°°°'5 (1949 March 25'0), so that 1950'0 corresponds to d = 281'923.

X, - 1 = - 2 + 125'5 D - 2226'0 D2 - 0'3 D3
Yz = -X. = + 17251 - 61 1903.6 D - 51'1 D2 + 4'5 D3
Zz = -X. = + 7500 - 26 6040·8 D + 15'3 D2 + 2'0 D3

Y. - 1 I + 105.6 D - 1872'1 D2 - 0'3 D3
Y. = Z. = 1 + 45'9 D - 814'0 D2

Z. - 1 = + 20'0 D - 353'9 D2

where D = d/IOOOO, and the coefficients on the right-hand side are in units of the
eighth decimal. Numerical values, calculated from the original expressions, are
given in table 2.2 with argument Julian date at intervals of 1000 days.
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Annual motions and approximate formulae

The precessional motions during a short interval of time (of the order of a
year) are small, and in many cases it is adequate to use first-order corrections
equal to the rates of change multiplied by the interval. In figure 2.2 the effect of
precession on the mean equator, ecliptic, and mean equinox is illustrated diagram­
matically. Qo, Eo, Xo are the equator, ecliptic, and equinox respectively at the
initial epoch to, and Q, E, X at an epoch t taken to be one tropical year later; the
interval is taken as being sufficiently small for the actual displacements to be
regarded as annual rates of change.

Eo ~,-0

E

x,

0 0

_toM

o

Figure 2.2. Precession-equatorial diagram

= longitude of the axis of rotation of the ecliptic,
i.e. of the ascending node of the instantaneous
position of the ecliptic on the immediately
preceding position; it is referred to the mean
equinox of date

= annual rate of rotation of the ecliptic
XM - 90°
obliquity of the ecliptic at epoch to
obliquity of the ecliptic at epoch t

z

n = XoMX (or BX)

7T = XoNX
~o = 90° - XoM
EO = EoXoQo
E = EXQ
El = EOXIQ
if/ = XOXI
A' = XIX
P = XN - XoN (orXA)

The two equators intersect at M, about 90° from Xo, and the two ecliptics
intersect at N, about 174° from Xo; M, N are the axes about which the equator
and ecliptic rotate. Xl is the intersection of the equator Q of epoch t with the
ecliptic Eo of epoch to' Then:

II = XoN

= annual luni-solar precession
= annual planetary precession on the equator
= annual general precession in longitude
= t/J' - A' cos EI

m = XM - XoM (or BXo) = annual general precession in right ascension
= t/J' cos EI - A'
= annual general precession in declination
= rate of change of e = t/J' sin EI

The quantity here denoted by t/J' is denoted by t/J in the Ephemeris, and in figure 2.2.
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FOR

2.2-EQUATORIAL PRECESSIONAL ELEMENTS

REDUCTION OF EQUATORIAL RECTANGULAR COORDINATES
FROM (AND TO) THE MEAN EQUINOX OF 1950·0

244 5000-5 - 3057

Mean o~ + o~ -89

Y. = - X. Z. = - X. Y. - I

In units of the eighth decimal
Z. = Y. Z. - I

Julian
Date

t

241 5000-5
6000
7000
8000

241 f)OOO

242 0000-5
1000
2000
3000
4000

242 5000-5
6000
7000
8000

2421)000

243 0000-5
1000
2000
3000
4000

2435000 '5
6000
7000
8000

2439000'

244 0000'5
1000
2000
3000
4000

X. - I

-7438
6647
5900
5 198
454°

-3926
3357
2833
2353
1918

- 1527
118o

878
621
40 8

24°
ll6

37
2

II

66
164
308
495
728

- 1°°5
1326
1692
2102
2557

+ II I 8485
105 7317
99 61 47
934976
873803

+ 81 2629
75 1454
69 0 277
62 9099
56 7919

+ 506739
44 5557
38 4374
323 189
262004

+ 200817
13 9630
78441

+ I 7251
43940

1°5 1 32

166324
2275 18
28 8713
349908

41 1I05
4723°2
5335°0
594699
65 5899

71 7099

-2

+48 6412
45 9804
43 3197
406589
379982

+35 3375
326768
300161
273554
24 6948

+22 °342
19 3736
16 7130
14 °524
II 3919

+ 8 7314
60709
341°5

+ 75°0
I 91°4

45707
7 2 310

9 89 1 3
12 5516
IS 21I8

- 17 8720
20 5322
23 1923
25 8523
28 5123

-3 1 1723

+1

-6255
559°
4962
437 1

3818

-3302
2823
2382
1979
161 3

- 1284
993
739
5 2 2

343

202

97
3 1

I

10

55
138
259
417
612

845
II IS
1423
1768
2 1 5 1

-2720

243 1
2 158
19°1
1660

-1436
1228
1036

860
7°1

558
43 2

321
227
149

88
42
13

I

4

24
60

1I2
181
266

367
485
61 9
769
935

-lll8

- 1I83
1°57
938
827
722

624
534
45 1

374
3°5

243
188
14°
99
65

38
18
6

°2
10
26
49
79

1I6

160
21I
2 69
334
4°7

486

For interpolation to full eight-decimal precision in this table, second differences must
be taken into account; they are sensibly constant over the range of tabulation, and mean
values of the double second difference are given at the foot of each column for use with
the interpolation formula:

f. = (I - p) fo + pfl + B 2 (o~ + oD
If Xo, Yo, %0 are the equatorial coordinates for the mean equinox of 1950'0 and x, y, Z

are for the mean equinox of date (t), then the formulae for reduction are:

From 195°-0 to t
x = Xo + (X. - I)Xo + Y.Yo + Z.zo
Y =Yo + X-Xo +(Y.-I)Yo + Z.zo
z=zo+ X.xo+ Y.Yo+(Z.-I)Zo

From t to 1950·0
Xo = x + (X.-I)X + X.y + X.z
yo=y+ Y.x+(Y.-I)Y+Y.Z
Zo = Z + Z.x + Z.y + (Z.-I)Z

where (X.- I), Y.. ... are obtained by interpolation to the argument t.
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FOR REDUCTION TO (AND FROM) THE MEAN EQUINOX OF 1950,0

Julian
Date E p 1T n a b c c'

to 23° 26' +
. . , . o , o ,

241 5000'5 68'28 50 '2564 °'4711 173 57'0 +41 55. 82 +23'57 6 10'2 528'3
6000 67'00 257° 47II 58'5 3938 '23 22'28 08'3 28'7
7000 65'72 2576 47II 174°°'° 3720·63 2°'99 06'4 29. 1
8000 64'44 2582 4710 01'5 35 03'02 19'7° °4'5 29'S

241 9000 63'15 2588 4710 °3'° 32 45'42 18'41 02·6 29'9

2420000'5 61·87 50 -2594 °'47 10 174°4'5 + 30 27.82 +17'12 60°'7 53°'3
1000 6°'59 2600 4710 06,0 28 10'21 15.83 558.8 3°'7
2000 59'3 1 2606 4710 °7'5 25 52·60 14'54 57'° 31'1
3000 58 '°2 261 3 47°9 °9'0 23 34'99 13'25 55'1 31'S
4000 56 '74 26 19 47°9 1°'5 21 17'38 I1'97 53'2 31'9

242 5000 '5 55'46 5°'2625 0'47°9 174 12'0 + 18 59'77 +10·68 5 51'3 532'3
6000 54'18 2631 47°9 13'5 16 42'15 9'39 49'4 32'7
7000 52·89 2637 47°9 15'° 14 24'53 8'10 47'S 33'1
8000 51.61 2643 4709 16'5 1206'92 6·81 45.6 33'5

242 9000 5°'33 2649 4708 18'0 949'3° 5'52 43'7 33'9

243 0000 '5 49'°5 5o' 2655 °'47°8 174 19'5 + 731.68 + 4'23 .5 4 1.8 534'3
1000 47'76 2661 4708 21'0 5 14'05 2'94 39'9 34'7
2000 46 '48 2667 4708 22'5 256 '43 1·65 38 '0 35'°
3000 45'20 2673 4708 24'° + ° 38 .80 + °'36 36 '1 35'4
4000 43'92 2679 47°7 25'5 1 38.83 °'93 34'2 35,8

2435000 '5 42·63 5°'2685 °'47°7 174 27'0 356 '46 2'21 532'3 536 '2
6000 41'35 2692 47°7 28'5 6 14'09 3'5° 3°'4 36 .6
7000 4°'°7 2698 47°7 3°'0 8 31'72 4'79 28'5 37'°
8000 38 '78 2704 4707 31'5 10 49'36 6'08 26,6 37'4

2439000 37'5° 2710 4706 33'° 13 06'99 7'37 24'7 37.8

244 0000'5 36 '22 5°.27 16 °'47°6 17434'5 -15 24.63 8·66 522·8 538 '2
1000 34'94 2722 4706 36'0 1742'27 9'95 20'9 38,6
2000 33·65 2728 4706 37'5 19 59'91 I1'23 19'° 39'°
3000 32'37 2734 4706 39'° 22 17'56 12'52 17'1 39'4
4000 31'°9 274° 4705 4°'5 2435'20 13.81 15'2 39·8

244 5000 '5- 29·81 5o'2746 °'47°5 17442'0 -26 52.85 -15'10 5 13'3 540 '2

If Ao, f30 and Qo, wo, i o are ecliptic coordinates and elements for the mean equinox of
date (to), and if A, f3 and Q, w, i are for the mean equinox of 1950,o,then over the range of
the above table the formulae for reduction are:

From to to 195°.0 From 1950'0 to to

A = Ao + a - b cos (Ao + c) tan f30 Ao =A - a + b cos (A + c') tan f3
f3 = f30 + b sin (Ao + c) f30 =f3 - b sin (A + c')

Q = Qo + a - b sin (Qo + c) cot io Qo = Q -a + b sin (Q + c') cot i
w = Wo + b sin (Qo + c) cosec io Wo =w - b sin (Q + c') cosec i

= io + b cos (Qo + c) i o = i -bcos(Q + c')

where a, b, c, c' are obtained by linear interpolation to the argument to.
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The following numerical values are deduced from Newcomb's discussion;
they are derivedtfrom fundamental values of the precessional constant, the obliquity,
the speed of rotation of the ecliptic, and the longitude of the axis of rotation.

.j/ = 50"'3708 + 0"'0050 T m = 35 '07234 + 05 '00186 T
,\' = 0"'1247 - 0"'0188 T 11 = 18'33646 - 08'00057 T
P = 50"'2564 + 0"'0222 T = 20"'0468 - 0"'0085 T
n = 173 0 57'·06 + 54"77 T 71' = 0"'4711 - 0"'0007 T

E = 23027' 08"'26 - 46".845 T - 0"'0059 T2 + 0"'00181 T3

where T is measured in tropical centuries from 19°0.0.

Values of these quantities (except if;', A') for the current year are given in A .E.,
page 50. Values of E, p, 71', n are given in table 2.3, which has argument Julian
date and an interval of 1000 days. .

IfPnil mill' n Ill' n m' TT III are the values of the above quantities at an epoch mid­
way between the initial epoch tu and a subsequent epoch t, then:

M = general precession in right ascension = mill (t - to) = So + z
N = precession in declination = n m (t - to) = e
a = general precession in longitude = Pill (t - to)
b = inclination of ecliptic of epoch t to that of epoch to = TT III (t - to)
c = 1800

- n III + ta c' = 180 0
- n III - ta

Values of the above quantities, for reduction to and from 1950'0, are given for
* the current year in A.E., page 50, and for 1800 to 1980 in the three volumes of

Planetary Co-ordinates. Values of M, N are given in table 2.1, and values of
a, b, c, c' are given with the values of E, P, TT, n in table 2.3. They may be used for
the reduction of positions from one mean equinox to another, provided the time
interval is not too long nor the position too close to the pole.

The formulae for the reduction of equatorial coordinates from the mean
equinox of to to the mean equinox of t, or from t to to are:

a - ao = M + N sin t (a + ao) tan t (8 + 80)

8 - 80 = N cos t (a + ao)
where the right-hand sides are evaluated by successive approximation, if necessary..

The formulae for the reduction of ecliptic coordinates and ecliptic elements are:

From mean equinox of to From mean equinox of t
to mean equinox of t to mean equinox of to

A = Ao + a - b cos (Ao + c) tan f3 Ao = A - a + b cos (,\ + c') tan f30
f3 f30 + b sin (Ao + c) f30 f3 - b sin (A + c')

Q = Qo + a - b sin (Qo + c) cot i Q o = Q - a + b sin (Q + c') cot io
w = Wo + b sin (Qo + c) cosec i Wo = w - b sin (Q + c') cosec io
t = to + b cos (Qo + c) to = i - b cos (Q + c')

where the final coordinates and elements on the right-hand sides are evaluated by
successive approximation, if necessary, although the initial values are usually
sufficiently accurate. Note that when i is small:

Q + w = Qo + W o + a

*Page 11 in A.E. 1972-3, page 9 from 1974·

t See also section 6.

" & __.. ~_ ~ _ _ ........L.
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For the transformation of equatorial or ecliptic rectangular coordinates the
rigorous formulae obtained above are still the most suitable, though some sim­
plifications may be made in the actual calculations.

Over short intervals of time, of less than a year, or to lower precision the
formulae may be simplified by using constants for the coefficients and by ignoring
second-order terms. Thus the reduction from the mean equinox of the beginning
of one year to that of the next following year may be made through:

a = ao + 38'°73 + 18'336 sin a tan S
S = So + 20"'04 cos a

,\ ='\0 + 5°"'27 - 0"'47 cos (,\ + 6°) tan f3
f3 = f30 + 0"'47 sin (,\ + 6°)

~ = ~o + 0°'°1396 - 0°'°0013 sin (~ + 6°) cot i
w = Wo + 0°'°°013 sin (~ + 6°) cosec i
i = io + 0°'°°013 cos (~ + 6°)

where it does not matter to which equinox the coordinates are referred.

Approximate annual corrections to right ascension and declination may be
taken directly from table 2.4, which has been calculated from the formulae:

in right ascension 38'°73° + 18'3362 sin a tan S
in declination 20" '043 cos a

Coefficients for the approximate reduction from the standard equinox of 1950'0 to the true
equinox during the current year are given in the A.E., Table IV.

Differential precession and nutation

The rotation of the frame of reference due to precession (and nutation)
causes small changes in the relative coordinates of two adjacent points and, in
particular, changes the position angles of a star with respect to others; if to is the
epoch to which the angle is to be referred, and t is the epoch of the observation,
then the observed position angle must be corrected by applying the angle PSP0

(see figure 2.1) or - (n sec S sin a) (t - to), where n may be taken as 0°'°°56 and
the time interval is in tropical years.

Over a small area in the sky the effect of precession (and nutation) varies
slowly; thus the corrections for precession and nutation for moving objects will
differ little from those for neighbouring stars, to which the positions of the moving
object may be referred. Since the positions of the stars for equinox 1950'0, or for
the beginning of the year, will be known it is only necessary to apply corrections
for differential precession and nutation (and similarly for aberration and refraction)
to yield the positions of the moving objects referred to the same equinox.

The effect of differential nutation is always small, and it is convenient to
combine precession and nutation in one correction.

If Lla and LIS are the observed differences of coordinates in the sense moving
object minus star, then the corrections for differential precession and nutation for
reduction to the nearest yearly equinox are, in the notation of section 5:

in right ascension - {g cos (G + a) tan S} Lla - {g sin (G + a) sec2 S} LIS
in declination + {g sin (G + an Lla
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Annual precession in right ascension, varies with declination Ann.
Prec.+800 +700 +600 +5°0 +400 +300 +15000 -150 -300 -400 -500 _600 -700 -800

In
a Dec.
h

0·0 +3'1 +3- 1 3- 1 3- 1 3- 1 3-1 3- 1 3- 1 3- 1 3'1 3- 1 3'1 3- 1 +3- 1 + 3'1 +20
0'5 4- 1 3-6 3-4 3-3 3-2 3-2 3-1 3- 1 3'0 3'0 2'9 2-9 2-8 2-6 2-1 20
1·0 5-0 4-0 3'7 3-5 3-4 3-3 3-2 3- 1 3-0 2'9 2-8 2'7 2-5 2-1 I-I 19
1-5 6'0 4'5 4-0 3-7 3-5 3'4 3- 2 3- 1 2-9 2·8 2·6 2-5 2-2 1'7 + 0'2 19
2·0 6-9 4'9 4-2 3-9 3-6 3-5 3-3 3- 1 2-9 2-7 2-5 2-3 1'9 1-2 0'7 17
2'5 7'7 5-3 4-5 4-0 3·8 3'5 3-3 3- 1 2'9 2-6 2'4 2'1 1-7 0·8 1'5 16

3-0 8'4 5-7 4-7 4-2 3'9 3-6 3-3 3- 1 2-8 2'5 2-3 1'9 1-4 0-5 - 2-3 +14
3'5 9- 1 6-0 4'9 4-3 4-0 3-7 3-4 3- 1 2-8 2-5 2-2 1-8 1-2 +0-2 2-9 12
4. 0 9-6 6-3 5- 1 4-5 4-0 3-7 3-4 3- 1 2-8 2-4 2'1 1-7 I- I -0-1 3-5 10
4'5 10- I 6-5 5-2 4-5 4- 1 3-8 3-4 3-1 2-7 2-4 2-0 1-6 0-9 -0-3 3-9 8
5-0 10-4 6-6 5-3 4-6 4-2 3·8 3-4 3- 1 2-7 2-3 2-0 1-5 0-8 -0-5 4-2 5
5'5 10-6 6-7 5-4 4-7 4-2 3-8 3-4 3' I 2-7 2-3 2-0 1-5 0-8 -0-6 - 4-4 + 3
6-0 10-7 6-7 5'4 4-7 4-2 3-8 3-4 3'1 2-7 2-3 2-0 1-5 0-8 -0-6 4-5 0
6-5 10·6 6-7 5-4 4-7 4-2 3-8 3-4 3-1 2-7 2-3 2-0 1-5 0-8 -0-6 4-4 3
7. 0 10-4 6-6 5-3 4- 6 4'2 3-8 3-4 3- 1 2-7 2-3 2'0 1-5 0-8 -0-5 4-2 5
7'5 10-1 6-5 5'2 4-5 4-1 3-8 3-4 3- I 2-7 2-4 2-0 1-6 0-9 -0'3 3-9 8
8,0 9-6 6-3 5- 1 4-5 4-0 ,3-7 3-4 3- 1 2-8 2-4 2-1 1-7 I-I -0-1 3-5 10
8-5 9'1 6'0 4-9 4-3 4-0 3-7 3-4 3- 1 2-8 2-5 2-2 1-8 1-2 +0-2 2-9 12

9'0 8-4 5'7 4-7 4-2 3-9 3-6 3'3 3- 1 2-8 2-5 2-3 1'9 1-4 0-5 2-3 - 14
9'5 7-7 5-3 4-5 4-0 3-8 3-5 3'3 3- 1 2-9 2-6 2'4 2-1 1-7 0-8 1-5 16

10·0 6-9 4-9 4-2 3-9 3.6 3-5 3-3 3-1 2-9 2'7 2-5 2'3 1-9 1'-2 0-7 I7
10-5 6-0 4-5 4-0 3-7 3-5 3'4 3-2 3- 1 2-9 2·8 2-6 2-5 2-2 1-7 + 0-2 19
11·0 5-0 4-0 3-7 3-5 3-4 3-3 3-2 3- 1 3-0 2'9 2-8 2-7 2-5 2-1 I- I 19
II'5 4- 1 3-6 3-4 3-3 3-2 3- 2 3' I 3- 1 3-0 3'0 2-9 2-9 2-8 2-6 2-1 20

12·0 3- 1 3- 1 3- 1 3- 1 3- I 3- 1 3'1 3- 1 3- 1 3- 1 3- 1 3- 1 3- 1 3- 1 3- 1 -20
12'5 2-1 2·6 2-8 2-9 2-9 3-0 3-0 3'1 3' I 3-2 3- 2 3-3 3-4 3-6 4- 1 20
13.0 I - I 2·1 2-5 2-7 2-8 2-9 3-0 3-1 3-2 3-3 3-4 3-5 3-7 4-0 5-0 19
13-5 +0'2 1-7 2-2 2-5 2-6 2-8 2-9 3- 1 3-2 3-4 3-5 3-7 4-0 4-5 6-0 19
14-0 -0'7 1'2 1-9 2-3 2'5 2-7 2-9 3- 1 3-3 3'5 3-6 3'9 4-2 4-9 6-9 17
14-5 - 1'5 0-8 1-7 2-1 2-4 2·6 2-9 3- I 3-3 3-5 3-8 4-0 4-5 5-3 7-7 16

15.0 -2-3 0-5 1-4 1-9 2-3 2-5 2-8 3- 1 3-3 3-6 3-9 4-2 4-7 5'7 8-4 -14
15-5 -2-9 +0-2 1-2 1-8 2-2 2-5 2-8 3-1 3-4 3-7 4-0 4-3 4-9 6-0 9- 1 12
16'0 -3-5 -0-1 I-I 1-7 2-1 2-4 2-8 3- 1 3-4 3-7 4-0 4-5 5- 1 6-3 9-6 10
16'5 -3-9 -0-3 0'9 1-6 2-0 2-4 2-7 3-1 3-4 3-8 4- 1 4-5 5-2 6-5 10-1 8
17-0 -4'2 -0·5 0·8 1-5 2'0 2'3 2-7 3'1 3'4 3-8 4-2 4-6 5-3 6-6 10-4 5
17'5 -4-4 -0-6 0-8 1-5 2'0 2-3 2-7 3- I 3-4 3-8 4- 2 4-7 5-4 6-7 10-6 3
18,0 -4-5 -0-6 0-8 1-5 2-0 2'3 2-7 3- I 3-4 3-8 4-2 4-7 5-4 6-7 10·7 0
18-5 -4-4 -0·6 0-8 1-5 2-0 2-3 2-7 3' I 3-4 3-8 4-2 4-7 5-4 6-7 10-6 + 3
19-0 -4.2 -0-5 0-8 1-5 2'0 2'3 2-7 3- 1 3-4 3-8 4-2 4-6 5-3 6-6 10-4 5
19'5 -3-9 -0'3 0'9 1-6 2-0 2-4 2-7 3-1 3-4 3-8 4- 1 4-5 5-2 6-5 10-1 8
20·0 -3-5 -0-1 I-I 1-7 2' I 2-4 2-8 3- I 3-4 3-7 4-0 4-5 5- 1 6-3 9-6 10
20'5 -2-,9 +0-2 1-2 1-8 2-2 2-5 2-8 3-1 3-4 3-7 4-0 4-3 4-9 6-0 9- 1 12

21-0 -2'3 0-5 1-4 1-9 2'3 2-5 2-8 3'1 3-3 3-6 3'9 4-2 4-7 5-7 8-4 +14
21-5 -1-5 0-8 1'7 2-1 2-4 2-6 2-9 3- 1 3-3 3-5 3.8 4-0 4-5 5-3 7-7 16
22-0 -0-7 1-2 1-9 2-3 2'5 2-7 2'9 3- I 3-3 3-5 3.6 3-9 4-2 4-9 6-9 17
22'5 +0-2 1-7 2-2 2-5 2-6 2·8 2-9 3- 1 3- 2 3-4 3-5 3-7 4'0 4-5 6-0 19
23-0 I-I 2-1 2-5 2'7 2-8 2-9 3-0 3-1 3-2 3-3 3-4 3-5 3-7 4-0 5-0 19
23-5 2-1 2-6 2-8 2-9 2-9 3-0 3-0 3- 1 3- 1 3-2 3-2 3-3 3-4 3-6 4-1 20

24'0 +3- 1 +3- 1 3- 1 3'1 3- 1 3- 1 3-1 3- 1 3- 1 3- 1 3- 1 3- 1 3. 1 +3- 1 + 3- 1 +20
The precession in right ascension is positive, except where indicated in high declinations_

- - - ---- ----- -------------,
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Tables based on similar formulae are given in A.E., Table VI, for reduction to the
nearest equinox of the beginning of a Besselian year, and also to that of 195°.0;
the corrections are given in the form:

in right ascension e tan S Lla - f sec2S LIS
in declination f Lla

where e = 101 sin (J + a) j sin Jo = n (t - A) sin I' J = Jo - 18 .5 t
f = 101 cos (J + a) j cos Jo = B sin I'

and t is the number of years from date to the equinox desired. The small correction
to Jo allows for the fact that it is more accurate to use the right ascension of the
star for the mid-epoch. With j, e, f measured in the units indicated (chosen for
convenience of tabulation), and with Lla, LIS in units of I', the corrections are in
units of 0"'01.

References

The numerical expressions for the precessional motions are those of S.
Newcomb; fundamental and derived values are given in:

Newcomb, S. The elements of the four inner planets and the fundamental constants of
astronomy. Supplement to The American Ephemeris for 1897, Washington, 1895.

Newcomb, S. A new determination of the precessional constant with the resulting
precessional motions, A.P.A.E., 8, part I, 1897.

Newcomb, S. A compendium of spherical astronomy. New York, Macmillan, 1906;
reprinted, New York, Dover Publications, 1960.

Peters,· J. Priizessionstafeln fur das Aquinoktium 1950.0. Veriiff. Astr. Rechen-Inst.
zu Berlin-Dahlem, no. 50, 1934.

c. NUTATION

Nutation is essentially that part of the precessional motion of the pole of the
Earth's equator which depends on the periodic motions of the Sun and Moon in
their orbits round the Earth. The progressive long-period motion of the mean
pole has been considered as luni-solar precession in sub-section B; nutation is
the somewhat irregular elliptical motion of the true pole about the mean pole in a
period of about 19 years with an amplitude of about 9". The principal term
depends on the longitude of the node of the Moon's orbit and has a period of
6798 days or 18·6 years; the amplitude of this term, 9"·210, is known as the
constant of nutation. In the complicated theory of the gravitational action of the
Sun and Moon on the rotating non-spherical Earth, other terms arise which
depend on the mean longitudes and mean anomalies of the Sun and Moon and
on their combinations with the longitude of the Moon's node. The resulting
shift of the mean to the true pole can be resolved into corrections to the longitude
(fj!fJ, nutation in longitude) and to the mean obliquity (LIE, nutation in
obliquity), and expressions for these in series constitute the formal speci­
fication of the nutation. The theory and the numerical series upon which the
nutation is now based are developed in full detail by E. W. Woolard in A.P.A.E.,
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15, part I, 1953, to which reference should be made for further information.

The terms divide naturally into those not depending on the Moon's longitude,
which can be interpolated at intervals of 10 days, and those depending on the
Moon's longitude, with periods of less than about 60 days, which cannot be so
interpolated. Nutation is therefore conventionally divided into long-period
and short-period terms; the latter, consisting of terms with periods less than 35
days, are summed separately as dtf; and dE, being the short-period terms of nutation
in longitude and obliquity respectively. In certain special applications, such as
the tabulation of the apparent positions of stars at intervals of 10 days, only the
long-period terms of nutation are included; and data are provided for the indivi­
dual application of corrections for the much smaller short-period terms after
interpolation.

The terms included in the nutation are given in table 2.5. There are 69
terms in Lltf;, of which 46 are of short period and are summed separately as dif1;
for the obliquity there are 40 terms in LlE, including 24 terms in dE. The series
include all terms with coefficients of 0" ·0002 or greater. In the table the terms
are grouped according to their periods, and are arranged in order of magnitude of
the coefficient of the nutation in longitude within each group.

These series may be compared with those used prior to 1960 (with a maximum
of 22 terms in longitude and 15 in obl,iquity), which are given in section 7; values
were then tabulated only to 0"'0 I.

Values of the nutation have been calculated from the series given above for
011 E.T. on each day from 1900 to 2000. Those for 1900 to 1959 are published in
Royal Observatory Annals, Number I. The values for 1952 to 1959 have also
been included in the Improved Lunar Ephemeris 1952-1959. In each publication
there is given a description of the method used for the calculation on punched­
card machines.

The nutation in longitude (Lltf;), to be added to longitudes measured from the
mean equinox of date, is tabulated to 0"'001 for 011 E.T. on each day of the year
in A.E., pages 18 to 32. The nutation in obliquity (LlE) is not tabulated directly
as such, but enters into the obliquity of the ecliptic on pages 18 to 32 and is obtain­
able immediately as -B, the Besselian day number given in A.E., pages 266 to
285; the short-period terms in both longitude and obliquity, dtf; and dE, are also
tabulated on the latter pages, all to 0"'001. The long-period terms Lltf; - dtf; and
LlE - dE are not separately tabulated in the Ephemeris, though special values at
intervals of 10 sidereal days are incorporated into the day numbers used for the
calculation of the apparent places of Io-day stars, published in Apparent Places of
Fundamental Stars.

The intersection of the true equator (as affected by both precession and
nutation) with the true ecliptic is known as the true equinox of date; and, where
distinction is desirable, all coordinates referred to this reference system of the
true equinox, true equator, and true ecliptic of date are prefixed by the words
"true" or "apparent", the latter being used when th~ direction is affected by
aberration.

---------."''"'p..
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The equation of the equinoxes, which in editions prior to 1960 was called
"nutation in right ascension", is the· right ascension of the mean equinox
referred to the true equator and equinox. It is equal to ,1ifi cos E and represents
the difference between the mean and true right ascensions for a body on the equator;
it is thus the difference between mean and apparent sidereal time. The equation
of the equinoxes is tabulated to 0 8 '001 in A.E., pages 10 to 17, and is incorporated
into the apparent sidereal time on the same pages.

The simplest and most direct method of converting positions from the mean
equinox and the mean equator to the true equinox and the true equator is to add
J~ to longitude, since the ecliptic and therefore the latitude is unchanged by
nutation. In converting the ecliptic coordinates to equatorial coordinates the
true obliquity (E = Eo + ,1E) must be used. It should, however, be remembered
that coordinates referred to the true equinox cannot be interpolated at intervals
longer than one day. First-order corrections ,1a, ,10 to right ascension and
declination may be calculated directly from:

Lla = (cos E + sin E sin a tan 0) ,1ifi - cos a tan 0 ,1E
LIS = sin E cos a ,1ifi + sin a ,1E

but these are invariably combined with the reduction for precession from the mean
equinox of the beginning of the year by means of day numbers. The method,
as applied to stars, is described in detail in section 5.

Equatorial. rectangular coordinates referred to the mean equinox can be
converted to the true equinox by the application of the corrections:

,1x - (y cos E + z sin E) ,1ifi
,1y = + x cos E ,1ifi - Z ,1E
,1z = + x sin E ,1ifi + Y ,1E

Second-order terms, which are neglected, can only reach one unit in the eighth
figure. These formulae are used for the Sun and planets (see sections 4B and 4D).
The reduction for nutation can also be combined with that for precession by
pre-multiplying the matrix of coefficients Xx, Y x,'" by the matrix whose corres­
ponding elements are:

I

+,1ifi cos E
+,1ifisinE

-,1ifi cos E
I

+,1E

It is not sufficient merely to add -,1ifi cos E to Y x , -,1ifi sin E to Z"" ... as
second-order terms may be significant.

Differential nutation. For objects within a small area of the sky differential
nutation is always combined with differential precession; see sub-section Band
A.E., Table VI.

Short-period nutation. Corrections for the short-period terms of nutation
may be obtained directly from table 5.2, which is described in section 5D.
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*The fundamental argwnents, corrected for amendment to Brown's tables, are:

= 296° 06/16"'59 + 1325 f 198° 50/ 56"'79T + 33"'09T2 + 0",0518T3
= 296°'104608 + 13°'06499 24465d + 0°'00068 90D2 + 0°'00000 0295D3

l' = 358° 28/ 33"'00 + 99 f 359° 02/ 59"'10T - 0"'54T2 - 0"·0120T3
= 358°'475833 + 00'9856oo2669d - 0°'00001 12D2 - 0'00000 0068D3

F = llo 15/03"'20 + 1342 f 82° 01/ 30"'54T - ll"'56T2 - 0"·0012T3
llo'250889 + 13°'22935 04490d - 0°'00024 07D2 - 0°'00000 0007D3

D 350° 44/14"'95 + 1236 f 307° 06/ 51"'18T - 5"'17T2 + 0"·0068T3
= 350°'737486 + 12°'19074 91914d - 0°'00010 76D2 + 0°'00000 0039D3

o = 259° 10/59"'79 - Sf 134° 08/ 31"'23T + 7"'481'2 + 0"·0080T3
259°'183275 - 0°'05295 39222d + 0°'00015 57D2 + 0°'00000 0046D3

where the fundamental epoch is 1900 January od'5 E.T. = J.E.D. 241 5020'0, and

T is measured in Julian centuries of 36525 days,

d is measured in days,

D is measured in units of 10 000 days.

ARGUMENT LONGITUDE OBLIQUITY

Period Multiple of Coefficient of Coefficient of
(days) l' F D 0 sine argwnent cosine argwnent

Unit = 0"'0001
6798 +1 -172327 -173'7 T +92100 +9'1 T
3399 +2 + 2088 + 0·2 T 904 +0'4 T

1305 -2 +2 +1 +45 -24
1095 +2 -2 +10
6786 -2 +2 -2 +1 4 + 2
1616 -2 +2 +2 - 3 + 2
3233 +1 -I -I - 2

183 +2 -2 +2 -12729 -1'3 T +5522 -2'9 T
365 +1 + 1261 -3'1 T
122 +1 +2 -2 +2 497 +1'2 T + 216 -0·6 T
365 -I +2 -2 +2 + 214 -0·5.T 93 +0'3 T
178 +2 -2 +1 + 124 +0'1 T 66

206 +2 -2 +45
173 +2 -2 -21
183 +2 +16 -0'1 T
386 +1 +1 -IS + 8

9 1 +2 +2 -2 +2 -IS +0'1 T + 7

347 -I +1 -10 + 5
200 -2 +2 +1 5 + 3
347 -I +2 -2 +1 5 + 3
212 +2 -2 +1 + 4 2
120 +1 +2 -2 +1 + 3 2

412 +1 -I 3
"See note on page 523.

- - ---------------- ------------~......
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ARGUMENT LONGITUDE OBLIQUITY

Period Multiple of Coefficient of Coefficient of
(days) I l' F D n sine argument cosine argument

Unit = 0"'0001
13'7 +2 +2 -2037 -0'2T +884 -oo5T
27·6 +1 + 675 +o'IT
13.6 +2 +1 342 -0'4T + 183
9'1 +1 +2 +2 261 +II3 -ooIT

31.8 +1 -2 149

27'1 -I +2 +2 + II4 50
14.8 +2 + 60
27'7 +1 +1 + 58 31
27'4 -I +1 57 + 30
9,6 -I +2 +2 +2 52 + 22

9'1 +1 +2 +1 44 + 23
7'1 +2 +2 +2 32 + 14

13.8 +2 + 28
23'9 +1 +2 -2 +2 + 26 II
6'9 +2 +2 +2 26 + II

13,6 +2 + 25
27'0 -I +2 +1 + 19 10
32'0 -I +2 +1 + 14 7
31'7 +1 -2 +1 13 + 7
9-5 -I +2 +2 +1 9 + 5

34-8 +1 +1 -2 7
13-2 +1 +2 +2 + 7 3
9.6 +1 +2 + 6

14,8 +2 +1 6 + 3
14-2 -I +2 +2 6 + 3

5.6 +1 +2 +2 +2 6 + 3
12·8 +2 +2· -2 +2 + 6 2
14'7 -2 +1 5 + 3
7'1 +2 +2 +1 5 + 3

23-9 +1 +2 -2 +1 + 5 3

29'S +1 4
15'4 +1 -2 4
29,8 +1 -I + 4
26'9 +1 -2 + 4
6'9 +2 +2 +1 , 4 + 2

9'1 +1 +2 + 3
25,6 +1 +1 3
9'4 +1 -I +2 +2 3

13'7 -2 +1 2
32.6 -I +2 -2 +1 2

13-8 +2 +1 + 2
9·8 -I -I +2 +2 +2 2
7'2 -I +2 +2 +2 2

27-8 +1 +2 2
8'9 +1 +1 +2 +2 + 2

5'5 +3 +2 +2 2
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D. ABERRATION

--p(t)

....-

Because the velocity of light is finite, the apparent direction of a moving
celestial object from a moving observer is not the same as the geometric direction
of the object from the observer at the same instant. This displacement of the
apparent position from the geometric position may be attributed in part to the
motion of the object, and in part to the motion of the observer, these motions
being referred to an inertial frame of reference. The former part, independent
of the motion of the observer, may be considered to be a correction for light-time;
the latter part, independent of the motion or distance of the object, is referred to as
stellar aberration, since for the stars the correction for light-time is, of necessity,
ignored. The sum of the two parts is called
planetary aberration since it is applicable to planets
and other members of the solar system.

Correction for light-time. Let P and E (see
figure 2.3) be the geometric positions of an object
and a stationary observer at time t, and let P' be the
geometric position of the object at time t - T, where
T is the light-time, i.e. the time taken for the light to
travel from the point of emission, in this case pi,
to the point of observation, E. Then, since E is
regarded as stationary, the direction EP' is the
apparent direction of the object at time t, i.e. the

apparent direction at time t is the same as the geo- Figure 2.3. Planetary aberration
metric direction of the object at time t - T.

Stellar aberration. The light which is received at the instant of observation
t was emitted, at a previous instant, from the position which the object occupied
at time t - T towards the position which the observer was later to occupy at time t;
but when the light reaches the observer it appears to be coming, not from this
actual direction but from its direction relative to the moving observer. Let the
object be considered stationary at p', the position it occupies at time t - T, and let
E be moving in the direction EEl with an instantaneous velocity V. Then,
according to classical theory, the apparent direction of the object is. that of the
vector difference of the velocity of light c in the direction P'E and the velocity V in
the direction EEl' The apparent angular displacement is independent of the
distance, but, by definition of the light-time T, PiE = TC so that if EnE is drawn in
the direction of motion and of magnitude T V the apparent direction of the object is
EoP'. Thus the apparent direction at time t would be the same as the geometric
direction at time t - T were E moving with a constant rectilinear velocity V, i.e.
if Eo were identical with E', the position of the observer at time t - T.

The displacement is toward the apex of the motion of the observer; its
magnitude (LIB) depends upon the ratio of the velocity of the observer (V) to the

-- ------ -- -~--------------------- .....,.,.
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velocity of light (c), and is given by the solution of the triangle EP'Eo, where 8 is
the angle P'EE l between the direction of P' and the direction of motion.

sin .18 = ~ sin (8 - .18), or tan .18 = V ~n 8 8
c c + cos

Expanding in powers of Vic:

.18 = ~ sin 8 - !- (V)2 sin 28 + ...
c - c

Since Vic is about 0·0001 or 20", the second-qrder term has a maximum of about
0"'001.

The rigorous relativistic theory for stellar aberration gives a different coefficient
for the second-order term, but this effect is too small to be observed and is generally
ignored.

The motion of an observer on the Earth is the resultant of the diurnal rotation
of the Earth, the orbital motion of the Earth about the centre of mass of the solar
system, and th,e motion of this centre of mass in space. The stellar aberration is
therefore made up of three components which are referred to as the diurnal
aberration, the annual aberration, and the secular aberration. The stars and the
centre of mass of the solar system may each be considered to be in uniform
rectilinear motion; in this case the correction for light-time and the secular
aberration are indistinguishable and the aberrational displacement due to the
relative motion is merely equal to the proper motion of the star multiplied by the
light-time; it is constant for each star, is in general not known, and is ignored.

The term " stellar aberration" is sometimes loosely used in this Supplement
in contexts where " annual aberration" should strictly be used.

Annual aberration. In accordance with recommendations of the International
Astronomical Union (Trans. I.A.U., 7, 75, 1950; 8, 67 and 90, 1954) the annual
aberration is calculated as from 1960 from the actual motion of the Earth, referred
to an inertial frame of reference and to the centre of mass of the solar system. The
resulting aberrational displacement .18 may be resolved into corrections to the
directional coordinates by the standard methods. If, for example, - X', - Y',
- Z' are the components of the Earth's velocity parallel to equatorial rectangular
axes, the corrections to right ascension and declination, referred to the same
equator and equinox, in the sense "apparent place minus mean place" are, to
the first order in Vic:

cos 8 .1a

.18

X' . Y'
- sm a - cos a
C C

X' ." Y'. ."= - cos a Sln a + - sm a SIn a
C C

Z'
- - COS 8

c

These formulae are usually simplified by the use of the aberrational day
numbers C and D (or h, H, i), discussed in detail in section 5; in this simplification
the assumption is implicitly made that the direction of motion of the Earth lies in
the ecliptic, but the resulting error is negligible. The effect of second-order terms
is included in the expressions for the second-order day numbers] and ]'.
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Prior to 1960 it was customary, for computational convenience, to approximate
to the motion of the Earth by taking:

X' = -ke sin ,\ Y' = +ke cos ,\ cos E Z' = Y' tan E

where k is the constant of aberration and ,\ is the Sun's true longitude. In addition
to small periodic terms due to the action of the Moon and planets, this procedure
neglects terms depending on the eccentricity and longitude of perihelion of the
Earth's orbit (M.N.R.A.S., 110,467, 1950). These terms, of order about 0"'34,
are constant throughout the year for any particular star, and change very slowly
during the centuries; they are here represented symbolically by E, in the sense of
apparent place minus mean place. It is assumed that the observed apparent places
of stars have in the past been reduced to give catalogue mean places of stars that
already contain the constant part E of the aberrational reduction to apparent place,
and so it is desirable to subtract the effect of E from the aberration calculated from
the actual motion of Earth; this procedure is recommended by the International
Astronomical Union (Trans. I.A.V., 7, 75, 1950; 8,90, 1954). It can be accom­
plished by applying constant corrections to the components of the Earth's motion.

The sense in which the E-terms are measured can best be appreciated by using
symbolic notation; let:

A == apparent place; M == true mean place; M o == catalogue mean place;
R == the complete star reduction, including the correction for aberration calcu­

lated from the true motion of the Earth, in the sense apparent - mean;
E == the E-terms of aberration, in the sense here used.

Then: the true mean place M = A - R
the catalogue mean place M o = A - (R - E) = M + E

Thus the modified star reduction, to be applied to the catalogue mean place to give
the apparent place, is R - E since:

M o + (R - E) = A
In this sense the E-terms are:

in longitude (,\) +ke sec f3 cos ('lIT - ,\)
in latitude (f3) +ke sin f3 sin ('lIT - ,\)

*where k = 20"'47 is the constant of aberration, e = °'°1675
eccentricity of the Earth's orbit, and 'lIT = r - 180° = 101°'22
longitude of perihelion of the Earth's orbit (see section 4B).

For systematic application to right ascension and declination the E-terms are
best expressed in terms of corrections LlC = +ke cos 'lIT cos E, LID = +ke sin 'lIT
to the day numbers C,D, in such a way that the E-terms are:

in right ascension eLlC + dLlD
in declination e'LI C + d'LlD

Full details of the practical application to the calculation of the day numbers C and D
are given in section 5D, and numerical expressions are given in section 4G. For
bodies in the solar system the E-terms vary, and so the annual aberration is
calculated, implicitly, without modification from the actual motion of the Earth.

The value that is used for e corresponds to the adopted value of 20"'47 for the

*20"'496 from 1968, corresponding to c = 2'997 925 x 108 m/s.

____ .~_ _. _ __ _. __4 ----.-- ------------••~'\.
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constant of aberration, and not to the actual velocity of light. It is equivalent to a
light-time of od,0057683 = 4988'38 for unit distance.*

Diurnal aberration. The rotation of the Earth on its axis carries the observer
towards the east with a velocity V o P cos 1>', where Vo (0'46 km/sec) is the equatorial
rotational velocity of the surface of the Earth. The corresponding constant of
diurnal aberration is:

V o .J..'" .J..' 8 .J..'- P cos 'f' = 0 '320 P cos 'f' = 0 '0213 P cos 'f'
c

The aberrational displacement may be resolved into corrections (apparent minus
mean) in right ascension and declination:

Lla = 08'0213 P cos 1>' cos h sec 8
Ll8 = 0"'320 P cos 1>' sin h sin 8

where h is the hour angle. The effect is small but is of importance in meridian
observations; for a star at transit Ll8 is zero, but

Lla = ± 08'0213 P cos 1>' sec 8

according as the star is above or below the pole. A correction of this amount is
usually subtracted from the observed time of transit instead of being added to the
right ascension. Values of the correction are tabulated in table 2.6.

Correction for light-time. When a correction for light-time is required, it is
usually combined with that for annual aberration; the combined correction for
planetary aberration is described in the following paragraph. The correction for
light-time alone could be obtained, if desired, by a comparison of the geometric
ephemeris at time t with that derived by combining the geometric position of the
Earth at time t with the geometric position of the object at time t - T.

Planetary Aberration. The displacement of the apparent position from the
geometric position at the same instant by planetary aberration may be obtained
from the two independent components due to the instantaneous motion of the
Earth and the motion of the body during the light-time; but the practical methods
that are used give the planetary aberration directly from the geocentric ephemeris,
without explicit separation of the two components. The errors of these methods
may be deduced by comparison with the results of using the heliocentric motions
(strictly barycentric motions, although the maximum errors due to the motion of
the Sun with respect to the centre of mass of the solar system are quite negligible)
of the Earth and the body. Such methods are not generally practicable as the
geocentric distances must be calculated to give the light-time.

Since the E-terms vary for a moving object, such as a planet, annual aberration
must in this case be calculated, without modification, from the actual motion of
the Earth. It may be allowed for exactly by displacing the Earth a distance TV in
the direction opposite to the Earth's instantaneous velocity V. If the planet's
motion in the light-time l' can be regarded as rectilinear and uniform, the position
of the planet at time t - l' may be obtained by a displacement of distance TV in the
direction opposite to the planet's instantaneous velocity v.

*od,005 7756 = 499 5 '012 from 1968.
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Lat. 0° 10° 20° 30° 35° 40° 45° 50° 52° 54° 56° 58° 60°

Dec. Unit 0 8 '001
°
° 21 21 20 18 17 16 15 14 13 13 12 II II
5 21 21 20 19 18 16 IS 14 13 13 12 II II

10 22 21 20 19 18 17 IS 14 13 13 12 II II

15 22 22 21 19 18 17 16 14 14 13 12 12 II

20 23 22 21 20 19 17 16 15 14 13 13 12 II

25 24 23 22 20 19 18 17 IS 14 14 13 12 12
30 25 24 23 21 20 19 17 16 IS 14 14 13 12
35 26 26 24 23 21 20 18 17 16 15 15 14 13
40 28 27 26 24 23 21 20 18 17 16 16 IS 14
45 30 30 28 26 25 23 21 19 19 18 17 16 IS

50 33 33 31 29 27 25 23 21 20 20 19 18 17
52 35 34 33 30 28 27 25 22 21 20 19 18 17
54 36 36 34 31 30 28 26 23 22 21 20 19 18
56 38 38 36 33 31 29 27 24 23 22 21 20 19
58 40 40 38 35 33 31 28 26 25 24 23 21 20

60 43 42 40 37 35 33 30 27 26 25 24 23 21
62 45 45 43 39 37 35 32 29 28 27 25 24 23
64 49 48 46 42 40 37 34 31 30 29 27 26 24
66 52 52 49 45 43 40 37 34 32 31 29 28 26
68 57 56 54 49 47 44 40 37 35 33 32 30 28

70 62 61 59 54 51 48 44 40 38 37 35 33 31
71 66 65 62 57 54 50 46 42 40 39 37 35 33
72 69 68 65 60 57 53 49 44 43 41 39 37 35
73 73 72 69 63 60 56 52 47 45 43 41 39 36
74 77 76 73 67 63 59 55 50 48 45 43 41 39

75 82 81 77 71 68 63 58 53 51 48 46 44 41
76 88 87 83 76 72 68 62 57 54 52 49 47 44
77 95 93 89 82 78 73 67 61 58 56 53 50 47
78 103 101 96 89 84 79 73 66 63 60 57 54 51
79 112 110 105 97 92 86 79 72 69 66 63 59 56

Unit 0·'01
0

80 00 12 12 12 II 10 9 9 8 8 7 7 7 6
81 00 14 13 13 12 II 10 10 9 8 8 8 7 7
82 00 IS IS 14 13 13 12 II 10 9 9 9 8 8
83 00 18 17 16 15 14 13 12 II II 10 10 9 9
84 00 20 20 19 18 17 16 14 13 13 12 II II 10

85 00 24 24 23 21 20 19 17 16 IS 14 14 13 12
85 30 27 27 26 24 22 21 19 17 17 16 15 -14 14
86 00 31 30 29 26 25 23 22 20 19 18 17 16 IS
86 30 35 34 33 30 29 27 25 22 22 21 20 19 17
87 00 41 40 38 35 33 31 29 26 25 24 23 22 20
87 30 49 48 46 42 40 37 35 31 30 29 27 26 24

88 00 61 60 57 53 50 47 43 39 38 36 34 32 31
88 10 67 66 63 58 55 51 47 43 41 39 37 35 33
88 20 73 72 69 64 60 56 52 47 45 43 41 39 37
8830 82 80 77 71 67 62 58 52 50 48 46 4J 41
88 40 92 90 86 79 75 70 65 59 56 54 51 49 46
88 50 105 103 98 91 86 80 74 67 65 62 59 56 52

89 00 122 120 115 106 100 94 86 79 75 72 68 65 61

This correction is to be subtracted from the observed time of transit for transits above
pole, and added to the time of transit for transits below pole.

--------------------------------------- ---
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Thus the practical determination of planetary aberration may be based on
either of the two principles:

(I) To the order of accuracy that the motion of the object during the light­
time is rectilinear and uniform, the planetary aberration depends upon the
instantaneous velocity of the observer relative to the object at the time of obser­
\"ation in exactly the same wayas stellar aberration depends upon the instantaneous
total velocity of the observer.

(2) To the order of accuracy that the motion of the Earth during the light­
time is rectilinear and uniform, the directly observed apparent position at time
t is the same as the geometric position that the object occupied at time t - T

relative to the position that the Earth occupied at time t - T.

From (I) it follows that the apparent position at time t may be determined by
applying to the geometric position at t a correction consisting of the light-time
multiplied by the instantaneous velocity of the Earth relative to the object; since
this relative motion is the negative of the geocentric motion of the object, the
correction to the geometric value of any geocentric coordinate q is -T dqJdt where
the instantaneous rate of change dqJdt is obtained by numerical differentiation of
the geometric ephemeris. Thus:

Apparent position = geometric position - T (rate of change)
= geometric position - 0 '0057683 LI (daily motion)*

The departure from rectilinear and uniform motion gives rise to errors of order
0"'001 L1Ja2 where a is the mean distance of the planet; this may reach 0"·01 for
:\lercury but does not exceed 0"'001 for the outer planets; second-order terms may
reach 0"'001 or 0"'002 and are neglected.

.\lternatively from (2) it follows that, if the light-time is not too great, the
apparent position at time t may be obtained by interpolating the geometric
ephemeris to time t - T; or, conversely, from an observed position, the geometric
position at the preceding instant when light left the object is immediately
obtained by ante-dating the time t of observation to t - T. The error is generally
larger than in using (I) and, for the outer planets, may reach 0" ·001 L1. Corrections
for the effect of curvature of the Earth's orbit may be applied if high precision is
required; but no formulae for these are given here.

Strictly, the light-time corresponds to the distance from the position of the
Earth at time t to the position of the body at time t - T; but, as far as the planets
are concerned, the maximum error arising from using the geocentric distance at
time t for calculating the light-time is only 0" '0005.

Illustrations of the application of corrections for planetary aberration are given
in sections 4B and 4D.

Differential aberration. The differential coordinates of a movmg
object with respect to a fixed star will be affected by differential aberration;
if ja, L18 are the observed differences of the coordinates in the sense

*0'005 7756 from 1968.
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in declination

The corrections for differential aberration to be added to the observed differences
(in the sense moving object minus star) of right ascension and declination to give the true
differences are:

. . h . LI b LIS . . fIn rig t ascenSIOn a a + 10 In umts 0 0"'001

c Lla + d
Ll8

in units of 0"'01
10

where Lla, Ll8 are the observed differences in units of 1m and I' respectively and where
a, b, c, d are the coefficients defined by:

a = - n 103 sin 1m h cos (H + a) sec 8

c = + 102 sin 1m h sin (H + a) sin 8

b = - n 104 sin I' h sin (H + a) sec 8 tan 8

d = - 103 sin I' h cos (H + a) cos 8

in which a constant value of 19"·6 is used for h. The values of these coefficients are tabulated
without signs on the opposite page with main argwnents H + a, for the first quadrant only,
and 8, also without a sign; an auxiliary argwnent for the second quadrant is also given on
the extreme right-hand side. Interpolation in this table is,in general, unnecessary. The
day number H is obtained from the critical table below; this table may be used unchanged
for all years. The signs of a, b, c, d, which depend on the quadrant of H + a and the sign
of the declination, and the argument in the first quadrant corresponding to the actual value
of H + a are taken from the second table below; the auxiliary argwnent is also indicated in
the second and fourth quadrants.

Date H Date H Date H Date H Date H

Dec. 26 Mar. II h May 23 Aug. 14 h Oct. 25

Jan. 3 23 '5 18'5 3 1 13'5 22
8'5 Nov. 2 3'5

17
II 23'0 18'0

June 9 13'0 8'0 3'0
24 29 9

19 22 '5 3 1 17'5 17 12.'5 Sept. 6 7'5
17

2'5

26 22 '0 Apr. 17'0 26 12'0 7'0 2'0
7 13 24

Feb. 3 21 '5 16'5
July 5 11 '5 6'5 1'5

IS 20 Dec. 2-
21'0 16'0 11·0 6'0 1·0

10 22 13 27 10
17 20 '5 29 15'5 21 10'5 Oct. 4

5'5
18

0'5

20'0 May 7 15 '0 10·0 5'0 0·0
25 29 II 26

Mar. 4 19 '5 IS 14'5 Aug. 6 9'5 18 4'5
Jan.

23'5
3

II 19'0 23 14'0 14
9'0

25
4'0

In critical cases ascend

Signs of a, b, c, d Tabular argwnents to be used
Positive 8 Negative 8

H +a H +a H + a Argument Argwnent

h a b c d h a b c d h on the left on the right
0 0 0

6 + 6 + 6
H + a

+ + + + + + 12h - (H + a) H + a
12 12 12

18 + + + 18 + + + 18
(H + a) - 12h

24 + + 24h - (H + a) (H + a) - I2h

24 24

---_..
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o
H+a abc d abc d abc d

30°
abc d H + a

h

o
I

2

3
4
5
6

6 0 0 6
6 006

5 00 5
4 004
3 00 3

001

o 0 0 0

6 0 0 6
600 5
5 0 I 5
4 0 I 4
3 I I 3

I I I

o I I 0

6 0 0 5
6 0 I 5
5 I I 5
4 12 4
3 133
2 I 3 I

o I 3 0

7 0 0 5
6 I 5
6 2 4
5 2 3 3
324 2
2 2 4 I

o 340

7 0 0 4
7 I I 4
623 4
5 343
4 4 5 2

2 4 5 I

045 0

h

12

II

10

9
8
7
6

h

o
I

2

3
4
5
6

45°
abc d
8 0 0 4
8 124
7 3 3 3
644 3
4 5 5 2

2 5 6 I

o 5 6 0

50°

abc d
9 0 0 4
9 224
843 3
6 5 5 3
466 2
2 ;; 6 I

o 7 7 0

55°
abc d
10 0 0 3­
10 2 2 3

9 543
7 7 5 2

586 2
397 I

o 970

60°
abc d

II 0 0 3
II 3 2 3
10 7 4 2

8 9 5 2

6 II 6 I

3 13 7 I

o 13 7 0

65°
abc d

13 0 0 2

13 5 2 2

12 10 4 2
10 14 5 2
7 I7 7 I

3 19 7 I

o 19 8 0

h

12

II

10

9
8
7
6

b

12-0

11'5
11-0

10-5

10-0

9'5

9-0

8-5
8-0
7'5
7- 0

6-5

6-0

70°

abc d
17 0 0 2

17 4 I 2

16 8 2 2

IS 12 3 2

14 IS 4 2
13 19 5 2

12 22 6 I

10 24 6
8 26 7
6 28 7 I

4 29 8 I

2 30 8 0

o 31 8 0

68°
abc d

IS 0 0 2

IS 3 I 2

IS 6 2 2

14 10 3 2
13 13 4 2
12 IS 5 2

II 18 6 2

9 20 6 I

8 22 7 I

6 23 7
4 24 8
2 25 8 0

o 25 8 0

66°
abc d

14 0 0 2

14 3 I 2

14 5 2 2

13 8 3 2
12 10 4 2
II 13 5 2

10 IS 6 2

9 17 6 I

7 18 7 I

5 19 7 I

4 20 8 I

2 21 8 0

o 21 8 0

002
2

2

2

2

2

9 13 5 2

8 14 6 2

7 IS 7 I

5 16 7 I

3 17 7 I

2 18 8 0

o 18 8 0

13
13 2 I

13 5 2

12 7 3
II 9 4
10 II 5

62°
abc d

12 0 0 3
12 2 I 3
12 4 2 3
II 6 3 2

II 8 4 2

10 9 5 2

9 II 5 2

7 12 6 2
6 13 7 I

5 14 7
3 IS 7
2 IS 7 0

o IS 8 0

h

0·0

0'5
1-0

1'5
2-0

2'5

3-0

3-5
4-0

4-5
5-0

5-5

6-0

h

0·0

0-5

1-0

1-5

2-0

2-5

3-0

3-5
4-0

4-5
5-0

5-5

6-0

71°

abc d
18 0 0 2

17 4 I 2

17 9 2 2

16 13 3 2
IS 17 4 2

14 21 5 I

12 24 6 I

I I 27 6 I

9 29 7 I

7 31 7 I

5 33 8 0

2 34 8 0

o 34 8 0

72°
abc d

18 0 0 2

18 5 I 2

18 10 2 2

17 IS 3 2

16 19 4 2
IS 23 5 I

13 27 6 I

I I 30 6 I

9 33 7 I

7 35 8 I

5 37 8 0

2 38 8 0

o 38 8 0

73°

abc d
20 0 0 2
19 6 I 2

19 II 2 2

18 16 3 2
17 21 4 I

IS 26 5 I

14 30 6 I

12 34 6 I

10 37 7 I

8 39 8 I

5 4 1 8 0

3 42 8 0

o 43 8 0

74°

abc d
21 0 0 2
21 6 I 2

20 12 2 2
19 18 3 I

18 24 4 I

16 29 5 I

IS 34 6 I

13 38 7 I

10 42 7 I

8 44 8 I

5 46 8 0

3 48 8 0

o 48 8 0

75°
abc d

22 0 0 I

22 7 I

21 14 2
20 21 3 I

19 27 4 I

17 33 5 I

16 39 6 I

13 43 7 I

II 48 7 I

8 51 8 I

6 53 8 0

3 54 8 0

o 55 8 0

h
12-0

11-5
11-0

10-5

10-0

9-5

9-0

8-5
8-0
7-5
7-0
6-5

6-0
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moving object minus star, then the corrections for differential aberration are:

in right ascension
- h cos (H + a) sec 0 Lla - h sin (H + a) sec 0 tan 0 Llo

in declination
+ h sin (H + a) sin 0 Lla - h cos (H + a) cos 0 Llo

in which a small term i sin 0 Llo has been omitted from the correction in declination;
this may reach 0"·02 near the pole for Llo = 10'; h, H, i are the independent day
numbers defined in section SD.

To the precision required, these corrections may be regarded as independent
of the year or of the equinox required, and may be tabulated as functions of
position and date. Permanent tables of this kind are given in A.E., Table V,
and in table 2.7 of this Supplement; in these tables the coefficients of Lla, Llo in
the above equations are tabulated using a mean value of 19"·6 for h.

The corrections should be applied with those for differential precession and
nutation (see sub-section B) to give mean positions referred to the same equinox
as those of the stars.

Astrometric positions. An astrometric position is obtained by adding the
planetary aberration to the geometric ephemeris and then subtracting stellar
aberration from which the E-terms have been omitted. The astrometric ephemeris
is therefore rigorously comparable with observations that are referred to catalogue
mean places of comparison stars, it being only necessary to correct the observations
for geocentric parallax. Such positions are discussed in more detail in section 4D.

E. REFRACTION

In the Ephemeris atmospheric refraction enters into only a very few topocentric
pp,enomena, such as the times of rising and setting of the Sun and Moon, and, in
theory though neglected in practice, the local predictions of eclipses. Consequently
all explanations of the theory, and of the practical calculation and application of
numerical tables, are omitted; they are adequately covered in the references
given at the end of this sub-section.

Rising and setting phenomena. As described in section 13 a constant of 34' is
used for the horizontal refraction in the calculation of the times of rising and
setting: that is, the zenith distance of the object (upper limb of the Sun or Moon)
is 90° 34'·

Eclipses and occultations. Owing to refraction and parallax the geometric
direction from an object M outside the Earth's atmosphere to an observer at P is
not the same as the initial direction of the ray of light from M to P; the difference
is only significant for an object as close as the Moon, and then only at low altitudes.
Thus the condition that two objects M and S shall appear to be coincident to an

_______.---.'''l..
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observer at P on the Earth's surface is not precisely the condition that the geomet­
rical direction PMS is a straight line. Let
z - R be the apparent zenith distance at P, R
being the refraction; then the precise condition
is that the geometric direction P/MS is a straight
line, where P' is the point vertically above P
at which the true zenith distance is z (see
figure 2.4). The height (h) of P' above P can
be calculated from the formula given below;
it is independent of the distances of M and S.
Full allowance can therefore be made for
refraction by treating the observer as though he
were at P', instead of at P, that is by increasing
the height of the observer above the spheroid
by h.

It can be shown (Chauvenet, Vol. I, page 516) that, for a spherical atmosph~re:

h P-o sin (z - R)
I + - = '----=----;-.-'-------'

p sm z

where p is the (geocentric) radius and P-o the index of refraction of the atmosphere
at P. To the order of accuracy required the correction can be made either by
increasing the height above sea level by h, or by multiplying the geocentric
rectangular coordinates g, 71, ~ of the observer by I + hlp. Values of h in metres
and of I + hip, based on mean values of the quantities concerned, are given for a
point at sea level in the following table. It will be seen that the corrections are
only significant for altitudes less than about 10°, when, however, the refraction
may differ considerably from its mean value.

h
I + ­

P
m

0 0 1'000000 82 100 1'000016

3 0 0 1'000000 8 4 170 1'000026

60 5 1'000001 86 2 9 0 1'000046

70 20 1'000003 88 610 1'000095

75 3 0 1'000005 8 9 940 1'000148

80 70 l'OOOOll 9 0 1540 1'000242

Artificial satellites. Referring to figure 2.4 it will be seen that the refraction
correction applicable to the observation of a close object is not R but R - r where
r is the angle P'MP. For objects only a few hundred kilometres above the Earth's
surface r can be of the order of a minute of arc, and must be allowed for in the
reduction of precise observations.

Corrections to right ascension and declination. Refraction affects the observed
zenith distance. If an object is observed on the meridian the refraction is a direct
correction to the observed declination, and the deduced right ascension is unaffected.



56 EXPLANATORY SUPPLEMENT

If a', 0' are the observed right ascension and declination of an object not on the
meridian, the corrections required to give the true values a, 0 are, to first order:

a - a' - R sec 0' sin C
o - 0' = - R cos C

where R is the refraction and C is the parallactic angle, i.e. the angle at the object
in the spherical triangle pol~-object-zenith.

Such formulae are rarely used since most observations made out of the meridian
are made differentially. The differential refraction of two objects may be calculated
directly from the difference between the refractions appropriate to the two altitudes;
and this may be resolved into differences of right ascension and declination. It is
more usual, however, to consider such corrections as linear over the small area
covered by a photographic plate and to allow for them by means of the plate
constants determined from the coordinates of the standard stars.
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whence
and

F. PARALLAX

Introduction

The positions in which the Sun, Moon, and planets are actually observed
differ from the geocentric positions tabulated in the Ephemeris by the amount of
parallax due to the displacement of the observer from the centre of the Earth.
Before comparison with theory, it is thus necessary to correct an observed, or
topocentric place, by applying parallax so as to reduce it to a geocentric place.
For the Sun and planets the corrections are small and may be treated as first-order
quantities whose squares can be neglected. For the Moon the parallax is
sufficiently large to require third-order terms in the general expression for the
corrections; and it is better to use exact formulae. For artificial satellites of the
Earth the parallax may be so large that exact formulae, based on the actual position
of the observer relative to the centre of the Earth, must be used.

The geocentric positions of stars are similarly affected by the annual parallax
due to the displacement of the Earth from the centre of the Sun. In this case it
is usual to include the parallax in the ephemeris position, so that it is directly
comparable with the observed position.

Details of the corrections and the method of calculation follow.

The figure of the Earth
In calculating parallax corrections, the dimensions of the Earth are usually

taken to be thos~ of Hayford's spheroid (see section 6). * This is defined by the
equatorial radius (a) and the flattening (f), for which an exact value of 1/297 is
adopted. The adopted value for a is 6378'388 km, from which the polar radius
b = a (1 - 1) is derived as 6356'912 km. Otherwise the notation used is:

cP = geographic (or geodetic) latitude cP' = geocentric latitude
p = geocentric distance, i.e. the distance of the observer from the centre of

the Earth, in units of the Earth's equatorial radius.

The latitude cP is variously referred to as the geographic latitude, or the
geodetic latitude; on the spheroid the two are identical, but on the actual Earth
they differ on account of gravity anomalies. No significance is to be attached in
this Supplement to the use of one term or the other. t

The position of an observer relative to the centre of the Earth is most readily
expressed in rectangular coordinates; in the meridian section of the Earth through
the observer these are:

p sin cP' = 8 sin cP p cos cP' = c cos cP
which serve to define the auxiliary functions 8 and C. It should be noted that:

b2

tan cP' = 11 tan cP = (1 - 1)2 tan cP
a

8 = (1 - 1)2 C C = {COS2cP + (1 - f)2 sin2cP}-~

p2 = t (82 + C2) + t (C2 - 8 2) cos 2cP
= C2 { cos2 cP + (1 - f)4 sin2 cP }

*From 1968: f = 1/298'25, a = 6378 160 m, b = 6356775 m

tThe difference is however significant for some applications.
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10-6) sin ef>

10-6) cos ef>

tan
+0. 8074772

p

. , .
cP + 38 55 12'3

2CP 77 50 25
4CP 155 4 1

From the series:

The following expressions, which contain terms up to f3, may then be derived for
8, C, p, and 4> - 4>' in terms of the geographic latitude (4)) and the flattening (f) ;
they assume that the observer is at sea level.

8 = 1 - !f + 1
56f2 + ·}d3 - (tf - tF - 6

54f3) cos 24>
+ (r36 F - ..l2 f3) cos 44> - 65

4 f3 cos 64>
C = 1 + tf + 1

5
6 f2 + '}-'iJ3 - (if + iF + nf3) cos 24>

+ (13
6 f2 + 3

92 f3) cos 44> - 654f3 cos 64>
1 - if + 1

5
6 f2 + 35

2 f3 + (~-f - -Hf3) cos 24>
- (1

56 f2 + 35
2 f3) cos 44> + U f3 cos 64>

4>' = (f + tf2) sin 24> - (tf2 + tf3) sin 44> + ! f3 sin 64>
Inserting the adopted numerical value off = 1/297 leads to the following series:
8 = 0'99495304 - 0'00167783 cos 24> + 0'00000212 cos 44>
C = 1'00168705 - 0'00168919 cos 24> + 0'00000214 cos 44>
p = 0'99832005 + 0'00168349 cos 24> - 0'00000355 cos 44>

+ 0'00000001 cos 64>
4> - ef>' = 695"·66 sin 24> - 1"'17 sin 44>

Values of 8 and C, calculated from the first two of these series, are tabulated
in A.E., Table VII; they may also be found together with p and 4> - 4>' in table 2.8
of this Supplement.* A correction for the height of the observer above sea level is
necessary for the calculation of his actual coordinates p sin 4>' and p cos 4>'. To an
adequate approximation the geocentric radius is increased by o· 1568 h or 0 '0478 H x
10-6 and the angle of the vertical 4> - 4>' is unchanged, where h is the height above
sea level in metres and H is the height in feet. The addition of this correction
leads to the expressions:

p sin 4>' = (8 + 0'1568 h x 10-6) sin 4> = (8 + 0'0478 H x
pcos4>' = (C + 0'1568h X 10-6) cos 4> = (C + 0'0478H x

tan 4>' = (0'9932773 + O'OOII h x 10-6) tan 4>
= (0'9932773 + 0'0003 H x 10-6) tan 4>

Values of these three quantities are given for the principal observatories in
the list of observatories in the Ephemeris.

Example 2.1. Geocentric coordinates of Washington
The geographic coordinates of a point at U.S. Naval Observatory, Washington, D.C.,

are'\ + 5 h 08m 158 '75, cp = +38° 55' 12"'3, and height = 85m.
sin cos

+0·62823 58 +0'77802 30
+0'97756 +0'21064
+0'412 -0'9 11

S 0'99459 77 P 0'99867 8
C 1'0013293 cP - cp' II' 19"·6

It may be confirmed that (to the accuracy of the table) the same values are obtained by
interpolation in table 2.8 to cP = 38° '920.

For a height of 85m a correction of 13'3 x 10-6 must be applied to Sand C, before
forming p sin cP' and p cos cP', and to p. Thus:

p sin cp' + 0·62485 0 P 0'99869 I

P cos cp' + 0'77906 8 cp' + 38° 43' 52"'7
The correction for height to cp - cp' is here negligible.

*The coefficients and table given here are for the Hayford spheroid in use before 1968.
See note on page 515.

----------------------- --
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o
I

2

3
4

5
6
7
8
9

10
II

12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30

31

32
33
34

35
36
37
38
39

40

41

42

43
44

45

8
0-99
32 77
3278
3281 3
3286 5

8
3294 9

33°3 II

33 14 13
33 2 7 I"

3342 I~
3359 '9

3378 21
3399 23
3422

6
24

344 27
3473 28

35°1 30
353 I 32
3563
359633

363 I 35
37

3668 8
3706 3

6 4°
374 41
3787 43
3830

44
3874 46
3920 46
3966 48
4°14
4063

49
5°

4 II 3
4 164 5'
4216 52

4269
53
54

43 23 55

4378
4433 55

4489 ~~
4545 57
4602 58

4660
47 17 57

4776
59

4834 ~:
4892

59
495 1

C
1 0 00

0000
0001

3
0°°4 5
0°°9
0016 7

10
0026

II

°°37
0050 '3
0065 15
0082 17.

