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The experiments described in this paper probe the simultaneous effects of gravity, inertia, and quantum
mechanics on the motion of the neutron. Using a neutron interferometer of the type developed by Bonse
and Hart for x rays, we have observed quantum-mechanical interference phenomena induced by the
gravitational field of the Earth and by the Earth's rotation relative to the fixed stars. The importance of
these experiments with regard to the role of the principle of equivalence in quantum mechanics is discussed.

I. INTRODUCTION

The purpose of this paper is to provide a com-
prehensive description of a series of neutron-
interferometry experiments we have carried out
over the last few years, in which the effects of
gravity and inertia on the quantum-mechanical
phase of the neutron have been studied. Separate
preliminary reports on various aspects ot this
work have already been published. ' We will re-
view in this paper all of our previous work and
give many experimental and theoretical details
that have not been discussed in our previous re-
ports.

In 1965 it was demonstrated by Bonse and Hart
that interference effects could be obtained between
well-separated coherent beams of x-ray photons of
about 1-A wavelength. In their experiment an
x-ray beam was split into two spatially separated
coherent beams, a few centimeters apart, and re-
combined in such a way that intensity oscillations
could be observed as the optical path along one of
the beams was changed. This remarkable achieve-
ment opened up the field of interferometry in the
angstrom region. The question was immediately
asked whether or not the same principles could
be used to get interference effects between co-
herent beams of thermal neutrons, which can be
diffracted in crystals in the same way as x rays.
The feasibility of neutron interferometry was, in
fact, finally demonstrated in 1974 by Bauch, Trei-
mer, and Bonse, ' using essentially the same
scheme, apart from dimensions, adopted for x
rays. The principles upon which x-ray and neu-
tron interferometry are based are obviously very
different from those applied in optical interfero-
metry. Two new features are at the basis of in-
terferometry in the angstrom region: (a) Bragg
diffraction, and (b) highly perfect crystals, free
of lattice defects. The usual requirements in

polishing and aligning optical surfaces to frac-
tions of wavelength would obviously not be satis-
fiable in x-ray and neutron interferometry. We
will see, however, in the next section how the
very same two new features (a) and (b) above en-
able us to circumvent this apparently insurmount-
able difficulty. When a neutron beam is coherent-
ly split and recombined, a new property of the
neutron becomes available for investigation. the
phase. In the language of quantum mechanics we
can say that it is the wave function, along with its
own phase, that becomes measurable, whereas
before the advent of neutron interferometry only
the probability density ~P~ could be measured.
A number of experiments have been performed
since 1974 in which the neutron phase has been
probed in one way or another. We will concen-
trate in this paper on those experiments in which
the neutron phase is affected by the Earth's gra-
vity and by its rotation. Among the various inter-
actions in nature, gravity is by far the weakest
one. In the hydrogen atom, for example, the
gravitational attraction between the proton and the
electron is only 10 times the electrostatic
(Coulomb) attraction. The fact that neutrons are
subject to a gravitational pull toward the center
of the Earth has been demonstrated by verifying
that a neutron beam follows a parabolic trajec-
tory. '

The gravitational constant involved in interpre-
ting the observed parabolic paths has been veri-
fied to coincide, with reasonable accuracy, with
the accepted value for the gravitational accelera-
tions as measured with macroscopic bodies. This
result has been obtained in a recent improved
version of this experiment. The important result
here is that the gravitational mass of the neutron
is found to coincide with its intertial mass, as
required by the principle of equivalence. This
principle has been verified with great accuracy,
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better than 1 part in 10, for macroscopic bod-
ies. There is no guarantee, however, that the
same principle holds for the quantum-mechanical
behavior of isolated elementary particles. We
want to emphasize that the parabolic fall of a
neutron is a classical experiment, in the sense
that no quantum features of the neutron are being
observed. This would merely be a requirement
imposed by the correspondence principle.

The experiment which we have carried out is
one in which a neutron interferometer is oriented
in such a way that the two coherent beams, into
which the primary beam is split, propagate in
regions of space with different average gravita-
tional potential. A gravity-induced change of
phase provides a manifestation of gravity effects
on a quantum-mechanical feature of the neutron.
If the change of phase agrees with a gravitational
potential of the form m~g

' r, where m~ is the
gravitational mass of the neutron, g is the gravi-
tational acceleration, and r is the position vector
of the neutron, then we can conclude that we have
verified the principle of equivalence for neutrons
in the quantgm Bmit. It will be shown, in fact,
that the fringe shift can be expressed by a formula
in which the gravitational constant and Planck's
constant are inseparably linked. This is, to our
knowledge, the only experiment in physics in
which the outcome depends on a simultaneous di-
rect combination of gravitational and quantum-
mechanical properties of an elementary particle.

A complete test of the principle of equivalence
in the quzntum limit would involve repeating the
experiment in an accelerated frame of reference,
traveling in a gravitation-free space. We have
not directly done this experiment. However, we
surmise that this experiment does not need to be
done, if we believe that the Schrodinger equation
holds in an accelerated frame. In such a case,
it is possible to derive the same expression for
the fringe shift as that obtained for the gravita-
tional case. '

Since the coordinate frame in which our experi-
ments are carried out is not an intertial frame,
the Hamiltonian governing the neutron's motion
will involve a third term in addition to the kinetic
energy (relative to the Earth) and the gravitational
potential energy. Our neutron experiment design-
ed to detect this effect is the quantum-mechanical
analog of the optical interferometry experiment
of Michelson, Gale, and Pearson" carried out in
1925. An experiment which demonstrated the
principles of detection of rotation by optical inter-
ferometry was carried out earlier in 1913by
Sagnac. ' The physical principle involved for ms
the basis for the ring-laser Sagnac gyroscope.

In the latest version of our experiments, a geo-

metry has been chosen in which the effect of gra-
vity is suppressed. In this way only effects as-
sociated with the relative motion of the Earth with
respect to the stars is detected. If our results
agree with the insertion in the neutron Hamiltonian
of a term of the form cu

' L (where &u is the Earth' s
angular rotational velocity, and L is the neutron's
angular momentum with respect to the center of
the Earth) we can conclude that the principle of
equivalence for neutrons has been verified in the
quantum limit, in an accelerated frame free of
gravity.

In the next section we will discuss the basic
principles of neutron interferometry. In Sec. III
we will give some experimental details relevant
to the neutron source, the neutron monochroma-
tor, the detection system, and the construction
of the interferometer. In Sec. IV we give the
theoretical background necessary to understand
the experimental results. Section V is devoted
primarily to a discussion of gravitationally-in-
duced quantum interf erence. The experiments
discussed in this section were carried out with an
incident beam directed horizontally, that is,
parallel to the local surface of the Earth. The
effect of the rotation of the Earth on the neutron
phase has been accurately detected with a verti-
cally directed incident beam. These experiments
are discussed in Sec. VI. In Sec. VII we make
some concluding remarks.

