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S U M M A R Y
Alfvén waves propagate in electrically conducting fluids in the presence of a magnetic field.
Their reflection properties depend on the ratio between the kinematic viscosity and the mag-
netic diffusivity of the fluid, also known as the magnetic Prandtl number Pm. In the special
case, Pm = 1, there is no reflection on an insulating, no-slip boundary, and the incoming wave
energy is entirely dissipated in the boundary layer.

We investigate the consequences of this remarkable behaviour for the numerical modelling
of torsional Alfvén waves (also known as torsional oscillations), which represent a special class
of Alfvén waves, in rapidly rotating spherical shells. They consist of geostrophic motions and
are thought to exist in the fluid cores of planets with internal magnetic field. In the geophysical
limit Pm � 1, these waves are reflected at the core equator, but they are entirely absorbed for
Pm = 1. Our numerical calculations show that the reflection coefficient at the equator of these
waves remains below 0.2 for Pm ≥ 0.3, which is the range of values for which geodynamo
numerical models operate. As a result, geodynamo models with no-slip boundary conditions
cannot exhibit torsional oscillation normal modes.

Key words: Numerical solutions; Dynamo: theories and simulations; Rapid time variations;
Core, outer-core and inner-core; Planetary interiors.

1 I N T RO D U C T I O N

Hannes Alfvén first showed the theoretical existence, in an invis-
cid fluid of infinite electrical conductivity, of hydromagnetic waves
that couple fluid motion and magnetic field (Alfvén 1942). The
propagation of torsional Alfvén waves in the Earth’s fluid core
was, thereafter, predicted by Braginsky (1970). Such waves arise in
rapidly rotating spheres or spherical shells in the presence of a mag-
netic field. In torsional Alfvén waves, the motions are geostrophic
and consist in the rotation ωg(s) of nested cylinders centred on the
rotation axis. They, thus, depend only on the distance s to the rota-
tion axis. The period of the fundamental modes of torsional Alvén
waves in the Earth’s fluid core was first estimated to be about 60 yr.
This timescale was inferred from the analysis of the decadal length
of day changes since the first half of the 19th century (Jordi et al.
1994) and of the geomagnetic secular variation after 1900 (Bragin-
sky 1984). With hindsight, these time-series were not long enough
to show convincingly variations with 60 yr periodicity. Torsional
waves with much shorter periods have now been extracted from
time-series of core surface flows for the time interval 1955–1985
(Gillet et al. 2010). If this discovery is confirmed, the period of the
fundamental modes is of the order of 6 yr and, as such, is much
shorter than initially calculated.

Several authors have searched for torsional Alfvén waves in
geodynamo simulations. Using stress-free boundary conditions,

Dumberry & Bloxham (2003) and Busse & Simitev (2005) illus-
trated some parts of the torsional wave mechanism. Dumberry &
Bloxham (2003) found that the whole length of the geostrophic
cylinders accelerates azimuthally as if they were rigid. The inertial
forces, in their simulation, are however, so influential that they dom-
inate the Lorentz forces. Torsional Alfvén waves (TAW) have finally
been detected in a set of numerical simulations of the geodynamo
with no-slip boundary conditions, for 0.5 ≤ Pm ≤ 10, by Wicht &
Christensen (2010) (the magnetic Prandtl number Pm is the ratio
of kinematic viscosity over magnetic diffusivity). In both the geo-
physical (Pm ∼ 10−5) and the numerical studies, there seems to be
no reflection of the TAW upon their arrival at the equator. However,
experimental studies in liquid metals have shown resonance effects
on Alfvén normal modes (Jameson 1964) as well as reflection of
wave packets (Alboussière et al. 2011).

In this paper, we elaborate on the remark that reflection of Alfvén
waves is controlled not only by the boundary condition, but also by
the magnetic Prandtl number of the fluid in which they propagate
(see Jameson 1961, p. 23,24). In the next section, we discuss the gov-
erning equations for 1-D Alfvén waves and the associated boundary
conditions for a solid and electrically insulating wall. We remark that
for Pm = 1 all the energy of the incident Alfvén wave is dissipated
in a boundary layer, resulting in no reflected wave. In the follow-
ing section, we change geometry to further emphasize our point
and briefly present a direct numerical simulation of propagation
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Reflection of Alfvén waves 509

and reflection of Alfvén wave in a non-rotating spherical shell. That
introduces the section devoted to the geophysical application, where
we investigate TAW in the Earth’s core, modelled as a rapidly ro-
tating spherical shell, calculating the energy loss on reflection at
the Equator as a function of Pm. Finally, we discuss the implica-
tions concerning the ability of geodynamo simulations to produce
torsional eigenmodes and waves which are expected in the Earth’s
core.