'9
0101

21
0122
01 45 23

01 7° 25
01 97 :~
0225
0255 3°
0287 32

0321 34
0356 35

37
°393
0432 39

4°0 472
42

°5 1 4
0557 43

44
0601 46
0647
0694 :~
°742
°791 49

5°
084 1

0893 52
0945 52

0999
54

1053 54
55

II 08
1163 55
1220 57
1277 57

1334 ~~
1392 8
14505

8
1508 5

1567 59
1626 59

59
1685

P
0-99

9999 3
9996

5
9991 7
9984

9

9975 II

9964
'4

995° '5
9935 17
9918 19
9899 21
9878

8 6 22
9 5 2-

983 I 2~
9805 29
9776

30
9746

32
97 1 4 339681
964635

37

~~~~ ~~
953 1 41
949° 43
9447 44

940 3 46
9357 46
93 II 48
9263
921 4 49

5°
9 164
9II2

52

9060
52

9007
53

8953 54
54

8899 6
8843 56
8787 5

8730 57

8673 57
57

8616 8
8558 5

8499
59

8441 58
8382 59

58
83 2 4

4> -4/

° 24
2 4 24
48

24
72

24
96

24
120

24
1 44 24
168

23
191 23
214 23

237 23
260
282

22
22

30 4 22
.326 21

347 21
368

88
20

3 20
40 8

'9
427 '9

446
'8

464 '8482 17
499 17
5 1 6 16

532 'S
547 '5
562

6 14
57 '3
589 12

601
6 12

13 II

624
635 II

644 9
9

653 8
661
668 7

6
674 6
680

5
685
689 4
692 3
694 2

695

696

o

45
46
47
48
49

5°
51
52
53
54

55
56
57
58
59

60
61
62
63
64

65
66
67
68
69

70
71

72
73
74

75
7·6
77
78

79

80
81
82
83
84

85
86
87
88
89

9°

8
0-99

495 I S8
5°°9 '
5068 59
5126 58
5185 59

57
5242 8
53005
5357 57
5414 57

547
056

55
5525
5580 55

5634
54

5687
53

574053
5'

5791 5°
584 1

5890 49
49

5939 46
5985 46

6031

6076 45

6II8 42

6160 42

6200 40
39

6239
627637
63 I I 35
6345 34
6377 3

2

3°
6407

6436 :~
6462
6487 25
65 10 23

21
653 1
6550 19

86 68 I
5 15

6583
6596 '3

II

6607
6617 10

6624 7
6629 5
6632 3

6633

C
I-00

1685
1744 59

1803 59
1862 59

1920 ~:
1978 8
2036 58
2094

5

21 5 I 57

2207 ~~
2263
23 18 55
2373 55
2426 53

2479 53
52

253 1
2581 5°
263 I 5~
2679

4

2726 :~
2772
281 7 45

2860 43

2902
42
41

2943 38

2981 8
301 9

3

30 54
35

308834
3120 3

2

31

3 1 5 1

3 18o 29
3207 27
32 32 25

23
32 55 21

3276

32 95 ~~
33 I 3 '5
3328
3341 '3

12

3353 9
3362

3369 7
3374 5
3377 3

3378

P
0 0 99
8324
8265 59
8206 59

8148 58

8089 59
58

803 I 58
7973 57
7916
7859 57

7803 ~~
7747 55
7692
7638 54
7584 54
7532 52

52
7480
7430 50.
7380 5~

733 2 :8
7284

45

7 2 39 45
7 1 94 43
7 I 5 I 42
7 109
7069

40
39

7°3°
6993 37
6957 3

6

692 3 34
6891 3

2

31

686° 28
6832
6805.27

6780
25

6757 23
22

6735 '9
67 16
6699 ' 6

7

6683 I

66 0 '3
7 II

6659
6650 9

8
6642
6637 5
6634 3

6633

.
696
695
694
692
689 3

4
685
681 4
676 5
669 7
662 7

8

654 8
646
636

10

626 10
6 II

15 12

603 12
591 13
578

14
564 15
549 IS

534 16
518 16
5°2 8

8 I44 q
467 19

44
8

'9
4 2 9 19
410 20
39° 20
37° 21

349 21
328

6 22
3° 22
284
261 23

22

239 23
216

24
192
6 23

I 9 24
145 24

121
24

97 24
73 24
49 2S
24 2~

°
The above table enables rectangular and polar geocentric coordinates to be calculated

for an observer in geographic (geodetic) latitude 4>, from the formulae:
p sin 4>' = (8 +00I568h x 10-6

) sin 4> = (8 +00°478 H x 10-6) sin 4>
p cos 4>' == (C +0-I568h x 10-

6
) cos 4> = (C +00°478 H x 10-6) cos 4>

where, h (H) is the height of the observer above the surface of the Earth in metres (feet)_
For reasonable heights, 001568h x 10-6 or 0-0478H x 10-6 can be added to p, and 4> - 4>'
can be used unchanged_
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Parallax of the Moon

The topocentric hour angle (h), declination (0), and distance (r) of the centre of
the Moon are related to the geocentric coordinates (ho, 00, ro) by the exact equations:

F cos 0 sin h = cos 00 sin ho == A
F cos 0 cos h = cos 00 cos ho - p cos 4/ sin 7T == B
F sin 0 = sin 00 - p sin 4/ sin 7T == C

where F = r/ro, 7T is the geocentric equatorial horizontal parallax of the centre of
the Moon, and p, 1>' are the geocentric coordinates of the observer. .

If the ephemeris position is known A, B, C can be calculated numerically;
then:

F2 = A2 + B2 + C2
tan h = A/B sin h = A/(A2 + B2)~ cos h = B/(A2 + B2)~

tan 0 = C/(A2 + B2)~ sin 0 = C/F cos 0 = (A2 + B2)~/F

Some simplifi~ation of this calculation can be achieved by rounding 00 and ho
to avoid interpolation in the trigonometric tables; if the values actually used are
o~ and h~, giving rise to 0' and h', then:

o = 0' + (00 - o~) h = h' + (ho - h~) F = F'
with errors not exceeding 1/60 of the" roundings ".

The reverse problem of deducing the geocentric position from the observed
coordinates is less readily solved. The equations take the form:

G cos 00 sin ho = cos 0 sin h == A o
G cos 00 cos ho = cos 0 cos h + G p cos (1/ sin 7T == Bo
G sin 00 = sin 0 + G p sin 1>' sin 7T == Co

where G = rolr = IfF.

These equations may be solved in precisely the same manner if r is known,
possibly by observation, and ro is deduced from the ephemeris, to provide a
sufficiently accurate value of G to substitute on the right-hand side of the equations.

The general solution, in which h, 0 are observed and 7T is known (from the
ephemeris), is as follows. Let:

g = p cos ep' cos 0 cos h + p sin ep' sin 0
and substitute:

Go = I + g sin 7T + t (I + g2) sin2 7T
for G on the right-hand side of the equations. The adequacy of this approximation
for G, and the accuracy of the calculation, is checked by comparison with the
value of G determined from (Afi + B3 + q)~. Alternatively Go is taken as unity,
G1 is formed from (Afi + Bfi + q)~ and used instead of Go to form G2, and the
process continued until G is known with sufficient accuracy. Two such approxi­
mations generally suffice.

The topocentric distance of the Moon is F times the geocentric distance, 'so
that the apparent semi-diameter is greater than the tabulated value, the augmen­
tation being IfF = G.

The formulae may be expressed in alternative forms to give directly the effect
of parallax un the coordinates. If Lla = U o - u, ..10 = 00 - 0 are the corrections

-------------------------------".
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to be applied to the topocentric position to give the geocentric position, then, in
terms of the geocentric position:

tan (h - ho) = tan Lla

where

tan Llo

m

p cos ep' sin 7T sin ho
cos 00 - p cos ep' sin 7T cos ho

p sin ep' sin 7T (cos 00 - m sin 00)

I - P sin ep' sin 7T (m cos 00 + sin 00)

-1.' cos -~ (h + ho)
cot 'f'

cos! (h - ho)
cot cP' {cos ho - sin ho tan -} (h - ho) }

There are no simple corresponding expressions in terms of the topocentric position.

Example 2.2. Parallax of the Moon at Washington
1960 March 13 at 3h 17m 488'0 D.T.

For the purpose of this example,. the time of observation is taken to be exactly
equivalent to 3h 18m 248'0 E.T.; the coordinates of Washington are taken from example 2.1.

The geocentric coordinates of the Moon are obtained by interpolation in the Ephemeris
as:

ao II h 22m 168'16 00 +3° 35' 24"'4 7T 57' 21"'71

The geocentric hour angle is then calculated as follows:

S.T. at Oh (A.E., page I I)

D.T. of observation
Increment (A.E., Table IX)

-,\

Then
sin 00 +0'06261 83
cos 00 +0'99803 76

-ao

Sum = ho

sin ho -0'46053 42
cos ho + 0.88764 20

h m
I I 22 30'237
3 1748 '000

+ 32'493
5 08 15'75

-II 22 16'16
22 10 18·82

sm 7T +0'01668 51
P sin if>' sin 7T +0'01042 57
P cos 4>' sin 7T +0'01299 88

sin h~ -0'46052
cos h~ + 0.88765

-0'00606 81

h - ho
o - 00

whence

A -0'45963 04 F 0'9878972
B +0.87290 13 tan h -0'5265548 h 22h 08m 558'38
C +0'0521926 sin 0 +0'0528320 0 + 3° 01' 42"'5

If h~ = 22h 10m 198 and o~ = + 3° 35' 20" had been used, no interpolation would have
been required in the trigonometric tables, and h', 0' would have been obtained as:

h' = 22 h 08m 558'56 giving h - ho = ao - a = - 1m 238'44
0' = + 3° 01' 38"'0 giviIlg 0 - 00 = - 33' 42"'0

For the alternative method five-figure tables and working suffice for a precision of 0"· I;
using h~, o~ as above, to avoid interpolation:

p sin 4>' sin 7T +0'01042 57 sin o~ +0'06260
p cos 4>' sin 7T +0'01299 88 cos o~ +0'99804

tan (h _ h) -0'00598 62
o +0'98650

m = 0.88625 cot 4>' = 1'10499
where tan! (h - ho) is taken as one-half of tan (h - ho)

( ~ ~) _ +0'0096841
tan 00 - 0 - +~S

• ....p '" .(.,

-Oh OI
m

2
38 '4»"" ',~

_0' 33' "·'0 i .' '., ,?
" ./
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The reverse process, assuming the observed position and horizontal parallax to be:
a Il h 23m 398.60 0 +3° 01' 42"'5 7T 57' 21"'71

is as follows:
h -Ill 51m 048.62 0 +3° 01' 42"'5

sin h -0'46591 18 sin 0 +0'05283 22
cos h +0.88483 12 cos 0 +0'99860 34
sm 7T 0'0166851 P sin 4>' sin 7T +0'0104257
sin2

7T 0'00027 84 P cos 4>' sin 7T +0'01299 88
The solution of the equations is commenced with:

g = +0'7214 Go = 1'012248
Then A o -0'46526 I I B o +0·89675 35 Co +0'06338 56
from which G = 1'0122512. With this value of G,no change occurs in A o, Bo,or Co. Hence:

tan ho -0'5188283 ho -Ill 49m 418'17
sin 00 +0'06261 84 00 +3° 35' 24"'4

When the Moon is at transit h = ho = 0, and the parallax applies to the
declination only. The correction Llo to be applied to the topocentric declination
at transit to give the geocentric value is given by:

A" _ P sin 7T sin (cp' - 00)
tan "-'0 - • (..J..'" )

I - P SIn 7T cos 'f' - 00

or, by using the observed declination and geocentric latitude of the observatory,
through the equivalent expression:

sin Llo = p sin 7T sin (f - 0)
This may be put in the approximate form:

Llo = 0'999988 p 7T sin (cp' - 0)
with an error not exceeding 0" '04.

Example 2.3. Parallax of the JV100n at transit at Washington

On 1960 August 7 the observed declination at transit is assumed to be - 14° 19' 57"·6.
The U.T. of the observation is 5h 16m 488.88 and this is assumed to be equivalent to
5 h 17m 258 E.T. The coordinates of Washington are assumed to be those of example 2.1.
From the Ephemeris:

00 - 13° 31' 32"
4>' - 00 + 52° 15' 25"

sin (4)' - ( 0) +0'79076
cos (4)' - ( 0 ) +0·61212

tan Ll8 = +0'01 39390 +0'01409 10
+0'989210

From the observation:
4>' - 0 53° 03' 50 "'3

sin (4)' - 8) + 0'7993 I

From the approximate formula:
Ll8 = 0'99998 8 x 0'99869 x

= 2906"'3 = 0° 48' 26"'3

7T 60' 40"·85
P 0'99869

sin 7T 0'01765 04
P sin 7T 0'01762 73

Llo +0° 48' 26"'3

sin Llo +0'0 1408 97
Ll8 +0° 48' 26"'3

The most important use of parallax corrections in the above form, when the
Moon is not on the meridian, is in the reduction of observations made with the
Markowitz dual-rate Moon camera. In the calculation of eclipses and the
reduction of occultations the methods used, involving Besselian elements, do not
require parallax corrections in the above form.

~-- - - --- .
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Parallax of the Sun and planets
For the more distant bodies such as the Sun, the planets, or comets, whose

parallax amounts to only a few seconds of arc, the above formulae may be greatly
simplified. It is sufficient to restrict the expressions to terms of the first order;
expressed as corrections to be applied to the observed positions they are:

LIn = 7T { P cos 4>' sin h sec S }
LIS = 7T { P sin 4>' cos S - p cos 4>' cos h sin S }

where h, S may be replaced by ho' So'

When the horizontal parallax of the object is not available, it may be calculated
*from 7T = 8"·80/Ll where LI is the geocentric distance. In preliminary work on

comets and minor planets, where the geocentric distance is unknown, it is con­
venient to calculate parallax factors Pa and Pa for each observation; these may
then be used, once the geocentric distances are determined, to give the parallax
corrections in the form:

LIn = Pa/Ll LIS = Pa/Ll
The parallax factors are calculated from:

Pa = 8"·80 p cos 4>' sin h sec S = 08'587 P cos 4>' sin h sec S
Pa = 8" ·80 (p sin 4>' cos S - p cos 4>' cos h sin S)

The hour angle h is found from h = e - a where e is the local sidereal time at
universal time t, given by:

e = S.T. at Oh D.T. + t* - ,\
where S.T. at Oh D.T. is obtained from A.E., pages 10-17t, t* is the sidereal
equivalent of t, and ,\ is the longitude, measured positively to the west. Since t
is usually given in decimals of a day, t* is most readily determined from table 17.3.

Example 2.4. Parallax factors for a minor planet
Observation of Vesta 1960 March 7 d 02 h 34m 218 V.T. at Johannesburg

t = Od' I0719 a 17h 57m 218'50 8 -18043' 31"'3

Sidereal time at Oh V.T. (A.E., p. I I)

t* (from table 17.3)
Correction for longitude, -,\
Local sidereal time, 8
Right ascension, a
Local hour angle, h = 8 - a

sin 8 -0'3210 sin h -0.6139
cos 8 +0'9471 cos h +0'7894
sec 8 + I '0559

h m
10 58.8
234. 8

+~

IS 25'9
1757'4
21 28'5

P sin </>' -0'43867
P cos </>' +0.89824

pa -08 '342 pa - 1".65

For a fixed observatory parallax corrections may be further simplified by
forming two permanent tables. The first of these is similar to table 17.3 but gives
t* - ,\ directly in the first part of the table. The second table gives the coefficients
A, B, C in the expressions:

Pa = A sin h Pa = B - C cos h
where*A 8"·80 p cos 4>' sec S = 08'587 P cos 4>' sec S

B 8"·80 P sin 4>' cos S
C 8"·80 p cos 4>' sin S

*8"'794 = 0.'5863 from 1968.

tPages 12 to 19 in A.E. 1972 onwards.

--------.------ .-
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Thus for Copenhagen (A = -oh50m'3, psin4>' = +0.82231, pcos4>' = +°'565°1)
the two tables start as follows:

t* -,\ 8 A B C
d m 0

0·00 ° 5°'3 +0 +°'33 1 +7'24 +0'00
'OI I 04'7 I '332 7'24 '°9
·02 I 19'2 2 '332 7'23 '17
·03 I 33.6 3 '33 2 7'23 '26
·04 I 48. I 4 '33 2 7'22 '35

+°'43
'52
·61
·69
'78

+7'21
7'20
7'18
7' 17
7' 15

+°'333
'333
'334
'335
'336

0·05 202'5 5
·06 2 16'9 6
·07 23 1 '4 7
'08 245.8 8
'09 3 00'3 9

Then h = S.T. at Oh D.T. + (t* - A) - a

An alternative method of correction when the geocentric distance is not
accurately known, is to modify the solar coordinates X, Y, Z so as to refer them to
the point of observation. These topocentric corrections are:

LlX = - a P cos 4>' cos e = Ll xy cos e
LI Y = - a p cos 4>' sin e = Ll XY sin ()
LI Z = - a p sin 4>' = LI z

* where a is the Earth's equatorial radius in astronomical units = 426.64 x 10- 7,

and e is the local sidereal time. The factors Ll xy and LIz are given for each obser­
vatory in the last two columns of the list of observatories in the Ephemeris.

sin () = -0'7823
cos () = -0·6229

Example 2.5. Parallax factors for a minor planet (continued)
Using the data of example 2.4:

Ll xy - 383 X 10-7

LIz = + 187 X 10-7
LlX +239 X 10-7

LI y +300 X 10-7

LIZ + 187 X 10-7

When the horizontal parallax is small, Sand C may often be taken as unity
leading to a simplification of the formulae; this will not be applied to a fixed
observatory.

Annual parallax

If 7T is the annual parallax of a star, and X, Y, Z are the solar coordinates, the
star is displaced from its mean place a, 8 by amounts Lla, Ll8 given by:

cos 8 Lla. = 7T (Y cos a - X sin a)
Ll8 = 7T (Z cos 8 - X cos a sin 8 - Y sin a sin 8)

These expressions may be simplified by using the star constants c, d, c', d' (see
section 5):

Lla = 7T (Yc - Xd)
Ll8 = 7T (Yc' - Xd')

Thus, corrections for annual parallax may be included with the aberration terms
of the reduction from mean to apparent place, as follows:

Lla = (C + 7TY)C + (D - 7TX)d
Ll8 = (C + 7TY)C' + (D - 7TX)d'

*a = 426'35 x 10- 7 a.u. from 1968.

-~--------------------------- -------- ---



2F. COORDINATE AND REFERENCE SYSTEMS 65

When the annual parallax is small enough, a further simplification can be made by
writing the expressions in the form:

.,1a = C (e + d 7T kI ) + D (d - C 7T k 2)

.,10 = C (e' + d' 7T kI ) + D (d' - e' 7T k 2)

where ki = R sec Elk, k2 = R cos Elk, in which R is the Sun's radius vector and k is *
the aberration constant = 20"'47. The variation in R throughout the year amounts
to 1/60 of the mean value, so for a small parallax R may be taken as unity. The
method uses, in effect, modified values of the star constants, and is particularly
valuable in the routine calculation of an ephemeris. The maximum error in the
case of a Centauri is 0"'013.

Example 5.4 illustrates the application of this correction.

It should be noted that, in the above formulae, the corrections for annual
parallax are, contrary to normal practice, given in the sense of (observed ­
tabulated); they are included in the apparent places of the stars which are directly
comparable with observation.



3. SYSTEMS OF TIME MEASUREMENT

A. INTRODUCTION

The systems of time measurement in use in present-day (post 1960) astronomy
are a development of those in use before the variable rotation of the Earth was
recognised. A complete appreciation thus requires a full understanding of the
earlier concepts. However, consideration of both systems together is necessarily
complicated, and it is desirable to have a general understanding of present-day
systems before considering how they' have been developed.

In this introductory sub-section there is given a general description of the
systems of time measurement in use in astronomy from 1960 onwards. Detailed
developments are given in subsequent sub-sections.

A fundamental necessity of any system of time measurement is a one-to-one
relationship' between the adopted numerical expression, or measure, of the time
(usually in the conventional form of years, months, days, hours, minutes, seconds,
and decimals of seconds) and some observable physical phenomenon that is either
repetitive and countable, or continuous and measurable, or both. The phenomenon
and the precise form of relationship are chosen so that the resulting time-system
satisfies some particular requirement; the relationship may be simple and regular,
as in a direct count of oscillations, or complex and irregular, as in the motion of the
Moon. In all systems there is an additional practical requirement that the time
should be free from short-period irregularities to permit interpolation and extra­
polation by man-made clocks.

In astronomy there are three such particular requirements, each closely related
to some natural observable motion and each leading to a different system of time
measurement. The natural motions and the resulting time-systems are:

(i) The alternation of day and night, or the diurnal motion of the Sun:
Universal Time.

(ii) The period of rotation of the Earth, or the diurnal motions of the stars:
Sidereal Time.

(iii) The orbital motions of the Earth, Moon, and planets in the solar system:
Ephemeris Time.

Both here and in the following sub-sections, to allow a more logical development,
the three time-systems are considered in the reverse order to that above. It is

66
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emphasised that many complicated details, that do not affect the broad principles,
are omitted in this sub-section.

Ephemeris time is theoretically uniform, since the length of the ephemeris
second is fixed by definition. The relationship through which ephemeris time is
determined in practice is that it is the independent time-argument of the ephemer­
ides of the Sun, Moon, and planets. These ephemerides are thus to be computed
in such a way that the ephemeris time determined from them is in accord with its
theoretical definition. But, in particular, an observationally-determined value is
used for the coefficient of the secular term in the mean longitude of the Moon.
Ephemeris time determined from this relationship will depart from the theoretical
uniform time in so far as the theory of the motions is inadequate, and the observa­
tionally-determined values are erroneous; the possible departure through these
causes is small, of the order of two or three seconds in a century.

Sidereal time is directly related to the rotation of the Earth; equal intervals of
angular motion correspond to equal intervals of sidereal time.

There is a fundamental difference between the two systems of time measurement:
sidereal time reflects the actual rotation of the Earth; ephemeris time is defined to be
uniform and is, in practice, determined through the motion of the Moon in its orbit
round the Earth. It is thus not possible to express one system interms of the other; the
relationbetween them must be determined empirically. In fact, the speed ofrotation of
theEarthisknownto be subjectto unpredictable variations in terms ofephemeris time.

The diurnal motion of the Sun involves both the diurnal rotation of the
Earth, related to sidereal time, and the motion of the Earth in its orbit round the
Sun, related to ephemeris time. Although it would be possible to define a system
of time measurement by means of a relationship to the hour angle of the Sun,
this system could never be related precisely to sidereal time and could not, therefore,
be determined by observations of star transits.

Universal time, for this reason, is directly related to sidereal time by means of a
numerical formula; it contains no reference to ephemeris time and is not precisely
related to the hour angle of the Sun. Although it is continuous with uniyersal
time as practically determined in the past, it is only since the variable rate of
rotation of the Earth was recognised that it has been realised that universal time
is not a precise measure of mean solar time as generally understood; it is related to
the hour angle of a point moving with the mean speed of the Sun in its orbit by
means of an empirical correction, which must be determined by observation.

Universal time and sidereal time are rigorously related in such a way that an
expression of time in one system can be converted, by means of the numerical
formula, to an equivalent expression of time in the other. A knowledge of one is
equivalent to a knowledge of the other. The two systems of time measurement
are not independent and the use of one instead of the other is purely a matter of
convenience: sidereal time is the more convenient for observations of star transits;
universal time is the more convenient for many other purposes.

Uniform time and the laws of motion
The astronomical reference systems of position and time are established
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empirically, by observations of the apparent motions that define them; but these
apparent motions reflect actual motions of the Earth and the other celestial bodies,
and consequently the reference systems can be constructed on an exact dynamical
foundation by means of the gravitational theories of the motions in the solar system.
In particular, the measurement of time may be based upon the primary standard
that is implicitly defined by the dynamical laws of motion. A clear understanding
of the astronomical measurement of time on this basis requires two cardinal
principles to be kept in mind:

(a) In astronomy, we are concerned, not with defining time, but only with
measuring it. To define a measure of time, it is not necessary to know the ultimate
nature of time; we need only devise practicable means for realising a unit of time
and for comparing any interval of time with this unit.

(b) A measure of time, like any physical measure, is entirely conventional. Any
particular measure may be adopted on the basis of its relative advantages for the
specific purposes at hand; no restriction to a unique measure is imposed by
physical principles, and no ultimate standard of reference is physically attainable.

For astronomical purposes, the most advantageous fundamental standard for
the effective correlation and systematic representation of observed phenomena in
terms of the measure of time is the independent variable of the accepted dynamical
equations of motion. This measure of time may be characterized as the measure
in which observed motions agree with the dynamical theories constructed from the
laws of motion; in effect, it is therefore defined by these laws. In the terminology
of the traditional formulation of the foundations of dynamics in terms of Intuitive
concepts, this independent variable is " uniform time", measured in the invariable
unit which, by the law of inertia, would be determined by successive equal rectilinear
displacements of a particle moving under no forces. From the preceding principles,
however, it follows that a uniform measure necessarily is uniform only by definition.
No absolute standard of comparison is accessible, but this is immaterial; an
accessible standard that does not lead to any contradiction between theory and
observation is all that is required.

The measure of time defined by the laws of motion is not immediately
accessible, but the dynamical theory of an observable motion provides a means of
obtaining it from the empirical measure determined directly by this motion.
Abstractly, uniform time is by definition the independent variable of the equations
of motion, inclusive of effects required by relativity; operationally, a uniform
measure of time is a measure in terms of which the observed motions of celestial
bodies are in agreement with rigorous dynamical theories of these motions.

For designating a measure of time that is defined by the laws of dynamics,
ephemeris time has been introduced. It is uniform in the sense that the length of
the ephemeris second is defined to be a constant. The dynamical theories of the
motions of celestial bodies are developed, in accordance with the fundamental laws
of motion, so that the independent variable is ephemeris time as so defined.
Beginning with 1960 the designation" Ephemeris Time" is used for the tabular
argument in the fundamental ephemerides of the Sun, Moon, and planets.

- - ---------------------- -------------- --
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B. ASTRONOMICAL MEASURES OF TIME AND RELATED CONCEPTS

1. Ephemeris time

Ephemeris time is a uniform measure of time depending for its determination
on the laws of dynamics. It is the independent variable in the gravitational
theories of the Sun, Moon, and planets, and the argument for the fundamental
ephemerides in the Ephemeris.

The measure of ephemeris time has been chosen to agree as nearly as possible
with that of universal time during the nineteenth century and it is unlikely that the
two measures will differ by more than a few minutes in the twentieth century.
Ephemeris time is accordingly expressed in the conventional units of centuries, years,
months, days, hours, minutes, and seconds. The numerical values of the ephemeris
time and the universal time at the same instant differ only slightly; to avoid possible
confusion itis essential to indicateunambiguously which measure of time is beingused.

The fundamental epoch from which ephemeris time is measured is the epoch
that Newcomb designated as 1900 January 0, Greenwich Mean Noon, but which
is now properly designated as 1900 January 0, I2h E.T. The instant to which this
designation is assigned is the instant near the beginning of the calendar year
A.D. 1900 when the geometric mean longitude of the Sun, referred to the mean
equinox of date, was 279° 4-1' 4-8" '04-.

This instant is definitive, but the determination of it depends on observations
of the Sun, which are compared with an apparent ephemeris. The observations
are themselves definitive, but the apparent ephemeris as deduced from the geometric
mean longitude depends on the value adopted for the constant of aberration. All
relevant observations and determinations have been made using 20"·4-7 for the
constant of aberration; a change in this value will lead to a change in our determin­
ation of the instant of the fundamental epoch and thus to a corresponding change
in the measures of ephemeris time assigned to all other instants. This particular
difficulty could have been avoided by specifying the epoch as the instant when the
geometric mean longitude of the Sun, reduced by the constant of aberration and
referred to the mean equinox of date, was 279°4-1' 27"·57; but there are objections
to the implied use of the" apparent mean longitude". *

The primary unit of ephemeris time is the tropical year at the fundamental epoch
of 1900 January 0, I2h E.T.; the tropical year is defined as the interval during
which the Sun's mean longitude, referred to the mean equinox of date, increases by
360°. The adopted measure of this unit is determined by the coefficient of 1',
measured in centuries of 36525 ephemeris days, in Newcomb's expression for the
geometric mean longitude of the Sun, referred to the mean equinox of date, namely:

L = 279° 4-1' 4-8".04- + 129602768"'13 T + 1".089 T2
The tropical year at 1900 January 0, 12h E.T. will accordingly contain:

360 x 60 x 60 6 86 6 h· d129602768.13 x 3 525 x 4-00 = 315 5 925.974-7 ep emens secon s

*See note in paragraph 4 on page 502.
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The following definition of ephemeris time, in accord with the above concepts,
was adopted by the tenth General Assembly of the International Astronomical
Union (Moscow, 1958; Trans. I.A.U., 10, 72, 1960) in the following terms
(English translation, loco cit. page 500):

" Ephemeris time is reckoned from the instant, near the beginning of the
calendar year A.D. 1900, when the geometric mean longitude of the Sun was
279 0 41' 48"'04, at which instant the measure of ephemeris time was 1900
January Od 12h precisely."

The ephemeris second had already been adopted as the fundamental invariable
unit of time by the Comite International des Poids et Mesures (Proces Verbaux des
Seances, deuxieme serie, 25, 77, 1957) in the words:

" La seconde est la fraction 1131 556925,9747 de l'annee tropique pour 1900
janvier 0 a12 heures de temps des ephemerides". *

As explained in sub-section D, on the historical development of ephemeris
time, this definition of ephemeris time makes it equivalent to the system of time
measurement used by Newcomb in his theories of the motion of bodies in the solar
system. Newcomb considered it to be mean solar time and to be uniform in the
sense of sub-section A; but it can be identified directly with ephemeris time so
that the ephemerides derived from Newcomb's tables of the Sun and planets can
be regarded as having ephemeris time as the independent time argument. The
origin and rate of ephemeris time are defined to make the Sun's geometric mean
longitude agree with Newcomb's expression; the symbol T in that expression
therefore represents the measure of ephemeris time, not only in the theory of the
motion of the Earth round the Sun but also in those of the heliocentric motions of
the other planets. The first two terms of the Sun's geometric mean longitude are
now thus defined to be absolute constants; the corresponding values for the Moon
and other planets are, however, subject to possible revision to bring them into
accord with observation. The mean longitude of any other planet, or even that of
the Moon, could have been so used to define the origin and rate of a uniform time
system; and ephemerides of the Sun, Moon, and planets could have been con­
structed with this time system as independent argument.

The measure of ephemeris time at the instant at which an observation of the
Sun, Moon, or planet is made can be obtained by comparing the observed position
with the gravitational ephemeris of the body; the ephemeris time will be the value
of the argument for which the ephemeris position is the same as the observed
position. In practice ephemeris time is obtained by the comparison of observed
positions of the Sun, Moon, and planets with their corresponding ephemerides.
Observations of the Moon, whose geocentric motion is much greater than those of
other bodies, are the most effective and expeditious; but, even so, an accurate
determination requires observations over an extended period. In practice
universal time, which may be determined very accurately, with little delay, from
observations of the diurnal motions of the stars, is used as an intermediary measure
of time; the difference in the two measures of time, ,1 T = E.T. - U.T., which
can be readily formed for each observation, is a suitable quantity for combination

*See additional note on page 95.
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over an extended period. The practical determination of ephemeris time is
discussed more fully in sub-section C.

Ephemeris time was originally defined (1950 Paris Conference on the Funda­
mental Constants of Astronomy, Colloques Internationaux du Centre National de la
Recherche Scientijique, 25, 1-131, Paris, 1950; reprinted from Bull. Astr., 15,
163-292, 1950) by means of a formula, depending on the observed correction to
the lunar ephemeris, for the correction Ll T to be applied to the measure of universal
time to give ephemeris time. The use of this formula is precisely equivalent to
determining ephemeris time by comparison of observations with the gravitational
ephemeris of the Moon. This operational definition has now been superseded by
the fundamental definition given above. The latter is independent of possible
amendments of either theory or observation; but the former represents, to the best
of our present theoretical and observational knowledge, the only practical way of
realising the fundamental definition. If in the future a more precise lunar ephem­
eris is constructed, it will not affect either the definition or the measure of ephemeris
time; but it will affect both the operational definiti.on and our determination of
ephemeris time.

Julian date

To facilitate chronological reckoning astronomical days, beginning at
Greenwich noon, are numbered consecutively from an epoch sufficiently far in the
past to precede the historical period. The number assigned to a day in this
continuous count is the Julian Day Number which is defined to be 0 for the day
starting at Greenwich mean noon on! B.C. 4713 January I, Julian proleptic
calendar. The Julian day number therefore denotes the number of days that has
elapsed, at Greenwich noon on the day designated, since the above epoch. The
Julian Date (J.D.) corresponding to any instant is, by a simple extension of the above
concept, the Julian day number followed by the fraction of the day elapsed since
the preceding noon.

Although introduced as a continuous count, and measure, of mean solar days
the Julian day number and the Julian date can conveniently be applied to ephemeris
time, in which case the Julian date will differ from the conventional one by Ll T;
the Julian day number will represent the number of ephemeris days that have
elapsed, at the preceding I2h E.T., since 12h E.T. on' B.C: 4713 I January I.' It
is not necessary in this definition to know to what universal time this epoch
corresponds, i.e. to know Ll T at the epoch; in fact the measure may be regarded as
conventional, applicable to both systems of time measurement, as in the case of
calendar dates. The terminology Julian Ephemeris Date (J.E.D.) may be used
when necessary to distinguish the Julian date in ephemeris time with the day
beginning at 12h E.T. from the Julian date in universal time with the day beginning
at I2h D.T.; such a distinction may be essential in dating orbital elements, or in
formulae for light-curves of variable stars, where the time must be given to a large
number of decimal places. The fundamental epoch 1900 January Od 12h E.T.
is J.E.D. 241 5020'0.

The value of J.D. -240 0000'5 is sometimes used to specify current dates and is known
as the Modified Julian Date. It is recommended that the numerical definition be given
whenever truncated values are used.
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2. Sidereal time

In general terms, sidereal time is the hour angle of the (vernal) equinox, or the
first point of Aries. Apart from the motion of the equinox itself, due to precession
and nutation, sidereal time is thus a direct measure of the diurnal rotation of the
Earth. To each local meridian on the Earth there corresponds a local sidereal
time, connected with the sidereal time of the Greenwich meridian by means of
the relation:

local sidereal time = Greenwich sidereal time - longitude

Sidereal time is conventionally measured in hours, minutes, and seconds, so that
longitude in the above equation is measured (positively to the west) in time at the
rate of one hour to IS°. An object transits over the local meridian when the
(local) sidereal time is equal to its right ascension.

The sidereal time measured by the hour angle of the true equinox, i.e., the
intersection of the true equator of date with the ecliptic of date, is apparent sidereal
time; the position of the true equinox is affected by the nutation of the axis of the
Earth, which consequently introduces periodic inequalities into the apparent
sidereal time. The time measured by the diurnal motIon of the mean equinox of
date, which is affected by only the secular inequalities due to the precession of the
axis, is mean sidereal time. Apparent sidereal time minus mean sidereal time is the
equation of the equinoxes due to the nutation; in the ephemerides immediately
preceding 1960, it was called the" nutation in right ascension". The period of
one diurnal circuit of the equinox in hour angle, between two consecutive upper
meridian transits, is a sidereal day; it is reckoned from Oh at upper transit which
is known as sidereal noon.

In the practical determination of time (see sub-section C) allowance must be
made for the variation in the position of the meridian due to the motion of the
geographic poles, and may also be made for short-period irregularities in the rate
of rotation of the Earth. With this understanding Greenwich sidereal time may
formally be defined as the Greenwich hour angle of the first point of Aries.

Sidereal time is determined in practice from observations of the transits of
stars, either over the local meridian or, with a prismatic astrolabe, over the small
circle corresponding to a constant altitude.

Owing to precession the mean sidereal day, of 24 hours of mean sidereal time,
is about 08'0084 shorter than the actual period of rotation of the Earth; the apparent
sidereal day, nominally of 24 hours of apparent sidereal time, differs from the
period of rotation by a variable amount depending on the nutation.

Apparent sidereal time, because of its variable rate, is used only as a measure
of epoch; it is not used as a measure of time-interval. Observations of the diurnal
motions of the stars provide a direct measure of apparent sidereal time; as their
right ascensions are measured from the true equinox. But in many practical
methods of determining time the right ascensions are diminished by the equation
of the equinoxes, so that mean sidereal time is deduced directly from the
observations.

- - ---------------------- ------------------ ---



733B. SYSTEMS OF TIME MEASUREMENT

Greenwich sidereal date

In order to facilitate the enumeration 'of successive sidereal days the concepts
of Greenwich Sidereal Date (G.S.D.) and Greenwich Sidereal Day Number, analogous
to those of Julian date and Julian day number, have been introduced. The Green­
wich sidereal date is defined as the interval in sidereal days, determined by the equi­
nox of date, that has elapsed on the Greenwich meridian since the beginning of the
sidereal day which was in progress at J.D. 0·0. The integral part of the Greenwich
sidereal date is the Greenwich sidereal day number; it is a means of consecutively
numbering the successive sidereal days beginning at the instants of transit of the
equinox over the Greenwich meridian. The zero day is the sidereal day that was
in progress at the beginning of the Julian era. The non-integral part of the
Greenwich sidereal date is simply the Greenwich sidereal time expressed either in
hours, minutes, and seconds, or in fractions of a sidereal day. These concepts can
be applied equally well to mean or apparent sidereal time.

There is no direct relationship between Greenwich sidereal date and Julian
ephemeris date, as the latter differs from the Julian date (in U.T.) by the unknown
difference E.T. - U.T.

The relationships between Greenwich sidereal date, Julian date, and calendar
date are considered in section 14H.

The ratio of the length of the mean sidereal day to the period of rotation of the
Earth is 0'99999 99029 07 - 59 x 10-12 T; the period of rotation is 1·0 +
(97°93 + 59 T) x 10-12 mean sidereal days. These numbers are not rigorously
constant because the sidereal motion of the equinox due to precession is proportional
to the length of the day, that is to the period of the rotation of the Earth, whereas
the angular measure of the complete rotation is, of course, constant. However,
the conceivable change in the period of rotation is such that the effect of a variation
in the daily precessional motion is inappreciable. The secular variations are
almost inappreciable (see sub-section B.3).

3. Universal tiIne

Universal time is the precise measure of time used as the basis for all civil
time-keeping; it conforms with a very close approximation to the mean diurnal
motion of the Sun. *

It is, and since the introduction of Newcomb's Tables of the Sun has been,
defined as 12 hours + the Greenwich hour angle of a point on the equator whose
right ascension, measured from the mean equinox of date, is:

Ru = 18h 38m 458.836 + 86 40184s'542 Tu + oS,0929 T~

where Tu is the number of Julian centuries of 36525 days of universal time elapsed
since the epoch of Greenwich mean noon (regarded as I2h U.T.) on 1900 January o.
The expression for R u is identical with that given by Newcomb (Tables of the Sun,
A.P.A.E., 6, part 1, page 9, 1895) for the right ascension of the fictitious mean sun,
with the exception that Newcomb used T instead of Tu and did not specify in
*See note on page yi regarding the current basis of civil time scales. In general the term
"universal time" (U.T.) may be identified throughout this Supplement with the system of
U.T.I defined on page 86.
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what measure of time T was to be reckoned. Newcomb, not recogmsmg the
variable rotation of the Earth, considered that T was measured in mean solar time
applicable alike to orbital motions and to hour angles; as explained in sub-section
RI, Newcomb's T may now be identified with ephemeris time. The point on the
equator whose right ascension is Ru is not identical with the" fictitious mean sun"
as defined by Newcomb; the right ascension of the fictitious mean sun is:

R E = I8h 38m 458.836 + 864°1848'542 TE + 08'°929 Ti

where TE is the number of Julian centuries of 36525 days of ephemeris time
elapsed since the epoch of I2h E.T. on 1900 January 0. RE differs from Ru by
0.002738 L1T where L1T is the difference E.T. - V.T.

The implications of this distinction are considered in sub-section B+

The measure of universal time at time Tu, expressed in hours, minutes, and
seconds, is thus:

I2h + the Greenwich hour angle of the mean equinox of date - Ru

.The date expressed in the form either of a calendar date or of a Julian date (see
sub-section B.I), is that correspondipg to the time Tu .

The Greenwich hour angle of the mean equinox of date is Greenwich mean
sidereal time, by definition. At I2h V.T. the Greenwich mean sidereal time will
therefore be RUl which may now be described as " the mean sidereal time of I2h

V.T. "; it may thus be distinguished from the right ascension of the fictitious
mean sun.

Although universal time is no longer definable as " I2h + the Greenwich hour
angle of the fictitious mean sun" it is sufficiently close, compared with the deviation
between the mean sun and the true Sun, to justify the retention of the terms" mean
solar time" and " mean solar day" in the sense in which they have been used in
the past. The continued use of these descriptive terms is not to be regarded as
identifying universal time with a precise measure of mean solar time; with this
understanding, the danger of confusion is small. In this sense, universal time may
be identified with Greenwich mean time.

As with sidereal time, there are local mean solar times corresponding to I2h +
the local hour angle of the point whose right ascension is Ru . These times are
connected with universal time (Greenwich mean time) by means of the relation:

local mean time = universal time - longitude

The point whose right ascension is Ru is not observable and practical determin­
ations of universal time are made, through the intermediary of sidereal time, by the
observations of the diurnal motion of the stars. For the practical calculation of
universal time, an ephemeris of sidereal time with argument universal time is
calculated from the relation: .

Greenwich mean sidereal time = V.T. + Ru + I2h

for Oh V. T. of every day; at V. T. = Oh the value of the right-hand side is obtained

~ ------------------------ ---------------- --
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by adding I2b to the expression Ru for the mean sidereal time of I2h V.T., and the
relation becomes:

G.M.S.T. of Ob V.T. = 6h 38m 458.836 + 86401848'542Tu + 08,0929TJ
where Tu takes on successive values at a uniform interval of 1/36525. The apparent
sidereal time is obtained by adding the equation of the equinoxes to the mean
sidereal time. The sidereal time at Oh V.T. on successive dates, calculated from
this expression, is tabulated in the ephemeris of Universal and Sidereal Times in
A.E., pages 10-17. These tabular times are the Greenwich hour angles of the
equinox that conventionally define the instants of successive midnights of universal
time; they are the means of observationally identifying these instants, and of
determining the universal time at any other instant. The instant that is designated
as Ob V.T. each day is the moment at which the equinox during its apparent
diurnal motion reaches a Greenwich hour angle equal to the value tabulated. At
the instant of any observed Greenwich sidereal time, the interval which has elapsed
since Ob V.T., expressed in sidereal time, is immediately obtained by subtracting
the tabular sidereal time at Ob V.T. from the observed sidereal time at the instant;
and the universal time at this instant is the equivalent measure of this interval in
mean solar time.

Alternatively, use can be made of the tabulations, also given in A.E., pages
10-17, of the universal times corresponding to the instants of Ob Greenwich
(mean and apparent) sidereal times, that is to the instants at which the mean and
true equinoxes transit over the Greenwich meridian. An observed sidereal time
may be converted to the equivalent interval of mean solar time, which is then
added to the tabular universal time to give the universal time at the instant of
observation. Examples of the methods of calculation and use of these tables are
given in sub-section C.

The mean solar measure of an interval is obtained by multiplying the sidereal
measure by the ratio of the sidereal day to the mean solar day. The mean solar
day, of 24 mean solar hours, is the interval of time between the two instants at
which the equinox reaches the tabular hour angles for two consecutive dates,
corrected for the variations of the meridian due to the motion of the geographic
poles and to variations of the vertical. From this formal definition and the
conventional method of calculating the tabular hour angles of the equinox that
determine Oh V.T. on successive dates, it follows that the hour angle which the
equinox describes during one mean solar day consists of a complete circuit of 24h

plus a further angle equal to the tabular increase in the mean sidereal time of I2h

D.T. for a numerical increase in T of one day. The interval of mean sidereal time
in a mean solar day is therefore:

b 864°1848'542 + 08'1858 Tu
24 + 36525 = 866368'55536°5 + 08'°000°5°87 Tu

and the ratio of a sidereal day of 864°° mean sidereal seconds to this interval is:

mean sidereal day
= 0'997269566414- °'586 Tu x 10-

10

mean solar day

- --- ---
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Inversely, the ratio of the mean solar day to the mean sidereal day is:
86636B'55536 05 + 0 8 '00000 5087 T
_--"--------"'-"-"'~~;-;- =_____'____=u = 1'°027379°9265 + °'589 T x 10-10

864°08 u

Disregarding the inappreciable secular variations, the equivalent measures of the
lengths of the days are:

mean sidereal day 2311 56m °48 '°9°54 of mean solar time
mean solar day 2411 03m 56B'55536 of mean sidereal time

The conversion tables 17.1 and 17.2 are based on these values.

The determination of mean solar time by the established method of converting
the elapsed interval since Oil U.T. from sidereal measure to mean solar measure
with a fixed conversion factor keeps the ratio of the mean solar day to the sidereal
day constant, irrespective of variations in the rate of rotation of the Earth. These
variations cause inequalities in mean solar time as conventionally determined from
the tabular hour angles of the equinox that formally define Oil U.T., and the length
of the mean solar day is slightly variable; but the ratio of the sidereal and the mean
solar measures is not altered by variations in the rotation of the Earth. The effect
on the length of the mean solar day of the variations in the daily motion of precession
is entirely inappreciable, as precession affects the hour angle of the equinox and the
right ascension of the mean sun alike. The measure of mean solar time depends
only upon the motion of the equinox in hour angle that is due to the rotation of
the Earth; the ratio of the mean solar day to the period of rotation is constant to
12 decimals or more.

The numerical value of this ratio is 1'00273 78119 06; the period of rotation
of the Earth in mean solar time is:

od'99726 96632 42 = 2311 56m °48 '°989° 4
and the rate of rotation is 15"'°41067 per mean solar second.

Universal time is obtained, through the intermediary of sidereal time, from
observations of the transits of stars. It is thus subject to the same irregularities
(divided by the factor 1'°°2738) as those affecting the determination of sidereal
time (see sub-section B.2), namely the variation in the local meridian due to the
motion of the geographic poles and the short-period variations in the rate of rotation.
These irregularities are removed to provide a measure of time which is free of
short-period variations (see sub-section C).

4. The ephemeris meridian

Ephemeris time is independent of the rotation of the Earth and is consequently
unsuitable for the calculation of hour angles, which do depend on that rotation.
For facilitating practical calculations of phenomena that depend upon hour angle
and geographic location, the concept of an auxiliary reference meridian, known as
the ephemeris meridian, has been introduced. The position of the ephemeris
meridian in space is conceived as being where the Greenwich meridian would have
been if the Earth had rotated uniformly at the rate implicit in the definition of
ephemeris time; it is 1'°°2738 LI T east of the actual meridian of Greenwich on the
surface of the Earth, where LIT is the difference E.T. - U.T.

- ------- - --------~ .._--------- --
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When referred to the ephemeris meridian, phenomena depending on the
rotation of the Earth may be calculated ·in terms of ephemeris time by methods
formally the same as those by which calculations referred to the Greenwich
meridian are made in terms of universal time. The hour angle and the meridian
transit of the equinox, which determine the tabular sidereal time at Oh universal
time and the universal time at Oh sidereal time, are referred to the actual geographic
meridian of Greenwich. The numerical value formally obtained from the same
numerical relation as that used to compute the sidereal time at Oh universal time,
but with T reckoned expressly in ephemeris time, is the hour angle of the equinox
referred to the ephemeris meridian at Oh ephemeris time, and is called Ephemeris
Sidereal Time (E.S.T.). Numerically, therefore, the tabular values of sidereal
time at Oh universal time are equally the values of ephemeris sidereal time at Oh

ephemeris time. Ephemeris transit occurs at the instant when the ephemeris
sidereal time is equal to the right ascension.

The hour angle of an object referred to the ephemeris meridian is known as
the Ephemeris Hour Angle (E.H.A.) of that object; it may be calculated from the
relation:

ephemeris hour angle = ephemeris sidereal time - right ascension

Longitude measured from the ephemeris meridian is distinguished by the term
ephemeris longitude; the ephemeris longitude of a place at which the local hour
angle has a particular value may be obtained by taking the difference between
the local ·and ephemeris hour angles.

All calculations into which the rotation of the Earth enters may be carried out
in terms of ephemeris time, referred to the ephemeris meridian, in precisely the
same way as in universal time referred to the Greenwich meridian. In the former
case, the precise positions of the meridians on the Earth's surface, specified by
their ephemeris longitudes, will not be known until L1 T is known; in the latter
case a value of L1 T is necessary before the tabulated ephemerides can be interpolated
to universal time. The use of the ephemeris meridian enables such calculations
to be carried out precisely as far in advance as required; as soon as a sufficiently
accurate value of L1 T can be extrapolated, or determined, the longitudes and hour
angles can be referred to the Greenwich meridian and the times, in E.T., expressed
in terms of V.T. This procedure is followed in predictions of the general
circumstances of eclipses.

Apart from its practical advantages the concept of the ephemeris meridian is
valuable in providing a clear picture of the relation between ephemeris time and
universal time. At any instant:

E.T. -+- I2h = the ephemeris hour angle of the fictitious mean sun, whose
right ascension is RE

ephemeris sidereal time - RE

D.T. + I2h = the Greenwich hour angle of the point whose right ascension
is Ru

= Greenwich sidereal time - Ru

- ---- -
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If LlT is the excess of the measure of E.T. over that of D.T., I.e. E.T. - D.T.
LlT, then:

RE = Ru + 0'°°2738 LlT
E.T. = D.T. + ephemeris sidereal time - RE

- Greenwich sidereal time + Ru
= D.T. + 1'°°2738 LlT - °'°°2738 LlT = D.T. + LlT

At a time Ll T later the Greenwich meridian will have moved through an angle
1.002738 Ll T and thus will be in the same position as the ephemeris meridian at
the earlier time; and the right ascension Ru will have increased by °'°°2738 Ll T
and thus will be RE , the same as the right ascension of the fictitious mean sun at
the earlier time. The relationship between the ephemeris meridian and the
fictitious mean sun at any instant is precisely the same as that between the Green­
wich meridian and the point whose right ascension is Ru at a time Ll T later; the
two systems of time measurement are identical except that the system of universal
time relates to a time Ll T later than that of ephemeris time.

The speed of rotation of the ephemeris meridian is such that it makes one
complete revolution of 360°, relative to the mean equinox, in 23 h S6m °48'°989° 4 of
ephemeris time; the ephemeris meridian coincided with the Greenwich meridian
at some date between 1900 and 1905.
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Figure 3.1. Relations between E.T. and U.T. and related concepts

E.T. = Ephemeris time (T) U.T. = Universal time (T + LlT)
E.S.T. = Ephemeris sidereal time U.S.T. = Universal sidereal time
E.M.S. = Ephemeris mean sun U.M.S. = Universal mean sun

R.A.E.M.S. = Right ascension of E.M.S. R.A.U.M.S. = Right ascension of U.M.S.
E.H.A. = Ephemeris hour angle U.H.A. = Universal hour angle

Eq. E.T. = Equation of ephemeris time Eq. U.T. = Equation of universal time

U.S.T. and U.H.A. are identical with G.S.T. (Greenwich sidereal time) and G.H.A.
(Greenwich hour angle)

The accompanying diagram (figure 3.1), which is intended solely for illus­
tration, shows clearly the relationship between the two systems: E.T. and the
ephemeris meridian in the upper part of the diagram, and D.T. and the Greenwich
meridian in the lower. In the diagram certain unconventional terminologies and
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notations have been introduced to facilitate comparison; these are only used in
this limited context. A clear distinction is' drawn between the fictitious mean sun
(termed the ephemeris mean sun) with right ascension RE , and the point (termed
the universal mean sun) with right ascension Ru .

Two distinct concepts, termed -respectively the equation of ephemeris time
and the equation of universal time, have been introduced to replace the single
concept" equation of time". On the one hand, the equation of ephemeris time
is the logical successor to the equation of time regarded as the excess of the hour
angle (or defect of right ascension) of the true Sun over that of the fictitious mean
sun; and this is the quantity tabulated in the Ephemeris for Oh E.T. under the
heading" Equation of Time". On the other hand, the equation of universal time is
the logical successor to the equation of time regarded as the excess of apparent solar
time over mean solar time; this is the quantity required to convert I2h + V.T.
into the G.H.A. of the Sun, but it cannot be tabulated without a knowledge of Ll T.

As from 1965 the tabulation in the Ephemeris of the equation of time will be
replaced by the tabulation of the E.T. of ephemeris transit of the Sun. The term
"equation of time" will thenceforward be used exclusively for the concept
termed here" the equation of universal time". The equation of time will then be
defined as the correction to be applied to I2h + V.T. to obtain G.H.A. Sun, or
more generally the correction to be applied to I2h + L.M.T. to obtain L.H.A.
Sun; it is now so tabulated in the almanacs for navigators and surveyors. The
concept of the equation of ephemeris time will no longer be used.
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5. Mean solar time

The purpose of this sub-section is to describe the historical development of
the concept of mean solar time, prior to the realization of the variability of the
rotation of the Earth, and to discuss the consequences of that variability upon the
definition of universal time.

A reckoning of time which conforms more or less closely to the recurrence of
daylight and darkness determined by the diurnal motion of the Sun, and which is
quickly obtainable with high precision from observation, is a practical necessity.
Because of the variations in the rate of motion of the Sun in hour angle, due to the
inequalities in the annual motion along the ecliptic and to the inclination of the
ecliptic to the equator, the measure of time that is directly defined by the actual
diurnal motion of the Sun, known as apparent solar time, is impracticable for the
purpose of precise timekeeping. Instead, mean solar time was introduced,
determined by the apparent diurnal motion of an abstract fiducial point at nearly
the same hour angle as the Sun, but located on the mean celestial equator of date
and characterized by a uniform sidereal motion along the equator at a rate virtually
equal to the mean rate of the annual motion of the Sun along the ecliptic. Relative
to any meridian of longitude, this point has a diurnal motion in hour angle virtually
the same as the average diurnal motion of the Sun, and uniform except for
variations of the local meridian; the position in hour angle is never more than
16m from the Sun.
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The precise position of this moving point was abstractly defined by an
expression for its right ascension, which fixes its position among the stars at every
instant and is a means of determining its diurnal motion from the observable
diurnal motions of the stars. The practice in the past has been to adopt for the
right ascension, measured from the mean equinox of date, an expression as nearly
identical with the expression for the mean longitude of the Sun as is possible,
consistent with a sidereal motion at a constant rate. This expression -for the
right ascension differs from that for the mean longitude of the Sun by only a slight,
progressively increasing, excess of 08 '°2°3 T2 where T is the number of centuries
from 1900, due to the secular acceleration of the Sun and to the different rates of
the general precession on the ecliptic and the equator. This abstract fiducial point
has therefore traditionally been known as the fictitious mean sun; but it has no
physical counterpart, and the term is essentially only a name for a mathematical
expressIOn.

The system of measuring and determining mean solar time was expressly
devised to obtain a measure in agreement with the rotation of the Earth, because,
prior to the realization that the rate of rotation is variable, the measure of time that
it defines was considered to be uniform. It was for the purpose of obtaining a
uniform measure in this way that mean solar time was defined in terms of the
diurnal motion of a fictitious mean sun, not by supposing the actual mean sun
transferred to the equator, since the mean motion of the Sun in longitude has a
secular acceleration.

The definition of the measure of mean solar time was obtained, in the form of
the relation to sidereal time, from the formula for the right ascension of the
fictitious mean sun. On the Greenwich meridian, in terms of the position of
the mean equinox and the position of the fictitious mean sun relative to the mean
equinox, mean solar time was defined as:

G.H.A. mean equinox of date - R.A. fictitious mean sun + I2h

For the right ascension of the fictitious mean sun, the numerical formula from
whatever tables of the Sun were in current use was adopted. The measure re­
presented by this expression is universal time; it is the mean solar time on the
Greenwich meridian reckoned in days of 24 mean solar hours beginning with Oh

at midnight, and is the conventional standard measure of mean solar time.

However, because of the variations in the rate of rotation of the Earth,
universal time, so defined, does not rigorously conform to the traditional geometric
interpretation that originally motivated this method before these variations had
been recognized. The right ascension of the fictitious mean sun increased by I2h

was taken as the value of the hour angle of the mean equinox to define Oh V.T. in
order that mean midnight would be the instant of lower meridian transit of the
fictitious mean sun, and the measure of mean solar time at any other instant,
reckoned from midnight, would be the hour angle of the fictitious mean sun
increased by I2h. In practice, to obtain the tabular values of the hour angle ofthe
mean equinox that determine successive intervals of a mean solar day, the right
ascension of the mean sun was calculated from successive values of T at uniform
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numerical intervals of 1/36525. The instants at which the equinox reaches these
tabular hour angles during its diurnal motion depend on the variable rotation of
the Earth, and are at slightly unequal intervals of uniform time; consequently, the
actual amount of the sidereal motion of the fictitious mean sun during successive
mean solar days is not invariable, and the hour angle of the mean sun at midnight
depends on the accumulated departures of the sidereal motion from the tabular
amounts.

In contrast, Newcomb's expression was intended to represent a variation of
right ascension entirely independent of the rotation of the Earth and due to a
rigorously uniform sidereal motion of the mean sun that increases its right ascension
by a constant amount per unit increase in the numerical value of T, and to the
motion of the equinox that is caused by the general precession in right ascension.

The hour angle of the mean equinox and the actual right ascension of the mean
sun increased by 12h do not both reach the tabular value of the mean sidereal time
of Oh V.T. at identically the same instant. The tabular value is, by definition,
the hour angle which the equinox reaches at mean midnight, but is not precisely
equal to the right ascension of the fictitious mean sun increased by 12h at this
instant. At this hour angle of the equinox, the fictitious mean sun is not exactly
on the lower meridian; the designation" Right Ascension of Mean Sun + 12h ",

sometimes applied to the sidereal time of Oh V.T. prior to 1960, is inexact when the
departure of mean solar time from a uniform measure is explicitly recognized,
and was therefore eliminated from the Ephemeris when a formal distinction was
made between universal time and ephemeris time. In the expression for the right
ascension of the fictitious mean sun, the inequalities are entirely due to the motion
of the equinox, and strictly T should be interpreted as denoting a uniform measure
of time; but the practical procedure is equivalent to reckoning T in mean solar
days. This is immaterial for the purpose of defining a formal measure of time; but
it has the consequence that, geometrically, mean solar time is not exactly the hour
angle of the fictitious mean sun increased by 12h as it ordinarily has been described,
and likewise the mean solar day is not exactly the period of one diurnal circuit of
the fictitious mean sun in hour angle as it would be were there no variations in the
rate of rotation of the Earth.

The operational procedure used in practice for determining universal time
constitutes the actual definition, and supersedes the traditional descriptive
characterization. Geometrically, mean solar time and the mean solar day are
determined, not by the meridian transit and the hour angle of the fictitious mean
sun, but entirely by the diurnal motion of the vernal equinox, in accordance with a
conventional formula that specifies a prescribed relation that mean solar time shall
have to the observed sidereal time measured by the hour angle of the equinox.
The instant-of Oh V.T. is precisely defined by the numerical expression from which
the tabular sidereal times of Oh V.T. are calculated; universal time as obtained in
accordance with the established practical method, from the observed sidereal time
at the instant and the tabular sidereal time at Oh V.T., is essentially a formal
measure defined by this abstract expression.

-- -- ----------~-------
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Although this conventional formal measure of time is not the exact equivalent
of the traditional geometric representation of mean solar" time, it is numerically
identical with the measure of mean solar time that always was actually obtained in
practice. Likewise, it is characterized by being strictly in accordance with the
measure of time defined by the rotation of the Earth; the mean solar day, when
determined from observations of stars and corrected for variations of the meridian,
is rigorously proportional to the period of the rotation.

C. THE PRACTICAL DETERMINATION OF TIME

Accurate timekeeping depends upon determining the error of a clock on
successive nights by means of determinations of time from astronomical obser­
vations. The observed measure of time compared with the reading of the clock
at the instant of observation gives the error of the clock; from the successive
clock errors, the rate of gain or loss is found, with which the clock error at any
intermediate instant may be obtai,ned by interpolation, and over limited periods
in advance by extrapolation.

For timekeeping of the highest precision, quartz-crystal clocks have entirely
superseded the pendulum clock. A perfect clock, which would run uniformly
and have an absolutely constant rate, has not been realized; but the best clocks
now available have rates more uniform than the rotation of the Earth. Atomic
oscillators are also becoming an important aid in timekeeping, although it is not
yet known whether the gravitational and atomic time scales are identical.

Crystal-controlled clocks are more accurate than the individual nightly
determinations of time by observation. The clocks are used in practice to smooth
out the random errors of observation from night to night, as well as to interpolate
between observations; the crystal oscillators that constitute the primary time
standards vary in frequency from day to day by only about 2 parts in 1010. How­
ever, the length of time over which the clock rate may be extrapolated with confi­
dence is inevitably limited. To maintain a precise standard of time, and to make
exact measurements of long intervals, continual direct determinations from
astronomical observations are essential.

The determination of sidereal time by observation. To determine the hour
angle of the equinox by observations of stars, the location of the equinox among
the selected stars is found from ephemerides of their apparent positions. The
diurnal motions depend upon the instantaneous rotational motion of the Earth
determined by the position of the axis in space and within the Earth, and ,by the
'rate of rotation. The instruments are necessarily oriented with reference to
local gravity. Consequently, the measure of time obtained directly from the
immediately observed positions of the stars in their diurnal circuits is the apparent
sidereal time referred to the instantaneous local meridian. In principle, the time

- - ------------------------- -------------------- ---



3C. SYSTEMS OF TIME MEASUREMENT

may be found from observations of stars at any point of their diurnal arcs, and
many different methods have been used,. depending on circumstances and on the
precision needed.

For meridian observations, the most precise instrument is the photographic
zenith tube, for which no corrections are required for level, azimuth, collimation,
or flexure. Each observation gives a measure of both the time and the latitude.
Determinations of time by extra-meridian observations, comparable in precision
to determinations with the photographic zenith tube, may be made with the Danjon
impersonal prismatic astrolabe. With this instrument, the stars are observed
when at an altitude of 60°. Each observation of one star gives a linear relation
between time, latitude, and declination; two groups of stars are observed, one
before midnight and one after midnight. Brief descriptions of these instruments
are given in section ISB.

The external probable error of the time determined from the observations on
one night by these methods is of the order of ± 4 milliseconds.

The relative positions of the stars observed with these instruments are deter­
mined from the observations themselves, and thus are independent of errors in
star catalogues. But even though the star places are mutually consistent, they
are still dependent on the particular coordinate system (or " equinox ") to which
they are referred; different systems would give rise to differing determinations of
time. The International Astronomical Union recommended in Stockholm in 1938
(Trans. LA. u., 6, 342, 1939) that the system of the FK3 be used; and the adopted
practice is equivalent to using a zero determined by the average of the FK3 stars in
the corresponding declination belt. The FK3 system will be replaced by that of
FK4 as soon as it becomes available (Trans. I.A.U., 10,79, 1960).

The varying rate of gain or loss of the clock on apparent sidereal time, and the
accumulated error at the times of observation, depend both upon the irregularities
of the clock and upon the inequalities in sidereal time. To facilitate the separation
of the clock irregularities from the variations in the measure of time, in order to
determine accurate clock errors and rates, the transit ephemerides of the stars are
often expressed in terms of a more uniform argument than apparent sidereal time,
by calculating the mean sidereal time of transit and, for convenience, further
converting it to mean solar time.

The mean sidereal time at transit is obtained by omitting from the apparent
right ascension the terms of the reduction for nutation that are independent of the
coordinates of the star; these terms, common alike to all stars, represent the
equation of the equinoxes, which causes the inequality in sidereal time that is due
to the nutation of the axis of the Earth. The remaining terms of the reduction
for nutation, peculiar to each star, represent the irregularities in the diurnal motion
of the star that are produced by the nutation of the axis.

As long as a particular inequality in sidereal time is negligibly small compared
to the irregularities of the clock and the inevitable errors of the observations, it may
be disregarded in calculating the right ascensions of the stars and in reducing the
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observations. With the continual increase in the accuracy of observations and the
development of more precise clocks, an increasing number of the inequalities have
successively become distinguishable from the irregularities of the clock. To
obtain a standard of comparison that is as nearly uniform as the running of the
clock, successively greater refinements in computation have been necessary, by
the inclusion of additional terms of the nutation and, more recently, the application
of corrections for the variations of the meridian due to the polar motion. More­
over, the rates of the crystal oscillators now available are so nearly uniform, and the
accuracy of the observational comparisons with the stars is so great, that it has also
become the practice to include corrections to the observed time for the periodic
seasonal variations in the rate of rotation of the Earth.

The calculation of mean solar time. The definition of universal time was left
unchanged when ephemeris time was formally introduced into astronomical
practice. The practical method of determining universal time that was in
established use before 1960 was retained, and the numerical reckoning of universal
time was continued without discontinuity except for increased precision resulting
from the use of improved values of the nutation.

The sidereal time (hour angle of first point of Aries) at Oh universal time, and
the universal time at Oh sidereal time (transit of first point of Aries), which formerly
were included in the ephemeris of the Sun, are tabulated in the separate ephemeris
of Universal and Sidereal Times in A.E., pages 10-17:both for the mean equinox
of date and for the true equinox with the short-period terms of nutation included.
This ephemeris also contains the equation of the equinoxes, which in the volumes
immediately preceding 1960 was designated as the nutation in right ascension and
was included with the ephemeris of the Sun.

In the tabulations for Oh V.T., the argument is the calendar date and the
equivalent Julian date. In the tabulations for Oh S.T. the argument is the
Greenwich sidereal date (G.S.D.), defined as the number of sidereal days deter­
mined by the equinox of date that have elapsed at Greenwich since the beginning
of the sidereal day which was in progress at J.D. 0'0. The integral part of the
G.S.D., the Greenwich sidereal day number, is a means of consecutively numbering
successive sidereal days. (See sub-section B.2.).

Example 3.1. Universal and sidereal times
1960 March 7 at Oh U.T.

Julian date at oh on 1960 March 7 (A.E., p. 2)
Julian date at epoch from which Tu is measured
Interval in days, d
Fraction of Julian century, Tu = d/36525

R u + I2h = 6h 38m 458.836
+86401848'542 Tu = 236"'55536 049d
+ 0"'0929 TJ = 08·00696(d/l0000)2

Sum = Mean sidereal time at Oh

Equation of the equinoxes (iJif; cos E) = -0"'744 x 0'9174
Sum = Apparent sidereal time at Oh

*On pages 12 to 19 in A.E. 1972 onwards.

243 7000 '5
241 5020'0

2 1980'5
0.60179 32922 7

(; 38 45~836
4 20 05'1013

0'0336

10 58 50'971
- 0'046
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The universal time of transit of the mean equinox is obtained by:
D.T. of transit = 0'99726 95664 (24h - mean S.T. at Oh)

= (24 h - mean S.T. at Oh) (I - °'°°273 04336)

85

12 59 01 '056

h m
13 01

- 2

24h - mean S.T. at Oh on 1960 March 7
-0'00273 04336 (24h - mean S.T. at Oh) (A.E., Table VIII)
Sum = U.T. of transit of mean equinox
Correction to true equinox ( -0'9973 L10/ cos E)

= -0'9973 x -0"'746 x °'9174 + °'°46

Sum = D.T. of transit of true equinox 12 59 01' 102

The nutation in longitude (L10/) is obtamed from the series, and must be interpolated
to the D.T. required; the obliquity (E) is a constant to the precision here required. The
D.T. of transit of the mean equinox can be obtained directly from the series:

17h 16m 258.628 - 2358'90946 18 (G.S.D. - 242 1634) - 08'°926 TJ

The practical calculation of universal time from the observed sidereal time
with the aid of these tabulations is illustrated by the following example. For full
precision it is necessary to use the quantities relating to the mean equinox (e.g.
mean sidereal time), interpolating the equation of the equinoxes to the actual
universal time concerned.

Example 3.2. Derivation of universal time from observed sidereal time

On 1960 March 7, in longitude 5h 08m 158'75 west at approximately 2h local mean
time, the observed apparent sidereal time was 13 h 05m 378'249; the corresponding U.T.
(about 7h on March 7) is obtained as follows:

h m
Observed local apparent sidereal time 13 0S 37'249
Equation of the equinoxes (interpolated to 7h U.T.) - °'°46
Observed local mean sidereal time 13 0S 37'295
Longitude (add if west) + 5 08 15'75
Greenwich mean sidereal time 18 13 53'045
Reduction to mean solar time (A.E., Table VIII) - 2 59'207
Equivalent interval of mean solar time 18 10 53.838
D.T. of preceding transit of mean equinox (A.E., p. II) March 6 d 13 02 56'966
D.T. of observation March 7 d 7 13 50·804

Alternatively use can be made of the tabulated sidereal time as follows:
Greenwich mean side-eal time (as above) 18 13 53'045
Greenwich mean sidereal time at Oh U.T. on March 7 (A.E., p. I I) 10 58 5°'971
Difference = mean sidereal time interval 7 15 02'074
Reductio:1- to mean solar time (A.E., Table VIII) - I 11'269

D.T. of observation 7 13 50·805

The apparent sidereal time corresponding to a given U.T. may be calculated directly.
In this case the figures are the same as above; but the reduction from mean solar time to
mean sidereal time (1 m 118'27°) is taken from A.E., Table IX, with the U.T. argument
7h 13m 508·805.

The universal time calculated directly from the immediately observed sidereal
time referred to the instantaneous meridian is denoted by V.T.o. This measure
of universal time contains inequalities due not only to the variations in the rate
of rotation of the Earth but also to the variations of the meridian. In practice,
the variations of the meridian due to variations of the vertical may be neglected,

- - - - ~------~
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as they are too small in comparison with errors of observation to be significant
except in an analysis of a long series of observations; but, because of the high
accuracy that has been reached in timekeeping, the inequalities due to the polar
motion have become of practical importance. The variations in the rate of rotation
of the Earth comprise secular, irregular, and periodic seasonal and tidal inequalities.
The tidal variations are almost inappreciable, and the secular variation becomes
appreciable only after very long intervals; the irregular variations may reach
relatively large magnitudes, but are highly erratic. The seasonal inequality is
large enough to be of practical. significance; and, as far as observations have yet
shown, it appears to be remarkably stable from year to year. Accordingly,
beginning with 1956, in conformity with resolutions of the International Astro­
nomical Union, determinations of universal time by the national time services
have been corrected for the annual variation in the rate of rotation, and for the
variation in the position of the meridian due to the motion of the geographic poles.

Corrections for the polar motion were first applied in daily practice at the
Royal Greenwich Observatory, beginning with 1947. Previously, these corrections
had been applied only in the annual analyses of time signals by the Bureau Inter­
national de l'Heure. In 1955, a special Rapid Latitude Service was established
by the International Astronomical Union, for determining the motion of the pole
on a nearly current basis in order that accurate corrections to time determinations
may be derived. Universal time reduced to an invariable mean Greenwich
meridian by correcting U.T.o for the observed polar motion is denoted by the
notation U.T.I. The corrections for each time station are issued periodically by
the Bureau International de I'Heure; time signals are based on extrapolated values,
and definitive time signal corrections on interpolated values.

The correction for seasonal variation is extrapolated a year in advance, and
published by the Bureau International de l'Heure for use by all observatories
engaged in the determination of time. The measure of universal time obtained by
correcting U.T.o for the observed polar motion and for the extrapolated seasonal
variation in the rate of rotation of the Earth is denoted by the notation U.T.2.
The correction for the annual variation does not wholly eliminate the variability
in the length of the mean solar day, but U.T.2 is virtually free of periodic variations.
(See section 15A for further details).

The determination of ephemeris time. To determine the correction L1 T for
reducing universal time to ephemeris time, an observed position of a celestial body
recorded in universal time is compared with a gravitational ephemeris in which
the argument is the measure of time defined by Newcomb's Tables of the Sun; by
inverse interpolation in the ephemeris, to the value of the argument for which the
tabular position is the same as the observed position, the difference of the two
measures of time is immediately obtained.

Observations of the Moon are the most effective means for the practical
determination of L1 T. However, a direct comparison, in the way just described,
with the lunar ephemeris calculated from Brown's Tables of the motion of the Moon
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does not give iJ T immediately, because Brown's theory is not strictly gravitational
and his tables are not in complete accord with Newcomb's Tables of the Sun. In
terms of the departure of the Moon from Brown's tables, the relation of ephemeris
time to' universal time, found from discussions of observations of the Sun, Moon,
and planets over periods extending back to ancient times, is represented by:

iJT = +248'349 + 728'318 T + 298'95° T2 + 1.82144 B
where T is rer.koned in Julian centuries from 1900 January ° Greenwich mean
noon, and where:

B = (Lo - Lc) + 10"'71 sin (14°°'° T + 240°'7)
- 4",65 - 12"'96 T - 5"'22 T2

in which L o is the tabular mean longitude of the Moon, and L o is the observed
mean longitude, referred to Newcomb's equinox, at the observed universal time.

Brown's theory is reduced to a gravitational theory in which the measure of
time is the same as defined by Newcomb's Tables of the Sun by eliminating the
empirical term from the mean longitude of the Moon, and applying to the tabular
mean longitude the further correction:

iJL = -8"'72 - 26"'74 T - II"'22 T2

Consequential corrections are required to some of the periodic terms in longitude,
latitude, and parallax. Beginning with 1960, the lunar ephemeris is calculated
from this amended theory, directly from the theoretical expressions for the longi­
tude, latitude, and parallax, instead of from Brown's tables as formerly. This
improved ephemeris has also been made available for 1952-1959 in the Improved
Lunar Ephemeris.

The development of means for photographic determinations of the position of
the Moon among the stars, and the introduction of the improved ephemeris of the
Moon with which the observed position may be directly compared, enable iJ T to
be obtained more expeditiously than by the methods previously available.
Formerly, iJ T was determined principally by means of meridian observations of
the Moon and observations of occultations of stars, compared with the tabular
positions in the lunar ephemeris calculated from Brown's tables; the determination
of a definitive value by these methods requires several years. From photographic
positions of the Moon obtained with the dual-rate camera devised by
Markowitz, accurate values of iJ T should be determined within a relatively brief
period.

Strictly a distinction should be drawn between V.T. + iJT and E.T., when
.1T is determined as above from observations of the Moon. V.T. + iJT differs
from E.T. in two main respects:

(a) by a quadratic expression in T of the form a + bT + CT2, the coefficients of
which have been observationally determined to be zero, but which almost certainly
differ from zero by significant amounts (it should be noted that the term cT2 is of a
more fundamental physical character than a + bT);

(b) by any deficiencies that may be present in Brown's theory of the motion of
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the Moon, including revision of any constants involved; in particular Brown uses
1/294 for the flattening of the Earth.

Thus U.T. + .t1T may differ systematically from ephemeris time as defined by
reference to the Sun's mean longitude. This is of little consequence to astronomy
since the values of .t1 T are the best that can be obtained and their significance is
fully understood; but it could assume importance in relation to the precise deter­
mination of the unit of time. In so far as the use of the Ephemeris is concerned
no formal distinction is necessary, and none is made; thus the same symbol .t1 Tis
used to denote the actual difference E.T. - U.T., although it is realised that the
observations do not relate directly to this quantity.

Only for comparatively recent years can reasonably accurate values of .t1 T be
obtained from the available observations; but fairly reliable values may be deter­
mined back to the beginning of the nineteenth century, and approximate estimates
may be made back into the seventeenth century. Table 3.1 gives the values that
were derived in a comprehensive investigation by Brouwer (A.J., 57, 125, 1952),
supplemented by other determinations for more recent years.

The results of a recent estimation of the variations of L1 T during the past three
centuries are illustrated in figure 3.2. The large differences from the general
trend of Brouwer's values are due to the use of a different value for the tidal
deceleration in the Moon's mean longitude.

The annual values of .t1 T are tabulated for a limited interval ending with the
current year in A.E., page vii or viii. For years up to 1948 inclusive, they are taken
from Brouwer's smoothed values; for the later years, definitive values available
at the time the Ephemeris is prepared are supplemented by provisional and extra­
poiated values to extend the table to the current year. *

D. HISTORICAL DEVELOPMENT OF SYSTEMS OF

TIME MEASUREMENT

Until the introduction of the pendulum clock in the latter half of the seven­
teenth century, no means of reasonably accurate timekeeping was available.
Besides the sundial, methods had been known since ancient times for determining
local time by observations of the Sun or stars, within the limits of accuracy of the
existing instruments, and the concept of mean solar time together with the principles
for determining the equation of time extends back to ancient Greek astronomy; but
with the crude mechanical timekeeping devices that were available, satisfactory
measurements of intervals of time for interpolating between astronomical obser­
vations could not be made. The earliest mechanical clocks introduced during
medieval times were not much improvement, and the early pendulum clocks were
not highly reliable; not until the late eighteenth century had clocks become
sufficiently improved, and watches and chronometers sufficiently perfected, for
accurate time to be generally available, especially at sea.
*Current years of the A.E. now show on page vii the relationships between LA.T., E.T.,
U.T.I and U.T.C. from 1956 onwards.

- -------------------------------------_.-._--
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As long as the only means of obtaining accurate time was by direct astro­
nomical observation, apparent solar time was in general use for practical purposes,
and it was the argument in The Nautical Almanac and other national ephemerides
until the early nineteenth century. Determinations of local apparent time were
commonly made by observing altitudes of the Sun or stars; this is still one of the
most generally useful methods, especially at sea. Mean time when needed for any
purpose was obtained by applying the equation of time to the apparent time.

The equation of time, in the sense of the correction to be applied to apparent
time in order to obtain mean time, had been tabulated in the national ephemerides
from their earliest inception, for the express purpose of regulating clocks and of
determining the argument for entering astronomical tables. As clocks were
improved, and chronometers were perfected and came into extensive use at sea,
apparent time was gradually superseded during the late eighteenth and early
nineteenth centuries by local mean solar time for general civil use. When apparent
time was replaced by mean time as the argument in the national ephemerides, the
equation of time was supplemented by the addition of an ephemeris of sidereal
time at mean noon to facilitate the determination of mean solar time, independently
of the equation of time, by the alternative method of calculating the mean time from
sidereal time.

The equation of time has since come to signify the opposite of the original
concept. It now denotes the correction for obtaining apparent time from the mean
time kept by clocks and chronometers, which are regulated by determinations of
mean time from observations of sidereal time.

Previous to 1925, mean solar time was reckoned from noon in astronomical
practice. The mean solar day beginning at noon, I2h after the midnight at the
beginning of the same civil date, was known as the astronomical day. Mean solar
time reckoned from mean noon on the meridian of Greenwich was designated
Greenwich Mean Time (G.M.T.); reckoned from mean noon on a local meridian,
Local Mean Time (L.M.T.). Beginning with the volumes for 1925, universal
time was introduced in the national ephemerides under various names, a .dis­
continuity of I2h being made in the arguments, so that December 31'5 in the
volumes for 1924 designated the same instant as January 1·0 in the volumes for
1925. In The Nautical Almanac the designation Greenwich Mean. Time (G.M.T.)
was still used for the new reckoning, together with Local Mean Time (L.M.T.)
where appropriate, whereas in The American Ephemeris the designation Greenwich
Civil Time (G.C.T.) was adopted, together with Local Civil Time (L.C.T.). This
confusion in terminology was finally removed by dropping both designations and
substituting Universal Time (U.T.); it is, however, now called Greenwich Mean
Time (G.M.T.) in the navigational publications of English-speaking countries.*
Care is necessary to avoid confusion; to distinguish the two reckonings that have
both been called Greenwich Mean Time, the designation Greenwich Mean Astro­
nomical Time (G.M.A.T.) should be used for the reckoning from noon. The
designation U.T. always refers to time reckoned from Greenwich midnight, even
for epochs before 1925.
*In astronavigation the argument G.M.T. implies U.T.I, but in general communications
G.M.T. usually means V.T.C. For astronomical purposes the term U.T. is preferable.
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L1T = E.T. - U.T.

Year L1T Year L1T Year L1T Year L1T Year L1T.
1621 +98 182°'5 +5'15 186°'5 +4'27 19°°'5 3'9° 194°'5 +24'20
1635 +38 182I 4.64 1861 2·68 19°1 2·87 1941 24'99
1639 -13 1822 5'36 1862 2'75 19°2 0'58 1942 24'97
1645 +13 1823 3'49 1863 2·67 19°3 + °'71 1943 25'72
1653 -10 1824 3'27 1864 1'94 19°4 + 1·80 1944 26'21

1662 - 5 1825'5 +2'45 1865'5 +1'39 19°5'5 + 3'°8 1945'5 +26'37
1826 4'°3 1866 1,66 1906 4·63 1946 26·89
1827 1'76 1867 0·88 1907 5,86 1947 27'68
1828 3'3° 1868 +°'33 1908 7'21 1948 28'13
1829 1'00 1869 -0'17 1909 8'58 1949 28'94

1681 -13'5 183°'5 +2'42 187°'5 -1,88 1910'5 + 1°'5° 195°'5 +29'42
1710 12'0 1831 °'94 1871 3'43 1911 12'10 195 1 29,66
1727 7.6 1832 2'3 1 1872 4'°5 1912 12'49 1952 3°'29
1738 2'9 1833 +2'27 1873 5'77 1913 14'41 1953 3°'96
1747 °'4 1834 -0'22 1874 7'°6 1914 15'59 1954 31'09

1835'5 +°'°3 1875'5 -7'36 1915'S + 15'81 1955'S +3 1'59
1836 -0'°5 1876 7,67 1916 17'52 . 1956 31'52
1837 -0'06 1877 7,64 1917 19'°1 1957 31'92
1838 -0'57 1878 7'93 1918 18'39 1958 32'45
1839 +°'°3 1879 7.82 1919 19'55 1959 32'91

176°'9 + 2'1 184°'5 -0'47 188°'5 -8'35 192°'5 +2°'36 196°'5 +33'39
1774'1 6,6 1841 +°'98 1881 7'91 1921 21 '01 1961 33·80
1785'1 8'3 1842 -0·86 1882 8'°3 1922 21,81 1962 34'23
1792,6 7-4 1843 +2-45 1883 9'14 1923 21'76 1963 34'73
1801,8 + 5'7 1844 +0'22 1884 8'18 1924 22'35 1964 35-40

1811 '9 + 4'7 1845'5 +°'37 1885'5 -7.88 1925'5 +22·68 1965'5 + 36'14
1846 2'79 1886 7·62 1926 22'94 1966 36.99
1847 1'20 1887 7'17 1927 22'93 1967 37'87
1848 3'52 1888 8'14 1928 22,69 1968 38-75
1849 1'17 1889 7'59 1929 22'94 1969 39'7°

185°'5 +2,67 189°'5 -7'17 193°'5 +23'20 197°-5 +4°-7°
1851 3'°6 1891 7'94 1931 23'3 1 1971 41,68
1852 2·66 1892 8-23 1932 23,63 1972 42·82
1853 2'97 1893 7·88 1933 23-47
1854 3'28 1894 7.68 1934 23.68

1855'S +3'3 1 1895'5 -6'94 1935'S +23,62
1856 3'33 1896 6·89 1936 23'53
1857 3'23 1897 7'1 ! 1937 23'59
1858 3.60 1898 5,87 1938 23'99
1859'S +3'5 2 1899'5 -5'°4 1939'5 +23,80

For the years 1621 to 1948'5 the values of L1T are the unsmoothed values given by
Brouwer in A.J., 57. 125-146, 1952 under the heading L1t in Table VIII; Brouwer also
gives smoothed values and certain derived data, For 1949'5 to 1955'5 the values have
been derived at the U.S. Naval Observatory, generally from a straight mean of the meridian
and occultation results. From 1956'5 onwards the values have been derived from an atomic
time scale that has been fitted to the observed values of ephemeris time from lunar
observations. See page vii of the current Ephemeris for later values,

See also note on page 523.

- --------------------~-- ------------------ ---
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Figure 3.2. (a) General trend of Ll T, 1660-1972. (b) Excess length of day
The above figure is reproduced from the communication by L. V. Morrison on "The

rotation of the Earth AD 1663-1972 and the constancy of G" in Nature, 241, 519, 1973.
The upper graph (a) shows annual mean value:-- of Ll T deduced by comparing lunar occulta­
tion observations with a lunar ephemeris in which the correction

-0"'08 + 1"'4 (T - 0·63) - 10" (T - 0·63)2

has been applied to the expression for the mean longitude used in calculating the lunar
ephemerides in the A.E. The correction is such that the time-scale (denoted by ET*) of the
amended ephemeris corresponds as closely as possible to the international atomic time scale
over the period 1955-1972. The three solid curves correspond to constant rates of increase
in the length of the day. The lower graph (b) shows the excess length (in milliseconds) of
the mean solar day compared with an ephemeris day. The dashed line shows the average
rate of increase in the length of the day over the period in milliseconds per century.
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Systems of mean time. A measurement of time expressly based on an average
of apparent solar time is essentially dependent upon the particular theory of the
Sun that is adopted for defining the measure. Mean solar time, derived from
either the equation of time or the sidereal time, depends upon the expression for
the right ascension of the fictitious mean sun, and when derived from the observed
sidereal time it depends further upon the adopted right ascensions of the stars.
The right ascension system of the stars is necessarily revised from time to time,
and every revision of the star system introduces a systematic difference in the
numerical measure of time obtained from observation; this is unavoidable, and
represents essentially an improvement in the accuracy of time determinations.
Of a different nature is the practice, that has been generally followed in the past,
of revising the right ascension of the fictitious mean sun whenever the adopted
tables of the Sun have been superseded by improved tables, in order to make it
conform as nearly as possible to the mean longitude of the Sun; the adoption of a
different expression to define the mean sun defines a different measure of time.
This traditional practice is not necessary. In order to obtain a satisfactory
formal measure of time, it is not essential that the right ascension of the fictitious
mean sun be adjusted to as close an agreement as possible with the mean longitude
of the Sun; the conditions imposed on it preclude rigorous agreement, and no
practical advantage is gained by revising the system of time measurement to conform
more closely to the actual mean sun whenever an improved theory of the Sun is
constructed, especially in view of the departures now known to occur because of
variations in the rotation of the Earth.

The standard of time, like the standard system of fundamental astronomical
constants, could with advantage be retained without change for at l,,:ast very long
periods, if not indefinitely; this has been advocated in the past by Sir John Herschel,
Newcomb, and others. In the reduction and discussion of astronomical obser­
vations, the recorded times must be reduced to the same basis. The diversity of
the tables and practices, and the differences in the details of the procedures for
deriving time, during the long period covered by systematic observations, have
often caused confusion and error.

In highly precise determinations of time, account must also be taken of the
particular constants and formulae adopted for calculating the ephemerides of the
stars, especially the nutation. When mean time was first introduced in the national
ephemerides, clocks were not sufficiently perfected for the theoretical distinction
between apparent sidereal time and mean sidereal time to be of any practical
importance; it was therefore disregarded, and the very imperfect expressions
then in use for the nutation were of no consequence for the purpose of time
determination. The Riefler clock, introduced about 1890, was the earliest time­
piece with an accuracy comparable with determinations of time from observation.
As the accuracy of clocks increased, the explicit recognition of mean sidereal
time as distinguished from apparent sidereal time became necessary, just as
mean solar time had become necessary at an earlier stage in the development of
clocks. The term uniform sidereal time was often used at first; but this measure
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is not strictly uniform, and the same terminology as used for solar time is
preferable.

Mter the introduction of the Shortt free-pendulum clock in 1921, the removal
of the short-period terms of nutation from the observed clock corrections was
necessary in order to check the clock satisfactorily; these terms were included in
the ephemerides of the sidereal time of Oh, beginning with 1933.

The Bureau International de I'Heure, situated at the Paris Observatory, was
founded to cbordinate the practices followed by the national time services in
observations and calculations for the determination of time, and to establish precise
international standards; it came under the auspices of the International Astro­
nomical Union in 1920.

Ephemeris time. The possibility of variations in the rate of rotation of the
Earth from tidal friction and other causes was realized on a speculative basis by
several writers as early as the eighteenth century; but the first actual evidence that
the rotation may not be uniform was the continued failure of successive theories
of the motion of the Moon to represent the observed motion. In ephemerides
calculated from gravitational theories, the tabular times are the values of a uniform
measure of time and do not denote the same instants as the numerically equal
values of mean solar time measured by the variable rotation of the Earth. Con­
sequently, at the instant of any observed mean solar time, the actual position of a
celestial body differs from the ephemeris position for the numerically same tabular
time. The observed apparent motions of the Sun, Moon, and planets are a means
of measuring long intervals of time on the uniform scale defined by the laws of
motion. From an analysis of the discrepancies between observations recorded in
mean solar time and the theoretical motions in uniform time, the accumulated
difference between the measures of time at the instant of observation may be found,
and the variations in the rotation of the Earth determined. The discrepancies
are most evident for the Moon, due to the rapidity of its motion and the accuracy
with which the inequalities can be observed because of its proximity to the Earth.

The first variation to be recognized was a secular retardation of the' rate of
rotation. Its existence was established about the middle of the nineteenth century,
when Adams and Delaunay showed that the amount of the secular acceleration of
the mean motion of the Moon produced by gravitational perturbations is only
about half the actual acceleration which had been determined by Dunthorne,
Mayer, and Lalande in the eighteenth century from the accumulated records of
observations during the preceding 2,500 years. At about the same time, Ferrel
and Delaunay showed from dynamical principles that, as Mayer had realized, the
tides would exert a retarding action on the rotation of the Earth, accompanied by a
variation of the orbital velocity of the Moon in accordance with the conservation of
momentum. The excess of the observed secular acceleration over the gravitational
value is therefore ascribed to the tidal retardation of the rotation.

In addition to the secular departure of the Moon from theory, further variations
that are irregular in character occur. In the construction of lunar tables, the
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principal part of this additional departure has been represented by a long-period
empirical term in the longitude, based on past observations; but the different
empirical terms adopted by successive investigators have invariably failed to
represent subsequent observations. Moreover, further small irregular fluctuations
of shorter duration still remained; Newcomb suggested that these may be due to
irregular variations in the rate of rotation of the Earth, but at that time conclusive
evidence could not be obtained.

Not until after Brown's lunar theory had become available for comparison
with observation could confidence be felt that the gravitational theory of the motion
of the Moon was sufficiently free from imperfections to enable the discrepancies
with observation to be ascribed with assurance to variations in the rotation of the
Earth. Furthermore, any apparent fluctuations in the motion of the Moon that
are due to variations of the rotation must be accompanied by exactly similar
fluctuations in the motions of the other bodies in the solar system, proportional in
magnitude to the respective mean motions; these deviations are difficult to detect
with certainty, but their existence was finally established by the virtually conclusive
investigation by Spencer Jones in 1939 (M.N.R.A.S., 99, 541, 1939) and later
confirmation of his results by others.

Meanwhile, the accuracy of crystal-controlled clocks was becoming comparable
with that of the rotation of the Earth. By intercomparisons of the observed rates of
the clocks of different national time services, Stoyko in 1937 detected a periodic
seasonal variation in the rate of rotation. It has since been confirmed, and
accorQanLresults -obtained at different observatories, as the clocks and the astro­
nomical observations have been further improved. Even the minute variations
due to Earth tides can now be detected.

Because of the secular, irregular, and periodic variations in the rate of rotation
of the Earth and in the measure of mean solar time determined by this rotation, a
proposal to establish a more uniform fundamental standard of time was referred to
the International Astronomical Union in 1948 by the Comite International des
Poids et Mesures, and was considered at the Conference on the Fundamental
Constants of Astronomy held at Paris in 1950. At this Conference, the measure
defined by Newcomb's Tables of the Sun was proposed by Clemence. The
correction Ll T that reduces universal time to the measure defined by Newcomb's
tables, and the correction to the mean longitude of the Moon that enables this
measure to be determined from observations of the Moon, had previously been
derived by Clemence (A.J., 53, 169, 1948) from the results found by Spencer Jones
for the departures of the Sun and Moon from their tabular positions. The
Conference adopted a resolution recommending that this measure of time be
adopted, be expressed in units of the sidereal year at 19°0'0, and be designated by
the name Ephemeris Time which had been suggested by Brouwer. This recom­
mendation was adopted in 1952 by the International Astronomical Union at its
General Assembly in Rome.

Further consideration indicated that the tropical year would be preferable as
the unit, since it is directly accessible to observation and somewhat more funda-
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mental; the sidereal year cannot be determined without a knowledge of the value
of the precession. Accordingly, the Comite International des Poids et Mesures at
its session in September, 1954, in Paris, proposed to the Tenth General Conference
on Weights and Measures which met in Paris during the following month that the
fundamental unit of time be the second, redefined as 1/315 56925'975 of the length
of the tropical year for 1900'0. The Conference authorized the Comite to adopt
a unit after formal action on the definition had been taken by the International
Astronomical Union. The Union, at its General Assembly in Dublin in September,
1955, approved the definition proposed by the Comite. However, the tropical
year is understood to be tbe mean tropical year defined by Newcomb's expression
for the geometric mean longitude of the Sun; the value of the second required for
exact agreement with Newcomb's tables is 1/315 56925'97474 of the tropical year.
Consequently, the Comite at its session in Paris in October, 1956, under the
authority given by the Tenth General Conference, adopted in place of the value
formerly recommended the slightly more precise value 1/315 56925'9747 of the
tropical year at 1900 January 0, ph E.T. At this session, a Comite Consultatif
pour la Definition de la Seconde was established, to coordinate the work of
physicists on atomic standards and of astronomers on the astronomical standard
of ephemeris time.

The fundamental epoch of ephemeris time was defined in 1958 by the Inter­
national Astronomical Union at its General Assembly in Moscow (see sub-section
B.r.).
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Additional Note (1973)
As a result of the rapid development of atomic time standards, the unit and scale of

time for general use are no longer based on the ephemeris second. The SI second is now
defined so that the frequency corresponding to a certain resonance of the c:lesium atom is
9 192631 770 cycles per second. This numerical value is such that the SI second is equal
to the observationally determined value of the ephemeris second over the period 1956 to
1965. The scale of international atomic time (LA.T.) is such that ephemeris time, as
defined by the current lunar ephemeris, is equal to LA.T. + 32"'2 with an accuracy of about
0"'1.



4. FUNDAMENTAL EPHEMERIDES

A. INTRODUCTION

The first part of the Ephemeris (pages 10 to 235 in 1960) is devoted to the
fundamental ephemerides of the Sun, Moon, and planets, which are designed to
provide a rigorous reference system to which observations can be referred (see
section ID). The purpose of this section is primarily to specify in precise detail
the bases of these ephemerides; and this is done for the Sun, Moon, and planets
in sub-sections B, C, and D respectively. Sub-section E contains brief references
to the ephemerides of other members of the solar system, for which no data are
given in the Ephemeris.

Sub-sections F and G deal with the more practical uses of the ephemerides:
the formation of transit ephemerides to facilitate observation and the reduction
of the observations, and the comparison of observations with theory.

The tabular argument for the ephemerides is expressed in ephemeris time;
see section 3 for the definition of ephemeris time and a discussion on its relation
to universal time. In the astronomical system of measures, the usual unit is the
ephemeris day of 86400 ephemeris seconds. The fundamental unit of mass is
the mass of the Sun. The unit of length is the astronomical unit (a.u.), defined as
the unit of distance in terms of which, in Kepler's Third Law n2 a3 = k2 (I + m),
the semi-major axis (a) of an elliptic orbit must be expressed in order that the
Gaussian constant k may be exactly 0'01720 20989 5, when the unit of time is the
ephemeris day (Trans. I.A. V., 6, 20, 336, 357, 1939); in astronomical units, the
mean distance of the Earth from the Sun, calculated by Kepler's law from the
observed sidereal mean motion n and adopted mass m, IS 1'00000003.

A full discussion of the system of astronomical constants is given in section 6;
no change has been made in the conventionally adopted value of any fundamental
constant in recent years. *

The notation used in this section is summarized in section I G. In particular
the symbol T is used to denote time measured from the fundamental epoch of
1900 January 0 at I2h E.T. in Julian centuries of 36525 days each of 86400
ephemeris seconds.

Except where otherwise stated, the tabular positions are apparent positions,
that is the positions in which the Sun, Moon, and planets would actually be seen
from the centre of the Earth, displaced by planetary aberration (section 2D) and

96

*New values were introduced into the ephemerides for 1968 onwards. See pages 497 to
521 and the Explanations of current years of the A.E.
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referred to the coordinate system determined by the instantaneous equator,
ecliptic, and equinox. The value used for the light-time at unit distance is *
4985'38 corresponding to the adopted constant of aberration. For comparison
with photographic observations, astrometric positions are given for Pluto and the
minor planets, for the latter in addition to the apparent positions. Full details of
the methods to be used for the comparison of observations with these ephemerides
are given in sub-section G. Ephemerides that are intended for theoretical
purposes, where a fixed reference system is needed, are referred to the mean equinox
at a convenient epoch, usually 1950'0. The methods of passing from one reference
system to another, and in fact from one coordinate system to another, are dealt
with in section 2.

In order to standardize the dates for which osculating elements of planets,
minor planets, and comets are given, the International Astronomical Union (Trans.
I.A.U., 5, 315, 1936) recommended fixed epochs of osculation at the midnights
following integral Julian dates that are exactly divisible by 400. This followed
an earlier resolution (Trans. I.A.U., 3, 226, 301, 1929) that the dates used in
giving the osculation epochs of elements of comets and minor planets should be the
midnight following an integral Julian date that is exactly divisible by 40. More
recently the Union (Trans. I.A.V., 7, 65, 1950) recommended the use of standard
Io-day dates (midnights following integral Julian dates exactly divisible by 10)
for ephemerides of minor planets and comets, thus superseding an earlier recom­
mendation to use 8- (4- or 2-) day dates. The tabular dates for which elements
are given in the Ephemeris conform to this system of 4°0-, (80-), 40-, 1o-day dates.
The 40o-day dates from 196o onwards are:

2437200'5 1960 Sept. 23 2440000'5 1968 May 24 2442800'5 1976 Jan. 23
2437600'5 1961 Oct. 28 2440400'5 1969 June 28 2443200'5 1977 Feb. 26
243 8000' 5 1962 Dec. 2 244 0800' 5 1970 Aug. 2 244 3600' 5 1978 Apr. 2
2438400'5 1964 Jan. 6 2441200'5 1971 Sept. 6 2444000'5 1979 May 7
2438800'5 1965 Feb. 9 244 1600'5 1972 Oct. 10 2444400'5 1980 June 10
2439200'5 1966 Mar. 16 2442000'5 1973 Nov. 14 2444800'5 1981 July IS
2439600'5 1967 Apr. 20 2442400'5 1974 Dec. 19 2445200'5 1982 Aug. 19

The tabular quantities at times other than those for which they are tabulated
may be obtained by interpolation (see section 16); for this purpose first differences
are included in many of the ephemerides.

With the exception of the E.T. of ephemeris transit, none of the ephemerides
considered in this section involves hour angles or is concerned with the rotation of
the Earth. For the purpose of constructing almanacs for navigational or surveying
purposes, the ephemerides in terms of E.T. may be converted to ephemerides in
terms of U.T. by interpolating the tabular values to a time Ll T later than those for
which they are tabulated. An ephemeris for Oh U.T. can be obtained by inter­
polating the tabulated ephemeris to an E.T. of Oh + LlT. If (as is almost always
the case) second differences are negligible, the interpolated values are obtained by
adding algebraically to each tabular value the correction (LlT/h) x the first
difference, where h is the tabular interval in the same units as Ll T. The derivation
of U.T. of Greenwich transit from the tabulated E.T. of ephemeris transit is
discussed in sub-section F.

*499"012 from 1968.
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B. THE SUN *

The ephemerides of the Sun are derived from the geometric longitude referred
to the mean equinox of date, the latitude referred to the ecliptic of date, the log­
arithm of the radius vector, and the mean obliquity of date, that are taken from
Newcomb's Tables of the Sun (A.P.A.E., 6, part I, 1895), afterwards referred to as
" the Tables". The mean orbitalt elements and constants on which these tables
are based are as follows, where the time interval from the epoch is denoted by T
when measured in Julian centuries of 36525 ephemeris days, by D = 3·6525T
when measured in units of 10000 ephemeris days, and by d = 10000D = 36525 T
when measured in ephemeris days.

Epoch 1900 January 0'5 E.T. = J.D. 241 5020'0

Geometric mean longitude, mean equinox of date
L = 279° 41' 48"'04 + 1296 02768"'13T + 1"·089T2

= 279°.696678 + 00'9856473354d + 0°'00002 267D2
Mean longitude of perigee, mean equinox of date

r = 281° 13' 15"'04 + 6189",03T + 1".63T2 + 0"'012T3
= 281°'220844 + 0°'00004 70684d + 0°'00003 39D2 + 00,00000007D3

Mean anomaly, L - r
g = 358° 28' 33"'00 + 1295 96579"'loT - 0"'54T2 - 0"'012T3

= 358°'47583 3 + 0°'98560 02670d - 0°'00001 12D2 - 0°'00000 oo7D3

Eccentricity
e = 0'01675 104 - 0'00004 180T - 0'00000 0126T2

= 0'01675 104 - 0'00001 1444D - 0,0000000094D2

Mean obliquity of the ecliptic
€ = 23° 27' 08"'26 - 46".845T - 0"'0059T2 + 0",0018IT3

= 23°'452294 - 0°'01301 25T - 0°'00000 164T2 + 0°'00000 0503T3
= 23°'452294 - 0°'00356 26D - 0°'00000 0123D2 + 0°'00000 00103D3

Annual rate of rotation of the ecliptic
7T = 0"'4711 - 0",0007T = 0°'00013 086 - 0°'00000 0053D

Longitude of axis of rotation
n = 173° 57"06 + 54"77T = 173°'9510 + 00'2499D

The expression for the obliquity of the ecliptic was originally given by
Newcomb with T measured in tropical centuries (see section 2B), but was later
given without change in the coefficients in terms of Julian centuries; the difference
is so small that either form may be used (and is so used) according to whether
values are required for the beginning of a Besselian year, or for the epoch of date.
The latter (T in Julian centuries) should be regarded as the definitive one if
distinction is ever required.

The mean distance a of the Sun (strictly, the constant part of the radius
vector), as adopted by Newcomb, is derived from his expressions for the mean
motion with the addition of corrections for the action of the planets. Newcomb's
value of log a = 0'00000010, from which a = 1.00000023, thus differing from
that derived simply from Kepler's law. The expressions for the Sun's mean
motion lead also to the following lengths of the principal years.
*Formulae for the corrections to reduce the tabulated values to the IAU system of astrono­
mical constants are given in the A.E. for 1968 onwards.
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Tropical year (equinox to equinox)
36Sd'24219878 - Od·OOOOO 614T = 36Sd OSh 48m 46"'0 - 08'S30T

Sidereal year (fixed star to fixed star)
36Sd'2S636 042 + Od·ooooO olIT = 36Sd 06h 09m 098'5 + 08'01T

Anomalistic year (perigee to perigee)
36Sd'2S964 134 + Od·OOOOO 304T = 36Sd 06h 13m 538,o + 08'26T

Eclipse year (Moon's node to Moon's node)
346d·62003 I + od,00003 2T = 346d 14h S2m 508'7 + 28·8T

99

The values of L andg for every tenth day, the values of rand e atthe beginning
of the calendar year, and of 7T, II, and the trigonometric functions or € for the
beginning of the Besselian year, are tabulated in A.E., page 50.* They are derived
simply by substituting the appropriate value of T in the expressions quoted above.
The mean obliquity is not tabulated, though it is required for the calculation of the
true obliquity.

o

2437°00 '5
241 5°20'0

2 1980'5
0.6017933
o g

358'47583
+63'98667

5

Constant term
term in d
term in T2 or D2
term in T3 or D3

Sum

Example 4.1. Sun's mean elements and precessional constants

1960 March 7 at Oh E.T.

Julian date at Oh on 1960 March 7 (A.E., p. 2)
Julian date at epoch of the Tables

I Interval in days, d
Fraction of Julian century, T = d/36S2S

o L
279·69668

+65'°2126
+ II

Epoch 196°'°

For the mean obliquity of the ecliptic €, and the precessional constants, T in section
zB is measured in tropical centuries and its value for 196o,0 is 0·60; for example:

€ = 23° 27' 08"'26 - 28"'107 - 0""002 + 0"'000 = 23° 26' 40"'15
P = 50"'25 64 + 0""°133 = 5°"'2697

In the Ephemeris the geocentric spherical coordinates are presented' on facing
pages (18 to 33):t ecliptic coordinates on the left-hand pages and equatorial
coordinates on the right-hand pages. The tabulated quantities are described
below. No illustration is given of the derivation of the geocentric ecliptic coordin­
ates, since detailed precepts and illustrations are given in the Tables. These
precepts are not followed precisely, though no significant departure is made;
errors and misprints in the Tables have naturally been corrected before use; the
entries in some tables have been replaced by direct calculation of the terms in the
formulae from which they were constructed; and, for computing convenience,
modifications have been introduced in the intervals of calculation and methods of
subtabulation. The resulting coordinates, which are calculated to at least one
more decimal than is printed, are smoother than those that would have been
derived by the rigid application of Newcomb's precepts but differ from them by
negligible amounts.
*See pages II and 216 in A.E. 1972-3, pages 9 and 216 in A.E. 1974 onwards.

tSee pages 20 to 35 in A.E. 1972 onwards.
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The longitude is the geometric longitude referred to the mean equinox ofthe
beginning of the year; it is derived from the quantity obtained from the Tables by
subtracting the precession in longitude, which is the precessional displacement of
the equinox along the ecliptic since the beginning of the Besselian year. It may be
reduced to the (standard) mean equinox of 1950'0 by applying the reduction,
which is constant during anyone year, given in the footnote.

The apparent longitude is not tabulated directly, since it is less likely to be
used; it can be obtained by applying to the tabulated longitude the reduction to
apparent longitude, given in the adjacent column. This reduction is the sum of:
the precession in longitude from the beginning of the year to date = por; the nu­
tation in longitude, including short-period terms, = LJt/;; and the correction for
aberration, taken as -20"'47/R, where R is the Sun's radius vector. The
precession in longitude and the nutation in longitude are tabulated to 0"'001, a
precision considerably in excess of that possible for the Sun's longitude. The
correction for aberration is not tabulated: the aberration is the change of the
geometric longitude in the time taken by light to travel the distance R from the
Sun to the Earth; since, by the laws of celestial mechanics, the motion in longitude
must be proportional to I/R2, the correction is proportional to I/R. The constant
of proportionality is by definition the constant of aberration, for which the value of
20" '47 is adopted.

Example 4.2. Longitude of the Sun

1960 March 7 at 011 E.T.

+ 9':036
- 0'744
-20·625

-12'333

Beginning of Besselian year 1960'0 is 1960 January I d '345
Interval in days to Oil on 1960 March 7
Fraction (T) of the tropical year
Precession in longitude on 1960 March 7, PT
Nutation in longitude, LJ<f; (from series)
Aberration (R = 0'9924 841)
Reduction to apparent longitude
Longitude referred to mean equinox of date (Tables)
Precession in longitude
Longitude referred to mean equinox of 1960'0

= J.D. 243 6934.845
65 ·655

0'179757

o .,

346 26 23'47
9'04

The latitude is tabulated for the ecliptics of date, of the beginning of the
Besselian year, and of 1950'0. The latitude for the mean ecliptic of date is given
directly by the Tables; and, since the latitude is unaffected by nutation and the
correction for aberration is negligible, this may be regarded as the apparent latitude.
It is reduced to the ecliptic of the beginning of the year by applying the correction
-0" '471 or sin (An + 50. 5), and to the ecliptic of 1950'0 by the further addition of
b sin (An + c), where band c (for 1950'0) are the values tabulated in A.E., page 50,*
and An is the tabulated longitude referred to the equinox of the beginning of the
year. Since there are only a small number of terms which have to be combined to
form the latitude, it is tabulated to the same precision, 0"'01, as the individual
contributions in the Tables.
*See page II in A.E. 1972-3, and page 9 in A.E. 1974 onwards.

--------- ---- -,-
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Example 4.3. Latitudes of the Sun

1960 March '7 at 011 E.T.

Latitude, ecliptic of date (Tables)
-0"'471 T sin (346°'5 + 5°'5) = -"'471 x '18 x -'14
Latitude, ecliptic of 1960'0
+ b sin (346° 26' + c); b = -4"'71, C = 5° 29' (A.E., p. 50)
Latitude, ecliptic of 1950'0

-0':65
+ '01
-0·64
+ ·66
+0'02

101

9'99672355
0'9924841

= 8"·87
= 16' 08"'46

The horizontal parallax is the angle subtended at the Sun by the equatorial
radius of the Earth; the tabulated values are calculated by dividing the adopted
constant, 8".80, by the radius vector*. The latter, given on the right-hand pages,
is obtained directly from the values of its logarithm from the Tables; it is the actual
geometric distance from the centre of the Sun to that of the Earth, measured in
astronomical units, at the time stated; no correction for aberration is applied.

The semi-diameter is the apparent value as seen from the centre of the Earth,
and is obtained by dividing an adopted value (16' 0I" '18) at unit distance by the
radius vector. The adopted semi-diameter at unit distance is an enhanced value,
which includes an allowance for irradiation, although this should strictly be
independent of the distance; the variation of the correction from its mean value
can be about 0" '02, i.e. 0·0 I 7 of the mean value. The adopted value is that used
in The Nautical Almanac for years immediately preceding 1960 and differs from
that (16' 01"· So) used before 1960 in The American Ephemeris because of a different
allowance for irradiation. A smaller value (IS' 59" .63) is used in the calculation
of eclipses (see section 9A). The values adopted for the semi-diameter at unit
distance are not necessarily the best possible; but they are sufficiently close to the
true values for any variation to be treated, in the analysis of observations, as a
small quantity.

Example 4+ Radius vector, H.P., and S.D. of the Sun

1960 March 7 at 011 E.T.

Log radius vector (Tables)
Radius vector (R)
Horizontal parallax = 8"·80/R
Semi-diameter = (16' 01"'18)/R

The Sun's apparent right ascension and declination are referred to the true
equinox and equator of date, and are corrected for aberration. In principle, they
are derived from the corresponding apparent longitude, latitude, and obliquity of
the ecliptic by the standard conversion formulae; in practice, however, a different
procedure is followed for reasons given in detail below. In the direct conversion
the true obliquity of the ecliptic, as tabulated on the left-hand pages, is used; it is
obtained by applying the nutation in obliquity (..::1 E) to the mean obliquity
(EM)' Two minor modifications may be introduced: the first is due to the
small range in the values of the obliquity of the ecliptic which enables its
trigonometric functions to be expressed as linear series of the obliquity itself, or
of its difference from some adopted mean; the second arises from the small range
*The name "True Distance" is used in the A.E. for 1972 onwards.
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of latitude which enables the conversion formulae to be written m the form:

cos a cos S = X /R = cos A
sin a cos S = Y/R = sin Acos € - 19'29 {3" x 10-7

sin S = Z/R = sin Asin € + 44'48 {3" x 10-7

where {3" is the number of seconds of arc in the latitude and where all coordinates,
and the obliquity of the ecliptic, are referred to the same equinox, equator, and
ecliptic. The approximation is adequate even for 50 years from the adopted
epoch when {3" may reach 24.

Example 4.5. Equatorial coordinates of the Sun-direct method

1960 March 7 at Oh E.T.

Mean obliquity (T = 0·60 + 0'00179), EM 230 26' 40';067
Nutation in obliquity, LIE -8.836
True obliquity of the ecliptic, lOT = lOA 23 26 3 I '23 I

Apparent longitude, AA = 3460 26' 14"'43 - 12"'33 = 3460 26' 02"'10
sin AA -0'2345 6671 sin lOT +0'3978 2067 fJ::' -0·65
cos AA +0'9721 0002 cos lOT +0'91746319

X AIR +0'9721 0002 tan aA -0'2213 8161 aA = 23 h lOrn 048'1°3
YAIR -0'21520507
ZAIR -0'0933 1838 sin 8A 8A = - 50 21' 16"'304-
Sum of squares 1'0 - I X 10-"

The quadrant in which a lies is determined by the signs of XAIR and YAIR, since cos 8...
is positive. The small difference from the tabulated value of aA is partly due to the
approximation used in calculating the aberration.

In practice the above conversion is done with geometric values of the coord­
inates in three steps: firstly, from AM' {3M to X M, YM' ZM' referred to the mean
equinox, ecliptic, and equator of date; then to X T , YT , ZT' referred to the true equinox
and equator; and thirdly to aT' ST' referred to the true equinox. This is done to
provide unpublished geometric values of the Sun's equatorial rectangular coor­
dinates X M, YM' ZM referred to the mean equinox of date. These are used as a
first step towards the geometric values of the equatorial rectangular coordinates
referred to the mean equinoxes and equators of 1950'0 and of the beginning of the
year, as published, and to the true equinox and equator of date, as required in the
systematic conversion of heliocentric to geocentric coordinates for the planets.
For the sole purpose of calculating apparent right ascension and declination it
would be much easier to start from the apparent longitude and latitude, as above,
or even from the geometric longitude and latitude referred to the true equinox and
ecliptic. The method actually used entails an additional step in the conversion
and requires that the right ascension and declination must each subsequently be
corrected for planetary aberration; the advantages in being able to use a standard
systematic procedure for the geometric ephemerides of both Sun and planets
outweigh these disadvantages.

The corrections to equatorial rectangular coordinates to allow for nutation,
that is to convert from mean to true equinox and equator, are given in section
2C; in the case of the Sun they may be reduced to:

- - -- - -- - -- - - . - - - -



ZT - ZlII +0'00000776
ZT -0'0925 7863

3460 26' 23"'47
23 26 40 '067

f3" -0·65
R 0'9924841

ZM -0'09258639
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16 '34

23 h lOrn 058'376
- I '272

23 10 04 '104

-50 21' 08"'33
-8 ·01
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10' (XT - XM) - 52 .84 LJifi" YM

10' (YT - YM ) = +44'48 LJifi" XM - 21'03 LJe" YM
10' (ZT - ZM) = + 19'29 LJifi" X M + 48'48 LJe" YM

where Llifi" and LJe" are the number of seconds of arc in the nutation in longitude
and obliquity respectively.

Example 4.6. Equatorial coordinates of the Sun-indirect method
1960 March 7 at Oh E.T.

Longitude, mean equinox of date, AM
Obliquity, mean equinox of date, EM

sin AM --0'23446600 sin eM +0'3978 5998
cos AM +0'9721 2432 cos EM +0'91744615

XM +0'9648 1793 YM -0'21349194
(XJ + YJ + ZJ - R2 = 0 x 10-8)

LJifi = -0"'744 LJE = -8".836
XT - Xlii -0'00000084 YT - YlII -0'00000716

XT +0'9648 1709 YT -0'21 349910
(Xi + Yi + Zi - R2 = 0 x 10-8

)

tan aT = YT/XT -0'2212 8453 aT (geometric)
Correction for l'berration, -0'0028 841 x R x 4448 '4
Apparent right ascension, UA

sin DT = ZT/R -0'0932 7971 OT (geometric)
Correction for aberration, -0'0028 841 x R x +2797"
Apparent declination, 0A - 5 2 I

The above corrections for aberration are calculated from the formula:
-0'0057 683 x distance x daily motion = -0'0028 841 x R x double first difference
since the effects of third differences are negligible.

Although the precision of the initial data does not justify the retention of eight decimals,
they are used to illustrate the consistency of different methods of calculation.

The equation of time, which is tabulated in the sense apparent minus mean,
is the excess of the right ascension of the fictitious mean sun over that of the true
Sun. The tabular value at oh E.T. is obtained by subtracting the apparent right
ascension of the Sun at Oh E.T. from the apparent sidereal time of Oh D.T.
increased by I2h, which is the same numerically as the right ascension of the
fictitious mean sun at Oh E.T. The values for 1960 January 0 and January 1 at
Oh E.T. are therefore numerically the same as the tabular values for 1959 December
31 and December 32 at Oh D.T. given in the ephemerides before the introduction
of ephemeris time.

Example 4.7. Equation of time
1960 March 7 at Oh E.T.

I2h + apparent sidereal time at Oh U.T.
Apparent right ascension of the Sun at Oh E.T.
Equation of time at Oh E.T. (apparent - mean)

22h 58m 508'925
23 10 04 '104

- II 13 '179

As explained in sub-section 3B.4 the equation of time (there termed, for
purposes of explanation, the equation of ephemeris time) as tabulated in the
Ephemeris differs from the excess of the Greenwich hour angle of the Sun over
lZh + V.T., or from the excess of apparent solar time (considered as I2h + the
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hour angle of the Sun) over mean solar time. By reference to the diagram (figure
3.1) there given, it is seen that the difference is -0'002738 LlT; if the equation of
time is denoted by E then, at any instant:

G.H.A. Sun = 12h + V.T. + E - 0'002738 Ll T
Since E is tabulated for Oh E.T. a knowledge of Ll T is strictly required before E
can be interpolated to a given V.T.; but the variation of E is so small that a very
approximate value of Ll T will suffice. From this relation it follows that:

at Greenwich mean noon, I2h V.T., the hour angle of the Sun is:

E(I2 h ) - 0'002738 LlT
at Greenwich transit of the Sun, the V.T. is:

I2h - {E(I2 h - E) - 0'002738 LlT}

where the time in parentheses 0 after E indicates the V.T. to which it must be
interpolated; the variation of E in time 0'002738 Ll T can be ignored.

For practical use (for example, for navigation or surveying) the quantity
required is therefore E - 0'002738 Ll T tabulated in terms of V.T.; strictly this
can only be done when Ll T is known, but an approximate value of Ll T suffices.
The maximum daily difference of E is 308, so that the maximum errors arising
through an error of, say, 38 in the extrapolated value of Ll Tare: 08'001 in the
interpolation of E and os·008 through the correction 0.002738 Ll T. To navigational
accuracy, it suffices at the present time to subtract a mean value of oS. 10 from the
tabulated values.

From 1965 onwards the equation of time in the Ephemeris will be replaced
by the ephemeris time of ephemeris transit, as given for the Moon and planets.
Reference to section 3B.4 shows that:

at I2h E.T. the ephemeris hour angle of the Sun is E( I2h)

at ephemeris transit of the Sun the E.T. is I2h - E(I2 h - E)
where the time in parentheses 0 after E indicates the E.T. to which it must be
interpolated. Thus the tabulated quantity will be I2h - E interpolated to an E.T.
of I2h - E; it will actually be calculated in a way similar to that used for the Moon
and planets, namely by finding the E.T. at which the right ascension equals the
ephemeris sidereal time. The ephemeris sidereal time at Oh E.T. is the same
as apparent sidereal time at Oh V.T. The fraction of the day P is thus obtained
from the equation:

(right ascension - ephemeris sidereal time) at Oh E.T.
- P x { 24h - the following daily difference of (RA. - E.S.T.)}
-0'0625 (double second difference of RA.) = 0

The actual difference of the ephemeris sidereal time is used to allow for the
variation of the equation of the equinoxes. The equation is solved to give P
directly in hours, minutes, and seconds. Thus:

24h P = 24h Po + (Po + .Jz8po) 24h 8po - 0'0625 (double second difference of R.A.)
where

24h Po = (R.A. - E.S.T.) at Oh E.T.
24h 8po = following first daily difference of RA. - E.S.T.

- -_.- -- -------- ---- --------------- ------ -- -- ---- -- ----------- - ----
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Example 4.8. E. T. of ephemeris transit of the Sun
1960 March 7

The relevant quantities and their differences are:

R.A. Sun at Oh E.T. App. S.T. at Oh U.T. R.A. - S.T.
h m

7 23 10 04'104
2218'998

8 23 13 46'102

where App. S.T. at Oh U.T.

h m 8

10 58 5°'925

-0'390 II 02 47'481

= E.S.T. at Oh E.T. Then:

h m
12 II 13'179

- 148 '55 8
12 10 58.621

0'5°779
'00008
'5°77 1

h m
12 II 13'17924h Po = R.A. - S.T.

24hSpo = -148'558
(Po + t SPo) 24h Spo
Double second difference of R.A. -08.810
-0'0625 x -08.810 +°'°51
Sum = E.T. of ephemeris transit 12 II °5.839

The conversion to fractions of a day is conveniently done by means of table 17.5.

As from 1965 the term" equation of time" will be used exclusively for the
quantity E - °'°02738 ,1 T, which in figure 3.1 was termed " the equation of
universal time"; the equation of time will be defined as the correction to be
applied to I2b + V.T. to obtain G.H.A. Sun, or more generally the correction
to be applied to 12h + L.M.T. to obtain L.H.A. Sun. The concept of the
equation of ephemeris time (that is E) will no longer be used.

The geocentric equatorial rectangular coordinates of the Sun tabulated in
the Ephemeris are derived, as indicated above, from the longitude, latitude, radius
vector, and obliquity. The geometric values referred to the true equator and
equinox of date as fundamental plane and point of reference, as obtained in the
course of conversion to right ascension and declination, are not tabulated; instead
geometric values referred to the mean equator and equinox of (a) the beginning
of the year (A.E., pages 34-41) and (b) 1950'0 (A.E., pages 42-49) are given. *

These rectangular coordinates may be converted from one reference system'
to another by means of the formulae of sections 2B and 2C. Both precession
and nutation may be incorporated in the same conversion formulae, but, because
it is not possible to tabulate or subtabulate coordinates referred to the true equinox
at an interval of ten days, the conversion from mean to true equinox is always done,
as described above, as a separate calculation.

As applied to the Sun the formulae take the forms:
(a) from mean equinox and equator of date (XM , YM , ZM) to the beginning of the
year (XB, YB , ZB)

X B = X M + 2656'5 or YM x 10- 7

YB = YM - 2234'9 or X M x 10-7

ZB = ZM - 971'7 or X M x 10-7

where or is the fraction of the year. The approximations used may give rise to
maximum errors of 0·2 x 10-7 in X B and YB ; these are ignored in practice. Note
that (ZB - ZM) = °'4348 (YB - YM)·

*For A.E. 1972 onwards: the values for the nearest beginning of year are given on pages 36
to 43; the values for 1950'0 are given on pages 44 to 5 I.



106 EXPLANATORY SUPPLEMENT

(b) from mean equinox and equator of date (XM, YM, ZM) to 1950'0 (Xs, Ys, Zs)

X s = Xx X M + X y Y M + X. ZM
Ys = Y x X M + Y y Y M + Y. ZM
Zs = Zx X M + Zy YM + Z. ZM

where Xx, Y x, .... are functions of the precessional elements and can be calculated
from simple series for any date (see section 2B); they are systematically tabulated
at intervals of 1000 days in table 2.2.

Example 4.9. Conversion of equatorial rectangular coordinates of the Sun

1960 March 7 at Oh E.T.

Fraction of tropical year, T = 0'179757

. XM +0'9648 1793 YM -0'21349194 ZM -0'0925 8639
XB - XM - 1019 YB - YM 3876 ZB - ZM 1685

XB +0'9648 0774 YB -0'2135 3070 ZB -°'°926°324
For conversion from 1950'0 to the mean equinox of date (by direct calculation from

series in section 2B, rounded differently from some values in table 2.2):
X. +0'99999692 Y. -°'°0227519 Z. -0'0009 8914
X. +°'°0227519 Y. +0-99999741 Z. -0'00000113
X. +0'00098')14 Y. -0'00000113 Z. +0'99999951

With appropriate changes of formula to convert from date to 1950'0:
Xs +0'96423764 Ys -°'21568643 Zs -0'°9354°44

(Xg + Yg + Zg - R2 = - 1 X .0-8)

C. THE MOON*

Beginning with the volume for 1960, the lunar ephemeris is calculated directly
from Brown's theory instead of from his Tables of the Motion of the Moon (New
Haven, Yale University Press, 1919); but in order to obtain a strictly gravitational
ephemeris expressed in the same measure of time as defined by Newcomb's
Tables of the Sun, the orbital elements upon which Brown's tables are based have
been amended by removing the empirical term and by applying to the mean
longitude the correction:

-8"'72 - 26"'74 T - II"'22 T2

where T is measured in Julian centuries from 1900 January 0'5 E.T. A description
of the method of calculating the ephemeris, and a comparison of the positions
with tabular positions from Brown's tables, are included in the Improved Lunar
Ephemeris 1952-1959, which was issued in 1954 to make the amended ephemeris
available before 1960. The complete description there given, with its detailed
list of all terms included, constitutes the formal specification of the present lunar
ephemeris. Notes on the history of the introduction of the improved ephemeris
are given in section 3.

In the following expressions for the fundamental orbital elements and related
quantities the time interval from the epoch is denoted by T when measured in
Julian centuries of 36525 ephemeris days, by D = 3·6525T when measured in
units of 10000 ephemeris days, and by d = 10000D = 36525T when measured in
*Important changes in the basis of the lunar ephemeris were introduced in 1968 and 1972-3;
details are given on pages 497 to 513 and in the relevant volumes of the A.E.

- --- --- ------ ----
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ephemeris days. The symbols for the geometric mean longitudes and mean
longitudes of perigee of the Sun and Moon differ from those used by Brown, whose
notation is also used in the Improved Lunar Ephemeris. Thus L, r, ~, T' in the
Ephemeris and this Supplement correspond to L', w', L, w in Brown's tables and
the Improved Lunar Ephemeris; the symbols Q and D are used in common.
Brown's symbols [ = L - w, [' = L' - w'; F = L - Q have been retained in
the arguments of the series for the nutation in table 2.5, although g, and not [', has
been used in the Ephemeris and sub-section B for the mean anomaly of the Sun.

Epoch 1900 January 0'5 E.T. = J.D. 241 5020'0

~ = 270° 26' 02"'99 + 1336' 307° 52' 59"'3IT - 4"·08T2 + 0"·0068T3
= 270°'43416 4 + 13°'17639 65268d - 0°'00008 50D2 + 0°'00000 0039D3

r' = 334° 19' 46"'40 + 11'1°9° 02' 02"'52T - 37"·17T2 - 0"'045T3
= 334°'32955 6 + 0°'11140 40803d - 0°'00077 39D2 - 0°'00000 026D3

Q = 259° 10' 59"'79 - 5' 134° 08' 31"'23T + 7"'48T2 + 0"·008T3
= 259°'18327 5 - 0°'°5295 39222d + 0°'°°015 57D2 + 0°'00000 005D3

D = 350° 44' 14"'95 + 1236' 307° 06' 51"'18T - 5"'17T2 + 0"·0068T3
= 35o°'73748 6 + 12°'19074 91914d - 0°'00010 76D2 + 0°'00000 0039D3

where
~ = the mean longitude of the Moon, measured in the ecliptic from the mean equinox

of date to the mean ascending node of the lunar orbit, and then along the orbit;

r' = the mean longitude of the lunar perigee, measured in the ecliptic from the mean
equinox of date to the mean ascending node of the lunar orbit, and then along
the orbit;

Q = the. longitude of the mean ascending node of the lunar orbit on the ecliptic,
measured from the mean equinox of date;

D = ~ - L = the mean elongation of the Moon from the Sun.

The expressions for the mean longitudes of the Moon and of the lunar perigee, and hence
of D, include implicit partial corrections for aberration (AJ., 57, 46, 1952). *

The constant of eccentricity (e) is 0'05490 °489.

The constant of inclination (y) is °'°4488 6967; it is the sine of half the inclination
to the ecliptic.

The constant of sine parallax (ot) is 3422"·54°°; it corresponds to an equatorial horizontal
parallax of 57'02"'70 and to a perturbed mean distance of 6°'2665 equatorial radii of the
Earth.

The adopted ratio of the mass of the Earth to the mass of the Moon is 81'53, in the
lunar theory.

The lengths of the mean months at the epoch are:
d d h m

Synodic month (new moon to new moon) 29'530589 29 1244°2'9
Tropical month (equinox to equinox) 27'321 582 27 07 43 04'7
Sidereal month (fixed star to fixed star) 27'321 661 27°743 11'5
Anomalistic month (perigee to perigee) 27'554551 27 13 1833'2
Draconic month (node to node) 27'212 220 27 0S 0S 35·8

The secular variations do not exceed a few hundredths of a second per century, and depend
partly upon the variations in the rate of rotation of the Earth.

The values of T', Q, ~, and D for every tenth day at Ob E.T. are tabulated
in A.E., page 5It. This page also contains, for every tenth day, the values of:

i = the inclination of the mean equator of the Moon to the true equator
of the Earth,

·See note on page 523.

tpage 215 in A.E. 1972. onwards.
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41 = the arc of the mean equator of the Mooll from its ascending node on
the true equator of the Earth to its ascending node on the ecliptic
of date,

Q' = the arc of the true equator of the Earth from the true equinox of date
to the ascending node of the mean equator of the Moon,

calculated with Hayn's value of 1° 32"1 for the inclination (1) of the mean lunar
equator to the ecliptic; the ascending node of the mean lunar equator on the ecliptic
is at the descending node of the mean lunar orbit, Q ± 180°. They are calculated
from the following formulae, in which E is the true obliquity and the node is
referred to the true equinox by increasing Q by the nutation in longitude 41t/J.

sin 41 sm t = sin E sin (Q + 41t/J)
cos 41 sm t = sin 1 cos E - cos 1 sin E cos (Q + 41t/J)

cos t = cos 1 cos E + sin 1 sin E cos (Q + 41t/J)
sin Q' sin i = - sin 1 sin (Q + 41t/J)
cos Q' sin i = cos 1 sin E - sin 1 cos E cos (Q + 41t/J)

These formulae, which are derived from figure 4.1, give 41, Q', i without ambiguity
of quadrant.

EQUATOR
OF EARTH

Figure 4.1. Notation for elements of Moon's equator

Example 4.10. Mean elements of the Moon and auxiliary quantities

1960 March 7 at Oh E.T.

From example 4.1. d = 21980'5 T = 0.6017933
The Moon's mean longitude, and mean longitudes of perigee and node are obtained as:

« T' Q

Constant term
teml in d
tenn in T2 or D2
term in T 3 or D3

Sum

o

27°'43416 4
+183'78385 7

41 0

+ °
94'21761 I

-0"'744 = -0°'000207

o

334'32955 6
+288'71738 7

3739
3

o

259' 18327 5
83 '95368 7

+ 753
+ 0

175'23°34 1

Q + 41.p = 175'23013 4

- - ------------ - ~------- --- -- ---- -~----_.-------- - ---
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sin €T, cos €T are taken from example 4.5 and I = 1° 32"1

sin €T +0'3978 207 sin (Q + iJt/J). +0'083 I 537 sin I +0'0267 876
cos €T +0'9174 632 cos (Q + iJt/J) -0'9965 367 cos I +0'9996 4 12

sin Ll sin i -0'0330 803 cos i +0'9065 142 sin Q' sin i -0'0022275
cos Ll sin i +0'4208773 cos Q' sin i +0'4221 695
Sum of squares = 1'0 + 0 X 10-7 Sum of squares = 1'0 + 0 X 10-7

sm t +0'4221 753 i +24°'97200 sm t +0'4221 754
tan Ll -0'0785 984 tan Q' -0.0052 763

iJ 355°'50588 Q' -0°'30231

The longitude referred to the mean equinox of date, the latitude referred to
the ecliptic of date, and the horizontal parallax are calculated for every half-day
from Brown's theoretical expressions, with the corrections required for the
amendment to the mean longitude, as specified in the Improved Lunar Ephemeris.
The apparent longitude, as tabulated, is obtained by adding nutation in longitude
and applying the following correction for the residual terms in aberration not
included in Brown's theory (see A.J., 57, 46-47, 1952):

+0"'018 cos ([ - r' - 2D) + 0".007 cos 2D
The latitude and horizontal parallax are printed without amendment.

Q3° 09' 52~762
+ 0'011
- 0'744

93 09 52.029

- 5 13 19'726

54 17'5745
are quoted without derivation as this is described

Example 4. I I. Apparent longitude, latitude, and parallax of the Moon
1960 March 7 at Oh E.T.

Moon's longitude, mean equinox of date
Correction for neglected aberration «[ - T' = 191°'2, D
Nutation in longitude
Moon's apparent longitude, A
Moon's apparent latitude, f3
Moon's horizontal parallax, 7T

The fundamental data, as above,
in the Improved Lunar Ephemeris.

The semi-diameter (s) is derived from the horizontal parallax (7T) by means of
the following accurate relation, in which the adopted semi-diameter at mean
distance is due to Newcomb.

sm s _ sin {semi-diameter at mean distance (15' 32"'58 ) }
sm 7T sin { equatorial horizontal parallax at mean distance (57' 02" '70) }

This leads to: *
sin s = 0'272481 sin 7T

or, with an error not exceeding 0"'001:

s" = 0'0796 + 0'2724467T"
where s" and 7T" are respectively the number of seconds in sand 7T.

Example 4.12. Semi-diameter of the Moon
1960 March 7 at Oh E.T.

Moon's H.P., 7T 54' 17"'5745 sin 7T 0'01579 25103
Moon's S.D., s 14 47 '593 0'272481 sin 7T 0'0043031590

Note that s = 0"'0796 + 0'272446 7T = 887""593

The latter is used in practice; ten decimals are retained in the direct calculation to
illustrate the accuracy of the approximation.

*For 1968 onwards: sin s = 0'2724880 sin 7T

SH = 0'0799 + 0'272453 7T
H
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The apparent right ascension and declination, which are tabulated to OS'OOl

and 0"'01 respectively for each hour in A.E., pages 68-159, are referred to the
true equinox and equator of date and are fully corrected for aberration. For Oh

and I2 h they are derived directly from the half-daily values of the apparent longi­
tude and latitude, using the true obliquity of the ecliptic, by means of the formulae:

cos 8 cos a = cos f3 cos ,\
cos 8 sin a = cos f3 sin ,\ cos € - sin f3 sin €

sin 8 = cos f3 sin ,\ sin € + sin f3 cos €

These values are then subtabulated to twelfths to give the hourly ephemeris;
the method of subtabulation is fully described in the Improved Lunar Ephemeris
and is not illustrated here. *

6 h 13m 168 • 110
+ 18° II' 00"'34

+0'3978 2067
+0'9174 6319

a

cos €

sin €

-0'0579 5953cot a

Right ascension and declination of the Moon
1960 March 7 at Oh E.T.

sin f3 -0'0910175 1

cos f3 +0'9958 4929

Example 4.13.

sin,\ +0'99847520
cos,\ -0'05520204

cos S cos a -0'0549 7291
cos S sin a +0'94847057

sin S +0'31206014
Sum of squares 1'0 - 3 X 10-8

The discrepancy in the sum of the squares is about as large as one can expect, though
even larger values are possible.

The ephemeris transit of the Moon across the ephemeris meridian occurs
when the ephemeris hour angle is either Oh, for upper (U) transits, or lZh, for
lower (L) transits. The ephemeris hour angle is ephemeris sidereal time minus
right ascension, so that the time of transit is the ephemeris time at which:

ephemeris sidereal time - right ascension = Oh (U) or I2h (L)

If this time is (P + P)h, where .P is integral and p lies between 0 and I, this equation
may be written:

ephemeris sidereal time at ph - right ascension at ph
+ P (36098.856 - hourly difference of RA.)
- second-difference correction = Oh or IZh

The second-difference correction is small and cannot affect p by more than
Oh·OOOOZ; it may therefore be neglected, so that p may be determined directly
once the correct hour P has been selected. The ephemeris sidereal time for Oh E.T.
is the same numerically as the apparent sidereal time (hour angle of the first
point of Aries) at Oh D.T.

The times are tabulated to four decimals of an hour; this is adequate for the
planning and reduction of meridian observations of the Moon but is inadequate
for the derivation of a precise ephemeris at transit. As explained in sub-section F,
it is preferable that the comparison of observation with theory be made by means
of inverse interpolation in the hourly ephemeris.
*For A.E. 1972 onwards hourly values of the right ascension, declination and horizontal
parallax are tabulated on pages 68-189. They are computed from Chebyshev series which
have been derived from the half-daily values.
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Example 4.14. Lower transit of the Moon
1960 March 7

Inspection of the ephemerides of the apparent right ascension of the Moon and of
apparent sidereal time indicates that the Moon will transit the lower meridian between
7h and 8h •

Apparent sidereal time at Oh U.T.
IZh + apparent right ascension of the Moon at Oh

Difference, indicating transit between 7h and 8"

Increment of sidereal time in 7 h

Apparent sidereal time at 7 h

IZh + apparent right ascension at 7 h

Difference (IZ h + R.A. - S.T.)
Hourly difference of R.A. at 7h = IZ5s·08

h rn

10 58 50'9
18 13

7 14

7 01 09'0
17 59 59'9
18 Z7 50'9

z7 51'0

F . fh h" 1671'° hractlon 0 our to ep emens transit = 6 86 8 = 0 '4795
3 09' - IZ5'0

Note that only low precision is required, so that the change in nutation between Oh and 7 h

can be ignored.

Usually there are both an upper and a lower transit each day; but on one day
in each month near full moon only one transit (lower) occurs and similarly on one
day near new moon there is only one transit (upper).

For A.E. 197z onwards, half-daily sets of polynomial coefficients for the calculation of the
true geocentric distance of the Moon in units of the Earth's equatorial radius are tabulated on
pages 190 to 197. .

D. THE PLANETS *

Authorities

The elements and ephemerides of the inner planets Mercury, Venus, and Mars
are obtained from the same tables as were used for the years immediately preceding
1960. The orbital longitudes and the heliocentric ecliptic longitudes referred to
the mean equinox of date, the heliocentric latitudes referred to the ecliptic of date,
and the radii vectores are taken from Newcomb's tables of these planets (A.P.A.E.,
6, parts II, III, IV, 1895-1898); for Mars, the corrections derived by Ross (A.P.A.E.,
9, part II, 1917) 'are applied.

The elements and ephemerides of the outer planets Jupiter, Saturn, Uranus,
Neptune, and Pluto, beginning with 1960, are derived from the heliocentric
rectangular coordinates obtained by numerical integration in A.P.A.E., 12, 1951,
afterwards referred to as " Vol. XII ". Perturbations by the inner planets, taken
from A.P.A.E., 13, part v, 1954, are included in the geocentric ephemerides, but
are omitted from the heliocentric ephemerides, and from the heliocentric orbital
elements tabulated in A.E., page 177.t The geocentric right ascensions and dec­
linations are tabulated to one more decimal, namely OS'OOI and 0" ·01 respectively,
than for years preceding 1960 and for the inner planets.
*Formulae to reduce the tabulated ephemerides to the IAU system of astronomical constants
are given in the A.E. for 1968 onwards. For 197Z onwards the ephemerides of the outer
planets and minor planets are based on the IAU system.

tPage zl7 in A.E. 197z onwards.
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In these tables and ephemerides, the values adopted for the masses of the
planets, including atmospheres and satellites, are:

197°0
19314

360000

Reciprocal Mass
22869Uranus

Neptune
For four inner planets
For five outer planets

Pluto

Reciprocal Mass
Mercury ... 6 000 000
Venus 408000
Earth 329 390
Mars 3 093 500
Jupiter I 047'355
Saturn 3 501·6

In the planetary theory the adopted ratio of the mass of the Earth to the mass of
the Moon is 81 '45; and the ratio of the mass of the Sun to the mass of the Earth
alone is 333 432.

The ephemerides of the minor planets Ceres, Pallas, Juno, and Vesta are
derived from unpublished heliocentric equatorial rectangular coordinates calculated
by Herget by means of numerical integration using the Naval Ordnance Research
Calculator (NORC). An adaptation of Hansen's method was used, with an interval
of ten days. The integrations were adjusted along the entire orbits to the previous
integrations (A.P.A.E., II, part IV, 1950) that were used for the ephemerides before
1960; a smooth join-on at 1960 was obtained by taking most of the equations
of condition near this epoch. Differences from the previous orbits are attributable
to accumulation of rounding errors in the former integrations. The largest
discontinuity at 1960 is 0"'07 for Vesta, which is smaller than the amounts that
may be reached by the non-gravitational parts of the previous coordinates. *

Elements

An unperturbed orbit of a planet about the Sun is completely defined by six
elements, which may be chosen in various ways and which may be referred, as
desired, to any reference system. The adopted elements for the planets, as
tabulated in A.E., pages 176-177;1are referred to the mean equinox and ecliptic
of date, and are:

i = the inclination of the orbit to the ecliptic;
n = the longitude of the ascending node of the orbit on the ecliptic, measured

from the equinox;
'lIT = the longitude of perihelion, measured from the equinox along the ecliptic

to the node, and then along the orbit from node to perihelion, i.e., 'lIT =

n + w, where w is the argument of perihelion; .
a = the semi-major axis of the orbit; n, the mean daily motion, and a are related

by n 2a 3 = k 2 (I + m) where k is the Gaussian gravitational constant and m
is the mass of the planet expressed in terms of the Sun's mass;

e = the eccentricity of the orbit;
M = the mean anomaly, defined by the relation M = n (time in days since

perihelion passage); this is related to L, the mean longitude, by the
relation L = M + 'lIT.

For the inner planets Mercury, Venus, and Mars the elements given in A.E.,
*For A.E. 1972 onwards the ephemerides of the minor planets are based on heliocentric
rectangular coordinates calculated by R. L. Duncombe, A.P.A.E., 20, part II, 1969.

tPages 216-217 in A.E. 1972 onwards.
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page 176,* are mean elements. They represent, for each planet, the elements of a
mean reference orbit which is used as a basis from which to derive the actual
motion of the planet through the theory of general perturbations. The numerical
values are determined to provide the best agreement with observation over the
period on which Newcomb ba&ed his tables; and they may be used to represent
the actual orbits very approximately, say to within I' in position. The reference
orbits themselves contain small secular changes, due to the action of the other
planets, but the elements i, Q, 'lIT vary more rapidly owing to the constantly
changing reference system of mean equinox and ecliptic. With the exception of
the mean anomalies, which are tabulated at intervals of 10 days, the elements are
given in each edition of the Ephemeris for a single epoch only; this is always one
of the standard 400-day dates. The variations in 100 days, almost entirely due to
precession, are given for i, Q, 'lIT. The numerical values are derived from the
following mean elements given in the Tables. These elements are referred to the
mean equinox and ecliptic of date. The time interval from the epoch is denoted
by T when measured in Julian centuries of 36525 ephemeris days, by D = 3.6525 T
when measured in units of 10000 ephemeris days, and by d = IooooD = 365251'
when measured in ephemeris days. n* is the sidereal mean motion in a Julian year.

Epoch 1900 January 0'5 E.T. = J.D. 241 5020'0

Mean elements of Mercury
i = 7° 00' 10"'37 + 6".699T - 0"·066T2
n = 47° 08' 45"'40 + 4266"'7ST + 0"·626T2
1lT = 75° 53' 58"'91 + SS99"'76T + 1"·061T2

n* = 5381016"'3093 - 0"'00049 ST a = 0'3870986
e = 0'20561 421 + 0'00002 046T - 0'00000 0030T2

M = 102° 16' 45"'77 + (415' + 2 6IOSS"'04)T + 0"'024T2
= 102°'27938 I + 4°'09233 44364d + 0°'00000 OSOD2

L = 178° 10' 44"·68 + (415' + 2 666S4"·80)T + 1"·084T2
= 178°'179078 + 4°'09237 70233d + 0°'00002 26D2

Mean elements of Venus
i = 3° 23' 37"'07 + 3"·621T - 0",003S T2

n = 75° 46' 46"'73 + 3239"'46T + 1"'476T2
1lT = 130° 09' 49"·8 + s068"'93T - 3"'SIST2

n* = 21 06641 "'3832 + 0"'00009 6T a = 0'72333 16
e = 0'00682069 - 0'00004774T + 0'00000 0091T2

M = 212° 36' II"'S9 + (162' + 7 12093"'9S)T + 4"·6298T2
= 212°.60321 9 + 1°·60213 01S40d + 0°'00009 6400D2

L = 342° 46' 01"'39 + (162' + 7 17162"·88)T + 1"'II48T2
= 342°'76705 3 + 1°·60216 87039d + 0°'00002 3212D2

Mean elements of Mars
i = 1° 51' 01"'20 - 2"'430T + 0"'04S4T2
n = 48° 47' II"'19 + 277S"'S7T - 0"'00ST2 - 0"'0192T3

1lT = 334° 13' 05"'53 + 6626"'73T + 0"'467ST2 - 0"'0043T3

n* = 689050"'9262 + 0"'00016 9T a = 1'52369 IS
e = 0'09331 290 + 0'00009 2064T - 0'00000 0077T2

M = 319° 31' 45"'93 + (53' + 2 IS490"·6o)T + 0".6S09T2 + 0"'0043T3
= 319°'529425 + 0°'52402 07666d + 0°'00001 3SS3D2 + 0°'00000 002SD3

L = 293° 44' 51"'46 + (53' + 2 22II7"'33)T + 1"' II84T2
= 293°'747628 + 0°'52407 II638d + 0°'00002 3287D2

*Page 216 in A.E. 1972 onwards.
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1960 Sept. 23 d Oh E.T.
Epoch of T

Inclination,

EXPLANATORY SUPPLEMENT

Example 4.15. Mean elements of Venus
1960 September 23 at Oh E.T.

J.b. 2437200'5
J.D. 241 5020'0

d = 22180'5 T = 0.607269

Node, n Perihelion, 'llT

T2 = 0'3688

Eccentricity, e

0'00682069
"":2 899
+ 3

0'00679 173

21~ 36 11:6
256 02 52'37
_ + 1'7 1

108 39 05'7
= 108.65 158

34~ 46 01~39
256 54 10'575

+0'411

239 40 12'38
131 01 06'7

- 'llT 108 39 05:7M=L

Constant
d
T2 or D 2

Sum

3 23 37.07 75 46 46:73 13; 09 49~8
+ 2'199 +32 47'224 +51 18'20

___0_'0_0_1_ + 0'544 1'30

3 23 39'27 76 19 34'50 13 I 01 06'7
3°'394242 76°'326250 131°'01853

The mean distance and mean motion are practically constants.

Mean longitude, L Mean anomaly, M

Constant
T
T2

Sum

Mean elements for the outer planets Jupiter, Saturn, Uranus, Neptune, and
Pluto are not available and are not easily derivable from the numerical integrations,
which do not require any. reference orbits as a basis. Accordingly, osculating
elements are given instead. Osculating elements at a particular epoch are defined
as the elements of an unperturbed elliptical orbit, referred to as the osculating
orbit, in which the position and velocity of the planet at the epoch are identical
with the actual position and velocity of the planet in its perturbed orbit at the same
instant. The osculating elements therefore contain the effects of the perturbations
due to the other planets, so that, unlike the mean elements, they are subject to
periodic variations. Whereas the elements of one of the inner planets in A.E.,

* page 176, refer to a slowly varying orbit, those of one of the outer planets on page
* 177 refer to a different orbit on each date, and the changes shown do not reflect

the real changes of a mean orbit. Osculating elements have the advantage, however;
that they may be used to give the actual position and motion of the planet at the
epoch of osculation, and a good approximation to its actual orbit over short periods.

The osculating elements are tabulated in the Ephemeris, at intervals of 40
days for Jupiter, Saturn, Uranus, and Neptune and of 80 days for Pluto. There
is no simple relation between the osculating and mean elements; but for comparison
mean elements of Jupiter, Saturn, Uranus, and Neptune are given below. The
elements. of Jupiter and Saturn are taken from Hill's tables of these planets
(A.P.A.E., 7, parts I and II, 1898) for the epoch of the tables and reduced to 1960
and 1970 by applying variations that approximate to those of Leverrier and
Gaillot. The elements of Uranus and Neptune are taken from Newcomb's tables
of the planets (A.P.A.E., 7, parts III and IV, 1898) and are affected by long-period
variations. The elements are referred· to the mean equinox and ecliptic of the
epoch.
*Pages 216 and 217 in A.E. 1972 onwards.
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Mean elements of the outer planets *
Jupiter Saturn

1960 Jan. 1'5 1970 Jan. 0'5 1960 Jan. 1'5 1970 Jan. 0'5

1I5

i
n
'!IT

L
a
n
e

o , •

I 18 19'3
1000240'0
1340 4 1,6

2594952'05
5'20280 3

299"' 1284
°'°4843 54

o , •

I 18 17'3
1000843'9
1350 21·6

20325 11'28
5'20280 3

299"'1284
°'°4845 17

2 29 23'7
113 18 26'9

92 1552'1
28040 16·88

9'538843
120"'455°

°'°5568 18

22922'1
1132341'2

92 27 37'4
43°0 2°'29
9'538843

120"'4550
0'055647 1

Uranus

Epoch 1960 Jan, 1'5 1970 Jan. 0'5

Neptune

1960 Jan. 1'5 1970 Jan. 0'5

l

n
'!IT

L
a
n
e

o , •

° 46 23'°
734746 ,6

17° 00 39'3
141 18 17·87
19' 18193 9
42"'235

0'°472°95

o , •

° 46 23'2
73 5°5°'4

170 1023'9
1841724.64
19'181882
42"'235

0'0472367

o , •

I 46 25'5
131 2023'2
44 1626'1

2 16 5627'22
30 '05777 9
21"'532
°'°085747

.
14622'2

13 I 26 59,8
4421 42'2

23855 24'26
30'05790 °
21"'532
°'°085824

The osculating elements are derived directly from the heliocentric equatorial
rectangular coordinates as published in Vol. XII; as with the heliocentric longitudes
and latitudes, the corrections due to the action of the inner planets have not been
applied, The follQwing procedure is used in principle, though modifications in
detail are introduced for computational convenience.

The tabulated equatorial rectangular coordinates xs, Ys, zs' and their instan­
taneous rates of change xs', Ys', zs', referred to the mean equinox and equator of
1950'0, are converted directly to ecliptic rectangular coordinates and rates of
change, referred to the mean equinox and ecliptic of date, by the formulae:

Xo = Xl Xs + Y I Ys + Zl Zs

Yo = X 2 XS + Y 2 Ys + Z2 ZS

Zo = X a Xs + YaYs + Za Zs

in which the direction cosines Xl' X 2 , ,. Y I , •• Za of the ecliptic axes are calculated
from:

Xl = X., X 2 = XII cos EM + X. sin EM X a = X. cos EM - XII sin EM

with similar equations in Y and Z, where EM is the mean obliquity of the ecliptic.
Similar formulae apply for the rates of change xo', Yo', zo'. X." XII' .. are the
direction cosines of the equatorial axes for mean equinox and equator of date,
referred to those for 195°'0, for which expansions are given in section zB and
which are used, though in the reverse direction, for the conversion of the Sun's
coordinates in sub-section B.

The direction cosines Xl' X 2, •• can also be expressed directly as series
expansions; thus use of the expressions for X." Y II, .. from section zB and for E

from sub-section B leads to:
*For osculating elements for Pluto see page 491.
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Xl = + 99999998 + 12S'SD - 2226·oD2 - 0'3D3
Y I = + 1 72S1 - 61 1903·6D - SI'ID2 + 4'SD3
Zl = + 7s00 - 26604o·8D + IS'3D2 + 2·oD3

X 2 = 1 88II + 66 723S·6D + 4o·8D2 - 4'9D3
Y2 = + 91743624 + 2S89'4D - 2041'SD2 - 0'3D3

Z2 = + 39788279 - S6SS'ID - 887· 8D2

X 3 = 17 + 608'4D + 7'ID2
Y3 = - 39788279 + S70S'2D - 1'7D2

Z3 = + 9174 362S + 2474'4D - 0'9D2 - 0'ID3

where D is measured in units of 10000 days from J.D. 243 3000'5 and where the
coefficients on the right-hand side are in units of the eighth decimal.

The rates of change are to be formed with I/K days as the unit of time, where
K = k (I + m)~ in which k is the Gaussian gravitational constant and m is the mass
of the planet in terms of that of the Sun as unity. Moreover, it is convenient,
both for the simplification of the formulae and for numerical computation, to
normali"e the coordinates and rates of change by putting:

x = ~ xo, etc. leading tox 2 + y2 + Z2 = I
r

r
x' = r~ x~, etc. leading to X'2 + y'2 + Z'2 = 2

a
where, for simplicity, subscripts are omitted in the normalised coordinates. Since
r2 = x ~ + y; + z; is independent of the reference system it is advantageous to
normalise the coordinates and rates of change before conversion. In this case
the rate of change, used instead of x~, will be:

(r;/K) x (the instantaneous daily rate of change of xs)

With the six values of x, y, z, x', y', z' the formulae for the elements are as
follows:

x2 + y2
X'2 + y'2
xx' + yy'

r
a = ---

I-m

+ Z2 - I = 0 (check)
+ Z'2 - I = m
+ zz' 1

e2 = 12 (I - m) + m2

I - e2

n = Ka-~ radians/day p2 = I + m - [2 = ---
I - m

Take eol to be an integer (or, if e is large, with one decimal), constant for each
planet, such that eole < I.

Let:

Then:

Checks:

10 = eol [

pi = eo2 e2 p2

P~ = p (mox - lox')
Pl/ = p (moy - loy')
P. = p (rno z - 10 z')

mo = eolm
{l~ (I - m) + m~}p2

q", = 10 x + (rno - llo) x'
ql/ = loy + (rno - llo) y'
q. = 10 z + (rno - llo) z'

p",q", +Pl/ql/ +P.q. = 0

P: + P; + pi = q~ + q; + qi = eo2 e2 p2 = pi



Then:

4D. FUNDAMENTAL EPHEMERIDES II7

tan E = 10 (1 - m)~
mo

tan w P.
q.

tan 'tIT = py - qx
px + qy

plotan v = --'--"~

mo - llo

M = E - eo 10 (1 - m)~ in radians

= E - (570 '295780 eo) 10(I - m)~

£1 = 'tIT - W

v + 'liT is the orbital longitude, which
must check with the value obtained
by direct calculation.

P sin i sin £1 rx
(A) P sin i cos £1 -ry (B)

P cos I r.

- Px sin £1 + py cos £1
- qx sin £1 + qy cos £1 (C)
+ Tx sin £1 - Ty cos £1

- Px sin w - qx cos w
+ py sin w + qy cos w (D)
+ P. sin w + q. cos w

• 2' P; + q~ .
sin z = 2

PI

In all cases the quadrants of E, w, 'tIT, v are determined by the signs of numerator
(corresponding to sine) and denominator (corresponding to cosine); i is always
positive. If PI is calculated as e~lep the value of e used must be taken to eight
significant figures.

The formulae for e, E, v are derived from the relations:
e sin E = I (I - m)~ e sin v = pI
e cos E = m e cos v = m - 12

There are many formulae for the three spherical elements i, £1, w; those given
above appear to be the most suitable for small eccentricities and inclinations.
Let:

rx = yz' - zy' rOJ = zx' - xz' r. = xy' - yx'
Checks: r; + T~ + T~ = p2

qxrx + qyry + q.T. = 0 rxpx + Typy + T.P. = 0

Then the following are the more important relations (for brevity PI is written
for er/ep):

PI sin z sm w = P.
PI sin i cos w = q.
P COSI = r.

PI cos i sin w

PI cos i cos w

P sm z

PI cos i sin £1
PI cos i cos £1
PI sin i

PI (I ± cos i) sin (w ± n) ± Py - qx

PI (I ± cos i) cos (w ± £1) ± qy + Px (E)
in which the upper sign is normally taken.

It is clear that either (A) and (E) or (B) and (E) form a complete set of .
equations; (A) and (B) should not be used together if i is small since the resulting
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uncertainties in wand n will be independent. The use of (B) to determine i and
n is rather more logical than the use of (A) to determine i and w, but the latter is
adopted as thereby the calculation of r"" ry, r z is avoided.

The precision obtainable in the angular elements nand w is dependent on
the magnitudes of i and e respectively. If the standard precision is of order I x
10-8, as is the case with eight decimals in x, x', ... , and as is actually used in
practice, n cannot be found more precisely than 10-8 cosec i, or 6° x 10-7 cosec i;
in the worst case, for Uranus, this limit is about 0°'00005 or ou·2 . Similarly, 'U1

cannot be found more accurately than 1O-8/e or 6° x Io- 7/e; in the worst case, for
Neptune, the osculating value of e can be as small as 0'003 corresponding to a limit
of precision of 0° '0002 or I". However such uncertainties only reflect the relative
unimportance of precision in these quantities, and any values of nand w, within
the range of permitted values, will lead to reproduction of the eight-figure coordin­
ates and velocities, provided that the other elements are consistent with the adopted
values. For example, the orbital longitude (v + w) is clearly independent of
the precise position of either node or perihelion, and consequently v must contain
the negative of any uncertainty introduced into w. One method of assuring this
is to adopt the values of e and E, or of e and v, obtained directly from the coordinates
and velocities, as exact; then all quantities are well determined with the exception
of either w or n. The longitude of perihelion (w = w + Q) should be consistent
with the adopted values of E or v and must be evaluated from a formula that
ensures this. The procedure adopted above is the same in principle, but is rather
simpler in practice. The argument of perihelion (w) is poorly determined if i is
small, but the adopted value is treated as exact to give a value of n as w - w

consistent with the well-determined value of w. It is equally correct to determine
n directly, to treat the adopted value as exact, and thus to deduce w as w - .\1,.

The values obtained will differ in the two calculations, but the difference will not
be significant. There are many other arrangements of these formulae, but with
small i and e careful selection is required to ensure a consistency greater than the
apparent precision.

Example 4.16. Osculating elements of Uranus
1960 March 7 at Oh E.T.

Coordinates 8_. + 8+. 8~. + 8~1 Velocity components
Xs - 13'9325 597 -0'207445985 + 15368 80 Kx~ -°'2°7448546
Ys + IO'9322 454 -°'2327 50932 + 17057 80 Ky~ -0'23 27 53775
Zs + 4'987194:: -0'099061430 + 7272 80 Kz~ -°'°99°62642

The factor 80 arises from the use of double differences at an interval of 40 days.
r2 338. 5023 16 k 0,oI720 20989 5
r 18'3984325 m I/22869
r l 4'2893394 (I + m)l I'000021864
I r l

r °'°543 52456 80 K 3' I 168 °4°

Normalised equatorial coordinates and velocities for 1950'0:

xs/r -0'75726884 r l x~ -0.64657646
ys/r +0'5941 9439 r l y~ -0'72544790
zs/r +0'27IO 6626 r l z~ -0'3087 5884

- -- -- -- --------- ---- ---- -- - --
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From example 4.9, for conversion from 1950'0 to mean equinox of date:

X. +0'99999692 Yz -0'00227519 Zz -0'00098914
X. +0'00227519 Yv +0'99999741 Zv -0,000001I3
X, +0'00098914 Y, -0'0000 01I3 Z. +0'99999951

For 1960 March 7 (from Planetary Co-ordinates, Table I):
sin EM 0'3978 5998 cos EM 0'91744615

1I9

Zl -0'0009 8914
Z2 +0'3978 5875
Za +0'9174461 5

The coefficients for transfer of equatorial coordinates referred to 1950'0 to ecliptic
coordinates referred to mean equinox of date:

Xl +0'99999692 Y I -0'002275 19
X 2 +0'00248090 Y 2 +0'91744332
Xa +0'00000228 Ya -0'3978 5999

From these, using no subscripts
referred to mean equinox of date:

x -0'75888654
Y +0·65 1I 0705
Z +0'01228080

It is verified that x 2 + y2 + 'Z2 ­
X'2 + y'2 + Z'2

for normalised ecliptic coordinates and velocities

x' -0.6446 1853
y' - 0'7900 0383
z' +0'0053 5561

I = - I X 10-8

= (r! X~)2 + (r! y~)2 + (r! Z~)2

p2
(Check) p2

p
(I - m)!

Calculation of elements from x, y, z; x', y' z'

x -0'7588 8654 x' -0·6446 1853 I:x2 -
Y +0·65 1I 0705 y' -0'7900 0383 m = I:x'2 -
Z +0'01228080 :l' +0'0053 5561 I:xx'

r 18'3984 325 e2 0'0021 794665
a 19'1584038 e 0'04668476
n 0'00020514076 eol 20

= 0°'011753699 eo2 e2 0.87178660

Note; eo2 e2 is not (eol e)2 but is, in this case, 400e2. '

I

+0'0396 6778
-0'0251 1897

1'0390 3682
1'0390 3682
1'01 93 3 156
0'9799 6542

1no +0'7933 5560 lo -0'50237940 mo - llo +0'7807 3635
p1no +0·8086 9240 plo -0'5 1209118

pz -0'94380924 q. -0'1220281 5 pz + qv - 1.8876 9672
Pv +0'12199133 qv -0'9438 8748 Pv - qz +0'2440 1948
p, +0'01267395 q, -0'0019 8830

~p2 0'9058 1840 I:q2 0'9058 1840 p~ = ei)2 e2p2 0'9058 1839
0

cot w -0'156881 w 98 '9159
tanw -0'1292 6837 'tlT 172 .6343 15 n ='tlT -w 73°'7184 15
tan v -0.6559 0795 v 326'7388 13 v+'tlT 139 '3731 28
sin2i 0'0001 816946 i 0'772337

tan E -0.6205 4700 E 328 '178454
-57°'295780 eo lo (I - m)! +1'410377

M 329'588831 L 142°'223 1 46

Using tan n = r z / -Tv = +0'01 31 8895/ +0'00385213
cot n +0'292073 n 73°'7183 w 98°'9160 15

In this case the agreement between the two sets of values of n and w is just about
what might be expected; a discrepancy of I x 10-8 in q. or Tv (which can easily arise through
an accumulation of roundings) gives rise to differences of 0°'00006. The values in the