H. PRINCIPLES OF NEUTRON INTERFEROMETRY

Various schemes have been proposed, and in
part realized, for obtaining interference effects
between spatially separated coherent neutron
beams having a wavelength in the angstrom range. '
We will limit ourselves to consider the scheme
depicted in Fig. 1, consisting of three identical
perfect silicon crystal slabs cut perpendicular to
a set of strongly reflecting lattice planes, typi-
cally (220). The distances dq and d2 between the
slabs are usually a few centimeters and are equal
to within about 1 p m. A nominally collimated,
monochromatic beam is directed along the line SA
and is coherently split by the first silicon crystal
slab by Bragg reflection. These two coherent
beams are again split in the second crystal in the
regions near points B and C. Two of these beams
overlap and interfere near point D in the third
Si Slab. We always assume that by "beam" we
mean a plane wave of limited, but not infinitesi-
mal, lateral extent (a few mm or so). If the beam
traversing the path I is phase shifted by increas-
ing the "optical" path length (via some interaction
potential) relative to the beam traversing the path
D, the intensities in the detectors C2 and C3 will
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which the surfaces of the optical components need
to be polished to fractions of wavelength. The
phase shift resulting from a step of thickness t on
the surface is given by the formula

where & is the neutron wavelength and n is the
index of refraction, which differs from 1 by

A.n-1= —Nb.2' (4)

FIG. l. A schematic diagram of the LLL interfero-
meter. The incident beam is coherently split in the re-
gion of the first slab between A and A'. The two coher-
ent beams I and II a.re again coherently split in the sec-
ond crystal slab and recombined in the third crystal in
the region of points D and D'. The interfering beams
are detected by counters C2 and C3, a noninterfering
beam is detected by counter C&.

change. We will show here that the expected in-
tensities in these detectors, as a function of the
phase shift P are of the form

o.' cosp

and

I, = n(l + cosp), (2)

The constants & and y depend upon the incident
flux, the crystal structure and the neutron-nuclear
scattering length of Si.

The basic principle of this interferometer seems
simple enough; however, there are certain sub-
tleties hidden in the apparent simplicity. The
first one concerns the alignment of the three crys-
tals. Clearly, in order to preserve the Bragg
reflecting condition for a given wavelength neu-
tron, we must align the three crystals to within
the "Darwin width, " which is typically 0.1" of arc
for neutrons. Bonse and Hart devised a simple
and ingenious way to achieve this result. They
cut out the three slabs from a large monolithic
silicon single crystal of very high quality, free of
lattice defects of any kind. As a consequence of
great advances in crystal growth techniques,
prompted by the needs of the solid-state-elec-
tronics industry, it is possible today to purchase
from commercial manufacturers silicon crystals
of the required perfection with typical dimensions
of order 5 to 10 cm. Spatial coherence in atomic
positions is preserved to a billionth of a centi-
meter over these distances.

The second point concerns the accuracy with
which the surfaces of the slabs need to be polish-
ed. It would clearly be impossible to satisfy the
usual requirements of optical interferometry, in

Here & is the atom density and b is the neutron-
nuclear scattering length. For Si at &= 1..4.4,
(n —1)=0.67&&10 . Thus, a step t=2 p, m will
cause a phase shift corresponding to ~th of a
fringe.

The third consideration is the question of the
extent to which the incident beam is required to be
monochromatic. In our neutron-interferometry
experiments, the incident beam is only nominally
monochromatic with &&/& = 0.01. The important
feature of this type of interferometer is that it
utilizes Bragg reflection from perfect crystals.
This requires the wavelength, along a given tra-
jectory (ray line) to be defined to within about 1
part in 10 . But this definition of wavelength is
accomplished by the interferometer itself and not
through the preparation of the incident beam.

The final point we want to mention is a peculiar
feature of angstrom-wavelength interferometry.
We can understand. that the two beams BD and CD
in Fig. 1 are coherent and produce interference
fringes localized in space, with spatial separa-

0
tions of order 1 A. Strictly speaking, the inter-
ferometer could consist of the first two slabs
only. The problem is that no film or detector of
any. kind is able to resolve fringes so closely sep-
arated in the region of the overlap. The scheme
adopted by Bonse and Hart is to use the third
crystal as a receiver, or as a mixer. The crys-
tal lattice potential Vg corresponding to the re-
ciprocal lattice vector G mixes the two waves
traveling along the rays BD and CD, so that the
outgoing beams depend upon the wave amplitudes
of each of the incident beams.

We will now look in detail at the diffraction
mechanism of the three crystal LLL interfero-
meter. (LLL stands for Laue-Laue-Laue trans-
mission geometry. ) The theory of diffraction of
neutron waves by the periodic potential of a per-
fect crystal lattice is similar in many ways to the
theory of electron motion in solids. A neutron
wave of wave vector Kp oriented on or near a
Brillouin-zone boundary will be Bragg reflected
forming a coherent state described by the wave
function
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g(r) = gp exp(iKp ' r) + g exp[i(Kp+ G) ' r] . (5) X(r) =Xp exp(ikp r)+Xo exp(i& r). (6)

In electron band theory, there will be two such
wave functions, one for states above the energy
gap corresponding to the reciprocal lattice vector
6, and one below the energy gap. In the dynami-
cal theory of neutron diffraction, the energy of the
neutron is fixed by the preparation of the incident
beam, and the periodic potential causes a splitting
of the allowed internal wave vectors Kp. Thus, the
index y takes on two possible values. The wave
amplitudes go~ are determined by the orientation
of the external incident wave vector kp and the
requirements of continuity of the neutron wave
function across the entrant boundary. Continuity
of the wave function across the exit boundary de-
termines the amplitudes of the diffracted beam
(yo) and the forward scattered beam (Xp), such
that the wave function of the neutron leaving the
crystal is of the form

For the symmetric I aue geometry, the solution
to this problem is given in the Appendix. The re-
sults are given by Eqs. (A21) and (A22); they are
of the form

X, =D(~8)C, (8)

where 4 is the amplitude of the incident plane
wave, and the coefficients T and D depend upon
the angular deviation &~ of the incident wave vec-
tor kp from the exact Bragg condition for the re-
ciprocal lattice point G.

Using these results, it is an easy matter to de-
rive expressions for the waves emerging from the
third slab of the interferometer. The wave func-
tion in the region of detector C3 ls

U, (r) = 4$D(&8) exp(ikp ' ro)D(-&8) exp[ikp ' (r~ —ro)]T(&8)

+ T(48) exp(ikp ' re)D(&8) exp[iko ' (r~ —re )]D(-&8)e P}exp[ikp ' (r —r~)],
and the wave function in the region of detector Cq is

U&(r) = QD(68) exp(iko ' r, )D( &8) exp[ik—p ' (r~ —ro)]D(&8)

+ T(&8) exP(ikp ' re)D(&8) exP[i& ' (rD —rz)]T(- n8) }exP[i& (r —rD)] .

