
134 Physics o f  the Earth and Planetary Interiors, 20 (1979) 134-151 
© Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands 

CONVECTION DRIVEN DYNAMOS 

A.M. SOWARD 

School o f  Mathematics, The University, Newcastle upon Tyne, NE1 7R U (Great Britain) 

(Accepted for publication in revised form April 17, 1979) 

Soward, A.M., 1979. Convection driven dynamos. Phys. Earth Planet. Inter., 20: 134-151. 

Various models of thermal convection in rapidly rotating fluids permeated by strong magnetic fields are discussed. 
Particular attention is paid to the possibility that the magnetic field can be maintained by dynamo action rather than 
by externally applied electric currents. Two dynamo models are given particular attention. They are the plane layer 
model of Childress and Soward (1972) and the annulus model of Busse (1975). Though these models do not totally 
resolve the geodynamo problem, they do highlight important features of hydromagnetic dynamos. As a result some 
speculations are made about the true character of the geodynamo. 

1. Introduction 

The fluid motions responsible for driving the geo- 
dynamo are generally believed to be the result of con- 
vection, thermal or otherwise. The only serious alter- 
native is precession. Though a large amount of energy 
can be transmitted into the fluid by forces acting at 
the core surface, the recent investigations of Loper 
(1975) and Rochester et al. (1975) suggest that most 
of the available precessional energy is dissipated in 
boundary layers leaving an inadequate supply to drive 
the dynamo. On the other hand, convection maintained 
directly by buoyancy forces leads to motions in the 
main body of the core, which are likely to be suffi- 
ciently complex to regenerate magnetic field. Further- 
more the wastage of energy in boundary layers is 
likely to be less severe. Out of all possible convective 
processes thermal convection is generally adopted in 
theoretical dynamo models (e.g. Busse, 1973, 1975; 
Childress and Soward, 1972) owing to its relative sim- 
plicity. 

It is clear that progress towards understanding the 
geophysical problem can only be made through investi- 
gations of highly idealised and simplified models. Here 
such a model is proposed which, it is hoped, contains 

all the key ingredients necessary to describe qualitative 
features of the convection and dynamo process accu- 
rately. We shall begin by considering a self-gravitating, 
electrically conducting Boussinesq fluid, which is con- 
fined within a spherical container radius L and suppose 
that the entire system rotates rigidly with angular 
velocity t2. Of course, the model would be more geo- 
physically realistic if it included a central rigid core, 
but, since this refinement does not appear to be of  
fundamental importance in the ensuing dynamics, it 
will not be considered. We also suppose that heat 
sources are distributed uniformly throughout the core 
and as a result the temperature and corresponding 
density distribution are spherically symmetric. Despite 
the fact that the fluid is top heavy an equilibrium state 
of  no relative motion is possible. Nevertheless once 
the adverse density gradient/3 attains a critical value 
~3e (say), the system becomes unstable to small pertur- 
bations. For yet larger values of/3, finite amplitude 
convection ensues. The hope is that, for sufficiently 
large values of/3, the convection can support a mag- 
netic field by magnetic induction and so operate as a 
hydromagnetic dynamo. 

Relative to coordinate axes rotating with angular 
velocity f~, the fluid velocity u is governed by the 
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equation of motion 

Du 
- - +  2f~ X u = -Vp - tv0g + o-~j X B + vV2u 
Dt 

(V "u = O) (1.1a,b) 

where p and p are the fluid density and pressure, B is 
the magnetic field, 

j =/a -~ V X B (1.1c) 

is the electric current, gt is the magnetic permeability, 
a is the coefficient of expansion, f I1" dx + 0 is the 
temperature, x and t denote position and time, D / D t  

is the material derivative and v is the viscosity. The 
magnetic field B and perturbation temperature 0 are 
governed by 

0B 
- V X (u X 13) + XV2B (V.  B = 0) (1.1d,e) 

0t 

and 

DO = - u  . P + r V 2 0  (1.1f) 
Dt 

respectively, where X and r are the magnetic and ther- 
mal diffusivities, respectively. In addition the gravi- 
tational acceleration g and the temperature gradient 
II are 

g = - g o x / L ,  II = - (3ox lL  (lAg,h) 

where go and/3 o are their respective magnitudes at the 
outer boundary. The mathematical problem is com- 
pleted upon specification of suitable boundary condi- 
tions. Here it is important that the condition on the 
magnetic field should rule out the possibility that it is 
maintained externally by an applied electric current. 

The spherical hydromagnetic dynamo problem 
described above is extremely complex and only facets 
of the problem have been tackled so far. In this paper 
we will outline the two main approaches to the prob- 
lem. The first approach is simply to consider convec- 
tion in the presence of a prescribed magnetic field. 
Much of the early work on this magnetohydrodynamic 
convection is described by Chandrasekhar (1961). 
Nevertheless in Section 2 we follow Braginsky's 
(1964a) development as it highlights both the param- 
eters and the physical processes which are central to 
the understanding of the geophysical problem. The 
second approach is to suppose that the convection is 

given and to see if there is any possibility of magnetic 
field regeneration. This, of course, is the kinematic 
dynamo problem which is now well understood (e.g. 
see Moffatt, 1978). When the two approaches are con- 
sidered simultaneously they yield the hydromagnetic 
dynamo problem. In Section 3 we shall describe the 
plane layer hydromagnetic dynamo developed by 
Childress and Seward (1972). This model has had lim- 
ited success and, even when the magnetic field is very 
weak, it suffers from the phenomenon of dynamo 
instability, which occurs whenever the Lorentz force 
aids rather than hinders convection. In Section 4 the 
nature of convection in a sphere is discussed both with 
and without an applied magnetic field. The annulus 
configuration developed by Busse (1970) provides a 
very simple but effective model for reproducing many 
of the important features of convection in a sphere. 
Busse (1975) used it as the basis of his geodynamo 
model and later Busse (1976) used it again with the 
inclusion of a zonal magnetic field to investigate the 
nature of convection in a sphere with magnetic field. 
Since the present understanding of the hydromagnetic 
dynamo problem is strongly influenced by the results 
of these two papers, the annulus model is described in 
detail in Section 5 together with a comprehensive dis- 
cussion of the various thermal instabilities that are pos- 
sible. New results are presented in Section 5.1 con- 
cerning those instabilities which can occur on inter- 
mediate length scales (see eq. 5.5a), while in Section 
5.2 results which are qualitatively equivalent to some 
earlier results of Feam (1979a) are outlined. Since the 
analysis of Section 5 contains more detail than the 
remaining sections, it is perhaps advisable for the non- 
specialist reader to bypass Sections 5.1, 5.2 initially 
and look instead at Figs. 2 and 3 which summarise the 
key results. Nevertheless we feel that the analysis in 
this section, none of which has appeared elsewhere, 
provides a useful direct extension of Busse's (1976) 
results. In particular they help us to assess in Section 
6 the viability of his proposed weak field dynamo 
model together with the scaling law (see eqs. 5.9a and 
6.2) for the upper limit of the strength of planetary 
magnetic fields. Though this model has never been 
worked out in complete detail, the results of Section 5 
suggest that it is subject both to dynamic and dynamo 
instabilities. This being so the model is unlikely to 
operate in the manner proposed. It is therefore sug- 
gested that the geodynamo is a modified form of the 
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strong field model developed by Braginsky (1964b,c) 
with magnetic field strength of order ~ (see eq. 
2.11 below) which is intermediate between Busse and 
Braginsky. 