Ephemeris were calculated using more than eight significant figures in the fuIidamental
data. For the check on the orbital longitude, v + 'tlT, see example 4.19.

(For A.E. 1960 the values printed on page 177 are erroneous; the correct values are given
on page xii.)
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The elements are given in the Ephemeris to varying numbers of decimals.
For the inner planets a, n, e are given to six decimals and i, Q, 'W to 00 '00001; but
the mean anomaly is only given to 00 ·001. For the outer planets a is given to five
or six decimals; nand e to seven decimals; ito 00 '00001; Q, 'W, and the mean
anomaly are given to 00 '0001; to which precision they are determined absolutely,
except possibly for Neptune, from the eight-figure calculations. The elements
cannot be used, as they stand, to reproduce the planetary positions to full eight­
figure accuracy.

No elements are given in the Ephemeris for the minor planets. The following
are approximate elements for the epoch 1957 June II at. Ob E.T., referred to the
mean equinox and ecliptic of 1950'0.

Ceres Pallas Juno Vesta

° 34~798i 10·6°7 12'993 7'132
Q 8°'5 14 172'975 17°'438 1'°4'102
'W 152 '367 122'734 56 '571 253'236
M 279.880 271.81 5 329'336 79.667

a 2'7675 2'7718 2·6683 2'361 7
n 0°'214°8 0°'2135 8 0°'22612 0°'27157
e 0'°759° 0'23402 0'25848 0'08888

Heliocentric positions

The heliocentric ecliptic longitudes, latitudes, and radii vectores of Mercury,
Venus, and Mars that are given in A.E., pages 160 to 173;are obtained directly
from Newcomb's tables, with the application of Ross's corrections in the case of
Mars. The longitude and latitude are rounded off to 0"' 1 and are referred, as in
the Tables, to the mean equinox and ecliptic of date; the radii vectores are
deduced from the logarithmic values given in the Tables. They are given at
intervals of one day for Mercury, two days for Venus, and four days for Mars.

The heliocentric orbital longitude, tabulated on the same pages, is the
longitude of the planet in its orbit measured from the mean equinox of date along
the ecliptic to the node and then along the orbit; it is derived from the Tables in
the course of finding the ecliptic longitude. The difference between the orbital
and ecliptic longitudes is a small quantity R, known as the reduction to the ecliptic;
it is a simple function of u, the arc from node to planet, and of i, the inclination,
and is given by:

sin R = - tan2 ti sin (2U + R)
R = - tan2 ti sin 2U + .~ tan4 ti sin 4u + ...

U is obtained directly from the Tables and R is tabulated; thus:
orbital longitude = u + Q

ecliptic longitude = u + Q + R
The daily motion of the orbital longitude is tabulated as a concept in its own right,
and as an aid to interpolation; it is the first derivative at the instant of tabulation
and in an unperturbed orbit it is inversely proportional to the square of the radius
vector. The orbital latitude is the displacement in latitude of the planet from its
mean (reference) orbit and comprises only the perturbations due to the other
*Pages 198 to 211 in A.E. 1972 onwards.
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planets; it is negligibly small for Mercury, and is given to 0" ·01 for Venus and Mars.

For computational convenience several modifications are in practice introduced
in the use of the Tables, but none affects their standing as the authority; and the
calculated values will differ from those obtained by formal use of the Tables by
quantities which are small compared with the possible error introduced by adding
a number of rounded-off contributions. No detailed derivation is given since
numerical examples are included in the Tables.

Example 4.17. Angular momentum of the inner planets
Values of (daily motion) x (radius vector)Z in degrees/day, showing the approximate

constancy of the angular momentum.

Mercury Venus Mars
1960
Mar. 7 0·6001 18 0.8382 5 I I '2II3 93
June IS ·6001 19 .838249 I'2II354
Sept. 23 ·6001 24 .838251 1'2II382
Dec. 32 ·6001 21 .838242 1'2II432

For the outer planets the similar data given in A.E., pages 174-176;at intervals
of 10 days for Jupiter and Saturn, 40 days for Uranus and Neptune, and 80 days
for Pluto, are derived from the heliocentric equatorial rectangular coordinates for
equinox 1950'0 that are given in Vol. XII. As in the determination of the orbital
elements, the tabulated coordinates (x s, Ys, zs) are first converted to ecliptic
rectangular coordinates (xo, y'e' zc) referred to the mean equinox and ecliptic of
date by:

Xc = Xl Xs + Y I Ys + Zl Zs etc.
(Normalised coordinates are now used in practice, since they are required for the
calculation of the osculating elements.) The heliocentric longitude (lM)' latitude
(bM), and radius vector (r) are then obtained from:

r cos bM cos lM. = Xo
r cos bM. sin lM. = Yc
r sin bM. = Zc

The intermediate values for Jupiter and Saturn are obtained by subtabulation.

Zo +0'0122 8080
sin bM +0'0122 8080

bM +0042' 13"'16

Yo +0·65 II 0705

Example 4.18. Heliocentric longitude, latitude, and radius vector of Uranus
1960 March 7 at Oh E.T.

From example 4.16 the normalised ecliptic rectangular coordinates for mean equinox
of date are: (r = 18'3984 325)

Xc -0'7588 8654
whence tan lM -0·85797681

lM. 1390 22' 16"'22

The orbital longitude (u + mis derived from the ecliptic longitude by
subtracting the reduction to the ecliptic (R), which is expressed in terms of the
ecliptic longitude as:

sin R = - tan2 ii sin { 2 (l - m- R }
R = -tan2 ii sin 2 (I - m- i tan4 ii sin 4 (l - m+

or, for Pluto for which i is large, by determining u directly from:
tan u = tan (l - msec i

*Pages 212 to 214 in A.E. 1972 onwards.
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Itmay alternatively be derived, or checked, from the osculating elements as the sum
of the true anomaly (v) and the longitude of perihelion (-m); and it is for this
reason that the calculation of the true anomaly, which is not otherwise required,
is included in that of the elements. There are other methods of linking the two
calculations, and it is possible to derive the orbital longitude (u + malmost
directly from the rectangular coordinates by:

T cos (u + m= Xo + (sec i-I) sin n (xo sin n - Yo cos m
T sin (u + m= Yo - (sec i-I) cos n (xc sin n - Yc cos n)

Example 4.19. Orbital longitude of Uranus
1960 March 7 at Oh E.T.

0'7723 37 tan2 li 0'0000 45425
I 139'3711 72

Q 73'7 18
l - Q 65.653 sin 2 (l - Q) +0'75II9

R (in degrees) = -0°'0019 55 (the second term is negligible.)

l - R = orbital longitude = 139°'3731 27 which may be compared with the value of
v + 'lD" in example 4.16.

Since the orbital elements are osculating elements, the orbital latitudes are
zero by definition.

Heliocentric positions of the minor planets are not tabulated.

Equatorial rectangular coordinates (xT, YT' ZT) referred to the true equinox
and equator of date are required at daily intervals for all planets as- an essential
step in the calcul~tion of the geocentric ephemerides.

For the inner planets heliocentric equatorial, rectangular coordinates
(x lll , YIll' ZIll) referred to the mean equinox and equator of date, are first derived
from the heliocentric positions given by the Tables by:

x III = T cos IIll cos bill = Xo
YIll = T (sin ~ cos bill cos EIll - sin EIll sin bill) = Yc cos EIll - Zc sin EM

ZIll = T (sin IIll cos bill sin Ell( + cos EIll sin bill) = Yc sin EM + Zc cos EIll

where EM is the mean obliquity of the ecliptic. These are calculated at intervals
of one day.

For the outer planets the heliocentric equatorial rectangular coordinates are
derived from the values given in Vol. XII, as corrected for the action of the inner
planets. These coordinates (xB, YB' ZB)' which are referred to the mean equinox
and equator of 1950'0, are converted to the mean equinox and equator of date
by the formulae:

XIll == XX X B + Y xYs + Zx ZB

YM = XII X B + Y ll Ys + ZII ZB

ZM = X z X B + Y z Ys + Z z Zs
in which Xx, XII' .. are defined in section 2B. This conversion is done at intervals
of 10 days and the coordinates are then subtabulated to single days, except for
Pluto. A similar procedure is followed for the minor planets, for which apparent
places are calculated although not directly tabulated in the Ephemeris.
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Example 4.20. Heliocentric equatorial rectangular coordinates referred to
the mean equinox of date

Zc -0'01 70 5232
ZM -0'30094929

r 0'7274 9725

sin EM +0'3978 5998
cos EM +0'91744615

Venus, 1960 March 7 at Oh E.T.

From Newcomb's tables (see A.E., page 168):
l. 279036' 23"·89 bM -1 0 20' 35"'23

sin III -0'98597672 sin bM -0'0234 3971
cos llil. +0'16688294 cos bM +0-99972525

Xc +0'12137352 Yc -0-71709828
XM +0'12137352 YM -0·65 11 1462

(Check: xJ, + yJ, + zJ, - r2 = + 1 x 10-8)

Xs
Using values of X x,

XM

Vol. XII.
Corrections

Jupiter, 1960 March 7 at Oh E.T.

Xs -0'9094 217 Ys -4'7990.702
19 27

-0'9094 236 Ys -4'7990 729
Y x, ... given in example 4.16:
-0.8964875 Yll -4.8011 273

Zs -2'0365 839
13

Zs -2'0365852

Unpublished Xs
Using values of Xx,

XM

Vesta, 1960 March 7 at Oh E.T.

-0-9891498 Ys -1.8175 824
Yx, ... given in example 4.16:
-0-9844 222 Yll -1.8 198275

Zs -0'5957276

The coordinates (xM, YM' ZM) for mean equinox and equator of date, now
available for Oh E.T. for every day for all planets except Pluto, are converted to the
true equinox and equator of date by means of the formulae:

XT = X M - (YM cos "T + ZM sin "T) Ll!f1
YT = YM + X M cos "T Ll!f1 - ZM Ll"
ZT = ZM + X M sin "T Ll!f1 + YM Ll"

in which (see section zC) "T is the true obliquity and the second-order terms are
negligible. These coordinates are then combined with the similar coordinates
for the Sun (XT, YT, ZT)' either at the same or a separate operation, to give the
geocentric coordinates (gT' TJT' {T)' The conversion from the mean to true reference
system could, of course, be done after the formation of the geocentric coordinates,
and (for technical reasons) this is actually adopted for the outer planets.

-0"'744
-8".836

-0'00000144
-0'0000033 1

whence:

Example 4.21. Conversion of he,liocentric equatorial rectangular coordinates
from mean to true equinox of date

1960 March 7 at Oh E.T.

-0'00000361 Llt/J sin ET

-0'00004284 Llt/J cos "T

XT -XM=(+331YM + 144zM) X 10-8

YT - YM = (- 33 1XM + 4284ZM) X 10-8

ZT - ZM = (-144XM - 4284Yll) X 10-8

Unit: 10-8 XT - XM YT - YM ZT - ZM
Venus - 259 - 1329 + 2772
Jupiter - 1883 -8432 +20697
Vesta - 688 -2230 + 7938



Z; -0'0009 8770
Z; +0'00004171
Z; +0'99999951

Y T -0'2 1349910
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From example 4.6: X T +0'9648 1709

Hence, using XM etc. from example 4.20:
gT 7]T ~T

Venus + 1'0861 8802 -0.86462701 -0'39350020
Jupiter +0'0683 108 -5'0147107 -2'1298500
Vesta -0'0196120 -2'0333489 -0.6892030

As a check the values of gT, 7]T, ~T for Venus are calculated by first forming gM, 7]11, ~11

and then correcting for nutation:
X M +0'9648 1793 Y M -0' 21 349194 ZM -0'0925 8639

gM +1'08619145 7]11 -0·8646 0656 ~M -0'39353568
gT - g11 - 343 7]T - 7]11 2045 ~T - ~M + 3548

gT +1'08618802 7]T -0.8646 2701 ~T -0'39350020

As another check the values of X~, YT, ZT for Jupiter are calculated directly from the
corrected values of Xs, Ys, Zs using coefficients X;, X; ... for direct conversion from the
mean equinox of 1950'0 to the true equinox of date (see section 2C).

From example 4. I 6 and above, the modified coefficients are:
X; +0'99999693 Y; -0'00227188
X; +0'0022 7192 Y; +0'9999 9742
X; +0'0009 8760 Y; -0'00004397

XT -0·8965 064 YT -4.8012 116

These agree within the limits of rounding-off errors.

Equatorial rectangular coordinates (xs, ys, zs) referred to the mean equinox
and equator of 1950'0 are also required for every tenth day for the inner planets
for inclusion in the volumes of Planetary Co-ordinates. * They are formed by the
standard conversion formulae using values of Is, bs for the mean equinox and ecliptic
of 1950'0, obtained by:

Is = 1M + a - b cos (lor + c) tan bid
bs = bM + b sin (1M + c)

where a, b, c are the precessional constants for reduction to 1950'0.

The same formulae are used to obtain Is, bs for the outer planets.

Values of xs, Ys, zs for the inner planets could alternatively be obtained by the
standard transformation from the values of xM , Y11' Z11' The ecliptic longitude and
latitude (ls, bs) could be derived from the usual formulae:

r cos bs cos Is = x s

r cos bs sin Is = Ys cos €s + Zs sin €s

r sin bs = -Ys sin €s + Zs cos €s

where €s is the obliquity of the ecliptic at 1950'0. These formulae are used as a
check on the calculations.

Geocentric positions

The apparent right ascensions and declinations of the planets, except for
Pluto and the minor planets, are tabulated for Oh E.T. on each day in A.E., pages
178-233. t They are given to OS'OI in right ascension and 0"'1 in declination for
the inner planets, but to an increased precision of OS'OOI and 0"'01 for the outer
planets. They are referred to the true equinox of date and are affected by
planetary aberration.
*See page 15.

tPages 218 to 273 in A.E. 1972 onwards.
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The geometric values are derived from the geocentric c:quatorial rc:ctangular
coordinates (gT' YJT' ~T)' referred to the true equinox of date, by the formulae:

..1 cos 0T cos aT = gT = XT + X T

..1 cos 0T sin aT = YJT = YT + Y T

..1 sin 0T = ~T = ZT + ZT

..1 2 = gi + YJi + ~i tan aT = YJT/gT sin 0T = ~T/..1

where XT> YT' ZT are the heliocentric geometric equatorial rectangular coordinates
of the planet, referred to the true equinox and equator of date, and X T, YT, ZT are
the similar geocentric coordinates of the Sun, obtained as described in sub-section
B. These are subsequently converted to apparent positions aM 0A by the appli­
cation of the correction for planetary aberration in the form:

aA = aT - °'°°57683 ..1 x instantaneous daily motion of aT

0A = 0T - °'°°57683 ..1 x instantaneous daily motion of 0T

where ..1 is the (uncorrected) geometric distance of the planet from the Earth,
as tabulated.

*

Vesta
+ 1018.88
-26"'0

Jupiter

+328 '54
+0"·8

+2958'0
+ 1238"

a
8

Example 4.22. Apparent right ascension and declination of the planets
1960 March 7 at Oh E.T.

From the values of gT, 7}T' ~T in the previous example we deduce:

Venus Jupiter Vesta
..1 2 2'0822 2669 29.6882 5I 4.6098 932
..1 1'44299227 5'4486926 2'1470662

°'°°57683..1 0'0083 23 0'03143 0'01238
tan or cot aT t -0'7960 1965 c - 0'0136 2208 c +0'00964517

aT 2I h 25m 558'085 I8h 03m 078'305 I7h 57m 478'373
correction* - 2 '455 - I '023 - I '261

aA 21 25 52 ·63 18 03 06 '282 17 57 46 '112
sin 8T - 0'2726 9737 - 0'3908 9194 - 0'32099755

8T - IS° 49' 29"'422 -23 0 00' 36"'036 - 18° 43' 23 6 '747
correction'" - 10 '304 -0 '025 +0 '322

8.~ - IS 49 39 '73 - 23 00 36 '06 -18 43 23 '42
These agree with the values tabulated in the Ephemeris within legitimate variations

due to small accumulations of error.
*To illustrate the application of corrections for aberration the following daily motions

are taken from the ephemerides:
Venus

The tabulated values of the semi-diameters are obtainEd by dividing the
semi-diameters at unit distance by the geocentric distance ..1; the adopted semi­
diameters at unit distance and the authorities for each are as given in section 7C
for the years immediately preceding 1960. The semi-diameters of the minor
planets are not known with great accuracy and are not tabulated.

The (equatorial) horizontal parallaxes are the values of the solar parallax.
*86 .80 divided by the geocentric distance ..1.

*0'0057756 and 8"'794 for outer and minor planets for 1972 onwards.
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Jupiter

5'4487
1"·62

98"'47/.1 18"'07
91 "'91/.1 16"·87

1'443°
6"'10
5"·83

Semi-diameter and horizontal parallax of Venus and Jupiter
1960 March 7 at Oh E.T.

Venus

Distance, .1
H.P. = 8"·80/.1
S.D.
polar S.D.

Example 4.23.

The ephemeris time of ephemeris transit is the time at which the centre of the
planet is on the ephemeris meridian;' it is tabulated to the nearest second, which
is always adequate for the interpolation of the right ascension and declination to
the time of transit. As for the Moon (sub-section C) the time of transit is the
ephemeris time at which:

ephemeris sidereal time - right ascension = 0

IfP is the corresponding fraction of the day, then:
ephemeris sidereal time at Oh - right ascension at Oh

+ P (8663()s'56 - following daily difference of R.A.)
- second-difference correction = 0

The small daily change in the equation of the equinoxes may be ignored and the
second-difference correction is only appreciable for the inner planets; the correction
can be expressed simply in the form of a correction to the time of ephemeris transit
as:

+B 2(p) x double second difference of R.A. in seconds
where B2 is the Bessel second-difference interpolation coefficient. The ephemeris
sidereal time at Oh E.T. is numerically the same as the apparent sidereal time
at Oh V.T.

Example 4.24. Ephemeris transit of Mercury
1960 March 7

Apparent sidereal time at Oh U.T. (A.E., page II)

Apparent right ascension at Oh E.T. (A.E., page 179)
Difference

i.e. right ascension - ephemeris sidereal time, at Oh E.T. = 451488'4
Following daily (first) difference of R.A. = - 176"'20
Double second difference of R.A. = - 348

First approximation to p = 45148'4/(86636'56 + 176'20)
= 0'520066 B 2(p) -0'0624

First approximation to 24hp
Second-difference correction = -0'0624 x -348

Ephemeris transit

b m "
10 58 50 '925
23 31 19'32
123228'4

12 28 53'7
+ 2'1
12 28 55·8

Astrometric positions

For Pluto and the minor planets Ceres, Pallas, Juno, and Vesta, for which
observations are generally made photographically, astrometric positions are given in

* A.E., pages 234-265, instead of apparent positions; the differences" apparent
minus astrometric" are also given for the minor planets to enable apparent
positions to be derived for comparison with meridian observations.
*Pages 274 to 307 in A.E. 1972' onwards.
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The astrometric position of a planet is directly comparable with the mean
places of stars as given in star catalogues*; it is conventionally referred at present
to the mean equinox and equator of 1950'0. Since a planet is a moving object,
the purely geometric position must be corrected for the effect of light-time; and
this corrected position must then be adjusted by the constant part E (see section zD)
of the aberrational reduction to apparent place, which is already included in the
mean places of the stars. There are several methods of calculating such an
astrometric ephemeris; the simplest in principle, and the one actually adopted,
is to form a geometric ephemeris for the mean equinox and equator of 1950'0,
then to apply the full corn~ction for planetary aberration, and finally to remove
annual aberration calculated from the same day numbers (G, D) as used for the
stars. An alternative method, to be used as a check, is to apply the correction for
light-time (based on the geocentric distance) to the heliocentric rectangular
coordinates before combination with those of the Sun, and to adjust the resulting
geocentric position for the E-terms of annual aberration. A third method, applic­
able particularly to the minor pla,nets, is to calculate apparent positions in t~e

normal way and to reduce these to " mean places referred to mean equinox and
equator of 1950'0" by the standard formulae applicable to the stars (see
section 5).

For both Pluto and the minor planets heliocentric equatorial rectangular
coordinates for mean equinox and equator of 1950'0 are available from the basic
numerical integrations; these are combined directly with the similar coordinates
of the Sun (Xs, Ys, Zs; see section B) to give geocentric rectangular coordinates
(gs, 7Js, ~s) from which the geometric spherical coordinates (as, Ss and Ll) are derived
by the standard formulae. The correction for planetary aberration is applied to
as. Ss in the usual way by:

-0.°°57683 Ll x instantaneous daily motion t
For Pluto, for which the geometric ephemeris is calculated at intervals of four days,
third differences must be taken into account in deriving the daily motions. The
effect of annual aberration is then removed by applying the corrections - (Ge + Dd)
to right ascension, and - (Ge' + Dd') to declination, where G, D are the
aberrational day numbers referred to the mean equinox and equator of
1950'0, and e, d, e', d' are the "star constants" appropriate to the geometric
positions.

For the minor planets columns headed" App. - Astr." are included in the
Ephemeris to provide a ready means of deriving the apparent from the astrometric
position; these are simply the star reductions from mean places for 1950'0 to
apparent places. They are actually calculated from the differences of the apparent
(aA, SA) and astrometric (aa, Sa) positions, each taken to one more decimal than
printed.

The ephemerides are given only during the period when these planets can
conveniently be observed, and are therefore omitted when the planets are within
about 40° of the Sun. :j:

*The star places must be corrected for proper motion and parallax.

to.ooS77S6 for 1972 onwards.
tThere are no omissions in A.E. 1972 onwards.
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whence

From example 4.20
From example 4.9

Example 40250 Astrometric position of Vesta
1960 March 7 at Oh EoTo

Xs -0°9891498 Ys -108175824 Zs -0°5957276
X s +0°9642376 Y s -002156864 Zil -000935404
gs -000249122 7]s -2·0332 688 Sil -0.6892680

Ll2 4°6098 930 LI = 201470661

cot as +0001225229 as 17h 57ffi 118°527
Correction for planetary aberration (see below) - I 0261
- annual aberration (see below) +0 °326

aR 17 57 10 °592

sin Ds = -0°32102784 Ds - 18° 43' 30"°34
Correction for planetary aberration (see below) +0 '34
- annual aberration (see below) + I 062

DR -18 43 28 °38

For the purpose of calculating the corrections for planetary aberration the following are
the daily motions in right ascension and declination, taken from AoEo, page 259:

a + 10180 86 8 -27"'5
These are to be multiplied by -000057 683 LI = -000123 8

d - 100558
d' +0 0 0°39

c -0'0130
c' +000898

For the calculation of annual aberration, the star constants c, d, c', d' are obtained as
(see section 5):

sin as -0·9999 sin Ds -0°3210
cos as = -000123 cos Ds +0°9471
tan Es = +0·4337 sec Dil + 1·0559

From basic calculations, referred to equinox 195°°0: e - 18"0244 D +4"0852

As a check, the equatorial rectangular coordinates xs, Ys, Zs are antedated by the
light-time OdoOl238 (the corrections to be applied are - 1342, + 570, +403 x. 10-7

) before
combination with X s, Ys, Zso The resulting values of gs, 7]s, Ss (distinguished by primes)
are:

S~ -006892 277

201470008
17h 57ffi 1080615

-0 0024

17 57 10 '591

- 18° 43' 28"°38
-0 000

7]~ -200332 118

LI'

aR

sin D~ = -0°3210 1884 D~

E-terms of aberration (see below)

g~ -000250 464

LI'2 = 4°6096 124
cot a~ = +0-0123 1864 a~

E-terms of stellar aberration (see below)
---------~

-18 43 28 '38

The E-terms are calculated from the formulae:
correction to a~ = cLle + dLlD where LIe
correction to D~ = c'Lle + d'LlD LID

For a further check the reduction from the apparent position to the astrometric position
is calculated directly. Since the" star constants" so far available are for the mean equinox
of 195000 they cannot be used for this calculation; independent day numbers are therefore
used for the reduction from apparent place to mean equinox of 1960000 From example 4°22:

h m s

aA 175746.112
G 43756

(G + a) 22 35 42
f +08 °5°7°

sin (G + a) -0°3596
tan D -0°3389

DA - 18° 43' 23"042
cos D +0°9471 i 7"°916

cos (G + a) +009331 g + 9"°435

H 18 58 58
(H + a) 12 56 44 sin (H + a) -002450

sec D + I ·0559
cos (H + a) -0:9695

sin D -0°3210
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cos am -0.011°3

Reductions from mean to apparent place are +08.258 and +7"·18, giving the position
referred to the mean equinox of 1960·0, and hence the astrometric position:

b m so, ,

aB 17 57 45.854 OB - 18 43 30·60
M - 30·734

N sin am tan om - - 4'529 N cos a.+ 2·21

aB 17 57 1°'591 OR - 18 43 28'39

which are in good agreement. For the reduction to 1950'0 the formulae and constants of
A.E., page So, are used:

M = -30"'734 N = -138'361 = -200"·42

Table 2.4 gives 358 and 0" for the approximate precession over 10 years so that to sufficient
precision:

am I7 h 57m 288'3 sin am -0·99994
Om - 18° 43' 31" tan Om -0'33897

The reductions "apparent - astrometric" are:

+ 358'52I and +4"'97

which agree with the values printed in A.E., page 259, and derived from the differences of
independently calculated apparent and. astrometric places.

In the ephemerides of the minor planets in the Ephemeris the dates on
which the lunar inequality in right ascension attains its numerical maxima are
specifically indicated.* The lunar inequality arises from the perturbations in the
Earth's orbit due to the presence of the Moon; observations of right ascension
at the times indicated consequently contribute the greatest weight, by this method,
to the determination of the mass of the Moon.

E. EPHEMERIDES OF OTHER MEMBERS OF THE SOLAR SYSTEM

Introduction

The ephemerides in the Ephemeris are restricted to those of the Sun and Moon,
the major planets and their principal satellites, and the four large minor planets;
limitations of space preclude the publication in this volume of data for the other
satellites, the other very numerous minor planets, the periodic comets, and the
recurrent meteor showers. Ephemerides of these other members of the solar
system are, however, provided annually in a number of publications, which, in
conjunction with the Ephemeris, provide for the whole solar system as completely
as the present state of our knowledge will allow.

Most of the minor planets are faint bodies which are observed mainly to
avoid mistaken identity; only a few have orbits of unusual theoretical interest or
of practical importance. Of these, (I) Ceres, (2) Pallas, (3) Juno, (4) Vesta are
widely observed for their value in correcting the fundamental systems of right
ascension and declination; the observations of these planets also lead to values of
the elements of the Earth's orbit, and of related quantities such as the mass of
Venus and the lunar inequality. A list of minor planets to be observed has been
proposed in the U.S.S.R. in connection with Zverev's Catalogue of Faint Stars
*These dates are not specifically indicated in A.E. 1972 onwards.
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(see section 5 and Trans. I.A. V., 9, 285, 1957); in addition to the four minor
planets already mentioned, the list contains (6) Hebe, (7) Iris, (II) Parthenope,
(18) Melpomene, (39) Laetitia, and (40) Harmonia. A further group of 13 minor
planets, which have been shown to be useful for the determination of the mass of
Jupiter, is under observation at Washington. Certain individual planets are
used for special investigations; thus, (433) Eros was used for the measurement of
the solar parallax, (5 I) Nemausa, which is always near the equator at opposition,
is useful in correcting the fundamental system of declinations, and (1566) Icarus,
whose perihelion is only 0019 astronomical units from the Sun, may afford a
correction to the mass of Mercury as well as an independent verification of the
general theory of relativity.

Although comets are also members of the solar system, most have orbits that
are so large that an assumption of parabolic motion enables observations to be
represented with sufficient precision. The term " periodic comets" is therefore
restricted to those comets whose periods are less than about two hundred years.
A few of these have orbits of small eccentricity, so that these comets may be
observed at every opposition; but most travel in highly eccentric orbits and are
visible only when they approach perihelion under favourable conditions. So
little is known about comets that observations of structure and brightness have an
intrinsic interest, and approximate ephemerides are published to facilitate obser­
vation. Accurate measurements of position at more than one perihelion passage
are, however, essential for the precise determination of an orbit; this in turn leads
to a study of the past history of the comet, and to a prediction of its return after
one or more revolutions.

The ephemerides of all comets, and of most of the minor planets, are calculated
by applying special perturbations to an osculating orbit, the coordinates of the body
being obtained at intervals of 20 or 40 days by numerical integration of the equations
of motion. Since the initial elements of the orbits are often poorly determined,
approximate methods are frequently used, and the resulting ephemerides are
intended solely as a guide to the planning of observations. The positions are
tabulated to Om·I in right ascension and to I' in declination, and are generally
referred to the equinox of 195°00. An essential feature of a search ephemeris is an
indication of the possible error in position that may arise from an error in the
mean motion; the ephemeris therefore contains the" variations" in right ascension
and declination. These are the approximate changes caused by a change of one
day in the time of perihelion passage, or, in the case of a minor planet, of 1° of
mean anomaly.

Minor planets

Orbital elements of some precision are known for more than 1600 mmor
planets, but this represents less than five per cent. of the total number that a
statistical estimate suggests as being within reach of modern instruments. The
majority of the orbits have a small inclination to the ecliptic and a small eccentricity,
and their semi-major axes lie between the limits 2·1 and 3.1 astronomical units.
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These orbital elements do not exhibit a random distribution and there are correla­
tions between them; the longitudes of perihelion, for example, show a tendency to
cluster about a mean value close to that of the perihelion of Jupiter's orbit. There
are a small number of exceptional orbits which do not lie within the main asteroidal
belt, and some of these, e.g., (1566) Icarus, have perihelia lying inside the orbits
of the Earth or even of Mercury; at the other extreme, the orbit of (944) Hidalgo
is of exceptional interest because of its high inclination of 4Zo and large aphelion
distance of 9.6 astronomical units.

The astrometric ephemerides of Ceres, Pallas, Juno, and Vesta (see sub­
section D) are immediately available for the comparison of observation with theory.
Ephemerides of comparable precision, but usually of the geometric form, have
been published at different times for (433) Eros, (173) Ino, (1566) Icarus, and (51)
Nemausa. Search ephemerides for all the known minor planets are given annually
in Ephemerides of the Minor Planets published as a co-operative effort by the
Institute of Theoretical Astronomy at Leningrad; a brief introduction in English
is given, but a full translation of the Russian text is also available. The volume
also contains the number, name (in Roman characters), and elements of the orbits
(equinox 1950'0), together with the magnitude at mean opposition distance. The
approximate ephemerides of all planets which are at opposition during the year are
tabulated in order of date of opposition. For economy of presentation, the data
are given in a coded form, as in the following example for the year 1960:

4 Vesta 6 ffi '2 21 0
1958

h m

June 5 19 08'5
6'4

-1953 2'168
- 20 40 -47 -8'15 19 02' I

8'9
25 18 53'2 -21 35

-55
+9 ffi '5

July
2 10'1 -56

-0'·85 18 43'1 -223 1
15 18 33'4

9'7 -23 24
-53

8'0 -48
25 18 25'4 -24 12 1'158

The top line gives number, name, magnitude, mean anomaly on the third
date, and the year of the last observation available at the time of calculation; it is
followed by geocentric positions for six standard Io-day dates for Oh V.T., with
first differences.. The date of opposition (day of month) is given to the left of the
right ascension column; and the last column gives, in order, and for the third
date: r, the variations in declination (in minutes of arc) and in right ascension
(in minutes of time) for 1

0 change in mean anomaly, the variation in declination for
a variation in right ascension of 1m , and finally Ll. The volume also gives more
extended ephemerides, usually for about zoo days, for those planets brighter than
magnitude I I,5, and these include magnitudes and phase angles for each date. The
magnitudes are calculated from a formula of the type m = g + 5 log r Ll, the constant
g being given in the table of elements.

Corrections to the orbital elements are continually being made, and much of
this work is now done on electronic computers, particularly those of the Minor
Planet Center at Cincinnati. This centre is responsible for a large share of the



132 EXPLANATORY SUPPLEMENT

minor planet calculations, and for the publication of the Minor Planet Circulars,
which contain the latest reports of observations, discoveries, orbits, and ephemerides.
The Minor Planet Center also provides a service whereby differential corrections
and perturbations are quickly and efficiently calculated; the resulting values are
supplied to the Astronomisches Rechen-Institut at Heidelberg and other collab­
orators, who calculate new elements and ephemerides for inclusion in the Russian
volume. Details of the methods used at Cincinnati are given in Minor Planet
Circulars 1504 to 1508. For results of similar work carried out in Leningrad and
other centres in the U.S.S.R., reference may be made to Astronomical Circulars of
the U.S.S.R., and to the Publications of the Pulkovo and Crimean Astrophysical
Observatories.

A list of mean photographic magnitudes of all numbered minor planets has
been prepared by T. Gehrels and has been published in Trans. I.A.U., 10, 305­
316, 1960.

Comets

Most of the known comets, travelling in large orbits of high eccentricity, are
visible only in the neighbourhood of perihelion, and only a small number, with
moderately eccentric orbits, can be seen at each opposition. Ephemerides of
comets are therefore restricted to the period of visibility of the short-period comets.
The early recovery of a comet is important in order to provide observations over as
long an arc as possible, and modern instruments can detect comets of magnitude
19or 20; this sets a limit to the period of the ephemeris, although positions are not
given if the comet is within 30° of the Sun. About fifty comets, having periods
less than 100 years, are kept under review, and the observations made at each
return to perihelion are used to correct the orbits. The improved elements may
then be used for the calculation of special perturbations and of a geometric
ephemeris for the next return. Details of perturbation methods, and all necessary
data, are given in the volume of Planetary Co-ordinates, 1960-1980.

Search ephemerides of this nature are published annually in The Handbook of
the British Astronomical Association. The positions, referred to equinox 1950,0,
are tabulated at intervals of 10 days, together with values of the heliocentric distance
r, the geocentric distance .1, the variations in right ascension and declination, and
the estimated magnitude m. The law of brightness of a comet differs from that
used for a minor planet, since a comet has some inherent light of its own which
varies with the heliocentric distance. Magnitude formulae are therefore expressed
in terms of a fourth or even sixth power of r:

fourth power m = g + 10 log r + 5 log .1
sixth power m = g + 15 log r + 5 log .1

Ephemerides for individual comets are also to be found in the publications of
various observatories. A more general distribution of cometary information,
including ephemerides, positions, orbits, and announcements of new discoveries,
is made in the I.A. U. Circulars, the Harvard Announcement Cards, the Astronomical
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Circulars of the U.S.S.R., the Nachrichtenblatt der Astronomischen Zentralstelle
(not issued after 1959), and the British Astronomical Association Circulars.

Meteors

The modern study of meteors has had considerable influence on upper­
atmosphere research as well as on the study of interplanetary matter and its
relationship with the solar corona and the zodiacal light. The number of meteors
falling on the Earth every 24 hours is estimated to be of the order of 1010, and these
are mainly sporadic meteors whose individual orbits and origin are unknown.
Statistical methods show, however, that meteoric dust has its origin in the solar
system, each individual particle travelling in an orbit about the Sun. The meteor
showers which are observed annually on fixed dates occur when the Earth intersects
a stream of meteoric dust. If the position of the apparent radiant of the meteors
is measured and if their velocity can be determined, then it is possible to calculate
the elements of the orbit of the stream; this has been achieved in a few cases by
photographic or radar methods. Some of these orbits resemble those of known
comets, while others, particularly those of the sporadic meteors, and the daylight
showers detected by radar methods, are very much smaller and show analogies
with the orbits of certain minor planets. In the absence of any precise knowledge
of the structure of meteor streams or of the elements of their orbits, the published
times and positions of the radiants of meteor showers are only approximate and are
based entirely on observatio~alexperience. Annual predictions of this kind, with
estimated hourly rates of visual meteors, are given in The Handbook of the British
Astronomical Association and in The Observer's Handbook of the Royal Astronomical
Society of Canada.

Artificial planets and satellites

The successful launching of artificial satellites and planets foreshadows the
addition to the solar system of essentially permanent m~mbers for which orbits
and ephemerides will be required. Before it is possible for such ephemerides to
be included in the Ephemeris, the objects must necessarily be in orbits entirely
outside the retarding influence of the Earth's atmosphere and must also have been
observed accurately over a long interval. The short periods and rapid motions
will make prediction uncertain and tabulation difficult. Ephemerides are first
required in advance to facilitate observation and then, to a higher precision, in
arrear for the interpretation and analysis of the observations. Such preliminary
ephemerides can best be provided by the special organizations set up in the launch­
ing countries and elsewhere. It is only after several years, and the accumulation
of a large number of accurate observations of position, that sufficiently precise
values of the elements and of the gravitational field of the Earth will enable
ephemerides to be constructed that can be used for a strict comparison of obser­
vation and theory.

Positional data may be required to relatively low precision for the interpretation
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of radio observations, even though the objects are not readily observable optically.
Similar data will be required for navigational purposes if the objects are readily
observable; in principle a single observation of position of a close Earth satellite,
relative to the star background, will then suffice to determine the observer's
position on the Earth's surface. Precise ephemerides will be necessary for use in
the determination of time; the rapid motions provide in principle efficient means
of determining the measure of the adopted time scale, to an observationai precision
many times that obtainable by observing the Moon. The adopted time scale will
theoretically be connected to ephemeris time by means of a linear relation; but the
coefficients of this relationship can only be determined by the analysis of a series
of observations of both Sun and object over a long interval--of the order of one
hundred years.

Because of the rapid development, no details are given here of the many
organizations concerned with the calculation of orbits and ephemerides of the
satellites and probes, none of which so far (January, 1960) satisfies the rigid
conditions of long life, freedom from atmospheric perturbations, and ready
observability, required to permit the calculation of a precise ephemeris. Similarly,
no references are given to the published orbits and ephemerides of existing objects.

F. EPHEMERIDES AT TRANSIT

Introduction

The Sun, Moon, and planets are most generally observed at transit with
meridian instruments, and it has been customary to include ephemerides at transit
to allow for the requirements of setting the instruments, reducing the observations,
and comparing observation with theory. Ephemerides at transit over the Green­
wich meridian were given in The Nautical Almanac up to and including 1959 and
over the Washington meridian in The American Ephemeris up to and including
1950. As from 1960, however, the fundamental ephemerides are tabulated in
terms of ephemeris time and it is not theoretically possible to give precise transit
ephemerides over particular meridians on the Earth. Moreover, it is more
satisfactory and little more difficult to compare observations directly with the
ephemeris for Oh E.T. rather than through the intermediary of a transit ephemeris.
For these reasons ephemerides at transit have been omitted from the Ephemeris as
from 1960.

Low-precision data at transit are required for planning observations, for
setting the instrument, and for reducing the observation to the geocentric apparent
place of the centre of the object. These data can be obtained fairly simply, as
shown below, for any individual observatory from the ephemerides for Oh E.T.;
and it is more satisfactory for the few observatories that observe on the meridian
to do this rather than that a single transit ephemeris over the ephemeris meridian,
which would itself need to be interpolated, be published.
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U. T. of Greenwich transit

The E.T. of ephemeris transit is given in the 011 ephemerides for the Moon
and planets, and can easily be deduced for the Sun from the tabulated equation of
time; as from 1965 the E.T. of ephemeris transit of the Sun will be tabulated in
the Ephemeris (see section 3B.4). The longitude of the ephemeris meridian,
expressed in time measure, is 1 '002738 LI T east of the Greenwich meridian, so
that the E.T. of transit over the Greenwich meridian is later than that of ephemeris
transit by:

LI T/( 1 - 0'99727 x rate of change of R.A.)
or, approximately:

LI T (1 + rate of change of R.A.)
if the right ascension is expressed in the same unit as the time interval. The
second term in the bracket has maxima of about 0'05 for the Moon, and about
0·01 for the planets (Mercury). The V.T. of Greenwich transit is therefore later
than the tabulated E.T. of ephemeris transit by the small quantity:

LI T x rate of change of R.A.
which may at present reach about 28, or 011 ,0005, for the Moon, but which is less
than OS'3 for the planets.

For the Sun the E.T. of ephemeris transit is simply 1211 - the equation of
time interpolated to the time of transit; the V.T. of Greenwich transit differs
only by +0'002738 LIT.

E. T. of transit over observer's meridian

The E.T. of transit over a meridian in west longitude'\ is obtained by interpol­
ating the E.T. of ephemeris transit to ephemeris longitude'\* = ,\ + 1.002738 Ll T,
that is to the fraction ,\*r towards the next following E.T. of transit, where ,\*r is
>.* expressed as a fraction of a revolution. Since the interval between consecutive
transits is always about 2411 (25 11 for the Moon), an error in the estimate of Ll T
affects directly the E.T. of transit. It is therefore interesting to examine the
precision required in E.T. in order to interpolate the ephemerides to full tabular
precision; this is given in the table below.

Tabular precision Precision of E.T.
Body a 8 transit required

Sun 0'01 o· I 3
s

Moon 0'001 0·01 0"'0001 0 11 '000003

"
(0'01 0·1 '00003)

Inner planets 0·01 0·1 IS IS

Outer planets 0·001 0·01 IS IS

" "
(0'01 O' I I" 7S) (Jupiter)

Minor planets 0·01 o· I IS 3"

Ll T is known several years in advance to barely sufficient accuracy, but (except
for the Moon) the E.T. of ephemeris transit is given to sufficient precision to
enable precise transit ephemerides to be formed when a reliable estimate of LI T
is available.
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U. T. of transit over observer's meridian

The V.T. of transit over a meridian in west longitude .\ is:

E.T. of ephemeris transit - LJT + .\*r (24h + d)
+ second-difference correction

where d is the excess over 24h of the difference to the next following (for west
longitudes) transit. This may be written:

E.T. of ephemeris transit + 0'002738 LJT + .\ + .\*rd
+ second-difference correction

It is to be noted that this time depends only slightly on LJ T. This is equivalent
to interpolating E.T. of ephemeris transit to longitude .\ (not .\*) and applying the
small correction:

(I '002738 LJ Td) d + 0'002738 LJ T

in which LJ Td is LJ T expressed as a fraction of a day; this correction can generally
be ignored, except possibly for the Moon.

The local mean time is V.T. - .\ and is obtained by omitting the term" +.\ "
in the above expression for V.T. ; this is equivalent to interpolating the tabular
E.T. of ephemeris transit, ignoring the change of day or the increment of 24h , to
longitude.\* (not .\), and applying the small correction +0.002738 LJT. The local
mean time can be converted to standard time by the application of the difference of
longitude from the standard meridian.

Approximate transit ephemerides

The errors introduced by linear interpolation, ignoring second and higher
differences, are largest for Mercury, for which they may reach 6s in right ascension
and I' in declination; but for Venus they are only about IS and 0'· I respectively,
and are less for the Sun and the other planets. It is therefore suggested that for
the purpose of planning observations and setting instruments linear interpolation
to the E.T. of local transit will suffice for the Sun and planets, with perhaps an
approximate allowance for second differences for Mercury (when observable).
For a precision of about IS in right ascension and 0"1 in declination (say 3s and 0"5
for Mercury) E.T. need be known only to the nearest Sm, or od,003. The inter­
polating factor in the Oh ephemerides is simply the fraction of the day, as.given by
the E.T. of ephemeris transit; this can be formed, to Od·OO I for convenience, at a
wide interval and the first-difference corrections to the Oh values of right
ascension and declination calculated at the same interval. The corrections
can then he subtabulated and applied to the Oh values to provide the approximate
ephemerides required. These calculations are best done systematically for each
observatory.

For the Moon the corresponding precision of E.T. is about Oh.003 or iSS, but
Oh'O I will probably suffice; an allowance for LJ T is necessary but no great precision
is required, and for any observatory a fixed value of .\* can be used for many years.
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If the difference between the E.T. of upper (D) transit and that of the preceding or
following lower (L) transit is I2h + d,· then the increment to be applied to the
tabular E.T. of the upper transit, to give (to this precision) the E.T. of upper

transit over the local meridian, is;"* + ;"*hd, where ;"*h is expressed in hours. The
12

day and hour is then used to select the appropriate entry in the hourly ephemeris,
and the fraction of the hour used for linear interpolation. Such an approximate
ephemeris would require correction for parallax in declination (as well as for
refraction) before being used for the setting of instruments.

If only the sidereal time of meridian passage is required it can be obtained
from the D.T. of transit by means of the tabular relationship between S.T. and
D.T. given in A.E., pages 10-17. The precision will be the same as that to which
the V.T. of transit is known, namely 18 for the planets and Oh'OOOI or 08 '4 for the
Moon; to this precision second differences are required in interpolation for the
Moon and Mercury. The local mean time of transit (t) can be converted directly
to local apparent sidereal time as:

Greenwich apparent sidereal time at t + 0'002738 ;..

where the variation in the equation of the equinoxes is neglected and the term
0.002738;" is the reduction for longitude tabulated in A.E., Table IX. It should
be noticed that the small term +0 '002738 LJ T in the expression for the local mean
time of transit can be incorporated by replacing;" by ;"*. To the precision of
about 18 considered here the local apparent sidereal time can be calculated directly
from the local mean time of transit, or from the D.T. of transit, by means 6f a
linear relation of the form a + bt.

For observations of the limbs of the Sun and Moon approximate values of the
semi-diameters in arc and in time (sidereal time of semi-diameter passing the
meridian) are also required.

Reduction of observations

Apart from instrumental factors, corrections for the following may be
necessary before an observation of the limb of the Sun, Moon, or planet at transit
can be compared with the apparent geocentric position of its centre: refraction,
parallax, vertical semi-diameter, sidereal time of semi-diameter passing the
meridian, and phase or defective illumination of the limb. Refraction and parallax,
considered in sections 2E and 2F, affect declination only and are not further dealt
with here, except in so far as the equatorial horizontal parallax at transit is required.
Corrections for semi-diameter must be made for both right ascension (or time of
transit) and declination, unless both limbs are observed and the mean taken; in
any case values of these semi-diameters at transit are required.

The following table gives approximately the precision required in E.T. of
transit in order to obtain the horizontal parallax (H.P.) and semi-diameters (S.D.)
sufficiently precisely for the reduction of observations.
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Body
Precision required
S.D. H.P.

Precision required
inE.T.

Sun
Moon

"Inner planets
Ou.ter planets

0'1 or 0'C1

0'01 0·001

0·1 0'01

0·1 0'01

0'01 0'001

0·1

0·01

0·1

o· I

0·01

I h

5" or Oh' 002

1m or Oh' 02

5h

5h

There is thus never any difficulty in determining the appropriate times and
interpolating factors, though an estimate of L1 T is necessary for the Moon. For
the Sun and planets the interpolations of the horizontal parallax and the semi- .
diameters are trivial, but second differences must be used for the Moon. Ephem­
erides can be systematically prepared by observatories engaged in meridian
observations.

The semi-diameter and horizontal parallax are merely the values at Oh

interpolated to the time of transit. The sidereal time of the semi-diameter
passing the meridian is to be calculated from the formula:

equatorial S.D. x sec (declination at transit) x S

where S = I
I - L1as/3609·86

and L1aS is the hourly rate of change of the right ascension in seconds at the time of
transit. If the equatorial semi-diameter is expressed in seconds of arc it may be
converted to seconds of time by dividing by IS. For all bodies except the Moon S
may be expanded as:

S = I + Llas/3609·86

and an approximate value used for L1as. But for the Moon it is necessary to use
both the exact formula and the value of L1as interpolated to the time of transit.

The parallax correction L10 to be applied to the observed declination 0 is
given (section zF) by:

p sin TT sin (ef>' - 00)
tan L10

I - p sin TT cos (ef>' - 00)

where TT, 00 are the geocentric horizontal parallax and declination, and p, ef>' are the
geocentric radiu~ and latitude of the observer.

If.o is known, then L10 is given by:

sin L10 = P sin TT sin (ef>' - 0)
or, with an error not exceeding °If '04,

L10 = 0'999988 p TT sin (ef>' '-- 0)

The apparent topocentric semi-diameter is always greater than the geocentric
value since the observer must be closer to the body observed; it is, however, only
for the Moon that this augmentation is significant. Clearly it does not affect the
sidereal time of the semi-diameter passing the meridian, but it must be taken into
account for the vertical semi-diameter. It may most easily be allowed for by
combining it with the correction for parallax (see section zF) by applying the
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parallax correction directly to the observed northern or southern limb. The
augmented semi-diameter at transit may however be calculated directly from the
rigorous equations of section 2F, putting h = ho = o. The resulting expression
for G, by which the geocentric semi-diameter is to be multiplied to give the
topocentric value, may be used in differ.ent forms according to requir~ments:

G = sin (1)' - S) or cos (S - So)
sin (1)' - So) J - P sin 7T cos (1)' - So)

or, with adequate accuracy for the Moon:

G = 1 + P sin 7T cos (1)' - So) + (p sin 7T)2 { 1 - ! sin2 (1)' - So)} +
It may be verified that the difference between the parallax corrections for the
centre and limb is the augmentation.

For the planets augmentation is negligible and the parallax correction may
be simplified to:

LIS = P 7T sin (1)' - S)
where 1>' - S is the zenith distance. However, for Jupiter and Saturn the disk of
the planet is not circular, and allowance must be made both for the ellipticity of
the planet and the orientation of the axis of rotation. If P is the position angle of
the axis of rotation (see section II) the apparent vertical and horizontal semi­
diameters at transit are given approximately by:

vertical S.D. (polar S.D.) x (1 - e2 sin2 P)-~

horizontal S.D.;= (polar S.D.) x (1 - e2 cos2 P)-~

= (equatorial S.D.) x (1 - e2 sin2 P)+~

where e is the eccentricity and the inclination of the axis towards the observer is
neglected. For Jupiter and Saturn e2 = 0.129 and 0·199, and P may reach 25°
and 7°. The correcting factor (1 - e2 sin2 P)-! can be taken as unity for Saturn
but may reach an extreme of 1 °01 for Jupiter and should strictly be taken into
account. The following are the factors by which the polar semi-diameter,
tabulated in the Ephemeris, should be multiplied to give the apparent vertical and
horizontal semi-diameters; the last line of the table gives the factors by which the
sidereal time of semi-diameter crossing the meridian, calculated as above, should
be multiplied:

Jupiter Saturn
± P 0° S° 10° IS° 20° 25°

Vertical 1 0000 1°001 1°002 1·004 1 0008 1·012 1°000

Horizontal 10071 10071 1 0069 1 0066 1 0062 10058 1 0117

Time of crossing 1°000 0°999 0°998 0°996 0°992 0°988 1 0000

A correcting factor should also be applied to measurements of Saturn's rings;
this is generally necessary only when the rings are open and the north or soud.
limb of the planet is hidden from view. The eccentricity of the rings is given by:

. e2 = (a 2 _ b2)/a2

where a, b are the axes tabulated in A.E., pages 374 and 375.* The vertical semi­
diameter then becomes:

! b (1 - e2 sin2P)-~
and may reach 1°01 1 times the tabulated value.
*Pages 410 and 41 I in A.E. 19720
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If the limb of the Moon or of a planet is not fully illuminated, a correction for
phase can in some cases be applied. For the planets (see section I I) the corrections
may be incorporated with those for semi-diameter by using, in place of the full
values:

sidereal time of S.D. passing meridian x (I - t sin2 i sin2 e)
vertical S.D. x (I - t sin2 icos2 e)

in which i, the angle between the Earth and Sun as seen from the planet, is less
than 90° (i.e. the planet is gibbous) and e is the position angle of the mid-point of
the bright limb tabulated in the Ephemeris for the inner planets. For Mars,
Jupiter, and Saturn the position angle of the greatest defect of illumination is
tabulated in the Ephemeris, and differs from e by 180°; it may therefore be used
in place of e in the above expressions.

For Mercury and Venus a correction in declination may also be applied when
the planets are in the crescent phase. This occurs when i is greater than 90°, and
the defective illumination of the north or south limb reduces the tabulated serni­
diameter to:

semi-diameter x sin e
where sin e is taken as positive in all cases.

The corrections for phase may also be applied directly, especially if both
limbs are observed and the mean taken; they may be deduced from the formulae
above.

Similar formulae apply to the Moon, but the more rapidly changing phases
make it necessary to specify the form of correction more exactly. Limb I (preced­
ing or west) is illuminated between new moon and full moon, and limb II (following
or east) is illuminated between full moon and new moon. A correction for
defective illumination of the non-illuminated limb may be applied near full moon,
the difference of right ascensions of the Sun and Moon at transit being usually
limited to the range II h 40m to I2h 20m • The appropriate reduction to the right
ascension or time of transit of the centre of the Moon is then:

sidereal time of S.D. passing the meridian x { I - t sin2 (a - ao) cos2 °0 }

where °0 is the Sun's declination and a - ao is the difference between the right
ascensions of the Moon and the Sun; the defective illumination is:

semi-diameter x t sin2 (a - ao) cos2 °0

The corresponding modified vertical semi-diameter for a non-illuminated
north or south limb, for which a corrfction for defective illumination can be made
in certain circumstances, is

semi-diameter x (I - t sin2 if;)
where if; is the altitude of the Sun above the horizon as seen from the north point
of the Moon's disk and is given by:

sin if; = sin °0 cos °- cos °0 sin °cos (a - ao)
or, with the restricted range of a - ao noted.above:

if; = °0 + °= °0 + 00 - Llo
where Llo is the parallax correction. If if; is positive the north limb is illuminated
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and the correction for defective illumination is applied to the south limb, and
vice versa. This procedure should not be used if if; exceeds about 3°. The defec­
tive illumination in declination is:

semi-diameter x t sin2 if;

,\,\,11 = °'4281 4
"2,\,*11 = °'42898

,\, = + 5 11 08m 158'75 = 511'13771
,\,* = ,\, + 1'°°2738 LIT = 511 '14774

Example 4.26. The transit of the Moon at Washington
1960 August 7

The coordinates of Washington are taken from example 2.1 and LIT is assumed to
be +368.

Geographic longitude
Ephemeris longitude

E.T. of local transit. From A.E., page 61 :
Ephemeris upper transit occurs at August 6d 23 11 '9333
Interpolation for ,\,* gives August 7d °5 11 '29°3 = 7d'2204

V.T. of local transit may be obtained from U.T. = E.T. - LIT
or from interpolation of ephemeris transit for '\', giving:

The correction (1'°°2738 LIT in days) d + °'°°2738 LIT
. = 0'00042 x 0 11 '96 + 0 11 '°°°°3

= 511 '28°3
511 '2798

7d 0011 .1426
21 11 02m °38.8

+ 8 33'4
+ I '4

__ +50 ·6
2 I II 29'2

Interpolation of the ephemeris to E.T. of local transit gives:

A.E., page 122. Approximate right ascension 21 11 11m 298'1
Approximate declination -13031' 32"

A.E., page 61. Semi-diameter 16' 32"'01 = 992"'01
Equatorial horizontal parallax 60' 40".85

Local sidereal time of transit.

Local mean time of transit = 1960 August
Greenwich apparent sidereal time at Oil

Interval of 0 11 '1426
Increment (A.E., Table IX)
Reduction for longitude A(A.E., Table IX)

Sidereal time of semi-diameter passing the meridian.

A.E., page 122. Lla interpolated to time of transit 1498.815
S = 1/(1 - Lla8/3609·86) = 1'043299
T~ sec 0 = °'°685 67
Semi-diameter, S.D. = 992"'01
Sidereal time of S.D. passing the meridian = 708'964

The error introduced by using for Lla the tabulated first difference (= 1498'761) would
amount in this example to 08'°01, but might reach 08'°°5 in extreme cases.

Parallax.

+380 43' 53"
-13 31 32
+52 15 25

p
7T

°'9986 9 1
60' 40"·85

sin (<p' - 00) +0'7907 64
cos (<p' - 00) +0·6121 21

A - p sin 7T sin (<p' - 00) +0'0139390
B == p sin 7T cos (~' - 00) +0'0107 900

sin 7T °'°176 504
p sin 7T 0'0176 273

(p sin 7T)2 0'0003 107

tan Llo = AI(1 - B)
Llo

o = 00 - Llo

+0'0140910
+ 48/26"'3
- 140 19/ 58"



G. COMPARISON OF OBSERVATION WITH THEORY

Defective illumination.

Transit occurs 3h after full moon, therefore the east limb (limb II) is illuminated.

n - no 12h 02m SIB
sin (a - no) -0'0124 sin So +0'2828 sin 0 -0'2476
cos (n - no) -0'9999 cos So +0'9592 cos S +0'9689

Defective illumination of west limb = t sin2 (n - no) cos2 00 x S.D. = 0"'005

sin t/J = +0'0365 (alternatively, t/J = 16° 26' - 14° 20' = 2° 06', and sin t/J = +0'0366)

Since t/J is positive, the north limb is illuminated, and the correction is to the south limb.

Defective illumination of south limb = t sin2 t/J x S.D. = 0".66

+0'7993 09
+0·600920

1'010806

9h 08m 38B
+ 16° 25' 41 II

G
Cj(1 - B) 1'010808
I + B + D (p sin 17)21'010809

0'9999 01
+0'0620 38

C == cos LIS
D == I - ~ sin2 (<p' - 00)

A.E., page 27. At transit, Sun's right ascension
Sun's declination

The ephemerides of the Sun, Moon, and planets in the Ephemeris are intended
to form a consistent basis for the comparison of observation with theory. Within
the limitations of the theories on which they are based, they only depart from the
actual positions systematically through errors in the constants adopted for their
orbital elements and masses; they are calculated to a precision such that the
inevitable random errors due to roundings at various stages are quite negligible
compared to the random errors of observation. However, the departures from
the actual positions may in some cases be quite large: this is particularly so for
the minor planets, which may be as much as 5" away from the ephemeris
positions, and for Pluto, whose right ascension is now (1960) about 0 8 '5 greater
than the tabular values. These departures are systematic, and do not affect the
comparison; but corrections to the ephemerides may be necessary when extreme
precision, such as for planetary occultations, is required.

In general the ephemerides consist of apparent positions referred to the true
equinox of date, so that they are as directly comparable with observation as is
practicable. The adopted procedure is to apply such corrections as are necessary
to the observed position, which is then compared directly with the ephemeris
position, interpolated to the time (E.T., or, more strictly, V.T. with an approxi­
mate correction to E.T.) of observation. In the case of meridian observations,
corrections may have to be applied for instrumental errors, refraction (section 2E),

EXPLANATORY SUPPLEMENT

Augmentation.

<p' +38°43' 53" sinW - S)
S - 14 19 58 cos (<p' - 0)

<p' - S + 53 03 51 G = sin W - S)jsin W - So)

Geocentric semi-diameter 992"'01 = 16' 32"'01
Topocentric semi-diameter 1002"'73 = 16' 42"'73

The two alternative methods give similar results:
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parallax (section 2F), semi-diameter and defective illumination (sub-section F),
diurnal aberration (section 2D), and . latitude variation, if not included with
parallax; when thus corrected they are directly comparable with the ephemerides.

The observed positions of faint objects, particularly of those that cannot
readily be observed on the meridian, are found by differential methods in which
the differences between the coordinates of the moving object and those of nearby
stars are measured. In the reduction· of a photographic plate the effects of
differential refraction and aberration are allowed for in the plate constants, and
the coordinates of the moving object are obtained directly in the same form as
those of the reference stars and referred to the same equinox and equator. Since
the positions of the reference stars are usually mean places taken from a funda­
mental catalogue, the observed position is an astrometric position; when reduced
to the standard equinox of 1950'0 (if not already for that equinox) it is directly
comparable with the astrometric ephemeris. Differential precession and nutation
do not enter in the reduction of a photographic plate, but a correction for parallax
must be applied to the observed position.

A micrometer measure of the position of a moving object with respect to a
neighbouring star is sometimes made visually, and this also leads to a position
that is comparable with an astrometric ephemeris. Corrections are strictly
necessary, though often negligible in practice, for the differential variations in
refraction, aberration, pJ;ecession, and nutation between the positions of the star
and the.moving object; they should be applied to the position of the star together
with the differences of the coordinates.

In all cases it is desirable to apply corrections to the observed position so
that it is directly comparable with the ephemeris; but in general the residuals
are so small that corrections can be applied, with reversed signs, to the ephemeris
position if for some reason this is more convenient.

The ephemerides are tabulated in terms of E.T. and the observations are made
in terms of D.T. Generally LJT (= E.T. - D.T.) is one of the unknowns to
be determined by analysis of the residuals. For relatively slow-moving objects
,1T may be sufficiently well known for the D.T. of observation to be corrected
to E.T. For fast-moving objects, such as the Moon, for which LJ T is the principal
unknown, the residuals themselves can be expressed in time by finding, by inverse
interpolation in the ephemeris, the E.T. corresponding to the observed coordinate;
,1T then enters the equations of condition with coefficient unity.

The differences between the observed and calculated positions are normally
expressed in the form of 0 - C (observed - computed) residuals in LJa cos S
and LIS. Over an interval in which the effect of errors in the adopted constants
varies linearly with the time, a number of such residuals can be combined by
taking their weighted mean to give a mean residual applicable to the averaglo time
of observation. This is then equated to the linear combination of the errors in
the unknowns; from these equations of condition, each with its appropriate
weight, normal equations are formed and solved for the unknowns.
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When neither an apparent nor an astrometric ephemeris is available, as for
minor planets other than those given in the Ephemeris, the comparison may
have to be made with a geometric ephemeris or even with a heliocentric geometric
ephemeris. The geometric ephemeris has to be corrected for the effect of light­
time (T) by interpolating it to time tu - T + LJT where tu is the observed V.T.
of observation; in most cases this will be an adequately precise correction for
aberration, but a more accurate procedure may be used if necessary (see
section 2D).

For geocentric ephemerides 0 - C residuals can be formed as in the following
table; LJ T may be either a definitive value or an approximation to the actual value
to be determined from the observations.

Observed position
at U.T. = tu

apparent

astrometric

Corrections to be applied Ephemeris Interpolated
position to E.T.

apparent tu + LJT
- (precession and nutation; astrometric tu + LJT

annual aberration)
- (precession and nutation) geometric tu - T + LIT
+ (precession and nutation; apparent tu + LJT

annual aberration)
astrometric tu + LJT

+ (annual aberration) geometric tu-T+LlT

The positive sense of the corrections is that adopted in reducing star positions
from mean to apparent place; the positive correction for precession and nutation
is that from the mean equinox of 1950'0 (or the mean equinox to which the
astrometric or geometric ephemerides are referred) to the true equinox of date.

When a geocentric ephemeris is not available the following procedure may be
used. The Sun's equatorial rectangular coordinates X, Y, Z for E.T. = tu + LIT

are combined geometrically with the (ephemeris) heliocentric rectangular co­
ordinates x, y, z of the moving object, referred to the same equinox, but for
E.T. = tu - T + LJ T. The resulting right ascension and declination differ from
those in an astrometric ephemeris by the small E-terms of aberration (see section
2D), and are thus not directly comparable with an observed astrometric position;
even when referred to the true equinox of date they are not directly comparable
with an observed apparent position. The 0 - C residuals are thus formed as:

{
b d . 1 {ePhemeris position derived from E-terms }

o serve astrometnc _ X Y Z E T = AT + f. . V T ' , at .. tu + "'" 0posltlOn at . . = tUj .
and x, y, z at E.T. = tu - T + LJ T aberratlOn

The E-terms of aberration, in the sense implied above, are approximately:

in right ascension -0"'341 sin (II h ISm + a) sec 0
in declination -0"'341 cos (II h ISm + a) sin 0 - 0"'029 cos 0

The small errors in this procedure are usually negligible.

The form of the equations of condition and their solution are not discussed
here.



5. MEAN AND APPARENT PLACES OF STARS

A. MEAN PLACES AND STAR CATALOGUES

The mean place of a star is its heliocentric position referred to a specified
mean equinox and equator, generally that of the beginning of a Besselian solar
year. At the stated epoch of observation (which is almost always reduced in
star catalogues to that of the reference system) it represents the geometric direction
of the star, modified conventionally by:

(a) the effect of secular aberration, which is unknown;
(b) the E-terms of aberration (see section 2D).

In all star catalogues, both observed and fundamental, the E-terms of
aberration are included in the mean places. The rigorous calculation of a mean
place for any other equinox would therefore necessitate the removal of the E-terms
before applying precession (and proper motion); and the correct E-terms, cal­
culated afresh for the new position and epoch, would then be put back in the mean
place. Such rigorous methods need only be used in the case of a close circum­
polar star for which precession is applied over a long period of time, and par­
ticularly where the resulting mean place is to be used in the formation of a
fundamental catalogue, or in the study of proper motions.

In normal cases, where the mean place is to be derived from a fundamental
catalogue, it is sufficiently accurate to apply precession to the catalogue mean
place, the E-terms being regarded as constant. The principal errors introduced
by this procedure are: (I) errors in the E-terms caused by the variation of the
elements of the Earth's orbit, and (2) cross-terms involving precession and the
E-terms. The errors are similar in form, but opposite in sign, and the total
error is therefore small. In the region of the pole, the maximum centennial errors
arising in this way are:

in cos S Lla (I) 0 8 '0006

in LIS (I) 0"'009

(2) OS·oooS
(2) 0"'008

Total 0 8 '0001

Total 0"'002

Thus the simple procedure is adequate in all cases where the time interval is not
too long.

Mean places of stars are in fact deduced from observed apparent positions
by removing the effects of annual parallax and stellar aberration, allowing where

145
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necessary for proper motion and orbital motion, and transforming to the adopted
mean equinox by removing precession and nutation from that mean equinox
to the true equinox of date. They are therefore to be regarded as fundamental
reference data, with no simple geometric significance, in which observations
at different times and from different places may be combined and from which
the apparent positions of stars may conveniently be derived. No attempt is made
to correct for the proper motion or any orbital motion of the star during the time
taken by light to travel from it; since the light-times differ from star to star, the
directions of stars represented by their mean places for a particular epoch do not
form a consistent pattern at that or at any other epoch.

For double and multiple systems mean places generally refer to the centre
of gravity of the system, but are sometimes given for individual stars of a system.
The mean places of a star for different epochs but the same mean equinox differ
only in respect of the proper motion of the star (and exceptionally for orbital
motion) during the interval. In reducing the mean place of a star from the mean
equinox and epoch (to) of one date to another (t), proper motion (referred to the
mean equinox of to) during the interval (t - to) should first be applied, to be
followed by the reduction for precession. Rigorous formulae are given in section
zB for this reduction, but as there shown the corrections may be expanded in a
power series in the time interval (t - to); the coefficients in such series may be
calculated from the formulae in section zB or taken, for certain specified epochs,
from special tables such as Peters' 'Prazessionstafeln fur das Aquinoktium 1950'°'
(Veroffentlichungen des Astronomischen Rechen-Instituts zu Berlin-Dahlem, no. 50,
1934). The coefficients of (t - to) and (t - to)2 are known as the annual and
secular terms of precession. Similar quantities are given in star catalogues, but
these generally include the effect of proper motion, and are then known as annual
variation and secular variation respectively; in some cases the coefficient of the
third term is also published. It is to be noted that there has been in the past
some confusion of practice in that some catalogues tabulate the coefficient of
(t - to)2, while others give double this value; in order to avoid this confusion the
International Astronomical Union has recommended (Trans. I.A.U., 6, 336, 1939)
that the exact form of precession terms should be made clear by a formula
printed at the foot of each page.

Most star catalogUES are observational catalogues published by individual
observatories. The mean places which they contain are derived from observations
made at the one observatory and may contain systematic errors peculiar to the
instruments and observing methods used; the observations are reduced to a
common mean equinox and combined to give a mean place for the mean epoch of
observation; available proper motions may be used to reduce the positions to a
common epoch. In contrast, fundamental catalogues are derived by the com­
bination of all available observational catalogues, which are collated to provide
indications of systematic, as well as accidental, error; positions and derived proper
motions are usually given for the epoch of a standard mean equinox such as that
of 1950-0.
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Example 5.1. Mean places of a Centaurifor 196°'° and 1961'0

The mean place and centennial proper motion of a Centauri for 1950'0 are given in
FK3 (no. 538) together with the centennial variations as follows:

b m s 0 , .
ao 14 36 11'309 00 60 37 49'26
da

+ 4°8'006
do

- 1485.80
dT dT
d2a

+ 7'398
d20

+
dP dP 34'75

fLa 48 .89° fL8 + 7°'76
dfLa

°'7 16
dfL8

3'37dT dT

The transformation to an equinox t years after 1950'0 is made through:
t da (t )2 d2a

at = ao + 100 dT + -} 100 dP

t dfL
fL. = fLo + 100 dT

where t is in tropical years and T in tropical centuries of 100 tropical years, with similar
expressions for the declination. The value of dfL/dT used in the last equation should
strictly be that for the middle of the interval, and this can be derived, if necessary, from
the values given in FK3.

196°'0 1961'0 196°'° 1961'0
b m s o , • .

Uo 14 36 11'3°9 11'3°9 00 - 60 37 49'26 37 49'26
( t ) da + 4°·8006 H·8807 ( t ) do 28'580 243'438100 dT 100 dT

- 2

( t yd
2
a °'°448 ( t Yd

2
0!- - + 0'°37° t - - + 0'174 0'210100 dT2 100 dT2

U 14 36 52'1466 56 '2345 0 - 60 40 17·666 40 32 '488. s . .
!Lao - °'4889° °'4889° fL80 + °'7°76 + °'7°76

(t)d!La
- 0'0°°72 0'°°°79 (t)dfL8

- °'°°34 - °'°°37100 dT 100 dT
!La - °'48962 0'48969 fL8 + °'7°42 + 0'7°39

Lists of star catalogues for the eighteenth and nineteenth centuries are given
in the volumes of Geschichte des Fixsternhimmels (Karlsruhe; 1922-1957; Berlin
1952-1959). A further list for the period 1900-1925 is given in Index der Sternorter
19°0-1925 (Bergedorf, 1928). Foremost among the observational catalogues in
these lists are those compiled under the auspices of the Astronomische Gesellschaft
(A. G.) as a co-operative effort by a number of observatories. This series of volumes
was begun in 1863, and gives the positions of all stars shown in the Bonn
Durchmusterung (B. D.) from declination +800 to -180 to magnitude 9'0. The
observations made by each observatory were confined to a narrow zone of declina­
tions best suited to the latitude of the observatory. In more recent times a
re-observation of the A.G. zones has been undertaken by photography, and the
new positions are given in:

AGK2 'Zweiter Katalog der Astronomischen Gesellschaft fUr das Aquinoktium
1950'; there are ten volumes covering declinations +900 to +200 (Hamberg­
Bergedorf, 1951-1954), and five volumes covering declinations +200 to -2·
(Bonn, 1957-1958).
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Catalogues of the zones +50° to +60° and - 30° to +30° are published
in Transactions of the Astronomical Observatory of Yale University (New
Haven, 1925 onwards); the positions are also for equinox 1950'0.

Among modern fundamental catalogues, the following are representative:

'General catalogue of 33342 stars for the epoch 1950" in 5 volumes,
Washington, 1937. This gives positions and proper motions of all stars brighter
than magnitude 7, with some thousands of fainter stars.

, Dritter Fundamentalkatalog des Berliner Astronomischen Jahrbuchs'
I Teil: Veroffentlichungen des Astronomischen Rechen-Instituts, no. 54, 1937.
This gives positions for 1925'° and 1950'0 of the 925 stars of Auwers, 'Neue
Fundarnentalkatalog' (19 I 0).
II Teil: Abhandlungen der Preussischen Akademie der Wissenschaften, Phys.-Math.
Klasse, no. 3, 1938. This gives the positions of 666 additional stars for equinox

195°'°·

'Fourth Fundamental Catalogue (FK4), , Veroffentlichungen des Astrono­
mischen Rechen-Instituts, Heidelberg, no. 10, 1963. This resulted from a revision
of FK3; the re-examination of the available observations showed that no change
in the equinox was justified.

, Catalog of 5268 standard stars, 1950'0, based on the normal system N30',
Astronomical Papers of the American Ephemeris, 13, part III, 1952. The positions
are derived from more than 70 catalogues with epochs of observation between
1917 and 1949.

'Catalog of 3539 zodiacal stars for the equinox 1950'0', Astronomical Papers
of the American Ephemeris, 10, part II, 1940. This gives positions of all stars
to magnitude 7 in the zodiacal zone with many fainter ones, and is intended
for use in occultation work; it is based on 90 catalogues, and positions are reduced
to the FK3 system.

PFKSZ 'A preliminary general catalogue of fundamental faint stars between
declinations +90° and - 20°', M. S. Zverev and D. D. Polozhentsev, Publications
of the Main Astronomical Observatory of Pulkovo, 72, 1958.

ZC

GC

148

Yale

In the Ephemeris, pages 288 to 298 in 1960~ the mean places of 1078 stars
are tabulated for the beginning of the Besselian year, to a precision of OS'1 in right
ascension and I" in declination; this is adequate for purposes of identification
and setting of telescopes. The list includes all bright stars to a limiting magnitude
of 4'75, excepting 8 stars within 30" of a brighter tabulated star; variable stars are
included if their maxima are brighter than magnitude 4'7. The positions are
derived from GC, and are tabulated in order of mean right ascension for the
equinox and epoch of 1950'0. Approximate values of the changes due to p"recession
in one year are given in table 2+ The three-letter abbreviations that are used
for the constellation names are as recommended by the International Astronomical
Union arid are given in section 18. Some stars are identified by their numbers
in the following catalogues: Bonn Durchmusterung (north of - 23°), Cordoba
Durchmusterung (south of - 23°), Bradley (Br.), Piazzi (Pi.), Gould (G.), and
Hevelius (H.). The magnitude (to the nearest tenth except for variable stars)
and spectral type of each star are gj'len in the list.
*Pages 332 to 342 in A.E. 1972 onwards.

- - - - - - -- -- --- - -- -- _. .---- ---- - -' -- - -
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B. APPARENT PLACES

The apparent place of a star is the geocentric position, referred to the true
equinox and equator of date, in which the star would be observed. It differs
from the position in which the star is actually observed by the effects of refraction
and diurnal aberration (see section 2D); geocentric parallax is, of course, negligible.
An observed position is therefore directly comparable with an apparent place after
correction for instrumental errors, and for refraction (section 2E) and diurnal
aberration (section 2D) where appropriate.

No apparent places of stars are provided in the Ephemeris since they are
available in Apparent Places of Fundamental Stars. This contains the positions
of 1535 stars taken from FK3; for each upper transit at Greenwich for the 52
circumpolar stars with declinations greater than ±81 0

; and for every tenth upper
transit for the remaining 1483 stars. The positions are given to OS'OOI in J;'ight
ascension (OS'OI for the circumpolar stars) and 0"'01 in declination, and in the
tabulation of the 1o-day stars, first differences are provided. The positions on
intermediate dates may be obtained by interpolation, using second differences, this
being possible because in calculating these positions the effect of nutation on
the frame of reference is restricted to long-period terms only. Special provision
is made for the calculation of the effect of short-period terms of nutation.

The apparent places are given in order of right ascension from Oh to 24h, and
are tabulated for every tenth Greenwich transit. In the volumes for 1941 to 1959,
the first tabulated transit is that transit that occurred after the transit of the first
point of Aries on January Od (i.e. at about 17h); the first entry therefore varied
from January od'7 V.T. for the first star to January Id'7 for the last star. As from
the volume for 1960, a continuous form of tabulation has been adopted
(Trans. I.A. U., 9, 90, 1957) and positions are given for Greenwich transits
occurring on Greenwich sidereal dates whose integral part is divisible .by 10.
The D.T. of transit is indicated as before, with the months given by roman
numerals.

Similar but shorter lists of apparent places of FK3 stars are also published
in Connaissance des Temps (Paris), Almanaque Nautico (San Fernando), Japanese
Ephemeris (Tokyo), Astronomical Yearbook U.S.S.R. (which also includes a number
of stars not given in FK3) and, in years prior to 1960, in The American Ephemeris
and in Berliner Astronomisches Jahrbuch.

To meet the requirements of observers with photographic zenith telescopes
or prismatic astrolabes, the apparent places or times of transit of the selected stars
are often calculated by the national ephemeris offices and supplied to the individual
observatories. Reductions from apparent to mean place are increasingly being
calculated by electronic computers for each individual observation in preference
to the systematic pre-calculation previously adopted.
*From FK4 in A.P.F.S. 1964 onwards.
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C. REDUCTION FROM MEAN TO APPARENT PLACE

The calculation of the apparent place of a star for date t + T (where t represents
the beginning of a Besselian solar year and T a fraction of a tropical year) first
necessitates the calculation of the mean place for mean equinox and epoch of t.
The reduction then involves the application of corrections for precession from
the beginning of year to date (i.e. for the interval T), nutation, stellar aberration,
annual parallax, proper motion, and orbital motion.

Proper motion, orbital motion, and stellar aberration do not affect the frame
of reference, but cause changes in the actual direction in which the star
is observed j the corresponding corrections must therefore be calculated with
respect to a particular reference system and applied to the position of the star in
the same system. Precession and nutation, however, are changes in the frame
of reference and do not affect the actual direction in which the star is observed:
these two corrections, and that for annual aberration, are sufficiently large to
make their order of application of significance if cross-product terms are neglected.
The corrections for parallax, proper motion, and orbital motion are generally
very small and can be applied at any convenient stage.

Since nutation is calculated from the longitudes of the Sun and Moon
referred to mean equinox of date, it is (theoretically) necessary to apply precession
before nutation. There are then two methods for calculating the reduction to
apparent place: if precession and nutation are applied first (method i) then the
aberration correction should strictly be applied to a fixed star whose coordinates
(referred to the moving frame of reference) are continuously changing; if aberration
is applied first (method ii) then the corrections for precession and nutation should
strictly be applied to the changing positions of the star. The two methods give,
of course, identical results, but for systematic calculation it is practically essential
to apply corrections for precession, nutation, and aberration to a fixed star, any
residual corrections (if appreciable) being applied separately. As might be expected,
the largest correcting term is the same for both methods, but the other terms
differ. An analysis of the magnitude of the residual terms, taken in conjunction
with the second-order terms of precession, nutation, and aberration themselves,
shows conclusively that the second method leads to smaller residual errors
(Porter, J. G., and Sadler, D. H. The accurate calculation of apparent places
of stars. M.N.R.A.S., 113, 455-467, 1953). (Although not really relevant, it is
also to be noted that it is more logical to apply aberration with respect to a fixed
frame of reference.)

The present availability of fast computing machines has now made possible
the transformation from mean to apparent place by rigorous formulae that do
not involve expansion in series (see section 2B). Such methods are also used
for the individual calculation of the mean place from the observed apparent
place.

- - - - -- - - - - ---- - ------ - - - -
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SC. MEAN AND APPARENT PLACES OF STARS lSI

Reduction for precession and nutation

From sections 2B and 2C it is seen that, to the first order, the combined
reduction for precession and nutation from the mean equinox of t to the true
equinox of t + T is:

in right ascension (m + n sin a tan 0) (T + ~~) - cos a tan 0 L1E + A' ~~

in declination n cos a (T + ~~) + sin a L1E

where a, 0 is the mean place for epoch t; m, n, A', ifi' are the precessional constants
. defined in section 2B, and L1if;, L1E are the (total) nutation in longitude and obliquity
respectively.

These expressions may be written in the forms:
in right ascension Aa + Bb + E = f + g sin (G + a) tan 0
in declination Aa' + Bb' g cos (G + a)

where A, B, E are known as Besselian day numbers, defined by:

A = m + n ~~ = m + sin E L1if;

B = -L1E

E = A' L1if;
if;'

andJ, g, G are independent day numbers, derived from:
mf = - A + E = m T + cos E L1if;
n

g sin G = B g cos G = A
and a, a', b, b' are star constants, defined by:

m. "a = - + sm a tan 0
n

b = cos a tan 0 b' = - sm a

Note that they are constant only in so far as they are calculated for the mean
equinox of a fixed epoch.

An approximate correction for precession and nutation from the mean
equinox of 1950'0 to the true equinox of date may be made by means of Table IV
in the Ephemeris.

A more rigorous reduction for the combined effect of precession and nutation
gives rise to the second-order terms numbered 1 to 4 in table 5.1.

Reduction Jor annual aberration

The first-order expressions for annual aberration given in section 2D are
functions of the components of the Earth's velocity (x', y', z') or of the corres­
ponding solar components (-X', - V', -Z'). With the approximation
z' = y' tan E, the reduction for annual aberration may be written in the form:

in right ascension Cc + Dd = h sin (H + a) sec 0
in declination Cc' + Dd' = h cos (H + a) sin 0 + i cos 0
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where C and D are the Besselian day numbers, calculated from the ratios of +y'
(or - Y') and - x' (or +X') to the adopted value of the velocity of light; and
c, c', d, d' are star constants, defined by:

c = cos a sec 8 c' = tan (; cos 8 - sin a sin 8
d = sin a sec 8 d' = cos a sin 8

In the alternative form of reduction, the independent day numbers h, H, i are
defined by:

h sin H = C h cos H = D i = C tan €

The aberrational day numbers C and D tabulated in the Ephemeris are cal­
culated from the true motion of the Earth referred to a fixed equinox, and to
the centre of gravity of the solar system. In all ephemerides prior to 1960 it
was customary to calculate them from expressions involving the Sun's longitude,
and this process involved assumptions which are discussed in section zD.

The rigorous reduction of the formulae for aberration gives the additional
second-order terms numbered 5 to 8 in table 5.1.

in declination

Aa + Bb + Cc + Dd + E
= f + g sin (G + a) tan 8 + h sin (H + a) sec 8
Aa' + Bb' + Ce' + Dd'
= g cos (G + a) + h cos (H + a) sin 8 + i cos 8

For full precision, the second-order terms should be included; for practical
reasons the star constants must strictly be regarded as constants for a sequence
of dates (that is, regarded as being calculated for a fixed position referred to a
fixed equinox). Thus there arise additional second-order terms when the two
corrections are combined; these additional terms differ according to the method
employed, there being fewer terms of this kind when method (ii) is used. The
additional terms in Lla cos 8 are:

Combined reduction

The total effect of precession, nutation, and annual aberration is given by the
sum of the terms already discussed; to the first order the combined reduction
is:

in right ascension

method (i) fh cos (H + a) + gh sin (G + H + za) tan 8

method (ii) + gh sin (G + H + za) tan 8 + gi sin (G + a)

and the additional terms in Ll8 are:

method (i) -fh sin (H + a) sin 8 -gh sin (G + a) sin (H + a) sec 8
+gh cos (G - H) cos 8 - gi cos (G + a) sin S

method (ii) -gh sin (G + a) sin (H + a) sec 8

The terms arising in method (ii) are included in table 5.1 (terms 9 and 10)
which therefore gives all the second-order terms that can arise when this method
is used.

It will be seen from the table that terms 3, 5, and 9 are the most significant
terms; these involve tan 8 or sec 8, and some form of correction for them is essential
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Table 5.1. Second-order terms in star reductions

Term Lla cos 0 Llo
No.

1

2

3
4
5
6
7
8
9

10

+fg cos (G + a) sin 0
- ! fg cos G cos a sin 0
+tg2 sin 2 (G + a) tan 0 sin 0
+tg2 cos a sin (2G + a) cos 0
+th2 sin 2 (H + a) sec 0

+gh sin (G + H ::I- 2a) tan 0
+gi sin (G + a)

-fg sin (G + a)
+!!g cos G sin a
-tg2 sin2 (G + a) tan 0

-th2 sin2 (H + a) tan 0
+th2 cos2 (H + a) sin 20
+hi cos (H + a) cos 20
-li2 sin 20
-gh sin (G + a) sin (H + a) sec 0

for stars of high declination. The form of correction discussed by Fabritius (Ast.
Nach., 87, 113 and 129, 1876) may be used; if Lla and LIS are the first-order
corrections, then the complete reductions are:

in right ascension Lla + Lla LIS tan S
in declination LIS - t (Lla)2 sin S cos S

This method is inadequate in principle, since the formulae apply strictly to the
solution of a single spherical triangle, and not to the complicated geometry of
precession and nutation. The Fabritius method removes the terms dependent
on tan S and sec S but introduces several other terms which are, however, inde­
pendent of sec S.

The most advantageous method of correcting the first-order reduction is to
introduce additional day numbers J and J', which can be tabulated in the
ephemerides, to give additional reductions in the form:

in right ascension +J tan2 S
in declination +J' tan S

The full expressions for J and J' are derived from terms 3, 5, and 9, replacing
sec 3 by ± tan S, with an error that vanishes at the poles. This gives:

J = +{g sin (G + a) ± h sin (H + an {g cos (G + a) ± h cos (H + a)}
= +{(A ± D) sin a + (B ± C) cos a} {(A ± D) cos a - (B ± C) sin a}

J'= -t {g sin (G + a) ± h sin (H + a)}2
= -t {(A ± D) sin a + (B ± C) cos a}2

the upper sign being taken for positive declinations, and the lower sign for
negative declinations.* These day numbers may be tabulated as simple functions
of right ascension and date, so that the complete reduction may be made in one
operation. The method is therefore of considerable advantage in the routine
calculation of a number of star places; in the Fabritius method, the second-order
corrections cannot be made until the first-order terms have been calculated.

A full discussion of these corrections is given in' The accurate calculation
of apparent places of stars' (M.N.R.A.S., 113, 455-467, 1953). In this paper
the expressions for J and J' (equations 14 and IS on page 460) were given for
·See note on page 523.
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northern declinations only; for southern declinations the sign of the term in 2gh
in both equations should be reversed. Also, in the second-order term no. 12 of
Table I, (I ~ sin 8) should be replaced for southern stars by (I + sin 8). The
substance and conclusions of the paper are unaffected by these omissions. In
particular, the discussion clearly shows the advantages of restricting the range of
T to ± i; this has the effect of reducing all the second-order terms in f and g,
which are functions of time. A more detailed analysis of the magnitude of the
neglected terms in different methods has confirmed the conclusion that if T is
allowed to reach + I, and no second-order corrections are applied, there are
unavoidable errors of 0" '010, even at declinations of 45°. A maximum error of
this magnitude may also be reached (at the poles) when the Fabritius method of
correction is used, but this maximum is reduced to 0" '007 when the tabulated
values of I and If are used. If T is restricted to ±i these maxima are reduced
to 0" '005 using the Fabritius method and 0" '003 using I and If, while the range
of declinations over which second-order corrections may be neglected is corres­
pondingly increased. This is shown in the following table, which gives the upper
limit of declination for a given error, when no second-order correction is applied.

Limiting
error 0"'007 0"'008 0"'009 0"'010 0"'012 0"'01 4 0"'016 0"'018 0"'020

o < T < +1 5° 25° 35° 43° 49° 54° 57° 60° 63°
-t < T < +t 57 62 67 70 72 74 76 78 81

As a result of this analysis, it is considered that the best choice is method (ii)
with T restricted to ±i and the provision of tabulated values of J and If for the
correction of second-order terms; this has been adopted in the Ephemeris.

Proper motion, orbital motion, and parallax

In all cases where the proper motion of a star is known and is appreciable,
a correction for the change of position should be included both in the mean place
and in the star reductions. The components of proper motion in right ascension
JLa and in declination JLa are given in the catalogues, and are incorporated wholly
or partially in the positions. In fundamental catalogues the epoch to which
proper motion is included is identical with that of the equinox to which the
catalogue refers, but in observational catalogues the epoch may differ from that
of the equinox to which the positions are referred. In all cases, the correction
to the position consists of the product of the proper motion and the number
of years from the epoch to the required date. In some catalogues the secular
variations of the proper motions are also tabulated and in such cases the mean
value of the proper motion during the interval is to be used.

The remaining correction for the fraction of the year T is incorporated in the
star reductions:

in right ascension +TJLa in declination +TJLB

in which the value of the proper motion is that for the year and not for the original
epoch.
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In a few cases a correction for orbital motion is necessary, but this can
generally be considered to vary linearly with the time during the course of a year.
The corrections in right ascension and declination for the beginning of each year
from 1925 to 1950 are tabulated, for the four stars so affected in FK3, in an
appendix to that catalogue, and these have been extended for later years by values
supplied by the Astronomisches Rechen-Institut.

The correction for annual parallax may be included with that for annual
aberration, as shown in section 2F. If TT is the annual parallax of the star, the
combined aberration-parallax corrections become:

in right ascension (C + TTY) c + (D - TTX) d
in declination (C + TTY) c' + (D - TTX) d'

A more convenient form of these expressions may be used in cases where the
parallax is small; the corrections then become:

in right ascension C (c + dTT sec Elk) + D (d - CTT cos Elk)
C (c + 0'°532 dTT) + D (d - °'°448 CTT)

in declination C (c' + d'TT sec Elk) + D (d' - C'TT cos Elk)
C (c' + 0'°532 d'TT) + D (d' - 0'0448 C'TT)

where k is the constant of aberration = 20"'47, and TT is expressed in seconds of *
arc. These formulae assume a mean value of unity for the Sun's radius vector
(section 2F); the error is negligible if the parallax of the star is less than about 0" ,2.

D. DAY NUMBERS

As a result of resolutions adopted at the 1952 meeting of the International
.-\stronomical Union (Trans. I.A. V., 7, 75-76, 1950; 8, 67, 1954) changes have
been made as from 1960 in the definitions of the day numbers and star constants.
These changes, together with the considerations of the previous sub-section,
lead to the definitions and methods of derivation that follow. Two complete
examples of the use of these day numbers in the calculation of the apparent places
of stars are given at the end of this sub-section.

Besselian day numbers

The Besselian day numbers are now defined by:

A = nT + n ~~ = nT + sin E J1!fi

B = -J1E
C, D = aberrational day numbers, calculated from the components of the Earth's

true velocity referred to the centre of mass of the solar system, corrected
for the effect of the E-terms, and referred to the equinox of the epoch
from which T is measured;

E = A' J1!fi
!fi'

J,]' = second-order day numbers
*20"496 for 1968 onwards.
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where: T is measured from the nearest beginning of a Besselian year; n, >..', v/ are
the precessional constants defined in section 2B; and J1!fi, J1E are the (total)
nutation in longitude and obliquity respectively (section 2C).

These day numbers are used in conjunction with star constants defined as
follows:

a = min + sin ao tan 00 a' = cos ao
b = cos ao tan 00 b' = -sin a o
c = cos ao sec 00 c' = tan E cos 00 - sin ao sin 00

d = sin ao sec 00 d' = cos ao sin 00

where min = 2'29887 + 0'00237 T, T being measured in centuries from 1900,0,
and ao, 00 is the mean place of the star for the beginning of a Besselian year, i.e. it
is corrected for precession and proper motion to the equinox of the epoch from
which T is measured.

The apparent places are to be calculated from:

a = ao + TfLa + Aa + Bb + Cc + Dd + E + J tan2 00

a = 00 + TfLa + Aa' + Bb' + Cc' + Dd' + J' tan 00

The day numbers A, B, C, D are tabulated in the Ephemeris in seconds
of arc; when used for calculating the star reduction in right ascension, either
they or the star constants by which they are multiplied should be divided by 15
to express the reduction in seconds of time.

Independent day numbers

Formulae involving Besselian day numbers are best employed in systematic
calculation of a number of star places, but for an occasional reduction the inde­
pendent day numbers are more suitable. They are defined as follows:

f = (min) A + E h sin H = C
g sin G = B h cos H = D
g cos G = A i = C tan E

The apparent place is formed from:

a = ao + TfLa + f + g sin (G + ao) tan 00 + h sin (H + a o) sec 00 + ] tan2 00

a = 00 + TfLa + g cos (G + ao) + h cos (H + ao) sin 00 + i cos 00 -.I- ]' tan 00

The day numbers g, h are tabulated in the Ephemeris in seconds of arc;
when used for calculating the star reduction in right ascension, they should be
divided by IS to express the reduction in seconds of time.

Values of f, g, G for the approximate reduction from the standard equinox
of 1950'0 to a true equinox during the current year are given in A.E., Table IV.

Short-period terms

The day numbers A, B that are tabulated in the Ephemeris as from 1960
contain both long-period and short-period terms of nutation. In certain cases,
such as the 1o-day ephemerides in Apparent Places of Fundamental Stars, the effect
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j' = mA' approximately
g' sin G' = B'
g' cos G' = nA'

do(if;) = a' sin €
do(€) = -b'

da(if;) = a sin € approximately
da(€) = -b

where
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of the short-period terms is omitted from the apparent places because of the
difficulty of interpolation at such an interval. For such stars, therefore, the
short-period terms must be calculated separately, and applied to the tabulated
places after interpolation. For single reductions, the use of independent day
numbers is suitable, and the appropriate quantities are defined as:

j' = +dif; cos €
g' sin G' = -d€
g' cos G' = +dif; sin €

where dif; and d€ are the short-period terms of nutation in longitude and obliquity
respectively. The corrections, to be added to the apparent places including
long-period terms only, are made through the expressions:

Lla = j' + g' sin (G' + a) tan 0
Llo = g' cos (G' + a)

For systematic work where a number of reductions are to be made, these
formulae may be written:

Lla = da(if;) . dif; + da(€) . d£
Llo = do(if;) . dif; + do(€) . d£

da(if;) = cos € + sin a tan 0 sin € do(if;) = cos a sm £
da(€) = -cos a tan 0 do(€) = sm a

These coefficients are given (divided by IS for a) in Apparent Places oj Funda­
mental Stars for each of the Io-day stars, and the short-period terms of nutation
are tabulated in Table I of the same volume, as well as in A. E., pages 266 to 280. *

Corrections for short-period terms may also be obtained, without multiplica­
tion, with the aid of table 5.2; this is a triple-entry permanent table which is
entered with arguments g', (G' + a), and o. The complete correction in right
ascension is j' + (Lla - j'), but the correction in declination is given directly.
The table provides a simple means of calculating the corrections for short-period
terms for a moving object, for example for the Sun, Moon, and planets as given
in the national ephemerides before 1960.

Before 1960, the ephemerides gave short-period day numbers in the Besselian
form. The relations between these, the star constants, and the quantities defined
above, are as follows:

A' = dif;Jif;'
B' = -d£

Derivation

The numerical values of the day numbers A, B, E that are tabulated in the
Ephemeris are derived for each day from the expressions given above, using the
precessional constants and values of nutation previously defined in sections zB
and 2C. The value of or used in calculating A is obtained by dividing the
*Pages 308 to 322 in A.E. 1972 onwards.
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number of days from the nearest beginning of a Besselian solar year by 365 '2422,
the approximate number of days in a tropical year.

The aberrational day numbers C, D are derived, as from 1960, from the
true velocity of the Earth in its orbit, referred to the centre of mass of the solar
system and to an inertial frame of reference. If x', y', z' are the components of
this velocity, then the components of the aberrational vector corresponding to
C and D are given by the ratios +y'/e and -x'ie where e is the velocity of light.
These expressions would give a complete correction for annual aberration, in­
cluding the small E-terms due to the eccentricity of the Earth's orbit. Since
these terms are constant for each star, it has been customary, by convention (see
section 2D), to allow them to remain in the mean places; they must therefore be
removed, thus leading to the expressions:

C = +y'/e - ke cos w cos E

D = - x'/e - ke sin w

* where k is the constant of aberration = 20" '47, e is the eccentricity of the Earth's
orbit, E is the obliquity of the ecliptic, and w is the longitude of the perihelion of
the Earth's orbit. These expressions assume, as explained in section 2D, that the
motion of the Earth lies entirely in the ecliptic, so that z' = y' tan E. It can be
shown that the error involved is negligible. (x', y', z' are equatorial components.)

In these expressions the value of e must be consistent with that of k; inserting
* numerical values for the equinox 1950'0, and expressing Co, Do for this equinox

in seconds of arc:
Co = +1I89"·80 (y' + 553) 10- 7

DO = -1I89"·80 (x' + 2815) 10- 7

in which x', y'are in units of 10-7 astronomical units per day. These velocities
are derived from the differences of the solar coordinates (X, Y, Z) for equinox
1950'0, corrected to the centre of mass of the solar system. If x", y", ZIt arc the
heliocentric coordinates of the nth planet, then the coordinates of the Earth
(xG, YG' zG) referred to the centre of mass of the whole system are given by the
expressions of the form:

X G = -X - 1: {mIt Xn/(I + 1: mIt)}
where mn represents the planet's mass in terms of the Sun's mass. Only the
planets Jupiter, Saturn, Uranus, and Neptune need be considered, and the
formulae are written in the form:

X G = - X - 1: m~xn

where m~ = m,,/( 1 + 1: mn) has the following values:

Jupiter 0'000953 Uranus 0'000044
Saturn °'°°0285 Neptune 0'00°°52

and the coordinates of the planets are taken from Planetary Co-ordinates.

In the routine calculation of the day numbers, the velocities are formed in
two stages, using:

x~ = -X' - 1: m~x~
The daily differences of the solar coordinates (X, Y) are used to form the

*20"'496 and 1191"'30 for 1968 onwards.
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Declination

G' + a g' 10° 20° 30° 40° 50° 55° 60° 65° 70° 75° 80°

LIS Lla -I'

°'°5 0'05

0·0 '°7 ·07

or '°9 '09 For G' + a = 011 or 12 11 , Lla = I' for all declinations
12·0 ·11 'II

·13 '13

0'°5 0'05 0'000 0·000 0'000 0·001 0·001 0·001 0·001 0'00 0·00 0·00 0'00
1·0

'°7 '07 0 0 I I I 2 2 0 0 0
II·O

'°9 '09 0 1 I 2 2 3 0 0 I
13.0

'11 'II 0 I I 2 2 3 3 0 I
23.0

·13 '13 0 I I 2 3 3 4 0 I

0'°5 0'04 0'000 0'001 0'001 0'001 0'002 0'002 0·003 0'00 0·00 0'01 0'01
2·0

'06'°7 0 I I 2 3 3 4 I I
10·0

'08'°9 I I 2 3 4 4 5 I 2
14.0

'11 '10 I I 2 3 4 5 6 I 2
22·0

6 8·13 'II I 2 3 4 5 I 2 2

°'°5 0'04 0'000 0·001 0'001 0·002 0'003 0'003 0'004 0'01 0·01 0'01 0'01
3.0

'°7 '05 1 I 2 3 4 5 06 I 2
9.0

'°9 '06 2 2 4 5 6 07 I 2 2
15'° ·11 '08 2 3 4 6 7 09 I 2 3
21·0

'13 '09 2 4 5 7 9 II I 2 2 3

0'°5 0'03 0'001 0·001 0'002 0'002 0'003 0'004 0'005 0·01 0·01 0'01 0'02
4.0

'°7 '04 I I 2 3 5 06 07 I I 2 2
8'0

16'0 '°9 '05 I 2 3 4 6 07 09 I I 2 3
·11 '06 2 4 5 8 09 II I 2 2 420·0

6·13 '07 3 4 9 II 13 2 2 3 4

0'°5 0'01 0'001 0'001 0'002 0'003 0'004 0'005 0'006 0·01 0·01 0·01 0'02
5'0

'°7 '02 2 3 4 05 06 08 I 2 37.0
'°9 '02 2 3 5 07 08 10 I 2 2 3

17'°
'11 '03 3 4 6 08 10 12 2 2 3 419.0
·13 '03 3 5 7 10 12 14 2 2 3 5

6'0
0'°5 0·00 0'001 0'001 0'002 0'003 0'004 0·005 0'006 0·01 0'01 0·01 0'02

'°7 '00 I 2 3 4 06 07 08 I I 2 3or
IS·O '°9 ·00 I 2 3 5 07 09 10 I 2 2 3

'11 '00 I 3 4 6 09 10 13 2 2 3 4
0·13 0'00 0'002 0'003 0·005 0'007 0'010 0·012 0'01 5 0'02 0·02 0'03 0'05

Correction in right ascension = (Lla - 1') + I'
Correction in declination = LIS

where (Lla - 1') and LIS are applied with the signs given by the following table.

G' + a All declinations Northern declinations Southern declinations
(S > 0) (S < 0)

Oh - 6 11 LIS is positive Lla - I' is positive Lla - I' is negative
6 h -1211 LIS is negative Lla - I' is positive Lla - I' is negative

I2h - ISI1 LIS is negative Lla - I' is negative Lla - I' is positive
ISh -2411 LIS is positive Lla - I' is negative Lla - I' is positive

1', g', G' are tabulated in A.E., pages 267 to 281 (1960).
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derivatives -X', - Y' for every fifth day. The sum J: m~ Xn is evaluated and
differenced at intervals of 100 days, and the value of the derivative -J: m~ x~

is then calculated from the differences (see section 16C).

The final subtabulations, additions, and multiplications are performed in one
operation to give daily values of Co and Do.

The conversion of the day numbers Co and Do from equinox 1950'0 to any
other equinox t is given by the first-order expressions:

C, = Co - P cos £ (t - 1950) Do = Co - 0'°°02235 (t - 1950) Do
D, = Do + P sec £ (t - 1950) Co = Do + 0.0002656 (t - 1950) Co

where p is the annual general precession = 50"'27. The error due to neglecting
second-order terms in these expressions is less than 0" '0005 for time intervals up
to 30 years. The tabulated values are referred to the equinox of the nearest
beginning of a Besse1ian year.

The values of A, B, C, D for Oh sidereal time are obtained from the daily
values at Oh E.T. by interpolation. The independent day numbers are calculated
from the Besse1ian day numbers for every day by the formulae quoted above.

Example 5.2. Besselian and independent day numbers
1960 March 7

'T +°'17976 J:J.p -0"744 d.p +0"008
n 20',0'P7 J:J£ -8'.836 d£ -0"066
n(m!n) 0'15335 sin £ +°'39786 cos £ +°'91745

'A'!.p' = 0'002476 - 0'000373T = 0'002 where T is in tropical centuries from 1900'0

Besselian tkJy numbers.
A = nT + J:J.p sin £ +3"307
B = - J:J£ +8'.836
E = ('A'!.p') J:J.p -0"'0001

The aberrational day numbers C and D are formed from the coordinates of the Sun
and planets for equinox 1950'0. The differences of the Sun's coordinates for March 7
(A.E., page 43) and, hence, the velocity components are, in units of the seventh decimal:

,.,.SX + 43509 ,.,.ssX - 8 X' = ,.,.SX - t,.,.ssX + 43510
,.,.S Y + 153888 ,.,.ss Y -46 Y' = ,.,.S Y - l,.,.Ss Y + 153896

For the planets, coordinates at intervals of 100 days are taken from Planetary Co­
ordinates:

Jupiter Saturn Uranus Neptune unit 10-5

J.D. x-coordinate J:m'x J:m'x'
243 69°°'5 -1·634 + 1'451 -13.670 -24'296 -301

+84
7°00'5 -0'909 +1'971 -13'933 -24'1°9 -217

+85
7100'5 -°'167 +2'485 - 14'189 -23'918 -132

y-coordinate J:m'y J:m'y'
243690°'5 -4.672 -9'181 +11'221 -17'008 -746

-12
7000'5 -4'799 -9'°86 +1°'932 -17'236 -758

- 2
7100'5 -4.831 -8'965 +10·639 -17'463 -760
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every tenth
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f' = dt/J COS €
g'sin G' = -d€
g' cos G' = dt/J sin €
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= J.D. 243 7000'5 are

The second-order day numbers I, I' are formed for
for each hour of right ascension from:

PI = (A + D) sin a + (B + C) cos a P2 = (A + D) cos a - (B + C) sin a

Ql = (A - D) sin a + (B - C) cos a Q2 = (A - D) cos a - (B - C) sin a

IfPI' P2, Ql' Q2 are in seconds of are, then I, I', also in seconds of are, are given by:

I PI P2 sin I" } f h d l' .
I ' I p2' " or nort ern ec matlOns

-2 I SIn I

Q.ll QQ2 s~n I: } for southern declinations
-2 ism I

Since the interval is 100 days, the values for 1960 March 7
obtained directly in units of 10-7 as:

I:m'x' = +S4 I:m'y' = -7

Then Co = -IIS9w.SO(Y' + I:m'y' - 553) 10-7 = -lsw'244
Do = + IIS9w·SO (X' + I:m'x' - 2S15) 10-7 + 4w,SS2

The conversion to equinox 1960'0 is· given by:
C = Co - Do (0'002235) - Isw'25S
D = Do + Co (0'002656) = + 4w,S03

Independent day numbers.

f = ~ A + E + 0"'5070
n

g sin G = B
gcosG=A

h sin H = C
hcosH=D

i=Ctan€

6h

1'00
0·00

+2
-2

+ S'I
+ 9'4
- 1'5
-27'1

+2
-I

+ 5'4
+II'2
+ 5.6
-26'7

+1
o

o
o

B + S~S4
C -IS'26

B + C - 9'42
B - C +27'10

3h 4h

0'71 0,S7
0'71 0'50

- 0'9 + 2'3
+ 12'4 + 12'3
+IS'2 +12'3
-20'3 -24'3

2 h

0'50
0,S7

-2

o

- 4'1
+II'S
+22'S
-14'S

-2
-I

I h

0'26
0'97

- 7'0
+10'3
+25'9
- S'S

-2

-2

Oh
+0'00
+1'00

- 9'4
+ S'I
+27'1
- 1'5

Example 5.3. Second-aTder day numbers J and J'
1960 March 7

A +3~31
D +4'SO

A + D +S'II
A - D -1'49

a
sin a
cos a

P1
P 2

01
02

Northern declinations
I = +0'032 P 1 P2

I' = -0'024 P~

Southern declinations
I = +0'032 01 02 - I - 7 - II - 12 - 10 - 5 + I
J' = -0'024 Of -IS -16 -12 - S - 4 - I 0

Ph P2' 011 02. are in seconds of are, J is in units of 0"'00001, and J' is in units of 0"'0001.
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Star reductions prior to 1960

The new definitions have removed a number of inconsistencies and increased
the precision of application of star reductions. The ephemerides prior to 1960

differed from present practice in the following respects:

(a) the day numbers were then referred to the equinox of the beginning of
the year, so that l' could reach a value of + I ;

(b) the day number A was then defined as:

A = l' + LJif;
if;'

but it is now n times this quantity, and, like the other day numbers, is
expressed in seconds of arc;

(c) the star constants a, a' were then defined by:

a = m + n sin a tan 0 a' = n cos a
but these expressions are now divided by n;

(d) the day number B, and the nutation terms in A, were then derived from
long-period nutation terms only; they now include (total) nutation, and are
given to an extra decimal;

(e) the aberrational day numbers C, D were then derived from theoretical
expressions for the Earth's velocity based on a mean orbit about the Sun;
they did not allow for perturbations by the Moon and planets, were not
referred to the centre of mass of the solar system, and were given to
0"'01 only;

(f) no allowance was then made for the correction of second-order terms.

Summary

* The day numbers tabulated in A.E., pages 266--281 in 1960, give the values
of the Besselian and independent day numbers, as defined above, for each day at
Oh E.T., together with l' the fraction of the year from the nearest beginning of a
Besse1ian year. There is a discontinuity in 1', and in all the day numbers except B
and E, due to the change of equinox; the data for July I and 2 are given for both
systems. The short-period independent day numbers1', g', G' and the equivalent
short-period nutation terms dif;, dE are also tabulated. Short-period Besselian
day numbers A', B', which were in use in the ephemerides before 1960, are not now
given. For convenience, an approximate indication of the sidereal time at Oh is
also tabulated. The day numbers are given in general to a precision of 0" ·00 I,

but f, 1', E are expressed in seconds of time to 0 8 '0001; G, H are given to the
nearest second, G' to the nearest minute and l' to 0'0001.

t In A.E., pages 282-285 in 1960, the Besselian day numbers are tabulated for
Oh S.T. on each day, and in this form will be found convenient for systematic
computation of the corrections to the positions of stars at transit; the values at
the time of transit are obtained by interpolation to the right ascension of the star.
It will be noted that there are two entries for the day numbers on a day near
*Pages 308 to 323 in A.E. 1972 onwards.

tPages 324 to 327 in A.E. 1972 onwards.

. - - -- - - - - - ---- ------ - - ~ - -
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September 21; care should be taken, for a station not on the Greenwich meridian,
to select the correct entry.

In A.E., pages 286-287 and x-xi in 1960, the second-order day numbers J, *
J' are tabulated for Oh E.T. on every tenth day as a function of right ascension.
Interpolation in these tables is not generally necessary.

Numerical illustrations

Example 5-4- Apparent place of a Centauri
Greenwich upper transit on 1960 July I

The mean places and proper motions of example 5.1 are used with day numbers
containing long-period nutation only, the resulting place being comparable with that given
in Apparent Places of Fundamental Stars; the short-period terms are calculated inde­
pendently. Transit occurs on July 1·83, and for this date the reduction may be made
from either equinox. Corrections for parallax and for reduction from centre of gravity
to the bright star are included. 7T = 0"'756

196°'° 1961'° 1960'0 1961'° 196°'° 1961'°
N

A + 8·853 -II'188 l1;-a +°'22838 °' 22842 a' -°'77475 °'77457
B + 9.641 + 9. 64 1 fib +°'°9193 °'°9193 b' +0·63226 0·63249
C + 3'25° + 3'254 r"c -0'1°545 0'1°544 c

,
-°'33881 °'33906

D -20'15° -20'15° fr,d -0'086°5 0'08610 d' +0·67545 0·67532
E - 0·'0004 -0·'0004 Reduction to}Lla +0·'006 +0.'°64
1 + °'4996 -°'5°°4 bright star LIS +2"'00 +2"·86

1960,0 1961'0 196o,0 1961'0
h m • • 0 .

ao 14 36 52'147 56 '235 So - 60 4° 17·67 32'49
TP.a - °'2446 + 0'245° Tp.a + °'352 °'352
Aa + 2'0218 2'5556 Aa' 6.859 + 8·666
Bb + 0.8863 + 0.8863 Bb' + 6'°96 + 6'°98
Cc - °'3427 °'343 1 Cc' 1'101 1' 1°3
Dd + 1'7339 + 1'7349 Dd' 13·610 13·608
E - 0'0°°4 °'°°°4
Parallax - 0'0847 0'0847 Parallax 0'146 °'146
Reduction + 0'0350 + °'°35° Reduction + 2'43° + 2'43°
a 14h 36m 568'1516 56.'1524 S - 60° 40' 30"'508 3°"'5°5

Short-period terms:

f' - 0.'°064
g' 0"'080

G'
G' + ao

sin (G' + ao) + °'9884
cos (G' + ao) - °'1521

f'
g' sin (G' + ao) tan S

Lla

•
- °'°°64
- °'°°94
- °'°158

g' cos (G' + ao) - 0'012
LIS - 0'012

dlji -0'104
dE +0'068

The alternative method gives:
da(lji) +°'°91 dS(lji) -0'308
daCE) -0'092 dS(E) -0.632

Lla -0.'°157 LIS -O"'OIl

The apparent place, including short-period terms, is therefore:
a 14h 36m 56.'136 I' -60° 40' 30"'52

*Pages 328 to 33 I in A.E. 1972 onwards.
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sin 00 -0.87186
cos 00 +0'48975
tan 00 - I '78021
sec 00 +2'04186

H + ao 2 h oom 15"
sin (H + ao) +0'50094
cos (H + ao) +0.86548

G 9 h 18m 12"
H II 23 19

For comparison, the apparent place is calculated by means of independent day numbers
from the mean place for 1961'0:

f - 1"'7225 G + a o 23 h 55m 08"
g 14"'756 sin (G + ao) -0'02123
h 20 '412 cos (G + ao) +0'99977
i +1 '4II

1961'0
-0"'003
+0 '001
30 "'50 4

Declination
1960'0

-0"" 001 4
+0 '003

- 600 40' 30""505

J'
J' tan 0

oa

b m I 0 , ¥

ao 1436 56 '235 00 -604032'49
TfL,. + 0'2~50 TfL6 - 0'352
f 1'7225 g cos (G + ao) + 14'753
g sin (G + ao) tan 00 + 0'0372 h cos (H + ao) sin 00 - 15'402
h sin (H + ao) sec 00 + 1'3919 i cos 00 + 0·691

Parallax 0'0847 Parallax - 0'146
Reduction to bright star + 0'0350 Reduction to bright star + 2'430

Apparent place, a 143656'137 Apparent place, 0 -604030'52

In the above calculations more figures have been retained than would normally he
required or justified; this is done to illustrate the extent of the agreement of the calculations
by different methods, and the magnitude of the differences between quantities for the
two equinoxes.

The inclusion of second-order terms, which would normally be neglected in this
case, reduces still further the difference between the two results:

Right ascension
1960'0 1961'0

+0"'00014 +0"'00001
+0 '0005 0 '0000

14h 36m 56"· 1521 56"· 1524

T = +0'4997

00 -870 59' 12"'74
fL6 -0 '072

Example 5.5. Apparent place of 20 G. Octantis
Greenwich upper transit on 1960 July I

The example illustrates the use of second-order terms in calculating the apparent
place of a circumpolar star; day numbers including short-period nutation are used.
Transit occurs on July 1.853.

Besselian day numbers; mean place for 1960'0.

ao 15h 06ffi 25"'56
fL,. -0'179.

A + 8.81 3 E 0'0005 na +1'53 154 a' -0·68701
B + 9'572 J + 0'00012 nb + 1'30299 b' +0'72665
C + 3'257 nc -1'30379 c' -0'71097
D -20'149 J' -0"'001 5 nd -1'37903 d' +0.68658

b m • 0

ao 15 06 25'56 00 -87 59 12'74
TfLr> - 0'089 TfL6 0'036
Aa +13'497 Aa' 6'055
Bb + 12'472 Bb' + 6'955
Cc - 4'246 Cc' 2'3 16
Dd +27'786 Dd' - 13.834
E 0'000

J tan2 00 + 0'097 J' tan 00 + 0'043
a 15h

°7m 15"'08 0 -870 59' 27"'98
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+ 08'0000I
-0"'0003

0'999385
+ 0'035062
+28'5209
-28'5038

J
J'

2 h 30m IO"

+0.60934
+0'79291

T = -0'5003

00 -870 59' 26"'57
JL6 -0 '072

Oh 25m 08" sin 00

+0' I0944 cos 00

+0'99399 sec 00

tan 00
H + ao
sin (H + ao)
cos (H + ao)

f
g
h

G 9h 18m 12"

H II 23 14

Independent day numbers; mean place for 196I·0.

ao 15h 06m 568. 13
JLa -0 'I79

- 18'7224 G + ao
14"'755 sin (G + ao)
20"'4II cos (G + ao)
+I"'414 -

o , ..

-87 59 26'57
+ 0'036
+I4·666
- 16'174
+ 0'050
+ 0·(309

-870 59' 27"98

00

TJL6
g cos (G + ao)
h cos (H + ao) sin 00

i cos 00

J' tan 00

h m 8

15 06 56'I3
+ 0'090
- 1'722
- 3'069
+23.648
+ 0'008

-15 h 07m 158'08a

ao

"/La
f
g sin (G + ao) tan 00

h sin (H + ao) sec 00

J tan2 00

E. POLE STAR TABLES

The proximity of the second-magnitude star a Ursae Minoris, Polaris or the
Pole Star, to the north pole of the sky has given it a special significance for the
convenient determination of direction and latitude. This is particularly so in the
fields of navigation and surveying, for which its constant availability for observation
(in northern latitudes) and the simple methods that can be used for the reduction
of observations are invaluable. For the more precise requirements of astronomy
its distance from the pole is sufficiently large for the special methods of reduction
no longer to confer any advantage over standard methods. Thus" Pole Star
Tables" are restricted to the precision required in navigation and surveying, and
belong to the corresponding" almanacs", rather than to the Ephemeris; however,
because of the general use of the Pole Star, the principal table to navigational
precision is included in the Ephemeris (A.E.

*1960, Table II, page 456). z

The polar distance of Polaris is at present
(1960) about 55"4 and is decreasing. It will
reach a minimum of about 27"5 in 2101, and
it will then increase with increasing rapidity.
It will reach 1° in about 2250 and 2° in about

2+5°·
If the polar distance of Polaris is denoted

by p (of the order of one degree) and its local
hour angle by h, then its altitude a and
azimuth A, as seen from an observer in lati- p

tude 4>, are given by solving the spherical Figure S.X. Notation for Pole Star
triangle PZS (see figure 5.1) formed by the
*Pages 496 to 499 in A.E. 1972.
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north pole, the zenith, and Polaris. Because P is small the solution may be
expanded as:

a = <P + P cos h - t P sin P sin2h tan <P + .
- A cos <P = P sin h + P sin P sin h cos h tan <P + .

In each case the next term of the expansion is of order P sin2 P tan2 <P and cannot,
for many years, exceed 0"1 for latitudes up to 70°.

For convenience of tabulation, these expansions are rewritten in the form:

<P - a = - (Po cos ho - t Po sin Po sin2ho tan <Po)
+ t Po sin Po sin2ho (tan <p - tan <Po)
- (p cos h - Po cos ho) = ao + al + a2

A cos <p - (Po sin ho + Po sin Po sin hocos hotan <Po)
- Po sin Po sin hocos ho(tan <p - tan <Po)
- (p sin h - Po sin ho) = bo + bi + b2

in which Po and ho are the polar distance and hour angle of a convenient point
close to the mean position of Polaris throughout the year, and <Po is a mean latitude,
usually chosen to be 50°. The mean position of Polaris (which must not be
confused with its mean place) is usually chosen to have convenient exact values for
its right ascension ao and polar distance Po.

The first terms (ao, bo) in the modified expressions are functions of the single
variable, local sidereal time, since:

ho = L.S.T. - ao
and may be tabulated at a suitable interval of L.S.T.

The second terms (ai, bl ) are functions both of ho(i.e. of L.S.T.) and of latitude
and must thus be tabulated in a double-entry table with arguments L.S.T. and
latitude. By incorporating a mean value (corresponding to latitude <Po) in the
first term, the magnitude of these terms can be kept down to about 0' .5; they may
thus be tabulated at wide intervals of both latitude and L.S.T.

Similarly, the third terms (a 2 , b2) are functions both of ho and of the apparent
position of Polaris (i.e. of date). By proper choice of Po and ao, the magnitude of
these terms can be kept down, during one year, to about 0"5; and they can also
be tabulated at wide intervals of both date and L.S.T.

As will be seen from A.E., Table II, the single-entry table of ao and bo is
arranged in twenty-four columns, each containing values for one hour of L.S.T.;
this enables separate tables of al and bI , and of a2 and b2, to be given for each hour
of L.S.T. In the column corresponding to the hour of L.S.T. all these terms are
thus taken from single-entry tables-the first with argument minutes and seconds
of L.S.T., the second with argument latitude, and the third with argument date.
The error in using the tables for the hour, without interpolation for L.S;T., is
greatest for the second term bi (owing to its dependence on sin zho) and may reach
0' ·1 5 for extreme latitudes; otherwise the error is very small.

The complications of these tabulations are unnecessary for astronomical
usage, but valuable for navigational use, in which simplicity of tabular entry and of
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interpolation are of foremost importance. Table II is essentially the same as the
corresponding table used for surface navigation, apart from intervals of tabulation
(1 0 in L.S.T. or L.H.A. of the first point of Aries) and from a further simplification
for the user by adding constants (whose sum is one degree) to ao, aI, a2 to make
them always positive. (The Nautical Almanac, 1960, page 274.)

Example 5.6. Derivation of Pole Star Table

The adopted mean position of Polaris for 1960 is:
ao = I b 57m; Po = 55"4 whence Po sin Po = 0'.89.

ePo is taken to be 50°; tan ePo = 1'192, Po sin Po tan ePo = 1"06.

Entries will be calculated for a local sidereal time of 4b 30m, latitude 64 0
, and for the

month of March.

bo

-cos ho -0'7853
Hsin2 ho +0'19

-sin ho -0.6191 x Po -43'51
-sin ho cos ho -0'49 x Po sinpo tan ePo + 0'20

-43'3 1

-34'30
- 0'52
-34.82

For~ = 64°: tan eP + 2'050 tan eP - tan ePo +0·86
- Po sin Po (tan eP - tan ePo) -0"77 a1 +0"15 b1 -0"38

Mean values for March, based on the apparent place of Polaris tabulated in Apparent
Places of Fundamelltal Stars are:

a = I b ssm 17B (a - ao) = - I m'7 Po sin (a - ao) = -0"41
8 = 89° 04' 49" , (p - Po) = -0"22

Now:
al = - P cos h + Po cos ho = - (p - Po) cos ho - Po sin ho sin (a - ao) = + 0"43
hI = - P sin h + Po sin ho = - (p - Po) sin ho + Po cos ho sin (a - ao) = - 0"19

It may readily be verified that a direct solution of the spherical triangle for latitude 64°,
declination 89° 04' 49", and hour angle 2b 34m 43B gives:

altitude = 64° 42' 4~"·8, correspondingto(ao + al + a2) = -42"71

azimuth = - 1° 20' 44"'3, corresponding to (bo + b1 + 02) = - 35"39

Prior to 1960, The American Ephemeris contained the daily apparent place of
Polaris and a number of tables mainly ,designed for the prec~se determination of
azimuth from observations of Polaris. Tables I and IV of 1959 have been essen­
tially replaced by the present Table II, but the ephemeris of Polaris and Tables V,
VI, and VII have not been included, as they are primarily intended for the use of
surveyors. Table V gave the azimuth of Polaris at elongation, to 0"· I, as a double­
entry table with arguments latitude and declination; Table VI gave the mean-time
interval which elapses from the time when Polaris is vertically above or below
~l Ursae Majoris or 0 Cassiopeiae to that when Polaris is on the meridian, but this
interval has become so greatly lengthened by precession that the table now has
little practical usefulness. Table VII gave the times of culmination and elongation
of Polaris.

alan




6. THE SYSTEM OF
ASTRONOMICAL CONSTANTS *

The constants of importance in the dynamics of the solar system comprise the
elements of the orbits of the several bodies, their masses relative to that of the Sun,
the constants specifying their size, shape, orientation, rotation, and inner consti­
tution, and the velocity of light. The constants connected with the Earth are of
special importance, because all conclusions about the motions of other celestial
bodies depend on them; this small group of constants is called the system of
astronomical constants. The word system is appropriate for two distinct reasons.
In the first place, the constants are not all independent of one another; once the
values of some of them are known, others can be calculated without further recourse
to observations. In the second place, when taken together with theory, the con­
stants constitute a model of the Earth and its motions, which serves for the
calculation of ephemerides. Analysis of the discrepancies between the ephemerides
and the observations leads in turn to new knowledge of the dynamics of the solar
system and to more accurate values of the constants.

This section is devoted to a list of the conventionally adopted values of the
constants comprising the system,- their definitions, a discussion of some of the
more important relations among them, and a statement of the known inconsistencies
in the system, awareness of which is necessary in some specialized investigations if
misinterpretations are to be avoided. For further information on these matters
see the references at the end of the section.

In table 6.1 are given the conventionally adopted values of the constants
comprising the system. It should be said at once that it is not possible to set
precise limits on such a list. Some of the constants, such as the polar radius of
the Earth, are so easily derived from others that they might be omitted. On the
other hand, the motion of the ecliptic is calculated from the adopted masses of all
the planets; it would be proper to add them to the list but no useful purpose would
be served, because it is more expedient to consider the calculation as a part of the
theory of the motion of the Earth around the Sun.

The values of the equatorial radius (a) and the flattening (f) of the Earth
have been adopted by the International Union of Geodesy and Geophysics
(G. Perrier, "Comptes Rendus de la Section de Geodesie, Madrid, 1924",
Bulletin Geodesique, nO.-7, 552-6, 1925), as has also the expression for the value of
gravity.

168

*See pages 497 to 521 for an account of the lAD system of astronomical constants that was
introduced in 1968.
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Table 6.1. The system of astronomical constants

Solar parallax ... 7f = 8"·80
Constant of nutation, 1900'0 9"'21
Constant of aberration k = 20"'47
General precession in longitude, per tropical century p = 5025".64 + 2"'22T
Precession in right ascension, per tropical century m = 4608"'50 + 2"'79T
Precession in declination, per tropical century n = 2004"·68 - 0".85T
Speed of rotation of the ecliptic, per tropical century 7f = 47"'II - 0",07T
Longitude of axis of rotation of the ecliptic II = 173° 57' 03"·6 + 3286"'2T
Obliquity of the ecliptic € = 23° 27' 08"'26 - 46"·845T - 0"'0059 T2 + 0"'00181 T3

Equatorial horizontal parallax of the Moon at distance 60'2665 equatorial radii of the Earth
.57' 02"'70

Velocity of light c = 299 860 km/sec = 186 324 statute miles/sec
Light travels unit distance in 4988'580 (from solar parallax) or 4988'38 (from constant of

aberration)
Gaussian constant of gravitation k = 0'017202098950000 = 3548"'1876069651
Mass ratio Earth: Moon 81'45 (for lunar inequality) or 81'53 (in Brown's lunar theory)
Mass ratio Sun: (Earth plus Moon) 329390

T denotes centuries from 1900'0, no distinction being necessary between the tropical
century and the Julian century; see, however, section 4B.
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The valu'es of the solar parallax, constant of nutation, and constant of aberration
were adopted by the Paris Conference of 1896. The precessional constants and
the motion of th'e ecliptic are Newcomb's. The parallax of the Moon is Brown's.
The velocity of light is the value of Newcomb (1882). The mass ratio
Earth: Moon of 81'45 is that used in Newcomb's tables for calculating the lunar
inequality in the solar coordinates, while the value 81'53 is used in Brown's lunar
theory. The mass ratio Sun: (Earth plus Moon) is that used in Newcomb's
tables of the Sun and planets.

The equatorial radius and the flattening define the size and shape of the
ellipsoid (known as Hayford's spheroid or the International Ellipsoid of Reference)
that is substituted for the actual Earth in astronomical calculations. The polar
radius is derived from the equatorial radius and the flattening as a (I - 1); for
consistency with them it is given to three extra figures.

The expression for gravity, in which ep is the geodetic latitude, includes the
effect of centrifugal force due to the rotation of the Earth.

The solar parallax is defined as the angle subtended by the equatorial radius
of the Earth at a distance of one astronomical unit.

The constant of nutation is the coefficient that is multiplied by the cosine of
the longitude of the Moon's ascending node on the ecliptic, in the expression for
the nutation in obliquity.

The constant of aberration (k) is the value of the ratio, expressed in seconds
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of arc, of the Earth's mean orbital velocity, conventionally taken to be the
component perpendicular to the radius vector, to the velocity of light. The relation
between it and the solar parallax is given later.

The speed of the general precession in longitude is inferred from observations
combined with theory. It has often been called the constant of precession, but it
is preferable to reserve the term constant of precession, as Newcomb did, for the
function:

P= (A + B-~) H
1 + fL

where P is the constant of precession, properly so called, fL is the mass ratio Moon:
Earth, H is the mechanical ellipticity of the Earth (to be distinguished from the
flattening), and A and B are functions of the elements of the orbits of the Earth
and Moon, and of the mass ratio Sun: (Earth plus Moon). The quantity P is
very nearly constant; it is diminishing at the rate of 0"'004 per century, mainly
because of the secular decrease of the eccentricity of the Earth's orbit.

The precessional constant (P) is connected with the general precession in
longitude (p) by the relation:

p = P cos € - pg - >..' cos €

where € is the obliquity of the ecliptic, >..' is the planetary precession, and pg is the
geodesic precession, equal to 1"'915 per century. The geodesic precession is a
relativistic motion of the equinox along the ecliptic, similar to the general precession
but in the opposite sense. The amount is given by 3 V2 n/2, where V is the r.m.s.
value of the ratio of the Earth's velocity to the velocity of light, and n is the Earth's
mean angular orbital motion. (See Chazy, J., La Theorie de la Relativite et La
Mecanique Celeste. Volume II, Paris, 1930.)

Denoting the precession in right ascension by m, and the precession in
declination by n, we have:

m = (P cos € - pg) cos € - >..'
n = (P cos € - pg) sin €

The plane of the ecliptic is defined as the mean plane of the Earth's orbit;
thus it is affected by secular perturbations from the action of the other planets,
but not by periodic perturbations, which are considered to be synonymous with
the latitude of the Earth. The ecliptic is rotating about an axis which is about 6°
from the equinoxes; thus the secular change of the obliquity is slightly less
numerically than the speed of rotation of the ecliptic.

The mechanical ellipticity of the Earth (H) is defined by:

H=C-A
C

where C and A are the polar and equatorial moments of inertia. The mechanical
ellipticity is thus a dynamical constant while the flattening (f) is a geometrical one.
The relation between the two is not a simple one, but an idea of it may be obtained
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from the relation that would hold approximately if the Earth were of uniform
density:

H=j-t a

where a is the ratio of the centrifugal acceleration to gravity, both taken at the
equator.

The time required for light to travel one astronomical unit (see section {A)
may be inferred either from the solar parallax by the formula*:

a
T = - = 4988'580

CTT

where T is the light-time, a is the equatorial radius of the Earth, c is the velocity of
light, and TT is the solar parallax expressed in radians, or from the constant of
aberration by the formula:

k
T = - (1 + V)-l cos 4> = 4988'38

n
where k is the constant of aberration, n is the angular mean motion of the Earth,
0"'°4106 7043 per second, sin 4> is the eccentricity of the Earth's orbit, °'°1672 63,
and 1 + v is the mean distance of the Earth from the Sun, 1'00000023. The
method of calculating the planetary aberration used in the fundamental ephemerides
of the Sun and planets is equivalent to using the smaller of the two values of T,

while for the physical ephemerides and satellites the larger of the two is convention­
ally used.

From the disagreement in the values of T calculated by the two formulae it is
seen that the adopted values of k and TT are inconsistent with each other. In fact
the product:

kCTT = na (1 + v) sec 4> = 1'27°1064 m/sec
is known with greater accuracy than any of the constants k, c, or TT. It can therefore
be used to find anyone of them if the other two are known. The following table
gives values of k resulting from use of the constant 1'27010 64 with several com­
binations of values of C and TT.

C 7T k
kIn/sec • •
299770 8·800 2°'484
299790* 8·800 2°'483
299860 8·800 20'478

299770 8'790 20'508
299790* 8'790 20'506
299860 8'790 20'501

* Modern laboratory determinations give 299792'458.

Besides being inconsistent with the constant of aberration, the adopted value
of the solar parallax is inconsistent with the mass ratio Sun: (Earth plus Moon)
used in the tables of the Sun and planets. The mass ratio 329 390 corresponds to
8"'79 for the solar parallax, whereas that corresponding to 8"·80 is 32827°.

It was long supposed that an inconsistency existed between the values of the
mass ratio Earth: Moon as inferred from the lunar inequality in the orbital motion
·See page 517.
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of the Earth, and as inferred from the observed value of the constant of nutation.
Sir Harold Jeffreys has shown, in a series of papers in the Monthly Notices of the
Royal Astronomical Society beginning about 1950, that the old theory of the nutation,
in which the Earth is considered to be a rigid body, is insufficient; it is necessary
to take the departures from rigidity into account, and the subject is one of consider­
able difficulty.

A few other inconsistencies exist in the system of constants, but they are not
so important as the ones mentioned here.

Aside from the inconsistencies in the system, some of the conventional values
are shown by modern observations to be in error by appreciable amounts. The
most important error is in the precession, the general centennial precession in
longitude requiring a correction of about +0"·8, due principally to the neglect of
the galactic rotation in the derivation of the adopted value. The centennial change
in the obliquity is known to be in error by a few tenths of a second, probably as
a result of the neglect of perturbations of the second order in its calculation. The
last two figures in the equatorial radius and the equatorial acceleration of gravity
are without physical significance, and the flattening is probably closer to 1/298
than to 1/297. In Brown's theory of the motion of the Moon the flattening used
in calculating the periodic perturbations is 1/294, the value that he found would
reconcile the observed motions of the perigee and node with his calculations. It is
probable, however, that his calculations failed to include other significant effects,
and so the value 1/294 is not to be regarded as an actual determination of the
flattening.

The errors in the adopted values of the constants do not impair the usefulness
of the system in the slightest degree. The inconsistencies, on the other hand,
are of some importance, since the investigator who is unaware of them may
occasionally be led to erroneous conclusions, but a new system in which the
inconsistencies had been removed would on the whole be much less valuable than
the present one with all its imperfections. These facts deserve emphasis, because
they seem to be peculiarly difficult of apprehension.

Most non-astronomers, and even many astronomers not working in the
dynamics of the solar system, expect to find in a national ephemeris a list of constants
the values of which, if they are not absolutely accurate, are at least as up to date as
possible. The importance of self-consistency in the system is little _appreciated,
and the even greater import~nceof perpetuating a value that is known to be incorrect
is admitted but seldom. The guardians of the system are accused of inaction and
negligence, and even prejudice, by those who for one reason or another wish to
introduce a new value for some constant.

The principal reason for retaining the system unchanged is a consequence of
the methods necessarily employed in dynamical astronomy. The value of a
constant is never measured directly. The method of differential corrections is
employed instead. Observations made at various times are compared with an
ephemeris. Analysis of the discrepancies between the observations and the
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ephemeris yields corrections to the values of the constants used in constructing the
ephemeris, which being applied give more accurate values of the constants. If,
during the period covered by the observations, the value of any constant entering
into the calculation of the ephemeris has been altered, then the ephemeris at times
before the alteration is inconsistent with the ephemeris at later times, and an
analysis that fails to take account of the change is bound to lead to an erroneous
conclusion. What must be done is either to recalculate one portion of the
ephemeris, or to make the analysis of the two portions separately, combining the
two results at the end. But in practice the alteration of the ephemeris has often
been unknown to the investigator, especially when different portions of it have
been calculated at different times by different persons. Even in cases where the
alterations are known, it may be very laborious to make the analysis properly,
and in any case considerable care is necessary.

During the nineteenth century the advantages of continuity in an ephemeris
were not appreciated even by the compilers, and during the twentieth century
some changes have been made that in retrospect hardly appear to have been justified.
It would, however, be going too far to conclude that the present system should be
retained for ever. It should be revised eventually, not piecemeal but as a whole,
and when it is done care should be taken that there is no contradiction between
the revised system and the theories of the motions of the four inner planets.

At a conference on the fundamental constants of astronomy, held at Paris in
1950, it was unanimously recommended to retain the present conventional values
of the constants comprising the system, and this recommendation was approved at
the General Assembly of the International Astronomical Union in 1952 (Trans.
I.A.V., 8, 66, 1954.).

It is useful to distinguish at least three different values of any of the constants:
(a) the conventional value comprising part of the model or system of reference, to
which observations are referred, and which remains unchanged for long periods of
time, (b) the observed value, which changes with each new determination, and
(c) an adjusted value, which rigorously satisfies the theoretical relations with the
adjusted values of other constants, and which agrees with the observed value
within the tolerance set by the observational errors.
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7. HISTORICAL LIST OF AUTHORITIES

A. INTRODUCTION

When the contents of the separate supplement were first being considered;
there was a demand for a comprehensive list of authorities, including numerical
values of the constants used, for the major ephemerides in each edition of The
Nautical Almanac since 1767. At this time these ephemerides represented the
only readily available basis for the comparison of observation with theory; and
they are only suitable for this purpose if full allowance is made for the many
different authorities and constants on which the ephemerides are based. Generally,
but not always, the authorities and constants used can be found from the Preface
or Explanation of the edition concerned, or of some earlier edition; in some cases,
ambiguities can only be resolved by recalculation, since records of the actual
calculations have not been preserved. Considerable work was done, as opportunity
offered, to collect and synthesize this information.

With the availability of fast computing machines it has become practicable to
calculate ephemerides, over the whole period covered by accurate observation,
from current theories; such are in fact already available for the Sun (A.P.A.E.,
14,1953), Venus (A.P.A.E., 15, part III, 1955) and the five outer planets (A.P.A.E.,
12,1951).

The tabulated ephemerides have therefore been largely superseded and will
not again be generally used for the comparison of observation with theory.

A knowledge of the basis of the ephemerides is, however, essential for the
proper interpretation of the results of past discussions. For this reason, and for
purposes of historical interest and record, the list of authorities is given in the
form originally intended. But a few uncertainties and ambiguities, which could
only have been resolved by excessive research or recalculation, have been allowed
to remain.

The material is arranged in three main sub-sections: up to 1900, The
Nautical Almanac and The American Ephemeris are treated separately; but after
1900 they are combined. Each sub-section is divided according to the body or
subject (e.g. Sun, Moon, Precession, Nutation, Constants); within each division
the authorities, arranged chronologically, are preceded by a short narrative of the
quantities tabulated. In this narrative" nD " is used to indicate that the quantity
is tabulated to n decimal places, and the term " precision" is used to indicate
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merely the unit of the end figure. Names and dates only are usually given for the
authorities; full references are given in sub-section E. In some cases, for example
for the adopted semi-diameters of the planets, detailed references to the original
publications have been omitted.

Some of the tabulated ephemerides are based on theories, derivations, and
constants given in Appendices and Supplements to The Nautical Almanac and to
The American Ephemeris. No lists of these appendices and supplements are
readily available, and the opportunity is therefore taken of including, in sub­
section F, complete lists of all such appendices and supplements with a brief
description of their contents. Details of miscellaneous ephemerides of auxiliary
quantities that were occasionally given in appendices or supplements have been
omitted from this section.

B. LIST OF AUTHORITIES FOR TABULATIONS IN

THE NAUTICAL ALMANAC, 1767-1900

I. Sun

All ephemerides from 1767 to 1833 were given with argument apparent time.
Quantities tabulated for the Sun at intervals of one day were longitude and
declination (each to I "), right ascension and equation of time (each to 18). Semi­
diameters in arc (to 0"·1) and in time (to 08 .1) and log distance (to 6D) were given
at intervals of 6 days. From 1768 the equation of time was given to OS·I, and
from 1772 the right ascension was also given to 08 .1. For the years 1815-1822,
the log distance was given only to 5D. In 1833 the semi-diameters and log distance
were given at intervals of one day, to 0"·01, to 08 .01, and to 7D.

The Almanac for 1834 was largely remodelled in accordance with the (Royal)
Astronomical Society's report printed in that Almanac, and thereafter the argument
of most ephemerides was mean time. Most quantities tabulated in time were
given to 08 .01, those in arc to 0"'1 (except the Sun's latitude, given to 0 11 .01), and
the log radius vector to 7D. In many cases differences or variations were given.
From 1848 equatorial rectangular coordinates were included, at intervals of one
day and to 7D, the latitude terms being included for the first time in 1866; the
values for 1845-1847 were given in the 1848 volume. No other substantial change
was made before 1900.

1767-1796: Mayer's "last manuscript tables" (which assumed an annual precession
of 50".3).

1797-1804: Mayer's tables, with the mean motion corrected to the revised precession
of 5°"'2.

I~Os-1812: Delambre's tables, as given in Lalande (n92), but with certain (unspecified)
coefficients determined by Maskelyne.

1813-1821: Improved tables by Delambre (1806).

1822-1832: The tables in Vince (1808, Volume III), "with the omission only of some
equations which do not materially affect the results". The tables are stated by Vince
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(Volume III, page 2) to have been "constructed by M. de Lambre, from the
observations of Dr. Maskelyne, and the theory of M. Laplace. See Les Memoires de
I'Academie de Berlin, for 1784, 1785". [In 1832 the position of the Sun for the cal­
culation of the transit of Mercury (and for no other purpose) was taken from Carlini's
tables, (see below) corrected.]

1833: The longitude was taken from Delambre's tables, improved by Airy's correc-
tions based on Greenwich observations.

1834-1835: Carlini's tables (1810) with Bessel's corrections (1828) and nutation as in the
Astronomical Society's tables (Baily, 1825). [The elements used by Carlini are the
same as those of Delambre (1806), but the arrangement is better for the construction
of an ephemeris.]

1836-1863: Carlini (1832).
1864-1900: Leverrier (1858).

2. Moon

The Moon's longitude and latitude, semi-diameter, and horizontal parallax
(each to I") and its right ascension and declination (each to I') were tabulated at
intervals of 12h (apparent time) for the years 1767-1833. Lunar distances (at
least one star, and from 1770 one or two stars, as well as the Sun when conveniently
placed) were given to a precision of I" for every 3h . From 1823 the right ascension
and declination were given to I". In 1834 the argument became mean time and,
with occasional minor alterations, the tabulations were given to an extra figure until
the year 1900. The right ascension (to OB'OI) and the declination (to 0"'1) were
given at intervals of one hour.

1767-1776: Mayer's last manuscript tables.

1777-1788: Mayer's tables, improved by Mason under Maskelyne's direction, based on
Bradley's observations (the latter are printed in N.A., 1774).

1789"-1796: Mayer's tables, further improved by Mason (1780). Eight new equations
were taken from Mayer's tables, the coefficients being determined from Bradley's
observations. The 18th equation in longitude was omitted.

1797-1804: The same set of tables, but adjusted (as for the Sun) for the corrected value
of precession.

1805-1807: Lalande (1792); the tables are the same as Mason (1780) except for the
substitution of Laplace's acceleration and secular motion.

1808: Lalande's tables, with the addition of two further inequalities found by Laplace.

1809"-1812: The epochs, Laplace's accelerations, and" a particular equation of his" were
taken by Maskelyne from Burg's tables (see below) and hence the mean longitudes
were computed. The parallax was taken from Mayer.

1813-1817: Burg (1806) on Laplace's theory, the coefficients being determined from
Maskelyne's observations, and the epochs from those of Maskelyne and Bradley.

1818-1820: According to Pond's Preface, the tables of Burckhardt were used. [But a
note (initialled T.Y.) at the end of the 1820 Preface states that those of Burg were
used.] .

1821-1833: Burckhardt (1812).

1834-1855: Burckhardt's tables, with nutation from Baily (1825).

1856: As in the previous years, but the parallax taken from Adams (1853b) and the
semi-diameter taken as 0'2725 times the horizontal parallax.



EXPLANATORY SUPPLEMENT

1857-1861: The ratio of semi-diameter to horizontal parallax was changed to 0·273II4.

1862-1882: Hansen (1857).

1883-1895: Hansen, but with Newcomb's corrections (1878b) included in the right ascen­
sion and declination.

1896: As in previous years, and with the substitution of Newcomb's Table XXXIV
for Hansen's.

1897-1900: Newcomb's corrections included in horizontal parallax and semi-diameter.

3. Major planets

Ephemerides of the five" classical" planets were given at intervals of 6 days
(Mercury, 3 days from 1778) until 1832. Those of Uranus (at intervals of 10 days)
were introduced in 1789 and again from 1791 onwards. The adopted precision
was I' for declination and both heliocentric and geocentric longitudes and latitudes.
When the right ascension was added, in 1819, a precision of 1m was used.

Heliocentric coordinates were omitted in 1833, while declination and geocentric
longitude and latitude were given to I ", right ascension to 0 8 '1, and log distance to
5D, all at intervals of one day.

The intervals were changed in 1834 to one day for all planets (in 1861,
when Neptune was introduced, to 4 days for Uranus and Neptune). Geocentric
longitude and latitude were omitted, and the quantities were tabulated to 08 '01 for
right ascension, to 0"· I for declination and heliocentric longitude and latitude,
and to 7D for log distance and log radius vector. A geocentric (equatorial) ephem­
eris of Neptune was published between 1850 and 1860, at intervals of 5 days,
usually as an appendix to later Almanacs.

Transit ephemerides were introduced in 1839 for Mercury to Uranus, and
in 1861 for Neptune.

Mercury, Venus, Mars, Jupiter, Saturn

1767-1779: Halley (1749).
1780-1804: Wargentin's tables, "annexed to M. De la Lande's Astronomy".

1805-1833: Lalande (1792). These are the tables calculated by Delambre on the theory
of Laplace. The tables of Mars from 1822 were taken from" those of Lalande in the
Connaissance des Terns [sic] for the 12th year [1803-04]"; the places of Mercury for
the transit of 1832 from Lindenau's tables (see below).

Mercury
1834-1863: Lindenau (1813).
1864-1900: Leverrier (1859).

Venus
1834-1864: Lindenau (1810). For the years 1837~1848 a correction of -2' 18" was

applied to the tabular longitude of the node.
1865-1900: Leverrier (186Ia).

Mars
1834-1865: Lindenau (18II).
1866-1900: Leverrier (1861b).

Jupiter
1834-1877: Bouvard (1821).
1878-1900: Leverrier (1876a).
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Saturn
1834-1879: Bouvard (1821). [For the years 1852-1879, Bouvard's Table 42 was used

in the corrected form given by Adams (1849) and in N.A. 1851, xiv.]
1880-1900: Leverrier (1876b).

Uranus [" The Georgian" in N.A. 1789-1850]

17
8
9: 8 }As for the" classical" planets.

1791- 1 33:
1834-1876: Bouvard (1821).
1877-1881: Newcomb (1873).
1882-1900: Leverrier (1877a).

Neptune
1850-1857: Computed from elements given in various issues of the Berliner Jahrbuch or

The Nautical Almanac.
1858-1870: Kowalski (1855). [This is a little uncertain for the years 18S9---{)0, as the

supplements to the almanacs containing these ephemerides do not quote the authority.]
1871-1881: Newcomb (1865).
1882-19°0: Leverrier (1877b).

4. Minor planets

Ephemerides of minor planets were given for the first time in the Almanac for
1834. That issue contained ephemerides, at intervals of 4 days throughout the
year, of the first four planets, based on elements by Encke. The right ascension
was tabulated to Om'I, declination and heliocentric longitude and latitude to I',

log distance and log radius vector to 4D. For one month on each side of opposition,
at intervals of one day, the right ascension was given to OS'OI, declination to 0"'1,
log distance and log radius vector to 5D.

Similar ephemerides for the years to 1849 were based on the same elements,
with variations calculated by the method given by Airy (1835).

Between 1850 and 1866 the number of planets, for which ephemerides at
wider intervals were published, was increased, in some years to as many as 36,
the elements used being due to a number of different authors. [The Almanac for
1856 contains a translation (by Airy) of papers by Encke (1852 a, b) on the comput­
ation of special perturbations.]

From 1867 the number of planets was decreased to five, and from 1876 to the
first four, on the ground that more accurate ephemerides were to be published in
the Berliner Jahrbuch. The elements used were:

Ceres, 1867-1881: Schubert (1854).
Ceres, 1882-19°0: Godward (1878).
Pallas, 1867-1900: Farley (1856a).
Juno, 1867-1893: Hind (1855).
Juno, 1894-1900: Hind (1855), with corrections by Downing (1890).
Vesta, 1867-19°0: Farley (1856b).
Astraea, 1867-1875: Farley (r856c).
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23° 27' 29" - 0"'46 (t - 185°'°)
23° 27' 31"'95 - 0"'457 (t - 185°'°)
23° 27' 31".83 - 0"'476 (t - 185°'°)
23° 27' 31"'42 - 0"'46784 (t - 185°'°)
23° 27' 30"'99 - 0"'4645 (t - 185°'°)
23° 27' 31".68 - 0"'468 (t - 185°'°)

5. Auxiliary quantities

Sidereal time

The sidereal time was not tabulated explicitly for the first sixty or seventy
years, but from 1833 values were given at intervals of one day. The sidereal time
at mean noon is stated to have been calculated from the following expressions:

1833: Sun's mean longitude + 6"'0 - 16"'5 sinn -.0"'917 sin 2 0
1834-1900: Sun's mean longitude + nutation, where the Sun's mean longitude at Paris

mean noon of January 0 of the year 1800 + t is given by Bessel (1830a, p.xxiv) as:

279° 54' 01"'36 + 27".605844 t + 0"'0001221805 t 2
- 14' 47"'083 f

f being (for the 19th century) the number of years from the preceding leap year.

Mean obliquity of the ecliptic

The values used were the following (t being measured in years):
1767-18°7: 23° 28' 16" - x (t - 1756) Mayer (1770, pp. 105 and [v])

x was stated by Maskelyne in several almanacs to be about half a second, but Mayer's
table indicates 0"'46. The values seem to have been adjusted occasionally by
Maskelyne.

1808-1833: Corrected year by year, from Greenwich observations to a current date.
1834-1863: 23° 27' 54"·8 - 0"'457· (t - 1800'0) Bessel (1830a, p. xxvii)
1864-19°0: 23° 27' 31".83 - 0"'476 (t - 185°'°) Leverrier (1858, p. 203)

The authorities for the values of the obliquity adopted for the conversion of the
Moon's longitude and latitude to right ascension and declination were (see A. M. W.
Downing, M.N.R.A.S., 69, 618, 1909):

1862-1874: Hansen (1857, p. 45; see Hansen and Olufsen, 1853, p. 5)
1875-19°0: Leverrier (1858, p. 203)

Reducing all these to a common date, for comparison with Peters (1842) and
Newcomb (1895a), we have:

Mayer:
Bessel:
Leverrier:
Hansen and Olufsen:
Peters:
Newcomb:

Apparent obliquity of the ecliptic

Values of the apparent obliquity (to 0"'1) at intervals of three months were
published from the inception of the Almanac; in 1817 and 1818, and again from
1834, the interval was changed to 10 days, and in 1834 the precision was changed
to 0"'01. From 1876 to 1895 the short-period terms of nutation were included in
the apparent values, which were tabulated at intervals of one day.

Precession

Mayer's value (1770, p. [52]) of 50"'3 was used in the Almanac from 1767 to
1196, but was corrected to 50"'2 from 1797 to 1833, with a corresponding adjust­
ment of Mayer's values of the mean motions of the Sun and Moon.

Between 1834 and 1853 there is no specific statement of the values used, but
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from 1854 to 1895 the annual (and daily) increments were given (to 0"'0001), and
the precession from the beginning of the year was tabulated (to 0"'0 I) at intervals
of 10 days. No authority is quoted for these figures.

From 1896 to 1900, Peters' value (1842, p. 71) is stated to have been used as
the authority.

The following comparison shows the various values of the annual precession
that were used (T being measured in centuries from 1850'0):

1854-1856 (deduced):
1857-1895 (deduCed)}.
1896-1900 (Peters) .
1901-1959 (Newcomb):

50"'2357 + 0",025T

50"'2524 + 0"'0227T

50"'2453 + 0"'0222T

Encke (1"824, p. 108)
Leverrier (1858, p. 114)
Newcomb (1867, p. 29)

Nutation

'767-1833: The" Equation of the Equinoctial Points" (nutation in longitude) was tabu­
lated (to 0"'1) for every three months, but without any indication of the authority or
of the terms included. In the years 1817 and 1818 the same "Equation ... iri
Sidereal Time" (or nutation in right ascension) was given (to 0·'01) at intervals of
ten days.

1834-1856: The tabulated values (to 0"'01 in longitude and 0·'01 in right ascension) at
intervals of 10 days, were based on Baily's (1825) values and included the four terms
numbered I, 2, 3, 14 in table 7.1.

1857-1880: The same terms were tabulated, and the precision and the interval of tabulation
were unchanged, but the coefficients were based on Peters (1842). .

1881-1892: Nutation in obliquity was also included, to a precision of 0"'01.

1893-1895: Two additional terms (nos. 5 and 7) were included in the tabulations.

1896: Long-period and short-period terms in both longitude and obliquity were
included in the tabulations, the interval of which was one day. Term no. 15 was
included.

,897-1900: Nine additional terms (nos. 6, 8-13, 17, 18) were included.

Constants

The following values of the principal constants have been used:

Solar parallax

1834-1869: 8"'5776
1870-1881: 8"'95
,882-1900: 8".848

Constant of aberration

1834-1849: 20"'36
1850-1856: 20"'42
1857-1900: 20"'445 1

Baily (1825, p. x)
Baily (1845, p. 21)
Struve (1844, p. 275)

Constant of nutation

1834-1856: 9"'25 Baily (1825, p. xiv)
1857-1900: 9"'2231 + 0"'0009T, where T is in centuries from 1800'0.

Peters (1842, p. 75)
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Sun

1767-1807: 962".8
1808-1833: 961 ".37
1834-1852: 960 ".9
1853-1895: 961 ".82

.{961 ".181896-1900. "6
959 . 3

Semi-diameters at unit distance

Mayer (1770, P.[56])

Bessel (1830a, p. L)
Airy (1855, p. lxxviii)
Auwers (from observations at Greenwich, 1851-1883)
Auwers (1891, p. 367) [This value was used for eclipse

calculations only]

T
sine (l
obliqu
leader
.1£ is (
have I=
period

Term
Argun

Neptune

1899-1900: 36".56

Mercury

1834-1863: 3"·23
1864-1900: 3"·34

Venus

1834-1864: 8"·25
1865-1895: 8".305
1896-1900: 8".40

Mars

1834: 4"·57
1835-1865: 4"·435
1866-1895: 5"·55 [sic]
1896-1900: 4"·68

Jupiter (equatorial)

1837-1881 : 99".704
1882-1895: 98"·19
1896-1900: 97".36

Jupiter (polar)

1834: 93"·37
1835-1856: 93"·4
1857-1881: 92".426
1882-1895: 92".200
1896-1900: 91".10

Saturn (equatorial)

1834: 88".72
1837-1881: 81"·106
1882-1895: 83".3 1
1896-1900: 84"·75

Saturn (polar)

1835-1856: 75"·25
1857-1881: 75"·19
1882-1895: 74".56
1896-1900: 76".88

19
__ 19,

*

181
18
19
19
19.

Tern
Argu

193

omitt

Term
Argw

18
19
19

Tern
Argu

18,
18
19
19
19

.~
Ter
Arg

De1ambre
Leverrier
Hind

Barnard; however, no values were tabulated

Bessel
Leverrier
Meyer

Bessel
Equatorial S.D. x 0·927
Equatorial S.D. x 0·&95
Meyer

Struve
Leverrier
Schur

Delambre
Equatorial S.D. x 0·927
Equatorial S.D. x 0·939
Schur

Lindenau
Leverrier

Littrow
Leverrier
Hartwig

Delambre
Leverrier
Auwers

37"·20.
37"·25
34"·28
34"·28

Uranus

1834:
1835-1881:
1882-1 895:
1896- 1900 :



7.1-COEFFICIENTS IN NUTATION, 1834-1959

This table gives the values adopted, beginning with each year shown, of the coefficient of
rille (Argument) in the nutation in longitude (,1rjJ), and of cosine (Argument) in the nutation in
obliquity (,1£); a blank indicates that the term was not included in the tabulations for that year, a
leader (...) that the coefficient used was the same as in the preceding entry. The sub-heading
JE is omitted for those terms that do not occur in the obliquity. Terms numbered I to 13 all
have periods greater than 100 days, and are known as long-period terms; numbers 14 to 25 have
periods shorter than 35 days, and are known as short-period terms.

Term No.
Argument

I

n
2

2n
3
2L

H

-17'2985 +9'2500
-17'2524 + 9'2236

1834
18S7
1896
1901 -17'236 +9'210
1903 - 17'235

{
-17'234 +9'210

1937 _ 0,017T +0'0009T

H

+0'2082 -0'0903
+0'2063 -0'0895

+0'209

- 1'2550 + o· 5447
-1' 269 1 +0'5507

-1'257
-1'270
- 1'272

None of the remaining coefficients is as large as I H ;

omitted, to save space.
the zero in the units place is consequently

Term No.
Argument

4
L-r

,1rjJ

5
L + 8

,1rjJ (8)

• 0'

+'1476 8202

+'126

+'110

+' 107

- '0058 + '0027
-'049 +'021
-'050 ...

+'022
+'021

+ '0125 - '0067
-'009

+'012
... -'007

Term No.
Argument

10 II
2L - 2F' 2L - 2n

,1rjJ ,1rjJ

1897
19°1
1937

+'0044

+·005

-'0024

-'003

+'0053

I +'004

.
+'0026 -'0023

. .
+ '0020 - '0008

+'012 -'005
+'011 ...

+'01 5

19
«-2L+F'

,1rjJ

-'0339 +'0181 -'0261 +'0113
-'034 +'018 -'026 +'011

16
2« - 2F'

,1rjJ

.
+'0677

+'067
+'068

21
2« - 2L

,1rjJ

1896
1897
19°1
19°3
1937

Term No.
Argument

Term No.
Argument

19°1
1937

H

+'006
+'006 -'003 + '006 + '003 I - '005 + '002 -'004 +'002

* The sign of term no. 7 in,1£ is given incorrectly in the Almanac from 1893 to 1900.
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C. LIST OF AUTHORITIES FOR TABULATIOI\S I1\"

THE AMERICAN EPHEMERIS, 1855-1900

During the period 1855-1900, the twelve monthly sections that formed the
principal content of the first part of The American Ephemeris contained the Green­
wich ephemerides of the Sun and Moon; these sections remained virtually
unchanged throughout the period. Following them in the first part of the volume
were Greenwich ephemerides of Venus, Mars, Jupiter, and Saturn; similar
ephemerides for Mercury, Uranus, and Neptune, and heliocentric ephemerides
for all seven planets were added in 1882. An ephemeris of the rectangular coordin­
ates of the Sun was also included, although for the period 1875-1881 it was
relegated to the second part.

The second part contained the ephemeris for the meridian of Washington,
and included further ephemerides of the Sun, Moon, and planets, partly for
Washington noon and midnight and partly for meridian transit at Washington.
These ephemerides, which were revised somewhat from time to time, included a
tabulation of the obliquity, precession, and nutation until 1882, when it was
transferred to the first part of the volume.

I. Sun

In the Greenwich ephemerides of the Sun, the apparent right ascension
(to 08 '01), the declination (to 0"'1), and the equation of time (to 08 '01) were
tabulated at intervals of one day for apparent noon and (except in 1855) for mean
noon; the semi-diameter (to 0"'01) and the sidereal time of semi-diameter passing
the meridian (to 08 '01) were given for apparent noon; and (except in 1855) the
longitude (to 0'" I) referred both to the true equinox of date and to the mean
equinox of the beginning of the year, the latitude (to 0"'0 I), and the log radius
vector (to 7D) were given for mean noon. In the Washington ephemerides, the
right ascension and declination were given for mean and apparent noon; the
equation of time, the semi-diameter, and the sidereal time of semi-diameter passing
the meridian were given for apparent noon; and during 1855-1881, the longitude,
latitude, and log radius vector were given for Washington mean noon and midnight.
The tabular precisions were the same as in the Greenwich ephemerides.

During the period 1855-1881 the equatorial rectangular coordinates of the Sun
(to 7D) were tabulated for Greenwich mean noon, referred to the true equinox and
equator of date, and also for Washington mean noon and midnight, referred both
to the true equinox of date and the mean equinox of the beginning of the year.
In 1882, these ephemerides were replaced by a tabulation (to 7D) for Greenwich
mean noon and midnight, referred both to the true equinox of date and mean
equinox of the beginning of the year.

The horizontal parallax (to 0"'01) and aberration (to 0"'01) of the Sun were
tabulated at intervals of 10 days, for Oh Washington sidereal time during 1855-1864-,
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for Washington mean noon during 1865-1881, and for Greenwich mean noon
thereafter.

1855-1857 :
1858-1874:
1875-1899 :
1900 :

Carlini (1810), with Bessel's revisions (1828).
Hansen and Olufsen (1853).
Hansen and Olufsen (1853), with aberration according to Struve
Newcomb (189Sa).

2. Moon

In the Greenwich ephemerides of the Moon, the right ascension (to OS'OI)

and declination (to 0".1) were tabulated for every hour; the semi-diameter and
horizontal parallax (to 0"'1) were given for noon and midnight; and, during
1860-1900, the longitude and latitude (to 0"'1) were given for noon and midnight.

In the Washington ephemerides, the right ascension (to OS'OI) and declination
(to 0"'1) were tabulated for upper and lower culmination during 1855-1864, and
for upper culmination during 1882-1900; the sidereal time of semi-diameter
passing the meridian (to OS'OI) was given for both culminations during the period
1855-1864, but only for upper' culmination after 1864. The semi-diameter and
horizontal parallax (to 0"'1) were tabulated for Washington mean noon and
midnight during 1855-1881, and for upper culmination during 1882-1900.

The times of the phases, apogee, and perigee were given both in Greenwich
mean time and in Washington mean time. The mean longitude and the longitude
of the ascending node were given at intervals of 10 days.

1855-1856: Peirce (1853). These tables are based on Airy (1848), with corrections by
Airy (1849) and Longstreth (1853). The tables used by Airy (1848) were derived
from Damoiseau (1824), and were subo~antially a development of Plana's theory
(1832), modified to include two Venus inequalities discovered by Hansen (1847).

1857-1882: Peirce (1853), with parallax from tables based on formulae of Adams (18S3a)
and Walker (1848),

1883-1900: Hansen (1857) with corrections by Newcomb (1878b). [In the Introduction
to The American Ephemeris for 1912 and following years, attention is called to the fact
that these corrections were not precisely in accordance with the statement given in
the volumes for 1883-19II, and the formula actually used is given.]

3. Major planets

In the Greenwich ephemerides of the planets, the apparent right ascension
(to OS'OI) and declination (to 0"'1) were tabulated for mean noon at intervals of
one day for Mercury (after 1881), Venus, Mars, Jupiter, and Saturn, and (also
after 1881) at intervals of 4 days for Uranus and Neptune. The time of meridian
passage (to Orn'I) was also given; the semi-diameter and horizontal parallax
(to 0"'1 in general; to 0"'01 for Uranus and Neptune, and in 1900 for Mercury,
Venus, and Mars) were tabulated at various different intervals for the different
planets.

In the Washington ephemerides, the apparent right ascension (to OS'OI) and
declination (to 0"'1) were tabulated, during 1855-1869, for the inferior planets at
Washington mean noon and meridian transit, and for the superior planets at Wash­
ington sidereal noon and meridian transit; from 1870, mean noon and meridian
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transit were the times used for all the planets, and from 1882 the ephemerides for
noon were omitted. The semi-diameter and horizontal parallax (to 0"'01) were
given for Oh Washington sidereal time during 1855-1864, for Washington mean
noon during 1865-1881, and (to 0"'1) for Washington meridian transit from 1882.
The sidereal time of semi-diameter passing the meridian was tabulated to OS'OI

throughout.

Included in the second part of the volume during 1855-1881 were also
heliocentric ephemerides of the planets. The quantities tabulated were the
rectangular coordinates (to 4D for Mercury, Venus, Mars, and Neptune; to 5D for
Jupiter, Saturn, and Uranus), the log radius vector (to 4D for Mercury, Venus,
and Mars; to 5D for the outer planets), and the orbital longitude (to 0"1 for the
inner planets; to I" for the outer planets); the attractions on the Sun were added
in 1861. During the period 1855-1860 the rectangular coordinates were referred
to the equinox and equator of date; beginning with 1861, they were referred to
the ecliptic and mean equinox of a selected epoch, and the coordinates of the
Earth were included. A table of the adopted masses and the orbital inclinations
and nodes was also given.

In 1882, these heliocentric ephemerides were replaced by different ones
which followed immediately after the geocentric ephemerides in Part I and
