ON THE CONTINUOUS ABSORPTION COEFFICIENT OF THE NEGATIVE HYDROGEN ION

S. CHANDRASEKHAR Yerkes Observatory *Received June 25, 1945*

ABSTRACT

In this paper it is shown that the continuous absorption coefficient of the negative hydrogen ion is most reliably determined by a formula for the absorption cross-section which involves the matrix element of the momentum operator. A new absorption curve for H^- has been determined which places the maximum at λ 8500 A; at this wave length the atomic absorption coefficient has the value 4.37 \times 10⁻¹⁷ $cm²$.

1. *Introduction*.—In earlier discussions¹ by the writer attention has been drawn to the fact that the continuous absorption coefficient of the negative hydrogen ion, evaluated in terms of the matrix element

$$
\mu = \int \Psi_d^* (r_1 + r_2) \Psi_d \, \tau \tag{1}
$$

(where Ψ_d denotes the wave function of the ground state of the ion and Ψ_c the wave function belonging to a continuous state normalized to correspond to an outgoing electron of unit density), depends very much on Ψ_d in regions of the configuration space which are relatively far from the hydrogenic core. This has the consequence that the absorption cross-sections are not trustworthily determined if wave functions derived by applications of the Ritz principle are used in the calculation of the matrix elements according to equation (1). This is evident, for example, from Figure 1, in which we have plotted the absorption coefficients as determined by Williamson² and Henrich,³ using wave functions of the forms

$$
\Psi_d = \mathfrak{N} e^{-as/2} \left(1 + \beta u + \gamma t^2 + \delta s + \epsilon s^2 + \zeta u^2 \right) \tag{2}
$$

and

[1945ApJ...102..223C](http://adsabs.harvard.edu/abs/1945ApJ...102..223C)

1945ApJ...102..223C

$$
\Psi_d = \mathfrak{N} e^{-as/2} (1 + \beta u + \gamma t^2 + \delta s + \epsilon s^2 + \zeta u^2 + \chi_6 t^4 + \chi_7 t^6 + \chi_8 t^4 u^2 + \chi_9 t^2 u^2 + \chi_{10} t^2 u^4),
$$
 (3)

respectively. (In eqs. [2] and [3] \mathfrak{N} is the normalizing factor; and α , β , γ , etc., are constants determined by the Ritz condition of minimum ener_gy,

$$
s = r_2 + r_1
$$
, $t = r_2 - r_1$, and $u = r_{12}$, (4)

where r_1 , r_2 , and r_{12} are the distances of the two electrons from the nucleus and from each other, respectively.) The wide divergence between the two curves in Figure 1 is too large to be explained in terms of only the improvement in energy effected by the wave function (3): it must arise principally from the fact that in the evaluation of the matrix elements according to equation **(1)** parts of the wave function are used which do not contribute appreciably to the energy integral-and are therefore poorly determined. Indeed, this sen-

¹*Ap.* J., **100,** 176, 1944; also *Rev.Mod. Phys.,* 16,301, 1944. ²*Ap.* J., 96, 438, 1942. a *Ap.* J., 99, 59, 1944.

223

224 S. CHANDRASEKHAR

sitiveness of the derived absorption coefficients to wave functions effecting only relatively slight improvements in the energy makes it difficult to assess the reliability of the computed absorption coefficients. However, in this paper we shall show how these difficulties can be avoided by using a somewhat different formula for the absorption cross-section.