(9)

(10)

I Up I
=

I
c'

I (1 + cosP) 2A (x, &)

IU21'= I4 I'[&(~, ~) »(~, ~)—cosP] (12)

The functions A and B are given by

The origin of coordinates is taken to be point A in
Fig. 1. The phase shift P is assumed to be intro-
duced into path I of the interferometer. The ex-
ternal diffracted, wave vector Q is given by Eq.
(A29). After some algebra, we find for squares
of the wave amplitudes

pa 2m~le )a
2 cos0g Vcel 1~p coseB

(i6)

~=IP P .
2

A(x &)dx
am)Eg)

p Sln g ceps

Here ~& is the Bragg angle, V„» is the volume
of a unit cell, &G is the structure factor, and a is
the slab thickness.

Since the beam incident on the interferometer
is divergent, we must integrate these expressions
over the angle &~. This is equivalent to inte-
grating over the scaled angular variable x. We,
therefore, see that the expressions for the param-
eters o.' and r in Eqs. (1) and (2) are

and

A. (x, ~) =, , ), sin'$(x'+ cos'&)
(x +1 (is) and

4m/E~ /

Y =IP ~P . 28 y B(xq 'E)dÃ
q

p sln2 B Vce»
(18)

a(x, E)=, , sin'&[(x'+ cos'&)'+ sin ]].x +1
The definition of the symbol $ is given by Eq.
(A23). These functions are dependent upon the
two dimensionless parameters

kp sin20~ V„»
P 4

and

(i4) where Ip is the incident beam intensity. The inte-
grals appearing in Eqs. (17) and (18) are shown in
Fig. 2. For our experiments a=0.246 cm, at
X=1.4 A, the value of p:=40, which gives y/&=2, 6.
Thus the predicted contrast in the "0-beam" is
considerably higher than in the "G-beam", as
observed experimentally.

The analysis presented here assumes that each
plane wave Fourier component in the incident di-
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A. The neutron wavelength )o

FIG. 4. Schematic diagram of the neutron interfero-
meter and the He detectors used in these experiments.

is about 2X10 neutrons/cm /sec. Three small
He detectors are mounted behind the interfero-

meter, inside an aluminum box (25 X 25&&25 cm')
which is attached to a rotator assembly. The He
detectors have a diameter of & in. and are filled
to a pressure of 40 atm, yielding a counting effi-
ciency of order 90/0 for thermal neutrons. Fig-
ure 4 shows the arrangements of the three count-
ers, with Cg mounted on a noninterfering beam
for the purpose of aiding in orienting the inter-
ferometer. Occasionally the three He counters
are replaced by a single Ar-filled proportional
counter when x rays are used instead of neutrons.
The rotator assembly, consisting of a large steel
tube supported on ball bearings, is rigidly attach-
ed to the inside of a large dense masonite neutron
shield which is mounted on a vibration isolation
pad.

The interpretation of all our experiments re-
quires an accurate knowledge of the incident neu-
tron wavelength &0 as measured in the laboratory
frame of reference. %e have employed a techni-
que to measure &0 which is schematically illus-
trated in Fig. 5. A pyrolytic graphite crystal is
placed in the beam which passes directly through
the interferometer. The beam transmitted through
this crystal is counted with a fission chamber.
By rotating the pyrolytic graphite crystal through
the same (004) reflection used for monochroma-
tion of the incident neutrons; a dip in the trans-
mission is observed. A similar dip is observed
by reflecting the beam to the right instead of to
the left. The difference in the crystal rotation
angles for minimum transmission, i. e. , 02 —eq,
determines the neutron wavelength in terms of
the lattice parameter of pyrolytic graphite (c
=8.V08 A). The analysis of the data presented
here is based on this method of determining &0.

B. The interferometer

The interferometer used in the experiments
described in this paper is a considerably improved
version of the same kind of device used in our
early work. ' It has been cut with a 600-grit,
4-in. -diameter, diamond blade from a 5-cm-dia-
meter high-purity silicon perf ect- single-crystal
ingot. The room-temperature resistivity is p
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FIG. 5. An example of the method used to determine the neutron wavelength by measuring the angular spacing be-
tween the transmission dips observed by rotating the pyrolitic graphite crystal in the beam transmitted through the
interferometer.
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"double-sticky-back" plastic tape works. It pro-
vides the necessary adhesive character, yet it is
sufficiently pliable and resilient so as to mini-
mize the transmitted strain.

IV. THEORY GF THE EXPERIMENTS

Classically, the Hamiltonian governing a neu-
tron's motion in the gravitational field of the ro-
tating Earth is

2
P Q g ~ ~ J

2m;
(2o)

Here the angular momentum of the neutron's mo-
tion about the center of the Earth (r =0),

L=rxp (21)

=p 2

+mego' r —v L+ Vo,2m)
(22)

where Vo is the gravitational potential energy at
some reference height above the Earth (say, the
center of the interferometer), and gp is the ac-
celeration due to gravity. The classical equa-
tions of motion are Hamilton's equations

ea . aar= =,' and p=- -- —.
Bp Br

Here, the dot implies a time derivative, so that
r is the neutron velocity in the coordinate frame
of the rotating Earth. The first of these equa-
tion gives the canonical momentum

p =m~r + m~Q) X r ~ (24)

p is the canonical momentum of the neutron, co is
the angular rotation velocity of the Earth, M the
mass of the Earth, m& the inertial mass of the
neutron, and m~ the gravitational mass of the
neutron. From an epistomological point of view,
it is not possible to be confident that this Hamil-
tonian correctly describes quantum- mechanical
phenomena, especially. those involving interfer-
ence. However, for lack of evidence to the con-
trary, we will assume it is also the correct quan-
tum-mechanical Hamiltonian, and then see if the
predictions based on it agree with the experiment.
The principle of equivalence would require that
the inertial mass m& and the gravitation mass m~
in Eq. (20) are equal.

Since the distances involved within the neutron
interferometer are very small compared to the
radius R of the Earth, we can write (20) as

r = rp+ vpt+ —,'(gt') + p((ut'~&& g) . (26)

The transit times for thermal neutrons through
the interferometer in our experiments are of or-
der 5x10' sec. .Based on a sidereal day of 23 h,
56 min, one has co=V.29x10 ' sec . Thus, we
see that the term in (28) involving a& is smaller
than ,'gt by a fa—ctor of about 10 . Therefore,
the Coriolis force has a negligible effect on the
trajectory over these small distances; however,
its effect on the neutron phase is not negligible
as we shall see.