contained the longitude and latitude (to 0"· I) referred to the ecliptic and mean
equinox of date, the reduction to orbit, log radius vector (to 7D; in 1900, to 8D for
Venus and Mars), and log geocentric distance (to 7D), for Greenwich mean noon
at intervals of 8 days for Uranus and Neptune, 2 days for Mercury (one day in 1900),
and 4 days for the other planets (2 days for Venus and Mars in 1900); log geocentric
distance was also given for the dates intermediate between the tabular dates.

During the years preceding the completion of the planetary tables of Newcomb
and Hill, the ephemerides were calculated with tables that for the most part were
constructed in the Office by applying corrections to the early tables of Lindenau
and Bouvard that had been based upon Laplace's theories.

Mercury
1855-1899: Winlock (1864), based on the theory of Leverrier (1845).
1900: Newcomb (1895b).

Venus
1855-1875: Manuscript tables prepared from Lindenau (1810) by applying corrections

based on investigations by Airy (1832), Breen (1848), and Leverrier (1841).
1876-1899: Hill (1872). [An ephemeris for 1874-1875 calculated from these tables is

given in the Appendix to the 1876 volume.]
1900: Newcomb (1895c).

Mars
1855-1899: Manuscript tables, based on Lindenau (181I), with corrections from Breen

(1851) and Leverrier (1841), and various other corrections from time to time.
1900: Manuscript tables, based on the elements derived by Newcomb (1895d).

Jupiter
1855-1897: Manuscript tables, prepared from Bouvard (1821), with corrections to make

them agree with observation.
1898-1900: Hill (1895a). [In the 1898 volume, it is incorrectly stated that Bouvard's

tables were used for that year.]
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Saturn
1855-1882: Manuscript tables prepared from Bouvard (1821), with various corrections

from time to time.
1883-1899: Manuscript tables prepared from a provisional theory by Hill (1890).
1900: Hill (1895b).

Uranus
1855-1875: Bouvard (1821), with revisions by Leverrier (1846) and Peirce (1848a), and,

beginning with 1859, further corrections by Runkle (1855).
1876: Manuscript tables constructed by Newcomb.
1877-1900: Newcomb (1873). [An ephemeris for 1873-1876 calculated with these tables

is given in the 1877 volume.]

Neptune
1855-1869: Tables based on Peirce's theory (1848b) and Walker's elements (1848).

[Ephemerides for 1853 and 1854 were given in the volumes for 1855 and 1856,
respectively. ]

1870-1900: Newcomb (1865). [An ephemeris for 1866-1869 calculated from these tables
is given in the Appendix to the 1869 volume.]

4. Minor planets

Among the early tables constructed and printed for The American Ephemeris
were tables of the minor planets (15) Eunomia, (40) Harmonia, (18) Melpomene,
and (II) Parthenope. Ephemerides of these minor planets were not included in
The American Ephemeris, but an " Asteroid Supplement" in the volume for 1861
contained opposition ephemerides for 33 minor planets for 1859, and the orbital
elements of (I) - (55).

5. Auxiliary quantities

Sidereal time

The sidereal time was tabulated (to OS'OI) for every Washington mean noon,
and (except in 1855) for every Greenwich mean noon. In the Greenwich ephem­
eris, except in 1855, the mean time of Oh sidereal time (to OS'OI) was also given
for every day.

Obliquity of the ecliptic

The authorities and adopted expressions for the mean obliquity were:

1855-1881: Peters (1842).
23° 27' 54"'22 - 0"'464St - 0"'00000 -14t2
where t is reckoned in years from 1800.

1882-1899: Hansen and OIufsen (1853).
23° 27' 31"'42 - 0"'46784t
where t is reckoned in years from 1850.

1900: Newcomb (1895d).
23° 27' 08"'26 - 0"'468t
where t is reckoned in years from 1900.

The apparent obliquity was tabulated (to 0"'01) at intervals of 10 days (5 days
in 1900), for Oh Washington sidereal time during 1855-1864, for Washington
mean noon during 1865-1881, and for Greenwich mean noon thereafter.

The obliquity actually used in calculating the ephemerides of the Sun, Moon,
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and planets in the volumes for 1865-1899 was taken from Hansen and Olufsen
(1853). In 1900, it was taken from Newcomb (1895a).

Precession

For the general precession in longitude, the expression given by Peters (1842):

5°"'2411 + 0"'0002268 t
where t is reckoned in years from 1800, ~as used until in 1900 the value given by
Newcomb (1895d) was adopted:

5°"'2482 + 0"'00022 t
where t is reckoned in years from 1900.

The amount of precession since the beginning of the year was tabulated
(to 0"'01) at intervals of 10 days (5 days in 1900) for Oh Washington sidereal time
during 1855-:-1864, for Washington mean noon during 1865-1881, and for Green­
wich mean noon thereafter.

Nutation

The nutation in longitude, for which the term" equation of the equinoxes in
longitude" was used during 1855-1899, and the nutation in obliquity that were
used for the computations relating to the stars were calculated from the formulae
given by Peters (1842) until, in the volume for 1900, they were taken from Newcomb
(1895a). The formulae of Peters are given in the Appendix to the volume for
1855; during later years, provision was made for including additional small terms
when required.

Beginning with 1865, the apparent obliquity and nutation that were used in
the ephemerides of the Sun, Moon, and planets were taken from Hansen and
Olufsen (1853), until in 1900 the obliquity and the long-period nutation were
taken from Newcomb (1895a).

The equation of the equinoxes in longitude (to 0"'0 I) and in right ascension
(to 08'01 for 1855-1877, and to OS'OOI for 1878-1900) were tabulated at intervals
of 10 days (5 days in 1900) for Oh Washington sidereal time in 1855-1864, for
Washington mean noon in 1865-1881, and for Greenwich mean noon thereafter.
In 1900, the nutation in obliquity (to 0"'01) was also explicitly tabulated at intervals
of 5 days.

Constants
Solar parallax

1855-1869: 8"'5776
1870-1899: 8".848
1900: 8"·80

Constant of aberration

1855-1899: 20"'445 1

Encke (1824)
Newcomb (1867)
Paris (1896) [This value was used for eclipse calculations
from 1896 onwards.]

Struve (1844). [In the ephemeris of the Sun for 1869­
1874 the value 20"'255 from Hansen and Olufsen (1853)
was used.]
Paris (1896)
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Constant of nutation

1855-1899: 9"'2231 + 0",0009T, where T is in centuries from 1800'0.
Peters (1842)

1900: 9"'21 at 1900'0 Paris (1896)

Semi-diameters
Sun

1855-1899: 16' 02" at mean distance (Greenwich observations).
1883-1899: In the calculation of eclipses, 15' 59"'788 (Bessel).
1900: 15' 59"·63 at mean distance (Auwers); this value was used in calculating

eclipses, but in the ephemeris of the Sun I'" I 5 was added to it for irradiation.

Moon

1855-1868: Burckhardt's value increased by 1/500 part.
1869-1900: 0'2722747T + 2"'5 for irradiation; the irradiation was omitted in the calcula­

tion of eclipses and occultations.

Planets
1855-1900 :

log distance
Mercury 3"'34 0·00
Venus 8"'546 0'00
Mars 2"·842 0'25
Jupiter 18"'78 0'70
Saturn 8"'77 0'95
Uranus 1"·68 1'30

The value for Mercury was taken from Leverrier; the others were determined by
Peirce from observations in 1845 and 1846 with the mural circle at Washington. The
values for Jupiter and Saturn are the polar semi~diameters; it is stated in the 1869
volume that 19"'19 was erroneously used in 1858-1869 for Jupiter in the Washington
ephemeris. In the volumes for 1869-1900, the equatorial semi-diameter of Jupiter is
given as 20"'00 at log distance 0'70, and that of Saturn as 9"'38 at log distance 0'95,
without authority.

1882-19°0:
Neptune 1"'28 at log distance 1'48; no authority given.

D. LIST OF AUTHORITIES FOR TABULATIONS IN

THE NAUTICAL ALMANAC AND IN THE AMERICAN

EPHEMERIS, 1901-1959

The details given in this suo-section refer specifically to The Nautical Almanac;
any differences in the corresponding editions of The American Ephemeris are
specially noted in brackets-in which A.E. refers only to The American Ephemeris.

I. Sun

The quantities tabulated, generally with argument mean time, are substantially
the same as before-longitude, latitude, right ascension, declination, and log
radius vector-the precision normally 0"'1,0"'01, OS'OI, 0"'1, and 7D, and (except
for the mean longitude and anomaly and the equatorial rectangular coordinates)
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the interval one day. The mean longitude has been given at intervals of 10 -days
since 1906, to 0°'00001 for 1906-19II, and to 0°'0001 since 1912. [In A.E., the
mean longitude, at intervals of 5 days and to 0°'0001, has been given since 1934.]
Equatorial rectangular coordinates referred to the true equator and equinox of date,
with reductions to those of the beginning of the year, were given at intervals of 12h

and to 7D until 1930, while similar coordinates at intervals of one day for the
equinox of the beginning of the year have been tabulated since 1931, and those
for the standard equinox of 1950'0 (Comrie, 1926) since 1928.* [In A.E., the
interval of 12h was retained until 1950; from 1931 to 1950 the coordinates were
referred to the beginning of the year, and reductions to the true equinox of date
were also tabulated. Coordinates for 1950'0 have been tabulated since 1938, at
intervals of 12h until 1950, of one day from 1951.] Since 1954 [in A.E., since
1953] the coordinates on the" standard" 1o-day dates (LA.V., 1950) have been
emphasized by the use of bold type.

Longitude referred to the mean equinox of the beginning of the year was
included from 1931 to 1937 [in A.E., from 1901 to 1915 and from 1931 to 1951].
Longitude and latitude referred to the mean equinox of 1950'0 have also been
tabulated at intervals of one day to 0°'00001 from 1928 to 1937 [not in A.E.]; from
1938 to 1959 [also in A.E.] longitude given to 0"'1, latitude to 0"'01. [In A.E.,
latitude referred to ecliptic of date given during 1901-1959.] Natural values of
the radius vector (to 7D) were introduced in 1928 [in A.E., in 1938], the logarithmic
value being omitted from both almanacs in 1938.

19°1-1959: Newcomb (1895a).

2. Moon

Values of the longitude and latitude to 0"'1, of the parallax to 0"'01 [in A.E.,
0"'1 until 1912] and of the semi-diameter to 0"'01 [in A.E., 0"'1 until 1939] were
tabulated at intervals of 12h throughout the period. Values of the right ascension
and declination to 08 '01 and 0"'1 were given at intervals of one hour, while lunar
distances continued to appear until 1906 [in A.E., until 191 I], and examples of
their calculation were given in the issues for 19°7-1919 [in A.E., for 1912-1935].
Elements of the mean equator and orbit have been included throughout. [The
angular distance from the Sun has been given in A.E. since 1937, to 0"1 until
1941, to I' thereafter.]

19°1-1922: Hansen (1857) with Newcomb's corrections (1878b) to right ascension, declina­
tion, parallax, and semi-diameter from 1901 to 1914, and to longitude and latitude
(before conversion to equatorial coordinates) from 1915 to 1922. [A.E. for 1912
states that. Newcomb's formula for the correction to Hansen's mean longitude
was not, in fact, used for the years 1883 to 1911. The formula actually used is there
quoted.]

1923-1959: Brown (1919). It is to be noted that the values of the longitude (and corres­
pondingly of the right ascension and declination) for the year 1923 require a small
correction +0"'08 cos (<< - r').

*The coordinates for 1928 were given in the volume for 1929.
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3. Major planets

Values of the apparent right ascension and declination to OS'OI and 0"'1 have
been tabulated at intervals of one day throughout the period. [In A.E., the interval
for Uranus and Neptune was 4 days until 1935.] Log distance at the same interval
and to 7D was given until 1934 for Mercury and until 1940 for the other planets.
[In A.E., the intervals until 1915 were I2h for Mercury, one day for Venus and
Mars, 2 days for Jupiter and Saturn; from 1916, one day for each of these five;
for Uranus and Neptune, 4 days from 1901 to 1935.] Natural values of the distance
have been given since 1935 for Mercury and since 1941 for the other six planets at
intervals of one day, to 6D for Mercury to Jupiter, and to 5D for Saturn to Neptune.

Heliocentric longitude and latitude (to 0"· I), referred to the mean equinox of
date, and log radius vector (to 7D) were tabulated at intervals of from one to four
days until about 1915 and thereafter they were given, in the appendices to various
almanacs between 1915 and 1920, at wider intervals (up to 40 days) for the period
up to 1940. [In A.E., at intervals of from one to ten days throughout the period
1901-1959.] The first two volumes of Planetary Co-ordinates (H.M.N.A.O., 1933
and 1939) contain similar coordinates (to 0°'001 or 0°'0001), but referred to the
mean equinox of 1950'0, and natural values of the radius vector (to 4D or 5D) for
the period 1920 to 1960, except that no tabulations are given for Mercury and
Pluto. The volumes also contain coordinates of the four outer planets Jupiter,
Saturn, Uranus, and Neptune for 1800 to 1920.

Astrometric right ascensions and declinations, and distances, of Pluto have
been included since 1950, but no heliocentric coordinates of this planet have
been given. [In A.E., heliocentric longitude and latitude (to 0"'1) and log radius
vector (to 7D) at intervals of 100 days have also been given since 1950']

Mercury, Venus
190r-r959: Newcomb (r895b and 1895C).

Mars
19°1: Leverrier (r86rb). [In A.E., tables in manuscript constructed from elem'ents

by Newcomb (1895d).]
1902: Leverrier (r86rb). [In A.E., Newcomb (r898a).]
1903-r92r: Newcomb (r898a).
1922-r959: Newcomb (1898a) with Ross's corrections (1917).

Jupiter, Saturn
190r-r959: Hill (1895a and r895b).

1901-r903: Leverrier (r877a).
1904-r959: Newcomb (r898b).

190r-r902: Leverrier (r877b).
19°3: Leverrier (r877b).
1904-r959: Newcomb (r898c).

1950-r959: Bower (r93r).

Uranus
[In A.E., Newcomb (r873).]

Neptune
[In A.E., Newcomb (r865).]
[In A.E., Newcomb (r898c).]

Pluto
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4. Minor planets

Elements and ephemerides of the first four minor planets were published as in
previous years [not in A.E.] from 1901 to 1913; ephemerides alone were given in
1914 and 1915. Thereafter, no tabulations were given until 1952; since that year
ephemerides have been included to cover, at intervals of one day, the periods
during which transit occurs between sunset and sunrise at (most) fixed observatories,
although in 1958 the period of tabulation was altered to that during which the
planet is " not within about 40° of the Sun". The quantities given were apparent
right ascension and declination (to 08 '01 and 0"'1) with corrections" astrometric
minus apparent ", and distance (to 6n).

The basis of the tabulations has been:

Ceres, 19°1-1915: Godward (1878).
Pallas, 19°1-1915: Farley (1856a).
Juno, 19°1-1915: Hind (1855), with corrections by Downing (1890).
Vesta, 1901-1906: Farley (1856b).
Vesta, 19°7-1915: Leveau (1896).
All, 1952-1959: Herget, Clemence, and Hertz (1950).

S. Auxiliary quantities

Sidereal time

19°1-1932: The values tabulated, to 08'01 and at intervals of one day, were based on
ewcomb's value (1895a) for the right ascension of the mean sun affected by

aberration:
18h 38m 458.836 + 86401848'542 T + 08'°929 T2

where T is measured in Julian centuries from 1900 January oat 12 h U.T., and included
the effect of long-period terms only of nutation.

1933-1959: The precision was changed to 08'°01, and the effect of short-period terms of
nutation was also included.

Obliquity of the ecliptic

Newcomb's value (1895a) for the mean obliquity was used throughout:

23° 27' 08"'26 - 46".845 T - 0"'0059 T2 + 0"'00181 T3

[In addition, A.E. includes values attributed to Hansen and to Peters for the
years 1901 to 1915, also those due to Leverrier for the years 1902 to 1915.]

Values of the true obliquity excluding the effect of short-period terms of
nutation-were given (to 0"'01) at intervals of one day until 1930 [in A.E., until
1933; and at intervals of 5 days from 1934 to 1959]. Since then, only the mean
obliquity for the beginning of the year, and the (daily) nutation in obliquity have
been given; the calculation of the true obliquity, if required, is a simple process.

Precession

The values given were based, throughout the period, on Newcomb's deter­
mination (1897, p. 73):

5°"'2564 + 0"'0222 T
[A.E. for the years 1901 to 1911 gave also values based on Peters (1842).]
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Values of the precession from the beginning of the year were tabulated to
0"'01 at intervals of one day [in A.E., 5 days until 1915], while the daily and
annual increments to 0"'0001 were given until 1930 [in A.E., until 1915]'

From 1931 [not in A.E.] additional precessional constants, and tables for
reduction of star positions, were also included.

Nutation-The Nautical Almanac

19°1-19°2: The tabulations of long-period and short-period terms (separately) in both
longitude and obliquity were based on the values given by Newcomb (1895a), as
modified by the Paris Conference (1896). The precision was 0"'01, while six terms
of long period, and seven of short period, were included, as in table 7.1.

19°3-1911: The coefficients of a few of the terms were modified in accordance with the
revised values given by Newcomb (1898d).

1912-193°: An additional term, no. 8, was included, in the day numbers throughout this
period, but only in the tabulation of the nutation from 1918.

1931-1936: Nutation in obliquity, and the short-period nutation in longitude, were no
longer tabulated explicitly, though the former was available as -B (the day number).
Nutation in right ascension, including short-period terms, was tabulated to 0·'001.

1937-1959: Tabulations were the same as in former years, but 21 terms (nos. 1-4, 6-10,
14-25) were included. The coefficients used were those given by Newcomb (1898d)
and are quoted in table 7. I.

Nutation-The American Ephemeris

1901-191 I: The tabulations of long-period terms (at intervals of 5 days) and of short­
period terms (at intervals of one day) were based, for these years, on both the values
of Peters (1842) and those of the Paris Conference (1896); the terms included were
(see table 7.1) nos. 1-3, 5, 6, 8-15. The argument Sun's true longitude (0) was
used, both alone and in combination, instead of Sun's mean longitude (L), from 1901
to 1911 in the Peters calculations for terms nos. 3, 5, 6, 8, 10, and II; from 1901 to
1907 in the Paris calculations for terms nos. 8, 10, and I I. The coefficients only differ
in a very few cases from those in table 7.1, and the individual discrepancies (usually
of a single unit) are not listed.

1912-1936: The tabulations were based solely on the values of the Paris Conference) and
after 1915 were all at intervals of one day; the terms included were nos. 1-4, 6-8, 14,
15, and 17-21.

1937-1959: Tabulations of long-period nutation in longitude, and short-period nutation
in both longitude and obliquity, were given at intervals of one day, and included the
terms nos. 1-4, 6-10, and 14-25. The coefficients are those listed in table 7.1.

Constants

Solar parallax
Constant of aberration
Constant of nutation

1901- 1959
1901- 1959
1901- 1936
1937-1959

8"·80
20"'47

9"'21
9"'210

Paris (1896, p. 54)
Paris (1896, p. 54)
Paris (1896, p. 54)
+ 0"'0009 T Newcomb (1898d, p. 241)

[A.E. for the years 19°1-1911 included tables for the Struve and Peters
constants of aberration and nutation as used formerly (sub-section C), as well as
those for the above Paris values.]
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Sem£-diameters at unit distance-The Nautical Almanac

Sun (see sub-section B.5)

Mercury

Venus

Mars
Jupiter (equatorial)

(polar)

Saturn (equatorial)

(polar)

Uranus

Neptune

1901-1959 961 ""18
1901- 1959 959"'·63
1901-1959 3""34
1901-1920 8""40
1921-1959 8""41

1901-1959 4"'·68

1901-1920 97""36
1921-1959 98""47
1901-1920 9 1""10
1921-1959 91""91

1901-1920 84""75
1921-1959 83""33
1901-1920 76"'.88
1921-1959 74""57
1901-1930 34""28
1931-1959 34""28

1901-1959 36""56

Auwers
Auwers (1891, p. 367); for eclipses only.

Leverrier (1843)
Auwers (1891)
Auwers (1894)

Hartwig (1879)

Schur (1896)
Sampson (1910)
Schur (1896)
Sampson (1910)
Meyer (1883)
Struve (1898)
Meyer (1883)
Struve (1898)
Hind
Barnard (1896); See (1902); Wirtz (1912)

Barnard (1902)

Barnard (1902)

Sampson (1910)
Peirce
Sampson (1910)

Barnard (1902)
Struve (1898)
Peirce
Barnard (1902)
Struve (1898)

Peirce
Barnard (1896); See (1902); Wirtz (1912)

959"·63

3""34
8""55
8""41

5""°5
4"'·68

100""24
98""47
94""12
9 1 ""9 1

83"'·60
84"'·88
83""33
78""16
77""47
74""57
33""52
34""28
38"'.66
36""56

1901-1911
1912-19 19
1920- 1959
1901-1911
1912-19 19
1920-1959

1901- 1919
1920-1959

1901- 1919
1920-1959

1901- 1959
1901- 1959

1901- 19 19
1920- 1959

1901- 1919
1920-1959

1901- 1919
1920-1959
1901- 19 19
1920- 1959

Semi-diameters at unit distance- The American Ephemeris

1901-1902 960""78 Auwers (1891) + 1""15 for irradiation
1903-1959 961""50 Harkness (1899); includes 1"'15 for

irradiation.
Auwers (1891, p. 367); for eclipses only.

Leverrier (1843)
Peirce
Auwers (1894)
Peirce
Hartwig (1879)

(polar)

(polar)

Uranus

Neptune

Mars

Saturn (equatorial)

Mercury

Venus

Sun

Jupiter (equatorial)
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F. LIST OF APPENDICES AND SUPPLEMENTS

I. The Nautical Almanac

Many issues, especially the earlier years, of the Almanac contain appendices
on various astronomical and navigational subjects. A list of these and of
separate supplements, together with sections of a similar nature in the prefaces
and explanations to certain issues, is given below. Unaltered, or nearly unaltered,
reprints in later issues are ignored.

The appendices to the almanacs for 1772 to 1778, 1787, 1788 and 1794 were
collected and published in 1813 with the title Selections from the additions that have
been occasionally annexed to The Nautical Almanac from its commencement to the
year 1812, while those to the almanacs for 1835 to 1854 were similarly published in
1851 with the title Appendices to various Nautical Almanacs between . the years
1834 and 1854.

1766: [Maskelyne, N., et al.] Tables requisite to be used with The Astronomical and Nautical
Ephemeris. Separate publication, 166 pages.

1769: (I) Maskelyne, N. Instructions relative to the observation of the ensuing transit
of the planet Venus over the Sun's disk, on the 3d of June 1769. 9 pages.

(2) Maskelyne, N. Use of the astronomical quadrant in taking altitudes. 38 pages.
1771: (I) [Douwes, C., and Campbell, J.] Tables for ... finding the latitude of a ship at

sea. 77 pages.
(2) [Maskelyne, N.] Determination [by John Bradley] of the position of the

Lizard. 6 pages.
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(3) Wargentin, P. W. Tabulae novae et correctae pro supputandis eclipsibus
tertii satellitis Jovis ... 16 pages.

1772: (I) Maskelyne, N. A correct and easy method of clearing the [lunar] distance ...
25 pages.

(2) [Eclipses of Jupiter's third satellite, and tables of the hour angle of the Sun
and Jupiter.] 6 pages.

(3) Lyons, I., and Dunthorne, R. Problems in navigation. 8 pages.
1773: (I) A table of the equations to equal altitudes. 24 pages.

(2) A catalogue of the places of 387 fixed stars, ... [for 1760'°]. 14 pages.
1774: (I) [Mason, C.] ... Longitudes and latitudes of the Moon, deduced from Dr.

Bradley's observations, made between September 13th 1750 and November 2d 1760,
and compared with a set of manuscript tables. 36 pages.

(2) [Maskelyne, N.] Elements of the lunar tables. I I pages.
(3) Maskelync, N. Remarks on the Hadley's quadrant. 14 pages.
(4) Lyons, I. [Astronomical problems.] 10 pages.

1778: (I) [Mason, C.] Right ascensions and zenith distances of the Moon •.. 40 pages.
(2) Lyons, I. Astronomical problems. I I pages.

1779: Wargentin, P. W. Tabulae novae et correctae pro supputandis eclipsibus secundi
satellitis Jovis .... 30 pages.

1781: (I) Edwards, J. Astronomical problems. 27 pages.
(2) Edwards, J. Addition to the ... tables annexed to the Nautical Almanac of

1771. 10 pages.
1787: (I) Edwards, J. Directions for making ... reflecting telescopes and ... polishing

... them .... 48 pages.
(2) Edwards, J., and Maskelyne, N. An account of the ... tremors of reflecting

telescopes .... 12 pages.
1788: Blair, R. Description of a ... method of adjusting Hadley's quadrant. 20 pages.
1791: Maskelyne, N. Advertisement of the expected ... comet of ... 1788, and relative,

to ... Saturn's ring in 1789 and 1790. 4 pages.
1794: Brinkley, J. Tables to improve the method of finding the latitude .... IS pages.
1798: Brinkley, J. Tables to improve latitude ... (second edition, revised and cor-

rected). 16 pages.
1809-1821: Each issue contains one or more catalogues of stars, some of longitude and

latitude, some of right ascension and declination; the number of stars varies between
9 and about 50.

1812: Pond, J. [On the obliquity.] 3 pages.
1818: Brinkley, J. Two practical rules for reducing the observed distance of the Moon

from the Sun or a ... star .... 18 pages.
1822: Brinkley, J. A practical method of computing the latitude. 16 pages.
1822-1833: Tables of ... refraction, ... of second differences, and ... of star places.

16-40 pages.
1824-1833: Elements of occultations. 6-17 pages.
1826: Rules for [predicting] occultations. 8 pages.
1827: Young, T.; Henderson, T. Rules for [reducing] occultations. 4 pages.
1828-1833: Separately issued supplements for each of these years contained a number

of quantities that were transferred, between 1832 and 1834, to the pages of the Almanac
proper. 34-54 pages.

1829: Lax, W. An easy method of finding the latitude and time at sea .... 23 pages.
1831: L.ax, W. An easy method of correcting the lunar distance .... 6 pages.
1832: (I) Airy, G. B. Corrections of the longitudes and right ascensions of the Sun ....

4 pages.
(2) Jenkins, H. Recalculated elements of Delambre's tables ... of Jupiter's

satellites. 12 pages.
1833: (I) [Schumacher, H. C.] Ephemeris of ... lunar distances of Venus, Mars, Jupiter,

and Saturn. 44 pages.
(2) Geocentric places of the planets. 75 pages.
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1834: Report of the Committee of the Astronomical Society of London. II pages.
1835: (I) Woolhouse, W. S. B. New tables for ... Jupiter's satellites .... 39 pages.

(2) Woolhouse, W. S. B. On the computation of an ephemeris of a comet ....
9 pages.

(3) Comparison of ... Burckhardt's and Damoiseau's lunar tables .... 4 pages.
1836: Woolhouse, W. S. B. On Eclipses. 96 pages.
1837: (1) Airy, G. B. On the calculation of ... perturbations .... 23 pages.

(2) Woolhouse, W. S. B. On the determination of the longitude 12 pages.
1839: Stratford, Vv. S. On the elements of the orbit of Halley's Comet 79 pages.
1851: Adams, J. C. On the perturbations of Uranus. 29 pages.
1853-1914: Each contains the elements and ephemerides of a number (from 4 to 36) of

minor planets. 16-58 pages.
1854: Challis, J. On the correction of a longitude .... 23 pages.
1856: (I) Encke, J. F. (trans. Airy, G. B.) On a new method of computing the perturba­

tions of planets. 33 pages.
(2) Adams, J. C. On new tables of the Moon's parallax. 20 pages.

1862: Comparison of Moon's places by Burckhardt's tables with similar ones by Hansen's
tables. 2 pages.

1867: Breen, H. Corrections to ... the [tabulated] values of the Moon's ... parallax ...
1831-1839. 6 pages.

1874: Predictions for the transit of Venus. 6 pages.
1881: Adams, J. C. Continuation of ... Damoiseau's tables of Jupiter's satellites. 9 pages.
1883-1922: [Newcomb, S.] Corrections ... to Hansen's tables of the Moon. [These

contain longitude and latitude corrections only from 1883 to 1895, those for right
ascension and declination being included also from 1896.] 2-4 pages.

Between about 1850 and 1900, a series of " Nautical Almanac Circulars" was issued,
mostly giving details and local predictions of total eclipses.

1897: Approximate places for 1900'0 of 834 zodiacal stars ... I I pages.
19°°: Downing, A. M. W. Continuation of ... Damoiseau's tables of Jupiter's satellites.

7 pages.
1901-1906: Corrections to the apparent places . .. to obtain apparent places corresponding to

the Struve-Peters constants. Separate publications, 22 pages.
19°7-1919: Calculation of a lunar distance. 2 pages.
19°7-1914: Ephemerides for physical observations. 30 pages.
1915: (I) Some constants and formulae. 4 pages.

(2) Heliocentric [co-ordinates] of [planets]. 68 pages.
1915: Corrections to ... 1532 stars Separate publication, by Pulkovo Observatory,

308 pages.
1916: Heliocentric [co-ordinates] of Venus. 82 pages.
1917: Heliocentric [co-ordinates] of Mars. 82 pages.
1918: Derivation of quantities contained in the Nautical Almanac. 23 pages.
1920: Ross's corrections to ... places of Mars .... 16 pages.
1929: Coordinates 'of the Sun for 1950'0 for 1928 and 1929.
1931: (I) Fotheringham, J. K. The calendar. 14 pages.

(2) Derivation of quantities 26 pages.
(3) Tables for interpolation by the end-figure process. 32 pages.

1935: (I) Fotheringham, J. K. The calendar. 17 pages.
(2) Interpolation tables. 14 pages.

1936: Interpolation and allied tables. Reprinted for separate sale, 48 pages.
1938: The prediction and reduction of occultations. Separate publication, 50 pages.
1931l: The total solar eclipse of 1940 October 1. Typescript, 19 pages.
1940: (I) Heliocentric co-ordinates of Mercury. 4 pages.

(2) Corrections FK3 - Eichelberger. 6 pages.
1941: Occultation reduction elements .... Separate publication, by Yale University

Observatory, 37 pages.
1950: Ephemeris of Pluto.
1954: Improved lunar ephemeris 1952-1959. Separate publication as a "Joint Supplement

to The American Ephemeris and The (British) Nautical Almanac", Washington, 435 pages.



2. The American Ephemeris

Unlike most of the other national ephemerides, The American Ephemeris \-vas
never a medium for the publication of technical articles. The volumes from
1855 to 1911, inclusive, contained an Appendix, but ordinarily it comprised only
the miscellaneous tables regularly included every year, and the list of fundamental
constants and tables used in preparing the ephemerides; in 1912, this list was
transferred to the beginning of the volume, leaving the section of miscellaneous
tables at the end, and the Appendix was discontinued. Occasionally, appendices
containing various ephemerides have also been added to individual volumes; but
very few technical contributions were ever included.

However, separate supplements to The American Ephemeris have been issued
from time to time; these sometimes were separate printings of material from the
appendices but more often were in addition to the contents of the volumes. Most
of them contain supplementary ephemeris data, especially for total solar eclipses,
but among them have also been several important technical publications.

The appendices and supplements that are of interest for their technical
content other than ephemeral data are listed below; there follows also a list of the
supplements giving extended data and large-scale maps for total solar eclipses.

Prior to the establishment of the series of Astronomical Papers prepared for the
use of The American Ephemeris and Nautical Almanac (see section 1F.3 for a complete
list of contents) the principal tables constructed for the Office were printed, each as
a single publication, and a list of these is also appended; but many tables were
prepared only in manuscript.
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Appendices and supplements

1855: Chauvenet's tables for correcting lunar distances, with directions for using the
tables, and explanation of their construction. Pages 13-70 of the Appendix.

1857: (I) Chauvenet's tables for correcting lunar distances, with directions for using the
tables, and explanation of their construction. Pages II-67.

(2) Chauvenet, W. Improved method of finding the error and rate of a chronometer
by equal altitudes. Pages 69-94.

(3) Walker, S. C. Logarithms of the Le Verrier coefficients of the perturbative
function of planetary motion. Pages 95-117.

Pages 11-94 of this Appendix were later reprinted as a separate publication:
William Chauvenet, New method of correcting lunar distances, 'and Improved method
of finding the error and rate of a chronometer by equal altitudes, 1866.

1874: Coffin, J. H. C. Tables jor finding the latitude oj a place by altitudes oj Polaris.
Supplement for 1874-1877.

This article, which included the formulae from which the tables were calculated,
with instructions for using the tables, and an illustrative example, was also put into the
Appendix (pages 25-33) in The American Ephemeris for 1877, the first volume in which
these tables were given.

A similar supplement for the years 1878-1881, inclusive, was separately printed,
and was also included in the Appendix in The American Ephemeris for each of these
years. In the volume for 1882, these tables were replaced by a simple one-page table
which was retained until it, in turn, was replaced by the table that was given through­
out the period 1912-1959.

Highlight
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1895: Newcomb, S. The elements of the four inner planets and the fundamental constants
of astronomy. Supplement for 1897.

1945: Tables of sunrise, sunset, and twilight. Supplement for 1946.
1950: Ephemeris of Pluto.
1954: Improved lunar ephemeris 1952-1959. Published as a " Joint Supplement to The

American Ephemeris and The (British) Nautical Almanac".

Supplementary publications for solar eclipses

The series of supplements to The American Ephemen's that were published for
the occasions when total eclipses of the Sun were visible in the United States
began with a supplement to the volume for 1869; but prior to that, pamphlets
had been issued for the annular eclipse of 1854 May 26 and the total eclipse of
1860 July 17.

For the total eclipse of 1869 August 7, a supplement was issued containing
predicted data, and also one containing suggestions for observing the eclipse. In
1885, a publication containing reports of observations of this eclipse was issued by
the Nautical Almanac Office.

Since the eclipse of 1869, supplements have been published for the total
eclipses that occurred on the following dates:

1878 July 29 1936 June 19
1900 May 28 1940 October 1

1918 June 8 1945 July 9
1925 January 24 1947 May 20
1932 August 31 1954 June 30

In addition, data for two other eclipses were issued as U.S. Naval Observatory
Circulars:

Circular no. 27. Annular eclipse of September I, 1951: path of annular phase in the
United States.

Circular no. 78. Total eclipse of October 2, 1959: path of total phase in the United
States.

Tables prepared for The American Ephemeris and Nautical Almanac

Peirce, B. Tables of the Moon. 1st ed. 1853; 2nd ed. 1865.
Winlock, J. Tables of Mercury. 1864.
Hill, G. W. Tables of Venus. 1872 (on title page; cover has 1873).
Schubert, E. Tables of Melpomene. 1860.
Schubert, E. Tables of Eunomia. 1866.
Schubert, E. Tables of Harmonia. 1869.
Schubert, E. Tables of Parthenope. 1871.
Todd, D. P. Continuation of de Damoiseau's tables of the satellites of Jupiter to 1900.

1876.
Tables to facilitate the reduction of places of the fixed stars. 1st ed. 1869; 2nd ed. 1873.
Almanac catalogue of zodiacal stars. 186..;..
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8. CONFIGURATIONS OF THE
SUN, MOON, AND PLANETS*

A. INTRODUCTION

The times of the principal astronomical phenomena involving configurations
of the Sun, Moon, and planets are given in A.E., pages 4-g, under the headings
Phenomena and Diary. In most cases the times are given to the nearest hour, but
for certain heliocentric phenomena of the planets the date only is given. The
times of the greatest general interest, however, are those which mark the commence­
ment of the seasons and the phases of the Moon (A.E., page 159), and these are
tabulated to the nearest minute.

B. THE SUN AND MOON

Equinoxes and solstices

The times of the equinoxes and solstices are those at which the Sun's apparent
longitude is a multiple of 90°; thus (in the northern hemisphere) spring equinox,
summer solstice, autumn equinox, and winter solstice correspond to apparent
longitudes of the Sun of 0°, 90°, 180°, and 270° respectively. They are found by
inverse interpolation of the Sun's daily ephemeris, the times so obtained being
corrected from E.T. to D.T. by the addition of -LlT. The times of commence­
ment of the seasons show a progressive change through the years, because the
period of revolution of the Earth about the Sun is not commensurate with the
calendar year; it is only after a complete cycle of four centuries that the seasons
again commence at approximately the same times. In the present century the
latest dates for the seasons occurred in 19°3 and the earliest will be in 2000; by the
year 2096 the seasons will begin at their earliest possible times:

Spring Summer Autumn
Latest 1903 March 21 d 19h June 22 d ISh Sept. 24 d 06h

2000 20 07 21 02 22 17

Earliest 2096 19 14 20 07 21 23

The total range in times is about S4 hours in each case.

Perihelion and aphelion

The dates on which the Earth is at perihelion and aphelion are those on which
the Sun's radius vector is a minimum and maximum respectively. On account of

2°3

*There have been several minor changes in content and arrangement in the A.E. since 1960;

these are described in the volumes concerned and are not noted here.
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perturbations they are not always the same as the dates on which the longitude of
the Sun is equal to the mean longitude of perigee or apogee.

Phases of the Moon

The times of new moon, first quarter, full moon, and last quarter are tabulated
to the nearest minute of E.T. in A.E., page 159, and are given to the nearest hour
of V.T. in the Diary on pages 5-7; they are the times when the excess of the
Moon's apparent longitude over the Sun's apparent longitude is 0°, 90°, 180°,
and 270° respectively. These times are found by inverse interpolation in a table
giving the differences of the longitudes, in the sense Moon minus Sun, at I2h

intervals. The times given on the Phenomena pages are adjusted in critical cases
for the difference between E.T. and V.T. before rounding to the nearest hour. The
lunation numbers given on page 159 are in continuation of E. W. Brown's series
(M.N.R.A.S., 93, 6°3, 1933), of which no. 1 commenced on 1923 January 16.

5 2759

5 26 49

5 26 15
90 24 27

79 29 39

Moon-Sun

343 55 52'2

344 55 57'7

344 25 55'3

Sun
(A.E., page 20)

o

63 25 31'5

69 23 33'3

75 20 24.85'5

5'°

Example 8. I. Derivation of time of first quarter
1960 March 5

The apparent longitudes of the Moon and Sun and their difference are tabulated;
the time of first quarter is obtained by inverse interpolation of the difference to the value
90° (see section 16B).

Date Moon
E.T. (A.E., page 54)
1960

Mar. 4'5

6,0 81 16 41'5 345 25 59'7 95 50 42

Second differences are just appreciable; the interpolation formula from which the
interpolating factor p is to be determined by successive approximation is re-expressed as:

p = {Up - fo) - B 2 (8~ + 8~) - ...}/8 j

where fp - fo = 90° - 84° 57' 38" = 18142; 81 = 19609; 8~ + 8~ = -104; the
working unit is I".

First approximation: B 2 (8~ + 8~) = ° p = °'925
Second approximation: B2 (8~ + 8i) = + 1·8 (Table 16. I) P = °'92510

There is no further change in the second-difference correction, so the required E.T. of
first quarter is March 5d'46255 = March 5 d II h 06m .I.

Owing to the rapid variations in the distance and velocity of the Moon, the
intervals between successive phases are not constant, nor is it possible to check
these times by differencing. A check is provided, however, by examination of
the higher differences of the successive times of the same phenomenon.

The phases of the Moon do not recur on exactly the same dates in any
regular cycle, but the approximate dates of the phases in any year can be found
from the dates on which the phases occurred 19 years previously. Every 19 years,
the phases recur on dates that either are the same, or else differ by only one or
occasionally two days, depending partly on the number of intervening leap years
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and partly on the perturbations of the Moon. For example, during 1960 the dates
are the same as in 1941 on thirty occasions, and differ by one day for the remaining
nineteen.

Moon's perigee and apogee

The times of the Moon's perigee and apogee are those at which the distance of
the Moon from the Earth is a minimum and maximum respectively; they are
tabulated in A.E., page 159, as well as in the Diary. The times are obtained in
practice from the values of the Moon~s horizontal parallax, which is a maximum at
perigee and a minimum at apogee; inverse interpolation is used to find the times
when the first derivative is zero.

Example 8.2. Derivation of time of apogee of the Moon
1960 March 6

The time of apogee is the time at which the horizontal parallax of the Moon is a
minimum, that is, when its first derivative is 2ero while its second derivative is positive.
(See section 16C).

Moon
Date Horizontal Parallax
E.T. (A.E., page 54)
1960 .

Mar. 5'5 54 15'098 +2.652
- 1·804 - 6

6'0 54 13'294 +2.646
+0.842 -50

6'5 54 14'136 +2'596

Apogee occurs near March 6 d • The contributions from third and fourth differences
may be ignored as the time is only required to the nearest hour. Hence the interpolating
factor is:

p = -t + 1804/2646 = +0'18, in units of 12h •

Hence apogee occurs at March 6 d 02h •

Eclipses and occultations

Attention is also drawn in the Phenomena pages to the times of eclipses,
transits of Mercury, and some of the more important occultations by the Moon.
Brief notes are given of the areas of visibility of solar and lunar eclipses, and of
transits of Mercury when these occur; more detailed information on these pheno­
mena is given in the main pages of the Ephemeris. A list is also given of the times
of occultations of planets and bright stars; on page 5 is tabulated the time of
conjunction to the nearest hour, together with brief notes on the areas of visibility.
The planets Neptune and Pluto a:.-~ omitted from this list, and the only stars
included are Antares, Aldebaran, Regulus, and Spica. These first-magnitude
stars lie close enough to the ecliptic to be occulted by the Moon, and their occult­
ations occur in a cycle of 18·6 years, during which time the nodes of the Moon's
orbit complete one circuit of the ecliptic. During this cycle the stars may be
occulted in successive lunations over a period which varies with the latitude of the
star; thus Regulus undergoes two periods of occultation, each lasting for 19
successive lunations, Spica two periods of 21 lunations, Antares one combined
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period of 69 lunations, and Aldebaran one period of 48 lunations. Of these
phenomena only a few will be visible at any particular station under favourable
conditions.

C. THE PLANETS

Planetary phenomena-heliocentric

Certain heliocentric phenomena of the planets are collected together in the
table in A.E., page 4. The dates of perihelion and aphelion are those on which the
radi vector of the planet is a minimum and maximum respectively; they are
thus the times when the first derivative of the radius vector is zero. Owing to the
presence of perturbations in the planetary motion, these dates may differ from
those that would be obtained from the angular elements of the mean orbits. The
actual disturbed motion of the planets is also used to determine the dates when
they pass through the nodes on the ecliptic, and when they reach their greatest
latitudes north or south. At the nodes the heliocentric latitude is zero, changing
from negative to positive at the ascending node, and from positive to negative at
the descending node. These dates are given each year for Mercury, Venus, and
Mars, but they occur less frequently for the outer planets and in these cases are
given as additional notes when necessary. The dates on which a planet has its
greatest latitude north or south are determined as the times at which the first
derivative of the latitude is zero.

Planetary phenomena-geocentric

The times of conjunction and opposition of the planets are those at which the
difference between the apparent geocentric longitudes of the planet and the Sun
is 0

0 and 180
0 respectively. In order to avoid calculating the geocentric longitude

of each planet, the heliocentric geometric longitudes may be used as tabulated,
and a small correction applied to correct for the effect of light-time. The
difference between the Sun's geometric longitude and the heliocentric longitude
of the planet (strictly for mean equinox of date) is taken to be 0

0 at superior
conjunction of Mercury and Venus and conjunction of the outer planets; and is
taken to be 180

0 at inferior conjunction or opposition. The following table gives
the corrections that should be applied to the times so obtained; they are based on
mean elements of the orbits, but the errors resulting from their use cannot amount
to more than lOrn for the conjunctions of Venus and Mars, and are considerably
less for the other phenomena.

Mercury Venus Mars Jupiter Saturn Uranus Neptune Pluto
Inferior
Conjunction + 7m + 6m

Opposition + 7m +IIm +13m +14m +lSm +lSm
Superior
Conjunction +ISm +37m -24m - Sm - 3m - 2m - 2m - 1m
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Alternatively the correction for the effect of light-time can be calculated for
each individual phenomenon.

Owing to the eccentricities and inclinations of the orbits and the presence of
perturbations, the times so obtained may be different from those at which the geo­
centric distance is a minimum (at inferior conjunction of Mercury or Venus, or
opposition of a superior planet) or a maximum (at superior conjunction of Mercury
or Venus, or conjunction of a superior planet).

Example 8.3. Derivation of time of superior conjunction of Venus
1960 June 22

(a). An approximate time can be obtained by inverse interpolation of the difference
between the heliocentric longitude of Venus and the geometric longitude of the Sun to
the value zero. A better value is then found by applying the correction for the effect of
light-time given above in the text.

Venus Sun
Date Heliocentric Longitude Geometric Longitude

ohE.T. (A.E., page 169) (A.E., page 24)
1960 0 o ,

June 21 88 3 1 17 89 37 13

23 9 1 45 14 91 31 44

Venus - Sun

, .
-65 56

+79 26
+13 30

+79 34
25 94 59 18 93 26 14 +93 04

The fraction of the interval of 2d is 65' 56"179' 26" = 0.83°0, so that the approximate
time is June 21<1 Oh + 39h·84 = June 22 d ISh 50m
The light-time correction (from the table) + 37m

Superior conjunction occurs at E.T. June 22 d 16h 27m

.
- II 169°34°5

The apparent geocentric longitude Ais formed from the equations:
cos f3 cos A = cos 0 cos a
cos f3 sin A = sin 0 sin E + cos 0 sin a cos E

tan Aor cot A (whichever is the smaller) being found by division. The time of conjunction
is obtained by inverse interpolation of the difference between the geocentric longitudes
of the planet and the Sun to the value zero.

Venus Apparent Longitude
Date Right Ascension Declination Venus Sun Venus - Sun

Oh E.T. (A.E., page 189) (A.E., page 24)
1960 h m so, •

June 22 6 01 39'7 + 23 46 37 90 22 49

At the time of conjunction, the actual correction for light-time can be incorporated
by correcting the heliocentric longitude of the planet for a light-time equivalent to the
distance Earth to Venus: this correction is:

-°'°°2884 x 1'736 x +193'57" = -58"
corresponding to a correction to the time of + 35m (as compared with + 37m from the
table).

(b).

+1628
23 60702'1 +2348 22 913633 91 3 1 21 + 5 12

Superior conjunction occurs at June 22'1 Oh + (II' 16"/16' 28") 24h = June 22 d 1611 25m.

The mean interval between successive conjunctions or oppositions of a planet
is the synodic period, and this is of some value in estimating future dates of these
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phenomena. The following table gives the synodic periods of the planets in days,
based on an assumption of mean motions; owing to the eccentricities and perturb­
ations of the orbits, the actual interval between the phenomena may differ
considerably from these periods.

Mercury
Venus
Mars
Jupiter

d

II5·88
583'92
779'94
398 .88

d

Saturn 378'09
Uranus 369,66
Neptune 367'48
Pluto 366'73

In the case of the slowly-moving planets Jupiter to Pluto, the error in using
these values is small, but for Mercury, Venus, and Mars the mean synodic period
is less useful. Much more accurate estimates may be made for these planets by
using long-period cycles, which contain, with varying degrees of accuracy, integral
numbers of revolutions of both the Earth and the planet.

For Mercury 54 sidereal periods 13 years + 2 days
137 = 33 years I day

For Venus 13 sidereal periods 8 years I day
395 = 243 years - t day

For Mars 8 sidereal periods 15 years + 17 days
17 32 years 9 days
25 47 years + 8 days

42 79 years I day

Any particular phenomenon of a planet repeats itself after each cycle at the
same time of year and in the same part of the sky; this is not the case after a single
synodic period. For Venus a useful and accurate form of the relation is:

5 mean synodic periods = 8 calendar years - Zd'4

provided the interval does not include a non-bissextile century year.

The times of stationary points differ from those previously described in that
the motion in right ascension is considered; since the planet is stationary in right
ascension, the times are those at which the first derivative of the right ascension
IS zero.

Tables of magnitudes and elongations of the planets from the Sun are given in
A.E" pages 8 and 9, for every fifth day for the inferior planets and for every tenth
day for the superior planets; approximate magnitudes of the minor planets Ceres,
Pallas, Juno, and Vesta are also given. The magnitudes of the major planets are
calculated from the formulae given in section 1 1 and visual magnitudes of the
minor planets from g + 5 log r Li, where g has (for the years 196z onwards) the
value 3'38 for Ceres, 4'51 for Pallas, 5'58 for Juno, and 3'55 for Vesta.

The elongation E of a planet, measured eastwards or westwards from the Sun,
is calculated as the angle planet-Earth-Sun in the plane triangle formed by these
three bodies, and is given by:

cos E
R2 + Li2 - r2

zRLi
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where r is the radius vector of the planet, R that of the Sun, and L1 the geocentric
distance of the planet. The elongations of Mercury and Venus may also be
obtained from:

. E r sm 1
slO =~

where i is the angle Earth-planet-Sun and is tabulated, without sign, in A.E., on
pages 326 and 327. The same formula can be used for Mars, Jupiter, and Saturn
near opposition when the angle i is tabulated in A.E., pages 328-341; it cannot be
used when E is near 90°.

The elongations are measured from 0° to 180 0 east or west of the Sun, and are
tabulated to the nearest degree. Owing to the inclinations of the planetary orbits,
the elongations do not necessarily pass through 0" or 18o" as they change from
east to west or west to east.

Example 8.4. Deri'vation of elongation of Uranus
1960 March 7 at Oil E.T.

R = 0'9925 Ll = 17'5206 r = 18'3984

Hence cos E = - 0.8783 and E = 15 1°'4. Since the date is after opposition and before
conjunction, the planet is east of the Sun and the elongation is 15 I 0 E.

Near opposition (E = 180°) more decimals have to be retained in Ll and r, and thus
in cos E, to give comparable precision.

The phenomena of the planets Mercury and Venus always occur in the order:
inferior conjunction - elongation west - superior conjunction - elongation east­
inferior conjunction; similarly the superior planets pass successively through the
configurations: opposition - elongation east - conjunction - elongation west­
opposition. The superior planets may attain 180° elongation from the Sun, but
the inferior planets have restricted ranges of about 47° for Venus and 28° for
Mercury. The times of the greatest elongations of these two planets are determined
from the maximum values of the angular distances from the Sun, which for this
purpose are calculated at close intervals about the required times.

The dates of greatest brilliancy (see section IIC) of Venus are those on which
the expression:

(r + L1 + R) (r + L1 - R)
r 3 L13

is a maximum; the dates so derived normally occur about a month after greatest
elongation east, and a month before greatest elongation west. In the case of
Mercury the dates of greatest brilliancy occur after greatest elongation west, and
before greatest elongation east; but Mercury is not always readily observable at
the time of its greatest brilliancy and this phenomenon is not tabulated.



210 EXPLANATORY SUPPLEMENT

D. DIARY

Mars
Distance

(A.E., page 201)
0·606 989

All of these configurations, with the exception of the heliocentric phenomena,
are given in diary form in A.E., pages 5 to 7. The Diary gives, in chronological
order, and with times to the nearest hour of V.T., all the geocentric phenomena of
the previous pages, together with certain additional information. Eclipses of the
Sun and Moon (including penumbral lunar eclipses) are mentioned a1: the times
of new or full moon. For the minor planets Ceres, Pallas, Juno, and Vesta, the
times of conjunction, opposition, and stationary points are included; these are
also listed separately on page 8. The time of closest approach of Mars is included
in those years when the planet is in opposition; owing to the eccentricity of the
Martian orbit, the time at which the geocentric distance is a minimum may differ
considerably from the date of opposition.

Example 8.5. Derivation of time of closest approach of Mars to the Earth.
1960 December 25

This is found by inverse interpolation to zero of the first difference of the true
geocentric distance of Mars.

Date
ohE.T.

1960
Dec. 24

25 0.60683 1
+ 56

26 0.606887

Closest approach occurs at December 24'5 + 158/214 = December 2S d 06h

The Diary also includes the times of conjunction of the planets (except Pluto)
with the Moon, with each other, and with the bright stars Antares, Aldebaran,
Pollux, Regulus, and Spica, which lie near the ecliptic. In all cases times are
given for conjunction in right ascension, and are obtained by a method similar to
that described for the phases of the Moon. Conjunctions of planets with the Moon
are not given if they occur within 15 0 of the Sun, and conjunctions ofthe planets
in pairs or with the five bright stars are omitted if the elongation of either body
from the Sun is less than 10

0
• The difference of declination of the two bodies at

the time of conjunction is also given; for conjunctions of the planets in pairs the
difference is given to a tenth of a degree, but in other cases it is given to this
precision only if less than one degree. It should be noted that in the case of a
conjunction with the Moon, the actual observed configuration of the two bodies
differs from that tabulated by the amount of the lunar parallax (see section 2F);
in other cases the parallax is always small.
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A. INTRODUCTION

The data in the Ephemeris

Elements and general circumstances are given in the Ephemeris for all solar
and lunar eclipses, including penumbral lunar eclipses, that occur during the year.
For solar eclipses, maps are given from which approximate local circumstances
may be obtained for any particular place, and the Besselian elements are tabulated
at intervals of ten minutes for the calculation of accurate predictions for any point
on or above the surface of the Earth. For total or annular eclipses, the latitudes
and longitudes of points on the central line and on the northern and southern
limits, the duration of the total or annular phase, and the altitude of the Sun on
the central line are tabulated at intervals of five minutes or less throughout the
eclipse. For lunar eclipses, the circumstances and their times are the same for all
parts of the Earth; any particular phase is visible from any point at which the Moon
is then above the horizon.

In accord with a request from the solar eclipse Commission of the International
Astronomical Union, the principal circumstances of all solar eclipses are calculated
and made available to astronomers several years in advance of the publication of
the Ephemeris. At present, the aim is to publish the data eight years before the
corresponding eclipses. This advance information, which includes the tabulation
of the path of totality or annularity, is given in U.S. Naval Observatory Circulars;
recent numbers containing eclipse data have been published as follows: *

eire. No.

59

85

88

Date

28 June 1955

16 April 1958

10 March 1960

15 June 1960

Information included

Solar eclipses, 1960-1963

Solar eclipses, 1963-1967

Eclipse maps for the total solar
eclipse of 1962 February 4-5,
and the annular solar eclipse of
1962 July 31

Solar eclipses, 1968-1970

Material from the section of the Ephemeris on solar and lunar eclipses is also
published, in advance of publication of the Ephemeris itself, in the small booklet

211

*See page 522 for list of eclipse circulars published since 1960.
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Astronomical Phenomena, issued annually by the Nautical Almanac Office, U.S.
Naval Observatory.

All eclipse computations for the Ephemeris are now carried out on an elec­
tronic computer and do not follow precisely the methods, formulae, and examples
given below. Further details of methods for the computation of solar eclipses
may be found in the references listed at the end of this sub-section.

The predictions given in the Ephemeris take no account of the effects of
refraction, although this may be significant for the reduction of observations
intended to give precise positions. Besselian elements, however, are rigorously
independent of refraction.

Corrections to the ephemerides

The basic quantities from which the calculations of solar and lunar eclipses
are derived are: the apparent right ascension ao, declination 0o, and radius vector
R of the Sun, and the right ascension a ~, declination 0 ~, and horizontal parallax 7T ~

of the Moon, for every hour of E.T. during the eclipse; and the ephemeris sidereal
time at Oh E.T. for the day of the eclipse and for the following day. The apparent
right ascensions of the Sun and Moon, and the ephemeris sidereal time, include
short-period terms of nutation. The coordinates of the Sun and Moon are given
to OS'OOI in right ascension and 0"·01 in declination; those for the Sun are otherwise
unpublished to this precision, rounded values being tabulated in the Ephemeris.
The ephemeris sidereal time at Oh E.T., which is the local apparent sidereal time
on the ephemeris meridian, is the same numerically as the (Greenwich) apparent
sidereal time at Oh U.T., as tabulated in the Ephemeris.

Gravitational ephemerides refer to the positions of the centres of mass of the
bodies concerned. The phenomena of eclipses, however, are governed by the
positions of the centres of figure of the Sun and Moon. The centre of figure of
the Moon does not coincide with the centre of mass; to allow for this a correction
LJfJ( of -0"'5 is applied to the tabular latitude of the Moon. As from 1964, LJfJ(
will be revised to - 0" ·6, a value which is in better accord with the latest observed
determination.

The conversion of LJfJ into corrections LJa, LJ8 to the right ascension and
declination is effected by the formulae:

LJa = -sin € cos A sec2 0 LJ{3
LJo = + (cos € cos A cos a + sin A sin a) LJfJ

in which € is the obliquity of the ecliptic, a and 0 are the apparent right ascension
and declination, A is the apparent longitude; all quantities are taken by convention
for the approximate time of conjunction (or opposition) in longitude, as given in
Oppolzer's Canon der Finsternisse. The corrections are treated as constant
throughout each eclipse.

The semi-diameters of the Sun and Moon used in the calculation of eclipses
do not include irradiation. The adopted semi-diameter So of the Sun at unit
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distance is 15' 59"·63 (Auwers; A., Ast. Nach., 128, 367, 1891), the same, except
for irradiation, as in the ephemeris of the Sun; but the apparent semi-diameter
of the Moon is calculated by putting its sine equal to k sin 7T (, where 7T ( is the
horizontal parallax and k, the ratio of the Moon's radius to the equatorial radius of
the Earth, is a constant. Until 1962 inclusive, the value of k is taken as 0'2722 74,
and the resulting value of the apparent lunar semi-diameter differs from the
tabular value in the ephemeris of the Moon. As from 1963, the value of k is taken
as 0'2724 807, which leads to the same value of the semi-diameter as in the lunar *
ephemeris. The value 0'2722 74 for k is retained, however, in the calculation of *
duration on the central line of total solar eclipses, by way of applying an approximate
correction for the irregularities of the lunar limb.

Illustrative examples

With the exception of example 9. 17, which relates to the partial solar eclipse of
1960 September 20-21, all illustrative examples in sub-sections A, B, and C relate
to the total solar eclipse of 1961 February 15. The approximate time of con­
junction as given in Oppolzer's Canon der Finsternisse .is 1961 February
IS d 08 h IIm·O; the other data, including the maps, give a general picture of the
circumstances of the eclipse.

The examples are arranged so as to follow immediately after the derivation of
the relevant equations; explanation is in general unnecessary. As far as possible
the derivation of all quantities entering into the examples is illustrated, but no
references are given to the origin of the basic data. Most of the quantities are
taken from the Ephemeris, either directly or by interpolation; others are taken
from the unpublished auxiliary elements and are not independently derived in
all examples.

For purposes of illustration more figures arc often retained in the examples
than would otherwise be justified by the precision of the data or the requirements
of the particular calculation; but the fullest precision is required for some calcula­
tions, in particular that of the Besselian elements.

Example 9.1. Corrections to the coordinates of the Moon

Approximate time of conjunction 1961 February 15 d 08h 11m

0

Aq 326'4 aq 21 h 53m 228 8q -11'9 .1f3q -0'50
sin A( -0'553 sin aq -0'525 sec 8( + 1'022 sIn € 0'398
cos Aq +0·833 cos aq +0.85 1 sec2 8q + 1'044 cos € 0'917

.1a( = -0·347.1f3( = +0"'17

.18( = (+0.650 + 0'290) .1f3q -0"'47

References
Oppolzer, T. R. v., Canon der Finsternisse. Vienna, 1887.

Reprinted, Dover Publications, 1962.

This book contains elements of 8000 solar eclipses from -1207 November 10 (Juliap
proleptic date) to 2161 November 17 (Gregorian date) and of 5200 lunar eclipses from
-1206 April 21 to 2163 October 12 together with maps showing the paths of total and
annular solar eclipses in the northern hemisphere. The main use of this volume is to aid

*For 1968 onwards the corresponding values of k are 0'2724880 and 0'2722 81.
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Figure 9.1. Occurrence of solar eclipses
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the historian in chronological researches but it also provides a picture of future eclipses and
is useful for planning.

Chauvenet, W., A manual of spherical and practical astronomy. Vol. 1, 436-549, 5th ed.
189z, reprinted 196o.

This chapter contains an account of the formulae necessary for the prediction of eclipses
for the Earth generally, with all the bounding limits, and for a particular place. Various
corrections are also considered.

The formulae and constants given are suitable for use with logarithms. Some of
these formulae were adapted to more modern requirements by Comrie, L. J., in papers in
M.N.R.A.S., 87, 483-496, I9Z7; 93, 175-181, 1933. Also see Mikhailov, A. A., Ast.
Nach., 243, no. 58I z, 49-54, 1931.

Dyson, F., and "\Voolley, R. v. d. R., Eclipses of the Sun and Moon. 1937.
This book is mainly concerned with physical observations but the introductory chapters

deal with the historical importance of eclipses and with predictions.

Mitchell, S. A., Eclipses of the Sun. 5th ed. 1951.
Describes eclipse expeditions up to 1950.

Mikhailov, A. A., Teoriya Zatmennii. znd ed. 1954, in Russian.
Contains a detailed account of the computation of solar and lunar eclipses, and related

subjects, with sections on limb corrections, corpuscular eclipses, etc. The formulae are
designed for use with logarithms.

The three following papers are concerned with ionospheric and corpuscular eclipses.

H.M. Nautical Almanac Office, M.N.R.A.S., 98, 664-669 and 7z7-733, 1938.
Contain predictions for the ionospheric and corpuscular eclipses of 1940 October 1,

but also give some general formulae.

Lewis, Isabel M., A.J., 49, no. IIZZ, 4-7, 1940.
Gives general formulae for the track of eclipses in the ionosphere, and includes a useful

table giving the obscured fraction of the solar disk as a function of the magnitude.

B. SOLAR ECLIPSES-FUNDAMENTAL EQUATIONS

Occurrence of solar eclipses

An eclipse of the Sun or Moon will occur when the centres of the Sun, Earth,
and Moon are nearly in a straight line. This condition can be fulfilled only when
conjunction or opposition occurs in the vicinity of the nodes of the lunar orbit.
A criterion for the occurrence of a solar eclipse may be obtained as follows:

Let: f1« be the latitude of the Moon at the
time of conjunction in longitude; I the inclin­
ation of the orbit of the Moon to the ecliptic;
and q the ratio of the motion of the Moon in
longitude to that of the Sun. In figure 9.1 So,
M o and S, M represent the positions of the
cwtres of the Sun and Moon respectively at
conjunction and at some other time at which
the angle SoMoS is y.

The angular distance SM is given by:
SM2 = f1«2{(q - 1)2tan2 y + (I - qtan I tan y)2}
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It is convenient at this point to introduce an auxiliary angle 1', such that:

(q - I) tan l' = q tan I

The quantity between braces { }in the expression for SM2 may thus be written:

(q - 1)2 tan2 'Y + {I - (q - I) tan l' tan 'Y }2

The value of 'Y for which this expression is a minimum is obtained by setting
its derivative with respect to 'Y equal to zero. This yields:

(q - I) tan 'Y = sin l' cos l'
and the corresponding value of the least true angular geocentric distance is:

SM = f1~ cos l'

As viewed from a point on the surface of the Earth, this distance may be
reduced by the difference of the horizontal parallaxes 7T0' 7T ~ of the Sun and Moon.

A solar eclipse will occur when the least apparent distance of the centres of
the Sun and Moon is less than the sum of their apparent semi-diameters So and SCo

that is when:
f1~ cos l' - (7T, - 7To) < S( + So

or f1~ < (7T( - 7To + S( + so) sec l'
Extreme and mean values of the quantities occurring in these and similar

expressions are given in table 9. I.

Table 9.1. Extreme and mean values for solar eclipses

Inclination of Moon's orbit to ecliptic (1)
Ratio of motions in longitude (q)
sec l'
Parallax of Moon (7T~)

Parallax of Sun (7To)
Semi-diameter of Moon (s~)

Semi-diameter of Sun (so)

Maximum
5° 18'
16'2
1'005 2

61' 27"
8"'96

16' 45"
16' 18"

Minimum
4° 59'

10'9
1'0043

53' 53"
8".65

14' 41"
IS' 46"

Mean *
5° 08'
13'5
1'00472

57' 02"'70

8"·80
IS' 32"'58
IS' 59"·63

The greatest value of f1 ( at time of conjunction for which a solar eclipse is
possible is obtained by introducing the maximum values of 7T (, S(, and So, and the
minimum value of 7To in the above expression. Similarly, the greatest value of f1(
at time of conjunction for which a solar eclipse is certain is obtained by introducing
in the above expression the minimum values of 7T ~, s (, and So, and the maximum
value of 7To. In this calculation, it is sufficient for general purposes to use the
meantvalue of sec l' and the mean values of 7T(, 7To, S(, and So in the portion
0'00472 (7T( - 7To + s~ + so) of the expression for f1(. The criteria for the
occurrence of a solar eclipse are thus:

f1 ( > 10 34' 46" no eclipse
1024' 36" < f1( < 10 34' 46" eclipse possible

f1 ( < 10 24' 36" eclipse certain

In all doubtful cases, the expression for f1 ( may be used as a precise criterion
by introducing the actual values of 1', 7T(, 7To, S(, and So at the date considered.
*For 1968 onwards the mean values of the parallaxes are 57' 02"·608 and 8"'794.

tit is more appropriate to use the maximum value of sec l' since the inclination is always
close to its maximum when the Sun is near the nodes. The limits for f3« should therefore be
increased by 3".
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q/(q - I) = 1'072
sec I' = 1'0045

Test for occurrence of eclipse

February 15-16) of Moon and Sun in longitude

Example 9.2.

ratio of daily motions (1961
= 54143"/3636".8 = 14'9

I (A.E. 1961, p. 51) = 5°'1 tan I = 0.089
tan l' = 0·095

By interpolation in A.E. 1961 to 1961 February 15 d 08h lIm:

q

sin s( = 0'272274 sin 7T(

s( = 0"'08 +0'2722 39 7T(

7T( 6; 05~7
s( 16 38'0

7To 8'9
So 16 II'4 So = 16' 12"'97 (A.E., p. 21) - 1"'55 (irradiation)

Thus sec l' (7T( - 7To + s( + so) = 1'0045 x 1° 33' 46" = 1° 34' II'"

f3( is 0° 54' so that an eclipse is certain.

Besselian elements

The calculation of eclipses is carried out in accordance with Bessel's method.
In solar eclipses the Besselian elements describe the geometric position of the
shadow of the Moon relative to the Earth. The exterior tangents to the surfaces
of the Sun and the Moon form the umbral cone, the interior tangents the penumbral
cone. The common axis of the two cones is the axis of the shadow. The
geocentric plane perpendicular to the axis of the shadow is called the fundamental
plane, and is taken as the xy-plane of a system of geocentric rectangular coordin­
ates. The x-axis is the intersection of the fundamental plane with the plane of
the equator and is directed positively towards the east; the y-axis is directed
positively towards the north. The z-axis is parallel to the axis of the shadow and
is positive towards the Moon. See figure 9.2, which shows the projection of the
observer and the shadow on the fundamental plane.

Let a and d designate the right ascension and declination of the point Z on the
celestial sphere towards which the axis of the shadow is directed, and G the distance
between the centres of the Sun and Moon; .then:

Gcosdcosa = Rcos~ocosao - T( cos~( cosa(
G cos d sin a = R cos ~o sin 40 - T ( cos ~ ( sin 4 (

G sin d = R sin ~o - T ( sin ~ (

In practice, it is convenient to set:

g = G/R b = TdR = sin 7To/sin 7T(
which yields:·

g cos d cos a cos ~o cos 40 - b cos ~( cos a(

g cos d sin a = cos ~o sin ao - b cos ~ ( sin a (
g sin d = sin ~o - b sin ~ (

In numerical calculations b is evaluated from:
b = sin 7To/R sin 7T(

* where 7To, the horizontal parallax of the Sun at mean distance, is equal to 8"·80 and
R is expressed in astronomical units as in the Ephemeris.

The equatorial coordinates a, d of the point Z, obtained above, are used to
calculate the rectangular coordinates x, y, z of the Moon with respect to the
*8"'794 for 1968 onwards
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Figure 9.:Z. Projection of the observer and shadow on
the fundamental plane

P Projection of observer (g, 7])
M Projection of axis of shadow (x, y)

fundamental plane, in units of the equatorial radius of the Earth, from:

x = T { { cos S{ sin (a { - a) }
y = T { { sin S{ cos d - cos S{ sin d cos (a { - a) }
Z = T { { sin S{ sin d + cos S{ cos d cos (a { - a) }

in which:

2 17

T{=ljsin7T{

The coordinates x, yare also those of the intersection of the axis of shadow
with the fundamental plane.

In the tabulation of Besselian elements of eclipses, the right ascension a of
the point Z is conventionally replaced for practical use by the ephemeris hour
angle I-' of that point, given by:

I-' = ephemeris sidereal time - a

The angles fl' f2 which the generators of the penumbral (subscript I) and
umbral (subscript 2) cones make with the axis of the shadow are given by:

sinfl = (sin So + k sin 7To)jgR = °'°°4664°1 6jgR
sinf2 = (sin So - k sin 7To)jgR = °'°°464°78 4jgR

for k = 0'2722 74. For k = °'27248°7, for use after 1962, the constants become *
0.0°46 6402 6 (for fl) and °'°°46 4077 6 (for f2)' In the above equations So, 7To
are respectively the adopted values of the semi-diameter (15' 59"·63) and the

*For 1968 onwards: k = 0'2722 81 k = 0'2724880
Coefficients for f1: 0'0°46 6400 9 °'°°46 6401 8
Coefficients for f2: 0'0046 4079 2 °'°°46 4078 3

Highlight

Highlight

WHY DRAW THE BOTTOM OF THE BALL
 IF THAT IS NOT BEING USED
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-----

Figure 9.3. Notation for solar eclipses

EM = r{ ES = ro MS = gro
1 = r { sin 7T ( 1 = Yo sin 7T0

k = r{ sin s{ do = ro sin So = sin so/sin 7To = sin so/sin 7To
where r { and Yo are in units of the Earth's equatorial radius.

sinfl = (do + k)/gro = (sin So + k sin 7To)/gR
sinf2 = (do - k)(gro = (sin So - k sin 7To)(gR

where R = ro sin 7To is in astronomical units.

* horizontal parallax (8"·80) of the Sun at unit distance. See figure 9.3 which shows
the relationships between the apparent semi-diameters, the radii, parallaxes, and
distances of the Moon and Sun, and the angles of the shadow cones.

The distances c1, C2 of the vertices of the penumbral and umbral cones above
the fundamental plane are thus, in units of the equatorial radius of the Earth:

C1 = Z + k cosec 11
C2 = Z - k cosec/2

With the values of sinI and c found above, the radii 11, 12 of the penumbra and
umbra on the fundamental plane are obtained from:

11 = C1 tan II 12= C2 tan 12
The convention of signs introduced in the formulae for c makes 12 negative for
total eclipses, positive for annular eclipses, while 11 is always positive.

The Besselian elements x, y, sin d, cos d, fL, 11, 12, tabulated in the Ephemeris, are
calculated for each hour and subtabulated to an interval of 10 minutes. Although
the values of tan II and tan 12 must be calculated for each hour for the accurate
evaluation of 11 and 12, it is always sufficient to use the constant values of tan 11
and tan 12 for the integral hour nearest conjunction in the calculation of local
circumstances and eclipse curves.

The derivatives of the Besselian elements with respect to time are calculated
from the tabular values by numerical differentiation; primes are used to denote
derivatives and numerical values are given as hourly variations. The hourly
variations x', y', 1; of x, y, 12 may be obtained with sufficient precision by multi­
plying by six the first differences of the tabular values at intervals of 10 minutes.
The hourly variations fL', d' of fL, d are constant to the precision required; they may
be evaluated once only for the hourly interval which contains the time of conjunc­
tion. fL' and d' are expressed in their natural units of radians per hour.
*8"'794 for 1968 onwards.
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Example 9.3. Besselian elements of an eclipse
1961 February 15 d 08h E.T.

Sinf2
k cosecfz

Cz

tanf2
l2

sin D, sin d +0'0453 5864
+COSD( cosd x
cos (a, - a) +0'9545 1252

sum +0'99987116
z +56'26284

0'0047 0916 I

57.81 794
-1'555 10

°'°°47°921 3
-0'0073 23

Tl 56'27009

sin Do -°'220°7813
b sin D, -0'0005 0078
g sin d -0'2195 7735

sin d -0'2201 1219
cos d +°'97547456

cos (al - a) +0'99997321

-0'50754754
-0'0012 5207
-0'5062 9547

°'995 1 4625
°'99757°17

-0'0073 1970

ao 328° 38' 50"'42 00 - 12° 4~' 49"'°4

sin ao -0'5203 °423 sin 00 -°'220°7813
cos ao +0·8539 8097 cos 00 +°'97548225

sin 170 0·0000 4266 36
b °'°°24 3014

sin D, cos d -0'2010 1657
-cos°1 sin d x
cos (al - a) +°'21538218

sum +0'0143 6561
y +0.808354

sinfl °'°°4732735
k cosecfl 57'52995

Cl 113'79279
tanfl 0'0047 3278 8

II °'5385 57

x -0'403040

gR °'9854 801
k 0'272274
z 56'26284

Ul 328° 13' 44"'29 0, _11° 53' 3 1':.83

sin a, -0'52652602 sin °1 -°'20607°54
cos a, +0·8501 5902 cos °1 +°'9785 3714

7T, 61' °5".814 R 0'9878805
sin 17, 0'0177 7143 R sin 17 1 0'0175 5605

cos Do cos ao +0.83304328 cos Do sin ao
bcos D, cos a, +0'0020 2166 b cos 0, sin a,
g cos d cos a +0.83102162 g cos d sin a

tan a -0.6°924464 gZ
a 328° 38' 54""10 g

al - a-0° 25' °9".81 sin (al - a)
cos D, x
sin (a, - a) -0'0071 6260

" Apparent sidereal time" (A.E., p. II)
h m

174° 21 '°93

= Ephemeris sidereal time at 8h E.T. 265 05 16~40
a 328 38 54' 10

Ephemeris hour angle, J-L 296 26 22'3

From a similar calculation for February 15 d 09h

J-L = 311° 26' 29"'2 sin d = -°'21987475
hourly change 15° 00' 06"'9 hourly change +°'°0023744

J-L' 0'2618 328 d' = +°'°0024341

p cos ep' sin B
p sin ep' cos d p cos ep' sin d cos B
p sin ep' sin d + P cos ep' cos d cos B

B = J-L - ,\*

Their hourly variations are found from:
f +/1-' P cos ep' cos B
TI' = +J-L' P cos ep' sin d sin B - d' (p sin ep' sin d + P cos ep' cos d cos B)
" = - iL' P cos ep' cos d sin B + d' (p sin ep' cos d - p cos ep' sin d cos B)

tLongitude is here measured positively to the west.

. h' htIn W IC :

Coordinates of the observer

For an observer located on the surface of the Earth in ephemeris longitude '\*,
geocentric latitude ep', at a distance p from the centre of the terrestrial spheroid,
his geocentric rectangular coordinates g, 7), " referred to the x, y, z system of axes
in units of the Earth's equatorial rad{us, are found in terms of the Besselian elements
from:
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or f +IL'(-7)sind+'cosd)
7)' = + IL' g sin d - d' ,

" = - IL' gcos d + d' 7)
where IL', d' are in units of radians per hour.

Precise eclipse calculations must take into account the flattening of the Earth;
and, for the calculation of local circumstances for a particular observer, the above
formulae present no difficulty. The geometric conditions pertaining to general
eclipse phenomena, such as the track of the central line, determine the value of the
coordinates g, 7) of the points on the surface of the Earth where these phenomena
occur; but the evaluation of the coordinate' requires the value of the distance P of
each point from the centre of the Earth. This distance is not known a priori,
because it is a function of the latitude of the point. The problem of determining'
could be solved by successive approximations, but the procedure outlined below
was devised by Bessel to provide a direct computation.

If cP is the geodetic latitude of a point on the Earth's surface and cP' its geo­
centric latitude, then:

P sin cp' = (I - e2) sin cp (I - e2 sin2 cp)-~ = S sin eP
P cos cp' = cos cp (I - e2 sin2 eP)-~ = C cos cp

in which e is the ellipticity of the Earth's spheroid. For Hayford's spheroid,
* e2 is equal to 000067 2267. Sand C are tabulated in table 2.8.

Let CPl be the parametric latitude, such that:
sin CPl = P sin cP' (I - e2)-~ cos ePl = P cos cP' sin2 CPl + cos2 CPl
and set:

PI sin dl = sin d P2 sin d2 = sin d (I - e2)!
PI cos dl = cos d (I - e2)! P2 cos d2 = cos d

7)1 = 7)/PI ,~ = 1 - g2 - 7)i

By means of these new quantiti~s, the equations for g, 7), , above may be trans­
formed into:

g = cos CPl sin 8
7)1 = sin CPl cos dl - cos CPl sin dl cos 8
'1 = sin cPl sin dl + cos CPl cos dl cos 8

and it may be noted that:
, = P2 sin cPl sin d2 + P2 cos cPl cos d2 cos 8

, = P2 { '1 cos (dl - d2) - 7)1 sin (dl - d2)}

According to the above relations, it is seen that the quantities required for the
introduction of the flattening of the Earth into eclipse calculations are PI' P2' sin dl ,

cos dl, sin (dl - d2), and cos (dl - d2). With these quantities, g, 7)1' '1> may be
calculated from given values of g, 7) to enable CPl (and thus cp) and 8 to be deduced;
and , can be calculated directly from values of 7)1' '1 and indirectly from g, 7).

They may be obtained from the following formulae:
PI = (I - e2 cos2d)! P2 = (I - e2 sin2d)!

PI sin dl = sin d PI cos dl =:' (I - e2)~ cos d
PI P2 sin (dl - d2) = e2 sin d cos d PI P2 cos (dl - d2) = (I - e2)!

*e 2 = 0000669454 for 1968 onwards; corresponding values of Sand C are tabulated in
A.E. Table VII.
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The quantities PI' P2, and (dl - d2) are almost constant for the duration of the
eclipse. It is always sufficient to calculate them for the integral hour nearest
conjunction, while sin d l and cos d l may be tabulated with the other Besselian
elements. It should be noted that the subscripts I and 2 used here do not refer to
the penumbra and umbra.

0'00672267
-0.001443

0'9966 33
0'9966 34

e2

e2 sin d cos d
(I - e2)1

PI P2

Example 9+ Auxiliary elements of an eclipse
1961 February 15 d 08h

cos d +0'975475
e2 sin2 d 0'0003 26

P~ 0'9996 74
P2 0'9998 37

cos d l +0'9753 16
cos (dl - d2) 0'9999 99

-0'2201 12
0'0063 97
0'993603
0'9967 96

-0'220820
-0.001448

sin d
e2 cos2 d

P~
PI

sin d l

sin (dl - d2)

Conditional and variational equations

In the plane through the observer (coordinates g, 1], ,) perpendicular to the
axis of the shadow (coordinates x, y, '), and thus parallel to the fundamental plane,
let .1, Q be the distance and position angle (measured eastwards from the north,
i.e. from the y-axis towards the x-axis) of the axis from the observer; then:

g = x - .1 sin Q
1] = y - Ll cos Q

Ll2 = (x - g)2 + (y - 1])2

At a height' above the fundamental plane the radius L of the shadow is given by:
L = I - 'tanl

where the values of I, I appropriate to the penumbra (LI = II - 'tan II) or umbra
(L2 = 12 - 'tan 12) are used.

At the beginning or end of an eclipse the observer is located on the surface
of the cone of shadow, so that:

Ll = L Ll2 - L2 = 0

or
(x - g)2 + (y - 1])2 - (i - 'tanf)2 = 0

When the observer is located on the northern or southern limits of the shadow,
the eclipse begins and ends at the same time; the two roots of the above equation
must therefore be equal, and the derivative of the left-hand side, with respect to
time, must be zero. Using primes to denote derivatives with respect to time,
and making the substitutions:

x - g = Ll sin Q y - 1] = Ll cos Q Ll = L
the condition becomes:

(x' - f) sin Q + (y' - 1]') cos Q - (i' - "tanf) = 0

The derivatives f, 1]', r are obtained simply by substituting the expressions
for g, 1] in those given above:

f = J-L' (-y sin d + , cos d + Ll sin d cos Q)
1]' = J-L' ( +x sin d - Ll sin d sin Q) - d' ,
r = J-L' (-x cos d + Ll cos d sin Q) + d' (y - Ll cos Q)



222 EXPLANATORY SUPPLEMENT

If three auxiliary elements a', h', c' are introduced, with the definitions:
a' = -J' - iL' x tan] cos d
h' = - y' + iL' x sin d

c' = +x' + iL' Y sin d + iL' 1tan] cos d

then the conditional equation determining the northern and southern limits may
be written, omitting terms in d' tan] and putting J = L:

a' + cos Q(- h' + 'd') + sin Q (c' - , iL' cos d sec2f) = 0

or, setting sec2 ] = I:

tan Q = (h' - , d' - a' sec Q)j(c' - 'iL' cos d)

At a given time, this equation determines the value of the position angle Q
corresponding to positions on the northern or southern limits of the shadow, at
which the eclipse both begins and ends at that time.

The above expression for Q provides a convenient method for the calculation
of the limits of umbra and penumbra. It is advantageous to tabulate a~, h', c~, c~

at the same time as the Besselian elements, but they are not required for local
predictions and are not published in the Ephemeris. In general it is unnecessary
to take a~ into account in the calculation of the penumbral limits. Here, as else­
where for quantities relating to the shadow, the subscripts 1 and 2 refer to the
penumbra and umbra respectively.

The eclipse is a maximum (at the time of greatest phase) for a particular
observer when (L1 - m)j(LI + L 2) is a maximum (see sub-section D). Approximate
geometric conditions for maximum eclipse are L - J to be a maximum, or J to be
a minimum; the first of these conditions leads to the same relation as for the
northern and southern limits, namely:

(x' - f) sin Q + (y' - 7)') cos Q - (l' - "tan]) = 0

whereas the second is equivalent to omitting the small contribution (l' - "tan f).
Although the differences between these conditions are small, they can be significant
for precise calculations; see Gossner, Simone D., A correction to the time of
maximum obscuration in solar eclipses, A.J., 60, 383, 1955.

Example 9.5. Auxiliary Besselian elements of an eclipse
1961 February 15d 08 h

11 0'53 86
l2 -0'0073 23

tanfl 0'004733
tanf2 0'004709

sin d -0'2201 12
cos d +0'975475

x -0'403040
Y +0·808354
fL' 0'2618 33

x', y', l' are obtained from the differences of x, y, 1 (A.E., p. 296)

l' -0'000057 -y'- 2 -0'1430 3 1
-fL' X tanf2 cos d +0'000485 +fL' x sin d +0'0232 28

a; +0'0004 28 hi -0.119803

I 2
x' +0'561 4 14

+fL' Y sin d -0'0465 88
+fL' 1 tanf cos d +0'000651 -0'000009

c~, c; +0'5 15477 +0'5148 17
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General

Apart from the Besselian elements, which are given to enable local predictions
to be made, the information on solar eclipses published in the Ephemeris consists
of times and positions on the surface of the Earth, corresponding to the occurrence
of precise phases or other conditions of the eclipse; the data are given either in
tabular or graphical form. Consideration of the geometrical relationships and
conditions appertaining to aparticular phase of the eclipse generally enables the
rectangular coordinates g, T'f of the position to be deduced. Using the auxiliary
quantities PI' P2' sin d1, cos d1, sin (d1 - d2), cos (d1 - d2), which are tabulated at the
same time as the Besselian elements, , and g, T'f1' '1 can then be calculated.

From these rectangular coordinates, the longitude A and geodetic latitude 4>
of the corresponding point on thy surface of the Earth are found through the
following set of equations:

cos 4>1 sin 8 = g
cos 4>1 cos 8 = - T'f1 sin d1 + '1 cos d1

sin 4>1 = +T'f1 cos d1 + '1 sin d1

A=/L-8
tan 4> = (I - e2)-~ tan 4>1

where 4>1 is the parametric latitude, and 8 is the local hour angle of the axis of shadow.

For Hayford's spheroid (flattening 1/297) the coefficient (I - e2)-~ is equal to *
1'0033 78.

Unless specifically noted otherwise, the independent variable used in delineat­
ing the tracks and curves is time; and in all calculations the time system is that of
ephemeris time. .

Central line of total or annular phase

The central line is the locus of points of intersection of the axis of shadow
with the surface of the Earth. Thus, for each time:

g = x T'f = Y T'f1 = Y/PI = YI
'1 = (I - g2 - T'fi)~ = (I - x 2

- yD~

There are two solutions. The one for which '1 is negative corresponds to the
phenomenon that occurs below the horizon and is usually omitted in the ephem­
erides.

The semi-duration s of the total, or annular, phase on the central line is given
by:

s = L 2/n
where L 2 is the radius of the umbra at a height , above the fundamental plane,
and n is the speed of the shadow relative to the observer. L 2 is found from:

L 2 = l2 - 'tan f2
where , is obtained by substituting the central-line values of T'fl and ~1 in the
*1'003364 is used for 1968 onwards. See note on page 523.
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equation:

EXPLANATORY SUPPLEMENT

n is given by:

where:

or, very nearly:

n2 = (x' - f)2 + (y' - r/)2

f = 1-" cos <PI cos e = 1-" ( - y sin d + { cos d)
r/ = 1-" x sin d - d' {

x' - f = c; - 1-" { cos d
y' - r/ = -b'

The resulting value of the semi-duration is expressed in decimals of an hour
if hourly variations are used for the derivatives, and thus for n.

The positions of points on the central line, and the durations of the total
or annular phase at these points, are tabulated in the Ephemeris.

sin (di - d2) -°'°01448
cos (di - d2) +0'999999

P2 °'9998 37
(I - e2)-t 1'°°3378

12 -0'0073 23
- ~ tan f2 -0'°020°3

L 2 = sum -0'0093 26
c; +0'514817

-IL'~cosd -°'108619 s
x' - f = sum +0'4061 98 Duration
Y' - 7]' = -b' +°'1198 °3

-0.6799 28
325 047"23
296026"37
-290 20"9

tan ()
()

IL
A

Example 9.6. Point on central line, and duration of an eclipse
1961 February 15 d 08 h

g = x -0'403040 sin d -0'2201 12 sin d l -0'2208 20
Y +0. 808354 cos d +0'975475 cos dl +0'9753 16

PI °'9967 96 IL' +0'2618 33 tan f2 +°'°°47°9
7]1 = YI +0·8109 52 ~i 0'1799 16 ~I °'4241 65

cos <PI sin () -0'4030 40 ~/P2 +°'4253 39
cos <PI cos () +0'5927 69 ~ +0'425270

sin <PI +0.69727°
tan <PI +0'9727 42
tan <P +0'9766 28

<P +440 18"3

11
2 0'1793 50 tan Qo = - (Y' - 7]')/(x' - 0
n °'423497 = -0'294937

(tan Qo is required in example 9.7)

Northern and southern limits of umbra and penumbra

The distance from each point on the limits of the umbra to the axis of the
shadow is equal to L 2, so that, at these points:

(x - ~)2 + (y - 7])2 = L~

This equation may be replaced by the equivalent system:
~ = x - L 2 sin Q
'YJI = (y - L 2 cos Q)/PI

where it has been shown that; at the limits, the position angle Q must fulfil the
condition:

Q
b' - { d' - a' sec Q

tan = I r' d
C2 - ':>1-' cos

The sign of cos Q is positive for the northern limit of a total eclipse and the
southern limit of an annular eclipse; it is negative for the southern limit of a total
eclipse and the northern limit of an annular eclipse.
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The quantity', required for the evaluation of L 2 and Q, is not known directly.
It is therefore necessary to proceed by successive approximations. The procedure
outlined below converges rapidly and rarely requires more than two approximations.

For initial values in the first approximation, assume a value for L 2 equal to
that used in the computation of the duration on the central line for the corresponding
time, and a value Qo for Q such that:

b'
tan Qo =, " dC2 - /L cos

where numerator and denominator are also available from the computation of
duration. If the latter is not available, as for example in the case of non-central
eclipses, it is sufficient to set:

, = 0 L 2 = 12 tan Q = b'lc;
From these starting values ~ and 7]1 are calculated and thence:

'1 = (I - ~~ - 7]~)~

, = P2 { '1 cos (d1 .:.... d2) - 7]1 sin (d1 - d2) }

With this value of " tan Q 'is calculated from the accurate formula. The
term a' sec Q is small, and it is always sufficient to use the value of sec Q from the
previous approximation.

The new values of , and Q are used to re-evaluate L 2, ~, 7]1' '1' and it is then
possible to proceed to the calculation of geographic positions. Near the ends of
the path it may be advisable to carry through one more approximation'to 'and tan Q.

The northern and southern limits of the umbra are tabulated in the Ephemeris
with the central line, and are also shown on the eclipse maps.

The geometric conditions for the limits of penumbra are similar to those
appertaining to the limits of umbra in an annular eclipse. The elements for the
penumbra are used instead of those for the umbra. These limits need not be
known very accurately, and the flattening of the Earth may be neglected. Thus,
it suffices to use:

L 1 11 - 'tan!1
~ x - L 1 sin Q
7] y - L 1 cos Q
, = (I - ~2 - 7]2),

b'
tanQ=, ~' dc1 ~ /L cos

the small terms 'd' and a' sec Q being omitted in tan Q. The sign of cos Q is
positive for the southern limit and negative for the northern limit.

The initial value of , to be used for the first approximation is not critical and
may be chosen at the discretion of the computer. It is often simplest to start by
assuming , equal to zero, giving:

L 1 = 11 tan Q = b'lc~

which leads rapidly to an adequate value of ,.

The values of ~, 7], , resulting from the third approximation may be used in .
the calculation of the geographic coordinates. Inasmuch as the flattening of the
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Example 9.7. Northern and southern limits of the umbra
1961 February 15d 08h

-00001448 sin d1 -00220820 (I - e2)-1 10003378
+0°999999 cos d1 +0°9753 16 tanf2 00004709

a; +00000428 /1-' cos d +00255412

First approximation Second approximation
Northern Southern Northern Southern

limit limit limit limit
-000073 23 -000073 23 -000073 23 -000073 23
-00002003 -00002003 -00001907 -000020 93
-000093 26 -000093 26 -000092 30 -000094 16

-002949 37 -002949 37 - 002925 55 -002976 83
-00282889 +00282889 -00280786 +002853 10
+0°959 1 52 -0°9591 52 +0°959770 -00958435
+0°962235 -0°9622 35 +00962855 -009615 16

P1 0°9967 96 sin (d1 - d2)
P2 0°9998 37 cos (d1 - d2)

d' +0°000243

Initial data
taken from

example 906
12

-~ tanf2
L 2

tan Q
sin Q
cos Q

cos Q/P1

It may be verified that a
further approximation changes
~ by only about 0 00002, leading
to a change of less than
0 00000 01 in L 2 ; the corres­
ponding change in tan Q is
less than 0 000004 which has
negligible effect on g, 711o

Southern
limit

-0°400354
+006096 10

- 006567 38
3260 42'-32
296 0 26'-37

-300 16'00

+006841 74
+0°9381 00
+0°94 12 69
+43 0 16'00

X

-L2 sin Q
g = sum

Y1
-L 2 cos Q/P1

7]1 = sum

~i
~1
~

b'
-~ d'

-a; sec Q
sum

c;
-~f1-' cos d

sun1

tan Q

-0°4030 40
-0000263 8
-0°4056 78

+0 0810952
+0 0008974
+00819926

001631 47
0°4039 15
0°4050 36

-00119803
-00000098
-00000446
-00120347

+0°5148 17
-0010345 1
+0°411366

-002925 55

COS,p1 sin () = g
COS,p1 cos ()

tan ()
()

f1­
,\

sin ,p1
tan ,p1
tan ,p

,p

-0°4030 40
+00002638
-004004 0 2

+008109 52
-00008974
+008019 78

001965 10
0°443 2 94
0°4443 83

-00119803
-00000108
+00000446
-0° I 19465

+0°5 148 17
-00113501
+0°4013 16

-00297683

Northern
limit

-0 0 40 56 32
+0°575 1 98

-0°705204
32 4

0
48'°50

296 0 26'°37
-280 22'01

+0°7103 61
+ 1-009269
+ 1'0126 78
+45 0 21"7

-0°4030 40
-000025 92
-0°4056 32

+008109 52
+00008887
+ 0081 98 39

o· 1633 27
0°404 1 37

-0°4030 40
+0 0002686
-0°400354

+00810952
-000090 54
+0 0801898

0- 196676
0-443482

Earth is neglected; the equations are reduced to:
cos 4> sin e g
cos 4> cos e -7) sin d + ~ cos d

sm 4> +7) cos d + ~ sin d
,\ JL-e
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If desired, the flattening of the Earth may be introduced in the same manner as
for the limits of umbra.

The northern and southern limits of the penumbra are not tabulated in the
Ephemeris, but are included on the eclipse maps.

sin d -0'2201

cos d +0'97SS

Third
approximation

-0'1l98

+O-SISS
-0'237 1
+0'2784

-0'43°3
-0-39S3
+0'9186

+0'S386
-0'0044
+0-S342

-0'403°
+0'2112
-0'1918

+0·8084
-0'49°7
+0'3 177

0- 8623
0-9286

-0'1918
+0'97S8

-0'1966
348°'9
296°'4

-S2°'S

+0'10SS
+6°,1

+O'SISS
-0'2341
+°'2814

-0'42S7
-°'3917
+°'9201

+0'S386
-°'°°43
+0'S343

-0'4°3°
+0- 2°93
-0'1937

+0·8084
-°'49 16
+°'3 168

0·8621
0-928S

-0'4°3°
+0- 121 9
-0'2811

+0·8084
-0'S246
+0-2838

0·84°4
°'9167

+O'SISS

°+O'SISS

-0'2324-
-q'2264
+0'974°

+0'S386

°+0'S386

Example 9.8. SOllthern limit of pellumbra
1961 February IS d 08 h

p.: +0'2618

fL' cos d +0'2SS4

First Second
approximation approximation

-0'1198 -0'1198b'

tan Q
sin Q
cos Q

II
-~ tan fl

L 1 = sum

x
-L1 sin Q
g = sum

y
-L1 cos Q

7J = sum

c~
-~ fL' cos d

sum

~2

~

cos eP sin 8 = g
cos eP cos 8

tan 8
8
fL
,\

sin eP
eP

Outline curves

An outline curve of the shadow on the Earth's surface is the locus of all the
points at which the eclipse is beginning or ending at the given time. Outline
curves for the umbra are sometimes given in special eclipse publications; they are
not given in the Ephemeris as the other information concerning the total or annular
phase is normally adequate for most requirements. Outline curves for the
penumbra, showing the places where the partial phase is beginning or ending at
stated times, are usually plotted on small-scale maps and until 1960 were so
presented in the Ephemeris.
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To this precision the flattening of the Earth may be neglected, and /1 may be
substituted for L 1, thus avoiding the necessity for successive approximation. Thus,
for a stated time:

g = x - /1 sin Q
7] = y - /1 cos Q
g2 + 7]2 + S2 = I

In this case the angle Q is used as the independent variable of the calculation.
If there are points both on the northern and southern limits of penumbra for the
time considered, the angle Q for the outline curve generally takes all values from
0° to 360°, If this is not so, it is necessary to find the range of Q; the extreme
values of Q are those for the two points on the curve at which Sis equal to zero.
For these two points:

g2 + 7]2 = I

If the intersection of the axis of the shadow with the fundamental plane 1S at
distance m in position angle M from the origin, then:

x = m sin M y = m cos M
and, at the two extreme points:

(m sin M - /1 sin Q)2 + (m cos M - II cos Q)2
or

cos (Q - M)

yielding two values for the angle Q.
If the angle (Q - M) is imaginary, there are no end points to the curve, and

the-angle Q takes all values from 0° to 360°.

Once the limits of Q have been found, it remains to determine which of the
two sections of the circumference is the appropriate one. This may be found
rapidly by testing whether or not an assumed value of Q, such as 0° or 90°, satisfies
the equations determining the curves.

To describe the curve, discrete values of Q are taken at intervals of five or ten
degrees and g, 7], s and A, 4> are calculated as above, neglecting the flattening of
the Earth.

If the curve is intended for a large-scale map, it is necessary to take into
account the flattening of the Earth, and to calculate accurate values of g, 7]1' SI from:

g = x - L 1 sin Q
7]1 = (y - L 1 cos Q)/PI
SI = (I - g2 - 7]D~

where the value of Sfound above may be used as an initial value in obtaining L 1

from:
L 1 = II - stan 11

The geographic coordinates A, 4> are then found from the accurate formulae given
above.

The outline curves have been replaced in the Ephemeris by curves giving the
times of middle and the semi-duration of the eclipse. These curves are actually
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X

-11 sin Q
g = sum
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Example 9.9. Outline curves of an eclipse
1961 February 15 d 08h

(a) Extreme values of Q

x -0'4°3° 11 °'5386
y +0. 8084 12 0'29°11

111 °'9°33 m2 0.81 59
tan M -°'4985

zl1 m °'973° l~ + m2 -I +0'1060
cos (Q - M) +°'1089

0 0

Q - M 83'7 Q -M 276'3
M 333'5 M 333'5
Q 57'2 Q 249.8

(c) Sample calculation for Q = 20°
sin Q +°'3420 sin d
cos Q +°'9397 cos d

x -0'4°3° cos c/> sin 8 =g
-11 sin Q -°' 1842 cos c/> cos 8
g = sum -°'5872

tan 8
y +0.8084 8
-11 cos Q -°'5°61 fL

TJ = sum +°'3°23 ,\

~2 °'5638 sin c/>

~ °'75°9 c/>

(b) Range of Q
For Q = 0°

-0'4°3°

°
-0'40 3°

Y +0.8084
-11 cos Q -0'5386

TJ = sum +°'2698

~2 +°'76 >0
Thus the range of Q is
250° ~ Q ~ 360° and

0° ~ Q ~ 57°

-0'2201
+°'9755

-0'5872
+°'799°

-°'7349
323° '7
296°'4

- 27°'3

+0'1296
+ 7°'4

constructed graphically from the intersections of a network of outline curves.
For this purpose the outline curves are extended below the horizon by using the
negative solutions for' for a few points at both ends of each curve.

Curves of maximum and middle eclipse,
equal semi-duration, and equal magnitude

A curve of maximum eclipse is the locus of all points at which the eclipse is
at maximum at a given time. Such a curve may be substituted for the curve of
middle eclipse, indicating points at which the middle of the eclipse occurs at the
given time, from which it differs only slightly. In contrast to curves of middle
eclipse, curves of maximum eclipse correspond to a definite geometric condition
in the progress of the eclipse, and may be obtained by a simple computation.

The coordinates of the observer at the given time are used in the form:
g = x - Ll sin Q 7) = y - Li cos Q

where Q fulfils the condition that the eclipse is at maximum, namely (neglecting
the flattening of the Earth):

tan Q = h'/(c~ - 'fL' cos d)
Instead of Ll, the independent variable (or parameter) used to describe the

curve is " where again neglecting the flattening of the Earth:
'2 = I - c2 = I - e - 7)2
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Putting: ~ = c sin y

'lJ = c cos y

and, eliminating LJ, y is determined from:

sin (y - Q) = Z(x cos Q - y sin Q)

in which cos (y - Q) is always taken to be positive.

For each value of ~ for which (y - Q) is not imaginary, there are two values,
differing by 180°, of the angle Q, and thus two points on the curve. But, in most
cases, only one of these points refers to an eclipsed point; the other solution may
be eliminated by noting that LJ must not exceed L 1, or:

(x - ~)2 + (y - 'lJ)2 ~ Li
If, for the given time, there is a point on the curve of maximum eclipse at

sunrise or sunset (see below), the starting value for ~ in the calculation for that
time may be taken as zero; it is then increased until (y - Q) becomes imaginary.
If there are points on both the northern and southern limits of penumbra for that
time, the starting value for ~ is the smaller of the two corresponding values for these
points; it is then increased until (y - Q) becomes imaginary.

The curves may be extended beyond the horizon by using negative values
of ~ for a few points. The flattening of the Earth may be introduced, if necessary,
by setting:

c2 = p2 _ ~2

where p is the geocentric radius at latitude ep. Then:

'lJl = YJ/ PI ~2 + 'lJi + ~i = 1

In this case, two approximations are required because ep is not known for the
evaluation of p.

Once the geographic position has been calculated the semi-duration of the
partial phase at each point is obtained from:

L 1 cos if;
s = ~----'-­

n
where:

sin if; = LJ/L1

n2 = (x' - f)2 + (y' - 'lJ')2

f = J-L' cos ep cos e
'lJ' = J-L' ~ sin d

The semi-duration is expressed in decimals of an hour because hourly variations
are used, so that n is in units of Earth's equatorial radii per hour.

The magnitude of the eclipse is found from:

(L 1 - LJ)/(L1 + L 2)

*where (L1 + L 2) may be replaced by (2L1 ....:. 0'5459) if L 2 is not available.

A direct computation of the curves of equal semi-duration is extremely
laborious because both LJ and ~ are unknown, and successive approximations based
on the above relations do not always converge. It is more expedient to perform
*0'5464 adopted from 1963 onwards.
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-0'9221
3 12°'7
296°'4
- 16°-3

+0- 8183
+ 54°-9

y +0- 8084

(b)
+0'01 96
-0-0756

0'0061

-0'4226
+0'3897

y' +0'1430
-7]' - 0-0243

y' - r( +0· IIS7

Out

because

-0-40 30

(a)
-0-4608
+ I '7865

3-4039

Ll2 > Li

tanfl 0-0047
tan f2 0·0047

0'2251 n 0'4744
Semi-duration I h -121 = 6tn '3

x

/2 - 0-0073 ~2 + 0'040C
-~ tan!2 -0-0009 c2 +0'9600

L 2 -0-0082 c +0'9798

Point on curve of maximum eclipse, and the semi-duration
and magnitude at that point

1961 February 15 d 08h

fI. +0·2618
po' cos d +0'2554

~ = 0'2 (assumed)

+0'53 86
-0'00°9
+0-5377
+0'289 1

Magnitude 0·868

-0'II98
+0'5 155
-0-05 II
+0'4644
-0- 2580

(a) (b)
165° 32' 345° 32' x - g
+0'2498 -0'2498 Y - 7]

-0'9683 +0'9683 Ll2
+0.1883 -0'1883 cos c/> sin 8 = g
+0'1922 -0'1922 cosc/> cos 8

11° OS' 348° 55' cot 8
176° 37' 334° 27' 8
+0.0590 -0'43 13 fI.
-0'9983 +0'9022 .\

+0-0578 -0'4226 sin c/>
-0'9781 +0.8840 c/>

For semi-duration and magnitude, case (b) only
sin.p +0'1452 x' +0-5614
cos.p +0-9894 -g' -0,1020

L 1 cos.p +0'5320 x' - g' +0-4594

sin d -0·2201
cos d +0'9755

Example 9.10-

L1 +0-0781
L1 +0'5377
L2 -0-0082

L1 -Ll +0'4596
L1 + L2 +0-5 295

b'
c;
-~fI.' cos d

c; - ~ fl.' cos d
tan Q

Q
sin Q
cos Q

. x cos Q - y sin Q
sin (y - Q)

y - Q
y

sin y
cos y

g
7]

:s

e

r,

It

\t

{.

It

e

.y
;;t

s,

e
an inverse interpolation on the curves of maximum eclipse, provided the semi­
durations at a sufficient number of points have been calculated. In the Ephemeris
they are actually constructed graphically from a network of outline curves.

The curves of equal magnitude may also be obtained by inverse interpolation
on the curves of maximum eclipse. They are not shown on the maps in the
Ephemeris.

s

Curves of rising and setting and of
maximum eclipse at sunrise and sunset

The rising and setting curve is the locus of the end points of the outline
curves. If there are both northern and southern limits of penumbra, the rising
and setting curve forms two separate loops. Otherwise, the curve assumes the
shape of a distorted figure "eight". It should be noted that the break into
separate loops does not occur at the node of the figure " eight", but at a short
distance from it. At the node, the times of beginning and end of the eclipse
do not coincide, whereas the duration of the eclipse is equal to zero at the point
where the break occurs. Indications of the approaching break are often found
in the last eclipse of a cycle to exhibit the continuous rising and setting curve.
One of the loops appears somewhat strangled in the vicinity of the node. The
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next eclipse in the cycle will have two separate loops, and, in extreme cases, one
of the loops may still contain the node. An illustration of these cases is found in
the eclipses of 1894 September 28 and 1912 October 10, and again in those of
1941 September 21 and 1959 October 2. The computational procedure remains
unchanged, regardless of the case involved.

If the flattening of the Earth is neglected, points on the rising and setting
curve (neglecting refraction, that is assuming a zenith distance of 90°) may be
calculated for each stated time by noting that ~ is equal to zero, and:

g2 + TJ2 = I
g = X - /1 sin Q TJ = Y - /1 cos Q

These may be written:
sm y = m sin M - /1 sin Q
cos y = m cos M - /1 cos Q

whence, eliminating Q:

( M) m2 + I - Ii
cos y - = 2 m

There are two values of (y - M), giving two points on the curve for each given
time. When the flattening of the Earth is included:

g2 + TJ2 = p2

and the corresponding equations become:
P sin y = m sin M - /1 sin Q
P cos Y = m cos M - /1 cos Q

leading to:

Since 1> is not known
necessary.

cos (y - M)

1]1 = TJ/PI

for the initial

m2 + p2
- Ii

2mp

~1 = 0

evaluation of p, two approximations are

Example 9. I I. Points on the rising and setting curves
1961 February 15d 08h

(a) (b)
x -0'4°3° 11 +°'5386 sin d -0'2201 -0'2201
Y +0.8084 l~ +0'29°1 cos d +°'9755 +°'9755
m +°'9°33 m2 = x 2 + y2 +0.81 59 cos </> sin 8 = ~ +0'1022 -0.8560

tanM -°'4985 cos </> cos 8 +°'219° +0'II38

2m + 1·8066 m2 + I - l~ 1'5258 tan 8 or cot 8 +°'4667 -0'1329
cos (y - M) +0.8446 8 25°'0 277°·6

(a) (b) f£ 296°'4 296°'4
Y - M 32° 22' 327° 38' ,\ - 88°·6 + 18°·8
M 333° 30' 333° 30'

Y 5° 52' 301° 08' sin </> +°'97°4 +~'5043

</> + 76°,° + 3o°'3
~ = sin y +0·1022 -0.8560
TJ = cos y +°'9948 +°'5 17°

At the time given the eclipse begins at sunset in place (a) and ends at sunrise in place (b).
The flattening of the Earth is neglected in the above calculation.
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The curve of maximum eclipse at sunrise and sunset is the locus of the points
on the curves of maximum eclipse for which ~1' or ~ in this case, is equal to zero.
Thus, ignoring the flattening of the Earth:

C = I tan Q = b'/c~

sin (y - Q) = x cos Q - y sin Q
with

Ll ~ II

The flattening of the Earth may be introduced in the same manner as for the
curves of maximum eclipse, i.e. by putting:

c = p and p sin (y - Q) = x cos Q - y sin Q

The curve of maximum eclipse in the horizon has two sections if the rising
and setting curve has two separate loops; it is one continuous curve if the rising
and setting curve has the shape of a distorted figure" eight". In the latter case,
the curve of maximum eclipse in the horizon pas~(s between the node and nearer
pole.

Both these curves are given on the maps in the Ephemeris.

Example 9. I 2. Points on the curve of maximum eclipse at sllnrise and sUI/set
1961 February 15 u 08 h

b' -°'1198 11 +°'5386 x -0'4°3° sin d -0'2201
c~ +°'5 155 [2 0'29°1 Y +0.8084 cos d +°'97551

(a) (b)
tan Q ~0'2324 x - g -0'4202 +0'0225

(a) (b) Y - 7J + 1.8083 -°'°966
Q 166° 55' 346° 55' .1 2 3'4465 0'0098

sin Q +°' 2264 -°'2264 cos eP sin 8 =g Out -°'4255
cos Q -°'974° +°'974° cos eP cos 8 +°'199 2

sin (y - Q) +0'2°95 -0'2°95 cot 8 because -°'4682
8 295°' I

y-Q 12° 06' 347° 54' flo .1 2 > l~ 296°'4

Y 179° 01 ' 334° 49' ,\ + 1°'3

g = sin y +0'0172 -0'4255 sin eP +0·8828
." = cosy -0'9999 +°'9°5° eP + 62°'0

First and last contacts of penumbra and umbra

The first and last contacts of the penumbra correspond to the extreme times
for which there is a point on the rising and setting curve. Thus, at these points:

cos (y - M) = I and y = M

The exact time of contact is not known and has to be obtained by successive
approximation. At that time the cone of shadow is tangential to the Earth; thus:

x 2 + y2 = (/1 + p)2

where p is the geocentric radius of the Earth and where the deviation of the radius
from the normal at the point of tangency is neglected.

Let To be an approximate time. At the time of contact To + t:
(xo + x' t)2 + (Yo + y' t)2 = (/1 + p)2
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where the small increment in /1 is neglected. This may be formally solved for t
by using an auxiliary angle Ifl defined by:

• ./. Xoy' - x' Yo h 2 '2 '2sm '1'1 = were n1 = x + Y
n1 (/1 + p)

t _ /1 + P ./. xoX' + YoY'- --- cos '1'1 -
n1 ni

where cos Ifl is negative for first contact and positive for last contact.

In this case, although the latitude required to give P is not known it may be
noted that:

g2 + 7]2 = p2 e + 7]i = I

or g P sm Y g = sm y
,

= P cos Y = cos Y
,

7] 7]1
But:

tan y tan M = xjy
and tan y

,
PI tan y = XjYl where Yl = yjpl

Example 9.13. Time and position of first contact of the penumbra
196.1 February 15

x, y, II are interpolated from the Besselian elements in A.E., p. 296; PI (unpublished)
is taken from example 9+

(a) Time of contact
Initial time To = 6h 10m

Xo - 1'432262 PI 0'996796
Yo +0'546265 YlO +0'548021
m2 2'3497 80 m~ 2'3517 01
P 0'999591 p2 0'9991 83
x' +0'561 342 n2 0'3355 181
Y' +0'1428 75 n1 0'579239
It 0'5384 09
II + P 1'538000 n1 (11 + p) 0-890870
Xo x' + Yo Y' -0'725941 Xo Y' - x' Yo -0'5 II276

-(xo x' + Yo y')/ni +2' 1636 4 sin !f1 -0-573906
([1 + p) cos !f1/n1 -2'1744 0 cos !f1 -0.818921
t = sum -Oh_0107 6 T = To + t 6h °9m'354

(b) Point of contact
Time T = 6h 09m'354

x - 1'4383 06 PI 0'9967 96
Y +0'544727 Y1 +0-546478

g -0-934801 m2 2'3673 621
7)1 +0'355 1 73 1111 1'5386 23
cos 4>1 sin 6 =g -0-934801 sin d1 -0'2212 59
cos 4>1 cos 6 +0'0785 85 cos d1 +0'9752 16
cot 6 -0-084066

6 274
0

48"3
f.1. 2680 46"5
A -60 02'

sin 4>1 +0-346370 (I - e2)-1 1'0033 78
tan 4>1 +0-369226
tan 4> +0'370473 4> +200 20'
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Thus:

where

0'9967 96
+0'7392 15
+0'142992
+0'143452

0'57945 1

0'996796
+0'7428 76

-0' 220933
+0'9752 90

-0'5 130 9 1

-0.885478
-0'464682
7" 31m '53 1

0'3357 64 112

-0'2778 24 xo Y; - x' YtO

+0·82744 sin 0/2
-0.801 9 3 cos 0/2
+0"'0255 I T = To + t

(b) Point of contact
Time T = 7" 31m'531

-0.6694 23 PI
+0'7404 96 '71 = YI

-0·669423 sin dl

+0'1641 26 cos d)

-0'245 1 75
283 0 46'.6
2890 19"3
+5

0
33'

+0'7245 20
+1'05 1165
+1.0547 16

Time and position of first COlltact of the umbra
1961 February 15

(a) Time of contact
Initial time To = 7" 30m

-0.683748 PI
+0'7368 47 YIO
+0'561 4 14 Y'

y~

Xo x' + YlO y~

- (xo x' + YI 0 y;)/n~

cos 0/2/n2
t = sum

Xo

Yo
x'

~ = x
y

cos <PI sin e = ~

cos <PI cos e
cot e

e
fl­
,\

sin <PI
tan <PI
tan cP

m2 = x 2 + y2 mi = x 2 + yi
After a second approximation to the time, the geographic position of the point

may be obtained from:
g = xlml 7]1 = Yl/ml = Ylml PI ~l = 0

the flattening of the Earth being taken into account.

The first and last contacts of the umbra are the extreme points of the central
line; thus at these points:

g = x 7]1 = Yl ~1 = 0 x 2 + yi = 1

Hence, the correction t to an approximate time To is:

t 1 .f. X o x' + Yl 0 y~= - COS.,..2 - 2
n2 n2

with n~ = X'2 + y~2

. .f. X oy~ - x' YI0
sin""2 = n2

and where cos 0/2 is negative for first contact and positive for last contact. After
a second approximation to the times, the geographic position of the point may be
obtained from the final values of x and Yl'

These two points belong to the curve of maximum eclipse in the horizon.

Example 9.14.
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Extreme points of limits of umbra and penumbra

For each of the extreme points on the limits of the umbra the zenith distance
of the Sun is 90° and

Thus:
g = x - 12 sin Q

YJl = (y - 12 cos Q)/PI

e + YJ~ = I

tan Q = (b' - a~ sec Q)/c~

In the evaluation of tan Q, it is sufficient to use an approximate value Qo
defined by:

tan Qo = b'/c~ sec Qo = ± e/c~ e2 = b'2 + C~2

in calculating the term a~ sec Q.

The sign of cos Q is positive for the northern limit of a total eclipse and the
southern limit of an annular eclipse. It is negative for the southern limit of a
total eclipse and the northern limit of an annular eclipse.

If To is an approximate time, and the time of contact is To + t, then:

(go + f t)2 + (YJI0 + YJ~ t)2 = I

where, with sufficient accuracy:
b"f = x' + 12 ­
e

YJ~ = !.-- (y' + 12 c;)
PI e

The upper signs are used if cos Q is positive, the lower signs if cos Q is negative.
The quantities b", c;, are the variations of b', c~, and may be obtained from the
subtabulation of these functions. Then:

I go f + YJlO YJ~t = - cos fa
n2na a

with

n5 = f2 + YJ? sin fa = go YJ~ - f YJI0
na

where cos !{Ja is negative for the beginning and positive for the end.

After a second approximation to the times, the geographic positions of the
points may be obtained from the final values of gand YJl' These points belong to
the curve of maximum eclipse in the horizon.

The procedure for finding the extreme points on the limits of the penumbra
is similar to that described for the extreme points of limits of umbra in the case
of an annular eclipse. The quantities 11 and C1 must be substituted for 12and c2•

These points are also the extremities of the curve of maximum ~clipse at
sunrise and sunset. They need not be known accurately, and, therefore, the
flattening of the Earth may be neglected in their derivation.
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Example 9. IS· Time and position of extreme point on the southern limit of the umbra
1961 February 'IS (beginning)

(a) Time of contact
Initial time To = 7 h 30m

b' -0' 1035 64 b" -0'032496
c; +0'5 189 16 c; -0'0081 84
e 0'5 29 1 49 e2 0'279999

sec Qo - 1'01 97 b' -0'1035 64
a; +0'000753 -a; sec Qo +0'0007 68
c; +0'5189 16 b' - a; sec Qo -0'102796

tan Q -0'1980 98 12 -0'0073 55
sin Q +0'1943 22 cos Q -0'980937

Xo -0.683748 Yo +0'736847
-12 sin Q +0'001 4 29 -12 cos Q -0·0072 IS

go -0·6823 19 7]0 +0'7296 32
PI 0'9967 96 7]10 +0'73 1977

x' +0'561 4 14 y' +0'142992
+12 b"/e +0'00045 2 +12 c;/e +0'0001 13

f +0'561 866 7]' +0'143 105
7]~ +0'1435 65

n~ 0'3363 04 na 0'5799 17

go f + 7]10 7]~ -0'278286 go 7]~ - f 7]10 -0'5092 30

-(go f + 7]10 7]D/n~ +0·82748 sin if13 -0.8781 08
cos if13/n3 -0.825°5 cos if13 -°'4784 62

h h m

t = sum +0'00243 T = To + t 730 '146

(b) Position of extreme point

Time T = 7h 30m'146

sec Qo (from Q in (a)) - I '0194 b' -0'103643
a; +0'00075 1 -a; sec Qo +0'00°766,

+0'5 188 96 b' - a; secQo -0'1028 77c2

23-7

tan Q
sin Q

X

-12 sin Q
g
PI

cos ~1 sin 8 = g
cos ~1 cos 8

cot 8
8
fL
,\

sin ~1

tan ~1
tan ep

-0'198261
+0'1944 76

-0.6823 82

+0'°01430
-0.680952

0'996796

-0.680952
+0' 1617 99

-0'237607
2830 21"96
2880 58"5 1
+5

0
37'

+0'7142 29
+ 1.020455
+ 1'0239 02

Y
-12 cos Q

7]

7]1

sin d1

cos d1

-0'0073 55
-0'9809 07

+0'737 1 95
-0'0072 IS
+0'729980
+0'7323 26

-0'220938
+0'9752 89

1'003378
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Central eclipse at local apparent noon (or midnight)

The point of central eclipse at local apparent noon (or midnight) is the point
on the central line at the time of conjunction of the Sun and Moon in right ascension.
It is calculated as any other point on that curve, but care must be taken in the
calculation of its longitude whenever the central line passes through either polar
region. At the time of conjunction, x is equal to zero; therefore, the local hour
angle e is equal to 0

0 or 180
0 according as the term cos c/>l cos e is positive or

negative. In the polar regions, the eclipse may occur at lower transit of the Sun
(local apparent midnight), giving:

e = 180
0

If it is suspected that this might be the case, it is advisable to ascertain the sign
of cos c/>l cos e.

Example 9. I 6. Position at which central eclipse occurs at local apparent noon

Time of conjunction of Sun and Moon in right ascension 1961 February 15 d 08 11 43m,075

x = t = °
PI 0'9967 96
~~ °' 1646 31

cos cPI cos 8 >

tan 8
8
fJ-
A

Y
Yl = 1'71
~l

°
°0° 00'

307 0 13'
52° 47'

+0-9 IIO 57
+0'9 139 85

0-4°5747

(I - e2)-~

sin cPl
tan cPI
tan cP

cP

sin d l -0'220649
cos dl +0'9753 53

1'°°3378

+0.8019 3°
+1'34233
+ 1'34686
+ 53024'

d(' ')'2" 2dt X ox + Yo Y = x + y. = n1

the terms in x" and y" being neglected. At the time To + t of greatest eclipse:

xx' + yy' = 0

The time of greatest eclipse must be determined by successive approximations.
At an approximate time To:

d~ (m2
) = 2 (xox' + Yo y')

Greatest eclipse

In partial eclipses, the maximum magnitude is attained at the point on the
surface of the Earth which comes closest to the axis of shadow. The magnitude
varies very slowly in the vicinity of that point, and therefore its position need not
be known very accurately. It is sufficient to determine the point for which the
quantity m (or m2) is a minimum since, at that point, the distance Ll of the observer
from the axis of shadow is given by:

Ll=m-p

The eclipse will occur in the horizon, so that:

~ = 0

since m2 is a minimum. Thus:

t = X ox' + yoY'
ni
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With:

and
p sm y 7] = p cos y

it is found that:

(m sin M
or

Thus:

p sin y)2 + (m cos M - p cos y)2

cos (M - y)

(m _ p)2

M = y

and, as in the case of first and last contacts of penumbra:
p = mimI

Therefore, the position of the point may be found from:

g = xlml 7]1 = Yllml ~1 = 0

the flattening of the Earth being taken into account.

The magnitude of the greatest eclipse is given by:

II - L1
II + 12

If 12 is not available, it is sufficient to set:

II + 12 = 2 II - 0°5459*
where the numerical constant is a mean value of II - '2'

Example 9.17. Time and place of greatest eclipse and the magnitude of eclipse

196o September 20-2 I

(a) Time of greatest eclipse

Initial time To = September 20d 23 h oom

Xo +0°3717 58 x' +0°506625
Yo +10146801 Y' -00163767

Xo x' + YoY' +0000°534 n~ 0 02834 89
t -Oh oOOI 8 8 To + t 20d 22 h 59m0887

(b) Position of place of greatest eclipse and magnitude

September 20d 22" 59m·887

x +0°37°8 °4 PI 0°9966 34 cos 4>1 sin 8 +0°3°66 43
Y +101471 °9 Yl + 101509 83 cos 4>1 cos 8 -°'°13472

m2 1°4533 55 m~ 1°462257 cot 8 -°'°43934
m 102055 52 ml 1-209238 8 920 30'°9
P 0-996952 II 0-5557 fL 166040"3

Ll =m -P 0 02086 II - Ll 0°347 1 .:\ +74009'
2 l1 - 0°5459 0°5655

Mag. 0061 4 sin 4>1 +0°95 17 30
tan 4>1 +3° 10074

g +0°3066 43 sin d1 +000141 54 tan 4> +3°1112 I

7]1 +0'95 18 25 cos d1 +0°9999 00 4> +720
II'

The data are taken from AoEo, p. 3°4, or from the unpublished elements.

*0'5464 adopted from 1963 onwards.
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Note on practical computation

Many of the foregoing curves and points involve the solution of quadratic
and transcendental equations; formulae have been given by which solutions can
be obtained by direct calculation or by iteration, generally using auxiliary angles.
It is often easier, and generally less liable to error, to tabulate a " discriminant ",
which vanishes at the point required, for a few values of the independent variable;
the required value of the independent variable is then obtained by the standard
technique of inverse interpolation. For example, the times of first and last contacts
of the penumbra require the solution of the equation:

D == x 2 + y2 - (/1 + p)2 = 0

All that is necessary is to tabulate three, or preferably four, values of D at equal
intervals of time, and then use inverse interpolation to give the required times;
second differences are almost constant. No theoretical approximations are
necessary and the variation of II can easily be taken into account. Such solutions
are easier to perform than to describe, and no further details are given.

Example 9.18. Time of first contact of the penumbra (see example 9.13)

The time of contact occurs when
D == x 2 + y2 - ([1 + p)2 = 0

D may be calculated directly but, if terms in (I - p)2 are neglected, it may be replaced by
the simpler:

D' == x 2 + y2 - (ll + 1)2 + Ay 2 = 0

where A = (P12 1)/([1 + I) should strictly be evaluated for the time of contact, but is
essentially a constant. To the same precision, at the time of contact:

m 1 = I + II + { ld2 ([1 + I) } A y 2

for use in the calculation of the position of the point of contact.
Six decimals are retained in the example, though this precision is not necessary.

x, y, II are taken from A.E., p. 296.

1961 February 15

PI 0'9967 96 P12
- I 0'006439 A 0'0041 86

All
0'000732

2 (I + ll)

E.T. x y l1 + I D' differences

6h oom -1'5 25818 +0'5 22454 1'5383 91 +0'2355 75
-2512 48

IO 1'432262 0'5462 65 1'5384 09 -0'01 56 73 + 186 45
-2326 03

20 1'3387 04 0'5700 79 1'5384 26 -0'248276 + 186 48
- 21 3955

3° 1'245 1 44 0'593 8 96 1'538442 -0'46223 1

Inverse interpolation to D' = 0 gives the time of first contact as:

6h 09m'3538 (B2 = -0'01511)

Then m1 = 1'538408 + 0·0002 17 = 1'538625 and the calculation proceeds as In

example 9.13.
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D. SOLAR ECLIPSES-LOCAL CIRCUMSTANCES

Introduction

In contrast with previous sub-sections the numerical examples of the calcula­
tion of the local circumstances of eclipses are collected together at the end of this
sub-section. Examples are given for a partial solar eclipse (example 9.19), a total
solar eclipse (example 9.20), and an annular solar eclipse (example 9.22). Not all
stages are illustrated for all eclipses, but at least one illustration is given fOf every
stage. In addition, example 9.21 illustrates the application of the alternative
direct method for a total solar eclipse.

Use of eclipse maps

Approximate local circumstances for the partial phase of a solar eclipse may
be obtained without calculation from the corresponding eclipse map given in the
Ephemeris. On these maps the curves drawn in long dashes indicate the times
midway between first and last contacts of the penumbra; these times of the middle
of the eclipse should not be confused with the times of maximum eclipse, from
which they may differ by several minutes. The curves drawn in short dashes
give the semi-duration of the partial phase. The (ephemeris) times of first and
last contacts are derived from the time of the middle of the eclipse by respectively
subtracting and adding the semi-duration. The curves are extended across the
rising and setting limits of the eclipse, although part of the phenomenon occurs
below the horizon for observers in those regions.

Coordinates of the observer

Let ejJ be the geodetic latitude, A the longitude of the site, and H its elevation
above the spheroid. The corresponding geocentric coordinates p sin eP', p cos ejJ'
are given by:

p sin ejJ' = (S + H) sin ejJ p cos ejJ' = (C + H) cos ejJ
in which H is in units of the equatorial radius of the Earth, obtained by multiplying *
the height in metres by

0'1567794 x 10-6 (or the height in feet by 0·0477 865 x 10-6), and
C = (I - e2 sin2ejJ) -~ S = (I - e2) C

where e is the ellipticity of the Earth's spheroid (e 2 = 0'00672267).*

The values of C and S may be obtained from table 2.8.*
The longitude Amust be converted to the ephemeris longitude A* by increasing

it by 1'0027 38 L1 T, the sidereal equivalent of L1 T.

Then the coordinates g, TJ, { of the observer and their hourly variations
f, TJ', r are found from:

g = p cos ejJ' sin B f p': p cos ejJ' cos B
TJ = p sin ejJ' cos d - p cos ejJ' sin d cos B TJ' JL' gsin d - { d'
{ = p sin ejJ' sin d + P cos ejJ' cos d cos B {' - JL' gcos d + TJ d'

*For 1968 onwards: H = height in metres x 0'1567850 x 10- 6

= height in feet x 0·0477 881 x 10- 6

e2 = 0'0066 9454. Sand C may be obtained from A.E. Table VII.
See note on page 523.
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B = J.L - A - 1.002738 LIT
In most cases r is not needed. If predictions to the nearest second are acceptable.
the terms 'd' and TJd' may be omitted. The Besselian elements, wherever they
are used. must always be interpolated to the time assumed in the calculation.

-g'
- r/
+ V'2

v' = y'
n2 = U'2

u' = x'

v =Y -TJ

m2 = u2 + v 2

Time of greatest phase

The approximate time of the middle of the eclipse obtained from the eclipse
map differs only slightly from the time of maximum eclipse and may be used as a
first approximation to the time of greatest phase. For economy of notation. the
following symbols are introduced:

u = x - g

where m and n are positive quantities.

Let To be an assumed time near the time T of greatest phase, and let
T = To + t

The greatest phase occurs when (L1 - m)/(L1 + L 2) is a maximum; since the
variation of L with time is extremely small it suffices to determine when m, or m2•

is a minimum, that is, when:
?lU' + V'll' = 0

If uo• V o are the values of u, V at the time To, the condition of greatest phase may
be expressed by:

(uo + tu') u' + (vo + tv') v' = 0

or
t = - D/n2

with
D = Uo u' + V o v'

The value of t thus obtained is expressed in decimals of an hour because
hourly variations have been used. Here and elsewhere, the variations of u' and v'
are disregarded, because they are insignificant during the time interval t.

Beginning and end of penumbral phase

The approximate times To of beginning and end are obtained from the
eclipse maps. A separate calculation must be performed for each -of the two
phenomena.

At the time T = To + t of beginning or end:
u2 + v2 = Li

or
(uo + tu')2 + (vo + tv')2 = Li

omitting the slight variation in L 1•

Thus the value of t is obtained by wIving the equation:
n2 t2 + 2Dt + (m~ - Li) = 0
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and setting:

it is found that:
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LI = (uo v' - u' vo)/n
sin 11 = LI/L I

t = L 1 cos if; D
n n2
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It may be noted that the term - D/n2 is the correction that would be applied to
To to give the time of greatest phase, if To were sufficiently close to this phase;
the term L 1 cos if;/n thus represents approximately the semi-duration of the partial
phase which must be subtracted to obtain the time of beginning, or added to obtain
the time of end. In other words, cos if; must be taken as negative for the beginning
and positive for the end, since L 1 is always positive.

In general, the times of penumbral contacts need not be known with great
accuracy; thus the term n2 t2 in the equation for t may, if desired, be omitted,
thereby simplifying the latter to:

t = (L~ - m~)/2D

Beginning and end of umbral phase

Because the central phase lasts only a few minutes, the times of umbral
contacts may be calculated simultaneously with that of the greatest phase, using
as To the approximate time of the middle of the eclipse obtained from the map.

At the time T = To + t of umbral contacts:
u2 + v 2 = L~

thus, the correction t to the approximate time To to obtain T is given by:

t = L2 cos if; _ D
n n2

This formula is identical to that used for the penumbral contacts, except that
L2 is used instead of L 1• Because L 2 is negative for total eclipses and positive for
annular eclipses, cos if; must be taken as positive for the beginning of the total
phase and the end of the annular phase, and as negative for the end of the total
phase and the beginning of the annular phase.

The semi-duration of the umbral phase is given by ± (L2 cos if;)/n.

For greater accuracy, the times resulting from the calculation outlined above
should be taken in place of the original approximate times, and a second approx­
imation performed.

The adopted value of LI T must be subtracted from the final times to obtain
the universal times of contacts and greatest phase.

Position angles

At the times of contact:
u = L sin Q v = L cos Q tan Q = u/v



tan N = u'/v'

uv' - u'v
uu' + vv'

v' = n cos N

and

244 EXPLANATORY SUPPLEMENT

where the appropriate value of L is used. The angle Q is the position angle of the
point of contact, measured eastwards from the north point of the solar limb. The
quadrant of Q is determined by noting that sin Q has the sign of u, except for the
contacts of the total phase for which sin Q has the opposite sign to u since L 2 is
negative for total eclipses.

If only a single approximation to ~he times has been made it is more accurate
to calculate Q by another method derived as follows.

At the time of contact, t is zero, giving:
cos If; = D/nL

nLl uv' - u'v
tan If; - D D

Let the angle N be defined by:
u' = n sin N

Then:

(N .f.) _ u' (uu' + vv') + v' (uv' - u'v) _ u
tan + 't' - '(' ') '(' , ) - -v uu + vv - u uv - uv v

so that Q = N + If;, where the value of If; can be taken as that at the initial time.

The position angle V from the vertex is obtained by subtracting from Q the
parallactic angle C, obtained with sufficient accuracy from:

tan C = g/TJ
sin C having the same algebraic sign as g.

Alternative method

Times and position angles of contacts may be obtained by direct numerical
solution of the equation:

u2 + v 2 - L2 = 0

For four, or more, times at equal intervals surrounding the phase required, a small
table is made of the quantities:

u, v, L, u 2 + v2 - L2

The time T of contact is then found, by the standard techniques of inverse inter­
polation, to correspond to the zero of u2 + v 2 - L2. The position angle Q is
calculated from sin Q = u/L or cos Q = v/L according to whether u or v is the
smaller; u, or v, and L are interpolated to time T.

Similarly the time of greatest phase may be found numerically as_the instant
when the derivative of m2 = (u 2 + v 2) is zero; and, if the highest precision is
required, the time of maximum of (L1 - m)J(Ll + L 2) may be determined by
similar methods.

The advantages of this method are that: there are no auxiliary formulae and
angles; all numerical work is capable of simple checking; no theoretical approxi­
mations are necessary (there is no need to assume that u', v' and L are constant);
and there is a direct relationship between the precision of the results and that of
the data. There may be more calculation, but it is of a routine nature; quite
large intervals can efficiently be used.
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Magnitude

The magnitude of the eclipse is by definition the fraction of the solar diameter
covered by the Moon at the time of greatest phase, expressed in units of the solar
diameter. In figure 9.4 SS' and MM' represent the disks of the Sun and Moon,
and PP' represents the plane passing through an observer B and parallel to the
fundamental plane. The point 0 is the intersection of the axis of shadow with
the plane PP'. The exterior tangents SM, S'M' to the Sun and Moon outline the
cone of umbra and intersect PP' respectively in A' and A, while the interior tangents
8'M, SM' outline the cone of penumbra and intersect PP' in P and P'. Therefore:

AO = L 2 PO = L 1

p

Figure 9.4. Magnitude of an eclipse

An observer B located within the penumbra sees the portion S'B' of the solar
diameter obscured by the Moon. Thus the magnitude M 1 of the partial eclipse
will be given by:

M 1 = S'B'/SS'
From the figure it may be noted that:

S'B'/SS' = PB/PA'
PB = PO. - OB = L 1 - m
PA' = PO + OA' = L 1 + L 2

Thus:
M 1 = (L1 - m)/(L1 + L 2)

An observer E located within the umbra sees the entire disk of the Moon
projected in DD' on the disk of the Sun. Therefore the magnitude M 2 of the
central phase is given by:

M 2 = DD'/SS'
It is seen· from the figure that:

DD' = S'D - S'D'
S'D/SS' = PE/PA'
S'D'/SS' = AE/PA'

Thus:
DD'/SS' = (PE - AE)/PA' = PA/PA'
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and
from which
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PA = PO - OA = L 1 - L 2

M 2 = (L1 - L 2)/(L1 + L 2)

Although the figure illustrates the case of an annular eclipse, it may be
verified that identical results are obtained for a total eclipse, provided it is noted
that in the latter case:

c

Degree of obscurationFigure 9.5.

Degree of obscuration

In the reduction of certain types of eclipse
observations, it is necessary to evaluate the
fraction of the surface of the solar disk obscured
by the Moon. In figure 9.5 A and B represent
the centres of the Moon and Sun, and CC' the
chord common to the circumferences of the
two disks. The line AB intersects in D, E, F,
respectively the circumference of the Sun, the
chord CC', and the circumference of the
Moon. If the semi-diameter of the Sun is the unit of measurement:

BC = I AC = s = (L1 - L 2)/(L1 + L 2)

DF = 2M1 = 2 (L1 - m)/(L1 + L 2)

AB = I + s - 2M1 = 2m/(L1 + L 2)

The area S of the solar disk covered by the Moon is given by:
S = segment CFC' + segment CDC'

with
segment CFC' = 2 (sector ACF - triangle ACE)
segment CDC' = 2 (sector BCD - triangle BCE)

Thus:
S=~A+~-~~A~A+~B~~

in which the angles A and B are expressed in radians, or
S = S2 A + B - s sin C

because
CE = s sin A = sin B

Since the radius of the Sun has been taken as unity, the surface of the solar
disk is equal to 7T, and the ratio S' of the obscured portion of the disk to the whole
disk is equal to S/7T.

The angles A, B, C in the triangle ABC may be evaluated from the conven­
tional relations:

S2 = I + (I + s - 2M1)2 - 2 (I + s - 2M1) cos B
(I + s - 2M1)2 = I + S2 - 2S cos C
Thus:

cos C = (Li + L~ - 2m2)/(Li - L~)

cos B = (L1 L 2 + m2)/m(L1 + L 2)

A = 7T - (B + C)
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S' = (S2 A + B - s sin C)/7r

During the annular phase, S' is equal to S2, while it is equal to unity in the
case of the total phase.

Differential corrections

The times of the phases at any point within a few miles of a point for which
a precise calculation has been made may be obtained by computing differential
corrections in which most of the necessary numerical quantities are already available
from the original calculations.

Let the symbol S be such that:
of of of

Sf = oA SA + ocp Scp + oH SH

where SA, Scp, SH represent small changes in longitude, latitude, and elevation,
respectively, and let it be assumed that SA and Scp are expressed in radians and SH
in units of the equatorial radius ofthe Earth. Adjustments for theirexpression'in
other units are made in the final formulae.

All second-order derivatives are treated as negligible. The Besselian elements
are independent of the position of the observer. The slight change in L resulting
from a displacement of the observer will be neglected. The remaining quantities
entering into the calculation of local circumstances are u, v, and B, for which:

Su = -sg Sv = -ST] M = -SA .
It may be verified (from the definitions of C and S given in sub-section B) that:

SC = C3 e2sin cp cos cp Scp
SS = SC2 e2sin cp cos cp Scp

from which

with
Al = -P cos cp' cos B
A 2 = _(SC2 + H) sin cp sin ()
A 3 = cos cp sin ()

and

with
B 1 = -g sin d
B 2 = (SC2 + H) (cos cp cos d + sin cp sin d cos ())
B3 = sin cp cos d - cos cp sin d cos ()

In most cases it will be accurate enough to set:
A 2 = - C2 P sin cp' sin ()
A 3 = g
B 2 = CS P cos cp' cos d + C2 p sin cp' sin d cos ()
Ba = TJ

The correction to an assumed time of exterior contact may be written with
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sufficient accuracy for the present purpose in the form:
t = (Li - m2)/2D

Then:
St = (u sg + v SYj)/D

in which the small contribution of SD has been neglected.

Similarly the correction to an assumed time of greatest phase at '\, ep, H is
given by:

thus
St m = (u' sg + v' SYj)/n2

in which the small contribution of Sn2 has been neglected.

In order to calculate the value of the semi-duration (0") of the umbral phase
at a point ,\ + 8,\, ep + Sep, R + SR at which the eclipse is central, a correction
SLl must be applied to the value of Ll in the final approximation to the time of
greatest phase at '\, ep, R. Since:

Ll = (uv' - u'v)/n
its differential correction has the form:

SLl = (u'SYj - v'Sg)fn
in which the contribution of Sn has been neglected. The new value of 0" may then
be calculated from:

with
sin,p = (Ll + SLl)/L2

in which the slight change in L 2 has been neglected.

Although "a direct correction to sin ,p could be evaluated in a similar manner,
the procedure outlined above is preferable, because it is valid even in cases where
the eclipse is not central at '\, ep, R.

In practice, S,\ and Sep would be expressed in minutes of arc, and SR in metres
(or feet). By taking into account the expressions for sg and SYj, the corrections
St, St m, and SLl may be written:

St = p 8,\ + q Sep + r SR
St m = Pm 8,\ + q m Sep + r m SR
SLl = p, S,\ + q, Sep + r, SR

where S'\, Sep are in minutes of arc and SR is in metres, and:
P = sin I' (uA I + vBI)/D
q = sin I' (uA 2 + vB2)/D
r = (uAa + vBa)/Da
Pm = sin I' (u'A I + v'BI )/n2

qm = sin I' (u'A 2 + v'B2)/n2

r m = (u'Aa + v'Ba)/n2 a
p, = sin I' (u'BI - v'AI)/n
q, = sin I' (u'B2 - v'A2)/n
r, = (u'Ba - v'Aa)/na

in which a is the equatorial radius of the Earth in metres.
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The quantities p, q, r, Pm' q m' r m and the resulting value of a are naturally
expressed in decimals of an hour; they may be expressed in seconds of time by
multiplying by 3600.

As before, the value of.d T must be subtracted from the final times so obtained
in order to obtain the universal times.

The position angle Q for the penumbral contacts need not be known with
great accuracy, and it will not be necessary to recompute it. Its value for the
umbral contacts may be corrected by substituting the new value of if; in the original
computation. The parallactic angle C at the time of umbraI contacts at A + 0.1,
cp + ocp, H + oH, may be obtained with sufficient accuracy from:

tan C = (g =+= fa) / (TJ =+= 7J'a)
in which upper signs are for second contact, lower signs for third contact; g, f, TJ, TJ'
are for the time of greatest phase at A, cp, H. In this equation a is to be expressed in
hours; and sin C has the same algebraic sign as (g =+= fa).

Final corrections for .d T

In general, the finally adopted value of .d T, the difference between E.T. and
V.T., will differ somewhat from the value used in the predictions. It will not be
necessary, however, to repeat the whole calculation for A, cp, H. If the final value
is equal to .d T + 0T, it is sufficient to set:

0.1 = 1'0027 38 oT ocp = ° oH = °
and to compute ot, ot m, and a as outlined above. It may be noted that in this case,
only the quantities AI, BI , P, Pm' and P. will be required. The value of.dT + oT
must be subtracted from the ephemeris times in order to obtain the universal
times; the corrections to the previous times, expressed in V.T., will thus be
ot - ST and ot m - oT.

Practical calculation

In view of the importance of accuracy in eclipse calculations for the precise
site of the observer, it is desirable that direct calculations of the circumstances be
made for at least one other site and that these calculations be used to check the
coefficients of the differential corrections. These coefficients, which are particularly
liable to accidental errors of calculation, may thereafter be used with confidence
for the final corrections to be made in the field.

Local circumstances in the ionosphere

The preceding treatment of the calculation of local circumstances takes full
account of the elevation of the observer above the spheroid. This procedure may
be followed without modification for the prediction of local circumstances in the
ionosphere. For convenience, the'values of H required in the calculation of
p sin cp' and p cos cp' for various heights in the ionosphere are listed below.*

Elevation H Elevation H
100 kIn °'°15678 400 kIn °'°62712
200 °'°31356 500 °'°7839°
300 0'047034 600 0'094068

*The change in the adopted radius may be ignored.
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Example 9.19. Local circumstances of the partial solar eclipse
of 1960 September 20-21, at Nome, Alaska

Station data

cos q, +0'4305 37
C 1'002749
H 0·000001

p cos q,' +0'431721

sin q, +0'9025 73
S 0'996008

Altitude 4 m

o , •

+ 642954

Longitude, A + 165 23 36
1,002738LlT(LlT = 368) + 901
Ephemeris longitude, A* + 165 3237 A == p sin q,' +0.898971

Latitude, q,

Times estimated from eclipse map (A.E., p. 305)

E.T. of middle of eclipse 22h 27m E.T. of beginning
Semi-duration 58m E.T. of end

First approximation to times of contact

To simplify the notation the suffix 0, used to denote quantities calculated for an
initial time, has been omitted.

Starting time, T
Beginning

21 h 29m

JL (elements)
8 = JL - A*

sin 8
cos 8

p cos q,' cos 8 = B

sin d (elements)
cos d (elements)

x (elements)
g = p cos q,' sin 8
u=x-g
y (elements)
71 = A cos d - B sin d
v=Y-7J

{ = A sin d + B cos d
tanfl (elements)
11 (elements)
L 1 = 11 - {tan fl

JL' (elements)
d' (elements)
g sin d

x' (elements)
g' = Bp.'
u' = ~' - g'
y' (elements)
71' = p.'g sin d - {d'
v' = y' - 71'

n2 = U'2 + v'z
n

o I •

143 56 33
338 23 56

-0'3681 43
+0'929769

+0'401 4 01

+0'014524
+0'999895

-0'3966 13
-0'158935
-0'2376 78

+1'3950 35
+0.8930 47
+0'5019 88

0'4144 16
°'0046 58
0'555800
0'5538 70

0'261885
-0'000276
-0'0023°8

+0'506591
+0'1051 21
+0'401470

-0' 163570
-0'000491
-0' 163079

0'1877 73
°'4333 28

172 57 07
7 24 30

+0'128940
+0'991652

+0'4281 17

+0'01 3990
+0'9999 02

+0'582850
+0'055666
+0'5271 84

+1'078553
+0.8928 94
+°' 1856 59

0'4406 52
0'0046 58

°'555608
o· 5535 55

0'261885
-0'000276
+0'000779

+0'5066 18
+0'1121 17
+0'3945 01

-0' 1638 21
+0'000326
-0' 164 1 47

0'182575
0'427288

o I •

158 26 50
352 54 13

-0'1235 39
+0'992340

+0"4284 14

+°'°142 57
+0'9998 99

+0'093 1 13
-0'0533 34
+0'146447

+ 1'2368 54
+0.892772
+0'344082

°'4411 87
0'0046 58
0'5557 14
0'5536 59

0'2618 85
-0'000276
-0'00°7 60

+0'506628
+0'1121 95
+0'3944 33

-0' 1636 96
-0'000077
-0' 16361 9

0'182349
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Beginning End Maximum
D = uu' + vv' -0'177284 +0'177499 +0'001 4 65
LI = (uv' - u'v)/n -0'3756 35 -0'3739 35

sin if! = LI/L1 -0.678201 -0·6755 16
cos if! (from sin if!) -0'734876 +0'7373 45

h h h

- D/n2 +0'9441 40 -0'9721 98 -0'008034
L 1 cos if!/n -0'939302 +0'9552 36
sum correction, t +0'0048 38 -0'0169 62 -0'008034

= in minutes +om'290 -lm·OI8 -Om'482

Corrected E.T. 20 d 21 h 29m'290 23 h 23m'982 22h 26m'5 18

Second approximation to times of contact

The details of the second approximation are omitted as they are identical in principle
with those of the first approximation and are also given in A.E., 1960, page 515. The
effect of the second approximation is to give corrections t to the times of the first approxima­
tion as follows:

Phase Correction, t Corrected E.T. D.T. (LIT = 368)

h m h h m

Beginning +0'000001 0·000 21 29'290 21 28.690
End +0'000005 0·000 23 23'982 23 23'382
;vraximum -0'000033 -0'002 22 26'5 16 22 25'9 16

Position angles and magnitude

The values of u, v, g, TJ are normally taken unchanged from the calculations for the
second approximation; they could be interpolated from those of the first approximation
using u', v', g', 7]'.

Beginning End Maximum

d h m h m d h m

E.T. 20 21 29'290 23 23'982 E.T. 20 22 26'5 16

u -0'2357 +0'5205 u +0'1433
v +0'50 12 +0' 1884 v +0'3454
tan Q u/v or cot Q -0'4703 +0'3620

m2 It" + v 2 0'1398
g -0'1584 +0'0538 m 0'3739
TJ +0.8930 +0·8929 L 1 0'5537
tan C = g/TJ or cot C -0'1774 +c·0603 L 1 -m 0'1798

0

Q 334. 8 70'1 2L1 - 0'5459 0'561 5
C 349'9 3'4 L -m
V Q-C 66'7

Mag. = I 0'320
344'9 2L1 -0'5459

Differential corrections

Illustrations of the calculation of the coefficients for the application of differential
corrections to the times of contact are given in example 9.20, for the second approximation;
these calculations are identical in principle for a partial eclipse, and are here omitted. They
are given in A.E., 1960, page 516.
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Example 9-20- Local circumstances of the total solar eclipse
of 1961 February 15 at Simeis, Crimea

Station data

Latitude, if> +44 24 12 sin if> +0-699705 cos if> +0-7 14432
S 0'9949 16 C 1'0016 50

Longitude, A -335948 Altitude 346 m H 0-000054
1-0027 38 LJ T (LJ T -= 36') + 901
Ephemeris longitude, A* -3350 47 -P sin if>' = A +0.6961 85 P cos if>' +0'7 156 49

Times estimated from eclipse map (A_E_, 1961, p. 298)

E.T_ of middle of eclipse 8h 10m E_T. of beginning
Semi-duration n m E.T_ of end

First approximation to times of contact.
Details of the first approximation are not given as they are identical in principle with

those of the first approximation for a partial eclipse, illustrated in example 9- 19, and follow
very closely those for the second approximation below_The effect of the first approximation
is to give corrections to the starting times as follows:

Phase Correction, t Corrected E.T_

h h m
Beginning -0-0161 85 -0-971 6 52-029
End -0'012873 -0-772 9 26'228
Maximum -0-050475 -3-028 8 06-972

It will be seen that there is a large correction to the time of maximum eclipse, due
partly to the error of estimation in the time of middle of the eclipse but more largely to the
difference between the time of maximum eclipse and that of middle of the eclipse_ A
much closer estimate of the time of maximum eclipse for total and annular eclipses can
be obtained by plotting the path of the total or annular phase in the neighbourhood of
the station.

Second appro:lCirnation to times of contact
Beginning End

6h 52m-029 9h 26m'228

2790 26' 41" 3170 59' 57"
313 17 28 35 1 50 44

-0'727879 -0- 14 18 42
+0-685705 +0'989889

+0-4907 24 +0-7084 13

Starting time, T

iL (elements)
8 = iL - A*

sin 8
cos 8

p cos if>' cos 8 B

sin d (elements)
cos d (elements)

x (elements)
g = p cos if>' sin 8
u=x-g

y (elements)
TJ = A cos d - B sin d
v=Y-TJ

{ = A sin d + B cos d
tan f (elements)
l (elements)
L = l - {tanf

-0-2203 81
+0-9754 14

- 1-0390 33
-0'5209 06
-0-5181 27

+0-64637 1

+0-7872 15
-0- 140844

0-325 2 33
0-004733
0-538470
0-536937

-0-219771
+0'9755 52

+0-403745
-0- 101 5 09
+0-505254

+1.01 3976
+0- 8348 53
+0- 179 1 23

0-5380 92
0-004733
0-5386 14
0'536067

Maximum

8h 06m -972

2980 10' 58"
332 01 45

-0'4690 22
+0-8831 86

+0- 6320 51

-0'220085
+0'9754 81

-0-337804
-0-3356 55
-0,0021 49

+0·824975
+0-8182 20
+0'006755

0-4633 34
0-0047 09

-0-0073 17
-0-009499
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Beginning End Maximum
fA: (elements) 0'2618 33 0'2618 33 0'2618 33
d' (elements) +0'0002 43 +0'000243 +0'000243
t sin d +0'114798 +0'0223 09 +0-0738 73

x' (elements) +0'561 392 +0'561 340 +0-5614 10
t = BfA: +0' 1284 88 +0'185486 +0' 165492
u' = x' - ~' +0'43 29 04 +0'3758 54 +0-3959 18

y' (elements) +0'142940 +0'1431 18 +0'1430 39
'1/' = J-L't sin d ~d' +0'029979 +0'0057 10 +0'0192 29
v' = y' - '1/' +0'112961 +0- 1374 08 +0'1238 10

n2 = U'2 + v'z 0-2001 66 0' 1601 47 0- 172080
n 0'4473 99 0-4001 84 0'414825

D = uu' + vv' -0'2402 09 +0- 21 45 15 -0'000014
Ll = (uv' - u'v)/n +0-0054 63 +0'0052 53 -0'007087

sin t/J = Ll/L +0'0101 74 +0'009799 +0'7461
cos t/J (from sin t/J) -0'999948 +0'9999 52 +0.6658 -0.6658

h h h h

- D/n2 + 1'2000.49 -1'339488 +0'000081 +0'000081
L cos t/J/n - 1-200068 +1'3394 86 -0'01 5245 +0'0152 45
Sum = correction, t -0-000019 -0-000002 -0-01 5164 +0'0153 26

= in minutes -Om-OOI om-OOO -Om'910 +om'92O

Corrected E_T_ 6h 52m-028 9h 26m-228 8 h 06m·062 8h 07m-892

Magnitude
·At E_T_ 8h 06m-977 on February 15

L 1 (by calculation) = +0-5364 L 2 =
The magnitude (L1 - L 2)/(L1 + L 2) = 0- 5459/0:5269

Position angles

The example below illustrates the procedure of calculating 0 as N + t/J. For the
beginning and end of the total phase it is necessary to interpolate t, '1/ to the times of contact
in order to calculate C_

Partial Phase Total Phase
Beginning End Beginning End

E.T. February 15 6h 52m,028 9h 26m'228 8h 06m-062 8 h °7m·892

u' +0'4329 +0-3759 +0-3959 +0'3959
v' +0'II30 +0'1374 +0-1238 +0-1238

cot N = v'/u' +0'2610 +0-3655 +0'3 127 +0'3 127
0 0 0

N 75'4 69-9 72·6 72·6
.p (from sin t/J) 179'4 0-6 48 -3 13 1-7
O=N+t/J 254-8 70-5 120-9 204'3

~ -0-5209 -0- 101 5 -0-3382 -0'3332
TJ +0-7872 +0-8349 +0.81 79 +0-8185

tan C = ~/'1/ -0-661 7 -0-1216 -0-4135 -0-407 1
0 0

C 326'5 353- 1 337'5 337-8
V =0 -C 288'3 77'4 143'4 226'5
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Example 9.20. Local circumstances of total solar eclipse (continued)

The values of g, "I for the total phase are obtained from those in the calculation for the
maximum by adding ft, TJ'l, thus:

g -0'3357 +0'1655 (-011'0152 or +011'0153)
"I = +0·8182 +0'0192 (-011'0152 or +011'0153)

Differential corrections

The values of the quantities entering ,into the calculation of the differential corrections
are all available from earlier calculations.

+0'327
+0'560

-0'335
+0·822

-0·101
+0.838

+0'508
+0'590

-0'520
+0'791

0'0002909 I/a sin I' = 0'0005 39

Beginning End Maximum

+0'998 +0'998 +0'998
-0'509 -0'099 -0'328

+0'480 +0·693 +0·618
+0'490 +0'707 +0.630

+0'59 1 +0'545 +0'561

-0'491 -0'708 -0.632
-0'115 -0'022 -0'074

sin I' =

SC2 + H
sin 8 sin ep

cos 8 sin ep
cos 8 cos ep

M = cos d cos ep + sin d cos 8 sin ep

A l -P cos ep' cos 8
B l = -g sin d

A 2 = -(SC2 + H) sin 8 sin ep
B 2 = (SC2 + H) M

As = cos ep sin 8
B s cos d sin ep - sin d cos 8 cos ep

Maximum
Beginning End Time

u -0'5 18 +0'505 u
,

+0'396 u
,

v -0'141 +0'179 v' +0. 124 v
,

3600 sin I'/D -4'36 +4·88 3600 sin 1'/n2 6'09 sin I'/n
3600/aD -0'00235 +0'00263 3600/an2 0'00328 I Ian

uA l +0'254 -0'358 u'Al -0'250 u'B l

VBl +0'016 -0'004 v'B l -0'009 - v'A l

sum +0'270 -0'362 sum -0'259 sum
p -ls'18 - 18 '77 Pm - IS '58 P.

uA2 -0'263 +0'050 u'A2 +0'129 u'B2
vB2 -0'083 +0'097 v'B2 +0'069 - v'A2

sum -0'346 +0'147 sum +0'198 sum
q + 18 •5 I +0"'72 qm + 18 '21 qs

uAs +0'269 -0'05 1 u'As -0'133 u' B s
vBs -0'112 +0'150 v'Bs +0'102 - v'As
sum +0'157 +0·099 sum -0'03 1 sum

r -08 '00037 +08 '00026 r m -Os'OOOIO rs

Thus on 1961 February IS, near Simeis:

Li
+0'396
+0' 124

701 x 10-8

0'378 x 10-1

-0'029
+0'078
+0'049
+ 34'3 x 10-8

+0'222
-0'041
+0'181
+ 126'9 X 10-8

+0'326
+0'042
+0'368
+0'139 x 10-6

h m s s s s

U.T.offirstcontact 65125'7 1'180'\ + 1'510ep -0'000370H
U.T.ofmaximumeclipse 80622·6 1'580'\ + 1'210ep -o,ooolooH
U.T. of last contact 925 37'7 1'77 0'\ + 0'720ep +0'0002 6 oH
L1,atmaximumeclipse -0'007087 + (34'30'\ +126'90ep +0'1390H) x 10-6

where 0'\, oep are measured in minutes of arc and oH in metres from the adopted position
of the station.
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Example 9.21. The alternative direct method for the times of second and third contact
for the total solar eclipse of 1961 February 15 at Simeis, Crimea

The station data are as in example 9.20; x, y, fL, sin d, cos d, 12 , tanf2 are copied, with
simple interpolation, from the elements.

E.T. 8h oom 8h 05m 8h 10m 8h 15m

+'474450

296 26 22~3 297 4; 22~8 298 56 23~4 300 II 24'0
3301709'3 33 1 3209.8 33247 10'4 33402 11'0

- '4956 72 - '4766 06 - '4573 12 - '4378 00
+ .8685 10 + .8791 17 + ·8893 06 + ·899072

+:621548 +.6291 39 +.63643 1 +.6434 20
- '2201 12 - '220092 - '220073 - '220053
+ '9754 75 + '9754 79 + '9754 83 + '9754 87

- '4030 40 - '3562 56 - '3094 72 - '2626 88
-'354727 -'341083 -'3272 75 -'3133 II

-.0483 13 -'015173 +'017803 +'050623
+331 40 +32976 +32820

- I 64 - I 56

+ .8083 54 + ·8202 73 + ·8321 93 + .8441 14
+ .8159 21 + .8175 82 + .8191 78 + ·820706
- '0075 67 + '002691 + '0130 15 + '0234 08

+10258 + 10324 + 10393
+66 +69

+ '460487 + '4676 16~
tanf2
12

L 2 = 12 - ~ tan f2

u2 + v 2
- L~

fL
() = fL - ,\*

sin ()
cos ()

p cos '/>' cos ()
sin d
cos d

+'453066
+,004709
- '0073 23 - '0073 19 - '0073 14 - '0073 10
- ,0094 56 - '0094 87 - ,0095 16 - '0095 44

+ '0023 0199 + '0001 4746 + '0003 9578 + '0030 1953
-21 5453 +24832 +262375

+24 0285 +237543
- 2742

The times of second and third contacts both lie in the interval from 8h 05 m to 8h 10m ;

for this interval:
fo = +14746 ; 01 = +2 4832; o~ + o~ = +477828; 8i = - 2742

Inverse interpolation gives:

second contact
third contact

p = +0'21273
P = +0'5786 9

h m
E.T. = 8 06,064
E.T. = 8 07.893

third
contact

sin Q -0'412

Q 2 0 4°'3

second
contact

cos Q -0'515

Q 121°'0

In practice, the times of contact would be known from the path of the total phase to
within one minute; an interval of one minlite could be used instead of five minutes as above.

For the position angles of contact, u, v, L 2 , g, 7J are interpolated, using linear inter­
polation, to the times of contact.

second third
contact contact

U -0'0081 6 +0'0039 I

v +0'00489 +0'00867
L 2 -0'00949 -0'0095 0

g -0'3381 -0'3331 tan C -0'413 tan C -0'407
7J +0.81 79 +0.8185 C 337°·6 C 337°'9

If differential corrections are required, u', v' may be obtained for the time of maximum
from the differences of u, v.



Maximum

10h 35m '389

337° 33' 26"
336 24 25

-0'400238
+°'9164 J I

+0.6490 92

+°'2635 93
+0'9646 34

-0'2823 05
-°'2834 88
+0'0011 83

-0·8453 II
-0·849752
+0'0044 4J

0'440689
0,00~5 92

+°'°2°3 09
+°'0182 85

0'26J8 49
-0'0002 II
-°'°74725

+0'493594
+0' J699 64
+0'3236 30

-0' J076 59
-0'OJ9474
-0·088J 85

0'II25 J3
0'335430

End

12h 18m '567

3° 21' 24"
2 12 23

+0'038499
+0'999259

+0'7077 73

+0'263243
+0'964730

+0'566447
, +0'027269

+°'5391 78

-1'030591
-0.8650 40
-0' 1655 51

0'497609
°'0046 15
0'5663 18
0'5640 22

0'2618 49
-0'0002 II

+0'0071 78

+0'493520
+0' 185330
+0'3081 90

-0' 1°78 24
+0'0019 85
-0' 109809

0'107°39
0'327J 68

Beginning

8h 59m '3 15

313° 32' 03"
312 23 02

-0'7386 45
+0.6740 95

+0'477460

+0'2639 19
+°'964545

-1'0726 71
-°'523 181
-0'549490

-0.6730 7 1
-0.804604
+0'13 1533

0'2748 55
0'0046 15
0'566286
0'5650 18

0'2618 49
-0'0002 II
-0'1380 77

+0'4935 83
+0'1250 22
+0'368561

-0' 1°7474
-0'0360 97
-0.°71377

0'140932
0'3754 09

EXPLANATORY SUPPLEMENT

y' (elements)
TJ' = 1-"[ sin d - ~d'

v' = y' - TJ'

nS = u's + v's
n

Starting time, T

J,L (elements)
9 = I-' - A*

sin 9
cos 9

p cos rp' cos 9 = B

sin d (elements)
cos d (elements)

x (elements)
[ = p cos rp' sin 9
u=x-[

y (elements)
TJ = A cos d - B sin d
v=Y-TJ

~ = A sin d + B cos d
tanf (elements)
1(elements)
L = 1 - ~ tanf

1-" (elements)
d' (elements)
[sin d

x' (elements)
f = BI-"
u' = x' - ~'

Second approximation to times of contact

The calculation follows that for a total eclipse, with the sole exception that [,2 is positive.

Example 9.22. Local circumstances of the annular solar eclipse of 1961 August I I

at a point in the South Atlantic Ocean, longitude W. 1°, latitude S. 45°

First approximation to times of contact

From estimated times taken from the eclipse map, or from the plotted path of the
annular phase, a first approximation yields the following times on 1961 August 11.

Station data

Latitude, rp -45 0000 sin rp -°'7°71 07 cos rp +0'7°71 07
S 0'99495 1 C 1'0016 85

Longitude, A + I 0000 Altitude 0 H 0'000000
1'002738 Ll T (Ll T = 368) + 9 01
Ephemeris longitude, A* + I 0901 P sin rp' = A -°'7035 37 P cos rp' +0'7082 98
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Maximum
-0'0000°9
-°'°°4597

-0'25 14
-°'9679 +0'9679

07
85
00

D = tilt' + vv'
.1 = (uv' - u'v)/n

sin ¢; = tJ/L
cos ¢; (from sin ¢;)

- D/n2

L cos ¢;/n
sum = correction, t

= in minutes

Corrected E.T.

Beginning
-0'211 9 09
-0'0246 58

-0'0436 4 1
-0'9990 47

h

+1'503626
-1'50 36 40

-0'000014

-Om'OOI

End
+0' 184348
-0-0250 18

-°'044356
+0'9990 16

h

-1'7222 5 1
+ 1'722256
+0'0000°5

om·OOO

h
+0'000080
-0'°52762
-0'052682

-3m' 161

10h 32m'228

h
+0'000080
+°'°52762
+°'°528 42

+3m' 1 71

10h 38m'560

he

~e.

Magnitude
At E.T. IOh 35m'394 on August I I

L 1 (by calculation) = +°'5643 L 2 = +°'0183
The magnitude (L 1 - L 2)/(L1 + L 2) = °'5460/0'5826 = 0-937

Position angles and differential corrections

The calculations are the same in principle as for a total eclipse and are not illustrated.

E. LUNAR ECLIPSES

The calculation of lunar eclipses follows the same principles as that. of solar
eclipses. The problem is much simplified by the fact that the times and circum­
stances are the same for all parts of the Earth from which the Moon is visible.

Three types of lunar eclipses are distinguished:

(i) the penumbral eclipse, also called appulse, in which the Moon enters
only the penumbra of the Earth;

(ii) the partial eclipse, in which the Moon enters the umbra without being
entirely immersed in it;

(iii) the total eclipse, in which the Moon is entirely immersed within the
umbra.

Let 7T«, S« be the parallax and semi-diameter of the Moon, and 7To, So the
parallax and semi-diameter of the Sun. The shadow will differ somewhat from a
circular cone as the Earth is not a true sphere, but it will suffice to use a mean radius
for the Earth, which is equivalent to substituting for 7T« a parallax 7TI' reduced to
latitude 45°, so that 7Tl = 0'9983 33 7T«. Moreover, observation has shown that ~
the atmosphere of the Earth has the effect of increasing the apparent radius of the
shadow by about one fiftieth. Hence the apparent radii at the distance of the
Moon are:

for the penumbra /1 = 1·02 (7Tl + So + 7To)

and for the umbra /2 = 1·02 (7Tl - So + 7To)

where /1 and /2 are expressed in the same units as the parallax and semi-diameter;
usually in seconds of arc.
*0'9983 40 for 1968 onwards.



EXPLANATORY SUPPLEMENT

The angular distance (L) between the centres of the Moon and the shadow
has the following value at the times of contact:

at beginning and end of the penumbral eclipse L 1 = 11 + S ~

at beginning and end of the partial eclipse L 2 = 12 + S (

at beginning and end of the total eclipse La = 12 - S ~

The condition of occurrence of a lunar eclipse is therefore:

f3~ cos l' < 1-02 (171 + So + 170) + S(

in the case of a penumbral eclipse, and:

f3~ cos l' < 1-02 (171 - So + 170) + S~

in the case of an umbral eclipse. Here f3 ~ cos l' is the least true angular distance
between the centres of the Moon and of the shadow; f3 ~ is here used for the absolute
value of the latitude of the Moon at opposition, and l' is defined in sub-section B.
The introduction of numerical quantities in the manner described in sub-section B
yields the following criteria:

f3« > 1° 36' 38" no penumbral eclipse
1° 26' 19" < f3« < 1° 36' 38" penumbral eclipse possible
1° 03' 46" < f3« < 1° 26' 19" penumbral eclipse certain; no umbral eclipse
0° 53' 26" < f3« < 1° 03' 46" penumbral eclipse certain; umbraleclipsepossible

f3« < 0° 53' 26" umbral eclipse certain.

Let a(, 8(, be the right ascension and declination of the Moon, and ao, So,
the right ascension and declination of the Sun. Then, the right ascension a and
declination d of the point Z towards which the centre of the shadow of the Earth is
directerl are given by:

a = ao + I2h d = - So
and the Besselian elements x and yare obtained, as in solar eclipses, by:

x = cos S« sin (a« - a)
y = cos d sin 8« - sin d cos 8~ cos (a~ - a)

These equations can be replaced, with sufficient accuracy, by:

x = (a« - a) cos 8«
y = S« - d + €

where
€ = i (a~ - a) sin 2d sin (a( - a)

The elements x and yare usually expressed in seconds of arc. The quantity €

is small and can often be ignored; it is however included in the calculations for
the Ephemeris.

The angular distance (m) between the centres of the Moon and the shadow is
given at all times by:

m = (x2 + y2)t

Let xo, Yo, be the values of x, y at some instant To near opposition, and x', y ,
the hourly variations of x and y. Then, for any particular time of contact To + t:

(xo + x't)2 + (Yo + y't)2 = L2
in which the appropriate value of L is substituted, and its slow variation ignored.
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This quadratic equation is solved for t by setting:

n2 = X'2 + y'2 Ll = ± .: (xoy' - yoX')
n

whence

Ll > 0

259

the upper sign being used for first contact and the lower sign for last contact. If
desired, the calculation may be repeated, using the times just obtained as starting
times. The following cases may occur:

L~ - Ll2 < 0 no eclipse
L~ - Ll2 > 0 with L~ - Ll2 < 0 penumbral eclipse
L~ - Ll2 > 0 with L5 - Ll2 < 0 partial eclipse
L5 - Ll2 > 0 total eclipse

The time of greatest obscuration occurs when m is a minimum, that is, when:

xx' + yy' = 0

Thus, the correction t to a starting time To to obtain the time of greatest obscuration
is determined by solving:

(xo + x't) x' + (Yo + y't) y' = 0

which yields:

I (' ')t = - 2 xoX + yoYn

The greatest magnitude of the eclipse, the diameter of the Moon being unity,
IS:

~- (L - m)
2S~

in which L 2 is used for partial and total eclipses, and L} is used for penumbral
eclipses. The values of L, m, and s ~ should be those corresponding to the time of
greatest obscuration. If desired, the quantity m in the calculation of the magnitude
may be replaced by Ll, since it may be easily verified that:

Ll = m for m = {(xo + x't)2 + (Yo + y't)2P

The position angle of contact P on the limb of the Moon, measured eastwards
from the north point, is given by:

P = M + 180
0

where tan M = x/y and sin M has the same algebraic sign as x.

The latitudes (ep) and ephemeris longitudes (,\*) of the places that have the
Moon in the zenith at given times are determined by:

ep = 8~ ,\* = ephemeris sidereal time - a(
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Example 90230 Circumstances of the total lunar eclipse of 1960 March 13

Occurrence of total eclipse

At opposition (full moon on March 13 d 08h 26m) the latitude of the Moon is (AoEo,
po 55) about _0 0 10' and so is well inside the limits within which an umbral eclipse is certaino

Corrections to position of the Moon

The corrections to be applied to the lunar ephemeris to allow for the difference between
the centre of mass and the centre of figure, arising from LJ{3, = -0"°5, are:

LJa, = -080013 = -0"°20 LJS, = -0"°46

Elements of the eclipse

The elements of the eclipse, given in the Ephemeris, are not used in the calculation of
the circamstances; they are obtained by interpolating the ephemerides of the Sun and
Moon, using the unpublished extra figures, to the time of opposition in right ascensiono
The latter is obtained from:

EoTo ao a, ao - a, differences

d h " 0 "
13 08 353 20 59°43 173 °3 51°28 180 17 08 °15

-294° 081
09 353 23 16°94 173 35 49°60 179 47 27°34 - 112

10 353 25 34°44 174 07 49°°3 179 17 45°41
294[°93

giving p = 0°577426 and opposition at 1960 March 13 d 08 h 34m 388°73.

Besselian elements

The calculation is illustrated for March 13d 09h •

o , . .
a, 173 3549°60 S, +236 4°°49

ao =a+ 1800
353 23 16 °94 So = -d -25 1 29°9°

a, - a +752°66 S, - d -889°41

sin (a, - a) +0°0036 sin 2d +0°100
cos S, +0°9989 62 € +0"°07
x = (a, -a)co,S, +75 1"°88 y = S, -d+€ -889"°34

17, 3450 "024 sin 17, 000167 2645
ro 0°994 1 58 sin s, = 00272274sin17, 0°0°45 5418

171 = 0°9983 33 17 , 3444°49 s( 939°37
170 = 8"080/ro 8 085
So = 959"063/ro 965°27 L 1 = fl + s, 5446 °35

L 2 = f2 + s( 3477°20
fl 1°02 ( 171 + So + 170) 4506 °98 La = f2 - s( 1598 °46
f2 1°02(171 - So + 170 ) 2537°83

Similar calculations for other hours lead to:

EoTo x y L1 L2 La. N

5 -6353°54 +1773"88 + 1359°95 -561 °30 5438 068 3469°45 1593°97
6 4579°66 I775054 798065 562001 5440 °61 3471°40 1595° 10
7 2804° 12 8 + 236064 562063 5442 °53 3473°34 1596°22
8 _ 1026 °94 1777°1

326004 563°30
5444°45 3475°28 1597°34

9 + 75 1°88 177
8082

889°34 5446°35 3477°20 1598 °46
1780°42

1453 °22 563°88
5448 °25 3479° 12 1599°5810 253 2 °30 1782003 564°40

II 43 14°33 1783°58 201 7°62
564°92 545°° 13 3481 °02 1600068

12 +6097°9 1 -2582°54 545 2°02 3482°93 1601°79
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t
LJ

Total
eclipse

1598"
217 x 104

1473

°'79

7 h ·68 7h 4 rm
9h'26 = 9h 16m

L
L2 _ LJ2

(V - LJ2)1

(V - LJ2)i/n

Beginning
End

First approximation to times of contact

Starting with To = 9h, for time of greatest obscur~.tion:

x +752" x' + 1780" n2 349 x 104 xx' + yy' + r84 x 104

y -889" y' - 564" n 1869" xy' - x'y + r r6 x 104

E.T. of greatest obscuration = To + t = 8h'47 = 8h 28m

Penumbral Partial
eclipse eclipse

5446" 3477"
2927 x 104 1170 X 104

5410 3421

2·89 1,83

5h'58 5h 35m 6 h ·64 = 6 h 38m
IIh'36 = II h 22m 10h'30 = lOll 18m

Total eclipse
Beginning End

7h 41m 9h 16~

Partial eclipse
Beginning End

6h 38m IOh 18m
Phase

To

Second approximation to times of contact

Starting with the times obtained in the first approximation, the calculation proceed, as
follows. x, y, Ll> L 2 , La are interpolated to these times from the Besselian elements;
x', y' are derived from the differences of x, y.

Penumbral eclipse
Beginning End

5h 35m II h 22m

x
y

+3°66 ,8
-1622'5

.
+ 1226'5
- 1°39'7

x'
y'

.
+ 1775.8
- 562 '1

H

+ 1780 '°
- 563.8

34863
1867'2

(xy' - x'y)/lOo
(xx' + yy')/100

+ I 1543
- 100156

+ I 16II
+ 10 I r68

+ I 1602
+ 63797

+ I 1575
27429

+ r 1592
+ 27694

LJ
L

(V - LJ2)/100
(V - LJ2)t

(xx' + yy')/n2

=+= (V - LJ2)I/n

62°'4
5439. 8

292065
540 4'3

62°'7
5450 '8

293260
541 5'3

h
+2,8908
+2·8948

H

620·6
3472·6

I r 6738
34 r6 '7

h

- 1·84°3
- 1·8344

.
620·8

3479'7
I r 7229

3423'9
h

+ 1.8265
+ 1.8320

.
620·8

1597'0
2 1650

1471'4

H

620·8
1598.8

2 1708
1473'4

To + t

h
-0,oII6

h

5 34'30

h

+0'°°4°
h

I I 22'24

h

+0'°°59
h

+0'0055
h m

10 18'33

h

-0'0002
h

74°'99

h

-0'°°53
h m
9 15.68

Maximum eclipse, To = 8h 28m

x
y

197'0
588 .8

LJ
(xx' + yy')/n2

x'
y'

(xy' - x'y)/roo
(xx' + yy')/100

t
To + t

h

+0'°°54
8h 28m'32
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<P = 8~
+3°01'
+2° 23'

S.T. - a~

+ 98° 09'
+151° 20'

Example 9,23, Circumstances of total lunar eclipse (continued)

lvlagnitude, position angles, and sub-lunar positions

At the time of greatest obscuration, 8h 28m'32

.1 = 621", L 2 = 3476", s~ = 939"

so magnitude of eclipse = (L 2 - .1)/2 s~ = 2855/1878 = 1'520

The position angles at the beginning and end of the partial phase are obtained by:

Beginning x -3445" Y + 440" y/x = cot M -0'1277 M + 180° = P 97°
End x +3077" Y -1626" cotlVl -0'5284 P 298°

The positions at which the Moon is in the zenith are found as:

E.T. Sidereal time S.T. in arc a~ ,\*
Beginning 6 h 38m'35 18h 01 m'94 270° 29"1 172020"4

End 10h 18m'33 21 h 42m'53 325° 37"9 174° 17'·6

F. TRANSITS OF MERCURY

The computation of transits of Mercury for the Ephemeris is performed
according to an extension of the heliocentric method described by Simon Newcomb
(Discussion and results of observations on transits of Mercury, from 1677 to 1881.
A.P.A.E., I, part VI, 1882).

The heliocentric ephemeris of Mercury is taken from Newcomb's Tables of
Mercury. The heliocentric ephemeris of the Earth is obtained by adding 1800 to
the longitude of the Sun, and changing the sign of its latitude, as taken from
Newcomb's Tables of the Sun.

Occurrence of transits

Transits of Mercury and Venus across the Sun's disk can only Ol.;Cilr when
both the Earth and the planet are simultaneously very close to the same node of
the planet's orbit on the ecliptic. In order that a geocentric transit should occur,
the Earth must be within a range ±e of the node of the planet's orbit, at the
instant at which the planet crosses the ecliptic. Approximately:

e = So (~ -~) (I - P...) cosec i
rl R PI

where R, rI; P, PI are respectively the radii vectores and the actual daily motions of
the Earth and planet, i is the inclination of the planet's orbit to the ecliptic, and
So is the Sun's semi-diameter at unit distance.

Owing to the near constancy of the longitudes of the nodes and perihelia of
the planets, the Earth will be in the neighbourhood of the nodes on about the same
dates each year, and the planets will be at the same points of their orbits when they
pass through the ecliptic. The highly eccentric orbit of Mercury thus means that
the conditions, and limits, at the November transits are very different from those
at the May transits. The approximate dates at which transits can occur, the
corresponding values of e, and the deduced frequency of occurrence (assuming
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random distribution) are:

Mercury Asc. node
Desc. node

Venus Asc. node
Desc. node

There are, in fact, 14 transits of Mercury in the twentieth century, 10 in
November, and 4 in May, including the grazing transits in May 1937 and November
1999· Future transits occur on: 1970 May 9,1973 November 10, 1986 November
13, 1993 November 6, and 1999 November 15.

The transits of Venus are so rare that the accidental relationships (see section
8C) between the periods of revolution of the Earth and Venus are dominant.
Transits have occurred at intervals of 8, 121t, 8, loSt, and 8 years, the last one
being on 1882 December 6; the cycles of 121t, 8, lOSt, and 8 years will continue,
the next transits not being until 2004 June 8 and 2012 June 6. No further
reference is here made to the transits of Venus.

Corrections to the ephemerides

G. M. Clemence has shown (A.P.A.E., II, part I, p. 61, 1943) that an ephemeris
of Mercury derived from Newcomb's tables requires the following corrections to
the elements of Mercury to represent its observed geocentric motion:

LJI +4"'36 + 12"'45 T + 5"'100 T2 + °'310 B
LJ7T = +2"'10 + 1"·82 T LJe = -0"'15
LJ(J = +0"'2 + 1"'57 T LJi = +0"'03

in which B is the fluctuation in the Moon's mean longitude, I is the mean ecliptic
longitude, 7T is the longitude of perihelion, e is the eccentricity, (J is the longitude of
the node of the orbit on the ecliptic, i is the inclination of the orbit to the ecliptic,
and T is measured in centuries from 1900'0. LJi is smaller than its probable
error and may be neglected. The corresponding correction to the mean longitude
of the Sun, in terms of D.T., is given by (Clemence, loc.cit. p. 29):

LJAO = +1"'00 + 2"'97 T + 1"'23 T2 + 0'0747 B
The correction LJI to Mercury's mean ecliptic longitude, as given above, is the

sum of two parts: one part reflects the difference between E.T. and D.T., due to
the irregularity of the Earth's rotation, and is equal to LJAo multiplied by the ratio
of the mean motions of Mercury and the Earth (4' I 52°9); the other part is a true
correction to Mercury's mean ecliptic longitude as given by Newcomb's tables,
and is the only part of LJI to be used when the transit is computed in terms of
ephemeris time. The part of LJI to be retained is:

LJI - 4'152°9 LJAo = + 0"'21 +0"'12 T - 0"'007 T2

in which the term in T2 may be neglected. All the other corrections to the elements
are true corrections.

The correction LJ(J may be applied directly to (J as taken from the tables. LJ7T
and LJe affect implicitly the orbital longitude (L), but may be introduced in the form
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of a correction to the equation of centre (E) since:

LJL = LJI + LJE

The expression for E as a function of e and the mean anomaly (g) is given by
Newcomb (A.P.A.E., 5, part 1, p. 21, 1895). Then:

oE oE
LJE = - LJe + - LJgoe og

in which LJe is given and LJg may be obtained readily from:

LJg = LJI - LJ7T

The following development of LJE, omitting terms containing powers of e higher
than the fourth, is obtained by partial differentiation of Newcomb's expressions
for E with respect to e and g:

LJE = {(2 - ! e2
) sing + ("i e - V e3) sin 2g + 143 e2 sin 3g + 12°i- e3 sin 4g} LJe

+ {(2 e - i e3) cosg + ("i e2 - t ~ e4) cos 2g + Ii e3 cos 3g + 12°i- e4 cos 4g} LJg

Introducing e = 0'2056 gives:

LJE = (1'968 sing + 0'498sin2g + 0'137 sin 3g + 0'037sin4g)LJe
+ (0'409 cosg + 0'104 cos 2g + 0'028 cos 3g + 0·008 cos 4g) LJg

LJe and LJg also affect implicitly the radius vector r. The expression for lager as a
function of e and g is given by Newcomb (loc. cit.) and, following the same
procedure as for LJE:

LI loger = {(t e + t e3
) - (I - t e2

) cos g - (! e - V e3
) cos 2g

- 187 e2 cos 3g - ~ l e3 cos 4g} LJe
+ {(e - i e3) sin g + (! e2

- H· e4) sin 2g + V e3 sin 3g
+ i-i e4 sin 4g} LJg

(0'104 - 0'952 cosg - 0'292 cos 2g - 0'090 cos 3g - 0'026 cos 4g) LJe
+ (0'202 sin g + 0'060 sin 2g + 0'018 sin 3g + 0'005 sin 4g) LJg

This value of LJ loger must first be expressed in radians and then multiplied by
0'4343 before being applied to log r as taken from Newcomb's tables. In the
tables the mean anomaly g is expressed in days and is to be multiplied by 4'0923
to convert it to degrees for use in the above formulae; it is tabulated in A. E.,
p. 176. The quantities LlL, LIB, and Lllog r are published in the Ephemeris.

Example 9.24. Corrections to the ephemeris of Mercury
for the transit of 1960 November 7

1960 November 7 d 12h = J.D. 243 7246'0 T = 0.609 T2 = 0'371
Epoch of tables = J.D. 241 5020'0 For 1960 November 7 d 16h 54m

