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❋ Preface ❋

This book intends to provide a comprehensive and self-contained
study of the concept of mass as defined, employed, and interpreted
in contemporary theoretical and experimental physics and as critically
examined in the modern philosophy of science. It studies in particular
how far, if at all, present-day physics contributes to a more profound
understanding of the nature of mass.

In order to make this book accessible not only to the professional
physicist but also to the nonspecialist interested in the foundations of
physics, unnecessary technicalities and complicated mathematical cal-
culations have been avoided without, however, impairing the accuracy
and logical rigor of the presentation.

Next to space and time, mass is the most fundamental notion in
physics, especially once its so-called equivalence with energy had been
established by Albert Einstein. Moreover, it has even been argued
repeatedly that “space-time does not exist without mass-energy,” as
a prominent astrophysicist has phrased it.1

Although for the sake of completeness and comprehension the text
includes some historical and explanatory comments, it deals mainly
with developments that occurred after 1960. In fact, the year 1960 marks
the beginning of a new era of experimental and theoretical research on
gravitation and general relativity, the two main bases of our modern
conception of mass. In 1960 the first laboratory measurement of the
gravitational redshift was performed by P. V. Pound and G. A. Rebka,
and the first recording of a radar echo from a planet (Venus) was made.
In 1960 the spinor approach to general relativity was developed by
R. Penrose. In the same year V. W. Hughes and independently R.W.P.
Drever confirmed the isotropy of inertial mass by what has been called
the most precise null experiment ever performed; and R. H. Dicke,
together with P. G. Roll and R. Krokov, planned the construction of
their famous “Princeton experiment,” which was soon to confirm the
equivalence of inertial and gravitational mass with an unprecedented
degree of accuracy. All these events rekindled interest in studying the
properties of mass and endowed the study with a vigor that has not
abated since.

1 D. Lynden-Bell, “Inertia,” in O. Lahav, E. Terlevich, and D. J. Terlevich, eds., Gravita-
tional Dynamics (Cambridge, Mass.: Cambridge University Press, 1996), p. 235.
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P R E FA C E

As this book deals primarily with developments that occurred during
the relatively short interval of only four decades, its presentation is pre-
dominantly thematic and not chronological. The first chapter discusses
the notion of inertial mass and in particular the still problematic issue
of its noncircular definability. Chapter 2 deals with problems related
to the concept of relativistic or velocity-dependent mass and to the
notion of velocity-independent rest mass. Chapter 3 clarifies certain
misconceptions concerning the derivations of the mass-energy relation,
usually symbolized by the equationE = mc2, and comments on various
interpretations of this relation. Chapter 4 analyzes the trichotomy of
mass into the categories of inertial, active gravitational, and passive
gravitational mass and studies the validity of the equivalence principle
for test particles and for massive bodies. The final chapter, probably the
most controversial one, discusses recently proposed global and local
theories of the nature of mass.

In order to make the presentation self-contained I found it appropriate
to recapitulate very briefly some antecedent developments with which
the reader should be familiar in order to understand the new mate-
rial. I have also included historical items, irrespective of their dates,
whenever their inclusion seemed useful for the comprehension of an
important issue of the discussion. The text is fully documented and
contains bibliographical references that will enable readers to pursue
the study of a particular issue in which they happen to be interested.
Some of these bibliographical notes refer to the 1961 Harvard edition of
Concepts of Mass in Classical and Modern Physics, abbreviated henceforth
as COM.2 These notes are quoted with reference to the relevant chapter
or its section in COM and not to its pagination for the following reason.
Later editions of COM in English—such as the 1964 paperback edition
in the Torchbook Series of Harper and Row, New York, or translations
into other languages (such as the Russian translation by academician
N. F. Ovchinnikov, issued in 1967 by Progress Publishers, Moscow;
the 1974 German translation by Prof. H. Hartmann, published by Wis-
senschaftliche Buchgesellschaft, Darmstadt; the Italian translation by
Dr. M. Plassa and Dr. I. Prinetti of the Istituto di Metrologia in Torino,
published by G. Feltrinelli Editore, Milan; and the Japanese translation
by professors Y. Otsuki, Y. Hatano, and T. Saito, which appeared under
the imprint of Kodansha Publishers, Tokyo)—differ in pagination but

2 Harvard University Press, Cambridge, Mass., 1961; republished in 1997 by Dover
Publications, Mineola, New York.
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P R E FA C E

not in the order of chapters or of sections. The references can therefore
also be used by the reader of any of these various versions. The present
monograph does not presume to resolve the problem of mass. Its pur-
pose is rather to show that the notion of mass, although fundamental to
physics, is still shrouded in mystery.
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Introduction

The concept of mass is one of the most fundamental notions in
physics, comparable in importance only to the concepts of space and
time. Isaac Newton, who was the first to make systematic use of the
concept of mass, was already aware of its importance in physics. It
was probably not a matter of fortuity that the very first statement in
his Principia, the most influential work in classical physics, presents his
definition of mass or of “quantitas materiae,” as he still used to call it.1

However, his definition of mass as the measure of the quantity of matter,
“arising from its density and bulk conjointly,” was for several reasons
soon regarded as inadequate. Since then, the quest for an adequate
definition of mass, combined with the search for a more profound
understanding of its meaning, its nature, and its role in the physical
sciences, has never ceased to engage the attention of physicists and
philosophers alike.

That still today “mass is a mess,” as a contemporary physicist pun-
ningly phrased it,2 should not come as a surprise. For “in the world of
human thought generally, and in physical science particularly, the most
important and most fruitful concepts are those to which it is impossible
to attach a well-established meaning.”3

Yet, the remarkable progress in experimental and theoretical physics
made during the past few decades has considerably deepened our
knowledge concerning the nature of mass. In particular, recent advances
in the general theory of relativity and in the theory of elementary
particles have opened new vistas that promise to lead us to a more
profound understanding of the nature of mass. It is the intention of
the present study to review these developments in a rigorous and yet
concise fashion.

1 I. Newton, Philosophiae Naturalis Principia Mathematica (London: J. Streater, 1687, 1713,
1726), p. 1; Isaac Newton’s Mathematical Principles of Natural Philosophy and His System of the
World (Berkeley: University of California Press, 1934), p. 1.

2 W. T. Padgett, “Problems with the Current Definitions of Mass,” Physics Essays 3,
178–182 (1990).

3 H. A. Kramers, statement at the Princeton Bicentennial Conference on the Future of
Nuclear Energy, 1946, in K. K. Darrow, ed., Physical Science and Human Values (Princeton:
Princeton University Press, 1947), p. 196.
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❋ C H A P T E R O N E ❋

Inertial Mass

Mechanics, as understood in post-Aristotelian physics,1 is gen-
erally regarded as consisting of kinematics and dynamics. Kinematics,
a term coined by André-Marie Ampère,2 is the science that deals with
the motions of bodies or particles without any regard to the causes of
these motions. Studying the positions of bodies as a function of time,
kinematics can be conceived as a space-time geometry of motions, the
fundamental notions of which are the concepts of length and time. By
contrast, dynamics, a term probably used for the first time by Gottfried
Wilhelm Leibniz,3 is the science that studies the motions of bodies as
the result of causative interactions. As it is the task of dynamics to ex-
plain the motions described by kinematics, dynamics requires concepts
additional to those used in kinematics, for “to explain” goes beyond
“to describe.”4

The history of mechanics has shown that the transition from kinemat-
ics to dynamics requires only one additional concept—either the concept
of mass or the concept of force. Following Isaac Newton, who began his
Principia with a definition of mass, and whose second law of motion, in
Euler’s formulation F = ma, defines the force F as the product of the mass
m and the acceleration a (acceleration being, of course, a kinematical
concept), the concept of mass, or more exactly the concept of inertial
mass, is usually chosen. The three fundamental notions of mechanics
are therefore length, time, and mass, corresponding to the three physical

1 In Aristotelian physics the term “mechanics” ornidbojl (i )u (fdoi*, derived fromn (idpς
(contrivance), meant the application of an artificial device “to cheat nature,” and was
therefore not a branch of “physics,” the science of nature. “When we have to produce an
effect contrary to nature . . . we call it mechanical.” Cf. the pseudo-Aristotelian treatise
Mechanical Problems (847 a 10).

2 “C’est à cette science où les mouvements sont considérés en eux-mêmes . . . j’ai donné
le nom de cinématique, de l(joinb, mouvement.” A.-A. Ampère, Essai sur la philosophie des
sciences (Paris: Bachelier, 1834), p. 52.

3 G. W. Leibniz, “Essai de Dynamique sur les loix du mouvement,” in C. I. Gerhardt, ed.
Mathematische Schriften (Hildesheim: Georg Olms, 1962), vol. 6, pp. 215–231; “Specimen
Dynamicum,” ibid., pp. 234–254.

4 M. Jammer, “Cinematica e dinamica,” in Saggi su Galileo Galilei (Florence: G. Barbèra
Editore, 1967), pp. 1–12.
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C H A P T E R O N E

dimensions L,T, and M with their units the meter, the second, and
the kilogram. As in the last analysis all measurements in physics are
kinematic in nature, to define the concept of mass and to understand
the nature of mass are serious problems. These difficulties are further
exacerbated by the fact that physicists generally distinguish among three
types of masses, which they call inertial mass, active gravitational mass,
and passive gravitational mass. For the sake of brevity we shall often
denote them by mi,ma, and mp, respectively.

As a perusal of modern textbooks shows, contemporary definitions
of these concepts are no less problematic than those published almost
a century ago.5 Today, as then, most authors define the inertial mass
mi of a particle as the ratio between the forced F acting on the particle
and the acceleration a of the particle, produced by that force, or briefly
as “the proportionality factor between a force and the acceleration
produced by it.” Some authors even add the condition that F has to be
“mass-independent” (nongravitational), thereby committing the error
of circularity.

The deficiency of this definition, based as it is on Newton’s second
law of motion

F = mia (1.1)

is of course its use of the notion of force. For if “force” is regarded as
a primitive, that is, as an undefined term, then this definition defines
an ignotum per ignotius; and if “force” is defined, as it generally is, as
the product of acceleration and mass, then the definition is obviously
circular.

The active gravitational mass ma of a body, roughly defined, measures
the strength of the gravitational field produced by the body, whereas
its passive gravitational mass mp measures the body’s susceptibility or
response to a given gravitational field. More precise definitions of the
gravitational masses will be given later on.

Not all physicists differentiate between ma and mp. Hans C. Ohanian,
for example, calls such a distinction “nonsense” because, as he says, “the
equality between active and passive mass is required by the equality of
action and reaction; an inequality would imply a violation of momentum
conservation.”6

5 E. V. Huntington, “Bibliographical Note on the Use of the Word Mass in Current
Textbooks,” The American Mathematical Monthly 25, 1–15 (1918).

6 H. C. Ohanian, Gravitation and Spacetime (New York: Norton, 1973), p. 17.
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I N E R T I A L M A S S

These comments are of course not intended to fault the authors of
textbooks, for although it is easy to employ the concepts of mass it
is difficult, as we shall see further on, to give them a logically and
scientifically satisfactory definition. Even a genius such as Isaac Newton
was not very successful in defining inertial mass!

The generally accepted classification of masses into mi,ma, and mp, the
last two sometimes denoted collectively by mg for gravitational mass,
gives rise to a problem. Modern physics, as is well known, recognizes
three fundamental forces of nature apart from gravitation—the elec-
tromagnetic, the weak, and the strong interactions. Why then are non-
inertial masses associated only with the force of gravitation? True, at the
end of the nineteenth century the concept of an “electromagnetic mass”
played an important role in physical thought.7 But after the advent
of the special theory of relativity it faded into oblivion. The problem
of why only gravitational mass brings us to the forefront of current
research in particle physics, for it is of course intimately related to the
possibility, suggested by modern gauge theories, that the different forces
are ultimately but different manifestations of one and the same force.
From the historical point of view, the answer is simple. Gravitation was
the first of the forces to become the object of a full-fledged theory which,
owing to the scalar character of its potential as compared with the vector
or tensor character of the potential of the other forces, proved itself less
complicated than the theories of the other forces.

Although the notions of gravitational mass ma and mp differ conceptu-
ally from the notion of inertial mass mi, their definitions, as we shall see
later on,8 presuppose, implicitly at least, the concept of mi. It is therefore
logical to begin our discussion of the concepts of mass with an analysis
of the notion of inertial mass.

There may be an objection here on the grounds that this is not the
chronological order in which the various conceptions of mass emerged
in the history of civilization and science. It is certainly true that the notion
of “weight,” i.e., mpg, where g is the acceleration of free fall, and hence,
by implication mp, is much older than mi. That weights were used in the
early history of mankind is shown by the fact that the equal-arm balance
can be traced back to the year 5000 b.c. “Weights” are also mentioned

7 For the history of the notion of “electromagnetic mass” see chapter 11 in M. Jammer,
Concepts of Mass in Classical and Modern Physics (Cambridge, Mass.: Harvard University
Press, 1961), referred to henceforth as COM.

8 See the beginning of chapter 4.
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C H A P T E R O N E

in the Bible. In Deuteronomy, chapter 25, verse 13, we read: “You shall
not have in your bag two kinds of weights, a large and a small . . . a full
and just weight you shall have.” Or in Proverbs, chapter 11, verse 1, it
is said: “A false balance is an abomination to the Lord, but a just weight
is his delight.”

But that “weight” is a force, given by mpg, and thus involves the notion
of gravitational mass could have been recognized only after Newton laid
the foundations of classical dynamics, which he could not have done
without introducing the concept of inertial mass.

Turning, then, to the concept of inertial mass we do not intend to
recapitulate the long history of its gradual development from antiquity
through Aegidius Romanus, John Buridan, Johannes Kepler, Christiaan
Huygens, and Isaac Newton, which has been given elsewhere.9 Our
intention here is to focus on only those aspects that have not yet been
treated anywhere else. One of these aspects is what has been supposed,
though erroneously as we shall see, to be the earliest operational def-
inition of inertial mass. But before beginning that discussion let us
recall that, although Kepler and Huygens came close to anticipating the
concept of mi, it is Newton who has to be credited with having been the
first to define the notion of inertial mass and to employ it systematically.

In particular, Galileo Galilei, as was noted elsewhere,10 never offered
an explicit definition of mass. True, he used the term “massa,” but only
in a nontechnical sense of “stuff” or “matter.” For him the fundamental
quantities of mechanics were space, time, and momentum. He even
proposed a method to compare the momenta (“movimenti e lor velocità
o impeti”) of different bodies, but he never identified momentum as the
product of mass and velocity. Richard S. Westfall, a prominent historian
of seventeenth-century physics, wrote in this context: “Galileo does
not, of course, clearly define mass. His word momento serves both for
our ‘moment’ and for our ‘momentum,’ and he frequently uses impeto
for ‘momentum.’ ” One of Galileo’s standard devices to measure the
momenti of equal bodies was to compare their impacts, that is, their forze
of percussion.”11

It was therefore an anachronistic interpretation of Galileo’s method of
comparing momenta when the eminent mathematician Hermann Weyl

9 Chapters 2–6 of COM.
10 Beginning of chapter 5 of COM.
11 R. S. Westfall, “The Problem of Force in Galileo’s Physics,” in C. L. Golino, ed., Galileo

Reappraised (Berkeley: University of California Press, 1966), pp. 67–95.
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I N E R T I A L M A S S

wrote in 1927: “According to Galileo the same inert mass is attributed
to two bodies if neither overruns the other when driven with equal
velocities (they may be imagined to stick to each other upon colliding).”12

This statement, which constitutes the first step of what we shall call
“Weyl’s definition of inertial mass,” can be rephrased in more detail as
follows: If, relative to an inertial reference frame S, two particles A and
B of oppositely directed but equal velocities uA and uB = −uA collide
inelastically and coalesce into a compound particle A+B, whose velocity
uA+B is zero, then the masses mA and mB, respectively, of these particles
are equal. In fact, if mA+B denotes the mass of the compound particle,
application of the conservation principles of mass and momentum, as
used in classical physics, i.e.,

mAuA +mBuB = mA+BuA+B = (mA +mB)uA+B (1.2)

shows that uB = −uA and uA+B = 0 imply mA = mB. This test is
an example of what is often called a “classificational measurement”:
Provided that it has been experimentally confirmed that the result of the
test does not depend on the magnitude of the velocities uA and uB and
that for any three particles A,B, and C, if mA = mB and mB = mC then the
experiment also yields mA = mC (i.e., the “equality” is an equivalence
relation), it is possible to classify all particles into equivalence classes
such that all members of such a class are equal in mass.

For a “comparative measurement,” which establishes an order among
these classes or their members, Weyl’s criterion says: “That body has
the larger mass which, at equal speeds, overruns the other.”13 In other
words, mA is larger than mB, or mA > mB, if uA = −uB but uA+B 6= 0 and
sign uA = sign uA+B. To ensure that the relation “larger” thus defined
is an order relation it has to be experimentally confirmed that it is an
asymmetric and transitive relation, i.e., if mA > mB then mB > mA

does not hold, and if mA > mB and mB > mC have been obtained then
mA > mC will also be obtained for any three particles A,B, and C. Since
for uA = −uB equation (1.2) can be written

mA −mB = (uA+B/uA)mA+B (1.3)

the condition sign uA = sign uA+B shows that the coefficient of mA+B is

12 H. Weyl, “Philosophie der Mathematik und Naturwissenschaft,” in R. Oldenbourg,
ed., Handbuch der Philosophie (Munich: Oldenbourg, 1927). Philosophy of Mathematics and
Natural Science (Princeton: Princeton University Press, 1949), p. 139.

13 Weyl, Philosophy of Mathematics and Natural Science, p. 139.
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C H A P T E R O N E

a positive number and, hence, mA > mB, it being assumed, of course,
that all mass values are positive numbers. The experimentally defined
relation “>” therefore coincides with the algebraic relation denoted
by the same symbol. Finally, to obtain a “metrical measurement” the
shortest method is to impose only the condition uA+B = 0 so that
equation (1.2) reduces to

mA/mB = −uB/uA. (1.4)

Hence, purely kinematic measurements of uA and uB determine the
mass-ratio mA/mB. Choosing, say, mB as the standard unit of mass
(mB = 1) determines the mass mA of any particle A unambiguously.

Weyl called this quantitative determination of mass “a definition by
abstraction” and referred to it as “a typical example of the formation
of physical concepts.” For such a definition, he pointed out, conforms
to the characteristic trait of modern science, in contrast to Aristotelian
science, to reduce qualitative determinations to quantitative ones, and
he quoted Galileo’s dictum that the task of physics is “to measure what
is measurable and to try to render measurable what is not so yet.”

Weyl’s definition of mass raises a number of questions, among them
the philosophical question of whether it is really a definition of inertial
mass and not only a prescription of how to measure the magnitude of
this mass. It may also be asked whether it does not involve a circularity;
for the assumption that the reference frame S is an inertial frame is
a necessary condition for its applicability, but for the definition of an
inertial system the notion of force and, therefore, by implication, that of
mass may well be indispensable.

Not surprisingly, Weyl’s definition seems never to have been criti-
cized in the literature on this subject, for the same questions have been
discussed in connection with the much better-known definition of mass
that Ernst Mach proposed about sixty years earlier. In fact, these two
definitions have much in common. The difference is essentially only
that Weyl’s definition is based, as we have seen, on the principle of the
conservation of momentum while Mach’s rests on the principle of the
equality between action and reaction or Newton’s third law. But, as is
well known, both principles have the same physical content because the
former is only a time-integrated form of the latter.

Although Mach’s definition of inertial mass is widely known,14 we
shall review it briefly for the convenience of the reader. For Mach, just as

14 See, e.g., chapter 8 of COM.
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I N E R T I A L M A S S

for Weyl six decades later, the task of physics is “the abstract quantitative
expression of facts.” Physics does not have to “explain” phenomena in
terms of purposes or hidden causes, but has only to give a simple but
comprehensive account of the relations of dependence among phenom-
ena. Thus he vigorously opposed the use of metaphysical notions in
physics and criticized, in particular, Newton’s conceptions of space and
time as presented in the Principia.15

Concering Newton’s definition of mass Mach declared: “With regard
to the concept of ‘mass,’ it is to be observed that the formulation of
Newton, which defines mass to be the quantity of matter of a body as
measured by the product of its volume and density, is unfortunate. As
we can only define density as the mass of a unit of volume, the circle is
manifest.”16

In order to avoid such circularity and any metaphysical obscurities
Mach proposed to define mass with an operational definition. It applies
the dynamical interaction between two bodies, called A and B, that
induce in each other opposite accelerations in the direction of their
line of junction. If aA/B denotes the acceleration of A owing to B, and
aB/A the acceleration of B owing to A, then, as Mach points out, the
ratio −aB/A/aA/B is a positive numerical constant independent of the
positions or motions of the bodies and defines what he calls the mass-
ratio mA/B = −aB/A/aA/B. By introducing a third body C, interacting with
A and B, he shows that the mass-ratios satisfy the transitive relation
mA/B = mA/CmC/B and concludes that each mass-ratio is the ratio of
two positive numbers, i.e., mA/B = mA/mB,mA/C = mA/mC, and mC/B =
mC/mB. Finally, if one of the bodies, say A, is chosen as the standard
unit of mass (mA = 1), the masses of the other bodies are uniquely
determined.17

Mach’s identification of the ratio of the masses of two interacting bod-
ies as the negative inverse ratio of their mutually induced accelerations
is essentially only an elimination of the notion of force by combining
Newton’s third law of the equality between action and reaction with his
second law of motion. In fact, if FAB is the force exerted on A by B and FBA

15 See, e.g., chapter 5 in M. Jammer, Concepts of Space (Cambridge: Harvard University
Press, 1954, 1969; enlarged edition, New York: Dover, 1993).

16 E. Mach, Die Mechanik in ihrer Entwicklung (Leipzig: Brockhaus, 1883, 1888, 1897, 1901,
1904, 1908, 1912, 1921, 1933); The Science of Mechanics (La Salle, Ill.: Open Court, 1893, 1902,
1919, 1942, 1960), chapter 2, section 3, paragraph 7. In his Die Principien der Wärmelehre
(Leipzig: Barth, 1896, 1900, 1919) Mach called Newton’s definition of mass “scholastisch.”

17 For further details see chapter 8 in COM.
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C H A P T E R O N E

the force exerted on B by A, then according to the third law FAB = −FBA.
But according to the second law FAB = mAaA/B and FBA = mBaB/A.
Hence, mAaA/B = −mBaB/A or mA/B = mA/mB = −aB/A/aA/B, as stated
by Mach, and the mass-ratio mA/B is the ratio between two inertial
masses. Thus we see that Mach’s operational definition is a definition
of inertial masses.

We have briefly reviewed Mach’s definition not only because it is still
restated in one form or another in modern physics texts, but also, and
more importantly, because it is still a subject on which philosophers of
science disagree just as they did in the early years of the century. In fact,
as we shall see, recent arguments pro or contra Mach’s approach were
first put forth a long time ago, though in different terms. For example,
in 1910 the philosopher Paul Volkmann declared that Mach’s “phe-
nomenological definition of mass,” as he called it, contradicts Mach’s
own statement that the notion of mass, since it is a fundamental concept
(“Grundbegriff”), does not properly admit any definition because we
deprive it of a great deal of its rich content if we confine its meaning
solely to the principle of reaction.18 On the other hand, the epistemolo-
gist and historian of philosophy Rudolf Thiele declared that “one can
hardly overestimate the merit that is due to Mach for having derived
the concept of mass without any recourse to metaphysics. His work is
also important for the theory of knowledge, since it provides for the first
time, an immanent determination of this notion without the necessity of
transcending the realm of possible experience.”19

As noted above, many textbooks define inertial mass mi as the ratio
between the force F and the acceleration a in accordance with Newton’s
second law of motion, which in Euler’s formulation reads F = mia.
Further, they often suppose that the notion of force is immediately
known to us by our muscular sensation when overcoming the resistance
in moving a heavy body. But there are also quite a few texts on mechanics
that follow Mach, even though they do not refer to him explicitly, and
introduce mi in terms of an operational definition based either on New-
ton’s third law, expressing the equality of action and reaction, or on the
principle of the conservation of linear momentum. It is therefore strange
that the prominent physicist and philosopher of physics, Percy Williams

18 P. Volkmann, Erkenntnistheoretische Grundzüge der Naturwissenschaften (Leipzig: Teub-
ner, 1910), p. 138.

19 R. Thiele, “Zur Charakteristik von Mach’s Erkenntnislehre,” in Abhandlungen zur
Philosophie und ihrer Geschichte, vol. 45 (Halle: Niemeyer, 1914), p. 101.
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I N E R T I A L M A S S

Bridgman, a staunch proponent of operationalism and probably the first
to use the term “operational definition,” never even mentioned Mach’s
operational definition of mass in his influential book The Logic of Modern
Physics, although his comments on Mach’s cosmological ideas clearly
show that he had read Mach’s writings.20

Instead, like many physicists and philosophers of the late nineteenth
century, among them James Clerk Maxwell and Alois Höfler,21 Bridgman
introduced “mass” essentially in accordance with Newton’s second law,
but put, as he phrased it, “the crude concept [of force] on a quantitative
basis by substituting a spring balance for our muscles, or instead of the
spring balance . . . any elastic body, and [we] measure the force exerted
by it in terms of its deformation.” After commenting on the role of force
in the case of static systems Bridgman continued:

We next extend the force concept to systems not in equilibrium, in
which there are accelerations, and we must conceive that at first all
our experiments are made in an isolated laboratory far out in empty
space, where there is no gravitational field. We here encounter a new
concept, that of mass, which as it is originally met is entangled with the
force concept, but may later be disentangled by a process of successive
approximations. The details of the various steps in the process of
approximation are very instructive as typical of all methods in physics,
but need not be elaborated here. Suffice it to say that we are eventually
able to give to each rigid material body a numerical tag characteristic
of the body such that the product of this number and the acceleration
it receives under the action of any given force applied to it by a spring
balance is numerically equal to the force, the force being defined, except
for a correction, in terms of the deformation of the balance, exactly as
it was in the static case. In particularly, the relation found between
mass, force, and acceleration applies to the spring balance itself by
which the force is applied, so that a correction has to be applied for
a diminution of the force exerted by the balance arising from its own
acceleration.22

We have purposely quoted almost all of what Bridgman had to say
about the definition of mass in order to show that the definition of
mass via an operational definition of force meets with not inconsiderable

20 P. W. Bridgman, The Logic of Modern Physics (New York: Macmillan, 1927, 1961), p. 25.
21 See chapter 8 of COM.
22 Bridgman, Logic of Modern Physics, pp. 102–103.
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difficulties. Nor do his statements give us any hint as to why he com-
pletely ignored Mach’s operational definition of mass.

In the late 1930s Mach’s definition was challenged as having only a
very limited range of applicability insofar as it fails to determine unique
mass-values for dynamical systems composed of an arbitrary number
of bodies. Indeed, C. G. Pendse claimed in 1937 that Mach’s approach
breaks down for any system composed of more than four bodies.23

Let us briefly outline Pendse’s argument. If in a system of n bodies ak

denotes, in vector notation, the observable induced acceleration of the
kth body and ukj(j 6= k) the observable unit vector in the direction from
the kth to the jth body, then clearly

ak =
n∑

j=1

αkjukj (k = 1, 2, . . . ,n), (1.5)

where αkj(αkk = 0) are n(n − 1) unknown numerical coefficients in 3n
algebraic equations. However, these coefficients, which are required for
the determination of the mass-ratios, are uniquely determined only
if their number does not exceed the number of the equations, i.e.,
n(n− 1) ≤ 3n, or n ≤ 4.

Pendse also looked into the question of how this result is affected if
the dynamical system is observed at r different instants. Again using
simple algebra he arrived at the conclusion that “if there be more than
seven particles in the system the observer will be unable to determine
the ratios of the masses of the particles . . . , however large the num-
ber of instants, the accelerations pertaining to which are considered,
may be.”

Pendse’s conclusions were soon challenged by V. V. Narlikar on the
grounds that the Newtonian inverse-square law of gravitation, if applied
to a system of n interacting massive particles, makes it possible to assign
a unique mass-value mk(k = 1, 2, . . . ,n) to each individual particle of the
system. For according to this law, the acceleration aK of the kth particle
satisfies the equation

ak =
n∑

j=1
j 6=k

Gmjrjk
/|rjk|3, (1.6)

23 C. G. Pendse, “A Note on the Definition and Determination of Mass in Newtonian
Mechanics,” Philosophical Magazine 24, 1012–1022 (1937). See also References 27 and 28 in
chapter 8 of COM.
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where G is the constant of gravitation and rjk is the vector pointing
from the position of mk to the position of mj. Since all accelerations
ak(k = 1, 2, . . . ,n) and all rjk are observable, “all the masses become
known in this manner.”24

It should be noted, however, that Narlikar established this result for
active gravitational masses, for the mj in the above equations are those
kinds of masses, and not for inertial masses, which we have seen were
the definienda in Pendse’s approach. It is tempting to claim that this
difficulty can be resolved within Mach’s conceptual framework by an
appeal to his experimental proposition, which says: “The mass-ratios of
bodies are independent of the character of the physical states (of the
bodies) that condition the mutual accelerations produced, be those states
electrical, magnetic, or what not; and they remain, moreover, the same,
whether they are mediately or immediately arrived at.”25 Hence one may
say that the interactions relative to which the mass-ratios are invariant
also include gravitational interactions although these were not explicitly
mentioned by Mach. However, this interpretation may be questioned
because of Mach’s separate derivation of the measurability of mass by
weight.26 As this derivation illustrates, quite a few problematic issues
appertaining to Mach’s treatment of mass would have been avoided had
he systematically distinguished between inertial and active or passive
gravitational mass.

A serious difficulty with Mach’s definition of mass is its dependence
on the reference frame relative to which the mutually induced accel-
erations are to be measured. Let us briefly recall how the mass-ratio
mA/B of two particles A and B depends on the reference frame S. In a
reference frame S′, which is moving with an acceleration a relative to S,
we have by definition m′A/B = −a′B/A/a

′
A/B = −(aB/A−a)/(aA/B−a) so that

m′A/B = mA/B[1−(a/aB/A)]/[1−(a/aA/B)] 6= mA/B (for a 6= 0). Thus in order
to obtain uniquely determined mass-values, Mach assumed, tacitly at
least, that the reference frame to be used for the measurement of the
induced accelerations is an inertial system However, such a system is
defined by the condition that a “free” particle (i.e., a particle not acted
upon by a force) moves relative to it in uniform rectilinear motion. This
condition involves, as we see, the notion of force, which Mach defined as

24 V. V. Narlikar, “The Concept and Determination of Mass in Newtonian Mechanics,”
Philosophical Magazine 27, 33–36 (1938).

25 Mach, The Science of Mechanics, chapter 2, section 7, paragraph 5.
26 Mach, The Science of Mechanics, chapter 2, section 5, paragraph 6.
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“the product of the mass-value of a body times the acceleration induced
in that body.”27 Hence, Mach’s definition involves a logical circle.

Nevertheless, in the early decades of the twentieth century Mach’s
definition of mass, as an example of his opposition to the legitimacy
of metaphysics in scientific thought, enjoyed considerable popularity,
especially among the members of the Viennese Circle founded by Moritz
Schlick. Repudiating Kantian apriorism, logical positivists and scien-
tific empiricists stressed the importance of the logical analysis of the
fundamental concepts of physical science and often regarded Mach’s
definition of mass as a model for such a program. A drastic change
occurred only after the 1950s when the positivistic philosophy of science
became a subject of critical attack. One of the most eloquent critics was
the philosopher Mario Bunge.

According to Bunge, Mach committed a serious error when he “con-
cluded that he has defined the mass concept in terms of observable
(kinematic) properties,” for, “Mach confused ‘measuring’ and ‘comput-
ing’ with ‘defining.’ ” In particular, the equation mA/mB = −aB/A/aA/B,
which establishes an equality between two expressions that differ in
meaning—the left-hand side expressing “the inertia of body A relative
to the inertia of body B” and the right-hand side standing for a purely
kinematical quantity—cannot be interpreted, as Mach contended, as
having the meaning of a definition. It is a numerical, but not a logical,
equality and “does not authorize us to eliminate one of the sides in favor
of the other.”28

In a similar vein Renate Wahsner and Horst-Heino von Borzeszkowski
rejected Mach’s definition on the grounds that “the real nature” (“das
Wesen”) of mass cannot be obtained by merely quantitative determina-
tions.29 Moreover, they charged Mach, as Ludwig Boltzmann had done
earlier,30 with contradicting his own precept that a mechanics that tran-
scends experience fails to perform its proper task. Mach’s definition,
based as it is on the interaction between two mutually attracting bodies,
has not been proved to be universally valid for all bodies dealt with

27 Mach, The Science of Mechanics, chapter 2, section 7, paragraph 5.
28 M. Bunge, “Mach’s Critique of Newtonian Mechanics,” American Journal of Physics 34,

585–596 (1966); reprinted in J. Blackmore, Ernst Mach—A Deeper Look (Dordrecht: Kluwer,
1992), pp. 243–261.

29 R. Wahsner and H.-H. von Borzeszkowski, epilogue to their new edition of Mach’s
Die Mechanik in ihrer Entwicklung (Berlin: Akademie Verlag, 1988), p. 600.

30 L. Boltzmann, “Über die Grundprinzipien und Grundgleichungen der Mechanik,”
in Populäre Schriften (Leipzig: J. A. Barth, 1905), p. 293.
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in mechanics and his claim that the “experimental propositions” do
not go beyond experience is confuted by the fact that they presuppose
all principles of mechanics. Similarly, in a recent essay on operational
definitions Andreas Kamlah rejects the claim that the concept of mass
can in all cases be defined in a kinematical language containing only
the notions of position, time, and velocity (or acceleration). He also
argues that “Mach’s definition is not a definition in the proper sense . . .
[for] it yields the values of mass only for bodies which just by chance
collide with other bodies. All other values of that function remain
undetermined.”31

In contrast to the preceding unfavorable criticisms (and many others
could have been recounted), Mach’s definition was defended, at least
against two major objections, by Arnold Koslow.32 The two objections
referred to concern the restricted applicability of the definition and
its noninvariance relative to different reference frames. Koslow’s main
argument against the former objection contends that the third experi-
mental proposition has not been taken into account. For according to
this proposition the mass-ratios are independent of whether the mutual
accelerations are induced by “electric, magnetic, or what not” interac-
tions. Hence, as Koslow shows in mathematical detail, by performing
the definitional operations with respect to different kinds of interactions,
the number of the equations can be sufficiently increased to ensure
the uniqueness of the mass-ratios for any finite number of particles.
Concerning the latter objection, Koslow justified Mach’s contention that
“the earth usually does well enough as a reference system, and for larger
scaled motions, or increased accuracy, one can use the system of the
fixed stars.”

An operational definition of inertial mass, which unlike Mach’s defini-
tion seems to be little known even among experts, is the so-called “table-
top definition” proposed in 1985 by P. A. Goodinson and B. L. Luffman.33

Unlike Mach’s and Weyl’s definitions of mi, which are based, as we have
seen, on Newton’s third law, the Goodinson-Luffman definition is based
on Newton’s second law, which, in Euler’s formulation, says that force

31 A. Kamlah, “The Problem of Operational Definitions,” in W. Salmon and G. Wolters,
eds., Logic, Language, and the Structure of Scientific Theories (Konstanz: Universitätsverlag
Konstanz, 1996), pp. 171–189.

32 A. Koslow, “Mach’s Concept of Mass: Program and Definition,” Synthese 18, 216–233
(1968).

33 P. A. Goodinson and B. L. Luffman, “On the Definition of Mass in Classical Physics,”
American Journal of Physics 53, 40–42 (1985).
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is the product of mass and acceleration. However, as the notion of force
(or of weight or of friction) as used in this definition is made part of
the operational procedure, an explicit definition is not required so that
from the purely operational point of view they seem to have avoided a
logical circularity.

Goodinson and Luffman call their definition of mi a “table-top def-
inition” because it involves the measurement of the acceleration aB of
a body B that is moving on a horizontal table—on “a real table, not
the proverbial ‘infinitely smooth table.’ ” The motion of B is produced
by means of a (weightless) string that is attached to B, passes over a
(frictionless) pulley fixed at the end of the table, and carries a heavy
weight W on its other end. At first the acceleration a0 of a standard body
B0, connected via the string with an appropriate weight W0, is measured.
Measurements of distance and time are of course supposed to have been
operationally defined antecedently, just as in the operational definitions
by Mach or by Weyl.

The procedure of measuring the acceleration a is repeated for a body
B and also for weights W that differ from W0. A plot of a against a0

shows that

a = ka0 + c, (1.7)

where k and c are constants. Repetition of the whole series of measure-
ments with a different table again yields a linear relation

a = ka0 + d (1.8)

with the same slope k but with a constant d that differs from c. This
shows that the intercepts c and d are table-dependent whereas the slope
k is independent of the roughness or friction caused by the table. A
series of such measurements for bodies Bq(q = 1, 2, . . .) yields a series
of straight-line plots, one plot for each aq against a0 with slope kq. These
slopes are seen to have the following properties: if Bq is “heavier than”
Bp then

kq < kp (1.9)

and

1/kq + 1/kp = 1/kq+p, (1.10)

where kq+p is the slope obtained when Bq and Bp are combined. The
inertial mass mi(Bq) of a body Bq, with respect to the standard body B0,
is now defined by
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mi(Bq) = l/kq. (1.11)

In the sequel to their paper Goodinson and Luffman prove that equa-
tions (1.9) and (1.10) are independent of the choice of the standard body
B0, and that mi(B1) = mi(B2) andmi(B2) = mi(B3) imply mi(B1) = mi(B3)

for any three bodies B1, B2, and B3, independently of the choice of
B0. In addition to this transitivity of mass, the additivity of mass is
obviously assured because of (1.10). That in spite of the fundamental
differences noted above the table-top definition converges to Mach’s
definition under certain conditions can be seen as follows. For two
arbitrary bodies B1 and B2 with inertial masses mi(B1) = k−1

1 and
mi(B2) = k−1

2 , the plots of their respective accelerations a1 and a2 with
respect to B0 are

a1 = [mi(B1)]−1 a0 + c1 (1.12)

and

a2 = [mi(B2)]−1 a0 + c2. (1.13)

Hence

mi(B1)a1 = mi(B2)a2 + c12, (1.14)

where

c12 = mi(B1)c1 −mi(B2)c2. (1.15)

Experience shows that the quantity |c12| is table-dependent and ap-
proaches zero in the case of a perfectly smooth table. In the limit,

mi(B1)/mi(B2) = a2/a1, (1.16)

which agrees with the Machian definition of the mass-ratio of two bodies
as the inverse ratio of their accelerations (the minus sign being ignored).
Yet in spite of this agreement the table-top definition is proof against the
criticism leveled against Mach’s definition as being dependent on the
reference frame. In fact, if an observer at rest in a reference frame S
graphs the plot for a body B1 with respect to B0 in the form

a1 = [mi(B1)]−1a0 + c1, (1.17)

then an observer at rest in a reference frame S′ that moves with an
acceleration a relative to S (in the direction of the accelerations involved)
will write

a′1 =
[
m′i(B1)

]−1 a′0 + c′1. (1.18)
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But since a′1 = a1 − a and a′0 = a0 − a, clearly

a1 =
[
m′i(B1)

]−1 a0 + c′′1, (1.19)

where

c′′1 = c′1 + a
[
1−m′i(B1)

]−1 (1.20)

Hence, the plot of a1 against a0 has the slope [m′i(B1)]−1, which shows, if
compared with (1.17), that mi(B1) = m′i(B1) since mi is defined only by
the slope. Thus, both observers obtain the same result when measuring
the inertial mass of the body B1. Of course, this conclusion is valid
only within the framework of classical mechanics and does not hold,
for instance, in the theory of relativity.

The range of objects to which an operational definition of inertial mass,
such as the Goodinson-Luffman definition, can be applied is obviously
limited to medium-sized bodies. One objection against operationalism
raised by philosophers of the School of Scientific Empiricists, an out-
growth of the Viennese School of Logical Positivists, is that quite gener-
ally no operational definition of a physical concept, and in particular of
the concept of mass, can ever be applied to all the objects to which
the concept is attributed. Motivated by the apparently unavoidable
circularity in Mach’s operational definition of mass they preferred to
regard the notion of mass as what they called a partially interpreted
theoretical concept.

A typical example is Rudolf Carnap’s discussion of the notion of mass.
The need to refer to different interactions or different physical theories
when speaking, e.g., of the mass of an atom or of the mass of a star, led
him to challenge the operational approach. Instead of saying that there
are various concepts of mass, each defined by a different operational
procedure, Carnap maintained that we have merely one concept of mass.
“If we restrict its meaning [the meaning of the concept of mass] to a
definition referring to a balance scale, we can apply the term to only a
small intermediate range of values. We cannot speak of the mass of the
moon. . . . We should have to distinguish between a number of differ-
ent magnitudes, each with its own operational definition. . . . It seems
best to adopt the language form used by most physicists and regard
length, mass and so on as theoretical concepts rather than observational
concepts explicitly defined by certain procedures of measurement.”34

34 R. Carnap, An Introduction to the Philosophy of Science (New York: Basic Books, 1966),
pp. 103–104.
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Carnap’s proposal to regard “mass” as a theoretical concept refers
of course to the dichotomization of scientific terms into observational
and theoretical terms, an issue widely discussed in modern analytic
philosophy of science. Since, generally speaking, physicists are not
familiar with the issue, some brief comments, specially adapted to our
subject, may not be out of place.

It has been claimed by philosophers of science that physics owes much
of its progress to the use of theories that transcend the realm of purely
empirical or observational data by incorporating into their conceptual
structure so-called theoretical terms or theoretical concepts. (We ignore
the exact distinction between the linguistic entity “term” and the ex-
tralinguistic notion “concept” and use these two words as synonyms.)

In contrast to “observational concepts,” such as “red,” “hot,” or “iron
rod,” whose meanings are given ostensively, “theoretical concepts,”
such as “potential,” “electron,” or “isospin,” are not explicitly definable
by direct observation. Although the precise nature of a criterion for
observability or for theoreticity has been a matter of some debate, it has
been generally agreed that terms, obtaining their meaning only through
the role they play in the theory as a whole, are theoretical terms. This
applies, in particular, to terms, such as “mass,” used in axiomatizations
of classical mechanics, such as proposed by H. Hermes, H. A. Simon,
J.C.C. McKinsey et al., S. Rubin and P. Suppes,35 or more recently by C. W.
Mackey, J. D. Sneed, and W. Stegmüller.36 In these axiomatizations of
mechanics “mass” is a theoretical concept because it derives its meaning
from certain rules or postulates of correspondence that associate the
purely formally axiomatized term with specific laboratory procedures.
Furthermore, the purely formal axiomatization of the term “mass” is
justified as a result of the confirmation that accrues to the axiomatized
and thus interpreted theory as a whole and not to an individual theorem
that employs the notion of mass.

It is for this reason that Frank Plumpton Ramsey seems to have been
the first to conceive “mass” as a theoretical concept when he declared in
the late 1920s that to say “ ‘there is such a quality as mass’ is nonsense
unless it means merely to affirm the consequences of a mechanical

35 See chapter 9 of COM.
36 G. W. Mackey, Mathematical Foundations of Quantum Mechanics (New York: Benjamin,

1963), chapter 1. J. D. Sneed, The Logical Structure of Mathematical Physics (Dordrecht:
Reidel, 1971). W. Stegmüller, Probleme und Resultate der Wissenschaftstheorie und analytischen
Philosophie (Vienna: Springer-Verlag, 1973), vol. 2, part 2.
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theory.”37 Ramsey was also the first to propose a method to eliminate
theoretical terms of a theory by what is now called the “Ramsey sen-
tence” of the theory. Briefly expressed, it involves logically conjoining
all the axioms of the theory and the correspondence postulates into a
single sentence, replacing therein each theoretical term by a predicate
variable and quantifying existentially over all the predicate variables
thus introduced.38 This sentence, now containing only observational
terms, is supposed to have the same logical consequences as the original
theory. The term “mass” has been a favorite example in the literature on
the “Ramsey sentence.”39

Carnap proposed regarding “mass” as a theoretical concept, as we
noted above, because of the inapplicability of one and the same opera-
tional definition of mass for objects that differ greatly in bulk, such as a
molecule and the moon, and since different definitions assign different
meanings to their definienda, the universality of the concept of mass
would be untenable. However, this universality would also be violated
if the mass, or rather masses, of one and the same object are being de-
fined by operational definitions based on different physical principles.
This was the case, for instance, when Koslow suggested employing
different kinds of interactions in order to rebut Pendse’s criticism of
Mach’s definition as failing to account for the masses of arbitrarily many
particles. Even if in accordance with Mach’s “experimental proposition”
the numerical values of the thus defined masses are equal, the respective
concepts of mass may well be different, as is, in fact, the case with inertial
and gravitational mass in classical mechanics, and one would have to
distinguish between, say, “mechanical mass” (e.g., “harmonic oscillator
mass”), “Coulomb law mass,” “magnetic mass,” and so on.

The possibility of such a differentiation of masses was discussed
recently by Andreas Kamlah when he distinguished between “energy-
principle mass” (“Energiesatz-Masse”) and “momentum-principle
mass” (“Impulssatz-Masse”), corresponding to whether the conser-
vation principle of energy or of momentum is being used for the
definition.40

37 F. P. Ramsey, The Foundations of Mathematics and Other Logical Essays, edited by R. B.
Braithwaite (London: Kegan, Paul, Trench, Turner, 1931), pp. 260–261.

38 For details see, e.g., R. Tuomela, Theoretical Concepts (Vienna: Springer-Verlag, 1973),
pp. 57–68.

39 See, e.g., Carnap, An Introduction to the Philosophy of Science, p. 249. Another example,
soon to be discussed, is P. Lorenzen’s protophysical definition of mass.