2. Wave m o t i o n s  and  convective instabilities in an 
u n b o u n d e d  fluid 

Many o f  the important characteristics of  magneto- 
hydrodynamic convection in a rotating system can be 
isolated by considering an unbounded fluid, in which 
all conditions are uniform and II is parallel to g. We, 
therefore, consider small perturbations 

u = u ' ,  B = B 0 + b  ', 0 = 0  ', p = p o + p  ' (2.1) 

of the static state and linearise eq. (1.1) accordingly. 
Since the resulting equations have constant coefficients, 
we may seek solutions proportional to 

exp i(k .x  - cot) (2.2) 

As a result the governing equations reduce to the 
algebraic system 

(-i6o + va2)u ' + 2f /X u' = 

= - t k P '  - o~0'g + i ( p / z ) - l ( k  • Bo)b' 

(- / to + ~2)b '  = i(k" Bo)u' 

(2.3a) 

(2.3b) 

(-i6o + ra2)0 '= - I1" u' (2.3c) 

k-  u' = k .  b' = 0 (and Ikl = a) (2.3d,e) 

which have non.trivial solutions provided 

4 (k a 2 -i6o + Ka 2 o3g (2.4a) 

where 

- i s  = -i6o + va 2 + (ptO-l(k • Bo)2/(-i6o + )~a 2) (2.4b) 

and k± is the component of the real wave vector k 
lying in the plane perpendicular to 15 and g. The eqs. 
(2.4) were first obtained by Braginsky (1964a) and 
following his development we now isolate some of the 
key magnetohydrodynamic processes. 

In the absence of buoyancy forces eq. (2.4a) reduces 
to 

s = -+2(k " a ) / a  (2.5) 

and, when in addition dissipative processes are ignored, 
the resulting quadratic equation for 6o has two roots. 
When the Alfven angular velocity 

~"~M = Bo/L V ~  (2.6a) 

is small compared to the rotation speed I2 

~2M << ~ (2.6b) 

as it is in the geophysically interesting case, the magni- 
tudes of the two frequencies differ considerably. One 
frequency is of order I2 and corresponds to inertial 
waves modified by the presence of the magnetic field. 
The other frequency is of order I2MC, where 

~"2MC(= ~"~I/~'2) < <  ~Q,M (2.6c) 

Unlike the fast inertial wave, the primary force 
balance for this slow wave is between the Lorentz 
(magnetic) and Coriolis forces, while the fluid inertia 
pau/at  is negligible. Once the effects of dissipation are 
taken into account all waves decay. 

With the inclusion of an adverse density gradient, 
the size of a3g at which instability sets in becomes our 
main concern. Since positive growth rates are always 
possible for sufficiently long vertical length scales, 
whenever o¢3g is positive, eq. (2.4) must be interpreted 
cautiously. For this reason, in the estimates below it is 
always assumed that the components of k in the g, Bo 
and f~ directions are each of order L -1 . Though this 
assumption is not always justified, it is for the cases 
considered in this section. 

In the absence of dissipation, buoyancy (Archi- 
medean) forces reduce the frequency 6o of the slow 
waves, eq. (2.6c), and yield 

These are Braginsky's (1967) MAC waves which 
become unstable when 6o2 is negative and this can 
occur for 

ot3g = O(I2~t) (2.7b) 

On the other hand, the fast inertial waves require 
much larger buoyancy forces to make them unstable. 
Indeed inspection of eq. (2.4) shows that the criterion 
corresponding to (2.7b) is 

ot3g = 0 ( ~  2) (2.8) 

Since ~2/I2M is large, it is reasonable to suppose that 



MAC waves are more readily excited and for this rea- 
son Braginsky (1967) envisaged that they play a key 
role in the dynamo process. 

When dissipative effects are reinstated, instability 
may set in through a state of either steady or oscilla- 
tory convection. The analysis of Roberts and Stewart- 
son (1974) for a plane layer indicates clearly that the 
preferred mode depends mainly on the ratio 

q = K[X (2.9) 

of the thermal to magnetic diffusivities. For values of q 
less than unity steady convection is always preferred. 
Therefore, as for MAC waves, viscosity is neglected and 
having set co = 0 in eq. (2.4) we obtain 

k_~g _ 2ou ~ (k  .n )  (k. no) 2 
+ (2.1o) 

2a3(k .n)K (k- no) 2 2pu ~ ( k  -n)  

This suggests that a suitable measure of the magnetic 
field strength and the adverse density gradient are 

A = ~McL2/X(=B~/pUX~) (2.11 a) 

and 

R = o,,~L2/Ka (2.1 lb) 

The former is the ratio of the time scales for magnetic 
diffusion and slow magnetic waves. The latter is a 
modified Rayleigh number. Evidently R is minimised 
and takes an order one value, when A is of order unity. 
In this case, 

o~g = O(E[2 2) (2.12a) 

where 

E = K/L212 (2.12b) 

is a modified Ekman number based on the thermal 
diffusivity g. 

The main deficiency in the simple calculations 
described above lies in the assumption that the length 
scale of convection is L in all directions of interest. In 
this respect the preferred mode is not always obliging! 
Often very short length scales are invoked as in the 
model discussed in the following section. Nevertheless 
the analysis does focus our attention on the three key 
parameters E, q, and A of the magnetohydrodynamic 
convection problem. The realised values for the geo- 
dynamo are 

E = O(10-14), q = O(10 -6) and A = 0(3 X 10-2Bo) 2 

(2.13 a,b,c) 
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where B0 is measured in gauss, and for this reason it 
will be assumed throughout this paper that 

E < <  1, q < 1, e = 13(1) (2.14a,b,c) 

where e(=v/K) is the Prandtl number. Whether A is 
large or small depends on the size of Bo. If B0 is weak 
and takes a value of about 5 gauss appropriate to the 
core surface, then A is small, of order 10 -2. On the 
other hand, if there is a large toroidal field, say of 300 
gauss, then A may be of order 102. Order one values 
of A also enjoy special significance for it is with feld 
strengths of this size that convection can occur most 
readily. Indeed, according to eqs. (2.10)-(2.12) the 
minimum Rayleigh number R is of order unity. To 
compare this with the MAC wave result, eq. (2.7b) is 
written in the form 

R = O(A/q) (2.15) 

Evidently, for small q, MAC waves can only be driven 
by density gradients with highly supercritical Rayleigh 
numbers. 

3. Plane layer dynamo 

The problem of magnetohydromagnetic convection 
in a rapidly rotating plane layer has been investigated 
by a number of authors, including Chandrasekhar 
(1961), Eltayeb (1972, 1975) and Roberts and Stewart. 
son (1974). Here the particular case of a horizontal 
layer of fluid permeated by a horizontal magnetic field 
and rotating about a vertical axis will be discussed. 
Relative to rectangular cartesian coordinates (x, y,  z), 
the lower boundary is z = 0 and 

II  = ~2~., g = -g'/., Bo = Bl (3.1 a,b,c) 

where the superscript "denotes unit vectors. For sim- 
plicity in the subsequent discussion both boundaries 
are assumed to be stress free and perfect conductors 
of both heat and electricity. 

When the magnetic field is absent and the Prandtl 
number is greater than unity (o > 1) instability always 
sets in as steady convection. The ensuing margir~al con- 
vection is characterised by the temperature perturba. 
tions 

0 Oo sin(rrz/L) e tkj-" x + = c c  (3.2) 

where cc denotes the complex conjugate of  the expres- 
sion preceeding it and Oo is arbitrary on linear theory. 
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According to eq. (2.4) R and k± are related by 

(k.t/a)ZR = (oE)-l(27r/aL) 2 + oE(aL) 4 (3.3a) 

and 

a 2 = k~. + r¢2[L 2 (3.3b) 

Minim±sat±on of R yields the critical Rayleigh number 
Ro and the corresponding wave number k±o. They are 
given approximately by 

Ro = 3(4rr4/oE) 1/3, Lk±o = (X/2~r/oE) 1/3 (3.4a,b) 

The large values of Ro and k±o result because of 
the severe constraints imposed by the rapid rotation. 
Indeed to lowest order the flow is geostrophic and u 
satisfies 

21"1 X u = -Vp  (3.5a) 

The solution has the form 

u = 7 X ~b~ + wi (3.5b) 

where ~ and w vary rapidly on the short horizontal 
length scale L(aE)  1/~, as indicated by eq. (3.4b). At 
the next order of approximation the two dimensionality 
of the flow is broken by the competing effects of 
buoyancy and viscosity. Thus ~ and w vary on the 
relatively long vertical length scale L and are given by 

= ~o cos(fez/L) e ik±°'x + cc, (3.6a) 

W = W 0 s i n ( y z / L )  e ik-l-O'x + c c  (3.6b) 

where 

k m ~ o  = (x/2/Tr)wo, 0o = ([3/~k~.o)Wo (3.6c,d) 