Interval = 22226 d·o g = 82 d'921 = 339°'34

LJl = +0"'28 LJ7T = +3"'21 LJg = -2"'93 LJe = -0"'15 LJ8 = +1"'2
LJE = -1'18 LJe +0'47 LJg = -1"'20 LJL = -0"'92

LJ loger = -1·05 LJe -0'13 LJg = +0'0000026 LJ log r = +0·0000 OIl
Details of the evaluation of the simple formulae are omitted. The last digit in LJL has

little significance, and the correction to log r does not affect the circumstances of the transit.
Values of LJL = -0"'90 and LJ log r = +0'0000026 have been used both in the
Ephemeris and subsequent examples.
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Effect of aberration

The contacts occur when the apparent positions of points on the limbs of
Mercury and of the Sun coincide. Owing to the finite velocity of light, the ray of
light from the Sun which reaches the geometric position of the observer at the
instant T of contact left the Sun at some previous time T - 72 and grazed the planet
at a time T - 72 + 71' Therefore, in the calculation of transits, the geometric
coordinates of Mercury at time t - 72 + 71 must be combined with the geometric
coordinates of the Earth at time t.

The latitude be, longitude le, and radius vector R of the Earth are obtained
from Newcomb's Tables of the Sun, by setting:

be = -f30
le = 110 ± 1800

in which 110 is the true geometric longitude of the Sun, reckoned from the equinox
of date, and f30 is its latitude with respect to the ecliptic of date.

The corresponding geometric coordinates l, b, r, of Mercury at time t - 72

+ 71 are obtained from the tabular geometric coordinates at time t by subtracting
the motion during the interval 72 - 71' If 1', b', r' are the hourly variations of
l, b, r, the corrections to be applied to l, b, rare:

-(72 - 71) l' -(72 - 71) b' -(72 - 71) r'

in which
7 2 - 71 = 0'1384-39 (R - r)

the factoibeing the time in hours for light to travel unit distance, as derived from
the constant of aberration.

Example 9.25. Coordinates corrected for effect of aberration

The hourly heliocentric ephemerides of the Earth and Mercury, taken from Newcomb's
tables and corrected, for Mercury, for the corrections to the elements and for aberration, are
given in the table below. The derivation is not illustrated, nor is the straightforward
correction for aberration. Additional figures, obtained in the course of subtabulation from
daily intervals, are retained to give smoothness in the calculations.

Earth Mercury
E.T. Ie be R b r

d h . . .
Nov. 7 13 162465' 163 0·609 0'99068853 159726 '982 - 1545.832 0'3.1594299

14 2615'739 ·608 7862 160622'464 1436 '01 4 8 1335

IS 162766 '3 18 0.607 0'99066871 161518.672 - 1326'079 0'31568461
16 2916'901 ·606 5881 2415.604 1216'030 55677
17 3067'487 .605 4892 33 13'254 1105. 869 42984
18 3218'077 .604 39°3 421 I ·619 995'599 3 0379
19 3368 .670 ·6°3 2915 5110.696 885'222 17867

20 16 3519'267 0·602 0'9906 1927 16601°'479 774'741 °'3 150 5446
21 163669.867 0·601 0'99060940 166910'966 664'159 0'3 1493 11 5

*0'138614 for 1968 onwards.
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Geocentric contacts

The heliocentric method of computing transits of Mercury is adapted from
Bessel's theory of eclipses, in which the planet is substituted for the Moon. The
exterior tangents to the Sun and the planet generate the cone of umbra, which has
its vertex between Mercury and the Earth. The interior tangents form the cone
of penumbra, with vertex between Mercury and the Sun. The axis common to
both cones is the axis of shadow. Exterior and interior contacts occur when the
observer is on the surface of the penumbral and umbral cones, respectively.

As in the theory of eclipses, the fundamental plane, or xy-plane, is perpen­
dicular to the axis of shadow and passes through the centre of the Earth. In the
case of transits, however, the origin of coordinates is the intersection of the axis
of shadow with the xy-plane; the x-axis is parallel to the plane of the ecliptic,
positive in the direction opposite to the motion of Mercury around the. Sun; the
y-axis is positive towards the north.

Let m be the angular distance of the planet from the Earth as seen from the
centre of the Sun, and M the position angle, reckoned from the y-axis, of the
centre of the Earth with respect to the origin of coordinates, such that:

x = R sin m sin M = R cos bf!) sin (l - If!))
Y = R sin m cos M = R { cos b sin bff) - sin b cos bff) cos (l - Iff)) }

Except for M, all angles in these equations are so small that, with sufficient
precislOn:

m sin M = 1 - Iff) = V

u2 + v 2 = m2

Using primes to denote hourly variations,

v' = l' - l~ = n sin N
U'2 + V'2 = n2

m cos M = bff) - b = u
m > 0

u' = b~ - b' = n cos N
n > 0

If s, So are the semi-diameters of Mercury and the Sun at unit distance, their
adopted values being 3"'34 and 959"·63 respectively, and if !1,f2 are the angles
which the generators of the penumbral and umbral cones, respectively, make with
the axis of the shadow, then:

il = So + s f _ So - s
r 2 - --y-

The corresponding radii R 1, R 2 of the shadow in the fundamental plane are
found from:

R 1 = R cos m sec!1 {!1 - so/(R cos m)}
R 2 = R cos m sec!2 {!2 - so/(R cos m)}

The geocentric contacts take place at the instants at which the distance
R sin m = Rm of the centre of the Earth from the origin is equal to R 1 for exterior
contacts or R 2 for interior contacts, that is when:

L L ' h L 1 = R 1/R = sec!1 (fl cos m - so/R)
m = 1 or 2 WIt / /L 2 = R 2 R = sec!2 (f2 cos m - So R)

If uo, vo, u~, v~, no are the values of u, v, u', v', n at a time To near a time of contact,
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Example 9.26. Time of geocentric interior egress of Mercury
from the Sun's disk 011 1960 November 7

The data are taken from example 9.25, by interpolation where necessary; the subscript
° has been omitted.

Note that So = 959"·63 and So - s = 956"'29.

First Second Third
approximation approximation approximation

E.T. = To 17 h I9 h 'I76 I9 h
' I 7799

H

Ie 16 3067 16 3395'175 16 3395'475
I 16 33 13 16 5269'007 16 527°'797

v=l-le + 246 + 1873,832 + 1875'322
be + I + 0·6°3 + 0·603
b II06 865'785 865'565

u = be - b + 11°7 + 866'388 + 866· 168
R °'99°6 0'9906 274 1 0'99062739
r °'3 154 °'3 15 1 5674 °'3 151 5650

d

I' + 15 1 + 15°'596 + 150 '596(9

l' + 898 + 899'554 + 899'556,
=l' I ' + 747 + 748 '958 + 748 '960v - (f)

b'
° 0,001 0·001(f)

b' + 1I0 + 11°'447 + IIo·«8
u' = b~ - b' 110 110·«8 110'449
m 2 = u2 + v 2 1286 X I03 4261 875 4267080
n2 = U'2 + V'2 570 X I03

573 137 573 140
n 755 757'°58 757'060

u u' + v v' + 62 X I03 + 130773 1 + 1308' 874
u v' - u'v + 853 X 103 + 855 849 + 855 853

d

m 1134 2064'43 1 2065.691
cos m 1,000 °'9999499 °'9999499

f2 = 956"'29jr 3°3 1 3°34'33 I 3°34'334
secf2 1·000 1'0001 082 1'0001 082

d d d

959"·63jR 969 968 '7°9 968 '7°9
f2 cos m 959",63jR 2062 2065'470 2065'473

L 2 2062 2065,693 2065.696
n L 2 1557 X I03 1563 849 1563 856

sin ifi = (uv' - u'v)jn L 2 +0'5478 +0'5472709 +0'5472710
cos ifi (from sin ifi) +0·8366 +0.8369 555 +0.8369 555

h h h
L z cos ifi/n +2'285 +2'2837 ° +2'2837 °
-(uu' + vv')jn2 -0'1°9 -2'2817 I -2'28369

sum = t +2'176 +°'°01 9 9 +0'0000 I
T= To + t 19' 176 19' 1779 9 19' 1780 °

L 2 - m 928" 1"'262 0"'005

The E.T. of geocentric interior egress is thus 1960 November 7 d I9h lOrn 40'.8.
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then, at the time of contact, T = To + t:
(uo + u~t)2 + (vo + v~t)2 = L2

in which the second-order variations of u, v are neglected. Solving for t by
setting:

yields

whence
( ' ') 2 2't = _ uoUo + vovo go + tnogogo

2 2 + ( , + ') , 2 '2nogo 4 UoUo VoVo gogo + mogo
where g~ maybe taken as the hourly first difference ofg, interpolated to the time To.

An alternative procedure to obtain the minimum value of S and the time at
which it occurs is to tabulate this function for every ten minutes over a short
interval containing the time of mid-transit, and to perform an inverse interpolation
to the time for which the first difference of S is equal to zero.

Least angular distance of centres

The angle m is the angular separation between the centres of Mercury and the
Earth as seen from the Sun. If Ll is the geometric distance of Mercury from the
Earth, the angular separation S between the centres of Mercury and the Sun as
seen from the Earth is given by:

Ll si-n S = r sin m
or, with sufficient precision:

S = mg with g = riLl
Ll may be calculated from:

Ll2 = R2 + r2 - zrR {cos b cos be cos (l - le) + sin b sin bE!)}
in which the tabular geometric values of r, b, l (not ante-dated) must be used. The
function g may then be tabulated and ante-dated to the time t - 'T2 + 'T!, as was
done for r, b, t.

The minimum of S occurs when m2g2 is a minimum, that is, when its first
derivative is equal to zero. If mo, go are the values of m, g at a time To, near the
time T of minimum, the correction t = T - To may be found, in hours, from:

d jd2

t = - dt (m2g2) dt2(m2g2) evaluated at time To

Using primes to denote first derivatives with respect to the time and neglecting
second derivatives of u, v:

--: d (m2g2) = (uu' + vv') g2 + gg'm2
zdt

~ :t22 (m2g2) = n2g2 + 4 (uu' + vv') gg' + m2g'2

t = L cos f _ Uo u~ + V o v~

no nfi
where cos f is taken as negative for ingress and positive for egress.

The resulting times may be tested by means of the criterion:
m=L

and another approximation made if necessary.
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Example 9.27. Calculation of g for E.T. 17h on 1960 November 7

Geometric values, uncorrected for aberration, of 1, b, r must be used; the values used
therefore differ from those in example 9.25.

16 3067'5
16 3397'2
+ 32 9'7

+0·6
b - 1095.6

R 0'9906489
r 0'3154180

sin b(fJ +0'0000029 sin b -0'0053 II6 2 Rr 0·6249 370
cos (l - 1(fJ) +0'9999987 cos b(fJ +1'0000000 cos b +0'9999859 A 0'9999846

A = sin b(fJ sin b + cos (l - 1$) cos b$ cos b
R2 + r2 - 2 RrA = .120'4559464

whence.1 = 0·6752 380 g = 0'4671 212

It will be noted that .1 differs very slightly from the value (0·6752 395) obtained by
interpolation of the geocentric distance of Mercury on page 184 of the Ephemeris; the
latter value may be corrected by applying the negative of the correction to the radius vector,
namely (see example 9.24), - 19 x 10-7•

The above procedure leads to the following values of g:

correction
E.T. g difference for light-time g (ante-dated)

h

14 0'4679 174 -2 632
15 6542 +0'0000 247 0'4676 789
16 3 890 2652

249 '4674 139
17 '4671 212

2 678
25 1 '467 1 463

18 '4668 SIS
2 697

253 '4668768
19 5792

2723

The light-time is o· 138439 (R - r) and for 17h = 0'09348.

Example 9.28. Time of least geocentric distance of centres of Mercury and the Sun

The first approximation to the time is To = 17h, giving t = -Oh· 109 ; most of the
quantities required already occur in example 9.26. The subscript 0 is omitted, except in To.

Thus To November 7d 16h.891

1$ 16 3051'073 1 ' +150 '5 88 g 0'467 1 756 g' -0'0002 683(fJ

1 16 3215'375 l' +897'930 g2 0'2182 530 g'2 0'0000001
V + 164'302 v' +747'342 uu' + vv

,
473 gg' -0'0001 253

be + 0.605 b' 0'001 n2 57 0665 m 2 127 8008(fJ

b II 17.882 b' + 110. 204 Num. + 263'3 Denom. 12 4549.6
u + lII8'487 u' - I 10'205 t +Oh' 0021 I

Num. = - (uu' + vv') g2 - m 2gg' ; Denom. = n2g2 + m 2g'2 + 4 (uu' + vv') gg'

Thus the time of least geocentric distance is 16h·8931 1 = 16h 53m 358 '2, at which time
m = II30"'49 and S = 528"'1 = 8' 48"·1.

Position angle of point of contact

The position angle P of a given point of contact, measured from the north
point of the Sun's limb towards the east, may be found to within a few minutes
of arc from:

or

P = M ± 180
0 + V

P = N - if; ± 180
0 + V
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in which M, N, and If; have been defined above (see under geocentric contacts)
and V is the angle between two points on the Sun's limb, one being the north point,
and the other being the point nearest the north pole of the ecliptic. The angle V
is calculated from:

cos V = cos € sec 00

in which € is the obliquity of the ecliptic and 00 is the apparent declination of the
Sun as tabulated in the Ephemeris; V is in the first quadrant for November transits
and in the fourth quadrant for May transits.

Example 9.29. Position angle of poillt of contact

The position angle of geocentric interior egress at E.T. 19h·I78 IS formed as (see
example 9.26):

It 866"
€ 23°.44­

cos € 0.9175

v 1875"
80 - 16°·45

sec 80 1.°427

m 2066"
cos M 0.4193 M 65°·2
cos V 0.9567 V 16·9

P = M + V ± 180° = 262 ·1

Mercury in the zenith

The latitude c/> and ephemeris longitude .\* of the place at which Mercury is in
the zenith at a given time are found from:

c/> = 0 .\* = ephemeris sidereal time - a

in which a and 0 are the apparent right ascension and declination of Mercury for
that time, as tabulated in the Ephemeris.

Example 9.30. Mercury ill the zenith

The place at which Mercury will be in the zenith at the time of geocentric interior
egress at E.T. 19h·178 on November 7 is found by:

Latitude, </> = 8 = - 16° 29' (A.E., page 184)
Ephemeris sidereal time = 22h 18m 378 (A.E., page 16)

Right ascension, a 14 50 33 (A.E., page 184)
Ephemeris longitude,.\* = 7 28 04 = + II2° 01'

Local contacts

At a point on the surface of the Earth, the quantities u, v, u', v', m, n, L assume
corresponding values UI, VI, ui, vi, mI, nI, LI, which may be written in the form:

UI = U + q ui = u' + q' q' = dq/dt
VI = V + P vi = V' + p' pi = dp/dt
mf - ui + vi ni = ui2 + vi2 L I = L + w

The condition of local contact is given by:

mI = L I

Thus, a time Tc of geocentric contact may be used as the first approximation to
the corresponding time TI of local contact, and a correction t (= TI - Tc) may be
calculated, in hours, as for geocentric contacts by setting:

sin If;I = (ulvi - UiVI)/LInl

whence, neglecting the variation of L I during the interval t:
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L 1 cos ifJl UIUr + VIVrt = -
nl nf

in which cos ifJl is negative for ingress and positive for egress.

Newcomb (loc. cit.) has shown that, with sufficient precision:

q = p sin 7T'0 sin fJ
p = p sin 7T'0 cos fJ sin (iff) - A)
w = p sin So sin 7T'0 cos fJ cos (iff) - A)

in which fJ, A are the latitude and longitude of the observer's geocentric zenith,
p is the geocentric distance, and 7T'0 is the horizontal parallax of the Sun at the time
considered, obtained from:

7T'0 = 8"·8ojR
The coordinates fJ, A are related to the observer's geocentric latitude rp' and the
local sidereal time T oy:

cos fJ cos A = cos rp' cos T

cos fJ sin A = sin rp' sin € + cos rp' cos € sin T

sin fJ = sin rp' cos € - cos rp' sin € sin T

where € is the obliquity of the ecliptic.

Thus the expressions for q, p, w may be written in the following form, In

which 7T'0 has been substituted for its sine:

q = TTO (p sin rp' cos € - P cos rp' sin € sin T)

p = 7T'0 ( - p sin rp' sin € cos if!) - p cos rp' cos € cos i(fj sin T + P cos rp' sin iff) cos T)
W = 7T'0 sin So (p sin rp' sin € sin iff) + P cos rp' cos € sin i(fj sin T + P cos rp' cos ltD cos T)

Therefore:
, , -1-' •q = - T 7T'0 P cos 'f' SIn € cos T

p' = 7T'0 (i~ p sin rp' sin € sin iff) + i~ p cos rp' cos € sin iff) sin T

- T' P cos rp' cos € cos iff) cos T + i~ p cos rp' cos i(fJ cos T

- T' P cos rp' sin i(fj sin T)

in which the hourly variations i~, T' of i(fj, T should be expressed in radians per hour.
It is seen, therefore, that the functions UI, VI, ui, vi, and L 1 may all be expressed in
the general form:

A + B p sin rp' + P cos rp' (C sin T + D cos T)
with

T = JL - A*
A* being the ephemeris longitude of the observer and JL the ephemeris sidereal time
of geocentric contact.

A, B, C, D are independent of the observer's position; they may be tabulated,
together with JL, for a particular transit. Their expressions are summarised below:

UI ~ L1

*

A U

B 7T'0 cos €

C - 7T'0 SIn €

D 0

*8"'794 for 1968 onwards.

U'

o
o, .

- T 7T'0 SIn €

L
7T'0 sin So sin € sin i(fJ
7T'0 sin So cos € sin i(fJ
7T'0 sin So cos iff)
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vi
A V v'
B - 7To sin E cos 1$ l~ 7To sin E sin 1$
C - 7To cos E cos 1$ 7To sin 1$ (l~ cos E - 'T')

D 7To sin 1$ 7To cos 1$ (l~ - 'T' cos E)

There are four sets of values, one for each of the contacts. The above formulae
yield quantities expressed in seconds of arc. If preferred, they may be expressed
in any other convenient unit, because the expression for t is homogeneous in
Ul, v!, ui, vi, and L 1; for example, in A.E. 1960 they have been converted into
radians and multiplied by an arbitrary factor of 1000.

Example 9.3 I. Local circumstances for the transit of Mercury on 1960 November 7

(a) Calculation of the coefficients A, B, C, D for interior egress. The subscript I,
denoting local values, is omitted_ Here A, B, C, D are in seconds of arc_

Using data from the final approximation (example 9.26) and the formulae above:.
7To 8-883 E 23-44 1$ 45-39

sin So 0-0047 Sin E +0-3978 sin Ii+) +0-7119
COS'E +0'9175 cos 1$ +0'7023

'T
,

0-2625 l~ cos E - T' -0'2619
I' 0'0007 l~ - 'T' cos E -0'2401$

u v ~ ~ L
A +866-168 +1875-322 -110'449 +748-960 +2065.696
B + 8- 150 2'482 0 + 0-002 + 0-012
C 3-534 5'724 0 1.656 + 0'027
D 0 + 6'324 0'927 1'498 + 0-029

Ephemeris sidereal time = 22h 18m 368'4 f-L = 3340 39"1

(b) Calculation of time of local interior egress at the U.S. Naval Observatory.

+ 1'942

+748-960
+ 0-001
+ 1'5 13
+750 -474

u V u'
C sin 'T + D cos 'T + 3-449 + 4'211 + 0'202

A +866-168 + 1875'322 - 110'449
B P sin 4>' + 5-093 1-55 1 0
P cos 4>' (C sin 'T + D cos T) + 2.687 + 3-281 + 0'157

sums +873-948 + 1877-052 - 110-292

v'

p sin 4>' 0.6249
P cos 4>' 0'7791

longitude, A +77 03'9
1'002738 LI T (LI T = 368) 9-0
ephemeris longitude, A* +77 12-9

f-L
T=f-L
sin 'T
cos T

334 39'1
- A* 257 26'2

-0-9760
-0'2176

L
0'033

+2065-696
+ 0'007

0·026
+2065.677

h
n2 = U'2 + V'2 575376 uu' + ·vv' 13 I 2289 - (uu' + vv')/n2 -2'28075

n 758-535 uv' - u'v 862899 Leos .p/n +2'2730 9

nL 1566888 sin.p = (uv' - u'v)/nL 0-5507 088 t = sum -0'00766
cos.p (from sin .p) 0.8346 974 -278-6

Tc = 19h 10m 40"-8 Tl = Tc + t 19h 10m 138'2
U_T_ of local contact = Tl - LIT (36") = 19h 09m 378'2

The method outlined above is equivalent to Newcomb's (loc. cit.) rigorous
solution of his equations (10). It is therefore suitable in all cases, including those
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in which the least angular distance of centres is nearly as great as the Sun's semi­
diameter. When, however, this distance is small in comparison with So, sufficient
precision may be attained in the following, simpler, manner.

At the time T1 of local contact, the condition L 1 = ml may be written, omitting
the small quantities p't, q't:

L 1 sin M 1 = L sin M + P + nt sin N
L 1 cos M 1 = L cos M + q + nt cos N

Eliminating M 1 from these equations and omitting terms in p2, q2, t2, pt, and qt,
yields:

L~ = U + 2L (p sin M + q cos M) + 2nLt cos (M - N)
which may be written:

Lf - U = 2L {pv + qu + (uu' + vv') t }
m

or, very nearly,
L 1 - L = {pv + qu + (uu' + vv') t }/m

As before:

whence
_mw-pv-qu

t
- uu' + vv'

Thus t may also be written in the form:
t = B p sin cp' + p cos cp' (C sin T + D cos T)

with

B = , 7'0 , ( v sin € cos ie - u cos € + m sin So sin € sin ie )
uu + vv

C = , 7'0 , ( V cos € cos ie + u sin € + m sin So cos € sin ie )
uu + vv

D = ,7'0 , ( -v sin iff) + m sin So cos iff) )
uu + vv

The quantity sin So is of the same order of magnitude as others which have been
neglected; terms in So could therefore be omitted, but they are, however, taken
into account in the values published in the Ephemeris.

Traditionally, the reduction formulae for local contacts have been published
in a slightly different form, obtained by setting:

C = k sin K D = k cos K
Then:

t = B p sin cp' + k p cos cp' cos (K - T)
or, introducing the ephemeris sidereal time fL of geocentric contact:

t = B p sin cp' + k p cos cp' cos (K - fL + A*)
The coefficients Band k, expressed in hours, should be converted into seconds by
multiplying by 3600. Then, if Ais the geographic longitude of the observer, the
universal times of local contacts will be found from:
V.T. = Tc + B p sin cp' + k p cos cp' cos (K - fL + A + 10002738 L1T) - L1T
There are four such relations, one for each contact.
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Example 9.32. Reduction formulae for local circumstances for the transit of 1960 November 7

(a) Calculation of the reduction formulae for local interior egress. The data are
taken from the final approximation (examples 9.26 and 9.31).

u + 866'2 7To 8·883 sin EO +0'3978 sin 1(fJ +0'7 119
v + 1875'3 uu' + vv' 1308874 cos EO +0'9175 cos Ie +0'7023

m 2065'7 F 0'024432 sin So 0'0047 G = m sin So 9'7
F = 3600 7To/(uu' + vv')

+v sin EO cos 1(fJ +524'0 +v cos EO cos Ie + 1208'4 -v sin Ie - 1335.0
-u cos EO -794'7 +u sin EO + 344.6
+G sin EO sin 1(fJ + 2'7 +G cos EO sin lfiI) + 6'3 +G cos Ie + 6·8

sum -268'0 sum + 1559'3 sum - 1328'2

B = sum x F -68 '55 C = sum x F +388 '°97 D = sum x F -328 '45 1

k2 = C2 + D2 2504'4 k + 50"'°4 JL 3340 39"1
cot K = DIC -0.8518 ° K 1300 25"5 K - JL 155 46 '4

(b) Calculation of time of local interior egress on 1960 November 7 at the U.S. Naval
Observatory from the reduction formula:

h m .
,\ +77 03'9 ,\* +77 12'9 Tc 19 10 40.8

P sin 4>' 0.6249 K - JL + ,\* =8 232 59'3 B p sin 4>' - 4'1
P cos 4>' 0'7791 cos 8 -0·6020 k P cos 4>' cos 8 -23'5

sum = Tl 19 10 13'2

The U.T. of contact is 19h 10m 138'2 - LIT (36") 19h 09m 378'2

Map curves

Curves pertaining to the exterior contacts of the transit are shown on the map
published in the Ephemeris. The ephemeris times of exterior ingress and egress
at a given place may be estimated from these curves to within a second.

Curves for interior contacts are omitted for the sake of clarity; the times of
interior contacts may be inferred from the fact that the elapsed times between
exterior and interior ingress and between interior and exterior egress differ little'
from their geocentric counterparts.

The curve labelled "Transit begins at sunrise-Transit begins at sunset"
is the great circle having for pole the point at which Mercury is in the zenith at the
time of geocentric exterior ingress. Similarly, the curve labelled " Tr~nsit ends
at sunrise-Transit ends at sunset" is the great circle having for pole the point
at which Mercury is in the zenith at the time of geocentric exterior egress.

If CPo, A: are the geographic coordinates of the pole of a great circle, the
coordinates cp, A* of a point on this circle satisfy the condition:

tan cp = - cot CPo cos (A: - A*)

Values of cp corresponding to assumed values of A*, at suitable intervals
between 0° and ± 180°, may be calculated until enough points are available for
plotting the curve.
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Example 9.33. Curve of exterior ingress at sunrise or sunset

275

At the time of geocentric exterior ingress, Mercury is in the zenith at the point whose
geographic coordinates are </>0 = _16° 37', At = +42° 34'. (A.E. 1960, page 306).

Take A* = 120°, (At - A*) = -77° 26', cos (At - A*) = +0'2i76
cot </>0 = -3'3509, tan </> = +0'7292,</> = +36° 06'

The curve of ingress or egress for a selected time T1 is calculated from the
relation provided by the corresponding reduction formula for local contacts.
From:

and
t = B p sin c/>' + k p cos 4>' cos (K - ft + A*)

it is found that the geocentric coordinates of points on the curve at T1 must
satisfy the relation:

cos (K - ft + A*) = (t - B p sin 4>')jk p cos 4>'

In this case, successive values of 4> are assumed and the corresponding values of A*
are computed. For small-scale maps it is not necessary to distinguish between
A* and A.

Example 9.34. Curve of exterior ingress

The data are taken from A.E. 1960, page 306.

h m

Tc 143433'4 Assumed </> + 40 00

•
10'28

-22'48
-0'4573

± 117° 13'

Mercury is below

t - Bp sin </>'
k p cos </>'
cos (K - fL + A*)

K - fL + A*

p sin </>' +0.6394
P cos </>' +0'7671

B +41.17
k -29'30

K - fL +72° IS'
A* +44° 58' or + 170° 32'
A +44 49 or +170 23

The second solution in this case corresponds to a point for which
the horizon.

t + 36.6
TI 143S 10·0

Alternative method

As for eclipses it is often easier, and less liable to error, to solve many of the
transcendental equations that arise by numerical methods; a discriminant, which
vanishes at the point required, is tabulated at suitable equal intervals of the
independent variable (usually time) and the required value of the independent
variable is then obtained by the standard techniques of inverse interpolation. This
method is very suitable for the calculation of the geocentric phases of transits of
Mercury, as large intervals of time (one hour) may be used.
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Example 9.35. The geocentric phases of the transit of Mercury on 1960 November 7,
by the alternative method

By calculations similar to those in example 9.26 values of m, 1.1> 1.2 are obtained for
each hour covering the duration of the transit, 13 h - 21 h; u', v' and associated quantities
are not required. For the time of least angular distance values of g are taken from examplf'
9. 2 7.

E.T. m 2 - 1.~ 0 02 03 m 2 - L~

Contact Ingress Egress
exterior interior interior exterior

Hour 14h 14h 19h 19h

o~m + O~m +226 7277 +2267263 +2299943 +2299954
03 + 3334 + 3332 + 3221 + 32261

P 0'5759 64 0.6094 °3 0'177997 0' 211440
B2 -0'061057 -°'°595°8 -°'°36579 -°'°416 83
B3 -0'°°3 1 -°'°°43 +°'°°79 +0'0080

E.T. 14h 34m 338'47 14h 36m 338.85 19h 10m 408'79 19h 12m 418'18

E.T. m 2g2 0 02
m2g2 is a minimum in the interval

ISh 725444 16h - 17h , and p 0·8931 2

-347153 B2 = -°'°2386
16 37 8291 +24921 3 At the minimum m 2g2 = 27 8930

- 97940 s = mg = 528""14
17 28 °351 +249°78 Least angular distance is 8' 48""14

+ 15 1138 at E.T. 16h 53m 358'2
18 43 1489

h

13 + 556 6263 + 565 3747
- 385 7823

14 + 1708440 + 113 1966 + 179 6023
-2725857 +3334

IS -101 7417 113 5300 - 929740
-159 0557 3294

16 -260 7974 113 8594 -2520210
45 1963 3287

17 -3059937 114 1881 -2972083
+ 68 9918 3252

18 -237 001 9 1145133 -2282077
+ 1835°5 1 3228

19 - 534968 114 8361 - 44 6945
+298 3412 +3226

20 +244 8444 + 115 1587 +253 6545
+413 4999

21 +658 3443 +667 1614

Mter the times of the geocentric phases have been obtained, all other data required for
the calculation of local contacts may be derived by interpolation, to the times of geocentric
contacts, in the hourly tabulations.



10. OCCULTATIONS *

A. INTRODUCTION

Although there is no section of the Ephemeris devoted to lunar occultations,
the provision of predictions to facilitate observation and the reduction of observa­
tions form a routine commitment·of H.M. Nautical Almanac Office. A world­
wide coverage of predictions was undertaken starting with the year 1937, and since
1943 the Office has been responsible for the collation, reduction, and discussion of
observations. More recently a start has been made in providing predictions for
occultations of radio sources.

For many years previously H.M. Nautical Almanac Office had endeavoured
to further the increased observation, and the reduction, of lunar occultations.
Prediction elements were first published in The Nautical Almanac for 1824, and
predictions for Greenwich were added in the edition for 1834. [The American
Ephemeris gave prediction elements and predictions for Washington from its
introduction in 1855.] Several appendices (see section 7F.l), notably those to the
editions for 1826, 1827 to 1833, 1836, and 1837, were devoted to methods and
rules for computing visible and observed occultations. The importance of lunar
occultations in determining the fluctuation in the motion of the Moon received
new emphasis with the publication in 1919 of Brown's Tables of the Motion of the
Moon, which provided a firm basis for the comparison of observation with theory.
But, until the availability in 1940 of the Catalog of 3539 Zodiacal Stars for the
Equinox 1950'0, the errors in the star positions placed a severe limitation on the
accuracy obtainable. Up to 1942, the reductions were done either by the observers
themselves or, for amateur observers, by the American Association of Variable
Star Observers and by the computing section of the British Astronomical Associa­
tion. The whole work of observation and reduction was organised, at Yale
University, on a world-wide scale by Professor E. W. Brown, and later by Professor
D. Brouwer, who published the annual analyses of the observations for the years
1923 to 1942. H.M. Nautical Almanac Office had contributed much to this
programme by the provision of forms, tables, and instructions for the use of the
B.A.A. computers, in addition to an increasingly large number of predictions.
The work of prediction had been simplified by J. D. McNeile who had directed
much of the B.A.A. work and who, in 1928, designed and built an " occultation
machine" to provide preliminary times for any station; this machine was used
in the Office until replaced in 1934 by the present machine, of which a full

277
*Many changes in scope and technique have been made since 1960 but only a few are noted.
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description is given in The Prediction and Reduction of Occultations, a supplement
to The Nautical Almanac for 1938. Many data, designed to s:mplify the onerous
calculation of the apparent places of stars, were also published in these years in
The American Ephemeris, which also supplied the very considerable basic data of
the prediction elements. The method of reduction used was essentially that
developed by R. T. A. Innes in 1922, though this was adapted in 1937 to machine
calculation by L. J. Comrie, who introduced the concept of occultation reduction
elements, designed to facilitate the labour of reduction; these were published for
the years 1937 to 1942, until in fact the Office undertook to compute the reductions
themselves.

L. J. Comrie was also mainly responsible for the increased interest in, and
predictions for, occultations by planets and much work was done under his
direction by the B.A.A. computing section. Brief notes on such planetary
occultations are given in sub-section F; sub-sections A to E are concerned only
with lunar occultations.

Details are given later of stations for which predictions are made, how they
are distributed and where they are published. Prediction elements, which were
published in The American Ephemeris prior to 1960, and apparent places of
occulted stars, required in the reduction of observed occultations and published in
The Nautical Almanac until 1960, have been omitted from the Ephemeris for
various reasons: in the case of predictions because it would be inappropriate to
include all stations, and because other publications have agreed to carry them for
North America and the British Commonwealth; in the case of prediction elements
because the programme itself calls for complete coverage, and can be expanded if
necessary; and in the case of apparent places because observations of predicted
occultations are reduced systematically in H.M. Nautical Almanac Office on
punched-card machines, and individual reductions are not in fact used.

An ob3ervation of an occultation of a star by the Moon gives a relation
between the positions of the star, the limb of the Moon, and the observer, and a
series of such observations can be used to determine one of these positions provided
the other two are sufficiently well determined. For the visual observations, the
positions of the stars and the observers are assumed known with sufficient accuracy
for the statistical investigation of the results to be used to determine the values of
quantities connected with the Moon and its orbit. At present (1960) these investi­
gations are confined to determining the difference between the observed and
tabular positions of the Moon. On the other hand, the position of the Moon is
known more accurately than are the positions of radio sources, and so the occul­
tations in this case are mainly used for improving the positions of the sources.

Added note (1973). Since 1960 the occultation programme has been extended in several
ways. Maps of the tracks and detailed predictions of grazing occultations are issued since
the observations provide useful data about the latitude of the Moon and the profile of its
limb. Special predictions for the occultations of X-ray sources, etc., observed from rockets
and artificial satellites are prepared. In the reduction of occultation timings allowance is
made for the irregularities of the Moon's limb; the corrections are calculated automatically
from a digital representation of Watts' charts (see page 303).
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B. PREDICTION

To ensure that all suitable occultations will be observed whenever possible, it
is considered desirable to supply the observers with predictions. The information
supplied in the prediction of an occultation has been chosen to be in the most
convenient form for the observer, particularly in the case of reappearances, and
consists of the approximate time and position angle of the disappearance or
reappearance of the star at the limb of the Moon. The time is given in V.T. to
one tenth of a minute and the position angle to the nearest degree. Annual lists of
these predictions are prepared for about 80 central stations, together with longitude
and latitude coefficients which enable observers in the vicinity of these stations to
derive times for their own positions.

Limitations imposed on predictions

The stars for which predictions are made are confined to those of magnitude
7'5 and brighter contained in the Catalog of 3539 Zodiacal Stars for the Equinox
1950'0 (z.e.) published in A.P.A.E., 10, part II, 1940. With a view to restricting
predictions to those occultations of which observations can be made in suitable
circumstances, the following limitations are imposed.

At the bright limb, disappearances are given only for stars of magnitude 4'5
or brighter, and reappearances for stars of magnitude 3' 5 or brighter. At the



280 EXPLANATORY SUPPLEMENT

dark limb, reappearances are given only for stars of magnitude 6'5 or brighter;
hence, after full moon no predictions are given for stars fainter than magnitude 6'5.

Within 24 hours of new moon no predictions are given, while within 48 hours
of new moon predictions are restricted to stars of magnitude 1'9 or brighter.

Within 24 hours of full moon, except during a total lunar eclipse when the
appropriate dark-limb limitations are used, the limiting magnitude is 3 '0, within
48 hours 5'5, and within 72 hours 6'5.

The star must be at least ten ·degrees above the horizon except for stars of
magnitude 1'9 and brighter when the adopted limit for altitude is two degrees.

Predictions are given during daylight hours for stars of magnitude 1'9 and
brighter. For other stars the earliest and latest times for which predictions are
given correspond to the following depressions of the Sun.

Magnitude Earliest Latest
2'0 - 4'5 Sunset 6°
4.6 - 5'5 3° 9°
5.6 - 7'5 6° 12°

For grazing occultations the criteria for rejection or for the omISSIOn of
longitude and latitude coefficients, which become unreliable near grazing conditions,
depend on the quantity kn cos if; which occurs in the prediction calculation and is
explained below. The occultations are omitted completely when the value of
kn cos if; at the moment of occultation is numerically less than 0'030, unless the
star is brighter than 1'5 when the limiting value is 0'015; the corresponding value
for the omission of latitude and longitude coefficients is 0'060.

Preparation of the list of conjunctions

If at any instant a star is within an angular distance of the Moon of less than
the sum of the Moon's horizontal parallax and semi-diameter, it must be occulted
as seen from some point on the Earth. During anyone year the same star may be
occulted more than once, as the Moon will make twelve or thirteen passages along
approximately the same path in the sky. The selection of conjunctions for which
occultations are possible can be made by a variety of methods, as, for example, by
plotting the path of the Moon on a chart on which the star positions are already
plotted. The method described here has been chosen because of its suitability for
use with punched-card machines.

The positions of the z.e. stars for the equinox of 1950'0 are available on cards
as are also the hourly values of the apparent right ascension, declination (8{), and
horizontal parallax (7T {) of the Moon. The selection of conjunctions is made
twelve months at a time from July to June, to simplify the calculation of the
apparent places of the stars. For an integral hour, let:

A = 8{ + 88{ ± (Z + 7T{)

B = 8{ + (Z + 7T{)

where (Z + 7T {) is always taken with the same sign as 88 {, the hourly first difference
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of 0«, and Z is a constant for any particular selection; a sufficiently large value of Z
can be chosen to ensure that A and B are the extreme limits of declination for
which stars, coming to conjunction in right ascension in the following hour, can be
occulted. In practice, the selection is ,made by calculating (A - 0*) and (B - 0*)
and retaining those stars for which the two quantities have opposite signs.

A crude preliminary selection is made first by combining the 1950'0 positions
of the stars with a mean orbit of the Moon as represented by one actual revolution
from Oh to 24h in right ascension. In this case the constant Z is made up of the
maximum values of the Moon's semi-diameter, of the reduction of the star
positions from 1950'0, and. of the effects of using the mean orbit. The resulting
list of stars, for which (A - 0*) and (B - 0*) have opposite signs, includes many
stars that will not lead to eventual occultations.

For the stars in this preliminary list, mean places are calculated for the
beginning of the year included in the period. The selection process is then
repeated using these mean places for the stars and the actual hourly positions for
the Moon; the value of Z used in this case is much smaller than in the preliminary
selection, as the effects of reducing the mean places from 1950'0 to the beginning
of the year concerned and of using a mean orbit are removed. Apparent places of
the stars are then calculated for the conjunctions so selected. These are checked
by differencing and by joining on to those calculated in the preceding year.

The conjunctions that violate the restrictions depending on the magnitude of
the star and the phase of the Moon are deleted from the list at this stage. . They
could be omitted before the calculation of the apparent places, but their retention
assists the checking of the apparent places themselves and helps to ensure that no
conjunction is accidentally omitted. The next stage is to calculate Besselian
elements for the remaining conjunctions.

Calculation of Besselian elements

The Besselian elements for occultations are similar to those for eclipses (see
section 9)' In occultations, the fundamental plane passes through the centre of
the Earth and is perpendicular to the line joining the star and the centre of the
Moon, i.e. to the axis of the shadow. The origin of the coordinates is the centre
of the Earth; the axis of x is the intersection of the Earth's equator with the
fundamental plane and is taken as positive towards the east; the axis of y is
perpendicular to that of x and is taken as positive towards the north. The great
distance of the star implies that the fundamental plane is perpendicular to the line
joining the centre of the Earth to the star, and that the Moon's shadow is essentially
a cylinder whose intersection with the fundamental plane is a circle of invariable
size, its diameter being equal to that of the Moon. The coordinates of the centre
of this circle, i.e. of the axis of the shadow, are denoted by x and y. The adopted
unit of linear measurement is the Earth's equatorial radius.

The Besselian elements are given for one instant only, namely, the time of
conjunction of the star and Moon in right ascension, when x is zero. They are:
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To = the V.T. of conjunction in right ascension
H = the Greenwich hour angle of the star at To
y = y at To

x', y' the hourly variations of x and y
a*, 0* = the right ascension and declination of the star.

Example 10.1. Illustration of the selection of stars

It is not practicable to give a numerical illustration of the general process of selection,
but the following shows portions of the selection process, including z.e. 2833, the occul­
tation of which on 1960 September I is used for later examples.

For the year 1960 July to 1961 June, the mean orbit adopted for the Moon, for com­
parison with the 1950'0 star positions, is the revolution for 1960 December 24d 20h to 1961
January 21 d 03 h and the value'for Z is 1° 35'. A typical run of results from the punched
card machines follows; the lines with no entry under" z.e. No." refer to the Moon and
asterisks indicate the selected stars.

z.e. Mag. Date RA. Dec. 33( A - 3* B - 3*
No. d h h m . o , • , .

Jan. 16 10 192°52'461 - 18 1652'93 +3°1.83
2830* 6'9 19 20 55'721 - 17 1736 '05 + I 40 10·62 -33542'55
2831 . 5'9 1921 23'225 -27575 1'21 + 122025'78 +7°432.61
2832 6· I 1921 55' 187 -292427'75 + 1347°2'32 +83 109'15
2833* 7'0 1922 12'339 - 18 3944'43 + 3°2 19'°0 - 21 334'17
2834 5'° 1922 14'006 -243626:82 + 859°1'39 +34308'22

B - 3*
h m s , .

192049'366 - 1742 15'77 +3 13'96
1921 33. 826 - 17 16 19.87 + 05 8 46 .81 - I 47 24·65
192250 '796 - 18 38 26.89 + 220 53. 83 -025 17.63
192321·896 - 1739°1.81 +3 21 '37
19 2549'133 - 182622'32 + 212 II'16 -°34°8'77

d h

Sept. 01 19
2830 * 6'9
2833* 7'°

Sept. 0120

The stars indicated by asterisks, such as z.e. 2830 and z.e. 2833, are retained for
further examination and their mean places for 1961'0 calculated. In the selection proper,
these mean places are compared with the tabular values of the Moon's position and the
value of Z becomes 21' 24". The section of the results for September corresponding to
the above preliminary selection is as follows.

z.e. Mag. Date RA. Dec.
No.

For the retained stars, apparent places are calculated for each conjunction with the
Moon. The apparent places for z.e. 2833, magnitude 7'0, are listed below, together
with reasons why certain conjunctions are eliminated from further consideration.

Date RA. Dec. Date RA. Dec.
1960 1961

d h m • o , • d h m o , N

July 09* 192250'28 - 1838 18'9 Jan. 16* 19 22 49'09 -183821'9
Aug. °5t 5°'43 18'5 Feb. 12* 49'59 22'0
Sept. 01 5°'24 18'9 Mar. 12* 5°'28 21 '4
Sept. 29 49.80 19'7 Apr. 08* 5 1'°8 20'0
Oct. 26 49'3 1 2°'4 May 05* 51 '91 17'9
Nov. 22 48 '94 21'0 June 02* 52·68 15.6
Dec. 19t 19 22 48.86 -183821'5 June 29* 19 22 53'26 - 18 38 14'0

* after full moon and before new moon; star too faint for reappearances.
t within 48 hours of full moon.
t within 48 hours of new moon.
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The hourly values of the Moon's position are available in terms of E.T., so
the Besselian elements are first calculated in terms of E.T. and later the time and
hour angle are adjusted for the extrapolated difference between D.T. and E.T.

The formulae for x and y, the coordinates of the centre of the shadow on the
fundamental plane, are:

x sin 7T~ = cos S~ sin (a~ - a*)
y sin 7T~ = sin S~ cos S* - cos S~ sin S* cos (a~' - a*)

These may be reduced, with sufficient accuracy for prediction purposes, to:

a - a* S - S*x = 15 cos S~ ~ '. y = ( + 0'000036 x (a~ - a*) sin S*
7T~ 7T~

in which a ~ - a* is in seconds of time, and S~ - S* and 7T ~ are in seconds of arc.

The second term in y may be replaced by +0'0083 x 2 tan S*, with a further error
not exceeding 0·0002.

At the time of conjunction:

yx = 0 y = S~ - S*
7T(

I ~ I ,

, '" a~ , = ~ _ y7T~
X = 15 cos 0 ~ - Y

7T~ 7T~ 7T~

where x', y', a'~, S'~, 7T'~ are the hourly variations of x, y, a~ (in seconds of time) and
S~, 7T( (in seconds of arc). The hourly variations at the time of conjunction of
the Moon's coordinates may be obtained with sufficient accuracy by interpolating
the first difference to the time of conjunction.

As x and yare linear to the precision required x' and y' are constant, and
it is quite simple to calculate most of the elements by two methods so that compar­
ison of the two results provides a complete check. In the first method, the values
of x, yare calculated for the integral hour TI before conjunction and the integral
hour T2 immediately f.allowing. If these values are designated Xl' YI and x 2, Y2

respectively, then:

x' = X 2 - Xl y' = Y2 - YI

TE (time of conjunction in E.T.) = T I - Xl/X'

Y = YI - xly'/x'
HE = ephemeris sidereal time at Oh E.T. +

sidereal equivalent of TE - a*

In the second method, the values of a (, S~, and 7T ~ and their variations for the
time TE , as given by the first method, are obtained by interpolation in the Moon's
hourly ephemeris. Y, x', and y' are derived from the direct formulae and are
compared with the values already obtained; a ~ and a* are compared to check
the value of TE •

HE is calculated independently, as a check, by replacing a* in the formula
by a~. The adjustment from E.T. to D.T. is made by putting:

To = TE - L1T H = HE - 1'002738 L1T
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Example 10.2. The calculation of Besselian elements

For z.e. 2833 on 1960 September I, the integral hour before conjunction is 19h, so
the first part of the calculation of the Besselian elements is performed for 19h and 20h E.T.

E~ I~ ~

b m m

19 20 49'37 19 23 21.90
19 22 50'24 19 22 5°·24

120·87 + 31.66
, .

-17 42 15.8 - 17 39 01·8
-18 38 18'9 - 18 38 18·9
+ 3363. 1 + 3557' I

3604.8 36°5·3

14'290 14'294
0'3 196

-0.4791 +0' 1255
+ 0-6046

+0·93295 +0·98663
-0·00067 -0·00005
+0.9323 +0·9866

o{
0*

o( - 0*
7T{

15 cos o(
sin 0*

X

x'

(O{ - 0*)/7T{
second term
sum = y

y' + 0·0543
Y + 0·9753

TE = 19h - Xl/X' 19h·7924
E.S.T. at Oh E.T. 22h.6771 I
HE = 22h·67711 + 1'002738 (19h·7924) - 19h·38062 = 23h.1431

The elements are now calculated for time T E , i.e. for 19h'7924 E.T.; the subscript (
is omitted, so that all quantities without a subscript refer to the Moon.

a
a'

b m
19 22 50·23

152.52
1/7T 0-0002 7738
x' 15 cos 0 (a'/7T) +0.6047

o - 17 39 42·7 15 cos 0 14-293
o - 0* + 3516'2 7T 36°5'2 Y = (0 - 0*)/7T +0·9753
0' + 196'1 7T' + 0'5 y' = (0' - Y7T')/7T +0'0543

The calculation of HE is the same as above, HE = 23h'143I.

The comparison of the values derived by the two methods is satisfactory.
LIT = 368 = Oh· OIOO

To 19h'7824 H = 23h'1331
19h 46m·9 = -Oh 52m.0

An examination at this stage of the values of Y enables many of the conjunc­
tions which will just miss the Earth to be eliminated, but it is impossible to eliminate
conjunctions that will be visible from portions of the Earth from which observation
is unlikely, or to apply the remaining restrictions; these must wait until the examin­
ation is made using the occultation machine and, in critical cases, until the accurate
predictions are done.

The same limitations are imposed on the predictions of occultations of planets
and minor planets as are used for stars. The selection of possible conjunctions
and the calculation of the Besselian elements are done separately. The position of
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the planet is calculated for the integral hours T1 and T2 and allowance made for
the variation of the planet's position in the calculation of the elements.

Occultation maps and limiting parallels

Maps similar to those for solar eclipses (see section 9C) could be prepared for
all occultations. A full account of the calculations for such maps is given by
J. T. Foxell in Memoirs of the British Astronomical Association, 30, 107-148, 1934.

Because of the large numbers of occultations it is impracticable to publish a
map for each occultation, and the complete coverage provided by the predictions
now makes them unnecessary; they are, in effect, replaced by the occultation
machine. When elements were published it was usual to include limiting parallels
of latitude, outside which the star could not be occulted. The method of obtaining
these parallels is developed by Chauvenet in Spherical and Practical Astronomy,
Vol. I, page 561. His results are summarised, in a more convenient form below.

The northern and southern limiting parallels are denoted by epl and ep2.
cot N = y'/x' y' treated as positive 0 ~ N ~ 900
cos Yl = Y sin N + 0.2725 Yl < 1800

cos Y2 = Y sin N - 0.2725 Y2 < 1800

sin f1 = sin N cos S* f1 < 900

Then, for northern declinations:

(I) If cos Y2 is greater than sin f1
(2) If cos Y2 is less than sin f1 and

(a) Yl is imaginary
(b) cos Yl is greater than sin f1
(c) cos Yl is less than sin f1

(3) If cos Y2 is greater than -sin N
(4) If cos Y2 is less than -sin N
(5) If Y2 is imaginary and

(a) cos Yl is greater than -sin N
(b) cos Yl is less than - sin N

For southern declinations:

( I) If cos Yl is less than - sin f1
(2) If cos Yl is greater than - sin f1 and

(a) Y2 is imaginary
(b) cos Y2 is less than - sin f1
(c) cos Y2 is greater than - sin f1

(3) If cos Yl is less than sin N
(4) If cos Yl is greater than sin N
(5) If Yl is imaginary and

(a) cos Y2 is less than sin N
(b) cos Y2 is greater than sin N

epl = f1 + Y2

epl = +900
epl = +900
epl = 1800 - f1 - Yl

sin ep2 = sin (N - Y2) cos S*
ep2 = _(900 - S)

ep2 = _(900 - S)
sin ep2 = sin (N - Yl) cos S*

ep2 = -900

ep2 = -900

ep2 = f1 - Y2
sin epl = sin (N + Yl) cos S*

epl = 900 + S*

epl = 900 + S*
sin epl = sin (N + Y2) cos S*
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Examination by means of the occultation machine

The occultation machine was designed for the double purpose of eliminating
conjunctions for which predictions would not be given, and of obtaining prelimin­
ary times and position angles at all stations for which predictions are necessary.
It is now primarily used for determining for each selected conjunction those
stations for which detailed investigation of possible occultations is to be made on
an electronic computer.

Regarding the star as a source of light at an infinite distance, the Moon casts a
cylindrical shadow on the Earth; at any instant the star is occulted at all places
within the area formed by the intersection of this shadow and the surface of the
Earth, while an occultation is either just beginning or just ending at places on the
edge of the shadow. In the machine, the Earth is represented by a globe and the
Moon-star-shadow system by a cylindrical beam of light of the correct radius.
The initial setting of the machine is for the time of conjunction and consists only of
setting the Besselian elements on appropriate scales. The driving mechanism is
connected to a clock face on which a zero reading is obtained at the time of con­
junction, and which is graduated in both directions to enable differences in time
from that of conjunction to be read to Oh·O!. Provision is made for the globe and
the shadow to be moved by the operation of one handle only, so that, when once
set for the time of conjunction, the machine will continue to present an accurate
picture of the actual circumstances; it thus enables the path of the shadow to be
visualised, and the time intervals from conjunction to the disappearances and
reappearances, and the corresponding position angles, to be read off for all stations
in that path. Each station is represented accurately on the globe by a black dot
on a white disk.

It is thus easy for the operator to eliminate conjunctions which give rise to
occultations visible only from uninhabited portions of the Earth. Of the other
limitations imposed on predictions only those for sunrise and sunset are likely to
cause the complete elimination of a conjunction, but they must also be borne in
mind by the operator for the individual stations. An adjustable grid is used to
represent the different sunrise and sunset limits, and, in recording the times and
position angles, the operator adds the letter S or SS to show that a station is near
the limit. The limits for altitude and graze require a judgment that is learned
only by experience; low occultations and near grazes are marked L or LL and G
or GG respectively. The final decision for inclusion or exclusion of the prediction
can only be made when the accurate calculation has been done. Conjunctions
which give rise to no predictions are examined by a second operator to ensure that
no accidental omission is made.

Calculation of accurate predictions

In the numerical prediction of occultations, the only mathematical condition
to be satisfied is that, at the time of disappearance or reappearance, the line
joining the star and the observer must be tangential to the limb of the Moon.
The problem is that of finding the time at which the projection of the observer's
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Example 10.3. The use of the occultation machine

The occultation machine was set up for the time of conjunction of Z.C. 2833 on 1960
September 1. As the magnitude of this star is 7'0, preliminary times and position angles
are required for disappearances at stations where the Sun is at least 6° below the horizon.
The machine showed that the shadow first touches the Earth in the North Atlantic Ocean,
crosses the whole of Europe and the North African coast, and finally leaves the Earth near
the Caspian Sea. The first portion of the track occurs in daylight, and it is only after the
leading edge of the shadow has passed stations in the British Isles, western France, Spain
and the north-west coast of Africa that the 6° limit for the Sun's depression is reached.
A portion of the r~cord of time intervals from conjunction and position angles for subsequent
stations follows.

Position
angleStation

Interval
from

conjunction
h

Brussels -0·82 91 S
Utrecht -0'79 90 S
Berne -0'78 96
Strasbourg -0'76 94
Frankfurt -0'72 91
Munich -0·66 95
Prague -0'58 92

The entry S indicates that the Sun is very close to the 6° limit. When accurate times were
obtained the predictions for this star for Brussels and Utrecht were discarded.

position on the fundamental plane lies on a circle of constant radius (k) whose
centre (x, y) is the projection of the Moon's centre. The constant radius k is
the Moon's radius, here expressed in units of the Earth's equatorial radius; the
value adopted for predictions is 0'2725.

If g, TJ are the coordinates on the fundamental plane of the projection of the
observer's station the condition for a disappearance or reappearance is:

(x - g)2 + (y - TJ)2 - k2 = 0

At the preliminary time t1 this equation is not in general satisfied and the following
method is used to obtain a more accurate time. The basic data available for
each prediction consist of the Besselian elements at the time of conjunction
(To, H, Y, x', y', 0*), the geocentric coordinates ('\, p sin ep', p cos 1/) of the station,
and the preliminary values of the time interval (tl) from the time of conjunction
and of the position angle (Po)'

Then, denoting quantities at time t1 by the subscript I :

hI = H - ,\ + t.
where t. = 1'002738 t1 is the sidereal equivalent of t1

Xl x't1 Yl Y + y't1
gl P cos 1/ sin hI TJl = P sin 1/ cos 0* - Ql sin 0*
Ql p cos 4>' cos hI
fl Xl - gl gl = Yl - TJl
f; = X' - h'QI g~ = y' - h'gl sin 0*

where f;, g~, h' are the hourly variations of fl' gl, h ; h', measured in radians/hour,
is (27T x 1'002738)/24 = 0'2625.
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Thus f; = x' - °'2625 Ql g~ = y' - °'2625 ~1 sin 0*

At the time of occultation, t1 + L1t, if it is assumed thatf; and g~ are constant:
(11 + f; L1t)2 + (gl + g~ L1t)2 - k2 = °

Since L1t is generally small, a first approximation is given by:
k 2

- f~ - gi
L1t1 = (f f' ')2 1 1 + gl gl

and a second approximation byL1t1 + L1t2where:
f'2 + '2

L1t2 = - (L1t1)2 -(I If' gl ')
2 1 1 + gl gl

Defining for time t1 :

n2
1 =- fl'2 + g1'2 kn cos ./. - 1 f' + g g'1 '1'1 = 1 1 1 1

then at time t1 + L1t:
f = fl + f{ L1t g = gl + g~L1t

kn cos if; kn1 cos if;1 + n~ L1t
These quantities can be used to confirm that f2 + g2 - k2 = 0, or if necessary to
calculate a third correction to the time t1 + Llt1 + Llt2 by:

LIt = k2 - f2 - g2
3 2 kn cos if;

and to form the position angle of occultation by:
sin P = - flk cos P = - glk

The quantity n is a measure of the Moon's motion relative to the observer and
if; is the angle between the radius from the centre of the Moon to the- star and the
direction of this motion; if; lies between 180° and 90° for disappearances and
between 0° and 90° for reappearances. kn cos if; is thus negative for disappearances
and positive for reappearances; it is largest for central occultations but becomes
small as if; approaches 90°, or as the occultation becomes a graze. Any error in
the position of the star or in the assumed limb of the Moon gives rise to an error
in the predicted time of occultation that is inversely proportional to kn cos if;; the
value of kn cos if; has accordingly been used as the criterion for the rejection of
grazing occultations.

In the determination of LIt, the second term Llt2is negligible in most cases but
becomes appreciable as kn1 cos if;1 becomes small, that is as grazing conditions are
approached. The preliminary time t1 from the occultation machine is usually so
close that the series for LIt converges rapidly; if a good preliminary time is not
available, a second calculation, based on the time given by the first calculation,
may be necessary.

After the formation of hI' an intermediate step is inserted to check for altitude
limit. This consists of forming:

s = sin (alt.) - sin 10° = P sin 4>' sin 0* + Ql cos 0* - 0'173
Those occultations for which s is negative are examined, and are rejected unless
they are so near the limit that the subsequent correction to the time will make
sufficient alteration, or are for stars brighter than magnitude 2·0. The doubtful
cases are re-examined when the calculation is completed.
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The position angle P, measured eastwards from the north point of the Moon's
disk, is determined from the smaller of the two functions sin P and cos P, and
compared, as a general check, with the value given by the occultation machine.
The preliminary interval t1 and the correction Lit, which are both in hours, are
added to To in hours, and the result converted to hours, minutes, and tenths
of minutes.

Llt2 = 0'000

Y1 +0'934 1
7]1 +0'9101

- 7]1 +0'0240

-0'4589
-0'1899
-0'2690

+0.6046
-0' 1667
+0'43 8

x'
-0'2625 Q1

sum = l'

g1 = Y1

y' +0'0543
-0'2625 g1 sin 0* -0'0159

sum = g' +0'038

_ k 2 - R - g~ _
kn1 cos '1'1 = -0'I17 Llt1 - -011 '006- 2kn1 cos if11

For Llt = Llt1 + Llt2 = -011 '006 To 1911'782
f -0'27 16 t 1 = -0 '759
g +0'0238 Llt = -0 '006

f2 + g2 - k2 +0'00008 T = 19 '017
kn cos if1 -0'I18 19 11 Olffi·O

The position angle is obtained from cos P = -0,0238/k, giving P

Example 10+ The accurate prediction of an occultation

During the examinati0n of the star Z.C. 2833 on 1960 September 1 by means of the
occultation machine, the disappearance of the star as seen from Strasbourg was found to
take place 0 11 '76 before the time of conjunction in position angle 94°; the operator made no
remarks as to Sun, altitude, or graze.

The Besselian elements are those for which the calculation has already been illustrated;
both To and H are used in hours. Also required are:

sin 0* = -0'3196 cos 0* +0'9476
The station constants required for Strasbourg are:

A = -011'518 P sin rf/ = +0'7463 P cos ep' +0·6628

h = H - A +, t.
= 23 11 '133 + 011'518 - 0 11 '762 = 2211 .889

As a computational convenience h is taken as exact to 0 11 '01 and the preliminary time is
adjusted to the appropriate three-decimal value. In this case the values to be used are:

h 1 = 22 11 .89 t1 = 0 11 '759

sin h1 -0'2865 Q1 +0.6350
cos h1 +0'9581

S = sin (alt.) - sin 10° +0'190 This is satisfactory.

Y +0'9753
y't1 -0'0412

Preliminary time without the occultation machine

Of the various methods that can be devised for obtaining preliminary times
the simplest is probably a graphical method. The outline of the projection of the
Moon's disk on the fundamental plane is represented by a circle of radius 0'2725

units and the projections of the positions of the station are plotted for times at
integral hours from the time of conjunction. If a point inside the circle is joined
to one outside by a straight line, the point where this line intersects the circle
gives a sufficiently good approximation to the projection of the station at the time
of disappearance or reappearance. The preliminary time is obtained by assuming
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that the projection of the station moves uniformly along the straight line joining
the two plotted values.

If the subscript 0 is used to denote the values of the functions at the time of
conjunction (To) then:

~o p cos 4>' sin (H - ,\) Qo = P cos 4>' cos (H - ,\)
fo -~o go = Y - p sin 4>' cos 0* + Qo sin 0*
f o' x' - 0'2625Qo "6 c . ")1 go = Y - 0·2 25 So sm u*
f; +0'069 ~o g~ = -0'069 Qo sin 0*
f~' +0'018 Qo g~' = +0'018 ~o sin 0*

An inspection of the values of fo, f~ and go, g~ will usually indicate which integral
hours from To are necessary to obtain points outside and inside the circle for the
required phase. If the times are T1 and T1 + 1 h and the distance between the
points is d, and if the distance from the point at T1 to the intersection of the line
and circle is d1, the pre}iminary time is T1 + d1/d hour. This time may be used
as a starting time for the more precise calculations already illustrated. The
approximate position angle can be obtained from the diagram by measurement
with a protractor. Sufficiently accurate values for plotting purposes are obtained
from a calculation to three decimals.

go -0'060
Qo +0·660

Example 10.5. Direct evaluation of a preliminary time

A preliminary time for the disappearance of z.e. 2833 on 1960 September I at Stras­
bourg is found as follows. Details of the initial calculation are not given.

At the time of conjunction, To:

H - A = 23h·651 sin (H - A) -0'091
cos (H - A) +0'996

fo +0'060 go +0'057

f~ +0'43 1 g~ +0'049
f; -0'004 g; +0'01 5
fg' +0'012 gg' +0'000

An inspection of these figures indicates that the disappearance will occur between
To - I h and To.

For time To - I h, using Taylor's series:
f = -0'375 g = +0'01 5

The points (fo, go) and (f, g) were plotted on squared paper, with a scale of I inch to o· I of
the Earth's equatorial radius. The distance between the points was 4'37 inches, and the
distance from the point for (To - I h) to the intersection of the line joining them with the
circle representing the Moon's disk was I '02 inches. The preliminary time is therefore

h
To - Ih + ~ ·02 = 18h'78 + Oh' 23 = 19h'OI , which may be compared with the time

4'37
from the occultation machine of To - oh'76 = 19h'02 or the time of 19h'OI7 derived from
the precise calculation. The position angle measured by protractor is 940

•

Alternative methods of prediction

Another method, suitable for an electronic computer, consists of taking the
time of conjunction as initial time, assuming that f; and g~ are constants, and
solving the quadratic equation:

(fo + f~ Llt)2 + (go + g~ Llt)2 - k2 = 0
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by formal methods, similar to those used in eclipses (see section 9C)' The two
values of LIt, the earlier corresponding to disappearance and the later to reappear­
ance, are then used to give initial times for further calculations. Considerable
care is required, since the non-linearity off' andg' may make the difference between
a " graze" and a complete miss; in the latter case the time of closest approach,
given by:

LIt = -(foj~ + gog~)/n~

may be used as the new starting time for both phases.

The alternative method used for eclipses has much to commend it, if no
other method of obtaining approximate times is available. Values of j, g for the
five or six integral hours of E.T. bracketing both phases of the occultation are
calculated; P + g2 - k 2 is formed for each hour and the times of disappearance
and reappearance found by inverse interpolation. Only one set of values of x, y
need be calculated for each conjunction of star and Moon, as for the occultation
reduction elements that were given in The Nautical Almanac from 1937 to 1942;
Besselian elements for the time of conjunction are not required. g, 'Y) have ~o be

Example 10.6. Alternative method of prediction, using Besselian elements

For the purposes of illustration, the times of disappearance and reappearance of Z.C.
2833 on 1960 September I at Strasbourg are calculated by the alternative method, using the
Besselian elements. An interval of 30 minutes is used, and four decimals are retained,
though three would suffice.

h

To 19'7824 P sin if>' +0'7463 sin 0* -0'3 196
p cos if>' +0·6628 cos 0* +0'9476

H 23'133 x' +0. 6046 y' +0'0543
A -0'5 18

h = H - A 23. 651 sin h -0'09 12 cos h +0'9958
go -0'0604 Qo +0·6600

y +0'9753
-p sin if>' cos 0* -0'7072 go sin 0* +0'01 93 Qo sin 0* -0'2109

fo +0'0604 go +0'0572
h

For t = o· 5
1'0

f

(I - cos t.) = 0'0086
0'0343

g

sin t s = 0'1309
0'2595

j2 + g2 _ k2

h

-I'O

-0'5
0·0

+0'5
+I'O

-0'375 1

6
+2191

- '15 0
2164+ '0604 21 55

'2759 +2 158
+0'4917

+0'01 51
+ 192

·0343
229

'0572 6
2 4

'0836
+301

+0'1137

+0'0667

'0487
- '0673
+ '0089

+0' 1804

-1154 68
_ 186 +9

+ 762 948
+953+ 17 1 5

Inverse interpolation (section 16B) gives:
h h

disappearance - 1'0, P = 0'471, B 2 = -0'0623, T = 19'018
reappearance 0'0, p = 0'926, B 2 = -0'0171, T = 20'245

The reappearance is not predicted because it occurs at the bright limb of the Moon and tlie
star is faint.
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calculated for each station. The interval of one hour, in which the Earth rotates
through more than one-quarter of a radian, is very large and the method is practic­
able only to the low precision required for predictions.

If Besselian elements are available f, g can be calculated directly from the
values at the time of conjunction by the rigorous formulae:

ft =fo + x't + go(1 - costs) - Qosints
gt = go + y't - sin 8* { Qo (I - cos t s) + go sin t s }

where t is the interval from conjunction, and ts is its sidereal equivalent. These
formulae may be used to calculate f, g and thus f2 + g2 - k2 for integral hours
before or after conjunction; inverse interpolation will then give the times of
disappearance and reappearance. If approximate times are known these quantities
may be tabulated at smaller intervals of time; thus making the inverse interpolation
much easier.

It must be emphasised that methods suitable for a single prediction are not
necessarily the best for the whole programme, which may well include over 8000

predictions a year; moreover, the many restrictive conditions (of sun, graze,
altitude) limit the scope of general methods here described.

Longitude and latitude coefficients

The longitude and latitude coefficients, designated a and b, are the rates of
change of time of occultation with the observing position; they enable observers
in the neighbourhood of a station for which predictions are available to derive
predictions for their own stations. They are determined, in minutes of time for
each degree of longitude and latitude, from the formulae:

a = k K f (f Q + g g sin 8*)n cos

b = k K f { C2 p sin ep' (f sin h - g sin 8* cos h) - SC p cos ep' g cos 8*}
n cos

where K = 60 3 sin I" = I '047 is the numerical conversion factor necessary to
express a, b in minutes of time per degree (instead of in hours per radian) ;
S = p sin ep'/sin ep and C = p cos ep'/cos ep are tabulated in table 2.8. They may
each be taken as unity in the above expressions as the maxim11m error that can be
caused by this simplification is om,03. The values of f, g, kn cos f used must be
those at the time of occultation and not at a preliminary time.

These coefficients are based on linear variations and although they give good
results for short distances, their inadequacy increases rapidly with distance
particularly if kn cos f is small. For this reason they are not provided when
kn cos f is numerically less than 0'060.

Use of a and b coefficients

An observer, whose position is ..1.\ degrees west and Aep degrees north of a
standard station for which predictions and coefficients are given, can find times
for his own position from the simple formula:

approximate time = predicted time for station + a ..1.\ + b Aep
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Example 10.7. Calculation of a and b coefficients

From the precise calculation of the prediction of the disappearance of Z.C. 2833 at
Strasbourg on 1960 September I the following quantities are obtained.

p sin 4>' +0'746 sin h -0'286 sin 8* -0'320
P cos 4>' +0·663 cos h +0'958 cos 8* +0'948

f -0'272 g -0'190 kn cos if! -0'118
g +0'024 Q +0·635 -KJkn cos if! +8'9

From table 2.8
S +0'995 C + 1'002

whence
C2 p sin 4>' +0'749 SC P cos 4>' +0·661

m
gsin 8* -0'008 fQ + ggsin8* -0'171 a -1'5
g cos 8* +0'023 f sin h - g sin 8* cos h +0'085

C2 p sin 4>' (f sin h - g sin 8* cos h) - SC p cos 4>' g cos 8* +0'048 b = +0'4

(The same value would be obtained if the factors C2 and SC were omitted.)

For distances up to 200 miles the error in the times so obtained is unlikely to be
greater than one minute, but it may rise to two minutes for distances of 300 miles.

A partial allowance for the neglected higher-order terms may be made by
applying to the times calculated by using the above formula the correction
±offi,075 cos2 4> (L14»2; this, which is a mean value of the largest of the second­
order terms, is positive for disappearances and negative for reappearances. With
this correction times are rarely in error by more than one minute for distances up
to about 250 miles, and for shorter distances the accuracy of the formula will be
improved. The correction is tabulated below.

Additional correction for latitude

The correction (= om'075 cos2 4> (L14»2) to the approximate time of occultation is:

to be added for a disappearance but is to be subtracted for a reappearance

Latitude of station
L14> 0 0 IOo 200 300 400 500 600

m m m m
I o· I 0'1 O' I 0·1 0'0 0·0 0·0
2 0'3 0'3 0'3 0'2 0'2 o· I 0'1
3 0'7 0'7 0·6 0'5 0'4 0'3 0'2
4 1'2 1'2 I· I 0'9 0'7 0'5 0'3

5 1'9 1·8 1'7 1'4 1·1 0·8 0'5
6 3 3 2'4 2'0 1·6 1·1 0'7
7 4 4 3 3 2'2 1'5 0'9
8 5 5 4 4 3 2'0 1'2

When the observer lies between two standard stations, for both of which a

and b coefficients are given, still greater accuracy can be obtained by working from
the nearer station and using modified coefficients. The modification is made by
assuming that the coefficients vary linearly with latitude and taking values of a, b
appropriate to the mean of the latitudes of the nearer standard station and the
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observer. If aI, b1, rpl' and a 2, b2, rp2 refer to the nearer and further standard
stations respectively and rp is the observer's latitude, then the modified coefficients
are:

a = al + q (a 2 - al ) b = b1 + q (b 2 - bl )

where q = tCrp - rpl)/(rp2 - rpl)
The times so obtained are generally within one minute for distances up to

300 miles. This method should not be used if the difference of latitude between
the two standard stations is less than one degree.

Example 10.8. The lise of a alld b coefficients

(i) An observer at Besan~on who wished to observe the disappearance of Z.C. 2833
on September I would find the approximate time of the occurrence from the time and
a, b coefficients published for Strasbourg.

LlA + 1°'78
a - I m '5

h

Predicted time at Strasbourg 19 01·e-
a LlA - 2·7
bLl~ -o~

Correction from table 0·0

Approximate time at Besanl;on 18 57.8

(ii) The Boyden Station at Bloemfontein (A = -26°'4°, ~ = -29°'04) may derive
predictions from those for Cape (,12 = - 18°'47, ~2 = -33°'93) and Johannesburg
(AI = -28°'°7, ~1 = -26°'18), the nearer station being the latter.

LlA = A - ,11 = + I ~67
~2 - ~1 = -7'75

Ll~ = ~ - ~1 = -2~86
q = i( -2·86)/( -7'75) = +0·18

For the disappearance of Z.C. 1467 on 1960 April '7 the information given for Cape
and Johannesburg is:

U.T. a b
h m

Cape 19 19'0 -2·2 - 1·0
Johannesburg 19 43'2 -3'3 +°'9

a = -3m'3 + 0'18 X 1m'1 b +om'9 + 0'18 X ( - I m'9)
-3m' l +om·6

Predicted time at Johannesburg
a LlA
b Ll~

Approximate time at Bloemfontein

19 43'2
- 5'2
- 1'7

19 36 '3

Linking

The predicted times and the longitude and latitude coefficients may be
checked by " linking" the results for standard stations comparatively near to each
other. For linking, the results of the predictions for two stations are combined
so that the second-order terms will tend to cancel out; this enables the check to be
used for stations separated by up to 450 miles. If the subscripts I, 2 are used to
denote the two standard stations, then the criterion adopted is that:

(TI - T 2) - i ( a l L1A + bl L1rp + a2 L1,\ + b2 L1rp) == 0 (approximately)
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where LI,\ = '\1 - '\2 and LI<p = <PI - <P2' In practice no discrepancy greater
than om'3 is acceptable without special investigation and explanation. The
criterion used is a special case of the procedure described above, applied to the
point midway between the two standard stations.

Stations *
A list of the stations for which predictions are made and the periodicals in

which they are published is given below; some predictions are supplied in manu­
script direct to the observatories, and for one station predictions are calculated for
checking purposes only.

List of standard stations for occultation predictions

Station Longitude Latitude Publication

+49'5°0

+42 '5°0

+36'000
+53'533
+34'000
+39.677
+3 1'°°0
+40 '000
+33'000
+43,663
+ 38 '920
+ 18'008
+45'5°5
+42 '500

-33'397
-31 '422
-34'908
-22,895
+28'100
+38'7°8
+42,875
+ 53'3 87
+36'462
+4°'4°8
+55'925
+ 36,83 8
+ 51'477
+4°·820
+43,612
+48,837
+ 50 '798

0'5°0
1'475
2'3 2 5
4'35°

0·000

+ 123'100
+ 121'000
+ 120,000
+ I 13'075
+ 1°9'°00
+ 1°4'95°
+ 98 '°°0
+ 91 '000
+ 85'°°0
+ 79'4°0

+ 77'°65
+ 76 '775
+ 73'575
+ 72 '5°0

+ 7°'55°
+ 64'200
+ 57'925
+ 43'225
+ 15'425
+ 9'175
+ 8'550
+ 6'35°
+ 6'200
+ 3.675
+ 3'175
+ 2'475

Sky and Telescope
Sky and Telescope
Sky and Telescope
Sky and Telescope
Sky and Telescope
Sky and Telescope
Sky and Telescope
Sky and Telescope
Sky and Telescope
Sky and Telescope
Sky and Telescope
Manuscript
Sky and Telescope
Sky and Telescope
Anuario (Santiago)
Manuscript
Revista Astronomica
Manuscript ,
Almanaque Nautico T
Manuscript
Almanaque Nautico
Manuscript
Almanaque N autico
Almanaque Nautico; Anuario (Madrid)
Handbook B.A,A,
Almanaque Nautico
Handbook B,A.A.
Almanaque Nautico
Connaissance des Temps
Connaissance des Temps
Annuaire (Brussels); Hemel en Damp­

kring
Utrecht 5'125 +52'°87 Hemel en Dampkring
Berne 7'425 +46'953 Der Sternenhimmel

* Predictions for the brighter stars are also given in The Observer's Handbook published
by the Royal Astronomical Society of Canada.

*Many changes have been made in this list since 1960.

tAlmanaque Nautico was renamed Eiemerides Astron6micas in 1961.

Denver

Santiago
Cordoba
La Plata
Rio de Janeiro
Las Palmas
Lisbon
Santiago de Compostela
Dublin
San Fernando
Madrid
Edinburgh
Almeria
Greenwich
Tortosa
Toulouse
Paris
Brussels

Toronto*
Washington
Jamaica
Montreal*

Edmonton*

Vancouver*
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List of standard stations for occultation predictions-(continued)

Station Longitude Latitude Publication

0

Turin 7'775 +45'°38 Annuario Astronomico (Trieste)
Strasbourg 7'775 +48'5 83 Connaissance des Temps
Frankfurt am Main 8·65° +50 '117 Ast. Nach.; Kalender fur Sternfreunde
Munich 11·600 +48'147 Ast. Nach.; Kalender fur Sternfreunde
Rome 12'45° +41'922 Annuario Astronomico (Trieste)
Copenhagen 12'575 + 55. 687 Nordisk Astronomisk Tidsskrift
Berlin 13'100 +52'407 Ast. Nach.; Kalender fur Sternfreunde
Trieste 13'775 +45.643 Annuario Astronomico (Trieste)
Prague 14'4°0 +50 '078 Hvezdarska Rocenka
Vienna 16'4°° +48 '212 Himmelskalender fur Osterreich
Poznan 16·875 +52 '397 Rocznik Astronomiczny
Cape 18'475 -33'933 Handbook B.A.A.; Handbook A.S.S.A.
Budapest 18'975 +47'500 Manuscript
Cracow 19'95° +50 '065 Rocznik Astranomiczny
Belgrade 2°'525 +44. 802 Bulletin (Belgrade)
Warsaw 21'025 + 52'218 Rocznik Astronomiczny
Athens 23'725 + 37'972 Manuscript

24'000 -3°'°°0 Checking station
Lvov 24'°25 +49. 833 Supplement to A.E. of U.S.S.R.
Riga 24'125 +56'952 Supplement to A.E. of U.S.S.R.
Helsinki 24'95° +60'155 Manuscript
Johannesburg 28'°75 -26'182 Handbook B.A.A.; Handbook A.S.S.A.
Luanshya 28'4°° -13'127 Handbook A.S.S.A.
Leningrad 3°'3 25 + 59'918 Supplement to A.E. of U.S.S.R.
Kiev 3°'5°0 + 5°'453 Supplement to A.E. of U.S.S.R.
Odessa 3°'75° +46 '477 Supplement to A.E. of U.S.S.R.
Helwan 31'35° +29. 858 Manuscript
Yavne 34'725 +3 1.81 5 Manuscript
Kharkov 36 '225 +5°'°03 Supplement to A.E. of U.S.S.R.
Moscow 37'575 +55'755 Supplement to A.E. of U.S.S.R.
Abastuman 42·825 +41'755 Supplement to A.E. of U.S.S.R.
Kazan 48.825 + 55. 838 Supplement to A.E. of U.S.S.R.
Kitab 66·875 +39. 133 Supplement to A.E. of U.S.S.R.
Dushanbe 68'775 +38'558 Supplement to A.E. of U.S.S.R.
Tashkent 69'300 +41'327 Supplement to A.E. of U.S.S.R.
Hyderabad 78 '45° + 17'432 Manuscript
Tomsk 84'95° +56 '468 Supplement to A.E. of U.S.S.R.
Irkutsk -1°4'35° +52'278 Supplement to A.E. of U.S.S.R.
Perth -115.85° -31'953 Manuscript
Zo-Se -121'175 +3 1'°97 Manuscript
Kyoto -135.800 +34'995 Manuscript
Tokyo -139'55° +35. 673 Manuscript
Melbourne -144'975 - 37.832 Handbook B.A.A.; Supplement to

l.A.S. Victoria
Sydney -15 1'200 -33.862 Handbook B.A.A.; Supplement to

l.A.S. Victoria
Dunedin -17°'5°0 -45.873 Handbook B.A.A.
Auckland -174'775 -36 .880 Manuscript
Wellington -174'775 -41'285 Handbook B.A.A.
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An unreduced observation of an occultation consists of the time, the position
of the observer, and the star name or z.e. number. This information gives a
relationship between the positions of the star, the limb of the Moon, and the
observer, at the time of observation; but it is not in a form suitable for combination
with other observations made from different places at different times, and has to be
reduced to a more convenient form by the elimination of the place of observation.
A convenient form in which to express this relation, for subsequent combination
of observations, is to reduce each observation so that it yields the excess of the
apparent distance of the star from the centre of the Moon over the adopted apparent
semi-diameter of the Moon, together with the position angle of the star measured
from the direction of the Moon's motion. The method of reduction to be described
is adapted primarily to the determination of the difference between the observed
and tabular values of the Moon's mean longitude and is in principle the method
used for the reduction of all observations since 1943. The principal quantities
are, however, obtained in a form suitable for other investigations; they may be
expressed directly in terms of the errors in the adopted semi-diameter and other
constants, and a solution made for the particular quantity or quantities required.

The reduction is illustrated by a fictitious example for 1960. No reductions
have yet been performed using the improved lunar ephemeris, nor have corrections
for the irregularities of the Moon's limb been applied systematically as it was
decided to wait for the completion of the survey of the marginal zone of the Moon
by Dr. e. B. \Vatts at the U.S. Naval Observatory. Later experience may show
that it is desirable to make minor alterations to the methods used, although these
changes are more likely to be in the method of analysis; in particular it may prove
possible to introduce a system of weights in the observational equations.

It is clear that the process of reduction must be very similar to that of predic­
tion. Besselian geometry is again used, but the coordinates are calculated more
precisely; as a legacy from the period of " hand" calculation the unit of linear
measurement, for which the equatorial radius of the Earth is used in predictions,
is taken as the radius of the Moon. The value used for k, the ratio of the radius *
of the Moon to that of the Earth, is 0'2724 953 and is the value adopted by R. T. A.
Innes (A.J., 35, 155, 1924) for occultation reductions.

An advantage of the method used is that the quantities derived can be
separated into those which depend on the position of the observer and those which
depend on the position of the Moon; thus the quantities depending on the Moon's
position can be derived for all the observations at the same time on the punched­
card machines.

Preparation of initial information

The observations for one" year" are usually reduced at a time, the" year"
consisting of an exact number of lunations, either twelve or thirteen, chosen to fit
*0'2725 026 used for 1968 onwards.
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most closely to the calendar year. The initial information consists of the original
lists of observations from the observers, and the punched cards containing the
lunar ephemeris, the Besselian elements, and the predictions. Where possible the
lists of observations are first compared with predictions and with lists of observa­
tions from neighbouring stations; this often enables recording errors, such as the
wrong number for a star or a time recorded an hour out, to be corrected before the
actual calculations are begun. The observations are then recorded on punched
cards, permanent codes being used for station, telescope, observer, and remarks.
The cards containing the Besselian elements of those conjunctions at which
occultations have been observed are then selected.

Reduction of observer's position

The coordinates (g, YJ) of the position of the observer projected on the funda­
mental plane, in units of the radius of the Moon, are:

g = (p cos 4>' sin h)/k
YJ = (p sin 4>' cos 8* - p cos 4>' sin 8* cos h)/k

where h is the hour angle of the star at the time of occultation and is given by:

h = sidereal time at Oh D.T. + t s - a* - II

t, being the sidereal equivalent of t, the observed D.T. of disappearance or
reappearance.

The quantities II, (p/k) sin 4>', (p/k) cos 4>' are constants for any particular
station and are punched for permanent use on " Station Data" cards.

Reduction of Moon's position

The time t of observation is measured in D.T. but the tabular values of the
Moon's ephemeris are given in terms of E.T. The latest approximation to LIT
must therefore be applied to t so that the lunar ephemeris can be entered with the
best available value of E.T. of observation. A correction to the value of LI Twill
be derived from the subsequent analysis of the observations.

The coordinates of the centre of the Moon on the fundamental plane are
given by:

cos 8~ sin (a~ - a*)x = ----'--;------,----'------'----------'-
k sin 7T ~

_ sin 8~ cos 8* - cos 8~ sin 8* cos (a~ - a*)
Y - k sin 7T~

or, since cos (a~ - a*) is approximately equal to I - t sin2 (a~ - a*):
sin (8~ - 8*) 1. . ~ . ( )

Y = k' + 2 X sm 0* sm a ~ - a*
sm 7T~

As the range of the angles (a ~ - a*) and (8 ~ - 8*) is small, it is permissible
to use, for computational convenience, the expressions:

x = 15 cos 8~ {(a~ - a*)S - correction }/s"
Y = {(8~ - 8*)" - correction }/s" +0'3636 x sin 8* (a~ - a*)s x 10-4

where s" = k sin 7T/sin I" is the Moon's geocentric semi-diameter and the
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corrections are those necessary to adjust for the difference between an angle and its
sine. To the precision given, which is in general adequate, the corrections may be
taken from the following critical tables; they are to be applied so as to diminish
the numerical values of (a~ - a*)s and (o~ - 0*)".

a~ - a* Corrn. o~ - 0* Corrn.

s

° °
178

0'00 0·0
2336

0·01 o· I
257 337°

0'02
3996

0'2

3°4
0'03 0'3

341 447°
37°

0'04
4861 0'4

396
0'05

0'06
419

Final part of the reduction

On the fundamental plane the distance of the observer from the centre of the
tabular Moon is:

{ (x - g)2 + (y - 1])2 } ~

and the semi-diameter of the Moon is unity, by virtue of the adopted unit of
measurement. The distance between the observer and the Moon's limb is accord­
ingly the small quantity:

{ (x - g)2 + (y - 1])2 } ~ - I

At the distance of the Moon this corresponds to an angular separation of:
Lla = s { (x - g)2 + (y - 1])2 } ~ - s

where Lla is the excess of the apparent distance of the star from the centre of the
Moon over the apparent semi-diameter of the Moon, reduced to the geocentric
distance of the Moon.

The position angle of disappearance or reappearance (X), with respect to the
centre of the tabular Moon and measured eastwards from the north point, is given
by:

tan X = -(x - g)/ -(y - 1])

The position angle derived from this expression is used in the calculation of limb
corrections. For the purpose of subsequent analysis less precision is required,
and, at the moment of disappearance or reappearance, the value of { (x - g)2 +
(y - 1])2 } is sufficiently near unity to allow the position angle to be determined
from:

sin X = - (x - g) cos X = - (y - 1])

Hence the angle p - X between the direction of motion of the Moon and the
direction of the occulted star can be obtained from:

sin (p - X) = +(x - g) cos p - (y - 1]) sin p
cos (p - X) = - (x - g) sin p - (y - 1]) cos p

where p, sin p, cos p are obtained from cot p = y'/x'
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The values of .da are examined and the observations which give quite
impossible results are investigated. In many of these cases it is found that the
observer has apparently recorded the number of minutes wrongly, and that
corrections of an exact number of minutes give reasonable values of .da. Such
observations and the results of their reduction are punched on the cards with a
code to show that they have been adjusted.

Limb corrections

where S is strictly the topocentric semi-diameter in degrees, but is generally taken
as s"/3600, where s" is the geocentric value in seconds of arc.

With these arguments the charts give the amount of the irregularity on the
Moon's limb in the direction of the star when· the Moon is at its mean distance
from the Earth. This quantity must accordingly be multiplied by the ratio of the
actual to the mean semi-diameters, s/so == 0'0010723 s", and subtracted from the
value of .da obtained in the reduction.

A = +tan bo cos Co + tan o(
IB = -tan bo sin Co

which are precalculated at intervals of one day, are obtained by interpolation for
the time of observation. The topocentric values are given by:

II = X - Co + AX + BY
1 = 10 + sec bo ( -X cos Co + Y sin Co)
b = bo + (X sin Co + Y cos Co)

where X, Yare angular distances in degrees corresponding to g, 7J and are found
from:

The value of .da found by the above method gives the distance of the star
from the smooth limb of a spherical tabular Moon. Before this distance can be
attributed to the difference, in position and size, between the tabular and observed
Moon, a correction must be made to allow for the irregularities of the Moon's
limb.

The amount of the irregularity will be· taken from charts being prepared by
Dr. C. B. Watts at the V.S. Naval Observatory. The arguments, which are in
degrees, are the topocentric values of:

II = position angle from the central meridian of the Moon
1 = libration in longitude
b = libration in latitude.

The values of the geocentric librations in longitude and latitude and the
position angle of the axis (lo, bo, Co respectively) are tabulated in the Ephemeris
at intervals of one day with argument in V.T. These and two auxiliary
quantities:

Y = S 7Jx = sg
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Example 10.9. Reduction of an occultation, with limb correction

It is assumed that an observer at Strasbourg has reported that he has observed photo­
electrically, under excellent conditions, the disappearance of Z.C. 2833 on 1960 September
I d 19h 01 m 078.81 U.T.

From the Besselian elements, the station constants, and the ephemerides in the
Ephemeris:

+0'94755
+2'4323
+0'95772

+3'3397

+0'0543
+0'089

Y'
cos P

cos D*
(p cos ef>')/k

cos h

x'
sin p

h m 9

+224037·61
+ 1901 07.81
+ 3 0 7'46
- 19 22 50'24
+ 03 1 04'25
+2253 06 .89

- a*
-,\

sum = h

sin D* -0'31960
(p sin ef/)/k +2'7388

sin h -0'28772

g -0·6998

It is assumed that the latest available approximation to Ll T is
LlT = +348'92 = +Oh'00970

whence E.T. of observation = 19h 01 m 078 .81 + 348'92 = 19h 01 m 428'73

G.S.T. at Oh U.T.
t

Correction to S.T.

D( - 1742 10'3

D* - 1838 18'9
D( - D* + 5608 .6

correction + 0'1
(D( - D*) - corr". + 3368 '5

IS cos D( 14'2897
I/S" 0'0010 1809

Y +3'427 1
Tj +3'3397

g=Y-Tj +0'0874

7T(

sIt

X

g
f =x -g

a( - a*
correction

(a( - a*) - corr".

h rn

19 20 53'72
19 22 50 '24

I 56'52
0·00

II6'5 2

6~ 04:77
982'232

- I .6952
-0.6998
-0'9954

Lla = s {(f2 + g2)i I} = -0"·8

sin (p - X) -0'18 cos (p - X) +0'98

For the calculation of the arguments for the charts of limb irregularities:
cot X -0'0878 X = sg -0°'191

X 95°·02 Y = STj +0 '9II

For 1960 September I d'792, interpolating in the Ephemeris:

tan bo
sec bo

-0'099
+ I '005

sin Co
cos Co

-0'152
+0'988

Co 351 '24

A -0'417
B -0'015

II = X - Co + AX + BY 103~85
1 = 10 + sec bo ( -X cos Co + Y sin Co) 0·63
b = bo + (X sin Co + Y cos Co) 4'71

From the charts the irregularity on the Moon's limb at mean distance is -0"'74.
s/so = 0,0010 723 sIt = 1'05

limb irregularity = -1'05 x 0"'74 = -0"'78
corrected value of Lla = -0"·8 + 0"·8 0"·0

The values to be used in the subsequent analysis are thus
Lla = 0"'0 sin (p - X) = -0'18 cos (p - X) = +0'98

The number of figures retained in the above example is the same as was used with
the lunar ephemeris in the Ephemeris prior to 1960; with the improved lunar ephemeris,
another decimal could be retained in x, Y.
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D. ANALYSIS AND DISCUSSIO

As has been mentioned, the systematic reduction and discussion of lunar
occultations has so far been done without the application of corrections for
irregularities of the Moon's limb. In due course, limb corrections will be applied
to all the observations made since 1943 and final analyses made. The observations
have so far been compared with the positions of the Moon as tabulated in The
Nautical Almanac and in The American Ephemeris before 1960, that is before the
introduction of ephemeris time and of the improved lunar ephemeris.

The solutions are made by the method of least squares using the observational
equation of condition:

cos (p - X) 8L + sin (p - X) 8B = Lla

where 8L and 8B are the errors in the orbital longitude and latitude of the tabular
Moon. If reductions were done using the improved lunar ephemeris, 8L in this
equation would be replaced by { 0'549 8(LlT) + 8L}. The method will however
be reviewed before being applied to observations for 1960 onwards, and a somewhat
different observational equation may be adopted.

Two sets of solutions are made, one restricted to disappearances at the dark
limb only and the other including all observations of z.e. stars. There have so
far been insufficient observations of the other phases to make practicable separate
solutions for each phase. Solutions are made for each lunation by the method of
least squares and the arithmetic mean of the twelve or thirteen lunations is taken
as the solution for the year, on the assumption that 8L and 8B may be regarded as
constant for each lunation. The annual means for the years since 1943 are
tabulated below; n is the number of observations and the errors are internal
probable errors.

Disappearances at dark limb All observations

Year n oL oB n oL oB.
+0~18

.
-0~60

.
1943'5 586 +0'26 ±0,028 -0·65 ±0,043 7 14 ±0,027 ±0,043
1944'5 594 -0'11 ·029 -0'44 '044 701 -0'15 '027 -0'34 '042
1945'5 623 -0'55 '033 -0'75 '050 729 -0'59 '030 -0·69 '044
1946'5 687 -0'76 '027 -0'73 '040 833 -0·80 '026 -0'55 '037
1947'5 765 -0.84 '028 -0'55 '040 93 1 -0·84 '024 -0'50 '036
1948 '5 837 - 1'15 ·022 -0'77 '035 978 - 1'14 '022 -0·68 '033
1949'5 1018 - 1'40 '026 -0'44 '03 8 1179 - 1'41 '022 -0'43 '033
195°'5 1229 - 1·65 ·021 -0·67 '030 1725 - 1·68 '01 9 -0'56 '027
1951 '5 996 -2'14 '023 -0·67 '035 1430 -2'16 ·020 -0·64 '030
1952'5 1011 -2'34 '026 -0'53 '039 1325 -2'44 '022 -0'55 '034
1953'5 993 -2'58 '025 -0·61 '03 8 1359 -2·64 '022 -0·61 '034
1954'5 1169 -2'91 '018 -0.89 '029 1445 -2'97 '01 7 -0'78 '026
1955'5 1032 -3'36 '023 -0'70 ·034 1236 -3'34 '020 -0·63 '03 1
1956 '5 882 -3·63 '023 -0.84 '034 1025 -3.64 '021 -0·80 '032
1957'5 9 10 -4'29 '025 -0·81 '036 1024 -4'37 '024 -0'74 '034
1958 '5 712 -4·60 '026 -0'53 '040 855 -4'71 '025 -0'34 '037
1959'5 689 -4·82 '03 1 -0'70 '047 83 1 -4.81 '028 -0'54 '043
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The annual discussions are*published in the Astronomical Journal; the com­
bined lists of individual observations, together with the results of the reductions
and residuals from the adopted solutions, were published for the years 1943 to
1947 as an Appendix to Greenwich Observations for 1939.

Added note (1973). The results of an analysis of the observations from 1960 to 1966 are
given by L. V. Morrison and F. McBain Sadler, M.N.R.A.S., 144, 129-141, 1969. A more
extensive analysis covering all observations from 1943 to the present time is in progress.
The technique for the automatic computation of limb corrections is described by L. V.
Morrison and R. J. Martin, The Moon, 2, 463-467, 1971.

E. OCCULTATIONS OF RADIO SOURCES

The observation of occultations of radio sources by the Moon offers a method
of determining more precisely the positions of, and the intensity distributions
across, the discrete radio sources. The need for predictions became apparent in
1955. At this time the second Cambridge survey of radio sources (Memoirs R.A.S.,
67, 106-154, 1955) had just been completed, and this catalogue was used as the
authority for source positions, predictions up to 1958 being made for the 26
brightest zodiacal sources in it. Commission 40 of the International Astronomical
Union has prepared Zodiacal Radio Sources-List 2, which consists of 37 radio
sources and gives the positions for 1950'0 based on all the observations available
at the end of 1958; predictions are supplied for these 37 sources from 1959. The
list is supplied to each observing station and corrections will be issued as the
necessity for them becomes apparent from later observations.

A prediction normally gives the approximate times of disappearance and
reappearance of the centre of the source together with approximate topocentric
positions of the Moon for times which cover the duration of the occultation; when
the source is known to be extended topocentric positions of the Moon are given
when the centre is not occulted but there is a likelihood of part of the source being
occulted.

The process of prediction is similar to that for visual occultations but as the
positions of the radio sources are considerably less accurately determined than
those of stars the following simplifications are made. In the selection of the
sources and the preparation of the Besse1ian elements, the assumed positions are
corrected for precession but not for nutation or aberration. The times of disap­
pearance and reappearance are taken directly from the occultation machine without
any subsequent calculation to obtain them more precisely. For up to six integral
hours, to cover the duration of the occultations, approximate topocentric positions
of the Moon are obtained from the geocentric positions by applying the correction:

Lla = -4 7T~ P cos r/>' sin h sec o~

Llo = 7T~ (p cos 4>' cos h sin o~ - p sin 4>' cos o~)

where Lla is in seconds of time and Llo and 7T ~ in minutes of arc.

The times of disappearance and reappearance are given to Oh'OI, the topo­
centric right ascension to IS, and the declination to 0" I; in each case the values
may be in error by up to three units in the last figure. This is sufficiently accurate
"'Up to year 1957. See Royal Observatory Bulletins No. 107 for the discussion of the occulta­
tions observed in 1958 and 1959.
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for prediction at present. For successful observations, if this accuracy is inadequate
for the reduction of the results, H.M. Nautical Almanac Office supplies on request
values of the Moon's topocentric position to the accuracy required by that of the
observations.

Predictions are supplied to the following radio astronomy observatories.

Place Description A eP Alt.
o , o , • m

Big Pine, Calif., U.S.A. California Inst. of Technology + I 18 17·6 +37 1353.8 1216
Cambridge, England Mullard Radio Astr. Obs. 002'4 +520945 26
Clark Dry Lake, Calif., U.S.A. Convair Scientific Res. Lab. + II6 15'7 +3320·1
Columbus, Ohio, U.S.A. Ohio State University + 83°2.6 +40 0100·2 245
Dwingeloo, Netherlands Leiden University 623·8 +5 2 48 46 '7 25
Helsinki, Finland University of Helsinki 25°°'5 + 601 3'4 2
Ithaca, New York, U.S.A. Cornell University + 76 27'1 +4229 18 341
J odrell Bank, England Nuffield Radio Astr. Lab. + 218'4 +53 14 II 70
Kislovodsk, U.S.S.R. Mountain station of Pulkovo 424°'2 +434447 213°
Malvern, England Royal Radar Establishment + 2 18'5 +52°73° 58
Moscow, U.S.S.R. Sternberg Institute 3734'2 +5545 19.8 166
Nanl;ay, France Observatory of Paris 2 II·8 +472248 15°
Ondrejov, Czechoslovakia Astrophysical Obs. 1447'° +495438 '1 533
Pulkovo, U.S.S.R. Astronorrucal Obs. 3° 19. 6 +594618 '5 75
Simeis, U.S.S.R. Crimean Astrophysical Obs. 3359.8 +4424 II ·6 346
Sydney, Australia Fleurs Field Station -150 46 '4 -335 1'5 5°
Washington, D.C., U.S.A. Naval Research Laboratory + 77 01·6 +38 49 16.6 3°

Added note. The predictions have been increased by a large factor, in respect of both
the number of stations and the number of sources, since 1960.

F. PLANETARY OCCULTATIONS

The prediction of occultations of stars (or minor planets) by planets (or by
* minor planets) largely centres on the search for conjunctions in right ascension

within limits of difference of declination that make an occultation possible. These
limits are very small, being approximately the sum of the horizontal parallax and
the semi-diameter of the planet. Occultations by Mars and Jupiter are the most
common, but the total numbers of such occultations, of stars brighter than 9ID·O,
that have been predicted in recent years are given in the following table.

Predictions of occultations of stars by plaIJets

Year Mercury Venus Mars Jupiter Saturn-
Magnitude

limit

1955 2
I956 3 2

1957
1958 5 2
1959
1960 3 3
1961 4

Totals ° 2 12 12 4
*Predictions of occultations by natural satellites are also made by H.M. Nautical Almanac
Office.
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In addition one possible occultation by Pluto and two occultations of radio
sources by Venus were predicted in 1958; an occultation by Mercury was predicted
in 1953. The comparison of star catalogues with the ephemerides of the planets
is a long and tedious task, yielding (as seen above) very few observable phenomena;
it is done in successive stages, each corresponding to a closer approximation to the
apparent position of the star. The final comparison must be made with the
apparent positions of both star and planet, if possible supplemented by observa­
tionally determined corrections to the tabular positions of both planet and star.

The actual prediction follows the basic principles underlying those for eclipses,
occultations, and transits; but more direct and less formal methods are used, both
because the angles involved are much smaller and the prediction much less precise.

An occultation will take place as seen from some point on the Earth's surface,
provided the difference 8 - 8* in apparent declination at the time of conjunction
in right ascension satisfies the condition:

I 8 - 8* I < (7T + s) cosec p

where 7T, s are respectively the equatorial horizontal parallax and semi-diameter of
the planet, and p is the position angle of its direction of motion. The approximate
area of visibility of the occultation can be determined by simple mental calculations,
though a general picture of the circumstances at conjunction, as provided by the
occultation machine, is of great assistance. In particular, the northern and
southern latitude limits on the meridian (CPN' CPs), where they exist, may be found

from: 7T sin (CPN,S - 8*) = 8 - 8* ± s cosec p

where the upper sign relates to CPN' Note must be taken of the position of the Sun,
as for lunar occultations, since it is generally useless to predict occultations of
stars in daylight.

Local predictions for particular stations are done by a semi-graphical method.
In principle (the details vary with the degree of precision required) a scaie diagram
of the planet (taking into account the oblateness of the disk where relevant) is
drawn, and the relative geocentric positions of the star at one or more instants,
including the time of conjunction, are plotted. At these times the parallactic
shifts of the planet relative to the star, as seen from the stations for which predictions
are required, are calculated in r, () coordinates where: .

r = 7T cos (altitude) () = parallactic angle
The altitude and parallactic angle can either be calculated from the standard
formulae or, preferably, taken from tabulated solutions of the spherical triangle
in navigational tables, for example H.O. 214 (H.D. 486). The plotted geocentric
positions are shifted accordingly, and the apparent paths of the star across the disk
drawn in; the approximate direction p and speed n can be derived from the
geocentric motion of the planet only, and suffice for most predictions.

The methods used are similar to those described by G. E. Taylor in l.B.A.A.,
65, 84-90, 1955; in that paper is also described the determination of the actual
limits of occultation. The predictions of planetary appulses and occultations are
published in The Handbook of the British Astronomical Association.



II. EPHEMERIDES FOR PHYSICAL OBSERVATIONS
OF THE SUN, MOON, AND PLANETS

A. INTRODUCTION

The ephemerides for physical observations represent the aspects of the
apparent disks of the Sun, Moon, and planets; they are intended for making and
reducing observations of the surface markings, and for reducing observations of
positions for which the exact position of the central point of the disk must be
determined from observations of the limbs. The tabular quantities enable an
observer to determine, from the planetographic coordinates of the surface markings,
those markings that are observable at any time, their positions on the apparent
disk, the conditions of illumination, and the orientation of the disk on the celestial
sphere; conversely, from measurements on the disk, the, observer may determine
the planetographic coordinates of surface markings and the values of the elements
of the rotational motion.

These ephemerides are based on the fundamental ephemerides in the preceding
part of the Ephemeris and on the additional data to which specific references are
made. The tabular values are corrected for the effects of aberration, and should
therefore be interpolated to the actual time of observation; but they are strictly
geocentric. The value of the light-time for unit distance used in calculating them

* is 498s.58, corresponding to the adopted values of the solar parallax and the velocity
of light. They are tabulated to an order of accuracy sufficient for the reduction of
observations; any significant approximations made in calculating them are stated
in the following explanations.

The elements of the rotational motion are: the period of rotation; the
position of the axis of rotation in space, represented either by the coordinates of
the point on the celestial sphere towards which the axis is directed, i.e., the pole of
rotation, or by the inclination and node of the equator on an adopted reference
plane; and the planetographic longitude of the central point of the apparent disk
at an adopted epoch, which defines the central meridian on the disk.

To the order of accuracy of these ephemerides, the effects of the difference
between ephemeris time and universal time are appreciable only in the longitudes
of the central meridians of the Sun, Mars, and Jupiter, and in the selenographic
colongitude of the Sun and the position angle of the lunar axis. The values of
these quantities calculated from the fundamental ephemerides in ephemeris time

306
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are reduced to universal time by corrections for Ll T at the tabular date; but no
corrections are applied to the adopted central meridians at the epoch, although
only in the case of the rotation period of Mars have any of the rotational elements
been obtained from observations referred to ephemeris time.

When the rotation is direct, i.e., counter-clockwise as viewed from above the
north pole of rotation, the motion of the surface markings as seen from the Earth
is in the westward direction on the celestial sphere, from the east limb towards the
west limb.

The apparent positions of points on the disk are in general most conveniently
represented by apparent distance and position angle relative to the central point of
the disk; position angles are ordinarily reckoned from the north point of the disk
towards the east, but for some purposes they are reckoned from the vertex. The
central point of the apparent disk is the subterrestrial point on the surface, and its
position on the geocentric celestial sphere is diametrically opposite the apparent
position of the Earth on the planetocentric celestial sphere.

The north point of the disk is on the apparent northern limb at its intersection
with the celestial meridian that passes through the north celestial pole and the
centre of the disk. The vertex of the disk is on the apparent upper limb at its
intersection with the vertical circle that passes through the zenith and the centre of
the disk.

B. EPHEMERIS FOR PHYSICAL OBSERVATIONS OF THE SUN

The ephemeris for physical observations of the Sun is calculated with the
elements determined by Carrington (Observations of the spots on the Sun, pages
221 and 244, 1863):

Sidereal period of rotation
Inclination of the solar equator to the ecliptic
Longitude of the ascending node of the solar

equator on the ecliptic

where t is the time in years reckoned from 1850.

In the ephemeris: P denotes the position angle of the northern extremity of
the axis of rotation, measured eastwards from the north point of the disk; Bo, the
heliographic latitude; and L o, the heliographic longitude of the central point of the
disk. Heliographic longitudes on the surface of the Sun are measured from the
solar meridian that passed through the ascending node of the solar equator on the
ecliptic on 1854 January I at Greenwich mean noon, J.D. 2398220.0; they are
reckoned from 0° to 360°, in the direction of rotation, i.e., westwards on the apparent
disk as viewed on the celestial sphere. Carrington's zero meridian passed the
ascending node twelve hours earlier. Heliographic latitudes are reckoned from the
solar equator, positive towards the north.

The synodic period of rotation is the interval of time during which L odecreases
by 360°. The mean synodic period is 27d·2753. The beginning of each synodic
rotation is the instant at which L o passes through 0°; the rotations are numbered
in continuation of Carrington's Greenwich photo-heliographic series, of which
No. I commenced on 1853 November 9.
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Figure 11.1. Heliographic coordinates
R North pole of rotation of Sun
C Pole of the ecliptic
N North celestial pole
E Subterrestrial point, i.e. projection of the centre of

the disk

In computing the physical ephemeris, no allowance for the secular motion of
the ecliptic is made in the values of the elements; and the latitude of the Sun is
neglected.

The heliographic coordinates of the central or subterrestrial point of the disk
are calculated from the spherical triangle (see figure 11. I) formed on the helio­
centric celesti~ sphere by the apparent position of the Earth E, the north pole of
rotation of the Sun R, and the ascending node of the solar equator on the ecliptic Q.
In this triangle, the arc of the ecliptic EQ from the Earth to the node of the solar
equator is Q - (A ± 180°), where Ais the geocentric longitude of the Sun, and the
opposite angle ERQ is M - Lo where M is the heliographic longitude of the
node of the equator. Therefore:

sin Bo = sin (A - Q) sin I
cos Bo cos (Lo - M) = -cos (A - Q)
cos Bo sin (Lo - M) = -sin (A - Q) cos I

in which:
360°

M = 360° - --8 x (J.D. - 239 8220 '0)
25'3

In calculations the expression for M is used in the form:

M - 180° = 112°'766 + (2430000'5 - J.D.) x 14°'18439716
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The position angle of the axis of rotation is:
P=x+y

where x and yare the angles NEC and CER at the subterrestrial point E in the
two triangles formed by this point and the pole of the ecliptic C with the north
celestial pole N and with the north pole of rotation of the Sun R:

tan x = - cos Atan E

tan y = -cos (A - Q) tan I
in which E is the obliquity of the ecliptic.

The north point of the solar disk from which P is measured is determined by
the equator and equinox of date; therefore, in calculating x, E is necessarily the true
obliquity of date and A is the apparent longitude of the Sun referred to the true
equinox of date. Furthermore, by using the apparent longitude as the value of A
in all other formulae also, the aberration in longitude is completely included, and
no further correction for aberration is required. No correction is applied to L o
for rotation during the light-time, because presumably it is already included in
Carrington's meridian; Carrington, in reducing his observations, added 20" for
aberration to the tabular longitude of the Sun taken from The Nautical Almanac,
but he appears to have referred his measurements to the apparent central point of
the disk.

For convenience of calculation, it has been the practice in the past to use
procedures which only partially take account of the aberration in longitude. In
the formulae in which A - Q occurs, Amay be referred to any equinox, provided Q
is referred to the same equinox; the fixed mean equinox of 1950'0 was therefore
used, and the true longitude of the Sun referred to this equinox, as tabulated in
the ephemeris of the Sun, was combined with the constant value 75° '063 for Q
to obtain A - Q. The error introduced into P and B o by the neglect of aberration
in A - Q is inappreciable, and the error in L o, though at maximum it can amount
to about 20\ was not considered important. This approximation is retained in
the Ephemeris for 1960; but beginning with 1961, the aberration is completely
included. \

The times at which successive synodic rotations commence are determined
by inverse interpolation of the ephemeris of L o with the aid of the interpolation
table included in the Ephemeris (page 314).

The calculation of the physical ephemeris of the Sun does not involve any
quantities that depend upon the rotation of the Earth. This ephemeris may
therefore be calculated directly from the fundamental ephemerides with argument
ephemeris time, and converted to universal time by interpolating every tabular
entry for Oh E.T. to a time LJT after Oh E.T., by applying the correction:

LJT 8
+ tabular interval 1

The tabular interval is I d , and the tabular entries are printed to 0°'°1; to avoid a
systematic error greater than 0°'001, this correction is applied, with an extrapolated
value of LJT, when 81 in degrees exceeds 86·4/(LJT)S.
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Example 11.1. The physical ephemeris of the Sun
1960 March 7 at Ob U.T.

Constants
sin I = o· 12620
tan I = 0'12722
cos I = 0'99200
sec I = 1'00806

Q, equinox 1950'0
Precession to 1960'0, A.E. page 20
Q, equinox 1960'0

Daily motion of M

1960 March 7 d OOb E.T.

o

75'0625
0'1396

75'2021

Longitude of Sun, 1960'0, page 20
Reduction to apparent longitude, page 20 .

Apparent longitude of Sun
Precession from 1960'0 + nutation, page 20
Longitude affected by aberration, equinox 1960.0

Q, equinox 1960'0
A-Q

o

346 '4373
-0'0034

346 '4339
+0'0023
346 '43 16

75'2021
27 1'230

This value of A - Q is used in the following calculation; but as explained in the text, the
value actually used in the calculation for A.E. 1960 was 271°'235 = 346°'437 - 75°'202,
in which aberration is neglected. The inclusion of aberration decreases L o by 0°'006.

Apparent obliquity, page 20

cos A
tan E

-tan E cos A = tan x

cos (A - Q)
-tan I cos (A Q) = tany

E =23'442

+ 0'97210
+ 0'43361

0'4215 1

+ 0'021 47
0'00273

x, -90° < x < +90°
y, -90° < Y < +90°
x+y=P

sin (A - Q)
sin I sin (A - Q) = sin B o
B o, -90° < B o < +90°

cot (A - Q)
sec I cot (A - Q) = cot (Lo - M)

o

-22.856
- 0'156
-23'01

- 0'99977
- 0'126 17
-7°'25

- 0'02147
- 0'02164

The angle L o - M is in the quadrant of A - Q ± 180°; but for convenience in calculation,
the corresponding angle in the same quadrant as A Q is used to obtain Lo by combining
it with M - 180°.

L o - M + 180°
112°'766 - 7000 x 14°'18439716
L o; Oh E.T.
Reduction from E.T. to U.T.
L o, Oh U.T.

27 1'239
- 178 '014

93'225
0'005

93'22
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C. PHASES OF THE MOON AND PLANETS,
AND STELLAR MAGNITUDES OF THE PLANETS

Phases

The tabulations in the physical ephemerides of the Moon and planets include
the data that determine the geometric aspect of the illuminated part of the apparent
disk on the celestial sphere. The fraction (k) of the area of the apparent disk of
the Moon or a planet that is illuminated by the Sun is called the phase; it depends
upon the planetocentric elongation of the Earth from the Sun, called the phase
angle (i).

Neglecting the oblateness of the body, the apparent disk is circular and the
terminator is the orthogonal projection, onto a plane perpendicular to the line of
sight, of the great circle that bounds the illuminated hemisphere of the body.
The terminator is therefore in general an ellipse, reducing to a straight line at
i = 90° and becoming a circle at i = 0° or 180°. The line of cusps, joining the
extremities of the terminator, is the major axis; it is a diameter of the apparent
disk, of length 2S where s is the apparent semi-diameter. The minor axis lies on
the diameter which passes through the midpoint of the bright limb and through the
diametrically opposite point of greatest defect of illumination. Beginning with
1960, the physical ephemerides of the Moon, Mercury, and Venus contain the
position angle (8) of the midpoint of the illuminated limb reckoned eastwards
from the north point of the disk; in years preceding 1960, these ephemerides gave
the position angle of the line of cusps. Mars, Jupiter, and Saturn show only very
small departures from a fully illuminated disk, and hence in the physical ephem­
erides for these planets the position angle (Q) and angular amount (q) of the greatest
defect of illumination are tabulated.

The radius of the Moon or of a planet that projects into the semi-minor axis
of the terminator is perpendicular to the planetocentric direction of the Sun. (See
figure 11.2). When i > 90°, which is only possible for the Moon, Mercury, or
Venus, this radius is therefore at an angle i-90° to the line of sight and 180°' - i
to the plane of the apparent disk; it projects onto the dark area of the disk, and
the length of the projection is -s cos i. When i < 90°, this radius makes an angle
of 90° - i with the line of sight, i with the plane of the disk, and projects onto the
illuminated area into a length +s cos i. In either case the length of the illuminated
part of the diameter perpendicular to the line of cusps is s (I + cos i); and since
the area of an ellipse is the product of 7T and the two semi-axes, the total area of the
illuminated part of the disk is t7TS2 (I + cos i). The phase is therefore:

k = i (I + cos i)
and is the value of both the ratio of the illuminated area of the disk to the total
area, and the ratio of the illuminated length of the diameter perpendicular to the
line of cusps to the complete diameter. The greatest defect of illumination is
consequently:

q = 2S (I - k)
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The phase angle i is determined from the plane triangle formed in space by
the Sun, the Earth, and the body, by means of the relations:

r sin i = R sin D
r cos i = Ll - R cos D

in which Rand r are the heliocentric distances
of the Earth and the body, Ll the geocentric
distance of the body, and D its geocentric elong­
ation from the Sun. Note that i is less than or

greater than 900 according as r
2 + Ll2 - R2 is FigureIl.2. The definition ofphaseangle

positive or negative.

The elongation (D) and the position angle (e) of the midpoint of the illuminated
limb, are obtained from the relations in the triangle formed on the celestial sphere
by the Sun, the north celestial pole, and the Moon or planet:

sin D sin e = cos 80 sin (ao - a)
sin D cos e = sin 80 cos 8 - cos 80 sin 8 cos (ao - a)

cos D = sin 80 sin 8 + cos 80 cos 8 cos (ao - a)

in which sin e has the same sign as sin (ao - a) and D is treated as positive;
the direction of the elongation must be obtained from other considerations. In
the case of the Moon, rand R are so nearly equal and parallel that it is sufficiently
accurate to take D = 1800 - i, and determine k directly from cos i = - cos D.

The position angle (Q) of the greatest defect of illumination is given by:

Q = e + 1800

Before 1960, in the physical ephemeris for the Moon the direction of the
line of cusps was represented by the position angle of the terminator, defined as
the position angle of the northern cusp, which is always between -900 and +90°;
before full moon, it is 90° greater than e, while after full moon it is 90° less than e.
For Mercury and Venus, however, the direction ofthe line of cusps was represented
by defining as positive the direction along this line in which the illuminated area
is to the right as seen from the Earth, and tabulating the position angle eof the
positive terminus; e is given by:

e = e + 90° = Q - 90°

where -90° < D < +90°, and cos ehas the sign opposite to sin (ao - a). See
figure I 1.3. The angle e is the position angle of the arc of the great circle from the
planet to the Sun; e is equal to the angle which this arc forms with a great circle
passing through the planet and directed towards the west, measured from this
westward-directed great circle, through north, east, and south, from 0° to 360°.
At meridian transit, eis the angle which the positive direction of the line of cusps
forms with the northward direction of the meridian.

Stellar magnitudes

The stellar magnitudes of the planets are obtained from the formulae of
G. Muller that are given in Publicationen des Astrophysikalischen Observatoriums zu
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Figure II.3. The ~pecification of the illuminated limb

Potsdam, 8, 366,1893; see H. N. Russell, Ap. J., 43, I07-1II, 1916, for an inform­
ative discussion.

The dependence of the brightness of a planet upon its geometric position
relative to the Earth and the Sun does not completely determine the stellar magni­
tude. The brightness also depends upon the albedo of the surface as a whole in
the different positions; but the reflection of light from the planets has not been
satisfactorily represented by any theoretical formula. Consequently the actual
relation between brightness and phase angle must be determined empirically,
from observations extending over a long period of time.

The relation to the geometric circumstances, disregarding the dependence of
albedo on phase angle or other conditions, is represented by the brightness relative
to a certain standard of brightness. This is the brightness that the planet would
have in opposition (if a superior planet), or in superior conjunction (if an inferior
planet), at its mean heliocentric distance (a), with the Earth at mean heliocentric
distance unity; in this configuration, the disk is fully illuminated, and the geo­
centric distance is a ± 1, the upper sign applying to an inferior planet. At any
geocentric distance L1 and phase angle i, the ratios of the semi-diameter and qf the
illuminated area to their values in the standard configuration are respectively
(a ± 1)/L1 and k (a ± 1)2/L12, where the phase k = t (1 + cos i); at heliocentric
distance r, therefore, since the relative intensity of the incident light varies as llr2,

the relative brightness is:
a2 (a ± 1)2 _ 2 a2

k 2 L12 - ks 2r r

where s is the apparent semi-diameter. Accordingly, since a is a constant, the
quantity:

S2
L = k-

r 2

- ---

- - - -_. - - - - - ~

Highlight

Highlight

Highlight
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is adopted as a measure of the brightness which, were it not for the dependence of
apparent albedo on phase angle, would be determined by the visible illuminated
area and the relative intensity of the inCident light; L is conventionally called the
brilliancy of the disk, and is tabulated in the ephemerides for the illuminated disks
of Mercury and Venus. The dates of greatest brilliancy of Venus given in the
Diary and on page 4 of the Ephemeris are the times when L is a maximum (see
section 8q, not the times of brightest stellar magnitude.

With the adopted semi-diameters at unit distance, 3"'34 for Mercury and
8" '41 for Venus, the numerical values of the brilliancy of the disk (L) are:

II'16 h V 70'73 h
Mercury r2L12 enus r2 L12

Omitting the phase factor h, the stellar magnitude m at the brightness
J= a2 (a ± 1)2/(r2 L12) compared to the magnitude moof the unit of brightness is:

m = mo - t log J
= { mo - 5 log (a 2 ± a)} + 5 log r L1

To obtain the actual stellar magnitude of a planet, a function! (i) of the phase angle,
or for Saturn of the position of the rings, is added to this expression, and both the
function! and the first term of m are determined from observation.

Muller's formulae are based on observations which he made from 1877
September to 1891 February. The numerical expressions are as follows:

Mercury: +1'16 + 5 log r L1 + °'°2838 (i - 50) + 0'0001023 (i - 50)2
Venus -4'00 + 5 log r L1 + 0'01322 i + 0'00000 °4247 i 3

Mars - 1'30 + 5 log r L1 + °'°1486 i
Jupiter -8'93 + 5 log r L1
Saturn -8·68 + 5 log r L1 ± 0'044 (V' + w - V) + 2·60 sin B + 1'25 sin2 B

in which i is measured in degrees.* For Saturn the stellar magnitude depends
upon the aspect of the rings, and thus on the quantities V, V', B, w which pertain to
the rings and which are defined in section 12D. In the formula for the stellar
magnitude of Saturn the signs used for the third and fourth terms are those which
make these terms positive and negative respectively.

For Uranus and Neptune, and for the minor planets, Muller's formula is
used in the form:

m = g + 5 log r L1

and the adopted values of g are:

Uranus -6·85 Ceres 4'0 Juno 5'5
Neptune -7'05 Pallas 4'5 Vesta 4'0

These values are used up to and including 1961. From 1962, for the minor
planets, improved values of g have been used for the visual magnitudes given in
A.E., page 9T(Phenomena), and photographic magnitudes are given as footnotes to
the ephemeris pages. The values of g have been supplied by Dr. T. Gehre1s of
Indiana University, and those corresponding to the photographic magnitudes are
*(U' + w - U) is also measured in degrees.

tPage 7 in A.E. 1972-3, page 5 from 1974·
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Example I I .2. The bright limb and phase of the Moon, and the phases of the planets
1960 March 7 at Oh E.T., except for Mars
1960 April 6 at Oh E.T., for Mars

Oh E.T. on 1960
MOON

March 7
MERCURY

March 7
VENUS

March 7
MARS

April 6
JUPITER

March 7
SATURN

March 7

5'355 5'355 5'355 + 6~372
0'09333 0'09333 0'09333 + 0'11098

+ 0'99564 + °'99564 + °'99564 + °'99383

0'09259 + 0'43909 +
+ 0'99570 + 0.89844 +

sin (a() - a)
cos (a;: - u)

0"
sin 0",
cos 0.)

h
(I) 23 10 04
(2) 6 13 16

16 56 48

°'96222
0'27228

(I)

h

23
23
-0

10 04
3 1 19
21 IS

h

23
21

+1

m
10 04
25 53
44 I I

h

° 59 42
22 21 12

2 38 30

0.63776
°'77°24

h m b m

23 10 04 23 10 04
18 03 06 19 10 38
5 06 58 3 59 26

+ 0'97335 + 0.86479
+ 0'22934 + °'5021 4

5'355 5'355
0'09333 0'09333

+ °'99564 + 0'99564

e
Q = e + 1800

R (I)
d (2)

(6)

Sin I (7)
cos i

o
sin 0
cos 0

cos 0c cos (uc
sin D sin e
sin D cos e
cos D

sin D
tan/cot e

k

(2)

- u)

(3)

(8)

+18~183

+ °'3 12°5
+ °'95°06

°'271°9

°'95802
0'00408
0'28668

+ °'958°3
+ °'°°426

269~756
89'756

+ 0~843
+ 0'°147 1
+ °'99989

+ °'99136

0'°92 19
0'1°79°

+ °'98988

+ o'14192
+ 0·8543

220'5 I

4°'5 1

°'99248
0.65 895
°'35 279

+°'39925
-°'91694

156~5
°'°416

-15~828
0'27275

+ 0'96209

+ 0.8945 2

+ °'437 18
+ °'15419
+ 0·88606

+ °'46358

+ °'3527

7°'57
25°'57

°'99248
1'44299
°'7275°

+0·63243
+°'7747°

39'23
0·8873

-11~642
0' 201 79

+ °'97942

+ °'76549
+ 0.63382
+ °' 26316
+ °'72734
+ 0·68628
+ °'41 520

67~452
247'45 2

1'00088
1'94736
1'3995°

+°'49°81
+0.87 13°

-23.010

°'39°89
+ 0'92°44

+ °'22834

+ °'969 11

+ °'°°336
+ °'24666

+ °'96912
+ 0'°°347

89~801
269. 801

°'99248
5'44869
5'292°5

+°'18175
+0'98334

-21~956
°'3739°

+ °'92747

+ °'49995
+ 0·86102
+ 0'10°37
+ 0'49858

+ 0.86685
+ 0' 11657

83~351
263 '35 I

°'99248
1°'5 1784
10'°5988

+0'08553
+°'99633

4~906
°'9982

15 ;845
14'180
0'028

36~144
33'736

°'3°0

4~806Equatorial diameter (9)
Polar diameter (10)
Defect of illumination (II) °'310

(I) A.E., pages 21, 23. (2) A.E., pages 84, 179, 187, 196, 203, 21 I.

(3) sin D sin 8 = cos 00 sin (uo - u)
sin D cos e = sin 00 cos 0 - cos 00 cos (uo - u) x sin 0
cos D = sin 00 sin 0 + cos 00 cos (uo - u) x cos 0

(4) sin2 D = (sin D sin 8)2 + (sin D cos 8)2; D is treated as positive.
(5) e is determined from the smaller of tan e or cot e. (6) A.E., pages 161, 168, 172, 174, 175
(7) sin i = (R sin D)/r; cos i = (Ll - R cos D)/r; sin2 i + cos2 i = I

(8) For the Moon, k = t (I - cos D); for the planets k = t (I + cos i)
(9) For Mars, Jupiter, Saturn the constants are: 9"'36,196"'94, 166"·66.
(10) For Jupiter, Saturn the constants are: 183".82,149"'14.
(II) The defect of illumination, q = (I - k) x equatorial diameter.

No correction is required for the difference between E.T. and V.T. and the values obtained can
be used for Oh V.T. Five decimals are uniformly retained in the above calculations, although
they are not always either required or justified.



Visual Photographic
Ceres 3'38 4'00
Pallas 4'51 5'06
Juno 5'58 6'33
Vesta 3'55 4'22

For Pluto a constant magnitude of IS was adopted for 1960-1972; the adopted
value of g for 1973 onwards is - 1'01.
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also published in Trans. I.A.U., XO, 305, 1960. The adopted values of g are as
follows.

Example 11.3. The stellar magnitudes of the planets and the
brilliancies of the disks of Mercury and Venus

1960 March 7 at Oh E.T., except for Mars
1960 April 6 at Oh E.T., for Mars

The basic data are taken from example I I .2.

MERCURY VENUS MARS JUPITER SATURN

r °'35279 °'7275° 1'3995° 5'292°5 10'°5988
Ll 0·65895 1'44299 1'94736 5'44869 10·51784
rLl °'23247 1'°4978 2'72533 28·83474 105. 80821

0

156'5 39'23 29'394

9'30
+ 0·82

+1°' 123+7'300

-8'93
- 1·63

+2'177
-0·86
+ 1'32

+0'115 log r Ll -3'17

constant + f (i) (~~~e) +5' 34
Stellar magnitude + 2' 17

For the brilliancy of the disks:
Mercury: k = °'°416 L = II· 16 k/r2 Ll2 8· 59
Venus: k = 0·8873 L = 70'73 k/r2 Ll2 = 56'95

The quantity" constant + f (i) " is usually taken directly from manuscript tables with
argument i. For Saturn (Table 12.1 and A.E., page 374): (U' + w - U) = -5°'28 and
B = +24°'22, sin B = +°'410. Examples are not given for Uranus, Neptune, and the
minor planets, since the calculations are identical in principle with that for Jupiter.

D. EPHEMERIS FOR PHYSICAL OBSERVATIONS OF THE MOON

The rotation of the Moon is a motion about its centre of mass that is character­
ised by small periodic variations from a mean rotational motion which conforms to
the empirical laws formulated by J. Cassini in 1721 to describe the rotation as far
as it had then become known from observation. The mean period of rotation is
equal to the mean sidereal period of revolution around the Earth, and the mean
plane of the lunar equator intersects the ecliptic at a constant inclination, in the line
of nodes of the lunar orbit, with the descending node of the equator at the ascending
node of the orbit.- The oscillation of the actual rotational motion about this mean
rotation is called the dynamicallibration or physicallibration.

On the average, therefore, the same hemisphere of the Moon is always turned
towards the Earth; but, because of the periodic oscillation in the position of the
lunar surface, due to the physical libration, and to the much larger apparent
oscillations known as opticallibrations, which are due to variations in the geometric



11D. EPHEMERIDES FOR PHYSICAL OBSERVATIONS 317

position of the Earth relative to the lunar surface during the course of the orbital
motion of the Moon, about 59 per cent of the surface can be observed altogether.

The point on the surface of the Moon where it is intersected by the lunar
radius that would be directed towards the centre of the Earth, were the Moon to be
at the mean ascending node when the node coincided with either the mean perigee
or mean apogee, defines the mean centre of the apparent disk. This point is the
origin of the system of selenographic coordinates on the surface of the Moon.
Selenographic longitudes are measured from the lunar meridian that passes through
the mean centre of the apparent disk, positive in the direction towards Mare
Crisium, i.e., tow2.rds the west on the geocentric celestial sphere.* Selenographic
latitudes are measured from the lunar equator, positive towards the north limb;
i.e., they are positive in the hemisphere containing Mare Serenitatis.

The position angle of the axis is the angle that the lunar meridian through the
apparent central point of the disk towards the north lunar pole forms with the
celestial meridian through the central· point, measured eastwards from the north
point of the disk.

The displacement, at any time, of the mean centre of the disk from the apparent
centre, represents the amount of the libration, and is measured by the selenographic
coordinates of the apparent centre of the disk at the time. These coordinates are
the sums of the geocentric optical and physicallibrations in longitude and latitude.
The tabular selenographic longitude and latitude of the Earth are the geocentric
selenographic coordinates of the apparent central point of the disk; at this point
on the surface of the Moon, the Earth is in the selenocentric zenith. When the
libration in longitude, that is the selenographic longitude of the Earth, is positive,
the mean central point of the disk is displaced eastwards on the celestial sphere,
exposing to view a region on the west limb. When the libration in latitude, or
selenographic latitude of the Earth, is positive, the mean central point of the disk
is displaced towards the south, and a region on the north limb is exposed to view.
Similarly for the tabular selenographic coordinates of the Sun, which determine
the regions of the lunar surface that are illuminated.

The formulae for the opticallibrations are derived from the geometric definition
of the mean centre of the disk. The physical librations are determined from the
dynamical theory of the rotation of the Moon. In the calculation of the physical
ephemeris, the formulae and constants for the physical lib rations and the value
1032'. 1 for the inclination of the mean lunar equator to the ecliptic, that were deter­
mined by Hayn (Abhandlungen der mathematisch-physischen Klasse der Koniglichen
Siichsischen Gesellschaft der Wissenchaften, 30, page 49, 1907) have been used. The
ephemeris is calculated from the apparent coordinates of the Moon and the Sun,
and therefore aberration is fully included, excepting the inappreciable difference
between the light-times from the Sun to the Moon and from the Sun to the Earth.

The fraction illuminated and the position of the bright limb are calculated as
explained in sub-section C. The age of the Moon is the number of days elapsed
since the immediately preceding new moon.
·See note on page 523.
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Geocentric librations

The optical librations are calculated from formulae introduced by Encke
(Berliner Astronomisches Jahrbuch fur 1843, pages 283-299).

On the selenocentric celestial sphere (see figure 11.4) the Earth is diametrically
opposite the geocentric position of the Moon. From the definition of the mean
centre of the disk, the condition that the centre of the apparent disk of the Moon be
at the mean centre, and thus that the geocentric librations in longitude and
latitude simultaneously vanish, is that A = « = Q, where A is the geocentric
longitude of the Moon, «is the mean longitude of the Moon, and Q is the longitude
of the mean ascending lunar node. Under this condition, on the selenocentric
celestial sphere the Earth is at the descending lunar node, and the prime meridian
on the Moon is 1800 from the ascending node.

c

Figure II.4. The selenocentric sphere
C Pole of the ecliptic NM = 90° - S
N North celestial pole CM = 90° - f3
L North lunar pole NL = i
M Geocentric position of Moon

At any instant, therefore, neglecting the physicallibration, the prime meridian,
which rotates at a rate equal to the mean orbital motion of the Moon, is at an angular
distance of 1800 + (<< - Q) from the ascending node on the selenocentric sphere;
the Earth is at ecliptic longitude 1800 + A and latitude - fJ, where fJ is the
geocentric latitude of the Moon, and the selenographic coordinates of the Earth
represent the opticallibrations.
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The relations which determine the optical librations are obtained from the
two triangles MLC and MLN formed on the selenocentric celestial sphere (see
figure I 1.4) by the geocentric position of the Moon M and the north lunar pole L
with the north pole of the ecliptic C and with the north celestial pole N. Mter
some approximations, and the introduction of auxiliaries A, B, 1-'-, defined by:

sin I-'- = tan2 tI sin 2 (.\ - m
A = sin I cos (.\ - m

tan B = - tan I sin (.\ - m
where I denotes the inclination of the mean lunar equator to the ecliptic, the
formulae for the optical librations l' and b' in longitude and latitude, respectively,
and for the position angle C' of the axis, may be expressed in the form:

i' =.\ + I-'- + Ab' - (~ + nutation)
b' = B - f1

sin C' = sin i cos (l' + Ll + ~ - msec 8
= -sin i cos (a - n') sec b'

in which i, Ll, n' are the elements of the mean lunar equator referred to the
celestial equator that are explained in section 4C and tabulated in A.E., page 51,
and a, 8 are the geocentric right ascension and declination of the Moon; in the
lunar ephemeris .\ is referred to the true equinox of date, but the mean longitude is
referred to the mean equinox, and in the formula for l' the nutation must therefore
be added to the tabular value. The auxiliaries are taken from table I I. I; with
sufficient accuracy:

I-'- = 0' .617 sin 2 (.\ - n) = 0°'0103 sin 2 (.\ - m
The optical librations may be obtained directly from the rigorous formulae:
cos (~ + l' mcos b' + cos (.\ - n - N) cos f1
sin (~ + l' - n) cos b' = +sin (.\ - n - N) cos f1 cos I - sin f1 sin I

sin b' = -sin (.\ - n - N) cos f1 sin I - sin f1 cos I
in which N is the nutation in longitude.

Because of the physical libration, the actual inclination and descending
node of the lunar equator on the ecliptic are I + P and n + a, and the angular
distance from the descending node of the lunar equator to the prime meridian is
(180° + ~ - n) + (1' - a), where p, a, l' are determined from the dynamical theory
of the rotation. The expressions for p, a, l' originally found by Hayn give for the
physical librations in latitude, longitude, and position angle of the axis:

8b 108" sin (r' - n + I') + 37" sin (T' - n - l')
- II" sin (<< - n - l')

8l 12" sin (<< - r ') - 18" sin 2 (r' - m- 59" sin go
- { 108" cos (r' - n + l') - 37" cos (r' - n - I')

+ II" cos ( ~ n - l') } tan b'
8C = - { 108" cos (r' - n + I') - 37" cos ( r ' n - I')

+ II" cos (~ n - I') } sec b'
from which the ephemeris is calculated. Putting:

M = 0°'040 sin (T' - m- 0°'003 sin (~ - m
N = 0°'020 cos (T' - m + 0°'003 cos (<< - m
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,\ - n f.L A B ,\ - n ,\ - n f.L A B '\-ll

0 0

0 0·000 +0'0268 - 0'000 180 45 +0'010 + +0'0189 - - 1'085 + 225
I '000 '0268 '027+ 181 46 '010 '0186 ' 104 226
2 + '001 + ·0268 '054 182 47 '010 '0183 ' 123 227
3 '001 '0268 '080 183 48 ·010 '01 79 '141 228
4 '001 '026 7 . 107 184 49 '010 '01 76 '159 229

5 +0'002 + +0'0267 - -0'134+ 185 50 +0'010 + +0'01 72 - -1'176+ 23°
6 '002 '0266 '160 186 51 '010 '0169 . 193 231

7 '002 '0266 . 187 187 52 '010 '0165 -210 232
8 '003 -026 5 '214 188 53 '010 '0161 '226 233
9 '003 ' 0265 '240 189 54 '010 '01 57 '242 234

10 +0-004+ +0'026 4 - -0'267 + 190 55 +0-010 + +0'01 54 - - 1'258 + 235
II '004 ' 0263 -293 191 56 '010 '01 50 '273 236
12 '004 '0262 '3 19 192 57 -009 '01 46 ' 287 237
13 '005 '0261 '345 193 58 -009 ' 01 42 '302 238
I4 -005 '0260 '37 1 194 59 '009 '01 38 '3 16 239
15 +0-005 + +0'0259 - -0'397 + 195 60 +0'009 + +0-01 34 - - 1-329 + 24°
16 '005 -0257 -423 196 61 '009 ' 01 30 '343 241
17 '006 -0256 '449 197 62 '009 -0126 '355 242
18 '006 '0255 '474 198 63 '008 -0122 '368 243
19 '006 '0253 -500 199 64 '008 -011 7 '380 244
20 +0'007 + +0'0252 - -0'52 5 + 200 65 +0'008 + +0'011 3- -1'39 1 + 245
21 '007 '0250 '55 0 201 66 '008 ' 0109 '40 2 246
22 '007 ' 024 8 '575 202 67 '007 '0105 '413 247
23 '007 ' 0247 ·600 203 68 '007 '0100 '423 248
24 '008 ' 0245 .624 204 69 '007 '0096 '433 249
25 +0'008 + +0'0243 - -0·649+ 205 70 +0'007 + +0-0092 - - I '442 + 25°
26 '008 ' 024 1 -673 206 71 '006 '0087 '45 1 251
27 '008 '0239 -697 207 72 '006 '0083 '460 252
28 '009 ' 0237 '721 208 73 '006 -0078 '468 253
29 '009 -0234 '744 209 74 -005 '0074 '476 254
30 +0'009 + +0'02 3 2 - -0'768 + 210 75 +0'005 + +0'0069 - - I '483 + 255
31 '009 -0230 '791 211 76 '005 -0065 -489 256
32 '009 '0227 .81 4 212 77 '005 '0060 '496 257
33 -009 '0225 .836 213 78 '004 '0056 '5 0 2 258
34 '010 '0222 -859 214 79 '004 '005 1 '5 0 7 259
35 +0'010+ +0'021 9 - -0·881 + 215 80 +0'004+ +0'0047 - -1'5 12+ 260
36 '010 '02 17 '902 216 81 -003 -0042 '5 16 261
37 -010 '02 14 '924 217 82 -003 '0037 '520 262
38 '010 '021 I '945 218 83 '002 -0033 -5 24 263
39 '010 -0208 '966 219 84 -002 '0028 '527 264
40 +0'010 + +0'0205 - -0'987 + 220 85 +0'002 + +0'0023 - - 1'529 + 265
4 1 -010 '0202 1-007 221 86 ·001 -001 9 '53 1 266
42 ·010 '0 199 ' 027 222 87 -001 '001 4 '533 267
43 '010 ' 01 96 -047 223 88 + '001 + '0009 -534 268
44 '010 ' 01 93 -066 224 89 -000 + -0005 - -535 269

45 +0'010 + +0.0189 - -1-085+ 225 90 0'000 0'0000 -1'535+ 270

The sign is 1:0 be taken from the same side as the argilment_
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A- n fL A B ,\ - n ,\ - n fL A B A - n
0

90 0·000 0'0000 -1'535+ 270 135 -0'010 - -0'0189 + -1'085+ 3 15
91 '000 '0005 + '535 271 136 ·010 '01 93 '066 316
92 ·001 - '0009 '534 272 137 '010 '01 96 '047 317
93 '001 '001 4 '533 273 138 '010 '01 99 '027 318
94 ·001 '001 9 ·53 1 274 139 ·010 '0202 1'007 3 19

95 -0'002- -0'0023 + -1'5 29+ 275 14° -0·010 - -0'0205 + -0'987 + 320
96 '002 '0028 '527 276 141 '010 '0208 '966 321
97 '002 '0033 '524 277 142 '010 '021 I '945 322
98 '003 '0037 ·520 278 143 ·010 '02 14 '924 323
99 '003 '0042 '5 16 279 144 ·010 '02 17 '902 324

100 -0'004 - -0'0047 + - 1'5 12 + 280 145 -0'01·0 - -0'02 19 + -0·881 + 325
101 '004 '005 1 '507 281 146 '010 '0222 ·859 326
102 '004 '0056 '50 2 282 147 '009 '0225 ·836 327
103 '005 ·0060 '496 283 148 '009 '0227 .81 4 328
104 '005 '0065 '489 284 149 '009 '0230 '791 329
105 -0'005 - -0'0069 + - 1'483 + 285 15° -0'009 - -0'0232 + -0'768 + 330
106 '005 '0074 '476 286 151 '009 '0234 '744 331
107 '006 '0078 '468 287 152 '009 '0237 '721 332
108 '006 '0083 '460 288 153 '008 '0239 ·697 333
109 '006 '0087 '45 1 289 154 '008 '024 1 ·673 334
IIO -0'007 - -0'0092 + - 1'442 + 29° 155 -0'008- -0'0243 + -0·649+ 335
III '007 '0096 '433 291 156 ·008 '0245 .624 336
II2 '007 ·0100 '423 292 157 '007 '0247 ·600· 337
II3 '007 '0105 '413 293 158 '007 '0248 '575 338
II4 '008 '0109 '40 2 294 159 '007 '0250 '550 339
lIS -0'008 - -0'011 3 + -1'391+ 295 160 -0'007 - -0'0252 + -0'525 + 34°
II6 '008 '011 7 '380 296 161 '006 '0253 '500 341
II7 '008 '0122 '368 297 162 '006 '0255 '474 342
II8 '009 '0126 '355 298 163 '006 '0256 '449 343
II9 '009 '01 30 '343 299 164 '005 '0257 '423 344
120 -0'009 - -0'01 34+ - 1'329 + 300 165 -0'005 - -0'0259 + -0'397 + 345
121 '009 '01 38 '3 16 3°1 166 '005 '0260 '371 346
122 '009 '01 42 '302 3°2 167 '005 '0261 '345 347
123 '009 '01 46 ' 287 3°3 168 '004 '0262 '3 19 348
124 ·010 '01 50 '273 3°4 169 '004 '0263 '293 349
125 -0,010 - -0'01 54 + - 1'258 + 3°5 17° -0'004 - -0'0264 + -0'267 + 35G
126 '010 '01 57 '242 306 171 '003 '0265 '240 351
127 ·010 '0161 '226 3°7 172 '003 '0265 '214 352
128 ·010 '0165 '210 308 173 '002 '0266 ' 187 353
129 '010 '0169 ·193 3°9 174 '002 '0266 '160 354
130 -0'010 - -0'01 72 + - I '176 + 310 175 -0'002- -0'0267 + -0'134+ 355
131 ·010 '0176 ·159 3 II 176 ·001 '0267 ' 107 356
132 '010 '01 79 '141 312 177 ·001 '0268 '080 357
133 ·010 '0183 ·123 3 13 178 '001 - '0268 '054 358
134 ·010 '0186 ' 104 3 14 179 '000 '0268 '027+ 359

135 -0,010 - -0'0189 + - 1'085 + 315 180 0·000 -0'0268 + 0'000 360

The sign is to be taken from the same side as the argument.
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these formulae may be written:
81 = 0°'003 sin «[ - T') - 0°'005 sin 2 (T' - m- 0°'016 sin go + 8C sin b'
8b = M cos I' + N sin I'
8C = (M sin I' - N cos I') sec b'
in which cos I' and sec b' may be taken as unity, and 8C sin b' as (0'018 8C) b' with
h' in degrees; T' denotes the longitude of the mean lunar perigee, and go the mean
anomaly of the Sun. The tabular values in the Ephemeris, under the headings of
the Earth's selenographic longitude and latitude, are the sums of the optical and
physical librations:

I = I' + 81 b = b' + 8b C = C' + 8C

The values for the principal terms of the physicallibrations obtained from the
dynamical theory depend upon six constants of integration, and upon the numerical
values adopted for I and for the ratiof of (C - B)/A to (C - A)/B where A, B, C
are the principal moments of inertia of the Moon. The terms containing the
constants of integration represent a free libration, which has not been detected
with certainty by observation and is therefore neglected. The other terms
represent a forced libration. The exact value of f is uncertain; in deriving the
expressions from which the physical ephemeris is calculated, Hayn adopted
f = 0'75· Hayn later derived improved and more complete expressions, with
f = 0'73 and I = 1° 32' 20", and also with a series of other values for f ranging
from 0'5 to 0·8 (Astr. Nach., 199,261, 1914 and 211, 3Il, 1920); his results were
confirmed and further improved by Koziel (Acta Astronomica, ser. a, 4, 65, 1948).
From more recent data, Jeffreys has determined f = 0·67 (M.N.R.A.S., 117,
475, 1957), and Watts has found I = 1° 33' 50" (A.J., 60, 443, 1955).

Topocentric librations

The tabular librations and position angles of the axis are geocentric values; for
precise reductions of observations, they should be reduced to the values at the
location of the observer on the surface of the Earth. The differences may reach
nearly 1°, and have important effects on the limb-contour. At a fixed point on
the Earth the topocentric values undergo a daily variation which represents a
diurnallibration due to the parallactic effect of the motion of the point as the Earth
rotates. The variations in the geocentric horizontal parallax of the Moon also
affect the limb-contour as much as do changes of several units in the last decimal of
the tabular librations, an effect that could be regarded as a " parallactic libration "
in addition to the other librations.

Topocentric librations and position angles may be obtained either by differ­
ential corrections of the tabular values, or by direct calculation. The topocentric
optical librations in longitude and latitude, and the topocentric position angle of
the axis affected by only optical libration, may be directly calculated by using the
apparent topocentric coordinates of the Moon instead of the geocentric coordinates
in identically the same formulae as already given for the geocentric values of I', b',
and sin C'; the tabular geocentric physicallibrations may be used without correc­
tion. For this purpose, the apparent topocentric right ascension and declination
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Example 11+ The optical and physicallibrations of the Moon,
and the Earth's selenographic longitude and latitude

1960 March 7 at Oh D.T.

The basic data are taken from the Ephemeris for 1960 March 7 at Oh E.T.

Optical librations

Nutation in longitude (A.E., p. 20)

Apparent longitude of Moon (A.E., p. 54)
Mean node (A.E., p, 51) plus nutation
'\-Q

B (Table ILl)

Latitude of Moon (A.E., p. 54)
B - f3 = b', libration in latitude

A (Table ILl) = +0'0037
fL (Table I L I)

Ab'
Mean longitude (A.E., p. 51) plus nutation
Ll (A.E., p. 5 I)

,\ + fL + Ab' - <1 = l', libration in longitude

l'+Ll+<1-Q
i (A.E., p. 51)
Apparent declination of Moon (A.E., p. 84)

sin i
cos (l' + Ll + <1 - m
sec 0
Product = sin C'

C', position angle of axis

0'0002

,\ 93' 164
Q 175'230

277'934

+ 1'520
f3 5'222

+ 6'742

0'003
+ 0'025

<1 94'217
355'506

- 1'03 1

273'462
24'972

0 +18'183

+ 0'42217
+ 0'06039
+ 1'05256
+ 0'02683

+ 1°'538

Physical librations

<1 (A.E., p. 51) 94'2
T' (A.E., p. 51) 263'0
Q (A.E., p. 51) 175'2

+1'01sec b'

cos (T' - m +0'04
cos (<1 - m +0'16

N +0°'001
cos I' +1'00

oC cos b' -0°'002

+0·12tan b'

sin (T' - m+1'00
sin (<1 - m -0'99

M +0°'043

sin l' -0'02

ob +0°'043

T'-Q
<1 - Q

sin (<1 - T') -0'19

sin 2 (T' - m +0,08
sin go +0·89

191'2
175.6
62'5

<1 - T'
2 (T' - m
go (A.E., p. So)

oC sin b' -0,000 01 -0'01 5 oC -0'002

01
o 0 0 0

+0'003( -0'19) - 0,005( +0'08) - 0,016( +0·89) + (-0'000) -0'01 5

Selenographic coordinates of the Earth
o

Longitude I = l' + 01 -1.031 - 0'015 -1'046
Latitude b = b' + ob +6'742 + 0,043 +6'785
Position angle C = C' + oC + I,538 - 0'002 + I,536

The correction for the difference between E.T. and D.T. is insignificant.

- -. _.. - - - - - -- -~ --- --- -- - ~
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of the Moon are obtained by applying corrections for geocentric parallax to the
apparent geocentric values, and are transformed to ecliptic coordinates by the
usual conversion formulae to obtain the apparent topocentric longitude and latitude.
The table of iL, A, B has been included in the Ephemeris to facilitate this calcula­
tion. This table is being omitted as from the edition for 1962, but the method
may still be used with table I I. I included here; the physical libration continues
to be tabulated separately. However, the application of differential corrections,
as described below, should prove simpler.

Differential corrections for obtaining topocentric librations from the tabular
geocentric values, in a form convenient for practical calculation, have been derived
by, among others, Atkinson (M.N.R.A.S., III, 448-454, 1951) in terms of the
geocentric zenith distance (z) and parallactic angle (Q) of the Moon. From the
geocentric right ascension and declination of the Moon, and the latitude (</» and
local sidereal time, the values of z and Q are calculated by the usual formulae:

sin z sin Q = cos</> sin h
sin z cos Q = cos 0 sin </> - sin 0 cos </> cos h

cos z = sin 0 sin </> + cos 0 cos </> cos h
where h is the local hour angle of the Moon. The topocentric parallax TT' is obtained
from the geocentric horizontal parallax TT by:

TT' = TT (sin z + 0'0084 sin 2Z)

The corrections to the tabular geocentric librations (I, b) and position angle (C)
inclusive of the physicallibrations are:

.dl = -TT' sin (Q - C) sec b

.db = +TT' cos (Q - C)

.dC = +sin (b + .db) .dl - TT' sin Q tan 0

The tabular values should be interpolated with second differences to the time
of observation.

In the special case of a total solar eclipse, the selenographic coordinates of an
observer who is on the axis of the shadow of the Moon are diametrically opposite
the selenographic coordinates of the Sun at that instant. In the reduction of
eclipse observations, therefore, the topocentric librations at any point where the
eclipse is visible may be determined by differential corrections to the tabular
selenographic coordinates of the Sun, and formulae for this purpose have been
developed by Murray (M.N.R.A.S., 114, 676-679, 1954)'

The selenographic position of the Sun

The selenographic longitude and latitude of the subsolar point on the lunar
surface are obtained immediately by replacing the geocentric ecliptic coordinates
of the Moon in the formulae for the selenographic coordinates of the Earth by the
heliocentric ecliptic coordinates (An' f3n) of the Moon.

Expressions for the heliocentric coordinates are readily found from the plane
triangles formed in space by the Sun, Earth, and Moon, and the projections of the
heliocentric and geocentric distances of the Moon on the p1.ane of the ecliptic.
With sufficient accuracy, they may be written:
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Example I 1.5. Differential corrections for obtaining topocentric librations

The calculation of the differential corrections for obtaining topocentric librations from
the tabular geocentric values is illustrated for the time used as the disappearance of Z.C.
2833 on 1960 September I at Strasbourg in example 10.9, and some of the initial quantities
are obtained directly from it.

h m 5 d

D.T. 19 01 °7.81 Sept. 1'792
h m 5

+48 35h +22 53 06·89 8 - 17 42 10'3 ¢ 02'0
sin h -0'2877 sin 8 -0'3°41 sin ep +°'7499
cos h +0'9577 cos 8 +°'95 27 cos ep +0. 661 5

tan 8 -0'3 192 cos ep cos h +0.6335

The geocentric values are:

Co 35 1 '24

Sill z +°'9268
Sill 2Z +0·6960

10 -0~68 bo -5~64

sin z sin Q -0'19°3
sin z cos Q +°'9°7 1

cos z +°'3755

tan Q -°'2°98

Q 348~ IS
Q - Co -3'°9

sin Q
sin (Q - Co)
cos (Q - Co)

-0'2°5
-°'°539
+°'9985

7r 1'001 3 7r'

sec bo
°'934

+ 1'°°5
o

LIZ +°'°51
I = 10 + Lll -0·63

LIb +0'93
b = bo + LIb -4'71 sin (bo + LIb) -0'082

LlC -0'07
C = Co + LlC 351'17

These topocentric values I, b, C are in exact agreement with those derived in example 10.9.

*

b~ = B - fJH
- Q) - 0°'016 sin go

- n.

~ AH + fL + Ab~ - (<< + nutation)
= 0°'003 sin (<< - r') - 0°'005 sin 2 (r'

+ (M sin [~ - N cos [~) tan b~

obo = M cos [~ + N sin [~

in which A, B, fL are taken from table 1101 as before, with argument AH

*8n '794 used for the solar parallax for 1968 onwards.

8·80
fJH = 60 7T R fJ

in which 7T is the equatorial horizontal parallax of the Moon expressed in minutes
of are, Ao is the true longitude of the Sun referred to the true equinox of date, and
R is the radius vector of the Sun. The selenographic longitude and latitude of
the Sun are:

[0 = [~ + 010

where
[~

0[0

- --. --_. - - --- - - - ----- ---- -- -
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Subtracting 10 from 90° or 450° gives the selenographic colongitude of the Sun
(co) tabulated in the physical ephemeris instead of the longitude. The colongitude
is convenient for determining the exact position of the terminator on the surface
of the Moon. The subsolar point at Ie, bo is the pole of the great circle on the
lunar surface that bounds the illuminated hemisphere. The morning terminator,
where the Sun is rising on the Moon, is at selenographic longitude 10 - 90° =

360°- Co; the colongitude of the Sun is therefore the east selenographic longitude
of the morning terminator.t The evening terminator is at longitude 10 + 90° =

180° - Co. When Co = 0°, the Sun is rising at selenographic longitude 0°;
therefore Co is approximately 0° at first quarter, when the morning terminator is
approximately at longitude 0°. At full moon, last quarter, and new moon,
respectively, Co is approximately 90°, 180°, and 270°, and the morning terminator
is approximately at selenographic longitudes 270°, 180°, and 90°.

At a point on the lunar surface at selenographic longitude Tj and latitude 8,
sunrise occurs approximately when Co = 360° - Tj, noon when Co = 90° - Tj, and
sunset when Co = 180° - Tj. The exact altitude H of the Sun above the lunar
horizon at any time may be calculated from:

sin H = sin bo sin 8 + cos bo cos 8 sin (co + Tj)

Example I 1.6. The selenographic coordinates of the Sun

The data are taken from the Ephemeris for 1960 March 7 at Oh E.T. and from example
I 1.4; the subsequent correction from Oh E.T. to Oh U.T. is insignificant.

App. long. and r. v. of Sun (A.E., p. 20, 21) Aa 346~434
App. long., lat., H.P. of Moon (A.E., p. 54) A 93' 164
Fo = 8.80/60 1T R Aa - A 253'270

sin (Aa - A) -0'958

0'9925
54'·29
0'00272

l~ = An + !L + Ab~ - ~

For formulae, see text
Mean node, long. of Moon (A.E., p. 51*)
An - n is argument for table 11.1

From example 11.4.

sin (~ - T') -0'19
sin 2(T' - m +0'08

M +0'043
N +0'001

0

An 166.285 fin -0'014
n 175'230 ~ 94'217

An - n 35 1.055 !L -0'003 B +0'239
A +0'0265 Ab~ +0'007 b~ +0'253

l' 72'0720

sin l~ +0'95 tan b~ 0'00
cos l~ +0'3 1

+0.89 (M sin l~ - N cos l~) +0.041

Selenographic long., l~ + 810 , and lat., b~ + 8bo
Selenographic colongitude = 90° - 10

* Including nutation (A.E., p. 20) -0°'0002
t See note on page 523.

10 72'057
Co 17·943

o

+0'267
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E. THE ROTATIONS OF THE PLANETS

The numerical values adopted for the elements of the rotational motions of
the planets in calculating the physical ephemerides are stated in sub-section G in
the explanations for each individual planet. Referred to the plane of the equator
of the Earth, the position of the equatorial plane of a planet is represented by its
inclination 90° - 00 and the right ascension of its ascending node 90° + ao, where
a o and 00 are the right ascension and declination of the point on the celestial sphere
towards which the axis of rotation of the planet is directed; this point is that pole
of the equator of the planet from which the direction of rotation appears counter­
clockwise. The inclination and node continually vary because of the precession
and nutation of the axis of the Earth and because of the similar motion of the axis
of the planet.

The variations of ao and 00 due to the precessional motions of the equator of
the Earth and the equinox are:

Llao = (m + n sin ao tan 00) (t - to)
Lloo = (n cos ao) (t - to)

where m and n are the general precessions in right ascension and declination.

On a fixed plane of reference, the rate of precession of the node of the equator
of a planet under the action of the Sun is:

3 C - A n~- - cos y
2 C W (I - e~)i

where A = B < C are the principal moments of inertia of the planet, W IS ItS
angular rate of rotation, no is the mean orbital motion, eo is the orbital eccentricity,
and y is the inclination of the equator of the planet to the fixed reference plane.
D nder the action of a satellite of mass m, the rate of precession is:

3 C - A m (a 0)3 n~
- "2 C M + mo a W (I _ e2)i cos y

in which: M is the mass of the Sun; mo, aoare the mass and mean distance of the
planet; and a, e are the mean distance and orbital eccentricity of the satellite.

Mercury and Venus

Surface details can be seen only with difficulty on Mercury and Venus (which
is covered by cloud); the rotational motions of these planets have only been estab­
lished by radar techniques in recent years. The rotation of Mercury is direct with
period 58.66 days, and the rotation of Venus is retrograde with period 243 days.
The physical ephemerides of these two planets in the Ephemeris are at present
limited to the conditions of illumination of the disks, the phase, the phase angle,
position of the bright limb, brilliancy, and stellar magnitude, for use in reducing
observations of position.

Mars

Because of the detail that is observable on the solid surface of Mars, and the

-

- -.- -_._~ - -. -.- - -- -_._--- -- - --. - - -
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accuracy with which it enables the rotational motion to be determined, the physical
ephemeris for Mars is more comprehensive than for any other planet. From the
tabular quantities which it includes, the heliocentric and geocentric aspects of the
disk and the conditions of illumination at every point may be completely determined
(see sub-section G).

For the rate of precession, H. Struve (Mem. Acad. Imp. Sci. St.-petersbourg,
ser. 8, 8, 64-65, 1898), adopting (C - A)/C = 0'0050, obtained -i',07 per
Julian year on the 1880'0 orbit of Mars. Lowell (A.J., 28, 169-171, 1914), taking
(C - A)/C = 0'004935, likewise obtained -i'·08 per terrestrial year, or - 13"'31
per Martian year, on the orbit of Mars.

Jupiter and Saturn

The visible surfaces of these planets are composed of clouds. On Jupiter,
as on the Sun, the equatorial region rotates more rapidly than the polar regions;
consequently, two different systems of planetographic coordinates have been
established on its surface, one for the equatorial region and another for the other
parts of the surface. The physical ephemeris for Jupiter is similar to that for
Mars but it is not quite so comprehensive.

Sampson (Mem. R. A. S., 63, chap. IV, 1921), adopting i- (C - A)/C = O'III,

obtained for the mean value of the precession under the actions of the Sun and the
four Galilean satellites:

dlJ' 3 C - A
-d = -0°'00000 1129 - -C. I = -0°'00000231 per day

t 2 Sill

where I is the inclination of the equator of Jupiter to the 1900'0 orbit of Jupiter,
and lJ' denotes the longitude of the ascending node of the equator of Jupiter on this
fixed reference plane, measured from the fixed mean equinox of 1900'0 along the
fixed ecliptic of 1900'0 to the node of the orbit of Jupiter and then along the orbit
to the equator of Jupiter.

A physical ephemeris for Saturn is given for the first time in the Ephemeris
for 1960. The plane of the rings of Saturn is assumed to coincide with the
equatorial plane of Saturn; the elements of the equator are therefore the same as
the elements of the rings, but are not needed in calculating the physical ephemeris
which is limited to the light-time, stellar magnitude, apparent equatorial and polar
diameters, and the phase conditions.

H. Struve (Pub. Obs. Cent. Nicolas, ser. 2, II, 234-236, 1898), adopting
i- (C - A)/C = 0'10, and 1/4700 for the mass of Titan, obtained -0"'46 per
Julian year for the average precessional motion, during the nineteenth century, of
the equator of Saturn on the ecliptic, under the actions of the Sun and Titan.

Uranus, Neptune, and Pluto

The small disks of Uranus and Neptune do not show any markings from which
the rotation can be directly determined, and Pluto has no observable disk. The
rotations of these planets must be inferred from indirect evidence.
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The plane of the equator of Uranus is presumably the same as the common
orbital plane of the satellites, which is inclined at 98° to the ecliptic, since this
orbital plane does not have the secular motion that otherwise would be caused by
the large oblateness of Uranus shown by direct observation of the disk. The
planet therefore rotates around an axis which is nearly parallel to the plane of the
ecliptic; spectroscopic and photometric observations give a period of rotation of
about II hours.

The elements of the equator of Neptune may be inferred from the secular
variation of the orbital plane of Triton. According to the determination by
Eichelberger and Newton (A.P.A.E., 9, part III, 325-326, 1926) the north pole of
the equator of Neptune is at no = 295°'2,00 = +41°'3 (1900'0). The period of
rotation is uncertain.

F. THE ILLUMINATED DISKS OF MERCURY AND VENUS

The quantities tabulated in these ephemerides are k, i, e, L, and the stellar
magnitude; they are defined at the foot of each ephemeris and are calculated from
the formulae developed in sub-section C.

As described in sub-section C, the terminator is a semi-ellipse whose major
axis is a diameter of the planet in position angle e + 90° and whose semi-minor
axis is of length (semi-diameter) x (I - 2k) in position angle e when k is less
than 0-5, and of length (semi-diameter) x (2k - I) in position angle e + 180°
when k is greater than 0'5.

When i is greater than 90°, k is less than 0'5, i.e. the planet is horned, and the
correction to an observation of the cusp for defective illumination in declination is:

semi-diameter x (I =+= sin e)
the sign being taken to make the quantity inside the bracket less than unity.

When i is less than 90°, k is greater than 0'5, i.e. the planet is gibbous. If
angles 4> and if; in the first quadrant are formed from:

sin 4> = sin i sin e sin if; = sin i cos e
the correction for defective illumination in right ascension is:

sidereal time of semi-diameter passing the meridian x (I - cos 4»
and that in declination is:

semi-diameter x (I - cos if;)
When the corrections are very small they are sensibly equal to:

sidereal time of semi-diameter passing the meridian x t sin2 i sin2 e
and semi-diameter x 1 sin2 i cos2 e

In general dichotomy is not at greatest elongation, especially for Mercury,
because of the orbital inclinations and eccentricities.

The formulae for the brilliancies of the disks and for the stellar magnitudes
are given in sub-section C; but for the definition of the greatest brilliancy of Venus
see section 8C.

- --. --_. - --- ~ - -- -. --- ---- --- - -
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G. EPHEMERIDES FOR PHYSICAL OBSERVATIONS
OF MARS, JUPITER, AND SATURN

The physical ephemerides for Mars, Jupiter, and Saturn contain: the time
required for light to travel from the planet to the Earth, calculated with the value

* 4988.58 for the time taken by light to travel unit distance, as deduced from the
adopted solar parallax and the measured velocity of light; the apparent diameter,
calculated from the same semi-diameter at unit distance as in the fundamental
ephemerides; the stellar magnitude, the phase angle (i), the position angle (Q)
and the angular amount (q) of the greatest defect of illumination; and for Mars the
phase (k), calculated by the formulae developed in sub-section C. No other
quantities are given for Saturn; but the ephemerides for Mars and Jupiter include
quantities representing the geometric aspects of the rotating surface of the planet
in relation to both the Sun and the Earth upon which depend the illumination
over the surface by the Sun and the appearance in detail of the disk as seen from
the Earth.

The variations in phase for these planets are small. The defect of phase is
t (I - cos i); approximately, it is a maximum when the planet is at quadrature
and the phase angle is sin-1 (Rfr). The extreme possible value of sin i is therefore
about 1.017/a (I - e), and even for Mars the defect of phase cannot exceed
about 0'16.

The observed aspect of the disk depends upon the positions of the Earth and
the Sun relative to the different areas of the surface of the planet, or equivalently
upon the apparent positions of the Earth and the Sun on the planetocentric celestial
sphere at the different points of the surface. To represent these positions, coor­
dinate systems are defined on the planetocentric sphere, by the plane of the equator
of the planet and the plane of its orbit, in the same way as right ascension and
declination, and celestial longitude and latitude, are defined on the geocentric
celestial sphere by the equator of the Earth and the ecliptic. Because of the
mathematically infinite radius of the celestial sphere, the same fundamental
reference circles are defined on the geocentric sphere as on the planetocentric
sphere by the orbital and equatorial planes of the Earth and the other planets.

On a planetocentric sphere (see figure 11.5) the apparent position of the Earth
is diametrically opposite the geocentric position of the planet, and the Sun is
opposite the heliocentric position of the planet. The planetocentric angular
distance of the Earth from the equator of the planet, denoted by DE, is numerically
equal and opposite in sign to the geocentric angular distance of the planet from the
plane of the equator of the planet. The ascending node of the orbit of the planet
on its equator is the vernal equinox of the planet; the angular distance in the plane
of the planetary equator from this point eastwards to the great circle through the
Earth and the celestial pole of the planet, denoted by A E , is equal to the geocentric
longitude of the planet measured in the plane of its equator from its autumnal
equinox, or descending node of its orbit on its equator. The coordinates A E and
*4995 '°12 for 1968 onwards.
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Figure II.S. Planetocentric sphere
A North pole of rotation of the planet
N North celestial pole
P Geocentric position of the planet (a, 8)
S Heliocentric position of the planet QQ = Ll

DE are known as the planetocentric right ascension and declination of the Earth;
but the terms planetocentric right ascension and declination are also applied to the
coordinates of objects on the planetocentric sphere that are referred to the equator
and vernal equinox of the Earth, and care is necessary to avoid confusion.

Similarly, referred to the equator and vernal equinox of the planet, the
planetocentri':: right ascension of the Sun, As, is equal to the heliocentric longitude
of the planet measured in the plane of its equator from its autumnal equinox; and
the planetocentric declination of the Sun, Ds' is numerically equal and opposite in
sign to the heliocentric angular distance of the planet from the plane of its equator.
The planetocentric longitude of the Sun, denoted by L s and measured in the plane
of the orbit of the planet from its vernal equinox, is equal to the heliocentric
orbital longitude of the planet measured from its autumnal equinox; it is tabulated
only for Mars.

These coordinates of the Earth and the Sun on the planetocentric sphere
determine the geocentric and heliocentric aspects of the planetographic coordinate
systems on the surface of the planet, to which the markings on the disk are referred.
Planetographic longitudes on the surfaces of Mars and Jupiter are reckoned from
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0
0 to 3600 in the direction opposite to the rotation, that is, eastwards on the geo­

centric celestial sphere. The zero meridian from which the longitudes are
measured is defined by the adopted position of the pole and an adopted value for
the longitude of the meridian that passes through the centre of the disk at a selected
epoch. The adopted longitude of the central meridian at the epoch and the rate
of rotation of the planet determine the central meridian at any other time. The
rotation is referred to the ascending node of the orbit on the equator of the planet,
and the period is therefore known as the sidereal period of rotation; it differs
slightly from the actual period of rotation, because of the precession of the axis
of the planet.

The position angle (P) of the axis iqthe angle that the meridian from the centre
of the disk to the north pole of rotation forms with the celestial meridian through
the centre, measured eastwards from the north point of the disk.

The geocentric and heliocentric aspects of the disk

The coordinates that represent the apparent positions of the Earth and the
Sun on the planetocentric celestial sphere depend upon the position of the equator
of the planet relative to the orbit of the planet. Referred to the orbit, the elements
of the equator of the planet are its inclination (1), and the position of its ascending
node on the orbit, at the autumnal equinox of the planet; denoting the longitude
of this node, measured from the node n of the orbit on the ecliptic, by Q, its longi­
tude reckoned from the first point of Aries is Q + n, where n is the node of the
orbit.

The elements I and Q, and the arc Ll of the equator of the planet from its
ascending node Q on the celestial equator to its ascending node Q on the orbit,
may be determined from the right ascension and declination of the pole A of the
planet (uo, 80) by the relations in the two triangles formed by the node Q of the
equator of the planet on the celestial equator and the node n of the orbit on the
ecliptic with the first point of Aries 'Y', and with the node Q of the equator of the
planet on the orbit. From the first of these triangles nQ'Y', denoting the obliquity
of the ecliptic by €, the auxiliary angles x, y, z are calculated from:

sm z sm x = + sin € cos U o
sm z cos x = - cos € cos n cos Uo - sin n sin Uo

cos z = +cos € sin ncos Uo - cos n sin Uo

sm z sm y = + sin € sin n
sin z cos y = +cos € sin n sin Uo + cos ncos Uo

From the second triangle nQQ, in which the angles are 1, 180
0 + (i - x), and

900 + (80 - y), where i is the inclination of the orbit to the ecliptic:

sin 1 sin Q +sin z cos (y - 80)

sin 1 cos Q +sin (x - i) sin (y - 80) - cos (x - i) cos (y - 80) cos z
cos 1 +cos (x - i) sin (y - 80) + sin (x - i) cos (y - 80) cos z

sin 1 sin Ll +sin z sin (x - i)
sin 1 cos Ll - cos (x - i) cos (y - 80) + sin (x - i) sin (y - 80) cos Z
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Alternatively, I, 52, and LI may be determined by the relations in the two
triangles 'Y'H6 and JQ52 formed, respectively, by the first point of Aries 'Y' and the
nodes J and n of the planet's orbit on the Earth's equator and ecliptic, and by J
and the nodes Q and 52 of the planet's equator on the Earth's equator and the
planet's orbit.

From the first of these triangles 'Y' J n:
sin J sin N = + sin i sin n
sin J cos N = + cos i sin E + sin i cos E cos n
cos J + cos i cos E - sin i sin E cos n
sin J sin w = + sin E sin n
sin J cos w = + sin i cos E + cos i sin E cos n

where N, J are the node and inclination of the planet's orbit referred to the Earth's
equator and w is the arc Jn of this orbit from the node on the equator to the node
on the ecliptic.

From the second triangle JQQ:

sin I sin (52 + w) +cos 00 cos (N - uo)
sin I cos (52 + w) -sin 00 sin J + cos 00 cos J sin (N - uo)
cos I +sin 00 cos J + cos 00 sin J sin (N - uo)
sin I sin LI +sin J cos (N - uo)
sin I cos LI + cos 00 cos J - sin 00 sin J sin (N - uo)

In calculating the physical ephemerides, Uo and 00 must be referred to the
true equinox and equator of date. The secular variation is the sum of the general
precession of the first point of Aries and the precession of the vernal equinox of the
planet; the coordinates of the pole referred to the mean equinox and equator at
the beginning of the year are obtained from the secular variations, and further
reduced to the equinox of date by means of the Besselian star reductions. Likewise,
L1 is reckoned from the true equator of the Earth; the correction for the nutation
at date is equal to the effect of nutation on the length QR of the segment of LI
between the celestial equator and the ecliptic, which by differentiation of the
triangle 'Y'QR formed by the intersections of the ecliptic, the celestial equator, and
the equator of the planet is found to be:

Llf cos (900 + uo) sin Esec 00 + LIE sin (900 + uo) sec 00

in which Llf is the nutation in longitude and LIE the nutation in obliquity.

The reference circles are not affected by aberration; but corrections for
light-time must be applied to all the quantities that depend upon the position of
the planet.

On the planetocentric sphere, the Earth is at the same angular distance from
the vernal equinox of the planet as the geocentric position of the planet is from the
autumnal equinox, and at the same angular distance from the equator of the planet
but on the opposite side. Therefore, in the triangle APN formed by the pole A
of the planet at uo, 00, the geocentric position P at u, 0, and the celestial pole N, the
arc AP from the pole of the planet to its geocentric position is 900 + DE and the

- --.... --- - --- - -- -_. --------- -- -
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angle NAP at the pole of the planet is 90° - (Ll + A E); in this triangle APN:
cos DE sin P +cos DO sin (ao - a)
cos DE cos P = +sin 00 cos 0 - cos Do ~in 0 cos (ao - a)
sin DE -sin Do sin 0 - cos Do cos 0 cos (ao - a)

cos DE sin (A E + Ll) = +cos Do sin 0 - sin Do cos 0 cos (ao - a)
cos DE cos (A E + Ll) = -cos 0 sin (ao - a)

from which the coordinates A E and DE of the Earth, and the position angle P of the
axis of the planet may be determined.

