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PREFACE

The purpose of this Explanatory Supplement is to provide the users of The
Astronomical Ephemeris (prior to 1960 entitled The Nautical Almanac and Astro-
nomical Ephemeris) and The American Ephemeris and Nautical Almanac with fuller
explanations of their content, derivation, and use than can conveniently be included
in the publications themselves. A rigorous treatment is given of the fundamental
basis of the tabulations; this is supplemented by a detailed derivation, showing
how each tabulated quantity is obtained from basic data. The use of the ephemer-
ides is also explained and illustrated, but completeness is not attempted. Auxiliary
tables, lists of constants, and miscellaneous data are added, partly for convenience
of use with the Ephemeris and partly for reference.

By its nature this Supplement must primarily be a reference book. However,
it is hoped that certain sections will come to be regarded as full, connected, and
authoritative treatments of the subjects with which they deal, and that the tables
and other data will prove of general use in astronomical computing. An account
of its origins and much information of a general nature about the purpose and
scope of the unified Ephemeris is given in section 1, *“ Introduction ”.

Although published in the United Kingdom, the Explanatory Supplement has
been prepared jointly by the Nautical Almanac Office, United States Naval
Observatory, under the immediate supervision of its Director, Edgar W. Woolard,
and by H.M. Nautical Almanac Office, Royal Greenwich Observatory, under the
immediate supervision of its Superintendent, D. H. Sadler. It has been edited
by G. A. Wilkins, assisted by Miss A. W. Springett.

B. L. GURNETTE, R. v. d. R. WOOLLEY,
Captain, U.S. Navy, Astronomer Royal,
Superintendent, Naval Observatory, Royal Greenwich Observatory,
Washington. Herstmonceux Castle, Sussex.

January, 1960




NOTE ON 1974 REPRINT

It is regretted that it has not been possible to revise this Explanatory Supple-
ment to take account of the many changes that have been made in The Astronomical
Ephemeris and The American Ephemeris and Nautical Almanac since the editions for
1960. The Supplement to the A.E. 1968 has, however, been reprinted, with change
of pagination, before the Index of this volume; it includes a specification of the
IAU system of astronomical constants, an account of its introduction into the
almanacs for 1968, a list of the principal consequential changes in this Explanatory
Supplement, and a list of the known errors in the original edition. The errata and
corrections listed on pages 520 to 521 have all been carried through, or otherwise
noted, on the relevant pages of this edition. Some other amendments have also
been made; in particular, some of the reference data given in section 18 have been
brought up to date. The changes described on pages 514 to 519 have not been
made, although attention has normally been drawn in footnotes to the changes that
would be appropriate to the new system of constants.

All changes in the bases of the ephemerides have been mentioned in the Pre-
faces to the editions in which they were first made, and corresponding changes have
been made in the Explanations at the ends of the volumes. Even apart from these
changes, this Explanatory Supplement is now out of date in a number of respects,
and so should be used with care. In particular, the following points should be
noted:

(a) Even where the basis of an ephemeris has not been changed, an improved
method of computation may have been used, so that the numerical example may
not define precisely the technique used.

(b) For certain purposes the printed fundamental ephemerides are of inade-
quate precision, but improved ephemerides are now available. Further details can
be obtained from the Bureau International d’Information sur les Ephémérides
Astronomiques, 3 Rue Mazarine, Paris (6°), France.

(c) The second of the international system (SI) of units is now defined in
terms of the frequency of a particular caesium resonance, and a scale of “inter-
national atomic time” is currently available for reference purposes. As from 1972
January 1 the principal time signals are based on a scale (UTC) that differs from
IAT by an exact number of seconds and from UT1 by an amount that does not
normally exceed o7 seconds.

It is hoped that, in spite of these deficiencies, this Explanatory Supplement will
continue to be of value to all who require information in the fields that it aims to
cover until such time as a completely revised edition can be prepared. General
suggestions concerning the nature of such a revision, as well as notes on specific
amendments, should be sent to the Superintendent of H.M. Nautical Almanac
Office (G. A. Wilkins), Royal Greenwich Observatory, or to the Director of the
Nautical Almanac Office (R. L. Duncombe), U.S. Naval Observatory.

January, 1973
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1. INTRODUCTION
A. ORIGIN OF THE SUPPLEMENT

The Nautical Almanac for 1931 was completely redesigned; for the first time it
included a comprehensive Explanation and a Derivation illustrating the calculation
of every quantity tabulated in the Almanac. Although the Derivation was dis-
continued after that year, the Explanation was continued in full and was gradually
expanded. This was the consequence partly of newly-added matter, requiring
detailed explanation, and partly of more comprehensive illustrations of the use of
the tabulated data, such as, for example, in the case of eclipses. The Almanacs for
the years 1937, 1938, 1939, and 1940 contained (with appendices) 951, 940, 912, and
920 pages respectively. All of this added material was (and much still is) of con-
siderable value, but much was inappropriate for the day-to-day use of the Almanac
as an astronomical ephemeris; and much was of permanent rather than ephemeral
interest. Many practical astronomers complained of the unwieldy volume and
more than one suggested the separation of the permanent tables and explanations
from the purely ephemeral data. The omission of most of the apparent places of
stars in the edition for 1941, consequent on the introduction of the international
volume of Apparent Places of Fundamental Stars, reduced the number of pages to
759. At this juncture a drastic cut was imposed on the overall size of subsequent
editions by the exigencies of war. The opportunity was taken of inaugurating a
policy that had been under consideration on its own merits. To quote from the
Preface to the edition for 1942:

“ It is intended that in future, starting with this edition, the Nautical Almanac should in
general contain, in addition to the ephemeral data which will continue to be printed in the
established form, only such auxiliary tables and explanations as are necessary for the user to
extract the ephemeral data in the form he requires. In previous editions considerably more
auxiliary tables and more detailed explanations than have been required for this purpose have
been given and, although these have been of considerable benefit to some users, they have
detracted from the convenience of the Almanac for the majority of routine observers and
computers. As it has not been possible to include all the auxiliary tables, illustrations and
explanations required in the application of the tabulated ephemeral data, the Almanac has
never been completely self-contained; with this in mind, it is further intended to publish a
separate supplement, which will be of a permanent character and which will contain all the
permanent tables and explanations previously given, together with such added information
as can be included in the rather wider scope provided by a separate publication. It is
considered that this separation of the ephemeral data from the permanent tables and
explanation wili not only lead to a desirable reduction in the size of the Almanac, but will

I




2 EXPLANATORY SUPPLEMENT

also add to the convenience of the user requiring both books; it is easier to refer to two books
at once than to two different places in the same book.

“ It is possible that publication of the Supplement will be delayed for some time; in the
meantime reference should be made to the relevant portions of previous editions.”

It was, unfortunately, not possible to take any active steps towards the prepara-
tion of the promised ““ Supplement ”’ until several years after the end of the war. At
one time it was hoped that it would be possible to issue the Supplement to relate to
The Nautical Almanac for 1952, and much work was actually done, particularly in

the preparation of detailed examples of eclipse calculation; but this hope could not
be fulfilled.

With the introduction of the concept of ephemeris time at the Paris (1950) Con-
ference on the Fundamental Constants of Astronomy, it became clear that substan-
tial changes in the Almanac could not be long delayed. This view was confirmed
at the Rome (1952) General Assembly of the International Astronomical Union,
when a series of recommendations involving fundamental changes in the ephemer-
ides was agreed, to become effective as from 196o. The advantages of still further
delaying the Supplement were evident; by relating it to the edition of 1960 it could
present the new system as a unified whole, without the complication of a detailed
explanation of the old. And it was accordingly agreed to introduce the Supplement
as from 1960.

In 1954 the first steps were taken to achieve the ““ conformity ” of The Nautical
Almanac and The American Ephemeris and Nautical Almanac; and this has eventually
led to their complete unification as from 1960. The plans for the publication of the
Supplement naturally affected the contents of the unified Ephemeris, particularly
in regard to the explanation and auxiliary tables; and as the Supplement would
apply equally to The American Ephemeris it was natural that it should become a
joint production.

This Supplement has accordingly been prepared jointly by the Nautical
Almanac Office, U.S. Naval Observatory, and by H.M. Nautical Almanac Office.
Although the latter has perforce accepted editorial responsibility, and the general
work of compilation has been shared, the principal authors have been as follows:

In H.M. Nautical Almanac Office:

D. H. Sadler, Flora M. McBain Sadler, J. G. Porter, G. A. Wilkins, and
H. W. P. Richards. H. M. Smith (Time Department) prepared section 15.

In Nautical Almanac Office, U.S. Naval Observatory:
G. M. Clemence, E. W. Woolard, Simone D. Gossner, and A. Thomas.

In both Offices other members of the staff, not named individually, have shared
in the work of compilation and proof reading.

The note on page vi indicates the policy that has been adopted in the editing of this
reprint of the original edition, and draws attention to its current deficiencies.




1B. INTRODUCTION 3

oks
the B. HISTORY OF THE EPHEMERIDES
- The brief histories that follow are concerned solely with the major changes of
At form and content, and are intended as a general introduction to the detailed analyses
to given in section 7.
in 1. The Astronomical Ephemeris
ot “The Commissioners of Longitude, in pursuance of the Powers vested in them by a late
Act of Parliament, present the Publick with the NAUTICAL ALMANAC and ASTRONOMICAL
EPHEMERIS for the Year 1767, to be continued annually; a Work which must greatly con-
¥ tribute to the Improvement of Astronomy, Geography, and Navigation. This EPHEMERIS
1= contains every Thing essential to general Use that is to be found in any Ephemeris hitherto
d published, with many other useful and interesting Particulars never yet offered to the
1 Publick in any Work of this Kind. The Tables of the Moon had been brought by the late
" Professor MAYER of Gottingen to a sufficient Exactness to determine the Longitude at Sea,
i within a Degree, as appeared by the T'rials of several Persons who made Use of them. The
r Difficulty and Length of the necessary Calculations seemed the only Obstacles to hinder
i them from becoming of general Use: To remove which this EPHEMERIS was made; the
i Mariner being hereby relieved from the Necessity of calculating the Moon’s Place from the
i Tables, and afterwards computing the Distance to Seconds by Logarithms, which are the

principal and only very delicate Part of the Calculus; so that the finding the Longitude

by the Help of the EPHEMERIS is now in a Manner reduced to the Computation of the Time,
y p

I an Operation . . . .”

] “ All the Calculations of the EPHEMERIS relating to the Sun and Moon were made from
Mr. MAYER’s last manuscript Tables, received by the Board of Longitude after his Decease,
which have been printed under my Inspection, and will be published shortly. The Calcula-
tions of the Planets were made from Dr. HALLEY’s Tables; and those of . . ..”

The above extracts from the Preface to the first edition, for 1767, of The Nautical
Almanac and Astronomical Ephemeris were written by Nevil Maskelyne, then
Astronomer Royal. The main incentive for, and the main emphasis of, the
publication was the determination of longitude at sea using the method of lunar
distances. The ephemerides were all given in terms of apparent solar time, for
the reasons given in the Explanation.

“It may be proper first to premise, that all the Calculations are made according to
apparent Time by the Meridian of the Royal Observatory at Greenwich.”

“What has been shewn concerning the Equation of Time chiefly respects the Astro-
nomer, the Mariner having little to do with it in computing his Longitude from the Moon’s
Distances from the Sun and Stars observed at Sea with the Help of the Ephemeris, all the
Calculations thereof being adapted to apparent Time, the same which he will obtain by the
Altitudes of the Sun or Stars in the Manner hereafter prescribed.

‘ But if Watches made upon Mr. John Harrison’s or other equivalent Principles should
be brought into Use at Sea, the apparent Time deduced from an Altitude of the Sun must be
corrected by the Equation of Time, and the mean Time found compared with that shewn
by the Watch, the Difference will be the Longitude in Time from the Meridian by which the
Watch was set; as near as the Going of the Watch can be depended upon.”

Apart from many changes in the sources of the data, and in particular the tables
from which the Moon’s position was calculated, the main pages of the Almanac
remained essentially unchanged until 1834. For thatyear, to quote from the Preface:

—




4 EXPLANATORY SUPPLEMENT

“ The NAUTICAL ALMANAC and ASTRONOMICAL EPHEMERIS for the Year 1834, has been
constructed in strict conformity with the recommendations of the ASTRONOMICAL SOCIETY of
LONDON, as contained in their Report . .. ; and will, it is believed, be found to contain almost
every aid that the Navigator and Astronomer can require.”

The changes were both fundamental and substantial, and involved almost
doubling the size. The most fundamental change was to replace apparent time
by mean time as the argument of the ephemerides. In the words of the Repori:

“The attention of the Committee was, in the first instance, directed to a subject of
general importance, as affecting almost all the results in the Nautical Almanac ; viz., whether
the quantities therein inserted should in future be given for apparent time (as heretofore), or
for mean solar time. Considering that the latter is the most convenient, not only for every
purpose of Astronomy, but also (from the best information they have been able to obtain) for
all the purposes of Navigation; at the same time that it is less laborious to the computer, and
has already been introduced with good effect into the national Ephemerides of Coimbra and
Berlin, the Committee recommend the abolition of the use of apparent time in all the
computations of the Nautical Almanac; excepting . ...”

The direction of at least some of the other changes was influenced by the view
that was expressed in the Report as:

‘“ And here perhaps it may be proper to remark, that, although in these discussions the
Committee have constantly kept in view the principal object for which the Nautical Almanac
was originally formed, viz., the promotion and advancement of nautical astronomy, they have
not been unmindful that, by a very slight extension of the computations, and by a few
additional articles (of no great expense or labour), the work might be rendered equally
useful for all the purposes of practical astronomy.”

The requirements of the navigator were by no means overlooked; in particular
the number and presentation of “ lunar distances ”’, including distances from the
planets, was greatly improved. However, the Explanation and Use of the previous
editions, which had still been based on Maskelyne’s, was replaced by a completely
new Explanation in which little reference was made to the use of the ephemerides
for navigation; tables of refraction were excluded and no example was given of
clearing an observed lunar distance for the effects of semi-diameter, parallax, and
refraction.

Apart from the omission of lunar distances in 1907 the first part of the Almanac,
containing the ephemerides of the Sun and Moon, remained unchanged in form,
though of course based from time to time on different data and tables, until 1931.
At various dates other matter was added, particularly ephemerides of the Moon and
planets at transit on the Greenwich meridian and the apparent places of many more
stars; later, ephemerides for physical observations were added and in 1929, anticip-
ating the redesign in 1931, ephemerides of the Sun referred to the standard equinox
of 1950-0 were given for the years 1928 and 1929.

Much of the added matter was of no interest to the practical navigator, and in
1896 ““ Part I (containing such data as are more particularly required for naviga-
tional purposes) ”’ was ‘‘ also published separately for the convenience of sailors ”.
This consisted of a straight reprint of the monthly pages comprising the first part of
the Almanac, with selections from the other data and a few pages specially prepared.
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en In the Preface to the edition for 1914 it was announced briefly that ‘‘ Part I has been
ogtf remodelled for the convenience of sailors ”’; thus was introduced The Nautical

Almanac, Abridged for the Use of Seamen, which was specially designed for its
purpose. This Almanac was redesigned in 1929 and again in 1952, when it was

B renamed The Abridged Nautical Almanac; it was rearranged in a different form in
#e 1958 and, as from 1960, it takes on the appropriate portion of the original title,
¥ namely The Nautical Almanac.

of

Prior to the revision in 1931 a fundamental change, requiring consequential

changes in the Almanac, had taken place in the measure of mean solar time.
v Before 1925 the astronomical day was considered to start at noon, and the principal
r ephemerides had been given for ob, i.e. noon, on each day. As from 1925 January 1
d the tabular day was brought into coincidence with the civil day and was
g considered to start at midnight; the ephemerides were still given for o®, now
indicating midnight.
k The revision of 1931 was much more than a rearrangement of the same datain a
different form; the changes of page size, of presentation, of provision for interpol-
ation, and of content were less important than the complete break with the century-
old lay-out designed primarily for navigation for which the Almanac had ceased to
provide. The new form could be, and was, designed for the astronomer without
the necessity for considering the requirements of navigation. Its arrangement has
remained basically unchanged, though there has been frequent change in content
of the less fundamental matter.

Major changes were introduced in the edition for 1960 when the Almanac was
unified with The American Ephemeris, the principal one being the use of ephemeris
time, instead of universal time (mean solar time on the meridian of Greenwich),
as the argument for the fundamental ephemerides. This change still further
emphasized the unsuitability of the volume for navigation, and led to the adoption
for its new title of the appropriate part of the original full title, namely The Astro-
nomical Ephemeris. 'The changes are fully described in the Preface to the edition
for 1960.*

2. The American Ephemeris and Nautical Almanac

During the first half of the nineteenth century, The Nautical Almanac remained
in general use on American ships and among astronomers and surveyors in the
United States. However, with the continued development of the country, and
its growth as a maritime nation, an increasing need for a national almanac was felt
and eventually led to the establishment of a Nautical Almanac Office in the
Navy Department by an Act of Congress approved in 1849. The Office was set up
in Cambridge, Massachusetts, where library and printing facilities were available,
and began work during the latter part of 1849. The first volume of The American
Ephemeris and Nautical Almanac was for the year 1855, and was published in 1852.
The Office was moved to Washington in 1866, but was not located at the Naval
Observatory until 1893.

*Some additional notes on the history of The Astronomical Ephemeris are given on pages
ix—xviii of the volume for 1967, the two-hundredth anniversary edition.

‘. |
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For the years 1855-1915 inclusive, the volume was divided at first into two
parts, then, beginning with 1882, into three. The first part during this entire
period was an ephemeris for the use of navigators that was also reprinted separately,
with the inclusion of a few pages from the remainder of the volume, as The American
Nautical Almanac. It comprised 12 monthly sections, for the meridian of Green-
wich, each containing ephemerides of the Sun, Moon, and lunar distances for the
month; following the monthly sections were ephemerides of Venus, Mars, Jupiter,

and Saturn for the year, and, beginning with 1882, of Mercury, Uranus, and
Neptune.

The second part of the volume contained ephemerides of the Sun, Moon,
planets, and principal stars, for meridian transit at Washington; and data on eclipses,
occultations, and a few other phenomena, which in 1882 were formally grouped as a

third part with the title ““ Phenomena . The explanatory sections and a few miscel-
laneous tables completed the volume.

During the period 1855-1915, few changes were made in the form or content.
The nautical part remained virtually unaltered; lunar distances were omitted,
beginning with 1912, but a page explaining how to calculate them continued to be
included. The principal revisions in the other parts of the volume were in 1882
and 1912-1913. The rearrangement of the 1882 volume was accompanied by
some additions and omissions. The principal omission was the ephemeris of
Moon-culminating stars for determining longitude. The principal additions were:
the physical ephemerides of Mercury and Venus, in place of the former meagre
data for the apparent disks, for the reduction of meridian and photometric obser-
vations; daily diagrams of the configurations of the four great satellites of Jupiter;
and ephemerides for the identification of the satellites of Mars, Saturn, Uranus,
and Neptune. In the volume for 1912, the ephemerides of the satellites were
extended to include tables for determining the approximate position angle and
apparent distance; in 1913, physical ephemerides were added for the Sun, Moon,
Mars, and Jupiter. These revisions, and minor additions, omissions, and rearrange-
ments, are described in more detail in section 7.

In the volume for 1916, the first to be issued under the international agreements
resulting from the Paris Conference of 1911, extensive revisions were made in the
form and arrangement that had been retained essentially unchanged since 1882;
but the content remained substantially the same. The arrangement of the Green-
wich ephemerides of the Sun and Moon by monthly sections was discontinued,
and replaced by annual ephemerides. At the same time, The American Nautical
Almanac was no longer a reprint of part of The American Ephemeris, but a separately
prepared volume especially designed for the navigator.

In 1925, the astronomical reckoning of time from o!® at noon was replaced by
the civil reckoning from midnight.

During the interval from 1916 until the fundamental revisions in 1960 when Te
American Ephemeris was unified with The Astronomical Ephemeris, the revisions of
form and content were mostly only in details; but a few major changes occurred,
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and in the volumes for 1934-1937 a number of further subdivisions and rearrange-
ments of the contents were made. In 1937, the volume had become formally
divided into seven parts; the part constituting the ephemeris for Washington had
been reduced to only ephemerides of the Sun, Moon, and planets for meridian
transit at Washington, all the other material having been transferred to other parts
and referred to the Greenwich meridian.

Because of the limited usefulness of the Washington-transit ephemerides except
to observers on the Washington meridian, the publication of this part was discon-
tinued beginning with the 1951 volume. Otherwise, the general form and arrange-
ment adopted in 1937 were retained until 196o. The other principal changes in
content during 1916-1959 were the following: In 1919, tables of the rising and
setting of the Sun and the Moon were added. In 1941, the number of stars for
which apparent places were given, after having reached 887, was decreased to 212
when Apparent Places of Fundamental Stars was first published; in 1957, apparent
places were omitted entirely, but precise mean places of 1551 stars which had been
given beginning with 1951 were continued. The elements and predictions of
occultations were successively extended to more and fainter stars, and to additional
standard stations, because of their importance for determining the departures of
the Moon from gravitational theory that are due to variations in the rotation of the
Earth. An ephemeris of Pluto was added to the planetary ephemerides in 1950;
and ephemerides of Ceres, Pallas, Juno, and Vesta in 1952.

C. HISTORY OF INTERNATIONAL CO-OPERATION

Formal co-operation may be regarded as dating from the International
Meridian Conference held in Washington in October 1884 at the invitation of the
Government of the United States. The resolutions of that conference included:

‘. ..the adoption of the meridian passing through the centre of the transit instrument at
the Observatory of Greenwich as the initial meridian for longitude.”

““That from this meridian longitude shall be counted in two directions up to 180 degrees,
east longitude being plus and west longitude minus.”

. .. the adoption of a universal day for all purposes for which it may be found
convenient . . . ”

“That this universal day is to be a mean solar day; is to begin for all the world at the
moment of mean midnight of the initial meridian, coinciding with the beginning of the
civil day and date of that meridian; and is to be counted from zero up to twenty-four hours.”

“ That the Conference expresses the hope that as soon as may be practicable the astro-
nomical and nautical days will be arranged everywhere to begin at mean midnight.”

Although the other resolutions are now in use, it has been customary for many
years in astronomy, but not in all other related sciences, to treat west longitude as
positive, and east longitude as negative. This is the convention adopted in the
Ephemeris.

At the invitation of the Bureau des Longitudes the directors of the national
ephemerides, and other astronomers, met in Paris in May 1896 for the Conférence
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! Internationale des Etoiles Fondamentales. In addition to adopting resolutions
concerning the fundamental catalogue, and the calculation and publication of
apparent places of stars, the Conference adopted the following fundamental
constants:

Nutation 9”21

Aberration 20"-47

Solar parallax  8”-80

which are still in operation. It also agreed to adopt Newcomb’s definitive values
(which were not then in final form) of luni-solar and planetary precession.

Active co-operation between the offices of the national ephemerides dates from
the Congrés International des Ephémérides Astronomiques held at the Paris
Observatory in October 1911.  This conference was called, on the initiative of the
Bureau des Longitudes, by B. Baillaud, Director of the Observatory and President
of the Comité International Permanent de la Carte Photographique du Ciel. Its
purpose was ‘‘ d’établir une entente permettant d’augmenter, sans nouveaux frais,
la masse des données numériques fournies annuellement aux observateurs et aux
calculateurs ”’.  Although the Conference was primarily concerned in obtaining a
greatly increased list of apparent places of stars, it extended its attention to all the
ephemerides of bodies in the solar system. Its comprehensive recommendations
covered the distribution of calculations between the five principal ephemeris offices
(France, Germany, Great Britain, Spain, and the United States), specified standards
of calculation and presentation, arranged for publication of additional data, and
fixed the values of two further constants to be used in the ephemerides: the flat-
tening of the Earth (1/297) and the semi-diameter of the Sun at unit distance for
eclipse calculations (15" 59”-63). Most of these recommendations are still in force.

Official approval was in some cases necessary for the adoption of these recom-
mendations, as illustrated by the following extract from the Act of Congress of
August 22, 1912 (37 Stat. L., 328, 342):

“'The Secretary of the Navy is hereby authorized to arrange for the exchange of data
with such foreign almanac offices as he may from time to time deem desirable, with a view to
reducing the amount of duplication of work in preparing the different national nautical and
astronomical almanacs and increasing the total data which may be of use to navigators and

astronomers available for publication in the American Ephemeris and Nautical Almanac:
Provided . . .”

Here follows a number of provisions, the most important astronomically being the repeal
of the proviso in the appropriation Act of September 28, 1850 (9 Stat. L., 513, 515) that
‘“ hereafter the meridian of the observatory at Washington shall be adopted and used as the
American meridian for all astronomical purposes, and that the meridian of Greenwich shall
be adopted for all nautical purposes .

Such exchange agreements have been carried out in spite of international diffi-
culties.

In 1919 the International Astronomical Union was founded; Commission 4
(Ephemerides), which numbers among its members the directors of the national
ephemerides, thereafter provided the formal contacts by which the previous agree-
ments could be continued and extended.

Flattening the Earth?


Flattening the Earth?
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The 1911 agreements had been directed almost entirely to the reduction of the
total amount of work by the avoidance of duplicate calculation. In 1938 Commis-
sion 4 recommended that the principle should be extended to the avoidance of
duplicate publication by the collection in a single volume of the apparent places of
stars then printed in each of the principal ephemerides. This recommendation,
coupled with the adoption of the Dritter Fundamentalkatalog des Berliner Astro-
nomischen Jahrbuchs (FK3), was implemented for 1941 by the publication, under
the auspices of the International Astronomical Union, of the international volume
Apparent Places of Fundamental Stars. By this means astronomers gained access
to the apparent places of stars in one volume, and the individual ephemeris offices
were saved the work of the compilation and proof reading, as well as the cost of
type setting, of most of the stars which they previously published.

Continuing the precedents of the 1896 and 1911 conferences, the Director of
the Paris Observatory (Professor A. Danjon) convened a further conference that
was held in Paris in March 1950 to discuss the fundamental constants of astronomy.
The leading recommendation was ““ . . . . that no change be made in the convention-
ally adopted value of any constant ”’. But the recommendations with the most
far-reaching consequences were those which defined ephemeris time and brought
the lunar ephemeris into accordance with the solar ephemeris in terms of ephemeris
time. These recommendations were addressed to the International Astronomical
Union and were formally adopted by Commission 4 and the General Assembly of
the Union in Rome in September 1952.

Commission 4 had, at various times, made arrangements for the redistribution
of calculations between the ephemeris offices; for example, the Institute for
Theoretical Astronomy in Leningrad contributed apparent places of stars to the
international volume for the years 1951-1959. With the availability of fast auto-
matic calculating machines it is now both practicable and efficient for large blocks
of work, such as the calculation of apparent places of stars, to be done in one office;
and at the 1955 General Assembly of the Union in Dublin, a general redistribution
of calculations on these lines was agreed by the directors of the national ephemerides
and confirmed by Commission 4. Full details of these agreements, of changes in
the bases of the ephemerides, and of the discussions leading to the introduction of
Apparent Places of Fundamental Stars are given in the reports of Commission 4 in
Transactions of the International Astronomical Union.

The logical development of this co-operation would appear to be a single
international ephemeris; this is not yet practicable. Following the successful
unification of the navigational almanacs, and greatly assisted by the common
language, it was however agreed in 1954 to unify the British and American
ephemerides as from the year 1960; and this has now been done. In reporting
this agreement to Commission 4, it was announced that reproducible material for
the whole Ephemeris, with the exception of the short introductory section, would
be made available to other ephemeris offices through H.M. Stationery Office at a
small fee. And the hope was expressed that use would be made of this facility to
effect a considerable saving of type setting and proof reading, while still preserving

_———
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for each country its own ephemeris with its own language headings and explan-
ations and its own selection of material.

The Berliner Astronomisches Jahrbuch (published annually since 1776) and the
Astronomisch-Geoddtisches Jahrbuch (introduced for the year 1947) ceased public-
ation with the years 1959 and 1957 respectively; in Germany either the British
or American editions of the unified Ephemeris will be used and there will be no
separate German edition.
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D. SCOPE AND PURPOSE OF THE EPHEMERIS

The Astronomical Ephemeris and The American Ephemeris and Nautical Almanac
are identical in content and presentation, apart from a few preliminary pages.
Except in the few cases where distinction is desirable they will be referred to
collectively as ““ the Ephemeris ”’ or by the initials 4.E.

Scope. Now that other publications provide for the practical requirements of
navigators and surveyors, the Ephemeris need no longer do so. Its content is

*See page 174 for references to proceedings, of later conferences on the system of astrono-
mical constants.
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accordingly restricted to providing fundamental ephemerides of the Sun, Moon,
and planets to the highest precision, and ephemerides derived from them for the
requirements of the practical astronomer.

Fundamental ephemerides. 'The main purpose of the fundamental ephemerides
of the Sun, Moon, and planets is to provide a rigorous continuous reference system,
to which observations, if necessary spread over many years, can be referred. In
order to achieve this the ephemerides should be calculated strictly in accordance
with a self-consistent theory, which can be specified precisely in regard to both
form and numerical constants. It will suffice that the adopted constants be close
enough to their true values for any possible variations to lead to linear changes in

the ephemerides; but it is important that all known physical forces and effects be
fully incorporated.

The ephemerides are calculated in accordance with the Newtonian law of
gravitation, modified by the theory of general relativity. The values of the adopted
constants are given partly in section 6 and partly in section 4 under the individual
body concerned; most are collected together in section 18, Thé indépendeént
variable of the ephemerides is ephemeris time, which is independent of the unpre-

The highest standard of
precision in the calculations is achieved for the five outer planets Jupiter, Saturn,
Uranus, Neptune, and Pluto; the calculations for the Sun, Mercury, Venus, and
Mars do not at present reach the same standard. For the Moon other requirements
are very severe; extremely accurate values of the Moon’s motion, over short
intervals of time, are required for the determination of relative positions on the
Earth through observations of eclipses and occultations; consistent positions of
the Moon over long intervals (say 10 years) of time are needed for the practical
determination of the length of the fundamental unit of time, the ephemeris second.
But the precision of the ephemeris is reasonably adequate for the present.

It is convenient, but not necessary, that the fundamental ephemerides should
give positions sufficiently close to the actual positions to provide for the observ-
ational astronomer and as a basis for further predictions. The ephemerides are,
in fact, amply close enough for this secondary purpose in terms of ephemeris
time; but the correction to universal time is large enough to make its application
necessary for the ephemeris of the Moon.

Other data. 'The only other data of a fundamental character given in the
Ephemeris are those required for the calculation of apparent places of stars; these
include the values of precession and nutation required to specify the observational
frame of reference. Apparent places themselves are not included as they are given
in Apparent Places of Fundamental Stars. Some deduced data, such as the Besselian
elements of eclipses, are of the highest precision; but generally all other ephemeral
data are intended to assist observation and are not of adequate accuracy for precise
comparison with observations. In particular the theories on which the orbits of

the satellites are based are too imperfect to provide ephemerides of a fundamental
character.

*In most cases new ephemerides of higher precision and accuracy are now available, but
the ephemerides in the A.E. provide a useful common standard of reference.
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E. SCOPE AND PURPOSE OF THE SUPPLEMENT *

As stated in the Preface the purpose of this Explanatory Supplement is to
provide users of the Ephemeris with fuller explanations of its content, derivation,
and use than can conveniently be included in the Ephemeris itself. To a limited
extent it also provides the auxiliary tables and reference data required in the
application of the data tabulated in the Ephemeris; but, because of the availability
of other publications and of changing methods of calculation, these requirements
are much less than when the Supplement was first proposed in 1940.

In particular it has been decided not to include a section on observatories, as
originally planned. The list of observatories in the editions of The Nautical
Almanac prior to 1942 changed little from year to year, and formed one of the
motivations for a separate supplement; in recent years, however, the rapid increase
in the number of observatories, both optical and radio, together with more frequent
changes of position, make any list incomplete and out-of-date in one or two years.
The list of observatories in A.E., pages 434—452 in 1960, contains full details of
place, description, positions, and certain derived constants for use in the reduction
of observations, for some 320 optical and 27 radio observatories; the list includes
only major observatories and those specifically engaged on observations requiring
an accurate knowledge of position for their reduction. It is necessarily prepared
some two years before the year of the Ephemeris in which it is printed, and is
out-of-date to that extent. A full description of the list and an explanation of the
quantities tabulated are given in the Ephemeris itself.

The data in the Ephemeris will suffice for most requirements for the reduction
of current observations. Much more detailed information about the equipment,
programmes of observation, and staff of observatories is given in the publication
Les Observatoires Astronomiques et les Astronomes by F. Rigaux, published in 1959
by I’Observatoire Royal de Belgique under the auspices of the International Astro-
nomical Union. As with all such lists the data, particularly as regards individual
astronomers, are rapidly becoming out of date. No derived constants are given,
and the positional data are not always complete or specific. In any case, users who
require precise positions for the reduction of observations should obtain positions
for the particular telescope used.

It was originally planned to include a comprehensive list of former observa-
tories, on the lines of the lists published in the editions of The Nautical Almanac for
the years 1929 to 1938 inclusive. Changes of position of several observatories
have added to this list in recent years. But the small amount of additional data
hardly justifies the re-publication of data that must now be rarely, if ever, used.

The Ephemeris does not contain all ephemerides of position. Ephemerides
of the stars, of minor planets, of comets, and of other bodies are tabulated in other
publications, mainly for the general convenience of users; it is proper to regard
these as forming an integral part of the totality of astronomical ephemerides. The

*See also note on page vi regarding the 1974 reprint.

s S iz v 1
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scope of the Supplement is accordingly extended to include reference to such
ephemerides; but, generally, less detailed explanations and derivations are given
for these.

It is a necessary preliminary to the main purpose to define frames of reference
and systems of coordinates with some care. In doing so the text-book approach
has been deliberately avoided : Ell€lEmentary definitionsandiproofshiavelingencral
pegiiomitted! An attempt has been made to combine complete rigour of treatment
with practical requirements, giving the errors of all approximate procedures; but
no attempt has been made to be comprehensive.

The treatment of the main sections varies according to the nature of their
content, particularly as to whether they refer to fundamental data, or derived
quantities, or to ephemerides in the Ephemeris or elsewhere.

In one section only, that on Systems of Time Measurement, has an attempt
been made to give a completely exhaustive, and authoritative, treatment of the
subject. 'This subject is fundamental to the whole purpose of the Ephemeris and
is one of extreme difficulty, especially in view of the many recent changes in both
conception and practical determination. It is hoped that this section will be
regarded as providing authoritative and precise statements as to the definitions of
Universal Time, Sidereal Time, and Ephemeris Time and of the relationships
between them.

The most important specific function of the Supplement is to define precisely,
for each individual ephemeris: the quantity tabulated; the fundamental data on
which it is based; and how it is derived from those data. No such definition can be
regarded as complete, or as free from possible misunderstanding, until it is illus-
trated by a numerical example in which every figure is derived from the stated
fundamental data by means of the stated procedure and formulae; only by such
means can ambiguities of wording be clarified, and procedures and formulae
verified. To achieve this purpose fully, numerical examples should be chosen so
as together to cover all cases and to avoid accidentally-small contributions in which
significant errors of principle might lead to negligible numerical differences. In
principle the tabulated values should be reproduced exactly; but in practice there
must always be a small, and almost always negligible, area of uncertainty in which a
real difference of principle may be masked by legitimate variations of procedure and
by accumulation of rounding-off errors owing to differences in computing methods.

Although the * derivation”, as understood above, of every ephemeris is
illustrated numerically in the Supplement no claim is made to have achieved
complete coverage. The single examples given cannot cover every case and may
sometimes leave uncertainties due to unsuitable choice of date and time; [
especially so as a fixed epoch (1960 March 7 at o E.T.) has been adopted for most
B  Morcover, the examples have been calculated on a desk calcu-
lating machine one stage at a time, recording intermediate results where necessary;
the final results may therefore differ both from the values printed in the Ephemeris,
which are calculated systematically on punched-card machines, and from those
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obtained by adopting different stages in the calculation. None of these deficiencies
is likely to be serious, or to result in difficulties of interpretation, provided the
limitations are understood. It is intended that every printed figure should be
obtainable directly, correctly rounded off, from the stated formula using the actual
printed values of the basic data and intermediate results quoted; however, with a
calculating machine, there are different methods of accumulating products and of
doing continuous multiplications, and in a few cases, by oversight, the rounding-off
of an intermediate or final result may differ from that formally obtained. Similarly,

values of trigonometric functions may differ according to the interval and number
of figures in the tables used.

The numerical examples are designed primarily to illustrate unambiguously
the formulae quoted, and they do not necessarily indicate either the best method of
calculation or the method actually used. It is not possible to illustrate numerically

many of the actual methods used for systematic calculation on punched-card and
electronic computing machines.

F. OTHER PUBLICATIONS OF RELEVANCE

For convenience of reference, there are listed below the full titles, descriptions,
and adopted abbreviations of British, American, and other publications which are
likely to be of interest to astronomers; the British publications may be obtained
through H.M. Stationery Office and the American publications through the
Superintendent of Documents, U.S. Government Printing Office.

1. Unified publications; British and American editions

The Nautical Almanac (N.A.) (about 276 + xxxv pages) contains data for astronomical
navigation at sea. Of astronomical interest are: the Greenwich Hour Angle (G.H.A.) and
Declination (Dec.) to o’-1 for each hour for the Sun, Moon, Venus, Mars, Jupiter, and
Saturn; times of sunrise, sunset, and beginning and end of civil and nautical twilights for
latitudes N. 72° to S. 60° for every third day; times of moonrise and moonset for
latitudes N. 72° to S. 60° for every day.

The Air Almanac (A.A.) (four-monthly edition, about 242 + go pages) contains data
for astronomical navigation in the air. Chief astronomical interest lies in the tabulations of

G.H.A. and Dec. of the Sun{ too”1), and of the Moon and three planets ( to 1°), for
each 10™,

Sight Reduction Tables for Marine Navigation, U.S. Naval Oceanographic Office, H.O.
Pub. No. 229, six volumes each covering 15° of latitude, 1970 onwards. Reproduced as
(British) Hydrographic Department, N.P. 401, 1971 onwards. These tables give altitude
to o-1, with variations for declination, and azimuth to o°-1, with arguments latitude, hour
angle, and declination, all at 1° interval. They provide all solutions of the spherical triangle,
given two sides and the included angle, to find a third side and adjacent angle.
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Sight Reduction Tables for Air Navigation, U.S. Naval Oceanographic Office H.O.Pub.No.
3 249, reproduced as (British) Air Publication,” A.P. 3270; vol. 1, Selected Stars (epoch
1 1975-0), 1973; vols. 2 and 3, Declinations 0°~29°, 1953. Volume 1 contains the altitude to
i 1’ and the azimuth to 1° for the seven most suitable stars for navigation, for each degree
of latitude and for each degree of local sidereal time. Volumes 2 and 3 give similar data
for each degree of declination to 29° and for each degree of hour angle; tabulations extend
f to depressions of at least 5° below the horizon.

L inl

2. British publicatiens

The Star Almanac for Land Surveyors (S.A.) (about go pages) is designed for topo-
graphical surveyors. Its principal interest lies in the apparent places (to o®-1 and 1”) of 685
stars, including all stars not fainter than magnitude 4-o0.

Planetary Co-ordinates for the years 1960—1980 referred to the equinox of 1950-0
(Planetary Co-ordinates) 180 pages, 1958¥(Earlier volumes covering the years 19oo—-1940 and
1940-196c were published in 1933 and 1939, respectively.) These volumes are intended
mainly for the calculation of perturbations of comets and minor planets. They give helio-
centric, spherical and rectangular coordinates, referred to the standard equinox of 1950-0, of
the planets, together with auxiliary tables, explanations, and illustrations ; the volume for the
years 1960-1980 also contains a comprehensive collection of formulae.

Interpolation and Allied Tables (1.A.T.) 8o pages, 1956TIS a collection of interpolation
tables and formulae of numerical analysis, with explanations and illustrations, designed as a
working handbook for the computer.

Subtabulation, 54 pages, 1958, contains descriptions and tables for various methods of
subtabulation, many of which are used in the compilation of the Ephemeris.

Seven-figure Trigonometrical Tables for every Second of Time, 101 pages, 1939, reprinted
1961.

Five-figure Tables of Natural Trigonometrical Functions (for every 10”), 123 pages, 1947,
reprinted 196g.

‘ Greenwich Observations. A complete list of the appendices and special investigations
included in the annual volumes of Observations made at the Royal Observatory, Greenwich,
and a list of the separate publications of the Observatory are given in the volume for 1946,
published in 1955. In particular:

“ Reduced observations of lunar occultations for the years 1943-1947 >, published in
1952, as an appendix to the Observations for 1939.

Royal Observatory Annals (R.O. Ann.). 'This series of publications includes:
Number 1, Nutation 1900-1959 ”, 1961 ; values based on E. W. Woolard’s series, see section
2C. There are also Royal Observatory Bulletins (R.G. Bull.).

Annals of Cape Observatory. This series includes many papers and much observational
data that are also of relevance to the ephemerides.

3. American publications
The Ephemeris, U.S. Department of the Interior, Bureau of Land Management, 30 pages.
For surveyors.

Improved Lunar Ephemeris, 1952—-1959. A Joint Supplement to The American Ephemeris
and The (British) Nautical Almanac (I.L.E.), xiv + 422 pages, 1954. Extends the lunar
ephemeris in A.E. backwards to 1952, and includes a detailed account of the basic comput-
ation from Brown’s theory. It also gives revised values of nutation and aberration for
1952—-1959 and an account of their calculation.

*Reprinted 1962.
1 Reprinted 1972.

. S AR SN.
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Tables of Sunrise, Sunset, and Twilight, Supplement to The American Ephemeris, 1946
(S.S.T.), 196 pages, 1945. Contains permanent and comprehensive tables of the times of
sunrise, sunset and twilight for each degree of latitude to 75°; variations are given by which
times can be calculated simply for any year and any place.

Astronomical Papers prepared for the use of The American Ephemeris and Nautical
Almanac (A.P.A.E.). Introduced in 1882, there are now sixteen volumes, almost every part
of which is of direct interest to users of the Ephemeris. A full list of the contents follows :

Volume I.

1. Simon Newcomb. ‘ On the recurrence of solar eclipses, with tables of eclipses
from B.C. 700 to A.D. 2300 . 1879.

11. Simon Newcomb, aided by John Meier. ‘A transformation of Hansen’s lunar

theory, compared with the theory of Delaunay ”. 1880.

1. Albert A. Michelson. ‘ Experimental determination of the velocity of light
made at the United States Naval Academy, Annapolis ’. 188o0.

1v. Simon Newcomb. ¢ Catalogue of 1098 standard clock and zodiacal stars”. 1882.
v. George W. Hill. ‘““ On Gauss’s method of computing secular perturbations, with
an application to the action of Venus on Mercury ”’. 1881.

vi. Simon Newcomb. ‘ Discussion of observed transits of Mercury, 1677-1881 .
1882.

Volume II.

1. Simon Newcomb and John Meier.  Formulae and tables for expressing corrections
to the geocentric place of a planet in terms of symbolic corrections to the elements of the
orbits of the Earth and planet ’. 1883.

11. Truman Henry Safford. ‘ Investigation of corrections to the Greenwich planetary
observations, from 1762 to 1830 . 1883.

1. Simon Newcomb. ¢ Measures of the velocity of light made under the direction of
the Secretary of the Navy during the years 1880-1882 . 1885s.

1v. Albert A. Michelson. ‘“ Supplementary measures of the velocities of white and
colored light in air, water, and carbon disulphide, made with the aid of the Bache fund of
the National Academy of Sciences ”’. 188s.

v. Simon Newcomb. * Discussion of observations of the transits of Venus in 1761
and 1769 . 189o0.

vi. Simon Newcomb. ‘ Discussion of the north polar distances observed with the

Greenwich and Washington transit circles, with a determination of the constant of nutation *’.
1891.

Volume III.

1. Simon Newcomb. ‘ Development of the perturbative function and its derivatives,
in sines and cosines of multiples of the eccentric anomalies, and in powers of the eccentricities
and inclinations ”’. 1884.

11. George W. Hill. ‘ Determination of the inequalities of the Moon’s motion which
are produced by the figure of the Earth ”’. 1884.

111. Simon Newcomb. ‘ On the motion of Hyperion . 1884.

1v. George W. Hill. “ On certain lunar inequalities due to the action of Jupiter and

discovered by Mr. E. Neison . 1885.

v. Simon Newcomb. *‘ Periodic perturbations of the longitudes and radii vectores of
the four inner planets of the first order as to the masses ”’. 1891.

Volume IV.
G. W. Hill. ““ A new theory of Jupiter and Saturn . 189o0.
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Volume V.

1. Simon Newcomb. * Development of the perturbative function in cosines of
multiples of the mean anomalies and of angles between the perihelia and common node and
in powers of the eccentricities and mutual inclination . 18gs.

1. Simon Newcomb. ‘ Inequalities of long period, and of the second order as to the
masses, in the mean longitudes of the four inner planets ”. 18¢s.

1. Simon Newcomb. “ Theory of the inequalities in the motion of the Moon
produced by the action of the planets . 1895.

1v. Simon Newcomb. ‘‘Secular variations of the orbits of the four inner planets”. 189s.

v. Simon Newcomb. ‘On the mass of Jupiter and the orbit of Polyhymnia . 189s.

Volume VI. Tables of the four inner planets.

1. Simon Newcomb. ‘ Tables of the motion of the Earth on its axis and around
the Sun ”’. 189s.

11. Simon Newcomb. ¢ Tables of the heliocentric motion of Mercury . 1895.

1. Simon Newcomb. ‘ Tables of the heliocentric motion of Venus . 18¢s.

1v. Simon Newcomb. ‘ Tables of the heliocentric motion of Mars *'. 1898.
Volume VII.

1. George William Hill. “ Tables of Jupiter, constructed in accordance with the
methods of Hansen . 1895.

11. George William Hill. ‘ Tables of Saturn, constructed in accordance with the
methods of Hansen . 1895.

1. Simon Newcomb. * Tables of the heliocentric motion of Uranus ”. 1898.

1v. Simon Newcomb. “ Tables of the heliocentric motion of Neptune ”. 1898.
Volume VIII.

1. Simon Newcomb. ‘A new determination of the precessional constant with the
resulting precessional motions . 1897.

11. Simon Newcomb. * Catalogue of fundamental stars for the epochs 1875 and 1900
reduced to an absolute system . 1899.

m. Henry B. Hedrick. ‘‘ Catalogue of zodiacal stars for the epochs 1900 and 1920
reduced to an absolute system . 1905.

Volume IX.
1. Simon Newcomb. ‘‘ Researches on the motion of the Moon. Part IT . 1912.
1. Frank E. Ross. ‘“ New elements of Mars and tables for correcting the heliocentric

positions derived from Astronomical Papers, Vol. VI, Part IV . 1917.

m. W. S. Eichelberger and Arthur Newton. ‘ The orbit of Neptune’s satellite and
the pole of Neptune’s equator . 1926.

Volume X.

1. W. S. Eichelberger. “ Positions and proper motions of 1504 standard stars for the
equinox 1925-0 . 1925.

11. James Robertson. ‘‘ Catalog of 3539 zodiacal stars for the equinox 1950-0 .  1940.
Volume XI.

1. G. M. Clemence. * The motion of Mercury, 1765-1937 . 1943.

1. G. M. Clemence. ‘ First-order theory of Mars . 1949.
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1. H. R. Morgan. ‘ Definitive positions and proper motions of primary reference
stars for Pluto ”’. 1950.

1v. Paul Herget, G. M. Clemence, and Hans G. Hertz. ‘ Rectangular coordinates of
Ceres, Pallas, Juno, Vesta, 1920-1960 ”’. 1950.

Volume XII.

W. J. Eckert, Dirk Brouwer, and G. M. Clemence. ‘‘ Coordinates of the five outer
planets, 1653-2060 . 1951.

Volume XIII.
1. A.J.J.van Woerkom.  The motion of Jupiter’s fifth satellite, 1892—-1949 ”’. 1950.
11. Dirk Brouwer and A. J. J. van Woerkom. * The secular variations of the orbital

elements of the principal planets ”’. 1950.

1. H. R. Morgan. ‘ Catalog of 5268 standard stars, 1950-0, based on the normal
system N3o ”’. 1952.

1v. G. M. Clemence. ‘ Coordinates of the center of mass of the Sun and the five
outer planets, 18c0—2060 . 1953.

v. G. M. Clemence. ‘‘Perturbations of the five outer planets by the four inner
ones ”’. 1954.
Volume XIV.

Paul Herget. ‘‘ Solar coordinates 1800—2000 ”’. 1953.
Volume XV.

1. Edgar W. Woolard.  Theory of the rotation of the Earth around its center of
mass . 1953.

11. Hans G. Hertz. ‘“ The mass of Saturn and the motion of Jupiter 1884-1948 .
1953-

1. Paul Herget. ‘ Coordinates of Venus 1800—2000 . 1955.

Volume XVI.

1. Raynor L. Duncombe. * The motion of Venus, 1750-1949 . 1958.
This list is continued on page 522.
4. Other publications

The following are international volumes published under the auspices of the
International Astronomical Union.

Appareni Places of Fundamental Stars (A.P.F.S.), about x! + 500 pages, contains the
apparent places of the 1535 stars in FK3¥ It contains explanations in English, French,
German, Russian, and Spanish. From its inception in 1941 until 1959 it was compiled by
H.M. Nautical Almanac Office and published by H.M. Stationery Office, London. It is
now compiled and issued by the Astronomisches Rechen-Institut in Heidelberg, and is
published by Verlag G. Braun, Karl-Friedrich-Strasse 14, Karlsruhe, Germany.

Ephemerides of the Minor Planets (E.M.P.), about 170 pages, contains elements and
search ephemerides of all known minor planets. A brief introduction in English is given,
and a full translation of the Russian text is also available. It is now compiled by the Institute
of Theoretical Astronomy, Leningrad, and is published by the Academy of Sciences of
U.S.S.R. From 1898 to 1946 it was prepared by the Astronomisches Rechen-Institut,
Berlin, and from 1947 to 1951 both by the Minor Planet Center, Cincinnati, and by the
Institute of Theoretical Astronomy.

Notes on other publications and circulars giving current ephemerides of minor

*FK4 in A.P.F.S. 1964 onwards.
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planets, comets, and satellites are given in the relevant sections of this Supplement.

The following tables may be used for approximate calculation of astronomical

phenomena for dates in the past or future for which no fundamental ephemerides
are available.

Schoch, K. Planeten-Tafeln fiir Jedermann, Berlin-Pankow, Linser-Verlag G.m.b.H.,
1927.

Ahnert, P. Astronomisch-chronologische Tafeln fiir Sonne, Mond and Planeten, Leipzig,
Barth, 1960.

Neugebauer, P. V. Astronomische Chronologie, 2 volumes, Berlin and Leipzig, Walter de
Gruyter, 1929.

Baehr, U. Tafeln zur Behandlung chronologischer Probleme, Verdff. Astr. Rechen-Inst. zu
Heidelberg, no. 3, 1955.

Neugebauer, P. V. Tafeln zur astronomischen Chronologie, 3 volumes, Leipzig, 1912—
1925. Some of the tables in these volumes have been superseded or corrected by tables in
the preceding two references.

5. A note on references

In addition to the abbreviations given above the following are used in this
Supplement in references to astronomical journals and publications.

AJ. The Astronomical Journal

Ast. Nach. Astronomische Nachrichten

Bull. Astr. Bulletin Astronomique, Paris

JB.A.A: Journal of the British Astronomical Association
M.N.R.A.S. Monthly Notices of the Royal Astronomical Society
Mem. R.A.S. Memotrs of the Royal Astronomical Society

PA.S.P. Publications of the Astronomical Society of the Pacific
Trans. I.A.U. Transactions of the International Astronomical Union

G. SUMMARY OF NOTATIONS

In general, notations are defined and explained as they occur, and no attempt
is made to adopt a consistent system throughout the Supplement. The adopted
symbols may differ from those recommended by the International Astronomical
Union (Trans. 1.A.U., 6, 345, 1939), and may also differ in different sections.

Symbols are generally used to denote the physical quantities which they
represent rather than the numerical expression of those quantities in some particular
units. Thus the day numbers C, D are angular displacements which may be
expressed in seconds of arc, in seconds of time, or in radians. Where it is desired
to use a symbol for the numerical value, this is either specifically stated or the unit
used is indicated after the symbol: for example, 78 and n” are the numbers of
seconds of time and arc in the annual general precession in declination #n. Angles
are otherwise expressed in radians, so that powers of small angles occurring in
expansions do not require to be modified by powers of sin 1”, as is often done;
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occasionally the square of a small angle, say 62, may be written as 8 sin 0 to emphasise
this point.

The following summary refers to those symbols and notations that are used
consistently throughout the Supplement.

1. Subscripts for reference systems

The reference system for equatorial or ecliptic coordinates is defined by the
equinox and either the equator or the ecliptic; there are four such systems in
general use. In many applications it suffices to specify the reference system in
precise terms such as:

““ referred to the mean equinox and equator (or ecliptic) of date ”’

and thereafter to use appropriate symbols without subscripts to denote the reference
system; this specification may be abbreviated in later references in the same
application to:

‘ for mean equinox of date ™. 1\
Where necessary to avoid confusion or circumlocution, or merely to assist interpre-
tation, the following subscripts are used consistently to indicate the reference ]E
system to which the coordinates are referred. Positions may be geometric, P
apparent, or astrometric according to the corrections applied for aberration, and
subscripts are adopted for all combinations of reference systems and positions
that are in use:
Position \
Reference system geometric  apparent astrometric s
Mean equinox of 1950-0 s R
Mean equinox of beginning of year B = ¢
Mean equinox of date M, C
True equinox of date P A

c is used as an alternative to M for ecliptic coordinates.
* No symbol is used for this combination, although it is implicitly used as an
intermediate step in the calculation of apparent places of stars.

2. Symbols for heliocentric and geocentric coordinates

Geocentric:
spherical ecliptic AB 4 ith Anntansiats
spherical equatorial ool =g
rectangular equatorial &t P

rectangular equatorial (Sun) U
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1G. INTRODUCTION 21
3. Precession and nutation

¢ = annual luni-solar precession in longitude
p = annual general precession in longitude
m = annual general precession in right ascension
n = annual general precession in declination
€ = obliquity of the ecliptic
4y = (total) nutation in longitude
dyy = short-period terms of nutation in longitude
de = (total) nutation in obliquity
de = short-period terms of nutation in obliquity

4. Fundamental epochs and measures of time

- Ephemeris time. 'The fundamental epoch to which the elements of the Sun,
Moon, and planets are referred is:
1900 January o at 122 ephemeris time
= 1900 January o-5 E.T. = J.E.D. 241 5020-0 E.T.
Ephemeris time is measured conventionally in years, months, days, and sub-
divisions of a day. The interval 7' of ephemeris time from the fundamental
epoch contains:
T Julian centuries of 36525 days, each of 86400 ephemeris seconds;
d, or 10000 D, ephemeris days (d = 36525 T'; D = 3-6525 7).
When desirable to emphasise that these relate to an interval of ephemeris time, a
subscript E is added thus: 7%, dg, Dy.

Universal time. 'The fundamental epoch which is used in the definition and

derivation of universal time is:
19oo January o at 12! universal time
= 1900 January o-5 U.T. = J.D. 241 5020.0 U.T.

The interval 7%, of universal time from this epoch contains:

Ty Julian centuries of 36525 days, each of 86400 seconds of U.T.;

dy, or 10000 Dy, days of U.T. (d, = 36525 Ty; Dy = 3-:6525 Ty).
The subscript U is always used, unless the context makes it superfluous.

E.T.—U.T. At any instant the measure of ephemeris time (epoch + T%) is
equal to the measure of universal time (epoch + T) + 47T'; thus:
4T = ET. = Ud.= Ty — T
AT is most conveniently expressed in seconds of time.

