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PREFACE

Quantum field theory is the union of Einstein’s special relativity and quantum 
mechanics. It forms the foundation of what scientists call the standard model, which 
is a theoretical framework that describes all known particles and interactions with 
the exception of gravity. There is no time like the present to learn it—the Large 
Hadron Collider (LHC) being constructed in Europe will test the final pieces of the 
standard model (the Higgs mechanism) and look for physics beyond the standard 
model. In addition quantum field theory forms the theoretical underpinnings of string 
theory, currently the best candidate for unifying all known particles and forces into 
a single theoretical framework.

Quantum field theory is also one of the most difficult subjects in science. This 
book aims to open the door to quantum field theory to as many interested people as 
possible by providing a simplified presentation of the subject. This book is useful 
as a supplement in the classroom or as a tool for self-study, but be forewarned that 
the book includes the math that comes along with the subject. 

By design, this book is not thorough or complete, and it might even be considered 
by some “experts” to be shallow or filled with tedious calculations. But this book is 
not written for the experts or for brilliant graduate students at the top of the class, it 
is written for those who find the subject difficult or impossible. Certain aspects of 
quantum field theory have been selected to introduce new people to the subject, or 
to help refresh those who have been away from physics. 

After completing this book, you will find that studying other quantum field 
theory books will be easier. You can master quantum field theory by tackling the 
reference list in the back of this book, which includes a list of textbooks used in the 
development of this one. Frankly, while all of those books are very good and make 
fine references, most of them are hard to read. In fact many quantum field theory 
books are impossible to read. My recommendation is to work through this book 
first, and then tackle Quantum Field Theory in a Nutshell by Anthony Zee. Different 
than all other books on the subject, it’s very readable and is packed with great 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



physical insight. After you’ve gone through that book, if you are looking for 
mastery or deep understanding you will be well equipped to tackle the other books 
on the list.

Unfortunately, learning quantum field theory entails some background in physics 
and math. The bottom line is, I assume you have it. The background I am expecting 
includes quantum mechanics, some basic special relativity, some exposure to 
electromagnetics and Maxwell’s equations, calculus, linear algebra, and differential 
equations. If you lack this background do some studying in these subjects and then 
give this book a try. 

Now let’s forge ahead and start learning quantum field theory.

David McMahon

xvi Quantum Field Theory Demystifi ed 
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CHAPTER 1

Particle Physics 
and

Special Relativity

Quantum fi eld theory is a theoretical framework that combines quantum mechanics 
and special relativity. Generally speaking, quantum mechanics is a theory that 
describes the behavior of small systems, such as atoms and individual electrons.
Special relativity is the study of high energy physics, that is, the motion of 
particles and systems at velocities near the speed of light (but without gravity). 
What follows is an introductory discussion to give you a fl avor of what quantum 
fi eld theory is like. We will explore each concept in more detail in the following 
chapters.

There are three key ideas we want to recall from quantum mechanics, the 
fi rst being that physical observables are mathematical operators in the theory. 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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For instance, the Hamiltonian (i.e., the energy) of a simple harmonic oscillator is the 
operator

 ˆ ˆ ˆ†H a a= +⎛
⎝⎜

⎞
⎠⎟

�ω 1

2

where ˆ , ˆ†a a  are the creation and annihilation operators, and � is Planck’s constant.
The second key idea you should remember from quantum mechanics is the 

uncertainty principle. The uncertainty relation between the position operator x̂  and 
the momentum operator p̂ is

 Δ Δ ≥ˆ ˆx p
�
2

 (1.1)

There is also an uncertainty relation between energy and time.

 Δ Δ ≥E t
�
2

 (1.2)

When considering the uncertainty relation between energy and time, it’s important 
to remember that time is only a parameter in nonrelativistic quantum mechanics, 
not an operator. 

The fi nal key idea to recall from quantum mechanics is the commutation 
relations. In particular,

 [ ˆ, ˆ ] ˆˆ ˆ ˆx p xp px i= − = �

Now let’s turn to special relativity. We can jump right to Einstein’s famous equation 
that every lay person knows something about, in order to see how special relativity 
is going to impact quantum theory. This is the equation that relates energy to mass.

 E mc= 2  (1.3)

What should you take away from this equation? The thing to notice is that if there 
is enough energy—that is, enough energy proportional to a given particle’s mass as 
described by Eq. (1.3)—then we can “create” the particle. Due to conservation laws, 
we actually need twice the particle’s mass, so that we can create a particle and its 
antiparticle. So in high energy processes,

• Particle number is not fi xed.

• The types of particles present are not fi xed.

These two facts are in direct confl ict with nonrelativistic quantum mechanics. In 
nonrelativistic quantum mechanics, we describe the dynamics of a system with the 
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Schrödinger equation, which for a particle moving in one dimension with a potential 
V is

 −
∂
∂

+ =
∂
∂

�
�

2 2

22m x
V i

t

ψ ψ ψ
 (1.4)

We can extend this formalism to treat the case when several particles are present. 
However, the number and types of particles are absolutely fi xed. The Schrödinger 
equation cannot in any shape or form handle changing particle number or new types 
of particles appearing and disappearing as relativity allows. 

In fact, there is no wave equation of the type we are used to from nonrelativistic 
quantum mechanics that is truly compatible with both relativity and quantum 
theory. Early attempts to merge quantum mechanics and special relativity focused 
on generating a relativistic version of the Schrödinger equation. In fact, 
Schrödinger himself derived a relativistic equation prior to coming up with the 
wave equation he is now famous for. The equation he derived, which was later 
discovered independently by Klein and Gordon (and is now known as the 
Klein-Gordon equation) is

 
1

2

2

2

2

2

2 2

2c t x

m c∂
∂

−
∂
∂

=
ϕ ϕ ϕ

�

We will have more to say about this equation in future chapters. Schrödinger 
discarded it because it gave the wrong fi ne structure for the hydrogen atom. It is 
also plagued by an unwanted feature—it appears to give negative probabilities, 
something that obviously contradicts the spirit of quantum mechanics. This equation 
also has a funny feature—it allows negative energy states.

The next attempt at a relativistic quantum mechanics was made by Dirac. His 
famous equation is

 i
t

i c mc� �
� �∂

∂
= − ⋅∇ +

ψ α ψ β ψ2

Here, 
�α  and b are actually matrices. This equation, which we will examine in 

detail in later chapters, resolves some of the problems of the Klein-Gordon equation 
but also allows for negative energy states.

As we will emphasize later, part of the problem with these relativistic wave 
equations is in their interpretation. We move forward into a quantum theory of 
fi elds by changing how we look at things. In particular, in order to be truly 
compatible with special relativity we need to discard the notion that j and y in the 
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Klein-Gordon and Dirac equations, respectively describe single particle states. In 
their place, we propose the following new ideas: 

• The wave functions ϕ ψand are not wave functions at all, instead they are 
fi elds.

• The fi elds are operators that can create new particles and destroy particles.

Since we have promoted the fi elds to the status of operators, they must satisfy 
commutation relations. We will see later that we make a transition of the type

 [ ˆ, ˆ ] ˆ( , ), ˆ ( , )x p x t y t→ [ ]ϕ π

Here, ˆ ( , )π y t is another fi eld that plays the role of momentum in quantum fi eld 
theory. Since we are transitioning to the continuum, the commutation relation will 
be of the form

 ˆ( , ), ˆ ( , ) ( )ϕ π δx t y t i x y[ ] = −�

where x and y are two points in space. This type of relation holds within it the 
notion of causality so important in special relativity—if two fi elds are spatially 
separated they cannot affect one another. 

With fi elds promoted to operators, you might wonder what happens to the ordinary 
operators of quantum mechanics. There is one important change you should make 
sure to keep in mind. In quantum mechanics, position x̂  is an operator while time t 
is just a parameter. In relativity, since time and position are on a similar footing, we 
might expect that in relativistic quantum mechanics we would also put time and 
space on a similar footing. This could mean promoting time to an operator ˆ.t  This is 
not what is done in ordinary quantum fi eld theory, where we take the opposite 
direction—and demote position to a parameter x. So in quantum fi eld theory,

• Fields ϕ ψand are operators.

• They are parameterized by spacetime points (x, t).

• Position x and time t are just numbers that fi x a point in spacetime—they 
are not operators.

• Momentum continues to play a role as an operator.

In quantum fi eld theory, we frequently use tools from classical mechanics to 
deal with fi elds. Specifi cally, we often use the Lagrangian

 L T V= −   (1.5)
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The Lagrangian is important because symmetries (such as rotations) leave the form 
of the Lagrangian invariant. The classical path taken by a particle is the one which 
minimizes the action. 

 S L dt= ∫  (1.6)

We will see how these methods are applied to fi elds in Chap. 2.

Special Relativity
The arena in which quantum fi eld theory operates is the high energy domain of 
special relativity. Therefore, brushing up on some basic concepts in special 
relativity and familiarizing ourselves with some notation is important to gain some 
understanding of quantum fi eld theory.

Special relativity is based on two simple postulates. Simply stated, these are:

• The laws of physics are the same for all inertial observers.

• The speed of light c is a constant.

An inertial frame of reference is one for which Newton’s fi rst law holds. In 
special relativity, we characterize spacetime by an event, which is something that 
happens at a particular time t and some spatial location (x, y, z). Also notice that the 
speed of light c can serve in a role as a conversion factor, transforming time into 
space and vice versa. Space and time therefore form a unifi ed framework and we 
denote coordinates by (ct, x, y, z).

One consequence of the second postulate is the invariance of the interval. In 
special relativity, we measure distance in space and time together. Imagine a fl ash 
of light emitted at the origin at t = 0.  At some later time t the spherical wavefront 
of the light can be described by

 

c t x y z

c t x y z

2 2 2 2 2

2 2 2 2 2 0

= + +

⇒ − − − =

Since the speed of light is invariant, this equation must also hold for another 
observer, who is measuring coordinates with respect to a frame we denote by 
( , , , ).ct x y z′ ′ ′ ′  That is,

 c t x y z2 2 2 2 2 0′ − ′ − ′ − ′ =
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It follows that

 c t x y z c t x y z2 2 2 2 2 2 2 2 2 2− − − = ′ − ′ − ′ − ′

Now, in ordinary space, the differential distance from the origin to some point 
( , , )x y z  is given by

 dr dx dy dz2 2 2 2= + +

We defi ne an analogous concept in spacetime, called the interval. This is denoted 
by ds2 and is written as

 ds c dt dx dy dz2 2 2 2 2 2= − − −   (1.7)

From Eq. (1.7) it follows that the interval is invariant. Consider two observers in 
two different inertial frames. Although they measure different spatial coordinates 
( , , ) ( , , )x y z x y zand ′ ′ ′ and different time coordinates t tand ′ to label events, the 
interval for each observer is the same, that is,

 ds c dt dx dy dz c dt dx dy dz2 2 2 2 2 2 2 2 2 2 2= − − − = ′ − ′ − ′ − ′ == ′ds 2

This is a consequence of the fact that the speed of light is the same for all inertial 
observers. 

It is convenient to introduce an object known as the metric. The metric can be 
used to write down the coeffi cients of the differentials in the interval, which in this 
case are just +/−1. The metric of special relativity (“fl at space”) is given by

 ημν =
−

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (1.8)

The metric has an inverse, which in this case turns out to be the same matrix. We 
denote the inverse with lowered indices as

 ημν =
−

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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The symbol ημν is reserved for the metric of special relativity. More generally, the 
metric is denoted by gμν . This is the convention that we will follow in this book. We 
have

 
g gμν

νρ
μ
ρδ=

  (1.9)

where δμ
ρ is the Kronecker delta function defi ned by

 δ
μ ρ
μ ρμ

ρ =
=
≠

⎧
⎨
⎩

1

0

if

if

Hence Eq. (1.9) is just a statement that

 gg I− =1

where I is the identity matrix. 
In relativity, it is convenient to label coordinates by a number called an index. We 

take ct x= 0 and ( , , ) ( , , ).x y z x x x→ 1 2 3  Then an event in spacetime is labeled by the 
coordinates of a contravariant vector.

 x x x x xμ = ( , , , )0 1 2 3   (1.10)

Contravariant refers to the way the vector transforms under a Lorentz trans-
formation, but just remember that a contravariant vector has raised indices. A 
covariant vector has lowered indices as

 x x x x xμ = ( , , , )0 1 2 3

An index can be raised or lowered using the metric. Specifi cally,

 x g x x g xα αβ
β α αβ

β= =  (1.11)

Looking at the metric, you can see that the components of a covariant vector are 
related to the components of a contravariant vector by a change in sign as

 x x x x x x x x0
0

1
1

2
2

3
3= = − = − = −

We use the Einstein summation convention to represent sums. When an index is 
repeated in an expression once in a lowered position and once in a raised position, 
this indicates a sum, that is,

 s s s s s s s s s s s sα
α

α
α

α
≡ = + + +

=
∑

0

3

0
0

1
1

2
2

3
3
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So for example, the index lowering expression in Eq. (1.11) is really shorthand 
for

 x g x g x g x g x g xα αβ
β

α α α α= = + + +0
0

1
1

2
2

3
3

Greek letters such as α β μ ν, , , and are taken to range over all spacetime indices, 
that is, μ = 0 1 2 3, , , .and  If we want to reference spatial indices only, a Latin letter 
such as i, j, and k is used. That is, i = 1, 2, and 3.

LORENTZ TRANSFORMATIONS
A Lorentz transformation Λ allows us to transform between different inertial 
reference frames. For simplicity, consider an inertial reference frame ′x μ moving 
along the x axis with respect to another inertial reference frame xμ with speed 
v c< .  If we defi ne

 β γ
β

= =
−

v

c

1

1 2  (1.12)

Then the Lorentz transformation that connects the two frames is given by

 Λμ
ν

γ βγ
βγ γ

=

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

/

/

c

c

0 0

0 0

0 0 1 0

0 0 0 1

  (1.13)

Specifi cally,

 

′ = −⎛
⎝⎜

⎞
⎠⎟

′ = −⎛
⎝⎜

⎞
⎠⎟

′ =

′

x x
c

x

x x
c

x

x x

0 0 1

1 1 0

2 2

γ β

γ β

xx x3 3=

  (1.14)

We can write a compact expression for a Lorentz transformation relating two sets 
of coordinates as

 ′ =x xμ μ
ν

νΛ  (1.15)
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The rapidity φ is defi ned as

 tanhφ β= =
v

c
 (1.16)

Using the rapidity, we can view a Lorentz transformation as a kind of rotation 
(mathematically speaking) that rotates time and spatial coordinates into each other, 
that is,

 
′ = − +

′ = −

x x x

x x x

0 1 0

1 1 0

sinh cosh

cosh sinh

φ φ
φ φ

Changing velocity to move from one inertial frame to another is done by a Lorentz 
transformation and we refer to this as a boost. 

We can extend the shorthand index notation used for coordinates to derivatives. 
This is done with the following defi nition:

 

∂
∂

→
∂

∂
= ∂

∂
∂

→
∂

∂
= ∂

∂
∂

→
∂

∂
= ∂

∂
∂

→
∂

∂
= ∂

t x x x

y x z x

0 0 1 1

2 2 3 33

We can raise an index on these expressions so that

 
∂ = ∂

∂ = ∂ ∂ = −∂

μ μν
νg

i
i

0
0

In special relativity many physical vectors have spatial and time components. 
We call such objects 4-vectors and denote them with italic font (sometimes with an 
index) reserving the use of an arrow for the spatial part of the vector. An arbitrary 
4-vector Aμ  has components

 

A A A A A

A A A A A

A A

μ

μ

μ

=
= − − −

=

( , , , )

( , , , )

( ,

0 1 2 3

0 1 2 3

0
�
AA

A A A

)

( , )μ = −0

�
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We denote the ordinary vector part of a 4-vector as a 3-vector. So the 3-vector part 
of Aμ is

�
A. The magnitude of a vector is computed using a generalized dot product, 

like

 
A A A A A A A A A A A A

g A A

⋅ = = − − −

=

μ
μ

μν
μ ν

0
0

1
1

2
2

3
3

This magnitude is a scalar, which is invariant under Lorentz transformations. When 
a quantity is invariant under Lorentz transformations, all inertial observers agree on 
its value which we call the scalar product. A consequence of the fact that the scalar 
product is invariant, meaning that ′ ′ =x x x xμ

μ
μ

μ, is

 Λ Λαβ
αμ μ

βδ=  (1.17)

Now let’s consider derivatives using relativistic notation. The derivative of a 
fi eld is written as

 
∂
∂

= ∂
ϕ ϕμ μx

 (1.18)

The index is lowered because as written, the derivative is a covariant 4-vector. The 
components of the vector are 

 
∂
∂

∂
∂

∂
∂

∂
∂

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ ϕ ϕ
x x x x0 1 2 3

, , ,

We also have

 
∂
∂

= ∂
ϕ ϕ

μ

μ

x

which is a contravariant 4-vector. Like any 4-vector, we can compute a scalar 
product, which is the four-dimensional generalization of the Laplacian called the 
D’Alembertian operator which using ordinary notation is 1 2

2

2

2c t
∂
∂

− ∇ ≡ .�  Using the 
relativistic notation for derivatives together with the generalized dot product we 
have

 ∂ ∂ =
∂
∂

− ∇ ≡μ
μ

1
2

2

2
2

c t
� (1.19)



CHAPTER 1 Particle Physics and Special Relativity 11

One 4-vector that is of particular importance is the energy-momentum 4-vector 
which unifi es the energy and momentum into a single object. This is given by

 
( , ) ( , , , )

( , ) (

p E p E p p p

p E p

μ

μ

= − = − − −

⇒ = =

�

�
1 2 3

EE p p p, , , )1 2 3

 (1.20)

The magnitude of the energy-momentum 4-vector gives us the Einstein relation 
connecting energy, momentum, and mass.

 E p c m c2 2 2 2 4= +�
  (1.21)

We can always choose a Lorentz transformation to boost to a frame in which the 
3-momentum of the particle is zero

�
p = 0 giving Einstein’s famous relation 

between energy and rest mass, like

 E mc= 2

Another important 4-vector is the current 4-vector J. The time component of this 
vector is the charge density ρ  while the 3-vector part of J is the current density 

�
J .  

That is,

 J J J Jx y z
μ ρ= ( , , , )  (1.22)

The current 4-vector is conserved, in the sense that

 ∂ =μ
μJ 0   (1.23)

which is nothing other than the familiar relation for conservation of charge as shown 
here.

 

∂ = ∂ + ∂ + ∂ + ∂ =

⇒
∂
∂

+ ∇ ⋅ =

μ
μ ρ
ρ

J J J J

t
J

t x
x

y
y

z
z 0

0
�
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A Quick Overview of Particle Physics
The main application of quantum fi eld theory is to the study of particle physics. 
This is because quantum fi eld theory describes the fundamental particles and their 
interactions using what scientists call the standard model. In this framework, the 
standard model is believed to describe all physical phenomena with the exception 
of gravity. There are three fundamental interactions or forces described in the 
standard model:

• The electromagnetic interaction

• The weak interaction

• The strong interaction

Each force is mediated by a force-carrying particle called a gauge boson. 
Being a boson, a force-carrying particle has integral spin. The gauge bosons for 
the electromagnetic, weak, and strong forces are all spin-1 particles. If gravity is 
quantized, the force-carrying particle (called the graviton) is a spin-2 particle. 

Forces in nature are believed to result from the exchange of the gauge bosons. 
For each interaction, there is a fi eld, and the gauge bosons are the quanta of that 
fi eld. The number of gauge bosons that exist for a particular fi eld is given by the 
number of generators of the fi eld. For a particular fi eld, the generators come from 
the unitary group used to describe the symmetries of the fi eld (this will become 
clearer later in the book).

THE ELECTROMAGNETIC FORCE
The symmetry group of the electromagnetic fi eld is a unitary transformation, called 
U( ).1  Since there is a single generator, the force is mediated by a single particle, 
which is known to be massless. The electromagnetic force is due to the exchange of 
photons, which we denote by γ . The photon is spin-1 and has two polarization 
states. If a particle is massless and spin-1, it can only have two polarization states. 
Photons do not carry charge.

THE WEAK FORCE
The gauge group of the weak force is SU( )2  which has three generators. The three 
physical gauge bosons that mediate the weak force are W W+ −, , and Z. As we will 
see, these particles are superpositions of the generators of the gauge group. The 
gauge bosons for the weak force are massive.
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• W +  has a mass of 80 GeV/c2  and carries +1 electric charge.

• W −  has a mass of 80 GeV/c2 and carries −1 electric charge.

• Z has a mass of 91 GeV/c2 and is electrically neutral.

The massive gauge bosons of the weak interaction are spin-1 and can have three 
polarization states.

THE STRONG FORCE
The gauge group of the strong force is SU( )3  which has eight generators. The 
gauge bosons corresponding to these generators are called gluons. Gluons mediate 
interactions between quarks (see below) and are therefore responsible for binding 
neutrons and protons together in the nucleus. A gluon is a massless spin-1 particle, 
and like the photon, has two polarization states. Gluons carry the charge of the strong 
force, called color. Since gluons also carry color charge they can interact among 
themselves, something that is not possible with photons since photons carry no charge. 
The theory that describes the strong force is called quantum chromodynamics.

THE RANGE OF A FORCE
The range of a force is dictated primarily by the mass of the gauge boson that 
mediates this force. We can estimate the range of a force using simple arguments 
based on the uncertainty principle. The amount of energy required for the exchange 
of a force mediating particle is found using Einstein’s relation for rest mass as

 Δ ≈E mc2

Now we use the uncertainty principle to determine how long the particle can exist 
as shown here.

 
Δ ≈

Δ
=t

E mc

� �
2

The special theory of relativity tells us that nothing travels faster than the speed 
of light c. So, we can use the speed of light to set an upper bound on the velocity of 
the force-carrying particle, and estimate the range it travels in a time Δt, that is,

 

Velocity =
distance

time

⇒ Δ = Δ =x c t
c

m

�
cc mc2

=
�
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This is the range of the force. From this relation, you can see that if m x→ Δ → ∞0, . So 
the range of the electromagnetic force is infi nite. The range of the weak force, 
however, is highly constrained because the gauge bosons of the weak force have 
large masses. Plugging in the mass of the W as 80 GeV/c2  you can verify that the 
range is

 Δ ≈ −x 10 3 fm

This explains why the weak force is only felt over nuclear distances. This 
argument does not apply to gluons, which are massless, because the strong force is 
more complicated and involves a concept known as confi nement. As stated above, 
the charge of the strong force is called color charge, and gluons carry color. Color 
charge has a strange property in that it exerts a constant force that binds color-
carrying particles together. This can be visualized using the analogy of a rubber 
band. The stronger you pull on the rubber band, the tighter it feels. If you don’t pull 
on it at all, it hangs loose. The strong force acts like a rubber band. At very short 
distances, it is relaxed and the particles behave as free particles. As the distance 
between them increases, the force gets them back in stronger pulling. This limits 
the range of the strong force, which is believed to be on the order of 10 15− m, the 
dimension of  a nuclear particle. As a result of confi nement, gluons are involved in 
mediating interactions between quarks, but are only indirectly responsible for the 
binding of neutrons and protons, which is accomplished through secondary particles 
called mesons.

Elementary Particles
The elementary particles of quantum fi eld theory are treated as mathematical point-
like objects that have no internal structure. The particles that make up matter all 
carry spin-1/2 and can be divided into two groups, leptons and quarks. Each group 
comes in three “families” or “generations.” All elementary particles experience the 
gravitational force.

LEPTONS
Leptons interact via the electromagnetic and weak interaction, but do not participate 
in the strong interaction. Since they do not carry color charge, they do not participate 
in the strong interaction. They can carry electric charge e, which we denote as −1
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(the charge of the electron), or they can be electrically neutral. The leptons include 
the following particles:

• The electron e carries charge −1 and has a mass of 0.511 MeV/c2.  

• The muon μ− carries charge −1 and has a mass of 106 MeV/c2.

• The tau τ − carries charge −1 and has a mass of 1777 MeV/c2.

Each type of lepton described above defi nes one of the three families that make up 
the leptons. In short, the muon and tau are just heavy copies of the electron. 
Physicists are not sure why there are three families of particles. The muon and tau 
are unstable and decay into electrons and neutrinos.

Corresponding to each particle above, there is a neutrino. It was thought for a 
long time that neutrinos were massless, but recent evidence indicates this is not the 
case, although experiment puts small bounds on their masses. Like the electron, 
muon, and tau, the three types of neutrinos come with masses that increase with 
each family. They are electrically neutral and are denoted by

• Electron neutrino νe  

• Muon neutrino νμ

• Tau neutrino ντ

Since they are electrically neutral, the neutrinos do not participate in the electro-
magnetic interaction. Since they are leptons, they do not participate in the strong 
interaction. They interact only via the weak force.

To each lepton there corresponds an antilepton. The antiparticles corresponding 
to the electron, muon, and tau all carry charge of +1, but they have the same masses. 
They are denoted as follows:

• The positron e+ carries charge +1 and has a mass of 0.511 MeV/c2.

• The antimuon μ+ carries charge +1 and has a mass of 106 MeV/c2.

• The antitau τ + carries charge +1 and has a mass of 1777 MeV/c2.

In particle physics, we often indicate an antiparticle (a particle with the same 
properties but opposite charge) with an overbar; so if p is a given particle, we can 
indicate its corresponding antiparticle by p. We will see later that charge is not the 
only quantum number of interest; a lepton also carries a quantum number called 
lepton number. It is +1 for a particle and −1 for the corresponding antiparticle. The 
antineutrinos ν ν νμ τe , , ,and  like their corresponding particles, are also electrically 
neutral, but while the neutrinos ν ν νμ τe , , and  all have lepton number +1, the 
antineutrinos ν ν νμ τe , , and  have lepton number −1.
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In particle interactions, lepton number is always conserved. Particles that are not 
leptons are assigned a lepton number 0. Lepton number explains why there are 
antineutrinos, because they are neutral like ordinary neutrinos. Consider the beta 
decay of a neutron as shown here.

 n p e e→ + + ν

A neutron and proton are not leptons, hence they carry lepton number 0. The lepton 
number must balance on each side of the reaction. On the left we have total lepton 
number 0. On the right we have

 0 + +n ne eν

Since the electron is a lepton, ne = 1. This tells us that the neutrino emitted in this 
decay must be an antineutrino, and the lepton number is n

eν = −1 allowing lepton 
number to be conserved in the reaction.

QUARKS
Quarks are fundamental particles that make up the neutron and proton. They carry 
electrical charge and hence participate in the electromagnetic interaction. They also 
participate in the weak and strong interactions. Color charge, which is the charge 
of the strong interaction, can come in red, blue, or green. These color designations 
are just labels, so they should not be taken literally. There is also “anticolor” charge, 
antired, antiblue, and antigreen. Color charge can only be arranged such that the 
total color of a particle combination is white. There are three ways to get white 
color charge:

• Put three quarks together, one red, one blue, and one green.

• Put three quarks together, one antired, one antiblue, and one antigreen.

• Put two quarks together, one colored and one anticolored, for example a red 
quark and an antired quark.

The charge carried by a quark is −1/3 or +2/3 (in units of electric charge e). There 
are six types or “fl avors” of quarks:

• Up quark u with charge +2/3

• Down quark d with charge −1/3

• Strange quark s with charge +2/3
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• Charmed quark c with charge −1/3

• Top quark t with charge +2/3

• Bottom quark b with charge −1/3

Like the leptons, the quarks come in three families. One member of a family has 
charge +2/3 and the other has charge −1/3. The families are (u,d), (s,c), and (t,b). With 
each family, the mass increases. For example, the mass of the up quark is only

 mu ≈ 4 MeV/c2

while the mass of the top quark is a hefty

 mt ≈ 172 GeV/c2

which is as heavy as a single gold nucleus. Like the leptons, there are antiparticles 
corresponding to each quark. 

Bound states of quarks are called hadrons. Bound states of observed quarks 
consist of two or three quarks only. A baryon is a hadron with three quarks or three 
antiquarks. Two famous baryons are

• The proton, which is the three-quark state uud

• The neutron, which is the three-quark state udd

Bound states consisting of a quark and antiquark are called mesons. These 
include:

The pion π 0 = uu or dd

The charged pion π π+ −= ud or = ud

SUMMARY OF PARTICLE GENERATIONS OR FAMILIES
The elementary particles come in three generations:

• The fi rst generation includes the electron, electron neutrino, the up quark, 
the down quark, and the corresponding antiparticles.

• The second generation includes the muon, muon neutrino, strange quark, 
and charmed quark, along with the corresponding antiparticles.

• The third generation includes the tau, the tau neutrino, the top quark, and 
the bottom quark, along with the corresponding antiparticles.
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The Higgs Mechanism
As the standard model of particle physics is formulated, the masses of all the 
particles are 0. An extra fi eld called the Higgs fi eld has to be inserted by hand to 
give the particles mass. The quantum of the Higgs fi eld is a spin-0 particle called 
the Higgs boson. The Higgs boson is electrically neutral. 

The Higgs fi eld, if it exists, is believed to fi ll all of empty space throughout the 
entire universe. Elementary particles acquire their mass through their interaction 
with the Higgs fi eld. Mathematically we introduce mass into a theory by adding 
interaction terms into the Lagrangian that couple the fi eld of the particle in question 
to the Higgs fi eld. Normally, the lowest energy state of a fi eld would have an 
expectation value of zero. By symmetry breaking, we introduce a nonzero lowest 
energy state of the fi eld. This procedure leads to the acquisition of mass by the 
particles in the theory. 

Qualitatively, you might think of the Higgs fi eld by imagining the differences 
between being on land and being completely submerged in water. On dry land, you 
can move your arm up and down without any trouble. Under water, moving your 
arm up and down is harder because the water is resisting your movement. We can 
imagine the movement of elementary particles being resisted by the Higgs fi eld, with 
each particle interacting with the Higgs fi eld at a different strength. If the coupling 
between the Higgs fi eld and the particle is strong, then the mass of the particle is large. 
If it is weak, then the particle has a smaller mass. A particle like the photon with 
zero rest mass doesn’t interact with the Higgs fi eld at all. If the Higgs fi eld didn’t 
exist at all, then all particles would be massless. It is not certain what the mass of 
the Higgs boson is, but current estimates place an upper limit of ≈140 GeV/c2. 
When the Large Hadron Collider begins operation in 2008, it should be able to 
detect the Higgs, if it exists.

Grand Unifi cation
The standard model, as we have described above, consists of the electromagnetic 
interaction, the weak force, and quantum chromodynamics. Theorists would like 
to unify these into a single force or interaction. Many problems remain in 
theoretical physics, and in the past, many problems have been solved via some 
kind of unifi cation. In many cases two seemingly different phenomena are actually 
two sides of the same coin. The quintessential example of this type of reasoning 
is the discovery by Faraday, Maxwell, and others that light, electricity, and 
magnetism are all the same physical phenomena that we now group together 
under electromagnetism. 
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Electromagnetism and the weak force have been unifi ed into a single theoretical 
framework called electroweak theory. A grand unifi ed theory or GUT is an attempt 
to bring quantum chromodynamics (and hence the strong force) into this unifi ed 
framework.

If such a theory is valid, then there is a grand unifi cation energy at which the 
electromagnetic, weak, and strong forces become unifi ed into a single force. There 
is some support for this idea since the electromagnetic and weak force are known 
to become unifi ed at high energies (but at lower energies than where unifi cation 
with the strong force is imagined to occur). 

Supersymmetry
There exists yet another unifi cation scheme beyond that tackled by the GUTs. In 
particle physics, there are two basic types of particles. These include the spin-1/2 
matter particles (fermions) and the spin-1 force-carrying particles (bosons). In 
elementary quantum mechanics, you no doubt learned that bosons and fermions 
obey different statistics. While the Pauli exclusion principle prevents two fermions 
from inhabiting the same state, there is no such limitation for bosons.

One might wonder why there are these two types of particles. In supersymmetry, 
an attempt is made to apply the reasoning of Maxwell and propose that a symmetry 
exists between bosons and fermions. For each fermion, supersymmetry proposes 
that there is a boson with the same mass, and vice versa. The partners of the known 
particles are called superpartners. Unfortunately, at this time there is no evidence 
that this is the case. The fact that the superpartners do not have the same mass 
indicates either that the symmetry of the theory is broken, in which case the masses 
of the superpartners are much larger than expected, or that the theory is not correct 
at all and supersymmetry does not exist. 

String Theory
The ultimate step forward for quantum fi eld theory is a unifi ed theory known as 
string theory. This theory was originally proposed as a theory of the strong interaction, 
but it fell out of favor when quantum chromodynamics was developed. The basic 
idea of string theory is that the fundamental objects in the universe are not pointlike 
elementary particles, but are instead objects spread out in one dimension called 
strings. Excitations of the string give the different particles we see in the universe. 

String theory is popular because it appears to be a completely unifi ed theory. 
Quantum fi eld theory unifi es quantum mechanics and special relativity, and as a 
result is able to describe interactions involving three of the four known forces. 
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Gravity, the fourth force, is left out. Currently gravity is best described by Einstein’s 
general theory of relativity, a classical theory that does not take quantum mechanics 
into account.

Efforts to bring quantum theory into the gravitational realm or vice versa have 
met with some diffi culty. One reason is that interactions at a point cause the theory 
to “blow up”—in other words you get calculations with infi nite results. By proposing 
that the fundamental objects of the theory are strings rather than point particles, 
interactions are spread out and the divergences associated with gravitational 
interactions disappear. In addition, a spin-2 state of the string naturally arises in 
string theory. It is known that the quantum of the gravitational fi eld, if it exists, will 
be a massless spin-2 particle. Since this arises naturally in string theory, many 
people believe it is a strong candidate for a unifi ed theory of all interactions.

Summary
Quantum fi eld theory is a theoretical framework that unifi es nonrelativistic quantum 
mechanics with special relativity. One consequence of this unifi cation is that 
the types and number of particles can change in an interaction. As a result, the 
theory cannot be implemented using a single particle wave equation. The fundamental 
objects of the theory are quantum fi elds that act as operators, able to create or 
destroy particles. 

Quiz
 1. A quantum fi eld

 (a) Is a fi eld with quanta that are operators

 (b) Is a fi eld parameterized by the position operator

 (c) Commutes with the Hamiltonian

 (d) Is an operator that can create or destroy particles

 2. The particle generations

 (a) Are in some sense duplicates of each other, with each generation 
having increasing mass

 (b) Occur in pairs of three particles each

 (c) Have varying electrical charge but the same mass

 (d) Consists of three leptons and three quarks each



CHAPTER 1 Particle Physics and Special Relativity 21

 3. In relativistic situations

 (a) Particle number and type is not fi xed

 (b) Particle number is fi xed, but particle types are not

 (c) Particle number can vary, but new particle types cannot appear

 (d) Particle number and types are fi xed

 4. In quantum fi eld theory

 (a) Time is promoted to an operator

 (b) Time and momentum satisfy a commutation relation

 (c) Position is demoted from being an operator 

 (d) Position and momentum continue to satisfy the canonical commutation 
relation

 5. Leptons experience

 (a) The strong force, but not the weak force

 (b) The weak force and electromagnetism

 (c) The weak force only

 (d) The weak force and the strong force

 6. The number of force-carrying particles is

 (a) Equivalent to the number of generators for the fi elds gauge group

 (b) Random

 (c) Proportional to the number of fundamental matter particles involved in 
the interaction

 (d) Proportional to the number of generators minus one

 7. The gauge group of the strong force is:

 (a) SU(2)

 (b) U(1)

 (c) SU(3)

 (d) SU(1)

 8. Antineutrinos

 (a) Have charge -1 and lepton number 0

 (b) Have lepton number +1 and charge 0

 (c) Have lepton number -1 and charge 0

 (d) Are identical to neutrinos, since they carry no charge
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 9. The lightest family of elementary particles is

 (a) The electron, muon, and neutrino

 (b) The electron, up quark, and down quark

 (c) The electron, electron neutrino, up quark, and down quark

 (d) The electron and its antiparticle

 10. The Higgs fi eld

 (a) Couples the W and Z bosons to each other

 (b) Is a zero mass fi eld

 (c) Has zero mass and charge +1

 (d) Gives mass to elementary particles



CHAPTER 2

Lagrangian Field 
Theory

We begin our study of quantum fi eld theory by building up some fundamental 
mathematical tools that can be applied to any fundamental physical theory. The main 
quantity of interest in this chapter is a function known as the Lagrangian, which is 
constructed by taking the difference of the kinetic and potential energies. In classical 
mechanics the Lagrangian is an equivalent method to Newtonian mechanics that can 
be used to derive the equations of motion. When Lagrangian methods are applied to 
fi elds, we can use the same techniques to derive the fi eld equations.

Basic Lagrangian Mechanics
For now, we work in one spatial dimension x and consider the motion of a single 
particle. Let T be the kinetic energy of the particle moving in a potential V. The 
Lagrangian L is defi ned as

 L = T − V (2.1)

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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The Lagrangian is a foundational concept which captures all the dynamics of the 
system and allows us to determine many useful properties such as averages and 
dynamic behavior. 

Given L we can fi nd the equations of motion from the Euler-Lagrange equations. 
For a single particle moving in one dimension, these are given by the single equation.
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L
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x
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∂
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0  (2.2)

where we have used a dot to denote differentiation with respect to time, that is,
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EXAMPLE 2.1
Consider a particle of mass m with kinetic energy T mx= 1

2
2�  moving in one dimension

in a potential V(x). Use the Euler-Lagrange equations to fi nd the equation of motion.

SOLUTION
We follow fi ve basic steps. (1) First we write down the Lagrangian L, then we 
calculate the derivatives we need for the Euler-Lagrange equation. (2) The fi rst is 
the derivative of L with respect to �x, ∂

∂
L
x� . (3) We take the time derivative of this 

quantity, d
dt

L
x( )∂

∂ � . (4) Next is the derivative of L with respect to x, ∂
∂

L
x
. (5) We are 

fi nally able to form the equation d
dt

L
x

L
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∂
∂
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Begin by writing the Lagrangian [step (1)] which is

 
L mx V x= −

1

2
2� ( )

 

Next is the derivative of L with respect to �x. When doing calculations involving the 
Lagrangian, we treat �x  just as though it were an independent variable. For example, 

∂
∂ � � �x x x( ) =2 2  and ∂

∂ �x V x( ) = 0. Applying this [step (2)] we get
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which is a momentum term: mass times velocity. Now we take the time derivative 
of this momentum [step (3)] which is
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and we have mass times acceleration. The remaining derivative is now a simple 
calculation [step (4)], that is,
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∂
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Next [step (5)] is writing the equation which describes the dynamical behavior of 
the system, like
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This elegant result is quite familiar. From classical mechanics, we recall that if a 
force F is conservative then

�
F V= −∇  

In one dimension this becomes

 
F

V

x
= −

∂
∂  

Therefore, ∂
∂

∂
∂= − =L

x
V
x F. Using our calculation we have

mx
V

x
F�� = − =

∂
∂  

Hence we arrive at Newton’s second law,

 F mx ma= =��  

where the acceleration a is given by a d x dt x= =2 2/ .��

EXAMPLE 2.2
Consider a particle of mass m undergoing simple harmonic motion. The force on 
the particle is given by Hooke’s law F x kx( ) = − . Determine the equation of motion 
by using the Euler-Lagrange equation.

SOLUTION
Once again, the kinetic energy is given by

 
T mx=

1

2
2�

 



26 Quantum Field Theory Demystifi ed

We integrate the force F x kx( ) = −  to compute the potential and fi nd that

 V k x=
1

2
2  

Using Eq. (2.1) the Lagrangian is [step (1)]

 L T V mx k x= − = −
1

2

1

2
2 2�  

[step (2)] ∂
∂

∂
∂� � � �x xL mx kx mx( ) ( ) .= − =1

2
2 1

2
2

 
As above, [step (3)] the time derivative of 

the momentum is a force d
dt mx mx( )� ��=  and the last derivative [step (4)] is 
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To obtain the equation of motion [step (5)] for the particle we use Eq. (2.2). We have

 mx kx�� = −  

This is the familiar equation of a simple harmonic oscillator, that is,

 d x

dt
x

2

2 0
2 0+ =ω  

where the natural frequency ω0
2 = k m/ .

The Action and the Equations of Motion
If we integrate the Lagrangian with respect to time, we obtain a new quantity called 
the action which we denote by S

 S L dt= ∫  (2.3)

The action is functional because it takes a function as argument and returns a number. 
Particles always follow a path of least action. By varying (minimzing the variance 
of) the action, we can determine the path actually followed by a particle. Consider 
two fi xed points x t( )1  and x t( )2 . There are an infi nite number of paths connecting 
these points. This means that there are an infi nite number of paths for the particle to 
follow between these two points. The actual path that the particle follows is the path 
of least action. The path of least action represents a minimum. To fi nd this path we 
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minimize the variance of the action. We do this by describing the unknown action 
as minimal term and a variation.

 S S S→ + δ  

then the path followed by the particle is the one for which

 δS = 0  (2.4)

This is the path with zero variation. This is the path of least action.
Computing the variation δS  leads to the equations of motion for the system. To 

see how this works, we start with a simple example, returning to the derivation of 
Newton’s second law. We consider a small change in coordinates given by

 x x→ + ε  

where ε  is small. This variation is constrained to keep the end points fi xed, that is,

 ε ε( ) ( )t t1 2 0= =  (2.5)

Using a Taylor expansion, the potential can be approximated as

 
V x V x

dV

dx
( ) ( )+ ≈ +ε ε

 

The action then becomes

 
S Ldt mx V x dt m x

t

t

t

t

t

t
= = − = +∫ ∫ ∫

1

2

1

2

1

21

2

1

2
2� � �( ) ( εε ε) ( )2 − −⎛

⎝⎜
⎞
⎠⎟V x

dV

dx
dt

 

Now we expand out the fi rst term, the kinetic energy term, giving

 ( )� � � � � � � � �x x x x x+ = + + ≈ +ε ε ε ε2 2 2 22 2  

We dropped the �ε 2 term, since by assumption ε is small, so squaring it gives a term 
we can neglect. That is, we only keep the leading order terms. So we have

 
S m x x V x

dV

dx
dt

t

t
= + − +⎛

⎝⎜
⎞
⎠⎟∫

1

2
2

1

2 2( ) ( )� � �ε ε
 

This expression can be written in a more useful fashion with some manipulation. 
The idea is to isolate the terms containing ε. We can do this by applying integration 
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by parts to the 2 � �xε  term, transferring the time derivative from ε to �x. First let’s 
recall the formula for integration by parts 

 f t
dg

dt
dt f t g t

t

t
g t

df

dt
d

t

t

t

t
( ) ( ) ( ) ( )

1

2

1

22

1
∫ ∫= − tt  (2.6)

In our case, f t x( ) = � and dg
dt = �ε . Recalling Eq. (2.5), the fact that the variation 

vanishes at the end points of the interval, the boundary term vanishes in our case. 
Hence,
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We can now collect the ε terms

 
S mx dt mx dt V x
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t
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The requirement that δS = 0 can be satisfi ed only if the integral of  the second term
is 0. Since the end points are arbitrary, the integrand must be identically 0, that is,

 mx
dV

dx
mx

dV

dx
�� ��+ = ⇒ = −0  

Now let’s consider a more general situation where there are N generalized 
coordinates q ti ( ) where i N= 1, ,… . Considering a Lagrangian expressed in terms 
of these coordinates and their fi rst derivatives only, we have an action of the form

 S L q q dt
t

t
= ∫ ( , )�

1

2  

In this case the system evolves from some initial point q q t1 1= ( ) to some fi nal point 
q q t2 2= ( ). To fi nd the trajectory followed by the system, we apply the principle of  
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least action and solve δS = 0. Once again, the end points of the trajectory are fi xed 
so that

 δ δq t q t( ) ( )1 2 0= =  

Also note that

 δ δ�q t
d

dt
q( ) ( )=  (2.7)

Then,
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To move from the second to the third line, we applied Eq. (2.7). Now we use 
integration by parts on the second term, giving

 δ δ δS
L

q
q

d

dt

L

q
q

i
i

i
i

i
t

t
=

∂
∂

−
∂
∂

⎛
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⎞
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⎡

⎣
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⎥
⎥

∑ �1

22∫ dt  

For this expression to vanish, since δqi is arbitrary each coordinate index must satisfy

 
∂
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−
∂
∂

⎛
⎝⎜

⎞
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=
L

q

d

dt

L

qi i�
0  (2.8)

which are of course the Euler-Lagrange equations and i N= 1, ,… . Therefore, we see 
that the principle of least action gives rise to the Euler-Lagrange equations. Hence the 
Lagrangian satisfi es the Euler-Lagrange equation independently for each coordinate.

Canonical Momentum and the Hamiltonian
In Examples 2.1 and 2.2 we saw that the derivative of the kinetic energy with 
respect to velocity was the momentum: a completely classical result, that is,

∂
∂

∂
∂

∂
∂� � �

� �
x

L
x

T V
x

mx mx( ) = −( ) = ⎛
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2
2
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This result can be made more general and more useful. The canonical momentum 
is defi ned as

 p
L

qi
i

=
∂
∂ �

  (2.9)

This allows us to defi ne a Hamiltonian function, which is given in terms of the 
Lagrangian and the canonical momentum as

 H p q p q Li i
i

( , ) = −∑ �  (2.10)

Lagrangian Field Theory
Now that we have reviewed the basics of the Lagrangian formalism, we are 
prepared to generalize these techniques and apply them to fi elds, that is, functions 
on spacetime ϕ( , )x t  which we write more compactly as ϕ( )x . In the continuous 
case, we actually work with the Lagrangian density.

 L T V d x= − = ∫L 3  (2.11)

The action S is then the time integral of this expression.

 S dt L d x= = ∫∫ L 4   (2.12)

Typically, the Lagrangians encountered in quantum fi eld theory depend only on the 
fi elds and their fi rst derivatives.

 L L= ∂( , )ϕ ϕμ  

 
L L→ ( , )ϕ ∂ ϕμ

 (2.13)

Moreover we are interested in fi elds that are local, meaning that at a given spacetime 
point x, the Lagrangian density depends on the fi elds and their fi rst derivatives 
evaluated at that point. 

Now we apply the principle of least action to Eq. (2.12). We vary the action with 
respect to the fi eld ϕ( )x

 
and with respect to the fi rst derivative of the fi eld ∂μϕ ( )x  

as follows:

 

0
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Now we use the fact that

 
δ ϕ δϕμ μ( ) ( )∂ = ∂

 

and apply integration by parts to the second term in this expression. The boundary 
terms vanish because the end points are fi xed and the second term becomes

 d x d x

d x

4 4

4

∂
∂ ∂

∂ =
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∂ ∂
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= − ∂

∫ ∫
L L
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All together, the variation of the action is then
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What does it mean when an integral is 0? There are two cases: Either there is 
cancellation because the integrand takes positive and negative values or the integrand 
is 0 over the entire domain of integration. In this case the domain of integration can 
vary, so we can’t rely on cancellation and we know the integrand must be 0. That 
is, the term inside the braces vanishes. This gives us the Euler-Lagrange equations 
for a fi eld j.

 ∂
∂

− ∂
∂

∂ ∂
⎛

⎝
⎜

⎞

⎠
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L L

ϕ ϕμ
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0   (2.14)

The Einstein summation convention is in force, so there is an implied sum on the 
second term. That is,
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The canonical momentum density for the fi eld is given by

 π
ϕ

( )x =
∂
∂
L

�
 (2.15)
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just as in the classical case. The Hamiltonian density is then

 H L= −π ϕ( ) ( )x x�  (2.16)

To obtain the Hamiltonian, we integrate this density over space

 H d x= ∫H 3  (2.17)

EXAMPLE 2.3
Find the equation of motion and the Hamiltonian corresponding to the Lagrangian

 L = ∂ −{ }1

2
2 2 2( )μϕ ϕm  

SOLUTION
We can fi nd the fi eld equations with a straightforward application of Eq. (2.14). 
Let’s follow the fi ve-step process from the previous examples. Since we are given 
the Lagrangian, step (1) is done. The remaining steps require some insight.

The trick in doing the problems is that we treated ∂μϕ  as a variable. If you need a 
crutch to get used to thinking this way, as an analogy think of ϕ  as x and ∂μϕ  as y. 
Then ∂

∂ ∂ϕ μϕ[ ( ) ]1
2

2  is like calculating ∂
∂ =x y[ ( ) ] .1

2
2 0

Now we are ready for step (2), compute ∂
∂ ∂ ϕμ( ) ( )L . 

Begin by expanding the fi rst term in the Lagrangian:
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Hence, we have
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Using our observation that we simply act like ∂μϕ  is a variable when computing 
these derivatives, it is clear that
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∂ ∂
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[ ]
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μϕ
ϕm2 2 0  

This means we are left with
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Meaning that

 
∂

∂ ∂
= ∂

L

[ ]μ

μ

ϕ
ϕ  

Step (3) entails taking the derivative of this result.