The existence of two distinct length scales prompted 
Childress and Soward (1972) to use these results as the 
basis of a hydromagnetic dynamo model. As well as 
the mathematical advantages of two scales, the flow 
(3.5b) itself is well endowed with the helicity neces- 
sary for the dynamo process. In fact, if we define the 
horizontal average 

• 1 t t 

<...>= f f ... d dy (3.7a) 
- 1  - /  

then the mean value of the helicity for the convection 
roU described by eq. (3.6) is 

H = <u" 7 × u)=(23/2k2Lo/r¢)lWo[2Sin(21rz/L ) (3.7b) 

In the dynamo models developed by Soward (1974) 
and Childress (1976) a non-uniform meanmagnetic 
field 

Bo = B,(z, 0 (3.8) 

is considered. The magnetic field is assumed to be suf- 
ficiently weak that the motions are largely uninflu- 
enced by the resulting Lorentz force. Consequently 
the flow pattern is still given by eq. (3.5), though its 
amplitude is as yet undetermined. It follows from 
dynamo theory (e.g. see Soward, 1978) that the mag- 
netic field B± is governed by the dynamo equation 

aB± 
= V × a .  B± + ~VSB± (3.9a) 

at 

where ~t depends quadratically on the amplitude of 
the motion and 

a .  B± = - (Hp, k_~o)(k l • B±)k± (3.9b) 

The single roll configuration just described is a little 
oversimplified. Evidently according to eqs. (3.3) and 
(3.4) k± can be in any direction and so the most gen. 
eral motion at the onset of instability consists of the 
superposition of a number of rolls (say iV) each corre- 
sponding to distinct k± values. The resultinget-tensor 
is evaluated by simply summing the contribution 
(3.9b) from each roll separately• Of course, the success 
or failure of the dynamo ultimately depends on the 
magnitude of, , .  For this reason the finite amplitude 
dynamics of the system are considered and equations 
are derived which govern the evolution of each of the 
NroUs. When they are solved in conjunction with eq. 
(3.9), the eventual fate of the dynamo can be deter- 
mined. 

The presence of even a weak magnetic field leads to 
interesting dynamical effects. To appreciate them, it is 
sufficient to consider a uniform horizontal magnetic 
field. Thus, if we restrict attention to the critical wave 
number k±o isolated in the non-magnetic problem, we 
see that the effect of the magnetic field is to decrease 
the Rayleigh number from the critical value Ro to { .'} R =Ro 1 2r21rZoE~ - '`3 (kl°-  li°)~ (3.10) 

One important feature of this result is that the most 
unstable modes have wave vectors k±o aligned with Bo. 
Unlike the non-magnetic case there is now a preferred 
mode of convection, which corresponds to rolls with 



axes lying perpendicular to the magnetic field. Accord- 
ing to eq. (3.9b) the electromotive force at. Be result- 
ing from these cross rolls is also in the direction k±o 
and so is parallel to B0. Consequently the magnetic 
field induced by the dynamo process is in the mutually 
perpendicular direction k±o X i.  With regard to the 
hydromagnetic dynamo, this result is most favourable. 
The reason for this is that the preferred mode of con- 
vection in the presence of the non-uniform magnetic 
field (3.8) tends to reproduce a new magnetic field in a 
totally different direction. Thus as time proceeds the 
magnetic field and the orientation of the most 
vigorously convecting rolls rotate in concert about the 
z.axis. The sense of rotation is opposite to ~ and 
proceeds on the magnetic diffusion time scale L2/k. 
The ensuing dynamo operates efficiently and should 
be contrasted with the kinematic case of a single roll 
with fixed orientation. In this latter case all solutions 
of eq. (3.9) decay irrespective of the roll amplitude. 

Another important consequence of eq. (3.10) is 
that the presence of a weak magnetic field reduces the 
value of the critical Rayleigh number. This means that, 
for given Rayleigh number R close to Re, convection 
becomes more vigorous as the magnetic field is intensi- 
fied. Non.linear effects, however, prevent the motion 
from growing indefinitely. The most important of 
these result from the contribution 

(wO) = (2~/xk~o)Iwo 12 sin(2~rz/L) (3.11) 

to the vertical heat transport made by each individual 
roll. This reduces the mean vertical temperature gra- 
dient in the interior of the fluid and quickly leads to 
a stable finite amplitude state, in which the mean 
kinetic energy is constant. As indicated above, the 
orientation of the magnetic field rotates and so as 
time proceeds those rolls with k±o nearly perpendicular 
to the magnetic field decay. In this way roll ampli- 
tudes oscillate and the kinetic energy constraint is met. 

When the mean magnetic field is weak, specifically 

A = O(E), (3.12) 

the roll amplitudes evolve on the dynamo time scale. 
Soward (1974) has isolated stable hydromagnetic 
dynamos. On the other hand, Childress (1976) has 
found that for stronger magnetic fields the dynamo 
process is unstable despite its dynamic stability. This 
important conclusion can be understood in terms of 
model equations derived by rough order of magnitude 
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estimates of the terms appearing in eqs. (3.9)-(3.11). 
Unlike Soward's weak field case the subtitles of the 
dynamo process do not appear to be the central issue 
here. Therefore we may estimate that the order of 
magnitude of the a-effect is simply proportional to the 
square of the amplitude of the velocity. In this spirit 
we ignore constants, ignore the details of the spatial 
variations and represent eq. (3.9) by  

dB 
= w2B - B (3.13a) 

dt 

Though we suppose that the Rayleigh number R 
exceeds R0 by a small amount Z~,  the buoyancy' force 
available to drive motions is effectively reduced by an 
amount proportional to co 2 as a result of the heat 
transport (3.11). By contrast, eq. (3.10) indicates that 
the Loretnz force enhances the efficiency of the 
buoyancy forces by an amount which is proportional 
to B 2. It follows that a dynamic equilibrium is possible, 
in which the balance between these.competing effects 
is represented by 

&R = w 2 - B 2 (3.13b) 

Though no quantitative conclusions should be 
drawn from eq. (3.13), the equations do give qualita- 
tive insight into the nature of the mechanisms at work. 
The two solutions of eq. (3.13) are 

2B 2 - / exp X/slnh × (t < to) (3.14a) 
1 - &R ~exp ×/cosh × (&R < 1) (3.14b) 

with 

× = (1 - &R)(to - t) (3.14c) 

where to is an arbitrary constant. When zXR < 1, there 
is a steady finite amplitude state B 2 = 1 - Ad~, w 2 = 1, 
which corresponds to to = o0. By contrast, when to ~ 0% 
the solutions of eq. (3.14a) grow and become inf'mite 
at time t = to, while the solutions of (3.14b) decay and 
tend to zero as t -* oo. Consequently the finite ampli- 
tude solution is unstable to small perturbations. 

The most important feature of eq. (3.14)is the 
demonstration that despite dynamic equilibrium the 
magnetic field grows in a highly non-linear fashion 
owing to the intense dynamo activity. This qualitative 
result is exhibited by Childress' full numerical study 
of the complete hydromagnetic dynamo problem. The 
result suggests that, once the magnetic field exceeds 
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the value specified by eq. (3.12), it will grow without 
bound until the Lorentz forces oppose rather than aid 
convection. According to eqs. (2.10) and (2.11) this is 
not achieved until A is at least of order unity. 

4. Convection in a sphere 

The analysis of convection in a plane layer high. 
lights the key dynamical processes that are involved 
when Coriolis, buoyancy and Lorentz forces interact. 
In particular it shows that the critical Rayleigh number 
drops from an order E -l/a value for small magnetic 
fields to a minimum, when A is of order unity. This 
minimum is also a feature of the spherical convection 
problem formulated in Section 1. There are, however, 
a number of important characteristics that theplane 
layer model fails to reproduce. 