It must be emphasised that the fundamental epochs used for ephemeris time
and universal time, although denoted by the same measure, do not correspond to
the same instant of time; in fact at each epoch 47 is about —4°, i.e. the epoch of
E.T. is 4° later than that of U.T. The interval of time between two instants, the
later one being indicated by a prime, can be expressed as:

Ty — Ty of ephemeris time
or as: Te — Ty = (Tg — Tg) — (AT" — AT) of universal time
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The difference in the two measures involves the values of 47" at both instants; it is

only because the two fundamental epochs have the same measure that it is possible
to write:

= Boe B iy

The Besselian solar year. For certain applications it is more convenient to
measure time in units of tropical centuries of 36524-21988 ephemeris days, the
fundamental epoch being the beginning of the Besselian (fictitious) solar year
1900-0, or 1900 January 09-813 E.T. In the great majority of such cases the
difference in length of the century is not significant: the same symbol 7' is accord-
ingly used, though always with a specific explanation. The difference between the
lengths of the Besselian solar year and the tropical year (05-148 T') can always be
neglected and multiples of 0-01 in 7" thus relate to the beginning of the corresponding
Besselian year (see section 2B).

The fraction of the tropical year is denoted by 7, measured backwards or
forwards from the beginning of the Besselian year; a unit difference in 7 corresponds
to a difference of o-or1 in 7.

An interval of time measured in tropical years is denoted by #. Initial and
general epochs are denoted by #, and # respectively. The context will indicate the
meaning to be attached to #, and ¢:

t — 1950-0 clearly implies that # is an epoch, e.g. 1960-0

1950-0 + £ clearly indicates that # is an interval, e.g. 10-0
In some contexts the epoch £, is used for that of 1900-0 + T, and the epoch ¢ for
that of 19000 + T + T; t, = 100 T and ¢ = 100 T are both intervals, but are
used conventionally to describe epochs.

Other notations for time. 7 is also used to denote light-time in the application
of corrections for aberration.

Special notations for time, defined as they occur, are used in the sections on
eclipses and occultations, and in respect of some of the satellites. No attempt has
been made to adhere to a single uniform notation throughout.

5. Day numbers and star-constants

A B,C,D, E Besselian day numbers
G, H Independent day numbers

i ia e C Independent day numbers (short-period terms)
a b, c, d Star constants in right ascension

@b d Star constants in declination

. Second-order day number in right ascension

i Second-order day number in declination

For derivation and formulae see section 5C.



1G. INTRODUCTION
6. Figure of the Earth

¢ = geographic, or geodetic, latitude—see special note in section 2F

¢’ = geocentric latitude tan ¢’ = (1 — €?) tan ¢

¢, = parametric latitude tan ¢, = (1 — f) tan ¢

e = ellipticity, or eccentricity, of the Earth’s meridian

f = flattening 1 —f=(1 — e}

p = geocentric distance in units of the Earth’s equatorial radius
S, C = auxiliary functions such that psin ¢’ = S sin ¢

pcosd’ = Ccos ¢ = cos ¢,
For other relations and formulae see sections 2F and ¢B.

23




2. COORDINATE AND REFERENCE SYSTEMS
A. COORDINATE SYSTEMS

The fundamental astronomical reference systems are based on the celestial
equator, coplanar with the Earth’s equator, and the ecliptic, the plane’of the Earth’s
orbit round the Sun. The angular coordinates in these planes are measured from
the ascending node of the ecliptic on the equator, or the point at which the Sun in
its annual apparent path round the Earth crosses the equator from south to north;
and they are measured positively to the east, that is in the direction of the Sun’s
motion with respect to the stars. 'The ascending node of the ecliptic on the equator
is referred to as “‘ the vernal equinox ”, *“ the first point of Aries ”, or simply as
“ the equinox”. The axes of the corresponding rectangular coordinate systems
are right-handed, i.e. the x-axis is directed towards the equinox, the y-axis to a point
9o° to the east, while the z-axis is positive to the north.

The position of a point in space may be specified astronomically by reference
to a wide variety of coordinate systems; and it may be given by means of (among
other less usual systems) either spherical coordinates, consisting of a direction and a
distance, or rectangular coordinates, consisting of the projections of the distance on
three rectangular axes. The systems are determined by the two following
characteristics:

(a) Origin of coordinates—and designation.
(i) The observer—topocentric.
(if) The centre of the Earth—geocentric.
(iii) The centre of the Sun—heliocentric.
(iv) The centre of mass of the solar system—barycentric.
(b) Reference planes and directions—and designation of spherical coordinates!
(i) The horizon and the local meridian—azimuth and altitude.
(if) The equator and the local meridian—hour angle and declination.
(iii) The equator and the equinox—(equatorial) right ascension and declination.

(iv) The ecliptic and the equinox—(ecliptic or celestial) longitude and
latitude.

(v) The plane of an orbit and its equatorial or ecliptic node—orbital longitude
and latitude.

24

*More strictly, the mean plane of the orbital motion, ignoring periodic perturbations.
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Barycentric coordinates are often referred to the centre of mass of the Sun and
the inner planets, and less often to other combinations. The equator, the ecliptic,
and the equinox are constantly in motion due to the effects of precession and
nutation, and must be further specified; this is done in sub-sections B and C.
A notation to distinguish the -various systems in current use is introduced in
section 1G.

The reduction from geocentric to topocentric coordinates depends on the
figure of the Earth, and is considered in detail in sub-section F. In most cases of
astronomical interest, the differences are so small that they can be applied as first-
order differential corrections.

Positions may be of several kinds, including: the geometric position derived
from the actual position at the time of observation; the apparent position in which
an observer, situated at the origin of coordinates, would theoretically see the
object; and the astrometric position, in which corrections have been made for
some small terms of aberration in order that it may be directly comparable with the
tabulated catalogue positions of stars. The apparent position is derived from the
geometric position by the application of corrections for aberration, and where
relevant for refraction. However, refraction is dependent on the observer’s local
reference system and is invariably treated as a correction to the observation rather
than to the ephemeris position; exceptions only occur for phenomena that are
essentially topocentric, such as rising and setting and (in principle, though the
correction is neglected in practice) for eclipses and occultations. For geocentric
coordinates the apparent position is the direction in which an observer at the
centre of the Earth would see the object, and refraction does not enter. Aberration
is dealt with in sub-section D and refraction briefly in sub-section E.

In the present sub-section the effects of precession, nutation, aberration,
refraction, and parallax are ignored in order to present the relationships between
the coordinate systems. The general notation used is restricted to this purpose
and should not be confused with the more detailed notation in section 1G
necessary to distinguish between the different kinds of position.

Not all combinations of (a) and (b) occur and many are not used in the
Ephemeris; (a) (iv), in particular, is therefore not referred to again. Moreover, if
corrections for parallax be deferred, there is no difference between (a) (i) and
(a) (i1), which can be treated together.

For geocentric spherical coordinates there are thus the four practical reference
systems of:

(i) azimuth (4) measured from the north through east in the plane of the
horizon] and altitude (@) measured perpendicular to the horizon; in astronomy the
zenith distance (2 = 9o° — a) is more generally used, but the altitude is retained in
the formulae for reasons of symmetry;

(ii) hour angle (%) measured westwards in the plane of the equator from the
meridian, and declination (8) measured perpendicular to the equator, positive
to the north;
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(iii) right ascension (a) measured from the equinox eastwards in the plane of
the equator, and declination (8)}

(iv) longitude (A) measured from the equinox eastwards in the plane of the
ecliptic, and latitude (8) measured perpendicular to the ecliptic, positive to the north.

The formulae connecting these coordinates are:

Azimuth/altitude : Hour angle/declination
cosasin 4 = —cosdsin &
cosacos 4 = sin dcos¢ — cosd cosk sin ¢
sin a = sin 8§ sin ¢ + cos S cos i cos ¢
cos 8 sin & = —cos asin 4
cosdcosh = sin acos¢ — cosacos 4 sin ¢
sin & = sin asin ¢ + cos a cos 4 cos ¢

where ¢ is the latitude of the observer. Note that the conversion corresponds to a
simple rotation of the frame of reference through an angle go°® — ¢ in the plane of
the meridian.

Hour angle/declination : Right ascension/declination

The two systems are identical apart from the origin, and direction, of measure-
ment of hour angle and right ascension, which are connected by the relation:

h = local sidereal time — a
since local sidereal time is the hour angle of the equinox.
Right ascension/declination :  Longitude/latitude

cos & cos a = cos B cos A
cos 8 sin @ = cos B sin A cos € — sin Bsin

sin & = cos B sin Asin € + sin B cos €
cos Bcos A = cos O cosa

cosBsin A = cos & sin a cos e + sin & sin €
sin B = —cos d sin a sin € + sin 8 cos €

where € is the obliquity of the ecliptic (corresponding to the particular equator and
ecliptic used). Geocentric longitude and latitude are used now only for the Sun
and Moon. Note that the conversions correspond to a simple rotation round the
x-axis through an angle e.

The corresponding equatorial rectangular coordinates and distance are denoted
by X, Y, Z, and R for the Sun and by &, %, {, and 4 for the planets; they are
derived from the spherical coordinates by the formulae:

X/R or §/4 = cos 6 cos a
Y/R or »/4 = cos ésin a
Z|R or (/4 = sin &
Geocentric ecliptic rectangular coordinates are rarely (if ever) used.

For heliocentric coordinates there are only the two practical reference systems—
the equatorial and the ecliptic; and in the equatorial system only rectangular
coordinates are used. The relationships between the ecliptic rectangular
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coordinates (X, Vo 2c), the ecliptic longitude, latitude, and distance (J, b, 7),
and the equatorial rectangular coordinates (x, y, 2) are:

Kgh— T oS 80S iv= i

Yo =rcosbsin I = +ycose + sin e
% = rsin b = —ysin € + ¥ CoS €
il = 7r(cos b cos 1)

Yy = y,C08 € — . sin € = r(cos b sin [ cos e — sin b sin ¢)
% = y.sin € + 2. cos € = r(cos bsin /sin € + sin b cos ¢)

The conversion from heliocentric to geocentric coordinates is performed in terms
of equatorial rectangular coordinates through:

&= x
g=y > 5
=317

where X, Y, Z are the geocentric coordinates of the Sun.

The calculation of the spherical coordinates from the rectangular coordinates,
or from the known direction cosines, typified by:

Adcosdcosa = &
4 cos dsin a = 7
4 sin 8 =
is performed by:
tan o = mlé cote = &ln
4 = (& + 92 + ) sin 8 = {/4
The quadrant of a 1s determined by the signs of £ and %, and that of é by the sign
of {; 4and 4 cos 6 are always positive. 'The formulae for a and 8 may be written:
a = tan~9/¢ or arctan /¢
=cot=2tn or arccot &/n
6" =sin=14{4 or arcsin {/4
provided that the appropriate values, and not necessarily the principal values, of
the multi-valued functions are taken.

Notes on the technique of practical calculation using these formulae, and on
the most suitable trigonometric tables to use, are given in section 16A.

Many of the conversions above correspond to a simple rotation of the frame of
reference about one of its axes. These are special cases of the general conversion
from a set of axes designated by x, y, 2 to a set designated by «’, ', ’; the two
systems are connected by the formulae:

ae= Dyl andl wleae s ¥ =Lx+my+mnz
y=mx' +myy + my2 Y =bx+my+nz
2=mx' + ny + ny2 B =Lx+my +ny 2

where [y, my, ny; 1y, my, ny; ls, mg, ng are the direction cosines of &', y', 2’ referred to
the system x, ¥, 2. 'The direction cosines satisfy the relations typified by:

B+mi+n=1 B+I4+ R

Ll +myms + nyny, = o myny + my Ny + mg Ny

I
(e}
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These nine quantities can be expressed in terms of the Eulerian angles
0, ¢, ¥ by:
I, = +cos ¢ cos 0 cos  — sin ¢ sin ¥
—cos ¢ cos 0 sin ¢ — sin ¢ cos ¢
ly = +cos ¢ sin 0

S~
Y
Il

m, = +sin ¢ cos 0 cos ¢ + cos ¢ sin
my, = —sin ¢ cos 0 sin ¢ + cos ¢ cos
my = +sin ¢ sin 6

n, = —sin 6 cos ¢
+sin 0 sin
ny = +cos 6

X
L]
[

In this case the conversion corresponds to a rotation ¢ about the 2-axis, § about
the new position of the y-axis, and ¢ about the new (and final) position of the
z-axis. The transformation is equivalent to a single rotation about some line not
in general coincident with one of the axes; but such single rotations are not
frequently encountered in astronomical practice.

B. PRECESSION

The equator and the ecliptic, and hence the equinox, are continuously in
motion. The motion of the equator, or of the celestial pole, is due to the gravita-
tional action of the Sun and Moon on the equatorial bulge of the Earth: it consists
of two components, one luni-solar precession being the smooth long-period motion
of the mean pole of the equator round the pole of the ecliptic in a period of about
26,000 years, and the other nutation being a relatively short-period motion that
carries the actual (or #rue) pole round the mean pole in a somewhat irregular curve,
of amplitude about 9” and main period 18-6 years. The motion of the ecliptic,
that is of the mean plane of the Earth’s orbit, is due to the gravitational action of
the planets on the Earth as a whole and consists of a slow rotation of the ecliptic
about a slowly-moving diameter, the ascending node of the instantanecus position
of the ecliptic on the immediately preceding position being in longitude about
174°; this motion is known as planetary precession and gives a precession of the

equinox of about 12” a century and a decrease of the obliquity of the ecliptic of
about 47" a century.

In this sub-section the effects of the motions of only the mean poles of the
equator and ecliptic, known as general precession, are considered; the effect of
nutation is dealt with separately in sub-section C. The treatment is restricted to

the development of formulae for the practical application of corrections to coordin-
ates and orbital elements.
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Rigorous formulae

The effect of precession on the coordinates of a fixed object is illustrated in
figure 2.1, in which the position of a star S is referred at an initial time #, to a system
of equatorial axes defined by the mean pole of the equator P,y and the mean equinox
X,; at this initial epoch the pole of the ecliptic is at C,. P, X, and C are the
respective positions of these points at a subsequent time z. Although at any
instant P moves, owing to luni-solar precession, in a direction perpendicular to the
colure CP, i.e. towards X, the arc P P is not perpendicular either to C,P, or to CP;
owing to planetary precession C is itself in motion along a curve which is always
convex to CP. This complex motion is specified by means of the three angles
o 2, 0 (where 9go° — {, is the right ascension of the ascending node of the equator
of epoch ¢ on the equator of ¢, reckoned from the equinox of #,, 9o° + =z is the right
ascension of the node reckoned from the equinox of ¢, and @ is the inclination of
the equator of # to the equator of #,) together with the corresponding values of the
obliquity of the ecliptic e.

Figure 2.x. Precession—polar diagram

In the figure:
fo = XoPoP { = 9o° — P,PC,
=002 — PPC = { = CPC =, =A
6 = P,P  The great circle PyP is not the actual path taken by the moving pole.
P,C,P = luni-solar precession in longitude in the interval ¢ — #,
C,C = planetary precession in longitude in the interval ¢ — £,

A = C,PC = planetary precession on the equator in the interval £ — ¢,
¢ = C,P, = obliquity of the ecliptic at ¢,

¢ = CP = obliquity of the ecliptic at ¢

= CP

Figure 2.1 has been drawn for an epoch # for which A is negative, i.e. for which 2
is greater than (.
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Positions referred to the reference system specified by the mean pole P, the
mean equinox X, and the pole of the ecliptic C at time # are designated formally
as being referred to *‘ the mean equinox and equator (or ecliptic) of epoch #”.
Where no confusion can be caused this is abbreviated to ““ mean equinox of epoch
t’. In practice three reference systems are used: the mean equinox of 1950-0
(occasionally referred to as the *‘ standard ” equinox), the mean equinox of the
beginning of the Besselian year, and the mean equinox of date (i.e. the epoch of the
reference system is the same as the date and time for which the position is given).
Where necessary quantities referred to these systems are distinguished by subscripts
S or R, B, M or C respectively. (See section 1G).

The beginning of the Besselian (fictitious) solar year is the instant when the
right ascension of the fictitious mean sun, affected by aberration and measured
from the mean equinox, is 182 4o™. This instant always occurs near the beginning
of the calendar year and is denoted by the notation -o after the year; for example,
as given in A.E., page 2, the beginning of the Besselian solar year 1960 is January
19.345 E'T. = 1960-0. Because of the excess of the secular acceleration of the
right ascension of the fictitious mean sun over the mean longitude of the Sun (see
section 3B) the Besselian year is shorter than the tropical year by the amount
08-1487T, where T denotes the time in centuries after 1goo. However, it is usual
to ignore this insignificant difference and to regard the length of the Besselian
solar year as the same as that of the tropical year.

Newcomb (see references below) gives constants, based partly on theoretical
considerations but mainly on observation, from which the following numerical

expressions for {,, 2, 6 can be deduced. These depend only to a small extent on
the initial epoch.

Initial epoch, #: 1900-0 + T, Final epoch, ¢: 19000 + Ty + T
Lo = (2304"-250 + 1”396 T)T + 0"-302 T2 + o”"-018 T*
3 = {o+ 0”791 T

0 = (2004"-682 — 0"-853 T))T" — 0"-426 T* — 0"-042 T

where 7'y, T are measured in tropical centuries; the small secular changes in the
coefficients of 72 are here ignored.

The series given are for the conversion from the mean equinox of the initial
epoch to an epoch 7 centuries later; it can be verified that {,, 2, 0, for initial epoch
t, and interval T, are identically equal to —=, —, —0, respectively, for epoch
to + T and interval —7. When values are tabulated for reduction from the mean
equinox of #, to that of ¢, the same values can therefore be used for reduction from
the mean equinox of # to that of #, by replacing Z,, 2, 0 (for t,) by —z, —p, —0.

Values for the reduction from the mean equinox of the beginning of the
current year to the standard equinox of 1950-0 are given in 4.E., page 50, and for
a selection of years in the three volumes of Planetary Co-ordinates; the reduction
from the standard equinox of 1950-0 can be obtained by the simple substitution
mentioned above.
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Values of {,, 2, 0 and related precessional elements M, N are given in table 2.1
for years 1900 to 1980 at intervals of one year. The main tabulation is given for
reduction to the initial epoch 1950-0 but appropriate formulae are given with the
table so that it may be used for reductions between any two epochs. Values for

reduction from the mean equinox of selected years back to 1755 to that of the current
year are given in A.E., Table III.

Rigorous formulae for the reduction of positions from one epoch to another
are easily deduced from figure 2.1; in triangle P,PS:
P =90" —8; PPS =ay 4+ 0 EP="0
PS = go° — & P,PS = 180° — (a — 2)
where ay, 3, and a, 8 are right ascension and declination for the initial and final
epochs respectively. Then a, 6 are given by:
cos & sin (& — 2) = cos &, sin (ay + &)
cos & cos (& — 2) = cosd cos §, cos (ay + o) — sin 8 sin §,
sin & =.cos 0 sin &, + sin @ cos 8, cos (ag + &)

The rigorous formulae for a, § may be written in the form:

g sin (a0 + &)
1 — g cos (ag + &)
where g = sin 6 { tan §, + tan 36 cos (ag + o)}
tang (8 — 8;) = tan 30 { cos (ag + o) — sin(ag + L) tan 3 (a — ag — £, — 2)}
which permits expansion in terms of the small quantities {,, 2, 0, and thus in a series
in the interval 7', the coefficients being functions of ay, 8, only. These coefficients
have been tabulated, for various epochs and adopted precessional constants, with
arguments a, and 8,; they are given explicitly in fundamental star catalogues,
where however they generally include the effect of proper motion.

tan (@ — ag — {y — 2) =

The equatorial rectangular axes defined by the positions of the poles of the
equator and ecliptic (P, C) at the final epoch can be derived from those (defined by
P,, C,) at the initial epoch by rotations of: —, about the 24-axis (P,); 0 about the
y-axis; and —z about the z-axis (P). The direction cosines of one set of axes
referred to the other may be expressed in terms of {,, 2, 0 (see sub-section A); in
particular the direction cosines of the initial axes referred to the final axes are:

X, = cos {,cos 0 cos 2 — sin {,sin 2
Y, = —sin {, cos 6 cos ¥ — cos {, sin 2
Z, = —sin 0 cos 2

X, = cos {,cos @sin 2 + sin {, cos 2
Y, = —sin {, cos f sin 2 + cos {, cos 2
Z, = —sin 0 sin 2

Xy = Cosuiy S0

Y, = —sin {,sin 6

fei=— coosil

where, for example, Y, is the direction cosine of the initial y-axis referred to the
final x-axis.

i
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Date
to
1900-0

1901
1902
1903
1904
1905-0
1906
1907
1908
1909
1910-0
191X
1912
1913
1914
1915-0
1916
1917
1918
1919
1920-0
1921
1922
1923
1924
1925-0
1926
1927
1928
1929
1930-0
1931
1932
1933
1934
1935-0
1936
1937
1938
1939
1940-0
1941
1942
1943
1944
1945-0
1946
1947
1948
1949-0

2.1—EQUATORIAL PRECESSIONAL ELEMENTS
FOR REDUCTION TO 19500 OR OTHER EPOCHS

o

+76?814
75-278
73742
72206
70-670
+69-134
67-598
66-062
64-526
62-990
+61-454
59-918
58-382
56-845
55:309
53773
52-237
50-701
49-164
47-628
+46-092
44-556
43-020
41:484
39-948
+38-411
36-875
35339
33-802
32-266
+30-730
29-193
27-657
26-121
24-584
+23-048
21511
19:975
18:439
16-902
+15-366
13-829
12-293
10-756
9:220

+ 7-683
6-146
4-610
3-073

-+ 1-537

2

+76.827
75291
73754
72-218
70-681
+69-145
67-608
66-072
64-535
62-999
+61-462
59-926
58-389
56-853
55-316
+53-780
52-243
50-707
49-170
47-634
+46-097
44561
43-024
41-488
39-951
+38-415
36-878
35-341
33-80s
32-268
+30-732
29-195
27-659
26-122
24-586
+23-049
21-512
19-976
18:439
16-903
+15-366
13-830
12-293
10-756
9-220

+ 7-683
6-146
4-610
3-073

+ 1-537

sin 0 cos § — 1
Unit = 10°%

+48 5892 —1180
47 6174 1133
46 6455 1088
45 6737 1043
44 7018 999
+43 7300  — 956
42 7581 914
41 7862 873
40 8144 833
39 8426 794
+38 8707 — %756
37 8989 718
36 9270 682
35 9552 646
34 9834 612
+34 o116 — 579
33 0397 545
32 0679 513
31 0961 483
30 1243 453
+29 1525 = 424
28 1807 397
27 2089 370
26 2371 344
25 2653 319
+24 2935 — 295
23- 3217 272
22 3499 250
21 3781 229
20 4064 208
+194346 — 189
18 4628 171
17 4911 153
16 5193 137
15 5476 121
+14 5758 — 106
13 6041 93
12 6323 8o
11 6606 68
10 6888 57
A9 FEFT =547
8 7454 38
i 7737 30
6 8o1g 23
5 8302 7
+ 4 8585 =
3 8868 8
2 9151 4
T3y 2
+ 09717 o

M

+153?64o
150-568
147-495
144423
141-350
+138-278
135-200
132-133
129-061
125-988
+122:916
119-843
116-771
113-698
110-626
+107-553
104-480
101-408
98:335
95-263

+ 92-190
89-117
86-044
82-971
79-899
+ 76-826
78753
70-680
67-607
64-534
+ 61-462
58-389
55-316
52-243
49-170
+ 46-097
43-024
39-951
36-878
33-80s
+ 30-732
27-659
24-586
21-512
18:439

+ 15-366
12-293
9-220
6-146

8 31073

NS0

+66-815
65-479
64-142
62-806
61-469
+60-133
58-797
57-460
56-124
54787
+53-451
52-115
50-778
49-442
48-105
+46-769
45433
44:097
42-760
41-424
+40-088
38751
37-415
36-079
34742
+33-406
32:070
30-733
29-397
28-061
+26-725
25-388
24:052
22-716
21-379
+20-043
18-707
17-371
16-034
14-698
+13-362
12-026
10-690
9-353
8.017

+ 6-681
5345
4-009
2-672

+ 1-336

N =

0

v
+1002:23

982-
962-
942
922
+ 9o2-
881-
861-
841-
821-
+ 8or-
781-
761-
741-
721-
& YOT-
681-
661-
641-
621-
+ 6or-
581
561
541
52I-
+ 501
481
461-
440-
420-
+ 4o00-
380-
360-
340-
320-
+ 300-
280-
260-
240-
220-
+ 200-
180-
160-
140-
120-
+ 100-
8o-
60-
40-
+ 20-

18
14
o9
o4
oo
95
9I
86
81

77
72
68
63
59
54
49
45
40
36

31

.27
22
-18

13

-09
05

00
96
91
87
82
78
74
69
6s
60
56
52
47
43
39
34
30
26

21
17
13
09
o4




2.1—EQUATORIAL PRECESSIONAL ELEMENTS a3
FOR REDUCTION TO 1950-0 OR OTHER EPOCHS
Date (i z sin 6 cosf — 1 M N=40 N =26
to Umt = 10-°

1050-0 0-000 0-000 o o 0-000 0-000 000
1951 SRS SR SR TS QAT o =%.3:0730 i— 123363 S pao0y
1952 3-073 3-073 L0434 50 =2 6-147 2-672 40-08
1053 4-610 4-610 2 QI5I 4 9:220 4-008 60-13
1954 6-147 6-147 3 8867 8 12-293 5345 8o0-17
19550 — 7-683 — 7-683 — 4 8584 - 12 — 15-367 — 6-681 — 100-21
1956 9-220 9-220 5 8301 17 18-440 8.017 120-25
1957 10-757 10-757 6 8o17 23 21-513 9:353 140-30
1958 12-204 12:293 7 7734 30 24-587 10-689 160-34
1959 13-830 13-830 8 7450 38 27-660 12-025 180-38
B0b0:0- —15:367 —15:36% = O1670 ~—a47 - —307734 «—13-361 — 2004z
1961 16-904 16-903 10 6883 57 33-807 14-698 220-46
1962 18-441 18-440 11 6600 68 36-881 16-034 240-50
1963 19:977 19:977 12 6316 8o 39:954 17-370 260-55
1964 21-514 21-513 13 6032 93 43-028 18-706 28059
1965:0 —23-051 —23:050 —14 5749 —_ 106 — 46:101 —20-042 — 30063
1966 24-588 24587 15 5465 121 49:175  21-378 32067
1967 26-125 26-123 16 5181 137 52-248 22714 340-71
1968 27-662 27-660 17 4897 153 55-322 24-050 360-75
1969 29-199  29:197 18 4613 171 58:395  25-386 380-79
1970-0 —30-736 —30-733 —19 4330 — 189 — 61.469 —26-722 — 400-83
1971 32273 32270 20 4046 208 64-543 28-058 420-87
1972 33-809 33-807 21 3762 229 67-616 29-394 440-92
1973 35-346  35-344 22 3477 250 70:690  30-730 460-96
1974 36-883 36-880 23 3193 272 73764 32-066 481-00
1975-0 —38-420 —38:417 —24 2909 — 295 — 76-837 —33-402 — s501-04
1976 39:957  39-954 25 2625 319 79-911 34738 521-08
1977 41:494  41-491 26 2341 344 82-985 36-074 541-12
1978 43-031 43-027 27 2056 370 86-059 37410 561-16
1979 44-568  44-564 28 1772 397 89-133 38-746 581-20
1980-0 —46-106 —46-101 —29 1488 — 424 — 92:206 —40-082 — 6o01-24

These values are for the reduction from the epoch t,, in the left-hand argument column,
to the epoch 1950-0. For reduction from 1950-0 to ¢, enter the table with #, as argument,
reverse the signs of all respondents except cos § — 1, and interchange {, and =z.

For reduction from the epoch t, + 4t to 1950-0 + 4t, and vice versa, take out values
from the table using argument ¢,, and multiply:

Lo, 2, M by (1 + o-0000 06 4t)
and
N, 6, sin 6 by (1 — o-0000 o4 4t).
Over the range of the table tan } 6 can be taken as 3} sin 6.

Formulae for the reduction of equatorial spherical coordinates include :

a —ay =M + Nsin } (a + ao) tan 3 (8 + &)
8 — 8, = N cos } (@ + ay)

where aq, 8, are for epoch 2, and a, 8 are for epoch 1950-0.
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Rectangular coordinates x, y, 2 referred to the final epoch # can thus be
expressed in terms of rectangular coordinates x, v, 2, referred to the initial epoch
t, by:

® = Xoxg + Yavo+ Z,2,
y =Xyxg + Yyyo + Zy2,

Z =1 Xpxg = Yot 7,25
These formulae are precisely equivalent to those connecting the spherical coordin-
ates above.

In systematic computation these and similar formulae are often modified so as
to give the reductions (x — %), (¥ — %), (2 — =) to be applied to the known
%oy Yor 2o tO give x, ¥, 2; e.g. the first formula is written as:

x =%y + (X; — 1) xg + Yoy, + 2,2

For reduction from the epoch # to the epoch £,:

% =Xpx+ Xyy+ X,2=+X,2- Y,y — Z,2

Vo = ¥puish Yoy ¥V, 2 =22 X x40 Voy + Zp%

By =Zox+ Zyy H Zoz == X, + Yoy + 4,2
in which the first set of formulae is rigorous, but the second (which has been
largely used) depends on the approximate equality of X, and —Y,; X,and —Z,;
and Y, and Z,; the approximation is so good that the numerical values are identical.
For reduction from the mean equinox of 1950-0 + 7 to that of 1950-0 + 7', + 7'

X — 1= — (29696 + 26 Ty) T? — 13 T3
Y. = —X, = — (223 4941 + 1355 To) T — 676 T? + 221 T®
Z.,= —X,= — (971690 — 414 To) T + 207 T? + 96 T®
¥ =8 —w—(2.4975 ¢} 30 To)el® = 15 73
Yo =27, = — (10858 + 2 Tg) 1=
Z,— 1= — (4721 — 4 To) T

where T, T are measured in tropical centuries, and the coefficients on the right-
hand side are in units of the eighth decimal. Numerical values for reduction from
(and to) the equinox of 1950-0 to (and from) the mean equinox of the beginning
of the year are given at various intervals for the years 1800 to 1980 in the three
volumes of Planetary Co-ordinates.

For reduction from 1950-0 to the mean equinox of date it is more convenient
to have these expressions in terms of days (d) measured from some convenient
zero near the epoch of the standard mean equinox of 1950-0; this is chosen to be
J.D. 243 3000-5 (1949 March 25-0), so that 1950-0 corresponds to d = 281.923.

Xy =1 = — 2 + 125:5 D — 2226.0 D* — 0.3 D?
Y. = —X, = +17%7251 — 61 1903-6 D — 51-1 D?® + 4.5 D?
Z, = —X. = + 77500 —26 60408 D + 15-3 D* + 2.0 D3

Y, -1 = — 1+ 1056 D — 1872.1 D* — 0.3 D3

Yo =Zy= = Thsls 45-9 D — 814-0 D?

Z, — 1= e 20-0 D — 353-9 D?

where D = d/10000, and the coefficients on the right-hand side are in units of the
eighth decimal. Numerical values, calculated from the original expressions, are
given in table 2.2 with argument Julian date at intervals of 1000 days.
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Annual motions and approximate formulae

The precessional motions during a short interval of time (of the order of a
year) are small, and in many cases it is adequate to use first-order corrections
equal to the rates of change multiplied by the interval. In figure 2.2 the effect of
precession on the mean equator, ecliptic, and mean equinox is illustrated diagram-
matically. Q,, E,, X, are the equator, ecliptic, and equinox respectively at the
initial epoch #,, and Q, E, X at an epoch ¢ taken to be one tropical year later; the
interval is taken as being sufficiently small for the actual displacements to be
regarded as annual rates of change.

Eo TE
/
E
Bm Xo Ei Qo
T
Pt
¥ n — to M
1
X, <€ ! Q
X

Figure 2.2. Precession—equatorial diagram

The two equators intersect at M, about go° from X,, and the two ecliptics
intersect at N, about 174° from X,; M, N are the axes about which the equator
and ecliptic rotate. X, is the intersection of the equator Q of epoch # with the
ecliptic E, of epoch #,. Then:

Il = XN = longitude of the axis of rotation of the ecliptic,

i.e. of the ascending node of the instantaneous
position of the ecliptic on the immediately
preceding position; it is referred to the mean
equinox of date

m = X,NX = annual rate of rotation of the ecliptic

{ = 90° — XM z = XM — go°

e =k 0, = obliquity of the ecliptic at epoch ¢,

e = EXQ = obliquity of the ecliptic at epoch ¢

=B X 0

U= X = annual luni-solar precession

N =X, X = annual planetary precession on the equator

p = XN — XN (or XA) = annual general precession in longitude
=y’ — X cos g

m = XM — XM (or BX,) = annual general precession in right ascension
=y cose — X

n = X,MX (or BX) = annual general precession in declination
= rate of change of § = ¢’ sin ¢,

The quantity here denoted by ¢’ is denoted by ¢ in the Ephemeris, and in figure 2.2.
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FOR REDUCTION OF EQUATORIAL RECTANGULAR COORDINATES
FROM (AND TO) THE MEAN EQUINOX OF 1950-0

Julian
Date X, —1 Yo =X, = Voeom1 AR S P s
t In units of the eighth decimal

241 50005 —7438 +111 8485 +48 6412 —6255 —2720 -1183
6000 6647 105 7317 45 9804 5590 2431 1057
7000 5900 99 6147 43 3197 4962 2158 938
8000 5198 93 4976 40 6589 4371 1901 827

241 9000 4540 87 3803 37 9982 3818 1660 722
242 0000-5 —3926 + 81 2629 +135 3375 —3302 —1436 — 624
1000 3357 75 1454 32 6768 2823 1228 534
2000 2833 69 0277 30 o161 2382 1036 451
3000 2353 62 9099 27 3554 1979 860 374
4000 1918 56 7919 24 6948 1613 701 305
242 5000-5 —1527 + 50 6739 +22 0342 —1284 — 558 — 243
6000 1180 44 5557 19 3736 993 432 188
7000 878 38 4374 16 7130 739 321 140
8000 621 32 3189 14 0524 522 227 99
242 9000 408 26 2004 I1 3919 343 149 65
243 0000-5 — 240 + 20 0817 + 8 7314 — 202 — 88 - 38
1000 116 13 9630 6 o709 97 42 18
2000 37 7 8441 3 4105 31 13 = =6
3000 2 + 17251 + 7500 1 1 o
4000 IX — 4 3940 — 1 9104 10 4 — 2
243 50005 — 66 — 105132 — 45707 e =24 =yeiD
6000 164 16 6324 7 2310 138 60 26
7000 308 22 7518 9 8913 259 112 49
8coo0 495 28 8713 12 5516 417 181 79
243 9000" 728 34 9908 15 2118 612 266 116
244 0000-5 — 1005 — 41 110§ —17 8720 — 845 — 367 — 160
1000 1326 47 2302 20 5322 1115 485 211
2000 1692 53 3500 23 1923 1423 619 269
3000 2102 59 4699 25 8523 1768 769 334
4000 2557 65 5899 28 5123 2151 935 407

244 5000:5  —3057 — 71 7099 —31 1723 —2571 —1118 — 486
Mean 82 + 82 —89 -2 +1 -75 —32 —14

For interpolation to full eight-decimal precision in this table, second differences must
be taken into account; they are sensibly constant over the range of tabulation, and mean

values of the double second difference are given at the foot of each column for use with
the interpolation formula:

fo = (t = p) fo + pfi + By (3} + 3))

If x4, ¥0, 2o are the equatorial coordinates for the mean equinox of 1950-0 and x, y, 2
are for the mean equinox of date (¢), then the formulae for reduction are:

From 19500 to ¢ From ¢ to 1950-0
x =x, + (Xe—1)x, + Y.yo + Z.2¢ X =x + (X.—1)x + Xy + X.z
Y=y + Xyxo +(Yy— 1)y, + Zyzo Yo=y + Yox +(Yy—1)y+ Y.z
z2 =20+ X.xo + Y.vo + (Z:—1)zp 29=2 + Zx+  Zyt(Z,—1)z

where (X,—1), Y,, ... are obtained by interpolation to the argument ¢.
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FOR REDUCTION TO (AND FROM) THE MEAN EQUINOX OF 1950-0

Julian
Date € P T 11 a b c ck
to 23° 26" +
241 50005 68-28 50-2564 0-4711 173 57-0 +4155-82 +23.57 6 102 5 28-3
6000 67-00 2570 4711 58-5 39 38:23 22-28 083 28.7
7000 65-72 2576 4711 174 00-0 37 20:63 20-99 06-4 29-I
8000 64-44 2582 4710 o1-5 35 03-02 19-70 04°5 29-5
241 9000 63-15 2588 4710 030 32 45-42 18-41 02-6 29-9
242 00005 61-87 50:2504 0:4710 174 045 +3027-82 +17-12 6007 5 303
1000 60-59 2600 4710 06-0 28 10-21 15-83 5 58-8 30-7
2000 50-31 2606 4710 075 25 52-60 14-54 57-0 31-I
3000 5802 2613 4709 090 23 3499  13-25  55-I 315
4000 56-74 2619 4709 Toi5 "8 2na7:38 T 1rgyl Sisaeas iiar-g
242 5000-5  55-46  50-2625 o0-4709 174 120 +1859-77 +10-68 5513 5323
6000 54-18 2631 4709 13-5 16 42-15 9:39 494 327
7000 52-89 2637 4709 15:0 14 2453 Sacid s = 331
8000 51-61 2643 4709 16-5 12 06-92 6-81 45-6 335
242 9000 50-33 2649 4708 18-0 9 49:30 552 437 339
243 0000-5  49-05  50-2655 0-4708 174 19-5 + 731-68 + 4-23 541-8 5343
1000 47-76 2661 4708 21-0 5 14-05 2:94 399 347
2000 46-48 2667 4708 225 2 56-43 1-65 38-0 35-0
3000 45-20 2673 4708 240 + 03880 + 0-36 36-1 354
4000 43-92 2679 4707 255 — 1 38.83- — 0:93. .- 34:2 = 35:8
243 5000-5 42-63 50:2685 0:4707 174270 — 356:46 — 221 532:3 5362
6000 41-35 2692 4707 285 6 14-09 3-50 30-4 366
7000 40-07 2608 4707 30-0 8 31-72 479 285 370
8000 38-78 2704 4707 31-5 10 49-36 6.08 26-6 374
243 9000 3750 2710 4706 330 130699 737 T4 N S35
244 0000-5 36-22 50-2716 0-4706 174 345 —1524-63 — 8.66 522-8 5 38.2
1000 34:94 2722 4706 36-0 17 42-27 9:95 20-9 38-6
2000 3365 2728 4706 375 19 5991 I1-23 190 390
3000 32:37 2734 4706 39:0. 22 17-86 . 12-52 L 394
4000 31-09 2740 4705 405 243520 1381 152 398

244 5000-5. 29-81 50-2746 0-4705 174 42-0 —2652-85 —15-10 5 13:3 5 40:2

If Ay, Bo and 8, w,, 7, are ecliptic coordinates and elements for the mean equinox of
date (t,), and if A, B and R, w, 7 are for the mean equinox of 1950-0, then over the range of
the above table the formulae for reduction are:

From ¢, to 1950-0 From 1950-0 to ¢,
A = X +a—bcos(A, + ¢)tan B A =2 —a+bcos(A + c)tanfB
wh = + bsin (A, + ©) Be =B —bsin (A + ¢)
Q=8 +a — bsin (R, + ¢) cot 7, R = —a + bsin (R + ¢’) cot i
w = w, + bsin (8, + ¢) cosec i, Wy =@ — bsin (R + ¢) coseci
q= + bcos (8 + ¢) Toer =1 — bcos (8 + ¢)

where a, b, ¢, ¢’ are obtained by linear interpolation to the argument ¢,.
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The following numerical values are deduced from Newcomb’s discussion;
they are derived'from fundamental values of the precessional constant, the obliquity,
the speed of rotation of the ecliptic, and the longitude of the axis of rotation.

Y’ = 50”-3708 + 0”-0050 T m = 3507234 + 0%00186 T
X = 071247 —0”-0188T n = 1533646 — 0500057 T
p = 5072564 + 0"-0222T = 2070468 — 0”-0085 T
IT = 173° 5706 + 54"77 T 7 = o”4711 —o0".0007 T

€ = 2327 08726 — 46”-845 T — 0”-0059 T2 + 0”-00181 T3
where 7' is measured in tropical centuries from 19o0-0.

Values of these quantities (except ¢, A’) for the current year are given in A.E.,
page 50. Values of ¢, p, m, IT are given in table 2.3, which has argument Julian
date and an interval of 1000 days. :

If p oy My, ny, IT,, m, are the values of the above quantities at an epoch mid-
way between the initial epoch #, and a subsequent epoch ¢, then:
M = general precession in right ascension = m, (t — #)) = {, + =
N = precession in declination = n, (t — ;) = 6
a = general precession in longitude = p, (¢ — £,)
b = inclination of ecliptic of epoch # to that of epoch t, = =, (f — t,)
c=18°—-I, + 1a . ¢ =180 = IT.%— %a
Values of the above quantities, for reduction to and from 1950-0, are given for
the current year in A.E., page 50, and for 1800 to 1980 in the three volumes of
Planetary Co-ordinates. Values of M, N are given in table 2.1, and values of
a, b, ¢, ¢’ are given with the values of ¢, p, 7, IT in table 2.3. They may be used for
the reduction of positions from one mean equinox to another, provided the time
interval is not too long nor the position too close to the pole.

The formulae for the reduction of equatorial coordinates from the mean
equinox of 7, to the mean equinox of ¢, or from 7 to ¢, are:
a —ay =M + Nsin (a + a) tan § (8 + §)
O, — Og.= N cos 3 (a + ap)
where the right-hand sides are evaluated by successive approximation, if necessary.:

The formulae for the reduction of ecliptic coordinates and ecliptic elements are:

From mean equinox of ¢, From mean equinox of ¢
to mean equinox of ¢ to mean equinox of #,
A=X +a—bcos(dy +c)tanB A= A —a + bcos(A + ¢)tanf,
=8 + bsin (A, + ©) Bo = B —bsin (A + ¢)
R =Q¢+a—bsin(Qy+c)cotz Q= Q —a+ bsin ( + ¢) cot g,
= + bsin (o + ¢) coseci wy, = w — bsin ( + ¢’) cosec 7,
i= 1 + b cos (o + €) g = ¢ —bcos(Q + ¢)

where the final coordinates and elements on the right-hand sides are evaluated by
successive approximation, if necessary, although the initial values are usually
sufficiently accurate. Note that when 7 is small:

Q+w=Q+w +a

*Page 11 in A.E. 1972—3, page 9 from 1974.
T See also section 6.
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For the transformation of equatorial or ecliptic rectangular coordinates the
rigorous formulae obtained above are still the most suitable, though some sim-
plifications may be made in the actual calculations.

Over short intervals of time, of less than a year, or to lower precision the
formulae may be simplified by using constants for the coefficients and by ignoring
second-order terms. Thus the reduction from the mean equinox of the beginning
of one year to that of the next following year may be made through:

o = a, + 35073 + 18:336 sin a tan &

8 =38, + 20"-04cosa
=2y + 50”27 — 0”47 cos(A + 6°)tan B
=po + 0"47sin(A + 6

A
B
Q = Qo + 0°-01396 — 0°-00013 sin (§ + 6°) cot Z
w = wy + 0°00013 sin (Q + 6°) cosecz
i =1, + 0°00013cos( + 6°)
where it does not matter to which equinox the coordinates are referred.

Approximate annual corrections to right ascension and declination may be
taken directly from table 2.4, which has been calculated from the formulae:

in right ascension 3%-0730 + 15-3362 sin a tan &
in declination 20":043 cos a

Coefficients for the approximate reduction from the standard equinox of 1950-0 to the true
equinox during the current year are given in the 4.E., Table IV.

Differential precession and nutation

The rotation of the frame of reference due to precession (and nutation)
causes small changes in the relative coordinates of two adjacent points and, in
particular, changes the position angles of a star with respect to others; if #, is the
epoch to which the angle is to be referred, and # is the epoch of the observation,
then the observed position angle must be corrected by applying the angle PSP,
(see figure 2.1) or — (n sec d sin a) (t — %), where #n may be taken as 0°-0056 and
the time interval is in tropical years.

Over a small area in the sky the effect of precession (and nutation) varies
slowly; thus the corrections for precession and nutation for moving objects will
differ little from those for neighbouring stars, to which the positions of the moving
object may be referred. Since the positions of the stars for equinox 1950-0, or for
the beginning of the year, will be known it is only necessary to apply corrections
for differential precession and nutation (and similarly for aberration and refraction)
to yield the positions of the moving objects referred to the same equinox.

The effect of differential nutation is always small, and it is convenient to
combine precession and nutation in one correction.

If da and 48 are the observed differences of coordinates in the sense moving
object minus star, then the corrections for differential precession and nutation for
reduction to the nearest yearly equinox are, in the notation of section 5:

in right ascension — {g cos (G + a) tan 8} da — {g sin (G + a) sec? 8} 46
in declination + {gsin (G + a)} da
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Annual precession in right ascension, varies with declination Ann.
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50 104 66 5.3 46 42 38 3431 2% 2:3 200 15 08 —0-5— 42 5
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22.0 —0-7 12 1.9 2:3 25 27 2937133 35 36 39 42 49 69| 17
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The precession in right ascension is positive, except where indicated in high declinations.
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Tables based on similar formulae are given in 4.E., Table VI, for reduction to the
nearest equinox of the beginning of a Besselian year, and also to that of 1950-0;
the corrections are given in the form:

in right ascension e tan 6 da — fsec? 48

in declination f da
where e = 10%sin (J +a) jsinJy=n(t — A)sint J=J;,—155¢%

f=10%cos(J +a) jcosJ,=Bsint

and ¢ is the number of years from date to the equinox desired. The small correction
to J, allows for the fact that it is more accurate to use the right ascension of the
star for the mid-epoch. With j, e, f measured in the units indicated (chosen for
convenience of tabulation), and with da, 48 in units of 1’, the corrections are in
units of 0”-o1.

References

The numerical expressions for the precessional motions are those of S.
Newcomb; fundamental and derived values are given in:

Newcomb, S. The elements of the four inner planets and the fundamental constants of
astronomy. Supplement to The American Ephemeris for 1897, Washington, 1895.

Newcomb, S. A new determination of the precessional constant with the resulting
precessional motions, A.P.A.E., 8, part 1, 1897.

Newcomb, S. A compendium of spherical astronomy. New York, Macmillan, 1906;
reprinted, New York, Dover Publications, 1960.

Peters, J. Prdzessionstafeln fiir das /'iqztinoktium 1950-0. Verdff. Astr. Rechen-Inst.
zu Berlin-Dahlem, no. 50, 1934.

C. NUTATION

Nutation is essentially that part of the precessional motion of the pole of the
Earth’s equator which depends on the periodic motions of the Sun and Moon in
their orbits round the Earth. The progressive long-period motion of the mean
pole has been considered as luni-solar precession in sub-section B; nutation is
the somewhat irregular elliptical motion of the #rue pole about the mean pole in a
period of about 19 years with an amplitude of about 9”. The principal term
depends on the longitude of the node of the Moon’s orbit and has a period of
6798 days or 18.6 years; the amplitude of this term, 9”-210, is known as the
constant of nutation. In the complicated theory of the gravitational action of the
Sun and Moon on the rotating non-spherical Earth, other terms arise which
depend on the mean longitudes and mean anomalies of the Sun and Moon and
on their combinations with the longitude of the Moon’s node. The resulting
shift of the mean to the true pole can be resolved into corrections to the longitude
(4¢, nutation in longitude) and to the mean obliquity (de, nutation in
obliquity), and expressions for these in series constitute the formal speci-
fication of the nutation. The theory and the numerical series upon which the
nutation is now based are developed in full detail by E. W. Woolard in A.P.A.E.,
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15, part 1, 1953, to which reference should be made for further information.

The terms divide naturally into those not depending on the Moon’s longitude,
which can be interpolated at intervals of 10 days, and those depending on the
Moon’s longitude, with periods of less than about 6o days, which cannot be so
interpolated. Nutation is therefore conventionally divided into long-period
and short-period terms; the latter, consisting of terms with periods less than 35
days, are summed separately as diy and de, being the short-period terms of nutation
in longitude and obliquity respectively. In certain special applications, such as
the tabulation of the apparent positions of stars at intervals of 10 days, only the
long-period terms of nutation are included; and data are provided for the indivi-
dual application of corrections for the much smaller short-period terms after
interpolation.

The terms included in the nutation are given in table 2.5. There are 69
terms in 4, of which 46 are of short period and are summed separately as d¢;
for the obliquity there are 40 terms in de, including 24 terms in de. The series
include all terms with coefficients of 0”-0002 or greater. In the table the terms
are grouped according to their periods, and are arranged in order of magnitude of
the coefficient of the nutation in longitude within each group.

These series may be compared with those used prior to 1960 (with a maximum
of 22 terms in longitude and 15 in obliquity), which are given in section 7; values
were then tabulated only to o”-o1.

Values of the nutation have been calculated from the series given above for
ot E.T. on each day from 1900 to 2000. Those for 1goo to 1959 are published in
Royal Observatory Annals, Number 1. The values for 1952 to 1959 have also
been included in the Improved Lunar Ephemeris 1952—-1959. In each publication
there is given a description of the method used for the calculation on punched-
card machines.

The nutation in longitude (4), to be added to longitudes measured from the
mean equinox of date, is tabulated to 0”-0o1 for ot E.T. on each day of the year
in A.E., pages 18 to 32. The nutation in obliquity (de) is not tabulated directly
as such, but enters into the obliquity of the ecliptic on pages 18 to 32 and is obtain-
able immediately as — B, the Besselian day number given in 4.E., pages 266 to
285; the short-period terms in both longitude and obliquity, dys and de, are also
tabulated on the latter pages, all to 0”-00o1. The long-period terms 4y — di and
4de — de are not separately tabulated in the Ephemeris, though special values at
intervals of 10 sidereal days are incorporated into the day numbers used for the
calculation of the apparent places of 10-day stars, published in Apparent Places of
Fundamental Stars.

The intersection of the true equator (as affected by both precession and
nutation) with the true ecliptic is known as the true equinox of date; and, where
distinction is desirable, all coordinates referred to this reference system of the
true equinox, true equator, and true ecliptic of date are prefixed by the words

“true” or ‘“‘apparent”, the latter being used when the direction is affected by
aberration.
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The equation of the equinoxes, which in editions prior to 1960 was called
“nutation in right ascension ”’, is the. right ascension of the mean equinox
referred to the true equator and equinox. It is equal to 4y cos € and represents
the difference between the mean and true right ascensions for a body on the equator;
it is thus the difference between mean and apparent sidereal time. The equation
of the equinoxes is tabulated to o%-001 in A.E., pages 10 to 17, and is incorporated
into the apparent sidereal time on the same pages.

The simplest and most direct method of converting positions from the mean
equinox and the mean equator to the true equinox and the true equator is to add
4y to longitude, since the ecliptic and therefore the latitude is unchanged by
nutation. In converting the ecliptic coordinates to equatorial coordinates the
true obliquity (¢ = ¢, + 4e) must be used. It should, however, be remembered
that coordinates referred to the true equinox cannot be interpolated at intervals
longer than one day. First-order corrections 4da, 48 to right ascension and
declination may be calculated directly from:

da = (cos € + sin € sin a tan 8) 4y — cos a tan § de
456 = sin € cos a A + sin a de

but these are invariably combined with the reduction for precession from the mean
equinox of the beginning of the year by means of day numbers. The method,
as applied to stars, is described in detail in section 5.

Equatorial rectangular coordinates referred to the mean equinox can be
converted to the true equinox by the application of the corrections:

dx = — (y cos e + zsin €) 4y
dy = + xcose Ay — z de
Az = + xsine dY + y de

Second-order terms, which are neglected, can only reach one unit in the eighth
figure. These formulae are used for the Sun and planets (see sections 4B and 4D).
The reduction for nutation can also be combined with that for precession by
pre-multiplying the matrix of coefficients X,, Y, ... by the matrix whose corres-
ponding elements are:

I — Ay cose —Afsin e
+ dis cos € I —de
+ 4y sin € +de I
It is not sufficient merely to add — 4 cos e to Y,, — A sineto Z,, . . . as

second-order terms may be significant.

Differential nutation. For objects within a small area of the sky differential
nutation is always combined with differential precession; see sub-section B and

A.E., Table VI.

Short-period nutation. Corrections for the short-period terms of nutation
may be obtained directly from table 5.2, which is described in section 5D.
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*
The fundamental arguments, corrected for amendment to Brown’s tables, are:

! = 296° 06" 16”-59 + 1325T 198° 50" 56”-79T + 33”-09T2 + 0”-05187%

= 296°-10460 8 + 13°.06499 24465d + 0°-00068 goD? + 0°-00000 0295D3
! = 358° 28" 33”00 + 99f 359° 02’ 59”107 — 0”-547% — 0”-0120T%

= 358°.47583 3 + 0°.98560 02669d — 0°-00001 12D?* — 0-00000 0068D?3
F = 11° 15" 03”20 + 1342T 82° 01’ 30”-54T — 11”-567T2 — 0"-0012T3

= 11°-25088 9 + 13°-22935 04490d — 0°-00024 07D* — 0°-00000 0007D?
D = 350° 44" 14”95 + 1236T 307° 06’ 517-18T — 5”.17T2 + 0”-00687T*

= 350°-73748 6 + 12°-19074 91914d — 0°-00010 76D? + 0°-00000 0039D*
= 259° 10’ 59”79 — 57 134° 08’ 31”7237 + 7”-48T% + 0”-00807T?

= 259°-18327 5 — 0°-05295 39222d + 0°-00015 57D% + 0°-00000 0046D?

where the fundamental epoch is 19oo January od.s E.T. = J.E.D. 241 5020:.0, and

T is measured in Julian centuries of 36525 days,
d is measured in days,

D is measured in units of 10 ooo days.

ARGUMENT LONGITUDE OBLIQUITY
Period Multiple of Coefficient of Coefficient of
(days) l & e 1] 9] sine argument cosine argument
Unit = o0”.0001

6798 +1 —172327 —173-7T +92100 +9-1 T
3399 +2 + 2088 + 02T — 904 +o0-4T
1305 =& +2 +1 +45 —24

1095 +2 =3 + 10
6786 -2 +2 =2 +I - 4 + 2

1616 -2 +2 =2 - 3 + 2
3233 | =1 e

183 +2 —2 42 — 12729 —-1-3T +5522 —29T
365 - + 1261 =32 T

122 +1 +2 —2 +2 — 497 +12T + 216 —06T

365 -1 +2 -2 42 + 214 —0:5.T - 93 +o03T

178 e RS s + 124 +o:x T - 66

206 2 7 +45

173 s —21

183 +2 +16 —o1 T

386 +1 +1 —15 + 8

91 +2 +2 —2 +2 —15 +ox T + 7

347 —1 +1 —10 el

200 —2 SEZE T =5 + 3

347 L o LS -5 i3

212 +2 = s b ¢ =g e

120 +1 42 —2 +I1 + 3 - 2

412 i1 =% =3

*See note on page 523.
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ARGUMENT LONGITUDE OBLIQUITY
Period Multiple of Coefficient of Coefficient of
(days) I R s g Q sine argument cosine argument

Unit = o”-0001

13-7 +2 +2 —2037 —o0-2T +884 —o-5T
27-6 +1 + 675 +o-1T

13-6 +2 +1 — 342 —o0-4T +183

91 +3 +2 tR2 — 261 +3135 =0T
31-8 +1 -2 — 149
271 -1 +2 +2 G — 50

14-8 tE2 + 6o
277 +1 +1I + 58 — 31
274 =T S — a7, + 30

9-6 -1 +2 +27"F2 - 52 + 22

9-1 i +2 5! — 43 +e23

X s S o T e rad ol e !