 ∂ ∂
∂ ∂ ϕ

∂ ∂ ϕμ
μ

μ
μL

[ ]
( )

⎛

⎝
⎜

⎞

⎠
⎟ =  

Next, step (4) is the easiest.
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Finally step (5) is to form the equations of motion.
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Using ∂ ∂ = − ∇∂
∂μ

μ 2

2
2

t
, the fi eld equations corresponding to the Lagrangian given in 

this problem can be written as
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EXAMPLE 2.4
Derive the sine-Gordon equation ∂

∂
∂
∂− + =

2

2

2

2 0ϕ ϕ ϕ
t x

sin from the Lagrangian

 L = ∂ − ∂{ } +
1
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SOLUTION
First we calculate
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The Lagrangian only has one spatial coordinate, so
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Now tackling the time and space derivatives separately leads us to
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and so
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Therefore, the equation of motion in this case is

 � �ϕ ϕ ϕ+ = + =sin ( sin) 0  

This equation is called the sine-Gordon equation, due to its resemblance to the 
Klein-Gordon equation.

Symmetries and Conservation Laws
A symmetry is a change in perspective that leaves the equations of motion invariant. 
For example, the change could be a translation in space, a change in time or a 
rotation. These are external symmetries, that is, they depend upon changes in 
spacetime. There also exist internal symmetries, changes in the fi elds that do not 
involve changes with respect to spacetime at all. 

A famous theorem in classical mechanics which is very important is known as 
Noether’s theorem. This theorem allows us to relate symmetries to conserved quantities 
like charge, energy, and momentum. Mathematically, a symmetry is some kind of 
variation to the fi elds or the Lagrangian that leaves the equations of motion invariant. 
We will see how to make such a change and then deduce a conserved quantity.

Two of the most fundamental results of physics, conservation of energy and 
momentum, are due to a symmetry that results from a small displacement in 
spacetime. That is we let the spacetime coordinates vary according to

 x x aμ μ μ→ +  (2.18)

where aμ is a small and arbitrary parameter describing a displacement in spacetime. 
Expanding in Taylor, the fi eld changes according to

 ϕ ϕ ϕ ϕμ
μ( ) ( ) ( )x x a x a→ + = + ∂   (2.19)

Under a small variation (perturbation), the fi eld can be described as

ϕ ϕ δϕ→ +
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This means we can write the variation in the fi eld explicitly as

 δϕ ϕμ
μ= ∂a  (2.20)

Now let’s reconsider the variation of the Lagrangian. We have, in the case of a 
Lagrangian depending only on the fi eld and its fi rst derivatives,

 δ
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From the Euler-Lagrange equations [Eq. (2.14)] we know that
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Hence the variation in the Lagrangian can be written as
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Now we have an expression that can be written as a total derivative. Remember the 
product rule from ordinary calculus that ( )fg f g g f′ = ′ + ′ . We take 
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Allowing us to write
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Now we can apply Eq. (2.20). Note that the same index can only be used twice in a single 
expression, so we need to change the label used in Eq. (2.20) to another dummy index, say 
δϕ ϕ ϕμ

μ
ν

ν= ∂ = ∂a a . The quantities involved are just ordinary scalars, so we can also 
move them around and write δϕ ϕν

ν= ∂ a . So, we arrive at the following expression
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Equivalently, we can also write the variation of the Lagrangian as

 
δ δμ
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νL L L= ∂ = ∂( ) ( )a a

 

That is, we consider how it varies directly with respect to the displacement Eq. (2.18). 
Equating these two results gives
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Moving both terms to the same side of the equation gives
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Now, recall that aν  is arbitrary. So in order for this expression to vanish, the derivative 
must be zero. That is,
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This expression is so important that we give this quantity its own name. It turns out 
this is the energy-momentum tensor. We write this as

 Tν
μ

μ
ν ν

μ

ϕ
ϕ δ=

∂
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∂ −
L

L
[ ]

 (2.21)

Hence the conservation relation expressed by zero total divergence is

 ∂ =μ ν
μT 0  (2.22)

Notice that 

 T0
0 =

∂
∂

− =
L

L H
�
�

ϕ
ϕ  (2.23)

That is, T0
0

 is nothing other than the Hamiltonian density: it’s the energy density and the 
equation ∂ =0 0

0 0T  refl ects conservation of energy. The components of momentum 
density are given by Ti

0 where i runs over the spatial indices. The components of 
momentum of the fi eld are found by integrating each of these terms over space, that is,

 P d x Ti i= ∫ 3 0  (2.24)
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Conserved Currents
Now let’s go through the process used in the last section again to see how Noether’s 
theorem can be applied to derive a conserved current and an associated conserved 
charge. We let the fi eld vary by a small amount

 ϕ ϕ δϕ→ +  (2.25)

We then start from the premise that under this variation, the Lagrangian does not 
change. The variation in the Lagrangian due to Eq. (2.25) will be of the form

 L L L→ + δ  (2.26)

So what we mean is that

 δL = 0  (2.27)

Now following the usual procedure the variation of the Lagrangian due to a variation 
in the fi eld will be

 
δ

ϕ
δϕ

ϕ
δϕ

μ
μL

L L
=

∂
∂

+
∂

∂ ∂
∂

( )
( )

 

Once again, from the Euler-Lagrange equations [Eq. (2.14)] we can write

 

∂
∂

= ∂
∂

∂ ∂
⎛
⎝⎜

⎞
⎠⎟

L L

ϕ ϕμ
μ[ ]

 

Therefore, we have

 δ ϕ δϕ
ϕ

δϕμ
μ μ

μ μL
L L L

= ∂
∂

∂ ∂
⎛
⎝⎜

⎞
⎠⎟

+
∂

∂ ∂
∂ = ∂

∂
∂[ ] [ ]

( )
[∂∂

⎛
⎝⎜

⎞
⎠⎟μϕ

δϕ
]

 

Since we are operating under the premise that the variation in the fi eld does not 
change the Lagrangian [Eq. (2.27)], this leads us to the result

 ∂
∂

∂ ∂
⎛
⎝⎜

⎞
⎠⎟

=μ
μϕ

δϕL

[ ]
0  (2.28)
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We call the quantity in the parentheses a conserved current. In analogy with 
electrodynamics we denote it with the letter J and write

 J μ

μϕ
δϕ=

∂
∂ ∂
L

[ ]
 (2.29)

The conservation law Eq. (2.28) then can be written as

 ∂ =μ
μJ 0  (2.30)

This is the central result of Noether’s theorem:

• For every continuous symmetry of the Lagrangian—that is, a variation 
in the fi eld that leaves form of the Lagrangian unchanged—there is a 
conserved current whose form can be derived from the Lagrangian using 
Eq. (2.29).

There is a conserved charge associated with each conserved current that results from 
a symmetry of the Lagrangian. This is found by integrating the time component of J:

 Q d x J= ∫ 3 0  (2.31)

We see that the translation symmetry in spacetime worked out in the previous section 
that led to the energy-momentum tensor is a special case of Noether’s theorem, with 
the conserved “charges” being energy and momentum.

The Electromagnetic Field
The Maxwell or electromagnetic fi eld tensor is given by

 F A A

E E E

E B B

E B B

E

x y z

x z y

y z x

z

μν μ ν ν μ= ∂ − ∂ =

− − −
−

−
−

0

0

0

BB By x 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (2.32)

The Aμ is the usual vector potential, but this is a 4-vector whose time component is 
the scalar potential and whose spatial component is the usual vector potential used 
to write down the magnetic fi eld, that is, Aμ ψ= ( , ).

�
A  It can be shown that F μν
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satisfi es or leads to Maxwell’s equations. Note that F μν  is antisymmetric; the sign 
fl ips when the indices are interchanged. That is,

 F Fμν νμ= −  (2.33)

Without sources, the homogeneous Maxwell’s equations can be written in terms of 
the electromagnetic fi eld tensor as

 ∂ + ∂ + ∂λ μν ν λμ μ νλF F F  (2.34)

Meanwhile, the inhomogeneous Maxwell’s equations can be written as

 ∂ − =μ
μν νF J 0  (2.35)

where Jν are the current densities. It is an instructive exercise to derive Maxwell’s 
equations using a variational procedure so that you can learn how to work with 
tensors of higher order, that is, vector fi elds. In the next example we derive Eq. (2.35) 
from a Lagrangian.

EXAMPLE 2.5
Show that the Lagrangian L = − −1

4 F F J Aμν
μν μ

μ leads to the inhomogeneous 
Maxwell’s equations [Eq. (2.35)] if the potential Am is varied, leaving the current 
density constant.

SOLUTION
We begin as usual by writing the action as an integral of the Lagrangian density. 
The action in this case is

 S d x F F J A= − −⎛
⎝⎜

⎞
⎠⎟∫ 4 1

4 μν
μν μ

μ  

The variation we will compute is δ μA .  We have

 δ δ δ δμν
μν

μν
μν μ

μS d x F F F F J A= − − −⎛
⎝⎜

⎞
⎠⎟∫ 4 1

4

1

4
( ) ( )  

Let’s consider the fi rst term. Using the defi nition of the electromagnetic fi eld tensor 
Eq. (2.32), we can write F A Aμν μ ν ν μ= ∂ − ∂  and so we have

 
− = − ∂ − ∂

1

4

1

4
( ) ( )δ δ δμν

μν
μ ν ν μ

μνF F A A F
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Now we integrate by parts, transferring the derivatives from the δ νA  terms to F μν. 
This allows us to write

 
− = − ∂ − ∂

1

4

1

4
( ) ( )δ δ δμν

μν
μ ν ν μ

μνF F A A F

( )= ∂ − ∂
1

4 μ
μν

ν ν
μν

μδ δF A F A

 

But, repeated indices are dummy indices. So let’s swap μ νand  in the second term, 
and write this as

 

1

4
( )∂ − ∂μ

μν
ν μ

νμ
νδ δF A F A

 

Now we use the antisymmetry of the electromagnetic tensor under interchange of 
the indices in Eq. (2.23). This will get rid of the minus sign on the second term, 
giving

 

1

4

1

4
( ) ( )∂ − ∂ = ∂ + ∂μ

μν
ν μ

νμ
ν μ

μν
ν μ

μν
νδ δ δ δF A F A F A F A

== ∂
1

2 μ
μν

νδF A

 

So we have the result

 − = ∂
1

4

1

2
( )δ δμν

μν
μ

μν
νF F F A   (2.36)

Now let’s tackle the next term − 1
4 F Fμν

μνδ( ). In this case we have

 − = − ∂ − ∂ = − ∂
1

4

1

4

1

4
F F F A A F Aμν

μν
μν

μ ν ν μ
μν

μδ δ δ( ) ( ) ( νν ν μδ− ∂ A )  

We’re going to have to lower and raise some indices using the metric (see Chap. 1) 
to get this in the form of Eq. (2.36). The fi rst step is to raise the indices on the fi eld 
tensor term

 − ∂ − ∂ = − ∂ − ∂
1

4

1

4
F A A g g F A Aμν

μ ν ν μ
μρ νσ

ρσ μ ν νδ δ δ δ( ) ( μμ )  
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Now let’s move F ρσ  inside the parentheses and integrate by parts to transfer the 
derivative onto it

 

− ∂ − ∂ = ∂
1

4

1

4
g g F A A g g Fμρ νσ

ρσ μ ν ν μ
μρ νσ

μ ρσδ δ δ( ) [ ( ) AA F A

g g F A g g

ν ν ρσ μ

μρ νσ
μ ρσ ν

μρ νσ

δ

δ

− ∂

= ∂ −

( ) ]

( )
1

4

1

4
∂∂ν ρσ μδ( )F A

 

Now we lower the indices on the derivative operators to give

 
= ∂ − ∂

=

1

4

1

4
1

4

g g F A g g F A

g

μρ νσ
μ ρσ ν

μρ νσ
ν ρσ μ

ν

δ δ( ) ( )

σσ ρ
ρσ ν

μρ σ
ρσ μδ δ∂ − ∂( ) ( )F A g F A

1

4

 

Next, do the same thing to the vector potential terms

 

1

4

1

4
1

4

g F A g F A

F A

νσ ρ
ρσ ν

μρ σ
ρσ μ

ρ
ρσ

δ δ

δ

∂ − ∂

= ∂

( ) ( )

( ) σσ σ
ρσ

ρδ− ∂
1

4
( )F A

 

Once again, repeated indices are dummy indices so we can change the labels. 
Focusing on the second term, let’s change ρ ν σ μ→ →, .  We obtain

 

1

4

1

4
1

4

1

4

∂ − ∂

= ∂ − ∂

ρ
ρσ

σ σ
ρσ

ρ

ρ
ρσ

σ μ

δ δ

δ

( ) ( )

( )

F A F A

F A (( )F Aνμ
νδ

 

Now apply the antisymmetry of the electromagnetic tensor to the second term, to 
get rid of the minus sign as shown here.

 

1

4

1

4
1

4

1

4

∂ − ∂

= ∂ + ∂

ρ
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ν
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The relabeling procedure can also be applied to the fi rst term. This time we let 
ρ μ σ ν→ →,  and we get

 

1

4

1

4

1

4

1

4
∂ + ∂ = ∂ + ∂ρ

ρσ
σ μ

μν
ν μ

μν
ν μδ δ δ( ) ( ) ( )F A F A F A (( )

( )

F A

F A

μν
ν

μ
μν

ν

δ

δ= ∂
1

2

 

We can combine this result with Eq. (2.36), and we see that the variation in the action 
becomes

 
δ δ δ δμ

μν
ν μ

μν
ν

μ
μS d x F A F A J A= ∂ + ∂ −⎛

⎝⎜
⎞
⎠⎟∫ 4 1

2

1

2

( )= ∂ −∫ d x F J A4
μ

μν μ
νδ

 

We require that the variation in the action vanish, that is, δS = 0. Since the variation 
is arbitrary, δ νA  cannot vanish. Once more we arrive at the conclusion that the 
integral will be 0 only if the integrand is 0 everywhere in the domain. This means 
the action will only vanish if Maxwell’s equations are satisfi ed, that is,

 ∂ − =μ
μν μF J 0  

Gauge Transformations
In this section we will consider an extension of the idea of invariance, by introducing 
what is known as a gauge transformation. Here we’re only going to provide a brief 
introduction to these ideas; they will be elaborated as we proceed through the book.

The idea of a gauge transformation follows from studies of electricity and magnetism 
where we can make changes to the scalar and vector potentials ψ and A

�
 without 

changing the fi eld equations and hence the physical fi elds 
� �
E and B themselves. For 

example, recall that the magnetic fi eld 
�
B can be defi ned in terms of the vector potential  �

A using the curl relation

� � �
B = A∇ ×

A rule from vector calculus tells us that ∇ ∇ × =i
� �

( )F 0 for any vector fi eld 
�
F. 

Hence the Maxwell’s equation ∇i
�
B = 0 is still satisfi ed when we make the 
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defi nition 
� � �
B = A∇ × . Now let f be some scalar function and defi ne a new vector 

potential 
�

′A via

 
� � �

′ ∇A = A + f  

We also know from vector calculus that 
� �
∇ × ∇ =f 0. Hence we can add a term of the 

form 
�
∇f  to the vector potential with impunity if it’s mathematically convenient. 

The magnetic fi eld 
�
B is unchanged since

 � � � � � � � � � �
B = A = A + A +∇ × ′ ∇ × ∇ = ∇ × ∇ × ∇ =( )f f

�� �
∇ × A  

Therefore the magnetic fi eld, the physical quantity of interest, is unchanged by a 
transformation of the form 

� � �
′ ∇A = A + f . We call this type of transformation in 

electrodynamics a gauge transformation. There are different choices that can be 
made when implementing a gauge transformation. For example, if we impose the 
requirement that ∇i

�
A = 0, we call this the Coulomb gauge. On the other hand, if 

∇ − ∂
∂i

�
A = μ ε ψ

0 0 t
, we have what is known as the Lorentz gauge.

In fi eld theory, we arrive at a similar notion by considering transformations to the 
fi eld that leave the Lagrangian invariant. To see how this works in fi eld theory, let’s 
consider a simple example, the Klein-Gordon Lagrangian with a complex fi eld.

 L = ∂ ∂ −μ
μϕ ϕ ϕ ϕ† †m2  (2.37)

Let U be a unitary transformation applied to the fi elds such that U does not, in any 
way, depend on spacetime. That is, we let

 ϕ ϕ→ U  (2.38)

Then

 ϕ ϕ† † †→ U  (2.39)

Since the transformation is unitary, we also know that UU U U† †= = 1. Let’s see 
how this transformation affects the Lagrangian [Eq. (2.37)]. Looking at each term 
individually, we start with the fi rst term where we have

 
∂ ∂ → ∂ ∂μ

μ
μ

μϕ ϕ ϕ ϕ† † †( ) ( )U U
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But U does not depend on spacetime in any way, so the derivative operators do not 
affect it. Hence

 ∂ ∂ = ∂ ∂ = ∂ ∂μ
μ

μ
μ

μ
μϕ ϕ ϕ ϕ ϕ ϕ( ) ( ) ( )( ) ( )† † † † †U U U U

 

Similarly for the second term in Eq. (2.37), we have

 m m U U m U U m2 2 2 2ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ† † † † † †( )( ) ( )→ = =  

Therefore we see that under the transformation [Eq. (2.38)], the Lagrangian 
[Eq. (2.37)] is invariant. Since U is a constant, we can write it in the form

 U ei= Λ
 

where Λ is a constant. However, in certain contexts, Λ can also be a matrix so long 
as it is Hermitian. Since it is a constant we say that the gauge transformation in this 
case is global, it does not depend on spacetime in any way.

LOCAL GAUGE TRANSFORMATIONS
The gauge transformations that are of interest are local transformations that do 
depend on spacetime. This type of transformation satisfi es the requirements of 
special relativity—that no signal can travel faster than the speed of light. 

Let’s return to the transformation ϕ ϕ→ U . In the following, we still consider U
to be a unitary transformation, however now we let it depend on spacetime so that 
U U x= ( ). This means that terms like ∂μU will not vanish. Next consider how the 
Lagrangian is changed by the transformation ϕ ϕ→ U . We use the same Lagrangian 
we considered in the previous section, namely L = ∂ ∂ −μ

μϕ ϕ ϕ ϕ† † .m2  This time the 
second term in the Lagrangian remains invariant as shown here.

 m m U x U x m2 2 2ϕ ϕ ϕ ϕ ϕ ϕ† † † †( ) ( )→ =  

The fi rst term will change due to the spacetime dependence of U U x= ( ), that is,

 ∂ → ∂ = ∂ + ∂μ μ μ μϕ ϕ ϕ ϕ† † † † † † †( ) ( ) ( )U U U  

Similarly we fi nd that

 ∂ → ∂ = ∂ + ∂μ μ μ μϕ ϕ ϕ ϕ( ) ( ) ( )U U U  
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We can write this in a more useful form by exploiting the fact that U is unitary, 
like

 

∂ → ∂ = ∂ + ∂μ μ μ μϕ ϕ ϕ ϕ( ) ( ) ( )U U U

( ) ( )†= ∂ + ∂UU U Uμ μϕ ϕ

[ ( ) ]†= ∂ + ∂U U Uμ μϕ ϕ

 

To maintain invariance, we would like to cancel the extra term that has shown up 
here. In other words we want to get rid of 

 ( )†U U∂μ ϕ  

We can do this by introducing a new object, a spacetime dependent fi eld A A xμ μ= ( ) 
called the gauge potential. It is given the label Aμ due to the analogy with 
electrodynamics—we are introducing a hidden fi eld to keep the form of the Lagrangian 
invariant. As we will see later this has dramatic consequences, and this is one of the 
most important techniques in quantum fi eld theory.

We introduce a covariant derivative that acts on the fi eld as

 D iAμ μ μϕ ϕ ϕ= ∂ −  (2.40)

(for readers of Relativity Demystifi ed, notice the similarity to general relativity). 
Remember what the word covariant means—the form of the equations won’t 
change. We introduce this derivative operator to keep the Lagrangian invariant under 
a local gauge transformation. Recalling the effect of a global gauge transformation 
ϕ ϕ→ U , we found that

 
∂ → ∂μ μϕ ϕU

 
The covariant derivative Eq. (2.40) will allow us to recover this result in the case of the 
local gauge transformation. That is, ϕ ϕ→ U x( )  will lead to D U x Dμ μϕ ϕ→ ( ) . This 
can be accomplished if we defi ne Aμ such that it obeys the similarity transformations.

 A UA U iU Uμ μ μ→ + ∂† †  (2.41)

Note that some authors use the semicolon notation Dμ μϕ ϕ= ;  to represent the 
covariant derivative.

EXAMPLE 2.6
Consider a charged scalar particle of mass m with charge q and describe a suitable 
modifi cation of the derivative operator ∂ ∂μ μ μ→ + qA  that will yield a Lorentz 
invariant, real Lagrangian.
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SOLUTION
The fi eld equations for a complex fi eld corresponding to a charged scalar particle 
are obtained using the covariant derivative in Eq. (2.40), in this case with the form

 
i i qA∂ → ∂ −μ μ μ  

The Lagrangian is

 
L = ∂ + ∂ − −( ) ( )* *i qA i qA mμ μ μ μϕ ϕ ϕ ϕ2

 

Variation of this Lagrangian leads to the equation of motion as shown here.

 
( )i qA m∂ − − =μ μ ϕ ϕ2 2 0

 

Summary
The Lagrangian is the difference of kinetic and potential energy given by L T V= − .  It 
can be used to obtain the equations of motion for a system by applying variational calculus 
to the action S which is the integral of the Lagrangian. When extended to continuous 
systems, these techniques can be applied to fi elds to obtain the fi eld equations. For 
problems with expected symmetries or conserved quantities, we require that the 
Lagrangian remains invariant under corresponding transformations. When a given 
transformation leaves the form of the Lagrangian invariant, we call that transformation a 
symmetry. Noether’s theorem allows us to derive conservation laws, including conserved 
charges and currents from symmetries in the Lagrangian. Symmetries can be local, 
meaning that they are spacetime dependent, or they can be internal symmetries that are 
intrinsic to the system at hand. To maintain covariance of the equations, a covariant 
derivative must be introduced which necessitates the use of a gauge potential. 

 Quiz
 1. Find the equation of motion for a forced harmonic oscillator with Lagrangian

L mx m x x= − +
1

2

1

2
2 2 2� ω α

  Here α  is a constant.
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 2. Consider a Lagrangian given by

 L = − ∂ ∂ − −
1

2

1

2
2 2

μ
μϕ ϕ ϕ ϕm V ( )  

 (a) Write down the fi eld equations for this system.

 (b) Find the canonical momentum density π ( ).x

 (c) Write down the Hamiltonian.

 3. Consider a free scalar fi eld with Lagrangian L = ∂ ∂μ
μϕ ϕ and suppose that 

the fi eld varies according to ϕ ϕ α→ + , where α  is a constant. Determine 
the conserved current.

 4. Refer to the Lagrangian for a complex scalar fi eld Eq. (2.37). Determine 
the equations of motion obeyed by the fi elds ϕ  and ϕ †.

 5. Refer to Eq. (2.37) and calculate the conserved charge.

 6. Consider the action S F F d x= ∫1
4

4
μν

μν . Vary the potential according to 
A Aμ μ μϕ→ + ∂  where ϕ  is a scalar field. Determine the variation in 
the action.



CHAPTER 3

An Introduction 
to Group Theory

An abstract branch of mathematics called group theory plays a fundamental role in 
modern particle physics. The reason it does so is because group theory is related to 
symmetry. For example, an important group in physics is the rotation group, which 
is related to the fact that the laws of physics don’t change if you rotate your frame 
of reference. In general what we are after is a set of equations, or laws of physics, 
that keep the same mathematical form under various transformations. Group theory 
is related to this type of symmetry. 

Defi nitions
We begin our discussion of group theory in a somewhat abstract manner, but later 
we will get to some more concrete material. Let’s state what a group is and the four 
properties it must have.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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A group G is a set of elements {a, b, c, . . .}
 
which includes a “multiplication” or 

composition rule such that if a � G and b � G, then the product is also a member 
of the group, that is,

 ab � G (3.1)

We call this the closure property if ab = ba, we say that the group is abelian. On the 
other hand if ab ≠ ba, the group is nonabelian. The multiplication or composition 
rule is meant to convey a product in the abstract sense, the actual implementation of 
this rule can vary from group to group.

A group G must satisfy four axioms. These are  

 1. Associativity: The multiplication rule is associative, meaning (ab)c = a(bc). 

 2. Identity element: The group has an identity element e that satisfies 
ae = ea = a. The identity element for the group is unique.

 3. Inverse element: For every element a � G, there exists an inverse which we 
denote by a–1 such that aa–1 = a–1 a = e.

 4. Order: The order of the group is the number of elements that belong to G.

Representation of the Group
In particle physics we are often interested in what is called a representation of the 
group. Let’s denote a representation by F. A representation is a mapping that takes 
group elements g � G into linear operators F that preserve the composition rule of 
the group in the sense that

• F(a)F(b) = F(ab).

• The representation also preserves the identity, that is, F(e) = I.

Suppose that a,b � G and f � H where H is some other group. If the composition 
rule satisfies

 f (a) f (b) = f (ab) 

we say that G is homomorphic to H. This is a fancy way of saying that the two 
groups have a similar structure.

EXAMPLE 3.1A
Does the set of all integers form a group under addition?
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SOLUTION
The set of all integers forms a group under addition. We can take the composition 
rule to be addition. Let z

1
 � Z and z

2 
� Z. Clearly the sum

z
1
 + z

2
� Z

is another integer, so it belongs to the group. For the identity, we can take e = 0 
since

z + 0 = 0 + z = z

for any z � Z. Addition is commutative, that is,

z
1
 + z

2
 = z

2
 + z

1

Therefore the group is abelian. The inverse of z is just −z, since 

z + (–z) = e = 0

which satisfies aa–1 = a–1 a = e. 

EXAMPLE 3.1
Does the set of all integers form a group under multiplication?

SOLUTION
The set of all integers does not form a group under multiplication. We can take the 
composition rule to be multiplication. Let z

1
 � Z and z

2
 � Z. Clearly the product

z
1
z

2
 � Z 

is another integer, so it belongs to the group. For the identity, we can take e = 1 
since

z × 1 = 1 × z = z

for any z � Z. Multiplication is commutative, that is,

z
1
 × z

2
 = z

2
 × z

1

Therefore the group is abelian. The problem is the inverse: 1/z is not an integer. 

 z
z

e× = =
1

1  
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So even though an inverse exists, the inverse is not in the group, and therefore the 
set of all integers does not form a group under multiplication. 

Group Parameters
An ordinary function of position is specified by an input x, that is, we have y = f(x). 
In an analogous way, a group can also be a function of one or more inputs that we 
call parameters. 

Let a group G be such that individual elements g � G are specified by a finite set 
of parameters, say n of them. If we denote the set of parameters by

{q1, q2, . . . ,qn
}

The group element is then written as

g = G (q1, q2, . . . ,qn
) 

The identity is the group element where the parameters are all set to 0.

e = G (0, 0, . . . ,0)

Lie Groups
While there are discrete groups with a finite number of elements, most of the groups 
we will be concerned with have an infinite number of elements. However, they have 
a finite set of continuously varying parameters. 

In the expression g = G (q1, q2, . . . ,qn
) we have suggestively labeled the 

parameters as angles, since several important groups in physics are related to rota-
tions. The angles vary continuously over a finite range 0 . . . 2π. In addition, the 
group is parameterized by a finite number of parameters, the angles of rotation.

So, if a group G 

• Depends on a fi nite set of continuous parameters q
i

• Derivatives of the group elements with respect to all the parameters exist

we call the group a Lie group. To simplify the discussion we begin with a group 
with a single parameter q. We obtain the identity element by setting q  = 0

 g e( )θ θ= =0  (3.2)
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By taking derivatives with respect to the parameters and evaluating the derivative 
at q  = 0, we obtain the generators of the group. Let us denote an abstract generator 
by X. Then

 X
g

=
∂
∂ =θ θ 0  (3.3)

More generally, if there are n parameters of the group, then there will be n generators 
such that each generator is given by

 X
g

i
i

i
=

∂
∂ =θ θ 0  (3.4)

Rotations have a special property, in that they are length preserving (that is, rotate 
a vector and it maintains the same length). A rotation by –q undoes a rotation by q, 
hence rotations have an orthogonal or unitary representation. In the case of quantum 
theory, we seek a unitary representation of the group and choose the generators X

i
 

to be Hermitian. In this case 

 X i
g

i
i

i
= −

∂
∂ =θ θ 0  (3.5)

For some finite q, the generators allow us to define a representation of the group. 
Consider a small real number e > 0 and use a Taylor expansion to form a representa-
tion of the group (which we denote by D) 

D i X( )εθ εθ≈ +1

If q  = 0, then clearly the representation gives the identity. You will also recall that 
the exponential function has a series expansion

 
e x xx = + + +1

1

2
2

!
�

 

So we can define the representation of the group in terms of the exponential using

 D i
X

n
e

n

n
i X( ) limθ θ θ= +⎛

⎝⎜
⎞
⎠⎟ =

→∞
1

 
 (3.6)
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Notice that if X is Hermitian, X = X† and the representation of the group is unitary, 
since

 

D e e e

D D e

i X i X i X

i X

† †

†

( ) ( )

( ) ( ) (

†

θ
θ θ

θ θ θ

θ

= = =

⇒ =

− −

− )) ( )ei Xθ = 1  

One reason that the generators of a group are important is that they form a vector 
space. This means we can add two generators of the group together to obtain a third 
generator, and we can multiply generators by a scalar and still have a generator of 
the group. A complete vector space can be used as a basis for representing other 
vector spaces, hence the generators of a group can be used to represent other vector 
spaces. For example, the Pauli matrices from quantum mechanics can be used to 
describe any 2 × 2 matrix. 

The character of the group is defined in terms of the generators in the following 
sense. The generators satisfy a commutation relation we write as

 [ , ]X X if Xi j ijk k=  (3.7)

This is called the Lie algebra of the group. The quantities f
ijk 

are called the structure 
constants of the group. Looking at the commutation relation for the Lie algebra, 
Eq. (3.7), you should recognize the fact that you’ve already been working with 
group generators in your studies of non-relativistic quantum mechanics. You’ll see 
this explicitly when we discuss the Pauli spin matrices later on.

The Rotation Group
The rotation group is the set of all rotations about the origin. A key feature is that 
rotations preserve the lengths of vectors. This mathematical property is expressed 
by saying the matrices are unitary. It is easy to see that the set of rotations forms a 
group. Let’s check off each of the basic properties that a group must have.

The first is a group composition rule. Remember that if a � G and b � G, if G 
is a group then ab � G as well. Now let R

1
 and R

2
 be two rotations. It is clear that 

the composition of these rotations, say by performing the rotation R
1
 first followed 

by the rotation R
2
, is itself just another rotation, as shown here.

 R
3
 = R

2 
R

1
 

That is, performing the two rotations as described is the same as doing the single 
rotation R

3
. Hence R

3
 is a member of the rotation group. Next, we illustrate how two 
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rotations in sequence are the same as a single rotation that is the sum of the two 
angles:

q1
+ =

q2
q1 + q2

It is not the case that rotations commute. That is, in general

 R
1 
R

2
 ≠ R

2
R

1 
To this, put a book on the table in front of you. Then rotate it about two different 
axes, and then try the experiment again doing the same rotations but in different 
order. You will see that the end results are not the same. Therefore, the rotation 
group is nonabelian. However, it’s easy to see that rotations are associative, like

 R
1 
(R

2 
R

3
) = (R

1
R

2
) R

3 

The rotation group has an identity element—this is, simply doing no rotation at all. 
The inverse of a rotation is simply the rotation carried out in the opposite direction. 

Representing Rotations
Let x

i
 be the coordinates of a two-dimensional vector and let x

i
′ be the coordinates 

of the vector rotated by an angle q in the plane. The components of the two vectors 
are related by a transformation as

 x
j
′ = R

ij
 x

i 
where R

ij 
is a rotation matrix. This is a representation of the rotation group. 

Specifically, a rotation by an angle q (in two dimensions) can be represented by the 
matrix

 
R ( )

cos sin

sin cos
θ

θ θ
θ θ

=
−

⎛
⎝⎜

⎞
⎠⎟  
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So that

 x x x1 1 2
′ = +cos sinθ θ  

 x x x2 1 2
′ = − +sin cosθ θ  

 

′
′

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

x

x

x

x
1

2

1

2

cos sin

sin cos

θ θ
θ θ

⎞⎞
⎠⎟

=
+

− +
⎛
⎝⎜

⎞
⎠⎟

x x

x x
1 2

1 2

cos sin

sin cos

θ θ
θ θ

 

Let’s write down the transpose of the rotation matrix as

 
RT ( )

cos sin

sin cos
θ

θ θ
θ θ

=
−

⎛
⎝⎜

⎞
⎠⎟  

Notice that

 
R RT( ) ( )

cos sin

sin cos

cos sin

s
θ θ

θ θ
θ θ

θ θ
=

−
⎛
⎝⎜

⎞
⎠⎟

−
iin cosθ θ

⎛
⎝⎜

⎞
⎠⎟  

 
RRT =

−
⎛
⎝⎜

⎞
⎠⎟

−cos sin

sin cos

cos sin

sin cos

θ θ
θ θ

θ θ
θ θθ

⎛
⎝⎜

⎞
⎠⎟  

 
=

+ − +
− +

cos sin cos sin cos sin

sin cos cos

2 2θ θ θ θ θ θ
θ θ θθ θ θ θsin cos sin2 2+

⎛
⎝⎜

⎞
⎠⎟

 

 
= ⎛

⎝⎜
⎞
⎠⎟

1 0

0 1  

This tells us that the transpose of the matrix is the inverse group element, since 
multiplying two matrices together gives the identity. You can see why this is true 
using basic trigonometry: sin(–q ) = –sin(q ) and cos(–q ) = cos(q ).

 R RT ( ) ( )
cos sin

sin cos
θ θ

θ θ
θ θ

= − =
−⎛

⎝⎜
⎞
⎠⎟  

So, the inverse of R(q ) is R(–q ): sin(q  – q ) = 0 and cos(q  – q ) = 1.

 
R R R R R R IT( ) ( ) ( ) ( ) ( ) ( )θ θ θ θ θ θ= − = = ⎛

⎝⎜
⎞
⎠⎟

=−1 1 0

0 1  
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In group theory, various groups are classified according to the determinants of 
the matrices that represent the groups. Notice that in this case

 

det det
cos sin

sin cos

cos si

R θ
θ θ
θ θ

θ

( ) =
−

⎛
⎝⎜

⎞
⎠⎟

= +2 nn2 1θ =  

In general, the determinant will not be +1. However, when this condition is satisfied, 
the rotation matrix corresponds to a proper rotation.

A more readable notation is to make the angle implicit and to use a subscript. 
That is,

 R R( )θ1 1→  

This is a better way to discuss problems to multiple angles.
Now, if det R1 1= and

 
det ,R2 1=  then the product is unity. We see this from the 

property of multiplication for determinants.

 det ( ) det det ( )( )R R R R1 2 1 2 1 1 1= = =  

The product of two rotations also has an inverse, since

 R R R R R R R R R R IT T T T
1 2 1 2 1 2 2 1 1 1( ) = = =  

Another way to look at this is to use the closure property of this group. Call the 
successive rotations R

1
 and R

2
. Taken together they form the group element R

3
:

 R R R1 2 3=  

As before, the transpose is the inverse:

 R RT
3 3

1= −
 

In terms of the components, we have

 R R R R R R R R R RT T T T
3 1 2 2 1 3

1
1 2

1
2

1
1

1= = = =− − − −( ) ( )and  

We now see

 R R IT
3 3 =  

as above.
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So the matrix representation preserves the properties of the rotation group. Now 
that we’ve introduced the notion of a group, we will explore groups important for 
particle physics.

SO(N)
The group SO(N ) are special orthogonal N × N matrices. The term special is a 
reference to the fact that these matrices have determinant +1. A larger group, one 
that contains SO(N ) as a subgroup, is the group O(N) which are orthogonal N × N 
matrices that can have arbitrary determinant. Generally speaking, rotations can be 
represented by orthogonal matrices, which themselves form a group. So the group 
SO(3) is a representation of rotations in three dimensions, and the group consists of  
3 × 3 orthogonal matrices with determinant +1. 

A matrix O is called orthogonal if the transpose OT is the inverse, that is,

 
OO O O I

O

T T= =
⇒ is orthogonal  (3.8)

As we stated above, a special orthogonal matrix is one with positive unit determinant

 detO = +1  (3.9)

Now let’s turn to a familiar case, SO(3). This group has three parameters, the three 
angles defining rotations about the x, y, and z axes. Let these angles be denoted by 
V, f, and q. Then 

 

Rx ( ) cos sin

sin cos

ς ς ς
ς ς

=
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0 0

0

0
 (3.10)

 

Ry ( )

cos sin

sin cos

φ
φ φ

φ φ
=

−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0

0 1 0

0

 (3.11)

 

Rz ( )

cos sin

sin cosθ
θ θ
θ θ= −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0

0

0 0 1

 (3.12)
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These matrices are the representation of rotations in three dimensions. Rotations 
in three or more dimensions do not commute, and it is an easy although tedious 
exercise to show that the rotation matrices written down here do not commute either. 

The task now is to find the generators for each group parameter. We do this using 
Eq. (3.5). Starting with R

x
 (V ), we have

 

dR

d
x

ς
ς ς
ς ς

= −
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 0 0

0

0

sin cos

cos sin
 

Now we let V  → 0 to obtain the generator

 

J i
dR

d
i

i
x

x= − = −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=ς ς 0

0 0 0

0 0

0 0
 (3.13)

 

Next, we compute the generator for rotations about the y axis evaluated at f = 0.

 

J i
dR

d

i

i
y

y= − =
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟φ

0 0

0 0 0

0 0
 (3.14)

And finally, for rotations about the z axis we find

 

J i
dR

d

i

iz
z= − =

−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟=θ θ 0

0 0

0 0

0 0 0  

These matrices are, of course, the familiar angular momentum matrices. So 
we’ve discovered the famous result that the angular momentum operators are the 
generators of rotations. We can use the generators to build infinitesimal rotations. 
For example, an infinitesimal rotation about the z axis by an angle eq, where e is a 
small positive parameter, is written as

 R i Jz z( )εθ εθ= +1  
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From quantum mechanics, you already know the algebra of the group. This is 
just the commutation relations satisfied by the angular momentum operators.

 
[ , ]J J i Ji j ijk k= ε  (3.15)

The structure constants in this case are given by the Levi-Civita tensor, which takes 
on values of +1, –1, or 0 according to

 

ε ε ε
ε ε ε

123 312 231

132 321 213

1

1

= = = +
= = = −   (3.16)

with all other combinations of the indices giving 0. 

EXAMPLE 3.2
Show that the representation of the rotation group is of the form eiJyφ .

SOLUTION
What we need to show is that R ey

iJy( ) .φ φ=  This is easy to do by just writing down 
the first few terms in the Taylor series expansion of the exponential. Remember 
Euler’s formula which tells us that

 e iiθ θ θ= +cos sin  

From this we can extract the expansions for the sine and cosine.

 
cos

!
θ θ θ= − + +1

1

2

1

4
2 4 �

 

 
sin

! !
θ θ θ θ= − + +

1

3

1

5
3 5 �

 

Now,

e iJ J i JiJ
y y y

yφ φ φ φ= + − − +1
1

2

1

3
2 2 3 3

!
�

What are the powers of the J
y
 matrix? A quick calculation shows that J

y
n takes one 

of two values depending upon whether n is odd or even.

 

J J J

i

i

J J Jy y y y y= = = =
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= =3 5 2 4

0 0

0 0 0

0 0

� and yy
6

1 0 0

0 0 0

0 0 1

= =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

�
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The expansion becomes

 

e i

i

i

iJyφ =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0 0

0 1 0

0 0 1
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φφ φ−
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⎛

⎝

⎜
⎜

⎞

⎠

⎟
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−
−

⎛

⎝

1

2
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0 0 0
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1

3

0 0
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2

2

i

i

i

i

i
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⎜

⎞

⎠

⎟
⎟

+

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+
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⎝

3

3
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φ

φ

φ

�
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⎜

⎞

⎠

⎟
⎟

−
⎛

⎝

⎜
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⎞

⎠

⎟
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−
1

2
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1

3
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2

2
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φ

φ
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2
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3

0

⎛
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+

=

− + − − +⎛
⎝⎜

⎞
⎠⎟

�
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0
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−

!
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� �

iin
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φ

φ φ
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⎜

⎞

⎠
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⎟

 

So, rotations about the x, y, and z axes are represented by

 
R e R e R ex

iJ
y

iJ
z

iJx y z( ) ( ) ( )ς φ θς φ θ= = =  (3.17)

A rotation about an arbitrary axis defined by a unit vector 
�
n  is given by

 R en
iJ( )

� � �

θ θ= ⋅  (3.18)

As stated earlier, orthogonal transformations (rotations) preserve the lengths of 
vectors. We say that the length of a vector is invariant under rotation. This means 
that given a vector 

�
x  with length 

�
x x y z2 2 2 2= + + , when we transform it under a 

rotation 
�
′ =x Rx we have 

 

� �
′ =

⇒ ′ + ′ + ′ = + +

x x

x y z x y z

2 2

2 2 2 2 2 2   (3.19)

The preservation of the lengths of vectors by orthogonal transformations will be 
important in establishing a correspondence between the unitary transformation 
SU(2) (see in the next section, Unitary Groups) and rotations in three dimensions 
represented by SU(3).
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Unitary Groups
In particle physics unitary groups play a special role. This is due to the fact that 
unitary operators play an important role in quantum theory. Specifically, unitary 
operators preserve inner products—meaning that a unitary transformation leaves 
the probabilities for different transitions among the states unaffected. That is, 
quantum physics is invariant under a unitary transformation. As a result unitary 
groups play a special role in quantum field theory. 

When the physical predictions of a theory are invariant under the action of some 
group, we can represent the group by a unitary operator U. Moreover, this unitary 
operator commutes with the Hamiltonian as shown here.

 [U, H] = 0 

The unitary group U(N) consists of all N × N unitary matrices. Special unitary 
groups, denoted by SU(N) are N × N unitary matrices with positive unit determinant. 
The dimension of SU(N) and hence the number of generators, is given by N2 – 1. 
Therefore,

• SU(2) has 22 – 1 = 3 generators.

• SU(3) has 32 – 1 = 8 generators.

The rank of SU(N) is N  – 1. So

• The rank of SU(2) is 2 – 1 = 1.

• The rank of SU(3) is 3 – 1 = 2.

The rank gives the number of operators in the algebra that can be simultaneously 
diagonalized. 

The simplest unitary group is the group U(1). A “1 × 1” matrix is just a complex 
number written in polar representation. In another way, we can say a U(1) symmetry 
has a single parameter q and is written as

 U e i= − θ

 

where q is a real parameter. It is completely trivial to see that U(1) is abelian, 
since

 U U e e e e U Ui i i i
1 2 2 1

1 2 2 1= = =− − − −θ θ θ θ
 

 U U e e e e ei i i i i
1 2

1 2 1 2 2 1 2= = = =− − − +( ) − +( ) −θ θ θ θ θ θ θ ee U Ui− =θ1
2 1  
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We will see that many Lagrangians in field theory are invariant under a U(1) 
transformation. When you look at the problem in the complex plane this invariance 
becomes obvious. Consider the arbitrary complex number z = reia. When we multiply 
z by eiq we get

 e z e re rei i i iθ θ α θ α= = +( )
 

The new complex number has the same length, r, and the angle is increased by q.
For example, the Lagrangian for a complex scalar field

 
L m= ∂ ∂ −μ

μϕ ϕ ϕ ϕ* *2

 

is invariant under the transformation

 ϕ ϕθ→ −e i

 

As described in Chap. 2, when a Lagrangian is invariant under a transformation 
there is a symmetry, and in this case there is a U(1) symmetry. Force-mediating 
particles, called gauge bosons, will be associated with unitary symmetries like this 
one. We will see later that when considering electrodynamics, the gauge boson 
associated with the U(1) symmetry of quantum electrodynamics is the photon. 

We will see in later chapters that a U(1)
 
symmetry also manifests itself in terms 

of the conservation of various quantum numbers. If there is a U(1) symmetry 
associated with a quantum number a, then

 U e ia= − θ
 

The importance of the U(1) symmetry is that the Hamiltonian H is invariant under 
the transformation e Heia ia− θ θ ,  that is,

 UHU H† =  

Again we see that adjoint U† (the Hermitian conjugate) is also the inverse.

 U U U U( ) ( ) ( ) ( )†θ θ θ θ= − = 1  

We will see that such symmetries are present in quantum field theory with conser-
vation of lepton and baryon number, for example. 

In summary, an element of the group U(1) is a complex number of unit length 
written as

 U e i= − θ   (3.20)

where q is a number. This is the familiar unit circle.
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Moving right along, the next non-trivial unitary group is U(2), which is the set 
of all 2 × 2 unitary matrices. Being unitary these matrices satisfy

 UU U U I† †= =  (3.21)

For physics, we are interested in a subgroup of U(2), which is the set of all 2 × 2 
unitary matrices with determinant +1. This group is called SU(2). The generators of 
SU(2) are the Pauli matrices, which we reproduce here for your convenience

 σ σ σ1 2 3

0 1

1 0

0

0

1 0

0 1
= ⎛

⎝⎜
⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

i

i
  (3.22)

Now we see how the rank of a unitary group comes into play. The rank of SU(2) 
is 1, and there is one diagonalized operator s

3
 in the basis we have chosen. The 

generators of SU(2) are actually taken to be 1
2 σ i  and the Lie algebra is the familiar 

commutation relations that are satisfied by the Pauli matrices

 

σ σ
ε

σi j
ijk

ki
2 2 2

,
⎡
⎣⎢

⎤
⎦⎥

=  (3.23)

The similar algebraic structure between SU(2) as indicated in Eq. (3.23) and SO(3) 
as indicated by Eq. (3.5) indicates that there will be a correspondence between 
these two groups. Since the Pauli matrices do not commute, SU(2) is nonabelian, 
as seen in Eq. (3.23). Recalling that the rank of SU(2) is 1, there is one diagonal 
generator which we have chosen to be s

3
. 

An element of SU(2) can be written as

 U ei j j= σ α /2
 (3.24)

where s
i
 is one of the Pauli matrices and a

j
 is a number. To understand the presence 

of the factor ½ in Eqs. (3.23) and (3.24), let’s explore the correspondence between 
SU(2) and SO(3). We saw in Eq. (3.19) that SO(3) preserves the lengths of vectors. 
Since it is unitary, SU(2) preserves the lengths of vectors as well. Let 

�
r x x y y z z= + +ˆ ˆ ˆ .

We construct a matrix of the form 
� �σ ⋅r .

 

� �σ σ σ σ⋅ = + +

= ⎛
⎝⎜

⎞
⎠⎟

+
−⎛

⎝⎜
⎞
⎠⎟

+

r x y z

x

x

iy

iy

x y z

0

0

0

0

zz

z

z x iy

x iy z

0

0 −
⎛
⎝⎜

⎞
⎠⎟

=
−

+ −
⎛
⎝⎜

⎞
⎠⎟

  (3.25)
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If we take the determinant of this matrix, we obtain the length of the vector as 
shown here.

 
det

z x iy

x iy z
x y z x

−
+ −

⎛
⎝⎜

⎞
⎠⎟

= − − − = −2 2 2 2�

 

Also note that the matrix 
� �σ ⋅r  is Hermitian and has zero trace. Now consider a 

unitary transformation on this matrix. For example, we can take 

U r U r

z x iy

x iy

x x

� � � �σ σ σ σ⋅( ) = ⋅( )

= ⎛
⎝⎜

⎞
⎠⎟

−
+ −

†

0 1

1 0 zz

z x iy

x iy z

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
− +
−

⎛
⎝⎜

⎞
⎠⎟

0 1

1 0

The transformed matrix still has zero trace, and is still Hermitian. Moreover, the 
determinant is preserved, and it again gives the length of the vector, that is,

 
det

− +
−

⎛
⎝⎜

⎞
⎠⎟

= − − − = −
z x iy

x iy z
x y z x2 2 2 2�

 

The conclusion is that like SO(3), SU(2) preserves the lengths of vectors as shown 
here.

 

� �
′ =

⇒ ′ + ′ + ′ = + +

x x

x y z x y z

2 2

2 2 2 2 2 2

 

The correspondence works by considering an SU(2) transformation on a two 
component spinor, like

 
ψ

α
β

=
⎛
⎝⎜

⎞
⎠⎟  

where 

 
x y

i
z= − = − + =

1

2 2
2 2 2 2( ) ( )β α α β αβ
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Then an SU(2) transformation on ψ α
β= ( )  

is equivalent to an SO(3) transformation 
on 
�
x = ( )x

y
z

. As you can see from this equivalence, an SU(2) transformation has three 
real parameters that correspond to the three angles of an SO(3) transformation. 
Label the “angles” for the SU(2) transformation by a, b, and g . Half the rotation 
angle generated by SU(2) corresponds to the rotation generated by SO(3). For 
arbitrary angle a, a transformation generating a rotation about x in SU(2) is 
given by

 
U

i

i
=

⎛
⎝⎜

⎞
⎠⎟

cos / sin /

sin / cos /

α α
α α

2 2

2 2  

(see quiz problem 1). This transformation corresponds to the rotation Eq. (3.10), 
a rotation about the x axis. Next, consider an SU(2)

 
transformation generating a 

rotation around the y axis. The unitary operator is

 
U =

−
⎛
⎝⎜

⎞
⎠⎟

cos / sin /

sin / cos /

β β
β β

2 2

2 2  

This corresponds to the SO(3)
 
transformation given in Eq. (3.11). Finally, for a 

rotation about the z axis we have the SU(2) transformation

 
U

e

e

i

i
=

⎛
⎝⎜

⎞
⎠⎟−

γ

γ

/

/

2

2

0

0  

which corresponds to Eq. (3.12).
All 2 × 2 unitary matrices are specified by two parameters, complex numbers 

a and b where 

 
U

a b

b a
=

−
⎛
⎝⎜

⎞
⎠⎟* *

 

For an element of SU(2), det U = +1 so we require that a b2 2 1+ = . 
Later we will seek to define Lagrangians that are invariant under an SU(2) 

symmetry. This symmetry will be of particular importance in the case of electro-
weak interactions. The gauge bosons corresponding to the SU(2) symmetry will be 
the W and Z bosons that carry the weak interaction.