2 R E F L E C T I O N O F O N E - D I M E N S I O NA L
A L F V É N WAV E S

We introduce the problem through the example of Alfvén waves,
transverse to a uniform magnetic field in an homogeneous and
electrically conducting fluid, hitting a solid wall perpendicular to
the imposed magnetic field (Roberts 1967). The imposed uniform
magnetic field B0 is along the x-axis, whereas the induced magnetic
field b(x, t) and the velocity field u(x, t) are transverse to this field,
along y. Assuming invariance along y- and z-axes, the problem
reduce to a 1-D problem, u and b depending only on x. Projecting
the Navier–Stokes equation and the induction equation on the y
direction (on which the pressure gradient and the non-linear terms
do not contribute), one obtains the following equations:

∂t u = B0

μ0ρ
∂x b + ν∂xx u, (1)

∂t b = B0∂x u + 1

μ0σ
∂xx b, (2)

where μ0 is the magnetic permeability, ρ is the fluid density, ν the
kinematic viscosity and σ the electrical conductivity.

2.1 Elsasser variables

Introducing the two Elsasser variables h± = u ± b/
√

μ0ρ, the
equation of momentum (1) and the equation of magnetic induction
(2) can be combined into

∂t h± ∓ VA∂x h± − η + ν

2
∂xx h± = ν − η

2
∂xx h∓, (3)

where VA = B0/
√

μ0ρ is the Alfvén wave speed, and η = (μ0σ )−1

is the magnetic diffusivity. It is already apparent that when ν = η,
the right-hand side of the previous equation vanishes, in which case
h+ and h− are fully decoupled. One can also show that h− travels in
the direction of the imposed magnetic field, whereas h+ travels in
the opposite direction.

Introducing a length scale L and the timescale L/V A, the previous
equations take the following non-dimensional form:

∂t h± ∓ ∂x h± − 1

S
∂xx h± = 1

S

Pm − 1

Pm + 1
∂xx h∓, (4)

where the Lundquist number S and the magnetic Prandtl number
Pm are defined as

S = 2VA L

η + ν
Pm = ν

η
.

The propagation of Alfvén waves requires that the dissipation is
small enough, which is ensured by S 	 1.

The fact that (Pm − 1)/(Pm + 1) = −(Pm−1 − 1)/(Pm−1 +
1) establishes a fundamental symmetry of these equations: when
changing Pm into Pm−1, only the sign of the coupling term (right-
hand side of eq. 4) changes.

2.2 Physical boundary conditions and reflection
of Alfvén waves

These equations must be completed by boundary conditions. We
assume that the wall is electrically insulating, and that the fluid ve-
locity vanishes at the solid boundary (no-slip boundary condition),
which translate to b = 0 and u = 0, leading to h± = 0.

For Pm = 1 the equations for h+ and h− are fully decoupled,
regardless of the value of S

∂t h± = ±∂x h± + 1

S
∂xx h±. (5)

In addition, for an insulating solid wall, the boundary condition
h± = 0 does not couple h+ and h− either. As a result, reflection is not
allowed at an insulating boundary when Pm = 1, because reflection
requires change of travelling direction, and thus transformation of
h+ into h− and vice versa. The energy carried by the wave has to be
dissipated in the boundary layer.

For Pm 
= 1 the equations are coupled: for very small diffusivities
(that is large Lundquist number S), the coupling will be effective
only in a thin boundary layer. In addition the coupling will be
more efficient as Pm is further from 1. This gives a mechanism
for reflection of Alfvén waves on an insulating boundary when
Pm 
= 1. Before giving a numerical illustration, it is instructive to
consider the boundary conditions in the two limits Pm = 0 and
Pm = ∞, with S 	 1 (dissipationless interior).

In the limit Pm = 0, there is no viscous term and the boundary
condition, at the wall x = x0, reduces to

b(x0, t) = 0 ⇒ h+(x0, t) = h−(x0, t). (6)

There is perfect reflection. The incident (+) and reflected (−) waves
have equal velocities and opposite magnetic fields. This also corre-
sponds to a stress-free boundary condition for the velocity field in
combination with an insulating wall (infinitely small vorticity sheet
at the wall), leading to perfect reflection regardless of the value
of Pm used in eq. (4). In this case the boundary condition for the
velocity field is ∂xu = 0, which translates into ∂x(h+ + h−) = 0 and
h+ − h− = 0, effectively coupling h+ and h−.