2. *Alternative formulae for evaluating the absorption coefficient*.—It is well known that in the classical theory the radiative characteristics of an oscillating dipole can be expressed in terms of either its dipole moment, its momentum, or its acceleration. There are, of course, analogous formulations in the quantum theory, the matrix element

$$
(a \mid z_j \mid b) = \zeta \psi_a^* z_j \psi_b d\tau \tag{5}
$$

FIG. 1.—A comparison of the continuous absorption coefficient of H⁻ computed according to formula (I) and with wave functions of forms (2) (curve I) and (3) (curve II). The ordinates denote the absorption coefficients in units of 10^{-17} cm²; the abscissae, the wave length in angstroms.

for the co-ordinate z_i of the *j*th electron in an atom being simply related to the corresponding matrix element of the momentum operator or the acceleration. Thus, we have the relations

$$
(a \mid z_j \mid b) = \frac{1}{(E_a - E_b)} \int \frac{\partial \psi_a^*}{\partial z_j} \psi_b d\tau = -\frac{1}{(E_a - E_b)} \int \psi_a^* \frac{\partial \psi_b}{\partial z_j} d\tau \tag{6}
$$

and

$$
(a \mid z_j \mid b) = \frac{1}{(E_a - E_b)^2} \int \psi_a^* \frac{\partial V}{\partial z_j} \psi_b d\tau \tag{7}
$$

if all the quantities are measured in Hartree's atomic units and where E_a and E_b denote the energies of the states indicated by the letters d and b and where V denotes the potential energy arising from Coulomb interactions between the particles. More particularly for an atom (or ion) with two electrons, we have

$$
\mu_z = \left\{ \Psi_d^* \left(z_1 + z_2 \right) \Psi_c d\tau \right. \tag{8}
$$

$$
\mu_z = \mathcal{W}_d^* (z_1 + z_2) \Psi_c d\tau ,
$$
\n
$$
\mu_z = -\frac{1}{(E_d - E_c)} \int \Psi_d^* \left(\frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2}\right) \Psi_c d\tau ,
$$
\n(8)

and

$$
\mu_z = \frac{1}{(E_d - E_c)^2} \int \Psi_d^* \left(\frac{z_1}{r_1^3} + \frac{z_2}{r_2^3} \right) \Psi_c d\tau . \tag{10}
$$

While the foregoing formulae are entirely equivalent to each other if Ψ_d abd Ψ_c are exact solutions of the wave equation, they are of different merits for the evaluation of μ_z if approximate wave functions are used. Thus, it is evident that formula (8) uses parts of the

© **American Astronomical Society** • **Provided by the NASA Astrophysics Data System**

[1945ApJ...102..223C](http://adsabs.harvard.edu/abs/1945ApJ...102..223C)

1945ApJ...102..223C

NEGATIVE HYDROGEN ION

configuration space, which are more distant than relevant, for example, in the evaluation of the energy; similarly, formula (10) uses the wave functions in regions much nearer the prigin. It would appear that formula (9) is the most suitable one for the evaluation of u_i, particularly when wave functions derived by applications of the Ritz principle are used. The calculations which we shall present in the following sections confirm this anticipation; but before we proceed to such calculations, it is useful to have the explicit formulae for the absorption cross-sections on the basis of equations (8) , (9) , and (10) .

In ordinary (c.g.s.) units the standard formula for the atomic absorption coefficient κ_{ν} for radiation of frequency ν , in which an electron with a velocity v is ejected, is

$$
\kappa_{\nu} = \frac{3\,2\pi^4 m^2\, e^2}{3\,h^3\,c} \,\nu\,v \mid \varsigma \Psi_d^* \,\left(\,z_1 + z_2\right) \Psi_c \,d\,\tau \mid^2 \,, \tag{11}
$$

where m , e, h, and c have their usual meanings. (In writing eq. [11] it has been assumed that the electron is ejected in the z-direction; see eq. [15] below.) By inserting the numerical values for the various atomic constants equation (11) can be expressed in the form

> $K_{\nu} = 8.561 \times 10^{-19} \left(\nu_{\rm at} k \, \vert \, \mu_z \vert^2 \right) \, \rm cm^2$, (12)

where k denotes the momentum of the ejected electron and $\nu_{\rm at}$ the frequency of the radiation absorbed, both measured in atomic units, and where, moreover, the matrix element μ_z has also to be evaluated in atomic units.