13-8 +2 28
23:9 g Sl bkt s + 26 - 11

6.9 &2 +2 +12 —= 26 i 01

13-6 +2 At
27-0 = +2 T E = X = T
320 =T o T et =7
31:7 =¥ e 1 § =r1g =

9-5 -1 2, - 9 s
34-8 +1 +1 -2 == i=Rry
13-2 Sl 2 Je 7 =

96 +1 s + 6
14-8 2 CET - 6 ey
142 = E2 - - 6 =03

56 +1 25 k2 k2 == e
12-8 +2 e SEe 0 =52
147 2R — )

71 P s N o ¢ S5 $eg)

23-9 4 & e e 3 ¢ = L] e R |
295 = — = ]
15-4 +1 -2 - 4
29-8 S =] St
269 £ -2 Sh e

6.9 +2 +2 +1 - 4 + 2

9-I 7 =2 + Q
256 +1  +1 - 3

9:4 ChEEREREC T =D +2 = 3
13+7 = SE = 2
32-6 —1 b A i e ~= Sl
13-8 +2 +1 + 2

9-8 -1 -1 +2 42 +2 )

72 e e L a s — 2
27-8 +1 +2 i

8.9 +1 +1 +2 +2 o

55 +3 +2 +2 - 2
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D. ABERRATION

Because the velocity of light is finite, the apparent direction of a moving
celestial object from a moving observer is not the same as the geometric direction
of the object from the observer at the same instant. This displacement of the
apparent position from the geometric position may be attributed in part to the
motion of the object, and in part to the motion of the observer, these motions
being referred to an inertial frame of reference. The former part, independent
of the motion of the observer, may be considered to be a correction for light-time;
the latter part, independent of the motion or distance of the object, is referred to as
stellar aberration, since for the stars the correction for light-time is, of necessity,
ignored. The sum of the two parts is called
planetary aberration since it is applicable to planets P()
and other members of the solar system. iy

Correction for light-time. Let P and E (see
figure 2.3) be the geometric positions of an object
and a stationary observer at time #, and let P’ be the
geometric position of the object at time # — 7, where
7 is the light-time, i.e. the time taken for the light to
travel from the point of emission, in this case P,
to the point of observation, E. Then, since E is
regarded as stationary, the direction EP’ is the A
apparent direction of the object at time ¢, i.e. the /'{'(e-f)
apparent direction at time 7 is the same as the geo-
metric direction of the object at time ¢ — 7.

v
E@ . E.

-

Figure2.3. Planetary aberration

Stellar aberration. The light which is received at the instant of observation
t was emitted, at a previous instant, from the position which the object occupied
at time ¢ — 7 towards the position which the observer was later to occupy at time #;
but when the light reaches the observer it appears to be coming, not from this
actual direction but from its direction relative to the moving observer. Let the
object be considered stationary at P’, the position it occupies at time £ — 7, and let
E be moving in the direction EE, with an instantaneous velocity V. Then,
according to classical theory, the apparent direction of the object is that of the
vector difference of the velocity of light ¢ in the direction P’E and the velocity ¥V in
the direction EE;. The apparent angular displacement is independent of the
distance, but, by definition of the light-time 7, P’E = 7¢ so that if E(E is drawn in
the direction of motion and of magnitude 7V the apparent direction of the object is
E,P’. Thus the apparent direction at time # would be the same as the geometric
direction at time ¢ — 7= were E moving with'a constant rectilinear velocity V, i.e.
if E, were identical with E’, the position of the observer at time £ — 7.

The displacement is toward the apex of the motion of the observer; its
magnitude (460) depends upon the ratio of the velocity of the observer (V) to the
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velocity of light (¢), and is given by the solution of the triangle EP'E,, where 6 is
the angle P’'EE; between the direction of P’ and the direction of motion.
: Vas V sin 0
sin 40 = — sin (0 — 40), or tan 46 = Tt
Expanding in powers of V/c:
¥ . e
40 =?sm9 — %(;) sin 20 + ...

Since V/c is about 0-0001 or 20", the second-order term has a maximum of about
”
0"-001.

The rigorous relativistic theory for stellar aberration gives a different coefficient
for the second-order term, but this effect is too small to be observed and is generally
ignored.

The motion of an observer on the Earth is the resultant of the diurnal rotation
of the Earth, the orbital motion of the Earth about the centre of mass of the solar
system, and the motion of this centre of mass in space. The stellar aberration is
therefore made up of three components which are referred to as the diurnal
aberration, the annual aberration, and the secular aberration. The stars and the
centre of mass of the solar system may each be considered to be in uniform
rectilinear motion; in this case the correction for light-time and the secular
aberration are indistinguishable and the aberrational displacement due to the
relative motion is merely equal to the proper motion of the star multiplied by the
light-time; it is constant for each star, is in general not known, and is ignored.

The term ¢ stellar aberration ” is sometimes loosely used in this Supplement
in contexts where ““ annual aberration *’ should strictly be used.

Annual aberration. In accordance with recommendations of the International
Astronomical Union (Zrans. 1.A.U., 7, 75, 1950; 8, 67 and go, 1954) the annual
aberration is calculated as from 1960 from the actual motion of the Earth, referred
to an inertial frame of reference and to the centre of mass of the solar system. The
resulting aberrational displacement 40 may be resolved into corrections to the
directional coordinates by the standard methods. If, for example, — X', — Y7,
—Z' are the components of the Earth’s velocity parallel to equatorial rectangular
axes, the corrections to right ascension and declination, referred to the same
equator and equinox, in the sense ‘‘ apparent place minus mean place
the first order in V/c:

? are, to

’ ’

cos 0 da = — sin a — — cos a
c c

’ & ’ ’

48 =)§cosasin3 +¥sinasin8 - Z?COSS

These formulae are usually simplified by the use of the aberrational day
numbers C and D (or £, H, 7), discussed in detail in section §5; in this simplification
the assumption is implicitly made that the direction of motion of the Earth lies in
the ecliptic, but the resulting error is negligible. The effect of second-order terms
is included in the expressions for the second-order day numbers J and J'.
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Prior to 1960 it was customary, for computational convenience, to approximate

to the motion of the Earth by taking:
X' = —kesind Y = t+kccosdcose Z' = Y'tane

where £ is the constant of aberration and A is the Sun’s true longitude. In addition
to small periodic terms due to the action of the Moon and planets, this procedure
neglects terms depending on the eccentricity and longitude of perihelion of the
Earth’s orbit (M.N.R.A.S., 110, 467, 1950). These terms, of order about 0”-34,
are constant throughout the year for any particular star, and change very slowly
during the centuries; they are here represented symbolically by E, in the sense of
apparent place minus mean place. It is assumed that the observed apparent places
of stars have in the past been reduced to give catalogue mean places of stars that
already contain the constant part E of the aberrational reduction to apparent place,
and so it is desirable to subtract the effect of E from the aberration calculated from
the actual motion of Earth; this procedure is recommended by the International
Astronomical Union (T'rans. 1.A.U., 7, 75, 1950; 8, 9o, 1954). It can be accom-
plished by applying constant corrections to the components of the Earth’s motion.

The sense in which the E-terms are measured can best be appreciated by using
symbolic notation; let:

A = apparent place; M = true mean place; M, = catalogue mean place;
R = the complete star reduction, including the correction for aberration calcu-

lated from the true motion of the Earth, in the sense apparent — mean;
E = the E-terms of aberration, in the sense here used.

Then: the true mean place M =4 —-R
the catalogue mean place My, = 4 — (R — E) =M + E
Thus the modified star reduction, to be applied to the catalogue mean place to give
the apparent place, is R — E since:
My+(R-E)y=4

In this sense the E-terms are:

in longitude (A)  +ke sec B cos (w — A)

in latitude (B) +ke sin B sin (w — A)

*where & = 20"-47 is the constant of aberration, ¢ = 0:01675 — 0-00004 T is the
eccentricity of the Earth’s orbit, and w = I"' — 180° = 101°-22 + 1°72 T is the
longitude of perihelion of the Earth’s orbit (see section 4B).

For systematic application to right ascension and declination the E-terms are
best expressed in terms of corrections AC = +ke cos w cos €, AD = +ke sinw
to the day numbers C,D, in such a way that the E-terms are:

in right ascension ¢4C + d4D
in declination c'4C + d'dD
Full details of the practical application to the calculation of the day numbers C and D
are given in section 5D, and numerical expressions are given in section 4G. For
bodies in the solar system the E-terms vary, and so the annual aberration is
calculated, implicitly, without modification from the actual motion of the Earth.
The value that is used for ¢ corresponds to the adopted value of 20”47 for the

*207-496 from 1968, corresponding to ¢ = 2-997 925 X 10° m/s.
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constant of aberration, and not to the actual velocity of light. It is equivalent to a
light-time of 040057683 = 498%-38 for unit distance.*

Diurnal aberration. 'The rotation of the Earth on its axis carries the observer
towards the east with a velocity v, p cos ¢, where 9, (0-46 km/sec) is the equatorial
rotational velocity of the surface of the Earth. The corresponding constant of
diurnal aberration is:

v
7" pcosd’ = 0"-320 p cos ¢’ = 05-0213 p cos ¢’

The aberrational displacement may be resolved into corrections (apparent minus
mean) in right ascension and declination:

da = 08-0213 p cos ¢’ cos h sec 8

48 = 0"-320 p cos ¢’ sin £ sin &
where % is the hour angle. The effect is small but is of importance in meridian
observations; for a star at transit 46 is zero, but

da = + 0%-0213 p cos ¢’ sec 6

according as the star is above or below the pole. A correction of this amount is
usually subtracted from the observed time of transit instead of being added to the
right ascension. Values of the correction are tabulated in table 2.6.

Correction for light-time. When a correction for light-time is required, it is
usually combined with that for annual aberration; the combined correction for
planetary aberration is described in the following paragraph. The correction for
light-time alone could be obtained, if desired, by a comparison of the geometric
ephemeris at time ¢ with that derived by combining the geometric position of the
Earth at time ¢ with the geometric position of the object at time ¢ — .

Planetary Aberration. The displacement of the apparent position from the
geometric position at the same instant by planetary aberration may be obtained
from the two independent components due to the instantaneous motion of the
Earth and the motion of the body during the light-time; but the practical methods
that are used give the planetary aberration directly from the geocentric ephemeris,
without explicit separation of the two components. The errors of these methods
may be deduced by comparison with the results of using the heliocentric motions
(strictly barycentric motions, although the maximum errors due to the motion of
the Sun with respect to the centre of mass of the solar system are quite negligible)
of the Earth and the body. Such methods are not generally practicable as the
geocentric distances must be calculated to give the light-time.

Since the E-terms vary for a moving object, such as a planet, annual aberration
must in this case be calculated, without modification, from the actual motion of
the Earth. It may be allowed for exactly by displacing the Earth a distance 7V in
the direction opposite to the Earth’s instantaneous velocity V. If the planet’s
motion in the light-time 7 can be regarded as rectilinear and uniform, the position
of the planet at time ¢ — = may be obtained by a displacement of distance 7o in the
direction opposite to the planet’s instantaneous velocity .

*0%.005 7756 = 499°%-012 from 1968.
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85 oo 24 24 23 21 20 19 17 16 15 14 14 13 12
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This correction is to be subtracted from the observed time of transit for transits above
pole, and added to the time of transit for transits below pole.
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Thus the practical determination of planetary aberration may be based on
either of the two principles:

(1) To the order of accuracy that the motion of the object during the light-
time is rectilinear and uniform, the planetary aberration depends upon the
instantaneous velocity of the observer relative to the object at the time of obser-
vation in exactly the same way as stellar aberration depends upon the instantaneous
total velocity of the observer.

(2) To the order of accuracy that the motion of the Earth during the light-
time is rectilinear and uniform, the directly observed apparent position at time
t is the same as the geometric position that the object occupied at time ¢z — 7
relative to the position that the Earth occupied at time # — 7.

From (1) it follows that the apparent position at time ¢ may be determined by
applying to the geometric position at ¢ a correction consisting of the light-time
multiplied by the instantaneous velocity of the Earth relative to the object; since
this relative motion is the negative of the geocentric motion of the object, the
correction to the geometric value of any geocentric coordinate g is —7 dg/dt where
the instantaneous rate of change dg/dt is obtained by numerical differentiation of
the geometric ephemeris. Thus:

Apparent position = geometric position — = (rate of change)
= geometric position — 0-0057683 4 (daily motion)*

The departure from rectilinear and uniform motion gives rise to errors of order
0"-001 4/a* where a is the mean distance of the planet; this may reach o”-o1 for
Mercury but does not exceed 0”-oo1 for the outer planets; second-order terms may
reach 0”-001 or 0”-002 and are neglected.

Alternatively from (2) it follows that, if the light-time is not too great, the
apparent position at time # may be obtained by interpolating the geometric
ephemeris to time £ — 7; or, conversely, from an observed position, the geometric
position at the preceding instant when light left the object is immediately
obtained by ante-dating the time ¢ of observation to¢ — 7. The error is generally
larger than in using (1) and, for the outer planets, may reach 0”-0oo1 4. Corrections
for the effect of curvature of the Earth’s orbit may be applied if high precision is
required; but no formulae for these are given here.

Strictly, the light-time corresponds to the distance from the position of the
Earth at time ¢ to the position of the body at time # — 7; but, as far as the planets
are concerned, the maximum error arising from using the geocentric distance at
time ¢ for calculating the light-time is only 0”-00035.

Illustrations of the application of corrections for planetary aberration are given
in sections 4B and 4D.

Differential ~ aberration. The differential coordinates of a moving
object with respect to a fixed star will be affected by differential aberration;
if da, 48 are the observed differences of the coordinates in the sense

*0.005 7756 from 1968.
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The corrections for differential aberration to be added to the observed differences

(in the sense moving object minus star) of right ascension and declination to give the true
differences are:

— : 45 . :
in right ascension a da + b o n units of o%-001

; e A0 ;
in declination cda +d o in units of 0”-01

where da, 48 are the observed differences in units of 1™ and 1’ respectively and where
a, b, ¢, d are the coefficients defined by:

a= —ts10%sin 1™ hcos (H + a)secd b = — 75 10*sin 1’ A sin (H + a) sec 8 tan §

¢ = + 10%sin 1™ A sin (H + a) sin d = — 10%3sin 1’ h cos (H + a) cos &

in which a constant value of 19”-6 is used for 2. 'The values of these coefficients are tabulated
without signs on the opposite page with main arguments H + a, for the first quadrant only,
and 9§, also without a sign; an auxiliary argument for the second quadrant is also given on
the extreme right-hand side. Interpolation in this table is, in general, unnecessary. The
day number H is obtained from the critical table below; this table may be used unchanged
for all years. 'The signs of a, b, ¢, d, which depend on the quadrant of H + a and the sign
of the declination, and the argument in the first quadrant corresponding to the actual value
of H + a are taken from the second table below; the auxiliary argument is also indicated in
the second and fourth quadrants.

Date H Pate sl Date —H Date H DPate ol
Dec. 26 " Mar. 11 8h May 23 " Aug. 14 Sh Oct. 25 "
Jan. 3235 17 18.5 31 135 22 8‘5 Nov. 2 35

£ 23 a1 Fine o0 P ¢ 38
xg D 31 175 17 125 Sept. 6 75 7 25
26 22 Ao IZ-O 26 12°° s Z-o e
Feb. 323 . S | A 205 e ot S
21-0 16-0 11-0 6-0 10
10 . 13 27 0
17 ZZ:i 29 is'; 21 195 Oct. 4 53 18 o-z
25 2 May 5 29 19°° i 3° o
Mar. 419 15 W5 . o ang -6 %5 P TR S
19-0 14-0 9-0 40
1x 23 14 25

In critical cases ascend

Signs of a, b, ¢, d Tabular arguments to be used
Positive & Negative &
H+a H+ a H + a Argument Argument
- a b..c.-d i T e B on the left on the right
o o o
e g o= 6 H+a
- EER o S ER s 12 — (H + a) H + a
e el O el Bl e S R e g
24 e 24 Sy et 24 24" — (H +a) (H + a) — 122
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moving object minus star, then the corrections for differential aberration are:
in right ascension

— hcos (H + a)secd da — hsin (H + a) sec 8 tan & 48
in declination

+ hsin (H + a)sin 8 da — h cos (H + a) cos § 48

in which a small term Z sin 8 45 has been omitted from the correction in declination;
this may reach o”-02 near the pole for 46 = 10"; h, H, 7 are the independent day
numbers defined in section 5D.

To the precision required, these corrections may be regarded as independent
of the year or of the equinox required, and may be tabulated as functions of
position and date. Permanent tables of this kind are given in A.E., Table V,
and in table 2.7 of this Supplement; in these tables the coefficients of da, 48 in
the above equations are tabulated using a mean value of 19”-6 for 4.

The corrections should be applied with those for differential precession and
nutation (see sub-section B) to give mean positions referred to the same equinox
as those of the stars.

Astrometric positions. An astrometric position is obtained by adding the
planetary aberration to the geometric ephemeris and then subtracting stellar
aberration from which the E-terms have been omitted. The astrometric ephemeris
is therefore rigorously comparable with observations that are referred to catalogue
mean places of comparison stars, it being only necessary to correct the observations
for geocentric parallax. Such positions are discussed in more detail in section 4D.

E. REFRACTION

In the Ephemeris atmospheric refraction enters into only a very few topocentric
phenomena, such as the times of rising and setting of the Sun and Moon, and, in
theory though neglected in practice, the local predictions of eclipses. Consequently
all explanations of the theory, and of the practical calculation and application of
numerical tables, are omitted; they are adequately covered in the references
given at the end of this sub-section.

Rising and setting phenomena. As described in section 13 a constant of 34’ is
used for the horizontal refraction in the calculation of the times of rising and
setting: that is, the zenith distance of the object (upper limb of the Sun or Moon)

is 9o° 34’

Eclipses and occultations. Owing to refraction and parallax the geometric
direction from an object M outside the Earth’s atmosphere to an observer at P is
not the same as the initial direction of the ray of light from M to P; the difference
is only significant for an object as close as the Moon, and then only at low altitudes.
Thus the condition that two objects M and S shall appear to be coincident to an
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observer at P on the Earth’s surface is not precisely the condition that the geomet-
rical direction PMS is a straight line. Let
% — R be the apparent zenith distance at P, R
being the refraction; then the precise condition
is that the geometric direction P’MS is a straight
line, where P’ is the point vertically above P
at which the true zenith distance is 2z (see
figure 2.4). The height (%) of P’ above P can
be calculated from the formula given below;
it is independent of the distances of M and S.
Full allowance can therefore be made for
refraction by treating the observer as though he _ : A
were at P’, instead of at P, that is by increasing Fgwre 2y, Rervacion
the height of the observer above the spheroid
by A.
It can be shown (Chauvenet, Vol. 1, page 516) that, for a spherical atmosphere:

T h_ o sm‘(z — R)
p sin 2

where p is the (geocentric) radius and p, the index of refraction of the atmosphere
at P. To the order of accuracy required the correction can be made either by
increasing the height above sea level by %, or by multiplying the geocentric
rectangular coordinates ¢, 7, { of the observer by 1 + k/p. Values of % in metres
and of 1 + %/p, based on mean values of the quantities concerned, are given for a
point at sea level in the following table. It will be seen that the corrections are
only significant for altitudes less than about 10°, when, however, the refraction
may differ considerably from its mean value.

z h I+ - 2 h 1+ h

P P
o o 1-000000 82 100 1-000016
30 o I1-000000 84 170 1-000026
6o 5 I1-000001 86 290 1-000046
70 20 1-000003 88 610 1-000095
i35 30 1-000005 89 940 1-000148
805 50 I1-000011 90 1540 1-000242

Artificial satellites. Referring to figure 2.4 it will be seen that the refraction
correction applicable to the observation of a close object is not R but R — r where
r is the angle P'MP. For objects only a few hundred kilometres above the Earth’s
surface 7 can be of the order of a minute of arc, and must be allowed for in the
reduction of precise observations.

Corrections to right ascension and declination. Refraction affects the observed
zenith distance. If an object is observed on the meridian the refraction is a direct
correction to the observed declination, and the deduced right ascension is unaffected.
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If o', &' are the observed right ascension and declination of an object not on the
meridian, the corrections required to give the true values a, 8§ are, to first order:

a —a = — Rsecéd'sin C
0 —8 = —RcosC

where R is the refraction and C is the parallactic angle, i.e. the angle at the object
in the spherical triangle polg-object-zenith.

Such formulae are rarely used since most observations made out of the meridian
are made differentially. The differential refraction of two objects may be calculated
directly from the difference between the refractions appropriate to the two altitudes;
and this may be resolved into differences of right ascension and declination. Itis
more usual, however, to consider such corrections as linear over the small area
covered by a photographic plate and to allow for them by means of the plate
constants determined from the coordinates of the standard stars.
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F. PARALLAX

Introduction

The positions in which the Sun, Moon, and planets are actually observed
differ from the geocentric positions tabulated in the Ephemeris by the amount of
parallax due to the displacement of the observer from the centre of the Earth.
Before comparison with theory, it is thus necessary to correct an observed, or
topocentric place, by applying parallax so as to reduce it to a geocentric place.
For the Sun and planets the corrections are small and may be treated as first-order
quantities whose squares can be neglected. For the Moon the parallax is
sufficiently large to require third-order terms in the general expression for the
corrections; and it is better to use exact formulae. For artificial satellites of the
Earth the parallax may be so large that exact formulae, based on the actual position
of the observer relative to the centre of the Earth, must be used.

The geocentric positions of stars are similarly affected by the annual parallax
due to the displacement of the Earth from the centre of the Sun. In this case it
is usual to include the parallax in the ephemeris position, so that it is directly
comparable with the observed position.

Details of the corrections and the method of calculation follow.

The figure of the Earth

In calculating parallax corrections, the dimensions of the Earth are usually
taken to be those of Hayford’s spheroid (see section 6).* This is defined by the
equatorial radius (a) and the flattening (f), for which an exact value of 1/297 is
adopted. The adopted value for a is 6378-388 km, from which the polar radius
b =a (1 — f)is derived as 6356-912 km. Otherwise the notation used is:

¢ = geographic (or geodetic) latitude ¢’ = geocentric latitude

p = geocentric distance, i.e. the distance of the observer from the centre of
the Earth, in units of the Earth’s equatorial radius.

The latitude ¢ is variously referred to as the geographic latitude, or the
geodetic latitude; on the spheroid the two are identical, but on the actual Earth
they differ on account of gravity anomalies. No significance is to be attached in
this Supplement to the use of one term or the other. {

The position of an observer relative to the centre of the Earth is most readily
expressed in rectangular coordinates; in the meridian section of the Earth through
the observer these are:

psin¢’ = Ssin ¢ pcos ¢’ = C cos ¢
which serve to define the auxiliary functions S and C. It should be noted that:

tang’ = Ztang = (1 - /) tan g

(1 —fRC  C ={cos’ + (1 — f)?sin®$}
3 (S + C?) + §(C? — S%) cos 2¢

C?{cos?¢ + (1 — f)*sin2 ¢ }

*From 1968: f = 1/298-25, a = 6378 16om, b = 6356 775 m

whence S
and p?

tThe difference is however significant for some applications.
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The following expressions, which contain terms up to f3, may then be derived for
S, C, p, and ¢ — ¢’ in terms of the geographic latitude (¢) and the flattening ( f);
they assume that the observer is at sea level.
S =1 =3 + S + el = (f — 4f* = $af?) cos 24
+ (3%6/* — 5% /?) cos 4¢ — §g f* cos 64
C =1+ 4f + 5 f* +3f — (f + 4f* + §1f%) cos 2
+ (F5 /2 + g2 /) cos 4 — g1 f* cos 68
p=1 =1/ + S + 58S + (1 — b3S cos 24
— (%6 f* + ¥ /%) cos 4 + &1/ cos 64
b= ¢ = (f+1f)sinzg = (1 + 1) sin 4p + §f*sin 64
Inserting the adopted numerical value of f = 1/297 leads to the following series:
S = 0:99495 304 — 0-00167 783 cos 2¢ + 0-00000 212 cOs 4¢
C = 1-00168 705 — 0:00168 919 COS 2¢p + 0-00000 214 COS 4¢
P

= 0:99832 005 + 0:00168 349 cos 2¢p — 0-00000 355 COS 4¢
+ 0:00000 001 cos 6¢
¢ — ¢ = 695”-66 sin 2¢ — 1”-17 sin 4¢
Values of S and C, calculated from the first two of these series, are tabulated
in A.E., Table VII; they may also be found together with p and ¢ — ¢’ in table 2.8
of this Supplement.* A correction for the height of the observer above sea level is
necessary for the calculation of his actual coordinates p sin ¢" and p cos ¢’. To an
adequate approximation the geocentric radius is increased by 0-1568 4 or 0-0478 H x
10~% and the angle of the vertical § — ¢’ is unchanged, where % is the height above
sea level in metres and H is the height in feet. The addition of this correction
leads to the expressions:
psin ¢’ = (S + 015684 x 10°%) sin ¢ = (S + 00478 H x 107%) sin ¢
pcosd’ = (C + 0-1568% x 10°%) cos d = (C + 0-0478 H x 107%) cos ¢
tan ¢’ = (0-9932773 + 0-0011 2 x 107°) tan ¢
= (0-9932773 + 0-0003 H x 107) tan ¢
Values of these three quantities are given for the principal observatories in
the list of observatories in the Ephemeris.

Example 2.1. Geocentric coordinates of Washington

The geographic coordinates of a point at U.S. Naval Observatory, Washington, D.C.,
are A = +5" o8m 15875, ¢ = +38° 55" 12”3, and height = 8sm.

SN sin cos tan
¢ + 38 55 12:3 +0-62823 58 +0-77802 30 +0-80747 72
2¢ 77 50 25 +0-97756 +0-21064
49 155 41 +0-412 —0-9I1
From the series:
S 0:99459 77 p 0-99867 8
C 1-00132 93 ¢ — ¢ 11" 19”6

It may be confirmed that (to the accuracy of the table) the same values are obtained by
interpolation in table 2.8 to ¢ = 38°-920.
For a height of 85m a correction of 13:3 x 10-® must be applied to .S and C, before
forming p sin ¢’ and p cos ¢’, and to p. Thus:
psin ¢’ +0:62485 o p ©0-99869 1
p cos ¢’ +0-77906 8 ¢ +38° 43" 52”7
The correction for height to ¢ — ¢’ is here negligible.

*The coefficients and table given here are for the Hayford spheroid in use before 1968.
See note on page 515.

I ————
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The above table enables rectangular and polar geocentric coordinates to be calculated
for an observer in geographic (geodetic) latitude ¢, from the formulae:
psin ¢’ = (S +0-1568k x 107%) sin ¢ = (S +o0-0478 H x 107%) sin ¢
pcosd’ = (C +0-1568k x 107%) cos ¢ = (C +0-0478 H x 107%) cos ¢ ;
where, & (H) is the height of the observer above the surface of the Earth in metres (feet).

For reasonable heights, 0-1568% X 10-% or 0:0478H x 107® can be added to p, and ¢ — &
can be used unchanged.
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Parallax of the Moon

The topocentric hour angle (%), declination (8), and distance (7) of the centre of
the Moon are related to the geocentric coordinates (%, 8y, 7,) by the exact equations:

F cos & sin & = cos §, sin =4
F cos 6 cos h = cos 8, cos by — p cos ¢’ sinm = B
Fsin 8 =810/ d;, —psin ¢'sinw = C

where F' = r/r,, = is the geocentric equatorial horizontal parallax of the centre of
the Moon, and p, ¢ are the geocentric coordinates of the observer. -

If the ephemeris position is known 4, B, C can be calculated numerically;

then:

F2 = 42 + B2 4+ C?
tank = A/B sin h = A/(4% + B2 cos h = BJ(A? + B%?
tan8 = C[(4* + B2} suird = IC/F cos & = (A% + B2}/F

Some simplification of this calculation can be achieved by rounding 8, and %,
to avoid interpolation in the trigonometric tables; if the values actually used are
8; and Ay, giving rise to 8’ and A/, then:

& =08 + (8 — &) h=h + (hy — hy) F =g
with errors not exceeding 1/60 of the *“ roundings .

The reverse problem of deducing the geocentric position from the observed
coordinates is less readily solved. The equations take the form:

G cos 6, sin hy = cos 8 sin & = A,
G cos 8, cos by = cos 8 cos & + G p cos ¢’ sin 7 = B,
G sin §, = sin 6 + Gpsing' sinm = C,

where G =%, /r' = 1/F.

These equations may be solved in precisely the same manner if 7 is known,
possibly by observation, and 7, is deduced from the ephemeris, to provide a
sufficiently accurate value of G to substitute on the right-hand side of the equations.

The general solution, in which %, & are observed and = is known (from the

ephemeris), is as follows. Let:
g =pcose’ cosdcosh + psin ¢’ sin o
and substitute:
Go=1+gsinm + % (1 + g sin®n

for G on the right-hand side of the equations. The adequacy of this approximation
for G, and the accuracy of the calculation, is checked by comparison with the
value of G determined from (43 + B} + C3):.  Alternatively G, is taken as unity,
G, is formed from (42 + BE + C3)? and used instead of G, to form G,, and the
process continued until G is known with sufficient accuracy. Two such approxi-
mations generally suffice.

The topocentric distance of the Moon is F times the geocentric distance, 'so

that the apparent semi-diameter is greater than the tabulated value, the augmen-
tation being 1/F = G.

The formulae may be expressed in alternative forms to give directly the effect
of parallax on the coordinates. If da = ay — a, 46 = 8, — & are the corrections
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to be applied to the topocentric position to give the geocentric position, then, in
terms of the geocentric position:

p cos ¢’ sin 7 sin A,
cos 8, — p cos ¢’ sin 7 cos A,

tan (b — hy) = tan da =

p sin ¢’ sin 7 (cos 8, — m sin &)
I — psin ¢’ sin 7 (m cos 8, + sin §,)
,cos 3 (h + hy)

cos % (& — hy)
= cot ¢’ { cos by — sin hytan ¥ (B — hy) }

There are no simple corresponding expressions in terms of the topocentric position.

tan 48

l

where m = cot ¢

Example 2.2. Parallax of the Moon at Washington
1960 March 13 at 3 17m 48%.0 U.T.

For the purpose of this example, the time of observation is taken to be exactly
equivalent to 31 18m 248.0 E.T.; the coordinates of Washington are taken from example 2.1.

The geocentric coordinates of the Moon are obtained by interpolation in the Ephemeris

as:
ap 11 22m 168-16 80 +3°35 24”4 57 21771
The geocentric hour angle is then calculated as follows:
h m s
S.T. at ot (4.E., page 11) 11 22 30-237
U.T. of observation 3 17 48-000
Increment (4.E., Table IX) + 32-493
=A — 508 15-75
—ag —11 22 16-16
Sum = h, 22 10 18-82
Then

sin 8, +0-06261 83

sin hy —o0-46053 42
cos 8y +0-99803 76

cos hy +0-88764 20

A —0-45963 o4 i
B +0-87290 13

0-98789 72
tan 2 —o0-52655 48

sin 7 +0-01668 51
p sin ¢’ sinm +o-01042 57
p cos ¢’ sin m +0-01299 88

h 220 o8m 558.38

C +0-05219 26 sin 8 +0-05283 20 8 + 3°o01’ 42”5

If Ay = 221 10™ 108 and 85 = +3° 35’ 20” had been used, no interpolation would have
been required in the trigonometric tables, and 4’, 8’ would have been obtained as:
h' = 220 o8m 558.56 givingh — hy = ay —a = — 1M 235.44
8 = + 3°o01’ 38”0 giving 8 — 8 = — 33" 42”0
For the alternative method five-figure tables and working suffice for a precision of 0”1
using kg, 83 as above, to avoid interpolation :
psin ¢’ sin m +0-01042 57 sin 8; +0-06260
p cos ¢’ sin m +0-01299 88 cos 8, +0-99804
tan (b — hg) = ~——+§;§2‘5’§ e
m = 0-88625 cot ¢’ = 1-10499
where tan 3 (2 — hy) is taken as one-half of tan (A — hy)
_ +0:00968 41

sin hy —o-46052
cos h, +0-88765

—0-00606 81

tan (8, — ) = W = +0-00980 32
whence h — hy = —ohor™ 23844/ e
8 — 8 = —0°33 42”0 f< )
[ wweone
\.

\;. .:‘ ?
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The reverse process, assuming the observed position and horizontal parallax to be:
a 111 23™M 308-60 8 +3° o1’ 42”5 R L
is as follows:

h —1" 51™ 045-62 S +3° o1’ 42”5

sin & —o0-46591 18 sin 6 +0-05283 22

cos h +0-88483 12 cos & +0-99860 34

sin 7 0-01668 51 psin ¢’ sin 7 +0-01042 57

sin? 7  0-00027 84 p cos ¢’ sin w +0-01299 88
'The solution of the equations is commenced with:

g = +o0-7214 Gy, = 1-012248

Then A, —0-46526 11 By, +0-89675 35 Cy +0-06338 56
from which G = 1-01225 12. With this value of G, no change occurs in 4,, By, or C,. Hence:

tan A, —o-51882 83 hy — 1M 49™ 418-17

sin 8, +0-06261 84 8 +3°35" 24”4

When the Moon is at transit # = ky = o, and the parallax applies to the
declination only. The correction 46 to be applied to the topocentric declination
at transit to give the geocentric value is given by:

_ psinasin (¢" — &)
P 1 — psin 7 cos(d’ — &)
or, by using the observed declination and geocentric latitude of the observatory,
through the equivalent expression:
sin 48 = p sin 7 sin (¢’ — )

This may be put in the approximate form:

48 = 0-999988 p = sin (¢’ — )
with an error not exceeding 0”-04.

Example 2.3. Parallax of the Moon at transit at Washington

On 1960 August 7 the observed declination at transit is assumed to be —14° 19" 57”-6.
The U.T. of the observation is 5" 16m 48%.88 and this is assumed to be equivalent to

sh 17m 258 E'T. The coordinates of Washington are assumed to be those of example 2.1.
From the Ephemeris:

8. —13° 31" 32" 7 60’ 40”-85
O = O P2 N5 s p ©-99869
sin (¢’ — 8,) +0-79076 sin 7 0-01765 04
cos (¢’ — §,) +o-61212 p sin 7 0-01762 73
tan 48 = I—Z:%? = 40-01409 10 48 +0° 48" 26”3
From the observation:
¢ —38 53°03 50”3 sin 48 +0-01408 97
sin (¢’ — 8) +0-79931 48 +0° 48" 26"-3

From the approximate formula:

48 = 0:99998 8 x 0:99869 x 0:79931 X 3640”-85
= 2006%-37="068 48%26":3

The most important use of parallax corrections in the above form, when the
Moon is not on the meridian, is in the reduction of observations made with the
Markowitz dual-rate Moon camera. In the calculation of eclipses and the
reduction of occultations the methods used, involving Besselian elements, do not
require parallax corrections in the above form.
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Parallax of the Sun and planets
For the more distant bodies such as the Sun, the planets, or comets, whose
parallax amounts to only a few seconds of arc, the above formulae may be greatly
simplified. It is sufficient to restrict the expressions to terms of the first order;
expressed as corrections to be applied to the observed positions they are:
da = 7 { p cos ¢ sin h sec 6 }
48 = 7 { psin ¢’ cos & — p cos ¢’ cos & sin S }
where ., 6 may be replaced by 4, §,.
When the horizontal parallax of the object is not available, it may be calculated
*from 7 = 8”-80/4 where 4 is the geocentric distance. In preliminary work on
comets and minor planets, where the geocentric distance is unknown, it is con-
venient to calculate parallax factors p, and p, for each observation; these may
then be used, once the geocentric distances are determined, to give the parallax
corrections in the form:
da = p,/4 45 = ps/d
The parallax factors are calculated from:
p. = 8”-80 p cos ¢ sin h sec & = 08587 p cos ¢’ sin & sec &
Ps = 8"-80 (p sin ¢’ cos 6 — p cos ¢’ cos A sin 8)
The hour angle % is found from 2 = 6 — a where 0 is the local sidereal time at
universal time #, given by:
0= S.T.at o U/T. k=X
where S.T. at o? U.T. is obtained from A.E., pages 10—17T, t* is the sidereal
equivalent of #, and A is the longitude, measured positively to the west. Since ¢
is usually given in decimals of a day, #* is most readily determined from table 17.3.
Example 2.4. Parallax factors for a minor planet
Observation of Vesta 1960 March 7% o2 34™ 218 U.T. at Johannesburg
t = o%.10719 a 17h 57m 218.50 3 —18°43" 31”3

Sidereal time at o® U.T. (4.E., p. 11) 13 58n-‘8

t* (from table 17.3) 2 34-8

Correction for longitude, —A + 1 52:3

Local sidereal time, 6 15 25-9

Right ascension, a 17 574

Local hour angle, 4 = 6 — a 21 285
sin 8 —o-3210 sin 2 —o0-6139 p sin ¢’ —0-43867
cos 8 +0-9471 cos h +0-7894 p cos ¢’ +0-89824

sec 8 +1-0559
Pa —0°:342 ps —17:68

For a fixed observatory parallax corrections may be further simplified by
forming two permanent tables. The first of these is similar to table 17.3 but gives
t* — X directly in the first part of the table. The second table gives the coefficients
4, B, C in the expressions:

D= Asinh ps =B — Ccosh
where*4 = 8”80 p cos ¢’ sec 8 = 0%-587 p cos ¢’ sec &
‘ B = 8"-80 p sin ¢’ cos &
: C = 8"-80 p cos ¢’ sin &
*8".794 = 0°-5863 from 1968.

tPages 12 to 19 in A.E. 1972 onwards.
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Thus for Copenhagen (A = — ot 50om.3, psing’ = +0-82231, pcos¢’ = +0-56501)
the two tables start as follows:

t t*—A ) A B @
d h m o s ” ”
0-00 0 503 +o0 +0-331 +7-24 +o0-00
-0X 1 047 I 332 7:24 -09
-02 119-2 2 -332 7:23 17
-03 1336 3 -332 7-23 -26
-04 1481 4 -332 7-22 -35
0-05 2 025 5 +0-333 721 +0-43
-06 2 169 6 333 7-20 52
07 2314 7 "334 7:18 -61
‘08 2458 8 -335 7:17 -69
‘09 3003 9 -336 7:15 78

Thenk = S.T.atod UT. + (% — A) — a

An alternative method of correction when the geocentric distance is not
accurately known, is to modify the solar coordinates X, Y, Z so as to refer them to
the point of observation. These topocentric corrections are:

A4X = — apcos¢’' cos = A, cos b
4Y = —apcos¢’ sin § = A, sin 8
AZ = — apsin ¢ =4

* where a is the Earth’s equatorial radius in astronomical units = 426-64 X 1077,
and 0 is the local sidereal time. The factors 4., and 4, are given for each obser-
vatory in the last two columns of the list of observatories in the Ephemeris.

Example 2.5. Parallax factors for a minor planet (continued)
Using the data of example 2.4:
Axy = —383 x 1077 sin § = —0-7823 A4X +239 x 1077
A =*+a87 % a0-? cos 8 = —o-6229 AY +300 x 1077
4Z +187 x 1077
When the horizontal parallax is small, S and C may often be taken as unity

leading to a simplification of the formulae; this will not be applied to a fixed
observatory.

Annual parallax
If 7 is the annual parallax of a star, and X, Y, Z are the solar coordinates, the
star is displaced from its mean place a, 6 by amounts 4a, 45 given by:
cos 8 da = 7 (Y cos a — X sin a)
45 = 7 (Z cos 6 — X cosasind — Y sin a sin 8)

These expressions may be simplified by using the star constants ¢, d, ¢’, d’' (see
section 5):

da =7 (Ye — Xd)
48 = 7 (Y — Xd')
Thus, corrections for annual parallax may be included with the aberration terms
of the reduction from mean to apparent place, as follows:
doa = (C + 7Y)e + (D — nX)d
48 = (C + 7Y)' + (D — nX)d'

*a = 426-35 x 107 a.u. from 1968.
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When the annual parallax is small enough, a further simplification can be made by
writing the expressions in the form:

da=C(c+dak) +D(d—cnk,)

48 =C (' +d' nk) + D(d —c" mky)
where k;, = R sec €[k, k, = R cos €[k, in which R is the Sun’s radius vector and & is *
the aberration constant = 20”-47. The variation in R throughout the year amounts
to 1/60 of the mean value, so for a small parallax R may be taken as unity. The
method uses, in effect, modified values of the star constants, and is particularly
valuable in the routine calculation of an ephemeris. The maximum error in the
case of a Centauri is 0”-013.

Example 5.4 illustrates the application of this correction.

It should be noted that, in the above formulae, the corrections for annual
parallax are, contrary to normal practice, given in the sense of (observed —
tabulated); they are included in the apparent places of the stars which are directly
comparable with observation.

*20”-496 from 1968.




3. SYSTEMS OF TIME MEASUREMENT
A. INTRODUCTION

The systems of time measurement in use in present-day (post 1960) astronomy
are a development of those in use before the variable rotation of the Earth was
recognised. A complete appreciation thus requires a full understanding of the
earlier concepts. However, consideration of both systems together is necessarily
complicated, and it is desirable to have a general understanding of present-day
systems before considering how they have been developed.

In this introductory sub-section there is given a general description of the
systems of time measurement in use in astronomy from 1960 onwards. Detailed
developments are given in subsequent sub-sections.

A fundamental necessity of any system of time measurement is a one-to-one
relationship between the adopted numerical expression, or measure, of the time
(usually in the conventional form of years, months, days, hours, minutes, seconds,
and decimals of seconds) and some observable physical phenomenon that is either
repetitive and countable, or continuous and measurable, or both. The phenomenon
and the precise form of relationship are chosen so that the resulting time-system
satisfies some particular requirement; the relationship may be simple and regular,
as in a direct count of oscillations, or complex and irregular, as in the motion of the
Moon. In all systems there is an additional practical requirement that the time
should be free from short-period irregularities to permit interpolation and extra-
polation by man-made clocks.

In astronomy there are three such particular requirements, each closely related
to some natural observable motion and each leading to a different system of time
measurement. The natural motions and the resulting time-systems are:

(i) The alternation of day and night, or the diurnal motion of the Sun:
Universal Time.

(ii) The period of rotation of the Earth, or the diurnal motions of the stars:
Sidereal Time.

(iii) The orbital motions of the Earth, Moon, and planets in the solar system:
Ephemeris Time.

Both here and in the following sub-sections, to allow a more logical development,
the three time-systems are considered in the reverse order to that above. It is
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emphasised that many complicated details, that do not affect the broad principles,
are omitted in this sub-section.

Ephemeris time is theoretically uniform, since the length of the ephemeris
second is fixed by definition. The relationship through which ephemeris time is
determined in practice is that it is the independent time-argument of the ephemer-
ides of the Sun, Moon, and planets. These ephemerides are thus to be computed
in such a way that the ephemeris time determined from them is in accord with its
theoretical definition. But, in particular, an observationally-determined value is
used for the coefficient of the secular term in the mean longitude of the Moon.
Ephemeris time determined from this relationship will depart from the theoretical
uniform time in so far as the theory of the motions is inadequate, and the observa-
tionally-determined values are erroneous; the possible departure through these
causes 1s small, of the order of two or three seconds in a century.

Stidereal time is directly related to the rotation of the Earth; equal intervals of
angular motion correspond to equal intervals of sidereal time.

There isa fundamental difference between the two systems of time measurement :
sidereal time reflects the actual rotation of the Earth; ephemeris time is defined to be
uniform and is, in practice, determined through the motion of the Moon in its orbit
roundthe Earth. Itisthusnotpossibletoexpressonesystem intermsof the other; the

relationbetween them mustbe determined empirically. Ififact;theéspeedofrotationof
theEarthisknowntobe subjectto unpredictable variationsin terms of ephemeristime]

The diurnal motion of the Sun involves both the diurnal rotation of the
Earth, related to sidereal time, and the motion of the Earth in its orbit round the
Sun, related to ephemeris time. Although it would be possible to define a system
of time measurement by means of a relationship to the hour angle of the Sun,
this system could never be related precisely to sidereal time and could not, therefore,
be determined by observations of star transits.

Universal time, for this reason, is directly related to sidereal time by means of a
numerical formula; it contains no reference to ephemeris time and is not precisely
related to the hour angle of the Sun. Although it is continuous with universal
time as practically determined in the past, it is only since the variable rate of
rotation of the Earth was recognised that it has been realised that universal time
is not a precise measure of mean solar time as generally understood; it is related to
the hour angle of a point moving with the mean speed of the Sun in its orbit by
means of an empirical correction, which must be determined by observation.

Universal time and sidereal time are rigorously related in such a way that an
expression of time in one system can be converted, by means of the numerical
formula, to an equivalent expression of time in the other. A knowledge of one is
equivalent to a knowledge of the other. The two systems of time measurement
are not independent and the use of one instead of the other is purely a matter of
convenience: sidereal time is the more convenient for observations of star transits;
universal time is the more convenient for many other purposes.

Uniform time and the laws of motion
The astronomical reference systems of position and time are established
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empirically, by observations of the apparent motions that define them; but these
apparent motions reflect actual motions of the Earth and the other celestial bodies,
and consequently the reference systems can be constructed on an exact dynamical
foundation by means of the gravitational theories of the motions in the solar system.
In particular, the measurement of time may be based upon the primary standard
that is implicitly defined by the dynamical laws of motion. A clear understanding
of the astronomical measurement of time on this basis requires two cardinal
principles to be kept in mind:

(a) In astronomy, we are concerned, not with defining time, but only with
measuring it. To define a measure of time, it is not necessary to know the ultimate
nature of time; we need only devise practicable means for realising a unit of time
and for comparing any interval of time with this unit.

(b) A measure of time, like any physical measure, is entirely conventional. Any
particular measure may be adopted on the basis of its relative advantages for the
specific purposes at hand; no restriction to a unique measure is imposed by
physical principles, and no ultimate standard of reference is physically attainable.

For astronomical purposes, the most advantageous fundamental standard for
the effective correlation and systematic representation of observed phenomena in
terms of the measure of time is the independent variable of the accepted dynamical
equations of motion. This measure of time may be characterized as the measure
in which observed motions agree with the dynamical theories constructed from the
laws of motion; in effect, it is therefore defined by these laws. In the terminology
of the traditional formulation of the foundations of dynamics in terms of intuitive
concepts, this independent variable is ““ uniform time *’, measured in the invariable
unit which, by the law of inertia, would be determined by successive equal rectilinear
displacements of a particle moving under no forces. From the preceding principles,
however, it follows that a uniform measure necessarily is uniform only by definition.
No absolute standard of comparison is accessible, but this is immaterial; an
accessible standard that does not lead to any contradiction between theory and
observation is all that is required.

The measure of time defined by the laws of motion is not immediately
accessible, but the dynamical theory of an observable motion provides a means of
obtaining it from the empirical measure determined directly by this motion.
Abstractly, uniform time is by definition the independent variable of the equations
of motion, inclusive of effects required by relativity; operationally, a uniform
measure of time is a measure in terms of which the observed motions of celestial
bodies are in agreement with rigorous dynamical theories of these motions.

For designating a measure of time that is defined by the laws of dynamics,
ephemeris time has been introduced. It is uniform in the sense that the length of
the ephemeris second is defined to be a constant. The dynamical theories of the
motions of celestial bodies are developed, in accordance with the fundamental laws
of motion, so that the independent variable is ephemeris time as so defined.
Beginning with 1960 the designation ‘“ Ephemeris Time ” is used for the tabular
argument in the fundamental ephemerides of the Sun, Moon, and planets.
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B. ASTRONOMICAL MEASURES OF TIME AND RELATED CONCEPTS

1. Ephemeris time
Ephemeris time is a uniform measure of time depending for its determination
on the laws of dynamics. It is the independent variable in the gravitational

theories of the Sun, Moon, and planets, and the argument for the fundamental
ephemerides in the Ephemeris.

The measure of ephemeris time has been chosen to agree as nearly as possible
with that of universal time during the nineteenth century and it is unlikely that the
two measures will differ by more than a few minutes in the twentieth century.
Ephemeris time is accordingly expressed in the conventional units of centuries, years,
months, days, hours, minutes, and seconds. The numerical values of the ephemeris
time and the universal time at the same instant differ only slightly; to avoid possible
confusionitis essential toindicateunambiguously whichmeasure of time isbeingused.

The fundamental epoch from which ephemeris time is measured is the epoch
that Newcomb designated as 19oo January o, Greenwich Mean Noon, but which
is now properly designated as 19oo January o, 121 E.'T. The instant to which this
designation is assigned is the instant near the beginning of the calendar year
AD. 1900 when the geometric mean longitude of the Sun, referred to the mean
equinox of date, was 279° 41" 48”-04.

This instant is definitive, but the determination of it depends on observations
of the Sun, which are compared with an apparent ephemeris. The observations
are themselves definitive, but the apparent ephemeris as deduced from the geometric
mean longitude depends on the value adopted for the constant of aberration. All
relevant observations and determinations have been made using 20”-47 for the
constant of aberration; a change in this value will lead to a change in our determin-
ation of the instant of the fundamental epoch and thus to a corresponding change
in the measures of ephemeris time assigned to all other instants. This particular
difficulty could have been avoided by specifying the epoch as the instant when the
geometric mean longitude of the Sun, reduced by the constant of aberration and
referred to the mean equinox of date, was 279° 41" 27”-57; but there are objections
to the implied use of the “ apparent mean longitude ”. *

The primary unit of ephemeris time is the tropical year at the fundamental epoch
of 1goo January o, 122 E.T.; the tropical year is defined as the interval during
which the Sun’s mean longitude, referred to the mean equinox of date, increases by
360°. The adopted measure of this unit is determined by the coefficient of 7',
measured in centuries of 36525 ephemeris days, in Newcomb’s expression for the
geometric mean longitude of the Sun, referred to the mean equinox of date, namely:

L = 279° 41" 48"-04 + 1296 02768"-13 T + 1"-089 T*

The tropical year at 19oo January o, 12® E.T. will accordingly contain:
Mﬁ)—ox 6525 x 86400 = 315 56925- h is second
1296 0276813 30525 400 = 315 50925-9747 ephemeris seconds

*See note in paragraph 4 on page 502.




70 EXPLANATORY SUPPLEMENT

The following definition of ephemeris time, in accord with the above concepts,
was adopted by the tenth General Assembly of the International Astronomical
Union (Moscow, 1958; Trans. 1.A.U., 10, 72, 1960) in the following terms
(English translation, loc. cit. page 500):

“ Ephemeris time is reckoned from the instant, near the beginning of the
calendar year A.D. 19oo, when the geometric mean longitude of the Sun was
279° 41" 48”-04, at which instant the measure of ephemeris time was 19oo
January od 12D precisely.”

The ephemeris second had already been adopted as the fundamental invariable
unit of time by the Comité International des Poids et Mesures (Procés Verbaux des
Séances, deuxieme série, 25, 77, 1957) in the words:

‘““ La seconde est la fraction 1/31 556 925,9747 de I'année tropique pour 19oo
janvier o a 12 heures de temps des éphémérides . *

As explained in sub-section D, on the historical development of ephemeris
time, this definition of ephemeris time makes it equivalent to the system of time
measurement used by Newcomb in his theories of the motion of bodies in the solar
system. Newcomb considered it to be mean solar time and to be uniform in the
sense of sub-section A; but it can be identified directly with ephemeris time so
that the ephemerides derived from Newcomb’s tables of the Sun and planets can
be regarded as having ephemeris time as the independent time argument. The
origin and rate of ephemeris time are defined to make the Sun’s geometric mean
longitude agree with Newcomb’s expression; the symbol 7' in that expression
therefore represents the measure of ephemeris time, not only in the theory of the
motion of the Earth round the Sun but also in those of the heliocentric motions of
the other planets. The first two terms of the Sun’s geometric mean longitude are
now thus defined to be absolute constants; the corresponding values for the Moon
and other planets are, however, subject to possible revision to bring them into
accord with observation. The mean longitude of any other planet, or even that of
the Moon, could have been so used to define the origin and rate of a uniform time
system; and ephemerides of the Sun, Moon, and planets could have been con-
structed with this time system as independent argument. ;

The measure of ephemeris time at the instant at which an observation of the
Sun, Moon, or planet is made can be obtained by comparing the observed position
with the gravitational ephemeris of the body; the ephemeris time will be the value
of the argument for which the ephemeris position is the same as the observed
position. In practice ephemeris time is obtained by the comparison of observed
positions of the Sun, Moon, and planets with their corresponding ephemerides.
Observations of the Moon, whose geocentric motion is much greater than those of
other bodies, are the most effective and expeditious; but, even so, an accurate
determination requires observations over an extended period. In practice
universal time, which may be determined very accurately, with little delay, from
observations of the diurnal motions of the stars, is used as an intermediary measure
of time; the difference in the two measures of time, 47 = E.T. — U.T., which
can be readily formed for each observation, is a suitable quantity for combination

*See additional note on page 95.
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over an extended period. The practical determination of ephemeris time is
discussed more fully in sub-section C.

Ephemeris time was originally defined (1950 Paris Conference on the Funda-
mental Constants of Astronomy, Collogues Internationaux du Centre National de la
Recherche Scientifique, 25, 1-131, Paris, 1950; reprinted from Bull. Astr., 15,
163—292, 1950) by means of a formula, depending on the observed correction to
the lunar ephemeris, for the correction 47 to be applied to the measure of universal
time to give ephemeris time. The use of this formula is precisely equivalent to
determining ephemeris time by comparison of observations with the gravitational
ephemeris of the Moon. This operational definition has now been superseded by
the fundamental definition given above. The latter is independent of possible
amendments of either theory or observation; but the former represents, to the best
of our present theoretical and observational knowledge, the only practical way of
realising the fundamental definition. If in the future a more precise lunar ephem-
eris is constructed, it will not affect either the definition or the measure of ephemeris
time; but it will affect both the operational definition and our determination of
ephemeris time.

Julian date

To facilitate chronological reckoning astronomical days, beginning at
Greenwich noon, are numbered consecutively from an epoch sufficiently far in the
past to precede the historical period. The number assigned to a day in this
continuous count is the Julian Day Number which is defined to be o for the day
starting at Greenwich mean noon on' B.C. 4713 January 1, Julian proleptic
calendar. The Julian day number therefore denotes the number of days that has
elapsed, at Greenwich noon on the day designated, since the above epoch. The
Julian Date (J.D.) corresponding to any instant is, by a simple extension of the above
concept, the Julian day number followed by the fraction of the day elapsed since
the preceding noon.

Although introduced as a continuous count, and measure, of mean solar days
the Julian day number and the Julian date can conveniently be applied to ephemeris
time, in which case the Julian date will differ from the conventional one by 4T
the Julian day number will represent the number of ephemeris days that have
elapsed, at the preceding 122 E.T., since 12" E.T. on B.C: 4713 January 1. It
is not necessary in this definition to know to what universal time this epoch
corresponds, i.e. to know 47 at the epoch; in fact the measure may be regarded as
conventional, applicable to both systems of time measurement, as in the case of
calendar dates. The terminology Julian Ephemeris Date (J.E.D.) may be used
when necessary to distinguish the Julian date in ephemeris time with the day
beginning at 121 E.T. from the Julian date in universal time with the day beginning
at 122 U.T.; such a distinction may be essential in dating orbital elements, or in
formulae for light-curves of variable stars, where the time must be given to a large
number of decimal places. The fundamental epoch 1900 January od 12bt E.T.
is J.E.D. 241 5020-0.

The value of J.D. —240 oooo-5 is sometimes used to specify current dates and is known
as the Modified Julian Date. It is recommended that the numerical definition be given
whenever truncated values are used.
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2. Sidereal time
In general terms, sidereal time is the hour angle of the (vernal) equinox, or the
first point of Aries. Apart from the motion of the equinox itself, due to precession
and nutation, sidereal time is thus a direct measure of the diurnal rotation of the
Earth. To each local meridian on the Earth there corresponds a local sidereal

time, connected with the sidereal time of the Greenwich meridian by means of
the relation:

local sidereal time = Greenwich sidereal time — longitude

Sidereal time is conventionally measured in hours, minutes, and seconds, so that
longitude in the above equation is measured (positively to the west) in time at the
rate of one hour to 15°. An object transits over the local meridian when the
(local) sidereal time is equal to its right ascension.