The non-magnetic problem was first considered in 
detail by Roberts (1968) and Busse (1970). They 
found that, at the onset of instability, convection is 
concentrated in the neighbourhood of a cylindrical 
surface C(~o) located at a distance 3o  from the rota- 
tion axis. The reasons for localized convection are as 
follows. As in the case of the plane layer, the azimuthal 
length scale is short of order L E  l/a with an additional 
dependence on the Prandtl number o. On this length 
scale the flow is predominantly geostrophic and given 
again by eq. (3.5). Accordingly the motions tend to 
have the two-dimensional structure predicted by the 
Proudman-Taylor theorem. At the next order of 
approximation it becomes apparent that the compo- 
nent of gravity gt normal to the rotation axis is pri- 
marily responsible for the movement of the Taylor 
columns. This is opposed in part by viscosity as before 
but also from the dependence upon the axial coordi- 
nate z over the relatively long length scale L. The latter 
variations are brought about by the f'mite slope of the 
boundary and this gives the sphere problem its distinc- 
tive character. The convection has the form of elon- 
gated rolls with axes parallel to the rotation axis. These 
rolls do not occur near the rotation axis where g± is 
small neither do they occur near the equator where 
the axial length scale is short and the slope of the 
boundaries is large. Instead the rolls first appear at a 
radius no  which is roughly L/2.  A distinguishing fea- 
ture of marginal'convection is that it takes the form of 
an eastward propagating wave, which closely resembles a 

Rossby wave. Indeed in the zero Prandtl number limit 
(o -* 0) it is exactly a Rossby wave, as the effects of 
the buoyancy force and viscosity become vanishingly 
small. 

The radial length scale is of order L E  -2/9 and 
though small it is significantly larger than the azimuthal 
length scale L E  -1/3. It follows that the radial struc- 
ture in the vicinity of C(~o) could not be satisfactorily 
resolved by the low-order theories developed by 
Roberts (1968) and Busse (1970). For this reason 
Seward (1977) re-examined the problem and isolated 
a fundamental difficulty. It stems from the fact that 
the phase speed of the most unstable modes at a given 
distance ~ from the rotation axis increases with ~b. 
Now according to our length scale estimates, we expect 
the wave fronts to be almost radial. Unfortunately this 
state of affairs cannot persist. In short, the variation of 
azimuthal wave speed causes the outer part of the wave 
front to overtake the inner part. In this way the con- 
vection rolls become highly skewed and the radial 
length scale shortens indefinitely. Within the frame- 
work of linear theory there appears to be no mecha. 
nism available to oppose this process and so once the 
radial length scale has become sufficiently short dissi- 
pative effects eventually stop the convection. Appar- 
ently only the non-linear mechanisms, which, of course, 
are omitted in a linear theory, can prevent the collapse 
of the radial length scale. The most important of these 
are the radial transport of heat and angular momen- 
tum. The former causes the axisymmetric part of the 
temperature distribution to become non-spherically 
symmetric. Thus the realised zonal flow consists of a 
contribution from the ensuing thermal wind and a 
contribution from the angular momentum transport. 
Steady solutions of the non-linear problem were found 
in which convection was limited in the radial extent 
by the destructive influence of the varying phase 
velocity. This effect is counteracted within the layer 
by the induced shears in the zonal flow. 

The traditional view of the Earth's magnetic field 
is that inside the core it is predominantly azimuthal. 
This is believed to be brought about by strong zonal 
flows which tend to align the magnetic field with the 
fluid motion. If this is indeed correct it would appear 
reasonable to determine the effect o f  a zonal magnetic 
field on thermal convection. For these reasons Eltayeb 
and Kumar (1977) and more recently Fearn (1979a,b) 
have investigated the nature of the convection which 
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occurs in the presence of the magnetic field 

B0 = Bo(~/L)~ (4.1) 
^ 

where ~ is the unit vector in the azimuthal direction. 
As a representative model of the Earth's magnetic field 
it is open to some serious criticisms. These include the 
fact that the meridional magnetic field is ignored and 
that a realistic magnetic field should be supported by 
electric currents flowing within the core. Indeed eq. 
(4.1) corresponds to a uniform axial electric current 
and so the current circuits must be closed outside the 
fluid. Despite these shortcomings the choice of (4.1) 
enables us to obtain some insight into the nature of 
thermal convection in a sphere in the presence of a 
magnetic field. 

As the value of Bo of the magnetic field is increased 
from zero the critical Rayleigh number is generally 
found to increase, unless the Prandtl number is large. 
Once A is of order E 1/3, the Rayleigh number begins 
to decrease again and drops to a minimum when A is 
of order unity (see Fig. 4). In all cases convection is 
oscillatory and, when A < <  1, it is localised in the 
neighbourhood of a cylindrical surface, c(~o), whose 
radius ~o depends on the parameters characterising the 
problem. The nature of the convection is essentially of 
two distinct types which will be described in detail in 
Sections 5.1.1 and 5.1.2 below. For small A it is mani- 
fest as a modification of the fast Rossby wave, which 
occurs at A = 0. When A is of order E 1/3, a transition 
is made to a new slow magnetic wave, which does not 
exist in the absence of magnetic field. Like the Rossby 
wave it is topographic (e.g. see Acheson, 1978) but 
unlike the Rossby wave neither viscosity nor inertia 
play a significant role. In this respect the Rossby and 
magnetic waves can be associated with the non-dissi- 
pative inertial and MAC waves discussed in Section 2. 
On the other hand, the effects of dissipation are now 
crucial and this is indicated clearly by the frequency 
of the magnetic waves, which, when A < <  1, is of 
order ~/(K?~)/L~, where L~ is the azimuthal length scale. 
The length L~ is of order LE 1/3, when A = 0(E1/3), 
but increases to become of order L, when A = O(1). 
Recently Fearn (1979a) has made a comprehensive 
study of the various types of solutions that can occur 
for various values of the diffusivity ratios q and o. 
Particular attention was paid to the limiting cases of 
small and large q, which being particularly amenable 
to analytic treatment isolate clearly the important 

physical processes involved. It should be remarked 
here that many of the qualitative features of the local- 
ised convection which occurs when A < <  1 are also 
exhibited by Busse's (1976) annulus model described 
in detail in the following section. 

When A is of order unity, the oscillatory convec- 
tion fdls the whole sphere and a local treatment is no 
longer applicable. Significantly Eltayeb and Kumar 
(1977) and more recently Fearn (1979b) have shown 
that marginal convection has the character of a west- 
ward travelling wave. This feature is also exhibited by 
a plane layer model considered by Soward (1979a) in 
which the non-uniform magnetic field, eq. (4.1), is 
included. The analysis of this model has the advantage 
of simplicity and leads to a dispersion relation almost 
identical with eq. (2.4), which is appropriate for a uni- 
form magnetic field. The only difference is the addi- 
tion of a single term, whose origins may be traced to 
the magnetic hoop stress associated with magnetic field 
line curvature. Since convection is steady in the case 
of a uniform magnetic field, with q < 1, it is clearly 
the additional influence of the magnetic hoop stress 
that is responsible for the westward propagation of 
waves. 

A feature of the hydromagnetic dynamo problem, 
which is not apparent in the case of a uniform mag- 
netic field, is that the magnetic field itself may be un- 
stable and drive motions. Acheson (1978) has sur- 
veyed this complicated subject and it is inappropriate 
for us to become deeply involved with it here. We 
should point out, however, that Roberts and Loper 
(1979), Roberts (1978), Soward (1979a) and Fearn 
(1979b) have stressed certain interesting relations 
between thermal and magnetic instabilities. They fmd 
that, in certain circumstances, the magnetic energy 
associated with the simple magnetic field, eq. (4.1), 
can be released in a rotating stably stratified system. 
The results of these analyses are interesting because 
they show clearly that the magnetic instability can be 
assisted rather than hindered by the density gradients 
associated with bottom heavy fluids. 

5. The annulus model 

Busse (1970) noticed that a particularly simple 
annulus model was capable of reproducing, qualita- 
tively at any rate, the essential features of thermal 
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convection in a sphere. It is as follows. An annulus 
rotates with angular velocity f l  about its axis of sym- 
metry. It has constant width DL and almost constant 
height L; the lower surface is horizontal while the upper 
surface is inclined at an angle tan -1 r/. The annulus is 
assumed to be of sufficiently large radius that the small 
gap approximation can be made and so curvature 
effects may be legitimately neglected. The system can 
thus be referred to local rectangular cartesian coordi- 
nates in which relative to an origin O the axes Ox, Oy, 
Oz are in the radial, azimuthal and axial directions, 
respectively. The applied temperature gradient II and 
gravity g are both uniform and antiparallel with Ox. 
The geometry of the configuration is summarised in 
Fig. 1. 

