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To Herman and Mrs. G 



Preface to the Revised Edition 

Lie Algebras in Particle Physics has been a very successful book. I have 
long resisted the temptation to produce a revised edition. I do so finally, 
because I find that there is so much new material that should be included, 
and so many things that I would like to say slightly differently. On the other 
hand, one of the good things about the first edition was that it did not do too 
much. The material could be dealt with in a one semester course by students 
with good preparation in quantum mechanics. In an attempt to preserve this 
advantage while including new material, I have flagged some sections that 
can be left out in a first reading. The titles of these sections begin with an 
asterisk, as do the problems that refer to them. 

I may be prejudiced, but I think that this material is wonderful fun to 
teach, and to learn. I use this as a text for what is formally a graduate class, 
but it is taken successfully by many advanced undergrads at Harvard. The 
important prerequisite is a good background in quantum mechanics and linear 
algebra. 

It has been over five years since I first began to revise this material and 
typeset it in IbTp(. Between then and now, many many students have used the 
evolving manuscript as a text. I am grateful to many of them for suggestions 
of many kinds, from typos to grammar to pedagogy. 

As always, I am enormously grateful to my family for putting up with 
me for all this time. I am also grateful for their help with my inspirational 
epilogue. 

xi 

Howard Georgi 
Cambridge, MA 
May, 1999 
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Why Group Theory? 

Group theory is the study of symmetry. It is an incredible labor saving device. 
It allows us to say interesting, sometimes very detailed things about physical 
systems even when we don't understand exactly what the systems are! When 
I was a teenager, I read an essay by Sir Arthur Stanley Eddington on the 
Theory of Groups and a quotation from it has stuck with me for over 30 
years: 1 

We need a super-mathematics in which the operations are as un
known as the quantities they operate on, and a super-mathematician 
who does not know what he is doing when he perfonns these op
erations. Such a super-mathematics is the Theory of Groups. 

In this book, I will try to convince you that Eddington had things a little 
bit wrong, as least as far as physics is concerned. A lot of what physicists 
use to extract information from symmetry is not the groups themselves, but 
group representations. You will see exactly what this means in more detail as 
you read on. What I hope you will take away from this book is enough about 
the theory of groups and Lie algebras and their representations to use group 
representations as labor-saving tools, particularly in the study of quantum 
mechanics. 

The basic approach will be to alternate between mathematics and physics, 
and to approach each problem from several different angles. I hope that you 
will learn that by using several techniques at once, you can work problems 
more efficiently, and also understand each of the techniques more deeply. 

1in The World of Mathematics, Ed. by James R. Newman, Simon& Schuster, New York, 
1956. 



Chapter 1 

Finite Groups 

We will begin with an introduction to finite group theory. This is not intended 
to be a self-contained treatment of this enormous and beautiful subject. We 
will concentrate on a few simple facts that are useful in understanding the 
compact Lie algebras. We will introduce a lot of definitions, sometimes prov
ing things, but often relying on the reader to prove them. 

1.1 Groups and representations 

A Group, G, is a set with a rule for assigning to every (ordered) pair of 
elements, a third element, satisfying: 

(1.A.1) If f,g E G then h = Jg E G. 
(l.A.2) For f, g, h E G, f (gh) = (Jg)h. 
(l.A.3) There is an identity element, e, such that for all f E G, ef = 

fe = f. 
(l.A.4) Every element f E G has an inverse, 1-1, such that f 1-1 = 

1-1 f = e. 

Thus a group is a multiplication table specifying g1g2 Vg1, g2 E G. If 
the group elements are discrete, we can write the multiplication table in the 
form 

\ II e I 91 I 92 I · · · 
e e 91 92 ... 

91 91 9191 9192 ... (1. 1) 
92 92 9291 9292 ... 

2 
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A Representation of G is a mapping, D of the elements of G onto a set of 
linear operators with the following properties: 

l.B .1 D ( e) = 1, where 1 is the identity operator in the space on which 
the linear operators act. 

l.B.2 D(91)D(92) = D(9192), in other words the group multiplica
tion law is mapped qnto the natural multiplication in the linear 
space on which the linear operators act. 

1.2 Example - Z3 

A group is finite if it has a finite number of elements. Otherwise it is infinite. 
The number of elements in a finite group G is called the order of G. Here is 
a finite group of order 3. 

\ II e I a I b I 
e e a b 
a a b e 

(1.2) 

b b e a 

This is Z3, the cyclic group of order 3. Notice that every row and column 
of the multiplication table contains each element of the group exactly once. 
This must be the case because the inverse exists. 

An Abelian group in one in which the multiplication law is commutative 

9192 = 9291 · (1.3) 

Evidently, Z3 is Abelian. 

The following is a representation of Z3 

D(e) = 1, D(a) = e21ri/3 , D(b) = e47ri/3 (1.4) 

The dimension of a representation is the dimension of the space on which 
it acts - the representation (1.4) is 1 dimensional. 
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1.3 The regular representation 

Here's another representation of Z3 

( 1 0 0) (0 
D(e) = 0 1 0 D(a) = 1 

0 0 1 0 

(0 1 0) 
D(b) = o O 1 

1 0 0 

(1.5) 

This representation was constructed directly from the multiplication ta
ble by the following trick. Take the group elements themselves to form an 
orthonormal basis for a vector space, le), la), and lb). Now define 

(1.6) 

The reader should show that this is a representation. It is called the regular 
representation. Evidently, the dimension of the regular representation is the 
order of the group. The matrices of (1.5) are then constructed as follows. 

lei) =le), le2) = la), le3) = lb) 

[D(g)]ij = (eilD(g )lej) 

(1. 7) 

(1.8) 

The matrices are the matrix elements of the linear operators. (1.8) is a 
simple, but very general and very important way of going back and forth from 
operators to matrices. This works for any representation, not just the regular 
representation. We will use it constantly. The basic idea here is just the 
insertion of a complete set of intennediate states. The matrix corresponding 
to a product of operators is the matrix product of the matrices corresponding 
to the operators -

[D(g1g2)]ij = [D(g1)D(g2)b 

= (eilD(gi)D(g2)lej) 

= :E(eilD(g1)lek) (eklD(g2)lej) 
k 

= L[D(g1)]ik[D(g2)]kj 
k 

(1.9) 

Note that the construction of the regular representation is completely gen
eral for any finite group. For any finite group, we can define a vector space in 
which the basis vectors are labeled by the group elements. Then (1.6) defines 
the regular representation. We will see the regular representation of various 
groups in this chapter. 
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1.4 Irreducible representations 

What makes the idea of group representations so powerful is the fact that they 
live in linear spaces. And the wonderful thing about linear spaces is we are 
free to choose to represent the states in a more convenient way by making 
a linear transformation. As long as the transformation is invertible, the new 
states are just as good as the old. Such a transformation on the states produces 
a similarity transformation on the linear operators, so that we can always 
make a new representation of the form 

D(g) --t D'(g) = s-1 D(g)S (1.10) 

Because of the form of the similarity transformation, the new set of operators 
has the same multiplication rules as the old one, so D' is a representation if 
D is. D' and D are said to be equivalent representations because they differ 
just by a trivial choice of basis. 

Unitary operators (0 such that ot = o- 1) are particularly important. A 
representation is unitary if all the D(g)s are unitary. Both the representations 
we have discussed so far are unitary. It will tum out that all representations of 
finite groups are equivalent to unitary representations (we'll prove this later -
it is easy and neat). 

A representation is reducible if it has an invariant subspace, which 
means that the action of any D(g) on any vector in the subspace is still in 
the subspace. In terms of a projection operator P onto the subspace this con
dition can be written as 

P D(g)P = D(g)P Vg E G (1.11) 

For example, the regular representation of Z3 ( 1.5) has an invariant sub
space projected on by 

1 
1 
1 D ( 1.12) 

because D(g)P = P 't/g. The restriction of the representation to the invariant 
subspace is itself a representation. In this case, it is the trivial representa
tion for which D(g) = 1 (the trivial representation, D(g) = 1, is always a 
representation - every group has one). 

A representation is irreducible if it is not reducible. 
A representation is completely reducible if it is equivalent to a represen-



6 CHAPTER 1. FINITE GROUPS 

tation whose matrix elements have the following form: 

... .. ") 
(1.13) 

where Dj(9) is irreducible Vj. This is called block diagonal form. 
A representation in block diagonal form is said to be the direct sum of 

the subrepresentations, D j (9), 

(1.14) 

In transforming a representation to block diagonal form, we are decom
posing the original representation into a direct sum of its irreducible com
ponents. Thus another way of defining complete reducibility is to say that 
a completely reducible representation can be decomposed into a direct 
sum of irreducible representations. This is an important idea. We will use 
it often. 

We will show later that any representation of a finite group is completely 
reducible. For example, for (1.5), take 

IC 1 

;,) S= 3 ~ w2 (1.15) 
w 

where 
w = e21ri/3 ( 1.16) 

then 

D'(e) = G 0 0) 
D'(a) = G 0 1,) 1 0 w 

0 1 0 
( 1.17) 

D'(b) = G 0 ~) w2 

0 

1.5 Transformation groups 

There is a natural multiplication law for transformations of a physical system. 
If 91 and 92 are two transformations, 9192 means first do 92 and then do 91. 
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Note that it is purely convention whether we define our composition law to 
be right to left, as we have done, or left to right. Either gives a perfectly 
consistent definition of a transformation group. 

If this transfonnation is a symmetry of a quantum mechanical system, 
then the transformation takes the Hilbert space into an equivalent one. Then 
for each group element g, there is a unitary operator D(g) that maps the 
Hilbert space into an equivalent one. These unitary operators form a repre
sentation of the transfonnation group because the transformed quantum states 
represent the transformed physical system. Thus for any set of symmetries, 
there is a representation of the symmetry group on the Hilbert space - we 
say that the Hilbert space transforms according to some representation of the 
group. Furthermore, because the transformed states have the same energy as 
the originals, D(g) commutes with the Hamiltonian, [D(g), H] = 0. As we 
will see in more detail later, this means that we can always choose the energy 
eigenstates to transform like irreducible representations of the group. It is 
useful to think about this in a simple example. 

1.6 Application: parity in quantum mechanics 

Parity is the operation of reflection in a mirror. Reflecting twice gets you 
back to where you started. If p is a group element representing the parity 
reflection, this means that p2 = e. Thus this is a transformation that together 
with the identity transformation (that is, doing nothing) fonns a very simple 
group, with the following multiplication law: 

( 1.18) 

This group is called Z2. For this group there are only two irreducible rep
resentations, the trivial one in which D(p) = 1 and one in which D(e) = 1 
and D (p) = -1. Any representation is completely reducible. In particular, 
that means that the Hilbert space of any parity invariant system can be de
composed into states that behave like irreducible representations, that is on 
which D (p) is either 1 or -1. Furthermore, because D (p) commutes with 
the Hamiltonian, D(p) and H can be simultaneously diagonalized. That is 
we can assign each energy eigenstate a definite value of D(p). The energy 
eigenstates on which D(p) = 1 are said to transform according to the trivial 
representation. Those on which D(p) = -1 transform according to the other 
representation. This should be familiar from nonrelativistic quantum me
chanics in one dimension. There you know that a particle in a potential that is 
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symmetric about x = 0 has energy eigenfunctions that are either symmetric 
under x --t -x (corresponding to the trivial representation), or antisymmetric 
(the representation with D(p) = -1). 

1.7 Example: S3 

The permutation group (or symmetric group) on 3 objects, called S3 where 

a1 = (1,2,3) a2 = (3,2,1) 
( 1.19) 

a3 = (1,2) a4 = (2,3) a5 = (3, 1) 

The notation means that a 1 is a cyclic permutation of the things in positions 1, 
2 and 3; a2 is the inverse, anticyclic permutation; a3 interchanges the objects 
in positions 1 and 2; and so on. The multiplication law is then determined by 
the transformation rule that 9192 means first do 92 and then do 91· It is 

e e a1 a2 a3 a4 a5 
a1 a1 a2 e a5 a3 a4 
a2 a2 e a1 a4 as a3 (1.20) 

a3 a3 a4 as e a1 a2 
a4 a4 as a3 a2 e a1 
a5 a5 a3 a4 a1 a2 e 

We could equally well define it to mean first do 91 and then do 92· These 
two rules define different multiplication tables, but they are related to one 
another by simple relabeling of the elements, so they give the same group. 
There is another possibility of confusion here between whether we are per
muting the objects in positions 1, 2 and 3, or simply treating 1, 2 and 3 as 
names for the three objects. Again these two give different multiplication ta
bles, but only up to trivial renamings. The first is a little more physical, so we 
will use that. The permutation group is an another example of a transforma
tion group on a physical system. 

S3 is non-Abelian because the group multiplication law is not commuta
tive. We will see that it is the lack of commutativity that makes group theory 
so interesting. 



1.8. EXAMPLE: ADDITION OF INTEGERS 9 

Here is a unitary irreducible representation of S3 

(1 0) (-1 _v'3) 
D(e) = O l , D(a1) = Ji _r , 

( 
v'3) 2 2 _1 -2. -1 0 

D(a2) = _ 1 -\ , D(a3) = ( 0 1 ) , 

( 
1 fl) ( 1 v'3) 

D ( a4) = 1 -\ , D ( a5) = _ 1 ~ ½ 

(1.21) 

The interesting thing is that the irreducible unitary representation is more 
than 1 dimensional. It is necessary that at least some of the representations 
of a non-Abelian group must-be matrices rather than numbers. Only matri
ces can reproduce the non-Abelian multiplication law. Not all the operators 
in the representation can be diagonalized simultaneously. It is this that is 
responsible for a lot of the power of the theory of group representations. 

1.8 Example: addition of integers 

The integers fonn an infinite group under addition. 

xy = x+y (1.22) 

This is rather unimaginatively called the additive group of the integers. Since 
this group is infinite, we can't write down the multiplication table, but the 
rule above specifies it completely. 

Here is a representation: 

D(x) = (~ ~) (1.23) 

This representation is reducible, but you can show that it is not completely 
reducible and it is not equivalent to a unitary representation. It is reducible 
because 

D(x)P = P (1.24) 

where • 
p = (~ ~) ( 1.25) 

However, 
D(x)(I - P) -::J (I - P) ( 1.26) 

so it is not completely reducible. 
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The additive group of the integers is infinite, because, obviously, there are 
an infinite number of integers. For a finite group, all reducible representations 
are completely reducible, because all representations are equivalent to unitary 
representations. 

1.9 Useful theorems 

Theorem 1.1 Every representation of a finite group is equivalent to a unitary 
representation. 

Proof: Suppose D(g) is a representation of a finite group G. Construct the 
operator 

s = L D(g)t D(g) (1.27) 
gEG 

8 is hermitian and positive semidefinite. Thus it can be diagonalized and its 
eigenvalues are non-negative: 

( 1.28) 

where dis diagonal 

(1.29) 

where dj 2: O V j. Because of the group property, all of the dj s are actually 
positive. Proof - suppose one of the djs is zero. Then there is a vector .X. 
such that 8).. = 0. But then 

)..fS).. = 0 = L IID(g)>-.112
. (1.30) 

gEG 

Thus D(g)).. must vanish for all g, which is impossible, since D(e) = 1. 
Therefore, we can construct a square-root of 8 that is hermitian and invertible 

(
Pi O .. ') 

x = s
1
1

2 = u-
1 ~ ~ ·.:.· u 

X is invertible, because none of the djs are zero. We can now define 

D'(g) = X D(g) x-1 

( 1.31) 

( 1.32) 
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Now, somewhat amazingly, this representation is unitary! 

(1.33) 

but 

D(g)t8D(g) = D(g)t (L D(h)tD(h)) D(g) 
hEG 

= L D(hg)tD(hg) (1.34) 
hEG 

= L D(h)tD(h) = s = x2 

hEG 

where the last line follows because hg runs over all elements of G when h 
does. QED. 

We saw in the representation (1.23) of the additive group of the integers 
an example of a reducible but not completely reducible representation. The 
way it works is that there is a P that projects onto an invariant subspace, but 
( 1 - P) does not. This is impossible for a unitary representation, and thus 
representations of finite groups are always completely reducible. Let's prove 
it. 

Theorem 1.2 Every representation of a finite group is completely reducible. 

Proof: By the previous theorem, it is sufficient to consider unitary repre
sentations. If the representation is irreducible, we are finished because it is 
already in block diagonal form. If it is reducible, then 3 a projector P such 
that PD(g)P = D(g)P Vg E G. This is the condition that P be an invariant 
subspace. Taking the adjoint gives PD(g)tP = PD(g)t Vg E G. But be
cause D(g) is unitary, D(g)t = D(g)- 1 = D(g-1 ) and thus since g- 1 runs 
over all G when g does, PD(g)P = PD(g) Vg E G. But this implies that 
(1 - P)D(g)(I - P) = D(g)(l - P) Vg E G and thus 1 - P projects onto 
an invariant subspace. Thus we can keep going by induction and eventually 
completely reduce the representation. 

1.10 Subgroups 

A group H whose elements are all elements of a group G is called a subgroup 
of G. The identity, and the group G are trivial subgroups of G. But many 
groups have nontrivial subgroups (which just means some subgroup other 
than G or e) as well. For example, the permutation group, Eh, has a Z3 

subgroup formed by the elements {e, a1, a2}. 
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We can use a subgroup to divide up the elements of the group into subsets 
called cosets. A right-coset of the subgroup H in the group G is a set of 
elements formed by the action of the elements of H on the left on a given 
element of G, that is all elements of the form Hg for some fixed g. You can 
define left-cosets as well. 

For example, {a3, a4, as} is a coset of Z3 in Eh in (1.20) above. The 
number of elements in each coset is the order of H. Every element of G 
must belong to one and only one coset. Thus for finite groups, the order of 
a subgroup H must be a factor of order of G. It is also sometimes useful to 
think about the coset-space, G / H defined by regarding each coset as a single 
element of the space. 

A subgroup H of G is called an invariant or normal subgroup if for 
every g E G 

gH=Hg ( 1.35) 

which is (we hope) an obvious short-hand for the following: for every g E G 
and hi E H there exists an h2 E H such that hig = gh2, or gh2g- 1 = h 1 . 

The trivial subgroups e and G are invariant for any group. It is less ob
vious but also true of the subgroup Z3 of Eh in ( 1.20) (you can see this 
by direct computation or notice that the elements of Z3 are those permuta
tions that involve an even number of interchanges). However, the set { e, a4 } 

is a subgroup of G which is not invariant. a5 { e, a4} = { a5, a1} while 
{e,a4}a5 = {a5,a2}. 

If H is invariant, then we can regard the coset space as a group. The 
multiplication law in G gives the natural multiplication law on the cosets, 
Hg: 

(1.36) 

But if H is invariant Hg 1Hg-;1 = H, so the product of elements in two 
cosets is in the coset represented by the product of the elements. In this case, 
the coset space, G / H, is called the factor group of G by H. 

What is the factor group Eh/ Z3 ? The answer is Z2. 
The center of a group G is the set of all elements of G that commute 

with all elements of G. The center is always an Abelian, invariant subgroup 
of G. However, it may be trivial, consisting only of the identity, or of the 
whole group. 

There is one other concept, related to the idea of an invariant subgroup, 
that will be useful. Notice that the condition for a subgroup to be invariant 
can be rewritten as 

gHg- 1 = H\:/g E G ( 1.37) 
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This suggests that we consider sets rather than subgroups satisfying same 
condition. 

( 1.38) 

Such sets are called conjugacy classes. We will see later that there is a one
to-one correspondence between them and irreducible representations. A sub
group that is a union of conjugacy classes is invariant. 

Example-
The conjugacy classes of Eh are { e }, { a1, a2} and { a3, a4, a5}. 
The mapping 

(1.39) 

for a fixed g is also interesting. It is called an inner automorphism. An 
isomorphism is a one-to-one mapping of one group onto another that pre
serves the multiplication law. An automorphism is a one-to-one mapping 
of a group onto itself that preserves the multiplication law. It is easy to see 
that (1.39) is an automorphism. Because g- 1g1g g- 1g2g = 9-19192g, it pre
serves the multiplication law. Since g-191g = g- 1929 ~ 91 = 92, it is one 
to one. An automorphism of the form ( 1.39) where g is a group element is 
called an inner automorphism). An outer automorphism is one that cannot 
be written as 9- 1Gg for any group element g. 

1.11 Schur's lemma 

Theorem 1.3 If D1(g)A = AD2(g) \:lg E G where D1 and D2 are inequiv
alent, irreducible representations, then A = 0. 

Proof: This is part of Schur's lemma. First suppose that there is a vector Iµ) 
such that Alµ) = 0. Then there is a non-zero projector, P, onto the subspace 
that annihilates A on the right. But this subspace is invariant with respect to 
the representation D 2, because 

AD2(g)P = D 1(g)AP = 0 \:lg E G ( 1.40) 

But because D2 is irreducible, P must project onto the whole space, and 
A must vanish. If A annihilates one state, it must annihilate them all. A 
similar argument shows that A vanishes if there is a (vi which annihilates 
A. If no vector annihilates A on either side, then it must be an invertible 
square matrix. It must be square, because, for example, if the number of 
rows were larger than the number of columns, then the rows could not be a 
complete set of states, and there would be a vector that annihilates A on the 
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right. A square matrix is invertible unless its determinant vanishes. But if the 
determinant vanishes, then the set of homogeneous linear equations 

Alµ)= O ( 1.41) 

has a nontrivial solution, which again means that there is a vector that anni
hilates A. But if A is square and invertible, then 

(1.42) 

so D 1 and D2 are equivalent, contrary to assumption. QED. 
The more important half of Schur's lemma applies to the situation where 

D1 and D2 above are equivalent representations. In this case, we might as 
well take D1 = D2 = D, because we can do so by a simple change of basis. 
The other half of Schur's lemma is the following. 

Theorem 1.4 If D(g)A = AD(g) Vg E G where Dis a.finite dimensional 
irreducible representation, then A ex I. 

In words, if a matrix commutes with all the elements of a finite dimensional 
irreducible representation, it is proportional to the identity. 
Proof: Note that here the restriction to a finite dimensional representation 
is important. We use the fact that any finite dimensional matrix has at least 
one eigenvalue, because the characteristic equation det(A - >..I) = 0 has at 
least one root, and then we can solve the homogeneous linear equations for 
the components of the eigenvector Iµ). But then D(g)(A - >..I) = (A -
>..I)D(g) Vg E G and (A - >..I)Iµ) = 0. Thus the same argument we used in 
the proof of the previous theorem implies (A - >..I) = 0. QED. 

A consequence of Schur's lemma is that the form of the basis states of an 
irreducible representation are essentially unique. We can rewrite theorem 1.4 
as the statement 

A-1D(g)A = D(g) Vg E G ~ A ex I (1.43) 

for any irreducible representation D. This means once the form of D is fixed, 
there is no further freedom to make nontrivial similarity transformations on 
the states. The only unitary transformation you can make is to multiply all 
the states by the same phase factor. 

In quantum mechanics, Schur's lemma has very strong consequences for 
the matrix elements of any operator, 0, corresponding to an observable that 
is invariant under the symmetry transformations. This is because the matrix 
elements (a, j, xi OI b, k, y) behave like the A operator in ( 1.40). To see this, 
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let's consider the complete reduction of the Hilbert space in more detail. The 
symmetry group gets mapped into a unitary representation 

g -t D(g) Vg E G ( 1.44) 

where D is the (in general very reducible) unitary representation of G that 
acts on the entire Hilbert space of the quantum mechanical system. But if the 
representation is completely reducible, we know that we can choose a basis 
in which D has block diagonal form with each block corresponding to some 
unitary irreducible representation of G. We can write the orthonormal basis 
states as 

la,j, x) ( I .45) 

satisfying 

(a, j, X I b, k, y) = 8ab 8jk 8xy (1.46) 

where a labels the irreducible representation, j = 1 to na labels the state 
within the representation, and x represents whatever other physical parame
ters there are. 

Implicit in this treatment is an important assumption that we will almost 
always make without talking about it. We assume that have chosen a basis in 
which all occurences of each irreducible representation a, is described by the 
same set of unitary representation matrices, Da(g). In other words, for each 
irreducible representation, we choose a canonical form, and use it exclusively 

In this special basis, the matrix elements of D (g) are 

(a, j, xi D(g) lb, k, y) = 8ab 8xy [Da(g)]jk ( 1.47) 

This is just a rewriting of ( 1.13) with explicit indices rather than as a matrix. 
We can now check that our treatment makes sense by writing the representa
tion D in this basis by inserting a complete set of intermediate states on both 
sides: 

I= L la,j,x)(a,j,xl 
a,j,x 

Then we can write 

D(g) = L la,j,x)(a,j,xlD(g) L lb,k,y)(b,k,yl 
a,j,x b,k,y 

= L la, j, x) Oab Oxy [Da(g)]jk (b, k, YI 
a,j,x 
b,k,y 

= L la, j, x) [Da(g)b (a, k, xi 
a,j,k,x 

( 1.48) 

(1.49) 
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This is another way of writing a representation that is in block diagonal form. 
Note that if a particular irreducible representation appears only once in D, 
then we don't actually need the x variable to label its states. But typically, 
in the full quantum mechanical Hilbert space, each irreducible representation 
will appear many times, and then the physical x variable distinguish states 
that have the same symmetry properties, but different physics. The important 
fact, however, is that the dependence on the physics in ( 1.47) is rather trivial 
- only that the states are orthonormal - all the group theory is independent 
of x and y. 

Under the symmetry transformation, since the states transform like 

Iµ) -t D(g) Iµ) (µI -t (µI D(g)t (1.50) 

operators transform like 

0 -t D(g) 0 D(g)t ( 1.51) 

in order that all matrix element remain unchanged. Thus an invariant observ
able satisfies 

0 -t D(g) 0 D(g)t = 0 

which implies that O commutes with D(g) 

[O, D(g)] = 0 Vg E G. 

Then we can constrain the matrix element 

(a, j, xlOlb, k, y) 

by arguing as follows: 

0 = (a,j, xl[O, D(g)]lb, k, y) 

= :E(a,j, xlOlb, k', y)(b, k', y!D(g)lb, k, y) 
k' 

- L (a, j, xlD(g)la, j', x) (a, j', xlOlb, k, y) 
j' 

(1.52) 

(1.53) 

(1.54) 

(1.55) 

Now we use (1.47), which exhibits the fact that the matrix elements of D(g) 
have only trivial dependence on the physics, to write 

0 = (a,j,xl[O,D(g)]lb,k,y) 

= I:(a,j, xlOlb, k', y)[Db(g)]k'k 
k' 

- ~)Da(g)]jj'(a,j',xlOlb,k,y) 
j' 

( 1.56) 
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Thus the matrix element (1.54) satisfies the hypotheses of Schur's lemma. It 
must vanish if a -/- b. It must be proportional to the identity (in indices, that 
is 81k) for a = b. However, the symmetry doesn't tell us anything about the 
dependence on the physical parameters, x and y. Thus we can write 

• 
(a,j, xlOlb, k, y) = fa(x, y) 8ab 8jk ( 1.57) 

The importance of this is that the physics is all contained in the function 
fa(x, y) - all the dependence on the group theory labels is completely fixed 
by the symmetry. As we will see, this can be very powerful. This is a simple 
example of the Wigner-Eckart theorem, which we will discuss in much more 
generality later. 

1.12 * Orthogonality relations 

The same kind of summation over the group elements that we used in the 
proof of theorem 1.1, can be used together with Schur's lemma to show some 
more remarkable properties of the irreducible representations. Consider the 
following linear operator (written as a "dyadic") 

AjJ = L Da(g- 1 )la,j)(b, llDb(g) (1.58) 
gEG 

where Da and Db are finite dimensional irreducible representations of G. 
Now look at 

Da(gi)AjJ = L Da(91)Da(g-1)la,j)(b,l!IDb(g) ( 1.59) 
gEG 

= L Da(g1g-1)la,j)(b,l!IDb(g) (1.60) 
gEG 

= L Da((gg1
1
)-

1 )la,j)(b,l!IDb(g) (1.61) 
gEG 

Now let g' = gg11 

= L Da(g'-1)la,j)(b,l!IDb(g'g1) (1.62) 
g'EG 

L Da(g'- 1 )la,j)(b, llDb(g')Db(g1) = AjZDb(gi) (1.63) 
g'EG 



18 CHAPTER 1. FINITE GROUPS 

Now Schur's lemma (theorems 1.3 and 1.4) implies AJl = 0 if Da and 
Db are different, and further that if they are the same (remember that we have 
chosen a canonical form for each representation so equivalent representations 
are written in exactly the same way) AJl ex I. Thus we can write 

AJl = L Da(g- 1 )la,j)(b,l!IDb(g) = <5ab>..JeI ( 1.64) 
gEG 

To compute >.Je, compute the trace of AJl (in the Hilbert space, not the in
dices) in two different ways. We can write 

(1.65) 

where na is the dimension of Da. But we can also use the cyclic property of 
the trace and the fact that AJ£ ex <5ab to write 

Tr AJl = <5ab L (a, llDa(g)Da(g-l )la,j) = N <5ab <5je ( 1.66) 
gEG 

where N is the order of the group. Thus >..Je = N '5je/ na and we have shown 

( 1.67) 

Taking the matrix elements of these relations yields orthogonality relations 
for the matrix elements of irreducible representations. 

L ;; [Da(g- 1 )]kj[Db(g)]em = <5abc5jec5km 
gEG 

( 1.68) 

For unitary irreducible representations, we can write 

L -;; [Da(g)]Jk[Db(g)]em = <5abc5jec5km 
gEG 

( 1.69) 

so that with proper normalization, the matrix elements of the inequivalent 
unitary irreducible representations 

( 1.70) 

are orthonormal functions of the group elements, g. Because the matrix ele
ments are orthonormal, they must be linearly independent. We can also show 
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that they are a complete set of functions of g, in the sense that an arbitrary 
function of g can be expanded in them. An arbitrary function of g can be writ
ten in terms of a bra vector in the space on which the regular representation 
acts: 

F(g) =(Fig)= (FIDR(g)le) (I.71) 

where 
(Fl = L F(g')(g'I (1.72) 

g'EG 

and DR is the regular representation. Thus an arbitrary F(g) can be written 
as a linear combination of the matrix elements of the regular representation. 

F(g) = L F(g')(g'IDR(g)le) = L F(g')[DR(g)] 9
1 e ( I. 73) 

g'EG g'EG 

But since DR is completely reducible, this can be rewritten as a linear com
bination of the matrix elements of the irreducible representations. Note that 
while this shows that the matrix elements of the inequivalent irreducible rep
resentations are complete, it doesn't tell us how to actually find what they are. 
The orthogonality relations are the same. They are useful only once we ac
tually know explicitly what the representation look like. Putting these results 
together, we have proved 

Theorem 1.5 The matrix elements of the unitary, irreducible representations 
of G are a complete orthonormal set for the vector space of the regular rep
resentation, or alternatively, for functions of g E G. 

An immediate corollary is a result that is rather amazing: 

(1.74) 

- the order of the group N is the sum of the squares of the dimensions of the 
irreducible representations ni just because this is the number of components 
of the matrix elements of the irreducible representations. You can check that 
this works for all the examples we have seen. 
Example: Fourier series - cyclic group ZN with elements a1 for j = 
0 to N - I (with a0 = e) 

a1ak = a(j+k) mod N 

The irreducible representations of ZN are 

Dn(aj) = e21rinj/N 

(1.75) 

(1.76) 
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all I-dimensional. 1 Thus ( 1.69) gives 

l N-1 _ L e-21rin'j/N e21rinj/N = <>n'n 
N . o 

J= 

which is the fundamental relation for Fourier series. 

1.13 Characters 

(1.77) 

The characters XD (g) of a group representation D are the traces of the linear 
operators of the representation or their matrix elements: 

-=-
XD(g) = 'Ir D(g) = L[D(g)]ii (1.78) 

The advantage of the characters is that because of the cyclic property of the 
trace 'Ir(AB} = 'Ir(BA}, they are unchanged by similarity transformations, 
thus all equivalent representations have the same characters. The characters 
are also different for each inequivalent irreducible representation, Da - in 
fact, they are orthonormal up to an overall factor of N - to see this just sum 
(1.69) over j = k and e = m 

L ! [Da(g)]jk[Db(g)]em = L ]:_<>ab<>je<>km = <>ab 
9 ea j=k na 
j=k l=m 
l=m 

or 
1" * N ~ XDa(g) XD&(g) = <>ab 

gEG 

(1.79) 

Since the characters of different irreducible representations are orthogonal, 
they are different. 

The characters are constant on conjugacy classes because 

(1.80) 

It is less obvious, but also true that the characters are a complete basis for 
functions that are constant on the conjugacy classes and we can see this by 
explicit calculation. Suppose that F(g1) is such a function. We already know 

1We will prove below that Abelian finite groups have only I-dimensional irreducible rep
resentations. 
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that F(g1 ) can be expanded in terms of the matrix elements of the irreducible 
represent1:1tions -

F(g1) = L cJk[Da(g1)]jk 
a,j,k 

but since F is constant on conjugacy classes, we can write it as 

and thus 

F(g1) = ! L cJk[Da(g-1)]je[Da(g1)]em[Da(g)]mk 
a,j,k 
g,l,m 

(1.81) 

(l.82) 

( 1.83) 

But now we can do the sum over g explicitly using the orthogonality relation, 
( 1.68). 

( 1.84) 

or 

( 1.85) 

This was straightforward to get from the orthogonality relation, but it has an 
important consequence. The characters, Xa(g), of the independent irreducible 
representations form a complete, orthonormal basis set for the functions that 
are constant on conjugacy classes. Thus the number of irreducible representa
tions is equal to the number of conjugacy classes. We will use this frequently. 

This also implies that there is an orthogonality condition for a sum over 
representations. To see this, label the conjugacy classes by an integer a, and 
let k 0 be the number of elements in the conjugacy class. Then define the 
matrix V with matrix elements 

(1.86) 

where g0 is the conjugacy class a. Then the orthogonality relation ( 1. 79) can 
be written as vt V = 1. But V is a square matrix, so it is unitary, and thus we 
also have vvt = 1, or 

(1.87) 
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Consequences: Let D be any representation (not necessarily irreducible). In 
its completely reduced form, it will contain each of the irreducible represen
tations some integer number of times, ma, We can compute ma simply by 
using the orthogonality relation for the characters ( 1. 79) 

1 " * ( D N ~ XDa(g) XD g) = ma 
gEG 

The point is that D is a direct sum 

m!; times 

a 

For example, consider the regular representation. It's characters are 

XR(e) = N XR(g) = 0 for g-:/ e 

Thus 
mf = Xa(e) = na 

( 1.88) 

(1.89) 

( 1.90) 

(1.91) 

Each irreducible representation appears in the regular representation a num
ber of times equal to its dimension. Note that this is consistent with (1.74). 
Note also that ma is uniquely determined, independent of the basis. 
Example: Back to S3 once more. Let's determine the characters without 
thinking about the 2-dimensional representation explicitly, but knowing the 
conjugacy classes, {e}, {a1,a2} and {a3,a4,a5}. It is easiest to start with 
the one representation we know every group has - the trivial representa
tion, Do for which Do(g) = 1 for all g. This representation has characters 
x0 (g) = l. Note that this is properly normalized. It follows from the con
dition L n~ = N that the other two representations have dimensions 1 and 
2. It is almost equally easy to write down the characters for the other I -
dimensional representation. In general, when there is an invariant subgroup 
H of G, there are representations of G that are constant on H, forming a 
representation of the factor group, G / H. In this case, the factor group is Z2, 
with nontrivial representation 1 for H = { e, a1, a2} and -1 for { a3, a4, as}. 
We know that for the 2 dimensional representation, x3 ( e) = n3 = 2, thus so 
far the character table looks like 

0 1 1 1 
(l.92) 

1 1 1 -1 

2 2 ? ? 
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But then we can fill in the last two entries using orthogonality. We could 
actually have just used orthogonality without even knowing about the second 
representation, but using the Z2 makes the algebra trivial. 

0 1 1 1 
(1.93) 

1 1 1 -1 

2 2 -1 0 

We can use the characters not just to find out how many irreducible rep
resentations appear in a particular reducible one, but actually to explicitly 
decompose the reducible representation into its irreducible components. It is 
easy to see that if D is an arbitrary representation, the sum 

Pa= r;; L XDJg)* D(g) 
gEG 

(1.94) 

is a projection operator onto the subspace that transfonns under the represen
tation a. To see this, note that if we set j = k and sum in the orthogonality 
relation ( 1.69), we find 

r;; L XDJg)*[Db(g)]em = <5abOem (1.95) 
gEG 

Thus when D is written in block diagonal form, the sum in (1.95) gives 1 
on the subspaces that transform like Da and O on all the rest - thus it is the 
projection operator as promised. The point, however, is that (1.94) gives us 
the projection operator in the original basis. We did not have to know how to 
transform to block diagonal form. An example may help to clarify this. 
Example - S3 again 

Here's a three dimensional representation of S3 

D,(e) = G 0 D, D,(a1) = G 0 ~) 1 0 
0 1 

D 3(a2 ) = G 1 

D D,(a,) = G 1 n 0 0 (l.96) 
0 0 

D3 (a,) = G 0 D, D,(a,) = G 0 

D 0 1 
1 0 
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More precisely, as usual when we write down a set of matrices to represent 
linear operators, these are matrices which have the same matrix elements -
that is 

(1.97) 

One could use a different symbol to represent the operators and the matrices, 
but its always easy to figure out which is which from the context. The impor
tant point is that the way this acts on the states, lj) is by matrix multiplication 
on the right, because we can insert a complete set of intermediate states 

D3(g)lj) = })k)(klD3(g)lj) = Llk)[D3(g)]kj ( 1.98) 
k k 

This particular representation is an important one because it is the defin
ing representation for the group - it actually implements the permutations 
on the states. For example 

D3(a1)ll) = })k)[D3(a1)]k1 = 12) 
k 

D3(ai)l2) = Llk)(D3(ai)]k2 = /3) 
k 

D3(a1)13) = })k)[D3(a1)]k3 = II) 
k 

(l.99) 

thus this implements the cyclic transformation (1,2,3), or 1 --+ 2 --+ 3 --+ 1. 
Now if we construct the projection operators, we find 

ID (1.100) 

(1.101) 

(1.102) 

This makes good sense. Pa projects onto the invariant combination (11) + 
12) + 13))/\,/3, which transforms trivially, while P2 projects onto the two 
dimensional subspace spanned by the differences of pairs of components, 
I 1) - 12), etc, which transforms according to D3. 

This constructions shows that the representation D3 decomposes into a 
direct sum of the irreducible representations, 

(1.103) 
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1.14 Eigenstates 

In quantum mechanics, we are often interested in the eigenstates of an invari
ant hermitian operator, in particular the Hamiltonian, H. We can always take 
these eigenstates to transform according to irreducible representations of the 
symmetry group. To prove this, note that we can divide up the Hilbert space 
into subspaces with different eigenvalues of H. Each subspace furnishes a 
representation of the symmetry group because D (g), the group represen
tation on the full Hilbert space, cannot change the H eigenvalue (because 
[D(g), H] = 0). But then we can completely reduce the representation in 
each subspace. 

A related fact is that if some irreducible representation appears only once 
in the Hilbert space, then the states in that representation must be eigenstates 
of H (and any other invariant operator). This is true because Hla, j, x) must 
be in the same irreducible representation, thus 

H la,j,x) = L Cy la,j, y) (l.104) 
y 

and if x and y take only one value, then la, j, x) is an eigenstate. 
This is sufficiently important to say again in the form of a theorem: 

Theorem 1.6 If a hermitian operator, H, commutes with all the elements, 
D(g), of a representation of the group G, then you can choose the eigen
states of H to transform according to irreducible representations of G. If 
an irreducible representation appears only once in the Hilbert space, every 
state in the irreducible representation is an eigenstate of H with the same 
eigenvalue. 

Notice that for Abelian groups, this procedure of choosing the H eigen
states to transform under irreducible representations is analogous to simulta
neously diagonalizing Hand D(g). For example, for the group Z2 associated 
with parity, it is the statement that we can always choose the H eigenstates to 
be either symmetric or antisymmetric. 

In the case of parity, the linear operator representing parity is hermitian, 
so we know that it can be diagonalized. But in general, while we have shown 
that operators representing finite group elements can be chosen to be unitary, 
they will not be hermitian. Nevertheless, we can show that for an Abelian 
group that commutes with the H, the group elements can simultaneously 
diagonalized along with H. The reason is the following theorem: 

Theorem 1.7 All of the irreducible representations of a finite Abelian group 
are I -dimensional. 
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One proof of this follows from our discussion of conjugacy classes and from 
(1.74). For an Abelian group, conjugation does nothing, because g g' g- 1 = 
g' for all g and g'. Therefore, each element is in a conjugacy class all by itself. 
Because there is one irreducible representation for each conjugacy class, the 
number of irreducible representations is equal to the order of the group. Then 
the only way to satisfy (I. 74) is to have all of the nis equal to one. This proves 
the theorem, and it means that decomposing a representation of an Abelian 
group into its irreducible representations amounts to just diagonalizing all the 
representation matrices for all the group elements. 

For a non-Abelian group, we cannot simultaneously diagonalize all of 
the D(g)s, but the procedure of completely reducing the representation on 
each subspace of constant H is the next best thing. 

A classical problem which is quite analogous to the problem of diago
nalizing the Hamiltonian in quantum mechanics is the problem of finding the 
normal modes of small oscillations of a mechanical system about a point of 
stable equilibrium. Here, the square of the angular frequency is the eigen

yalue of the M-1 K matrix and the normal modes are the eigenvectors of 
M-1 K. In the next three sections, we will work out an example. 

1.15 Tensor products 

We have seen that we can take reducible representations apart into direct 
sums of smaller representations. We can also put representations together 
into larger representations. Suppose that D1 is an m dimensional representa
tion acting on a space with basis vectors lj) for j = 1 tom and D2 is an n 
dimensional representation acting on a space with basis vectors Ix) for x = I 
to n. We can make an m x n dimensional space called the tensor product 
space by taking basis vectors labeled by both j and x in an ordered pair -
lj, x). Then when j goes from 1 tom and x goes from I ton, the ordered 
pair (j, x) runs over m x n different combinations. On this large space, we 
can define a new representation called the tensor product representation 
D 1 0 D2 by multiplying the two smaller representations. More precisely, the 
matrix elements of D Di@D2 (g) are products of those of D1 (g) and D2(g): 

(1.105) 

It is easy to see that this defines a representation of G. In general, however, 
it will not be an irreducible representation. One of our favorite pastimes in 
what follows will be to decompose reducible tensor product representations 
into irreducible representations. 
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1.16 Example of tensor products 

Consider the following physics problem. Three blocks are connected by 
springs in a triangle as shown 

(1.106) 

Suppose that these are free to slide on a frictionless surface. What can we 
say about the normal modes of this system. The point is that there is an S3 
symmetry of the system, and we can learn a lot about the system by using the 
symmetry and applying theorem 1.6. The system has 6 degrees of freedom, 
described by the x and y coordinates of the three blocks: 

( XI YI X2 Y2 X3 Y3) (1.107) 

This has the structure of a tensor product - the 6 dimensional space is a 
product of a 3 dimensional space of the blocks, and the 2 dimensional space 
of the x and y coordinates. We can think of these coordinates as having two 
indices. It is three two dimensional vectors, 'G, each of the vector indices has 
two components. So we can write the components as Tjµ where j labels the 
mass and runs from 1 to 3 and µ labels the x or y component and runs from 
1 to 2, with theconnection 

( X1 YI X2 Y2 X3 Y3) = 
(1.108) 

( ru r12 r21 r22 r31 r32) 

The 3 dimensional space transforms under S3 by the representation D 3. The 
2 dimensional space transforms by the representation D 2 below: 

D,(e) = (~ n , D2(a1) = ( 1 -=-n , 
D2 (a2 ) = ( ~~ ~) , D,(a,) = ( ~l ~) , 

( 
1 ,y] ) ( 1 __ v'3_2~3 ) D2(a4) = 1 ~½ , D2(a5) = -4 

(1.109) 
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This is the same as ( t.21 ). Then, using ( 1.105), the 6 dimensional represen
tation of the coordinates is simply the product of these two representations: 

[D5(g)]jµkv = [D3(g)]jk[D2(g)]µv (1.110) 

Thus, for example, 

0 0 0 0 1 _v'3 -2 2 

0 0 0 0 v'3 1 
2 -2 

1 v'3 0 0 0 0 
D5(a1) = -2 --y 

_y] 1 0 0 0 0 2 -2 
(1.111) 

0 0 1 _ _y] 0 0 -2 2 

0 0 v'3 1 0 0 
2 -2 

This has the structure of 3 copies of D2 ( a 1) in place of the 1 's in D3 ( a 1). 
The other generators are similar in structure. 

Because the system has the S3 symmetry, the normal modes of the sys
tem must transform under definite irreducible representations of the symme
try. Thus if we construct the projectors onto these representations, we will 
have gone some way towards finding the normal modes. In particular, if an 
irreducible representation appears only once, it must be a normal mode by 
theorem 1.6. If a representation appears more than once, then we need some 
additional information to determine the modes. 

We can easily determine how many times each irreducible representation 
appears in D5 by finding the characters of D6 and using the orthogonality 
relations. To find the characters of D5, we use an important general result. 
The character of the tensor product of two representations is the product of 
the characters of the factors. This follows immediately from the definition of 
the tensor product and the trace. 

So in this case, 

X6(g) = I)D5(g)]jµjµ 
jµ 

= [D3(g)Jii[D2(g)]µµ = X3(g)x2(g) 

(1.112) 

(1.113) 
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so that the product is as shown in the table below: 

D3 3 0 1 
(1.114) 

D2 2 -1 0 

D5 6 0 0 

This is the same as the characters of the regular representation, thus this rep
resentation is equivalent to the regular representation, and contains Do and 
D1 once and D2 twice. 

Note that ( 1.113) is an example of a simple but important general relation, 
which we might as well dignify by calling it a theorem -

Theorem 1.8 The characters of a tensor product representation are the prod
ucts of the characters of the factors. 

With these tools, we can use group theory to find the normal modes of 
the system. 

1.17 * Finding the normal modes 

The projectors onto Do and D 1 will be 1 dimensional. 
Po is 

i I: * Po = - xo(g) D5(g) 
6 

gEG 

1 _y] 1 _y] 0 _v'3 
4 12 -4 12 6 

v'3 1 _ _y] 1 0 _ _y] 
IT 12 12 12 6 

(l.115) 
1 _ _y] 1 _ _y] 0 _y] -4 12 4 12 6 

v'3 1 v'3 1 0 _ _y] 
IT 12 -12 12 6 
0 0 0 0 0 0 
v'3 1 _y] 1 0 1 

-6 -6 6 -6 3 

( ½ 1 -½ ¥ 0 -~) (1.116) 
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corresponding to the motion 

(1.117) 

the so-called "breathing mode" in which the triangle grows and shrinks while 
retaining its shape. 

Pi is 

Pi=! :E x1(g)* D6(g) 
6 

gEG 

1 _ _y] 1 _y] 1 0 12 12 12 12 -6 
_ _y] 1 _ _y] 1 _y] 0 (1.118) 12 4 12 -4 6 

1 _ _y] 1 _y] 1 0 = 12 12 12 12 -6 
y3 1 _y] 1 y3 0 12 -4 12 4 -6 

1 _y] 1 _.Y] 1 0 -6 6 -6 6 3 
0 0 0 0 0 0 

= ( -¥ ½ -f -½ ~ 0) (1.119) 
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corresponding to the motion 

(l.120) 

the mode in which the triangle rotates - this is a nonnal mode with zero 
frequency because there is no restoring force. 

Notice, again, that we found these two normal modes without putting in 
any physics at all except the symmetry! 

Finally, P2 is 

P2 = ~ :E x2(g)* D6(g) 
gEG 

2 0 1 _y] 1 y3 
3 6 6 6 6 
0 2 _y] 1 _ _y] 1 

(l.121) 3 6 6 6 6 
1 y3 2 0 1 y3 

= 6 6 3 6 -6 
_y3 1 0 2 _y] 1 

6 6 3 6 6 
1 _y3 1 y3 2 0 6 6 6 6 3 

y3 1 _ _y] 1 0 2 
6 6 6 6 3 

As expected, this is a rank 4 projection operator (Tr P2 = 4). We need some 
dynamical infonnation. Fortunately, two modes are easy to get - translations 
of the whole triangle. 

Translations in the x direction, for example, are projected by 

1 0 1 0 1 0 3 3 3 
0 0 ·o 0 0 0 
1 0 1 0 1 0 

Tx = 3 3 3 (1.122) 
0 0 0 0 0 0 
1 0 1 0 1 0 3 3 3 
0 0 0 0 0 0 
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and those in the y direction by 

0 0 0 0 0 0 
0 1 0 1 0 1 

3 3 3 

Ty= 
0 0 0 0 0 0 
0 1 0 1 0 1 

3 3 3 
(1.123) 

0 0 0 0 0 0 
0 1 0 1 0 1 

3 3 3 

So the nontrivial modes are projected by 

P2 -Tx -Ty= 

1 0 1 y3 1 y3 
3 -6 -6 -6 6 
0 1 _y] 1 y3 1 

3 6 -6 -6 -6 
1 y3 1 0 1 _ _y] 

-6 6 3 -6 6 
(1.124) 

_y3 1 0 1 _y] 1 
6 -6 3 6 -6 
1 _ _y] 1 _y] 1 0 -6 6 -6 6 3 

_y] 1 y3 1 0 1 
6 -6 -6 -6 3 

To see what the corresponding modes look like, act with this on the vector 
( 0 0 0 0 0 1 ) to get 

("? -1{- -! 0 ½ ) (l.125) 

corresponding to the motion 

(1.126) 

Then rotating by 21r /3 gives a linearly independent mode. 
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1.18 * Symmetries of 2n+l-gons 

This is a nice simple example of a transfonnation group for which we can 
work out the characters (and actually the whole set of irreducible representa
tions) easily. Consider a regular polygon with 2n + 1 vertices, like the 7-gon 
shown below. 