If I denotes the electron affinity (also expressed in atomic units)

$$
4\pi\nu_{\text{at}} = k^2 + 2I \tag{13}
$$

and depending on which of the formulae (8), (9), and (10) we use for evaluating κ_r , we have

$$
\kappa_{\nu} = 6.812 \times 10^{-20} k (k^2 + 2I) |\S \Psi_d^* (z_1 + z_2) \Psi_c d \tau|^2 . \tag{I}
$$

$$
\kappa_{\nu} = 2.725 \times 10^{-19} \frac{k}{(k^2 + 2I)} \left| \int \Psi_d^* \left(\frac{\partial}{\partial z_1} + \frac{\partial}{\partial z_2} \right) \Psi_c d\tau \right|^2, \tag{II}
$$

and

$$
\kappa_{\nu} = 1.090 \times 10^{-18} \frac{k}{(k^2 + 2I)^3} \left| \int \Psi_d^* \left(\frac{z_1}{r_1^3} + \frac{z_2}{r_2^3} \right) \Psi_c d\tau \right|^2. \tag{III}
$$

Finally, we may note that if λ denotes the wave length of the radiation measured in angstroms, then

$$
\lambda = \frac{911.3}{k^2 + 2I} A \,. \tag{14}
$$

3. The continuous absorption coefficient of H^- evaluated according to formula (III). As we have already indicated, in the customary evaluations of κ_{ν} according to formula (I) the relatively more distant parts of the wave function are used. It is evident that we shall be going to the opposite extreme in using the wave function principally only near the origin if we evaluate κ_{ν} according to formula (III). For this reason it is of interest to consider first the absorption coefficient as determined by this formula.

In evaluating κ_{ν} according to formula (III), we shall use for Ψ_{d} a wave function of form (3) and for Ψ_c a plane wave representation of the outgoing electron:

$$
\Psi_c = \frac{1}{\sqrt{2\pi}} \left(e^{-r_1 + ikz_2} + e^{-r_2 + ikz_1} \right). \tag{15}
$$

(In § 5 we refer to an improvement in Ψ_c which can be incorporated without much difficulty at this stage.) For Ψ_d and Ψ_c of forms (3) and (15) the evaluation of the matrix element

$$
\int \Psi_d^* \left(\frac{z_1}{r_1^3} + \frac{z_2}{r_2^3} \right) \Psi_c d\tau \qquad (16)
$$

226 S. CHANDRASEKHAR

is straightforward, though it is somewhat involved. We find

$$
\int \Psi_{d}^{*} \left(\frac{z_{1}}{r_{1}^{3}} + \frac{z_{2}}{r_{2}^{3}} \right) \Psi_{c} d \tau = - (2048 \pi^{3})^{1/2} \frac{\partial U}{(1+\alpha)^{3}} \frac{i}{k^{2}} \left[\sum_{j=-2}^{6} l_{j} \mathcal{L}_{j}^{(a)} + \sum_{j=-2}^{3} \lambda_{j} \mathcal{L}_{j}^{(1+2a)} - \frac{1}{30} \beta (1+\alpha)^{4} \left\{ \sum_{j=-1}^{3} a_{j} S_{j}^{(1+2a)} + \sum_{j=-1}^{3} b_{j} C_{j}^{(1+2a)} \right\} \right], \qquad (17)
$$

where we have used the following abbreviations:

$$
\mathcal{L}_{j}^{(p)} = \int_{0}^{\infty} e^{-py} \left(k \cos ky - \frac{\sin ky}{y} \right) y^{j} dy \qquad (j = -2, -1, \dots),
$$
\n
$$
= (j - 1) \left[\rho^{j} \left\{ j \rho k \cos \left[(j + 1) \xi \right] - \sin j \xi \right\} (j \ge 1),
$$
\n
$$
= \rho k \cos \xi - \xi \qquad (j = 0),
$$
\n
$$
= p \xi - k \qquad (j = -1).
$$
\n
$$
= \frac{1}{2} \left(p k - \frac{\xi}{\rho^{2}} \right) \qquad (j = -2).
$$
\n
$$
S_{j}^{(p)} = \int_{0}^{\infty} e^{-py} y^{j} \sin ky \, dy \qquad (j = -1, 0, \dots).
$$
\n
$$
= j! \rho^{j+1} \sin \left[(j + 1) \xi \right] \qquad (j = 0, 1, \dots).
$$
\n
$$
= \xi \qquad (j = -1).
$$
\n(19)

and

$$
C_j^{(p)} = \int_0^\infty e^{-py} y^j \cos ky \, dy = j! \, \rho^{j+1} \cos\left[\left(j+1\right)\xi\right] \qquad (j=0,1,\ldots)\,,
$$
\n
$$
= \int_0^\infty e^{-py} \left(e^{ay} - \cos ky\right) \frac{dy}{y} = \log\left(\frac{p}{p-a} \left|\sec\xi\right|\right) \quad (j=-1)\,.
$$
\n(20)

where

$$
\rho = \frac{1}{(k^2 + p^2)^{1/2}} \quad \text{and} \quad \xi = \tan^{-1} \frac{k}{p}; \tag{21}
$$

and

$$
l_{-2} = 4 q^2 \beta ,
$$

\n
$$
l_{-1} = 1 + q (\frac{1}{6} \beta + \delta) + 12 q^2 (\gamma + \epsilon + \zeta) + 360 q^4 (\chi_6 + \chi_9) + 20,160 q^6 (\chi_7 + \chi_8 + \chi_{10}),
$$

\n
$$
l_0 = (\delta + \beta) - 6 q (\gamma - \epsilon) - 120 q^3 (2 \chi_6 + \chi_9) - 5040 q^5 (3 \chi_7 + 2 \chi_8 + \chi_{10}),
$$

\n
$$
l_1 = -\frac{\beta}{6 q} + (\gamma + \epsilon + \zeta) + 24 q^2 (3 \chi_6 + \chi_9) + 120 q^4 (45 \chi_7 + 21 \chi_8 + 13 \chi_{10}).
$$

\n
$$
l_2 = -\frac{\zeta}{3 q} - 4 q (3 \chi_6 + 2 \chi_9) - 40 q^3 (30 \chi_7 + 13 \chi_8 + 12 \chi_{10})
$$

\n
$$
l_3 = (\chi_6 + \frac{7}{3} \chi_9) + 4 q^2 (45 \chi_7 + 29 \chi_8 + 21 \chi_{10}).
$$

\n
$$
l_4 = -\frac{\chi_9}{3 q} - 2 q (9 \chi_7 + 12 \chi_8 + 7 \chi_{10}).
$$

\n
$$
l_5 = \chi_7 + \frac{11}{3} (\chi_8 + \chi_{10}).
$$

\n
$$
l_6 = -\frac{1}{3 q} (\chi_8 + 2 \chi_{10}).
$$

© **American Astronomical Society** • **Provided by the NASA Astrophysics Data System**

1945ApJ...102..223C

 $\ddot{}$

NEGATIVE HYDROGEN ION

$$
\lambda_{-2} = -4\beta q^2 ; \qquad \lambda_1 = \frac{\beta}{15q} ,
$$

\n
$$
\lambda_{-1} = -\frac{6}{5}\beta q ; \qquad \lambda_2 = -\frac{\beta}{30q^2} ,
$$

\n
$$
\lambda_0 = -\frac{1}{5}\beta ; \qquad \lambda_3 = \frac{\beta}{30q^3} ,
$$
\n(23)

where

and

[1945ApJ...102..223C](http://adsabs.harvard.edu/abs/1945ApJ...102..223C)