Next, we consider the unitary group SU(3), which will be important in the 
study of quarks and the theory of quantum chromodynamics. Earlier we indicated 
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that SU(3)
 
has eight generators. These are called the Gell-Mann matrices and are 

given by

 

λ λ λ1 2 3

0 1 0

1 0 0

0 0 0

0 0

0 0

0 0 0

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

i

i == −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0 0

0 1 0

0 0 0  

 

λ λ λ4 5 6

0 0 1

0 0 0

1 0 0

0 0

0 0 0

0 0

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

i

i

==
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 0 0

0 0 1

0 1 0  

 

λ λ7 8

0 0 0

0 0

0 0

1

3

1 0 0

0 1 0

0 0 2

= −
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟i

i
⎟⎟

 

Notice two of the matrices are diagonal, l
3
 and l

8
, as we would expect from the 

rank of the group. The Gell-Mann matrices are traceless and they satisfy the 
commutation relations

 
λ λ λi j ijk k

k

i f,⎡⎣ ⎤⎦ =
=

∑2
1

8

  (3.26)

This defines the algebraic structure of SU(3). The nonzero structure constants are

 

f f f f f f f

f

123 147 165 246 257 345 376

458

1
1

2
= = = = = = =

= ff678

3

2
=

 (3.27)

We will see more of SU(3) when we examine the standard model.

Casimir Operators
A casimir operator is a nonlinear function of the generators of a group that 
commutes with all of the generators. The number of casimir operators for a group 
is given by the rank of the group. 
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Considering SU(3)
 
as an example, the generators are the angular momentum 

operators. A casimir operator in this case is 

 
�
J J J Jx y z

2 2 2 2= + +
 

A casimir operator is an invariant. In this case, the invariance suggests J2 is a 
multiple of the group identity element. 

Summary
Group theory plays an important role in physics because groups are used to 
describe symmetries. The structure of a group is defined by the algebra among its 
generators. If two groups have the same algebra, they are related. Unitary trans-
formations preserve the probabilities of state transitions in quantum theory. As a 
result, the most important groups in quantum field theory are the unitary groups, 
specifically U(1), SU(2), and SU(3). 

Quiz
 1. Consider an element of SU(2) given by U ei x= σ α /2. By writing down the 

power series expansion, write U in terms of trigonometry functions.

 2. Consider SU(3) and calculate tr i j( ).λ λ
 3. How many casimir operators are there for SU(2)?

 4. Write down the casimir operators for SU(2).

  A Lorentz  transformation can be described by boost matrices with rapidity 
defined by tanh / .φ = v c  A boost in the x direction is represented by the 
matrix

 

cosh sinh

sinh cosh

φ φ
φ φ

0 0

0 0

0 0 1 0

0 0 0 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

 

 5. Find the generator Kx .
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 6. Knowing that [ , ]K K iJx y z= − , where Jz is the angular momentum operator 
written in four dimensions as

 

J iz = −
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0  

  find Ky .

 7. Do pure Lorentz boosts constitute a group?
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CHAPTER 4

Discrete 
Symmetries and 

Quantum Numbers

In Chap. 3 we examined continuous symmetries, that is, symmetries with con-
tinuously varying parameters such as rotations. Now we consider a different kind 
of symmetry, a discrete symmetry. There are three important discrete symmetries in 
particle physics: parity, charge conjugation, and time reversal. 

Additive and Multiplicative Quantum Numbers
A quantum number is some quantity (a quantized property of a particle) that is 
conserved in a particle reaction (decay, collision, etc.). An additive quantum number 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



72 Quantum Field Theory Demystifi ed

n is one such that if n n ni1 2, , , ,… … are the quantum numbers before the reaction, 
and m m mi1 2, , , ,… … are the quantum numbers after the reaction, then the sum is 
preserved.

 n mi
i

i
i

∑ ∑=  (4.1)

Or, if we have a composite system with quantum numbers n n ni1 2, , , ,… …, and 
if the quantum number is additive, then the quantum number of the composite 
system is

ni
i

∑

A multiplicative quantum number is one such that if n n ni1 2, , , ,… … are the quantum 
numbers before the reaction, and m m mi1 2, , , ,… … are the quantum numbers after the 
reaction, then the product is preserved.

 n mi
i

i
i

∏ ∏=   (4.2)

Or, if we have a composite system, and if a quantum number is multiplicative, then

ni
i

∏

is the quantum number for the composite system. If a quantum number is conserved, 
then it represents a symmetry of the system. 

Parity
We begin our discussion of parity by examining nonrelativistic quantum mechanics. 
Consider a potential V that is symmetric about the origin and therefore V x V x( ) ( ).− =
This implies that if ψ ( )x is a solution of the Schrödinger equation, then so is ψ ( )−x , 
and it solves the equation with the same eigenvalue. This is because

−
−

+ − − = −

⇒ −

�

�

2 2

2

2 2

2

2

m

d x

dx
V x x E x

m

d

ψ ψ ψ

ψ

( )
( ) ( ) ( )

(−−
+ − = −x

dx
V x x E x

)
( ) ( ) ( )

2 ψ ψ
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when V x V x( ) ( )− = . If ψ ( )x and ψ ( )−x  both solve the Schrödinger equation with 
the same eigenvalue E, then they must be related to each other as

 ψ αψ( ) ( )x x= −  (4.3)

If we let x x→ − , then we obtain

ψ αψ( ) ( )− =x x

Inserting this into Eq. (4.3) gives

ψ αψ α αψ α ψ

α

( ) ( ) ( ) ( )x x x x= − = [ ] =

⇒ =

2

21

This tells us that α = ±1. Then either

ψ ψ( ) ( )− =x x

in which case we say that the wave function has even parity or 

ψ ψ( ) ( )− = −x x

in which case we say the wave function has odd parity. This leads us to the concept 
of the parity operator P. The parity operator causes a change in sign when x x→ −  
in the wave function.

 P x xψ ψ( ) ( )= −   (4.4)

As seen here in the illustrations, even powers lead to functions with even parity
ψ ψ( ) ( )− =[ ]x x while odd powers lead to functions with odd parity ψ ψ( ) ( )− = −[ ]x x . 

An example of an even function where
y(–x) = y(x). Monomials with even powers
(x2, x4, x6, …) are even functions.  

An example of an odd function where
y (–x) = –y(x). Monomials with odd powers
(x1, x3, x5, …) are odd functions.  
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Obviously, applying the parity operator twice in succession gives the original wave 
function back as shown here.

P x P x x2ψ ψ ψ( ) ( ) ( )= − =

Think of the parity operator as a refl ection through the y axis. If y is even, we 
see the same function values; if y is odd, we see the negative of the function 
values. In either case, another refl ection through the y axis brings us back to our 
initial state. The refl ection of the refl ection is the image.

It follows that

 P I2 =  (4.5)

The eigenstates of parity are ±1:

 P ψ ψ= ±   (4.6)

As we have seen, true refl ections preserve length.
If ψ  is an angular momentum state with angular momentum L, that is, ψ =  

L mz, , then the parity operator acts as

 P L m L mz
L

z, ( ) ,= −1   (4.7)

We showed above that α = ±1 when ψ ( )x and ψ ( )−x  both solve the Schrödinger 
equation with the same eigenvalue E. We can generalize this by saying that if the 
Parity operator and Hamiltonian commute

P H PH HP,[ ] = = −0

then parity is conserved. A consequence of this is that a state with parity a cannot 
evolve into a state with parity −a since the Hamiltonian governs the time evolution of 
the states. Even parity states remain even during time evolution and odd parity states 
remain odd. Now if ψ  is a nondegenerate eigenstate of H with eigenvalue E, then

P H P E EPψ ψ ψ( ) = ( ) =

But if P H PH HP,[ ] = = −0 , then

P H H P E Pψ ψ ψ( ) = ( ) = ( )
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So the eigenstates of H are also eigenstates of the parity operator. Also, it follows 
that the eigenvalues of P are α = ±1. Notice that this precludes states of mixed, or 
indefi nite parity. This is a powerful constraint mathematically and physically it 
means that particles are either fermions or bosons.

In quantum fi eld theory, the eigenvalue of parity a is a property of particles called 
the intrinsic parity of the particle. Following our discussion of parity and wave 
functions at the beginning of this section, if α = +1for a given particle, we say that 
the particle has even parity. If α = −1, the particle has odd parity. 

Parity for fermions is assigned as follows:

• Particles with spin-1/2 have positive parity. Hence an electron and a quark 
both have α = +1.

• Antiparticles with spin-1/2 have negative parity. Therefore a positron has
α = −1.

Bosons have the same intrinsic parity for both particles and antiparticles. 
Parity is a multiplicative quantum number. Let ψ = a b  defi ne a composite 

system. If the parities of a band are P Pa band respectively, then the parity of the 
composite system is the product of the individual parities, that is,

P P Pa bψ =

We can construct new parity operators by combining P with one of the conserved 
charges of the standard model. These are

• The electric charge operator Q

• Lepton number L

• Baryon number B

Earlier we said something about the conservation of parity. Parity is not always 
conserved, and there are specifi c cases, like

• Parity is conserved in the electromagnetic and strong interactions.

• Parity is not conserved in the weak interaction.

Particles are often labeled as follows

 J P ≡ spinparity  (4.8)

A spin-0 particle with negative parity is called a pseudoscalar. Examples of 
pseudoscalar particles include the π and K mesons. Using the notation in Eq. (4.8) 
we write 0− to indicate a pseudoscalar particle.

A spin-0 particle with positive parity is called a scalar. We denote a scalar by 0+.
An example of a scalar particle is the Higgs boson, the particle corresponding to the 
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fi eld believed to be responsible for mass generation. The elusive Higgs hasn’t been 
detected at the time of writing, but may be found soon when the Large Hadron 
Collider (LHC) begins operation.

A vector boson has spin-1 and negative parity (1−). The most famous vector 
boson is the photon. A pseudovector has unit spin and positive parity 1+.

Parity is conserved in the electromagnetic and strong interactions, so the total 
parity of a system before an electromagnetic or strong interaction is the same as the 
parity after the interaction. In the 1950s, two physicists named Lee and Yang proposed 
that parity conservation is violated in the weak interaction. 

This is called parity violation. This was demonstrated experimentally by observing 
weak decays of Cobalt-60, leading to the Nobel prize for Lee and Yang. Parity violation 
also became apparent in the weak decays of two particles called the θ τand  mesons. 
They decay as

θ π π
τ π π π

+ +

+ + − +

→

→

0

The fi nal states of these two decays have opposite parity and therefore physicists 
believed the q + and the t +

 to be different particles. However, successively refi ned 
measurements of the q + and t + mass and lifetimes suggested they were actually the 
same particle. The discovery of parity violation in the weak interaction resolved 
this dilemma and today we call this particle the K+ meson. 

Charge Conjugation
We now consider charge conjugation C, an operator which converts particles into 
antiparticles. Let ψ  represent a particle state and ψ represent the antiparticle 
state. Then the charge conjugation operator acts as

 C ψ ψ=   (4.9)

Charge conjugation also acts on antiparticle states, turning them into particle 
states.

 C ψ ψ=  (4.10)

It follows that

C CC C2 ψ ψ ψ ψ= = =

We can use this relation to determine the eigenvalues of charge conjugation. It is 
apparent that like parity, they must be C = ±1. Charge conjugation is also like parity 
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in that it is a multiplicative quantum number. Since charge conjugation converts 
particles into antiparticles and vice versa, it reverses the sign of all quantum numbers 
(and also changes the sign of magnetic moment). Consider a proton p . It has 
positive charge q

Q p q p=

and Baryon number B = +1. If we operate on the proton with the charge conjugation 
operator, then C p p=  and since

Q p q p= −

the charge has been reversed. The baryon number has also been changed to B = −1. 
Notice that the proton state cannot be an eigenstate of charge conjugation, since the 
result of C p p=  is a state with different quantum numbers—a different quantum 
state. The eigenstates of the charge conjugation operator are eigenstates with 0 
charge, that is, neutral particles. More generally, the eigenstates of C must have all 
additive quantum numbers equal to 0. An example is a neutral pion π 0 . In this case, 
π 0 is its own antiparticle and so

C π α π0 0=

for some a. Applying charge conjugation twice

C C2 0 0 2 0

1

π α π α π

α

= =

⇒ = ±

We can fi nd the charge conjugation properties of the photon in the following way, 
and hence determine the eigenvalue α for theπ 0. First charge conjugation will 
reverse the sign of the charge density J as shown here.

CJC J− = −1

Now, the interaction part of the electromagnetic Lagrangian can be used to 
determine the charge conjugation properties of the photon. We need to fi nd the 
action of C on J Aμ

μ . We have

CJ A C CJ C CA C

J CA C

μ
μ

μ
μ

μ
μ

− − −

−

=

= −

1 1 1

1



78 Quantum Field Theory Demystifi ed

This can only be invariant if

CA C A

CJ A C J A

μ μ

μ
μ

μ
μ

−

−

= −

⇒ =

1

1

Since Aμ  is the electromagnetic vector potential, this tells us that the eigenvalue 
of charge conjugation for the photon is α = −1. Therefore if there are n photons, the 
charge conjugation is ( )−1 n . The π 0 decays into two photons as

π γ γ0 → +

The two photon state has α = − = +( )1 12 , therefore we conclude that

C π π

α π

0 0

0

1

1

= +( )
⇒ = + for the

Charge conjugation proceeds in the same way as parity, that is,

• Charge conjugation C is conserved in the strong and electromagnetic interactions.

• Charge conjugation is not conserved in the weak interaction.

CP Violation
The fact that charge conjugation and parity are each individually violated in weak 
interactions led to the hope that the combination of charge conjugation and parity 
would be conserved. It almost is, but there is a slight violation that can be seen from 
the decay of neutral K mesons.

The neutral K 0

 
meson is an interesting particle which is observed in a linear 

combination of states with its antiparticle. This is because the K 0 spontaneously 
transitions into its antiparticle and vice versa as shown here.

K K0 0↔

The K 0 and its antiparticles are pseudoscalars 0− and so have negative parity, 
that is

P K K

P K K

0 0

0 0

= −

= −
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Charge conjugation, is of course the operation that transforms the K 0 into its 
antiparticle, that is,

C K K

C K K

0 0

0 0

=

=

Taken together, CP acts on the states as

CP K C K K

CP K C K K

0 0 0

0 0 0

= − = −

= − = −

We see from this relation that K 0  and K 0  are not eigenstates of CP. To see if CP
is violated, we need to construct states that are eigenstates of CP out of K 0  and 
K 0 . The states that do this are

K
K K

K
K K

1

0 0

2

0 0

2 2
=

−
=

+

 

It is helpful to think of particle states in terms of vector spaces. In terms of a rotation 
by π /4 we see that

K

K
R

K

K
1

2

0

04

⎛

⎝⎜
⎞

⎠⎟
= −⎛

⎝⎜
⎞
⎠⎟

⎛

⎝
⎜

⎞

⎠
⎟

π

which demonstrates an advantage of the vector space view of particle.
So we have

CP K K

CP K K

1 1

2 2

= +

= −

Fortunately, these states can be created in the laboratory. It turns out that they both 
decay into π mesons. Now, if CP is conserved, then each of these states will decay 
into a state with the same value of CP. That is,

K CP

K

1

2

1→ = +

→

decays into a state with

decays iinto a state with CP = −1
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A neutral K meson K 0  can decay into a state with two a mesons or into a state 
with three π mesons. The charge conjugation and parity eigenvalues of these states are

 2π mesons : C = +1, P = +1, 

 ⇒ = +CP 1

 3π mesons : C = +1, P = −1, 

 ⇒ = −CP 1

If CP is conserved then, we would have

K

K

1

1

→

→

only decays into 2 mesons

only decays

π

into 3 mesonsπ

This is not what is observed experimentally. It is found that a small fraction of the time 

K2 → decays into 2 mesonsπ

Hence we have a transition from CP CP= − → = +1 1. It turns out that the long 
lived K meson state is

K
K K

L =
+

+
2 1

21

ε

ε

The parameter ε  is a measure of the amount of violation of CP conservation. 
Experimental evidence indicates that

ε = × −2 3 10 3.

A small number indeed, but not zero. CP violation happens because a small fraction 
of the time, the long lived neutral K meson state, is found in K1 , giving the 
unexpected decays.

The CPT Theorem
To restore invariance, we have to bring in one more symmetry, time reversal. This 
is another discrete transformation on states, turning a state ψ into a state ′ψ
that evolves with time fl owing in the negative direction. Momentums change sign: 
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linear momentum p p→ − and angular momentum L L→ − , but all other quantities 
maintain the same sign. The time-reversal operator acts to transform the states as

T ψ ψ= ′

The time-reversal operator is antiunitary and antilinear. To say that it is antilinear, 
we mean that 

T α ψ β φ α ψ β φ+( ) = ′ + ′* *

While a unitary operator U preserves inner products,

U Uφ ψ φ ψ=

an antiunitary operator does not, but instead gives the complex conjugate as shown 
here.

A Aφ ψ φ ψ= *

The time-reversal operator is antiunitary and can be written as a product of an 
operator K that converts states into their complex conjugates (note that K does not 
refer to the K meson of the previous section, but in this context is an operator)

Kψ ψ= *

and a unitary operator U

T UK=

If the time-reversal operator commutes with the Hamiltonian T H,[ ] = 0, and  if 
ψ satisfies the Schrödinger equation, T ψ  will also satisfy the Schrödinger 
equation when t t→ − . Hence the name time-reversal operator. If the laws of 
physics are unchanged under time reversal, then they are a symmetry of the 
system.

The CPT theorem considers the three symmetries C, P, and T taken together. 
According to this theorem, if charge conjugation, parity reversal, and time reversal 
are taken together we have an exact symmetry and so the laws of physics are 
invariant. More colloquially, the theorem means that if matter is replaced by 
antimatter (charge conjugation), momentum is reversed with spatial inversion (parity 
conjugation), and time is reversed, the result would be a universe indistinguishable 
from the one we live in. For the CPT theorem to be valid, all three symmetries must 
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be valid or if one or more symmetries are violated, another symmetry must be 
violated to negate the fi rst violation. However we have seen that in the weak 
interaction, there is CP violation. To compensate for the problem of CP violation, 
there must be T violation as well.

Now let’s look at this (loosely) in the context of quantum fi eld theory. To satisfy 
special relativity, we need Lorentz invariance. This means that we implement a 
Lorentz transformation with 

Λμ
ν

φ φ
φ φ

=

−
−

⎛

⎝

⎜
⎜
⎜

cosh sinh

sinh cosh

0 0

0 0

0 0 1 0

0 0 0 1⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟

and the theory is the same. Quantum theory allows for φ  to be complex. If we take 
φ π= i and

Λμ
ν

φ φ
φ φ

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞cosh sinh

sinh cosh

0 0

0 0

0 0 1 0

0 0 0 1⎠⎠

⎟
⎟
⎟
⎟

then by setting φ π= i we get

Λμ
ν =

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

giving time reversal t t→ − and space inversion x x→ − . This is a PT invariant 
theory. If the particles are charged then you recover the entire CPT invariance.

Summary
In this chapter we have examined some discrete symmetries, including parity, charge 
conjugation, and time reversal. Interesting physics arises because these discrete 
symmetries are not conserved in weak interactions. The symmetry that is always 
conserved in all interactions is CPT, which is stated in the CPT theorem.
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 1. Angular momentum states transform under the parity operator as

 (a) P L m L mz z, ,= −

 (b) P L m L L mz z, ,=

 (c) P L m L mz
L

z, ,= −( )1

 (d) P L m L mz z, ,=
 2. The interaction Lagrangian of electromagnetism is invariant under charge 

conjugation if

 (a) CA C Aμ μ− = −1

 (b) It is not invariant under charge conjugation

 (c) CJ C Jμ μ− =1

 (d) CA C Aμ μ− =1

 3. Parity is

 (a) Conserved in weak and electromagnetic interactions, but is violated in 
the strong interaction

 (b) Conserved in strong interactions, but is violated in weak and 
electromagnetic interactions

 (c) Not conserved

 (d) Conserved in the strong and electromagnetic interactions, but is 
violated in the weak interaction

 4. The eigenvalues of charge conjugation are

 (a) c = ±1

 (b)  c = ±0 1,
 (c)   c q= ±
 (d) c q= ±0,

 5.  An operator is antiunitary if

 (a)  A Aφ ψ φ ψ= −
 (b)  A Aφ ψ φ ψ=
 (c)   A Aφ ψ φ ψ= *

 (d)  A Aφ ψ φ ψ= − *

Quiz
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 The Dirac Equation

In the next chapter we will see that scientists began with an attempt to arrive at a 
relativistic wave equation that put time and space on an equal footing by “promoting” 
derivatives with respect to time to second order. This was done because the 
Schrödinger equation has second-order spatial derivatives. The equation that results 
is called the Klein-Gordon equation. Unfortunately, this leads to several problems 
as far as quantum theory is concerned. In particular, it gives us a probability density 
that can be negative and it leads to negative energy states.

While these problems can be resolved by reinterpreting the resulting Klein-Gordon 
equation, a fruitful line of inquiry results if we try to tackle the fi rst problem head 
on by taking a different approach. This is exactly what Dirac did in deriving his now 
famous equation. The Dirac equation applies to spin-1/2 fi elds, and puts time and 
space on equal ground in the equation by considering fi rst-order spatial derivatives, 
rather than increasing the order of the time derivatives.

CHAPTER 5

The Classical Dirac Field
We begin by looking at the Dirac equation in terms of classical fi eld theory. Again, 
we approach the problem with the goal of satisfying the tenets of special relativity, 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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hence we want time and space to appear in the equation in a similar fashion. As 
discussed in Chap. 4, derivatives with respect to time in the Schrödinger equation 
are fi rst order while derivatives with respect to spatial coordinates are second 
order. The Klein-Gordon equation attempts to deal with this discrepancy by using 
second-order derivatives with respect to time. With the Dirac equation, we are going 
to take the opposite approach and consider using fi rst-order derivatives for the 
spatial coordinates, while simultaneously keeping the derivatives with respect to 
time fi rst order as well. The reason for doing this is to avoid the negative probability 
distributions that we saw arise from the Klein-Gordon equation. In Chap. 4 we saw 
that this is due to the fact that the equation contained second-order derivatives with 
respect to time. So we will attempt to avoid that problem by keeping time derivatives 
fi rst order. The result is an equation that beautifully describes spin-1/2 particles.

First let’s remind ourselves about the Schrödinger equation.

 i
t m

V�
�∂

∂
= − ∇ +

ψ ψ ψ
2

2

2
   (5.1)

Let’s write it in a more suggestive form using the operator defi nition ˆ .H Vm= − ∇ +�2

2
2  

Then,

 i
t

H�
∂
∂

=
ψ ψˆ    (5.2)

Why is this suggestive? Well, the Dirac equation can be thought of as a type of 
Schrödinger equation if we just change what the Hamiltonian operator Ĥ is, that is, 
applied to the wave function. The form of the Hamiltonian is chosen so that the 
requirements of special relativity can be satisfi ed. Assuming that the particle in 
equation has rest mass m, the form of the Hamiltonian operator used in the Dirac 
equation is

 ˆ ( )H c i mc= − ∇ +
�
i �α β 2   (5.3)

We will explain in a bit what
�α and β are. For now, using Eq. (5.3) in Eq. (5.2) 

gives us the Dirac equation.

 i
t

c i mc�
�
i �

∂
∂

= − ∇ +⎡⎣ ⎤⎦
ψ α β ψ( ) 2   (5.4)

This is a relativistically covariant equation. Time and space have been put on the 
same footing since they both appear in the equation in terms of fi rst-order derivatives. 
The new terms in the equation,

�α and β, are actually 4 4×  matrices. Before writing 
them down, we are going to rewrite Eq. (5.4) using what physicists call the Dirac 
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matrices, or you can call them the gamma matrices if you like. First let’s hold on a 
moment and recall the gradient operator, which is a vector operator

 
�
∇ =

∂
∂

+
∂
∂

+
∂
∂x

x
y

y
z

zˆ ˆ ˆ

or, using the notation of Chap. 1

 
�
∇ =

∂
∂

+
∂

∂
+

∂
∂x

e
x

e
x

e
1 1 2 2 3 3ˆ ˆ ˆ

Writing this out we see the fi rst-order spatial derivatives that appear in the Dirac 
equation [Eq. (5.4)] explicitly. We are taking 

�α  to be a vector as well, whose 
components are matrices

 
�α α α α= + +1 1 2 2 3 3ˆ ˆ ˆe e e

Now we defi ne the gamma matrices (or Dirac matrices) in terms of 
�α  and β  in the 

following way.

 γ β0 =   (5.5)

 γ βαi
i=   (5.6)

Adding Quantum Theory 
At this point the fi rst hint of quantum theory comes into play. Well of course since 
they are matrices, we don’t necessarily expect the Dirac matrices to commute. In 
other words it’s not necessarily true that γ γ γ γ1 2 2 1= , say. In fact, the Dirac matrices 
obey an important anticommutation rule. The anticommutator of two matrices A 
and B is

 { , }A B AB BA= +   (5.7)

Note that in many texts the anticommutator is denoted by A B, ,[ ]+  but we will stick 
to the notation used in Eq. (5.7). The relationship for the Dirac matrices actually 
connects them to the spacetime metric (perhaps a connection to quantum gravity 
here?). It is given by

 { , }γ γ γ γ γ γμ ν μ ν ν μ μν= + = 2g   (5.8)
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Using the Dirac matrices, we can write down the Dirac equation in a fancy 
relativistic notation sure to impress all of your friends. It is

 i
x

mc�γ ψ ψμ
μ

∂
∂

− = 0   (5.9)

Better yet, we work in units where we set � = =c 1  and use ∂
∂

= ∂
xμ μ  to write the 

Dirac equation in the compact form

 i mγ ψ ψμ
μ∂ − = 0   (5.10)

The correct way to interpret this equation, when the quantum theory is brought in, 
is that it applies to the Dirac fi eld whose quanta are spin-1/2 particles—
electrons.

EXAMPLE 5.1
Show that the Dirac fi eld ψ  also satisfi es the Klein-Gordon equation.

SOLUTION
That it should ought not to surprise you, the Klein-Gordon equation is nothing other 
than a restatement of Einstein’s relation between energy, mass, and momentum in 
special relativity derived using the quantum substitutions E i t→ ∂

∂� and 
� �p i x→ − ∂

∂ . 
Since E p m2 2 2= +  is an absolutely fundamental relation that applies to everything, 
all particles and fi elds, including the Dirac fi eld, must satisfy the Klein-Gordon 
equation. It turns out that in a sense the Dirac equation is the “square root” of the 
Klein-Gordon equation. Let’s see how to derive the Klein-Gordon equation directly 
from the Dirac equation. We start with the Dirac equation

 i mγ ψ ψμ
μ∂ − = 0

Now multiply from the left by iγ ν
ν∂ .  This gives

 − ∂ ∂ − ∂ =γ γ ψ γ ψν
μ ν

μ ν
νim 0

Take a look at the second term. From the Dirac equation itself, we know that

 i mγ ψ ψμ
μ∂ =

So we can write

 im mγ ψ ψν
ν∂ = 2

Using this and moving everything to the other side to get rid of the minus sign 

 
− ∂ ∂ − ∂ =γ γ ψ γ ψν

μ ν
μ ν

νim 0
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becomes

 
γ γ ψ ψν

μ ν
μ∂ ∂ + =m2 0

Now we apply the anticommutation relation obeyed by the Dirac matrices, Eq. (5.8). 
Restating it here so you don’t have to fl ip through the pages of the book it is

 { , }γ γ γ γ γ γμ ν μ ν ν μ μν= + = 2g

This can be applied to write the fi rst term in γ γ ψ ψν
μ ν

μ∂ ∂ + =m2 0 in a symmetric 
form. This is done as follows:

 γ γ γ γ γ γ γ γν
μ

νσ
σ μ

νσ
μ σ σ μ= = +g g

1

2
( )

But we have

 

g g g

g g

νσ
μ σ σ μ

νσ
μσ

νσ
μσ

ν
μ

γ γ γ γ

δ

1

2

1

2
2+( ) = ( )

=

=

Therefore,

 

0 2

2

2

= ∂ ∂ +

= ∂ ∂ +

= ∂ ∂ +

γ γ ψ ψ

δ ψ ψ

ψ ψ

ν
μ ν

μ

ν
μ ν

μ

μ
μ

m

m

m

This is nothing other than our old friend, the Klein-Gordon equation! This ought to 
be a really satisfying result—we have derived the Klein-Gordon equation directly 
from the Dirac equation. This shows that Dirac fi elds (particles . . .) also satisfy the 
Klein-Gordon equation and hence automatically satisfy the relativistic relation 
between energy, mass, and momentum. 

The Form of the Dirac Matrices
It will be hard to get anywhere if we don’t know how to explicitly write down the 
Dirac matrices. There are actually a couple of different ways to do it. One way, 
which we introduce fi rst, is the Dirac-Pauli representation, and it’s pretty 
straightforward. Keep in mind that these matrices are 4 4× matrices. The fi rst Dirac 
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matrix is an extension of the unassuming identity matrix, which has 1s all along the 
diagonal. In the 2 2×  case,

 I =
⎛
⎝⎜

⎞
⎠⎟

1 0

0 1

In the Dirac-Pauli representation, we can write the fi rst gamma matrix as

 γ 0

0

0
=

−
⎛
⎝⎜

⎞
⎠⎟

I

I
  (5.11)

where I is the 2 2×  identity matrix shown above. The 0s are 2 2×  blocks of 0s. So 
this matrix is actually

 γ 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=
−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Now, an aside, note that since the Dirac matrices are 4 4×  matrices (think 
operators), the Dirac fi eld ψ  must be a four component vector that they can act on, 
since they appear in the Dirac equation. We call this vector a spinor and write

 ψ

ψ

ψ

ψ

ψ

( )

( )

( )

( )

( )

x

x

x

x

x

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

1

2

3

4

  (5.12)

Now that the aside is over, let’s turn to the other Dirac matrices. They are 
written in terms of the Pauli matrices that you should be familiar with ordinary 
nonrelativistic quantum mechanics. To review, they are

 σ σ σ1 2 3

0 1

1 0

0

0

1 0

0 1
=

⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

i

i
  (5.13)

In the Dirac-Pauli representation, then

 
�

�
�γ

σ
σ

=
−

⎛
⎝⎜

⎞
⎠⎟

0

0
  (5.14)
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so that

 γ
σ

σ
γ

σ
σ

γ
σ

σ1
1

1
2

2

2
3

3

3

0

0

0

0

0

0
=

−
⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎝⎜

⎞
⎠⎟

Let’s write down one example explicitly as shown here.

 γ
σ

σ1
1

1

0

0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

=
−

⎛
⎝⎜

⎞
⎠⎟

=
−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟⎟
⎟
⎟
⎟

The Dirac matrices can also be written down using what is known as the chiral 
representation. In this case,

 γ γ
σ

σ
0 0

0

0

0
=

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

I

I
i i

i

  (5.15)

Some Tedious Properties of the Dirac Matrices
Regardless of representation used, the Dirac matrices satisfy several tedious but 
important relations that are useful when doing calculations. First we defi ne yet 
another matrix, the mysterious gamma fi ve matrix.

 γ γ γ γ γ5 0 1 2 3= i   (5.16)

It is Hermitian

 
γ γ5 5( ) =

†

  
(5.17)

and it squares to the identity

 γ 5 2( ) = I    (5.18)

In the chiral representation we write it as

 γ 5 0

0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=
−⎛

⎝⎜
⎞
⎠⎟

=

−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟I

I ⎟⎟
⎟

   (5.19)
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but in the Dirac representation we write it as

 γ 5 0

0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

=
⎛
⎝⎜

⎞
⎠⎟

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

I

I
  (5.20)

(notice that these matrices are traceless). Now we also have ( ) .γ μ 2 = I  Hence,

 γ γμ
μ = 4I   (5.21)

We can show this explicitly:

 γ γ γ γ γ γ γ γ γ γμ
μ = + + + =

⎛

1
1

2
2

3
3

4
4 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1⎝⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 γ γ γ γμ ν
μ

ν= −2   (5.22)

Again, we see this by writing out the implied summation:

 γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γμ ν
μ

ν ν ν ν ν= + + + = −1
1

2
2

3
3

4
4 2

You should repeat these computations yourself to ensure you understand how to 
work with these matrices.

EXAMPLE 5.2
Find the anticommutator { , }.γ γ5 0

SOLUTION
We are helped by the fact that { , } .γ γi 0 0=  This is because we apply Eq. (5.8) and 
use the fact that gi0 0= . For instance,

 { , }γ γ γ γ γ γ3 0 3 0 0 3 032 0= + = =g

Using this fact, that is { , }γ γi 0 0= , we can write

 γ γ γ γi i0 0= −
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Therefore,

 

{ , }

( ) (

γ γ γ γ γ γ
γ γ γ γ γ γ γ γ γ γ

5 0 5 0 0 5

0 1 2 3 0 0 0 1 2

= +

= +i i 33

0 1 2 0 3 0 0 1 2 3

0 1 2

)

( ) ( )

(

= − +

= −

i i

i

γ γ γ γ γ γ γ γ γ γ
γ γ γ γ 00 3 0 2 1 2 3

0 1 2 0 3 1 2

γ γ γ γ γ
γ γ γ γ γ γ γ γ

) ( ) ( )

( ) (

+

= − +

i

i i 33

0 1 0 2 3 1 2 3

0 2 1 2 3

)

( ) ( )

( ) ( )

= +

= −

i i

i

γ γ γ γ γ γ γ γ
γ γ γ γ ++

= − + =

( )

( ) ( )

i

i i

γ γ γ
γ γ γ γ γ γ

1 2 3

1 2 3 1 2 3 0

We conclude that { , }γ γ5 0 0= .

EXAMPLE 5.3
Find tr( )γ 5 .

SOLUTION
We use ( )γ μ 2 = I together with the result derived in Example 5.2, which means that 
γ γ γ γ5 0 0 5= − .  We have

 

tr tr I

tr

tr

( ) ( )

( )

( )

γ γ
γ γ γ

γ γ γ

5 5

0 0 5

0 5 0

=

=

= −

Now let’s recall a basic property of the trace. Remember that the trace operation is 
cyclic, meaning that 

 tr ABC tr CBA tr BCA tr BAC( ) ( ) ( ) ( )= = =

We can also pull scalars (numbers) right outside the trace, that is, tr A tr A( ) ( )α α=
Hence,

 

tr tr

tr

tr

( ) ( )

( )

( )

γ γ γ γ
γ γ γ
γ γ γ

5 0 5 0

0 5 0

0 0 5

= −

= −

= −

= −−tr( )γ 5

We have found that

 tr tr( ) ( )γ γ5 5= −
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This can only be true if

 tr( )γ 5 0=

which is easily verifi ed by looking at the explicit representation of this matrix in 
Eq. (5.19). 

Adjoint Spinors and Transformation Properties
The adjoint spinor of ψ is not simply ψ †,  but turns out to be

 ψ ψ γ= † 0   (5.23)

We can form composite objects among the fi elds ψ ψ, , and the Dirac matrices. 
Each of these objects transforms in a different way, so we can construct vectors, 
tensors, and pseudovectors, for example. We can form the following Lorentz 
scalar

 ψψ   (5.24)

Using the gamma matrices, we can construct a pseudoscalar which means it is a 
quantity that changes sign under either parity or space inversion. This pseudoscalar is

 ψγ ψ5   (5.25)

Taking an arbitrary gamma matrix, we get an object that transforms as a four 
vector.

 ψγ ψμ   (5.26)

Another scalar that can be constructed is

 ψγ ψμ
μ∂   (5.27)

Since ψψ  is a scalar and the mass m is a scalar, we can use this to write down the 
Lagrangian that can be used to derive the Dirac equation using the usual methods. 
Remember that the Lagrangian must transform as a scalar. The Lagrangian that 
works is

 L = ∂ −i mψγ ψ ψψμ
μ    (5.28)

Notice that both terms in this Lagrangian are scalars. By varying ψ we obtain the 
Dirac equation as the equation of motion for this to Lagrangian.
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Slash Notation
In quantum fi eld theory texts and papers you will often see a shorthand notation 
developed by Feynman called slash notation. Slash notation is used to indicate a 
contraction between a 4-vector and a gamma matrix. Let aμ be some 4-vector. 
Then,

 / = = + + +a a a a a aγ γ γ γ γμ
μ

0
0

1
1

2
2

3
3  (5.29)

So for momentum, we have

 / =p pγ μ
μ   (5.30)

In fact, this can be written as the 4 4×  matrix.

 / =
−
−

⎛
⎝⎜

⎞
⎠⎟

p
E p

p E

�
i �

�
i �

σ
σ

  (5.31)

Solutions of the Dirac Equation
Let’s introduce two new components of the Dirac fi eld so that we can write down a 
spinor as a two-component object. We call these components u and v where

 ψ

ψ
ψ
ψ
ψ

( )

( )

( )

( )

( )

( )

x

x

x

x

x

u x

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1

2

3

4

1

uu x

v x

v x

u

v

2

1

2

( )

( )

( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
⎛
⎝⎜

⎞
⎠⎟

  (5.32)

It will be easy to fi nd solutions of the Dirac equation if we consider momentum 
space, since the single spatial derivative will be converted into momentum and we 
will arrive at an algebraic relationship. So consider the Fourier expansion of the 
Dirac fi eld as

 ψ
π

ψ μ
μ

( )
( )

( )x
d k

k e ik x= ∫ −
4

42
   (5.33)

Now we return to the Dirac equation, which for your convenience we reproduce 
here as

 i mγ ψ ψμ
μ∂ − = 0
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Using the Fourier expansion of the fi eld Eq. (5.33), we have

 

i i
d k

k e

d k
i

ik xγ ψ γ
π

ψ

π

ν
ν

μ
μ

μ
μ

∂ = ∂

=

∫

∫

−
4

4

4

4

2

2

( )
( )

( )
γγ ψ

π
γ ψ

ν
ν

ν
ν

μ
μ

( )

( )
( ) ( )

k e

d k
i ik k e

ik x

ik

∂

= −

−

−∫
4

42
μμ

μ

μ
μ

π
γ ψν

ν

x

ik xd k
k k e= ∫ −

4

42( )
[ ( )]

The other piece of the equation is

 

m x m
d k

k e

d k
m k e

ik xψ
π

ψ

π
ψ

μ
μ

( )
( )

( )

( )
( )

=

=

∫

∫

−
4

4

4

4

2

2
−− ik xμ

μ

Putting these terms together gives 

 

0
2 2

4

4

4

4
= −∫ ∫−d k

k k e
d k

m kik x

( )
[ ( )]

( )
( )

π
γ ψ

π
ψν

ν
μ

μ

ee

d k
k k m k e

ik x

ik x

−

−= −∫

μ
μ

μ
μ

π
γ ψ ψν

ν

4

42( )
[ ( ) ( )]

Once more, the only way for this integral to be 0 is for the integrand to be 0. So 
it must be true that

 γ ψ ψν
νk k m k( ) ( )− = 0

Well of course you could have arrived at this, which is just the momentum space 
equivalent of the Dirac equation, using the usual representation of momentum as a 
derivative in position space. To see how to proceed toward a solution, let’s write 
down the Dirac representation of the gamma matrices again. We have

 γ 0

0

0
=

−
⎛
⎝⎜

⎞
⎠⎟

I

I
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together with

 γ
σ

σ
γ

σ
σ

γ
σ

σ1
1

1
2

2

2
3

3

3

0

0

0

0

0

0
=

−
⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎝⎜

⎞
⎠⎟

Let’s take a look at the individual terms in the equation γ ψ ψν
νk k m k( ) ( )− = 0. 

First we have

 γ ψ0
0 0

0

0

0

0
k k

I

I

u

v

k u

k v
=

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

and

 m m
u

v

mu

mv
ψ =

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

Next we have

 γ ψ
σ

σ
σ
σ

1
1 1

1

1
1

1

1

0

0
k k

u

v
k

v

u
=

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎠⎟

Similarly,

 γ ψ
σ

σ
σ
σ

2
2 2

2

2
2

2

2

0

0
k k

u

v
k

v

u
=

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎠⎟

and

 γ ψ
σ

σ
σ
σ

3
3 3

3

3
3

3

3

0

0
k k

u

v
k

v

u
=

−
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎠⎟

Putting everything together, these relations and the Dirac equation in momentum 
space can be written in matrix form as

 k m k

k k m

u

v
0

0

0
− − ⋅

− +
⎛

⎝⎜
⎞

⎠⎟
⎛
⎝⎜

⎞
⎠⎟

=
� �

�
i
�

σ
σ ( )

  (5.34)

So there are two coupled equations

 
( ) ( )

( ) ( )

k m u k v

k m v k u

0

0

0

0

− − =

+ − =

�
i
�
�
i
�
σ

σ
 (5.35)
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For the sake of simplicity, let’s identify the matrix in Eq. (5.34) as

 K
k m k

k k m
=

− − ⋅
− +

⎛

⎝⎜
⎞

⎠⎟
0

0

� �
�
i
�

σ
σ ( )

For a solution to this system to exist, it must be true that K has vanishing determinant. 
That is,

 det
( )

k m k

k k m
0

0

0
− − ⋅

− +
⎛

⎝⎜
⎞

⎠⎟
=

� �
�
i
�

σ
σ

The determinant works out to be

 

det det
( )

(

K
k m k

k k m

k m

=
− − ⋅

− +
⎛

⎝⎜
⎞

⎠⎟

= − −

0

0

0

� �
�
i
�

σ
σ

))( ) ( )k m k0
2+ + ⋅

� �σ

To work out this result, we’ll need to calculate ( ) .
� �
k ⋅σ 2 From ordinary quantum 

mechanics recall that the Pauli matrices satisfy σ j I2 = .  In addition, they satisfy the 
anticommutation relation.

 
{ , }σ σ δi j ij= 2

 
 (5.36)

This greatly simplifi es the calculation of ( ) .
� �
k ⋅σ 2 Writing out the terms, it’s going 

to be

 ( ) ( )( )
� �
k k k k k k k⋅ = + + + +σ σ σ σ σ σ σ2

1 1 2 2 3 3 1 1 2 2 3 3

Since the Pauli matrices satisfy Eq. (5.36), mixed terms in this expression will 
vanish. As a specifi c example consider

 

k k k k k k

k k
1 2 1 2 2 1 2 1 1 2 1 2 2 1

1 2 122

σ σ σ σ σ σ σ σ
δ

+ = +
=
=

( )

00
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So we are left with

 

( ) ( )( )
� �
k k k k k k k

k

⋅ = + + + +

=

σ σ σ σ σ σ σ2
1 1 2 2 3 3 1 1 2 2 3 3

11
2

1
2

2
2

2
2

3
2

3
2

1
2

2
2

3
2

2

σ σ σ+ +

= + +

=

k k

k k k

k
�

Hence,

 
det ( )( ) ( )K k m k m k

k m k

= − − + + ⋅

= − + +
0 0

2

0
2 2 2

� �
�

σ

This is just another way to write down our old friend, the relativistic relation 
between energy, mass, and momentum. Since we are working in units where � = 1, � �
k p= ,  and k p E0 0= = , we can also write the energy in terms of a frequency since 
as you recall E = �ω .

Remember for a solution to exist, this quantity must vanish (det )K = 0 . That is,

 k k m0
2 2 2= +
�

Taking the square root, we see that the possible energies are

 ωk k k m= = ± +0
2 2
�

This means that the Dirac equation is still plagued by negative energies. If we take 
the positive solution, so that E k= >ω 0, we call the solution a positive frequency 
solution. The solution with E k= <ω 0 is the negative energy solution. We get out 
of this problem the same way we did with the Klein-Gordon equation—we interpret 
the positive energy solutions as corresponding to particles with positive energy, and 
the negative energy solutions correspond to antiparticles with positive energy. Dirac 
predicted their existence with the notion of a “sea” of negative energy states. 
However his logic used to predict the existence of antiparticles is wrong, so we will 
not discuss it. There is no Dirac sea. You can read about this in most quantum fi eld 
theory texts.

Free Space Solutions
If a particle is at rest (or let’s rephrase that and say you are observing it in its rest 
frame), it has no motion and hence no momentum. This means we can disregard the 
spatial derivatives in the Dirac equation. Let’s use this case to develop the free 
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space solution for a particle at rest. Once you have that, you can always do a Lorentz 
boost to fi nd the solution for a particle with arbitrary momentum.

In the case where the particle is at rest, the Dirac equation reduces to

 i
t

mγ ψ ψ0 0
∂
∂

− =  (5.37)

Once again we take ψ = ( )u
v where u and v each have two components and we work 

with the Dirac-Pauli representation and take

 γ 0 0

0
=

−
⎛
⎝⎜

⎞
⎠⎟

I

I

The fi rst term works out to be

 

i
t

i
I

I t

u

v

i
I

I

γ ψ0 0

0

0

0

∂
∂

=
−

⎛
⎝⎜

⎞
⎠⎟

∂
∂

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟⎟

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

�
�

�
�

u

v

i
u

v

where �u u
t= ∂

∂  and similarly for v. The minus sign that appears here will once again 
lead to negative energies. The other term in the Dirac equation is

 m m
u

v
ψ =

⎛
⎝⎜

⎞
⎠⎟

So we have the system

 
0 0=

∂
∂

−

=
−

⎛
⎝⎜

⎞
⎠⎟

−
⎛
⎝⎜

⎞
⎠⎟

i
t

m

i
u

v
m

u

v

γ ψ ψ

�
�

This leads to the two elementary differential equations

 
i

u

t
mu

i
v

t
mv

∂
∂

=

∂
∂

= −
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with the solutions

 
u t u e

v t v e

imt

imt

( ) ( )

( ) ( )

=

=

−0

0

Thinking back to nonrelativistic quantum mechanics, a free space solution has a 
time dependence of the form e iEt− .  So we make a comparison in each case to 
determine the energy, which in this case is the rest energy. For u we have the 
correspondence

 e eimt iEt− −∼

So for u we have the pleasing relationship that E = m. Since we’re working in units 
where c = 1, this is just the statement that the rest-mass energy is E mc= 2.  Making 
the same comparison for v, we see that

 e eimt iEt∼ −

This time we have E m= − . Yet again negative-energy states have reared their ugly 
head. Therefore we conclude that u is a two-component spinor representing a 
particle, while v is a two-component spinor representing an antiparticle. These 
are two-component objects because this equation describes spin-1/2 particles. 
Recall that the column vector representation of a spin-1/2 particle in quantum 
mechanics is

 φ
α
β

=
⎛
⎝⎜

⎞
⎠⎟

where α βand are the probability amplitudes to fi nd the particle spin-up or 
spin-down, respectively. 

Summarizing, we’ve learned that using the two component spinors u and v, the 
Dirac spinor can be thought of as

 ψ =
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

u

v

particle

antiparticle
 (5.38)

Now let’s consider a particle moving with arbitrary momentum p. We will use the 
scalar product

 p x Et p x⋅ = − ⋅� �  (5.39)
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Free space solutions are going to be plane waves, and we can immediately use the 
rest frame solutions to guess at a solution for a particle with momentum p. We use 
Eq. (5.39) and take

 u e

v e

ip x

ip x

∝

∝

− ⋅

⋅

Notice that if u e ip x∝ − ⋅ , then

 

i u i e

p e

p

ip x

ip x

γ γ

γ
ψ

μ
μ

μ
μ

μ
μ

∂ = ∂

=

= /

− ⋅

− ⋅

For v eip x∝ ⋅  we fi nd

 

i v i e

p e

p

ip x

ip x

γ γ

γ
ψ

μ
μ

μ
μ

μ
μ

∂ = ∂

= −

= − /

⋅

⋅

The Dirac equation, as you should have ingrained in your mind by now, is 
i mγ ψ ψμ

μ∂ − = 0. Using the above results we have two algebraic relations for u and v.