(1.127) 

The grouf of symmetries of the 2n+ 1-gon consists of the identity, the 2n 
rotations by 2,;~{ for j = l to n, 

. ±21rj . 
rotations by --- for J = 1 to n 

2n+ 1 
(1.128) 

and the 2n+ 1 reflections about lines through the center and a vertex, as show 
below: 

reflections about lines through center and vertex (1.129) 

(1.130) 

Thus the order of the group of symmetries is N = 2 x (2n + 1). 
There are n + 2 conjugacy classes: 

1 - the identity, e; 

2 - the 2n+ 1 reflections; 

3 to n+2 - the rotations by ~~{ for j = l to n - each value of j is a 
separate conjugacy class. 

The way this works is that the reflections are all in the same conjugacy 
class because by conjugating with rotations, you can get from any one reflec
tion to any other. The rotations are unchanged by conjugation by rotations, 
but a conjugation by a reflection changes the sign of the rotation, so there is 
a ± pair in each conjugacy class. 
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Furthermore, the n conjugacy classes of rotations are equivalent under 
cyclic permutations and relabeling of the vertices, as shown below: 

(1.131) 

(l.132) 

The characters look like 

j=2 1···1 j=n 

1 1 1 1 ... 1 
(1.133) 

1 -1 1 1 ... 1 

2 0 2 COS 21rm 
2n+l 

2 COS 41rm ... 
2n+l 

2cos 2nirm 
2n+l 

In the last line, the different values of m give the characters of the n different 
2-dimensional representations. 

1.19 Permutation group on n objects 

Any element of the permutation group on n objects, called Sn, can be written 
in term of cycles, where a cycle is a cyclic permutation of a subset. We 
will use a notation that makes use of this, where each cycle is written as a 
set of numbers in parentheses, indicating the set of things that are cyclicly 
permuted. For example: 

(l) means x1 --t x1 

(I 372) means x1 --t X3 --t x7 --t x2 --t x1 

Each element of Sn involves each integer from 1 to n in exactly one 
cycle. 

Examples: 
The identity element looks like e =(1)(2)· · ·(n) - n I-cycles - there is 

only one of these. 
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An interchange of two elements looks like (12)(3)· · -(n) - a 2-cycle and 
n - 2 1-cycles - there are n(n - 1) /2 of these - (j132)(13) ···Un)-

An arbitrary element has kj j-cycles, where 

n 

L, j kj = n (1.134) 
j=l 

For example, the permutation (123)(456)(78)(9) has two 3-cycles, 1 2-cycle 
and a 1-cycle, so k1 = k2 = 1 and k3 = 2. 

There is an simple (but reducible) n dimensional representation of Sn 
called the defining representation where the "objects" being permuted are 
just the basis vectors of an n dimensional vector space, 

11) , 12) , .. · In) (l.135) 

If the permutation takes Xj to Xk, the corresponding representation operator 
D takes lj) to lk), so that 

D IJ) = lk) (1.136) 

and thus 

(1.137) 

Each matrix in the representation has a single 1 in each row and column. 

1.20 Conjugacy classes 

The conjugacy classes are just the cycle structure, that is they can be labeled 
by the integers kj. For example, all interchanges are in the same conjugacy 
class - it is enough to check that the inner automorphism gg1g-1 doesn't 
change the cycle structure of g1 when g is an interchange, because we can 
build up any permutation from interchanges. Let us see how this works 
in some examples. In particular, we will see that conjugating an arbitrary 
permutation by the interchange (12)(3)· ··just interchanges 1 and 2 without 
changing the cycle structure 

Examples - (12)(3)(4)·(1)(23)(4)·(12)(3)(4) (note that an interchange 
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is its own inverse) 
1234 
~ (12)(3)(4) 

2134 
~ (1)(23)(4) 

2314 
~ (12)(3)(4) 

3214 
(1.138) 

1234 
~ (2)(13)(4) 

3214 

(12)(3)( 4)-(1)(234)-(12)(3)( 4) 

1234 
~ (12)(3)(4) 

2134 
~ (1)(234) 

2341 
~ (12)(3)(4) 

3241 
(1.139) 

1234 
-1- (2)(134) 

3241 

If 1 and 2 are in different cycles, they just get interchanged by conjuga
tion by (12), as promised. 

The same thing happens when 1 and 2 are in the same cycle. For example 

1234 
+ (12)(3)(4) 

2134 
~ (123)(4) 

1324 
~ (12)(3)(4) (1.140) 

3124 

1234 
~ (213)(4) 

3124 

Again, in the same cycle this time, 1 and 2 just get interchanged. 
Another way of seeing this is to notice that the conjugation is analo

gous to a similarity transformation. In fact, in the defining, n dimensional 
representation of (1.135) the conjugation by the interchange (12) is just a 
change of basis that switches 11) t-t 12). Then it is clear that conjugation 
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does not change the cycle structure, but simply interchanges what the permu
tation does to I and 2. Since we can put interchanges together to form an 
arbitrary permutation, and since by repeated conjugations by interchanges, 
we can get from any ordering of the integers in the given cycle structure to 
any other, the conjugacy classes must consist of all possible permutations 
with a particular cycle structure. 

Now let us count the number of group elements in each conjugacy class. 
Suppose a conjugacy class consists of permutations of the form of k1 I -
cycles, k2 2-cycles, etc, satisfying ( 1.134 ). The number of different permuta
tions in the conjugacy class is 

n! 
(l.141) 

because each permutation of number l to n gives a permutation in the class, 
but cyclic order doesn't matter within a cycle 

(123) is the same as (231) 

and order doesn't matter at all between cycles of the same length 

(12)(34) is the same as (34)(12) 

1.21 Young tableaux 

(1.142) 

(1.143) 

It is useful to represent each j-cycle by a column of boxes of length j, top
justified and arranged in order of decreasing j as you go to the right. The 
total number of boxes is n. Here is an example: 

I II I I (1.144) 

is four I-cycles in S4 - that is the identity element - always a conjugacy 
class all by itself. Here's another: 

(1.145) 

is a 4-cycle, a 3-cycle and a I-cycle in Ss. These collections of boxes are 
called Young tableaux. Each different tableaux represents a different conju
gacy class, and therefore the tableaux are in one-to-one correspondence with 
the irreducible representations. 
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1.22 Example - our old friend S3 

The conjugacy classes are 

ITIJ EP 8 
with numbers of elements 

3! 3! 3! 
- = 1 - =3 - =2 
3! 2 3 

1.23 Another example - S4 

I,--,--,--,--, I I I I EfTI EE If ~ 
with numbers of elements 

4! = 1 
4! 

4! = 6 4! = 3 4! = 8 
4 8 3 

41 _:_ = 6 
4 

(1.146) 

(l.147) 

(l.148) 

(1.149) 

The characters of 84 look like this (with the conjugacy classes which 
label the columns in the same order as in (1.148)): 

conjugacy classes 
1 1 1 1 1 

3 1 -1 0 -1 
2 0 2 -1 0 

( 1.150) 

3 -1 -1 0 1 

1 -1 1 1 -1 

The first row represents the trivial representation. 

1.24 * Young tableaux and representations of Sn 

We have seen that a Young tableau with n boxes is associated with an irre
ducible representation of Sn. We can actually use the tableau to explicitly 
construct the irreducible representation by identifying an appropriate sub
space of the regular representation of Sn. 
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To see what the irreducible representation is, we begin by putting the 
integers from l to n in the boxes of the tableau in all possible ways. There 
are n! ways to do this. We then identify each assignment of integers l to 
n to the boxes with a state in the regular representation of Sn by defining 
a standard ordering, say from left to right and then top down (like reading 
words on a page) to translate from integers in the boxes to a state associated 
with a particular pennutation. So for example 

~ ~ ---+ 16532174) 

where J6532174) is the state corresponding to the permutation 

1234567 ---+ 6532174 

(1.151) 

(1.152) 

Now each of the n! assignment of boxes to the tableau describes one of the 
n! states of the regular representation. 

Next, for a particular tableau, symmetrize the corresponding state in the 
numbers in each row, and antisymmetrize in the numbers in each column. For 
example 

[ill] ---+ 112) + 121) (l.153) 

and 

w2
1 ---+ 1123) + 1213} _ /321} _ 1231) 

(l.154) 

Now the set of states constructed in this ways spans some subspace of 
the regular representation. We can construct the states explicitly, and we 
know how permutations act on these states. That the subspace constructed 
in this way is a representation of 8n, because a permutation just corresponds 
to starting with a different assignment of numbers to the tableau, so acting 
with the permutation on any state in the subspace gives another state in the 
subspace. In fact, this representation is irreducible, and is the irreducible 
representation we say is associated with the Young tableau. 

Consider the example of Eh. The tableau 

[I1J (1.155) 

gives completely symmetrized states, and so is associated with a one dimen
sional subspace that transforms under the trivial representation. The tableau 

§ (1.156) 



40 CHAPTER 1. FINITE GROUPS 

gives completely antisymmetrized states, and so, again is associated with a 
one dimensional subspace, this time transforming under the representation in 
which interchanges are represented by -1. Finally 

gives the following states: 

[!]21 --t !123) + !213) - !321) - !231) 

[1] 21 --t !321) + 1231) - !123) - !213) 

[1] 31 --t !231) + !321) - !132) - !312) 

8] 31 --t !132) + 1312) - !231) - !321) 

[!j 11 --t /312) + 1132} - 1213} - 1123) 

[j_] 11 --t !213) + !123) - !312) - !132) 

(1.157) 

(1.158) 

(1.159) 

(1.160) 

(1.161) 

(1.162) 

(l.163) 

Note that interchanging two numbers in the same column of a tableau just 
changes the sign of the state. This is generally true. Furthermore, you can 
see explicitly that the sum of three states related by cyclic permutations van
ishes. Thus the subspace is two dimensional and transforms under the two 
dimensional irreducible representation of S3. 

It turns out that the dimension of the representation constructed in this 
way is 

n! 
H 

(1.164) 

where the quantity H is the "hooks" factor for the Young tableau, computed 
as follows. A hook is a line passing vertically up through the bottom of 
some column of boxes, making a right hand tum in some box and passing out 
through the row of boxes. There is one hook for each box. Call the number 
of boxes the hook passes through h. Then H is the product of the hs for 
all hooks. We will come back to hooks when we discuss the application of 
Young tableaux to the representations of SU(N) in chapter XII I. 

This procedure for constructing the irreducible representations of Sn is 
entirely mechanical (if somewhat tedious) and can be used to construct all the 
representations of Sn from the Young tableaux with n boxes. 
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We could say much more about finite groups and their representations, 
but our primary subject is continuous groups, so we will leave finite groups 
for now. We will see, however, that the representations of the permutation 
groups play an important role in the representations of continuous groups. So 
we will come back to Sn now and again. 

Problems 

1.A. Find the multiplication table for a group with three elements and 
prove that it is unique. 

1.B. Find all essentially different possible multiplication tables for groups 
with four elements (which cannot be related by renaming elements). 

1.C. Show that the representation (1.135) of the permutation group is 
reducible. 

1.D. Suppose that D 1 and D 2 are equivalent, irreducible representations 
of a finite group G, such that 

D2(g) = S D1(g) s-1 Vg E G 

What can you say about an operator A that satisfies 

1.E. Find the group of all the discrete rotations that leave a regular tetra
hedron invariant by labeling the four vertices and considering the rotations 
as permutations on the four vertices. This defines a four dimensional repre
sentation of a group. Find the conjugacy classes and the characters of the 
irreducible representations of this group. 

*1.F. Analyze the normal modes of the system of four blocks sliding on 
a frictionless plane, connected by springs as shown below: 
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just as we did for the triangle, but using the 8-element symmetry group of 
the square. Assume that the springs are rigidly attached to the masses (rather 
than pivoted, for example), so that the square has some rigidity. 



Chapter 2 

Lie Groups 

Suppose our group elements g E G depend smoothly on a set of continuous 
parameters -

g(a) (2.1) 

What we mean by smooth is that there is some notion of closeness on the 
group such that if two elements are "close together" in the space of the group 
elements, the parameters that describe them are also close together. 

2.1 Generators 

Since the identity is an important element in the group, it is useful to param
eterize the elements (at least those close to the identity element) in such a 
way that a = 0 corresponds to the identity element. Thus we assume that in 
some neighborhood of the identity, the group elements can be described by a 
function of N real parameters, aa for a = l to N, such that 

g(a)la=O = e (2.2) 

Then if we find a representation of the group, the linear operators of the rep
resentation will be parameterized the same way, and 

D(a)la=O = 1 (2.3) 

Then in some neighborhood of the identity element, we can Taylor expand 
D (a), and if we are close enough, just keep the first term: 

• 
D(da) = 1 + idaaXa + · · · (2.4) 

43 



44 CHAPTER 2. LIE GROUPS 

where we have called the parameter da to remind you that it is infinitesimal. 
In (2.4), a sum over repeated indices is understood (the "Einstein summation 
convention") and 

Xa = -i aa D(a)I 
aa a=O 

(2.5) 

The Xa for a = l to N are called the generators of the group. If the 
parameterization is parsimonious (that is - all the parameters are actually 
needed to distinguish different group elements), the Xa will be independent. 
The i is included in the definition (2.5) so that if the representation is unitary, 
the Xa will be hermitian operators. 

Sophus Lie showed how the generators can actually be defined in the 
abstract group without mentioning representations at all. As a result of his 
work, groups of this kind are called Lie groups. I am not going to talk about 
them this way because I am more interested in representations than in groups, 
but it is a beautiful theoretical construction that you may want to look up if 
you haven't seen it. 

As we go away from the identity, there is enormous freedom to param
eterize the group elements in different ways, but we may as well choose our 
parameterization so that the group multiplication law and thus the multipli
cation law for the representation operators in the Hilbert space looks nice. 
In particular, we can go away from the identity in some fixed direction by 
simply raising an infinitesimal group element 

D(da) = 1 + idaaXa (2.6) 

to some large power. Because of the group property, this always gives an
other group element. This suggests defining the representation of the group 
elements for finite a as 

(2.7) 

In the limit, this must go to the representation of a group element because 
1 + iaaXa/k becomes the representation of a group element in (2.4) as k 
becomes large. This defines a particular parameterization of the representa
tions (sometimes called the exponential parameterization), and thus of the 
group multiplication law itself. In particular, this means that we can write the 
group elements (at least in some neighborhood of e) in terms of the genera
tors. That's nice, because unlike the group elements, the generators form a 
vector space. They can be added together and multiplied by real numbers. In 
fact, we will often use the term generator to refer to any element in the real 
linear space spanned by the Xas. 
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2.2 Lie algebras 

Now in any particular direction, the group multiplication law is uncompli
cated. There is a one parameter family of group elements of the form 

(2.8) 

and the group multiplication law is simply 

(2.9) 

However, if we multiply group elements generated by two different linear 
combinations of generators, things are not so easy. In general, 

(2.10) 

On the other hand, because the exponentials form a representation of the 
group (at least if we are close to the identity), it must be true that the product 
is some exponential of a generator, 

(2.11) 

for some o. And because everything is smooth, we can find Oa by expanding 
both sides and equating appropriate powers of a and /3. When we do this, 
something interesting happens. We find that it only works if the generators 
form an algebra under commutation (or a commutator algebra). To see this, 
let's actually do it to leading nontrivial order. We can write 

(2.12) 

I will now expand this, keeping terms up to second order in the parameters a 
and /3, using the Taylor expansion ofln(l + K) where 

I( = ei<'<aXaeif3&Xb _ 1 

= (1 + iaaXa - !(aaXa)2 + · · ·) 
1 2 

(1 + if3bXb - 2(f3bXb) 2 + · · ·) -1 

= iaaXa + i/3aXa - aaXa/3bXb 
1 2 1 2 - 2(aaXa) - 2(f3aXa) + · · · 

(2. I 3) 
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This gives 

ioaXa = K - ! K 2 + · · · 
2 

= iaaXa + if3aXa - aaXaf3bXb 
1 2 1 2 

-taaXa) - 2(f3aXa) 

+2(aaXa + f3aXa) 2 + · · · 

(2.14) 

Now here is the point. The higher order terms in (2.14) are trying to cancel. 
If the X s were numbers, they would cancel, because the product of the ex
ponentials is the exponential of the sum of the exponents. They fail to cancel 
only because the Xs are linear operators, and don't commute with one an
other. Thus the extra terms beyond iaaXa + if3aXa in (2. I 4) are proportional 
to the commutator. Sure enough, explicit calculation in (2.14) gives 

ioaXa = K - !K2 + · · · 
2 

= iaaXa + i/3aXa 
1 

- 2 [aaXa, /3bXb] + · · · 

(2.15) 

We obtained (2.15) using only the group property and smoothness, which 
allowed us to use the Taylor expansion. From (2.15) we can calculate Oa, 
again in an expansion in a and /3. We conclude that 

(2.16) 

where the i is put in to make I real and the · · · represent terms that have more 
than two factors of a or /3. Since (2.16) must be true for all a and /3, we must 
have 

for some constants !abc, thus 

where 
fabc = - fbac 

because [A, B] = -[B, A]. Note that we can now write 

1 
Oa = aa + f3a - -,a + · · · 

2 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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so that if I and the higher terms vanish, we would restore the equality in 
(2.10). 

(2.18) is what is meant by the statement that the generators form an alge
bra under commutation. We have just shown that this follows from the group 
properties for Lie groups, because the Lie group elements depend smoothly 
on the parameters. The commutator in the algebra plays a role similar to the 
multiplication law for the group. 

Now you might worry that if we keep expanding (2.12) beyond second 
order, we would need additional conditions to make sure that the group mu!: 
tiplication law is maintained. The remarkable thing is that we don't. The 
commutator relation (2.18) is enough. In fact, if you know the constants, 
f abc, you can reconstruct o as accurately as you like for any a and /3 in some 
finite neighborhood of the origin! Thus the !abc are tremendously important 
- they summarize virtually the entire group multiplication law. The f abc are 
called the structure constants of the group. They can be computed in any 
nontrivial representation, that is unless the Xa vanish. 

The commutator relation (2.18) is called the Lie algebra of the group. 
The Lie algebra is completely determined by the structure constants. Each 
group representation gives a representation of the algebra in an obvious way, 
and the structure constants are the same for all representations because they 
are fixed just by the group multiplication law and smoothness. Equivalence, 
reducibility and irreducibility can be transferred from the group to the algebra 
with no change. 

Note that if there is any unitary representation of the algebra, then the 
f abcs are real, because if we take the adjoint of the commutator relation for 
hermitian X s, we get 

[Xa, Xb]t = -i J:bcXc 

= [Xb, Xa] = i fbacXc = -i fabcXc 
(2.21) 

Since we are interested in groups which have unitary representations, we will 
just assume that the f abc are real. 

2.3 The Jacobi identity 

The matrix generators also satisfy the following identity: 

[Xa, [Xb, Xe]] + cyclic permutations = 0. (2.22) 
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called the Jacobi identity, which you can check by just expanding out the 
commutators. 1 

The Jacobi identity can be written in a different way that is sometimes 
easier to use and is also instructive: 

(2.23) 

This is a generalization of the product rule for commutation: 

(2.24) 

The Jacobi identity is rather trivial for the Lie algebras with only finite dimen
sional representations that we will study in this book. But it is worth noting 
that in Lie's more general treatment, it makes sense in situations in which the 
product of generators is not even well defined. 

2.4 The adjoint representation 

The structure constants themselves generate a representation of the algebra 
called the adjoint representation. If we use the algebra(2. l 8), we can com
pute 

[Xa, [Xb, Xe]] 
= i fbcd [Xa, Xd] 

= - fbcdfadeXe 

so (because the Xa are independent),{2.22) implies 

fbcdf ade + fabdfcde + fcadfbde = 0 · 

Defining a set of matrices Ta 

[Ta]bc = -if abc 

then (2.26) can be rewritten as 

[Ta, n] = i !abcTc 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

Thus the structure constants themselves furnish a representation of the alge
bra. This is called the adjoint representation. The dimension of a repre
sentation is the dimension of the linear space on which it acts (just as for a 

1The Jacobi identity is really more subtle than this. We could have proved it directly in 
the abstract group, where the generators are not linear operators on a Hilbert space. Then 
the algebra involves a "Lie product" which is not necessarily a commutator, but nevertheless 
satisfies the Jacobi identity. 
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finite group). The dimension of the adjoint representation is just the number 
of independent generators, which is the number of real parameters required 
to describe a group element. Note that since the !abcS are real, the generators 
of the adjoint representation are pure imaginary. 

We would like to have a convenient scalar product on the linear space 
of the generators in the adjoint representation, (2.27), to tum it into a vector 
space. A good one is the trace in the adjoint representation 

(2.29) 

This is a real symmetric matrix. We will next show that we can put it into 
a very simple canonical form. We can change its form by making a linear 
transformation on the Xa, which in tum, induces a linear transformation on 
the structure constants. Suppose 

then 

so2 

" k 

[X:, X~] = i LadLbefdecXc 

= i LadLbefdegL;i LhcXc 

= i LadLbe!de9 L9c1 X~ 

f abc -+ f~bc = LadLbefdegL;/ 

If we then define a new Tas with the transformed f s, 

or 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

In other words, a linear transformation on the Xas induces a linear transfor
mation on the Tas which involves both a similarity transformation and the 
same linear transformation on the a index that labels the generator. But in the 
trace the similarity transformation doesn't matter, so 

(2.35) 

2Because of the L- 1 in (2.32), it would be make sense to treat the third index in /abc 

differently, and write it as an upper index - f~b- We will not bother to do this because we are 
going to move very quickly to a restricted set of groups and basis sets in which Tr(TaI'b) ex 
dab- Then only orthogonal transfonnation on the Xas are allowed, L- 1 = Lr, so that all 
three indices are treated in the same way. 
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Thus we can diagonalize the trace by choosing an appropriate L (here we 
only need an orthogonal matrix). Suppose we have done this (and dropped 
the primes), so that 

(2.36) 

We still have the freedom to rescale the generators (by making a diagonal 
L transformation), so for example, we could choose all the non-zero kas to 
have absolute value 1. But, we cannot change the sign of the kas (because L 
appears squared in the transformation (2.35)). 

For now, we will assume that the kas are positive. This defines the 
class of algebras that we study in this book. They are called the compact 
Lie algebras. We will come back briefly below to algebras in which some 
are zero. 3 And we will take 

(2.37) 

for some convenient positive .X.. In this basis, the structure constants are com
pletely antisymmetric, because we can write 

labc = -i .X. -l 'Ir([Ta, n] Tc) (2.38) 

which is completely antisymmetric because of the cyclic property of the trace . 

which implies 

......... ( 

.I ti 

~Jr([Ta, n] Tc) d.(TanTc - nTaTc) 
=:.(nTcTa - TcnTa) = 'Ir([n, Tc] Ta) 

fabc = /bca · 

(2.39) 

(2.40) 

Taken together, (2.19) and (2.40) imply the complete antisymmetry of !abc 

f abc = /bca = fcab 
= -fbac = -facb = - fcba · 

(2.41) 

In this basis, the adjoint representation is unitary, because the Ta are imagi
nary and antisymmetric, and therefore hermitian. 

3 Algebras in which some of the kas are negative have no nontrivial finite dimensional 
unitary representations. This does not mean that they are not interesting (the Lorentz group is 
one such), but we will not discuss them. 
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2.5 Simple algebras and groups 

An invariant subalgebra is some set of generators which goes into itself 
under commutation with any element of the algebra. That is, if X is any 
generator in the invariant subalgebra and Y is any generator in the whole al
gebra, [Y, X] is a generator in the invariant subalgebra. When exponentiated, 
an invariant subalgebra generates an invariant subgroup. To see this note that 

where 

y -y 1 
X' = e-i X ei = X - i [Y, X] - 2 [Y, [Y, X]] + · · · . 

Note that the easy way to see this is to consider 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

then Taylor expand in t and set t = 1. Each derivative brings another com
mutator. Evidently, each of the terms in X' is in the subalgebra, and thus eiX' 

is in the subgroup, which is therefore invariant. 
The whole algebra and O are trivial invariant subalgebras. An algebra 

which has no nontrivial invariant subalgebra is called simple. A simple alge
bra generates a simple group. 

The adjoint representation of a simple Lie algebra satisfying (2.37) is 
irreducible. To see this, assume the contrary. Then there is an invariant sub
space in the adjoint representation. But the states of the adjoint representation 
correspond to generators, so this means that we can find a basis in which the 
invariant subspace is spanned by some subset of the generators, Tr for r = 1 
to K. Call the rest of the generators Tx for x = K + I to N. Then because 
the rs span an invariant subspace, we must have 

[Ta]xr = -if axr = 0 (2.46) 

for all a, x and r. Because of the complete antisymmetry of the structure 
constants, this means that all components of f that have two rs and one x or 
two xs and one r vanish. But that means that the nonzero structures constants 
involve either three rs or three xs, and thus the algebra falls apart into two 
nontrivial invariant subalgebras, and is not simple. Thus the adjoint represen
tation of a simple Lie algebra satisfying (2.37) is irreducible. 



52 CHAPTER 2. LIE GROUPS 

We will often find it useful to discuss special Abelian invariant subalge
bras consisting of a single generator which commutes with all the generators 
of the group (or of some subgroup we are interested in). We will call such 
an algebra a U(l) factor of the group. U(l) is the group of phase transfor
mations. U(l) factors do not appear in the structure constants at all. These 
Abelian invariant subalgebras correspond to directions in the space of gener
ators for which ka = 0 in (2.36). If Xa is a U(l) generator, fabc = 0 for all b 
and c. That also means that the corresponding ka is zero, so the trace scalar 
product does not give a norm on the space. The structure constants do not teJI 
us anything about the U(l) subalgebras. 

Algebras without Abelian invariant subalgebras are called semisimple. 
They are built, as we will see, by putting simple algebras together. In these 
algebras, every generator has a non-zero commutator with some other gen
erator. Because of the cyclic property of the structure constants, (2.38), this 
also implies that every generator is a linear combination of commutators of 
generators. In such a case, the structure constants carry a great deal of in
formation. We will use them to determine the entire structure of the algebra 
and its representations. From here on, unless explicitly stated, we will dis
cuss semisimple algebras, and we will deal with representations by unitary 
operators. 

2.6 States and operators 

The generators of a representation (like the elements of the representations 
they generate) can be thought of as either linear operators or matrices, just as 
we saw when we were discussing representations of finite groups -

(2.47) 

with the sum on j understood. As in (l.98), the states form row vectors and 
the matrix representing a linear operator acts on the right. 

In the Hilbert space on which the representation acts, the group elements 
can be thought of as transformations on the states. The group element eicxaXa 
maps or transforms the kets as follows: 

Taking the adjoint shows that the corresponding bras transform as 

(ii ~ (i'I = (ile-iaaXa . 

(2.48) 

(2.49) 
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The ket obtained by acting on Ii) with an operator O is a sum of kets, and 
therefore must also transform as in (2.48). 

Oli) ~ eiaaXaOli) 
= eiaaXaoe-iaaXaeiaaXali) = O'li'). 

(2.50) 

This implies that any operator O transforms as follows: 

(2.51) 

The transformation leaves all matrix elements invariant. 
The action of the algebra on these objects is related to the change in the 

state of operator under an infinitesimal transformation. 

-io(il = -(ilaaXa 

-ioO = [aaXa, 0] . 

Thus, corresponding to the action of the generator Xa on a ket 

is - Xa acting on a bra4 

-(ilXa 

and the commutator of Xa with an operator 

[Xa,O]. 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

Then the invariance of a matrix element (ilOli) is expressed by the fact, 

(ilO (Xali)) + (ii [Xa, O] Ii) - ( (ilXa) Oli) = 0. (2.58) 

2. 7 Fun with exponentials 

Consider the exponential 

(2.59) 

4The argument above can be summarized by saying that the minus signs in (2.56) and in 
the commutator in (2.57) come ultimately from the unitarity of the transformation, (2.48). 
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where Xa is a representation matrix. We can always define the exponential 
as a power series, 

eiaaXa = f (iaa~at (2.60) 
n=O n. 

However, it is useful to develop some rules for dealing with these things with
out expanding, like our simple rules for exponentials of commuting num
bers. We have already seen that the multiplication law is not as simple as 
just adding the exponents. You might guess that the calculus is also more 
complicated. In particular, 

(2.61) 

However, it is true that 

d · X · X . X -eZS<'<a a = iabxb eZSOa a = ieZS<'<a a abxb 
ds 

(2.62) 

because aaXa commutes with itself. This is very important, because you can 
often use it to derive other useful results. It is also true that 

~ eiaaXa I = iXb 
8ab a=O 

(2.63) 

because this can be shown directly from the expansion. It is occasionally 
useful to have a general expression for the derivative. Besides, it is a beautiful 
formula, so I will write it down and tell you how to derive it. The formula is 

~eiaaXa = {1 
ds eisaaXa (iXb) ei(l-s)acXc 

aab lo (2.64) 

I love this relation because it is so nontrivial, yet so easy to remember. The 
integral just expresses the fact that the derivative may act anywhere "inside" 
the exponential, so the result is the average of all the places where the deriva
tive can act. One way of deriving this is to define the exponential as a limit 
as in (2.7). 

(2.65) 

and differentiate both sides - the result (2.64) is then just an exercise in 
defining an integral as a limit of a sum. Another way of doing it is to expand 
both sides and use the famous integral 

fo
l m n m!n! 

ds S ( 1 - S) = ( l) I 
o m+n+ . 

(2.66) 

We will see other properties of exponentials of matrices as we go along. 
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Problems 

2.A. Find all components of the matrix eiaA where 

2.B. If [A, B] = B, calculate 

eiaA B e-iaA 

2.C. Carry out the expansion of Jc in (2.11) and (2.12) to third order in 
a and /3 (one order beyond what is discussed in the text). 
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SU(2) 

The SU(2) algebra is familiar. 1 

(3.1) 

This is the simplest of the compact Lie algebras because Eijk for i, j, k = 
1 to 3 is the simplest possible completely antisymmetric object with three in
dices. (3.1) is equivalent (in units in which 1i = 1) to the angular momentum 
algebra that you studied in quantum mechanics. In fact we will only do two 
things differently here. One is to label the generators by 1, 2 and 3 instead 
of x, y and z. This is obviously a great step forward. More important is the 
fact that we will not make any use of the operator lala. Initially, this will 
make the analysis slightly more complicated, but it will start us on a path that 
generalizes beautifully to all the other compact Lie algebras. 

3.1 J3 eigenstates 

Our ultimate goal is to completely reduce the Hilbert space of the world to 
block diagonal form. To start the process, let us think about some finite space, 
of dimension N, and assume that it transforms under some irreducible repre
sentation of the algebra. Then we can see what the form of the algebra tells 
us about the representation. Clearly, we want to diagonalize as many of the 
elements of the algebra as we can. In this case, since nothing commutes with 
anything else, we can only diagonalize one element, which we may as well 
take to be ]3. When we have done that, we pick out the states with the highest 
value of ]3 (we can always do that because we have assumed that the space 

1We will see below why the name SU(2) is appropriate. 

56 
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is finite dimensional). Call the highest value of J3 j. Then we have a set of 
states 

(3.2) 

where a is another label, only necessary if there is more than one state of 
highest J3 (of course, you know that we really don't need a because the 
highest state is unique, but we haven't shown that yet, so we will keep it). We 
can also always choose the states so that 

(j, alj, (3) = Oat3 (3.3) 

3.2 Raising and lowering operators 

Now, just as in introductory quantum mechanics, we define raising and low
ering operators, 

satisfying 
[J3, J±] = ±J± 

[J+, J-J = J3 

so they raise and lower the value of J3 on the states. If 

J3lm) = mlm) 

then 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

The key idea is that we can use the raising and lowering operators to 
construct the irreducible representations and to completely reduce reducible 
representations. This idea is very simple for SU(2), but it is very useful to 
see how it works in this simple case before we generalize it to an arbitrary 
compact Lie algebra. 

There is no state with J3=j+ l because we have assumed that j is the 
highest value of J3 • Thus it must be that 

(3.9) 

because any non-zero states would have J3=j+l. The states obtained by act
ing with the lowering operator have J3=j- t, so it makes sense to define 

(3.10) 
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where Nj (a) is a normalization factor. But we easily see that states with 
different a are orthogonal, because 

Nj(/3)* Nj(a)(j -1,,Blj -1,a) 

= (j, ,a11+ 1-1i, a) 

= (j, ,Bl [J+, 1-] lj, a) 

= (j,,Bll3lj,a) 

= j (j, ,Blj, a) = j Oa/3 

(3.11) 

Thus we can choose the states lj - 1, a) to be orthonormal by choosing 

Nj(a) = VJ= Nj 

Then in addition to (3.10), we have 

1+1j- l,a) = ~- 1+ 1-1j,a) 
J 

= ~- [J+, 1-] lj,a) 
,J 

= ;. lj,a) = Njlj,a) 
J 

(3.12) 

(3.13) 

The point is that because of the algebra, we can define the states so that 
the raising and lowering operators act without changing a. That is why the 
parameter a is eventually going to go away. Now an analogous argument 
shows that there are orthonormal states lj - 2, a) satisfying 

1-1j -1,a) = Nj-ilJ-2,a) 
1+1j - 2,a) = Nj-1IJ- l,a) 

(3.14) 

Continuing the process, we find a whole tower of orthonormal states, Jj -
k, a) satisfying 

1-lj- k,a) = Ni-klj -k-1,a) 

1+Jj- k -1,a) = Nj-klj-k,a) 
(3.15) 

The N s can be chosen to be real, and because of the algebra, they satisfy 

NJ-k = (j - k, all+ 1-Jj - k, a) 

= (j - k, al [1+, 1-J lj - k, a) 

+(j - k, aJ1-1+1j - k, a) 

=NJ_k+ 1 +j-k 

(3.16) 
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This is a recursion relation for the N s which is easy to solve by starting with 

Nf 
N2 

J 

N2 1 J-

N2k = J-

N2 
J 

=J 

=j-1 

NJ-k+I = j- k 

(k + l)j - k(k + 1)/2 

= ½(k + 1)(2j - k) 

or setting k = j - m 

Nm= ~V(j+m)(j-m+l) 

(3.17) 

(3.18) 

Because the representation is finite dimensional (by assumption - we haven't 
proved this) there must be some maximum number of lowering operators,£, 
that we can apply to lj, a). We must eventually come to some m = j -£ such 
that applying any more lowering operators gives 0. Then £ is a non-negative 
integer specifying the number of times we can lower the str.tes with highest 
]3. Another lowering operator annihilates the state -

(3.19) 

But then the norm of J- 1j - e, a) must vanish, which means that 

(3.20) 

the factor e + 1 cannot vanish, thus we must have 

e = 2j. (3.21) 

Thus 

j = ~ for some integer e. (3.22) 

Now we can get rid of a. It is now clear that the space breaks up into 
subspaces that are invariant under the algebra, one for each value of a, be
cause the generators do not change a. Thus from our original assumption of 
irreducibility, there must be only one a value, so we can drop the a entirely. 
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Furthermore, there can be no other states, or the subspace we just constructed 
would be nontrivial (and invariant). Thus we have learned how the generators 
act on all the finite dimensional irreducible representations. In fact, though 
we won't prove it, there are no others - that is all representations are finite 
dimensional, so we know all of them. 

3.3 The standard notation 

We can now switch to the standard notation in which we label the states of 
the irreducible representations by the highest J3 value in the representation 
and the J3 value:2 

ij,m) (3.23) 

and the matrix elements of the generators are determined by the matrix ele
ments of J3 and the r1Jising and lowering operators, J±:3 

(j,m'IJ3lj,m) = m Jm'm 

(j, m'IJ+lj, m) =.ju+ m + l)(j - m)/2 Jm',m+i 

(j, m'IJ-li, m) =.ju+ m)(j - m + 1)/2 Jm',m-1 

(3.24) 

These matrix elements define the spin j representation of the SU (2) algebra: 

[J1]ke = (j,j + 1-klJali,j + 1-l) (3.25) 

Here we have written the matrix elements in the conventional language where 
the rows and columns are labeled from 1 to 2j + 1. In this case, it is often 
convenient to label the rows and columns directly by their m values, which 
are just j + 1 - l and j + 1 - k above in (3.25). In this notation, (3.25) would 
read 

[Ji]m'm = (j, m'IJali, m) (3.26) 

where m and m' run from j to -j in steps of -1. We will use these in
terchangeably - choosing whichever is most convenient for the problem at 
hand. 

2Well, not completely standard - in some books, including the first edition of this one, 
the j and m are written in the other order. 

3The ./2 factors are the result of our definition of the raising and lowering operators and 
are absent in some other treatments. 



3.3. THE STANDARD NOTATION 61 

For example, for 1/2, this gives the spin 1/2 representation 

J,1/2 = ! (~ 
2 2 i 

(3.27) 

J,1/2 = ! ( 1 
3 2 0 

where the as are the Pauli matrices. 

(3.28) 

satisfying 
(3.29) 

The spin 1/2 representation is the simplest representation of SU(2). It is 
called the "defining" representation of SU ( 2), and is responsible for the name 
SU, which is an acronym for "Special Unitary". Exponentiating the gener
ators of the spin 1/2 representation to get the representation of finite group 
elements gives matrices of the form 

(3.30) 

which are the most general 2 x 2 unitary matrices with determinant 1. The 
"special", in Special Unitary means that the determinant is 1, rather than an 
arbitrary complex number of absolute value l. 

All the other irreducible representations can be constructed similarly. For 
example, the spin 1 representation looks like 

1 I (° I J1 = - 1 0 
y2 0 1 n 
I(° -i ~i) JJ = v2 ~ 0 (3.31) 

i 

J§= G 0 1J 0 
0 
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while the spin 3/2 representation is 

0 A 0 0 

J3/2 _ If 0 2 0 
1 -

0 A 2 0 

0 0 A 0 

0 A· - i 0 0 

A· 0 -2i 0 J3/2 _ i (3.32) 
2 -

0 2i 0 A· - i 

0 0 A· i 0 

(~ 
0 0 

]J J3/2 _ 
1 0 2 

3 - 0 1 
-2 

0 0 

The construction of the irreducible representations above generalizes to 
any compact Lie algebra, as we will see. The J3 values are called weights, 
and the analysis we have just done is called the highest weight construc
tion because it starts with the unique highest weight of the representation. 
Note that the same construction provides a systematic procedure for bringing 
an arbitrary finite dimensional representation into block diagonal form. The 
procedure is as follows: 

1. Diagonalize J3. 

2. Find the states with the highest J3 value, j. 

3. For each such state, explicitly construct the states of the irreducible 
spin j representation by applying the lowering operator to the states 
with highest J3. 

4. Now set aside the subspace spanned by these representations, which 
is now in canonical form, and concentrate on the subspace 
orthogonal to it. 

5. Take these remaining states, go to step 2 and start again with the 
states with next highest J3 value. 

(3.33) 
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The end result will be the construction of a basis for the Hilbert space of the 
form 

lj,m,a) (3.34) 

where m and j refer to the J3 value and the representation as usual (as in 
(3.23) and a refers to all the other observables that can be diagonalized to 
characterize the state. These satisfy 

(3.35) 

The Kronecker bs are automatic consequences of our construction. They are 
also required by Schur's lemma, because the matrix elements satisfy 

(j', m', a'IJalJ, m, a) 

= [J[]m1m11 (j',m",a'lj,m,a) (3.36) 

( ·I I 'I . II ) [Ji] = J , m , a J, m , a a m"m 

because we can insert a complete set of intermediate states on either side of 
la. Thus (j', m', a' lj, m, a) commutes with all the elements of an irre
ducible representation, and is either O if j -/- j' or proportional to the identity, 
'5m'm if j = j'. 

3.4 Tensor products 

You have probably all used the highest weight scheme, possibly without 
knowing it, to do what in introductory quantum mechanics is called addi
tion of angular momentum. This occurs when we form a tensor product 
of two sets of states which transform under the group.4 This happens, in tum, 
whenever a system responds to the group transformation in more than one 
way. The classic example of this is a particle that carries both spin and orbital 
angular momentum. In this case, the system can be described in a space that 
you can think of as built of a product of two different kinds of kets. 

Ii, x) = Ii) Ix) (3.37) 

where the first states, Ii) transforms under representation D1 of the group 
and the second, Ix), under D 2. Then the product, called the tensor product, 

4We saw an example of this in the nonnal modes of the triangle in our discussion of finite 
groups. 
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transforms as follows: 

D(g) Ii, x) = lj, y) [D102(g)]jyix 

= lj) IY) [Di(g)lJi [D2(g)]yx 

= (lj) [Di(g)lJi) (ly) [D2(g)]yx) 

(3.38) 

In other words, the two kets are just transforming independently under their 
own representations. If we look at this near the identity, for infinitesimal aa, 

(1 + iaaJa) Ii, x) 

= lj,y)(j,yl (1 +iaaJa) li,x) 

= IJ, Y) ( <l"ji<l"yx + iaa[J!®2 (g)]jyix) 
(3.39) 

= lj, y) (bji + iaa[J!]ji) (<l"yx + iaa[J;]yx) 

Thus identifying first powers of aa 

[J!®2(g)]jyix = [J!]jiOyx + <l"ji[J;]yx (3.40) 

When we multiply the representations, the generators add, in the sense shown 
in (3.40). This is what happens with addition of angular momenta. We will 
often write (3.40) simply as 

J1©2 = Jl + J2 
a a a (3.41) 

leaving you to figure out from the context where the indices go, and ignoring 
the J-functions which, after all, are just identity operators on the appropriate 
space. In fact, you can think of this in terms of the action of the generators as 
follows: 

(3.42) 

3.5 ]3 values add 

This is particularly simple for the generator J3 because we work in a basis in 
which J3 is diagonal. Thus the J3 values of tensor product states are just 
the sums of the J3 values of the factors: 

J3(IJ1,m1)lh,m2)) = (m1 +m2) (IJ1,m1)lh,m2)) (3.43) 

This is what we would expect, classically, for addition of angular momentum, 
of course. But in quantum mechanics, we can only make it work for one 
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component. We can, however, use this in the highest weight construction, 
(3.33). 

Consider, for example, the tensor product of a spin I/2 and spin 1 rep
resentation. The highest weight procedure (3.33) is what you would use to 
decompose the product space into irreducible representations. Let's do it ex
plicitly. There is a unique highest weight state, 

13/2, 3/2) = 11/2, 1/2)11, 1) (3.44) 

We can now construct the rest of the spin 3/2 states by applying lowering 
operators to both sides. For example using (3.42) 

J-13/2,3/2) = J-(11/2,1/2)11,1)) 

= ~13/2, 1/2) = /I11;2, -1/2) 11, 1) + 11/2, 1/2)11, 0) 

(3.45) 

or 

13/2, 1/2) = ti11;2, -1/2) 11, 1) + /[11;2, 1/2) 11, 0) (3.46) 

Continuing the process gives 

13/2, -1/2) = /[11/2, -1/2) 11, 0) + ti11;2, 1/2) 11, -1) 

13/2, -3/2) = 11/2, -1/2) 11, -1) 

Then the remaining states are orthogonal to these -

(3.47) 

/[11;2, -1/2) 11, 1) - ti11;2, 1/2) 11, 0) (3.48) 

and 

ti11;2, -1/2)11,0) - /[11;2, 1/2)11, -1) (3.49) 

applying the highest weight scheme to this reduced space gives 

11/2, 1/2) = /[11;2, -1/2) 11, 1) - ti11;2, 1/2) 11, 0) 

11/2, -1/2) = ti11;2, -1/2) 11, 0) - /[11;2, 1/2) 11, -1) 
(3.50) 

In this case, we have used up all the states, so the process terminates. Note 
that the signs of the spin 1/2 states were not determined when we found the 
states orthogonal to the spin 3/2 states, but that the relative sign is fixed be
cause the J3 = ±1/2 states are related by the raising and lowering operators. 
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Problems 

3.A. Use the highest weight decomposition, (3.33), to show that 

s+j 

U} ® { s} = I: { n 
ffii=Js-jJ 

where the EB in the summation just means that the sum is a direct sum, and 
{ k} denotes the spin k representation of SU(2). To do this problem, you do 
not need to construct the precise linear combinations of states that appear in 
each irreducible representation, but you must at least show how the counting 
of states goes at each stage of the highest weight decomposition. 

3.B. Calculate 

where a are the Pauli matrices. Hint: writer= Iii r. 

3.C. Show explicitly that the spin 1 representation obtained by the high
est weight procedure with j = 1 is equivalent to the adjoint representation, 
withf abc = Eabc by finding the similarity transformation that implements the 
equivalence. 

3.D. Suppose that [O'a]ij and [1Ja]xy are Pauli matrices in two different 
two dimensional spaces. In the four dimensional tensor product space, define 
the basis 

II) = Ii= l)lx = 1) 

13) =Ii= 2)1x = 1) 

12) = Ii = 1) Ix = 2) 

14) = Ii = 2) Ix = 2) 

Write out the matrix elements of 0'2 ® 771 in this basis. 

3.E. We will often abbreviate the tensor product notation by leaving out 
the indices and the identity matrices. This makes for a very compact notation, 
but you must keep your wits about you to stay in the right space. In the 
example of problem 3.D, we could write: 

[aa]ij [TJ&]xy as O'a7'Jb 

[O'a]ij<l"xy as O'a 

Jij [11&]xy as 1Jb 
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<\jbxy as 1 

So for example, (0-1)(0-2771) = io-3771 and (0-1772)(0-1773) = i771. 
To get some practice with this notation, calculate 
(a) [aa,O"b77c], 
(b) Tr(aa{17b,O"c1Jd}), 
(c) [a-1771, 0-2772] · 

where O-a and 77a are independent sets of Pauli matrices and {A, B} =AB+ 
BA is the "anticommutator." 



Chapter 4 

Tensor Operators 

A tensor operator is a set of operators that transforms under commutation 
with the generators of some Lie algebra like an irreducible representation of 
the algebra. In this chapter, we will define and discuss tensor operators for 
the SU(2) algebra discussed in chapter 3. A tensor operator transforming 
under the spin-s representation of SU(2) consists of a set of operators, OJ 
for l = 1 to 2s+l (or -s to s), such that · 

[Ja, on= o:n [J1]me. ( 4.1) 

It is true, though we have not proved it, that every irreducible representa
tion is finite dimensional and equivalent to one of the representations that we 
found with the highest weight construction. We can always choose all tensor 
operators for SU(2) to have this form. 

4.1 Orbital angular momentum 

Here is an example - a particle in a spherically symmetric potential. If the 
particle has no spin, then Ja is the orbital angular momentum operator, 

Ja =La= Eabc Tb Pc (4.2) 

The position vector is related to a tensor operator because it transforms under 
the adjoint representation 

[Ja, Tb]= Eacd [Tc Pd, Tb] = -i facd Tc <5bd 

= -i Eacb Tc = Tc [J:,Clj]cb 

68 

(4.3) 
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where iadj is the adjoint representation, and we know from problem 3.C that 
this representation is equivalent to the standard spin I representation from the 
highest weight procedure. 

4.2 Using tensor operators 

Note that the transformation of the position operator in (4.3) does not have 
quite the right form, because the representation matrices J;;dj are not the stan
dard form. The first step in using tensor operators is to choose the operator 
basis so that the conventional spin s representation appears in the commuta
tion relation (4.1). This is not absolutely necessary, but it makes things easier, 
as we will see. We will discuss this process in general, and then see how it 
works for ra. 

Suppose that we are given a set of operators, nx for x = I to 2s+ 1 
that transforms according a representation D that is equivalent to the spin-s 
representation of SU(2): 

(4.4) 

Since by assumption, Dis equivalent to the spin-s representation, we can find 
a matrix S such that 

S JD s-I = J5 a a 

or in terms of matrix elements 

Then we define a new set of operators 

Oe = !1y [s- 1 ]ye fore= -s to s 

Now Oj satisfies 

[Ja,Oe] 

= [Ja, !1y] [S-1]ye 

= nz[Jf]zy [S- 1]ye 

= nz[S- 1]ze' [S]erz' [Jf]z'y [S- 1]ye 

= Oe, [J;]ere 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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which is what we want. Notice that (4.8) is particularly simple for h, because 
in our standard basis in which the indices e label the 13 value, lJ, ( or 1!, for 
any s) is a diagonal matrix 

[13]e,e = e ou fore, e' = -s to s. (4.9) 

Thus 
[13, O]] = O], [lj]e,e = f O]. (4.10) 

In practice, it is usually not necessary to find the matrix S explicitly. If 
we can find any linear combination of the fix which has a definite value of 
13 (that means that it is proportional to its commutator with 13), we can take 
that to be a component of 0 5

, and then build up all the other 0 5 components 
by applying raising and lowering operators. 