The sidereal time measured by the hour angle of the true equinox, i.e., the
intersection of the true equator of date with the ecliptic of date, is apparent sidereal
time; the position of the true equinox is affected by the nutation of the axis of the
Earth, which consequently introduces periodic inequalities into the apparent
sidereal time. The time measured by the diurnal motion of the mean equinox of
date, which is affected by only the secular inequalities due to the precession of the
axis, is mean sidereal time. Apparent sidereal time minus mean sidereal time is the
equation of the equinoxes due to the nutation; in the ephemerides immediately
preceding 1960, it was called the “ nutation in right ascension ”. The period of
one diurnal circuit of the equinox in hour angle, between two consecutive upper

meridian transits, is a sidereal day; it is reckoned from o at upper transit which
is known as sidereal noon.

In the practical determination of time (see sub-section C) allowance must be
made for the variation in the position of the meridian due to the motion of the
geographic poles, and may also be made for short-period irregularities in the rate
of rotation of the Earth. With this understanding Greenwich sidereal time may
formally be defined as the Greenwich hour angle of the first point of Aries.

Sidereal time is determined in practice from observations of the transits of
stars, either over the local meridian or, with a prismatic astrolabe, over the small
circle corresponding to a constant altitude.

Owing to precession the mean sidereal day, of 24 hours of mean sidereal time,
is about 0%-0084 shorter than the actual period of rotation of the Earth; the apparent
sidereal day, nominally of 24 hours of apparent sidereal time, differs from the
period of rotation by a variable amount depending on the nutation.

Apparent sidereal time, because of its variable rate, is used only as a measure
of epoch; it is not used as a measure of time-interval. Observations of the diurnal
motions of the stars provide a direct measure of apparent sidereal time, as their
right ascensions are measured from the true equinox. But in many practical
methods of determining time the right ascensions are diminished by thé equation

of the equinoxes, so that mean sidereal time is deduced directly from the
observations.
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Greenwich sidereal date

In order to facilitate the enumeration -of successive sidereal days the concepts
of Greenwich Sidereal Date (G.S.D.) and Greenwich Sidereal Day Number, analogous
to those of Julian date and Julian day number, have been introduced. The Green-
wich sidereal date is defined as the interval in sidereal days, determined by the equi-
nox of date, that has elapsed on the Greenwich meridian since the beginning of the
sidereal day which was in progress at J.D. 0-0. The integral part of the Greenwich
sidereal date is the Greenwich sidereal day number; it is a means of consecutively
numbering the successive sidereal days beginning at the instants of transit of the
equinox over the Greenwich meridian. The zero day is the sidereal day that was
in progress at the beginning of the Julian era. The non-integral part of the
Greenwich sidereal date is simply the Greenwich sidereal time expressed either in
hours, minutes, and seconds, or in fractions of a sidereal day. These concepts can
be applied equally well to mean or apparent sidereal time.

There is no direct relationship between Greenwich sidereal date and Julian

ephemeris date, as the latter differs from the Julian date (in U.T.) by the unknown
difference E.T. — U.T.

The relationships between Greenwich sidereal date, Julian date, and calendar
date are considered in section 14H.

The ratio of the length of the mean sidereal day to the period of rotation of the
Earth is 0:99999 99029 07 — 59 x 10712 T; the period of rotation is 1-0 +
(97093 + 59 T) x 10~!2 mean sidereal days. These numbers are not rigorously
constant because the sidereal motion of the equinox due to precession is proportional
to the length of the day, that is to the period of the rotation of the Earth, whereas
the angular measure of the complete rotation is, of course, constant. However,
the conceivable change in the period of rotation is such that the effect of a variation
in the daily precessional motion is inappreciable. The secular variations are
almost inappreciable (see sub-section B.3).

3. Universal time

Universal time is the precise measure of time used as the basis for all civil

time-keeping; it conforms with a very close approximation to the mean diurnal
motion of the Sun. *

It is, and since the introduction of Newcomb’s Tables of the Sun has been,
defined as 12 hours + the Greenwich hour angle of a point on the equator whose
right ascension, measured from the mean equinox of date, is:

R, = 180 38m 455.836 + 86 401848-542 Ty + 08-0929 T'?
where 7% is the number of Julian centuries of 36525 days of universal time elapsed
since the epoch of Greenwich mean noon (regarded as 121 U.T.) on 1900 January o.
The expression for Ry, is identical with that given by Newcomb (7 'ables of the Sun,
A.P.A.E., 6, part 1, page 9, 1895) for the right ascension of the fictitious mean sun,
with the exception that Newcomb used 7 instead of T3, and did not specify in

*See note on page vi regarding the current basis of civil time scales. In general the term

“‘universal time’’ (U.T.) may be identified throughout this Supplement with the system of
U.T.1 defined on page 86.
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what measure of time 7 was to be reckoned. Newcomb, not recognising the
variable rotation of the Earth, considered that 7" was measured in mean solar time
applicable alike to orbital motions and to hour angles; as explained in sub-section
B.1, Newcomb’s 7" may now be identified with ephemeris time. The point on the
equator whose right ascension is Ry is not identical with the  fictitious mean sun ”
as defined by Newcomb; the right ascension of the fictitious mean sun is:

R, = 18 38m 455.836 + 86 401848542 T + 08-0929 T2

where T is the number of Julian centuries of 36525 days of ephemeris time
elapsed since the epoch of 122 E.T. on 1900 January o. R; differs from R, by
0-002738 AT where AT is the difference E.T. — U.T.

The implications of this distinction are considered in sub-section B.4.

The measure of universal time at time 7%, expressed in hours, minutes, and
seconds, is thus:

122 + the Greenwich hour angle of the mean equinox of date — Ry

The date expressed in the form either of a calendar date or of a Julian date (see
sub-section B.1), is that corresponding to the time 7%.

The Greenwich hour angle of the mean equinox of date is Greenwich mean
sidereal time, by definition. At 12" U.T. the Greenwich mean sidereal time will
therefore be R, which may now be described as “ the mean sidereal time of 12t
U.T.”; it may thus be distinguished from the right ascension of the fictitious
mean sun.

‘

Although universal time is no longer definable as ““ 122 + the Greenwich hour
angle of the fictitious mean sun’ it is sufficiently close, compared with the deviation
between the mean sun and the true Sun, to justify the retention of the terms ‘‘ mean
solar time >’ and ‘‘ mean solar day ”’ in the sense in which they have been used in
the past. The continued use of these descriptive terms is not to be regarded as
identifying universal time with a precise measure of mean solar time; with this
understanding, the danger of confusion is small. In this sense, universal time may
be identified with Greenwich mean time.

As with sidereal time, there are local mean solar times corresponding to 122 +
the local hour angle of the point whose right ascension is R;. These times are
connected with universal time (Greenwich mean time) by means of the relation:

local mean time = universal time — longitude

The point whose right ascension is Ry, is not observable and practical determin-
ations of universal time are made, through the intermediary of sidereal time, by the
observations of the diurnal motion of the stars. For the practical calculation of
universal time, an ephemeris of sidereal time with argument universal time is
calculated from the relation:

Greenwich mean sidereal time = U.T. + R, + 12h

for ot U.T. of every day; at U.T. = oh the value of the right-hand side is obtained
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by adding 12" to the expression R, for the mean sidereal time of 12 U.T., and the
relation becomes:

G.M.S.T. of oh U.T. = 6P 38m 455.836 + 86 401845-5427; + 0%-09297'2
where 7', takes on successive values at a uniform interval of 1/36525. The apparent
sidereal time is obtained by adding the equation of the equinoxes to the mean
sidereal time. The sidereal time at o® U.T. on successive dates, calculated from
this expression, is tabulated in the ephemeris of Universal and Sidereal Times in
A.E., pages 10-17. These tabular times are the Greenwich hour angles of the
equinox that conventionally define the instants of successive midnights of universal
time; they are the means of observationally identifying these instants, and of
determining the universal time at any other instant. The instant that is designated
as ot U.T. each day is the moment at which the equinox during its apparent
diurnal motion reaches a Greenwich hour angle equal to the value tabulated. At
the instant of any observed Greenwich sidereal time, the interval which has elapsed
since o U.T., expressed in sidereal time, is immediately obtained by subtracting
the tabular sidereal time at ot U.T. from the observed sidereal time at the instant;
and the universal time at this instant is the equivalent measure of this interval in
mean solar time.

Alternatively, use can be made of the tabulations, also given in A.E., pages
10-17, of the universal times corresponding to the instants of o® Greenwich
(mean and apparent) sidereal times, that is to the instants at which the mean and
true equinoxes transit over the Greenwich meridian. An observed sidereal time
may be converted to the equivalent interval of mean solar time, which is then
added to the tabular universal time to give the universal time at the instant of
observation. Examples of the methods of calculation and use of these tables are
given in sub-section C.

The mean solar measure of an interval is obtained by multiplying the sidereal
measure by the ratio of the sidereal day to the mean solar day. The mean solar
day, of 24 mean solar hours, is the interval of time between the two instants at
which the equinox reaches the tabular hour angles for two consecutive dates,
corrected for the variations of the meridian due to the motion of the geographic
poles and to variations of the vertical. From this formal definition and the
conventional method of calculating the tabular hour angles of the equinox that
determine o U.T. on successive dates, it follows that the hour angle which the
equinox describes during one mean solar day consists of a complete circuit of 242
plus a further angle equal to the tabular increase in the mean sidereal time of 12t
U.T. for a numerical increase in T of one day. The interval of mean sidereal time
in a mean solar day is therefore:

86 401845542 + 051858 T,
36525

and the ratio of a sidereal day of 86400 mean sidereal seconds to this interval is:

240 + = 8663655536 05 + o%-00000 5087 T

mean sidereal day

= 0:99726 95664 14— 0-586 T, x 10710

mean solar day
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Inversely, the ratio of the mean solar day to the mean sidereal day is:
86636%-55536 036-:02:.00000 5087 Ty _ F60zT3 70003 65 + o THE LA

Disregarding the inappreciable secular variations, the equivalent measures of the
lengths of the days are:

mean sidereal day 230 56™ 045-09054 of mean solar time
mean solar day 240 03m 568.55536 of mean sidereal time
The conversion tables 17.1 and 17.2 are based on these values.

The determination of mean solar time by the established method of converting
the elapsed interval since o U.T. from sidereal measure to mean solar measure
with a fixed conversion factor keeps the ratio of the mean solar day to the sidereal
day constant, irrespective of variations in the rate of rotation of the Earth. These
variations cause inequalities in mean solar time as conventionally determined from
the tabular hour angles of the equinox that formally define o? U.T., and the length
of the mean solar day is slightly variable; but the ratio of the sidereal and the mean
solar measures is not altered by variations in the rotation of the Earth. The effect
on the length of the mean solar day of the variations in the daily motion of precession
is entirely inappreciable, as precession affects the hour angle of the equinox and the
right ascension of the mean sun alike. The measure of mean solar time depends
only upon the motion of the equinox in hour angle that is due to the rotation of

the Earth; the ratio of the mean solar day to the period of rotation is constant to
12 decimals or more.

The numerical value of this ratio is 1-00273 78119 06; the period of rotation
of the Earth in mean solar time is:

04.99726 96632 42 = 23" 56™ 045-09890 4
and the rate of rotation is 15”-04106 7 per mean solar second.

Universal time is obtained, through the intermediary of sidereal time, from
observations of the transits of stars. It is thus subject to the same irregularities
(divided by the factor 1-002738) as those affecting the determination of sidereal
time (see sub-section B.2), namely the variation in the local meridian due to the
motion of the geographic poles and the short-period variations in the rate of rotation.
These irregularities are removed to provide a measure of time which is free of
short-period variations (see sub-section C).

4. The ephemeris meridian

Ephemeris time is independent of the rotation of the Earth and is consequently
unsuitable for the calculation of hour angles, which do depend on that rotation.
For facilitating practical calculations of phenomena that depend upon hour angle
and geographic location, the concept of an auxiliary reference meridian, known as
the ephemeris meridian, has been introduced. The position of the ephemeris
meridian in space is conceived as being where the Greenwich meridian would have
been if the Earth had rotated uniformly at the rate implicit in the definition of
ephemeris time; it is 1-002738 47T east of the actual meridian of Greenwich on the
surface of the Earth, where 4T is the difference E.T. — U.T.
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When referred to the ephemeris meridian, phenomena depending on the
rotation of the Earth may be calculated 'in terms of ephemeris time by methods
formally the same as those by which calculations referred to the Greenwich
meridian are made in terms of universal time. The hour angle and the meridian
transit of the equinox, which determine the tabular sidereal time at o® universal
time and the universal time at ob sidereal time, are referred to the actual geographic
meridian of Greenwich. The numerical value formally obtained from the same
numerical relation as that used to compute the sidereal time at o® universal time,
but with 7" reckoned expressly in ephemeris time, is the hour angle of the equinox
referred to the ephemeris meridian at o ephemeris time, and is called Ephemeris
Sidereal Time (E.S.T.). Numerically, therefore, the tabular values of sidereal
time at o® universal time are equally the values of ephemeris sidereal time at ot
ephemeris time. Ephemeris transit occurs at the instant when the ephemeris
sidereal time is equal to the right ascension.

The hour angle of an object referred to the ephemeris meridian is known as

the Ephemeris Hour Angle (E.H.A.) of that object; it may be calculated from the
relation:

ephemeris hour angle = ephemeris sidereal time — right ascension

Longitude measured from the ephemeris meridian is distinguished by the term
ephemeris longitude; the ephemeris longitude of a place at which the local hour

angle has a particular value may be obtained by taking the difference between
the local and ephemeris hour angles.

All calculations into which the rotation of the Earth enters may be carried out
in terms of ephemeris time, referred to the ephemeris meridian, in precisely the
same way as in universal time referred to the Greenwich meridian. In the former
case, the precise positions of the meridians on the Earth’s surface, specified by
their ephemeris longitudes, will not be known until 47 is known; in the latter
case a value of 47 is necessary before the tabulated ephemerides can be interpolated
to universal time. The use of the ephemeris meridian enables such calculations
to be carried out precisely as far in advance as required; as soon as a sufficiently
accurate value of 4T can be extrapolated, or determined, the longitudes and hour
angles can be referred to the Greenwich meridian and the times, in E.T., expressed

in terms of U.T. This procedure is followed in predictions of the general
circumstances of eclipses. '

Apart from its practical advantages the concept of the ephemeris meridian is

valuable in providing a clear picture of the relation between ephemeris time and
universal time. At any instant:

E.T. + 12" = the ephemeris hour angle of the fictitious mean sun, whose
right ascension is Ry

ephemeris sidereal time — R,

U.T. + 121 = the Greenwich hour angle of the point whose right ascension
is Ry

Greenwich sidereal time — R,

I
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If AT is the excess of the measure of E.T. over that of U.T., i.e. E'T. — U.T.
= AT, then:
R; = Ry + 0:002738 AT
E.T. = U.T. + ephemeris sidereal time — R,
— Greenwich sidereal time + R,
= U.T. + 1-002738 AT — 0-002738 AT = U.T. + AT

At a time AT later the Greenwich meridian will have moved through an angle
1-:002738 4T and thus will be in the same position as the ephemeris meridian at
the earlier time; and the right ascension Ry will have increased by 0-002738 4T
and thus will be R;, the same as the right ascension of the fictitious mean sun at
the earlier time. The relationship between the ephemeris meridian and the
fictitious mean sun at any instant is precisely the same as that between the Green-
wich meridian and the point whose right ascension is Ry at a time 47 later; the
two systems of time measurement are identical except that the system of universal
time relates to a time 47 later than that of ephemeris time.

The speed of rotation of the ephemeris meridian is such that it makes one
complete revolution of 360°, relative to the mean equinox, in 23" 56m 045-0989o 4 of
ephemeris time; the ephemeris meridian coincided with the Greenwich meridian
at some date between 19oo and 19o5.

EPHEMERIS ~ GREENWICH LOCAL EPHEMERIS UNIVERSAL  TRUE EQUINOX
MERDIAN  OR MERIDIAN MEAN MEAN SUN
UNIVERSAL SUN SUN
MERIDIAN
‘ E.ST |
1 ! RAEMS =R,
i 2" eET = EHAEMS. 0
: | Ea. ET
1 EHA Sun !
1
|EPHEMERIS LONGITUDE :
| LHA. Sun 4 R.A.Sun
! GREENWICH OR UNIVERSAL H
! LONGITUDE UH.A. Sun i
1 : Eq. UT
. 12k +uT - UH.A.UM.S \
I : i RAUM.S. =Ry
: UST  (or ST) :
— iy
11002738 AT 000273847
Figure 3.x. Relations between E.T. and U.T. and related concepts
E.T. = Ephemeris time (7)) U.T. = Universal time (T + 47T)
E.S.T. = Ephemeris sidereal time U.S.T. = Universal sidereal time
E.M.S. = Ephemeris mean sun U.M.S. = Universal mean sun
R.A.E.M.S. = Right ascension of E.M.S. R.A.U.M.S. = Rightascension of U.M.S.
E.H.A. = Ephemeris hour angle U.H.A. = Universal hour angle
Eq. E.'T. = Equation of ephemeris time Eq. U.T. = Equation of universal time

U.S.T. and U.H.A. are identical with G.S.T. (Greenwich sidereal time) and G.H.A.
(Greenwich hour angle)

The accompanying diagram (figure 3.1), which is intended solely for illus-
tration, shows clearly the relationship between the two systems: E.T. and the
ephemeris meridian in the upper part of the diagram, and U.T. and the Greenwich
meridian in the lower. In the diagram certain unconventional terminologies and
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notations have been introduced to facilitate comparison; these are only used in
this limited context. A clear distinction is drawn between the fictitious mean sun

(termed the ephemeris mean sun) with right ascension Ry, and the point (termed
the universal mean sun) with right ascension R.

Two distinct concepts, termed respectively the equation of ephemeris time
and the equation of universal time, have been introduced to replace the single
concept ‘“ equation of time . On the one hand, the equation of ephemeris time
is the logical successor to the equation of time regarded as the excess of the hour
angle (or defect of right ascension) of the true Sun over that of the fictitious mean
sun; and this is the quantity tabulated in the Ephemeris for ot E.T. under the
heading ““ Equation of Time”. On the other hand, the equation of universal time is
the logical successor to the equation of time regarded as the excess of apparent solar
time over mean solar time; this is the quantity required to convert 122 + U.T.
into the G.H.A. of the Sun, but it cannot be tabulated without a knowledge of 47

As from 1965 the tabulation in the Ephemeris of the equation of time will be
replaced by the tabulation of the E.T. of ephemeris transit of the Sun. The term
‘“equation of time” will thenceforward be used exclusively for the concept
termed here ‘‘ the equation of universal time . The equation of time will then be
defined as the correction to be applied to 122 + U.T. to obtain G.H.A. Sun, or
more generally the correction to be applied to 12" + L.M.T. to obtain L.H.A.
Sun; it is now so tabulated in the almanacs for navigators and surveyors. The
concept of the equation of ephemeris time will no longer be used.

5. Mean solar time

The purpose of this sub-section is to describe the historical development of
the concept of mean solar time, prior to the realization of the variability of the
rotation of the Earth, and to discuss the consequences of that variability upon the
definition of universal time.

A reckoning of time which conforms more or less closely to the recurrence of
daylight and darkness determined by the diurnal motion of the Sun, and which is
quickly obtainable with high precision from observation, is a practical necessity.
Because of the variations in the rate of motion of the Sun in hour angle, due to the
inequalities in the annual motion along the ecliptic and to the inclination of the
ecliptic to the equator, the measure of time that is directly defined by the actual
diurnal motion of the Sun, known as apparent solar time, is impracticable for the
purpose of precise timekeeping. Instead, mean solar time was introduced,
determined by the apparent diurnal motion of an abstract fiducial point at nearly
the same hour angle as the Sun, but located on the mean celestial equator of date
and characterized by a uniform sidereal motion along the equator at a rate virtually
equal to the mean rate of the annual motion of the Sun along the ecliptic. Relative
to any meridian of longitude, this point has a diurnal motion in hour angle virtually
the same as the average diurnal motion of the Sun, and uniform except for
variations of the local meridian; the position in hour angle is never more than
16m from the Sun.
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The precise position of this moving point was abstractly defined by an
expression for its right ascension, which fixes its position among the stars at every
instant and is a means of determining its diurnal motion from the observable
diurnal motions of the stars. The practice in the past has been to adopt for the
right ascension, measured from the mean equinox of date, an expression as nearly
identical with the expression for the mean longitude of the Sun as is possible,
consistent with a sidereal motion at a constant rate. This expression for the
right ascension differs from that for the mean longitude of the Sun by only a slight,
progressively increasing, excess of 08:0203 72 where T is the number of centuries
from 1900, due to the secular acceleration of the Sun and to the different rates of
the general precession on the ecliptic and the equator. This abstract fiducial point
has therefore traditionally been known as the fictitious mean sun; but it has no
physical counterpart, and the term is essentially only a name for a mathematical
expression.

The system of measuring and determining mean solar time was expressly
devised to obtain a measure in agreement with the rotation of the Earth, because,
prior to the realization that the rate of rotation is variable, the measure of time that
it defines was considered to be uniform. It was for the purpose of obtaining a
uniform measure in this way that mean solar time was defined in terms of the
diurnal motion of a fictitious mean sun, not by supposing the actual mean sun
transferred to the equator, since the mean motion of the Sun in longitude has a
secular acceleration.

The definition of the measure of mean solar time was obtained, in the form of
the relation to sidereal time, from the formula for the right ascension of the
fictitious mean sun. On the Greenwich meridian, in terms of the position of
the mean equinox and the position of the fictitious mean sun relative to the mean
equinox, mean solar time was defined as:

G.H.A. mean equinox of date — R.A. fictitious mean sun + 12P
For the right ascension of the fictitious mean sun, the numerical formula from
whatever tables of the Sun were in current use was adopted. The measure re-
presented by this expression is universal time; it is the mean solar time on the
Greenwich meridian reckoned in days of 24 mean solar hours beginning with ob
at midnight, and is the conventional standard measure of mean solar time.

However, because of the variations in the rate of rotation of the Earth,
universal time, so defined, does not rigorously conform to the traditional geometric
interpretation that originally motivated this method before these variations had
been recognized. The right ascension of the fictitious mean sun increased by 121
was taken as the value of the hour angle of the mean equinox to define ot U.T. in
order that mean midnight would be the instant of lower meridian transit of the
fictitious mean sun, and the measure of mean solar time at any other instant,
reckoned from midnight, would be the hour angle of the fictitious mean sun
increased by 121, In practice, to obtain the tabular values of the hour angle of the
mean equinox that determine successive intervals of a mean solar day, the right
ascension of the mean sun was calculated from successive values of 7" at uniform

~—
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numerical intervals of 1/36525. The instants at which the equinox reaches these
tabular hour angles during its diurnal motion depend on the variable rotation of
the Earth, and are at slightly unequal intervals of uniform time; consequently, the
actual amount of the sidereal motion of the fictitious mean sun during successive
mean solar days is not invariable, and the hour angle of the mean sun at midnight
depends on the accumulated departures of the sidereal motion from the tabular
amounts.

In contrast, Newcomb’s expression was intended to represent a variation of
right ascension entirely independent of the rotation of the Earth and due to a
rigorously uniform sidereal motion of the mean sun that increases its right ascension
by a constant amount per unit increase in the numerical value of 7, and to the
motion of the equinox that is caused by the general precession in right ascension.

The hour angle of the mean equinox and the actual right ascension of the mean
sun increased by 122 do not both reach the tabular value of the mean sidereal time
of ot U.T. at identically the same instant. The tabular value is, by definition,
the hour angle which the equinox reaches at mean midnight, but is not precisely
equal to the right ascension of the fictitious mean sun increased by 12! at this
instant. At this hour angle of the equinox, the fictitious mean sun is not exactly
on the lower meridian; the designation “ Right Ascension of Mean Sun + 12",
sometimes applied to the sidereal time of o® U.T. prior to 1960, is inexact when the
departure of mean solar time from a uniform measure is explicitly recognized,
and was therefore eliminated from the Ephemeris when a formal distinction was
made between universal time and ephemeris time. In the expression for the right
ascension of the fictitious mean sun, the inequalities are entirely due to the motion
of the equinox, and strictly 7" should be interpreted as denoting a uniform measure
of time; but the practical procedure is equivalent to reckoning 7" in mean solar
days. This is immaterial for the purpose of defining a formal measure of time; but
it has the consequence that, geometrically, mean solar time is not exactly the hour
angle of the fictitious mean sun increased by 12P as it ordinarily has been described,
and likewise the mean solar day is not exactly the period of one diurnal circuit of
the fictitious mean sun in hour angle as it would be were there no variations in the
rate of rotation of the Earth.

The operational procedure used in practice for determining universal time
constitutes the actual definition, and supersedes the traditional descriptive
characterization. Geometrically, mean solar time and the mean solar day are
determined, not by the meridian transit and the hour angle of the fictitious mean
sun, but entirely by the diurnal motion of the vernal equinox, in accordance with a
conventional formula that specifies a prescribed relation that mean solar time shall
have to the observed sidereal time measured by the hour angle of the equinox.
The instant-of o2 U.T. is precisely defined by the numerical expression from which
the tabular sidereal times of o® U.T. are calculated; universal time as obtained in
accordance with the established practical method, from the observed sidereal time
at the instant and the tabular sidereal time at o® U.T., is essentially a formal
measure defined by this abstract expression.

They are trying to say that the addition
of the new time is not a direct
representation of reality?
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Although this conventional formal measure of time is not the exact equivalent
of the traditional geometric representation of mean solar time, it is numerically
identical with the measure of mean solar time that always was actually obtained in
practice. Likewise, it is characterized by being strictly in accordance with the
measure of time defined by the rotation of the Earth; the mean solar day, when
determined from observations of stars and corrected for variations of the meridian,
is rigorously proportional to the period of the rotation.

C. THE PRACTICAL DETERMINATION OF TIME

Accurate timekeeping depends upon determining the error of a clock on
successive nights by means of determinations of time from astronomical obser-
vations. The observed measure of time compared with the reading of the clock
at the instant of observation gives the error of the clock; from the successive
clock errors, the rate of gain or loss is found, with which the clock error at any

intermediate instant may be obtained by interpolation, and over limited periods
in advance by extrapolation.

For timekeeping of the highest precision, quartz-crystal clocks have entirely
superseded the pendulum clock. A perfect clock, which would run uniformly
and have an absolutely constant rate, has not been realized; but the best clocks
now available have rates more uniform than the rotation of the Earth. Atomic
oscillators are also becoming an important aid in timekeeping, although it is not
yet known whether the gravitational and atomic time scales are identical.

Crystal-controlled clocks are more accurate than the individual nightly
determinations of time by observation. The clocks are used in practice to smooth
out the random errors of observation from night to night, as well as to interpolate
between observations; the crystal oscillators that constitute the primary time
standards vary in frequency from day to day by only about 2 parts in 10'°. How-
ever, the length of time over which the clock rate may be extrapolated with confi-
dence is inevitably limited. To maintain a precise standard of time, and to make
exact measurements of long intervals, continual direct determinations from
astronomical observations are essential.

The determination of sidereal time by observation. To determine the hour
angle of the equinox by observations of stars, the location of the equinox among
the selected stars is found from ephemerides of their apparent positions. The
diurnal motions depend upon the instantaneous rotational motion of the Earth
determined by the position of the axis in space and within the Earth, and by the
‘rate of rotation. The instruments are necessarily oriented with reference to
local gravity. Consequently, the measure of time obtained directly from the
immediately observed positions of the stars in their diurnal circuits is the apparent
sidereal time referred to the instantaneous local meridian. In principle, the time
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may be found from observations of stars at any point of their diurnal arcs, and

many different methods have been used, depending on circumstances and on the
precision needed.

For meridian observations, the most precise instrument is the photographic
zenith tube, for which no corrections are required for level, azimuth, collimation,
or flexure. Each observation gives a measure of both the time and the latitude.
Determinations of time by extra-meridian observations, comparable in precision
to determinations with the photographic zenith tube, may be made with the Danjon
impersonal prismatic astrolabe. With this instrument, the stars are observed
when at an altitude of 60°. Each observation of one star gives a linear relation
between time, latitude, and declination; two groups of stars are observed, one
before midnight and one after midnight. Brief descriptions of these instruments
are given in section 15B.

The external probable error of the time determined from the observations on
one night by these methods is of the order of + 4 milliseconds.

The relative positions of the stars observed with these instruments are deter-
mined from the observations themselves, and thus are independent of errors in
star catalogues. But even though the star places are mutually consistent, they
are still dependent on the particular coordinate system (or * equinox ") to which
they are referred; different systems would give rise to differing determinations of
time. The International Astronomical Union recommended in Stockholm in 1938
(Trans. I.A.U., 6, 342, 1939) that the system of the FK3 be used; and the adopted
practice is equivalent to using a zero determined by the average of the FK3 stars in
the corresponding declination belt. The FK3 system will be replaced by that of
FK4 as soon as it becomes available (7rans. 1.A.U., 10, 79, 1960).

The varying rate of gain or loss of the clock on apparent sidereal time, and the
accumulated error at the times of observation, depend both upon the irregularities
of the clock and upon the inequalities in sidereal time. To facilitate the separation
of the clock irregularities from the variations in the measure of time, in order to
determine accurate clock errors and rates, the transit ephemerides of the stars are
often expressed in terms of a more uniform argument than apparent sidereal time,

by calculating the mean sidereal time of transit and, for convenience, further
converting it to mean solar time.

The mean sidereal time at transit is obtained by omitting from the apparent
right ascension the terms of the reduction for nutation that are independent of the
coordinates of the star; these terms, common alike to all stars, represent the
equation of the equinoxes, which causes the inequality in sidereal time that is due
to the nutation of the axis of the Earth. The remaining terms of the reduction
for nutation, peculiar to each star, represent the irregularities in the diurnal motion
of the star that are produced by the nutation of the axis.

As long as a particular inequality in sidereal time is negligibly small compared
to the irregularities of the clock and the inevitable errors of the observations, it may
be disregarded in calculating the right ascensions of the stars and in reducing the
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observations. With the continual increase in the accuracy of observations and the
development of more precise clocks, an increasing number of the inequalities have
successively become distinguishable from the irregularities of the clock. To
obtain a standard of comparison that is as nearly uniform as the running of the
clock, successively greater refinements in computation have been necessary, by
the inclusion of additional terms of the nutation and, more recently, the application
of corrections for the variations of the meridian due to the polar motion. More-
over, the rates of the crystal oscillators now available are so nearly uniform, and the
accuracy of the observational comparisons with the stars is so great, that it has also
become the practice to include corrections to the observed time for the periodic
seasonal variations in the rate of rotation of the Earth.

The calculation of mean solar time. The definition of universal time was left
unchanged when ephemeris time was formally introduced into astronomical
practice. The practical method of determining universal time that was in
established use before 1960 was retained, and the numerical reckoning of universal
time was continued without discontinuity except for increased precision resulting
from the use of improved values of the nutation.

The sidereal time (hour angle of first point of Aries) at oh universal time, and
the universal time at o® sidereal time (transit of first point of Aries), which formerly
were included in the ephemeris of the Sun, are tabulated in the separate ephemeris
of Universal and Sidereal Times in A.E., pages 10-17; both for the mean equinox
of date and for the true equinox with the short-period terms of nutation included.
This ephemeris also contains the equation of the equinoxes, which in the volumes
immediately preceding 1960 was designated as the nutation in right ascension and
was included with the ephemeris of the Sun.

In the tabulations for o U.T., the argument is the calendar date and the
equivalent Julian date. In the tabulations for ob S.T. the argument is the
Greenwich sidereal date (G.S.D.), defined as the number of sidereal days deter-
mined by the equinox of date that have elapsed at Greenwich since the beginning
of the sidereal day which was in progress at J.D. o-o. The integral part of the
G.S.D., the Greenwich sidereal day number, is a means of consecutively numbering
successive sidereal days. (See sub-section B.2.).

Example 3.1. Universal and sidereal times
1960 March 7 at o? U.T.

Julian date at o® on 1960 March 7 (4.E., p. 2) 243 70005
Julian date at epoch from which Ty is measured 241 5020-0
Interval in days, d 2 1980-5
Fraction of Julian century, Ty = d/36525 0-60179 32922 7
Ry + 12R = 60 38m 458.836 6 3“5'; 45'-836
+86 401845-542 Ty = 236°-55536 049d 4 20 05-1013
+ 08.0029 T§ = 0°-00696(d/10000)? 0-0336
Sum = Mean sidereal time at o? 10 58 50-971
Equation of the equinoxes (4 cos €) = —0”-744 X 0-9174 — 0-046
Sum = Apparent sidereal time at o 10 58 50-925

*On pages 12 to 19 in A.E. 1972 onwards.
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The universal time of transit of the mean equinox is obtained by:
U.T. of transit = 0-99726 95664 (24" — mean S.T. at oh)
= (24" — mean S.T. at o") (1 — 0-00273 04336)

24" — mean S.T. at o® on 1960 March 7 I ; or: 09?029
—0:00273 04336 (24" — mean S.T. at oh) (4.E., Table VIII) = 2 107:973
Sum = U.T. of transit of mean equinox 12 59 o01-056
Correction to true equinox ( —0-9973 4y cos €)

= —0-9973 X —0"-746 x 0-9174 + 0-046
Sum = U.T. of transit of true equinox 12 59 OI-I02

The nutation in longitude (4) is obtained from the series, and must be interpolated
to the U.T. required; the obliquity (¢) is a constant to the precision here required. The
U.T. of transit of the mean equinox can be obtained directly from the series:

172 16™ 255.628 — 235%-90946 18 (G.S.D. — 242 1634) — 0°-0926 T

The practical calculation of universal time from the observed sidereal time
with the aid of these tabulations is illustrated by the following example. For full
precision it is necessary to use the quantities relating to the mean equinox (e.g.
mean sidereal time), interpolating the equation of the equinoxes to the actual
universal time concerned.

Example 3.2. Derivation of universal time from observed sidereal time

' On 1960 March 7, in longitude 5" o8m 15%.75 west at approximately 28 local mean
time, the observed apparent sidereal time was 13" os™ 37%.249; the corresponding U.T.
(about 7" on March 7) is obtained as follows:

Observed local apparent sidereal time I; 0; 37'.249
Equation of the equinoxes (interpolated to 7t U.T.) — 0-046
Observed local mean sidereal time 13 05 37-295
Longitude (add if west) + 5 08 15-75

Greenwich mean sidereal time 18 13 53045
Reduction to mean solar time (4.E., Table VIII) — 2 59-207
Equivalent interval of mean solar time 18 10 53-838
U.T. of preceding transit of mean equinox (4.E., p. 11) March 64 13 o2 56-966
U.T. of observation March 7¢ 7 13 50-804

Alternatively use can be made of the tabulated sidereal time as follows: .

Greenwich mean side-eal time (as above) 18 13 53-045
Greenwich mean sidereal time at o U.T. on March7 (4.E.,p.11) 10 58 50-971
Difference = mean sidereal time interval 7 15 02:074
Reduction to mean solar time (4.E., Table VIII) = 1 11269
U.T. of observation 7 13 50:8035

The apparent sidereal time corresponding to a given U.T. may be calculated directly.
In this case the figures are the same as above; but the reduction from mean solar time to
mean sidereal time (1™ 11%-270) is taken from A.E., Table IX, with the U.T. argument
7h 13 508.805.

The universal time calculated directly from the immediately observed sidereal
time referred to the instantaneous meridian is denoted by U.T.o. This measure
of universal time contains inequalities due not only to the variations in the rate
of rotation of the Earth but also to the variations of the meridian. In practice,
the variations of the meridian due to variations of the vertical may be neglected,
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as they are too small in comparison with errors of observation to be significant
except in an analysis of a long series of observations; but, because of the high
accuracy that has been reached in timekeeping, the inequalities due to the polar
motion have become of practical importance. The variations in the rate of rotation
of the Earth comprise secular, irregular, and periodic seasonal and tidal inequalities.
The tidal variations are almost inappreciable, and the secular variation becomes
appreciable only after very long intervals; the irregular variations may reach
relatively large magnitudes, but are highly erratic. The seasonal inequality is
large enough to be of practical significance; and, as far as observations have yet
shown, it appears to be remarkably stable from year to year. Accordingly,
beginning with 1956, in conformity with resolutions of the International Astro-
nomical Union, determinations of universal time by the national time services
have been corrected for the annual variation in the rate of rotation, and for the
variation in the position of the meridian due to the motion of the geographic poles.

Corrections for the polar motion were first applied in daily practice at the
Royal Greenwich Observatory, beginning with 1947. Previously, these corrections
had been applied only in the annual analyses of time signals by the Bureau Inter-
national de I'Heure. In 1955, a special Rapid Latitude Service was established
by the International Astronomical Union, for determining the motion of the pole
on a nearly current basis in order that accurate corrections to time determinations
may be derived. Universal time reduced to an invariable mean Greenwich
meridian by correcting U.T.o for the observed polar motion is denoted by the
notation U.T.1. The corrections for each time station are issued periodically by
the Bureau International de ’'Heure; time signals are based on extrapolated values,
and definitive time signal corrections on interpolated values.

The correction for seasonal variation is extrapolated a year in advance, and
published by the Bureau International de I’Heure for use by all observatories
engaged in the determination of time. The measure of universal time obtained by
correcting U.T.o for the observed polar motion and for the extrapolated seasonal
variation in the rate of rotation of the Earth is denoted by the notation U.T.2.
The correction for the annual variation does not wholly eliminate the variability
in the length of the mean solar day, but U.T.2 is virtually free of periodic variations.
(See section 15A for further details).

The determination of ephemeris time. 'To determine the correction 47 for
reducing universal time to ephemeris time, an observed position of a celestial body
recorded in universal time is compared with a gravitational ephemeris in which
the argument is the measure of time defined by Newcomb’s Tables of the Sun; by
inverse interpolation in the ephemeris, to the value of the argument for which the
tabular position is the same as the observed position, the difference of the two
measures of time is immediately obtained.

Observations of the Moon are the most effective means for the practical
determination of 47. However, a direct comparison, in the way just described,
with the lunar ephemeris calculated from Brown’s Tables of the motion of the Moon
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does not give 47 immediately, because Brown’s theory is not strictly gravitational
and his tables are not in complete accord with Newcomb’s Tables of the Sun. In
terms of the departure of the Moon from Brown’s tables, the relation of ephemeris
time to universal time, found from discussions of observations of the Sun, Moon,
and planets over periods extending back to ancient times, is represented by:

AT = +245-349 + 725318 T + 2¢5-950 T2 + 1-82144 B

where T is reckoned in Julian centuries from 19oo January o Greenwich mean
noon, and where:

B = (L, — Ly) + 10"-71 sin (140°-0 T' + 240°-7)

— 47”65 — 12”96 T — 5"-22 T2
in which L, is the tabular mean longitude of the Moon, and L, is the observed
mean longitude, referred to Newcomb’s equinox, at the observed universal time.
Brown’s theory is reduced to a gravitational theory in which the measure of
time is the same as defined by Newcomb’s Tables of the Sun by eliminating the

empirical term from the mean longitude of the Moon, and applying to the tabular
mean longitude the further correction:

AL = —8"72 — 26”74 T — 11"-22 T?
Consequential corrections are required to some of the periodic terms in longitude,
latitude, and parallax. Beginning with 1960, the lunar ephemeris is calculated
from this amended theory, directly from the theoretical expressions for the longi-
tude, latitude, and parallax, instead of from Brown’s tables as formerly. This

improved ephemeris has also been made available for 1952-1959 in the Improved
Lunar Ephemeris.

The development of means for photographic determinations of the position of
the Moon among the stars, and the introduction of the improved ephemeris of the
Moon with which the observed position may be directly compared, enable 47 to
be obtained more expeditiously than by the methods previously available.
Formerly, AT was determined principally by means of meridian observations of
the Moon and observations of occultations of stars, compared with the tabular
positions in the lunar ephemeris calculated from Brown’s tables; the determination
of a definitive value by these methods requires several years. From photographic
positions of the Moon obtained with the dual-rate camera devised by

Markowitz, accurate values of 47 should be determined within a relatively brief
period.

Strictly a distinction should be drawn between U.T. 4+ 47 and E.T., when
AT is determined as above from observations of the Moon. U.T. + 4T differs
from E.T. in two main respects:

(a) by a quadratic expression in T of the form @ + bT + cT?, the coefficients of
which have been observationally determined to be zero, but which almost certainly
differ from zero by significant amounts (it should be noted that the term ¢72 is of a
more fundamental physical character than a + b7T);

(b) by any deficiencies that may be present in Brown’s theory of the motion of
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the Moon, including revision of any constants involved; in particular Brown uses
1/294 for the flattening of the Earth.

Thus U.T. + 4T may differ systematically from ephemeris time as defined by
reference to the Sun’s mean longitude. This is of little consequence to astronomy
since the values of 47 are the best that can be obtained and their significance is
fully understood; but it could assume importance in relation to the precise deter-
mination of the unit of time. In so far as the use of the Ephemeris is concerned
no formal distinction is necessary, and none is made; thus the same symbol 47 is
used to denote the actual difference E.T. — U.T., although it is realised that the
observations do not relate directly to this quantity.

Only for comparatively recent years can reasonably accurate values of 47 be
obtained from the available observations; but fairly reliable values may be deter-
mined back to the beginning of the nineteenth century, and approximate estimates
may be made back into the seventeenth century. Table 3.1 gives the values that
were derived in a comprehensive investigation by Brouwer (4.J., 57, 125, 1952),
supplemented by other determinations for more recent years.

The results of a recent estimation of the variations of 47 during the past three
centuries are illustrated in figure 3.2. The large differences from the general
trend of Brouwer’s values are due to the use of a different value for the tidal
deceleration in the Moon’s mean longitude.

The annual values of 47 are tabulated for a limited interval ending with the
current year in A.E., page vii or viii. For years up to 1948 inclusive, they are taken
from Brouwer’s smoothed values; for the later years, definitive values available
at the time the Ephemeris is prepared are supplemented by provisional and extra-
polated values to extend the table to the current year. *

D. HISTORICAL DEVELOPMENT OF SYSTEMS OF
TIME MEASUREMENT

Until the introduction of the pendulum clock in the latter half of the seven-
teenth century, no means of reasonably accurate timekeeping was available.
Besides the sundial, methods had been known since ancient times for determining
local time by observations of the Sun or stars, within the limits of accuracy of the
existing instruments, and the concept of mean solar time together with the principles
for determining the equation of time extends back to ancient Greek astronomy; but
with the crude mechanical timekeeping devices that were available, satisfactory
measurements of intervals of time for interpolating between astronomical obser-
vations could not be made. The earliest mechanical clocks introduced during
medieval times were not much improvement, and the early pendulum clocks were
not highly reliable; not until the late eighteenth century had clocks become
sufficiently improved, and watches and chronometers sufficiently perfected, for
accurate time to be generally available, especially at sea.

*Current years of the 4.E. now show on page vii the relationships between I.A.T., E.T.,
U.T.1 and U.T.C. from 1956 onwards.
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As long as the only means of obtaining accurate time was by direct astro-
nomical observation, apparent solar time was in general use for practical purposes,
and it was the argument in The Nautical Almanac and other national ephemerides
until the early nineteenth century. Determinations of local apparent time were
commonly made by observing altitudes of the Sun or stars; this is still one of the
most generally useful methods, especially at sea. Mean time when needed for any
purpose was obtained by applying the equation of time to the apparent time.

The equation of time, in the sense of the correction to be applied to apparent
time in order to obtain mean time, had been tabulated in the national ephemerides
from their earliest inception, for the express purpose of regulating clocks and of
determining the argument for entering astronomical tables. As clocks were
improved, and chronometers were perfected and came into extensive use at sea,
apparent time was gradually superseded during the late eighteenth and early
nineteenth centuries by local mean solar time for general civil use. When apparent
time was replaced by mean time as the argument in the national ephemerides, the
_equation of time was supplemented by the addition of an ephemeris of sidereal
time at mean noon to facilitate the determination of mean solar time, independently
of the equation of time, by the alternative method of calculating the mean time from
sidereal time.

The equation of time has since come to signify the opposite of the original
concept. It now denotes the correction for obtaining apparent time from the mean
time kept by clocks and chronometers, which are regulated by determinations of
mean time from observations of sidereal time.

Previous to 1925, mean solar time was reckoned from noon in astronomical
practice. The mean solar day beginning at noon, 12" after the midnight at the
beginning of the same civil date, was known as the astronomical day. Mean solar
time reckoned from mean noon on the meridian of Greenwich was designated
Greenwich Mean Time (G.M.T.); reckoned from mean noon on a local meridian,
Local Mean Time (L.M.T.). Beginning with the volumes for 1925, universal
time was introduced in the national ephemerides under various names, a dis-
continuity of 121 being made in the arguments, so that December 315 in the
volumes for 1924 designated the same instant as January 1-0 in the volumes for
1925. In The Nautical Almanac the designation Greenwich Mean. Time (G.M.T.)
was still used for the new reckoning, together with Local Mean Time (L.M.T.)
where appropriate, whereas in The American Ephemeris the designation Greenwich
Civil Time (G.C.T.) was adopted, together with Local Civil Time (L.C.T.). This
confusion in terminology was finally removed by dropping both designations and
substituting Universal Time (U.T.); it is, however, now called Greenwich Mean
Time (G.M.T.) in the navigational publications of English-speaking countries.”
Care is necessary to avoid confusion; to distinguish the two reckonings that have
both been called Greenwich Mean Time, the designation Greenwich Mean Astro-
nomical Time (G.M.A.T.) should be used for the reckoning from noon. The
designation U.T. always refers to time reckoned from Greenwich midnight, even
for epochs before 19235.

*In astronavigation the argument G.M.T. implies U.T.1, but in general communications
G.M.T. usually means U.T.C. For astronomical purposes the term U.T. is preferable.
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A =SB =Nt
Year AT Xear AT Year AT Year . AT Year AT
s s s s 8
1621 +98 1820:5 +5-15 1860-5 +4-27 1900-5 — 3-90 1040-5 +24-20
1635 +38 1821 4-64 1861 2-68 1901 — 2-87 1941 24-99
1630 —13 1822 5-36 1862 2-75 1902 — 0-58 1942 2497
1645 +13 1823 3:49 1863 2-67 1903 + 0-71 1943 2572
1653 —10 1824 3-27 1864 1-94 1904 + 1-80 1044 26-21 |
1662 — 3 1825-5 +2:45 1865-5 +1-39 1905-5 + 3-08 10455 +26-37
1826 4-03 1866 1-66 1906 463 1946 26-89 |
1827 1-76 1867 0-88 1907 5-86 1947 27-68
1828 3-30 1868 +o0-33 1908 7-21 1948 28:13
1829 1-00 1869 —o0-17 1909 8-58 1949 28-94
1681 —13-5 1830:5 +2-42 1870-5 —1-88 1910:5 +10:50 1950:5 +29:42
1710 12:0 1831 0-94 1871 3:43 1911 12-10 1951 29-66
1727 7-6 1832 2:31 1872 4-05 1912 1249 1952 30-29
1738 2100 e83g ik 2270 T1873 577 1913 1441 1953 30:96
1747008 —couenniBsg ru=0220l 3874 7:06 1914 1550 1954 31-09

1835-5 +o0-03 18755 —7:36  1915-5 +15-81  1955:5 +31'59
1836 —o0-05 1876 .67 1916 17-52 . 1956 31:52
1837 —o0-06 1877 7:64 1917 19-01 1957 31:92
1838 —o:57 1878 793 1918 18:39 1958 32°45
1839 +o0-03 1879 7-82 1919 19:55 - 1959 32+91

17609 + 2-1 1840:5 —0-47 1880-5 —8-35 1920-5 +20-36 1960-5 +33-39
17741 6-6 1841  +0-98 1881 791 1921 21-01 1961 33-80
1785-1 8-3 1842 —0-86 1882 8-03 1922 21-81 1962 34+23
17926 7.4 1843 +2-45 1883 9:-14 1923 2176 1963 3473
18018 + 5.7 1844 +o-22 1884 8-18 1924 22-35 1964 35-40 1
1811-9 + 4-7 1845-5 +0-37 1885-5 —7-88 1925-5 +22-68 1965-5 +36-14

1846 2-79 1886 7-62 1926 22-94 1966 36.99
1847 1-20 1887 717 1927 22-93 1967 37-87
1848 3-52 1888 8-14 1928 22-69 1968 38-75
1849 1-17 1889 759 1929 22-94 1969 39-70

1850:5 +2-67 1890-5 —7-17 19305 +23-20 1970'5 +40-70
1851 3-06 1891 7-94 1931 23-31 1971 41-68
1852 2-66 1892 8-23 1932 23-63 1972 42-82
1853 2:97 1893 7-88 1933 2347
1854 3-28 1804 7-68 1934 23-68

1855-5 +3-:31  1895:5 —6-94  1935-5 +23:62
1856 3:33 1896 689 1936 2353
1857 3-23 1897 711 1937 2359
1858 3-60 1898 5-87 1938 23-99
1859'5 +3-52. 18995 —5-04  1939-5 +23-80

For the years 1621 to 1948-5 the values of 47 are the unsmoothed values given by
Brouwer in A.J., 57, 125-146, 1952 under the heading 4t in Table VIII; Brouwer also
gives smoothed values and certain derived data. For 19495 to 1955-5 the values have
been derived at the U.S. Naval Observatory, generally from a straight mean of the meridian
and occultation results. From 1956-5 onwards the values have been derived from an atomic
time scale that has been fitted to the observed values of ephemeris time from lunar
observations. See page vii of the current Ephemeris for later values.

See also note on page 523.
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Figure 3.2. (a) General trend of AT, 1660—1972. (b) Excess length of day

The above figure is reproduced from the communication by L. V. Morrison on ‘“The
rotation of the Earth AD 1663-1972 and the constancy of G’ in Nature, 241, 519, 1973.
The upper graph (a) shows annual mean values of 4T deduced by comparing lunar occulta-
tion observations with a lunar ephemeris in which the correction

—0”-08 + 174 (T — 0-63) — 10" (T — 0:63)?

has been applied to the expression for the mean longitude used in calculating the lunar
ephemerides in the 4.E. 'The correction is such that the time-scale (denoted by ET*) of the
amended ephemeris corresponds as closely as possible to the international atomic time scale
over the period 1955-1972. The three solid curves correspond to constant rates of increase
in the length of the day. The lower graph (b) shows the excess length (in milliseconds) of
the mean solar day compared with an ephemeris day. The dashed line shows the average
rate of increase in the length of the day over the period in milliseconds per century.

»



92 EXPLANATORY SUPPLEMENT

Systems of mean time. A measurement of time expressly based on an average
of apparent solar time is essentially dependent upon the particular theory of the
Sun that is adopted for defining the measure. Mean solar time, derived from
either the equation of time or the sidereal time, depends upon the expression for
the right ascension of the fictitious mean sun, and when derived from the observed
sidereal time it depends further upon the adopted right ascensions of the stars.
The right ascension system of the stars is necessarily revised from time to time,
and every revision of the star system introduces a systematic difference in the
numerical measure of time obtained from observation; this is unavoidable, and
represents essentially an improvement in the accuracy of time determinations.
Of a different nature is the practice, that has been generally followed in the past,
of revising the right ascension of the fictitious mean sun whenever the adopted
tables of the Sun have been superseded by improved tables, in order to make it
conform as nearly as possible to the mean longitude of the Sun; the adoption of a
different expression to define the mean sun defines a different measure of time.
This traditional practice is not necessary. In order to obtain a satisfactory
formal measure of time, it is not essential that the right ascension of the fictitious
mean sun be adjusted to as close an agreement as possible with the mean longitude
of the Sun; the conditions imposed on it preclude rigorous agreement, and no
practical advantage is gained by revising the system of time measurement to conform
more closely to the actual mean sun whenever an improved theory of the Sun is
constructed, especially in view of the departures now known to occur because of
variations in the rotation of the Earth.

The standard of time, like the standard system of fundamental astronomical
constants, could with advantage be retained without change for at least very long
periods, if not indefinitely; this has been advocated in the past by Sir John Herschel,
Newcomb, and others. In the reduction and discussion of astronomical obser-
vations, the recorded times must be reduced to the same basis. The diversity of
the tables and practices, and the differences in the details of the procedures for
deriving time, during the long period covered by systematic observations, have
often caused confusion and error.

In highly precise determinations of time, account must also be taken of the
particular constants and formulae adopted for calculating the ephemerides of the
stars, especially the nutation. When mean time was first introduced in the national
ephemerides, clocks were not sufficiently perfected for the theoretical distinction
between apparent sidereal time and mean sidereal time to be of any practical
importance; it was therefore disregarded, and the very imperfect expressions
then in use for the nutation were of no consequence for the purpose of time
determination. The Riefler clock, introduced about 189o, was the earliest time-
piece with an accuracy comparable with determinations of time from observation.
As the accuracy of clocks increased, the explicit recognition of mean sidereal
time as distinguished from apparent sidereal time became necessary, just as
mean solar time had become necessary at an earlier stage in the development of
clocks. The term uniform sidereal time was often used at first; but this measure
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is not strictly uniform, and the same terminology as used for solar time is
preferable.

After the introduction of the Shortt free-pendulum clock in 1921, the removal
of the short-period terms of nutation from the observed clock corrections was
necessary in order to check the clock satisfactorily; these terms were included in
the ephemerides of the sidereal time of o®, beginning with 1933.

The Bureau International de I'Heure, situated at the Paris Observatory, was
founded to coordinate the practices followed by the national time services in
observations and calculations for the determination of time, and to establish precise
international standards; it came under the auspices of the International Astro-
nomical Union in 1920.

Ephemeris time. 'The possibility of variations in the rate of rotation of the
Earth from tidal friction and other causes was realized on a speculative basis by
several writers as early as the eighteenth century; but the first actual evidence that
the rotation may not be uniform was the continued failure of successive theories
of the motion of the Moon to represent the observed motion. In ephemerides
calculated from gravitational theories, the tabular times are the values of a uniform
measure of time and do not denote the same instants as the numerically equal
values of mean solar time measured by the variable rotation of the Earth. Con-
sequently, at the instant of any observed mean solar time, the actual position of a
celestial body differs from the ephemeris position for the numerically same tabular
time. The observed apparent motions of the Sun, Moon, and planets are a means
of measuring long intervals of time on the uniform scale defined by the laws of
motion. From an analysis of the discrepancies between observations recorded in
mean solar time and the theoretical motions in uniform time, the accumulated
difference between the measures of time at the instant of observation may be found,
and the variations in the rotation of the Earth determined. The discrepancies
are most evident for the Moon, due to the rapidity of its motion and the accuracy
with which the inequalities can be observed because of its proximity to the Earth.

The first variation to be recognized was a secular retardation of the rate of
rotation. Its existence was established about the middle of the nineteenth century,
when Adams and Delaunay showed that the amount of the secular acceleration of
the mean motion of the Moon produced by gravitational perturbations is only
about half the actual acceleration which had been determined by Dunthorne,
Mayer, and Lalande in the eighteenth century from the accumulated records of
observations during the preceding 2,500 years. At about the same time, Ferrel
and Delaunay showed from dynamical principles that, as Mayer had realized, the
tides would exert a retarding action on the rotation of the Earth, accompanied by a
variation of the orbital velocity of the Moon in accordance with the conservation of
momentum. The excess of the observed secular acceleration over the gravitational
value is therefore ascribed to the tidal retardation of the rotation.

In addition to the secular departure of the Moon from theory, further variations
that are irregular in character occur. In the construction of lunar tables, the
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principal part of this additional departure has been represented by a long-period
empirical term in the longitude, based on past observations; but the different
empirical terms adopted by successive investigators have invariably failed to
represent subsequent observations. Moreover, further small irregular fluctuations
of shorter duration still remained; Newcomb suggested that these may be due to
irregular variations in the rate of rotation of the Earth, but at that time conclusive
evidence could not be obtained.