The correction for aberration is implicitly included by using the apparent
right ascension and declination of the planet in the calculations.

Similarly, on the planetocentric sphere the heliocentric position S of the
planet is at an angular distance from its autumnal equinox equal to:

L s = L - (Q + Q)
where L is the orbital longitude of the planet, and is at the same angular distance
D s from its equator as the Sun but on the opposite side. In terms of the helio­
centric ecliptic longitude of the planet (l), the arc QS = L s + Q may be deduced
from l - Q and the inclination i by:

tan (Ls + Q) = tan (l - Q) sec i
and, since i is small:

L s + Q = (l - m + tan 2 ii sin 2 (l - m
From the right-angled triangle formed by the arcs Ds, As, and L s :

sin Ds = sin L s sin I
cos Ds sin As = sin L s cos I
cos Ds cos As = cos L s

The correction for light-time is made by applying to the orbital longitude,
in the calculation of L s' the product of the daily motion of the planet in heliocentric
longitude by the time in days required by light to travel from the Sun to the planet
and back to the Earth.

Mars

* The adopted rotation elements of Mars are:

North pole of Mars (Lowell, M.N.R.A.S., 66, 56, 1905).
At the beginning of the year t

ao = 21 h lIm 108'42 + 18'565 (t - 1950'0)
80 = +54° 39' 27" + 12"·60 (t - 1950'0)

Sidereal period of rotation (Ashbrook, AJ., 58, 145. 1953).
In ephemeris time, 24 11 37m 228.6689

Central meridian, referred to the zero meridian of 1909.
Longitude of central meridian

1909 January 15'0 C.M.A.T. (J.D. 241 8322'0), 344°'41
Daily motion, 35°°.891962

The position of the north pole was adopted in 1909. The zero meridian is
defined by the first tabular longitude of central meridian calculated with this
*A.E. 1968-1970 <xo 316°'55 +0° '°°6533 (t - 1905'0)

So + 52° ·85 +0° '°°3542 (t - 1905'0)
A.E. 1971 onwards <xo 316°'55 +0°'006750 (t-1905'0)

So + 52°.85 +0° '003479 (t - 1905 ,0)

See de Vaucouleurs (Icarus, 3, 236-247, 1964)



ltG. EPHEMERIDES FOR PHYSICAL OBSERVATIONS 335

+°'4619 L1ifi + 1'2829 L1€
The variation of this correction during the year cannot exceed 0° '001 and therefore
no further correction is necessary.

The correction for aberration which is applied to L B to correct the planeto­
centric position of the Sun for light-time may computationally be included in Q.
A mean value of the correction of +0°'007, which is sufficiently accurate in
practice, has been included in the tabular values of Q. It is obtained by adopting
0'7 as the average distance of Mars from the Earth, giving a light time of od·00404,
and obtaining the total light-time by adding od·00879 to allow for the mean distance
of Mars from the Sun; multiplying by the mean daily motion of Mars gives
°'01283 x -0°'524°3 = 0°'°°67.

. The tabular longitude of central meridian of the apparent disk of Mars is for
the geometric disk, not the illuminated disk; and the time of transit of the zero
meridian is for the transit across the central point of the geometric disk. The
longitude of the central meridian is the Martian hour angle of the Earth measured

position of the pole; this value of 344°'41, for Greenwich mean noon on 1909
January 15, was obtained by continuing the value 52°.01 given by Marth
(M.N.R.A.S., 56,4°3, 1896) for 1897 May 15'0 G.M.A.T., with the same period
of rotation. Beginning with 1960, a period of rotation is adopted that differs from
the value used in previous years; however, the same zero meridian is retained to
avoid a further addition to the changes which, when neglected or overlooked in
the reduction and discussion of observations, have sometimes led to erroneous
results in the past. Consequently, from 1959 to 1960 there is a discontinuity in
the tabular longitude of the central meridian, amounting to about - 1°; to reduce
the published ephemerides for 19°9-1959 to the rate of rotation adopted in 1960,
the following correction is to be applied to the tabular longitude of central meridian:

-0°'000°58 (J.D. - 241 8322 '°)
in addition to any required reduction from ephemeris time to universal time.

For the orbit of Mars, Newcomb's elements as corrected by Ross are adopted;
referred to the ecliptic and mean equinox of date:

Q = 48° 47' II "'19 + 2775"'57 T - 0"'005 T2
i 1° 51' 01 "'20 - 2"'430 T + 0"'0454 T2

in which T denotes Julian centuries from 1900 January 0·5 E.T. Their values at the
beginningof each year are included in table I 1.2 of the elements of the Martian equator.

Table 11.2 gives for the beginning of each year from 1950 to 1975 the values
of uo, 00' Q, i, referred to the mean equinox, and of L1, Q, sin I, cos I. The
reductions to be applied to uo, 00 for the additional secular variation to date and for
nutation, in terms of the Besselian day numbers A, B, are:

L1uo = +0°'0°°376 A + 0°.000291 B - 0°'°°1013 T

L100 = +0°'000206 A + 0°'000186 B - 0°'000631 T

where A, B are in seconds of arc and T is the fraction of the year; when L1uo is
required in seconds of time:

L1uo = +08'°902 A + 08'°698 B - 08'243 T

The values of the other quantities at date are obtained by interpolation. The
tabular values of L1 include a correction for nutation at the beginning of the year,
namely:

_ _ 4_ ._ •• _ _ _ _ _ _
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Table 11.2. Elem.ents for the physical ephem.eris of Mars

Jan. 0·0 ao 80 n LI Q sin I cos I

h m ° °
1950 21 I I 10'4 54.658 49'172 46 '°22 39'°3 1 °'4°649 °'91365

51 12·0 ·661 ·180 '028 '°35 '40649 '91365
52 13,6 ·664 '187 '034 '039 '4°65° '91365
53 15' I ,668 .195 '°39 '°43 '4065° '91365
54 16'7 .672 '2°3 '044 '°47 '4°65° '91365

1955 21 I I 18'2 54. 675 49'210 46 '°49 39'°52 0'40650 °'91365
56 19. 8 ·678 '218 '°53 '056 '4°65° '91365
57 21'4 ,682 '226 '057 '060 '4°65 1 '91365
58 22'9 ,686 '234 '061 '064 '4°65 I '91365
59 24'5 .689 '24 1 '066 '069 '4°65 I '91365

1960 21 II 26'1 54. 692 49'249 46 '°7° 39'°73 0'40651 °'91364
61 27,6 ,696 '257 '°75 '°77 '4°651 '91364
62 29'2 '7°O '264 '080 '081 '4°652 '9 1364
63 3°·8 '7°3 '272 '086 '085 '4°652 '91364
64 32'3 '7°6 '280 '°92 '°9° '4°65 2 '91364

1965 21 II 33'9 54'7 10 49'288 46 '°99 39'°94 °'4°652 0'91364
66 35'5 '7 14 '295 '106 '°98 '4°653 '9 1364
67 37'° '7 17 '3°3 '112 ' 102 '4°653 '91364.
68 t 38 .6 '7 2O '3 II '119 '106 '4°653 '91364
69 4°'2 '724 '3 18 ·125 ·110 '4°653 '91364

1970 21 II 4 1'7 54'728 49'326 46 '13 1 39'1l5 °'4°654 °'91363
71 43'3 '73 1 '334 '137 '1l9 '40654 '91363
72 44. 8 '734 '342 '142 '123 '4°654 '9 1363
73 46'4 '738 '349 .146 '127 '40654 '9 1363
74 48'° '742 '357 '15 1 '13 1 '4°654 '91363

1975 21 II 49'5 54'745 49'365 46 '155 39'134 °'4°654 °'91363

i= 1°,850 throughout, :l:Values for 1968-75 are based on pole due to Lowell,

from the zero meridian of Mars; it is therefore V - A E where V is the Martian
hour angle of the vernal equinox of Mars measured from the zero meridian. At
the instant at which the tabular longitude of central meridian is taken to define the
zero meridian, the value of V is the sum of the longitude of central meridian and
the value of A E at the instant, increased by the angular amount of rotation during
the light-time; accordingly, in the adopted system of elements the value of V for

* 1909 January 15'0 G.M.A,T. is 145°,845, and at any date:
* V + 180° = 325°.845 + 35°°.891962 (J.D. - 241 8322'°)

The longitude of the central meridian obtained from this value of V is corrected
for light-time by subtracting the amount of rotation during the light-time, namely

t (4988 '58 Ll/period of rotation) x 360°, where Ll is the geocentric distance; thus
the longitu~e of central meridian is given by:

t (V + 180°) - (A E + 180°) - 2°'°24858 Ll

The time of transit of the zero meridian is determined by inverse interpolation
of the ephemeris of the longitude of the central meridian.

For the stellar magnitude of Mars see sub-section C.
*149°'475,329°'475 for 1968-70; 149°'479,329°'479 for 1971 onwards.
t499s'012, 2°'026612 for 1968 onwards.
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Example I 1.7. The physical ephemeris of Mars
1960 April 6 at Oh U.T.

The data are taken either from the Ephemeris or from example I 1.2, in which the
calculation of the phase is illustrated; other data have been taken, without interpolation,
from table I 1.2.

0'333 82

288~460
46 '070

242'390
62'390

0'55 138
0.87918

+ 0'29349

cot (AE + ,1)
o· 19020tan P

AE + ,1
P 349'231 ,1 (Table 11.2)

° AE

DE -22'046 AE + 180°

For the planetocentric coordinates of the Sun:

T (A.E., p. 270) +0'2619
A (A.E., p. 270) +4"'294
B (A.E., p. 270) +8"'794

ao, mean equinox 1960'0 from table 11.2 317.°859
+0'000376 A + 0'000291 B - 0'001013 T +0'004

ao, true equinox of date 317.863
a (A.E., p. 196) 335'300
ao - a - 17'437

80, mean equinox 1960'0 from table I 1.2 + 54~692
+0'000206 A + 0'000186 B - 0'000631 T + 0'002
80 , true equinox of date + 54.694
8 (A.E., p. 196) - I I ·642

sin (ao - a) -0'29966 sin 80 +0·81608 sin 8 -0'20179
cos (ao - a) +0'95404 cos 80 +0'57794 cos 8 +0'97942

Using the formulae for the planetocentric coordinates of the Earth:
cos 80 sin (ao - a) 0'17319 cos 80 cos (ao - a) +
cos DE sin P 0'17319 cos DE sin (AE + ,1)
cos DE cos P + 0'91055 cos DE cos (AE + ,1)
sin DE 0'37536

L (A.E., p. 172) 303~496 sin Dg 0'23417
Q + Q (Table 11.2) 88'3 22 cos D s sin As 0'5 2631
Ls=L-m+Q) 215'174 cos D s cos As 0. 81 741

sin L s 0'57606 D s - 13'543
cos L s 0. 81 741

tan As + 0.64388

212'777
-29.61 3

sin I (Table 11.2) + 0'40651 As
cos I (Table 11.2) + 0'91364 As - AE

The correction from Oh E.T. to Oh U.T. is insignificant.

Longitude of the central meridian:

J.D. 243 7030' 5 - (A E + 180°) 297~610 ,1 1'94736
J.D. of epoch 241 8322'0 Vo + 180° 325.845
Days elapsed I 8708'5 Motion since epoch 62'271

-2°'024858,1 -3'943
Longitude of central meridian at Oh E.T. = sum 321'783
Motion during ,1T = 368 +0'146
Longitude of central meridian at Oh U.T. 321 '929

Following first difference of longitude of central meridian 350°'082
U.T. of transit of zero meridian = 24h x (360° - 321°'929)/350°'082 = 2h 36m.6

- --- +---- - - - --- - - -_. --- ----- - -
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Jupiter

The adopted position of the pole is derived from the position for 1750 given
by Damoiseau (Tables Ecliptiques des Satellites de Jupiter, page I, Paris, 1836).
The longitude of the central meridian that defines the zero meridian, and the rate
of rotation, are adopted from the ephemeris last published by Marth (M.N.R.A.S.,
56,523, 1896):

North pole of Jupiter

At the beginning of the year t,

ao = 17 h S2m 008 .84 + 08 '247 (t - 191°'°)
80 = +640 33' 34H·6 - oH·60 (t - 191°'°)

Sidereal period of rotation System I
9h Som 30·'003

Central meridian
Longitude

1897 July 14'0 G.M.A.T. (J.D. 241 412°'°)
Daily motion

System II
9h SSm 40··632

System I applies to all points on or between the north component of the south
equatorial belt and the south component of the north equatorial belt; System II
applies north of the south component of the north equatorial belt, and south of the
north component of the south equatorial belt.

The elements of the equator of Jupiter and the values of r6 are given in table
11.3 for the beginning of each year. In the calculation of the table, the values
used for the orbital elements of Jupiter are:

r6 = 99°'43798 + 1°'01053 T + 0°'°°°352 1'2
i 1°'30876 - 0°'°°5696 T

in which T is measured in Julian centuries from J.D. 241 5020'0; these elements
are based on Hill's values for 1850 (A.P.A.E., 7, part I, 1898) and on the variations
determined by Leverrier and Gaillot (Connaissance des Temps).

The correction for aberration included in Q is +0°'0045, obtained from a
mean light-time of od.03002 between the Sun and Jupiter, and Od'02424 between
Jupiter and the Earth. The correction to the arc Ll for nutation is neglected. In
calculating the ephemeris, the reductions for precession and nutation from the
beginning of the year to date are also neglected for all the quantities in table 11.3.

The tabular longitudes of the central meridian are for the geometric disk;
applying to them the corrections in the column headed Correction for Phase gives
the longitudes of the central meridian of the illuminated disk. The numerical
value of this correction is:

57°'3 (I - k) = 57°'3 sin2ti
and the sign is opposite the sign of sin (As - A E ). In addition, the longitude of
the central meridian of the illuminated disk is tabulated at daily intervals in a
separate ephemeris; the tables of the motion of the central meridian accompanying
this ephemeris are based on the mean daily synodic rotations during the period
when Jupiter is observable, which are 877°'95 for System I, and 870°'30 for
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System II. An accuracy of 0°· 1 for the longitude of the central meridian of the
illuminated disk is usually sufficient, and may readily be obtained from the daily
ephemeris; interpolation in the 4--day ephemeris is less convenient, but may be
made in the infrequent cases when an accuracy of 0° ·01 is needed.

The longitude of the central meridian of the geometric disk is calculated in
the same way as explained for Mars. In the adopted system of elements:

V + 180° = 100°'974- + 877°'90 (J.D. - 24-14-12°'°) for System I *
V + 180° = 14-9°'976 + 870°'27 (J.D. - 24-1 4-120.0) for System II *

The angular amount of rotation during the light-time at geocentric distance Ll is *
5° '06601 Ll for System I, and SO '°2198 Ll for System II. '

For the stellar magnitude of Jupiter see sub-section C.

An ephemeris for physical observations of Jupiter during the intervals near
conjunction that are omitted from the Ephemeris is given for 1960, 1961, and 1962
for the reduction of radio observations in A.J., 65, 104--106, 1960.

Table 11.3. Elements for the physical ephemeris of Jupiter

Jan. 0'0 ao 80 Q Ll Q

h m 0 0 0

1960 17 52 13'2 64'55 1 1°°'°44 3 I 8'052 216'262
61 13'4 '55 1 '°54 '066 '266
62 ) 3'7 '55 1 '065 '080 '272
6;3 13'9 '55 1 '°75 '°92 '274
64 14'2 '55 1 '085 '1°5 '278

1965 17 52 14'4 64'55° 1°°'°95 318'II7 216'281
66 14'7 '55° '1°5 . 13 I ' 285
67 14'9 '55° ' II 5 '144 '29°
68 15'2 '55° ' 125 '156 '293
69 15'4 '55° '135 '17° '297

1970 17 52 15'7 64'550 1°°'146 318· 184 216'3°2
71 15'9 '549 '156 . 196 '306
72 16'2 '549 '166 '2°9 '3°9
73 16'4 '549 '176 '222 '3 13
74 16·6 '549 '186 '235 '3 17

1975 17 52 16'9 64'549 100· 196 318 '248 216'321
76 17' I '549 '206 '261 '324
77 17'4 '548 '216 '274 '328
78 17,6 '548 '226 '287 '332
79 17'9 -548 '236 '3°0 -336

1980 17 52 18, I 64'548 100- 247 318 '3 14 216'34°

i = 1°'305 sin I = 0-05355
cos I = 0-99856

Saturn

The physical ephemeris for Saturn is very limited and contains no data that
have not been fully described for other planets. For the stellar magnitude see
sub-section C.
*101°'°01, 15°°'°02, 5°'07040, 5°'°2633 for 1968 onwards_

- --. +.-- --- -.- - - -- ------ ---- -- - + -
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Example 11.8. The physical ephemeris of Jupiter
1960 March 7 at Oh U.T.

The data are taken from the Ephemeris, or from example 11.2, in which the calculation
of the phase is illustrated, or from table 11.3. The calculation follows closely that for
Mars in example 11.7.

0

ao 268'055
a 270 '776 c

ao - a -2'721 00 +64'55 1 0 -23'010

sin (ao - a) -0.04748 sin 00 +°'9°297 sin 0 -°'39089
cos (ao - a) +0'99887 cos 00 +°'4297° cos 0 +°'92°44

Using the formulae for the planetocentric coordinates of the Earth:
cos 00 sin (ao - a) -0'02040 cos 00 cos (ao - a)
cos DE sin P -0'02040 cos DE sin (A E + .1)
cos DE cos P +°'9989° cos DE cos (AE + .1)
sin DE -°'°4210

cot (AE + .1)

+°'42921
-°'99816
+0'°437°

tan P

P
A E + .1
.1 (Table 11.3)
AE
A E + 180°

272'5°7
318 '°5 2

314'455
134'455

For the planetocentric coordinates of the Sun:

L (A.E., p. 174)
n + Q (Table 11.3)
Ls=L-<Q+Q)

sin L s
cos L s

c

260'242
3 16 '306
3°3'936

-0.82966
+°'55 827

sin D s
cos Ds sin As
cos Ds cos As

cot As

-°'°4444
-0.82847
+°'55827

-2'547

sin I (Table 11.3) +0'05355 As
cos I (Table 11.3) +°'99856 As + 180°

The correction from Oh E.T. to Oh U.T. is insignificant.

For the longitude of the central meridians in the two systems:

System I

3°3'974
123'974

System II

J.D. 2437°0°'5 -(AE +180°)
J.D. of epoch 241 4120'0 Vo + 180°
Days elapsed 22880'5 Motion since epoch

.1 5 '44869 Rotation in light-time
Longitude of central meridian at Oh E.T, sums
Motion during .1 T = 368
Longitude of central meridian at Oh U.T.
Correction for phase 57°'3 (I - k), with

opposite sign to (As - A E)

Longitude of central meridian of illuminated disk

225'545
1°°'974
23°'95°

-27.6°3
169,866

+ °'366
17°'232

+ °'477

225'545
149'976
252 '735

-27'363
24°·893

+ °'363
24 1 '256

+ °'477
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H. HISTORICAL NOTES

Sun

An ephemeris for physical observations of the Sun was first published in
The Nautical Almanac for the year 1907. Previous to that time, observations
were reduced with the aid of tables privately printed by Warren de la Rue (see
the volumes of the Greenwich photoheliographic observations).

The ephemeris was first included in The American Ephemeris in the volume
for 1913.

Moon

Ephemerides for physical observations of the Moon, calculated by Marth,
appeared in Monthly Notices of the Royal Astronomical Society during the last
quarter of the nineteenth century. .The ephemeris was introduced into The
Nautical Almanac in 1907. It was first included in The American Ephemeris in
1913; but formulae and tables for the calculation of the opticallibrations, and the
times of the greatest librations, had been included with the ephemeris of the
elements of the mean equator of the Moon, beginning in 1855.

Mercury and Venus

The physical ephemerides of Mercury and Venus were added to The American
Ephemeris in 1882, and included in The Nautical Almanac in 1907. Previously,
only a small table of the versed sine of the illuminated disk divided by the apparent
diameter, for Venus and for Mars, had been given.

Mars and Jupiter

Ephemerides for physical observations of Mars, calculated by Marth, appeared
in Monthly Notices of the Royal Astronomical Society beginning in 1869, and for
Jupiter beginning in 1875. They were continued by Crommelin after Marth's
death, and transferred to The Nautical Almanac in 19°7; they were first included in
The American Ephemeris in 1913.

Saturn

The physical ephemeris of Saturn first appeared in the Ephemeris in 1960.
The stellar magnitude which is included in it had previously been given in the
ephemeris for the rings.

- --- ---- ----- --- - - - -------- ------ -- -- -



12. SATELLITES

A. INTRODUCTION

The ephemerides of the satellites in the Ephemeris are intended only for
search and identification, not for the exact comparison of theory with observation.
They are therefore calculated only to an order of accuracy sufficient for the purpose
of facilitating observations. The tabular values are corrected for light-time, and
are directly comparable with observations at the tabular times; the value of the

* light-time used in the calculations is 4988.58 for unit distance, corresponding to
the adopted values of the solar parallax and the velocity of light.

To the order of the precision given, corrections for the difference between
E.T. and V.T. are significant only for the orbital longitudes of the satellites; the
phenomena of Jupiter's satellites are tabulated only to the nearest minute of time.
However, the elements on which the positions of the satellites are based are referred
to epochs expressed in V.T. (or in G.M.A.T. = V.T. - od'5 for the dates prior
to 1925); if the epochs are to be regarded as expressed in E.T., the mean longitudes
at the epoch should therefore be modified by the motion in L1 T at the epoch. No
such modifications have been made, though corrections have been applied to the
longitudes of the satellites of Saturn for the motion in L1 T at the current epoch.
In most examples the reduction from Oh E.T. to Oh V.T. is not significant and has
been ignored.

The apparent positions of the satellites are represented by their positions
relative to the primary, expressed either by the apparent angular distance and
position angle, or by the differential spherical (or rectangular) coordinates in right
ascension and declination. These apparent coordinates on the celestial sphere
relative to the. primary are calculated from the geocentric position of the primary
and the planetocentric position of the satellite that is obtained from the theory of
its orbital motion around the primary.

The apparent orbit of a satellite on the geocentric celestial sphere is an ellipse
which is the orthogonal projection, in the direction of the line of sight, of the
actual orbit in space. In a circular orbit the orbital diameter that is perpendicular
to the line of sight is projected into the major axis of the apparent ellipse; at its
extremities, the satellite is at its greatest elongations from the primary, at an
apparent angular distance ajL1, where a is the apparent semi-major axis in seconds
of arc at a distance of one astronomical unit and L1 is the geocentric distance of the
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*499"'012 for 1968 onwards. See note on page 349.
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primary. The orbital diameter that lies in the plane which passes through the
line of sight, and which is perpendicular to the orbital plane, projects into the
minor axis; at the farther extremity of this diameter, the satellite is in superior
geocentric cOf,junction with the primary, and at the nearer extremity it is at inferior
conjunction. The ratio of the semi-minor axis to the semi-major axis is the
absolute value of sin B where B is the angle between the line of sight and the plane
of the orbit.

On the planetocentric celestial sphere of the primary, the path of the satellite
is the great circle in which the orbital plane intersects the sphere. The position
of this great circle and the position of the satellite on the planetocentric sphere at
any time are obtained from the orbital elements; to represent these positions,
the same coordinate systems are adopted as are defined on the geocentric celestial
sphere by the equator and the ecliptic. Because of the mathematically infinite
radius of the celestial sphere, these reference circles are in identically the same
positions on the planetocentric sphere as on the geocentric sphere. The Earth on
the planetocentric sphere is diametrically opposite the geocentric position of the
planet, and therefore at right ascension a ± 180° and declination -S, where a
and S are the geocentric coordinates of the planet.

Referred to the celestial equator, the position of the great circle which the
satellite describes on the planetocentric sphere is represented by its inclination (J)
and the right ascension (N) of its ascending node, or by the right ascension
(N - 90°) and declination (900 - J) of the pole of the orbit. Like the other
circles of the sphere, this great circle is in the same position on the planetocentric
and the geocentric celestial spheres; the major axis of the apparent elliptic orbit
which the satellite describes on the geocentric sphere is parallel to the plane of
this great circle.

Apparent distance and position angle

On the geocentric sphere, the satellite at any instant is on the great circle in
which the sphere is intersected at the time by the plane through the Earth, the
primary, and the satellite. Since this circle is likewise in the same position on both
celestial spheres, the satellite is in the same position angle (p) on the geocentric
sphere relative to the primary as it is on the planetocentric sphere relative to the
point at a, S, but at an apparent geocentric distance (s) from the primary that
differs from its planetocentric angular distance (a) from that point. In the plane
triangle formed in space by the Earth, the primary, and the satellite:

. r.
sm s = Lf sm a

s

where r is the radius vector of the satellite and LIs is its geocentric distance.

The values of p and s are found from the position of the satellite in its orbit,
and the geocentric position of the primary relative to the orbital plane.

The orbital position of the satellite is represented by the orbital longitude (u);
measured along the orbit in the direction of motion from the ascending node on
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the equator. When the motion is direct, it appears counter-clockwise from the
north pole of the orbit; when retrograde, counter-clockwise from the south pole of
the orbit. On the geocentric sphere, the semi-minor axes of the apparent orbit
are each directed towards one of the poles of the actual orbit; and the geocentric
position angle (P) of the semi-minor axis that is directed towards the pole from
which the motion appears counter-clockwise is the same as the position angle of
the great circle arc on the planetocentric sphere from the geocentric position of
the primary to this pole of the orbit.

POLE OF ORBIT

Figure 12.1. Planetocentric sphere showing the geocentric
position of the primary

P Geocentric position of primary (a, 8)
S Satellite
As shown the Earth is south of the orbital plane of the
satellite.

The geocentric position of the primary, at the point a, 0 (P in figure 12.1) on
the planetocentric sphere and diametrically opposite the planetocentric position
of the Earth, is represented relative to the orbital plane of the satellite by: V, the
geocentric longitude of the primary measured in the same way as u, along the
orbit from the node on the equator in the direction of motion of the satellite;
and - B, where + B is the planetocentric latitude of the Earth referred to the
orbital plane of the satellite, positive towards the pole of the orbit at position angle
P from which the motion appears ,counter-clockwise.

From the triangle formed on the planetocentric sphere by this pole of the
orbit, the north celestial pole, and the geocentric position P of the primary, we
have for determining V, B, and P:
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~B~U=+~J~8~~-~+~J~8

cos B cos U = + cos 8 cos (a - N)
sin B +sin J cos 8 sin (a - N) cos J sin 8
cos B sin P = - sin J cos (a - N)
cos B cos P = + sin J sin 8 sin (a - N) + cos J cos 8

Rigorous relations for p and a in terms of the orbital position of the satellite
may be derived from the triangle (see figure 12. I) formed on the planetocentric
sphere by the satellite 5, the geocentric position P of the primary, and the pole of
the orbit:

sin a sin (p - P) = sin (u - U)
sin a cos (p - P) = sin B cos (u U)
cos a = cos B cos (u - U)

in which U, B, u are referred to the plane of the orbit. The geocentric distance s
is derived from the planetocentric distance a by the relations in the plane triangle
formed in space by the satellite, the primary, and the Earth:

Ll s sin s = r sin a
Ll s cos s = r cos a + ..1

in which ..1 is the geocentric distance of the primary. With sufficient accuracy
the relation of s to a may be written:

r . a.
s = ..1' " sin a = ..1- SIn a

SIn I

where a is the apparent radius of the orbit at unit distance, expressed in seconds
of arc. Rigorous formulae for p and s in terms of the differential coordinates of the
satellite, and also in terms of the planetocentric coordinates, are given later.

"­
"

NORTH

EAST

Figure 12.2. Apparent orbit of a satellite of the
primary P as projected on the geocentric sphere
As shown the Earth is north of the orbital plane
of the satellite.

At greatest elongation, u - U = ± 90°, a = 90°, and s = alLl in position angle
p = P ± 90°. At the extremities of the minor axis of the apparent orbit, u - U
is 0° or 180°; a = B, and the position angle is P or P + 180°. Evidently, when
the Earth is north of the orbital plane, the satellite is at inferior conjunction at tile
southern extremity of the minor axis, and is at superior conjunction at the northern
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extremity (see figure 12.2); B is then positive if the motion is direct, negative if
retrograde. 'When the Earth is south of the orbital plane, superior conjunction
is at the southern extremity of the minor axis, and B is negative in direct motion,
positive in retrograde motion. Irrespective, therefore, of whether the motion is
direct or retrograde, the position angle at superior conjunction when B is positive
is P = P; when B is negative, it is P = P + 180°.

The apparent orbit becomes increasingly elliptical as the Earth approaches
the orbital plane, and reduces to a straight line when the Earth is in this plane; as
the Earth passes through the plane and B changes sign, each superior and inferior
conjunction occurs at the opposite extremity of the minor axis from that at which
it previously took place. Similarly, when the Earth is in the plane that is perpen­
dicular to the orbital plane and contains the celestial pole, the minor axis is exactly
in the north-south direction, the major axis exactly east-west; as the Earth passes
through this plane, the extremity of the major axis which formerly was the more
northerly becomes the more southerly.

Only when J is not too greatly different from 0° or 180° is the direction of the
minor axis necessarily nearly enough north and south for the elongations to be
strictly and unambiguously described as eastern and western. When J is in the
neighbourhood of 90°, as in the case of the satellites of Uranus, the direction of
the minor axis on the celestial sphere ranges from north-south to east-west, and
introduces confusion in the terminology for the elongations, but in general they are
more appropriately regarded as northern and southern than as eastern and western.

In the ephemerides for finding the apparent distance s and position angle p,
the factor sin a giving the ratio of s to the apparent distance at greatest elongation
is denoted by F, and therefore the apparent distance of the satellite from the
primary is given by:

a
s = FLf

With Po denoting an arbitrary fixed integral number of degrees near the value of P
at opposition, the value of p at any time is expressed in the form Pl + P2' where Pl
is the sum of the approximate position angle at elongation and the amount of I

motion in position angle since elongation; and P2' depending on the date, denotes
the correction P - Po. In calculating F and Pl' the value of the eccentricity of
the apparent orbit at opposition is used; consequently, in the values of sand P
which are derived from them, the effect of the variation of the eccentricity of the
apparent orbit is neglected.

lJij/erential coordinates

To a first approximation, the differences of right ascension and declination in
the sense satellite minus planet are:

L1a = s sin P sec (8 + ..18)
..18 = s cos P

in which s sin P and s cos P are the approximate rectangular coordinates of the
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satellite in the directions perpendicular to the circle of declination and along this
circle, respectively:

x = s sin p Y = s cos p
= (as - a) cos Os = Os - 0

Rigorous expressions, from which approximations to any desired order of
accuracy can be obtained, may be derived directly in terms of the planetocentric
coordinates of the satellite. Denoting the rectangular equatorial coordinates of
the satellite in space, relative to the primary, by XB, YB' zS, and the geocentric
rectangular equatorial coordinates of the primary by X, Y, Z, we have for the
geocentric rectangular coordinates of the satellite:

X B = X + Xs Ys = Y + YB ZB = Z + Zs
Transforming the rectangular coordinates to the geocentric spherical coordinates
a, 0, L1 of the primary, as, OS, L1 B of the satellite, and to the planetocentric spherical
equatorial coordinates A, D, r of the satellite, gives equations from which rigorous
expressions for the differential right ascension and declination are immediately
obtained in the form:

r cos D sin (A - a)
tan (as - a)

r cos D cos (A - a) + L1 cos 0
r sin D + L1 sin 0

tan Os
- {r cos D cos (A - a) + L1 cos 0 } sec (as - a)

These equations may be written in an alternative form which affords some advan­
tages. Thus:

where

tan (as - a)

tan (os - 0)

( I + ~) cos 0 - TJ sin 0
TJ - gtan t (as - a) sin 0

( I + ~) + gtan t (as - a) COS 0

g = ~!: cos D sin (A - a)
L1a

TJ = j- ~ {sin D cos 0 - cos D sin 0 cos (A - a) }

, = ~ ~ { sin D sin 0 + cos D cos 0 cos (A - a) }

In these expressions the planetocentric coordinates A, D may be derived from the
orbital longitude u, measured from the node on the Earth's equator, and the node
N and inclination J of the orbit, referred to the Earth's equator:

cos D cos (A - N) = cos u
cos D sin (A - N) = sin u cos J
sin D = sin u sin J

They may also be derived from similar expressions (see under the sixth and
seventh satellites of Jupiter) in terms of the true longitude and latitude referred
to the plane of the planet's orbit.

Unless A, D are specifically required for purposes of tabulation (and they are
not so required for the Ephemeris) there is no need to form them. Writing:

- ._. ---- - - - - ~--- - - - -------- ---- --~~---
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cos D cos (A - N) m = cos D sin (A - N) n = v = sin D
cos D cos (A - a) 1cos (a - N) + m sin (a - N)
cos D sin (A - a) = - I sin (a - N) + m cos (a - N)

tan (as - a) rfL
Ll cos 0 + r'\
Ll sin 0 + rv= cos (a
Ll cos 0 + r'\ S

- a)

tan s sin p

or, alternatively:
a r

g = Lfli fL

YJ = ~! (- ,\ sin 0 + v cos 0)
Lla

~ = ~ ~ (,\ cos 0 + v sin 0)

Rigorous relations for determining p and s in terms of as - a and Os may be
obtained from the triangle formed on the geocentric celestial sphere by the primary,
the satellite, and the celestial pole:

sin s sin p = cos Os sin (as - a)
sin s cos p = sin Os cos 0 - cos Os sin 0 cos (as - a)
cos s = sin Os sin °+ cos Os cos °cos (as - a)

From these and from the previous equations may be derived convenient
rigorous expressions for p and s in terms of the planetocentric coordinates:

g
I~

tanscosp =~
I + '"

where g, YJ, Shave the same significance as before.

When s is small p is poorly determined, but is still gIven to the required
precision.

Planetocentric coordinates

In constructing a theory of the motion of a satellite, the plane of the celestial
equator is not usually the most advantageous fundamental reference plane.
Frequently, therefore, transformations of the planetocentric coordinates obtained
directly from the theory are necessary in order to calculate the apparent geocentric
position by the preceding formulae.

In general, the orbital plane of a satellite is inclined at a nearly constant angle
to a virtually fixed plane upon which the nodes steadily regress. This fixed plane
is known as the Laplacian plane; it lies in the position where the components of
the disturbing forces perpendicular to it balance one another, leaving no resultant
orthogonal force. In most cases, the principal disturbing forces come from the
oblateness of the primary and the action of the Sun; the -Laplacian plane lies
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between the planes of the orbit of the primary and the equator of the primary,
passing through their intersection at an angle depending on the ratio of the action
of the oblateness to the action of the Sun. The greater this ratio, the nearer the
Laplacian plane lies to the equatorial plane of the primary. The action of the
oblateness is often the predominating influence, and the Laplacian plane of the
satellite is nearly in the equatorial plane of the primary; the orbital elements of
many of the satellites are therefore referred to the plane of the equator of the
primary. In some cases the Laplacian plane is adopted as the reference plane
(see figure 12.3); occasionally the plane of the ecliptic is used.

Figure 12.3. Orbit of a satellite referred to the Laplacian plane
L Pole of the Laplacian plane N1R = e

de
P Geocentric position of the primary (a, 8) K = - dt

S Satellite

The details of the transformations that are required in each case are given in
the following explanations of the calculations for the ephemerides of the individual
satellites.

Added note (1973)

Aberration is taken into account by using the apparent coordinates of the primary,
calculating the geometric position of the satellite relative to this apparent position of the
planet, then adding the light time 499s.o12Ll to the time to obtain the apparent position
of the satellite relative to the apparent position of the planet.

-- -- --- - ~ _._---_._- - -- ----- - - -- ~------------------
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B. THE SATELLITES OF MARS

Inclination j
Longitude of node 80

Rate of regression of node K

The ephemerides of the satellites of Mars are computed from the orbital
elements determined by H. Struve (Sitzungsberichte der Koniglich Preussischen
Akademie der Wissenschaften, 19II, page 1073), although the eccentricities of the
orbits are ignored.

These elements are referred to the fixed Laplacian planes (see figure 12.3) of
the satellites. The orbital elements of a satellite referred to the Laplacian plane
are: the inclination j; the longitude eo of the ascending node R, at an adopted
epoch to, measured along the Laplacian plane from its ascending node N1 on the
Earth's equator; and the rate K of the regression of the node.

Denoting the inclination and node of the Laplacian plane on the equator of
the Earth by J1, N 1and the inclination and node of the satellite orbit on the equator
by J, N, we have with sufficient accuracy:

(N - N 1) sin J1 = j sin { eo - K (t - to) }
J - J1 = j cos { eo - K (t - to) }

The mean orbital longitude (l) measured from the equinox 'Y' to the node N of the
orbit on the celestial equator, then along the orbit, is represented by:

'Y'N + NS = 'Y'N1 + N1R + RS + (N1N + NR - N1R)
so that:

I = lo + n (t - to) + j tan t J1 sin {eo - K (t - to)}
where n is the tropical mean motion, and the last term represents the small difference
N1N + NR - N1R.

Struve's elements of the orbital planes are referred to the fixed mean equinox
and equator of 1880'0. Since the pole of the Laplacian plane is at right ascension
N 1 - 90° and declination 90° - J1, the variations of N 1 and J1 due to precession
may be obtained over short periods from the approximate formulae for precession
in right ascension and declination, which give:

iJN1 = (m - n cos N1 cot J1) (t - 1880·0)
iJJl = - n sin N 1 (t - 188o,0)

Over long periods the rigorous trigonometric reduction, as described in section 2B,
is to be preferred to give directly the position of the pole referred to the equinox
and equator of date.

The orbital elements of Phobos and Deimos

The node and inclination of the fixed Laplacian planes of Phobos and Deimos, referred
to the equinox and equator of 1880'0, are:

Phobos Deimos
Right ascension of node N 1 47° 03"7 46° 01'·Z

Inclination J 1 37° 24',0 36° 44"0

The elements of the orbital plane referred to the Laplacian plane are:
Phobos Deimos
0° 57"5 1° 44"0

359°'2 27°'3 at epoch 1894.80
158°'0 6°'374 per Julian year of 365'25 days
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Referred to the mean equinox and equator of 1880'0 the node and inclination of the orbital
plane on the equator of the Earth at epoch t are therefore given by:

Phobos Deimos

N-N1 +1~578sin {359~2 -158~0(t -1894·80)} +2~898sin {27~3 -6~374(t - 1894· 80)}

Deimos
46°'553 +0°'00762 (t -1950'0)
36°'450 -0°'00404 (t -1950'0)

N = N 1 + 1°'733 cosecJ1 sin e

J - J1 +0~958 cos {359~2 -158~0 (t -1894·80)} + I ~733 cos {27~3 -6~374 (t - 1894· 80)}

The other orbital elements are:
Phobos Deimos

a 12"'938 at unit distance 32"'373 at unit distance
e °'°170 0'°°31
II 279°'1 +158°,° (t -1894.80) 231° +6°'374 (t -1894.80)
/0 296°'4° 186°'17

where /0 is for epoch 1894 October 0·0 C.M.A.T. = J.D. 241 3102'° and the longitude (II)
of the pericentre is measured from the equinox 'Y', along the equator to the node N, and then
along the orbit. The mean orbital longitude (l) measured in the same way, is given by:

Phobos Deimos
/0 + nd +0°'32 sin e /0 + nd + 0°'58 sin e

n 1128°.84406 285°'16196
e 359°'2 -158°,° (t -1894·80) 27°'3 -6°'374(t -1894.80)

in which n is the tropical mean daily'motion, d is the time reckoned in days from the epoch
J.D. 241 3102'°, and the interval t -1894.80 is reckoned in Julian years of 365'25 days.

Referred to the mean equinox and equator of date;
Phobos

N 1 47°·609 +0°'°°784 (t -1950'0)
J1 37°'114 -0°.°°411 (t -1950'0)

N = N 1 +0°'958 cosecJ1 sin e
= N 1 +{1~588 +0~00015 (t -1950.0)}sine = N 1 +{2~917 +0~00028 (t -1950'o)} sin e

J = J 1 +00'958cose J = J 1 +lo'733cose
where
e= 277°·6 -158°.0(t -1950'0) e = 35°'5 -6°'374(t -1950'°)

The orbital longitude (u), measured from the node N on the equator of the Earth, is given by
(taking e = 0): u = / - N
The secular tropical daily motions of u, and the corresponding periods, are:

Phobos
Deimos

daily motion 1128~84404
285' 16194

period
h

7.653847
3o'298573

For current dates: 0 0 0

Phobos / = 263.62 + 1128·84406 (J.D. 243 6933'5) + °'32 sin e
u = 215'93 + 1128·84404 (J.D. - 2436933'5) - 1'27 sin e

Deimos / = 303'42 + 285'16196 (J.D. - 2436933'5) + 0'57 sin e
u = 256'79 + 285'16194 (J.D. - 2436933'5) - 2'35 sin e

The variations of the coefficients of the periodic terms are negligible over several decades
from 1960.

Ephemerides of the greatest eastern elongations, and tables for determining
the approximate apparent distance and position angle in the form described in
sub-section A, are given for an interval of about 25 days on each side of the date of
opposition of Mars. The eccentricities of the orbits are ignored throughout the
calculations for the Ephemeris. The diagram of the apparent orbits is prepared
from the values of U, B, P calculated, by the formulae given in sub-section A, for.
the date of opposition.

~ ------. _.--~ - ----- ---- - - --------- ------- -~~
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Example 12.1. Orbital planes of Phobos and Deimos, and geocentric
position of Mars referred to those planes

The values of 8, J, N may differ in the end figure when calculated by the alternative
formulae given.

Opposition
Date 1960 December 18,0 1960 December 30'0

Phobos Deimos Phobos Deimos
t - 1950'0 1°'96 II·OO

0 0

8 345'9 325.6 339·6 325'3

sin 8 -0'244 -°'565 -0'349 -°'569
cos 8 +°'97° +0·825 +°'937 +0·822

0 0 0 0

J 1 37'°69 36 '4°6 37'069 36 '406
j cos 8 +0'929 + 1'43° +0·898 + 1'425

J 37'998 37·836 37'967 37.83 1
0 0 0 0

N 1 47·695 46 .637 47. 695 46 .637
cosec J 1 sin 8 -°'387 - 1.65° -0'554 - 1·662

N 47'308 44'987 47'141 44'975
o

Mars a 105'065 99'977
(A.E., p. 201) 3 +26'020 +26'799

From the above values of J, N, a, 3 values of U, B, P are deduced from the formulae
of sub-section A; this standard transformation, which is illustrated in example 12.6, is not
given here in detail.

U
B
P

61 ~II 5
+ 7'021
- 19'325

63~II7
+ 7'544
- 17'978

57'245
+ 4'7 13
-21·895

59~060
+ 5'299
- 20·688

For the systematic calculation of the elongations, U is calculated for Oh of
every fifth day during each of the 2s-day intervals, and expressed in the form
U = Uo + (U - Uo), where Uo is the integral number of degrees nearest the
average value of U for the interval. The orbital longitude (u) is calculated for
Oh of the first and the last date. The time of the apparent eastern elongation next
following any time to for which U and u have been calculated is:

(U 0 ) period l' h .to + + 90 - u -60 + 19 t-tlme
3 0

neglecting the variation of U during the interval from to to elongation. The times
of the elongations are therefore:

{

0 periOd} period..
to + (Uo + 90 - u) 3600 + (U - Uo) 3600 + lIght-trme

where the first part, depending on to and u, called the mean elongation, is obtained
by successive additions of the period of u to the initial value, and the correction
represented by the other part is obtained by interpolating the s-day values to the

* times of the mean elongations. The light-time is Oh. I3849 Ll, where Ll is the
geocentric distance of Mars.

The tables for obtaining apparent distance and position angle are constructed
*oh· 13861 for 1968 onwards.
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Example 12.2. Times of greatest elongation of Phobos and Deilllos

1960 December 18 at Oh E.T. = J.D. 243 7286'5

The basic data are taken from example 12.1.

Phobos Deimos

0

Constant term in l 263. 62 303'42
Epoch 2436933'5, d = 353 nd 321 '953 222'172

0°'32 or 0°'57 x sin (J -0'078 -00322
sum = l 225 05° 165'27

N 47'3 1 44'99
N = u 178 '19 120'28

U 61 '12 63 01 2
U - U 117'°7 57'16

h h

Time for motion of u - U through 1° 0·02126 0'°8416

0

Angle from eastern elongation = u - U - 90° 27 0°7 327'16
h h

Time from eastern elongation 0'576 27'534
Ll = 0·61236 (AoE., p. 201) Oh. 13849 Ll 0,o85 0'085

d h d h
Time of greatest eastern elongation 17 23'5 1 16 20' 55

Example 1203. Table entries for distance and position angle of Phobos and Deimos

1960 December 18

353

Ll = 0·61236

Example 12.1

alLl

Phobos

21 '13
o

340 .68
338
+2·68

Deimos

342'02
339
+3'02

At opposition, 1960 December 30

Example 12. I B +4'713 + 5'299
sin B +0'08216 +°'°9236
cos B +0 099662 +0'99572

Time from eastern elongation, 4h oom 4 h oom

0

90° + nt = u U 278. 141 137'527
sin a sin (p - P) = sin (u U) -°'98993 +0·67524

cos (u U) +0014161 -0'73759

sin a cos (p - P) cos (u - U) sin B +000II63 -0'06812
cos a cos (u - U) cos B +°'1411 3 -°'73443

cot (p - P) -0,oII75 -0'10088

p-P 270:67 95:76
Po 338 339

sum = Pi 248·67 74'76
Sin a = F °'99°0 0 06787

_ _ _._~ _4__ _ _ _ - - ~_. __ -
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from the value of B at opposition, and daily values of ajLJ and P. The position
angle of the satellite is expressed in the form:

p = (P + 90°) + {p - (P + 90°) }
The second term represents the amount of motion since elongation; at any interval
of time t after elongation, the values of this term and of the factor F in the expression
F (ajLJ) for the apparent distance sare calculated with the formulae in sub-section A
by taking u - U = 90° + nt, neglecting the variation of U during the interval t.
In the systematic calculation, instead of P in the first term, a constant integral
number of degrees Po near the value of P at opposition is used, giving p in the form:

p = { (Po + 90°) + P - (P + 90°)} + (P - Po)
where the first part p - (P - Po) = PI is tabulated with argument t, and the
correction P - Po = P2 is tabulated against the date.

C. THE SATELLITES OF JUPITER

The Galilean satellites

The ephemerides and phenomena of Satellites I-IV given in the Ephemeris
are based on Sampson's Tables of the four great satellites of Jupiter (London, 1910).
These tables include all theoretical terms having coefficients of 1/1 or more, as well
as some others which do not involve additional arguments, and give times of
phenomena to Od'OOOOOI and positions of satellites to 0°'00001; corrections for
light-time and for the phase of Jupiter are included. Since the data published in
the Ephemeris are not intended for the comparison of observation with theory,
such accuracy is not necessary, and they are computed by means of the simplified
procedures developed by H. Andoyer (Bulletin Astronomique, 32, 177, 1915).
Only the main terms of Sampson's tables are used, and the resulting times of the
phenomena are obtained to the nearest minute; the calculations are lengthy and
complex, and it is impracticable to give examples here. Andoyer's method gives
also the longitudes of the satellites in their orbits to 0° '001, and ephemerides for
all four satellites may readily be obtained from the data, derived by this method,
that are published annually in Connaissance des Temps.

The data tabulated in the Ephemeris consist only of: the apprOXimate times
of superior geocentric conjunction; the times of the geocentric phenomena; and
the approximate configurations, in graphical form, of the satellites relative to the
disk of Jupiter. These data are omitted for a period on each side of the date of
conjunction of Jupiter with the Sun.

The D.T. of each superior geocentric conjunction is given for each satellite to
the nearest minute. The phenomena for which times are given are eclipses,
occultations, transits, and shadow transits; the D.T. of the beginning and end of
each phenomenon (disappearance and reappearance for eclipses and occultations,
ingress and egress for transits and shadow transits) are given to the nearest minute
for all phenomena that are observable. Prior to 1960 the times for the eclipses



12C. SATELLITES 355

were given to om.I. When Jupiter is in opposition the shadow may be hidden by
the disk and no eclipses can be observed. In general, eclipses may be observed
on the western side of Jupiter before opposition and on the eastern side after
opposition. Before opposition the disappearance only of Satellite I into the
shadow may be observed since it is occulted before it emerges from the shadow;
after opposition only the reappearances from the shadow are visible. The same is
true in general of Satellite II, although occasionally both phenomena can be seen.
In the case of Satellites III and IV both phases of the eclipses are usually visible
except near certain oppositions. Similarly the occultation disappearances and
reappearances of a satellite cannot be observed if, at the time concerned, the
satellite is eclipsed. For Satellites I and II there are therefore, in general, cycles
of six phenomena consisting of both phases of both transit and shadow transit,
of one phase of the eclipse, and the other phase of the occultation.

For Satellite IV none of the phenomena occur when the plane of the orbit of
the satellite, essentially the same as that of Jupiter's equator, is inclined at more
than about 2° to the line from Jupiter to the Earth (for occultations and transits)
or to the Sun (for eclipses and shadow transits).

Owing to the finite disks of the satellites the phenomena do not take place
instantaneously; the times given refer to the centre of the disk.

In certain favourable situations of the orbital planes of the satellites relative
to the Earth, one satellite may be eclipsed by the shadow of another, or may
occult another. No predictions of these phenomena are given in the Ephemeris,
but predictions are given in Handbook B.A.A. at the relevant times; a description
of the method of prediction is given by A. E. Levin (Memoirs B.A.A., 30, 149,
1934)·

The configurations of the four satellites relative to the disk of Jupiter are
shown in graphical form, on the pages facing the tabular ephemerides of the times
of the eclipses and other phenomena. The central vertical band in each diagram
represents the equatorial diameter of the disk of Jupiter; the relative positions of
the satellites at any time with respect to the disk of Jupiter are given by the curves.
Where a satellite is immersed in the shadow of Jupiter, or occulted by the disk,
the curve is interrupted. In constructing these diagrams the coordinates of the
satellites in the direction perpendicular to the equator of Jupiter are necessarily
neglected, except in respect of their effect on the eclipses and occultations. The
horizontal lines indicate Oh V.T. on the day of the month stated; the relative
positions of Jupiter and the four satellites at any instant of V.T. may be obtained
by placing a ruler, or drawing a horizontal line, at a position on the vertical scale
corresponding to that V.T.

For eclipses, the points d and r of disappearance into and reappearance from
the shadow are shown pictorially at the foot of each right-hand page, for an eclipse
near the middle of each month or the middle of the period covered; and at the
foot of each left-hand page the rectangular coordinates (x, y) of these points are
given, in units of the equatorial radius of Jupiter. The x-axis is parallel to the
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equator of Jupiter, positive towards the east, and the y-axis is positive towards the
north pole of Jupiter. The subscript I refers to the beginning of an eclipse, and
the subscript 2 to the end of an eclipse.

The fifth satellite

The data given in the Ephemeris consist of the universal times of every
twentieth eastern and western elongation, from about 80 days before opposition
to about 80 days after opposition. The elongations are computed from the
following circular orbital elements given by A. J. J. van Woerkom (A.P.A.E., 13,
part I, pages 8,14, and 16, 1950):

Epoch to = 1903 September 1'5 U.T. = J.D. 241 6359'0

Mean elongation at unit distance a = 249"'55
Inclination to equator of Jupiter y = 24'· I

Longitude of ascending node () = 82°'5 - 914°.62 (t - to)

Mean motion per mean solar day n = 722°.63175 = 2"°°731 °417
Mean longitude at epoch Uo = 194°'98
Correction to mean longitude Suo = -0°'113 - 0°'°°76 (t - to) + 0°'00035 (t - t o)2

where t - to is reckoned in Julian years. The longitudes are measured in the plane of the
equator of Jupiter, from the ascending node of the mean orbital plane of Jupiter on the
plane of the equator of Jupiter as in the physical ephemeris. From these orbital elements:

sidereal period 00'498179°5 IIh'956297
mean synodic period 00'49823633 = IIh'95767 2 = II h 57 ffi 278.62

In determining these elements, van Woerkom adopted Souillart's elements of
the equator of Jupiter, but for the calculation of the elongations in the Ephemeris
the same elements are used as in the physical ephemeris; referred to the same
epoch as the orbital elements, the right ascension and declination of the pole of
Jupiter are:

U o = 267° '997°° + 0°'00102 92 (t - to)
00 = +64°'56067 - 0°'0001667 (t - to)

The right ascension (N) of the node of the orbit on the Earth's equator, the
inclination (J) of the orbit to the Earth's equator, and the arc (f) along the orbit
from the node on the Earth's equator to the node on Jupiter's equator are given by:

sin J sin (N - uo) + cos 00 cos y + sin 00 sin y cos (8 - ..:::1)

sin J cos (N - uo) sin y sin (8 - ..:::1)

cos J + sin 00 cos y - cos 00 sin y cos (8 - ..:::1)

sin J sin f + cos 00 sin (8 - ..:::1)

sin J cos f + sin 00 sin y + cos 00 cos y cos (8 - ..:::1)

in which 8 - ..:::1, the arc along Jupiter's equator from its node on the Earth's
equator to the node of the satellite's orbit (see section IIG), is given by:

8 - ..:::1 = 219°.8 - 2r'54057 487 (t - to)
= 219°.8 - 2°'50405 737 d

in which d is the number of days from the epoch (J.D. 241 6359'0)'
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The quantities N, J, If; are calculated from the above formulae at a suitable
interval and then interpolated; values of N, J at Oh on any date are then used to
form U (B and P are not required) from the standard formulae in sub-section A.
The orbital longitude (u), measured from the node on the Earth's equator, at Oh

on that date is then derived from:

u = Uo + nd - e + If; + QUo

= If; + 112°'37 + 2r.01426 6231 d - 0°'°°76 (t - to) + 0°'00035 (t - to)2

Then the times of the elongations on that date are:

eastern elongation oh,033212 (U + 90° - u) + Oh'13849 Ll *
western elongation oh.033212 (U + 270° - u) + Oh'13849 Ll

in which Ll is the geocentric distance of Jupiter. The terms in Ll are the corrections
for light-time; for strict accuracy they should be interpolated to the times of
geometric elongation which the first terms represent.

The calculation of the times of the elongations on a single date is shown in
the following example; but this calculation need be made for only a few of the
ephemeris dates, the others being obtained by means of multiples of the period.
For strict accuracy, the calculation should be repeated with the values of the
quantities at the calculated times instead of at Oh; but for the tabular accuracy of
Oh· 1 , this is unnecessary, and no correction for reduction to D.T. is required.

y
sin y
cos y

Example 12+ The times of greatest elongation of Jupiter's fifth satellite
1960 April II at Oh E.T. = J.D. 243 7035'5

d = 20676'5 t - to = 56.6 (t - to)2 = 32°5

24' I 0 - Ll 284~658 ao 268~055 So + 64~55 I

+0'00701 ° sin (0 - Ll) -°'96745 sin y cos (0 - Ll) +°'°°177 sin So + 0'90297
+0'99997 5 cos (0 - Ll) +0'25305 cos y cos (0 - Ll) +0'25304 cos So + °'42971

sin J sin (N - ao) +°'4313° sin J +°'43135 sin J sin.p -0'41572
sin J cos (N - ao) +0'00678 cos J +°'9°219 sin J cos.p +0'II507

cot (N - ao) +0'01572 cot.p -0'27680

o

-22'984
4.8894

0 11 .677

89~099
357'154
273'783
276.629

.p 285~472
constant in u 112'37

2 r '01426 6231 d 351'261
secular terms in u +0.691

u 29'794
Using the formulae of sub-section A U 276'106

U - u 246'312

011'°3321 2 (U + 90° - u) + Oh. 13849 Ll = II h ·847 = E.T. of eastern elongation
+ 180 X 011'°3321 2 = 5 11 '978 = 17h ·825 = E.T. of western elongation

The number of figures retained in this, and similar examples, is not necessarily an
indication of the precision to which the quantities are known; for example, y is a constant
and is treated as exact whereas the first decimal of 0 - Ll is uncertain.

*Oh· 13861 for 1968 onwards.

N - ao
N

(A.E., p. 204) a
a - N
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The sixth and seventh satellites

The differential right ascension and declination of Satellites VI and VII
given in the Ephemeris are calculated from the tables constructed by J. Bobone,
(Astronomische Nachrichten, 262, 321, 1937; 263, 401, 1937). Referred to the
plane of the orbit of Jupiter, the orbital elements are:

= J.D. 2427803'5

Satellite VII
162°·69 + 1°'460 t
203°·64 - 1°'305 t

27°'75
266°'48 + 1°'3825° 8 d

°'°7845 5
0'2°719

1°'38646 7
259.6528 days

Epoch 1935 January 1'0 U.T.

Satellite VI
307°'359 + 1°'3539 t
143°'994 - 1°'2169 t

28°'436
244°'558 + 1°'4330776 d

°'°76723
0'15798

1°'43674 63
25°'5662 days

g
a
e

II
Q

n
Sidereal
period

where t is reckoned in Julian years and d in days, from the epoch, and longitudes are
measured from the vernal equinox, along the ecliptic, and then along the orbit of Jupiter.

The coordinates obtained immediately from the tables are: the elliptic orbital
longitude, V = II + g + (v - g), in which v is the true anomaly, g is the mean
anomaly, II is the longitude of perijove, and v - g is the equation of centre; the
true longitude in the plane of the orbit of Jupiter, I = V + R + 01, in which R
is the reduction to the orbit of Jupiter and 01 is the sum of the periodic perturbations
in longitude; the latitude referred to the orbital plane of Jupiter, b = bo + ob,
in which bo is the elliptic latitude, given by sin bo = sin i sin (V - .Q), and ob is
the sum of the periodic perturbations; the radius vector, r = aj{(aJr)o + o(ajr)},
in which (ajr)o = (I + e cos v)j(1 - e2) and o(ajr) is the sum of the periodic
perturbations.

In order to transform the coordinates I and b to the equator of the Earth, the
position of the orbital plane of Jupiter referred to the plane of the celestial equator
is represented by its inclination (Jo) and the right ascension (No) of its ascending
node. (Bobone uses I, Q for Jo, No.) These elements, and the arc (wo) of the
orbit of Jupiter intercepted between the equator and the ecliptic, are also given in
the tables; they may be determined from the triangle formed on the planetocentric
sphere by the vernal equinox and the ascending nodes on the equator and the
ecliptic:

sin Jo sin No sin io sin no
sin Jo cos No cos io sin E + sin io cos E cos no
cos Jo cos io cos E - sin iosin E cos no
sin Jo sin Wo = sin E sin no

sin Jocos Wo = cos E sin io + sin E cos iocos no

where E is the obliquity of the ecliptic, and io, no are the inclination and longitude
of the node of the orbit of Jupiter on the ecliptic.

The true longitude (M) in the plane of Jupiter's orbit, measured from the
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POLE OF ORBIl
OF PLANET

Figure 12.4. Orbits ofplanet P (Jupiter) and satellite S (VI or VII)
NS = u NoT = M = 1 - no + Wo

'Y' no + noT = 1 NR = A - N
'Y'R = A NoR = A - No
SR = D

359

*
*

ascending node on the Earth's equator is, as seen from figure 12.4:
M = 1 - no + W o

The Jovicentric right ascension (A) and declination (D) of the satellite are given by:
cos D cos (A - No) = cos b cos M
cos D sin (A - No) = cos b sin M cos Jo - sin b sin Jo
sin D = cos b sin M sin Jo + sin b cos Jo

The geocentric differential coordinates are then found by the formulae of sub­
section A.

The resulting values of A, D are the geometric coordinates referred to the
mean equinox and equator of date. To correct for aberration, the light-time may
either be added to the time for which the calculation is made or subtracted from
the time of observation; in practice it is applied to the mean anomaly, by sub­
tracting the mean motion during the light-time from the tabular value of g at the
tabular time. With sufficient accuracy, the light-time is od,00577 060 ..1, where ..1 *
is the geocentric distance of Jupiter, and the corrections to g are:

for Satellite VI -0°'0082697..1
for Satellite VII -0°'0079779..1

*od' 00577 560, 0° '00827 69. 0° '00798 48 for 1968 onwards.

------------ - - - -----~ - ----------------- -
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The tabular right ascension and declination of Jupiter are apparent coordinates
referred to the true equinox and equator of date. Strictly, they should be reduced
to the mean equinox before being used in the formulae for the differential coordin­
ates; but, since the nutation cannot exceed IS' 5 in right ascension nor 10" in
declination, and since the terms in A - a and D are multiplied by the ratio of the
planetocentric distance to the geocentric distance which cannot exceed 0'03, the
effects on the differential coordinates are less than oS,05 in right ascension and
0' '005 in declination, and are negligible to within the accuracy of-the calculations.

The differential coordinates, tabulated in the sense satellite minus planet, are
given to IS in right ascension and 0" I in declination at intervals of 4 days, except
in the neighbourhood of conjunction.

Example 12.5. The differential coordinates of the sixth and
seventh satellites of Jupiter

1960 March 7 at Oh U.T. = J.D. 243 7°°0'5

Most of the data for the calculation of orbital positions and Jovicentric coordinates
are taken from Bobone's tables, in which Jo, No are denoted respectively by I, Q; such
data are indicated by an asterisk*. a, 8, Ll are taken from the Ephemeris.

d = 9197'° t - to = 25'1800

Mean anomaly *
Correction for light-time (Ll = 5'45)

sum = g

II*
v - g *

Elliptic orbital longitude II + g + (v - g) = V

.Q*
V-.Q

Reduction to orbit of Jupiter
Perturbations
J ovicentric longitude

Elliptic latitude
Perturbations
Jovicentric latitude

Perturbations

J ovicentric radius vector

R*
8l *

V+R+8l=l

Wo - .Qo *
+ (wo - .Qo) = M

bo *
8b *

sum = b

(afr)o *
S(alr) *

sum = air

r

Satellite VI

1°4'573
- 0'°45
104'528

341'45°
+ 16'468
102'446

113 '352
349'°94

+ 1'289
+ 0'163
1°3.898

- 2'992
10°'9°6

5' 169
0'°75
5'244

°'9421 7
+ °'°1796

°'960 1 3

0'°799°9

Satellite VII

21 '41
- 0'°43

21'37

199'45
+11'28
232' 10

170'78
61 '32

- 3'°5
- 7'54
221'5 I

- 2'99
218·52

+24'11
- 2'73
+21'38

1'2272
°'°°45
1'2227

°'°64 16 5

a

No *
a - No
Jo *
sin Jo
cos Jo

o

27°'776
3'258

267' 518
23'252

+ °'39477
+ °'91878

sin M + °'981 94
cosM °' 18920

cos b + °'99581
sin b °'°914°

cos b sin M + °'97783

+ °'93 118
+ °'36455
- -0'57993



sin (a - No) - 0-99906
cos (a - No) - 0'04331

o -23°'01002
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cos D cos (A - No) = I
cos D sin (A - No) = m

sin D = n = v

Satellite VI
0'18841

+ 0-93449
+ 0'30204

361

Satellite VII
0'72855
0.67674

+ 0'10600

sin 0
cos 0

0'39089 21 i\
+ 0'92043 65 fL

rfL
5 -44869 2 Ll cos 0 + ri\

rfL/(Ll cos 0 + ri\) = tan (as - a)
cos (as - a)

as - a

Ll sin 0 + rv
(Ll sin 0 + rv) cos (as - a)/(Ll cos 0 + ri\) = tan Os

Os

0-92545
0'2287 1

0'01827 6
+ 4'94122 3

0'00369 87
+ 0'999993 1

- 5o~86

- 2' 1057 1 5
- 0'4261 496

-23~0813

+ 0-70766
0.69856

0'04482 3
+ 5'060582

0'0088573
+ 0-99996 07

m
2 01 '79

2' 123049
0'4195 I 02

-22~7585

1940) } ± 7°
1940) } ± 24°

Os - 0 - ~ 04:28

i\ = I cos (a - No) + m sin (a - No)
fL = I sin (a - No) + m cos (a - No)

Although 0 has been taken to five decimals, the same value of Os - 0 would have been
obtained if it had been rounded to two or three decimals; but sin 0, cos 0 must be taken
to six or seven decimals.

The eighth-twelfth satellites

Ephemerides are given for only Satellites I -VII. Mean orbital elements for
the other five known satellites are listed below; but the motions are so greatly
disturbed that in some cases it is hardly possible to represent them satisfactorily
by elliptic elements. Ephemerides for some of these outer satellites, calculated in
general by numerical integration, occasionally appear in astronomical journals or
announcement circulars. The motions of Satellites VIII, IX, XI, and XII are
retrograde.

Satellite VIII (H. R. J. Grosch, A.J., 53, 180-187, 1948)
Referred to the mean orbital plane of Jupiter, with longitudes measured from the

ascending node of Jupiter on the ecliptic of 1950-0, the ranges of the elements during the
interval 1930- I 947 were:

a 0'1500 to 0'1650
e 0'291 to 0·660
i 155° to 146°
~ Irregular increase from 259°'583 to 356°'964
w Irregular increase from 215°'392 to 305°'786

With a = o· I 570, the sidereal period is 735 days, and the synodic period with respect to
the Sun is 629 days.

Satellite IX (S. B. Nicholson, Ap. J., 100, 62, 1944)
The mean ecliptic elements and their ranges are:

a 0'1585 ± 0'008
e 0'275 ± 0'15
i 157° ± 5°
~ {61° + 4°'44 (t
w {103° + 3°'7 (t

The sidereal period is 758d ± 25 d.

-- ~ - -- -- - -----~--- ---- -- - --- ----~-------
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Satellite X (R. H. Wilson, Jr., P.A.S.P., 51, 241, 1939)

Satellite XI (P. Herget, P.A.S.P., 50, 347, 1938)
Satellite XII (S. Herrick, P.A.S.P., 64. 238, 1952)

w

a
e
l

n
P

M

Epoch (V.T.)
Equinox

The osculating ecliptic elements for the stated epochs of osculation are:

Satellite X Satellite XI Satellite XII
1938 March 6'5 1938 August 25'2575 1951 October 31'0

1938,° 1950'0 1950'0
0'07705 °'15°8336 0'141773
°'14°51 °'20678 0'168702
28° 24"1 163°'377 146°'7338
81° 29"4 231°'753 227°'2804

254° 01"4 127°'948 313°.6193
1°'424° 0°'5 1989 ° 0°'57°5 1 5
253 d 692d 63 1d

206° 23"9 66°'38825
T 1952 April 4'70254 U.T.

where P is the sidereal period and T is the time of pericentric passage.

D. THE RINGS AND SATELLITES OF SATURN

Authorities

The ephemeris of the rings of Saturn is computed from the elements of the
plane of the rings determined by G. Struve (Veroffentlichungen der Universitiits­
sternwarte zu Berlin-Babelsberg, 6, no. 4, 49, 1930). The apparent outer dimen­
sions of the outer ring are according to H. Struve (Publications de l'Observatoire
Central Nicolas, ser. 2, II, 226, 1898); the factors for calculating the relative
dimensions of the rings are from Bessel (Abhandlungen, Vol. I, pages IIO, 150,
319, 1875), except those for the dusky ring which are based on the observations of
various astronomers (in particular, O. Struve at Pulkovo, A. Hall at Washington,
E. E. Barnard at Lick, and T. Lewis at Greenwich).

The ephemerides of the six inner satellites and of Iapetus are computed from
the orbital elements determined by G. Struve (Veroffentlichungen der Univer­
sitiitssternwarte zu Berlin-Babelsberg, 6, no. 4, page 61, 1930; 6, no. 5, 10-15, 1933).
The ephemeris of Hyperion is computed from the elements given by J. Woltjer, Jr.
(Annalen van de Sterrewacht te Leiden, 16, part 3, 64, 1928); and that of Phoebe,
from the theory by F. E. Ross (Annals of Harvard College Observatory, 53, no. 6,

19°5)·

Eclipses, occultations, transits, and shadow-transits of the satellites occur
during a limited period each time the Earth passes through the plane of the rings.
Methods for calculating these phenomena are described by L. J. Comrie (Mem.
B.A.A., 30, 97-106, 1934). See also S. W. Taylor, On the shadow of Saturn on
its rings, A.J., 55, 229, 1951.
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The rings of Saturn

The ephemeris of the rings contains the following quantities that determine
the Saturnicentric positions of the Earth and Sun referred to the plane of the rings,
upon which the appearance of the rings depends:

U = the geocentric longitude of Saturn, measured in the plane of the rings
eastwards from its ascending node on the mean equator of the Earth; the
Saturnicentric longitude of the Earth, measured in the same way, is
U + 180°;

B = the Saturnicentric latitude of the Earth referred to the plane of the rings,
positive towards the north; when B is positive, the visible surface of the
rings is the northern surface;

P = the geocentric position angle of the northern semi-minor axis of the
apparent ellipse of the rings, measured from the north towards the east;

U' = the heliocentric longitude of Saturn, measured in the plane of the rings
eastwards from its ascending node on the ecliptic; the Saturnicentric
longitude of the Sun, measured in the same way, is U' + 180°;

B' = the Saturnicentric latitude of the Sun referred to the plane of the rings,
positive towards the north; when B' is positive, the northern surface of
the rings is the illuminated surface;

P' = the heliocentric position angle of the northern semi-minor axis of the rings
on the heliocentric celestial sphere, measured eastwards from the circle of
latitude through Saturn.

In 1960 and preceding years, the ephemeris of the rings did not include the
effect of aberration; but beginning with 1961, it is corrected for light-time and is
immediately comparable with observation.

Referred to the ecliptic and mean equinox of 1889'25, G. Struve's values for
the inclination of the plane of the rings and the longitude of the ascending node are:

i= 28°04"55
n = 167° 58"08

Adding the llariations due to precession, calculated by the formulae in section 2B,
gives the elements referred to the ecliptic and mean equinox of date; from them,
the inclination (J) to the mean equator of date and the right ascension (N) of the
ascending node measured from the mean equinox of date, together with the arc w

from the ascending node N on the mean equator to the ascending node n on the
ecliptic, are obtained from the formulae (from triangle 'Y'Nn of figure 12.5):

sin J sin N = sin i sin n
sin J cos N = cos i sin € + sin i cos E cos n
cos J = cos i cos € - sin i sin E cos n
sin J sin w = sin € sin n
sin J cos w = sin i cos E + cos i sin E cos n

where E is the mean obliquity of date. Table 12.1 gives the values of n, i, N, J, w

at intervals of 1000 days from 1954 to 1979.
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POLE OF
RING PLANE

Figure 12.5. The ring-plane of Saturn
P Geocentric position of Saturn (a, 8)

From the elements referred to the equator of the Earth, and from the geocentric
equatorial coordinates of Saturn, the ephemeris of V, B, P is calculated by the
formulae developed in sub-section A, since these quantities are defined with
reference to the ring-plane in the same way as with reference to the orbital plane
of a satellite (compare figure 12.5 with 12.1); but the effect of nutation must first
be removed from the apparent right ascension and declination of Saturn, in order
to refer the position of the planet to the same equinox as the elements of the
reference plane.

Evidently, V', B', P' may be obtained by exactly analogous formulae from the
ecliptic elements of the plane of the rings and the heliocentric longitude (I) and
latitude (b) of Saturn, referred to the mean equinox of date:

cos B' sin P' - sin i cos (l - m
cos B' cos P' + cos i cos b + sin i sin b sin (l - Q)
sin B' - cos i sin b + sin i cos b sin (I - m
cos B' sin V' + sin i sin b + cos i cos b sin (l - m
cos B' cos V' + cos b cos (I - m

In the foilowing example of the calculation of the ephemeris of the rings of
Saturn aberration is fully included; the corrections for light-time are determined
in the same way as in the calculation of the planetocentric coordinates of the Earth
and the Sun in the ephemerides for physical observations of Mars and Jupiter
(see section IIG). In particular, the correction to be applied to the heliocentric
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Table I2.I. Elements of the Rings of Saturn

J.Do Date Q N J w

0 0 0 0

243500005 1954 Septo 15 0o 16808802 28 00673 12806159 6 06692 4 10 355°
600005 1957 June 11 0O 09 184 00670 07325 06573 02729
700005 1960 Mar. 7 0O 095 66 00666 08494 ·6454 '19°3
800005 1962 Deco 20O 168'9947 00662 12809667 06335 01 °75

243900005 1965 Augo 28 0o 169 00329 00659 12900844 062 17 4 100242

244 000005 1968 May 24 0O 169007 11 28 00655 12902024 6 06098 400 9406
Iooo 05 197 1 Feb. 180o 01 °92 00652 03 2°7 05980 .8568
20000 5 1973 Nov. 14 0O '1474 00648 '4395 '5 863 07725
3000 05 1976 Augo 100O 01856 00645 05586 05745 06877

244400005 1979 May 7 0O 169 02237 2800642 129.6781 6'5628 4006027

Example 12060 The ephemeris of the rings of Saturn
1960 March 7 at Oh DoT.

The data are taken for Oh EoT. from AoEo, pages 175 and 211, and from the preceding
tables; the derivation of the correction for nutation is not illustratedo

As seen from the Earth

appo a 287~6585 appo 0 - 21 ~9558 J 6~6454
nutation +0000°5 nutation - 0 00023

a 287 06590 0 -21095 81 sin J +°'11572 42
N 128 08494 cos J +0099328 14

a - N 15808096

sin (a - N) +0 036 146 83 sin 0 -0037392 84 sin 0 sin (a - N) -001351633
cos (a - N) -0093238 44 cos 0 +0 09274576 cos 0 sin (a - N) +0 033524 65

cos B sin V +0 028972 15 sin B +0041021 22 cos B sin P +001°78994
cos B cos V -008647470 cos B +0091199°1 cos B cos P +0'9055 8 47

tan V -0'33503 61 tan P +001191489

V 161°'4773 B +24°'2182 P + 6°07947

As seen from the Sun

28~0666

+0 047°4975
+008824° 13

i

cos i
sin i

o

+0 0 °3° 15

10006
10'52

tabular l 281 ~4397 daily motion

light-time -000035 (mean value) r

l 281 04362 Ll
Q 168 09566

l - Q 11204796 b +0°'5122

sin (l - Q) +00924°1 57 sin b +000089395 sin b sin (l - Q) +0 00082602
cos (l - m -0038235 45 cos b +009999601 cos b sin (l - m +0092397 88

cos B' sin V' +008195261 sin B' +0 042684 15 cos B' sin P' +001798968
cos B' cos V' -°'38233 92 cos B' +009°43264 cos B' cos P' +0088625 25

cot V' -004665369 tan P' +002029859

V' 115°00108 B' +25° 02673 P' + 11°04743

It can be verified that the values printed in A.Eo 1960, page 374, are reproduced using
values of a = 287°.6635,8 = -21°09553, l = 281°'4397 uncorrected for aberration. No
correction is applied for the reduction from Oh E.T. to Oh D.To



3~ EXPLANATORY SUPPLEMENT

* longitude is -0-00577 (Lf + r) x daily motion. The tabular values in A.E. 1960
are not so corrected for light-time, but beginning with 1961 these corrections are
included as in this example.

The rings become invisible whenever:

(i) the ring-plane passes through the Sun, since neither side of the rings is
then illuminated;

(ii) the ring-plane passes between the Sun and the Earth, since the unillumin­
ated side of the rings is then facing the Earth;

(iii) the ring-plane passes through the Earth, since the rings are too thin to
be visible edge on.

Twice during each revolution of Saturn around the Sun, near the times when
the ring-plane passes through the Sun, the Earth crosses the ring-plane either
once or, more often, three times. In 1936-1937, two of the three passages of the
Earth through the ring-plane were coincident, at the time when the rings first
disappeared, on 1936 June 30; the second disappearance was on December 29,
and the rings remained continuously invisible until 1937 February 21 while the
Earth was on the unilluminated side. In 1950, only one passage of the Earth
through the ring-plane occurred, almost at the time of conjunction.

The five inner satellites of Saturn

The orbital elements of the first four satellites, Mimas, Ence1adus, Tethys,
and Dione, are referred to the ring-plane, which is assumed to coincide with the
equator of Saturn. The longitude (9) of the node is measured from the equinox
along the ecliptic to the ascending node of the ring-plane and then in this plane to
the ascending node of the orbit; the inclination is denoted by y. The longitude of
perisaturnium, similarly measured from the equinox along the ecliptic to the node
of the ring-plane, then in the ring-plane to the node of the orbit, and then along
the orbit, is denoted by III; the mean orbital longitude, measured in the same
way, is denoted by ll' (See figure 12.6).

The mean longitude is represented by:

II = Eo + n d + Sl

in which Eo is the mean longitude at the epoch, n is the tropical mean daily motion,
d is the number of days from the epoch J.D. 241 1093 '0, and 8l denotes a libration
in longitude that is characteristic of the motions of these satellites.

These librations are due to mutual perturbations depending on the. near
commensurabi1ities of the mean motions; the mean motions of Tethys and Mimas
are nearly in the ratio 1 : 2, and those of Dione and Ence1adus are likewise very
nearly in the ratio 1 : 2.

Reckoning the time t from the epoch (1889' 25) in tropical years, and expressing
the date T in Besselian years, G. Struve's values for the elements of these four satel­
lites are:
*0'00578 for 1968 onwards.
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Epoch 1889 April 0'0 G.M.A.T. = J.D. 241 1093'0

(Epoch for t is 1889'25)

Dione

253° 52',0
131°'5349729
201° - 31°'° t

1"4
173°'4 + 3o°'75 t

0'00221
520"'5 1

Tethys

284° 28"3
190°.69795 °
IIOo'39 - 72°'25 t
1°°5"56

Enceladus

199° 25'·8
262° '73194 0S

52° - 152°'7 t
1"4

308°'38 + 123°'43 t
0'°°444
328 "'29

Mimas

Eo 127° 05"5
n 381°'99444 2
e 56°'1 - 365°'23 t
Y 1° 31',°
II1 105°'0 + 365°.60 t
e 0'0201

a 255"·89

Librations:

Mimas 8/ = -44°·390sin{5°·0864(T - 1866'27)} - 0°'764 sin 3 {5°·0864(T -1866'27)}

Enceladus8/ = +14"39 sin(63°'75 + 32°'51 t) + 14"06 sin (II7°'28 + 93°' 14 t)

Tethys 8/ = +2°'065 sin {5°·0864 (T - 1866'27)} + 0°'°36 sin 3 {5°·0864 (T - 1866'27)}

Dione 8/ = -0"93 sin (63°'75 + 32°'51 t) - 0"91 sin (II7°'28 + 93°'14 t)

Figure 12.6. The inner satellites of Saturn

P Geocentric position of Saturn (a, 8)
S Planetocentric position of satellite

'Y' (61 + ~'hR = e (6R = if'
Q(61 = W N(6 = w'
QR = 8 = e - (61 + w NR = if = if' + w'

QR + RS = u NS = u - 8 + if
RS = u - 8 (61R = 8 - w
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The longitude (8) of the node of the orbit on the ring-plane, when measured
from the ascending node of the ring-plane on the mean equator of the Earth instead
of from the equinox, is given by:

8 = e - nl + W

where nl is the longitude of the ascending node of the ring-plane on the ecliptic
and w is the arc of the ring-plane from its node on the equator to its node on the
ecliptic.

Some of the elements of Rhea are not available in the same form as for the
other inner satellites. Expressions for e and yare not given, but instead there are
expressions for the longitude (n) of the node of the orbital plane on the ecliptic
and for the inclination (i) of the orbital plane to the ecliptic; in these expressions
nl and ildenote the longitude of the node and the inclination of the ring-plane on
the ecliptic. Further, the librations are not applied directly to the mean longitude
(11 = Eo + nd) but to n, i, e, III' G. Struve's values for the elements of Rhea
are thus:

Epoch 1889 April 0'0 C.M.A.T. = J.D. 241 1093'0
(Epoch for t is 1889'25)

- t sin2 Vi')

y = (i - i l ) sec Vi'
The mean orbital longitude (L) of one of these satellites, measured along the

ring-plane from the node of the ring-plane on the equator of the Earth to the
ascending node of the orbit on the ring-plane and then along the orbit, is given by:

L = II - nl + w
The true orbital longitude (u) is measured in the same way, and is obtained by
adding the equation of centre to L; thus:

u = L + 57°'2958 (2e sin M + !- e2 sin 2 M + ...)
where M = II - III is the mean anomaly, measured from perisaturnium. Thus
for these satellites, and for Titan, the definition of u differs from that used in sub­
section A and for other satellites.

Eo = 358° 23"7
n = 79°.6900881

(Q - Ql) sin i1 = +20"49 sin (344°'09 - 100 '20t) - 0"38 + 1"00 sin (48°'5 - oO·sot)

i - i 1 = +20"49 cos (344°'09 - 10
0
'20t) - 2"79 + 1"00 cos (48°'5 - oO'sot)

III = 276°'25 + 00'S3 t + 17°·64 sin 9°'5 (T - 1879'59)
e = °'°0°98 + 0'00030 cos 9°'5 (T - 1879'59)
a = 726"·89

The librations of Rhea are caused by the action of Titan. The longitude of
perisaturnium of Rhea oscillates about that of Titan in a period of 38 years. The
eccentricity of Rhea is a forced one, produced by the action of Titan, and has
variations of corresponding period.

The longitude (8) of the node and the inclination (y) referred to the ring plane
may be obtained from (see figure 12.6):

tan V/ = (n - nl) sin i l
x - Xl

8 = Vi' + w + (n - nl) sin i l cot i l (I
Y = (n - nl) sin i l cosec Vi'

or, if cosec Vi' is large:
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The radius vector is given by:
ria = I + t e2 - e cos M - t e2 cos 2 M -

The periodic solar perturbations of the orbits of the five inner satellites are
neglected in the computations for the Ephemeris. The mean longitude (L) and
mean anomaly (M), calculated from the orbital elements by the preceding relations,
are tabulated at intervals of 10 days; the tabular values are the actual values at the
tabular time, not corrected for light-time. The true longitude and radius vector
may be obtained from the formulae:

Mimas Tethys
u = L + 2°'303 sin M + 0°'029 sin 2 M u = L

ria = 1·0002 - 0'0201 cos M - 0·0002 cos 2 M ria = I

Enceladus Dione
u= L + 0°'509 sin M u= L + 0°'253 sin M

ria = I - 0'0044 cos M ria = I - 0'0022 cos M

Siinilar numerical expressions cannot be given for Rhea because of the variation
of the eccentricity.

Included with the tabular values of Land M are values of e for Mimas and
Tethys; for Enceladus and Dione it suffices to use the formulae:

Enceladus u - e = 36° + 263°'15 (J.D. - 243 6000'5)

Dione u - e = 214° + 131°.62 (J.D. - 243 6000'5)

The values of e and sin y, calculated from the ecliptic elements, are tabulated
for Rhea. *

For these five satellites, the ephemerides include the times of the eastern
elongations, and tables for finding the approximate apparent distance sand
position angle p in the form described in sub-section A. On the diagram, which is
given to show the apparent orbits of the seven inner satellites at the date of
opposition of Saturn, the points of eastern elongation for Dione and Rhea (and
also for Titan and Hyperion) are marked Od; from the tabular times of elongation,
the apparent position of a satellite at any time may be found on the diagram by
setting off on the orbit the elapsed interval since the preceding eastern elongation.

The equations for the transformation of the orbital elements from the plane
of the rings to the equator of the Earth are (from the triangle QRN in figure 12.6):

sin J cos (N - ao) -sin y sin e
sin J sin (N - ao) = +cos y cos 00 + sin y sin 00 cos e
cos J = +cos y sin 00 - sin y cos 00 cos e

where ao, 00 are the right ascension and declination of the pole of the ring-plane.
The arc 0/ (NR in figure 12.6) of the orbit from the ascending node on the celestial
equator to the ascending node on the plane of the rings is determined from:

sin J sin 0/ = cos 00 sin e
sin J cos 0/ = sin y sin 00 + cos Y cos 00 cos e

and the orbital longitude reckoned from the ascending node of the satellite orbit
on the celestial equator is (u - e) + 0/.
*y, not sin y, is tabulated for 1971 onwards.

Highlight

Highlight



* The tabular values of M for Dione in A.E., 1960, page 384, are in error owing to an
error in the application of the correction from Oh E.T. to Oh U.T.

For the five inner satellites, the times of eastern elongation and the tables
for apparent distance and position angle are calculated from the approxima­
tions:

°'°332
156 .60
355'4186

o

°'°548
150 '78*
219' 1848

°'°7950'1°95
191'59
133.8144

1960 March 27 at Oh U.T.

0'1592
152'08
161'2438

(Q- nl) sin i 1 -°'119 12 w 4 1'19
i - i 1 +0'29°73 correction to e -0'21
tan !f' -0'4°97 !f' 337'72

cosec !f' -2.638 sum = e 18'7°

y +0°'3 14 siny +°'°°548

Motion in..1T
M
L

The librations are calculated from the formulae given. For Rhea:

0

J.D. 2437°2°'5 7" 196°'2345 i 1 28'0666
Epoch 241 1°93'° 7" 1889'25 = t 7°'9845 nl 168'9574
d 25927'5 7" 1866'27 93'9645 w 41' 1886
..1 T (assumed) + 368 7" 1879'59 80·6445 w - nl 232'23 12

Mimas Enceladus Tethys Dione Rhea
0 0

358~3950Eo 127.°917 199'43°0 284'4717 253.8667
nd 200·895° 62'3873 81'°986 93'0°99 124'7592
Sl -39. 1333 -°'3436 + 1·8204 +0'0222
11 288·8534 261'4737 7'39°7 346 .8988 123'1542

III 136 '933 69'9968 196· 173 326'587
11 - III =M 15 1'920 191'477 15°'726 156 '567

e 5°'43 12·67 21'76 160'48

e + (w nl) = e 282·66 244'9° 253'99 32'71 18'70

II + (w - nl) = L 161 '°846 133'7°49 239.6219 219'13°0 355'3854

Y 1'5 17 0'023 1'°93 0·023 °'3 14
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Example 12.7. The orbital positions of the five inner satellites of Saturn

1960 March 27 at Oh E.T.

v = VR

B = B R + y sin (V1>. - 8)
P = PR - Y cos (VR - 8) sec B R

where the subscript denotes the value for the ring-plane; these relations may be
obtained by differentiating the spherical triangle (see figure 12.6) formed by the
pole of the rings, the node of the orbit on the rings, and the geocentric position
of Saturn. Further, a constant value Bo is used for B, equal to the value at
opposition of Saturn; and the orbital eccentricity is neglected, giving u = L.



- U) sin B + sin y sin (u - 8) cos B }
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Eastern elongation occurs when u - U = +90°. At any instant, the interval
of time that has elapsed since the preceding apparent eastern elongation is the
time equivalent of (u - U) - 90° - (light-time), and the interval until the next
one is the equivalent of 90° - (u - U) + (light-time). For the systematic
calculation of the ephemerides, the value of L - (U + 90°) is calculated at
intervals of 10 days. With the rates of motion determined from these values,
the elongations during each la-day interval are obtained. The tables of F and PI
are calculated from the angular equivalents of the tabular time intervals, using the
formulae developed in sub-section A; these become in this particular case:

sin a sin (p - P) = sin (L - U)
sin a cos (p - P) = sin Bo cos (L - U)
cos a = cos Bo cos (L - U)

PI = Po + (p - P)
P2 = P - Po

where P, 8 0 are defined above and F = sin a.

The apparent distance and position angle, and the rectangular coordinates
referred to the plane of the rings, may also be obtained from the tabulated values
of the actual orbital elements and the true orbital longitude (u) referred to the
ring-plane. The formulae are derived by following the procedure outlined in
the discussion of differential coordinates in sub-section A, but taking the ring-plane
as the fundamental reference plane, and using the spherical triangle formed on
the geocentric celestial sphere by Saturn, the satellite, and the pole of the ring­
plane at position angle P. Neglecting higher-order terms in y, the apparent
rectangular coordinates referred to Saturnicentric axes, with the x-axis in the
ring-plane and positive towards the east, the y-axis positive towards the north
pole of Saturn, are:

x = _I_!!-!. sin (u - U)
I+'Lla

= s sin (p - P)

I a r {y = -- - - cos (u
I+'Lla

= s cos (p - P)
where

a r
, = Ll acos B cos (u - U)

in which U and B refer to the ring-plane, and u is reckoned from the node of the
ring-plane on the celestial equator to the node of the orbit on the ring-plane and
then along the orbit.

Approximate values of 1/(1 + '), which can never depart greatly from unity,
are tabulated in the Ephemeris on the pages containing the orbital elements
L, M, 8. The values are given in short critical tables with argument u - U;
in A.E. 1960 and 1961 they are denoted by F, but (to avoid confusion with the use
of F for the factor sin a in the tabulations for the apparent distance) this notation
will be changed in 1962.
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Example 12.80 The times of greatest eastern elongation of Mimas, Tethys, and Rhea

1960 March 27 at Oh E.To

AoEo, p. 374 UR = 162°0843 B R = +23°0918 PR +6"0
0 840

Mimas Tethys Rhea

0 0 0

Example 12070 u = L 161 00846 239.621 9 355'3854
U = UR U U 358 '242 76'779 1920 542

h h h

Time for motion of u U through 1° 0006283 0'125 89 00301 34
0 0

Angle to eastern elongation 90° - (u - U) 9 10758 13 0221 257 0458

h h h

Equivalent time-interval 50765 10664 77 0582
Oho13849Ll (Ll = 10020654) 104 14 10414 10414

d h d h d h

EoTo of eastern elongation 277 018 273 008 30 7 000

Example 12.90 Table entries for apparent distance and position angle
of Mimas, Tethys, and Rhea

1960 March 27 at Oh EoTo

Ll = 10020654 (AoEo, po 211); a/Ll

P R - y cos (UR - 8) sec B R = P
Adopted constant Po

P - Po = P2

Mimas

o

7·66
7

+0066

Tethys

o

6086
7

-0'14

Rhea

7 1022

7 01 2
7

+0'12

AoEo, po 375

1960 July 7 (date of opposition) at Oh E.To

UR = 160°0208 B R = +24° 0590

Time from eastern elongation

B R + Y sin (UR - 8) = Bo

sin B o
cos B o

(Note: L = u)

sin a sin (p

sin a cos (p - P)
cos a

90° + nt = u - U

- P) = sin (u - U)
cos (u - U)

= cos (u - U) sin B o
= cos (u - U) cos B o

cot/tan (p - P)

p-P
Po + (p - P) = Pl

sma = F

Mimas Tethys

0

+24'083 +23'545

+ 0040806 + 0039947
+ 0091296 + 0091674

h d h

10·0 I 16

0 0

249' 164 47. 830

0093460 + 0074116
0'35570 + 0067133

0'145 15 + 0026818
003 2474 + 0061 544

+ 001 553 1 + 0036184

261 ~17 700Il
268 02 77 01

00946 0'788

Rhea

+240775

+ 0041906
+ 0090796

d h

3 06

001 9093
+ 0'98160

+ 0'41"135
+ 0.89125

0:46416

335 01 0
34201

00453
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Titan

Secular perturbations by the Sun and Iapetus are included in the mean
elements of Titan, and periodic solar perturbations are added in calculating the
ephemerides of L, M, e, sin y, and () that are given in the Ephemeris.* The effect
of the periodic perturbations on the times of eclipses, occultations, and other
phenomena of Titan may amount to 2 m •

The pole of the orbital plane describes a circle of radius 18' '35 on the celestial
sphere, in a period of about 700 years, around the pole of the Laplacian plane of
Titan. Referred to the ecliptic and equinox of 189°'°, the node of the Laplacian
plane is at longitude 167° 51"90 and the inclination is 27° 26"33. The node of
Titan on this fixed plane regresses at the rate 0°·506 per Julian year. Therefore,
by relations of the same form as have been given in sub-section B for the satellites
of Mars, the node and inclination of the orbit of Titan referred to the ecliptic and
equinox of 189°'° are:

n = 167° 51"9° + 39"00 sin (40°·69 - 0°'506 t)
i = 27° 26' '33 + 18"35 cos (40° ·69 - 0°'5°6 t)

where t is reckoned in Julian years from 189°'°.

The variations of nand i due to precession and to the secular motion of the
ecliptic are assumed to be the same as for the node n1 and inclination i 1 of the
ring-plane. With the value now adopted for n1 in the ephemeris of the rings,
its value for 189°'0 was 167° 58' '7°7; referred to the ecliptic and mean equinox of
date, the elements of the orbital plane of Titan are therefore:

n - n1 = -0°'11345 + 0°·65000 sin (40°·69 - 0°'506 t)
i = 27°'43883 + 0°'3°583 cos (40°·69 - 0°'506 t) - 0°'°°013 t

in which t is measured in Julian years from 1890.0.

The other orbital elements are:
a = 1684"'35 at unit distance
e = 0'02910 + 0'000186 (cos 2go - cos 2g)

II = 276° 07"7 + 31"41 t + 22'·0 (sin 2g - sin 2go)
g = II - .Q - lJf, with g = go at t = 0, i.e. at 189°'°
n = 22°'57701 508

where the longitude (II) of the perisaturnium is measured from the mean equinox of date
along the ecliptic to the node (.Q in figure 12.7) and then along the orbit, lJf is the arc
(nT in figure 12.7) of the orbit from the node on the ecliptic to the ascending node T on the
orbit of Saturn, g is the arc of the orbit from the ascending node T on the orbit of Saturn
to perisaturnium, and n is the tropical mean daily motion.

The mean longitude, measured from the mean equinox of date along the
ecliptic to the node of the orbit and then in the orbit, is:

I = 260° 24"26 + 22°'57701 508 (J.D. - 241 1368'0)
+ 4"39 sin (40°.69 - 0°'506 t)

in which the second term represents the tropical motion in the orbit since 1890
January 0·0 G.M.A.T., and the periodic term is the reduction from the Laplacian
plane to the ecliptic, as in the similar relation for the satellites of Mars in sub­
section B.

The mean longitude (L), measured along the ring-plane from its node Q on
*y, not sin y, is tabulated for 1971 onwards.
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ECLIPTIC

{(

~"'"!?,;<?J...,.-
o,,~

Notation for Titan
(61R = 8 - W

NR = ljJ = if/ + w'
QR + RS = u

NS = {l + (v --: M)}
- (6 + W'

Figure 12.7.
(61R = (91
QR = 8 = (91 - (61 + W

QR = ljJ'
QoT = (9

SATURN

the equator of the Earth to the node R of the orbit of Titan on the ring-plane and
then in the orbit, is tabulated at intervals of 10 days and is given by:

L = I - (n + til) + 0
where til is the arc nR of the orbit from the node on the ecliptic to the ascending
node on the ring-plane, and 0 is the arc QR of the ring-plane from its node Q on
the equator of the Earth'to the node R of the orbit of Titan on the ring-plane.
The node (0) and inclination (y) of the orbital plane referred to the ring-plane and
the arc (til) are calculated from the formulae (from the triangle nl R n in figure
12·7):

*

sin y sin (0 - w) sin i sin (n - nl)
sin y cos (0 - w) -cos i sin i l + sin i cos i l cos (n
cos y cos i cos i l + sin i sin i l cos (n
sin y sin til sin i l sin (n - nl)
sin y cos til - sin i cos i l - cos i sin i 1 cos (n nl)

where w is the arc Qnl of the ring-plane between the equator and ecliptic.

The elements 0, sin y, e, the mean longitude (L), and the mean anomaly
(M = 1 - II) are tabulated at intervals of 10 days; the tabular Land M are the
actual values at the tabular times, not corrected for light-time. The addition to
the mean longitude of the equation of the centre, obtained from the tabular e and
M by the usual elliptic formula, gives the true longitude.
• y, not sin y, is tabulated for 1971 onwards.
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Example 12.10. The elements of the orbit of Titan referred to the plane of the rings
1960 March 27 at Oil E.T. = J.D. 243 7020'5

From epoch 1890'0, t = 70'23

375

From table 12.1
From the formulae

o

Ql 168'9574
Q - Ql -°'055 1

o

i 1 28'0666
1 27'7343

o

w 41 0 1886

The routine solution of the triangle Ql R Q in figure 12.7 gives:

8 - w = 184~4131 and thus 8 = 225~6017
1/ = 184'4625 sin y = °'°°581 70

These are unperturbed values, whereas the values given in the Ephemeris include the
effect of periodic solar perturbations.

The elements of the orbital plane of Titan referred to the orbit of Saturn,
which are required in calculating the perturbations, are: the longitude (8) of the
node, measured from the equinox along the ecliptic to the node Qo of the orbit of
Saturn and then along the orbit of Saturn; the inclination (r); and the arc (lJ')
of the orbit of Titan between the node Q on the ecliptic and the node T on the
orbit of Saturn. They are calculated from the formulae (from triangle Qo Q T
in figure 12.7):

sin r sin (e Qo) Sin l sin (Q - Qo)
sin r cos (e Qo) -cos i sin io + sin i cos io cos (Q Qo)
cos r cos i cos io + sin i sin io cos (Q Qo)
sin r sin P sin iosin (Q - Qo)
sin r cos P sin i cos io - cos i sin iocos (Q - Qo)

where io and Qo are the ecliptic elements of Saturn.

In terms of the mean daily motion (no) of Saturn, and its me'an longitude (/0),
perihelion (IIo), and eccentricity (eo), the periodic perturbations of Titan are
represented by the expressions:

..1e = I~ :0 e cos 2 (/0 - II)

..1L = ..1E - 2 sin !i sin !x'1 ..1 Q
..1M = ..1E - ..1II

sin y ..18 = sin i cos ifi ..1 Q - sin if/ ..1i
..1y = sin i sin ifi ..1 Q + cos ifi ..1i

..1 () 3 no sin r . (I e P)
06 = "8 n sin i Sin 2 0 - 2 " +

..1 . 3 no . r (I £\ lTr)
l = "8 n Sin cos 2 0 - 2 ItY + r

..111 = ~ no sin 2 (/0 - II)
8 n

in which:

..1E = - 3 :0 { eo sin (/0 - IIo) + -i e~ sin 2 (/0

1 5 2' (I II) 3' 2+ 16 e Sin 2 0 - + 16" Sin

- IIo)

r sin 2 (/0 - e) }
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In the calculation of the periodic perturbations of Titan, the values used for the elements
of Saturn are based on Hill's values for 1850 (A.P.A.E., 7, part II, 1895) and the variations
given in Connaissance des Temps which were determined by Leverrier and Gaillot. Referred
to the ecliptic and mean equinox of date, with T measured in Julian centuries from 1900
January 0'0 G.M.A.T. = J.D. 241 5020'0:

io 2°'4923 - 0°'0039 T
Qo = 112°'7836 + 0°·87320 T
eo = 0'05589 - 0'000346 T
no = 91°'0891 + 1°'9584 T + 0°'0008 T2
10 = 266°'5653 + 1223°'5099 T + 0°'0003 T2

\Vith these expressions, using quantities already calculated, and with the time t reckoned in
Julian years from 1890 January 0·0 G.M.A.T. = J.D. 241 1368'0:

Q - Qo = 55°'1687 + 0°'00521 t + 0°.65000 sin (40°.69 - 0°'506 t)
10 - no = 53°'3378 + 12°'215515 t
10 - n = 228°'1028 + 11°'71160 t - 0°'36667 (sin 2g - sin 2go)

= 227°'9398 + 11°'71160 t - 0°'36667 sin 2g
noln = 0'00148 3716
i 1 = 28°'0757 - 0°'00013 t

At t = 0, go 103°'199; and g may be determined by successive approximations from:
g = 108°'2633 + 0°'50956 t - 0°.65000 sin (40°.69 - 0°'506 t)

- lJf + 0°'36667 (sin 2g - sin 2go)

T = 0.60234 086
t = 70'23271 7

eo 0'05568

Example 12.11. The perturbed elements, referred to the plane of the rings,
and the orbital position of Titan

1960 March 27 at Oh E.T. = J.D. 243 7020'5

From epoch 1900 January 0·0 G.M.A.T. = J.D. 241 5020'0
From epoch 1890 January 0·0 G.M.A.T. = J.D. 241 1368'0

The elements of Saturn are:
i o 2°'4900 Qo 113°'3096

From the formulae and example 12.10:
i 27°'7343 Q - Qo 55°'5929 10 - no 191°'267

The routine solution of triangle Qo Q T in figure 12.7 gives:
sin r +0'44464 8 - Qo 59°'711 8 173°'021

From this value of lJf :

g 139:169
go 103'199

sin 2 g - sin 2 go -0'54482
cos 2 go - cos 2 g - 1.04074

(unperturbed) n 312.6953 10 - 8 110:514
lJf + 2 (/0 - 8) 225·652

With these values, and those in example 12.10, using the formulae for the perturbations:

e 0'028906 ,1Q -0'0003802 ,1i -0'0001729
,1e +0'000042 sin y ,18 +0'00016 29 (sin y ,18)/sin y +0'0280041

e + ,1e 0'02894 8 ,18 +1~6045 ,1y +0'00018 61
8 + ,18 227'206 siny + ,1(sin y) +0'006003

For the mean longitude and the mean anomaly:

,1E +0'0001 5 57 1 177~2902 1 177'2902
,1n -0'00236 75 n 312.6953 8 - (l/J' + m 23 2 '2369

M = 1 - n 224'5949 sum = L 49'527 1
,1M +0'0025232 ,1M +0'1446 ,1L +0'0115
,1L +0'0001999 Red. to Oh U.T. +0'0094 Red. to Oh U.T. +0'0094

tabular M 224'749 tabular L 49'548
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The orbital longitude u = L + (v - M), measured along the ring-plane
from its node on the celestial equator to the node of Titan on the ring-plane and
then along the orbit, and the radius vector ria may be obtained from the tabular
values of L, M, e by the usual elliptic formulae. Because of the variation of e,
numerical expressions for u and ria can be given only for particular times. From
these orbital coordinates and the ephemeris of U, B, P, the apparent distance and
position angle may be calculated, and precise differential coordinates determined,
in the same way as described for the five inner satellites or by the formulae developed
in sub-section A. For Titan, the factor 1/(1 + ~), denoted by F in A.E. 1960­
1961, is given by:

0'00817 r
1 - - cos (u - U)

L! a
for which a table with argument u - U is given in the Ephemeris.

The practice of referring the tabular quantities L, M, 0 to the plane of the
rings follows the usage of The Nautical Almanac for the years prior to 1960, but
differs from that of Berliner Astronomisches lahrbuch. In this publication, L, M, 0
and specially calculated values of U, B, P were referred to the plane of Titan's
orbit. Since Berliner Astronomisches lahrbuch is no longer published, some
measure of continuity was maintained by including tables of U, B, P (referred to
Titan's orbit) in A.E. 1960-1962 but these will not be given in A.E. 1963 onwards.
It is important to note that the values of U, B, P for the rings should always be
used with the tabulated values of L, M, 0 for Titan and the five inner satellites.
The procedure to be adopted for Hyperion and Iapetus is given below. *

The elements of the orbital plane of Titan referred to the equator of the Earth,
which are required for the ephemerides of superior and inferior conjunction,
eastern and western elongation, and the tables for apparent distance and position
angle, are calculated from i, n, €, with the formulae (from triangle 'Y'Nn in
figure 12.7):

sin I sin N = sin i sin n
sin I cos N = cos i sin € + sin i cos € cos n
cos I = cos i cos € - sin i sin € cos n
sin I sin w' = sin € siT} n
sin I cos w' = sin i cos € + cos i sin € cos n

These quantities, and the ephemeris of U, B, P, defined and measured relative to
the orbital plane of Titan in the same way as the values relative to the plane of the
rings, are calculated by the formulae developed in sub-section A, omitting the
effects of the periodic perturbations. In these formulae, the value of the orbital
longitude measured from the node N of the orbit on the equator of the Earth is
denoted by u and is given by:

{ l + (~) - M)} - n + w'

The correction for light-time is applied to the mean anomaly. The apparent
coordinates of Saturn are not corrected for nutation, as the error due to the neglect
of this correction is insignificant for the purpose of the ephemerides.

The same quantities P2' aiL! and PI' F are given for Titan as for(other satellites;
*As from 1966 the elements (L, ivI etc.) of Hyperion and Iapetus are referred, as for Tit3n,
to the ring-plane.
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they are calculated in the same way (see sub-section A or example 12.9) and are not
here illustrated. Differential coordinates are not tabulated, but they may be
calculated from the tabulated elements (noting that these are always to be used
with U, B, P for the rings) by the formulae given in sub-section A.

The apparent orbit at opposition of Saturn is included in the diagram, and
the position may be found on the diagram in the same way as described for the five
inner satellites.

In the Ephemeris there are tabulated the times (in V.T. to the nearest Oh. 1)

of the greatest eastern and western elongations, and also of inferior and superior
conjunctions. These are calculated by precisely the same methods as for the
inner satellites by evaluating the times at which u - U attains the appropriate
multiples of 90°.

Hyperion *
The orbital elements of Hyperion as given by Woltjer are referred partly to

the ecliptic and partly to the equator of Saturn, that is, to the ring-plane. The
longitude (II) ofperisaturnium and the mean longitude (1) are measured from the
equinox along the ecliptic to the node and then along the orbit.

The motion of Hyperion is characterized by librations that are due to the
action of Titan and depend upon the near 3:4 commensurability of the mean
motions, and by long-period inequalities that are introduced by the large eccen­
tricity of Titan. The libration argument is:

a = 93°'13 + 0°'562°39 (J.D. - 241 5020'0)
with a period of about 1·8 years, and the argument of the long-period terms is:

'lIT = 148°'72 - 19°'184 t
with a period of about 19 years, t being measured in tropical years from 1900'0.

Omitting solar perturbations and a few of the smaller perturbations by Titan,
the elements of Hyperion are:

a = 2044"'4 - 7"'1 cos a at unit distance
e = 0'1°419 + 0'02414 cos 'lIT - 0'00401 cos a - °'°0183 cos 2 'lIT

II = 70°'05 - 18°.6562 t - 13°·67 sinw + 0°'93 sin 2W - 0°'47 sin a
Tropical mean daily motion:

n = 16°.9199896
Mean longitude:

1 = 176°'293 + n (J.D. - 241 5°2°'°)
+ 9°'°92 sin a + 00'2II sin (w + a)
+ 0°'192 sin (w - a) - 0°'077 sinw

Orbital plane referred to the plane of the rings:
y sin (8 - w) -0°'061 + 0°'574 sin (95°'9 - 2°'392 t)

+ 0°'315 sin (42°'78 - 0°'500 t)
Y cos (8 - w) = -0°'747 + 0°'574 cos (95°'9 - 2°'392 t)
. + 0°'315 cos (42°'78 - 0°'500 t)

where y is the inclination to the ring-plane, 8 is the longitude of the node on the ring-plane
measured from the node of the ring-plane on the equator of the Earth, w is the arc (QQl in
figure 12'7) of the ring-plane from the equator to the ecliptic, and therefore 8 - w is the
longitude of the ascending node of the orbit on the ring-plane reckoned from the ascending
node of the ring-plane on the ecliptic; t is measured in tropical years from 19°0'0,

·See footnote on page 377..
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The elements of the orbital plane referred to the equator of the Earth are
determined by finding y and () from the preceding expressions, and calculating
N, J, and if; by the same formulae as for the five inner satellites, that is by the
solution of the triangle QNR in figures 12.6 and 12.7.

The reduction of 1to the mean orbital longitude (L) measured along the plane
of the orbit from its node on the equator of the Earth is found from the longitude
(m of the node of the orbit on the ecliptic and the arc if;' of the orbit from this
node (Q in figure 12.7) to its node R on the ring-plane; since y is small (from the
triangle Q1 QR of figure 12.7):

sin i sin (Q - Q1) = y sin (0 - w)
sin i cos (Q - Q1) = y cos (0 - w) cos i1 + sin i1

sin i sin if;' = sin i 1 sin (0 - w)
sin i cos if;' = sin i1 cos (0 - w) + Y cos i1

where i is the inclination of the orbit to the ecliptic, and Q1 and i 1 are the ecliptic
elements of the ring-plane. Then:

L = 1 - Q + (if; - if;')

Example 12.12. The orbital position of Hyperion

1960 March 7at Oh D.T. = J.D. 243 7000'5

Days from epoch = 21980'5 Tropical years from 1900'0, t = 60'18061

From the elements:

W 41'190
6 303'572

71T 74'215 a 2050 '7
a 207'028 e 0·II5 89

y sin (6 - w) -0'4187 cot (6 - w) +0'13375
y cos (6 - w) -0'0560 y 0°'4224

From table 12.1:

0 0

ao 38·849 nt 168'957
00 83'355 it 28'067

o

l 201'5708
II 14.854

6 - W 262'382

From the solution of triangle QRN (figure 12.7):

o

J 6·8880
o

N 125'9137

From the solution of triangle ntRn (figure 12.7):
on - nt -0·S92

n 168'065
t/J' 263:168

t/J - t/J' 't3'3 19
o l - n 33'506

M = l - II 186'717 sum = L 76.825
Corrections to Oh D.T. (L1T = 368) + 0'007 +0'007

M 186'724 L 76.832

These values may be compared with those tabulated in A.E., p. 385, by extrapolating
the differences.

From elliptic motion: ria l'II525
r 0'01108 79

o

V - M -1'360
u 75'465 (for Oh E.T.)

-----------~-- ---~ --- --------- ----------- -------



I 94'7015
I - n 314'221
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The values of L and of the mean anomaly M = 1 - II are tabulated in the
Ephemeris at intervals of ~o days, together with the values of e and a; the tabular
Land M are the actual values at the tabular times, not corrected for light-time.
The equation of the centre (v - M) and the radius vector (ria) are calculated,
using the value of e, by the usual elliptic formulae, and the orbital longitude (u) is
obtained by adding the equation of the centre to the mean orbital longitude (L).

The other ephemerides for Hyperion are similar to those for Iapetus and are
discussed below. The orbit of Hyperion, but not that of Iapetus, is included on
the diagram with those of the five inner satellites and Titan.

Iapetus *
The orbital elements of Iapetus are referred to the ecliptic; the longitude (II)

of perisaturnium and the mean longitude (l) are measured along the ecliptic from
the equinox to the node, then along the orbit.

Epoch 1885 September 1'0 G.M.A.T. = J.D. 240 9786,o
n = 142° II"3 - 1"375 t
l = 18° 26"39 - 0"54 t
II = 354° 27"4 + 8"1 t
e = 0'02828
a = 4908"·6
Eo = 75° 25'·61
n = 4°'53799536

where Eo is the mean longitude at the epoch, n is the tropical mean daily motion, and t is
measured in years from the epoch.

The orbital position is obtained directly from the elements by calculating the
mean longitude (l) and the mean anomaly (M):

1 = Eo + nd
M=l-II

and obtaining the equation of the centre (v - M) and radius vector (ria) by the
usual elliptic formulae, as for the five inner satellites.

Example 12. 13. The orbital position of Iapetus
1960 March 7 at Oil U.T. = J.D. 243 7°°°'5

Days from epoch = 27214'5 Tropical years from epoch, t = 74'5108

From the elements:

a 4908".6 n 140~4808 II 4~516
e 0'02828 i 17'7692

From the solution of triangle 'Y'Nn (figure 12.7):

J 14~6830 N 5°'°103 w'92~778
M = I - II 90'186 L = I - n + w' 46'999

Corrections to Oil U.T. (LIT = 368) +0'002 +0'002
M 9o'188 L 47'001

These values of L, M may be compared with those tabulated in A.E., p. 385, by
extrapolating the differences.

From elliptic motion:

*See footnote on page 377.

ria 1'00089
r °'°2381 87

o

V - M +3'239
u 5°'238 (for Oil E.T.)
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The orbit is referred to the equator of the Earth by calculating the inclination
(J), the right ascension (N) of the node N, and the arc w' = if - if' of the orbit
from the ascending node N on the equator to the ascending node n on the ecliptic,
from the same formulae as for Titan (from the triangle 'Y' Nnof figure 12.7). Then
the mean orbital longitude (L) measured from the node of the orbit on the equator
of the Earth is given by:

L = 1 - n + w'

and the orbital longitude (u), measured in the same way, is given by:

u = L + (v - M)

The values of Land M in the ephemeris are the actual values at the tabular times,
not corrected for light-time.

Hyperion and Iapetus *
In addition to the tabulation of the orbital positions of Hyperion and Iapetus

at intervals of 10 days the Ephe!lleris contains the following tabulations for each
of these satellites: the times of inferior and superior conjunctions, and of eastern
and western elongations; tables for finding the approximate apparent distance
and position angle, of the same form as for the other satellites, calculated without
the inclusion of solar perturbations; an ephemeris of U, B, P at intervals of 8 days,
defined and measured relative to the plane of the orbit of the satellite in the same
way as the values relative to the ring-plane; and an ephemeris of differential right
ascension and declination at intervals of 2 days.

The ephemerides of U, B, P are calculated from the formulae of sub-section A.

Example 12.14. The coordinates of Saturn referred to the orbital planes
of the satellites Hyperion and Iapetus

1960 March 7 at Oh E.T.

Coordinates of Saturn (A.E., p. 21 I)

o 0

Apparent coordinates a 287·6585 0 -21'9558
Correction for nutation +0'0005 - 0'0023
Correction for aberration +0'0050 + 0'0005
Geometric coordinates 287·6640 - 21'9576

U, B, P are obtained by the solution of the triangle formed by the pole of the orbit,
the celestial pole, and the geocentric position of Saturn (see figure 12.6). N, J are taken
from examples 12.12 and 12.13.

Hyperion Iapetus

o

J 14·6830
o -21'9576

o

U 239.8°4°
B + 9'3871
P + 7'9°°7

N 50'0103
a - N 237.6537

o

J 6·8880
o -21'9576

o

U 164'5464
B +23'9572
P + 7'1596

o

N 125'9137
a - N 161'7503

whence:

No correction is applied to reduce to Oh D.T.

*See footnote on page 377.

- -~---------- - ---- -- --._-------- -- -~----- --------
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The rectangular coordinates of these satellites, referred also to the plane of
the orbit, are given by:

1 a r . ( U)x = --- - - sm u -
1 + '.::::l a

y = _1_ ~ !. cos (u - U) sin B
1 + '.::::l a
a r

, = L1 acos (u - U) cos B

These formulae differ from those for the inner satellites, for which U, B, P, u are
referred to the ring-plane.

The satellites are at greatest eastern elongation when u - U = 90°, and at
western elongation when u - U = 270°; inferior conjunction is at 180°, superior
conjunction at 0°. Since the value of U tabulated in the Ephemeris is not corrected

* for light-time, u is similarly not corrected; a correction +Oh. 138494 .::::l is applied
to the resulting times of elongation. Two successive approximations are in general
necessary to determine the times of these phenomena. In the following examples,
the first approximation to the time of the phenomenon that occurs nearest March 7
is calculated; the second approximation is obtained by repeating the calculation
with the values of u - U, its rate of change, and the light-time at this approximate
time.

Successive approximations may be avoided by calculating u - U at suitable
equal intervals, and deducing the times at which it reaches multiples of 90° by
inverse interpolation.

Example 12.15. Times of conjunction and elongation of Hyperion and Iapetus

1960 March 7 at Oh E.T.

From examples 12.12 and 12.13
From example 12.14

Time for motion of u - U through 1
0

First approximation:

u
U

u-u

Hyperion
o

75.465
164.546
27°.919

h

1·7792

Iapetus
o

5°.238
239·804
17°·434

h

5.3902

Angle from western elongation = (u - U) - 2700
Angle to inferior conjunction = 1800 - (u - U)

Equivalent time-interval
Light-time (Ll = 10.5178)

E.T. of western elongation
E.T. of inferior conjunction

h

-1·635
+ 1·457

d h

6 23.82

h

+5 1.563
+ 1·457
d

9 °5.0 2

Second approximation gives:

*Ob.138614 for 1968 onwards.

d h

March 6 23·79
d h

9 05·25
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In calculating the tables for finding the apparent distance and position angle
the hourly motion of Hyperion in mean longitude is calculated from the formula:

m = 0° ·7050 + 0°.0°37 cos cr
where a is the libration argument; the formula is obtained by differentiating the
expression for /. The tabular value of a/A is obtained with the value of a at
opposition of Saturn. The tables of PI and F are calculated for the date of

Example IZ.16. Table entries for apparent distance and position angle
of Hyperion and Iapetus

Hyperion Iapetus

1960 July 7 (date of opposition) at Oh E.T.

From AoEo, p. 386 U
B = B o

sin Bo
cos B~

Longitude of perisaturnium II - ~ +w'

163:329
+24'332

+ °'412°3
+ °'91118

244:839

238:641

+9°786

+ 0016997
+0°98545

316~868

At eastern elongation

True anomaly
From prepared tables
Mean anomaly

u = U + 90°
v

v - M
M o

253·329
8°490

+ 1°780
6°7 10

328~641
11°773

+ 00648
11. 125

Motion in mean longitude

,1 = 10°5178 (A.Eo, po 211)

o

m 007054/hour

1960 March 7 at Oh EoT.

a/,1 194H

o

4° 537995/day

Increase of (v - M) since eastern elongation
90° + mt

sum = u - U

sin a sin (p - P) = sin (u - U)
cos (u - U)

sin a cos (p - P) = cos (u - U) sin B o
cos a = cos (u - U) cos B o

cot/tan (p - P)

p-P
Po + (p - P) = PI

(r/a) sin a = F

From example 12014

Time from eastern elongation

From prepared tables

From prepared tables

P
Po

P - Po = P2

M o + mt
ria

v - M

176:006
10114

+ 0~782

0~998
259°296
258°30

0°97922
0020279

0008356
0018478

+ 0008533

265~12
272 012

10°95

o

+7°9°1
+8
-0010

18d

92~809
100018

o

+3'23 1

+2~583
171.684
174°27

+0009984
-0°99500

-0· 169IZ
-0098052
-0°59035

149°44
157°44

00197

- - ~------------- ---- --- ---------- -------- -------------
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opposition, by the formulae developed in sub-section A, with the inclusion of a
factor ria in F for the effect of the orbital eccentricity. The approximate values
obtained in this way are most accurate near the elongations, where observations
are most often taken; near the conjunctions, the error may be rather large, but
observations are in general impracticable for the close satellites.

In example 12.16 the values of U, B, P are uncorrected for light-time,
i.e. they are as tabulated in A.E., page 386; in forming u - U no correction for
light-time is to be included in u, which can thus be taken direct from examples
12.12 and 12.13.

No example is given of the calculation of the differential coordinates since
this follows precisely the methods described in sub-section A and illustrated in
example 12.5.

Phoebe

The only tabulation given for Phoebe in the Ephemeris is that of the differential
right ascension and declination.

The orbital elements are referred to the plane of the ecliptic. The longitude
(IT) of perisaturnium and the mean longitude are measured along the ecliptic
from the equinox to the node and then along the orbit. The motion is retrograde;
but angular coordinates are measured eastwards in the usual manner, opposite the
direction of motion, and consequently the mean motion is negative. The ascending
node is the node at which the satellite, moving in the retrograde direction, actually
crosses the ecliptic from south to north; the argument of the latitude is measured
eastwards from this node. Ross's elements are:

Epoch 1900 January 0·0 G.M.A.T. = J.D. 241 5020·0

Q = 224°'51 + 0°'4347 t
i = 175°'08 - 0°'020 t
II = 291°'03 - 0°'2680 t
Eo = 343°'15
n = 0°.65398
e = 0'1659
a = 17861" at unit distance

where Eo is the mean longitude at the epoch, n is the tropical mean daily motion, and t
is measured in Julian years from the epoch.

The position of Phoebe obtained directly from the theory developed by Ross
is referred to the plane of the orbit of Saturn. The elliptic orbital longitude is
(ITI + M) + (v - M), where v is the true anomaly, M is the mean anomaly
measured eastwards, that is opposite to the direction of motion, and ITI is the
longitude of perisaturnium measured from the equinox along the ecliptic to the
node of Saturn, then along the orbit of Saturn to the node of Phoebe, and then
along the orbit of the satellite. From the ecliptic elements:

M = Eo - nd - IT
= 52°'12 - 0°.653246 (J.D. - 241 5020 '0)

where d is the number of days from the epoch. The inclination (il) of the orbit of
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Phoebe to the orbit of Saturn, the longitude (QI) of the node, measured from the
equinox to the node of Saturn on the ecliptic, and then along the orbit of Saturn,
and the value of III are obtained from the ecliptic elements (i, Q) of Phoebe and
the inclination (io) and node (Qo) of Saturn on the ecliptic by solving the triangle
(noQT of figure 12.7) formed by the two orbits and the ecliptic. (Note that the
symbols rand e are used instead of i l and QI for the corresponding quantities in
the calculation of the perturbations of Titan, and are so marked in figure 12.7.)
The Saturnicentric longitude (A) referred to the orbital plane of Saturn is
measured from the equinox along the ecliptic to the node of Saturn, then on the
orbit of Saturn to the perpendicular great circle through Phoebe. The tables
constructed from the theory give the total amount to be added to the elliptic
orbital longitude for the reduction to the orbit of Saturn and for the periodic solar
perturbations in longitude, in order to obtain the longitude (A) on the orbit of
Saturn.

The latitude referred to the orbital plane of Saturn is:
B = B o + DB

where the principal term is calculated from the disturbed longitude A by the
formula:

tan Bo = tan i l sin (A - QI)
and the solar perturbations DB are taken from the tables. The Saturnicentric
distance is given by the tables in the form of the inverse radius vector:

~ = ~ + D(~)
r ro r

in which a/ro is the elliptic value.

The coordinates A and B are transformed to the equator of the Earth in the
same way as the planetocentric coordinates of the sixth and seventh satellites of
Jupiter. Thus, the longitude (f-Ls), measured in the plane of Saturn's orbit from
the node on the Earth's equator, is given by:

f-Ls = A - Qo + W o
where W ois the arc No Qo in figure 12.7, and the Saturnicentric right ascension and
declination (A, D) are given by:

cos D cos (A - No) = cos B cos f-Ls
cos D sin (A - No) = cos B sin f-Ls cos Jo - sin B sin Jo
~D =~B~~~~+~B~~

where Joand No are the inclination and node of the orbit of Saturn on the Earth's
equator.

From A and D, the geocentric equatorial differential coordinates are calculated
by the formulae developed in sub-section A. The correction for aberration is
made by applying to the mean anomaly the correction +0°'00377 Ll, where Ll is the
geocentric distance of Saturn. The apparent coordinates of Saturn are not
corrected for nutation and errors as great as IS' 5/80 = OS'02 in right ascension and
10"/80 = 0"'1 in declination may sometimes be introduced by neglecting this
correction; but such errors are admissible in a finding ephemeris that is given to
only Os. I and I", and moreover they are well within the precision of the tables.

- - -------------- ------- _._---- - -- ----- ----
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The computational precision of the tables of Phoebe is about 3" or 4-"; but, because
of limitations of the theory and uncertainties of the elements, the actual precision
is less.

Example 12.17. The differential coordinates of Phoebe
1960 March 7 at Ob D.T. = J.D. 243 7000'5

Many of the data, indicated by an asterisk, are taken without detailed derivation from Ross's tables;
the position of Saturn is taken from A.E., page 211, and the elements of Saturn's orbit from page 177.

Epoch J.D. 2415020'0 Days from epoch = 2198°'5 t = 60'179

From the elements of Phoebe:

a 17861
e °'1659

o

n 250·670
173.876

II 274'902
E 343' 15

M
+0'00377 J

M

93'447
+°'°40
93'487

From the elements of Saturn, and solution of triangles "('Nono and nonT in figure 12.7:

no II3~318
nl 229'292

o

io 2'487
i l -4.608

Wo 107:829
III 274'991

From Ross's tables (indicated by *) and tan B o = tan i l sin (A n l ):

a/r*
o

IlB* -°'°42

B o -1~851

sin Jo + °'38380
cos Jo + °'92342

sin B -0'03303
cos B +°'99946 cos B sin p.s +0'34457

sin p.s + °'34476
cos p.s + °'93869

a

No
a- No

o

287.659
5'961

281.698

sin (a - No) -0'97923
cos(a - No) +0'20275

l = cos D cos (A - No) + °'93818
m = cos D sin (A - No) + 0'33086
n = sin D = v + 0'10175

Il -21~9558
J 1°'51784

sin Il -0'3738913 lcos(a - No) + msin (a - No) = >. - 0'13377
cos Il +°'9274726 - l sin (a - No) + m cos (a - No) = p. + °'98578

r p. +0'08834 6
J cos Il + r>' +9'74302 °

r p./(J cos Il + r >') = tan (as - a) +0'0090676
cos (as - a) +0'99995 89

J sin Il + r v - 3'923410
tan Ils - °'4°267 28

o

Ils -21'9333
Il -21'9558

as - a +2m 04"·68 8s - 8 +1' 21"0

where tan Ils = (J sin 8 + r v) cos (as - a) / (J cos 8 + r >')

The same value of Ils - 8 would have been obtained if 8 had been rounded to two decimals of a degree;
but sin 8, cos 8 must be taken to six or seven decimals. No correction is necessary to reduce from
Ob E.T. of the calculation to Ob D.T. of the tabulation.
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E. THE SATELLITES OF URANUS

Ephemerides are given for the elongations, and for the apparent distance and
position angle, of Satellites I-IV, Ariel, Umbriel, Titania, and Oberon. The
orbits of these four satellites, as far as is yet shown by observations, are circular
and lie in the same plane; the common orbital plane is presumably the plane of
the equator of Uranus, since it does not have the secular motion that otherwise
would be caused by the oblateness of Uranus. The ephemerides of Titania and
Oberon are computed from the orbital elements determined by H. Struve (Abhand­
lungen der Koniglich Preussischen Akademie der Wissenschaften, 1913). Struve's
elements of the orbital plane are adopted for all four satellites, but for the other
elements of Ariel and Umbriel the values determined by Newcomb (Washington
Observations for IS73, appendix I) are used.

No ephemeris for Miranda is given. The orbit of this satellite is approxi­
mately circular and in the same plane as the others. The sidereal period is about
1'4 days, and the mean distance ahout·Soooo miles, or o·oooS a.u. (Kuiper, G. P.,
P.A.S.P., 61, 129, 1949); the maximum apparent distance from the centre of
Uranus is less than 10".

The adopted inclination (J) of the orbital plane of Satellites I-IV to the equator
of the Earth and the right ascension (N) of the ascending node are:

N = 166°'051 + 0°'0142 (t - 1900'0)
J = 75°'145 - 0°'0013 (t - 1900'0)

in which the unit of time is the Julian year. The other orbital elements are:

Epoch 1910 January 0·0 G.M.A.T. Epoch 1900 January -1'0 G.M.A.T.
= J.D. 241 8672 '0 "" J.p. 241 5~)J9'0

Ariel Umbriel Titania Oberon

a 264"'43 368 "'38 604"'42 808"'29
Uo 244°'36 129°'90 80°'422 346°.867
n 142°·83544 86°·868793 41°'35 14179 26°'7394710

Period 2 d'520383 4 d. 144181 8d'7058683 13 d·4632432
2d 12h '489 4 d 03 h '460 8 d 16h '941 13 d II h 'lI8

Here Uo is the value at the epoch of the orbital longitude (u) measured from the
ascending node of the orbit on the equator of the Earth. Referred to the equator
of the Earth the motions are direct; but referred to the ecliptic as the fundamental
reference plane, they are retrograde, the inclination being about 9So.

The orbital plane is inclined at such a large angle to the equator that the
semi-major axis of the apparent orbit usually lies nearly north and south, and
consequently the greatest elongations are designated as northern and southern
elongations instead of eastern and western. Only when the Earth is near the
plane through the celestial pole perpendicular to the orbital plane, as during
1945-1946, is the minor axis of the apparent orbit directed approximately north
and south; even then, the north pole of the orbital plane may lie to the south of
the geocentric position of Uranus.
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EAST

Figure 12.8. Orbit of a satellite of Uranus in relation
to the equator of the Earth

The positions shown are those appertaining to opposi­
tion in 1949.
P Geocentric position of Uranus (a, S)
S Satellite at superior conjunction

During the course of one revolution of Uranus, the Earth passes twice through
the plane perpendicular to the orbital plane, when the apparent orbits of the
satellites are almost circular; and likewise, it passes twice through the orbital
plane, when the apparent orbits become straight lines. The Earth passed through
the orbital plane from south to north in 1882, and the sequence of geometric
relations during the interval from then until 1966 exemplifies the cycle during the
84-year period of Uranus.

1882-1924: Earth north of orbital plane; B positive
Superior conjunction at position angle P

1882-1902: Northern elongation at P + 90°, when u - U = 90°
1902: Earth passed through plane perpendicular to orbital plane, at U 270°
19°2-1924: Northern elongation at P - 90°, when u - U = 270°

1924: Earth passed through orbital plane, north to south; B = 0°
1924-1966: Earth south of orbital plane; B negative

Superior conjunction at position angle P + 180°
1924-1946: Northern elongation at P - 90°, when u - U = 270°
1946: Earth passed through plane perpendicular to orbital plane, at U = 90°
1946-1966: Northern elongation at P + 90°, when u - U = 90°

At the passage of the Earth through the plane perpendicular to the orbital plane,
the position angle of the northern elongation changes by 180°, since the more
northerly and more southerly extremities of the' major axis are interchanged.
The angle P is the position angle of the pole of the orbital plane that lies north of
the celestial equator; but either the eastern or western extremity of the minor
axis may be directed toward this pole, according to circumstances, and northern
elongation may be to either the east or west of north. The elongations cannot be
unambiguously designated as eastern and western.
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The ephemerides are calculated with the formulae of sub-section A. The
apparent right ascension and declination of Uranus are used in the calculations;
the error from the inconsistency with the values of Nand J referred to the mean
equinox and equator is negligible for the purpose of the ephemerides.

The diagram of the apparent orbits is constructed from the values of U, B, P
for the date of opposition of Uranus. These data, and the tables for obtaining
apparent distance and position angle, are calculated by the methods used for the
satellites of Mars.

Example 12. I 8. Times of elongation, and table entries for the apparent
distances and position angles of the satellites of Uranus

1960 March 7 at 0" E.T. = J.D. 243 7°°°'5

Uranus apparent a 140'575
(A.E., p. 219) apparent 0 +16'173
geocentric distance LI 17'5206

o

N 166'906 U
J 75'067 P

Adopted Po

o

1°'488
-81'585
-81

Ariel Umbriel Titania Oberon

Epoch to
(t - to)

J.D. 241 8672'°
18328d'5

J.D. 241 5019'0
21981d'5

P - Po = P2 -0~58

alLl 15 '09

Uo + n (t - to) = U 283~72
U - U 273'23

Time for motion of u - U through 1°

Angle from northern elong. = (u - U) -90°

Time from northern elongation
0"'13849 LI = light-time

21'°3

24~63
14'14

"°'2763

284~14

"78'5°8

34'5°

46~61
36 '12

h

°'58°4

306~12
h

177.672

24°'55
23°'°6

h
0.8975

140~06
h

125'7°4

Time of northern elongation
d" d" dh db

Mar. or Feb. 5 19.64 3 19'92 28 16'75 I 20'72

For 0" E.T. on the date of opposition, 1960 February 8

Eo -27°'757 sin Eo -°'46572 cos Eo +0·88493

Ariel Umbriel Titania Oberon

Time from northern elong. = t Od 12" 2d 00" 5d 10" lId OOh

90° + nt = u - U 161~418 263~738 313~987 24'134

sin a sin (p - P) = sin (u - U) + °'3 1866 -°'994°4 -°'7195° +°'4°887
cos (u - U) 0'94787 -0'1°9°7 +0·69449 +°'91259

sin a cos (p - P) = cos (u - U) sin Eo + °'44144 +°'°5°80 -°'32344 -°'425°1
cos a = cos (u - U) cos Eo 0.83880 -°'°9652 +0.61 458 +0.8°758

cot (p - P) + 1'3853 -0'°5 110 +°'44953 - 1'°395

p-P 35~82
0

136~II272 '93 245'79
Po -81

sum = Pi 314.82 191 '93 164'79 55'11
sin a = F °'5444 °'9953 °'7889 °'5898
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At the opposition of Uranus, 1960 February 8, the latitude (B) of the Earth
referred to the common orbital plane of the satellites is B o = - 27°'757. The
Earth is therefore on the opposite side of the orbital plane from the pole of the
orbit from which the motion appears counter-clockwise, and hence the apparent
motion is clockwise. The position angle P = 278°'4- of the extremity of the
minor axis of the apparent orbit that is directed toward this pole is the position
angle of the western extremity, a little to the north of west. Northern elongation
is at position angle P + 90°, to the east of north, when u - U = 90°. Inferior
conjunction is at position angle P, at the western extremity of the minor axis.

Example 12.18 has been chosen to illustrate the formation of position angles
in different quadrants when, as in this case, B o is negative.

F. THE SATELLITES OF NEPTUNE

Ephemerides are given for the elongations and for the apparent distance and
position angle of Triton, calculated from the orbital elements determined by W. S.
Eichelberger and Arthur Newton (A.P.A.E., 9, part III, 1926).

No ephemeris for Nereid is included. The orbital equatorial elements of
this satellite determined by van Biesbroeck (A.J., 62,272-274-, 1957) are:

a 0.03717 97
e 0'74934

2 7o .807} referred to
Q 354°'563 equator of
W 259°'119 1950'0
Time of pericentric passage (T) 1951 February 2'468
Sidereal period (P) 359.881 days
Inclination to the ecliptic 4°'971

The orbit is unique among the satellites in the solar system, in respect of its extreme
eccentricity and the great difference of its inclination from that of Triton.

The motion of Triton is retrograde. The orbit, as far as it has been deter­
mined from observations, is circular. The pole of the orbital plane is describing
a small circle on the celestial sphere, with a tadius of 20° and a period of about 585
years, showing that the orbital plane is inclined to the equatorial plane of Neptune
at a constant angle of 20° while the nodes revolve on the equator of Neptune, due
to the disturbing action of the oblateness of the planet.

The orbital elements of Triton referred to the plane of the equator of Neptune are:

Inclination y = 159°'945

Longitude of the ascending node of the orbit, measured from the node of the equator of
Neptune on the celestial equator of 1900'0

8 = 127°'015 + 61°'494 T
where T is reckoned in Julian centuries from 1900

Orbital longitude of Triton, measured from the ascending node of the orbit on the equator
of Neptune, but in the retrograde direction

UN = 186°'92 + 61°'2589494 (J.D. - 241 1368'0)
in which the time is reckoned in days from 1890 January 0'0 G.M.A.T.
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Greatest elongation at unit distance 489",82

Sidereal mean daily motion, obtained by subtracting from the motion of UN the amount
due to the variation of 8

n = 61°'2589494 - (61°'494136525) cos (180° - y)
= 61°'25736 79

Sidereal period 5 d 21 h 02m 39B

The right ascension and declination of the north pole of rotation of Neptune, referred to
the mean equinox and equator of date

ao = 295°'153 + (46"'08 + 20"'05 sin ao tan 80) t
80 = +41°'348 + (20"'05 cos ao) t

where t is reckoned in years from 1900'0,

The inclination (J) and the longitude (N) of the ascending node of the orbit of
Triton on the equator of the Earth, and the arc if1 of the orbit from the node on the
equator of the Earth to the node on the equator of Neptune are calculated by the
methods used for the inner satellites of Saturn, using a value of () corrected for
precession:

() = 127°.015 + (0°.61494 - 0°'00557 sin no sec 00) t

The orbital longitude (u), measured from the ascending node of the orbit on the
celestial equator but in the retrograde direction, is given by:

U = UK + if1
Values of these quantities are given in table I2.2 for the years 1960 to 1980.

Table 12.2. Elements of Triton

no 80 N J 8 if1 UN

0 0 0 0

1960* 295,655 4 1'492 199'915 112'027 164'314 12·618 3·850
1961 ,663 '494 2°°'148 I II '983 164'936 12'118 43'366
1962 .671 '497 2°°'380 '942 165'557 II ·619 82·883
1963 ·680 '499 200.614 '9°2 166· 179 11'118 122'399

1964* 295.688 41'5°2 200.848 II I .865 166·801 10·618 223'175
1965 .696 '5°4 201'082 ·829 167'422 10'119 262.691
1966 '7°5 '5°6 201'3 17 '794 168'044 9.618 3°2'208
1967 '713 '5°9 201'552 '763 168·666 9'118 341'725

1968* 295'721 41'5 11 201'786 II I '732 169'287 8.619 82'500
1969 '73° '5 14 202'022 '704 169'9°9 8'118 122'017
1970 '738 '5 16 202'257 ·677 17°'53 1 7·618 161'533
1971 '747 '5 18 202'493 .65 1 171'152 7'118 201'°5°

1972* 295'755 41'521 202'73° II I ·628 171'774 6·618 3°1.825
1973 '763 '523 202'965 ·6°7 172'395 6'118 341'342
1974 '772 '526 2°3'2°3 '589 173'°17 5,617 20·858
1975 '780 '528 2°3'438 '57° 173.639 5'117 6°'375

1976* 295'788 41'532 2°3·675 111'556 174'260 4, 61 7 161'15°
1977 '797 '535 2°3'9 12 '543 174,881 4'117 200·667
1978 ·8°5 '537 2°4'149 '53 1 175'5°3 3.6 17 24°'183
1979 ,81 3 '54° 204'3 86 '521 176'124 3'117 279'700

1980* 295,822 4 1'542 204,623 111'5 12 176'746 2,617 2°'475

The values are for January 0·0 in common years and for January 1'0 in leap years
(indicated by *).

. -------------- ----- -- ------ ~- -- ----- ---
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Since the retrograde direction of the motion is represented by an orbital
inclination greater than 90°, the ascending node of the orbit is the point at which
the satellite crosses the equator from south to north. The pole of the orbit from
which the motion appears counter-clockwise is the south pole, at position angle P;
when the Earth is south of the orbital plane of Triton, B is positive. Eastern
elongation is at position angle P - 90°, when u - U = 270°.

Twice during the course of one revolution of Neptune, about 165 years, the
Earth passes through the orbital plane of Triton, when the apparent orbit becomes
a straight line. The Earth crossed the orbital plane from north to south near the
end of 1952; for an interval during 1950-1954, Triton transited the disk of Neptune
and was occulted by the disk during each revolution. Before 1953, B was negative,
and inferior conjunction was on the southern arc of the apparent orbit at position
angle P; since the passage through the orbital plane, B has been positive, and
inferior conjunction on the northern arc at P + 180°.

When the numerical value of B reaches a maximum as the Earth passes through
the plane perpendicular to the orbital plane, as in 1905, the minor axis of the
apparent orbit lies exactly north and south, the major axis lies east and west, and
the position angle of the more northerly elongation changes by 180°. Before 1905,
the eastern elongation was the more northerly; since then, the western elongation
has been the more northerly.

The ephemeris, including the diagram of the apparent orbit, is calculated by
the formulae in sub-section A, in the same way as described for the satellites of
Uranus.

Example 12.19. The time of elongation and the apparent distance
and position angle of Triton

1960 March 7 at Oh E.T. = J.D. 243 7°°°'5

Neptune
(A_E., p. 227)

apparent a 217-157
apparent 0 - 12'772

geocentric distance L1 29'717

N 199-957
J 112-019

.
U 341-426
P 244- 299

Adopted Po 245

o

u~ 86-940

Time for motion of u - U through 1
0

Time from eastern elongation
Light-time = Oh· 13849 L1

o

12'528
b

0-39179
81 -509

4'116

o

u 99-468
u - U 118'042

(u - U) - 270° 208'°42

d b

Time of eastern elongation = March 3 18·61

For Oh E_T. on the date of opposition, April 28, Eo
At t = 4 d OOh from eastern elongation, u - U = 270° + nt

Whence p - P = 110°-°3, Pl = 355°-°3, and F

o

+9-776
155-029
0-4493
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G. HISTORICAL LIST OF AUTHORITIES
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1. The Nautical Almanac, 1767-1900

No predictions for satellites, except for the Galilean satellites of Jupiter, were
published until 1899, when diagrams of the apparent orbits at the time of opposition,
and elongations (with a precision of Oh. I) for a limited period around opposition,
were given for the satellites of Mars, Saturn, Uranus, and Neptune. The
authorities for the latter are as for 1901, and are listed in sub-section G.3.

For Jupiter's satellites, diagrams of the configurations and predictions of
eclipses have been published in every issue of The Nautical Almanac.

1767-18°4: Eclipses to 18 ; based on Wargentin (1746).
1805-1823: Based on Lalande (1792) (quoting Delambre).
1824-1833: Based on Delambre (1817).
1834-1839: Eclipses to 08 '1, other phenomena to 1m; based on Delambre (1817).
1840-1900: As 1834-1839; from 1877, eclipses to 18 ; from 1896, times of conjunction to

Om'I; based on Damoiseau (1836), and extensions by Adams and others.

2. The American Ephemeris, 1855-1900

In the volumes for 1855-1881, ephemerides were given only for the four
great satellites of Jupiter, and the apparent elements of the rings of Saturn. The
ephemerides of the satellites of Jupiter gave the superior geocentric conjunctions,
the phenomena, the coordinates in the mean apparent ellipses, and diagrams of
the phases of the eclipses.

In 1882, diagrams of the configurations of the four satellites of Jupiter were
added, and the former ephemerides of the coordinates in the apparent orbits were
omitted; a diagram of the apparent orbits was also added. Ephemerides of the
elongations of the satellites of Mars, Saturn, Uranus, and Neptune, and diagrams
of the apparent orbits, were introduced.

The elongations of the fifth satellite of Jupiter were added in 1898, but no
statement of authority was given during 1898-19°0. No authority was given for
the satellites of Mars during 1882-19°0. The authorities for the other satellites
were:

Jupiter

1855-1881: Damoiseau (1836); extended to 1880 by Kendall (1877).
1882-1900: for elongations and eclipses, Todd's continuation (1876) of Damoiseau;. for

occultations, transits, etc., Woolhouse (1833), with Table II for each satellite adapted
to Damoiseau.

Saturn

1855-1900: for rings, except the dusky ring, Bessel (I875a and I875b).
1882-1900: for satellites, manuscript tables prepared by Newcomb.

Uranus and Neptune

1882-1900: Newcomb (1875).
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3. The Nautical Almanac, and The American Ephemeris, I90I-I959

Mars

Diagrams of the apparent orbits, and times of elongations to a precision of
Oh· l , have been given for a period of about a month on each side of opposition.
From 1931 [in A.E., from 1920], tables have been added for calculating the position
angle and apparent distance of each satellite from the planet at any time during the
same period.

19°1-19°2: Elements by Hall (1878). [In A.E., those of Harshman.]
19°3-1915: Elements by Harshman (1894).
1916-1959: Elements by Struve (19II, p. 1073).

Jupiter

Phenomena and configurations of Satellites I-IV are given throughout,
with considerable variation from time to time in the precision, which is usually
higher for eclipses than for other phenomena. Elongations (every twentieth on
each side) of Satellite V have been given since 1906 [in A.E., since 19°1]; differen­
tial coordinates (satellite minus planet) of Satellites VI and VII have been given
since 1931 [in A.E., since 1912]. Sidereal periods of Satellites VIII to XI, and
XII have been included since 1953 and 1957.

Satellites I-IV.
19°1-1913: Damoiseau (1836) and later extensions. [In A.E., also Woolhouse (1833).]
1914-1915: Sampson (1910). [In A.E., Damoiseau and extensions and Woolhouse.]
1916-1959: Sampson, with Andoyer's (1915) modifications. [In A.E. until 1930, the

configurations are attributed to Pottier's continuation (1896) of Damoiseau.]

Satellite V.
19°1-19°5: [In A.E. only, Robertson's elements (unpublished).]
1906-1915: Cohn (1897). [In A.E., Robertson.]
1916-1959: Robertson (1924) [these are quoted in A.E. as-in 1930-1933 "from Con­

naissance des Temps for 1915 "; in 1934-1959 " from Connaissance des Temps every
year beginning with 1919 "].

Satellites VI and VII.
1912-193°: [In A.E. only, Ross (1907a and 1907b).]
1931-1947: Ross.
1948-1959: Bobone (1937a and 1937b).

Saturn

Diagrams of the orbits of Satellites I-VII, and times of elongations and
conjunctions of Satellites I-VIII to a precision of Oh· l , have been given for most
of the year throughout the period. Differential coordinates of Satellite IX
(Phoebe) were introduced in 1931 [in A.E., in 1909] and those of Satellite VII
(Hyperion) and Satellite VIII (Iapetus), [not in A.E.], also in 1931. Elements for
determining the distance and position angle were added in 1931 [in A.E., in 1912].
Since 1935 the Almanac [not A.E.] has contained, for about nine months in each
opposition, quantities to assist in the calculation of the phenomena (eclipses,
occultations, transits, and shadow-transits) of Satellites I-VI.
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Satellites I-V-Mimas, Enceladus, Tethys, Dione, and Rhea.
19°1-1915: Tables in manuscript" prepared by" Newcomb, except the elongations of

Satellites I (Mimas) and III (Tethys), which are from H. Struve (1898). [In A.E.­
19°1-19°3: Hall (1886); 19°4: Hall, except the elongations of Satellites I and III
(from Struve, 1898); 19°5-1913: Struve (1898); 1914-1915: Struve (1888, 1898,
and 1903).]

1916-1930: Struve (1888, 1898, and unpublished corrections).
1931-1935: H. Struve (1888, 1898, and 1903) and G. Struve (1924).
1936-1959: G. Struve (1924 and 1930).

Satellite VI-Titan.
19°1-1915: Newcomb's "manuscript Tables" (see above). [In A.E.-1901-1904:

Hall (1886); 19°5-1913: Struve (1898); 1914-1915: Struve (1888, 1898 and 1903).]
1916-193°: Struve (as for Satellites I-V).
1931-1935: H. Struve (as for Satellites I-V).
1936-1937: G. Struve (1933). [In A.E., H. Struve, as in 1931.]
1938-1959: G. Struve (1933).

Satellite VII-Hyperion.
19°1-1915: Newcomb's "manuscript Tables". [In A.E.-1901-1902: Eichelberger

(1892); 19°3-1913: Struve (1898); 1914-1915: Struve (as for VI).]
1916-1935: Struve (as for Satellite VI).
1936-1959: Woltjer (1928).

Satellite VIII-Iapetus.
19°1-19°2: As for Satellite VII. [In A.E., Hall (1885).]
19°3-1935: As for Satellite VII.
1936-1937: H. Struve (1888,1898, and 1903).
1938-1959: G. Struve (1933).

Satellite IX~Phoebe.

19°9-193°: [In A.E. only, Ross (1905).]
1931-1959: Ross (1905).

Uranus

Diagrams of the orbits of Satellites I-IV, and times of elongations to a
precision of ah·l, have been given for about nine months in each opposition
throughout this period. Elements for the calculation of distance and position
angle were included in 1927 [in A.E., in 1912]. The sidereal period of Satellite V
(Miranda) was added in 1953.

19°1-1915: Newcomb (1875).
1916-1959: Satellites I (Ariel) and II (Umbriel)-Newcomb; Satellites III (Titania) and

IV (Oberon)-Struve (1913).

Neptune

Diagrams of the orbit of Triton, and times of elongations to a precision of
ah·l, have been given for about ten months in each opposition throughout this
period. Elements for the calculation of distance and position angle were included
in 1927 [in A.E., in 1912]. The sidereal period of Nereid was added in 1953.

19°1: Newcomb (1875). [In A.E., Hall (1898).]
19°2-1929: Hall (1898).
1930-1959: Eichelberger and Newton (1926).
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13. RISINGS, SETTINGS, AND TWILIGHT

A. INTRODUCTION

The astronomer is concerned with the phenomena of rising, setting, and
twilight primarily in regard to the planning of observations. No great precision
is required for this purpose, and the tables of these phenomena in the Ephemeris
are accordingly restricted both in content and range of latitude. More extensive
tables are available in The Nautical Almanac (N.A.) and The Air Almanac (A.A.),
while the Tables of Sunrise, Sunset, and Twilight (S.S.T.) give permanent data
from which all such phenomena may be calculated simply for all latitudes and all
years.

The tabulated times of the phenomwa refer to sea level with a clear horizon
and normal meteorological conditions. The actual times of rising and setting
may differ considerably, especially near extreme conditions when the altitude is
changing slowly; the illumination at beginning or end of twilight varies greatly
with meteorological conditions. Precise times have little real significance, except
in special circumstances such as navigation a~ sea.

No data are given for the times of rising and setting of planets; they may be
obtained fairly simply from navigation tables such as the Sight Reduction Tables
for Air Navigation (H.O. 249 or A.P. 3270). Within their range of declination
(0° - 29°) these tables also provide for stars. For fixed altitudes and depressions,
more than SO from the horizon, the more elaborate Tables of Computed Altitude and
Azimuth (RO. 214 or H.D. 486) may be used; these tables do not give altitudes
within SO of the horizon.

For most astronomical purposes by far the most suitable method of obtaining
data of this nature is by the use of a star globe fitted within a simple framework
of horizon and altitude circles in such a way that it can be set to any desired
latitude and then rotated freely about the polar axis. Within its limitations of
precision, depending on its scale and details of construction, it is possible for any
selected latitude and hour angle to read off altitude (or depression) and azimuth
of all objects marked on the globe. For illumination from the Sun the hour
angles, and hence the local mean times, can be quickly read off for any date
(corresponding to a marked position of the Sun on the globe) and for a series of
depressions below the horizon. More subtle questions, such as "what is the
earliest date in the year when a certain object will be at an altitude of at least 20°

398
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Figure 13.1. Twilight illumination on a horizontal plane

at the beginning of morning twilight? " can be answered immediately, and for a
variety of twilights (depressions) corresponding to different observational require­
ments. Tables of the more important phenomena and dates may thus be
prepared for each observatory.

When the Sun is below the horizon the sky is illuminated from the following
sources.

(a) Twilight. This is caused by the scattering of sunlight from the upper
layers of the Earth's atmosphere. It begins at sunset (ends at sunrise) and is
conventionally taken to end (or begin) when the Sun reaches a zenith distance
of 108°. The variation of the illumination on a horizontal surface, in clear
conditions, is shown diagrammatically in figure 13.1 as a function of the zenith
distance of the Sun; the rapid flattening of the curve from 105° onwards, after an
almost linear relationship from 90° to 105°, is noteworthy. At a zenith distance
of 108°, astronomical twilight, the indirect illumination from the Sun on a
horizontal surface, is about 6 x 10-5 ft. candles, rather less than the contribution
from star light and of the same order as that from the aurora, air glow, zodiacal
light, and the gegenschein. The actual brightness of the sky depends on direction,
as well as on meteorological conditions.

In navigational practice, and for some astronomical applications, two inter­
mediate steps in the twilight period are recognised and tabulated: civil twilight
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ends (or begins) when the Sun reaches a zenith distance of 96°; and nautical twilight
ends (or begins) when the Sun reaches a zenith distance of 102°. The degree of
illumination at the beginning and end of civil twilight (in good conditions and in
the absence of other illumination) is usually described for navigational purposes
as such that the brightest stars are visible and the sea horizon is clearly defined;
for the beginning and end of nautical twilight the corresponding statement is that
the sea horizon is in general not visible and it is too dark for the observation of
altitudes with reference to the horizon.

(b) Moonlight. The illumination received from the Moon varies according
to phase, altitude, and atmospheric extinction. From a full moon in the zenith
the intensity of illumination on a horizontal surface is approximately 0'02 ft.
candles, equivalent to that from the Sun when at a zenith distance of about 98°.
After full moon the illumination falls off rapidly, mean values from several
observers (Russell, H. N., Dugan, R. S., and Stewart, J. Q., Astronomy, Vol. I,
page 173, 1926) being as follows:
Elongation 1800 160° 1400 lZ00 100

0
80

0
60

0
40° zoo

Illumination % 100 6s 41 z6 IS 7'S 3'Z 1'0 0'1

The waxing moon, shortly after first quarter, is some 20 per cent brighter than
the waning moon at the corresponding phase. The half moon gives only one­
ninth as much light as the full moon.

For astronomical observations the position of the Moon in the sky, rather
than the general illumination, is the most important factor.

(c) Star light. The total illumination from the stars contributes about
2 x 10-4 ft. candles, rather more than the Sun at the beginning and end of
astronomical twilight.

(d) Aurora, air glow, zodiacal light, and gegenschein. The illumination from
these sources is very variable. That from the aurora may in rare cases be com­
parable with moonlight. The other sources are very faint and never give an
illumination greatly exceeding that from star light. As with moonlight, the
position of the source is the most important factor for astronomical observations.

B. SUNRISE, SUNSET, AND TWILIGHT

The data given in the Ephemeris enable the times of sunrise, sunset, and the
beginning and end of astronomical twilight to be found for any position between
latitudes 60° north and south. The times, tabulated for every fifth day, are the
local mean times of the phenomena on the meridian of Greenwich and in the
specified northern latitude; interpolation is necessary to obtain the local mean
times for intermediate latitudes, for intermediate days, and for longitude. To an
accuracy of about five minutes this interpolation can generally be done at sight;
near limiting conditions, when interpolation becomes difficult, large changes of
time correspond to only small changes in depression and accurate times have little
real meaning.
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Strictly, interpolation for latitude is non-linear; the interpolation table in
N.A. includes a correction for this non-linearity, which is only of significance near
extreme conditions. Interpolation for longitude, which is rarely justified, can be
combined with the interpolation for date merely by increasing for west longitudes,
or decreasing for east longitudes, the Greenwich date by the fraction (longitude in
degreesI360); for sunrise and sunset, the error due to neglecting the variation with
longitude amounts to a maximum of two minutes in latitudes up to 60°. The times
so obtained are local mean times, which can be converted to universal time by
applying longitude in time, adding if west and subtracting if east; standard times
are obtained by adding (subtracting) to the local mean time four minutes for every
degree of longitude west (east) of the standard meridian.

Times are given only for northern latitudes. Those for the corresponding
southern latitudes may be obtained by entering the tables with the same numerical
value of the latitude but with a " corresponding date", approximately six months
earlier or later, on which the Sun's declination has the same numerical value but
opposite sign, and applying a correction equal to the difference between the values
of the equation of time on the two dates concerned. Auxiliary tables of corres­
ponding dates and corrections are given at the foot of each page of the main
tabulation. Times for southern latitudes are given directly in both N.A. and A.A.

At the tabulated times of sunrise and sunset the geocentric zenith distance of
the Sun is 90° 50', 34' being allowed for horizontal refraction and 16' for semi­
diameter; the Sun's upper limb is thus on the horizon. Corrections are
necessary if some other value of the zenith distance is required, such as for the
conventional meteorological value of 90° 34' or to allow for the height of the
observer and the elevation of the actual horizon. These may be obtained from
Tables of Sunrise, Sunset, and Twilight, or from the data in N.A. and A.A.
For small changes the formula and table given for moonrise and moonset in sub­
section C may be used.

At the times given for astronomical twilight the geocentric zenith distance
of the Sun is 108°, and the indirect illumination from the Sun is approximately
equal to that of the night sky. Other twilights are in use for navigational purposes;
times of civil (zenith distance 96°) and nautical twilight (zenith distance 102°)
are given in both N.A. and S.S. T., and duration of civil twilight (interval before
sunrise or after sunset) is given in A.A. These tabulations enable times to be
obtained corresponding to any desired zenith distance between 90° 50' and 108°.
In A.A. a table is given of the corrections to be applied to the time of sunrise or
sunset to give the times at which the Sun haszenith distances between 90° and 102°
(that is depressions down to 12°); one argument of this table is the (tabulated)
duration of civil twilight. Sunrise or sunset at a height h feet above the level
of the horizon occurs when the Sun's zenith distance is approximately:

90° 50' + 1"17 h~ (2"08, for h in metres)

so that the same table is used to give corrections for height to the times of sunrise
and sunset. In A.A. 1962 onwards, the corrections can be obtained from graphs.
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Times of rising and setting and associated phenomena change rapidly from
day to day in polar regions, or may not occur for long periods, the Sun being
continuously above or below the horizon; accurate times are therefore difficult
to tabulate. Diagrams are given in A.A. and S.S.T. that enable approximate
times, sufficiently accurate for all practical purposes, to be obtained.

C. MOONRISE AND MOONSET

The tables in the Ephemeris give, for every day and for a range of latitudes
from 60° north to 60° south, the local mean times of moonrise and moonset for
the meridian of Greenwich. Interpolation for both latitude and longitude is
necessary to obtain local mean times for other places. In practice times are
rarely required more accurately than to within about five minutes and interpolation
can be done mentally. Formal interpolation, using tables such as are given in
N.A. and A.A., yields times accurate to about two minutes. The times so
obtained may be converted to universal time or standard time by applying longitude
in time, adding if west and subtracting if east. Times for latitudes north of 60°
are given in both N.A. and A.A. to 72° and in A.A., in graphical form above 72°,
right up to the north pole.

In calculating the times of moonrise and moonset, the zenith distance of the
Moon is taken as:

90° 34' + semi-diameter - horizontal parallax
where 34' is allowed for horizontal refraction; this zenith distance varies from
89° 49' to 89° 55'. At these times the upper limb of the Moon is on the horizon;
no allowance is made for phase.

The rate of change of hour angle with zenith distance, at a zenith distance
of 90°, is:

(cos2 ep - sin2 8)-'
where ep is latitude and 8 is declination; approximately, a change in zenith distance
of Llz degrees causes a difference in the time of rising and setting of ALlz minutes,
where:

A = 4'14 (cos2 ep - sin2 8)-'
The factor A is tabulated in the following table.

Latitude, c/>

0 0° 10° 20° 30° 40° 4So soo SSo 60°

0° 4'1 4'2 4'4 4,8 5'4 5'9 6'4 7'2 8'3
10 4'2 4'3 4'5 4'9 5'5 6'0 6'7 7,6 8,8
20 4'4 4'5 4'7 5'2 6'0 6'7 7.6 <}'O 11'3

23 4'5 4,6 4,8 5'4 6'3 7'0 8'1 10 13
26 4,6 4'7 5'0 5'5 6·6 7'5 8,8 II 17
29 4'7 4,8 5'1 5,8 7'0 8'0 9,8 14 34

The corrections are accurate to within a few minutes provided A does not exceed
20 and LIz a few degrees. At a height h feet above the horizon the zenith distance
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of the Moon when its upper limb is on the horizon is increased by I" 17h~ and
the value of ..dz to be used is:

..dz = 0°'019 h~ (2"°8,0°'°35, for h in metres)

The Moon revolves round the Earth and makes one complete revolution
relative to the Sun, in a synodic month of mean length 29'53 days; in that time
it therefore appears to lose one transit across any meridian and, in general, one
rising and one setting. During each month there is therefore no moonrise on
one local day (near last quarter) and no moonset on one day (near first quarter).
In high latitudes the times of the phenomena change rapidly from day to day and
may not occur for long periods, the Moon being continuously above or below the
horizon; in these extreme conditions the times of moonrise and moonset sometimes
decrease from day to day, instead of the usual increase in lower latitudes, and
it is possible to have two moonrises or two moonsets during the same local day.

D. DERIVATION

The times of rising and setting, and of the beginning and end of twilight,
may be calculated directly from the fundamental relation:

cos h = - tan 4> tan 0 + sec 4> sec 0 cos z
in which hand 0 are the hour angle and declination at the time of the phenomenon,
4> is the latitude, and z is the zenith distance. Negative, or eastern, hour angles
correspond to the rising phenomena; positive, or western, hour angles to setting
phenomena. The hour angle is:

h = local sidereal time - right ascension
= G.H.A. Aries - ,\ - a

in which ,\ is the west longitude and a is the right ascension. The local mean
time, or the universal time, of the phenomenon may be obtained (once a is known)
from h by the methods described in section 3C. For a fast-moving object the
declination should be interpolated to the approximate time of the phenomenon,
before the hour angle is calculated.

In practice it is more convenient to use the tabulated values (for the Sun,
Moon, and planets) of the time of transit instead of the right ascension; the time
corresponding to any given hour angle is then obtained by interpolation of the
time of transit to that hour angle. More precisely, in longitude ,\ (ephemeris
longitude ,\*), the ephemeris time corresponding to a calculated hour angle h is
the tabulated time of ephemeris transit interpolated towards the next value with
an interpolating factor of (h + ,\*) expressed as a fraction of 24h or 360°. As
shown in section 4F, the corresponding local mean time depends only slightly
on ..d T; to the precision considered here, it is:

E.T. of ephemeris transit + h (I + d) + Ad
where d is the mean value of the rate of increase of the tabulated times, expressed as
a fraction of 24h and strictly taken for the mid-point of the interval between the
times of transit and the phenomenon.
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= 1·6243

Evening
twilight

19h 30m
- 5° 02'
-0'0881
+ 1'°°39
108°

-°'3°9°
+0'II28
-0'5°39
-0'39 11

Sunset

18h oom
- 5° 04'
-0'0887
+ 1'°°39
90° 50'

-0'0145
+0'II35
-0'0237
+0'0898

Sunrise

6h 30m
- 5° 15'
-0'°919
+1'°°42
90° 50'

-0'0145
+0'II76
-0'0237
+°'°939

Example 13.1. Local times of sunrise, sunset, and the
beginning and end of astronomical twilight

1960 March 7, in latitude + 52°

tan 4> = + I '2799 sec 4>
Morning
twilight

4 h 30m

- 5° 17'
-0'°925
+ I '0043
108°

-°'3°9°
+0' II84
-°'5°41
-°'3857

z
cos z
-tan 4> tan S
cos z sec 4> sec S
cos h

Approx. time
S (A.E., page 21)
tan S
sec S

m

h 7 30'7 5 38'5 5 39'4 7 32'1
12h - Eqn. of Time 12 II'2 12 II'2 12 II'O 12 II·O
Time 4 40'5 6 32'7 17 50'4 19 43'1

The times given are for north latitude 52°. The Sun's declination at OIl on March 7
is - 5°'4; the" corresponding date" when the declination is of opposite sign but most
nearly numerically equal is September 9: The times for south latitude 52° on March 7
are found from those for north latitude 52° for September 9 by applying a correction equal
to the difference between the values of the equation of time on the two dates:

m

Equation of time, September 9 + 2·6
Equation of time, March 7 - I 1'2

m
Difference = correction = + 13.8

This correction is tabulated in A.E., pages 398 and 399.

Example 13.2. Times of moonrise and moonset-direct method
1960 March 7, in latitude + 52°

Moonrise Moonset

d h m d m

Time of upper transit 7 19 52·6 6 19 05'0
Moonrise, moonset 7 I I 59'7 7 02 58'7

I + d is the mean value of the tabulated difference between upper and lower transits of
the Moon, divided by 12h •

Approx. time
S (A.E., page 84)
S.D. (A.E., page 54)
H.P. (A.E., page 54)
90° 34' + S.D. - H.P. = z
tan S
sec S
-tan 4> tan 1)
cos z sec 4> sec 1)
cos h

h
Tabulated difference of transits
I + d

12h oom
+ 18° 02'

14'·8
54"4

89° 54"4
+°'3256
+1'°5 17
-°'4167
+0'0028
-°'4139

h m

- 7 37. 8
12'3973

1'°331

3h oom
+ 18° 10'

14'·8
54"3

89° 54'· 5
+°'3281
+ 1'°525
-°'4199
+0'0028
-°'417 1

h m
+ 7 38·6

12'3961
1'°33°
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On the Greenwich meridian the term Ad is zero, so that the universal time is
simply:

E.T. of ephemeris transit + h (I + d)
The maximum value of h is I2h so that, to a precision of one minute of time,
d cannot be ignored except for the Sun. For the Moon 1 + d is about 1 '03
or 1 '04, and it is not quite sufficient to use the value of 1 + d at the time of transit
for both rising and setting phenomena. In systematic calculation the approximate
times of the phenomena are known beforehand to sufficient accuracy for the values
of 1 + d and 8 to be pre-calculated. For the Sun, the ephemeris transit is not
tabulated in the Ephemeris until 1965; it suffices to add the hour angle to I2h

minus the tabulated equation ·of time, interpolated to the time of the phenomenon.

Some simplification can be achieved by using the ephemerides of Greenwich
hour angle (G.H.A.) and declination (Dec.) in N.A. and A.A.; the argument
of these ephemerides is universal time, which can thus be determined directly
to correspond to the calculated value of h.

A more fundamental simplification .can be achieved by calculating the zenith.
distances for a number of pre-determined times near rising and setting, and then
using inverse interpolation to give the time corresponding to the zenith distance
required. The fundamental relation is used in the form:

cos z = sin ep sin 8 + cos ep cos 8 cos h
in which all quantities on the right-hand side are known for each time. When
calculating times of moonrise and moonset systematically for a large number of
latitudes on a high-speed electronic computing machine, this method has both
practical and theoretical advantages; and it is the method actually used in
practice.

The zenith distances are calculated for two or more integral hours near the

Example 13.3. Times of moonrise and moonset-alternative method
1960 March 7, in latitude + 5zo

Moonrise Moonset
Zenith Zenith

V.T. distance 8 82 D.T. distance 8 82

h h
8°1 57:70II 97°5, z7 02

-7 I 3' II +806·zz
12 89 5z, 16 -53'7° °3 9003'9Z -54'49

-806·81 +7 II'73

13 81 45 '35 04 97 15.65

IZ h
7T = 54"39z z = 89° 54"4z8 o3 h

7T = 54"314 z = 89° 54"485

Inverse interpolation gives Inverse interpolation giws
D.T. = II h 59m'7 D.T. = OZh 58m'7

The precision of 0"01 in the calculated zenith distance is unnecessary in this example;
a change of I' in zenith distance corresponds to a change of about om. 13 (A = 8). But the
additional precision involves no extra work, when calculated on an electronic computer,
and it is required when the Moon rises and sets at a small inclination to the horizon; the
extreme cases only arise for latitudes above 60°.
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times of rising and setting, using the tabulated values of right ascenSiOn and
declination. The Greenwich hour angle at Hh V.T. is:

h = apparent sidereal time at Hh V.T. - a at (Hh + JT) E.T.

The motion in a in time JT is about 18 '0 to 18 .6 at the present time, and can either
be neglected or applied later. The resulting zenith distances are interpolated to:

z = 90° 34' - horizontal parallax + semi-diameter
= 90° 34' '001 - °'72755 7T

where 7T is the horizontal parallax, though a precision of l' suffices to give times
to 1 m in many cases. Linear interpolation is sufficient for the low latitudes,
but for latitudes above 30° it is necessary to calculate three or more altitudes and
to use second differences to obtain the required accuracy.

-----~--



14. THE CALENDAR

A. INTRODUCTION

A calendar is a system of reckoning time over extended intervals by combining
days into various periods adapted to purposes of civil life, to fixing religious
observances, or to meeting scientific needs. Three of the periods used in calendars,
namely days, months, and years, are based on astronomical periods that are of
importance for the practical activities of daily life. Others, such as the week,
are artificial.

The calendarial reckoning is according to conventional calendar years and
adopted historical eras. In constructing and regulating civil calendars, and fixing
ecclesiastical calendars, a number of auxiliary cycles and periods are used. The
principal chronological eras and cycles are listed in A.E., page I, and are followed
by the Gregorian calendar, giving day of week and Julian Date, for the current
year. *

The complexity of calendars is due mainly to the incommensurability of the
astronomical periods on which they are based. The supply of light by the Sun
and Moon is governed by the solar day and the synodic month, while the return
of the seasons depends on the tropical year. The length of the synodic month
is 29'530589 days, and of the tropical year 365 '242199 days, for the epoch 19°°;
the very small and somewhat uncertain secular variations in the lengths of these
periods are unimportant for chronological purposes. The number of lunations
in a tropical year is 12'368267 at the epoch 1900.
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B. HISTORICAL CALENDARS

The many calendars of historical times were lunar in origin, the year consisting
usually of twelve months of about 30 days, with arbitrary or calculated intercalation
of months or days to make the length of the year conform to the solar year. The
Egyptian calendar was, up to the time of Julius Caesar's reform of the Roman
calendar in 46 B.C., the only civil calendar in which the length of each month and
year was fixed by rule, instead of being determined by the discretion of officials
or by direct observation of some astronomical event.

I. The Egyptian calendar

The Egyptian year from an extremely remote date consisted of 12 months
of 30 days each, followed by 5 additional days at the end of each year. This fixed
calendar year of 36S days was not adjusted to the solar year by any intercalation;
the Egyptian New Year consequently gradually retrograded through a complete
circuit of the tropical year in a period of approximately 1460 years known as the
Sothic cycle. The calendar year was divided into three seasons of four months
each, called Flood time, Seed time, and Harvest time, corresponding to the annual
cycle of the rise and fall of the Nile. The relation of the calendarial seasons to the
natural seasons of the solar year was determined by the heliacal rising of Sirius
(whose Egyptian name was Sothis), that is by the first appearance of the star
in the morning sky after conjunction with the Sun; the mean interval between
consecutive heliacal risings was 36Sd'2so7 according to Schoch.

This calendar originated from one of the variants of the earlier lunar calendar
which regulated festivals in relation to the phases of the Moon, and which was
eventually systematized to bring it into a fixed relation to the civil calendar.

The advantages of the fixed Egyptian calendar for astronomical calculations
were recognized by the Hellenistic astronomers, and it became the standard
astronomical system; it was still used by Copernicus in his lunar and planetary
tables.

An attempt by Ptolemy Euergetes in 238 B.C. to introduce a sixth additional
day once in four years failed, but a renewed attempt under Augustus (26-23 B.C.)

was more successful. An additional day was inserted at the close of the Egyptian
year 23-22 B.C. on August 29 of what we call the Julian calendar, and at the close
of every fourth year afterwards, so that the reformed or Alexandrian year began
on August 30 of the Julian calendar in the year preceding a Julian leap year and
on August 29 in all other years. The effect of this reform was to keep each
Egyptian month fixed to the place in the natural year which it happened to occupy
under the old calendar in the years 26-22 B.C. But the old calendar was not
easily suppressed, and we find the two used side by side until A.D. 238 at least.
The old calendar was probably the more popular, and was preferred by astronomers
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and astrologers. Ptolemy always used it, except in his treatise on annual
phenomena, for which the new calendar was obviously more convenient. Theon
in the fourth century A.D., though mentioning the old calendar, habitually used
the new.

The old Egyptian calendar was adopted by the Persians, perhaps about
500 B.C., in a form that cannot now be accurately restored, and survives in a
slightly modified form in the Armenian calendar, the three first months of the
old Egyptian year corresponding exactly with the three last months of the
Armenian year. These are followed in the Armenian calendar by the five additional
days, so that for the remainder of the year the Armenian months began five days
later than those of the old Egyptian calendar. The Alexandrian calendar is still
the calendar of Ethiopia and of the Coptic church, and is used for agricultural
purposes in Egypt and other parts of northern Africa.
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2. The Babylonian calendar

The Babylonian year consisted of 12 lunar months, each fixed by actual
observation of the first appearance of the lunar crescent in the evening sky, with
the intercalation of an additional month when necessary to keep the calendar
year in a definite relation to the seasons. The year began in the spring with the
month Nisannu.

Up to about 480 B.C., the intercalations show no regularity whatever; but
attempts appear to have been made to formulate fixed rules, and at some time
very close to 380 B.C. a regular cycle of 7 intercalations at fixed intervals during
each 19 years came to be used. The 19-year cycle had been introduced by
Meton at Athens about 50 years earlier, but whether the Babylonians obtained
it from the Greeks or discovered it independently is not known. This cycle
equates 19 years to 235 lunations; it still survives in the modern Jewish calendar,
with the same value for the length of the mean synodic month as in the Babylonian
calendar.

The conversion of dates in the Babylonian calendar to their exact equivalents
in the Julian proleptic calendar is in general very difficult, and often uncertain
or impossible. The ancient calendars that were regulated either arbitrarily or
by observation of the lunar crescent 'cannot be completely restored with certainty
and correlated with other calendars unless historical records are extant that give
a sufficiently complete continuous record of the length of every month and attest
to all the intercalary months.

- -- -------- ----- ----------------------
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3. Greek calendars