For the position operator it is easiest to start by finding the operator ro. 
Since [ 13, r3] = 0, we know that r3 has 13 = 0 and therefore that r3 ex ro. 
Thus we can take 

ro = r3 (4.11) 

Then the commutation relations for the spin 1 raising and lowering operators 
give the rest 

[J±,ro]= r±1 

= :i=(r1 ± i r2)/v'2 
(4.12) 

4.3 The Wigner-Eckart theorem 

The interesting thing about tensor operators is how the product O] lj, m, a) 
transforms. 

la O] lj, m, a) 

= [la, O]] lj, m, a) + O] la lj, m, a) (4.13) 

= O], lj, m, a) [l!]e1e + O] lj, m', a) [li]m'm 

This is the transformation law for a tensor product of spin s and spin j, s ® j. 
Because we are using the standard basis for the states and operators in which 
13 is diagonal, this is particularly simple for the generator 13, for which ( 4.13) 
becomes 

h 0] lj,m,a) = (l + m) Oe lj,m, a) (4.14) 

The 13 value of the product of a tensor operator with a state is just the 
sum of the 13 values of the operator and the state. 
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The remarkable thing about this is that the product of the tensor operator 
and the ket behaves under the algebra just like the tensor product of two 
kets. Thus we can decompose it into irreducible representations in exactly 
the same way, using the highest weight procedure. That is, we note that 
O! lj, j, a) with h = j + s is the highest weight state. We can lower it 
to construct the rest of the spin j + s representation. Then we can find the 
linear combination of h = j + s - 1 states that is the highest weight of the 
spin j + s - 1 representation, and lower it to get the entire representation, 
and so on. In this way, we find explicit representations for the states of the 
irreducible components of the tensor product in terms of linear combinations 
of the O} lj, m, a). You probably know, and have shown explicitly in problem 
3.A, that in this decomposition, each representation from j + s to lj - si 
appears exactly once. We can write the result of the highest weight analysis 
as follows: 

L Oe lj,M -l,a) (s,j,l,M -e I J,M) = k1 IJ,M) 
e 

( 4.15) 

Here I J, M) is a normalized state that transforms like the J3 = M compo
nent of the spin J representation and k1 is an unknown constant for each J 
(but does not depend on M). The coefficients (s, j, e, M - e I J, M) are 
determined by the highest weight construction, and can be evaluated from 
the tensor product of kets, where all the normalizations are known and the 
constants k1 are equal to 1: 

L /s,e) lj,M -e) (s,j,f,M -e I J,M) = IJ,M) ( 4.16) 
e 

One way to prove1 that the coefficients can be taken to be the same in (4.15) 
and (4.16) is to notice that in both cases, J+ IJ, J) must vanish and that 
this condition determines the coefficients (s, j, e, J - e I J, J) up to a mul
tiplicative constant. Since the transformation properties of 01 lj, m) and 
Is, f) )j, m) are identical, the coefficients must be proportional. The only 
difference is the factor of k1 in ( 4.15). 

We can invert ( 4.15) and express the original product states as linear com
binations of the states with definite total spin J. 

j+s 

O}lj,m,a)= L (J,e+mls,j,e,m)k1IJ,e+m) 
J=lj-sl 

( 4.17) 

'This is probably obvious. but as we will emphasize below, the operators are different 
because we do not have a scalar product for them. 
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The coefficients (J, M I s, j, e, M - f) are thus entirely determined by 
the algebra, up to some choices of the phases of the states. Once we have a 
convention for fixing these phases, we can make tables of these coefficients 
once and for all, and be done with it. The notation (J, e + mis, j, e, m) just 
means the coefficient of IJ, e + m) in the product Is, f) lj, m). These are 
called Clebsch-Gordan coefficients. 

The Clebsch-Gordan coefficients are all group theory. The physics comes 
in when we reexpress the IJ, e + m) in terms of the Hilbert space basis states 
IJ,e + m,(3)-

kJIJ,e+m) = L ka,0IJ,e+m,,8) 
,B 

( 4.18) 

We have absorbed the unknown coefficients kJ into the equally unknown co
efficients ka,B· These depend on a, j, 0 8 ands, because the original products 
do, and on ,8 and J, of course. But they do not depend at all one or m. We 
only need to know the coefficients for one value of e + m. The k 0 ,0 are called 
reduced matrix elements and denoted 

ka,B = (J, ,Bl 0 5 lj, a) (4.19) 

Putting all this together, we get the Wigner-Eckart theorem for matrix ele
ments of tensor operators: 

(J, m', ,81 Oe IJ, m, a) 

= o'm',e+m (J, e + mis,j,f, m) · (J, ,Bl 0 8 lj, a) 
(4.20) 

If we know any non-zero matrix element of a tensor operator between states 
of some given J, ,8 and j, a, we can compute all the others using the algebra. 
This sounds pretty amazing, but all that is really going on is that we can use 
the raising and lowering operators to go up and down within representations 
using pure group theory. Thus by clever use of the raising and lowering oper
ators, we can compute any matrix element from another. The Wigner-Eckart 
theorem just expresses this formally. 

4.4 Example 

Suppose 

Find 

(1/2,1/2,alr3ll/2,1/2,,8) = A 

(1/2,1/2,alr1 jl/2,-1/2,,8) =? 

(4.21) 

(4.22) 
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First, since To = T3, 

(1/2, 1/2,al To ll/2, 1/2,(3) = A 

Then we know from (4.12) that 

Thus 

73 

(4.23) 

(4.24) 

(1/2, 1/2, al TI 11/2, -1/2, (3) 
1 

= (1/2,1/2,al y2(-T+1 +r-1) 11/2,-1/2,(3) (4.25) 

1 
= - v2(1/2, 1/2, al r +111/2, -1/2,(3) 

Now we could plug this into the formula, and you could find the Clebsch
Gordan coefficients in a table. But I'll be honest with you. I can never re
member what the definitions in the formula are long enough to use it. In
stead, I try to understand what the formula means, and I suggest that you do 
the same. We could also just use what we have already done, decomposing 
1/2 0 1 into irreducible representations. For example, we know from the 
highest weight construction that 

13/2,3/2) = r+111/2, 1/2,(3) (4.26) 

is a 3/2,3/2 state because it is the highest weight state that we can get as a 
product of an re operator acting on an 11/2, m) state. Then we can get the 
corresponding j3/2, 1/2) state in the same representation by acting with the 
lowering operator J-

l3/2, 1/2) = ~ J- l3/2, 3/2) 

= /[ro/1/2,1/2,(3) +~r+111/2,-1/2,(3) 
(4.27) 

But we know that this spin-3/2 state has zero matrix element with any spin-
1/2 state, and thus 

0 = (1/2, 1/2, al 3/2, 1/2) 

= /J(l/2, 1/2, al To 11/2, 1/2, (3) 

+Jf (1/2, 1/2, al '"+i I 112, -1/2, /JI 

(4.28) 
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so 

so 
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(1/2, 1/2, al r +1 11/2, -1/2, /3) 

= -v2(1/2, 1/2, al ro 11/2, 1/2, /3) 

=-v2A 

(1/2, 1/2, al r111/2, -1/2,/3) = A 

Although we did not need it here, we can also conclude that 

11/2, 1/2) = ff ro I 1/2, 1/2, a) - ~ r +1 11/2, -1/2, a) 

(4.29) 

(4.30) 

( 4.31) 

is a 1/2, 1/2 state. This statement is actually a little subtle, and shows the 
power of the algebra. When we did this analysis for the tensor product of j=l 
and j=l/2 states, we used the fact that the 11/2, 1/2) must be orthogonal to 
the 13/2, 1/2) states to find the form of the I 1/2, 1/2) state. We cannot do this 
here, because we do not know from the symmetry alone how to determine the 
norms of the states 

re ll/2, m) (4.32) 

However, we know from the analysis with the states and the fact that the 
transformation of these objects is analogous that 

1+ 11/2, 1/2) = O (4.33) 

Thus it is a 1/2,1/2 state because it is the highest weight state in the represen
tation. We will return to this issue later. 

There are several ways of approaching such questions. Here is another 
way. Consider the matrix elements 

(1/2,m,al ra 11/2,m',/3) (4.34) 

The Wigner-Eckart theorem implies that these matrix elements are all propor
tional to a single parameter, the k0 13. Furthermore, this result is a consequence 
of the algebra alone. Any operator that has the same commutation relations 
with la will have matrix elements proportional to ra. But la itself has the 
same commutation relations. Thus the matrix elements of r a are proportional 
to those of la, This is only helpful if the matrix elements of la are not zero 
(if they are all zero, the Wigner-Eckart theorem is trivially satisfied). In this 
case, they are not (at least if a = /3) 

(1/2,m,al la 11/2,m',/3) = Oaf31[aa]mm' (4.35) 
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Thus 

(1/2, m, o:J ra Jl/2, m', /3) ex [aa]mm' (4.36) 

This gives the same result. 

4.5 * Making tensor operators 

If often happens that you come upon a set of operators which transforms 
under commutation with the generators like a reducible representation of the 
algebra 

(4.37) 

where D is reducible. In this case, some work is required to tum these into 
tensor operators, but the work is essentially just the familiar highest weight 
construction again. The first step is to make linear combinations of the fix 

operators that have definite ]3 values 

(4.38) 

This is always possible because D can be decomposed into irreducible rep
resentations that have this property. Then we can apply the highest weight 
procedure and conclude that the operators, with the highest weight, Oj,o: are 
components of a tensor operator with spin j, one for each o:. If there are any 
operators with weight j-1/2, Oj-l/2 ,f3, they will be components of tensor 
operators with spin j-1/2. However, things can get subtle at the next level. 
To find the tensor operators with spin j-1, you must find linear combinations 
of the operators with weight j-1 which have vanishing commutator with J+ 
- then they correspond to the highest weights of the spin j-1 reps 

(4.39) 

The point is, if you get the operators in a random basis, you have nothing like 
a scalar product, so you cannot simply find the operators that are "orthogo
nal" to the ones you have already assigned to representations. I hope that an 
example will make this clearer. Consider seven operators, a±1, b±i and a0 , 

bo and co, with the following commutation relations with the generators: 

[J3, a+iJ = a+1 [h, b+iJ = b+1 

[h,~]=[h,~]=[h,~]=0 (4.40) 
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[J+,ao] =a+1 

[J+, a_i] = co 
(4.41) 

_ 1 1 
[J , a+i] = 2(ao + bo + co) p-, b+d = 2(ao + bo - co) 

[J-,ao]=2a-1+b_1 p-,bo]=a-1+b_1 [J-,co]=a-1 

[J-,a-1] = [J-,b_i] = 0 

(4.42) 
To construct the tensor operators, we start with the highest weight states, 

and define 

B+1 = b+1 (4.43) 

Then we construct the rest of the components by applying the lowering oper
ators 

1 
Ao = 2 ( ao + bo + co) 

1 
Bo = 2 ( ao + bo - co) (4.44) 

and 

(4.45) 

You can check that the raising operators now just move us back up within the 
representations. 

Now there is one operator left, so it must be a spin O representation. 
But which one is it? It must be the linear combination that has vanishing 
commutator with J± - therefore it is 

Go = ao - bo - co (4.46) 

Let me emphasize again chat we went through this analysis explicitly 
to show the differences between dealing with states and dealing with tensor 
operators. Had this been a set of seven states transforming similarly under 
the algebra, we could have constructed the singlet state by simply finding 
the linear combination of ]3 = 0 states orthogonal to the J3 = 0 states in 
the triplets. Here we do not have this crutch, but we can still find the singlet 
operator directly from the commutation relations. We could do the same thing 
for states, of course, but it is usually easier for states to use the nice properties 
of the scalar product. 
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4.6 Products of operators 

One of the reasons that tensor operators are important is that a product of two 
tensor operators, 0~

1 
and 0~

2 
in the spin s 1 and spin s2 representations, 

transforms under the tensor product representation, s1 0 s2 because 

[Ja, o~l 0~2] 

= [Ja,O~I] 0~2 +o~l [Ja,O~J (4.47) 

- 0s1 0s2 [XS] l os1 0s2 [xs21 I 
- m'1 m 2 a m'1 mt + m1 m'2 a m 2m2 

Thus the product can be decomposed into tensor operators using the highest 
weight procedure. 

Note that as usual, things are particularly simple for the generator J3. 
(4.47) implies 

( 4.48) 

The h value of the product of two tensor operators is just the sum of the J3 

values of the two operators in the product. 

Problems 

4.A. Consider an operator Ox, for x = 1 to 2, transforming according to 
the spin l/2 representation as follows: 

where a a are the Pauli matrices. Given 

(3/2, -1/2, al 01 11, -1, /3) = A 

find 
(3/2, -3/2, al 02 I l, -1, /3) 

4.B. The operator ( r +I )
2 satisfies 

It is therefore the 0+2 component of a spin 2 tensor operator. Construct the 
other components, Om. Note that the product of tensor operators transforms 
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like the tensor product of their representations. What is the connection of 
this with the spherical harmonics, Yi ,m ( 0, ¢)? Hint: let r 1 = sin 0 cos ¢, 
r2 = sin 0 sin</>, and r3 = cos 0. Can you generalize this construction to 
arbitrary land explain what is going on? 

4.C. Find 

where the X~ are given by (3.31) Hint: There is a trick that makes this one 
easy. Write 

X l A xi aa a = aaa a 

where 

a= Jaaaa' 

You know that &aXJ has eigenvalues ±1 and 0, just like XJ (because all 
directions are equivalent). Thus ( &aXJ) 2 is a projection operator and 

You should be able to use this to manipulate the expansion of the exponential 
and get an explicit expression for eiaaXJ. 



Chapter 5 

Isospin 

The idea of isospin arose in nuclear physics in the early thirties. Heisenberg 
introduced a notation in which the proton and neutron were treated as two 
components of a nucleon doublet 

N = (~) (5.1) 

He did this originally because he was trying to think about the forces between 
nucleons in nuclei, and it was mathematically convenient to write things in 
this notation. In fact, his first ideas about this were totally wrong - he re
ally didn't have the right idea about the relation between the proton and the 
neutron. He was thinking of the neutron as a sort of tightly bound state of 
proton and electron, and imagined that forces between nucleons could arise 
by exchange of electrons. In this way you could get a force between proton 
and neutron by letting the electron shuttle back and forth - in analogy with 
an H;J ion, and a force between neutron and neutron - an analogy with a 
neutral H2 molecule. But no force between proton and proton. 

5.1 Charge independence 

It was soon realized that the model was crazy, and the force had to be charge 
independent - the same between pp, pn and nn to account for the pat
tern of nuclei that were observed. But while his model was crazy, he had 
put the p and n together in a doublet, and he had used the Pauli matrices to 
describe their interactions. Various people soon realized that charge indepen
dence would be automatic if there were really a conserved "spin" that acted 
on the doublet of p and n just as ordinary spin acts on the two J3 compo
nents of a spin-1/2 representation. Some people called this "isobaric spin", 
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which made sense, because isobars are nuclei with the same total number of 
baryons, 1 protons plus neutrons, and thus the transformations could move 
from one isobar to another. Unfortunately, Wigner called it isotopic spin and 
that name stuck. This name makes no sense at all because the isotopes have 
the same number of protons and different numbers of neutrons, so eventually, 
the "topic" got dropped, and it is now called isospin. 

5.2 Creation operators 

Isospin really gets interesting in particle physics, where particles are routinely 
created and destroyed. The natural language for describing this dynamics is 
based on creation and annihilation operators (and this language is very useful 
for nuclear physics, as we will see). For example, for the nucleon doublet in 
(5.1 ), we can write 

IP, a) = atN 1 IO) 
'2 ,o 

In, a) = atN _1 IO) 
' 2,0 

(5.2) 

where the 
(5.3) 

are creation operators for proton(+½) and neutron(-½) respectively in the 
state a, and 10) is the vacuum state - the state with no particles in it. The N 
stands for nucleon, and it is important to give it a name because we will soon 
discuss creation operators for other particles as well. The creation operators 
are not hermitian. Their adjoints are annihilation operators, 

aN,±½,a (5.4) 

These operators annihilate a proton ( or a neutron) if they can find one, and 
otherwise annihilate the state, so they satisfy 

(5.5) 

The whole notation assumes that the symmetry that rotates proton into neu
tron is at least approximately correct. If the proton and the neutron were not 
in some sense similar, it wouldn't make any sense to talk about them being in 
the same state. 

'Baryons are particles like protons and neutrons. More generally, the baryon number is 
one third the number of quarks. Because, as we will discuss in more detail later, the proton 
and the neutron are each made of three quarks, each has baryon number I. 
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Because the p and n are fermions, their creation and annihilation opera
tors satisfy anticommutation relations: 

{ a N,m,a, a tm' ,/3} = '5mm' <5aj3 

{a~,m,a,a~,m',/3} = {aN,m,a,aN,m',/3} = 0 
(5.6) 

With creation and annihilation operators, we can make multiparticle states 
by simply applying more than one creation operator to the vacuum state. For 
example 

n proton creation operators 

at 1 ···at 1 10) 
N, 2 ,01 N, 2,an (5.7) 

ex /n protons; a1, ···,an) 

produces an n proton state, with the protons in states, a1 through an. The 
anticommutation relation implies that the state is completely antisymmetric 
in the labels of the particles. This guarantees that the state vanishes if any 
two of the as are the same. It means (among other things) that the Pauli 
exclusion principle is automatically satisfied. What is nice about the creation 
and annihilation operators is that we can construct states with both protons 
and neutrons in the same way. For example, 

n nucleon creation operators 

at ···at /0) N,m1,a1 N,mn,°'n (5.8) 

ex In nucleon; m1, a1; · · ·; mn, an) 

is an n nucleon state, with the nucleons in states described by the m variable 
(which tells you whether it is a proton or a neutron) and the a label, which 
tells you what state the nucleon is in. Now the anticommutation relation 
implies that the state is completely antisymmetric under exchange of the pairs 
of labels, m and a. 

In nucleon; m1, a1; m2, a2 · · ·; mn, an) 

= -/n nucleon; m2, a2; m1, a1; · · ·; mn, an) 
(5.9) 

If you haven't seen this before, it should bother you. It is one thing to assume 
that the proton creation operators anticommute, because two protons really 
cannot be in the same state. But why should proton and neutron creation 
operators anticommute? This principle is called the "generalized exclusion 
principleY Why should it be true? This is an important question, and we will 
come back to it below. For now, however, we will just see how the creation 
and annihilation operators behave in some examples. 
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5.3 Number operators 

We can make operators that count the number of protons and neutrons by 
putting creation and annihilation operators together (the summation conven
tion is assumed): 

at a 1 
N,+½,a N,+ 2,a 

at a 1 
N,-½,a N,-2•°' 
t a N,m,a a N,m,a 

counts protons 

counts neutrons 

counts nucleons 

(5.10) 

Acting on any state with Np protons and Nn neutrons, these operators have 
eigenvalues Np, Nn and Np+ Nn respectively. This works because of (5.5) 
and the fact that for a generic pair of creation and annihilation operators 

(5.11) 

Notice that the number operators in (5.1 O) are summed over all the possible 
quantum states of the proton and neutron, labeled by a. If we did not sum 
over a, the operators would just count the number of protons or neutrons or 
both in the state a. We could get fancy and devise more restricted number 
operators where we sum over some a and not others, but we won't talk further 
about such things. The total number operators, summed over all a, will be 
particularly useful. 

5.4 Isospin generators 

For the one-particle states, we know how the generators of isospin symmetry 
should act, in analogy with the spin generators: 

(5.12) 

Or in terms of creation operators 

(5.13) 

Furthermore, the state with no particles should transform like the trivial rep
resentation -

(5.14) 
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Thus we will get the right transformation properties for the one particle states 
if the creation operators transform like a tensor operator in the spin 1/2 rep
resentation under isospin: 

[Ta, a~,m,a] = a~,m',a [JJl2]m'm = ~a~,m',a [aa]m'm 

It is easy to check that the following form for Ta does the trick: 

Ta= a~m' a [JJl2
]m1m aN,m,a + · · · 

' ' 1 
= -

2
a~m' a [aa]m'm aN,m,a + · · · 

' ' 
1 

=-at a aN +··· 2 N,a a ,a 

(5.15) 

(5.16) 

where · · · commutes with the nucleon creations and annihilation operators 
(and also annihilates )O} ). The last line is written in matrix form, where we 
think of the annihilation operators as column vectors and the creation op
erators as row vectors. Let us check that (5.16) has the right commutation 
relations with the creation operators so that (5.15) is satisfied. 

[Ta, atm,a] 

= [a~,m',,8 [JJ12]m1m" aN,m",,8, a~,m,a] 

= a~,m',,8 [JJl2]m1m" { aN,m",,8, a~,m,a} 

- { a~,m',,8• a~,m,a} [JJl
2

]m1m11 aN,m",,8 

_ t [Jl/2] - aN,m',a a m'm 

(5.17) 

The advantage of thinking about the generators in this way is that we now 
immediately see how multiparticle states transform. Since the multiparticle 
states are built by applying more tensor (creation) operators to the vacuum 
state, the multiparticle states transform like tensor products - not a surpris
ing result, but not entirely trivial either. 

5.5 Symmetry of tensor products 

We pause here to discuss an important fact about the combination of spin 
states (either ordinary spin or isospin). We will use it in the next section to 
discuss the deuteron. The result is this: when the tensor product of two iden
tical spin 1/2 representations is decomposed into irreducible representations, 
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the spin I representation appears symmetrically, while the spin O appears an
tisymmetrically. To see what this means, suppose that the spin 1/2 states are 

ll/2, ±1/2, a) (5.18) 

where a indicates whatever other parameters are required to describe the 
state. Now consider the highest weight state in the tensor product. This is 
the spin 1 combination of two identical J3=1/2 states, and is thus symmetric 
in the exchange of the other labels: 

11, 1) = ll/2, 1/2, a) ll/2, 1/2, ,8) = ll/2, 1/2, ,8) 11/2, 1/2, a) (5.19) 

The lowering operators that produce the other states in the spin l representa
tion preserve this symmetry because they act in the same way on the two spin 
1 /2 states. 

11,0) = ~(11/2,-1/2,a)ll/2,1/2,,8) 

+11/2, 1/2, a) ll/2, -1/2, ,8)) 
11, -1) = 11/2, -1/2, a) 11/2, -1/2, ,8) 

(5.20) 

Then the orthogonal spin O state is antisymmetric in the exchange of a and 
,8: 

10,0) = ~(11/2,-1/2,a)ll/2,1/2,,8) 

-11/2, 1/2, a) 11/2, -1/2, ,8)) 

5.6 The deuteron 

(5.21) 

The nucleons have spin 1/2 as well as isospin 1/2, so the a in the nucleon 
creation operator actually contains a J3 label, in addition to whatever other 
parameters are required to determine the state. 

As a simple example of the transformation of a multiparticle state, con
sider a state of two nucleons in an s-wave - a zero angular momentum state. 
Then the total angular momentum of the state is simply the spin angular mo
mentum, the sum of the two nucleon spins. Furthermore, in an s-wave state, 
the wave function is symmetrical in the exchange of the position variables 
of the two nucleons. Then because the two-particle wave function is pro
portional to the product of two anticommuting creation operators acting on 
the vacuum state, it is antisymmetric under the simultaneous exchange of the 
isospin and spin labels of the two nucleons - if the spin representation is 
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symmetric, the isospin representation must be antisymmetric, and vice versa. 
When combined with the results of the previous section, this has physical 
consequences. The only allowed states are those with isospin l and spin O or 
with isospin O and spin 1. The deuteron is an isospin O conbination, and has 
spin l, as expected. 

5. 7 Superselection rules 

It appears, in this argument, that we have assigned some fundamental physical 
significance to the anticommutation of the creation operators for protons and 
neutrons. As I mentioned above, this seems suspect, because in fact, the 
proton and neutron are not identical particles. What we actually know directly 
from the Pauli exclusion principle is that the creation operator, al for any 
state of a particle obeying Fermi-Dirac statistics satisfies 

(5.22) 

If we have another creation operator for the same particle in another state, 

ab, we can form the combination al+ ab, which when acting on the vacuum 
creates the particle in the state a + f3 (with the wrong normalization). Thus 
the exclusion principle also implies 

(ai+a1)2 =0 (5.23) 

and thus 

{ at at} = 0 
Ql /3 (5.24) 

This argument is formally correct, but it doesn't really make much physi

cal sense if al and a1 create states of different particles, because it doesn't 
really make sense to superpose the states - this superposition is forbidden 
by a superselection rule. A superselection rule is a funny concept. It is the 
statement that you never need to think about superposing states with different 
values of an exactly conserved quantum number because those states must be 
orthogonal. Anything you can derive by such a superposition must also be 
derivable in some other way that does not involve the "forbidden" superpo
sition. Thus as you see, the superposition is not so much forbidden as it is 
irrelevant. In this case, it is possible to show that one can choose the creation 
operators to anticommute without running into inconsistencies, but there is a 
much stronger argument. The anticommutation is required by the fact that the 
creation operators transform like tensor operators. Let's see how this implies 
the stated result for the two nucleon system. 
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Call the creation operators for the baryons at± ( dropping the N for 
brevity) where the first sign is the sign of the third component of isospin and 

the second is the sign of third component of spin. Since (a~+) 2 
= 0, there 

is no two nucleon state with T3 = 1 and h = 1. But this means that there is 
no state with isospin I and spin 1, since the highest weight state would have 
to have T3 = 1 and ]3 = 1. In terms of creation operators, for example 

(5.25) 

Similar arguments show that the operators must anticommute whenever they 
have one common index and the others are different. 

The argument for operators that have no index in common is a little more 
subtle. First compute 

(5.26) 

But the two terms in the sum must separately vanish because they are phys
ically distinguishable. There cannot be a relation like (5.26) unless the two 
operators 

{ a~_, a~+} IO) (5.27) 

and 
(5.28) 

separately vanish, because these two operators, if they did not vanish, would 
do physically distinguishable things - the creation of a proton with spin up 
and a neutron with spin down is not the same as the creation of proton with 
spin down and a neutron with spin up. Thus the operators (5.27) and (5.28) 
must separately vanish. Thus, not only does the isospin 1, spin I state,(5.26) 
vanish but so also does the isospin 0, spin O state 

(5.29) 

5.8 Other particles 

When isospin was introduced, the only known particles that carried it were 
the proton and neutron, and the nuclei built out of them. But as particle 
physicists explored further, at higher energies, new particles appeared that 
are not built out of nucleons. The first of these were the pions, three spinless 
bosons (that is obeying Bose-Einstein, rather than Fermi-Dirac statistics) with 
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charges Q = + 1, 0 and - l, and T3 = Q, forming an isospin triplet. 2 The 
creation and annihilation operators for the pions can be written as 

at a=,m,~ form= -1 to 1 1T,m,o, 11 l..l. 

They satisfy commutation, rather than anticommutation relations 

[a1r,m,a, a~,m',/3] = Omm'Oa/3 

[at,m,a,a~,m',/3] = [a1r,m,a,a1r,m',/3] = 0 

(5.30) 

(5.31) 

so that the particle states will be completely symmetric. They also commute 
with nucleon creation and annihilation operators. 

The isospin generators look like 

Ta= at,m,a [J~]mm' a1r,m1 ,a + · · · (5.32) 

where as in (5.16) the · · · refers to the contributions of other particles (like 
nucleons). Again, then the creation operators are tensor operators. 

There are many many other particles like the nucleons and the pions that 
participate in the strong interactions and carry isospin. The formalism of cre
ation and annihilation operators gives us a nice way of writing the generators 
of isospin that acts on all these particles. The complete form of the isospin 
generators is 

particles .:t 
states o: 

T3 values m,m1 

(5.33) 

where at,m,a and ax,m',a are creation and annihilation operators for x-type 
particles satisfying commutation or anticommutation relations depending on 
whether they are bosons or fermions, 

[ax,m,a,a~,,m,,/3]± = Omm'Oa,aOxx' 

[ai,m,a,at,,m',/3]± = [ax,m,a,ax',m',/3]± = 0 
(5.34) 

The rule for the ± ( + for anticommutator, - for commutator) is that the anti
commutator is used when both x and x' are fermions, otherwise the commu
tator is used. The Jx in (5.33) is the isospin of the x particles. 

2When these particles were discovered, it was not completely obvious that they were not 
built out of nucleons and their antiparticles. When very little was known about the strong 
interactions, it was possible to imagine, for example, that the 7r+ was a bound state of a proton 
and an antineutron. This has all the right quantum numbers - even the isospin is right. It just 
turns out that this model of the pion is wrong. Group theory can never tell you this kind of 
thing. You need real dynamical information about the strong interactions. 
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5.9 Approximate isospin symmetry 

Isospin is an approximate symmetry. What this means in general is that the 
Hamiltonian can be written as 

H =Ho+ b:.H (5.35) 

where Ho commutes with the symmetry generators and b:.H does not, but 
in some sense b:.H is small compared to H0 . It is traditional to say in the 
case of isospin that the "strong" interactions are isospin symmetric while 
the weak and electromagnetic interactions are not, and so take Ho = Hs 
and b:.H = HEM + Hw where Hs, HEM and Hw are the contributions 
to the Hamiltonian describing the strong interactions (including the kinetic 
energy), the electromagnetic interactions, and the weak interactions, respec
tively. From our modem perspective, this division is a bit misleading for two 
reasons. Firstly, the division between electromagnetic and weak interactions 
is not so obvious because of the partial unification of the two forces. Sec
ondly, part of the isospin violating interaction arises from the difference in 
mass between the u and d quarks which is actually part of the kinetic energy. 
It seems to be purely accidental that this effect is roughly the same size as the 
effect of the electromagnetic interactions. But this accident was important 
historically, because it made it easy to understand isospin as an approximate 
symmetry. There are so many such accidents in particle physics that it makes 
one wonder whether there is something more going on. At any rate, we will 
simply lump all isospin violation into b:.H. The group theory doesn't care 
about the dynamics anyway, as long as the symmetry structure is properly 
taken into account. 

5.10 Perturbation theory 

The way (5.35) is used is in perturbation theory. The states are classified 
into eigenstates of the zeroth order, isospin symmetric part of the Hamilto
nian, H0 . Sometimes, just Ho is good enough to approximate the physics 
of interest. If not, one must treat the effects of b:.H as perturbations. In the 
scattering of strongly interacting particles, for example, the weak and electro
magnetic interactions can often be ignored. Thus in pion-nucleon scattering, 
all the different possible charge states have either isospin 1/2 or 3/2 (because 
1 0 1/2 = 3/2 EB 1/2), so this scattering process can be described approxi
mately by only two amplitudes. 

The mathematics here is exactly the same as that which appears in the 
decomposition of a spin-1/2 state with an orbital angular momentum 1 into 
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states with total angular momentum 3/2 and 1/2. The state with one pion and 
one nucleon can be described as a tensor product of an isospin 1/2 nucleon 
state with an isospin 1 pion state, just as the state with both spin and orbital 
angular momentum can be described as a tensor product, having both spin 
and angular momentum indices. 

Problems 

5.A. Suppose that in some process, a pair of pions is produced in a state 
with zero relative orbital angular momentum. What total isospin values are 
possible for this state? 

5.B. Show that the operators defined in (5.33) have the commutation 
relations of isospin generators. 

5.C. ~ ++, ~ +, ~ 0 and ~ - are isospin 3/2 particles (T3 = 3/2, 1/2, 
-1/2 and -3/2 respectively) with baryon number 1. They are produced 
by strong interactions in 7r-nucleon collisions. Compare the probability of 
producing ~ ++ in 7r+ P --t ~ ++ with the probability of producing ~ 0 in 
7l'- p-+ ~o. 
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Roots and Weights 

Now we are going to generalize the analysis of the representations of the 
SU(2) algebra to an arbitrary simple Lie algebra. The idea is simple. First, 
we do what we always try to do in quantum mechanics - find the largest 
possible set of commuting hermitian observables and use their eigenvalues to 
label the states. In this case, our observables will be the largest set of hermi
tian generators we can find that commute with one another, and can therefore 
be simultaneously diagonalized. Their eigenvalues will be the analog of J3. 
The rest of the generators will be analogous to the raising and lowering op
erators in SU(2). We will find that every raising operator corresponds to an 
8U (2) subgroup of the Lie algebra, and then we can use what we know about 
SU (2) to learn about the larger algebra. 

6.1 Weights 

We want the largest possible set of commuting hermitian generators because 
we want to diagonalize as much as possible. A subset of commuting hermi
tian generators which is as large as possible is called a Cartan subalgebra. 
It will tum out that the Cartan subalgebra is essentially unique, in that any 
one we choose will give the same results. 

In a particular irreducible representation, D, there will be a number of 
hermitian generators, Hi for i = 1 tom, corresponding to the elements of the 
Cartan Subalgebra called the Cartan generators satisfying 

H . -Ht 
i - i ' and (6.1) 

The Cartan generators form a linear space. Thus we can choose a basis in 
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which they satisfy 

(6.2) 

where k is some constant that depends on the representation and on the nor
malization of the generators. The integer m, the number of independent Car
tan generators, is called the rank of the algebra. 

Of course, the point is that the Cartan generators can be simultaneously 
diagonalized. After diagonalization of the Cartan generator:;, the states of the 
representation D can be written as Iµ, x, D) where 

(6.3) 

and x is any other label that is necessary to specify the state. 
The eigenvalues µi are called weights. They are real, because they are 

eigenvalues of hermitian operators. The m-component vector with compo
nents µi is the weight vector. We will often use a vector notation in which 

(6.4) 

6.2 More on the adjoint representation 

The adjoint representation, defined by (2.27), is particularly important. Be
cause the rows and columns of the matrices defined by (2.27) are labeled by 
the same index that labels the generators, the states of the adjoint representa
tion correspond to the generators themselves. We will denote the state in the 
adjoint representation corresponding to an arbitrary generator Xa as 

(6.5) 

Linear combinations of these states correspond to linear combinations of the 
generators -

a!Xa) + ,BIXb) = laXa + ,8Xb) . (6.6) 

A convenient scalar product on this space is the following: 1 

(XalXb) = ).-1 Tr(X!Xb), (6.7) 

(). is what we called kv for the adjoint representation - see (2.37)). Now 
using (6.6) and (2.27), we can compute the action of a generator on a state, 
as follows: 

XalXb) =]Xe) (XclXalXb) = !Xe) [Ta]cb = -i !acblXc) 
=,:;,i fabclXc) = Ii f abcXc) = l[Xa, Xb]) · 

(6.8) 

1We need the dagger because we will be led to consider complex linear combinations of 
the generators, analogous to the raising and lowering operators for SU(2). 
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6.3 Roots 

The roots are the weights of the adjoint representation. Because [Hi, H1] = 
0, the states corresponding to the Cartan generators have zero weight vectors 

(6.9) 

Furthermore, all states in the adjoint representation with zero weight vectors 
correspond to Cartan generators. Because of (6.2), the Cartan states are or
thonormal, 

(6.10) 

The other states of the adjoint representation, those not corresponding to 
the Cartan generators, have non-zero weight vectors, a, with components O!i, 

(6.11) 

which means that the corresponding generators satisfy 

(6.12) 

It will turn out (and we will prove it below) that for the adjoint representation, 
the non-zero weights uniquely specify the corresponding states, so there is no 
need for another parameter (like x in (6.3) in the arbitrary representation D). 
Like the SU(2) raising and lowering operators, the Ea are not hermitian. 
They cannot be hermitian because we can take the adjoint of (6.12) and get 

(6.13) 

thus we can take 
(6.14) 

This should remind you of the raising and lowering operators J+ and 1- in 
SU(2). 

States corresponding to different weights must be orthogonal, because 
they have different eigenvalues of at least one of the Cartan generators. Thus 
we can choose the normalization of the states in the adjoint representation 
(that is, the generators) so that 

(E0 !Et3) = A-l Th (E!E/3) = 00 t3 (= IT Oa;/JJ. (6.15) 
i 

The weights O!i are called roots, and the special weight vector a with compo
nents ai is a root vector. 
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6.4 Raising and lowering 

- The E±a are raising and lowering operators for the weights, because the 
state E±a Iµ, D) has weightµ ± a -

HiE±alµ, D) = [Hi, E±a] Iµ, D) + E±c,Hilµ, D) = (µ ± a)iE±c,jµ, D). 
(6.16) 

At this point, we have no notion of positivity, so it doesn't make sense to ask 
which is raising and which is lowering. But we will introduce this later. 

Equation ( 6.16) is true for any representation, but it is particularly impor
tant for the adjoint representation. To see why, consider the state Ea IE-a). 
This has weight a - a = 0, thus it is a linear combination of states corre
sponding to Cartan generators. This in tum implies that [Ea, E_a] is a linear 
combination of Cartan generators: 

But we can actually compute {3 -

Thus 

/Ji = (HilEalE-a) 
= .\- 1 'Ir (Hi [Ea, E_a]) 
= ,\- 1 Tr (E-a [Hi, Eal) 
= ,\-l ai Tr (E-aEa) 

this follows from (6.8) 

from the cyclic property of Tr 

from (6.12) 

from (6.15). 

(6.17) 

(6.18) 

(6.19) 

This should remind you of the SU(2) commutation relation [J+, J-] = J3 • 

It is this analogy that we will exploit to learn about the compact Lie groups 
and their representations. 

6.5 Lots of SU(2)s 

For each non-zero pair of root vectors, ±a, there is an 8U(2) subalgebra of 
the group, with generators 

E± = lai- 1E±a 
E3 = ial-2a · H. 

(6.20) 
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To see this, note that 

[E3, E±] = lar3 [a· H, E±a] 
= lor3a · (±a)E±a = ±lal-1 E±a = ±E± 

and from (6.19) 
[E+, E-] = ial-2 [Ea, E-a] 
= lal-2a · H = E 3 . 

(6.21) 

(6.22) 

We know on general grounds that the states of each irreducible represen
tation of the full algebra can be decomposed into irreducible representations 
of any one of these SU(2) subalgebras, and we already know everything 
about the irreducible representations of SU(2). This puts very strong con
straints on the nature of the roots. For example, we can now easily prove that 
the root vectors correspond to unique generators. Suppose the contrary, so 
that there are two generators, Ea and E~. We can choose linear combina
tions of these two so that they are orthogonal in the adjoint representation (I 
will use the same names for the two generators, assuming that I chose them 
to be orthogonal from the beginning, just to avoid useless notation) - thus 
we can write 

(6.23) 

Consider the behavior of the state IE~) under the action of the SU(2) subal
gebra (6.20). E-IE~) has zero weight vector, and thus it is a linear combina
tion of Cartan states. But 

(Hi IE-IE~) = .\-1 Tr (Hi [E-, E~]) 
= -.\-1 'Ir (E- [Hi, E~]) 
= -ai.\- 1 'Ir (E~E-) = 0 

(6.24) 

for all i, and thus the coefficient of every Cartan state in E-IE~) vanishes, 
and therefore 

(6.25) 

But we also have 

(6.26) 

Equations (6.25) and (6.26) are inconsistent, because (6.25) implies that IE~) 
is the lowest h state in an SU(2) representation, and (6.26) implies that it 
has J3 = 1. But the lowest J3 state of an SU(2) representation cannot have 
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positive J3 - the J3 value is always - j for a non-negative half integer j. 
Thus E~ cannot exist, and we have shown, as promised, that !Ea) is uniquely 
specified by a - no other labels are required. 

In fact, if a is a root, then no non-zero multiple of a (except -a) is a 
root. To see this, note that the three states IE3) and IE±) form a spin 1 repre
sentation of the algebra (6.20), because they form the adjoint representation. 
Now suppose ka a root for k -/- ±1. Clearly, k must be a half-integer, be
cause the E3 value of the corresponding state must be a half integer. But if k 
is an integer not equal to ±1, the state is part of a representation that contains 
another state with root a, which is impossible, by the argument we just gave. 
And if k is half an odd integer, then there is a state with root a/2, and we can 
repeat the argument using the SU(2) associated with that generator and get a 
contradiction in the same way. 

6.6 Watch carefully - this is important! 

More generally, for any weight µ of a representation D, the E3 value is 

a·µ 
E3Iµ, x, D) = -2 Iµ, x, D). 

a 

Because the E 3 values must be integers or half integers, 

2a · µ 
--

2
- is an integer. 

a 

(6.27) 

(6.28) 

The general state Iµ, x, D) can always be written as a linear combination 
of states transforming according to definite representations of the SU(2) de
fined by (6.20). Suppose that the highest spin state that appears in the linear 
combination is j. Then there is some non-negative integer p such that 

(6.29) 

with weight µ+pa is the highest E3 state of the SU (2) spin j representation, 
so that 

(E+)P+1 Iµ, x, D) = 0. (6.30) 

The E 3 value of the state (6.29) is 

a·(µ+ pa) a·µ . 
2 =-2-+p=J. 

a a 
(6.31) 

Likewise, there is some non-negative integer q such that 

(6.32) 
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with weightµ - q a is the lowest E3 state of the SU(2) spin j representation, 
so that 

and the E3 value of the state (6.32) is 

a· (µ - q a) a·µ . 
= -- -q = -J a2 a2 . 

Adding (6.31) and (6.34) gives 

or 

2a· µ 
--+p-q=O 

a2 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

We will refer to (6.36) as the "master formula". The relations (6.31), (6.34) 
and (6.36) are the basic relations that lead to a geometrical classification of 
all the compact Lie groups. They don't look like much, but when we augment 
them with some geometrical intuition, we can exploit them to great effect, as 
you will see. 

Here is a simple first step. Applying (6.36) to the roots gives a particu
larly strong constraint, because we can apply it twice for any pair of distinct 
roots, a and /3. Defining the SU(2) algebra with Ea gives 

(6.37) 

Defining the SU(2) algebra with E13 gives 

/3 · a = _!(p' - q') /32 2 . (6.38) 

Multiplying these gives a remarkable formula for the angle 0013 between the 
roots a and /3: 

2 (a· /3)2 
cos 00 13 = a 2 /32 

(p - q)(p' - q') 
4 

(6.39) 

What is remarkable about this is that (p - q)(p' - q') must be an integer, so 
(because it must be non-negative) there are only four interesting possibilities 
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(up to complements) for angles between roots! 

(p - q)(p' - q') 0a./3 
0 90° 

1 60° or 120° (6.40) 

2 45° or 135° 

3 30° or 150° 

The possibility (p - q)(p' - q') = 4, corresponds to 0° or 180° - neither 
is interesting. 0° is already ruled out by our theorem on uniqueness. 180° 
is trivial because roots always come in pairs with opposite signs, both in the 
same SU(2) subgroup. 

Problems 

6.A. Show that [Ea, Et3] must be proportional to Ea.+/3· What happens 
if a + f3 is not a root? 

6.B. Suppose that the raising lowering operators of some Lie algebra 
satisfy 

for some nonzero N. Calculate 

6.C. Consider the simple Lie algebra formed by the ten matrices: 

O"aTJ 

for a = 1 to 3 where aa and Ta are Pauli matrices in orthogonal spaces (see 
problem 3.E). Take H1 = 0-3 and H2 = o-3r3 as the Cartan subalgebra. Find 
(a) the weights of the four dimensional representation generated by these 
matrices, and 
(b) the weights of the adjoint representation. 
Hint: Although you have enough information to do the problem after read
ing this chapter, it may be easier after you have seen the example of SU(3) 
worked out in the next chapter. 



Chapter 7 

SU(3) 

After 8U(2) the most important algebra in particle physics is SU(3). Maybe 
it is more important. I'm not sure. SU(3) is the group of 3 x 3 unitary 
matrices with determinant 1 (again, as in (3.30), the U stands for "unitary" 
and the 8 stands for "special", which means determinant 1). 

7.1 The Gell-Mann matrices 

8U(3) is generated by the 3 x 3 hermitian, traceless matrices. There are vari
ous ways of seeing that the tracelessness constraint is what gives determinant 
1. If we exponentiate the hermitian generators to get unitary matrices 

(7.1) 

we can compute the determinant in any basis. In particular, if we diagonalize 
aaXa, 

(7.2) 

where D is diagonal, we have 

det(U(a)) = det(eiD) = II ei(D]jj = eiTrD = eiTraaXa (7.3) 
j 

Thus if 'Ir aaXa = 0, the determinant is 1. 
The standard basis for the hermitian 3 x 3 matrices in the physics litera

ture is in terms of a generalization of the Pauli matrices, called the Gell-Mann 

98 
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matrices: 

At= 0 1 n A2= 0 -i n 0 0 
0 0 

0 0 n A4 = (~ 

0 

D A.3 = -1 0 
0 0 (7.4) 

(~ 0 I) A,= 0 0 n A.5 = 0 0 
0 1 

A1= 0 0 ~i) As=}, 0 0 JJ 0 1 
i 0 

These are generalizations of the Pauli matrices in the sense that the first three 
Gell-Mann matrices contain the Pauli matrices acting on a subspace: 

A.a= ( ~a ~) for a= I to 3 (7.5) 

You can imagine that we could go on and construct 4 x 4 matrices that contain 
these 3 x 3 matrices in the same way, and so on. 

The S'U(3) generators are conventionally defined by 

and they satisfy 

1 
Ta= 2.X.a (7.6) 

(7.7) 

Clearly, Ta for a = I to 3 generate an S'U(2) subgroup of SU(3). 
This is sometimes called the isospin subgroup, for reasons that will become 
apparent when we discuss SU(3) as an approximate symmetry of the strong 
interactions - where this subgroup is in fact Heisenberg's isospin. It is con
venient to put T3 in the Cartan subalgebra. There is one generator, T8 , that 
commutes with T3, so we put it in the Cartan subalgebra as well, and take 

(7.8) 
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7.2 Weights and roots of SU(3) 

The weights of this representation are easy to find because T3 and Ts are 
already diagonal 

Ts= v3 (~ ~ ~ ) 
6 0 0 -2 

The eigenvectors, and associated weights are 

G) __, (1/2, v'3/6) 

0) --> (-1/2, v'3 /6) 

m --> (O,-v'J/3) 

(7.9) 

(7.10) 

These vectors, plotted in a plane, form the vertices of an equilateral triangle 

(-1/2, v'3/6) • • (1/2, v'3/6) 
(7 .11) 

(0, -../3/3) 

The roots are going to be differences of weights, because the corresponding 
generators must take us from one weight to another. It is not hard to see that 
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the corresponding generators are those that have only one off-diagonal entry: 

~ (T1 ± iT2) = E±1,o 

1 . 
v2 (T4 ± in) = E±1/2,±v'3/2 

~ (n ± iT7) = E~1/2,±v'3/2 

(7.12) 

where the ± signs are correlated. The roots form a regular hexagon, plotted 
here along with the two elements of the Cartan subalgebra in the center: 

• 

• 

Problems 

t 
H2 

• 

• 

7.A. Calculate fi47 and f 45g in SU(3). 

(7.13) 

7.B. Show that T1, T2 and T3 generate an SU(2) subalgebra of SU(3). 
Every representation of SU(3) must also be a representation of the subalge
bra. However, the irreducible representations of SU(3) are not necessarily 
irreducible under the subalgebra. How does the the representation generated 
by the Gell-Mann matrices transform under this subalgebra. That is, reduce, 
if necessary, the three dimensional representation into representations which 
are irreducible under the subalgebra and state which irreducible representa
tions appear in the reduction. Then answer the same question for the adjoint 
representation of SU(3). 
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7.C. Show that .\2, ,\5 and .\7 generate an SU(2) subalgebra of SU(3). 
Every representation of SU(3) must also be a representation of the subalge
bra. However, the irreducible representations of SU(3) are not necessarily 
irreducible under the subalgebra. How does the representation generated by 
the Gell-Mann matrices transform under this subalgebra. That is, reduce, 
if necessary, the three dimensional representation into representations which 
are irreducible under the subalgebra and state which irreducible representa
tions appear in the reduction. Then answer the same question for the adjoint 
representation of SU(3). 



Chapter 8 

Simple Roots 

What we need to complete the analogy between SU(2) and an arbitrary sim
ple Lie algebra is a notion of positivity for the weights. Then we can dis
cuss things like raising and lowering operators, and the "highest weight" in 
a meaningful way. What we want is a definition that ensures that every non
zero weight is either positive or negative, and that if µ is positive, -µ is 
negative and vice versa. 

8.1 Positive weights 

It is easy to find such a scheme - indeed, in a multi-dimensional space, there 
are an infinite number. In some arbitrary basis for the Cartan subalgebra, the 
components, µ1, µ2, ... , of the weight are fixed. We will say that the weight 
is positive if its first non-zero component is positive and that the weight is 
negative if its first non-zero component is negative. While this depends on 
the arbitrary basis, it does have the properties we want. Eventually, we will 
see that the results will not depend on the basis, but for now, we will just fix 
it and forget it. 

For example, in SU(3), the 3 dimensional defining representation looks 

103 
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like this: 

{-1/2, v'3/6) . . . 
1s negative 

t 
H2 

(1/2, v'3/6) . . . . 
1s pos1t1ve 

(0, -1/v'3) 
is negative 

(8.1) 

The weight (0, -1/ v'3) is negative because its first component is zero so the 
sign is determined by the sign of the second component. 

With this definition, we can define an ordering in the obvious way: 

µ > v ifµ - v is positive (8.2) 

This allows us to talk about the highest weight in a representation. 
In the adjoint representation, the positive roots correspond to raising op

erators and the negative roots to lowering operators. The highest weight of 
any representation has the property that we cannot raise it, so that all genera
tors corresponding to positive roots must annihilate the corresponding state. 