The discussion so far has been based on classi-
cal mechanics. In order to calculate the phase
shift P in a neutron interferometer experiment,
we assume that we can associate a de Broglie
wave of wave vector k with the neutron having
canonical momentum p:

p=@k q (29)

where @ is Planck's constant divided by 2r. The
phase difference for the neutron wave traversing
the path ACD in Fig. 4 relative to the neutron
wave traversing the path ABD is then given by

P= — t p dr- — t p'dr.
@ ~ACD @ ~ABD

1
p dr, (so)

The momentum appearing in this line integral on
the path ACDBA around the interferometer is
given by Eq. (24}. The phase shift thus involves
two terms,

in a rotating frame,
~ ~

m;r =m gp —
m&&u& ((exr) —am, (ox r. (26)

Thus, the term -~ ' L in the Hamiltonian gives
rise to both the centrifugal acceleration and the
Coriolis acceleration. Since we will only be in-
terested in the neutron's motion over distances
corresponding to the dimensions of the interfero-
meter, which are very small compared to the
Earth's radius, we can define an effective gravi-
tational acceleration in the usual way

g =gp+ (m, /m, )(o && ((u &&%), (2&)

which we take to be independent of position r. Un-
der this assumption, we can solve (26} for the lo-
cal motion of the neutron in the frame of the ro-
tating Earth. To leading order in (o, the solution
ls

and the second gives its time derivative

p =mego —co Xp (25) p =™tp r ' d r +™(&u x r) ' d r . (sl)

Combining Eqs. (24) and (25} we obtain the well-
known equation of motion for a classical particle

The velocity r is obtained by differentiating Eq.
(28). To a very high order of approximation we
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The area A' is given by

A' = (2d + 2ad cos8e) tanee . (33)

The angle P is defined to be zero when the plane
ABDC of the interferometer is horizontal. The
laboratory neutron wavelength i.s related to its
velocity by

~, =h/m, .)rf, (34)

and 8~ is the Bragg angle. The result for a verti-
cally directed beam is given in Sec. VI.

The second term in Eq. (31), which we call
P~~, is due to the rotation of the Earth. Using
vector calculus, this integral is easy to evaluate,

(35)

The normal area A enclosed by the beam paths is

A = (2d + 2 ad) tan8e . (36)

The formula (35) was obtained by Page using
wave-optical arguments, and by Anandan and20

Stodolsky within the framework of general rela-
tivity. Recently, an interesting derivation has
been given by Dresden and Yang in which the
phase shift for either a rotating neutron or optical
interferometer is derived from the point of view
of a Doppler shift due to a moving source and
moving reflecting crystals.

The actual path of any given neutron within a
crystal slab is more complicated than the line
drawn straight across the crystal as shown in
Fig. 1. There is a current j carried by the -
branch part of the wave function and a current j~
carried by the P-branch part of the wave func-

can regard the trajectories between the interfero-
meter slabs as straight rather than parabolic
curves. The angular deviation, from a straight
line over these distances (for &=1.4 A) is of
order 0.01" of arc. It is fortunate that this angu-
lar deviation is about 10 times smaller than the
"Darwin acceptance width" for Bragg reflection
in the silicon crystals. If this were not so, a
neutron on the trajectory AB, say, would not be
Bragg reflected by the middle crystal slab of the
interferometer. The first term in (31), which we
will call P„„, is the phase shift due to the gravi-
tational field of the Earth. To work out the inte-
gral for P~„requires us to specify the direction
of the incident beam and the orientation angle P
of the interferometer with respect to this direc-
tion (see Fig. 4). For a horizontally directed
incident beam the result is

P~„=-2mm, m~(g/h )&OA' sing -=-q~ sing .
(32)

V. GRAVITATIONALLY INDUCED QUANTUM
INTERFERENCE

In this section we will confine our attention to
experiments in which a horizontally directed inci-
dent beam is utilized as shown in Fig. 4. The
experimental procedure involves turning the
interferometer, including the entrance slit and the
three detectors Cq, C2, and C3, about the incident
beam line AB. At each angular setting P, neu-
trons are counted for a preset length of time
(actually based on the incident beam monitor).
This procedure allows the neutron on the beam
trajectory CD to be somewhat higher above the
surface of the Earth than for the beam path AB.
The difference in the Earth's gravitational poten-
tial. between these two levels causes a quantum-
mechanical phase shift of the neutron on the tra-
jectory ACD relative to the trajectory ABD. The
phase shift on the rising path AC is exactly equal
to the phase shift on the opposite rising path BD,
as can be shavn by applying Huygen's principle.

The phase shift P~„depends on the product of
the inertial and gravitational masses m, m~ of the
neutron. Thus, measuring this phase shift in-
duced by the Earth's gravity can be r egarded as
a test of the princple of equivalence in the quan-
tum limit if we compare the mass

m„=(m, m, )'" (37)

with the neutron mass obtained from mass spec-
troscopy results on the proton and the deuteron
according to the formula

m„= m~ —m~ + E„/c = 1.6747 x 10 4
g . (36)

The deuteron binding energy is obtained from the
radiative capture 'gamma-ray energy &„(=2.23
MeV). The fact that this experiment is a test in
the quantum limit is apparent since quantum-
mechanical interference is involved, and Planck's
constant appears explicitly in the formula (32).

tion. In addition, there is a current j ~ due to
the interference of the o.'- and P-branch wave func-
tions which leads to a sinusoidal trajectory for
the neutron. This is the phenomenon which leads
to Pendellosung interf er ence fringes. Considera-
tion of these effects has recently been treated in
extensive detail by one of us. The conclusion
reached is that to very high order of approxima-
tion the trajectory can be regarded as a straight
line across the crystal, and that the microscopic
details of the trajectory do not play a role in cal-
culating the nest phase shift due to gravity within
the crystal medium.
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A. The total phase shift

Unfortunately, as we have pointed out previous-
ly, there is an additional effect on the measured
phase shift P resulting from bending (or warping)
of the interferometer under its own weight. This
effect is dependent upon the rotation angle P, since
the experiment involves turning the interferometer
about an axis which is not an axis of elastic sym-
metry. We eall this effect

Pbeag =-qbeng Sm4 ~

In Subsec. B below we will justify writing P„„„in
this form.

For a horizontally directed incident beam we can
easily work out the dot product involved in evalua-
ting Ps~ in Eq. (35); the result is

4mm;
Ps~ ——' ~&( cos@cos&~ + sing sini' sin8~ },8 age ac

where ~L, is the colatitude angle, I" is the angle of
the incident neutron beam west of due south.
Beam port B is oriented nearly exactly along a
north-south line, such that the monochromatic
beam incident on the interferometer is directed
due south. Thus, the angle I' in Eq. (40) is zero
for our experiments, and we can write (40) in the
form

=0, while the gravity and bending effects are
maximum for g =90'. We can rewrite Eq. (43)
as

P = q sin(p —p,),
where

2 2 2
q' =(q +qb g) +qg

(44)

(45)

qg aan ae

~grav + ~bend
(48)

The fact that the phase shift due to the Earth's ro-
tation (Sagnac effect) depends upon cosg and not
sing comes about as a result of our selection of
due south as the incident beam direction [I'=0
in Eq. (40)]. This leads to an important experi-
mental circumstance. Although qs~~ is of or.-
der 2.5% of q~„, its contribution to the total fre-
quency of oscillation q of the interference pattern
is very small (of order 3 parts in 10 ). However,
it leads directly to a shift P, in the center of the
interferenee pattern. Table I gives the calculated
wavelength dependence of q~„, qs~, and Pg.
We have used the colatitude angle 81, ——51.37 and
the acceleration due to gravity q = 980.0 cm/sec
at Columbia, Missouri, along with the dimen-
sions of our interferometer given in Sec. III to
compile this table.