1945ApJ...102..223C

$$
q = \frac{1}{1+a};\tag{24}
$$

$$
a_{-1} = 6\eta^4 \left[4\eta k^2 (5a^4 - 10a^2k^2 + k^4) + (a^4 - 6a^2k^2 + k^4) \right],
$$

\n
$$
a_0 = 6\eta^3 a \left[16\eta k^2 (a^2 - k^2) + (a^2 - 3k^2) \right],
$$

\n
$$
a_1 = 3\eta^2 \left[4\eta k^2 (3a^2 - k^2) + (a^2 - k^2) \right],
$$

\n
$$
a_2 = \eta a (8\eta k^2 + 1),
$$

\n
$$
a_3 = \eta k^2,
$$
\n(25)

$$
b_{-1} = + 24 \eta^4 a k \left[\eta (a^4 - 10 a^2 k^2 + 5 k^4) - (a^2 - k^2) \right].
$$

\n
$$
b_0 = -6 \eta^3 k \left[4 \eta (a^4 - 6 a^2 k^2 + k^4) - (3 a^2 - k^2) \right].
$$

\n
$$
b_1 = -6 \eta^2 a k \left[2 \eta (a^2 - 3 k^2) - 1 \right].
$$

\n
$$
b_2 = -\eta k \left[4 \eta (a^2 - k^2) - 1 \right].
$$

\n
$$
b_3 = -\eta a k.
$$

\n(26)

where

$$
\eta = (a^2 + k^2)^{-1} \,. \tag{27}
$$

Putting $\chi_6 = \chi_7 = \ldots = \chi_{10} = 0$ in the foregoing equations, we shall obtain the formulae which can be used with a wave function of form (2).

By using for the constants of wave functions (2) and (3) the values determined by Williamson and Henrich, the atomic absorption coefficient κ , has been computed according to the foregoing formulae for various wave lengths. The results of the calculations are given in Table 1 and are further illustrated in Figure 2. It is seen that, in contrast to what happened when formula (I) was used (cf. Fig. 1), wave function (2) now predicts systematically *larger* values for κ_{ν} than does wave function (3). The divergence between the two curves must now be attributed to the overweighting of the wave function near the origin, where it is again poorly determined by the Ritz method.

4. The continuous absorption coefficient of H⁻ evaluated according to formula (II). Finally, returning to formula (II), which would appear to have the best chances for determining κ_{ν} most reliably, the calculations were again carried through for wavefunctions Ψ_d of forms (2) and (3) and for Ψ_c of form (15). Before we give the results of the calculations, we may note that for Ψ_d of form (3) and for Ψ_c of form (15)

$$
\int \Psi_{d}^{*} \left(\frac{\partial}{\partial z_{1}} + \frac{\partial}{\partial z_{2}} \right) \Psi_{c} d\tau = - (2048\pi^{3})^{1/2} \frac{\mathfrak{N}}{(1+a)^{3}} \frac{i}{k^{2}} \left[\sum_{j=-1}^{6} l_{j} \mathcal{L}_{j}^{(a)} + \sum_{j=-1}^{11} \lambda_{j} \mathcal{L}_{j}^{(1+2a)} + k^{2} \left\{ \sum_{j=0}^{7} s_{j} S_{j}^{(a)} + \sum_{j=0}^{+1} \sigma_{j} S_{j}^{(1+2a)} \right\} \right],
$$
\n(28)

TABLE 1

THE CONTINUOUS ABSORPTION COEFFICIENT OF H- COMPUTED ACCORDING TO FORMULA III AND WITH WAVE FUNCTIONS OF FORMS (2) AND (3)

FIG. 2.—A comparison of the continuous absorption coefficient of H^- computed according to formula (III) and with wave functions of forms (2) (curve *I*) and (3) (curve *II*). The ordinates denote the absorption coeffici