In the SU(3) adjoint representation, in our usual basis, the positive roots 
are on the right and the negative on the left, as shown below: 

t 
H2 

• • negative positive 

negative positive 

negative positive 
• • 

(8.3) 
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8.2 Simple roots 

But we don't want to check all the roots if we don't have to. Clearly, some 
of the positive roots can be built out of others. So it makes sense to define 
simple roots as positive roots that cannot be written as a sum of other positive 
roots. We will then see that if a weight is annihilated by the generators of all 
the simple roots, it is the highest weight of an irreducible representation. Fur
thermore, from the geometry of the simple roots, it is possible to reconstruct 
the whole algebra. The logic of this is fun and worth understanding in detail. 
1 - If a and f3 are different simple roots, then a - /3 is not a root. This is 
true because one of them, say /3, is larger, so that /3 - a is positive. But then 
/3 is the sum of two positive roots, a and /3 - a. 
2 - Because a - /3 is not a root 

(8.4) 

Then in the master formula (6.36) 

a. /3 = _!(p - q) 
a 2 2 

the integer q is zero. Similarly in 

the integer q' is zero. Thus 

a. /3 p 

~ 2 

/3 · a p' 
= 7 2 

(8.5) 

Knowing the integers p and p' for each simple root is equivalent to knowing 
the angles between the simple roots, and their relative lengths because 

../iiil 
cos eo./3 = ---

2 

3 - The angle between any pair of simple roots satisfies 

7r 
-<0<rr 
2 -

(8.6) 

(8.7) 

The first inequality follows from (8.6) because the cosine is less than or equal 
to zero. The second inequality follows because all the roots are positive. Sim
ple multidimensional geometry then implies that the simple roots are linearly 
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independent. Here's a proof - consider a linear combination of the simple 
roots, 

(8.8) 
Q 

If all the coefficients have the same sign, then clearly, 1 cannot vanish unless 
all the coefficients vanish, because the a are all positive vectors. But if there 
are some coefficients of each sign, we can write 

,=µ-v 

whereµ and v are strictly positive vectors, 

But the norm of I cannot vanish because 

V = - L Xaa 

Xa<O 

(µ - v)2 = µ2 + v2 - 2(µ. v) ~ µ2 + v2 > 0 

(8.9) 

(8.10) 

(8.11) 

where the last inequality follows from the fact ( a · /3) ~ 0 for any pair of 
simple roots, (8.6). 

Thus no linear combination of the simple roots can vanish and they are 
linearly independent. 
4 - Any positive root ¢ can be written as a linear combination of simple 
roots with non-negative integer coefficients, k0 

(8.12) 

This is just logic. If ¢ is simple, this is true. If not, we can spHt it into two 
positive roots and try again. 
5 - The simple roots are not only linearly independent, they are complete, 
so the number of simple roots is equal to m, the rank of the algebra, the 
number of Cartan generators. If tfiis were not true, then there would be some 
vector~ orthogonal to all the simple roots, and therefore orthogonal to all the 
roots. But then 

[~ · H, Ecf>] = 0 for all roots ¢ (8.13) 

Since~ ·H also commutes with the other Cartan generators, it commutes with 
all the generators and the algebra is not simple, contrary to assumption. 
6 - Finally, we are in a position to construct the whole algebra from the 
simple roots. For now, we will simply show how to determine all the roots. 
We will find easier ways of doing this later, and also discuss how to construct 
the actual algebra. 
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We know that all the positive roots have the form 

(8.14) 
a 

for non-negative integers, ka, where the integer k is 

(8.15) 
a 

If we can determine which ¢k are roots, we will have determined the roots in 
terms of the simple roots. It is straightforward to do this inductively, using 
the master formula. 

All the ¢ 1 's are roots because these are just the simple roots themselves. 
Suppose now we have determined the roots for k :::; C. Then we look at 

for all a, which gives roots of the form ¢e+i. We can compute 

2a · r/>e = -(p _ q) 
a2 

(8.16) 

(8.17) 

But we will always know q, because we will know the history of how ¢e got 
built up by the action of the raising operators from smaller k. Thus we can 
determine p. If p > 0, then ¢e + a is a root. 

Let's illustrate this inductive procedure for C = 1. In this case, we always 
start with a simple root, ¢ 1 = (3 where /3 is a simple root. All the qs are zero 
so 

(8.18) 

Thus if a · /3 = 0, then p = 0 and a + f3 is not a root. Otherwise p > 0 and 
a + /3 is a root. 

The only way this procedure could fail to find a root is if there exists 
some positive root ¢e+1 which is not the sum of a root ¢e and some simple 
root. This is impossible, because if there were such a ¢e+1, it would be an
nihilated by all the E-a (because E-al¢e+1) if non-zero would be a ¢estate 
and we could apply Ea to it and get l¢e+1) back). Thus l¢e+1) would have to 
transform like the lowest weight state of all the SU(2) subalgebras associated 
with the simple roots, which requires that the E3 values a · ¢e+i / a 2 :::; 0 for 
all a. But then 

<PE+l = L kaa · <Pe+l ~ 0 (8.19) 
a 
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which is a contradiction. Thus we always find all the roots ¢e+1 by acting on 
all the ¢e with all the simple roots. For SU(3), for example, the positive root 
(1, 0) is the sum of the other two, which are the simple roots 

a/ = (1/2, v'3/2) a.2 = (1/2, -v'3/2) (8.20) 

as shown 

• 

(8.21) 

• 

We have 

a.1 
· a.2 = -1/2 (8.22) 

thus 

(8.23) 

and thus p = 1 for both a 1 acting on la2), and vice versa. Thus a 1 + a 2 is a 
root, but 2a1 + a 2 and a 1 + 2a2 are not. 

8.3 Constructing the algebra 

The procedure outlined above can give us more than a listing of the roots. We 
can actually construct the entire algebra from the simple roots. Let us go back 
to the derivation of the master formula, where we found in (6.31) and (6.34) 

a·µ 
--+p=j 
a2 

a·µ . 
-- -q= -J 

a2 
(8.24) 

This follows because a state !µ) with weightµ in any irreducible representa
tion must have some component that transforms under the largest spin repre-
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sentation of the SU(2) algebra associated with a, generated by (from (6.20)) 

E± = /a/-1 E±a 

E3 = /or2a·H 
(8.25) 

This largest spin is the j in (8.24). In general, /µ) may also have lower spin 
components, but j is the highest one. It must be there so that (E+t /µ) 
transforms like a /j, j) state, which is non-zero, but annihilated by another 
E+, and ( E-) m Iµ) transforms like a /j, - j) state, annihilated by another 
E-. Adding these two relations gives the master equation. But subtracting 
them gives 

p+ q = 2j (8.26) 

Thus if we know p and q, we know the highest spin representation that over
laps with the weight state. 

Ifµ is a root in the adjoint representation, the situation is even simpler. 
Because we have already shown that each root appears only once in the ad
joint representation, if we know p and q, and therefore j for a root /3 under 
the action· of the SU(2) associated with a simple root a, we can conclude that 
1/3) is the state with E3 = a · /3 / a 2 in the spin j representation, 

(8.27) 

It is completely determined up to a phase. Thus we also know exactly how 
E± acts, up to phases. Let's see how this enables us to construct the algebra 
in the example of SU(3). The root diagram looks like this: 

-a2 • 

-al - a2 

-al• 

t 
H2 

• al 

• a2 

(8.28) 
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where 

a 1 
· a 2 = -1/2 

a 1 
· a 2 1 

a22 2 

We already know that p = l and q = 0 for both a1 acting on la2 ), and vice 
versa. We already know how the Cartan generators commute with everything. 
So we just need the commutation relations of the raising and lowering oper
ators. Let's begin by explicitly constructing the raising operator, Ea1 +a2. 
Since p + q = l, we have j = 1/2 and therefore, if we look at the a 1 raising 
operator 

E+1Ea2) = la1l-1Ea1IEa2) 

= Ea1IEa2) = l[Ea1,Ea2]) 
1 

= Ea111/2, -1/2) = v211/2, 1/2) 

1 
= y21/IEa1+a2) 

(8.29) 

where 1/ is a phase. This may need some explanation. The IEa2) state is 
properly normalized, by assumption, and it corresponds to the 11/2, -1/2) 
state under the a 1 SU(2) (the E3 value is a 1 · a 2 /a12 = -1/2). Acting on it 
with the raising operator E+ tells us what the correctly normalized 11/2, 1/2) 
state is. But this, up to a phase, which we called 1/, must be the properly 
normalized state IEa1+a2). Putting all this together, and choosing 'f/ = 1 by 
convention, we have 

(8.30) 

and thus 

(8.31) 

Now that we have expressed the other positive root as a commutator of 
the simple roots, we can compute any commutator just using the Jacobi iden-
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tity. For example 

= v'2 [E_al, [Eal, Ea2 lJ 

= v'2[[E_a1,Ea1],Ea2] 

= v'2 [-a1 
· H, Ea2] 

In 1 2 1 
= -y .:a · a Ea2 = ../2Ea2 

111 

(8.32) 

We already knew this, because we are just moving back down the SU(2) 
representation. Here's another, slightly more interesting: 

= v'2[E_a2, [Eal, Ea2]] 

= v'2[Ea1,[E-a2,Ea2]] 

= v'2 [Ea1, -a2 
· H] 

= v'2 [ ci · H, Ea1] 

In l 2 1 
= v .:a · a Ea1 = - ../2Ea1 

(8.33) 

The interesting thing here is the phase - which is determined to be a - sign. 

8.4 Dynkin diagrams 

A Dynkin diagram is a short-hand notation for writing down the simple roots. 
Each simple root is indicated by an open circle. Pairs of circles are connected 
by lines, depending on the angle between the pair of roots to which the circles 
correspond, as follows: 

CE) if the angle is 150° (8.34) 

Q::::O if the angle is 135° 

0-0 if the angle is 120° 

0 0 if the angle is 90° 
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The Dynkin diagram determines all the angles between pairs of simple roots. 
This doesn't quite fix the roots, because there may be more than one choice 
for the relative lengths. We will come back to that later. 

0 is the diagram for SU(2) 

0-0 is the diagram for SU(3) 

8.5 Example: G2 

Suppose that an algebra has simple roots 

a 1 = (0, 1) ci = ( V3/2, -3/2) 

This is an allowed pairing, because 

a 1 ·ci = -3/2 
2a1 -a2 2a1 -a2 
--2 - = -3 2 = -1 

al a2 

The angle between the two roots is determined by 

Thus this corresponds to the Dynkin diagram 

CE) 

This algebra is called G2. 

8.6 The roots of G2 

(8.35) 

(8.36) 

(8.37) 

(8.38) 

For E0 1 acting on la2 ) we have p = 3. For E0 2 acting on la1) we have 
p = 1. Thus 

a 1 + a 2 2a1 + a 2 and 3a1 + a 2 (8.39) 

are all roots but 
a 1 + 2a2 and 4a1 + a 2 (8.40) 
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are not. In terms of ¢k in (8.14) we have 

¢2 = a 1 + a 2 ¢3 = 2a1 + a 2 ¢4 = 3a1 + a 2 (8.41) 

We know that the ¢2 state is unique from the general properties of simple 
roots. The ¢3 state is unique because a 1 + 2a2, the only other state that could 
be obtained by acting on (h, is not a root. To see whether there is another ¢4 

state, we must check whether 2a1 + 2a2 is a root, that is, whether it can be 
obtained by acting on ¢3 with a simple root, which must be a 2 . 

2a2 · (2a1 + a 2) -6 + 6 
a22 = 3 = 0 = -(p - q) (8.42) 

But q = 0 because 2a1 is not a root, and thus p = 0, so 2a1 + 2a2 is not a 
root. Actually, we could have come to this conclusion more simply by noting 
that 2a1 +2a2 = 2(a1 + a 2) which is twice the root o:1 + a 2, but we proved 
in the discussion after (6.26) that no multiple of a root can be a root. 

Now to get the ¢5 states, note that we already know that 4a1 + a 2 is not 
a root, so we need only check 3a1 + 2a2. 

2a2 · (3a1 + a 2) -9 + 6 
a22 = 3 = -1 = -(p - q) (8.43) 

Again, q = 0, thus p = 1 and ¢5 = 3a1 + 2a2 is a root. Because p = 1, we 
also know that 3a1 + 3a2 is not a root, so to check for ¢6 , we need only look 
at 4a1 + 2a2. 

2a1 · (3a1 + 2a2) _ 6 - 6 _ _ 
----'-a-1-2 _ __,_ - -1- - 0 - -(p - q) (8.44) 

q = 0 because 2a1 + 2a2 is not a root, so we are finished (again, we could 
has just used the fact that 2a1 + a 2 is a root to see that 4a1 + 2a2 is not), and 
the roots look like this: 

-a2• t 
2 

•Jal+ a2 

-al_ a2 • 

-3a1 - 2a2 3a1 + 2a2 
------{4µ...---...,..,...-

H1 --t 
(8.45) 

-2al - a2 • • al + a2 

-al 

-Jal_ a2 • •a2 
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What we did can be summarized in the following diagram: 

• t 
2 

al 

• 

Hi--+ 
(8.46) 

• 

• 

8. 7 The Cartan matrix 

There is a useful way of keeping track of the integers pi and l associated 
with the action of a simple root ai on a state 1¢) for a positive root ¢ that 
eliminates the need for tedious geometrical calculations. The idea is to label 
the roots directly by their qi - pi values. The qi - pi of any weight, µ, is 
simply twice its E3 value, where E3 is the Cartan generator of the SU(2) 
associated with the simple root ai, because 

(8.47) 

Because the ai are complete and linearly independent, the qi - pi values for 
the weights contain the same information as the values of the components of 
the weight vector, so we can use them to label the weights. The advantage of 
doing so is that it will make very transparent the structure of the representa
tions under the SU(2)s generated by the simple roots. 

Since a positive root, ¢, can be written as ¢ = I:j kjaj, the master 
formula can be written as 

(8.48) 
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where A is the Cartan matrix 

(8.49) 

The matrix element Aji is the q - p value for the simple root ai acting on the 
state laJ), twice the E3 value, thus all the entries of A are integers. The di
agonal entries are all equal to 2. This is obvious from the definition, and also 
from the fact that the simple roots have E3 = 1 because the SU(2) generators 
themselves transform like the adjoint, spin 1 representation. The off-diagonal 
entries, all 0, -1, -2 or -3, record the angles between simple roots and their 
relative lengths - the same information as the Dynkin diagram, and they tell 
us how the simple roots fit into representations of the SU(2)s associated 
with the other simple roots. It is easy to see that the Cartan matrix is invert
ible because the aj are complete and linearly independent. Note that the jth 
row of the Cartan matrix consists of the Qi - Pi values of the simple root 
aJ. 

For SU(3), the Cartan matrix looks like 

(8.50) 

For the G2 algebra we have just analyzed, it looks like 

( 2 -1) 
-3 2 (8.51) 

8.8 Finding all the roots 

We now show how to use the Cartan matrix to simplify the procedure of 
building up all the roots from the simple roots. When we go from ¢ to ¢ + aj 

by the_ action of the raising operator E 0 j, this just changes kj to kj + l, and 
thus qi - pi to q' - pi+ Aji· 

kj --+ kj + l 
qi _ Pi --+ qi _ Pi + AJi 

(8.52) 

If we think of the qi - pi as the elements of a row vector, this is equivalent to 
simply adding the jth row of the Cartan matrix, which is just the vector q - p 
associated with the simple root aJ. This allows us to streamline the process 
of computing the roots. We will describe the procedure and illustrate it first . 
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for SU(3). Start with the simple roots in the q-p notation. We will put each 
in a rectangular box, and arrange them on a horizontal line, which represents 
the k = l layer of positive roots - that is the simple roots. 

k=l (8.53) 

It is convenient to put a box with m zeros, representing the Cartan generators, 
on a line below, representing the k = 0 layer. 

k=l (8.54) 

k=O 

Now for each element of each box we know the qi value. For the ith element 
of ai, qi = 2, because the root is part of the SU ( 2) spin 1 representation 
consisting of E±ai and a/ · H. For all the other elements, qj = 0, because 
ai - aj is not a root. 

q=2 0 0 2 

k=l 12 -11 ED] (8.55) 

k=O 

Thus we can compute the corresponding pi. 

p=o 1 1 o 

k=l 12 -11 ED] (8.56) 

k=O 

Since the ith element of a/ is 2 (because it is a diagonal element of A), the 
corresponding pi is zero ( of course, since 2a/ in not a root). For all the 
others, p is just minus the entry. For each non-zero p, we draw a line from 
the simple root to a new root with k = 2, on a horizontal line above the 
k = l line, obtained by adding the appropriate simple root. The line starts 
above the appropriate entry, so you can keep track of which root got added 
automatically. You can also draw such lines from the k = 0 layer to the k = l 
layer, and the lines for each root will have a different angle. You then try to 
put the boxes on the k = 2 layer so that the lines associated with each root 
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have the same angle they did between the O and I layer. These lines represent 
the action of the S'U(2) raising and lowering operators. 

p= 0 0 
q = I 1 

k=2 al +a2 

k=l (8.57) 

k=O 

The procedure is now easy to iterate, because everything you need to know 
to go from k = £ to k = £ + l is there in your diagram. At each stage, you 
compute p by subtracting the element of the vector from the corresponding q. 
For SU(3), the procedure terminates at k = 2, because all the ps are zero. 

Clearly, we could have continued this diagram farther down and shown 
the negative roots in the same way. 

k=2 al+ a2 

k=l al, a2 

k=O Hi (8.58) 

k = -l -a2, -al 

k = -2 -al - a2 

8.9 The SU(2)s 

The transformation properties of the roots under the two SU (2) s should be 
obvious from (8.58). In fact, instead of thinking about p and q, we can just 
see how each E3 value fits into an SU(2) representation. Then the process 
terminates as soon as all the SU(2) representations are completed. This is 
equivalent to actually computing the ps and qs, because we got the master 
formula by thinking about this SU(2) structure anyway, but it is much faster 
and easier. 
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Let us illustrate this with the diagram for G2: 

k=5 3a1 + 2a2 

k=4 3a1 + a 2 

k=3 2a1 + a 2 

k=2 al+ a2 

k=l al, a2 (8.59) 

k=O Hi 

The argument in terms of the SU(2) structure goes as follows. We know 

that the simple roots a 1 = !I::]] and a 2 = I -3 21 are the highest weights of 

spin 1 representations for their respective SU(2)s. !I::]] must be the bottom 

of a doublet under a 2, because of the -1, and I -3 21 is the bottom of a spin 
3/2 quartet under a 1 because of the -3. So we just follow these up to the 
end, makrg surl that each root fits happily into representations under all the 
SU(2)s. -11 is fine because it is the top of the a 2 doublet and in the a 1 

quartet. [IQ] is fine because it is an a 2 singlet and in the a 1 quartet. [GJ 
finishes the a 1 quartet and starts a new a 2 doublet. And finally, @JJ finishes 
the a 2 doublet and is an a 1 singlet, so it doesn't start anything new, and the 
process terminates. 

8.10 Constructing the G2 algebra 

We will do another example of this procedure later. Now let's stay with G2 
and construct the algebra. The two relevant raising operators are 

E+-E 1 1 - a (8.60) 

Start with the I E 02) state. We know, because p = 3 and q = 0 or by looking at 
the roots in (8.59) that it is the lowest weight state in a spin 3/2 representation 
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of the a 1 SU(2). Call it 

1Ea2) = 13/2, -3/2, 1) (8.61) 

Then applying the a 1 raising operator 

(8.62) 

The last line is a definition, in that it involves a phase choice, but the con
struction using the raising operator guarantees that we have the normalization 
right. Applying the raising operator again gives 

and a third time gives 

l[Ea1, [Ea1, Ea2]]) 

= 2~ 13/2, 1/2, 1) 

= v6 IE2a1 +a2) 

l[Ea1, (Ea1, [Eal, Ea2]]]) 

= ~\!613/2,3/2,1) 

= 3 IE3al+a2) 

= 311/2, -1/2,2) 

(8.63) 

(8.64) 

where we have written the last line because this is also the lowest weight state 
of spin 1/2 representation of the a 2 SU(2). Then applying the a 2 raising 
operator gives 

/[Ea2, [Eat, [Ea1, [Eal, Ea2))])) 

= 3v3 ~ 11/2,1/2,2) 

9 
= y'6 IE3a1+2a2) 

(8.65) 

Putting this all together, we have expressions for all the positive roots in 
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terms of the generators associated with the simple roots: 

(8.66) 

This is enough to determine all the commutation relations by just repeatedly 
using the Jacobi identity. For example, let's check that the a 1 lowering oper
ator acts as we expect. For example 

(8.67) 

This is what we expect for a lowering operator acting on 13/2, -1/2) state. 
The other relations can be found similarly. The general form involves some 
multiple commutator of negative simple root generators with a multiple com
mutator of positive simple root generators. When these are rearranged using 
the Jacobi identity, the positive and negative generators always eat one an
other in pairs, so that in the end you get one of the positive root states, or one 
of the negative root states or a Cartan generator, so the algebra closes. 

8.11 Another example: the algebra C3 

Let's look at the algebra corresponding to the following Dynkin diagram 

(8.68) 

where 
(8.69) 
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The Cartan matrix is 
-1 
2 

-2 

Then the construction of the positive roots goes as follows: 1 

2 0 0 

-2 2 0 

121 

(8.70) 

(8. 71) 

This algebra is called C3 . It is part of four infinite families of simple 
compact Lie algebras, called the classical groups. We will discuss them all 
later. 

8.12 Fundamental weights 

Suppose that the simple roots of some simple Lie algebra are a.i for j = 
1 to m. The highest weight, µ, of an arbitrary irreducible representation, D 
has the property that µ + rp is not a weight for any positive root, ¢. From the 
preceding discussion, it is clearly sufficient that µ + ai not be a weight in the 
representation for any j, because then 

(8.72) 

which implies that all positive roots annihilate the state, because any positive 
root can be expressed as a multiple commutator of simple roots. We will 
see soon that this is an if and only if statement, because an entire irreducible 

1Here, because the group is rank 3, we are projecting a three dimensional root space onto 
two dimensions - for groups of higher rank, these diagrams can get quite busy. 
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representation can be constructed by applying lowering operators to any state 
with this property. So if (8. 72) is true, then µ is the highest weight of an 
irreducible representation. This means that for every E01 acting on Iµ), p = 
0, and thus 

2a1 · µ . 
-~--P 

a12 -
(8.73) 

where the £1 are non-negative integers. Because the aj s are linearly indepen
dent, the integers f) completely determine µ. Every set of f_J gives aµ which 
is the highest weight of some irreducible representation. 

Thus the irreducible representations of a rank m simple Lie algebra can 
be labeled by a set of m non-negative integers, f_J. These integers are some
times called the Dynkin coefficients. 

It is useful to consider the weight vectors, µ1, satisfying 

2a},µk 
---,,_ 2~ = J j k 

aJ 

Every highest weight, µ, can be uniquely written as 

m 

µ = :E tjµj 
j=l 

(8.74) 

(8.75) 

We can therefore build the representation with highest weightµ by construct
ing a tensor product of £1 representation of highest weight µ 1, £2 with highest 
weight µ 2, and so on. This representation will generally be reducible, but we 
can always then pick out the representation µ by applying lowering operators 
to!µ). 

The vectors µi are c~lled the fundamental weights and the m irreducible 
representations that have these as highest weights are called the fundamental 
representations. We will sometimes denote them by Di. Remember that 
the superscripts are just labels. The vectors also have vector indices. It's 
potentially confusing because both run from 1 to m. 

There is more to say about the Dynkin coefficients. Since the fundamen
tal weights form a complete set, we can expand any weight of any representa
tion in terms of them, as in (8.75). Then we can run the argument backwards 
and get (8.73) which implies that for a generalµ, 

(8.76) 

that is f) is the qi - pi value for the simple root al. Thus the matrix elements 
of the vectors we were manipulating in constructing the positive roots of var
ious algebras were just the Dynkin coefficients of the roots (though of course, 
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for a general weight or root, the Dynkin coefficients will not necessarily be 
positive). In particular, the highest box in the construction is just the highest 
weight in the adjoint representation. The rows of the Cartan matrix are the 
Dynkin coefficients of the simple roots. Later, we will use a similar analysis 
to discuss arbitrary representations. 

8.13 The trace of a generator 

This is a good place to prove a theorem that we will see often in examples, 
and that will play a crucial role in the discussion of unification of forces: 

Theorem 8.9 The trace of any generator of any representation of a compact 
simple Lie group is zero. 

Proof: It suffices to prove this in the standard basis that we have developed 
in chapter 6 and this chapter, because the trace is invariant under similarity 
transformations. In the weight basis, every generator is a linear combination 
of Cartan generators and raising and lowering operators. The trace of raising 
or lowering operators is zero because they have no diagonal elements. The 

Cartan generators can be written as linear combinations of ii · ii, because 
the simple roots, a!, are complete. But each a! · ii is proportional to the 
generator of an SU(2) subalgebra and its trace is zero because every SU(2) 
representation is symmetrical about O - the spin runs from - j to j. Thus 
the Cartan generators have zero trace and the theorem is proved. 

Problems 

8.A. Find the simple roots and fundamental weights and the Dynkin di-
agram for the algebra discussed in problem (6.C). 

8.B. Consider the algebra generated by aa and aarJI where aa and T/a are 
independent Pauli matrices. Show that this algebra generates a group which is 
semisimple but not simple. Nevertheless, you can define simple roots. What 
does the Dynkin diagram look like? 

8.C. Consider the algebra corresponding to the following Dynkin dia-
gram 
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where 

Note that this is similar to C3 in (8.68), but the lengths (and relative 
lengths) are different. Find the Cartan matrix and find the Dynkin coefficients 
of all of the positive roots, using the diagrammatic construction described in 
this chapter. Don't forget to put the lines in the right place - this will make 
it harder to get confused. 



Chapter 9 

More SU(3) 

In this chapter, we study other irreducible representations of SU(3) and in 
the process, learn some useful general things about the irreducible represen
tations of Lie algebras. 

9.1 Fundamental representations of SU(3) 

Label the SU(3) simple roots as 

a
1 = (1/2, V3/2) 

ci = (1/2, -V3/2) 
(9.1) 

Then we find the µi, the highest weights of the fundamental representations, 
by requiring that µi · o,_l = O if i =I j 

µi = (ai,bi) 

µi . aj = ( ai =i= v3 bi) /2 
::::} ai = ±v3 bi 

and then normalizing to satisfy (8.74) which gives 

µ 1 = (1/2, v3/6) 
µ 2 = (1/2, -v'3/6) 

125 

(9.2) 

(9.3) 
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µ 1 is the highest weight of the defining representation generated by the Gell
Mann matrices -

(-1/2, v'a/6) • • (1/2, v3/6) 

(0, -v'a/3) 

We can also write it in the q - p notation. In fact, we can use the properties of 
the lowering operators in the q-p notation to construct all weights by working 
down from the highest weight. µ 1 is associated with the vector (1,0), and in 
the graphical notation in which the simple roots look like 

(9.4) 

it looks like this 
(9.5) 

The highest weight is the top of an a 1 doublet. Subtracting a 1 gives IT]] -
[ 2 - 1 j = [:TI], thus because the second entry is a I , and there is no state 
above it in the a 2 direction, it is the top of an a 2 doublet. Subtracting a 2 

gives m-~ = [ 0 - 1 j, so the series terminates and the weights are 

µl _ al µl _ al _ a2 (9.6) 
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There are many ways of obtaining the representation JL 2, or (0, 1 ). The 
most straightforward way to construct it from scratch is to use the q - p 
notation, starting with the highest weight, and working downwards in the 
SU(2) representations: 

(9.7) 

so the weights are 

µ2 µ2 -a2 µ2 _ a2 _ al (9.8) 

or 
(1/2, -../3/6) (0, V3/3) (-1/2, -../3/6) (9.9) 

so in the Hi plane, these look like 

(9.10) 

• • 

9.2 Constructing the states 

Do all of these weights correspond to unique states so that the representation 
is 3 dimensional? We strongly suspect so, since that was the case for the (1,0) 
representation, and these two are clearly closely related. But we would like to 
be able to answer the question in general, so let's see how we might answer it 
for a general representation. Suppose we have an irreducible representation 
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with highest weightµ. Then there will be one or more states, Iµ), and all the 
states in the representation can clearly be written in the form 

(9.11) 

where the r/Ji are any roots. But any such state with a positive <p can be 
dropped, because if a positive ¢ appears, we can move it to the right us
ing the commutation relations until it acts on!µ), which give zero. So we can 
take all the ¢i in (9.11) to be negative. 

But since every negative root is a sum over the simple roots with non
positive integer coefficients, we can take only states of the form 

(9. I 2) 

where a_/3; are simple roots without losing any of the states. 
Now it is clear if it wasn't before that the highest weight state is unique. 

If there were two states with the highest weight, the representation would 
break up into two independent sets of the form (9.12) above, and it would not 
be irreducible. 

In addition, any state that can be obtained in only one way by the action 
of simple lowering operators on Iµ) is unique. This shows that all the states 
in the (0, I) representation are unique. 

This technique of starting with the highest weight state and builiding the 
other states by the action of lowering operators actually allows us to build 
the representation explicitly. We can compute the norms of the states (see 
problem 9.A) and the action of the raising and lowering operators on the 
states is built in by construction. We will not actually use this to build the 
representation matrices, because there are usually easier ways, but we could 
do it if we wanted to. The point is that all we need to do to construct the 
representation explicitly is to understand the structure of the space spanned 
by the kets in (9.12). 

The first thing to notice is that two states produced by a different set of 
E-ai sin (9. I 2) are orthogonal. This is clear because the linear independence 
of the a1 s implies that the two states have different weights. But then they 
are orthogonal because they are eigenstates of the hermitian Cartan generators 
with different eigenvalues. 

The norm of any state can be easily computed using the commutation 
relations of the simple root generators. The norm has the form 

(9.13) 

The raising operators, starting with E0 f3 1 can be successively moved to the 
right until they annihilate Iµ). On the way, they commute with the lowering 
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operators, unless the roots are a positive and negative pair, in which case 
the commutator is a linear combination of Cartan generators, which can be 
evaluated in terms ofµ and the aJ31 s, leaving a matrix element with one less 
raising and lowering operator. This is a tedious, but completely systematic 
procedure - you can easily write a recursive program to do it explicitly. 

If two states in (9.12) have the same set of f31s but in a different order, 
then they have the same weight. In this case, we must compute their norms 
and matrix elements to understand the structure of the space. The matrix 
elements can be calculated in the same way as the norm in (9. I 3) because 
they have a similar structure: 

(9.14) 

where 'Yj and {31 are two lists of the same set of integers but in a different 
order. Again, simply moving the raising operators to the right gives a com
pletely systematic way of computing the matrix element. 

Once you have the norms and the matrix elements, you can construct an 
orthonormal basis in the Hilbert space using the Gram-Schmidt procedure. 
For example, suppose that one weight space involves two states of the form 
(9.12), IA) and IB). Then if 

(A I B) · (B / A) = (A I A)· (B / B) (9.15) 

the two states are linearly dependent, and there is a single basis state that we 
can take to be 

IA) 

V(A I A) 
(9. I 6) 

While if 
(A I B) . (B I A) -I (A I A) . (B I B) (9.17) 

then the two states are linearly independent and we can choose an orthnonnal 
basis of the form 

IA) 

J(A I A) 
and 

IB)(A I A) - IA)(A I B) (9.18) 

J ( (A I A)) . ( (A I B) . (B I A) - (A I A) . (B I B)) 

An orthonormal basis is all you need to complete the construction of the 
space. Again, I want to emphasize that while this procedure is tedious and 
boring, it is completely systematic. You could program your computer to do 
it, and thus construct any representation completely from the highest weight 
and the simple roots. 



130 CHAPTER 9. MORE SU(3) 

9.3 The Weyl group 

We could also have shown that the states in the µ 2 representation are not 
degenerate by understanding the obvious symmetry of the representations. 
The symmetry arises because there is an SU(2) associated with each root 
direction, and all SU(2) representations are symmetrical under the reflection 
E3 -+ - E3. In particular, if µ is a weight, and E3 = a · H / a 2 is the E 3 
associated with the root a, then 

(9.19) 

and the reflection symmetry implies thatµ - (q - p)a (where (q - p) = 
2( a · µ / a 2 )) is a weight with the opposite E3 value 

a·µ 
E3Iµ - (q - p)a) = --1µ - (q - p)a) 

a2 
(9.20) 

Note that the vector average ofµ and its reflection,µ - (q - p)a, isµ - (q -
p)a/2 which is in the hyperplane perpendicular to a, because 

a·(µ - (q - p)a/2) =a·µ - (q - p)a2 /2 = 0 (9.21) 

as illustrated below: 

µ-(q-p)a µ-(q-p)a/2 µ 

(9.22) 
a 

All such reflections for all roots are transformations on the weight space 
that leave the roots unchanged. We can obtain additional transformations 
that leave the roots unchanged by combining two or more such reflections. 1 

The set of all transfonnations obtained in this way forms a transformation 
group called the Weyl group of the algebra. The individual reflections are 
called Weyl reflections. The Wey! group is a simple way of understanding 
the hexagonal and triangular structures that appear in SU(3) representations. 

1For example, in SU(3), if you first reflect in the plane perpendicular to o: 1 and then in 
the plane perpendicular to a 2

, the result in a rotation by 120°. 
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9.4 Complex conjugation 

Notice that the weights of the second fundamental representation are just the 
negatives of the weights of the first. 

• 
(9.23) 

0 0 µ2 

This means that the two representations are related by complex conjugation. 
If Ta are the generators of some representation, D, of some Lie Algebra, 
the objects -T; have the same commutation relations (because the structure 
constants are real) -

([Ta, n])* = (i !abcTc)* 

[T:, Tt] = -i !abcTt 

[-Ta*, -Tb*]= ifabc(-Tc*) 

(9.24) 

It is called the complex conjugate of the representation D, and is some
times denoted by D. D is said to be a real representation if it is equivalent 
to its complex conjugate. If not, it is a complex representation. The Cartan 
generators of the complex conjugate representation are -Ht, Because Hi 
is hermitian, Ht has the same eigenvalues as Hi, Thus ifµ is a weight in 
D, -µ is a weight in D. In particular, the highest weight of D is minus the 
lowest weight of D. 

Obviously, in SU(3), the representation (0, 1) is the complex conjugate 
of (1,0). The lowest weight of ( 1,0) is -µ 2, the negative of the highest weight 
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of (0, 1) and vice versa. 

-µ2• 
(9.25) 

-µIo 

There are various different notations used in the physics literature for 
the SU(3) representations. Sometimes, you will see the Dynkin coefficients 
(q1, q2)- This is always a unique labeling. But a common shorthand notation, 
which is not too confusing for small representations is to give their dimension 
and to distinguish between a representation and its complex conjugate with a 
bar, so that (for example), 

(1,0) = 3 (0,1):::3 (9.26) 

In general, the complex conjugate of (n, m) is (m, n). This is clear if 
you think about the highest and lowest weights. Because the lowest weight 
of (1, 0) is minus the highest weight of (0, 1), and vice versa, we have 

(n,m) 
(n,m) 

(m,n) 

has highest weight 
has lowest weight 
~ 

has highest weight 

Representations of the form ( n, n) are real. 

nµI + mµ2 
-nµ2 - mµI 

nµ2 + mµI 

9.5 Examples of other representations 

Consider the representation (2,0). It has highest weight 

2µ 1 = (1, 1/ v'3) 

(9.27) 

(9.28) 
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In the q - p notation, of (9.4) and (9.5) it looks like this 

or in the Cartan space 

• 
2µ1 _al_ o:2 

• 1 H1 --+ 
• 2µ 1 - a 

2µ1 - 20:1 

133 

(9.29) 

(9.30) 

All the weights correspond to unique states. 2µ 1 - o:1, 2µ 1 - 2o: 1 and 
2µ 1 - a 1 - a 2 are reached by unique paths from the highest weight, and the 
others are related to these by Wey! reflections. Thus this is a 6-dimension 
representation - (2, 0) = 6. It is evidently complex. Its complex conjugate, 
(0, 2) = 6 is inverted in the origin in the Cartan plane, and reflected about a 
vertical line in the q - p picture: 
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• • 

• 

Now consider the representation (1,1). Note that 

µ1 + µ2 =al+ a2 

(9.31) 

(9.32) 

(9.33) 

but a 1 +a2 is the highest weight of the adjoint representation (8.58) We know 
that the zero weight is doubly degenerate - corresponding to the two states 
of the Cartan subalgebra. The two ways of getting to zero from the highest 
weights give different states. You can show that 

You will do this in problem (9.A). 
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Now look at (3,0), with highest weight 3µ 1 

(9.35) 

The weight diagram is 

• • • 

(9.36) 

• •3µ 1 -2a1 

3µ 1 - 3a1 

All the states are obviously unique except the state in the center. But it 
turns out to be unique also. The two vectors 

E_a.1 E_a.2E_a.1 j3µ 1) 

E_a.2E_a.1E_a.1 j3µ 1
) 

(9.37) 
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are linearly dependent, because we can write 

E_o:2E_o:1E_o:113µ 1
) 

= [E_o:2,E_o:1]E_o:1l3µ 1
) 

+E_o:1E_o:2E_o:113µ 1
) 

= E_o:1 [E_o:2, E_o:1] 13µ 1
) 

+E_o:1E_o:2E_o:113µ 1
) 

= E_o:1E_o:2E_o:1l3µ 1
) 

+E-o:1E_o:2E_o:113µ 1
) 

= 2E_o:1E_o:2E_o:113µ 1
) 

(9.38) 

where the second step follows because -2a1 - a 2 is not a root, and thus 

(9.39) 

and the second to last because 3µ 1 - a 2 is not a root, and thus 

-(9.40) 

Thus this is a ten dimensional representation. It is sometimes called just 
the 10. Its complex conjugate, the (0, 3) representation, is the 10. 

Problems 

9.A. If Iµ) is the state of the highest weight(µ= µ 1 + µ 2) of the adjoint 
representation of SU(3), show that the states 

and 
IB) = E_o:2 E_o:l Iµ) 

are linearly independent. Hint: Calculate the matrix elements (A I A), (A I 
B), and (B I B). Show that IA) and IB) are linearly dependent if and only if 

(A I A) (B I B) = (A I B) (B I A) 
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9.B. .Consider the following matrices defined in the six dimensional ten-
sor product space of the SU(3) Aa matrices and the Pauli matrices aa: 

1 
2.X.aa2 for a= I, 3, 4, 6 and 8 

1 
- Aa for a = 2, 5 and 7 
2 

Show that these generate a reducible representation and reduce it. 

9.C. Decompose the tensor product of 3 x 3 using highest weight tech-
niques. 



Chapter 10 

Tensor Methods 

Tensors are great tools for doing practical calculations in SU(3) and in many 
other groups as well. As you will see, the idea of tensors is closely related to 
the idea of a wave function in quantum mechanics. 

10.1 lower and upper indices 

The idea starts by labeling the states of the 3 as 

11/2, V3/6) = 11) 

l-1/2, v'3/6) = 12) 

10, -1/v'3) = 13) 

(10.1) 

The 1, 2 and 3 are to remind you of the fact that the eigenvectors of the H1 
and H2 matrices corresponding to these weights are vectors with a single 
non-zero entry in the first, second and third position. We have also written 
the indices below the line for a reason that will become clear shortly. 

If we define a set of matrices with one upper and one lower index, as 
follows 

. 1 
[Ta]j = 2[.\a]ij (10.2) 

then the triplet of states, Ii), transforms under the algebra as 

(10.3) 

The important thing to notice is that the sum over j involves one upper and 
one lower index. 
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Label the states of the 3 as 

Then 

/-1/2, --/3/6) = /1 ) 

/1/2, --13/6) = /2 ) 

/0, l/V3) = 13 ) 

( 10.4) 

(10.5) 

This is true because the 3 is the complex conjugate representation, generated 
by 

(10.6) 

Now I can define, as usual, a state in the tensor product of n 3s and m 3s. 

It transforms as 

li_1 ---i~) = Iii) ... lim) I · ) ... I · ) 
Jl ···Jn JI Jn 

T li_1 ···im) 
a J1···Jn 

n _ °" li1 ···im ) [T ]k 
- ~ fr··it-1kJt+1···in a Jl 

f=l 
m _ °" /i_1··-i_e-1kie+1···im) [T ]it 
~ J1···Jn a k 
f=l 

(10.7) 

(10.8) 

This distinction between upper and lower indices is useful because SU(3) 
has two different kinds of 3-dimensional representations - the 3 and 3. We 
need some way to distinguish them. Raising and lowering the indices is just 
a handy notational device. 

10.2 Tensor components and wave functions 

Now consider an arbitrary state in this tensor product space 

I ) li1···im) JI··-jn 
V = · · V· · J1···Jn z1···Zm (10.9) 

v is called a tensor. A tensor is just a "wave-function", because we can find 
v by taking the matrix element of Iv) with the tensor product state. 

j1 ···jn (il ···im I ) 
V- · = · · V Z(···Zm J1···Jn (10.10) 
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The correspondence here is exactly like the relation between the space wave 
function of a particle in quantum mechanics and the state describing the par
ticle in the Hilbert space. 

'ljJ(x) = (xl'ljJ) (10.11) 

The tensor v is characterized by its tensor components, vt·::t; . Now 
we can think of the action of the generators on Jv) as an action on the tensor 
components, as follows: 

where 

T j1·"jn 
a Vil •"im 

n 
= '°' [T ]jl v1 I ... ~·--Jn 
~ a k ii '"Zm 

f=l 
m '°' [T ]k j1 ... jn 

- ~ a it Vii .. ,k ... im 
i=l 

This defines the action of the generators on an arbitary tensor! 

10.3 Irreducible representations and symmetry 

(10.12) 

(10.13) 

We can now use the highest weight procedure to pick out the states in the ten
sor product corresponding to the irreducible representation (n, m). Because 

11 ) is the highest weight of the (1,0) representation, and J
2

) is the highest 
weight of the (0,1) representation, the state with highest weight in (n, m) is 

1
222 ... ) 
111 .. , 

It corresponds to the tensor v H with components 

VH1i·)n = N8· 1···8· 18· 2···8· 2 ii .. ,zm JI Jn i1 Zm 

(10.14) 

(10.15) 

Now we can construct all the states in (n, m) by acting on the tensor VH 

with lowering operators. The important point is that v H has two properties 
that are preserved by the transformation VH --t TavH, 

1. VH is symmetric in the upper indices, and symmetric in the lower in
dices. 

2. v H satisfies 
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Ji_1 V Jl ···Jn = 0 
JI HZ[ ···Zm 
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(10.16) 

The first is preserved because the generators act the same way on all the upper 
indices and the same way on all the lower indices. The second is preserved 
because of the minus sign in (I 0. I 3) and the traceiessness of the Tas. All the 
states in ( n, m) therefore correspond to tensors of this form, symmetric in 
both upper and lower indices, and traceless (which just means that it satisfies 
( 10.16) which is a generalization of the condition of tracelessness for a ma
trix). It turns out that the correspondence also goes the other way. Every such 
tensor gives a state in ( n, m). 

10.4 Invariant tensors 

The J;~ is called an invariant tensor. An invariant tensor is one that does 
not change under an SU(3) transformation. The change in a tensor is propor
tional to the action of some linear combination of generators on it, but 

(10.17) 

thus J;~ doesn't change under any SU(3) transformation. There are two other 

invariant tensors in SU(3) - the completely antisymmetric tensors, tijk and 
Eijk· These are invariant because of the tracelessness of Ta. Consider 

(10.18) 

This is completely antisymmetric, so we can look at the 123 component -

[Ta t:]1 23 = [TaJi / 23 + [Ta]; €U3 + [Ta]1 t
1

2e 

= [TaH €123 + [Tali €123 + [Tarn €123 = 0 

1bus tijk is invariant. 

10.5 Clebsch-Gordan decomposition 

(10.19) 

We can use tensors to decompose tensor products explicitly. Suppose that u 
is a tensor with n upper indices and m lower indices, and v is a tensor with 
p upper indices and q lower indices. Then it follows from the definition of a 
tensor that the product, u ® v defined by the product of the tensor components 

(10.20) 
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is the tensor that describes the tensor product state lu) ® /v). Thus we can 
analyze tensor products by manipulating tensors - the wave-functions of the 
corresponding states. The general strategy for doing these decompositions 
is to make irreducible representations out of the product of tensors, and then 
express the original product as a sum of terms proportional to various irre
ducible combinations. The advantage of this procedure is that we are directly 
manipulating wave functions, which is often what we want to know about. 

Consider, for example, 3 ® 3. If we have two 3s, ui and vJ, we can write 
the product as 

(10.21) 

The first term, 

~ ( ui vj + uj vi) (10.22) 

transforms like a 6. This contains the highest weight state u 1 v 1. We have 
added the uj vi term to make it completely symmetric in the two upper in
dices, and thus irreducible. The lower index object 

(10.23) 

having only one lower index, transforms like a 3. Thus we have explicitly 
decomposed the tensor product into a sum of 6 and a 3. Not only does this 
show that 

3®3=6EB3 (10.24) 

or 
(1, 0) ® (1, 0) = (2, 0) EB (0, 1) (10.25) 

it shows us how to actually build wave functions with the required symmetry 
properties. Later, we will see how this makes some kinds of calculations easy. 

Note also how as in (10.23) whenever a tensor with more than one upper 
index is not completely symmetric, we can trade two upper indices for one 
lower index using the E tensor. 

Next, let's look at 3 ® 3, a product of ui (a 3) and Vj (a 3). We can write 

(10.26) 

The first term in parentheses is traceless, and transforms like the 8, while the 
tensor with no indices, ukvk, transforms like the trivial representation, (0,0), 
or 1. Thus 

3®3=8EB1 (10.27) 
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or 
(1, 0) ® (0, 1) = (1, 1) EB (0, 0) (10.28) 

Notice the role of the invariant tensor, o}. One way of understanding why 
only traceless tensors are irreducible is that if a tensor is not traceless, the o 
tensor can be used to construct a non-zero tensor with fewer indices, and thus 
explicitly reduce it. 

One more example - ui (a 3) times vi (an 8). 

ui vi= 
! (ui vj + uj vi - !oi ue vj - !oj ue vi) 
2 k k 4 k e 4 k e 

1 ijf_ ( m n + m n) +:r= f.fmn U Vk f.kmn U Ve 
(10.29) 

+! (3oi ul vj - oj ul vi) 
8 k e k e 

where the first term on the right hand side is a (2,1) (or 15 - it's 15 dimen
sional), the second term is a 6, and the last is a 3. 

3 0 8 = 15 EB 6 EB 3. (10.30) 

or 
(1,0) 0 (1, 1) = (2, 1) EB (0,2) EB (1,0). (10.31) 

10.6 Triality 

Notice that (n-m) mod 3 is conserved in these tensor product decomposi
tions. This is true because the invariant tensors all have (n-m) mod 3 = 0, 
so there is no way to change this quantity. It is called triality. 

10. 7 Matrix elements and operators 

The bra state (vi is 

( I _ Jl ·--jn * (i1 ···im I 
V -V· · · . 

11 ·--zm ]1 ···Jn (10.32) 

The bra transforms under the algebra with an extra minus sign. For example, 
the triplet (i I transforms as 

(10.33) 
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In words, this says that the bra with a lower index transforms as if it had an 
upper index. This is because of the complex conjugation involved in going 
from a bra to a ket. Similarly, the bra with an upper index transforms as if it 
has a lower index. This suggests that we define the tensor corresponding to a 
bra state with the upper and lower indices interchanged so that the contraction 
of indices works in (10.33). Thus we say that the tensor components of the 
bra tensor ( v I are 

(10.34) 

so that (10.32) becomes 

(10.35) 

Then when the state (vi is transformed by -(vlTa, the tensor vis transformed 
by Tav. 

For example, consider the matrix element 

(10.36) 

The indices are all repeated and summed over (contracted for short), which 
they must be because the matrix element is invariant. 

10.8 Normalization 

A corollary to (10.36) is that if the state Iv) is normalized, satisfying (v 
v) = 1, then the tensor components must satisfy a normalization condition 

i1···im 
it···in 

I jl "'jn ,2_ 1 
V· . -z1 .. ·Zm 

(10.37) 

For example, the tensor VH in (10.15) satisfies (10.37), because only a single 
term contributes in the sum. But a tensor of the form 

(10.38) 

describes a state with norm 

j=k=l j=k=2 j=k=3 

INl2 I)2 J{ Jf - J~Jk - J~J~)
2 = INl2 

( '4' + ~ + ~) = 6 INl2 

J,k 

(10.39) 
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10.9 Tensor operators 

We can extend the concept of tensors to include the coefficients of tensor 
operators in an obvious way. For example, if a set of operators, 0, transform 
according to the (n, m) representation of SU(3), we can form the general 
linear combination 

(10.40) 

then if W transforms by commutation with the generators, the coefficients, 

wl:.' . ..-f;, transform like (n, m), (10.13). 

10.10 The dimension of (n, m) 

A very simple application of tensor methods is the calculation of the dimen
sion of the irreducible representation (n, m). The dimension of the repre
sentation is the number of independent components in the tensor. We know 
that the tensor has n upper and m lower indices, and is separately symmetric 
in each. The number of independent components of a object symmetric in 
n indices each of which run from 1 to 3 is equal to the number of way of 
separating n identical objects with two identical partitions - which is 

(
n+2) = (n+2)! = (n+2)(n+l) 

2 n!2! 2 
(10.41) 

Thus if there were no other constraint, the number of independent coefficients 
would be 

B( ) _ (n + 2)(n + 1) (m + 2)(m + 1) 
n,m - 2 2 (10.42) 

However, the tensor is also required to be traceless. This says that the object 
we get by taking the trace vanishes, and it is symmetric in n-1 upper indices 
and m-1 lower indices. Thus this imposes B(n-1, m-1) constraints, so the 
total is 

D(n,m) =B(n,m)-B(n-1,m-1) 
_ (n + 2)(n + 1) (m + 2)(m + 1) 

2 2 
(n + l)n (m + l)m 

2 2 
_ (n + l)(m + l)[(n + 2)(m + 2) - nm] 

4 
_ (n+l)(m+l)(n+m+2) 

2 

(10.43) 
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You can check that this fonnula works for the small irreducible representa
tions that we have discussed. 