PS agnac qgagnae COSg (41) B. Bending

where

qs~ ——(4~~,.(uAlh) cos8~ . (42)

Consequently, the total phase shift in these experi-
ments involves three contributions

P =Pgeae+Psagnae+ Pbeng

=-q~„sing + qs ~ cosQ —qb„g sing . (43)

We see that the Sagnac effect is maximum for P

The values for qb„d given in Table I have been
obtained from a series of experiments using x
rays. The procedure involves using molybdenum
Kn x rays (&=0.71 A). We direct a beam of x
rays along the same incident line AB (Fig. 4) and
observe the interfering x-ray beams with an x-
ray sensitive porportional gas detector as a func-
tion of rotation angle P. The effect of gravity
(gravitational red shift) on the x rays over the

TABLE I. Calculated frequencies of oscillation, q.

0 Og

(deg)
A.

(cm2) (cm2)
&gray

(radians)
~Sggnac

(radians)
&bend

(radians)
6}0

(deg)

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

8.9885
12.0236
15.0934
18.2083
21.3800
24.6220
27.9505
31.3851
34.9503
38.6781

4.038 56
5.437 91
6.885 82
8.398 46
9.99543

11.701 1
13.547 1
15.575 4
17.844 5
20.438 7

4.035 25
5.429 97
6.869 99
8.370 45
9.949 61

11.630 3
13.441 8
15.423 6
17.630 1
20.140 0

9.5255
17.0904
27.0285
39.5181
54.8024
73.2109
95.1913

121.362
152.596
190.168

0.582 396
0.784 196
0.992 997
1.21113
1.441 43
1.687 41
1.953 62
2.24612
2.573 33
2.947 44

1,406 41
1.875 21
2,344 01
2.812 82
3.281 62
3.750 42
4.21923
4.688 03
5.156 83
5.625 63

3.297 62
2.512 07
2.029 54
1.703 26
1.468 07
1.290 62
1.152 08
1.041 03
0.950109
0.874 415
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2000,

+1.060 A

100
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FOURIER TRANSFORM+1.060 A

1000

0-40 -32 -24 -16 -8 0 8 16 24 32 40
g [deg ]

FIG. 11. Gravitationally induced quantum interference
experiment at X 0=1.060 A. The counting time was
about 5 min per point.

60

40

slope of the (220) data, we conclude that

~do- sin'8& .
Therefore putting the arguments together that
have led to (39), (47), and (48) we find

Pb„d =—q„„~sin@ =-(C/%0) sin es sing;

(48)

(49)

20

0 0
l I i i

10 20 30 40 50 60

the numerical value of the constant from the
data is

C =34.5V rad A. (50)

The reason why the bending effect seems to de-
pend quadratically on sineB is not yet understood.

C. Experimental results

We show in Figs. 11 and 12 representative data
obtained at two wavelengths: ~0 ——1.060 and 1.419
A, respectively. The neutron counting rate in
detector C& is plotted versus the interferometer
rotation angle P. The contrast (maximum/mini-
mum) of these data is seen to be about 3 to l.
Contrasts as high as 8 to 1 have been observed
in some runs. To obtain the frequency of oscilla-
tion q we Fourier transform the data numerically
according to

N

sin eQQ si5 (8i)
g=1

FIG. 13. Fourier transform of the data of Fig. 11.

tensity, and the index j runs over all & datum
points. The Fourier transforms of the data of
Figs. 11 and 12 are shown in Figs. 13 and 14.

There is loss of contrast at larger rotation
angles g, which we believe to be due to warping
of the interferometer under its own weight as the
interferometer is rotated. This explanation of
the effect is in accord with various experiments
we have carried out with reduced slit sizes in
which the loss of contrast is reduced. We have
found that as the neutron wavelength becomes
larger the loss of the contrast occurs at smaller
rotation angles P. This observation is also in
agreement with the above explanation, since the
bending effect measured with x rays is porportion-
al to sin'es(= &OG'/4).

In any interferometry experiment, the long-term

8000

6000-
g 1&19 A

where I is the oscillatory part of the neutron in-
120-

100

Ill 80

FOURI FR TRANSFORM

X; 1.419 A

C3
4000 60

2000 40

0 I I I I I I

-40 -32 -24 -16 -.8 0 8 16 24 32 40
|t)[deg ]

FIG. 12. Gravitationally induced quantum interfer-
ence experiment at X 0= 1.419 A. The counting time was
about 7 min per point.

20

I

0 1 0 20 30 40 50 60 70 80 90

FIG. 14. Fourier transform of the data of Fig. 12.
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FIG. 15. Gravitationally induced quantum interference experiment at & p=1.050 A. These are data from 6 runs taken
over a period of about 75 h. These data show the long-term phase stability of the interferometer.
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FIG. 16. A plot of the frequency of oscillation of q of

a large series of scans of the type shown in Figs. 11
and 12 as a function of wavelength Ap. The dashed.
curve is the least-squares fit to the data using Eqs. (32}
and (49). The labels next to the data points are run
numbers.

phase stability is an important consideration. We
show in Fig. 15 data obtained at &p ——1.050 A in
which we have tested the phase stability of our
interferometer. This figure shows the gravita-

tionally induced quantum interference fringes ob-
tained on 5 separate runs. The total data collec-
tion time was about 75 h. We see that the phase
stability over this period of time is extremely
good. The fact that the interferometer is mounted
inside a heavy aluminum box, which in turn is
mounted inside a large heavy masonite neutron
shield, creates isothermal conditions sufficient
to obtain data of this quality.

We have now taken data of the type shown in
Figs. 11 and 12 at a wide selection of neutron
wavelengths. The frequency of oscillation q for
each run has been obtained both by the Fourier-
transform method discussed above and by a least-
squares-fitting procedure (which is discussed in
the next section). These two data analysis techni-
ques agree to within the statistical uncertainty of
the raw data. The results of this extensive set of
measurements is summarized in Fig. 16 in which
we have plotted the observed frequency gf oscilla-
tion q versus the incident neutron wavelength &p.