40 A. Kamlah, “Zur Systematik der Massendefinitionen,” Conceptus 22, 69–82 (1988).
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Thus, according to Kamlah, the energy-principle masses mk (k =
1, . . . ,n) of n free particles can be determined by the system of equations

1
2

n∑
k=1

mku2
k(tj) = c, (1.21)

where uk(tj) denotes the velocity of the kth particle at the time tj(j =
1, . . . , r) and c is a constant. In the simple case of an elastic collision
between two particles of velocities u1 and u2 before, and u′1 and u′2 after,
the collision, the equation

1
2 m1u2

1 + 1
2 m2u2

2 = 1
2 m1u′21 + 1

2 m2u′22 (1.22)

determines the mass ratio

m1/m2 = (u′22 − u2
2)/(u

2
1 − u′22). (1.23)

The momentum-principle masses µk of the same particles are deter-
mined by the equations

n∑
k=1

µkuk(tj) = P, (1.24)

where P, the total momentum, is a constant. In the simple case of two
particles, the equation

µ1u1 + µ2u2 = µ2u′1 + µ2u′2 (1.25)

determines the mass-ratio,

µ1/µ2 = (u′2 − u2)/(u1 − u′1) (1.26)

The equality between m1/m2 and µ1/µ2 cannot be established without
further assumptions, but as shown by Kamlah, it is sufficient to postulate
the translational and rotational invariance of the laws of nature.

More specifically, this equality is established by use of the Hamilto-
nian principle of least action or, equivalently, the Lagrangian formalism
of mechanics, both of which, incidentally, are known to have a wide
range of applicability in physics. The variational principle δ

∫
L/dt = 0

implies that the Lagrangian function L = L(x1, . . . , xn,u1, . . . ,un, t)
satisfies the Euler-Lagrange equation∑

j

(
∂2L
∂ui∂uj

u̇j + ∂2L
∂ui∂xj

uj

)
− ∂L
∂xi
= 0 u̇j = duj/dt. (1.27)
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By defining generalized masses mij(u1, . . . ,un) by mij = ∂L/∂ui∂uj, and
masses mi, assumed to be constant, by mij = miδij, and taking into
consideration that the spatial invariance implies

∑
i ∂L/∂xi,= 0, Kamlah

shows that the Euler-Lagrange equation (1.27) reduces to∑
i

∂L/∂ui = P = const., (1.28)

where ∂L/∂ui = miui. Comparison with equation (1.24) yields mi = µi.
The fundamental notions of kinematics, such as the position of a

particle in space or its velocity, are generally regarded as observable
or nontheoretical concepts. A proof that the concept of mass cannot be
defined in terms of kinematical notions would therefore support the
thesis of the theoreticity of the concept of mass. In order to study the
logical relations among the fundamental notions of a theory, such as
their logical independence, on the one hand, or their interdefinability,
on the other, it is expedient, if not imperative, to axiomatize the theory
and preferably to do it in such a way that the basic concepts under
discussion are the primitive (undefined) notions in the axiomatized
theory. As far as the concept of mass is concerned, there is hardly an
axiomatization of classical particle mechanics that does not count this
concept among its primitive notions.41 In fact, as Gustav Kirchhoff’s
Lectures on Mechanics,42 or Heinrich Hertz’s Principles of Mechanics,43 or
more recently the axiomatic framework for classical particle mechanics
proposed by Adonai Schlup Sant’Anna44 clearly show, even axiomati-
zations of mechanics that avoid the notion of force need the concept of
mass as a primitive notion.

Any proof of the undefinability of mass in terms of other primitive
notions can, of course, be given only within the framework of an axi-
omatization of mechanics. Let us choose for this purpose the widely
known axiomatic formulation of classical particle mechanics proposed
in 1953 by John Charles Chenoweth McKinsey and his collaborators,45

41 The only exception known to the present author is the (unpublished) study “Mecha-
nik ohne Masse” (1985) by Rudolf Opelt of the Technische Hochschule in Bremen,
Germany.

42 G. Kirchhoff, Vorlesungen über Mechanik (Leipzig: J. A. Barth, 1876, 1897).
43 H. Hertz, Die Prinzipien der Mechanik in neuem Zusammenhang dargestellt (Leipzig: J. A.

Barth, 1894); The Principles of Mechanics Presented in a New Form (New York: Dover, 1956).
44 A. S. Sant’Anna, “An Axiomatic Framework for Classical Particle Mechanics without

Force,” Philosophia Naturalis 33, 187–203 (1996).
45 J.C.C. McKinsey, A. C. Sugar, and P. Suppes, “Axiomatic Foundations of Classical

Particle Mechanics,” Journal of Rational Mechanics and Analysis 2, 253–272 (1953).
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which is closely related to the axiomatization proposed by Patrick
Suppes.46 The axiomatization is based on five primitive notions: P,T,m,
s, and f , where P and T are sets and m, s, and f are unary, binary, and
ternary functions, respectively. The intended interpretation of P is a set
of particles, denoted by p, that of T is a set of real numbers t measuring
elapsed times (measured from some origin of time); the interpretation of
the unary function m on P, i.e., m(p), is the numerical value of the mass
of particle p, while s(p, t) is interpreted as the position vector of particle p
at time t, and f (p, t, i) as the ith force acting on particle p at time t, it being
assumed that each particle is subjected to a number of different forces.

A system 0 = 〈P,T,m, s, f
〉

is called a “system of particle mechanics”
if it satisfies the following six axioms:

Kinematical axioms

A-1: P is a nonempty, finite set.
A-2: T is an interval of real numbers.
A-3: For p ∈ P and t ∈ T, s(p, t) is a twice-differentiable vector with

respect to t.

Dynamical axioms

A-4: For p ∈ P,m(p) is a positive real number.
A-5: For p ∈ P and t ∈ T,

∑∞
i=1 f (p, t, i) is an absolutely convergent series.

A-6: For p ∈ P and t ∈ T,m(p)d2s(p, t)/dt2 =∑∞i=1 f (p, t, i).

Clearly, A-6 is a formulation of Newton’s second law of motion and,
since for

∑∞
i=1 f (p, t, i) = 0 obviously s(p, t) = a + bt, A-6 also implies

Newton’s first law of motion. However, the question we are interested
in is this: can it be rigorously demonstrated that the primitive m, which
is intended to be interpreted as “mass,” cannot be defined by means
of the other primitive terms of the axiomatization, or at least not by
means of the primitive notions that are used in the kinematical axioms?
The standard procedure followed to prove that a given primitive of an
axiomatization cannot be defined in terms of the other primitives of
that axiomatization is the Padoa method, so called after the logician
Alessandro Padoa, who invented it in 1900. According to this method
it is sufficient to find two interpretations of the axiomatic system that
differ in the interpretation of the given primitive but retain the same

46 P. Suppes, Introduction to Logic (New York: Van Nostrand, 1957), pp. 294–295.
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interpretation for all the other primitives of the system. For if the given
primitive were to depend on the other primitives, the interpretation
of the latter would uniquely determine the interpretation of the given
primitive so that it would be impossible to find two interpretations as
described.47

Padoa’s formulation of his undefinability proof has been criticized
for not meeting all the requirements of logical rigor and, in particular,
for its lack of a rigorous criterion for the “differentness” of interpreta-
tions. It has therefore been reformulated by, among others, John C. C.
McKinsey,48 Evert Willem Beth,49 and Alfred Tarski.50

That in the above axiomatization m is independent of the other prim-
itive notions can be shown by the Padoa method as follows: P is in-
terpreted as the set whose only member is 1, T as the set of all real
numbers, s(1, t) for all t ∈ T as the vector each component of which is
unity, f (1, t, i) as the null vector for all t ∈ T and every positive integer i;
finally, it is agreed that m1(1) = 1 and m2(1) = 2. Thus interpreted,
01 =

〈
P,T,m1, s, f

〉
and 02 =

〈
P,T,m2, s, f

〉
are systems of particle

mechanics, i.e., both systems satisfy all the axioms A-1 to A-6, and agree
in all primitives with the exception of m. Hence, according to Padoa’s
method, m is not definable in terms of the other primitives. A similar
argument proves the logical independence of m in the axiomatization
proposed by Suppes. These considerations seem to suggest that, quite
generally, the concept of mass cannot be defined in terms of kinemat-
ical conceptions and, as such conceptions correspond to observational
notions, mass is thus a theoretical term.

47 A. Padoa, “Essai d’une théorie algébrique des nombres entiers, précédé d’une intro-
duction logique à une théorie déductive quelconque,” Bibliothèque du Congrès International
de Philosophie, Paris, 1900 (Paris, 1901), vol. 3, pp. 309–365. English (partial) translation
“Logical Introduction to Any Deductive Theory,” in Jean van Heijenoort, ed., From Frege
to Gödel: A Source Book in Mathematical Logic 1879–1931 (Cambridge, Mass.: Harvard
University Press, 1967, 1977), pp. 118–123.

48 J.C.C. McKinsey, “On the Independence of Undefined Ideas,” Bulletin of the American
Mathematical Society 41, 291–256 (135).

49 E. W. Beth, “On Padoa’s Method in the Theory of Definition,” Koninklijke Nederlandse
Akademie van Wetenschappen, Proceedings of the Science Section 56, Series A, Mathematical
Sciences, 330–339 (1953); Indagationes Mathematicae 15, 330–339 (1953).

50 A. Tarski, “Einige methodologische Untersuchungen über die Definierbarkeit der
Begriffe,” Erkenntnis 5, 80–100 (1936); “Some Methodological Investigations on the Defin-
ability of Concepts,” in A. Tarski, Logic, Semantics, Metamathematics (Oxford: Clarendon
Press, 1956), pp. 296–319.
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In 1977 Jon Dorling challenged the general validity of such a con-
clusion.51 Recalling that in many branches of mathematical physics
theoretical terms, e.g., the vector potentials in classical or in quantum
electrodynamics, have been successfully eliminated in favor of observa-
tional terms, Dorling claimed that the asserted uneliminability results
only from the “idiosyncratic choice” of the observational primitives. Re-
ferring to G. W. Mackey’s above axiomatization in which the acceleration
of each particle is given as a function of its position and the positions of
the other particles and not, as in McKinsey’s or Suppes’s axiomatization,
of time only, Dorling declared: “The claim that the usual theoretical
primitives of classical particle mechanics cannot be eliminated in favor
of observational primitives seems therefore not only not to have been
established by Suppes’s results, but to be definitely controverted in the
case of more orthodox axiomatizations such as Mackey’s.” The issue
raised by Dorling has been revived, though without any reference to
him, by the following relatively recent development.

In 1993 Hans-Jürgen Schmidt offered a new axiomatization of classical
particle mechanics intended to lead to an essentially universal concept
of mass.52 He noted that in former axiomatizations the inertial mass
mk had usually been introduced as a coefficient connected with the
acceleration ak of the kth particle in such a way that the products mkak

satisfy a certain condition that is not satisfied by the ak alone. “If this
condition determines the coefficients mk uniquely—up to a common
factor—” he declared, “we have got the clue for the definition of mass.
This definition often works if the defining condition is taken simply
as a special force law, but then one will arrive at different concepts
of mass.” In order to avoid this deficiency Schmidt chose instead of
a force-determining condition one that is equivalent to the existence of
a Lagrangian. This choice involves the difficult task of solving the so-
called “inverse problem of Lagrangian mechanics” to find a variational
principle for a given differential equation. This problem was studied
as early as 1886 by Hermann von Helmholtz and solved insofar as he
found the conditions necessary for the existence of a function L such

51 J. Dorling, “The Eliminability of Masses and Forces in Newtonian Particle Mechanics:
Suppes Reconsidered,” British Journal for the Philosophy of Science 28, 55–57 (1977).

52 H.-J. Schmidt, “A Definition of Mass in Newton–Lagrange Mechanics,” Philosophia
Naturalis 30, 189–207 (1993).
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that a given set of equations Gj = 0 are the Euler-Lagrange equations of
the variational principle δ

∫
L dt = 0.53

Assisted by Peter Havas’s 1957 study of the applicability of the La-
grange formalism,54 Schmidt, on the basis of a somewhat simplified
solution of the inverse problem, was able to construct his axiomatization,
which defines inertial mass in terms of accelerations. The five primitive
terms of the axiomatization are the set M of space-time events, the
differential structure D of M, the simultaneity relation σ on M, the set P
of particles, and the set of possible motions of P, the last being bijective
mappings or “charts” of M into the four-dimensional continuum R4.
Six axioms are postulated in terms of these primitives, none of which
represents an equivalent to a force law. The fact that these kinematical
axioms lead to a satisfactory definition of mass is in striking contrast
to the earlier axiomatizations for which it could be shown, for instance,
by use of the Padoa method, that the dynamical concept of mass is
indefinable in kinematical language.55

This apparent contradiction prompted Kamlah to distinguish be-
tween two kinds of axiomatic approaches to particle mechanics, dif-
fering in their epistemological positions, which he called factualism
and potentialism.56 According to factualist ontology, which, as Kamlah
points out, was proclaimed most radically in Ludwig Wittgenstein’s
1922 Tractatus Logico-Philosophicus, “there are certain facts in the world
which may be described by a basic language for which the rules of
predicate logic hold, especially the substitution rule, which makes this
language an extensional one. The basic language has not to be an ob-
servational language.” According to the ontology of potentialism “the
world is a totality of possible experiences. Not all possible experiences ac-
tually happen.” By distinguishing between a factualist and a potentialist
axiomatization Kamlah claims to resolve that contradiction as follows:
The concept of acceleration ak contained in Schmidt’s potentialist kine-
matics can be “defined” operationally in the language of factualist
kinematics. However, Kamlah adds,

53 H. v. Helmholtz, “Über die physikalische Deutung des Princips der kleinsten Wir-
kung,” Journal für die reine und angewandte Mathematik 100, 137–166, 213–222 (1886).

54 P. Havas, “The Range of Application of the Lagrange Formalism” Nuovo Cimento
(Supp.) 5, 363–388 (1957).

55 See chapter 9 of COM.
56 A. Kamlah, “Two Kinds of Axiomatization of Mechanics,” Philosophia Naturalis 32,

27–46 (1995).
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such determinations of the meaning of concepts are not proper defini-
tions though being indispensable in physics, and therefore the accel-
eration function ak is a theoretical concept in particle kinematics. This
theoretical concept seems to be powerful enough in combinations with
[Schmidt’s additional axioms] to supply us with an explicit definition of
mass. This result seems to be surprising but does not contradict the well-
established theorem that mass is theoretical (not explicitly definable)
in particle kinematics.

The thesis of the theoretical status of the concept of inertial mass—
whether based on the argument of the alleged impossibility of defining
this concept in a noncircular operational way or on the claim that it is
implicitly defined by its presence in the laws of motion or in the axioms
of mechanics—has been challenged by the proponents of protophysics.
The program of protophysics,57 a doctrine that was developed by the
Erlangen School of Constructivism but can be partially traced back
to Pierre Duhem and Hugo Dingler, is the reconstruction of physics
on prescientific constructive foundations with due consideration for
the technical construction of the measuring instruments to be used in
physics. Protophysics insists on a rigorous compliance with what it
calls the methodical order of the pragmatic dependence of operational
procedures, in the sense that an operation O2 is pragmatically dependent
upon an operation O1 if O2 can be carried out successfully only after
O1 has previously been carried out successfully. In accordance with
the three fundamental notions in physics—space, time, and mass—
protophysicists distinguish among (constructive) geometry, chronom-
etry, and hylometry, the last one, the protophysics of mass, having been
subject to far less attention that the other two. Protophysicists have dealt
with the concept of charge, often called the fourth fundamental notion
of physics, to an even more limited degree.

Strictly speaking, the first to treat “mass” as a hylometrical conception
was Bruno Thüring, who contended that the classical law of gravitation
has to form part of the measure-theoretical a priori of empirical physics.58

However, this notion of mass was, of course, the concept of gravita-
tional mass. As far as inertial mass is concerned, the mathematician
and philosopher Paul Lorenzen was probably the first to treat “mass”

57 G. Böhme, Protophysik (Frankfurt a.M.: Suhrkamp Verlag, 1976); P. Janich, ed., “Pro-
tophysik heute,” Philosophia Naturalis 22, 3–156 (1985).

58 B.Thüring, Die Gravitation und die philosophischen Grundlagen der Physik (Berlin:
Duncke & Humblot, 1967), chapter 3.
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from the protophysical point of view.59 Lorenzen’s starting point, as in
Weyl’s definition of mass, is an inelastic collision of two bodies with
initial velocities u1 and u2, respectively, where the common velocity of
the collision is u. That it is technically possible (“hinreichend gut”) to
eliminate friction can be tested by repeating the process with different
u1 and u2 and checking that the ratio r of the velocity changes u1−u and
u2 − u is a constant. However, the absence of friction cannot be defined
in terms of this constant, for were it verified in the reference frame of
the earth it would not hold in a reference frame in accelerated motion
relative to the earth.

If an inertial system is defined as the frame in which this constancy
has been established, it is a technical-practical question whether the
earth is an inertial system. Foucault’s pendulum shows that it is not.
Lorenzen proposed therefore that the astronomical fundamental coor-
dinate system S, relative to which the averaged rotational motion of the
galaxies is zero, serves as the inertial system. Any derivation from a
constant r must then be regarded and explained as a “perturbation.”
This proposed purely kinematical definition of an inertial system is
equivalent to defining such a system by means of the principle of
conservation of momentum. The statement that numbers m1 and m2

can be assigned by this method to bodies as measures of their “mass”
is then the Ramsey sentence for applying the momentum principle for
collision processes in S.

A protophysical determination of inertial mass without any recourse
to an inertial reference frame or to “free motion” has been proposed
by Peter Janich.60 Janich employs what he calls a “rope balance” (“Seil-
waage”), a wheel encircled by a rope that has a body attached to each
end. The whole device can be moved, for instance, on a horizontal (fric-
tionless) plane in accelerated motion relative to an arbitrary reference
frame. As Janich points out, the facts that the rope is constant in length
and taut and that the two end pieces beyond the wheel are parallel and

59 P. Lorenzen, “Zur Definition der vier fundamentalen Messgrössen,” Philosophia Na-
turalis 16, 1–9 (1976); reprinted in J. Pfarr, Protophysik und Relativitätstheorie (Bibliogra-
phisches Institut, Mannheim, 1981), pp. 25–33. See also P. Lorenzen, “Geometrie als
Messtheoretisches Apriori der Physik,” ibid., pp. 35–53.

60 P. Janich, “Ist Masse ein ‘theoretischer Begriff’?,” Journal for General Philosophy of
Science 8, 303–313 (1977); “Newton ab omni naevo vindicatus,” Philosophia Naturalis 18,
243–255 (1981); “Die Eindeutigkeit der Massemessung und die Definition der Trägheit,”
Philosophia Naturalis 22, 87–103 (1985); “The Concept of Mass,” in R. E. Butts and J. R.
Brown, eds., Constructivism and Science (Dordrecht: Kluwer, 1989), pp. 145–162.
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of equal length can be verified geometrically. If these conditions are
satisfied the two bodies are said to be “tractionally equal,” a relation
that can be proved to be an equivalence relation. The transition from
this classification measurement to a metric measurement is established
by a definition of “homogeneous density”: a body is homogeneously
dense if any two parts of it, equal in volume, are tractionally equal, it
being assumed, of course, that the equality of volume, as that of length
before, has been defined in terms of protophysical geometry. The ability
to produce technically homogeneously dense bodies such as pure metals
or homogeneous alloys is also assumed. Finally, the mass-ratio mA/mB

of two arbitrary bodies A and B is defined by the volume ratio VA/VB

of two bodies B and C, provided that C is tractionally equal to A, D is
tractionally equal to B, and C and D are parts of a homogeneously dense
body. Thus the metrics of mass is reduced to the metrics of volume and
length. By assigning logical priority to the notion of density over that of
mass Janich, in a sense, “vindicated” Newton’s definition of mass as the
product of volume and density—but of course, unlike Newton, without
conceiving density as a primitive concept.61

On the basis of this definition and measurement of inertial mass, an
inertial reference system can be defined as that reference frame relative
to which, for example, the conservation of linear momentum in an
inelastic collision holds by checking the validity of equation (1.2) all the
terms of which are now protophysically defined. Kamlah has shown
how Janich’s rope balance, which can also be used for a comparative
measurement of masses, is an example of the far-reaching applica-
bility of D’Alembert’s principle.62 This does not mean, however, that
Kamlah accepts the doctrine of protophysics. His criticism of the claim
that the constructivist measurement-instructions cannot be experimen-
tally invalidated without circularity, though directed primarily against
the protophysics of time, applies equally well to the protophysics of
mass.63 Friedrich Steinle also criticized Janich’s definition of mass on
the grounds that it yields a new conception of mass and not a purged
reconstruction of Newton’s conception because for Newton “mass” and

61 Hence the title “Newton ab omni naevo vidicatus” of Janich’s 1981 essay, in analogy
to Gerolamo Saccheri’s 1733 work “Euclides ab omni naevo vindicatus.”

62 A. Kamlah, “Die Bedeutung des d’Alembertschen Prinzips für die Definition des
Kraftbegriffes,” in W. Balzer and A. Kamlah, Aspekte der physikalischen Begriffsbildung
(Braunschweig: Vieweg, 1979), pp. 191–217.

63 A. Kamlah, “Methode oder Dogma,” Journal for General Philosophy of Science 12, 138–
162 (1981).
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“weight,” though proportional to one another, were two independent
concepts, whereas, Steinle contends in Janich’s reconstruction this pro-
portionality is part of the definition.64 It may also be that Janich’s defi-
nition of the homogeneous density of a body can hardly be reconciled
with the pragmatic program of protophysics; for to verify that any two
parts of the body, equal in volume, are also tractionally equal would
demand an infinite number of technical operations.

In all the definitions of inertial mass discussed so far, whether they
have been proposed by protophysicists, by operationalists, or by ad-
vocates of any other school of the philosophy of physics, one fact has
been completely ignored or at least thought to be negligible. This is the
inevitable interaction of a physical object—be it a macroscopic body or a
microphysical particle—with its environment. (In what follows we shall
sometimes use the term “particle” also in the sense of a body and call
the environment the “medium” or the “field.”)

Under normal conditions the medium is air. But even if the medium
is what is usually called a “vacuum,” physics tells us that it is not empty
space. In prerelativistic physics a vacuum was thought to be permeated
by the ether; in modern physics and in particular in its quantum field
theories, this so-called vacuum is said to contain quanta of thermal
radiation or “virtual particles” that may even have their origin in the
particle itself. Nor should we forget that even in classical physics the
notion of an absolute or ideal vacuum was merely an idealization never
attainable experimentally.

In general, if a particle is acted upon by a force F, its acceleration a in the
medium can be expected to be smaller than the hypothetical acceleration
a0 it would experience when moving in free space. However, if a < a0

then the mass m, defined by F/a, is greater than the mass m0, defined
by F/a0. This allows us to write m = m0 + δm, where m denotes the
experimentally observable or “effective” mass of the particle, m0 its
hypothetical or “bare” mass, and δm the increase in inertia owing to
the interaction of the particle with the medium.

These observations may have some philosophical importance. Should
it turn out that there is no way to determine m0, i.e., the inertial behavior
of a physical object when it is not affected by an interaction with a field,
it would go far toward supporting the thesis that the notion of inertial
mass is a theoretical concept. Let us therefore discuss in some detail how

64 F. Steinle, “Was ist Masse? Newton’s Begriff der Materiemenge,” Philosophia Naturalis
29, 94–118 (1992).
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such interactions complicate the definition of inertial mass and lead to
different designations of this notion corresponding to the medium being
considered.

Conceptually and mathematically the least complicated notion of this
kind is the concept of “hydrodynamical mass.” Its history can be traced
back to certain early nineteenth-century theories that treated the ether
as a fluid, and in its more proper sense in the mechanics of fluids to Sir
George Gabriel Stokes’s extensive studies in this field.65 However, the
term “hydrodynamical mass” was only given currency in 1953 by Sir
Charles Galton Darwin, the grandson of the famous evolutionist Charles
Robert Darwin.66

In order to understand the definition of this concept let us consider
the motion of a solid cylinder of radius r moving through an infinite
incompressible fluid, say water or air, of densityρ, with constant velocity
v. The kinetic energy of the fluid is Ef

kin = 1
2πρr2v2 and its mass per unit

thickness is M′ = πρr2.67 If M denotes the mass of the cylinder per
unit thickness, then the total kinetic energy of the fluid and cylinder is
clearly Ekin = 1

2 (M +M′)v2; and if F denotes the external force in the
direction of the motion of the cylinder, which sustains the motion, then
the rate at which F does work, being equal to the rate of increase in Ekin,
is given by

Fv = dEkin/dt = (M +M′)v dv/dt. (1.29)

This shows that the cylinder experiences a resistance to its motion equal
to M′dv/dt per unit thickness owing to the presence of the fluid. Compar-
ison with Newton’s second law suggests that M+M′ be called the “vir-
tual mass” of the cylinder and the added mass M′ the “hydrodynamical
mass.” It can be shown to be quite generally true that every moving body
in a fluid medium is affected by an added mass so that its virtual mass is
M+ kM′, where the coefficient k depends on the shape of the body and
the nature of the medium. Clearly the notion of “hydrodynamic mass”
poses no special problems because it is formulated entirely within the
framework of classical mechanics.

65 G. G. Stokes, “On the Steady Motion of Incompressible Fluids,” Transactions of the
Cambridge Philosophical Society 7, 439–455 (1842); Mathematical and Physical Papers, vol. 1
(Cambridge, U.K.: The University Press, 1880), pp. 1–16.

66 C. G. Darwin, “Notes on Hydrodynamics,” Proceedings of the Cambridge Philosophical
Society 49, 342–354 (1953).

67 For a rigorous proof see, e.g., L. M. Milne-Thomson, Theoretical Hydrodynamics (Lon-
don: Macmillan, 1968), pp. 246–247.
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Much more problematic is the case in which the medium is not a fluid
in the mechanical sense of the term but an electromagnetic field whether
of external origin or one produced by the particle itself if it is a charged
particle such as the electron. Theories about electromagnetic radiative
reactions have generally been constructed on the basis of balancing the
energy-momentum conservation. But the earliest theory that a moving
charged body experiences a retardation owing to its own radiation, so
that its inertial mass appears to increase, was proposed by the Scottish
physicist Balfour Stewart on qualitative thermodynamical arguments.68

Since a rather detailed historical account of the concept of mass in
classical electromagnetic theory has been given elsewhere,69 we shall
confine ourselves here to the following very brief discussion.

Joseph John Thomson, who is usually credited with having discovered
the electron, seems also to have been the first to write on the electro-
magnetic mass of a charged particle. Working within the framework
of James Clerk Maxwell’s theory of the electromagnetic field, Thomson
calculated the field produced by a spherical particle of radius r, which
carries a charge e and moves with constant velocity v.70 He found that
the kinetic energy of the electromagnetic field produced by this charge—
this field playing the role of the medium as described above—is given
by the expression

Eelm
kin = ke2v2/2rc2, (1.30)

where the coefficient k, of the order of unity, depends on how the charge
e is distributed in, or on, the particle. Comparing (1.30) with the usual
equation for kinetic energy (one-half times mass times velocity squared)
Thomson concluded that the charged particle has an electromagnetic
mass melm given by

melm = ke2/rc2. (1.31)

Were the particle uncharged, its kinetic energy would be Ekin = m0/2v2,
where m0 is its mechanical inertial mass. Hence, Thomson contended,
the total kinetic energy of the charged particle is

68 B. Stewart, “On the Temperature Equilibrium of an Enclosure in Which There Is a
Body in Visible Motion,” Reports of the British Association for the Advancement of Science,
Edinburgh 187, 45–47 (1871).

69 See chapter 11 in COM.
70 J. J. Thomson, “On the Electric and Magnetic Effects Produced by Motion of Electrified

Bodies,” Philosophical Magazine 11, 229–249 (1881).
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Etotal
kin = (m0 +melm)v2/2, (1.32)

an equation that shows that the experimentally observable mass of the
particle is given by

m = m0 +melm. (1.33)

In agreement with our earlier equation m = m0 + δm,m0 can also be
called the bare mass and δm = melm the inertia of the field produced
and surrounding the charged particle.71

Although Thomson still regarded the increase in inertial mass as
a phenomenon analogous to a solid moving through a perfect fluid,
subsequent elaborations of the concept of electromagnetic mass, such
as those carried out by Oliver Heaviside, George Francis Fitzgerald, and,
in particular, by Hendrick Antoon Lorentz, suggested that this notion
may well have important philosophical consequences. For, whereas the
previous tendency had generally been to interpret electromagnetic pro-
cesses as manifestations of mechanical interactions, the new conception
of electromagnetic mass seemed to clear the way toward a reversal of
this logical order, i.e., to deduce mechanics from the laws of electromag-
netism. If successful, such a theory would explain all processes in nature
in terms of convection currents and their electromagnetic radiation,
stripping the “stuff” of the world of its material substantiality.

However, such an electromagnetic world-picture could be established
only if it could be proved that m0, the mechanical or bare mass of a
charged particle, has no real existence. Walter Kaufmann, whose well-
known experiments on the velocity dependence of inertial mass played
an important role in these deliberations, claimed in 1902 that m0, which
he called the “real mass” (“wirkliche Masse”)—in contrast to melm,
which he called the “apparent mass” (“scheinbare Masse”)—is zero,
so that “the total mass of the electron is merely an electromagnetic
phenomenon.”72 At the same time, Max Abraham, in a study that can
be regarded as the first field-theoretic treatment of elementary particles,
showed that, strictly speaking, the electromagnetic mass is not a scalar

71 For a modern derivation of equation (1.31) see, e.g., W.K.H. Panofsky and M. Phillips,
Classical Electricity and Magnetism (Reading, Mass.: Addison-Wesley, 1956), pp. 314–317;
or J. Vanderlinde, Classical Electromagnetic Theory (New York: John Wiley and Sons, 1993),
pp. 317–319.

72 W. Kaufmann, “Die magnetische und elektrische Ablenkbarkeit der Becquerelstrah-
len und die scheinbare Masse der Elektronen,” Göttinger Nachrichten 1902, 143–155; “Über
die elektromagnetische Masse des Elektrons,” ibid., pp. 291–296.
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but rather a tensor with the symmetry of an ellipsoid of revolution and
proclaimed: “The inertia of the electron originates in the electromagnetic
field.”73 However, he took issue with Kaufmann’s terminology, for, as
he put it, “the often used terms of ‘apparent’ and ‘real’ mass lead to
confusion. For the ‘apparent’ mass, in the mechanical sense, is real, and
the ‘real’ mass is apparently unreal.”74

Lorentz, the revered authority in this field, was more reserved. In a talk
“On the Apparent Mass of Ions,” as he used to call charged particles, he
declared in 1901: “The question of whether the ion possesses in addition
to its apparent mass also a real mass is of extraordinary importance;
for it touches upon the problem of the connection between ponderable
matter and the ether and electricity; I am far from being able to give a
decisive answer.”75 Furthermore, in his lectures at Columbia University
in 1906 he even admitted: “After all, by our negation of the existence of
material mass, the negative electron has lost much of its substantiality.
We must make it preserve just so much of it that we can speak of
forces acting on its parts, and that we can consider it as maintaining
its form and magnitude. This must be regarded as an inherent property,
in virtue of which the parts of the electron cannot be torn asunder by
the electric forces acting on them (or by their mutual repulsion, as we
may say).”76

It should be recalled that at the same time Henri Poincaré also insisted
on the necessity of ascribing nonelectromagnetic stresses to the electron
in order to preserve the internal stability of its finite charge distribution.77

But clearly, such a stratagem would put an end to the theory of a purely
electromagnetic nature of inertial mass. The only way to save it would
have been to describe the electron as a structureless point charge, which
means to take r = 0. But then, as can be seen from equation (1.30), the
energy of the self-interaction and thus the mass of the electron would
become infinite. Classical electromagnetic theory has never resolved
this problem. As we shall see in what follows, the same problem of

73 M. Abraham, “Die Dynamik des Elektrons,” Göttinger Nachrichten 1902, 20–41.
74 Abraham, “Die Dynamik des Elektrons,” p. 24.
75 H. A. Lorentz, “Über die scheinbare Masse der Ionen,” Physikalische Zeitschrift 2,

78–79 (1901).
76 H. A. Lorentz, The Theory of Electrons (Leipzig: Teubner, 1909, 1916; New York: Dover,

1952), p. 43.
77 H. Poincaré, “Sur la dynamique de l’électron,” Rendiconti del Circolo Matematico di

Palermo 21, 129–176 (1906); Oeuvres de Henri Poincaré, vol. 9 (Paris: Gauthier-Villars, 1954),
pp. 494–550.
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a divergence to infinity also had to be faced by the modern field theory
of quantum electrodynamics.

With the advent of the special theory of relativity in the early years of
the twentieth century, physicists and philosophers focused their atten-
tion on the concept of relativistic mass. Since this notion will be dealt
with in the following chapter we shall turn immediately to the quantum-
mechanical treatment of inertial mass but for the time being only insofar
as the medium affecting the mass of a particle consists of other particles
arranged in a periodic crystal structure. This is a subject studied in the
quantum theory of solids or condensed matter and leads to the notion
of effective mass. More specifically, we consider the case of an electron
moving under the influence of an external force F through a crystal.

Let us recall that in accordance with the wave-particle duality in
quantum mechanics the electron has to be treated as a wave packet,
so that its velocity is given by the equation for the group velocity

vg = v = dω/dk, (1.34)

whereω denotes the angular frequency and k the wave number. Since its
energy E satisfies the Einstein energy-frequency relation E = h̄ω, where
h̄ is Planck’s constant h divided by 2π , the velocity of the electron is

v = h̄−1dE/dk (1.35)

and its acceleration is

a = dv/dt = (dv/dk)(dk/dt) = h̄−1
(d2E/dk2)(dk/dt). (1.36)

However, in accordance with the work-energy relation Fvdt = dE =
(dE/dk)dk, so that by (1.35) F(h̄−1dE/dk)dt = (dE/dk)dk. Hence,

F = h̄(dk/dt). (1.37)

Defining the mass, now called the effective mass and denoted by m∗,
in the usual way as the ratio between force and acceleration (F/a), from
equation (1.36) we obtain

m∗ = h̄2
(d2E/dk2)−1. (1.38)

In fact, if we recall the de Broglie momentum–wave-number relation
p = h̄k and use m∗ in the energy equation E = p2/2m∗, we get

E = h̄2k2/2m∗, (1.39)

which shows that d2E/dk2 = h̄2
/m∗, which is consistent with the defini-

tion of effective mass.
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Obviously, m∗ has a constant value only for energy bands of the
form E = E0 ± const. · k2. But even in this case the effective mass
may differ from the value of the inertial mass of a free electron. This
difference is, of course, to be expected; for in general the acceleration
of an electron moving under a given force in a crystal may well differ
from the acceleration of an electron that is moving under the same force
in free space. What is more difficult to understand intuitively is the fact
that, owing to reflections by the crystal lattice, an electron can move in
a crystal in the direction opposite to that it would have in free space. In
this case the effective mass m∗ is negative.78

We conclude this survey with a brief discussion of the concepts of bare
mass and experimental or observed mass as they are used in quantum
electrodynamics, which, like every field theory, ascribes a field aspect
to particles and all other physical entities and studies, in particular, the
interactions of electrons with the electromagnetic field or its quanta, the
photons.

Soon after the birth of quantum mechanics it became clear that a
consistent treatment of the problems of emission, absorption, and scat-
tering of electromagnetic radiation requires the quantization of the
electromagnetic field. In fact, Planck’s analysis of the spectral distri-
bution of blackbody radiation, which is generally hailed as having
inaugurated quantum theory, is, strictly speaking, a subject of quantum
electrodynamics.79

Although no other physical theory has ever achieved such spectacular
agreement between theoretical predictions and experimental measure-
ments, some physicists, including Paul A. M. Dirac himself, have viewed
it with suspicion because of its use of the so-called “renormalization”
procedure, which was designed to cope with the divergences of self-
energy or mass, a problem that, as noted above, was left unresolved
by classical electromagnetic theory. It reappeared in quantum electro-
dynamics for the first time in 1930 in J. Robert Oppenheimer’s calcula-
tion of the interaction between the quantum electromagnetic field and an
atomic electron. “It appears improbable,” said Oppenheimer, “that the
difficulties discussed in this work will be soluble without an adequate

78 For details see, e.g., C. Kittel, Introduction to Solid State Physics (New York: John Wiley
and Sons, 1953, 1986), chapter 8.

79 For details see M. Jammer, The Conceptual Development of Quantum Mechanics (New
York: McGraw-Hill, 1966; enlarged and revised edition, New York: American Institute of
Physics, 1989), chapter 3.
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theory of the masses of electron and proton, nor is it certain that such a
theory will be possible on the basis of the special theory of relativity.”80

The “adequate theory” envisaged by Oppenheimer took about twenty
years to reach maturity.

As is well known, in modern field theory a particle such as an elec-
tron constantly emits and reabsorbs virtual particles such as photons.
The application of quantum-mechanical perturbation theory to such
a process leads to an infinite result for the self-energy or mass of the
electron. (Technically speaking, such divergences are the consequences
of the pointlike nature of the “vertex” in the Feynman diagram of the
process.) Here it is, of course, this “cloud” of virtual photons that plays
the role of the medium in the sense discussed above.

As early as the first years of the 1940s, Hendrik A. Kramers, the long-
time collaborator of Niels Bohr, suggested attacking this problem by
sharply distinguishing between what he called mechanical mass, as
used in the Hamiltonian, and observable mass;81 but it was only in the
wake of the famous four-day Shelter Island Conference of June 1947
that a way was found to resolve—or perhaps only to circumvent—
the divergences of mass in quantum electrodynamics. At this confer-
ence Willis E. Lamb reported on the brilliant experiment that he and
Robert C. Retherford had performed using newly invented microwave
techniques, which demonstrated what became known as the Lamb–
Retherford or Lamb shift, namely that the first two excited states of
hydrogen, 2s 1

2
and 2p 1

2
, are not degenerate but, contrary to Dirac’s

theory, differ by about 1000 MHz. Perhaps inspired by Kramers’s re-
marks at the conference, Hans Albrecht Bethe realized immediately—
actually during his train ride back from Shelter Island—that the Lamb
shift can be accounted for by quantum electrodynamics if this theory
is appropriately interpreted. He reasoned that when calculating the
self-energy correction for the emission and reabsorption of a photon
by a bound electron, the divergent part of the energy shift can be
identified with the self-mass of the electron. Hence, in the calculation
of the energy difference for the bound-state levels, as in the Lamb
shift, the energy shift remains finite since both levels contain the
same, albeit infinite, self-mass terms that cancel each other out in the

80 J. R. Oppenheimer, “Note on the Theory of the Interaction of Field and Matter,”
Physical Review 35, 461–477 (1930).

81 See in this context M. Dresden, H. A. Kramers—Between Tradition and Revolution (New
York: Springer-Verlag, 1987), chapter 16.
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subtraction.82 It is this kind of elimination of infinities, based on the
impossibility of measuring the bare mass m0 by any conceivable exper-
iment, that constitutes the renormalization of mass in quantum electro-
dynamics. A more detailed exposition of the physics of mass renormal-
ization can be found in standard texts on quantum field theory,83 and its
mathematical features in John Collin’s treatise.84 The reader interested
in the historical aspects of the subject is referred to the works of Olivier
Darrigol and Seiya Aramaki,85 and the philosopher of contemporary
physics to the essays by Paul Teller.86

82 H. Bethe, “The Electromagnetic Shift of Energy Levels,” Physical Review 72, 329–341
(1947); reprinted in J. Schwinger, ed., Selected Papers on Quantum Electrodynamics (New
York: Dover, 1958), pp. 139–141.

83 See, e.g., S. Weinberg, The Quantum Theory of Fields (Cambridge: Cambridge Uni-
versity Press, 1995), chapter 12; or M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory (Reading, Mass.: Addison-Wesley, 1995).

84 J. Collins, Renormalization (Cambridge: Cambridge University Press, 1985).
85 O. Darrigol, Les Débuts de la Théorie Quantique des Champs (Ph.D. Thesis, Université

de Paris I, 1982); S. Aramaki, “Formation of the Normalization Theory in Quantum
Electrodynamics,” Historia Scientiarum 32, 1–42 (1987), 36, 97–116 (1989), 37, 91–112 (1989).

86 P. Teller, “Three Problems of Renormalization,” in H. R. Brown and R. Harré, ed.,
Philosophical Foundations of Quantum Field Theory (Oxford: Clarendon Press, 1998), pp. 73–
89; “Infinite Renormalization,” Philosophy of Science 56, 238–257 (1989).
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Relativistic Mass

Having confined our attention thus far to the concept of the inertial
mass of classical physics we turn now to its relativistic analogue, the
concept of mass in the special theory of relativity. If we ignore for
the time being Mach’s principle, which will be discussed in a different
context, we can say that in classical physics inertial mass mi is an inherent
characteristic property of a particle and, in particular, is independent of
the particle’s motion. In contrast, the relativistic mass, which we denote
by mr, is well known to depend on the particle’s motion in accordance
with the equation

mr = m0(1− u2/c2)−1/2, (2.1)

where m0 is a constant with the dimensionality of mass, u is the velocity
of the particle as measured in a given reference frame S, and c is the
velocity of light. Since u depends on the choice of S relative to which it is
being measured, mr also depends on S and is consequently a relativistic
quantity and not an intrinsic property of the particle.

In an inertial reference frame S0, in which the particle is at rest, u = 0
and mr obviously reduces to m0. For this reason m0 is usually called the
rest mass (or proper mass) of the particle. From a logical point of view, m0

is just a particular case of the relativistic mass and there is not yet any
cogent reason to identify it with the Newtonian mass of classical physics.
However, as in the so-called nonrelativistic limit, i.e., for velocities that
are small compared with the velocity of light (u� c), the mathematical
equations of special relativity reduce to the corresponding equations of
classical physics, many theoreticians regard this correspondence as a
warrant to identify m0 with the Newtonian mass of classical physics.
However, as we shall see later on, this inference can be challenged—at
least on philosophical grounds.

In order to comprehend fully the importance of modern debates on
the status of the concept of relativistic mass and its role in physics it
seems worthwhile to retrace the historical origins of this concept. Its
history is as old as the theory of relativity itself. In his very first paper
on relativity, the famous 1905 essay, “On the Electrodynamics of Moving
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Bodies,”1 Einstein introduced the notion of relativistic mass, though not
in its later accepted form, when he discussed, in the last section of the
essay, the dynamics of a slowly accelerating charged particle.

True, the notion of a velocity-dependent mass and, in particular,
Max Abraham’s conception of longitudinal and transverse masses of
electrons, corresponding to the components of the external force along
or normal to the electron’s trajectory, had been widely discussed even
before the theory of relativity was proposed.2 Even equation (2.1) for
the mass of an electron in motion had appeared in the literature prior to
1905.3 However, all these notions and proposals originated within the
framework of theories that were based on specific assumptions concern-
ing the shape of the electron or the distribution of its charge and were
part of the electromagnetic world-picture, according to which “mass . . .
is of purely electromagnetic nature” and mechanics essentially but a
subdivision of electromagnetism. Thus it should be emphasized that in
spite of the title of Einstein’s first relativity paper and regardless of the
importance he attributed to electromagnetic considerations, throughout
that paper, including the derivation of the relativistic equations of mass,
Einstein never did endorse the electromagnetic world-picture nor did
he ever regard mechanics as a subdivision of electromagnetism.

Let us outline briefly—in modern notation—Einstein’s treatment of
the dynamics of a slowly accelerating charged particle in an electromag-
netic field and the derivation of his equations of relativistic masses. Let
S′ with coordinates x′, y′, z′, and t′ be the reference frame in which the
particle is momentarily at rest and thus satisfies the equations of motion,

m0
d2x′

dt′2
= eE′x m0

d2y′

dt′2
= eE′y m0

d2z′

dt′2
= eE′z, (2.2)

where e is the charge of the particle, E′ = (E′x, E′y, E′z) is the electric field,
and m0 is the mass of the particle, as long as its motion is slow. Using
the Lorentz transformation and the relativistic transformation of the

1 A. Einstein, “Zur Elektrodynamik bewegter Körper,” Annalen der Physik 17, 891–921
(1905); The Collected Papers of Albert Einstein (Princeton: Princeton University Press, 1989),
vol. 2, pp. 276–306. English translation in the Princeton translation project (Princeton
University Press, 1989), pp. 140–171; also in A. Einstein, H. A. Lorentz, H. Minkowski,
and H. Weyl, The Principle of Relativity (New York: Dover, 1952), pp. 35–65.

2 See chapter 11 of COM.
3 See, e.g., H. A. Lorentz, “Electromagnetic Phenomena in a System Moving with Any

Velocity Smaller Than That of Light,” Proceedings of the Academy of Sciences of Amsterdam
6, 809–832 (1904); reprinted in Einstein et al., The Principle of Relativity, pp. 11–34.
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components of the electric field E = (Ex,Ey,Ez) and the magnetic field
B = (Bx,By,Bz), previously established in his paper, Einstein derived
the equations of motion in a reference frame S relative to which both the
particle and the frame S′ are moving with velocity u along the positive
x-axis:

d2x
dt2 =

e
m0γ 3

u
Ex

d2y
dt2 =

e
m0γu

[Ey − (u/c)Bz]

d2z
dt2 =

e
m0γu

[Ez + (u/c)By], (2.3)

where γu = (1− u2/c2)−1/2, or equivalently,

m0γ
3
u

d2x
dt2 = eEx = eE′x

m0γ
2
u

d2y
dt2 = eγu[Ey − (u/c)Bz] = eE′y

m0γ
2
u

d2z
dt2 = eγu

[
Ez + (u/c)By

] = eE′z. (2.4)

Einstein now argued as follows: since the force that acts on the particle
in the reference frame co-moving with the particle is eE′ and “might be
measured, e.g., by a spring balance at rest in this frame,” the equation
mass × acceleration = force implies that the longitudinal mass is

m = m0γ
3
u = m0(1− u2/c2)−3/2 (2.5)

and the transverse mass is

m = m0γ
2
u = m0

(
1− u2/c2)−1

. (2.6)

Einstein concludes this derivation with two comments: a generaliza-
tion based on a continuity argument and a qualification concerning the
terminology. He generalizes his conclusion by extending its validity
to uncharged particles on the grounds that these “can be made into
charged particles by the addition of an electric charge, no matter how
small”; and he qualifies his result by admitting that “with a different
definition of force and acceleration we should naturally obtain other
values for the masses.”