NEGATIVE HYDROGEN ION

where

1945ApJ...102..223C

$$
l_{-1} = 4\beta q^{3}; \t l_{0} = 0; \t l_{1} = -\beta q.
$$

\n
$$
l_{2} = -2q\zeta - 40q^{3}x_{9} - 1680q^{5}(x_{8} + 2x_{10}).
$$

\n
$$
l_{3} = 16q^{2}x_{9} + 960q^{4}(x_{8} + x_{10}).
$$

\n
$$
l_{4} = -2qx_{9} - 80q^{3}(3x_{8} + 2x_{10}).
$$

\n
$$
l_{5} = 32q^{2}(x_{8} + x_{10}); \t l_{6} = -2q(x_{8} + 2x_{10}).
$$

\n(29)

$$
\lambda_{-1} = -4\beta q^3 \; ; \quad \lambda_0 = -4\beta q^2 \; ; \quad \lambda_1 = -\beta q \; , \tag{30}
$$

$$
s_0=4\,\beta\,q^2
$$

$$
s_{1} = 1 + 3 q \delta + 12 q^{2} (\gamma + \epsilon + \zeta) + 360 q^{4} (\chi_{6} + \chi_{9}) + 20,160 q^{6} (\chi_{7} + \chi_{8} + \chi_{10}),
$$

\n
$$
s_{2} = (\delta + \beta) - 6 q (\gamma - \epsilon) - 120 q^{2} (2 \chi_{6} + \chi_{9}) - 5040 q^{5} (3 \chi_{7} + 2 \chi_{8} + \chi_{10}),
$$

\n
$$
s_{3} = (\gamma + \epsilon + \zeta) + 24 q^{2} (3 \chi_{6} + \chi_{9}) + 120 q^{4} (45 \chi_{7} + 21 \chi_{8} + 13 \chi_{10}),
$$

\n
$$
s_{4} = -6 q (2 \chi_{6} + \chi_{9}) - 80 q^{3} (15 \chi_{7} + 6 \chi_{8} + 5 \chi_{10}),
$$

\n
$$
s_{5} = (\chi_{6} + \chi_{9}) + 4 q^{2} (45 \chi_{7} + 21 \chi_{8} + 13 \chi_{10}).
$$

\n
$$
s_{6} = -6 q (3 \chi_{7} + 2 \chi_{8} + \chi_{10}),
$$

\n
$$
s_{7} = \chi_{7} + \chi_{8} + \chi_{10}
$$
 (31)

and

$$
\sigma_0 = -4\beta q^2 \; ; \qquad \sigma_1 = -\beta q \; . \tag{32}
$$

Further, in equation (28) the quantities $\mathcal{L}_i^{(p)}$, $S_i^{(p)}$, and q have the same meanings as in equations (18) , (19) , (21) , and (24) .

TABLE 2

THE CONTINUOUS ABSORPTION COEFFICIENT OF H- COMPUTED ACCORDING TO FORMULA II AND WITH WAVE FUNCTIONS OF FORMS (2) AND (3)

λ (A)	$\kappa\lambda \times 10^{17}$ CM ²			$\kappa\lambda \times 10^{17}$ CM ²	
	With Wave Function (3) Function (2)	With Wave	λ (A)	With Wave Function (3) Function (2)	With Wave
1000 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500	0.271 0.945 1.335 1.730 2.119 2.498 2.860 3.197 3.504 3.773 3.998	0.270 0.991 1.461 1.955 2.437 2.880 3.265 3.581 3.822 3.989 4.084	7000 7500 8000 8500 9000 9500 10000 12000 14000 16000	4.174 4.296 -4.363 4.372 4.324 4.221 4.065 2.995 1.502 0.167	4.113 4.080 3.993 3.858 3.682 3.471 3.233 2.108 0.954 0.097

The absorption cross-sections, as calculated according to formula (II), and the foregoing equations are given in Table 2 and further illustrated in Figure 3. It is seen that, as anticipated, the two curves now do not diverge more than can be reasonably attributed to the betterment of the wave function in consequence of the increased number of parameters used in the Ritz method.