Not until after Brown’s lunar theory had become available for comparison
with observation could confidence be felt that the gravitational theory of the motion
of the Moon was sufficiently free from imperfections to enable the discrepancies
with observation to be ascribed with assurance to variations in the rotation of the
Earth. Furthermore, any apparent fluctuations in the motion of the Moon that
are due to variations of the rotation must be accompanied by exactly similar
fluctuations in the motions of the other bodies in the solar system, proportional in
magnitude to the respective mean motions; these deviations are difficult to detect
with certainty, but their existence was finally established by the virtually conclusive
investigation by Spencer Jones in 1939 (M.N.R.A.S., 99, 541, 1939) and later
confirmation of his results by others.

Meanwhile, the accuracy of crystal-controlled clocks was becoming comparable
with that of the rotation of the Earth. By intercomparisons of the observed rates of
the clocks of different national time services, Stoyko in 1937 detected a periodic
seasonal variation in the rate of rotation. It has since been confirmed, and
accordant results obtained at different observatories, as the clocks and the astro-
nomical observations have been further improved. Even the minute variations
due to Earth tides can now be detected.

Because of the secular, irregular, and periodic variations in the rate of rotation
of the Earth and in the measure of mean solar time determined by this rotation, a
proposal to establish a more uniform fundamental standard of time was referred to
the International Astronomical Union in 1948 by the Comité International des
Poids et Mesures, and was considered at the Conference on the Fundamental
Constants of Astronomy held at Paris in 1950. At this Conference, the measure
defined by Newcomb’s Tables of the Sun was proposed by Clemence. The
correction A7 that reduces universal time to the measure defined by Newcomb’s
tables, and the correction to the mean longitude of the Moon that enables this
measure to be determined from observations of the Moon, had previously been
derived by Clemence (4.J., 53, 169, 1948) from the results found by Spencer Jones
for the departures of the Sun and Moon from their tabular positions. The
Conference adopted a resolution recommending that this measure of time be
adopted, be expressed in units of the sidereal year at 1900-0, and be designated by
the name Ephemeris Time which had been suggested by Brouwer. This recom-
mendation was adopted in 1952 by the International Astronomical Union at its
General Assembly in Rome.

Further consideration indicated that the tropical year would be preferable as
the unit, since it is directly accessible to observation and somewhat more funda-
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mental; the sidereal year cannot be determined without a knowledge of the value
of the precession. Accordingly, the Comité International des Poids et Mesures at
its session in September, 1954, in Paris, proposed to the Tenth General Conference
on Weights and Measures which met in Paris during the following month that the
fundamental unit of time be the second, redefined as 1/315 56925-975 of the length
of the tropical year for 19oo-0. The Conference authorized the Comité to adopt
a unit after formal action on the definition had been taken by the International
Astronomical Union. The Union, at its General Assembly in Dublin in September,
1955, approved the definition proposed by the Comité. However, the tropical
year is understood to be the mean tropical year defined by Newcomb’s expression
for the geometric mean longitude of the Sun; the value of the second required for
exact agreement with Newcomb’s tables is 1/315 56925-97474 of the tropical year.
Consequently, the Comité at its session in Paris in October, 1956, under the
authority given by the Tenth General Conference, adopted in place of the value
formerly recommended the slightly more precise value 1/315 56925-9747 of the
tropical year at 19goo January o, 12® E.T. At this session, a Comité Consultatif
pour la Définition de la Seconde was established, to coordinate the work of
physicists on atomic standards and of astronomers on the astronomical standard
of ephemeris time.

The fundamental epoch of ephemeris time was defined in 1958 by the Inter-
national Astronomical Union at its General Assembly in Moscow (see sub-section

Bors).
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Additional Note (1973)

As a result of the rapid development of atomic time standards, the unit and scale of
time for general use are no longer based on the ephemeris second. The SI second is now
defined so that the frequency corresponding to a certain resonance of the ciesium atom is
9 192 631 77770 cycles per second. This numerical value is such that the SI second is equal
to the observationally determined value of the ephemeris second over the period 1956 to
1965. The scale of international atomic time (I.A.T.) is such that ephemeris time, as

defined by the current lunar ephemeris, is equal to I.A.T. + 32%2 with an accuracy of about
0°-1.




4. FUNDAMENTAL EPHEMERIDES

A. INTRODUCTION

The first part of the Ephemeris (pages 10 to 235 in 1960) is devoted to the
fundamental ephemerides of the Sun, Moon, and planets, which are designed to
provide a rigorous reference system to which observations can be referred (see
section 1D). The purpose of this section is primarily to specify in precise detail
the bases of these ephemerides; and this is done for the Sun, Moon, and planets
in sub-sections B, C, and D respectively. Sub-section E contains brief references

to the ephemerides of other members of the solar system, for which no data are
given in the Ephemeris.

Sub-sections F and G deal with the more practical uses of the ephemerides:
the formation of transit ephemerides to facilitate observation and the reduction
of the observations, and the comparison of observations with theory.

The tabular argument for the ephemerides is expressed in ephemeris time;
see section 3 for the definition of ephemeris time and a discussion on its relation
to universal time. In the astronomical system of measures, the usual unit is the
ephemeris day of 86400 ephemeris seconds. The fundamental unit of mass is
the mass of the Sun. The unit of length is the astronomical unit (a.u.), defined as
the unit of distance in terms of which, in Kepler’s Third Law 7% a® = k% (1 + m),
the semi-major axis (a) of an elliptic orbit must be expressed in order that the
Gaussian constant k may be exactly 0-01720 20989 5, when the unit of time is the
ephemeris day (7Trans. I.A.U., 6, 20, 336, 357, 1939); in astronomical units, the
mean distance of the Earth from the Sun, calculated by Kepler’s law from the
observed sidereal mean motion z and adopted mass 7z, 1s 1-00000 003.

A full discussion of the system of astronomical constants is given in section 6;
no change has been made in the conventionally adopted value of any fundamental
constant in recent years. *

The notation used in this section is summarized in section 1G. In particular
the symbol 7 is used to denote time measured from the fundamental epoch of

1900 January o at 12h E.T. in Julian centuries of 36525 days each of 86400
ephemeris seconds.

Except where otherwise stated, the tabular positions are apparent positions,
that is the positions in which the Sun, Moon, and planets would actually be seen
from the centre of the Earth, displaced by planetary aberration (section 2D) and

96

*New values were introduced into the ephemerides for 1968 onwards. See pages 497 to
521 and the Explanations of current years of the A.E.
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referred to the coordinate system determined by the instantaneous equator,
ecliptic, and equinox. The value used for the light-time at unit distance is
4988-38 corresponding to the adopted constant of aberration. For comparison
with photographic observations, astrometric positions are given for Pluto and the
minor planets, for the latter in addition to the apparent positions. Full details of
the methods to be used for the comparison of observations with these ephemerides
are given in sub-section G. Ephemerides that are intended for theoretical
purposes, where a fixed reference system is needed, are referred to the mean equinox
at a convenient epoch, usually 1950-0. 'The methods of passing from one reference

system to another, and in fact from one coordinate system to another, are dealt
with in section 2.

In order to standardize the dates for which osculating elements of planets,
minor planets, and comets are given, the International Astronomical Union (Zrans.
LA.U., s, 315, 1936) recommended fixed epochs of osculation at the midnights
following integral Julian dates that are exactly divisible by 400. This followed
an earlier resolution (Zrams. 1.A.U., 3, 226, 301, 1929) that the dates used in
giving the osculation epochs of elements of comets and minor planets should be the
midnight following an integral Julian date that is exactly divisible by 40. More
recently the Union (T'rans. 1.A.U., 7, 65, 1950) recommended the use of standard
10-day dates (midnights following integral Julian dates exactly divisible by 10)
for ephemerides of minor planets and comets, thus superseding an earlier recom-
mendation to use 8- (4- or 2-) day dates. The tabular dates for which elements
are given in the Ephemeris conform to this system of 400-, (80-), 40-, 10-day dates.
The 400-day dates from 1960 onwards are:

243 7200-5 1960 Sept. 23 244 0000-5 1968 May 24 244 2800-5 1976 Jan. 23
243 7600:5 1961 Oct. 28 244 0400-5 1969 June 28 244 3200-5 1977 Feb. 26
243 8000-5 1962 Dec. 2 244 08005 1970 Aug. 2 244 36005 1978 Apr. 2
243 8400-5 1964 Jan. 6 244 1200-5 1971 Sept. 6 244 4000-5 1979 May 7
243 8800-5 1965 Feb. 9 244 1600-5 1972 Oct. 10 244 4400-5 1980 June 10
243 9200-5 1966 Mar. 16 244 2000-5 1973 Nov. 14 244 4800-5 1981 July 15
243 9600-5 1967 Apr. 20 244 2400-5 1974 Dec. 19 244 5200-5 1982 Aug. 19
The tabular quantities at times other than those for which they are tabulated
may be obtained by interpolation (see section 16); for this purpose first differences
are included in many of the ephemerides.

With the exception of the E.T. of ephemeris transit, none of the ephemerides
considered in this section involves hour angles or is concerned with the rotation of
the Earth. For the purpose of constructing almanacs for navigational or surveying
purposes, the ephemerides in terms of E.T. may be converted to ephemerides in
terms of U.T. by interpolating the tabular values to a time 47" later than those for
which they are tabulated. An ephemeris for o U.T. can be obtained by inter-
polating the tabulated ephemeris to an E.T. of o® + A7. If (as is almost always
the case) second differences are negligible, the interpolated values are obtained by
adding algebraically to each tabular value the correction (47/h) x the first
difference, where % is the tabular interval in the same units as 47. 'The derivation
of U.T. of Greenwich transit from the tabulated E.T. of ephemeris transit is
discussed in sub-section F.

*499°%-012 from 1968.

*




98 EXPLANATORY SUPPLEMENT

B. THE SUN *

The ephemerides of the Sun are derived from the geometric longitude referred
to the mean equinox of date, the latitude referred to the ecliptic of date, the log-
arithm of the radius vector, and the mean obliquity of date, that are taken from
Newcomb’s Tables of the Sun (A.P.A.E., 6, part 1, 1895), afterwards referred to as ‘
“ the Tables ”. The mean orbital elements and constants on which these tables
are based are as follows, where the time interval from the epoch is denoted by T
when measured in Julian centuries of 36525 ephemeris days, by D = 3-6525T
when measured in units of 10000 ephemeris days, and by d = 10000D = 365257
when measured in ephemeris days.

Epoch 1900 January o-5 E.'T. = J.D. 241 5020-0

Geometric mean longitude, mean equinox of date

L = 279° 41" 48”-04 + 1296 02768”-13T + 1”-0897*

= 279°:69667 8 + 0°-08564 73354d + 0°-00002 267D?

Mean longitude of perigee, mean equinox of date
281° 13" 15”04 + 6189”-03T + 17-63T% + 0”-012T*
281°-22084 4 + 0°-00004 70684d + 0°-00003 39D? + 0°-00000 007D?
Mean anomaly, L — I'

g = 358° 28’ 33”-00 + 1295 96579”-10T — 0”-54T2 — 0”-012T3
358°-47583 3 + 0°-98560 02670d — 0°-00001 12D?* — 0°-00000 007D?

Il

Eccentricity
e

0:01675 104 — 0-00004 1807 — 0:00000 01267T*
0:01675 104 — 0-00001 1444D — 0-00000 00094D?
Mean obliquity of the ecliptic

€ 23° 27" 08”-26 — 46”-845T — 0”-00597* + 0”-00181 7"
23°:.45229 4 — 0°-01301 25T — 0°-00000 16472 + 0°-00000 05037
23°:45229 4 — 0°-00356 26D — 0°.00000 0123D? + 0°-00000 00103D?
Annual rate of rotation of the ecliptic

7 = 0”:4711 — 0”.0007T = 0°-00013 086 — 0°:00000 0053D
Longitude of axis of rotation

IT = 173° 5706 + 54"-77T = 1739510 + 0°-2499D

The expression for the obliquity of the ecliptic was originally given by

Newcomb with 7" measured in tropical centuries (see section 2B), but was later
given without change in the coefficients in terms of Julian centuries; the difference
is so small that either form may be used (and is so used) according to whether
values are required for the beginning of a Besselian year, or for the epoch of date.
The latter (7" in Julian centuries) should be regarded as the definitive one if
distinction is ever required.

I

The mean distance a of the Sun (strictly, the constant part of the radius
vector), as adopted by Newcomb, is derived from his expressions for the mean
motion with the addition of corrections for the action of the planets. Newcomb’s
value of log a = 0-00000 o010, from which @ = 1.00000 023, thus differing from
that derived simply from Kepler’s law. The expressions for the Sun’s mean
motion lead also to the following lengths of the principal years.

*Formulae for the corrections to reduce the tabulated values to the IAU system of astrono-
mical constants are given in the A.E. for 1968 onwards.
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Tropical year (equinox to equinox)

3659-24219 878 — 09.00000 6147 = 3659 o5h 48™ 46%.0 — o8-5307T
Sidereal year (fixed star to fixed star)

3659.25636 042 + 0%.00000 o117 = 3659 06" 0g™ 0gS-5 + 05017
Anomalistic year (perigee to perigee)

3659-25064 134 + 09.00000 3047 = 3659 06" 13™ 538-0 + 08267
Eclipse year (Moon’s node to Moon’s node)

3469.62003 1 + 04.00003 2T = 3469 14F 52m 5087 + 28.8T

The values of L and g for every tenth day, the values of I"and e at the beginning
of the calendar year, and of =, II, and the trigonometric functions of € for the
beginning of the Besselian year, are tabulated in A.E., page 50.¥ They are derived
simply by substituting the appropriate value of T in the expressions quoted above.
The mean obliquity is not tabulated, though it is required for the calculation of the
true obliquity.

Example 4.1. Sun’s mean elements and precessional constants
1960 March 7 at o? E.T.

Julian date at o on 1960 March 7 (4.E., p. 2) 243 70005
Julian date at epoch of the Tables 241 5020-0
" Interval in days, d 2 198¢-5
Fraction of Julian century, T' = d/36525 0-60179 33
o o g

Constant term 279-69668 358-47583

term in d +65-02126 +63-98667

term in T2 or D? + 11 — 5

term in T° or D® o

Sum 344-71805 62:46245

Epoch 1960-0
For the mean obliquity of the ecliptic ¢, and the precessional constants, T in section
2B is measured in tropical centuries and its value for 1960-0 is 0-60; for example:
€ = 23° 27" 08”.26 — 28”.107 — 0”002 + 0”:000 = 23° 26" 40”-15
p = 5072564 + 0”-0133 = 507-2697

In the Ephemeris the geocentric spherical coordinates are presented on facing
pages (18 to 33):T ecliptic coordinates on the left-hand pages and equatorial
coordinates on the right-hand pages. The tabulated quantities are described
below. No illustration is given of the derivation of the geocentric ecliptic coordin-
ates, since detailed precepts and illustrations are given in the Tables. These
precepts are not followed precisely, though no significant departure is made;
errors and misprints in the Tables have naturally been corrected before use; the
entries in some tables have been replaced by direct calculation of the terms in the
formulae from which they were constructed; and, for computing convenience,
modifications have been introduced in the intervals of calculation and methods of
subtabulation. The resulting coordinates, which are calculated to at least one
more decimal than is printed, are smoother than those that would have been
derived by the rigid application of Newcomb’s precepts but differ from them by
negligible amounts.

*See pages 11 and 216 in 4.E. 1972—3, pages 9 and 216 in 4.E. 1974 onwards.
tSee pages 20 to 35 in A.E. 1972 onwards.
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The longitude is the geometric longitude referred to the mean equinox of the
beginning of the year; it is derived from the quantity obtained from the Tables by
subtracting the precession in longitude, which is the precessional displacement of
the equinox along the ecliptic since the beginning of the Besselian year. It may be
reduced to the (standard) mean equinox of 1950-0 by applying the reduction,
which is constant during any one year, given in the footnote.

The apparent longitude is not tabulated directly, since it is less likely to be
used; it can be obtained by applying to the tabulated longitude the reduction to
apparent longitude, given in the adjacent column. This reduction is the sum of:
the precession in longitude from the beginning of the year to date = pr; the nu-
tation in longitude, including short-period terms, = 4i; and the correction for
aberration, taken as —20":47/R, where R is the Sun’s radius vector. The
precession in longitude and the nutation in longitude are tabulated to 0"-001, a
precision considerably in excess of that possible for the Sun’s longitude. The
correction for aberration is not tabulated: the aberration is the change of the
geometric longitude in the time taken by light to travel the distance R from the
Sun to the Earth; since, by the laws of celestial mechanics, the motion in longitude
must be proportional to 1/R?, the correction is proportional to 1/R. The constant

of proportionality is by definition the constant of aberration, for which the value of
20"-47 is adopted.

Example 4.2. Longitude of the Sun
1960 March 7 at o E.T.

Beginning of Besselian year 1g60-0 is 1960 January 19.345 = J.D. 243 6934-845
Interval in days to o on 1960 March 7 65-655
Fraction (7) of the tropical year 0:1797 57
Precession in longitude on 1960 March 7, pr + 9%036
Nutation in longitude, 4 (from series)

— 0744
Aberration (R = 0-9924 841) —20-625
Reduction to apparent longitude —12:333 . . ; ’
Longitude referred to mean equinox of date (Tables) 346 26 23-47
Precession in longitude 9-04
Longitude referred to mean equinox of 1960-0 346 26 1443

The latitude is tabulated for the ecliptics of date, of the beginning of the
Besselian year, and of 1950-0. 'The latitude for the mean ecliptic of date is given
directly by the Tables; and, since the latitude is unaffected by nutation and the
correction for aberration is negligible, this may be regarded as the apparent latitude.
It is reduced to the ecliptic of the beginning of the year by applying the correction
—0”-471 7 sin (Az + 5°:5), and to the ecliptic of 1950-0 by the further addition of
b sin (A, + ¢), where b and ¢ (for 1950-0) are the values tabulated in A.E., page 50, *
and A, is the tabulated longitude referred to the equinox of the beginning of the
year. Since there are only a small number of terms which have to be combined to
form the latitude, it is tabulated to the same precision, 0”-01, as the individual
contributions in the Tables.

*See page 11 in A.E. 1972-3, and page 9 in A.E. 1974 onwards.
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Example 4.3. Latitudes of the Sun

1960 March 7 at o E.T.
Latitude, ecliptic of date (Tables) —0%65
—0":471 7 sin (346°'5 + 5°5) = —"-471 x 18 X —-14 + o1
Latitude, ecliptic of 1960-0 —0-64
+ b sin (346° 26" + ¢); b = —4"-71, ¢ = 5° 29" (4.E., p. 50) + -66
Latitude, ecliptic of 1950-0

+ 0-02

The horizontal parallax is the angle subtended at the Sun by the equatorial
radius of the Earth; the tabulated values are calculated by dividing the adopted
constant, 8”-80, by the radius vector®. The latter, given on the right-hand pages,
is obtained directly from the values of its logarithm from the Tables; it is the actual
geometric distance from the centre of the Sun to that of the Earth, measured in
astronomical units, at the time stated; no correction for aberration is applied.

The semi-diameter is the apparent value as seen from the centre of the Earth,
and is obtained by dividing an adopted value (16" o1”-18) at unit distance by the
radius vector. The adopted semi-diameter at unit distance is an enhanced value,
which includes an allowance for irradiation, although this should strictly be
independent of the distance; the variation of the correction from its mean value
can be about 0”-02, i.e. 0-017 of the mean value. The adopted value is that used
in The Nautical Almanac for years immediately preceding 1960 and differs from
that (16" o1”-50) used before 1960 in The American Ephemeris because of a different
allowance for irradiation. A smaller value (15" 59"-63) is used in the calculation
of eclipses (see section gA). The values adopted for the semi-diameter at unit
distance are not necessarily the best possible; but they are sufficiently close to the

true values for any variation to be treated, in the analysis of observations, as a
small quantity.

Example 4.4. Radius vector, H.P., and S.D. of the Sun
1960 March 7 at ot E.T.

Log radius vector (Tables) 9-9967 2355
Radius vector (R) 0-9924 841
Horizontal parallax = 8”-80/R = 8”.87
Semi-diameter = (16" o1”-18)/R = 16’ 08”46

The Sun’s apparent right ascension and declination are referred to the true
equinox and equator of date, and are corrected for aberration. In principle, they
are derived from the corresponding apparent longitude, latitude, and obliquity of
the ecliptic by the standard conversion formulae; in practice, however, a different
procedure is followed for reasons given in detail below. In the direct conversion
the true obliquity of the ecliptic, as tabulated on the left-hand pages, is used; it is
obtained by applying the nutation in obliquity (4e) to the mean obliquity
(ex). Two minor modifications may be introduced: the first is due to the
small range in the values of the obliquity of the ecliptic which enables its
trigonometric functions to be expressed as linear series of the obliquity itself, or
of its difference from some adopted mean; the second arises from the small range
*The name ‘“True Distance’’ is used in the 4.E. for 1972 onwards.
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of latitude which enables the conversion formulae to be written in the form:

cos a cos 8 = X/R = cos A
sin acos 8 = Y/R = sin Acos e — 19-29 B’ x 1077
sin 8 = Z/R = sin Asin € + 4448 B” x 1077
where B” is the number of seconds of arc in the latitude and where all coordinates,
and the obliquity of the ecliptic, are referred to the same equinox, equator, and

ecliptic. The approximation is adequate even for 50 years from the adopted
epoch when B” may reach 24.

Example 4.5. Equatorial coordinates of the Sun-— direct method
1960 March 7 at o? E.T.

Mean obliquity (7' = o0-60 + 0:00179), €x 23° 26’ 407067

Nutation in obliquity, de —8-836

True obliquity of the ecliptic, e = €, 23 26 31-231

Apparent longitude, Ay, = 346° 26" 14”43 — 12”-33 = 346° 26" 02”-10

sin A\, —o0-2345 6671 sin er +0-3978 2067 Bsx —o-65

cos Ay +0:9721 0002 cos er +0-9174 6319

X4s/R +0-9721 0002 tan a, —o0-2213 8161 ay = 23" 10m 045103
Yis/R —o0-2152 0507

Zs/[R —o0-0033 1838 = sin 8, Oi .= —55. 21 $65.¢

Sum of squares 10 — 1 X 1078

The quadrant in which a lies is determined by the signs of X,/R and Y,/R, since cos 8,
is positive. The small difference from the tabulated value of a, is partly due to the
approximation used in calculating the aberration.

In practice the above conversion is done with geometric values of the coord-
inates in three steps: firstly, from Ay, By to Xy, Yy, Zy, referred to the mean
equinox, ecliptic,and equator of date; then to X,, Y, Z,,referred to the true equinox
and equator; and thirdly to a,, 8, referred to the true equinox. This is done to
provide unpublished geometric values of the Sun’s equatorial rectangular coor-
dinates Xy, Yy, Z, referred to the mean equinox of date. These are used as a
first step towards the geometric values of the equatorial rectangular coordinates
referred to the mean equinoxes and equators of 1950-0 and of the beginning of the
year, as published, and to the true equinox and equator of date, as required in the
systematic conversion of heliocentric to geocentric coordinates for the planets.
For the sole purpose of calculating apparent right ascension and declination it
would be much easier to start from the apparent longitude and latitude, as above,
or even from the geometric longitude and latitude referred to the true equinox and
ecliptic. The method actually used entails an additional step in the conversion
and requires that the right ascension and declination must each subsequently be
corrected for planetary aberration; the advantages in being able to use a standard
systematic procedure for the geometric ephemerides of both Sun and planets
outweigh these disadvantages.

The corrections to equatorial rectangular coordinates to allow for nutation,
that is to convert from mean to true equinox and equator, are given in section
2C; in the case of the Sun they may be reduced to:
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107 (X; — Xy) = —52:84 4" ¥,
107 (Y, — Yy) = +4448 4" Xy — 2103 4" Y,
107 (Zy — Zy) = +19-29 4" Xy + 4848 de” Yy
where 45" and de” are the number of seconds of arc in the nutation in longitude
and obliquity respectively.

Example 4.6. Equatorial coordinates of the Sun—indirect method
1960 March 7 at ot E.T.

Longitude, mean equinox of date, Ay 346° 26" 23”47
Obliquity, mean equinox of date, ey 23 26 40 -067
sin Ay —0-2344 6600 sin ey +0-3978 5998 B’ —o-65
cos Ay +0:9721 2432 cos ey +0-9174 4615 R 0-9924 841
Xx +0-9648 1793 Yu —0:2134 9104 Zy —0-0925 8639
(X + Yii + Zg — R? =0 X 107%)
AY = —o0"744 de = —8”.836
Xr — Xy —0-0000 0084 Yr — Yy —o0-0000 0716 Zy — Zy +0-0000 0776
Xr +0-9648 1709 Yr —o0-2134 9910 Zp —0-0925 7863
X2 + Y3+ Zi — R? =0 x 1079
tan ar = Yr/Xr —0-2212 8453 ar (geometric) 23" 10™ 058376
Correction for zberration, —0:0028 841 X R X 444%4 —1 272
Apparent right ascension, a, 23 10 04 -104
sin 8¢ = Zy/R —0-0932 7971 dr (geometric) —5° 21”7 08”33
Correction for aberration, —0-0028 841 X R x +2797” —8 o1
Apparent declination, 8, —5 21 16 -34

The above corrections for aberration are calculated from the formula:
—0-0057 683 x distance X daily motion = —0-:0028 841 X R x double first difference
since the effects of third differences are negligible.

Although the precision of the initial data does not justify the retention of eight decimals,
they are used to illustrate the consistency of different methods of calculation.

The equation of time, which is tabulated in the sense apparent minus mean,
is the excess of the right ascension of the fictitious mean sun over that of the true
Sun. The tabular value at o E.T. is obtained by subtracting the apparent right
ascension of the Sun at oR E.T. from the apparent sidereal time of ot U.T.
increased by 121, which is the same numerically as the right ascension of the
fictitious mean sun at ot E'T. The values for 1960 January o and January 1 at
ot E.T. are therefore numerically the same as the tabular values for 1959 December

31 and December 32 at o? U.T. given in the ephemerides before the introduction
of ephemeris time.

Example 4.7. Equation of time
1960 March 7 at oh E.T.

12" + apparent sidereal time at o? U.T. 22h 58m 508.925
Apparent right ascension of the Sun at o E.T. 23 10 04 -104
Equation of time at o® E.T. (apparent — mean) —I11I 13-179

As explained in sub-section 3B.4 the equation of time (there termed, for
purposes of explanation, the equation of ephemeris time) as tabulated in the
Ephemeris differs from the excess of the Greenwich hour angle of the Sun over
12! + U.T., or from the excess of apparent solar time (considered as 122 + the
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hour angle of the Sun) over mean solar time. By reference to the diagram (figure
3.1) there given, it is seen that the difference is —0-002738 47'; if the equation of
time is denoted by E then, at any instant:
G.H.A. Sun = 12! + U.T. + E — 0-002738 4T

Since E is tabulated for ot E.T. a knowledge of 4T is strictly required before E
can be interpolated to a given U.T.; but the variation of E is so small that a very
approximate value of 47" will suffice. From this relation it follows that:

at Greenwich mean noon, 122 U.T., the hour angle of the Sun is:

E(12") — 0.002738 AT
at Greenwich transit of the Sun, the U.T. is:
128 — {E(12h — E) — 0-002738 AT}

where the time in parentheses () after E indicates the U.T. to which it must be
interpolated; the variation of E in time 0-002738 4T can be ignored.

For practical use (for example, for navigation or surveying) the quantity
required is therefore E — 0-002738 AT tabulated in terms of U.T.; strictly this
can only be done when 47 is known, but an approximate value of 47 suffices.
The maximum daily difference of E is 305, so that the maximum errors arising
through an error of, say, 3% in the extrapolated value of 47 are: oS-oo1 in the
interpolation of £ and 0%-008 through the correction 0:002738 47. To navigational

accuracy, it suffices at the present time to subtract a mean value of o%-10 from the
tabulated values.

From 1965 onwards the equation of time in the Ephemeris will be replaced
by the ephemeris time of ephemeris transit, as given for the Moon and planets.
Reference to section 3B.4 shows that: |

at 120 E.T. the ephemeris hour angle of the Sun is E(12%)

at ephemeris transit of the Sun the E.T. is 12? — E(122 — E)
where the time in parentheses () after E indicates the E.T. to which it must be
interpolated. Thus the tabulated quantity will be 121 — E interpolated to an E.T.
of 122 — E; it will actually be calculated in a way similar to that used for the Moon
and planets, namely by finding the E.T. at which the right ascension equals the
ephemeris sidereal time. The ephemeris sidereal time at o® E.T. is the same

as apparent sidereal time at o? U.T. The fraction of the day p is thus obtained
from the equation:

(right ascension — ephemeris sidereal time) at ot E.T.
— p x { 24" — the following daily difference of (R.A. — E.S.T.)}
—0-0625 (double second difference of R.A.) = o
The actual difference of the ephemeris sidereal time is used to allow for the
variation of the equation of the equinoxes. The equation is solved to give p
directly in hours, minutes, and seconds. Thus:
242 p = 241 py + (po + 18p,) 24" 8p, — 0-0625 (double second difference of R.A.)
where
248 py = (R:A. — E.S.T.) at o2 E.T.
241 8p, = following first daily difference of R.A. — E.S.T.

—
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Example 4.8. E.T. of ephemeris transit of the Sun
1960 March 7

The relevant quantities and their differences are:

R.A. Sun at ot E.T. App. S.T. at o U.T. R.A. — S.T.
h m 8 5 h T s h m s
7 23 10 04-104 —0-420 10 58 50-925 12 11 13-179
221%:998 — 145558
8 23 13 46-102 —0-390 11 02 47481 12 10 58-621
where App. S.T. at o2 U.T. = E.S.T. at ot E'T. Then:
hoom 8
242 pp = R.A. — S.T. 12 11 13179 Po = 0:50779
241 3py = —145-558 18py = — -00008
(po + % 3po) 24" 3po =7:391  po + $py = 50771
Double second difference of R.A. = —o08-810
—0-0625 X —os-810 +0-051
Sum = E.T. of ephemeris transit 12 11 05-839

The conversion to fractions of a day is conveniently done by means of table 17.5.

As from 1965 the term * equation of time ” will be used exclusively for the
quantity £ — 0-002738 47, which in figure 3.1 was termed “the equation of
universal time ’’; the equation of time will be defined as the correction to be
applied to 12® + U.T. to obtain G.H.A. Sun, or more generally the correction
to be applied to 122 + L.M.T. to obtain L.H.A. Sun. The concept of the
equation of ephemeris time (that is E) will no longer be used.

The geocentric equatorial rectangular coordinates of the Sun tabulated in
the Ephemeris are derived, as indicated above, from the longitude, latitude, radius
vector, and obliquity. The geometric values referred to the true equator and
equinox of date as fundamental plane and point of reference, as obtained in the
course of conversion to right ascension and declination, are not tabulated; instead
geometric values referred to the mean equator and equinox of (a) the beginning
of the year (4.E., pages 34—41) and (b) 1950-0 (4.E., pages 42—49) are given.*

These rectangular coordinates may be converted from one reference system-
to another by means of the formulae of sections 2B and 2C. Both precession
and nutation may be incorporated in the same conversion formulae, but, because
it is not possible to tabulate or subtabulate coordinates referred to the true equinox
at an interval of ten days, the conversion from mean to true equinox is always done,
as described above, as a separate calculation.

As applied to the Sun the formulae take the forms:
(a) from mean equinox and equator of date (X, Y, Zy) to the beginning of the
year (X3, Yy, Zy)
X=X el 2050 2en ¥ ¢ Tt
Yo=Y, — 223497 X, % 1077
L= o oy = 1OTX Xy X 10T

where 7 is the fraction of the year. The approximations used may give rise to
maximum errors of 0-2 x 10-7in Xj and Y5; these are ignored in practice. Note
that (Zy — Zy) = 04348 (¥y — Y30,

*For A.E. 1972 onwards: the values for the nearest beginning of year are given on pages 36
to 43; the values for 1950-0 are given on pages 44 to 5I.
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(b) from mean equinox and equator of date (Xy, Yy, Zy) to 1950-0 (X;, Y, Zy)
Xy = X X - X, Y £ X, 20
Yot XSSV e V7

RS, El L A S

where X, Y, .. ..are functions of the precessional elements and can be calculated

from simple series for any date (see section 2B); they are systematically tabulated
at intervals of 1000 days in table 2.2.

5
I

Example 4.9. Conversion of equatorial rectangular coordinates of the Sun
1960 March 7 at ob E.T.
Fraction of tropical year, 7 = 0-179757

" Xu +0-9648 1793 Yu —0-2134 9104 Zy —o0-0925 8639
Xz — Xu — 1019 Ys — Yy — 3876 Zy — Zy — 1685
X +0-9648 0774 Yz —o-2135 3070 Zy —0-0926 0324

For conversion from 1950-0 to the mean equinox of date (by direct calculation from
series in section 2B, rounded differently from some values in table 2.2):

X: +0-9999 9692 Y. —o0-0022 7519 Zy —0-0009 8914
X, +0-0022 7519 Y, +0-:9999 9741 Z, —0-0000 0113
X: +o0-0009 8914 Y, —o0-0000 0113 Z, +0-9999 9951
With appropriate changes of formula to convert from date to 1950-0:
Xs +0-9642 3764 Ys —o0:2156 8643 Zg —0-0935 4044
X+ YE+ 28 —R*= —1 x 1079

C. THE MOON*

Beginning with the volume for 1960, the lunar ephemeris is calculated directly
from Brown’s theory instead of from his Tables of the Motion of the Moon (New
Haven, Yale University Press, 1919); but in order to obtain a strictly gravitational
ephemeris expressed in the same measure of time as defined by Newcomb’s
Tables of the Sun, the orbital elements upon which Brown’s tables are based have
been amended by removing the empirical term and by applying to the mean
longitude the correction:

—8"72 — 26”774 T — 11"-22 T*

where T'is measured in Julian centuries from 19oo January o-5 E.T. A description
of the method of calculating the ephemeris, and a comparison of the positions
with tabular positions from Brown’s tables, are included in the Improved Lunar
Ephemeris 1952—-1959, which was issued in 1954 to make the amended ephemeris
available before 196o. The complete description there given, with its detailed
list of all terms included, constitutes the formal specification of the present lunar
ephemeris. Notes on the history of the introduction of the improved ephemeris
are given in section 3.

In the following expressions for the fundamental orbital elements and related
quantities the time interval from the epoch is denoted by 7' when measured in
Julian centuries of 36525 ephemeris days, by D = 3-65257 when measured in
units of 10000 ephemeris days, and by d = 10000D = 365257 when measured in

*Important changes in the basis of the lunar ephemeris were introduced in 1968 and 1972-3;
details are given on pages 497 to 513 and in the relevant volumes of the A.E.

—
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ephemeris days. The symbols for the geometric mean longitudes and mean
longitudes of perigee of the Sun and Moon differ from those used by Brown, whose
notation is alsc used in the Improved Lunar Ephemeris. Thus L, I', (, I" in the
Ephemeris and this Supplement correspond to L', w’, L, = in Brown’s tables and
the Improved Lunar Ephemeris; the symbols Q and D are used in common.
Brown’s symbols [ = L — =, ' = L' — o' F = L — Q have been retained in
the arguments of the series for the nutation in table 2.5, although g, and not /', has
been used in the Ephemeris and sub-section B for the mean anomaly of the Sun.

Epoch 1900 January o-5 E.'T. = ]J.D. 241 5020-0

( = 270° 26’ 02”.99 + 1336" 307° 52" 597317 — 4”.087% + 0”-0068T%
= 270°43416 4 + 13°-17639 65268d — 0°-00008 50D* + 0°-00000 0039D?
I = 334° 19 46”-40 + 11% 109° 02’ 02”-52T — 37”-17T% — 0"-045T°
= 334°:329055 6 + 0°-11140 40803d — 0°-00077 39D* — 0°.00000 026D?
R = 259° 10" 50”779 — 57 134° 08’ 31”-23T + 7”-48T% + 0”-0087T"
= 259°-18327 5 — 0°-05295 39222d + 0°.00015 57D® + 0°-00000 005D?
D = 350° 44’ 14”-95 + 1236% 307° 06" 517-18T — 5”-17T% + 0”-0068T%
= 350°-73748 6 + 12°-19074 91914d — 0°-00010 76D? + 0°-00000 0039D*
where
( = the mean longitude of the Moon, measured in the ecliptic from the mean equinox

of date to the mean ascending node of the lunar orbit, and then along the orbit;

I = the mean longitude of the lunar perigee, measured in the ecliptic from the mean
equinox of date to the mean ascending node of the lunar orbit, and then along
the orbit;

Q = the. longitude of the mean ascending node of the lunar orbit on the ecliptic,
measured from the mean equinox of date;

D = ( — L = the mean elongation of the Moon from the Sun.
The expressions for the mean longitudes of the Moon and of the lunar perigee, and hence
of D, include implicit partial corrections for aberration (4.J., 57, 46, 1952). %

The constant of eccentricity () is 0-05490 0489.

The constant of inclination (y) is 0-04488 6967; it is the sine of half the inclination
. to the ecliptic.

The constant of sine parallax («) is 3422”-5400; it corresponds to an equatorial horizontal
parallax of 57'02”-70 and to a perturbed mean distance of 60-2665 equatorial radii of the
Earth.

The adopted ratio of the mass of the Earth to the mass of the Moon is 81-53, in the
lunar theory.

The lengths of the mean months at the epoch are:

Synodic month (new moon to new moon) 29? 530 589 2(‘)j 1; 4:11. 02?9
Tropical month (equinox to equinox) 27-321 582 277 07 43 04-7
Sidereal month (fixed star to fixed star) 27-321 661 277 07 43 I1-5
Anomalistic month (perigee to perigee) 27554 551 27 13 18 332
Draconic month (node to node) 27212 220 27 05 05 35-8

The secular variations do not exceed a few hundredths of a second per century, and depend
partly upon the variations in the rate of rotation of the Earth.

The values of I, Q, (, and D for every tenth day at ob E.T. are tabulated
in A.E., page 517. This page also contains, for every tenth day, the values of:

¢ = the inclination of the mean equator of the Moon to the true equator
of the Earth,

*See note on page 523.

tPage 215 in A.E. 1972 onwards.
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4 = the arc of the mean equator of the Moon from its ascending node on
the true equator of the Earth to its ascending node on the ecliptic
of date,

Q’

the arc of the true equator of the Earth from the true equinox of date
to the ascending node of the mean equator of the Moon,

calculated with Hayn’s value of 1° 32’1 for the inclination (/) of the mean lunar

equator to the ecliptic; the ascending node of the mean lunar equator on the ecliptic
} is at the descending node of the mean lunar orbit,  + 180°. They are calculated
from the following formulae, in which € is the true obliquity and the node is
referred to the true equinox by increasing by the nutation in longitude 4.

sin 4 sinz = — sin esin ( + 4¢)
cos 4 sini = sin I cose — cos Isinecos (Q + 4i)
cosi = cos cose + sin [sinecos (Q + 4iff)
sin Q'sin 7z = — sin I'sin (Q + 4y)
cos Q'sinz = cos/sine — sinJcosecos () + 4y)
These formulae, which are derived from figure 4.1, give 4, Q’, z without ambiguity
of quadrant.
EQUATOR
OF MOON

T/ ECLIPTIC

EQUATOR
OF EARTH
SLI

Figure 4.1. Notation for elements of Moon’s equator |

Example 4.10. Mean elements of the Moon and auxiliary quantities
1960 March 7 at o? E.T.

From example 4.1. d = 21980-5 T = 0-66179 33

The Moon’s mean longitude, and mean longitudes of perigee and node are obtaiped as:
q 1 Q

Constant term 270?43416 4 334-32955 6 259-18327 5
term in d +183-78385 7 +288.71738 7 — 83-95368 7
term in 7* or D? — 410 - 3739 + Terg
term in T2 or D? + o = 3 + o
Sum 9421761 1 263-04320 1 175:23034 I
AY = —0”744 = —0°-00020 7 Q + A = 175-23013 4

—
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sin er, cos er are taken from example 4.5 and I = 1° 32’1

sin ep +0-3978 207 sin (2 + 4yY). +0-0831 537 sin I +o0-0267 876

cos er +0-9174 632 cos (8 + AyY) —o-9965 367 cos I +0:9996 412

sin 4 sin i —0-0330 803 cos 7 +0-9065 142 sin §’sin i —o0-0022 275
cos 4 sin i +0-4208 773 cos §’sini +o0-4221 695
Sum of squares = 10 + 0 X 1077 Sum of squares = 1-0 + 0 X 1077
sin i +0-4221 753 i +24°-97200 sini +0-4221 754

tan 4 —o0-0785 984 tan ' —0-0052 763

4 355°-50588 ' —0°.30231

The longitude referred to the mean equinox of date, the latitude referred to
the ecliptic of date, and the horizontal parallax are calculated for every half-day
from Brown’s theoretical expressions, with the corrections required for the
amendment to the mean longitude, as specified in the Improved Lunar Ephemeris.
The apparent longitude, as tabulated, is obtained by adding nutation in longitude
and applying the following correction for the residual terms in aberration not
included in Brown’s theory (see 4.J., 57, 46—47, 1952):

+0"-018 cos (¢ — I" — 2D) + 0"-007 cos 2D
The latitude and horizontal parallax are printed without amendment.

Example 4.11. Apparent longitude, latitude, and parallax of the Moon
1960 March 7 at o® E.T.

Moon’s longitude, mean equinox of date 93° 09’ 52762
Correction for neglected aberration (( — I = 191°2, D = 109°:5) + o-o1I
Nutation in longitude — 0744
Moon’s apparent longitude, A 93 09 52:029
Moon’s apparent latitude, 8 — 5 13 19-726
Moon’s horizontal parallax, o 54 17-5745

The fundamental data, as above, are quoted without derivation as this is described
in the Improved Lunar Ephemeris.

The semi-diameter (s) is derived from the horizontal parallax (7) by means of
the following accurate relation, in which the adopted semi-diameter at mean
distance 1s due to Newcomb.

gins | sin { semi-diameter at mean distance (15" 32”-58 ) }

sin7  sin { equatorial horizontal parallax at mean distance (57’ 02”-70) }
This leads to:*

sin § = 0-272481 sin 7
or, with an error not exceeding 0”-001:

"

$" = 0:0796 + 0:272446 7"
where s” and 7" are respectively the number of seconds in s and =.
Example 4.12. Semi-diameter of the Moon
1960 March 7 at ot E.T.
Moon’s H.P., 7 54" 177-5745 sin7 ©0-01579 25103
Moon’s S.D., s 14 47 -593 0-272481 sin 7  0-00430 31590
Note that s = 0”-0796 + 0:272446 m = 887”503

The latter is used in practice; ten decimals are retained in the direct calculation to
illustrate the accuracy of the approximation.

*For 1968 onwards: sin s = 0-2724880 sin =

s” = 0-0799 + 0-272453 7"
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The apparent right ascension and declination, which are tabulated to o8-oo1
and o”-o1 respectively for each hour in A.E., pages 68-159, are referred to the
true equinox and equator of date and are fully corrected for aberration. For ot
and 12" they are derived directly from the half-daily values of the apparent longi-
tude and latitude, using the true obliquity of the ecliptic, by means of the formulae:

cos 8 cos a = cos 8 cos A
cos 8 sin a = cos Bsin A cos € — sin Bsin €
sin 8 = cos B sin Asin € + sin B cos €

These values are then subtabulated to twelfths to give the hourly ephemeris;

the method of subtabulation is fully described in the Improved Lunar Ephemeris
and is not illustrated here. *

Example 4.13. Right ascension and declination of the Moon
1960 March 7 at o E.T.

sin A +0-9984 7520 sin B —o0-0910 1751 sin € +0-3978 2067
cos A —0-0552 0204 cos B +0-9958 4929 cos € +0-9174 6319

cos & cos & —0-0549 7291

cos 8 sin & +0-9484 7057 cot a —0-0579 5953 a 6h 13m 168-110
sin 8 +0-3120 6014 d +18° 11’ 00”:34

Sum of squares 10 — 3 X 10°%

The discrepancy in the sum of the squares is about as large as one can expect, though
even larger values are possible.

The ephemeris transit of the Moon across the ephemeris meridian occurs
when the ephemeris hour angle is either o®, for upper (U) transits, or 12h, for
lower (L) transits. The ephemeris hour angle is ephemeris sidereal time minus
right ascension, so that the time of transit is the ephemeris time at which:

ephemeris sidereal time — right ascension = o® (U) or 12! (L)

If this time is (P + p)b, where Pis integral and p lies between o and 1, this equation
may be written:
ephemeris sidereal time at P2 — right ascension at Ph

+ p (3609%-856 — hourly difference of R.A.)
— second-difference correction = o or 12h

The second-difference correction is small and cannot affect p by more than
oh.00002; it may therefore be neglected, so that p may be determined directly ‘
once the correct hour P has been selected. 'The ephemeris sidereal time for o2 E.T.

is the same numerically as the apparent sidereal time (hour angle of the first ‘
point of Aries) at ok U.T.

The times are tabulated to four decimals of an hour; this is adequate for the
planning and reduction of meridian observations of the Moon but is inadequate
for the derivation of a precise ephemeris at transit. As explained in sub-section F,
it is preferable that the comparison of observation with theory be made by means
of inverse interpolation in the hourly ephemeris.

*For A.E. 1972 onwards hourly values of the right ascension, declination and horizontal

parallax are tabulated on pages 68—-189. They are computed from Chebyshev series which
have been derived from the half-daily values.
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Example 4.14. Lower transit of the Moon
1960 March 7

Inspection of the ephemerides of the apparent right ascension of the Moon and of
apparent sidereal time indicates that the Moon will transit the lower meridian between
7% and 8h,

Apparent sidereal time at o® U.T. I(l; 5l8'l 5079
120 + apparent right ascension of the Moon at o" 18 13

Difference, indicating transit between 7" and 8" T xa

Increment of sidereal time in 72 7 oI 09-0
Apparent sidereal time at 7" 17 59 59:9
12" 4+ apparent right ascension at 71 18 27 509
Difference (12" + R.A. — S.T.) 27 51-0

Hourly difference of R.A. at 7? = 125%.08
1671-0
3609-86 — 125-08

Note that only low precision is required, so that the change in nutation between o® and 7"
can be ignored.

Fraction of hour to ephemeris transit = = ol.4795

Usually there are both an upper and a lower transit each day; but on one day
in each month near full moon only one transit (lower) occurs and similarly on one
day near new moon there is only one transit (upper).

For A.E. 1972 onwards, half-daily sets of polynomial coefficients for the calculation of the
true geocentric distance of the Moon in units of the Earth’s equatorial radius are tabulated on
pages 190 to 197.

D. THE PLANETS *

Authorities

The elements and ephemerides of the inner planets Mercury, Venus, and Mars
are obtained from the same tables as were used for the years immediately preceding
1960. The orbital longitudes and the heliocentric ecliptic longitudes referred to
the mean equinox of date, the heliocentric latitudes referred to the ecliptic of date,
and the radii vectores are taken from Newcomb’s tables of these planets (4.P.4.E.,
6, parts 11, 111, 1v, 1895—1898); for Mars, the corrections derived by Ross (4.P.4.E.,
9, part 11, 1917) are applied. ‘

The elements and ephemerides of the outer planets Jupiter, Saturn, Uranus,
Neptune, and Pluto, beginning with 1960, are derived from the heliocentric
rectangular coordinates obtained by numerical integration in 4.P.A4.E., 12, 1951,
afterwards referred to as ““ Vol. XII . Perturbations by the inner planets, taken
from A.P.A.E., 13, part V, 1954, are included in the geocentric ephemerides, but
are omitted from the heliocentric ephemerides, and from the heliocentric orbital
elements tabulated in A.E., page 177.T The geocentric right ascensions and dec-
linations are tabulated to one more decimal, namely o%-001 and 0”-o1 respectively,
than for years preceding 1960 and for the inner planets.

*Formulae to reduce the tabulated ephemerides to the IAU system of astronomical constants
are given in the A.E. for 1968 onwards. For 1972 onwards the ephemerides of the outer
planets and minor planets are based on the IAU system.

tPage 217 in A.E. 1972 onwards.
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In these tables and ephemerides, the values adopted for the masses of the
planets, including atmospheres and satellites, are:

Reciprocal Mass Reciprocal Mass
Mercury ... ... 6 000 000 Uranus ... dova 22860
Venus ... 408 ooo Neptune
Earth 329 390 For four inner planets isn 10700
Mars ... 3003 500 For five outer planets w10 3TA
Jupiter ... I 047355 Plute, ..: ... 360 ooo
Saturn ... 3 501-6

In the planetary theory the adopted ratio of the mass of the Earth to the mass of
the Moon is 81-45; and the ratio of the mass of the Sun to the mass of the Earth

alone is 333 432.

The ephemerides of the minor planets Ceres, Pallas, Juno, and Vesta are
derived from unpublished heliocentric equatorial rectangular coordinates calculated
by Herget by means of numerical integration using the Naval Ordnance Research
Calculator (NORC). An adaptation of Hansen’s method was used, with an interval
of ten days. The integrations were adjusted along the entire orbits to the previous
integrations (4.P.4.E., 11, part 1v, 1950) that were used for the ephemerides before
1960; a smooth join-on at 1960 was obtained by taking most of the equations
of condition near this epoch. Differences from the previous orbits are attributable
to accumulation of rounding errors in the former integrations. The largest
discontinuity at 1960 is 0”-07 for Vesta, which is smaller than the amounts that
may be reached by the non-gravitational parts of the previous coordinates. *

Elements

An unperturbed orbit of a planet about the Sun is completely defined by six
elements, which may be chosen in various ways and which may be referred, as
desired, to any reference system. The adopted elements for the planets, as
tabulated in A.E., pages 176-177,Tare referred to the mean equinox and ecliptic
of date, and are:

i = the inclination of the orbit to the ecliptic;

3 = the longitude of the ascending node of the orbit on the ecliptic, measured

from the equinox;

= = the longitude of perihelion, measured from the equinox along the ecliptic

to the node, and then along the orbit from node to perihelion, i.e., w =
R + w, where w is the argument of perihelion;

a = the semi-major axis of the orbit; 7, the mean daily motion, and a are related
by n?a® = k* (1 + m) where k is the Gaussian gravitational constant and m
is the mass of the planet expressed in terms of the Sun’s mass;

= the eccentricity of the orbit;

M = the mean anomaly, defined by the relation M = = (time in days since

perihelion passage); this is related to L, the mean longitude, by the
relation L = M + w.

(N
|

For the inner planets Mercury, Venus, and Mars the elements given in 4.E.,

*For A.E. 1972 onwards the ephemerides of the minor planets are based on heliocentric
rectangular coordinates calculated by R. L. Duncombe, 4.P.4.E., 20, part 11, 1969.

tPages 216—217 in A.E. 1972 onwards.
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page 176,* are mean elements. They represent, for each planet, the elements of a
mean reference orbit which is used as a basis from which to derive the actual
motion of the planet through the theory of general perturbations. The numerical
values are determined to provide the best agreement with observation over the
period on which Newcomb based his tables; and they may be used to represent
the actual orbits very approximately, say to within 1’ in position. The reference
orbits themselves contain small secular changes, due to the action of the other
planets, but the elements 7z, Q, = vary more rapidly owing to the constantly
changing reference system of mean equinox and ecliptic. With the exception of
the mean anomalies, which are tabulated at intervals of 10 days, the elements are
given in each edition of the Ephemeris for a single epoch only; this is always one
of the standard 4o00-day dates. The variations in 100 days, almost entirely due to
precession, are given for 7, ), w. The numerical values are derived from the
following mean elements given in the Tables. These elements are referred to the
mean equinox and ecliptic of date. The time interval from the epoch is denoted
by 7' when measured in Julian centuries of 36525 ephemeris days, by D = 3-65257T
when measured in units of 10000 ephemeris days, and by d = 10000D = 365257
when measured in ephemeris days. #n*is the sidereal mean motion in a Julian year.

Epoch 1900 January o-5 E.'T. = ]J.D. 241 5020-0
Mean elements of Mercury
i = %7°00" 10737 + 676997 — 0”-0667*
R = 47° 08" 45”40 + 4266”-75T + 0”-626T*

@ = 75° 53" 58”-91 + 5599”767 + 1”-0617%
n* = 53 81016”-3093 — 0”-00049 57 = 0-38709 86
e = 0-20501 421 + 0-00002 0467 — 0-00000 00307
M = 102° 16" 45”77 + (415" + 2 61055":04)T + 0”-0247T*
= 102°.27938 1 + 4°.09233 44364d + 0°-00000 050D?
L = 178° 10" 44”-68 + (415" + 2 66654”-80)T + 17-0847T*

178°-17907 8 + 4°-09237 70233d + 0°-00002 26D?
Mean elements of Venus

1= 3°23"37"07 + 37.621T — 0”-00357%

8 = 75° 46" 46”73 + 3239”467 + 1”-476T*

w = 130° 09’ 49”-8 + 5068”-93T — 3”-515T%

n* = 21 06641”-3832 + 0”-00009 6T a = 0-72333 16
e = 0-00682 069 — 0-00004 77471 + 0-00000 0091 T?
M = 212° 36" 117-59 + (1627 + 7 120937-95)T + 4”-629872
= 212°-60321 9 + 1°-60213 o1540d + 0°-00009 6400D?% .
L = 342° 46’ 01”-39 + (162F + 7 17162"-88)T + 1”-1148T*

342°-76705 3 + 1°-60216 87039d + 0°.00002 3212D?
Mean elements of Mars
i = 1°51°01"-20 — 2”-430T + 0”-04547T%
R = 48° 47" 11719 + 2775"-57T — 0”-005T% — 0”-0192T?
w = 334° 13’ 05”-53 + 6626”-73T + 0”-4675T% — 0”-00437T?

n* = 6 89050”7:9262 + 0”-00016 9T a = 1-52369 15
e = 0-09331 200 + 0-00009 20647 — 0-00000 0077 T*?
M = 319° 31" 45”7-93 + (53" + 2 15490”:60)T + 0”-650972 + 0”-00437T*
= 319°:52942 5 + 0°-52402 07666d + 0°-00001 3553D% + 0°-00000 0025D3
L = 293° 44" 51746 + (53 + 2 221177-33)T + 1”7-1184T?

293°-74762 8 + 0°-52407 11638d + 0°-0000z 3287D?
*Page 216 in A.E. 1972 onwards.
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Example 4.15. Mean elements of Venus
1960 September 23 at ot E.T.

1960 Sept. 239 ot E.T. J.D. 243 72005
Epoch of T J.D. 241 5020-0
d = 22180-5 T = o0-607269 T? = 0-3688
Inclination, Node, Perihelion, w Eccentricity, e
Constant 3? 23’ 37:107 7§ 46 46-”73 135 09’ 49:’8 0-00682 069
T + 2-199 +32 47-224 +51 18.20 —2 899
i — 0-001 + 0-544 - 1-30 + 3
Sum 3 23 39-27 76 19 34-50 131 o1 06-7 0-00679 173
= 3°-39424 2 76°-32625 o 131°-01853
! The mean distance and mean motion are practically constants.
! Mean longitude, L Mean anomaly, M
: Constant 34; 46 01-”39 212 36: 11-6
d 256 54 10-575 256 02 52:37
! d%vor DA +0-411 _ +1-71
i Sum 239 40 12:38 108 39 05-7

|
] w 131 o1 06.7 = 108:65158
i M =L —w 108 39 057

Mean elements for the outer planets Jupiter, Saturn, Uranus, Neptune, and

j Pluto are not available and are not easily derivable from the numerical integrations,
: which do not require any reference orbits as a basis. Accordingly, osculating
} elements are given instead. Osculating elements at a particular epoch are defined
as the elements of an unperturbed elliptical orbit, referred to as the osculating
orbit, in which the position and velocity of the planet at the epoch are identical
! with the actual position and velocity of the planet in its perturbed orbit at the same
| instant. 'The osculating elements therefore contain the effects of the perturbations ‘
due to the other planets, so that, unlike the mean elements, they are subject to |
periodic variations. Whereas the elements of one of the inner planets in A.E.,
= page 176, refer to a slowly varying orbit, those of one of the outer planets on page
= 177 refer to a different orbit on each date, and the changes shown do not reflect ‘
. the real changes of a mean orbit. Osculating elements have the advantage, however,
that they may be used to give the actual position and motion of the planet at the

epoch of osculation, and a good approximation to its actual orbit over short periods.