The reasons for the model's success stem from the 
remarks made in Section 4 concerning the nature of 
convection in a sphere. First, since marginal convection 
is concentrated within a cylindrical layer of width of 
order E'2/gL, the small gap approximation is justified 
with D of order E 2/9. Second, since the motion is pri- 
marily geostrophic and two dimensional, the main 
opposition to convection is provided by the spherical 
boundaries which ensure that any ra.dial flow leads to 
three-dimensional motions. The effect is mimicked in 
the annulus by the finite slope of the top boundary. 
Third, since the character of the flow owes little to 
the axial component of gravity, it is ignored in the 
annulus model. Since the system imitates convection 
in the sphere so well, Busse (1975) adopts it as the 
basis of a geodynamo model. 

Marginal convection in a sphere under the influence 
of a weak azimuthal field can also be discussed within 
the framework of the annulus model. In this case a 
uniform magnetic field Bo is included in the y-direc- 
tion. The model, which was developed by Busse (1976), 
is appropriate whenever the flow is primarily geo- 
strophic and this is generally the case, when 

A < <  1 (5.1) 

For order one values of A, the geostrophic approxi- 
marion is no longer valid, convection fills the full 
sphere and the annulus configuration is inappropriate. 
When the geostrophic approximation is valid, how- 
ever, the flow is given again by eq. (3.5b) to lowest 
order and the perturbation stream function ~k', which 
is almost independent of z, is governed by the z-aver- 
age of the axial component of the vorticity equation. 

I_ 

13o 

g ~ 1 / /  

r 

r 

Fig. 1. A meridional cross-section of the annulus. 

With due account taken of the vanishing of the normal 
velocity at z = L, it yields 

( - ~  + vV2)V2~' + (212rl/L)a~k'/ay 

= - ~gao'/ay + ~u)-~Bo • vj' (5.2) 

where - 7 2 4  ' is the axial vorticity and/ '  
(=/a-1£ • V X b') is the axial electric current. As in the 
non-magnetic problem, the radial length scale is large 
compared with the azimuthal length scale and so the 
detailed structure of the radial as well as the axial vari- 
ations are incidental to the study of the stability prob- 
lem. This is not the case for any dynamo action that 
may result, since for this fully three-dimensional 
motion is necessary. As our concern here is with the 
convection problem alone, we proceed as in Section 2 
to seek solutions proportional to exp i(k • x - cot), 
where now we set 

k = (k/L)y and -ico = xP/L 2 (5.3a,b) 

The equations governing small perturbations are thus 
(2.3b-e),  as before, while eq. (2.3a) is replaced by eq. 
(5.2). This leads to the cubic 

g ( e  + ok 2) + 2i~7/k - R/(P + k 2) + Ak2/(qe + k 2) = 0 

(5.4) 
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for the dimensionless growth rate P. In order to fully 
appreciate the approximations that go into the annulus 
model, the details of eq. (5.4) should be compared care- 
fully with those of the corresponding expression (2.4). 

Busse (1976) has proposed that the geodynamo 
might operate when the azimuthal length scale is short 
compared with the size of the sphere but large com- 
pared with the length scale EI/aL appropriate to the 
onset of instability in the absence of magnetic field. 
In order to assess the viability of this proposal a 
detailed analysis is undertaken in Section 5.1 of the 
nature of the instabilities that can occur on this length 
scale. Since the wave number is restricted in this anal- 
ysis the nature of the onset of instability, when distur- 
bances of arbitrary wave length are admitted, is con- 
sidered in Section 5.2. A discussion of the results is 
postponed until Section 6, where they can be placed 
in perspective relative to other convection models. 

5.1. Instabilities on intermediate length scales 

Since there are several different independent param- 
eters characterising the problem, it is not surprising to 
fred that corresponding to each of the three roots of 
eq. (5.4) there are a wide variety of solutions. Never- 
theless, for the reasons given above, the special case 

1 < <  k < <  E -1/3 (5.5a) 

is worthy of some attention. As we will see presently, 
it is appropriate in this parameter range to consider 
values of R, which are of order R0, where 

Ro = Es~(>>l)  and So = rl /Ek(>>l) (5.5b,c) 

The ensuing approximations that can be made indicate 
the existence of two large and one small root of the 
cubic (5.4). The former is loosely related to Rossby 
waves while the latter corresponds to a magnetic wave. 
Both categories were mentioned in Section 4 above 
and will be discussed in more detail in Sections 
5.1.1 and 5.1.2 below. 

5.1.1. Rossby modes 
The two large roots may be isolated by neglecting 

all terms in eq. (5.4) related to dissipative processes. 
Consequently, if we let 

P = - i s  (5.6a) 

where s is dimensionless and measures the frequency 

(5.3b) in units of K/L 2 , (5.4) is given approximately 
by 

- E s  + 2~7/k - (R - Ak2/q)/s = 0 (5.6b) 

and has the two roots 

s± =s0(1 -+ [ ( R o - R + k 2 A / q ) / R o ]  1/2} (5.6c) 

Since instability is associated with complex values of 
s, it is clear that So is the frequency of the modified 
Rossby waves which occur on the non-dissipative sta- 
bility boundary 

R = Ro + k2A/q (5.7) 

Above this boundary waves grow very fast on the time 
scale so I . 

Whether or not the neutral waves (5.6), which exist 
below the boundary (5.7), grow or decay on the slow 
diffusion time k -2 depends on the small terms neglected 
in (5.6). To determine this small growth rate, we set 

P = - i s  + p (5.8a) 

and approximate (5.4) on the basis that 

Ip / s l<< 1 (5.8b) 

At leading order this gives 

Ro(R o - R + k :A /q )  = I (Ro - R + k2A/q)  
I 

( 1 - o ) k  2 . "2 . . ) z  
(R - lak A[q)] (5.8c) 

where 

# = (q-1 _ o)/(1 - o) (5.8d) 

The curves of constant growth rate are parabolas all of 
which pass through the origin and touch the stability 
boundary (5.7) at its intersection with the line R = 
#k~A/q (see Fig. 2). We may also note in passing that 
the maximum value of A on the neutral parabola p = 
0 is 

A1 = (Ro/k2)q2](1 + o)(1 - q) (5.9a) 

and here R and s take the values 

R1 = Ro(o](1 + o) 2 + 1/(1 + oX1 - q)) (5.9b) 

sl = So/(1 + o) (5.9c) 

As illustrated in Fig. 2 the unstable waves are located 
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Fig. 2. The non-dissipative and dissipative stability bounda- 
ries, for fixed k, are indicated by the straight line I and curve 
II, respectively. The former is R = Re + k2A/q, while the 
latter is a composite ofeq. (5.8) with p = 0 and eq. (5.12) 
with r = re. The straight line III def'med by R = k~Afq 
divides the region lying between the two stability boundaries 
into two parts. Above III the unstable waves are fast with 
frequency s_ (see eq. 5.5c), while below they are slow with 
frequency s(r) (see eq. 5.12), where r > rc. All curves of 
constant growth rate, typified by II and IV, pass through the 
point P, which lies at the intersection of I with V defined by 
R = #k2A/q. Note, however, that the point P lies in the 
positive A, R quadrant only i f ,  > 0. The point Q(A 1, RI)  
(see eq. 5.9) locates the maximum value of A, at which 
neutral fast waves exist. 

to the right o f  the neutral parabola and within the strip 

k2A]q < R  < R e  + k2A/q (5.10) 

The frequency of  these unstable modes is s_ (>0) and 
so they always propagate eastward. 