 λ

230 S. CHANDRASEKHAR

5. *Concluding remarks.-A* comparison of Figures 1, 2, and 3 clearly illustrates th superiority of formula (II) for the purposes of evaluating the continuous absorption co efficient of the negative hydrogen ion. The general reliability of the absorption cross

FIG. 3.—A comparison of the continuous absorption coefficient of H^- computed according to formuli-(II) and with wave functions of forms (2) (curve I) and (3) (curve II). The ordinates denote the ab sorption coefficients in units of 10^{-17} cm²; the abscissae, the wave length in angstroms.

FIG. 4.-A comparison of the continuous absorption coefficient of H^- computed according to formul (I) (curve *I*), (II) (curve *II*), and (III) (curve *III*) with a wave function of form (3). The ordinates ϵ note the absorption coefficients in units of 10^{-17} cm²; the abscissae, the wave length in angstroms.

sections derived on the basis of formula (II) and wave function (3) can be seen in a other way. In Figure 4 we have plotted κ_{ν} as given by the three formulae and as obtain. in each case with wave function (3) . It is seen that, while the cross-sections given by for mula (II) agree with those given by formula (I) in the visual and the violet part of t

[1945ApJ...102..223C](http://adsabs.harvard.edu/abs/1945ApJ...102..223C)

1945ApJ...102..223C

spectrum $(\lambda < 6000 \text{ A})$, they agree with those given by formula (III) in the infrared $(\lambda > 12,000 \text{ A})$. This is readily understood when it is remembered that on all the three . formulae the absorption cross-sections in the infrared are relatively more dependent on the wave function at large distances than they are in the visual and the violet parts of the spectrum. Accordingly, it is to be expected that, as we approach the absorption limit of H^- at 16,550 A, formula (III) must give less unreliable values than it does at shorter . wave lengths; formula (I), of course, ceases to be valid in the infrared. It is also clear that, as we go toward the violet, we have the converse situation.

Summarizing our conclusions so far, it may be said that in the framework of the approximation in which a plane-wave representation of the outgoing electron is used, formula (II), together with wave function (3), gives sufficiently reliable values for the absorption coefficient over the entire range of the spectrum. Attention may be particularly drawn to the fact that the maximum of the absorption-curve is now placed at λ 8500 A, where $\kappa_{\lambda} = 4.37 \times 10^{-17}$ cm².

The question still remains as to the improvements which can be effected in the choice of Ψ_c . As shown in an earlier paper,⁴ it may be sufficient to use for Ψ_c the wave functions in the Hartree field of a hydrogen atom. On this approximation we should use *(op. cit.,* eq. [15] $)$

$$
\Psi_{c} = \frac{1}{\sqrt{2\pi}} \left\{ e^{-r_{1}} \sum_{l=0}^{\infty} \frac{i^{l}}{k \, r_{2}} (2l+1) P_{l} \left(\cos \vartheta_{2} \right) \chi_{l} \left(r_{2}; k \right) + e^{-r_{2}} \sum_{l=0}^{\infty} \frac{i^{l}}{k \, r_{1}} (2l+1) P_{l} \left(\cos \vartheta_{1} \right) \chi_{l} \left(r_{1}; k \right) \right\}, \qquad (33)
$$

where χ_l is the solution of the equation

$$
\frac{d^2\chi_l}{dr^2} + \left\{k^2 - \frac{l(l+1)}{r^2} + 2\left(1 + \frac{1}{r}\right)e^{-2r}\right\}\chi_l = 0\,,\tag{34}
$$

which tends to a pure sinusoidal wave of unit amplitude at infinity. We shall return to these further improvements in a later paper.

It is a pleasure to acknowledge my indebtedness to Professor E. P. Wigner for many helpful discussions and much valuable advice. My thanks are also due to Mrs. Frances Herman Breen for assistance with the numerical work.

 $4 A p. J., 100, 176, 1944.$