The osculating elements are tabulated in the Ephemeris, at intervals of 40 |
days for Jupiter, Saturn, Uranus, and Neptune and of 8o days for Pluto. There ’
is no simple relation between the osculating and mean elements; but for comparison
mean elements of Jupiter, Saturn, Uranus, and Neptune are given below. The
elements of Jupiter and Saturn are taken from Hill’s tables of these planets
(4.P.A.E., 7, parts I and 11, 1898) for the epoch of the tables and reduced to 1960
and 1970 by applying variations that approximate to those of Leverrier and
Gaillot. The elements of Uranus and Neptune are taken from Newcomb’s tables
of the planets (4.P.A4.E., 7, parts 111 and 1v, 1898) and are affected by long-period
variations. The elements are referred to the mean equinox and ecliptic of the
epoch.

*Pages 216 and 217 in 4.E. 1972 onwards.

—
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Mean elements of the outer planets *

115

Jupiter Saturn
Epoch 1960 Jan. 1-5 1970 Jan. o-5 1960 Jan. 1-5 1970 Jan. o-5
i I xé 19-3 10 18' 173 2 29’ 237 2 29, 22-1
Q 100 02 40-0 100 08 43-9 113 18 26-9 113 23 41I-2
w 13 40 41-6 13 50 21:6 92 15 52-I 92 27 374
L 259 49 52-05 203 25 11-28 280 40 16-88 43 00 20:29
a 5-20280 3 5-20280 3 9-53884 3 9-53884 3
n 299”-1284 299”-1284 120”-4550 120”-4550
e 0-04843 54 0-04845 17 0-05568 18 0:05564 71
Uranus Neptune
Epoch 1960 Jan. 1.5 1970 Jan. o-5 1960 Jan. 1-5 1970 Jan. o-5
i o 4(; 2370 34(; 23:‘2 1 46; 25r5 1 46' 22-2
Q 73 47 46-6 73 50 50:4 131 20 23°2 131 26 59-8
w 170 00 39-3 170 10 23+9 44 16 26-1 44 21 42-2
L 141 18 17-87 184 17 24-64 216 56 27-22 238 55 24-26
a 19-18193 9 19-18188 2 30-05777 9 30:05%790 O
n 42”235 42”235 217532 217532
e 0-04720 95 0-04723 67 0-00857 47 0-00858 24

The osculating elements are derived directly from the heliocentric equatorial
rectangular coordinates as published in Vol. XII; as with the heliocentric longitudes
and latitudes, the corrections due to the action of the inner planets have not been
applied. The following procedure is used in principle, though modifications in
detail are introduced for computational convenience.

The tabulated equatorial rectangular coordinates xg, Vs, 25, and their instan-
taneous rates of change ', y,, 24, referred to the mean equinox and equator of
1950-0, are converted directly to ecliptic rectangular coordinates and rates of
change, referred to the mean equinox and ecliptic of date, by the formulae:

X = Xq x5 + Ylys + Z; %

Yo. = Xy % + Yzys + Zy 3

2= Xgxs + Yy + Zgop
in which the direction cosines X;, X,, .
from:

X, =X,

with similar equations in ¥ and Z, where ¢, is the mean obliquity of the ecliptic.
Similar formulae apply for the rates of change x., y.', ;. X, X,, .. are the
direction cosines of the equatorial axes for mean equinox and equator of date,
referred to those for 1950-0, for which expansions are given in section 2B and

which are used, though in the reverse direction, for the conversion of the Sun’s
coordinates in sub-section B.

. Yy, .. Z;of the ecliptic axes are calculated

X, = X, cos'e,'+ X, sin g X3 = X, cosley I X5 e

The direction cosines X,;, X,, .. can also be expressed directly as series

expansions; thus use of the expressions for X,, Y,, .. from section 2B and for €
from sub-section B leads to:

*For osculating elements for Pluto see page 491.
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X; = + 9999 9998 + 125-5D — 2226:0D* — 0-3D?
Y, ==t 1 7251 — 61 1903-6D — 511D + 4.5D°
Z, = + 7500 — 26 6040-8D 4+  15-3D* + 2-0D?
X, = — 1 8811 + 66 7235-6D +  40-8D? — 4.9D?
Y, = + 9174 3624 + 2589:4D — 2041-5D* — o-3D?
Z; = + 3978 8279 —  s655-1D — 887-8D?
X; = — 17 + 608:4D +  7-1D?
Y; = — 3978 8279 +  s5705-2D —  1-7D?
Zy = + 91743625 +  24744D — 09D — 0:1D?

where D is measured in units of 10000 days from J.D. 243 3000-5 and where the
coefficients on the right-hand side are in units of the eighth decimal.

The rates of change are to be formed with 1/K days as the unit of time, where
K = k(1 + m)*in which & is the Gaussian gravitational constant and m is the mass
of the planet in terms of that of the Sun as unity. Moreover, it is convenient,
both for the simplification of the formulae and for numerical computation, to
normalise the coordinates and rates of change by putting:

I ;
X = - g etc. leading tox? + 32 + 2% = 1

1 . r
x' = rt x;, etc. leading to &' + y'2 + 22 =2 — 2
where, for simplicity, subscripts are omitted in the normalised coordinates. Since
r* =x} 4+ yi + 2% is independent of the reference system it is advantageous to
normalise the coordinates and rates of change before conversion. In this case
the rate of change, used instead of xg, will be:

(r*/K) x (the instantaneous daily rate of change of x;)

With the six values of x, y, 2, &', y', 2’ the formulae for the elements are as
follows:
x2 + y2 + 2% — 1 = o (check)
X2 yi4 1 =m
xx' + yy + 23 =

Catg ik e2=0P(1 —m+ m?
I —m
: I — ¢
n = Ka™* radians/day pP=1+m-—-1= $ratil

Take e;! to be an integer (or, if e is large, with one decimal), constant for each
planet, such that egle < 1.

et
=ty my = e;'m
pi = & e* p* = {If (1 — m) + mglp?
Then:
Pz = p(mox — Lyx’) gz = lhx + (my — llp) &' |
Py =p(my — L) gy = by + (my — ly) y' \
p:=p(myz — 1 2) q: = loz + (my — Uly) 2 ‘
Checks: ‘

P29s + Py qy + P29, = O
PR+ Pi+Pi=q:+ g+ g = % e p? = pi ~
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Then:
Iy (x — m)? p 3
tan E = sy M =E — e, 1, (1 — m) in radians
0
= E — (57°2957 80 &) [y (1 — m)?
tan w = Bf
z
tan w = u gg =w — W
bzt 4y
G plo v + w is the orbital longitude, which
my — I, must check with the value obtained
by direct calculation.
SNt — L H + gz
pi

In all cases the quadrants of E, w, w, v are determined by the signs of numerator
(corresponding to sine) and denominator (corresponding to cosine); 7 is always
positive. If p; is calculated as eglep the value of e used must be taken to eight
significant figures.

The formulae for e, E, v are derived from the relations:
esin E = [ (1 — m)? esin v = pl
ecosE =m ecosv =m — [?

There are many formulae for the three spherical elements 7, Q, w; those given
above appear to be the most suitable for small eccentricities and inclinations.
Let:
P r, =%y — yx

rs + 72 &+ 1 = p?

Gote + 47y + @72 = O Yoo + Typy + 7:p, = O

Then the following are the more important relations (for brevity p, is written
for eglep):

To =92, — 2
Checks:

p1sin zsin w = p, psin zsin. Q= itz
pisinzcosw = g, (A) psinicos = —r, (B)
p coszi = p COS 1 = T
p1COSZsin w = — p,sin  + p,cos
p1COSICOSw = — g,sin  + ¢, cos (©)
p sin ¢z = 4+ 7, 8in § — 7, cos §
p1€OsZsin = — py,Sinw — ¢, COS w
pi1coszcos Q = + p,sinw + g, cos w (D)
py Sin Z = 4+ p,sinw + g, cos w
py (1 £ cosi)sin (w + Q) = + p, — ¢
p1(1 £ cosi)cos (w £ Q) = + ¢y + Pe (E)

in which the upper sign is normally taken.

It is clear that either (A) and (E) or (B) and (E) form a complete set of -
equations; (A) and (B) should not be used together if 7 is small since the resulting
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uncertainties in w and § will be independent. The use of (B) to determine 7 and
Q3 is rather more logical than the use of (A) to determine 7 and w, but the latter is
adopted as thereby the calculation of 7, 7, 7, is avoided.

The precision obtainable in the angular elements Q) and = is dependent on
the magnitudes of 7 and e respectively. If the standard precision is of order 1 x
10-8, as is the case with eight decimals in &, &', ... , and as is actually used in
practice, § cannot be found more precisely than 10-8 cosec 7, or 6° x 10~7 cosec 7;
in the worst case, for Uranus, this limit is about 0°.00005 or 0”-2. Similarly, =
cannot be found more accurately than 10-8/e or 6° x 10~7/e; in the worst case, for
Neptune, the osculating value of e can be as small as 0-003 corresponding to a limit
of precision of 0°-0002 or 1”. However such uncertainties only reflect the relative
unimportance of precision in these quantities, and any values of Q and w, within
the range of permitted values, will lead to reproduction of the eight-figure coordin-
ates and velocities, provided that the other elements are consistent with the adopted
values. For example, the orbital longitude (v + w) is clearly independent of
the precise position of either node or perihelion, and consequently v must contain
the negative of any uncertainty introduced into w. One method of assuring this
is to adopt the values of e and E, or of e and v, obtained directly from the coordinates
and velocities, as exact; then all quantities are well determined with the exception
of either w or Q. The longitude of perihelion (w = w + Q) should be consistent
with the adopted values of E or v and must be evaluated from a formula that
ensures this. The procedure adopted above is the same in principle, but is rather
simpler in practice. The argument of perihelion (w) is poorly determined if 7is
small, but the adopted value is treated as exact to give a value of  as w — w :
consistent with the well-determined value of w. It is equally correct to determine
Q directly, to treat the adopted value as exact, and thus to deduce w as = — Q.
The values obtained will differ in the two calculations, but the difference will not
be significant. There are many other arrangements of these formulae, but with
small 7 and e careful selection is required to ensure a consistency greater than the
apparent precision.

Example 4.16. Osculating elements of Uranus
1960 March 7 at o E.T.

Coordinates O3 + 043 3% + 8% Velocity components
Xs —13-9325 597 —0-2074 45985 +15368 8o Kxi —0-2074 48546
Vs +10:9322 454 —0-2327 50932 + 17057 8o Kyi —0-2327 53775
2s + 49871 943 —0-0990 61430 + G272 80 Kz —0-0990 62642
The factor 8o arises from the use of double differences at an interval of 40 days.

r* 338-5023 16 k o0-01720 20989 5
r 18-3984 325 m 1/22869
rt  4-2893 394 (r + m)* 1-0000 21864

; 0:0543 52456 3-1168 o040

r
8o K
Normalised equatorial coordinates and velocities for 1950-0:

xg/r —o-7572 6884 rt x{ —0-6465 7646
Ys/r +0:5941 9439 i y5 —0:7254 4790
2g/r +0-2710 6626 rt 2§ —o-3087 5884

—
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From example 4.9, for conversion from 1950-0 to mean equinox of date:

X: +0:9999 9692
X, +0-0022 7519
X, +o0-0009 8914

Y. —o0-0022 7519

Y, +0-9999 9741
Y. —o0-0000 0113

Z, —0-0009 8914
Z, —0-0000 OII3
Z: +0-9999 9951

For 1960 March 7 (from Planetary Co-ordinates, Table I):
sin ey 0-3978 5998 Cos €y 0-9174 4615

The coefficients for transfer of equatorial coordinates referred to 1950-0 to ecliptic
coordinates referred to mean equinox of date:

X; +0-9999 9692 Y, —o0-0022 7519

X, +0-0024 8090 Y, +0-9174 4332

X; +0-0000 0228 Y; —0-3978 5999

Z, —o0-0009 8914
Zy +0-3978 5875
Zy +0-9174 4615

From these, using no subscripts for normalised ecliptic coordinates and velocities
referred to mean equinox of date:

x —o-7588 8654 x" —0-6446 1853

y +0:-6511 0705 y’ —o-7900 0383

2 +o0-0122 8080 2z’ +0-0053 5561
It is verified that «® + 3% 4:2? — 1 = =1 X 10°®

XY 4 2 = () + ()t + ()

Calculation of elements from x, y, z; x/, ¥ 2’

’

x —o0-7588 8654 x’ —0-6446 1853

y +0-6511 0705

¥y’ —0-7900 0383

Zx: — 1 — I

= 2x® — 1

+0-0396 6778

2 +o0-0122 8080 2’ +0-0053 5561 = Xxx" —o0-0251 1897
r 18-3984 325 e®  0-0021 794665 p?®  1-0390 3682
a 19-1584 038 e 0-0466 8476 (Check) p? 1-0390 3682
n  0-0002 0514 076 &t 120 1-0193 3156
= o0%-0117 5369 9 72e? o0-8717 8660 (r — m)}t o0-9799 6542
Note: ey? €% is not (eg! €)? but is, in this case, 400e%.
my +0-7933 5560 lo —0:5023 7940 o — o +0-7807 3635

pmy +0-8086 9240

Pz —0-9438 0924

py +0-1219 9133
p: +o0-0126 7395

ply —o-5120 9118

g —©0-1220 2815

qy —0-9438 8748
g. —o-0019 8830

Pz + qy
Py — q=

—1-8876 9672
+0-2440 1948

Zp®  0-9058 1840 2q® 0-9058 1840 p; = eg? e’p* 0-9058 1839
cotw —o0-1568 81 w 98-9159

tanw —o-1292 6837 w 172-6343 15 Q=w —w 73°7184 15

tanv —0-6559 0795 v 326-7388 13 v +w 139 -3731 28
sin¥  o-o001 8169 46 i 0:7723 37
tan E —o0-6205 4700 E 328-1784 54
—57°-2957 8o €9 lp (1 — m)* +1-4103 77

M 329-5888 31 L 142°-2231 46

Using tan = r./—7r, = +0-0131 8895/ +0-0038 5213
cot £ +0-2920 73 2 73°7183 w 98°-9160 15

In this case the agreement between the two sets of values of R and w is just about
what might be expected; a discrepancy of 1 x 10~%ing,orr, (which can easily arise through
an accumulation of roundings) gives rise to differences of 0°-00006. The values in the
Ephemeris were calculated using more than eight significant figures in the fundamental
data. For the check on the orbital longitude, v + w, see example 4.19.

(For A.E. 1960 the values printed on page 177 are erroneous; the correct values are given
on page Xii.)
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The elements are given in the Ephemeris to varying numbers of decimals.
For the inner planets a, 7, e are given to six decimals and 7, ), = to 0°-00001; but
the mean anomaly is only given to 0°-001. For the outer planets a is given to five
or six decimals; 7z and e to seven decimals; 7 to 0°-00001; §, =, and the mean
anomaly are given to 0°-0001; to which precision they are determined absolutely,
except possibly for Neptune, from the eight-figure calculations. The elements
cannot be used, as they stand, to reproduce the planetary positions to full eight-
figure accuracy.

No elements are given in the Ephemeris for the minor planets. The following
are approximate elements for the epoch 1957 June 11 at o® E.T., referred to the
mean equinox and ecliptic of 1950-0.

Ceres Pallas Juno Vesta

i 10.607 34-798 12:993 7:132
9] 8o-514 172-975 170-438 104-102
@ 152:367 122:734 56-571 253236
M 279-880 2771815 329-336 79-66%7

a 2:7675 2-7718 2-6683 2-3617

n 0°-21408 0°-21358 0°-22612 0°-27157

e 0:07590 0-23402 0-25848 0-08888

Heliocentric positions

The heliocentric ecliptic longitudes, latitudes, and radii vectores of Mercury,
Venus, and Mars that are given in A4.E., pages 160 to 173, are obtained directly
from Newcomb’s tables, with the application of Ross’s corrections in the case of
Mars. The longitude and latitude are rounded off to o”-1 and are referred, as in
the Tables, to the mean equinox and ecliptic of date; the radii vectores are
deduced from the logarithmic values given in the Tables. They are given at
intervals of one day for Mercury, two days for Venus, and four days for Mars.

The heliocentric orbital longitude, tabulated on the same pages, is the
longitude of the planet in its orbit measured from the mean equinox of date along
the ecliptic to the node and then along the orbit; it is derived from the Tables in
the course of finding the ecliptic longitude. The difference between the orbital
and ecliptic longitudes is a small quantity R, known as the reduction to the ecliptic;
it is a simple function of #, the arc from node to planet, and of 7, the inclination,
and is given by:

sin R = — tan?}7 sin (2u + R)
R = — tan®1ssin 2u + % tan? 47 sin 4u + ...
u is obtained directly from the Tables and R is tabulated; thus:
orbital longitude 1w+

Il

ecliptic longitude = z + Q + R
The daily motion of the orbital longitude is tabulated as a concept in its own right,
and as an aid to interpolation; it is the first derivative at the instant of tabulation
and in an unperturbed orbit it is inversely proportional to the square of the radius
vector. The orbital latitude is the displacement in latitude of the planet from its
mean (reference) orbit and comprises only the perturbations due to the other
*Pages 198 to 211 in A.E. 1972 onwards.
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planets; itis negligibly small for Mercury, and is given to o”-o1 for Venus and Mars.

For computational convenience several modifications are in practice introduced
in the use of the Tables, but none affects their standing as the authority; and the
calculated values will differ from those obtained by formal use of the Tables by
quantities which are small compared with the possible error introduced by adding
a number of rounded-off contributions. No detailed derivation is given since
numerical examples are included in the Tables.

Example 4.17. Angular momentum of the inner planets

Values of (daily motion) x (radius vector)? in degrees/day, showing the approximate
constancy of the angular momentum.

Mercury Venus Mars
1960
Mar. 7 o-6001 18 0-8382 51 12113 93
June 15 6001 19 -8382 49 I-2113 54
Sept. 23 -6o01 24 -8382 51 1-2113 82
Dec: 32 -6001 21 -8382 42 12114 32

For the outer planets the similar data given in 4.E., pages 174—1 =6, at intervals
of 10 days for Jupiter and Saturn, 40 days for Uranus and Neptune, and 8o days
for Pluto, are derived from the heliocentric equatorial rectangular coordinates for
equinox 1950-0 that are given in Vol. XII. As in the determination of the orbital
elements, the tabulated coordinates (x5 7y, 2;) are first converted to ecliptic
rectangular coordinates (xg, Vg, %) referred to the mean equinox and ecliptic of
date by:

X =Xy Xarha Y Yarb Zy 2 2 €tC.

(Normalised coordinates are now used in practice, since they are required for the
calculation of the osculating elements.) The heliocentric longitude (), latitude
(by), and radius vector (r) are then obtained from:

r'€08 by 'cos L = &,

7 cos by sin [, = y,

7 sin by e
The intermediate values for Jupiter and Saturn are obtained by subtabulation.

Il

Example 4.18. Heliocentric longitude, latitude, and radius vector of Uranus
1960 March 7 at ot E.T.

From example 4.16 the normalised ecliptic rectangular coordinates for mean equinox
of date are: (r = 18-3984 325)

xg —0-7588 8654 yo +0-6511 0705 2¢ +o0-0122 8080
whence tan ly —o0-8579 7681 sin by +o0-0122 8080
Iy 139° 227 16”22 by +0° 42" 13”16

The orbital longitude (# + ) is derived from the ecliptic longitude by
subtracting the reduction to the ecliptic (R), which is expressed in terms of the
ecliptic longitude as:

sin R = —tan?}isin{2(/ — Q) — R}
R= —tan2disin2(l — Q) — ftan*dising (I — Q) + ...
or, for Pluto for which 7 is large, by determining % directly from:
tan # = tan (I — Q) seci?
*Pages 212 to 214 in A.E. 1972 onwards.
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It may alternatively be derived, or checked, from the osculating elements as the sum
of the true anomaly () and the longitude of perihelion (w); and it is for this
reason that the calculation of the true anomaly, which is not otherwise required,
is included in that of the elements. There are other methods of linking the two
calculations, and it is possible to derive the orbital longitude (z + &) almost
directly from the rectangular coordinates by:

rcos(u + Q) = x, + (seci — 1)sin Q (¥ sin § — ¥, cos Q)

rsin (u + Q) = y, — (seci — 1) cos Q (¥, sin Q — Y, cos Q)

Example 4.19. Orbital longitude of Uranus
1960 March 7 at ot E.T.

i o<:7723 37 tan? }i 0-0000 45425
I 139-3711 72
73-718
[l - & 65653 sin2 (I — §) +o0-75119
R (in degrees) = —o0°-0019 55 (the second term is negligible.)

Il — R = orbital longitude = 139°-3731 27 which may be compared with the value of
v + w in example 4.16.

Since the orbital elements are osculating elements, the orbital latitudes are
zero by definition.

Heliocentric positions of the minor planets are not tabulated.

Equatorial rectangular coordinates (x,, yq, 2;) referred to the true equinox
and equator of date are required at daily intervals for all planets as an essential
step in the calculation of the geocentric ephemerides.

For the inner planets heliocentric equatorials rectangular coordinates

(%m Y 2y) referred to the mean equinox and equator of date, are first derived
from the heliocentric positions given by the Tables by: l

Xy =a7 .cOSyEgCO8by = X

Yu = 7 (sin Ly cos by cos €y — sin €, sin by) = Y, COS €4 — 2 SIN €y

2y = 7 (sin Jy cos by sin €, + COS € sin by) = Y, sIin €, + 3 COS €
where €y is the mean obliquity of the ecliptic. These are calculated at intervals
of one day.

For the outer planets the heliocentric equatorial rectangular coordinates are
derived from the values given in Vol. XII, as corrected for the action of the inner
planets. These coordinates (xg, ys, 25), which are referred to the mean equinox
and equator of 1950-0, are converted to the mean equinox and equator of date
by the formulae:

Xy = Xpxg + Yoy + 252

= Xyxs + Y, 9 + Z, 2%

Jy = szs + Yzys e Zzzs
in which X, X,, .. are defined in section 2B. 'This conversion is done at intervals
of 10 days and the coordinates are then subtabulated to single days, except for
Pluto. A similar procedure is followed for the minor planets, for which apparent
places are calculated although not directly tabulated in the Ephemeris.

S —— w——
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Example 4.20. Heliocentric equatorial rectangular coordinates referred to
the mean equinox of date
Venus, 1960 March 7 at o? E.T'.
From Newcomb’s tables (see 4.E., page 168):
Iy 279° 36" 23”89 m —1° 20" 35723 r 07274 9725

sin [y —o0-9859 7672 sin by —0:0234 3971 sin ey +0-3978 5908
cos Iy +0-1668 8294 cos by +0:9997 2525 cos €y +0-9174 4615
Xg +0-:1213 7352 ye —o0-7170 9828 g —O0-0I70 5232
xy +0-1213 7352 yu —0-6511 1462 2y —0-3009 4929
(Check: x¢ + y3 + 284 — 7> = +1 x 107%)
1
Jupiter, 1960 March 7 at o? E.T.
Vol. XII. X3 —0-9004 217 Ys  —4°7990, 702 2y —2-0365 839
Corrections = 19 = 27 A 13
Xy —0-9094 236 Ys —4°7990 729 25 —2-0365 852
Using values of X, Y., ... given in example 4.16:
xy —0-8964 875 Yu —4-8011 273 2y —2-0374 783
Vesta, 1960 March 7 at ot E.T.
J Unpublished xs —o0-9891 498 ys —1-8175 824 2y —0:5957 276
" Using values of X,, Y., . .. given in example 4.16:
xy —0-9844 222 yu —1-8198 275 2y —0-5967 037

The coordinates (xy, Vi, 2y for mean equinox and equator of date, now
available for ot E.T'. for every day for all planets except Pluto, are converted to the
true equinox and equator of date by means of the formulae:

Xp = Xy — (Yx COS € + 2y SIn €;) A
Yo = Yu + Xy COS € difp — 2y de
Ry = By + Xy sin € A + yy de

in which (see section 2C) e, is the true obliquity and the second-order terms are
negligible. These coordinates are then combined with the similar coordinates
for the Sun (X, Y,, Z,), either at the same or a separate operation, to give the
geocentric coordinates (&g, g, {;). The conversion from the mean to true reference
system could, of course, be done after the formation of the geocentric coordinates,
and (for technical reasons) this is actually adopted for the outer planets.

Example 4.21. Conversion of heliocentric equatorial rectangular coordinates
from mean to true equinox of date

1960 March 7 at o E.T.

Ay = —0"-744 = —0-0000 0361 Ay sin ey = —0-0000 0144
de = —87.836 = —0-0000 4284 Ay cos ex = —0-0000 0331
whence :
xr — Xy = (+331yu + 1442y) X 1078
Yr — yu = (—331x%x + 42842y) X 107°
zr — 2u = (—144%y — 4284yy) X 1078
Unit: 1078 xp — Xy Yr — Yu 2r — 2m
Venus — 259 —1329 )
Jupiter —1883 —8432 +2 0697
Vesta — 688 —2230 + 7938
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From example 4.6: Xy +0-9648 1709 Yr —o0-2134 9910 Zy —o0-0925 7863
Hence, using xy etc. from example 4.20:

én Nz {r
Venus +1-0861 8802 —0:8646 2701 —0:3935 0020
Jupiter +0-0683 108 —5-0147 107 —2-1298 500
Vesta —o0-0196 120 —2-0333 489 —0-6892 030

As a check the values of &r, 9, {r for Venus are calculated by first forming &y, 7y, {x
and then correcting for nutation:

Xy +0-9648 1793 Yy —o0-2134 9104 Zy —0-0925 8639

&y +1-0861 9145 Nu —0-8646 0656 {w —0-3935 3568

by — Ew — 343 Nr — Mu — 2045 {o — Lu + 3548

&ér +1-0861 8802 nr —0-8646 2701 {r —0:3935 0020
As another check the values of x1, yr, 21 for Jupiter are calculated directly from the
corrected values of xg, ys, 25 using coefficients X, X, . . . for direct conversion from the

mean equinox of 1950-0 to the true equinox of date (see section 2C).
From example 4.16 and above, the modified coefficients are:

|

|

X, +0-9999 9693 Y. —o-0022 7188 Z, —0-0009 8770 }

X, +0-0022 7192 Y, +0-9999 9742 Z, +0-0000 4171 y

X, +o0-0009 8760 Y. —0-0000 4397 Z; +0-9999 9951 \
xy —0-8965 064 yr —4-8012 116 p —2-0372 713

These agree within the limits of rounding-off errors.

Equatorial rectangular coordinates (g, ys, 35) referred to the mean equinox
and equator of 1950-0 are also required for every tenth day for the inner planets
for inclusion in the volumes of Planetary Co-ordinates.™ They are formed by the
standard conversion formulae using values of /, b, for the mean equinox and ecliptic |
of 1950-0, obtained by:

Iy =1y + a — bcos (ly + c)tan by
by = by + bsin (I + ¢)
where a, b, ¢ are the precessional constants for reduction to 1950-0.
The same formulae are used to obtain J;, bs for the outer planets.

Values of xg, v, 2, for the inner planets could alternatively be obtained by the
standard transformation from the values of &y, ¥y, 2. The ecliptic longitude and
latitude (, b;) could be derived from the usual formulae:

¥.cos: byieasyl= Xy

7 cos by sin I; = y4 cos €g + 2 sin €

7 sin by = —ygsin € + 2 COS g
where ¢ is the obliquity of the ecliptic at 1950-0. These formulae are used as a
check on the calculations.

Geocentric positions

The apparent right ascensions and declinations of the planets, except for
Pluto and the minor planets, are tabulated for o® E.T. on each day in 4.E., pages
178-233. T They are given to os-o1 in right ascension and o”-1 in declination for
the inner planets, but to an increased precision of os:0o1 and 0”-o1 for the outer

planets. They are referred to the true equinox of date and are affected by
planetary aberration.

*See page 15.
tPages 218 to 273 in A.E. 1972 onwards.

——
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The geometric values are derived from the geocentric equatorial rectangular

coordinates (£, 9y, {r), referred to the true equinox of date, by the formulae:

2 cosdg coS an=—" &n = Xp T Ny

Afcos 975N For— np =y

4 sin 8, R ey L

42 =G+ + tan ay = ny/éy sin 8, = {,/4

where x;, Y5, 2; are the heliocentric geometric equatorial rectangular coordinates
of the planet, referred to the true equinox and equator of date, and X,, Y,, Z, are
the similar geocentric coordinates of the Sun, obtained as described in sub-section
B. These are subsequently converted to apparent positions a,, 8, by the appli-
cation of the correction for planetary aberration in the form:

a, = a, — 0-0057683 4 x instantaneous daily motion of a,

8, = 8; — 00057683 4 x instantaneous daily motion of 8,
where 4 is the (uncorrected) geometric distance of the planet from the Earth,
as tabulated.

Example 4.22. Apparent right ascension and declination of the planets
1960 March 7 at ot E.T.

From the values of &r, 9, {r in the previous example we deduce:

Venus Jupiter Vesta
42 2-0822 2669 29-6882 51 4-6098 932
yi| 1-4429 9227 5-4486 926 2-1470 662
0-0057 6834 0-0083 23 0-0314 3 0-0123 8
tan or cot ap t —o-7960 1965 c — 0-0136 2208 ¢ +0-0096 4517
ar 21" 25™ 558085 181 o3™ 07°-305 178 S7EATE 875
correction® —2 455 —1-:023 —1 261
ay 2T 25" 52963 18 03 06 -282 17 87 46112
sin Oy — 0-2726 9737 — 0:3908 9194 — 0:3209 9755
dr —15° 49" 29”422 —23° 00’ 36”036 —18° 43" 23”747
correction*® —10 -304 —o0 -025 +0 322
B —15 49 39 73 —23 oo 36 -06 —18 43 23 ‘42

These agree with the values tabulated in the Ephemeris within legitimate variations
due to small accumulations of error.

*To illustrate the application of corrections for aberration the following daily motions
are taken from the ephemerides:

Venus Jupiter Vesta
a + 29580 + 32854 +1018.88
b +1238” +0”-8 —26".0

The tabulated values of the semi-diameters are obtained by dividing the
semi-diameters at unit distance by the geocentric distance 4; the adopted semi-
diameters at unit distance and the authorities for each are as given in section 7C
for the years immediately preceding 196o. The semi-diameters of the minor
planets are not known with great accuracy and are not tabulated.

The (equatorial) horizontal parallaxes are the values of the solar parallax.
. e St *
8".80 divided by the geocentric distance 4.
*0:0057756 and 8”-794 for outer and minor planets for 1972 onwards.
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Example 4.23. Semi-diameter and horizontal parallax of Venus and Fupiter
1960 March 7 at ot E.T.

Venus Jupiter
Distance, 4 1-4430 5-4487
H.P. = 8”.80/4 6”-10 17:62
SHEBR 8”.41/4 5”-83 08”.47/4 18”.07
polar S.D. 917-91/4 16”.87

The ephemeris time of ephemeris transit is the time at which the centre of the
planet is on the ephemeris meridian; it is tabulated to the nearest second, which
is always adequate for the interpolation of the right ascension and declination to
the time of transit. As for the Moon (sub-section C) the time of transit is the
ephemeris time at which: _

ephemeris sidereal time — right ascension = o
If p is the corresponding fraction of the day, then:
ephemeris sidereal time at oh — right ascension at ob
+ p (86636%-56 — following daily difference of R.A.)
— second-difference correction = o
The small daily change in the equation of the equinoxes may be ignored and the
second-difference correction is only appreciable for the inner planets; the correction

can be expressed simply in the form of a correction to the time of ephemeris transit
as:

+By(p) x double second difference of R.A. in seconds
where B, is the Bessel second-difference interpolation coefficient. The ephemeris
sidereal time at o E.T. is numerically the same as the apparent sidereal time
at.oh U.T.

Example 4.24. Ephemeris transit of Mercury
1960 March 7

h m )

Apparent sidereal time at o® U.T. (4.E., page 11) 10 58 50:925
Apparent right ascension at o® E.T. (4.E., page 179) 23 31 19-32

Difference 12 32 284
i.e. right ascension — ephemeris sidereal time, at o? E.'T. = 451484
Following daily (first) difference of R.A. = —1768-20
Double second difference of R.A. = —348
First approximation to p = 45148-4/(86636-56 + 176-20)

= 0:520066 By(p) = —o0-0624

First approximation to 24 12 28 537
Second-difference correction = —o0-0624 X —348 + 2-1
Ephemeris transit 12 28 55-8

Astrometric positions

For Pluto and the minor planets Ceres, Pallas, Juno, and Vesta, for which
observations are generally made photographically, astrometric positions are given in
* ; o : w
A.E., pages 234—265, instead of apparent positions; the differences “ apparent
minus astrometric”’ are also given for the minor planets to enable apparent
positions to be derived for comparison with meridian observations.
*Pages 274 to 307 in A.E. 1972 onwards.
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The astrometric position of a planet is directly comparable with the mean
places of stars as given in star catalogues®; it is conventionally referred at present
to the mean equinox and equator of 1950-0. Since a planet is a moving object,
the purely geometric position must be corrected for the effect of light-time; and
this corrected position must then be adjusted by the constant part E (see section 2D)
of the aberrational reduction to apparent place, which is already included in the
mean places of the stars. There are several methods of calculating such an
astrometric ephemeris; the simplest in principle, and the one actually adopted,
is to form a geometric ephemeris for the mean equinox and equator of 1950-0,
then to apply the full correction for planetary aberration, and finally to remove
annual aberration calculated from the same day numbers (C, D) as used for the
stars. An alternative method, to be used as a check, is to apply the correction for
light-time (based on the geocentric distance) to the heliocentric rectangular
coordinates before combination with those of the Sun, and to adjust the resulting
geocentric position for the E-terms of annual aberration. A third method, applic-
able particularly to the minor planets, is to calculate apparent positions in the
normal way and to reduce these to ‘“ mean places referred to mean equinox and
equator of 1950-0” by the standard formulae applicable to the stars (see
section §).

For both Pluto and the minor planets heliocentric equatorial rectangular
coordinates for mean equinox and equator of 1950-0 are available from the basic
numerical integrations; these are combined directly with the similar coordinates
of the Sun (X, Y, Z;; see section B) to give geocentric rectangular coordinates
(és, M5, &s) from which the geometric spherical coordinates (ag, 85 and 4) are derived
by the standard formulae. The correction for planetary aberration is applied to
ag, 85 in the usual way by:

—0:0057683 4 x instantaneous daily motion T

For Pluto, for which the geometric ephemeris is calculated at intervals of four days,
third differences must be taken into account in deriving the daily motions. The
effect of annual aberration is then removed by applying the corrections —(Cc¢ + Dd)
to right ascension, and —(C¢’ + Dd’') to declination, where C, D are the
aberrational day numbers referred to the mean equinox and equator of
1950-0, and ¢, d, ¢’, d' are the * star constants”’ appropriate to the geometric
positions.

For the minor planets columns headed ““ App. — Astr.” are included in the
Ephemeris to provide a ready means of deriving the apparent from the astrometric
position; these are simply the star reductions from mean places for 1950-0 to
apparent places. They are actually calculated from the differences of the apparent
(ay, 8,) and astrometric (ay, ;) positions, each taken to one more decimal than
printed.

The ephemerides are given only during the period when these planets can
conveniently be observed, and are therefore omitted when the planets are within
about 40° of the Sun. ¥

*The star places must be corrected for proper motion and parallax.

t0.0057756 for 1972 onwards.
i There are no omissions in 4.E. 1972 onwards.
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Example 4.25.
1960 March 7 at o E.T.

EXPLANATORY SUPPLEMENT

Astrometric position of Vesta

From example 4.20 xs —0-9891 498 ys —1-8175 824 g —0-5957 276
From example 4.9 X5 +o0-9642 376 Ys —o-2156 864 Zs —0-0935 404
& —0-0249 122 ns —2-0332 688 s —o0-6892 680
whence 42 =  4-6098 930 4 = 2-1470 661
cot ag = +0-0122 5229 as 7 5 7R 115.527
Correction for planetary aberration (see below) —1 -261
— annual aberration (see below) +o0 -326
ag 17 57 10:-592
sin 8g = —o0-3210 2784 0s —18° 43" 30”-34
Correction for planetary aberration (see below) +o0 -34
— annual aberration (see below) +1 -62
3x —18 43 28 38

For the purpose of calculating the corrections for planetary aberration the following are
the daily motions in right ascension and declination, taken from A4.E., page 259:

a +1018-86 8 —27"5
These are to be multiplied by —o0-0057 683 4 = —o0-0123 8

For the calculation of annual aberration, the star constants ¢, d, ¢’, d’ are obtained as

(see section 5):

sin ag = —0-9999 sin 8y = —o-3210 ¢ —o0-0130 d —1-0558
cos ag = —o0-0123 cos 0y = +0-9471 ¢’ +0-0898 d’ +0-0039
tan € = +0-4337 sec s = +1-0559

From basic calculations, referred to equinox 1950-0: C —187-244 D +4"-852

As a check, the equatorial rectangular coordinates xg, ys, s are antedated by the
light-time 09-01238 (the corrections to be applied are —1342, +570, +403 X 10~7) before

combination with Xg, Y5, Zs.
are:

& —0-0250 464 ns —2-0332 118

The resulting values of &, 7s, {s (distinguished by primes)

i —0-6892 277

4% = 46096 124 4’ = 2.1470 008
cotag = +o0-0123 1864 £ 17k 57™ 108-615
E-terms of stellar aberration (see below) —0 -024
ag 17 57 10-591
sin 8 = —o-3210 1884 85 —18° 43" 28”38
E-terms of aberration (see below) —o0 00
Og —18 43 28 -38
The E-terms are calculated from the formulae:
correction to af = ¢4AC + dAD where AC = —0"-066
correction to 8§ = ¢’AC + d’AD 4D = +o -335

For a further check the reduction from the apparent position to the astrometric position
is calculated directly. Since the * star constants *’ so far available are for the mean equinox
of 1950-0 they cannot be used for this calculation; independent day numbers are therefore

used for the reduction from apparent place to mean equinox of 1960-0.

h m s
a, 17 §7 46-112

N
G 43756 ik +08-5070 cos &
(G + a) 22 35 42 sin (G + a) —0-:3596 cos (G + a)
tan 8 —o0-3389
H 18 58 58
(H + a) 12 56 44 sin (H + a) —o0-2450 cos (H + a)
sec 8 +1-0559 sin 8

From example 4.22:

=18%43"23% 12
+0:0471 i — 7”916
+0-9331 g + 9”435
—o0-9695 h +18".876
—o0-3210
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Reductions from mean to apparent place are +0®-258 and +7”-18, giving the position
referred to the mean equinox of 1960-0, and hence the astrometric position:

h m s o ’ ”
ag 17 57 45-854 83 —18 43 30:60
M~ 30-734
Nsinae,tand, — - 4-52G Ncosa, + 2:21
ar 17 57 10-591 Or —18 43 28:39

which are in good agreement. For the reduction to 1950-0 the formulae and constants of
A.E., page 50, are used:

M = —30%-734 N = —13%.361 = —200"-42
Table 2.4 gives 35° and o” for the approximate precession over 10 years so that to sufficient
precision: :
@,  I7% 577 2883 sin @, —0-99994 cos a, —O0-0IIO3
O, —18°43" 317 tan 8, —o0-33897
The reductions ‘‘ apparent — astrometric ’’ are:
+35%-521 and +4”-97

which agree with the values printed in A.E., page 259, and derived from the differences of
independently calculated apparent and astrometric places.

In the ephemerides of the minor planets in the Ephemeris the dates on
which the lunar inequality in right ascension attains its numerical maxima are
specifically indicated.® The lunar inequality arises from the perturbations in the
Earth’s orbit due to the presence of the Moon; observations of right ascension
at the times indicated consequently contribute the greatest weight, by this method,
to the determination of the mass of the Moon.

E. EPHEMERIDES OF OTHER MEMBERS OF THE SOLAR SYSTEM

Introduction

The ephemerides in the Ephemeris are restricted to those of the Sun and Moon,
the major planets and their principal satellites, and the four large minor planets;
limitations of space preclude the publication in this volume of data for the other
satellites, the other very numerous minor planets, the periodic comets, and the
recurrent meteor showers. Ephemerides of these other members of the solar
system are, however, provided annually in a number of publications, which, in
conjunction with the Ephemeris, provide for the whole solar system as completely
as the present state of our knowledge will allow.

Most of the minor planets are faint bodies which are observed mainly to
avoid mistaken identity; only a few have orbits of unusual theoretical interest or
of practical importance. Of these, (1) Ceres, (2) Pallas, (3) Juno, (4) Vesta are
widely observed for their value in correcting the fundamental systems of right
ascension and declination; the observations of these planets also lead to values of
the elements of the Earth’s orbit, and of related quantities such as the mass of
Venus and the lunar inequality. A list of minor planets to be observed has been
proposed in the U.S.S.R. in connection with Zverev’s Catalogue of Faint Stars
*These dates are not specifically indicated in A.E. 1972 onwards.
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(see section 5 and Trans. 1.4.U., 9, 285, 1957); in addition to the four minor
planets already mentioned, the list contains (6) Hebe, (7) Iris, (11) Parthenope,
(18) Melpomene, (39) Laetitia, and (40) Harmonia. A further group of 13 minor
planets, which have been shown to be useful for the determination of the mass of
Jupiter, is under observation at Washington. Certain individual planets are
used for special investigations; thus, (433) Eros was used for the measurement of
the solar parallax, (51) Nemausa, which is always near the equator at opposition,
is useful in correcting the fundamental system of declinations, and (1566) Icarus,
whose perihelion is only 0-19 astronomical units from the Sun, may afford a

correction to the mass of Mercury as well as an independent verification of the
general theory of relativity.

Although comets are also members of the solar system, most have orbits that
are so large that an assumption of parabolic motion enables observations to be
represented with sufficient precision. The term * periodic comets ™ is therefore
restricted to those comets whose periods are less than about two hundred years.
A few of these have orbits of small eccentricity, so that these comets may be
observed at every opposition; but most travel in highly eccentric orbits and are
visible only when they approach perihelion under favourable conditions. So
little is known about comets that observations of structure and brightness have an
intrinsic interest, and approximate ephemerides are published to facilitate obser-
vation. Accurate measurements of position at more than one perihelion passage
are, however, essential for the precise determination of an orbit; this in turn leads

to a study of the past history of the comet, and to a prediction of its return after
one or more revolutions.

The ephemerides of all comets, and of most of the minor planets, are calculated
by applying special perturbations to an osculating orbit, the coordinates of the body
being obtained at intervals of 20 or 40 days by numerical integration of the equations
of motion. Since the initial elements of the orbits are often poorly determined,
approximate methods are frequently used, and the resulting ephemerides are
intended solely as a guide to the planning of observations. The positions are
tabulated to om.1 in right ascension and to 1’ in declination, and are generally
referred to the equinox of 1950-0. An essential feature of a search ephemeris is an
indication of the possible error in position that may arise from an error in the
mean motion; the ephemeris therefore contains the “ variations ”’ in right ascension
and declination. These are the approximate changes caused by a change of one

day in the time of perihelion passage, or, in the case of a minor planet, of 1° of
mean anomaly.

Minor planets

Orbital elements of some precision are known for more than 1600 minor
planets, but this represents less than five per cent. of the total number that a
statistical estimate suggests as being within reach of modern instruments. The
majority of the orbits have a small inclination to the ecliptic and a small eccentricity,
and their semi-major axes lie between the limits 2.1 and 3.1 astronomical units.
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These orbital elements do not exhibit a random distribution and there are correla-
tions between them; the longitudes of perihelion, for example, show a tendency to
cluster about a mean value close to that of the perihelion of Jupiter’s orbit. There
are a small number of exceptional orbits which do not lie within the main asteroidal
belt, and some of these, e.g., (1566) Icarus, have perihelia lying inside the orbits
of the Earth or even of Mercury; at the other extreme, the orbit of (944) Hidalgo
is of exceptional interest because of its high inclination of 42° and large aphelion
distance of 9-6 astronomical units.

The astrometric ephemerides of Ceres, Pallas, Juno, and Vesta (see sub-
section D) are immediately available for the comparison of observation with theory.
Ephemerides of comparable precision, but usually of the geometric form, have
been published at different times for (433) Eros, (173) Ino, (1566) Icarus, and (51)
Nemausa. Search ephemerides for all the known minor planets are given annually
in Ephemerides of the Minor Planets published as a co-operative effort by the
Institute of Theoretical Astronomy at Leningrad; a brief introduction in English
is given, but a full translation of the Russian text is also available. The volume
also contains the number, name (in Roman characters), and elements of the orbits
(equinox 1950-0), together with the magnitude at mean opposition distance. The
approximate ephemerides of all planets which are at opposition during the year are
tabulated in order of date of opposition. For economy of presentation, the data
are given in a coded form, as in the following example for the year 1960:

4 Vesta 6m.2 21° 1958
h m B

June 5 19 085 g —19 53 e 2-168

;5 Ig 021 g :20 e ~8:n.

5 18 53-2 2T 35 g5

2 101 —356 ’

July 5 18 43°1 i —22 31 - —0'-8

15 18 334 o —2324 ¢

25 18 254 —24 12 1158

The top line gives number, name, magnitude, mean anomaly on the third
date, and the year of the last observation available at the time of calculation; it is
followed by geocentric positions for six standard 1o-day dates for ot U.T., with
first differences., The date of opposition (day of month) is given to the left of the
right ascension column; and the last column gives, in order, and for the third
date: 7, the variations in declination (in minutes of arc) and in right ascension
(in minutes of time) for 1° change in mean anomaly, the variation in declination for
a variation in right ascension of 1™, and finally 4. The volume also gives more
extended ephemerides, usually for about 200 days, for those planets brighter than
magnitude 11-5, and these include magnitudes and phase angles for each date. The
magnitudes are calculated from a formula of the type m = g + 5log 7 4, the constant
g being given in the table of elements.

Corrections to the orbital elements are continually being made, and much of
this work is now done on electronic computers, particularly those of the Minor
Planet Center at Cincinnati. This centre is responsible for a large share of the
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minor planet calculations, and for the publication of the Minor Planet Circulars,
which contain the latest reports of observations, discoveries, orbits, and ephemerides.
The Minor Planet Center also provides a service whereby differential corrections
and perturbations are quickly and efficiently calculated; the resulting values are
supplied to the Astronomisches Rechen-Institut at Heidelberg and other collab-
orators, who calculate new elements and ephemerides for inclusion in the Russian
volume. Details of the methods used at Cincinnati are given in Minor Planet
Circulars 1504 to 1508. For results of similar work carried out in Leningrad and
other centres in the U.S.S.R., reference may be made to Astronomical Circulars of
the U.S.S.R., and to the Publications of the Pulkovo and Crimean Astrophysical
Observatories.

A list of mean photographic magnitudes of all numbered minor planets has
been prepared by T. Gehrels and has been published in Trans. 1.4.U., 10, 305-
316, 1960.

Comets

Most of the known comets, travelling in large orbits of high eccentricity, are
visible only in the neighbourhood of perihelion, and only a small number, with
moderately eccentric orbits, can be seen at each opposition. Ephemerides of
comets are therefore restricted to the period of visibility of the short-period comets.
The early recovery of a comet is important in order to provide observations over as
long an arc as possible, and modern instruments can detect comets of magnitude
19 or 20; this sets a limit to the period of the ephemeris, although positions are not
given if the comet is within 30° of the Sun. About fifty comets, having periods
less than 100 years, are kept under review, and the observations made at each
return to perihelion are used to correct the orbits. The improved elements may
then be used for the calculation of special perturbations and of a geometric
ephemeris for the next return. Details of perturbation methods, and all necessary
data, are given in the volume of Planetary Co-ordinates, 1960-198o0.

Search ephemerides of this nature are published annually in The Handbook of
the British Astronomical Association. The positions, referred to equinox 1950-0,
are tabulated at intervals of 10 days, together with values of the heliocentric distance
7, the geocentric distance 4, the variations in right ascension and declination, and
the estimated magnitude m. The law of brightness of a comet differs from that
used for a minor planet, since a comet has some inherent light of its own which
varies with the heliocentric distance. Magnitude formulae are therefore expressed
in terms of a fourth or even sixth power of 7:

fourth power m = g + 10log7 + 5log 4
sixth power m =g + 15log7r + 5log 4

Ephemerides for individual comets are also to be found in the publications of
various observatories. A more general distribution of cometary information,
including ephemerides, positions, orbits, and announcements of new discoveries,
is made in the I.A.U. Circulars, the Harvard Announcement Cards, the Astronomical
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Circulars of the U.S.S.R., the Nachrichtenblatt der Astronomischen Zentralstelle
(not issued after 1959), and the British-Astronomical Association Circulars.

Meteors

The modern study of meteors has had considerable influence on upper-
atmosphere research as well as on the study of interplanetary matter and its
relationship with the solar corona and the zodiacal light. The number of meteors
falling on the Earth every 24 hours is estimated to be of the order of 101°, and these
are mainly sporadic meteors whose individual orbits and origin are unknown.
Statistical methods show, however, that meteoric dust has its origin in the solar
system, each individual particle travelling in an orbit about the Sun. The meteor
showers which are observed annually on fixed dates occur when the Earth intersects
a stream of meteoric dust. If the position of the apparent radiant of the meteors
is measured and if their velocity can be determined, then it is possible to calculate
the elements of the orbit of the stream; this has been achieved in a few cases by
photographic or radar methods. Some of these orbits resemble those of known
comets, while others, particularly those of the sporadic meteors, and the daylight
showers detected by radar methods, are very much smaller and show analogies
with the orbits of certain minor planets. In the absence of any precise knowledge
of the structure of meteor streams or of the elements of their orbits, the published
times and positions of the radiants of meteor showers are only approximate and are
based entirely on observational experience. Annual predictions of this kind, with
estimated hourly rates of visual meteors, are given in 7he Handbook of the British
Astronomical Association and in The Observer’s Handbook of the Royal Astronomical

Society of Canada.

Artificial planets and satellites

The successful launching of artificial satellites and planets foreshadows the
addition to the solar system of essentially permanent members for which orbits
and ephemerides will be required. Before it is possible for such ephemerides to
be included in the Ephemeris, the objects must necessarily be in orbits entirely
outside the retarding influence of the Earth’s atmosphere and must also have been
observed accurately over a long interval. The short periods and rapid motions
will make prediction uncertain and tabulation difficult. Ephemerides are first
required in advance to facilitate observation and then, to a higher precision, in
arrear for the interpretation and analysis of the observations. Such preliminary
ephemerides can best be provided by the special organizations set up in the launch-
ing countries and elsewhere. It is only after several years, and the accumulation
of a large number of accurate observations of position, that sufficiently precise
values of the elements and of the gravitational field of the Earth will enable
ephemerides to be constructed that can be used for a strict comparison of obser-
vation and theory.

Positional data may be required to relatively low precision for the interpretation
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of radio observations, even though the objects are not readily observable optically.
Similar data will be required for navigational purposes if the objects are readily
observable; in principle a single observation of position of a close Earth satellite,
relative to the star background, will then suffice to determine the observer’s
position on the Earth’s surface. Precise ephemerides will be necessary for use in
the determination of time; the rapid motions provide in principle efficient means
of determining the measure of the adopted time scale, to an observational precision
many times that obtainable by observing the Moon. The adopted time scale will
theoretically be connected to ephemeris time by means of a linear relation; but the
coefficients of this relationship can only be determined by the analysis of a series

of observations of both Sun and object over a long interval—of the order of one
hundred years.

Because of the rapid development, no details are given here of the many
organizations concerned with the calculation of orbits and ephemerides of the
satellites and probes, none of which so far (January, 1960) satisfies the rigid
conditions of long life, freedom from atmospheric perturbations, and ready
observability, required to permit the calculation of a precise ephemeris. Similarly,
no references are given to the published orbits and ephemerides of existing objects.

F. EPHEMERIDES AT TRANSIT

Introduction

The Sun, Moon, and planets are most generally observed at transit with
meridian instruments, and it has been customary to include ephemerides at transit
to allow for the requirements of setting the instruments, reducing the observations,
and comparing observation with theory. Ephemerides at transit over the Green-
wich meridian were given in The Nautical Almanac up to and including 1959 and
over the Washington meridian in The American Ephemeris up to and including
1950. As from 1960, however, the fundamental ephemerides are tabulated in
terms of ephemeris time and it is not theoretically possible to give precise transit
ephemerides over particular meridians on the Earth. Moreover, it is more
satisfactory and little more difficult to compare observations directly with the
ephemeris for o? E.T. rather than through the intermediary of a transit ephemeris.

For these reasons ephemerides at transit have been omitted from the Ephemeris as
from 1960.

Low-precision data at transit are required for planning observations, for
setting the instrument, and for reducing the observation to the geocentric apparent
place of the centre of the object. These data can be obtained fairly simply, as
shown below, for any individual observatory from the ephemerides for ot E.T.;
and it is more satisfactory for the few observatories that observe on the meridian
to do this rather than that a single transit ephemeris over the ephemeris meridian,
which would itself need to be interpolated, be published.
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U.T. of Greenwich transit

The E.T. of ephemeris transit is given in the o? ephemerides for the Moon
and planets, and can easily be deduced for the Sun from the tabulated equation of
time; as from 1965 the E.T. of ephemeris transit of the Sun will be tabulated in
the Ephemeris (see section 3B.4). The longitude of the ephemeris meridian,
expressed in time measure, is 1-002738 47T east of the Greenwich meridian, so
that the E.T. of transit over the Greenwich meridian is later than that of ephemeris
transit by:

AT[(1 — o-99727 x rate of change of R.A.)
or, approximately:

AT (1 + rate of change of R.A.)
if the right ascension is expressed in the same unit as the time interval. The
second term in the bracket has maxima of about o0-05 for the Moon, and about
o-or for the planets (Mercury). The U.T. of Greenwich transit is therefore later
than the tabulated E.T. of ephemeris transit by the small quantity:

AT x rate of change of R.A.

which may at present reach about 2%, or oP.0003, for the Moon, but which is less
than o8.3 for the planets.

For the Sun the E.T. of ephemeris transit is simply 12" — the equation of
time interpolated to the time of transit; the U.T. of Greenwich transit differs
only by +0-002738 4T.

E.T. of transit over observer’s meridian

The E.T. of transit over a meridian in west longitude A is obtained by interpol-
ating the E.T. of ephemeris transit to ephemeris longitude A* = A +1-002738 47,
that is to the fraction A*T towards the next following E.T. of transit, where A* is
A* expressed as a fraction of a revolution. Since the interval between consecutive
transits is always about 24 (25" for the Moon), an error in the estimate of 4T
affects directly the E.T. of transit. It is therefore interesting to examine the
precision required in E.T. in order to interpolate the ephemerides to full tabular
precision; this is given in the table below.

Tabular precision Precision of E.T.
Body a ) transit required
3 .
Sun 0-01 o-1 — 34
Moon 0-001 0-01 oh.o001 o".000003
u (o-01 o-1 -00003)
Inner planets 0-01 o-1I 38 18
Outer planets 0-001 0-01 ) & i
e (o-or o1 55 7°) (Jupiter)
Minor planets 0-01 o-1 18 38

AT is known several years in advance to barely sufficient accuracy, but (except
for the Moon) the E.T. of ephemeris transit is given to sufficient precision to

enable precise transit ephemerides to be formed when a reliable estimate of 47
is available.
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U.T. of transit over observer’s meridian

The U.T. of transit over a meridian in west longitude A is:

E.T. of ephemeris transit — AT + A*T (24" + d)
+ second-difference correction

where d is the excess over 24" of the difference to the next following (for west
longitudes) transit. This may be written:

E.T. of ephemeris transit + 0-002738 4T + X + A*1d
+ second-difference correction

It is to be noted that this time depends only slightly on 47". This is equivalent

to interpolating E.T. of ephemeris transit to longitude A (not A*) and applying the
small correction:

(1-002738 4T%) d + 0-002738 AT

in which 474 is AT expressed as a fraction of a day; this correction can generally
be ignored, except possibly for the Moon.