This is precisely what happened when, less than a year later, Max
Planck proposed a different definition of force, which turned out to be

43



C H A P T E R T W O

more advantageous because it made it possible to establish a Hamilton-
Lagrange formulation for relativistic mechanics.4 Planck showed that
equations (2.4) can be written in the form

d
dt
(mu) = e [E+ (1/c)u× B] , (2.7)

where

m = m0γu = m0(1− u2/c2)−1/2. (2.8)

Unlike Planck, who wrote (2.7) as three scalar equations for the different
components, we write it as a vector equation in order to show that
as a logical consequence of the special theory of relativity, Einstein’s
derivation of his equations for relativistic mass also implied the well-
known equation e(E + (1/c)u × B) for the Lorentz force, which until
then had to be postulated as a separate axiom added to the Maxwell
equations. Furthermore, if, as Newton did, we define force as the (time)
rate of change of momentum and momentum as the product of mass
and velocity, then clearly equation (2.7) implies that the relativistic
momentum is given by

p = m0γuu (2.9)

and the relativistic mass by equation (2.8).
A new chapter in the history of the concept of relativistic mass began

in 1909 when Gilbert N. Lewis and Richard C. Tolman took exception to
the fact that relativistic mechanics had been based on electrodynamics
and that, in particular, the relativistic velocity dependence of mass had
always been derived by recourse to the theory of the electromagnetic
field. Convinced of the conceptual autonomy of mechanics, they insisted
that the expression for relativistic mass, the most fundamental notion in
mechanics, should “be obtained merely from the conservation laws and
the principle of relativity, without any reference to electromagnetics.”5

To prove the feasibility of such a procedure they designed a thought
experiment in which two identical bodies are assumed to move toward
each other with equal velocities, to collide elastically, and then to re-

4 M. Planck, “Das Prinzip der Relativität und die Grundgleichungen der Mechanik,”
Verhandlungen der Deutschen Physikalischen Gesellschaft 4, 136–141 (1906); reprinted in: M.
Planck, Physikalische Abhandlungen und Vorträge (Braunschweig: E. Vieweg, 1958), vol. 2,
pp. 115–120.

5 G. N. Lewis and R. C. Tolman, “The Principle of Relativity and Non-Newtonian
Mechanics,” Philosophical Magazine 18, 510–523 (1909).

44



R E L AT I V I S T I C M A S S

bound on their original paths in a direction perpendicular to that of
the relative motion of two inertial observers. Applying the principles of
conservation of mass and conservation of momentum and the relativistic
addition theorem of velocities, they derived equation (2.1).6 Three years
later Tolman generalized this method to the case of a “longitudinal
collision” in which, unlike in the “transverse collision,” the two bodies
move toward each other in the same direction as the relative velocity
of the two observers.7 He also broadened his proof to account for “the
general case of any type of collision between any two bodies—elastic or
otherwise.”

For elastic longitudinal collision Tolman proceeded as follows: He
assumed that two identical bodies moving along the x-axis of an inertial
reference frame S with velocities+u and−u are at rest in S at the moment
they collide and then rebound over their original paths with velocities
−u and+u, respectively. If in the reference frame S′ of another observer,
who moves with a constant velocity v relative to S along the x-axis of S,
the velocities and masses before the collision are denoted, respectively,
by u1 and u2 and m1 and m2, then according to the addition theorem,

u1 = u− v
1− uv/c2 and u2 = −u− v

1+ uv/c2 . (2.10)

At the moment of the collision, when both bodies are moving in S′ with
velocity−v, their momentum is−(m1+m2)v, which by the conservation
principle is equal to the original momentum before the collision. Hence,

− (m1 +m2)v = m1u1 +m2u2 = m1
u− v

1− uv/c2 +m2
−u− v

1+ uv/c2 , (2.11)

which means that

m1

m2
= 1− uv/c2

1+ uv/c2 (2.12)

and after a simple algebraic transformation

m1

m2
= (1− u2

2/c
2)1/2

(1− u2
1/c2)1/2

= γu1

γu2

. (2.13)

“Remembering that these were bodies that had the same mass m0 when
at rest, we see that the mass of a body is inversely proportional to
(1− u2/c2)1/2, where u is its velocity, and have thus derived the desired

6 For details see chapter 12 of COM.
7 R. C. Tolman, “Non-Newtonian Mechanics: The Mass of a Moving Body,” Philosophical

Magazine 23, 375–380 (1912).
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relation m = m0(1−u2/c2)−1/2.” Tolman therefore declared emphatically
that “the expression m0(1−u2/c2)−1/2 is best suited for THE mass [sic] of
a moving body,”8 Tolman’s method of introducing relativistic mass has
been adopted by many authors of textbooks on relativity, among them
P. G. Bergmann, M. Born, C. Møller, W.G.V. Rosser, and M. Schwartz, to
mention only a few. In his own treatise on relativity, which he dedicated
to G. N. Lewis, Tolman introduced the notion of relativistic mass by
means of an elastic longitudinal collision, just as he had done in his 1912
easay.9 It was due, at least in part, to the work of Tolman and Lewis that in
1909 the Fortschritte der Physik, the time-honored German equivalent of
Science Abstracts, stopped listing papers on relativity under the heading
of “Elektrizität und Magnetismus.”

But did Tolman really establish m = m0γu, and thereby relativistic me-
chanics or, as he called it “non-Newtonian” mechanics, “without any ref-
erence to electromagnetics” as he claimed? Does not the very presence of
c, the velocity of light, in γu cast some doubt on this claim. The c appears
in Tolman’s’derivation because of his use of the relativistic composition
theorem of velocities, which is a consequence of the Lorentz transfor-
mation, and the latter is, in turn, a consequence of Einstein’s’postulate
of the universal invariance of the velocity of light. But light, after all,
is an electromagnetic phenomenon, the propagation of electromagnetic
waves with the velocity c = (ε0µ0)

−1/2, where ε0 is the electromagnetic
permissibility and µ0 the electromagnetic permeability of space.

A conceptually rigorous realization of Tolman’s procedure would re-
quire divesting c of its electromagnetic connotations by conceiving it, for
instance, as the maximum velocity attainable in mechanics in agreement
with the divergence of m0γu to infinity for u = c. However, there is a
better alternative, which follows from a remarkable, but little known,
study by Basil V. Landau and Sam Sampanthar, who showed that c can
be introduced as a constant of integration.10 The assumptions that these
mathematicians postulate are these: (1) the mass of a particle depends
somehow on its speed; (2) conservation of mass; (3) conservation of
momentum; and (4) some very general conditions, such as the isotropy
of space, assumptions about velocities of frames of reference S,S′, and

8 Tolman, Philosophical Magazine 23, 376 (1912).
9 R. C. Tolman, Relativity, Thermodynamics, and Cosmology (Oxford: Clarendon Press,

1934), pp. 43–45.
10 B. V. Landau and S. Sampanthar, “A New Derivation of the Lorentz Transformation,”

American Journal of Physics 40, 599–602 (1972).

46



R E L AT I V I S T I C M A S S

S′′ in uniform motion relative to each other, and the assumption that the
functions encountered are differentiable.

They first introduce a velocity composition operation ⊕, which is so
defined that if v is the velocity of S′ relative to S and u is the velocity of S′′

relative to S′, then v⊕ u is the velocity of S′′ relative to S, and show that
these relative velocities form an abelian group under this operation. This
enables them to associate with every velocity u a real number, called the
pseudovelocity, denoted by the corresponding capital letter U, such that
whenever v⊕u = w, then V+U =W , or in terms of a function g, defined
by u = g(U), g(V) + g(U) = g(V + U). A simple argument, based on
considerations of a particle coalescing at almost the same speed shows
that assumption (1) can be expressed in the form

m = m0f (U), (2.14)

where f (U) is still an unknown function of U but is equal to unity for
u = 0. Since for u = 0 the mass m equals m0,m0 is the rest mass of
the particle. A thought experiment in which a particle of rest mass M0

at rest in S disintegrates symmetrically into two particles, each of rest
mass m0 and pseudovelocity+V or−V, respectively, shows that (1) and
(2) imply

M0 = 2m0f (V) (2.15)

and that f is an even function. In S′, where m0 has the pseudovelocity
U, the pseudovelocities of the daughter particles are U +V and U −V,
respectively, so that (2) results in

M0f (U) = m0f (U + V)+m0f (U − V) (2.16)

or from equation (2.15)

2f (V)f (U) = f (U + V)+ f (U − V). (2.17)

Differentiating twice with respect to V and putting V = 0 yields the
differential equation

f ′′(0)f (U) = f ′′(U) (2.18)

and its solution

f (U) = cosh u. (2.19)

Postulate (3) applied to S′ gives

M0f (U)g(U) = m0f (U + V)g(U + V)+m0f (U − V)g(U − v), (2.20)
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which, by virtue of (2.15) and (2.19), becomes

2m0 cosh V cosh Ug(U) = m0 cosh (U + V)g(U + V)

+ cosh (U − V)g(U − V). (2.21)

Differentiating twice again with respect to V and putting V = 0 yields
the differential equation

2 sinh Ug′(U)+ cosh Ug′′(U) = 0 (2.22)

and its solution

c = g(U) = c tanh U, (2.23)

where c is a constant of integration. Finally, from equations (2.14), (2.19),
and (2.23) it follows that

m = m0f (U) = m0 cosh U = m0 cosh (tanh −1u/c)

= m0(1− u2/c2)−1/2 (2.24)

or

m = m0γu. (2.25)

Equation (2.25) provides the physical interpretation of the constant of
integration c. As the mass value m of a particle is a real number if and
only if

|u| < |c|, (2.26)

c signifies the upper limit of possible velocities of massive particles.
Within the present context, the fact that this upper limit happens to
coincide with the velocity of electromagnetic waves (or light) in vacuo
remains a mystery.

Undoubtedly, Lewis and Tolman would have welcomed this result
had they been alive in 1972.11 Landau and Sampanthar did not mention
the fact that their derivation of m = m0γu closed the gap that had inter-
fered with the complete realization of Tolman’s work. They considered

11 Lewis died in 1946, and Tolman in 1948. Only a few years after their deaths
W. Macke showed in a remarkable but little-known paper, “Begründung der speziellen
Relativitätstheorie aus der Hamiltonschen Mechanik,” Zeitschrift für Naturforschung 7a,
76–78 (1952), that the Hamiltonian canonical formalism, which includes energy and time,
leads to a velocity-dependent mass and, provided that the limiting velocity is identified
with the velocity of light, to the Lorentz transformations in compliance with Tolman’s
program.
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this derivation only as a prelude to their main objective, which was
the derivation of the Lorentz transformations from the equation for
relativistic mass and the conservation laws for mass and momentum.

As this work is not germane to our present concern, we will describe
the way in which it was carried out only briefly. The analysis of a
symmetric disintegration of a particle into two fragments with respect
to two different inertial reference frames, combined with the relativistic
mass equation, led to the relativistic composition rule of velocities. This
rule implied that the Galilean transformation had to be replaced by
another transformation, which from the assumption that it transforms
a uniform motion along a straight line in one reference frame into the
same kind of motion in the other frame, turned out to be the Lorentz
transformation.

The fact that the Lorentz transformation and the relativistic mass
equation mutually imply one another seems to indicate that the relation
between these two is more intimate than commonly thought. Indeed,
we shall show that the equation m = m0γu is a direct consequence of the
Lorentz transformation without recourse to any collision experiments
or other auxiliary devices. Since the Lorentz transformations transform
four-vectors, such as the space-time position four-vector, X = (x0 =
ct, x1 = x, x2 = y, x3 = z) = (x0, x), of an inertial reference frame S into a
four-vector such as X′ = (x′0, x′) of another reference frame S′, it is clear
that the formalism we have to use is that of four-vectors. We assume, of
course, that the mass of a particle, as measured in a reference frame, may
depend on the particle’s velocity relative to this frame and that the parti-
cle’s rest mass m0 is its mass as measured in a frame in which the particle
is at rest. We denote the Lorentz transform of any quantity q by q′. Let

P = (cq0 = p0, px = mux, py = muy, pz = muz) = (p0,p) (2.27)

be a four-vector in S, where m is the mass of the particle in S,ux,uy,uz

are the components of the velocity u of the particle in S, and q0 is an
as yet uninterpreted quantity subject to the condition that P transforms
like a four-vector. For a particle moving with velocity u = ux 6= 0 along
the x-axis of S the four-vector P reduces to

P = (cq0,mu, 0, 0). (2.28)

In an inertial frame S′, in standard configuration with S and with
its origin attached to the particle, the particle’s mass, according to the
assumptions we made above, is
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m′ = m0 (2.29)

and P transforms into

P′ = (cq′0 = p′0, p′x, p′y, p′z) = (cq′0, 0, 0, 0), (2.30)

where p′x is given by

p′x = γu(px − uq0) (2.31)

in accordance with the Lorentz transformation x′ = γu(x − ut). Hence
by (2.28) and (2.30)

0 = γu(mu− uq0) (2.32)

or, since u 6= 0,

q0 = m (2.33)

and therefore

q′0 = m′ = m0. (2.34)

Furthermore,

q′0 = γu[q0 − (u/c2)px] (2.35)

in accordance with the Lorentz transformation t′ = γu[t− (u/c2)x].
Hence by (2.28), (2.33), and (2.34)

m0 = γu(m−mu2/c2) = mγ−1
u (2.36)

or

m = m0γu. (2.37)

It will have been noted that only the Lorentz transformations have
been used in this derivation of (2.37). As the special theory of relativity
is characterized by invariance under the Lorentz (or rather Poincaré)
group, this derivation of (2.37) seems to support Tolman’s designation
of the relativistic mass as the mass of a particle.

Yet, particle physicists generally ignore the notion of relativistic mass
and, as a rule, use only the concept of the velocity-independent mass
m0, which they measure in units of MeV/c2 in accordance with the
mass-energy relation, usually symbolized by the equation E = mc2.
This relation will be dealt with in detail only in chapter 3, but we find
it appropriate to refer to it in the present context insofar as it is relevant
to the notion of relativistic mass.
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First of all, it will have been noted that the four-vector P as defined in
(2.27) is precisely the relativistic momentum four-vector usually defined
as the product of m0 and the four-velocity U, with U defined as the
derivative of the space-time position four-vector X with respect to the
invariant proper time τ , i.e.,

P = (p0,p) = m0U = m0dX/dτ. (2.38)

In the nonrelativistic limit, whereγu −→ 1, expansion of cp0 = c2q0 or, by
(2.33), expansion of mc2 gives mc2 = m0c2(1−u2/c2)−1/2 = m0c2+ 1

2 m0u2+
terms of higher order in u.

Since 1
2mu

2 is the classical kinetic energy of the particle to which
the relativistic kinetic energy should reduce in this limit, the relativ-
istic kinetic energy is defined by Ekin = mc2 − m0c2, the rest energy
by E0 = m0c2, and the total energy of the particle by E = e0 + Ekin

= mc2.
The preceding remarks concerning the mass-energy relation have

been referred to, in anticipation of chapter 3, because of the role they
have played in what has probably been the most vigorous campaign ever
waged against the concept of relativistic mass. In 1989, Lev Borisovich
Okun, a prominent particle physicist known for his work on weak inter-
actions, published some essays in which he emphatically declared that
“in the modern language of relativity there is only one mass, the New-
tonian mass m, which does not vary with velocity,” and “there is only one
mass in physics which does not depend on the reference frame.”12 Okun
blamed all those who, like Tolman or Wolfgang Pauli, distinguished
between “rest mass” and “relativistic velocity-dependent mass” and
caused thereby widespread confusion that has marred even the “most
serious monographs on relativistic physics.” Okun maintained that the
main reason for this confusion was the popular expression of Einstein’s
mass-energy relation given by E = mc2.

In order to illustrate the widespread extent of this confusion even
among professional physicists Okun reports on an opinion poll that he
conducted among his colleagues at the Moscow Institute for Theoretical
and Experimental Physics. In this poll he presented the following four
equations:

12 L. B. Okun, “The Concept of Mass (Mass, Energy, Relativity),” Uspekhi Fisicevskikh
Nauk 158, 511–530 (1989). Soviet Physics Uspekhi 32, 629–638 (1989). “The Concept of Mass,”
Physics Today 42, 31–36 (June 1989).
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(I) E0 = mc2 (II) E = mc2 (III) E0 = m0c2

(IV) E = m0c
2 (2.39)

and asked the following two questions:

(Q1) Which of these equations most rationally follows from spe-
cial relativity and expresses one of its main consequences and
predictions?

(Q2) Which of these equations was first written by Einstein and was
considered by him a consequence of special relativity?

As Okun recounts it, most of his colleagues opted for equations (II) or
(III) as the answer to both questions and not for equation (I), which
according to Okun is the only correct answer to both. To prove his
contention Okun refers to the two fundamental equations of special
relativity: to the energy-momentum four-vector equation

E2 − p2m2 = m2c4, (2.40)

in which each side is a scalar and m is the ordinary mass, “the same as
in Newtonian mechanics,” and to the equation for the momentum

p = uE/c2. (2.41)

Since for u = 0, Okun continues, equation (2.41) yields p = 0 and E
becomes the rest energy E0, equation (2.40) reduces to E0 = mc2, i.e.,
equation (I), where of course, in accordance with Okun’s above quoted
declaration, m denotes the ordinary Newtonian mass. For “as soon as
you reject the ‘relativistic mass’ there is no need to call the other mass the
‘rest mass’ and to mark it with the index 0.” Okun then asks the following
question: if the notation m0 and the term “rest mass” have to be rejected,
why should the notation E0 and the term “rest energy” be retained?
His answer is: “because mass is a relativistic invariant and is the same
in different reference systems, while energy is the fourth [timelike]
component of a four-vector (E, p) and is different in different reference
systems. The index 0 in E0 indicates the rest system of the body.”

As we shall see in what follows, Okun’s position on this issue can
well be defended and is, in fact, very similar to that adopted by Edwin
F. Taylor and John Archibald Wheeler in their influential text Spacetime
Physics, which will be referred to in due course. However, the answer
he gives to his second question is more problematic. As this question
is of an historical nature, it can be interpreted in two different ways.
If it asks which of the four equations (I) to (IV) did Einstein write in
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his “first” (1905) paper on the mass-energy relation, the answer, as we
shall see in chapter 3, is “none.” If it asks which of these four equations
did Einstein write when he expressed this relation for the “first” time
in the form of an equation, and not in words as he had done in his
early papers on this issue, the answer is equation (I), but written in
the notation µv2 = ε0, in a footnote on p. 425 of his 1907 essay “Über
die vom Relativitätsprinzip geforderte Trägheit der Energie.” Okun’s
answer that “Einstein formulated the famous mass-energy relation in the
second of his 1905 papers on relativity in the form1E0 = 1mc2,” though
conceptually correct, is not found in that paper in this mathematical
formulation. More details and references on Einstein’s treatment of the
mass-energy relation will be presented in chapter 3.

It is instructive to compare Okun’s argument in favor of equation (I)
with the counterargument offered by the proponents of the notion of
relativistic mass and equation (II) with m being the relativistic mass.
They start with the above statement that the total energy of a particle is
the sum of its rest energy and its kinetic energy, the work done on the
particle from its position of rest. They then show that the latter satisfies
the equation dEkin = d(mγuc2), where m denotes the Newtonian mass
and γu stands for (1−u2/c2)−1/2. Since u = 0 implies Ekin = 0, integration
yields Ekin = mc2(γu − 1) = mrc2 −mc2 and E0 = mc2, which mr denotes
the relativistic mass. Finally, E = E0 + Ekin implies

E = mrc2, (2.42)

which is, of course, equation (II) with m interpreted as mr.
Let us also point out that Tolman’s approach was adopted by many

authors of the earlier textbooks on relativity. Thus, for example, in his
influential treatise on relativity Max Born using conservation of momen-
tum in the case of an inelastic collision concluded that it is impossible to
“retain the axiom of classical mechanics that mass is a constant quantity
peculiar to each body.” Rather, he wrote, “mass is to have different values
according to the system of reference from which it is measured, or, if
measured from a definite system of reference, according to the velocity
of the moving body.”13 This point of view is diametrically opposed to
that of those who reject the legitimacy of mr on the grounds that it is
objectionable that the mass of a particle decreases or increases for no

13 M. Born, Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen (Berlin:
J. Springer, 1920, 1922, 1964); Einstein’s Theory of Relativity (New York: Dover, 1962, 1965),
p. 269.
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physical reason, merely by being observed from different perspectives.
Moreover, alluding to the early notions of longitudinal and transverse
mass,14 they claim that “no unique dependence of mass on velocity
follows from the mechanics of special relativity” and that it would
be unreasonable to assume that the mass of a particle, supposed to
be an inherent property, should depend on purely geometrical details
such as the spatial direction of the force or the acceleration of the
moving particle.15

We shall not give a detailed account of the heated debate pro and
contra mr that has been going on for the last two or three decades
but shall confine our discussion to a few brief comments. First of all,
textual evidence shows that the use of four-vectors for the presentation
of relativity does not enforce any preference in this matter. Thus Joseph
Aharoni, who develops relativistic dynamics in four-vector notation,
writes: “the theory of relativity forces us to the conclusion that what
is regarded in the classical theory of mass cannot be assumed (as is
done in the classical theory) to be independent of velocity.”16 In contrast,
Robert W. Brehme17 and Andrew Whitaker,18 who regard the four-vector
calculus as the “clearest and simplest” way of thinking, reject mr on the
grounds that “it gives the impression that the effects of relativity are due
to ‘something happening’ to the particle, whereas they are of course due
to the properties of space-time.”

Still, there has been a general tendency in recent years to dispense with
mr. Thus, as Carl G. Adler noted,19 a widely used textbook ascribed in
its earlier editions (1963) to the concept of relativistic mass “the greatest
importance when dealing with atomic and subatomic particles,” but
in its later editions (1976, 1980) describes the very same concept as
“misleading” and “not necessary” at all.20

14 See equations (15) and (16) in chapter 12 of COM.
15 V. L. Ginzburg, “Who Developed the Theory of Relativity, and How?,” in V. A. Ugarov

(ed.), Special Theory of Relativity (Moscow: Mir, 1979), p. 352.
16 J. Aharoni, The Theory of Relativity (Oxford: Clarendon Press, 1959), p. 140.
17 R. W. Brehme, “The Advantage of Teaching Relativity with Four-Vectors,” American

Journal of Physics 36, 896–901 (1968).
18 M.A.B. Whitaker, “Definition of Mass in Special Relativity,” Physics Education 11,

55–57 (January 1976).
19 C. G. Adler, “Does Mass Really Depend on Velocity, Dad?,” American Journal of Physics

55, 739–743 (1987).
20 F. W. Sears and M. W. Zemansky, University Physics (Reading, Mass.: Addison–Wesley,

1963, 1970, 1976, 1980, 1982).
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According to Taylor and Wheeler the root of this controversy lies in the
fact that the term “mass” is being used in two different connotations—
once in the sense of the invariant (scalar) magnitude of the energy-
momentum four-vector P = (E/c,p) divided by c2, i.e., m = ∥∥E2 −
p2c2

∥∥/c2, and once as the time component of this very same four-vector,
i.e., mr = E/c2. Taylor and Wheeler discourage the use of mass in the
latter sense because it leads to the erroneous belief that the increase in
the energy, alias “mass,” of a particle with velocity or momentum results
from some change in the internal structure of the particle and not in the
geometric properties of space-time itself.21

More recently, Okun’s polemic condemnation of mr gave rise to an
animated debate in a series of “Letters” in the May 1990 issue of Physics
Today. While Michael A. Vanyck, for example, fully endorses Okun’s re-
jection of mr and suggests even further revisions in this spirit, Wolfgang
Rindler declares: “Okun’s earnest tirade against the use of the concept of
relativistic mass” is harmful for the understanding of relativity. Further,
he adds, “to me, mr is a useful heuristic concept. It gives me a feeling
for the magnitude of the momentum p = mru at various speeds. The
formula E = mrc2 reminds me that energy has masslike properties such
as inertia and gravity, and it tells me how energy varies with speed.”22 In
another article, written in 1991, Thomas R. Sandin defends mr even on
aesthetic grounds because “relativistic mass paints a picture of nature
that is beautiful in its simplicity” and its elimination would be “a form
of unnecessary censorship.”23

Although, as noted above, the general trend, especially in the lit-
erature on elementary particle physics, is toward the elimination of
mr, there are quite a few exceptions, mainly in the textbook literature.
Thus, for instance, Richard A. Mould in his recently published text on
relativity argues strongly against the belief that only rest mass should
be admitted. Although he acknowledges the importance of rest mass
because of its invariance under coordinate transformations, he recom-
mends using relativistic mass as well because “it retains the gravitational
and inertial properties long associated with mass, just as energy retains
its familiar association with work-related activity.”24 In order to reinforce

21 E. F. Taylor and J. A. Wheeler, Spacetime Physics (San Francisco: Freeman, 1963, 1966);
see in particular Table 14: Uses and abuses of the concept of mass, pp. 134–137.

22 “Putting to Rest Mass Misconceptions,” Physics Today 43, 13–15, 115–119 (May 1990).
23 T. R. Sandin, “In Defense of Relativistic Mass,” American Journal of Physics 59, 1032–

1036 (1991).
24 R. A. Mould, Basic Relativity (New York: Springer-Verlag, 1994), p. 119.
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his position he illustrates it in terms of a photon gas, which has a rest
mass equal to zero but, contrary to what is commonly thought, is not
weightless. “Its passive gravitational mass is equal to its relativistic mass
(which equals its total energy

∑
i hνi/c2), so that when it is placed on

a scale in a gravitational field g its weight is equal to
∑

i hνi/c2 × g.
Furthermore, if the gas is accelerated horizontally, it will display inertial
properties also equal to

∑
i hνi/c2, even at nonrelativistic accelerations.”

The use of mr is therefore fully justified.
That the crux of this controversy is not a matter of aesthetic simplicity,

terminological convention, or practical applicability but rather, as Taylor
and Wheeler intimated, the result of different mathematical approaches
has recently been argued by R. Paul Bickerstaff and George Patsakos.25

As they point out, a quantity that is an invariant in the nonrelativistic
limit of the Lorentz transformations can be generalized in the relativistic
realm to two quantities with different tensorial characters. The best-
known example, though not mentioned by them, is the concept of time
in classical physics: with respect to the nonrelativistic Galilean transfor-
mation it is an invariant; but if generalized relativistically it becomes
either the scaler “proper time τ ,” or alternatively the zeroth compo-
nent (divided by c) of the space-time four-vector (ct = x0, x1, x2, x3).
Analogously, the authors claim, the classical (Newtonian) notion of
mass generalizes either to the scaler “rest mass m” or alternatively to
the zeroth component mr = E/c2 of the momentum four-vector. In
fact, the well-known equations dt = γvdτ and mr = γum manifest this
analogy in a conspicuous way, which suggests calling τ “the rest time”
and m “the proper mass,” as Arthur S. Eddington actually did.26 From
the mathematical point of view both sides of the controversy can be
equally well defended, provided the two generalizations are equally
maintainable, and it is at this point that philosophical considerations
come into play.

To understand this issue we have to recall that until not so long
ago philosophers regarded the development of science as a linear con-
tinuous process of ever-increasing accumulation of knowledge. Even
far-reaching innovations in so-called “scientific revolutions” were ulti-
mately, according to this view, only results of articulations and exten-

25 R. P. Bickerstaff and G. Patsakos, “Relativistic Generalization of Mass,” European
Journal of Physics 16, 63–68 (1995).

26 A. S. Eddington, The Mathematical Theory of Relativity (Cambridge: Cambridge Uni-
versity Press, 1924, 1965), p. 30.
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sions of existing theories. In the 1960s this so-called “Received View”
was challenged by Thomas S. Kuhn, Paul K. Feyerabend, and others,
who claimed that the development of science is a sequence of dis-
connected different canons of scientific thought, influenced to a great
extent by external factors.27 The various stages in this sequence are
characterized by what Kuhn calls “paradigms” (or later “disciplinary
matrices”), which are “universally recognized scientific achievements
that for a time provide model problems and solutions to a commu-
nity of practitioners.” To adopt a new theory or paradigm means to
accept a completely novel conceptual scheme that has so little in com-
mon with that of the older, now rejected, theory that the two theories
are “incommensurable,” for no objective yardstick exists that makes
it possible to compare them. Furthermore, as the meaning of every
scientific term in a given theory depends upon the theoretical context
in which it occurs, even the individual scientific terms of the new
theory are incommensurable with the terms of the old one, despite
the fact that the same terminology is often retained. Any meaning-
invariance even of homonymous terms of different theories is therefore
strictly denied.

Two of the most frequently quoted incommensurable terms are the
“classical (Newtonian) mass” and the “relativistic rest mass.” Thus,
e.g., according to Feyerabend “the attempt to identify classical mass
with relative [i.e., relativistic] rest mass” cannot be made because these
terms belong to incommensurable theories.28 In another context he says,
“That the relativistic concept and the classical concept of mass are very
different indeed becomes clear if we consider that the former is a relation,
involving relative velocities, between an object and a coordinate system,
whereas the latter is a property of the object itself and independent of its
behavior in coordinate systems.”29

The thesis of the incommensurability of the classical and the relativis-
tic notions of mass can be defended not only on philosophical grounds
but also by physical arguments. It can be argued, following Erik Eriksen

27 T. S. Kuhn, The Structure of Scientific Revolutions (Chicago: University of Chicago
Press, 1962, 1970). P. K. Feyerabend, Problems of Empiricism—Philosophical Papers, vol. 2
(Cambridge: Cambridge University Press, 1981).

28 According to Feyerabend, Problems of Empiricism, “two theories will be called in-
commensurable when the meanings of their main descriptive terms depend on mutually
inconsistent principles.”

29 P. K. Feyerabend, “Problems of Empiricism,” in R. G. Colodny, Beyond the Edge of
Certainty (Englewood Cliffs, N.J.: Prentice-Hall, 1965), p. 169.
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and Kjell Vøyenli, that in particular it would be wrong to regard, as Okun
does, the relativistic rest mass as the only legitimate notion of mass and
as identical with the classical notion of mass and that, instead, both the
classical and the relativistic concepts of mass have to be acknowledged
each in its own right.30

The argument is based on the principle of conservation of momentum
and, in the classical case, on the Galilean transformation and, in the
relativistic case, on the Lorentz transformation. In both cases, masses
are implicitly defined by those constant positive quantities mj that in a
collision of n incoming particles with velocities u1, . . . ,un and p outgo-
ing particles with velocities un+1, . . . ,un+p, relative to a reference frame
S, satisfy the equation

n∑
j=1

mjuj =
n+p∑

k=n+1

mkuk, (2.43)

where the total number of particles n+ p, but in the relativistic case not
necessarily n and p separately, is assumed to be invariant.31 In the special
case n = 2 and p = 1, so that

m1u1 +m2u2 = m3u3 (2.44)

measurement of the velocities, assumed to be not parallel, obviously
determines the mass-ratios, e.g., m1/m3.

Equation (2.43) can also be written in the form
n+p∑
j=1

εjmjuj = 0, (2.45)

where εj = +1 for j = 1, . . . ,n, i.e., for incoming particles, and εj = −1
for j = n+ 1, . . .n+ p, i.e., for outgoing particles.

In order to find out how the mass-ratios measured in S are related to
the mass-ratios measured in a reference frame S′ that is moving with
velocity v relative to S, we have to distinguish between the classical and
the relativistic case. Quantities with a prime (′) will refer to S′.

30 E. Eriksen and K. Vøyenli, “The Classical and Relativistic Concepts of Mass,” Foun-
dations of Physics 6, 115–124 (February 1976).

31 Eriksen and Vøyenli consider not only ordinary particles, i.e., so-called tardyons
(with velocity u < c), but also luxons (u = c) and tachyons (u > c). As is well known,
whether a tachyon is an incoming or an outgoing particle depends on the reference frame.
We confine our discussion to tardyons.
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In classical physics, let equation (2.45) be valid in S and∑
εjm′j u

′
j = 0 (2.46)

be valid in S′. Since according to the Galilean transformation uj = u′j+v,
we obtain from equation (2.45)∑

εjmju ′j = −v
∑

εjmj. (2.47)

In the case of three particles, equation (2.46) shows that u′1,u′2, and u′3 are
linearly dependent and therefore define a plane. Hence, the left-hand
side of equation (2.47) is a vector in this plane. Since v can be chosen not
to lie in this plane equation (2.47) splits into the two equations∑

εjmju ′j = 0 (2.48)∑
εjmj = 0, (2.49)

the second of which expresses the conservation of mass. Equations (2.46)
and (2.48) show that

m′j = ηmj, (2.50)

where η is a constant for all particles. Equation (2.49) guarantees the
invariance of the mass-ratios. Hence, the selection of a certain particle
as unit mass in every reference frame determines that the mass of every
particle is an invariant.

In relativistic physics, where m now stands for the relativistic mass,
formerly denoted by mr, replacement of the Galilean by the Lorentz
transformation changes equation (2.47) into∑

εjmj(1− v · uj/c2)u′j = −v
∑

εjmj, (2.51)

which again implies that each side equals zero. Again, the equation∑
εjmj = 0 (2.52)

expresses the conservation of mass. Correspondingly, equation (2.50)
has to be replaced by the general mass transformation equation

m′j = η(1− v · uj/c2)mj, (2.53)

where η is the same constant for all particles. If γv denotes (1−v2/c2)−1/2

and γu and γu′ denote the corresponding quantities, the Lorentz trans-
formation leads to

γv(1− v · u/c2)γ−1
u′ = γ−1

u (2.54)

59



C H A P T E R T W O

and equation (2.53) reads

m′jγ
−1
u′ = (η/γv)mj γ

−1
u . (2.55)

By virtue of equation (2.55) the invariant mass m0j of the jth particle,
defined by m0j = mjγ

−1
u , satisfies the equation

m′0j = (η/γv)m0j, (2.56)

which shows the invariance of the mass-ratios. Again, the selection
of a certain particle as unit invariant mass in every reference frame
determines the invariant mass of every particle and (2.56) implies that

η = γv. (2.57)

Equations (2.53), (2.55), and (2.56) now read

m′j = γv(1− v · uj/c2)mj (2.58)

m′jγ
−1
u′ = mjγ

−1
u (2.59)

m′0j = m0j (2.60)

and show that, unlike the mass mj, the mass m0j is an invariant and
that the invariant mass equals the mass in the rest frame of the particle.
Since according to equation (2.52) the sum of the relativistic masses mj is
conserved and the sum of the rest masses m0j is not, whereas according to
equation (2.49) the sum of the classical masses mj is conserved, it would
be wrong to identify the rest mass of a particle with its classical mass.
Further, according to equation (2.53) the relativistic mass-ratios are not
invariant, whereas in accordance with equation (2.49) the classical mass-
ratios are, so it would of course also be wrong to identify the relativistic
mass with the classical mass. “At this stage one might think that the
three concepts of mass are three different physical quantities that may
be dealt with on an equal footing. This would, however, be another
misconception. The relativistic and the classical concepts of mass are
intimately associated with two contradictory theories that deal with
the same subject matter. Hence the classical and relativistic concepts
are rival, contradictory concepts.”32 These words are obviously only a
restatement of the incommensurability thesis described above.

Those who consider the new theory a generalization or extension of
the old one so that the new has a range of applicability that includes

32 Eriksen and Vøyenli, Foundations of Physics 6, 123–124 (February 1976).
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that of the old, in agreement with the mathematical generalizations
noted by Bickerstaff and Patsakos, clearly reject the incommensurability
doctrine. So do, in particular, those who regard Newtonian mechanics
as the low-velocity limit of relativistic mechanics, and so certainly do
those who, like Okun, declare that “there is only one mass in physics,
m, which does not depend on the reference frame,” and that m in the
equation E2 − p2c2 = m2c4 “is the ordinary Newtonian mass,” or even
more explicitly, that “the mass of a body . . . is the same, in the theory
of relativity and in Newtonian mechanics.”33

On the other hand, those who like Tolman regard relativistic mechan-
ics as a “non-Newtonian” theory, established on principles independent
of classical physics and declare that “mr is THE mass” in relativity,
obviously endorse the incommensurability doctrine, even if they are
not aware of it. Our analysis of the m vs. mr debate thus leads us to the
conclusion that the conflict between these two formalisms is ultimately
the disparity between two competing views of the development of
physical science.

33 Okun, Physics Today 42, 31–36 (June 1989).
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The Mass-Energy Relation

It is certainly no exaggeration to say that the mass-energy relation,
usually symbolized by E = mc2, is one of the most important and
empirically best confirmed statements in physics. Although initially
conceived as a purely theoretical theorem without any practical applica-
tions, E = mc2 eventually became the symbol that marks the beginning
of a new era in the history of civilization—the age of nuclear energy with
its promises and dangers for the human race. As we are interested in
this relation only within the context of our study of the notion of mass,
we ignore all these far-reaching implications and focus our attention
on the conceptual issues involved. We have to admit, however, that
because of its epoch-making consequences the discovery of the mass-
energy relation is itself an important event in the history of physics. It
is therefore interesting to note that the very first proof of this relation—
Einstein’s 1905 derivation—has been criticized as being a logical fallacy
involving a vicious circle.

The first to claim that “the reasoning in Einstein’s 1905 derivation of
the mass-energy relation is defective” was Herbert E. Ives.1 Ives’s claim
described in chapter 13 of Concepts of Mass was recently rejected as un-
justified, but had enjoyed rather widespread endorsement.2 The alleged
circularity in Einstein’s reasoning was even interpreted as indicative
of his genius when it was said: “Ives has shown (beyond any doubt)
that this [Einstein’s] derivation is circular. That is, Einstein implicitly
postulates the energy-mass relation in his proof. This may be in a way
a tribute to Einstein’s genius, for he seems to intuitively know answers
before he derives them.”3

1 H. E. Ives, “Derivation of the Mass-Energy Relation,” Journal of the Optical Society of
America 42, 540–543 (1952).

2 See, e.g., H. Arzeliès, Études Relativistes: Rayonnement et Dynamique du corpuscule chargé
fortement accéléré (Paris: Gauthier-Villars, 1966), pp. 74–79; A. Miller, Albert Einstein’s Special
Theory of Relativity (Reading, Mass.: Addison-Wesley, 1981), p. 377; U. E. Schröder, Spezielle
Relativitätsthoerie (Thun: H. Deutsch, 1981), p. 118; K. J. Köhler, “Die Aequivalenz von
Materie und Energie,” Philosophia Naturalis 19, 315–341 (1982); C. A. Zapffe, A Reminder
on E = mc2 (Baltimore: CAZLab, n.d.), p. 46.

3 A. F. Antippa, “Variations on a Photon-in-a-Box by Einstein,” UQTR-TH-8 (Quebec:
Université du Québec à Trois-Rivières, May 1975), pp. 1–52.
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In order to understand the origin of the circularity claim we shall
briefly review, for the convenience of the reader, Einstein’s first deriva-
tion of the mass-energy relation (in the notation of chapter 13 of COM).4

A body B at rest in an inertial frame S and of initial energy content E0

is supposed to emit two equal quantities of radiant energy in opposite
directions, each of amount1E/2, so that it remains at rest with decreased
energy content E1. Energy conservation requires that

E0 = E1 +1E. (3.1)

Let E′0 and E′1 be the energies of B before and after the emission, respec-
tively, as measured in a reference frame S′ that is moving relative to S
with a constant velocity v in a direction making an angle φ with the
direction of the emitted radiation. From the relativistic transformation
equation of radiant energy (proved in Einstein’s very first paper on
relativity) and the energy conservation principle it follows that

E′0 = E′1 + 1
21Eγv[1+ (v/c) cos φ]+ 1

21Eγv[1− (v/c) cos φ], (3.2)

where γv = [1− v2/c2]−1/2. Hence, by subtraction,

(E′0 − E0)− (E′1 − E1) = 1E(γv − 1). (3.3)

Since E′0 − E0 and E′1 − E1 are differences in “the energy values of the
same body referred to two reference systems moving relatively to each
other, the body being at rest in one of the two systems . . . it is clear
that the difference E′ − E [i.e., E′0 − E0 and E′1 − E1] can differ from the
kinetic evergy T [i.e., T0 and T1, respectively] of the body, with respect
to the other system, solely by an additive constant C, which depends on
the choice of the arbitrary additive constants of the energies E′ and E′′.
Hence, Einstein concluded,

E′0 − E0 = T′0 + C (3.4)

E′1 − E1 = T′1 + C (3.5)

and because of (3.3)

4 A. Einstein, “Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?,”
Annalen der Physik 18, 639–641 (1905); “Does the Inertia of a Body Depend upon Its Energy
Content?,” in A. Einstein, H. A. Lorentz, H. Minkowski, and H. Weyl, The Principle of
Relativity (New York: Dover, 1952), pp. 69–71. The original paper is reprinted in The
Collected Papers of Albert Einstein (Princeton: Princeton University Press, 1989), vol. 2,
pp. 312–314; English translation in the translation project, also published by Princeton
University Press, pp. 172–175 (document 24).
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T′0 − T′1 = 1E(γv − 1). (3.6)

Finally, since in the nonrelativistic limit, where the kinetic energy equals
1
2 mv2, m being the Newtonian mass of the body,

T′0 − T′1 = 1
( 1

2 mv2) , (3.7)

and, neglecting quantities of the fourth and higher order, the expansion
of 1E(γv − 1) yields

1E(γv − 1) = 1
2 (v/c)

21E, (3.8)

where v is constant, it follows from the last three equations that

1E = c21m (3.9)

or in words: “If a body gives off the energy1E in the form of radiation,
its mass decreases by1E/c2.” Generalizing this result Einstein declared:
“The mass of a body is a measure of its energy content.”5

The paper referred to at the beginning of this derivation (Einstein’s
very first paper on relativity) is of course his famous article “Zur Elek-
trodynamik bewegter Körper” (“On the Electrodynamics of Moving
Bodies”).6 Precisely two years later Max Planck published his essay “Zur
Dynamik bewegter Systeme” (“On the Dynamics of Moving Systems”),
which, as the title indicates, deals with problems similar to those in
Einstein’s first relativity paper.7 Planck also showed that “through every
absorption or emission of heat the inertial mass of a body changes, the
difference is mass being always equal to the quantity of heat . . . divided
by the square of the velocity of light in vacuo,” and added the remark
that Einstein had already arrived at “essentially the same conclusion
by applying the relativity principle to a special radiation process, but
under the assumption permissible only as a first approximation that the
total energy of a body is composed additively of its kinetic energy and
its energy referred to a system in which it is at rest.”

5 A. Einstein, “Die Masse eines Körpers ist ein Mass für dessen Energieinhalt,” Annalen
der Physik 18, 641 (1905).

6 A. Einstein, Annalen der Physik 17, 891–921 (1905). Collected Papers, vol. 2, pp. 276–306
(English translation, pp. 140–171). English translation also in Einstein et al., The Principle
of Relativity, pp. 35–65.

7 M. Planck, “Zur Dynamik bewegter Systeme,” Berliner Sitzungsberichte 1907, pp. 542–
570; Annalen der Physik 26, 1–34 (1908); Physikalische Abhandlungen und Vorträge (Braun-
schweig: F. Vieweg, 1958), vol. 2, pp. 176–209.
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Ives, having read this paper by Planck, contended that “what Planck
characterized as an assumption permissible only to a first approximation
invalidates Einstein’s derivation.” In other words, according to Ives,
equations (3.4) and (3.5) are unwarranted, and in order to find the correct
relationships, use has to be made of the equations

T′0 = m0c2(γv − 1) (3.10)

T′1 = m1c2(γv − 1) (3.11)

for the kinetic energy, which Einstein had proved in section 10 of his first
relativity paper. As described in chapter 13 of COM, Ives now reasoned
as follows: Subtracting (3.11) from (3.10) yields

T′0 − T′1 = (m0 −m1)c2(γv − 1), (3.12)

which, in view of (3.3) gives

(E′0 − E0)− (E′1 − E1) = 1E
(m0 −m1)c2 (T

′
0 − T′1) (3.13)

or considered “as the difference of the two relations,”

E′0 − E0 = 1E
(m0 −m1)c2 (T

′
0 + C) (3.14)

and

E′1 − E1 = 1E
(m0 −m1)c2 (T

′
1 + C), (3.15)

which, if compared with (3.4) and (3.5), show, according to Ives, that
“what Einstein did by setting down these equations (as ‘clear’) was to
introduce the relation”

1E/(m0 −m1)c2 = 1, (3.16)

which “is the very relation the derivation was supposed to yield.”
The really important issue here is not so much the historical question

of whether Einstein’s first derivation was a petitio principii or not but
rather the question of principle as to whether the derivation is—or can
be supplemented in such a way that it will be—rigorously valid. More
specifically, the issue is whether, contrary to Planck’s remark, equations
(3.4) and (3.5) can be shown to be strictly correct, or equivalently, since
equation (3.3) is undisputable, whether equation (3.6) can be rigorously
maintained. That it cannot, generally speaking, was argued in 1973 by
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Mendel Sachs.8 Sachs claimed that if the body is not a structureless
particle but, e.g., a γ -ray emitting nucleus, in which electrostatic forces
contribute to the binding of the constituent nucleus, changes in the
electromagnetic configuration energy, relative to the reference frame
in which the body is moving, had to be taken into account. Hence, the
correct equation should read

(T′0 − T′1)+ (I ′0 − I ′1) = E(γv − 1), (3.17)

where I ′0 and I ′1 are the electromagnetic configuration energies in the
excited and de-excited states of the nucleus, respectively.

The issue was taken up again more recently by John Stachel and
Roberto Torretti.9 True, they admit, had Einstein really made use of
equation (3.10) or (3.11), he would have indeed committed a circulus
vitiosus, for “he had as yet no grounds for assuming that the dependence
of the kinetic energy on internal parameters can be summed up in a rest
mass term.” But he did not. They also admit that what Einstein regarded
as evident (“it is clear that the difference . . .”) needs an explanation.
They justify Einstein’s derivation by taking into account the internal
energy of an isolated body in equilibrium and at rest in an inertial system
and applying the relativity principle, according to which this state must
be the same when the body is moving in a uniform motion with velocity v
relative to that system. That their justification is not a trivial matter can be
seen from the fact that Willard L. Fadner criticized it on the grounds that
it assumes the possibility “for an observer to measure the rest properties
of a body when the observer is moving at a velocity v relative to that
body,” a conceptual difficulty, which Fadner claims to have eliminated.10

Einstein seems never to have responded to the circularity claim. After
all, Ives’s paper was published only three years prior to Einstein’s death.
Nor does Einstein seem to have been satisfied with his 1905 derivation
or, for that matter, with any other of his various derivations of the mass-
energy relation. Aware of the fundamental importance of this relation,
he regarded it as unsatisfactory that in spite of many strenuous efforts
he did not succeed in establishing a general proof of the relation, that

8 M. Sachs, “On the Meaning of E = mc2,” International Journal of Theoretical Physics 8,
377–383 (1973).

9 J. Stachel and R. Torretti, “Einstein’s First Derivation of Mass-Energy Equivalence,”
American Journal of Physics 50, 760–763 (1932).