Early Greek calendarial reckoning was rather chaotic. Each community
had a separate calendar. All Greek calendars were lunar until the Roman period,
and kept roughly in a fixed relation to the seasons by the intercalation of a
thirteenth month when required; but the intercalations were determined by local
public authorities, and were different in different calendars in addition to being
irregular. There was also great variety in the season when the year began in
different calendars.

From the sixth century B.C. onwards, a number of cycles were successively
devised by the Greek astronomers as a basis for regulating the lunar calendar
by fixed rules instead of by arbitrary intercalation. Among these, the Metonic
and Callippic cycles came to be used by astronomers for dating observations,
and appear to have been used over a period of several centuries extending into the
Middle Ages to establish the dates of new moon for purposes of religious calendars.
In the Metonic cycle, 19 years were equated to 235 months and to 6940 days;
in the Callippic cycle, 76 years were equated to 940 lunations and to 27759 days,
one day less than four Metonic cycles.

4. The Julian calendar

The Julian calendar was established in the Roman Empire by Julius Caesar
in 46 B.C., by revising the ancient local calendar of the city of Rome, with the
advice of the Alexandrian astronomer Sosigenes. Reaching its final form about
A.D. 8, it was widely spread by the growth of the Empire; it remained in general
use in the West during later centuries, until in 1582 it was further modified into
the Gregorian calendar which has now come into almost worldwide use for civil
purpos(.s.

The Roman calendar was originally a lunar calendar, with arbitrary inter­
calation of months by the pontifical authorities. Under the pontificate of Julius
Caesar, intercalation was neglected with such frequency that the calendar became
about two months out of step with the solar year. To rectify the discrepancy,
Caesar inserted intercalations into the year 46 B.C. that increased its length to 445
days, and instituted his reformed calendar beginning with 45 B.C.

In the Julian calendar, a mean length of 365 '25 days for the year is adopted.
The calendar year is adjusted to this mean value by inserting an intercalary day
every fourth year; the intercalary year has 366 days, and each of the other three
years has 365 days.

The year 45 B.C. was a Julian intercalary or leap year; but because of mis­
urderstanding and confusion during the period following the adoption of the
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revised calendar, the intercalations were incorrectly made until the error was
rectified in 8 B.C. by Augustus, who omitted further intercalations until A.D. 8.
The adjustments actually made before the Augustan reform cannot be determined
with certainty, and are ignored in the following sub-sections, but after A.D. 8 the
Julian calendar was used without further change until the Gregorian reform in 1582.

The Christian era for the chronological reckoning of the years was first used
by the Roman abbot Dionysius Exiguus, to designate the years in a table for
determining the date of Easter that he prepared as a continuation of a previous
table in which the years had been designated according to the era of Diocletian.
In extending the table, he adopted 248 Diocletian era = A.D. 532. The year
in which he prepared the table was six years before this, or A.D. 525; but how
he determi.ned the correspondence is unknown. His method for designating the
years was adopted by others, and through increasing use during the next few
centuries it became established in western Europe as a chronological era.

In this system, the Christian eta begins with year A.D. I; the immediately
preceding year is designated I, B.C. There is no year 0 in the chronological
reckoning. For astronomical purposes, the year immediately preceding A.D. I

is designated 0; the other years B.C. are denoted by negative numbers, each
numerically one less than the designation in the historical reckoning. In the
astronomical system the year preceding ° is - 1, and corresponds to 2 B.C. The
year °was a leap year.

The first century of the Christian era ended with December 31 of A.D. 100,

when the first one hundred years A.D. I to A.D. 100, inclusive, had been completed.
Likewise, the nineteenth century ended with 1900 December 31; the twentieth
century began with 1901 January I, and the first half of the century ended with
1950 December 31. Considerable public controversy always attends these
occasions. *

The Christian era was adopted at different times in different countries with
a variety of dates for the beginning of the year. The most common initial dates
were December 25, January I, March I, and March 25. These different reckon­
ings of the year were known as styles. Traditionally in the ancient Roman calendar,
March had been the first month of the ~Tear, as reflected in the numerical names
which still survive for the months September to December and in the position
of the intercalary day at the end of February; but in 153 B.C., with a change in
the date of entry into office of the consuls and other magistrates to January I,

this became the first day of the official year and came to be widely adopted during
later centuries in western Europe as the calendar New Year. In Italy, however,
down to the eighteenth century the years of the Christian era began in the Venetian
style on March I, in the Pisan style on the preceding March 25, and in the Floren­
tine style on the following March 25, while at Rome different styles were used for
different purposes. In England the Nativity style beginning on December 25

was superseded in the fourteenth century by the Annunciation style beginning on
March 25, but the Circumcision style beginning on January I was substituted in
1752 by the Act that introduced the Gregorian calendar. In Scotland the year
*The new century is popularly considered to begin one year earlier.

-- -- ---~------ ------- ---- ------------------ ---- ----
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had begun officially on January I since 1600. The names old style and new style
were, however, used to distinguish not the different dates for the beginning of the
year, but the Julian and Gregorian calendars, each of which has been used with
different initial dates.

The intercalary day was always inserted in every February which, if the years
began with January I, would fall in a year with a numerical designation divisible
by 4. Consequently, when the actual beginning of the year was in March, the
years divisible by 4 were not the leap years.

Preceding the Christian era, the rule that when the New Year is January I

the years divisible by 4 are leap years is valid only if the astronomical designations
of the years by negative numbers are used.
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C. THE GREGORIAN CALENDAR

The Gregorian calendar was instituted in 1582 by Pope Gregory XIII,
primarily as a basis for regulating Easter and the ecclesiastical calendar. It is a
solar calendar, distinguished principally by the system of intercalation adopted
for keeping the calendar year in adjustment with the tropical year, and~onstructed
by modifying the Julian calendar. The mean Julian calendar year of 365'25 days
exceeds the length of the tropical year by about lIm 148 • The continual accumu­
lation of this excess amounts to about 3 days every 400 years, and causes a gradual
progressive change in the calendar dates of the seasons. This defect in the
Julian calendar had produced a very noticeable effect on the date of Easter. Since
Easter was the Christian continuation of the Jewish Passover, the date was fixed
by rules that were intended to keep it near the vernal equinox, because the
Passover was observed on 14 Nisan, and in the ancient Jewish calendar the begin­
ning of this month was determined by observation of the lunar crescent nearest
the vernal equinox. In practice, the date of Easter was determined from tables
in which the lunar months were based on the Metonic cycle and March 21 was
adopted as a fixed date for the equinox. Consequently, as the actual vernal
equinox gradually occurred earlier in the calendar, the date of Easter became
progressively later relative to the seasons; by the sixteenth century, the equinox
had fallen back to about March I I, and Easter was tending nearer and nearer
toward the summer.

The Gregorian reform of the Julian calendar consisted of:

(i) omitting 10 days from the calendar reckoning, the day next after 1582
October 4 being designated 1582 October IS, for the purpose of restoring the date
of the actual vernal equinox to March 21;

(ii) adopting a different rule for leap year, by omitting the intercalary day in
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centurial years that are not divisible by 400, such as 1700, 1800, 1900, and 2100,
in order to correct the error of the Julian calendar where an intercalary day is
inserted every four years;

(iii) fixing rules for determining the date of Easter in the revised calendar.

The week was not modified in any way; special provision was made that the
sequence of the days of the week was not broken.

The mean length of the Gregorian calendar year is 365 '2425 days. At the
completion of a 40o-year calendar cycle, the cumulative discrepancy with the
tropical year is only a few hours.

The authoritative treatise on the principles of this calendar and the associated
ecclesiastical calendar is the book by Christoph Clavius, Explicatio Romani
Calendarii a Gregorio XIII P.M. restituti (Rome, 1603), which is also included
in Volume V of the collected works of Clavius published in 1612.

The Gregorian calendar was at once officially adopted for civil and religious
purposes in Roman Catholic countries. During the following centuries, it came
into almost universal use throughout the West, although with some diversity
between civil and ecclesiastical practice; and it is widely used for some civil pur­
poses in countries which have official native calendars.

The dates of the official adoption of the Gregorian calendar differed from
country to country. In some regions, this calendar came into use gradually
without official action. The introduction by legal action was in many cases not
completely accepted among the people for a long period, and quite often did
not affect ecclesiastical customs; for details, especially of the diverse church
calendars, the references given at the end of this sub-section may be consulted,
particularly Lange (7). In the Gregorian calendar, Easter has not in all cases
been fixed strictly according to the Gregorian rules; in particular, it has
occasionally been determined astronomically, e.g., by the German Protestants
from 1700 to 1776, in Sweden from 1740 to 1844, and by the Eastern Orthodox
Churches since 1923.

At a meeting of a Congress of the Orthodox Oriental Churches held in
Constantinople in May, 1923, the Julian calendar was replaced by a modified
Gregorian calendar in which century years are leap years only when division of
the century number by 9 leaves a remainder of either 2 or 6, and Easter is
determined by the astronomical Moon for the meridian of Jerusalem; see
Milankovitch (8). The change was such that 1923 October I, Julian calendar,
became 1923 October 14 in the new calendar.

In the following list the dates of the official adoption of the Gregorian
calendar are indicated in the form of double dates that give the· corresponding
Julian/Gregorian dates for the first day on which the Gregorian calendar was
used. The authorities that were consulted are referred to by the numbers, in
bold type, assigned to them in the list of references at the end of this sub-section.
References 4 and 7 are considered to be the most reliable, while 6 and 12 should
be reliable for the native countries of their authors; 10 is not documented.

-- -- ---------- ------- ----------------
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List of dates of adoption of the Gregorian calendar

4

4
4,10

10

4, 10

4

after Peace of Munster (1648)
1·682 February 6/16
1583 November 12/22
1583 November 17/27

1584 January 7/17
1584 January 7/17

3
Bulgaria

Different sources disagree:
3 1915
7 1916 April I, for civil purposes. Double dating had already been in use for

some time, but was excluded by the law introducing the Gregorian calendar.
Chinese Republic

Different statements are given in different sources:
II 1912 January I, by Siin Yat Sen.
6 1912; but during 1912-1928, both the Gregorian date and the Chinese calendar

date were carried on official documents.
I~ 1929 January I.

Czechoslovakia. See German States.
Denmark

1700 February I9/March I (Ginzel, 4). Norway was then under Danish rule.
Egypt

1875, by ordinance of Ismail Pasha, for civil purposes (Lange, 7).
Esthonia

1918 January (Lange, 7).
Finland. See Sweden.
France. See also German States.

1582 December 10/20 in France and Lorraine, by edict of Henry III (Ginzel, 4).
German States, listed according to the countries within which they now lie:
Austria Source

Brixen t 1583 October 6/16 10

Carinthia 1583 December IS/?oS 4
Salzburg 1583 October 6/16 10

Styria 1583 December 15/25 4, 10

Tyrol 1583 October 6/16 4
Czechoslovakia

Bohemia
Moravia

France
Alsace
Strassburg (city of)
Strassburg (bishopric of)

Alaska
1867 October 18, when Alaska was transferred to the United States under treaty

of purchase from Russia, where the Julian calendar was still in use.
The Julian calendar dates had been in accordance with the reckoning to the west of

the international date line. A further change was therefore made to conform to the
reckoning east of the date line, and consequently the date was advanced by only I I days
instead of the 12 days by which the Gregorian calendar was then in advance of the Julian
calendar.
Albania

1912 December, for civil purposes (Lange, 7).
American Colonies

1752 September 3/14, at the same time as in Great Britain.
Austria. See German States.
Belgium

Different sources disagree:
4 1582 December 22/1583 January I in Flanders, Brabant, Hainaut, and other

southern provinces; 1583 February II/2I in Liege Bishopric.
10 1582 December 15/25 in Flanders, Hainaut, Luxembourg, and other southern

provinces.
1583 in Flanders.

tBrixen is now known as Bressanone and is in Italy.
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Germany
Aachen 1583 November 4/14
Augsburg 1583 February 14/24
Augsburg (bishopric of) 1583 February 14/24
Baden (marquisate of) 1583 November 17/27
Bavaria 1-583 October 6/16
Bavarian bishoprics 1583 October 6/16
Cologne (city of) 1583 November 4/14
Eichstadt 1583 October 6/16
Freising 1583 October 6/16
Hildesheim (bishopric of) 163 I March 16/26
Julich 1583 November 3/13
Lausitz 1584 January 7/17
Mainz (archbishopric of) 1583 November 12/22
MWlSter (city and county of) 1583 November 17/27
Neuburg Palatinate 1615 December 14/24
Osnabruck (city of) 1624
Paderborn (bishopric of) 1585 June 17/27
Prussia (duchy of) 1610 August 23/September 2
Regensburg 1583 October 6/16
Silesia 1584 January 13/23
Trier (archbishopric of) 1583 October 5/15
Westphalia (duchy of) 1584 July 2/12
Wurzburg (bishopric of) 1583 November 5/15
Kaiser and Parliament 1584 January 7/17
Protestant Germany 1700 February 19/March I

Under Frederick the Great, Gregorian reckoning was adopted
in 1775 under the name of" improved calendar ".

Switzerland
Appenzell (Protestant half) see below
Basel, Bern, and Biel 1701 January 1/12*
Fribourg 1584 January 12/22
Geneva 1701 January 1/12*
Graubunden see below
Lucerne 1584 January 12/2Z
Mulhausen 1701 January 1/12*
Neuchatel 1701 January 1/12
Prattigau (" Ten Districts ") 1812
Sargans 1701 January 1/12
Schaffhausen 1701 January 1/12*
Schwyz 1584 January 12/22
Solothurn 1584 January 12/22
Thurgau 1701 January 1/12
Uri 1584 January 12/22
Valais see below
Zug 1584 January 12/22
Zurich 1701 January 1/12*
Federal congress 1583 November 10
Appenzell (Protestant half): separated from the Roman Catholic

half in 1597 and remained on Julian calendar.
Graubunden: Gregorian calendar adopted at first only by

Roman Catholic districts in upper Rhine valley. The
others retained Julian calendar until into 18th century.

Valais: 1622, except Sitten, Siders, Leuk, Raron, Visp, Brieg
and Goms which changed in 1656.

* Improved Weigel calendar.

-- -~-------- - ----- -----------------
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Great Britain and Dominions
1752 September 3/14, by Act of Parliament passed 1751 March 18; at the same time,

the beginning of the year was changed from March 25 to January I, commencing with the
year 1752.
Greece

See Milankovitch (8); a slightly modified form of the Gregorian calendar was intro­
duced 1924 March 10/23.
Hungary

1587 October 22/November 1. (Schram, 10).
Italy

1582 October 5/15 (Ginzel, 4).
Japan

1873 January I (van Wijk, 12).
Jugoslavia

1919 (Fotheringham, 3, but see also Milankovitch, 8).
Latvia

The Gregorian calendar gradually came into use for civil purposes during the German
occupation 1915-1918 (Lange, 7).
Lithuania

1915, by the Catholic Church, which represented three quarters of the population
(Lange, 7).
Luxembourg

1582 December 15/25 (Schram, 10).
Netherlands

In the Catholic States, 1582-1583; in the Protestant States, 1700-17°1; but different
sources disagree on the exact dates. For minute details, see van Wijk, 12.

Norway. See Denmark.
Poland

1582 October 5/15 (Schram, 10). In the Russian part of Poland, the Gregorian
calendar was introduced by the German occupation troops 1915 March 21 (Lange, 7).
Portugal

1582 October 5/15 (Ginzel, 4).
Roumania

1919 April 1/14 (L'Astronomie: Bull. Soc. Astr. de France, 33, 529, 1919).
Spain

1582 October 5/15 (Ginzel, 4).
Sweden

1753 February 18/March I (Schram, 10; Lange, 7). Finland was then a part of
Sweden.
Switzerland. See German States.
Turkey

1927 January I (Astr. Jahresber., 29, 48, 1927).
U.S.S.R.

1918 February 1/14 for civil purposes (Lange, 7; Observatory, 41, 146, 1918).

Equivalent dates in the Julian and the Gregorian calendars are frequently
required. Both calendars were widely used for a long period after the Gregorian
calendar was first introduced; for special purposes the Julian calendar is still of
service, and occasionally the Gregorian proleptic calendar is used for dates before
1582. The 10 days difference between the two calendars at the time of the
Gregorian reform increases by one at the bissextile, or intercalary, day in each
centurial year after 1582 that is not divisible by 400; the difference is subtracted
from a Gregorian date, added to a Julian date. Before 1582, the difference
decreases. The year 0 is a leap year in the Gregorian proleptic calendar.

------~--------- -
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IN THE JULIAN AND GREGORIAN CALENDARS

Year Date Diff. Date Year Date Diff. Date
(astronomical) Julian (days) Gregorian (astronomical) Julian (days) Gregorian

Astronomical years - 500 to +300

-500 March 5 February 28 - 100 March 2 February 28

-500 March 6 March I -100 March 3 March I

March 5 February 27 +100 February 29
2 February 27-300 3

-300 March 4 February 28 +100 March February 28

-30 0 March 5 March I +100 March 2 March I

March 4 February 27 +200 February 28
I

February 27-200 2

-200 March 3 February 28 +200 February 29 February 28

-200 March 4 March I +200 March I March I

March 3 February 27 +300 February 28
0 February 28-100

A.D. 300 March I to 1582 October 4/14

3 00 February 29 March 1000 Febru;uy 29 March 6

300 March I March 2 1000 March I
6 March 7

February 28
I

March February 28 March 65 00 I 1100

500 February 29 March 2 1100 February 29 March 7

5 00 March I March 3 1100 March I March 8
600 February 28

2
March February 28 7 March2 1300 7

600 February 29 March 3 1300 February 29 March 8

600 March I March 4 1300 March I
8 March 9

7 00 February 28 3 March 3 1400 February 28 March 8

700 February 29 March 4 1400 February 29 March 9

700 March I March 5 1400 March I March 10

900 February 28 4 March 4 1500 February 28 9 March 9

9 00 February 29 March 5 1500 February 29 March 10

9 00 March I March 6 1500 March March II

February 28 5 March 15 82 October
10

October1000 5 4 14

1582 October 5/15 onwards

1582 October 5 10 October 15 1800 February 29 March 12

1582 October 6 October 16 1800 March I March 13
February 18

10
February 28 February 16

12
February 28170 0 1900

February 19 March I February 17 March 1

February 28
10

March February 28
12

March10 12

1700 February 29 March II 1900 February 29 March 13

1700 March I March 12 1900 March I March 14
1800 February 17

II
February 28 February 15

13 February 282100

February 18 March I February 16 M~l~h I

1800 February 28
II

March February 28
13 1\ larchII 2100 13

The differences are constant between each pair of dates given in the table. The sign
of the difference can be obtained by inspection.

Except in the centurial years that are given above, the leap years (astronomical year·
divisible by 4) are common to both calendars.

~ -- --- ------ ------ --- ------------------- --- ---
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Equivalent dates in the Julian and Gregorian calendars, extending backwards
to the year - 500 (= 501 B.C.) are listed in table 14. I; it is clear that for the
years before A.D. 200 the difference must be added to the Gregorian date, or
subtracted from the Julian date. Care should be taken to assign to February
the proper number of days in each calendar; the change points (especially after
1582) are, however, clearly indicated.
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D. THE WEEK

The week was not originally an integral part of any calendar; in its present
form, it gradually became established in the Roman calendar during the one or
two centuries preceding the Christian era. The Mosaic Law enjoining an
abstinence from work on every seventh day had established the 7-day period as
a Jewish measure of time, and this Jewish week later passed into the Christian
Church. Meanwhile, shortly before the Christian era, an astrological practice
had arisen of attaching the names of the seven " planets", the term at that time
including the Sun and Moon, in cyclic succession to successive days, in the order
in which the planets were supposed to rule the days. The planetary designations
for the days rapidly acquired a widespread popularity, and became the pre­
dominant usage throughout the Roman Empire. The coincidence in the number
of days in this astrological cycle with the number of days in the entirely independent
Jewish week led to the gradual establishment of the planetary week without
official recognition, either civil or ecclesiastical.
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Since first becoming established, the cyclic succession of the days of the week
has not been altered, and no breaks in the sequence have occurred. In the Teutonic
languages, the names of the Roman deities Mars, Mercury, Jupiter, and Venus
have been replaced by their counterparts Tiu, Woden, Thor, and Freya.

The week, therefore, is a non-astronomical element of the calendar. The
reckoning of time by weekly cycles in continuous succession is independent of the
essentially astronomical reckoning by days, months, and years which is the
principal basis of the calendar. The consequent complexity of the relation between
the two reckonings causes difficulty in determining readily the day of the week
that corresponds to any given calendar date. However, a table of dominical
letters (see sub-section E) is essentially a calendar for the entire period covered by
the table, and is easily used explicitly for this purpose with the aid of a simple
auxiliary table (such as table 14.2). Nomograms have also been constructed;
see, e.g., d'Ocagne, Trait! de Nomographie, Paris, 1899; A. Saldaiia, Urania,
38, 20, 1953.
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Table 14.2. Perpetual calendar

This calendar gives the days of the week corresponding to the days of any month in
the Julian or Gregorian calendars once the dominical letter for the year is known. [The
dominical letter may be taken from table 14.5 (Julian) or table 14.9 (Gregorian); in leap
years the first letter is to be used for January and February, the second for the remainder of
the year.]

The column in which the dominicalletter for the year is in the same line as the month
for which the calendar is required gives the days of the week that correspond to the days of
the month given at the left.

Month Dominical Letter

January, October A B C D E F G
February, March, November D E F G A B C
April, July G A B C D E F
May B C D E F G A
June E F G A B C D
August C D E F G A B
September, December F G A B C D E

Day of Month Day of Week

8 IS 22 29 Sun. Sat. Fri. Thur. Wed. Tues. Mon.
2 9 16 23 30 Mon. Sun. Sat. Fri. Thur. Wed. Tues.
3 10 17 24 31 Tues. Mon. Sun. Sat. Fri. Thur. Wed.
4 II 18 25 Wed. Tues. Mon. Sun. Sat. Fri. Thur.
5 12 19 26 Thur. Wed. Tues. Mon. Sun. Sat. Fri.
6 13 20 27 Fri. Thur. Wed. Tues. Mon. Sun. Sat.
7 14 21 28 Sat. Fri. Thur. Wed. Tues. Mon. Sun.

-- -- ---_._---- ----- -------------------- --
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E. ECCLESIASTICAL CALENDARS

The date of Easter determines the dates of most of the movable festivals in
Christian ecclesiastical calendars. During the early centuries of the Christian
era many diverse practices were followed by the Churches of different countries
in fixing the date of Easter, and practice did not become entirely uniform until
during the 8th century; but the method used by the Alexandrian Church, which
was widely recognized from the third century on and was favoured by the General
Council of Nicaea in A.D. 325, eventually became generally accepted until the
Gregorian reform in 1582.

In this method, a conventional 19-year cycle of dates for new moon in the
Julian calendar is adopted, based on the Metonic cycle. March 21 is adopted
for the date of the vernal equinox. The fourteenth day of each lunation of the
cycle is the date adopted for the full moon, and Easter Day is the first Sunday
after the full moon that occurs on or next after the tabular date of March 21
for the vernal equinox.

In the Gregorian calendar reform, in addition to the modifications of the
Julian calendar to make it conform more closely to the tropical year, corrections
were made to the tabular calendar of the 19-year cycle of dates for new moon
to bring it into better accord with the actual lunations; March 21 was retained
for the date of the vernal equinox. With the corrected tables, Easter is fixed by
the same rule as previously used with the Julian calendar; but auxiliary rules are
added which make March 22 the earliest possible date for Easter Day, and April 25
the latest.

The rule for determining Easter as commonly expressed in popular language
is somewhat misleading because it is not a precise statement of the actual
ecclesiastical rules. In order that the date should be incontrovertibly fixed, and
determinable indefinitely in advance, tables based on the Metonic cycle were
constructed to be used permanently for calculating the age of the Moon. Easter
is determined by the "ecclesiastical moon" defined by these adopted tables,
which is not strictly identical with the real Moon. In addition, the vernal equinox
is fixed at March 21, not by the actual motion of the Sun. Moreover, the date
of Easter is determined independently of any meridian of longitude, and is always
the same in all time zones, unlike astronomical phenomena. The date of the
full moon that occurs on or next after the vernal equinox is taken from the
ecclesiastical tables, not from astronomical ephemerides; it is the fourteenth
day of the tabular lunation, and Easter Day is the next following Sunday.

Inevitably, the date of Easter occasionally, though rarely, differs from the date
that would be obtained from astronomical ephemerides by the same rule, as for
example in 1954; but when this happens, it occurs only in part of the world,
since two dates separated by the international date line are simultaneously in
progress on the Earth. However, Easter has been determined astronomically
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in a few cases after the adoption of the Gregorian calendar, as already noted in the
list of dates of the adoption.

The date of either the Julian or the Gregorian Easter in any past or future
year may be quickly determined with a few simple tables that are readily constructed
from the basic principles of the respective calendars.

The year that was adopted as the initial year of the continuous succession of
19-year cycles on which the ecclesiastical lunar calendars were based is I B.C.

The successive years of each cycle are numbered consecutively from I to 19; the
number of a year in the cycle has been known, since the late Middle Ages, as the
Golden Number for the year. A table extending over any desired interval of time
may be immediately written down, from which the golden number of any year
may be taken out. The golden number for the year A.D. Y is one greater than
the remainder after dividing Y by 19. The golden numbers in the twentieth
century are directly given in table 14.3.

The Julian ecclesiastical lunar calendar is represented by a table (such as
table 14.4) of the adopted 19-year cycle of dates for new moon, with the golden
number as the argument.

As a means of readily identifying the dates of the Sundays in any year, the
first seven letters of the alphabet are placed in cyclic succession against the days
of each year, beginning with A on January I; the letter that stands against the
Sundays during the year is known as the Dominical Letter of that year. This
device originated from the use of the eight letters A to H in the same way by the
Roman calendar-makers to indicate market days. No letter is placed against an
intercalary day; consequently, in leap years the dominical letter retrogrades by
one place in the alphabet at the date of intercalation, and there are two letters for
the year, one during January and February, the other during the remainder of the
year. Otherwise, the dominical letter retrogrades by one place from one year
to the next.

In the Julian calendar, January I of the year 0, which is a leap year, was
Thursday; therefore, the Julian dominicalletter for January and February is D,
and for the remainder of the year C. From this starting point, a table extending
over any desired period of years may be written down at once, and from it the
dominical letter of any year may be taken out.

The dominical letter in the Julian calendar has a complete cycle of 28
years, and this is used as the basis of the short tabulation in table 14.5,
although the dominical letters for the years of the twentieth century are given
directly.

From the dominical letter (table 14.5) and the golden number (table 14.3),
the date of the Julian Easter may be found from the lunar calendar (table 14.4)
and a perpetual calendar (table 14.2); but for greater convenience, a further
table (such as table 14.6) may be constructed, in several different forms, giving
the date of Easter Day explicitly with the golden number and dominical letter
as arguments.

-- -- ----------- ------ -------------------
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Table 14.3. Golden number

Year A.D. (1900 + y) G

1900 1919 1938 1957 1976 1995
04 23 42 61 80 1999 5
09 28 47 66 85 10
14 33 52 71 90 IS

1918 1937 1956 1975 1994 19

The golden nwnber (G) for the year A.D. Y is given by:

G = R + I if Y = I9N + R
and, if Y = loon + y, by:

G for year Y = G for year (1900 + y) + R for year loon

less 19 if the swn exceeds 19.

Year R Year R Year R Year R

A.D. 0 0 500 6 1000 12 1500 18
100 5 600 II 1100 17 1600 4
200 10 700 16 1200 3 1700 9
300 IS 800 2 1300 8 1800 14
400 I 900 7 1400 13 1900 0

Table 14.4. Julian ecclesiastical lunar calendar

DATE OF THE (ECCLESIASTICAL) NEW MOON

Golden
Nwnber Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.

I 23 2I 23 2I 21 I9 19 I7 16 IS 14 I3

2 12 IO 12 IO 10 8 8 6 5 4 3 2

3 I,3 I I,3 I 29 29 27 27 2S 24 23 22 2I

4 20 I8 20 I8 18 I6 16 I4 13 I2 II IO

5 9 7 9 7 7 S 5 3 2 2, 3I 30 29

6 28 26(27) 28 26 26 24 24 22 21 20 19 I8

7 17 IS 17 IS IS I3 13 II 10 9 8 7
8 6 4 6 5 4 3 2 1,30 29 28 27 26
9 25 23 25 23 23 2I 21 I9 18 I7 16 IS

IO 14 I2 14 I2 12 IO 10 8 7 6 5 4

II 3 2 3 2 I,3 I 29 29 27 26 2S 24 23
I2 22 20 22 20 20 I8 18 I6 IS I4 13 I2

13 II 9 II 9 9 7 7 S 4 3 2 I,3I

I4 30 28(29) 30 28 28 26 26 24 23 22 21 20

IS 19 I7 19 I7 17 IS IS I3 12 II 10 9

16 8 6 8 6 6 4 4 2 I 1,30 29 28
I7 27 2S(26) 27 2S 25 23 23 2I 20 I9 18 I7
18 16 I4 16 I4 14 I2 12 IO 9 8 7 6
I9 5 3 S 4 3 2 1,30 28 27 26 25 24

In leap years use the date in parentheses.

Dates in italic type relate to the beginning of lunations of 30 days, the others to those
of 29 days.
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Table I4.5. Dominicalletter-Julian calendar

For year A.D. Yenter table (upper argument) with remainder after dividing Yby 28.

Remainder 0 I 2 3 4 5 6 7 8 9 IO II 12 13

Letter DC B A G FE D C B AG F E D CB A

Year of 04 05 06 07 08 09 10 II 12 13 14 IS 16 17
twentieth 32 33 34 35 36 37 38 39 40 41 42 43 44 45
century 60 61 62 63 64 65 66 67 68 69 70 71 72 73
(1900 +) 88 89 90 91 92 93 94 95 96 97 98 99 100

Remainder I4 15 I6 I7 18 I9 20 2I 22 23 24 25 26 27

Letter G F ED C B A GF E D C BA G F E

Year of 01 02 03
twentieth 18 19 20 21 22 23 24 25 26 27 28 29 30 31
century 46 47 48 49 50 51 52 53 54 55 56 57 58 59
(1900 +) 74 75 76 77 78 79 80 81 82 83 84 85 86 87

For years in the twentieth century enter table (lower argument) with last two figures
of the year.

In leap years two letters are given: the first is for January and February, the second
is for the remainder of the year.

Table I4.6. Julian Paschal table

DATE OF EASTER DAY IN THE JULIAN CALENDAR

Golden Dominical Letter
Number A B C D E F G

I April 9 April 10 April II April 12 April 6 April 7 April 8
2 March 26 March 27 March 28 March 29 March 30 March 31 April
3 April 16 April 17 April 18 April 19 April 20 April 14 April 15
4 April 9 April 3 April 4 April 5 April 6 April 7 April 8
5 March 26 March 27 March 28 March 29 March 23 March 24 March 25

6 April 16 April 17 April II April 12 April 13 April 14 April 15
7 April 2 April 3 April 4 April 5 April 6 March 31 April I

8 April 23 April 24 April 25 April 19 April 20 April 21 April 22
9 April 9 April 10 April II April 12 April 13 April 14 April 8

IO April 2 April 3 March 28 March 29 March 30 March 31 April

II April 16 April 17 April 18 April 19 April 20 April 21 April 22
12 April 9 April 10 April II April 5 April 6 April 7 April 8
13 March 26 March 27 March 28 March 29 March 30 March 31 March 25
14 April 16 April 17 April 18 April 19 April 13 April 14 April 15
15 April 2 April 3 April 4 April 5 April 6 April 7 April 8

16 March 26 March 27 March 28 March 22 March 23 March 24 March 25
17 April 16 April 10 April II April 12 April 13 April 14 April IS

18 April 2 April 3 April 4 April 5 March 30 March 31 April I

I9 April 23 April 24 April 18 April 19 April 20 April 21 April 22

The golden number is given in table 14.3.

The dominicalletter is given in table 14.5; the second letter must be used in leap years.

--- --------*--- -------------------- ---------
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The date of Easter Day in the Julian calendar may thus be determined from
the dominical letter and the golden number by either of the alternative pro­
cedures:

(i) From the Julian ecclesiastical lunar table (table 14.4), with the golden
number (table 14.3) as argument, find the date of the first day of the Paschal
lunation.

With this date and the dominicalletter (table 14.5), determine the date of
the fourteenth day of the lunation, and the day of the week on which it falls;
the day of the week may be found by use of a perpetual calendar (table 14.2).

The fourteenth day is the Paschal full moon, and the next following Sunday
is Easter Day.

(ii) With the golden number (table 14.3) and the dominical letter (table
14.5) as arguments, take the date of Easter Day directly from the Julian Paschal
table (table 14.6).

Example 14.1 The date of Easter-Julian calendar

The date of Easter in IS 13 is involved in the history of the discovery of Florida. In
historical literature, either through error or because of the diversity of calendar styles
that were once used, confusion exists as to the year of the discovery; but since Florida
was sighted by Ponce de Leon on Easter Sunday, March 27, the year may be identified
as 1513 in the style in which January I is the beginning of the year.

For 1513, the Julian dominicalletter (table 14.5) is B. The golden number (table 14.3)
is 13 (= 18 + 14 - 19)·

From the table of ecclesiastical new moons (table 14.4), with the golden number as
argument, the first day of the Paschal lunation is found to be March I!' The 14th day,
the date of the Paschal full moon, is therefore March 24.

From the dominical letter, the day of the week of the Paschal full moon is found,
using table 14.2, to be Thursday. The next following Sunday is March 27.

This date of March 27, Julian calendar, for the date of Easter Day in 1513 checks
with the date obtained directly from the Julian Paschal table (table 14.6) with arguments
golden number 13 and dominicalletter B.

In the Gregorian calendar, by using the Gregorian revision of the cycle of
dates for new moon, the same method may be used to find the date of Easter as
in the Julian calendar, and this method is retained in the English Prayer Book.
However, in constructing the Gregorian lunar calendar, the modifications that
were made in the Julian 19-year cycle of lunations included a cycle of forward
and backward shifts of the dates of new moon in the centurial years, for the purpose
of bringing the mean length of the lunations into closer agreement with the actual
synodic month. Consequently, in order to use the golden number in calculating
the Gregorian Easter, corresponding shifts of the cycle of golden numbers are
necessary in some of the centurial years.

In the tables issued by authority of Pope Gregory XIII, the date of Easter
is determined by means of the Epact instead of the golden number. The epact
is the age of the Moon, diminished' by one day, on January I in the Gregorian
ecclesiastical lunar calendar. However, it is not always the same as the tabular
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Table 14.7. Epact-Gregorian calendar

Century
Year of century 1582-1599 1600 1700 1800 1900

00 19 38 57 76 95 19 15 9 4 29
01 20 39 58 77 96 I 26 20 15 10
02 21 40 59 78 97 12 7 26 21
03 22 41 60 79 98 23 18 12 7 2
04 23 42 61 80 99 4 29 23 18 13
05 24 43 62 81 10 4 0 24
06 25 44 63 82 26 21 15 II 5
07 26 45 64 83 7 2 26 22 16
08 27 46 65 84 18 13 7 3 27
09 28 47 66 85 29 24 18 14 8
10 29 48 67 86 10 5 0 25 19
II 30 49 68 87 21 16 II 6 0
12 31 50 69 88 2 27 22 17 II

13 32 51 70 89 13 8 3 28 22
14 33 52 71 90 24 19 14 9 3
15 34 53 72 91 5 I 25 20 14
16 35 54 73 92 16 12 6 25*
17 36 55 74 93 27 23 17 12 6
18 37 56 75 94 8 4 28 23 17

* second epact 25

age on December 3 I of the preceding year; a discontinuity of one day, or
exceptionally of two days, is possible. The age is considered to be one day on
the dates of new moon. The possible values of the epact are ° to 29 inclusive;
when it is 0, either no value at all is given, or else the value 30 or the symbol * is
used. When epacts 24 and 25 both occur during the same 19-year cycle of golden
numbers, the epact 25 is used as if it were 26; it is then called the "second
epact 25 ", and is denoted by the symbol 25*.

From the involved rules that were formulated for constructing the lunar
calendar, tables (such as table 14.7) may be prepared from which the epact for
any year may be obtained directly.

The epact determines the dates of ecclesiastical new moon during the year.
The Gregorian lunar calendar may therefore be represented by a table, such as
table 14.8, of these dates with the epact as argument.

The Gregorian Easter is determined by the epact and the dominical letter;
but the dominicalletter in the Gregorian calendar differs from the Julian dominical
letter for the same year, because the papal decree which put the calendar reform
into effect included the explicit provision that the sequence of weekdays be
continuous from the Julian to the Gregorian calendar. The Julian dominical
letter for 1582 was G; October 4 in the Julian calendar was Thursday, and the
immediately following day was Friday, October 15, in the Gregorian calendar.
The dominicalletter for the latter part of 1582 therefore became C in the Gregorian
calendar.

In the Gregorian calendar the dominical letter has a cycle of 28 years within
each century, but the cycle cannot readily be used to derive the dominical letter
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Table 14.8. Gregorian ecclesiastical lunar calendar

DATE OF THE (ECCLESIASTICAL) NEW MOON

Epact Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
8 23 2I 23 2I 21 I9 19 I7 16 I5 14 I3 [13]

19 12 IO 12 IO 10 8 8 6 5 4 3 2 [2,3I]
0 I,3 I I,3 I 29 29 27 27 25 24 23 22 2I [21]

II 20 I8 20 I8 18 I6 16 I4 13 I2 II IO [10]

22 9 7 9 7 7 5 5 3 2 I,3 I 29 29 [29]

3 28 26(27) 28 26 26 24 24 22 21 20 19 I8 [18]
14 17 I5 17 I5 IS I3 13 II 10 9 8 7 [7]
25 6 5 6 5 4 3 2 1,30 29 28 27 26 [26]
25* 6 4 6 4 4 2 2,3I 3° 28 28 26 26 [26]

6 25 23 25 23 23 2I 21 I9 18 I7 16 I5 [IS]

17 14 I2 14 I2 12 IO 10 8 7 6 5 4 [4]
28 3 2 3 2 I,3 I 29 29 27 26 25 24 23 [23]

9 22 20 22 20 20 I8 18 I6 IS I4 13 I2 [12]

20 II 9 II 9 9 7 7 5 4 3 2 I,3I [I,3I]
I 3° 28(29) 3° 28 28 26 26 24 23 22 21 20 [20]

12 19 I7 19 I7 17 I5 IS I3 12 II 10 9 [9]
23 8 6 8 6 6 4 4 2 1,30 3° 28 28 [28]

4 27 25(26) 27 25 25 23 23 2I 20 I9 18 I7 [17]

15 16 I4 16 I4 14 I2 12 IO 9 8 7 6 [6]
26 5 4 5 4 3 2 I,3 I 29 28 27 26 25 [25]

7 24 22 24 22 22 20 20 I8 17 I6 IS I4 [14]
18 13 II 13 II II 9 9 7 6 5 4 3 [3]
29 2 2 1,30 3° 28 28 26 25 24 23 22 [22]
10 21 I9 21 I9 19 I7 17 I5 14 I3 12 II [II]

21 10 8 10 8 8 6 6 4 3 2 1,30 30 [30]

2 29 27(28) 29 27 27 25 25 23 22 2I 20 I9 [19]

13 18 I6 18 I6 16 I4 14 I2 II IO 9 8 [8]
24 7 5 7 5 5 3 3 I,3 I 29 29 27 27 [27]
5 26 24(25) 26 24 24 22 22 20 19 I8 17 I6 [16]

16 IS I3 IS I3 13 II II 9 8 7 6 5 [5]

27 4 3 4 3 2 1,30 3° 28 27 26 25 24 [24]

In leap years use the date in parentheses (for February).
Dates in italic type relate to the beginning of lunations of 30 days, the others to those

of 29 days.
Dates in brackets [for December] apply for the last years of the Metonic cycles, that is

for years in which the golden number is 19.

for any year owing to the occurrence of leap years in some centurial years. There
is an overall cycle of 400 years after which the dominical letters repeat: they are
given directly in table 14.9.

The date of Easter Day in the Gregorian calendar may be tabulated, as in
table 14.10, with the epact and dominical letter as arguments; with the epact,
determined directly for the year (table 14.7), and the Gregorian dominicalletter
(table 14.9), the date of Easter Day may thus be obtained immediately. Alternatively,
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Table 14.9. Dominical letter-Gregorian calendar

Century
Year of century 1582-1599 1600 1700 1800 1900

00 B A C E G
01 29 57 85 F G B D F
02 3° 58 86 E F A C E

°3 31 59 87 D E G B D

°4 32 60 88 C B D C F E A G C B
os 33 61 89 A B D F A
06 34 62 9° G A C E G

°7 35 63 91 F G B D F
08 36 64 92 E D F E A G C B E D

°9 37 65 93 C D F A C
10 38 66 94 B C E G B
II 39 67 95 A B D F A
12 4° 68 96 G F A G C B E D G F
13 4 1 69 97 E F A C E
14 42 7° 98 D E G B D
IS 43 71 99 C D F A C
16 44 72 C B E D G F B A
17 45 73 A C E G
18 46 74 G B D F
19 47 75 F A C E
20 48 76 E D G F B A D C
21 49 77 C E G B
22 5° 78 B D F A
23 51 79 A C E G
24 52 80 G F B A D C F E
25 53 81 E G B D
26 54 82 C D F A C
27 55 83 B C E G B
28 56 84 A G B A D C F E A G

In leap years the first letter relates to January and February, the second to the remainder
of the year.

Example 14.2. The date of Easter-Gregorian calendar
In 1960, the dominical letter (table 14.9) for the months after February is B. The

epact (table 14.7) is 2.
From the table of ecclesiastical new moons (table 14.8), with the epact as argument,

the first day of the Paschallunation is found to be March 29. The fourteenth day, the date
of the Paschal full moon, is therefore April I I.

From the dominical letter, the day of the week of the Paschal full moon is found,
using table 14.2, to be Monday. The next following Sunday is April 17.

This date of April 17 for Easter Day checks with the date obtained directly from the
Gregorian Paschal table (table 14.10) with arguments dominicalletter Band epact 2.

The date of Easter in 1954 is an instructive example. The epact is the second epact 25,
or epact 25*; the dominicalletter is C. The epact must be used as if it were 26; from the
table of ecclesiastical new moons, the first day of the Paschal lunation is April 4. The
Paschal full moon is therefore Saturday, April 17, and Easter Day is April 18, as may also
be obtained from the Gregorian Paschal table with arguments C and 25*.

The Gregorian Easter was April 18 throughout the world; but when the astronomical
full moon occurred (at 18d 05 h 48m V.T.), the date was already April 18 in the time zones
from the international date line westward to the eastern standard time zone inclusive.



428 EXPLANATORY SUPPLEMENT

Table 14.IO. Gregorian Paschal table

DATE OF EASTER DAY IN THE GREGORIAN CALENDAR

Epact Dominical Letter
A B C D E F G

0 April 16 April 17 April 18 April 19 April 20 April 14 April IS
I 16 17 18 19 13 14 IS
2 16 17 18 12 13 14 15
3 16 17 II 12 13 14 IS
4 16 10 II 12 13 14 IS

5 April 9 April 10 April II April 12 April 13 April 14 April 15
6 9 10 II 12 13 14 8
7 9 10 II 12 13 7 8
8 9 10 II 12 6 7 8
9 9 10 II 5 6 7 8

IO April 9 April 10 April 4 April 5 April 6 April 7 April 8
II 9 3 4 5 6 7 8
12 2 3 4 5 6 7 8
13 2 3 4 5 6 April 7
14 2 3 4 5 April 6 March 31

IS April 2 April 3 April 4 April 5 March 30 March 31 April
16 2 3 April 4 March 29 3° 3 1
17 2 April 3 March 28 29 30 3 1
18 April 2 March 27 28 29 3° 3 1
19 March 26 27 28 29 3° 3 1 April

20 March 26 March 27 March 28 March 29 March 30 March 31 March 25
21 26 27 28 29 3° 24 25
22 26 27 28 29 23 24 25
23 March 26 March 27 March 28 March 22 March 23 March 24 March 25
24 April 23 April 24 April 25 April 19 April 20 April 21 April 22

25 April 23 April 24 April 25 April 19 April 20 April 21 April 22
25* 23 24 18 19 20 21 22
26 23 24 18 19 20 21 22
27 23 17 18 19 20 21 22
28 16 17 18 19 20 21 22
29 April 16 April 17 April 18 April 19 April 20 April 21 April 15

In leap years the second of the two dominicalletters must be used.

the date may be determined from the Gregorian lunar calendar (table 14.8):
with the epact (table 14.7) as argument, find the first day after March 7
on which a new moon occurs; this is the first day of the Paschallunation, and the
fourteenth day is the date of the Paschal full moon. The day of the week may be
found from a perpetual calendar (table 14.2), using the dominical letter for the
year (table 14.9), and the next following Suriday is Easter Day.

A period of 5 700 000 years is required for the cyclical recurrence of-Gregorian Easter dates. In the Julian calendar, {he dates of Easter recur in cycles
of 532 years. The days of the year recur on the same days of the week every
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28 years in the Julian calendar; this period came to be known as the Solar Cycle,
and could be used for the purpose of finding the day of the week for any particular
Julian calendar date. The solar cycle, like the golden number, is the same in the
Gregorian calendar as in the Julian calendar; but the dominical letters are
different, and the days of the week recur cyclically on the same days of the year
only every 400 years in the Gregorian calendar. The solar cycle is commonly
given in almanacs, but is of little practical use. The initial year of the first cycle
was 9 B.C.; from this starting point, a table for any desired interval of time may be
constructed in the same way as for the golden number. Alternatively, it is evident
that the solar cycle for any year of the Christian era may be obtained by adding 9
to the numerical designation of the year, and dividing the sum by 28; the
remainder, if not zero, is the solar cycle, and if the remainder is zero the solar
cycle is 28.

The dates of Easter Day, according to the Gregorian calendar, are given for
the years 1961-2000 in table 14.11. The dates for more extended intervals,
and also the dates according to the Julian calendar, are given by Ginzel (Handbuch
der ... Chronologie, Leipzig, 1906-1914), and in the Annuaire published by the
Bureau des Longitudes, Paris.

Table 14.II. Date of Easter Day for the years 1<)61-:1000

1961 April 2 1971 April II 1981 April 19 1991 March 31
1962 April 22 1972 April 2 1982 April II 1992 April 19
1963 April 14 1973 April 22 1983 April 3 1993 April II

1964 March 29 1974 April 14 1984 April 22 1994 April 3
1965 April 18 1975 March 30 1985 April 7 1995 April 16

1966 April 10 1976 April 18 1986 March 30 1996 April 7
1967 March 26 1977 April 10 1987 April 19 1997 March 30
1968 April 14 1978 March 26 1988 April 3 1998 April 12
1969 April 6 1979 April 15 1989 March 26 1999 April 4
1970 March 29 1980 April 6 1990 April 15 2000 April 23

Among the days in the Christian ecclesiastical calendar that are given in A.E.,
* page I, Epiphany and Christmas Day are observed on fixed dates of the year.

The First Sunday in Advent is the fourth Sunday before Christmas, therefore
the Sunday nearest November 30. The others are on fixed days of the week,
at fixed intervals before or after Easter Day:

Days before Days after
Easter Day Easter Day

Septuagesima 63 Rogation Sunday 35
Quinquagesima 49 Ascension Day 39
Ash Wednesday 46 Whit Sunday 49
Palm Sunday 7 Trinity Sunday 56
Good Friday 2 Corpus Christi 60

Clavius, in his treatise on the Gregorian calendar, gives a table of the principal
dates in the ecclesiastical calendar for the years from A.D. 1600 to A.D. 5000.

*Page II in A.E. 1974 onwards.

- ---~--_._------------------ _.~-



A.D. (1900 + t), Julian calendar = (2653 + t) A.U.C.

At the time of the Julian reform of the Roman calendar, it had long been the
custom to reckon the calendar years from the legendary founding of Rome (A.U.C.).

The most generally accepted date for this event was the one given by Varro, who
assigned it to a time which in the Julian proleptic calendar was 753 B.C. With
this epoch:

Among the other historically important chronological eras, the Seleucid era
adopted in western Asia under the Seleucid monarchy was one of the most widely
used. It was introduced into many different countries with a variety of different
calendars, and consequently the correlation of dates in the Seleucid era is often
difficult and uncertain. The most general practice among chronologists is to
reckon this era by Julian years, from the epoch originally adopted in the region
where the era was first introduced, which was 312 B.C. October I. With this as
the epoch, the year (2212 + t), Seleucid era, begins on A.D. (1900 + t) October I,

Julian calendar; but September I is also sometimes used for the beginning of the
year.

The Byzantine era, used at Constantinople and elsewhere with a variety of
oates for the beginning of the year, was reckoned from 5509 B.C., the supposed
year of the Creation. With September I as the epoch, the year (7409 + t) of the
Byzantine era begins on A.D. (1900 + t) September I, Julian calendar.

At Alexandria, the era of Diocletian was established at the accession of the
emperor Diocletian. The epoch is A.D. 284 August 29, Julian calendar, an
Egyptian New Year; the era is reckoned by Alexandrian years. The Alexandrian
calendar was a reformed Egyptian calendar, in which a sixth epagomenal, or
intercalary, day was added at the end of every fourth year; this intercalary day
is on August 29 of the Julian calendar, in the year immediately preceding a Julian
leap year. In the Julian calendar, therefore, year (16 I 7 + t) of the Diocletian era
begins in A.D. (1900 + t), on August 30 in a year preceding a Julian leap year, and
on August 29 in other years.

When the Gregorian calendar was adopted in Japan, the traditional reckoning
of the years from the accession of the first human sovereign of Japan was retained;
according to the Japanese Chronicles, this event was in 660 B.C. The Gregorian
reckoning was begun with 1873 January I, which was counted as the first day of
year 2533 of the Japanese era; the immediately preceding 12th month of the year
2532 in the earlier calendar consisted of only two days. In this chronological
system:

A.D. (1900 + t), Gregorian calendar = (2560 + t), Japanese era

F. CHRONOLOGICAL ERAS

EXPLANATORY SUPPLEMENT43°
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The Gregorian calendarial year, with a different date for the beginning of the
year, is used in the reformed Indian calendar introduced in 1957, for the reckoning
of the native Saka era. The reckoning of the eras in the Jewish and the Moslem
calendars is by years peculiar to the individual calendar. The details are given in
the paragraphs on these calendars that follow in sub-section G.

In addition to these historical eras, others that are artificial have been intro­
duced from time to time by chronologists. It is possible that the era of Nabonassar,
which was extensively used by Ptolemy and other early astronomers for dating
observations and constructing astronomical tables, is of this type; it is reckoned
from the accession of Nabonassar to the throne of Babylon in 747 B.C., but there
is no certain evidence that it was actually used as an historical era. For chrono­
logical purposes, the practice has been to reckon this era by Egyptian years from the
epoch used by Ptolemy, which in the Julian proleptic calendar was 747 B.C.

February 26, an Egyptian New Year. The Julian calendar date of the Egyptian
New Year falls back by one day after every four years, completing a retrograde
circuit every 1460 Julian years. The first Julian leap year following the epoch
was 745 B.C., in which the intercalary day was subsequent to the beginning of the
third year of Nabonassar; beginning with 4 Nabonassar, the Julian date of the
commencement fell back to 744 B.C. February 25, where it remained for the four
years 744-741 B.C. inclusive. From this starting point, the date may easily be
traced until its return to February 26 in A.D. 713, at the beginning of 1461
Nabonassar, and then on to the present time. In the four years 1956-1959
inclusive, it fell on April 2 I of the Julian calendar; in 196o, year 2709 Nabonassar
begins with April 20, Julian calendar, or May 3, Gregorian calendar.

The chronological measure of time introduced in the sixteenth century by
Josephus Justus Scaliger, under the name of the Julian period in honour of his
father, strictly is a chronological cycle but practically is a continuous era. It is a
period of 7980 Julian years, the least common multiple of the 28-year solar cycle,
the 19-year lunar cycle, and an ancient non-astronomical cycle of 15 years known
as the cycle of the indiction. The epoch is the year when all three cycles began
together, which was 4713 B.C., and the reckoning of the period by days is the
Julian day number described in section 3B.

The cycle of the indiction is of somewhat uncertain origin, but it became
widely established during the fourth century A.D. as a conventional method of
designating successive years. It appears to have arisen in connection with tax
accounts, and several variants of the cycle were used in different regions. The
Roman indiction still given in almanacs is the year of the cycle that is in progress
on January I; the epoch is supposed to be A.D. 312 December 25. The indiction
for any- year of the Christian era may therefore be found by adding 3 to the year
and dividing the sum by 15; the remainder, if not zero, is the Roman indiction,
and if the remainder is zero the indiction is 15.

-- -- ---------- ------- -----



432 EXPLANATORY SUPPLEMENT

G. OTHER MODERN CALENDARS

Tishri I

Tishri 10
Tishri 15
Nisan 15
Sivan 6

I. The Jewish calendar

The ancient Jewish calendar year contained twelve months, each beginning
with the first visibility of the crescent Moon as determined by actual observation,
and an intercalary month inserted at irregular intervals by repeating the twelfth
month. The intercalations were determined by the public authorities, and in the
early centuries of the Christian era by the Sanhedrin. The year began with
either the spring month Nisan or the autumn month Tishri, according to the
country.

This ancient empirical calendar was replaced, probably during the fourth
century of the Christian era, by the fixed calendar which is still used. The fixed
calendar is regulated by the same 19-year cycle as introduced by the Babylonians
about 380 B.C. The calendar year depends upon the beginning of the month of
Tishri, which is determined from the time of the mean new moon in the cycle by
complicated rules designed to prevent certain solemn days from falling on incon­
venient days of the week. As a consequence of these rules, a common year may
contain 353, 354, or 355 days, and an embolismic or leap year 383, 384, or 385 days.
In each 19-year cycle are 12 common years and 7 embolismic years. Each month
has either 29 or 30 days. The complex rules governing the construction of this
calendar are explained in detail by L. A. Resnikoff (Jewish calendar calculations.
Scripta Mathematica, 9, 191- 195, 274-277, 1943).

The years are reckoned according to the era of the Creation, for which the
adopted epoch is 3761 B.C. October 7.

The principal days of the Jewish ecclesiastical calendar are on fixed days of
the months:

New Year (Rosh Hashanah)
Day of Atonement (Yom Kippur)
First Day of Tabernacles (Succoth)
First Day of Passover (Pesach)
Feast of Weeks (Shebuoth)

Sivan 6 is always 50 days after Passover.

Dates in the Jewish calendar during the period before it had become a fixed
calendar cannot be converted with certainty to dates in the Julian calendar unless
contemporary historical records are extant that contain appropriate information.

References
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2. The Moslem calendar

The Islamic calendar year consists of 12 lunar months without intercalation;
the Moslem New Year consequently makes a circuit of the seasons every 33 years.

This calendar is kept in adjustment with the Moon by a fixed cycle of 30
calendar years. The months have 30 days and 29 days alternately, except the
twelfth month, which has 29 days in 19 of the years of the cycle, and 30 days in
the other I I years. There are two forms of the cycle, which give dates differing
by one day in 348 of the 360 months of the cycle. The calendar equates 360
lunations to 10631 days; the discrepancy with the actual mean lunation amounts
to only about one day after 2500 years.

For religious purposes, the fixed calendar is not used, but instead the beginning
of the month is determined by observation of the lunar crescent, or, in localities
where this is not practicable, by some method that gives the nearest practicable
equivalent. In the religious calendar, the days each begin at sunset, on the evening
preceding the civil calendar day.

The years are reckoned from the Hegira, the flight of Mohammed. The
epoch of the era of the Hegira is A.D. 622 July I 6 Julian calendar; with this epoch,
the Gregorian dates of the New Year and of the first day of the principal religious
month Ramadftn that are given in the Ephemeris are obtained from the form of
the 30-year cycle in which the sixteenth year is a leap year.

In the fixed calendar, the first day of Ramadftn is the 237th day of the year.
However, the day on which it is actually observed depends upon local practice,
and may not coincide with the tabular date. Moreover, some Oriental chrono­
logists begin the era of the Hegira with A.D. 622 July 15.

3. Indian calendars

In India, for official civil purposes, the Gregorian calendar has been used.
The Islamic calendar is followed by the Moslems for religious purposes. In
addition, about 30 different native calendars have been in use, principally for
religious purposes. In 1952, a Calendar Reform Committee was appointed to
study this calendar confusion, and to recommend a calendar for uniform use in
the country.

In accordance with the recommendations of the Committee, a reformed
Indian calendar was put in effect by the Government of India on 1957 March 22,
an Indian New Year Day. In this calendar, the year begins with I Chaitra on
March 22 of a Gregorian common year, March 21 of a Gregorian leap year. The
years are reckoned according to the native historical Saka era, and

A.D. 1957 March 22 = I Chaitra, 1879 Saka.

References

The Indian Ephemeris and Nautical Almanac. Calcutta, Government of India Press.
Government of India. Report of the Calendar Reform Committee. Council of Scientific

and Industrial Research, New Delhi, 1955.
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January February March April May June
Day Day Frac- Day Frac- Day Frac- Day Frac- Day Frac- Day Frac-
of of tion of of tion of of tion of of tion of of tion of of tion of

Month Year Year Year Year Year Year Year Year Year Year Year Year
0·0 - I -0'0027 30 0'0821 58 0'1588 89 0'2437 119 0'3258 ISO 0'4107
1·0 0 ·0000 31 .0849 59 . 161 5 90 '2464 120 '3285 151 '4134
2·0 + I + '0027 32 '0876 60 ' 1643 9 1 '249 1 121 '33 13 152 '4162
3'0 2 '0055 33 .0904 61 ' 1670 92 '25 19 122 '3340 153 '4189
4'0 3 '0082 34 '093 1 62 ' 1698 93 '2546 123 '3368 154 '4216

5'0 4 0·0110 35 0'095 8 63 0'1725 94 0'2574 124 0'3395 ISS 0'4244
6'0 5 .01 37 36 .0986 64 '175 2 95 '2601 125 '3422 156 '427 1
7'0 6 '0164 37 ' 101 3 65 '1780 96 '2628 126 '3450 157 '4299
8'0 7 '01 92 38 ' 1040 66 ' 1807 97 ' 2656 127 '3477 158 '4326
9'0 8 '0219 39 '1068 67 ' 1834 98 '2683 128 '3505 159 '4353

10·0 9 0'0246 40 0' 1095 68 0'1862 99 0'271 I 129 0'3532 160 0'4381
11·0 10 ·0274 4 1 ' 1123 69 .1889 100 '2738 130 '3559 161 '4408
12·0 II '0301 42 '115 0 70 '1917 101 '2765 13 1 '35 87 162 '4435
13'0 12 '0329 43 '1177 7 1 '1944 102 '2793 132 '36 14 163 '4463
14'0 13 .0356 44 ' 1205 72 '1971 103 '2820 133 '364 1 164 '4490

15'0 14 0.03 83 45 0' 1232 73 o· 1999 104 0' 2847 134 0'3669 165 0'45 18
16,0 IS '0411 46 ' 1259 74 '2026 105 '2875 135 '3 696 166 '4545
17'0 16 .0438 47 ' 1287 75 ' 2053 106 '2902 136 '3724 167 '4572
18,0 17 '0465 48 '13 14 76 '2081 107 '2930 137 '375 1 168 '4600
19'0 18 '0493 49 '1342 77 '2108 108 '2957 138 '3778 169 '4627

20'0 19 0·0520 SO 0'1369 78 0' 21 36 109 0'2984 139 0'3806 170 0'4654
21·0 20 '0548 51 '1396 79 ' 2163 110 '301 2 140 '3833 171 '4682
22·0 21 '0575 52 '1424 80 '2 190 III '3039 141 '3860 172 '4709
23'0 22 '0602 53 '145 1 81 '2218 112 '3066 142 '3888 173 '4737
24'0 23 .0630 54 '1478 82 '2245 113 '3094 143 '3915 174 '4764

25'0 24 0.0657 55 °'1506 83 0'2272 114 °'3 121 144 °'3943 175 0'479 1
26'0 25 '0684 56 '1533 84 '2300 115 '3 149 145 '397° 176 '481 9
27·0 26 '°7 12 57 . 1561 85 '2327 116 '3 176 146 '3997 177 '4846
28,0 27 '0739 58 o· 1588 86 '2355 117 '3203 147 '4°25 178 '4873
29'0 28 '0767 87 '2382 118 '323 1 148 '4052 179 '4901

30 '0 29 0·0794 88 0'2409 119 °'3258 149 °'4°79 180 0'4928
31·0 30 0'0821 89 0'2437 150 °'41°7

LEAP YEARS: For dates after February 28 in leap years the values for the following date
must be used.

The Day of the Year and the Fraction of the Year (based on the tropical year of 365'2422 days)
are measured from January 1·0.

14.13-BEGINNING OF THE BESSELIAN YEAR, 1900-1949
Begins Fraction Begins Fraction Begins Fraction Begins Fraction Begins Fraction

Year to Year to Year to Year to Year to
19 Jan. Jan. 1'0 19 Jan. Jan. "0 19 Jan. Jan. "0 19 Jan. Jan. "0 19 Jan. Jan. "0

00 0'313 +'001 9 10 0'735 + '0007 20* 1'157 -·0004 30 1'079 - ·0002 40* 1'501 -'001 4
01 0'556 + '0012 II 0'978 + ·0001 21 0'400 + '0016 31 I' 322 - '0009 41: 0'744 + ·0007
02 0'798 + '0006 1:2* 1·220 - '0006 22 0·642 + ·0010 32* 1'564 -'0015 42 0'986 '0000
03 1'040 -'0001 1:3 0'462 + '001 5 23 0·884 + '0003 33 0·806 + '0005 43 1'228 -·0006
04* 1'282 -'0008 1:4 0'704 + '0008 24* 1'126 -'0003 34 1'048 -'0001 44* 1'470 -'001 3

05 0'524 + '001 3 15 0'946 + ·0001 25 0·868 + ·0004 35 1'290 -'0008 45 "'712 + '0008
06 0'767 + '0006 16* 1'189 -'0005 26 1'111 -'0003 36* 1'533 -'001 5 46 0'955 + '0001
07 1·009 '0000 1:7 0'43 I + '0016 27 1'353 - ·0010 37 0'775 + '0006 47 1'197 -'0005
08* 1'251 -'0007 18 0·673 + '0009 28* 1'595 -'0016 38 1'017 '0000 48* 1'439 -'0012
09 0'493 + '001 4 19 0'915 +'0002 29 0·837 + '0004 39 I '~59 - '0007 49 0·681 + '0009

* Leap years-see footnote to table 14.12 for dates after February 28.

Jan. 0'0 denotes Greenwich noon on January 0 for years up to and including 1924, but the
preceding midnight (Oh D.T.) from 1925 onwards.
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July August Septetnber October Novetnber Decetnber
Day Day Frac- Day Frac- Day Frac- . Day Frac- Day Frac- Day Frac-
of of tion of of tion of of tion of of tion of of tion of of tion of

Month Year Year Year Year Year Year Year Year Year Year Year Year
0·0 180 °'4928 211 °'5777 242 0·6626 272 0'7447 3°3 0.8296 333 0'9 117
1·0 181 '495 6 212 '5804 243 ·6653 273 '7474 304 .8323 334 '9145
2'0 182 '4983 21 3 '5832 244 ·6680 274 '75°2 3°5 .835 1 335 '9 172
3'0 183 '5°10 21 4 '5859 245 ·67°8 275 '75 29 306 .8378 336 '9199
4'0 184 '5°38 215 '5887 246 ·6735 276 '7557 3°7 ·84°5 337 '9227

5'0 185 °'5°65 216 °'5914 247 0.6763 277 °'7584 308 0·8433 338 °'9254
6,0 186 -5093 2 17 -5941 248 ·679° 278 '7611 3°9 -846o 339 '9282
7'0 187 -5 12O 218 -5969 249 -681 7 279 -7639 310 .8488 34° -9309
8,0 188 -5 147 2 19 '5996 25° -6845 280 '7666 311 .85 15 341 -9336
9'0 189 -5 175 220 -6023 25 1 -6872 281 -7694 312 -8542 342 -9364

10·0 19° °'5202 221 0- 6051 252 0- 6900 282 °'7721 313 0·857° 343 0-9391
II·O 191 '5229 222 -6078 253 -6927 283 -7748 314 -8597 344 '9418
12·0 192 -5257 223 ·6106 254 -6954 284 '7776 315 ·8624 345 '9446
13'0 193 '5 284 224 .61 33 255 .6982 285 '78°3 316 .8652 346 '9473
14'0 194 '53 12 225 ·6160 25 6 '70°9 286 '783° 317 .8679 347 '95°1

15'0 195 0-5339 226 0·6188 257 °'7°36 287 °'7858 318 0·87°7 348 °'9528
16'0 196 '5366 227 .621 5 258 '7064 288 -7885 319 ·8734 349 '9555
17'0 197 '5394 228 ·6242 259 -709 1 289 '79 13 320 -8761 35° -95 83
18,0 198 '5421 229 ·627° 260 '7 119 29° -794° 321 .8789 35 1 '961 0
19'0 199 '5448 23° .6297 261 -7 146 29 1 '7967 322 -8816 352 '9637

20·0 200 0'5476 23 1 0·6325 262 °'7173 292 °'7995 323 0·8843 353 °'9665
21'0 201 '55°3 232 .635 2 263 -7201 293 -8022 324 .887 1 354 '9692
22·0 202 '553 1 233 .6379 264 '7228 294 .8049 325 .8898 355 '9720
23'0 203 '5558 234 -6407 265 '7255 295 ·8°77 326 .8926 356 '9747
24'0 2°4 '5585 235 ·6434 266 '7283 296 ·81°4 327 -8953 357 -9774

25'0 2°5 °'561 3 23 6 0.6461 267 °'73 10 297 0. 81 32 328 0·8980 358 °'9802
26,0 206 -564° 237 -6489 268 '7338 298 .8 159 329 '9°08 359 '9829
27'0 2°7 '5667 238 .65 16 269 '7365 299 ·8186 33° '9035 360 '9856
28,0 208 '5695 239 ·6544 27° '7392 3°0 .8214 33 1 '9°62 361 '9884
29.0 2°9 '5722 24° .657 1 271 '7420 3°1 -8241 332 '9090 362 '9911

30 '0 210 °'575° 241 0- 6598 272 °'7447 3°2 0·8268 333 °'9 117 363 °'9939
31.0 211 °'5777 242 0·6626 3°3 0.8296 364 °'9966

LEAP YEARS: For dates after February 28 in leap years the values for the following date
must be used.

The Day of the Year and the Fraction of the Year (based on the tropical year of 365'2422 days)
are measured from January 1'0.

14.13-BEGINNING OF THE BESSELIAN YEAR, 1950-1999
Begins Fraction Begins Fraction Begins Fraction Begins Fraction Begins Fraction

Year to Year to Year to Year to Year to
19 Jan. Jan_ '·0 19 Jan. Jan. 1'0 19 Jan. Jan. '·0 19 Jan. Jan. 1'0 19 Jan. Jan. 1·0

50 0'923 + '0002 60* 1'345 - '0009 70 °'767 + ·0006 80* 1'189 -·0005 90 0·61 I + -0011
51 1'166 - '0005 61 °'588 +'0011 71 1·010 '0000 81 0'432 + -0016 91 0·854 + -0004
52* 1'408 - -001 I 62 0·830 + -0005 72* 1'252 --0007 82 0·674 + ·0009 92* 1.°96 - -0003
53 0.650 + -0010 63 1'072 - ·0002 73 0-494 + ' 001 4 83 °'916 + '0002 93 0'338 + '0018
54 0.892 + ·0003 64* 1'314 -'0009 74 °'736 + '0007 84* 1'158 -'0004 94 °'580 +·0011

55 1'134 -'0004 65 0'556 + '0012 75 °'978 + -0001 85 0'400 + -0016 95 0·822 + -0005
56* 1-377 - ·0010 66 0'799 + '0006 76* 1·221 -'0006 86 0·643 + '0010 96* 1.065 - ·0002
57 0.619 + -0010 67 1'°41 -'0001 77 0'463 + '001 5 87 0·885 + ·0003 97 0'307 + .0019
58 0-861 + '0004 68* 1'283 - '0008 78 0'705 + -0008 88* 1'127 - '0003 98 0-549 + -0012
59 1'1°3 - '0003 69 0'525 +'°°13 79 0'947 + '0001 89 0'369 + '0017 99 °'791 + '0006

The fraction of the Besselian year to any given following date is obtained by adding the Fraction
to Jan. 1'0, from table 14.13, for the year concerned to the Fraction of the Year, from table 14.12,
for the date concerned.
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H. THE CALENDAR AND OTHER TABLES

The opportunity is taken of collecting together several tables associated with
the calendar.

Table 14.12 gives, for a common or non-leap year, the day of the year and the
fraction· of the year for each day of each month; both are measured from January 1d

OOh (January Id·O) and the fraction ofthe year is based on a tropical year of 365'2422
days. For dates after February 28 in leap years the entries for the next following
date must be used. The day of the year provides a convenient means of calculating
the interval in days between two calendar dates when the corresponding Julian
day numbers are not known. The fraction of the year can be used in conjunction
with table 14-13 to give the fraction of the Besselian year for any year in the
twentieth century. (Warning. In some publications, the days of the year are num­
bered starting from 1 on January I.)

Table 14.13, on the same pages as table 14.12, provides for each year in the
twentieth century the beginning of the Besselian (fictitious) solar year (see section
2B) and the fraction of the tropical year to January 1d OOh (January 1d·O) from which
the fraction of the year in table 14.12 is measured. Thus the fraction of the tropical
year, measured from the beginning of the Besselian year, may be obtained by the
addition of the fractions from the two tables. Leap years are indicated by an
asterisk; in these years, for dates after February 28, the following date must be
used in table 14.12. The date-system used corresponds to that actually used in the
ephemerides under various names: up to 1924 December 31 the system now
unambiguously referred to as Greenwich mean astronomical time is used and OOh

represents noon; from 1925 January 1 onwards the system of universal time is
used and OOh represents the preceding midnight (see section 3D). For years before
1925 the fraction of the year in tables 14.12 and 14.13 is measured from (or to)
noon on January I; for years 1925 and onwards it is measured from (or to) the
midnight on January 1 (i.e., 12h earlier).

The three tables 14.14,14.15, and 14.16 together provide means of ascertaining
the Julian day number and the Greenwich sidereal day number for any calendar
date from 2000 B.C. to A.D. 2000. The Julian day number is described and defined
in sections 3B.1 and 14F, and the Greenwich sidereal day number in section 3B.2.
Table 14.14 gives values for January 0 in each centuriaI year from 2000 B.C. to
A.D. 2000, together with the differences between the values in the following century

The tabulated value of the" Difference from 20th Century" is to be subtracted from the
value obtained from table 14.15, or table 14.16, for the corresponding date in the twentieth
century. (For example, A.D. 1234 May 5'5 U.T. is J.D. 217 19°1'0, i.e., J.D. for 1934
May 5'5 U.T. less 25 5662; May 5'5 U.T., 1234 B.C. is J.D. 1270829'0, i.e., J.D. for 1967
May 5'5 U.T.less II6 8787.) In the Julian calendar (and in 1600 of the Gregorian calendar)
the" Difference" must be increased by I for dates before March I in the tabular centurial
years.

The date of double transit of the first point of Aries varies by one or two days during
the century.



14.14-JULIAN AND GREENWICH SIDEREAL DAY NUMBERS 437

Astro- Julian Day Difference Greenwich Beginning Difference Date of
nomical Number at from 20th Sidereal of G.S.D. from 20th Double

Year Jan. 0'5 D.T. Century Day Number (D.T.) Century Transit

Julian calendar
-2000 99°557 1424462 99327° Jan. °'771

142 8362
Oct. 9

I goo 1027082
1387937

102 9895 '769 8
1800 1063607 1066520 '767

139 1737 8
1700 1100132 135 1412

11°3 145 '765
1355 II2

7
1600 113 6657

13 1 4887
II3 9770 '763

13 1 8487 6
127 8362 128 1862

-1500 1173 182
124 1837

117 6395 Jan. °'761 Oct. 6
1400 120 97°7 121 3020 '759

1245237
5120 5312 1208612

1300 124 6232 II68787 1249645 '757 117 1987 4
1200 128 2757 113 2262

1286270 '755 1135362 3
1100 131 9282 13 2 2895 '753 3109 5737 109 8737

-1000 135 5807 135 9520 Jan. 0'751 1062112
Oct. 2

105 9212
139 61 45900 139 2332 1022687 '749 102 5487

I

800 142 8857 986162 143 2770 '747 98 8862
Sept. 30

700 146 5382
949637

146 9395 '745 95 2237
29

600 150 1907 150 6020 '742 29
91 3II2 91 561 2

- 500 153 8432
87 6587

154 2645 Jan. 0'740
878987

Sept. 28

400 1574957 84 0062 157 9270 '738 84 2362
27

300 161 1482
80 3537

161 5895 '736
80 5737

26
200 1648007

76701 2
165 2520 '734 76 9 11 2

26
- 100 168 453 2

73 0487
168 9145 '732

73 2487
25

A.D. 0 172 1057
69 3962 172 577° Jan. 0'730

695862
Sept. 24

100 175 7582
657437

176 2395 '728
65 9237

23
200 1794107 62 °912 1799°20 '726 62 2612 23
300 183 0632

58 4387
183 5645 '724

585987
22

400 186 7 157 547862
1872270 '722

549362
21

500 190 3682
51 1337

190 8895 Jan. °'719
51 2737

Sept. 20
600 194°2°7 47481 2

1945520 '717 47 6112
19

700 197 6732 198 2145 '715 19
800 201 3257

43 8287 201 8770 '713
439487 18

goo 2049782
40 1762

205 5395 '711
40 2862

17
36 5237 366237

1000 2086307
32 8712

2°92020 Jan. 0'709
32 961 2

Sept. 16
1100 212 2832

29 2187
212 8645 '7°7 292987

16
1200 215 9357 25 5662 216 5270 '7°5 25 6362

15
1300 219 5882 220 1895 '7°3 14
14°0 223 2407

21 9137
223 8520 '7°°

21 9737 1318 2612 183 11 2
1500 2268932

14 6087
227 5145 Jan. 0.698

14 6487
Sept. 13

1600 23°5457 10 9562 231 177° ·696 10 9862
12

1700 234 1982 234 8395 ·694 II
1800 237 8507 73°37 238 5020 ·692 73 237 10
1900 241 5°32

365 12
242 1645 Jan. 0·690 3 6612

Sept. 10

Gregorian calendar
1500 226 8923

14 6097
2275 136 Jan. °'723

14 6497
Sept. 22

1600 23°5447 231 1760 '724 109872
22

1700 234 1972
10 9572

2348385 '721 21
73048 732481800 237 8496
3 6524

238 5009 '722
3 6624

21
1900 241 5020 242 1633 Jan. °'723 Sept. 22

See footnote opposite.

-- -- ----------- ----- ----------- --



438 14.15-JULIAN DAY NUMBER, 1900-1949
OF DAY COMMENCING AT GREENWICH NOON ON:

Year Jan. 0 Feb. 0 Mar. 0 Apr. 0 Mayo June 0 July 0 Aug. 0 Sept. 0 Oct. 0 Nov. 0 Dec. 0

ICJOO 241 5°20 5°5 1 5°79 5110 514° 5171 5201 5232 5263 5293 5324 5354
ICJOI 5385 5416 5444 5475 55°5 5536 5566 5597 5628 5658 5689 5719
19°2 575° 5781 5809 5840 5870 5901 593 1 5962 5993 6023 6054 6084
19°3 6115 6146 61 74 6205 6235 6266 6296 6327 6358 6388 6419 6449
19°4 6480 65 11 6540 6571 6601 6632 6662 6693 6724 6754 6785 6815

ICJ05 241 6846 6877 6905 6936 6966 6997 7027 7058 7089 7119 7150 7180
1906 7211 7242 7270 73°1 733 1 7362 7392 7423 7454 7484 75 15 7545
19°7 7576 7607 7635 7666 7696 7727 7757 7788 78 19 7849 7880 7910
ICJ08 7941 7972 8001 8032 8062 8093 8123 8154 8185 8215 8246 8276
19°9 8307 8338 8366 8397 8427 8458 8488 85 19 8550 8580 8611 8641

1910 241 8672 8703 873 1 8762 8792 8823 8853 8884 8915 8945 8976 9006
1911 9°37 9068 9096 9127 9157 9188 9218 9249 9280 9310 9341 9371
1912 94°2 9433 9462 9493 9523 9554 9584 9615 9646 9676 97°7 9737
1913 241 9768 9799 9827 9858 9888 9919 9949 9980 *0011 *0041 *0072 *0102
1914 242 0133 0164 01 92 0223 0253 0284 °3 14 °345 0376 0406 °437 0467

1915 242 0498 °529 °557 0588 0618 0649 0679 °710 °741 °77 1 0802 0832
1916 0863 0894 °923 °954 0984 1015 1°45 1076 11°7 1137 1168 1198
1917 1229 1260 1288 13 19 1349 1380 1410 1441 1472 15°2 1$33 1563
19J8 1594 1625 1653 1684 1714 1745 1775 1806 1837 1867 1898 1928
1919 1959 199° 2018 2049 2079 211O 214° 2171 2202 2232 2263 2293

1920 242 2324 2355 2384 2415 2445 2476 2506 2537 2568 2598 2629 2659
1921 2690 2721 2749 2780 2810 2841 287 1 29°2 2933 2963 2994 3°24
1922 3°55 3086 3114 3145 3175 3206 3236 3267 3298 3328 3359 3389
1923 3420 345 1 3479 3510 3540 3571 3601 3632 3663 3693 3724 3754
1924 3785 3816 3845 3876 3906 3937 3967 3998 4°29 4°59 4°9° 4120

1925 242 4151 4182 4210 4241 4271 43°2 4332 4363 4394 4424 4455 4485
1926 45 16 4547 4575 4606 4636 4667 4697 4728 4759 4789 4820 4850
1927 4881 4912 494° 497 1 5°01 5032 5062 5°93 5124 5154 5185 5215
1928 5246 5277 5306 5337 5367 5398 5428 5459 549° 55 20 555 1 5581
1929 5612 5643 5671 57°2 5732 5763 5793 5824 5855 5885 5916 5946

1930 242 5977 6008 6036 6067 6097 6128 61 58 6189 6220 6250 6281 63 11
1931 6342 6373 6401 6432 6462 6493 6523 6554 6585 661 5 6646 6676
1932 6707 6738 6767 6798 6828 6859 6889 6920 695 1 6981 7012 7042
1933 7°73 71°4 7132 7163 7193 7224 7254 7285 7316 7346 7377 74°7
1934 7438 7469 7497 7528 7558 7589 761 9 7650 7681 77 11 7742 7772

1935 242 7803 7834 7862 7893 7923 7954 7984 801 5 8046 8076 8107 81 37
1936 8168 8199 8228 8259 8289 8320 8350 8381 8412 8442 8473 8503
1937 8534 8565 8593 8624 8654 8685 8715 8746 8777 8807 8838 8868
1938 8899 8930 8958 8989 9°19 905° 9080 9111 9142 9172 9203 9233
1939 9264 9295 9323 9354 9384 9415 9445 9476 95°7 9537 9568 9598

194° 242 9629 9660 9689 9720 975° 9781 9811 9842 9873 9903 9934 9964
1941 242 9995 *0026 *0054 *0085 *011 5 *0146 *0176 *0207 *0238 *0268 *0299 *0329
1942 243 0360 °391 °419 °45° 0480 °5 11 °541 °572 0603 0633 0664 0694
1943 °725 0756 0784 0815 0845 0876 0906 °937 0968 0998 1029 1°59
1944 109° 1121 115° 1181 1211 1242 1272 13°3 1334 1364 1395 1425

1945 243 1456 1487 15 15 1546 1576 1607 1637 1668 1699 1729 1760 1790
:1946 1821 1852 1880 1911 1941 1972 2002 2°33 2064 2094 2125 2155
1947 2186 2217 2245 2276 2306 2337 2367 2398 2429 2459 2490 2520
1948 255 1 2582 2611 2642 2672 27°3 2733 2764 2795 2825 2856 2886
:1949 243 2917 2948 2976 3007 3°37 3068 3098 3129 3160 319° 3221 3251



14.15-JULIAN DAY NUMBER, 1950-1999 439
OF DAY COMMENCING AT GREENWICH NOON ON:

ec.o Year Jan. 0 Feb. 0 Mar. 0 Apr. 0 Mayo June 0 July 0 Aug. 0 Sept. 0 Oct. 0 Nov. 0 Dec. 0

i354 1950 243 3282 33 13 3341 3372 34°2 3433 3463 3494 3525 3555 3586 361 6
i719 1951 3647 3678 3706 3737 3767 3798 3828 3859 3890 3920 3951 39811084 1952 4°12 4°43 4°72 41°3 4133 4164 4194 4225 4256 4286 43 17 4347
1449 1953 4378 44°9 4437 4468 4498 4529 4559 459° 4621 4651 4682 4712181 5 1954 4743 4774 4802 4833 4863 4894 4924 4955 4986 5016 5°47 5°77
180 1955 243 5108 5139 5107 5198 5228 5259 5289 5320 535 1 5381 5412 5442
545 1956 5473 55°4 5533 5564 5594 5625 5655 5686 5717 5747 5778 5808
910 1957 5839 5870 5898 5929 5959 5990 6020 6051 6082 6II2 6143 6173'2.76 1958 6204 6235 6263 6294 6324 6355 6385 6416 6447 6477 6508 6538
641 1959 6569 6600 6628 6659 6689 6720 6750 6781 6812 6842 6873 6903
006 lC)60 243 6934 6965 6994 7°25 7°55 7086 7II6 7147 7178 7208 7239 7269
371 1961 73°0 733 1 7359 7390 7420 745 1 7481 75 12 7543 7573 7604 7634
737 1962 7665 7696 7724 7755 7785 7816 7846 7877 7908 7938 7969 7999[02 1l)63 8030 8061 8089 8120 8150 8181 82II 8242 8273 8303 8334 8364
~67 1964 8395 8426 8455 8486 85 16 8547 8577 8608 8639 8669 8700 8730
132 1965 243 8761 8792 8820 885 1 8881 8912 8942 8973 9°°4 9°34 9065 9°9598 1l)66 9126 9157 9185 9216 9246 9277 93°7 9338 9369 9399 943° 9460
'63 1l)67 9491 9522 955° 9581 96II 9642 9672 97°3 9734 9764 9795 9825128 1l)68 243 9856 9887 9916 9947 9977 *0008 *0038 *0069 *0100 *0130 *0161 *01 91
,93 1969 244 0222 0253 0281 °3 12 °342 °373 °4°3 °434 0465 °495 0526 0556
59 1970 244 0587 0618 0646 0677 °7°7 0738 0768 °799 0830 0860 0891 °921
24 1971 0952 0983 lOll 1°42 1°72 II03 II33 II 64 II95 1225 1256 1286
89 1972 1317 1348 1377 1408 1438 1469 1499 153° 1561 1591 1622 1652
54 1973 1683 1714 1742 1773 1803 1834 1864 1895 1926 1956 1987 201720 1974 2048 2°79 21°7 2138 2168 2199 2229 2260 2291 2321 2352 2382
B5 1975 244 2413 2444 2472 25°3 2533 2564 2594 2625 2656 2686 2717 2747
5° 1976 2778 2809 2838 2869 2899 293° 2960 2991 3°22 3°52 3083 3II 3
IS 1977 3144 3175 3203 3234 3264 3295 3325 3356 3387 3417 3448 3478
~I 1978 3509 354° 3568 3599 3629 3660 3690 3721 3752 3782 381 3 3843
~6 1979 3874 39°5 3933 3964 3994 4°25 4°55 4086 4II 7 4147 4178 4208
:1 1l)80 244 42 39 427° 4299 433° 4360 4391 4421 4452 4483 45 13 4544 4574r6 1981 4605 4636 4664 4695 4725 4756 4786 4817 4848 4878 49°9 4939.2 1982 497° 5001 5°29 5060 5°9° 5121 5151 5182 521 3 5243 5274 53°417 1l)83 5335 5366 5394 5425 5455 5486 55 16 5547 5578 5608 5639 5669
'2 1984 57°° 573 1 5760 5791 5821 5852 5882 5913 5944 5974 6005 6035
7 1l)85 244 6066 6097 6125 6156 6186 6217 6247 6278 6309 6339 6370 6400
3 1986 643 1 6462 6490 6521 655 1 6582 6612 6643 6674 6704 6735 67658 1l)87 6796 6827 6855 6886 6916 6947 6977 7008 7°39 7069 7100 713°
3 1988 7161 7192 7221 7252 7282 73 13 7343 7374 74°5 7435 7466 7496
8 1989 7527 7558 7586 761 7 7647 7678 7708 7739 7770 7800 7831 7861
~ 1990 244 7892 7923 795 1 7982 8012 8043 8073 8104 8135 8165 81 96 8226
I) 1991 8257 8288 83 16 8347 8377 8408 8438 8469 8500 8530 '8561 8591
~ 1992 8622 8653 8682 8713 8743 8774 8804 8835 8866 8896 8927 8957
~ 1993 8988 9°19 9°47 9078 9108 9139 9169 9200 9231 9261 9292 9322

1994 9353 9384 9412 9443 9473 95°4 9534 9565 9596 9626 9657 9687

1995 244 9718 9749 9777 9808 9838 9869 9899 993° 9961 9991 *0022 *0052
1996 245 0083 OII4 0143 0174 02°4 0235 0265 0296 °327 0357 0388 0418
1997 0449 0480 0508 °539 0569 0600 0630 0661 0692 °722 °753 07~3

1998 0814 0845 0873 °9°4 °934 0965 0995 1026 1°57 1087 lII8 II48
1999 245 II79 1210 1238 1269 1299 133° 1360 1391 1422 1452 1483 1513



44° 14.16-GREENWICH SIDEREAL DAY NUMBER, 1900-1949

OF DAY COMMENCING AT UNIVERSAL TIME:

Year Jan. Feb. Mar. Apr. May June July Aug. Sept·t Oct. Nov. Dec.
0·73 0·64 0·57 0.48 0·4° 0·32 0·23 0·15 0·°7 0·98 0·9° 0·81

1900 242 1633 1664 1692 1723 1753 1784 1814 1845 1876 19°7 1938 1968
1901 1999 2°3° 2058 2089 2Il9 215° 2180 22Il 2242 2273 23°4 2334
1902 2365 2396 2424 2455 2485 25 16 2546 2577 2608 2639 2670 27°°
1903 273 1 2762 2790 2821 2851 2882 2912 2943 2974 3°°5 3036 3066
1904 3°97 3128 3157 3188 3218 3249 3279 3310 3341 3372 34°3 3433

1905 2423464 3495 3523 3554 3584 361 5 3645 3676 37°7 3738 3769 3799
1906 3830 3861 3889 3920 395° 3981 40Il 4°42 4°73 41°4 4135 4165
19°7 4196 4227 4255 4286 43 16 4347 4377 4408 4439 447° 45°1 453 1
1908 4562 4593 4622 4653 4683 4714 4744 4775 4806 4837 4868 4898
1909 4929 4960 4988 5°19 5°49 5080 5IlO 5141 5172 52°3 5234 5264

1910 2425295 5326 5354 5385 5415 5446 5476 55°7 5538 5569 5600 5630
19II 5661 5692 5720 575 1 5781 581 2 5842 5873 59°4 5935 5966 5996
1912 6027 6058 6087 6Il8 6148 61 79 6209 6240 627 1 6302 6333 6363
1913 6394 6425 6453 6484 65 14 6545 6575 6606 6637 6668 6699 6729
1914 6760 679 1 68 19 6850 6880 69II 6941 6972 7°°3 7°34 7065 7°95

1915 242 7126 7157 7185 7216 7246 7277 7307 7338 7369 74°° 743 1 7461
1916 7492 7523 7552 7 83 761 3 7644 7674 77°5 7736 7767 7798 7828
1917 7859 7890 7918 7949 7979 8010 8040 8071 8102 8133 8164 81 94
1918 8225 8256 8284 83 15 8345 8376 8406 8437 8468 8499 8530 8560
1919 8591 8622 8650 8681 87Il 8742 8772 8803 8834 8865 8896 8926

1920 242 8957 8988 9°17 9048 9078 91°9 9139 917° 9201 9232 9263 9293
1921 9324 9355 9383 9414 9444 9475 95°5 9536 9567 9598 9629 9659
1922 242 9690 9721 9749 9780 9810 9841 987 1 99°2 9933 9964 9995 *0025
1923 243 0056 0087 OIl5 0146 0176 0207 0237 0268 0299 °33° 0361 °391
1924 °422 °453 0482 °5 13 °543 °574 0604 0635 0666 0697 0728 0758

1925 243 0789 0820 0848 0879 °9°9 °94° °97° 1001 1°32 1063 1°94 II 24
1926 Il55 Il86 1214 1245 1275 1306 1336 1367 1398 1429 1460 149°
1927 1521 1552 1580 16Il 1641 1672 17°2 1733 1764 1795 1826 1856
1928 1887 1918 1947 1978 2008 2°39 2069 2100 21 31 2162 2193 2223
1929 2254 2285 23 13 2344 2374 24°5 2435 2466 2497 2528 2559 25 89

1930 243 2620 2651 2679 2710 274° 2771 2801 2832 2863 2894 2925 2955
1931 2986 3°17 3°45 3076 3106 3137 3167 3198 3229 3260 3291 3321
1932 3352 3383 3412 3443 3473 35°4 3534 3565 3596 3627 3658 3688
1933 3719 375° 3778 3809 3839 3870 39°0 393 1 3962 3993 4°24 4°54
1934 4085 4Il6 4144 4175 42°5 4236 4266 4297 4328 4359 439° 4420

1935 243445 1 4482 4510 4541 4571 4602 4632 4663 4694 4725 4756 4786
1936 4817 4848 4877 4908 4938 4969 4999 5°3° 5061 5°92 5123 5153
1937 5184 5215 5243 5274 53°4 5335 5365 5396 5427 5458 5489 55 19
1938 555° 55 81 5609 5640 5670 5701 573 1 5762 5793 5824 5855 5885
1939 5916 5947 5975 6006 6036 6067 6097 6128 61 59 6190 6221 6251

1940 243 6282 63 13 6342 6373 6403 6434 6464 6495 6526 6557 6588 6618
1941 6649 6680 6708 6739 6769 6800 6830 6861 6892 6923 6954 6984
1942 7°15 7046 7°74 7105 7135 7166 7196 7227 7258 7289 7320 735°
1943 7381 7412 7440 747 1 75°1 7532 7562 7593 7624 7655 7686 77 16
1944 7747 7778 7807 7838 7868 7899 7929 7960 7991 8022 8053 8083

1945 243 8Il4 8145 81 73 8204 8234 8265 8295 8326 8357 8388 8419 8449
1946 8480 851 I 8539 8570 8600 8631 8661 8692 8723 8754 8785 881 5
1947 8846 8877 8905 8936 8966 8997 9°27 9058 9089 9120 9151 9181
1948 9212 9243 9272 93°3 9333 9364 9394 9425 9456 9487 95 18 9548
1949 243 9579 9610 9638 9669 9699 9730 9760 979 1 9822 9853 9884 9914
t There are two transits of the first point of Aries on one mean solar day near September 22.



14.16-GREENWICH SIDEREAL DAY NUMBER, 1950-1999 441

OF DAY COMMENCING AT UNIVERSAL TIME:

Year Jan. Feb. Mar. Apr. May June July Aug. Sept.t Oct. Nov. Dec.
°'73 0·64 °'57 °'48 0'4° °'32 0'23 0'15 °'°7 0'98 0'9° 0·81

1950 2439945 9976 *0004 *0035 *0065 *0096 *0126 *0157 *0188 *0219 *0250 *0280
1951 244 °3 11 °342 °37° °4°1 °43 1 0462 °492 °523 °554 0585 0616 0646
1952. 0677 0708 °737 0768 0798 0829 0859 0890 °921 °952 0983 101 3
1953 1°44 1°75 11°3 1134 1164 1195 1225 1256 1287 13 18 1349 1379
1954- 1410 1441 1469 15°0 153° 1561 1591 1622 1653 1684 1715 1745

1955 244 1776 1807 1835 1866 1896 1927 1957 1988 2019 2°5° 2081 2111
1956 2142 2173 2202 2233 2263 2294 2324 2355 2386 2417 2448 2478
1957 25°9 254° 2568 2599 2629 2660 2690 2721 2752 2783 2814 2844
1958 2875 2906 2934 2965 2995 3026 3056 3087 3118 3149 3180 3210
1959 3241 3272 33°0 333 1 3361 3392 3422 3453 3484 35 15 3546 3576

1960 2443607 3638 3667 3698 3728 3759 3789 3820 3851 3882 3913 3943
1961 3974 4°°5 4°33 4064 4°94 4125 4155 4186 421 7 4248 4279 4309
1962 434° 4371 4399 443° 4460 4491 4521 4552 4583 461 4 4645 4675
1963 4706 4737 4765 4796 4826 4857 4887 4918 4949 4980 S0l I 5°41
1964- 5°72 51°3 5132 5163 ~193 5224 5254 5285 53 16 5347 5378 5408

1965 244 5439 5470 5498 5529 5559 5590 5620 5651 5682 5713 5744 5774
1966 5805 5836 5864 5895 5925 5956 5986 601 7 6048 6079 6110 6140
1967 61 71 6202 6230 6261 6291 6322 6352 6383 6414 6445 6476 6506
1968 6537 6568 6597 6628 6658 6689 6719 6750 6781 6812 6843 6873
1969 6904 6935 6963 6994 7024 7°55 7085 7116 7147 7178 7209 7239

1970 244727° 73°1 7329 7360 739° 7421 745 1 7482 75 13 7544 7575 7605
1971 7636 7667 7695 7726 7756 7787 781 7 7848 7879 7910 7941 797 1
1972 8002 8033 8062 8093 8123 81 54 8184 8215 8246 8277 8308 8338
1973 8369 8400 8428 8459 8489 8520 8550 8581 8612 8643 8674 8704
1974- 8735 8766 8794 8825 8855 8886 8916 8947 8978 9009 9040 9070

1975 244 9101 9132 9160 9191 9221 9252 9282 93 13 9344 9375 9406 9436
1976 9467 9498 9527 9558 9588 9619 9649 9680 9711 9742 9773 9803
1977 2449834 9865 9893 9924 9954 9985 *0015 *0046 *0077 *0108 *0139 *0169
1978 245 0200 0231 0259 0290 0320 °35 1 0381 °412 °443 0474 °5°5 °535
1979 0566 °597 0625 0656 0686 °717 0747 0778 0809 0840 0871 °9°1
11)80 245°932 0963 0992 1023 1°53 1084 1114 1145 1176 1207 1238 1268
11)81 1299 133° 1358 1389 1419 145° 1480 1511 1542 1573 1604 i634
11)82 1665 1696 1724 1755 1785 1816 1846 1877 1908 1939 1970 2000
1983 2°31 2062 2°9° 2121 2151 2182 2212 2243 2274 23°5 2336 2366
1984- 2397 2428 2457 2488 25 18 2549 2579 2610 2641 2672 27°3 2733

11)85 245 2764 2795 2823 2854 2884 2915 2945 2976 3°°7 3038 3069 3°99
11)86 313° 3161 3189 3220 325° 3281 33 11 3342 3373 34°4 3435 3465
11)87 3496 3527 3555 3586 3616 3647 3677 3708 3739 3770 3801 3831
11)88 3862 3893 3922 3953 3983 4°14 4°44 4°75 4106 4137 4168 4198
1989 4229 4260 4288 43 19 4349 4380 4410 4441 4472 45°3 4534 4564

1990 2454595 4626 4654 4685 4715 4746 4776 4807 4838 4869 49°0 4930

1991 4961 4992 5°20 5°5 1 5081 511 2 5142 5173 5204 5235 5266 5296
1992 5327 5358 5387 5418 5448 5479 55°9 554° 5571 5602 5633 5663
1993 5694 5725 5753 5784 5814 5845 5875 5906 5937 5968 5999 6029
1994- 6060 6091 .61 19 6150 6180 6211 6241 6272 6303 6334 6365 6395

1995 245 6426 6457 6485 65 16 6546 6577 6607 6638 6669 6700 673 1 6761
1996 6792 6823 6852 6883 6913 6944 6974 7°°5 7036 7067 7098 7128
1997 7159 719° 7218 7249 7279 7310 734° 737 1 74°2 7433 7464 7494
1998 7525 7556 75 84 76 15 7645 7676 7706 7737 7768 7799 7830 7860
1999 245 7891 7922 795° 7981 8011 8042 8072 8103 81 34 8165 81 96 8226
t There are two transits of the first point of Aries on one mean solar day near September 22.



442 EXPLANATORY SUPPLEMENT

and those in the twentieth century. Tables 14.. 15 and 14.16 give, respectively,
the Julian day number and the Greenwich sidereal day number for the beginning
of each month of the twentieth century. The Julian day number and the Green­
wich sidereal day number for any calendar date may therefore be obtained by the
addition of three numbers: the difference for the centurial year in table 14.14;
the value for the corresponding month and year in the twentieth century in table
14.15 or 14.16; and the day of the month, allowing for double transit for the
Greenwich sidereal day number. The date of double transit (on which there are
two transits of the vernal equinox in one mean solar day) may differ by one or two
days from the tabulated value during the course of the century.

The main purpose of the Julian day number and the Greenwich sidereal day
number is to facilitate enumeration of days and of revolutions of the equinox. The
Julian date and the Greenwich sidereal date are extensions of the same concepts;
the corresponding decimal parts of these dates are best taken from the ephemerides

* of universal and sidereal times in A.E., pages 10-17, or calculated in a similar way.
To an approximation adequate to give the corresponding day numbers:

Greenwich sidereal date = +0.671 + 1'00273 79093 x Julian date
Julian date = -0·669 + 0'9972695664 x Greenwich sidereal date

The calendar explicitly refers to universal time and, in particular, the relation­
ship with Greenwich sidereal date above is only true for Julian dates expressed in
universal time. Dates and times in ephemeris time, expressed by the Julian
ephemeris date, can only be obtained by applying AT to the date and time in
universal time, expressed as the Julian date.
*Pages 12 to 19 in A.E. 1972 onwards.



-
IS. THE DISTRIBUTION OF TIME*

A. RADIO TIME SIGNALS

The determination of time and the maintenance of a national standard of time
is an essential duty of most national observatories. Astronomical observations
made with a conventional transit iristrument, an astrolabe, or a photographic zenith
tube, are used to assess the performance of standard clocks and thus to establish
a uniform time system (U.T.2.). Time so determined is then made available by
means of radio time signals controlled, either directly or indirectly, by the obser­
vatory concerned and is used, not only for the general convenience of the
community, but also in scientific and other applications in which the highest
precision is demanded.

An adequate standard of accuracy for domestic and general requirements is
usually most conveniently achieved by the radiation at selected times of a brief
simple time signal on a national or regional broadcasting network. For example,
the signal used in the United Kingdom, which is controlled by the Royal Greenwich
Observatory and radiated in the programmes of the British Broadcasting Corpor­
ation, consists of " six pips" marking the last six seconds of each quarter-hour.

For purposes in which higher accuracy is required, most countries employ
special transmissions from radio telephone or telegraph stations. Various standard
forms of time signal are employed. In general they consist of a five-minute series
of timing dots or dashes conforming to a standard sequence. The minutes are
usually identified either by lengthening the dot which occurs at the exact minute,
or by omitting some of the dots which precede the minute. For the convenience
of users who require the maximum accuracy attainable without elaborate measuring
equipment, some authorities transmit "rhythmic" signals which comprise a
five-minute series of dots spaced at 61 to the minute, thus forming a time vernier:
accurate comparisons betwee'l a rhythmic time signal and a clock or chronometer
beating seconds or half-seconds may be made by observing the times of the
coincidences. Full descriptions of the various forms of signal employed may be
found in the national publications (e.g., for the U.K. in The Admiralty List of
Radio Signals, volume V, published by the Hydrographic Department, Admiralty,
London) or may be obtained from the observatories concerned. Details are also
given in the List of Special Service Stations, published by the International
Telecommunication Union.

443
*There have been many chanees in the distribution of time since 1960. The principal changes
are noted on pages vi, 95 and 453.
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In recent years there has been an increase in the number of radio stations
providing standard frequency transmissions with superposed seconds pulses which
are adjusted within specified limits of U.T.z., and may thus be used as time signals.
At the International Telecommunication and Radio Conference, Atlantic City,
1947, these transmissions were allocated the frequencies zt, 5, 10, 15, zo, and 25
Mc/s. The seconds pulses are usually of the form of five cycles of a 1,000 cis tone
locked to the standard radio frequency. This form of time signal is well suited
for the accurate measurement of reception times. For technical reasons some
standard frequency transmissions have also been established at low frequencies.
Details of these services are given in the Lists that are referred to above. Coordin­
ation on a national basis between the conventional time signals and the signals
superposed on standard frequency transmissions is clearly desirable and coordina­
tion between the services in different countries possesses many advantages. Such
coordination has been arranged in the U.S.A. and the U.K., the services being
based on astronomical observations made in the two countries.

Particularly on the higher frequencies the accuracy that can be obtained is
severely restricted by unknown variations in the travel time of the radio signal,
and the received signal may contain in varying quantity signals that have traversed
different transmission paths. The seconds dots are thus liable to distortion, which
may displace the reference point for measurement, and even a well-defined dot may
have arrived by an unusual path containing an abnormal number of " hops".
Reception conditions may vary widely between different reception sites and, at
anyone site, there may be a considerable diurnal variation. The best result is
generally achieved by making measures on transmissions at different times through­
out the day and taking suitably weighted means. Anomalies are particularly
troublesome when sunrise or sunset occurs on the transmission path, and these
times should be avoided if possible. The most serious discordances may occur
when the reception site is within the skip area of the transmitter as the predomin­
ating signal may be received by back-scatter from a distant point, either on the
ground or in the ionosphere.

Time signals radiated by transmitters operating on very low frequencies are
much less subject to variations in travel time, but the signal dots themselves rise
slowly to their maximum amplitude and it is difficult to measure with sufficient
accuracy the time of commencement of the dots. To minimise this difficulty the
reference point for measurement is often taken as the point at which the dot rises
to a specified fraction of its full amplitude. A memorandum on the techniques of
the reception and measurement of radio time signals was prepared for the Inter­
national Geophysical Year by a sub-committee under the chairmanship of B.
Decaux. (" Instructions pour l'emploi de la radioelectricite dans l'operation
mc,l1diale des longitudes et des latitudes". Annals of the I.G. Y., 4, part III,
155-194, 1957·)

The major observatories receive and record radio time signals from other
countries in addition to their own and publish at regular intervals tabulated results
showing the times of reception of the various signals in terms of the adopted U.T.2
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at the observatory. Results are also communicated to the Bureau International
de I'Heure at the Paris Observatory, and comprehensive tables are published in
Bulletin Horaire giving the reception of time signals and the adopted U.T.2. of
each participating observatory in terms of a time system (I'Heure Definitive)
based on a mean of the results received. At the end of each year the results
are analysed to determine corrections to adopted mean longitudes, errors of radio
reception and measurement, and criteria for the assessment of the long- and short­
term stability of the time systems of the various observatories.

Basis of radio time signals. The time system upon which the control of radio
time signals is based and to which the times of reception are referred in the published
corrections is required to be as uniform as possible. The performance of the
standard docks employed in a time service cannot be satisfactorily assessed or
extrapolated on the basis of uncorrected astronomical observations. The irregular­
ities in observed time may, for this purpose, be conveniently classified as arising
from (i) the seasonal fluctuation in the rotation of the Earth, (ii) changes in the
longitude of the observing station due to the polar motion, and (iii) irregular
changes in the rotation of the Earth. The seasonal fluctuation is not strictly
repetitive, but the effect on time observations may be largely compensated by
assuming for the current year an amplitude and phase based on that observed during
the preceding period. The instantaneous coordinates of the pole may be provision­
ally estimated on the basis of worldwide observations of latitude variation, and the
corresponding longitude corrections may be calculated. Over short periods the
motion may be regarded as periodic and extrapolated corrections used. The
irregular variations are, by their very nature, unpredictable, and their effects cannot
be satisfactorily estimated on the basis of current astronomical observations alone.

In all work involving intercomparisons between observatories it is convenient
to apply to each observing station corrections derived from the same basis of
extrapolation. For this reason the Bureau International de I'Heure was instructed
by the International Astronomical Union (Dublin, 1955) to adopt and publish in
advance each year corrections for the seasonal fluctuation, and all observatories
were requested to employ these values in the derivation of Universal Time (U:T.).
Corrections for the years 1956-1960 have been calculated from the formula:

+08.022 sin 2TTt - 08'017 cos 2TTt - 08'007 sin 4TTt + 08'006 cos 4TTt

where t is the fraction of the year and equal to zero on January I. The Bureau
International de l'Heure was also instructed to compute and distribute extrapolated
longitude corrections based on provisional coordinates of the instantaneous pole.
In order to ensure that the best possible data are available with the least possible
delay, some seventeen observatories transmit latitude observations weekly to the
Central Bureau of the International Latitude Service, and also to the Bureau
International de l'Heure where provisional coordinates are computed (Rapid
Latitude Service) and communicated to the participating observatories.

Thus at all the cooperating observatories the various systems of U.T. are
derived in a strictly comparable manner. The uncorrected observations define
U.T.o.; U.T.I is obtained from U.T.o. by applying the provisional corrections
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of the Bureau International de I'Heure for the effect of polar motion; U.T.2 is ob­
tained by applying in addition the predicted corrections for the seasonal fluctuation
also adopted by the Bureau International de I'Heure. There is one minor source of
divergence in that different astronomical observing instruments necessarily employ
slightly differing adopted star places in the reduction of the observations. The
International Astronomical Union (Zurich, 1948) recommended that all obser­
vatories should employ for time observations star places based on the FK3 system.
This was the best catalogue then available, and a measure of uniformity was assured.
Experience soon showed, however, that the periodic errors in right ascension were
significant. Observations made with transit instruments of conventional design
may thus give rise to spurious components in the observed seasonal fluctuation.
This effect will be greatly reduced with the introduction of the FK4 system. But
many observatories now employ instruments such as the P.Z.T. and Danjon
astrolabe (see sub-section B), and, in order to achieve a standard of uniformity
consonant with modern needs, the star places used are determined in relation to
each other by means of observations extending over a period of a year or more.
Thus the star places are mutually consistent, and almost entirely free from periodic
errors in right ascension. The FK3 system has thus been abandoned, except that
the zero of the system is tied to the average of the FK3 stars in the corresponding
declination belt.

It will be clear from the manner in which U.T.2 is determined that it represents
a provisional delineation of a time system free from periodic and quasi-periodic
variation, but still subject to an irregular wandering arising from irregular changes
in the rotation of the Earth. A" final" U.T.2 would employ definitive corrections
for the seasonal fluctuation and for the effect of the polar motion, but would still
show persistent deviations from a uniform time system such as ephemeris time.
The general long-term trends of the divergences of U.T.2 from E.T. are indicated
by comparisons between the lunar ephemeris (in which the argument is E.T.) and
observations of the position of the Moon at specified times (U.T.2) as made with
the transit circle or Moon camera, or derived from occultations. The short-term
divergences may be studied by comparing the rate of U.T.2 with the frequency of
an atomic or molecular standard. It was possible to show in this way a steady
decrease in the rate of rotation of the Earth, lengthening the day by 0'5 milli­
seconds per year, throughout 1956 and 1957. This divergence is of considerable
practical interest, since it is customary for the frequency of a standard frequency
transmission to be maintained within specified limits of a constant value as indicated
by an atomic or molecular standard, and to keep the seconds pulses in phase with
this frequency except for occasional step adjustments to retain the seconds pulses
within specified limits of U.T.2.

For operational work the current practice is to define the second of the atomic
time scale as 9 192631 770 cycles of the caesium resonance. This value has been
chosen in order to bring the second of the atomic time scale into agreement with
the recent determination of the second of ephemeris time which is the internation­
ally adopted unit of time. Thus the nominal carrier frequencies of the transmission

------------
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may be expressed as cycles per second of the atomic time scale. The frequency
of the master oscillator, and thus the actual carrier frequencies of the transmissions,
is offset by an amount S from its nominal value, so that the rate defined by the
timing pulses is in general agreement with U.T.z. If the nominal frequency is
Fo, the actual frequency in terms of the atomic time scale may be expressed as:

F = Fo (I + S)
The interval between successive time pulses is thus (I - S) seconds of the adopted
time scale; in other words the time interval corresponds to 9 19z 63 I 770 (I - S)
cycles of the caesium resonance. For each year the adopted value of S is based
upon comparisons between ..U.T.z and atomic time during the preceding twelve
months. The transmissions operate as closely as possible to F with the adopted
value of S. Owing to unpredictable variations of U.T.z the value of S based on
the preceding year may not fit for the current year, thus giving rise to a divergence
between the radio time signals and U.T.z. In order to retain satisfactory agree­
ment between the radio time signals and U.T.z, a step adjustment of the phase of
the time signals, usually by an integral number of milliseconds, is made as and
when necessary and at pre-announced times.

It has been agreed to coordinate the time and frequency transmissions of the
United Kingdom and the United States of America. The master oscillators
controlling the transmissions are calibrated in terms of the caesium standards in
the two countries, and are offset by an amount S as described above. The value of
S adopted for 1960 and 1961 was -150 x 10-1°. The astronomical observations
of the Royal Greenwich Observatory and of the U.S. Naval Observatory are used
both in the determination of the value of S and in deciding when a 50-millisecond
step correction is necessary; corrections are made simultaneously on all trans­
miSSions.

B. INSTRUMENTS AND EQUIPMENT

The transit circle is designed for the determination of fundamental, not
relative, positions; that is to say, the observations refer the positions of the st.ars,
Sun, Moon, and planets to the fundamental reference frame defined by the celestial
equator and the equinox. The position of the celestial pole may be determined by
observations of circumpolar stars at their transits above and below the pole, and thus
the plane of the celestial equator may be established. By observations of the Sun it
is possible to fix the position of the ecliptic among the stars and thence to determine
the equinox. Transit circle observations thus form the basis for the preparation of
fundamental star catalogues and the ephemerides of the Sun, Moon, and planets.

The same instrument may be used for time determination by comparing the
clock times of transit of selected stars with the tabulated times of transit, due
allowance being made for errors of collimation, level, and azimuth. It is more
convenient, however, to use a smaller instrument which may be reversed in its
bearings at each observation, thus eliminating such errors as collimation, and those
arising from inequality of the pivots or lack of uniformity of the micrometer screw.
Although the small instrument is inherently less stable, the drift in level and azimuth

-- --------- --------------
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may be regarded as uniform throughout the short period required for the obser­
vation of the necessary 10 or 12 stars; the level is usually determined with a
striding or hanging level mounted on the pivots, and the azimuth error is derived
from observations of stars both north and south of the zenith. Because of the
convenience and simplicity of this type of instrument, various modifications have
been tried in order to achieve the highest possible accuracy. Considerable attention
has been paid to the accuracy of the figure of the pivots, optical methods have
been devised for the determination of the level, and methods have been developed
for the photo-electric registration of the star transits. The external probable
errors for one night for a time determination have been estimated as ±18 msecs for
a small transit instrument with an impersonal micrometer, and ±12 msecs when
photo-electric registration is employed. (Trans. LA. U., 10, 488, 1960. Comm.
31, Moscow, 1958.).

The photographic zenith tube (P.Z.T.) is now used in some nine observatories
for the determination of latitude variation and time. An important feature of this
type of instrument is that the standard direction is not dependent on the accurate
location of the instrument in its bearings, but is automatically defined by reflection
of the stellar beam by the horizontal surface of a mercury pool at the base of the
instrument. The observations are unaffected by any errors that are likely to occur
in practice in the level and location of the reversible part of the instrument.
Restriction of observations to stars that transit near the zenith minimises the
errors due to atmospheric refraction, but limits the observing catalogue to some
100 stars whose positions may not be well known initially. Observations with the
P.Z.T. provide a means of determining the relative positions of the stars, but these
must be related by transit circle observations to the reference stars of the funda­
mental catalogue. Owing to precession, there will be a slow drift of stars from the
visible belt, which must be compensated by the inclusion of different stars. The
estimated external probable error of a typical P.Z.T. is ±4 msecs.

A similar accuracy is achieved with the Danjon astrolabe, which is a compact
and easily transportable instrument for the determination of latitude variation and
time. Stars are observed, not at meridian transit, but as they cross the almucantar
at a zenith distance of 300. The stellar beam is divided into two, one being viewed
directly and the other by reflection from the horizontal surface of a mercury pool.
In the field of view, two images of the star are seen; as the star approaches the
almucantar, the two images converge, becoming coincident at the exact instant of
transit. A Wollaston prism is placed in the convergent beam, and may be moved
along the optical axis by means of a screw in such a way as to keep the two images
coincident and to render the emergent beam parallel, thus providing an efficient
impersonal micrometer. The optical path in the instrument is "folded" to
secure compactness and convenience in use.

In most of the major time-keeping observatories pendulum clocks have now
been entirely superseded by quartz clocks. The essential controlling element of a
quartz clock is a bar, ring, or plate of quartz which is maintained in mechanical
vibration in an electronic oscillator circuit. The frequency of oscillation is usually
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100 kc/s or in the vicinity of 5 Mc/s; intercomparisons between standards are
usually made at the oscillator frequency. Electronic dividers, or a combination
of electronic and electro-mechanical devices, may be used to derive from the
oscillator an accurately phase-locked electrical output of one pulse per second. In
a nominal 100 kc/s standard, the frequency of oscillation will not be exactly 100 kc/s
and, if the division ratio is exactly 100000 / I, the clock provided by the output
seconds pulses will exhibit a corresponding gaining or losing rate. It is moreover a
general characteristic of quartz-crystal oscillators that there is a slight drift in the
frequency, more rapid in the early stages but settling to an increase of the order of a
few parts in 108 per year. The frequency error and drift (which correspond in
time to rate and a uniform change of rate respectively) must be determined over a
period. The adopted values are then used to compute an ephemeris of clock
error, and subsequent astronomical observations serve to indicate departures from
the ephemeris performance.

Various forms of atomic and molecular clocks are now coming into use.
Instead of being controlled by the mechanical vibrations of a quartz crystal, the
frequency of the electronic oscillator is compared or brought into average coin­
cidence with the frequency characteristic of the absorption or emission when the
atoms or molecules change between two selected energy levels. The first molecular
standards were based on the absorption of a radio-frequency signal in passing
through a wave-guide filled with ammonia gas at low pressure; maximum absorp­
tion occurs when the frequency corresponds to that of the J = 3, K = 4 line of the
inversion spectrum of ammonia (23 870 Mc/s). Higher accuracies have since been
achieved with an ammonia oscillator, of the" maser" type. (Microwave Amplific­
ation by Stimulated Emission of Radiation). A beam of ammonia molecules
traverses a magnetic field which disperses the molecules in the low-energy absorbing
state, and directs the high-energy molecules into a cavity resonator tuned to the
appropriate frequency. The energy emitted by the molecules is reinforced and
strong oscillations are maintained. An alternative form of standard, one of which
has been running in England since June 1955, uses a hyperfine splitting line of
caesium (9 192 M/cs). A beam of caesium atoms traverses a radio-frequency field:
the low-energy state atoms absorb energy and undergo transition to the high-energy
state. The change of energy level is accompanied by a reversal of the magnetic
moment of the atom, and, by magnetic focusing, atoms in one state may be dis­
persed and atoms in the other state directed to a detector. A commercial standard
operating on this principle has since been made in the U.S.A. Present develop­
ments include the use of a longer beam tube and the investigation of alternative
resonances.

The stability of an oscillator employing a quartz crystal is of the order of
I part in 1010 from day to day (0'0 I msec/day) and of a few parts in 1010 from month
to month. A caesium standard may be used to define frequency in terms of a
spectral line with an accuracy of ± 2 parts in 1010 and the maser ammonia standard
to ± I in 109, though the reproducibility of a carefully defined maser is considerably
better.
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C. LIST OF RADIO TIME SIGNALS

This short, illustrative list of radio time signals contains information on time
signals that are widely used and are controlled by observatories communicating
their results to the Bureau International de I'Heure. Since transmission times and
frequencies are liable to change current schedules should be consulted to obtain
up-to-date information.

The International Astronomical Union (Dublin, 1955) has recommended the
cessation of ONOGO and rhythmic type signals; details of such signals have therefore
been excluded from this list.

Country Authority U.T.
Call
Sign

Frequency
kc/s Notes

Argentine
b m

Naval Observatory, 01 00 LOL
Buenos Aires 13 00

2100

Military Geograph- 10 05 LQC
ical Institute, 22 05
Buenos Aires

8 IIO

17 180

17550

7428

6421
8634

17 1 94

3 330 Continuous transmis-
7335 sions.

14 670

9368

44
6428 '5
8478

12907'5

8721

FYP

BPV

CHU

PPE

VHP
VIX

PPR

II 00

13 00

IS 00

0800
0900
0930
13 00

2000
2100
2230

:>900 FYA3
ZI 00

0030
1330
2 0 30

01 30
1430
21 30

0800
14 00

2000

Zi-Ka-Wei
Observatory,
Shanghai

Observatory of
Paris

Dominion Observa­
tory, Ottawa

National Observa­
tory, Rio de Janeiro

Mount Strornlo
Observatory,
Canberra

France

China

Canada

Brazil

Australia

:>800 TQC9
woo

10 775

:>930 TQG 5
13 00

2230

13 873



15C. THE DISTRIBUTION OF TIME 45 1

Country Authority U.T.
Call
Sign

Frequency
kc/s Notes

Germany German Hydro-
(Federal German graphic Institute,
Republic) Hamburg

h m
0000 DAM

1200 DAM

1100 DMR20
DMR27

0810 DCF77
II 10

4 265
6475'5
8638 '5

8638'5
16980

3970
6075

77-5

0000
0400
0800

Germany
(German Demo­
cratic Republic)

Japan

Switzerland

Union of Soviet
Socialist
Republics

Geodetic Institute,
Potsdam

Astronomical 12 30
Observatory, Tokyo

Cantonal Observa- 08 IS

tory, Neuchatel

Central Scientific
Investigation
Institute, Moscow

1200
1600
2000

DIZ

JAS22

HBB

ROR

4525

16 170

25

Continuous transmis­
sIons.

0800 RWM
to

2200

United Kingdom

United States
of America

Astronomical
Observatory,
Tashkent

Royal Greenwich
Observatory,
Herstmonceux

United States
Naval Observatory,
Washington

1800

1000
1800

1000
1800

0000
0200
0600
0800
1200
1400
1800
2000

RPT

GBR
GBZ

GIC27
GIC29
GIC33
GIC37
GPB30
GKU5
NSS

NBA

5 000
10000
IS 000
20000

5 890

II 580

7397'5
9350

13555
17 685
10 332 ' 5
12790

121'95
5 870

942 5
13 575
17 0 50

23 650

18

Signals are transmit­
ted on one or more
of these frequencies
at intervals of 2h •

G BZ used as a reserve
transmitter for GBR.

Signals are transmitted
on two of these fre­
quencies at the times
quoted.

162 kc/s replaces
121'95 on transmis­
sions at 18h oom and
20h oom on Tuesday,
Wednesday, and Thur­
sday. Transmissions
are on all frequencies
at the times quoted.
Continuous transmis­
sions except between
13 h oom and 21 h oom
U.T. on Wednesday.

-------------- - --------------- -~-., --- -
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D. LIST OF STANDARD FREQUENCY TRANSMISSIONS

Allocated Frequencies

This list contains information relating to standard frequency transmissions
with a wide coverage and an extended period of continuous transmission. All
transmissions are interrupted periodically at specified times for identification
purposes.

Country
Argentine

Czechoslovakia

France

Authority
Naval Observatory,
Buenos Aires

Astronomical
Institute of
the Czechoslovak
Academy of Sciences,
Prague

Observatory of Paris

Call
Sign
LOL

OMA

FFH

Frequency
Mc/s

2'S
S

10

IS

20

2S

2'S

2'S
S

10

Transmission Times
(U.T.)

From
II h oom 12h oom

14h OOm ISh OOm

I7h OOm 18h OOm

2011 OOm 21 11 Oom

23 11 Oom 24h Oom

Continuous

9 hours per day between
07h 30m - 17h Oom

Republic Observatory, ZUO
Johannesburg

Cantonal Observatory, HBN
Neuchatel

U.S.S.R. Committee of RWM
Measures and
Standards

Continuous

Continuous

Continuous

- 24h Oom

- 04 11 Oom

1611 Oom

- 12h Oom

1711 com

Olh Oom

13h Oom

oSI1 Oom

2'S
S

10

IS

S

2'S
S

S
10

10

IS

JJYAstronomical
Observatory, Tokyo

Union of Soviet
Socialist
Republics

South Africa

Switzerland

Japan

19 hours per day between
0711 Oom - 02h 10m

Transmission Times
(U.T.)

24 hours per day

77'SDCF77

Additional Frequencies

Call Frequency
Sign kc/s

OMA So

Authority
Astronomical Institute
of the Czechoslovak
Academy of Sciences,
Prague

Germany Physikalisch - Tech­
(Federal German nische Bundesanstalt,
Republic) Braunschweig

Country
Czechoslovakia
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E. LIST OF COORDINATED TIME AND FREQUENCY
TRANSMISSIONS

453

This list contains information on the coordinated time and frequency trans­
missions of the United Kingdom and the United States of America. The
co-operating authorities are: in the United Kingdom, the Royal Greenwich
Observatory, the National Physical Laboratory, and the General Post Office; and
in the United States, the U.S. Naval Observatory, the Naval Research Laboratory,
and the National Bureau of Standards.

Country Call Sign Frequency
kc/s

United Kingdom MSF 2 500
5 000

10 000
60

GBR 16

Transmission Times
(U.T.)

Continuous

Continuous (traffic) except for
daily maintenance between
I3 h oom and ISh oom.
Time signals at IOh oom and
I8h OOh only.

United States
of America

WWV

WWVH

NBA

2 500
5 000

10 000
IS 000
20 000
25 000

5 000
10 000
IS 000

18

Continuous

Continuous

Continuous except between
I3 h oom and 2I h oom on
Wednesday.

Additional Note (1973)
Atomic time standards using the caesium resonance are now used to establish an

internationally coordinated system of time scales that are uniform to a very high precision.
Astronomical observations are used to determine the variations in the rate of rotation and the
motion of the pole of rotation with respect to the principal axis of inertia, and hence to
establish the UTI time-scale. All major radio signals are referred to the scale of coordinated
universal time (UTC) which since 1972 January I differs from the scale of international
atomic time (IAT) by an exact number of seconds, and from UTI by up to about 0·'7.

A short current list of radio time signals is given in The Star Almanac for Land Sur­
veyors. Comprehensive lists of the standard times in use in most countries are published in
The Nautical Almanac and The Air Almanac.
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A. COMPUTING TECHNIQUES

In this sub-section attention is drawn to a few computing techniques of
special relevance to astronomical calculations. For a more general treatment
reference should be made to text-books on computing methods and numerical
analysis. A short note on elementary computing principles is also included in
Interpolation and Allied Tables; this covers the sources of mistakes, the nature of
checks, and the nature and effect of the inevitable errors due to rounding-off and other
causes; these topics, although of fundamental importance, are not discussed here.

An important principle of computation is that the maximum precision of a
calculation is determined absolutely by that of the data entering into it. This
precision can be reduced by poor computing, for example by a poor choice of
formula or by the failure to retain an adequate number of figures in the intermediate
stages, but it can never be increased. There is generally no simple relation between
the errors (absolute or relative) of the final result and of the data, though it can
readily be seen numerically by following through the calculation step by step,
and often geometrically. It is misleading to quote a result to more figures than is
justified by the data on which it is based, and it is erroneous to do so if an inadequate
number of figures have been retained in the intermediate stages.

It is also wasteful of effort to retain more figures than necessary, if thereby a
significant increase in work is involved: in some operations, however, especially
in those done on a desk calculating machine without intermediate resetting, extra
figures involve very little additional work; but in other operations an extra figure
may require a more elaborate formula and more elaborate trigonometric tables,
resulting in much more additional work. A suitable number of figures is that
which offers the greatest convenience consistent with the building-up error, due to
accumulation of rounding-offs, not exceeding the error of the data; this must be
judged in relation to each calculation. It often happens that the desired precision
does not justify the factor of 10 which an extra figure will give; such a ten-fold
increase of precision may be avoided by: using the extra figure but deliberately
allowing end-figure errors to rise above the normal (for example, by ignoring
second differences in interpolation up to a limit of, say, 12 or 16 instead of 4);
applying a simple factor (such as 2, 3 or 5) to all quantities concerned; modifying
the formulae by, for example, normalising coordinates. All three of these devices
are used in the calculations for the Ephemeris.

454
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Mathematical formulae, if correct, are always adequate to give a desired
precision in the result; but they may be inefficient, inconvenient, and misleading.
The obvious example is the inefficiency of determining a small angle from its cosine:
for a stated precision of angular measurement the number of decimals in the cosine
is inversely proportional to the angle; and for a fixed number of decimals in the
cosine (the usual and convenient case) the precision obtainable decreases as the
angle decreases. Consider, for example, the formula for the third side of a
spherical triangle, given two sides and the included angle:

cos a = cos b cos c + sin b sin c cos A == z
in which a is to be determined from measured values of b, c, and A. When a is
small it can be found to the same precision as the data only by the apparently
incorrect procedure of retaining more decimals in each trigonometric function on
the right-hand side (z) of the equation than the data appear to justify. This is
legitimate b~cause both b - c and A must be small so that their cosines are known
to extra figures. There are circumstances, however, in which the inconvenience
of such a procedure is outweighed by other factors.

The apparent failure of a mathematical formula should not be confused with
real geomet!ical limitations of precision. In the spherical triangle ABC:

sin a sin B = sin b sin A == x
sin a cos B = cos b sin c - sin b cos c cos A == Y

both x and yare small (y by the cancellation of two nearly equal components)
if a is small. I t is not legitimate here to use extra figures in the trigonometric
functions in x and y, and B can only be found with a precision proportional to
cosec a; this precision is, however, clearly adequate to fix the point C (from BA).
Similar arguments hold for the angle C. Neither B nor C can individually be
determined as precisely as b, c, or A; but the sum B + C can be so determined,
.as may be seen from geometrical considerations and from the c:quation:

1 (B C) _ cos t (b + c) 1 A
cot "2 + - 1 (b ) tan "2cos "2 - c

There are important problems in astronomy that require the sum (or difference)
of two angles to be known more precisely than is possible with either (for example,
the elements of a planetary orbit), and great care is required in handling them;
the recommended method is to determine one of the angles and thenceforward to
treat it as exact in finding the other, which must not be found independently.

Although there may be some uncertainty of precision in determining an angle,
there should be no uncertainty of quadrant. This can always be achieved by
adequate choice of formulae. For example, the following formulae for the
solution of a spherical triangle, in which two sides and the included angle are
given, are always adequate if the sides are less than 180°.

sin a sin B = sin b sin A == x
sin a cos B = cos b sin c - sin b cos c cos A == y
cos a = cos b cos c + sin b sin c cos A == z
sin a cos C = sin b cos c - cos b sin c cos A
sin a sin C = sin c sin A

~-- --~------- - ------------------- --~~-
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The sign of z determines the quadrant of a, and the signs of x, y that of B; similarly
with C.

In astronomical problems, the sides and angles of triangles on the celestial
sphere may be of any magnitude, and it is undesirable to solve them by methods
that restrict the sides to arcs less than 180°. The above general formulae are all
valid for triangles with sides of any length, and may be applied immediately to the
general triangles of spherical astronomy without any restriction to values less than
180°; furthermore, to make the solution determinate, it is only necessary to find
the algebraic sign of both the sine and the cosine of each arc or angle that may
exceed 180°, in order to fix the quadrants in which they lie. Any of the cases of
the general triangle is determinate when, in addition to the three given parts, the
algebraic sign of the sine or the cosine of one of the required parts is also given,
and in most practical problems it happens that the conditions of the problem supply
this sign. In the general triangle the utmost care should be taken to specify
unambiguously the direction of measurement of angles and arcs.

Collectively, the above formulae are sufficient for the solution of the general
triangle without restriction on the magnitudes of the parts, but, in practice, the
additional formulae:

cos A - cos B cos C + sin B sin C cos a

sin A cos b cos B sin C + sin B cos C cos a

sin A cos c sin B cos C + cos B sin C cos a
sin A cot B sin c cot b - cos c cos A
sin A cot C = sin b cot c - cos b cos A

are very useful. Collected formulae are given in table 16+

In practice, the trigonometric functions of b, c, A are taken out with a number
of decimals depending on the precision of the data, the tables available, and the
capacity of the calculating machine to be used. The following table gives corres­
ponding precisions of angle and number of decimals:

I' == 0'00029 18 == 0'00007 0·0001 == 0"34 = 18'4

I" == 0'0000048 0 8'1 == 7 X 10-6 I X 10-6 == 0"'2 = 08'014

0"'1 == 5 X 10-7 0 8'01 == 7 X 10-7 I X 10-7 == 0"'02 = 08'0014

0"'01 == 5 X 10-8 0 8 '001 == 7 X 10-8 I X 10-8 == 0"'002 = 08'00014

If no additional work is involved it is clearly advantageous to use more decimals
than the precision warrants, as the effect of rounding-off errors is then much
reduced. For instance, seven decimals give just sufficient coverage for data
known to about 0" '02 and for results to be rounded off to 0'" I; but interpolation in
eight-figure tables at interval I" offers little, if any, more difficulty than interpolation
in seven-figure tables at interval 10", and eight decimals can be used with little
extra work.

In calculating expressions such as x, y, z on a desk calculating machine it is
sometimes desirable in systematic calculations to record intermediate results, .such
as sin b cos A, even if each expression can be evaluated directly on the machine,
using facilities for transferring a product to be the next multiplicand or multiplier;
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the additional recordings are liable to transcription errors and, owing to rounding
off, may give rise to apparent end-figure discrepancies when the work is checked.
The check x2 + y2 + Z2 - 1 = 0 is essential after the formation of x, y, z.

In the solution of the above equations, a is found either from cos a = z or
from sin a = (x2 + y2)~ according to which is the smaller; assuming a is less than
180°, the ambiguity of the second formula is resolved according to the sign of z.
B is found from:

tan B = :: or cot B = l
y x

according to which is less than unity. The quadrant is determined by the signs
of x, y since, if a is less than 180°, sin a is positive.

Most trigonometric tables are arranged semi-quadrantally, with direct (D)
and complementary (C) arguments. The following table shows the method of
inverse use in finding B.

0° 45° 90° 135° 1800 2250 2700 3150 3600

x + + + +
y + + + +
tan or cot tan cot cot tan tan cot cot tan
D or C argo D CDC D CDC

There is no difficulty in systematic computation.

The range of precision of the inverse determination of an angle from its sine
(or cosine) and tangent (or cotangent) is indicated in the following table; the table
is arranged to show the range of angles for which the alternative trigonometric
function should be used, and gives the error in the angle corresponding to an error
of 1 x 10-6 in the function.

Errors corresponding to
I X 10-6 in function

Use function sin cos cos sin
Error in angle 0"'2 0"'29 0"'2 0"'29 0"'2

Use function tan cot cot tan
Error in angle 0·'014 0·'007 0.'014 0·'007 0.'°14

The technique of inverse interpolation, referred to briefly in sub-section B.2,
is a powerful tool in the solution of transcendental equations and of equations in
which the algebraic solution is complicated. The fundamental principle of such
methods lies in the tabulation of a discriminant, defined so that it attains a pre­
determined value (usually zero) when the original equation is satisfied, and the
calculation of the unknown argument corresponding to the pre-determined value of
the discriminant by the process of inverse interpolation. Although these methods
may involve more calculation than direct methods, they have two considerable
advantages: they are usually independent of theoretical developments, of any
approximations that may be necessary in such developments, and of extrapolations;
the correctness of the calculations and of the required answer, and the precision of
that answer, are directly under the control of the computer. Illustrations of the
use of these methods are to be found in the preceding sections, particularly in the
calculation of the local circumstances of eclipses (section gD) and the derivation of
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the times of moonrise and moonset (section I3D). A detailed account of the
technique of inverse interpolation is given in Interpolation and Allied Tables.

The availability of high-speed electronic computing machines has changed the
relative importance to be attached to the various factors entering into a computation.
It is no longer desirable to restrict the amount of calculation to a minimum: many
repetitions of a simple iteration are often preferable to a more sophisticated direct
calculation. In particular many of the transformations of coordinates arising in
astronomy can be efficiently handled by the direct use of the accurate formulae,
instead of by the approximate series expressions to the development of which so
much ingenuity has been devoted; these often take the form of multiplication of a
column matrix representing the direction cosines by a transformation matrix, as
for the correction for precession and nutation. Close attention to the precision of
computation is generally unnecessary as many extra figures can be kept without
any extra work. But although such machines are used for the computation of
the data in the Ephemeris, they are not generally available to the users; the fore­
going remarks on the techniques of computation are therefore restricted to
circumstances in which desk calculating machines are used.
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B. INTERPOLATION

Introduction

The purpose of this sub-section is to provide tables, and the necessary
minimum explanation, for the interpolation of the data tabulated in the Ephemeris.
Excluding a few quantities, such as the Moon's apparent longitude, not intended for
interpolation, the maximum values of the differences concerned are approximately:

double second differences 10 000

third differences I 200

double fourth differences 500

In some cases it is sufficiently accurate to interpolate linearly (i.e. by simple
proportion) between the tabular values. In most other cases differences higher
than the second can be ignored, and even in the extreme cases the maximum
contributions from third and fourth differences are about 8 and 6 units respectively.
Generally, first differences are printed whenever second differences are required
for interpolation to full tabular precision; linear interpolation can often be used
if less accuracy is required.

The following tables differ in some important details from those included in
A.E. 1960; they give slightly greater precision and, since they are in a separate
volume, may be more convenient to use. They also differ from the corresponding
tables in Interpolation and Allied Tables (I.A. T.); but the latter is not restricted to
the above ranges of differences and should certainly be used for general computation.
I.A. T. contains an elementary introduction to interpolation and a discussion of
the possible errors of an interpolate.
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No attempt is made to provide for, or to illustrate, interpolation techniques
required in the derivation of the data tabulated in the Ephemeris. These are all
included in I.A. T. and in its companion booklet Subtabulation.

Use 01 the tables

The notation used is that of I.A. T., with central differences; the interval is
denoted by h and the interpolating factor by p.

Func- Differences
Arg. tion First Second Third Fourth Note that any quantity is obtained by
-2 1-2 0:'2 0~2 subtracting the upper from the lower of the

o-a 0~1I two quantities to the left; and is the sum
-J: 1-1 0:'1 0~1 of the quantity immediately above it and

0_1 O~I that diagonally above it to the right, e.g.:
0 10 O~ 04

0

0; 03 02 = 011 - 01 = O~ + O~.t 1

+J: 11 02 Also:1

Oil O~ + O~ = 011 - 0_1> etc.
+2 12

Bessel's interpolation formula is used in its direct form:

I (to + ph) =I (tv) =Iv = 10 + pS~ + B2 (S~ + Sn + Ba Sf + B4 (S~ + SV
where B2, Ba, B4 are Bessel's interpolation coefficients and are simple functions ofp.
Tables are given to facilitate the calculation of the corrections for second, third,
and fourth differences. The maximum numerical values of B2 , Ba, B 4 , and the
corresponding maximum adopted values of S2, sa, S4 that can contribute not more
than o·5 units of the end figure are:

Maximum values B 2 = 0·0625 B 3 = 0·008 B 4 = 0·012

Limits for differences 02 < 4 03 < 60 04 < 20

The maxima of B2 and B4 occur at p == 0·5 where Ba is zero; the maxima of Ba
occur at p = 0'21 and 0'79. Larger values of these differences may be ignored
only if the corresponding larger errors can be accepted.

Linear interpolation, which is the first and most important step in any inter- .
polation, is represented by· the formula:

Iv = 10 + pS~ = (I - p) 10 + pll
The first expression is recommended for normal use with a calculating machine

as the settings of 10 and St can be checked by verifying, before calculating lv' that
their sum is 11' The same technique can be used in inverse interpolation, i.e. for
finding the value of p for which/v takes a given value. If second differences up to
4- units are ignored the error of a rounded-off interpolate may reach I'5 units, but
it is usually much less than this.

When second differences are appreciable but third differences are negligible
the formula is:

Iv = 10 + pS~ + B2 (S~ + Si)
and the second-difference correction may usually be taken directly from table 16.1,
which is entered with arguments p and S~ + Sr. Since B 2 is symmetrical about
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P = 0'50 the argumentp is read downwards on the left from 0·00 to 0'50 and up­
wards on the right from 0'50 to I ,00. The correction, which always has the
opposite sign to 13~ + 13i, is given to o· I units; if the nearest values of the two argu­
ments are used the correction may be in error by 0·6 but interpolation by inspection
will considerably reduce the error from this source. The table may be used for
values of 13~ + l3i outside the range by adding two contributions (e.g. using 475 = 300
+ 175) or scaling down by a simple factor (e.g. 475 ~ 2 x 240 = 3 x 160). It is
most unlikely that the error due to neglecting third and fourth differences will
exceed 0'5 units if second differences are within the range of this table, so that the
maximum error of an interpolate will be less than 2 units even if the nearest
arguments are used.

Example 16. I. Interpolation of the right ascension of the Sun
1960 March 7 at 9 h 16m 17"·6 E.T.

Apparent
Right Ascension

h m s

Mar. 6 23 06 21·69
+222'42

7 23 10 04'11 -43
221'99 +5

8 23 13 46 '10 -38
+221·61

9 23 17 27'7 1

The tabular values are for Oh E.T. at an interval of one day so the interpolating factor
is 9h 16m 17"·6 expressed as a fraction of a day; i.e., using table 17.5 (A.E., Table X),
p = 0'386315. The double second difference is -81, so table 16.1, entered with arguments
p = 0'39 and 8~ + 8~ = 80, gives the second-difference correction as +4·8, in units of
0"'01. Hence the apparent right ascension of the Sun at 9h 16m 17"·6 E.T. on 1960 March 7
IS:

For an inverse interpolation using table 16.1 a first approximation to p is
found by linear interpolation; this value of p is used to find an approximate value
of the second-differen'ce correction, which can be applied mentally; a second
approximation to p is then found and the procedure repeated until there is no change
in p. Example 8. I illustrates this procedure. Except near turning points where
the first difference is small the precision of the value ofp so found is largely deter­
mined by the size of the first difference.

If the range of table 16.1 is inadequate but third and fourth differences are
negligible, the second-difference correction may be calculated by using the
appropriate value of B 2 from table 16.2A which is entered with argument p. The
table gives five-decimal values of B 2 at intervals of 0·001 in p, arranged so that,
for example, the eleven values for p = 0'370 to 0'380 are on the same horizontal line
as the argument p = 0'37. The maximum difference is 25, and interpolation by
inspection will suffice to give values with errors less than, say, 0'00003, which is
ample for the largest difference in the Ephemeris. If second differences do not
exceed 2500 it suffices to take the nearest entry.

-- ----------- -------~-----
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Double second difference 8~ + 8i
p 10 20 30 40 50 60 70 80 90 100 110 120 130 140 ISO P

0·00 0·0 0·0 0'0 0'0 0'0 0'0 0'0 0'0 0'0 0'0 0'0 0'0 0'0 0'0 0·0 1'00
'01 0'0 0'0 0'1 o· I o· I 0·1 0'2 0'2 0'2 0'2 0'3 0'3 0'3 0'3 0'4 0'99'02 0'0 o· I 0'1 0'2 0'2 0'3 0'3 0'4 0'4 0'5 0'5 0·6 0·6 0'7 0'7 '98·03 0'1 0·1 0'2 0'3 0'4 0'4 0'5 0·6 0'7 0'7 0·8 0'9 0'9 1'0 1'1 '97'04 0'1 0'2 0'3 0'4 0'5 0·6 0'7 0·8 0'9 1'0 1'1 1·2 1'2 1'3 1'4 '96

0'05 0'1 0'2 0'4 0'5 0·6 0'7 0·8 1'0 1'1 1'2 1'3 1'4 1'5 1'7 1·8 0'95'06 0'1 0'3 0'4 0·6 0'7 0·8 1'0 1'1 1'3 1'4 1·6 1'7 1·8 2'0 2'1 '94·07 0'2 0'3 0'5 0'7 0·8 1·0 1·1 1'3 1'5 1·6 1·8 2'0 2'1 2'3 2'4 '93'08 0'2 0'4 0·6 0'7 0'9 1'1 1'3 1'5 1'7 I·g 2'0 2'2 2'4 2·6 2·8 '92·09 0'2 0'4 0·6 0·8 1'0 1·2 1'4 1·6 1·8 2'0 2'3 2'5 2'7 2'9 3'1 '91
0'10 0'2 0'5 0'7 0'9 1·1 1'4 1·6 1·8 2'0 2'3 2'5 2'7 2'9 3'2 3'4 0'1)0

'11 0'2 0'5 0'7 1·0 1'2 1'5 1'7 2'0 2'2 2'4 2'7 2'9 3'2 3'4 3'7 .89
·12 0'3 0'5 0·8 1'1 1'3 1·6 1·8 2'1 2'4 2·6 2'9 3'2 3'4 3'7 4'0 ·88
'13 0'3 0·6 o·g 1'1 1'4 1'7 2'0 2'3 2'5 2·g 3' I 3'4 3'7 4'0 4'2 ·87
'14 0'3 0·6 0'9 1'2 1'5 1·8 2·1 2'4 2'7 3'0 3'3 3.6 3'9 4'2 4'5 ·86

0'15 0'3 0·6 1'0 1'3 1·6 1'9 2'2 2·6 2'9 3'2 3'5 3·g 4'1 4'5 4.8 0·85
'16 0'3 0'7 1·0 1'3 1'7 2'0 2'4 2'7 3'0 3'4 3'7 4'0 4'4 4'7 5'0 .84
'17 0'4 0'7 1·1 1'4 I·g 2·1 2'5 2·8 3'2 3'5 3'9 4'2 4·6 4'9 5'3 .83
'18 0'4 0'7 1'1 I, 5 I·g 2'2 2·6 3'0 3'3 3'7 4'1 4'4 4·8 5'2 5'5 ·82
'19 0'4 0·8 1'2 1'5 1'9 2'3 2'7 3'1 3'5 3·8 4'2 4·6 5'0 5'4 5·8 ·81

0·20 0·4o·g 1'2 1·6 2·0 2'4 2·g 3'2 3.6 4'0 4'4 4·g 5'2 5.6 6'0 0·80
·21 0·4o·g 1'2 1'7 2'1 2'5 2'9 3'3 3'7 4'1 4·6 5'0 5'4 5·8 6'2 '79'22 0'4 0'9 1'3 1'7 2· I 2·6 3'0 3'4 3'9 4'3 4'7 5' I 5·6 6'0 6'4 '78
'23 0'4 0'9 1'3 I·g 2'2 2'7 3'1 3'5 4'0 4'4 4'9 5'3 5·g 6'2 6·6 '77'24 0'5 0'9 1'4 I·g 2'3 2'7 3'2 3·6 4'1 4·6 5'0 5'5 5'9 6'4 6·g '76

0'25 0'5 0'9 1'4 1'9 2'3 2·g 3'3 3. 8 4'2 4'7 5'2 5·6 6'1 6·6 7'0 0'75'26 0'5 1·0 1'4 1'9 2'4 2'9 3'4 3·g 4'3 4·g 5'3 5·g 6'3 6'7 7'2 '74'27 0'5 1·0 1'5 2'0 2'5 3'0 3'4 3'9 4'4 4'9 5'4 5'9 6'4 6'9 7'4 '73'28 0'5 1'0 1'5 2'0 2'5 3'0 3'5 4'0 4'5 5'0 5'5 6'0 6·6 7'1 7·6 '72
'29 0'5 1'0 1'5 2'1 2·6 3'1 3·6 4'1 4.6 5 '1 5'7 6'2 6'7 7'2 7'7 '71

0'30 0'5 1'1 1·6 2'1 2·6 3'2 3'7 4'2 4'7 5'3 5·g 6'3 6·8 7'4 7'9 0'70
'31 0'5 1·1 1·6 2·1 2'7 3'2 3'7 4'3 4·g 5'3 5'9 6'4 7'0 7'5 g·o .69
'32 0'5 1'1 1·6 2'2 2'7 3'3 3·g 4'4 4'9 5'4 6'0 6'5 7'1 7·6 g'2 ·68
'33 0·6 1·1 1'7 2'2 2·g 3'3 3'9 4'4 5'0 5'5 6'1 6·6 7'2 7'7 g'3 ·67
'34 0·6 1'1 1'7 2'2 2·8 3'4 3'9 4'5 5'0 5·6 6'2 6'7 7'3 7'9 g'4 ·66

0'35 0·6 1'1 1'7 2'3 2·g 3'4 4'0 4·6 5'1 5'7 6'3 6·g 7'4 g·o g'5 0·65
'36 0·6 1'2 1'7 2'3 2'9 3'5 4'0 4·6 5'2 5·g 6'3 6'9 7'5 g'I g·6 .64
'37 0·6 1'2 1'7 2'3 2'9 3'5 4'1 4'7 5'2 5·g 6'4 7'0 7·6 g'2 g'7 ·63
'38 0·6 1'2 I·g 2'4 2'9 3'5 4' I 4'7 5'3 5'9 6'5 7'1 7'7 g'2 g·8 ·62
'39 0·6 1'2 I·g 2'4 3'0 3·6 4'2 4·g 5'4 5'9 6'5 7' I 7'7 g'3 g'9 ·61

0'40 0·6 1'2 I·g 2'4 3'0 3·6 4'2 4·g 5'4 6'0 6·6 7'2 7·g g'4 9'0 0·60
'41 0·6 1'2 I·g 2'4 3'0 3.6 4'2 4·g 5'4 6'0 6'7 7'3 7'9 g'5 9'1 '59
'42 0·6 1'2 I·g 2'4 3'0 3'7 4'3 4'9 5'5 6'1 6'7 7'3 7'9 g'5 9'1 '58
'43 0·6 1'2 I·g 2'5 3'1 3'7 4'3 4'9 5'5 6'1 6'7 7'4 g·o 8·6 9'2 '57'44 0·6 1'2 I·g 2'5 3'1 3'7 4'3 4'9 5'5- 6'2 6·g 7'4 g·o g·6 9'2 '56

0'45 0·6 1'2 1'9 2'5 3'1 3'7 4'3 5'0 5·6 6'2 6·8 7'4 g·o g'7 9'3 0'55
'46 0·6 1'2 1'9 2'5 3' I 3'7 4'3 5'0 5·6 6'2 6·g 7'5 g'I g'7 9'3 '54
'47 0·6 1'2 1'9 2'5 3'1 3'7 4'4 5'0 5·6 6'2 6'9 7'5 g'I g'7 9'3 '53
'48 0·6 1'2 1'9 2'5 3'1 3'7 4'4 5'0 5·6 6'2 6'9 7'5 g'I g'7 9'4 '52
'49 0·6 1'2 1'9 2'5 3'1 3'7 4'4 5'0 5·6 6'2 6'9 7'5 g'I g'7 9'4 '51

0'50 0·6 1'3 1'9 2'5 3'1 3. 8 4'4 5'0 5.6 6'3 6'9 7'5 g'I g.g 9'4 0'50
The correction has the opposite sign to 8~ + 8;.



16.1-BESSEL SECOND-DIFFERENCE CORRECTION 463

Double second difference 8~ + 8~

P 160 170 180 190 200 210 220 230 240 260 280 300 P
0·00 0'0 0'0 0'0 0'0 0·0 0'0 0'0 0'0 0'0 0·0 0·0 0·0 1·00

·01 0'4 0'4 0'4 0'5 0'5 0'5 0'5 0·6 0·6 0·6 0'7 0'7 0'99
·02 0·8 0·8 0'9 0'9 1·0 1·0 1·1 1·1 1'2 1'3 1'4 1'5 '98
'03 1-2 1'2 1'3 1'4 1'5 1'5 1·6 1'7 1-7 1-9 2'0 2'2 '97
'04 1-5 1·6 1'7 1·8 1-9 2'0 2-1 2'2 2'3 2'5 2'7 2'9 ,96

0,05 1'9 2'0 2'1 2'3 2'4 2'5 2·6 2'7 2'9 3- 1 3'3 3-6 0'95
,06 2'3 2'4 ~'5 2'7 2,8 3'0 3'1 3'2 3'4 3'7 3'9 4'2 '94
'07 2,6 2,8 2'9 3'1 3'3 3'4 3,6 3'7 3'9 4'2 4,6 4'9 '93
,08 2'9 3'1 3'3 3'5 3'7 3'9 4'0 4'2 4'4 4,8 5'2 5'5 '92
'09 3'3 3-5 3'7 3'9 4'1 4-3 4'5 4'7 4'9 5-3 5'7 6-1 '91

0,10 3.6 3.8 4'1 4'3 4'5 4-7 5'0 5'2 5'4 5-9 6'3 6-8 0-90
,II 3'9 4'2 4'4 4'7 4'9 5'1 5'4 5-6 5'9 6'4 6'9 7-3 -89
'12 4'2 4'5 4.8 5-0 5'3 5'5 5,8 6'1 6'3 6'9 7-4 7-9 ,88

'13 4-5 4,8 5'1 5'4 5-7 5'9 6'2 6'5 6·8 7'4 7'9 8'5 .87
'14 4,8 5'1 5'4 5'7 6'0 6'3 6,6 6'9 7'2 7·8 8'4 9'0 ,86

0'15 5- 1 5-4 5-7 6'1 6'4 6-7 7-0 7'3 7'7 8-3 8-9 9-6 0·85
'16 5'4 5'7 6'0 6'4 6'7 7- 1 7'4 7'7 8'1 8'7 9'4 10'1 .84
'17 5.6 6'0 6'3 6'7 7- 1 7'4 7-8 8'1 8'5 9-2 9'9 10·6 .83
·18 5'9 6'3 6·6 7'0 7'4 7'7 8'1 8-5 8'9 9,6 10'3 11'1 ·82
'19 6'2 6'5 6'9 7'3 7'7 8'1 8'5 8·8 9-2 10,0 10,8 11'5 -81

0-20 6'4 6-8 7'2 7.6 8'0 8'4 8·8 9'2 9-6 10'4 11-2 12'0 0·80
·21 6,6 7'1 7'5 7'9 8'3 8'7 9'1 9'5 10'0 10,8 11·6 12'4 -79
,22 6'9 7'3 7'7 8'2 8·6 9'0 9'4 9'9 10'3 11'2 12'0 12'9 '78
'23 7'1 7'5 8'0 8'4 8'9 9'3 9'7 10'2 10·6 II'S 12'4 13'3 '77
'24 7'3 7·8 8'2 8-7 9'1 9·6 10·0 10'5 10'9 11'9 12·8 13'7 '76

0'25 7'5 8'0 8'4 8'9 9'4 9,8 10-3 10-8 11-3 12-2 13'1 14'1 0'75
'26 7'7 8'2 8'7 9'1 9.6 10'1 10·6 II-I II'S 12-5 13'5 14-4 '74
'27 7'9 8-4 8'9 9'4 9'9 10'3 10·8 11-3 11·8 12·8 13.8 14-8 '73
·28 8'1 8·6 9'1 9,6 10'1 10-6 11'1 11·6 12'1 13'1 14'1 15'1 -72
'29 8'2 8·8 9'3 9,8 10'3 10·8 11'3 11·8 12'4 13'4 14'4 15'4 '71

0'30 8-4 8'9 9'5 10·0 10'5 11'0 11·6 12'1 12·6 13-7 14'7 15,8 0-70

'31 8·6 9'1 9.6 10'2 10'7 11'2 11-8 12'3 12·8 13-9 15'0 16-0 .69
'32 8-7 9'2 9·8 10'3 10'9 11'4 12'0 12'5 13'1 14'1 15'2 16'3 ·68
'33 8-8 9'4 9'9 10'5 11'1 11,6 12'2 12'7 13'3 14-4 15'5 16-6 .67

'34 9'0 9'5 10-1 10'7 11'2 11-8 12'3 12'9 13-5 14.6 15'7 16·8 ·66

0'35 9'1 9'7 10'2 10·8 11'4 11'9 12'5 13'1 13-7 14·8 15'9 17'1 0.65

'36 9'2 9·8 10-4 10'9 11'5 12'1 12'7 13'2 13·8 15'0 16'1 17'3 .64

'37 9'3 9'9 10'5 11'1 11'7 12'2 12·8 13'4 14'0 15'2 16'3 17'5 .63

'38 9'4 10'0 10·6 11'2 11,8 12'4 13'0 13'5 14'1 15'3 16'5 17'7 ·62

'39 9'5 10-1 10'7 11-3 11'9 12'5 13 ,I 13'7 14-3 15'5 16'7 17:8 ·61

0'40 9,6 10'2 10·8 11'4 12-0 12-6 13'2 13,8 14'4 15-6 16·8 18'0 0-60
'41 9'7 10'3 10'9 11'5 12'1 12'7 13'3 13'9 14'5 15'7 16'9 18'1 '59
'42 9'7 10'4 11·0 11·6 12'2 12·8 13-4 14'0 14-6 15-8 17'1 18'3 '58

'43 9.8 10'4 11'0 11,6 12'3 12-9 13'5 14'1 14'7 15'9 17'2 18'4 -57
'44 9'9 10-5 II-I 11'7 12'3 12'9 13,6 14'2 14,8 16'0 17'2 18'5 '56

0'45 9'9 10'5 11'1 11·8 12'4 13'0 13.6 14'2 14'9 16'1 17'3 18·6 0'55
'46 9'9 10·6 11'2 11·8 12'4 13'0 13'7 14'3 14'9 16'1 17'4 18-6 '54
'47 10·0 10·6 11'2 11·8 12'5 13'1 13'7 14'3 14'9 16'2 17-4 18-7 '53
'48 10·0 10·6 11'2 11'9 12'5 13'1 13'7 14'4 15'0 16'2 17'5 18'7 '52
'49 10'0 10·6 11'2 11'9 12'5 13 'I 13'7 14'4 15-0 16'2 17'5 18'7 '51

0'50 10'0 10·6 11'3 11'9 12'5 13'1 13.8 14'4 15'0 16'3 17'5 18-8 0'50

If third and fourth differences are negligible: 1. = 10 + p8. + B 2 (8~ + 8D.

-----------_. ------------ --. -~._~-



464 16.2A-BESSEL SECOND-DIFFERENCE COEFFICIENT

In units of the fifth decimal-always negative

p 00000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010

0 000 -0000000 0025 0°5° 0075 0100 0124 0149 0174 01 98 0223 0248
8

248
0272 0296 °345 0369 °394 0418 °442 0466 0490001 024 242 °321

002 °49° 8 05 14 0538 0562 0586 0609 0633 0657 0680 °7°4 0728
003 0728

23
°75 1 °774 0798 0821 0844 0868 0891 0914 °937 0960232
0983 1006 1165 1188-04 0960 8 1029 1°52 1°74 1097 1120 114222

0 005 -0001188 1210 1232 1255 1277 1299 1322 1344 1366 1388 1410
-06

222
1476 1498 1563 1584 1606 16281410 8 1432 1454 1519 1541

007 1628 21 1649 1670 1692 1713 1734 1756 1777 1798 1819 1840212008 184°208 1861 1882 19°3 1924 1944 1965 1986 2006 2027 2048
009 2048202 2068 2088 21°9 2129 2149 217° 219° 2210 223° 2250

0 010 -0-02250 2270 229° 2310 233° 2349 2369 2389 2408 2428 2448
oIl: 8

198
2467 2486 2506 2525 2544 2564 2583 2602 2621 2640244 192

012 264°188 2659 2678 2697 2716 2734 2753 2772 2790 2809 2828
013 2828 182 2846 2864 2883 29°1 2919 2938 2956 2974 2992 3°10
014 3°10 178 3028 3046 3064 3082 3°99 3117 3135 3152 3170 3188

0 015 -0003 188 32°5 3222 324° 3257 3274 3292 33°9 3326 3343 3360
-16 172

3428 3461 3478 35283360 168 3377 3394 3411 3444 3494 35 11
017 3528 162 3544 3560 3577 3593 3609 3626 3642 3658 3674 3690
018 3690 8 3706 3722 3738 3754 3769 3785 3801 3816 3832 3848
019 3848 15 3863 3878 3894 3909 3924 394° 3955 397° 3985 4000

152
0°20 -0004000 4°15 4°3° 4°45 4060 4°74 4089 4104 4118 4133 4148

021 8 148
4162 4176 4191 4205 421 9 4234 4248 4262 4276 4290414 142

022 4290 8 43°4 43 18 4332 4346 4359 4373 4387 44°° 4414 4428
023 4428

13
4441 4454 4468 4481 4494 4508 4521 4534 4547 4560

132
4586 4612 4624 4637 4650 4662 4675 4688-24 4560 8 4573 459912

0025 -0004688 122 4700 4712 4725 4737 4749 4762 4774 4786 4798 4810
026 4810 8 4822 4834 4846 4858 4869 4881 4893 49°4 4916 4928
027 8

Il
4939 4950 4962 4973 4984 4996 5°°7 5018 5°29 5040492 Il2

-28 5°4° 8 5°5 1 5062 5073 5084 5°94 51°5 5116 5126 5137 5148
029 8 10

5158 5168 5179 5189 5199 5210 5220 5230 5240 5250514 102

0°30 -0-05250
98 5260 527° 5280 529° 5299 5309 53 19 5328 5338 5348

°31 5348 5357 5366 5376 5385 5394 5404 5413 5422 543 1 5440
°32 544°

92
5449 5458 5467 5476 5484 5493 5502 5510 55 19 552888

°33 5528 82 5536 5544 5553 5561 5569 5578 5586 5594 5602 5610
°34 5610

78 5618 5626 5634 5642 5649 5657 5665 5672 5680 5688

0°35 -0005688
72 5695 5702 5710 5717 5724 5732 5739 5746 5753 5760

°36 5760 68 5767 5774 5781 5788 5794 5801 5808 5814 5821 5828
-37 5828 62 5834 5840 5847 5853 5859 5866 5872 5878 5884 5890
°38 5890 58 5896 59°2 5908 5914 5919 5925 593 1 5936 5942 5948
°39 5948 5953 5958 5964 5969 5974 5980 5985 5990 5995 6000

52
0-40 -0006000

48 6005 6010 601 5 6020 6024 6029 6034 6038 6043 6048
°41 6048 6052 6056 6061 6065 6069 6074 6078 6082 6086 6090

6090
42

6094 6098 6102 6106 6109 611 3 611 7 6120 6124 6128°42 38
°43 6128 6131 61 34 61 38 61 41 6144 6148 61 51 61 54 61 57 6160
°44 6160 32

6163 6166 6169 6172 6174 6177 6180 6182 6185 618828
0°45 -0006188 6190 61 92 61 95 6197 61 99 6202 6204 6206 6208 6210

°46 6210
22

6212 6214 6216 6218 6219 6221 6223 6224 6226 622818
°47 6228 6229 6230 6232 6233 6234 6236 6237 6238 6239 6240
°48 6240

12
6241 6242 6243 6244 6244 6245 6246 6246 6247 62488

°49 6248 2 6248 6248 6249 6249 6249 6250 6250 6250 6250 6250

0°50 -0006250 fp = fo -+- PSI + B 2 (S~ + SD + B 3 S: + B 4 (S~ + S~)



16.2B-BESSEL THIRD- AND FOURTH-DIFFERENCE CORRECTIONS 465

P Third difference 8~ 8~ + 8~

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600
0-00 0'0 0'0 0'0 0'0 0·0 0·0 0'0 0·0 0·0 0·0 0·0 0·0 0·0 0·0 0'0 0'0

·01 0·1 0'2 0'2 0'3 0'4 0'5 0·6 0·6 0'7 0·8 0·0 0·1 0·1 0'2 0'2 0'2
·02 0'2 0'3 0'5 0·6 0·8 0'9 1·1 1'3 1'4 1·6 0'1 0'2 0'2 0'3 0'4 0'5
·03 0'2 0'5 0'7 0'9 1·1 1'4 1·6 1·8 2'1 2'3 0'1 0'2 0'4 0'5 0·6 0'7
·04 0'3 0·6 0'9 1'2 1'5 1·8 2'1 2'4 2·6 2'9 0'2 0'3 0'5 0'7 0·8 1·0

0·05 0'4 0'7 1'1 1'4 1·8 2'1 2'5 2'9 3'2 3.6 0'2 0'4 0·6 0·8 1'0 1'2
·06 0'4 0·8 1'2 1'7 2'1 2'5 2'9 3'3 3'7 4'1 0'2 0'5 0'7 1'0 1'2 1'4
·07 0'5 0'9 1'4 1'9 2'3 2·8 3'3 3'7 4'2 4'7 0'3 0·6 0·8 1'1 1'4 1'7
·08 0'5 1'0 1'5 2'1 2·6 3'1 3.6 4'1 4.6 5'2 0'3 0·6 1·0 1'3 1·6 1'9
'09 0·6 1·1 1'7 2'2 2·8 3'4 3'9 4'5 5'0 5·6 0'4 0'7 1·1 1'4 1·8 2'1

0·10 0·6 1'2 1·8 2'4 3'0 3.6 4'2 4·8 5'4 6'0 0'4 0·8 1'2 1·6 2'0 2'4
·11 0·6 1'3 1'9 2'5 3'2 3·8 4'5 5'1 5'7 6'4 0'4 0'9 1'3 1'7 2'1 2·6
·12 0'7 1'3 2'0 2'7 3'3 4'0 4'7 5'4 6'0 6'7 0'5 0'9 1'4 1'9 2'3 2·8
'13 0'7 1'4 2'1 2·8 3'5 4'2 4'9 5.6 6'3 7'0 0'5 1·0 1'5 2'0 2'5 3'0
'14 0'7 1'4 2'2 2'9 3·6 4'3 5'1 5.8 6'5 7'2 0'5 1·1 1·6 2'1 2'7 3'2

0·15 0'7 1'5 2'2 3'0 3'7 4'5 5'2 6'0 6'7 7'4 0·6 1'1 1'7 2'3 2·8 3'4
'16 0·8 1'5 2'3 3'0 3·8 4.6 5'3 6'1 6'9 7·6 0·6 1'2 1·8 2'4 3'0 3.6
·17 0·8 1·6 2'3 3'1 3'9 4'7 5'4 6'2 7'0 7·8 0·6 1'3 1'9 2'5 3'1 3.8
·18 o· ·6 2'4 3'1 3'9 4'7 .5'5 6'3 7'1 7'9 0'7 1'3 2'0 2·6 3'3 4'0
'19 0·8 1·6 2'4 3'2 4'0 4.8 5.6 6'4 7'2 8'0 0'7 1'4 2'1 2·8 3'5 4'1

0·20 0·8 1·6 2'4 3'2 4'0 4. 8 5.6 6'4 7'2 8'0 0'7 1'4 2'2 2'9 3.6 4'3
'21 0·8 1·6 2'4 3'2 4'0 4·8 5.6 6'4 7'2 8'0 0'7 1'5 2'2 3'0 3'7 4'5
·22 0·8 1·6 2'4 3'2 4.0 4.8 5.6 6'4 7'2 8'0 0·8 1·6 2'3 3'1 3'9 4'7
'23 0·8 1·6 2'4 3'2 4'0 4. 8 5.6 6'4 7'2 8,0 0·8 1·6 2'4 3'2 4'0 4.8
'24 0·8 1·6 2'4 3'2 4'0 4'7 5'5 6'3 7'1 7'9 0·8 1'7 2'5 3'3 4'1 5'0

0'25 0·8 1·6 2'3 3'1 3'9 4'7 5'5 6'3 7'0 7·8 0'9 1'7 2·6 3'4 4'3 5'1
'26 0·8 1'5 2'3 3'1 3·8 4.6 5'4 6'2 6'9 7'7 0'9 1·8 2·6 3'5 4'4 5'3
'27 0·8 1'5 2'3 3'0 3.8 4'5 5'3 6'0 6·8 7·6 0'9 1·8 2'7 3.6 4'5 5'4
'28 0'7 1'5 2'2 3'0 3'7 4'4 5'2 5'9 6'7 7'4 0'9 1·8 2·8 3'7 4.6 5'5
'29 0'7 1'4 2·2 2'9 3.6 4'3 5'0 5. 8 6'5 7'2 0'9 1'9 2·8 3·8 4'7 5'7

0'30 0'7 1'4 2·1 2·8 3'5 4'2 4'9 5.6 6'3 7'0 1·0 1'9 2'9 3'9 4.8 5.8
'31 0'7 1'4 2'0 2'7 3'4 4'1 4'7 5'4 6'1 6·8 1'0 2'0 3'0 3'9 4'9 5'9
'32 0'7 1'3 2'0 2·6 3'3 3'9 4.6 5'2 5'9 6'5 1'0 2'0 3'0 4'0 5'0 6'0
'33 0·6 1'3 1'9 2'5 3'1 3.8 4'4 5'0 5·6 6'3 1·0 2'0 3'1 4'1 5'1 6'1
'34 0·6 1'2 1·8 2'4 3'0 3.6 4'2 4. 8 5'4 6'0 1·0 2'1 3'1 4'2 5'2 6'2

0'35 0·6 1·1 1'7 2'3 2·8 3'4 4'0 4.6 5'1 5'7 1'1 2'1 3'2 4'2 5'3 6'3
'36 0'5 1'1 1·6 2'2 2'7 3'2 3.8 4'3 4·8 5'4 1·1 2'1 3'2 4'3 5'4 6'4
'37 0'5 1'0 1'5 2'0 2'5 3'0 3'5 4.0 4'5 5' I 1·1 2'2 3'3 4'3 5'4 6'5
'38 0'5 0'9 1'4 1'9 2'4 2·8 3'3 3·8 4'2 4'7 1'1 2·2 3'3 4'4 5'5 6·6
'39 0'4 0'9 1'3 1'7 2'2 2·6 3'1 3'5 3'9 4'4 1·1 2'2 3'3 4'4 5'5 6'7

0'40 0'4 0·8 1'2 1·6 2·0 2'4 2·8 3'2 3.6 4'0 1·1 2'2 3'4 4'5 5·6 6'7
'41 0'4 0'7 1'1 1'5 1·8 2'2 2'5 2'9 3'3 3·6 1·1 2'3 3'4 4'5 5.6 6·8
'42 0'3 0·6 1'0 1'3 1·6 1'9 2'3 2·6 2'9 3'2 1'1 2'3 3'4 4·6 5'7 6·8
'43 0'3 0·6 0'9 1·1 1'4 1'7 2'0 2'3 2·6 2'9 1·1 2'3 3'4 4.6 5'7 6'9
'44 0'2 0'5 0'7 1'0 1'2 1'5 1'7 2·0 2·2 2'5 1'2 2'3 3'5 4.6 5·8 6'9

0'45 0'2 0'4 0·6 0·8 1·0 1'2 1'4 1'7 1'9 2'1 1'2 2'3 3'5 4.6 5. 8 7'0
'46 0'2 0'3 0'5 0'7 0·8 1·0 1'2 1'3 1'5 1'7 1·2 2'3 3'5 4'7 5.8 7'0
'47 0'1 0'2 0'4 0'5 0·6 0'7 0'9 1·0 1'1 1·2 1'2 2'3 3'5 4'7 5·8 7'0
'48 0·1 0·2 0'2 0'3 0'4 0'5 0·6 0'7 0'7 0·8 1'2 2'3 3'5 4'7 5·8 7'0

0'49 0·0 0·1 0·1 0'2 0'2 0'2 0'3 0'3 0'4 0'4 1'2 2'3 3'5 4'7 Si9 7'0

The correction has the same sign as 8:. The correction has the
same sign as 8~ + 8~.

-------------- ----------_. "-- ---



466 16.2A-BESSEL SECOND-DIFFERENCE COEFFICIENT

In units of the fifth decimal-always negative

P 0·000 ·001 '002 ·003 '004 ·005 ·006 ·007 '008 ·009 ·010

0'50 -0'0625° 2 6250 6250 6250 6250 6249 6249 6249 6248 6248 6248
'51 6248 8 6247 6246 6246 6245 6244 6244 6243 6242 6241 6240
'52 6240 6239 6238 6237 6236 6234 6233 6232 6230 6229 6228

6228
12

6226 6224 6223 6221 6219 6218 6216 6214 6212 6210'53 18
'54 6210 6208 6206 6204 6202 61 99 61 97 61 95 6192 6190 618822

0'55 -0'06188 28 6185 6182 6180 6177 61 74 6172 6169 6166 6163 6160
'56 6160 61 57 61 54 61 51 6148 6144 6141 61 38 61 34 61 31 6128
'57 6128 32

6124 6120 6117 6113 6109 6106 6102 6098 6094 6090
'58 6090 38

6086 6082 6078 6074 6069 6065 6061 6056 6052 6048
'59 6048 42

6043 6038 6034 6029 6024 6020 601 5 6010 6005 600048
0·60 -0'06000 5995 5990 5985 5980 5974 5969 5964 5958 5953 5948

·61 5948 52
5942 5936 593 1 5925 5919 5914 5908 59°2 5896 5890

·62 5890
58

5884 5878 5872 5866 5859 5853 5847 5840 5834 582862
.63 5828 68 5821 5814 5808 5801 5794 5788 5781 5774 5767 5760
·64 5760

72 5753 5746 5739 5732 5724 5717 5710 5702 5695 5688

0.65 -0'05688
78 5680 5672 5665 5657 5649 5642 5634 5626 5618 5610

·66 5610 82 5602 5594 5586 5578 5569 5561 5553 5544 5536 5528
.67 5528 88 55 19 55 10 55°2 5493 5484 5476 5467 5458 5449 5440
·68 544° 543 1 5422 5413 54°4 5394 5385 5376 5366 "5357 5348
·69 5348 92

5338 5328 53 19 53°9 5299 529° 5280 5270 5260 5250
98

0'70 -°'°525° 102 524° 523° 5220 5210 5199 5189 5179 5168 5158 5148
'71 5148 108 5137 5126 5116 5105 5094 5084 5°73 5062 5°51 5°40
'72 5°4° lI2 5°29 5018 5°°7 4996 4984 4973 4962 495° 4939 4928
'73 4928 lI8 4916 49°4 4893 4881 4869 4858 4846 4834 4822 4810
'74 4810 4798 4786 4774 4762 4749 4737 4725 4712 4700 4688122

0'75 -°'°4688 4675 4662 4650 4637 4624 461 2 4599 4586 4573 4560
'76

6 128
4547 4534 4521 4508 4494 4481 4468 4454 4441 442845 ° 132

'77 4428 8 4414 44°0 4387 4373 4359 4346 4332 43 18 43°4 4290
'78 429013 4276 4262 4248 4234 421 9 42°5 4191 4176 4162 4148142

4118 4089 4060'79 4148 8 4133 41°4 4°74 4°45 4°3° 4°15 400014
0·80 -°'°4°00 3985 397° 3955 394° 3924 3909 3894 3878 3863 3848

·81 8 8 152
3832 3816 3801 3785 3769 3754 3738 3722 3706 36903 4 158

·82 3690 162 3674 3658 3642 3626 3609 3593 3577 3560 3544 3528
.83 35~8 168 3511 3494 3478 3461 3444 3428 3411 3394 3377 3360
.84 33 ° 172 3343 3326 3309 3292 3274 3257 324° 3222 32°5 3188

0·85 -°'°3188 178 3170 3152 3135 3117 3°99 3082 3064 3046 3028 3°10
·86 3°10 8 2992 2974 2956 2938 2919 29°1 2883 2864 2846 2828
.87

I 2
2809 2716 2697 2678 26592828 188 2790 2772 2753 2734 2640

·88 2640 I 2 2621 2602 2583 2564 2544 2525 2506 2486 2467 2448
.89 2448 98 2428 2408 2389 2369 2349 233° 2310 229° 2270 225019

0'90 -0'0225° 202 223° 2210 219° 2170 2149 2129 21°9 2088 2068 2048
'91 2048208 2027 2006 1986 1965 1944 1924 19°3 1882 1861 1840
'92 1840 1819 1798 1777 1756 1734 1713 1692 1670 1649 1628
'93 6 8

212
1606 1584 1563 1541 1519 1498 1476 1454 1432 14101 2 218

'94 1410 222 1388 1366 1344 1322 1299 1277 1255 1232 1210 u88

0'95 -0,01l88 1165 1142 1120 1°97 1°74 1°52 1029 1006 0983 0960
'96 6 228

0937 °914 0891 0868 0844 0821 0798 0774 075 1 0728°9 ° 22
'97 0728 38 °7°4 0680 0657 0633 0609 0586 0562 0538 °5 14 °490
'98 049023 0466 °442 0418 °394 0369 °345 °321 0296 0272 0248

0'99 _ 0'00248 242
0223 0198 0174 0149 0124 0100 0075 °°5° 0025 0000248

1·00 0'00000 f v = fo + POl + B 2 (O~ + oD + B 3 0: + B 4 (O~ + 01)
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P Third difference 0: o~ + o~

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600

0'50 0·0 0·0 0'0 0'0 0'0 0'0 0·0 0·0 0·0 0·0 1'2 2'3 3'5 4'7 5'9 7'0
'51 0'0 0'1 0·1 0'2 0'2 0'2 0'3 0'3 0'4 0'4 1'2 2'3 3'5 4'7 5'9 7'0
'52 0'1 0'2 0'2 0'3 0'4 0'5 0·6 0'7 0'7 0·8 1'2 2'3 3'5 4'7 5.8 7'0
'53 0·1 0'2 0'4 0'5 0·6 0'7 0'9 1·0 1·1 1'2 1'2 2'3 3'5 4'7 5·8 7'0
'54 0'2 0'3 0'5 0'7 0·8 1·0 1'2 1'3 1'5 1'7 1'2 2'3 3'5 4'7 5.8 7'0

0'55 0'2 0'4 0·6 0·8 1'0 1·2 1'4 1'7 1'9 2· I 1'2 2'3 3'5 4.6 5.8 7.0
'56 0'2 0'5 0'7 1·0 1'2 I,5 1'7 2'0 2'2 2'5 1'2 2'3 3'5 4·6 5.8 6'9
'57 0'3 0·6 0'9 1'1 1'4 1'7 2'0 2'3 2·6 2'9 1·1 2'3 3'4 4.6 5'7 6'9
'58 0'3 0·6 1·0 1'3 1·6 1'9 2'3 2·6 2'9 3'2 1·1 2'3 3'4 4·6 5'7 6·8
'59 0'4 0'7 1'1 1'5 1·8 2'2 2'5 2'9 3'3 3.6 1'1 2'3 3'4 4'5 5.6 6·8

0·60 0'4 0·8 1'2 1·6 2'0 2'4 2·8 3'2 3.6 4'0 1·1 2'2 3'4 4'5 5.6 6'7
·61 0'4 0'9 1'3 1'7 2'2 2·6 3'1 3'5 3'9 4'4 1·1 2'2 3'3 4'4 5'5 6'7
·62 0'5 0'9 1'4 1'9 2'4 2·8 3'3 3·8 4'2 4'7 1·1 2'2 3'3 4'4 5'5 6·6
·63 0'5 1·0 1'5 2'0 2'5 3'0 3'5 4'0 4'5 5'1 1'1 2'2 3'3 4'3 5'4 6'5
.64 0'5 1·1 1·6 2'2 2'7 3'2 3.8 4'3 4·8 5'4 1·1 2'1 3'2 4'3 5'4 6'4

0.65 0·6 1'1 1'7 2'3 2·8 3'4 4'0 4·6 5'1 5'7 1'1 2'1 3'2 4'2 5'3 6'3
·66 0·6 1'2 1·8 2'4 3'0 3.6 4'2 4·8 5'4 6'0 1'0 2·1 3'1 4'2 5'2 6'2
.67 0·6 1'3 1'9 2'5 3'1 3.8 4'4 5'0 5·6 6'3 1·0 2'0 3'1 4'1 5'1 6'1
·68 0'7 1'3 2·0 2·6 3'3 3'9 4·6 5'2 5'9 6'5 1'0 2'0 3'0 4'0 5'0 6'0
·69 0'7 1'4 2'0 2'7 3'4 4'1 4'7 5'4 6'1 6·8 1·0 2'0 3'0 3'9 4'9 5'9

(l'7° 0'7 1'4 2'1 2·8 3'5 4'2 4'9 5.6 6'3 7'0 1·0 1'9 2'9 3'9 4.8 5.8
'71 0'7 1'4 2'2 2'9 3.6 4'3 5.0 5.8 6'5 7'2 0'9 1'9 2·8 3·8 4'7 5'7
'72 0'7 1'5 2'2 3'0 3'7 4'4 5'2 5'9 6'7 7'4 0'9 1·8 2·8 3'7 4.6 5'5
'73 c·8 1'5' 2'3 3'0 3.8 4'5 5'3 6'0 6·8 7.6 0'9 1·8 2'7 3·6 4'5 5'4
'74 0·8 1'5 2'3 3'1 3.8 4.6 5'4 6'2 6'9 7'7 0'9 1·8 2·6 3'5 4'4 5'3

(l'75 0·8 1·6 2'3 3'1 3'9 4'7 5'5 6'3 7'0 7.8 0'9 1'7 2·6 3'4 4'3 5'1
'76 0·8 1·6 2'4 3'2 4'0 4'7 5'5 6'3 7'1 7'9 0·8 1'7 2'5 3'3 4'1 5'0
'77 0·8 1·6 2'4 3'2 4'0 4·8 5·6 6'4 7'2 8'0 0·8 1·6 2'4 3'2 4'0 4.8
'78 0·8 1·6 2'4 3'2 4'0 4.8 5·6 6'4 7'2 8'0 0·8 1·6 2'3 3'1 3'9 4'7
'79 0·8 1·6 2'4 3'2 4'0 4. 8 5.6 6'4 7'2 8'0 0'7 1'5 2'2 3'0 3'7 4'5

(l·Bo 0·8 1·6 2'4 3'2 4'0 4.8 5·6 6'4 7'2 8,0 0'7 1'4 2·2 2'9 3.6 4'3
·81 0·8 1·6 2'4 3'2 4'0 4. 8 5.6 6'4 7'2 8'0 0'7 1'4 2'1 2·8 3'5 4'1
·82 0·8 1·6 2'4 3'1 3'9 4'7 5'5 6'3 7'1 7'9 0'7 1'3 2'0 2·6 3'3 4'0
·83 0·8 1·6 2'3 3'1 3'9 4'7 5'4 6'2 7'0 7. 8 0·6 1'3 1'9 2'5 3'1 3·8
.84 0·8 1'5 2'3 3'0 3.8 4.6 5'3 6'1 6'9 7·6 0·6 1'2 1·8 2'4 3'0 3.6

0·85 0'7 1'5 2'2 3'0 3'7 4'5 5'2 6'0 6'7 7'4 0·6 1·1 1'7 2'3 2·8 3'4
·86 0'7 1'4 2·2 2'9 3.6 4'3 5'1 5·8 6'5 7'2 0'5 1·1 1·6 2'1 2'7 3'2
.87 0'7 1'4 2'1 2·8 3'5 4'2 4'9 5·6 6'3 7'0 0'5 1'0 1'5 2'0 2'5 3'0
·88 0'7 1'3 2'0 2'7 3'3 4'0 4'7 5'4 6'0 6'7 0'5 0'9 1'4 1'9 2'3 2·8
·89 0·6 1'3 1'9 2'5 3'2 3·8 4'5 5'1 5'7 6'4 0'4 0'9 1'3 1'7 2'1 2·6

(l.C)O 0·6 1'2 1·8 2'4 3'0 3.6 4'2 4·8 5'4 6'0 0'4 0·8 1'2 1·6 2·0 2'4
'91 0·6 1'1 1'7 2'2 2·8 3'4 3'9 4'5 5'0 5.6 0'4 0'7 1'1 1'4 1·8 2'1
'92 0'5 1·0 1'5 2'1 2·6 3'1 3.6 4'1 4.6 5'2 0'3 0·6 1·0 1'3 1·6 1'9
'93 0'5 0'9 1'4 1'9 2'3 2·8 3'3 3'7 4'2 4'7 0'3 0·6 0·8 1'1 1'4 1'7
'94 0'4 0·8 1·2 1'7 2'1 2'5 2'9 3'3 3'7 4'1 0'2 0'5 0'7 1'0 1'2 1'4

0'95 0'4 0'7 1·1 1'4 1·8 2'1 2'5 2'9 3'2 3.6 0·2 0'4 0·6 0·8 1·0 1'2
.1)6 0'3 0·6 0'9 1'2 1'5 1·8 2'1 2'4 2·6 2'9 0'2 0'3 0'5 0'7 0·8 1·0
'97 0'2 0'5 0'7 0'9 1·1 1'4 1·6 1·8 2'1 2'3 0'1 0'2 0'4 0'5 0·6 0'7
·98 0·2 0'3 0'5 0·6 0·8 0'9 1'1 1'3 1'4 1·6 0'1 0'2 0'2 0'3 0'4 0'5

0'99 0'1 0'2 0'2 0'3 0'4 0'5 0·6 0·6 0'7 0·8 0·0 0'1 0'1 0'2 0·2 0'2

The correction has the opposite sign to o~. The correction has the
same sign as o~ + o~.

-----~----- -------------------------



EXPLANATORY SUPPLEMENT

Z

Interpolation of the equatorial rectangular coordinates of the Sun
1960 March 7 at 22 11 26m II8 ·2 E.T.

8 82 Y 8 82X

Example 16.2.

Date
1960

Mar.6 +0'9603517 60 -29II -0·2288976 + 680 -0.099 2672 666 + 294
7 .1)648°77 + 4 4~ 2920 '21 353°7 +15 3669 632 .0926033 + 6 6g;~ 277
8 '9689717 4 I 4° 2927 .198 1006 IS 43°1 586 ·085 9II7 6 256
9 .9728430 3

8
713 2932 '1826II9 IS 4

88
7 539 '079 1945 7

1
7
2

235

The tabular values are for Oil E.T. at intervals of one day so the interpolating factor is
2211 26m 118.2 expressed as a fraction of a day, i.e., p = 0'93485 I. Mental interpolation in
table 16.2A (second opening) gives B 2 = -0.01522. Third and fourth differences are
smaller than the normal limits, so the values of the equatorial rectangular coordinates of
the Sun at 22 11 26m 118 .2 E.T. on March 7 are:

X = +0.964 8077 + ( +0.934851) x (+ 41640) + ( -0.01522) x (- 5847) = +0.9687093

Y = -0.213 5307 + (+0.934851) x (+ IS 4301) + (-0.01522) x (+ 1218) = -0'199 1077

Z = -0·0926033 + (+0.934851) x (+ 66916) + (-0.01522) x (+ 533) = -0'0863485

Table 16.2 is primarily intended for use when third and fourth differences are
also appreciable. Table 16.2A is entered with argument p to give B 2, and hence
B2 (o~ + on is calculated. Then table 16.2B, which is similar to table 16.1, is
entered with arguments p and og to give Bao~ directly, and then with arguments p
and o~ + ot to give B 4 (o~ + ot) directly. The first opening of table 16.2 gives all
values for p less than 0'5 while the second gives all values for p greater than 0·5.
Particular care should, however, be taken to ensure that the corrections are applied
with the correct signs. The corrections are given to 0'1; if the nearest values of
the arguments are taken the corrections may each be in error by about 0'7, but
interpolation by inspection will considerably reduce the error from this source.
When used to maximum accuracy the error of a rounded-off interpolate obtained
by using these tables will not exceed 2 units. The tables cover directly the whole
range of differences required.

Again inverse interpolation proceeds by successive approximation; the first
approximation to the required value of p is obtained by linear interpolation, then
estimates of B2, Ba og, B 4 (o~ + ot) are obtained from the table and used to give a
second approximation to p and so on. Except in extreme cases where the function
is near a turning point, the first approximation to p is adequate for Ba 0: and
B4 (o~ + ot).
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Example 16.3. Interpolation of the horizontal parallax of the Moon
1960 March 7 at 911 53ffi 248 E.T.

Date Horizontal
1960 Parallax 0 02 03 04

Mar. 600 54 13'294 h

+ 00842 h

60S 54 1401 36 +2'596
30438 - 82

7'0 54 170574 2'5 14 -40
50952 122

7'5 54 23'526 2'392 -37
8'344 159

8'0 54 31.870 2'233
100577

The tabular values are for 011 and 12 11 E.T. so the interpolating factor is 9 11 53m 248

expressed as a fraction of 1211, ioeo, p = 0·82417. Mental interpolation in table 16.2A
gives B 2 = -0'03623. Entry of table 16.2B with arguments p = 0·82 and o~ = 120 gives
100 for the third-difference correction, which for p > o· 5 has the opposite sign to o~; and
entry with p = 0·82 and o~ + ot = 75 gives 0'5 for the fourth-difference correction, which
has the same sign as o~ + ot. Hence the horizontal parallax of the Moon at 911 53m 248 on
1960 March 7 is

54' 17"'574 + (+0082417) x (5"'952) + (-OouJo23) x (+4"'906)
+ (+0"'0010) + (-0"00005) = 54' 22"'302

Example 16+ Inverse interpolation of the horizontal parallax of the Moon

-77

0'277
0028II
0'2815

-0 0 6
-0 0 7

To find the time on 1960 March 7 when H.P. = 54' 19"'000

The relevant data, using values from example 1603, are in units of 0"'001:
11' - fo = + 1426 Of = + 5952 O~ + Oi = +4906 O~ = - 122 O~ + ot

The first approximation to the required interpolating factor p is

Uv - fo) / Of = + 1426 / + 5952 = 0'24

This is used to obtain estimates of B 2 from table 16.2A, and B 4 (o~ + ot), from 16.2B; these
are then used to give a second approximation to p as

{fv - fo - B 2 (o~ + oD - B 3 01 - B 4 (o~ + ot) } / Of
The value so obtained is used to correct the estimates of B 2 and, where necessary, of the
third- and fourth-difference corrections as follows:

Approximation B 2 B 3 Of
to P

0'24 -0004560
0 0277 -0005007
0028II -0005052
0'2815 -0'05056

The required fraction p of the interval of 1211 is thus 002815, so that the time at which
the horizontal parallax is 54' 19"0000 is 1960 March 7 at 03 11 22ffi0 7.

This example illustrates the case in which 01 is of the same order as o~ + oi, and conver­
gence is slow. The number of approximations required may be reduced by intelligent
anticipation; techniques suitable for desk calculatinll machines are descrihed in Interpolation
and Allied Tables 0

--------- ---------------------------
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EXPLANATORY SUPPLEMENT

Maximum differences in the fundamental geocentric epheme1'ides

Table 16.3 gives a rough guide to the maximum differences in the fundamental
geocentric ephemerides tabulated in the Ephemeris for Oh E.T. at intervals of
one day, except for the Moon and Pluto. The maximum values of the differences
are given in units of the end figure. First differences are tabulated for all these
quantities except the longitude and latitude of the Sun and Moon, the nutation,
the times of ephemeris transit of the planets, and the distances of the minor
planets.

Auxiliary quantities, such as semi-diameters, and small horizontal parallaxes
are not listed; they are usually linearly interpolable, although in some cases second
differences may be significant.

Table 16.3. MaxiInum differences in the fundamental ephemerides

Unit S2 S3 S4 S6
SUN (I d) Longitude (mean equinox) 0"01 23 I

Rectangular coordinates (X, Y, Z) 10-7
3000 60 12

MOON (od'5) Apparent longitude 0"'01 45000 9000 1500 100

Apparent latitude 0"'01 33000 5300 1000 70

Horizontal parallax 0"'0001 53000 8000 2000 200

NUTATION (I d) in longitude 0"'001 73 42 20

in obliquity 0"'001 32 20 IS

SUN MOON MERCURY VENUS MARS JUPITER SATURN URANUS NEPTUNE PLUTO MINOR
(Ih) (4d) PLANETS

Apparent right ascension (astrometric for Pluto and minor planets)
Unit 0"'01 0"'001 0"'01 0"'01 0"'01 0"'001 0·'001 0·'001 0"'001 0"'001 0"'01

S2 86 570 5100 1050 380 850 400 200 130 2000 220

SS 4 20 1200 110 25 30 12 7 5 180 14

S4 250 12 20

S6 40

Apparent declination (astrometric for Pluto and minor planets)
Unit 0"'1 0"'01 0"'1 o"or 0"01 0"'01 0"'01 0"'01 0"'01 0"'01 0"'1

S2 2 8 5 1400 3 600 950 200 5 00 270 140 7 0 1500 370
sa 6 20 800 90 IS 20 10 4 3 130 14
S4 160 20 IS
S6 3 0

Distance (in earth radii at interval Od. 5 for Moon)
Unit 10-7 10 -6 10-6 10-7 10-7 10-6 10-6 10-5 10-5 10-5 10-6

S2 65 78000 3 200 3 00 200 3 20 3 00 35 3 0 5 00 3 00

sa 3 10000 350 12 7 10 8 40 6

S4 2500 10 6

Ephemeris transit (equation of time for Sun)
Unit 0·'01 Oh'OOOI I· I" I" I" I" I· I" 1m I"

S2 85 270 60 IS 6 4
S3 3 95 IS
S4 30
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C. NUMERICAL DIFFERENTIATION

The following formulae for derivatives in terms of differences are used in
other sections of the Supplement; reference should be made to Interpolation and
Allied Tables for other formulae and notes.

Notation: I~ denotes the value of dl/dt at the point t = to + ph.

Differentiation of Bessel's interpolation formula leads to:

hi; = 01 + t (p - t) (o~ + on + /2 (I - 6p + 6p2) 0; + ...
This formula is intended for use in the range 0 ~ p ~ I; the maximum value of
the third-difference coefficient is /2 and occurs at p = 0 and I. At P = t the
formula reduces to:

h/~ = o~ - l40; + 6 ~o O~ - ...
Differentiation of Stirling's int~rpolationformula leads to:

hi; = JLoo + po~ - i (I - 3p2) JL08+ ...
where, for example, JL08 = t (O:.! + o~). This formula is intended for use in the
range - t ~ p ~ t; the maximum value of the coefficient of the mean third
difference is ! and occurs at p = o. At P = 0 the formula reduces to:

h/~ = JLoo - i JL08 + lo JLog - ...
The condition for a maximum or minimum is that I; = o. For Stirling's

formula this condition may be expressed as:

p = { - JLoo + i (I - 3p2) JL08 - ... } /o~

This equation must normally be solved by successive approximations. The
maximum contribution from the third difference is iJLoYo~, and if this is negligible
p may be evaluated directly from:

p = - JLO%~ = - t - o_!/o~

Example 8.2 illustrates this procedure.

In astronomical usage, the terms" variation" and" motion" are synonymous
with" derivative with respect to time ", when qualified by an adjective defining
the unit of time, and are usually evaluated for the tabular points. The term
" secular variation" usually implies a second derivative with respect to time.

The second derivative I; is obtained by differentiating the formulae for I;;
for Stirling's formula this leads to:

h2f; = o~ + pJL08 + ...
and, when p = 0, to:

- ------------------ --



472 16.4-FORMULAE FOR PLANE AND SPHERICAL TRIANGLES

The angles of the triangle are denoted by A, B, C; the opposite sides, by a, b, c.
Other formulae may be obtained by cyclic changes of A, B, C and a, b, c.

a sin B
a cos B
a2

a cos C
a sin C

Plane triangle

b sin A
c-bcosA
b2 + c2 - 2 be cos A
b - e cos A

e sin A

sin a sin B
sin a cos B
cos a
sin a cos C
sin a sin C

Spherical triangle

= sin b sin A
= cos b sin c - sin b cos c cos A
= cos b cos c + sin b sin c cos A
= sin b cos c cos b sin c cos A

= sin c sin A

= cos t A cos t (b - c)
= sin t A cos t (b + c)

cos t A sin t (b - c)
sin t A sin t (b + c)

+ C)
+ C)
- C)
- C)

s = t (a + b + c)
m2 = sin (s - a) sin (s - b) sin (s - c)/sin s
Area = A + B + C - 17

cos t a sin t (B
cos t a cos t (B
sin t a sin t (B
sin t a cos t (B

c)/s

cos t A
sin t A

e) cos t A
+ e) sin t A

sin t (B + C)
cos t (B + C)

a sin t (B - C) (b
a cos t (B - C) = (b

s = t (a + b + c)
r 2 = (s - a) (s - b) (s
Area = sr = t be sin A

be sin2 t A = (s - b) (s - c)
be cos2 t A = s (s - a)

tan t A = r/(s - a)

sin b sin c sin2 t A = sin (s - b) sin (s - c)
sin b sin e cos2 t A = sin s sin (s - a)

tan t A = m/sin (s - a)

Spherical Triangle
Additional formulae Right-angled triangle: A = 17/2

sin A sin b sin B sin a SIn a sin B = sin b
sin A cos b cos B sin C + sin B cos C cos a SIn a cos B = cos b Sin C

cos A -cos B cos C + sin B sin C cos a cos a = cos b cos c
sin A cos c sin B cos C + cos B sin C cos a sin a cos C = sin b cos c
sin A sin c sin C sin a Sin a sin C = sin c

cos a cos B SIn a cot c - sin B cot C sin B sin a = sin b
cos a cos C sin a cot b sin C cot B sin B cos a = cos b cos C

cos B = cos b sin C
cos b cos A sin b cot c - sin A cot C sin B cos c cos C
cos c cos A sin c cot b - sin A cot B sin B sin c = sin b sin C

S = t (A + B + C)
M2 = -cos (S - A) cos (S - B) cos (S - C)/ cos S
sin B sin C sin2 t a -cos S cos (S - A)
sin B sin C cos2 t a cos (S B) cos (S - C)

tan t a cos (S - A)/M

tan a = tan b sec C
tan a = tan c sec B
cos a = cot B cot C