The local mean time is U.T. — A and is obtained by omitting the term *“ +A”
in the above expression for U.T.; this is equivalent to interpolating the tabular
E.T. of ephemeris transit, ignoring the change of day or the increment of 245, to
longitude A* (not A), and applying the small correction +0-002738 47. The local
mean time can be converted to standard time by the application of the difference of
longitude from the standard meridian.

Approximate transit ephemerides

The errors introduced by linear interpolation, ignoring second and higher
differences, are largest for Mercury, for which they may reach 6¢ in right ascension
and 1’ in declination; but for Venus they are only about 1% and o’-1 respectively,
and are less for the Sun and the other planets. It is therefore suggested that for
the purpose of planning observations and setting instruments linear interpolation
to the E.T. of local transit will suffice for the Sun and planets, with perhaps an
approximate allowance for second differences for Mercury (when observable).
For a precision of about 18 in right ascension and o’-1 in declination (say 3% and o’-5
for Mercury) E.T. need be known only to the nearest 5™, or 04.003. The inter-
polating factor in the o? ephemerides is simply the fraction of the day, as given by
the E.T. of ephemeris transit; this can be formed, to 0%.001 for convenience, at a
wide interval and the first-difference corrections to the o® values of right
ascension and declination calculated at the same interval. The corrections
can then be subtabulated and applied to the ot values to provide the approximate
ephemerides required. These calculations are best done systematically for each
observatory.

For the Moon the corresponding precision of E.T. is about o?.003 or 58, but
ob.or will probably suffice; an allowance for 47 is necessary but no great precision
is required, and for any observatory a fixed value of A* can be used for many years.
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If the difference between the E.T'. of upper (U) transit and that of the preceding or
following lower (L) transit is 122 + d, then the increment to be applied to the
tabular E.T. of the upper transit, to give (to this precision) the E.T. of upper

; sineirrnky A*h . :
‘ transit over the local meridian, is A* + Ea’, where A*2 is expressed in hours. The

day and hour is then used to select the appropriate entry in the hourly ephemeris,
and the fraction of the hour used for linear interpolation. Such an approximate
ephemeris would require correction for parallax in declination (as well as for
refraction) before being used for the setting of instruments.

If only the sidereal time of meridian passage is required it can be obtained
from the U.T. of transit by means of the tabular relationship between S.T. and
U.T. given in A.E., pages 10-17. The precision will be the same as that to which
the U.T. of transit is known, namely 18 for the planets and o®-0001 or o8-4 for the
Moon; to this precision second differences are required in interpolation for the
Moon and Mercury. The local mean time of transit (¢) can be converted directly
to local apparent sidereal time as:

Greenwich apparent sidereal time at # + 0-002738 A

where the variation in the equation of the equinoxes is neglected and the term
0002738 A is the reduction for longitude tabulated in A.E., Table IX. It should
be noticed that the small term +0-002738 47 in the expression for the local mean
time of transit can be incorporated by replacing A by A*. To the precision of
about 18 considered here the local apparent sidereal time can be calculated directly
from the local mean time of transit, or from the U.T. of transit, by means of a
linear relation of the form a + bz

For observations of the limbs of the Sun and Moon approximate values of the
semi-diameters in arc and in time (sidereal time of semi-diameter passing the
meridian) are also required.

Reduction of observations

Apart from instrumental factors, corrections for the following may be
necessary before an observation of the limb of the Sun, Moon, or planet at transit
can be compared with the apparent geocentric position of its centre: refraction,
parallax, vertical semi-diameter, sidereal time of semi-diameter passing the
meridian, and phase or defective illumination of the limb. Refraction and parallax,
considered in sections 2E and 2F, affect declination only and are not further dealt
with here, except in so far as the equatorial horizontal parallax at transit is required.
Corrections for semi-diameter must be made for both right ascension (or time of
transit) and declination, unless both limbs are observed and the mean taken; in
any case values of these semi-diameters at transit are required.

The following table gives approximately the precision required in E.T. of
transit in order to obtain the horizontal parallax (H.P.) and semi-diameters (S.D.)
sufficiently precisely for the reduction of observations.

_
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Precision required Precision required
Body S.D. H-P. 5o L2 B
Sun o-1 or o-cl o-1 &
Moon 0-01 0-001 0-01 5% . or., oh.0062
% 0-1 0-01 o-1 M or oh.o2
Inner planets o-1 0-01 o-1 5
Outer planets 0-01 0-001 0-01 <

There is thus never any difficulty in determining the appropriate times and
interpolating factors, though an estimate of 47" is necessary for the Moon. For
the Sun and planets the interpolations of the horizontal parallax and the semi- «
diameters are trivial, but second differences must be used for the Moon. Ephem-

erides can be systematically prepared by observatories engaged in meridian
observations.

The semi-diameter and horizontal parallax are merely the values at of
interpolated to the time of transit. The sidereal time of the semi-diameter
passing the meridian is to be calculated from the formula:

equatorial S.D. x sec (declination at transit) x S

where P

I
1 — 4a8/3609-86
and 4o is the hourly rate of change of the right ascension in seconds at the time of
transit. If the equatorial semi-diameter is expressed in seconds of arc it may be
converted to seconds of time by dividing by 15. For ali bodies except the Moon §
may be expanded as:

S =1 + 4d08/3609-86
and an approximate value used for 4as. But for the Moon it is necessary to use
both the exact formula and the value of 4da® interpolated to the time of transit.

The parallax correction 48 to be applied to the observed declination & is
given (section 2F) by:
TR sin 7 sin (¢’ — &)
Sy I — psin 7 cos (¢ — 0)
where m, 8, are the geocentric horizontal parallax and declination, and p, ¢’ are the
geocentric radius and latitude of the observer.

If .6 is known, then 48 is given by:
sin 48 = p sin 7 sin (¢’ — 9)
or, with an error not exceeding 0”-04,
46 = 0-999988 p 7 sin (¢’ — 6)

The apparent topocentric semi-diameter is always greater than the geocentric
value since the observer must be closer to the body observed; it is, however, only
for the Moon that this augmentation is significant. Clearly it does not affect the
sidereal time of the semi-diameter passing the meridian, but it must be taken into
account for the vertical semi-diameter. It may most easily be allowed for by
combining it with the correction for parallax (see section 2F) by applying the
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parallax correction directly to the observed northern or southern limb. The
augmented semi-diameter at transit may however be calculated directly from the
rigorous equations of section 2F, putting 2 = &, = o. The resulting expression
for G, by which the geocentric semi-diameter is to be multiplied to give the
topocentric value, may be used in different forms according to requirements:
_ sin (¢’ — ) = cos (& — &)
sin (¢" — &) 1 — psina cos (¢' — &)
or, with adequate accuracy for the Moon:
G=1+psinmcos (¢ — &) + (psinm)2{1 — 3sin2(¢' — &)} + ...
It may be verified that the difference between the parallax corrections for the
centre and limb is the augmentation.

For the planets augmentation is negligible and the parallax correction may
be simplified to:
438 = p wsin (¢ — 9)
where ¢’ — 8 is the zenith distance. However, for Jupiter and Saturn the disk of
the planet is not circular, and allowance must be made both for the ellipticity of
the planet and the orientation of the axis of rotation. If P is the position angle of
the axis of rotation (see section 11) the apparent vertical and horizontal semi-
diameters at transit are given approximately by:
vertical S.D. (polar S.D.) x (1 — e%sin% P)~*
horizontal S.D. (polar S.D.) x (1 — e?cos? P)*
= (equatorial S.D.) x (1 — €2 sin? P)*
where e is the eccentricity and the inclination of the axis towards the observer is
neglected. For Jupiter and Saturn e* = 0-129 and o-199, and P may reach 25°
and 7°. 'The correcting factor (1 — e? sin? P)~? can be taken as unity for Saturn
but may reach an extreme of 1-o1 for Jupiter and should strictly be taken into
account. The following are the factors by which the polar semi-diameter,
tabulated in the Ephemeris, should be multiplied to give the apparent vertical and
horizontal semi-diameters; the last line of the table gives the factors by which the
sidereal time of semi-diameter crossing the meridian, calculated as above, should
be multiplied:

Jupiter Saturn

o o o’ e TO 15° 20° 25° —
Vertical 1-000 1-001 1-002 1-004 1-008 1-012 1-000
Horizontal 1-071 1-071 1-069 1-066 1-062 1-058 1-117
Time of crossing 1-000 0-999 0-998 0-996 0-992 0-988 1:000

A correcting factor should also be applied to measurements of Saturn’s rings;
this is generally necessary only when the rings are open and the north or soutl.
limb of the planet is hidden from view. The eccentricity of the rings is given by:

) e? = (a® — b?)/a?
where a, b are the axes tabulated in 4.E., pages 374 and 375.* The vertical semi-
diameter then becomes:

3 b(1 — €*sin? P)-¥
and may reach 1-011 times the tabulated value.
*Pages 410 and 411 in A.E. 1972.
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If the limb of the Moon or of a planet is not fully illuminated, a correction for
phase can in some cases be applied. For the planets (see section 11) the corrections
may be incorporated with those for semi-diameter by using, in place of the full
values:

sidereal time of S.D. passing meridian X (1 — } sin? sin? O)
vertical S.D. x (1 — % sin?17 cos? O)
in which 7, the angle between the Earth and Sun as seen from the planet, is less
than go° (i.e. the planet is gibbous) and @ is the position angle of the mid-point of
the bright limb tabulated in the Ephemeris for the inner planets. For Mars,
Jupiter, and Saturn the position angle of the greatest defect of illumination is
tabulated in the Ephemeris, and differs from @ by 180°; it may therefore be used
in place of @ in the above expressions.

For Mercury and Venus a correction in declination may also be applied when
the planets are in the crescent phase. This occurs when 7 is greater than 9o°, and
the defective illumination of the north or south limb reduces the tabulated semi-
diameter to:

semi-diameter x sin @
where sin 0 is taken as positive in all cases.

The corrections for phase may also be applied directly, especially if both
limbs are observed and the mean taken; they may be deduced from the formulae
above.

Similar formulae apply to the Moon, but the more rapidly changing phases
make it necessary to specify the form of correction more exactly. Limb I (preced-
ing or west) is illuminated between new moon and full moon, and limb II (following
or east) is illuminated between full moon and new moon. A correction for
defective illumination of the non-illuminated limb may be applied near full moon,
the difference of right ascensions of the Sun and Moon at transit being usually
limited to the range 111 40m to 12h 20m. The appropriate reduction to the right
ascension or time of transit of the centre of the Moon is then:

sidereal time of S.D. passing the meridian x { 1 — 3 sin® (& — ag) cos? 8 }
where 8, is the Sun’s declination and @ — ag is the difference between the right
ascensions of the Moon and the Sun; the defective illumination is:
semi-diameter x % sin? (a — ag) cos? 8,
The corresponding modified vertical semi-diameter for a non-illuminated

north or south limb, for which a correction for defective illumination can be made
in certain circumstances, is

semi-diameter X (1 — % sin? )
where i is the altitude of the Sun above the horizon as seen from the north point
of the Moon’s disk and is given by:
sin ¢ = sin 8, cos 6 — cos &y sin & cos (a — ag)
or, with the restricted range of a — ag noted above:
Yy =28, +8 =208, + 8, — 48
where 48 is the parallax correction. If s is positive the north limb is illuminated
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and the correction for defective illumination is applied to the south limb, and
vice versa. 'This procedure should not be used if s exceeds about 3°. The defec-
tive illumination in declination is:

semi-diameter X % sin?

Example 4.26. The transit of the Moon at Washington
1960 August 7
The coordinates of Washington are taken from example 2.1 and 47T is assumed to
be +368.
Geographic longitude A = + sho8m r58.75 = 5h.13771 Al = 0-42814
Ephemeris longitude A* = A + 1-002738 AT = 5M-14774 SAXE = 0.42898
E.T. of local transit. From A.E., page 61:

Ephemeris upper transit occurs at August 64 23".9333
Interpolation for A* gives August 79 osh-2903 = 7%.2204

U.T. of local transit may be obtained from U.T. = E'T. — AT = 5".2803
or from interpolation of ephemeris transit for A, giving: 50.2798
The correction (1002738 AT in days) d + 0-002738 AT

= 0.00042 X oh.g6 + oM.00003 = oh-00043

Interpolation of the ephemeris to E.'T. of local transit gives:

A.E., page 122. Approximate right ascension 210 11™ 20°-1
Approximate declination —3I3gE 1327
A.E., page 61. Semi-diameter 16" 32”01 = g92”-01

Equatorial horizontal parallax 60" 40”-85

Local sidereal time of transit.

Local mean time of transit = 1960 August 79 ool-1426

Greenwich apparent sidereal time at oP 21 o2™ 038-8
Interval of o-1426 + 8 33-4
Increment (A4.E., Table IX) + 1 -4
Reduction for longitude A (4.E., Table IX) +50 -6

28 . LTI 2053
Sidereal time of semi-diameter passing the meridian.

A.E., page 122. Aa interpolated to time of transit = 14¢%-815
S = 1/(1 — 4a8/3609-86)

= 1-0432 99
% sec & = 0-0685 67
Semi-diameter, S.D. = 992”-01
Sidereal time of S.D. passing the meridian = 708-964

The error introduced by using for da the tabulated first difference (= 149%-761) would
amount in this example to o%-001, but might reach o%-005 in extreme cases.

Parallax.

¢’ +38° 43" 53" p 09986 oI
Sy —13 31 32 T 60’ 40”-85
¢ — 38 +52 15 25

sin7 ©0-0176 504

sin (¢’ — 8) +0-7907 64 psinm 0-0176 273

cos (¢” — 8y) +o-6121 21 (p sin )% 0-0003 107

A = psin7sin (¢’ — &) +0-0139 390 tan 48 = A/(x — B) +o0-0140 910
B = psin 7 cos (¢’ — 8;) +0-0107 9oo 48 + 4872673

d =8, — 46 —14° 19 58"
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Augmentation.
¢ +38°43 53" sin (¢" — 9) +0-7993 09
8 —14 19 58 cos (' — d) +0-6009 20
¢ — 8 +53 03 5I G = sin (¢’ — d)/sin (¢’ — 8,) 1-0108 06
Geocentric semi-diameter 992”01 = 16’ 32”-01

Topocentric semi-diameter  1002”-73 = 16" 42”73

The two alternative methods give similar results:

G
C = cos 48 0-9999 OI C/(x — B) 1-0108 08
D =1 — §sin? (¢’ — ;) +0-0620 38 1 + B + D (p sin m)? 1-0108 09

Defective illumination.
Transit occurs 3" after full moon, therefore the east limb (limb II) is illuminated.
A.E., page 27. At transit, Sun’s right ascension — gh o8m 388
Sun’s declination = +16" 25" 41°
&= ag | r2liopM 518

sin (@ — ag) —o0-0124 sin 8, +0-2828 sin 8 —o0-2476
cos (@ — ag) —0-9999 cos 8, +0:9592 cos 8 +0-9689
Defective illumination of west limb = % sin® (@ — ag) cos®? 85 x S.D. = o%-005

sin y = +0-0365 (alternatively, y = 16° 26" — 14° 20" = 2°06’, and sin f = +0-0366)
Since ¢ is positive, the north limb is illuminated, and the correction is to the south limb.
Defective illumination of south limb = } sin?¢y x S.D. = 0”-66

G. COMPARISON OF OBSERVATION WITH THEORY

The ephemerides of the Sun, Moon, and planets in the Ephemeris are intended
to form a consistent basis for the comparison of observation with theory. Within
the limitations of the theories on which they are based, they only depart from the
actual positions systematically through errors in the constants adopted for their
orbital elements and masses; they are calculated to a precision such that the
inevitable random errors due to roundings at various stages are quite negligible
compared to the random errors of observation. However, the departures from
the actual positions may in some cases be quite large: this is particularly so for
the minor planets, which may be as much as 5” away from the ephemeris
positions, and for Pluto, whose right ascension is now (1960) about os-5 greater
than the tabular values. These departures are systematic, and do not affect the
comparison; but corrections to the ephemerides may be necessary when extreme
precision, such as for planetary occultations, is required.

In general the ephemerides consist of apparent positions referred to the true
equinox of date, so that they are as directly comparable with observation as is
practicable. The adopted procedure is to apply such corrections as are necessary
to the observed position, which is then compared directly with the ephemeris
position, interpolated to the time (E.T., or, more strictly, U.T. with an approxi-
mate correction to E.T.) of observation. In the case of meridian observations,
corrections may have to be applied for instrumental errors, refraction (section 2E),
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parallax (section 2F), semi-diameter and defective illumination (sub-section F),
diurnal aberration (section 2D), andlatitude variation, if not included with
parallax; when thus corrected they are directly comparable with the ephemerides.

The observed positions of faint objects, particularly of those that cannot
readily be observed on the meridian, are found by differential methods in which
the differences between the coordinates of the moving object and those of nearby
stars are measured. In the reduction of a photographic plate the effects of
differential refraction and aberration are allowed for in the plate constants, and
the coordinates of the moving object are obtained directly in the same form as
those of the reference stars and referred to the same equinox and equator. Since
the positions of the reference stars are usually mean places taken from a funda-
mental catalogue, the observed position is an astrometric position; when reduced
to the standard equinox of 1950-0 (if not already for that equinox) it is directly
comparable with the astrometric ephemeris. Differential precession and nutation
do not enter in the reduction of a photographic plate, but a correction for parallax
must be applied to the observed position.

A micrometer measure of the position of a moving object with respect to a
neighbouring star is sometimes made visually, and this also leads to a position
that is comparable with an astrometric ephemeris. Corrections are strictly
necessary, though often negligible in practice, for the differential variations in
refraction, aberration, precession, and nutation between the positions of the star

and the. moving object; they should be applied to the position of the star together
with the differences of the coordinates.

In all cases it is desirable to apply corrections to the observed position so
that it is directly comparable with the ephemeris; but in general the residuals
are so small that corrections can be applied, with reversed signs, to the ephemeris
position if for some reason this is more convenient.

The ephemerides are tabulated in terms of E.T. and the observations are made
in terms of U.T. Generally 4T (= E.T. — U.T.) is one of the unknowns to
be determined by analysis of the residuals. For relatively slow-moving objects
AT may be sufficiently well known for the U.T. of observation to be corrected
to E.-T. For fast-moving objects, such as the Moon, for which 47 is the principal
unknown, the residuals themselves can be expressed in time by finding, by inverse
interpolation in the ephemeris, the E.'T. corresponding to the observed coordinate;
AT then enters the equations of condition with coefficient unity.

The differences between the observed and calculated positions are normally
expressed in the form of O — C (observed — computed) residuals in da cos 8
and 4. Over an interval in which the effect of errors in the adopted constants
varies linearly with the time, a number of such residuals can be combined by
taking their weighted mean to give a mean residual applicable to the averagc time
of observation. This is then equated to the linear combination of the errors in
the unknowns; from these equations of condition, each with its appropriate
weight, normal equations are formed and solved for the unknowns.
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When neither an apparent nor an astrometric ephemeris is available, as for
minor planets other than those given in the Ephemeris, the comparison may
have to be made with a geometric ephemeris or even with a heliocentric geometric
ephemeris. The geometric ephemeris has to be corrected for the effect of light-
time () by interpolating it to time t; — 7 + AT where #; is the observed U.T.
of observation; in most cases this will be an adequately precise correction for
aberration, but a more accurate procedure may be used if necessary (see
section 2D).

For geocentric ephemerides O — C residuals can be formed as in the following
table; 47 may be either a definitive value or an approximation to the actual value
to be determined from the observations.

Observed position Corrections to be applied Ephemeris Interpolated
at UT. =ty position to E.T.
apparent — apparent ty + 4T
2 — (precession and nutation; astrometric tv +4T
annual aberration)
> — (precession and nutation) geometric tg — T +4T
astrometric + (precession and nutation; apparent ty + 4T
annual aberration)
= — astrometric tg + 4T
e + (annual aberration) geometric ty — 7 +4T

The positive sense of the corrections is that adopted in reducing star positions
from mean to apparent place; the positive correction for precession and nutation
is that from the mean equinox of 1950-0 (or the mean equinox to which the
astrometric or geometric ephemerides are referred) to the true equinox of date.

When a geocentric ephemeris is not available the following procedure may be
used. The Sun’s equatorial rectangular coordinates X, Y, Z for E.T. = #; + 4T
are combined geometrically with the (ephemeris) heliocentric rectangular co-
ordinates x, y, 2 of the moving object, referred to the same equinox, but for
E.T. = t; — 7 + AT. The resulting right ascension and declination differ from
those in an astrometric ephemeris by the small E-terms of aberration (see section
2D), and are thus not directly comparable with an observed astrometric position;
even when referred to the true equinox of date they are not directly comparable
with an observed apparent position. The O — C residuals are thus formed as:

: ephemeris position derived from E-terms
observed astrometric
T e X, Y, ZAET., "=t 4T + of
P &<y andx,y,zatET.=t; — v+ AT aberration
The E-terms of aberration, in the sense implied above, are approximately:
in right ascension —0"-341 sin (11! 15™ + a) sec &
in declination —0"-341 cos (11 15™ + a)sin 8 — 0”-029 cos &

The small errors in this procedure are usually negligible.

The form of the equations of condition and their solution are not discussed
here.




5. MEAN AND APPARENT PLACES OF STARS
A. MEAN PLACES AND STAR CATALOGUES

The mean place of a star is its heliocentric position referred to a specified
mean equinox and equator, generally that of the beginning of a Besselian solar
year. At the stated epoch of observation (which is almost always reduced in
star catalogues to that of the reference system) it represents the geometric direction
of the star, modified conventionally by:

(a) the effect of secular aberration, which is unknown;
(b) the E-terms of aberration (see section 2D).

In all star catalogues, both observed and fundamental, the E-terms of
aberration are included in the mean places. The rigorous calculation of a mean
place for any other equinox would therefore necessitate the removal of the E-terms
before applying precession (and proper motion); and the correct E-terms, cal-
culated afresh for the new position and epoch, would then be put back in the mean
place. Such rigorous methods need only be used in the case of a close circum-
polar star for which precession is applied over a long period of time, and par-
ticularly where the resulting mean place is to be used in the formation of a
fundamental catalogue, or in the study of proper motions.

In normal cases, where the mean place is to be derived from a fundamental
- catalogue, it is sufficiently accurate to apply precession to the catalogue mean
place, the E-terms being regarded as constant. The principal errors introduced
by this procedure are: (1) errors in the E-terms caused by the variation of the
elements of the Earth’s orbit, and (2) cross-terms involving precession and the
E-terms. The errors are similar in form, but opposite in sign, and the total
error is therefore small. In the region of the pole, the maximum centennial errors
arising in this way are:

in cos 8 4da (1) 0%-0006 (2) os8-0005 Total os-0001

in 48 (1) 0”009 (2) 0”-008 Total 0”-002
Thus the simple procedure is adequate in all cases where the time interval is not
too long.

Mean places of stars are in fact deduced from observed apparent positions
by removing the effects of annual parallax and stellar aberration, allowing where
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necessary for proper motion and orbital motion, and transforming to the adopted
mean equinox by removing precession and nutation from that mean equinox
to the true equinox of date. They are therefore to be regarded as fundamental
reference data, with no simple geometric significance, in which observations
at different times and from different places may be combined and from which
the apparent positions of stars may conveniently be derived. No attempt is made
to correct for the proper motion or any orbital motion of the star during the time
taken by light to travel from it; since the light-times differ from star to star, the
directions of stars represented by their mean places for a particular epoch do not
form a consistent pattern at that or at any other epoch.

For double and multiple systems mean places generally refer to the centre
of gravity of the system, but are sometimes given for individual stars of a system.
The mean places of a star for different epochs but the same mean equinox differ
only in respect of the proper motion of the star (and exceptionally for orbital
motion) during the interval. In reducing the mean place of a star from the mean
equinox and epoch (#,) of one date to another (¢), proper motion (referred to the
mean equinox of ?#;) during the interval (¢ — #;) should first be applied, to be
followed by the reduction for precession. Rigorous formulae are given in section
2B for this reduction, but as there shown the corrections may be expanded in a
power series in the time interval (¢ — #,); the coefficients in such series may be
calculated from the formulae in section 2B or taken, for certain specified epochs,
from special tables such as Peters’ ‘Priizessionstafeln fiir das Aquinoktium 1950-0’
(Verdffentlichungen des Astronomischen Rechen-Instituts zu Berlin-Dahlem, no. 50,
1934). The coefficients of (¢ — #,) and (¢ — #,)? are known as the annual and
secular terms of precession. Similar quantities are given in star catalogues, but
these generally include the effect of proper motion, and are then known as annual
variation and secular variation respectively; in some cases the coefficient of the
third term is also published. It is to be noted that there has been in the past
some confusion of practice in that some catalogues tabulate the coefficient of
(t — )% while others give double this value; in order to avoid this confusion the
International Astronomical Union has recommended (7'rans. 1.A.U., 6, 336, 1939)
that the exact form of precession terms should be made clear by a formula
printed at the foot of each page.

Most star catalogues are observational catalogues published by individual
observatories. 'The mean places which they contain are derived from observations
made at the one observatory and may contain systematic errors peculiar to the
instruments and observing methods used; the observations are reduced to a
common mean equinox and combined to give a mean place for the mean epoch of
observation; available proper motions may be used to reduce the positions to a
common epoch. In contrast, fundamental catalogues are derived by the com-
bination of all available observational catalogues, which are collated to provide
indications of systematic, as well as accidental, error; positions and derived proper

motions are usually given for the epoch of a standard mean equinox such as that
of 1950-0.
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Example 5.1. Mean places of a Centauri for 1960-0 and 1961-0

The mean place and centennial proper motion of a Centauri for 1950-0 are given in
FK3 (no. 538) together with the centennial variations as follows:

ap 1:. 32 115-309 S ~ 6o 37' 49-’26
:11—;, + 408-006 :11—2, — 1485-80
j;?z + 7308 j—}i + 3475
Ha — 48-890 %) +- 7076
gﬁ% - 0716 Z—’;‘? T v

The transformation to an equinox ¢ years after 1950-0 is made through:
o, =ga ¥ _t_ d_a 3 L e @
. T TpdT f(loo) drI?

t . dp

— L e T i Lo

o 100 dT
where £ is in tropical years and 7 in tropical centuries of 100 tropical years, with similar
expressions for the declination. The value of du/dT used in the last equation should
strictly be that for the middle of the interval, and this can be derived, if necessary, from

the values given in FK3.

1960-0 1961-0 1960-0 1961-0
h m s s o ’ ” ’ ”
a 14 36 11-309 11-309 3o . — 60 37 49-26 37 49:26
t\ da t\ d
100) aT + 40-8006 44-8807 To0) T 2 28:580 2 43438
t \?d% t \2d?
i i : .0448 7 L Ty : g
\1oo) 2T + o0-0370 0-044 z IOO) a7 + 0-174 0-210
a 14 36 52-1466 56-2345 3 — 60 40 17-666 40 32:488
Hao — 0-48890 — 0-48890 o + 0-7076 + o-’7o76
t\ dpe Ko el L.y dis - W
(ﬁ) T 0-00072 0-00079 (IOO) T 0-0034 0-0037
e — 0-48962 — 0-48969 U + 0:7042 + 0:7039

Lists of star catalogues for the eighteenth and nineteenth centuries are given
in the volumes of Geschichte des Fixsternhimmels (Karlsruhe; 1922-1957; Berlin
1952-1959). A further list for the period 1900-1925 is given in Index der Sterndrier
1900-1925 (Bergedorf, 1928). Foremost among the observational catalogues in
these lists are those compiled under the auspices of the Astronomische Gesellschaft
(A. G.) as a co-operative effort by a number of observatories. This series of volumes
was begun in 1863, and gives the positions of all stars shown in the Bonn
Durchmusterung (B. D.) from declination +80° to —18° to magnitude g-0. The
observations made by each observatory were confined to a narrow zone of declina-
tions best suited to the latitude of the observatory. In more recent times a
re-observation of the A.G. zones has been undertaken by photography, and the
new positions are given in:

AGK2 ¢ Zweiter Katalog der Astronomischen Gesellschaft fiir das Aquinoktium
1950’; there are ten volumes covering declinations +9o° to +20° (Hamberg-
Bergedorf, 1951-1954), and five volumes covering declinations +20° to —2°
(Bonn, 1957-1958).




148 EXPLANATORY SUPPLEMENT

Yale Catalogues of the zones +50° to +60° and —30° to +30° are published
in Transactions of the Astronomical Observatory of Yale University (New
Haven, 1925 onwards); the positions are also for equinox 1950-0.

Among modern fundamental catalogues, the following are representative:

GC ¢ General catalogue of 33342 stars for the epoch 1950’, in 5 volumes,
Washington, 1937. This gives positions and proper motions of all stars brighter
than magnitude 7, with some thousands of fainter stars.

FK3 ¢ Dritter Fundamentalkatalog des Berliner Astronomischen Jahrbuchs’
I Teil: Verdffentlichungen des Astronomischen Rechen-Instituts, no. 54, 1937.

This gives positions for 1925-0 and 1950-0 of the 925 stars of Auwers, ‘Neue
Fundamentalkatalog’ (1910).

II Teil : Abhandlungen der Preussischen Akademie der Wissenschaften, Phys.-Math.

Klasse, no. 3, 1938. This gives the positions of 666 additional stars for equinox
1950-0.

FK4 ‘Fourth Fundamental Catalogue (FK4)’, Verdffentlichungen des Astrono-
mischen Rechen-Instituts, Heidelberg, no. 10, 1963. This resulted from a revision
of FK3; the re-examination of the available observations showed that no change
in the equinox was justified.

N3o ¢ Catalog of 5268 standard stars, 1950-0, based on the normal system N3o’,
Astronomical Papers of the American Ephemeris, 13, part 111, 1952. The positions
are derived from more than 70 catalogues with epochs of observation between
1917 and 1949.

ZzC ‘Catalog of 3539 zodiacal stars for the equinox 1950-0°, Astronomical Papers
of the American Ephemeris, 10, part 11, 1940. This gives positions of all stars
to magnitude 7 in the zodiacal zone with many fainter ones, and is intended

for use in occultation work; it is based on go catalogues, and positions are reduced
to the FK3 system.

PFKSZ ‘A preliminary general catalogue of fundamental faint stars between
declinations +9o° and —20%’, M. S. Zverev and D. D. Polozhentsev, Publications
of the Main Astronomical Observatory of Pulkovo, 72, 1958.

In the Ephemeris, pages 288 to 298 in 1960:k the mean places of 1078 stars
are tabulated for the beginning of the Besselian year, to a precision of c8-1 in right
ascension and 1” in declination; this is adequate for purposes of identification
and setting of telescopes. The list includes all bright stars to a limiting magnitude
of 475, excepting 8 stars within 30" of a brighter tabulated star; variable stars are
included if their maxima are brighter than magnitude 4-7. The positions are
derived from GC, and are tabulated in order of mean right ascension for the
equinox and epoch of 1950-0. Approximate values of the changes due to precession
in one year are given in table 2.4. The three-letter abbreviations that are used
for the constellation names are as recommended by the International Astronomical
Union and are given in section 18. Some stars are identified by their numbers
in the following catalogues: Bonn Durchmusterung (north of —23°), Cordoba
Durchmusterung (south of —23°), Bradley (Br.), Piazzi (Pi.), Gould (G.), and
Hevelius (H.). The magnitude (to the nearest tenth except for variable stars)
and spectral type of each star are given in the list.

*Pages 332 to 342 in A.E. 1972 onwards.
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B. APPARENT PLACES

The apparent place of a star is the geocentric position, referred to the true
equinox and equator of date, in which the star would be observed. It differs
from the position in which the star is actually observed by the effects of refraction
and diurnal aberration (see section 2D); geocentric parallax is, of course, negligible.
An observed position is therefore directly comparable with an apparent place after
correction for instrumental errors, and for refraction (section 2E) and diurnal
aberration (section 2D) where appropriate.

No apparent places of stars are provided in the Ephemeris since they are
available in Apparent Places of Fundamental Stars. This contains the positions
of 1535 stars taken from FK3,*for each upper transit at Greenwich for the 52
circumpolar stars with declinations greater than +81°; and for every tenth upper
transit for the remaining 1483 stars. The positions are given to os-oor in right
ascension (o%-01 for the circumpolar stars) and o”-or1 in declination, and in the
tabulation of the 1o-day stars, first differences are provided. The positions on
intermediate dates may be obtained by interpolation, using second differences, this
being possible because in calculating these positions the effect of nutation on
the frame of reference is restricted to long-period terms only. Special provision
is made for the calculation of the effect of short-period terms of nutation.

The apparent places are given in order of right ascension from o® to 24®, and
are tabulated for every tenth Greenwich transit. In the volumes for 1941 to 1959,
the first tabulated transit is that transit that occurred after the transit of the first
point of Aries on January o9 (i.e. at about 17%); the first entry therefore varied
from January od.7 U.T. for the first star to January 19.7 for the last star. As from
the volume for 1960, a continuous form of tabulation has been adopted
(Trans. 1.A.U., 9, 9o, 1957) and positions are given for Greenwich transits
occurring on Greenwich sidereal dates whose integral part is divisible by 1o0.
The U.T. of transit is indicated as before, with the months given by roman
numerals.

Similar but shorter lists of apparent places of FK3 stars are also published
in Connaissance des Temps (Paris), Almanaque Ndutico (San Fernando), Japanese
Ephemeris (Tokyo), Astronomical Yearbook U.S.S.R. (which also includes a number
of stars not given in FK3) and, in years prior to 1960, in The American Ephemeris
and in Berliner Astronomisches Jahrbuch.

To meet the requirements of observers with photographic zenith telescopes
or prismatic astrolabes, the apparent places or times of transit of the selected stars
are often calculated by the national ephemeris offices and supplied to the individual
observatories. Reductions from apparent to mean place are increasingly being
calculated by electronic computers for each individual observation in preference
to the systematic pre-calculation previously adopted.

*From FK4 in A.P.F.S. 1964 onwards.




150 EXPLANATORY SUPPLEMENT

C. REDUCTION FROM MEAN TO APPARENT PLACE

The calculation of the apparent place of a star for date ¢ + 7 (where £ represents
the beginning of a Besselian solar year and = a fraction of a tropical year) first
necessitates the calculation of the mean place for mean equinox and epoch of .
The reduction then involves the application of corrections for precession from
the beginning of year to date (i.e. for the interval 7), nutation, stellar aberration,
annual parallax, proper motion, and orbital motion.

Proper motion, orbital motion, and stellar aberration do not affect the frame
of reference, but cause changes in the actual direction in which the star
is observed; the corresponding corrections must therefore be calculated with
respect to a particular reference system and applied to the position of the star in
the same system. Precession and nutation, however, are changes in the frame
of reference and do not affect the actual direction in which the star is observed:
these two corrections, and that for annual aberration, are sufficiently large to
make their order of application of significance if cross-product terms are neglected.
The corrections for parallax, proper motion, and orbital motion are generally
very small and can be applied at any convenient stage.

Since nutation is calculated from the longitudes of the Sun and Moon
referred to mean equinox of date, it is (theoretically) necessary to apply precession
before nutation. There are then two methods for calculating the reduction to
apparent place: if precession and nutation are applied first (method 1) then the
aberration correction should strictly be applied to a fixed star whose coordinates
(referred to the moving frame of reference) are continuously changing; if aberration
is applied first (method ii) then the corrections for precession and nutation should
strictly be applied to the changing positions of the star. The two methods give,
of course, identical results, but for systematic calculation it is practically essential
to apply corrections for precession, nutation, and aberration to a fixed star, any
residual corrections (if appreciable) being applied separately. As might be expected,
the largest correcting term is the same for both methods, but the other terms
differ. An analysis of the magnitude of the residual terms, taken in conjunction
with the second-order terms of precession, nutation, and aberration themselves,
shows conclusively that the second method leads to smaller residual errors
(Porter, J. G., and Sadler, D. H. The accurate calculation of apparent places
of stars. M.N.R.A.S., 113, 455-467, 1953). (Although not really relevant, it is
also to be noted that it is more logical to apply aberration with respect to a fixed
frame of reference.)

The present availability of fast computing machines has now made possible
the transformation from mean to apparent place by rigorous formulae that do
not involve expansion in series (see section 2B). Such methods are also used
for the individual calculation of the mean place from the observed apparent
place.
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Reduction for precession and nutation

From sections 2B and 2C it is seen that, to the first order, the combined
reduction for precession and nutation from the mean equinox of ¢ to the true
equinox of £ + 7 is:

in right ascension (7 + 7 sin a tan 8) (7- + i—l‘,b) —cosatan d de + A’ —";I—",b
. o A y
in declination ncosa(7 + 7 + sin a de

where a, 8 is the mean place for epoch ¢; m, n, X', )’ are the precessional constants
. defined in section 2B, and 4y, 4e are the (total) nutation in longitude and obliquity
respectively.

These expressions may be written in the forms:
in right ascension Aa + Bb+ E =f+ gsin(G + a)tand
in declination Aa’ + BV = gcos (G + a)

where 4, B, E are known as Besselian day numbers, defined by:

A=n~r+né,/—l=n1-+sined¢:

i
B = —4de
_ y 4
E= 2 7

and f, g, G are independent day numbers, derived from:
f=%A+E=mT+COS€A¢I
gsinG =B gecosG =4
and a, @', b, b’ are star constants, defined by:

Y &

m p
a = — + sin a tan & a' = 4cosa
n

b = cos atan b’ = —sina
Note that they are constant only in so far as they are calculated for the mean
equinox of a fixed epoch.

An approximate correction for precession and nutation from the mean
equinox of 1950-0 to the true equinox of date may be made by means of Table IV
in the Ephemeris.

A more rigorous reduction for the combined effect of precession and nutation
gives rise to the second-order terms numbered 1 to 4 in table 5.1.

Reduction for annual aberration

The first-order expressions for annual aberration given in section 2D are
functions of the components of the Earth’s velocity (x', y’, 2’) or of the corres-
ponding solar components ( —X’, —Y’, —Z’). With the approximation
#' = 9 tan ¢, the reduction for annual aberration may be written in the form:

in right ascension Cc + Dd = hsin (H + a)secd

in declination Cc'" + Dd’ = hcos (H + a)sind + Zcos
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where C and D are the Besselian day numbers, calculated from the ratios of +’
(or —Y’) and —&' (or +X’) to the adopted value of the velocity of light; and
¢, ¢’y d, d’ are star constants, defined by:

¢ = cos a sec § ¢’ = tan € cos 8 — sin a sin &

d = sin a sec & d' = cos a sin 8§
In the alternative form of reduction, the independent day numbers %, H, 7 are
defined by:

hsinH = C heos H =D i=Ctane

The aberrational day numbers C and D tabulated in the Ephemeris are cal-
culated from the true motion of the Earth referred to a fixed equinox, and to
the centre of gravity of the solar system. In all ephemerides prior to 1960 it
was customary to calculate them from expressions involving the Sun’s longitude,
and this process involved assumptions which are discussed in section 2D.

The rigorous reduction of the formulae for aberration gives the additional
second-order terms numbered 5 to 8 in table 5.1.

Combined reduction

The total effect of precession, nutation, and annual aberration is given by the
sum of the terms already discussed; to the first order the combined reduction
is:

in right ascension Aa + Bb + Cc + Dd + E

=f+gsin(G + a)tan & + ksin (H + a) secd
in declination Aa’ + Bb' + Cc’' + Dd’

=gcos(G + a) + hcos (H + a)sind + 7cosd

For full precision, the second-order terms should be included; for practical
reasons the star constants must strictly be regarded as constants for a sequence
of dates (that is, regarded as being calculated for a fixed position referred to a
fixed equinox). Thus there arise additional second-order terms when the two
corrections are combined; these additional terms differ according to the method
employed, there being fewer terms of this kind when method (ii) is used. The
additional terms in da cos & are:

method (i) fhcos(H + a) + ghsin (G + H + 2a)tan
method (ii) + ghsin (G + H + 2a)tan é + gisin (G + a)
and the additional terms in 48 are:
method (i) —fhsin (H + a)sind —gh sin (G + a) sin (H + a) sec 8
+ghcos (G — H) cos & — gicos(G + a)sind
method (ii) —gh sin (G + a) sin (H + a) sec 8
The terms arising in method (ii) are included in table 5.1 (terms g and 10)

which therefore gives all the second-order terms that can arise when this method
is used.

It will be seen from the table that terms 3, 5, and g are the most significant
terms; these involve tan § or sec §, and some form of correction for them is essential
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Table 5.1. Second-order terms in star reductions

Term Aa cos 8 43

No.
1 +fg cos (G + a) sin & —fgsin (G + a)

2 —3 fg cos G cos a sin & +%fg cos G sin a

3 +3g?sin 2 (G + a) tan § sin & —1g%sin® (G + a) tan 8
4 +1g? cos a sin (2G + a) cos & ———

5 +3h%sin 2 (H + a) sec d —3h?sin? (H + a) tan 8
6 —— +3h2 cos® (H + a) sin 28
7 —_ +hi cos (H + a) cos 28
8 — —342 sin 20

9 +ghsin (G + H + 2a) tan § —gh sin (G + a) sin (H + a) sec 8
10 +gisin (G + a) :

for stars of high declination. The form of correction discussed by Fabritius (Ast.
Nach., 87, 113 and 129, 1876) may be used; if da and 48 are the first-order
corrections, then the complete reductions are:

in right ascension do + Ada 48 tan 8
in declination 48 — % (4a)? sin 6 cos &

This method is inadequate in principle, since the formulae apply strictly to the
solution of a single spherical triangle, and not to the complicated geometry of
precession and nutation. The Fabritius method removes the terms dependent
on tan 6 and sec & but introduces several other terms which are, however, inde-
pendent of sec 3.

The most advantageous method of correcting the first-order reduction is to
introduce additional day numbers J and J’, which can be tabulated in the
ephemerides, to give additional reductions in the form:

in right ascension +J tan® 8
in declination +J’ tan 8

The full expressions for J and J’ are derived from terms 3, 5, and g, replacing
sec 6 by +tan 8, with an error that vanishes at the poles. This gives:

J= +{gsin (G + a) * hsin (H + a)} {gcos (G + a) + hcos (H + a)}
= +{(4 + D)sina + (B + C)cosa}{(4 + D)cosa — (B + C)sin a}
J= —1{gsin (G + a) *+ hsin (H + a)}?
= —3{(4 + D)sina + (B + C)cosa}?

the upper sign being taken for positive declinations, and the lower sign for
negative declinations.* These day numbers may be tabulated as simple functions
of right ascension and date, so that the complete reduction may be made in one
operation. The method is therefore of considerable advantage in the routine
calculation of a number of star places; in the Fabritius method, the second-order
corrections cannot be made until the first-order terms have been calculated.

A full discussion of these corrections is given in ‘ The accurate calculation
of apparent places of stars’ (M.N.R.A.S., 113, 455-467, 1953). In this paper
the expressions for J and J' (equations 14 and 15 on page 460) were given for

*See note on page 523.




154 EXPLANATORY SUPPLEMENT

northern declinations only; for southern declinations the sign of the term in 2gh
in both equations should be reversed. Also, in the second-order term no. 12 of
Table I, (1 — sin 8) should be replaced for southern stars by (1 + sin 8). The
substance and conclusions of the paper are unaffected by these omissions. In
particular, the discussion clearly shows the advantages of restricting the range of
7 to +%; this has the effect of reducing all the second-order terms in f and g,
which are functions of time. A more detailed analysis of the magnitude of the
neglected terms in different methods has confirmed the conclusion that if = is
allowed to reach +1, and no second-order corrections are applied, there are
unavoidable errors of 0”-010, even at declinations of 45°. A maximum error of
this magnitude may also be reached (at the poles) when the Fabritius method of
correction is used, but this maximum is reduced to 0”-007 when the tabulated
values of J and J’ are used. If 7 is restricted to +3 these maxima are reduced
to 0”-005 using the Fabritius method and 0”-003 using J and J’, while the range
of declinations over which second-order corrections may be neglected is corres-
pondingly increased. This is shown in the following table, which gives the upper
limit of declination for a given error, when no second-order correction is applied.
Limiting
error 0”.007 0”008 0”009 0”-010 0”-012 0”-014 0”.016 0”-018 0"-020
Srcdoan s TR SR SRR i Sy | SRR - SRl G e

—I<r< +3 57 62 67 70 "2, 74 76 78 81

As a result of this analysis, it is considered that the best choice is method (i)
with 7 restricted to +3 and the provision of tabulated values of J and J’ for the
correction of second-order terms; this has been adopted in the Ephemeris.

Proper motion, orbital motion, and parallax

In all cases where the proper motion of a star is known and is appreciable,
a correction for the change of position should be included both in the mean place
and in the star reductions. The components of proper motion in right ascension
i, and in declination p, are given in the catalogues, and are incorporated wholly
or partially in the positions. In fundamental catalogues the epoch to which
proper motion is included is identical with that of the equinox to which the
catalogue refers, but in observational catalogues the epoch may differ from that
of the equinox to which the positions are referred. In all cases, the correction
to the position consists of the product of the proper motion and the number
of years from the epoch to the required date. In some catalogues the secular
variations of the proper motions are also tabulated and in such cases the mean
~ value of the proper motion during the interval is to be used.

The remaining correction for the fraction of the year  is incorporated in the
star reductions:

in right ascension  +7u, in declination 4+,

in which the value of the proper motion is that for the year and not for the original
epoch.
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In a few cases a correction for orbital motion is necessary, but this can
generally be considered to vary linearly with the time during the course of a year.
The corrections in right ascension and declination for the beginning of each year
- from 1925 to 1950 are tabulated, for the four stars so affected in FK3, in an
~ appendix to that catalogue, and these have been extended for later years by values
supplied by the Astronomisches Rechen-Institut.

The correction for annual parallax may be included with that for annual
~ aberration, as shown in section 2F. If « is the annual parallax of the star, the
- combined aberration-parallax corrections become:

in right ascension (C 4+ #Y)c + (D — #X)d

in declination (C+aY)d + (D —nX)d
A more convenient form of these expressions may be used in cases where the
- parallax is small; the corrections then become:

in right ascension C (¢ + dmsece/k) + D (d — cm cos €/k)
= C(c + 0-0532dm) + D (d — 0-0448 cm)
in declination C (c" + d'msece/k) + D (d" — c'w cos ¢/k)

= C(c" + 0-0532d'm) + D (d' — 0-0448 ')
where % is the constant of aberration = 20”47, and = is expressed in seconds of
arc. These formulae assume a mean value of unity for the Sun’s radius vector
- (section 2F); the error is negligible if the parallax of the star is less than about 0”-2.

D. DAY NUMBERS

As a result of resolutions adopted at the 1952 meeting of the International
Astronomical Union (Trans. I.A.U., 7, 75-76, 1950; 8, 67, 1954) changes have
been made as from 1960 in the definitions of the day numbers and star constants.
These changes, together with the considerations of the previous sub-section,
lead to the definitions and methods of derivation that follow. Two complete
examples of the use of these day numbers in the calculation of the apparent places
of stars are given at the end of this sub-section.

Besselian day numbers
The Besselian day numbers are now defined by:

A=n‘r+n£l’Tb=n7+sineA¢

4
B = —4e
C, D = aberrational day numbers, calculated from the components of the Earth’s
true velocity referred to the centre of mass of the solar system, corrected
for the effect of the E-terms, and referred to the equinox of the epoch
from which = is measured;

s 2
4
J, J' = second-order day numbers
*20"-496 for 1968 onwards.
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where: 7 is measured from the nearest beginning of a Besselian year; n, X, ¢ are
the precessional constants defined in section 2B; and 4, de are the (total)
nutation in longitude and obliquity respectively (section 2C).

These day numbers are used in conjunction with star constants defined as
follows:

a = m/n + sin a, tan §, a’ = cos q

b = cos g, tan §, b' = —sin q,

¢ = cos a, sec §, ¢’ = tan € cos §, — sin q, sin §,
d = sin a, sec 9, d’ = cos agsin §,

where m/n = 2.29887 + 0-00237 T, T being measured in centuries from 1900-0,
and ay, 8, is the mean place of the star for the beginning of a Besselian year, i.e. it

is corrected for precession and proper motion to the equinox of the epoch from
which 7 is measured.

The apparent places are to be calculated from:

a=ay+ T, + Aa + Bb + Cc + Dd + E + Jtan?3$,
8 =8, + Tus + Aa’ + Bb' + Cc' + Dd' + J' tan §,
The day numbers 4, B, C, D are tabulated in the Ephemeris in seconds
of arc; when used for calculating the star reduction in right ascension, either

they or the star constants by which they are multiplied should be divided by 15
to express the reduction in seconds of time.

Independent day numbers

Formulae involving Besselian day numbers are best employed in systematic
calculation of a number of star places, but for an occasional reduction the inde-
pendent day numbers are more suitable. They are defined as follows:

f=(mn) A+ E hsin H =C
gsinG =B hcos H=D
gcosG =4 i=Ctane

The apparent place is formed from:

a =uay+ 10, +f + gsin (G + a,) tan §, + £ sin (H + a,) sec §, + J tan?§,

8 =8 + Tus + gcos (G + ap) + hcos (H + a,) sin §, + 7 cos §, + J' tan §,
The day numbers g, % are tabulated in the Ephemeris in seconds of arc;

when used for calculating the star reduction in right ascension, they should be
divided by 15 to express the reduction in seconds of time.

Values of f, g, G for the approximate reduction from the standard equinox
of 1950-0 to a true equinox during the current year are given in 4.E., Table IV.

Short-period terms

The day numbers 4, B that are tabulated in the Ephemeris as from 1960
contain both long-period and short-period terms of nutation. In certain cases,
such as the 10-day ephemerides in Apparent Places of Fundamental Stars, the effect
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of the short-period terms is omitted from the apparent places because of the
difficulty of interpolation at such an interval. For such stars, therefore, the
short-period terms must be calculated separately, and applied to the tabulated
places after interpolation. For single reductions, the use of independent day
numbers is suitable, and the appropriate quantities are defined as:
= +dficose
g sin G' = —de
g cosG' = +dfsine

where diy and de are the short-period terms of nutation in longitude and obliquity
respectively. The corrections, to be added to the apparent places including
long-period terms only, are made through the expressions:

da = f" + g'sin (G’ + a)tan &

48 = g’ cos (G' + a)

For systematic work where a number of reductions are to be made, these

formulae may be written:

da = da(y) . d + da(e) . de

48 = dd(y) . dp + dd(e) . de
where da(y) = cos € + sin a tan 8 sin € dé(y)) = cos a sin €

da(e) = —cos a tan & dé(e) = sin a

These coefficients are given (divided by 15 for a) in Apparent Places of Funda-
mental Stars for each of the 10-day stars, and the short-period terms of nutation
are tabulated in Table I of the same volume, as well as in A4. E., pages 266 to 280. *

Corrections for short-period terms may also be obtained, without multiplica-
tion, with the aid of table 5.2; this is a triple-entry permanent table which is
entered with arguments g’, (G’ + a), and 6. The complete correction in right
ascension is f* + (da — f’), but the correction in declination is given directly.
The table provides a simple means of calculating the corrections for short-period
terms for a moving object, for example for the Sun, Moon, and planets as given
in the national ephemerides before 1960.

Before 1960, the ephemerides gave short-period day numbers in the Besselian
form. The relations between these, the star constants, and the quantities defined
above, are as follows:

A = dyfy’ f' = mA’ approximately
B' = —de g'sinG' =B
g cos G' = nA’
da(y) = a sin € approximately dé(y) = a’ sin €
da(e) = —b dé(e) = =¥’
Dertvation

The numerical values of the day numbers 4, B, E that are tabulated in the
Ephemeris are derived for each day from the expressions given above, using the
precessional constants and values of nutation previously defined in sections 2B
and 2C. The value of 7 used in calculating 4 is obtained by dividing the
*Pages 308 to 322 in A.E. 1972 onwards.
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number of days from the nearest beginning of a Besselian solar year by 365-2422,
the approximate number of days in a tropical year.

The aberrational day numbers C, D are derived, as from 1960, from the
true velocity of the Earth in its orbit, referred to the centre of mass of the solar
system and to an inertial frame of reference. If &', y’, 2" are the components of
this velocity, then the components of the aberrational vector corresponding to
C and D are given by the ratios +y'/c and —x'/c where ¢ is the velocity of light.
These expressions would give a complete correction for annual aberration, in-
cluding the small E-terms due to the eccentricity of the Earth’s orbit. Since
these terms are constant for each star, it has been customary, by convention (see
section 2D), to allow them to remain in the mean places; they must therefore be
removed, thus leading to the expressions:

C = +y'[c — ke cos w cos €

D = —&'[c — kesinw
where k is the constant of aberration = 20”-47, e is the eccentricity of the Earth’s
orbit, € is the obliquity of the ecliptic, and = is the longitude of the perihelion of
the Earth’s orbit. These expressions assume, as explained in section 2D, that the
motion of the Earth lies entirely in the ecliptic, so that 3° = y’ tan e. It can be
shown that the error involved is negligible. (x',y’, 2’ are equatorial components.)

In these expressions the value of ¢ must be consistent with that of %; inserting

numerical values for the equinox 1950-0, and expressing C,, D, for this equinox
in seconds of arc:

Il

Co = +1189"-80 (' + 553) 1077

Dy, = —1189"-80 (' + 2815) 1077
in which x’, y" are in units of 10~7 astronomical units per day. These velocities
are derived from the differences of the solar coordinates (X, Y, Z) for equinox
1950-0, corrected to the centre of mass of the solar system. If x,, y,, 2, are the
heliocentric coordinates of the #™ planet, then the coordinates of the Earth
(%6, Vo R) referred to the centre of mass of the whole system are given by the
expressions of the form:

X = —X — Z{m, x,/(x + Zm,)}

where m, represents the planet’s mass in terms of the Sun’s mass. Only the
planets Jupiter, Saturn, Uranus, and Neptune need be considered, and the
formulae are written in the form:

X = —X — Zmx,
where m, = m,/(1 + X m,) has the following values:
Jupiter 0:000953 Uranus  0-:000044
Saturn  0-000285 Neptune 0-000052

and the coordinates of the planets are taken from Planetary Co-ordinates.

In the routine calculation of the day numbers, the velocities are formed in
two stages, using:

Xy ==Xl T
The daily differences of the solar coordinates (X, Y) are used to form the
*20”-496 and 1191”-30 for 1968 onwards.
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Declination
GI + a gl IoO 200 300 400 500 550 600 650 700 750 800
48 da — f’
i ” ”
0:05 0-05
o0 -07 -07
or ‘09 -09 For G’ + a = ob or 12h, da = f’ for all declinations
120 -II -II
-13 -13
8 s s s s s s s s s s
o 005 005 0:000 0:000 ©0-000 0:001 ©:00I 0-00I 0:001 ©0:00 0:00 0:00 ©0:00
;.o .07 -07 o o I I I 2 TR S [ o) I
; .99 %9 o 1 1 I 2 2 3 o o 1 1
230 s AN & § o I 1 2 2 i 3 o 1 1 1
3 13 13 o 1 1 2 5 3 4 o 1 1 X
2.0 005 0'04 0:000 0:00I 0-00I ©0:00I ©0:002 0:002 0-:003 0:00 0:00 0:0I 0-OI
e %7 -06 o I b 2 3 3 4 I I I i
B .09 -08 1 I 2 3 4 4 5 I I 1 2
:-o -II -I0 1 1 2 3 4 5 6 I 1 i 2
> 25 37 Jp & ¢ I 2 3 4 5 6 8 i 1 2 2
o 005 004 0:000 0:00I ©0-00I ©:002 0:003 0:003 0:004 O-0I 0-01 0-0 0-0I
3 .07 05 I 1 2 3 o B 06 I I I 2
19: .09 -06 I 2 2 4 5 6 o7 I I 2 2
50 -Ix  -o8 I 2 5 4 6 7 09 I I 2 3
o ‘13 -09 1 2 4 5 7 9 o 1 2 2 3
40 0:05 0-03 0-00I ©0-00I 0-002 0:002 0-003 0:004 0-005 0-0I 0-0I 0-0I 0-02
80 07 o4 I I 2 3 5 o6 o7 I I 2 2
860 ‘09 -05 I 2 3 4 6 o7 o9 I i 2 3
5o -Ix .06 I 2 4 5 8 09 11 1 2 2 4
‘I3 07 I 3 4 6 g T 13 20 B g
o ©'05 0:0I 0-00I ©0-00I ©0-002 ©0:003 0-:004 0-005 0-006 0-:01 0:01 0-0I 0:02
5.0 ‘07 .02 I 2 3 4 o5 ob o8 I 1 2 3
17.0 ‘09 -02 1 2 3 5 o7 o8 10 1 2 2 3
17'0 ‘II  -03 I 3 4 6 o8 10 12 2 2 3 4
9 ‘I3 -03 1 3 5 7 10 1= 14 2 2 3 5
. 6.0 ©05 000 0-00I 0-00I 0-002 0-003 ©0-004 ©-005 0:006 ©0:01 0-01 0-0I ©0-02
E ‘07 -00 I 2 3 4 ob o7 o8 I 1 2 3
8o °9 -°© I 2 3 5 o7 09 10 1 2 2 3
-IX -00 1 3 4 6 09 10 13 2 2 3 4
0-I3 0:00 0:002 0:003 ©0-005 0:007 0-0I0 0:0I2 0-0I5 0:02 0:02 0:03 0:05
Correction in right ascension = (da — f) + f’
i 1 Correction in declination = AS
where (da — f’) and 48 are applied with the signs given by the following table.
G +a All declinations Northern declinations Southern declinations
@ > o) ©® < o)
ob — 60 483 is positive da — f’is positive da — f’is negative
60 —x2h 43 is negative da — f’is positive da — f’is negative
120 —18h 438 is negative da — f’is negative da — f’is positive
181 — 241 48 is positive da — f’is negative da — f’is positive

f’, &’y G’ are tabulated in A.E., pages 267 to 281 (1960).
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derivatives —X’, — Y’ for every fifth day. The sum X m, x, is evaluated and
differenced at intervals of 100 days, and the value of the derivative —Z m, x,
is then calculated from the differences (see section 16C).