In the limit Pm = ∞, the boundary condition, at the wall x = x0,
reduces instead to

u(x0, t) = 0 ⇒ h+(x0, t) = −h−(x0, t). (7)

The incident and reflected waves have opposite velocities and equal
magnetic fields. This also corresponds to a no-slip boundary condi-
tion for the velocity field in combination with a perfectly conducting
wall (infinitely small current sheet at the wall), leading to perfect
reflection regardless of the value of Pm used in eq. (4). In this case,
the boundary condition for the magnetic field is ∂xb = 0, which
couples h+ and h−.

Another combination of boundary conditions inhibits reflection
for Pm = 1: for a stress-free (∂xu = 0) and perfectly conducting wall
(∂xb = 0), which translates into ∂xh+ = 0 and ∂xh− = 0, the fields h+
and h− are decoupled, as for a no-slip insulating wall. Note finally
that a wall with finite conductivity will allow some weak reflection,
as illustrated by Fig. 4(h).

2.3 Numerical simulations

We have performed a numerical simulation in a channel 0 ≤ x ≤
x0 with a 1-D finite difference scheme. The Lundquist number is
chosen large enough so that dissipation can be neglected in the inte-
rior. The boundary conditions were set to be electrically insulating
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510 N. Schaeffer et al.

Figure 1. Reflection coefficient for a 1-D Alfvén wave packet hitting an insulating boundary with normal incidence, as a function of Pm and for different
magnetic Lundquist numbers Lu = V aL/η. The theoretical value for plane waves R(Pm) = (1 − √

Pm)/(1 + √
Pm) fits the numerical simulation results

perfectly.

and no-slip. The grid is refined next to the boundaries, to have at
least 4 points in each boundary layer, which are Hartmann layers of
thickness δ = √

νη/VA (see Appendix A).
From the simulation of the travelling wave, we compute the trans-

mission coefficient as the ratio of the velocity amplitude of the re-
flected and incident waves for different values of Pm and S. The
results are reported on Fig. 1.

As expected, there is full dissipation for Pm = 1 and energy con-
servation for Pm 	 1 or Pm � 1. Furthermore, the reflection co-
efficient R is independent of S, and exhibits the expected symmetry
R(Pm−1) = −R(Pm). The measured values of R match perfectly the
theoretical reflection coefficient R(Pm) = (1−√

Pm)/(1+√
Pm)

derived for plane waves, because R depends neither on the pulsation
ω, nor on the wavenumber k (see Appendix A).

3 R E F L E C T I O N O F A L O C A L I Z E D
A L F V É N WAV E PA C K E T O N
A S P H E R I C A L B O U N DA RY

The peculiar case where no reflection occurs is not specific to the
planar, 1-D ideal experiment. Here, we run an axisymmetric sim-
ulation in a spherical shell permeated by a non-uniform magnetic
field, without global rotation. The imposed magnetic field is the
same as in Jault (2008), and is represented by the dashed field lines
of Fig. 2. Contrary to the simplest case of the previous section, it
is a non-uniform magnetic field, which is not perpendicular to the

boundaries. The observed behaviour of Alfvén wave packets hitting
the curved boundaries should therefore apply to many systems.

The numerical pseudo-spectral code is the one used in Gillet
et al. (2011), but restrained to axisymmetry. It uses the SHTns
library (Schaeffer 2012) for spherical harmonic expansion (Leg-
endre polynomials) in the latitudinal direction, and second-order
finite differences in radius with many points concentrated near the
boundaries. It time steps both induction and momentum equation in
the sphercial shell using a semi-implicit Crank–Nicholson scheme
for the diffusive terms, whereas the coupling and (negligible) non-
linear terms are handled by an Adams–Bashforth scheme (second
order in time). The number of radial gridpoints is set to 500 and the
maximum degree of Legendre polynomials to 120.

The Alfvén wave packets are generated mechanically by spinning
the conducting inner core for a very short duration (compared to
the Alfvén propagation time). Since the imposed magnetic field
strength is not uniform, the wave front deforms as it propagates
along the field lines. When the wave packet hits the outer insulating
spherical shell, it does reflect and propagates back towards the
inner shell for Pm = 0.1 and Pm = 10 but there is no reflection for
Pm = 1. This is illustrated by the snapshots of Fig. 2.