10 W. L. Fadner, “Did Einstein Really Discover ‘E = mc2’?,” American Journal of Physics
56, 114–122 (1988).
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is, a proof without premises that are valid only in special cases.11 As
early as in the introduction to his 1907 derivation he declared that to
the question of whether there exist other special cases that would lead
to conclusions incompatible with the relation, “a general answer . . . is
not yet possible because we do not yet have a complete world-view that
would correspond to the principle of relativity.” He remark that only
“ein vollständiges dem Relativitätsprinzip entsprechendes Weltbild”
could do full justice to the significance of this relation seems to indicate
that he assigned not only a purely physical-technical significance to
the mass-energy relation but also a deep philosophical meaning, a
perception that as we shall see further on, proved true. That he also
always strived for greater generality by narrowing down the range of
the postulated premises can be gathered from the introductory remarks
to his last published derivation (1946): “The following derivation of
the law of equivalence, which has not been published before, has two
advantages. Although it makes use of the principle of special relativity, it

11 It would be a psychologically and methodologically interesting research project
to compare Einstein’s various derivations of the mass-energy relation, which are listed
here in chronological order: (1) “Ist die Trägheit eines Körpers von seinem Energie-
inhalt abhängig?,” Annalen der Physik 18, 639–641 (1905); Collected Papers of Albert Einstein
(Princeton: Princeton University Press, 1989), vol. 2, pp. 312–314; “Does the Inertia of
a Body Depend upon Its Energy Content?,” A. Einstein, H. A. Lorentz, H. Minkowski,
and H. Weyl, The Principle of Relativity (London: Methuen, 1923; New York: Dover, 1952),
pp. 67–71; Collected Papers (English translations), vol. 2, pp. 172–174. (2) “Prinzip von der
Erhaltung der Schwerpunktsbewegung und die Trägheit der Energie,” Annalen der Physik
20, 627–633 (1906); Collected Papers, vol. 2, pp. 360–366; “The Principle of Conservation
of Motion of the Center of Gravity and the Inertia of Energy,” Collected Papers (English
translation), vol. 2, 200–206. (3) “Über die vom Relativitätsprinzip geforderte Trägheit
der Energie,” Annalen der Physik 23, 371–384 (1907); Collected Papers, vol. 2, pp. 413–427;
“On the Inertia of Energy Required by the Relativity Principle,” Collected Papers (English
translations), vol. 2, pp. 238–251. (4) Section 14 in “Über das Relativitätsprinzip und
die aus demselben gezogenen Folgerungen,” Jahrbuch der Radioaktivität und Elektronik
4, 411–462 (1907); Collected Papers, vol. 2, pp. 433–484; “On the Relativity Principle and
the Conclusions Drawn from It,” Collected Papers (English translations), vol. 2, pp. 252–
311; “Einstein’s Comprehensive 1907 Essay on Relativity, Part II” (translation by H. M.
Schwartz), American Journal of Physics 45, 811–817 (1977). (5) (unpublished) “Manuscript
on the Special Theory of Relativity (1912–1914),” Collected Papers (1995), vol. 4, pp. 9–101;
“Elementary Derivation of the Equivalence of Mass and Energy,” Bulletin of the American
Mathematical Society 41, 223–230 (1935). (6) “An Elementary Derivation of the Equivalence
of Mass and Energy,” Technion Yearbook 5, 16–17 (1946); Concise derivations can also be
found in his books (7) Über die spezielle und die allgemeine Relativitätstheorie (Braunschweig:
F. Vieweg, 1917 and numerous later editions), section 15, as well as in (8) The Meaning of
Relativity (Princeton: Princeton University Press, 1921) (4th edition, p. 45).
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does not presume the formal machinery of the theory but uses only three
previously known laws: (1) the law of the conservation of momentum,
(2) the expression for the pressure of radiation; that is, the momentum of
a complex of radiation moving in a fixed direction, (3) the well-known
expression for the aberration of light.”

We shall not discuss each of Einstein’s derivations or the relations
among them separately in detail but wish to point out that, generally
speaking, they can be classified as variants to one of the three different
approaches: (I) the study of a symmetric emission (or absorption, in
his 1946 derivation) of two identical physical objects (e.g., photons)
with respect to two inertial reference frames in relative uniform motion;
(II) the study of the motion of a single physical object in a cavity or box,
subject to the principle of the conservation of the center of mass or of
linear momentum, with respect to a single inertial reference frame; and
(III) the study of the relation between energy, work, and momentum
of a single object in motion with respect to a single inertial reference
frame. Furthermore, all the derivations contain explicitly or implicitly,
e.g., via the Lorentz transformation, some reference to electromagnetic
radiation, which introduces the velocity of light c into the expression
E = mc2.12

Einstein’s first (1905) derivation of the mass-energy relation was dis-
cussed in extenso at the beginning of the present chapter. It clearly
belongs to class (I) of the just mentioned classification, the two physical
“objects” being the two equal quantities of radiation emitted by the
body B and dealt with in the reference frames S and S′. It became the
paradigm for the construction of numerous variants, each of which was
claimed by its respective author to be more elementary and based on
fewer assumptions that all those that preceded it.

An interesting example is Fritz Rohrlich’s 1990 “elementary deriva-
tion of E = mc2,” which, as its author claims, could have been carried out
as early as 1842 when Christian Johann Doppler discovered the effect
carrying his name, provided the photon and its particle-like properties
had been known at the time. Following Einstein,13 Rohrlich assumes that

12 Even in his (almost) group-theoretical derivation of the Lorentz transformations,
which he presented in his lectures on relativity at the University of Berlin, Einstein had to
refer to the velocity of light. See “Relativitätsvorlesung Winter 1914–1915” in his Notebook,
Collected Papers, vol. 6 (document 7), pp. 44–66, especially pp. 49–51.

13 Einstein, according to T. F. Jordan, intended originally to make use of his proposed
notion of “light quanta” or “photons,” as they were later called, as early as March 1905 but
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a source remaining at rest in a reference frame S emits two photons.14

Conservation of momentum requires them to have equal and oppositely
directed momenta, hence equal frequency ν and equal energy hν; con-
servation of energy requires that the source suffer a loss of energy

1E = 2hν. (3.18)

Viewed from a frame S′, which moves uniformly relative to S so that the
source is seen to move with velocity v in the same direction as one of the
photons, conservation of momentum and the (classical) Doppler effect
require that

p′0 = p′1 + (hν/c)(1+ v/c)− (hν/c)(1− v/c), (3.19)

where p′0 and p′1 denote, respectively, the momentum of the source before
and after the emission. The source’s loss of momentum in S′ is therefore

p′0 − p′1 = 1p′ = (2hν/c2)v. (3.20)

Since momentum is the product of mass and velocity or p = mv and v
remains constant, the loss in momentum can be accounted for only as a
change 1m in mass. Hence

1m = 2hν/c2. (3.21)

If E′0 and E′1 denote, respectively, the initial and the final energy of the
source as measured in S′, then clearly

E′0 = E′1 + hν(1+ v/c)+ hν(1− v/c), (3.22)

and the loss in energy of the source relative to S′ is

E′0 − E′1 = 1E′ = 2hν = 1E, (3.23)

changed his mind because he thought that the idea of “light quanta” is “more revolutionary
and less finished than relativity.” T. F. Jordan, “Photons and Doppler Effect in Einstein’s
Derivation of Mass Energy,” American Journal of Physics 50, 559–560 (1982).

14 F. Rohrlich, “An Elementary Derivation of E = mc2,” American Journal of Physics
58, 348–349 (1990). Rohrlich first published this derivation in his book From Paradox to
Relativity—Our Basic Concepts of the Physical World (Cambridge: Cambridge University
Press, 1987). In his otherwise very laudatory review of this book Victor F. Weisskopf called
Rohrlich’s proof of E = mc2 “a flawed derivation” but without stating why he regarded
it as flawed. It was also criticized by R. Ruby and R. E. Reynolds in their “Comments” on
it in American Journal of Physics 59, 756 (1991), as going beyond the conceptual framework
of Newtonian physics. But their critique was rebutted by Rohrlich, ibid., 757.
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where the last equality follows from (3.18). Comparison of (3.21) with
(3.23) yields

1m = 1E/c2. (3.24)

Rohrlich completes his derivation by arguing that if the total mass of the
source is supposed to be used up by emitting photons, equation (3.24)
implies

E = mc2. (3.25)

Rohrlich was not the first to use the Doppler effect for a derivation of
the mass-energy relation. Apparently unknown to him, Daniel J. Steck
and Frank Rioux had done so about ten years earlier, in 1980, the only
difference being that the latter had used the relativistic formula of the
Doppler effect.15 Thus in their derivation, Rohrlich’s equation (3.19) and
those that follow from it read

p′0 − p′1 =
hν
c

(
1+ v/c
1− v/c

)1/2

− hν
c

(
1− v/c
1+ v/c

)1/2

=
(

2hν
c2

)
γvv =

(
1E
c2

)
γvv, (3.26)

which with the correspondingly modified equations

1p′ = 1m′v 1m′ = 1mγv (3.27)

yields again

1m = 1E/c2. (3.28)

Steck and Rioux were also not the first to apply to Doppler effect
to the derivation of the mass-energy relation. Unknown to them—for
they stated “in this note we describe a simple derivation of the mass-
energy equivalence equation that we have not seen previously in the
literature”—their derivation, though couched in a different terminology,
had been presented seventy years earlier by Paul Langevin.16 In a lec-
ture delivered on March 26, 1913, Langevin explained, though without

15 D. J. Steck and F. Rioux, “An Elementary Development of Mass-Energy Equivalence,”
American Journal of Physics 51, 461–462 (1983).

16 P. Langevin, “L’inertie de l’énergie et ses conséquences,” Journal de Physique théorique
et appliquée 3, 553–591 (1913); reprinted in Oeuvres Scientifique de Paul Langevin (Paris:
CNRS, 1950), pp. 397–426.
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using the term “Doppler principle,” the “variation de masse . . . par
l’émission du rayonnement” by analyzing the energy content of two
equal quantities of radiation emitted in opposite directions, as viewed
by two observers in relative motion to each other and implying thereby
essentially the relativistic formula of the Doppler effect. Albert Shad-
owitz reformulated this derivation slightly by means of the relativistic
Doppler effect and, calling it “a derivation of P. Langevin,” introduced
it into the textbook literature in 1968.17

This “derivation of P. Langevin” should not be confused with another
of Langevin’s derivations of the inertia of energy, presented by him in a
1920 lecture at the Collège de France but never published. It would have
been irretrievably lost were it not that Jean Perrin attended the lecture
and reviewed it in his book on the foundations of physics written for the
general reader.18 In contrast to the 1913 version, Langevin’s 1920 deriva-
tion is based only on the principle of conservation of energy and the
two fundamental postulates of special relativity, i.e., the principle of rel-
ativity and the invariance of the velocity of light. A modernized version
published recently by Y. Simon and N. Husson clearly demonstrates the
important role that relativistic considerations play in this derivation.19

In sharp contrast Rohrlich, as we have seen, declared that his der-
ivation “assumes only nineteenth-century physics.” An enthusiastic
reviewer of his essay explicitly declared: “Thus we see that the energy-
mass relation can be derived without the help of the theory of rel-
ativity.”20

In a similar vein, Ralph Baierlein, who proposed a derivation of the
mass-energy relation not much different from Rohrlich’s, said of it that
“it makes no use of Lorentz transformations or other results from the
special theory of relativity” and added that “by 1873 Maxwell knew
everything necessary to derive the equation 1E = 1mc2. All that was
missing was a context of inquiry that would have led him to search for
a connection between energy and inertia.”21

It is certainly true that the relation between energy and inertia or mass
had been a topic of speculation among philosophers and of scientific

17 A. Shadowitz, Special Relativity (Philadelphia: W. B. Saunders, 1968), p. 90.
18 J. Perrin, Les Éléments de la Physique (Paris: Albin Michel, 1929), pp. 380–391.
19 Y. Simon and N. Husson, “Langevin’s Derivation of the Relativistic Expressions for

Energy,” American Journal of Physics 59, 982–987 (1991).
20 V. P. Srivastava, “A Simple Derivation of E = mc2,” Physics Education 26, 214 (1991).
21 R. Baierlein, “Teaching E = mc2,” The Physics Teacher 29, 170–175 (1991).
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research among physicists, especially among the proponents of the
electromagnetic theory of mass, long before the advent of the theory
of relativity. Thus, for example, Gustave Le Bon, the director of the Bib-
liothèque de Philosophie Scientifique in Paris, complained in his correspon-
dence with Einstein that his anticipation of the equivalence between
energy and mass, as stated in his book L’Évolution de la Matière, has
never received the credit it deserves because the Germans habitually
ignore scientific contributions of other nations.22 In his reply Einstein
conceded that the idea of a fundamental identity between mass and
energy had been anticipated long ago but only the theory of relativity
has cogently proved this equivalence. Asking Le Bon for his proof of this
equivalence Einstein added, in response to Le Bon’s accusation of the
Germans, that for violations of intellectual rights only individuals and
not nations can be held responsible.23 Having been unable to understand
Le Bon’s argumentation Einstein asked him to discuss the matter with
Paul Langevin of the Collège de France.

In physics, the electromagnetic theory of mass, according to which
inertia is ultimately an electromagnetic induction effect, and especially
the conception of an “electromagnetic momentum,” led physicists, such
as Max Abraham and Henri Poincaré, to suggest a possible relation
between inertia and energy. What was probably the most publicized
prerelativistic declaration of such a relation was made in 1904 by Fritz
Hasenöhrl.24 Using Abraham’s theory, Hasenöhrl showed that a cav-
ity with perfectly reflecting walls containing electromagnetic radia-
tion behaves, if set in motion, as if it has a mass m given by m =
8Vε0/3c2, where V is the volume of the cavity, ε0 the energy density
at rest, and c the velocity of light. In 1921 Philipp Lenard, who be-
came the leading protagonist of “German physics” during the Nazi

22 G. Le Bon, L’Évolution de la Matière (Paris: Flammarion, 1905). Letter from Le Bon to
Einstein, dated June 17, 1922. Einstein Archive reel 43-311.

23 “L’idée que masse et énergie soit la seule véritable substance, était déja proclamée par
beaucoup d’auteurs. Mais c’est seulement la théorie de relativité, qui permet à donner une
véritable preuve de cette équivalence. Si vous vouliez m’écrire votre manière de conclure,
je serais très reconnaissant à vous. Finalement je vous assure, que les crimes contre la
propriété intellectuelle sont des affairs personelles et non nationales.” Letter from Einstein
to Le Bon, dated June 17, 1922. Einstein Archive, reel 43-313.

24 F. Hasenöhrl, “Zur Theorie der Strahlung in bewegten Körpern,” Annalen der Physik
15, 344–376 (1904); Wiener Sitzungsberichte 113, 1039–1051 (1904). “Zur Theorie der Strah-
lung in bewegten Körpern,” Annalen der Physik 16, 589–592 (1905), which contains the
correction m = 4Vε0/3c2.
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regime, republished Hasenöhrl’s discovery together with Johann Georg
Soldner’s 1801 calculation of the deflection of a light ray by 0.84” when
grazing the sun, in order to discredit Einstein by calling into question
has authenticity concerning the well-known results of the theory of
relativity.25

In a rejoinder to Lenard’s article Max von Laue admitted that Ha-
senöhrl might be credited with having made the first attempt to con-
struct a dynamical theory of cavity radiation by means of the con-
cept of electromagnetic momentum. “But that every energy flow carries
momentum and that conversely every momentum implies a flow of
energy is an insight which only the theory of relativity could reach
in a consistent way; for only this theory shattered the foundations of
Newtonian dynamics.”26 Von Laue also rejected Lenard’s proposal to
call the inertia of energy “Hasenöhrlsche Masse” as misleading because
the concept of “mass” is always identical with the concept of “inertia
of energy.”

In a contribution to the well-known Schilpp book on Einstein, von
Laue discussed in more detail the impossibility of a nonrelativistic
derivation of the mass-energy relation, which he called “the law of
the inertia of energy” and declared: “Einstein derived this law rela-
tivistically. And, in fact, a rigorous derivation must start from there.”27

This statement by von Laue, namely that only the theory of relativity
admits a rigorous derivation of the mass-energy relation, highlights the
question of whether or not this notion has been refuted by those who, like
Rohrlich, Srivastava, or Baierlein, have claimed to derive that relation
without any “use of Lorentz transformations or other results from the
theory of relativity.” We believe that the answer lies not so much in
the possibility that these derivations are not rigorous as in the fact that
they use the expression hν/c for the momentum of a light quantum or
Maxwell’s expression for the ratio between momentum and energy of

25 F. Lenard, “Vorbemerkung zu J. Soldner, Über die Ablenkung eines Lichtstrahls von
seiner geradlinigen Bewegung durch Attraktion eines Weltkörpers, an welchem er nahe
vorbeigeht,” Annalen der Physik 65, 593–604 (1921).

26 “Dass aber jede Energieströmung Impuls mit sich führt, und dass umgekehrt aller Im-
puls auf Energieströmung beruht, diesen Gedanken konnte erst die Relativitätstheorie fol-
gerichtig durchführen; denn erst sie räumte mit der ihr widersprechenden Newtonschen
Dynamik grundsätzlich auf.” M. von Laue, “Erwiderung auf Hrn. Lenards Vorbemerkung
zur Soldnerschen Arbeit von 1801,” Annalen der Physik 66, 283–284 (1921).

27 M. von Laue, “Inertia and Energy” in P. A. Schilpp, ed., Albert Einstein: Philosopher–
Scientist (Evanston, Ill.: Library of Living Philsophers, 1949), p. 524.
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electromagnetic radiation. After all, as the c in the equation E = mc2

indicates, somehow Maxwell’s theory must have been involved, but
Maxwell’s theory is a relativistic one. Hence, one can say of any deriva-
tion of the mass-energy relation that refers to it even only implicitly
what Einstein has said of his 1946 derivation, that “it makes use of the
principle of special relativity, [although] it does not presume the formal
machinery of the theory.”

We conclude our discussion of class-I derivations with an analysis of a
modification of the prototype of these derivations, which is a derivation
of the mass-energy relation that its authors, Mitchell J. Feigenbaum and
N. David Mermin, call “a purely mechanical version of Einstein’s 1905
argument.”28 In fact, the physical scenario of their derivation differs from
that of Einstein’s 1905 paper only insofar as the body B loses energy not,
as in Einstein’s argument, by emitting two equal quantities of radiant
energy but by emitting two equally massive particles. In order to see
whether this modification enabled the authors to obtain their result, as
they claim, “without ever leaving the realm of mechanics” we first have
to review their argumentation.

Like Einstein, Feigenbaum and Mermin calculate the energy loss of
B from the viewpoint of two inertial reference frames S, the rest frame
of B, and S′, which moves relative to S with uniform velocity v along
a direction making an angle φ with the direction of the emission. In
S,E1 denotes the energy of B before the emission, E2 its energy after,
and E3 the energy of each of the particles emitted in opposing directions
moving with velocity u. Energy conservation requires

E1 − E2 = 2E3(u). (3.29)

In S′ the initial and final energies of B are denoted by E1(v) and E2(v)
and the energies of the emitted particles by E(u′) and E(u′′), respectively.
Energy conservation for any value of φ requires

E1(v)− E2(v) = E3(u′)+ E3(u′′). (3.30)

Since the left-hand side of this equation is independent of φ, the right-
hand side must be independent of φ as well, although u′ and u′′ individ-
ually depend on v,u, and φ in accordance with the relativistic addition
rule of velocities, which can be written in the form

28 M. J. Feigenbaum and N. D. Mermin, “E = mc2,” American Journal of Physics 56, 18–21
(1988).

74



T H E M A S S - E N E R G Y R E L AT I O N

γu′ = γuγv(1− uv cos φ/c2)

and

γu′′ = γuγv(1+ uv cos φ/c2), (3.31)

where of course for any velocity w the symbol γw is an abbreviation of
(1 − w2/c2)−1/2. In Einstein’s 1905 derivation the arbitrariness of φ was
an unnecessary feature because the argument could have been carried
out taking φ = 0 from the very beginning. Indeed, as equation (3.2)
clearly shows, φ cancels out. For the Feigenbaum-Mermin derivation, in
contrast, this arbitrariness is of decisive importance because it imposes
severe constraints upon the mathematical structure of the function E(u).
As Feigenbaum and Mermin show by a clever use of the relativistic
velocity addition rule, E(u) must have the structure

E(u) = E0 + k(γu − 1), (3.32)

where E0 and k are velocity-independent constants characteristic of the
particle. Clearly, E(0) = E0 is the energy content of the particle in its rest
frame and the constant k determines its kinetic energy

Ekin(u) = E(u)− E0 = k(γu − 1). (3.33)

Application of the generally valid equation (3.32) to the energy conser-
vation equation (3.29) and use of (3.31) yields

E1(0)+ k1(γv − 1)− E2(0)− k2(γv − 1) = 2E3(0)+ 2k3(γuγv − 1) (3.34)

since by (3.31) γu′ + γu′′ = 2γuγv. In particular for v = 0

E1(0)− E2(0) = 2E3(0)+ 2k3(γu − 1). (3.35)

Subtracting (3.35) from (3.34) and canceling the common factor γv − 1
gives

k2 = k1 − 2k3γu. (3.36)

But since by (3.33)

E3kin = E3(u)− E3(0) = k3(γu − 1) (3.37)

it follows from (3.35) that

k2 = k1 − 2k3 − 2E3kin (3.38)

Equation (3.33) shows that in the nonrelativistic limit (i.e., u� c)
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Ekin(u) = 1
2 ku2/c2, (3.39)

which, compared with the classical equation Ekin = 1
2 mu2, identifies

k with mc2. Adopting the traditional nomenclature, Feigenbaum and
Mermin obtain the equation

m1 −m2 = 2m3 + 2E3kin/c2, (3.40)

which shows that the loss in mass,1m = m1 −m2, of the emitting body
B is equal to the sum of the masses of the two emitted particles and their
kinetic energies, the latter divided by c2. This is indeed the mass-energy
relation applied to the case of emitted particles that carry away mass as
well as energy.

Having reviewed the Feigenbaum-Mermin paper, let us now ask
whether they have derived the mass-energy relation really “without
ever leaving the realm of mechanics.” It is certainly true that no explicit
reference has been made to nonmechanical terms—with the exception,
of course, of the letter c, which denotes the velocity of light and has
been introduced by the relativistic velocity addition theorem. As is
well known, this theorem is usually derived as a consequence of the
Lorentz transformations. Incidentally, Mermin himself, five years before
he wrote the paper with Feigenbaum, had presented an alternative
proof, which shows that the theorem is a direct consequence only of
the constancy of the velocity of light.29 Further, the Lorentz transfor-
mations are usually derived from the “light postulate,” according to
which the velocity of light is a relativistic invariant. But such an in-
variance denies the possibility of conceiving the propagation of light as
a mechanical process in a hypothetical ether. It follows therefore that
the relativistic addition theorem, which, as we have seen, plays the key
role in the Feigenbaum-Mermin argumentation, exceeds the conceptual
framework of the purely mechanical. The problem to be faced here is, of
course, the same one that we encountered in our discussion of Tolman’s
derivation of the expression for relativistic mass within the framework of
his “non-Newtonian mechanics.” Again, a possible, even if only partial,
solution can be found in the work of Landau and Sampanthar described
in chapter 2.30

29 N. D. Mermin, “Relativistic Addition of Velocities Directly from the Constancy of the
Velocity of Light,” American Journal of Physics 51, 1130–1131 (1983).

30 B. V. Landau and S. Sampanthar, “A New Derivation of the Lorentz Transformation,”
American Journal of Physics 40, 599–602 (1972).
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Let us also recall in this context that from as early as 1910, beginning
with Waldemar von Ignatowsky followed by Philipp Frank and Her-
mann Rothe, physicists and mathematicians realized that the (structure
of the) Lorentz transformations, and hence of the relativistic velocity
addition theorem as well, can be derived without invoking the light
postulate or any other reference to electromagnetic phenomena merely
by using general principles, such as the principle of relativity or the
isotropy and homogeneity of space.31 Of course, such group-theoretical
derivations can involve only a limiting velocity α in lieu of c. The price
to be paid for not invoking the light postulate or any other equivalent
assumption is as Wolfgang Pauli phrased it: “Nothing can, naturally, be
said about the sign, magnitude and physical meaning of α. From the
group-theoretical assumption it is only possible to derive the general
form of the transformation formulae, but not their physical content.”32

The fact that for α = ∞ these equations degenerate into the Galilean
transformations of Newtonian physics and the mass-energy relation
E = mα2 becomes meaningless can be interpreted as an indication that
this relation is an exclusively relativistic result. Conversely, it can also
be said that the mass-energy relation E = mc2 or the velocity-dependent
equation of inertial mass can replace the second postulate in the logical
construction of the special theory of relativity.33 As long as α remains
finite, its indeterminacy affects the numerical relation between mass and
energy but not the conceptual content of this relation.

The preceding derivations of the mass-energy relation belong to class
(I) in the classification described earlier. The first derivation belonging to
class (II) is Einstein’s 1906 second derivation. Like his first, it is based on

31 For bibliographical references up to 1964 see H. Arzeliès, Relativistic Kinematics
(Oxford: Pergamon, 1966), pp. 80–82. Important more recent group-theoretical derivations
of (generalized) Lorentz transformations are: G. Süssmann, “Begründung der Lorentz-
Gruppe allein mit Symmetrie- und Relativitätsannahman,” Zeitschrift für Naturforschung
24a, 495–498 (1969); V. Gorini and A. Zecca, “Isotropy of Space,” Journal of Mathematical
Physics 11, 2226–2230 (1970); A. R. Lee and T. M. Kalotas, “Lorentz Transformations from
the First Postulate,” American Journal of Physics 43, 434–437 (1975); J.-M. Levy-Leblond,
“One More Derivation of the Lorentz Transformation,” American Journal of Physics 44,
271–277 (1976).

32 W. Pauli, The Theory of Relativity (New York: Pergamon, 1958), p. 11.
33 For more details and a simple group-theoretical derivation of the (general) Lorentz

transformations see M. Jammer, “Some Foundational Problems in the Special Theory of
Relativity,” in G. Toraldo di Francia, ed., Problems in the Foundations of Physics, Proceedings
of the International School of Physics ‘Enrico Fermi’, Course LXXII (Amsterdam: North-
Holland, 1979), pp. 202–236.
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Maxwell’s theory of the electromagnetic field, which, if supplemented
by J. H. Poynting’s theorem (1884), predicts that electromagnetic ra-
diation of energy 1E falling on an absorbing body exerts a pressure
on it and transfers to it a momentum equal to 1E/c. This effect was
experimentally confirmed by Petr N. Lebedew in 1890 and with greater
precision by Ernest F. Nichols and Gordon F. Hull in 1901.34

With the exception of this item from Maxwell’s theory, Einstein’s
second derivation uses only the principles of mechanics as its title “The
Principle of Conservation of Motion of the Center of Gravity and the
Inertia of Energy” indicates.35 It considers a “rigid hollow cylinder Z,
“freely floating in space,” of mass M and length L. If the electromagnetic
radiation 1E is emitted at time t = t1, say, from the left interior wall of
Z and reaches the opposite wall at time t = t2, so that (approximately)
t2 − t1 = 1t = L/c, conservation of momentum requires Z to recoil to
the left with a velocity u given by Mu + 1E/c = 0, and hence over a
distance 1x1 = u1t = −L1E/Mc2. If then, as Einstein assumes, 1E in
any form of energy is transferred back to the left wall by a massless
carrier, Z will recoil to the right over a distance 1x2 = 1mL/M, where
1m is the mass associated with 1E. According to the center-of-mass
conservation principle the total displacement of Z has to be zero. But
since this total displacement is 1x1 +1x2 = −(L1E/Mc2)+ (1mL/M),
it follows that 1m = 1E/c2 is “the necessary and sufficient condition
for the law of the conservation of motion of the center of gravity to be
valid.” Einstein was of course well aware that both the equation for
1t and the nonrelativistic expression Mu for the momentum of Z were
valid only “apart from terms of higher order.” He admitted therefore that
this derivation is correct only “in first approximation.” This deficiency
was certainly one of the motivations for his continuing search for more
accurate derivations. Furthermore, he soon realized that the notion of a
rigid body is incompatible with the theory of relativity.

The notion of which this derivation hinges is the concept of mo-
mentum of radiation or radiation pressure, which is a necessary con-
sequence of Maxwell’s electromagnetic theory and, as such, implicitly
a relativistic conception. Replacing the radiative emission by a purely

34 For the history of this effect, which dates back to at least 1708, see E. Whittaker,
A History of the Theories of Aether and Electricity (London: Thomas Nelson, 1910, 1951),
vol. 1, pp. 273–276.

35 A. Einstein, “Prinzip von der Erhaltung der Schwerpunktsbewegung und die Träg-
heit der Energie,” Annalen der Physik 20, 627–633 (1906).
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classical mechanical recoil process would not have led to the mass-
energy relation. It is therefore erroneous to contend, as R. T. Smith did,
that Einstein’s 1906 derivation is “purely classical and has nothing to do
with relativity.”36

Just as Einstein’s 1905 derivation became the prototype of numerous
modified versions belonging to class I, so his 1906 derivation initiated
a long series of class II variants, of which each was intended to be more
rigorous than all those that preceded it. Since Adel F. Antippa’s detailed
survey of class II derivations is readily available a brief summary of this
development will suffice.37

In his contribution to the Schilpp book, Max von Laue reformulated
Einstein’s 1906 derivation with only one minor change.38 He added
to the physical scenario two bodies or disks, one at each end of the
cylinder, one of which transfers 1E back from right to left. He thus
replaced Einstein’s “imagined massless carrier,” which he regarded
as physically unrealistic by a mechanical process. Another disturbing
feature of Einstein’s 1906 derivation is his assumption of the rigidity
of the cylinder, an assumption which, in his third (1907) derivation,
he showed to be incompatible with the relativity of simultaneity. This
deficiency in the 1906 derivation was criticized in 1960 by Eugene
Feenberg, who pointed out that “the recoil generates an elastic wave
traveling with finite velocity from the source point; the far end does
not begin to move until the radiation has been absorbed, and then
the first motion is away from the source.”39 It is only after some time,
when the elastic waves are damped out by dissipative processes that the
cylinder is finally at rest, having undergone the displacement. However,
as Feenberg shows, these complications do not invalidate the correctness
of the mass-energy relation.

In the early 1920s, in the wake of an international wave of general
interest in the theory of relativity, Max Born was invited to deliver

36 R. T. Smith, “Classical Origins of ‘E = mc2’,” Physics Education 27, 248–250 (1992).
37 A. T. Antippa, “Variations on a Photon-in-a-Box by Einstein,” UQTR-TH-8, Université

du Québec à Trois-Rivières, pp. 1–48; “Inertia of Energy and the Liberated Photon,”
American Journal of Physics 44, 841–844 (1976). See also the earlier survey on some of
Einstein’s derivations by W. Kantor, “Inertia of Energy,” American Journal of Physics 22,
528–541 (1954). A thorough analysis of Einstein’s 1906 and 1907 derivations as well as
their elaborations by Planck and von Laue has also been given by A. I. Miller in his Albert
Einstein’s Special Theory of Relativity (Reading, Mass.: Addison-Wesley, 1981), pp. 353–367.

38 Van Laue in P. A. Schilpp, ed., Albert Einstein, pp. 524–527.
39 E. Feenberg, “Inertia of Energy,” American Journal of Physics 28, 565–566 (1960).
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a series of public lectures on relativity at the University of Frankfurt.
Both in his lectures and in his book,40 which is an elaboration of these
lectures, he strictly followed Einstein’s 1906 derivation when explaining
the mass-energy relation. However, when he was asked to republish his
book in an English version in the early 1960s he took fully into account,
following Feenberg, the time intervals during which the elastic move-
ments, excited by the emission and by the absorption of 1E expanded
over the whole cylinder (or tube, as he called it) and during which “also
all elastic vibrations have died out and only the displacements of the
whole tube are left over.”41 Still retaining the approximation 1t = L/c
for the flight duration of 1E, Born showed that all these corrections do
not impair the mass-energy relation. That even—in order to correct the
1T equation—the introduction of an additional inertial frame, relative
to which the tube is at rest during the interval between the emission
and the absorption of1E, does not affect the mass-energy relation, was
shown by Carl J. Rigney and Roy H. Biser.42

In order to avoid the complications owing to the nonrigidity of the
cylinder or Einstein’s box, as it is often called, Anthony P. French sug-
gested in 1966 to “unhinge” the box, that is to “ignore completely any
connection between the ends of the box and to regard it as two masses
m1 and m2,” separated by a distance L.43 If m1 at the position x = 0 emits
the energy 1E at the time t = 0 and its mass decreases thereby to m′1,
then according to the momentum-conservation principle m′1 will recoil
with the velocity

u1 = −1E/c
m′1

(3.41)

so that its position at time t ≥ 0 is given by

x1(t) = u1t = −1E/c
m′1

t. (3.42)

At time t = L/c the m2 absorbs 1E and increases thereby to m′2. Its
position at t ≥ L/c is given by

40 M. Born, Die Relativitätstheorie Einsteins und ihre physikalischen Grundlagen (Berlin:
J. Springer, 1922).

41 M. Born, Einstein’s Theory of Relativity (New York: Dover, 1962), pp. 283–286.
42 C. J. Rigney and R. H. Biser, “Note on a Famous Derivation of E = mc2,” American

Journal of Physics 34, 623 (1966).
43 A. P. French, Special Relativity (New York: Norton, 1966; Wokingham, Berkshire, U.K.:

Van Nostrand-Reinhold, 1968, 1984), pp. 27–28.
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x2(t) = L+ 1E
m′2c

(
t− L

c

)
. (3.43)

Finally, if M denotes the total mass of the system, X and X′ the position
of its center of mass before and after the whole process, respectively,
then

MX = m10+m2L (3.44)

and

MX′ = m′1

(
−1E/c

m′1

)
t+m′2

[
L+

(
1E/c

m′2

)(
t− L

c

)]
. (3.45)

Since according to the center-of-mass principle X = X′, the preceding
equations show that1m = m′2−m2 = 1m′2 = m1−m′1 = −1m′1 satisfies
the equation

E = c21m. (3.46)

By “unhinging” Einstein’s box French discarded, picturesquely speak-
ing, the mantle of Einstein’s cylinder and used only the two end walls
for his derivation of the mass-energy relation. Antippa continued this
demolition process by taking into consideration only one wall, say the
left wall, which he regarded as an atom at rest at the distance D from
the origin, i.e., at x = 0, and emitting at time t = 0 a photon of energy
content1E.44 Before the emission, which decreases the mass of the atom
from m to m′, the center of mass of the system is at the position

X = D, (3.47)

and since the atom recoils afterward with the velocity

u = −E/c
m′

(3.48)

its position X′ is given by the equation

mX′ = m′(D+ ut)+1m(D+ ct), (3.49)

where1m = m−m′. The center-of-mass principle requires that X = X′,
which leads to the equation

D[(m−m′)−1m]− t(c1m−1E/c) = 0. (3.50)

44 Antippa, UQTR-TH-8 and American Journal of Physics 44.

81



C H A P T E R T H R E E

However, this equation should be independent of the choice of the origin
and should be valid for all t ≥ 0, which is possible only if the coefficients
of both D and t are identically zero. This implies that

m−m′ = 1m = 1E/c2. (3.51)

In order to avoid any misunderstanding Antippa concluded his deri-
vation of the mass-energy relation with the statement: “It should be
noted that m′ is the ‘relativistic’ atomic mass including the kinetic energy
contribution to the mass of the atom. Also 1m is not the rest mass lost
by the atom, but rather the rest mass lost less the mass associated with
the kinetic energy of the atom.”45

As this comment indicates and as a closer inspection of Antippa’s as
well as French’s derivations shows, their reasoning is partially based
on a petitio principii insofar as the existence of a quantitative relation
between mass and energy is presupposed and it is demonstrated only
that the coefficient of proportionality between 1m and 1E is c2. Their
reasoning thus differs from that of the preceding class II derivations in
which such a quantitative relation was not presupposed a priori.

Turning now to the derivations of class III we must admit that it is
difficult to pinpoint exactly where or when they appeared for the first
time. For being relativistic generalizations of the classical method of
calculating the kinetic energy of a particle they were used implicitly,
that is, without being recognized as potential derivations of the mass-
energy relation, by Einstein, Planck, and von Laue in their early papers
on relativity. An example is equation 14 in Einstein’s 1907 article “On
the Relativity Principle and the Conclusions drawn from It.”46 Because
of their analogy to classical calculations they have been readily adopted
by many authors of textbooks on relativity, among them by D. Møller
(1952, 1972), A. Papapetrou (1955), D. F. Lawden (1962, 1982), W.G.V.
Rosser (1964), H. M. Schwartz (1968), and more recently by R. A. Mould
(1994),47 to mention only a few. In principle they differ from their classical
analogue only in their use of the relativistic mass m = m0γu instead
of the classical mass. In their standard one-dimensional version they
proceed as follows. They consider an inertial reference frame S in which

45 Antippa, American Journal of Physics 44, 844.
46 Einstein, Jahrbuch der Radioaktivität und Elektronik 4, 411–462.
47 R. A. Mould, Basic Relativity (New York: Springer-Verlag, 1994). See also W. G.

Holladay, “The Derivation of Relativistic Energy from the Lorentz γ ,” and the references
listed therein, American Journal of Physics 60, 281 (1992).
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a massive body is being moved by a force F through a distance dx. The
change in the kinetic energy of the body is

dEkin = Fdx = dp
dt

dx = dp
dt

dx
dt

dt = dp
dx
dt

= ud(mu) = u2dm+mudu, (3.52)

where du = dx/dt is the velocity, p = mu the momentum, m = m0γu

the relativistic mass of the body, and γu = [1 − (u2/c2)]−1/2. Since
dm = m0uduγ 3

u /c
2 it follows that dEkin = γ 3

u m0u du, which integrates to

Ekin = m0c2(γu − 1) = mc2 −m0c2 (3.53)

with the constant of integration so chosen that for u = 0,Ekin = 0 as
well. Dimensional considerations suggest that we also regard m0c2 as
an energy, called the rest energy E0. Hence the total energy E of the
body is

E = Ekin + E0 = mc2. (3.54)

Some authors prefer to derive the mass-energy relation by means of
a relativistic four-vector generalization of classical mechanics without
the need for any integration. Choosing the unit of time so that c = 1,
they apply the fundamental invariant of the Lorentz transformation
ds2 = dt2 − dx2 − dy2 − dz2. Writing the ordinary velocity vector as
u = (u1,u2,u3) = (dx/dt, dy/dt, dz/dt) they obtain ds = γ−1dt, where
γ = (1−u2)−1/2. The velocity four-vector U is then given by U = γ (1,u)
and the momentum four-vector P by P = m0U = (m0γ,m0γu), where m0

is the nonrelativistic mass. Neglecting the third and any higher power of
u, they obtain P = (m0+ 1

2 m0u2,m0u) and reason as follows. Since in this
approximation the space components m0u represent the components
of the particle’s momentum and the time component, aside from the
additional constant m0, the kinetic energy in classical mechanics, they
conclude that the relativistic kinetic energy Ekin is given by m0γ −m0 so
that m0γ = Ekin + m0, or expressed in the usual time units, m0γ c2 =
Ekin + m0c2. Finally, since for u = 0 also Ekin = 0 and mc2 has the
dimension of energy, they regard m0c2 as the rest energy E0 and m0γu2

as the total energy E of the particle, i.e.,

E = Ekin + E0 = m0γ c2 = mc2. (3.55)

This derivation, like any other derivation based on the correspon-
dence, in the limit, with classical mechanics, is vulnerable to a criticism
that Einstein expressed in 1935 as follows:
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Of course, this derivation cannot pretend to be a proof since in no way is
it shown that this impulse [momentum] satisfies the impulse-principle
and this energy the energy-principle if several particles of the same
kind interact with one another; it may be a priori conceivable that in
these conservation principles different expressions of the velocity are
involved. Furthermore, it is not perfectly clear as to what is meant
in speaking of the rest-energy, as the energy is defined only to within
an undetermined additive constant; in connection with this, however,
the following is to be remarked. Every system can be looked upon
as a material point as long as we consider no processes other than
changes in its translation velocity as a whole. It has a clear meaning,
however, to consider changes in the rest-energy in case changes are
to be considered other than mere changes of translation velocity. The
above interpretation asserts, then, that in such a transformation of a
material point its inertial mass changes as the rest-energy; this assertion
naturally requires a proof.

Clearly, the validity or acceptability of “new” theoretical constructs
cannot be proved by showing that, in the limit, they converge or reduce
to their corresponding classical analogues unless it is also shown that
they satisfy the theoretical principles for the validity of which they
have been contrived. For the convergence, or reduction, to their clas-
sical analogues is a necessary but not a sufficient condition for their
acceptability.

In the present case these principles are those of the conservation of
momentum and of energy. Einstein thus saw the real task of his 1935
essay on the mass-energy relation as demonstrating the following: “If
the principles of conservation of impulse and energy are to hold for
all coordinate systems which are connected with one another by the
Lorentz transformations, then impulse and energy are really given by
the above expressions and the presumed equivalence of mass and rest-
energy also exists.”48

In order to carry out this task Einstein assumed that the relativistic
momentum and relativistic energy of a particle or, as he called it, “ma-
terial point” moving with velocity u relative to a reference frame S are

48 A. Einstein, “Elementary Derivation of the Equivalence of Mass and Energy,” Bulletin
of the American Mathematical Society 41, 223–230 (1935). See also F. Flores’s instructive essay
“Einstein’s 1935 Derivation of E = mc2,” Studies in History and Philosophy of Modern Physics
29, 223–243 (1998). Chapter 5 of this essay contains a detailed analysis of Einstein’s 1935
derivation of the mass-energy relation.
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given, respectively, by pn = munF(u) and E = E0 +mG(u), (n = 1, 2, 3),
where m is the rest-mass (or simply mass), E0 is the rest-energy, mG(u)
is the kinetic energy of the particle, and F and G are universal even
functions of u which vanish for u = 0. The assumption that the same
mass constant m occurs in pn and E is later shown to be at least partially
justified. By analyzing both an elastic eccentric collision and an inelastic
collision between two particles of equal mass and equal rest energy he
showed that the conservation of momentum and energy requires that
F(u) = γ (u) and G(u) = γ (u)−1. Einstein thus arrived at the conclusion:
“If for collisions of material points the conservation laws are to hold for
arbitrary (Lorentz) coordinate systems, the well-known expressions for
impulse and energy follow, as well as the validity of the principle of
equivalence of mass and rest-energy.”

All the derivations of the mass-energy relation discussed so far have
dealt only with the inertial mass of a body. But as we already know and as
will be explained soon in greater detail, there is a conceptual distinction
between inertial and gravitational mass. The former determines the
inertial behavior of a physical object and is used in the equation of its
kinetic energy, whereas the latter determines the weight of the body.
It may be asked therefore whether a mass-energy relation can also be
derived for gravitational mass. That the answer is positive was shown
by Einstein as early as in the 1907 essay on special relativity referred
to above. When dealing at the very end of this essay with the principle
of energy conservation he showed that in addition to the quantity E—
the energy value as measured at a given location—the energy integral
also contains a term E8/c2, where 8 is the gravitational potential at
that location. He thus concluded that “to every energy E there always
belongs in the gravitational field an energy which is as large as the
energy of position of a gravitational mass of magnitude E/c2.” In other
words, the mass-energy relation has also been proved to be valid for the
concept of gravitational mass.

Let us now turn to the philosophical problem concerning the mass-
energy relation, that is, to the question of what, precisely, is the con-
ceptual meaning of the equation E = mc2. As we shall see, at least
two different interpretations have been proposed in the literature on
this subject. According to one interpretation the relation expresses the
convertibility of mass into energy or inversely of energy into mass, with
one entity being annihilated and the other being created. According
to another interpretation the equation expresses merely a proportion-
ality between two attributes or manifestations of one and the same
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ontological substratum without the occurrence of any annihilative or
creative process.49

The problem of the meaning of E = mc2 became the subject of
lively discussions after the Second World War, that is, after the atomic
bombardment of Hiroshima and Nagasaki had so tragically revealed
the ominous significance of the mass-energy relation for the destiny of
humanity. In fact, the first public debate on the issue began in 1946 with
C. Roland Eddy’s statement in the widely circulated periodical Science:
“It is evident, from many recent writings on the atomic bomb, that a
serious misconception still persists, not only in the popular press but
also in the mind of some scientists. The idea that matter and energy are
interconvertible is due to a misunderstanding of Einstein’s equation,
E = mc2. This equation does not state that a mass, m, can be converted
into an energy, E, but that an object of mass m contains simultaneously
an energy, E′′.50

To corroborate the statement that mass is not converted into energy
in a nuclear fission Eddy considered a symmetrical disintegration of a
nucleus of rest mass M into two fragments, each of rest mass m0 and
velocity u. According to the mass-energy relation the energy released is
E = (M − 2m0)c2, and according to the theory of relativity the kinetic
energy of each fragment is 1

2 E = m0c2(γu − 1) = mc2 − m0c2, since
the mass of a particle at velocity u is m = m0γu. By combining the two
former equations he obtained M = 2m, which shows that the initial mass
equals the final mass. Thus, since no mass is lost, he concluded that no
mass can have been converted into energy. In the sequel to his paper
he claimed that this conclusion also holds in the case of a more general
fission process as well as in the case of the so-called “annihilation” of a
positron and electron if it is recalled that the mass of a photon is hν/c2.

