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1. Connection between integration and differentiation

Gauss-Ostrogradsky theorem

     We transform the volume integral into a surface one:
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Here the following denotations and relations were used:
P is a multivariate function ( )kji xxxP ,, , 

ii
x∂∂=∂ / , V  volume,
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     Using formula (1.1), the definitions below can be transformed into coordinate
representation.



2

Gradient
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where summation over recurrent index is implied throughout. By definition
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By definition
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By definition
Acurl  = A×∇  = 

jiji
A ee ×∂

Stokes theorem follows from (1.3) if we take for the volume a right cylinder
with the height 0→h . Then the surface integrals over the top and bottom areas
mutually compensate each other. Next we consider the triad of orthogonal unit
vectors

m , n , 2

where m  is the normal to the top base and n  the normal to the lateral face

nm2 ×=
Multiplying the left-hand side of (1.3) by m  gives

dS
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where 2  is the tangent to the line. Multiplying the right-hand side of (1.3) by
m  gives
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where m  is the normal to the surface. Now, equating both sides, we come to the
formula sought for
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The Stokes theorem is easily generalized to a nonplanar surface (applying to it
Ampere's theorem). In this event, the surface is approximated by a polytope.
Then mutual compensation of the line integrals on common borders is used.
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2. Elements of continuum mechanics

     A medium is characterized by the volume density ( )t,xρ  and the flow

velocity ( )t,xu .

Continuity equation

     The mass balance in a closed volume is given by
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∂∂=∂ / . We get from (1.2)
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Thereof the continuity equations follows

( ) 0=∂+∂ iit
uρρ

Stress tensor

     We consider the force fd on the element dS of surface in the medium and
are interested in its dependence on normal n  to the surface

( )nfd
where
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With this purpose the total force on a closed surface is calculated. We have for
the force equilibrium at the coordinate tetrahedron
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where the normals are taken to be external to the surface
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Thence
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The force density ( )n1  is defined by
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The latter means that ( )n1  possesses the tensor property. The elements of the stress
tensor are defined by
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eσσ =

Now, using (1.2), the force on a closed surface can be computed as a volume integral
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Euler equation

     The momentum balance is given by the relation
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We have for the second term by (1.2)
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Hydrodynamics

     The stress tensor in a fluid is defined from the pressure as
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That gives for (2.4)
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Elasticity

     The solid-like medium is characterized by the displacement ( )t,xs . For small
displacements

su t∂=
and the quadratic terms in the left-hand part of (2.4) can be dropped. For an isotropic
homogeneous medium the stress tensor is determined from the Hooke's law as
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where λ and µ  are the elastic constants. That gives
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( ) ( )µλµλ ++∇+= s22 curlcurls
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where curlcurlgraddi# 2 +∇=  was used. Substituting it to (2.4) we get finally
Lame equation

( )µλρ +=∂ s2
t
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where  ρ  is constant.