4 R E F L E C T I O N O F T O R S I O NA L
A L F V É N WAV E S

Finding evidence of propagation of TAW in the Earth’s fluid core
may open a window on the core interior. Properties of TAW in the

C© 2012 The Authors, GJI, 191, 508–516
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Reflection of Alfvén waves 511

Figure 2. Snapshot of the azimuthal velocity component of Alfvén waves propagating in a non-rotating spherical shell. The dashed-lines are the imposed
magnetic field lines. From left-hand panel to right-hand panel: Panel (a) the incoming waves travelling from the inner shell to the outer shell along magnetic
field lines; Panel (b) case Pm = 0.1, S = 1800 showing reflection with the same sign; Panel (c) case Pm = 1, S = 1000 with total absorption at the wall; Panel
(d) case Pm = 10, S = 1800 showing reflection with opposite sign.

Earth’s core have, thus, been thoroughly investigated after the initial
study of Braginsky (1970). They have been recently reviewed by
Jault (2003) and Roberts & Aurnou (2011).

4.1 Model of torsional Alfvén waves

To model TAW, magnetic diffusion and viscous dissipation are ne-
glected in the interior of the fluid. The Earth’s fluid core is modelled
as a spherical shell of inner radius ri, outer radius ro and rotation
rate 	. Rapid rotation introduces an asymmetry between the veloc-
ity and magnetic fields and makes the velocity geostrophic, provided
that λ ≡ V A/	ro � 1 (Jault 2008). Note that the Lehnert number λ

is about 10−4 in the Earth’s core. Geostrophic velocity in a spherical
shell consists of the rotation ωg(s) of nested cylinders centred on
the rotation axis. It, thus, depends only on the distance s from the
rotation axis (in ro units). A 1-D wave equation for the geostrophic
velocity sωg(s) is obtained after elimination of the magnetic field b

L
∂2ωg(s)

∂t2
= ∂

∂s

[
LṼ 2

A

∂ωg(s)

∂s

]
, (8)

with L = s3H(s) and H (s) = √
1 − s2 the half-height of the

geostrophic cylinders, and Ṽ 2
A involves only the z-average of the

squared s-component of the imposed magnetic field. Braginsky
(1970) derived (8) rigorously in the geophysical case for which
the viscous Ekman layer is thin compared to the magnetic diffusion
layer located at the top and bottom rims of the geostrophic cylinders.
This condition amounts to Pmλ � 1. Then, the velocity remains
geostrophic in the magnetic diffusion layer. We have written the eq.
(8) in its simplest form, when the imposed magnetic field is ax-
isymmetric, the mantle is insulating and Ekman friction at the rims
of the geostrophic cylinders is neglected. The eq. (8) needs to be
completed by two boundary conditions, which can be derived when
either Pm � 1 or Pm 	 1.

Interestingly, the eq. (8) may be valid in the limit Pm � 1 but also
in the limit Pm 	 1 (provided Pmλ � 1). In the specific case Pm �
1, the appropriate boundary condition on the geostrophic velocity at
the equator (on the inner edge of the Hartmann boundary layer) can
be inferred from the boundary condition on the magnetic field. For
an insulating outer sphere, it yields ∂ sωg|s=1 = 0 which corresponds
to a stress-free boundary, as in the 1-D wave case with Pm → 0. In
the case Pm 	 1, the appropriate boundary condition is ωg|s=1 =
0 as the angular velocity of the outermost geostrophic cylinder is

immediately synchronized with the rotation of the solid outer sphere
in the course of a spin-up experiment. This is equivalent to a no-slip
boundary, as for the 1-D wave case with Pm → ∞.

4.2 Normal modes

Assuming that ωg varies with time as eict, the eq. (8) can be trans-
formed into a normal mode equation

−c2ωg(s) = 1

L

∂

∂s

[
LṼ 2

A

∂ωg(s)

∂s

]
. (9)

Transmission and reflection of TAW on the geostrophic cylinder
tangent to the inner core set a special problem that we do not address
here. As an intermediate step, we simply illustrate our discussion
with results for the full sphere case, imposing ∂ sωg|s=ε = 0, with
ε � 1 (we have checked the convergence of the numerical results
as ε → 0). It is of interest to write the solution of this equation in
the case c = 0 and ṼA uniform

ωg(s) = 1

2
α1

[
−

√
1 − s2

s2
− log

(√
1 − s2 + 1

)
+ log(s)

]
+ α2.

(10)

A non-zero solution (uniform rotation ωg(s) = α2) exists for the
boundary condition ∂ sωg|s=1 = 0 but not for the condition ωg|s=1 =
0 that applies when Pm 	 1. We are interested in this latter case,
despite its lack of geophysical realism, as contrasting the two bound-
ary conditions sheds light on the nature of the constraint ∂ sωg|s=1 =
0 that has always been used in TAW studies.