A few weeks later Science published critical responses to Eddy’s arti-
cle. Marshall E. Deutsch declared that, although he agrees with Eddy’s
statement of the law of conservation of mass as far as elementary par-
ticles are concerned, “I must reserve doubts about this law applying to
matter” in general. Referring to exothermic reactions in physical chem-
istry he declared that “except for bodies at a temperature of absolute
zero, as far as mass is concerned, the whole (mass of an entire body) is
less than the sum of its parts (masses of the individual bodies composing
the body)!” Another participant in this rejoinder, Austin J. O’Leary,

49 This substratum was dubbed “massergy” in chapter 13 of COM.
50 C. R. Eddy, “A Relativistic Misconception,” Science 104, 303–304 (1946).
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expressed the view that Eddy’s conclusion, “the law of conservation
of mass still holds,” is “purely a question of definition.”51

A particularly strong protest against the misconception of an intercon-
vertibility of mass and energy was voiced by E. F. Barker in the same year.
Barker distinguished sharply between the notions of mass and matter
and admitted that matter, but not mass, can be created out of energy
as, e.g., in the process of pair production, where “mass is conserved,
though matter is not.” Analyzing in detail, as an example, the famous
1930 J. D. Cockcroft and E.T.S. Walton experiment of the production of
two α-particles by bombarding a lithium atom with a proton, he showed
that in this experiment, as in any other nuclear disintegration, mass
is not changed into energy nor is energy changed into mass. He thus
concluded: “Energy may be transferred from one system to another,
either with or without a change in form; mass is always transferred in
the process, but is never transformed.”52

The debate about this “misconception” has been revived several
times. In 1976, e.g., J. W. Warren complained that numerous modern
texts perpetuate this “misconception.”53 He presented a long list of
quotations from such books and reported on a poll that he conducted
among 147 students of science and engineering in which he asked
whether the following statement is correct: “A nuclear power station
differs from one burning coal or oil as it converts mass into energy
according to the law E = mc2.” Only 32 students, Warren complained,
found fault with the expression “converts mass into energy.” Another
equally long list of such “misinterpretations” in scientific publications,
including the Encyclopaedia Britannica, was collected by Sir Hermann
Bondi and C. B. Spurgin.54 They recommend never forgetting that (i) en-
ergy has mass, (ii) energy is always conserved, (iii) mass is always
conserved, and (iv) never using the term “equivalence of mass and
energy.” Their advice stirred some lively debate. Calling these rules
“dogmatic,” Rudolf Peierls takes exception especially to rules (ii) and
(iii) for the following reason.55 When talking of the mass of a body one

51 “Comments on ‘A Relativistic Misconception,’ ” Science 104, 400–401 (1946).
52 E. F. Barker, “Energy Transformations and the Conservation of Mass,” American

Journal of Physics 14, 309–310 (1946).
53 J. W. Warren, “The Mystery of Mass-Energy,” Physics Education 11, 52–54 (January

1976).
54 H. Bondi and C. B. Spurgin, “Energy Has Mass,” Physics Bulletin 38, 62–63 (February

1987).
55 R. Peierls, “Mass and Energy,” Physics Bulletin 38, 128 (1987).
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usually means the sum of the rest masses of its constituent particles, and
when talking of its energy one means the available energy apart from
the rest masses of these constituents. “Thus in a mechanical problem
at low energy we are accustomed to count only kinetic and potential
energy; it would be most inconvenient if we had to include in the
energy equation the very large, but practically constant, rest energy
of the bodies involved.” As to (iv), Michael Nelkon, in the same issue of
the Bulletin, draws attention to the fact that Einstein repeatedly used the
expression “equivalence of mass and energy,” for instance, in the title of
his 1935 derivation of the mass-energy relation, which concludes with
the words: the equation E = mc2 “expresses the law of the equivalence of
energy and mass.”56 In fact, Nelkon could have quoted many textbooks
that use the term “equivalence” in this context, among them the well-
known texts by W. Pauli, P. G. Bergmann, C. Møller, E. F. Taylor and J. A.
Wheeler, H. M. Schwartz, W.G.V. Rosser, and J. L. Anderson, to mention
only a few. Now, the term “equivalence,” which, strictly speaking is
noncommittal, carries a psychological connotation because it reminds
us of the “equivalence of mechanical work and heat,” or briefly, “the
mechanical equivalent of heat,” the number of joules of mechanical work
required to generate one calorie of heat, a process in which mechanical
energy is converted into thermal energy. In thermodynamics this process
is expressed mathematically by the equation

Q = JW (3.56)

where W denotes the mechanical work in joules, Q the quantity of heat
measured in calories, and J the “mechanical equivalent” of heat per unit
of energy, the so-called “conversion factor” (4.1858 cal J–1). It is tempting
therefore to offer an analogous interpretation of the equation

E = c2m (3.57)

as follows: m is the amount of mass, measured in grams, required
to obtain the quantity of energy E, measured in ergs, and c2 is the
conversion factor. However, whereas (3.56) can correctly be interpreted
as stating the convertibility of work into heat (or vice versa), (3.57)
cannot state the convertibility of mass into heat (or vice versa) for
the following reason. In (3.56) the conversion factor J, being the ratio
between quantities of the same physical dimension (work), is a pure

56 A. Einstein, Bulletin of the American Mathematical Society 41, 223–230 (1935).
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number, the “conversion factor” c2 in (3.57) is not. In short, E and m,
having different physical dimensions, cannot be interconvertible.

It is perhaps historically interesting to note that in the 1950s and 1960s
the interpretation problem of the mass-energy relation played an impor-
tant role in the discussions concerning the compatibility of the theory
of relativity with the ideology of dialectical materialism, the officially
sanctioned philosophy in the Communist regimes of Soviet Russia and
other socialist countries in Eastern Europe. In their exegesis of Lenin’s
writings, Marxist philosophers asserted that matter, or its physical man-
ifestation as mass, “nowhere and at no time disappears . . . nor appears
out of nothing,” and that “energy is but the measure of the motion of
matter.”57 These ideological maxims led logically to an anathematization
of the interconvertibility interpretation and to its condemnation as an
idealistic contrivance to discredit dialectical materialism. In fact, in those
years the leading Russian periodicals in physics and in philosophy, the
Uspekhi Fisičeskik Nauk and the Vorposy Filosofii abounded with articles
on the subject. The interested reader is referred to the writings of Nikolai
Federovič Ovčinnikov58 and to a review essay by the present author.59

Needless to say, the former German Democratic Republic followed
in step and its official philosophical organ, the Deutsche Zeitschrift für
Philosophie, also published quite a few articles in the same spirit.60

57 M. A. Leonov, Očerk dialektičeskogo materializma (Essay on Dialectical Materialism)
(Moscow: Gosizdat, 1948), p. 39.

58 N. F. Ovčinnikov, “Massa i Energia,” Prioda 11, 7–16 (1951); Ponjatje Massy i Energii
(Moscow: Nauk, 1957); see also his commentary (pp. 231–246) in the Russian edition of the
present author’s book Ponjatje Massy v Klassičeskoj i Sovremennoj Fizika (Moscow: Progress,
1967), pp. 231–246.

59 M. Jammer, “Mass and Energy,” in C. D. Kernig, ed., Marxism, Communism and Western
Society—A Comparative Encyclopedia (Freiburg: Herder, 1971), pp. 365–373.

60 See, e.g., W. Prokop, “Zur Deutung der Einsteinschen Energie-Masse-Relation,”
Deutsche Zeitschrift für Philosophie 8, 50–61 (1960); H. Cumme, “Über Philosophische Fragen
der modernen Physik, ibid., 2, 686–694 (1952). Cf. also A. Polikarov, “Zum Problem der
Deutung des Einsteinschen Äquivalenzsatzes von Masse und Energie,” Wissenschaftliche
Zeitschrift der Humboldt-Universität zu Berlin, Mathematisch-naturwissenschaftliche Reihe 13,
123–125 (1964).
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Gravitational Mass and the

Principle of Equivalence

So far the subject of our discussions has been almost exclusively
the concept of inertial mass, which determines the inertial behavior
of particles or bodies. Now we shall turn our attention to the concept
of gravitational mass, which determines the gravitational behavior of
matter. Since every body is a source of a gravitational field and is
in turn affected by it, it has become common practice, as we noted
in chapter 1, to assign to every body, apart from its inertial mass mi,
an active gravitational mass ma, which specifies the body’s role as
the source of a gravitational field, and a passive gravitational mass
mp, which specifies the body’s susceptibility to being affected by this
field. In many respects ma and mp can be conceived of as gravitational
analogues to electrical charges and are therefore sometimes referred to
as “gravitational charges.”

Since the history of the conceptual development that led to the classi-
fication of mass into mi, ma, and mp appears never to have been studied
before, it seems appropriate to comment upon it briefly. This trichotomy,
which is of rather recent origin, was preceded by the dichotomy of mass
into inertial and gravitational mass or, symbolically, into mi and mg,
where mg denotes either ma or mp. But even this dichotomy was rarely,
if ever, explicitly emphasized prior to the twentieth century.

True, Newton, as we shall see very soon, did distinguish between
what he called “quantity of matter” (“quantitas materiae,” “massa,”
or “corpus”), which corresponds to mi, and “weight” (“pondus”), but
he never regarded “weight” as the product of a gravitational mass
and the acceleration that is denoted by g. Nevertheless, until about
1900 physicists and philosophers who dealt with the foundations of
physics often confounded the notions of mass and weight, a histor-
ical fact that was noted with disapproval as early as 1908 by Émile
Meyerson.1

1 É. Meyerson, Identité et Réalité (Paris: Alcan, 1908); Identity and Reality (London: George
Allan and Unwin, 1930; New York: Dover, 1962), chapter 4.
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Although most physicists of the nineteenth century were, of course,
aware of the difference between mass and weight, an unambiguous
terminology to accentuate the distinction was not yet available. A typical
example is the way William Thomson (Lord Kelvin) and Peter Guthrie
Tait tried to explain it: “A merchant with a balance and a set of standard
weights would give his customers the same quantity of the same kind
of matter however the earth’s attraction might vary, depending as he
does upon weights for his measurement; another using a spring balance
would defraud his customers in high latitude, and himself in low, if his
instrument (which depends on constant forces and not on the gravity
of constant masses) were correctly adjusted in London.”2 Clearly, had
Thomson and Tait made use of mi and mp, or at least of mi and mg, their
task would have been considerably facilitated.

The rather widespread confusion between the conceptions of weight
and mass was explained on psychological grounds in 1896 by Charles
Louis de Freycinet as being the result of the well-known proportionality
of weight and mass.3 Although de Freycinet was not averse to introduc-
ing newly coined terms to describe the dynamical properties of mass,
as, e.g., the term “capacité dynamique” to denote “facilitité à déplacer
les corps” (somehow the inverse of mi), he never made use of the term,
or even of the notion, of gravitational mass.

One of the earliest, though not the first, to use explicitly a term to
denote gravitational mass was Henri Poincaré, when he wrote in 1908:
“Mass may be defined in two ways—firstly, as the quotient of the force
by the acceleration, the true definition of mass, which is the measure
of the body’s inertia, and secondly, as the attraction exercised by the
body upon a foreign body, by virtue of Newton’s law. We have therefore
to distinguish between mass, the coefficient of inertia, and mass, the
coefficient of attraction.”4

It is, of course, difficult, if not impossible, to identify the first indi-
vidual to use the notion or the term “gravitational mass.” However,
records show that in discussions held in 1907 at a convention of the

2 Lord Kelvin and P. G. Tait, Elements of Natural Philosophy (London: Collier, 1872),
paragraph 186.

3 “Les poids des corps sont rigoureusement proportionnels à leur masses. . . . Ce fait
expérimental est connu depuis long temps. Il nous est devenu tellement familier que nous
finissons presque par confondre la masse avec le poids.” C. L. de Freycinet, Essais sur la
Philosophie des Sciences (Paris: Gauthier-Villars, 1896), p. 181.

4 H. Poincaré, Science et Méthode (Paris: Flammarion, 1908); Science and Method (London:
Nelson, n.d.; New York: Dover, 1952), p. 235.
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Italian Physical Society, attended by E. Alessandri, G. Castelnuovo, and
G. Vailati, among others, the term “massa gravitazionale” was used.5 It
thus seems certain that there was an explicit distinction between mi and
mg not later than 1907.

It is also difficult to name with certainty the first individual to dis-
tinguish between ma and mp. What is certain, however, is the fact that
this distinction played an important role in physical discussions from
the time Hermann Bondi publicized it in his often quoted essay on
negative mass in general relativity. There he wrote in 1957: “we can
distinguish between three kinds of mass according to the measurement
by which it is defined: inertial, passive gravitational, and active grav-
itational mass. Inertial mass is the quantity that enters (and is defined
by) Newton’s second law (a mass-independent force—say, of electro-
magnetic nature—has to be used here); passive gravitational mass is the
mass on which the gravitational field acts, that is, it is defined by F =
−m grad U; active gravitational mass is the mass that is the source of
gravitational fields and is hence the mass that enters Poisson’s equation
and Gauss’ law.”6

Although this often quoted statement is certainly correct as far as
its factual content is concerned, it is neither a logically flawless nor, of
course, an operational definition of those terms. Since definitions of mi,
such as the one presently proposed, were dealt with in great detail in
chapter 1, we shall confine our discussion here to Bondi’s definitions of
mp and ma. Bondi defines mp by means of the equation of motion

F = mia = −mp grad U, (4.1)

where U denotes the gravitational potential. He defines ma by means of
the Poisson equation, i.e., by

∇2U = −4πGρa = −4πGma/V, (4.2)

where ρa = ma/V is the gravitational mass-density, i.e., ma divided by
the volume V of the body, and G is the gravitational constant (about
6.67 × 10−11 N m3 kg−2 or 6.67 × 10−8 dyne cm2 g−2 as measured, e.g.,

5 F. Piola, “Il concetto di massa nell’ insegnamento elementare della meccanica. Dis-
cussione fatta in seno alla Società Italiana di Fisica,” Nuovo Cimento 14, 80–124 (1907). See
also G. Giorgi, “Relazione sull’ argomento i richiamare le diverse concezioni di massa,”
ibid., 225–245.

6 H. Bondi, “Negative Mass in General Relativity,” Reviews of Modern Physics 29, 423–
428 (1957).
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by performing a Cavendish-type experiment). Let it be granted that mi

has been satisfactorily defined and the quantities a, V, and G have been
measured. Then the preceding equations define mp in terms of U, and U
in terms of ma or vice versa. Hence, mp and ma are logically interdepen-
dent and the equations do not provide an independent definition of mp or
of ma. Bondi’s statement, by defining a definiendum as something “that
enters” an equation (e.g., Poisson’s equation), is what logicians (J. D.
Gergonne and W. Dubislav, among others) call an “implicit definition,”
and as such is certainly not an operational definition. This also follows
from the fact that the statement hinges on the notion of the “gravitational
potential U,” which is not even an observable in physics. Obviously, it
was not Bondi’s intention to present an operational definition of mp

or of ma.
The question of how to define mp and ma operationally has rarely, if

ever, been discussed in the professional literature.7 However, it can be
resolved by adopting the technique that was used by Mach or by Weyl
for their operational definitions of mi: a fundamental law of classical
physics, which contains in its usual formulation the concepts to be
defined, is reformulated as a definition of these concepts. In fact, Mach’s
operational definition of the mass-ratio of two bodies as the negative
inverse ratio of their accelerations is, after all, merely a reformulation
of Newton’s third law, and Weyl’s definition merely a reformulation of
the law of the conservation of linear momentum. The validity of the
classical law is then a logical consequence of the definitions of the terms
involved.

In order to apply this technique to the design of an operational
definition of mp or ma, one has to choose a physical law that involves
these notions. The simplest law of this kind is of course Newton’s
law of gravitation, which, expressed in scalar notation, says that the
gravitational force Fg exerted by a body or particle B2 as the source
of the field and experienced by a body B1 at a distance r from B2 is
given by

Fg = mi(B1)a1 = Gma(B2)mp(B1)/r2, (4.3)

where a symbol of the type m(B) denotes the mass of the body B, a1 is the
acceleration of B1, and G is the constant of gravitation. (Strictly speaking,

7 An exception is H. C. Ohanian’s Gravitation and Spacetime (New York: Norton, 1976,
1994) and his essay “What Is the Principle of Equivalence?,” American Journal of Physics
45, 903–909 (1977).
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it has to be assumed that the body is small enough so that tidal forces
can be ignored and, in the case of a particle, that is has no spin.)

Let B0 be a standard body for which by definition

mi(B0) = mp(B0) = ma(B0) = 1 [unit of mass]. (4.4)

Since the scale of each of the three kinds of mass is assumed to be
independent of the scale of the other two, this normalization is an
acceptable convention. Let it be granted that the inertial mass mi(B) of
an arbitrary body B has been defined, e.g., à la Mach by an interaction
with B0, so that

mi(B) = a0/a, (4.5)

where a0 and a are the accelerations of the standard body B0 and of B,
respectively. If, in particular, B2 in (4.3) is the standard body B0 and B1
an arbitrary body B, then the force experienced by B is

F = mi(B)a = Gma(B0)mp(B)/r2 (4.3′)

so that, because of (4.4),

mp(B) = mi(B)ar2/G, (4.6)

which defines mp(B) in terms of mi(B) and other measurable quantities.
To see as well that G is, in fact, operationally definable, even without

recourse to the Cavendish experiment, let B′0 be a replica of B0, so that
(4.4) is also valid for B′0. Replacement of B by B′0 in (4.3′) yields

G = a′0r2, (4.7)

where a = a′0 is the acceleration of B′0. Thus G is measured by a′0 and r.
Interchanging the roles of B and B0 in (4.3′), one obtains

ma(B) = a0r2/G, (4.8)

an equation that provides an operational definition of the active gravi-
tational mass of an arbitrary body B.

Obviously, if mi has been defined by Mach’s operational definition so
that, neglecting signs,

mi(B0)a0 = mi(B)a (4.9)

then

a0 = mi(B)a,
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and by (4.8)

ma(B) = mi(B)ar2/G

or, by (4.6),

ma(B) = mp(B). (4.10)

In other words, if we assume Newton’s third law or, for that matter,
equivalently, the conservation of momentum, then the active and pas-
sive gravitational masses of every body, though conceptually different,
are numerically equal. Conversely, the equality between mp and ma

together with Newton’s law of gravitation is easily seen to be a sufficient
condition for the validity of Newton’s third law.

The equation ma = mp and the equation mi = mp, the experimen-
tal evidence of which will soon be discussed, may raise the question
of whether the trichotomy into mi, mp, and ma, though conceptually
justified, has any physical significance. True, in classical physics this
categorization is for all practical purposes unnecessary and is there-
fore generally ignored in standard textbooks on classical mechanics.
However, in modern theories of gravitation this trichotomy does have
physical significance. The advent of possible alternatives to Einstein’s
relativistic theory of gravitation and the development of high-precision
techniques for testing such theories made it necessary to formulate a
metatheory or framework of theories of gravitation in order to classify
them, to compare them systematically, and to explore the possibility of
constructing not-yet-devised theories of gravitation.

The most important framework of this kind is the so-called “para-
metrized post-Newtonian formalism,” or briefly PPN formalism. Used
in a rudimentary fashion as early as 1922 by Arthur Stanley Eddington,
and later by Howard Percy Robertson and Leonard I. Schiff, PPN owes
its modern formulation primarily to Kenneth Nordtvedt Jr.8 and Clifford
M. Will.9 The formulation applies only to metric theories of gravitation,
that is, theories that satisfy the conditions that space-time has a metric,
the world-lines of uncharged test bodies are geodesics of this metric,
and in local freely falling frames the nongravitational laws of physics

8 K. Nordtvedt Jr., “Equivalence Principle for Massive Bodies, II: Theory,” Physical
Review 169, 1017–1025 (1968).

9 C. M. Will, “Theoretical Framework for Testing Relativistic Gravity, II: Parametrized
Post-Newtonian Hydrodynamics and the Nordtvedt Effect,” Astrophysical Journal 163,
611–628 (1971).
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are those of special relativity. Most modern theories of gravitation, such
as those proposed by Einstein, Whitehead, Brans and Dicke, Bergmann,
Wagoner, Nordvedt, Bekenstein, Rosen, and Rastall, are metric theories,
and to describe precisely how the PPN formalism is applied would lead
us too far into technical details. Thus, we shall only sketch the general
idea of the procedure.10

Metric theories may differ in their field equations and in the nu-
merical coefficients that appear in the metric. The PPN formalism re-
places these coefficients, which characterize each theory, by parame-
ters, the so-called (ten) PPN parameters, which in Einstein’s relativistic
theory of gravitation are either zero or unity but differ from these
values in other theories. Different PPN parameters correspond to dif-
ferent gravitational theories, but two different theories can have the
same set of PPN parameters. Within the framework of the PPN formal-
ism, the study of the equations of motion of massive self-gravitating
bodies shows that mi, mp, and ma of such bodies are generally different
functions of these parameters, and as such they may well differ from
each other.

Let us return to equation (4.1) and introduce into it the local gravita-
tional acceleration g, defined by g = − gradU. The ensuing equation

a = (mp/mi)g (4.11)

shows that, at a given location, all bodies fall (in vacuo) with the same
acceleration or, if released from rest, through the same distance within
the same time, if and only if mp/mi has the same value for all bodies. If
this is indeed the case it is convenient to choose appropriate units, as
we shall henceforth assume, so that this ratio is unity or

mi = mp. (4.12)

It is instructive to prove the contention just noted in greater detail
for the historically most important case of the free fall of a body in the
gravitational field at the surface of the earth. According to Poisson’s
equation or Newton’s law of gravitation, the gravitational potential at
the surface of the earth is

10 For details see C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge:
Cambridge University Press, 1981, 1991), or I. Ciufolini and J. A. Wheeler, Gravitation and
Inertia (Princeton: Princeton University Press, 1995), pp. 163–168.
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U = −GMa/R, (4.13)

where G is the gravitational constant (6.67 ×10−11m3 kg−1 s−2), Ma the
active gravitational mass of the earth (5.98 × 1024 kg), and R the radius
of the earth (6.37 × 106 m). Hence

g = | − grad U| = GMa/R2 = 9.82 m s−2. (4.14)

If mi(B1) and mp(B1) denote, respectively, the inertial and passive grav-
itational mass of a body B1, then according to equation (4.3)

mi(B1)g(B1) = mp(B1)GMa/R2, (4.15)

where the acceleration a of B1 has been denoted by g(B1).
Analogously, we obtain for an arbitrary body B2, which may differ

from B1 in its chemical composition, size, and structure,

mi(B2)g(B2) = mp(B2) GMa/R2, (4.16)

and by subtraction of the last from the former equation

g(B1)− g(B2) =
[

mp(B1)

mi(B1)
− mp(B2)

mi(B2)

]
GMa

R2 . (4.17)

Since B1 and B2 are arbitrary bodies, this equation proves that all bodies
fall at the surface of the earth with the same acceleration if and only if
mp/mi has the same value for all bodies.

The statement that for all bodies, regardless of their weight, size,
shape, structure, or material composition the ratio mp/mi is the same
or in appropriate units mi = mp, is called the weak principle of equivalence
or briefly WEP. This term was coined by Robert Henry Dicke in 1959 and
defined by him as “the principle which assumes that the gravitational
acceleration of a body is independent of its structure.”11

For reasons soon to be explained we propose to distinguish, at least
temporarily, between two versions of WEP, that is, between its kinematic
version WEPkin, which states that at a given location all bodies fall with
the same acceleration, and its dynamic version WEPdyn, which states
that mi = mp. WEPkin can also be called the principle of the universality of

11 R. H. Dicke, “New Research on Old Gravitation,” Science 129, 621–624 (1959). See also
R. H. Dicke, “Experimental Relativity,” in C. DeWitt and W. DeWitt, eds., Relativity Groups
and Topology (New York: Gordon and Breach, 1964), p. 168.
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free fall (UFF) but should not be confounded with what certain authors
call the principle of the uniqueness of free fall and also abbreviate by UFF
but use as a synonym for WEP.12

Our distinction between WEPkin and WEPdyn is motivated by logical
and historical reasons. WEPkin does not presuppose the concept of mass
in any of its meanings and could therefore historically have preceded
WEPdyn before the notion of mass was conceived. In fact, WEPkin, which
contradicts the Aristotelian thesis that heavy bodies fall faster than light
ones of the same material, can be traced back to the ancient atomists.
Epicurus of Samos, for instance, declared about 300 b.c., in his letter to
Herodotus, that “the atoms must fall with equal velocity (“isotacheis”)
when they are moving through the void.”13 Similarly, the sixth-century
commentator Ioannis Philoponus, also called John the Grammarian, one
of the early critics of Aristotelian physics, wrote that, “if you let fall from
the same height two weights of which one is many times as heavy as
the other, you will see that the ratio of the times required for the motion
does not depend on the ratio of the weights.”14

With this statement Philoponus clearly anticipated Galileo Galilei’s
famous, but probably only apocryphal, experiment of dropping two
objects of different weights simultaneously from the top of the Leaning
Tower of Pisa to show that they reach ground at the same time. We
shall not discuss here the question of whether, or how far, the idea
of the experiment had been anticipated by Galileo’s immediate pre-
decessors, and among them especially by Giovanni Battista Benedetti
in his Demonstratio Proportionum Localium (1554). Less known but not
less ingenious was Galileo’s thought experiment, which he designed
“to prove, by means of a short and conclusive argument, that a heavier
body does not move more rapidly than a lighter one provided both
bodies are of the same material.” Galileo imagined a light stone being
attached to a heavy stone. When both are dropped, then according to
Aristotle’s theory the light stone would slow down the heavy stone so
that the combined system would fall more slowly than the heavy stone;
but since the combined system is heavier than the heavy stone alone, it

12 See, e.g., the widely used text by C. W. Misner, K. S. Thorne, and J. A. Wheeler,
Gravitation (San Francisco: Freeman, 1973), p. 1050.

13 P. von der Muehll, ed., Epicuri Epistulae Tres (Letter 1, 61.6) (Stuttgart: Teubner, 1975),
p. 16. See also T. Lucretius, De Rerum Natura Libri Sex, book 2, verse 238–239.

14 Ioannis Philoponi in Aristotelis Physicorum Libros Quinque Posteriores Commentaria
(Berlin: Reimer, 1888), pp. 676–684. English translation in M. R. Cohen and I. E. Drabkin,
A Source Book in Greek Science (New York: McGraw-Hill, 1948), pp. 217–231.
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should also fall faster than the heavy stone. Galileo thus demonstrated
that Aristotle’s thesis, that heavy objects fall faster than light ones of the
same material, is self-contradictory.15 It should be noted, however, that
Galileo’s argument loses its logical cogency if the two objects in question
are not of the same material composition.

Turning now to WEPdyn, we know that it was clearly conceived and
even experimentally tested for the first time by Isaac Newton. However,
this version of the weak equivalence principle also seems to have a
prehistory, which, like that of WEPkin, can be traced back to Epicurus. In
order to understand how this could have been possible so long before
there was a concept of mass we have to recall the following facts. In
his treatise On Generation and Corruption (326 a 11) Aristotle quotes
Democritus as having said that “the more any indivisible [atom] exceeds
[in bulk], the heavier it is.” The term used here by Aristotle for “heavier”
is “baryteron,” the comparative of “barys,” denoting “heavy.” Aristotle
thus clearly attributed heaviness or weight to Democritean atoms. But
that these atoms have weight had been emphatically denied by the
second-century a.d. doxographer Aetius in his statement: “Democritus
says that the atoms do not possess weight but move in the infinite as the
result of striking one another” (Placita I, 12, 6). The question of which
of these two apparently contradictory statements is true has intrigued
many scholars of ancient philosophy.

Recently Alan Chalmers suggested resolving this contradiction by
pointing out that the term “barys” had been used in the two statements
equivocally, that is, in different meanings: it denoted not only “heavy”
in the sense of having weight but also what Chalmers calls “unwieldy,”
namely “that property of a heavy object that determines the degree of
difficulty involved in moving or stopping it, distinct from the tendency
objects have to fall. . . . The modern reader familiar with Newtonian
physics will note that this usage of ‘heaviness’ and ‘weight’ refers to
what is more accurately designated as ‘inertial mass.’ ”16 Interestingly,
but not mentioned by Chalmers, Aristotle himself declared in his Topics
(106 a 18) that “barys is used with a number of meanings (pollachōs),
inasmuch as its contrary also is so used.”

15 G. Galilei, Discorsi e dimostrazioni matematiche intorno à due nuove scienze (Leiden:
Elsevir, 1638), p. 107; Dialogues Concerning Two New Sciences (New York: Macmillan, 1914;
New York: Dover, 1954), p. 62.

16 A. Chalmers, “Did Democritus Ascribe Weight to Atoms?” Australian Journal of
Philosophy 75, 279–287 (1997).
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If, as Chalmers claims, Democritus ascribed to atoms only “unwieldi-
ness” or, in modern terms, inertial mass mi and Aristotle called it “barys”
or “heavy,” then Aristotle was right; and if Aetius maintained that Dem-
ocritean “unwieldiness” does not imply an inherent tendency to move
downward or, in modern terminology, to be possessed of gravitational
mass mp, then Aetius was right as well. However, it then also follows
logically that by attributing both of these properties to atoms Epicurus
ascribed to them mi as well as mp. Of course, the idea of a quantitative
proportionality or equality of these two attributes was still beyond the
conceptual framework of that time.

Returning after this historical digression to Galileo, we know that he
did not yet conceive the notion of mass. True, occasionally he made use
of the term “massa,” as for example on page 67 of his Discorsi, but only
in the general sense of “substance” or “stuff.” Those of his experiments
described above as well as those that he claimed to have performed with
inclined planes and pendulums should therefore be interpreted only as
tests of WEPkin. The expression that is sometimes used, namely “Galilei
equivalence principle,” as encompassing both WEPkin and WEPdyn is
therefore historically misleading.

From now on, in our account of the post-Galilean era beginning
with Isaac Newton, we follow the common terminology and use the
abbreviation WEP to denote both WEPkin and WEPdyn. For once the
notion of mass is available, the term “weak equivalence principle”
always has the connotation of asserting the proportionality or equality
between mi and mp, even if this relation is only implicit in the statement,
e.g., that at a given location all bodies fall with the same acceleration.

The first individual who fully deserves the credit for having pro-
claimed and experimentally demonstrated WEP is Isaac Newton.17 He
suspended two pendulums side by side, loaded with two different
substances, such as wood and lead, and he looked for a phase difference
between them as they oscillated for a long time. If L denotes the length
of the pendulum, φ the angle between the string and the vertical, and mi

and mp the inertial and passive gravitational masses of the suspended
body, then the tangential component of the accelerating force is

Ftang = −mpg sin φ (4.18)

17 According to Edward Hussey, Aristotle could be credited with having conceived
WEP, as he interprets Physics VII, 5 (250 a et seq.) as saying that there exists “an ‘inertial
resistance’ to action which is proportional to weight.” E. Hussey, Aristotle’s Physics (Oxford:
Clarendon Press, 1983), p. 133.
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or for small amplitudes

Ftang = −mpgφ. (4.19)

Since the tangential acceleration is

atang = Ld2φ/dt2 (4.20)

the differential equation of motion reads

miLd2φ/dt2 = −mpgφ, (4.21)

which, if solved, yields for the period of oscillation

T = 2π(miL/mpg)1/2. (4.22)

Hence the ratio between the periods of the two pendulums, one loaded
with gold (Au), the other with lead (Pb), is

TAu/TPb = [mi(Au)/mp(Au)]1/2/[mi(Pb)/mp(Pb)]1/2, (4.23)

where mi(Au) and mp(Au) are the masses of gold, and mi(Pb) and
mp(Pb) those of lead. Since the pendulums “play together forwards
and backwards, for a long time, with equal vibrations,” i.e., TAu = TPb,
Newton concluded that the ratio mi/mp is the same for both substances,
with an accuracy of one part in 103. Having repeated this experiment
with silver, glass, sand, common salt, and wheat with the same result,
Newton announced what he called the proportionality between mass
and weight, i.e., essentially between mi and mp.

Newton realized the importance of this relation. For although he de-
scribed this experiment only in Book III, proposition VI, of his Principia,
he mentioned its result at the very beginning of this work, immediately
after his definition of mass. He probably did so because he felt that this
proportionality provides what we would call an operational definition
or, at least, determination of mass since weights can easily be measured
by the use of the balance.

Nevertheless, it is a unique irony in the history of physics that the very
same proportionality between mi and mp, to which Newton attached
such an importance, also became the starting point and cornerstone of
Einstein’s construction of his general theory of relativity, which refuted
and superseded Newtonian physics. But, interestingly, Newton has also
recently been credited with having anticipated, in corollaries V and VI
of his third law of motion, what in modern terminology is called the
strong equivalence principle, the very foundation of general relativity,
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and with having anticipated, to some extent, even the idea of testing
what is now called the Nordtvedt effect. We shall return to this issue
later on, when we discuss these points in detail.

In November 1907 Einstein realized—he called it “the happiest
thought in my life”—that the mi = mp equality enables him to “transform
away” a homogeneous gravitational field locally and thus to extend the
applicability of special relativity to the case of uniformly accelerated
reference frames.18 To understand how the mi = mp equality allows
one locally to “transform away” a static homogeneous gravitational
field, we imagine a spatially localized laboratory to contain n particles
acting upon each other with distance-dependent forces f(rj − rk), where
rj = (xj, yj, zj), (j, k = 1, 2, . . . , n) denotes the position of particle j. The
equation of motion for particle q is

miq d2rq/dt2 = mpqg+
n∑

s=1

f(rq − rs) q = 1, 2, . . . ,n, (4.24)

where miq and mpq denote the inertial and gravitational mass, re-
spectively, of particle q. Application of the non-Galilean space-time
transformation

r′ = r − 1
2 gt2 t′ = t, (4.25)

provided miq = mpq, yields

miq d2r′q/dt2 =
n∑

s=1

f(r′q − r′s), (4.26)

which is the equation in a gravitation-free coordinate system.
Thus, to use Einstein’s illustrative example, the mechanical behavior

of particles in an elevator falling freely in an external homogeneous
gravitational field is the same as that in an elevator that is at rest relative
to the distant stars in the absence of an external gravitational field.
Further, mi equals mp because both quantities denote the same quality of
a body, which “manifests itself according to circumstances as ‘inertia’ or
as ‘weight.’ ”19 Furthermore, this equality indicated how the construc-
tion of the general theory had to proceed. If we use modern space-time

18 “Der glücklichste Gedanke meines Lebens,” A. Einstein, Grundgedanken und Methoden
der Relativitätstheorie in ihrer Entwicklung dargestellt,” unpublished manuscript, Pierpont
Morgan Library, New York City; Einstein Archive, reel 2-070.

19 “Dieselbe Qualität des Körpers äussert sich je nach Umständen als ‘Trägheit’ oder
als ‘Schwere.’ ” A. Einstein, Über die spezielle und die allgemeine Relativitätstheorie (Braun-
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terminology and the notion of a “test body,” i.e., a body of negligible self-
gravitational energy and of so small a size that its coupling via multiple
moments or spin to inhomogeneities of the external field is negligible,
WEP says: the world-line of an uncharged test body, released at an initial
space-time event with a given initial velocity, is independent of the
weight, size, shape, and material composition of the body. WEP thus
defines a preferred set of (not necessarily geodetic) curves in space-time
and thus suggests that the structure of space-time specifies properties
of a geometrized gravitational field, though not necessarily in the sense
of a non-Euclidean geometry.20

Although primarily a theoretician, Einstein was always ready to
give up completely, rather than modify, his theories should experi-
mental evidence conflict with predictions derived from their funda-
mental principles.21 Having recognized the heuristic importance of the
equivalence principle, he was eager to make certain that its predictions,
foremost the proportionality of inertial and gravitational mass, are
experimentally confirmed. Toward this end, in July 1912, he asked his
friend the experimentalist Wilhelm Wien, to test this proportionality for
lead and uranium by means of a precision-measurement method that
Einstein thought he himself had invented for the purpose.22

Einstein was obviously not aware that such a test, by essentially the
same method, had been carried out more than twenty years earlier by
the geophysicist Roland, Baron Eötvös of Vásárosnamóny. Thus it is no
exaggeration to say that Einstein began the construction of his general
theory of relativity without the support of any observational evidence.
Of course, certain observations, such as the discovery of the perihelion
precession of Mercury, known since the late 1850s, suggested a modifica-
tion of the classical theory of gravitation; but they provided no clue as to
how to revise it, let alone how to replace it by a totally different concep-
tual scheme. Whereas all other theories of modern physics, especially
those of quantum mechanics and elementary particles, originated from a

schweig: Vieweg, 1920, 1965), p. 45; Relativity—The Special and the General Theory (London:
Methuen, 1920, 1988), p. 65.

20 D. E. Dugdale, “The Equivalence Principle and Spatial Curvature,” European Journal
of Physics 2, 43–51 (1981).

21 K. Hentschel, “Einstein’s Attitude Toward Experiments: Testing Relativity Theory
1907–1927,” Studies in History and Philosophy of Science 23, 593–624 (1992).

22 J. Illy, “Einstein und der Eötvös-Versuch,” Annals of Science 46, 417–422 (1989). Letter
from Einstein to W. Wien, dated July 10, 1912. Einstein Archive, reel 23-566.
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large set of detailed observations, general relativity owes its inception—
apart from its methodological postulate of the general covariance of the
physical laws—to only one physical assumption, the proportionality
between mi and mp, which at that time Einstein thought to be still in
need of an observational verification.

Before we discuss the significance of the Eötvös experiment and its
variants for the notion of mass we return to the as yet unanswered ques-
tion of why WEP has been called the “weak” principle of equivalence.
This is the right place to do so because the answer is intimately related
to Einstein’s first step, noted just above, on his path toward the general
theory. In his 1907 summary essay on relativity Einstein described in
detail how he extended the principle of relativity to uniformly acceler-
ated reference frames. He considered two reference systems S and S′, the
former being at rest in a homogeneous gravitational field that imparts
an acceleration −g in the direction of its x-axis to all objects, and the
latter being accelerated along the same axis with a constant acceleration
g. “As far as we know,” he continued, “the physical laws with respect
to S′ do not differ from those with respect to S; this derives from the
fact that all bodies are accelerated alike in the gravitational field. We
have therefore no reason (“Anlass”) to suppose in the present state of
our experience that the systems S′ and S differ in any way, and will
therefore assume in what follows the complete physical equivalence
(“die völlige physikalische Gleichwertigkeit”) of the gravitational field
and the corresponding acceleration of the reference system.”23

Clearly, this “complete physical equivalence” with respect to the laws
of physics of any kind, including, e.g., the laws of electrodynamics, is not
a logical consequence of “the fact that all bodies are accelerated alike in
the gravitational field.” It is rather a bold extrapolation or generalization
of this fact to physics as a whole. To emphasize this point, Dicke, in the
essay in Science cited above, called it the “strong equivalence principle”
or SEP. It is sometimes also called the “Einstein equivalence principle” or
EEP. Some authors distinguish between “the medium strong form of the
equivalence principle,” which they also call the “Einstein equivalence

23 A. Einstein, “Über das Relativitätsprinzip und die aus demselben gezogenen Fol-
gerungen,” Jahrbuch der Radioaktivität und Elektronik 4, 411–462 (1907); “Berichtigung,”
ibid., 5, 98 (1908). English translation “Einstein’s Comprehensive 1907 Essay on Relativity,”
American Journal of Physics 45, 512–517, 811–817, 899–902 (1977). Collected Papers, vol. 2,
pp. 432–484, 494–495.
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principle,” and which refers only to nongravitational laws, and the “very
strong form of the equivalence principle,” which refers to all laws of
physics.24 To avoid misconceptions, we shall henceforth use the term
EEP for the statement that all nongravitational laws of physics are the
same in all local freely falling reference frames that are small enough so
that inhomogeneities in the gravitational field can be ignored. Clearly,
a theory that satisfies EEP also satisfies WEP because the statement that
bodies unaffected by external forces follow unaccelerated trajectories is
a law of physics.

In 1960 Leonard Schiff conjectured that, conversely, at least as far
as complete and self-consistent theories are concerned,25 a gravitational
theory that satisfies WEP also satisfies EEP.26 Schiff’s conjecture has been
validated for the case of test bodies composed of electromagnetically
interacting particles falling from rest in a static, spherically symmetric
gravitational field and for other special cases by showing that a violation
of EEP implies a violation of WEP.27 However, a rigorous general proof
has not been and probably cannot be given. In any case, this conjecture
enhances the importance of the Eötvös experiment, for if Schiff’s con-
jecture is right, then the equality mi = mp, which this experiment was
designed to confirm with high precision, would suffice to prove EEP
and thereby that gravitation must be interpreted as a curved space-time
phenomenon.

It is often said that the proportionality of inertia and weight or, more
precisely, of mi and mp is in Newtonian physics a completely inexplicable
and merely accidental fact of nature, but that it has been explained by
Einstein in his general theory of relativity. It is worthwhile examining
these statements more closely.

24 See, e.g., S. Weinberg, Gravitation and Cosmology (New York: John Wiley and Sons,
1972), p. 69; or Ciufolini and Wheeler, Gravitation and Inertia, p. 14.

25 A theory of gravitation is complete if it allows the calculation of the detailed behavior
of atoms in a gravitational field. It is self-consistent if different methods of calculating the
prediction of an experiment yield the same result.

26 L. I. Schiff, “On Experimental Tests of the General Theory of Relativity,” American
Journal of Physics 28, 340–343 (1960).

27 A. P. Lightman and D. L. Lee, “Restricted Proof that the Weak Equivalence Principle
Implies the Einstein Equivalence Principle,” Physical Review D 8, 364–376. A. P. Lightman,
“The Equivalence Principle as a Foundation for Gravitation Theories,” in P. Barker and
E. G. Shugart, eds., After Einstein (Memphis, Tenn.: Memphis State University Press, 1981),
pp. 57–65.
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That this proportionality is fortuitous in Newtonian physics can
hardly be denied in view of the fact that mp plays the role of a “grav-
itational charge” and is therefore, just like an electrical charge, totally
independent of the inertial mass of the body. A world in which the
ratio mp/mi would vary from body to body would logically not be
incompatible with the conceptual framework of Newtonian physics and
its laws of motion. Still, in the history of classical physics there are a
number of arguments on record that claim to have proved the necessity
of this proportionality.

William Whewell, for example, the well-known philosopher of science
and author of a Treatise on Mechanics (1819) and a Treatise on Dynamics
(1823), contended in 1841 that he had proved that “inertia is necessarily
proportional to weight.” Whewell summarized his proof as follows:
“When weight produces motion, the inertia is the reaction which makes
the motion determinate. The accumulated motion produced by the
action of unbalanced weight is as determinate a condition as the equi-
librium produced by balanced weight. In both cases the condition of
the body acted on is determined by the opposition of the action and
reaction. Hence inertia is the reaction which opposes the weight, when
unbalanced. But by the conception of action and reaction (as mutually
determining and determined) they are measured by each other: and
hence the inertia is necessarily proportional to the weight.”28

Another example is the totally different explication of that propor-
tionality that was originally suggested by the mathematician Valentin-
Joseph Boussinesq and was publicized primarily by Wilhelm Ostwald.
It is based on the Kant-Laplace nebular hypothesis, which was the fa-
vored theory of the origin of the solar system throughout the nineteenth
century. This cosmogonic hypothesis describes the birth of the sun as a
gigantic conflux of particles from all over space. The argument claims
that when these particles were still dispersed in space they differed in
the ratio of their weight and mass. But when the condensation process
began, according to the law of gravitation, those particles for which
this ratio is a maximum or, inversely, particles of equal weight with
minimum value of mass, must have been the first to agglomerate into
the central body, the sun. Owing to this selection process the particles
that constitute the sun and the planets are those for which this ratio

28 W. Whewell, “Demonstration that All Matter Is Heavy,” Essay III in his The Philosophy
of the Inductive Sciences (London: Parker, 1847; New York: Johnson Reprints, 1967), vol. 2,
pp. 624–634.

106



G R AV I TAT I O N A L M A S S

is the same, namely the highest. Ostwald even thought it might be
possible to calculate the age of the earth from this ratio for terres-
trial matter.29

Arguments such as those proposed by Whewell and Ostwald would
certainly be rejected by modern scientists as being too vague and lacking
mathematical elaboration. Recently Andrew E. Chubykalo and Stoyan
J. Vlaev published a paper in which they claim to have proved that
the proportionality of inertial and gravitational mass is not a postulate
but rather a theorem in classical mechanics. They decided to study this
issue when they found to their surprise that for a certain mechanical
system the kinetic energy, which is usually associated only with inertial
masses, can also be expressed solely in terms of gravitational masses.
They considered two bodies m and M with inertial mass mi, and Mi and
gravitational mass mg and Mg, respectively, moving in circular motion
with constant velocities vm and vM, respectively, around their center of
inertia C, which always lies on the straight line connecting the bodies. If
R denotes the distance between the bodies and x that of M from C, then
according to the equations of centripetal acceleration and Newton’s law
of gravitation, clearly

miv2
m/(R− x) = GmgMg/R2 =Miv2

M/x, (4.27)

where G is, of course, the constant of gravitation. Since the angular
velocities about C are equal, vm/(R − x) = vM/x. Calculating vm and
vM from the preceding equations, they found that the kinetic energy,
which in this case is given by K = 1

2 miv2
m + 1

2 Miv2
M, also satisfies the

equation K = GmgMg/2R. In order to prove that mi = ηmg, where η is
a constant independent of the masses and their velocities, the authors
consider a coordinate system that is fixed at body M, and using the
equation miv2/R = GmgMg/R2 again, they derive the proportionality of
mi and mg.30

29 “Es werden in den Centralkörper nämlich zunächsts solche Massen gelangen, deren
verhältnissmässiǵe Schwere am grössten ist, oder umgekehrt bei Körpern von gleicher
Schwere die, deren Massen am kleinsten sind. Es findet eine Auslese aller vorhandenen
Körper statt, welche dahin wirken muss, dass im Centrum zunächsts die am schnellsten
fallenden eintreffen. Für diese wird das Verhältniss zwischen Schwere und Masse densel-
ben Werth haben, und zwar den grössten vorkommenden.” W. Ostwald, Vorlesungen über
Naturphilosophie (Leipzig: Veit, 1902), p. 192.

30 A. E. Chubykalo and J. Vlaev, “Theorem on the Proportionality of Inertial and
Gravitational Masses in Classical Mechanics,” European Journal of Physics 19, 1–6 (1998).
See also B. Jancovici, “Comment,” ibid., 399.
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Of course, their paper caused quite a stir, for, if correct, it would throw
new light on the very foundations of the general theory of relativity,
which is based on the equivalence principle. But is it correct? Bernard
Jancovici, a member of the editorial board of the periodical in which the
paper was published, declared in his “comment” that the paper “should
never have been accepted” for the following reason: “A very simple
disproof of the authors’ argument is that the same argument, applied to
the electric charge rather than to the gravitational mass, would lead to
the ‘proof’ that all particles have the same charge-to-mass ratio.”

However, in spite of the mathematical similarity between Newton’s
law of gravitation and Coulomb’s law of the force acting between
charged bodies at rest with respect to each other, analogies between
gravitational masses and electric charges do not always lead to correct
conclusions because of the magnetic forces caused by charges in motion.
A refutation of the paper would be more convincing if an error could
be found in the authors’ argument itself. In fact, such an error does
exist. The equation miv2/R = GmgMg/R2, which as we have seen plays
a critical role in the proof, would be valid in an inertial system but is
not valid in the coordinate system “fixed at the body M,” which, as the
authors themselves point out, is not an inertial system.