10.11 * The weights of ( n, m) 

We can now put together various pieces of what we know about the irre
ducible representation (n, m) of SU(3). A general irreducible representation 
of SU(3), (n, m), has the form of a hexagon, illustrated below for n = 8 and 
m=4. 

• 

• • • • • 
• • • • • 

• • • • • • 
• • • • • • 

• • • • • • 

• • 
• • • 

• • 
• • • 

• • 

• 
• 

• 
• 

• 

• \ 
• m+l 
, weights 

• • \ 
• • \ 

• • • +- ( n+m Z1dI! '3) · 2 ' 6 VJ 

• • • • • • • • • • • • . . . . . . . . . . .. 
• • • • • • • • • • 

• 
• 

• • • • • • • 
• • • • • • . . . . . . .. 
. . . . . .. . . . . .. 

.. 
.. n+l 

weights 

(10.44) 
The highest weight is marked with the arrow. The weights along the dotted 
line can be reached from the highest weight by repeated application of the 
lowering operator E_0 1. Thus counting the highest weight, there are n + I 
weights along the dotted side of the hexagon. The weights along the dashed 
line can be reached from the highest weight by repeated application of the 
lowering operator E_0 2. Thus counting the highest weight, there are m + 1 
weights along the dashed side of the hexagon. If either n or m is 0, the 
hexagon degenerates in to a triangle. 

The Weyl reflection symmetries guarantee that the hexagon is symmetri
cal. Thus the three dashed sides are equivalent in the diagram below, as are 
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the three dotted sides. 

I • 

I , 

, .. ·•· ..•...•.. ·•·. ·•·. ·•·. ·•·. ··, 
I • • • • m+l 1 • • • • • , weights 

I , . . . . . . . . . . 
\ 

• • • • • • • • • • • \ 
• • • • • • • • • • • • . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . .. 

.. 
.. • • • • • • • 

• • • • • • . . . . . . .. . . . . . .. 
.... --- --- --- -· 

.. 
.. n+l 

weights 
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(10.45) 

The dashed and dotted sides together make up an outer layer of weights, all of 
which correspond to unique states in the irreducible representation because 
they are equivalent by Weyl reflection to states that can be reached uniquely 
by simple lowering operators from the highest weight. Obviously, we can 
define a next layer of weights by considering the hexagon immediately inside 
this one, and we can continue this process until each weight is assigned to a 
"layer". 

We will now show how to prove the following result: 

Theorem 10.10 As you go in from one layer to the next, the degeneracy of 
the weight space for states in the layer increases by one each time, until you 
get to a triangular layer. From then on, the degeneracy remains constant. 

Theorem l 0.10 implies that the degeneracies of the layers in our example are 
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as shown in the following figure. 

• 
• 

• 

• 
•·. ·•·. ·•·. ·•·. ·•·. ·•·. ·•·. ·•·. ·• . . 
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.. 
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• .. .. ·•· ·•· ·•· .. •• ·• .. .. 5 4 3 .. • •· ·• • • .• .• .. 5 
• .. .. • • • • • 

• • • • • • • • • • . . . . . . .. . . . .. . ·•.. ... . . .. . ·. · ... ·•.. ... . . 
. . • •·. ·•·. ·•·. .. . 

· ... ·•·. ·•·. ·•· .... 

·• 
2 

.. 

• 
· . 

1 
• (10.46) 

We will prove theorem 10.10 by counting the independent components of 
the tensors which represent these states. So we must first understand in detail 
how to go from weights to tensor components. We begin by considering ten
sors without the constraint of tracelessness. Such a tensor is simply the most 
general object completely symmetric in its upper and lower indices. We will 
then use the strategy of the previous section (on the dimension of (n, m)) to 
deal with the trace constraint. The advantage of this, as we saw above, is that 
it is easy to count the independent states because the tensor components are 
completely determined by the number of upper and lower components of each 
value. Now consider a tensor symmetric inn upper indices and in m lower 
indices. This corresponds to a reducible SU(3) representation, but it con
tains the general irreducible representation (n, m) that we wish to study. The 
weight diagram for this reducible representation will be the same as (10.44), 
but the degeneracies of the states corresponding to each weight may be dif
ferent (and larger). The outer layer, however, is nondegenerate even for this 
more general tensor, because it contains no tensor components which have the 
same value of any upper and lower index, so there is no trace constraint. As 
we go around this outer layer, along each side, one index changes to another 
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as illustrated in the following figure (where J indicates a lower j index). 
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v22222222 ./ 
1111 · • • • • • • • • • • • • v11111111 

. 2222 .. • • • • • • • • • • .. 
.. • • • • • • • • • .. 

.. • • • • • • • • .. 
3----t~ 

.. • • • • • • • .. 
li-t3 .. • • • • • • .. 

.. • • • • • .. 
.. • • • • .. 
·------------· 

v33333333 
1111 - v33333333 

2222 

2 -t I 
(10.47) 

To deal with the inner layers, we first need to understand the connec
tion between the tensor components and the weights. Consider a particular 
component of the general tensor with n upper and m lower indices. We will 
assume, for convenience that n ;:::: m (as is the case for the example in the 
figures). This is not a serious restriction, because if it is not true for a rep
resentation, then it is true for the complex conjugate representation obtained 
by changing the signs of all the weights (with all degeneracies remaining un
changed). Thus if we understand the representations for n ;:::: m, we actually 
understand them all. Define z(j) to be the number of upper components with 
the value j, and z(j) to be the number of lower components with the value j. 
Thus for example, for the highest weight of our tensor, z(l) = n, z(2) = m, 
and the others are all zero. Note that the three quantities 

z(l) - z(l), z(2) - z(2) , z(3) - z(3) , (10.48) 

are determined by the weight associated with the component and the value of 
n - m. By straightforward calculation, the !-component of the weight vector 
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satisfies 

1 1 
µ1 = 2[z(l) - z(l)] - 2[z(2) - z(2)]. (10.49) 

The 2-component of the weight vector satisfies 

v'3 v'3 v'3 
µ2 = 6 [z(l) - z(l)] + 6 [z(2) - z(2)] - 3 [z(3) - z(3)]. (10.50) 

And n - m satisfies 

n - m = [z(l) - z(l)] + [z(2) - z(2)] + [z(3) - z(3)]. (10.51) 

Thus 

1 
z(l) - z(l) = 6[6µ1 + 2v'3 µ2 + 2(n - m)] 

1 
z(2) - z(2) = 6[-6µ 1 + 2v'3 µ2 + 2(n - m)] (10.52) 

1 
z(3) - z(3) = 3[(n - m) - 2v'3µ2] 

Actually, rather than using (10.52), it will be easier just to follow what is 
happening to the z(j) - z(j) by thinking about what happens to the indices 
as you move around the weight diagram, but the important point is that these 
differences of upper and lower indices are all fixed. 

Now suppose that we move into the k-th inner layer by taking k steps to 
the left. Assume that k < m so we are still in a hexagonal layer (the number 
of weights along the upper-right-hand edge of the layer decreases by one for 
each increase ink, thus k = m is the comer of the first triangular layer - we 
will come back to this later). Then take j steps down to a weight on the k-th 
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inner layer, as shown below (fork = 3 and j = 2): 
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(10.53) 

As we move in horizontally, in each step either 1 ---+ 2, or 2 ---+ I, or 
1---+ 3 and 2---+ 3 (see (10.47), and thus z(l) - z(l) is decreased by one and 
z(2) - z(2) is increased by one. Similarly, as we go down the kth layer, at 
each step z(l) - z(l) is decreased by one and z(3) - z(3) is increased by 
one. And thus 

z(l)-z(l) =n-k-j 

z(2) - z(2) = -(m - k) 

z(3) - z(3) = j 

(10.54) 

Now we can count the number of components. (10.54) implies that the 
tensor component can be written with 

n - k- j ls, m - k 2s, j 3s, and k j-J pairs, where 
j is 1, 2 or 3. 

(10.55) 

The j-J pairs do not contribute to the z{j) - z(j) values -they do not affect 
the weight, but they give different independent tensor components. Thus the 
number of ways we can get this weight is the number of different ways we 
can choose these k pairs, which is 

(10.56) 
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Note that it only depends on k - that is it only depends on the layer, not 
on where we are in the layer. It is easy to see that this is also true for the 
weights above the horizontal. The argument is similar and we leave it as an 
exercise for the reader. (10. 56) is the number of independent components for 
the general tensor with n upper and m lower components. The number of 
components in the traceless tensor is this minus the number of independent 
components of the same weight in the trace. The trace is a general tensor 
with n - 1 upper and m - 1 lower indices. It's highest weight is one step 
to the left of the highest weight of ( n, m). From the highest weight of this 
tensor, it takes only k - l steps to get to the same weight. Thus the number 
of components of the trace is (10.56) for k --+ k - l, and the number of 
independent components of the traceless tensor is 

(
k+2)-(k+l) = (k+2)(k+l) _ (k+l)k =k 

2 2 2 2 +l. (10.57) 

This simply implies that the degeneracy increases by one each time we move 
in a layer, in agreement with theorem 10.10. 

This analysis remains valid in to k = m. But when k > m, that is after 
the first triangular layer, (10.55) doesn't make sense because the number of 
2s cannot be negative. Instead, the component must look like 

n - k - j ls, k - m 2s, j 3s, and m j-J pairs, 
where j is 1, 2 or 3. 

(10.58) 

Thus from this layer on, m plays the role of k, and the degeneracy remains at 
m + 1 the rest of the way in. This completes the proof of theorem 10.10. 

10.12 Generalization of Wigner-Eckart 

Consider a matrix element of a tensor operator between tensor states 

(ulWlv) (10.59) 

This is really a shorthand for a very large number of possible matrix ele
ments, because each representation may have many independent components 
(the number being just the dimension of the representation). Suppose that 
the representations of v, u and Ware irreducible. Then we expect that the 
symmetry will ensure that there are relations among the various possible ma
trix elements. For example, if these were SU(2) tensor operators, we know 
that all the matrix elements would be determined in terms of a single num
ber. To determine the consequences of the symmetry in this case, we imag
ine decomposing the state Wlv) into irreducible representations. Then we 
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know there can be no contribution to the matrix element except from repre
sentations that transform under the same irreducible representation as u. This 
follows from Shur's lemma. Also because of Shur's lemma, the contribution 
from each appearance of the representation of u is determined by a single 
unknown number, because the matrix element is proportional to the identity 
in the space of the u representation. Thus there will be one (and only one) 
unknown constant in the matrix element for each time the representation of u 
appears in the tensor product W ® v. However, there is an important differ
ence between this and the case of SU(2). Here u may appear more than once 
in the decomposition of WI v). 

Tensor analysis will make it relatively easy to write an expression for the 
matrix element, (10.59), that automatically incorporates all of the constraints 
that follow from the symmetry. Because of (10.9), (10.35), and (10.40), the 
matrix element will be proportional to the tensor components of Iv) 

i1-··in V· . 
J1--·Jm (10.60) 

and of W 

(10.61) 

and proportional to the conjugate components of (ul 

(10.62) 

The entire matrix element must be invariant. Which means that the answer 
for the matrix element must have all the indices either contracted with each 
other or with invariant tensors (that is <l's and Es). Another way to say the 
same thing is that the matrix element 

(10.63) 

must itself be an invariant tensor - a sum of terms made of os and ES. 
Here is an example that will be of some interest later. Suppose that u, W 

and v are all 8s. This is particularly easy to analyze, because u, W and v can 
all be thought of as matrices, with the upper index referring to the row, and 
the lower index to the column. Then, for example, 

Wjvi = [Wv]i (10.64) 
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Now a term with all indices contracted is one in which the matrices are com
bined into a number by matrix multiplication, and taking traces. There are 
precisely two such terms: 

'Ir(u W v) and 'Ir(TI v W) (10.65) 

There are two terms because the tensor product 8 ® 8 contains 8 twice. Thus 
in this case the matrix element is 

A1 Tr(u W v) + A2 Tr(uv W) (10.66) 

where A1 and A2 are constants that must be fixed by the physics, rather than 
the group theory (like the reduced matrix elements in the Wigner-Eckart the
orem for SU(2)). This means that all 83 = 512 matrix elements are de
termined in terms of these two parameters! Furthermore, we know how all 
the matrix elements are related simply by matrix multiplication, without any 
fancy tables or whatnot. 

Here's another example - suppose u and v are lOs, and W is an 8. The 
matrix element will be proportional to the tensor components of Iv) 

(10.67) 

and of W 
wt (10.68) 

and proportional to the conjugate components of (ul 

(10.69) 

In this case, it is easy to see that there is only one way to put the indices 
together (because of the total symmetry of u and v) 

(10.70) 

Thus the matrix element is determined by a single reduced matrix element 

(10.71) 

10.13 * Tensors for SU(2) 

You may be wondering why we have spent so much time on the description 
o.' tensors for SU(3), while we barely mentioned them for SU(2). The an
swer to this question is really more history and sociology than it is math or 
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physics. The description of irreducible SU(2) representations in term of ten
sors is simply not used very much, perhaps because it is not needed. Everyone 
knows how to deal with the SU(2) irreducible representations in other ways. 
Nevertheless, tensor analysis is useful for SU(2), and it may be instructive to 
see how it works. 

Tensor analysis for SU(2) is even simpler than for SU(3) because there 
is only one fundamental representation for SU(2) - the doublet. Thus we 
can look only at tensors with upper indices, and there is no trace constraint. 
The E symbol now has two indices, rather than three in SU(3). So while 
we could use the invariant E tensor to lower two upper indices in SU ( 3), 
in SU(2), the E just eats two upper indices completely. This implies that 
the irreducible representations correspond to completely symmetric tensors, 
because if a tensor with n indices is not completely symmetric, then we can 
get a non-zero tensor with n-2 indices by contracting two indices with E, and 
that would reduce the representation. Obviously, the completely symmetric 
tensor with n indices corresponds to the irreducible spin-n/2 representation, 
because the highest weight state, in which all the indices are 1, has ]3 = n /2. 

Because the SU(2) irreducible representations correspond to such sim
ple tensors, we can write them down explicitly. Consider the tensor with 2s 
indices, corresponding to the spin-s representation, and let us pick out the 
component with h = m. Because each 1 index carries h = 1/2 and each 2 
index carries h = -1/2, the h = m state must correspond to a tensor with 
s + m 1 s and s - m 2s. Let us define the tensor 

]1 ···]2s 
vs,m (10.72) 

to be a completely symmetric tensor which is equal to 1 if s + m indices are 
1 and zero otherwise. There are 

( 
2s ) (2s)! 

s + m (s + m)! (s - m)! 
(10.73) 

ways to pick the s +m ls out of the 2s indices. Thus Vs,m is a sum of (s!sm) 
terms. For example, 

(10.74) 

The state lvs,m) is not properly normalized. The squared norm gets a 

contribution 1 from each of the (s!~) terms in (10.72). Thus the properly 

normalized state is 

( 
2s )-1

/2 
Is, m) = 

8 
+ m lvs,m) (10.75) 
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It is easy to check that this definition behaves properly under the SU(2) rais
ing and lowering operators. We will next illustrate its use. 

10.14 * Clebsch-Gordan coefficients from tensors 

Consider the product 

(10.76) 

From the general properties of tensors, we know that it transforms like a 
component in the tensor product of s 1 and s2. The corresponding nonnalized 
state is easy to write down, because (10.76) is simply a product: 

( 
2s1 )-1;2 ( 2s2 )-1/2 

ls1,s2,m1,m2) = lvs1,m1 · Vs2,m2) 
s1 + m1 s2 + m2 

(10.77) 
The tensor product (10.76) lives in the space of tensors which are sym

metric in the 2s1 i indices and separately symmetric in the 2s2 j indices. 
What we would like to do is to decompose this tensor product space into sub
spaces that transform irreducibly under SU(2). We can do this by combining 
tensors corresponding to the various spin states in s1 ® s2 with invariant ten
sors to produce tensors with the appropriate symmetry properties. 

The simplest example of this is spin s1 + s2. We know that we can write 
the states of spin s1 + s2 in terms of a completely symmetric tensor with 
2s1 + 2s2 indices, 

( 
2s1 + 2s2 )-1/ 2 

!s1 +s2,m1 +m2) = 1Vs 1+s2,m1 +m2) (10.78) 
s1 + s2 + m1 + m2 

Since V81 +s2,m1+m2 is completely symmetric, it is symmetric in its first 2s1 
and its last 2s2 indices, and is thus in the same space as the tensor product, 
(10.76). The scalar product of the two states, (10.77) and (10.78) is the an
swer to the question "What is the amplitude to find the state of spin s1 + s2 in 
the tensor product state?" In other words, it is the Clebsch-Gordan coefficient, 

(10.79) 

But we can also easily calculate the matrix element directly from the defini
tions because 

= 
it ···i2s1 

h ···hs2 

(10.80) 
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The complex conjugation is unnecessary, because the tensors are real. The 
sum looks formidable, but actually it is easy to do. Each configuration of 1 s 
and 2s for the tensors on the right-hand-side will correspond to some config
uration for v281 +2s 2, which contains all possible configurations with the right 
total number of ls and 2s. Thus the sum in (10.80) gives 

(10.81) 

and the result for the Clebsch-Gordan coefficient is 

(10.82) 

You can check in special cases that this is right using raising and lowering 
operators, but tensors gave us the general result rather easily. 

10.15 * Spin s1 + s2 - 1 

The component of the tensor product, ( 10. 77), in spin s 1 + s2 - 1 will be 
proportional to the tensor V81 +s 2-1,m1+m2, To compute the Clebsch-Gordan 
coefficient, we must find the normalized state proportional to this tensor in the 
space of the tensor product tensor, ( 10. 76). That is, we must construct a tensor 
proportional to Vs 1 +s 2 -I,mi+m2 , but with 2s1 + 2s2 indices and symmetric 
in the first 2s1 indices, and the last 2s2 indices. To add two indices, we need 
the invariant tensor f.ij. Thus we can form the tensor 

(10.83) 

Now we have to symmetrize in the i indices and symmetrize in the j indices. 
Let us call the symmetrized tensor 

i1 -··i2, 1]1 '"J2s2 
Vs1 +s2-l,m1 +m2,2s1 ,2s2 (10.84) 

Each term in V has a single f.ir}s multiplied by V51 +s2-1,mi+m2 with all the 
other indices. There are 4s1s2 terms in V, corresponding to the 2s1 possible 
values of r and the 2s2 values of s. 
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The tensor V is not properly normalized. Call the normalization factor 
N. Then the Clebsch-Gordan coefficient is 

(s1 + s2 - 1, m1 + m2 I s1, s2, m1, m2) 

= N ( 2s1 )-1;2 ( 2s2 )-1/2 

s1 + m1 s2 + m2 
" ( i1 ···i2s1 Jl ···J2s2 ) * i1 ···i2s1 J1 ···J2s2 
~ Vs1+s2-l,m1+m2,2s1,2s2 Vs1,m1 . Vs2,m2 

i1 .. ·i2s1 

(10.85) 

il ··-ns2 

The sum in (10.85) is easy to simplify because each of the 4s1s2 terms in V 
gives the same result. This is true because these terms were constructed by 
symmetrizing in the i and j indices, but the tensor product is already symmet
ric in the i and j indices. And as before, the complex conjugation is irrelevant. 
Thus we can rewrite (10.85) as 

( 
2s2 - 1 )] 

s2 + m2 -1 
(10.86) 

where the last line follows by simply expanding the two non-zero values of 
Eidi in the sum to get 

" i2···i2s1j2···J2s2 ( li2···i2s1 2j2···J2s2 2i2···i2s1 lj2···j2•2) 
~ V51 +s2-1,m1+m2 · Vs1,m1 · Vs2,m2 - Vs1,m1 · Vs2,m2 

i2 · ··i2s1 
h···hs2 

(10.87) 
To calculate N in ( I 0.85), note that we can expand one of the Vs, and 

each of the terms will give the same result because of the symmetry of the 

remaining V, so 

1/N2 = L 
i1 ·· -i2s1 
il···i2s2 

= 4s1s2 L 
i1 ···i2s1 

il···i2s2 

iij1 i2···i2s1J2·--J2s2 i1···i2s1Jl··-J2s2 
f. vs1+s2-l,m1+m2 vs1+s2-l,m1+m2,2s1,2s2 

(10.88) 
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Now we can do the sum over i 1 and J1 in ( I 0.88) by expanding V. 
What makes this doable is the fact that 

for some constant C, so that 

i1 ···i2s1 

J1 ·--12.2 

i2 ···i2s1 

h--·hs2 

(10.89) 

(10.90) 
To compute C, note that the term in V proportional to fidi gives a factor 

of 2 because 

I: lfiij1j2 = 2 
id1 

The terms proportional to fidm form-/- I give 1 each because 

L fid1 fiijm = t5idm 

i1 

(10.91) 

(10.92) 

i2···i2s j2···izs 
The sum over j 1 then simply reproduces V81 +s

2
~I,mi +~

2
• Since there are 

2s2 - 1 possible values for jm, such terms give 2s2 - 1 total contribution to 
C. The terms proportional to fimii form -=/= 1 contribute another 2s1 -1. The 
other terms contribute nothing. Thus C = (2+2s1 -1+2s2-1) = 2s1 +2s2, 
and 

(10.93) 

and putting all this together gives 
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10.16 * Spin s1 + s2 - k 

The analysis of the general case is similar to that in the previous section. The 
total spin can be written as s1 + s2 - k fork between 0 and 1s1 - s21- The 
component of the tensor product, ( I 0. 77), in spin s 1 + s2 - k is proportional 
to the tensor V81 +s2-k,mi +m2. To compute the Clebsch-Gordan coefficient, 
we must find the normalized state proportional to this tensor in the space of 
the tensor product tensor, ( l 0. 76), so we must construct a tensor proportional 
to V 81 +s2-k,mi +m2, but with 2s1 + 2s2 indices and symmetric in the first 2s1 
indices, and the last 2s2 indices. For this, we need k invariant tensors Eij to 
form the tensor 

(10.95) 

Now we symmetrize in the i indices and symmetrize in the j indices. The 
symmetrized tensor is 

i1 .. -i2s 1Jl "'J2s 2 
Vs1 +s2-k,m1 +m2,2s1,2s2 (10.96) 

Each term in V has k Eir}s multiplied by V51 +s2-k,mi +m2 with the other in
dices. We can count the number of terms in V as follows. The i index in the 
first E can have any of 2s 1 values, and the k index any of 2s2 values. Then the 
i index in the second E can have any of 2s1 - 1 values, and the k index any of 
2s2 - 1 values. And so on for k terms. However, this overcounts by a factor 
of k!, because the order of the ES doesn't matter. Thus the number of terms is 

_ (2si)! (2s2)! 1 
µ- -

- (2s1 - k)! (2s2 - k)! kl 
(10.97) 

Again, let N be the normalization factor required to properly normalize 
the tensor V. Then the Clebsch-Gordan coefficient is 

(10.98) 

As above, the sum in ( 10. 98) can be simplified because each of the µ terms 
in V gives the same result. The complex conjugation is irrelevant as usual . 
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Thus we can rewrite ( 10. 98) as 

(10.99) 

where in the last line we have expanded all the 1:s. 
To calculate Nin (10.98), note that 

1/N2 = '°' I i1 .. ·i2,1Jl'"l2•2 12 
D Vs1+s2-k,m1+m2,2s1,2s2 

i1 •»i2s 1 

it "'i2&2 
(10.100) 

_ iij1 ... ikik i1c+1"·i2,1Jk+1"·J2s2 vi1"·i2,1i1·"J2s2 
- µ € f Vs1+s2-k,m1+m2 s1+s2-k,m1+m2,2s1,2s2 

Now, again, we can do the sum over i 1 and Jl by expanding V. The result 
will be proportional to V with two fewer indices 

(10.101) 
because the sum over ii and j 1 doesn't affect the symmetry in the other in
dices. We can find the coefficient C in (10.101) by picking out all contribu
tions to any single term in the expansion of the right-hand-side, for example, 

(10.102) 

We will now look at all terms in V81 +s2-k,mi+m2,2s1,2s2 that contribute 
to the particular term (10.102) in V81 +s2-k,mi+m2,2s 1-l,2srl and find their 
contributions to the coefficient C. 

The term 

(IO. 103) 

contributes 2. 



162 CHAPTER 10. TENSOR METHODS 

Each of the 2s2 - k terms of the form 

(10.104) 

for m > k contributes I . 
Each of the 2s 1 - k terms of the form 

(10.105) 

for m > k contributes 1. 
Each of the k - 1 terms of the form 

for 2 :::; m :::; k contributes 1. 
Putting all this together gives C = (2s1 + 2s2 - k + 1) and thus 

i1 ,j1 (10. 107) 
i2 "·i2a j2 "·ha 

= (2s1 + 2s2 - k + 1) vs1+s22k,m1+~2,2s1-1,2s2-l 

Now we iterate the procedure, and do the sum over i2 and h in the same 
way, then i3 and h and so on. In general 

ip+l ,jp+l (10.108) 
_ C ViP+2--·i2. 1 jp+2···j2.2 
- P s1+s2-k,m1+m2,2s1-p-1,2s2-p-l 

where Co= C and 

vik+l "·i2s1 Jk+l ""32s2 - vii.+1 ···i2s1 jk+l ··-j2s2 
s1 +s2 -k,m1 +m2 ,2s1 -k,2s2 -k - s1 +s2-k,m1 +m2 (10.109) 

As we did before for Co, to calculate Gp, we can look at all contributions 
to a single term in the expansion of the right-hand-side, for example, 

(10.110) 

We will now look at all terms in Vs1+s2-k,mi+m2,2s1-p,2s2-p that con
tribute to the particular term (10.110) in Vs 1+s 2-k,m1+m2,2s1-p-1,2s 2-p-1 

and find their contributions to the coefficient Gp. 
The term 

(10.111) 
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contributes 2. 

Each of the 2s2 - k terms of the form 

for m > k contributes 1. 

Each of the 2s1 - k terms of the form 

for m > k contributes 1. 
Each of the k - p - I terms of the form 

for 2 ::;_ m ::; k contributes 1. 

and 

and 

Thus 

i1 , .. i2s1 

ii···hs2 

Gp = 2s1 + 2s2 - k - p + I 

ik+l ··-i2s1 
lk+1--·J2s2 

I

v ik+l --·i2s1Jk+l """]2s21
2 

s1 +s2-k,m1 +m2 

= (2s1+2s2-k+l)! ( 2s1+2s2-2k ) 
(2s1 + 2s2 - 2k + 1)! s1 + s2 + k +mi+ m2 
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(10.112) 

(10.113) 

(10.115) 

(10.116) 

1/N2 __ µ (2s1 + 2s2 - k + 1)! ( 2s1 + 2s2 - 2 ) 
( 10.117) 

(2s1 + 2s2 - 2k + 1)! s1 + s2 - 1 + m1 + m2 

Now we have all the pieces, and can put them together into the Clebsch-
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(10.118) 
This relation is a bit complicated for humans to use, but it is easy to code 

it into a computer program that computes arbitrary Clebsch-Gordan coeffi
cients, and it is nice example of the power of tensor methods. 

Problems 

10.A. Decompose the product of tensor components ui vjk where vjk = 
vkj transforms like a 6 of SU(3). 

10.B. Find the matrix elements (ulTalv) where Ta are the SU(3) gener
ators and lu) and Iv) are tensors in the adjoint representation of SU(3) with 
components u} and vj. Write the result in terms of the tensor components 
and the A.a matrices of (7.4). 

10.C. In the 6 of SU(3), for each weight find the corresponding tensor 
component vij. 

*10.D. 
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a. Use the SU(2) tensor methods described in this chapter to redo prob-
lem V.C. 

b. Check equation (10.86) by using the highest weight procedure to find 
the state j3/2, 1 /2) in the tensor product of spin 3/2 states and spin 1 states 
and compare with the result from (10.86) for the Clebsch-Gordan coefficient 

(3/2, 1, 3/2, 1/2 11, 3/2, 0, 1/2) 

*10.E. Consider rr P scattering, ignoring isospin breaking. There are 
three easily accessible processes (because it is hard to make rr0 beams or 
neutron targets): 

rr+p--+ rr+p with amplitude A+P = (1r+pjH1/1r+p) 

rr-p--+ rr-p with amplitude A-p = (1r-plH1/1r-p) (1) 

rr-p--+ rr0n with amplitude Aon= (1r0njH1/1r-p) 

where H1 is the interaction Hamiltonian, which is approximately SU(3) in
variant. If we describe the pion and nucleon wave functions in terms of 
8U(2) tensors, rrjk = rrkj for the pions and NJ for the nucleons, we can 
write the most general amplitude for this process as follows: 

- ·k e - ·e k 
(rr NIH1l1r N) = A1 Wjk Ne rr1 N + A2 Wjk Ne rr3 N (2) 

a. Use (2) and the techniques described in the notes on tensor analysis 
for 8U(2) to write the three scattering amplitudes in (1) in terms of A1 and 
A2 and find the relation among the three amplitudes in ( 1). 

b. The scattering amplitudes in (1) can also be written in terms of I = 
3/2 and I= 1/2 amplitudes by decomposing the rrN states into irreducible 
I = 3/2 and I = 1/2 representations and using Schur's lemma. Find these 
amplitudes in terms of A1 and A2 . 



Chapter 11 

Hypercharge and Strangeness 

Let's now go back to the 1950s to the discovery of strange particles. By this 
time, isospin was well established as an approximate symmetry of the strong 
interactions, broken by the weak and electromagnetic interactions. Experi
menters began to notice a strange new class of particles which were produced 
in pairs in scattering of strongly interacting particles, and decayed much more 
slowly back into ordinary particles. It was eventually realized that a lot of the 
physics could be understood if there were an additive quantum number, called 
strangeness that was conserved by the strong (and electromagnetic) interac
tions, but not by weak interactions. Call it S. Particles which carry a non-zero 
value of S are called strange particles. 

11.1 The eight-fold way 

The lightest strange particles are the K mesons, an isospin doublet with S = 
1 

K+ with h = 1/2 
K 0 with h = -1/2 

and their antiparticles with S = -1 

R° with h = 1/2 
K- with h = -1/2 

Like the 7l"S, the Ks have spin zero and baryon number zero. 

(11.1) 

(11.2) 

There are also strange baryons, particles with baryon number + 1. With 
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S = -1 there is an isotriplet (that is an isospin I representation) 

E+ with 13 = 1 

E0 with h = 0 

E- with h = -1 

and an isosinglet (isospin 0) 

A with h = 0 

With S = -2 there is an isodoublet (isospin 1/2) 

s0 with h = 1/2 

with h = -1/2 

All of these particles satisfy 
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(11.3) 

(11.4) 

(I 1.5) 

(11.6) 

where Q is the electric charge in units of the proton charge, T3 is the third 
component of isospin, and Y is a quantum number called hypercharge, de
fined by 

Y=B+S (11.7) 

If we plot T3 versus Y for the baryons, we get a plot that suggests the 8 
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dimensional adjoint representation of SU(3): 

N 

t 
y 

p 

--E---E0 , A--E+-
T3--+ 

To make the hexagon regular, we can choose 

N p 

(11.8) 

(1 I. 9) 

(11.10) 

Something similar works for the light spin O mesons if we add the some
what heavier 'T/ meson that was not discovered when SU(3) was first dis-



I I .2. THE GELL-MANN OKUBO FORMULA 169 

cussed. 

(11.11) 

It turns out that the SU(3) symmetry suggested by these plots is not a sym
metry of what were thought of as the strong interactions in the early 1960. 
But then Gell-Mann realized that you could imagine dividing the strong in
teractions into two parts: 

very strong interactions, invariant under and SU(3) symmetry 
under which the light baryons and mesons transform like 8s 
and; 

medium strong interactions, which break SU(3), but conserve 
isospin generated by T1, T2 and T3, and hypercharge gen
erated by 2T8 / J'i 

(11.12) 

Then he showed that SU(3) symmetry could be used in perturbation theory, 
like isospin, to understand a lot about the strong interactions. 

11.2 The Gell-Mann Okubo formula 

SU(3) is much more than just taxonomy. Consider the baryon masses. We 
can write the baryon states as 

BJ If) (11.13) 

where Bj is a tensor (wave function) that labels the particular baryon we are 
interested in. For example, the proton state corresponds to 

(11.14) 
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We can survey all the states at once by writing the following matrix: 

CA E+ p) v'2+v'6 
BJ= E- -r:o A N v'2+v'6 

=O -2A 
v'6 ij 

(11.15) 

Now 

BJ If) =PIP)+ NIN)+ ... (11.16) 

The entries of the matrix are convenient labels for keeping track of the states 
- P is the proton wave function, A is the A wave function, and so on. 

If SU (3) were an exact symmetry, all the particles of the octet would 
have the same mass. Because it is broken, the masses will be different. But 
if, as Gell-Mann assumed in (11.12), the SU(3) conserving very strong in
teractions are much more important than the SU(3) breaking medium strong 
interactions, the differences between different particle masses within the rep
resentations, the mass splittings, should be small compared to the average 
mass. Explicitly, the mass is the energy of a particle state at rest, so we want 
to calculate the matrix element of the Hamiltonian between the various single 
particle states. We will ignore the weak and electromagnetic interactions for 
now. The weak interactions give a negligible contribution to masses. The 
electromagnetic interactions are more interesting, because while their effect 
is small, it is significant because it violates isospin symmetry. We will come 
back to this later. Then the matrix element we want is 

(BIHslB) = (BIHvslB) + (BIHMslB) (11.17) 

where Hvs commutes with the SU(3) generators and HMs commutes with 
the isospin and hypercharge generators, but not with the others. The first 
term contributes a common mass to each particle in the SU (3) representation. 
In general, we cannot say anything very interesting about the second term. 
However, there is reason to believe that HMs transforms like the 8 component 
of an octet of SU(3). Actually, when Gell-Mann first did the calculation, 
he didn't have any reason to believe this. But it is the simplest possibility 
consistent with the isospin and hypercharge conservation assumed in (11.12). 
The point is that we know the strong interaction Hamiltonian commutes with 
the isospin and hypercharge generators. Thus it must be made up of tensor 
operators that have components with I = 0 and Y = 0. The 8 is the smallest 
nontrivial representation that has a state with I = Y = 0. The I = Y = 0 
state corresponds to the generator T8 . So Gell-Mann just assumed that HMs 
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transformed like the Ts component of an 8 in order to be able to use the 
Wigner-Eckart theorem to get a result. In particular, he assumed 

HMs = [Ts]) Of (11.18) 

where O is a tensor operator transforming like an 8 under SU(3), 

(11.19) 

In (11.18) we are using the matrix element [Ts]) as a tensor component to 

pick out the component of the operator that commutes with f and Y. 
Now we can use tensor methods to compute the matrix element 

(11.20) 

This is a calculation we have already done. The two independent SU(3) 
invariant combinations of the tensor coefficients are 

~ [Ts]{ Bf= Tr ( Bf Ts B) 

B; Bi [Ts]~ = Tr ( Bf B Ts) 

where we have used the fact that in matrix notation, 

(11.21) 

(11.22) 

because B involves complex conjugation and interchanging of upper and 
lower indices, which is equivalent to transposition. 

Thus purely from SU(3) symmetry and the assumption that HMs is a 
component of an octet we know that 

(BIHMslB) 

= XTr (Bf BTs) + YTr (BfTsB) 

= x ([Bf Bn + [Bf Brn _ 2[Bf B]n /v'12 
+Y (lB BfH + [B BfJ~ - 2[B Bfn) ;v'12 

(11.23) 



172 CHAPTER 11. HYPERCHARGEAND STRANGENESS 

So we need to compute the diagonal elements of Bf Band B Bf 

Thus 

E0 A 2 ~ 2 

I 
2 

[Bf B]u = vf2, + v6 + IE-I + l=--1 

[B1 BJ22 = IE+I' + 11 +~I'+ l2'l2 

I 2Al 2 

[Bf Bh3 = IPl 2 + lnl 2 + J6 
Eo A 2 

[B Bf]n = V2 + v6 + jE+ 1

2 
+ IPl 2 

2 1-Eo A 1
2 

[B Bf]22 = IE_ I + v'2 + v6 + lnl 2 

2 I 12 ,-2A 12 

[B Bf]J3 = js-1 + 2° + v6 

(BIHMslB) 

= X (1El2 + 1=1 2 
- IAl2 

- 2IN12
) /v'l2 

+Y (1El 2 + INl 2 
- IAl2 

- 21:::f) /v'l2 

(11.24) 

(11.25) 

where we sum over particle types in each isospin representation. Now it is 
easy to find the contribution to each particle mass by picking out the right 
tensor coefficient. Adding the common mass Mo from the very strong inter
actions, we have 

MN= Mo -2X/../f2+ Y/..ffi 

ME= Mo+ x;../l'i + Y/../l'i 
MA= Mo -X/vl2 - Y/../fi 

M=. =Mo+ X/.J-0.- 2Y/JI2 

(11.26) 

Thus we have expressed the four masses in terms of three parameters. We 
know nothing (from the symmetry) about the values of Mo, X, and Y, but 
we can eliminate these dynamical quantities and get one relation that follows 
purely from the symmetry -

(11.27) 
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This is the Gell-Mann-Okubo formula. And it works very well. For exam
ple, it implies 

Putting in (in Me V) 

MN= 940 

gives 

Mr;= 1190 M3 = 1320 

(exp. 1115) 

(11.28) 

(11.29) 

(11.30) 

compared to the experimental value of 1115, the difference is less than 1 %. 
Considering that isospin breaking is bigger than this, it is much better than 
we have any right to expect. 

11.3 Hadron resonances 

Particles like the baryons and mesons that participate in the strong interac
tions are generically called hadrons. The baryons and mesons that we have 
discussed are the lightest hadrons. But there are also an enormous number of 
excited states of these light states that can be produced in particle collisions 
but decay back into the light states so quickly that they appear only as en
hancements in the scattering cross-section. The first hadron resonance to be 
discovered was the .6., which shows up as a very large enhancement in the 
1rP scattering cross-section at about 1230 MeV for angular momentum 3/2. 
The resonance appears in all the charge states, from +2 to -1, so this is a 
spin 3/2, isospin 3/2 state. It is part of a 10 of SU(3). All the other states in 
the 10 have now been observed . 

.6_- .6. 0 .6_+ .6_++ 

--E*---E*0 --E*+-
H1-+ 

n-

(11.31) 
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When Gell-Mann first discussed SU(3), then- had not yet been observed. 
Gell-Mann was able to predict not only its existence, but also its mass. Let us 
repeat his calculation. 

Again. we assume that HMs transforms like the 8 components of an 
octet, and compute 

(11.32) 

where we have called the decuplet wavefunction B* and 

(11.33) 

is the general decuplet state. We have already done the tensor analysis, and 
in this case, we can immediately write down the result just by thinking. Since 
there is only one reduced matrix element, the matrix elements of all octet op
erators are proportional (component by component). Thus the matrix element 
we want is proportional to the matrix element of the generator, Ts, and thus to 
the hypercharge, Y. This means that we predict equal spacing for the isospin 
representations 

Mr:,• - M6. = M=.• - Mr.• = Mn- - Ms• 

Experimentally, in MeV, 

Mr:,•= 1385 Ms•= 1530 

(11.34) 

(11.35) 

The spacings are nearly equal, and the average is about 150, thus we expect 
the n- at about 1680. Gell-Mann was even able to predict the fate of the 
n-. With the predicted mass, it could not decay into two lighter particles 
conserving strangeness and baryon number. The lightest pair of particles with 

baryon number 1 and strangeness -3 is the K- and 3° (or R° ands-) with 
a total mass of about 1815. Thus Gell-Mann predicted that the n- would 
look not like a resonance, but like a weakly decaying particle, decaying into 
states with strangeness -2, 37r and AK-. Sure enough, the n- was seen 
(first in bubble chamber photographs) with a mass of 1672 MeV. This was 
very convincing evidence that SU(3) is a good approximate symmetry of the 
strong interactions. 

11.4 Quarks 

Today, this may seem rather trivial, because we now know that all of these 
strongly interacting particles are built out of the three light quarks, u, d and 
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s, transforming like the 3 of SU(3). 

d u 

s 

I 
The baryons can be built of three quarks because 

3 ® 3 ® 3 = 10 EB 8 EB 8 EB 1 

To see this, note that 3 ® 3 = 6 EB 3, so 

3 ® 3 ® 3 = (6 ® 3) EB (3 ® 3) 

and 6 ® 3 looks like 

uij vk = } ( uij vk + uik vj + ukj vi) 

+~ (EikfEfmn Umj Vn + EjkfEfmn Uimvn) 
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(11.36) 

(11.37) 

(11.38) 

(11.39) 

which is 10 EB 8. Thus both the 10 and the 8 of baryons that we have al
ready seen can be built out of 3 quarks (the 1 also appears, in higher angular 
momentum states). 

The corresponding antiquarks transform like a 3 

(11.40) 

u d 

The mesons are built out of quark plus antiquark. Since 3 ® 3 = 8 EB 1, 
this is either an octet like the rr, K, 77 states we have already seen, or a singlet, 
like the 771 (actually, because of the medium strong interactions, the 'f/ and 771 

mix slightly). 
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The quarks have spin 1/2, and as we will see later, carry another property, 
color, that is essential for the understanding of the strong interactions. They 
also have baryon number 1/3 because three quarks are required to make a 
baryon. The u and d quarks have zero strangeness, and thus their hypercharge 
is l/3. The s quark has strangeness -1, and Y = -2/3. For the quarks, the 
electric charge is 

Q = T3 + Y/2 

0 0 0) C 0 JJ = 1 i + ~ I 
-2 6 
0 0 

(11.41) 

(! 
0 

31) = I 
-3 
0 

Quarks were originally introduced as a mathematical device, a shorthand for 
doing SU(3) calculations. Today, though we know that quarks are real and 
we have a detailed understanding of many aspects of the strong interactions. 
Still, however, there is much that we cannot calculate. We are often forced to 
fall back on symmetry arguments. 

I can't resist doing one more example of an SU(3) relation from the early 
days. The octet of spin 1/2 baryons have magnetic moments. Unlike the elec
tron magnetic moment, however, the baryon moments cannot be calculated 
just from their masses and quantum electrodynamics. They depend on the 
internal structure of the particles. But we can use SU(3) to say a lot about 
them .. The crucial observation is that the operator that describes the mag
netic moment, whatever it is, must be proportional to Q, the electric charge 
of the quarks. It is therefore an SU(3) octet operator, and we can use the 
Wigner-Eckart theorem. We expect 

µ(B) = a 'Ir(B Bf Q) + /3'Ir(Bt B Q) (11.42) 

Thus we expect 6 relations among the 8 magnetic moments (there is actually 
a 9th, because it is a transition magnetic moment that is responsible for the 
electromagnetic decay, E 0 --+ A,). In fact, all the magnetic moments can be 
calculated in terms of µ(P) and µ(N). These predictions were first worked 
out by Sidney Coleman and Shelly Glashow in 1961. 
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Problems 

11.A. What would the Gell-Mann-Okubo argument tell you about the 
masses of particles transforming like a 6 of SU(3)? 

11.B. Compare the probability for ~ + production in n° P -+ ~ + with 
the probability for E* 0 production in K- P -+ E* 0 , assuming SU(3) sym
metry of the S-matrix. 

11.C. Use the SU(3) argument discussed in the chapter to repeat the 
calculation of Coleman and Glashow, predicting all the spin 1/2 baryon mag
netic moments in terms of µ(P) and µ(N). 
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Young Tableaux 

We discussed Young tableaux in connection with the irreducible represen
tations of the symmetric groups. We will now see that they are useful for 
dealing with irreducible representations of Lie groups. We will begin by dis
cussing this for SU(3), but the real advantage is that it generalizes to SU(n). 

12.1 Raising the indices 

The crucial observation is that the 3 representation is an antisymmetric com
bination of two 3s, so we really do not need the second fundamental repre
sentation to construct higher representations. We can write an arbitrary repre
sentation as a tensor product of 3s with appropriate symmetry. In fact, as we 
have seen, Young tableaux correspond to irreducible representations of the 
permutation group, and the connection with the irreducible representations of 
SU(3) (and SU(N), as we will see later) is that the irreducible representa
tions of SU(3) transform irreducibly under permutation of the labels of the 
indices. 

Consider a general representation, (n, m). It is a tensor (in the old lan
guage) with components 

Ai_1 ···i_n 
JJ--·Jm (12.1) 

separately symmetric in upper and lower indices, and traceless. We can raise 
all the lower indices with E tensors to get 

= Ej1k1f1, .. Ejmkmfm Ai.1--·in 
JI '"Jm 

(12.2) 

Clearly, it is antisymmetric in each pair, ki +-t ei, and symmetric in the ex
change of pairs ki, ei +-t kjlj, 
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Now for each such tensor, we can associate a Young tableau: 

(12.3) 

What we would like to do is to find a rule that associates with the Young 
tableau the specific symmetry of the tensor ( 12.2). We can do that by think
ing about the highest weight of the representation, ( n, m). Because the low
ering operators preserve the symmetry, if we find the symmetry of the tensor 
components describing the highest weight, all the states will have that sym
metry. The highest weight is associated with the components in which all 
the is are 1, and all the k, e pairs are 1,3. All of these can be obtained by 
antisymmetrizing the k, e pairs from the component in which all the ks are 
1, and all the es are 3. But this one component is symmetric under arbitrary 
permutations of the is and ks, and separately symmetric under permutations 
of the es. Thus we will obtain a tensor with the right symmetry if we start 
with an arbitrary tensor with n + 2m components, and first symmetrize all the 
is and ks, and separately the es, and then antisymmetrize in every k, e pair. 
In the Young tableau language, this is very easy to state. We first symmetrize 
in the components in the rows, then antisymmetrize in the components in the 
columns. The result is symmetric in the is and in the k, e pairs as (12.2) must 
be. But it also has a property that is the analog of tracelessness. Because we 
have raised the indices with Es, the condition of tracelessness becomes 

(12.4) 

This vanishes for a tensor with the symmetry properties just described be
cause of the symmetrization of the components in the rows. 

Thus a Young tableau like the one above is a rule for symmetrizing a 
tensor to project out a specific irreducible representation. For example, if 
aiihki is a general tensor with three upper indices, but no special symmetry 
property, the Young diagram 

produces the tensor 

~ 
~ 

aJ112k1 + a12J1k1 

-ak112J1 _ ahkd1 

which transforms according to the ( 1, 1) ( or adjoint) representation. 

(12.5) 

(12.6) 
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We can generalize the concept to Young tableau with more rows. The 
general rule is the same. Put indices in the boxes. Symmetrize in the indices 
in the rows. Then antisymmetrize in the indices in the columns. 

In SU(3), the tensors corresponding to Young tableaux with more than 
three boxes in any column vanish because no tensor can be completely an
tisymmetric in four or more indices which take on only three values. Any 
column with three boxes corresponds to a factor of E in the three indices -

Eijk = 
(12.7) 

So tableaux of the form 

(12.8) 

describe the same representation as (12.3). 

12.2 Clebsch-Gordan decomposition 

We can now give, without proof, an algorithm for the Clebsch-Gordan decom
position of a tensor product. To decompose the tensor product of irreducible 
representations a and {3 corresponding to tableaux A and B, you build onto 
A using the boxes of B in the following way. Begin by putting as in the top 
row of B and bs in the second row. Take the boxes from the top row of B 
and put them on A, building to the right and/or down, to form legal tableau 
(that is collections of boxes in which the numbers of boxes in the rows are not 
increasing as you go down, and the numbers of boxes in the columns are not 
increasing as you go the right), with no two as in the same column. Then take 
the second row and add the boxes to each of the resulting tableau to form legal 
tableaux with one further condition. Reading along the rows from right to left 
from the top row down to the bottom row, the number of as must be greater 
than or equal to the number of bs. This avoids double counting. The tableaux 
produced by this construction correspond to the irreducible representations in 
a@{J. 

Examples: 
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D0@:J=CEEB[i] (12.9) 

3®3=6EB3 

(12.10) 

3®3=8EB1 

It is less trivial to do this one the other way. 

(12.11) 

The tableaux that are crossed out do not satisfy the constraint that the number 
of as is greater than or equal to the number of bs. Needless to say, it is easier 
to do it the other way, because you have fewer boxes to move around. 

Sometimes the tableaux that are produced in the first stage are useless, 
because there is no possible second state. Here's an example: 

(12.12) 

Of course we would actually never do it this way. This is the decomposition 
of 3 ® 3 = 6 EB 3. This is just the complex conjugate of 3 ® 3 = 6 EB 3 which 
we have already done, and which was much easier because it involved fewer 
boxes. That's a useful lesson. 
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or 
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Finally, here is a useful example which illustrates all of the rules - 8 ® 8 

?-> _UJ·IBH EB 8ifEl EB w 
ffi¥l -> ~ EB BiHl EB w 
w->rEBwEBr 
~->WEB~t, 

27 10 

10 8 8 1 

(12.13) 

(12.14) 

This analysis not only illustrates all the rules, it suggests one possible sys
tematic way of ordering the calculation, in this case by putting things as far 
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to the right as possible to start with, and then working to the left. It is impor
tant to have some such rule for your own calculations, so that you don't miss 
possibilities. 

12.3 SU(3) ~ SU(2) x U(l) 

Young tableaux can do many other useful things for us. One that we can 
already explore in SU(3) is to help us understand how a representation of 
SU(3) decomposes into representations of its subgroups. An example of 
this which has some phenomenological importance is the decomposition of 
SU(3) representations into their representations of SU(2) x U(l), and par
ticularly, of isospin and hypercharge (T8 , remember, is just v3Y/2). 