In the general case (c 
= 0, non-uniform ṼA), it remains easy
to calculate numerically a solution of (9) for 0 < s < 1. We have
successfully checked our numerical results against the eigenvalues
listed in the table C1 of Roberts & Aurnou (2011), that have been
obtained analytically for ∂ sωg|s=1 = 0 and ṼA = 1. Then, the first
eigenvalues are (0, 5.28, 8.63, 11.87, 15.07, ..), whereas in the case
ṼA = 1 and ωg|s=1 = 0 they are (2.94, 6.35, 9.58, 12.78, 15.95, ..).
In the latter case, we recover our previous observation that 0 is not
an eigenvalue.

In contrast with an often-made statement (Buffett 1998; Jault
2003; Roberts & Aurnou 2011), the study of the case Pm 	 1 shows
that it is not required to have ∂ sωg|s=1 = 0 to obtain solutions with
bounded values of ωg for s ≤ 1. On the other hand, the singularity of
∂ sL at s = 1 implies a singularity of ∂ sωg (which is O((1 − s)−1/2)

C© 2012 The Authors, GJI, 191, 508–516
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512 N. Schaeffer et al.

as s → 1) . That points to significant viscous dissipation once the
viscous term is reintroduced.

When Pm is neither very small nor very large, it is not possible
to separate the interior region (where (9) applies) and the Hartmann
boundary layer.

We can conclude the discussion of normal modes by noting that
the solutions for the two cases Pm � 1 and Pm 	 1 differ in a
significant way at the equator. In both cases, solutions are obtained
which satisfy the appropriate boundary conditions and with bounded
values of ωg for s in the interval [0, 1]. However, reintroducing
dissipation modifies the eigensolutions in the vicinity of the equator
and the eigenvalues in the second case only.

4.3 Numerical experiments

To determine the reflection coefficient of TAW at the equator of the
outer shell, we use a set-up that resembles the Earth’s core. The
code is the same as the one described in Section 3, but this time
with imposed global rotation. The total number of radial points is
typically 1200 and the maximum degree of Legendre polynomials
is set to 360.

For reflection to occur, there must be a non-zero imposed mag-
netic field Bs at the equator. Hence, we set the simplest poten-
tial quadrupolar field (generated from outside the sphere): Bs =
B0s, Bz = 2B0z and Bφ = 0. This ensures a local travelling speed
VA(s) = Bs(s)/

√
μ0ρ that is large near the reflection point (s = 1).

The Lehnert number is small and always set to λ = V A/(	ro) =
5 × 10−4, so that λPm is also small.

The initial velocity field is along the azimutal direction φ and
depends only on the cylindrical radius s: uφ(s) = sωg(s) = u0s
exp ( − (s − s0)2/�2) with s0 = 0.675. We used two different width
� = 0.02 and � = 0.063. This initial velocity field splits into a
TAW packet propagating inwards that we do not consider here, and
another travelling outwards that we carefully follow and we focus
on the reflection of this wave packet at the equator of the outer
shell (s = 1). The Lundquist number S based on the size of the
spherical shell ranges from 6 × 102 to 8 × 104 and the Ekman
number E = ν/	r 2

o and magnetic Ekman number Em = η/	r 2
o

are both always very low and range from 5 × 10−10 to 5 × 10−7

over a wide range of magnetic Prandtl number: from Pm = 10−3 to
Pm = 102.

We measure the extremum of the velocity field in the wave packet
before and after the reflection, ai and ar respectively, at a fixed
radius (s = 0.925 for � = 0.02 and s = 0.75 for � = 0.063), from
which we compute the corresponding reflection coefficient R =
ar/ai, reported in Fig. 3 for an insulating outer shell. We found no
significant dependence with the Lundquist number S or the width
of the initial pulse � (R varies by less than 0.03).

As expected from the discussion of Alfvén waves equations, the
combination Pm = 1, no-slip boundary condition and insulating
wall corresponds to a special case whereby no reflection at all
occurs at the equator (see also Fig. 4g).

However, there are differences with the planar case. First, the
reflection coefficient is not symmetric with respect to Pm = 1, as
expected from our discussion of torsional eigenmodes in spherical
geometry in the previous section. For large Pm there is high dissi-
pation and very little reflection compared to low Pm. Second, the
reflection coefficient is not as large.