Now, according to eq. (5.8), the growth rate is 
infinite on the non-dissipative stability boundary (5.7) 
as well as on the line R = k2A/q. Consequently the 
approximation tp/sl < <  1, upon which eq. (5.8) is 
based, breaks down in the vicinity of  both lines. In the 
case of  the stability boundary (5.6), modes correspond- 
ing to eq. (5.8) with large growth rates on the resistive 
time scale make a transition to modes corresponding 
to (5.6) with small growth rates on the Rossby wave 
time scale. In absolute terms, o f  course, the growth 
rate increases monotonically with R.  On the other 
hand, the nature o f  the instability in the vicinity of  
R = k2A[q will become apparent from the analysis 
below. For the moment it is sufficient to notice that 
here the frequency of  the waves corresponding to s_ 

is very small and 

s_ = 0 o n R  =k2A/q (5.11) 

5.1.2. Magnetic modes 
So far attention has been restricted to the two large 

roots o f  eq. (5.4). To complete the picture, the nature 
of  the remaining small root must be considered. In this 
limit it is reasonable to neglect the inertia term au[at 
as well as the viscous term in comparison with the 
Lorentz force. By this device we isolate the magnetic 
modes mentioned in Section 4. Therefore, upon setting 
E = 0 and P = -is + p, as before, the real and imaginary 
parts o f  the resulting quadratic lead to two equations 
which determine s and p in terms of  A and R. More 
convenient expressions are obtained, however, if we 
introduce a new parameter r. They are 

p(r)  = k 2 {r(1 - q)/2q - (1 + q)/2q} (5.12a) 

s(r) = S(r) = So((r + 1)R - (r - 1)k2A/q}/4rRo 

(5.12b) 

and 

- s ( r ) s ( - r )  = k 4 ((1 - q)/2q}2(r 2 - 1) (5.12c) 

Here we regard r as an independent variable in the 
definition o f  S(r) but, in view ofeq .  (5.12c), r, A and 
R are related in the case o f  s(~'). Specifically given a 
value of  r, substitution of  (5.12b) into (5.12c) leads to 
a quadratic expression relating R to A. It defines a 
hyperbola with asymptotes S(r) = 0, S ( - r )  = 0 and 
has a branch in the region A >t 0, R I> 0 of  interest 
only when 

Irl i> 1 (5.12d) 

From (5.12b and c) it is clear that the two hyperbolas 
defined by r = -+rl, where rl  is a given positive con- 
stant, are coincident. Consequently, everywhere on the 
hyperbola Irl = ra, the growth rate takes one of  the 
two values p(-+rl) given by eq. (5.12a). The corre- 
sponding value of  the ' two frequencies s(rl) and s( -r l )  
are determined by eq. (5.12b) and take positive and 
negative values, respectively, for all A, R on the hyper- 
bola r = re. When r = re, where 

r l  -- (1 + q)/(1 - q) (5.13a) 

the growth rate is zero while the corresponding fre- 
quency is 

s = ~so(R - k2A)/Ro(1 + q) (>9) (5.13b) 
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The region of instability is defined by r > rc and here, 
since s(r) > 0, the unstable waves propagate eastward. 

When R is of order Re, eq. (5.12b) would suggest 
at first sight that that frequency s is large of order So. 
This being the case, the approximations upon which 
eqs. (5.12) are based would be violated. A closer 
inspection of (5.12b and c) reveals that for order one 
values of z(>0, say) the point (A, R) lying on the 
hyperbola r = constant is close to one or other of the 
asymptotes 

S(+-r) = 0 (5.14a) 

where the + or - sign is taken depending on whether 
R is less than or greater than k2A/q, respectively. In 
each case the realised value of the frequency s(+-r) at 
(A, R) is very small of order k4[so while the corre- 
sponding value of s(T-r) is large and given approxi- 
mately by 

s(~r) = ~so(R - k2 A/ q)/Ro (5.14b) 

In general only the low.frequency solution is admissi- 
ble and this supplements the two solutions (5.6c) 
found earlier. On the other hand, when R and k2A/q 
are small compared with Re, both the solutions s(+r) 
of (5.i 2) are acceptable. Indeed, when R > k2A/q, 
(5.14b) now approximates not just s(-r)  but also s_ 
in (5.6c). 

When 

Ik2A/qR - 11 < <  1 (R = O(Ro)) (5.15) 

the approximations leading to eq. (5.14) fail and the 
complete shape of the hyperbolas must be considered. 
In this region, eq. (5.12) indicates that in addition to 
k2r both s(O and s ( - r )  are of order ks~/2 and though 
large they are still small compared with So. Therefore, 
both solutions are acceptable and provide the key to 
our understanding of the switch over from magnetic 
to Rossby modes that occurs across the line R = 
k2A/q. In particular we may note that, when R = 
k2A/q, the frequency and the growth rate of the 
growing mode are both given by 

s = p = ~ ( 1 -  q R '~ '/2 ks~/2 (5.16) 

The general picture, which emerges and is summa- 
rised in Fig. 2, is the following. Consider a tLxed value 
of A with k2A[q of order Re. All modes are stable 

below the asymptote S(rc) = 0, namely the line R = 
k2A. Above this line the slow magnetic modes defined 
by eq. (5.12) with r = re are unstable. Their frequen- 
cies and growth rates are of order k4[so and k 2, respec- 
tively. Across the line R = k2A[q, the growing mag- 
netic modes make a rapid transition to the growing 
Rossby modes defined by s_ in eq. (5.6c). The fre- 
quencies are now of order So but the growth rates 
remain the same, of order k 2. Other than the rapid 
frequency change the most striking feature of the 
transition is the relatively large growth rates of order 
ks~/2 which are achieved (see eq. 5.16). Once above 
the non-dissipative stability boundary both s and p 
are of order So. 

5.2. The onset o f  instability 

In Section 5.1 above, attention was restricted to 
fixed values of the wave number k. When the critical 
Rayleigh number is obtained without any special 
restrictions on k, a rather different picture emerges. 
First, in the absence of dissipation, minimisation of R, 
as given by eq. (5.7), R with respect to k yields the 
critical Rayleigh number 

Re = 2n(A/Eq)X/2 (5.17) 

Second, when the effects of dissipation are included, 
the true critical Rayleigh number is obtained by mini- 
mising R, as given by eq. (5.4), with respect to k, 
keeping s(=/P) real. Feam (1979a) has undertaken a 
similar analysis within the broader context of convec- 
tion in the sphere. We will outline below all his main 
conclusions, which relate to our simpler problem, but 
will derive the results for the annulus model using a 
technique which we believe is new in the context of 
stability theory. 

We begin by introducing the physically relevant 
parameters 

X = k2[s and Y= (1 + o)-l(So[S) (5.18a,b) 

whose magnitudes measure the ratio of the oscillation 
time scale to the diffusion and Rossby wave time scales, 
respectively. In terms of these new variables the real 
and imaginary parts of eq. (5.4) determine the follow- 
ing parametric representations of A and R. They are 

A=2[E(1 +o)r/211/3A, R =2[ff*/E(1 + o)]1/3/~ 

(5.19a,b) 
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where 

= (1 - q)-l(y_ ~.)(q2 + X2) (X2y) -~a ,  (5.19c) 

/ } = ( 1  _ q ) - l ( y _  l + e \  1 ~- ~-)( + x 2 x x I ,  a )  -2 'a (S.19d) 

and  

e = (1 - q)o[(1 + o) (5.19e) 

By varying X and Y ( ' ~ )  a region in the /~ ,  k plane is 
generated. Its lower edge defines the stabil i ty bound .  
ary and the value o f  R here for a part icular  choice o f  

determines the critical Rayleigh number .  On this 

bounda ry  and on  some other  curves, which are of  no  
part icular interest ,  the Jacobian ~(.~, R)/O(X, Y) 
vanishes. Appl icat ion of  this condi t ion  yields 

F(Y, e) = G(X 2, q2) (5.20a) 

where 

(2Y - 1)(Y - 2 + 2e) 
F(Y, e) = (2Y - 1 + e)(Y+ 1) (5 .20b)  