The final subtabulations, additions, and multiplications are performed in one
operation to give daily values of C, and D,.

The conversion of the day numbers C, and D, from equinox 1950-0 to any
other equinox ¢ is given by the first-order expressions:

C; = Cy — pcose(t —1950) Dy = C, — 0-0002235 (¢t — 1950) D, \
D; = Dy + p sec € (t — 1950) Cy = Dy + 0:0002656 (t — 1950) C,
where p is the annual general precession = 50”-27. The error due to neglecting
second-order terms in these expressions is less than 0”-0005 for time intervals up

to 30 years. The tabulated values are referred to the equinox of the nearest
beginning of a Besselian year.

The values of 4, B, C, D for oh sidereal time are obtained from the daily
values at ob E.T. by interpolation. The independent day numbers are calculated
from the Besselian day numbers for every day by the formulae quoted above.

Example 5.2. Besselian and independent day numbers

1960 March 7
T +0-17976 4y —o0"744 dy +0"-008
n 207.0417 de —87.836 de —0"-066
Ts(m/n) o©0-15335 sin € +0-39786 cos € +0-91745

XY’ = 0:002476 — 0:000373T = o-002 where T is in tropical centuries from 1900-0
Besselian day numbers.

A =nt + dYsine +3"-307
B = — 4de +87.836
E = (X)) AY —0"-0001

The aberrational day numbers C and D are formed from the coordinates of the Sun
and planets for equinox 1950-0. The differences of the Sun’s coordinates for March 7
(4.E., page 43) and, hence, the velocity components are, in units of the seventh decimal:

wdX + 43500 pdX — 8 X’ = pdX — udX + 43510
pudY +153888 pdY —46 Y’ = p8Y — $ud®Y +153896
For the planets, coordinates at intervals of 100 days are taken from Planetary Co-
ordinates :
Jupiter Saturn Uranus Neptune unit 10~
].D. x-coordinate Zm'x Zm'x’
243 69005 —1-634 +1-451 —13-670 —24-296 —301
+84
7000:5 —0-909 +1-971 —13-933 —24-109 —217 3
+35
7100-5 —0-167 +2-485 —14-189 —23-918 ~132
y-coordinate Zm'y Zm'y’
243 6900-5 —4-672 —9-181 +11.221 —17-008 —746
—12
7000-5 —4+799 —9-086 +10-932 —17-236 —758

-2
7100-5 —4-831 —8.965 +10-639 —17-463 —760
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Since the interval is 100 days, the values for 1960 March 7 = J.D. 243 7000-5 are
obtained directly in units of 10~7 as:

Zm'x’ = +84 Zm'y’ = —75

Then Cy = —1189”-80 (Y’ + Zm'y’ — 553) 107 = —18"-244
Dy = +1189"-80 (X’ + Zm'x’ — 2815) 1077 = + 4”-852
The conversion to equinox 1960-0 is given by:
C = Cy — D, (0-002235) = —18"-255
D = Dy + C, (0:002656) = + 47"-803
Independent day numbers.
= %A + E +o0%35070
gsin G = B + 87.836 g 9”435
gcosG =4 + 37307 G Sigigrmisss
hsin H =C —18”.255 h 18”.876
hcosH = D + 4”-803 H 18t 58m 588
t =Ctane — 77916
f =dfcose + of-0005
g’ sin G’ = —de +07.066 g 0”.066
g cos G’ = dysine +0”-0032 G’ 50 49m

The second-order day numbers J, J' are formed for every tenth day and
for each hour of right ascension from:
P,=(A+ D)sina + (B + C)cosa P, =(4 + D)cosa — (B + C)sina
0,=(4 - D)sina +(B—-C)cosa Qy =(4 —D)cosa — (B — C)sina
If Py, P,, Q,, Q,are in seconds of arc, then J, J', also in seconds of arc, are given by:

J =P Prsmad 8y 4
. for northern declinations
J' = —} P}sin1”
JE = sin 1” 5
: Qll 0 ¢ , p for southern declinations
J'= -} 03sin1
Example 5.3. Second-order day numbers J and J’
1960 March 7
A +331 B + 884
D +4-80 C —18-26
A+ D +8-11 B + C — 942
A - D —1-49 B — C +27-10
< oh _ 2h 3h 4n sh 6h
sina  +0-00 0:26 0-50 0-71 0-87 0-97 1-00
cosa +1-00 0-97 0-87 0-71 0-50 0-26 0-00
P, — 94 — %70 — 41 =—09 + 23 + 54 + 81
P, + 81 +10:3 +11-8 4124 +12-3 +11:2 + 94
0O, +27-1  +25-9 +22-8 +182 4123 + 56 — 15
0 — 15 — 85 —148 —203 —243 —267 —27.1
Northern declinations
J = +0-032 P, P, -2 -2 —2 o +1 +2 +2
J' = —o-024 P} -2 -1 o o o -1 -2
Southern declinations
J = 40032 0, O, -1 -7 —II —12 —10 -5 + 1
J = —o-024 Q2 —18 —16 —12 -8 - 4 -1 olf

e , O, are in seconds of arc, J is in units of 0%-00001, and J’ is in units of 0”-0001.
1 2 1 2
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Star reductions prior to 1960

The new definitions have removed a number of inconsistencies and increased
the precision of application of star reductions. The ephemerides prior to 1960
differed from present practice in the following respects:

(a) the day numbers were then referred to the equinox of the beginning of
the year, so that 7 could reach a value of +1;

(b) the day number 4 was then defined as:
A=+ A‘p—(jb

but it is now 7 times this quantity, and, like the other day numbers, is
expressed in seconds of arc;
(c) the star constants a, a’ were then defined by:
a =m + nsin atan 6 a =mncosa ‘
but these expressions are now divided by #;
(d) the day number B, and the nutation terms in 4, were then derived from

long-period nutation terms only; they now include (total) nutation, and are !
given to an extra decimal;

(e) the aberrational day numbers C, D were then derived from theoretical
expressions for the Earth’s velocity based on a mean orbit about the Sun;
they did not allow for perturbations by the Moon and planets, were not
referred to the centre of mass of the solar system, and were given to
o”-o1 only; ‘

(f) no allowance was then made for the correction of second-order terms. ‘

Summary

* The day numbers tabulated in 4.E., pages 266—281 in 1960, give the values
of the Besselian and independent day numbers, as defined above, for each day at
oh E.T., together with 7 the fraction of the year from the nearest beginning of a
Besselian year. There is a discontinuity in 7, and in all the day numbers except B
and E, due to the change of equinox; the data for July 1 and 2 are given for both
systems. The short-period independent day numbers f, g’, G’ and the equivalent
short-period nutation terms di, de are also tabulated. Short-period Besselian
day numbers 4’, B’, which were in use in the ephemerides before 1960, are not now
given. For convenience, an approximate indication of the sidereal time at oP is
also tabulated. The day numbers are given in general to a precision of o0”-001,
but £, f’, E are expressed in seconds of time to os-0001; G, H are given to the
nearest second, G’ to the nearest minute and 7 to 0-0001.

T In A.E., pages 282285 in 1960, the Besselian day numbers are tabulated for
ob S.T. on each day, and in this form will be found convenient for systematic
computation of the corrections to the positions of stars at transit; the values at
the time of transit are obtained by interpolation to the right ascension of the star.
It will be noted that there are two entries for the day numbers on a day near
*Pages 308 to 323 in 4.E. 1972 onwards.
tPages 324 to 327 in A.E. 1972 onwards.
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September 21; care should be taken, for a station not on the Greenwich meridian,
to select the correct entry.

In A.E., pages 286—287 and x—xi in 1960, the second-order day numbers J,
J' are tabulated for ol E.T. on every tenth day as a function of right ascension.
Interpolation in these tables is not generally necessary.

Numerical illustrations

Example 5.4. Apparent place of a Centauri
Greenwich upper transit on 1960 July 1

The mean places and proper motions of example 5.1 are used with day numbers
containing long-period nutation only, the resulting place being comparable with that given
in Apparent Places of Fundamental Stars; the short-period terms are calculated inde-
pendently. Transit occurs on July 1-83, and for this date the reduction may be made
from either equinox. Corrections for parallax and for reduction from centre of gravity
to the bright star are included. = = 0”756

1960-0 19610 1960-0  1961-0 1960-0 1961-0
s 8”~853 —11-”188 isa +0-22838 0-22842 a’  —o0-77475 ©-77457
B + 9641 + 9-641 i5b +0-:09193 0:09193 b +0:63226 0-63249
4 3.250 -+ 3:254 15€ —O0-10545 O0-10544 ¢’ —o0-33881 0-33906
D -—20-150 —20-150 isd —o0-08605 o0-08610 d’ +0-67545 0-67532
E — o-0004 —0%-0004 Reduction to\ da +05-006 +08-064
T + 04996 —o0-5004 bright star 48 +2”".00 +2”.86
1960-0 1961-0 1960-0 1961-0
h m s 5 o ’ » »
a, 14 36 52:147 56-235 %  — 60 40 17:67 32:49
Tha — 0-2446 + 0-2450 TILS +r 052 =, 0352
Aa + 2.0218 — 2:5556 Aa’ — 6-859 + 8.666
Bb + 0-8863 + 0:8863 Bb’ + 6-.096 + 6-098
Ce — 0-3427 — 0-3431 Oc — 1-10I — 1-103
Dd + 17339 + 1:7349 Dd’ — 13-610 — 13-608
E — 0:0004 — 0:0004
Parallax — 0-0847 — 0-0847 Parallax — o0-146 — 0-146
Reduction + o0-0350 + o0-0350 Reduction + 2430 + 2:430
a 14 36™ 5681516 568-1524 8 — 60° 40’ 30”508 30”505
Short-period terms:
f’ — o8.0064 G’ 35 g sin (G’ + ag) + 0-9884
g’ 0”080 G +a 6 35 cos (G' + ag) — o-1521
8
7 — 0-0064 s
g’ sin (G’ + a,) tan 8 — 0-0004 g’ cos (G + ag) — o-012
da — o0-0158 48 — o-012
The alternative method gives: =
da(yy) +o0-091 dé(y) —o-308 diy —o-104
da(e) —o0-092 dé(e) —o0-632 de +0-068
da —oc-0157 48 —o”-o11

The apparent place, including short-period terms, is therefore:
a 14" 36™ 568-136 8 —60° 40’ 30”52

*Pages 328 to 331 in A.E. 1972 onwards.
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For comparison, the apparent place is calculated by means of independent day numbers
from the mean place for 1961.0:

f —187225 G + a, 230 55m 088 sin 8, —o0-87186
g 147756 sin (G + ap) —o0-02123 cos 8, +0-48975
h 20 -412 cos (G + ag) +0-99977 tan 8, —1-78021
1 +1I 411

sec 8, +2-04186
H + a, 20 oo™ 158

G oM 18m 128 sin (H + a,) +0-50004
Hi11r 23 19 cos (H + ap) +0-86548

h m s ° ’ ”

ap 14 36 56-235 3o —60 40 3249
Tia + 0-2450 TS — 0-352

— I-722§ g cos (G + ay) +14+753
gsin (G + ao) tan §, + 0-0372 h cos (H + a,) sin §, —15-402
hsin (H + a,) sec 3, + 1-3919 % cos &, + o0-691
Parallax — 0-0847 Parallax — o0-146
Reduction to bright star + o0-0350 Reduction to bright star + 2:430
Apparent place, a 14 36 56-137 Apparent place, 3 —60 40 30-52

In the above calculations more figures have been retained than would normally be
required or justified; this is done to illustrate the extent of the agreement of the calculations

by different methods, and the magnitude of the differences between quantities for the
two equinoxes.

The inclusion of second-order terms, which would normally be neglected in this
case, reduces still further the difference between the two results:

Right ascension

Declination
1960-0 1961-0 1960-0 1961-0
F +0%-00014 +0%-00001 J —o0"-.0014 —0”.003
J tan? +o0 -0005 0 -0000 J’ tan & +0 -003 +o0 -o001
a 14D 36m 568.1521 568.1524 ) —60° 40’ 30”505 30”504

Example 5.5. Apparent place of 20 G. Octantis
Greenwich upper transit on 1960 July 1

The example illustrates the use of second-order terms in calculating the apparent

place of a circumpolar star; day numbers including short-period nutation are used.
Transit occurs on July 1-853.

Besselian day numbers; mean place for 1960-0. 7 =

= +0°4997
ao 151 06™ 25856 8o —87° 59" 12”74
Ha —0-179 pe —o -072
” 8
A + 8813 E — o0-0003 sa  +1-53154 a  —o0-68701
B + 9-572 J + 000012 b  +1:30299 b  +o0-72665
C 4 257 fs¢  —1:30379 ¢ —o-71097
D —20-149 J' —o”"-0015 #d —1:37903 d”  +0-68658
h m s ° ’ ”
a, 15 o6 25-56 8o —87 59 1274
Tla — 0-089 TS — 0-036
Aa +13-497 Aa’ — 6-055
Bb +12:472 Bb + 6-955
Cc — 4246 By o — 2-316
Dd +27-786 Dd’ —13-834
E 0-000
J tan? §, + 0-097 J’ tan §, + 0-043 -
a 15" o™ 158.08 ) —87° 59”27”98
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Independent day numbers; mean place for 1961-0. 7 = —o0.5003
ao 15" 06™ 568-13 8o —87° 59’ 26”57
Ha —0 -179 12 —0 -072
7 — 187224 G + a oh 25m o8 sin 8§, — 0-999383
g 14”-755 sin (G + ap) +0-10944 cos 8y + 0-035062
h 20”411 cos (G + ag) ~ +0-99399 sec 8, +28-5209
1 +17.414 tan 8§, —28-5038
H + a 2h 30m 108
G oh 18m 128 sin (H + ay) +0:60934 J + o%-00001
HO 11 23 14 cos (H + ay) +0-79291 Jé —0"-0003
h m s o ’ »
% 15 o6 56-13 3o —87 59 26-57
Tlha + o0-090 TG + 0-036
— 1722 g cos (G + ayp) +14-666
gsin (G + a,) tan 8, — 3-069 h cos (H + a,) sin §, —16-174
hsin (H + a,) sec &, +23-648 1 cos + o-050
J tan? 3, + 0-008 J’ tan 3, + 0-009
a 15" o7™ 158.08 ) —87° 59" 27"-98

E. POLE STAR TABLES

The proximity of the second-magnitude star a Ursae Minoris, Polaris or the
Pole Star, to the north pole of the sky has given it a special significance for the
convenient determination of direction and latitude. This is particularly so in the
fields of navigation and surveying, for which its constant availability for observation
(in northern latitudes) and the simple methods that can be used for the reduction
of observations are invaluable. For the more precise requirements of astronomy
its distance from the pole is sufficiently large for the special methods of reduction
no longer to confer any advantage over standard methods. Thus ““ Pole Star
Tables "’ are restricted to the precision required in navigation and surveying, and
belong to the corresponding * almanacs ”, rather than to the Ephemeris; however,
because of the general use of the Pole Star, the principal table to navigational
precision is included in the Ephemeris (4.E.

%1960, Table II, page 456).

The polar distance of Polaris is at present
(1960) about 55'-4 and is decreasing. It will
reach a minimum of about 27'-5 in 2101, and
it will then increase with increasing rapidity.
It will reach 1° in about 2250 and 2° in about
2450.

If the polar distance of Polaris is denoted
by p (of the order of one degree) and its local
hour angle by 4, then its altitude @ and
azimuth A4, as seen from an observer in lati-
tude ¢, are given by solving the spherical
triangle PZS (see figure 5.1) formed by the
*Pages 496 to 499 in A.E. 1972.

Figure 5.x. Notation for Pole Star
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north pole, the zenith, and Polaris. Because p is small the solution may be
expanded as:
a=¢ +pcosh —Lpsinpsin®htaned + ...
— Acos¢ =psinh + psinpsinhcoshtand + ...
In each case the next term of the expansion is of order p sin? p tan? ¢ and cannot,
for many years, exceed o’-1 for latitudes up to 70°.

For convenience of tabulation, these expansions are rewritten in the form:
¢ —a = — (pocos hy — % po sin p, sinh, tan ¢,)
+ & po sin p, sin®h, (tan ¢ — tan ¢,)
— (pcosh — pocos hy) = ay + a, + a,
A cosd = — (pysin by + p, sin pg sin Ay cos kg tan )

— po sin p, sin kg, cos hy (tan ¢ — tan )

— (psinh — posin hg) = by + by, + b, .
in which p, and 4, are the polar distance and hour angle of a convenient point
close to the mean position of Polaris throughout the year, and ¢, is a mean latitude,
usually chosen to be 50°. The mean position of Polaris (which must not be
confused with its mean place) is usually chosen to have convenient exact values for
its right ascension a, and polar distance p,.

The first terms (a,, b,) in the modified expressions are functions of the single
variable, local sidereal time, since:
hy = LS.T. — a,
and may be tabulated at a suitable interval of L.S.T.

The second terms (4, b;) are functions both of %, (i.e. of L..S.T.) and of latitude
and must thus be tabulated in a double-entry table with arguments L.S.T. and
latitude. By incorporating a mean value (corresponding to latitude ¢,) in the
first term, the magnitude of these terms can be kept down to about 0’-5; they may
thus be tabulated at wide intervals of both latitude and L.S.T.

Similarly, the third terms (a,, b,) are functions both of %, and of the apparent
position of Polaris (i.e. of date). By proper choice of p, and a,, the magnitude of
these terms can be kept down, during one year, to about o’-5; and they can also
be tabulated at wide intervals of both date and L.S.T.

As will be seen from A.E., Table II, the single-entry table of a, and b, is
arranged in twenty-four columns, each containing values for one hour of L.S.T.;
this enables separate tables of ¢, and b,, and of a, and b,, to be given for each hour
of L.S.T. In the column corresponding to the hour of L.S.T. all these terms are
thus taken from single-entry tables—the first with argument minutes and seconds
of L.5.T., the second with argument latitude, and the third with argument date.
The error in using the tables for the hour, without interpolation for L.S.T., is
greatest for the second term b, (owing to its dependence on sin 2/4,) and may reach-
o’-15 for extreme latitudes; otherwise the error is very small.

The complications of these tabulations are unnecessary for astronomical
usage, but valuable for navigational use, in which simplicity of tabular entry and of
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interpolation are of foremost importance. Table II is essentially the same as the
corresponding table used for surface navigation, apart from intervals of tabulation

(1°in L.S.T. or L.H.A. of the first point of Aries) and from a further simplification
for the user by adding constants (whose sum is one degree) to a,, a;, a, to make
them always positive. (The Nautical Almanac, 1960, page 274.)

Example 5.6. Derivation of Pole Star Table
The adopted mean position of Polaris for 1960 is:
ap = 1" 57™; po = 55"-4 whence p, sin p, = o’-89.
¢o is taken to be 50°; tan ¢, = 1-192, p, sin p, tan ¢y = 1-06.

Entries will be calculated for a local sidereal time of 4" 3om, latitude 64°, and for the
month of March.

=gt gom — 1t gy = 2h g3m a by

—-cos hy —o0-7853 —sin y —o0-6191 X bo —43’-51 —34t3o

+4sin® by +0-19 —sin kg cos By —0:49 X pysinpytan¢d, + ©0-20 — 0-52
=43:31 1 —34:82

For = 64°: tan ¢ + 2-050 tan ¢ — tan ¢, +0-86

— po sin p, (tan ¢ — tan ¢y) —o’-77 a; +o’-15 b; —0’-38
Mean values for March, based on the apparent place of Polaris tabulated in Apparent
Places of Fundamental Stars are:

a = 1P 55™ 178 (@ —a) = —1m7 bosin (@ — ag) = —o’-41
3 = 89° 04’ 49" - (p — po) = —0'-22
Now:

= — pcosh + pocos hy — (p — po) cos by — posin kg sin (@ — ag) = + 0"-43
= —psinh + pgsin ky — (p — po) sin by + pocos hysin (@ — ag) = — o'- ‘19

St ‘may readxly be verified that a direct solution of the spherical triangle for latitude 64°,
on 89° 04" 49”, and hour angle 2" 34™ 43° gives:
altitude = 64° 42" 42”8, corresponding to (a, + a; + a;) = —42"-71
azimuth = —1° 20" 44”-3, corresponding to (b, + &, + b,) = —35"-39

Prior to 1960, The American Ephemeris contained the dailgr apparent place of
Polaris and a number of tables mamly designed for the precise determination of
' olaris. 'Tables I and IV of 1959 have been essen-
fally replaced by the present Table II but the ephemeris of Polaris and Tables V,
VI, and VII have not been included, as they are primarily intended for the use of
surveyors. 'Table V gave the azimuth of Polaris at elongation, to 0”-1, as a double-
entry table with arguments latitude and declination; Table VI gave the mean-time
interval which elapses from the time when Polaris is vertically above or below
{! Ursae Majoris or 8 Cassiopeiae to that when Polaris is on the meridian, but this
interval has become so greatly lengthened by precession that the table now has
little practical usefulness. Table VII gave the times of culmination and elongation
of Polaris.
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6. THE SYSTEM OF
ASTRONOMICAL CONSTANTS*

The constants of importance in the dynamics of the solar system comprise the
elements of the orbits of the several bodies, their masses relative to that of the Sun,
the constants specifying their size, shape, orientation, rotation, and inner consti-
tution, and the velocity of light. The constants connected with the Earth are of
special importance, because all conclusions about the motions of other celestial
bodies depend on them; this small group of constants is called the system of
astronomical constants. The word system is appropriate for two distinct reasons.
In the first place, the constants are not all independent of one another; once the
values of some of them are known, others can be calculated without further recourse
to observations. In the second place, when taken together with theory, the con-
stants constitute a model of the Earth and its motions, which serves for the
calculation of ephemerides. Analysis of the discrepancies between the ephemerides
and the observations leads in turn to new knowledge of the dynamics of the solar
system and to more accurate values of the constants.

This section is devoted to a list of the conventionally adopted values of the
constants comprising the system, their definitions, a discussion of some of the
more important relations among them, and a statement of the known inconsistencies
in the system, awareness of which is necessary in some specialized investigations if

misinterpretations are to be avoided. For further information on these matters
see the references at the end of the section.

In table 6.1 are given the conventionally adopted values of the constants
comprising the system. It should be said at once that it is not possible to set
precise limits on such a list. Some of the constants, such as the polar radius of
the Earth, are so easily derived from others that they might be omitted. On the
other hand, the motion of the ecliptic is calculated from the adopted masses of all
the planets; it would be proper to add them to the list but no useful purpose would
be served, because it is more expedient to consider the calculation as a part of the
theory of the motion of the Earth around the Sun.

The values of the equatorial radius (@) and the flattening (f) of the Earth
have been adopted by the International Union of Geodesy and Geophysics
(G. Perrier, “Comptes Rendus de la Section de Géodésie, Madrid, 1924”,
Bulletin Géodésique, no..7, 552—6, 1925), as has also the expression for the value of
gravity.

168

*See pages 497 to 521 for an account of the IAU system of astronomical constants that was
introduced in 1968.
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Table 6.1. The system of astronomical constants

Equatorial radius of the Earth a = 6 378 388m
Flattening of the Earth e = 1/297

Polar radius of the Earth a(1 — f) = 6 356 911:946m
Normal gravity = 978- 049 (1 oo 00528 84 sin? ¢ — 0-00000 59 sin® 2¢) cm/sec?
Solar parallax .. o 7 = 8”80

Constant of nutatxon, 1900-0 9”721

Constant of aberration - k = 20747

General precession in longitude, per troplcal century p = 5025”7-64 + 2"-22T
Precession in right ascension, per tropical century m = 4608”- 50 + 2”-79T
Precession in declination, per tropical century SR = 2oo4 .68 — 0”-85T
Speed of rotation of the ecliptic, per tropical century ... = 47 .11 — o”-07T
Longitude of axis of rotation of thé ecliptic = 173 57 037-6 + 3286"-2T

Obliquity of the ecliptic € = 23° 27" 08”726 — 46”.845T — 0”-0059 T? + o0”-00181 T2

Equatorial horizontal parallax of the Moon at distance 60-2665 equatorial radii of the Earth

57" 02”-70
Velocity of light : ¢ = 299 860 km/sec = 186 324 statute miles/sec
Light travels unit distance in 498E 580 (from solar parallax) or 498°-38 (from constant of
aberration)
Gaussian constant of gravitation ... k = 0-01720 20989 50000 = 3548”-18760 69651
Mass ratio Earth: Moon 81-45 (for lunar inequality) or 81-53 (in Brown’s lunar theory)
Mass ratio Sun: (Earth plus Moon) : 2. 13201200

T denotes centuries from 1900-0, no dxstmctnon bemg necessary between the tropical
century and the Julian century; see, however, section 4B.

The values of the solar parallax, constant of nutation, and constant of aberration
were adopted by the Paris Conference of 1896. The precessional constants and
the motion of the ecliptic are Newcomb’s. The parallax of the Moon is Brown’s.
The velocity of light is the value of Newcomb (1882). The mass ratio
Earth: Moon of 81-45 is that used in Newcomb’s tables for calculating the lunar
inequality in the solar coordinates, while the value 81-53 is used in Brown’s lunar

theory. The mass ratio Sun: (Earth plus Moon) is that used in Newcomb’s
tables of the Sun and planets.

The equatorial radius and the flattening define the size and shape of the
ellipsoid (known as Hayford’s spheroid or the International Ellipsoid of Reference)
that is substituted for the actual Earth in astronomical calculations. The polar
radius is derived from the equatorial radius and the flattening as @ (1 — f); for
consistency with them it is given to three extra figures.

The expression for gravity, in which ¢ is the geodetic latitude, includes the
effect of centrifugal force due to the rotation of the Earth.

The solar parallax is defined as the angle subtended by the equatorial radius
of the Earth at a distance of one astronomical unit.

The constant of nutation is the coefficient that is multiplied by the cosine of
the longitude of the Moon’s ascending node on the ecliptic, in the expression for
the nutation in obliquity.

The constant of aberration (k) is the value of the ratio, expressed in seconds
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of arc, of the Earth’s mean orbital velocity, conventionally taken to be the
component perpendicular to the radius vector, to the velocity of light. The relation
between it and the solar parallax is given later.

The speed of the general precession in longitude is inferred from observations
combined with theory. It has often been called the constant of precession, but it
is preferable to reserve the term constant of precession, as Newcomb did, for the
function:

- e N T
e <A+BI+M>

where P is the constant of precession, properly so called, pu is the mass ratio Moon:
Earth, H is the mechanical ellipticity of the Earth (to be distinguished from the
flattening), and 4 and B are functions of the elements of the orbits of the Earth
and Moon, and of the mass ratio Sun: (Earth plus Moon). The quantity P is
very nearly constant; it is diminishing at the rate of 0”-004 per century, mainly
because of the secular decrease of the eccentricity of the Earth’s orbit.

The precessional constant (P) is connected with the general precession in
longitude (p) by the relation:

p =Pcose — p, — XN cos e

where ¢ is the obliquity of the ecliptic, A’ is the planetary precession, and p, is the
geodesic precession, equal to 1”-915 per century. The geodesic precession is a
relativistic motion of the equinox along the ecliptic, similar to the general precession
but in the opposite sense. The amount is given by 372 n/2, where V is the r.m.s.
value of the ratio of the Earth’s velocity to the velocity of light, and # is the Earth’s
mean angular orbital motion. (See Chazy, J., La Théorie de la Relativité et la
Mécanique Céleste. Volume II, Paris, 1930.)

Denoting the precession in right ascension by m, and the precession in
declination by #, we have:

m = (Pcose — p,)cose — X
n = (Pcose — p,)sin €

The plane of the ecliptic is defined as the mean plane of the Earth’s orbit;
thus it is affected by secular perturbations from the action of the other planets,
but not by periodic perturbations, which are considered to be synonymous with
the latitude of the Earth. The ecliptic is rotating about an axis which is about 6°
from the equinoxes; thus the secular change of the obliquity is slightly less
numerically than the speed of rotation of the ecliptic.

The mechanical ellipticity of the Earth (H) is defined by:

gy_C-4

C

where C and 4 are the polar and equatorial moments of inertia. 'The mechanical
ellipticity is thus a dynamical constant while the flattening (f) is a geometrical one.
The relation between the two is not a simple one, but an idea of it may be obtained
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from the relation that would hold approximately if the Earth were of uniform
density:

H=f-1%0o
where ¢ is the ratio of the centrifugal acceleration to gravity, both taken at the
equator.

The time required for light to travel one astronomical unit (see section 4A)
: ; *
may be inferred either from the solar parallax by the formula :
a
= —— = S.
P 4983-580
where 7 is the light-time, a is the equatorial radius of the Earth, ¢ is the velocity of
light, and = is the solar parallax expressed in radians, or from the constant of
aberration by the formula:

T S(I + v)lcos ¢ = 498538

where & is the constant of aberration, 7 is the angular mean motion of the Earth,
0"-04106 7043 per second, sin ¢ is the eccentricity of the Earth’s orbit, 0-01672 63,
and 1 + v is the mean distance of the Earth from the Sun, 1-00000 023. The
method of calculating the planetary aberration used in the fundamental ephemerides
of the Sun and planets is equivalent to using the smaller of the two values of 7,
while for the physical ephemerides and satellites the larger of the two is convention-
ally used.

From the disagreement in the values of 7 calculated by the two formulae it is
seen that the adopted values of k and 7 are inconsistent with each other. In fact
the product:

kemr = na (1 + v) sec ¢ = 1-27010 64 m/sec
isknown with greater accuracy than any of the constants &, ¢, or 7. It can therefore
be used to find any one of them if the other two are known. The following table
gives values of % resulting from use of the constant 1-27010 64 with several com-
binations of values of ¢ and .

c s k
km/sec s 3
299770 8-800 20-484
299790% 8.800 20-483
299860 8-800 20-478
299770 8-790 20-508
299790* 8:790 20-506
299860 8-790 20-501

* Modern laboratory determinations give 299 792:458.

Besides being inconsistent with the constant of aberration, the adopted value
of the solar parallax is inconsistent with the mass ratio Sun: (Earth plus Moon)
used in the tables of the Sun and planets. The mass ratio 329 390 corresponds to
8”79 for the solar parallax, whereas that corresponding to 8”-8o is 328 270.

It was long supposed that an inconsistency existed between the values of the
mass ratio Earth: Moon as inferred from the lunar inequality in the orbital motion
*See page 517.
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of the Earth, and as inferred from the observed value of the constant of nutation.
Sir Harold Jeffreys has shown, in a series of papers in the Monthly Notices of the
Royal Astronomical Society beginning about 1950, that the old theory of the nutation,
in which the Earth is considered to be a rigid body, is insufficient; it is necessary
to take the departures from rigidity into account, and the subject is one of consider-

able difficulty.

A few other inconsistencies exist in the system of constants, but they are not
so important as the ones mentioned here.

Aside from the inconsistencies in the system, some of the conventional values
are shown by modern observations to be in error by appreciable amounts. The
most important error is in the precession, the general centennial precession in
longitude requiring a correction of about +0”-8, due principally to the neglect of
the galactic rotation in the derivation of the adopted value. The centennial change
in the obliquity is known to be in error by a few tenths of a second, probably as
a result of the neglect of perturbations of the second order in its calculation. The
last two figures in the equatorial radius and the equatorial acceleration of gravity
are without physical significance, and the flattening is probably closer to 1/298
than to 1/297. In Brown’s theory of the motion of the Moon the flattening used
in calculating the periodic perturbations is 1/294, the value that he found would
reconcile the observed motions of the perigee and node with his calculations. Itis
probable, however, that his calculations failed to include other significant effects,

and so the value 1/294 is not to be regarded as an actual determination of the
flattening.

The errors in the adopted values of the constants do not impair the usefulness
of the system in the slightest degree. The inconsistencies, on the other hand,
are of some importance, since the investigator who is unaware of them may
occasionally be led to erroneous conclusions, but a new system in which the
inconsistencies had been removed would on the whole be much less valuable than
the present one with all its imperfections. These facts deserve emphasis, because
they seem to be peculiarly difficult of apprehension.

Most non-astronomers, and even many astronomers not working in the
dynamics of the solar system, expect to find in a national ephemeris a list of constants
the values of which, if they are not absolutely accurate, are at least as up to date as
possible. The importance of self-consistency in the system is little appreciated,
and the even greater importance of perpetuating a value that is known to be incorrect
is admitted but seldom. The guardians of the system are accused of inaction and
negligence, and even prejudice, by those who for one reason or another wish to
introduce a new value for some constant.

The principal reason for retaining the system unchanged is a consequence of
the methods necessarily employed in dynamical astronomy. The value of a
constant is never measured directly. The method of differential corrections is
employed instead. Observations made at various times are compared with an
ephemeris. Analysis of the discrepancies between the observations and the
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ephemeris yields corrections to the values of the constants used in constructing the
ephemeris, which being applied give more accurate values of the constants. If,
during the period covered by the observations, the value of any constant entering
into the calculation of the ephemeris has been altered, then the ephemeris at times
before the alteration is inconsistent with the ephemeris at later times, and an
analysis that fails to take account of the change is bound to lead to an erroneous
conclusion. What must be done is either to recalculate one portion of the
ephemeris, or to make the analysis of the two portions separately, combining the
two results at the end. But in practice the alteration of the ephemeris has often
been unknown to the investigator, especially when different portions of it have
been calculated at different times by different persons. Even in cases where the
alterations are known, it may be very laborious to make the analysis properly,
and in any case considerable care is necessary.

During the nineteenth century the advantages of continuity in an ephemeris
were not appreciated even by the compilers, and during the twentieth century
some changes have been made that in retrospect hardly appear to have been justified.
It would, however, be going too far to conclude that the present system should be
retained for ever. It should be revised eventually, not piecemeal but as a whole,
and when it is done care should be taken that there is no contradiction between
the revised system and the theories of the motions of the four inner planets.

At a conference on the fundamental constants of astronomy, held at Paris in
1950, it was unanimously recommended to retain the present conventional values
of the constants comprising the system, and this recommendation was approved at
the General Assembly of the International Astronomical Union in 1952 (Zrans.

LA.U., 8, 66, 1954).

It is useful to distinguish at least three different values of any of the constants:
(a) the conventional value comprising part of the model or system of reference, to
which observations are referred, and which remains unchanged for long periods of
time, (b) the observed value, which changes with each new determination, and
(c) an adjusted value, which rigorously satisfies the theoretical relations with the
adjusted values of other constants, and which agrees with the observed value
within the tolerance set by the observational errors.
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7. HISTORICAL LIST OF AUTHORITIES
A. INTRODUCTION

When the contents of the separate supplement were first being considered,
there was a demand for a comprehensive list of authorities, including numerical
values of the constants used, for the major ephemerides in each edition of The
Nautical Almanac since 1767. At this time these ephemerides represented the
only readily available basis for the comparison of observation with theory; and
they are only suitable for this purpose if full allowance is made for the many
different authorities and constants on which the ephemerides are based. Generally,
but not always, the authorities and constants used can be found from the Preface
or Explanation of the edition concerned, or of some earlier edition; in some cases,
ambiguities can only be resolved by recalculation, since records of the actual
calculations have not been preserved. Considerable work was done, as opportunity
offered, to collect and synthesize this information.

With the availability of fast computing machines it has become practicable to
calculate ephemerides, over the whole period covered by accurate observation,
from current theories; such are in fact already available for the Sun (4.P.A4.E.,
14,1953), Venus (4.P.A.E., 15, part 111, 1955) and the five outer planets (4.P.4.E.,
12, 1951).

The tabulated ephemerides have therefore been largely superseded and will
not again be generally used for the comparison of observation with theory.

A knowledge of the basis of the ephemerides is, however, essential for the
proper interpretation of the results of past discussions. For this reason, and for
purposes of historical interest and record, the list of authorities is given in the
form originally intended. But a few uncertainties and ambiguities, which could
only have been resolved by excessive research or recalculation, have been allowed
to remain.

The material is arranged in three main sub-sections: up to 1900, The
Nautical Almanac and The American Ephemeris are treated separately; but after
1900 they are combined. Each sub-section is divided according to the body or
subject (e.g. Sun, Moon, Precession, Nutation, Constants); within each division
the authorities, arranged chronologically, are preceded by a short narrative of the
quantities tabulated. In this narrative “ #D ™ is used to indicate that the quantity
is tabulated to # decimal places, and the term  precision ” is used to indicate
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merely the unit of the end figure. Names and dates only are usually given for the
authorities; full references are given in sub-section E. In some cases, for example
for the adopted semi-diameters of the planets, detailed references to the original
publications have been omitted.

Some of the tabulated ephemerides are based on theories, derivations, and
constants given in Appendices and Supplements to The Nautical Almanac and to
The American Ephemeris. No lists of these appendices and supplements are
readily available, and the opportunity is therefore taken of including, in sub-
section F, complete lists of all such appendices and supplements with a brief
description of their contents. Details of miscellaneous ephemerides of auxiliary
quantities that were occasionally given in appendices or supplements have been
omitted from this section.

B. LIST OF AUTHORITIES FOR TABULATIONS IN
THE NAUTICAL ALMANAC, 1767-1900

I. Sun

All ephemerides from 1767 to 1833 were given with argument apparent time.
Quantities tabulated for the Sun at intervals of one day were longitude and
declination (each to 1”), right ascension and equation of time (each to 18). Semi-
diameters in arc (to 0”-1) and in time (to oS-1) and log distance (to 6D) were given
at intervals of 6 days. From 1768 the equation of time was given to of-1, and
from 1772 the right ascension was also given to o8-1. For the years 1815-1822,
the log distance was given only to 5p. In 1833 the semi-diameters and log distance
were given at intervals of one day, to 0”-o1, to o8-01, and to 7D.

The Almanac for 1834 was largely remodelled in accordance with the (Royal)
Astronomical Society’s report printed in that Almanac, and thereafter the argument
of most ephemerides was mean time. Most quantities tabulated in time were
given to o8-o1, those in arc to 0”-1 (except the Sun’s latitude, given to 0”-o1), and
the log radius vector to 7D. In many cases differences or variations were given.
From 1848 equatorial rectangular coordinates were included, at intervals of one
day and to 7D, the latitude terms being included for the first time in 1866; the
values for 1845-1847 were given in the 1848 volume. No other substantial change
was made before 19o0.

1767-1796: Mayer’s ‘‘ last manuscript tables >’ (which assumed an annual precession
of 50”-3).

1797—-1804: Mayer’s tables, with the mean motion corrected to the revised preccssion
of 50”-2.

1805-1812: Delambre’s tables, as given in Lalande (1792), but with certain (unspecified)
coefficients determined by Maskelyne.

1813—1821: Improved tables by Delambre (1806).

1822-1832: The tables in Vince (1808, Volume III), ‘“ with the omission only of some
equations which do not materially affect the results ”’. The tables are stated by Vince
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(Volume III, page 2) to have been  constructed by M. de Lambre, from the
observations of Dr. Maskelyne, and the theory of M. Laplace. See Les Mémoires de
I’Académie de Berlin, for 1784, 1785°. [In 1832 the position of the Sun for the cal-
culation of the transit of Mercury (and for no other purpose) was taken from Carlini’s
tables, (see below) corrected.]

1833: The longitude was taken from Delambre’s tables, improved by Airy’s correc-
tions based on Greenwich observations.

1834-1835: Carlini’s tables (1810) with Bessel’s corrections (1828) and nutation as in the
Astronomical Society’s tables (Baily, 1825). [The elements used by Carlini are the
same as those of Delambre (1806), but the arrangement is better for the construction
of an ephemeris.]

1836-1863: Carlini (1832).
1864-1900: Leverrier (1858).

2. Moon

The Moon’s longitude and latitude, semi-diameter, and horizontal parallax
(each to 1”) and its right ascension and declination (each to 1’) were tabulated at
intervals of 12h (apparent time) for the years 1767-1833. Lunar distances (at
least one star, and from 1770 one or two stars, as well as the Sun when conveniently
placed) were given to a precision of 1” for every 3. From 1823 the right ascension
and declination were given to 1”. In 1834 the argument became mean time and,
with occasional minor alterations, the tabulations were given to an extra figure until
the year 190oo. 'The right ascension (to o%-o1) and the declination (to 0”-1) were
given at intervals of one hour.

1767-1776 : Mayer’s last manuscript tables.

1777-1788: Mayer’s tables, improved by Mason under Maskelyne’s direction, based on
Bradley’s observations (the latter are printed in N.4., 1774).

1789-1796: Mayer’s tables, further improved by Mason (1780). Eight new equations
were taken from Mayer’s tables, the coefficients being determined from Bradley’s
observations. The 18th equation in longitude was omitted.

1797-1804: The same set of tables, but adjusted (as for the Sun) for the corrected value
of precession.

1805-1807: Lalande (1792); the tables are the same as Mason (1780) except for the
substitution of Laplace’s acceleration and secular motion.

1808 Lalande’s tables, with the addition of two further inequalities found by Laplace.

1809-1812: The epochs, Laplace’s accelerations, and ‘‘ a particular equation of his ” were
taken by Maskelyne from Burg’s tables (see below) and hence the mean longitudes
were computed. The parallax was taken from Mayer.

1813-1817: Burg (1806) on Laplace’s theory, the coefficients being determined from
Maskelyne’s observations, and the epochs from those of Maskelyne and Bradley.

1818-1820: According to Pond’s Preface, the tables of Burckhardt were used. [But a
note (initialled T.Y.) at the end of the 1820 Preface states that those of Burg were
used. ]

1821-1833 : Burckhardt (1812). :
1834-1855: Burckhardt’s tables, with nutation from Baily (1825).

1856 As in the previous years, but the parallax taken from Adams (1853b) and the
semi-diameter taken as 0-2%725 times the horizontal parallax.
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1857—1861: The ratio of semi-diameter to horizontal parallax was changed to 0-273114.
1862—-1882: Hansen (1857).

1883-1895: Hansen, but with Newcomb’s corrections (1878b) included in the right ascen-
sion and declination.

1896: As in previous years, and with the substitution of Newcomb’s Table XXXIV
for Hansen’s.

1897-1900: Newcomb’s corrections included in horizontal parallax and semi-diameter.

3. Major planets

Ephemerides of the five * classical ”” planets were given at intervals of 6 days
(Mercury, 3 days from 1778) until 1832. Those of Uranus (at intervals of 10 days)
were introduced in 1789 and again from 1791 onwards. The adopted precision
was 1’ for declination and both heliocentric and geocentric longitudes and latitudes.
When the right ascension was added, in 1819, a precision of 1™ was used.

Heliocentric coordinates were omitted in 1833, while declination and geocentric
longitude and latitude were given to 1”, right ascension to o8-1, and log distance to
5D, all at intervals of one day.

The intervals were changed in 1834 to one day for all planets (in 1861,
when Neptune was introduced, to 4 days for Uranus and Neptune). Geocentric
longitude and latitude were omitted, and the quantities were tabulated to os-o1 for
right ascension, to o”-1 for declination and heliocentric longitude and latitude,
and to 7D for log distance and log radius vector. A geocentric (equatorial) ephem-
eris of Neptune was published between 1850 and 1860, at intervals of 5 days,
usually as an appendix to later Almanacs.

Transit ephemerides were introduced in 1839 for Mercury to Uranus, and
in 1861 for Neptune.

Mercury, Venus, Mars, Jupiter, Saturn
1767-1779: Halley (1749).
1780-1804: Wargentin’s tables, ‘ annexed to M. De la Lande’s Astronomy .

1805-1833: Lalande (1792). These are the tables calculated by Delambre on the theory
of Laplace. The tables of Mars from 1822 were taken from “ those of Lalande in the
Connaissance des Tems [sic] for the 12th year [1803-04] *’; the places of Mercury for
the transit of 1832 from Lindenau’s tables (see below).

Mercury
1834-1863: Lindenau (1813).
1864-1900: Leverrier (1859).

Venus
1834-1864: Lindenau (1810). For the years 1837-1848 a correction of —2’ 18” was
applied to the tabular longitude of the node.
1865—1900: Leverrier (1861a).

Mars
1834-1865: Lindenau (1811).
1866—1900: Leverrier (1861b).

Jupiter

1834-1877: Bouvard (1821).
1878-1900: Leverrier (1876a).
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Saturn

1834-1879: Bouvard (1821). [For the years 1852-1879, Bouvard’s Table 42 was used
in the corrected form given by Adams (1849) and in N.A4. 1851, xiv.]
1880-1900: Leverrier (1876b).

Uranus [ The Georgian > in N.A4. 1789-1850]
p o _}As for the “ classical ”” planets.
1791-1833:
1834-1876: Bouvard (1821).
1877-1881: Newcomb (1873).

1882-1900: Leverrier (1877a).

Neptune

1850-1857: Computed from elements given in various issues of the Berliner Jahrbuch or
The Nautical Almanac.

1858-1870: Kowalski (1855). [This is a little uncertain for the years 1859—60, as the
supplements to the almanacs containing these ephemerides do not quote the authority.]

1871-1881: Newcomb (1865).

1882-1900: Leverrier (1877b).

4. Minor planets

Ephemerides of minor planets were given for the first time in the Almanac for
1834. That issue contained ephemerides, at intervals of 4 days throughout the
year, of the first four planets, based on elements by Encke. The right ascension
was tabulated to om.1, declination and heliocentric longitude and latitude to 1,
log distance and log radius vector to 4D. For one month on each side of opposition,
at intervals of one day, the right ascension was given to o$-o1, declination to 0”1,
log distance and log radius vector to 5D.

Similar ephemerides for the years to 1849 were based on the same elements,
with variations calculated by the method given by Airy (1835).

Between 1850 and 1866 the number of planets, for which ephemerides at
wider intervals were published, was increased, in some years to as many as 36,
the elements used being due to a number of different authors. [The Almanac for
1856 contains a translation (by Airy) of papers by Encke (1852 a, b) on the comput-
ation of special perturbations.]

From 1867 the number of planets was decreased to five, and from 1876 to the
first four, on the ground that more accurate ephemerides were to be published in
the Berliner Jahrbuch. 'The elements used were:

Ceres, 1867—1881: Schubert (1854).

Ceres, 1882-1900: Godward (1878).

Pallas, 1867-1900: Farley (1856a).

Juno, 1867-1893: Hind (1855).

Juno, 1894-1900: Hind (1855), with corrections by Downing (1890).
Vesta, 1867-1900: Farley (1856b).

Astraea, 1867-1875: Farley (1856¢).
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5. Auxiliary quantities
Stdereal time

The sidereal time was not tabulated explicitly for the first sixty or seventy
years, but from 1833 values were given at intervals of one day. The sidereal time
at mean noon is stated to have been calculated from the following expressions:
1833: Sun’s mean longitude + 6”0 — 16”5 sinf — 0”.917 sin 20
1834—1900: Sun’s mean longitude + nutation, where the Sun’s mean longitude at Paris

mean noon of January o of the year 1800 + ¢ is given by Bessel (1830a, p.xxiv) as:

279° 54" 01”7-36 + 27760584 4 t + 0”-00012 21805 t* — 14’ 47”083 f
f being (for the 19th century) the number of years from the preceding leap year.

Mean obliquity of the ecliptic

The values used were the following (¢ being measured in years):

1767-1807: 23°2816” — x (¢t — 1756) . Mayer (1770, pp. 105 and [v])
x was stated by Maskelyne in several almanacs to be about half a second, but Mayer’s
table indicates 0”-46. 'The values seem to have been adjusted occasionally by

Maskelyne.
1808-1833: Corrected year by year, from Greenwich observations to a current date.
1834-1863: 23° 27" 54”8 — 0”:457.(t — 1800-0) Bessel (1830a, p. xxvii)
1864-1900: 23° 27" 317-83 — 0”-476 (t — 1850-0) Leverrier (1858, p. 203)

The authorities for the values of the obliquity adopted for the conversion of the
Moon’s longitude and latitude to right ascension and declination were (see A. M. W.
Downing, M.N.R.A.S., 69, 618, 1909):
1862-1874: Hansen (1857, p. 45; see Hansen and Olufsen, 1853, p. 5)
1875—-1900: Leverrier (1858, p. 203)

Reducing all these to a common date, for comparison with Peters (1842) and
Newcomb (1895a), we have:

Mayer: 23°27" 29" — 0”46 (¢t — 1850-0)
Bessel: 23° 27" 317-95 — 0":457 (¢ — 1850-0)
Leverrier: 23° 27" 317-83 — 0”:476 (¢ — 1850-0)
Hansen and Olufsen: 23° 27" 31”42 — 0":46784 (t — 1850-0)
Peters: 23° 27 30":99 — 0”-4645 (¢ — 1850-0)
Newcomb: 23° 27" 317-68 — 0”:468 (t — 1850-0)

Apparent obliquity of the ecliptic

Values of the apparent obliquity (to 0”-1) at intervals of three months were
published from the inception of the Almanac; in 1817 and 1818, and again from
1834, the interval was changed to 10 days, and in 1834 the precision was changed
to 0”-01. From 1876 to 1895 the short-period terms of nutation were included in
the apparent values, which were tabulated at intervals of one day.

Precession

Mayer’s value (1770, p. [52]) of 50”:3 was used in the Almanac from 1767 to
1796, but was corrected to 50”-2 from 1797 to 1833, with a corresponding adjust-
ment of Mayer’s values of the mean motions of the Sun and Moon.

Between 1834 and 1853 there is no specific statement of the values used, but
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from 1854 to 1895 the annual (and daily) increments were given (to 0”-0001), and
the precession from the beginning of the year was tabulated (to 0”-o01) at intervals
of 10 days. No authority is quoted for these figures.

From 1896 to 1900, Peters’ value (1842, p. 71) is stated to have beén used as
the authority.

The following comparison shows the various values of the annual precession
that were used (7" being measured in centuries from 1850-0):
1854-1856 (deduced): 50”2357 + o”-0257
1857-1895 (deduced)\ , _ v
1896—1900 (Peters) ipoiiaads, & ol ooyl
1901-1959 (Newcomb): 50”-2453 + 0”-0222T

Nutation

1767-1833: The ‘‘ Equation of the Equinoctial Points > (nutation in longitude) was tabu-
lated (to o”-1) for every three months, but without any indication of the authority or

of the terms included. In the years 1817 and 1818 the same ‘“ Equation ... in
Sidereal Time ”’ (or nutation in right ascension) was given (to o%-01) at intervals of
ten days.

1834-1856: The tabulated values (to o”-or in longitude and o%-or in right ascension) at
intervals of 10 days, were based on Baily’s (1825) values and included the four terms
numbered 1, 2, 3, 14 in table 7.1.

1857-1880: The same terms were tabulated, and the precision and the interval of tabulation
were unchanged, but the coefficients were based on Peters (1842). :

- 1881-1892: Nutation in obliquity was also included, to a precision of o”-o1.

1893-1895: T'wo additional terms (nos. 5 and 7) were included in the tabulations.

1896 Long-period and short-period terms in both longitude and obliquity were
included in the tabulations, the interval of which was one day. Term no. 15 was
included.

1897-1900: Nine additional terms (nos. 6, 8-13, 17, 18) were included.

Constants

The following values of the principal constants have been used:

Solar parallax

1834-1869: 8”-5776 Encke (1824, p. 108)
1870-1881: 8”.95 Leverrier (1858, p. 114)
1882—1900: 87-848 Newcomb (1867, p. 29)
Constant of aberration

1834-1849: 20”-36 Baily (1825, p. x)
1850-1856: 20”42 Baily (1845, p. 21)
1857-1900: 20”4451 Struve (1844, p. 275)

Constant of nutation

1834-1856: 9”-25 Baily (1825, p. xiv)
1857-1900: 9”-2231 + 0”-00097, where T is in centuries from 1800-0.
Peters (1842, p. 75)
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Sun

1767-1807:
1808-1833:
1834-1852:
1853—-1895:

1896-1900

Mercury

1834-1863:
1864—1900:

Venus

1834-1864:
1865-1895:
1896-1900:

Mars
1834:

1835-1865:
1866-1895:
1896—1900:

962"-8
961”-37
960”9
g61”7-82
. f961”-18
1959”63

8”'25
8”'305
8”'40

4757
47435
57-55 [sic]
4”-68

Jupiter (equatorial)

1837-1881
1882—-1895
1896—-1900

1 99”704
: 987-19
1 97”36

Jupiter (polar)

1834:

1835-1856:
1857-1881:
1882-1895:
1896—-1900:

93”37
93”4
92"-426
92”-200
91”-10

Saturn (equatorial)

1834:

1837-1881
1882-1895
1896-1900

88”72
+"81":10b
s 837
: 84775

Saturn (polar)

1835-1856
1857-1881
1882-1895

1896—-1900:

Uranus
1834:

1835-1881:
1882—-1895:
1896—-1900:

Neptune
1899-1900

: 75"-25
)
: 74”756
76".88

37”-20
37725
34728
34728

: 36”-56

EXPLANATORY SUPPLEMENT

Semi-diameters at unit distance

Mayer (1770, p.[56])

Bessel (1830a, p. L)

Airy (1855, p. Ixxviii)

Auwers (from observations at Greenwich, 1851-1883)

Auwers (1891, p. 367) [This value was used for eclipse
calculations only]

Lindenau
Leverrier

Delambre
Leverrier
Auwers

Littrow
Leverrier
Hartwig

Struve
Leverrier
Schur

Delambre

Equatorial S.D. x o-927
Equatorial S.D. x 0:939
Schur

Bessel
Leverrier
Meyer

Bessel
Equatorial S.D. x 0:927
Equatorial S.D. X 0-895
Meyer

Delambre
Leverrier
Hind

Barnard; however, no values were tabulated
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This table gives the values adopted, beginning with each year shown, of the coefficient of
sine (Argument) in the nutation in longitude (4¥), and of cosine (Argument) in the nutation in
thliquity (de); a blank indicates that the term was not included in the tabulations for that year, a
kader (...) that the coefficient used was the same as in the preceding entry. The sub-heading
leis omitted for those terms that do not occur in the obliquity. Terms numbered 1 to 13 all
have periods greater than 100 days, and are known as long-period terms; numbers 14 to 25 have
priods shorter than 35 days, and are known as short-period terms.

Term No. 1 2 3 14
Argument (9} 28 2L 2(
4y de Ays de Ay de Ay de
1834 —17-2985 +9-2500 +0:2082 —0:0003|