 ( )/ − =p m u 0    (5.40)

 ( )/ + =p m v 0   (5.41)

Notice that

 
( )( ) ( )( )/ − / + = − +

= +

p m p m p m p m

p p

γ γ

γ γ γ γ

μ
μ

ν
ν

μ ν
μ ν

ν μ pp p m p m p mμ ν
μ

μ
ν

νγ γ+ − − 2

When an index in an expression is repeated, it is a dummy index so we can relabel 
it. This allows us to get rid of two of the terms in this expression, because we 
have

 m p m p m p m pγ γ γ γμ
μ

ν
ν

μ
μ

μ
μ− = − = 0

This leaves

 
( )( )

(

/ − / + = + −

= +

p m p m p p p p mγ γ γ γ

γ γ γ γ

μ ν
μ ν

ν μ
μ ν

μ ν ν

2

μμ
μ ν)p p m− 2
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Using a now familiar friend, the anticommutation relation for the gamma matrices 
Eq. (5.8), this simplifi es to 

 

( )( ) ( )p m p m p p m

p p m

p m

− + = + −

= −

= −

γ γ γ γμ ν ν μ
μ ν

μ
μ

2

2

2 2

== − − = − =E p m m m2 2 2 2 2 0
�

We take the solutions to be of the form

 u p p m u( ) ( ) ( )= / + 0
 

 (5.42)

 v p p m v( ) ( ) ( )= / − 0
 

 (5.43)

Notice that

 

( ) ( ) ( )( ) ( )

( ) ( )

p m u p p m p m u

p m u

− = − +

= −
=

0

0

0

2 2

The Dirac equation, written as Eq. (5.40), is satisfi ed. The initial states are given by 
ordinary spin-up and spin-down states, that we are free to choose. For example, we 
can take

 u v( ) ( )0
1

0
0

0

1
=

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

Boosts, Rotations, and Helicity
We have already written down the Dirac matrices and their defi ning anticommutation 
relation as

 { , }γ γμ ν μν= 2g

Now we need to fi gure out how to use them to generate boosts and rotations for the 
spin-1/2 case. The so-called Lorentz algebra requires that we seek operators J μν

 that 
satisfy

 [ , ] ( )J J i g J g J g J g Jμν αβ να μβ μα νβ νβ μα μβ να= − − +

This will work if we defi ne the tensor

 S
iμν μ νγ γ=
4

[ , ]
 

 (5.44)
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For a spin-1/2 particle, the generator of a Lorentz boost in the jth direction is

 S
ij j0 0

4
= [ , ]γ γ   (5.45)

The generator of a rotation for a spin-1/2 particle is

 S
iij i j ijk k

k

= =
⎛
⎝⎜

⎞
⎠⎟4

1

2

0

0
[ , ]γ γ ε

σ
σ  

 (5.46)

Now let 

 
� �

�Σ =
⎛
⎝⎜

⎞
⎠⎟

σ
σ
0

0
  (5.47)

so that, for example

 Σ1
1

1

0

0
=

⎛
⎝⎜

⎞
⎠⎟

σ
σ

This can be used to defi ne the helicity operator. Helicity tells us how closely aligned 
the spin of a particle is with its direction of motion. The direction of a particle’s 
motion is given by its spatial momentum vector 

�
p , so we can write the helicity 

operator as

 h
p

p
=

⋅
� �
�

Σ

 

 (5.48)

Looking at Eq. (5.47) you can see that a simple way to write the helicity operator is � �σ ⋅ p . 

Weyl Spinors
Let’s return to the chiral representation, which is useful when considering a special 
type of spinor known as a Weyl spinor. In the chiral representation, the Dirac 
matrices are represented by

 γ γ
σ

σ
0 0

0

0

0
=

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

I

I
i i

i

 γ 5

0

0
=

−⎛
⎝⎜

⎞
⎠⎟

I

I
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In the chiral representation, we have 

 

/ = = − − −

=
⎛
⎝⎜

⎞
⎠⎟

−

p p p p p p

I

I
p

γ γ γ γ γ

σ

μ
μ

0
0

1
1

2
2

3
3

0

0

0

0 11

1
1

2

2
2

3

30

0

0

0

0−
⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠σ

σ
σ

σ
σ

p p ⎟⎟

=
− ⋅

+ ⋅
⎛
⎝⎜

⎞
⎠⎟

p

E p

E p

3

0

0

� �

� �
σ

σ

where p E0 = . Considering the simple massless case, we write the Dirac spinor as

 ψ
ψ
ψ

=
⎛
⎝⎜

⎞
⎠⎟

L

R

  (5.49)

We call Eq. (5.49) a Weyl spinor. The components ψ Land ψ R will be left-handed 
and right-handed spinors. Like u and v, these are two component spinors. We also 
use the term chiral representation because these components are eigenstates of the 
helicity operator.

When m = 0, the Dirac equation reduces to the pleasingly simple form like

 / =pψ 0

or in matrix form

 
0

0
0

E p

E p
L

R

− ⋅
+ ⋅

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
� �

� �
σ

σ
ψ
ψ

This produces two equations.

 E p L+ ⋅( ) =� �σ ψ 0    (5.50)

 E p R− ⋅( ) =� �σ ψ 0
 

 (5.51)

Let’s take a look at the fi rst equation. Using ( )
� � �
p p⋅ =σ 2 2

, we have

 
0

0

2 2

2 2

= − ⋅ + ⋅

= −

⇒ − =

( )( )

( )

,

E p E p

E p

E p

L

L

� � � �

�

�

σ σ ψ

ψ

EE p= �



106 Quantum Field Theory Demystifi ed

A similar relation with a sign change can be found for the right-handed spinor. 
Writing the helicity operator as 

� �σ ⋅ p , the left- and right-handed spinors satisfy the 
eigenvalue equations.

 
� � �σ ψ ψ ψ⋅( ) = − = −p E pL L L

  (5.52)

 
� � �σ ψ ψ ψ⋅( ) = =p E pR R R

  (5.53)

The Weyl spinors are also eigenstates of γ 5, as we show in Example 5.4. 

EXAMPLE 5.4
Consider massless Weyl spinors and show that they are eigenstates of the γ 5 matrix 
if we take ψ γ ψ ψ γ ψL RI I= − = +1

2 5
1
2 5( ) , ( ) .

SOLUTION
In the chiral representation we have

 γ 5

0

0
=

−⎛
⎝⎜

⎞
⎠⎟

I

I

Applying this to the Weyl spinor, we get

 γ ψ
ψ
ψ

ψ
ψ5

0

0
=

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

I

I
L

R

L

R

Now of course

 I
I

I
L

R

L

R

ψ
ψ
ψ

ψ
ψ

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

0

0

Therefore,

 ( )I L

R

L

R

L− =
⎛
⎝⎜

⎞
⎠⎟

−
−⎛

⎝⎜
⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

γ ψ
ψ
ψ

ψ
ψ

ψ
5 2

0

This leads to the relationship

 ψ γ ψL I= −
1

2 5( )

Similarly, we have

 ψ γ ψR I= +
1

2 5( )
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Notice that

 γ 5
2 0

0

0

0

0

0
=

−⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

=
I

I

I

I

I

I
I

So we have

 

γ ψ γ γ ψ

γ ψ

γ ψ

ψ

5 5 5
2

5

5

1

2
1

2
1

2

L

L

I

I

I

= −

= −

= − −

= −

( )

( )

( )

This shows that the left-handed Weyl spinor is an eigenstate of γ 5 with 
eigenvalue −1. Similarly, 

 

γ ψ γ γ ψ

γ ψ

γ ψ

ψ

5 5 5
2

5

5

1

2
1

2
1

2

R

R

I

I

I

= +

= +

= +

=

( )

( )

( )

That is,ψ R is an eigenstate of γ 5 with eigenvalue +1.

Summary
In this chapter we have introduced the Dirac equation. This equation was 
derived by Dirac in an attempt to get a relativistic equation with time and space 
on the same footing, while avoiding the negative probability densities associated 
with the Klein-Gordon equation. The equation still has solutions with negative 
energy, which are the result of the fact that it describes antiparticles, as well as 
particles. 



108 Quantum Field Theory Demystifi ed

Quiz
 1. Given the Lagrangian

 L = ∂ −ψ γ ψμ
μ( )[ ]x i m

 
  vary ψ ( )x to fi nd the equation of motion obeyed byψ ( )x .

 2. Calculate { , }.γ γ μ
5

 3. Consider the solution of the Dirac equation with E k= >ω 0. Find a 
relationship between the u and v components of the Dirac fi eld.

 4. Find the normalization of the free space solutions of the Dirac equation 
using the density ψγ ψ0 .

 5. Find S01, the generator of a boost in the x direction. 

 6. We can introduce an electromagnetic fi eld with a vector potential Aμ . Let 
the source charge be q. Using the substitution p p qAμ μ μ→ − , determine 
the form of the Dirac equation in the presence of an electromagnetic fi eld.



Scalar Fields

The fi rst attempts to merge the theory of relativity with quantum mechanics involved 
what you might think of as relativistic generalizations of the Schrödinger equation 
that were imagined to apply to a single particle. In fact, Schrödinger himself derived 
a relativistic equation—one that we fi rst learned in Chap. 2—the Klein-Gordon 
equation, before coming up with his famous nonrelativistic wave equation. He 
ended up discarding the Klein-Gordon equation as the correct one for quantum 
mechanics for three main reasons: 

• It appeared to have solutions with negative energy.

• It appeared to lead to a negative probability distribution.

• It gave an incorrect spectrum for the hydrogen atom.

Looking at these factors he ended up discarding what we now know as the 
Klein-Gordon equation in favor of what is now known as the Schrödinger equation. 
But as we’ll see later, the main problem with the Klein-Gordon equation is a 
problem in interpretation. 

We can begin our path to a relativistic wave equation by thinking about what we 
learned in Chap. 1. Relativity treats time and space in a similar fashion. In a wave 

CHAPTER 6
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equation, this implies that the derivatives applied to the time and spatial coordinates 
must be of the same order. In the nonrelativistic Schrödinger equation, there is a 
fi rst-order derivative with respect to time but derivatives with respect to the spatial 
coordinates are of second order. Let’s write down the Schrödinger equation in the 
case of one spatial dimension to remind ourselves of this explicitly.

 i
t m x

V�
�∂

∂
= −

∂
∂

+
ψ ψ ψ

2 2

22
  (6.1)

This equation cannot be relativistic since we have a fi rst-order derivative with 
respect to time ∂

∂
ψ
t on the left hand side, while we have a second-order derivative 

with respect to the spatial coordinate ∂
∂

2

2

ψ
x

on the right-hand side. To incorporate 
special relativity into quantum theory, we would expect symmetry. This situation is 
rectifi ed in the Klein-Gordon equation where second-order derivatives are applied 
to both the time and spatial coordinates. In contrast, Dirac, when deriving his 
famous equation that applies to spin-1/2 particles, insisted that fi rst-order derivatives 
be applied to both the spatial and time coordinates. We will see later why Dirac 
decided to “demote” the spatial derivative to fi rst order to get the symmetry in time 
and space we are looking for when we see how a second-order time derivative 
causes problems in the Klein-Gordon equation. In this chapter we will discuss the 
Klein-Gordon equation, which applies to scalar fi elds.

Arriving at the Klein-Gordon Equation
We begin our examination of relativistic wave equations by returning to an equation 
we learned briefl y in the second chapter, the Klein-Gordon equation. In Chap. 2 we 
saw how it could be derived from a Lagrangian which was given to us, but the 
ultimate origin of this equation may have seemed mysterious. What we are going to 
see in a moment is that the Klein-Gordon equation follows from the application of 
two fundamental principles—one taken from special relativity and the other taken 
from quantum mechanics. These are

• The relativistic relation between energy, mass, and momentum derived by 
Einstein

• The promotion of measurable quantities (“observables”) to mathematical 
operators in quantum mechanics

Now let’s go forward and see how Schrödinger, Klein, and Gordon (my apologies 
to any other dead people who derived this equation I am leaving out) derived the 
equation. The Klein-Gordon equation is very easy to derive in two steps. We start 
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by writing down the fundamental relation between energy, momentum, and mass 
used in special relativity.

 E p c m c2 2 2 2 4= +   (6.2)

Now we turn immediately to quantum mechanics. In quantum theory, observables 
turn into mathematical operators using a specifi c prescription you are no doubt very 
familiar with. We can see how this is done looking at the nonrelativistic Schrödinger 
equation [Eq. (6.1)]. You remember that the time-independent version of this 
equation is given by

 E
m x

Vψ ψ ψ= −
∂
∂

+
�2 2

22
  (6.3)

So it might occur to you that the Schrödinger equation can be thought of as a 
statement of the nonrelativistic defi nition of energy. Hence we make the following 
substitution for energy, promoting it to an operator that takes the derivative with 
respect to time.

 E i
t

→
∂
∂
�   (6.4)

We also recall that in ordinary quantum mechanics, momentum p is given by a 
spatial derivative, that is,

 p i
x

→ −
∂
∂
�   (6.5)

Generalizing to three dimensions, the relation is

 
� �p i→ − ∇   (6.6)

To derive the Klein-Gordon equation, all we do is put the substitutions [Eqs. (6.4) 
and (6.6)] into the Einstein relation for energy, momentum, and mass Eq. (6.2) and 
apply it to a wave function j. Using Eq. (6.4) we see that

 E
t

2 2
2

2
→ −

∂
∂

�
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Now, using Eq. (6.6) we have

 p2 2 2= − ∇�

Therefore, in terms of operators, the Einstein relation between energy, momentum, 
and mass Eq. (6.2) can be written as

 −
∂
∂

= − ∇ +� �2
2

2
2 2 2 2 4

t
c m c

This isn’t going to be of much use or make any sense unless we do something with 
it. So we’ll apply this operator to a function of space and time ϕ ϕ= ( , ).

�
x t Doing 

this and rearranging terms a little gives us the Klein-Gordon equation.

 � �2
2

2
2 2 2 2 4 0

∂
∂

− ∇ + =
ϕ ϕ ϕ
t

c m c   (6.7)

As discussed in Chap. 1, in particle physics we typically work in units where 
� = =c 1 (natural units) so this becomes

 
∂
∂

− ∇ + =
2

2
2 2 0

ϕ ϕ ϕ
t

m   (6.8)

We can simplify the appearance of the equation a little further by using different 
notation. In fact we’ll write it in two different ways. The fi rst is to recall the 
D’Alembertian operator in Minkowski space as

 � =
∂
∂

− ∇
2

2
2

t

This allows us to write Eq. (6.8) in the following simplifi ed way:

 ( )�+ =m2 0ϕ

This is a nice way to write the equation for the following reason. We know that � 
is a relativistic invariant, that is, it is the same in all inertial reference frames 
because it transforms as a scalar. The mass m is of course a scalar so the operator 
given by

 � + m2
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is also a scalar. What this tells us is that the Klein-Gordon equation will be covariant 
provided that the function j—which we will interpret later as a fi eld—also 
transforms as a scalar. In Chap. 1 we learned that the coordinates xμ  transform as

 ′ =x xμ μ
ν

νΛ   (6.9)

under a Lorentz transformation. If a fi eld ϕ( )x
 
is a scalar fi eld, then it transforms as

 ′ = −ϕ ϕ( ) ( )x xΛ 1   (6.10)

We are led to the fi rst important characteristics of the Klein-Gordon equation.

• It applies to scalar particles (actually scalar fi elds).

• These particles are spin-0 particles.

We can also write Eq. (6.7) in a nice, compact style using the notation developed 
in Chap. 1. Using ∂ ∂ = − ∇∂

∂μ
μ 2

2
2

t
 it becomes

 ( )∂ ∂ + =μ
μ ϕm2 0   (6.11)

As it is written, Eq. (6.11) describes a free particle. The free particle solution is 
given by

 ϕ( , )
�
x t e ip x= − ⋅

Remember, we are applying special relativity here so p and x are 4-vectors given 
by p E p= ( , )

�
and x t x= ( , )

�
, respectively. The scalar product in the exponent is 

 p x p x Et p x⋅ = = − ⋅μ
μ � �

  (6.12)

The free particle solution implies the relativistic relation between energy, mass, 
and momentum. This is very easy to show, so let’s do it. For simplicity, we consider 
one spatial dimension only. Since

 
∂
∂

=
∂
∂

= − = −− − − −ϕ ϕ
t t

e iEe iEi Et px i Et px( ) ( )

and

 
∂
∂

=
∂
∂

= =− − − −ϕ ϕ
x x

e ipe ipi Et px i Et px( ) ( )
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Therefore, we have

 
∂
∂

−
∂
∂

= − +
2

2

2

2
2 2ϕ ϕ ϕ ϕ

t x
E p

Hence, applying the full Klein-Gordon equation [Eq. (6.8)] we have

 ( )E p m2 2 2− =ϕ ϕ

Canceling the wave function and rearranging terms gives E p m2 2 2= + , the desired 
result. Solving for the energy, we take the square root, being careful to include both 
positive and negative square roots.

 E p m= ± +2 2   (6.13)

This is a dramatic result which is one reason Schrödinger discarded the 
Klein-Gordon equation. The solution for the energy of the particle tells us that it is 
possible to have both positive and negative energy states—a nonphysical result. 
How do we get around this?

Finding negative energy states was the fi rst indication that the interpretation of 
the Klein-Gordon equation as a single particle wave equation is incorrect. It turns 
out we deal with the negative energy states in the following way. Solutions for 
particles with negative energy are actually solutions describing antiparticles, that 
is, particles with the same mass but opposite charge, with positive energy. 

However as we mentioned in the introduction, there are more problems with the 
Klein-Gordon equation. The second problem we will see is the fact that the time 
derivatives are second order leads to the problem of negative probability densities, 
which is nonsense. At least if you are constrained by the ideas of nonrelativistic 
quantum mechanics. The way around this is that we will decide the equation is not 
describing a single particle wave function the way the nonrelativistic Schrödinger 
equation does. Let’s see how a negative probability arises from the free particle 
solution in Example 6.1.

EXAMPLE 6.1
Show that the Klein-Gordon equation leads to a negative probability density in the 
free particle case. For simplicity, consider one spatial dimension.

SOLUTION
We begin by assuming that the probability current assumes the same form as it does 
in ordinary quantum mechanics. Keeping � = 1we defi ne the probability current as

 J i
x

i
x

= −
∂
∂

+
∂
∂

ϕ ϕ ϕ ϕ*
*

 (6.14)
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Now,

 

∂
∂

= −
∂
∂

∂
∂

−
∂
∂

+
∂
∂

∂
∂

+
∂J

x
i

x x
i

x
i

x x
i

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ*
*

*2

2

2 **

*
*

∂

= −
∂
∂

+
∂
∂

x

i
x

i
x

2

2

2

2

2
ϕ ϕ ϕ ϕ

We can transform the derivatives with respect to the spatial coordinate into derivatives 
with respect to the time coordinate using the Klein-Gordon equation [Eq. (6.8)]. 
Sticking to one spatial dimension, we rearrange terms a bit and fi nd that

 
∂
∂

=
∂
∂

+
2

2

2

2
2ϕ ϕ ϕ

x t
m   (6.15)

So we see that

 

∂
∂

= −
∂
∂

+
∂
∂

= −
∂
∂

+
⎛
⎝⎜

J

x
i

x
i

x

i
t

m

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

*
*

*

2

2

2

2

2

2
2 ⎞⎞

⎠⎟
+

∂
∂

+
⎛
⎝⎜

⎞
⎠⎟

⇒
∂
∂

= −
∂
∂

−

i
t

m

J

x
i

t

ϕ ϕ ϕ

ϕ ϕ ϕ

2

2
2

2

2

*
*

* ∂∂
∂

⎛
⎝⎜

⎞
⎠⎟

2

2

ϕ *

t

Now we recall another fundamental result from ordinary quantum mechanics. 
The probability current and probability density r satisfy a conservation equation, 
called the conservation of probability, which becomes, when working in one spatial 
dimension

 
∂
∂

+
∂
∂

=
ρ
t

J

x
0   (6.16)

Hence we fi nd that

 ∂
∂

=
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

ρ ϕ ϕ ϕ ϕ
t

i
t t

*
*2

2

2

2

This equation will be satisfi ed if

 ρ ϕ ϕ ϕ ϕ
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

i
t t

*
*

  (6.17)
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Let’s summarize what we have found. The fact that the Klein-Gordon equation 
includes second-order derivatives with respect to time leads to a probability density 
Eq. (6.17) that has a very different form than it takes in ordinary quantum mechanics. 
In fact you probably remember the probability density is defi ned in terms of the 
wave function ψ  as

 ρ ψ ψ ψ= =2 *

This is a direct result of the expression we found for the probability current, namely 

 ∂
∂

= −
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

J

x
i

t t
ϕ ϕ ϕ ϕ*

*2

2

2

2
  (6.18)

together with the Klein-Gordon equation. Now let’s see what happens when we 
consider the free particle solution. The presence of the fi rst-order time derivatives 
in the probability density Eq. (6.17) together with the solutions for the energy 
Eq. (6.13) leads to problems. Remembering the free particle solution

 ϕ( , ) ( )�
x t e eip x i Et px= =− ⋅ − −

the time derivatives are

 
∂
∂

= −
∂
∂

=− − −ϕ ϕ
t

iEe
t

iEei Et px i Et px( )
*

( )

We have

 
ϕ ϕ

ϕ ϕ

* ( ) ( )

*

[ ]
∂
∂

= − = −

∂
∂

=

− − −

t
e iEe iE

t
e

i Et px i Et px

−− − − =i Et px i Et pxiEe iE( ) ( )[ ]

So the probability density Eq. (6.17) is

 ρ ϕ ϕ ϕ ϕ
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − − =i
t t

i iE iE E*
*

( ) 2

Looks good so far—except for those pesky negative energy solutions. Remember 
that

 E p m= ± +2 2
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In the case of the negative energy solution

 ρ = = − + <2 2 02 2E p m

which is a negative probability density, something which simply does not make 
sense. Why doesn’t it make sense? A probability of 1 means the particle is in hand. 
Probability of ½ means you might fi nd it. A probability of 0 means you can’t fi nd 
the particle. A negative probability, say −1, has no consistent interpretation.

Reinterpreting the Field
The solution to the problem of negative probability density with the Klein-Gordon 
equation involves reinterpreting what the equation represents. Instead of imagining 
that the equation governs the wave function of a scalar particle, we instead 
imagine that j is a fi eld. We promote j to an operator ϕ ϕ→ ˆ that includes 
creation and annihilation operators that create and destroy quanta of the fi eld (the 
particles), and we will force j  to obey the usual/respected/canonical commutation 
relations. 

Field Quantization of Scalar Fields
We now turn to the task of quantizing a given fi eld ϕ( ).x  The process of quantization 
which basically means creating a quantum theory from a classical one is based on 
imposing commutation relations. Canonical quantization refers to the process of 
imposing the fundamental commutation relation on the position and momentum 
operators.

 [ ˆ, ˆ ]x p i=   (6.19)

In total, the quantization procedure is to

• Promote position and momentum functions to operators

• Impose the commutation relation Eq. (6.19)

We will follow a similar procedure for quantizing a classical fi eld theory. In this 
case, the procedure is called second quantization. 
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SECOND QUANTIZATION
In quantum fi eld theory, we quantize the fi elds themselves rather than quantizing 
dynamical variables like position. Once again we are faced with the problem of 
having to put space and time on an equal footing. In nonrelativistic quantum 
mechanics, position and momentum are operators. The position operator acts on a 
wave function according to

 ˆ ( ) ( )X x x xψ ψ=

The momentum operator acts as

 ˆ ( )p x i
x

ψ ψ
= −

∂
∂
�

On the other hand, time t is nothing but a parameter in nonrelativistic quantum 
mechanics. Clearly it is treated differently than position, as there is no operator that 
acts as

 ˆ ( , ) ( , )T x t t x tψ ψ=

Maybe you could try to construct a theory based on promoting time to such an 
operator, but that is not what is done in quantum fi eld theory. What happens in 
quantum fi eld theory is that we actually take the opposite approach, and demote 
position and momentum from their lofty status as operators. In quantum fi eld theory, 
time t and position x are just parameters that label a position in spacetime for a fi eld 
as shown here.

 ϕ( , )x t

To quantize the theory, we are going to take a different approach and treat the fi elds 
themselves as operators. The procedure of second quantization is therefore to

• Promote the fi elds to operators, and

• Impose equal time commutation relations on the fi elds and their conjugate 
momenta

Since we are quantizing the fi elds rather than the position and momentum, we call 
this procedure second quantization—the type of quantization used in ordinary 
quantum mechanics is fi rst quantization.
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This is important so let’s summarize. In quantum fi eld theory,

• Position x and momentum p are not operators—they are just numbers like 
in classical physics.

• The fi elds ϕ ( , )x t and their conjugate momentum fi elds π ( , )x t  are 
operators.

• Canonical commutation relations are imposed on the fi elds.

The fi elds are operators in the following sense. We have quantum states as we do 
in quantum mechanics, but these are states of the fi eld. The fi eld operators act on 
these states to destroy or create particles. This is important because in special 
relativity,

• Particle number is not fi xed. Particles can be created and destroyed.

• To create a particle, we need at least twice the rest-mass energy E mc= 2.

The mathematics that describe a quantum theory with changing particle number has 
its roots in the simple harmonic oscillator, one of the few exactly solvable models. 
We will briefl y review this now.

The Simple Harmonic Oscillator
The Hamiltonian for a simple harmonic oscillator in nonrelativistic quantum 
mechanics is

 ˆ ˆ
ˆH

p

m

m
x= +

2 2
2

2 2

ω
  (6.20)

We defi ne two non-Hermitian operators, which are known as the annihilation and 
creation operators, respectively.

 ˆ ˆ ˆa
m

x
i

m
p= +⎛

⎝⎜
⎞
⎠⎟

ω
ω2

  (6.21)

 ˆ ˆ ˆ†a
m

x
i

m
p= −⎛

⎝⎜
⎞
⎠⎟

ω
ω2

  (6.22)

It is straightforward to show, using [ ˆ, ˆ ] ,x p i= that

 [ ˆ, ˆ ]†a a = 1  (6.23)
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The Hamiltonian can be written in terms of these operators. It is given by

 ˆ ˆ ˆ†H a a= +⎛
⎝⎜

⎞
⎠⎟

ω 1

2
  (6.24)

If we defi ne the number operator as

 ˆ ˆ ˆ†N a a=   (6.25)

then the Hamiltonian takes on the wonderfully simple form

 
ˆ ˆH N= +⎛

⎝⎜
⎞
⎠⎟

ω 1

2
 

 

(6.26)

The eigenstates of the Hamiltonian satisfy

 Ĥ n n n= +⎛
⎝⎜

⎞
⎠⎟

ω 1

2
  (6.27)

This tells us that the energy of the state n  is

 E nn = +⎛
⎝⎜

⎞
⎠⎟

ω 1

2
  (6.28)

We call the states n  the number states. They are eigenstates of the number operator

 N̂ n n n=   (6.29)

The number n is an integer. The number operator obeys the following commutation 
relations with the annihilation and creation operators.

 [ ˆ , ˆ] ˆN a a= −   (6.30)

 [ ˆ , ˆ ] ˆ† †N a a=   (6.31)

The annihilation operator drops n by one unit.

 â n n n= −1   (6.32)
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The creation operator increases n by one unit.

 ˆ†a n n n= + +1 1   (6.33)

There is a lowest lying state, otherwise the system would be able to degenerate into 
negative energy states. We call the lowest energy state the ground state and denote it by 
0 . In quantum fi eld theory, we will often refer to this state as the vacuum state. The 

vacuum state is annihilated by the annihilation operator, rather it’s destroyed by it.

 â 0 0=   (6.34)

Meanwhile, ˆ†a raises the energy of the system so that n n→ +1 without limit. 
The state n  is obtained from the ground state through repeated applications of ˆ†a .

 n
a

n

n

=
( ˆ )

!

†

0   (6.35)

These ideas carry over to quantum fi eld theory, but with a different interpretation. 
In quantum mechanics we are talking about a single particle with state n and 
energy levels E nn = +ω( ).1

2 The creation and annihilation operators move the state 
of the particle up and down in energy from the ground. 

In quantum fi eld theory, we take the notion of “number operator” literally. The 
state n is not a state of a single particle, rather it is a state of the fi eld with n
particles present. The ground state which is also the lowest energy state is a state of 
the fi eld with 0 particles (but the fi eld is still there). The creation operator ˆ†a adds a 
single quantum (a particle) to the fi eld, while the annihilation operator â destroys a 
single quantum (removes a single particle) from the fi eld. As we will see, in general 
there will be creation operators and annihilation operators for particles as well as for 
antiparticles. 

These operators will be functions of momentum. The fi elds will become operators 
which will be written as sums over annihilation and creation operators.

SCALAR FIELD QUANTIZATION
The best way to learn about quantizing fi elds is to consider the simplest case fi rst, 
the real scalar fi eld that satisfi es the Klein-Gordon equation as shown here.

 ∂ ∂ + =
∂
∂

− ∇ + =μ
μϕ ϕ ϕ ϕ ϕm

t
m2

2

2
2 2 0
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We saw that the free fi eld solution of the Klein-Gordon equation is of the form

 ϕ( , ) ( )x t e i Et p x∼
� �− − ⋅

Let’s write this using the wave number k and let E k p kk→ = →0 ω ,
� �

 ϕ ω( ) ( )x e i x k xk∼
� �− − ⋅0

where we have also adopted the relativistic notation for position. The reason we are 
doing this is so that we can write down the general solution of the Klein-Gordon 
equation in terms of a Fourier expansion.

 ϕ
π ω

ϕ ϕω( )
( )

( ) (
/

( ) *x
d k

k e
k

i x k xk= +− − ⋅
3

3 22 2

0� �� �
kk ei x k xk) ( )ω 0 − ⋅⎡⎣ ⎤⎦∫

� �
  (6.36)

Now we apply step one of the quantization process—we promote the fi eld ϕ( )x
to an operator. This is done by replacing the Fourier transforms of the fi eld ϕ( )

�
k and 

ϕ * ( )
�
k by annihilation and creation operators, associated with each mode. That is,

 ϕ( ) ˆ( )
� �
k a k→

 ϕ * †( ) ˆ ( )
� �
k a k→

Now that the fi eld is an operator, we will add a caret to it and write it as ˆ( )ϕ x to 
remind us of that fact. In terms of the creation and annihilation operators, the fi eld 
is written as

 ˆ ( )
( )

ˆ( ) ˆ
/

( )ϕ
π ω

ωx
d k

a k e a
k

i x k xk= +− − ⋅
3

3 22 2

0� � �
†† ( )( )
� � �
k ei x k xkω 0 − ⋅⎡⎣ ⎤⎦∫   (6.37)

To have a quantum theory, we need to have a conjugate momentum to the fi eld so 
that we can impose commutation relations. Reminding ourselves of what that is, we 
repeat the defi nition starting with the Lagrangian

 L = ∂ ∂ −
1

2

1

2
2 2

μ
μϕ ϕm

We showed that the conjugate momentum to the fi eld is

 π
ϕ

ϕ( )
( )

x =
∂

∂ ∂
= ∂

L

0
0
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Now

 

∂ = ∂ − − ⋅
0 0

3

3 22 2
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( )

ˆ( )
/

(ϕ
π ω

ωx
d k

a k e
k

i x k xk
� � �

)) † ( )

/

ˆ ( )

( )

+⎡⎣ ⎤⎦
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− ⋅∫ a k e
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i x k x

k

k
� � �ω

π ω
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3

3 22 2
ˆ̂( ) ( ) ˆ ( ) (( ) † (a k e a k ei x k x i xk k
� �� �
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0 0

0ω ω 00

3

3 22 2

− ⋅

−

⎡⎣ ⎤⎦

= −

∫
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�

k x

k

k

d k
a k i e

)

/

)

( )
ˆ( )( )

π ω
ω ii x k x

k
i x k xk ka k i e( ) † ( )ˆ ( )( )ω ωω

0 0− ⋅ − ⋅+ +⎡
� � � ��

⎣⎣ ⎤⎦

= − −

∫

− − ⋅i
d k

a k ek i x k xk

3

3 22 2

0

( )
ˆ( )

/
( )

π
ω ω

� � �
ˆ̂ ( )† ( )a k ei x k xk
� � �ω 0 − ⋅⎡⎣ ⎤⎦∫

Therefore, the conjugate momentum to the fi eld in Eq. (6.37) is

 ˆ ( )
( )

ˆ( )
/

( )π
π

ω ωx i
d k

a k ek i x k xk= − −− − ⋅
3

3 22 2

0� � �
ˆ̂ ( )† ( )a k ei x k xk
� � �ω 0 − ⋅⎡⎣ ⎤⎦∫   (6.38)

The commutation relations we impose follow from the canonical commutation 
relations used in ordinary quantum mechanics. For Cartesian coordinates xi we have

 [ , ]x p ii j ij= δ

 [ , ] [ , ]x x p pi j i j= = 0

where δij  is the Kronecker delta function. Going to the continuum, with spatial 
locations 

� �
x yand we let

 δ δij x y→ −( )
� �

Now we consider commutators between the fi elds evaluated at the same time. We 
say that the fi elds obey equal time commutation relations. The fi elds are evaluated at 
different spatial locations

� �
x yand , but x y0 0= .  Then we have

 [ ˆ( ), ˆ ( )] ( )ϕ π δx y i x y= −� �   (6.39)

 [ ˆ( ), ˆ ( )]ϕ ϕx y = 0   (6.40)

 [ ˆ ( ), ˆ ( )]π πx y = 0   (6.41)
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EXAMPLE 6.2
Suppose that a real scalar fi eld is given by

 ϕ
π

( )
( )

( ) ( )†x
d p

p
a p e a p eipx ipx= +[ ]−∫

3

3 02 2

� �

Compute the equal time commutator

 [ ( ), ( )]ϕ πx y

where x y0 0= .

SOLUTION
The momentum is

 

π ϕ

π

( )

( )
( ) ( )†

x
x

x

d p

p
a p e a p eipx

=
∂
∂

=
∂

∂
+

0

0

3

3 02 2

� � −−

−

[ ]

= −[

∫ ipx

ipx ipxi
d p p

a p e a p e
3

3

0

2 2( )
( ) ( )†

π
� � ]]∫

Now the commutator is

 [ ( ), ( )] ( ) ( ) ( ) ( )ϕ π ϕ π π ϕx y x y y x= −

where x y0 0= (equal time commutation relation). Looking at the fi rst term, we have

 

ϕ π
π

( ) ( ) ( ) ( )
( )

†x y a p e a p e
d p

p

ipx ipx= + −[ ]
3

3 02 2

� �∫∫
′ ′

′ − ′′ − ′[ ]i
d p p

a p e a p eip y ip y
3

3

0

2 2( )
( ) ( )†

π

� �∫∫

∫=
′

i
d p d p3

3

3

32 2

1

2( ) ( )π π
Phase space factors

′′
+ ′−[ ]p

p
a p e a p e a p eipx ipx

0

0
( ) ( ) ( )†� � �

x terms

iip y ip ya p e′ − ′− ′[ ]† ( )
�

y terms
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Unfortunately in this case, there is only one way to proceed in order to complete the 
calculation—and that is to use brute force. Multiplying out term by term we get

 

ϕ π
π π

( ) ( )
( ) ( )

( )x y i
d p

p

d p p

p
a p a=

′ ′
∫

3

3 0

3

3
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× ( ) ′ }

− ′

− − ′

Now we compute the other term in the commutator, which turns out to be

 

π ϕ
π π
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d p d p p

p
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ipx ip y pp e e
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)

( ) ( )† †

− ′

− − ′× ′ }

The next step is to take the difference and to collect terms using the creation and 
annihilation operators. Not surprisingly, they obey similar commutation relations to 
the creation and annihilation operators used with the simple harmonic oscillator—
we simply generalize to the continuous case. The relevant relations are

 a p a p p p( ), ( ) ( )†� � � �′[ ] = − ′δ   (6.42)

 a p a p( ), ( )
� � ′[ ] = 0   (6.43)

 a p a p† †( ), ( )
� � ′[ ] = 0   (6.44)

Taking the difference of the fi rst term we computed for ϕ π( ) ( )x y with the fi rst 
term we computed for π ϕ( ) ( )y x , we get 

 
a p a p e e a p a p e e a pipx ip y ipx ip y( ) ( ) ( ) ( ) ( ),′ − ′ =′ ′ aa p e eipx ip y( )′[ ]

=

′

0

using Eq. (6.43).
In a similar fashion, if we take the difference of the last terms in each expression, 

we also get 0 since a p a p† †( ), ( ) .
� � ′⎡⎣ ⎤⎦ = 0  Now let’s look at the second term in each 
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expression. Taking the difference of the second term in ϕ π( ) ( )x y and the second 
term in π ϕ( ) ( )y x ,

 
we get

 

− ′ + ′ =− ′ − ′a p a p e e a p a p e eipx ip y ipx ip y( ) ( ) ( ) ( )† † −− ′ − ′( )
= −

− ′a p a p a p a p e e

a p a

ipx ip y( ) ( ) ( ) ( )
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† †

†† ( )

( )

′⎡⎣ ⎤⎦
= − − ′

= −

− ′

− ′

p e e

p p e e

ipx ip y

ipx ip yδ � �

δδ ( )
� � � � �
p p eip x y− ′ −( )

To get to the last step, we used the fact that 

 δ δ( ) ( ) ( ) ( )p p f p p p f p− ′ = − ′ ′

together with the fact that x y0 0= to get rid of the time component. Now we apply the 
same procedure to the difference of the third terms in each expression. The result is

 − − ′ −δ ( ) ( )� � � � �
p p eip x y

Putting everything together, we obtain
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′
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1
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0

0π
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− − ′ − − ′−� � � �� � �
pp e

i
d p

e
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ip x y

)

( )

( )

(

− −

−

⎡⎣ ⎤⎦

= − ∫

� � �

� � �3

32

1

2π
)) ( )+[ ]− −e ip x y

� � �

But one defi nition of the Dirac delta function is

 δ
π

( )
( )

( )� � � �
x y

d p
ei x y p− = −∫

3

32
  (6.45)

and from the symmetry of the delta functions we know δ δ( ) ( ),
� � � �
x y y x− = − so 
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1
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y x
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= − −
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States in Quantum Field Theory
Now that we know how to write down the scalar fi eld in terms of creation and 
annihilation operators, we are ready to see how the operators act on the states of the 
fi eld. We already have some idea of how they act by the analogy with the simple 
harmonic oscillator. As always let’s start with the simplest case, the state of lowest 
energy or the ground state, which is commonly referred to as the vacuum (or vacuum 
state) in quantum fi eld theory. The vacuum, represented by 0 , is destroyed by the 
annihilation operator.

 ˆ( )a k
�

0 0=   (6.46)

Now notice that the creation and annihilation operators entered the fi eld via the 
Fourier expansion. Therefore, we have been labeling them by the momentum

�
p or 

wave number
�
k . States can be denoted by momentum, so we can step up from the 

vacuum to a state
�
k with an application of the creation operator.

 
� �
k a k= ( )ˆ† 0   (6.47)

This describes a one-particle state. We can apply multiple creation operators of different 
modes

� �
…k k1 2, , and so on. For example, the two-particle state 

� �
k k1 2,  is created by

 
� � � �
k k a k a k1 2 1 2 0, ˆ ( ) ˆ ( )† †=

By extension, we can create an n-particle state using

 
� �

…
� � �

…
�

k k k a k a k a kn n1 2 1 2 0, , , ˆ ( ) ˆ ( ) ˆ ( )† † †=   (6.48)

Each creation operator ˆ ( )†a ki

�
creates a single particle with momentum �

�
ki and 

energy �ωki
(we are restoring the �’s for the moment, for clarity) where

 ωk ii
k m= +
�

2 2

An annihilation operator ˆ ( )a ki

�
destroys a particle with the said momentum and 

energy. 
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Positive and Negative Frequency 
Decomposition

We can decompose the fi eld into two parts, a positive frequency part and a negative 
frequency part. The positive frequency part consists of annihilation operators and is 
written as

 ˆ ( )
( )

ˆ( )
/

( )ϕ
π ω

ω+ − − ⋅= ∫x
d k

a k e
k

i x k xk

3

3 22 2

0� � �   (6.49)

The negative frequency part of the fi eld is composed of creation operators.

 ˆ ( )
( )

ˆ ( )
/

† ( )ϕ
π ω

ω− − ⋅= ∫x
d k

a k e
k

i x k xk

3

3 22 2

0� � �   (6.50)

Therefore, since ˆ( ) ,a k
�

0 0= the positive frequency part of the fi eld annihilates the 
vacuum.

 ˆ ( )ϕ + =x 0 0   (6.51)

And the negative frequency part creates particles.
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π ω
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i x k xk0
2 2

3
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0 � � �
00

2 2

3

3 2

0

= − ⋅∫
d k

e k
k

i x k xk

( ) /

( )

π ω
ω

� � �
 

 (6.52)

Number Operators
We can construct a number operator from the creation and annihilation operators.

 ˆ ( ) ˆ ( ) ˆ( )†N k a k a k
� � �

=   (6.53)
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The eigenvalues of the number operator are called occupation numbers. These 
are integers

 n k( ) , , ,
�

…= 0 1 2  (6.54)

which tell us how many particles there are of momentum 
�
k  for a given state. The 

state

 
� �

…
� � �

…
�

k k k a k a k a kn n1 2 1 2 0, , , ˆ ( ) ˆ ( ) ˆ ( )† † †=

consists of n particles, with a single particle with momentum 
�
k1, a single particle 

with momentum 
�
k2 , a single particle with momentum 

�
k3, and so on. However, we 

can have states where there are multiple particles with the same momentum. 
Suppose that we have two particles with momentum

�
k1

and a single particle with 
momentum

�
k2 .We can write the state as

 
� � �

� �
�

k k k
a k a k

a k1 1 2
1 1

2
2

0, ,
ˆ ( ) ˆ ( )

ˆ ( )
† †

†=

We can also write this state as

 

� � � � �
k k k n k n k1 1 2 1 2, , ( ) ( )=

where n k n k( ) , ( )
� �

1 22 1= = . From the vacuum state, we have

 n k n k
a k

n k

a kn k n

( ) ( )
ˆ ( )

( )!

ˆ ( )† ( ) † (� �
� ��

1 2
1

1

2
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��
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n k
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0
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In general, 

 n k n k n k
a k

n k
m

j
n k

jj

j

( ) ( ) ( )
ˆ ( )

( )!

† ( )� �
…

�
� �

1 2 0= ∏

As it is written, the number operator Eq. (6.53) is actually a density. It tells us the 
number density of particles in a given state, so to get the total number of particles we 
have to integrate over all of the states in momentum space. Doing so one obtains

 ˆ ˆ ( ) ˆ( )†N d k a k a k= ∫ 3
� �
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EXAMPLE 6.3
Find N̂ k

�
′ .

SOLUTION
Since

 
� �
′ = ′k a kˆ ( )† 0

and

 ˆ( ), ˆ ( ) ˆ( ) ˆ ( ) ˆ ( )† † †a k a k a k a k a k
� � � � �

′⎡⎣ ⎤⎦ = ′ − ′ ˆ̂( ) ( )a k k k
� � �

= − ′δ

we have

 

ˆ ( ) ˆ( ) ˆ ( ) ˆ( ) ˆ ( )

ˆ

† † †

†

a k a k k a k a k a k

a

� � � � � �
′ = ′

=

0

(( ) ˆ ( ) ˆ( ) ( )

ˆ ( )

†

†

� � � � �

�
k a k a k k k

a k

′ + − ′⎡⎣ ⎤⎦
=

δ

δ

0

(( )

( ) ˆ ( ) ( )†

� �

� � � � � �
k k

k k a k k k k

− ′

= − ′ ′ = − ′ ′

0

0δ δ

To get from the second to the third line, remember that â 0 0= . So we fi nd that

 

ˆ ˆ ( ) ˆ( )

( )

†N k d k a k a k k

d k k k

� � � �

�� �

′ = ′

= { }
∫

∫ − ′

3

3 δ ′′

= ′

k

k
�

Hence we’ve found that the single particle state
�
′k has n k( )

�
′ = 1.

Normalization of the States
An important question that always comes up in quantum theory is the normalization 
of a given state. How do we tackle it here? First we start with the premise that the 
vacuum is normalized to unity.

 0 0 1=   (6.55)
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Then, to compute the normalization of an arbitrary state 
�
k , we proceed by using 

the commutation relation Eq. (6.42). This is shown in the Example 6.4.

EXAMPLE 6.4
Compute the normalization of the state

�
k by considering the inner product

� �
k k ′ .

SOLUTION
We proceed using the fact that ˆ ( )†a k k

� �
0 = and that the adjoint of this expression 

is 0 =
� �
k a kˆ( ). Then,
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δ

δ

Bose-Einstein Statistics
The theory being developed in this chapter applies to bosons, which are 
indistinguishable particles of integral spin (or spin-0 in this case). To see this, we 
note that we can interchange the order of creation operators as applied to a state. So

 

� � � �
k k a k a k1 2 1 2 0, ˆ ( ) ˆ ( )† †=

but
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This tells us we are dealing with a theory that describes bosons. If we had 
fermions, there would have been a sign change in this calculation.

ENERGY AND MOMENTUM
Next we turn to the question of computing the energy and momentum of the fi eld. 
Starting with the operator expansion of the fi eld 

 ˆ ( )
( )

ˆ( ) ˆ
/

( )ϕ
π ω

ωx
d k

a k e a
k

i x k xk= +− − ⋅
3

3 22 2

0� � �
†† ( )( )
� � �
k ei x k xkω 0 − ⋅⎡

⎣
⎤
⎦∫

and using the number operator ˆ ˆ ( ) ˆ( )†N a k a k=
� �

, it can be shown that the Hamiltonian 
operator is

 ˆ ˆ ( )H d k N kk= +⎡
⎣⎢

⎤
⎦⎥∫ 3 1

2
ω

�
  (6.56)

The momentum in the fi eld is

 ˆ ˆ ( )P d k k N k= +⎡
⎣⎢

⎤
⎦⎥∫ 3 1

2

� �
  (6.57)

EXAMPLE 6.5
For the real scalar fi eld, fi nd the energy of the vacuum.

SOLUTION
The solution to this example is the famous infi nite energy of the vacuum, which 
may or may not be a problem depending on your point of view. To fi nd the energy 
of the vacuum, we need to compute

 0 0Ĥ   (6.58)

We have
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This solution is reminiscent of the energy of the harmonic oscillator in ordinary 
quantum mechanics. In that case the energy of the ground state is 1

2 �ω . We have 
found a similar term here, but the integral blows up, since we’re integrating over all 
momentum space as shown here.

 d k3∫ → �

This result can be ignored, or swept under the rug depending on your point of view. 
The usual explanation is that we only measure energy differences, so energy is 
measured relative to the ground state and this term falls out. The end result is we 
just throw it in the trash and say that the energy is 0. We simply subtract the infi nity 
and say we are “renormalizing” the theory. This trick works but you have to think 
about the fact that we have to resort to a mathematical sleight of hand to make the 
theory work—perhaps it’s an indicator that things are not quite right.

The renormalized Hamiltonian is constructed by subtracting off the term that 
gives rise to the infi nite energy. Thus,
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(6.59)

EXAMPLE 6.6
Find the energy of the state

�
k using the renormalized Hamiltonian.

SOLUTION
We have

 

� � � � � �

�
k H k k d k a k a k k
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Normal and Time-Ordered Products
In quantum fi eld theory we often fi nd it desirable to write expressions in a way such 
that all creation operators are to the left of all annihilation operators. When an 
expression is written in this way, we say that we are using normal ordering. When 
normal ordering is applied to an expression, we denote this by enclosing it in two 
colons, so the normal ordering of ψ is denoted by writing: :ψ . Since normal ordering 
means move all creation operators to the left of all annihilation operators, then

 : ˆ( ) ˆ ( ) : ˆ ( ) ˆ( )† †a k a k a k a k
� � � �

=   (6.60)

The normal ordering of a scalar fi eld can be written down using the positive and 
negative frequency parts. Recall that

 ˆ ( )
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ˆ( )
/

( )ϕ
π ω

ω+ − − ⋅= ∫x
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a k e
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i x k xk
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3 22 2
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while 
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ˆ ( )
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† ( )ϕ
π ω

ω− − ⋅= ∫x
d k

a k e
k

i x k xk

3

3 22 2

0� � �

Normal ordering puts creation operators to the left, so we expect the normal ordered 
fi eld to have negative frequency parts to the left of positive frequency components. 
Explicitly

 : ( ) ( ) : ( ) ( ) ( ) ( ) ( ) (ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕx y x y x y y x= + ++ + − + − + )) ( ) ( )+ − −ϕ ϕx y

A time-ordered product is a mathematical representation of the physical fact that a 
particle has to be created before it gets destroyed. Time ordering is accomplished 
using the time-ordering operator which acts on the product ϕ ψ( ) ( )t t1 2 as

 T t t
t t t t

t t
[ ( ) ( )]

( ) ( )

( ) ( )
ϕ ψ

ϕ ψ
ψ ϕ1 2

1 2 1 2

2 1

=
>if

if t t2 1>
⎧
⎨
⎩

  (6.61)

Remember that the fi elds are operators. Operators act in a right to left order. So 
a product of operators ˆ ˆAB acts on a state ψ in such a way that B̂ acts on the state 
fi rst, and then Â acts on the result. Therefore if t t1 2> which means that t1  is later in 
time, ψ ( )t2 acts on the state fi rst, followed by the action of ϕ( )t1 . The order is 
reversed if t t2 1> .
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The Complex Scalar Field
Now let’s quantize the complex scalar fi eld. This is a good step forward because the 
complex scalar fi eld represents particles with charge q and antiparticles with charge 
–q, so we will be able to tackle a relatively simple case and see how antiparticles 
can be represented in quantum fi eld theory. 