Space–time diagrams of the reflection of the wave at the equator
are presented in Fig. 4 for a few representative cases. The highest
reflection coefficient occurs for the stress-free insulating case at

Figure 3. Reflection coefficient for a TAW for insulating and no-slip bound-
ary conditions, as a function of Pm. The Lundquist number is always large
(S > 5000 for Pm ≥ 0.01 and S > 600 otherwise). For reference, the black
curve is the planar Afvén wave reflection coefficient (1−√

Pm)/(
√

Pm+1),
and the red line marks the reflection coefficient for a stress-free boundary
(obtained with Pm = 1 but which is theoretically independent of Pm and
corresponds to a no-slip boundary with Pm → 0).

Pm = 1: from R = 0.86 at S = 1000 to R = 0.88 at S = 1.5 × 104.
In this case (Figs 4a and b) one can also see the amplification of
the velocity field very near the boundary, as the magnetic field must
vanish, doing so by producing the reflected wave, just as in the planar
case. This is not a boundary layer, but simply the superposition of the
incident and reflected wave (see also Appendix A). The Hartmann
boundary layer is too small to be seen on these plots, but we checked
that its size and relative amplitude for velocity and magnetic fields
do match the analytic theory developed in Appendix A.

For Pm = 0.1, the reflected wave carries only 16 per cent of the
energy, the remaining being dissipated in the boundary layer. The
magnetic field changes sign at the reflection, whereas the velocity
keeps the same sign (Figs 4c and d). For Pm = 10, the reflected
energy drops to 3 per cent and the small reflected velocity field has
opposite sign, whereas the magnetic field (barely visible on Fig. 4)
keeps the same sign (Figs 4e and f). During its propagation, the
incoming wave is also much more damped than for Pm = 0.1, even
in the case where S or E have comparable values. This is due to
strong dissipation at the top and bottom boundaries, which increases
as the wave propagates toward the equator (visible in Fig. 4e) for
Pm > 1. This may not be unrelated to the previously discussed
singularity for normal modes in the case Pm > 1. A consequence
of this large dissipation, is the difficulty to clearly identify the
reflected wave, and to properly define a reflection coefficient. The
values reported in Fig. 3 are, thus, not very precise for Pm > 1.

It may also be worth noting that changing the magnetic boundary
from insulating to a thin conducting shell allows weak reflection
for Pm = 1 and no-slip velocity (Fig. 4h), in agreement with the
analysis of the governing equations (Section 2.2).

4.4 Energy dissipation and normal modes

We want to emphasize that when no reflection occurs, the energy
of the wave is dissipated very quickly. However, for liquid metals
(Pm � 1), only a small amount of the wave energy is absorbed in
the event of a reflection, but many successive reflections can lead to
significant dissipation. Using the theoretical reflection coefficient,
we can estimate the timescale of dissipation of an Alfvén wave due

C© 2012 The Authors, GJI, 191, 508–516
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Reflection of Alfvén waves 513

Figure 4. Space–time diagrams of the reflection of a TAW for S � 104 and � = 0.02 recorded in the equatorial plane, near the equator. Top row: stress-free
boundary with Pm = 1 (R = 0.88), (a) the azimuthal angular velocity uφ /s and (b) the azimuthal magnetic field bφ (changing sign). Second row: No-slip
boundary with Pm = 0.1 (R = 0.40), (c) the azimuthal angular velocity uφ /s and (d) the azimuthal magnetic field bφ (changing sign). Third row: No-slip
boundary with Pm = 10 (R = −0.17), (e) the azimuthal angular velocity uφ /s (changing sign) and (f) the azimuthal magnetic field bφ . Bottom row: (g) azimuthal
angular velocity uφ /s for no-slip boundary with Pm = 1 showing no reflection (R = 0) for insulating boundary, (h) and little reflection when the insulator is
replaced by a solid conductive layer.

to its reflections at the boundaries. In the case of an Alfvén wave
turbulence (many wave packets) in a spherical shell of radius L
with homogeneous mean energy e, permeated by a magnetic field
of rms intensity B0, any wave packet will reach the outer insulating
boundary once (on average) in the time interval L/V A. When it
reflects on the boundary, it loses the fraction 1 − R2(Pm) of its
energy, where R(Pm) is the reflection coefficient (in amplitude). We
can then estimate the dissipation rate of energy e due to this process

∂t e ∼ [
R2(Pm) − 1

] B0

L
√

μ0ρ
e. (11)

Hence, the timescale of dissipation at the boundaries

τs = L

VA

1

1 − R2(Pm)
, (12)

which is inversely proportional to the strength of the magnetic field,
and depends on the diffusivities only through Pm.