tan b = sin e tan B
tan c = sin b tan C

Quadrantal triangle: a = 17/2

sin A sin b sin B sin b sin A sin B tan A -tan B sec c
sin A cos b cos B sin C sin b cos A -cos B cos e tan A -tan C sec b
cos A -cos B cos C cos b cos B sin c cos A -cot b cot c
sin A cos e sin B cos C sin b cos C cos c tan B sin C tan b
sin A sin e sin C sin b sin C sin B sin e tan C sin B tan c

a - e
B sin c

17-C-A

Spherical triangle tn which b is small

- b cos A + t b2 cot e sin2 A + .
+b sin A + t b2 cot e sin 2 A + .
+b cot e sin A + t b2 (I + 2 cot2 e) sin 2 A + ...



17. CONVERSION TABLES

Introduction. The tables in this section are designed to facilitate the conversion
of measures of time and of angle from one system of units to another. In using the
tables it is usually only necessary to take out and add two quantities to obtain the
required value, but occasionally three or more quantities are needed. Inter­
polation is not normally required; in a few cases small corrections are to be taken
from critical tables.

Tables 17.1 and 17.2. These tables are for the conversion of intervals of mean
sidereal time into equivalent intervals of mean solar time, and vice versa. In
constructing the tables it has been assumed, following Newcomb, that:

2411 of mean sidereal time = 23 11 56m °46 '°9°54 of mean solar time

2411 of mean solar time = 2411 03m 565'55536 of mean sidereal time

An alternative set of tables is given in the Ephemeris (A.E. 1960, Tables VIII
and IX); these tables give the corrections to be applied rather than the direct
equivalents.

Table 17.3. This table is for the conversion of decimal fractions of a mean
solar day into equivalent intervals of mean sidereal time, expressed in hours and
minutes (to one decimal). It is primarily intended for use in computing parallax
corrections (section 2F), and so the number of significant figures is small.

Tables 17.4 and 17.5. These tables are for the conversion of time intervals
(or angles) expressed in decimals of a day (or revolution) into the equivalent
measure in hours, minutes, and seconds, and vice versa. Table 17.5 is primarily
intended for use in obtaining interpolating factors, and so the respondent is
restricted to six decimals.

Tables 17.6 and 17.7. These tables are for the conversion of sexagesimal
measure to decimal measure, and vice versa. Although the units indicated are
degrees, minutes, and seconds the tables are equally applicable to hours, minutes,
and seconds.

Tables 17.8 and 17.9. These tables are for the conversion of measures Qf time
(hours, minutes, and seconds) to measures of arc (degrees, minutes, and seconds),
and vice versa; they are the same as Tables XI and XII of the Ephemeris.

Table 17.10. This table is intended only for occasional use in the conversion,
to low accuracy, of sexagesimal angular or time measure to decimals of a revolution
(or day) or to radians, and vice versa. Conversion constants are given for use
when greater accuracy is required.

473
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474 17.1-INTERVALS OF MEAN SIDEREAL TO MEAN SOLAR TIME

Sidereal Solar Sidereal Solar Sidereal Solar Sidereal om I m
Time Time Time Time Time Time Time Solar Time

h m h m h m h m s h m h m m m s
000 00000'000 800 7 58 41'3 64 I600 15 57 22'727 0 000'000 ° 59.836

IO 00958 '362 IO 808 39'725 IO 160721'089 I 00°'997 I 00,833
20 ° 19 56'723 20 8 18 38'087 20 16 17 19'451 2 001'995 I 01·831
30 029 55'085 30 828 36 '449 30 16 27 17.812 3 002'992 I 02,828
40 ° 39 53'447 40 8 38 34'810 40 16 37 16· 174 4 ° °3'989 I °3.825
50 ° 495 1.8°9 50 848 33'172 50 16 47 14'536 5 ° °4'986 I 04·823

IOO 05950 '170 9 00 858 31'534 I7 00 16 57 12,897 6 005'984 I 05'820
IO I °948. 532 IO 9 08 29,896 IO 17°7 11'259 7 006'981 I 06.817
20 I 19 46·894 20 9 18 28'257 20 17 17 09'621 8 ° °7'978 I 07'814
30 I 2945'256 30 9 28 26,6 19 30 17 27 °7'983 9 008'975 I 08·812
40 I 3943'617 40 9 38 24'981 40 1737°6 '344 IO ° °9'973 I 09.809
50 I 4941'979 50 94823'343 50 17 47 04'706 n ° 1°'97° I 10,806

200 I 594°'341 IO 00 9 58 21 '7°4 I800 17 57 03'068 I2 ° 11'967 I II .803
IO 20938 '703 IO 100820'066 IO 18 07 01 '430 I3 ° 12'965 I 12,801
20 2 19 37'064 20 10 18 18'428 20 18 16 59'791 I4 ° 13'962 I 13'798
30 2 29 35'426 30 10 28 16'790 30 1826 58 '153 IS ° 14'959 I 14'795
40 2 39 33'788 40 103815'151 40 183656'515 I6 ° 15'956 I 15'792
50 24932'150 50 104813'513 50 18 46 54'877 I7 ° 16'954 I 16'790

3 00 2593°'5 11 II 00 105811,875 I9 00 18 56 53'238 I8 ° 17'95 I I 17'787
IO 3 09 28 ,873 IO I I 08 10'237 IO 19 06 51,600 I9 ° 18'948 I 18'784
20 3 19 27'235 20 II 1808'598 20 19 16 49'962 20 ° 19'945 I 19'782
30 3 29 25'597 30 I I 28 06'960 30 19 26 48'324 2I 020'943 I 20'779
40 3 39 23'958 40 I I 3805'322 40 19 3646,685 22 021'94° I 21 '776
50 34922'320 50 II 48 °3.684 50 1946 45'047 23 022'937 I 22'773

4 00 3 5920.682 I200 I I 58 02'045 2000 1956 43'409 24 ° 23'934 I 23'771

IO 4°9 19'°43 IO 120800'407 IO 200641'771 25 024'932 I 24'768
20 4 19 17'405 20 12 17 58'769 20 20 1640'132 26 025'929 I 25'765
30 4 29 15'767 30 12 27 57' 130 30 202638'494 27 026'926 I 26'762
40 4 39 14' 129 40 1237 55'492 40 2°3636.856 28 027'924 I 27'760
50 449 12'49° 50 12 4753.854 50 204635'217 29 ° 28'921 I 28'757

500 459 10.852 I3 00 12 57 52'216 2IOO 20 56 33' 579 30 029'918 I 29'754
IO 5 09 °9' 21 4 IO 13°75°'577 IO 21 0631'941 3I ° 3°'915 I 30'752
20 5 19 07'576 20 13 17 48'939 20 21 16 30'303 32 ° 31'913 I 31'749
30 5 29 05'937 30 13 27 47'3°1 30 21 26 28·664 33 ° 32 '9 10 I 32'746
40 539°4'299 40 13 3745.663 40 21 3627.026 34 ° 33'9°7 I 33'743
50 549°2.661 50 134744'°24 50 21 4625'388 35 ° 34'9°4 I 34'741

600 5 59 01 '023 I4 00 13 57 42 '386 2200 21 56 23'750 36 ° 35'9°2 I 35'738
IO 6 08 59'384 IO 14 0740 '748 IO 220622'111 37 ° 36.899 I 36'735
20 6 18 57'746 20 14 1739'110 20 22 16 20'473 38 ° 37.896 I 37'732
30 628 56 '108 30 14 27 37'471 30 22 26 18·835 39 ° 38 ,894 I 38'73°
40 638 54'470 40 1437 35.833 40 2236 17'197 40 ° 39,891 I 39'727
50 648 52.831 50 14 47 34' 195 50 2246 15'558 4I ° 40 ,888 I 4°'724

700 658 51'193 IS 00 14 57 32' 557 23 00 2256 13'920 42 ° 4 1,885 I 41'721
IO 7 08 49'555 IO 15 07 3°'918 IO 23 06 12'282 43 ° 42·883 I 42'719
20 7 18 47'9 17 20 15 17 29'280 20 23 16 10,644 44 ° 43.880 I 43'716

30 7 28 46 '278 30 15 2727,642 30 23 26 09'005 45 ° 44.877 I 44'713
40 738 44. 64° 40 15 3726'004 40 23 36 07'367 46 ° 45.874 I 45'711
50 748 43'002 50 15 47 24'365 50 23 46 05'729 47 ° 46.872 I 46'708

800 758 4 1'364 I600 15 57 22'727 2400 23 56 °4'°91 48 ° 47.869 I 47'705
49 ° 48 .866 I 48'7°2

50 ° 49.863 I 49'700
FRACTIONS OF A SECOND Fraction of Amount to 5I ° 5°·861 I 50,697

a second be subtracted 52 ° 51.858 I 51.694
The mean solar equivalent of a fraction s 53 ° 52.855 I 52.6910,000 s

of a sidereal second is equal to that O' I83
0'000 54 ° 53. 853 I 53,689

fraction diminished by the amount In '001 55 ° 54'850 I 54·6860'549
the accompanying critical table. '002 56 ° 55.847 I 55.683o'9I 5

In critical cases ascend. I'ooo °'°°3 57 ° 56.844 I 56.681
58 ° 57.842 I 57.678
59 ° 58 .839 I 58,675
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Sidereal 2m 3m 4m Sm 6m 7m 8m 9m
Time Solar Time

s s m s m s no s

° I 59-672 259-509 3 59-345 4 59- 181 5 59-01 7 658-853 758 -689 858-5 26
I 20o-67° 3 00- 506 4 00-342 5 00- 178 6 00-014 659-850 759-687 859-523
2 201- 667 3 01 -503 4°1-339 5 01 -175 6 01 -012 7 00- 848 800,684 9 00'520
3 202,664 3 02-500 4 02'337 5 02- 173 602-0°9 7 01-845 8 01 -681 9 01 -5 17
4 203-661 3 03'498 4 03-334 5 03' 170 603'006 7 02 ,842 802,678 9°2 '5 15
5 204'659 3 04'495 4 °4'33 1 5 04' 167 6 04-003 7 03- 840 803-676 9°3'5 12
6 205'656 3 05-492 4 05-328 5 05' 164 6 05'001 7 04'837 804'673 9 °4'5°9
7 206- 653 3 06 '489 4°6'326 5 06-162 6 05-998 7 05- 834 805-670 9 05'506
8 207'65 1 3 07-487 4 07'323 5 07'159 606'995 7 06 ,83 1 806,668 9.,6'5°4
9 208,648 3 08 '484 4 08 '320 5 08'15 6 607'992 7 07'829 807'665 9 07' 501

10 209- 645 3 09-481 4 °9'3 17 5 09'154 608'990 7 08 ,826 8 08-662 9 08-498
II 2 10,642 3 10'478 4 1°'3 15 5 10'15 1 609'987 7 09'823 809'659 9 09'496
12 2 11,64° 3 11'476 4 11 '3 12 5 11 -148 6 10-984 7 1O-82O 8 10-657 9 10-493
13 2 12,637 3 12'473 412'3°9 5 12' 145 611'982 7 11,818 811,654 9 11 '49°
q 2 13'634 3 13'470 4 13'306 5 13' 143 6 12'979 7 12, 81 5 8 12,651 9 12-487

15 21 4'63 1 3 14'468 4 14'3°4 5 14'14° 6 13'976 7 13'812 8 13,648 9 13-485
IS 2 15-629 3 15'465 4 15'3°1 5 15'137 6 14'973 7 14'810 8 14'646 9 14'482
17 2 16,626 3 16'462 4 16'298 5' 16'134 6 15'971 7 15- 807 8 15-643 9 15'479
IS 2 17'623 3 17'459 4- 17'296 5 17'132 6 16'968 7 16-804 8 16-640 9 16'476
19 2 18-620 3 18'457 4 18'293 5 18'129 6 17'965 7 17'801 8 17,638 9 17'474
20 2 19-618 3 19'454 4 19'290 5 19'126 6 18'962 7 18-799 8 18,635 9 18-471
:u 2 20,615 3 20'45 I 420-287 5 20-124 6 19'960 7 19'796 8 19'632 9 19'468
22 2 21 -612 3 21-448 4 21 '285 5 21 '121 620-957 72°'793 820,629 920'465
23 2 22,610 3 22 -446 4 22 '282 5 22 -118 621'954 721-790 821,627 9 21 '463
24 223'607 3 23'443 423'279 523'115 622'952 7 22'788 822-624 922'460

25 224'604 324'44° 424'276 5 24'113 6 23'949 7 23-785 823- 621 9 23-457
26 2 25'601 3 25'438 4 25'274 525'110 624'946 724'782 8 24'618 9 24-455
27 2 26- 599 3 26'435 4 26'27 1 5 26- 107 6 25'943 725'779 8 25'616 9 25-45 2
28 227'596 3 27'43 2 427'268 527' 1°4 6 26-941 726'777 8 26,613 926'449
29 228'593 3 28'429 428'266 5 28'102 627'938 727'774 8 27-610 9 27-446

3° 229'590 3 29'427 429'263 5 29'099 628-935 7 28-77 1 828,6°7 928'444
31 23°-588 3 30-424 430 '260 5 3°'°96 629'932 7 29'769 829,605 929'441
32 23 1'585. 3 31'421 43 1'257 5 31'093 630 '930 730 '766 830,602 93°-438

33 232 '582 3 32'418 432'255 5 32'091 63 1'927 73 1'763 83 1'599 93 1'435
34 233-580 3 33'416 4 33'252 5 33'088 632 '924 732-760 832'597 932-433

35 234'577 3 34'413 434'249 5 34'°85 633-921 7 33'758 833'594 933'43°
36 235-574 3 35'410 435'246 5 35'083 6 34'919 7 34'755 8 34' 591 934'427
37 2 36'571 336 '407 436 '244 5 36 '080 6 35'916 7 35'752 8 35- 588 9 35'425
38 237'569 3 37-405 437'241 5 37'077 636 '9 13 736 '749 836 '586 936 '422
39 238'5 66 338 '402 438 '238 538 '074 6 37'911 737",47 8 37' 583 9 37'419

4° 2 39'563 3 39'399 4 39'235 5 39'072 6 38'908 7 38 '744 8 38-580 9 38-416

41 2 4°-56o 3 4°'397 4 40 '233 5 40'069 6 39-905 7 39'741 8 39'577 9 39'414
42 2 41'558 3 4 1'394 4 4 1'230 5 4 1'066 6 4°'902 7 4°'739 84°-575 9 4°'41 I

43 2 42'555 3 42'391 4 42-227 5 42 '063 6 41-900 7 4 1'736 841'572 9 41'40g

44 243'552 343'388 443'225 5 43- 0S1 642,897 742'733 842 '5 69 942-405

45 244'549 3 H'386 444'222 5 H'058 6 43,894- 743'73° 8 43' 567 9 43'4°3
46 245'547 345-383 445'219 545'°55 644'89 1 744-72S 844'564 9 H'400

47 246 '544 346 '380 446 '216 546 '053 6 45'889 7 45'725 845'561 9 45'397
48 247-541 3 47-377 447'21 4 5 47- 050 646,886 746-722 846'558 946'395
49 248'539 3 48 '375 448'211 548 '047 647,883 7 47'7 19 847'556 947'392

50 249-536 3 49'372 449'20g 549'O.j..j. 6 48,881 7 48-7 17 848'553 9 48'389
51 2 50' 533 3 50'3 69 4 50-205 5 50'042 649'878 749'714 849-550 9 49'3 86
52 25 1-53° 35 1-367 45 1' 203 5 51'039 650,875 750-7 11 8 50-547 9 50'384
53 2 52'528 3 52'3 64 452-200 5 52'036 65 1,872 75 1-709 8 51'545 95 1-381

54 2 53'525 3 53'361 453'197 5 53'033 652-870 752 '706 8 52'542 9 52'378

55 254'522 3 54'358 4 54' 195 5 54'03 I 6 53'867 7 53'7°3 853'539 9 53'375
56 255-5 19 3 55-356 4 55' 192 5 55-028 654-864 754'7°0 854'536 954-373
57 256 '5 17 3 56 '353 4 56, 189 5 56'025 6 55'861 7 55,698 8 55' 534 9 55'370
58 257'5 14 3 57'35° 4 57' 18S 5 57'023 6 56,859 7 56 ,695 856-53 1 9 56 '367
59 258 '5 11 358 -:H7 4 58- 184 5 58'020 6 57,856 7 57,692 857-528 9 57'364

- -----------------------------
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Solar
Time

Sidereal
Time

Solar
Time

Sidereal
Time

Solar
Time

Sidereal
Time

Solar
Time

om I m

Sidereal Time

The sidereal equivalent of a fraction
of a mean solar second is equal to that
fraction increased by the amount in the
accompanying critical table.

In critical cases ascend.

FRACTIONS OF A SECOND Fraction of
a second

h m
000

10

20

30

40

50

100

10

20
30

40

50

200

10

20

30
40

50

3 00

10

:10

30
40
50

4 00

10

20

30

40

50

500
10

20

30

40

50

600

10
20

30

40

50

00
10
20

30

40

50

800

h m
00000'000
° 1001·643
020 °3'285
° 30 °4'928
°4°°6 '57 1
° 50 08'2 14

I 00 09.856
11011'499
12013'142
I 30 14'785
I 40 16'427
I 50 18'070

2 00 19'713
2 10 21 '356
22022'998
230 24.641
24°26'284
2 50 27'927

3 00 29'5 69
3 10 3 1'212
3 20 32.855
3 30 34'498

34°36'14°
3 50 37'783

4 00 39'426
4 1°41'°69
420 42'71 I

430 44'354
440 45'997
45°47.64°

5 00 49'282
5 10 50'925
5 20 52'568 '
5 30 54'211
540 55. 853
5 50 57'496

6 00 59' 139
6 I I °°'782
62102'424
631 04'067
641 °5'710
6 5 I 07'353

7 01 08'995
7 I ~ ~0·638

7 21 12'281
73 1 13'924
741 15'566
7 5 I 17'209

8 01 18·852

h m

800

10
20

30

40

50

9 00

10
20

30

40

50

1000

10
20

30

40

50

1100
10

20

30

40

50

1200

10

20

30

40

50

13 00

10

20

30

40

50

14 00

10

20
30

40
50

15 00

10

20
30

40

50

1600

h m s

8 01 18·852
8 I I 20'495
821 22'137
83 123'780
841 25'423
85 127'066

9°1 28'708
9 11 3°'35 1
9 21 31'994
93 1 33.636
941 35'279
951 36 '922

10 01 38. 565
10 I I +0'207
10 21 41 ·850

1°3 1 43'493
10 4 1 45'136
10 5 I 46'778

I I 01 48'421
I I I I 50'064
112151'7°7
I I 31 53'349
I I 41 54'992
I I 5 I 56.635

12 01 58'278
12 I I 59'920
122201'563
12 32 03'206
1242 °4.849
12 52 06'49 1

13°208'134
13 12°9'777
132211'420
13 32 13'062
13 42 14'705
13 52 16'348

14°2 17'991
14 12 19.633
142221'276
143222 '9 19
144224'562
145226'2°4

IS 02 27.847
IS 12 29'490
15223 1'133
IS 3232'775
IS 42 34'418
15 52 36 '°61

16 02 37'704

h m
1600

10

20

30

40

50

17 00

10

20

30

40

50

1800

10

20
30

40

50

19 00

10
20
30

40

50

2000

10
20
30

40

50

2100

10
20

30

40

50

2200

10

20

30

40

50

23 00

10

20

30

40

50

24 00

s
0'000

0'182

0'547

0'91 3
1·000

h m s

160237'704
16 12 39'346
16 22 4°'989
16 32 42.632
16 42 44'275
16 52 45'9 17

17 02 47' 560
17 1249'2°3
17 22 5°.846
I7 32 52'488
1742 54'13 1
17 52 55'774

18 02 57'417
18 12 59'059
18 23 00'702
18 33 02'345
1843 °3'988
18 53 °5.63°

19°3 07'273
19 13 08'916
19 23 10'558
1933 12'201
1943 13. 844.
1953 15'487

20°3 17' 129
20 13 18'772
20 23 20'415
20 33 22'°58
2°43 23'7°°
20 53 25'343

21 03 26'986
21 13 28.629
21 23 3°'271
21 333 1'9 14
21 43 33' 557
21 53 35'200

22°3 36.842
22 13 38'485
222340'128
22 33 4 1'771
224343'413
22 53 45'°56

23°346.699
23 1348 '342
23 23 49'984
23335 1.627
23 43 53'270
23 53 54'9 13

24°3 56· 555

Amount to
be added

s
0·000

'001
'002

0'°°3

o
I

2

3
4

5
6
7
8
9

10

II

12

13
14

15
16
17
18

19

20
21

22

23
24

25
26
27
28
29

30

31

32
33
34

35
36
37
38
39

40

41

42

43
44

45

46
47
48
49

50

51
52

53
54

55
56
57
58

59

000·000
001'0°3
002'0°5
° °3'°°8
004'01 I

° °5'01 4
006'016

° °7'01 9
008'022

° °9' 025
° 10'027
° II '030
012'033

° 13'°36

° 14'°38

° 15'°41
016'°44
° 17'°47
° 18'°49
° 19'°52

020'°55
021'°57
022'060
023'063
024'066

° 25'°68
° 26'°7 1
027'°74
028'°77
029'°79

° 3°'°82
°3 1'°85
° 32'088
° 33'°9°
° 34'°93

° 35'°96

° 36 '°99
° 37' 101
° 38'1°4
° 39'1°7

° 4°'110
°41'112
° 42 '115
°43'118
°44'120

°45'123
°46'126
° 47' 129
° 48'13 1

°49'134

° 50' 137
° 5 1'14°
° 52' 142
° 53' 145
° 54'148

° 55'15 1
°56'153
°57'15 6

° 58 '159
° 59'162

I 00· 164
I 01'167
I 02· 170
I 03'172
I 04'175

I °5'178
I 06'181
I °7'183
I 08'186
I 09'189

10'192
11'194

I 12'197
13'200
14'2°3

I 15'205
16'208
17'211
18'214
19'216

I 20'219
121'222
I 22'225
I 23'227
I 24'230

I 25'233
I 26'235
I 27'238
I 28'241
I 29'244

I 3°'246
I 31'249
I 32'252
I 33 '255
I 34'257

I 35'260
I 36'263
I 37'266
I 38'268
I 39'271

I 40'274
I 41 '277
I 42'279
I 43'282
I 44'285

I 45'287
I 46'29°
I 47'293
I 48'296
I 49'298

I 50'301
15 1'3°4
I 52'3°7
I 53'309
I 54'312

I 55'315
I 56'318
I 57' 320
I 58'323
I 59'326
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Solar 2m 3m 4m 5m 6m 7m 8m 9m

Time Sidereal Time
s m m s m s m s m s m •

0 200'329 3 00'493 4 00·657 5 00·821 600-986 7°1'15° 801'3 14 9°1'478
I 201'33 1 3°1'496 4 01·660 5 01·824 601'988 7°2'153 802'3 17 9 02'481
2 2 02'334 3°2 '498 4 02·663 5 02·827 6 02'991 7°3'155 803'320 9 °3'484
3 2 03'337 3 03'501 4 °3.665 5 °3. 83° 603'994 7°4'158 8 04-322 9 °4'487
4 2 04'340 3 04'504 4 °4. 668 5 °4. 832 604'997 7°5'161 8 05'325 9 °5'489

5 2 05'342 3 05'507 4 °5. 67 1 5 °5. 835 605'999 7 06· 164 806-328 9°6 '492
6 2 06'345 3 06 -509 4°6 .674 5 06.838 6 07'°02 7 07' 166 8 °7'331 9 07'495
7 2 °7'348 3 °7'5 12 4 °7.676 5 07- 84 1 608'°°5 7 08 -169 8 08-333 9 08 '498
8 208'35° 3 08 -5 15 4 08 -679 5 08- 843 6 °9-008 7°9'172 8 °9'336 9 °9'5°0

9 2 09-353 3°9'5 17 4 °9.682 5 °9.846 6 10'010 7 10'175 8 10'339 9 10· 503

10 2 1°'356 3 1°'520 4 10·684 5 10·849 6 I1'013 7 I1'I77 811'342 9 1I' 506
II 2 Il'359 3 11'523 4 11·687 5 Il·85 1 6 12'016 7 12' 180 8 12'344 9 12'5°9
I2 2 12'361 3 12'526 4 12·690 5 12·854 6 13'019 7 13' 183 8 13'347 9 13'5 I1
13 2 13-364 3 13-528 4 13.693 5 13.857 6 14'021 7 14'186 8 14'350 9 14'5 14
14 2 14'367 3 q-53 1 4 14- 695 5 14. 860 6 15'024 7 15- 188 8 15'353 9 15'5 17

15 2 15'370 3 15'534 + 15.698 5 15. 862 6 16-027 7 16'191 8 16'355 9 16 '520
16 2 16'372 3 16· 537 4 16-701 5 16. 865 6 17'029 717'194 8 17-358 9 17'52Z
I7 2 17'375 3 17' 539 4 17'704 5 17. 868 6 18'032 7 18 '196 8 18'361 9 18· 525
18 2 18'378 3 18'542 4 18-706 5 18.871 6 19'035 7 19' 199 8 19'363 9 19'5 28
I9 2 19'381 3 19'545 4 19'709 5 19. 873 620-°38 720-202 82°'366 92°'53°

20 2 2°'383 3 2°'548 4 20-7 12 5 20.876 621'°4° 7 21 '205 8 21 '369 9 21 '533
21 221'386 321'55° 4 21 '7 15 5 21 .879 622-°43 7 22'207 8 22-372 9 22'536
22 2 22'389 3 22' 553 4 22'7 17 5 22·882 623'046 7 23'210 8 23'374 9 23'539
23 223'392 3 23'556 4 23'720 5 23. 884 624-°49 724'213 824'377 9 24'541
24 224'394 3 24-559 424'723 5 24. 887 625'05 1 7 25'216 825'380 925'544

25 225'397 3 25- 561 4 25'726 5 25. 89° 626'°54 7 26'218 8 26'383 926 '547
26 226-400 3 26 -5 64 426 '728 5 26- 893 627'057 7 27'221 827'385 927'55°
27 227'4°2 3 27-567 4 27'73 1 5 27. 895 628'060 728-224 8 28'388 9 28 -552
28 228'4°5 3 28'5 69 4 28 -734 5 28.898 629-062 729-227 8 29-391 9 29'555
29 229'408 3 29' 572 4 29'736 5 29'901 6 30'065 730 '229 8 30'394 930 '55 8

30 2 3°'41 I 33°'575 43°'739 5 30'904 63 1'068 73 1'23 2 83 1'396 93 1'561
31 23 1'413 33 1-578 43 1'742 53 1'906 6 32'°71 7 32'235 8 32'399 932'563
32 232'416 3 32- 580 4 32'745 5 32-909 6 33'073 7 33'238 8 33-402 933'566
33 2 33'419 3 33'583 433'747 5 33'912 634'°76 734'24° 834'405 934'56.,
34 234-422 3 34-586 4 34'750 5 34'914 6 35-079 7 35-243 8 35'407 935'572;

35 235'424 335'589 435'753 5 35'917 6 36'°81 736 '246 836 '410 936 '574
36 236 -427 3 36 -59 1 4 36 '756 5 36 '920 6 37'084 737'248 837-4 13 937'577
37 237'43° 3 37-594 4 37'758 5 37'923 638 '087 7 38'25 I 8 38'415 938'580
38 238-433 3 38-597 4 38-761 5 38 '925 6 39-090 7 39'254 839'418 9 39'583
39 2 39'435 339.600 439'764 5 39'928 640 '092 740 '257 8 4°'421 94°-585

40 240 '438 34°.602 44°'767 5 4°'93 1 641'°95 741'259 841'424 941'588
4I 241'441 3 4 1·605 441'769 541-934 642'°98 742 '262 842'426 9 42' 591
42 242-444 3 42·608 442'7"72 5 42'936 6 43' 101 743' 265 8 43'429 943'593
43 243'446 343-6I1 443-775 543'939 644' 103 744'268 844'432 944-596
44 244'449 3 44. 61 3 444'778 5 44-942 645'106 745'27° 845'435 945'599

45 245'452 3 45.616 445'780 5 45-945 646 -109 746 '273 846 '437 946 -602
46 246 '454 3 46 .61 9 446 '783 546 '947 647' I12 747'276 847-440 947.6°4
47 247'457 347.622 447'786 547'95° 648 ' I1 4 748 '279 848'443 948 .6°7
48 248 '460 348 .624 448 '789 5 48 '953 649'117 7 49'281 849'446 9 49. 610
49 249'463 349.627 449'79 1 5 49-956 6 50'120 7 5o' 284 850 '448 9 5°.61 3

50 250 '465 3 50-630 45°'794 5 5°'958 65 1' 123 75 1'287 85 1'45 1 95 1.61 5
5 I 25 1'468 35 1-632 45 1'797 55 1'961 6 52' 125 752-290 852'454 9 52·618
52 2 52'471 3 52.635 452'799 5 52 '964 653'128 7 53'292 8 53-457 953.621
53 253'474 3 53.638 453-802 5 53'966 654'13 1 754'295 854'459 954.624
54 254'476 3 54.64 1 454.8°5 5 54-969 6 55- 133 755'298 8 55'462 9 55·626

55 2 55'479 3 55. 643 455. 808 5 55-972 656 '136 756 '301 8 56'465 9 56 .629
56 2 56'482 3 56 .646 456 .810 5 56 '975 6 57' 139 7 57'303 8 57'468 957-632
57 257'485 3 57.649 4 57.81 3 5 57'977 6 58'142 7 58 '306 858 '470 9 58 .635
58 258 '487 3 58 .652 4 58 .816 5 58 '980 6-59'144 7 59'309 8 59'473 959.637
59 259'490 3 59.654 4 59.81 9 5 59'983 7°°'147 800'3 I1 9 °°'476 1000.64°

- --------------- - -



478 17.3-DECIMALS OF A SOLAR DAY TO SIDEREAL TIME
Solar Sidereal Solar Sidereal Solar Sidereal Solar Sidereal Solar Sidereal
Time Time Time Time Time Time Time Time Time Time

d b m d b d d d
0'00 o 00·0 0-50 12 02·0 0·00000 m 0'00328 m 0-00661 m

-01 o 14-4 '51 12 16'4 0-0 4·8 -00668 9·6'00003 -00335
-02 o 28'9 -52 12 30'9 0·1 .00342 4-9 '00675 9'7-00010
·03 o 43'3 -53 12 45'3 0'2 -00349 5-0

'00682
9.8.00017

'04 o 57·8 '54 12 59'7 '00024 0'3 -00356 5- 1
'00689 9'9

0-05 12'2 0'55 13 14'2 .00031 0'4 -00363 5-2 '00696
10-0

-06 26·6 '56 13 28·6 0'5 -00370 5-3 10- I
'00038 6 -00702

-07 I 41-1 -57 13 43'0 o· -00377 5-4 10-2·00045 .00709-08 I 55'5 '58 13 57'5 .00051 0-7 '00384 5'5 '00716 1°'3
-09 2 10·0 '59 14 II'9 0·8 5·6 10'4'000$8 .00391 '00723

0'10 2 24-4 0·60 14 26'4 -00065 °'9 '00398 5'7 ·00730 1°'5
-II 2 38 -8 ·61 14 40-8 1-0 5. 8 10·6·00072 .00405 -00737-12 2 53'3 -62 14 55-2 I -I

'00412 5'9 1°'7-00079 ·00744-13 3 07-7 -63 15 09'7 ·00086 1'2 6-0 10·8
.64 '00418 ·00751'14 3 22-2 15 24- I 1-3 6'1

-00758 10'9'00093 '00425 6-20- 15 3 36 .6 0.65 15 38 .6 1-4
.00765

11·0·00100 ·00432 6'16 3 51'° ·66 15 53'0 1'5 II'I
·17 .67 16 07'4

.00107
1·6

-00439 6'3 '007724 05'5 -00446 -4 II'2
-18 ·68 16 21-9 -00114 -007794 19'9 1'7 6-5

.00786 II'3
'19 4 34'3 -69 16 36'3 ·00121

1-8 ·00453 6.6
·00128 '00460 ·00792

11'4
0'20 4 48 .8 0'70 16 50-8 1'9 6-7 I I,5.00135 .00467 6-8 ·00799-21 5 03'2 '71 17 05'2 2'0

·00806
II·6

17'7 '72 17 19-6
.00141 '00474 6'22 5 '00148 2'1 -00481 '9 '00813

II'7
'23 5 32 '1 '73 17 34'1 2'2 -00488 7'° '00820

11-8
-24 5 46 -5 '74 17 48'5 '00155

.00162 2'3 .00495 7'1 '00827
II-9

0-25 6 01'0 0-75 18 03'0 .00169 2-4 '00502 7'2 .00834
12'0

-26 6 15-4 -76 18 17-4 2-5 -00509 7'3 12-1
'27 6 29'9 -77 18 31-8 '00176 6 '00841

'00183 2- '00515 7-4 '00848
12'2-28 6 44-3 -78 18 46'3

6 58-7
2'7 .00522 7-5 '00855

12-3
-29 '79 19 00'7 '00190 82· 7-6

'00862 12'4
7 13'2 0-80 19 15-2 .00197 '005290'30

'00204 2'9 '00536 7-7 12'5
'31 7 27.6 ·81 19 29.6 '00869

12·6.00211 3'0 7·8 .00876'32 7 42-1 ·82 19 44'0 '00543
7 56 '5 -83 19 58-5 .00218 3'1 '00550 7-9 -00882 12'7-33

'00225 3-2 8,0 12·8'34 8 10'9 -84 20 12'9 '00557 8-1 -00889
-00232 3-3 -00564 8 -00896

12-9
0'35 8 25-4 0·85 20 27-4

-00238 3-4 '2 13'°
'36 8 39.8 -86 20 41-8

-00245 3-5
-00571 8 -00903

13 -I
'37 8 54-3 .87 20 56-2

3·6
-00578 8'3 -00910

13'2'38 9 08'7 ·88 21 10'7 .00252 .00585 8'4 .00917
'39 9 23'1 .89 21 25' I .00259 3'7 -00592 8:~ .00924 13'3

3. 8 13'4
0'40 9 37. 6 0'90 21 39-5 -00266 -00599 -00931

'00273 3'9 8'7 -00938 13'5-41 9 52'0 '91 21 54'° .00605 8·8
10 06-5 22 08-4 -00280 4-0

·00612 13·6'42 '92 '00945
'00287 4'1 8'9 .00952 13'7-43 10 20'9 '93 22 22'9 .00619

-44 10 35'3 '94 22 37-3 '00294 4'2 -00626 9'0 13.8
-00959

10 49-8 .00301 4-3 006 9'1 -00966 13'90-45 0-95 22 51-7 . 33
'46 II 04-2 -96 23 06-2 '00308 4-4 -00640 9'2 '00973 14'°
-47 II 18'7 -97 23 20·6 -00315 4'5 -00647 9-3 '00979 14- 1

-48 II 33- I -98 23 35'1 4-6 .00654 9'4 .00986 14'2-00322
'49 II 47'5 0-99 23 49'5 '00328 4-7 -00661 9'5 '00993 14'3

4·8 9-6 14'40-50 12 02·0 1·00 24 03'9 0'00335 0-00668 0·01000
In critical cases ascend.



17.4-DECIMALS OF A DAY TO HOURS, MINUTES, AND SECONDS 479

d Equivalent time interval of d Equivalent time interval of
d d/loo d/loooo d d/loo d/loooo

d h m d h m m
0·00 0 00 00 o 00'00 0·00 0'50 IZ 00 00 7 IZ'OO 4'3Z

·01 0 14 Z4 o 08·64 0'09 '51 IZ 14 Z4 7 zo·64 4'41
·oz o z8 48 o 17·z8 0'17 -52 IZ z8 48 7 z9·z8 4'49
·03 o 43 IZ o z5'9z 0·z6 '53 IZ 43 IZ 7 37'9Z 4-58
'04 o 57 36 o 34'56 0'35 -54 IZ 57 36 7 46 '56 4-67

0'05 IZ 00 o 43'zO 0'43 0'55 13 IZ 00 7 55'zO 4'75
'06 z6 Z4 o 51.84 0'5Z '56 13 z6 Z4 8 03·84 4.84
-07 40 48 I 00'48 0·60 -57 13 40 48 8 IZ'48 4-9Z
'08 55 IZ I 09'IZ, 0·69 '58 13 55 IZ 8 21'IZ 5'01
·09 Z 09 36 I 17'76 0'78 -59 14 09 36 8 Z9-76 5- 10

0'10 Z 24 00 z6'4° 0·86 0·60 14 24 00 8 38-40 5. 18
·11 Z 38 24 35'04 0'95 ·61 14 38 Z4 8 47'04 5-27
'12 Z 52 48 43·68 1-04 ·62 14 5Z 48 8 55.68 5'36
'13 3 07 IZ I 5z'3z I·IZ -63 15 07 12 9 04'32 5-44
'14 3 ZI 36 Z 00'96 I-ZI ·64 15 ZI 36 9 IZ-96 5-53

0'15 3 36 00 Z 09·60 1'30 0.65 15 36 00 9 21·60 5.62
'16 3 50 Z4 Z 18'Z4 1'38 -66 15 50 Z4 9 30'Z4 5'70
·17 4 04 48 2 26-88 1'47 .67 16 04 48 9 38.88 5'79
-18 4 19 12 2 35'52 1'56 -68 16 19 12 9 47'5z 5.88
-19 4 33 36 2 44'16 1·64 ·69 16 33 36 9 56 '16 5'96

0'20 4 48 00 Z 5z·80 1'73 0'70 16 48 00 10 04.80 6'05
'21 5 oz 24 3 01-44 1-81 '71 17 02 Z4 10 13'44 6- 13
'22 5 16 48 3 10'08 1'90 -72 17 16 48 10 zz·08 6·zz
-23 5 31 12 3 18-72 1'99 '73 17 3 I IZ 10 30'7z 6'3 1
-24 5 45 36 3 z7'36 2'07 -74 17 45 36 10 39'36 6'39

0-25 6 00 00 3 36 '00 z-16 0'75 18 00 00 10 48'00 6'48
'26 6 14 24 3 44-64 Z'Z5 -76 18 14 Z4 10 56-64 6'57
'27 6 z8 48 3 53-z8 2'33 -77 18 z8 48 II 05'28 6-65
'28 6 43 12 4 01-9z 2-42 -78 18 43 12 II 13'9z 6-74
-29 6 57 36 4 10'56 2'5 1 -79 18 57 36 II ZZ'56 6-83

0'30 7 12 00 4 19'20 z'59 0·80 19 IZ 00 II 31'20 6-91
'31 7 26 z4 4 z7·84 2·68 -81 19 z6 Z4 II 39.84 7'00
'32 7 40 48 4 36-48 z'76 -82 19 40 48 II 48-48 7:08
-33 7 55 IZ 4 45' I Z z·85 -83 19 55 12 II 57- IZ 7'17
'34 8 09 36 4 53-76 Z'94 -84 zo 09 36 IZ 05'76 7-26

0-35 8 Z4 00 5 oZ'4° 3'02 0-85 zo 24 00 IZ 14-40 7'34
'36 8 38 z4 5 11'04 3'11 ·86 zo 38 24 12 z3,04 7-43
'37 8 52 48 5 19-68 3'ZO ·87 zo 5Z 48 12 31.68 7'5z
'38 9 07 12 5 z8-32 3·z8 ·88 ZI 07 IZ 12 40'3z 7-60
-39 9 21 36 5 36-96 3'37 ·89 ZI 21 36 IZ 48'96 7.69

0'40 9 36 00 5 45.60 3'46 0'90 21 36 00 12 57.60 7'78
'41 9 50 24 5 54'24 3'54 '91 ZI 50 z4 13 06-z4 7-86
'42 10 04 48 6 oz·88 3.63 -92 22 04 48 13 14.88 7-95
'43 10 19 IZ 6 11-5z 3-72 '93 zz 19 12 13 23'5Z 8'04
-44 10 33 36 6 20-16 3. 80 -94 zz 33 36 13 3z'16 8·12.

0'45 10 48 00 6 z8·80 3-89 0-95 zz 48, ')0 13 40 .80 8-21
-46 II 02 z4 6 37-44 3'97 -96 z3 02 24 13 49'44 8'Z9
'47 II 16 48 6 46'08 4'06 -97 23 16 48 13 58-08 8-38
'48 II 31 IZ 6 54'7z 4- 15 -98 Z3 31 12 14 06'72 8-47
'49 II 45 36 7 03'36 4'23 0'99 Z3 45 36 14 15-36 8'55

0'50 12 00 00 7 IZ'OO 4-3Z 1-00 24 00 00 14 24-00 8.64



480 17.5-HOURS, MINUTES, AND SECONDS TO DECIMALS OF A DAY

Oh I h 2 h 3h 4 h 5h Seconds
m d d d d d d • d0 0'000000 0'041 667 0' 083 333 0'125 000 0'166667 0' 208 333 0 0'000000
I '000694 '042 361 ' 084 028 ' 125 694 · 167 361 '209 028 I '000012
2 '001 389 '043 056 '084722 · 126 389 '168056 '209722 2 '000023
3 -002083 '043750 -085 4 17 '127 083 -168 750 -210 4 17 3 '000035
4 -002 778 '044 444 '086 I II -127778 -169444 -2II III 4 '000046

5 0-003472 0'045 139 0'086806 0- 128 472 0' 170 139 0-21 I 806 5 0'000058
6 -004 167 -045 833 '087 500 -129 167 '170833 '212 500 6 -000069
7 -0°4861 '046 528 -088 194 -129861 · 171 528 ' 21 3 194 7 -000081
8 -005 556 -°47222 '088889 -13°556 -172 222 -213 889 8 '000093
9 '006250 '047 9 17 .089 583 '13 1 250 · 172 917 -21 4 583 9 -000 104

10 0'006 944 0'0486Il 0'090 278 0'13 1 944 0'173 6II 0'215 278 10 0'000 II6
II '007 639 -0493°6 '090 972 -132 639 '174306 -21 5 972 II '000 127
12 -008 333 '050000 '091 667 -133 333 · 175 000 '216 667 12 '000 139
13 -009 028 '050694 -092 361 -134 028 -175 694 '217 361 13 -000 150
14 -009722 '05 1 389 '093 056 '134722 · 176 389 '218 056 14 -000 162

IS 0' 010 4 17 0'052083 0-093 750 0'135417 0-177 083 0'218 750 IS 0'000 174
16 'OIl II I -°5 2 778 '094444 -136 III -177 778 ' 219444 16 -000 185
17 -01 I 806 '053472 '095 139 -136 806 -178 472 -220 139 17 '000 197
18 '012 500 '054 167 -095 833 -137500 · 179 167 '220 833 18 '000208
19 -01 3 194 -°54 861 -096 528 -138 194 · 179 861 '221 528 19 '000220
20 0'013 889 0'055 556 0'097222 0- 138 889 0- 180 556 0'222222 20 0'00023 1
21 -01 4 583 '°56 250 '097 917 '139583 '181 250 -222 917 21 '000243
22 -015 278 '056 944 -098 61 I '140 278 -181 944 '223 611 22 '000255
23 -01 5 972 -057 639 '099306 -140 972 · 182 639 -224306 23 '000266
24 -016 667 '°58 333 '100000 '141 667 -183 333 '225 000 24 '000278
25 0'017 361 0'059 028 o·roo 694 o· 142 361 0' 184°28 0'225 694 25 0'000289
26 -018 056 '059722 -101 389 ·143 056 ·184722 ' 226 389 26 -000301
27 '018 750 '060 4 17 · 102 083 '143 750 -185417 '227 083 27 '000 312
28 -01 9444 '061 III -102 778 '144444 -186 I I I -227778 28 -000324
29 '020 139 -061 806 ' 103472 '145 139 -186806 -228 472 29 '000336

30 0'020833 0'062500 0' 104 167 o· 145 833 0' 187500 0'229 167 30 0'000 347
31 -021 528 -063 194 -104 861 -146 528 -188 194 '229 861 31 '000359
32 -022222 '063 889 ' 105 556 '147222 '188889 -230 556 32 '000370
33 '022 9 17 '064583 '106250 -147917 ' 189583 '23 1250 33 '000382
34 '023 61 I '065 278 ·106 944 -148611 '190 278 '23 1 944 34 -000394

35 0'024306 0' 065972 0' 107 639 0'149306 0'190 972 0- 232639 35 0-000405
36 '025000 -066667 · 108 333 '150000 ·191 667 '233 333 36 '000417
37 '025 694 -067 361 ' 109 028 '150694 ·192 361 '234 028 37 '000428
38 '026 389 -068056 -109722 '15 1 389 '193 056 '234722 38 '000440
39 '027 083 ' 068 750 -IIO 417 · 152 083 '193 750 '235 4 17 39 '00045 1

40 0'027778 0' 069444 o· II I I I I 0'152 778 0'194444 0'236 I II 40 0'000463
4 1 '028 472 -°70 139 -I I I 806 · 153 472 '195 139 '236 806 41 '000475
42 -029 167 -07° 833 -112500 '154 167 '195 833 '237500 42 '000486
43 '029 861 -071 528 -II3 194 '154 861 '196 528 '238 194 43 -000498
44 .030 556 -072222 -I 13 889 '155 556 -197222 -238889 44 '000509

45 0'031 250 0'072 917 0'114583 0'156250 0'1979 17 0'239583 45 0'0005 21
46 -03 1 944 '073 6II 'Il5 278 '156 944 -198 6II -240278 46 '000532
47 '032639 '074306 · lIS 972 -157 639 · 199 306 '240 972 47 '000544
48 -033 333 '075 000 · II6 667 -158 333 '200000 '241 667 48 '000556
49 -034°28 '075 694 '117361 '159028 '200694 '242 361 49 -000567
50 0'034722 0'076 389 o· II8 056 0'159722 0'201 389 0'243 056 50 0'000579
51 '035 417 '077 083 ' 118 750 ' 160 4 17 '202 083 -243 750 51 -000590
52 -036 I I I '077 778 '119444 -161 III ' 202 778 '244444 52 -000602
53 -036806 '078 472 -1201 39 ·161 806 -203 472 '245 139 53 -000613
54 '037500 '079 167 '120 833 -162 500 -204 167 '245 833 54 '000625

55 0'038 194 0'079 861 0' 121 528 o· 163 194 0'204861 0'246 528 55 0'000637
56 '038889 '080 556 -122222 '163 889 ' 205 556 '247 222 56 -000648
57 -039 583 '081 250 -122 917 ' 164 583 -206250 -247 917 57 '000660
58 '040 278 '081 944 -123 6II ' 165 278 '206 944 '248 6II 58 '000671
59 0'040 972 0'082639 o· 124 306 0' 165972 0' 207 639 0'249 306 59 0'000683



17.5-HOURS, MINUTES, AND SECONDS TO DECIMALS OF A DAY 481

6 b 7b 8 b 9b IOb II b Seconds

d d d d d d s d
0 0-250000 0-291 667 0-333 333 0-375 000 0-416 667 0-45 8 333 ° 0-000000
1 -250694 -292 361 -334 028 -375 694 -417 361 -459 028 I -000012
2 -25 1 389 -293 0 56 -334722 '376 389 -418 056 '459722 2 -000023
3 -252083 -293 750 '335 4 17 -377 083 '418 750 '460 4 17 3 -000035
4 -252778 '294444 '336 III -377 778 '419444 -461 III 4 '000046

5 0- 253 472 0-295 139 0-336806 0-378 472 0-420 139 0-461 806 5 0'000058
6 -254 167 -295 833 -337 500 -379 167 '420833 '462500 6 .000069
7 '254 861 '296 528 -338 194 '379 861 -421 528 '463 194 7 '000 081
8 -255 556 -297222 '338 889 '380 55 6 '422222 -463 889 8 '000093
9 -256 250 '297 9 17 -339 583 -381 250 '422 917 '464583 9 '000104

10 0- 256 944 0-298611 0-340278 0'381 944 0-423 611 0-465278 IO 0-000116
II '257 639 -299306 -340 972 -3 82 639 '424306 '465972 II '000 127
12 -25 8 333 -300000 -341 667 -383 333 -425 000 -466667 I2 -000 139
13 -259 028 -300694 '342 361 '384 028 -425 694 -467 361 I3 -000 150
14 -259722 '301 389 '343 056 '384722 -426 389 -468056 I4 ·000 162

15 0- 260 4 17 0-302083 0'343 750 0-385 4 17 0-427 083 0'468 750 IS 0-000174
16 -261 III -302 778 -344444 -386 I I I -427778 -469444 I6 -000 185
17 -261 806 -303472 -345 139 -386 806 '428 472 '470 139 I7 '000 197
18 '262 500 -304 167 -345 833 -387 500 -429 167 -470 833 I8 '000208
19 '263 194 '304 861 -346 528 '388 194 '429 861 -471 528 I9 -000220

20 0- 263 889 0-305 556 0'347222 0-388 889 0-430 55 6 0-472222 20 0'00023 1
2I ' 264583 '306250 '347 9 17 -3 89 583 '431 250 '472917 2I '000243
22 -265 278 '306 944 -348 61 I '390 278 '43 1 944 -473 61 I 22 '000 255
23 '265 972 '307 639 -349 306 '390 972 '432639 '474306 23 '000266
24 '266667 '308 333 '350000 -391 667 '433 333 '475 000 24 -000278

25 0-267 361 0'309 028 0'350 694 0-392 361 0-434 028 0-475 694 25 0-000289
26 '268056 -309722 -35 I 389 '393 05 6 '434722 '476 389 26 '000301
27 '268 750 -3 10 4 17 '352083 -393 750 -435 4 17 -477 083 27 -0003 12
28 -269444 '311 III '35 2 778 -394444 -436 III -477 778 28 '0003 24
29 -270 139 -311806 '353472 -395 139 -436806 '478 472 29 '000336

30 0- 270833 0-3 12 500 0'354 167 0-395 833 0'437 500 0-479 167 3° 0'000 ~47

3I -271 528 '3 13 194 -354 861 '396 528 '438 194 '479 861 3 I .000359
32 -272222 '313 889 -355 556 -397 222 -438889 -480 556 32 -')00370
33 '272 917 -3 14 583 -356 250 '397 9 17 -439 583 '481 250 3:; '000382
34 '273 611 '315 278 '356 944 -398 611 -440278 -481 944 34 ·000394

35 0-274306 0-3 15 972 0-357 639 0-399 306 0'440 972 0-482639 35 0-000405
36 -275 000 -3 16667 -35 8 333 -400000 '441 667 -483 333 36 -009417
37 -275 694 -317 361 -359 028 -400694 '442 361 -484 028 37 -000428
38 '276 389 -318 056 '359722 '401 389 '443 056 '484722 38 -000440
39 -277 083 -3 18 750 '360 4 17 '402083 -443750 -485 4 17 39 -00045 1

40 0-277 778 0-3 19444 0-361 III 0-4°2 778 0-444444 0-486 II I 4° 0-000463
41 '278 472 '320 139 -361 806 '403472 -445 139 -486806 4 I -000475
42 '279 167 '320 833 '362 500 '404 167 '445 833 '487500 42 -000486
43 -279 861 -321 528 -363 194 -404861 -446 528 -488 194 43 -000498
44 -280 556 -322 222 -363 889 -405 556 '447222 -488889 44 '000509

45 0-281 250 0'322 917 0-3 64 583 0-406250 0-447 9 17 0-489583 45 0-0005 21
46 -281 944 -323 611 -365 278 '406 944 -448611 -490278 46 '000532
47 -282639 -324 306 -3 65 972 '407 639 -449306 -490 972 47 '000544
48 -283 333 -325 000 '366 667 -408 333 '450000 -491 667 48 -000556
49 '284 028 -325 694 -367 361 -409 028 -450694 -492 361 49 -0005 67

5° 0' 284722 0-326 389 0-368 056 0-409722 0-45 I 389 0-493 056 5° 0-000579
5I '285 4 17 '327 083 '368 750 '410 4 17 '452083 -493 750 5I -000590
52 '286 I II '327778 -369444 '411 III '452778 -494444 52 '000602
53 -286 806 -328472 -370 139 -411 806 ·453 472 '495 139 53 -000 613
54 -287 500 '329 167 -370833 '412 500 -454 167 '495 833 54 '000625

55 0-288 194 0-329 861 0-371 528 0-413 194 0-454 861 0-496 528 55 0-000637
56 -288889 -330 556 '372222 -413 889 '455 55 6 -497222 56 -000648
57 -289 583 '331 250 '372 9 17 '414 583 -456250 '497 9 17 57 '000660
58 '290278 -33 1 944 '373 611 -415 278 -45 6 944 '498 611 58 -000671
59 0-290 972 0-332 639 0-374 306 0-415 972 0-457 639 0-499306 59 0-000683



482 17.6-MINUTES AND SECONDS TO DECIMALS OF A DEGREE

0' I' 2' 3' 4' 5'. 0

0~016 667
0 0

0~066 667 0~083 3330 0'000000 0'033 333 0'050000 0 0-0 3° °'5I 00278 16 944 33 61 I 50 278 66944 83 61 I 6 0'1 36 0·6
2 00556 17222 33 889 50 55 6 67222 83 889 I2 0'2 42 °'73 00833 17500 34 167 50833 67500 84 167 I8 0'3 48 0·84 01 I I I 17778 34444 5 I I II 67778 84444

24 0'4 54 0-9
5 0·001 389 0'018056 0'034722 0'05 1 389 0'068056 0' 084722
6 01667 18 333 35 000 51667 68 333 85 000
7 01 944 I86II 35 278 51 944 686II 85 278
8 02222 18889 35556 52222 68889 85556 In units of the sixth
9 02 500 19 167 35 833 52 500 69 167 85 833 decimal of a degree

0'002 778 0'036 III 0'052778 0'069444 0'086 II I
.IO 0-019444 0'00 000 0'50 139

II 03 056 19722 36 389 53 056 69722 86 389 'OI 003 '5 I 142
I2 03333 20000 36667 53333 70000 86667 '02 006 '52 144
I3 03 6II 20278 36 944 S3 6II 70 278 86 944 -03 008 '53 147
I4 03 889 20 55 6 37222 53 889 70 55 6 87222 '04 011 '54 IS°
IS 0'004 167 0'020833 0'037500 0'054 167 0-070833 0'087500 0'05 01 4 0'55 153
I6 04444 21 I I I 37778 54444 71 III 87778 '06 01 7 '56 156
I7 04722 2 1 389 38056 54722 7 1 389 88056 '07 01 9 '57 158
I8 os 000 21667 38 333 55 000 71667 88333 '08 022 '58 161
I9 oS 278 2 1 944 386II 55 278 71 944 886II '09 025 '59 164
20 0'005 556 0'022222 0'038889 0'055556 0'072222 0'088889 O'IO 028 0·60 167
2I os 833 22500 39 167 55 833 72500 89 167 ·n 03 1 ·6I 169
22 06 III 22778 39444 56 I I I 72778 89444 ·I2 033 ·62 172
23 06 389 23 056 39722 56 389 73 056 89722 'I3 036 ·63 175
24 06667 23333 40000 56667 73333 90000 'I4 039 ·64 178

25 0' 006 944 0'023 6II 0'040 278 0'056 944 0'073 6II 0-090278 0'I5 042 0·65 181
26 07222 23889 40 556 57222 73 889 90 556 'I6 044 ·66 183
27 07500 24 167 40833 57500 74 167 90833 ·I7 047 ·67 186
28 07778 24444 41 III 57778 74444 91 I I I 'I8 050 ·68 189
29 08056 24722 41 389 58056 74722 9 1 389 'I9 053 ·69 192

30 0' 008 333 0'025 000 0'04 1667 0'058 333 0'075 000 0'091 667 0'20 056 0'70 194
3 I 086II 25 278 4 1 944 S86II 75278 91 944 '2I 058 '7I 197
32 08889 25556 42222 58889 75556 92222 '22 061 '72 200
33 09 167 25 833 42500 59 167 75 833 92 500 '23 064 '73 2°3
34 09444 26 III 42778 59444 76 I I I 92778 '24 067 '74 206

35 0'009722 0.026 389 0'043 056 0'059722 0'076 389 0'093 056 0'25 069 0'75 208
36 10000 26667 43333 60000 76667 93333 '26 072 '76 2II
37 10278 26 944 43 6II 60278 76 944 9361 I '27 075 '77 214
38 10 55 6 27222 43 889 60 556 77222 93 889 '28 078 '78 217
39 10833 27500 44 167 60833 77 500 94 167 '29 081 '79 219

40 O'OII I I I 0'027778 0'044 444 0'061 III 0'077 778 0'094444 0'30 083 0·80 222
4 I I I 389 28056 44722 61 389 78056 94722 '3I 086 ·8I 225
42 I I 667 28 333 45 000 61667 78 333 95 000 '32 089 ·82 228
43 II 944 2861 I 45278 61 944 786II 95 278 '33 092 ·83 23 1
44 12222 28889 45556 62222 78889 95556 '34 094 ·84 233
45 0'012500 0'029 167 0'045 833 0'062500 0'079 167 0-095 833 0'35 097 0·85 236
46 12 778 29444 46 iI I 62 778 79444 96 I I I '36 100 ·86 239
47 13 0 56 29722 46 389 63 056 79722 96 389 '37 103 ·87 242
48 13333 30000 46667 63333 80000 96667 '38 106 ·88 244
49 13 61 I 30278 46 944 63 6II 80278 96 944 '39 108 ·89 247
So 0'013 889 0'030 556 0'047222 0'063 889 0' 080 556 0'097222 0'40 III 0'90 25°
5 I 14 167 30833 47500 64 167 80833 97500 '4I 114 '9I 253
52 14444 31 III 47778 64444 81 III 97778 '42 II7 '92 256
53 14722 31 389 48056 64722 81 389 98056 '43 119 '93 25 8
54 IS 000 31 667 48 333 65 000 81667 98 333 '44 122 '94 261

55 0'015 278 0'03 1 944 0'048 6II 0' 065278 0'081 944 0'0986II 0'45 125 0'95 264
56 IS 556 32222 48889 65556 82222 98889 '46 128 '96 267
57 IS 833 32500 49 167 65 833 82 500 99 167 '47 13 1 '97 269
58 16 II I 32 778 49444 66 I I I 82 778 99444 '48 133 '98 272
59 0'016 389 0'033 056 0'049722 0' 066 389 0- 083 0 56 0'099722 0'49 136 0'99 275



17.7-DECIMALS OF A DEGREE TO MINUTES AND SECONDS 483

.
0·00 o 00 0'50 30 00 0·0000 0'00 0.0050 18'00 0·000000 .

o 36 '51 30 36 0'36 51 18'36 0·00·01 01 01
-02 I 12 '52 31 12 02 0'72 52 18'72 0·01

04
-03 I 48 '53 31 48 03 1'08 53 19'08 0-02

06'04 2 24 '54 32 24 04 1-44 54 19-44 0-03
1·80 0-0055 19-80

09
0'05 3 00 0'55 33 00 0-0005 0-04

-06 3 36 -56 33 36 06 2-16 56 20-16 12
0-05

-07 4 12 -57 34 12 07 2-52 57 20-52 15 0
_
06

-08 4 48 -58 34 48 08 2-88 58 20-88 18
-09 5 24 -59 35 24 09 3-24 59 21'24 0-°7

20
0-08

0-10 6 00 0-60 36 00 0-0010 3-60 0-0060 2 I -6o 23
-II 6 36 -61 36 36 II 3'96 61 21 -96 0-09

26
·12 7 12 ·62 37 12 12 4-32 62 22-32 0-10

29-13 7 48 -63 37 48 13 4-68 63 22-68 0-1 I

-14 8 24 .64 38 24 14 5'04 64 23-04 31
0-12

0- 15 9 00 0-65 39 00 0-0015 5-40 0-0065 23-40
34

0
_
13

-16 9 36 -66 39 36 16 5-76 66 23-76 37 0- 14
'17 10 12 -67 40 12 17 6-12 67 24-12 40

- 0- 15
·18 10 48 ·68 40 48 18 6-48 68 24-48 43

0
_
16·19 II 24 -69 4 1 24 19 6-84 69 24-84 45 0- 17

0·20 12 00 0-70 42 00 0·0020 7-20 0-0070 25 '20 48
0

_
18-21 12 36 '71 42 36 21 7-56 71 25-56 51

·22 13 12 -72 43 12 22 7-92 72 25'92 0- 19

'23 13 48 -73 43 48 23 8-28 73 26'28
54

0
_
20

-24 14 24 '74 44 24 24 8-64 74 26-64 56
0'21

0-25 15 00 0'75 45 00 0-0025 9-00 0·0075 27-00 59 0 '22
'26 15 36 -76 45 36 26 9-36 76 27-36 62

0- 23
'27 16 12 '77 46 12 27 9-72 77 27'72 65
-28 16 48 '78 46 48 28 10-08 78 28'08 68 0 '24

'29 17 24 '79 47 24 29 10'44 79 28'44 0'25
70

0
_
26

0'30 18 00 0·80 48 00 0'0030 10-80 0-0080 28·80 73 0 '27'31 18 36 ·81 48 36 31 II'16 81 29'16 76
-32 19 12 ·82 49 12 32 II'52 82 29'52 0'28

79-33 19 48 -83 49 48 33 II-88 83 29·88 0- 29
'34 20 24 -84 50 24 84 30'24

8134 12-24 0'30
0-35 21 00 0·85 51 00 12·60 0'0085 30 .60

84
0'0035 0'3 1

-36 21 36 ·86 51 36 36 12'96 86 30-96 87
0'32

-37 22 12 -87 52 12 37 13'32 87 31'32 90
0'33-38 22 48 -88 52 48 38 13-68 88 31-68 93

'39 23 24 -89 53 24 39 14'04 89 32-04 0'34
95

0-40 24 00 0-90 54 00 0-0040 14'40 0-0090 32-40 0_0000980'35
'41 24 36 -91 54 36 41 14-76 91 32-76 0-36

0'000101
-42 25 12 '92 55 12 42 15'12 92 33'12
-43 25 48 '93 55 48 43 15'48 93 33'48
'44 26 24 -94 56 24 44 15-84 94 33-84

0-45 27 00 0-95 57 00 0-0045 16'20 0·0095 34-20 In critical

'46 27 36 '96 57 36 46 16-56 96 34-56 cases ascend_

-47 28 12 '97 58 12 47 16-92 97 34'92
'48 28 48 '98 58 48 48 17'28 98 35-28
'49 29 24 0-99 59 24 49 17.64 0'0099 35.64

0'50 30 00 1·00 60 00 0'0050 18'00 0·0100 36'00



484 17.8-TIME TO ARC

011 XII 21. 3 11 4 11
5 11 Seconds

6~ o~
,

0 000 15 00 3°0O 45 00 75 00 0 ° 00 0·00 0·00 0'50 7'5°x ° 15 15 15 30 15 45 15 60 15 75 15 x ° 15 ·ox 0'15 '5x 7.65
2 ° 3° 15 30 3°3° 45 30 6°3° 75 30 2 ° 3° -02 0'3° -52 7. 80
3 ° 45 15 45 3°45 45 45 60 45 75 45 3 ° 45 -03 °'45 '53 7'95
4 I 00 160O 31 00 460O 61 00 76 0O 4 I 00 -04 0·60 -54 8-10

5 I 15 16 15 31 15 46 15 61 15 76 15 5 I 15 0-05 0-75 0'55 8'25
6 I 30 16 30 3 1 3° 463° 61 30 763° 6 I 30 '06 0-90 -56 8'4°
7 I 45 16 45 31 45 46 45 61 45 76 45 7 I 45 '07 I-OS -57 8'55
8 20O 17°° 320O 47 00 620O 77 00 8 20O -08 1'20 '58 8-70
9 2 IS 17 IS 32 IS 47 IS 62 IS 77 IS 9 2 IS -09 1'35 '59 8·85

xo 23° 17 30 323° 473° 623° 773° xo 23° o-xo 1'5° 0·60 9'°0
xx 245 17 45 32 45 4745 62 45 7745 xx 2 45 -xx 1·65 ·6x 9'15
X2 3°° 180O 33 00 480o 63 00 78 0O X2 3°° -X2 I-8o -62 9'3°
x3 3 IS 18 IS 33 IS 48 IS 63 IS 78 IS x3 3 IS -x3 1-95 -63 9'45
x4 3 30 18 30 33 30 483° 63 30 783° x4 3 30 -x4 2-10 -64 9. 60

x5 3 45 18 45 33 45 48 45 6345 78 45 x5 345 0,x5 2-25 0·65 9'75
x6 4°° 19°° 34 00 49 00 64°° 79°° x6 4°° -x6 2-40 -66 9'9°
x7 4 IS 19 IS 34 IS 49 IS 64 IS 79 IS x7 4 IS -x7 2'55 .67 ro'05
x8 43° 19 30 343° 49 30 6430 793° x8 43° -x8 2'7° ·68 10'20
x9 445 19 45 3445 4945 6445 7945 x9 445 -x9 2·85 -69 10'35
20 5 00 200O 35 00 50 00 65 00 800O 20 5 00 0'20 3'°° 0'70 10'5°
2X 5 IS 20 IS 35 IS 50 IS 65 IS 80 IS 2X 5 IS -2X 3' IS -7x 10·65
22 5 30 2°3° 35 30 5°3° 65 30 8°3° 22 5 30 -22 3-30 -72 10·80
23 545 2°45 35 45 5°45 65 45 80 45 23 5 45 -23 3'45 -73 1°'95
24 60O 21 00 36 0O 51 00 660O 81 00 24 60O '24 3-60 -74 II'IO

25 6 IS 21 IS 36 IS 5 I IS 66 IS 81 IS 25 6 IS 0-25 3'75 0'75 II'25
.l6 63° 21 30 363° 51 30 663° 81 30 26 63° '26 3'9° '76 II'4°
27 645 21 45 36 45 51 45 6645 81 45 27 645 '27 4'°5 -77 II'55
28 7°° 220O 37 00 520O 67°° 820O 28 7 00 -28 4- 20 -78 II-7°
29 7 IS 22 IS 37 15 52 IS 67 IS 82 IS 29 7 IS -29 4-35 '79 II·85

30 73° 223° 373° 523° 673° 823° 30 7 30 0'30 4-50 0·80 12-00
3x 7 45 2245 3745 52 45 6745 8245 3 x 745 -3x 4- 65 ·8x 12'15
32 80O 23 00 380O 53 00 680O 83°0 32 80O '32 4. 80 ·82 12'3°
33 8 IS 23 IS 38 IS 53 IS 68 IS 83 IS 33 8 IS -33 4-95 -83 12'45
34 83° 23 30 38 3° 53 30 68 30 83 30 34 8 30 -34 5- 10 -84 12·60

35 8 45 23 45 38 45 53 45 68 45 83 45 35 845 0'35 5'25 0·85 12'75
36 9°° 24 00 39 00 54 00 69°0 84°° 36 9°° -36 5-40 -86 12'9°
37 9 IS 24 IS 39 IS 54 IS 69 IS 84 IS 37 9 IS -37 5-55 -87 13'°5
38 93° 243° 393° 543° 693° 843° 38 93° -38 5-70 -88 13'20
39 945 2445 3945 5445 6945 8445 39 <; 45 -39 5-85 -89 13'35

40 100O 25 00 4°°O 55 00 70 00 85 00 40 100O 0'40 6'00 0-90 13'5°
4 x 10 IS 25 IS 40 IS 55 IS 70 IS 85 IS 4 x 10 IS -4x 6· IS '9x 13.65
42 10 30 25 30 4°3° 55 30 7°3° 85 30 42 10 30 -42 6-30 -92 13.80
43 10 45 25 45 4°45 55 45 7°45 85 45 43 10 45 -43 6'45 -93 13'95
44 II 00 260O 41 00 560O 71 00 860O 44 II 00 -44 6-60 -94 14'10

45 II IS 26 IS 4 1 IS 56 IS 71 IS 86 IS 45 I Irs 0-45 6'75 0'95 14'25
46 I I 30 26 30 41 3° 563° 7 1 3° 86 30 46 I I 30 -46 6-90 -96 14'4°
47 I I 45 26 45 4 1 45 56 45 7 1 45 86 45 47 1I 45 -47 7'°5 -97 14'55
48 120O 27 00 420O 57 00 720O 87°0 48 12 00 -48 7'20 -98 14'7°
49 12 IS 27 IS 42 IS 57 IS 72 IS 87 IS 49 12 15 '49 7'35 0'99 14.85

50 12 30 273° 423° 573° 723° 873° 50 12 30 0-50 7'5° x·oo IS-0O
5 x 12 45 2'; 45 4245 57 45 72 45 8745 5x 12 45
52 13 OL 00 43°° 580O 73 00 880O 52 13 00
53 13 15 28 15 43 IS 58 IS 73 IS 88 IS 53 13 IS
54 13 30 28 30 43 30 583° 73 30 883° 54 13 30 6 11 90°

55 13 45 28 45 43 45 58 45 73 45 8845 55 13 45 X211 1800

56 14°° 29°° 44 00 59°° 74 00 890O 56 14 00
57 14 IS 29 IS 44 IS 59 IS 74 IS 89 IS 57 14 IS x8h 2700
58 14 30 293° 443° 593° 743° 893° 58 14 30
59 1445 2945 444:; 59 45 7445 8945 59 1445



17.9-ARC TO TIME 485

Degrees Minutes Seconds
h m

6~
h m h m s s s

° o 00 4 00 120 8 00 ° o 00 ° 0·000 0·00 0'000 0'5° 0'°33
I ° 04 61 4 04 121 8 04 I ° 04 I 0'067 ·01 '001 '51 '°34
2 ° 08 62 4 08 122 8 08 2 ° 08 2 0'133 ·02 '001 '52 '°35
3 o 12 63 4 12 123 8 12 3 ° 12 3 0'200 '°3 '002 '53 '°35
4 ° 16 64 4 16 124 8 16 4 ° 16 4 °'267 '°4 '°°3 '54 '°36

5 o 20 65 4 20 125 8 20 5 ° 20 5 °'333 0'°5 0'°°3 °'55 °'°37
6 o 24 66 4 24 126 8 24 6 ° 24 6 0'4°0 '06 '°°4 '56 '°37
7 ° 28 67 4 28 127 8 28 7 ° 28 7 °'467 '°7 '°°5 '57 '038
8 ° 32 68 4 32 128 8 32 8 o 32 8 °'533 '08 '°°5 '58 '°39
9 ° 36 69 4 36 129 8 36 9 ° 36 9 0·600 '°9 '006 '59 '°39

10 ° 4° 7° 4 40 13° 8 40 10 ° 4° 10 0·667 0·10 0'°°7 0·60 0'°40
II o 44 71 4 44 131 8 44 II o 44 II 0'733 '11 '°°7 ·61 '°41
12 ° 48 72 4 48 132 8 48 12 o 48 12 0·800 '12 '008 ·62 '°41
13 ° 52 73 4 52 133 8 52 13 ° 52 13 0.867 ·13 '°°9 ·63 '°42
14 ° 56 74 4 56 134 8 56 14 o 56 14 °'933 '14 '°°9 .64 '°43
15 I 00 75 5 00 135 9 00 15 00 15 1'000 0'15 0'010 0·65 °'°43
16 °4 76 5 °4 136 9 04 16 04 16 1'067 '16 '01 I ·66 '°44
17 08 77 5 08 137 9 08 17 08 17 1'133 '17 ·orr ·67 '°45
18 12 78 5 12 138 9 12 18 12 18 1'200 ·18 '012 ·68 '°45
19 16 79 5 16 139 9 16 19 16 19 1'267 ·19 '01 3 ·69 '°46
20 I 20 80 5 20 14° 9 20 20 20 20 1'333 0·20 0' 01 3 0'7° o'047
21 24 81 5 24 141 9 24 21 24 21 1'4°° ·21 '01 4 '71 '°47
22 28 82 5 28 142 9 28 22 28 22 1'467 ·22 '01 5 '72 '°48
23 I 32 83 5 32 143 9 32 23 32 23 1'533 '23 '01 5 '73 '°49
24 I 36 84 5 36 144 9 36 24 36 24 1·600 '24 '016 '74 '°49
25 I 40 85 5 40 145 9 40 25 I 40 25 1·667 0'25 0'017 °'75 °'°5°26 44 86 5 44 146 9 44 26 44 26 1'733 '26 '01 7 '76 '°5 1
27 48 87 5 48 147 9 48 27 48 27 1·800 '27 '018 '77 '°5 1
28 52 88 5 52 148 9 52 28 I 52 28 1. 867 '28 '019 '78 '°52
29 56 89 5 56 149 9 56 29 I 56 29 1'933 '29 '01 9 '79 '053

3° 2 00 9° 6 00 15° 10 00 3° 2 00 3° 2'000 0'3° 0'020 0·80 0'°53
31 2 04 91 6 °4 151 10 04 31 2 °4 31 2'067 '31 '021 ·81 '°54
32 2 08 92 6 08 152 10 08 32 2 08 32 2'133 '32 '021 ·82 '°55
33 2 12 93 6 12 153 10 12 33 2 12 33 2'200 '33 '022 ·83 '°55
34 2 16 94 6 16 154 10 16 34 2 16 34 2'267 '34 '023 ·84 '°56

35 2 20 95 6 20 155 10 20 35 2 20 35 2'333 °'35 0'023 0·85 0'°57
36 2 24 96 6 24 156 10 24 36 2 24 36 2'4°0 '36 '024 ·86 '°57
37 2 28 97 6 28 157 10 28 37 2 28 37 2'467 '37 '025 ·87 '°58
38 2 32 98 6 32 158 10 32 38 2 32 38 2'533 '38 '025 ·88 '059
39 2 36 99 6 36 159 10 36 39 2 36 39 2·600 '39 '026 ·89 '°59
4° 2 40 100 6 40 160 10 40 4° 2 40 4° 2·667 0'4° 0'027 0'9° 0'060
41 2 44 101 6 44 161 10 44 41 2 44 41 2'733 '41 '027 '91 '061
42 2 48 102 6 48 162 10 48 42 2 48 42 2·80'0 '42 '028 '92 '061
43 2 52 1°3 6 52 163 10 52 43 2 52 43 2·867 '43 '029 '93 '062
44 2 56 1°4 6 56 164 10 56 44 2 56 44 2'933 '44 '029 '94 '063
45 3 00 1°5 7 00 165 II 00 45 3 00 45 3'°00 °'45 °'°3° °'95 0'063
46 3 °4 106 7 04 166 II °4 46 3 °4 46 3'°67 '46 '°3 1 '96 '064
47 3 08 1°7 7 08 167 II 08 47 3 08 47 3' 133 '47 '°3 1 '97 '065
48 3 12 108 7 12 168 II 12 48 3 12 48 3'200 '48 '°32 '98 '065
49 3 16 1°9 7 16 169 II 16 49 3 16 49 3'267 '49 '°33 °'99 '066

5° 3 20 110 7 20 17° II 20 5° 3 20 5° 3'333 0'5° 0'°33 1·00 0'067
51 3 24 III 7 24 171 II 24 51 3 24 51 3'4°0
52 3 28 112 7 28 172 II 28 52 3 28 52 3'467
53 3 32 113 7 32 173 II 32 53 3 32 53 3'533
54 3 36 114 7 3(, 174 II 36 54 3 36 54 3.600 9°" = 6h

55 3 40 115 7 40 175 II 4° 55 3 40 55 3.667 1800 = 12h

56 3 44 116 7 44 176 II 44 56 3 44 56 3'733
57 3 48 117 7 48 177 II 48 57 3 48 57 3.800 2700 = 18h
58 3 52 118 7 52 178 II 52 58 3 52 58 1.867
59 3 56 119 7 56 179 II 56 59 3 SO 59 3'933



486 17.10-LOW-PRECISION CONVERSION OF ANGULAR MEASURES

Arc Time Revolutions Radians Arc Time Revolutions Radians Arc Revolutions Radians
h h

, rm m 10 0.000463 0'00291
° 000 0'00000 0'00000 50 32O 0'13889 0·87266 20 0926 0582
I °4 0278 '01 745 51 324 ·14167 0·89°12

3° 1389 08732 08 0556 '03491 52 328 ·14444 °'90757 4° 1852 1164
3 12 0833 '°5236 53 3 32 '14722 °'925°2 5° 23 15 1454
4 16 I II I '06981 54 3 36 '15°00 °'94248 60 0'002778 0'01 745
5 020 °'°1389 0'08727 55 34° °'15278 °'95993 7° 3241 2036
6 24 1667 '1°472 56 344 '15556 °'97738 80 3704 2327

28 348 '15 833 °'99484 9° 4167 26187 1944 ·12217 57 100 0'004630 0'029098 32 2222 '13963 58 3 52 '16II1 1'01229
r

9 36 25°0 '15708 59 356 · 16389 1'02974 10 0·000008 0'00°°5
0'02778 60 °' 16667

20 IS 1010 ° 4° 0'17453 4°° 1'°4720
3056 61 ' 16944 1'06465

30 23 15II 44 ·19199 4 04
4° 31 1912 48 3333 '2°944 62 4 08 '17222 1'08210
5° 39 24

13 52 36II -22689 63 4 12 '175°0 1'°9956 60 0'000046 0'0002914 ° 56 3889 '24435 64 4 16 '17778 I'II701
7° 54 34

15 10O °'°4167 0'26180 65 42O °'18°56 1'13446 80 62 39
16 1 °4 4444 '27925 66 424 ·18333 1'15 192 9° 69 44
17 108 4722 '2967 1 67 428 '186II 1'16937

100 0'000077 0'0°°48

18 I 12 5°00 -3 14 16 68 432 ' 18889 i'18682 Time Days Radians
19 I 16 5278 '33 161 69 436 ·19167 1'2°428 m s d

010 0'000116 0'0°°7320 I 20 °'°5556 °'349°7 70 44° 0'19444 1'22173 020 23 1 14521 I 24 5833 -36652 71 444 -19722 1'23918 ° 3° 347 218
22 I 28 6II1 -38397 72 448 '20000 1,25664 ° 4° ~63 291
23 I 32 6389 '4°143 73 452 '20278 1'274°9 ° 5° 579 364
24 I 36 6667 '41888 74 456 '2°556 1'29154 10O 0'000694 0'0°436
25 I 40 0'06944 °'43633 75 5 00 °'20833 1'3°9°0

11O 0810 5°9
12O 0926 58226 144 7222 '45379 76 5°4 '2IIII 1'32645

65427 I 48 75°0 '47124 77 5 08 '2 1389
13° 1042

1'3439° 14° 1157 72728 I 52 7778 '48869 78 5 12 '21667 1-361 36 15° 1273 800
29 I 56 8056 '5°61 5 79 5 16 -:U944 1'37881

20O 0'001 389 0'00873
30 20O 0'08333 °'52360 ao 52O 0'22222 1'39626 21O 1505 0945
3 1 2°4 86II '541°5 81 524 '225°0 1'41372 22O 1620 1018
32 208 8889 ·5585 I 82 528 '22778 1'43 II7 23° 1736 1091

33 2 12 9 167 -57596 83 532 '23°56 1'44862 24° 1852 1I64

34 2 16 9444 '59341 84 536 '23333 1'46608 25° 1968 1236

0. 61087 85 °'2361 I 1'48353
3°° 0'002083 0'01 3°935 22O °'°9722 54° 3 1O 21 99 1382

36 224 '10000 -62832 86 544 '23889 1'5°°98 32O 23 15 1454
37 228 '10278 ·64577 87 548 -24167 1'5 1844 33° 243 1 1527
38 232 .10556 ·66323 88 5 52 '24444 1'53589 34° 2546 1600
39 236 ' 10833 ·68068 89 556 '24722 1'55334 35° 0'002662 0'01673

40 24° O'IIIII 0·69813 90 600 °'25°00 1'57080 revolutions
41 244 'II389 '7 1558 91 604 '25278 1'58825 1° = 0'00277 77778
42 248 ' II667 '733°4 92 608 '25556 1.6°570 I' = 0'00004 62963
43 252 . II 944 -75049 93 6 12 '25833 1.623 16 I H = 0-00000°7716
44 256 '12222 '76794 94 6 16 '26II I 1·64°61 I h = °'°4166 66667

°'7854° 62O 0'26389 1.65806
1m = °'°°069 4444445 3°° °'125°0 95

46 -12778 .80285 96 624 ' 26667 1·67552
IS = 0'00001 157413°4

radians47 308 . 13056 .82°3° 97 628 '26944 1·69297
48 3 12 -13333 ·83776 98 632 '27222 1'71°42

1° = 0'01745 32925

49 3 16 '136II .85521 99 636 ,275°0 1'72788
I' = 0'0002908882
I

H = 0'00000 48481
5° 3 20 0'13889 0·87266 100 64° 0'27778 1-74533 I h = °'261 79 93878

1m = 0'00436 33231
The equivalents in revolutions end in recurring decimals. IS = 0'00007 27221



17,lO-LOW-PRECISION CONVERSION OF ANGULAR MEASURES 487

Revs Arc Time Radians Arc Time

0'1
·2

'3
'4

0'5
·6
'7
·8

0'9

0·01
·02
'03
·04

0'05
·06
'07
·08

0·09

0·001
·002
'003
·004

0·005
'006
·007
'008

0·009

o

36
72

108
144

180
216
252
288
324

o ,

3 36
7 12

10 48
1424

1800
21 36
25 12
2 8 48
3224

o , •

° 21 36
° 43 12
I 0448
I 2624

1·4800
20936
2 3 I 12
25 2 48
3 14 24

2160
4320
6480
8640

10800
12960
15 1 20
17280
1944°

216
432
648
864

1080
1296
15 12
1728
1944

1296
2592
3888

5184

6480
7776

9°72
10368
11664

h m

224
448
7 12
936

1200
1424
16 48
19 12
21 36

h m I

014 2 4
028 48

° 43 12
° 57 36

I 1200
I 2624
I 4048
I 55 12
20936

m I

I 26'4
252·8
4 19'2
545.6

712'0
838 -4

1004-8
II 3 1'2
12 57.6

144
288
432
576

720
864

1008
1152
1296

14'4
28·8
43- 2

57.6

72'0
86'4

100·8
I15'2
129·6

s

86'4
172·8
259- 2
345·6

432-0
518 '4
6°4·8
691'2
777·6

0·1
·2

'3
'4

0'5
·6
'7
·8

0'9

0-01
·02
'03
·04

0'05
·06
·07
'08

0-09

0-001
·002
'003
·004

0'005
'006
·007
'008

0·009

o ,

54346
II 27 33
17 I I 19
225506

28 38 52
34 22 39
4006 25
45 50 12
51 33 58

° 34 23
I 0845
14308
2 I7 31

2 51 53
3 26 16
400 39
43501
5°9 24

, .
326
653

10 19
1345

17 II

2 0 38
24°4
273°
30 56

h m

02255'1
° 45 50'2
108 45'3
I 31 4°-4

I 5435'5
2 17 30·6
24025-7
3°3 20-8
3 261 5'9

2 17-5
435'°
652-5
9 10·0

II 27'5
13 45' I

1602·6
1820'1
20 37-6

m ,

° 13-8
027'5

° 4 1 '3
° 55'°

I 08·8
I 22'5
I 36-3
I 50'0
2 °3.8

0·0001
·0002
'0003
·0004

0·0005
·0006
'0007
·0008

0·0009

I '" II' m a
2 °9.6 129.6 ° 08·64
4 19-2 259-2 ° 17'28
6 28-8 388.8 025'92
838 '4 518-4 ° 34'56

10 48 '0 648-0 ° 43'20
12 57.6 777-6 ° 51.84
1507-2 907'2 100-48
I7 16·8 1036·8 1°9'12
19 26-4 1166'4 I 17'76

Above values are exact.

s

8·64
17'28
25'92
34'56

43-20
5 1 -84
6°'48
69'12
77'76

0·0001 ° 21 1'4
-0002 ° 41 2.8
'0003 102 4'1
·0004 I 23 5'5

0·0005 I 43 6-9
'0006 2 04 8'3
-0007 2 24 9·6
'0008 245 11'0

0'0009 3 06 12-4
Above values are rounded-off.

Conversion constants

360 0 = 21600'
57

0
'29577 95 I

311.8 I 97 I 863

h

15 I

30 2

45 3
60 4
90 6

180 12
270 18
360 24

r

°'°416 .. ­

'°83".
'125
'166,,_

'25°
'500

°'75°
1-000

1296000"
57

0
17' 44"·81

3 11 49ffi 10·'99

radians radians
= °' 261 79 93878 I

°'5 2359 87756 2
0-78539 81634 3
1'°4719755 12 4
I,57079 63268 5
3-1415926536 6
4'71238 89804 7
6'2831853°72 8

2411 = 1440ffi

3437'-74677
229m ' 183 I 2

°'159 154943 1
'3183° 98862
'47746 48293
-63661 97724
'79577 47 155

°'95492 96586
I . I 1408 460 I 6
1- 27323 95447

864°°.
206264".806

1375°.'987

h

57'3 -.- 3-8
114-6 7·6
17 1'9 I1'5
229-2 15-3
286'5 19'1
343·8 22'9
401 -I 26'7
458 '4 3°·6
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The following list of constants and physical data has been compiled from various
sources, and is not intended to be definitive. Reference should be made to the appropriate
sections (indicated in parentheses after the headings) of this Supplement, or to the Expla­
nation in the relevant volume, for the basic data used in each ephemeris. See section 6,
especially table 6.1 on page 169, for the system of astronomical constants used prior to
1968, and see the reprint of the Supplement to the A.E. I968, especially the reference list on
pages 498-9, for details of the IAU system of astronomical constants used from 1968
onwards.

Units
For the computation of motions in the solar system it is customary to use the Gaussian

system of astronomical units of mass, time and distance (length). The astronomical unit of
mass is the mass of the Sun, the astronomical unit of time is the ephemeris day, and the
astronomical unit of length (a.u.) is such that the Gaussian gravitational constant k has the
exact value 0.017 202098 950 (see also page 493). These astronomical units are related to
the SI units of mass (kilogram, kg), time (second, s) and length (metre, m) as follows:

I astronomical unit of mass = (1·990 ± 0·002) x 1030 kg
I astronomical unit of time = 86400 x (1·0 ± 2 x 10- 9

) S

I astronomical unit of length = (I ·495 979 ± I x 10 -6) X lO" m

where the given standard errors are based on the quoted errors of the observational deter­
minations (up to 1971) of relevant constants. In the rest of the section the term second (s),
unless otherwise qualified, can be considered to refer either to the ephemeris second or to
the SI second.

Time

I day = 24 hours = 1440 minutes = 86400 seconds
I Julian year = 365·25 days = 8766 hours = 525 960 minutes = 31 557 600 seconds
I mean tropical year at 19°0.0 = 3 I 556 925 ·975 ephemeris seconds

Length of the year at 1960 (4B) d d h

Tropical (equinox to equinox) 365.24220 365 °S 48 46
Sidereal (fixed star to fixed star) 365 ·25636 365 06 °9 10
Anomalistic (perihelion to perihelion) 365·25964 365 06 13 53
Eclipse (Moon's node to Moon's node) 346.62°°5 346 14 52 52
Gaussian (Kepler's law for a = I) 365.2569° 365 06 °9 56
Julian 365 ·25 365 06 00 00

Length of the month (4C) d d h In

Synodic (new moon to new moon) 29·53°59 29 12 44 °3
Tropical (equinox to equinox) 27·32158 27 °7 43 °5
Sidereal (fixed star to fixed star) 27·32166 27 07 43 12
Anomalistic (perigee to perigee) 27·55455 27 13 18 33
Draconic (node to node) 27·21222 27 °5 °5 36

Length of the day (3B)

I d of mean solar time = I d·00273 79093 of mean sidereal time
= 24h 03 m 56".55536 of mean sidereal time
= 86636.55536 mean sidereal seconds

I d of mean sidereal time = od·99726 95664 of mean solar time
= 23 h 56m °4".°9°54 of mean solar time
= 86164·09054 mean solar seconds

See figure 3.2 (b) on page 9 I for the variations in the length of the mean solar day during the
past three centuries.
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Standard epochs

1900 January 0, Greenwich mean noon
= J.D. 241 5020'0

1925 January 0, Greenwich mean noon
= J.D. 2424151'0

1900 January 0·0 G.M.A.T.
1900 January 0'5 U.T.

1924 December 31'0 G.M.A.T.
1925 January 0'5 U.T.

Beginning oj Besselian year (see also table 14. I3)

B.Y. Julian date B.Y. Julian date
1850'0 2396758'203 1935'0 2427803'790
1875'0 2405889'258 1940'0 2429630'001
1900'0 241 5°20'313 1945'0 243 1456'212
1925'0 2424151'368 195°.0 243 3282'423
1930'0 2425977'579 1955'0 2435I08'Q34

J.D. = 243 3282'423 + 365 '2422 (B.Y.
1950'0 = 1950 January Od' 923

B.Y.
1960'0
1965 '0
197°'°
1975'°
1980'0

195°'°)

Julian date
243 6934. 845
243 8761 '°56
244 0587'267
244 2413 '478
244 4239·689

Greenwich sidereal date (3B and I4H)

G.S.D. -:-- +0.671 +1'00273 79093 x J.D.
J.D. ~ -0·669 +0'9972695664 x G.S.D.

Sun, "Earth, and Moon
Sun (IIB)

Radius
Semi-diameter at mean distance

Mass
Mean density
Surface gravity

6'96 X 108 m
IS' 59"·63 = 959"·63

1'99 x 1030 kg
1'41 g/cm3

2'74 x 102 m/s2 = 27'9 g

circular to 0"'01

Inclination of solar equator to ecliptic
Longitude of ascending node (T in centuries from 1900)
Period of synodic rotation (q, = latitude)
Period of sidereal rotation adopted for heliographic longitudes

7° IS'
74° 22' + 84' T
26 d '90 + 5 d '2 sin2 q,
25'38 days

Motion relative to near stars apex:
speed:

IX = 271° Il = +30°
I '94 x 10' m/s = 0'0112 a.u./d

b = a(I - 1)

Equatorial radius (a)
Flattening (f)
Polar radius (b)
Square of eccentricity (e2 )

Figure and gravity field oj the Earth (2F)*

Hayford spheroid
6378388 m

1/297 = 0'003 367 °
6 356 912 m
0'00672267

IAU system
6378 160 m

1/298 '25 = 0'003 3529
6356774'5 m
°'°066946

e2 = 2j - f2
For a point on the spheroid of the IAU system at geodetic latitude q,:

IOoflatitude 110'575 + I'IIosin 2<{>km
1° of longitude (111'320 + 0'373 sin 2<{» cos <{>km
Height of sphere of radius a above the spheroid 21'4 sin 2<{> km
Geodetic latitude (<{» - geocentric latitude (<{> ') 692"'74 sin 2<{> - I"· 16 sin 4q,
Geocentric gravitational constant 398 603 x 10· m 3/s 2 J2 0·001 0827
Mass of the Earth 5'98 X,I0 2' kg Mean density 5'52 g/cm3

Normal gravity (g) 9'780 + 0'052 sin 2<{> m/s 2

·See note on page 523.
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Orbit of the Earth (4B)

Solar parallax
Constant of aberration
Light-time for I a.u.
I astronomical unit of length
Mass ratio - Sun/Earth
Mass ratio - Sun/(Earth + Moon)
Mass ratio - Earth/Moon

Mean eccentricity
Mean obliquity of the ecliptic
Annual rate of rotation of the ecliptic

Values in use
1900- 1967

8"080
20"°47

4985°38; 49850 58
not specified

333 432
329 390

81·53; 81·45

At 1900:
0.01675
23°·45229
0"°47 11

IAU system
1968 onwards

8".79405
20".495 8
4995.01 2

1°496 x lO" m
332 95 8
328912
81 °3 0

At 2000:
0 00167 1
23°°43928
0"°4704

* Mean distance of Earth from Sun
Mean orbital speed
Mean centripetal acceleration

1°000 000 23 a.u. = 23455 earth radii
29 800 m/s = 000172 a.u./d
0 000594 m/s 2 = 000006 g

Rate of rotation

Annual rates of precession:
(adopted values; T in centuries
from 1900)

Rotation of the Earth (2B, 2C, 3B)

Period with respect to fixed stars = 24h oom 00".0084 of mean sidereal time
= 23 h 56m 04"00989 of mean solar time
7.292115 x 10- 5 rad/s = 15".04107 S-l

= 1·002738 rev/d = 6°300387 rad/d
general precession (p) 50"02564 + 0"·0222 T
luni-solar precession (</1 ') 50".3708 + 0"·0050 T
planetary precession (A') 0".1247 - 0"00188 T
in right ascension (m) 3"007234 + 0"·00186 T
in declination (n) 20"00468 - 0"00085 T

Period of precession is about 25 730 years

Constant of nutation 9"·210 (recent determination: 9".207)
Maximum value of nutation in longitude is about 19"
Maximum value of nutation in obliquity is about 10"
Period of principal term in nutation is about 6798 days

At equator: speed 465 m/s centripetal acceleration 0 0°339 m/s 2 = 0 00°35 g

7°35 X 1022 kg
3.34 g/cm3

1 0 62 m/s 2 = 0017g

Mass
Mean density
Surface gravity

2 0661 699 489 x 10 - 6 rad/s
3·844 x 108 m = 60 027 earth radii

= 0·002 570 a.u.
Equatorial horizontal parallax at mean distance 57' 02"·608 = 3422"·608
Mean distance of centre of Earth from Earth-Moon barycentre 4.671 x 108 m
Mean eccentricity 0.05490 Mean inclination to ecliptic 5° 09'
Mean inclination to lunar equator 6° 41' Limits of geocentric declination ± 29°
Saros =i= 223 lunations =i= 19 passages of Sun through node = 6585t days
Period of revolution of node 6798 days
Period of revolution of perigee 3232 days
Mass ratio - Earth/Moon 81°301 (See above for adopted values)
Mean orbital speed 1023 m/s = 0·000 591 a.u./d
Mean centripetal acceleration 0 000272 m/s 2 = 0 00003 g

·See note on page 523.

Orbit of Moon about the Earth (4C)

Sidereal mean motion of Moon (1900)
Mean distance of Moon from Earth

Moon

Mean radius 1°738 x 106 m
Semi-diameter at mean distance 15' 32"·6
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Mean elelllents of planetary orbits
For epoch 1960 January 1'5 E.T.

49 1

Mean Longitude
Inclin:ltion of Node of Perihelion at Epoch Eccentricity

n 'tiT L e

0 0 0

Mercury 7'00399 47. 857 14 76·833°9 222.62165 °'2°5627
Venus 3-39423 76 '3 1972 13 1'°°83 1 174'2943 I 0-006793
Earth 0'0 0·0 102'25253 1°°'1581 5 0.016726
Mars 1.84991 49'249°3 335'32269 25 8 '76729 0-093368

Jupiter 1'3°536 100'°4444 13·67823 259.83 11 2 °'°48435
Saturn 2'48991 113'3°747 92'26447 280.67 135 °'°55682
Uranus 0'773°6 73'7963° 17°'°1083 141'3°496 0'°472°9
Neptune 1'77375 13 1'33980 44'27395 216'94°9° 0'008575

Pluto* 17'1699 109. 88562 224' 16024 181.64632 °'25°236

Mean Distance Sidereal Synodic Mean Daily Orbital
Period Period Motion Velocity

a 106 km (tropical years) n (km/s)
d

Mercury °'387°99 57'9 0'24085 II5· 88 4'°92339 47. 8
Venus °'723332 108· I 0.61521 583 '92 1.602130 35'0
Earth 1·000000 149' 5 1'00004 °'985609 29.8
Mars 1'523691 227.8 1.88089 779'94 0'524°33 24'2

Jupiter 5'202803 778 II·86223 398·88 °'°83°91 13'1
Saturn 9' 538843 1426 29'45772 378'°9 °'°33460 9'7
Uranus '19'181951 2868 84'°1331 369.66 °'°11732 6·8
Neptune 30'057779 4494 164'79345 367'48 °'°°5981 5'4

Pluto* 39'43871 5896 247·686 366'72 0'003979 4'7

* The elements for Pluto are 03culating values for epoch 1960 September 23'0 E.T.
= J.D. 243 7200 -5.

See page 112 for the masses of the planets adopted in the Ephemeris.

Dilllensions and rotations of the planets and Moon

S.D. Radius* Reciprocal Mass
at Unit on scale of on scale

Distance Earth Flattening Earth

= I = I

Density Surface
Gravity

g/cm3 Earth

= I

Rotation Inclination
Period of Equator

to Orbit

Mercury 3'34 °'39 00 °'°56 5' 13 °'36 58d 16h 0° 00'

Venus 8'4 1 °'97 W 0.8 17 4'97 0·87 242 d 23h 177° 50'
Earth 8'79 I -0O 298 1'000 5-52 1'00 23 h 56m 23° 27'
Moon 2'4° 0'27 °'°123 3'34 0'17 27 d 07 h 1° 32'
Mars 4.68 °'53 192 o'lOg 3'94 °'38 24h 37 m 25° 12'

Jupiter 98 '47 I 1'19 16· I 3 18 ,° 1'33 2·64 9h 50m 3° 04'
Saturn 83'33 9'47 10'4 95'2 0·69 1'13 IOh 14m 26° 44'
Uranus 34'28 3-69 16 14.6 1'56 1'°7 IOh 49m 97° 53'
Neptune 36 '56 3-50 5° 17'3 2'27 1'4 I ISh 40m 28° 48'

Pluto °'5 ? ? 0'1 4 ? °'4 6d IOh 9°° ?
* The radii of the planets are based on recent values for the angular semi-diameters;

the equatorial radius of the Earth is 6378 km = 3963 miles. The tabulated semi-diameters
are the values adopted in the Ephemeris.
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Gravitational constants

Gaussian gravitational constant k 0'01720 20989 50000
k 2 0'00029 5912208286

I/k 58· 13244 08670
27T/k 365 '25689 83263

kO = 360k/27T 0'98560 76686

The value of k is treated as exact, and defines the astronomical unit (a.u.) as the radius
of a circular orbit in which a body of negligible mass, and free of perturbations, would
revolve round the Sun in a Gaussian year of 27T/k ephemeris days.

When the unit of mass is the mass of the Sun the gravitational attraction between two
particles of mass M and m separated by a distance r is k2Mm/r2 ; further the mean motion
(Il in radians per day, nO in degrees per day), period (P in days), and speed (v in a.u. per
day) of a body of mass m revolving in an elliptic orbit about a centre of attraction of mass
M at mean distance a (in a.u.) are given by:

n2a3 = k 2 (M + m) nO = kO (M + m)~ a-~

P = (27T/k) (M + m)-~ a~ v = ky(M + m) (; - ~)

Values of the constants in these expressions, when m is negligible, are given below for
motion about each of the major planets and the Moon.

Values of the gravitational constant G, corresponding to k 2 , may be obtained for other
units from:

G = k 2V/MT2
where M is the mass of the Sun, T is one ephemeris day, and L is one astronomical unit
expressed in terms of the new units; the precision of G obtained in this way is limited by
the precision to which L, 1vl, T are known. By direct measurement:

G = 6·670 X 10- 11

when the units are the metre, the kilogram, and the second.

GM
m3/s 2

x 10'9
Units

For motion about the Sun GM = 13'246 x 10'9 when the units of length and time
are the metre and the second; values for the planets are given below.

Mass (M) k 2 M kyM kOYM 27T/kyM
Sun = 1 a.u., days

x 10-10 x 10-5 X 10-5

Mercury 0.00000017 0'49 0'71 40 8'9 0·0000022
Venus ·00000 245 7'25 2·69 154 2'33 '00003 25
Earth + Moon '00000304 8'98 3'00 172 2'09 '0000402

Earth '000002999 8·87 2'98 171 2·11 '0000397
Moon ·00000 0037 o· II 0'33 19 19 '00000049

Mars '00000032 0'96 0'97 56 6'5 '0000043
Jupiter '000954786 2825'33 53'1538 3045'49 0'11821 '012643
Saturn '000285584 845'08 29'0702 1665.60 0'21614 .003782
Uranus '000043727 129'39 11'375 65 1'74 0'55236 '000579
Neptune 0'00005 1776 153'21 12'378 709.20 0'50761 0'000686

For motion about the Earth it is appropriate to use the mass of the Earth, the radius
of the Earth, and the minute as the units and to denote GME by k;L it may be determined
accurately from the observed acceleration due to gravity at the Earth's surface. If k E is
treated as exact it defines a unit of distance, which may be called the gravitational radius of
the Earth, as the radius of an equatorial circular orbit in which a particle of negligible mass,
and free of perturbations, would revolve round the Earth in a period of 27T/kE ephemeris
minutes.

0'07436 574
13'44705
4'260843

k~

27T/kE

Unit of distance

0'00553 02633
84'49032
6378270 ~
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Units of length, speed, and Illass

Greek alphabet

I kilogram (kg) = 2·205 pounds (lb) I lb = 004536 kg I (long) ton = 2240lb = 1016 kg

a A alpha 7] H eta v N nu T T tau
f3 B beta 8 e theta ~ 3 XI V Y upsilon
y r gamma I iota 0 0 omicron rP ep phi
0 Ll delta K K kappa n II pi* X X chi
E E epsilon A A lambda p P rho t/J lJf psi

~ Z zeta jJ. M mu u E sigmat w Q omega

* 'fIr (' curly pi ') is an alternative form of n.

t ' is an alternative form of Uo

resol
66 a
the I
sity

~omina

:\ndrome
:\ntlia
:\pus
quarius

:\quila
:\ra
:\rgo
:\TIes
:\uriga
Bootes

elum
amelop
ancer

Canes Vc
anls

Canis M
apricor
anna
assiope

Centaun
Cepheus
Cetus
Chamael
Circinus
Columbl
Coma B
orona

Corona
Corvus
Crater
CnIX
Cygnus
Delphin
Dorado
Draco
Equule
Eridan
Fomax
Gemini
Grus
Hercule
Horolog
Hydra
Hydrus
Indus

Light years
per year
(velocity
of light)

3.336 x 10- 9

10491 X 10- 9

0 0005776
0 003262

Parsecs
per century

(pc/cento)

300 66

10023 X 10- 7

4·572 X 10- 8

001 77 1
I

I foot = 0030480 metres

50775 x 10- 7

20582 X 10- 7

50647

Astronomical
units per day

(aouo/day)

Miles
per hour
(mi./hro)

Metres
per second

(m/s)

I (statute) mile = 5280 feet

2 0237
= 0 04470 I

= 10731 X 106 30873 X 106

= 9 0778 X 10
6 20187 X 107

Metres Miles Astronomical Light years Parsecs
(m) (mio) units (aouo) l.y. pc

I 60214 x 10 -. 60684 X 10- 12 10 °57 x 10 -16 30241 X 10 -17

= 10609 X 103 I 10076 X 10- 8 1·7°1 X 10 -13 5·215 x 10 -14

= 1.496 X lOll 9·296 X 107 I 1·581 X 10 -5 40848 x 10 -6

= 9·461 X 10'5 5 0879 X 10'2 60324 X 10' I 0 03066
= 30086 x 10'6 10 917 X 10'3 2 0063 X 105 3 0262 I

I Ill/S
I Illi./hr.
I a.u./day
I pc/cent.
velocity

of light

I III

I Illi.
I a.u.
I l.y.
I pc
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Constellation names and abbreviations

The following list of constellation names arid abbreviations is in accordance with the
resolutions of the International Astronomical Union (Trans. LA.V., I, 158; 4, 221; 9,
66 and 77). The boundaries of the constellations are listed by E. Delporte, on behalf of
the LA.U., in Delimitation scientifique des constellations (tables et cartes), Cambridge Univer­
sity Press, 1930; the areas of the constellations are given in Handbook B.A.A., 196r.

495

'ominative
!dromeda
:t1ia
us
JUanus
mila

~o

les
;riga
otes
tlum
iII1elopardalis
meer
nes Venatici
nis Major
mis Minor
~ricornus

Ilma
. iopeia
mtaurus
~heus

:hJs

:amaeleon
ICmus
Jumba
rna Berenices
~ona Austrina
~ona Borealis
MIS

1ter
11X

;gnus
elphinus
rado

l1eo
~uleus

idanus
max
tmini
:us
ereules
orologium
.ydra
ydrus
:dus

And
Ant
Aps
Aqr
Aql
Ara
Arg
Ari
Aur
Boo
Cae
Cam
Cnc
CVn
CMa
CMi
Cap
Car
Cas
Cen
Cep
Cet
Cha
Cir
Col
Com
CrA
CrB
Crv
Crt
Cru
Cyg
Del
Dor
Dra
Equ
Eri
For
Gem
Gru
Her
Hor
Hya
Hyi
Ind

Genitive
Andromedae
Antliae
Apodis
Aquarii
Aquilae
Arae
Argus
Arietis
Aurigae
Bootis
Caeli
Camelopardalis
Cancri
Canum Venaticorum
Canis Majoris
Canis Minoris
Capricorni
Carinae
Cassiopeiae
Centauri
Cephei
Ceti
Chamaeleontis
Circini
Columbae
Comae Berenices
Coronae Austrinae
Coronae Borealis
Corvi
Crateris
Crucis
Cygni
Delphini
Doradus
Draconis
Equulei
Eridani
Fornacis
Geminorum
Gruis
Herculis
Horologii
Hydrae
Hydri
Indi

Nominative
Lacerta
Leo
Leo Minor
Lepus
Libra
Lupus
Lynx
Lyra
Mensa
Microscopium
Monoceros
Musca
Norma
Octans
Ophiuchus
Orion
Pavo
Pegasus
Perseus
Phoenix
Pictor
Pisces

tPiscis Austrinus
Puppis
Pyxis
Reticulum
Sagitta
Sagittarius
Scorpius
Sculptor
Scutum

tSerpens
Sextans
Taurus
Telescopium
Triangulum
Triangulum Australe
Tucana
Ursa Major
Ursa Minor
Vela
Virgo
Volans
Vulpecula

Lac
Leo
LMi
Lep
Lib
Lup
Lyn
Lyr
Men
Mic
Mon
Mus
Nor
Oct
Oph
Ori
Pav
Peg
Per
Phe
Pic
Psc
PsA
Pup
Pyx
Ret
Sge
Sgr
Sco
Sci
Sct
Ser
Sex
Tau
Tel
Tri
TrA
Tuc
UMa
UMi
Vel
Vir
Vol
Vul

Genitive
Lacertae
Leonis
Leonis Minoris
Leporis
Librae
Lupi
Lyncis
Lyrae
Mensae
Microscopii
Monocerotis
Muscae
Normae
Octantis
Ophiuchi
Orionis
Pavonis
Pegasi
Persei
Phoenicis
Pictoris
Piscium
Piscis Austrini
Puppis
Pyxidis
Reticuli
Sagittae
Sagittarii
Scorpii
Sculptoris
Scuti
Serpentis
Sextantis
Tauri
Telescopii
Trianguli
Trianguli Australis
Tucanae
Ursae Majoris
Ursae Minoris
Velorum
Virginis
Volantis
Vulpeculae

* In modem usage Argo is divided into Carina, Puppis, and Vela.
t Australis is sometimes used, in both nominative and genitive.
t Serpens may be divided into Serpens Caput and Serpens Cauda.
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Short table of a -~ and a~

a a-~ a~ a a-~ a~ a a-~ a~

0·1 3 1.6 203 0'03 1620 1 1'00000 1·000 10 0.03 1620 31.6
·2 11'180 '08944 2 0'35355 2·828 20 '01118 89'4
'3 6'086 '16432 3 '19245 5'196 30 '00609 164'3
'4 3'953 '25 298 4 ' 12500 8'000 40 '00395 253'0

0'5 2·8208 0'35355 5 0'08944 11'180 50 0'002083 353·6

·6 2'152 '46476 6 '06804 14·697 60 '00201 5 464.8

'7 1'707 '5 8566 7 '05399 18'5200 70 '00171 585'7
·8 1'398 '71554 8 '04419 22·627 80 '001 40 7 15'5

0'9 1'171 0.85381 9 '03704 27'000 90 '00117 853.8

1·0 1·000 1·00000 10 0'03 162 3 1.6203 100 0·00100 1000'0

MatheInatical constants and other data

1T 3'14159 265 1/1T 0'3 1830 989 V1T 1'77245 385 I/v1T 0'564 18 958
1T12 1'57079 633 211T 0.63661 977 V (1T12) 1'2533 1 4 14 v(211T) 0'79788456
21T 6'28318531 1/(21T) 0'159 15494 V(21T) 2'50662 8207 Ilv(201T) 0'3989420208
1T2 9. 86960 440 1/1T2 0' 101 32118 1T/4 0'78539 816 4/1T 1'273203 954
e 2'71828 183 lie 0'36787944 ve 1.64872127 lIVe 0.60653066
err 23'14069263 e-.r 0'04321 392 e"/2 4.8104773 8 e-,,/2 0'20787958
V2 1'41421 356 11V2 0'7071Q 678 v3 1-73205 081 I/v3 0'57735 0207
VIO 3'16227766 I/vlo 0'3 1622777 IO~ 31.62277 660 10-~ 0'03162278

loglo x 0'434209 448 loge x loge X = 2'302058 509 loglo X

I radian 57° '29577 95 1 1° = 0'01745 320925 199 radians
3437"74677 078 I' = 0'00029088820 087

206 264"-80624 710 I" = 0·00000 48481 368

For other angular conversion constants see table 17-10.

I steradian
I

Solid angles

3283 square degrees I square degree = 0-305 x 10-3 steradians
1'18 x 107 square minutes I square minute = 0.846 x 10-7

4.205 X lOll square seconds I square second = 0'235 X 10-11

A sphere subtends 41T steradians = 412053 square degrees
= 1'485 X 108 square minutes = 5-35 x lOll square seconds

near 0°
0°'29 = 17'
0°-0003 = I"
0°_063 = 0"-001

Change in sin x

0'005
0·000005
0'00000 0005

Accuracy of use of tables of sin x
Corresponding change in x
near 60° near 80°

0°'57 = 34' 1°·66 = 99'
0°-0006 2" 0°'0016 = 6"
0°_066 = 0"'002 0°'05 16 = 0"-006

near 90°
5°-73 344'
0°'18 II'

0°'006 201"

Convergence of differences in tables of sin x and cos x

02
" e:t~ (a + ph) = (- I)" k" ~y~ (a + ph) where k = 4 sin2 (hI2)

h 90° 80° 70° 60° 50° 40° 30° 20° 10° 5° 1°

k 2 1·65 1'32 0'714 0'468 0-268 0'1201 0.0304 0'00761 0'03305
k 2 4 2-73 1'73 -5 10 -2 19 -0718 -0 145 -03923 -04579 '079208
k 3 8 4'5 1 2-28 -365 -102 -0 192 -00175 -04281 -06441 '01028
k4 16 7'46 3-00 ·261 '0479 -005 15 -03212 -06852 '08335 -01486
k 5 32 12-33 3'95 '186 '0224 -001 38 -04255 -07259 -01026 _017 206

For h = 180°, k = 4; for h = 120°, k = 3



SUPPLEMENT TO THE A.E. 1968*
THE INTRODUCTION OF

THE IAU SYSTEM OF ASTRONOMICAL CONSTANTS

A. General considerations
I. Purpose

At its session on 3 September 1964- in Hamburg, the General Assembly of the
International Astronomical Union adopted the following resolution. (Trans. IAU
I2B, 95, 1966.)

The International Astronomical Union endorses the final list of constants prepared by
the Working Group on the System of Astronomical Constants and recommends that it be
used in the national and international ephemerides at the earliest practicable date.

Commission 4- (Ephemerides) had earlier recommended, in the following
resolution (Trans. IAU I2B, 105, 1966), that the effects of the new system be
introduced into the national and international ephemerides in 1968.

Commission 4 recommends that the new system of astronomical constants should be
introduced into the national and international ephemerides as for the year 1968, as far as
this is practicable. It recognises the difficulty of introducing into the planetary and lunar
ephemerides the full effects of the changes of mass of the Earth and Moon, and recommends
that the compilers of the relevant ephemerides should decide the precise procedures to be
followed. Further, where it is impracticable to correct the current ephemerides, it recom­
mends that differential corrections or formulae from which such corrections can be
calculated should be given.

The main purpose of this Supplement is to describe precisely how these resolu­
tions are being implemented. A brief analysis of how the IAU System of Astro­
nomical Constants can best be introduced into the ephemerides is followed by a
detailed derivation of the corrections that are necessary to convert the printed
ephemerides, based on the old system, into those based on the newly-adopted
system. A list is also given of the changes required in the Explanatory Supplement.

2. The IAU System OJ Astronomical Constants
The IAU System of Astronomical Constants was formally proposed by a

Working Group (W. Fricke, Chairman; D. Brouwer; J. Kovalevsky; A. A.
Mikhailov; G. A. Wilkins, Secretary) set up by the Executive Committee of the
Union in response to a resolution adopted at IAU Symposium No. 21 (The
System of Astronomical Constants) held in Paris in May 1963. The full report of
the Working Group is published as an appendix to the report of the Joint Dis­
cussion on 'The IAU System of Astronomical Constants' in Trans. IAU I2B,

Continued on page 502

* The abbreviation "A.E." is used for practical convenience to denote the two publications,
identical other than for title, The Astronomical Ephemeris and The American Ephemeris and
Nautical Almanac.
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THE INTRODUCTION OF THE IAU SYSTEM

REFERENCE LIST OF RECOMMENDED CONSTANTS·

s = 31556925'9747

k = 0'01720209895

Defining constants: Constantes de definition

I. Number of ephemeris seconds in I tropical year (1900)
Nombre de secondes de temps des ephemerides pour

l'annee tropique (1900)

2. Gaussian gravitational constant, defining the A.U.
Constante de la gravitation universelle, definissant

l'unite astronomique (U.A.)

I
1

2

2

2

I

C = 299792'5 x lOs

p. = 1/81'30

A = 149 600 x 10'

ae = 6378160

J2 = 0'0010827

Primary constants: Constantes primaires

3. Measure of I A.U. in metres
Longueur de l'U.A. en metres

4. Velocity of light in metres per second
Vitesse de la lumiere, en metres par seconde

5. Equatorial radius for Earth in metres
Rayon equatorial terrestre, en metres

6. Dynamical form-factor for Earth
Facteur d'ellipticite geopotentielle

7. Geocentric gravitational constant (units: m3 S-2)

Constante geocentrique de la gravitation

8. Ratio of the masses of the Moon and Earth
Rapport de la masse de la Lune acelle de la Terre

9· Sidereal mean motion of Moon in radians per second (1900). 66 6 8
Moyen mouvement sideral de la Lune en radians par n( = 2' I 994 9 x

seconde (1900)

General precession in longitude per tropical century (1900)
Precession generale en longitudes par siecle P = 5025~64

tropique (1900)

Obliquity of the ecliptic (1900)
Obliquite de l'ecliptique (1900)

Constant of nutation (1900)
Constante de la nutation (1900)

II.

12.

10.

Auxiliary constants and factors

k186400, for use when the unit of time is I second

Number of seconds of arc in I radian

Factor for constant of aberration (note 15)

Factor for mean distance of Moon (note 20)

Factor for parallactic inequality (note 23)

k' == 1'990983675 x 10-7

206264.806

F1 = 1'000 142

F 2 = 0'999 093 142

Fs = 49 853~2

• The above list was confirmed by the Working Group, adopted as definitive at the Joint
Discussion, and endorsed by the Twelfth General Assembly (Resolution no. 4, page 9S ); it now
represents the 'IAU System of Astronomical Constants'.

• La liste ci-dessus a ete confirmee par Ie Groupe de Travail, adoptee definitivemf'nt Ii la
Discussion Commune, et appuyee par la Douzieme Assemblee Generale (Resolution no. 4, page
94); elle represente desormais Ie 'Systeme UAI des Constantes Astronomiques'.

I

I



A. GENERAL CONSIDERATIONS

REFERENCE LIST OF RECOMMENDED CONSTANTS·

Derived constants: Constantes secondaires

499

13. Solar parallax
Parallaxe solaire

14. Light-time for unit distance
Temps de lumiere relatif it l'U.A.

15. Constant of aberration
Constante de l'aberration

16. Flattening factor for Earth
Aplatissement terrestre

17. Heliocentric gravitational constant (units: m3 S-2)

Constante heliocentrique de la gravitation

18. Ratio of masses of Sun and Earth
Rapport de la masse du Soleil it celIe de la Terre

19. Ratio of masses of Sun and Earth + Moon
Rapport de la masse du Soleil it celIe du

systeme Terre-Lune

20. Perturbed mean distance of Moon, in
metres

Demi-grand axe perturbe de l'orbite de
la Lune, en metres

21. Constant of sine parallax for Moon
Sinus de la parallaxe de la Lune

22. Constant of lunar inequality
Constame de l'inegalite lunaire

23. Constant of parallactic inequality
Constante de l'inegalite parallactique

arcsin (ae/A) = 7T@ = 8'!79405 (8'!794)

A/e = 'TA = 499~OI2

= 18/0'00200396

F1k''TA = K = 20'!4958 (20'!496)

f = 0'003 352 9
= 1/298'25

A 3k'2 = GS = 132718 X 1016

(GS)/(GE) = S/E = 332958

S/E(1 + fL) = 328 912

_fL_~...!.= L = 6'!439 87 (6'!440)
l+fL A

F 3 ~ ~ ~ :; = p ( = 124!986

Jupiter
Saturn
Uranus
Neptune
Pluto

24. Mercury
Venus
Earth + Moon
Mars

System of planetary masses

Reciprocal mass
6000000

408000
329390

3°93 500

Reciprocal mass
1 047'355
3 5°1"6

22869
19314

360000

t
v

a
e

• The above list was confirmed by the Working Group, adopted as definitive at the Joint
Discussion, and endorsed by the Twelfth General Assembly (Resloution no. 4 page 95); it now
represents the 'IAU System of Astronomical Constants'.

• La liste ci-dessus a ete confirmee par Ie Groupe de Travail, adoptee definitivement a la
Discussion Commune, et appuyee par la Douzieme Assemblee Generale (Resolution no. 4, page
94 ); elle represente desormais Ie 'Systeme UAI des Constantes Astronomiques'.



500 THE INTRODUCTION OF THE IAU SYSTEM

NOTES ON THE CONSTANTS

L The value given for the number of ephemeris seconds in the tropical year at 1900 is taken
from the definition of the ephemeris second that was adopted by the Comite International des
Poids et Mesures (Proces Verbaux des Seances deuxieme serie, 25, 77, 1957). It is, in fact, derived
from the coefficient of T, measured in Julian centuries of 36 525 days, in Newcomb's expression
for the geometric mean longitude of the Sun referred to the mean equinox of date. In the list
'1900' refers to the fundamental epoch of ephemeris time, namely 1900 January 0 at I2h E.T.,
or to 1900'°, as appropriate; the values for constants 20-23 also refer to the fundamental epoch.
Throughout the list and this Report the term 'second' must be understood to mean the 'ephe·
meris second'.

2. The value of the Gaussian gravitational constant (h) is that adopted by the IAU in 1938,
and serves to define the astronomical unit of length (A.U.) since the corresponding (astronomical)
units of mass and time are already defined. (The unit of mass is that of the Sun and the unit of
time is the ephemeris day of 86 400 ephemeris seconds. The units of hare: (A.U.):li (ephemeris
day)-l (Sun's mass)-J..2.) To simplify the later equations an auxiliary constant hi, defined as
hj86 400, is introduced and a rounded value is given in the list.

3. The value for the measure of the A.U. in metres is a rounded value of recent radar deter·
minations.

4. The value for the velocity of light is that recommended by the International Union of
Pure and Applied Physics in September 1963.

5. The term 'equatorial radius for Earth' refers to the equatorial radius of an ellipsoid of
revolution that approximates to the geoid. (See also note 16.)

6. The term 'dynamical form-factor for Earth' refers to the coefficient of the second harmonic
in the expression for the Earth's gravitational potential as adopted by IAU Commission 7 in
1961. (See also note 16.)

7. The geocentric gravitational constant (GE) is appropriate for use for geocentric orbits
when the units of length :lnd time are the metre and the second; E denotes the mass of the

Earth including its atmosphere. Kepler's third law for a body of mass M moving in an unper·
turbed elliptic orbit around the Earth may be written

GE (1 + MjE) = n 2a3.

where n is the sidereal mean motion in radians per second and a is the mean distance in metres.
The value of GE is based on gravity measurements and observations of satellites.

8. Again the mass of Earth includes the mass of the atmosphere. The reciprocal of 81'30 is
0'°123 001.

9· The value for the sidereal mean motion of the Moon is consistent with the value of the
tropical mean motion used in the improved lunar ephemeris, less the general precession in
longitude.

10-12. The values of the principal constants defining the relative positions and motions of the
equator and ecliptic are those in current use. Secular terms and derived quantities are already
tabulated elsewhere.

13· The rounded value 8'!794 for the solar parallax should be used except where extra figures
are required to ensure numerical consistency.

14· The value of the light-time for unit distance is numerically equal to the number of light.
seconds in 1 A.U. Its reciprocal is equal to the velocity of light in A.U. per second.

15· Apart from the factor F1 the constant of aberration is equal to the ratio of the speed of
a hypothetical planet of negligible mass moving in a circular orbit of unit radius to the velocity
of light; it is conventionally expressed in seconds of arc by multiplying by the number of
seconds of arc in one radian. The factor F1 is the ratio of the mean speed of the Earth to the
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speed of the hypothetical planet and is given by

F no a o
I = /1- (I _ e2)!-1

where no is the sidereal mean motion of the Sun in radians per second, a 0 is the perturbed mean
distance of the Sun in A.U., and e is the mean eccentricity of the Earth's orbit. Newcomb's
values for no, a 0 and e are of ample accuracy for this purpose. The factor FI and the constant of
aberration take the following values

F1 K
W

1800 1·000 1427 20'495 83
1900 1'0001420 20'495 82
2000 1.000141 3 20'495 81

The rounded value 20~496 should be used except where the extra figures are required to ensure
numerical consistency.

16. The condition that the reference ellipsoid of revolution for the Earth shall be an equipo­
tential surface implies that three parameters are sufficient to define its geometrical form and
external gravitational field, provided that the angular velocity (w) of the Earth and the relative
mass of the atmosphere (!La.) are assumed to be known. The variability of the rate of rotation of
the Earth can be ignored, and the mass of the atmosphere is only just significant; the required
values are:

w = 0'000072921 radians per second; !La. = 0'000 001

The expressions for the flattening (f) and the apparent gravity at the equator (ge) in terms of
the primary constants are, to second order:

f = ~ J2 + t m + *n + H J2 m - -it m2

ge = (GEjae2) (I - !La. + ~ J2 - m + ¥ J~ - .q. 12 m + H m2)
where 171 = aew2jge is obtained by successive approximations. The new value of f is given
here only for astronomical use (parallax corrections, etc).

17. The heliocentric gravitational constant corresponds to GE, but is appropriate for helio­
centric orbits when the units are the metre and the second.

18-19. The derived values of the masses of the Earth and of the Earth + Moon differ from
those currently in use, but will not supersede them completely until the system of planetary
masses is revised as a whole. (See note 24.)

20. The perturbed mean distance of the Moon is the semi-major axis of Hill's variational
orbit, and differs from that calculated from Kepler's law by "the factor F2, which depends on the
well-determined ratio of the mean motions of the Sun and Moon. (E. W. Brown, Mem. R. astr.
Soc. 53, 89, 1897)'

21. The constant of sine parallax for the Moon is conventionally expressed in seconds of
arc by multiplying by the number of seconds of arc in one radian. The corresponding value of
IT( itself is 3422~608.

22. The constant of the lunar inequality is defined by the expression given and is conven­
tionally expressed in seconds of arc.

23. The constant of the parallactic inequality is defined by the expression given; the co­
efficient F 3 is consistent with the corresponding quantities in Brown's Tables.

24. The system of planetary masses is that adopted in the current ephemerides and the values
given for the reciprocals of the masses include the contributions from atmospheres and satellites.
The value for Neptune is that adopted in the numerical integration of the motions of the outer
planets; the value used in Newcomb's theories of the inner planets is 19700. In planetary
theory the adopted ratio of the mass of the Earth to the mass of the Moon is 81'45 (compared
with 81' 53 in the lunar theory), and the ratio of the mass of the Sun to the mass of the Earth
alone is 333 432. This system of masses should be revised within the next few years when
improved values for the inner planets are available from determinations based on space-probes.
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593, 1966. The proceedings of lAD Symposium No. 21 have been printed in
Bulletin Astronomique, Tome XXV, Fascicules I, II and III, July-September 1965,
and are now available as a bound reprint under the title IA U Symposium No. 2I,

The System of Astronomical Constants.

The adopted list of constants, together with the explanatory notes prepared by
the Working Group, is given on pages+98-50I.They have been reproduced photo­
graphically, by kind permission of the International Astronomical Union, from
Trans. IA U I2B.

3. Summary of the main changes
The main changes from the system of constants in use immediately prior to the

introduction of the new system are as follows:

(a) Scale or size. The measure of the astronomical unit in metres (not pre­
viously used) is adopted as a primary constant (constant 3); and a revised value
(constant 5) is adopted for the equatorial radius of the Earth in metres. From
these there is derived a changed value of the solar parallax.

(b) Aberration. The velocity of light, in metres per second, is adopted as a
primary constant (constant 4). From this, in conjunction with other changes, there
are derived changed values of the light-time for unit distance and of the constant
of aberration.

(c) Flattening. Instead of the flattening factor previously used, a dynamical
form-factor (constant 6) is adopted as the primary constant to specify the figure
of the Earth.

(d) The geocentric gravitational constant. The value of the geocentric gravita­
tional constant in metres3 seconds-2 is adopted (constant 7) as a new primary
constant. From this there are derived a changed value of the mass-ratio S/E and,
in conjunction with the change of the mass-ratio M/E, a changed value of the mean
distance, and thus of the corresponding parallax, of the Moon.

(e) The mass-ratio Moon/Earth. A revised value (constant 8) for the mass-ratio
M /E is adopted as a primary constant.

(f) Unchanged primary constants. The remaining primary constants are un-
changed:

I: the number of ephemeris seconds in a tropical year at 1900'0

2: the Gaussian gravitational constant
9: the sidereal mean motion of the Moon

10: the general precession in longitude per tropical century at 1900'0

11: the obliquity of the ecliptic at 1900.0

12: the constant of nutation at 1900'0

4. The epoch of Ephemeris Time
The epoch 1900 January 0<1 12h E.T. is assigned by definition (Trans. IAU

10,72, 1960) to the measure of Ephemeris Time at the instant at which the Sun's
geometric mean longitude, referred to the mean equinox, was 279

0 41' 48"'04. A
change in the adopted value of the constant of aberration thus involves a change
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in the measure of E.T. (see Trans. IAU 10, 72, 1960 and Explanatory Supplement,
page 69); any such change would involve consequential changes in the mean
longitudes of the Sun, Moon and planets, if the fit with observation is not to be
altered.

Pending international discussion of, and agreement on, the implications of
such a change, with the possibility of a re-definition of the epoch of E.T., it has
been decided not to introduce the effect of the change either into the measure of
E.T. or into the ephemerides.

5. Effect of the changes
In so far as they affect the ephemerides in the A.E., the changes may be grouped

as follows:
(a) Scale or size: constants 3 and 5; 13
(b) Aberration: constants 3 and 4; 14 and 15
(c) Flattening: constant 6; 16
(d) Mass-ratio SIE: constants 3 and 7; 18

Mass-ratio NIlE: constant 8; 19,20,21,22 and 23

As discussed above in paragraph 4, no changes are being introduced into the
measure of Ephemeris Time as a consequence of the change in the adopted value of
the constant of aberration.

The system of planetary masses, as given in constant 24, is inconsistent with
the new value of the ratio of the combined mass of Earth and Moon to that of the
Sun (constant 19). But, as suggested by the Working Party in its report, no changes
are being made in the ephemerides of the planets due to the changed value of
SI(E + M). With this understanding the general effect of the changes are described
in the following paragraphs. A detailed derivation of the corrections required is
given in section B on page 508 .

(a) Scale or size. Although these changes constitute some of the most
important features of the new system, their direct effect on the tabulated ephem­
erides is small. Heliocentric and geocentric distances, expressed in astronomical
units, are unchanged; but, of course, the tabulated values of the horizontal parallax
of the Sun and planets must be changed proportionally to the change in the adopted
value for the solar parallax (constant 13, 8"'794 instead of 8"·80). Other, indirect
and small, effects arise in connection with other changes, particularly the changed
mass-ratios SIE and MIE.

(b) Aberration. The change in the adopted value of the constant of aberration
(constant 15, 20"'496 instead of 20"'47) affects all apparent ephemerides (other than
the Moon for which it is negligible), the aberrational day numbers, the physical
ephemerides (especially the light-times in the calculation of which the light-time
for unit distance-constant 14-is now 4998'012 instead of 4988'58), and the
ephemerides of the satellites. In all cases the corrections are small, and in many
cases are not significant to the precision of the ephemerides.

(c) Flattening. The change in the adopted value of the flattening (constant
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16, 1/298'25 instead of 1/297) has a small direct effect on all quantities related to
topographic positions on the Earth, such as predictions and reductions of eclipses
and occultations, data for observatories, tables of Sand C etc.

The adopted value of the dynamical form-factor for the Earth (constant 6,
J2 = 0·001 082 7) differs from that used in Brown's theory of the motion of the
Moon; the resulting correction affects the longitude and latitude of the Moon by
terms which may reach ±0" '2.

(d) Mass-ratios S/E and M/E. The heliocentric motion of the centre of
gravity of the Earth and Moon is clearly affected by a change in the adopted value
of the mass-ratio S/(E + M) (constant 19,328 912 instead of 329390); but, since
the mean motion is unchanged, the only change is a very small (actually insignifi­
cant) increase in the mean distance measured in astronomical units. As mentioned
earlier, the complicated changes in the heliocentric motion of the planets due to
the changed value of S/(E + M), which may give rise to periodic corrections of
the order of 0" '04 in the longitude of Venus, are being ignored.

The change in the mass-ratio M/E (constant 8, 1/81'30 instead of 1/81'45),
coupled with the changed values of the solar and lunar parallaxes, gives rise to a
change in the constant of lunar inequality (constant 22, 6"'440 instead of 6"'425),
which affects significantly (about 0"'°15 in longitude) the lunar perturbations in
the Earth's orbit; and this change is, of course, enhanced in the geocentric
ephemerides of the inner planets.

The consequential changes in the orbit of the Moon arise through the change
in the constant of parallactic inequality (constant 23, 124" '986 instead of 125". 154);
but the tabulated values of the horizontal parallax will also be directly affected by
the change in the adopted value of the constant of sine parallax of the Moon
(constant 21, 3422"'451 instead of 3422". 54).

Any changes in the lunar ephemeris will give rise to consequential changes in
the prediction and reduction of eclipses and occultations, in the value of the
correction J T to be applied to Universal Time to give Eph~meris Time, and (if
significant) in the physical ephemeris of the Moon.

It must, however, be emphasised that it is only the numerical values of J T,
as determined in practice from the motion of the Moon, that are changed; the
introduction of the new system of constants leaves unchanged the definitions of
both U.T. and E.T. (See paragraph 4 above in respect of the effect on the measure
of Ephemeris Time of the change in the adopted value of the constant of aberration.)

6. Correction of the ephemerides
New ephemerides completely consistent with the new system of constants,

and with a revised system of planetary masses, will eventually be required. How­
ever, difficulties will arise in correcting the current ephemerides of the Sun and
planets for changes in the adopted masses of the planets, and it will almost
certainly be preferable to wait until new theories of their motion are available.
With modern electronic computers ephemerides may be calculated for long periods
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with little additional effort, so that such new ephemerides can easily be made avail­
able for the precise comparison of theory and current observation. It is a matter of
detail whether such new ephemerides should be printed in full year-by-year as in
the present A.E., or given for each body for many years at a time in a separate
volume, or made available as computer programs from which positions, in any
form desired, may be calculated for any time. Certainly, ephemerides based on
the present authorities and corrected to the new system of constants will soon be
superseded. It is extremely unlikely that they would ever be used for their main
purpose of comparison of observation with theory; moreover, the introduction of
a discontinuity in the basis of tabulation would be a disadvantage for any current
investigations.

With the exception of the lunar ephemeris, and the day numbers, the
corrections are so small that they may be ignored for all purposes other than the
precise comparison of observation with theory; moreover, they are of the same
order as the rounding-off error of the tabulated ephemerides so that corrected
ephemerides, if to be of the same standard of precision, must be recalculated and
not corrected differentially.

There is therefore a strong case for retaining the current ephemerides un­
changed in the A.E., until such time as they can be replaced by new ephemerides
based on new theories as well as new constants. This case is strengthened for the
year 1968, and immediately following years, by the fact that the fundamental
ephemerides are already in print and have been distributed, under international
agreements, to the offices of the national ephemerides.

These considerations do not necessarily apply to the lunar ephemeris, which
is tabulated to a precision considerably greater than that of optical observation, to
the day numbers, and to certain other data which are required for other ephemerides
or for the reduction of observations. But it is clearly adequate to publish
differential corrections to be applied to the tabulated lunar ephemeris, until such
time as a corrected ephemeris can be introduced, possibly for the year 1972. The
publication of differential corrections has the advantage that, while individual
tabulated values may be corrected if desired, the. effect of the corrections on a
group of observations or on other deduced quantities may be evaluated directly.

Where data, such as the day numbers, are to be used as a basis for other
calculations in which the new system of constants may be used, either corrected
values or full differential corrections must be given; the choice is largely a matter
of practicability and convenience.

The introduction of the IAU System of Astronomical Constants into the
tabulations in the A.E. f~r 1968 and future years is based on these considerations,
bearing in mind the terms of the resolution by IAU Commission 4. In every
case, one of the following procedures has been adopted:

(i) the tabulations have been corrected to agree with the new system of
constants;

.:-.--------- -
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(ii) differential corrections to be applied to the uncorrected tabulations, based
on the old system, are included in an annual appendix to the A.E., on
page ix onwards;

(iii) simple formulae for the calculation of the corrected values or of differential
corrections are given in the annual appendix.

None of the corrections are sufficiently large to affect significantly the naviga­
tional ephemerides derived from the fundamental ephemerides in the A.E.

7. Correction of the Explanation
It is not practicable to include in the Explanation full details of all the changes

required by the introduction of the new system of constants, or of the derivation of
the corrections. The main changes occur in the section Fundamental Units and
Astronomical Constants, but consequential alterations are required in many other
sections, particularly in those involving aberration, corrections for light-time, and
topocentric positions. The information in the Explanation is, in fact, confined to
material concerning the ephemerides as printed in the main tabulations; as far as
practicable the bases of the differential corrections, and of the ephemerides resulting
from their application, are summarised in the appendix.

8. Correction of the Explanatory Supplement
The number of amendments required to the Explanatory Supplement is so

large that the only satisfactory solution is a revised edition; but for many reasons it
is desirable to wait until the new ephemerides have been fully introduced into the
A.E. Reprints of the present Supplement will be available to serve as a correcting
supplement to the Explanatory Supplement; and for this reason, a comprehensive
list of changes has been included in section C.

B. Theory of the corrections

In this section, there are given the formulae for the corrections to be applied
to the current tabulations to convert them to the new system of constants, together
with their derivation. They are arranged under a few general headings.

I. Scale or size
The change in the adopted value of the solar parallax (constant 13) has a direct

effect on the tabulated values of the equatorial horizontal parallaxes of the Sun
and planets; the correction is

-0"'006..1- 1 or -0'0007 x H.P. (I)
where ..1 is the geocentric distance and H.P. is the tabulated value.

The semi-diameters of the Sun, Moon and planets, being based on observed
values reduced to unit or mean distance, are not affected by the changes.

The associated change in the constant of sine parallax for the Moon (constant
2I) requires a proportional change in the tabulated values of the horizontal parallax
of the Moon; the correction is
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(4)
is thus (making

"8 H.P. in " " 6 H P .-0 ·0 9 x = -0 '0015 x .. 10 (2)
3422 '54

The semi-diameter of the Moon at mean distance is an observed quantity and
its adopted value, 15' 32"'58, is unchanged; but it now corresponds to a slightly
reduced value, 57' 02"·608, of the equatorial horizontal parallax at mean distance
so that the coefficient k in the formula

sin S.D. = k sin H.P. (3)
becomes

0'272488 instead of 0'272481
The correction to the tabulated values of the semi-diameter
legitimate approximations)

+0'000007 x H.P. - k x 0"'00156 x H.P. in' = 0
as must be the case. The change (4) in the value of k will, however, give rise to
small changes in the prediction and reduction of occultations and eclipses.

2. Aberration
All apparent ephemerides are affected by the change in the constant of

aberration (K), constant 15, or by the corresponding change in the light-time for
unit distance (TA)' constant 14.

The apparent geocentric coordinates of the Sun, Moon and planets contain
the aberrational term

-0.0057683 Ll x daily motion
where the coefficient is the fraction of the day corresponding to a light-time for
unit distance of 4988'38, and Ll is the geocentric distance. The correction to be
applied for a change to 4998'012 is thus

-0'0000073 Ll x daily motion (5)

Astrometric ephemerides are given for Pluto and the minor planets, and these
include corrections only for that part of the aberration due to the actual motion of
the planet in the time that it takes light from the planet to reach the Earth. If the
inclination to the ecliptic be ignored, and if it be assumed that the direction of
motion of the planet be within 20° or 30° of the perpendicular to the line joining
the Earth and the planet, then the correction to be applied can be easily shown to be

-0"·026 a~ r- 1 to the geocentric longitude (6)
where a, r are the semi-major axis and radius vector respectively. If, further, the
eccentricity is ignored and r is taken to be equal to a (as is just within the permissible
limits of approximation), the correction may be regarded as constant for each planet,
namely

- 0" .026 a -~ to the geocentric longitude

The aberrational day numbers C and D, which are essentially directly pro­
portional to the constant of aberration, have been recalculated; the values given in
the A.E. for 1968 and future years are thus in accord with the new system of
constants and no corrections are necessary.

In the physical ephemerides of the Sun, Moon and planets, and in the
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ephemerides of the satellites, the phenomenon of aberration does not enter
directly, but allowance is made for the appropriate motions during the time taken
by light to reach the Earth. Corrections must therefore be made for the change
in the light-time for unit distance from the currently adopted value (for these
ephemerides) of 4988'58 to the new value of 4998'°12. The correction to be
subtracted from any tabulated quantity is thus

its motion in 0 8 '43 Ll (8)
where Ll is the geocentric distam:e, with the possible revision of the zero point.

3. F fattening
The direct effect of the change in the adopted value of the flattening of the

Earth (constant 16) is to change the tabulated values of Sand C in Table VII, and
all quantities (such as p sin 1>' and p cos 1>' in t~e list of Observatories) derived
from them. The necessary corrections to pass from the present value of 1/297 to
1/298'25 are:

in S + 71 X 10-7 (3 + cos 21»
in C 71 x 10-7(I - cos 21» . (9)
m p + 7I X 10-7 (I - cos 21»
in 1>' - 1> + 141 X 10-7 sin 21>

where 1> is the geographic latitude.

The most important changes are the consequential ones in the topographical
positions; or local predictions, associated with eclipses and occultations, though
most of these are not published in the A.E. All quantities depending on the
parallax of the Moon, such as the reduction of meridian observations, will also be
affected.

4. The mass-ratio S/(E + M)
The heliocentric motion of the centre of gravity of the Earth and Moon is

affected by a change in the adopted value of the mass-ratio S/(E + M). Since
both ,the mean motion (constant I) and the Gaussian gravitational constant
(constant 2) are unchanged, the mean distance a must be changed to correspond.
With S/(E + M) = 328912 (constant 19) as compared with the present value of
329 390, it is easily seen that the correction to the semi-major axis, a, is

+ 1'47 a x 10-'::9 (10)
which is insignificant, and which is neglected.

As suggested by the Working Group in its report the effect of the change (and
of changes in the adopted values of the masses of other planets) on the heliocentric
motions of the planets is being ignored; it could introduce periodic corrections of
amplitude about 0"'035 into the longitude of Venus.

No corrections are applicable, on this account, to the heliocentric ephemerides
o~ the I'lanets, including the Earth.

5. The mass-ratio E /M
The change in the mass-ratio /L-l = E/M (constant 8) will affect the lunar

petturbations of the geocentric motion of the Sun, due to the transfer of origin
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from the centre of gravity of Earth and Moon to the centre of the Earth. The
lunar perturbations are proportional to the constant of lunar inequality, which is
very nearly the coefficient of the principal term (sin D) in the Sun's longitude; the
adopted value is 6"'440 (constant 22) as compared with the value 6"'425 used in
Newcomb's tables. A direct calculation, using Newcomb's values /L-l = 81 '45,
7T( = 3422".68, 7To = 8"'79 confirms that the correction to be applied to an
ephemeris based on Newcomb's tables is +0'00230 times the actual lunar
perturbations.

With an error of less than 0"'001, the correction in-longitude (A) is
L:lA = +0"'015 sin D (II)

where D is the mean elongation of the Moon from the Sun. The correction in
latitude cannot exceed 0" ·001 5 and can be neglected. The correction to the
radius vector (R), neglecting terms less than 0·2 x 10-8, is

L:lR = +7'1 x 10-8 cos D - 0;7 X 10-8 cos (D - I) (12)

where I, in the notation of Brown's tables, is the mean anomaly of the Moon.

To sufficient precision, the corrections may thus be represented by:
L:l A = +0"'015 sinD L:l{3 = 0 L:lR = +7 x 10-8 cos D (13)

Alternatively, the effect of the change is to increase, by a factor of I '0023, the
distance of the Earth from the unchanged position of the centre of gravity of the
Earth and Moon. To a sufficient approximation, the Moon may be regarded as
moving in a circular orbit in the ecliptic, so that the correction consists of a shift
of the Earth's position in the ecliptic of mean magnitude 7'2 x 10-8 astronomical
units rotating with the mean motion of the Moon. In terms of the equatorial
rectangular coordinates of the Sun the corrections are:
L:lX = +7 X 10-8 cos« L:l Y = +7 ~ 10-8 sin« L:lZ = +3 X 10-8 sin « (14)
where « is the mean longitude of the Moon. The error due to the various approxi­
mations is unlikely to exceed I x 10-8.

Simple geometry shows that the consequential corrections to be applied to the
geocentric ecliptic coordinates of the planets (which are not tabulated in the A.E.)
are, with the same order of approximation,

to the geocentric longitude, AI': ..1,\ = +0".015 L:l-l sin (<< - L p ) (15)
to the geocentric distance,· L:l: +7 x 10-8 cos (<< - L p ) (16)
to the geocentric latitude, {3p: less than 0"'0015 L:l-l

where L p is the mean longitude of the planet.

Approximately, the corresponding corre'tions in geocentric right ascension, a,

and declination, S, are
to the right ascension: L:l A (17)
to the declination : 0'4 L:lA cos a (18)

To the precision required the difference between the two mean longitudes,
(<< - L p ), may be replaced by (D - E), where D is the mean elongation of the
Moon from the Sun and E (positive to the east) is the elongation of the planet
from the Sun.
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Parallax (22)
unit 0"'0001

+ 13 cos D
+ i cos (I + D)
- 2 cos (If + D)

Latitude (21)
unit 0"'001

+7 sin (F + D)
-6 sin (F - D)
- 1 sin (F, + I' + D)
+ 1 sin (F - If - D)

6. The ephemeris of the Moon
The direct effect on the ephemeris of the Moon of the changes in the values

of the constants concerning the Moon (constants 8,9,20,21,22 and 23) consists of:

(a) Constant of sine parallax. The corrections to the tabulated values of the
horizontal parallax, due to the change of the constant of sine parallax (constant 21),
already dealt with in paragraph 1 above.

Formula (2) of paragraph 1 is designed to facilitate a mental calculation of the
main correcting term to the tabulated horizontal parallax of the Moon; it can be
expanded as, in units of 0"'0001,

- [890 + 7 cos 2D + 49 cos I + 9 cos (I - 2D)
+ 1 cos (I + 2D) + 3 cos 21]

where I is, in the notation of Brown's tables, the mean anomaly of the Moon.

(b) Constant of parallactic inequality. The correction to the longitude,
latitude and horizontal parallax due to the changed value of the constant of
parallactic inequality (constant 23).

The value of the constant of parallactic inequality used in Brown's Tables of
the Motion of the Moon (and in the Improved Lunar Ephemeris) is 125"'154 as
compared with 124"'986 now to be adopted. In terms of the notation used by
Brown, the new value of a, is 0·002 509 35 as compared with Brown's 0'002 51273.
The correction to be applied thus consists of -0'00134 times all terms in Brown's
theory in which a l occurs in the principal characteristic. The terms are listed in
Memoirs of the Royal Astronomical Society, Vol. 57, pages 130-145 and again (with
revised values of the constants) in Lists ia-iB in the Tables; but, in List if3, al is
omitted from the principal characteristic, and it is convenient to refer to the earlier
expression for the terms in the latitude dependent on a l .

The following list includes all correcting terms with coefficients greater than
0"'0010 in longitude and latitude, and 0"'00010 in parallax; the notation used is
that of Brown's tables, with F = L - ~ being the argument of latitude and l'the
mean anomaly of the Sun.

Longitude (20)
unit 0"'001

+168 sin D
25 sin (I - D)

+ II sin (I + D)
4 sin (I - 3D)

24 sin (If + D)
2 sin (21 - D)
2 sin (21 - 3D)
2 sin (I + If + D)

+ 1 sin (I - If - D)

(c) Flattening of the Earth. The value of the ellipticity, f, of the Earth's figure
as used in Brown's tables, and thus in the Improved Lunar Ephemeris, is 1/294.
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Latitude (26)
unit 0" ·001

+215 sin (Q + F)
12 sin (Q + F - I)

+ I I sin (Q + F + I)
9 sin (Q - F)
8 sin (Q + F - 2D)

+ 2 sin (Q + F - I + 2D)
2 sin (Q + F + I - 2D)
2 sin (2Q + F)
I sin (Q - F - I)

+ I sin (Q + F + 2D)

The perturbations in the motion of the Moon are, however, proportional to the
dynamical form factor J2, where

tJ2 = f - fa (23)
and a is approximately the ratio of the centrifugal force to gravity on the Earth's
equator.

According to the new system of constants the coefficients should be calculated
with tJ2 = 0·001 624 05 (constant 6). It would appear that the values given in
the Tables are based on tJ2 = 0·001 667 36 corresponding to a value of a =
0'003 468, slightly different from the new value (constants 6 and 16) of 0'003 457 8.
The correcting factor is thus not directly proportional to the difference between the
old, 1/294, and the new, 1/298'25, values off.

~ Moreover, Brown includes the main terms of these perturbations as additions
to the elements so that it is not easy to derive explicit corrections, corresponding to
a change in the adopted value off or -~J2' to the true longitude and latitude. It is
convenient to base such corrections on the expressions given by G. W. Hill in
Astronomical Papers of the American Ephemeris, Vol. III, Part II, 1884. Hill states
that he used -~J2 = 0·001 759 5, so that the factor by which Hill's coefficients must
be multiplied to correct the Improved Lunar Ephemeris to the new system of
constants is

(0'001 624 05 - 0·001 66736)/0'001 7595 = -0'0246 (24)
The following list includes all correcting terms with coefficients greater than

0"'0010; the correction to the horizontal parallax is negligible. The notation is
that of Brown's tables; but Hill used g for the mean longitude Q + F for which
Brown used L.

Longitude (25)
unit 0"·001

- 189 sin Q

13 sin (Q - I)
13 sin (Q + I)
10 sin (Q + 2F)

2 sin (Q - 2D)
2 sin (Q + 2D)
2 sin (Q - I + 2D)
I sin (Q + I - 2D)
I sin (Q - I + 2F)
I sin (Q + I + 2F)
I sin (Q + 2F - 2D)

(d) Correction to term No. 182. In the course of a comprehensive recomputa­
tion of the solar terms in Brown's theory of the motion of the Moon, Dr. W. J.
Eckert (Trans. IAU, I2B, in press, 1966) discovered an error in term No. 182.
The term* should be:

- I" '370 sin (21 - 2F) instead of - I" '298 sin (21 - 2F)

*A later (April 1966) determination suggests that the coefficient should be - I" '372.
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To the
horizontal parallax, 7T

unit 0"·0001 (31)
Ll7T =

-89°
49 cos ([ - T')

+ 13 cos D
9 cos ([ - T' - 2D)
7 cos 2D
3 cos (2([ - 2T')

The existence and magnitude of the error have been verified by B. L. Klock
and D. K. Scott (Astronomical Journal, Vol. 70, p. 335, 1965) by the analysis of
meridian observations of the Moon made at the U.S. Naval Observatory.
Adopting the theoretical value of the coefficient, a correction of

-0".072 sin (21 - 2F) (28)
has to be applied to the longitude of the Moon. It seems desirable to include this
correction at the same time as the others.

Total corrections to the ephemeris of the Moon

Collecting together the four separate contributions, ignoring terms whose
coefficients are less than 0" .0025 in longitude and latitude, or 0" .00025 in parallax,
and converting to the notation of the A.E., the corrections to be applied to the
ephemerides as tabulated in the A.E. are:

To the To the
true longitude, ,\ latitude, f3
unit 0"·001 (29) unit 0"·001 (30)
Ll,\ = Llf3 =

- 189 sin Q +215 sin ([
+ 168 sin D 12 sin T'
+ 72 sin (2T' - 2Q) + II sin (2([ - T')

25 sin ([ - T' - D) + 9 sin ([ - 2Q)
24 sin (g + D) 8 sin ([ - 2D)

+ 13 sin ([ - T' - Q) + 7 sin ([ - Q + D)
13 sin ([ - T' + Q) 6 sin ([ - Q - D)

+ II sin ([ - T' + D)
10 sin (2([ - Q)
4 sin ([ - T' - 3D)

where ([ is the mean longitude of the Moon, Q, T' are the mean longitudes of the
node and perigee, D is the mean elongation from the Sun and g is the mean
anomaly of the Sun. The notation differs from that of Brown's tables, as used
earlier, in that ([ is used instead of L, T' instead of'tIT = L - 1, andg instead of 1';
thus

1 == ([ - T'; l' == g; F == ([ - Q; Q == Q and D == D.

These corrections, together with the consequential corrections to the right
ascension, and declination, are tabulated in the annual appendix in the A.E. for Oh

E.T. on each day. The tabulated values of the semi-diameter and the ephemeris
transit are unchanged to the precision given.

It can be mentioned here that:
(i) the precepts in Brown's Tables, Section I, p. 140, for the correction

resulting from a change in the constant of parallactic inequality are
erroneous;

(ii) the precepts for the correction resulting from a change in the ellipticity
are only approximate, since the tables P 34 and P 36 contain other terms
not depending on the ellipticity;



B. THEORY OF THE CORRECTIONS 51 3

(iii) the coefficients of the periodic terms in the perturbations due to the
flattening, as given by Brown in Memoirs R.A.S., Vol. 59, pp. 79-81, 96,
1908, are based, contrary to his statement, on the value (a) of /-1 = 292.9;
the coefficients of the secular terms are, however, calculated with the
stated value (fl) of /-1 = 296.3. (This was pointed out by Brown in
M.N.R.A.S. Vol. 70, 3, 1909.)

C. Changes in the Explanatory Supplement
I . Introduction

The main purpose of this section is to serve as a convenient source of reference
to the changes in, and corrections to, the Explana~ory Supplement (to The Astro­
nomical Ephemeris and The American Ephemeris and Nautical Almanac) consequent
upon the introduction of the lAD System of Astronomical Constants.

The changes and corrections are given without any indication of the year in
which they have been, or will be, incorporated into the printed ephemerides in the
A.E.; this information can readily be obtained from the A.E. itself.

One of the main purposes of the Explanatory Supplement is to illustrate, by
numerical examples, the derivation of all quantities tabulated in the A.E.; the
principles of such illustrations will not be affected by changes in the numerical
values of the constants. Further, the uncorrected formulae and derivations are
still required to reproduce those ephemerides in the A.E. which have not yet been
corrected but for which differential corrections are provided. In fact, it would not
be sufficient at the present time to produce a revised edition of the Explanatory
Supplement based solely on the new constants.

The formulae for the differential corrections are given in section B, and are
not repeated here. They can be used, if required, to check the application of the
corrections to the formulae and derivations in the Explanatory Supplement. No
real difficulty should be encountered in deriving any printed quantity in the A.E.,
both before and after incorporation of the changes.

The opportunity is taken of listing all the known errors in, and corrections to,
the Explanatory Supplement.

2. Form 0/ the changes and corrections
The general considerations in section A, and the theory of the corrections in

section B, indicate that the changes fall into two quite distinct categories:

(a) Those, such as the changes in the constants of solar parallax and aberration,
which affect a very large number of ephemerides and derivations but which are
trivial to correct. Generally the only correction required is the substitution of
one number for another.

(b) Those, such as the consequential changes arising in the ephemerides ofthe
Sun, Moon and planets, which are in themselves rather involved but which do not
affect, in principle, any derived ephemerides or quantities. The bases of these
ephemerides are generally given in the Explanatory Supplement only through
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references to the appropriate authorities; and, in such cases, the only corrections
required are the expansions of these references to include the substance of section B
of this Supplement.

It is not practicable to list every occurrence of the constants in category (a),
particularly those in the numerical examples; but the list in para. 3 is, in fact,
fairly comprehensive. A general indication of where such corrections must be
made is given in the list of changes and corrections in para. 3. The principal
corrections are:

Substitute
8"·794

20".496

4998.012
4998.012, or

od·o0 57756
6378 160 m
1/298.25

81.30

328 912
3422".608
3422".45 1

For
8"·80

20"·47
4988 .58
4988.38, or

od·0057683
6378388 m

1/297
81·45 or 81·53

32939°
3422".7°
3422".54

"""

Solar parallax: constant
Aberration: constant

light-time for unit distance

" }
Figure of the Earth: equatorial radius

flattening
Mass-ratio, Earth to Moon
Mass-ratio, Sun to Earth and Moon
Lunar parallax: horizontal parallax

constant of sine
ratio of semi-diameter,
Moon to Earth 0'272481 0.272488

Velocity of light, m S-l 299 860 x 103 299 792.5 x 103

Adequate references to the changes in category (b) are given under the appro­
priate chapter headings in the following list of changes and corrections.

The changes should be interpreted in relation to their contexts; for example,
a statement "that a certain constant was used" cannot be changed, and the listed
change in the value of the constant should be interpreted as indicating the value
that would have been used if the IAU system had then been in use.

3. List of changes and corrections
The following list is arranged in order of chapter, section and page number.

As mentioned in para. 2 above, not necessarily all corrections are listed, but an
attempt has been made to include all major occurrences.

Chapter I. Introduction

Sections A, B. No change.

Section C. It is appropriate to add here the relevant historical material from section A
of this Supplement.

Sections D, E, F and G. No change.

Chapter 2. Coordinates and Reference SysteIns

Sections A, B, C. No change.

Section D (Aberration). The only changes arise through the change in the adopted
value (20" .496 instead of 20" '47) of the constant of aberration.
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p. 48. k = 20" '496
P.49. The constant k = 20"'496 is equivalent to a light-time for unit distance of 4998 '012

= od,0057756; it corresponds to a value of c = 299 792' 5 x 103 metres per
second for the velocity of light.

p. 51. The constant should be 0'0057756.

Section E. No change.

Section F (Parallax). The following numerical values, calculated withf = 0'003352 R9,
should be substituted on pages 57 and 58.

a = 6378'160!un f = 1/298'25 b = 6356'775 km
S = 0'99497 418 - 0'00167082 cos 2eP + 0'00000210 cos 4eP
C = 1'00167997 - 0'00168208 cos 2eP + 0'00000212 cos 4eP
P 0'99832 707 + 0'00167 644 cos 2eP 0'00000 352 cos 4eP

+0'00000001 cos 64>
eP - eP' 692"'74 sin 2eP - 1"'16 sin 4eP

tan 4>' (0'9933054 + 0·001 I h x 10-6) tan 4>
The values in Table 2.8 on page 59 should be replaced by those in A.E. Table VII;

however, it suffices to good approximation to reduce eP - 4>' and the defect or excess over
unity of S, C and p, by the factor I - 0'00419 (approx. I - ;!h).

No changes are required in the paragraph concerning the parallax of the Moon.

For the parallaxes of the Sun and planets on pages 63 and 64. the numerical values
should be changed as follows:
p. 63, for 8" ·80 substitute 8" '794
p. 63, for 08.587 substitute 08 • 586
p. 64, for 426.64 substitute 426'35
p. 65, for 20"'47 substitute 20"'496
Examples 2.4 and 2.5, and the illustrative table on p. 64, require corrections for the changed
value of the flattening, as well as the solar parallax.

Chapter 3. Systellls of Tillle Measurelllent

The only change required in this chapter is to the numerical values of LlT in Table 3.1
and Figure 3.3. They should be changed, as foreseen at the foot of p. 87, to accord with
the corrections to the Improved Lunar Ephemeris.

Attention is drawn to the fourth paragraph on page 69; see section A, para. 4 above for
a discussion on the effect of a change in the adopted value of the constant of aberration.

Chapter 4. Fundalllental Ephelllerides

Section A (Introduction). The only changes are:
p. 96. The adopted values of the fundamental constants have now been changed.
p. 97, for 4988'38 substitute 4998 '012.

Section B (The Sun). The basis of the ephemeris is Newcomb's Tables of the Sun,
modified by the changes in the lunar perturbations (see section B, para. 5, of this Supple­
ment) primarily due to the change (81 '30 instead of 81 '45) in the mass-ratio Earth to Moon.
Otherwise the only changes are:
p. 100, for 20"'47 substitute 20"'496; also in Example 4.2.
p. 101, for 8"·80 substitute 8"'794; also in Example 4.4.
p. 103. Example 4.6, for 0'0057 683 and 0'0028 841 substitute 0'0057 756 and 0'0028 878.

Section C (The Moon). The basis of the ephemeris is that of the Improved Lunar
Ephemeris, as described on pp. 106 and 107, modified by the changes described in section B,
para. 6, of this Supplement. The only numerical changes required are:
p. 107. Constant of sine parallax: for 3422"'5400 substitute 3422"'451
p. 107. The equatorial horizontal parallax at mean distance (60'2682 equatorial radii of the

Earth) is 57' 02" ·608.
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p. 107. Mass-ratio Earth to Moon: for 81'53 substitute 81'30
p. 109. Formula for semi-diameter:

for 57' 02"'70 substitute 57' 02"·608
for 0'272481 substitute 0'272488
and s" = 0'0799 + 0'272453 7T"; also in Example 4.12.

Section D (The planets). The authorities for the heliocentric ephemerides of the
planets, including the adopted values for the masses of the planets on p. I 12, are unchanged.
The only changes occur in the geocentric apparent ephemerides and are due to the changes
in the lunar perturbations of the Earth, in the constant of aberration, and in the solar
parallax. The few numerical changes are:
p. 125, for 0'0057683 substitute 0'0057756; also in Example 4.22.
p. 125, for 8"·80 substitute 8"'794; also in Example 4.23. ­
p. 127, for 0'0057683 substitute 0'0057756; also in Example 4'25.

Section E. No change.

Section F (Ephemerides at transit). The only changes are those arising in the parallax
corrections, due to the changed figure of the Earth. Also in Example 4.26.

Section G. No change.

Chapter 5. Mean and Apparent Places of Stars

Section A, B. No change.

Section C (Reduction from mean to apparent place). The only change arises in the
correction for aberration.

p. 155, for 20" '47 substitute 20" '496

Section D (Day numbers). Changes arise solely through the change in the value of
the constant of aberration.
p. 158, for 20"'47 substitute 20"'496
p. 158, for II89"·80 substitute II91"'30; also in Example 5.2.

Section E. No change.

Chapter 6. The System of Astronomical Constants

Clearly the whole chapter requires to be rewritten to incorporate the new system and
the remarks of the Working Group, as given in section A of this Supplement. All references
to authorities, most of the remarks concerning the derivation of and the inconsistencies
between the values of the constants, and some other comments are now superseded; and it
is not practicable to list all such changes. However, a few important changes of principle,
and the principal numerical changes, are given below:

Table 6.1 on page 169
a for 6 378 388 substitute 6 378 160
f for 1/297 substitute 1/298'25
b for 6 356 91 I '946 substitute 6 356 774'7
g for 978.049 substitute 978.03 I

for 0'00528 84 substitute 0'00530 24
7T: for 8"·80 substitute 8"'794
k : for 20" '47 substitute 20"-'496
Equatorial horizontal parallax of the Moon:

for 60'2665 substitute 60'2682
for 57' 02" '70 substitute 57' 02" ·608

c : for 299 860 substitute 299 792' 5
for 186 324 substitute 186 282·6

Light-time: for 4988'58 and 4988'38 substitute 4998'012
Mass-ratio Earth to Moon: for 81'45 and 81'53 substitute 81'30
Mass-ratio Sun to Earth plus Moon: for 329 390 substitute 328 912
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p. 171. It is rather misleading, even in the special case considered, to use the mechanical
ellipticity H in the formula

H=!-ta
and it is better to write

~ J2 =! - tu or ! = ! J; + tu
where J2 is the dynamical form factor for the Earth.

p. 171. The two values of the light-time for unit distance should both be replaced by
4998 '012, and the resulting discussion on the discrepancies ignored. It should be
noted that the values of k, c and 7T give 1'27006 16 for their product, the difference
from 1'27010 64 being accounted for by the change in the adopted value of the
equatorial radius of the Earth. The inconsistencies, including that between the
values of the solar parallax and the mass-ratio Sun to Earth plus Moon, have been
entirely removed in the new system.

p. 173. The final remarks (before the section on references), should be interpreted in the
light of the new system of constants, in which the theoretical relationship between
the constants are rigorously satisfied; thus the conventional (a) and the adjusted (c)
values are generally the same. However, there are still a few purely conventional
values (such as the constants of precession and nutation) for which no exact
theoretical relationships exist.

Chapter 7. Historical List of Authorities

Clearly a few additions are required, particularly in the,section on Constants on p. 193.

Chapter 8. Configurations of the Sun, Moon, and Planets

The only changes required are those arising from the changed value of the light-time
for unit distance.
p. 207. Example 8.3: for 0'002884 substitute 0'002888.

Chapter 9. Eclipses and Transits

Apart from the changes in the ephemerides of the Sun, Moon and planets (which will,
of course, be incorporated through their tabulated values), corrections are necessary on
account of the changes in the figure of the Earth, the solar and lunar parallaxes, and the
constant of aberration. These are trivial in principle but require fairly extensive alterations.
Starting in 1968 the following substitutions should be used in describing the eclipse compu­
tations.

Section A (Introduction)
p.213. k: for 0'2724 807 substitute 0'2724 880

for 0'2722 74 substitute 0'2722 81

Section B (Solar eclipses-fundamental equations)
p.2I5. Table 9.1: for 57' 02"'70 substitute 57' 02"·608

for 8"·80 substitute 8"'794
p. 216. Example 9.2: for 0'2722 74 substitute 0'2722 81

for 0'2722 39 substitute 0'2722 46
p.2I7. Numerical coefficients in sin!r and sin!2:

replace 8"·80 for 7TO by 8"'794 (p. 218) and the coefficients by:
k = 0'272281: in!r 0'0046 6400 9; in!2 0'0046 4079 2
k = 0'2724880: in!r 0'0046 6401 8; in!2 0'0046 40783
Example 9.3. The value of k used should be 0'2724 880 for 1963 onwards, with
the corresponding coefficients for sin!r and sin !2'

p. 220. Ellipticity, e2 : for 0'0067 2267 substitute 0'0066 9454. The reference to Hayford's
spheroid should be deleted. This affects many examples, particularly Example

9+
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Section C (Solar eclipses-predicted data)

p.223, for a flattening of 1/298.25, (I - e2)-~ = 1.003364;
also in Examples 9.6, 9.7, 9.13, 9.14, 9.15 and 9.16.

Section D (Solar eclipses-local circumstances)

p. 241. Ellipticity, e2
: for 0.0067 2267 substitute 0·0066 9454.

This affects almost all examples (see Examples 9.19 and 9.22) in principle.

Section E (Lunar eclipses)
p. 257· 77 1 : for 0·9983 33 substitute 0.9983 40
p. 260. Example 9.23 :

Moon's semi-diameter: for 0·272274 substitute 0.2724 88
: for 0.9983 33 substitute 0.9983 40

Solar parallax : for 8"·80 substitute 8"·794

Section F (Transits of Mercury)

p.265· The coefficient used in calculating the correction for aberration: for 0.138439
substitute 0.138614; also in Example 9.27.

p. 271. Horizontal parallax of the Sun: for 8" ·80 substitute 8" ·794

Chapter 10. Occultations

As for eclipses, corrections are required for changes in the adopted values for the figure
of the Earth and for the lunar parallax.

Sections A, B. No change.

Section C. (Reduction)

p. 297· k: for 0·2724 953 substitute 0·2725 026, and amend the reference to Innes, if it is
desired to retain the same value for the observed semi-diameter at mean distance.
Also in Example 10.9.

Sections D, E and F. No change.

Chapter II. EphelYlerides for Physical Observations of the Sun, Moon, and Planets
The only corrections which are not introduced through the tabulated ephemerides are

those due to the changed value of the light-time for unit distance.

Section A (Introduction). For the light-time for unit distance of 4989.58 substitute
4999.012. The consequences of this change are most marked in the longitudes of the
central meridians of the planets, particularly those of Mars and Jupiter.

Sections B, C. No change.

Section D (Ephemeris for physical observations of the Moon)
p. 325. Formulae for Aa, 13H: for 8·80 substitute 8·794; also in Example 11.6.

Sections E, F. No change.

Section G (Ephemerides for physical observations of Mars, Jupiter and Saturn)
p. 330. Light-time for unit distance: for 4989.58 substitute 4999.012.

P.336. Constant in V + 180°: for 325°.845 substitute 325°.847
Rotation during light-time: for 4989.58 substitute 4999.012.
Longitude of central meridian: for 2°.024858 substitute 2°.026612; also in
Example 11.7.

P.339. Constants in V + 180°: for 100°·974 substitute 101°·001; for 149°.976 substitute
150 .002

Longitudes of central meridians:
for 5°·06601 substitute 5°.07040; for 5°.02198 substitute 5°.02633; also In

Example I I .8.

Section H. No change.
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Chapter 12. Satellites

The only corrections required are those due to the changed value of the light-time for
unit distance, which affects the light-time from the planet, and thus the times at which the
satellites are observed.

Section A (Introduction). The value of the light-time for unit distance should be
changed as follows:
p. 342, for 4988'58 substitute 4998'012

Section B (The satellites of Mars)
P.352. for Oh. 13849 substitute Oh. 13861; also in Example 12.2.

Section C (The satellites of Jupiter)
p. 354. It should be noted that corrections for light-time are already included in Sampson's

tables for the four Galilean satellites.
P.357, for Oh· 13849 substitute Oh. 13861; also in Example 12-4-
P.359, for od,00577 060 substitute od,00577 560; for 0°'0082697 substitute 0°'00827 69;

and for 0 °'00797 79 substitute 0 °'00798 48; also in Example 12.5.

Section D (The rings and satellites of Saturn)
p. 366, for 0'00577 substitute 0'00578; also in Example 12.6.
p. 372. Example 12.8: for Oh. 13849 substitute Oh· 13861.
P.382, for Oh. 138494 substitute Oh·138614; also in Example 12.15.
p.; 385. 0°'00377 is unchanged; also in Example 12.17.

Section E (The satellites of Uranus)
P.389. Example 12.18: for Oh. 13849 substitute Oh. 13861.

Section F (The satellites of Neptune)
P.392. Example 12.19: for Oh· 13849 substitute Oh. 13861.

Section G. No change.

Chapters 13, 14, IS, 16 and 17

No changes are required.

Chapter 18. Reference Data

In general, changes are required to bring the "adopted" values into accord with the
new system of constants.

P·49°·

Sun, Earth and Moon

Figure and Mass of the Earth
a for 6378'388 substitute 6378. 160
f for 1/297 substitute 1/298 '25
b for (6356'912) substitute (6356'775)
e for (1/12'1963) substitute (1/12'2219)

I ° of latitude for lll·137 substitute Ill'133
1° of longitude for Ill'418 substitute lll'413

4> - 4>' : for 695"·66 substitute 692"'74; for - I'" 17 substitute -1"'16
g : for 980.64 substitute 980.62

Orbit of the Earth
Solar parallax: for 8"·80 substitute 8"'794
Constant of aberration: for 20"'47 substitute 20"'496
Light-time for I a.u.: for 4988'38; 4988'58 substitute 4998'012
Mean distance of Earth from Sun:
for 149 500000 (92 900 000) substitute 149600000 (92 957 000)
Mass-ratio--Sun/Earth: for 333 432 substitute 332 958
Mass-ratio-Sun/(Earth + Moon): for 329 390 substitute 328 912

.:'._-_._--~----
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p. 490. Orbit of the Moon about the Earth
Equatorial horizontal parallax :.for 57' 02'" 54 substitute 57' 02" ·608
(the printed value is in error; it should have been 57' 02"'70).

The mean distance given agrees (fortuitously) with the new value.
Mass-ratio-Earth/Moon: for 81'31 or 81'53 substitute 81'30

Other data

There are many consequential changes in the other tables of data: no list is given, as
these are mainly trivial end-figure changes in values that are only given approximately.
The value of the reciprocal of the flattening of the Earth in the table of "Dimensions and
rotations of the planets" on p. 491 should, however, be changed to 298'25. Also, the value
of k E and the unit of distance on p. 493 need to be changed.

4. List of Errata in and corrections to the Explanatory Supplement
In the following list corrections are given in respect of all known errors in the

first edition of the Explanatory Supplement; those preceded by an asterisk {*} were
corrected in the 1962 reprint. The opportunity has been taken to add a few
changes since introduced into the A.E., but no attempt has been made to bring
up-to-date the various data concerning occultation predictions, radio time
signals, etc.

Page No.

4
IS

*18
22
37
38

17 1

175

197

200
200
202
21 9

23°

239
25 1

256
260

Line -6: insert after 1950'0 "were given for the years 1928 and 1929"
Royal Observatory Annals: delete reference to Number 2.
Volume XVI: for 1959 read 1958.
Line 8: for od·814 read od·813.
Formula for Wo: for cosec read cosec i.
Formula for c should read c = 180 0

- IIm + tao
" "c' c' = 180

0
- IIm - tao

Line - 13: for circular read elliptical.
Line 22: for B.2 read B. 1.

Mean anomaly: the second expression for g requires a sign of equality.
Jupiter, L: for 259 4852'05 read 2594952'05. .
Line 2: after catalogues, insert ", corrected for proper motion and annual
parallax."
See comment in para 3.
Chapter 7: A significant omission is that of the authorities for the mean places
of the stars.
Add: Nautical Almanac Office, H.M. 1958. Planetary Co-ordinates for the years
1960-1980 referred to the equinox of 1950'0 4to, London.
Add 1929: Co-ordinates of the Sun for 1950'0 for 1928 and 1929.
Add 1950: Ephemeris of Pluto.
Add 1950: Ephemeris of Pluto.
Line 21: to k o'2722 74 add a footnote "k = °'27248°7 adopted from 1963
onwards"; see also para. 3.
Line -4: to (2L 1 - 0'5459) add a footnote "°'5464 adopted from 1963
onwards". .
Lines 20 and -6: to 0'5459 add a footnote "°'5464 adopted from 1963 onwards".
Lines -8 and -6: to 0'5459 add a footnote "°'5464 adopted from 1963
onwards".
Line - 13: after I add "(elements)".
Line - 17: to 0'272274 add a footnote "°'27248°7 adopted from 1963
onwards".



279
295
295

334

• 367
377

378
380
381

• 396
442

443-453

• 45 2

·459
47°

49°

494
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The expressions given for L1 log r are those for L1 loger; values calculated from
them must be multiplied by 0'4343 before being applied to log r (that is,
loglor). In Example 9'24, the value of L1 log r should in consequence be
changed from +0'0000026 to +0'0000 OIL
Line 23: delete1:he reference to Royal Observatory Annals.
Almnnaque Nautico has since 1961 been renamed Efemerides AstronOmicas.
Many changes have been made in the list of standard stations; it is not practicable
to give full details here.
For Stalinabad read Dushanbe.
The prediction of occultations of radio sources has been increased by a large
factor, in respect both of the number of stations and of the number of radio
sources. It is not practicable to give full details here.
A new position of the North pole of Mars has been adopted as from 1968.
Details are given in the Explanation.
Thefive inner satellites of Saturn. The epoch 1889'25 from which t is measured
in tropical years differs from that (J.D. 241 1093'°) from which d is measured
in days; t is thus not equal to d/365'2422, and the last paragraph on the page
should be corrected accordingly.
Line - 6: for S Geocentric read S Planetocentric.
End of second paragraph; add a footnote "As from 1966 the elements (L, M
etc.) of Hyperion and Iapetus are referred, as for Titan, to the ring-plane."
To Hyperion add a footnote "See page 377."
To Iapetus add a footnote "See page 377."
To Hyperion and Iapetus add a footnote "See page 377."
Kuiper, G. P. 1956: for Vistas in Astronomy, I read Vistas in Astronomy, 2 .

Line 12: for Earth read equinox.
There have been many changes in respect of the distribution of time, but it is
not practicable to give full details here.
South Africa: for Union Observatory read Republic Observatory.
Line 14: for Achstellige read Achtstellige.
Table 16.3:
Sun (X, Y, Z), 84, for 2 read 12.
Nutation in obliquity, for 82 32 20 read 32 20 15.
Ephemeris transit, under unit Oh' OOOI for 160 read 270

20" 95
" 10" 30

Rotation of the Earth: for 23h 56m 048.09895 read 23b 56m 04"'09890.
Orbit of Moon about the Earth: for 57' 02"'54 3422"'54

read 57; 02"'70 = 3422"'70'
(See also para. 3).
Last line: after 3963 miles insert "The tabulated semi-diameters are the values
adopted in the Ephemeris".
I a.u. in Light years: for °'158 read I-58o.
1 a.u./day: for 1732 read 1730.
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SECTION IF. The series Astronomical Papers . .. of the American Ephemeris . .. now
includes:

Volume XVI. II. G. M. Clemence. "Theory of Mars-Completion". 1961.

III. Paul Herget. "Rectangular coordinates of Ceres, Pallas, Juno, Vesta 1960-1980".
1962.

Volume XVII. C. B. Watts. "The marginal zone of the Moon". 1963.

Volume XVIII. Milton P. Jarnagin, Jr. "Expansions in elliptic motion". 1965.

Volume XIX. I. Otto G. Franz and Betty F. Mintz. "Tables of X and Y, elliptic rectangular
coordinates". 1964.

Volume XX. I. Edward S. Jackson, "Determination of the equinox and equator from
meridian observation of the minor planets". 1968.

II. Raynor L. Duncombe. "Heliocentric coordinates of Ceres, Pallas, Juno, Vesta
1928-2000". 1969.

III. Douglas A. O'Handley. "Determination of the mass of Jupiter from the motion of
65 Cybele". 1969.

Volume XXI. I. Paul M. Janiczek. "The orbit of Polyhymnia and the mass of Jupiter".
1971.

The series of Circulars of the U.S. Naval Observatory includes the following issues:

No.

90. Provisional ephemeris of Mars 1950-2000.
91. Rectangular coordinates of the Moon 1952-1971.
92. Ephemeris of the radio longitude of the central meridian of Jupiter, System III

(1957.0). 1961-1963.
93. GC and DM numbers of FK3 stars.
94. Ephemeris of ... central meridian of Jupiter, System III ... 1964-1967.
95. Provisional ephemeris of Mars 1800-1950.
96. Geocentric distance and velocity of Venus 1961-197°.
98. Physical ephemeris of Mars 1877-1967.

104. Durchmusterung and Henry Draper Numbers of Albany General Catalog Stars.
106. Rectangular coordinates of Mercury 1800-2000.
107. Sunlight, moonlight, and twilight for Antarctica 1966-1968.
117. Ephemeris of ... central meridian of Jupiter, System III ... 1968-1971.
120. Sunlight, moonlight, and twilight for Antarctica 1969-1971.
132. Sunlight, moonlight, and twilight for Antarctica 1972-1974.
134. Normalized observations of Venus 1901-1949.
!37. Ephemeris of ... central meridian of Jupiter, System III ... 1972-1975.

Details of total and annular solar eclipses are given in the following Circulars:

No. No. No.

101. 1971- 1975. 116. 1968 Sept. 22. 129· 1972 Jan. 16.
102. 1965 May 30. 122. 1969 Mar. 18. 13 I. 1972 July 10.
1°9· 1966 May 20. 123. 1969 Sept. I I. 135· 1973 June 30.
11O. 1966 Nov. 12. 125· 1970 Mar. 7.
113· 1976- 1980. 126. 1970 Aug. 31-Sept. I.
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The following points of clarification may be noted:

Page 44. The published values of the nutation are based on the arguments printed here,
but see note for page 107, below.

Pages 90-91. The principal differences between the values of LIT tabulated on page 90 and
those plotted in the graph on page 91 are due to the addition to the values prior to 1956 of
the correction

oS.15 - 2s.55 (T - 0.63) + 18s·21 (T - 0.63)2
where T is measured in Julian centuries from 1900.0, corresponding to the correction to
the mean longitude of the Moon (which changes by I" in IS·82I). Prior to 1861, the basic
data were taken from the thesis by C. F. Martin (Yale University, 1969). Further small
corrections have also been applied in an endeavour to put all values on a common basis.
The quadratic term in the correction is not yet well established.

Values of LIT (A), providing a first approximation to ET - UT, and of UTI - UTC, are
given at an interval of 3 months from 1956 January I in the current tables on page vii of
A.E. I974 onwards.

Page 107. Expressions for «, T, D after removal of the implicit partial correction for aberra­
tion (Astron. Jour., 57, 46-7, 1952) are given in the Explanation of A.E. I973 onwards.

Pages 152-3. The expressions for the second-order terms and for J and J/ assume thatj, g,
h are measured in radians. Each expression should be multiplied by sin I" if the coefficients
(f, g, h, J, J') are expressed in seconds of arc; a further factor of /5 is required to obtain
J in seconds of time.

Page 223. The value of (I - e2)-t used for 1968 onwards is based on a flattening of 1/298.25.

Page 241. The value of e2 used for 1968 onwards is based on the rounded value 298,25 for
the reciprocal of the flattening of the reference spheroid. The difference from the precise
value (see below). is of no significance in the eclipse predictions.

Page 317, line 10 and page 326, line 7. Selenographic longitude increases in the direction of
rotation of the Moon, i.e. positively to the east on the selenocentric celestial sphere, but
this implies that the selenographic longitudes of the Sun and of the terminators are de­
creasing functions of time. It is therefore convenient to tabulate co-longitudes that are
measured in the opposite sense, i.e. positively to the east on the geocentric celestial sphere.
The origin of co-longitude here differs from that of longitude in such a way that the co­
longitudes of points on the hemisphere visible from the Earth normally lie between 0° and
180°.

Page 489. The parameters defining the figure of the current spheroid of reference have been
derived from the adopted values of the primary constants using as many guarding figures
as are necessary to ensure formal self-consistency of the system; rounded values, such as
those on this page, may not satisfy the relations precisely. The precise value of the flattening
corresponding to the adopted value of J2 is

j = 1/298'247 167 427 = 0.003 352 923 713
and correspondingly
b = 6356774'516 m, e2 = 0,006694605329, e = 0.081 820567882.
1° of latitude I I 1.133 35 - 0'55984 cos 2rP + 0·001 17 cos 4rP km
1° of longitude 111'41328 cos rP - 0.09351 cos 3rP + 0·000 12 cos 5rP km
Geodetic latitude (rP) - Geocentric latitude (rP/)

692"'750 sin 2rP - 1".163 3 sin 4rP +0"' 002 6 sin 6rP
Normal gravity (g) 9.80621 - 0.025 93 cos 2rP + 0·00003 cos 4rP m/s2

Page 490. The value given here for the mean distance (in a.u.) of the Earth from the Sun
is that discussed on page 98 rather than the value (1.000 000 03) derived from Kepler's
law, discussed on page 96, where n is expressed in radians per day.

_._--------. ~ -
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Abbreviations
constellations, 495
publications, 14-6, I8--l)
star catalogues, 147-8

Aberration, 20, 25, 46-54
annual, 47-9, 64-5, 127-8,150-2, ISS
constant, 8, 48--l), 69, 169-']1, 181, 188,

193,49°
correction for light-time, 46, 49, 5 I, 127
day numbers, 19,47-8,127,151-2,155-6,

158, 160-1, 162
differential, 51-4, 143
diurnal, 47, 49-50
elliptic-see E-terms.
E-terms, 48, 127-8, 144, 145, ISS, 158
planetary, 46, 49,51, 125, 127-8
secular, 47, 145
stellar, 46-'], 51, 145, 150

Air Almanac, 14, 398, 401-2, 405
Air glow, 399-400
Altitude, 14-5, 24-6
American Ephemeris, 2, 5-7, 8, 10-1,89, 134,

167, 175-6, 184-94, 277-8, 341, 393-5
appendices, 176, 201
Astronomical Papers, 16-8, 522
supplements, 2, 15-6, 176, 201-2

Angle
conversion, 473, 482-7, 496
parallactic, 244, 249, 305
phase, 311-2
position, 244, 307, 342-6, 348

Anomaly, 112-3, 117-20, 122
Aphelion, 203-4
Apogee, 204-5
Apparent Places ofFundamental Stars, 1,7,9,

I I, 18,42, 149, 156-'], 163, 167
Appulse, 257, 305
Arc,-conversion to time, 485-7
Ariel, 387-90, 393, 395-'], 492
Aries, first point of, 24, 72, 84, 110, 436
Artificial satellites and planets, 55, 57, 133-4
Asteroids-see Minor planets.
Astrolabe, 72, 83, 149, 443, 446, 448

Astronomical Ephemeris (formerly Nautical
Almanac), 1-5, 10-1, 89, 134, 176-83,
189-94, 277-8, 341, 393-5

appendices, 176, 198-200
supplements, 1-2, 15, 176, 198-200

Astronomical unit, 96, 490, 493-4
Astronomisches Rechen-Institut, 18, 132, 155
Augmentation, 6o, 138-9, 142
Aurora, 399-400
Authorities, I75--l)8. See also under

individual subjects.
Axes, rotation of, 27-8, 3I
Azimuth, 14-5, 24-6

Besselian solar year, 22, 30, 434-6, 489
Board of Longitude, 3
Brightness, 313-4
Brilliancy, 2°9, 314
Bureau International .de l'Heure, 86, 93,

445-6

Calendar, 407-36
Alexandrian, 408-9, 430
Armenian, 409
Babylonian, 409-10
common year, 434-6
ecclesiastical, 412-3, 420-33
Egyptian, 408--l)
equivalent dates, 416-8
Greek,4lo
Gregorian, 4°7, 411, 412-21, 424-9, 434-5
Indian, 433
Jewish, 4°9, 418, 432
Julian, 410-8, 420-4
Moslem, 433
perpetual, 419
references, 19, 200, 4°7, 4°9, 410, 412,

413, 418, 419, 432, 433
Roman, 408, 410, 418
Weigel,415

Callis.to, 354-6, 393-4, 396-7, 492
Cassini's laws, 316
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Catalogues, 9, 16-8, 83, 127, 129, 145-8,
195, 277, 446-7

Century, 21-2, 96, 98-<), 411
Ceres, 18, 112, 120, 126, 129, 131, 179, 192,

196-8,208,210,3 14,3 16
Chronology, 19,214. See also Calendar and

Time.
Clocks, 66, 82-4, 88-95, 448-9
Comets, 63, 129-30, 132
Computation, 9, 13-5,42, 112, 149, 150, 175,

212, 4°5, 454-'71
Conferences

Paris 1896, 7-8, 10, 169, 174
Paris 1911,6,8, 10, 174
Paris 1950, 2, 9, 10,71, 94, 173-4
Paris 1954-7, 70, 95
Washington 1884, 7, 10
See also International Astronomical Union.

Configurations, 203-10, 355
Conjunctions, 206-7, 209-10, 214, 280-7,

354, 377-8, 381- 2
Constants, 168-'74, 488-<)4, 496

astronomical, 8-11, 95, 96, 168-74,488-93
adopted values, 169, 180-1, 187-9, 192-3
references, 173-4, 488
system of, 168-'74

conversion, 486-'7, 488--94, 496
Gaussian, 96, 169, 493
geodetic, 489
gravitational, 96, 169, 493
mathematical, 496

Constellations, 495
Conversion tables and constants, 473-87,

494, 496
Coordinates, 20, 24-8. See also Positions.

barycentric, 24-5
conversion of, 26-8, 115-6, 119
differential, 346-8
ecliptic, 20, 24-'7
equatorial, 20, 24-'7
geocentric, 20, 24-7, 57-9; 220, 241
heliocentric, 20, 24, 26-7
heliographic, 307
normalised, 116-9, 121
planetocentric, 330-1, 343-9
planetographic, 331-2
rectangular, 20, 24, 26-8
reduction of, 28-43
selenographic, 317-8, 324
spherical, 20, 24-'7
systems of, 13, 20, 24-7
topo;;entric, 24

Cycles, astronomical, 204, 208, 263
Cycles, chronological, 4°7, 420--33

Callippic, 410
Indiction, 431

Cycles, chronological-(continued).
Julian, 431
Metonic, 409-10, 412, 420
solar, 429, 431
Sothic,408

Daily motion, 112, 120, 471
Date, Greenwich sidereal, 73, 84, 149, 442,

489
Date, Julian (ephemeris), 71, 73, 84, 442, 489
Dates, standard, 97
Day

astronomical, 5, 89
civil, 5, 89
length of, 76, 473, 488
names, 418-<)
sidereal, 72-3, 75-6, 488
solar, 74-6, 80--2, 488'

Day number, Greenwich sidereal, 73, 84,
436-7, 440-2

Day number, Julian, 71,431,436-9,442
Day numbers, 22, 151-65

aberration, 19, 47-8, 127, 151-2, 155-6,
158, 160-1, 162

Besselian, 22, 42, 15 1-2, 155-64
independent, 22, 128, 151-2, 156-'7,

159-65
second-order, 22, 47, 152-5, 161-2, 164-5
short-period, 156-7, 162-3

Declination, 24-'7
Defect of illumination, 140--2, 311-2, 315,

329-30
Deimos, 350-4, 393-4, 396-7, 492
Diary, 203, 210
Differentiation, numerical, 471
Dione, 362, 366-71, 393-7,492
Direction cosines, 27, 115
Discriminant, 457
Dominicalletter, 421

Gregorian, 425-8
Julian, 421-4

,dT = E.T. - D.T., 21-2, 70--1, 78, 86-8,
90--1, 94, 143

Earth
aphelion, 203-4
elements, 98-<), 129, 168-<), 490, 491
equinoxes, 203
figure, 8,23,57-<); 168-'73,220,489,491
gravity, normal, 169, 489
mass, 112, 169-71, 489
mean distance, 96, 98, 171, 490
mechanical ellipticity, 170--1
perihelion, 203-4, 491
references, 17-8, 95, 195-'7, 202
rotation, II, 41, 66-7, 72-6, 79-82, 86,

93-5, 445-6, 490--1
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Earth-(continued).
selenographic coordinates, 317-8, 323
solstices, 203

Easter, 4II-3, 420--()
Eclipses, lunar, 2°5, 2II, 213-4, 257-62
Eclipses, solar, 2°5, 21 I-57

central line, 223-4, 238
conditions, 214-6, 221-2
contacts, 233-5, 240, 242-4, 250-7
coordinates of observer, 219-21, 241-2
corpuscular, 214
correction for L1 T; 249
corrections to ephemerides, 212-3
differential corrections, 247-9, 25 1, 254
elements (Besselian), II, 62, 2II, 216-22
ionospheric, 214, 249
limits, 224-7, 236-7
local circumstances, 241-57
magnitude, 229-31, 238-9, 245-6, 251,

253,257
maps, 21 I, 223-41
obscuration, 246-'7
outline curves, 227-9
phase, 242-4
position angles, 243-4, 251, 253
publication of data, 202, 21 I
reduction of observations, 324
references, 16, 213-4
refraction, 25, 54-5, 212
semi-duration, 229-3 I
sunrise and sunset, 231-3

Ecliptic, 24, 28, 35, 38, 98-9, 120-2, 169,49°.
See also Obliquity of ecliptic.

Elements, orbital, 112-4, 116--()
Elements, Besselian-see Eclipses and Occulta-

tions.
Ellipticity, 23, 220, 241, 489
Elongations, 208--(), 345-6
E;nceladus, 362, 366-'71, 393-7, 492
Epact, 424-5
Ephemerides, 8-II, 96-7, 306-7, 342

authorities (up to 1959), 175-98
comparison with observation, 142-4
correction for L1 T, 97
maximum differences, 470
navigational, 14, 97, 104
search, 130-1
surveying, IS, 97, 104
transit, 134-42

Ephemeris hour angle, 77-8, 110
Ephemeris longitude, 77
Ephemeris meridian, 76, 78, 134-5
Ephemeris second, II, 70, 95, 488
Ephemeris sidereal time, 77,126
Ephemeris time (E.T.), 21, 66-71, 93-5

determination, 70-I, 86-8

Ephemeris time (E.T.)-(colltinued).
relation to V.T., 21-2, 70-I, 77-9, 86-8,

90-I, 94, 143, 446
Ephemeris transit, 76, 97, 135
Epochs, 21, 69, 71, 95, 96, 97,489
Equation of centre, 368
Equation of light-see Light-time for unit

distance.
Equation of the e9uinoxes, 43, 72, 83-5, 126,

188
Equation of time, 3, 78-9, 88-9, 92, 103-5
Equinox, 24, 30, 42, 82
Equinoxes, times of, 203,412
Eras, chronological, 4°7, 430-1

Byzantine, 430
Christian, 4II-2, 431
Creation, 432
Diocletian, 4II, 430
Hegira, 433
Japanese, 430
Julian, 71, 431
Nabonassar, 43 I

Roman, 430
Saka, 431, 433
Seleucid, 430

Errors, 13, II2, 121, 142,454
Eulerian angles, 28
Europa, 354-6, 393-4, 396-7, 492
Examples (purpose etc.), 13-4
Explanatory Supplement, 1-2, 12-4

Fabritius correction, 153
Flattening, 23, 57, 169-72, 489, 49 1
Frequencies, standard, 444, 446-7, 449,

452-3

{;anymede, 354-6, 393-4, 396-7, 492
{;aussian constant, 96, 169, 493
{;egenschein, 399-400
{;eorgian, The, 179
{;olden number, 421, 422, .424
{;ravitation, I I, 493
{;ravity, surface, 169, 489, 491
{;reek alphabet, 494
{;reenwich civil time, 89
{;reenwich mean astronomical time, 89, 436,

489
{;reenwich mean time, 74, 89
Greenwich sidereal date, 73, 84, 149,442,489
Greenwich sidereal day number, 73, 84,

436-7, 440-2
Greenwich sidereal time, 74-5, 137
Greenwich transit, 135
Gregorian calendar, 4°7, 41 1,412-21,424-9,

434-5
dates of adoption, 414-6
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Hayford's spheroid, 57, 169, 220, 489
Hegira, 433
Heliacal rising of Sirius, 408
Hour angle, 24-6, 76-8, 110, 165-6
Hyperion, 16, 362, 369, 378-80, 381-4,

393-7,492

Iapetus, 362, 373, 380-4, 393-7, 492
Illuminated disk, 311-5, 329
Illumination (from Sun etc.), 398-401
Illumination, defective, 140-2, 311-2, 315,

329-30
Improved Lunar Ephemeris, 15, 42, 87, 95,

106-7, 109-10, 200, 202
Indiction, Roman, 431
Institute ofTheoretical Astronomy, 9, 18, 131
Instruments, 82-3, 134, 149, 198---<), 446---<)
Integration, numerical, Ill, 112, 114, 130
Intercalation, 408-13, 416, 432
International Astronomical Union, 2, 8-10,

19,7°,83,86,93-5,97, 155, 173,211
Commission 4, 8-10

International ellipsoid, 169
International Latitude Service, 445
International Meridian Conference, 7, 10
International Union of Geodesy and Geo-

physics, 168
Interpolation

direct, 459-69
inverse, 110,457-8,460-1, 468-9
maximum differences, 459, .470
tables, 15, 200, 462-7

10, 354-6, 393-4, 396-7, 492
Irradiation, 101, 189,212,216

Julian calendar, 410-8, 420-4
Julian date, 71, 84, 442, 489
Julian day number, 71, 431, 436-9, 442
Julian ephemeris date, 71, 73
Julian era, 71, 431
Julian period, 431
Juno, 18, 112, 120, 126, 129, 131, 179, 192,

195-6,208,210,3 14,3 16
Jupiter

authorities, Ill, 114, 178, 186, 191
central meridian, 338-9
defective i1lumination, 140
elements, Ill, 114-5,491
figure, 139, 491
fundamental ephemeris, II, 111-26, 470
geocentric positions, 125
heliocentric positions, 121, 123-4
magnitude, 314-6
mass, 112, 130, 491
maximum differences, 470
parallax, 126

J upiter-(continued).
periods, 208, 491
phase, 311, 315
phenomena, 206-9
physical ephemeris, 330, 338-41
references, 16-8, 195-7, 199
rotation, 328, 330, 338-9, 491
satellites, 354-62, 393-4, 396-7, 492
semi-diameters, 126, 139-40, 182, 189, 194
transit ephemeris, 139

Jupiter's satel1ites
I-IV, 354-6, 393-4, 396-7,492
V, 18, 356-7, 393-4, 396-7,492
VI-VII, 358-61, 394, 396-7, 492
VIII-XII, 361-2, 394, 396-7, 492
references, 396-7

Kepler's law, 96, 98

Laplacian plane, 348-50
Latitude-see also Coordinates.

celestial, 24, 26
ecliptic, 24, 26
geocentric, 23, 57-9, 489
geodetic, 23, 57-9, 489
geographic, 23, 57-9
orbital, 24, 120-1
parametric, 23, 220

Latitude Service, 86, 445
Librations, 316-26, 366-'70. See also Moon,

libration.
Light-time

correction for, 46, 49, 51, 127
for unit distance, 49; 97, 169, 171,3°6,33°,

342,490
Light, velocity of, 16,46,49, 169, 171,494
Longitude-see also Coordinates.

celestial, 24, 26
ecliptic, 24, 26, 120-1
ephemeris, 77
geographic, 7-8, 489
mean, 87, 112
orbital, 24, 117, 120-2,343

Lunar distances, 3-4, 6, 177, 199
Lunar inequality, 129
Lunation numbers, 204
Lunations in tropical year, 407

Magnitude, stellar
comets, 132
minor planets, 131-2, 208, 314, 316
planets, 208, J-12-6
satellites, 492
stars, 148

Mars
authorities, Ill, 178, 186, 191'
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Mars-(continued).
central meridian, 334-7
closest approach, 210
defective illumination, 140
elements, I II-3, 491
figure, 491
fundamental ephemeris, II, II 1-26, 470
heliocentric positions, 120
magnitude, 314-6
mass, 112, 491
maximum differences, 470
periods, 208, 491
phase, 3II, 315
phenomena, 206-10
physical ephemeris, 330, 334-7, 341
references, 17, III, 195-200, 328, 334-5,

341

rotation, 327-8, 334-7,491
satellites, 350-4, 393-4, 396-7,492
semi-diameter, 140, 182, 189, 194

Maskelyne, N., 3, 4, 198
Mass, units of, 96, 493-4
Matrices, 43, 458
Mean sun, 30, 74, 77-81, 92
Mercury

authorities, III, 178, 186, 191
brilliancy, 2°9, 314-6
elements, I I 1-3, 263-4, 491
fundamental ephemeris, II, I II-26, 470
heliocentric positions, 120-1
illuminated disk, 140, 311, 327, 329, 341
magnitude, 314-6
mass, II2, 130,491
maximum differences, 470
periods, 208, 491
phase, 3II, 315
phenomena, 206-9
references, 16-'7, III, 196-200, 202, 341
rotation, 327,491
semi-diameter, 140, 182, 189, 194
transit ephemeris, 126, 136
transits of, 16, 2°5, 262-'76

Meridian, ephemeris, 76-9, 134-5
lVIeridian passage-see Transit, meridian.
Meteors, 129, 133
Mimas, 362, 366-'72, 393-'7, 492
Minor Planet Center, 18, 131-2
Minor planets, 63, II2, 120, 122-9, 129-33,

210,47°
authorities, II2, 179, 187, 192
magnitudes, 131-2,208,314,316
references, 18, 195-6, 198, 200, 202

Miranda, 387, 395-6, 492
Month

calendarial, 407-10, 432
length, 107, 407-8, 488

Moon
aberration, 109-10, 317
age, 317, 420
apogee, 205
apparent coordinates, 109-10
augmentation, 138-42
authorities, 106, 177-8, 185, 190
camera, 62, 87, 90, 446
configurations, 204-5
conjunctions with planets, 210
corrections to tabular position, 106,

212-3
culminating stars, 6
defective illumination, 140-2, 3 I I
ecclesiastical moon, 420, 422, 426
eclipses of, 205, 211, 213-4, 257-62
elements, 106-8, 490, 492
equator, 107-8, 316
fluctuations in longitude, 87, 94
fundamental ephemeris, II, IS, 87, 96,

106-11,470
libration

diurnal, 322
dynamical, 316-<), 323
optical, 317-23
parallactic, 322
physical, 3 I6-<), 322-3
topocentric, 322-5

limb corrections, 297, 300-2
line of cusps, 3 I 1-2
mass, 107, II2, 129, 169, 490
maximum differences, 470
mean longitude, 67, 87, 106
notation, 107-8
observations, 86-'7, 446
occultations by-see Occultations, lunar.
parallax, 57, 60-2,107,109,141,169,469,

49°
perigee, 205
phases, 204-5, 3II, 315
physical ephemeris, 71, 316-26, 341
references, 15-7, 194-202
rotation, 316-7
secular acceleration, 93
semi-diameter, 109, 177-8, 185, 189, 190,

49°
at transit, 137-42
in eclipses, 212-3
in occultations, 287, 297-9

tables and theory, 3, 86-7, 106, 172,
277

terminator, 311-2
transit ephemeris, 62, 110-I, 134-42

Moonlight, illumination from, 400
Moonrise and moonset, 54, 402-6
Motion, 471
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.Val/tical Almanac, 14, 167, 398, 401-2, 405.
See also Astronomical Ephemeris.

formerly Abridged -, 4-5
formerly American -, 6 .

Nautical Almanac Office
American, v, 2, 5, 202, 212
British, v, 2, 18, 277-8, 304

Navigation, 3-6, 14-5, 89, 97, 1°4, 134,
165-'7, 398-402

Neptune
authorities, III, II4, I7~, 187, 191
elements, I II, II 4-5 , II8, L20, 491
figure, 491
fundamental ephemeris, II, I II-26, 470
heliocentric positions, 121
magnitude, 314
mass, 112,491
maximum differences, 470
periods, 208, 49 I
phenomena, 206-9
references, 17, 196-8
rotation, 328-9, 491
satellites, 390-3, 395-7, 492
semi-diameter, 182, 189, 194, 491

Nereid, 390, 393, 395-6, 492
North point, 307
:'iI'otations, summary of, 19-23
:'iI'utation, 21, 25, 28, 41-5, 72, 83,151, 181,

188, 193
constant, 8,16,41,169,172,181,189, 193
differential, 39, 41, 43, 143
in right ascension, 43, 72
references, IS, 41-2, 197
series, 44-5, 107.. 183
short-period, 21, 42-3, 84, 93, 156-7,

159, 183

Oberon, 387-90, 393, 395-7, 492
Obliquity of ecliptic, 28-9, 37-8, 98-9, 101,

169-70, 172, 180, 187-8, 192, 490
Observations

comparison with theory, 92, 110, 134,
142-4

photographic, 56, 97, 143
Observatories, 12, 3°4, 450-3

Paris Observatory, 8, 93, 445
Royal Greenwich Ohservatory, v, 2, 3, IS,

86,443,447
United States Naval Ohservatory, v, 2, 5,

58,90, 212, 297, 300, 447
Occultations, lunar, 87, 90, 205-6, 277-304

analysis, 302-3
elements (Besselian), 62, 277-8, 281-5,

287, 29 1-2, 298, 3°3
graphical method, 289
limb corrections, 297, 300-2
limiting parallels, 285

Occultations, lunar-(continued) .
longitude and latitude coefficients, 292-4
machine, 277, 286-'7
magnitude limits, 279-80
maps, 285
planets, 284-5
prediction, 277-96
radio sources, 303-4
reduction, 277-8, 297-301
references, 199-200, 278-()
refraction, 25, 54-5
selection, 280-2
stations, 295-6, 304

Occultations, planetary, 142, 278, 304-5
Opposition, 206-7
Orbital motion (stars), 146, ISO, ISS, 163

Pallas, 18, II2, 120, 126, 129, 131, 179, 1<)2.
196, 208, 210, 314, 316

Parallax, 57-65
annual, 57, 64-5, 145, ISS
at transit, 137-9
diurnal (Moon etc.), 57, 60-4, 137-9
factors, 63-4
solar, 8, 130, 169, 171, 181, 188, 193,490

Paschal tables
Gregorian, 428
Julian, 423

Passover, 412, 432
Perigee, 204-5
Perihelion, II2, 118, 203-4
Phase, 3 II-6, 329-30

Moon, 204-5, 311, 315
Phenomena, 19, 203-10, 354-5, 362
Phobos, 350-4, 393-4, 396-7, 492
Phoebe, 362, 384-6, 394-7, 492
Photographic observations, 56, 97, 143
Photographic zenith tube (P.Z.T.), 83, 149,

443,446, 448
Place-see Positions.
Planetary Co-ordinates, IS, 30, 34, 38, 119,

124, 132, 158, 191, 197
Planets, 111-29,206-9,311-6,327-41,491

aberration, 49, 124-9, 334
action of inner planets, I I I, I IS
angular momenta, 12 I

aphelion, 206
apparent positions, 124-5
artificial, 133-4
astrometric positions, 126-9
augmentation, 139
authorities, III, 178-9, 185-7, 191
brightness, 313-4
brilliancy, 314-6
configurations, 206-10
conjunctions. 206-7, 210
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Planets-(continued).
elements, 111-20, 491
elongations, 208-9
figures, 139, 491
fundamental ephemerides, II, 15, 96,

111-29, 175, 178-9, 185-9,47°
geocentric positions, III, 124-6
heliocentric positions, III, 115, 120-4
magnitudes, 208, 312-6
masses, 112,491
maximum differences, 470
minor--see Minor planets
opposition, 206-']
osculating elements, 115-20
parallax, 57, 63, 125, 139
perihelion, 112, 206
periods, 208, 491
phases, 311-5, 329-30
phenomena, 206-10
physical ephemerides, 306-7, 311-6,

32 7-4 1

precession, 327
radii, 491
references, 15-9, 194-8
rectangular coordinates, 26, 115, 122-4
rising and setting, 398
rotations, 306-'], 327-9, 491
semi-diameters, 125, 139, 182, 189-94
stationary points, 208
tables, 15-9, III, 114
transit ephemerides, 126, 134-40

Pluto
authorities, III, 191
elements, III, 114,491
ephemeris, 11,97,111-27, 142,470
geocentric positions, 124
heliocentric positions, 121-3
magnitude, 316
mass, 112,491
maximum differences, 470
periods, 208, 491
phenomena, 206-10
references, 18, 195
rotation, 491
semi-diameter, 328, 491

Polaris, 165-7, 201
Polar motion, 72, 84, 86, 445-6
Pole, celestial, 28-30, 41
Pole star, 165-7
Position angle, 244, 288, 307, 342-6, 348
Positions

apparent, 20, 25,42,51,96-7,144,149-5°
astrometric, 20, 25, 54, 97, 126-9, 143-4
geocentric, 20, 24-7, 124-6
geometric, 20,46,51,127, 144
heliocentric, 20, 24, 26-'], 120-4

Positions-(continued).
mean, 20, 30, 145
true, 42

Precession, 25, 28-41, 327
annual, 35, 38, 40
constant, 41, 169-70
differential, 39-41, 143
ecliptic elements etc., 37, 38-9, 99, 124
equatorial elements etc., 31-4, 36, 38-9,

106, 327
general, 21, 28, 35, 38,169-70,172,180-1,

188, 192-3
geodesic, 170
luni-solar, 8, 21, 28--(), 35
planetary, 8, 28--(), 35, 170
rates, 35, 38
references, 41

Precision, II, 118, 175,454-8

Radio astronomy, 133, 277-8, 303-4, 339
Radio transmissions, 86, 443-6, 450-3
Radius vector, 369
Ramadan, 433
Rapid Latitude Service, 86, 445
References, 19. See also under subjects.
Reference systems, 13, 20, 24, 96, 129-30
Refraction, 4, 25, 54-6, 137, 143, 212, 401-2
Relativity, II, 47, 130, 170
Rhea, 362, 368-72, 393-7, 492
Right ascension, 24, 26
Rings of Saturn, 139, 362-6, 393, 396-7,

492

Rotation of axes, 27-8, 31
Rounding-off, 13-4, 454
Royal Astronomical Society, 4, 200

Saros,490
Satellites, 342-97, 492

apparent orbits, 342-6
artificial, 55, 57, 133-4
authorities, 393-7
correction for L1 T, 342
differential coordinates, 346-8
Laplacian plane, 348-9
light-time, 342
magnitudes, 492
phenomena, 354-5, 362
planetocentric coordinates, 342-3, 347-8
rectangular coordinates, 346-7, 371, 382

Saturn
authorities, III, 114, 178-9, 187, 191
defective illumination, 140
elements, III, 114-5,491
figure, 139, 491
fundamental ephemeris, II, 111-26, 470
heliocentric positions, 121
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Saturn-(continued).
magnitude, 314-6
mass, 112, 491
maximum differences, 470
period, 208, 491
phase, ']1 1,315
phenomena, 206-9
physical ephemeris, 330, 339, 341
references, 16-8, 194-7, 199
rings, 139, 362-6, 393, 396-7, 492
rotation, 328, 491
satellites, 362, 366-86, 393-5, 396-7, 492
semi-diameters, 139, 182, 189. 194, 491
transit ephemeris, 139

Seasons, 2°3, 408
Semi-diameters

at transit, 137-41
at unit distance, 125, 182, 189, 194, 491

Sidereal time (S.T.), 26, 66--'7, 72-3, 77-8,
92,110,126,180, 187,192

conversion tables, 76, 473-8, 488
determination, 82-4
inequalities, 72, 76, 83, 92,#5-6
relation to U.T., 67, 74-5, 81, 85

Sirius, heliacal rising, 408
Sky-brightness, 399
Solarparallax,'8, 130, 169, 171, 181, 188, 193,

490

Solstices, times of, 203
Spectral type, 148
Spherical triangles, solution of, 14-5,455-7,

. 472
Star Almanac, 15
Star catalogues, 16-8, 83, .127, 129, 145-8,

195, 277, 446--'7
Star constants, 22, 65, 127-8, 151-2, 156-7,

162-4
Star light, illumination from, 399-400
Star reductions, 150-65

first-order terms, 151-2, 162
second-order terms, 150, 152-4, 162

Stars
aberration, 49-50, 151-2, 155
apparent places, 9, II, 18, 149-55, 163-5
circumpolar, 145, 149
conjunctions with planets, 210
ephemerides, 83, 149
magnitudes, 148
mean places, 145-8
nutation, 15 I

occultations, 277-305
orbital motion, 146, 150, 155
parallax, 57, 64-5, 145, 155
precession, 151
proper motion, 146, 150, 154
rising and setting, 398

Stationary points, 208
Styles, calendarial, 411-2
Subtabulation, 15, 110, 460
Sun

aberration, 100
apex of motion, 489
apparent coordinates, 100-3
authorities, 176-7, 184-5, 189-90
configurations, 203-4
eclipses, 211-57. See also Eclipses, solar.
elements, 98---(), 129, 168-9, 490, 491
equation of time, 3, 78-9, 88---(), 92,

103-5
fundamental ephemeris, I I, 96, 98-106,

175,470
mass, 96, 169, 489
maximum differences, 470
mean distance, 96, 98, 171,490
mean longitude, 69-70, 263
mean sun, 30, 74, 77-81, 92
parallax, 57, 63, 101. See also Solar

parallax.
physical ephemeris, 306-10, 341
rectangular coordinates, 26, 102-3, 105-6,

468
references, 17-8, 195--'7
rotation, 306, 489
selenocentric altitude, 326
selenographic coordinates, 324-6
semi-diameter, 8, 101, 182, 189, 194,

212-3, 489
tables, 17-8, 73, 86-7, 95, 98-9
transit ephemeris, 79, 104-5, 134-8,405

Sunrise and sunset, 16, 54, 398-402, 404
Supplements, 15-6, 198-202
Supplement to the A.E. 1968, 497-521

Tables in Supplement-see list on pages x-xi.
Tables, references to

astronomical, 16---(). See also under indi-
vidual bodies.

mathematical, 14-5, 458-9
Terminator, 3II-2
Tethys, 362, 366-72, 393-7, 492
Time, 66-95, 443-53, 488-9. See also Ephe-

meris -, Sidereal -, and Universal -.
apparent, 3-4, 72, 79, 89
astronomical,S, 6, 89
civil, 5-6, 89
conversion tables, 473-88
determination, 72, 82-8, 134,445-9
distribution, 443-53
equation of, 3, 78---(), 88-9, 92, 103-5
Greenwich, 74-5, 89
local, 72, 74, 89
mean (solar), 4, 5, 67, 70, 74-6, 79-82, 84,

89,92,94
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Time-(contmued).
measures, 13,21-2,66-8,82,88-95,134
notation, 21-2
references, 70-1, 95
signals, 86, 443-7, 450-3
uniform, 68
units; I I, 67-70, 94-5, 488, 493

Titan, 362, 368-9, 373-8, 393-7, 492
Titania, 387-90, 393, 395-7, 492
Transit circle, 447-8
Transit, ephemeris, 76, 97, 135
Transit, meridian, 134-42

ephemerides, 134-7, 141-2
reduction of observations, 49, 137-41

Transits across Sun's disk, 16, 205, 262-76
Triangles, solution of, 14-5,455-7, 472
Trigonometric functions, 14-5,456-9,496
Triton, 390-3, 395-'7, 492
Twilight, 16, 398-404

Umbriel, 387-90, 393, 395-7, 492
Unit, astronomical, 96, 490, 493-4
Units

angle, 19-20, 486-7, 496
length, 96, 493-4
mass, 96, 493-4
speed,494
time, I I, 67-70, 94-5,488,493

Universal time (U.T.), 21-2, 66-7, 73-6,
84-6, 89, 445-6

determination, 78, 84-6
inequalities, 76, 85-6, 445-6
relation to E.T., 21-2, 70-1, 77-9, 86-8,

90-1,94, 143.446
relation to S.T., 67, 74-5, 81, 85

Uranus
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Uranus-(continued).
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