(X 2 + q2X2X2 - 1) (5.20c) 
c ( x  = ( x  + - 
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Fig. 3. With o = 0.1, R is plotted vs..~, for various values of q according to eqs. (5.19) and (5.20). The stability boundary corre- 
sponds to the continuous curve AB in (a) qtop > q = 0.25; the segmented curves AG, GF, FB in Co) q = qtov = 0 .53135. . .  ; 
the segmented curves AF, FB in (c) qtov < q 0.6. (The insert in (b) which is not drawn to scale provides a blow up of the curves 
near G and illustrates how reeonnection takes place at H.) The values of X 2 and Y appropriate to the asymptotic behaviour at 
B, E and C are described in the caption to Fig. 5 while at B, k = 1/.~, and at E and C, R ~ ~1/2 (see also eqs. 5.21-5.23). 
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The various solutions of eqs. (5.19) and (5.20) are 
discussed in detail in the Appendix. It transpires that 
three separate cases can be distinguished and they are 
illustrated in Fig. 3 for o = 0.1. The results indicate 
that the stability boundary is smooth for q ~< ql (see 
curve AB in Fig. 3a), has two slope discontinuities at 
F and G for ql < q < q2 (see Fig. 3b) and has one 
slope discontinuity at F for q2 ~< q < 1 (see Fig. 3c). 
The values of ql andq2 depend on o. At F and G two 
solution curves of eqs. (5.19) and (5.20) intersect 
yielding two distinct modes each with different values 
of X 2 and Y but each with the same Raylei~ number. 
It follows that the modal dependence upon A is con- 
tinuous, when q ~< q~, has two discontinuities at F and 
G, when ql < q < q2", and only one discontinuity at 
F, when q2 ~< q < 1. 

The most striking features of the stability boundary 
are illustrated by the case 

o < <  1, q < <  1 (5.21a,b) 

In this limit the curve AB is approximated by 

A(3 - 2A) (0 < A < 1) (5.22a) 

k=  1/A (1 ~<A) (5.22b) 

while the curve DC Of Fig. 3(a), (b) is approximated 
by 

k = (vr~/q)f~ 1/2 (5.23) 

We consider first the case 

q < 4V~ (5.24) 

for which the curve DC is above AB, and we have 
smooth modal dependence on/k. When 0 < A < 1, 
both X and Y are of order unity and so the Rossby and 
diffusion time scales cannot be distinguished. Therefore 
convection is not strictly of  the type considered in Sec- 
tion 5.1".1. On the other hand, it is clearly the exten- 
tion of the non-magnetic convection, which occurs 
when o < <  1, and this is of the Rossby mode type. 
Consequently, we describe the convection in the range 
0 < A < 1 as modified Rossby waves, which all have 
the same phase speed 

slk = (~/e) ~'3 (5.25) 

since X 2 Y - 1. In the neighbourhood of /k  = 1 the 
character of the mode changes abruptly and when 
/k > 1, X and Y are of order q1,,2 and q-l ,respectively. 

Again referring to eq. (5.18) this shows that the time 
scale of oscillation is long compared with the Rossby 
time scale s -I and therefore convection corresponds to 
the slow magnetic mode discussed in Section 5.1.2. It 
should be emphasised that the sudden transition from 
Rossby to magnetic modes that occurs at A = 1 is 
peculiar to the case q < <  1. For the cases illustrated in 
Fig. 3, the transition is continuous. Finally we con- 
sider briefly the case 

q > 4 ~  (5.26) 

Now the curve DC intersects AB at the two points G 
and F of Fig. 3(b). On the segment GF, X is of order 
qS and Yis approximately 1/2. The corresponding 
convection is clearly described as a Rossby mode. 

As stated earlier the character of the three differ- 
ent types of solution described above was determined 
earlier by Fearn (1979a). He was primarily concerned, 
however, with the behaviour of  the critical Rayleigh 
number for the full sphere. In that case there is an 
added degree of flexibility owing to the arbitrariness 
of the radius ~0 of the circular cylinder close to which 
convection takes place. The annulus model considered 
above represents the special case in which that radius 
is held fixed and for this reason must be interpreted 
cautiously. Nevertheless, though some features of the 
convection in a sphere cannot be illustrated without 
allowing for variations in ~o,  there are some features 
which are duplicated. These include the modal dis- 
continuity at F (see Fig. 3c) which is found to be very 
common, as well as the smooth dependence on A (see 
Fig. 3a) which also occurs, but less often. On the other 
hand, Fearn (1979a) found no examples with the 
modal discontinuity associated with the point G in Fig. 
3(b) except when the variations of ~o are restricted as 
they would be if the presence of a central rigid core is 
allowed for. 

6. Discussion 

Busse's (1975) original geodynamo model based on 
the annulus configuration of Section 5 was developed 
through perturbations about the non.magnetic system. 
As in the case of the plane layer dynamo discussed in 
Section 3 the Rayleigh number is assumed to be 
slightly in excess of the critical value appropriate to 
the non-magnetic problem. Provided the excess is suf- 
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ficiently large, finite amplitude convection ensues 
capable of sustaining large-scale magnetic field. The 
magnitude of this field is exactly that required to 
prevent any further intensification of the convection. 
Like the plane layer model it is dynamically stable but 
unlike the plane layer model the dynamo process 
itself is also stable. 

The success of the annulus model pivots on the fact 
that, near A = 0, the critical Rayleigh number Rc is an 
increasing function of A. This is only the case, how- 
ever, when A ~< O(E t/s) (see eq. 5.19 and Fig. 3). For 
larger values of A, R e is a decreasing function and only 
begins to increase again, when A = O(1) (e.g. see eqs. 
2.10 and 2.11). Within the interval E t/3 < <  A < <  1, 
the results for the plane layer would suggest, therefore, 
that the dynamo process would be unstable. Never- 
theless, Busse (1976, 1978a,b) has proposed that the 
geodyanmo operates precisely within this range and 
bases his arguments on the neutral curve II in Fig. 2. 
He argues that the dynamo is an extension of the weak 
field model described above, existing only in the vici- 
nity of the upper section of the Rossby mode branch 
of curve II. He, therefore, suggests that the magnetic 
field grows to the largest admissible value on this sec- 
tion of the curve, namely AI, defined by eq. (5.9a), 
which is equivalent to Busse (1976, eq. 26). The Ray- 
leigh number appropriate to this neutral wave is given 
by eq. (5.9b), which may be written independently of 
k in the alternative form 

R 1 = CrI(A/Eq2)I/2 (6.1) 

where the constant of proportionality C is of order 
unity for q < 1. Using the estimates, eq. (2.13), ofq 
and E together with Busse's estimates 

,7 = 1/vr3 ", e = O(10-1), k = O(10) (6.2a) 

appropriate to the Earth's core, eq. (5.9a) yields 

At = O(10 -1) (6.2b) 

Such an estimate is not unreasonable and indicates the 
existence of a weak magnetic field comparable in size 
with its surface value. 

The viability of Busse's proposals hinge on two 
questions. First, is the dynamo stable? Second, is the 
system dynamically stable? To answer the first ques- 
tion, consider Fig. 2. Suppose that the dynamo is oper- 
ating close to Q(At, R 1). Then it is clear that if A 
increases the amplitude of the Rossby waves is likely 

R 'n-r 

0 (E 'A) 0( I )  

Fig. 4. A qualitative sketch of the important stability boun- 
daries, isolated in the text. The critical Rayleigh number for 
the onset of instability within a sphere for the magnetic field 
(eq. 4.1) is indicated by curve I. The section of I, for which 
A < <  1, is also given in Fig. 3 from the results of the annulus 
model. MAC waves occur in the vicinity of the straight line II, 
given by R = A/q (see eq. 2.7a). The non-dissipative stability 
boundary for Rossby waves is indicated by the parabolic 
arc III (see eq. 5.17). As k varies the point Q in Fig. 2 also 
marks out a parabolic arc (see eq. 6.1); this is indicated by 
the curve IV. 

to be intensified rather than suppressed. Under these 
conditions the dynamo is likely to be unstable, as 
pointed out in Section 4. To answer the second ques- 
tion, we consider the size o fRt ,  given by eq. (6.1), at 
Q. The ratio of R1 to the critical Rayleigh number 
Rc(~I/A) is enormous (see also Fig. 4). Indeed R t is 
even an order of magnitude q-t/2 larger than the critical 
value, eq. (5.17), derived when dissipation was ignored! 
It is therefore most unlikely that the neutral mode of 
convection defined by Qt, which is basically difficult 
to excite, should persist and not be unstable to more 
favourable modes of convection. We therefore suggest 
that the system is dynamically unstable. We make these 
remarks with slight reservation because the system 
envisaged by Busse (1976, 1978a,b,c) is fully non-linear, 
whereas the theory that has been developed is only 
quasi-linear. The criticisms we have put forward are 
directed at the quasi-linear theory, upon which the 
importance of At is based, and whether or not they 
are applicable to a non-linear theory, which remains 
unspecified, is not clear. 