When we are dealing with antiparticles, the fi eld is expanded in terms of positive 
frequency modes (annihilation operators) for particles and negative frequency 
modes (creation operators) for antiparticles. It is common to use the creation and 
annihilation operators ˆ , ˆ†a a  for particles

 ˆ ( ) ˆ( )†a k a k
� �

(particles)

We use ˆ , ˆ†b b  to represent the creation and annihilation operators for antiparticles.

 ˆ ( ) ˆ( )†b k b k
� �

(antiparticles)

Hence ˆ ( )†a k
�

creates a particle of momentum �k and energy �ωk , while ˆ ( )†b k
�

 creates an antiparticle of momentum �k and energy �ωk . To write the fi eld operator, 
we sum up positive frequency parts for particles together with negative frequency 
parts for antiparticles to get

 ˆ ( )
( )

ˆ( ) ˆ
/

( )ϕ
π ω

ωx
d k

a k e
k

i x k xk= +− − ⋅∫
3

3 22 2

0� � �
bb k ei x k xk† ( )( )
� � �ω 0 − ⋅   (6.62)

There is an adjoint fi eld (not surprising since it’s a complex fi eld) given by

 ˆ ( )
( )

ˆ ( )†

/

† ( )ϕ
π ω

ωx
d k

a k e
k

i x k xk= +− ⋅∫
3

3 22 2

0� � � ˆ̂( ) ( )b k e i x k xk
� � �− − ⋅ω 0

  (6.63)

We still require that ˆ( ), ˆ ( ) ( )†a k a k k k
� � � �

′⎡⎣ ⎤⎦ = − ′δ , and similarly for the creation and 
annihilation operators for antiparticles

 ˆ( ), ˆ ( ) ( )†b k b k k k
� � � �

′⎡⎣ ⎤⎦ = − ′δ   (6.64)
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There are two conjugate momenta corresponding to the fi eld and its adjoint. For 
example,
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π
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(6.65)

In the case of the charged complex fi eld, we have two number operators. The fi rst 
is the familiar number operator that corresponds to the number of particles.

 ˆ ˆ ( ) ˆ( )ˆ
†N d k a k a ka = ∫ 3
� �

  (6.66)

The second is the number operator that represents the number of antiparticles.

 ˆ ˆ ( ) ˆ( )ˆ
†N d k b k b k

b
= ∫ 3

� �
  (6.67)

The total energy in the fi eld is expressed as the energy of the particles added to the 
energy of the antiparticles.

 ˆ ˆ ( ) ˆ( ) ˆ ( ) ˆ( )† †H d k a k a k b k b kk= +⎡⎣ ⎤⎦∫ 3 ω
� � � �

  (6.68)

Notice that the energy density is the number density of particles added to the 
number density of antiparticles multiplied by the energyωk . Then, to get the total 
energy we integrate over all modes of the fi eld. Next, the total momentum is the 
momentum due to particles added to the momentum due to antiparticles.

 ˆ ˆ ( ) ˆ( ) ˆ ( ) ˆ( )† †P d k k a k a k b k b k= +⎡⎣ ⎤⎦∫ 3
� � � � �

  (6.69)

A complex fi eld corresponds to a charged fi eld. Particles and antiparticles have 
opposite charge. The total charge is found by subtracting the charge due to 
antiparticles from the charge due to particles. The charge operator is

 
ˆ ˆ ( ) ˆ( ) ˆ ( ) ˆ( )

ˆ

† †

ˆ

Q d k a k a k b k b k

Na

= +⎡⎣ ⎤⎦
=

∫ 3
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−− ˆ
ˆN
b

  
(6.70)
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Finally, the fi elds and the conjugate momenta satisfy a series of commutation 
relations. Once again we consider equal time commutation relations such that 
x y0 0= . Then,

 ˆ ( ), ˆ ( ) ˆ ( ), ˆ ( ) ( )† †ϕ π ϕ π δx y x y i x y[ ] = ⎡⎣ ⎤⎦ = −� �   (6.71)

All the equal time commutators vanish, leaving the following, which is not an equal 
time commutator.

 ˆ ( ), ˆ ( ) ( )†ϕ ϕx y i x y⎡⎣ ⎤⎦ = Δ −   (6.72)

At equal times,

 ˆ ( ), ˆ ( ) ˆ( ), ˆ ( ) ˆ ( ), ˆ († † †ϕ ϕ ϕ ϕ ϕ ϕx y x y x y⎡⎣ ⎤⎦ = [ ] = ))⎡⎣ ⎤⎦ = 0

The commutator ˆ( ), ˆ ( ) ( )†ϕ ϕx y i x y⎡⎣ ⎤⎦ = Δ − ∂ represents a new function called the 
propagator, which we will explore in detail in the next chapter.

Summary
The Klein-Gordon equation results from a straightforward substitution of the quantum 
mechanical operators for energy and momentum into the Einstein relation for energy, 
momentum, and mass from special relativity. This leads to inconsistencies such as 
negative probabilities and negative energy states. We can get around the inconsistencies 
by reinterpreting the equation. Rather than viewing it as a single particle wave 
equation, we instead apply it to a fi eld that includes creation and annihilation operators 
similar to the harmonic oscillator of quantum mechanics. There is one difference, 
however, in that the creation and annihilation operators now create and destroy 
particles, rather than changing the energy level of an individual particle.

Quiz
 1. Compute ˆ ( ), ˆ ( )†N k N k

� �
′⎡⎣ ⎤⎦  for the real scalar fi eld.

 2. Find ˆ ( ) ˆ ( ) ( )†N k a k n k
� � �

.
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 3. Find ˆ .N 0

 4. Consider the complex scalar fi eld. Determine if charge is conserved by 
examining the Heisenberg equation of motion for the charge operator Q̂ .

 �Q H Q= [ ],

  Do this computation by writing out the operators using Eqs. (6.68) and 
(6.70) and using the commutation relations Eq. (6.64).



CHAPTER 7

The Feynman Rules

The tricky mathematics of quantum fi eld theory have been distilled into a series of 
operations called the Feynman rules. The rules can be thought of as prescriptions to 
describe all manner of processes in quantum fi eld theory and are embodied in a 
pictorial form, the famous Feynman diagrams. In this chapter we will develop the 
Feynman rules and show how to construct Feynman diagrams. The ultimate goal is 
to compute physical parameters for various particle interactions. We discuss these 
here.

In quantum theory we make experimental predictions by calculating the 
probability amplitude that a process will occur. This remains true in quantum 
fi eld theory, where we calculate amplitudes for particle interactions such as 
decays and scattering events. The primary tool used to do such calculations is 
known as the S matrix. Any given physical process can be considered as a 
transition from an initial state i t= α( )0  to a fi nal output state we denote by 

f t= α( ) , that is,

i f→

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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This transition occurs via the action of a unitary operator, the S matrix, where S 
stands for scattering, in the following way.

f S i=

Since the S matrix is unitary, it satisfi es

S S SS I† †= =

From ordinary quantum mechanics, we know that the time evolution of states is 
described using the unitary time evolution operator U t t( , )0 . Then the amplitude to 
evolve from α I t( )0  at time t

0
 to a fi nal state αF t( )  at a later time t is

 α αF It U t t t( ) ( , ) ( )0 0
  (7.1)

The initial and fi nal states involve free particles that come in from t = −�, interact, 
and then move off as different free particle states at t = +�. An element of the S 
matrix is the limit of Eq. (7.1) where

 S t U t t tFI
t
t

F I=
→−∞

→+∞

lim ( ) ( , ) ( )
0

0 0α α   (7.2)

In momentum space, the S matrix is proportional to the amplitude MFI for a given 
process to occur, as follows:

 S i p p MFI F I FI∝ − −( ) ( )2 4 4π δ   (7.3)

where pF is the total four momentum of the outgoing states and similarly for the 
incoming momenta. The Dirac delta function enforces the conservation of 
momentum in the process. The Feynman rules allow us to calculate the amplitude 
M

FI
for the process rather easily, using a graphical representation known as a 

Feynman diagram of each physical process that can occur. The amplitude M
FI

 is 
calculated using a perturbative process. Imagine taking the probability amplitude 
for a process, and expanding it in a series. There is one Feynman diagram for each 
term in the perturbative expansion, and we add them up to get the total amplitude. 
Suppose that M is the amplitude for a given event. The same initial and fi nal particle 
states might result from a set of processes, each with amplitude M

i
. The total 

amplitude is

 M g Mk

i

n

i
i

total =
=
∑

0

  (7.4)
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where the gki are coupling constants for each M
i
. There will be a Feynman diagram 

for each term M
i
 in the sum. Each amplitude scales by a coupling constant denoted 

by g which describes the strength of the interaction, and k describes the order of the 
interaction. For a fi rst-order process, k = 1; second-order k = 2 and so on. Higher 
order terms in Eq. (7.4) will have more factors of g. Therefore if g is small, as i gets 
larger, that is as we take more terms in the sum Eq. (7.4), the higher order terms will 
begin to become negligible and we can cut the sum off at some n to get a reasonable 
estimate of the amplitude, like

M g Mk
i

i

n
i=

=
∑

0

For example, in quantum electrodynamics (QED) the coupling constant is 
proportional to α / .= ≈1 137 0 0073 which is a small number. Second-order 
probabilities are proportional to α 2 0 0000053≈ . . So as factors of the coupling 
constant appear as products, the terms become small enough that we can ignore 
them in our calculations. This will make more sense as we do explicit derivations 
of amplitudes. In this chapter we will illustrate the procedure with simple and easy 
to understand scattering and decay events that are abstract yet instructive. In the 
next chapter we will begin to study physical processes when we examine QED.

In quantum fi eld theory, it is helpful to examine the evolution of a system using 
the interaction picture which yields the amplitudes in Eq. (7.4). So we begin by 
reviewing interactions in quantum mechanics.

The Interaction Picture
In this section we will be considering quantum mechanics in three different pictures. 
The fi rst two will be the Schrödinger picture, and the second is the interaction 
picture. In between is Heisenberg picture. To keep the states and operators in the 
two pictures separate, we will use an S subscript for the Schrödinger picture and an 
I subscript for the interaction picture. 

We move to the interaction picture in quantum theory by splitting the Hamiltonian 
into two parts, a free fi eld Hamiltonian H0 which is time independent, and a time-
dependent interaction Hamiltonian HI .

 H H HI= +0
  (7.5)

Let us denote the states and operators in the Schrödinger picture with a subscript S. 
For example, in the Schrödinger picture a state vector is written as α

S
and an 
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operator is denoted by A
S
. In this picture, operators are fi xed and states evolve in 

time according to 

 i
t

t H t
S S

∂
∂

=α α( ) ( )   (7.6)

Here H is the full Hamiltonian. A state vector in the interaction picture α( )t
I
is 

related to the state vector in the Schrödinger picture via the action of the free part 
of the Hamiltonian.

 α α( ) ( )t e t
I

iH t

S
= 0   (7.7)

Now, using the interaction picture, we take an intermediate view between the 
Schrödinger picture and the Heisenberg picture, which moves the time evolution 
from the states to the operators. That is, in the interaction picture the operators also 
evolve in time. An interaction picture operator AI is related to a Schrödinger picture 
operator A

S
 in the following way.

 A e A eI
iH t

S
iH t= −0 0   (7.8)

Now we differentiate Eq. (7.7) and use Eq. (7.6) to arrive at a dynamical equation 
for the state as shown here.

∂
∂

=
∂
∂

( )

= +

t
t

t
e t

iH e t e

I

iH t

S

iH t

S

iH

α α

α

( ) ( )

( )

0

0 0
0

tt

S

iH t

S

iH t

S

t
t

iH e t e iH t

iH

∂
∂

= + −( )

=

α

α α

( )

( ) ( )0
0 0

00 0
0 0

0

e t e iH iH t

ie H

iH t

S

iH t
I S

iH t
I

α α( ) ( ) ( )+ − −

= − αα

α

( )

( )

t

iH t

S

I I
= −

Therefore, we conclude that the time evolution of the states in the interaction 
picture is

 i
t

t H t
I I I

∂
∂

=α α( ) ( )  (7.9)
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This tells us that the time evolution of the states is determined by the interaction 
part of the Hamiltonian. Now let’s take a look at the interaction picture operators 
and see how they evolve with time. We do this by differentiating Eq. (7.8).

∂
∂

=
∂
∂

= +

−

−

t
A

t
e A e

iH e A e e

I
iH t

S
iH t

iH t
S

iH t

( )0 0

0 0
0

iiH t S iH t iH t
S

iH tA

t
e ie A H e

iH

0 0 0 0
0

0

∂
∂

⎛
⎝⎜

⎞
⎠⎟

−

=

− −

ee A e ie A H e

iH A iA H

iH t
S

iH t iH t
S

iH t

I I

0 0 0 0
0

0 0

− −−

= −

== i H AI[ , ]0

That is, the time evolution of operators in the interaction picture is determined by 
the free part of the Hamiltonian.

 
∂
∂

=
t

A i H AI I[ , ]0
  (7.10)

Let’s summarize how the Hamiltonian affects time evolution in the interaction 
picture:

H
0
 (free) affects time evolution of operators

H
I
 (interaction)  affects time evolution of states

In quantum fi eld theory, we have seen that the fi elds themselves are operators. 
Equation (7.10) implies that the time evolution of the fi elds will be characterized by 
the free fi eld Hamiltonian.

Perturbation Theory
Now we know that the time evolution in quantum mechanics can also be described 
by a unitary operator U t t( , )0 .

 α α( ) ( , ) ( )t U t t t
I I

= 0 0
  (7.11)

Let’s differentiate both sides of this equation. On the left, we have

∂
∂

= − = −
t

t iH t iH U t t t
I I I I I

α α α( ) ( ) ( , ) ( )0 0
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On the right hand side, we obtain

 
∂
∂t

U t t t
I

( , ) ( )0 0α
 

 (7.12)

Hence the time evolution of U t t( , )0 is described by the equation

 i
U

t
H UI

∂
∂

=   (7.13)

Now, if we set t t= 0 in Eq. (7.11) expect to see now change in the system. Let’s 
compute the form of the U operator in this instant. We have

α α( ) ( , ) ( )t U t t t
I I0 0 0 0=

So it must be the case that

U t t( , )0 0 1=

The identity says there has been no change in the system in zero time. We take this 
as the initial condition in Eq. (7.13) and integrate to obtain

 U t t i H t U t t dtIt

t
( , ) ( ) ( , )0 01

0

= − ′ ′ ′∫   (7.14)

This is an integral equation which describes how the U operator changes as we go 
from time t

0
 to time t. This immediately suggests an iterative refi nement where we 

improve the computation of the U operator in a series of small steps.
As an example, let’s start with a rough guess for which we will call U

0
. Our fi rst 

refi nement will be U
1
 and is given by

U t t i H U t dIt

t

1 0 0 01
0

( , ) ( ) ( , )= − ∫ τ τ τ

However, we saw a large change as we went from U
0
 to U

1
 so we know we need to 

keep refi ning our calculation. So we will use the output U
1
 to calculate U

2
.

U t t i H U t dIt

t

2 0 1 01
0

( , ) ( ) ( , )= − ∫ τ τ τ
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These refi nements produce a rather hideous expression as shown here.

 

U t t i H t i H t U t t dIt

t

I( , ) ( ) ( ) ( , )0 01 1
0

= − ′ − ′′ ′′ ′′∫ tt dt

i dt H t i dt d

t

t

It

t

t

t

0

1 2

0 0

′

∫

∫ ∫

( ) ′

= − ′ ′ + − ′( ) ( ) ′′′ ′ ′′ +

+ − ′ ′′

′

∫

∫

t H t H t

i dt dt

I It

t

n

t

t

t

( ) ( )

( )

0

0 0

�

′′

∫ ∫ ′ ′′
−t

n
I I I

n

t

t
dt H t H t H t

n

� �( ) ( )( ) ( ) ( )
( )

0

1

We assume that the times satisfy t t t t n> ′ > ′′ > >� ( ) so we can write the nth 
term as

 

U t t i dt dt dt T H tn
n

t

t

t

t
n

I( , ) ( ) ( )( )
0

0 0

= − ′ ′′ ′∫ ∫
′
� HH t H t

i

n
dt

I I
n

t

t

n

t

t

n

( ) ( )

( )

!

( )
( )

′′{ }

=
−

′

−

∫

∫

�
0

1

0

ddt dt T H t H t H t
t

t
n

I I I
n

t

t
′′ ′ ′′{ }∫

0 0

� �( ) ( )( ) ( ) ( )∫∫

where T is the time-ordering operator. Then we sum up these terms to obtain a 
Dyson series. We can fi nd an approximate solution by cutting off the expansion at 
a suitable number of terms. 

Now, returning to the states, we need to solve

i
t

t H tI

∂
∂

=α α( ) ( )

where the Hamiltonian HI  is time dependent. Note the form of this equation. If the 
interaction HI goes to 0, then the states are constant in time telling us that any 
transitions in the state are due to interactions. To simplify notation let’s denote the 
initial state of the system at time t0 as

α( )t i0 =

The initial state of the system i is the state of the system before a scattering event, 
in other words the state of the system as t → −�. This is the noninteracting state of 
the particles prior to the scattering event. The fi nal state, long after the scattering 
event, is taken as lim ( )

t
t S i

→∞
=α . We wish to calculate the amplitude for a system 

in this state to end up in some specifi c fi nal state f

f S i S fi=
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which is a component of the S matrix. Therefore the probability P
fi
 for a system that 

starts in the state i  and ends up in the fi nal state f  after undergoing an interaction 
described by S is

P
fi = =f S i S Sfi fi

2 *

f S i
2

The state of the system at time t can be written in an iterative expansion we used for 
the Dyson series. With an initial state i , we have for the fi rst two terms

α α( ) ( ) ( ) ( )t i i H t t dtI

t
= + − ′ ′ ′

−∞∫

Since S t U t t tFI
t
t

F I=
→−∞

→+∞

lim ( ) ( , ) ( )
0

0 0α α , and we can write U in terms of a Dyson series, 

we can cast the S matrix as a series.

 
S i dt dt dt Hn

n

t t
n

t

I

n

= − ′ ′′
=

∞

−∞ −∞

′

−∞∑ ∫ ∫ ∫
−

( )
( )

0

1

� (( ) ( ) ( )t H t H tI I n1 2 �   (7.15)

To summarize, to calculate the amplitude f S i we use perturbation theory and 
compute terms to a suitable order (to acceptable level of error). In quantum fi eld 
theory we must describe processes like the creation of matter and antimatter:

i e e e e e e− − − − + −+ → + + +

You can see how we have a different set of particles in the before and after states 
(think special relativity). Because the sets of particles change, we use terms that 
annihilate particles in the initial state and create particles in the fi nal state.

Confused? Who wouldn’t be. Luckily Fenyman understood all this stuff well 
enough to distill it down to a simple recipe. We will now forget everything we’ve 
done so far and use the Feynman rules to calculate amplitudes.

Basics of the Feynman Rules
The crux of the perturbative expansion is this: we refi ne our calculation using 
corrections that are becoming smaller and smaller. The reduction in importance is 
quantifi ed by the power of the perturbation parameter, which in this case is the 
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coupling strength. At some point we are adding refi nements that are too small to be 
measured and we know we can stop adding refi nements.

In such a perturbation expansion, as we have seen earlier, the amplitude M for a 
given process can be computed using an expansion of the type

M g Mk
n

n

n= ∑
Each individual amplitude Mn

 is a specifi c particle reaction (scattering, decay) that 
can be drawn as a Feynman diagram. The higher the order of term Mn, the less 
likely it is to occur and the less it contributes to the overall amplitude. The terms M

n
 

have the same incoming and outgoing particles, but represent different intermediate 
states. The intermediate states correspond to terms in the Dyson series. Since each 
term M

n
 is scaled by a coupling constant g, which represents the strength of a given 

interaction, when the relative strength of a given interaction is small then it can be 
analyzed using perturbation theory.

A Feynman diagram consists of one or more external lines that represent the 
incoming and outgoing particles, connected by a vertex. Time can be taken to fl ow 
from the bottom to the top of the diagram, or from the left to the right. For example, 
imagine a particle decay process involving particles A, B, and C that proceeds with 
A breaking up into particles B and C.

A B C→ +

If we draw time going from the bottom to the top, we obtain the Feynman diagram 
shown in Fig. 7.1.

If we draw a diagram such that time is moving from the left to the right, then we 
obtain the diagram shown in Fig. 7.2.

Time A

B C

Figure 7.1 A Feynman diagram for the decay process A B C→ + . Time fl ows from the 
bottom of the diagram to the top.
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Feynman diagrams are a qualitative, symbolic representation of some particle 
interaction. So don’t think of the fl ow of time as an actual time axis. Normally, 
the direction of time fl ow is not explicitly indicated on the diagram, rather it is 
understood from the context. 

Scattering events will involve an intermediate state or particle that is drawn in 
the diagram as an internal line. Suppose that particles A and B scatter with particles 
C and D leaving the process, and let’s suppose that the scattering process involves 
in intermediary I. The scattering event is

A B C D+ → +

It is represented by the Feynman diagram in Fig. 7.3, which includes the 
internal line with the intermediate state I. The correct way to interpret the 
intermediate state is that it is a force carrying particle that transmits the given 
force between the particles A and B. For example, if this were an electromagnetic 
interaction, say the scattering of an electron and a positron, the internal line 
would be a photon. The way the reaction is drawn in Fig. 7.3, particles A and 

Figure 7.2 A Feynman diagram for the decay A B C→ + , with time fl owing 
from left to right.

Time

A

B

C

Time A B

I

C D

Figure 7.3 A Feynman diagram for the reaction A B C D+ → + .
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B meet and annihilate, producing the state I, which decays at a later time into 
the particles C and D.

Now let’s draw the same reaction with time fl owing from left to right. This is 
shown in Fig. 7.4.

Particles can scatter via the exchange of a boson (a force-carrying particle). Let’s 
represent the scattering event 

C D C D+ → +

where particles C and D exchange a boson B during a scattering event. This is 
shown in Fig. 7.5. Time fl ows from bottom to the top of the diagram. Particles C 
and D move in, scatter via the exchange of the boson B, and then move off. 

Now we know that in quantum field theory, antiparticles, in addition to 
particles, take part in many processes. Let us indicate the labels for antiparticles 
by a tick mark so that A is the particle and ′A is the antiparticle. The lines for 
particles in a Feynman diagram are indicated by an arrow that flows with the 
direction of time. The lines for antiparticles are indicated in a Feynman diagram 

Time

A

B

I

C

D

Figure 7.4 The process A B C D+ → +  with time fl owing from left to right.

Time

C

C

B

D

D

Figure 7.5 A scattering event C D C D+ → +  with the exchange of a boson B.
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by an arrow that flows in the opposite direction to the flow of time. Consider 
a reaction

A A A A+ ′ → + ′

where A scatters with the antiparticle ′A via the exchange of a boson B. The reaction 
is drawn in Fig. 7.6.

One of Feynman’s brilliant observations was that a particle traveling forward in 
time is equivalent to an antiparticle traveling backward in time (refer to Chap. 3). 
This is why we arrows indicating a particle is traveling backward in time.

Now consider the annihilation reaction, where A and ′A meet and annihilate, 
producing a boson B, which then decays into A and ′A . This version of the reaction 
A A A A+ ′ → + ′ is shown in Fig. 7.7.

Each line in a Feynman diagram is characterized by a four momentum. Suppose 
once again that A A A A+ ′ → + ′ occurs with the exchange of a boson B as shown 

Figure 7.6 The scattering event A A A A+ ′ → + ′, using arrows fl owing with time to 
indicate a particle and arrows fl owing against time to indicate an antiparticle.

A

A

B

A′

A′

Time

A

A

B

A′

A′

Time

Figure 7.7 Another representation of the reaction A A A A+ ′ → + ′.
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Time

A

A

B

A′

A′
p1

q

p2

p3 p4

Figure 7.8 A Feynman diagram showing momenta.

in Fig. 7.6. We indicate the momenta of each incoming and outgoing particle (or 
external line) with a p. Internal momenta are indicated with a q. This is shown in 
Fig. 7.8.

Calculating Amplitudes
To actually calculate an amplitude M, we integrate over all of the internal momenta. 
Fortunately, all the integrals involve Dirac delta functions so they can be done by 
inspection. This is due to the sampling property of the delta function, that is,

f x x x dx f x( ) ( ) ( )
−∞

∞

∫ − ′ = ′δ

As mentioned earlier, the reason the delta functions are in the amplitudes is to 
enforce conservation of energy and momentum. At each vertex, we assign a positive 
sign for a momentum entering a vertex and a negative sign for a momentum leaving 
a vertex. For instance, consider the vertex shown in Fig. 7.9.

A

B C

p1

p2
p3

Figure 7.9 A particle decay showing momenta entering and leaving a vertex.



152 Quantum Field Theory Demystifi ed

Momentum and energy are conserved and does not change because of the 
interaction. This conservation is described as p p p1 2 3= + , and we include this 
using the Dirac delta function (recall that δ ( )x x x x1 2 1 20− = =unless ). The delta 
function that enforces conservation of energy and momentum at the vertex shown 
in Fig. 7.9 is

( ) ( )2 4
1 2 3π δ p p p− −

The value of the delta function is 1 when p p p1 2 3= + and 0 otherwise.
The direction of the arrows indicates whether the given line is for a particle or 

antiparticle and does not have anything to do with the direction of momentum. If a 
line goes into a vertex, the momentum is entering the vertex. Following the direction 
of time (which can be up from the vertex or right from the vertex), lines leaving the 
vertex should be assigned momenta with minus signs. 

Conservation of energy and momentum is enforced at a vertex involving an 
internal line as well. Consider the vertex shown in Fig. 7.10, where the boson B 
carries away momentum q. 

The delta function that will enforce conservation of energy and momentum at the 
vertex shown in Fig. 7.10 is

( ) ( )2 4
1 3π δ p p q− −

We need to assign a direction to the internal momentum q. If we do so as shown in 
Fig. 7.11, then the delta function which must be of the form

δ incoming momenta outgoing momenta−( )∑∑
is written as

( ) ( )2 4
2 4π δ p p q− +

A

A

B

p1

q
p3

Figure 7.10 Conservation of energy and momentum is also enforced at a vertex with an 
internal line using a delta function.
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Steps to Construct an Amplitude

B

A′

A′ 

q

p2

p4

Figure 7.11 Conservation of momentum in this fi gure is enforced by 
( ) ( )2 4

2 4π δ p p q− + .

Constructing an amplitude from a Feynman diagram involves the following steps:

• Write down a delta function to conserve energy and momentum at each 
vertex. Multiply these terms together.

• Write down the one coupling constant for each vertex in the fi gure.

• Write down a propagator for each internal line.

• Multiply all the factors together. 

• Integrate over internal momenta.

The total amplitude M is the sum of all the amplitudes Mi that can occur for a specifi c 
process with the same incoming and outgoing particles. Each Mi corresponds to a 
Feynman diagram. So the total amplitude for the process A A A A+ ′ → + ′ is the sum 
of the two amplitudes represented by Figs. 7.6 and 7.7. In fact, higher-order diagrams 
for each of those processes can be drawn with different intermediate states. Now 
let’s discuss the two remaining pieces of the process, the coupling constants and 
propagators.

COUPLING CONSTANTS
Every force has some fundamental strength, and the force manifests itself in the 
Feynman calculus as a coupling constant g. For quantum electrodynamics, for 
example, the coupling constant g

e
 is related to the fi ne structure constant α as

 ge = 4πα  (7.16)
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The fi ne structure constant is a dimensionless number that contains fundamental 
constants that appear in electromagnetic theory, the electric charge e, the speed of 
light c, and Planck’s constant �.

α
π

= ≈
e

c

2

4
1 137

�
/

In a good theory like QED, or any interaction where the coupling constant is small 
(<<1), higher order diagrams contribute less and less because they include higher 
and higher powers of g. This means we can terminate the series at a point where we 
have the accuracy we need to describe a given process. 

For each vertex in a Feynman diagram, we include one copy of the coupling 
constant as follows:

−ig

PROPAGATORS
We associate a propagator with each internal line in a Feynman diagram. A 
propagator is a factor that represents the transfer or propagation of momentum from 
one particle to another. Right now we will introduce propagators for three types of 
particles; you will come across others later in your studies. 

The simplest case we can consider is an internal line for a spin-0 boson. In this 
case, the propagator is

 
i

q m2 2−
 (7.17)

The mass in this term is the mass of the particle that corresponds to the internal line. 
In a Feynman diagram, an internal line for a spin-0 boson can be shown as a dashed 
line, as shown in Fig. 7.12.

For a spin-1/2 particle, we indicate the internal line the same way we would for 
an external line, as a solid line with an arrow pointing in the direction of momentum 
for a particle and against the direction of momentum for an antiparticle. In this case 
the propagator is

 
i

q m

q m

i

q m
/ +

−
=

/ −2 2
  (7.18)

qi

q2 – m2

Figure 7.12 An internal line for a spin-0 boson.
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where 

/ =q qγ μ
μ

An internal line for a Fermion is shown in Fig. 7.13.
The photon propagator is

 
i

k
g

k k

k2 21− + −
⎛
⎝⎜

⎞
⎠⎟

μν
μ ν

ζ( )   (7.19)

In the Feynman gauge ζ = 1, and the photon propagator is just

 −
i

k
g2

μν  (7.20)

In the examples in this chapter, we will use spin-0 bosons as the force-carrying 
particles in all of our calculations because they are simpler to deal with. 

Now let’s review again the steps used to build up the amplitude from a Feynman 
diagram. We take each factor and multiply them together as a product.

• Write down one factor of −ig for each vertex in the diagram where g is the 
coupling constant for the interaction depicted.

• Write down a delta function 
( )2 4π δ incoming momenta∑ −(  outgoing momenta∑ ) for each vertex to 
conserve momentum.

• Add a propagator for each internal line.

The next step is to integrate over all internal momenta. For each internal momentum 
q we add an integration measure to enforce normalization in phase space:

 
1

2 4
4

( )π
d q   (7.21)

Then we integrate for each internal momentum q. In the end, there will be a fi nal 
delta function left over that enforces the conservation of energy and momentum for 

Figure 7.13 An internal line for a Fermion.

qi
q – m
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the external lines. We simply discard this factor, and the result left over is the 
amplitude for the given process. 

EXAMPLE 7.1
A particle A annihilates with its antiparticle ′A , producing a spin-0 scalar boson B,
which subsequently decays into A and ′A . The mass of the scalar boson is mB. 
Calculate the amplitude and probability for this process shown in Fig. 7.14.

SOLUTION
Following the rules, we start by writing down a factor of −ig for each vertex. There 
are two vertices in Fig. 7.14, hence we get two factors of −ig.

 ( )( )− − = −ig ig g2   (7.22)

Next, we multiply this by the Dirac delta functions that will conserve 4-momentum 
at each vertex. For the fi rst vertex at the bottom of Fig. 7.14, we have incoming 
momenta p p1 2and and outgoing momentum q. This is represented by the delta 
function

( ) ( )2 4
1 2π δ p p q+ −

We multiply this by Eq. (7.22), giving

 − + −g p p q2 4
1 22( ) ( )π δ   (7.23)

B, q

A, p3 A′, p4

A′, p2A, p1

Figure 7.14 The annihilation-creation process with spin-0 boson.
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At the top vertex, we have incoming momentum q, and outgoing momenta p p3 4and . 
We indicate this with the delta function

( ) ( )2 4
3 4π δ q p p− +

Adding this to the product in Eq. (7.23) gives

 − + − − +g p p q q p p2 4
1 2

4
3 42 2( ) ( )( ) ( )π δ π δ   (7.24)

The next step is to add the propagator for the internal line. Since this is a spin-0 
boson, we use Eq. (7.17), which we multiply by Eq. (7.24) to give 

−
−

+ − − +
ig

q m
p p q q p p

B

2

2 2
4

1 2
4

3 42 2( ) ( )( ) ( )π δ π δ

Now we integrate over q, using the measure

1

2 4
4

( )π
d q

So we have

M
ig

q m
p p q q p p dq

B

=
−
−

+ − − +∫
2

2 2
4

1 2 3 42( ) ( ) ( )π δ δ

This integral can be done by inspection. Using the second delta function, we set

q p p= +3 4

Therefore, the amplitude for this process is

M
ig

q m
p p q q p p dq

i

B

=
−
−

+ − − +

=
−

∫
2

2 2
4

1 2 3 42( ) ( ) ( )π δ δ

gg

p p mB

2

3 4
2 2( )+ −

where we have discarded the remaining delta function which is 

( ) ( )2 4
1 2 3 4π δ p p p p+ − −
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which enforces overall conservation of energy and momentum (at the external lines). 
The probability for the process to occur is the modulus squared of M, that is,

M
g

p p mB

2
4

3 4
2 2 2=

+ −( )( )

EXAMPLE 7.2
A particle decays as follows

u w v→ +

with a coupling strength g
w
. The particle w then decays into

w v e→ ′ +

with a strength given by the same coupling constant. Draw the Feynman diagram 
for this process and calculate the amplitude for it to occur. The w particle is a spin-0 
boson with mass m

w
.

SOLUTION
The Feynman diagram for this process is shown in Fig. 7.15.

We include a factor of −igw for each vertex. There are two vertices shown in Fig. 7.15, 
so we have

( )− = −ig gw w
2 2

Figure 7.15 The process described in Example 7.2. Note that ′v is an antiparticle, so the 
arrow for its external line is pointing in the opposite direction.

u, p1 

v, p2

w, q

e, p3 

v′, p4
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At vertex 1 (at the fi rst vertex), there is incoming momentum p
1
 and outgoing 

momenta p
2
 and q. Therefore, we include a delta function giving

− − −g p p qw
2 4

1 22( ) ( )π δ

The particle w decays into the fi nal products, so it’s represented by an internal line. 
The propagator for this particle is given by

i

q mw
2 2−

At the second vertex, we have incoming momentum q and outgoing momenta p
3
 

and p
4
, so we multiply by a delta function

( ) ( )2 4
3 4π δ q p p− −

Putting everything together, we get

− − −
−

⎛
⎝⎜

⎞
⎠⎟

−g p p q
i

q m
q pw

w

2 4
1 2 2 2

4
32 2( ) ( ) ( ) (π δ π δ −− p4 )

Now we integrate to obtain

 

− − −
−

⎛
⎝⎜

⎞
⎠⎟

−g p p q
i

q m
q pw

w

2 4
1 2 2 2

4
32 2( ) ( ) ( ) (π δ π δ −−

= −
− − −

+

∫ p
d q

ig p p p p

p
w

4

4

4

2 4
1 2 3 4

3

2

2

)
( )

( ) ( )

(

π

π δ
pp mw4

2 2) −

We have used q p p= +3 4 from the second delta function in the integral. To get 
the amplitude for the process to occur, we drop the ( ) ( )2 4

1 2 3 4π δ p p p p− − −  
term

M
ig p p p p

p p m
w

w

= −
− − −

+ −

2 4
1 2 3 4

3 4
2 2

2( ) ( )

( )

π δ



Rates of Decay and Lifetimes
Decay processes are very important in nuclear and particle physics since many 
nuclei and particles are unstable—they will eventually decay into something else. 
In fact, very few particles are fundamental and immune to decay. So decay rates 
and lifetimes are an essential quantities of interest.

The rate of decay for a process is proportional to the squared amplitude.

Γ ∝ M
2   (7.25)

The lifetime of a particle that decays is the inverse of the amplitude squared.

τ ∝
1

2
M

  (7.26)

Summary
Feynman diagrams allow us to represent the amplitude for a process to occur with 
a picture. External lines represent incoming and outgoing particle states. At each 
vertex, conservation of energy and momentum is enforced with a delta function, 
and the strength of the interaction is included with a coupling constant. Internal 
lines can represent force-carrying particles or particles that spontaneously decay 
into the end products. Each internal line is accompanied by a propagator that 
represents transfer of momentum to the fi nal states.

Quiz
 1.  What is the amplitude for the process shown in Fig. 7.16?

A, p1

A, p3
A′, p4

A′, p2

B, q

Figure 7.16 Feynman diagram for Question 1.
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 2.  Find the lifetime for the decay as shown in Fig. 7.17.

 3.  An internal line corresponds to a spin-0 boson of mass m. The propagator is

 (a)  i
q m

q m
/ +

−2 2

 (b)  
i

q m2 2−

 (c)  i

q m/ −
 (d)  δ ( )q m2 2−

 4.  In the interaction picture,

 (a) The time evolution of states is governed by the free Hamiltonian

 (b) States are stationary, operators evolve according to the interaction part 
of the Lagrangian

 (c) States evolve according to the interaction part of the Hamiltonian, 
fi elds evolve according to the free part of the Hamiltonian

 (d) States obey the Heisenberg equation of motion

 5.  Each vertex in a Feynman diagram requires the addition of

 (a) One factor of the coupling constant −ig

 (b) One factor of the coupling constant –g

 (c) One factor of the coupling constant −ig2

 (d) One factor of the coupling constant −i g

 6.  What number is the coupling constant for quantum electrodynamics related to?

g

A, p1

B, p2
C, p3

Figure 7.17 Feynman diagram for Question 1.
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CHAPTER 8

Quantum
Electrodynamics

Quantum electrodynamics or QED was the first true quantum field theory that 
was developed. As the name implies, it is a quantum field theory that describes 
electromagnetic interactions. It is sometimes called the prototype quantum field 
theory. In a sense, physicists would like all physical interactions described by a 
theory like quantum electrodynamics.

The development of quantum electrodynamics brought the notion of describ-
ing forces with particle exchange to the forefront. In quantum electrodynamics, 
electromagnetic forces are the result of the exchange of virtual photons. We say the 
photons are virtual because they are not observed directly, rather they are exchanged 
between two charged particles. The momentum carried by the photons causes a 
recoil between the two electrons giving rise to a repulsive force. We can illustrate a 
process like this with a Feynman diagram. The photon, which is the exchanged 
particle, is represented with a wavy line as shown in Fig. 8.1. A g can also be used 
to indicate a photon.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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In Fig. 8.2, we show a basic QED process. This is the repulsion of two electrons 
mentioned in the introductory paragraph. In the diagram, time is moving in a direction 
from bottom to top. Two electrons enter and scatter with the exchange of a photon.

Recall that the strength of a given interaction is described by its coupling 
constant. The coupling constant for QED processes is the fine structure constant 
which is denoted by a. It has a precisely known numerical value given by

a = 1/137

In terms of fundamental constants, it can be written as

 
a =

e

c

2

�  (8.1)

The fact that a << 1 is very helpful. This means that if we expand some quantity 
in a series in terms of a, higher order terms will contribute less and less because 
α n → 0 as n gets large. This fact makes QED calculations using perturbation theory, 
and in particular Feynman diagrams possible. 

g

Figure 8.1 A schematic representation of a photon that we will use in a Feynman 
diagram for QED processes is a wavy line. We can include a g for clarity if desired.

e e

e

g

e

Figure 8.2 A basic QED process: repulsion between electrons. Two electrons enter from 
the bottom, exchange a photon, then move off.
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In an earlier chapter we touched on a relativistic description of the electromagnetic 
field. We are going to review that here, and incorporate photon polarization into 
the picture. Once we have done that we can unify the electromagnetic field with 
the description of the electron using the Dirac equation to develop quantum 
electrodynamics.

We return to Maxwell’s equations

 

� � � �

� �
� � �

�
�

∇ ⋅ = ∇ ⋅ =

∇ × +
∂
∂

= ∇ × −
∂
∂

=

E B

E
B

t
B

E

t
J

ρ 0

0
 (8.2)

where
�
E is the electric field,

�
B is the magnetic field, ρ is the charge density, and

�
J is 

the current density. In field theory, we work with the 4-vector potential

 A Aμ φ= ( , )
�

 (8.3)

which allows us to define the electric and magnetic fields as

 

� � �
� � �

E
A

t
B A= −∇ −

∂
∂

= ∇ ×φ  (8.4)

The electromagnetic field tensor is defined as

 F A Aμν μ ν ν μ= ∂ − ∂  (8.5)

which turns out to be the matrix given by

 

F

E E E

E B B

E B B

E B B

x y z

x z y

y z x

z y x

μν =

− − −
−

−
−

⎛

⎝

⎜
⎜
⎜

0

0

0

0⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟

 (8.6)

Using this formulation, Maxwell’s equations can be written in the compact form

∂ + ∂ + ∂ =

∂ =

α μν β αμ μ να

μ
μν ν

F F F

F J

0

Reviewing Classical Electrodynamics Again
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where J Jμ ρ= ( , )
�

. The Lagrangian for the electromagnetic field is

 
L F F J A= − −

1

4 μν
μν μ

μ
 

From this Lagrangian, the field playing the role of canonical momentum to 
F xμν ( ) is

 
π μ

μ

μ( )
( )

( )x
L

A
F x=

∂
∂ ∂

= −
0

0  (8.7)

The continuity equation expressing conservation of electric charge can be derived 
from this Lagrangian using the usual techniques and is

 ∂ =μ
μJ 0  (8.8)

A gauge transformation can be applied to the 4-vector potential Aμ by adding the 
derivative of a scalar field χ .

 ′ = + ∂A Aμ μ μ χ  (8.9)

The field equations remain unchanged by such a mathematical transformation. This 
allows us to pick a form of Aμ that is convenient in some way. For example, we can 
require that the divergence of the four potential vanishes, something called the 
Lorentz condition.

 ∂ =μ
μA 0  (8.10)

This equation allows us to approach the electromagnetic field in a similar way that 
the Klein-Gordon equation can be dealt with. While the vector potential plays an 
ancillary role as a mathematical tool in classical electrodynamics, in QED we treat
Aμ itself as the photon field. In free space, the electromagnetic field will have 
plane wave solutions that we write as

 A e pip xμ με∝ − ⋅ ( )  

As usual

 p x Et p x⋅ = − ⋅� �  
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However, the photon is a massless particle with E p= | |
�

 and hence we have

 
p pμ

μ = 0
 

The quantity ε μ ( )p is called the polarization vector. This vector plays the role of the 
spin part of the wave function for the photon. The Lorentz condition ∂ =μ

μA 0 
results in a constraint on the polarization vector.

0 = ∂ = ∂

= ∂

= −

− ⋅

−

−

μ
μ

μ
μ

μ
μ

μ

ε

εμ
μ

A e p

e p

ip e

ip x

ip x

i

( )

( )

pp x ip x

ip x

p e p

ip e p

μ
μ

μ
μ

μ
μ

ε ε

ε

μ
μ

μ

μ
μ

( ) ( )

( )

+ ∂

= −

⇒

−

−

ppμ
με = 0

Starting with the Lorentz gauge condition 

 ∂μ
μA = 0  

we substitute the free-space form of the potential A and get the differential equation 
as shown here.

 
∂ εμ

μμ
μ

e pip x−⎡⎣ ⎤⎦ =( ) 0
 

Now we apply the product rule for derivatives

 
∂ ε εμ

μ
μ

μμ
μ μ

μ
μ

e p ip e p eip x ip x ip− − −⎡⎣ ⎤⎦ = − +( ) ( ) ( ) xx p
μ

∂ εμ
μ ( )

 

and make use of the fact that ∂ =μ
με ( )p 0 because ε μ ( )p is a function of momentum 

and does not depend on xμ. This leads to

 
∂ ε εμ

μ
μ

μμ
μ μ

μ

e p ip e pip x ip x− −⎡⎣ ⎤⎦ = − =( ) ( ) ( ) 0
 

Since the spacetime position xm is completely arbitrary, the exponential e ip x− μ
μ

can 
be nonzero and the only way to ensure the equality is to have

 
p pμ

με ( ) = 0
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The form of the polarization vector is fixed by the choice of reference frame. It is 
common to take 

�
p  in the z direction.

In the Coulomb gauge, where the gradient of the 3-vector potential is 0, that is,

 
� �
∇ ⋅ =A 0  

the polarization vector is perpendicular to the spatial component of momentum

 ε ⋅ =�p 0  

This just says that the polarization is transverse—the polarization vector lies in a 
plane perpendicular to the direction of motion of the field. A massless spin-s
particle has two possible spin states. Let’s compute the spin states in the Coulomb 
gauge for the photon, which has s = 1. In this gauge, we take the time component 
of the polarization vector to be 0, that is,

 ε 0 0=  

Then the two polarization states for a photon are

 

ε ε1 2

0

1

0

0

0

0

1

0

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 

Normalization of the polarization vector is expressed as

ε εμ ν μν⋅ =( )* g

The Quantized Electromagnetic Field
The process of quantization takes us from classical electrodynamics to field theory. 
We quantize the electromagnetic field by imposing commutation relations and 
writing the field in terms of creation and annihilation operators. The canonical 
equal-time commutation rule is

 
A x t y t ig x yμ

ν
μ
νπ δ( , ), ( , ) ( )

� � � �⎡⎣ ⎤⎦ = −3
 (8.11)
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Furthermore we have

 
A x t A y t x t y tμ

ν
μ

νπ π( , ), ( , ) ( , ), ( , )
� � � �⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ == 0  (8.12)

We can quantize the electromagnetic field rather easily by looking at the classical 
free-space solution written in Fourier modes. The solution is summed over 
momentum

�
p and polarization λ = 1 2, with complex expansion coefficients ak ,λ as

 

� �
� � � �

A
V

p
a e a e

p
p

i p r t
p

i p= +⋅ −( ) − ⋅1

2

ε
ω

λ
λ

ω
λ

( )
,

*
,

rr t

p

−( )⎡⎣ ⎤⎦∑∑ ω

λ�
 

To quantize the field, we promote the expansion coefficients to creation and 
annihilation operators as shown here.

 

a a

a a

p p

p p

, ,

*
,

†
,

ˆλ λ

λ λ

→

→
 

The creation operator a p
†

,λ creates a photon of momentum
�
p and polarization λ , 

while the annihilation operator ˆ ,ap λ destroys such a photon. These operators obey 
the usual commutation relations, where we now also take into account polarization 
so that

 
a a g p p pp pλ λ

λλ
λπ δ δ,

†
, ,, ( ) ( )′ ′

′⎡⎣ ⎤⎦ = − ′ =2 20 3 3 � �
′′ − ′λ π δ2 20 3 3p p p( ) ( )

� �
 

and the field operator is

 

A
d p

p
a e ap

ip x
pμ λ μ

λ
λ μ

λ

π
ε εμ

μ

= + ( )∫ ( ) ( )
3

0
32 2( ) ,

†
,

**
e

A A

ip x−

+ −

⎡
⎣⎢

⎤
⎦⎥

= +

∑ μ
μ

λ

μ μ  

where

 

A
d p

p
a e

A
d

p
ip x

μ

μ
μ

μ

π
ελ μ

λ

λ

+

−

= ⎡
⎣

⎤
⎦

=

∫ ∑
3

0
3

3

2 2( ) ,
( )

pp

p
a ep

ip x

2 20
3( )

†
,

( ) *

π
ελ μ

λ

λ

μ
μ

∫ ∑ ( )⎡
⎣⎢

⎤
⎦⎥

−

 

(where we have dropped the hats from the operators and we have broken up the 
field into positive and negative frequency components). 
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Gauge Invariance and QED
Since we are talking about QED, let’s review gauge invariance for this theory. The 
gauge invariance we are going to have to satisfy is local and involves three terms: 
a Lagrangian term for the electromagnetic field, the Dirac Lagrangian, which will 
involve two terms, a kinetic energy term and a mass term; and an interaction term 
that couples the Dirac and electromagnetic fields. The kinetic energy part of the 
Lagrangian for the electromagnetic field is of the form

 
L F FEM = −

1

4 μν
μν

 

From the Dirac equation, we have the Lagrangian

 
L i mDirac = ∂ −ψγ ψ ψψμ

μ  

The Lagrangian for interaction of a particle with charge q and the electromagnetic 
field is given by

 
L q Aint = − ψγ ψμ

μ  

We can construct the total Lagrangian describing the electromagnetic field and 
interactions with a Dirac field like the electron by putting all of these terms together.