The three components of the defining representation, the 3, decompose 
into a doublet with hypercharge 1/3 and a singlet with hypercharge -2/3. In 
general, consider a Young tableau with n boxes and look at the components 
in which j indices transform like doublets and n - j transform like singlets. 
The total hypercharge will be 

j 2(n-j) 2n . 
-----=--+J 
3 3 3 

(12.15) 

We will denote the n-j singlet components by a Young tableau of n-j boxes 
in one row. This is the only valid Young tableau that we can build for these, 
because they all have the same index, and thus cannot appear in the same 
column. 

The SU(2) representations that these components transform under will 
be some subset of the representations that can be built out of j boxes. Now 
here is the point. To determine whether a given SU(2) representations, a, 
actually appears, what we do is to compute the tensor product of a with the 
n- j horizontal boxes. Then the number of times the original representation 
of SU(3) appears in the tensor product is the number of times a appears in 
the decomposition. We will give a justification of this procedure later, when 
we generalize it. But now let us work out some examples. We will use a 
notation in which we refer to the SU(2) representation by their dimension, 
and put a subscript to indicate the hypercharge. Thus (21 + 1 )y stands for an 
isospin I representation with hypercharge y. 

First consider the 6. The result is illustrated in the following figure 



184 CHAPTER 12. YOUNG TABLEAUX 

(where the • represents the trivial tableau, with no boxes). 

(co . ) 
(o o) 
(. rn) 

Each representation appears once. 

(12.16) 

Now look at the 3. The answer here is obvious, because this is the com
plex conjugate of the 3. but let us see what it looks like in this language. 

B -+ (12.17) 

(B . ) 
(o o) 

Again, each representation appears once. Note that we cannot have a col
umn of boxes on the right hand side of the ordered pairs, because this would 
represent an antisymmetric combination of states with only one index, which 
vanishes. 

Next consider the adjoint representation, where we already know the an
swer. 

EP-+ 
(EP . ) 
(Bo) 
(rn o) 
(o co) 

(12.18) 

lo 

3o 
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Each representation appears once. 
Now let's do a less trivial one, for the 27 -

EfFD ~ (12.19) 

(EfFD . ) 32 

(EfF o) 21 

(tfITI o) 41 

(EE co) lo 

(EfD rn) 3o 

(1 I I rn) 5o 

([y 1) 2-1 

(1 I I 1) 4-1 

(co 1) 3-2 

Again, each representation appears once. 

Problems 

12.A. Find (2, 1) ® (2, 1). Can you determine which representations 
appear antisymmetrically in the tensor product, and which appear symmetri
cally. 

12.B. Find 10 ® 8. 

12.C. For any Lie group, the tensor product of the adjoint representation 
with any arbitrary nontrivial representation D must contain D (think about 
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the action of the generators on the states of D and see if you can figure out 
why this is so). In particular, you know that for any nontrivial SU(3) rep
resentation D, D ® 8 must contain D. How can you see this using Young 
Tableaux? 



Chapter 13 

SU(N) 

We now want to generalize the discussion of the last few chapters to SU(N), 
the group of special unitary N x N matrices, generated by the hermitian, 
traceless, N x N matrices. 

13.1 Generalized Gell-Mann matrices 

There are a couple of different useful bases for the SU(N) generators. We 
will start with a generalization of the Gell-Mann matrices, in which we build 
up from the SU(N) to SU(N + 1) generators one step at a time. We will 
normalize (as in SU(2) and SU(3)) 

(13.1) 

The generators of the raising and lowering operators, we can take to have 
a single non-zero off-diagonal element, 1 / )2. The group is rank N - l, 
because there are N - l independent traceless diagonal real matrices. We can 
choose the N - l Cartan generators as follows 

(13.2) 
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For example 

H1 - ! (~ 
0 "') -1 ... 

2 . 

and so on. 

1 0 (1 H2 = /TI ~ 

1 0 0 0 
0 1 0 0 
0 0 1 0 
0 O O -3 

CHAPTER 13. SU(N) 

0 0 ... ) 1 0 ... 
0 -2 

(13.3) 

Altogether, there are N 2 - 1 independent traceless hennitian matrices. 
These N 2 

- 1 matrices generate the N dimensional defining representation 
of SU(N), which we will sometimes call the N. The weights are N - 1 
dimensional vectors, 

These satisfy, 

2 N-1 l ( m ) 2 

Vj = L 2m(m + 1) L Jjk -mJj,m+l 
m=l k=l 

N-1 1 ( m ) 
= fl 2m(m + 1) ?; Jjk + m2 Jj,m+l 

N-1 l (j-1)2 

= fj 2m(m + 1) + 2j(j - 1) 
(13.5) 

= ! N-1 (_!__ - 1 ) + (j - 1) 
2 fj m (m + 1) 2j 

1 1 j-1 N-1 
= 2j - 2N + 2J = 2N 
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and for i < j, 

N-1 l ( m ... r./) 
= fl 2m(m + 1) E <5ik -~,m+l 

X (f '5jk - m <5j,m+l) (13.6) 
k=l 

N-1 1 (j-1) 

= fj 2m(m + 1) 2j(j - 1) 
1 1 1 1 

= 2j - 2N - 2j = 2N 

The weights all have the same length, and the angles between any two distinct 
weights are equal -

or 

. . 1 
v 2 

• v1 = - - for i -/= j 
2N 

- . 1 1 
vz . vl = -- + - <5-. 

2N 2 ZJ 

(13.7) 

(13.8) 

Thus the weights form a regular figure in N - l dimensional space, the N - l 
simplex. 

Explicitly, the weights look like 

VI= 

v2 = 

1 1 1 1 ) 
2' 2v'3' · · ·' J2m(m + 1)' · · ·' J2(N - l)N 

1 1 1 1 ) 
-2, 2v'3' · · ·' j2m(m + 1)' · · ·' j2(N - l)N 

v3 = 1 1 1 ) 
O,- J3'···, j2m(m+l)'···, J2(N-l)N 

(13.9) 

m+l ( m 1 ) 
v = O, O, · · ·' - J2m(m + 1) '· · ·' J2(N - l)N 

N ( - N-l ) 
V = O,O,···,O,···,- J2(N-l)N 
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For convenience, we will choose a backwards convention for positivity 
-a positive weight is one in which the LAST non-zero component is positive. 
With this definition, the weights satisfy 

(13.10) 

The Es take us from one weight to another, so the roots are differences 
of weights, vi - vJ for i ¥- j. The positive roots are vi - vj for i < j. The 
simple roots are 

The roots all have length 1. They satisfy using (13.8) 

. . 1 
ai · a 1 = - (6· · - 6·+1 · - 6· ·+1 + 6·+1 ·+1) 

2 ?J i ,J i,J i ,J 

1 = 6ij - 2 6i,j±l 

so the Dynkin diagram is 

0-0···0-0 

The fundamental weights are 

It is easy to check using (13. 7) that these satisfy 

2ai · µj 
--,_2=-- = 6ij 

ai 

(13.11) 

(13.12) 

(13.13) 

(13.14) 

(13.15) 

because the term proportional to 2~ in (13.8) cancels because the simple root 
is a difference of fundamental weights. Thus µ 1 is the highest weight of the 
defining representation. 

13.2 SU(N) tensors 

As in SU(3), we can associate states with tensors, 

(13.16) 
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then we can build up arbitrary representations as tensor products. 
Consider, for example, the antisymmetric combination of m defining rep

resentations. The states are 

A[ii ···im] 1 · · ) Z1 · · · Zm (13.17) 

where A(ii ···im] is completely antisymmetric. This set of states forms an irre
ducible representation, because of the antisymmetry. Because of the antisym
metry, no two indices can take on the same value. Thus the highest weight in 
this set of states arises when one of the indices is I, another is 2, and so on. 
That means that the highest weight is the fundamental weight µm 

(13.18) 

Thus this representation is the fundamental representation nm. 
The highest weight of any irreducible representation can be written in 

terms of the Dynkin coefficients, qk, as 

(13.19) 

The qks are non-negative integers. The tensor associated with this represen
tation has, for each k from 1 to N - I, qk sets of k indices that are antisym
metric within each set. A simple generalization of the argument as for SU(3) 
shows that symmetry of this tensor can be obtained from the following Young 
tableau, with qk columns of k boxes 

N-1 
boxes 

qN-1 qN-2 

boxes boxes _____,..___ _____,..___ 

. 

q2 ql 
boxes boxes _____,..___ _____,..___ 

I I. . I I I. . I I (13.20) 

I I· . I I 

This gives a tensor of the right form for the same reason as it did in 
SU(3). The highest weight state has a term in which the top row is all ls, the 
second is all 2s, the third is all 3s, etc. Thus the tensor we want is obtained 
by first symmetrizing in the indices in the rows, and then antisymmetrizing in 
the indices in the columns. This is exactly the symmetrization condition that 
we used at the end of chapter I to construct the irreducible representations of 
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the permutation groups. Thus the irreducible representations of SU(N) with 
m indices are associated with the irreducible representations of Sm, 

As in SU(3), tableaux with more than N boxes in any column corre
spond to tensors which vanish identically. Any columns with N boxes con
tribute a factor of the completely antisymmetric tensor with N indices (which 
we will again call 1:). Tableaux which are the same except for columns with 
N boxes correspond to the same irreducible representation. 

We will sometimes denote the representation corresponding to a Young 
tableau by giving the number of boxes in each column of the tableau, a series 
of non-increasing integers, [l\, £2, ···].In this notation, DJ is [j]. 

For example the adjoint representation, in SU(N) as in SU(3), corre
sponds to a tensor with one upper and one lower index. To get it into the 
standard form of a tensor, we must raise the lower index with an N compo
nent f. Thus the adjoint is [N -1, 1]. 

Clebsch-Gordan decomposition works the same way as for SU(3), ex
cept that now we need cs for the third row of the tableau, ds for the fourth, 
etc. Along with the condition that reading along the rows from right to left 
from the top row down to the bottom row, the number of as must be greater 
than or equal to the number of bs which is greater than or equal to the number 
of cs, etc. 

For example, 

B ®@] = ~ EB 

~ 
(13.21) 

[2] ® [l] = [2,1] EB [3] 
or 

~0; = 1$,$ EB 

C b a 

(13.22) 

d C b 
d C 

d 

[4] ® [4] = [4,4] EB [5,3] EB [6,2] EB [7,1] EB [8] 

Notice that it is the rule about number of as being greater than or equal to 
the number of bs and so on, that prevents us from having more than one of 
any of these representations. Of course, if N is less that eight, some of the 
tableaux in the last example will give vanishing tensors, while others will 
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have columns of N boxes that can be eliminated without changing the repre
sentation. 

Note, in general, in the Clebsch-Gordan decomposition process that the 
only time boxes can disappear is when columns of N boxes are removed. 
Thus each tableaux in the decomposition of a tableau with j boxes ® a tableau 
with k boxes will have a number of boxes equal to j+k modulo N. This is the 
analog of the conservation oftriality in SU(3). The quantity j + k mod N 
in SU(N) is sometimes denoted by the linguistic barbarism N-ality. 

13.3 Dimensions 

For most of the small representations that we will need, it is easy to work out 
the dimension. For example, the dimension of [j] is 

(N) N! 
j - j!(N - j)! 

(13.23) 

The dimensions of the two-column representations can be worked out using 
the Clebsch-Gordan series. For example, from [1] ® [2] = [2, 1] EB [3], we can 
find the dimension of [2,1]. 

(~) x (~)-(~) = N(N+i(N-l) (13.24) 

There is, however, a simple rule for obtaining the dimensions of any 
representation from its tableau. It is called the factors over hooks rule. It 
is a special case of Wey l's character formula. It works as follows. Put an N 
in the upper left hand comer of the tableau. Then put factors in all the other 
boxes, by adding 1 each time you move to the right, and subtracting 1 each 
time you move down. The product of all these factors is F. A hook is a line 
passing vertically up through the bottom of some column of boxes, making a 
right hand tum in some box and passing out through the row of boxes. There 
is one hook for each box. Call the number of boxes the hook passes through 
h. Then if H is the product of the hs for all hooks (the same factor we used 
in ( 1. 164 ), the dimension of the representation is 

F/H (13.25) 
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For example, for [2, 1], the factors are 

N N+I (13.26) 

F = N(N + l)(N - 1) 

N-1 

The hooks are 
(13.27) 

h=3 h=l h=l 
so H = 3. Thus 

F N(N + l)(N - 1) 
H 3 

(13.28) 

in agreement with (13.24). 

13.4 Complex representations 

Most of the representations of SU(N) are complex. For example, the lowest 
weight of the defining representation is vN. But we know because the Cartan 
generators are traceless that 

(13.29) 

and thus 
N-1 

VN = _ L ,) = -µN-1 (13.30) 
j=l 

Thus [l] is complex, and its complex conjugate is DN-l or [N - 1], 

fiT = [N-1] (13.31) 

Simlarly, the lowest weight of [m] is the sum of them smallest vis 

N N-m 

L vj = - L vj = -µN-m (13.32) 
j=N-m+I j=l 

and thus 
[m] = [N-m] (13.33) 
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In general, the complex conjugate of a representation is 

(13.34) 

Thus the tableau corresponding to a representation and its complex conjugate 
fit together into a rectangle N boxes high, as shown below: 

NOOm I 
(13.35) 

13.5 SU(N) ® SU(M) E SU(N + M) 

Now we can generalize the discussion of SU(2) x U(l) E SU(3) from the 
last chapter. Consider the SU(N)@SU(M)@U(I) subgroup of SU(N +M) 
in which the SU(N) acts on the first N indices and the SU(M) acts on the 
last M indices. Both of these subgroups commute with a U ( 1) which we can 
take to be M on the first N indices and -N on the last M (note that it is 
traceless). 

D = ( D . )M EB ( • D )-N (13.36) 

We would like to determine how an arbitrary irreducible representation 
of SU(N + M) decomposes into irreducible representations of SU(N) ® 
SU(M) ® U(I). Suppose that we have an SU(N + M) representation with 
n + m boxes. To compute the number of times that the product of an SU ( N) 
representation A with n boxes and a SU(M) representation B with m boxes 
appears in the SU(N + M) representation when we restrict n indices to be 
from l to N and m to be from N + I to N + M, we relax that condition and let 
all the indices run over all N + M values, and find the tensor product A® B 
of the two representations (as representations of SU(N + M)). Then the 
number of times that the pair ( A, B) appears in the decomposition is equal to 
the number of times the original SU(N + M) representation appears in the 
tensor product A ® B. Note also that the U ( 1) charge of the representation is 
nM-mN. 

Notice that if we take M = 1, the SU(M) group disappears, because 
there is no algebra SU ( 1) - it has no generators. However, the construction 
described above still works. This is what we used in the previous chapter 
to do the decomposition of SU(3) representations under the SU(2) x U(l) 
subgroup in ( I 2.18) and ( 12.19). 



196 CHAPTER 13. SU(N) 

Let us do the example SU(3) ® SU(2) ® U(l) E SU(5), where the 
defining representation is 

D (13.37) 

= ( D · h (3, 1 )2 

EB ( • 0 )_3 (1, 2)_3 

Then the adjoint representation, which we showed above was [N - 1, 1], is 

f 
(13.38) 

= (~ 0)5 (3, 2)s 

EB ( § DJ )0 (1, 3)o 

EB (§ EDo ( 1, l)o 

EB ( EP B )o (8, l)o 

EB ( B EP )_5 (3, 2)-5 

Problems 

13.A. Show that the SU(n) algebra has an SU(n -1) subalgebra. How 
do the fundamental representations of SU(n) decompose into SU(n - 1) 
representations? 

13.B. Find [3]®[1] in SU(5). Check that the dimensions work out. 
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13.C. Find [3, 1]®[2, I] 

13.D. Under the subalgebra SU(N) ® SU(M) ® U(l) E SU(N+M), 
where the defining representation N+M transforms as ([1], [O])MEB([O], [l])_N 
(in the [f1 , · · ·] notation where the fs are the number of boxes in the columns 
of the Young tableaux, and where the first bracket indicates the SU(N) rep
resentation and the second the SU(M)), how do the fundamental representa
tions of SU(N +M) transform? How about the adjoint representation? 

13.E. Find [2] 0 [1, 1] in SU(N), and use the factors over hooks rule to 
check that the dimensions work out for arbitary N. 



Chapter 14 

3-D Harmonic Oscillator 

This is an important chapter, but not because the three dimensional harmonic 
oscillator is a particularly important physical system. It is, however, a beau
tiful illustration of how SU ( N) symmetries arise in quantum mechanics. 

14.1 Raising and lowering operators 

The Hamiltonian (here as elsewhere we have set n = 1) is 

where 

H I ... 2 + mw2 ... 2 =-p --r 
2m 2 

= w ( alak + 3/2) 

ak = ~ (mwrk + ipk) 

al= 
1 

(mwrk - ipk) 
J2mw 

(14.1) 

(14.2) 

for k = I to 3. The ak and al are lowering and raising operators satisfying 
the commutation relations of annihilation and creation operators for bosons, 

[ak, al] = Jke 

[ak, ae] = [al, al] = 0 

[alak, al] = al 

[alak, ae] = -ae 
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(14.3) 
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If the ground state is /0), satisfying 

ak/0) = 0 

then the energy eigenstates are 

with energy 
w(n+3/2) 
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(14.4) 

(14.5) 

(14.6) 

The degeneracy of these states is interesting - it is the number of symmetric 
combinations of then indices, k1 ···kn, which is 

(n + l)(n + 2) 
2 

( 14.7) 

Just the dimension of the (n,0) representation of SU(3). This suggests that 
the model has an SU(3) symmetry. 

It is not hard to find the SU(3) explicitly, because the raising and lower
ing operators are completely analogous mathematically to creation and anni
hilation operators for bosons. And we know how to form SU(3) generators 
out of creation and annihilation operators. This guess turns out to be right. 
The generators of the SU(3) symmetry on the Hilbert space are 

Qa = al [Ta]kf ae (14.8) 

where Ta = >..a/2 are the Gell-Mann matrices. You have already shown that 
these satisfy the commutation relations of SU(3) in problem (5.B), and you 
can check that 

[Qa,H] =0 (14.9) 

so that the energy eigenstates form representations of SU(3). Also, 

Qa/0) = 0 (14.10) 

so that the ground state is an SU(3) singlet. 
Just like the creation and annihilation operators, the raising and lowering 

operators form tensor operators under the SU(3), 

(14.11) 

thus al transforms like a 3. The lowering operator, ak, transforms like a 3, 

[Qa, ak] = -[Ta]kf ae 

= -ae [T;lek = -ae [T:]ek 
(14. 12) 
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Because all the states in the Hilbert space can be obtained by the action of the 
raising operators on I 0), the Hilbert space decomposes into ( n, 0) representa
tions. No other representations appear. 

14.2 Angular momentum 

Something interesting has happened here. The SU(3) symmetry is nontrivial. 
It implies that states with different angular momenta are exactly degenerate. 
Angular momentum is a subgroup of SU(3) generated by (see problem 14.C) 

(14.13) 

But for n > I, the degenerate states in level n consist of more than one 
anglar momentum. For example, the n = 2 states transform like a 6 of 
the SU(3), which under angular momentum transforms like 5+1. Thus at 
this level, the symmetry guarantees a degeneracy that does not follow from 
rotation invariance alone. But notice that we didn't have to do anything to 
impose this SU(3) symmetry. We just imposed rotation invariance, and then 
the SU (3) symmetry popped out, because of the linearity of the Harmonic 
oscillator force law. Nonlinear, anhannonic effects would spoil the SU(3) 
symmetry. For example, a term in the potential like (x 2 ) 2 would conserve 
angular momentum, but break the SU(3). 

This example can be extended to SU(N) if you let the number of di
mensions be larger or smaller. The dimensions, in this case, just give you 
more indices for your raising and lowering operator. For the harmonic os
cillator, this looks pretty silly, since we live in three dimensions. But in a 
relativistic theory when we describe the Hamiltonian in terms of creation and 
annihilation operators, it is perfectly natural. The first approximation to the 
Hamiltonian of any system of N different types of particles with the same 

mass will be proportional to the total number operator, alak where the sum 
over k runs from 1 to N, just because the energy of them particle state will 
be m times the energy of a one particle state. This has an SU ( N) symme
try. Of course, interactions and other effects that treat the particles differently 
may break the symmetry. 

14.3 A more complicated example 

It is very instructive to consider a slightly more complicated model in which 
all representations of SU(3) appear in the Hilbert space. Consider the fol-
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lowing two-particle Hamiltonian: 

(14.14) 

where the .R and P are an independent set of coordinates and momenta. This 
describes two harmonic oscillators, in units with m1w1 = m2w2 = 1, cou
pled in what appears to be a complicated way. But in fact, it is carefully 
constructed to be simple in terms of raising and lowering operators. Defining 

at= (r - if)/VZ, 

6t = (R- iP)/v'z, 

then the Hamiltonian becomes 

a= (r+ifi)/v'z, 

6 = ( R + iP ) / ../2 

H = w1 (alak + 3/2) + w2(bkbk + 3/2) 

+4L\ (akbk) (aebe) 

(14.15) 

(14.16) 

The point of this is the form of the interaction term proportional to L\, and 
in particular, the way the indices of the raising and lowering operators are 
contracted. It is constructed to commute with the operators (see problem 
14.D) 

(14.17) 

These have the commutation relations of SU(3), so the theory has an SU(3) 
symmetry with the at transforming like a 3, as in the simple three dimensional 
harmonic oscillator, but with the bf transforming as a 3. Because we now have 
raising operators that transform like 3s as well as 3s, we can construct states 
which transform like arbitrary SU(3) representations. 

To see what the states look like, note that H also commutes with the 
number operators, 

(14.18) 
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Thus the energy eigenstates have definite numbers of at s and b ts, and trans
form under irreducible representations of SU(3). They look like 

l(n, m), K) 

(14.19) 

transforming like the (n, m) of SU(3). For example, the octet states look like 

( a kb 1 -1 i5 kl ( at . bt)) ( a:t . bt) K IO) (14.20) 

The indices of the afs act like lower SU(3) indices while the indices of the 
bfs act like upper indices. The irreducible representations must be traceless 
in a pair of an at index and a bf index. 

It is straightforward to calculate the energy eigenvalues. Because of the 
SU(3) symmetry, we can look at any state in an irreducible representation, 
and in particular, at the highest weight states 

(14.21) 

The first two terms in H just count at s and bf s. The nontrivial term is the 
interaction term proportional to~- But because we know that the state is an 
eigenstate, we can just do it. 

(a) is 

(at. bf) (ii. b) l(n, m), K) 

=(at. bf) [a· b, (att] (b!r(a:t. bt)KIO) (a) 

+(af,bf)(alt [a·b,(bt)m] (a:t.bt)KIO) (b) 

+(at. bt) (att (b!)m [ak, [bk, (at. bt)K]] IO) (c) 

(at.bf) [a·b,(att] (bl)m(a:t.bt)KIO) 

= n(at · bf) (att-1 b1 (b!)m(a:t · bt)KIO) 

= n(at · bf) (ai)n-I (b!r [b1, (at· bt)K] IO) 

= nK l(n,m),K) 

(14.22) 
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(b) works the same way, and gives 

mK l(n,m),K) 

(c) is 

(at. bf) (ait (bl)m [ak, [bk, (at. bt)l(]] IO) 

=(at· bf) (alt (bl)m [ak,Kal(at · btf{-l] IO) 

= K (at· bf) (alt (bl)m ( [ak, a!] (at· bt)I<-i 

+a! [ak, (at. bt)K-
1])10) 

= K(K +2) l(n,m),K) 

Thus the energy eigenvalue is 
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(14.23) 

(14.24) 

w1 ( n + K + i) + w2 ( m + K + i) + 4~ K ( n + m + K + 2) ( 14.25) 

The physics of this model is not very interesting. However, as an ex
ample of how symmetries arise, it is very instructive. There is a very useful 
way of thinking about what goes on here. For a moment, think of the inter
action term, proportional to ~. as a perturbation on the harmonic oscillator 
terms. In the absence of the ~ term, the theory has a larger symmetry -
SU(3) x SU(3) (and some U(l)s, but we will concentrate on the non-Abelian 
symmetries) - separate SU(3) symmetries on the at and bf variables. The 
interaction terms couples the as and bs together and breaks the independent 
SU(3) symmetries down the single SU(3) that treats the interaction terms 

as a singlet, because akbk and a!bk are singlets under the SU(3) symmetry. 
It is often useful to organize the symmetry structure of the theory in such a 
structured way. 

Problems 

14.A. Show that the operators 

Ok _ t t l ( s: t t s: t t ) ij - aiajak - 4 uikaea1ae + u1kaeaiae 
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transform like a tensor operator in the (2, 1) representation. 

14.B. Calculate the non-zero matrix elements of the operator Of 1 (where 
ot is defined in I 4.A) between states of the form 

and 

14.C. Show that (14.13) generates the standard angular momentum, 

fxp. 

14.D. Show that 



Chapter 15 

SU ( 6) and the Quark Model 

In the spectrum of low-lying baryons, the octet with spin 1/2 and the decuplet 
with spin 3/2 are not very far apart in mass. Typical splittings between the 
octet and decuplet states are not so different from splittings within the SU(3) 
representations. Noticing this, in the 60's, many physicists played with the 
idea of embedding SU(3) in some larger symmetry group that would connect 
the two representations. Because the baryons in the 8 and IO have different 
spins, the larger group cannot commute with angular momentum. You might 
expect this to cause problems, because it means mixing up internal symme
tries and spacetime symmetries, and indeed it does. But the problems do not 
show up until you try to make the theory relativistic. We will discuss some of 
this, and possible resolutions, later. 

15.1 Including the spin 

The obvious way to extend the SU(3) symmetry group is to include in the 
quark states the quark spin as well as the quark type. This suggests that we 
think about a 6 dimensional tensor product space in which the states have an 
SU(3) index, and a spin index -

(iu), Id), Is)) (11/2), 1-1/2)) (15.1) 

The corresponding symmetry group is an SU(6) symmetry that acts on this 
six dimensional tensor product space. We can write the generators as products 
of 3 x 3 matrices in the SU(3) space (though not necessarily traceless) and 
2 x 2 matrices in spin space (again, not necessarily traceless). In particular, 
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the generators include the SU(3) generators 

!.\ 2 a 
(15.2) 

with the identity in spin space understood, and the spin generators 

(15.3) 

with the identity in the SU(3) space understood. That is, this SU(6) has an 
SU(3) subalgebra under which the 6 transforms like two 3s, and it has an 
SU(2) subalgebra under which the 6 transforms like 3 2s. The SU(3) and 
SU(2) algebras commute with one another. We say that the SU(6) has an 
SU(3) x SU(2) subgroup under which the 6 transforms like a (3, 2). The 
other SU ( 6) generators are the products 

1 
2.\aaj (15.4) 

The total number of generators is then 8+3+24=35, which, sure enough, is 
the number of independent, hermitian, traceless 6 x 6 matrices. 

The low-lying baryons, consisting of three quarks, transform like the 56 
dimensional representation of SU(6), the completely symmetric combination 
of 3 6s. Let's pause to understand how such a representation transforms. 

15.2 SU(N) x SU(M) E SU(NM) 

The general situation is SU(N) x SU(M) E SU(N M). It arises only for 
SU(k) where k is not a prime, and thus this embedding does not show up in 
SU(2) or SU(3). The idea is to always exploit the idea of a tensor product 
space. For SU(N M), the defining representation has NM indices, and we 
can therefore describe it in a tensor product space, replacing the NM indices 
by an ordered pair of indices, i, x where i runs from 1 to N and x runs from 
1 to M. Then the matrices 

and (15.5) 

are hermitian and traceless (remember that in a tensor product space, taking 
the trace means contracting both types of indices) and generate SU(N) and 
SU(M), respectively. 

Under the SU(N) x SU(M) subalgebra generated by these matrices, 
the NM transforms like (N, M) (or equivalently, ([l],[1]) - that is there 
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are M copies of the N of SU(N) which transform into one another under 
the SU(M) - or vice versa, whichever you like). The reason that this is 
useful is that very often our creation operators have more than one index -
like the SU(3) indices and spin indices in the quark states of SU(6). Then 
this kind of tensor product is the natural place for them, and such SU(N M) 
symmetries arise quite naturally. 

Now we can ask the decomposition question. Given a representation of 
SU(N M), how does it transform under SU(N) x SU(M)? 

In particular, suppose we have a representation D, of SU (NM) corre
sponding to some Young tableau with K boxes. In a tensor language, D is a 
tensor with K SU(N) indices and K SU(M) indices. Thus because of N
ality and M-ality, if the decomposition contains the representation (D1 , D 2 ) 

where D 1 is an SU(N) representation with K1 boxes and D2 is an SU(M) 
representation with K 2 boxes, then 

K = K1 mod N = K2 rnod M. (15.6) 

To go further, it is again easiest to argue backwards. First, add columns of 
N boxes to D1 and columns of M boxes to D2 if necessary to bring both 
up to a total of K boxes. Now what the decomposition means is that we can 
write the tensor described by a D tableau with ( i, x) pairs in each box as a 
linear combination of products of tensors with i indices in the D 1 tableau and 
x indices in the D2 tableau. 

Now the idea is simple. Both the D1 and D2 tableaux have definite sym
metry properties under permutations of the k indices. They are associated 
with irreducible representations of the symmetric group Sk. The question 
then is whether the product has any component that had the symmetry of D. 
If so, then (D1, D2) will appear in the decomposition of D. 

Of course, this doesn't quite solve the problem, because we must still 
understand whether the tensor product of two irreducible representations of 
Sk contains a third. We won't try to solve this problem in general. But we 
will be able to tell in some special cases. 

For the 56 of SU(6), this analysis is simple. The Young tableau associ
ated with the 56 is 

[II] (15.7) 

which corresponds to the trivial representation of S3. There are three possible 
irreducible representations of SU(3) with three boxes: 

ITTI EP § (15.8) 
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And there are two possible irreducible representations of SU(2) with three 
boxes: 

ITIJ EP (15.9) 

The SU(3) x SU(2) representations in the 56 are then those ordered pairs 
of SU(3) and SU(2) representations for which the trivial representation of 
S3 appears in the tensor product of the S3 representations of their Young 
tableaux. For example, the representation 

(ITIJ•ITIJ) (15.10) 

appears, because the completely symmetric representation is contained in its 
tensor product with itself. This corresponds to the IO of SU(3) with spin 3/2. 
The other possibility is 

(15.11) 

The tensor product of these two S3 representations contains the trivial repre
sentation (as we will see explicitly) because any pair of SU(3) and SU(2) 
indices transforms the same way under any permutation, the product contains 
the representation which is unchanged by the permutation. This represen
tation corresponds to the 8 of SU(3) with spin 1/2. Thus the 56 includes 
precisely the low-lying baryon states. 

15.3 The baryon states 

Let's look explicitly at these states. The decuplet states are particularly simple 
because they are separately symmetric in the SU(3) and SU(2) indices. For 
example, indicating the ±1/2 spin states by I±) 

IL\++, 3/2) = luuu) I+++) 

IL\+, 1/2) = ~ (iuud) + ludu) + lduu)) 

· (I++-) +I+-+)+ 1-++)) 

IE*0
, 1/2) = v; 

· (luds) + ldus) + I sud) + lsdu) + ldsu) + lusd)) 

·(I++-)+ I+-+)+ I-++)) 

(15.12) 
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The octet states are more complicated because they are antisymmetric in one 
pair of spins and quark labels (because of the columns in the Young tableau). 
To get a completely symmetric state, you can multiply the two and then add 
cyclic permutations. For example 

IA, 1/2) = v; 
·{ (luds) - ldus)) (1+-+) -1-++)) 

+ (I sud) - lsdu)) (1++-) - I+-+)) 

+ (ldsu) - lusd)) (1-++) - I++-))} 

(15.13) 

In this notation, the quark label and spin states are correlated. The first quark 
label goes with the first spin states, and so on. The way this A state works 
is that if you interchange both spin and quark labels of any pair, one of these 
three terms is unchanged, while the other two get interchanged. Note the nor
malization of the state. It is often more convenient to construct these states 
by multiplying an SU(3) state that is symmetric in some pair of indices, like 
luud) which is symmetric in the first two, by a spin state which is symmetric 
in the same pair, but with total spin 1/2. Then again, adding cyclic permuta
tions gives a totally symmetric state. For example, 

IP, 1/2) = V:, 
·{luud) (21++-) - I+-+) -1-++)) 

+ludu) ( 21+-+) -1-++) - I++-)) 

+ lduu) ( 21-++) - I++-) - I+-+))} 

(15.14) 

In the first term, for example, the I+-+) state and the I-++) state must have 
the same coefficient for symmetry under interchange of the first two quarks, 
but the I++-) state is automatically symmetric, so it can have a different co
efficient. We have chosen the coefficients so that the sum vanishes, which 
guarantees that the state will be orthogonal to the symmetric spin 3/2 state. 
This can never give a decuplet state. If the SU (3) state is completely symmet
ric, the sum over cyclic permutations gives zero rather than a nontrivial state. 
Again, note that if you interchange both spin and quark labels of any pair, one 
of these three terms is unchanged, while the other two get interchanged. 
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15.4 Magnetic moments 

Let us now see what SU(6) symmetry has to say about the magnetic mo
ments of the baryons. To determine the SU(6) properties of the quarks, note 
that if a quark is a point particle like the electron, its magnetic moment is 
approximate! y 

e Q-- a 
2m 

(15.15) 

where m is the quark mass and eQ is the quark charge. This looks like an 
SU(6) generator, so we infer that the magnetic moment operator transforms 
like the 35 dimensional adjoint representation. 

We are interested in the matrix elements 

(56135156) (15.16) 

But 35 ® 56 is 
(15.17) 

Because there is a unique 56 in the decomposition, we know that the matrix 
elements are determined by a single reduced matrix element. Therefore, we 
can compute the magnetic moments up to an overall constant by looking at the 
matrix element of any operator that transforms like the correct component of a 
35. In particular, we can use the SU(6) generators themselves, and conclude 

µ56 ex (561 Q a 156) (15.18) 

We can use this relation to compute the ratio of the proton to neutron magnetic 
moments, which was not determined by the Coleman-Glashow analysis. If 
we compute the matrix element between states with the same a3 value, then 
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only the QO':i matrix element is not zero, so we can compute that. We do this 
just by applying the tensor-product rule: 

Thus 

v'2 
Q 0'3 IP, 1/2) = 6 

·{ }iuud) (21++-) - I+-+)+ 1-++)) 

+iluud) ( 21++-) + I+-+) - I-++)) 

-jluud) (-21++-) - I+-+) -1-++)) 

+cyclic permutations} 

(P, 1/2IQ0'3IP, 1/2) 

2 (2 2 1 ) =3- -(4+1-1)+-(4-1+1)--(-4+1+1) =1 
36 3 3 3 

(15.19) 

(15.20) 

The matrix element between neutron states can be obtained by simply inter
changing the us and the ds in this calculation, which means interchanging the 
2/3 and -1/3 factors -

(N, 1/2IQ0'3IN, 1/2) 

2( 1 1 2 ) 2 = 3- - - ( 4 + 1 - 1) - -( 4 - 1 + 1) + - ( -4 + 1 + 1) = - -
36 3 3 3 3 

So we expect 
3 
2 

Experimentally, in nuclear magnetons (units of e/2mp) 

µp = 2.79 µN = -1.91 

µp = -1.46 
µN 

(15.21) 

(15.22) 

(15.23) 

So it works, but the logic is rather indirect. From the quark model, we ex
tracted only the SU(6) transformation law of the magnetic moment operator. 
We then used the Wigner-Eckart theorem to show that we can calculate the 
ratio by looking at the corresponding matrix elements of an SU(6) generator. 
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We can get the result more easily by simply assuming that the quarks 
actually exist as nonrelativistic constituents, and that the baryons really are 
bound states of three quarks in an angular momentum zero state. Then the 
magnetic moment of the baryon is simply the sum of the magnetic moments 
of the quarks. The magnetic moment of a quark (by analogy with an electron) 
is ~ in the direction of the spin where m is the quark mass, thus it can be 
written 

e Q ... 
- (j 

2m 
(15.24) 

Therefore in the tensor product language, the sum of the quark magnetic mo-
meats is 

~ I: Qa 
2m 

quarks 

(15.25) 

The proton magnetic moment is 2~P µp where mp is the proton mass and 
µpis the magnetic moment measured in "nuclear magnetons". Thus 

_e_µp = ~(PIQalP)/(PlalP) = _2e 
2mp 2m m 

(15.26) 

which is exactly what we computed in the SU(6) argument, but with one 
additional bit of information - we know the scale. If we assume that the 
quark mass is about 1/3 the proton mass, we have 

This is not bad! 

mp 
µp = -=3 

m 
(15.27) 

The quark model is thus not only simpler, it is more predictive. It also 
gives a reasonable account of some SU(3) breaking effect in the baryon mag
netic moments. For example, the Coleman-Glashow prediction for the A 
magnetic moment is 

1 
µA = --µp = -.93 

3 
You can see this directly in SU(6) by computing 

But experimentally 

1 
(A, 1/2IQo-alA, 1/2) = - 3 

µA~ -.61 

which is significantly different. The quark model gives 

(15.28) 

(15.29) 

(15.30) 

(15.31) 
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In the matrix element, only the s quark actually contributes in the A, (15.13), 
because the u and d spins are combined into a spin zero state. Thus we predict 

1 m 
µA= -- -

3 ms 
(15.32) 

In the quark model, we expect the s quark to be heavier than the u and d 
quarks to account for the larger mass of hadrons containing the s quark. For 
example, if we assume (very roughly) mti. ;:::: ms + 2m and mp ;:::: 3m, then 

3mti. - 2mp 
ms ;:::: 

3 
;:::: 490 MeV (15.33) 

so 
µti_;:::: -.64 (15.34) 

which is a bit better. 

Problems 

15.A. Find the SU(6) (i.e. quark model) wave functions for all the spin 
1/2 baryons except P, N and A (which were discussed in the text). 

15.B. Use the wave functions you found in (15.A) to calculate the mag-
netic moments, 

a. in the SU(6) limit, calculating the ratios to µp; 

b. in the quark model, put in SU(3) symmetry breaking by including 

ms=/ mu,d· 

15.C. Show that the IA, 1/2) state, (15.13), is an isospin singlet. 



Chapter 16 

Color 

There are some things wrong with the simple quark model discussed in the 
previous chapter. The first is that the connection between spin and statistics is 
wrong for these quarks. The quarks must have spin 1/2 in order to produce the 
spin 1/2 and 3/2 baryons. Thus we would expect them to obey Fermi-Dirac 
statistics, and we would expect the ground state of the three quark system to 
be ans-wave, completely symmetric under the exchange of the position labels 
of the three quarks. This would lead to an SU(6) representation completely 
antisymmetric in the SU(6) indices of the three quarks - which is a [3] or a 
20 which transforms under SU(3) x SU(2) as ([2, 1], [2, 1]) EB ([3], [1, 1, 1]) 
or (8, 2) EB (1, 4) which is not what we want. 

The second difficulty is that we need some explanation of why only the 
qq and qqq combinations seem to exist. This would certainly not be explained 
by any simple attractive force between quarks. 

Finally, there is now a tremendous amount of evidence from studies of 
high energy QCD that the quarks carry an attribute which we call color. 
Quarks come in three colors, and the colors interact with a set of 8 gluons 
in an SU{3) symmetric way. The SU(3) associated with the color interac
tion is called color SU(3). It has nothing to do with Gell-Mann's SU(3), 
except, of course, that it provides the force that binds the light quarks into 
Gell-Mann's representations. 

16.1 Colored quarks 

The quark states transform like a 3 - they have a single color SU(3) index 
which I will let run from 1 to 3. The quark wave functions are tensors 

qi for i = 1 to 3 . (16.1) 

214 
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They also carry labels for Gell-Mann's SU(3) (flavor), spin and position. The 
idea is that the color interaction binds three quarks into a color singlet baryon 
state, which is then described by contracting the color wave functions of the 
quarks with an E -

. . k 
Eijk qt q1 q (16.2) 

Then, because the E is completely antisymmetric, the baryon state is symmet
ric under the exchange of all the other labels. 

It is this binding of three quarks into an SU(3) singlet baryon that sug
gested the name "color" for the color SU(3) indices. The metaphor is based 
on the fact that colorless light can be produced by combining beams of the 
three primary colors, red, green and blue. In the same way, a colorless (that 
is color SU(3) singlet) baryon state can be made out of three colored quarks. 
Thus the color SU(3) indices are sometimes referred to as red, green and 
blue, rather than 1, 2 and 3. 

I think that it was the use of the tenn color that gave rise, in tum, to the 
name flavor for the label, u, d, s, etc, that distinguishes one type of quark 
from another. Gell-Mann's SU(3) is sometimes referred to as flavor SU(3) 
because it transforms the light flavors into one another. Flavor is a completely 
independent attribute. The quarks carry both color and flavor (and also spin). 

Antiquarks transform like 3s under color SU(3), because color charges, 
at least those in the Cartan subgroup that can be diagonalized, are quantum 
numbers like electric charge and baryon number, and like electric charge and 
baryon number, they change sign in going from a particle to its antiparticle. 
If the Cartan charges change sign, that means that the weights change sign, 
and that means going from the 3 representation to its complex conjugate, the 
3. 

We can make a color singlet state from three antiquarks by contracting 
with an E -

(16.3) 

This describes an antibaryon. Or we can make color singlet states out of one 
quark and one antiquark -

(16.4) 

These are the mesons. They include the pseudoscalar meson octet, the pseu
doscalar singlet r/ and also an octet plus singlet of spin l vector mesons, 
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shown below 

K*+ 

p -----flo' w' q,r-----p+--- (16.5) 

Why does the color force bind these states? A partial answer is that it 
behaves like the electromagnetic force. The gluons couple to color charges, 
that is the color S'U(3) generators, just as the photon, the particle of light, 
couples to electric charge (the generator of a U(l) symmetry). The electro
magnetic force between two objects is attractive when the product of their 
electric charges is negative. This is why the electromagnetic force tends to 
bind charged particles into neutral atoms and molecules. One difference with 
color is that there are 8 gluons, instead of one photon, and the color interac
tion between two colored particles is proportional to the sum of the products 
of their color charges. If this is negative, the force is attractive. 

Specifically, consider a state of two particles, A and 13, transforming 
according to some representations of color S'U(3): 

r:1r, A) = Is, A) [T:]sr 

Tflx, B) = IY, B) [Tf]yx 
(16.6) 

where r, s (x, y) are the color indices for the A (B) representation. The two 
particle state is then a tensor product 

lv,A,B) = Vrxlr,A)lx,B) (16.7) 
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Now the color interaction is proportional to the product of the charges, 

(16.8) 

summed over a, in the usual sense of the tensor product space. This is invari
ant under 8U(3) because the generator on the tensor product space is 

which commutes with (16.8) because 

[raA + T;!, TbA TbB] 

= [raA,TbA] Tb8 +TbA [rf,Tf] 

= i fabc (T/ TbB + TbA Tc8 ) = 0 

(16.9) 

(16.10) 

The eigenstates of (16.8) are irreducible representations of color 8U(3) 
because of Schur's lemma. To compute the eigenvalues, it is convenient to 

write 

(16.11) 

The object T; (summed over a) is called a Casimir operator (it is the analog 

of J 2 in angular momentum 8U(2)). It is easy to see that it commutes with 
the 8U(3) generators and is therefore a number on each irreducible represen-

tation. Note that Tf 2 and Tf 2 are fixed because they are properties of the 
particles involved, but T; depends on how the A and B states are combined 
into a state with definite color - that is, it depends on how the particular lin
ear combination of tensor product states we are looking at transforms under 
8U(3), and it has definite values on states that transform under an irreducible 
representation. Loosely speaking, T; measures the size of the color repre
sentation. The smaller T;, the less "colorful" the state. Thus the color force 
is most attractive in the least colorful states, and therefore it tends to bind 
quarks and antiquarks into the least colorful siates possible. This is a step in 
the right direction. 

In a qq state, the most attractive state will be an SU(3) singlet (with 
T; = 0). In a three quark state, we can consider each pair of quarks in turn. 
If the colors of a quark pair are combined symmetrically, the qq state is a 6. 
If they are combined antisymmetrically, the state is a 3. T; is 4/3 for the 3 
and 10/3 for the 6, thus the antisymmetric combination is the most attractive. 
Thus the most favored state is one that is antisymmetric in the colors of each 
quark pair, which is the color singlet, completely antisymmetric state. 
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16.2 Quantum Chromodynamics 

There is much more to color. The quantum theory of the color interaction 
of quarks and gluons is called QCD, Quantum Chromodynamics, in anal
ogy with the quantum theory of the electromagnetic interactions of electrons 
and photons, QED, Quantum Electrodynamics. There is a dimensional 
parameter built into the QCD theory, Aqco, a few hundred MeV. The QCD 
interaction is rather weak for distances smaller than 1/ Aqco, however, it gets 
strong for distances larger than 1/ Aqco- We now believe that the quarks are 
permanently confined by the strong long-distance QCD interactions inside 
colorless hadrons, so that we can never completely isolate a colored quark 
from its hadronic surrounding. This doesn't mean that we cannot see quarks. 
In fact, we see quarks and gluons rather directly in scattering experiments at 
energies and momenta much larger than Aqco. But it does mean that quarks 
do not show up directly in the low energy spectrum. 

With this picture of the strong interactions, we can understand why Gell
Mann's SU(3) is a useful symmetry. The interaction of the gluons is the same 
for each of the quarks. The only thing that distinguishes between quarks (in 
the strong interactions) is their mass. A mass term in the QCD Hamiltonian 
looks like 

muuu+mddd+m5 ss (16.12) 

where u, d, s (u, d, s) are annihilation (creation) operators for the u, d and s 
quarks. This can be rewritten 

(mu+ md + ms) (uu + dd + ss)/3 

+(mu - md) (uu - dd)/2 

+(2ms - mu - md) (2s s - uu -dd)/6 

(a) 

(b) 

(c) 

(a) is an 8U(3) invariant. (b) breaks isospin symmetry, which is one rea
son that we think that the u-d mass difference is very small, a few MeV. 
This term is a small perturbation that you can ignore unless you are inter
ested in isospin breaking. It happens to have effects roughly the same size 
as the electromagnetic interactions, even though it probably has nothing to 
do with electromagnetism. ( c) is the term that is responsible for most of 
the breaking of Gell-Mann's SU(3). It is fairly small, because the s - u and 
s - d quark mass differences, as measured, for example by the mass splittings 
within SU(3) representations, are not large compared to Aqco- Notice that 
( c) is a tensor operator, the 8 component of an octet. This is why Gell-Mann's 
original guess about the transformation law of the medium strong term in the 
Hamiltonian actually worked. We no longer have to guess because we have 
some understanding of the dynamics. 
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16.3 Heavy quarks 

As you probably know, there are other quarks besides the u, d and s quarks. 
The c (for charm) quark, the b (for bottom or beauty) quark and the t (for 
top or truth) quark have all been seen in high energy collisions. They are 
all unstable, decaying back into the lighter quarks very quickly. But the c 
and b quarks last long enough to bind into hadrons just as the lighter quarks 
do. So there is now a rich phenomenology of particles containing c and b 
quarks. These particle had not been seen, and were barely even imagined 
when Gell-Mann first explored the consequences of SU(3) symmetry. 

How do these states transform under Gell-Mann's 8U(3)? You should 
be able to guess what these states look like. There are meson states and 
baryon states. Meson states with a heavy b or c antiquark and a light u, d or 
s quark transform like the 3, because the light quarks are a 3. Meson states 
with a heavy b or c quark and a light u, d or s antiquark transform like the 
3, because the light antiquarks are a 3. Meson states in which both the quark 
and the antiquark are heavy are 8U(3) singlets. They transform trivially 
under Gell-Mann's 8U(3) because the heavy quarks do not carry any 8U(3) 
properties at all. The baryons containing a single heavy quark and two light 
quarks transform like the 6 and the 3 of 8U(3). And so on. 

16.4 Flavor SU(4) is useless! 

Every so often, someone gets the deceptively attractive idea of enlarging Gell
Mann's flavor SU(3) symmetry to an 8U(4) or an 8U(5) including the c or 
the c and b quark. Alas, this seemingly obvious extension is quite useless. 
The trouble is that the masses of the c and b quarks are so much larger than 
the light quark masses, and so different from each other, that mass differ
ences involving these quarks are much larger than Aqco- The perturbative 
description of the breaking of SU(3) that makes Gell-Mann's 8U(3) useful 
is not appropriate in the extensions to 8U(4) or 8U(5). Don't be fooled. 

Problems 

16.A. Find a relation between the sum of the products of the color charges 
in the qq state in a meson and a the qq pair in a baryon. 

16.B. Suppose that a "quix", Q, a particle transforming like a 6 under 
color 8U(3) exists. What kinds of bound states would you expect with one 
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quix and additional quarks or antiquarks? How do these states transform 
under Gell-Mann's SU(3)? Hints: The quix is a flavor singlet, because 
Gell-Mann's SU(3) just transforms the light quarks. Also, you should only 
include states whose wave functions cannot be factored into two independent 
color singlets. For example, thinking just about the light quarks, you would 
not include a qqqqq state, because you can show that every wave function you 
can write down factors into a color singlet qq and a color singlet qqq. The 
corresponding state would presumably fall apart into a meson and a baryon. 