We can compare this to the dissipation of Alfvén waves of length
scale � in the bulk of the fluid: τ v = 2�2/(η + ν). It appears that the
length scale � where surface and bulk dissipation are comparable is
such that

L/� =
√

S
√

1 − R2. (13)
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Hence, for the Earth’s core with S ∼ 104, and R ∼ 0.9 (the stress-free
value which gives a good approximation of the low Pm value), the
dissipation of Alfvén waves is dominated by the partial absorption
at the boundaries for length scales larger than L/45. For numerical
simulations of the geodynamo with S ∼ 103 ans R ∼ 0.2, we have
L/� ∼ 30.

These timescales are also relevant for torsional normal modes.
In 1-D, normal modes are a superposition of waves propagating in
opposite directions. Hence, if the dissipation of waves is dominated
by their reflection, so will it be for the normal modes. From the
previous estimation of L/� in the Earth’s core, we expect the dissi-
pation of large wavelength TAW (the ones that can be observed) to
be dominated by the effect of reflection. Furthermore, to detect a
normal mode, its dissipation time must be much larger than its pe-
riod T = 2πL(cV A)−1. The pulsation c of the first torsional normal
modes are given in section 4.2 in Alfvén frequency units, and their
dissipation time can be estimated by τ s for the large-scale normal
modes. We define a quality factor for torsional normal modes by

Q = τs

T
= c

2π

1

1 − R2
. (14)

Presence of normal modes requires Q 	 1. Assuming R = 0.9
(stress-free value) in the Earth’s core, we find QE � 0.8 c and for
no-slip numerical simulations of the geodynamo we find Qsim <

0.16 c. Considering the largest modes (with c � 5 to 15), torsional
oscillations could therefore persist in the Earth’s core for a few
Alfvén times, but are completely absent even from the best current
geodynamo simulations.

5 D I S C U S S I O N : I M P L I C AT I O N F O R
N U M E R I C A L G E O DY NA M O M O D E L S
A N D T H E E A RT H - C O R E

We showed that numerical simulations conducted for Pm ∼ 1 can-
not adequately reproduce the boundary conditions for TAW in the
Earth’s core (where Pm � 1). The small reflection coefficient ob-
served for TAW (Fig. 3) means that it is hard to observe TAW
reflection at the equator in numerical simulations of the geodynamo
which currently operate with 0.1 < Pm < 10 (e.g. Takahashi et al.
2008; Sakuraba & Roberts 2009), where the waves are moreover
mixed with thermal convection.

As for possible torsional eigenmodes, it is almost impossible to
observe them with such low reflection coefficients. Unfortunately,
that severely limits the ability of geodynamo simulations to exhibit
torsional oscillation normal modes, because normal modes require
a large reflection coefficient to be observable: their period (of order
L/V A) must be much larger than the energy dissipation time τ s

(see expression 12). A few studies have tried to pin down torsional
eigenmodes (Dumberry & Bloxham 2003; Sakuraba & Roberts
2008; Wicht & Christensen 2010) but even though they report waves
propagating with the appropriate speed, they report neither reflection
of these waves, nor eigenmodes.

Another issue for geodynamo models with very low diffusivities,
is that the part of the energy carried by Alfvén waves (regular or
torsional) is dissipated very quickly (on an Alfvén wave timescale),
so that an Alfvén wave turbulence would be damped much faster,
and the turbulent state may be far from what we would expect in the
Earth’s core.

Changing the boundary condition to stress-free simulates the case
Pm = 0 with a high reflection coefficient (R = 0.88), but still lower
than the planar case. Even though this may still be problematic to

observe eigenmodes, numerical models that use stress-free bound-
aries (e.g. Kuang & Bloxham 1999; Dumberry & Bloxham 2003;
Busse & Simitev 2006; Sreenivasan & Jones 2011) are intrinsi-
cally much more suited for the study of torsional normal modes.
Quasi-geostrophic dynamo models that can compute dynamo mod-
els at very low magnetic Prandtl numbers (Pm < 10−2 in Schaeffer
& Cardin 2006), could also provide an interesting tool to study
torsional oscillations.