 

L L L L

F F i m q

= + +

= − + ∂ − −

EM Dirac int

1

4 μν
μν μ

μψγ ψ ψψ ψγ μμ
μψ A

 

Now, the Dirac portion of the Lagrangian is invariant under a global U( )1
symmetry; that is, the Lagrangian does not change when we change the field 

 ψ ψθ( ) ( )x e xi→  

which of course implies

 ψ ψθ( ) ( )x e xi→ −
 

Recall that for a global symmetry, θ is just a parameter, a complex number—it is 
not a function of spacetime. This means that ∂μ

θei = 0.
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It is trivial to see that the mass term in the Dirac part of the Lagrangian is invariant 
under this transformation.

 m m e x e x mi iψψ ψ ψ ψψθ θ→ =−[ ( )] [ ( )]  

Since the transformation is global, the kinetic energy term of the Dirac Lagrangian 
is invariant as well since the derivative ∂μ doesn’t affect it.

i ie x e x ie x ei i iψγ ψ ψ γ ψ ψ γμ
μ

θ μ
μ

θ θ μ∂ → ∂ =− −( ) [ ( )] ( ) ii x

i

θ
μ

μ
μ

ψ

ψγ ψ

∂

= ∂

( )

We have shown that the Dirac Lagrangian is invariant under a global U( )1 symmetry. 
This is all very nice, but what we are interested in for quantum field theory to 
maintain the spirit of relativity is invariance under a local transformation. Keep 
that in mind—the standard model of particle physics requires invariance under 
local transformations. Recall that this requires us to make the parameter θ space-
time dependent 

 θ θ→ ( )x  

This would give us a local U( )1 symmetry. In this case the mass term of the Dirac 
Lagrangian is unchanged.

 m m e x e x mi x i xψψ ψ ψ ψψθ θ→ =− ( ) ( )[ ( )][ ( )]  

But for the kinetic energy term we have a problem since the derivative of the 
transformation term is no longer 0. That is, ∂ ∂ θμ

θ
μ

θe i x ei x i x( ) ( )[ ( )]= ≠ 0. Here is the 
problem:

i ie x e x

ie

i x i x

i

ψγ ψ ψ γ ψμ
μ

θ μ
μ

θ∂ → ∂ ⎡⎣ ⎤⎦
=

−

−

( ) ( )( ) ( )
θθ μ θ

μ
μ

μ

μ

ψ γ ψ ψ γ ψ θ

ψγ

( ) ( )( ) ( ) ( ) ( )x i xx e x x x

i

∂ − ∂

≠ ∂μμψ

Physically (and experimentally) we find invariance in nature and so we will insist 
our theory also has invariance. So the challenge becomes how do we recover 
invariance under a local gauge transformation? One way is to create a transformation 
of the electromagnetic field of the form, like

 
A A

q
μ μ μθ→ − ∂

1
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This will cancel the errant terms in the kinetic energy term. To see this, examine the 
interaction portion of the Lagrangian as follows:

L q A q A
q

q A

int = − → − − ∂
⎛
⎝⎜

⎞
⎠⎟

= −

ψ γ ψ ψγ ψ θ

ψ γ ψ

μ
μ

μ
μ μ

μ
μ

1

++ ∂

= + ∂

ψ γ ψ θ

ψγ ψ θ

μ
μ

μ
μLint

Now let’s look at the results for both transformations together. We have the local 
U( )1 gauge transformation

 ψ ψθ( ) ( )( )x e xi x→  

and the new transformation which restores invariance

A A
q

μ μ μθ→ − ∂
1

The Dirac and interaction parts of the Lagrangian transform as

L L ie e mi x i x
Dirac + → ∂ − ∂ −− ( ) ( )

int
θ μ θ

μ
μ

μψγ ψ ψγ ψ θ ψψψ ψγ ψ ψγ ψ θμ
μ

μ
μ− + ∂

= +

q A

L LDirac int

and we have restored the luster of the theory—the invariance.
The invariance is restored because we forced A A q

μ μ μθ→ − ∂1 . That is, we have 
introduced the covariant derivative

 
D iqAμ μ μ= ∂ +

 

This adjustment of the derivative operator is called the minimal coupling prescription. 
Hence the term

 
ψγ ψμ

μD
 

is invariant under a local U( )1 transformation. We can understand the origin of the 
covariant derivative by considering how Aμ transforms under a Lorentz gauge 
transformation. It can be shown that the similarity transformation

 
U A U A x( ) ( ) ( )Λ Λ Λμ μ

ν
ν

μ θ− = + ∂1
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This is why we require invariance under a transformation of the form 
Am→ A q

μ μθ− ∂1 . This gives us a Lagrangian that is invariant under a Lorentz gauge 
transformation.

u ( p, s )

time

Figure 8.3 An electron entering an interaction.

Feynman Rules for QED
The Feynman rules for QED apply to any lepton–photon interactions, but for our 
purposes we will just discuss electrons and positrons. We use the Dirac states 
from Chap. 5 to represent electrons and positrons, so u p s( , ) is a particle state of 
momentum p and spin s and v p s( , ) is the antiparticle state. An incoming electron 
is a spinor state u p s( , ) with an arrow pointing in the direction of positive time 
flow. This is indicated schematically in Fig. 8.3.

An outgoing electron state has the arrow flowing with the direction of time, but we 
replace the spinor state u p s( , ) by its adjoint u p s( , ). This is illustrated in Fig. 8.4.

Next we will need to represent incoming and outgoing positrons, which are the 
antiparticles of electrons. We use the spinors v p s( , ) for positrons. An incoming 
positron is represented by the adjoint spinor v p s( , ). Since the positron is an 
antiparticle, the arrow used to represent it points opposite the direction of time 
flow. This is shown in Fig. 8.5.

Outgoing positron states are represented by the spinor v p s( , ). An outgoing 
positron state is shown in Fig. 8.6.

At each vertex of a Feynman diagram for a QED process we need to include a 
coupling constant, g

e
. If we define it in terms of the fine structure constant as

 ge = 4πα  (8.13)

then we need a term at each vertex of the form

 igeγ
μ  (8.14)

Next we consider an internal photon line. Since it is an internal line, it will be char-
acterized by a propagator. The form that propagates a field from a spacetime point x 
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to a spacetime point y is determined by calculating the time ordered vacuum 
expectation value of the fields as shown here.

 
− Δ − =i x y T A x A yμν μ ν( ) { ( ) ( )}0 0

 

This can be done by breaking up the field into positive and negative frequency 
components, like
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The Kronecker delta terms ensure that the polarization states are the same, that is, 
λ λ' = . We set ′ →λ λ and then readily do the integrals. The Dirac delta terms  
δ 3( )
� �
p p− ′  enforce momentum conservation and the propagator simplifies to
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Figure 8.4 An electron leaving an interaction.

v ( p, s)
time

–

Figure 8.5 An incoming positron state.
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But it can be shown that

 
ε ε δλ λ
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i j
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i jp p
p p
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*
⎡⎣ ⎤⎦ = −∑ � 2  (8.15)

We are also taking the time component of the polarization vectors to be 0, that is, 
ελ

0 0( )p = . This just means that the polarization is fixed and does not vary with time. 
Then we define

 
P p p pμν λ

μ
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λ
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*
= ⎡⎣ ⎤⎦∑

 

and use the following definition of the unit step or Heaviside function

 
θ

π
( )x

i e

sx
ds

isx

=
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−∞

∞

∫2  (8.16)

Then we can write the photon propagator as (note that q is momentum in this 
context, and not charge)

 
Δ − =

−∫
⋅ −

μν μνπ ε
( )

( )
( )

( )

x y
d q

P q
e

q i

iq x y4

4 22  

We have made the notational change p q→ because this is momentum for an internal 
line in the Feynman diagram. It can be shown that this reduces the propagator to

 
Δ = −μν

μνig

q2  (8.17)

v ( p, s) time

Figure 8.6 An outgoing positron state. 
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In QED we can also have internal lines for electrons and positrons and the 
propagator is more complicated. For each internal line involving an electron or 
positron we include a factor

 

i q m

q m

( )γ μ
μ +

−2 2  (8.18)

The procedure is similar to that outlined in the last chapter, where conservation of 
momentum is enforced at each vertex using a Dirac delta function. However, in the 
case of QED spin must be taken into account. Let’s see how to set up some basic 
calculations with a couple of examples.

Consider electron-electron scattering, sometimes known as Møller scattering, 
which is shown in Fig. 8.7.

To begin, we pick up a factor of igeγ
μ at each vertex. However, we need to be 

careful of the order of the factors because we are dealing with particles with spin 
and summations. We start at the left of the diagram, but move “backward in time” 
writing down factors from left to right. The exiting state on the left is the electron 
state u p s( , )3 3 and the input state is u p s( , )1 1 . So we get

 u p s ig u p se( , ) ( , )3 3 1 1γ μ
 

Now we stir in a Dirac delta function to enforce conservation of momentum at 
the left vertex. We have an incoming momentum p1 associated with u p s( , )1 1 and 
an outgoing momentum p3  associated with u p s( , )3 3 . We also have a momentum 
q that is carried away from this vertex by the photon. The appropriate delta 
function is

 ( ) ( )2 4
1 3π δ p p q− −  

igeg m igeg m

u (p3, s3)–

u (p1, s1) u (p2, s2)

u (p4, s4)–

g

Figure 8.7 The simplest representation of Møller scattering.
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So far we have

 u p s ig u p s p p qe( , ) ( , )( ) ( )3 3 1 1
4

1 32γ π δμ − −  

The next step is to add the photon propagator Eq. (8.17). Since there is one internal 
photon line, we only need one factor. Our expression for the Feynman diagram 
becomes

 
− − −u p s ig u p s p p q
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Now we multiply another factor of igeγ
μ  for the vertex on the right side, along 

with terms for the electron states entering and leaving at that vertex, which is 
u p s ig u p se( , ) ( , )4 4 2 2γ μ . All together we have
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Integrating overall internal momenta q gives
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Overall conservation of momentum is enforced by adding a delta function of 
the form ( ) ( )2 4

1 2 3 4π δ p p p p+ − − which can be ignored when writing down the 
amplitude. 

It turns out we aren’t done. Møller scattering includes one more lowest-order 
diagram, which is shown in Fig. 8.8. 
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This process isn’t exactly identical to the one in Fig. 8.7. This time u p s( , )1 1 enters 
but then crosses over and exits as u p s( , )4 4 , while u p s( , )2 2 enters on the right and 
exits on the left as u p s( , )3 3 . Conservation of momentum is enforced by the Dirac 
delta function on the left side of the diagram where the photon is emitted with 
momentum q.

 ( ) ( )2 4
1 4π δ p p q− −  

Aside from this, the form of amplitude for this process is similar to the last one we 
wrote down, but we are swapping output states as shown here.

 u p s u p s( , ) ( , )3 3 4 4�  

Since we are exchanging two identical fermions, we must make a sign change. In 
total, the amplitude for the process illustrated in Fig. 8.8 is
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The total amplitude for the process is the sum of the two amplitudes we have written 
down, that is,
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igeg m igeg m

u (p3, s3)–

u (p1, s1)
u (p2, s2)

u (p4, s4)–

g

Figure 8.8 To complete the calculation for Møller scattering we need to include 
this diagram.
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This is a useful theoretical result. To calculate a measurable quantity we have to 

• Pick a reference frame, either the lab frame or the center of mass frame

• Assign helicities to the particles or average/sum over all possible spin states

Let’s consider the process in Fig. 8.7. It is easy to choose the center of mass 
frame. Let’s suppose that all particles have a helicity of +1. This means that if the 
particle is moving along the positive z axis, its wave function will be of the form

u E m p
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0

modulo a normalization factor. If the particle is moving toward negative z, the wave 
function will be of the form
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where m is the mass of the electron. When the particles are incoming, we have the 
situation illustrated in Fig. 8.9.

Now, since u (p
1
, s

1
) moves in the direction of positive z, the state is
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z

u (p1, s1) u (p2, s2)

Figure 8.9 The incoming particle states. The state u p s( , )1 1  moves in the direction of 
positive z.
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All states have momentum p since we are using the center of mass frame. Now, 
u p s( , )2 2 is moving in the direction of negative z so the state is
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Now let’s look at the outgoing states, shown in Fig. 8.10. The direction of motion 
is reversed for each state, so the form of the states is different. Also recall that 
ψ ψ γ= † 0. We have
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In the case of u p s( , )4 4 , the state is moving in the positive z direction and so can be 
written as
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Now we can use these results to do some explicit calculations. Recall that the 
amplitude we found for the process shown in Fig. 8.7 was given by
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 (8.19)

Figure 8.10 The outgoing states reverse direction. 

z

u (p3, s3)– u (p4, s4)–
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So we need to calculate
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There is only one way to do it, using brute force. The first term is

 

u p s u p s

E m
p

E m

( , ) ( , )4 4
0

2 2

1 0 0

1 0 0 0

0 1 0

γ =

+ −
+

⎛
⎝⎜

⎞
⎠⎟

00

0 0 1 0

0 0 0 1

0

1

0−
−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

+

+

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

E m

p

E m

⎟⎟
⎟
⎟
⎟
⎟

= + −
+

⎛
⎝⎜

⎞
⎠⎟

−
+

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

( )E m
p

E m
p

E m

1 0 0

0

1

0

⎟⎟
⎟
⎟
⎟
⎟

= 0  

Next we find
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Continuing we find
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and finally
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We also obtain
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which the reader should verify.
Now we apply the summation convention to each term in the amplitude 

[Eq. (8.19)]. For the left term we have

g u p s u p s g u p s u p sμν
μγ γ( , ) ( , ) ( , ) ( , )4 4 2 2 00 4 4

0
2 2= ++

+

g u p s u p s

g u p s u p s

11 4 4
1

2 2

22 4 4
2

2

( , ) ( , )

( , ) ( ,

γ

γ 22 33 4 4
3

2 2

4 4
1

2 2

) ( , ) ( , )

( , ) ( ,

+

=

g u p s u p s

u p s u p s

γ
γ )) ( , ) ( , )

( )

+
= −

u p s u p s

p i
4 4

2
2 2

2 1

γ

For u p s u p s( , ) ( , )3 3 1 1γ μ we get 2 1p i( )+ and so Eq. (8.19) becomes
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Using E m p2 2 2= + you can show that ( ) ( )p p m E p p1 3
2 2 2 2 22 2 4− = − + = −  and 

so the amplitude becomes
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Often, the helicities of the particles are not known. When this is the case, we say that 
the cross section is unpolarized. In that case it is necessary to average and sum over 
the spins. We compute the average over all spins for incoming particles and then 
sum over all possible spin states for outgoing particles. A useful tool for doing so is
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(consider deriving this relation). For example, let’s look at the lowest order Feynman 
diagram for electron–muon scattering. This is Fig. 8.7, but we replace the incoming 
and outgoing particle on the right with a muon. The amplitude is
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u p u pe= − 2

3 1 2 4 2( ) ( ) ( ) ( )γ γμ μν μ

 

where u p u p( ) ( )3 1γ μ is due to the electron states and u p u p( ) ( )4 2γ μ is due to the 
muon states. The final amplitude, when summing and averaging over all outgoing 
and incoming spins is
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We will focus on the electron term only, the muon term is similar. The electron term is
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Using Eq. (8.20) we find
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These terms can be evaluated using the so-called trace theorems. These include
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 (8.22)

These theorems are based only on basic linear algebra and the properties of the 
Dirac matrices.

Multiplying out the terms in Eq. (8.21) and applying trace theorems gives the result
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At last we are done. The amplitude for the electron–muon scattering is
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Summary
In this first treatment of quantum electrodynamics, we have introduced the basic 
concept of electromagnetic forces as being due to the exchange of photons. Quantum 
electrodynamics ties together the Dirac theory of the electron (and other leptons, 
the principles are the same) with electromagnetics, which is a description of the 
photon field. It does this by considering interactions which are mediated by the 
photon, the force-carrying particle for the electromagnetic interaction. Electrons 
and other charged particles interact electromagnetically by exchanging photons. In 
this initial treatment, we have ignored higher order processes which include internal 
“loops” that lead to divergences.

The gauge symmetry for quantum electrodynamics is a local U( )1 symmetry. 
The requirement that the Lagrangian be invariant under this symmetry led to the 
minimal coupling prescription of the covariant derivative. We then extended this 
concept to compute measurable quantities like scattering amplitudes.

Quiz
 1. Compute [ , ]D Dμ ν .

 2. The Lagrangian of quantum electrodynamics can be best described as

(a) Admitting a local U( )1 symmetry

(b) Admitting a global U( )1 symmetry

(c) Admitting a local SU( )2 symmetry

(d) Admitting a local SU( )1 symmetry

 3. Write down the amplitude for electron-positron scattering as shown 
in Fig. 8.11.
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 4. The minimal coupling prescription for the QED Lagrangian is

(a) D ig Aeμ μ μ= ∂ +
(b) D ig Aeμ μ μ= ∂ −
(c) D iqAμ μ μ= ∂ +
(d) D iq Aμ μ

μ
μγ= ∂ +

 5. In a QED process an incoming antiparticle state is written as

(a) v p s( , )

(b) u p s( , )

(c) u p s( , )

(d) v p s( , )

igeg m igeg m

u (p3, s3), e–

u (p1, s1), e v (p2, s2)

v ( p4, s4)

g

–

Figure 8.11 Electron-muon scattering to lowest order.



CHAPTER 9

Spontaneous
Symmetry Breaking 

and the Higgs 
Mechanism

Let’s review some important concepts. Noether’s theorem relates conservation laws to 
symmetries in the Lagrangian. When quantum theory is invoked, these symmetries can 
take the form of invariance under a unitary transformation. For example, a U(1) symmetry 
means that a Lagrangian L L= ∂( , )ϕ ϕμ  is invariant under a transformation of the form

 ϕ ϕ ϕθ( ) ( ) ( )x x e xi→ ′ = −  (9.1)

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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When q does not depend on the spacetime coordinate x, then we say that Eq. (9.1) 
is a global symmetry. In quantum fi eld theory global symmetries represent something 
that cannot be measured, like the phase of a wave function in quantum mechanics. 
The wave function ψ ( , )x t and e x ti− αψ ( , ) give the same physical predictions. On the 
other hand, if q does depend on the spacetime coordinate so that θ θ= ( ),x  then 
Eq. (9.1) depends on where you are and hence represents a local symmetry. Local 
symmetries are very important in relativistic physics because they represent the 
physical fact that quantities that are conserved like charge and lepton number are 
conserved locally. Charge would not be conserved locally if you could have a 
current on earth disappear and suddenly reappear on the moon. The charge must 
travel across the intervening space to appear on the moon, and the way it moves 
from the earth to the moon is dictated by the fact that nothing travels faster than 
the speed of light. Said another way, a local symmetry preserves causality as 
required by special relativity.

Two pictures help distinguish between local and global U(1) transformations. 
We know from complex variables that the exponential eiθ  represents a point on the 
unit circle. We can think of this point as a vector—an arrow from the origin to the 
point on the unit circle. In a global transformation, let q assume a fi xed value, so 
that eiθ  has a constant value throughout spacetime. Hence the name global. On the 
other hand, ei xθ ( ) where x is a point in spacetime, has a different value depending 
upon location because q (x) is now a function on spacetime. So we talk of a value 
at a specifi c point. The fi gure below shows these two cases. On the left, notice that 
each vector is the same, but on the right, the direction of the vector depends on it’s 
location. So the left side illustrates a global transformation, while the right side 
illustrates a local transformation.

A global transformation: The value of eiq

is the same everywhere.
A local transformation: The value of eiq

depends upon the space-time location.
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We saw in Chap. 3 that more complicated unitary transformations such as SU (2) 
appear in quantum fi eld theory. It is also possible to have Lagrangians that are invariant 
under other types of transformations, such as ϕ ϕ→ − . We will use this type of symmetry 
to introduce the concept of spontaneous symmetry breaking. An example of a Lagrangian 
that is invariant under ϕ ϕ→ −  is the Lagrangian of the so-called (j 4) theory.

 L m= ∂ ∂ − +μ
μϕ ϕ ϕ λϕ2 2 4   (9.2)

Clearly, since the fi eld j only appears in the Lagrangian in terms of even powers 
and even derivatives, the Lagrangian is unchanged under the transformation 
ϕ ϕ→ − . We will see, however, this Lagrangian is even more interesting than it 
appears at fi rst sight.

It turns out that in many cases, a system that has some symmetry that exists in 
the Lagrangian may have a ground state (i.e., a vacuum state) that does not satisfy 
the same symmetry. This is the case for the Lagrangian given in Eq. (9.2). When 
a situation like this exists, we say that the system has undergone spontaneous
symmetry breaking. Before jumping into the mathematics of the situation, let’s 
describe the concept with a simple physical example. Imagine an upside down steel 
bowl placed on fl at ground. We place a marble on top of the bowl right in the center. 
This system is symmetric—from the point of view of the marble every direction 
from the top of the bowl to the ground is equivalent. However, the system is unstable. 
The marble starts out at rest, but the slightest perturbation will send it rolling down 
the bowl to the ground. In analogy with quantum fi eld theory, think of the marble 
sitting on top of the bowl as a ground state that is unstable. 

Now suppose that the marble is perturbed and rolls off the bowl. It will roll in 
one particular direction and come to rest below on the fl at ground. In short, the 
perturbation has spontaneously broken the symmetry that existed before. Moreover, 
the marble has now arrived at a state of minimum potential energy. In short, the 
marble was not really in the ground state when it was resting on top of the bowl—
the true ground state of potential energy exists when the symmetry is broken and 
the marble fi nds itself resting on the ground below.

Symmetry Breaking in Field Theory
In quantum fi eld theory, we often have Lagrangians that exhibit similar properties 
to an upside down bowl. We will see a vacuum state that is an apparent ground 
state, but in fact there will be a true ground state or vacuum state of lower energy 
that leads to symmetry breaking. What is vacuum? Vacuum is the state with no 
fi elds, that is, j = 0. In our calculations by applying perturbation theory, we expand 
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about j = 0, the fi elds are then viewed as fl uctuations about the ground state. You 
can think of j = 0 as the minimum of potential energy.

However, when considering different Lagrangians, it turns out that the state with 
j = 0 is not always the minimum. Remember that the Lagrangian is the difference 
between kinetic energy T and potential energy V.

L T V= −

In fi eld theory, remember that kinetic energy terms will be of the form ∂ ∂μ
μϕ ϕ . 

The potential V will be some function of the fi elds j so that V V= ( )ϕ . Therefore, to 
fi nd the minimum we use ordinary calculus, that is, we seek to fi nd the minimum of the 
potential by computing its derivative. That is, we will fi nd a j that allows us to satisfy

 
∂
∂

=
V

ϕ
0   (9.3)

This procedure will give us the true ground state of the system, which may not be j = 0.

EXAMPLE 9.1
Consider the Lagrangian for j 4 theory when

 L m= ∂ − −
1

2

1

2

1

4
2 2 2 4( )μϕ ϕ λ ϕ   (9.4)

where j is a real scalar fi eld. Describe the minimum of potential energy when 
m2 0>  and m2 0< .

SOLUTION
The kinetic energy term in the Lagrangian is

1

2
2( )∂μϕ

The potential is

V m( )ϕ ϕ λ ϕ= +
1

2

1

4
2 2 4

What force does this potential create? We compute the derivative of V with respect 
to the fi eld j:

∂
∂

= +

= +

V
m

m

ϕ
ϕ λ ϕ

ϕ λ ϕ

2 3

2 2( )
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We obtain the minima by setting this expression equal to 0. One extremum jumps 
out immediately, it is the one we naively expect to fi nd

 ϕ = 0  

This case corresponds to the case m2 0> , which represents a scalar fi eld of mass m.
The ϕ 4 term represents self-interactions of the fi eld with a coupling strength given 
by l. The e potential in this case is shown in Fig. 9.1.

When the ground state is at ϕ = 0, it obviously satisfi es the symmetry present in 
the Lagrangian, ϕ ϕ→ − , and does so trivially.

Now let’s consider the other alternative minimum that result from our calculation 
of ∂ ∂ =V / ϕ 0. In this case we have

m2 2 0+ =λ ϕ

Since j appears as a square, this leads to two possible minima given by

 ϕ
λ

= ±
−

= ±
m

v
2

  (9.5)

In this case, in order for the fi eld j to be real, it must be the case that m2 0< . This 
is a situation which corresponds to the ball sitting on top of the bowl. The potential 
in this case is shown in Fig. 9.2. Notice that j = 0 corresponds to the unstable point 
where the marble is resting on top of the bowl. We can go to one or the other 
minimum, where ϕ = +v or ϕ = −v , giving the true ground state. But choosing one 
of the other breaks the symmetry. This is analogous to the marble rolling off the 
bowl and coming to rest at some particular point on the ground.

V

j

V(f)

f

Figure 9.1 The potential for the Lagrangian given in Eq. (9.4), for the case of m2 0> . 
The minimum is at ϕ = 0.
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In the case of the Lagrangian, we have found the true minimum at ϕ = ±v. The 
point ϕ = 0 is an unstable point, therefore a perturbative expansion about this point 
will not converge. In contrast, a perturbative expansion about one of ϕ = ±v will 
converge, allowing us to do calculations using the Feynman rules.

However, the symmetry has been broken. There are two ground states, the 
minima at ϕ = +v and ϕ = −v. In the next section we will see that the Lagrangian is 
no longer invariant under ϕ ϕ→ − . While we loose this benefi t, we will gain 
knowledge, specifi cally the true mass of the particle associated with the fi eld ϕ .

Mass Terms in the Lagrangian
A key task in exercises involving spontaneous symmetry breaking is the ability to 
recognize mass terms in the Lagrangian. Doing so is usually pretty simple; to see 
this let’s go back to square one—which means digging up the Klein-Gordon 
equation. The Lagrangian in this case is

 L m= ∂ −
1

2

1

2
2 2 2( )μϕ ϕ  

We already know that in the case of the Klein-Gordon equation, the fi eld quanta
ϕ  are particles of mass m. Looking at the Lagrangian, we therefore recognize the 
mass term as

 −
1

2
2 2m ϕ

 

V(f)

f  = –n f  = +n

V

j  = –n j  = +n

Figure 9.2 The potential for the Lagrangian given in Eq. (9.4) when m2 0< .
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where m2 0>  and m is the mass of the associated particle. So this is a straightforward 
exercise. We conclude that

A mass term in the Lagrangian is one that is quadratic in the fi elds, 
which is a term of the form α ϕ2 2 for some α .

However, it turns out that identifying the mass terms in a Lagrangian by inspection 
is not always possible. Many Lagrangians have mass terms that are hidden in one 
way or another. To see this, consider a fi ctitious Lagrangian given by

 L = ∂ + −
1

2
12( ) ln( )μϕ α ϕ  (9.6)

Is there a mass term in this Lagrangian? By inspection, we don’t see any terms that 
are quadratic in the fi eld, so we might jump to the conclusion that m = 0 in this case. 
The Lagrangian appears to describe a massless fi eld like a photon, say. But a closer 
look at Eq. (9.6) will reveal otherwise. Once again we call upon our skills we 
learned in freshman calculus. To expand the Lagrangian in a series we need to 
expand the logarithmic term. The trick is to start with the geometric series as shown 
here.

1

1
1 2 3

−
= + + ( ) + ( ) +

α
α α α

x
x x x �  for αx < 1

(If you have forgotten this expansion, just do the division manually.) To introduce 
a logarithm, we need to integrate this expression to get

ln ( ) ( )1 1 2− = − + + +⎡
⎣

⎤
⎦∫α α α αx x x dx�

which is just

 ln ( ) ( )1
1

2

1

3
2 2 3 3 4− = − − − −α α α αx x x x O x

 

Writing Eq. (9.6) using this expansion, we see that the Lagrangian does in fact 
contain a term that is quadratic in the fi eld.

 

L = ∂ + −

= ∂ − − −

1

2
1

1

2

1

2

1

3

2

2 2 2

( ) ln ( )

( )

μ

μ

ϕ α ϕ

ϕ α ϕ α ϕ αα ϕ ϕ3 3 4− O( )
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Provided that, α 2 0> , this Lagrangian describes particles with mass α = m. The 
mass term has been disguised by the original representation of the Lagrangian given 
in Eq. (9.6). So, when it’s not obvious as to whether or not a given Lagrangian 
contains a mass term

• Expand the potential in a series.

• Look for terms that are quadratic in the fi elds.

EXAMPLE 9.2
Do the Lagrangians

L e

L e

1
2

2
2

1

2
1

2

3 3

= ∂ −

= ∂ −

( )

( )

μ
α ϕ

μ
αϕ

ϕ

ϕ

represent massive or massless fi elds?

SOLUTION
We apply our little recipe and follow the guidance provided by the Klein-Gordon 
equation. That is, we use the expansion of the exponential function and look for 
terms that are quadratic in the fi eld. Recall that

e x x x O xxα α α α= + + + +1
1

2

1

3
2 3 4

!
( )

!
( ) ( )

In the case of L1, we have

 
L e1

2

2 3 3 6 6

1

2
1

2
1

1

2

3 3

= ∂ −

= ∂ − − −

( )

( )

μ
α ϕ

μ

ϕ

ϕ α ϕ α ϕ
 

plus higher order terms. There is not a term involvingϕ 2, hence we conclude that L1

is a Lagrangian for a massless fi eld.
Now let’s consider L2. Expanding the exponential in this case gives us

 
L e2

2

2 2 2 3 3

1

2
1

2
1

1

2

1

6

= ∂ −

= ∂ − − − −

( )

( )

μ
αϕ

μ

ϕ

ϕ αϕ α ϕ α ϕ −−�
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The presence of the term

 
1

2
2 2α ϕ

 

tells us that L2 is a Lagrangian for a massive fi eld. The mass of the particle is given 
by comparison with the Klein-Gordon equation, hence the mass is m = α .

Aside on Units
Now a short note on units and scaling with mass terms. When we put all the �’s and 
c’s back in the Klein-Gordon equation, it is written as

 
1

0
2

2

2
2

2 2

2c t

m c∂
∂

− ∇ − =
ϕ ϕ ϕ

�  

So, if we have a term in the Lagrangian we are considering that looks like

 
1

2
2 2α ϕ

 

Then the mass of the particle is related to the constant α  in the following way.

 α =
mc

�
   (9.7)

That is, the mass of the particle is

 m
c

=
�α

  (9.8)

whereα is a unitless number and m will have dimensions of mass inherited from the 
values used for �  and c.

If the quadratic term in the Lagrangian is missing the ½ scale factor, that is, if it 
contains a term

 α ϕ2 2
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you need to account for the missing ½ when comparing to the Klein-Gordon 
equation to get the mass. In this case we have a relationship given by

 α 2
2 2

2

1

2
=

m c

�  

Hence, the mass of the particle is

 m
c

= 2
α�

 

Spontaneous Symmetry Breaking and Mass
Now that we know how to recognize mass terms in the Lagrangian, let’s go back to 
the ϕ 4 theory and reconsider the situation. To keep you from having to fl ip back and 
forth through the pages, remember that the Lagrangian we used in Example 9.1 was 
given by

 L m= ∂ − −
1

2

1

2

1

4
2 2 2 4( )μϕ ϕ λ ϕ

 

We found that the true ground state or minima of the potential was spontaneously 
broken and given by

 ϕ
λ

= ±
−

= ±
m

v
2

 

Now what to do with this information? The minimum is not at ϕ = 0, instead it’s 
located at ϕ = ±v. We consider the case whereϕ = v and rescale the fi eld to represent 
this fact

 ϕ η( ) ( )x v x= +   (9.9)

We’ve written the fi eld as fl uctuations described by η( )x  about the right-hand 
minimum v. Next we will rewrite the Lagrangian using the new form [Eq. (9.9)]. 
The kinetic energy terms are easy to write down because v is just a number, so

 ∂ = ∂ +[ ] = ∂μ μ μϕ η η( ) ( ) ( )x v x x
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Now we square Eq. (9.9) to give

 ϕ η η η2 2 2 22= + = + +( )v v v  

and the fourth power of the fi eld becomes

 ϕ η η η η η4 4 4 3 2 2 3 44 6 4= + = + + + +( )v v v v v  

Putting these terms together, the Lagrangian becomes

 
L m

m v v

= ∂ − −

= ∂ − +

1

2

1

2

1

4
1

2

1

2
2

2 2 2 4

2 2 2

( )

( ) (

μ

μ

ϕ ϕ λ ϕ

η ηη η λ η η η η+ − + + + +2 4 3 2 2 3 41

4
4 6 4) ( )v v v v

 

Again, we remember that v is just a number. We can drop all terms that are constant 
from the Lagrangian since a constant does not contribute to the fi eld equations for 
the system. The fi rst term in the potential can then be written as

 

1

2
2

1

2
2

1

2

2 2 2 2 2 2

3

m v v v v v

v

( ) ( )+ + = − + +

= − −

η η λ η η

λ η λvv2 2η
 

where we used Eq. (9.5) to write m v2 2= −λ and we dropped constant terms. 
Dropping constant terms from the last term of the potential gives

 
L m v v v v v= ∂ − + + − + +

1

2

1

2
2

1

4
4 62 2 2 2 4 3 2( ) ( ) (μη η η λ η η22 3 4

2 3 2 2 3

4

1

2

1

2

3

2

+ +

= ∂ + + − −

v

v v v v

η η

η λ η λ η λ η λμ

)

( ) 22 2 3 41

4
η λ η λη− −v

 

Finally, we arrive at the new Lagrangian 

 L v v= ∂ − − −
1

2

1

4
2 2 2 3 4( )μη λ η λ η λη   (9.10)
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Now we apply our rule. Look for terms that are quadratic in the fi elds h; they 
should have negative signs in front of them. The mass term for Eq. (9.10) is

 λ ηv2 2

 

Comparing to a mass term in the Klein-Gordon–type Lagrangian

 
1

2
2 2m φ

 

we see that the mass of the particle in the case of Eq. (9.10) is

 m v v= =2 22λ λ  

Notice that we have taken into account the missing ½ factor. What about the other 
terms in the Lagrangian? These represent self-interaction terms of the fi eldη( )x . In 
particular, the cubic term η3 is a vertex in a Feynman diagram with three legs and a 
coupling given byλv. This is illustrated in Fig. 9.3. 

The last term, 1
4

4λη , is another self-interaction term that will have four legs in a 
Feynman diagram. This is illustrated in Fig. 9.4.

Figure 9.3 A Feynman diagram representation of the self-interaction term in the 
Lagrangian λ ηv 3.

Figure 9.4 The 1
4

4λη  term in the Lagrangian given in Eq. (9.10) is represented by a 
four legged vertex in a Feynman diagram.
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We have now accounted for every term in the Lagrangian:

Lagrangians with Multiple Particles
In most, if not all, real cases of physical interest, the spontaneous symmetry breaking 
of a given Lagrangian will result in the appearance of more than one particle. It may 
be that these particles have different masses; perhaps some will have mass and 
some will not. Let’s illustrate this with a complex fi eld and a Lagrangian that gives 
rise to one massive and one massless particle. First let’s defi ne the fi eld in terms of 
two real fi eldsϕ1 andϕ2.

 ϕ ϕ ϕ
=

+1 2

2

i
  (9.11)

The Lagrangian we consider is

 L m= ∂ ∂ − +μ
μϕ ϕ ϕ ϕ λ ϕ ϕ† † †( )2 2    (9.12)

Now

 ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ† ( )=
−⎛

⎝⎜
⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

= +1 2 1 2
1
2

2
2

2 2

1

2

i i

 

Using this the Lagrangian in Eq. (9.12) becomes

 L m= ∂ + ∂ − + +
1

2

1

2

1

2

1

41
2

2
2 2

1
2

2
2

1
4( ) ( ) ( ) (μ μϕ ϕ ϕ ϕ λ ϕ ++ +ϕ λϕ ϕ2

4
1
2

2
21

2
)   (9.13)

The potential is

 V m= + − + −
1

2

1

4

1

2
2

1
2

2
2

1
4

2
4

1
2

2
2( ) ( )ϕ ϕ λ ϕ ϕ λϕ ϕ
 

Self interaction,
four legsKinetic energy Self interaction,

three legs
Mass term

1
2

1
4

L = (∂mh)2 – ln2h3 – lnh3 – lh4
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The Lagrangian has a ( , )ϕ ϕ1 2  symmetry that can be described by rotations in  
( , )ϕ ϕ1 2  space. These can be written in the matrix form

 

′
′

⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

ϕ
ϕ

α α
α α

ϕ
ϕ

1

2

1

2

cos sin

sin cos
⎞⎞
⎠⎟  

That is,

 ′ = +
′ = − +

ϕ α ϕ α ϕ
ϕ α ϕ α ϕ

1 1 2

2 1 2

cos sin

sin cos  

The minima of the potential lie on a circle that is described by

 ϕ ϕ
λ1

2
2
2

2

+ =
m

 

To break the U( )1  symmetry, we think back to the original example of a marble 
sitting on top of the bowl. We pick out a specifi c direction. Following the notation 
of the last example, we denote the minima by v using a subscript to indicate the 
minima of ϕ1 and ϕ2. In this case, we pick the minimum at

 v
m

v1 2 0= =
λ

  (9.14)

Now we rewrite the fi eld. This time we need two fi elds χ ψand  that fl uctuate 
about the minimum given by Eq. (9.14). We have

 ϕ
λ

χ ψ
= +

+m i

2  

We have taken

 χ ϕ
λ

ψ ϕ= − =1 2

m
   (9.15)
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The change in the coordinate systems in going from( )ϕ
ϕ

1

2

to ( )χ
ψ amounts to 

shifting the coordinate system to the right by an amount 
m
λ . In other words, we have 

shifted the origin to the actual minimum of the potential. Then,

 ϕ χ
λ

χ
λ

χ
λ

ϕ ψ

1
2

2

2
2

2
2 2

2= +⎛
⎝⎜

⎞
⎠⎟

= + +

=

m m m
 

and for the quadratic terms

 

ϕ χ
λ

χ
λ

χ
λ

χ
λ

χ
λ

1
4 2

2 2

4 3
2

2
3

2

4 6 4

= + +
⎛
⎝⎜

⎞
⎠⎟

= + + +

m m

m m m
33

4

2
χ

λ
+

m
 

and

 ϕ ψ2
4 4=  

Finally,

 1

2

1

2

2
1
2

2
2 2 2 2

2
2λϕ ϕ λ χ ψ

λ
χψ

λ
ψ= + +

⎛
⎝⎜

⎞
⎠⎟

m m

 

Remember that terms of the form ϕ n where n > 2 represent interaction terms. To get 
the mass terms, we need to ignore those and look at the free Lagrangian. Also 
remember we can drop constants because they do not contribute to the fi eld equations 
that would be derived from the Lagrangian. Now, dropping everything except the 
quadratic terms, the free parts of the potential are

 

1

2

1

2

1

4

2
1
2

2
2 2 2 2

1
4

2
4

m mϕ ϕ χ ψ

λ ϕ ϕ

+( ) = +

− +( )

free

f

( )

rree

free

= −
⎛
⎝⎜

⎞
⎠⎟

− ( ) = −

1

4
6

1

2

1

2

2
2

1
2

2
2

λ
λ

χ

λ ϕ ϕ λ

m

m22
2

λ
ψ

⎛
⎝⎜

⎞
⎠⎟
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Notice that

1

2

1

2

1

2
2

1
2

2
2

1
2

2
2 2 2m mϕ ϕ λ ϕ ϕ χ ψ+( ) − ( ) = +

free free
( 22

2
2

2 2

1

2

1

2

) −
⎛
⎝⎜

⎞
⎠⎟

=

λ
λ

ψ

χ

m

m

 

Putting all this together, the free or noninteraction part of the Lagrangian is

 L mfree = ∂ + ∂ −
1

2

1

2

1

2
2 2 2 2( ) ( )μ μχ ψ χ

 

Hence, spontaneous symmetry breaking of the U( )1  symmetry given by a rotation 
in ( , )ϕ ϕ1 2  

space for the complex fi eld in Eq. (9.11) together with the Lagrangian in 
Eq. (9.12) gives us a fi eld χ with mass m and a fi eld χ that is massless. The mass 
m is defi ned by the minima on the circle that we choose to be

 v
m

1 =
λ  

Hence m v= λ 1. This example involved the use of scalar fi elds, so the particles 
associated with these fi elds are spin-0 particles. When a massless spin-0 particle 
appears in a theory due to symmetry breaking, it is called a Goldstone boson. 

The Higgs Mechanism
In the previous section, we examined spontaneous symmetry breaking by considering 
the case of a complex fi eld with two real components, and a U( )1 symmetry. For 
simplicity, we’ve considered global gauge invariance. Now we wish to extend this 
idea to a more complicated situation in which we include a gauge fi eld Aμ and 
require local gauge invariance under a U( )1 transformation. We will start with a 
massless gauge fi eld Aμ, and show that symmetry breaking results in a massive 
vector fi eld. We’ll see later that in electroweak theory this type of procedure gives 
rise to the massive vector bosons, theW Z± and the 0. The mechanism involving 
spontaneous symmetry breaking involving a gauge fi eld and local U( )1 invariance 
is known as the Higgs mechanism, named for its founder Peter Higgs who discovered 
the effect in 1964. A major task ahead for experimentalists when the Large Hadron 
Collider begins operation in the summer of 2008 will be to fi nd the quanta of the 
Higgs fi eld h x( ).
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Once again, recall that U( )1 invariance implies that the Lagrangian is invariant 
under a transformation of the form

 ϕ ϕ ϕθ→ ′ = −e i

 

Previously, we considered the case of a global gauge transformation, whereinθ
is a scalar, just a number, and not a function of spacetime. Now, however, we extend 
this concept and let θ θ→ ( )x , giving us a local gauge transformation. We want the 
Lagrangian to be invariant under the transformation that is,

 ϕ ϕ ϕθ( ) ( ) ( )( )x x e xiq x→ ′ = −  (9.16)

Now q is a number, but θ θ→ ( )x  is a function of spacetime, meaning that the 
transformation varies from point to point. Invariance with a local gauge trans-
formation will require the introduction of a gauge fi eld. In analogy with electro-
dynamics, we will see that the requirement of local gauge invariance forces us to 
use a covariant derivative in order to restore the invariance of the Lagrangian. 
Defi ne the gauge fi eld as a vector potential Aμ in analogy to electromagnetics. The 
gauge fi eld must also be invariant under a U( )1  gauge transformation, with the 
transformation assuming the form

 A A Aμ μ μ μθ→ ′ = + ∂    (9.17)

This is the same θ  
present in Eq. (9.16), and we note that Aμ is a function of space-

time as well, that is, A A xμ μ= ( ). 
Up until this point, in this chapter we have been using ordinary derivatives in the 

Lagrangian. That is, the kinetic terms in the Lagrangian have been of the form

 ∂ ∂μ
μϕ ϕ†

 

In order to have a gauge invariant Lagrangian, considering Eqs. (9.16) and (9.17), we 
will need to use a covariant derivative. A suitable covariant derivative in this case is

 D iqAμ μ μ= ∂ +   (9.18)

With this defi nition, the Lagrangian assumes the form

 L D D V F F= − −μ
μ

μν
μνϕ ϕ ϕ ϕ† †( )

1

4
  (9.19)
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Summarizing, this Lagrangian describes a theory that includes a complex scalar 
fi eld ϕ  and a massless gauge fi eld Aμ. With a gauge fi eld in the theory, terms like 
F Fμν

μν represent kinetic energy terms. In analogy with electrodynamics, the following 
defi nition is used.

 F A Aμν μ ν ν μ= ∂ − ∂   (9.20)

If a mass term was present, we would see a contraction on the gauge fi eld A Aμ
μ 

that is analogous to the quadratic mass terms of the scalar fi eld. Since the Lagrangian 
given in Eq. (9.19) has no terms of this form, the gauge fi eld is massless. What we 
will see in a moment is that a certain type of symmetry breaking will cause the 
gauge fi eld Aμ to acquire mass. This is the essence of the Higgs mechanism.

The potential in Eq. (9.19) is given by

 V
m

v
v( ) ( )† †ϕ ϕ ϕ ϕ= −

2

2
2 2

2
   (9.21)

where we have included a constant v in anticipation of the search for a minimum. 
In this case, v is the minimum for the theory when the symmetry is unbroken. 

Now we proceed as in the previous examples. This time, we seek the minimum 
potential energy when both the gauge fi eld Aμ and potential V vanish. When the 
symmetry is unbroken, the minimum of the potential, the vacuum state, is at

 ϕ 2 = v  

where v is some real number. But we can do a gauge transformation since

 ′ ′ = = = =−ϕ ϕ ϕ ϕ ϕ ϕ ϕθ θ† † ( ) ( ) †( )( )e e viq x iq x 2

 

So a local gauge transformation gives us the same minimum. And if the fi eld is 
complex, there are infi nity vacuum states. Since the gauge transformation gives the 
same minimum, we have a symmetry.

How can we break the symmetry? There is a hint in the fact that the minimum is 
obtained with the squared amplitude of a complex fi eld. We can break the symmetry 
by requiring that the fi eld be real. So the situation we have is

• The value v is the minimum of the potential when the symmetry is unbroken.

• We seek a gauge transformation that gives the fi eld in terms of fl uctuations 
about v.
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This can be done when the vacuum v is perturbed by a real fi eld h x( ).

 ϕ ϕ→ ′ = +v
h x( )

2
  (9.22)

The fi eld h x( )  is the Higgs fi eld. Since the fi eld is real, ϕ ϕ† =  and the potential 
becomes

 

V
m

v
vh x

h x

m h
m h

v
vh

= +
⎡

⎣
⎢

⎤

⎦
⎥

= +

2

2

2 2

2 2
2 2

2

2
2

2

2
2

( )
( )

++
⎛
⎝⎜

⎞
⎠⎟

h2

4
  (9.23)

Using Eq. (9.22) together with the defi nition of the covariant derivative in Eq. (9.18), 
we get

 
D iqA v

h

h iqvA
iqh

μ μ μ

μ μ

ϕ ′ = ∂ + ′ +⎛
⎝⎜

⎞
⎠⎟

= ∂ + ′ +

( )
2

1

2 2
′′A μ

 

Similarly, we fi nd that

 
D iqA v

h

h iqvA
iqh

μ μ

μ μ

ϕ ′ = ∂ − ′ +⎛
⎝⎜

⎞
⎠⎟

= ∂ − ′ − ′

( )
2

1

2 2
AAμ

 

Therefore,

 
D D h iqvA

iqh
A h iqμ

μ
μ μ μ

μϕ φ′ ′ = ∂ − ′ − ′⎛
⎝⎜

⎞
⎠⎟

∂ +
1

2 2

1

2
vvA

iqh
A

h h q v A A q

′ + ′⎛
⎝⎜

⎞
⎠⎟

= ∂ ∂ + ′ ′ +

μ μ

μ
μ

μ
μ

2

1

2
22 2 2vvhA A

q h
A A′ ′ + ′ ′μ

μ
μ

μ
2

2

 

We can put this together with the expression we obtained for the potential to 
obtain the full Lagrangian in the case of the gauge transformation in Eq. (9.22) 
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where we chose the fi eld to be real. Let’s drop the primes on the vector potential 
terms to simplify writing. We fi nd that

 

L D D V F F

h h q v A

= − −

= ∂ ∂ + ′ ′

μ
μ

μν
μν

μ
μ

μ

ϕ ϕ ϕ ϕ† †( )
1

4

1

2
2 2 AA q vhA A

q h
A A

m h
m h

v
vh

μ
μ

μ
μ

μ+ ′ ′ + ′ ′

− − +

2
2

2
2

2
2

2 2
2 2

2

hh2

4

⎛
⎝⎜

⎞
⎠⎟

 

This Lagrangian has several components. The fi rst part we will take a look at is the 
free part of the Lagrangian involving the Higgs fi eld h x( ). This is

 L h h m hh
free = ∂ ∂ −

1

2
2 2

μ
μ    (9.24)

By now, this should look very familiar. It’s a Klein-Gordon equation type Lagrangian 
for a scalar fi eld h x( ) with mass

 2 m   (9.25)

So in the example we’ve done here, the Higgs fi eld is a scalar fi eld, a spin-0 boson 
with mass 2m. Now let’s look at some of the other terms. Next we have a free 
Lagrangian for the gauge fi eld. This is given by

 L F F q v A AB
free = − + ′ ′

1

4
2 2

μν
μν

μ
μ

 

This is a remarkable result. The kinetic term − 1
4 F Fμν

μν  was present in the original 
Lagrangian in Eq. (9.19), but before symmetry breaking the gauge fi eld was massless. 
By choosing a real fi eld, that is, a perturbation about the unbroken vacuum v, we have 
picked up a mass term which is given by

 q v A A2 2 ′ ′μ
μ

 

We can determine the mass by comparison with a mass term that would appear 
in a Klein-Gordon type Lagrangian

 
1

2
2 2M φ
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for some fi eld φ . Hence, comparing the two terms, we see that symmetry breaking 
has given rise to a vector boson with mass

 M q v= 2   (9.26)

The remaining terms in the Lagrangian are interaction terms. The fi rst term we can 
write down includes the self-interaction terms for the Higgs fi eld as shown here.

 L
m h

v
vh

hh
int = − +

⎛
⎝⎜

⎞
⎠⎟

2 2

2

2

2
2

4  

And fi nally, there is an interaction Lagrangian representing coupling between the 
Higgs fi eld h and the gauge fi eld Aμ. This is

 L q A A vh hint
coup = ′ ′ +⎛

⎝⎜
⎞
⎠⎟

2 22
1

2μ
μ

 

Summary
In this chapter we learned about spontaneous symmetry breaking, a process which 
leads to the appearance of massive particles in the Lagrangian. The procedure works 
by considering a Lagrangian with some vacuum state. The system is then 
reconsidered by breaking the symmetry, leading us to a new vacuum state. Gauge 
invariance leads to the appearance of new particles. For a scalar theory, a massive 
Goldstone boson appears. When we combine a complex scalar theory with a 
massless gauge fi eld, breaking the symmetry by forcing the fi eld to be a real 
fl uctuation about the unbroken vacuum v leads to the appearance of a massive scalar 
fi eld called the Higgs fi eld, and the gauge fi eld acquires mass. The Higgs fi eld and 
the gauge fi eld are coupled through an interaction Lagrangian.

Quiz
 1. Suppose that L b= ∂ +1

2
2( ) cosh( )μϕ ϕ . Does this describe a massive or 

massless particle?