What alternatives are there to Busse's proposals? 
One is simply that A is of order unity and that the 
Rayleigh number is also close to its order one critical 



149 

value R e . Here dynamo stability should be achieved 
because R¢ is an increasing function of A, when A >t 
O(1). In addition, the system should also be dynami- 
cally stable because the Rayleigh number is close to 
R e. This picture, which again pivots on a quasi-linear 
theory, is far too simplistic and cannot work. To high- 
light the difficulty, we note that for dynamo action 
the magnetic Reynolds number 

Rx = UL/X (6.3a) 

based on a typical fluid velocity Umust be at least of 
order unity and so the Peclet number 

Rx = UL/r (6.3b) 

must be at least of order q-l .  It follows that convection 
must be highly non-linear and to obtain flows of the 
required intensity we may anticipate that the Rayleigh 
number must be well in excess of its critical value. 
Since the intense non-linear effects are largely concen- 
trated in promoting heat transport, the mean temper- 
ature profile must be maintained at a value very close 
indeed to the adiabat and this makes the realised value 
of the Rayleigh number a very uncertain quantity. By 
contrast, this is not the case for the proposed order one 
value of A, which is based on an anticipated balance 
of the Coriolis and Lorentz forces. Here since the dif- 
fusivity ratio q is so small, the relative sizes of the two 
forces are unlikely to be significantly altered by non- 
linear processes. 

Little is known about the non-linear convection 
problem. Roberts and Stewartson (1974, 1975),how- 
ever, have initiated the study of non-linear convection 
in the presence of a uniform horizontal magnetic field 
Bo = Bo$' in the simple plane layer geometry of Section 
3. The analysis hinges on the fact that, when viscosity 
is neglected, there is a non-convective geostrophic 
mode with velocity U(x)~7 which suffers no damping. 
This mode though not excited by buoyancy forces is 
readily driven by the Lorentz force, when the uniform 
magnetic field is modified by the finite amplitude con- 
vection. When A >vr3 ,  two modes of convection are 
possible, which consist of rolls with axes oblique but 
making equal angles with the magnetic field. Roberts 
and Stewartson find that there exist finite amplitude 
equilibria in which only one family of rolls is present. 
They also find that, for certain values of A, the equi- 
libria are unstable to perturbations composed of the 
second set of rolls together with the shear flow U(x). 

In this case no stable finite equilibria were found. A 
more recent extension by Soward (1979b), which is 
restricted to q < <  l,  isolated stable equilibria, when 
the damping of the shear flow U(x) by Ekrnan suction 
is taken into account. It was shown, however, that as 
the Rayleigh number is increased above its critical 
value, the geostrophic flow U(x) quickly becomes large 
compared with the convective velocities. The result 
suggests that, for Rayleigh numbers well above their 
critical values, fluid motions within a sphere will be 
dominated by large zonal flows with relatively small 
asymmetric convective motions, while the magnetic 
field itself is largely zonal. 

The magnetic field and flow configuration just 
described is, of  course, very similar to that proposed 
by Braginsky (1964b,c, 1967). The main difference 
between the two pictures is that whereas Braginsky 
envisages convection in the form of non-dissipative 
MAC waves, we envisage that diffusion plays a central 
part in the convective process. The reason is simply 
that, when A = O(1), the MAC waves and the magnetic 
diffusion time scales are comparable (see eq. 2.1 la). 
The ensuing dynamo is still of  the ~,~-type but the 
a-effect is not that appropriate to the high-conduc- 
tivity limit. Instead it more closely resembles the low- 
conductivity limit of the annulus and plane layer 
models. In conclusion we suggest that the geodynamo 
operates with A = O(1) or slightly larger and R = 
O(q-l), roughly at the location of Braginsky's MAC 
waves. Here motion should be sufficiently intense to 
regenerate magnetic field and perhaps conditions are 
also favourable for dynamo stability. 
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Appendix 

In order to distinguish the various types of solutions 
of eqs. (5.19)and (5.20)that can occur it is necessary 
to appreciate the character of the functions F and G. 
When Y = ½, F is zero and as Y increases F reaches a 
maximum Fmax(eX<l - e) at Y = Ymax(e) (say). It 
then decreases and approaches - 1 ,  as Y- ,  oo (see Fig. 
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Fig. 5. F and G are plotted vs. Y - ½ and X z, respectively,for various values of e and q. The points labelled A, B, C, E relate to 
the asymptotic behaviour illustrated by the plots of R vs. A in Fig. 3. The values of (1( 2, Y), which def'me the points, are (½, -12) 
at A, (q, *~) at B, (½, Ye) at C and (½, YE) at E where Ye < Ymax < YE- (a) e < ~. Co) 0 < q < ½. (c) Curves I and II illustrate 
the cases ~ < q < qtop and l/w/2 < q < 1, respectively. 

5a). The function G is more complicated and three 
distinct cases may be distinguished, which are illus- 

1 t rated in Fig. 5(b), (c). When q < ~, G is ~- at X 2 = 0 
and increases to +** as X 2 t 2q 2. On the other hand, G 
is 2 at )(2 = ~ and decreases to -~* as X 2 + 2q 2. When 

< q < 1/,v/2, G increases from ½ at X a = 0 to a maxi- 
mum value 

Gmax(q 2) = (3' - N ~ ' I - ' T -  1)2(< 1) 

at 

(3' = 3q/(2q 2 + 1)) 

( A l a )  

X2max(q 2) = q[(2Gmax - I)/(2 - Gmax) ] I/2 (A1b) 

It then decreases and approaches _oo as X 2 t 2q 2. For 
X ~ > 2q 2, we have G > I > Fmax(e ) implying that eq. 

(5.20a) has no solutions. The character o f  G in this 
region is therefore of  no interest. The case 1/V~" < 
q < 1 is the same as the previous case except that  there 
is no local maximum. Instead F decreases throughout 
the interval 0 ~< X 2 ~< 2q 2. 

When e > 1/9, or equivalently 

q < ( 8 o -  1)/9o (<1)  (A2) 

Fma x is less than ~ and so X is determined by eq. 
(5.20) as a single-valued function of  Y. Consecjuently 
eq. (5.19c,d) determines a single curve in the A, R 
plane, similar to AB in Fig. 3(a), which marks the 
stability boundary.  

When e < 1/9, or equivalently 

( 8 0 -  1 ) / 9 o < q  < 1 (A3) 
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eqs. (5.19c,d) and (5.20) determine two distinct curves 
in the A, R plane. One is generally smooth, the other 
has a cusp (see Fig. 3) while their topology, for fixed 
o, depends upon whether q is less than or greater than 

the value qtop at which Fma x = Gma x. Unlike the case 
(A2), k is not a single-valued function of A and so 
here only the smallest value actually determines the 
critical Rayleigh number. Three distinct cases are pos- 
sible, all of which may be illustrated with o = 0.1 and 
0 ~< q < 1 (see Fig. 3). As q is increased from zero the 
curve EDC lies totally above AB (see Fig. 3a). When 

q = q~ (say), the curve DC touches AB and, for larger 
values of q, DC intersects AB at the two points G and 

F. When q = qtop, the curve AB touches DE at H (see 
Fig. 3b) and for larger values o f q  the curves at H 
reconnect leaving the two distinct curves EHB and 
AHDC. When q = q2 (say) the two cusps at H and D 
coincide with G and evaporate. For larger values of q 
the curve AC is smooth as illustrated in Fig. 3(c). 
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