The statement that Einstein “explained” the proportionality (or equal-
ity) of mi and mp also requires some critical clarification, because its valid-
ity depends on the meaning of the term “explanation.” According to the
widely accepted Hempel-Oppenheim “covering-law model” or many of
its alternatives, explanation is a logical deduction of the explanandum
from general laws.31 Hence, whether an explanandum can be explained
within the framework of a given theory depends on the general laws
on which the theory is founded. Einstein based his general theory on
the assumption quoted above of “the complete physical equivalence of
a gravitational field and the corresponding acceleration of the reference
system.” In his 1907 summary essay and in his 1911 demonstration that
“energy possesses a gravitational mass which is equal to its inertial
mass,” this assumption is referred to as a “hypothesis.”32 But in his

31 C. G. Hempel and P. Oppenheim, “Studies in the Logic of Explanation,” Philosophy of
Science 15, 125–175 (1948); C. G. Hempel, Aspects of Scientific Explanation and Other Essays
in the Philosophy of Science (New York: Free Press, 1965).

32 A. Einstein, “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes,” Annalen
der Physik 35, 898–908 (1911); Collected Papers, vol. 3, pp. 485–496; “On the Influence of
Gravitation on the Propagation of Light,” in A. Einstein, H. A. Lorentz, H. Minkowski,
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subsequent 1912 essay on the gravitational deflection of light its status
is raised to that of a “principle” and it is called, for the first time, the
“equivalence principle” (“Äquivalenzprinzip”).33 From this point on it
plays, together with the “relativity principle,” the role of a most general
law in the new theory. Since the equivalence principle implies mi = mp

it is legitimate to say that the general theory of relativity “explains”
this relation. It should be remembered, however, that this is true only
because Einstein, as Abraham Pais expressed it, “had the gift of learning
something from ancient wisdom by turning it around” or by reversing
“the arrow of logic.”34

Turning now to the Eötvös experiment and its subsequent variants,
designed to test WEP, we have to note that the principle behind all
these tests, including Galilei-type free-fall experiments and Newton-
like pendulum experiments, is to expose bodies of different material
composition to be acted upon simultaneously by a mi-dependent and a
mp-dependent force and to check for detectable effects in their reactions
to these forces. In the Eötvös experiment the mp-dependent force is the
gravitational attraction of the earth and the mi-dependent force is the
centrifugal force owing to the earth’s rotation. The instrument used
is a Cavendish torsion balance, with its beam suspended by a thin
fiber near its midpoint so that the lengths of its two arms, l1 and l2,
are approximately equal. Two laboratory-sized bodies B1 and B2 are
attached, B1 at the end of l1 and B2 at the end of l2. That an inequality
mi(B1)/mp(B1) 6= mi(B2)/mp(B2) should produce a torque can be seen
as follows. The gravitational force acting on B1 is mp(B1)g and that
on B2 is mp(B2)g, where g is the local gravitational acceleration in the
direction toward the center of the earth, i.e., without any centrifugal
component. Acting in the opposite direction, the vertical component
of the centrifugal force exerts the force mi(B1)cv on B1, and the force
mi(B2) cv on B2, where cv is the vertical component of the centrifugal
acceleration. The equilibrium condition requires that

l1
[
mp(B1)g −mi(B1)cv

] = l2
[
mp(B2)g −mi(B2)cv

]
. (4.28)

and H. Weyl, The Principle of Relativity (London: Methuen, 1923; New York: Dover, 1952),
pp. 99–108. Collected Papers (English translations), vol. 3, pp. 379–387.

33 A. Einstein, “Lichtgeschwindigkeit und Statik des Gravitationsfeldes,” Annalen der
Physik 38, 355–369 (1912); “The Speed of Light and the Statics of the Gravitational Field,”
Collected Papers, vol. 4, pp. 130–144.

34 A. Pais, ’Subtle Is the Lord . . .’ The Science and the Life of Albert Einstein (Oxford: Oxford
University Press, 1982), p. 195.
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The horizontal component of the centrifugal force imparts a torque T to
the balance around the vertical axis equal to

T = l1mi(B1)ch − l2mi(B2)ch, (4.29)

where ch is the horizontal component of the centrifugal acceleration.
Elimination of l2 by means of (4.28) yields the following value for T:

T = mi(B1)cvl1g
[

mp(B2)

mi(B2)
− mp(B1)

mi(B1)

]/[g mp(B2)

mi(B2)
− cv

]
. (4.30)

Hence, the balance experiences a torque if and only if the ratio mi/mp for
B1 differs from that forB2. Since the centrifugal force could not be turned
off to determine the zero from which the torque had to be measured, the
whole apparatus had to be rotated by 180° in the horizontal plane. The
resulting total twist angle of the beam was therefore proportional to
twice the torque.

Eötvös had thought that it might be possible to eliminate the trou-
blesome rotation of the apparatus by comparing the gravitational force
owing to the sun with the inertial force owing to the earth’s orbital
motion about the sun,35 but he died in 1909 without having been able to
carry out such a project. His terrestrial experiment, however, was greatly
improved upon by his successors Desiderius Pekár and Eugen Fekete,
who tested the WEP for a wide variety of substances and concluded “that
not in a single case could they detect an observable violation of the law
of the proportionality between inertia and gravity.”36 The precision they
obtained was |mi −mp|/mi < 3× 10−9.

It is interesting, at least from the historical point of view, to com-
pare the role of the Eötvös experiment in the general theory of rel-

35 R. v. Eötvös, “A föld vonzása különbözö anyagokra,” Akadémiai Értesítö 2, 108–110
(1890); “Über die Anziehung der Erde auf verschiedene Substanzen,” Mathematische und
naturwissenschaftliche Berichte aus Ungarn 8, 65–68 (1898); Gesammelte Werke (Budapest:
Akadémiai Kiado, 1935, pp. 307–372). For historical details see M. M. Nieto, R. J. Hughes,
and T. Goldman, “Actually, Eötvös did publish his result in 1910, it’s just that no one
knows about it . . . ,” American Journal of Physics 57, 397–404 (1989). For further technical
details see R. H. Dicke, Gravitation and the Universe (Philadelphia: American Philosophical
Society, 1970), pp. 1–25. H. C. Ohanian, Gravitation and Spacetime (New York: Norton, 1976,
1994), section 1.5, A. Cook, “Experiments on Gravitation,” Reports on Progress in Physics
51, 707–757 (1988).

36 R. v. Eötvös, D. Pekár, and E. Fekete, “Beiträge zum Gesetz der Proportionalität von
Trägheit und Gravität,” Annalen der Physik 68, 11–66 (1922).
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ativity with the role of the Michelson-Morley experiment in the spe-
cial theory of relativity. Both experiments were first performed almost
at the same time—the (cooperative) Michelson-Morley experiment in
1887 and the Eötvös experiment in 1889, and since then they have
been repeated many times with ever-increasing precision. Both are null
experiments, and positive results would be fatal for their respective
theories.37 The Michelson-Morley experiment deals with the velocity
of light in different directions and the Eötvös experiment with the
acceleration of different bodies. Einstein wrote his 1905 seminal paper on
the special theory without being aware of, or at least without referring
to, the Michelson-Morley experiment. Einstein himself declared that
Michelson’s experiment had little influence on him and that he doubts
that he was aware of it when he wrote that paper.38 It was only in
the 1907 summary paper cited above that he referred to Michelson
for the first time. When, in the same 1907 paper, Einstein began to
develop his general theory on the basis of mi = mp, as explained
above, he did not know of the Eötvös experiment. That he was still
unaware of it in July 1912 can be seen from his letter to Wien of July
10, 1912.39 His first reference to it can be found in an essay published
in 1913.40

By the mid-1960s advances in high-precision techniques allowed Peter
G. Roll, R. Krotkov, and Robert H. Dicke to carry out Eötvös’s intended
program of testing WEP in a solar version of the experiment.41 Using
gold and aluminum, which “fell” toward the sun with an acceleration
some two thousand times smaller than the free-fall acceleration g on
the earth, they verified WEP in their 1964 “Princeton experiment” with
a precision of |mi − mp|/mi < 3 × 10−11. Using a slightly modified ver-
sion, with platinum and aluminum in their 1971 “Moscow experiment,”

37 Although originally not intended as a null experiment, the Michelson-Morley ex-
periment soon played such a role, as Loyd Swenson Jr., showed in his The Ethereal Aether
(Austin: University of Texas Press, 1972).

38 Letter from Einstein to F. C. Davenport, dated February 2, 1954, Einstein Archive,
reel 17-198.

39 Letter from Einstein to W. Wien, dated July 10, 1912. Einstein Archive, reel 28-56.
40 A. Einstein and M. Grommer, Entwurf einer verallgemeinerten Relativitätstheorie

(Leipzig: Teubner, 1913); Zeitschrift für Mathematik und Physik 62, 225–259 (1914); Collected
Papers, vol. 4 (Princeton: Princeton University Press, 1995), pp. 304–339.

41 P. G. Roll, R. Krotkov, and R. H. Dicke, “The Equivalence of Inertial and Passive
Gravitational Mass,” Annals of Physics 26, 442–517 (1964).
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Vladimir B. Braginski and V. I. Panov succeeded in increasing the accu-
racy by two more orders of magnitude.42

More recently, a highly improved version of the Eötvös apparatus
was constructed at the University of Washington. Called the Eöt-Wash
balance, it made it possible to test WEP with beryllium, aluminum, and
copper falling toward the galactic center, which consists largely of dark
matter. It was shown that their accelerations do not differ by more than
a few parts in ten thousand.43

The remarkable progress in satellite technology, especially in the
1960s, inspired physicists to apply this technique to the design of WEP
tests in an earth-orbiting satellite.44 Since such tests have certain ad-
vantages over terrestrial experiments (including the absence of seis-
mic vibrations and moving masses in the vicinity of the apparatus as
well as the exploitation of the total centrifugal acceleration rather than
only its horizontal component as in the original Eötvös experiment),
a program dubbed STEP (satellite test of equivalence principle) was
set up in 1974.45 In a recent project involving such a satellite test at an
orbiting altitude of 500 km scientists have predicted the feasibility of
verifying WEP with an accuracy of 10−17, which would make this test
the most precise mechanical experiment ever carried out.46 The STEP
project, which is sponsored jointly by NASA (National Aeronautics
and Space Administration) and ESA (European Space Agency), was
the main subject of the discussions at the international “Symposium
on Fundamental Physics in Space,” held on October 16–20, 1995, at
the Imperial College in London. The papers read at this conference de-
scribed the design of technologically highly sophisticated instruments

42 V. B. Braginski and V. I. Panov, “Verification of the Equivalence of Inertial and
Gravitational Mass,” Zhurnal Eksperimentalnoi i Teoreticheskoi Fisiki 61, 873–879 (1971);
Soviet Physics JETP 34, 463–466 (1972).

43 G. Smith, E. G. Adelberger, B. R. Heckel, and Y. Su, “Test of the Equivalence Principle
for Ordinary Matter Falling Toward Dark Matter,” Physical Review Letters 70, 123–126
(1993).

44 P. K. Chapman and A. J. Hanson, “An Eötvös Experiment in Earth Orbit,” paper read
at the Conference on Experimental Tests of Gravitational Theories, held at the California
Institute of Technology, November 1970.

45 P. W. Worden and C.W.F. Everitt, “Tests of the Equivalence of Gravitational and
Inertial Mass Based on Cryogenic Techniques,” in B. Bertotti, ed., Experimental Gravitation,
Course LVI, International School of Physics ‘Enrico Fermi’ (New York: Academic, 1974),
pp. 381–402.

46 D. Bramanti, A. M. Nobili, and G. Catastini, “Test of the Equivalence Principle in a
Non-Drag-Free Spacecraft,” Physics Letters A 164, 243–254 (1992).
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for Galileo-type free-fall experiments and other devices to be used in
STEP, which is hopefully scheduled for launching in the year 2000 or
not much later.47

Another incentive to test the equality between mi and mp was the
excitement generated in 1986 by the announcement of the possible exis-
tence of a “fifth force” in addition to the strong, weak, electromagnetic,
and gravitational interactions. Motivated by the lack of agreement be-
tween certain geophysical measurements of the Newtonian constant of
gravitation and its measurements in the laboratory, Ephraim Fischbach
and his collaborators reanalyzed the results of the 1922 Eötvös exper-
iment and claimed to have found evidence for a heretofore unnoticed
composition-dependent difference in the gravitational accelerations of
different substances.48 More specifically, they thought they had found a
correlation between the nonnull Eötvös results and the baryon number
of the substances used, which they interpreted as the result of a new
kind of interaction with a range of a few hundred meters and therefore
not detectable in the Princeton and Moscow solar experiments. Since
most of the significant nonnull results were subsequently accounted
for as having been caused by systematic errors or unnoticed disturbing
factors and the hypothesis of a baryon-number-dependent and hence
composition-dependent gravitational mass has consequently lost much
of its credibility,49 we shall confine our remarks merely to pointing out
that this hypothesis along with other research projects triggered the se-
ries of Eöt-Wash experiments described above.50 Similarly, modern-day
counterparts of Galileo’s alleged Leaning Tower experiment have been
motivated, at least in part, by the desire to assign limits to the strength
and range of the hypothetical fifth force. Thus, using a modified Michel-
son interferometer to measure the difference in acceleration between

47 For details see the supplementary issue of Classical and Quantum Gravity 13 (No. 11A,
November 1996), pp. A33–A206.

48 E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge, and S. H. Aronson, “Reanalysis
of the Eötvös Experiment,” Physical Review Letters 56, 3–6 (1986).

49 For details see section 3 of the Resource Letter MNG-1, edited by G. T. Gillies,
“Measurements of Newtonian Gravitation,” American Journal of Physics 58, 525–534 (1990);
E. Fischbach and C. Talmadge, “Six Years of the Fifth Force,” Nature 356, 207–215 (1992);
A. Franklin, The Rise and Fall of the Fifth Force (New York: American Institute of Physics,
1993).

50 For a recent Eöt-Wash torsion balance experiment for testing WEP see G. L. Smith,
“New Test of the Equivalence Principle,” in J. Tran Than Van, G. Fontaine, and E. Hinds,
eds., Particle Astrophysics, Atomic Physics and Gravitation (France: Editions Frontiers, Gif-
sur-Yvette, 1994), pp. 419–425.
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two different substances freely falling simultaneously, V. Cavasinni and
his team initiated a series of Galileo-type tests of UFF and WEP, the
most recent of which reached a precision that competes with that of the
Princeton experiment.51

The Eötvös experiment and its improved versions not only confirmed
the weak principle of equivalence with high precision but also provided
some inferential evidence for the strong principle of equivalence, which
also requires the validity of mi = mp for bodies containing nonnegligible
amounts of self-energy or binding energy. The earliest inference of this
kind was made in 1955 by Aaldert Hendrik Wapstra and his assis-
tant G. J. Nijgh.52 Assuming that matter consists of protons, electrons,
neutrons, and nuclear binding energy, thus neglecting electromagnetic
binding energy, and using a simple mathematical analysis from the
Eötvös data for glass, corkwood, antimonite, and brass, they derived
the conclusion that for these substances the ratio mp/mi for protons
and electrons (hydrogen atoms) is equal to mp/mi for neutrons with an
accuracy of one part in 105 and that mp/mi for neurons is equal to this ratio
for nuclear binding energies with an accuracy of about one part in 104. As
the electromagnetic binding energy is of the order of 10−4 of the nuclear
binding energy they could not derive any significant results from the
Eötvös data for the electromagnetic energy. But since it constitutes some
tenths of the nuclear binding energy they conjectured that the mp/mi

ratio for this kind of energy cannot be significantly different from that
of the other constituents of matter.

Four years later, Leonard I. Schiff, in a study of the gravitational
properties of antimatter, an issue to be discussed later on, criticized
Wapstra and Nijgh for having made use of only the earlier and less
accurate work of Eötvös, which, he said, limited the conclusions they
could draw.53 As he showed, again by a mathematical analysis, the

51 V. Cavasinni, E. Iacopini, E. Polacco, G. Stefanini, “Galileo’s Experiment on Free-
Falling Bodies Using Modern Optical Techniques,” Physics Letters A 116, 157–161 (1986).
T. M. Niebauer, M. P. McHugh, J. E. Faller, “Galilean Test for the Fifth Force,” Physical Review
Letters 59, 609–612 (1987). K. Kuroda and N. Mio, “Test of a Composition-Dependent Force
by a Free-Fall Interferometer,” Physical Review Letters 62, 1941–1944 (1989). S. Carusotto,
V. Cavasinni, A. Mordacci, F. Ferrone, E. Polacco, E. Iacopini, G. Stefanini, “Test of g
Universality with a Galileo-Type Experiment,” Physical Review Letters 69, 1722–1725 (1992).

52 A. H. Wapstra and G. J. Nijgh, “The Ratio of Gravitational to Kinetic Mass for the
Constituents of Matter,” Physica 21, 796–798 (1955).

53 L. I. Schiff, “Gravitational Properties of Antimatter,” Proceedings of the National
Academy of Science 45, 69–80 (1959).
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Eötvös experiments were sufficiently accurate to lead to the inference
that the main factors, including electromagnetic binding energies, “that
contribute to the inertial mass of a body also contribute equally or
nearly equally to its gravitational mass.” Mark Haugan and Clifford
M. Will showed, but only in 1976, that the weak interaction energies
also contribute equally to mi and mp.54

Another, though related, conclusion from the Eötvös experiment was
drawn by Dicke when he demonstrated that the assumption that two
different particles, such as a proton and a neutron, may have different
mass-ratios at different locations in a gravitational field contradicts the
Eötvös results.55

Dicke argued as follows. It is assumed that the geometry is defined in
such a way that the neutron’s motion in a gravitational field is described
by the usual geodesic equation

d
ds

(
gij

dxj

ds

)
− 1

2 gjk,i
dxj

ds
dxk

ds
= 0. (4.31)

In the case of a space-time–dependent change in the ratio of the mass m
of the proton to the mass of the neutron the proton’s equation of motion
would read

d
ds

(
mgij

dxj

ds

)
− 1

2 m gjk,i
dxj

ds
dxk

ds
−m,i = 0. (4.32)

The new force term m,i is due to the fact that the relative change in the
proton’s mass requires some extra work for the change of its internal
energy when in motion, which gives rise to a gravitational acceleration
of the proton that differs from that of the neutron, a conclusion that
contradicts the results of the Eötvös experiment.

The question of whether the gravitational binding energy� of a body
also contributes equally to its mi and mp is particularly difficult. For a
spherical homogeneous body of radius R, the ratio of� to its total energy
E, as can be easily seen, is given by

�/E = 4πGρR2/5c2, (4.33)

54 M. Haugan and C. M. Will, “Weak Interactions and Eötvös Experiments,” Physical
Review Letters 37, 1–4 (1976).

55 R. H. Dicke, “Remarks on the Observational Basis of General Relativity,” in H.-Y. Chiu
and W. F. Hoffmann, eds., Gravitation and Relativity (New York: Benjamin, 1964), pp. 1–16.
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where ρ is the mass density, G the gravitational constant, and c the
velocity of light. Since for a laboratory-sized body with, say, R = 1 m, this
ratio is equal to about 10−23 and hence is too small by about ten orders
of magnitude to be detectable by the most sensitive Eötvös experiment.
Only tests performed on very massive bodies could resolve this problem.
It was suggested that Jupiter, by far the largest and most massive of all
planets, be used to probe possible violations of the mi = mp equation.
However, as Dicke showed in 1962, the observational data on Jupiter’s
orbital motion were too poor, by at least two orders of magnitude, to
draw any conclusions.56

Another candidate was the moon. Although its mass is much smaller
than that of Jupiter, its orbital data were much better known. In fact, as
early as 1916 Willem de Sitter had made use of these data for testing
relativistic effects. However, because of the relatively small mass of
the moon, a test of any violation of the mi = mp equality required
extremely precise optical devices, which became available only with
the development of the laser technique in the mid-1960s. In 1967 Ralph
Baierlein studied the possibility of using lunar laser-ranging for testing
Einstein’s general theory of relativity, but without any reference to the
gravitational self-energy problem.57 Soon after having read Baierlein’s
essay, Kenneth Nordtvedt realized that the technique could also be
applied to that problem.58

Nordtvedt’s proposal was soon implemented. On July 21, 1969, the
Apollo 11 astronauts Neil Armstrong and Edwin Aldrin turned the
earth-moon system into a laboratory by placing an array of retroreflec-
tors on the moon, at the Sea of Tranquility, and thus made it possible
to measure the earth-moon distance by laser-ranging with very high
precision. The testing of an inequality in the distribution of the gravita-
tional binding energy to mi and mp—called in modern terminology the
“Nordtvedt effect” and mathematically expressed by

56 R. H. Dicke, “Mach’s Principle and Equivalence,” in C. Møller, ed., Evidence for
Gravitational Theories, Course XX, Proceedings of the International School of Physics
‘Enrico Fermi’ (New York: Academic, 1962), pp. 1–49.

57 R. Baierlein, “Testing General Relativity with Laser Ranging to the Moon,” Physical
Review 162, 1276–1288 (1967).

58 K. Nordtvedt Jr., “Testing Relativity with Lunar Ranging of the Moon,” Physical
Review 170, 1186–1187 (1968). “La lecture de cet article fut pour moi le déclic dont j’avais
besoin. En quelques jours je réalisai que la télémétrie laser-Lune pouvait mesurer le rapport
entre la masse gravitationelle et la masse inertielle de la Terre.” K. Nordtvedt, “La Lune
au secours d’Einstein,” La Recherche 295, 70–76 (1997).

116



G R AV I TAT I O N A L M A S S

mp/mi = 1+ η�/mic2, (4.34)

where the coefficient η, the so-called “Nordtvedt coefficient,” measures
the magnitude of the effect—thus became a matter of experimental
investigation.

It is not difficult to understand how laser-ranging can be used to
investigate the Nordtvedt effect. We let�e denote the gravitational self-
energy of the earth, which is about 5 × 10−10 of the mass of the earth,
and �m denote the self-energy of the moon, which is about 2 × 10−11

of the mass of the moon. According to Newton’s law of gravitation the
gravitational acceleration of the earth toward the sun is

ae = −G
ma(sun) mp(earth)

R2mi(earth)
R̂e, (4.35)

where R is the earth-sun distance and R̂e the unit vector from the sun to
the earth. Hence by (4.34)

ae = −G
ma(sun)

R2

(
1+ η �e

mi(earth)

)
R̂e. (4.36)

Analogously, the gravitational acceleration of the moon toward the
sun is

am = −G
ma(sun)

R2

(
1+ η �m

mi(moon)

)
R̂m, (4.37)

where R̂m is the unit vector from the sun to the moon. By subtracting
(4.36) from (4.37) we obtain the equation for the relative acceleration1a
between the earth and the moon:

1a ≈ G
(

�e

mi (earth)
− �m

mi (moon)

)
η

ma (sun)
R2 R̂, (4.38)

where R̂≈ |R̂e| ≈ |R̂m| because the earth-moon distance D is very small
compared with the earth-sun distance. Substitution of the known nu-
merical values of G,�, and the masses of the earth and the moon yields

1a = 2.6η × 10−12 m s−2. (4.39)

As a detailed calculation shows,1a would cause the orbit of the moon
to be polarized (elongated) in the direction of the sun with a synodic
period of 29.53 days and thus change the distance between the earth
and the moon, correspondingly, so that

D = 9.2ηcos(ωm − ωs)t [meters], (4.40)

117



C H A P T E R F O U R

whereωm andωs are the orbital angular frequencies of the moon and the
sun, respectively, around the earth. Lunar-ranging permits the measure-
ment of the earth-moon distance D with high precision by measuring the
round-trip travel times of laser pulses reflected by the retroreflectors on
the moon. Observations carried out at the McDonald Observatory near
El Paso, Texas (and subsequently at other observatories since 1969) using
3-ns duration ruby-laser pulses, determined D with a precision of a few
centimeters and showed that the Nordtvedt parameter η is equal to zero
with a high degree of accuracy.59

The lunar laser-ranging experiments result showing that η is zero
with high precision has three theoretical implications: It supports the
thesis that the gravitational self-energy contributes in equal measure
to mi and mp of massive bodies; it agrees with the general theory of
relativity, according to which η = 0; and it imposes strong constraints
on alternative theories of gravitation. Thus, e.g., the Brans-Dicke scalar-
tensor theory of gravitation, perhaps the best-motivated competitor of
Einstein’s theory, differs from the latter by certain additional terms that
tend to zero as η approaches zero, which implies that the observational
predictions of the two theories become almost identical.60

We are now in a position to understand the historical issue we dis-
cussed above of crediting Newton with having anticipated, at least in
principle, the problem of the Nordtvedt effect, a claim that has recently
been made primarily by Thibault Damour.61 Let us first recall the two
corollaries of Newton’s Principia referred to above.

59 J. G. Williams et al., “New Test of the Equivalence Principle from Lunar Laser Rang-
ing,” Physical Review Letters 36, 551–554 (1976) (η = 0±0.03). I. I. Shapiro, C. C. Counselman
III, and R. W. King, “Verification of the Principle of Equivalence for Massive Bodies,”
Physical Review Letters 36, 555–558 (1976) (η = 0.001± 0.015). E. G. Adelberger, B. R. Heckel,
G. Smith, Y. Su, and H. E. Swanson, “Eötvös Experiments, Lunar Ranging and the Strong
Equivalence Principle, Nature 347, 261–263 (1990). J. Müller, M. Schneider, M. Soffel, and
H. Ruder, “Testing Einstein’s Theory of Gravity by Analyzing Lunar Laser Ranging Data,”
Astrophysical Journal 382, L101–L103 (1991). J. O. Dickey et al., “Lunar Laser Ranging: A
Continuing Legacy of the Apollo Program,” Science 265, 482–490 (1994) (η = −0.0005 ±
0.0011). J. G. Williams, X. X. Newhall, and J. O. Dickey, “Relativity Parameters Determined
from Lunar Laser Ranging,” Physical Review D 53, 6730–6739 (1996).

60 C. Brans and R. H. Dicke, “Mach’s Principle and a Relativistic Theory,” Physical
Review 124, 925–935 (1961).

61 T. Damour, “The Problem of Motion in Newtonian and Einsteinian Gravity,” in
S. Hawking and W. Israel, eds., Three Hundred Years of Gravity (Cambridge: Cambridge
University Press, 1987, 1990), pp. 128–198. T. Damour and D. Vokrouhlický, “Equivalence
Principle and the Moon,” Physical Review D 53, 4177–4201 (1996).
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Corollary V declares that “the motions of bodies included in a given
space (“corporum dato spatio inclusorum”) are the same among them-
selves (inter se) whether that space is at rest, or moves uniformly forward
in a right line without any circular motion.” Corollary VI asserts that “if
bodies, moved in any manner among themselves, are urged (“urgean-
tur”) in the direction of parallel lines by equal accelerative forces (“a
viribus acceleratricibus aequalibus”), they will all continue to move
among themselves, after the same manner as if they had not been urged
by those forces.”62 Corollary V, as Damour points out, presents Newton’s
formulation of the principle of “special” relativity; and corollary VI,
because of its proximity and similarity in formulation with corollary
V (and the fact that Newton was essentially aware of the equation
mi = mp), is “a kind of generalization of corollary V, i.e., a kind of
principle of ‘general’ relativity (in Einstein’s sense) . . . which predicts
the Einsteinian principle of equivalence.”

We can also say that, according to Damour, the idea, that Einstein
called “the happiest thought in my life” had already been conceived
by Newton. Moreover, theorem VI, proposition VI in Book III of the
Principia states that “all bodies gravitate towards every planet; and
the weights of bodies towards any planet, at equal distances from
the centre of the planet, are proportional to the quantities of matter
[masses] which they severally contain.” Furthermore, referring to the
satellites of Jupiter, Newton declared that, “if some of these bodies were
more strongly attracted to the sun in proportion to their quantity of
matter than others, the motions of the satellites would be disturbed by
that inequality of attraction.”63 Hence, as Damour phrased it, “Newton
predicts a ‘polarization’ of the orbit of the satellite in the direction of
the sun.”64 But this would mean that Newton anticipated the possibility
of the Nordtvedt effect and denied its presence for the Jupiter system.
He wrote:

if, at equal distances from the sun, the accelerative gravity of any
satellite towards the sun were greater or less than the accelerative
gravity of Jupiter towards the sun but by one 1/1000 part of the
whole gravity, the distance of the centre of the satellite’s orbit from
the sun would be greater or less than the distance of Jupiter from the

62 I. Newton, Mathematical Principles of Natural Philosophy (Berkeley: University of
California Press, 1934, 1947), pp. 20–21.

63 Newton, Mathematical Principles, pp. 411–412.
64 Damour, “The Problem of Motion,” p. 143.
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sun by one 1/2000 part of the whole distance. . . . But the orbits of
the satellites are concentric to Jupiter, and therefore the accelerative
gravities of Jupiter, and of all its satellites towards the sun, are equal
among themselves.65

The numerical accuracy, noted by Newton in this statement, is of
the same order as the one he had obtained in his pendulum experi-
ments. He even alluded to the earth-moon system when he declared
that “the weights of the moon and of the earth towards the sun are . . .
accurately proportional to the masses of matter which they contain
(“pondera Lunae ac Terrae in Solem sunt . . . earum massis accurate
proportionalia”).66 Translated into modern terminology, this statement
affirms the validity of the strong principle of equivalence. But unfortu-
nately any documentary evidence concerning the mathematics that led
Newton to this conclusion seems not to be extant.

We mention en passant that we are much better informed about how
Pierre Simon de Laplace, more than a century later, arrived at a similar
result, which in our terminology can be expressed by the inequality∣∣∣mp(moon)

mi(moon)

/mp(earth)
mi(earth)

− 1
∣∣∣ < 2.9× 10−7 (4.41)

and which he expressed by the words: “Ainsi l’égalité d’action du Soleil
sur la Terre et sur la Lune est prouvée . . . d’une manière beaucoup plus
précise encore que l’égalité de l’attraction terrestre sur les corps placés
au même point de sa surface ne l’est par les expériences du pendule.”67 In
fact, Laplace’s astronomical result is by two orders of magnitude better
than that obtained in 1832 by Friedrich Wilhelm Bessel in his pendulum
experiments.

Compared with these astronomical tests of the strong equivalence
principle performed on very massive bodies, experiments to confirm
the weak equivalence principle for individual molecules, atoms, or
elementary particles have been much less accurate and therefore much
less conclusive. The earliest indication that individual molecules ap-
proximately satisfy the equation mi = mp was obtained in 1938 by
Immanuel Estermann et al.68 in free-fall experiments with highly colli-

65 Newton, Mathematical Principles, p. 412.
66 Newton, Mathematical Principles, p. 413.
67 P. S. de Laplace, Traité de Mécanique Céleste (Paris: Bachelier, 1825; New York: Chelsea

Publishing, 1969), book 16, chapter 4, quotation on p. 447.
68 I. Estermann, O. C. Simpson, and O. Stern, “The Free Fall of Molecules,” Physical

Review 53, 947–948 (1938).
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mated molecular beams produced by a method that Otto Stern had just
developed for his well-known measurement of the Bohr magneton. It
took ten years until they subsequently succeeded in demonstrating that
atoms, in this case of sodium and potassium, also respect WEP.69 In 1967
it was shown that electrons also approximately obey WEP.70 The most
reliable results, however, were obtained with neutrons, especially by
Lothar Koester.71 Although the precision of his method cannot compete
with that achieved in the torsion-balance method of comparing bodies
of different composition but equal masses, it is of fundamental impor-
tance, as Varley F. Sears recently pointed out,72 because it compares the
gravitational acceleration of a free neutron with that of a macroscopic
test body and thus verifies WEP for bodies whose masses differ roughly
by a factor of 1027.

Once it had become an established fact that the gravitational proper-
ties both of ordinary macroscopic bodies and of individual microphysi-
cal particles are accessible to experimental investigation, the question of
whether particles of negative gravitational mass exist, or more generally
whether antigravity is a physical possibility, seemed to be within the
reach of experimental verification.

The idea of antigravity, though not the term, has a long history,
which can be traced back at least as far as Aristotle. In Aristotelian
physics a light body (kouphon, leve) is not less heavy than a heavy
body (bary, grave), but lightness (or levity) and heaviness (or gravity)
are contrary properties of equal ontological status. They differ only
kinematically insofar as heaviness is the tendency to move toward the
center of the universe while lightness is the tendency to move away
from the center of the universe. “If the question is still pressed why
light and heavy things tend to their respective positions, the only an-
swer is that they are natural so, and that what we mean by heavy and
light as distinguished and defined is just this downward or upward

69 I. Estermann, O. C. Simpson, and O. Stern, “The Free Fall of Atoms and the Mea-
surement of the Velocity Distribution in a Molecular Beam of Cesium Atoms,” Physical
Review 71, 238–249 (1947).

70 F. C. Witteborn and W. M. Fairbank, “Experimental Comparison of the Gravitational
Force on Freely Falling Electrons and Metallic Electrons,” Physical Review Letters 19, 1019–
1052 (1967).

71 L. Koester, “Verification of the Equivalence of Gravitational and Inertial Mass for the
Neutron,” Physical Review D 14, 907–909 (1976).

72 V. F. Sears, “On the Verification of the Universality of Free Fall by Neutron Gravity
Refractometry,” Physical Review D 25, 2023–2029 (1982).
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tendency.”73 Although it would be correct, using modern terminology,
to identify heaviness with gravity and lightness with antigravity, it
would be wrong to say that in Aristotelian physics a heavy body has
a positive passive gravitational mass and a light body has a negative
passive gravitational mass because for Aristotle heaviness and light-
ness were intrinsic properties of the bodies and not the effect of an
interaction between them as the adjective “passive” implies, and more
importantly because Aristotelian physics did not yet possess a notion
of mass.

After Newton’s introduction of the notion of mass the earliest example
of a substance to which a negative mp was assigned was probably
the phlogiston. According to the phlogiston theory, which dominated
chemical thought in the eighteenth century, primarily owing to Georg
Ernst Stahl’s Fundamenta Chymiae (1732), every combustible substance
contains a chemical element, the phlogiston, which in the process of
burning escapes into the air. However, as Robert Boyle, John Mayow,
and others observed, when metals are burned the calx weighs more than
the metal. Hence, if burning implies loss of phlogiston, this hypothetical
element had to be assigned a negative weight or negative mp. As is
well known, phlogiston was banished from science only after Antoine
Laurent Lavoisier showed that combustion is the union of the burning
substance with air or some part of air (oxygen) and that the gain in
weight of the substance burned is equal to the loss of weight of the air,
or in other words, that the gravitational masses involved satisfy the law
of the conservation of mass.74

In the nineteenth century the notion of antigravity did not play an
important role in scientific discourse but appeared in reports on occult,
spiritualistic, or parapsychological phenomena. A typical example was
what was called “levitation,” the mysterious rising and floating in air
of persons or objects, often ascribed to holy individuals, such as the
famous St. Theresa of Avila, or performed by wonder-workers, such as
the notorious D. D. Home. The notion of antigravity was also widely
exploited in science fiction. The first to make use of it was probably
the American educator, political economist, and member of the U.S.
House of Representatives, George Tucker. In 1827, under the pseudonym
J. Atterley, he published a story entitled Voyage to the Moon,75 which

73 Aristotle, The Physics, book 2, chapter 4, 255 b 14–17.
74 A. L. Lavoisier, Traité Élémentaire de Chimie (Paris: Cuchet, 1789).
75 J. Atterley (G. Tucker), Voyage to the Moon (New York: E. Bliss, 1827).
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predated Jules Verne’s similar, but much more popular, De la Terre à la
Lune by about forty years.76 In order to give his story an air of scien-
tific authenticity Tucker postulated the existence of an antigravitational
metallic substance for the construction of the spaceship but ignored,
understandably, the physical problems of handling such a negative-
mass object in the normal surroundings of the positive gravitational
masses of the earth.

In 1865, just about the time that Verne’s story appeared, James Clerk
Maxwell published his trail-blazing essay on the dynamics of the elec-
tromagnetic field. In a separate section, entitled “Note on the Attraction
of Gravitation,” he discussed the question of whether gravitational
phenomena could be explained in a way similar to his field-theoretical
treatment of electromagnetic phenomena, including the attraction be-
tween electric charges of opposite signs and the repulsion between elec-
tric charges of equal signs, a question suggested by the formal analogy
between Coulomb’s law and Newton’s law of gravitation. As Maxwell’s
analysis led him to the conclusion that the assumption of negative-mass
particles implies that the gravitational field possesses negative intrinsic
energy, which is impossible, since “energy is essentially positive,” he
declared: “As I am unable to understand in what way a medium can
possess such properties, I cannot go any further in this direction in
searching for the cause of gravitation.”77

Sir Arthur Schuster, who had been working with Maxwell at the
Cavendish Laboratory in Cambridge in the 1870s, was more optimistic.
“If there is negative electricity,” he said, “why not negative gold, as
yellow as our own.”78

Interest in the possible existence of negative-mass particles was re-
newed in the wake of Paul A. M. Dirac’s relativistic version of quantum
mechanics. Dirac’s prediction of “a new kind of particle, unknown to
experimental physics, having the same mass and opposite charge to
the electron,”79 resulting from the fact that the relativistic generalization
of Schrödinger’s equation admits both positive and negative energy
solutions, was soon experimentally verified. In 1932 Carl D. Anderson

76 J. Verne, De la Terre à la Lune (Paris: Hetzel, 1865).
77 J. C. Maxwell, “A Dynamical Theory of the Electromagnetic Field,” Philosophical

Transactions of the Royal Society London 155, 459–512 (1865).
78 A. Schuster, “Potential Matter—A Holiday Dream,” Nature 58, 367 (1898).
79 P.A.M. Dirac, “Quantised Singularities in the Electromagnetic Field,” Proceedings of

the Royal Society London A 133, 60–72 (1931).
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detected the antielectron, or positron as it was later called. But it was
only in 1955 that Owen Chamberlain and Emilio Segrè confirmed the
existence of the antiproton experimentally. Dirac’s statement that the
antielectron has “the same mass and opposite charge to the electron,”
implying that particle and antiparticle do not differ in mass, was chal-
lenged by some physicists as a result of Gerhart Lüders’s proof of
the CPT theorem. As is well known, this theorem asserts that under
the combined operations of charge conjugation (C), parity inversion
(P), and time reversal (T) every antiparticle behaves like its ordinary
counterpart. Since the production of an antiparticle requires energy it
was clear that its inertial mass must be positive. But this does not imply
that its gravitational mass must also be positive.

In the same year, 1957, in which the CPT theorem was proved, Bryce
S. DeWitt, at a conference on gravity at the University of North Carolina,
drew attention to the fact that the gravitational properties of antimatter
were still a terra incognita, a remark that led to the first attempt to test
WEP for an antiparticle, as we shall see in due course. Also in 1957
the Gravity Research Foundation of America awarded a prize to an
“antigravity” essay by Phillip Morrison and Thomas Gold, who tried to
account for the overwhelming preponderance of matter over antimatter
in our region of the universe by conjecturing that antimatter is repelled
by ordinary matter. Hermann Bondi also published an essay in 1957
in which he studied the definability and role of the notion of negative
mass within the general theory of relativity—an essay that attracted a
great deal of attention especially on the part of theoreticians because
this theory, based as we know on the equivalence principle, seemed to
rule out such a notion.80

In order to prevent any misconception let us emphasize, even at the
risk of repeating ourselves, that the notion of a particle with negative
mass has to be distinguished from that of an antiparticle. While a particle
of positive mass and a particle of negative mass can be annihilated
without release of energy, a particle and its antiparticle annihilate each
other invariably with nonzero energy release.

Still, historically viewed, these two notions were not unrelated. When
Dirac solved the relativistic quantum-mechanical quadratic equation for
the electron he obtained, in addition to the positive-energy solutions, an
equal number of negative-energy solutions, each of which describes,

80 H. Bondi, “Negative Mass in General Relativity,” Reviews of Modern Physics 29, 423–
428 (1957).
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in accordance with E = mc2, a particle with negative mass; but it is
the absence of such a negative-mass particle in the “sea” of occupied
states that manifests itself as the antielectron with positive charge and
positive mass. Moreover, the very fact that energy is required in such
a production of an antiparticle shows that the inertial mass of the
antiparticle is positive, whereas negative-mass particles, as Bondi points
out, may well be conceived to have negative inertial mass. We shall
deal with the notion of negative mass in more detail after the following
discussion about the gravitational mass of antiparticles.

Motivated by DeWitt’s 1957 remark, William Fairbank and his assis-
tant F. C. Witteborn devoted themselves to an experimental study of
the gravitational acceleration not only of freely falling electrons but also
a freely falling positrons. Although they explicitly stated only that “a
method has been devised that is expected to produce enough low-energy
positrons to permit measurement of their gravitational properties in
free-fall experiments,”81 their work was widely and persistently misin-
terpreted as having provided a successful experimental verification that
antiparticles satisfy WEP just as particles do.

This erroneous interpretation was thought to be supported by an-
other fallacious argument, which asserted that a violation of WEP by
an antiparticle would be incompatible with the well-established CPT
theorem. It was not noticed that for gravitational interactions the CPT
symmetry could be applied to an antiparticle only relative to antimatter,
such as a fictitious “antiearth,” and not to matter as the argument
claims. As a matter of fact, there has not yet been any direct experi-
mental confirmation “of any significance whatever” that an antiparticle
violates WEP.82 Still, the recent success in the production of antihy-
drogen, the simplest antiatom, consisting of a positron bound to an
antiproton (H̄ ≡ p̄e+), and newly developed experimental techniques
improve the chances of a reliable WEP test on antimatter in the not-too-
distant future.83

81 F. C. Witteborn and W. M. Fairbank, “Experiments to Determine the Force of Gravity
on Single Electrons and Positions,” Nature 220, 436–440 (1968). For comments on these
experiments see J. Audretsch, “Gravitation and Quantenmechanik,” in J. Nitsch, J. Pfarr,
and E.-W. Stachow, Grundlagenprobleme der modernen Physik (Mannheim: Bibliographisches
Institut, 1981), pp. 9–39; M. M. Nieto and T. Goldman, “The Arguments Against ‘Antigrav-
ity’ and the Gravitational Acceleration of Antimatter,” Physics Reports 205, 221–281 (1991).

82 Letter from Professor Torleif Ericson of CERN to the author, dated October 31, 1995.
83 J. Eades, R. Hughes, and C. Zimmermann, “Antihydrogen,” Physics World 6, 44–48

(July 1993); R. J. Hughes, “Fundamental Symmetry Tests with Antihydrogen,” Nuclear
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The question of whether antimatter respects WEP or not intrigued
theoreticians no less than experimentalists. If the mi/mp ratio of an
antiparticle differed from that of a particle, then their respective gravi-
tational accelerations would also differ at a given location so that a local
homogeneous gravitational field would be distinguishable from an
accelerated reference frame. But, as we know, such a conclusion would
deal a fatal blow to the general theory of relativity, which has always
been proved to be more viable than any alternative theory of gravi-
tation. Thus, in order to affirm the validity of the mi = mp equality
for antimattter, theoreticians carefully scrutinized the results of gravi-
tational experiments in the hope of finding at least severe constraints
on possibly anomalous gravitational properties of antimatter; or they
devised thought experiments to derive this equality from other well-
established principles of physics, such as the principle of energy
conservation.

It was no coincidence that the earliest attempts of this kind were
made shortly after the publication of the CPT theorem and that they
challenged the possibility of what has been called the “antigravity” of
antiparticles, that is the assumption that the gravitational masses mp

and m̄p of a particle and antiparticle, respectively, differ only in sign:
m̄p = −mp. One was, of course, aware that unlike spin or electric charge,
the gravitational behavior of a particle, determined by mp, is not an
intrinsic property of the particle. Nevertheless, the structural similarity
between the two fundamental inverse square laws—Coulomb’s law of
electrostatics and Newton’s law of gravitation—and the fact that if in
the former one of the two charged particles is replaced by its antiparticle
attraction becomes a repulsion or vice versa seemed to suggest that if
in the Newtonian law of gravitation one of the particles is replaced
by its antiparticle attraction becomes repulsion, which implies that
antiparticles have negative gravitational mass.

Impressed by the CPT theorem and its significance for antiparticles,
some theoreticians suggested that the relation between the “gravita-
tional charge” mp of a particle and the “gravitational charge” m̄p of the
corresponding antiparticle should be involutionary. This means that
it should satisfy the condition that a twice performed operation re-
establishes the original, as is the case with charge conjugation or each
of the other PT operations. Hence, ¯̄mp = mp or −(−mp) = mp or finally

Physics A 558, 605c–624c (1993); G. Baur et al., “Production of Antihydrogen,” Physics
Letters B 368, 251–258 (1996).

126



G R AV I TAT I O N A L M A S S

m̄p = −mp. The assumption of antigravity, thus understood, implies that
an antiparticle rises (“falls up”) at a given location in the gravitational
field of the earth with an upward acceleration that is numerically equal
to the downward acceleration of its ordinary counterpart, and that a
particle-antiparticle pair is weightless.

Surely, since energy is required to produce an antiparticle, its inertial
mass m̄i, just like mi, must be positive and WEP would be violated
whenever m̄p is nonpositive or differs from m̄i. But since weightlessness
seemed particularly conducive to conflict with energy conservation, it
should come as no surprise that the thesis of the antigravity of antimatter
became the first target to be rebutted in the struggle for the survival of
general relativity.

In fact, by means of a thought experiment, similar to the one that
Einstein used in 1911 for his derivation of the gravitational redshift,84

Phillip Morrison, in 1958, challenged the assumption of antigravity
by showing that it leads to a contradiction with the energy principle.
Morrison argued essentially as follows: Because of its weightlessness a
particle-antiparticle pair can be lifted in the earth’s gravitational field
without performance of work from a point A to a point B of gravitational
potential higher than A. If the pair annihilates at B the photonic energy
thereby released, when reflected back to A, will be blueshifted. Hence, if
reconverted into a pair, it will leave a residual surplus in contradiction
to the principle of energy conservation.85

Apparently unaware of Morrison’s argument but deeply impressed
by the elegant experimental confirmation of the redshift by R. V. Pound
and G. A. Rebka in 1960, Friedwardt Winterberg used, just as Morrison
did, the gravitational frequency-shift experiments and the principle
of conservation of energy to disprove the existence of antigravity.86

Denoting by E0 the energy required for the pair production at the lower
gravitational potential U0 and assuming that the pair annihilates at the
higher potential U1= U0+1U, to where it has been lifted without work,
Winterberg states that on returning to U0 the created photon “gains
energy equal to 1E = (E0/c2)1U,” so that at the end of the cycling

84 A. Einstein, “Einfluss der Schwerkraft auf die Ausbreitung des Lichtes,” Annalen der
Physik 35, 898–908 (1911); “On the Influence of Gravitation on the Propagation of Light”
in Einstein, The Principle of Relativity, pp. 97–108.