 2. A mass term appears in the Lagrangian

 (a) As a squared scalar multiplying the fi eld

 (b) As a scalar term multiplying the fi eld squared
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 (c) As a scalar term multiplying the fi eld to the fourth power

 (d) Must be put in by hand

    Consider a Lagrangian with a potential given by

 V = −
⎛
⎝⎜

⎞
⎠⎟

λ ϕ ϕ μ
λ4

2 2

*

 

 3. Let ϕ ψ θ→ ( ) ( )x ei x . Write down the form of the Lagrangian.

 4. Identify the mass term in the resulting Lagrangian. 

 5. Is there a self-interaction term?



CHAPTER 10

Electroweak 
Theory

In this chapter we will explore the electroweak part of the standard model of particle 
physics, which unifies the electromagnetic and weak interactions. The gauge group 
that does this is

SU(2) ⊗ U(1)

The weak interactions are mediated by the SU(2) gauge bosons, which includes 
the charged W� and the neutral Z 0. The U(1) sector of the interaction is the 
electromagnetic interaction, which is mediated by the massless photon. The theory 
that describes the electroweak interaction is known as the Weinberg-Salam model, 
after the two codiscoverers of the theory. They shared the Nobel Prize with Sheldon 
Glashow in 1979 for the development of this theory and their prediction of the W� 
and Z0 masses.

The Higgs field is introduced into the model causing spontaneous symmetry 
breaking. This leads the electron and its heavy partners, the muon (m) and the tau (t), 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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to acquire mass. In addition, the gauge bosons W� and Z0 acquire mass, but the 
photon remains massless. So far so good—the results are in good agreement with 
experiment. However, the Weinberg-Salam model also predicts that neutrinos are 
massless. Recent experimental evidence indicates that while their mass may be 
small (<1 eV), neutrinos probably do have mass. This problem is currently one of 
the great outstanding problems1 in particle physics, and solving the neutrino mass 
problem may lead to new physics beyond the standard model. 

In this chapter, we will focus on the electroweak interactions of leptons, and will 
leave out hadron interactions.

Right- and Left-Handed Spinors
Let’s briefly review the concept of left- and right-handed spinors. We write a Dirac 
spinor as a two-component object, with the top component being the right-handed 
spinor and the lower component being the left-handed spinor.

 
ψ

ψ
ψ

=
⎛
⎝⎜

⎞
⎠⎟

R

L

 (10.1)

Each component, yR and yL, is itself a two-component object. We can pick out 
the left- and right-handed components of a Dirac field y  by using an operator 
composed of the identity and the g5 matrix. Refreshing our memory, the g5 matrix 
is a 4 × 4 matrix given by

 

γ 5

1 0

0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=
−

⎛
⎝⎜

⎞
⎠⎟

=
−

−

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟⎟
⎟

 (10.2)

Now let’s see how we can pick out the left- and right-handed components of y. 
First we write

1

2
1

1

2

1 0

0 1

1 0

0 1

0 0

05( )− =
⎛
⎝⎜

⎞
⎠⎟

−
−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =γ

11

⎛
⎝⎜

⎞
⎠⎟

1Neutrinos with mass could solve the long-standing solar neutrino deficit. The nuclear physics of 
our sun is well-understood and in agreement with measurement except for the number of neutrinos. 
Terrestrial measurements by different laboratories agree that the solar neutrino flux is one-third of 
what is expected, a problem that has been solved by neutrino oscillations.
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Hence,

 

1

2
1

0 0

0 1

0
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⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
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=
⎛
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⎞
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=γ ψ
ψ
ψ ψ
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L L
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Similarly, we have

 

1

2
1

1 0

0 0 05( )+ =
⎛
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⎞
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⎛
⎝⎜

⎞
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=
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⎞
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ψ

ψ
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L
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Also notice that we can write the Dirac field as

 
ψ

ψ
ψ ψ

ψ
ψ ψ=

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
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= +R

L L

R
L R

0

0  

A Massless Dirac Lagrangian
We begin with the standard Dirac Lagrangian, setting the mass term to 0. This 
gives

 
L i= ∂ψγ ψμ

μ  (10.3)

where as usual

 ψ ψ γ= † 0

 

We wish to split up the Lagrangian into two parts, one for the left-handed 
spinor and one for the right-handed spinor. This is actually very straightforward. 
Proceeding we have

L i

i

i i

L R L R

L L R

= ∂

= + ∂ +

= ∂ +

ψγ ψ

ψ ψ γ ψ ψ

ψ γ ψ ψ

μ
μ

μ
μ

μ
μ

( ) ( )

γγ ψ ψ γ ψ ψ γ ψμ
μ

μ
μ

μ
μ∂ + ∂ + ∂R L R R Li( )
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The last term actually vanishes. This is because

 

ψ γ ψ
γ

ψ γ
γ

ψμ
μ

μ
μL R∂ =

−⎛
⎝⎜

⎞
⎠⎟

∂
+⎛
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1

5 5

−− + −( ) ∂
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γ γ γ ψ γ ψ

γ ψ γ ψ

μ
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But since

 
γ 5

5 1 0

0 1

1 0

0 1
=

−
⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟

= I
 

the mixed terms vanish. So we are left with

 
L i iL L R R= ∂ + ∂ψ γ ψ ψ γ ψμ

μ
μ

μ   (10.4)

And the Lagrangian separates nicely into left- and right-handed parts. In the case of 
electroweak theory, there is an asymmetry between left- and right-handed weak 
interactions. As a result, the actual Lagrangian used will reflect this.

Leptonic Fields of the Electroweak 
Interactions

For reasons as of yet unclear, fundamental particles belong to one of three families. 
The distinction is one of mass; otherwise particles within a family behave in a 
similar fashion (have the same charge and spin, for example). When considering 
just leptons, the fields of the electroweak interaction consists of the electron (e), 
muon (m), and tau (t), together with their corresponding neutrinos. These are the 
three families of leptons. In short we can write

L L L Le= + +μ τ

However, the muon and tau are just heavier duplicates of the electron, so we can 
learn everything we need to about electroweak theory by just focusing on the electron.2 

2So what are the two other families? Mysteries like this are driving physicists to look at options 
like string theory.
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The electron field and its associated neutrino field are combined together into a 
two-component object. Considering left-handed components only, we have the 
left-handed spinor

 
ψ

ν
L

e

Le
=

⎛
⎝⎜

⎞
⎠⎟  (10.5)

where ve is the electron neutrino and eL is a left-handed electron field. The left- and 
right-handed electron fields are related to the electron e in the usual way.

 
e e e eL R=

−⎛
⎝⎜

⎞
⎠⎟ =

+⎛
⎝⎜

⎞
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1

2

1

2
5 5γ γ

 (10.6)

If we take the mass of the neutrino to be 0, that is, mve = 0, then there is only a 
left-handed component of the neutrino field. Since the field is entirely left-handed, 
it satisfies the equation

 

1

2
5−⎛

⎝⎜
⎞
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=
γ

ν νe e  (10.7)

With no right-handed component of the neutrino field, we can define

 
ψ R

Re
=

⎛
⎝⎜

⎞
⎠⎟

0
 (10.8)

When considering only electrons, the Lagrangian describing the Dirac fields of the 
electroweak interaction can therefore be written in the form stated above, that is,

 
L i iL L R R= ∂ + ∂ψ γ ψ ψ γ ψμ

μ
μ

μ  

If we wanted to consider the full theory for leptons, we would simply add terms for 
the muon and tau, which would be identical in form to that of the electron.

Charges of the Electroweak Interaction
Charged current interactions work as follows. Charged currents couple to left-handed 
particles and to right-handed antiparticles. In electroweak theory, there exist three 
types of charge.
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Description Label

Electric Charge Q

Weak Isospin I

Weak Hypercharge Y

These charges are related by the Gell-Mann-Nishijima relation

 
Q I

Y
= +3

2
 (10.9)

where I 3 is the third component of weak isospin. The neutrino is assigned an 
isospin of

 
Iν

3 1

2
= +

 

while a left-handed electron has

 
Ie

3 1

2
= −

 

The right-handed electron field has

IR = 0

For a left-handed spinor, Y = –1, while for a right-handed spinor, Y = –2. Hence 
overall the charges for left- and right-handed spinors in electroweak theory area are

 

I Y Q

I Y Q

L L L

L L L

3

3

1

2
1 0

1

2
1

= + = − =

= − = − = −

(neutrino)

11

0 2 13

(electron—left handed)

(eI Y QR L R= = − = − llectron—right handed)

 (10.10)

The weak hypercharge Y and weak isospin charge I are independent, hence

 [ , ]Y I
�

= 0  

In the next section we will see that there are four gauge fields denoted by W1
m, W 2

m,
W 3
m, and Bm that correspond to the weak isospin charge I and weak hypercharge Y, 

respectively. If a particle has a given type of charge, then it can interact with the 
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field associated with that charge, and the value of the charge determines the strength 
of that interaction. Since the neutrino participates in weak interactions but does not 
interact with the photon, it has quantum numbers I Y QL L L

3 1
2 1 0= + = − =, , .and  A 

left-handed electron participates in the weak interaction and interacts with the 
photon and accordingly has all nonzero charges. 

A right-handed electron is a little different. It has I 3
R = 0, YR = –2, and QR = –1. 

As we will see below, the isospin charge allows interactions with the gauge 
bosons Wm. A right-handed electron does not interact with the gauge field. It will, 
however, interact with the Bm field, and in fact does so with twice the strength of a 
left-handed electron. The right-handed electron does interact with the photon since 
QR = –1.

Unitary Transformations and the Gauge 
Fields of the Theory

Next we consider the possible symmetries of the theory and proceed to introduce 
the gauge bosons. As mentioned above, electroweak theory has two independent 
symmetries SU(2) and U(1); we call the combination

SU(2) ⊗ U(1)

The SU(2) symmetry leads to three gauge bosons as mentioned here.

SU(2): W1
m, W 2

m, W 3
m 

The conservation of the weak hypercharge Y actually arises from invariance 
under a U(1) transformation. Hence, there is an additional gauge field associated 
with U(1) invariance. We denote this field as Bm. Summarizing:

U(1): Bm

After we introduce the gauge fields, the Lagrangian will be expanded as

L = Lleptons + Lgauge

Let’s take a look at the U(1) transformation first. It is clear by looking at the 
Lagrangian that it is invariant under a standard U(1) transformation on the 
right-handed spinor

 ψ ψ ψβ
R R

i
Re→ ′ =  
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where b is a scalar. This transformation does not change the Lagrangian

L L i e e iL L

i

L L R
i i

R

L

→ ′ = ∂ + ∂ + ∂

=

−ψ γ ψ ψ γ ψ γ

ψ γ

μ
μ

β μ
μ

β μ
μ

μμ
μ

μ
μψ ψ γ ψ∂ + ∂ =L R Ri L

So clearly the Lagrangian is invariant under ψ ψ ψβ
R R

i
Re→ ′ = . Naively, one 

would expect the U(1) transformation to be the same for the left-handed field, 
ψ ψ ψβ

L L
i

Le→ ′ = , but it is not. We already know that the left- and right-handed 
fields have different weak hypercharge, so we expect them to transform differently. 
The correct transformation for the left-handed field is of the form

ψ ψ ψβ
L L

in
Le→ ′ =

Since YR = –2, but YL = –1, the left-handed field interacts at half the strength, so 
n = 1

2 and the correct transformation is

ψ ψ ψβ
L L

i
Le→ ′ = /2

We can arrange the neutrino, left- and right-handed electrons into a single object as
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Then the U(1) transformation can be written in nice matrix form as
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⎟  (10.11)

Now, given a gauge field Bm, we define the field strength tensor fmv where

 fmv = îm Bv – îv Bm (10.12)
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Hence, the gauge field Bm is included in the Lagrangian with the addition of the 
term

 
L f fB = −

1

4 μν
μν

 (10.13)

We want to introduce this term but preserve of the action under variation dS = 0. 
Once more the gauge field Bm forces us to introduce extra terms into the derivative 
in order to maintain covariance. This is possible if we take

 
∂ → ∂ +μ μ μ

ig
BB

2  

where gB is a coupling constant associated with the gauge field Bm. In a similar 
fashion, we will define a field strength tensor associated with the gauge fields W1

m, 
W 2
m, and W 3

m . First let’s consider SU(2) transformations.
We now reintroduce the Pauli matrices in anticipation of including SU(2) as

 
τ τ τ1 2 3

0 1

1 0

0

0

1 0

0 1
= ⎛

⎝⎜
⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

i

i  (10.14)

Since these are just the Pauli matrices, we have the SU(2) algebra.

 
[ , ]τ τ ε τi j ijk ki= 2  (10.15)

The ti generators define weak isospin space. We now use them to consider a SU(2) 
transformation of the form

 
U i j j( ) exp( / )α α τ= 2  (10.16)

The right-handed electron spinor eR is invariant under the SU(2) transformation.

 ψ ψ α ψ ψR R R RU→ ′ = =( )  

However, the left-handed spinor transforms in the usual way as

 ψ ψ ψτ α
L L

i
Le→ ′ = − ⋅( )/2

 

The reason for these transformation properties is that the right-handed electron 
eR does not carry any weak isospin charge ( )

�
I IR R= =3 0 which is associated with 

the SU(2) transformation—hence it does not couple to the W1
m, W 2

m, and W 3
m  fields. 
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The electron neutrino and left-handed electron state do carry isospin charge, so we 
need to apply the SU(2) transformation in that case. In matrix form, the SU(2) 
transformation can be written as

 

ν ν τ α
e

L

R

e

L

R

i

e

e

e

e
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⎛
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⎛
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⎞
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/
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2

0 0

0 0

0 0 1

e e

e

i
e

L

R

τ α

ν

⎠⎠

⎟
⎟  (10.17)

Now let’s consider the field strength tensor corresponding to the gauge fields W1
m, 

W 2
m, and W 3

m . It assumes the form

 
F W W g W WW

mn m n
μν μ ν ν μ μ νε	 	 	 	= ∂ − ∂ −  (10.18)

We add the field tensor to the Lagrangian by summing up F Fμν
μν	 	, over 	 = 1 2 3, ,  

to include each of the gauge fields W1
m, W 2

m, and W 3
m . That is, we take the trace and 

can write the contribution to the Lagrangian as

 
L Tr F FW = −

1

8
( )μν

μν
 (10.19)

To keep the derivative covariant, now we need to add an extra term to account 
for the presence of Eq. (10.18) in the Lagrangian. This is done by adding the fol-
lowing term to the derivative:

 
ig W

ig
W W WW

W

� �τ τ τ τμ μ μ μ2 2 1
1

2
2

3
3⋅ = + +( )

 

Since the right-handed lepton field does not participate in the interaction involving 
weak isospin, this term is not added to the derivative in that case. We only add the 
term to account for the presence of the gauge field Bm. Hence,

 
i i

ig
BR R R

B
Rψ γ ψ ψ γ ψμ

μ
μ

μ μ∂ → ∂ +⎛
⎝⎜

⎞
⎠⎟2  

For the left-handed field, we have

i i
ig

B ig WL L L
B

W Lψ γ ψ ψ γ τ ψμ
μ

μ
μ μ μ∂ → ∂ + + ⋅⎛

⎝⎜
⎞
⎠⎟2 2

� �
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So the total leptonic portion of the Lagrangian is

L i
ig

B i
ig

R
B

R L
B

Lepton = ∂ +⎛
⎝⎜

⎞
⎠⎟ + ∂ +ψ γ ψ ψ γμ

μ μ
μ

μ2 2
BB ig WW Lμ μ

τ ψ+ ⋅⎛
⎝⎜

⎞
⎠⎟

� �

2

The total Lagrangian includes the gauge field Lagrangians as

 

L L L

i
ig

B iR
B

R L

= +

= ∂ +⎛
⎝⎜

⎞
⎠⎟

+

lepton gauge

ψ γ ψ ψμ
μ μ2

γγ τ ψμ
μ μ μ

μν
μν

∂ + + ⋅⎛
⎝⎜

⎞
⎠⎟

− −

ig
B ig W

f f

B
W L2 2

1

4

1

8

� �

TTr F F( )μν
μν

 (10.20)

When you step back and look at the Lagrangian, the asymmetry between the 
chiral fields strikes a note of discord. While the Standard Model has been a great 
success, it now leaves theorists with many questions that will need to be solved 
with physics beyond the Standard Model.

Weak Mixing or Weinberg Angle
In the following sections we will see that it is convenient to relate the coupling 
constants gB and gW in the following way:

 
tanθW

W

B

g

g
=  (10.21)

The angle qW is often called the Weinberg angle. It is also sometimes called the 
weak mixing angle. The reason is that it mixes the gauge fields to give

 

A B W

Z B W

W W

W W

μ μ μ

μ μ μ

θ θ

θ θ

= +

= − +

cos sin

sin cos

3

3  (10.22)

We can view this as a rotation, writing the relationship in matrix form:

A

Z
R

B

WW
W Wμ

μ

μ

μ
θ

θ θ
θ

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

=
−

( )
cos sin

sin3
WW W

B

Wcosθ
μ

μ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟3
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The gauge field Am is nothing other than the electromagnetic vector potential 
which couples the photon to the theory. We will explore this in more detail after we 
introduce the Higgs mechanism.

Symmetry Breaking
At this point we have put together a theory describing two leptons, the electron and 
its corresponding neutrino, and four gauge bosons. All the particles described so far 
are massless. It’s time to introduce mass into the theory and this will be done using 
the symmetry breaking methods of Chap. 9. We will introduce a Higgs field that 
will force the gauge bosons to acquire mass. In this section we will also introduce 
the photon field explicitly (besides talking about charge) so that we can present a 
unified picture of the electroweak interaction. 

Following the example of Chap. 9, we introduce the Higgs field as a scalar (spin-0) 
field. However this time it is a two-component object as shown here.

 
ϕ

ϕ
ϕ

=
⎛
⎝⎜

⎞
⎠⎟

A

B  (10.23)

Each component is a complex scalar field and is written as

 

ϕ ϕ ϕ

ϕ ϕ ϕ

A

B

i

i

=
+

=
+

3 4

1 2

2

2

 (10.24)

So the Higgs field is really composed of four real, scalar fields. We see that

 

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

† † †( ) ( )= +

= + + +( )

A A B B

1

2 1
2

2
2

3
2

4
2

 

The Higgs field carries charges of the weak interaction, specifically

 
Y Iϕ ϕ= + =1 1 2/  (10.25)

The SU(2) transformation is given in Eq. (10.16), which we restate here.

 
U i j j( ) exp( / )α α τ= 2
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We have a gauge freedom that can be exploited to simplify the form of the Higgs 
field. This can be done by insisting that each of the “angles” are functions of space-
time aj = aj (x); this is more than whimsy. It is because we want a local symmetry. 

Here is how the gauge freedom helps us. We can choose the aj = aj (x) in such a 
way that

 ϕ A = 0
 

and

 
ϕ ϕB h x

= +0 2

( )

 

This leaves us with a particularly simple and useful form of the Higgs field as

 

ϕ
ϕ

=
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

0

20

h x( )  (10.26)

The parameter j0 and field h(x) are both real. The j0 parameter allows us to break 
the symmetry. Instead of taking the ground state to be j → 0, we take it to be 

 
ϕ

ϕG =
⎛
⎝⎜

⎞
⎠⎟

0

0  

The Higgs field will make its appearance in the Lagrangian Eq. (10.20) in several 
ways. It will do so through a potential V = V (j†j), kinetic energy terms DmjDmj, and 
via interaction terms that couple the Higgs field to the electron and gauge bosons, 
giving them mass. Let’s use Eq. (10.26) and write the form of the potential. First

 

ϕ ϕ ϕ

ϕ ϕ

† = +⎛
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⎛
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= + +

0
2
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2

2
1

2

0

0
2

0
2

h
h

h h
 

The potential is

 V ( ) ( )† † †ϕ ϕ μ ϕ ϕ λ ϕ ϕ= +2 2  (10.27)
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If m2 > 0, then the minimum of the potential is located at j  = 0. Following the 
procedure of Chap. 9, we take m2 < 0 to break the symmetry, since this causes the 
Higgs field to attain a vacuum expectation value. 

What is the new minimum? As usual, we apply elementary calculus to get

 

∂
∂

= + =
V

ϕ
μ ϕ λ ϕ ϕ2 2 0† †( )

 

That is, 

 
ϕ μ

λmin = −
2

2  

Defining 

 
ϕ μ

λ0
2

2

2
= −

 

We arrive at the result ϕ ϕG = ( )0

0
. The Higgs field has a mass given by

 mh = −2 2μ  (10.28)

A review of Chap. 9 will help clarify this result.

Giving Mass to the Lepton Fields
A Dirac Lagrangian consisting of left- and right-handed fields with mass m is 
written as

 
L i i mL L R R L R R L= ∂ + ∂ − +ψ γ ψ ψ γ ψ ψ ψ ψ ψμ

μ
μ

μ ( )  (10.29)

Hence a mass term in the Lagrangian is of the form

 − +m L R R L( )ψ ψ ψ ψ  (10.30)

where m is a scalar (a number, not a function dependent on spacetime). In 
Weinberg-Salam theory, an interaction term (known as the Yukawa term) is intro-
duced that couples the matter fields to the Higgs field. The Yukawa coupling Ge 
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which defines the strength of the interaction between the Higgs field and the 
electron-lepton fields. The interaction Lagrangian is

 L Ge L R R Lint
†( )= − +ψ ϕψ ψ ϕ ψ  (10.31)

Let’s look at each term. 

 
ψ ϕ ν

ϕ
ϕ

ν ϕ ϕL e L

A

B e
A

L
Be e=

⎛
⎝⎜

⎞
⎠⎟

= +( )
 

Now, using the gauge choice that led to the form of the Higgs field in Eq. (10.26), 
the neutrino term drops out—a key step—and we have

 
ψ ϕ ν

ϕ
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B e
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Using ψ R eR
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 we have
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( )  (10.32)

For the next term in Eq. (10.31), we have

 

ψ ϕ ψ ϕ
ν

R L R
e

L

R

e
h x

e

e

† ( )

( )

= ( ) +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=

0 0
2

0

0

ϕϕ

ϕ

0

0

2

2

+⎛
⎝⎜

⎞
⎠⎟

= +⎛
⎝⎜

⎞
⎠⎟

h x
e

e
h x

e

L

R L

( )

( )

 

Once again, the neutrino term drops out. Using these results the interaction 
Lagrangian becomes

 

L G

G e
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Looking for a mass, we ignore the second term because a mass term in the 
Lagrangian is multiplied by an overall scalar (a number). The second term is 
multiplied by the Higgs field h(x). So the mass term in the Lagrangian is

 L G e e e ee L R R Lmass = − +ϕ0 ( )  (10.33)

Comparison with Eq. (10.30) leads us to the mass of the electron

 m Ge= ϕ0  (10.34)

The conclusion is that the interaction of the Higgs field with the electron field 
leaves the neutrino massless and gives the electron the mass defined in Eq. (10.34). 
So while these are instructive results, they do not seem to completely reflect what 
we see in nature as the neutrinos described here have no mass. As noted earlier 
experimental results indicate that neutrinos have a small, but nonzero mass. This 
indicates that the theory is incomplete.

Gauge Masses
Now we will see how the Higgs mechanism gives mass to the gauge bosons. The 
gauge bosons will acquire a mass through the action of the covariant derivative on 
the Higgs field. First let’s set up some notation that is frequently used. The fields  
W1
m and W 2

m are electrically charged, and can be combined into the physical fields as 
shown here.

 
W

W iW
μ

μ μ+ =
−1 2

2
 (10.35)

 
W

W iW
μ

μ μ− =
+1 2

2
 (10.36)

We have a covariant derivative given by

 
D i

g
i

g
WB W

μ μ μτ= ∂ + + ⋅
2 2

� �
 (10.37)

Now we apply the covariant derivative to the Higgs field

 
D i

g
i

g
WB W

μ μ μϕ ϕ ϕ τ ϕ= ∂ + + ⋅
2 2

� �
 (10.38)
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Notice that
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The first term in Eq. (10.37) just gives the ordinary derivative of the Higgs 
field.
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This term is the kinetic energy term and does not contribute to the generation of the 
boson masses, so we won’t worry about it. But putting everything together we 
have
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To find the mass terms, we calculate (Dmj)†Dmj and only keep terms of quadratic 
order. Now
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The first term in the product (Dmj)†Dmj is
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The next term we get is
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And then we have a cross term
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The second cross term is
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The final quadratic term of interest is
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In the last section, we noted that mass terms will be multiplied by numbers. So 
we can ignore any terms that include h(x). For the boson fields we are looking for 
terms of the form m2 Am Am.

We wish to write these expressions in terms of the physical fields. Using the 
Weinberg angle, we can invert Eq. (10.22) to give
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 B A ZW Wμ μ μθ θ= −cos sin  (10.39)

 
W A ZW Wμ μ μθ θ3 = +sin cos  (10.40)

Keeping only the leading term in ϕ0
2
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, which is the only term that gives a 

scalar (number), we find
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The next term becomes
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The second cross term becomes

 

−

= − −

g g
B W

g g
A Z A

B W

B W
W W

4

4

3
0

2
μ

μ

μ μ
μ

ϕ

θ θ

,

( cos sin )( siin cos )

( sin cos

θ θ ϕ

θ θ

μ

μ
μ

μ

W W

B W
W W

Z

g g
A A A Z

+

= − +

0
2

4
μμ

μ
μ

μ
μ

θ

θ θ θ ϕ

cos

sin sin cos )

2

2
0

2

W

W W WZ A Z Z− −  (10.43)

And the final term is
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Now we add up Eqs. (10.41) through (10.44). We are looking for mass terms in 
the field, so we will ignore mixed terms that describe interactions like Am Zm. Let’s 
look at each combination of the fields. We have
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The mixing angle describes how the two forces mix. As you can see from the 
figure below, if qw = 0, then we have pure coupling to the W bosons, and no 
coupling to the Z boson. A nonzero qw less than 90° indicates coupling to both fields 
(thus the term weak mixing angle) as shown in the following illustration.

qW

gW

gB

From the diagram we see that
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and this becomes
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This tells us that Am is a massless field. In fact it couples to the electric charge, so 
we know this is our photon field. Now, for the Z field we get
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Therefore, the mass of the Z particle is
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A similar exercise shows that the mass of the W�
m is
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We can also write
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Theoretical bounds on the masses are
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Hence MW < MZ, which is born out in experiment. Measured masses indicate 
that

 sin .2 0 222θW =  (10.50)

which tells us that qw is approximately 28.1 (which is the angle used to draw the 
figure).

The ability of the Weinberg-Salam model to predict the masses in this fashion is 
what earned its discoverers the Nobel Prize. Moreover, it gives us confidence in the 
Higgs mechanism as a valid means for adding mass to the standard model despite 
the fact that experimental observation as yet eludes us. However, at the time of 
writing solid experimental observation of the Higgs still eludes us. Researchers are 
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confident it will be seen when the Large Hadron Collider (LHC) begins operation 
in Switzerland sometime in 2008—but we will have to wait and see.

Summary
The Weinberg-Salam model combines leptons and gauge bosons into a single 
Lagrangian that has a SU(2) ⊗ U(1) symmetry. The original formulation of the 
Lagrangian is for massless particles, including a massless electron neutrino, 
massless electron, and four massless gauge fields. Spontaneous symmetry breaking 
using the Higgs mechanism breaks the SU(2) symmetry and gives rise to masses 
for the electron and the gauge bosons W� and Z0 that mediate the weak force. The 
symmetry breaking also introduces the photon field in the model, unifying the 
electromagnetic and weak interactions into a single Lagrangian. 

Quiz
 1. In electroweak theory, the neutrino has

 (a) No charge

 (b) I Y QL L L
3 1

2 1 0= + = − =, ,

 (c) I Y QR L R
3 0 2 1= = − = −, ,

 (d) I Y QL L L
3 1

2 1 1= − = − = −, ,

 2. In electroweak theory, the charges on the electron for a left-handed spinor 
are

 (a) I Y QL L L
3 1

2 1 1= − = − = −, ,

 (b) I Y QL L L
3 1

2 1 1= = − = −, ,

 (c) I Y QR L R
3 0 2 1= = − = −, ,

 (d) I Y QL L L
3 1

2 1 1= + = − = +, ,

 3. The introduction of the gauge field B� forces us to change the derivative 
operator as

 (a) ∂ → ∂ −μ μ μig BB
Y
2

 (b) ∂ → ∂ + ⋅μ μ
τ

μig BB

� �
2

 (c) The derivative is unchanged

 (d) ∂ → ∂ +μ μ μig BB
Y
2
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 4. In the weak interaction, invariance under a U(1) transformation is 
associated with

 (a) The supercharge SY

 (b) The hypercharge Y

 (c) The weak isospin charge I

 (d) Coupling of the weak isospin charge to the weak hypercharge Y

 5. Under a weak interaction SU(2) transformation, the left-handed field 
transforms as

 (a) ψ ψ ψ ψτ α
L L

i
L Le→ ′ = =− ⋅( )/2

 (b) ψ ψ ψτ α
L L

i
Le→ ′ = − ⋅( )/2

 (c) ψ ψL R→
 (d) There is no SU(2) transformation in weak theory

 6. The Weinberg angle

 (a) Describes scattering angles between leptons undergoing weak mediated 
collisions

 (b) Describes the ratio of the weak hypercharge to the weak isospin charge

 (c) Is related to the mixing of the coupling constants associated with the 
gauge fields of the weak theory

 (d) Describes the ratio of the weak isospin charge to the weak hypercharge

 7. The mass of the W and Z particles are related as

 (a) MZ
MW

W
= cosθ

 (b) MZ
MW

W
= sinθ

 (c) Cannot be related directly

 (d) MZ
MW

W
= tanθ

 8. If we define the standard electron charge as measured by experiment as q,
the charge on the electron predicted by electroweak theory

 (a) Is greater than or equal to the electron charge q

 (b) Is the same as the electron charge q 

 (c) The charge cannot be predicted from the theory



Path Integrals

One approach to quantum field theory, which is helpful in advanced contexts like 
string theory, is to use what is known as the path integral approach. A path integral 
is really a method for calculating amplitude for a quantum transition from one 
state to another. Our treatment will be very brief and introductory; for a detailed 
description see the text Quantum Field Theory by Lowell Brown.

CHAPTER 11

Gaussian Integrals
It turns out that most calculations involving path integrals boil down to a simple 
looking integral known as a Gaussian integral. So before jumping into path integra-
tion directly, we will quickly summarize what a Gaussian integral is and how it is 
calculated. 

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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The simplest Gaussian integral is an integral over all space in one dimension of 
the Gaussian function e x− 2

. A plot of this function, shown in Fig. 11.1, shows that it 
is localized in a small region about the origin.

As a result, we expect that the integral converges to a small finite value. 
Unfortunately, there is no elementary way to calculate

 I e dxx= −

−∞

∞

∫
2

 

We must instead use a trick. The motivation is this: we can’t evaluate this integral 
on the real line, but looking at the x2 term, we want to see if we will have better luck 
in the plane using polar coordinates. First we square the integral. Now, since x is 
just a dummy variable when it appears in the integrand, we can call it something 
else—and we will opt for y for good reason. So we have

 I e dx e dy e dxdyx y x y2 2 2 2 2

= =−

−∞

∞ −

−∞

∞ − +

−∞

∞

∫ ∫ ∫ ( )

Next, we will change to polar coordinates. Recall that

 
x r

y r

=
=

cos

sin

θ
θ

and so

 x y r r r2 2 2 2 2 2 2+ = + =cos sinθ θ

In transforming to polar coordinates, the element of area changes as

 dxdy rdrd→ θ

 

 

 

 

 

 

 

f

x

f (x)

x

Figure 11.1 A plot of f x e x( ) = − 2

.
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This leads to

I e dxdy d e rdrx y r2

0

2

0

2 2 2

= =− +

−∞

∞ −∞

∫ ∫ ∫( ) θ
π

and we have tamed the exponential term. The integral over r can be handled using 
a basic substitution u = r2:

e rdr e dur u−∞ −∞

∫ ∫= =
2

0 0

1

2

1

2
 

so,

I d e rdr dr2

0

2

0 0

22 1

2

1

2
2= = = =∫ ∫ ∫−∞

θ θ π π
π π

Taking the square root we obtain the result

I e dxx= =−

−∞

∞

∫
2

π   (11.1)

The integral in Eq. (11.1) can be extended into more complicated situations. Start 
by considering multiplication by constant a

′ = −

−∞

∞

∫I e dxax2

Knowing the result of Eq. (11.1), this can be done using a substitution technique. 
We set y ax= and then

′ = = =−

−∞

∞ −

−∞

∞

∫ ∫I e dx
a

e dy
a

ax y2 21 π
  (11.2)

The next extension of the basic Gaussian integral in Eq. (11.1) is to add powers 
of x. For example,

I x e dxn ax= −

−∞

∞

∫
2

If n is odd, it is easy to see that this is just 0. Let n = 1. A plot of f x xe x( ) = − 2

in 
Fig. 11.2 shows this is an odd function, so it must integrate to zero since we are 
integrating over the entire real line. The integration over ( , )−∞ 0 exactly cancels the 
integration over ( , )0 ∞ .
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Hence,

 I x e dx nn ax= =−

−∞

∞

∫
2

0 for odd   (11.3)

To obtain the result for even powers of n, we resort to more trickery. Start 
with Eq. (11.2), and take the derivative of both sides with respect to a. On the 
left we get

 
d

da
e dx x e dxax ax−

−∞

∞ −

−∞

∞

∫ ∫= −
2 22

On the right we get

 
d

da a a

π π
= −

2 3 2/

Equating the two, we’ve found that

 x e dx
a

ax2
3 2

2

2
−

−∞

∞

∫ =
π

/

A few plots of even powers of x against the exponential are illustrated in 
Figure 11.3.

f (x) = xe–x2 f (x) = x3e–x2 f (x) = x5e–x2

f(x) f(x) f(x)

x x x

Figure 11.2 A plot of the fi rst few odd powers on the exponential, all of which 
obviously integrate to zero.

f (x) = e–x2 f (x) = x2e–x2
f (x) = x4e–x2

f(x)

x

f(x)

x

f(x)

x

Figure 11.3 A plot of the fi rst few even powers on the exponential. These integrals 
require some tinkering to compute. 
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This iteration procedure can be carried out ad infinitum to obtain more and more 
results. It turns out that for some general even n

 x e dx
n

a
n ax

n n
−

−∞

∞

+∫ =
⋅ ⋅ +2 1 3 5 1

2 2 1 2

�( )
/ ( )/

π
 (11.4)

We can continue playing this game of introducing new terms into the Gaussian 
integral. One important Gaussian integral is

e dxax bx− +

−∞

∞

∫
2

This integral can be transformed into one of the form in Eq. (11.1) by completing 
the square. We write

 − + = − −⎛
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⎞
⎠⎟ = − −⎛
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⎠⎟ +a
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2 2

2 2
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2 22a

Hence
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⎠⎟
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2

2

2
2 2/

ee e dx

e
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b a
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x
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2

2

2

2 2

2 2

/
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− −⎛
⎝⎜

⎞
⎠⎟

−∞

∞

∫
=

π

 

 (11.5)

In n dimensions, a Gaussian integral takes the form

e d xx Ax nT−∫
where A is an n n× matrix of coefficients, x is an n dimensional column vector, and 
d x dx dx dxn

n= 1 2… . Let’s consider a two-dimensional case where 

 A
a b

b c
x

x

y
= ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

The argument of the exponential reduces to a scalar 

 

x Ax x y
a b

b c

x

y
x ax by y bx cT = ( )⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

= + + +( ) ( yy)
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Then we have

 

e d x e dxdy

e

x Ax n ax bxy cy
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∞

−

∫ ∫∫=

=

( )2 22

(( / )x b ay
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dxdy

a
e

+ −
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∞
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2
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π
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y

dy
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−∞

∞

∫ =
−

2
2

2

π

But ac b− 2 is just the determinant of the matrix A. In general, we can write

 e d x
A

x Ax n
n

T−∫ =
π /

det

2

  (11.6)

This can be extended to the results

 
e d x

A
e

x Ax J x n
n J

A JT− + ⋅ ⋅ ⋅

∫ =
−1

2

2

2
2 1( )

det

/π
 (11.7)

 e d x
i

A
e

i
x Ax iJ x n

n
i
J

A JT− + ⋅ − ⋅ ⋅

∫ =
−

2

2

2
2 1( )

det

/π
  (11.8)

Basic Path Integrals
Now that we know how to do some Gaussian integrals, we are ready to take a look 
at path integration. Our development follows closely the clear expositions by Zee 
and Hatfield, but it can be found in many quantum field theory books. The basic 
trick is to reduce the problem to a Riemann sum.

A path integral is a way to calculate the amplitude for a system that starts off in 
some state i to end up in a state f by adding up the amplitudes for the system 
to pass through all possible paths from i to f . As a specific example, the path 
integral can be constructed by considering the amplitude for a particle to pass from 
a point x0 to a point xN. If the dynamics of the system are described by a Hamiltonian 
H, then the amplitude in question is

 x e xN
iHt− ˆ

0
  (11.9)
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We can consider the simplest possible case, where 

ˆ ˆ
H

p

m
=

2

2

for a free particle of mass m. If we want to rewrite the amplitude in Eq. (11.9) so 
that we consider every possible path from x0 to xN, we start by splitting up the path 
into smaller pieces and then use a limiting procedure. We begin by dividing up the 
time interval into N equally spaced intervals Δt.

Δ =t
t

N
  (11.10)

Then

e e

e e

iHt iH N t

iH t t t iH t

− − Δ( )

− Δ +Δ + +Δ( ) − Δ

=

= =

ˆ ˆ

ˆ ˆ…
ee e eiH t iH t iH t− Δ − Δ − Δˆ ˆ ˆ�

So the amplitude can be rewritten as

x e x x e e e e xN
iHt

N
iH t iH t iH t iH t− − Δ − Δ − Δ − Δ=ˆ ˆ ˆ ˆ ˆ

0 � 00

Now we use the fact that the position eigenstates form a complete set of states. 
That is,

dx x x I∫ =   (11.11)

We can split up the interval into N parts and each little part will be a complete set 
of states, that is,

dx x x Ij j j∫ =

We stick these in between the exponential factors to give

x e x x e e e e xN
iHt

N
iH t iH t iH t iH t− − Δ − Δ − Δ − Δ=ˆ ˆ ˆ ˆ ˆ

0 � 00

0=

=

− Δ − Δ − Δ − Δx e Ie Ie I Ie x

x

N
iH t iH t iH t iH t

N

ˆ ˆ ˆ ˆ�

ee dx x x e dx x

x

iH t
N N N

iH t
N N

N

− Δ
− − −

− Δ
− −

−

∫ ∫
×

ˆ ˆ

1 1 1 2 2

22 1 1 1 0e dx x x e xiH t iH t− Δ − Δ∫ˆ ˆ�
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This expression can be written more compactly as a product, like

 x e x dx x e x x eN

iHt

j
j

N

N

iH t

N N

i−

=

−
− Δ

− −
−= ∫∏ˆ ˆ ˆ

0
1

1

1 1

HH t

N N

iH t iH tx x e x x e xΔ
− −

− Δ − Δ
2 2 1 1 0

ˆ ˆ
�

Right now the situation probably looks pretty hopeless. But we can calculate 
each individual term by bringing up the Gaussian integrals in the last section. 
Getting there will take some additional complications. We begin by recalling that 
the momentum eigenstates also form a complete set.

 
1

2π
dp p p∫   (11.12)

Noting that

 x p e p x eipx ipx= = −   (11.13)

and that for a free particle
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we can get expressions like x e xj
iH t

j
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−
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1 into a form that can be readily inte-
grated. We have
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This integral is nothing other than Eq. (11.5). Taking 

a
i

m
t J x xj j= Δ = − −1

we get

x e x dp e ej
iH t

j
ip m t ip x xj j− Δ

−
− Δ −=

=

∫ −ˆ / ( )
1

21

2

2
1

π
11

2

2
1 2

21
2

π
π

−
Δ

⎛
⎝⎜

⎞
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− Δ−i
m

t
ei x x m tj j

/
( ) /

Using this expression for each term in the original product allows us to write the 
compact expression as follows:

x e x i
m

t
dx eN

iHt

N

j
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=

−

= −
Δ
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1 2
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−

∑ t x x tj j
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N

( )/1
2

0

1

  (11.14)

Now we let Δ →t 0. In the limit, the term ( )x x tj j− Δ−1 / just becomes a derivative

lim
Δ →

−−
Δ

= =
t

j jx x

t

dx

dt
x

0

1 �

and the summation → ′
=

−

∑ ∫
j

N t
dt

0

1

0
, so Eq. (11.14) becomes

x e x i
m

t
dxN

iHt

N

N

j
j

N
−

→∞ =

−

= −
Δ

⎛
⎝⎜

⎞
⎠⎟ ∫ˆ

/

lim0

2

1

1

2π ∏∏ ′∫e
i dt

m
x

t

0

2

2
�

The path integral measure is then

Dx dx i
m

tN
j

j

N
N

= −
Δ

⎛
⎝⎜

⎞
⎠⎟→∞ =

−

∫∏lim
/

1

1
2

2π
  (11.15)

where Δ =t t
N . We can then write the path integral as the compact expression 

x e x Dx eN
iHt i dt

m
x

t

− ′
= ∫∫ˆ

0
20

2�
  (11.16)
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This tells us that the amplitude for a particle to take the path from x0 to xN is 
proportional to the exponential of the action S, which you recall as

S L dt= ∫
In this example, we have considered a free particle, so L mx= 1

2
2� . This is a nice 

result which ties quantum theory to classical mechanics. We can write the general 
amplitude for a system with Lagrangian L as

 F e I Dx eiHt i dt L q q
t

− ′
= ∫∫ˆ ( , )

0
�

  (11.17)

where I Fand are the initial and final states of the system. In a quantum field 
theory, we can use a path integral to compute the amplitude for a transition from a 
state ϕ1 1( )t to a state ϕ2 2( )t .

 
ϕ ϕ ϕ ϕ

ϕ
ϕ

ϕ

2 2 1 1 2 1
2 1

1

2

( ) ( )

exp

ˆ ( )t t e

D i L

iH t t=

=

− −

∫ ∫ dd x4( )    (11.18)

For example, if we let ϕ ϕ ϕ1 2 0= = be the ground state, we can calculate the 
energy of the vacuum using path integral methods. When an external source J(x) is 
present, the path integral becomes

 ϕ ϕ ϕ ϕ
ϕ

ϕ

2 2 1 1
4

1

2

( ) ( ) exp ( ) ( )t t D i L x J x d x= +[ ]( )∫ ∫   (11.19)

We define the vacuum to vacuum amplitude by

 Z J e D d x L x J xiW J
J[ ] exp ( ( ) ( ))[ ]= = = +⎡

⎣
⎤
⎦∫ ∫0 0 4ϕ ϕ   (11.20)

Summary
In this chapter we have succinctly introduced the notion of a path integral. This is a 
method that can be used to calculate the amplitude for a system to transition from 
one state to another by considering all possible paths between the two states. Path 
integrals can be used to calculate any quantity in field theory such as the vacuum 
expectation value for a field. The use of Gaussian integrals is important in the 
calculation of path integrals. 
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Quiz
 1. The integral x e dxx3 2

−∞

∞ −∫  is

 (a) 4

23 2 2
π

/ a

 (b) 0

 (c) Indeterminate

 2. The integral x e dxx3

0

2∞ −∫ is

 (a) ½

 (b) 0

 (c) x e dxx3

0

2∞ −∫ → ∞
 
unbounded

 3. Compute e d xx Ax nT−∫ when x
x
y
z

A=
⎛
⎝⎜

⎞
⎠⎟

=
⎛

⎝⎜
⎞

⎠⎟
and

1 0 3
0 2 4
1 0 2

.

 (a) −i π 3 2

2

/

 (b) π 3 2

2

/

 (c) 0

 4. Path integrals often involve Gaussians because

 (a) Path integrals are the square of an energy integral.

 (b) Path integrals do not involve Gaussians.

 (c) A path integral contains the Lagrangian, which has a quadratic 
dependence on momentum.

 5. The relationship between the quantum mechanical path integral and 
classical mechanics can be stated as

 (a) There is no relation.

 (b) A path integral involves an exponential of the action S. 

 (c) The action S can be recovered from a path integral by explicit 
calculation.

 (d) The square of the argument to the exponential gives the action.

 6. The vacuum to vacuum amplitude with a source is

 (a) Z J e D d x L x J xiW J
J[ ] exp ( ( ) ( ))[ ]= = = +⎡

⎣
⎤∫ ∫0 0 4 2 2ϕ ϕ ⎦⎦

 (b) Z J e D d x L x J xiW J
J[ ] exp ( ( ) ( ))[ ]= = = −⎡

⎣
⎤
⎦∫ ∫0 0 4ϕ ϕ

 (c) Z J e D d x L J xiW J
J[ ] exp ( ( ))[ ]= = = +⎡

⎣
⎤
⎦∫ ∫0 0 4ϕ

 (d) Z J e D d x L x J xiW J
J[ ] exp ( ( ) ( ))[ ]= = = +⎡

⎣
⎤
⎦∫ ∫0 0 4ϕ ϕ
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CHAPTER 12

Supersymmetry

Latter progress in theoretical particle physics prior to string theory came about in 
the 1970s under the name of supersymmetry (SUSY). This is a symmetry that relates 
or mixes (unites) fermions and bosons. Fermions are particles with half-integral 
spin, while bosons are particles with integer spin. The idea of supersymmetry is that 
for every fermion, there is a corresponding boson. We know that the force-carrying 
or mediator bosons have spin-0 or spin-1, so what we would hope to fi nd is that 
corresponding to spin-1/2 particles like quarks and electrons, there would be spin-0 
or spin-1 particles (denoted the selectron and squark). Also, corresponding to each 
spin-0 or spin-1 particle there would be a half-integral spin particle. The proposed 
particles go by the fanciful names photino, wino, and gluino, which would 
correspond to the photon, W, and gluon, for example. 

At the time of writing, there is no experimental evidence for supersymmetry 
despite diligent experiment. However, it is hoped that when the Large Hadron 
Collider (LHC) begins operation sometime in 2008, experimental evidence for 
supersymmetry will be found or alternatively that supersymmetry can be effectively 
ruled out, making it an exercise in mathematics and history.

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 



246 Quantum Field Theory Demystifi ed

In this chapter we will provide a very cursory introduction to the subject. Interested 
readers are urged to consult advanced physics books and published articles to learn 
more about the theory.

Basic Overview of Supersymmetry
As mentioned in the introduction, supersymmetry proposes that to each fermion 
there exists a boson and vice versa. So we can think of supersymmetry as proposing 
that a symmetry exists between bosons and fermions, and that in nature, there are 
equal numbers of fermion and boson states. Ideally, these would be the same mass. 
So as the positron is the antiparticle of the electron, essentially it’s an electron with 
the same mass but opposite charge. There would be a bosonic selectron which 
would have the same mass as the electron but would have whole integer spin rather 
than being spin-1/2. Obviously, no such particle has been seen. This means that if 
supersymmetry is real and selectrons do exist, their mass must be much heavier 
than that of real electrons or they are cloaked by mechanisms unknown. This 
suggests why we have not detected them yet—we need larger particle accelerators 
to attain the higher energies necessary to create selectrons. Since the masses actually 
differ in nature, supersymmetry must be broken.

If supersymmetry is not observed, why does it garner so much attention? Because 
supersymmetry solves many outstanding “mysteries” in particle physics. One 
important problem that stands out is called the hierarchy problem. It is believed that 
the mass of the Higgs boson, which we will denote by m

h
, is much smaller than a 

fundamental quantity that physicists call the Planck mass. The Planck mass is 
computed from the fundamental constants.

 
 
m

c

Gp = ≈
�

1019 GeV/c2

 
 (12.1)

This is an astonishingly large 22 μg1. At the present time it is believed that

 m mh p
  (12.2)

In quantum fi eld theory, there are quadratic corrections to the Higgs mass that 
cause its mass to diverge. Therefore the natural value for the mass of the Higgs 
boson would be extremely large, that is, we could expect it to be on the order of the 
Planck mass. This would make it much larger than what is expected to be the 
experimentally observed value of the Higgs mass, which we are denoting by m

h
. 

This is the hierarchy problem. Although standard theory requires the mass of the 

1A tiny grain of SiO
2
 sand of dimension 0.1 mm weighs 2.6 μg. 
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Higgs boson to be as large as possible, this is not what is seen (or at least what we 
think will be seen). Why is the Higgs mass so much smaller than its natural value? 
It turns out that supersymmetry does away with the corrections to the Higgs mass, 
and allows a Higgs mass more like what is expected to be seen experimentally. 

There are also other reasons to hope that supersymmetry turns out to be valid. 
One is the so-called gauge unifi cation problem. It is believed that the coupling 
constants of the standard model would unify (become the same strength) at a certain 
energy. Using standard model quantum fi eld theory, this does not quite work out. 
But supersymmetry solves this problem, giving an energy at which the coupling 
constants of the different interactions would converge to a single value.

Supercharge
We can start to understand supersymmetry by taking a look at the supercharge 
operator Q. The supercharge operator acts to transform fermions into bosons and 
bosons into fermions. For the moment let’s denote fermionic states by F and 
bosonic states by B . Then the action of the supercharge is as follows:

 Q F B=   (12.3)

 Q B F=   (12.4)

The number of supercharges in the theory characterizes the theory. If there is a 
single supercharge Q, then we say that we have an N = 1 supersymmetry. If there 
are two supercharges, then there is an N = 2 supersymmetry. If there are three 
supercharges, then we have an N = 3 supersymmetry and so on.