16.C. Here is a convenient way to calculate the Casimir operators, C(D) 
(= T;) for small representations, D. Note that 

TrT; = dim(D) C(D) = 1::: 'Ir(TaTa) = 1::: kv = 8kv 
a a 

where kv is defined in (6.2) and dim(D) is the dimension of the representa
tion D. kv = 1/2 for D = 3 (or 3) so C(D) = 4/3. But kv behaves in a 
simple way under EB and @: 

(a) kv1©D2 = kv 1 + kn2 

(b) kv1@D2 = dim(Di) kv2 + dim(D2) kv 1 

Prove (a) and (b) and use them to calculate C(8), C(lO), and C(6). 
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Constituent Quarks 

The color SU(3) theory of hadrons is a genuinely strongly interacting the
ory. There is no obvious small parameter that we can use to express QCD 
predictions in a perturbation series. At present, first principles QCD calcula
tions can be done only by large-scale computer evaluations of the functional 
integral. While such calculations have yielded important evidence that QCD 
can explain the spectrum of light hadrons, the analysis is far from complete. 
Given this complexity, it is remarkable that a simple non-relativistic quark
model gives a reasonable qualitative picture of light hadron masses. In this 
section, we will go over this picture briefly. 

17.1 The nonrelativistic limit 

If all the quarks had masses very large compared to the QCD parameter, A, 
we could justify the nonrelativistic quark model in a simple way. In that 
case, the QCD interaction would behave rather like ordinary electrodynamics, 
except for a few peculiarities associated with the non-Abelian behavior of the 
Gluons, as we discussed in the previous chapter. The baryons would simply 
be nonrelativistic bound states. We would be able to organize a calculation 
of the bound-state energies in an expansion in inverse powers of the large 
quark masses. The leading contribution would be simply the sum of the quark 
masses. In next order, there would be a contribution from the color interaction 
depending on the space wave function but independent of the quark spins. In 
the limit that the u, d and s are degenerate, we would have an approximate 
SU(6) symmetry like that discussed in Chapter 15. The leading SU(6)
breaking spin dependent interactions would be suppressed by inverse powers 
of the masses, because they are all relativistic effects of color magnetism. The 
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most important such effect for the ground state (which should be primarily an 
e = 0 state) would be the color magnetic moment interactions between the 
constituent quark spins. 

This picture works surprisingly well even though the quarks are light 
(though it must be supplemented to describe the pseudoscalar mesons - not 
a surprise, because the pion is too light to be thought of as a nonrelativistic 
bound state). We do not understand why it works as well as it does, but let's 
see how it gives a picture of the masses of the ground states in the baryon 
and meson sectors, the SU (6) 56 of baryons (the spin 1/2 octet and spin 3/2 
decuplet) and the quark-antiquark bound states in the 6 ® 6 (the spin l and 0 
octets and singlets). 

What is really interesting about this picture is the way the spin-dependent 
interactions work. If the ground-states are primarily s-wave, there will be 
no contribution from a single color-magnetic moment interaction. However, 
there will be important contributions from gluon exchange between quarks 
that depend on the relative orientation of the color dipoles. Except for the 
color factor, this interaction looks like that between electron magnetic mo
ments, or between current loops. If two current loops are sitting on top of one 
another, the state in which the dipole moments are aligned has lower energy 
than the state in which they are paired (antiparallel). 

In both the baryon and the meson, the color force between pairs is at
tractive. Thus the magnetic moment interaction is like the magnetic moment 
interaction between an electron and a positron, with opposite charges (as ex
plained in Chapter 16, it is the magic of color that allows each of the three 
pairs in the proton to behave as if they have "opposite" charges). Therefore 
aligned magnetic moments correspond to paired spins, and vice versa. Thus 
we expect that the state in which the spins are paired has lower energy than 
the state in which they are aligned. Formally, there is a term in the Hamilto
nian that looks like 

L K, ...... 
--O"i. O"j 
m·m· pairs Z J 

i,j 

(17.1) 

where the a's are the Pauli matrices acting on the spins and ,,,, is some func
tion of the quark positions. The factors of 1/mi are there because the color 
magnetic moment is inversely proportional to the quark mass. To the extent 
that the wave functions are independent of the type of quark (which they are 
in the SU (3) limit) and quark spin (the limit we are considering), ,,,, is just a 
constant on the whole 56 or 35. 

The spin-spin interaction, ( 17.l ), makes the spin 1 mesons, in which the 
spins are aligned, heavier than the spin O mesons in which they are paired. 
It also makes the baryon decuplet, in which every pair is aligned, heavier 
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than the octet, in which some spins are paired. In particular, if we ignore the 

mass differences between quarks it clearly just depends on the total spin, §, 
because we can write it as 

(17.2) 

where n = 3 for baryons and 2 for mesons. 
The real beauty of this picture is that in the masses of the ground state 

particles, we see the quark mass dependence of the color magnetic interac
tion. For example, the splitting between S* and S is smaller than the D.-N 
splitting because it involves the heavier s quarks. Likewise in the meson sys
tem, the K* -K splitting is smaller than the p-rr splitting for the same reason. 
The most amusing example along these lines is the E-A splitting. These two 
baryons consist of the same quarks, one u, one d and ones, and they have the 
same total spin. The difference is the way in which the spins are put together. 
In the E, because the isospin is 1, the u and d quarks are in a symmetric fla
vor state, and thus the spins must be aligned, because the state must also be 
symmetric in spin space. In the A, the isospin is 0, the u and d quarks are in 
an antisymmetric flavor state, and thus the spins are paired. The A has lower 
energy because the color magnetic interaction between the lighter u and d 
quarks is more important. 

Furthermore, the ratio of m 5 to mu,d required is about the same in the 
mesons and the baryons. You will show this in problem 17.B. 

Although this simple picture was developed in the early days of QCD, 
it is still not known for certain whether its success is simply fortuitous, or 
whether it is telling us something important about QCD, or both! Probably, 
both. Certainly, there are reasons to believe that the picture is more compli
cated, because there are other ways of estimating the quark mass ratios that 
give very different results. But it is also true that the constituent quark model 
picture described in this chapter goes over very smoothly to a sensible de
scription of mesons and baryons containing heavy c and b quarks. Thus even 
though, as explained in the last chapter, we cannot use more powerful sym
metry arguments to understand these states because the symmetries are badly 
broken, we can still understand a lot about them by using the quark model 
directly. The simultaneous success of the constituent quark model for both 
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heavy and light quark states convinces me that it does capture at least some 
important part of the physics of QCD bound states. 

Problems 

17.A. Suppose the quix, Q, described in (16.B) is a heavy spin zero 
particle. Then in the ground state qqQ bound states of an antiquix and two 
light quarks (any of u, d ors), the only spin dependence should come from 
the light quarks (because the ground state presumably has orbital angular 
momentum zero). Discuss the spectrum of all the qqQ ground state particles, 
spin O and spin 1, giving their SU(3) properties and their spins. Hint: In 
the ground state, we expect the space wave function of the two quarks to be 
symmetric under exchange. 

17.B. Estimate mu,d/ms by comparing the p - 1l" mass splitting with 
the K* - K mass splitting. Make an independent estimate of the ratio using 
appropriate combinations of the E*-E and E-A. mass differences. 

*17.C. Discuss semiquantitatively the mass spectrum of baryon states 
with a single c quark and a pair of light quarks (various combinations of u, d 
and s). You will need to find some experimental information about some of 
these bound states to get started. You will also need to think about which of 
the formulas in this chapter you can trust in this context. 
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Unified Theories and SU(5) 

The forces of the standard model of Elementary Particle Physics are shown 
in the table below: 

"Known" Forces 

force E&M weak strong gravity 

range 00 10-16 cm 10-13 cm 00 

strength 1 ....., 1 ~1 137 ....., 30 ~ 10-38 ~ 
mo 

particle photon WandZ gluons graviton? 

mass 0 ~ lOOmp Oor~ mp 0 

Gravity is separate, because if we were only interested in the physics of indi
vidual particles, we wouldn't know about it at all. It is only because we have 
some experience with huge collections of particles put together into planets 
and stars that we know about gravity. 

18.1 Grand unification 

Each of the other forces is associated with a Lie Algebra. This suggests that 
it may be possible to unify all the particle interactions as different aspects of 
a single underlying interaction, based on a single simple Lie algebra. 

We will see in this chapter that all the particle interactions fit very neatly 
into the simple Lie algebra SU(5). We will also discuss other embeddings, 
based on larger algebras. These theories are called Grand Unified theories, 
where the term "grand" is added for obscure historical reasons. We will not 
be able to discuss the full structure of these theories without the language of 

225 



226 CHAPTER 18. UNIFIED THEORIES AND SU(5) 

quantum field theory. But we can, at least, exhibit the Lie algebraic struc
ture of grand unified theories in some detail. I hope that this will whet your 
appetite for a more complete study of the physics behind the group theory. 1 

We have already discussed the color SU(3) theory of the strong interac
tions. The SU(2) x U(l) theory of the electroweak interactions is slightly 
more complicated. We will give only a superficial introduction here. 

18.2 Parity violation, helicity and handedness 

One of the salient features of the weak interactions is that they violate par
ity. Parity is the symmetry in which the signs of all space coordinates are 
changed. It is equivalent (up to a rotation) to reflection in a mirror. Spin 1/2 
particles like electrons and quarks, if they are moving, can be characterized 
by their helicity, the component of the spin in the direction of motion. For a 
spin 1/2 particle, the helicity is ±1/2. Particles with helicity 1/2 are said to be 
right-handed. Those with helicity -1 /2 are said to be left-handed. For rea
sons that are not obvious, but which follow from basic principles of quantum 
field theory, the antiparticle of a right-handed particle is left-handed, and the 
antiparticle of a left-handed particle is right-handed. Helicity (or handedness) 
is not invariant under a parity transformation because a mirror interchanges 
left and right. Thus if some interaction acts differently on the right-handed 
and left-handed components of a particle, the interaction is parity violating. 
That is what the weak interactions do. A massive particle (at least if it carries 
a conserved particle number) must have both left-handed and right-handed 
components, because the helicity of a massive particle is not relativistically 
invariant. It changes sign depending on the reference frame. Thus electrons 
and their heavier cousins, muons and taus, and all the quarks have both left
and right-handed parts. But a massless particle need not have both compo
nents. Neutrinos are known to be very light, and for our purposes, we can 
treat them as massless.2 Thus far, only left-handed neutrinos and their an
tiparticles, right-handed antineutrinos, have been observed. 

For reasons which will become clear, it is useful to describe the symmetry 
properties of the creations and annihilation operators, rather than those of the 
states. We will restrict ourselves to the interactions of the lightest particle, 
the u and d quarks and the electron and its neutrino. The heavier particles all 
seem to be copies of one of these. 

1See H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438. 
2There are a number of experimental indications of tiny neutrino masses. Note also that a 

neutrino could have a small mass that violates particle number. 
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The Glashow-Weinberg-Salam theory of the weak and electromagnetic 
interactions treats the creation and annihilation operators as tensor operators 
under an SU(2) x U(l) Lie algebra. We will call the SU(2) generators 
Ra and the U(l) generator S. Consider the creation operators for the right
handed particles: 

-t u , -t d , (18.1) 

which create, respectively, right-handed u quarks, d quarks, electrons, IT an
tiquarks, d antiquarks, positrons, and antineutrinos. The color index of the 
quark and antiquark operators is suppressed for now because it plays no role 
in the weak interactions. We will come back to it later. Color SU(3) com
mutes with the electroweak SU(2) x U(l). Under the SU(2) algebra, the 
positron and the antineutrino form a doublet, transforming according to the 
spin 1/2 representation. Like the proton and neutron creation operators under 
isospin, these two creation operators can be regarded as the 1 and 2 compo
nents of a tensor operator: 

nt _ -t 
i.1 - e , nt _ -t 

i.2 - V . (18.2) 

Likewise, the d and IT antiquarks transform like a doublet under SU(2) 
and we can write them as components of a tensor operator: 

-t -t 1/J1 = d , :r.t - -t 'f'2 - u . (18.3) 

The 1{; field is also a tensor operator under color SU(3), transforming like a 
3, but for now, we have not written the SU(3) index explicitly. 

Then the commutation relations of these creation operators with the SU (2) 
and U(l) generators are the following: 

[s,ut] =2ut/3; 

[s,dt] = -dt/3; 
[s,et] =-et; 

[ -t] -t S, 1Pr = -1/Jr /6 j 

[ -t] -t 
S,fl_r = fl_r /2. 

(18.4) 

Thus all the fields are tensor operators, with 1{;t and gt transforming like 
doublets under the SU(2), and the rest transforming like singlets. 
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The annihilation operators for the right-handed particles are just the ad
joints of (18.1). They transform under the complex conjugate representa
tion. In particular, all the S values change sign. The creation operators for 
the left-handed particles transform like the annihilation operators for their 
right-handed antiparticles. Thus, for example, the creation operator for a left
handed u quark transforms like the annihilation operator from a right-handed 
u antiquark. 

The S values in (18.4) have been constructed so that the electric charge 
operator, Q, is 

Q =R3 +S. 

You can check that 

[Q,ut] = 2ut /3, 

[ Q, et] = -et , 

[Q, ut] = -2ut /3, 

[Q,et] =et, 

[Q, dt] = dt /3, 

[Q,vt]=o. 

(18.5) 

(18.6) 

Now the idea of the electroweak standard model is that as in QCD, each 
of the generators of the Lie algebra is associated with a force particle. The 
Ra with three Was, and the S with X. One linear combination of W3 and 
X is the photon which couples to the electric charge, Q. Thus electromag
netism is contained within this larger theory. The other particles, the w± 
(corresponding to the complex combinations W1 ± iW2) and the Z (the com
bination of W3 and X orthogonal to the photon) are responsible for the weak 
interactions. 

18.3 Spontaneously broken symmetry 

There is something peculiar going on here. The SU(2) x U(l) cannot really 
be a symmetry. If it were, the weak interactions would have long range, like 
the electromagnetic interactions. Instead, the weak interactions have very 
short range and their force particles, the Wand Z, are massive. Furthermore, 
if the SU(2) x U(l) symmetry remained unbroken, the quarks and the elec
tron would have to be massless particles, because the weak interactions treat 
their left-handed and right-handed helicity components differently, which is 
consistent with relativity only for massless particles. Some new physics gives 
mass to the quarks and leptons, and to all but one linear combination (the pho
ton) of R3 and X, without destroying the consistency of the theory. What is 
this physics? 
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The answer is the structure of the vacuum state. The SU{2) x U{l) gen
erators commute with the Hamiltonian, but the vacuum state of the world is 
not an SU(2) x U(l) singlet. Hence, SU(2) x U(l) is not a good symme
try on the states of the physical Hilbert space, all of which are built on the 
asymmetric vacuum state. The quarks and leptons and the w± and Z are not 
degenerate with the massless photon in our vacuum. 

This situation is called spontaneous symmetry breaking. The SU(2) x 
U(l) symmetry is said to be spontaneously broken down to the U(l) of elec
tromagnetism, because only the linear combination Q = R3 + S treats the 
vacuum state of our world as a singlet. The resulting theory gives a very good 
description of the weak and electromagnetic interactions. 

18.4 Physics of spontaneous symmetry breaking 

It would be logical to explain, at this point, what new physics it is that pro
duces spontaneous symmetry breaking. Alas, we still do not know what this 
new physics is. There is, however, a model of the process that is easy to ex
plain and worth understanding. This is the hypothesis of the Higgs field. A 
field is a quantity defined at each point in space and time, like the electric and 
magnetic fields of electromagnetism. The electric and magnetic fields have 
several components that transform nontrivially under rotations and Lorentz 
transformations. But imagine that there exists a scalar field, which is in
variant under rotations and Lorentz transformations. Such a field can have 
a non-zero value in the vacuum state without breaking rotation symmetry or 
Lorentz invariance. If the field transforms nontrivially under SU(2) x U(l), 
a non-zero vacuum value breaks the SU(2) x U(l) symmetry spontaneously. 

In the SU(2) x U(l) electroweak theory, a Higgs field transforming like 
a doublet of SU(2) and with S = 1/2 does the trick. Such a field (call it¢) 
transforms as 

[s,¢/)=¢//2. (18.7) 

If such a field exists, its self interactions can be described by a potential, V ( ¢) 
which is just the energy stored in a constant ¢ field. V ( ¢) is actually only a 
function of ¢f¢ because it is invariant under SU{2) x U(l). Now the lowest 
energy state corresponds to the minimum value of V(</J). But it may be that 
¢ is not zero at the minimum of V(cp). A simple example of a potential with 
a non-zero value of ¢ at its minimum is 

(18.8) 
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for,\ > 0. This is minimized when q) rp = v2• Then, for example, we can 
take the vacuum value of ¢ to be 

¢1 = 0, 'P2 = V • (18.9) 

Notice that (18.7) implies that the combination R3 + S acting on the vacuum 
value of¢, (18.9), gives zero, so that this particular subgroup of SU(2) x 
U ( 1), associated with electromagnetism, is not broken by the Higgs field. 
But any other linear combination of SU(2) x U(l) generators acting on the 
vacuum value of¢ gives a non-zero result, which means that these generators 
are spontaneously broken - they correspond to rotations from the physical 
vacuum to an unphysical vacuum state. The precise form of the unbroken 
combination depends on the particular choice, (18.9), for the vacuum value 
of ¢. However, any other choice with ¢f ¢ = v2 gives the same physics 
because it is related to (18.9) by an SU(2) x U(l) transformation. Thus it 
does no harm to make the choice (18.9) which leads to a simple form for the 
unbroken U(l) generator, Q = R3 + S. 

The Higgs field also allows the electron and quarks to get mass. The 
rule is that a Higgs field can produce a mass for a spin 1/2 particle if the 
tensor product of the representation of the right-handed particle and the rep
resentation of the corresponding antiparticle contains the representation of 
the Higgs field or its complex conjugate.3 You can check that this is the case 
for the electron and quark fields. 

18.5 Is the Higgs real? 

There is overwhelming evidence that the SU(3) x SU(2) x U(l) model of 
the strong and electroweak interactions, with the SU(2) x U(l) symmetry 
spontaneously broken down to the U(l) of electromagnetism, is an excellent 
description of the interactions of elementary particles down to distances of 
the order of 10-16cm. It is important to point out, however, that we do not 
yet know whether the Higgs field actually exists. It is quite possible that it 
is simply a mathematical metaphor for some other dynamics with the same 
symmetry properties. As of this writing, we do not know whether the Higgs 
is physics or mathematics. But we do know that if the Higgs is not real, there 
is some other new physics that does the symmetry breaking. One of the most 
important goals for particle physicists today is to either see the Higgs field 
directly, or to find the physics that replaces it. 

3In quantum field theory, this makes it possible to write an SU(3) x SU(2) x U(l) 
invariant interaction terms involving the Higgs field and the particle creation and annihilation 
operators that becomes a mass term when the Higgs field is replaced by its vacuum value. 
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18.6 Unification and SU(5) 

The SU ( 2) x U ( 1) symmetry of ( 18.4) is a partial unification of the weak and 
electromagnetic interactions. It leaves many striking features of the physics 
of our world unexplained. One of these is the quantization of electric charge. 
The hydrogen atom is known to be electrically neutral to extraordinary accu
racy. This implies that there is a relation between the charges of the quarks 
and that charge of the electron. However, (18.5), while it can describe the 
charges we see, does not explain them. The problem is the S generator. The 
values of R3 are quantized because of the non-Abelian nature of the SU(2) 
algebra. However, the values of S are completely arbitrary. They are cho
sen to describe the quantized charges we see, but if we could embed both R3 
and S into a simple group, then the values of S, like those of R3, would be 
constrained by the structure of the algebra. 

This idea was a major motivating factor in the search for unified theories 
in the early 70s. At first, we searched for a simple group that unified only the 
SU(2) x U(l) electroweak theory. This search proved fruitless. It was only 
when color SU(3) was included as well that interesting unifications could be 
obtained. 

Thus we ask, is it possible to include the color SU(3) of the strong inter
actions and further unify SU(3) and SU(2) x U(l) into a larger algebra, G, 
which is spontaneously broken down to SU(3) x SU(2) x U(l)? 

We will say that a set of creation operators, aJr, transforms according to 
the representation (D, d)s of SU(3) x SU(2) x U(l) if it satisfies 

[Ta, aJr] = aJr [Tf]yx, 

[ Ra, aJr] = a;t [R~]tr, 

[ S, aJr] = s aJr . 

(18.10) 

Thus x is a color SU(3) index, associated with the SU(3) representation D. 
The r is an SU(2) index, associated with the SU(2) representation d. The 
s is the S quantum number. (18. IO) and (18.5) imply thats must be simply 
the average electromagnetic charge of the representation, because for each 
representation, 

Tr Q = Tr R3 + Tr S = Tr S (18.11) 

(the trace of R3 always vanishes because of theorem 8.9, or equivalently, 
because SU(2) representations are symmetrical about R 3 = 0). 

We know the color SU(3) transformation properties of all the particles, 
so we can read off the representations of the creation operators for the right-
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handed particles from (18.4): 

ut: (3, lh;3 , dt: (3, 1)_1/3, et: (1, l)-1, 

-:;j;t = (3, 2)-1;6, et = (1, 2h12. 
(18.12) 

where we have indicated the SU(2) representations by their dimensions. The 
full SU(3) x SU(2) x U(l) representation of the creation operators for the 
right-handed particles is thus, 

(3, 1)2;3 EB (3, l)-1;3 EB (1, l)-1 EB (3, 2)_1/6 EB (1, 2)i;2. (18.13) 

The creation operators for the left-handed fields transform like the complex 
conjugate of the representation (18.13): 

(3, 1)-2/3 EB (3, 1)1;3 EB (1, l)i EB (3, 2)i/6 EB (1, 2)-1;2. (18.14) 

where we have used the fact that the SU(2) representation is real, 2 = 2. 
Notice that (18.13) and (18.14) are not the same, and thus the representation 
is complex because of the parity violating habits of the electroweak SU(2) x 
U(l). 

( 18.13) is the starting point in the search for unifying algebras. We want 
to find an algebra G which contains SU(3) x SU(2) x U(l) as a subgroup, 
and which has a representation transforming like ( 18.13) under this subgroup. 
The rank of G must be at least four if it is to contain the four commuting 
generators, T3 , T8, R 3 and S. The simplest possibility is to try the rank four 
algebra, SU(5). We will see later that the other simple rank 4 algebras could 
not possibly work because they do not have complex representations, and so 
there is no way they could describe the complex representation, (18.13 ). 

SU(5) has a five dimensional representation of course. It actually has 
two, because the 5 is complex, and thus the 5 and 5 (or [1] and [4]) are not 
equivalent. Can we find an SU(2) x U(l) subgroup of SU(5) such that the 5 
transforms like some five dimensional subset of the creation operators? The 
only possible such subset is 

(3, l)-1;3 EB (1, 2)i;2. (18.15) 

The five dimensional subset, 

(3, 1)2;3 EB (1, 2)i;2, (18.16) 

cannot work because the generator S is not traceless on it. Thus by theorem 
8.9, S could not possibly be an SU(5) generator for this choice. 
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It is straightforward to embed SU(3) x SU(2) x U(l) in SU(5) to obtain 
(18.15). Take the SU(3) generators to be traceless matrices acting on only 
the first three indices in the 5, 

(
Ta 0) 
0 0 ' 

(18.17) 

and the SU(2) generators to be the traceless matrices acting on the last two, 

(18.18) 

Then S is the generator that commutes with both (18.I 7) and (18.18), 

(
-I /3 0 ) 

0 I/2 (18.19) 

Thus we can put the d t and et creation operators into an SU(5) 5 , AJ, as 
follows: 

.\ t = d t for x = l to 3 · X X , , 

,t _ nt --et 
A4 - (,1 - ' 

, t _ nt _ -v,t 
A5 - (,2 - ' 

(18.20) 

What about the rest of (18.13). What remains is ut, et, and ;ft which 
transforms as 

(3, 1)2;3 EB (1, l)-1 EB (3, 2)-1/6. (18.21) 

This representation is 10 dimensional. SU(5) has a 10 and a 10, the [2] and 
[3] representations. The 10 is an antisymmetric tensor product of two 5's, 
so we can determine how it transforms under the SU(3) x SU(2) x U(l) 
subgroup by taking the antisymmetric product of (18.15) with itself (you can 
easily check that this is equivalent to using the general rule described in chap
ter 13). The SU(3) and SU(2) representations compose in the standard way. 
The S quantum number simply add. Thus, 

[(3, 1)_1;3 EB (1, 2)i;2] ® [(3, l)-1;3 EB (1, 2h;2 Ls 
= [(3, l)-2;3 EB (1, l)i EB (3, 2)i;6) . 

(18.22) 

This is just the complex conjugate of the representation (18.21). Thus what 
we actually want is the 10 representation, and then we can write the remaining 
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right-handed fermion creation operators in an SU(5) representation antisym
metric in two upper indices, ejk t = -ekj t' with 

cab t = Eabc u t for a b c = l to 3 
',, C ' ! ! 

ea4 t = -;;J2a t = ua t for a = l to 3' 

ea5 t=-;;J:t =dat fora=lto3, 

e45f =et. 

(18.23) 

This is the standard SU(5) model, with the creation operators for the 
right- handed particles transforming like 5 EB 10, or equivalently, with the 
creation operators for the left-handed particles transforming like 5 EB 10. The 
most interesting thing about it is the way that everything fits. 

18.7 Breaking SU(5) 

There are two issues that must be addressed in discussing the spontaneous 
breaking of SU(5) symmetry. 

1. How is the symmetry broken down from SU(5) to SU(3) x SU(2) x 
U(l)? 

2. How do the quarks and leptons get mass? 

Let us answer these in the Higgs field language. 
There is a very simple solution to the problem of breaking SU(5) down 

to SU(3) x SU(2) x U(l), which in fact is very much analogous to Gell
Mann's solution to the problem of breaking SU(3) down to the SU(2) x U(l) 
of isospin and hypercharge. The S generator in the adjoint representation has 
all the desired properties for the vacuum value of a Higgs field. Just as the 
hypercharge generator in the adjoint representation of SU(3) commutes with 
isospin and hypercharge, so the U ( 1) generator, S, in the adjoint of SU ( 5) 
commutes with SU(3) x SU(2) x U(l). Thus the 24 representation with 
a vacuum value in the S direction4 is a good choice for the Higgs field that 
breaks SU(5) down to SU(3) x SU(2) x U(l). 

Two conditions must be satisfied in order for a Higgs field to give mass 
directly to the fermions in an SU(5) theory.5 The Higgs representation (or its 

4Unlike the situation in the Higgs doublet breaking SU(2) x U(l), there are physically 
inequivalent directions in the adjoint of SU(5). One can show that the S direction is a possible 
vacuum value. 

5 More complicated, indirect mechanisms involving quantum mechanical "loop" effects are 
also possible, but we will not discuss these. 
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complex conjugate) must appear in the tensor product of the SU(5) represen
tations in which the fermion and its antifermion appear. And the Higgs rep
resentation must have a component that transforms under SU(3) x SU(2) x 
U(l) like the Higgs field of the SU(3) x SU(2) x U(l) model or its complex 
conjugate. 

The right-handed positron (e) and d quark fields are in the 5, while their 
antiparticles, the electron and d fields are in the 10. In SU(5), 5 ® 10 is 
[1] ® [3] = [4] EB [3, 1], or 5 EB 45 (see problem 13.B). 

From (18.15), you can check that the 5 contains a component that trans
forms like the SU(3) x SU(2) x U(l) Higgs field- the (1, 2)i;2 , You can 
check (see problem 18.E) that the 45 has the desired component as well. 

Thus the electron and d quark masses can come from either of the two 
Higgs representations, 5 or 45. 

The right-handed u and u are both in the 10, and 

[3] ® [3] = [1] + [4, 2] + [3, 3] = 5 + 45 + 50 (18.24) 

We already know that both the 5 and 45 of SU(5) Higgs fields have the 
appropriate component to act as the SU(3) x SU(2) x U(l) Higgs field, 
thus they can give mass to the u quark. The 50, however, does not have any 
component transforming like (1, 2)±1; 2 under SU(3) x SU(2) x U(l) (see 
problem 18.E). Thus this representation is not useful for giving mass to the u 
quark. 

18.8 Proton decay 

Another fascinating thing about the SU(5) theory is that quarks, antiquarks 
and the electron all appear in the same irreducible representation. Because of 
this, some of the SU(5) interactions do not conserve baryon number. Thus 
SU(5) unification leads to proton decay. The proton is known to be extremely 
long-lived. But if the vacuum value of the 24 Higgs field is extremely large, 
then the interactions that cause proton decay are short range and the probabil
ity of two quarks inside the proton interacting to cause the proton to decay is 
very small. It turns out that we know approximately what the vacuum value 
of the 24 must be in order to explain the observed differences between the 
color SU(3), electroweak SU(2) and U(l) forces.6 Thus the rate of proton 
decay can actually be predicted in a given SU(5) model. Since SU(5) was 
first found theoretically, experimenters have looked for proton decay with 

6This is not something that can be understood using group theory alone. It involves the 
dynamics. 
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more and more sensitive experiments, so far without success. In fact, the 
simplest version of the SU(5) unified theory is fairly convincingly ruled out 
by these experiments. But slightly elaborated versions of the SU(5) theory, 
particularly supersymmetric versions, are still extremely promising. 

Problems 

18.A. Check explicitly that mass terms for the electron and the u and 
d quarks are allowed in the SU(2) x U(l) model in which the symmetry is 
broken by the Higgs field of (18. 7). Hint: see the discussion on page 230. 

18.B. Find the symmetric tensor product of (18.15) with itself. 

18.C. Do the same for (18.21). 

18.D. Consider the operator 

where u and d are quark annihilation operators. Show that if the operator 
0 appears in the Hamiltonian, it has the right charge and color properties m 
allow a proton to decay into a rr0 and a positron. 

18.E. How do the 45 ([4,2]) and 50 ([3,3]) of SU(5) transform under 
the SU(3) x SU(2) x U(l) subgroup? Hint: it may be easier to answer the 
question for the complex conjugate representations and then complex conju
gate. 



Chapter 19 

The Classical Groups 

The are four infinite series of simple Lie algebras, generating what are called 
the classical groups. The first of these consists of the SU(N) algebras that 
we have studied already. Their Dynkin diagrams have the form 

0-0···0-0 ( 19.1) 

The rank n algebra SU(n + 1) was called An by Cartan, who first classified 
these things. In this brief section, we will go over the others very lightly, 
before we do the complete classification. Later, we will discuss each of them 
in detail. 

19.1 The S0(2n) algebras 

The orthogonal 2n x 2n matrices form the group of rotations in 2n-dimensional 
real space. The gruup is generated by the imaginary antisymmetric 2n x 2n 
matrices, of which n(2n - 1) are independent. We can choose the Cartan 
generators as follows: 

(19.2) 

This amounts to breaking up the 2n dimensional space into n different two 
dimensional subspaces on which the different Cartan generators act. Hm is 
a little Pauli matrix, 0-2, in the appropriate 2 dimensional space, with zeros 
everywhere else. The eigenvectors of a-2 are given by 

(19.3) 

237 
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Thus the eigenvectors of the Hm are 

(I 9.4) 

satisfying 
Hm l±ek) = ±8km l±ek) (19.5) 

Thus the weight vectors are ± the unit vectors ek with components 

(19.6) 

(as usual, you must not confuse the space on which the generators act with 
the Cartan space in which the weight vectors live). 

The roots connect one subspace with another in all possible ways, so that 
the roots vectors are 

roots 

positive roots 

simple roots 

The Dynkin diagram is 

± ei ± ek for j -=I= k 

ei ± ek for j < k 

ei - ei+1 for j = 1 ... n - l 

and en-l + en 

en-I_ en 

0-0··· 
el _ e2 en-I + en 

The algebra S0(2n) was called Dn by Cartan. 

19.2 The S0(2n + 1) algebras 

(19.7) 

(19.8) 

For a 2n + 1 dimensional space, we can find n two dimensional subspaces, 
but there is a one dimensional subspace left over. Thus for the rotation group 
in 2n+ 1 dimensional space, generated by the imaginary antisymmetric (2n+ 
1) x ( 2 n + l) matrices, we can choose the Cartan generators as before, and 
there will be weights of the form ±ek corresponding to vectors in the kth two 
dimensional subspace. But there is also a O weight, associated with the extra 
dimension. Again, just as before, there will be roots connecting the various 
two dimensional subspaces, with the same roots as in S0(2n). But now there 
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are also roots connecting the extra one dimensional subspace with the others, 
with roots ±eJ. Thus the roots are 

roots 

positive roots 

simple roots 

±eJ ± ek for j -/- k and ± eJ 

eJ ± ek for j < k and eJ 

eJ - eH1 for j = 1 ... n - I 

and en 

(19.9) 

The root en-l + en is not simple in S0(2n + 1) because it is a sum of 
en-l - en and twice en. The Dynkin diagram is 

O-O···D-0=0 (19.10) 

el - e2 

The algebra S0(2n + I) was called Bn by Cartan. 

19.3 The Sp(2n) algebras 

Finally consider the 2n x 2n dimensional hermitian matrices which are tensor 
products of 2 x 2 matrices and n x n matrices, of the following form: 

l@A, (19.11) 

where the a a are the Pauli matrices, A is an antisymmetric n x n matrix, 
and S1, S2 and S3 are symmetric n x n matrices. You can check that these 
close under commutation because of the properties of the Pauli matrices. The 
subset 

I@A, (19.12) 

for traceless S3 generate an SU(n) subalgebra of Sp(2n) of the form 

(
Ta O ) 
0 -T* a 

(19.13) 

which generates the reducible representation n EB n with weights vJ and -vj 
where the vJ vectors are defined in (13.9). We will take the first n-1 elements 
of our Cartan subalgebra to be the Cartan subalgebra of this SU ( n) subgroup, 
H1, H2 ... Hn-l · The final element of the Cartan subalgebra is then 

(19.14) 
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All the generators of the SU(n) subalgebra commute with Hn, thus the 
roots of the subalgebra have Hn = 0. We already know that the other com
ponents are given by the SU(n) root vectors, vJ - vk. The other roots corre
spond to the matrices (0-1 ± ia-2) ® Ski where 

(19.15) 

with Hn = ±J2/n and Hm = ±[vk + vl]m-
I should say that this is a pretty stupid way of writing the roots. Later, 

when we talk about Sp(2n) in more detail, we will introduce a better notation 
in which all these relations are more obvious. Anyhow, if we take vn+I to be 
a unit vector orthogonal to all the vJ for j = 1 to n, the roots can be written 
as 

roots 

positive roots 

simple roots 

The Dynkin diagram is 

vj - vk for j -=/= k 

and ± (vj + vk + /¾, vn+I) 

vj - vk for j < k 

and (vj + vk + {f;, vn+l) 

vJ - vH1 for j = 1 ... n - I 

and (2vn + /¾, vn+I) 

0-0· . ·-0-0=0 
VI - V2 

(19.16) 

(19.17) 

where the SU ( n) roots are shorter. The algebra Sp(2n) was called Cn by 
Cartan. 

19.4 Quaternions 

A useful way of thinking about the classical groups is as rotations groups in 
various spaces. Obviously, SO(N) is the group of rotations in a real, N di
mensional space. The group generators, X, in the defining representation are 
pure imaginary. The product iX that is exponentiated to get the representa
tion of the group elements is completely real and antisymmetric. Similarly, 
SU(N) is the group of "rotations" in a complex N dimensional space that 
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preserve the norm of complex vectors. The real part of iX in the defining rep
resentation is antisymmetric, and generates an SO(N) subgroup of SU(N). 
The imaginary part of iX is symmetric and traceless. 

Finally, Sp(2N) can be thought of as the group of rotations in a quater
nionic N dimensional space, where the elements are quaternions, objects of 
the form 

B+]-C (19.18) 

where the components of J are the quatemionic units, satisfying 

(19.19) 

Thus a vector in the N dimensional quaternionic space looks like 

(19.20) 

In this language, iX has an antisymmetric part iA, plus three independent 
"complex" symmetric components, 

(19.21) 

proportional to the three quaternionic imaginary units, so that the iX have 
the form 

(19.22) 

To see the connection of the quaternionic description of Sp(2N) with 
(19.11), note that the quatemionic units J are equivalent to -i times the Pauli 
matrices, 

J ~ -ia, (19.23) 

so that (19.21) is related to the terms in (19.11) proportional to the Pauli ma
trices. To see how the Sp(2N) transformations in a 2N dimensional space 
are equivalent to quaternionic rotations, consider simply building the N di
mensional space of quaternions in terms of the Pauli matrices, so that the 
quaternionic N-vector becomes a 2N x 2 matrix of the form 

B1 - iCJ 
C 1 ·c1 

2 - i 1 

BN -iCf 
C N -iCN 

2 1 

C N ·cN - 2 - i 1 

BN +iCf 

(19.24) 
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The action of (i times) the Sp(2N) generators on the complex 2N-vector 
defined by the first column of (19.24) is equivalent to the action of (19.22) on 
(19.24). 

What makes this construction work is that the real numbers, the complex 
numbers, and the quaternions share a very important property. For all of 
them, an absolute value, /zl, can be defined with the properties that 

/zl = 0 => z = 0 (19.25) 

You are familiar with how this works for the real numbers and the complex 
numbers. For the quaternions, the absolute value is 

(19.26) 

Note that it satisfies 

I ... ...,2 ( ... ...) ( ... ...) ( ... ...) * ( ... ...) B+j·C = B-j·C B+j·C = B+j·C B+j·C 
(19.27) 

where complex conjugation is defined as usual as changing the sign of the 
imaginary parts (all three of them in this case). 

The existence of the absolute value with these properties means that there 
is a natural norm defined on the N dimensional quatemionic vector space: 

N 

IIQ/12 = L /qi/2 (19.28) 
j=l 

Sp( N) is the group of rotations that preserve this norm while preserving the 
structure of the quaternionic space. 

One might wonder why there are not other possibilities for classical 
groups. The reason is that it is not so easy to satisfy the condition ( 19.25). 
This condition, plus the requirement that addition, subtraction, multiplica
tion and division (except by 0) can all be consistently defined, is the defining 
property of a structure called a division algebra. There is only one other 
such structure, the octonians, with seven imaginary units, which we will dis
cuss further in Chapter 27. Unfortunately, the multiplication law for octoni
ans is not associative, so in general, rotations in an octonionic space do not 
form a group. However, the peculiar Lie algebras that do not fit into any of 
the classical groups are all related to octonions on one way or another. We 
have already seen the algebra G2, and we will discuss some of these bizarre 
algebras further in chapter 27. 
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Problems 

19.A. Consider the 36 matrices, 

where a, T, and 'f/ are independent sets of Pauli matricies. Show that these 
matrices form a Lie algebra. Find the roots, the simple roots and the Dynkin 
diagram. What is the algebra? 

19.B. Consider the 28 matrices, 

aa, Ta, 'f/3, aa'f/1, aa'f/2, Ta'T/1, Ta'f/2, aaTb'f/3 · 

where a, r, and 'f/ are independent sets of Pauli matricies. Show that these 
matrices form a Lie algebra. Find the roots, the simple roots and the Dynkin 
diagram. What is the algebra? 



Chapter 20 

The Classification Theorem 

We will now classify all of the simple Lie algebras following the argument of 
Dynkin. We will do this with simple analytical geometrical arguments based 
on the master formula, (6.36). It may be that mathematicians can visualize 
the meaning of the arguments in multidimensional space. I can't do that. But 
the analytical arguments are simple enough. 

20.1 II-systems 

We know that the simple roots of any simple Lie algebra have the following 
properties: 

A. They are linearly independent vectors. 

B. If a and f3 are distinct simple roots, 2a · /3 / a 2 is a non-positive integer. 

To ensure that a system of roots satisfying A and B yields a simple Lie alge
bra, we need one additional condition: 

C. The simple root system is indecomposable. 

A system of roots is decomposable if it can be split into two mutually or
thogonal subsystems. A system is indecomposable if it is not decomposable. 

It is easy to see that for decomposable simple-root systems, the simple 
roots in the two orthogonal subsystems commute (p and q are zero for all 
pairs), and the entire system of roots splits into two commuting subsets. Each 
subsystem, along with the Cartan generators associated with the subspace it 
spans, forms an invariant subalgebra. The group associated with a decom
posable root system is not simple. However, it is semi-simple, which means 

244 
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that is has no Abelian invariant subalgebra. Because the subalgebras com
mute, the groups they generate also commute. A group of this kind that is 
built out of two commuting subgroups, G 1 and G 2 , is called a direct prod
uct of the two subgroups, G = G 1 x G2. An elementary example is the 
algebra you studied in problem 8.B, in which the Dynkin diagram consisted 
of two disconnected circles, associated with the group SU(2) x SU(2). All 
the semisimple Lie groups are direct products of simple Lie groups. 

Dynkin calls a system of vectors satisfying A, B and C a IT-system. All 
we need do to classify the simple Lie algebras is to classify the possible IT
systems. This is just geometry. We know that the system of vectors can be 
constructed (up to a conventional normalization) from the Dynkin diagram, 
and we will use the term IT-system to refer interchangeably to the system of 
vectors or the Dynkin diagram that represents it. In terms of Dynkin dia
grams, B is just automatic, because the diagram just determines the integers; 
C is the condition that the diagram cannot be taken apart into two diagrams 
without cutting any lines; and A is equivalent to the condition that all the 
simple roots are positive, from which we showed that linear independence 
followed if B is satisfied. 

Let us now do some geometry. 
lemma 1. The only IT-systems of three vectors are 

Q-0-0 and o-c:t=O (20. l) 

This follows from the simple fact that the sum of the angles between any 
three linearly independent vectors is less than 360°. The only possible angles 
in a IT-system are 90°, 120°, 135° and 150° and only one 90° degree angle 
is allowed by indecomposability, so these are the only possibilities. We will 
later see that there are three important systems that satisfy B and C, but not 
A: 

Q-CE) and O=C):=O (20.2) 

and to 
These do not satisfy A because the sum of the angles is 360° so the three 
vectors are coplanar and thus not linearly independent. 

In fact, lemma 1 is an incredibly strong constraint, because if we take 
from any Dynkin diagram a connected subset of circles, the result is another 
Dynkin diagram. This is true because the lengths and angles are unchanged 
and (because of B) the subset of vectors must also be linearly independent. 



246 CHAPTER 20. THE CLASSIFICATION THEOREM 

Thus any indecomposable subsystem of a IT-system is also a IT-system. Thus 
any three connected vectors in any IT-system must be in one of the two forms 
in (20.1). 

A very simple corollary of this is that no triple line can appear in a IT
system of three or more vectors. Thus the only IT-system containing a triple 
line is 

(20.3) 

corresponding to the algebra G2. 

lemma 2. ff a IT-system contains two vectors connected by a single line, 
the diagram obtained by shrinking the line away and merging the two vectors 
into a single circle is another IT-system. 

Let a and f3 be the two vectors and r the set of all the other vectors in the 
IT-system. Because of lemma 1, we know that r contains no vector connected 
to both a and /3. Thus if a vector, is connected to a, then , · f3 = 0, and if 
, is connected to /3, then , · a = 0. We also know that a + /3 has the same 
length as a and /3. Therefore 

if, E r is a vector connected to a, 

then 1 · ( a + /3) = 1 · a 

if,' E r is a vector connected to /3, 

then ,' · ( a + /3) = ,' · /3 

So the set a+ f3 and r is the shrunken IT-system. 

(20.4) 

Lemma 2 has two important corollaries. a. No IT-system has more than 
one double line; and b. no IT-system contains a closed loop. Either configu
ration could be shrunk into conflict with lemma 1. 

lemma 3. If the configuration 

(20.5) 

is a IT-system for some subdiagram, A, then 

(20.6) 

is also a II-system. 
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To see this, label the vectors as follows: 

A 

We know that a · /3 = 0 and 

2a · 1 2a · 1 
~=~ 
= 2/3 · 1 = 2/3 · , = -1 

from which it follows that 

/32 ,2 

21 · ( a + /3) = _ 2 y2 
21 · ( a + /3) = _ 1 

(a+ /3)2 
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(20.7) 

(20.8) 

(20.9) 

Thus the following is the Dynkin diagram for the shrunken IT-system: 

A (20.10) 

A corollary is that the only branches in a IT-system have the form of three 
single lines coming from a central circle, like 

~ 
because anything with more branches, such as 

or a double line such as 
X 
~ 

(20.11) 

(20. 12) 

(20.13) 
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can be shrunk to 
(20.14) 

which is not a II-system because of lemma 1. 
Similarly, no II-system contains two branches. 
This is as far as we can go with general theorems. We must now consider 

some peculiar special cases, associated, as we will see, with what are called 
the exceptional groups (meaning that they don't fall into any of the infinite 
families discussed in the previous chapter). 

lemma 4. No II-system contains any of the following diagrams: 

(a) 

(b) 

(c) 

(d) 

All of these fail the test of linear independence, because we can find a set 
of numbers µj such that, if the vectors in the diagram are aJ, the sum 

(20.15) 

The appropriate values of µj are indicated inside the corresponding cir
cles below: 

(a) 
2 
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(b) 

(c) 

In (d), the vectors do not all have the same length. The two on the right 
may be either longer or shorter than the others by a factor of J2. If they are 
longer, use 

(d) 

If they are shorter, use 

(d) 

We will see later that all these diagrams can be constructed with linearly 
dependent vectors. 

We now have enough information to complete the classification theorem. 
All I1 systems must belong to one of 4 infinite families, or be one of 5 excep
tional diagrams. All these are shown below, with shorter vectors indicated by 
filled circles. 
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An 0-0···-0--0 

Bn O-O···D--O=e 

Cn • •···-e-e=o 
Dn 0-0---~ 

G2 -=r) 
(20.16) 

F4 e-e=o-o 

E6 o--o-L-o 
E1 

Es 

Nothing else is allowed. Everything else runs afoul of one of the geomet
rical constraints we have derived. There are no other infinite families. Adding 
more circles beyond the double line in Bn or Cn runs into (d), except for F4. 
Continuing beyond the branch in Dn runs into (a), (b) or (c), except for the 
Ej exceptionals. And we already knew that G2 is the unique diagram with a 
triple line. 

Note some equivalences between the algebras. A1, B1 and C1 all consist 
of a single circle, and thus all describe the algebra of SU(2). In addition, 
B2 = C2. The Dn family is a bit odd. As you go down in n you keep 
removing circles from the left. D4 I~ 

(20.17) 

~ 
and D3 degenerates into 

(20.18) 
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and thus D 3 = A3 . Note, further, that if we remove one more circle from D3 

to get D2, it falls apart into two disconnected circles (the middle one must 
be removed to stay in the Dn family). Thus D2 is not simple. This is the 
statement (an important one) that the algebra of 80(4) is the same as the 
algebra of SU(2) x SU(2) (problem 8.B). 

That is the complete list of such coincidences. All the others are distinct 
algebras. 

20.2 Regular subalgebras 

A regular subalgebra, R, of a simple Lie algebra, A, is a subalgebra such 
that the roots of R are a subset of the roots of A and the generators of the 
Cartan subalgebra are linear combinations of the Cartan generators of A. A 
regular subalgebra is called maximal if the rank of R is the same as the rank 
of A (in which case the Cartan subalgebras are identical). 

If we leave a circle out of a Dynkin diagram, the result is a diagram or 
two disconnected diagrams. These are associated with a regular subalgebra 
of the original algebra, associated with a subset of the original simple roots. 
Thus for example, the SU ( n) x SU ( m) subgroup of SU ( n + m) is obtained 
in this way. We can repeat the procedure and find other regular subgroups. 
However, these subalgebras have lower rank than the starting group. The 
Cartan generators that have been left out generate U(l) factors of the sub
algebra. There are also non-maximal but regular subalgebras which cannot 
be obtained by leaving out a circle, but instead are obtained by the merging 
procedure that we used to establish the classification theorem. 

To find the semisimple maximal regular subalgebras, we can use the fol
lowing trick. Add to the system of simple roots, aJ for j = 1 to n, the 
lowest root, a 0 . Because a 0 is the lowest root, a 0 - aJ is not a root, and 
therefore, by the usual argument, 

and (20.19) 

are non-positive integers. Therefore, this system of vectors satisfies the condi
tions for a IT-system except that there is one linear relation among the vectors. 
This is called an extended IT-system or an extended Dynkin diagram. 

If we remove any vector from an extended IT-system, the remaining vec
tors are linearly independent. They still satisfy the master formula. They are 
therefore the simple roots of a regular, maximal subalgebra of the original 
algebra. However, the system may not be indecomposable, so the subalgebra 
may be semi-simple. 
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There is a unique extended IT-system for each IT-system, because given 
a Dynkin diagram, we can find the lowest root explicitly. In fact, we have 
already discussed all of the extended IT-systems in the discussion of the clas
sification theorem, because they are just the systems that failed the test of 
linear independence, but were otherwise OK. Here they are: 

diagram extended diagram 

An 0--0···0-0 

~ 
A' n 

Bn 0--0-··~ ?·~ B' n 

Cn ..... -----=a o::e--e-•• ·-----=c:> C' n 

Dn 0-0··~ ~---~ D' n 
(20.20) 

G2 9=() E)--0 G2 

P4 e--e=D-0 e-e=o-o--o F' 4 

E6 0-0-6-o-0 ~ 
E' 6 

E1 o-o-o2-o-o E' 7 

Es ~ 0-0-0-0-0-6--o- E' 8 

There are some exceptions for small n. A1 = B1 = C1 = 8U(2) and 
D2 = SU(2) x SU(2) cannot be extended without changing notation because 
the highest and lowest roots of 8U(2) are negatives on one another, and we 
have not included a notation for 180° in our definition of Dynkin diagrams. 
It should probably be 

(20.21) 

The other exceptions are B2 and D 3, for which the indicated extensions 
do not exist because there are not enough open circles to allow for branching. 
The corresponding extended IT-systems are actually c;, and A3. 