The dashed line is the prediction of theory, based
on Eq. (32) and the measured frequency of oscil-
lation due to bending. We have fitted the theoreti-
cal curve to the data leaving (m, m~)" as an adjust-
able parameter. We find

(m, m~)' = (1.675 + 0.003) && 10 g (52)

which agrees with the rest mass of the neutron
obtained from mass spectroscopy to within the
limits of error.
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VI. NEUTRON SAGNAC EFFECT

A. Horizontal-incident-beam experiments

According to Eqs. (2) and (44) the counting rate
in detector C3 should vary with the rotation angle

Q according to the formula

I,(p) = o'f&+ cos[q sin(g —gp) +tIO]], (53)

We pointed out in the previous section that the
contribution of qs ~ to the total frequency of os-
cillation of the interference pattern is very small
as a result of our selection of the direction of the
incident neutron beam. However, the Sagnac ef-
fect leads to an angular shift $0 in the center of
the interference pattern given by Eq. (46). ln
Subsec. A we will discuss our results on the mea-
surement of $0. We have also pursued an alterna-
tive approach, utilizing a vertically directed inci-
dent beam, to observe the neutron Sagnac effect.
These experiments are described in Subsec. B.

(deg)

0

gIe

g l3

theory

34 ~2e

~12.2~ I I X g24
Q I6le g

3OQ

+25
3I.I
~ Sm ~+

+i5

~32

Shift C, of the center of

the interference pattern

where P, is the "zero-phase" of the interfero-
meter resulting from the fact that the two legs
ABD and ACD are not precisely equal. It is ap-
parent that in order to separately measure $0 and

Pp data must be accumulated over an angular
range of (@—$0} where the sine function departs
from linearity.

This presents special difficulties since the warp-
ing of the interferometer at large P tends to wash
out the contrast. Because of this loss of contrast
the analytical form of the intensity I,(g) is more
complicated than Eq. (53). We have pursued this
problem by a least-squares fitting procedure in
which we use a parametrized form of the inten-
sity profile. Since the experimental results of

.the type shown in Figs, 11 and 12 exhibit an enve-
lope and a weakly sloping mean level, we have
chosen the form

I~(g) =A + BP + CP

+ D cos[@sing + &q] cos[q sin(g —g p) + P p]

(54)

as a phenomenological generalization of Eq. (53).
There are nine parameters in this equation. '

B C D Q &g Pp q, and P,. We are, of course,
only interested in q and Po. The results of an ex-
tensive series of measurements e,nd data analyses
are shown in Fig. 17. The dashed line is the re-
sult of a numerical calculation based on Eq. (46)
relating the angle $0 to qs, „. Since qa, is in-
dependent of wavelength (aside from its depen-
dence on the area A), and q~,„ is proportional to
the wavelength (aside from its dependence on the
area A'), we see that except for the small correc-

0 05

).(A)

l.5

FIG. 17. Experimental results for the shift ft)0 of the
center of the interference patterns as a function of
wavelength Xo. These results were obtained by least-
squares fitting of the functional form of Eq. (54) to a
large series of data of the type shavn in Figs. 11 and
12. The angle f3t 0 is related to the frequency of oscilla-
tion due to the neutron Sagnac effect as given by Eq.
(46). The dashed curve libeled "theory" is the result
of using Eq. (46) and the geometric parameters of the
interferometer given in the text. The labels next to the
data points are run numbers.

B. Vertical-incident-beam experiments

We show in Fig. 18 a schematic diagram of our
most recent experiments designed to detect the
neutron Sagnac effect. The initially horizontal
beam from the monochromator is reflected by a
beryllium crystal through 90, such that the beam
incident on the interferometer is vertical (along a

'plumb line). . The experimental procedure involves
turning the interferometer about the vertical line
AB through various angular settings Q. For a
beam which is precisely vertical, the phase shift
due to gravity, P,„, is independent of the angle
@, as can be seen from symmetry. However, the
angle between the rotation axis ~ of Earth and the
interferometer normal area vector A is P depen-
dent. Thus, this incident beam orientation allows

tion due to q„.„d in Eq. (46}, Qp should be inversely
proportional to ~0. From this data it is clear that
we are observing the neutron Sagnac effect. How-

ever, the scatter in the data is rather severe.
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FIG. 18. Schematic diagram of the configuration of
the apparatus for the vertical-beam experiments de-
signed to measure the neutron Sagnac effect. The draw-
ing is not to scale. The collimator is approximately
1 m in length, and the interferometer is approximately
8 cm long from point A to point D. The angle 6 of the
phase shifter is defined to be zero when it is parallel
to the three interferometer slabs.
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The superscript "v" indicates that this expression
is for a vertically directed incident beam. For
these experiments the incident wavelength is fixed
at &o —1.262 A, which in turn determines the value
of the normal area, whicI '.s&=8.864 cm . The
angle P is defined to be zero, when the normal
area vector A is directed due west. The predicted
frequency of oscillation is

„=91.92 deg = 1.604 rad. (theory). (56)

As we turn the interferometer through various
angles P, the counting rate is expected to vary
according to

f(g) =A+Bcos(qe, „sing+ po).

By allowing A and B to be numerically different,
we have taken into account the facf that perfect
contrast is never actually realized in practice.
The results of such an experiment are shown in

us to experimentally suppress the effects of gra-
vity, leaving only the effect of the rotation of the
Earth on the phase shift. The bending effect is
also independent of P since the orientation of the
interferometer with respect to g is fixed. The
suggestion that the Sagnac effect could be obser-
ved with this geometry was first made by Anan-
dan."

Using Eq. (35) it is an easy matter to work out
the formula for P8. „as a function of @; we get

Pa = (4vm, /h)&uA sing~ sing

200

(i) f(

l
N E S W N
l . l . l . l . l

90 I80 270 0 90
4(deg )

FIG.. 19. Data taken in a "direct" measurement of the
effect of the Earth's rotation on the neutron phase snift.
The various parts of this figure are explained in detail
in Sec. VIB.

Fig. 19. There is a difficulty in directly inter-
preting the counting rate in detector C, to be f(P).
There is a natural variation of the "effective"
incident beam intensity which is the angular ac-
ceptance range for Bragg scattering by the silicon
interferometer. This is due to the energy-angle
correlations in the incident beam resujting from
the monochromation process using single crystals.
However, one can measure this variation sepa-
rately by blocking off the beam in one leg of the
interferometer (and then the other) and measuring
the effective beam strengths under noninterfering
conditions. The series of curves in Fig. 19 are
the results of utilizing this idea. Part (A) of this
figure is the raw data for the counting rate in de-
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tector Cz versus g. Part (B) is the background
counting rate with the interferometer rotated off
the Bragg reflecting condition. Part (C) is the
raw data minus the background, which we call
i(P}. The sets of data (D) and (E) are the counting
rates in detector C3 when beam I is blocked off
and then beam II is blocked off with a cadmium
absorber. Parts (F) and (G} are the background
counting rates under these conditions. Part (H)
gives the average of the data in scans (D) and (E)
minus the average background of scans (E) and
(G). The data of part (H), called o,'(@), is directly
proportional to the effective incident beam inten-
sity. The final graph, part (I), is obtained by
dividing f(g) in part (C) by o.'(g) in part (H), that
lsq

f(p) =f(p)/o'(&) . (58)

This procedure allows us to divide out the angle-
energy correlation effects, leaving orily variations
with P due to interference. The solid line in part
(H) is a least-stiuares fit of the data to the func-
tional form (57). We find

qs„„——104.4+ 0.4 deg

= 1.822 + 0.007 rad (expt. ). (59)

This value is to be compared with 91.92 deg in Eq.
(56). There are several difficulties with this tech-
nique. The most serious one is that it involves
a number of independent steps in the sequence in
arriving at the corrected plot in part (I). Thus,
the experimental systematic and statistical errors
accumulate.