85 P. Morrison, “Approximate Nature of Physical Symmetries,” American Journal of
Physics 26, 358–368 (1958).

86 F. Winterberg, “Remark Concerning the Gravitational Interaction of Matter and Anti-
Matter,” Il Nuovo Cimento 19, 186 (1961).
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process the energy is E0 + 1E = E0(1 + 1U/c2) > E0, in contradiction
with the energy-conservation law.

The validity of the Morrison-Winterberg argument, criticized as early
as 1965 by Peter Thieberger,87 has been a matter of debate for a long
time. The issue was only clarified in 1987 by John S. Bell88 and fi-
nally resolved in 1991 by Michael M. Nieto and Terry Goldman89 by
showing that the argument can be maintained within theories of tensor
antigravity but not within a Lorentz-invariant quantum field theory of
gravitation.

While Morrison and Winterberg proposed to disprove the existence
of antigravity by means of thought experiments, Leonard I. Schiff util-
ized the results of an actual experiment for the same purpose. Schiff’s
approach is based on the quantum field theory according to which
the electromagnetic fields in the vicinity of the nuclei, which differ in
their strengths for different substances, give rise to different numbers of
virtual electron-positron pairs owing to the vacuum polarization. Schiff
calculated that if an antigravity of virtual positrons existed it should
have revealed itself in the numerical results of the Eötvös experiment,
which it did not. Hence, recognizing that virtual positrons contribute
both to mi and mp, Schiff declared, generalizing his conclusions, that “it
seems very likely that all particles and antiparticles have positive inertial
and passive gravitational masses and that the equivalence principle is
valid to at least very great accuracy.”90

In fact, applying Schiff’s calculations to recent results obtained
through Eötvös-type experiments, it can be concluded that positrons do
comply with WEP with an accuracy of at least one part in 106. But just like
the Morrison-Winterberg argument, if examined within the framework
of a Lorentz invariant field theory or quantum gravity, Schiff’s approach
reveals certain deficiencies that disqualify it from providing a definite
solution of the problem. The same critical remarks also apply to a very
ingenious argument proposed by Myron L. Good in 1961 against the

87 P. Thieberger, “On the Gravitational Mass of Antiparticles, the Gravitational Energy
Shift of Spectral Lines, and the Principle of Equivalence,” Nuovo Cimento 25, 688–689 (1965).

88 J. S. Bell, “Gravity,” in P. Bloch, P. Pavlopoulos and R. Klapisch, eds., Fundamental
Symmetries (New York: Plenum, 1987), pp. 1–39.

89 M. M. Nieto and T. Goldman, “The Argument Against ‘Antigravity’ and the Grav-
itational Acceleration of Antimatter,” Physics Reports 205, 221–281 (1991). See also R. J.
Hughes, “The Equivalence Principle,” Contemporary Physics 34, 177–191 (1993).

90 Schiff, Proceedings National Academy 45, 79. See also L. I. Schiff, “Size of the Gravita-
tional Mass of a Positron,” Physical Review Letters 1, 254–255 (1958).
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existence of antigravity based on showing “that the existence of the
long-lived neutral K-meson, and the absence of its decay into two pions,
establishes that the gravitational masses of the K0 and of its antiparticle
K̄0 are equal to a few parts in 10−10 of the K inertial mass.”91 However, in
spite of the fact that all these arguments against antigravity have been
shown to be vulnerable if scrutinized within the framework of the most
recent theories of gravitation, there is general consensus that Schiff’s
1959 declaration concerning the validity of the equivalence principle to
at least very great accuracy seems to be even more justified today than
when it was made some forty years ago.

In fact, as Heinz Dehnen and Dieter Ebner showed in 1996 through
thought experiments involving cyclic atomic excitation and de-
excitation processes at different potentials of a gravitational field, any
violation of the equivalence principle for antiatoms would be incompat-
ible with well-established elementary principles such as the principle
of the conservation of energy or that of the identity of photon and
antiphoton.92

Antigravity, as has been pointed out, is only one particular manifes-
tation of negative mass—to which we now turn. Newtonian physics, as
we know, ascribes to every particle three conceptually different masses:
an inertial mass mi, a passive gravitational mass mp, and an active
gravitational mass ma. If theoretically each of these three masses could be
either positive or negative, eight different theories of dynamics would
have to be distinguished. Compliance with WEP, according to which
either mi = mp or (negative masses are denoted by the minus sign)
−mi = −mp, would reduce this number to four: (1) all masses are
positive, (2) all masses are negative, (3) only ma is positive, (4) only ma is
negative, provided of course, that Newton’s third law is ignored. If the
third law and Newton’s law of gravitation (or any other force law of the
same structure concerning ma and mp) are to be valid, so that the active
and passive gravitational masses of a particle are equal, then (3) and (4)
cannot hold.

Instead of an exhaustive and lengthy analysis of all possible com-
binations only a few typical cases will be considered as examples of
how to deal with negative masses. It should also be emphasized most
strongly that, although no known physical law precludes the existence

91 M. L. Good, “K2
0 and the Equivalence Principle,” Physical Review 121, 311–313, (1961).

92 H. Dehnen and D. Ebner, “Derivation of the Principle of Equivalence for Antimatter,”
Foundations of Physics 26, 105–115 (1996).
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of negative masses, no single instance of a negative-mass particle has yet
been identified. Still, some cosmologists do not exclude the possibility
that at an early stage in the development of the universe negative mass
existed or that it still exists today far out in space even in the form of
whole galaxies. It has also been suggested that “the idea of negative
mass might help to explain the enormous brightness of the quasars.”93

If a particle of negative inertial mass −mi moves with velocity u its
linear momentum p, given by p = (−mi)u, has a direction opposite to
that of u. If such a particle is acted upon by a (mass-independent) force
F, its acceleration a, given by F/(−mi), has a direction opposite to that
of F. For a mass-dependent force, however, such as the gravitational
force produced by the active gravitational mass Ma of a body B1, the
situation is more complicated. In the usual case, when Ma is positive
and the masses mi and mp of a particle B2 acted on by the force are also
positive, B2 is attracted toward B1 in accordance with the classical law
of gravitation

mi r̈ = −GMa mpr/r3, (4.42)

where r is the position vector of B2 relative to B1. If WEP is assumed,
so that mi = mp, the acceleration of B2 is given by GMa/r2 and points
in the direction from B2 to B1. In other words, B2 is attracted to B1.
Obviously, replacing mi by −mi and mp by −mp in equation (4.42) does
not affect the equation. Hence, a positive mass attracts all bodies whether
of positive or of negative inertial mass. However, replacing Ma by −Ma

in equation (4.42) affects the equation in such a way that the acceleration
of B2, still given by GMa/r2, now points in the direction from B1 to
B2. In other words, B2 is repelled by B1. Again, since replacing mi and
mp by their negatives does not affect the equation, a negative active
gravitational mass repels all bodies whether of positive or of negative
mass. Combining these two conclusions, we arrive at the following
startling result: If a body B1 of negative gravitational mass is placed
alongside a body B2 of positive mass, then B1 repels B2 while at the same
time B2 attracts B1. Hence, both bodies start moving in the direction from
B1 to B2 with ever-increasing velocity, B1 chasing B2. The conservation
laws of linear momentum and energy are not violated, for if the velocity
of B1 increases, the linear momentum of B1, owing to its negative inertial
mass, decreases and this loss in momentum of B1 is balanced by the

93 B. Hoffmann, “Negative Mass,” Science Journal (April 1965), 74–78; Perspectives in
Geometry and Relativity (Bloomington: Indiana University Press, 1966), pp. 176–183.
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gain in momentum of B2 owing to its positive inertial mass. By the same
token, the loss in kinetic energy of B1 is balanced by the gain in kinetic
energy of B2. For the relativistic treatment of negative mass and further
details the reader is referred to the literature.94

By means of a clever thought experiment, Ling Tsai argued that within
the scope of the special theory of relativity the validity of the mi = mp

equality for bodies at rest also implies this equality for bodies moving
at high speed.95 Tsai considers a balance with its central pillar fixed
in the earth and pointing in the direction of the locally homogeneous
gravitational field. The lengths of the two arms of the balance, denoted
by LA and LB, are assumed to increase with uniform velocity v0 so that
in the reference frame S, in which the pillar is at rest, LA = LB = v0t.
Two identical bodies A and B are suspended from the ends of the
arms of the balance, which obviously remains in equilibrium. For an
observer at A the pillar is moving away with a velocity v0, and B,
according to the relativistic superposition law of velocities, with the
velocity v = 2v0/(1+v2

0/c
2). Hence, at any time tA in the reference system

SA of this observer, LA = v0tA and LB = vtA−v0tA. Expressing v0 in terms
of v yields LA = (1− v2/c2)−1/2LB. The equilibrium of the balance, being
undisturbed, relates the passive gravitational masses of the two bodies,
mp(A) and mp(B), by the equation mp(A)LA = mp(B)LB, which in view
of the preceding equation shows that mp(B) = mp(A)/(1− v2/c2)1/2. For
the observer at A, body B (identical with A) moves away with velocity
v and thus has an inertial mass mi(B) = mi(A)/(1 − v2/c2)1/2. Hence, if
mi(A) = mp(A) then mi(B) = mp(B), which proves the contention for the
particular case of velocities perpendicular to the direction of the local
gravitational field. But it is not difficult to see that the result can be
generalized for arbitrary directions of the velocities.

Reviewing Tsai’s argument up to the equation mp(B) = mp(A)/
(1− v2/c2)1/2, Napoleon Gauthier claimed that, since no physical prop-
erties characteristic of the gravitational field were involved and the

94 J. P. Terletsky, “Masses propres positives, négatives et imaginaires,” Le Journal de
Physique et le Radium 23, 910–920 (1962); Paradoxes in the Theory of Relativity (New York:
Plenum, 1968), pp. 83–115. A. P. Lightman, W. H. Press, R. H. Price, and S. A. Teukolsky,
eds., Problem Book in Relativity and Gravitation (Princeton: Princeton University Press, 1975),
pp. 81, 379–385. R. Forward, “The Power of Negative Matter,” New Scientist 125, 54–
56 (1990). R. H. Price, “Negative Mass Can Be Positively Amusing,” American Journal of
Physics 61, 216–217 (1993).

95 L. Tsai, “The Relation Between Gravitational Mass, Inertial Mass, and Velocity,”
American Journal of Physics 54, 340–342 (1986).
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gravitational pull on the masses could well be replaced by electric forces
on charges, Tsai’s reasoning would imply that q(B) = q(A)/(1−v2/c2)1/2,
where q denotes the electric charge of a particle.96 But this conclusion
contradicts the relativistic invariance of electric charges.

However, one does not need Gauthier’s analogy of the gravitational
pull with electric attraction to confute Tsai’s argumentation, an analogy
which is by the way quite problematic as it ignores the magnetic effects
involved. It suffices to point out that Tsai’s thought experiment is based
on an unwarranted combination of classical with relativistic physics
or, more explicitly, of relativistic kinematics with some elements of
the Newtonian theory of gravitation: On what grounds, for instance,
can Tsai assume that the gravitational force involved in his thought
experiment is velocity-independent?

Just as a violation of the mi = mp equality would be fatal to Einstein’s
general relativity, a violation of the mp = ma equality would be fatal
to Newtonian physics, for it would invalidate Newton’s third law of
motion. Consider, e.g., two particles A and B, separated by a distance r
= rB − rA and interacting only gravitationally. According to Newton’s
law of gravitation the force acting on A is

mi(A)r̈A = (G/r3)mp(A)ma(B) (rB − rA) (4.43)

and the force acting on B is given by the same expression but with A
and B interchanged. Addition of the two equations yields

d
dt
(mi(A)ṙA +mi(B)ṙB) = (G/r3)(rB − rA)S(A,B) mp(A) mp(B), (4.44)

where

S(A,B) = [ma(B)/mp(B)]− [ma(A)/mp(A)]. (4.45)

Hence, unless S(A,B) = 0, i.e., the ratio mp/ma has the same value for
both particles, the total momentum of the system P= mi(A)ṙA+mi(B)ṙB

will not be conserved and the system will accelerate in response to a
nonvanishing self-force Fs, a process never observed in physics. Even
Aristotle denied the existence of such a force when he declared “omne
quod movetur ab alio movetur” (De Caelo 288 a 28).

96 N. Gauthier, “Equality of Gravitational and Inertial Mass in Special Relativity,”
American Journal of Physics 54, 873 (1986).
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It is therefore not surprising that little attention has been paid to an ex-
perimental confirmation of the mp = ma equality, but two experimental
observations are worth noting.

In 1966 Lloyd B. Kreuzer, using a Cavendish torsion balance, com-
pared the gravitational force generated by a Teflon cylinder with that
generated by a quantity of a liquid (a mixture of trichloroethylene and
dibromomethane) of the same mp (namely the weight of the liquid
displaced by the cylinder in neutral buoyancy) but of a very different
nuclear structure. He found that the mp/ma ratios for the two substances
(essentially fluorine and bromine) differ by not more than five parts
in 105.97

In 1986 David F. Bartlett and Dave van Buren showed that the results
from lunar laser-ranging set limits not only on the violation of the
mi = mp equality, as explained above, but also on the violation of
the mp = ma equality.98 They took advantage of the asymmetry in the
composition of the moon’s surface caused by the distribution of iron
on the side facing the earth and aluminum on the other side. This
asymmetry displaces the lunar center of mass from the geometrical
center by about 2 km. If S(Al, Fe) 6= 0, with S as defined in equation
(4.45), then the force that Fe exerts on Al will differ from the force that
Al exerts on Fe and a net self-force Fs acting on the moon’s center of
mass will cause a deviation of the lunar orbit from that predicted by
classical physics. Since laser-ranging measurements put an upper limit
on this deviation and therefore by implication on Fs, a limit on S(Al, Fe)
can also be inferred. Using an onion-skin model for the moon’s interior,
Bartlett and van Buren were able to conclude that the ma/mp ratios for
Al and Fe are equal to a precision of 4 × 10−12, or

97 L. B. Kreuzer, “Experimental Measurement of the Equivalence of Active and Passive
Gravitational Mass,” Physical Review 169, 1007–1012 (1968). For critical comments on the
Kreuzer experiment see J. J. Gilvarry and P. M. Muller, Physical Review Letters 28, 1665–
1669 (1972), and D. Morrison and H. A. Hill, Physical Review D 8, 2731–2733 (1973). That
the Kreuzer experiment can also be interpreted as imposing a limit on the strength of
any supposed intermediate-range “fifth” force, associated with baryon number, has been
pointed out by D. A. Neufeld, “Upper Limit on Any Intermediate Force Associated with
Baryon Number,” Physical Review Letters 56, 2344–2346 (1986).

98 D. F. Bartlett and D. van Buren, “Equivalence of Active and Passive Gravitational
Mass Using the Moon,” Physical Review Letters 57, 21–24 (1986); “Asymmetry of the Moon
and the Equivalence of Active and Passive Gravitational Mass,” paper presented at the
11th International Conference on General Relativity and Gravitation, Stockholm, Sweden,
July 6–12, 1986, Abstracts, vol. 2, p. 608.
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ma/mp(Fe)

∣∣∣ ≤ 4× 10−12. (4.46)

In 1992 William B. Bonnor argued that nevertheless the general theory
of relativity allows a violation of the equality between mp and ma, or
rather requires such a violation for massive bodies.99 The object studied
by Bonnor was a static sphere of radius r and of a structure given by
the Schwarzschild interior solution for a perfect fluid of uniform rest
density. According to WEP its passive gravitational mass density ρp

equals its inertial mass density ρi. To obtain ρi of the perfect fluid Bonnor
used the energy tensor (in relativistic units)

Tik = (p+ ρ)UiUk − gikp, (4.47)

where p andρ are the rest pressure and rest mass density, respectively, Ui

the unit four-velocity, and gik the contravariant metric tensor. Inserting
(4.47) into the well-known identity

Tik
;k = 0 (4.48)

he obtained

(p+ ρ)ai = (gik −Ui Uk)dp/dxk, (4.49)

where ai = Ui
;k Uk is the acceleration of an element of the fluid. Since

the right-hand side of (4.49) is the pressure gradient projected into the
hypersurface orthogonal to Uk, Bonner interpreted the coefficient of the
acceleration, i.e., p+ρ, as the inertial mass density ρi and, in accordance
with WEP, as the passive gravitational mass density ρp. Integrating ρp

over the proper volume of the Schwarzschild sphere and using the
condition that the exterior and interior solutions have to match at r,
Bonnor concluded that for small values of ma/mp,

(mp −ma)/ma ≈ 4
5 ma/r, (4.50)

where the active gravitational mass ma is, of course, the constant, usually
denoted by m, in the Schwarzschild vacuum exterior solution. For the
sun, earth, and moon the fractional difference given in (4.50) turns out
to be about 2 × 10−6, 7 × 10−10, and 3 × 10−11, respectively.

99 W. B. Bonnor, “Active and Passive Gravitational Mass of a Schwarzschild Sphere,”
Classical and Quantum Gravity 9, 269–274 (1992).
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Bonnor’s argumentation was challenged by Nathan Rosen and Fred
I. Cooperstock on the grounds that for a massive body the contribution
of its own gravitational field should not be ignored and that in agree-
ment with the observation by Kreuzer and by Bartlett and van Buren,
its gravitational self-energy, if properly taken into account when cal-
culating mi or mp, also restores the equality between mp and ma for
massive bodies.100

Independently of Rosen and Cooperstock, L. Herrera and J. Ibañez
also criticized Bonnor on similar grounds.101 While they fully agree with
Bonnor that p + ρ is the passive gravitational mass density, a result
that, as they point out, follows directly from the hydrostatic equilibrium
equation for a spherically symmetric star,102 they disagree that mp can
be obtained merely by integration of this density. Such a procedure,
they insist, does not take account of the work required to package
all those elements into a sphere of radius r as well as the work to
provide a pressure p to each fluid element. This work, as they show
in mathematical detail for the Schwarzschild sphere, is just equal to the
difference between mp and ma as calculated by Bonnor.

In contrast to the relation between mi and mp and that between mp

and ma the relation between mi and ma seems rarely to have been the
subject of an independent investigation,103 probably because it has been
taken for granted that, owing to the transitivity of the equality relation,
mi = mp and mp = ma imply mi = ma and make such an investigation
unnecessary. Generally speaking, physicists are convinced that within
the framework of the general theory of relativity and its Newtonian
approximation the three different types of mass, mi,mp, and ma, are equal
to each other for all bodies if measured, of course, in appropriate units. It
should be emphasized, however, that this equality does not necessarily
hold within the framework of other gravitational theories that compete
with general relativity.

100 N. Rosen and F. I. Cooperstock, “The Mass of a Body in General Relativity,” Classical
and Quantum Gravity 9, 2657–2663 (1992).

101 L. Herrera and J. Ibañez, “The Work Required to Build up a Schwarzschild Sphere,”
Classical and Quantum Gravity 10, 535–542 (1993).

102 See, e.g., A. Lightman, W. Press, R. Price, and S. Teukolsky, Problem Book in Relativity
and Gravitation (Princeton: Princeton University Press, 1975), p. 73.

103 A noteworthy exception is an investigation of the relation between mi and ma,
presented by Hans Adolph Buchdahl in his Seventeen Simple Lectures on General Relativity
Theory (New York: John Wiley and Sons, 1981), pp. 102–107, where for a certain distribution
of matter it is claimed that the ratio mi/ma can reach a value as high as 1.641.
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The best motivated, least complicated, and relatively most viable
among the alternatives to general relativity is probably the scalar-tensor
theory of gravitation proposed in 1961 by Carl Brans and Robert Dicke.104

Being a metric theory in which particles move along geodesics, it satisfies
WEP for microscopic particles. But as Peter G. Bergmann noted as early
as 1968, this does not necessarily hold for more complicated massive
systems.105 In fact, Kenneth Nordtvedt showed subsequently that in this
theory the difference between mi and mp for massive systems is of the
order of magnitude of their gravitational potential energy, but too small
to be experimentally detectable.106 Within the framework of the Brans-
Dicke theory, Hans C. Ohanian confirmed this conclusion by deriving a
general expression for the mi/ma ratio for arbitrary static or quasi-static
localized systems of masses:107

mi

ma
= 1+ η

1+ η(3+ 2ω)/(4+ 2ω)
, (4.51)

in which η and ω are certain parameters associated with the scalar field.
Ohanian showed that for a star the size of the sun

η ≈ 2|Eg|/mi, (4.52)

where Eg denotes the gravitational energy, and that therefore, in agree-
ment with Nordtvelt’s result,

mi/ma = 1+ [1/(2+ ω)](Eg/mi). (4.53)

With ω = 6, as independently inferred from experimental evidence, this
equation yields for the sun mi/ma = 1 + 4 × 10−7 and for a neutron
star of a solar mass and a radius of about 20 km mi/ma = 1 + 10−2.
In a subsequent paper Ohanian proved the general statement that the
presence of gravitational self-energy leads to a violation of the equiva-
lence principle in all scalar-tensor theories in which the field equations

104 C. Brans and R. H. Dicke, “Mach’s Principle and a Relativistic Theory of Gravitation,”
Physical Review 124, 925–935 (1961). C. Brans, “Mach’s Principle and a Relativistic Theory
of Gravitation, II,” Physical Review 125, 2195–2201 (1962).

105 P. G. Bergmann, “Comments on the Scalar-Tensor Theory,” International Journal of
Theoretical Physics 1, 25–36 (1968).

106 K. Nordtvedt, “Equivalence Principle for Massive Bodies. II: Theory,” Physical Review
169, 1017–1025 (1968); “Equivalence Principle for Massive Bodies Including Rotational
Energy and Radiation Pressure,” Physical Review 180, 1293–1298 (1969).

107 H. C. Ohanian, “Inertial and Gravitational Mass in the Brans-Dicke Theory,” Annals
of Physics 67, 648–661 (1971).
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are derivable from an action principle and the units of mass, length, and
time are defined by atomic standards, and that the equivalence principle
holds whenever gravitational self-energy can be neglected.108

The fact that the status of the equivalence principle in the Brans-
Dicke theory still engages the attention of theoreticians today is shown
by the investigations by Daniel Barraco and Victor Hamity109 or by
the essay of Hassan Randjbar Askari and Nematullah Riazi.110 The
validity of this principle within the framework of nonmetric theories
of gravitation, such as the so-called “new general relativity,” based on
absolute parallelism and the tetrad formalism, originally introduced
by Christian Møller, is also an active field of research as is shown, for
instance, by the work of Takeshi Shirafugi, Gamal G. L. Nashed, and
Yoshinitsu Kobayashi111 and by the essays contributed by C. Alvarez
and R. B. Mann.112 For details the interested reader is referred to the
original papers and the references listed therein.

We continue our discussion of the status of the equivalence principle
within the framework of some alternatives to Einstein’s general theory of
relativity with some remarks on its status in quantum electrodynamics.
As noted in chapter 1, according to this theory part of the mass of a
charged particle, such as the electron, arises through quantum radiation
corrections. An equality of the inertial with the gravitational mass of
a charged particle would therefore require that these radiative correc-
tions also satisfy the equivalence principle. That this is indeed the case
in a relativistic quantum field theory follows from certain quantum-
gravitational investigations of the energy-momentum–tensor trace that
were carried out in 1977 by Stephen L. Adler, John C. Collins, and
A. Duncan, and at the same time by Lowell S. Brown.113

108 H. Ohanian, “Scalar-Tensor Theories and the Principle of Equivalence,” International
Journal of Theoretical Physics 4, 273–280 (1971).

109 D. Barraco and V. Hamity, “The Energy Concept and the Binding Energy in a Class
of Scalar-Tensor Theories of Gravity,” Classical and Quantum Gravity 11, 2113–2126 (1994).

110 H. R. Askari and N. Riazi, “Mass of a Body in Brans-Dicke Theory,” International
Journal of Theoretical Physics 34, 417–428 (1995).

111 T. Shirufugi, G.G.L. Nashed, and Y. Kobayashi, “Equivalence Principle in the New
General Relativity,” Progress of Theoretical Physics 96, 933–947 (1996).

112 C. Alvarez and R. B. Mann, “Testing the Equivalence Principle by Lamb Shift Ener-
gies,” Physical Review D 54, 5954–5974 (1996); “Equivalence Principle in the Nonbaryonic
Regime,” Physical Review D 55, 1732–1740 (1997).

113 S. L. Adler, J. C. Collins, and A. Duncan, “Energy-Momentum-Tensor Trace Anomaly
in Spin-1/2 Quantum Electrodynamics,” Physical Review D 15, 1712–1721 (1977). L. S.
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However, these studies did not take into account finite-temperature
radiative corrections, i.e., corrections at temperature T above absolute
zero, the importance of which was clarified only a few years later.114

The fact that these finite-temperature contributions to a particle’s mass
do not conform with the equivalence principle was demonstrated in
1984 by John F. Donoghue, Barry R. Holstein, and Robert W. Robinett.115

Calculating the modification of the particle propagator by taking into
account the effects caused by the motion of a charged particle through
a background heat bath of temperature T, these authors arrived at
the conclusion that the inertial mass shift, owing to finite-temperature
radiation corrections, δmβ|i, is equal to minus the gravitational mass shift
δmβ|g, i.e.,

δmβ|i = −δmβ|g. (4.54)

More precisely, in units such that c = h̄ = k = 1, the inertial mass of the
particle at temperature T is given by

mi = m+ (παT2/3m), (4.55)

where m denotes the renormalized zero-temperature mass and α the
fine-structure constant e2/h̄c = 137−1, whereas the gravitational mass of
the same particle is given by

mg = m− (παT2/3m). (4.56)

This result can be understood intuitively, though only cum grano salis,
by making use of the notion of “medium” in the sense explained in
chapter 1. In the present case this “medium” is, of course, the back-
ground heat bath. The increase of mi over m, for T > 0, in accordance

Brown, “Stress-Tensor Trace Anomaly in a Gravitational Metric: Scalar Fields,” ibid.,
1469–1483.

114 A. Waldon, “Effective Fermion Masses of Order gT in High-Temperature Gauge
Theories with Exact Chiral Invariance,” Physical Review D 26, 2789–2796 (1982). G. Peresutti
and B.-S. Skagerstam, “Finite Temperature Effects in Quantum Field Theory,” Physics
Letters 110B, 406–410 (1982).

115 J. F. Donoghue, B. R. Holstein, and R. W. Robinett, “Renormalization of the Energy-
Momentum Tensor and the Validity of the Equivalence Principle at Finite Temperature,”
Physical Review D 30, 2561–2572 (1984); “The Principle of Equivalence at Finite Temper-
ature,” General Relativity and Gravitation 17, 207–214 (1985); “Gravitational Coupling at
Finite Temperature,” Physical Review D 34, 1208–1209 (1986); J. F. Donoghue and B. R.
Holstein, “Aristotle Was Right: Heavier Objects Fall Faster,” European Journal of Physics
8, 105–112 (1987).
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with (4.55), can then be interpreted as the increase in inertia owing to
the decelerating interaction of the virtual particles with the photons
of the heat bath, in analogy with the increased “effective” mass of
the electron when it is moving under a given force through a crys-
tal. The decrease of mg, for T > 0, in accordance with (4.56), can
be visualized as the result of an accelerating effect owing to gravita-
tional attraction.

Since the acceleration of free fall a on the surface of the earth is
given by

a = gmg/mi (4.57)

and (4.55) and (4.56) imply that the ratio mg/mi is approximately 1 −
(παT2/m2), it follows that

a = g(1− παT2/m2). (4.58)

Hence, the more massive or cooler an object is the faster it will fall.
Quantum electrodynamics thus rehabilitates the ancient Aristotelian
thesis that heavier bodies fall faster.

However, as Donoghue et al. themselves emphasize, their result does
not invalidate the equivalence principle or undermine the general the-
ory of relativity. For a heat bath such as the cosmic microwave back-
ground radiation defines a preferred reference frame F, namely that
relative to which the radiation is isotropic. It therefore ascribes to the
earth an absolute velocity, its velocity relative to F, which plays the
role of the ether of prerelativistic physics. In fact, this velocity has
been measured and found to be about 160 km s−1.116 Thus, consider-
ations involving a heat bath transcend the conditions under which the
equivalence principle is assumed to be valid. Since for the mass of the
electron the quantity παT2/m2 is of the order of 3 × 10−17, whereas
the accuracy of all experimental tests of the equivalence principle per-
formed so far lies below 10−12, it is clear that these tests, although
performed at finite temperatures, could not detect any inconsistency
with the equivalence principle. Whether prospective improvements

116 R. B. Partridge and D. T. Wilkinson, “Isotropy and Homogeneity of the Universe
from Measurements of the Cosmic Microwave Background,” Physical Review Letters 18,
557–559 (1967); R. B. Partridge, “The Primeval Fireball Today,” American Scientist 57, 32–
74 (1969); E. K. Conklin, “Velocity of the Earth with Respect to the Cosmic Background
Radiation,” Nature 222, 971–972 (1969).
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in experimental technique, such as the satellite tests envisioned by
Bramanti,117 will verify these quantum electrodynamical predictions
remains to be seen.

Donoghue and Holstein were criticized by Karl A. Brunstein on the
grounds that their “formal result . . . has been too restrictively inter-
preted in a physical sense” and that, when “taking a broader view of the
matter, it can be concluded that the difference in renormalized masses
is in fact an affirmation of the principle of equivalence rather than a
contradiction of it.”118 Brunstein agrees with the expression (4.55) for
the finite-temperature inertial mass mi; but in order to calculate the
corresponding gravitational mass he introduces a retarding force fret

to account for the deceleration of the particle in the presence of the
blackbody radiation viewed as a fluid. This leads him to the conclusion
that, contrary to (4.56), the finite-temperature gravitational mass mg is
equal to mi.

In their rebuttal Donoghue and Holstein charge Brunstein with hav-
ing erroneously double-counted the retarding force and thus obtaining
a wrong result for mg. Concerning Brunstein’s remark that a correct
calculation leads to “an affirmation of the principle of equivalence” they
declare: “As we stressed in our original paper, this phenomenon is not
at variance with any of the ideas underlying relativity or the principle
of equivalence.”119

Surely, their quantum electrodynamical investigation—which strictly
speaking deals with the Einstein equivalence principle but contains the
weak equivalence principle as one of its components—is not an invalida-
tion of the equivalence principle. However, it does throw some light on
the methodological status of the principle in view of its philosophical
implications. Since nature excludes the possibility of performing any
experiment or measure at strictly absolute zero or without the presence
of a heat bath, the equivalence principle, which lies at the foundation of
the general theory of relativity, can never be exactly confirmed by any
experimental procedure. Physical theories tell us that nature obeys this
principle but nature itself obstructs its precise verification.

True, similar statements can also be made about other fundamental
laws of nature as, e.g., the principle of inertia, which lies at the foun-

117 Bramanti et al., Physics Letters A 164, 243–254 (1992).
118 K. A. Brunstein, “Mass Renormalization and the Principle of Equivalence: Archi-

medes Rides Again,” European Journal of Physics 10, 71–72 (1989).
119 Brunstein, European Journal of Physics 10, 72–73 (1989).
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dation of classical physics and in which friction plays the role of the
“medium”; it refers to a “free” particle, a particle or body that is not acted
upon by any force whatever, but such a particle does not exist in physical
reality. Still, in our present case physics tells us exactly, in mathematical
terms, how it operates to preclude any precise empirical confirmation
of what it claims to be one of its most fundamental principles. It seems
that Herodotus of Ephesus was right when he declared two and a half
millennia ago: “Physis kryptesthai philei.”120

That “nature likes to hide” is also strikingly illustrated by the elusive,
but all-pervasive, neutrino. When Wolfgang Pauli postulated, in 1930,
the existence of a new, uncharged spin- 1

2 particle (later called the neu-
trino and denoted by ν) in order to account for the “missing” energy of
the electrons emitted in nuclear β-decay, he believed that this particle
would never be detected because of the very small cross section of its
interaction with matter. He was wrong. About twenty-five years later
Frederick Reines and Clyde L. Cowan did detect this particle in their
famous underground experiment below the reactor at Savannah River
in South Carolina.

As far as we know today, there exist three different types of “flavors”
of neutrinos (and their antiparticles): the electron neutrino νe, the muon
neutrino νµ, and the tau neutrino ντ , the uncharged partners of the
charged leptons e, µ, and τ , respectively. According to the Standard
Model of particle physics, about which more will be said in the next
chapter, all these neutrinos are massless. However, the so-called solar
problem—the question of why the number of neutrinos emitted by
the sun and arriving at the earth, is only a fraction of what the the-
ory predicts—and also problems concerning the invisible “dark mat-
ter,” amounting to about 90 percent of the total gravitational mass of
the universe, suggest that the neutrinos do have a small but nonzero
mass. If their mass would be only a few electron volts (divided by
c2), a tiny fraction of the electron’s mass (about 500,000 eV/c2), then
the neutrinos would constitute the major part of the mass of the en-
tire universe.

Because of its far-reaching implications for our understanding of
fundamental issues in particle physics, cosmology, and astrophysics
the question of whether neutrinos are massless or not is one of the

120 “Nature Loves to Hide,” Fragment 123 in H. Diels, Fragmente der Vorsokratiker (Berlin:
Weidmannsche Verlagsbuchhandlung, 1951), p. 178; K. Freeman, Ancilla to Pre-Socratic
Philosophers (Oxford: Basil Blackwell, 1952), p. 33.
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most important problems in current research. Certain experimental
findings, such as the recently discovered neutrino-flavor oscillations
or, as they are called, “neutrino oscillations,” suggest that neutrinos
are not massless. In accordance with the quantum-mechanical wave-
particle duality, neutrinos, propagating through space, are waves, and
the frequency of their oscillations, caused by the conversion from one
flavor to another, depends on the difference between their respective
masses (more precisely, on the difference between the squares of their
masses, the so-called “mass squared difference”). Thus the very detec-
tion of neutrino oscillations indicates that at least one flavor of neutrinos
cannot be massless. But whether neutrinos also obey the equivalence
principle is a question that, at least from the experimental point of view,
still awaits an unambiguous answer.121

121 M. Gasperi, “Testing the Principle of Equivalence with Neutrino Oscillations,”
Physical Review D 38, 2635–2637 (1988). J. Pantaleone, A. Halprin, and C. N. Leung,
“Neutrino Mixing due to a Violation of the Equivalence Principle,” Physical Review D 47,
R 4199–R 4202 (1993). G. Gelmini and E. Roulet, “Neutrino Masses,” Reports on Progress in
Physics 58, 1207–1266 (1995). S. S. Gershtein, F. P. Kuznetsov, and V. A. Ryabov, “The Nature
of Neutrino Mass and the Phenomenon of Neutrino Oscillations,” Physics—Uspkhi 40, 773–
806 (1997). Y. V. Martem’yanov and K. N. Mukhin, “Neutrino Mass Problem: The State
of the Art,” Physics—Uspekhi 40, 807–842 (1997). J.W.F. Valle, “Recent Results in Neutrino
Masses,” in A. Faessler, ed., Particle and Nuclear Physics—Neutrinos in Astro, Particle and
Nuclear Physics (Amsterdam: Elsevier, 1998), vol. 40, pp. 43–54. M. Riordan, “Massive
Attack,” New Scientist 161, 32–35 (1999).

142



❋ C H A P T E R F I V E ❋

The Nature of Mass

Since the end of the nineteenth century physicists and philosophers
have been cherishing the hope that all of the problems related to mass
could be resolved if a theory could be constructed that reveals what
they called “the nature of mass,” that is, a theory that explains the
origin, existence, and phenomenological properties of mass. Of course,
such an expectation was hardly compatible with the positivistic or
operationalistic view that the concept of mass “involves as much as
and nothing more than the set of operation by which it is determined”1

and that any talk about “the nature of mass” would be scientifically
meaningless or metaphysical rigmarole. Nevertheless, it is a historical
fact that even among positivistically inclined physicists there have been
proponents of a theory of mass, as we shall see in what follows.

A theory of mass that goes beyond the quantitative determination
of this concept does, indeed, come up against the serious problem of
how to avoid the error of a logical circularity: If as noted above, it is
the concept of mass that is required for the transition from kinematics
to dynamics, it must contain a dynamical ingredient. A theory of mass
can therefore not operate solely with kinematical conceptions. Rather,
it must itself be a dynamical theory and as such somehow involve a
notion of force that is defined in mechanics as the product of mass and
acceleration, thus leading to a logical circle.

The quest for a theory of the nature of mass arises from a profound
epistemological motivation. It is no exaggeration to say that all experi-
ments and certainly all measurements in physics are in the last analysis
essentially kinematic, for they are ultimately based on observations of
the position of a particle or of a pointer on a scale as a function of time. In
particular, all operational definitions of mass are kinematic in character.
Mach, for example, defined the mass-ratio mA/mB of two bodies A and
B as the (negative inverse) ratio of two accelerations, i.e., in terms of
purely kinematically measurable quantities. Hence, the term “mass,”
thus defined, has no absolute meaning since it always implies a relation
to an object chosen to serve as the unit of mass. This is one of the reasons

1 P. W. Bridgman, The Logic of Modern Physics (New York: Macmillan, 1927), p. 5.
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that this definition, as Mach’s critics have pointed out, says nothing
about the intrinsic meaning of mA itself.

If it were possible to define the mass of a body or particle on its own
in purely kinematical terms and without any implicit reference to a unit
of mass,2 such a definition might be expected to throw some light on the
nature of mass. Such a definition, if it existed, would integrate dynamics
into kinematics and eliminate the dimension M of mass in terms of the
other two fundamental dimensions of mechanics, length L and time
T. However, generally speaking, theories about the nature of mass do
not confine themselves to purely kinematical conceptions but make use,
explicitly or implicitly, of the notion of force, a procedure which, as we
have seen, is apt to involve a logical circle.

In order to avoid this impasse a dynamical theory of mass has to
defy the commonly accepted idea that mechanics—with its notions of
mass and force, whether considered as a theory of physical reality or
only as a metatheory or purely mathematical formalism—is the fun-
dament of physics. In other words, a dynamical theory of the nature
of mass has to assign conceptual priority over mechanics to a specific
nonmechanical theory. Theories of mass can be either local or global.
The electromagnetic theory of mass, conceived in 1881 by J. J. Thomson
and developed most enthusiastically by Max Abraham, who declared in
1902 that “the mass of the electron is of purely electromagnetic nature,”
was a local dynamical theory of mass.3 It claimed to reduce the inertial
behavior of the electron and ultimately of every elementary particle to
an electromagnetic induction effect. Of course, to avoid circularity it as-
signed logical priority to the theory of electromagnetism over the theory
of mechanics. Internal difficulties and the advent of the special theory of
relativity in 1905 stifled its further development. However, as we shall
see later on, a local theory of mass based on a stochastic theory of
electromagnetism proposed quite recently can be regarded as being in
the nature of a revival.

The best-known example of a global dynamical theory of mass is
associated with the name of Ernst Mach, who is well known to have
been a rather staunch advocate of the philosophy of positivism. Indeed,

2 There was an attempt made “to express absolute mass in terms of purely kinematic
quantities” by means of the invariant periodicity associated with physical de Broglie
waves by J.W.G. Wignall in his “De Broglie Waves and the Nature of Mass,” Foundations
of Physics 15, 207–227 (1985).

3 For details see chapter 11 of COM.
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referring to his operational definition of mass, which we discussed
in chapter 1, Mach declared that it is a fact of experience that the
acceleration ratio aB/A/aA/B is independent of the initial positions of the
interacting bodies; and he continued:

As soon as we, our attention being drawn to the fact of experience, have
perceived in bodies the existence of a special property determinative of
acceleration, our task with regard to it ends with the recognition and
unequivocal designation of this fact. Beyond the recognition of this fact
we shall not get, and every venture beyond it will only be productive of
obscurity. All uneasiness will vanish when we once have made clear to
ourselves that in the concept of mass no theory whatever is contained
but simply a fact of experience.4

Shortly after having made this remark and after having criticized
Newton’s theory that the centrifugal forces demonstrated in the ex-
periment with the rotating vessel of water are caused by the motion
relative to absolute space, Mach declared: “No one is competent to say
how the experiment would turn out if the sides of the vessel increased
in thickness and mass till they were ultimately several leagues thick.”5

This declaration apparently acknowledges the possibility of ascribing a
causal role to mass that differs from its “special property determinative
of acceleration” as applied in the definition of mass; and it seems to call
for a dynamical theory of mass, in contradiction to Mach’s previously
quoted assertion.

This contradiction can be resolved if Mach’s last-quoted statement
is interpreted as implying, as Julian B. Barbour6 suggests, that no one
would be competent to say what would happen under those hypo-
thetical conditions to the law of inertia (rather than to mass). This
interpretation does indeed find support in the fact that elsewhere Mach
has asked, in the same context, what would happen to the law of inertia if
the whole universe were to be set into motion and the stars were to move
in disarray. “Only then,” said Mach, “would we realize the importance
of all bodies, each with its share, with respect to the law of inertia. But

4 E. Mach, The Science of Mechanics (La Salle, Ill.: Open Court, 1960), chapter 2, section
5, paragraph 7.

5 Mach, The Science of Mechanics, p. 284.
6 J. B. Barbour, Absolute or Relative Motion? (Cambridge: Cambridge University Press,

1989); “Einstein and Mach’s Principle,” in J. Eisenstaedt and A. J. Kox, eds., Studies in the
History of General Relativity (Boston: Birkhäuser, 1992), p. 128.

145



C H A P T E R F I V E

what share has every mass in the determination of direction and velocity
in the law of inertia? No definite answer can be given to this question
by our experience. We only know that the share of the nearest masses
vanishes in comparison with that of the farthest.”7

Mach’s suggestion that the distribution and motion of masses may
determine the inertial behavior of test particles was soon tested exper-
imentally by the brothers Benedict and Immanuel Friedlaender. They
tried to find out whether particles at the center of a huge rotating
flywheel are subject to centrifugal forces, an effect that they referred
to as the “inversion of centrifugal forces” (“Umkehrbarkeit der Cen-
trifugalkraft”) and which can be regarded as an anticipation of the
“Thirring-Lense effect.” Although they failed to detect this effect they
declared prophetically: “A correct formulation of the law of inertia will
be obtained only if the relative inertia qua mutual interaction of masses
and gravitation, which is likewise an interaction between masses, will
be reduced to one and the same law.”8

Einstein had probably never read the Friedlaenders’ essay. But like
them, he was greatly influenced by Mach, whom he had read avidly
in his student years. Like them he devised an experiment to study the
effect of moving masses on a test particle at rest.9 It differed from the
Friedlaender experiment insofar as it was a thought experiment, made
use of a massive hollow rotating sphere instead of a flywheel, and—
most importantly—was designed to study not the inertial motion of the

7 “Was würde aus dem Trägheitsgesetz, wenn der ganze Himmel in Bewegung käme
und die Sterne durcheinandergingen? . . . Allein im Falle einer Welterschütterung . . .
erfahren wir, dass alle Körper in dem Trägheitsgesetz jeder mit seinem Antheil, . . . von
Wichtigkeit sind. . . . Welchen Antheil hat nun jede Masse an der Bestimmung der Rich-
tung and Geschwindigkeit im Trägheitsgesetze?” E. Mach, Die Geschichte und die Wurzel
des Satzes von der Erhaltung der Energie (Prague: Calve, 1872), pp. 49–50; History and Root
of the Principle of the Conservation of Energy (Chicago: Open Court, 1911), pp. 78–79.

8 “Die richtige Fassung des Gesetzes der Trägheit [wird] erst dann gefunden . . . , wenn
die relative Trägheit als eine Wirkung von Massen auf einander und die Gravitation, die ja
auch eine Wirkung von Massen auf einander ist, auf ein einheitliches Gesetz zurückgeführt
sein werden.” B. and I. Friedlaender, Absolute oder Relative Bewegung (Berlin: L. Simion,
1896), p. 17. B. Friedlaender, “Absolute or Relative Motion?,” in J. B. Barbour and H. Pfister,
Mach’s Principle (Boston: Birkhäuser, 1995), pp. 114–118.

9 A. Einstein, “Gibt es eine Gravitationswirkung, die der elektrodynamischen In-
duktionswirkung analog ist?,” Vierteljahrsschrift für gerichtliche Medizin und öffentliches
Sanitätswesen 44, 37–40 (1912); “Is There a Gravitational Effect Which Is Analogous to
Electrodynamic Induction?,” Collected Papers, vol. 4, pp. 175–178.
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particle at the center but rather its inertial mass. Denoting by M and
m, respectively, the masses of the sphere and of the particle, if infinitely
separated, and by R the radius of the sphere, Einstein calculated the total
inertial mass of the combined system, which by use of the equation for
the gravitational binding energy and the mass-energy relation turned
out to be M + m − GMm/Rc2, where G is the gravitational constant. In
a paper written shortly before, he had shown by means of his as yet
rudimentary general theory that the kinetic energy of a particle of mass
m and (low) velocity u is given by T = 1

2 mu2c0/c, where c is the velocity
of light at the particle’s position and c0 the velocity of light at infinity.10

Since the gravitational potential φ at the particle’s position and the
gravitational potentialφ0 at infinity satisfy the equationφ0−φ = c0(c0−c)
and since 1φ = φ0 − φ = GM/R, the kinetic energy of the particle (in
first-order approximation) is T = 1

2 mu2(1+1φ/c2
0). Hence, the (effective)

inertial mass m′ of the particle is m′ = m(1+1φ/c2
0).

11

Commenting on this conclusion Einstein declared: “In itself, this result
is of great interest. It shows that the presence of the inertial hollow sphere
increases the inertial mass of the material particle within it. This lends
plausibility to the conjecture that the total inertia of a mass is an effect due
to the presence of all other masses, produced by some kind of interaction
with the latter.” In a footnote he added that this result agrees “precisely
with the standpoint which E. Mach had maintained in his profound
study of this topic.”