In the case of the Earth’s core, a recent study (Gillet et al. 2010)
found no clear evidence for reflection at the equator, although this
has yet to be confirmed. One might want to invoke turbulent vis-
cosity (see the contrasted views of Deleplace & Cardin (2006) and
Buffett & Christensen (2007) in a different context) to explain this
fact, leading to an effective Pm close to 1 and inhibiting reflection
of TAW. This would make numerical models more relevant, but is
rather speculative. A solid conductive layer at the top of the core
can also have a damping effect on the propagation and reflection
of torsional waves, and we plan to investigate these matters in a
forthcoming study.
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A P P E N D I X A : A NA LY T I C A L F V É N
WAV E S O LU T I O N S I N O N E D I M E N S I O N

A1 Plane wave solutions

Following Jameson (1961, p. 15–18), we look for plane wave
solutions of eqs (1) and (2), substituting u = Uei(ωt +kx) and
b = √

μ0ρ Bei(ωt+kx)(
iω + νk2

)
U = VAik B, (A1)

(
iω + ηk2

)
B = VAikU, (A2)

which we can combine into

νη k4 + (
V 2

A + iω(η + ν)
)

k2 − ω2 = 0, (A3)

for which the exact solutions are

k2 = − V 2
A

2νη
(1 + 2iε)

(
1 ±

√
1 + 4ω2νη

V 4
A(1 + 2iε)2

)
, (A4)

where ε is the reciprocal Lundquist number based on the frequency

ε = ω(η + ν)

2V 2
a

. (A5)

In the regime where Alfvén waves do propagate, we have ε � 1
and also ω

√
νη/V 2

A � 1 so we can approximate the square root
by its first-order Taylor expansion, which leads to two solutions
k2

1 and k2
2

k2
1 = ω2

V 2
A

(1 + 2iε)−1 k2
2 = − V 2

A

νη
(1 + 2iε). (A6)

The solutions k = ±k1 = ±ω/V A(1 − iε), correspond to the prop-
agation in both directions of an Alfvén wave at the speed V A and
with attenuation on a length scale V A/(εω). The solutions k = ±k2

� ±i/δ correspond to a Hartmann boundary layer of thickness
δ ≡ √

νη/VA.
Finally, from eqs (A1) and (A2) we know that U and B are related

for each k by

B

U
= ikVa

iω + ηk2
= iω + νk2

ikVa
≡ αk, (A7)

and for the solutions k = ±k1 and k = ±k2, it reduces to

α±k1 � ±1 α±k2 � ±
√

ν

η
= ±

√
Pm. (A8)

This means that for the travelling wave solution, U and B have
always the same amplitude and the same phase when propagating
in the direction opposite to the imposed magnetic field, or opposite
phase when propagating in the same direction. For the boundary
layers, in the limit Pm � 1 they involve the velocity field alone,
whereas for Pm 	 1 they involve only the magnetic field.

A2 Reflection coefficient at an insulating wall

To derive the reflection coefficient, we consider an insulating wall
at x = 0 with an incoming Afvén wave from the x > 0 region
(k = +k1), giving rise to a reflected wave (k = −k1). The boundary
conditions are matched by a boundary layer (k = +k2) localized
near x = 0 (the solution k = −k2 is growing exponentially for x > 0
and has to be rejected for this problem). The solution to this problem
reads

u = eiωt
[
eik1x + Re−ik1x + βeik2x

]
, (A9)

b = eiωt
[
αk1

(
eik1x − Re−ik1x

) + αk2βeik2x
] √

μ0ρ, (A10)

where we have taken into account the fact that α−k1 = −αk1 (see
eq. A8).

The boundary conditions u = 0 and b = 0 at x = 0 lead to

1 + R + β = 0 αk1 (1 − R) + αk2β = 0,

from which we find the amplitude β of the velocity boundary layer
contribution, and the reflection coefficient R of the amplitude of the
velocity component

β = −2

1 + αk2/αk1

R = 1 − αk2/αk1

1 + αk2/αk1

.

We are left to evaluate αk2/αk1 using eqs (A8), which gives
αk2/αk1 = √

ν/η at leading order in ε, and thus

R = 1 − √
Pm

1 + √
Pm

, (A11)

which is independent of ω and V A. In the case Pm = 1, we then have
R = 0 and β = −1 which means that no reflection occurs and that
the amplitude of the incoming wave is canceled by the boundary
layer alone.
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It may be worth emphasizing that, although the boundary layer
has the same thickness δ in the velocity and the magnetic field
components, in the limit Pm → 0, we have β → −2 and αk2β → 0,
so that the boundary layer is apparent only in the velocity field
component (eq. A9), whereas in the limit Pm → ∞, we have β →

0 and αk2β → −2, so that the boundary layer is apparent only in
the magnetic field component (eq. A10).

Finally, we remark that if one sets ν = 0 or η = 0 from the
beginning in eqs (A1) and (A2), the solution corresponding to the
boundary layer does not exist anymore.
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