In order to circumvent this difficulty we have
developed a technique in which we directly mea-
sure the phase shift. We insert a slab-shaped
phase shifter into the interferometer as shown in

Fig. 18. This slab is, in fact, another Si single
crystal of thickness T =0.2931 cm, although it
could be made of any material. Rotating this slab
through an angle & about an axis normal to the
parallelogram ABDC results in a phase shift aris-
ing from the mean neutron-nuclear potential. The
formula for this phase shift was given in Sec. III,
,Eq. (19). As we rotate this phase shifter through
various angles &, the counting ratios in detectors
C2 and C3 are observed to oscillate. Repeating
this procedure at another setting Q of the inter-
ferometer results in another oscillating pattern,
of the same period, but shifted in phase with re-
spect to the first pattern. We show in Fig. 20(a)
data taken at @=0 and in Fig. 20(b) data taken
at p =-90'. The phase shift between these two
patterns is due to the rotation of the Earth. The
results of an extensive series of measurements
are shown in Fig. 21. Each datum point in this

200

I I I

.1000
counts

. .2pp (e) /=0

I I I I I I

-8 -6 -4 -2 0 2 4 6 8
Sfdeg)

FIG. 20. Typical oscillating counting rates observed
in detector C3 at two orientation settings fII} of the inter-
ferometer. The counting time for each datum point was
approximately 600 sec.

figure was obtained by least-squares fitting of a
sine wave of unknown phase to data of the type
shown in Fig. 20. Because of long-term drifts
of the interferometer phase, measurements at a
reference angle (usually A pointing east or west}
were repeated after each new setting P.

The labeling of north, south, east, and west on
this diagram was achieved through an astronomi-
cal sighting of the star Polaris. This line of sight
was carried inside the reactor hall (which is be-
low ground level) by precision surveying techni-
ques and transferred onto the interferometer with
a laser mounted on a rotary table.

The solid curve in Fig. 21 is the result of a
least-squares fitting of the data to a sine wave.

P (deg)

FIG. 21. A plot of the phase shift P due to the Earth' s
rotation as a function of orientation fII} of the normal
area A of the interferometer about a vertical axis. The
symbols N, W, S, and E indicate north, west, south,
and east. These data were taken in six sections as dis-
cussed in the text. The different symbols are for the
interferometer box facing various directions.
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It gives

q~, ——96.8+0.2 deg

=1.689+ 0.003 rad (expt). (60)

P (deg)

This result is in closer agreement with theory
than the result (59). However, it is obvious from
the data that there is still a substantial problem.
These data were taken in six steps. Because of
geometrical limitations of the rotator inside the
heavy masonite shield, we were only able to accu-
mulate data over an angular range of Q of about
130'. To obtain data through other ranges of P it
was-necessary to turn the entire masonite shield
box through large angles (typically 90 ). This
required releveling and orienting of the rotator
assembly. One notes that the data from each of
the six sequences do not fit perfectly together.
This fact points up the need for extreme care and
precision in this experiment. Since the magni-
tude of the frequency of oscillation due to gravity
is about 50 times the frequency due to the Earth' s
rotation, a small misalignment of the beam axis
off verticality results in a contribution from P~„
If the incident beam is off the axis of a plumb line
by an angle z, the P-dependent part of the phase
shift due to gravity is

P~, =q~„sing siny, (61)

q~„=94.6 + 0.3 deg

=1.651+ 0.005 rad (expt). (63)

This result is within 3/z of the theoretical predic-
tion (56). We believe that to improve upon this
result would require new techniques, of which we
are not aware.

where q„„is given in Sec. IV. To give an idea
of the size of the effect, suppose y'=0. 1 . At ~()

=1.262 A, q „=44 deg rad =2521 deg, giving
P~„=4.4 deg. Thus, a misalignment of the axis
of the beam (and also the axis of rotation) of 0.1'
will result in an error of about 5% in the mea-
surement of the neutron Sagnac effect. On the
basis of these considerations, we now feel that
the unusual agreement of experiment with theory
reported in our preliminary paper was somewhat
fortuitous.

We have now modified the heavy masonite shield
so that the rotator assembly can be turned through
a full 360 deg without realigning the beam axis.
We have exercised extreme care in aligning the
beam axis using precision levels. Our most re-
cent data taken under these conditions are shown
in Fig. 22. The solid curve is again a least-
squares fitting of this data to a sine curve. We
find

0
t

50 too

N

l50

-50--E

4 (deg)

-l00--

FIG. 22. A plot of the phase shift' P due to the Earth' s
rotation as a function of orientation f as in Fig. 21.
These data were taken after modification of the rotator
assembly to allow a complete 360' sequence of scans
to be performed without realignment of the verticality
of the incident beam.

VII. CONCLUSIONS

Our observation of quantum- mechanical inter-
ference phenomena in these experiments confirms
that the Newtonian potential mg ' r must be included
in Schrodinger's equation, and that this potential
influences the Phase of the neutron wave function
in a manner expected for any other potential. We
believe that this result has a fairly deep signifi-
cance which concerns the principle of equivalence.

The equality of inertial and gravitational mass
is one statement of this principle. The classical
experiments ' of Eotvos and Dicke have verified
this equality to very high precision. An alterna-
tive and stronger statement of this princple re-
quires that the results of an experiment carried
out in a uniform gravitational field cannot be dis-
tinguished from the results of an experiment car-
ried out in a gravity-free laboratory experiencing
a constant acceleration.

All verifications of the equivalence principle,
prior to our experiment, have been in the classi-
cal domain. The experimental results did not
depend on Planck's constant. For the experiments
described in this paper, the number of interfer-
ence fringes observed for a given rotation of the
interferometer depends on the numerical value of
Planck's constant, and therefore represent a test
of the principle of equivalence in the quantum
limit.

Since the phase shifts observed in our gravita-
tionally induced quantum-interference experiment
depend upon the product m;m~, and the phase shifts
in the Sagnac experiment depend only on m&, we
can certainly claim that the combination of these
experiments demonstrates the equivalence of
inertial and gravitational mass in a quantum-
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mechanical phenomenon. We would like to pro-
pose that a stronger and deeper conclusion can be
reached.
In order to truly verify the principle of equiva-

lence one must carry out tmo experiments —one on
the surface of the Earth in a laboratory at rest,
and another in a laboratory far out in space having
an acceleration g. We have not done this experi-
ment. However, we suggest that the second ex-
periment need not be done if one accepts the
validity of Schrodinger's equation in a gravity-
free, inertial frame. If this is granted, then the
outcome of an interferometer experiment in an
accelerated laboratory can be calculated with
certainty. This has been done, and we find that
the observed phase shift in our Earth-bound ex-
periment agrees with this prediction if we replace
the laboratory acceleration a with g in the final
formula.