From then on Einstein repeatedly declared that the inertia or inertial
mass of a particle depends on the existence of other masses and on their
acceleration relative to that particle. In his 1913 Vienna lecture he called
this dependence, as the Friedlaenders did, “the relativity of inertia” (“die
Relativität der Trägheit”).12

10 A. Einstein, “Lichtgeschwindigkeit und Statik des Gravitationsfeldes,” Annalen der
Physik 38, 355–369 (1912); “The Speed of Light and the Statics of the Gravitational Field,”
Collected Papers, vol. 4, pp. 130–144.

11 As H. Dehnen, H. Hönl, and K. Westpfahl in their paper “Ein heuristischer Zugang
zur allgemeinen Relativitätstheorie,” Annalen der Physik 7, 360–406 (1960) [see equation
(3.9) on p. 380], and R. d’E. Atkinson, in “General Relativity in Euclidean Terms,” Proceed-
ings of the Royal Society A 272, 60–78 (1963), subsequently showed, the correct equation
is m′ = m(1 + 318/c2

0).
12 A. Einstein, “Zum gegenwärtigen Stande des Gravitationsproblems,” Physikalische

Zeitschrift 14, 1249–1262 (1913); “On the Present State of the Problem of Gravitation,”
Collected Papers, vol. 4, pp. 487–500.
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Einstein also repeatedly acknowledged in this context his indebted-
ness to Mach. However, in the intellectual process that led him to replace
“the relativity of inertia” by what he called “Mach’s principle” he seems
to have been motivated by an argument that, almost paradoxically,
cannot be found in Mach’s writings; nor can it be found in Einstein’s
own published articles. It is a philosophical argument, found in his
correspondence with Gustav Mie. In a letter to Mie dated February 8,
1917, Einstein described what he called “the relativistic standpoint” as
that point of view which conceives “the behavior of every body in nature
[as] unambiguously determined by its own state and by that of all other
bodies.”13 In a subsequent letter to Mie, Einstein outlines his argument
as follows:14

Be L the actual trajectory of a certain freely moving body and L′ a
trajectory that deviates from L but has the same initial conditions.
The relativistic standpoint demands that the trajectory L of the actual
motion be distinguished from the logically equally possible trajectories
L′ by a real cause (“Realursache”). Such a real cause can, however,
be found . . . only in the (relative) positions and states of motion of
all the other bodies that exist in the world. These must determine
completely and unequivocally the inertial behavior of our mass. This
means mathematically: the gmn must be completely determined by the
Tmn, of course only up to the four arbitrary functions which correspond
to the possibility of freely choosing the coordinates.

The argument, as we see, is ultimately an application of the Leibnizian
principle of sufficient reason and as such, in its logical structure, is
reminiscent of D’Alembert’s proposed proof of the law of inertia.15

The statement that the metric field, or “G-field,” defined by the
gmn, “is completely determined by the masses of bodies” was pre-
cisely what Einstein, in 1918, called “Mach’s principle.”16 But, of course,
he had made use of it years before he coined the term. In fact, in
November 1915, when he wrote the field equations of the gravita-
tional field, which connect the metric gmn with the energy tensor Tmn,

13 Letter from Einstein to Mie, dated February 8, 1917, Einstein Archive, reel 17-220.
14 Letter from Einstein to Mie, dated February 22, 1917, Einstein Archive, reel 17-221.
15 See, e.g., E. Nagel, The Structure of Science (New York: Harcourt and Brace, 1961),

pp. 175–178.
16 “Das G-Feld ist restlos durch die Massen der Körper bestimmt.” A. Einstein, “Prinzip-

ielles zur allgemeinen Relativitätstheorie,” Annalen der Physik 55, 241–244 (1918).
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he believed that the latter determines the former completely and
unambiguously.17

Whether it is inertial motion or inertial mass, the assumption of its
dependence on all masses in the universe is a cosmological conception.
Not surprisingly, therefore, it was the relativity of inertia that motivated
Einstein in 1917 to construct his cosmological model of a spatially finite
(closed) spherical universe. His “cosmological considerations,”18 in spite
of all the deficiencies recognized later, initiated the modern study of
relativistic cosmology and thus raised the status of cosmology from a
flight of fancy to a scientific discipline and initiated thereby the modern
study of relativistic cosmology.

The following remarks will suffice to clarify the importance of the
notion of mass in this historic development. Einstein showed that the as-
sumption of an infinite universe with necessarily a Minkowskian metric
at spatial infinity as a boundary condition, as in the relativistic treatment
of planetary motion, would “fail to comply with the requirement of the
relativity of inertia.” For, “if only a single point of mass were present . . .
it would possess inertia, and in fact an inertia as great as when it is
surrounded by the other masses of the actual universe.” But if “I have
a mass at a sufficient distance from all other masses in the universe, its
inertia must fall to zero.”

This last statement agrees, of course, with the conclusion arrived at in
his 1912 paper on the analogy between gravitation and electrodynamic
induction. In his book on “the meaning of relativity,”19 it is listed as the
first of three implications of Mach’s principle, all of which he claims
follow from his own general relativity:

1. The inertial mass of a particle increases if other masses are piled
up in its vicinity.

2. If masses in the vicinity of a particle are accelerated the par-
ticle should experience an accelerating force in the direction of that
acceleration.

17 A. Einstein, “Feldgleichungen der Gravitation,” Sitzungsberichte der Preussischen
Akademie der Wissenschaften 1915, pt. 2, pp. 844–847. Collected Papers (1966), vol. 6,
pp. 245–248.

18 A. Einstein, “Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie,
Sitzungsberichte der Preussischen Akademie der Wissenschaften 1917, pt. 1, pp. 142–152;
“Cosmological Considerations on the General Theory of Relativity,” in A. Einstein, H. A.
Lorentz, H. Minkowski, and H. Weyl, The Principle of Relativity (New York: Dover, 1952),
pp. 177–188. Collected Papers (1996), vol. 6, pp. 541–551.

19 A. Einstein, The Meaning of Relativity, 4th ed. (London: Methuen, 1950), pp. 95–96.
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3. A particle inside a hollow rotating body should experience radial
centrifugal forces and Coriolis forces in the sense of the rotation.

It is generally taken for granted that Einstein’s interpretation of what
he called “Mach’s principle” truly reflects, as he stated in the footnote
to his 1912 analogy paper noted above, Mach’s own ideas. However,
in a recent analysis of Einstein’s cosmological essay Barbour claimed
that “Einstein was a victim of a semantic confusion.”20 According to
Barbour, his misinterpretation of Mach was caused by the fact that
the term “inertia” (“Trägheit”) is used, especially in German, in two
different connotations—in the sense of inertial resistance or inertial
mass and in the sense of inertial motion or even the law of inertia.
Mach’s concern, Barbour argued, was solely with inertial motion and
not with mass. Incidentally, such an exegesis of Mach would resolve the
apparent contradiction in Mach’s writings noted above. According to
von Borzeszkowski and Wahsner, Einstein not only misread Mach but
by basing his 1917 cosmological considerations supposedly on Mach’s
ideas even contradicted Mach.21 For Mach’s pragmatic positivism, they
claim, denies the possibility of cosmology as a physical discipline on the
grounds that, since the “universe is given only once,” it is not tractable
to measurement procedures or any inductive-inferential treatment.

As is well known, it soon became increasingly clear that the general
theory of relativity does not fully entail Mach’s principle as conceived
by Einstein in the sense that the energy tensor unequivocally and com-
pletely determines the metric of space-time. It could be shown that a
particle in an otherwise empty universe can possess inertia or that the
first Machian effect (1) is not at all a truly physical effect but can be
eliminated by an appropriate choice of a coordinate system.22 Einstein’s
confidence in the principle gradually waned, so much so that eventually,
a year before his death, he declared that “one should no longer speak at
all of Mach’s principle.”23

20 J. B. Barbour, “The Part Played by Mach’s Principle in the Genesis of Relativistic
Cosmology,” in B. Bertotti, R. Balbinot, S. Bergia, and A. Messina, eds., Modern Cosmology
in Retrospect (Cambridge: Cambridge University Press, 1990), pp. 47–66.

21 H.-H. von Borzeszkowski and R. Wahsner, “Mach’s Criticism of Newton and Ein-
stein’s Reading of Mach: The Stimulating Role of Two Misunderstandings,” in J. B. Barbour
and H. Pfister, eds., Mach’s Principle (Boston: Birkhäuser, 1995), pp. 58–64.

22 C. H. Brans, “Mach’s Principle and the Locally Measured Gravitational Constant,”
Physical Review 125, 388–396 (1962).

23 “Von dem Mach’schen Prinzip aber sollte man nach meiner Meinung überhaupt
nicht mehr sprechen. Es stammt aus einer Zeit, in der man dachte, dass die ‘ponderabelen
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However, Mach’s principle, its precise meaning in general and its
controversial role in the general theory of relativity, continued to be
a subject of animated debate. This is, of course, not the place to re-
view these discussions.24 What is of interest for us is only the fact that
throughout its history Mach’s principle has been an incentive for the
construction of dynamical theories of the origin and nature of inertial
mass. However, such theories had to explain not only how the inertia
of a body is a result of an interaction with distant matter in the universe
but also how Newton’s laws of motion perform their functions so well
without including any reference to distant matter. In other words, such
theories have to satisfy two prima facie incompatible requirements.

A theory that satisfies these requirements was proposed by Dennis
William Sciama in 1953. In the introduction to his presentation Sciama
states that, as Einstein himself pointed out, general relativity, although
devised to incorporate Mach’s principle, failed to do so because the field
equations imply that a test particle in an otherwise empty universe has
inertial properties. It is therefore worthwhile to search for theories of
gravitation that ascribe inertia to matter only in the presence of other
matter. Sciama claims to have constructed “what appears to be the
simplest possible theory of gravitation that has this property.”25

Sciama’s theory assumes, in accordance with Mach’s principle, that
kinematically equivalent motions are also dynamically equivalent.
Hence, the statement that a particle is moving with a certain acceler-
ation relative to the stars or the universe is dynamically equivalent to
the statement that the universe is moving with the same acceleration,
though in the opposite direction, relative to the particle. Sciama’s theory
can thus be summarized as an attempt to identify the inertial forces

Körper’ das einzige physikalisch Reale seien, und dass alle nicht durch sie völlig bes-
timmten Elemente in der Theorie wohl bewusst vermieden werden sollten. (Ich bin mir
der Tatsache wohl bewusst, dass auch ich lange Zeit durch diese fixe Idee beeinflusst
war.)” Letter from Einstein to F. Pirani, of February 2, 1954, Einstein Archive, reel 17-447.

24 For details see, e.g., H. Goenner, “Mach’s Principle and Einstein’s Theory of Gravi-
tation,” in R. S. Cohen and R. J. Seeger, eds., Ernst Mach—Physicist and Philosopher (Dor-
drecht: Reidel, 1970), pp. 200–215. M. Reinhardt, “Mach’s Principle—A Critical Review,”
Zeitschrift für Naturforschung 28a, 529–537 (1973). D. J. Raine, “Mach’s Principle and Space-
Time Structure,” Reports on Progress in Physics 44, 1151–1195 (1981). H. Dambmann, “Die
Bedeutung des Machschen Prinzips in der Kosmologie,” Philosophia Naturalis 27, 234–271
(1990). J. B. Barbour and H. Pfister, eds., Mach’s Principle (Boston: Birkhäuser, 1995).

25 D. W. Sciama, “On the Origin of Inertia,” Monthly Notices of the Royal Astronomical
Society 113, 34–42 (1953), “Inertia,” Scientific American 196, 99–109 (February 1957); The
Unity of the Universe (New York: Doubleday, 1961).
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experienced by a particle accelerating relative to the universe with the
gravitational forces exerted on the particle by the universe accelerating
relative to the particle. To this end the theory postulates that “in the rest
frame of any body the total gravitational field at the body arising from
all matter in the universe is zero.” It follows, in particular, that in the
rest frame of any body the gravitational field of the universe as a whole
cancels the gravitational field of local matter.

The general formalism of Sciama’s theory is that of a field theory
in flat space-time and its mathematical apparatus is that of Maxwell’s
equations, applied of course to the gravitational rather than to the
electromagnetic field. Since the application of electrodynamical equa-
tions, and in particular of Maxwell’s equations, to purely gravitational
problems is nonstandard and therefore possibly unfamiliar to the reader,
the following brief historical digression may not be out of place.

The structural identity of Coulomb’s law of electrostatics and New-
ton’s law of gravitation—both inverse square laws involving the product
of charges, the former electrical and the latter gravitational charges—
was an early indication of a formal analogy between electromagnetism
and gravitation. In order to relate Coulomb’s law, which applies only
to stationary charges, to Ampère’s law of electrical currents, or charges
in motion, Wilhelm Weber modified Coulomb’s law in 1842 by adding
certain velocity-dependent terms to it and thus formulated what be-
came known as Weber’s law of electrodynamical forces.26 In 1858 Bern-
hard Riemann proposed a slightly different generalization of Coulomb’s
law for the same purpose.27 Weber’s electrodynamics as well as the
less widely accepted Riemannian electrodynamics were, like Newton’s
theory of gravitation, action-at-a-distance theories. As might be ex-
pected, it was in astronomy where the gravitational analogues of these
generalizations found their first application.

In fact, the first problem to be dealt with by means of Weber’s law was
the famous riddle of the perihelion precession of the planet Mercury,
which, as Urbain Joseph LeVerrier had shown in 1845, could not be
accounted for by Newton’s law of gravitation. LeVerrier’s conjecture

26 W. Weber, “Elektrodynamische Maassbestimmungen über ein allgemeines Grund-
gesetz der elektrischen Wirkung,” Leipziger Berichte 1846, pp. 211–378; Wilhelm Weber’s
Werke (Berlin: J. Springer, 1893), vol. 3, p. 157; vol. 4, pp. 479–632.

27 B. Riemann, Schwere, Elektrizität und Magnetismus, published posthumously by
K. Hattendorff (Hannover: C. Rümpler, 1880), p. 334. An interesting application of Rie-
mann’s law of gravitation in the context of Mach’s principle can be found in Hans-Jürgen
Treder’s Die Relativität der Trägheit (Berlin: Akademie-Verlag, 1972).
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of an as-yet-undiscovered intra-Mercurial planet, the so-called Vul-
can, could not be confirmed. It was therefore suggested that New-
ton’s law, though perfectly valid for bodies at relative rest, should
be modified for bodies in relative motion. Naturally, Weber’s modi-
fied Coulomb’s law could serve as a model. The first to suggest an
analogue of Weber’s electrodynamical law for the solution of a grav-
itational problem was Gustav Holzmüller.28 Two years later, in 1872,
François Felix Tisserand used this method in his attempt to resolve the
Mercury riddle but succeeded in accounting for only 13′′65′, i.e., for
only about a third of the observed unexplainable secular deviation.29

Maurice Lévy’s proposal of an ad hoc combination of Weber’s law
with Riemann’s law to account for the total perihelion precession of
Mercury was, of course, not a satisfactory solution of the problem,30

which, as is well known, was obtained only with Einstein’s general
theory of relativity.

The advent of Maxwell’s field theory of electromagnetism, which
had challenged theories of action-at-a-distance since 1865 and finally
replaced them, did not discourage further attempts to use analogies
of electromagnetic equations or Maxwell-type field equations for the
solution of gravitational problems. Indeed, as we noted above in our
discussion of the concept of negative mass, Maxwell himself tried to
construct a field theory of gravitation, in analogy with his electromag-
netic theory, though without any success.

As Sciama’s theory makes use of the gravitational analogues of the
scalar and vector potentials of Maxwell’s electromagnetic field theory
we will briefly explain why such a procedure is justified.31 For the sake
of simplicity we assume small velocities and weak gravitational effects
so that we can approximate the metric tensor gmn by gmn = δmn + hmn,

28 G. Holzmüller, “Über die Anwendung der Jacobi-Hamiltonschen Methode auf den
Fall der Anziehung nach dem elektrodynamischen Gesetze von Weber,” Zeitschrift für
Mathematik und Physik 15, 69–91 (1870).

29 F. F. Tisserand, “Sur le mouvement des planètes au tour du Soleil, d’après la loi
électrodynamique de Weber,” Comptes Rendus 75, 760–763 (1872); “Sur les mouvements
des planètes, en supposant l’attraction représentée par l’une des lois électrodynamiques
de Gauss ou de Weber,” Comptes Rendus 110, 313–315 (1890).

30 M. Lévy, “Sur l’application des lois électrodynamiques au mouvement des planètes,”
Comptes Rendus 110, 545–551 (1890).

31 For other derivations of this analogy see C. Møller, The Theory of Relativity (Oxford:
Clarendon, 1952, 1972), chapter 8, section 92; or the Appendix in J. D. Nightingale, “Specific
Physical Consequences of Mach’s Principle,” American Journal of Physics 45, 376–379 (1977).
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where δmn are the Kronecker symbols and hmn are perturbation terms
owing to the masses. The Ricci tensor Rmn and the curvature invariant
R are then given by Rmn = − 1

2 ▫hmn and R = − 1
2 ▫h, where ▫ denotes

the D’Alembertian operator, h = gmn hmn, and the coordinate system
has been chosen so that hn

m − 1
2δ

n
mh,n = 0. Substitution of Rmn and R

in Einstein’s field equations Rmn − 1
2 Rgmn = kTmn (k = 8πG/c4) yields

−▫hmn + 1
2δmn ▫ h = 2kTmn. For the gravitational potential, defined by

φmn = hmn − 1
2δmnh, we thus obtain the equation ▫φmn = −2kTmn. Since

in accordance with our assumption the only surviving component of
the energy-momentum tensor is T00 = ρc2, where ρ is the mass density,
our equation reduces to 1φ00 = −2kρ, i.e., to the well-known Poisson
equation, the solution of which, up to a constant coefficient, is known to
be φ00 ≡ φ = k

∫
(ρ/r)dV, the scalar potential used by Sciama. A similar

calculation, carried out for masses moving with velocity v, yields the
gravitational analogue of the Maxwell-type vector potential A.

Returning now to Sciama’s “searching for the cause of inertia,” we
may ask why he made use of Maxwell’s equations and not of Weber’s
or Riemann’s velocity-dependent laws, which, as we shall see later,
have been used for the same purpose. Of course, the mathematically
simplest field theory should have been based on a scalar potential as it
is used, for example, in the Newtonian theory of gravitation. However,
the mathematics of Sciama’s approach implies that a scalar potential
could not give rise to inertia. The next simplest choice is, of course, a
vector potential, the curl of which, an antisymmetric tensor, provides
the components of the field. But in such a field, as Hermann Weyl
has shown, the only linear second-order differential tensor equations
that satisfy the conservation of source are Maxwell’s equations.32 This
explains why Sciama uses Maxwell’s equations and also why he claims
that his theory is the “simplest possible theory” of this kind.

After these introductory remarks let us now briefly review Sciama’s
theory as far as it concerns the concept of inertial mass. Its aim is to
determine the inertial mass of a test particle located at some distance
from a single massive body in an otherwise smoothed-out universe
with a homogeneous and isotropic matter distribution of gravitational
density ρ. In accordance with Hubble’s law, the universe is assumed to
expand relative to any point as origin with the velocity r/τ , where |r| is
the distance from the origin and τ is a constant, the inverse of the Hubble

32 H. Weyl, “How Far Can One Get with a Linear Field Theory of Gravitation in Flat
Space-Time?,” American Journal of Mathematics 66, 591–604 (1944).
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constant. As in Maxwell’s theory, the scalar potential at the particle, if it
is at rest, i.e., if the distribution of redshifts of distant matter as observed
at the particle is isotropic, is

φ =
∫
(ρ/r)dV, (5.1)

while the vector potential A is zero by symmetry. Since matter, receding
faster than light, is assumed not to contribute to the potential, the
integration extends only over a spherical volume of radius cτ and
yields

φ = −2πρc2 τ 2. (5.2)

This result is also shown to hold approximately if the particle is moving
with a small rectilinear velocity−v(t), in which case the vector potential
becomes

A = −
∫
(vρ/cr)dV = φv(t)/c. (5.3)

Since ρ can be regarded as a constant, the “gravelectric” part of the
field is

E = −grad φ − (∂A/∂t)/c = −(φ/c2)∂v/∂t, (5.4)

while the “gravomagnetic” field is H = curl A = 0.
Taking into consideration the single body described above, with its

active gravitational mass denoted by M and its distance from the test
particle by r, we conclude that its field in the rest frame of the test par-
ticle is

− (Mr/r3)− (ϕ∂v/∂t)/c2, (5.5)

where ϕ = −M/r is the potential of the body at the position of the test
particle. Hence, the postulate that the field in the rest frame of the particle
is zero implies that

M/r2 = −(φ + ϕ)(dv/dt)/c2, (5.6)

where use has been made of the identity (r/r)(dv/dt) = dv/dt. Since for
the determination of local inertia, distant matter is far more important
than nearby matter, as can be easily seen in view of its great bulk, ϕ can
be neglected in the sum φ + ϕ. Hence,

M/r2 = −φ(dv/dt)/c2. (5.7)
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Multiplication by the constant of gravitation G as well as by the passive
gravitational mass mp of the particle, and the use of (5.2) yields

GMmp/r2 = 2πρτ 2 Gmp(dv/dt), (5.8)

a combination of Newton’s laws of motion and gravitation. Compari-
son with the standard formulation of Newton’s second law of motion,
F = mi(dv/dt), shows that the inertial mass mi of the particle satisfies
the equation

mi = (2πρτ 2G)mp. (5.9)

The smallness of ϕ, compared to φ, explains why Newton’s laws of
motion function so well in spite of their lack of any explicit reference to
the properties of the universe. But the implicit role that these properties
play in the determination of mi are clearly delineated by equation (5.9).
Moreover, this equation also shows that the weak equivalence principle,
the proportionality between mi and mp, is a consequence of the theory
and not a fundamental presupposition as it is in the general theory of
relativity. In units such that mi = mp and that therefore the gravita-
tional density is numerically equal to the inertial density, equation (5.9)
implies that

2πρτ 2 G = 1. (5.10)

Since G, as measured with a torsion balance, has a value of about
6.6 × 10−8 c.g.s. units, and τ , as observed in redshifts, has a value
of about 6 × 1016, equation (5.10) predicts ρ = 10−27 c.g.s. units, a
value about 103 times larger than the usually quoted value as ob-
served, e.g., by the astronomer Harlow Shapley. Sciama explains this
discrepancy on the grounds that the observed value refers only to
luminous matter condensed into nebulae or stars and that consid-
eration of interstellar and intergalactic matter would balance the
difference.

As we now know, any vector theory of gravitation, and especially
a theory that, like Sciama’s, does not possess general covariance, is
unsatisfactory. Although Sciama’s theory of inertial mass is only of
historical interest today, we have discussed it at some length because
it can serve as a simple model to illustrate how wrong it would be
to regard the inertial mass of a particle as an intrinsic and not further
analyzable property. Sciama himself repeatedly emphasized that this
theory is only a tentative model of a more complete and necessarily
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more complicated tensorial theory that he had intentions of presenting
in a separate article.33

In a detailed critical analysis of Sciama’s theory, W. Davidson argued
that Sciama’s project of constructing such a tensor theory had already
been accomplished in the general theory of relativity and that the latter,
contrary to Sciama’s and Einstein’s belief, fully incorporates Mach’s
principle.34 To substantiate his claim, Davidson rederived ab initio the
important Maxwell-type equation (118) in Einstein’s book The Meaning
of Relativity from which Einstein deduced that “the inert mass . . . in-
creases when ponderable masses approach the test body.”35 According
to Davidson this equation should read36

(d/dt)[(1− 3φ)v] = −grad φ − ∂A/∂t+ (v × curl A), (5.11)

which differs from Einstein’s equation by the factor 3 in front of φ. In the
rest frame of the particle the equation reduces to− grad φ− ∂A/∂t = 0,
which expresses Sciama’s basic postulate concerning the dynamical
equilibrium between gravitational and inertial forces. The terms by
which (5.11) differs from the Newtonian equation dv/dt = − grad φ

illustrate Mach’s principle for they show how matter affects the in-
ertial mass of the particle. Apropos, equation (5.11) can also be used
to show, as Nightingale argues, that the inertial mass of a particle in
an otherwise totally empty universe is zero, a result that supports the
idea “that the inertial mass of a small test particle could be entirely
due to the mass of the observable universe.”37 However, the argument
rests on the assumption that the entire mass of the observable universe
amounts to that of about 1079 baryons, i.e., on a contingent fact, and
is therefore quite disputable—apart from the conflict with the general
theory of relativity in which there exist solutions of the field equa-
tions that ascribe inertial properties to a single particle in an otherwise
empty universe.

33 Such a separate paper on the origin of inertia seems never to have been published. But
see D. W. Sciama, “Retarded Potentials and the Expansion of the Universe,” Proceedings of
the Royal Society A 273, 484–495 (1963), and “The Physical Structure of General Relativity,”
Reviews of Modern Physics 36, 463–469 (1964).

34 W. Davidson, “General Relativity and Mach’s Principle,” Monthly Notices of the Royal
Astronomical Society 117, 212–224 (1958).

35 Einstein, The Meaning of Relativity, p. 97.
36 For a simple derivation of this equation see J. D. Nightingale, “Specific Physical

Consequences of Mach’s Principle,” American Journal of Physics 45, 376–379 (1977).
37 J. D. Nightingale, American Journal of Physics 45, 377.
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Sciama’s theory was also criticized by Dicke, who concludes his cri-
tique with the remark that “whereas Sciama’s model of inertial effects
does not provide a proper (coordinate-independent) theory of gravi-
tation, it does provide a simple physical picture for the origin of iner-
tial forces.”38

In 1989 André Koch Torres Assis showed that the gravitational ana-
logue of Weber’s law of electrodynamical forces also admits the con-
struction of a theory that accounts for inertia and the inertial mass of a
particle, in accordance with Mach’s principle, as a gravitational inter-
action with distant matter.39 In contrast to Sciama’s, Assis’s approach is
an action-at-a-distance theory based on the scalar velocity-dependent
Weber-type potential

U = (k/rij)(1− ξ ṙ2
ij/2c2). (5.12)

In Weber’s electrodynamics k is proportional to the product of two
charges qi and qj, rij is the distance between qi and qj, ṙij is the derivative of
rij with respect to time, and ξ = 1; the electrodynamic force is−∂U/∂rij.
In Assis’s gravitational theory k is proportional to the product of the
two gravitational masses mi and mj, rij the distance between them, ṙij

the time derivative, and ξ = 6. This particular value of ξ is obtained
by applying the theory to the perihelion precession of Mercury, as was
done by Tisserand more than a century earlier, and determining the
value of ξ so that the calculated result agrees with observation. That U
is a velocity-dependent generalization of the usual Newtonian potential
of gravitation can be seen by taking ξ = 0.

The logical structure of Assis’s theory is similar to that of Sciama’s
argumentation. Postulating that “the sum of all forces on a material body
is zero,” Assis derives the equation of motion for a particle subject to the
gravitational forces on it by the distant masses of the universe and proves
his contention by comparing this equation with the Newtonian equation
F = mia. He also discusses the question of a possible anisotropy of the
inertial mass of a test particle near the surface of the earth and concludes
that the experimentally observed upper limit of such an anisotropy

38 R. H. Dicke, “The Many Faces of Mach,” in H.-Y. Chiu and W. F. Hoffmann, eds.,
Gravitation and Relativity (New York: Benjamin, 1964), pp. 121–141. Some critical references
to Sciama’s approach can be found as early as in C. Brans and R. H. Dicke, “Mach’s
Principle and a Relativistic Theory of Gravitation,” Physical Review 124, 925–935 (1961).

39 A.K.T. Assis, “On Mach’s Principle,” Foundations of Physics Letters 2, 301–318 (1989);
see also his “Deriving Gravitation from Electromagnetism,” Canadian Journal of Physics
70, 320–340 (1992).
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(5× 10−23) agrees very well with his theory, according to which inertial
mass is a scalar and not a tensor quantity as it should have been in the
case of an anisotropy. But in spite of all these accomplishments Assis
explicitly admits that, since an action-at-a-distance theory is valid only
if time retardation can be neglected, his theory holds only in the limit of
slowly varying velocities.

This weakness of Assis’s theory and similarly the nonrelativistic limi-
tation of Sciama’s theory—i.e., the fact that these theories, strictly speak-
ing, are valid only in the classical limit—raises the philosophical ques-
tion of whether they can be legitimately regarded as supporting the
Machian thesis concerning the nature of mass. Let us not forget that the
dynamics of special relativity reduces in that limit to classical dynamics;
but it is just because of the small deviations from the latter that relativistic
dynamics leads to the nonclassical relation between mass and energy
and to other conceptually profound innovations. The problem, briefly
expressed, is whether it is logically permissible to draw philosophically
far-reaching conclusions from theories that admittedly are not rigor-
ously valid.

In a paper published in 1993 under the title “Changing the Inertial
Mass of a Charged Particle,” Assis appealed again to Weber’s electro-
dynamical law, this time to prove that the inertial mass of a charged test
particle moving inside a charged hollow sphere of radius R increases
or decreases depending on whether the charges of the particle and of
the sphere have opposite or equal signs. Denoting the particle’s charge
by q and the charge supposed to be uniformly distributed over the
surface of the shell by Q, Assis shows that according to Weber’s law
the particle experiences a force F = qφa/3c2, where a is the acceleration
of the particle relative to the center of the shell and φ is the electrostatic
potential inside the shell (φ = Q/4πε0 R). If the particle of inertial mass
m also interacts with N other bodies, among them, e.g., the earth, the
force exerted on the particle is shown to be

∑N
i=1 Fi = (m−mw)a, where

Fi is the force exerted by the ith body and mw, the so-called “Weber’s
inertial mass,” is given by mw = qφ/3c2. Identifying the coefficient of
the acceleration with the inertial mass, Assis concludes that “we can
interpret the result saying that “the inertial mass of the test particle
should change when it is inside a charged spherical shell.”40 Assis’s
conclusion can be challenged by pointing out that since it holds only for

40 A.K.T. Assis, “Changing the Inertial Mass of a Charged Particle,” Journal of the Physical
Society of Japan 62, 1418–1422 (1993).
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q 6= 0 it says nothing about the particle’s inertial behavior in the absence
of electrical forces so that the increase or decrease in mass is not really
an inertial phenomenon.

If according to Mach’s principle the distribution of matter in the uni-
verse affects the mass of a given particle, then it might be expected that
not only an anisotropy of this distribution, as studied by Giuseppe Coc-
coni and Edwin Ernest Salpeter,41 but also an expansion of the universe
has an influence on the mass of a particle. Nathan Rosen claimed that in
the case of a homogeneous closed expanding universe the general theory
of relativity predicts just such an effect.42 More precisely, he claimed
that the active gravitational mass ma of a particle remains unchanged
in the course of the expansion but its inertial mass mi and its passive
gravitational mass mp increase as the universe expands. By using well-
known solutions of the field equations he argued that ma is a constant in
time, and by studying the equations of motion of a test particle proved
that mi and mp increase according to the equations mi = mp = m0f , where
m0 is a positive constant and f is a positive increasing function of time
describing the expansion of the universe. Since the weak equivalence
principle obviously remains unimpaired the variations in mass would
not produce any observable effects in the gravitational motions of the
celestial bodies. Nor would it be possible to confirm observationally the
constancy of ma and increase of mp in time by repeating the experiments
of Kreuzer43 or of Bartlett44 and van Buren because these experiments
test the equality of the ratio mp/ma at the same time and this equality does
not depend on the time at which the experiments are being performed
as each ratio increases by the same factor.

Statements such as those made by Rosen, Assis, and others about
possible space-time variations of the inertial rest mass of a particle
may sound strange as they seem to conflict with the definition of the
inertial rest mass of a particle as the magnitude of its energy-momentum
four-vector P as given in chapter 2, while according to the Lorentz or
Poincaré transformations, P is a space-time invariant. It should be noted,
however, that metric gravitational theories, such as the general theory of
relativity, deal with curved space-times for which these transformations

41 Reference 28 and Reference 31 of chapter 10 in COM.
42 N. Rosen, “Mach’s Principle and Mass in an Expanding Universe,” Annals of Physics

35, 426–436 (1965).
43 Reference 97 in chapter 4.
44 Reference 98 in chapter 4.
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are not necessarily valid. The possibility of a space-time–dependent rest
mass can therefore not be excluded. Theories of variable rest mass have
been formulated, e.g., by Shimon Malin45 and Jacob D. Bekenstein.46

Bekenstein, in agreement with Dicke’s argument described above, as-
sumed that all particle mass-ratios are strictly constant but that each
individual rest mass experiences a space-time variation relative to the
Planck-Wheeler mass (hc/G)1/2. As far as gravitational effects within the
solar system are concerned the predictions of Bekenstein’s variable-mass
theory agree fairly well with those of general relativity. But whereas in
the latter theory all cosmological solutions for an expanding universe
start from a singularity, the variable mass theory admits nonsingular
solutions for the early stages of an expanding universe.”47

All the theories about the nature of mass we have discussed so
far were based on cosmological considerations, like Mach’s principle,
or on other large-scale effects produced by the long-range forces of
gravitation and electromagnetism. In view of the difficulties encoun-
tered it seems natural to ask whether the modern theory of elemen-
tary particles, in which gravitation plays no significant role, offers
perhaps a deeper insight into the nature of mass. That our contem-
porary knowledge about particles can hardly be expected to solve the
problem of mass is clearly shown by the fact that the mass spectrum of
elementary particles has so far defied any explanation. Nobody knows
why the mass of the electron is about 0.0005 GeV (or 9 × 10−28 g),
that of the muon about 0.11 GeV, that of the tauon 2 GeV, and that
of the top-quark about 170 GeV. All attempts to find a general for-
mula for these so widely diverging mass-values—in the hope that it
would lead to an explanatory theory, just as the Balmer formula for
the spectral lines of hydrogen was a clue for the construction of quan-
tum mechanics—have failed. Although all observed electric charges
are integral multiples of the fundamental charge (1.6 × 10−19 Cb),
we find all magnitudes of mass but not the slightest indication of
mass quantization.

Some current theories of elementary particles, and in particular the
most successful among them, the Glashow-Weinberg-Salam Standard

45 S. Malin, “Masses and Spins in Curved Space-Time,” Physical Review D 9, 3228–3234
(1974).

46 J. D. Bekenstein, “Are Particle Rest Masses Variable? Theory and Constraints from
Solar System Experiments,” Physical Review D 15, 1458–1468 (1977).

47 J. D. Bekenstein and A. Meisels, “General Relativity Without General Relativity,”
Physical Review D 12, 4378–4386 (1978).
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Model, are sometimes said to predict mass-values. But, as a closer
inspection reveals, certain parameters, as, e.g., the “weak mixing angle”
(Weinberg angle), have to be inserted in order to reach agreement
with experience. Furthermore, the Standard Model, which employs
the principle of local gauge invariance and the notion of spontaneous
symmetry breaking, also incorporates a mechanism that endows par-
ticles with mass. Known as the Higgs mechanism, it was developed
by Peter Higgs in 1964 in order to introduce mass into the Yang-Mills
gauge theories.48 Abdus Salam and independently Steven Weinberg
soon recognized its crucial importance for their attempts to unify the
theories of the weak nuclear force and the electromagnetic force into a
unified gauge theory of a single “electroweak” force. The difficulty they
hoped to resolve by means of the Higgs mechanism was the fact that the
carriers of the weak interaction, the W+,W−, and Z bosons have masses
as large as those of moderate-sized nuclei, whereas the corresponding
carriers of the electromagnetic force have no mass at all. Since the Higgs
mechanism did indeed remove the last stumbling block on the road
to a unified electroweak theory, it is often credited with explaining the
“origin” or “genesis” of mass.49 But if a process “generates” mass it may
reasonably be expected to provide information about the nature of what
it “generates” as well.

In order to see whether this is really the case we should, of course,
know the “machinery” of this mechanism, that is the procedure by
which spontaneous symmetry-breaking endows gauge fields of zero
mass with mass. It would lead us too far into mathematical detail to
present a quantitative account of this procedure. Suffice it to point out
that the Higgs mechanism is based on the assumption of the existence
of a scalar field, the “Higgs field,” which permeates all of space. By
coupling with this field a massless particle acquires a certain amount
of potential energy and, hence, according to the mass-energy relation, a
certain mass. The stronger the coupling, the more massive the particle.
The critical phase of this process can be illustrated as follows:50

48 P. W. Higgs, “Broken Symmetry, Massless Particles and Gauge Fields,” Physics Let-
ters 12, 132–133 (1964); “Spontaneous Symmetry Breakdown Without Massless Bosons,”
Physical Review 145, 1156–1163 (1966).

49 See, e.g., R. Castmore and C. Sutton, “The Origin of Mass,” New Scientist 145, 35–39
(1992). Y. Nambu, “A Matter of Symmetry: Elementary Particles and the Origin of Mass,”
The Sciences 32 (May/June), 37–43 (1992). J. LaChapelle, “Generating Mass Without the
Higgs Particle,” Journal of Mathematical Physics 35, 2199–2209 (1994).

50 M.J.G. Veltman, “The Higgs Boson,” Scientific American 255 (November), 88–94 (1986).

162



T H E N AT U R E O F M A S S

The way particles are thought to acquire mass in their interactions
with the Higgs field is somewhat analogous to the way pieces of
blotting paper absorb ink. In such an analogy the pieces of paper
represent individual particles and the ink represents energy, or mass.
Just as pieces of paper of different size and thickness soak up varying
amounts of ink, different particles “soak up” varying amounts of energy
or mass. The observed mass of a particle depends on the particle’s
“energy absorbing” ability, and on the strength of the Higgs field
in space.

Or as Abdus Salam once expressed it: “The massless Yang-Mills particles
‘eat’ the Higgs particles (or field) in order to gain weight, and the
swallowed Higgs particles become ghosts.”

It should now be clear that in the Higgs mechanism mass is not
“generated” in the particle by a miraculous creatio ex nihilo, it is only
transferred to the particle from the Higgs field, which contained it in
the form of energy. For a “store of energy can be thought of as a source
of inertial mass” just as inversely “inertial mass can be thought of as a
store of energy.”51 It should be noted, however, that the “Higgs particle,”
indicative of the existence of the Higgs field, has not yet been found.
But the experimental discovery of the W+,W−, and Z bosons in 1983
at CERN’s high-energy proton-antiproton collider has given the theory
a high degree of credibility. In any case, neither the Higgs mechanism
nor its elaborations, such as Heinz Dehnen’s modification, which imply
automatically the validity of the weak equivalence principle, contribute
to our understanding of the nature of mass.52

In a seventeen-page article, published 1994 in the Physical Review,
Bernhard Haisch, Alfonso Rueda, and H. E. Puthoff proposed a new
theory of mass which, if proved to be correct, would lead to a far-
reaching revision in our understanding of physics at the most fun-

51 “Jegliche träge Masse ist als ein Vorrat von Energie aufzufassen.” A. Einstein,
“Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen,” Jahrbuch
der Radioaktivität und Elektronik 7, 411–462 (1907); quotation on p. 442. Collected Papers,
vol. 2, pp. 432–488.

52 H. Dehnen, F. Ghaboussi, and J. Schröder, “Gravitational Interaction by the Higgs
Field,” Wissenschaftliche Zeitschrift der Friedrich-Schiller Universität Jena 1990, pp. 41–45.
H. Dehnen, H. Frommert, and F. Ghaboussi, “Higgs Field Gravity,” International Journal
of Theoretical Physics 29, 537–546 (1990). H. Dehnen and E. Hitzer, “Spin-Gauge Theory of
Gravitation with Higgs Field Mechanism,” International Journal of Theoretical Physics 33,
575–592 (1994). H. Dehnen, “The Higgs Field and Mach’s Principle of Relativity of Inertia,”
in J. B. Barbour and H. Pfister, eds., Mach’s Principle (Boston: Birkhäuser, 1995), pp. 479–488.
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damental level.53 Their theory can be regarded partially as a modi-
fication of the electromagnetic conception of mass, though in many
respects quite different from the interpretations suggested by Wien,
Abraham, Lorentz, or Poincaré to reduce inertial mass to an inductive
effect caused by electrostatic self-energy. It can also be regarded as
complying with Mach’s principle, though in a way that Mach could
not have anticipated.

Like Mach, these three authors conceive inertia as a property not in-
trinsic to a body but induced in it when it is in accelerated motion relative
to a cosmic reference frame. However, contrary to Mach, this reference
frame is not the system of different stars but rather the all-pervasive
quantum vacuum or zero-point field,54 in which subatomic particles are
constantly created and annihilated in accordance with the uncertainty
principle even at absolute zero in the absence of all thermal radiation.
Like the proponents of the electromagnetic theory of mass, Haisch,
Rueda, and Puthoff base their theory on electromagnetic processes, but
these processes are not those dealt with in classical electrodynamics but
rather those studied by stochastic electrodynamics, which accepts those
vacuum oscillations a priori.

A crucial ingredient in the new theory is the judicious employment
of the Davies-Unruh effect,55 according to which a charge accelerated
relative to the zero-point field distorts the field and, as a result of this
distortion, experiences a Lorentz force proportional to the acceleration
but in the opposite direction. According to the three authors it is the
interaction between the charge of a particle and the zero-point field
that manifests itself as the inertial mass of the particle. This also holds
for electrically neutral particles such as the neutron because they are
composed of quarks that carry electrical charge. Moreover, it is also
claimed that the same interaction explains the existence of gravita-
tional mass. To substantiate this claim, Haisch and his collaborators

53 B. Haisch, A. Rueda, and H. E. Puthoff, “Inertia as a Zero-Point-Field Lorentz Force,”
Physical Review A 49, 678–694 (1994).

54 The existence of such a zero-point field was anticipated as early as 1912 by Max Planck
in his article “Über die Begründung des Gesetzes der schwarzen Strahlung,” Annalen der
Physik 37, 642–656 (1912).

55 P.C.W. Davies, “Scalar Particle Production in Schwarzschild and Rindler Metrics,”
Journal of Physics A 8, 609–616 (1975). W. G. Unruh, “Notes on Black-Hole Evaporation,”
Physical Review D 14, 870–892 (1976).
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revive an idea, originally suggested by Andrei D. Sakharov,56 and re-
formulate it within the framework of stochastic electrodynamics to
derive the following conclusion: All charged particles in the universe,
in response to their interaction with the zero-point field, are forced to
fluctuate and to emit thereby secondary electromagnetic fields. These
fields manifest themselves as forces that are always attractive between
the particles whatever their charges, but considerably weaker than
ordinary attractive or repulsive forces between charged particles. As
is shown in mathematical detail, these forces can be identified with
gravitation. Finally, it is shown, in an appendix, that this stochastic
electrodynamical theory of mass automatically incorporates the weak
equivalence principle. As the authors point out elsewhere, their theory,
if correct, not only offers a more profound insight into the nature of
mass, but may also have practical implications that until now have
been possible only in the realm of science fiction: For if inertia de-
pends on the zero-point field of the quantum vacuum and if the latter
can be manipulated, as certain phenomena seem to indicate, then it
might not be impossible to control inertia or perhaps even to eliminate
it altogether.57

In July 1998 Rueda and Haisch published a modification of the Haisch-
Rueda-Puthoff 1994 theory of inertial mass as an alternative to Mach’s
principle. The new version avoids the previously ad hoc modeling
of the dynamics of the interaction between particle and field. It is
therefore independent of any details concerning the dynamical model
for the particle and deals exclusively with the form of the zero-point
field in relation to an accelerated object. It uses the standard field
transformations without involving any approximation and arrives at
the usual relativistic expression for the four-momentum in a covari-
ant manner.58

The authors are, of course, fully aware that their theory of inertial
mass faces a number of serious difficulties as, e.g., the question of how
to account for the empirically confirmed gravitational effects of general

56 A. D. Sakharov, “Vacuum Quantum Fluctuations in Curved Space and the Theory of
Gravitation,” Soviet Physics–Doklady 12, 1040–1041 (1968).

57 B. Haisch, A. Rueda, and H. E. Puthoff, “Beyond E = mc2,” The Sciences 24 (Novem-
ber/December), 26–31 (1994).

58 A. Rueda and B. Haisch, “Contribution to Inertial Mass by Reaction of the Vacuum
to Accelerated Motion,” Foundations of Physics 28, 1057–1108 (1998).
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relativity; and they admit that much work still has to be done to meet
all the objections that can be raised. However, debatable as their theory
still is, it is from the philosophical point of view a thought-provoking
attempt to renounce the traditional priority of the notion of mass in the
hierarchy of our conceptions of physical reality and to dispense with
the concept of mass in favor of the concept of field. In this respect their
theory does to the Newtonian concept of mass what modern physics
has done to the notion of absolute space: As Einstein once wrote, “the
victory over the concept of absolute space or over that of the inertial
system became possible only because the concept of the material object
was gradually replaced as the fundamental concept of physics by that
of the field.”59

None of the theories of mass discussed thus far, whether global or
local, has ever gained general acceptance, for a number of reasons. First
of all, none of them predicts the masses of the elementary particles.
Furthermore, they have had to compete with a new theory that claims
not only to predict these masses, or at least their ratios, but also to re-
solve the long-standing conflict between general relativity and quantum
mechanics by unifying all the forces of nature. Although it dates back
to the late 1960s, this so-called “superstring theory” is still in a state of
rapid development and subject to considerable debate. It asserts that
the fundamental constituents of matter are not the pointlike particles
of the Standard Model but rather tiny strings, that is, one-dimensional,
closed or open, vibrating filaments. It also claims that the mass ratios
can be inferred from the patterns of the strings’ vibrations: higher modes
of vibration, admitting more wavelengths along the extensions of the
strings, correspond to higher values of mass.

Although occasionally hailed as the much-sought-after “theory of
everything,” superstring theory faces severe difficulties. The strings,
being extremely small (1020 times smaller than the proton), will prob-
ably never be observed directly in the laboratory. Furthermore, their
vibrations occur in a space of more than the four dimensions of the or-
dinary space-time manifold. A methodically embarrassing predicament
is posed by the fact that until recently there existed several different,
although equally consistent, superstring theories. It was only in 1995
that these could be interpreted as different versions of a single—but still
not completely understood—theory, the so-called M-theory (the mother

59 A. Einstein, Foreword, in M. Jammer, Concepts of Space (Cambridge, Mass.: Harvard
University Press, 1954; 3rd. ed., New York: Dover, 1993), p. xvii.
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of all theories). In short, whether the superstring theory offers a really
satisfactory understanding of the nature of mass is still an open question.
Thus, in spite of all the strenuous efforts of physicists and philosophers,
the notion of mass, although fundamental in physics, is, as we noted in
the preface, still shrouded in mystery.
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