The operators Q and Q†
transform as spin-1/2 operators under Lorentz 

transformations. If we let Pm be a conserved 4-momentum, then Q is a spinor that 
satisfi es anticommutation relations of the form

 
{ , }

{ , } { , }

†

† †

Q Q P

Q Q Q Q

=

= =

μ

0
  (12.5)

In addition, the operators Q and Q† commute with the 4-momentum Pm.

 [ , ] [ , ]†Q P Q Pμ μ= = 0
 
  (12.6)

Let the fermion and boson states of a given type be defi ned by ψ F and ψ B , 
respectively. For example, if the particle we are talking about is an electron, then it   
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represents the electron state while ψ B is the superpartner selectron state. They 
transform into one another as

Q

Q

F B

B F

ψ ψ

ψ ψ

=

=

The square of the 4-momentum operator gives the mass of the state. That is,

 P mF F F
2 2ψ ψ= −   (12.7)

Since Q and Q† commute with the 4-momentum Pm, it follows using [A, BC] = 
[A,B]C + B[A,C] that they also commute with the square of the 4-momentum 
operator. Hence

[ , ]P Q P Q QP

P Q QP

2 2 2

2 2

0= − =

⇒ =
 

This result indicates that the superpartners will have the same mass. First we note 
that

 P Q PF B
2 2ψ ψ=  

 

However, since P2Q = QP2, we can write 

 P Q QP QmF F F F
2 2 2ψ ψ ψ= = −  

but mF
2 is just a scalar. Hence

 P Q Qm m Q mF F F F F F B
2 2 2 2ψ ψ ψ ψ= − = − = −  

 

Putting this together with P Q QmF F F
2 2ψ ψ= − , we see that 

 P mB F B
2 2ψ ψ= −  

 

This proves that if the anticommutation relations are satisfi ed, the partner and 
superpartner states have the same mass. We’ve already noted that this is not what is 
seen in nature—otherwise low mass partners like the selectron would have been 
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detected experimentally long ago. Supersymmetry, if it exists, is broken in nature 
and the superpartners have much larger mass.

The basic program of supersymmetry is to add one or more supercharges to the 
fi elds of the standard model, and determine what happens when we vary the action 
with respect to the supercharge. The result will be some leftover terms. We then add 
more terms to cancel the unwanted ones. In the end, the action remains invariant 
under the supersymmetry transformation. 

The added terms are the new fi elds and associated particles we mentioned earlier. 
So, bosonic partners to each fermion need to be added to the standard model such 
as selectrons and squarks to keep it invariant under a supersymmetry transformation. 
There are also fermionic fi elds like the Higgsino that correspond to the bosonic 
particles (in this case the Higgs) added to the action to keep it invariant. The N = 1 
supersymmetry case with a single supercharge is called the minimally super-
symmetric standard model or MSSM.

We will explain supersymmetry in the standard model in more detail below. 
However, fi rst let’s take a look at a simpler way to introduce supersymmetry using 
what is called supersymmetric quantum mechanics.

Supersymmetric Quantum Mechanics
Supersymmetric quantum mechanics was developed to apply some of the ideas of 
supersymmetry to the simpler nonrelativistic quantum mechanics to gain insight 
into some of the problems of supersymmetry, such as some understanding into why 
supersymmetry is broken—meaning that superpartners of the same mass to known 
particles do not exist in nature. In supersymmetric quantum mechanics there exist 
N supercharges Q

i
 that commute with the Hamiltonian.

 [ , ]Q Hi = 0   (12.8)

These supercharges satisfy a set of anticommutation relations relating them to H

 { , }Q Q Hi j ij= δ   (12.9)

and there exists a superpotential W(x) whose role will become clear in a moment. 
We consider a two-state system in one spatial dimension x with a wave function 
given by

 ψ
α
β

( )
( )

( )
x

x

x
=

⎛
⎝⎜

⎞
⎠⎟

   (12.10)
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There exist two supercharges Q
1
 and Q

2
. They can be defi ned using the Pauli 

matrices together with the superpotential W(x) as

 
Q p W x

Q p W x

1 1 2

2 2 1

1

2
1

2

= +[ ]

= −[ ]

σ σ

σ σ

( )

( )
 

 (12.11)

EXAMPLE 12.1
Compute the Hamiltonian corresponding to the supercharges defi ned in Eq. (12.11).

SOLUTION
We fi nd the Hamiltonian using { , }Q Q Hi j ij= δ . Let us use Q

1
. Now

 
{ , }Q Q Q Q Q Q

Q Q

Q

1 1 1 1 1 1

1 1

1
2

2

2

= +
=

=

 

 
Hence we see that the Hamiltonian can be written directly in terms of the supercharge 
as H Q= 2 1

2. Explicitly 

 

Q Q p W x p W x

p p

1 1 1 2 1 2

1 1

1

2

1

2
1

4

= +[ ] +[ ]

= +

σ σ σ σ

σ σ

( ) ( )

σσ σ σ σ σ1 2 2 1 2
2 2p W x W x p W x( ) ( ) ( )+ +⎡⎣ ⎤⎦

 

 

However, we know that the Pauli matrices square to the identity. Therefore

 σ 2
2 = I   

Moreover, we can move the Pauli matrices and momentum operators past each 
other with impunity. Hence the fi rst term is

 σ σ σ1 1 1
2 2 2p p p p= =   
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Now, recall the Lie algebra of these matrices, which is as follows:

 

σ σ σ

σ

1 2 3

0 1

1 0

0

0

0

0
=

⎛
⎝⎜

⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

=
i

i

i

i
i

22 1 3

0

0

0 1

1 0

0

0
σ σ=

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

= −
i

i

i

i
i

  

And, recall that the commutator of any function of position with the momentum 
operator is

 F x p F x p pF x i
dF

dx
( ), ( ) ( )[ ] = − =  

 

Therefore,

 

σ σ σ σ σ σ σ σ

σ

1 2 2 1 1 2 2 1

1

PW WP PW PW i
dW

dx
+ = + +⎛

⎝⎜
⎞
⎠⎟

= ( σσ σ σ σ σ

σ σ σ

σ

2 2 1 2 1

3 3 3

3

+ +

= − +

=

)

( )

PW i
dW

dx

i i PW
dW

dx
ddW

dx

 

 

Putting all of these results together, we fi nd

 Q p
dW

dx
W x1

2 2
3

21

4
= + +⎛

⎝⎜
⎞
⎠⎟

σ ( )  
 

Hence, the Hamiltonian is

 H Q p
dW

dx
W x= = + +⎛

⎝⎜
⎞
⎠⎟

2
1

21
2 2

3
2σ ( )  

 

Take a look back at the action of a supercharge in a quantum fi eld theory, as 
described schematically in Eqs. (12.3) and (12.4). When we look at the action of the 
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supercharges in this example of nonrelativistic quantum mechanics, we will see 
how we are constructing a simple model of a supersymmetric theory. We defi ne 
spin-up and spin-down states as

 + =
⎛
⎝⎜

⎞
⎠⎟

− =
⎛
⎝⎜

⎞
⎠⎟

1

0

0

1
 

 

Now we have

 

Q p W x

p W

1 1 2

1

2

2

0 1

1 0

1

0

+ = + +

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+

( ( ))

(

σ σ

xx i

i

p W x

i

)

( )

2

0

0

1

0

2

0

1 2

0

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎝⎜

⎞
⎠⎟

=
+

⎛
⎝⎜

⎞
⎠⎟

1

2

0

p iW

 

 That is, the supercharge Q
1
 turns a spin-up state into a spin-down state, analogous 

to a supercharge converting a fermion to a boson, say. Next consider the action of 
Q

1
 on a spin-down state as follows:

 

Q p W x

p W

1 1 2

1

2

2

0 1

1 0

0

1

− = + −

=
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

+

( ( ))

(

σ σ

xx i

i

p W x i

)

( )

2

0

0

0

1

2

1

0 2 0

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

+
−⎛⎛

⎝⎜
⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

1

2 0

p iW

 

 
If supersymmetric quantum mechanics is unbroken, then the states ψ ( )x are left 
invariant by a unitary transformation of the form

 U e i Qi i= − α  

Moreover there exists a state ψ 0 ( )x that is annihilated by the supercharges, that is,

 Q x1 0 0ψ ( ) =   (12.12)
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This implies that the ground state of the system has zero energy since

 H x Q xψ ψ0 1
2

02 0( ) ( )= =  
 

EXAMPLE 12.2
Derive the form of the ground state ψ 0 ( )x .

SOLUTION
We use the fact that the supercharge annihilates the state Eq. (12.12) together with 
Eq. (12.11).

 

Q x

p W x x

p x

1 0

1 2 0

1 0 2

0

0
1

2

ψ

σ σ ψ

σ ψ σ

( )

( ( )) ( )

( )

=

⇒ = +

= + WW x x

i
d

dx
W x x

( ) ( )

( ) ( )

ψ

σ
ψ

σ ψ

0

1
0

2 0= − +

 

 Multiplying by s
1
 and using σ1

2 = I together with σ σ σ1 2 3= i gives

 
0 0

3 0

0
3 0

= − +

⇒ =

i
d

dx
i W x x

d

dx
W x x

ψ σ ψ

ψ σ ψ

( ) ( )

( ) ( )

 

 Integrating and taking the initial condition to be ψ 0 0( ) gives

 ψ σ ψ0 30 0 0( ) exp ( ) ( )x dx W x
x

= ′ ′∫  
 

The Simplifi ed Wess-Zumino Model
Now that we have gotten a taste of supersymmetry by taking a brief look 
at supersymmetric quantum mechanics, we are ready to dive into a simple 
supersymmetric quantum fi eld theory. We will discuss the Wess-Zumino model, a 
supersymmetric theory proposed in 1974 that starts with a Lagrangian consisting of 
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bosonic and fermionic fi elds and shows that it is possible to develop a transformation 
that mixes bosonic and fermionic fi elds.

THE CHIRAL REPRESENTATION
In supersymmetry, it is convenient to work in the representation where the Dirac 
matrices are given by

 γ
σ

σμ
μ

μ
=

⎛
⎝⎜

⎞
⎠⎟

0

0
 

  (12.13)

where we have introduced the barred Pauli matrices which are obtained with a sign 
change as

 

σ σ

σ σ σ σ

0 0

1 1 2 2

1 0

0 1

0 1

1 0

0

= =
⎛
⎝⎜

⎞
⎠⎟

= − =
−

−
⎛
⎝⎜

⎞
⎠⎟

= − =
ii

i−
⎛
⎝⎜

⎞
⎠⎟

= − =
−⎛

⎝⎜
⎞
⎠⎟

0

1 0

0 1
3 3σ σ

 

  (12.14)

Note that lowering the index with the metric introduces a sign change when i = 
1, 2, 3 so that

 σ σ3 3

1 0

0 1
= − =

−
⎛
⎝⎜

⎞
⎠⎟

 

for example. The following anticommutation relations are useful.

 

 

{ , }

{ , }

σ σ σ σ σ σ
σ σ σ σ σ σ

μ ν μ ν ν μ μν

μ ν μ ν ν μ

= + = −

= + = −

2

2

g

ggμν
 (12.15)

A Simple SUSY Lagrangian
The key to supersymmetry is writing down a Lagrangian and then relying on our old 
friend: computing a variation of the bosonic and fermionic states together and 
requiring that the variation of the action be zero. This will introduce a supercurrent 
that is conserved, meaning that if S is the supercurrent then the total divergence is 0.

 ∂ =μ
μS 0  
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The supercurrent will allow us to calculate the supercharges Q. A simple model 
that illustrates how supersymmetry works is the Wess-Zumino model. In the following, 
we will consider the simplest possible example, a model that consists of a single 
massless spin-0 boson fi eld A and a single massless spin-1/2 fermion fi eld ψ . If we 
let the scalar fi eld for the spin-0 boson be a complex fi eld, then the Lagrangian is

 L A AB = −∂ ∂μ
μ*  

 

If we take the spinor fi eld to be right handed, the Lagrangian for a massless spin-1/2 
fi eld can be written as

 L
i i

F = ∂ − ∂
2 2μ

μ μ
μψ σ ψ ψ σ ψ† †  

In order to close the SUSY algebra, it will be necessary to add an auxiliary 
fi eld F. The auxiliary Lagrangian is the simple term

 L F Faux = *   

The supersymmetric Lagrangian is the sum of these individual Lagrangians, that is,

 
L L L L

A A
i i

F

B F= + +

= −∂ ∂ + ∂ − ∂ +

aux

μ
μ

μ
μ μ

μψ σ ψ ψ σ ψ* † †

2 2
**F

 

  
(12.16)

For the Lagrangian to be invariant under supersymmetry, we require that 

 δ δS L d x= =∫ 4 0  

where the supersymmetric variation converts bosons into fermions and vice versa. 
We need variations that will work with each fi eld in the Lagrangian, so obtain

 

δ εψ δ ε ψ

δψ σ ε ε δψ ε σμ
μ

μ
μ

A A

i A F i

= =

= ∂ + = − ∂

2 2

2 2 2

* † †

† † AA F

F i F i

* † *

† *

+

= ∂ = − ∂

2

2 2

ε

δ ε σ ψ δ ψσ εμ
μ μ

μ

 

  (12.17)

We have introduced a new quantity here, a two-component Weyl spinor e. When 
a supersymmetry is global, e does not depend on spacetime and so

 ∂ =με 0   (12.18)

This will not be the case when a supersymmetric transformation is local. 
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We proceed by considering the variation of the Lagrangian term by term. Starting 
with the fi rst term in Eq. (12.16),
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(12.19)

Now you remember that δ ϕ δϕμ μ( ) ( )∂ = ∂ , a trick we used in moving from the 
second line to the third line. Next, we compute the variation of the second term in 
Eq. (12.16), which is

 

δ ψ σ ψ δψ σ ψ ψ σ δψμ
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μ
μ

μ
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2   (12.20)

Continuing, the next term is similar.
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(12.21)
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Remember, the Pauli matrices only operate on the spinors, so we can move them 
past the bosonic fi elds however we like. Finally, we compute δFF*.

 
δ δ δ

ε σ ψ ψ σμ
μ μ

FF F F F F

i F F i

* * *

† * †

( ) ( )

( ) (

= +

= ∂ + − ∂2 2 μμε)

 

  
(12.22)

Now it is useful to consider terms dependent on e only. Grouping them together 
using Eqs. (12.19) through (12.22), we have
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μ ν μ

μ ν
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(12.23)

We wish to simplify this expression so that it can be written as a total derivative, 
which would allow us to satisfy δ δS L d x= =∫ 4 0. First, notice that Eq. (12.23) can 
be written as
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Now we can apply Eq. (12.15) to simplify this even further. Recall that

 
{ , }σ σ σ σ σ σ

σ σ σ σ
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Also note that repeated indices are dummy indices, so we can change them. The 
next to last term can then be rewritten as

 

1

2

1

2
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Now, applying the anticommutation relation and raising an index with the metric,
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So here is the variation of the Lagrangian, considering terms dependent upon e, 
written as a total derivative.
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We use this to identify a current.

 K
i

F A Aμ
ε

μ
μ

ν μ
νψ σ ε ε ψ ε σ σ ψ= − − ∂ − ∂

2
2

1

2
† * *

 
  (12.24)

A similar procedure can be used to defi ne a current dependent upon ε†, giving us 
a total current.

 K K Kμ μ
ε

μ
ε

= + †   (12.25)

By calculating the Noether current Jm, we can arrive at a supercurrent that is 
conserved.

 
S J Kμ μ μ

μ
μ

= −

∂ =S 0

 

  (12.26)

The Noether current is calculated as follows. We take the kinetic part of the 
Lagrangian, which is given by

 J
i i

A A A Aμ μ μ μ μδψ σ ψ ψ σ δψ δ δ= − − ∂ − ∂
2 2

( ) ( ) ( ) ( )† † * *  
 

The variation procedure is accomplished in the same manner as used to calculate  
dL, using Eq. (12.17). Once again, we can extract e dependent and ε † dependent 
Noether currents. It can be shown that

 J A
i

F Aε
μ ν μ

ν
μ μεσ σ ψ ψ σ ε εψ= ∂ − − ∂

1

2 2
2* † *  

 

Hence, the e dependent supercurrent in Eq. (12.26) takes on a relatively simple 
form.

 S Aε
μ ν μ

νεσ σ ψ= ∂2 *   (12.27)

The supercharges are computed by integrating the time-component of the 
supercurrent, in a manner analogous to electrodynamics. For example,

 Q d x S d x Aε ε
ν

νεσ σ ψ= = ∂∫ ∫3 0 3 02 *   (12.28)
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Summary
Supersymmetry is a proposition to introduce a symmetry between fermions and 
bosons. If such a symmetry exists, then there are supercharge operators that convert 
fermion states into boson states and vice versa. In its most basic form, the theory 
predicts that the partners of known particles, obtained by applying the supercharge 
operators and known as superpartners, have the same mass. This has not been 
experimentally observed. If supersymmetry is real, the masses of the superpartners 
are much larger than the masses of known particles, and this explains why they 
have not yet been detected experimentally. The difference in masses breaks the 
supersymmetry. Hence we know supersymmetry is broken. Theorists have great hopes 
for the theory because it solves many outstanding problems in theoretical physics, such 
as the mass of the Higgs particle (the hierarchy problem). Supersymmetry may also 
explain the existence of mysterious dark matter particles and it is of fundamental 
importance to string theory.

Quiz
 1. Consider the supersymmetric quantum mechanics described in 

Examples 12.1 and 12.2. Compute {Q
1
, Q

2
} and {Q

2
, Q

2
}.

  For problems 2 to 4, consider the Lagrangian

L
i i

A A FFn
n n

n n
n= ∂ − ∂ − ∂ ∂ +

2 2
χσ χ σ χ

  which describes a left handed spinor c that does not interact with a complex 
spin-0 fi eld A.

2. Find the fi eld equations.

 3. If the supersymmetry transformation is

δ χε

δχ εσ ε

δ χσ ε

A

i A F

F i

m
m

m
m

=

= − ∂ +

= − ∂

2

2 2

2

 

  fi nd the SUSY current.

 4. Find an expression for the supercharge.
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 5. Let an operator A be given by A S= −( )1 2 where S is the spin operator. Given 
that

{ , } { , }†Q A Q A= = 0

  calculate
 

i P iS

i

( )−∑ 1 2 μ

 
where

 
i is a set of fermion or boson states 

belonging to the same multiplet. (Hint: Assume that the states satisfy a 
completeness relation

j j I
j

∑ =

 
  The result of this calculation implies that each supermultiplet contains the 

same number of bosonic and fermionic degrees of freedom.)
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Final Exam

 1. Consider the following Einstein’s equation relating energy, mass, and 
momentum.

 E p m2 2 2= +�  

  Make the usual operator substitutions from quantum mechanics, that is,

 E i
t

p i→
∂
∂

→ − ∇� �
 

 Determine the resulting fi eld equation.

 2. Let L = ∂ −1
2

2 2 2{( ) }μϕ ϕm where j  is a real scalar fi eld and determine the 
conserved quantity Q.

 3. Consider an electromagnetic type fi eld with mass, and let 
S F F A Am= − +∫( )1

4 2

2

μν
μν

μ
μ . Vary the action to determine and equation of 

motion.

 4. Return to the action of the previous problem and the equation of motion 
you found. What condition on the vector potential does the equation of 
motion imply?

Copyright © 2008 by The McGraw-Hill Companies, Inc. Click here for terms of use. 
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 5. Suppose that L = ∂ ∂ − + +1
2 2

2
6

3
24

42 3 4

μ
μ λ ρϕ ϕ ϕ ϕ ϕm , but the fi eld is invariant 

under a parity transformation ϕ ϕ→ − . What restrictions does this place on 
the Lagrangian?

 6. Calculate tr( )γ γμ ν .

 7. Find i∂μ
μψγ ψ( ).

 8. Calculate /∂/∂ where / =a aγ μ
μ .

 9. The Dirac equation applies to

 (a) Spin-1 particles

 (b) Spin-3/2 particles

 (c) Spin-½ particles

 (d) Both (b) and (c)

 10. If γ ψ γ γ ψμ
μ

μ
μ∂ = ∂0 5find ( ).

 11. Find ( )I L
R

+ = ( )γ ψ ψ ψ
ψ5 if .

 12. Supersymmetry is a symmetry that relates

 (a) Half-integral fi elds

 (b) Scalar fi elds to the higgs fi eld

 (c) Quarks and antiquarks

 (d) Fermions and bosons

 13. The Higgs fi eld can be best described as responsible for

 (a) Dark energy

 (b) Dark matter

 (c) Giving mass to fundamental particles

 (d) Relating supersymmetry to SU( )5 transformations

 14. If supersymmetry is unbroken then

 (a) The masses of a fermion and superpartner boson are the same.

 (b) The masses of a fermion and superpartner boson are inverse.

 (c) There is no relation between the mass of a fermion and its superpartner 
boson.

 (d) The mass of the Higgs particle is 100 GeV.

 15. The commutation or anticommutation relation obeyed by a supercharge 
operator Q is

 (a) [ , ]†Q Q P= μ

 (b) [ , ]†Q Q = 0
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 (c) { , }†Q Q P= μ

 (d) { , }†Q Q = 0

 16. The commutation relation satisfi ed between the supercharge operator Q and 
4-momentum is

 (a) [ , ]P Q2 0=
 (b) [ , ]P Q2 = λ
 (c) [ , ]P Q Q2 = −
 (d) [ , ] †P Q Q2 =

 17. In supersymmetric quantum mechanics, the supercharges satisfy

 (a) { , }Q Qi j = 0

 (b) { , }Q Qi j ij= δ
 (c) [ , ]Q Q Hi j ij= δ
 (d) { , }Q Q Hi j ij= δ

 18. In the chiral representation, the Pauli matrices satisfy

 (a) { , }σ σ σ σ σ σμ ν μ ν ν μ μν= + − 2g

 (b) { , }σ σμ ν μν= 2g

 (c) { , }σ σ σ σ σ σμ ν μ ν ν μ μν= + = −2g

 19. The supercurrent satisfi es

 (a) ∂ =μ
μ μS J , where Jm is the Noether current

 (b) ∂ =μ
μS 0

 (c) The supercurrent cannot be conserved

 (d) An uncertainty relation with the supercharge

 20. In order to close the supersymmetry algebra, it can be necessary to 
introduce

 (a) An auxiliary fi eld

 (b) A supersymmetric Hamiltonian operator

 (c) The uncertainty relations

 (d) The Cauchy-Schwarz lemma

 21. A group is abelian if group elements a and b satisfy

 (a) { , }a b ab ba= + = 0

 (b) [ ]ab ba e− = , where e is the identity element

 (c) [ ]ab ba− = 0

 (d) ab is closed
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 22. A Lie group

 (a) Depends on a fi nite set of continuous parameters q
i
 

 (b) Depends on a fi nite set of discrete parameters that are periodic in 2p 
 (c) Does not have derivatives with respect to group elements

 (d) Obeys an open algebra

 23. In a Lie group, a generator X is related to a group element g through

 (a) X
g

=
∂
∂ =θ θ π

 (b) X
g

=
∂
∂ =

2

2 0θ θ

 (c) X
g

g d
o

=
∂
∂

+= ∫θ
φ φθ

π

0

2
( )

 (d) X
g

=
∂
∂ =θ θ 0

 24. A representation D of a group can be related to the generators X using

 (a) D i X( )εθ εθ≈ +1

 (b) D i X( )εθ εθ=

 (c) D
X

( )εθ ε
θ

≈
∂
∂

 (d) D i X( ) limεθ εθ
θ

≈ −
→∞

1

 25. If the generator of a group X is Hermitian then the representation D is

 (a) Anti-Hermitian

 (b) Unitary

 (c) Anti-unitary

 26. The Lie algebra of a group is [ , ]X X if Xi j ijk k= . We call the coeffi cients f
ijk

 (a) Representation constants

 (b) Group generators

 (c) The fi ne structure constants

 (d) The structure constants of the group

 27. A group SO(N) is

 (a) Orthogonal N × N matrices with determinant + 1

 (b) Orthogonal N × N matrices with determinant − 1
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 (c) Unitary, orthogonal N × N matrices with determinant + 1

 (d) Unitary N × N matrices with determinant + 1

 28. The special unitary group SU(2) has

 (a) 1 generator

 (b) 3 generators

 (c) 2 generators

 (d) 8 generators

 29. The special unitary group SU(3) has

 (a) 1 generator

 (b) 3 generators

 (c) 4 generators

 (d) 8 generators

 30. The unitary group U(1) can be represented by

 (a) U e i= − θ

 (b) U e i= −∫ θ  

 (c) U
dg

d
=

θ
 31. The Pauli matrices are a representation of

 (a) SU (3)

 (b) U (1)

 (c) SU (2)

 (d) SU (1)

 32. The rank of the group is defi ned as

 (a) The number of matrix representations of the generators that are 
diagonal

 (b) The number of generators

 (c) The number of generators minus one

 (d) The number of matrix representations of the generators that are 
diagonal, minus one

 33. A Casimir operator

 (a) Forms a fi nite representation of the group

 (b) Commutes with all the generators
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 (c) Does not commute with any generator

 (d) Commutes with the rank representation

 34. Consider a quantum number. If the quantum number is multiplicative

 (a) For a composite system, the quantum number is the product of 
individual quantum numbers Π

i in .

 (b) For a composite system, the quantum number is the sum of individual 
quantum numbers.

 (c) The quantum number is a product of fundamental constants.

 (d) The quantum number is a sum of fundamental constants.

 35. The eigenvalues of parity are

 (a) α = ±0 1,

 (b) α = 0 1,

 (c) α = ±1

 36. If a wave function has even parity then

 (a) ψ ψ( ) ( )− =x x

 (b) ψ ψ( ) ( )− = −x x

 (c) ψ ( )− =x 0

 (d) ψ ψ( ) ( )− =2 2x x

 37. The parity operator P satisfi es

 (a) P iI2 =
 (b) P2 0=
 (c) P I2 = −
 (d) P I2 =

 38. A parity operator acts on an angular momentum state as

 (a) P L m L mz
m L

z
z, ( ) ,= −1

 (b) P L m L L mz z, ,=

 (c) P L m L mz z, ,= −

 (d) P L m L mz

L

z, ,= −( )1

 39. By convention

 (a) An electron has positive parity.

 (b) An electron has negative parity.
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 (c) An antielectron has positive parity.

 (d) The parity of an electron is indeterminate.

 40. The parity of a composite system ab each with individual parity operators 
P

a
, P

b
 is

 (a) −P Pa b

 (b) P Pa b

 (c) ( )−1 P P
a b

a b P P

 (d) ( )− +1 P P
a b

a b P P

 41. Parity is

 (a) Conserved in the electromagnetic and strong interactions

 (b) Not conserved in the weak interaction

 (c) Conserved in the weak interaction

 (d) Both a and b

 (e) Both a and c

 42. A particle denoted by 0−

 (a) Has spin-0 and negative parity

 (b) Has no parity and negative spin-½

 (c) Is a scalar particle with negative parity

 (d) Has zero charge and negative parity

 43. Charge conjugation

 (a) Only applies to vector particles

 (b) Turns particles into antiparticles

 (c) Turns particles into antiparticles with a sign change

 (d) Flips charge for scalar bosons

 44. The charge conjugation operator C acts on the electromagnetic fi eld as

 (a) CA C Aμ μ− = −1

 (b) CA C Aμ μ− =1

 (c) CA C Jμ μ− = −1

 (d) CA C Jμ μ− =1
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 45. CP is

 (a) Never violated

 (b) Violated in the strong interaction

 (c) Violated in the weak interaction

 (d) Violated in the electroweak interaction

 46. An operator A is antiunitary. It satisfi es

 (a) A Aφ ψ φ ψ=

 (b) A A† *φ ψ φ ψ=

 (c) A Aφ ψ φ ψ= *

 (d) A Aφ ψ φ ψ= − *

 47. An antilinear operator satisfi es

 (a) T α ψ β φ α ψ β φ+( ) = ′ + ′* *

 (b) T α ψ β φ α ψ β φ+( ) = − −

 (c) T α ψ β φ α ψ β φ+( ) = +* *

 48. The CPT theorem implies that

 (a) CPT is conserved in all interactions except the weak interaction.

 (b) CPT is conserved in all interactions. 

 (c) CPT is conserved only in weak interactions.

 (d) CPT is conserved except in K meson decay.

 49. The eigenvalues of charge conjugation are

 (a) c = ±1

 (b) c = ±0 1,

 (c) c q= ±
 (d) c q= ±0,

 50. If CP were conserved in weak interactions then

 (a) K1 → would only decay into 2 mesonsπ
 (b) K1 → only decays into 3 mesonsπ
 (c) Time invariance would not be satisfi ed

 (d) K2 → only decays into 2 mesonsπ
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 51. When interpreted as a single particle wave equation, the Klein-Gordon 
equation

 (a) Is plagued by infi nities

 (b) Leads to negative probability densities

 (c) Always gives zero

 (d) Gives the same results as the Schrödinger equation

 52. Under a Lorentz transformation Λμ
ν, a scalar fi eld transforms as

 (a) ′ = − −ϕ ϕ( ) ( )x xΛ 1

 (b) ′ =ϕ ϕ( ) ( )x xΛ
 (c) ′ = −ϕ ϕ( ) ( )x xΛ
 (d) ′ = −ϕ ϕ( ) ( )x xΛ 1

 53. The Klein-Gordon equation was deemed incorrect because it leads to 
solutions for the energy as

 (a) E p m= ± +2 2

 (b) E p m= − +2 2

 (c) E p m= +2 2

 (d) E p m= +2 2

 54. The probability density of the Klein-Gordon equation is given by

 (a) ρ ϕ ϕ= *

 (b) ρ ϕ ϕ ϕ ϕ
= −

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

i
t t

*
*

 (c) ρ ϕ ϕ ϕ ϕ
=

∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟

i
t t

*
*

 (d) ρ ϕ ϕ= − *

 55. Second quantization

 (a) Imposes equal time commutation relations on the fi elds and their 
conjugate momenta

 (b) Imposes no time commutation relations on the fi elds and their 
conjugate momenta

 (c) Promotes time to an operator

 (d) Imposes equal time commutation relations on the fi elds at the same 
spacetime point
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 56. Particles can be created and destroyed at relativistic energies. In particular

 (a) High energy processes tend to create antiparticles where E = mc2.

 (b) To create an antiparticle, we need the rest mass energy E = mc2.

 (c) To create a particle, we need the rest mass energy E = mc2.

 (d) To create a particle, we need twice the rest mass energy E = mc2 and 
this creates a particle–antiparticle pair.

 57. The creation and annihilation operators of the harmonic oscillator 
satisfy

 (a) [ ˆ, ˆ ]†a a i=
 (b) [ ˆ, ˆ ]†a a = 1

 (c) [ ˆ, ˆ ]†a a = −1

 (d) [ ˆ, ˆ ]†a a i= −
 58. The number operator is defi ned by

 (a) ˆ ˆ ˆ†N aa=
 (b) ˆ ˆ ˆ†N a a=
 (c) ˆ ˆ ˆ†N a a= −

 59. The number operator satisfi es

 (a) [ ˆ , ˆ ] ˆ† †N a a=
 (b) [ ˆ , ˆ ] ˆ† †N a a= −
 (c) [ ˆ , ˆ] ˆ†N a a=
 (d) [ ˆ , ˆ] ˆN a a=

 60. For a scalar fi eld j, the equal time commutation relation that is satisfi ed is

 (a) ˆ ( ), ˆ ( )ϕ πx y[ ] = 0

 (b) ˆ ( ), ˆ ( ) ( )ϕ π δx y i x y[ ] = −� �

 (c) ˆ ( ), ˆ ( )ϕ πx y i[ ] =

 (d) [ ˆ ( ), ˆ ( )] ( )ϕ π δx y i x y= − −� �

 61. The Fourier expansion of a fi eld is given by  

 ϕ
π

( )
( )

( ) ( )†x
d p

p
a p e a p eipx ipx= +⎡⎣ ⎤⎦

−∫
3

3 02 2

� �
 

  Find the conjugate momentum.
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 62. In a fi eld theory, the creation and annihilation operators satisfy

 (a) a p a p p p( ), ( ) ( )†� � � �′⎡⎣ ⎤⎦ = − ′δ

 (b) a p a p( ), ( )†� � ′⎡⎣ ⎤⎦ = 0

 (c) a p a p i( ), ( )†� � ′⎡⎣ ⎤⎦ =

 (d) a p a p p p( ), ( )†
,

� � ′⎡⎣ ⎤⎦ = ′δ
 63. To calculate the energy of the vacuum, we fi nd

 (a) 0 0

 (b) 0 0ˆ ˆ†a a+
 (c) It cannot be calculated

 (d) 0 0Ĥ

 64. The normal product is

 (a) : ˆ( ) ˆ ( ) : ˆ ( ) ˆ( )† †a k a k a k a k
� � � �

=

 (b) : ˆ( ) ˆ ( ) : ˆ( ) ˆ ( )† †a k a k a k a k
� � � �

=

 (c) : ˆ( ) ˆ ( ) : ˆ ( ) ˆ( )† †a k a k a k a k
� � � �

= −

 (d) : ˆ( ) ˆ ( ) : ˆ( ) ˆ ( )† †a k a k a k a k
� � � �

= −
 65. The time ordered product of two fi elds is

 (a) T t t t t t t( ( ) ( )) ( ) ( ) ( ) ( )ϕ ψ ψ ϕ ϕ ψ1 2 2 1 1 2= −

 (b) T t t
t t t t

t t
( ( ) ( ))

( ) ( )

( ) ( )
ϕ ψ

ϕ ψ
ψ ϕ1 2

1 2 1 2

2 1

=
>if

if t t2 1>
⎧
⎨
⎩

 (c) T t t
t t t t

t t
( ( ) ( ))

( ) ( )

( ) ( )
ϕ ψ

ψ ϕ
ϕ ψ1 2

2 1 1 2

1 2

=
>if

if t t2 1>
⎧
⎨
⎩

 66. When including particles and antiparticles

 (a) We only include annihilation operators for antiparticles. 

 (b) We only include creation operators for particles.

 (c) To get the fi eld operator, we sum up negative frequency parts for 
particles together with positive frequency parts for antiparticles.

 (d) To get the fi eld operator, we sum up positive frequency parts for 
particles together with negative frequency parts for antiparticles.
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 67. The creation and annihilation operators for antiparticles satisfy

 (a) ˆ( ), ˆ ( ) ( )†b k b k k k
� � � �

′⎡⎣ ⎤⎦ = − ′δ

 (b) ˆ( ), ˆ ( ) ( )†b k b k k k
� � � �

′⎡⎣ ⎤⎦ = − − ′δ

 (c) ˆ( ), ˆ ( ) ( )†b k a k k k
� � � �

′⎡⎣ ⎤⎦ = − ′δ , where ˆ†a creates particles

 (d) ˆ( ), ˆ ( )†b k b k
� �

′⎡⎣ ⎤⎦ = 0

 68. For a charged fi eld, the charge operator can be written as

 (a) ˆ ˆ ( ) ˆ( ) ˆ ( ) ˆ( ) ˆ† †Q d k k a k a k b k b k N= +⎡⎣ ⎤⎦ =∫ 3
� � � � �

ˆ̂ ˆ
ˆ

a b
N−

 (b) ˆ ˆ ( ) ˆ( ) ˆ ( ) ˆ( ) ˆ† †
ˆQ d k a k a k b k b k Na= +⎡⎣ ⎤⎦ =∫ 3

� � � �
−− ˆ

ˆN
b

 (c) ˆ ˆ ( ) ˆ( ) ˆ ( ) ˆ( ) ˆ† †
ˆQ d k k a k a k b k b k N= +⎡⎣ ⎤⎦ =∫ 3

� � � �
aa b

N− ˆ
ˆ

 (d) ˆ ˆ ( ) ˆ( ) ˆ ( ) ˆ( ) ˆ† †
ˆQ d k a k a k b k b k Na= −⎡⎣ ⎤⎦ =∫ 3

� � � �
−− ˆ

ˆN
b

 69. Find the energy for the vacuum using 

ˆ ˆ ˆ ( ) ˆ ( ) ˆ( )†H H d k d k N k d k a k a kR k k= − = =∫ ∫3 3 3ω ω
� � �

∫∫
 70. State vectors in the interaction picture evolve in time according to

 (a) The interaction part of the Hamiltonian

 (b) The free part of the Hamiltonian

 (c) Are stationary in time

 (d) The full Hamiltonian

 71. Interaction picture and Schrödinger picture operators are related by

 (a) A e A eI
iH t

S
iH tI= −0

 (b) A e A eI
iH t

S
iH tI I= −

 (c) A e A eI
iH t

S
iH t= −0 0

 (d) A e A eI
iH t

S
iH t= − −0 0

 72. In the interaction picture, the time evolution of operators is determined by

 (a) The full Hamiltonian

 (b) The interaction part of the Hamiltonian

 (c) The free part of the Hamiltonian

 (d) They are stationary in time
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 73. In quantum fi eld theory, scattering

 (a) Results from the exchange of a force-carrying boson

 (b) Results from the exchange of a force-carrying fermion

 74. In a Feynman diagram, if the arrow for a particle points against the 
direction of time fl ow

 (a) It is a force-carrying boson

 (b) It is an incoming or outgoing antiparticle

 (c) It is an incoming antiparticle or an outgoing particle

 (d) It is an incoming or outgoing particle

 75. In a Feynman diagram, conservation of momentum at a vertex

 (a) Is enforced with a Dirac delta function δ ( )Σp qi −
 (b) Momentum is not conserved

 (c) Is enforced at the corresponding absorption vertex

 (d) 4-momentum is not conserved

 76. At each vertex in a Feynman diagram

 (a) Add two factors of the coupling constant g

 (b) Take the product of two factors of the coupling constant g

 (c) Include one factor of the coupling constant g

 (d) Add one factor of the inverse coupling constant ig−1

 77. A propagator is associated with

 (a) An internal line in a Feynman diagram

 (b) Outgoing lines in a Feynman diagram

 (c) The coupling constant

 78. The lifetime of a particle

 (a) Is proportional to the amplitude squared of a process

 (b) Is proportional to the magnitude of a process

 (c) Is proportional to the inverse of the amplitude squared of a process

 (d) Cannot be estimated by perturbation theory

 79. The rate of decay of a process

 (a) Is proportional to the amplitude squared of the process

 (b) Cannot be calculated using perturbative expansions

 (c) Is proportional to the inverse of the amplitude squared of the process
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 80. Feynman diagrams can be best described as

 (a) A trick

 (b) Are a symbolic representation of a perturbative expansion 

 (c) Are exact calculations

 (d) Can be used to exactly describe a process to second order

 81. In quantum electrodynamics, the electromagnetic force results from

 (a) The exchange of photons

 (b) The exchange of photons and W particles

 (c) The exchange of photons, W particles, and Z particles

 (d) The fi eld only

 82. The 4-momentum and polarization vector of a photon state satisfy

 (a) pμ
με = −1

 (b) pμ
με = 1

 (c) p gμ
ν

μ
νε =

 (d) pμ
με = 0

 83. The gauge group of electromagnetism is

 (a) SU( )3

 (b) SU U( ) ( )2 1⊗
 (c) SU( )2

 (d) U( )1

 84. The gauge group of electroweak theory is

 (a) SU( )3

 (b) SU U( ) ( )2 1⊗
 (c) SU( )2

 (d) U( )1

 85. A Dirac particle is interacting with the electromagnetic fi eld. The 
interaction Lagrangian is best written as

 (a) L q Aint = − ψγ ψμ
μ

 (b) L Aint = −ψγ ψμ
μ

 (c) L q Aint = − ψψ μ

 (d) L m Aint = 2ψψ
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 86. A global U(1) transformation can be written as

 (a) ψ ψθ( ) ( )( )x e xi x→
 (b) ψ ψθ( ) ( )x e xi→
 (c) ψ ψθ( ) ( )( )x e xi x→ −

 (d) ψ ψ θθ
μ( ) ( )x e xi→ + ∂

 87. Consider a Feynman diagram for an electromagnetic process. An outgoing 
particle is represented by

 (a) u p s( , )

 (b) u p s( , )

 (c) −u p s( , )

 (d) u p s( , )−
 88. In a Feynman diagram for a QED process, at each vertex we add a factor of

 (a) ge = 4πα
 (b) −igeγ

μ

 (c) igeγ
μ

 (d) igeγ
0

 89. For an internal line in a Feynman diagram in QED, an electron or positron 
is associated with a propagator of the form

 (a) 
i q

q m

γ μ
μ

2 2−

 (b) 
im

q m2 2−

 (c) i

q m

γ μ

/ −2 2

 (d) 
i q m

q m

( )γ μ
μ +

−2 2

 90. Spontaneous symmetry breaking can be best described as 

 (a) Setting the minimum potential energy to the coupling constant

 (b) Reducing the minimum potential energy by the ground state energy

 (c) Shifting the minimum of the potential energy such that the energy of 
the ground state is nonzero
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 91. Consider scalar fi elds. A mass term in the Lagrangian can be recognized

 (a) Because it is quadratic in the fi elds

 (b) Because it is quartic in the fi elds

 (c) It is linear

 (d) It is real

 92. A covariant derivative

 (a) Ensures that the Euler-Lagrange equations are satisfi ed

 (b) Ensures the Lagrangian is invariant under a Lorentz transformation

 (c) Is not used in quantum electrodynamics

 (d) Can only be used in weak theory

 93. Let ψ
ψ
ψ= ( )R

L
 and compute 1

2 51( )− γ ψ .

 94. The adjoint spinor is given by

 (a) ψ †

 (b) ψ ψ γ= † 0

 (c) ψ γ ψ= 0

 (d) γ 0

 95. For a spinor, the Lagrangian can be separated into left- and right-handed 
kinetic parts as

 (a) L i iL L R R= ∂ + ∂ψ γ ψ ψ γ ψμ
μ

μ
μ

 (b) L i iL L R R= ∂ − ∂ψ γ ψ ψ γ ψμ
μ

μ
μ

 (c) L i iL L R= ∂ + +ψ γ ψ γ ψμ
μ ( )1 5

 (d) L i iL L R R= − ∂ + + ∂ψ γ γ ψ ψ γ γ ψμ
μ

μ
μ( ) ( )1 15 5

 96. The isospin of the neutrino is

 (a) 0

 (b) Iν
3 3

2= +
 (c) Iν

3 1
2= +

 (d) Iν
3 1

2= −

 97. A right-handed electron

 (a) Has isospin +1/2

 (b) Has isospin −1/2
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 (c) Has isospin +3/2

 (d) Has 0 isospin

 98. In electroweak theory, conservation of hypercharge corresponds with

 (a) A symmetry describing three gauge fi elds, SU W W W( ) : , ,2 1 2 3
μ μ μ

 (b) A single gauge fi eld U B( ) :1 μ

 (c) A symmetry describing three gauge fi elds, SU W W Z( ) : , ,2 μ μ
+ −

 99. The SU(2) transformation of electroweak theory can be written as

 (a) U i j j( ) exp( / )α α τ= 2 , where the generators are the Pauli matrices.

 (b) U i j j( ) exp( / )α α λ= 2 , where l
j
 are the Gell-Mann matrices.

 (c) There is no SU(2) transformation that leaves electroweak theory 
invariant.

 100. The Weinberg angle

 (a) Mixes SU(2) and SU(3) symmetries in quantum chromodynamics

 (b) Gives a scattering cross section

 (c) Mixes the gauge fi elds in electroweak theory giving rise to the massless 
electromagnetic fi eld and the massive Z vector boson
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 Chapter 2

 1. 
d x

dt
x

m

2

2
2+ = −ω α

 2. (a) ∂ ∂ − =
∂
∂μ

μϕ ϕ
ϕ

m
V2

  (b) π ϕ= �

  (c) H d x m V= + ∇ + +⎛
⎝⎜

⎞
⎠⎟∫ 3 2 2 2 21

2

1

2

1

2
π ϕ ϕ ϕ( ) ( )

 3. J μ μϕ= ∂

 4. Each field separately satisfies a Klein-Gordon equation, that is, ∂ ∂ +μ
μϕ

m m2 20 0ϕ ϕ ϕ= ∂ ∂ + =, .† †
μ

μ To get this result apply Eq. (2.14) to the 
Lagrangian Eq. (2.37).

 5. Q i d x
t t

=
∂
∂

−
∂
∂

⎛
⎝⎜

⎞
⎠⎟∫ 3 ϕ ϕ ϕ ϕ†

†

 6. The action is invariant under that transformation.

Chapter 3
 1. U i x= +cos sinα σ α

 2. 2δij

 3. 1

 4. Try
�
σ σ σ σ2 2 2 2= + +x y z

 5. K ix = −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 6. K iy = −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0
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 7. No, because the algebra among the generators requires the introduction 
of the angular momentum operators. Therefore, Lorentz transformations 
together with rotations form a group. 

Chapter 4
 1. c 4. a

 2. a 5. c

 3. d

Chapter 5

 1. i
x

m
∂
∂

+
ψ γ ψμ

μ

 2. 0

 3. v
k

m
u

k

=
⋅
+

� �
σ

ω

 4. ψ ( )0 2= ⎛
⎝⎜

⎞
⎠⎟

m
u

v

 5. −
−

⎛
⎝⎜

⎞
⎠⎟

i

2

0

0
1

1

σ
σ

 6. γ ψ ψμ
μ μ( )i qA m∂ − − = 0

Chapter 6
 1. 0

 2. n k a k n k( ) ˆ ( ) ( )†
� � �

+[ ]1

 3. 0

 4. [ , ]H Q = 0
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Chapter 7
 1. −

− −
i

g

p p mB

2

2 4
2 2( )

 2. 
1

2g

 3. b

 4. c

 5. a

 6. α = 1 137/

Chapter 8
 1. iqFμν

 2. a

 3. − ′
− ′

′g v k v k
g

p p
u p u pe

2
2

[ ( ) ( )]
( )

( ) ( )γ γμ μν μ

 4. c

 5. a

Chapter 9
 1. It describes a massive particle. Use cosh

!
( )ax

a x a x
O x= + + +1

2 4

2 2 4 4
6 .

 2. b

 3. L = −∂ ∂ − ∂ ∂ − − +
⎛
⎝⎜

⎞
⎠⎟μ

μ
μ

μψ ψ ψ θ θ λ ψ μ
λ

ψ μ
λ

2 4
2 4

24
2

 4. 
μ ψ

2

2

 5. −
λ ψ
4

4
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Chapter 10
 1. b 5. b

 2. a 6. b

 3. d 7. a

 4. b 8. a

Chapter 11
 1. b 4. c

 2. a 5. b

 3. a 6. d

Chapter 12

 1. 0  
1

2

1

2

1

2
2 2

3p W
dW

dx
+ + σ

 2. i A Fn
n n

nσ χ∂ = ∂ ∂ = =0 0 0

 3. S An n m
nε χσ σ ε= ∂2

 4. Q d x Aa m a
m= ∂∫2 3 0( )χσ σ

 5. 0. The states are eigenstates of momentum, so that P i p iμ μ= . We have 

  
i P i p Tr p n n

n n

S

i

S
B F

B F

( ) [( ) ] ( )− = − = − =

⇒ =

∑ 1 1 02 2μ μ μ
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Final Exam
 1. This is the Klein-Gordon equation 

∂
∂

− ∇ + =
2

2
2 2 0

ϕ ϕ ϕ
t

m .

 2. There is no conserved quantity, Q = 0.

 3. ∂ + =μ
μν νF m A2 0

 4. ∂ =μ
μA 0

 5. The j 3 term must be dropped, so L = − +
1

2 2 24

2
2

4
4∂ ϕ ∂μ

μϕ ϕ ρ ϕm
.

 6. 4gmn

 7. 0

 8. ∂ ∂ = ∂μ
μ 2

 9. c

 10. 0

 11. 2ψ R

 12. d

 13. c

 14. a

 15. c

 16. a

 17. d

 18. c

 19. b 

 20. a

 21. c

 22. a

 23. d

 24. a

 25. b

 26. d

 27. a

 28. b

 29. d

 30. a

 31. c

 32. a

 33. b

 34. a

 35. c

 36. a

 37. d

 38. d

 39. a

 40. b

 41. d

 42. a

 43. b

 44. a

 45. c

 46. c

 47. a

 48. b

 49. a

 50. a

 51. b

 52. d

 53. a

 54. c

 55. a

 56. d

 57. b

 58. b

 59. a

 60. b
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 61. i
d p p

a p e a p eipx ipx
3

3

0

2 2( )
( ) ( )†

π
� �−⎡⎣ ⎤⎦

−∫

 62. a

 63. d

 64. a

 65. b

 66. d

 67. a

 68. b

 69. 0

 70. b

 71. c

 72. c

 73. a

 74. b

 75. a

 76. c

 77. a

 78. c

 79. a

 80. b

 81. a

 82. d

 83. d

 84. b

 85. a

 86. b

 87. a

 88. c 

 89. d

 90. c

 91. a

 92. b

 93. ψ L

 94. b

 95. a

 96. c

 97. d

 98. b

 99. a

 100. c
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