To summarize then, one must either question
the validity of Schrodinger's equation under zero-
gravity conditions or assert that we have verified
the stronger statement of the equivalence principle
in the quantum limit. The first alternative seems
unacceptable.

It would be very exciting to carry out these ex-
periments at both very low neutron energies and
at very high neutron energies. In the ultra-cold
neutron energy region where the change in gravi-
tation potential energy is comparable to the neu-
tron kinetic energy, the WEB approximation for
calculating phase shifts fails and the neutron tra-
jectory is not well defined. In the very high neu-
tron energy region where terms of order (v/c)
cannot be neglected one will begin to see general
relativistic effects as discussed by Anandan and
Stodolsky. We believe that experiments in both
regions of neutron energy are possible, and we
are currently pur. suing certain new ideas along
these lines.
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APPENDIX A: DYNAMICAL THEORY OF NEUTRON
DIFFRACTION

We review here the essential aspects of the dy-
namical theory of diffraction for the symmetrical
Laue-transmission geometry (Fig. 23). For fur-
ther details we refer the reader to various review
articles. ' We assume that the absorption is
zero, which is a very good approximation for
silicon.

Let the incident-neutron wave function be given
by the plane wave

y(r)=C exp(ik, r).
To find the wave function g(r) inside the crystal,
we must solve the Schrodinger equation

(Ai)

[ (k '/2-~) v'+ V(r)]y =~,y,

where V(r) is the periodic interaction potential of
the neutron with the lattice. Defining

v(r) =- (2m/k') V(r)

(A2)

(AS)

k20=- (2m/0') &„
Eq. (A2) can be written as

(V +ko)g=v(.

We now write P(r) as a Bloch function

g(r) =g go exp(iko'r+iG r),

(A4)

(A5)

(A6)

and expand v(r) in the Fourier series

v(r) =Q v-e@' . (Av)

y,-[k, -(K, +G') ]=~ v; --q (Aa)

+(P):- X

FIG. 23. Schematic diagram of the symmetric Laue
geometry. p is the incident plane wave. P is the wave
function inside the crystal and x is the wave function
emerging from the back face of the crystal.

The vectors G are the reciprocal lattice vectors
of the crystal. Putting (A6) and (A7) into the wave
equation (A5) and equating coefficients of e'o ', we
find
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We now make an approximation. We assume that
ko is oriented very close to the Bragg condition
for a particular reciprocal lattice vector G, and
assume that the internal incident wave vector +p
=kp, as we can easily verify. Thus, the "reso-
nance factor" [ko —(K, +G') ] is small only for
G' = G and for G' =0. That is, only $0 and go will
be large. Under these conditions, the above in-
finite set of equations reduces to two equations;
in matrix form they are given by

and

Kp ——kp —N

K~o = ko —N

(A13)

(A 14)

matching, this requires that the internal wave vec-
tor Kp can differ from ko by only a component nor-
mal to the surface. There are two possible values
for Kp for each incident wave vector kp, one on
the o.' branch and one on the P branch. Thus

-VG

where we have defined

2= 2& =&p-vp

(K -Ko) -u 6 =0,
(K'- K', ).

(A10)

The relation between these vectors is shown in
Fig. 24. Thus, the internal wave function is com-
posed of four plane waves:

q(r) =rP() exp(iKO r)+P() exp(iKO r}

+ P~ exp(i'~ r}+P~ exp(iK~ r) . (A15)

and

K~ =K, +G. (A 11)

For a nontrivial solution of (A9) to exist, the de-
terminant of the matrix of coefficient must be
zero, thus

g-+/=0 (A 16)

The diffracted part of this wave function must be
zero along the entrant boundary, and the incident
part must match the external incident wave (Al).
Thus'

(K- Ko)(K —Ko) =goy g/4ko. (A 12)

In this equation we have made the approximations
K+K0=2ko and K+Ko =2ko. Equation (A12) de-
fines the dispersion surface, that is, the locus of
allowed internal incident wave vectors Kp in k
space. The dispersion surface has two sheets,
which are hyperbolas as shown in Fig. 24. We
call the one branch of this surface + and the other
branch P

The neutron wave function must be continuous
across the entrant surface. For perfect phase

4o+ Wo
——4.

The ratio of the diffracted wave amplitude Po to
the incident wave amplitude g, for each branch is
determined by (A9). If we define C" to be go/P~
(where 'Y= o' or P), then

2k 0(K —K"0) v 6
v o 2ko(K-IPg) ' (A 18)

which are known for each incident wave vector
ko. Thus, we can use (A16) and (A 17) to express
all of the internal wave amplitudes in terms of the
amplitude of the incident wave 4. The results
are

G g =[c'/(c' c )]c,
y,'=-[c /(c~- c )Jc,
g&=[c c'/(c~-c )Jc,
y~= [c c~/(c~-c )Jc.

(A19)

The wave function X(r) emerging from the back
face of the crystal is the sum of two coherent
plane waves

y(r) = y., exp(ik, . r) + yo exp(ik . r) . (A20)

'0
FIG. 24. Diagram showing the two hyperbolas of the

dispersion surface giving the locus of the allowed inter-
nal wave vectors for the symmetric Laue case. The
asymptotes (dashed lines) are circles of radii E [Pq.
(A10)] drawn about the point 0 and the point G. The
reciprocal lattice vector is 0 and ko is the external in-
cident wave vector.

The boundary condition for continuity of the neu-
tron wave function across the back face of the
crystal requires us to match the incident part of
X(r) with the incident part of g(r), and also the
diffracted part of y(r) with the diffracted part of
g(r). The algebra is rather tedious, but straight-
forward. The results are
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t'. q sin)
Xp= Iz ~ z z zgz + cosh I~+& )

(A21) and

g =ko&e sin20~ . (A27)
and

2

Xo= z z za sing 8 4'q
. k() P

vo ( +P') (A22)

The Fourier components of the neutron-crystal
interaction potential are related to the structure
factor ++ by

where vo =4mFo/1 „» (A26)

g =a(qz+ pz)'~/2 cose, ,

'5p = a[(vp/kp) + z)]/2 cos&z,

5G = 50+ 2koa&e sining .

(A23)

(A24)

(A26)

where the volume of a unit cell is V„». The wave
vector of the diffracted wave can be seen from the
geometry of Fig. 24 to be

ko =G+ k(, +2k,«sine, n, (A29)

p =
I va I/&p (A26)

The crystal thickness is a, ~& is the nominal
Bragg angle, and &~ is the angular deviation of the
incident wave vector ko from the exact Bragg con-
dition. The quantities P and g are given by

where n is a unit vector normal to the surface.
Note that

I xo I'+
I x, I' =

I
c I', (A3O)

as it must, for the zero-absorption case we are
considering;
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