Let's work out some other examples. 
The first thing to notice is that An doesn't have any semi-simple regular 

maximal subalgebras. Removing any circle from A~ just takes you back to 
An again. 

For the Bns, removing an open circle from the left end of B~ gives you 
back Bn again. But removing the filled circle from the right end of B~ gives 
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Dn, This corresponds to the fact that S0(2n+ 1) has an S0(2n) subgroup. If 
instead we remove a circle from the middle of B~ (for large enough n that the 
middle exists), the diagram falls apart into a Bk and a Dn-k, corresponding 
to the S0(2k) x S0(2n - 2k + 1) subgroup. Each of these can be further 
broken down, as well. In general, to enumerate all the semisimple regular 
maximal subalgebras, you must continue breaking things up into subgroups 
until you get to subalgebras that cannot be further broken down. 

For the Cn, removing an open circle from either end just gives you back 
Cn. Removing a filled circle from the middle breaks up Cn into Ck and 
Cn-k· Finally, removing the first of last filled circle gives A1 x Cn-1· This 
is really the same thing again, because A1 = SU(2) is the same algebra as 
C1 = Sp(2), so this is just a degenerate special case of the same analysis. 

For Dn, removing a circle from either end gives back Dn, so all we can 
do is to remove a circle from the middle to get Dk x Dn-k, corresponding to 
S0(2k) x S0(2n - 2k). 

G2 is small enough that it is easy to enumerate all the possibilities. Re
moving the open circle from the right of c; gives back G2 . Removing the 
filled circle from the left gives A2 = SU(3). Removing the middle circle 
gives SU(2) x SU(2). 

F4 has a B4 subgroup, obtained by removing the filled circle from the 
left. It has an A1 x A 3 subgroup obtained by removing the second filled 
circle. It has an A2 x A2 subgroup obtained by removing the left-most open 
circle. And it have a C3 x A1 subgroup obtained by removing the penultimate 
open circle. 

I' II stop here to leave some questions to ask on problem sets and exams. 

20.3 Other Subalgebras 

The general subject of the subalgebras of an algebra is quite complicated. But 
the principle is a simple one. For each algebra, there is a simplest representa
tion, out of which all the other representations can be built. If you know how 
this representation transforms under a subalgebra, you can determine how 
any representation transforms. Conversely, each possible transformation of 
the simplest representation is associated with a different subalgebra. 

We will come back to this notion several times in the following chapters. 
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Problems 

20.A. Prove that decomposable IT-systems yield decomposable root sys-
tems. 

20.B. Find the regular maximal subalgebras of E 6. 

20.C. Find the regular maximal subalgebras of S0(12). To find them all, 
you will have to apply the extended Dynkin diagram algorithm several times, 
because some of the regular maximal subalgebras themselves have nontrivial 
regular maximal subalgebras. 
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S0(2n + 1) and Spinors 

The SO(N) algebras have a fascinating property which is worth exploring 

- spinor representations. 

21.1 Fundamental weights of S0(2n + 1) 

Label the generators of S0(2n + 1) as 

Mab = - Mba for a, b = I to 2n + 1 

In the 2n + 1 dimensional defining representation 

[Mab]xy = -i ( Oax Oby - Obx Oay) 

It is easy to find the commutation relations 

[Mab, Med] 

= -i ( Obc Mad - Oac Mbd - obd Mac + Oad Mbc) 

(21. I) 

(21.2) 

(21.3) 

This is the standard form for rotation generators in a real vector space. The 
commuting generators in the Cartan sub-algebra we took to be 

Hj = M2j-1,2j for j = I to n 

We can take the roots to be 

1 
B,,u = J2(M21-1,2n+1 + i rJ M2j,2n+1) 

EryeJ+rJ'ek = ½(M2j-l,2k-1 + i 'f/ M2j,2k-1 

+iry' M2j-1,2k - 'f/"7
1 

M2j,2k) 
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(21.4) 

(21.5) 
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where 'f/, ry' = ±1. These satisfy 

[ H1, E 11ek] = 'f/ [ek]j E11ek = 'f/ Jjk E,,,ek 

so that the simple roots are 

a1 = ej - eH 1 for j = 1 to n - I 

corresponding to the diagram 

0-0···-0--0=() 
al a2 ••• 

The fundamental weights are 

(21.6) 

(21.7) 

(21.8) 

(21.9) 

The last one is different because of the different normalization of an. This 
last representation is the spinor. By Weyl reflections in the roots eJ, we get 
from µ n the set of weights 

1 ( 1 2 n) - ±e ± e · · · ± e 
2 

(21.10) 

All of these are unique, because they are equivalent by reflection to the high
est weight state. Furthermore, each could be the highest weight for some 
other definition of positivity, thus there are no other weights and the repre
sentation is 2n dimensional. It is convenient to treat the 2n dimensional space 
as a tensor product of n two dimensional spaces. Then an arbitrary matrix 
in the space can be built as a tensor product of Pauli matrices. Call the Pauli 
matrices for the jth space aL so that 

l±e1 /2 ± e2 /2 ···±en /2) 

= /±e1 /2) ® l±e2 /2) ® · · · ® l±en /2) 

a! Ix ej) = Ix' ej) [aa]x'x 

(21.11) 
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where x, x' = ±1/2. 
In this notation, the Cartan generators are 

These all satisfy 
2 1 

H- =
J 4 
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(21.12) 

(21.13) 

We could have chosen any Mab to be a Cartan generator, so it is clear that 

2 1 
Mab = -

4 

in this representation for any a f:. b. Now consider the roots 

Eei = ~ ( M2j-l,2n+l + iM2j,2n+l) 

(21.14) 

(21.15) 

Because we can only raise a state in the representation at most once, we must 
have 

(Eei) 2 =0 

Expanding out ( Eei) 2, you can see that this implies 

{M2j-l,2n+l, M2j,2n+1} = 0 

Again, the particular choice of axes is arbitrary, so we must have 

(21.16) 

(21.17) 

(21.I 8) 

Let us now construct the Es explicitly. Because Ee1 is a raising operator, 
we know that 

Ee11-e1 /2 + x2e2 + · · · Xnen) 

= f (x2, · · ·, Xn) le1 /2 + X2e
2 + · · · Xnen) 

E_el l-e1 /2 + x2e2 + · · · Xnen) = 0 

(21.19) 

for some function, f. We can compute the norm off using standard tricks. 

lf(x2, · · · ,xn)l2 = (-e1/2 + x2e2 + · · · Xnenl 

E_e1Ee11-e1 /2 + x2e2 + · · · Xnen) 

= (-e1/2 +···I {E_ei,Eei} l-e
1/2 + · · ·) 

(21.20) 
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but using (21.14) and (21.17) we see that1 

and thus 
2 1 

lf(x2,···,xn)I = 2 

(21.21) 

(21.22) 

Now for each x2, · · ·, Xn, we can choose the relative phase of the states so 
that f is positive. We can do this by adjusting the phases of the states with 
XI = -1/2. Then 

1 
f (x2, · · ·, Xn) = v2 

independent of x. Comparing with our definition of a-!, we can write 

1 I 
E±e1 = 20-± 

Let us now apply the same argument to E±e2. 

Ee2 lxieI - e2 /2 + · · · Xnen) 

= h(xI, X3, · · ·, Xn) lxieI + e2 /2 + · · · Xnen) 
2 1 

where lh(xI, X3, · · ·, Xn)I = 2 

(21.23) 

(21.24) 

(21.25) 

for some function, h- For XI = 1/2, we can choose the relative phases of 
the states to make h = 1 / v2, as before so that 

(21 .26) 

But now we cannot change the phases of the XI = -1 /2 states, because 
we have already fixed them in the previous argument. In particular, we know 
that { E±el, E±e2} = 0, and therefore we can do the following computation 

Ee2l-eI /2 - e2 /2 + · · ·) 
= v'2 Ee2 E_el leI /2 - e2 /2 + · · ·) 
= -v'2 E_el Ee2 le I /2 - e2 /2 + · · ·) 
= -E-e1 leI /2 + e2 /2 + · · ·) 

1 I 2 = -v'21-e /2 + e /2 + · · ·) 

1We could equally well use the fact that [E0 1, E_ 0 1] = &1 
· ii. 

(21.27) 
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That is we need an extra minus sign for the -e1 /2 state. Or in terms of ai 
matrices, 

(21.28) 

where the tensor product is understood, as usual. 
This is easy to understand. The a} is there to ensure that E±ei and E±e2 

anticommute. Since E±ei is built out of O"f and a}, E±e2 must be propor
tional to a}. 

Continuing in exactly the same way, we find 

l 1 2 3 
E±e3 = 2 CT3 a3 a± 

For the hermitian generators, we can then write 

1 1 j-1 _i 
M2j-1,2n+1 = 2 a3 · · · a3 ai 

1 1 ·-1 . 
M2j,2n+1 = 2 a3 · · · ~ ~ 

(21.29) 

(21.30) 

Now we know everything, because we can constuct all the other genera
tors by commutation: 

Mab= -i [Ma,2n+l, Mb,2n+l] (21.31) 

for a, b -:/= 2n + 1. Each Mab is just ±1 /2 times a product of Pauli matrices. 
This representation is called the spinor representation of S0(2n + 1). 

As you see, it is a generalization of the spin 1/2 representation of S0(3) (or 
SU(2)). 

21.2 Real and pseudo-real 

From (21.10), we can see that the spinor representation, µ n, is equivalent to its 
complex conjugate. Nevertheless, the spinor representations have interesting 
properties under complex conjugation. Before discussing this specifically, we 
will address the problem more generally. 

Suppose that Ta generates a real irreducible unitary representation of a 
simple Lie algebra, so that 

(21.32) 
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We can prove that R is unique up to a trivial scale factor. For suppose that 
there is another non-singular matrix, Q, that also satisfies 

(21.33) 

Then 

(21.34) 

and thus 

(21.35) 

or 

(21.36) 

for all a. But if a matrix commutes with all the generators of an irreducible 
representation, Schur's Lemma implies that it is a multiple of the identity, and 
thus 

(21.37) 

and thus R is essentially unique. 
Now let us use this result to show that R must be either symmetric or 

antisymmetric. Because the Ta are hennitian, we can write 

T = -RTT R-1 TT= -R-IT T RT a a , a a 

=>Ta= RR-IT Ta RT R-I (21.38) 

=> [Ta, RT R- 1
] = 0 

Therefore, using Schur's Lemma again, we conclude that RT R-1 = >..I or 

(21.39) 

But since transposing twice gets us back to where we started, we must have 
>..2 = 1, or>.. = ±1, which is the desired result. Either 

R =A= -AT or R= S= sT (21.40) 

Thus there can be two kinds of real representations. If R = S, the represen
tation is called real-positive, or just real. If R = A, the representation is 
called real-negative, or pseudo-real. 



21.3. REAL REPRESENTATIONS 261 

21.3 Real representations 

To see what this difference means in practice, suppose that Ta is equivalent 
to a representation consisting of purely imaginary antisymmetric matrices, 

T~=U- 1 TaU, T' = -T'* a a (21.41) 

The corresponding group representation is completely real, since it has the 
form 

In this case, we can compute the matrix R -

T~ = -T~T = -UTTaTu-iT = u-1 TaU 

=? T - -UUTT* (UUT)- 1 
a - a 

Thus the matrix R is the symmetric matrix U ur. 

(21.42) 

(21.43) 

The converse is also true. Any irreducible representation of a simple Lie 
algebra with a symmetric R is equivalent to a representation that is pure imag
inary. Let's see how this argument goes. All the irreducible representations 
are equivalent to unitary representations, so we will assume that the genera
tors are hermitian. Then it is easy to see that R is proportional to a unitary 
matrix. We can write the equivalence condition as 

-T[ = R-1 Ta R = Rt Ta R- 1t (21.44) 

where the second equality follows from Hermitivity. But then 

RRtTa = TaRRt (21.45) 

and R Rt ex I by Schur's Lemma. The overall constant just cancels out in 
the similarity transformation, so we may as well take R to be unitary. Now 
suppose that it is also symmetric. It is a linear algebra fact that we can write 
a symmetric unitary matrix as a product of unitary matrix and its transpose2 

R = V yT (21.46) 

But then the generators 
(21.47) 

are antisymmetric - for example, we can multiply the reality condition (21.44) 
on the left by yr and on the right by y-IT to obtain 

-VTT! y-IT = y-l Ta V. (21.48) 

2If R is symmetric and unitary, then Rn· = n· R = I, and therefore the real and imag
inary parts of R commute. Thus they can be simultaneously diagonalized by an orthogonal 
transfonnation. The reader should be able to take it from there. 
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21.4 Pseudo-real representations 

The pseudo-real representations, in contrast, cannot be transformed into purely 
imaginary matrices, even though they are equivalent to their complex conju
gates. The simplest example of a pseudo-real representation is the spin 1/2 
representation of SU(2) generated by the Pauli matrices, Ta = aa/2. Ob
viously, there is no way to generate this representation with antisymmetric 
imaginary 2 x 2 matrices, because there is only one such matrix and there 
are three generators. But still, the representation is equivalent to its complex 
conjugate because 

(21.49) 

And indeed, the transformation matrix, a2, is antisymmetric, so the represen
tation is pseudo-real. 

21.5 R is an invariant tensor 

There is another very useful way of thinking about the matrix R. It is an 
invariant tensor. To see this, note that if the representation is unitary, as we 
always assume, we can rewrite (21 .32) as 

(21.50) 

In terms of explicit indices, this can be written 

(21.51) 

which implies that R is an invariant tensor in the tensor product space D ® D 
where Dis generated by the Ta. For any real representation, D ® D contains 
the trivial representation, I, only once because R is unique. If D is real
positive, the coefficient of the representation I in D ® D, which is precisely 
the invariant tensor R, is symmetric in the exchange of the two equivalent 
Ds. If Dis real-negative (pseudo-real), the coefficient R is antisymmetric. 

21.6 The explicit form for R 

To find the matrix R for the spinor representation of S0(2n + 1), it is enough 
to satisfy (21.32) for the generators 

(21.52) 
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for all j, because the rest can be obtained by commutation of these, and if 
(21.32) is satisfied for the generators (21.52), it is satisfied for any commu
tator of two of them. We can now build up R as a tensor product of 2 x 2 
matrices in the various subspaces, 

(21.53) 

We must have 

1 1 * 1-l 1 
-r 0-1,2 r = 0-1,2 

1 1 * 1-l 2 2 * 2-l 1 2 
-r 0-3 r · r 0-1,2 r = 0"3 0-1 2 

(
Jrr·-i k k* k-1) j ~j * j-1 

- r a-3 r · r O'j_,2 r 
k=l 

= (rr a~) 01,2 
k=l 

(21.54) 

Now we can determine the rj one at a time. r 1 must anticommute with al 
and commute with O-i- Thus we can take r 1 = a-J. Then from the next 
condition, r 2 must commute with ar and anti commute with a?. Thus we can 
take r 2 = ar- And so on - the a2s and a1s alternate. 

Thus we can take the matrix R to be 

R=II~ II O"k 
1 (21.55) 

j k 
odd even 

Note that 

R 2 - 1 - ' or R=R-1 and RT= (-lt(n+l)/2 R (21.56) 

So for n = I and 2, R is antisymmetric; for n = 3 and 4, R is symmetric; 
for n = 5 and 6, R is antisymmetric; etc. Thus 

Algebra Spinors 

S0(8k + 3) pseudo-real 
(21.57) S0(8k + 5) pseudo-real 

S0(8k + 7) real 
S0(8k + 1) real 
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Problems 

21.A. Show that the set of 10 matrices, ½a, ½BT1, ½BT3 , and !T2 gener
ate the spinor representation of S0(5). Find the matrix R = R-r such that 
Ta = - R r; R for this representation. 

21.B. Identify any convenient S0(2n - 1) subalgebra of S0(2n + 1) 
and determine how the spinor representation of S0(2n+ 1) transforms under 
the subalgebra. 
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S0(2n + 2) Spinors 

We can use the results for S0(2n + 1) to work out the spinor representations 
for S0(2n + 2). We will use the same notation as in the previous discussions. 

22.1 Fundamental weights of S0(2n + 2) 

The Dynkin diagram for S0(2n + 2) is 

where 

a3 = e! - ej+I for j = 1 to n, an+I = en + en+I 

All the roots have the form 

(22.1) 

(22.2) 

(22.3) 

We are interested in the two special representations corresponding to the 
last two fundamental weights, 

µn = ! ( el + ... + en _ en+I) 
2 1 

µn+l = 2(el + ... +en+ en+l) 
(22.4) 

Call the corresponding representations nn and nn+I. The weights of Dn are 
of the form 

1n+l 
-I::r/jej 
2 j=l 

265 

(22.5) 
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where 
n+l 

rJj = ±1 and II rJj = -1 (22.6) 
j=l 

This is because the roots always change the sign of two of the r-,s. The weights 
of nn+I have the same form but with 

n+l 

II rJj = 1 (22.7) 
j=l 

Now that we know the weights, we can determine the reality properties 
of the representations. If n is odd, so that the algebra has the form SO ( 4m) 
for integer m, then there are an even number of r-,s. Thus -µn is a weight 
in nn, because it still satisfies f1j1{ 'T/j = -1. Evidently, it is the lowest 

weight in nn. Similarly, -µ n+ 1 is the lowest weight in Dn+l. Thus, for n 
odd, the spinor representations of S0(2n + 2) are real (or pseudo-real). 

But for even n, -µn is the lowest weight in nn+1, because it satisfies 
IJJ~"i 'T/j = 1. Likewise, -µn+l is the lowest weight of Dn. Thus for even 

n, the spin or representations are complex. lf is nn+I and yyi+i is Dn. 
To construct these representations in detail, consider the S0(2n + 1) 

subgroup of S0(2n + 2) generated by 

Mjk for j, k :=::; 2n + 1 

This eliminates the Cartan generator 

The 4n generators with weights 

±ej ±en+l for j :=::; n 

which are linear combinations of 

Mj,2n+l and Mj,2n+2 for j :=::; 2n 

collapse to the 2n generators Mj,2n+l with weights 

±ei for j :=::; n 

(22.8) 

(22.9) 

(22.10) 

(22.11) 

(22.12) 

Under this S0(2n+ 1) subgroup both nn and nn+I transform like the spinor 
representation we just analyzed. Because Hn+l is not a generator of this 
subgroup, we can take over the previous analysis without change if we just 
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ignore the n + I component of all the weight vectors. When we do this, the 
weight vectors are the same for both nn and nn+ l : 

l n - L ''lj ej for "lj = ±1 
2 j=l 

(22.13) 

In the tensor product notation, 'f/j = ~ and the generators are given by 

1 . l . 
M21-1,2n+1 = 2 o-j .. · ~- af. 

1 . l . 
M21,2n+1 = 2 o-j .. · ~- ~ 

(22.14) 

Now going back to the full S0(2n + 2) algebra, in the representation 
nn' we know that 

Therefore 

n 

11n+1 = - II 1]j = -O"j .. · 0"3 
j=l 

(22.15) 

(22.16) 

Now all the generators can by found using the commutation relations. 
In nn+l 

n 

"ln+l = II 1]j = O"j .. · 0"3 (22.17) 
j=l 

and 

(22.18) 

Now that we have explicit forms for the representations, we can examine 
the reality properties we discussed earlier in more detail. As in S0(2n + 1 ), 
we define the matrix 

-1 II . II k R = R = ~ 0-1 
j k 

odd even 

and then look at the complex conjugate representations 

-RT* R-1 
a 

for Dn and nn+I. We already know that 

-RM/k R- 1 = Mjk 

(22.19) 

(22.20) 

(22.21) 
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for the S0(2n + 1) subgroup, j, k s; 2n + 1. It is then enough to see what 
happen to M2n+1,2n+2 under complex conjugation. If n is odd, 

(22.22) 

and then the equivalence can be established for all the generators using the 
commutation relations. Thus, as we already knew, the representation is real. 
But now we know R, so we can determine whether it is real-positive or 
pseudo-real. For n = 4k + 1, R is antisymmetric, so Dn and Dn+l are 
pseudo-real. For n = 4k + 3, R is symmetric, so Dn and Dn+ 1 are real. 

For even n, 

(22.23) 

so the representations Dn and Dn+ 1 get interchanged and thus they are com
plex. 

The full story of the reality properties of the SO(N) spinors is then as 
follows: 

Problems 

Algebra 

S0!8k + 3l so 8k + 4 
so 8k + 5 

SO(Sk + 6) 
SO(Sk + 7) 

S0(8k) 
S0(8k + 1) 
SO(8k + 2) 

Spinors 

pseudo-real 
pseudo-real 
pseudo-real 

complex 

real 
real 
real 

complex 

(22.24) 

22.A. Show that S0(2n) has a regular maximal subalgebra, S0(2m) x 
S0(2n-2m). How do the spinor representations of S0(2n) transform under 
the subgroup? 

22.B. Show that S0(2n+l) has a regular maximal subalgebra, S0(2m) x 
S0(2n - 2m + 1). How do the spinor representations of S0(2n + 1) trans
form under the subgroup? 

22.C. Show that S0(4) has the same algebra as SU(2) x SU(2). Thus, 
it is not simple. Nevertheless, the arguments in the chapter apply. Explain 
how. 
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22.D. Show that the 80(6) algebra and the SU(4) algebra are equiva
lent, with the 4 of SU(4) corresponding to a spinor representation of S0(6). 
In SU(4), 4® 4 = 6 EB 10. The 6 is the vector representation of S0(6). What 
is the 10, in the S0(6) language? 



Chapter 23 

SU(n) c S0(2n) 

In order to discuss the embedding of SU(n) in S0(2n) efficiently, we will 
introduce another language for talking about the spinor representations -
Clifford algebras. 

23.1 Clifford algebras 

A Clifford algebra is a set of operators satisfying the following anticommu
tation relations: 

{fj,rk} = 2Jjk, for j,k = 1 to N (23.1) 

If you are given such a set of operators, you can immediately construct a 
representation of SO(N) as follows: 

1 
M·k = -[r- rk] 3 4i 3

' 
(23.2) 

It is easy to check, using the Jacobi identity, that the Mjk have the commuta
tion relations of SO(N), and furthermore that the rs are a set of tensor oper
ators transforming according to the N dimensional representation of SO(N), 
satisfying 

where 
[Mjf ]em= -i ( Jje 6km - 6jm Jke) 

generate the vector representation, D 1 , with highest weight µ 1. 

270 

(23.4) 
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For S0(2n + 1) it is straightforward to find a Clifford algebra that gives 
the spinor representation we constructed. It is 

Notice that the product 

is proportional to the identity element. 

r 1 '.2 n 
2 = -a1a3 ···a3 

r4 = -ar ... a3 
(23.5) 

(23.6) 

There is a connection of this with S0(2n+2), even though we don't have 
enough elements in the Clifford algebra to generate it. These elements of the 
Clifford algebra are actually proportional to Mj,2n+2 in the spinor represen
tation that we constructed. These generators transform like the components 
of a vector under the S0(2n + 1) subgroup of S0(2n + 2). 

While we cannot construct a representation of the S0(2n + 2) algebra 
from this Clifford algebra (at least, we cannot use (23.2) to construct the gen
erators because we do not have enough rs), we can construct the S0(2n) al
gebra just by leaving out r 2n+l · But the resulting representation is reducible, 
because there is a nontrivial matrix that commutes with all of the generators 
- namely r 2n+l itself -

n 

r2n+1 = (-it r1r2 ... r2n = II a~ 
j=l 

(23.7) 

We can use this to construct projection operators onto the two invariant sub
spaces that transform according to the irreducible representations, nn-l and 
nn. 

~ ( 1 - r2n+1) projects onto nn-l 

~ ( 1 + r2n+1) projects onto nn 

because nj=l a~ is -1 on the first subspace and + 1 on the second. 

(23.8) 
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23.2 rm and Ras invariant tensors 

The main reason that the Clifford algebra construction is useful is that rs are 
a set of invariant tensors (see (23.3). For that reason, we can use it to help 
with the process of Clebsch-Gordan decomposition of products of spinors. 
Let us return to S0(2n + 1) and write out the commutation relation (23.3) in 
terms of components - it looks like 

[Mjk]xz [r e]zy - [Mj*k]yz [r e]xz 

+[Mjf ]em [r m]xy = 0 
(23.9) 

Thus [r e]xy is an invariant tensor in which the x index transforms like the 
spin or representation, nn, the y index like the conjugate representation, lf, 
and the e like the vector representation, D 1 . Of course, we know that in 
S0(2n + 1) the representation lf is equivalent to nn by a similarity trans
formation involving the matrix R, but in this form for the rs, we have not 
done the similarity transformation, it is the lf matrices that appear explic
itly. We could put in the transformation explicitly. Suppose we do that using 

(23.10) 

It is useful to write this in terms of upper and lower indices. If the matrix 
elements of the generators of nn (say) are written as 

(23.11) 

where x refers to the row (the first index of the matrix) and y to the column 
(the second index), then R behaves as an invariant tensor with two upper 
indices. We showed this in chapter 21, but let's do it again. If we multiply on 
the left by Rand put the indices in, (23.10) becomes 

(23.12) 

or in prettier form 
(23.13) 

which is the statement that Rxy is an invariant tensor 
The elements of the Clifford algebra have one upper and one lower index, 

like the MjkS 
(23.14) 

These do not have a definite symmetry property (or more precisely, r j has 
different symmetry for different values of j and these properties depend on 
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the basis) because the upper and lower indices are different kinds of objects 
so it doesn't make any sense to interchange them. But by multiplying by R, 
we raise the lower index 

(23.15) 

This object can and does have definite symmetry. 
Now let us rewrite the commutation relation of Mjk with re with upper 

and lower indices 

[Mjk]~ [re]~+ [R-1 Mjk R]~ [re]~ 

+[M}t]em [rm]; = 0 

which we can rewrite by multiplying by RYw and summing over y 

[Mjk]~ [re Ryw + [RT R-1 Mjk R]~ [re]xz 

+[MR
1
lem [rm Rtw 

= [Mjk]: [I'e Rfw + [RT R-1 Mjk]: [re RT]xz 

+[Mjt]em [rm Rtw 

= [Mjk]~ [re Ryw + [M1k]: [re R]xz 

+[M1f]em [rmR]xw = 0 

(23.16) 

(23.17) 

In the last step we have used the fact that R is either symmetric or antisym
metric, so I can replace the two RTs by two Rs. Thus it is the product re R 
that is an invariant tensor in the space Dn ® nn ® D 1. These products must 
be either symmetric or antisymmetric in exchange of the identical nn labels, 
unlike the rs themselves. This will seem familiar to those of you who have 
studied the Dirac equation, where something similar happens with the Dirac 
, matrices. 

To see whether r j R is symmetric or antisymmetric, we can check any 
r 1. The easiest is r 2n+1 which is just a product of a3s in all the spaces. 
When we multiply by R, the result is a kind of mirror image of R, where, up 
to factors of i, the a 1s and a 2s are simply interchanged. If we define 

and (23.18) 

then 

'T/R • 'T/I'R = (-It (23.19) 
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because in each two dimensional subspace, there is a o-1 in either R or r zn+ 1 R 
and a a-2 in the other. Since we know that 

'T/R = (-lt(n+l)/2 (23.20) 

we find that 
'T/fR = (-lt(n-1)/2 (23.21) 

23.3 Products of rs 
The reason that it is sometimes better to stick to the rs rather than using the 
symmetric r Rs, is that matrix products of the rs also yield invariant tensors. 
These products have one upper and one lower index, so like r j they live in 
the space nn ® lf, and we can use them to complete the process of Clebsch
Gordan decomposition. For example, consider the commutator, [rj, rkl· We 
already know that this is proportional to Mjk, which is an antisymmetric 
tensor operator. But we could also conclude this using the Jacobi identity: 

[Mjk, [re, r mll = [[Mjk, re], rm]+ [re, [Mjk, r ml] 

= [rm', r ml[M}f lm1e + [re, r~] [Mjrlm1m 
(23.22) 

which means that [r j, r kl transforms like the antisymmetric tensor product 
of two vectors. 

More generally the interesting combinations are the products that are an
tisymmetric in the vector indices, defined as a sum over permutations of the 
indices. For m ~ n, define 

1 
rr - r - ... r - 1 = - '°' ±rk rk . · . rk 

Jl ]2 Jm - m! ~ I 2 m 

p( k1 ···km) 
11 ···Jm 

(23.23) 

with the - sign for the odd permutations. The other combinations are not 
interesting because the anticommutator of two rs can be eliminated using 
the Clifford algebra. The Jacobi identity can be used in exactly the same 
way to show that this transforms like an antisymmetric tensor with m vector 
indices. Of course, we don't really have to do this complicated sum because 
the Clifford algebra guarantees that the r j anticommute for different values 
of j, so really all the sum is doing is ensuring that no two indices are the 
same. 

We do not get any new matrices form > n, because of the fact that the 
product of all 2n+ 1 rs is proportional to the identity, so the antisymmetric 
product of n+1,; rs is related to the antisymmetric product of n-1,;+ 1 rs. 
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The product ru1 r 12 · · · rjµJ tells us explicitly how the antisymmetricµ 

index tensor appears in the tensor product Dn ® Y?. The tensor product of 
two spinors in S0(2n + 1) can be decomposed into antisymmetric tensors of 
rank O (the trivial representation), l (the vector), 2 (the adjoint for n > 1), 
and so on up to rank n. You can see that the dimensions work out because of 
the binomial theorem: 

22n+l = (1 + 1)2n+l = 2f 1 (2n + 1) 
k=O k 

n n ~ (2n + 1) =?2 x2 =~ k 
k=O 

(23.24) 

where the second line follows because 

( 
2n + 1 ) = ( 2n + 1 ) 2n + 1- k k 

(23.25) 

so that the sum from k = 0 to n is the same as the sum from n+ 1 to 2n+ 1. 
Somewhat more bizarre is the breakup into symmetric versus antisym

metric products. All the products have one upper and one lower index, so 
again, to get something that is either symmetric or antisymmetric, we must 
multiply by R. The result of multiplying by R the product of k distinct r 1 
matrices (which is the antisymmetric product, because the different indices 
anticommute) can be written as 

r-r ... r-R 
]1 ]2 lk 

= (r]1R)R- 1 (r12R)R- 1 
· · · (rjkR) 

(23.26) 

The transpose is 

(r R)T R_ 1T · · · (r R)T R_1T(r R)T 
Jk 12 ' J1 

= rit 1ritn(rjkR)R-1 • · · (r12R)R-1 (rj1R) (23.27) 

= rit 1
ri¥nrJk · · · r 12 rhR 

where we have used the fact that R-1 (which has two lower indices) has the 
same symmetry properties as R itself. To get the r j factors back into the 
original order we have to make 

(k - 1) + (k - 2) + · · · + 1 = k(k - 1)/2 (23.28) 
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transpositions, each of which gives a - sign because of the Clifford algebra. 
Thus we have finally 

(rb r .. .r. 1R)r 
1 J2 Jk 

= (-1)k(k-1);211t-111~nr[ii rh ... rjkJR 
(23.29) 

We can write the factor in front somewhat more elegantly as follows 

(-1 )k(k-1)/217tl17~R 

k(k, 1)/2 ( )k =(-1) - T]R T]R'T}I'R 

= (-ll(k-1)/2(-l)n(n+l)/2(-l)nk (23.30) 

= (-1l(k-1)/2(-1r(n+l)/2(-1)-nk 

= (-l)(n-k)(n-k+l)/2 

Thus in S0(2n + 1), the symmetry properties of the k index antisymmetric 
tensor in the tensor product of nn ® nn repeat with period 4, and look like 
this: 

X 1 2 3 4 

0 - - + + 
1 + - - + 

(23.31) 

2 + + - -

3 - + + -

Thus for S0(3) the 1 is antisymmetric and D 1 is symmetric. For S0(5) 
the 1 and D 1 are antisymmetric while D 2 is symmetric. For S0(7) the D 1 

and D 2 are antisymmetric while 1 and D 3 are symmetric. For S0(9) the D 2 

and D 3 are antisymmetric while 1, D 1 and D 4 are symmetric. And so on! 
For S0(2n), the analysis is more complicated because the 2n dimen

sional space on which the Clifford algebra acts is not irreducible. We will use 
the projection operators onto the irreducible subspaces 

(23.32) 

P+ projects onto nn while P_ projects onto nn-1. Now a general 2n x 2n 
transforms under commutation with the generators like the tensor product 

(23.33) 
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Then we can project out all four possible transformation laws with the pro
jection operators. If K is an arbitrary 2n x 2n matrix, then: 

p+ K p+ transforms like Dn®lf 

p-xp- transforms like nn-1 ® Dn-1 

Dn ® y;n-1 
(23.34) 

p+xp- transforms like 

p- K p+ transforms like nn-l ®Dn 

As before, we can construct the K matrices out of antisymmetric products 
of the rs. We need not include r 2n+l because we are interested only in 
S0(2n) (and the projection operators make it ±1 anyway). Furthermore, 
once we leave out r Zn+l, the projection operators pick out either the even or 
odd products, because the other rs anticommute with r2n+l, and therefore 

r j P + = P _ r i for j = 1 to 2n (23.35) 

Thus only an odd number of rs can appear between P+ and P_ (in either 
order) and only an even number of rs can appear between two P+ or two 
P _. As before, we can ignore tensors with rank m > n. 

23.4 Self-duality 

There is an additional subtlety that occurs for tensors of rank n. Not all the 

components of the rank n antisymmetric tensor in nn ®lf or nn-l ®lf-1 

are independent. For example in Dn ® Dn 

p + r 1 r 2 · · · r n p + = p + r 1 r 2 · · · r n r 2n+l p + 

= (-it P+ f1 · · · r n r1 · · · f2n P+ 

= (-i)'1 (-1t(n-l)/2 P+rn+1rn+2· .. r2nP+ 
2 1 

= (-it n! E12 .. ·nfr .. jnP+rh ··-r1nP+ 

(23.36) 

Evidently, the rank n tensors satisfy a self-duality condition, the nature 
of which depends on n. If n is even, the relation is real, and the tensor is 
either self-dual (for nn ® lf), satisfying 

1 
Ah ... Jn = n! Eji ... in k1 ... kn Aki ... k,, (23.37) 



278 CHAPTER 23. SU(N) c SO(2N) 

or anti-self-dual (for nn-l ® Ir"-1), satisfying 

(23.38) 

If n is odd, on the other hand, the relation is complex: 

(23.39) 

and thus the representations are complex. It is through this complex self
duality condition that the complexity of the SO( 4n + 2) spinor representa
tions is manifested in the ordinary tensor representations. 

We sumlliarize all of this below, incorporating the fact that for SO(2n) 
with even n, lf = nn and Ir"-1 = nn-l, while for odd n, lf = nn-l 

and Ir"-1 = nn. We indicate the rank m antisymmetric tensor representa
tion by (m). 

n 

S0(2n + 1): Dn@Dn = L (k) 
k=O 

m-1 
SO(4m) : D 2m ® D 2m-l = L (2k + 1) 

k=O 
m-1 

D2m ® D2m = L (2k) + (2m)+ 
k=O 

m-1 
D2m-l ® n2m-l = L (2k) + (2m)_ 

k=O 
m 

SO(4m + 2) : D 2m+l ® D 2m = L (2k) 
k=O 

m-1 
n2m+1 ® n2m+1 = I: (2k + 1) + (2m + lh 

k=O 
m-1 

D 2m ® D 2m = L (2k + 1) + (2m + 1)2 
k=O 

(23.40) 

where (2m )± are self-dual and anti-self-dual respectively, and (2m+ 1 )i and 
(2m+ 1 )2 satisfy complex self-duality conditions. 
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23.5 Example: SO(10) 

For example, consider the 16 dimensional D 5 representation of SO(10). We 
see that 

16 ® 16 = (1) EB (3) EB (G)i (23.41) 

The (I) is the IO dimensional vector. The (3) is the 10 · 9 · 8 / 6 = 120 dimen
sional three index antisymmetric tensor. The (5) is the 5 index antisymmetric 
tensor with a complex self-duality condition, with dimension 

110-9-8-7·6 
-----=126 
2 5.4.3.2 

(23.42) 

The symmetry of these under exchange of the identical 16's can be found by 
looking at the discussion of the symmetry of the r i Rs for SU ( 2n + 1) - in 
this case we want n = 5 to focus on the 25 dimensional space of the Clifford 
algebra. The symmetry factor for (k) is (-l)(n-k)(n-k-1)/2, so the (1) and 

(5) are symmetric and the (3) is antisymmetric. 
Likewise 

16 ® 16 = (0) EB (2) EB ( 4) = 1 EB 45 EB 210 

23.6 The SU ( n) subalgebra 

(23.43) 

Now we can identify an SU(n) subgroup of SO(2n). From the Clifford 
algebra, we can construct the objects 

A1 = }(r21-1-ir21) 
t_l( . ) A1 - 2 r21-1 + i r21 

(23.44) 

Because of the Clifford algebra, these satisfy 

{A· Ak} - {At At}- 0 1, - jl k -

{ A1, At} = bik 
(23.45) 

This is, therefore, a set of creation and annihilation operators, from which we 
already know how to construct an SU(n) algebra. Using the matrix elements, 
[Ta]jk, of the defining representation of SU(n), we define 

Ta = L Aj [Ta]jk Ak 
j,k 

(23.46) 
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We know that the Ta generate SU ( n) on the 2n dimensional space of the 
Clifford algebra, but we must also show that it is a subalgebra of SO(2n). To 
see this we can write 

t 1 { t } 1 [ t ] .1 Aj Ak = 2 Ai, Ak + 2 Aj, Ak = i'\k 
i 1 1 i 

+2M2j-1,2k-1 + 2M2j-1,2k - 2M2j,2k-1 + 2M21,2k 

(23.47) 

The Jjk term does not contribute to Ta because [Ta]jk is traceless. The other 
terms are SO(2n) generators. So, the Ta are linear combinations of the 
SO(2n) generators, thus they generate a subalgebra. 

Denote by IO) the state that is annihilated by all the Aj. In our representa
tion of the Clifford algebra, all the Ajs are proportional to lowering operators, 

a~, so IO) is the state for which all the a{ = -1. It is in the representation 
Dn for n even and Dn-l for n odd. 

As always, the creation operators, A}, are tensor operators: 

[Ta, A}] = L At [Ta]kj 
k 

(23.48) 

They transform according to the n dimensional defining representation of 
SU(n). 

When we act on IO) with some number of Afs (say m), we therefore get 
a set of states transforming like the antisymmetric tensor product of m ns 
because the Afs anticommute. This is the fundamental representation [m]. 
Otherwise, this construction is similar to what we did with the 3-dimensional 
harmonic oscillator. 

Note also that if mis even, the states formed by acting on IO) with m Ats 
are in the same irreducible representation of SO(2n) as the IO) state, because 
r 2n+ 1 anti commutes with each At, so it commutes with the product of an 
even number of them. But for odd m, the states are in the other irreducible 
SO(2n) representation. 

Putting this together, we can summarize the embedding of SU(n) in 
SO(2n) as follows. For S0(4n + 2), 

n n 

D2n+1 = L[2j + 1] D2n = L[2j] (23.49) 
j=O j=O 

This is consistent with the fact that D 2n = D2n+ 1 because [j] = [2n+ 1-j]. 
For SO(4n), 

n n-1 

D2n = Z:)2j] D2n-l = L[2j + 1] (23.50) 
j=O j=O 
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There is an S0(2n) generator which commutes with all of the generators 
of the SU ( n) subgroup we have constructed. It is 

n n 

S='°'M2· 12·='°'AtA·-~ ~ J- 'J ~ J J 2 
j=l j=l 

(23.51) 

S generates a U ( 1) subalgebra. In the space of the Clifford Algebra 

1 n . 

S=-I:~ 
2 j=l 

(23.52) 

Thus SIO) =-?IO). Then, since [s,A}] = A}, the creation operators raise 

S. Thus the representation [m] in the spinor representations of S0(2n) has 
S = m- n/2. 

Problems 

23.A. Check that the dimensions work out in (23.49) and (23.50) by 
using the binomial theorem. 

23.B. Use (23.9) and (23.44) to determine how the vector representation, 
D1. of S0(2n) transforms under SU(n). Explain why this result is obvious. 

23.C. Let ujki be a completely antisymmetric tensor in S0(6). A self
duality condition has the form 

What are the possible values of ..X.? 

23.D. How do the spinor representations of S0(14) transform under the 
following subgroups: 

a. SU(7)? 

b. S0(4) x SU(5)? 



Chapter 24 

SO(10) 

SU(5) is the only choice for a unifying algebra that makes use only of the 
matter particles that we actually see. However, it is not obvious that this is a 
necessary property. We know that the unifying symmetry, whatever it is (and 
assuming that it exists at all!) must be spontaneously broken to account for 
the differences in the interactions that we see. It could be that the process of 
spontaneous breaking gives a large mass to some of the matter particles of a 
representation, thus effectively removing them. The next simplest unification, 
based on the algebra S0(10), adds just one such matter particle - a right
handed neutrino. 

24.1 SO(10) and SU( 4) x SU(2) x SU(2) 

Let us begin the discussion of S0(10) unification by considering (23.49) for 
n = 2. This shows that the SU(5) content of the spinor representations of 
S0(10) is as follows: 

D5 = [1] + [3] + (5] = 5 + 10 + 1 , 

D4 = [O] + [2] + (4] = 1 + 10 + 5. 
(24.1) 

Thus D5 has the right SU(5) content to describe the right-handed creation 
operator of a family of quarks and leptons, with the addition of one SU(5) 
singlet. Likewise, D4 behaves like the left-handed creation operators plus a 
singlet. 

Thus SO( 10) has the interesting feature that it incorporates all the cre
ation operators of a single family into a single irreducible representation. Of 
course, it also incorporates an extra singlet which does not correspond to any 

282 
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of the particles that we have observed in the world. But we can hope that this 
extra particle will get a large mass in the spontaneous symmetry breaking 
process. 

The extra singlet is also related to the particles that we actually observe 
in an interesting way. When we include it, we can restore the parity symme
try that is lost in SU(5). To see what is happening, let us examine another 
subgroup of S0(10). 

The SU(5) subalgebra of S0(10) is regular, but not maximal. It is ob
tained by removing one of the circles from the Dynkin diagram. To find the 
regular maximal subalgebras, consider the extended Dynkin diagram: 

(24.2) 

If we remove the circle labeled with the x, the diagram falls apart into SU ( 2) x 
SU(2) x SU(4). The SU(2) x SU(2) is the same algebra as S0(4), and the 
SU( 4) is the same as S0(6). Thus this is the subalgebra of the IO dimen
sional rotation generators which are block diagonal on 4 and 6 dimensional 
subspaces. 

We can use the Dynkin diagrams rather directly to see how the spinor 
representations transform under the subgroup. The weights of D5 are 

5 

I: 77iei ;2, 
i=l 

5 

where II 77i = 1 
i=l 

(24.3) 

from (22.5)-(22.7). We know from the form of the extended Dynkin diagram 
that the SU(4) (or S0(6)) subgroup has roots a1, a 2, and a 0 (the lowest 
root). Explicitly 

al= el - e2 
' 

a2 = e2 - e3' ao = -el - e2. (24.4) 

Thus the roots of the SU ( 4) subalgebra are entirely in the three dimensional 
subspace of the weight space formed by the first three components. The 
weights, (24.3), decompose into two copies of each of the two spinor rep
resentations of S0(6), one for 771772'T/3 = 1, the other for 771772773 = -1. 

The SU(2) x SU(2) (or S0(4)) subgroup corresponds to the roots 

a4 = e4 - e5' as= e4 + es (24.5) 
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in the two dimensional subspace formed by the last two components of the 
weight space. a 4 generates an SU(2) under which the weights 

form a doublet. as generates an SU(2) under which the weights 

form a doublet. Thus, the weights 

3 

L ( Tliei) /2 ± (e4 + e5 )/2 
i=l 

for 

(24.6) 

(24.7) 

(24.8) 

are associated with a representation of the S0(6) x SO( 4) subalgebra which 
transforms like a spinor under the S0(6) (or equivalently, the 4 of SU(4)), 
like a singlet under the SU(2) associated with a 4 and like a doublet under 
the SU(2) associated with as (we will call this SU(2)' to distinguish it from 
the first SU(2)). Thus, under the SU(4) x SU(2) x SU(2)' subgroup, (24.8) 
is a ( 4, 1, 2). 

The weights 

3 

L ( rliei) /2 ± (e4 
- es)/2 for (24.9) 

i=l 

transform like the complex conjugate spinor under the S0(6) (or equiva
lently, the 4 of SU(4)), like a doublet under the SU(2) associated with a 4 

and like a singlet under the SU(2) associated with as. Thus, under the 
SU(4) x SU(2) x SU(2)' subgroup, (24.9) is a (4, 2, 1). 

Thus 
s -D ~ (4, 1,2) EB (4,2, 1) (24.10) 

under SU( 4) x SU(2) x SU(2)1
• It then follows that the complex conjugate 

representation, D 4 , is 

D4 ~ (4, 1, 2) EB (4, 2, 1) (24. 11) 

The SU(4) in SU(4) x SU(2) x SU(2) contains color SU(3). Each 4 
is a 3 EB 1 under SU(3). Each 4 is a 3 EB 1. Comparing (24.10) with (18.13), 
you can see in more detail how the S0(10) unification works. The weak 
interaction SU(2) in (18. I 3) must be identified with the SU(2) subgroup of 
S0(10). Under it, the creation operators for the right-handed antiquarks and 
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the right-handed positron and antineutrino transform as doublets. Under the 
SU(2)' of S0(10), the creation operators for the right-handed quarks are a 
doublet, and there is another doublet comprising the creation operators for the 
right-handed electron and a neutral particle. This SU(2)' is a mirror image of 
the weak interaction SU(2). If we look at the creation operators for the left
handed fields, in the representation D 4 , the antiquarks will be a doublet under 
SU(2)', just as the right-handed antiquarks are a doublet under SU(2) in D5

• 

Thus we should identify the neutral partner of the right-handed electron in 
the SU(2)' doublet as a right-handed neutrino, the looking-glass version of 
the left-handed neutrino. 

The SO( 10) unification thus restores the mirror symmetry of the theory 
that was lost completely in SU(5). Of course, physics is not mirror sym
metric. Parity is violated. The right-handed neutrino has never been seen. If 
S0(10) unification is to describe the world, there must be some symmetry 
breaking that makes the right-handed neutrino and the particles associated 
with the SU(2)' generators (and indeed, all the other S0(10) generators ex
cept those of the SU(3) x SU(2) x U(l) subgroup) very heavy. 

24.2 * Spontaneous breaking of SO(10) 

The spontaneous breaking of S0(10) down to SU(3) x SU(2) x U(l) can 
be considered in several steps. First one can ask, how can we break S0(10) 
down to SU(5)? Then we can ask, what S0(10) representation contains 
the 24 of SU(5) that we use to break the SU(5) subgroup down further to 
SU(3) x SU(2) x U(l)? Finally, we can ask what S0(10) representation 
contains the 5 and 45 of SU(5) that we use to break the SU(3) x SU(2) x 
U(l) down to the U(l) of electric charge? 

24.3 * Breaking SO(10) --+ SU(5) 

The simplest representation that can break S0(10) to SU(5) is the 16 (or 16) 
This is evident from (24.1). Because the 16 has a component that transforms 
as a singlet under the SU ( 5) subgroup, if that component has a vacuum value, 
the S0(10) symmetry will be spontaneously broken down to SU(5). In the 
first discussion of S0(10), this representation was used. However, there is 
something slightly unattractive about it. It cannot be used (at least at the clas
sical level) to give a large mass to the right- handed neutrino. It is important 
to have some mechanism for getting rid of the right-handed neutrino. It has 
not been seen, and if it were present, it would cause problems for both particle 
physics and for cosmology. The original discussion of S0(10) assumed the 
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existence of an S0(10) singlet neutrino, in addition to the 16. Then the 16 
Higgs representation could be used to put the right-handed neutrino together 
with this extra singlet into a massive particle, thus eliminating the unseen 
right-handed neutrino from the low-energy particle spectrum. 

What is unattractive about this is that the addition of the extra singlet 
may be a step backwards. The SU(5) model already unified the right-handed 
particles in two irreducible representations. The S0(10) model without the 
extra singlet, with all the particles of the lightest family in a single irreducible 
representation, is perhaps more "unified," but with the extra singlet, it seems 
like an unnecessary complication of the original SU(5) model. Is it possible 
to eliminate the right-handed neutrino without adding a singlet? The answer 
is yes, with a slightly peculiar twist. One can treat the right-handed neutrino 
as its own antiparticle, and find a Higgs in the tensor product of two 16's that 
is responsible for its mass. The vacuum value of the Higgs representation 
must be an SU(5) singlet, as before, so that it can give mass to the SU(5) 
singlet right-handed neutrino. 

The tensor product of two 16s is 

10 EB 120 EB 126 (24.12) 

where the 10 is the S0(10) vector, the 120 is an antisymmetric three index 
tensor, and the 126 is a complex self-dual five index tensor. The IO and 126 
appear symmetrically in the tensor product of the two 16s (because the two 
I 6s are the same representation, their tensor product can be classified accord
ing to representations of S2), while the 120 appear antisymmetrically. Then 
we can easily figure out the SU(5) content of each of these representations 
by doing the tensor product of D5 in (24.1) with itself. The antisymmetric 

part is 

(5 + 10 + 1)@ (5 + 10 + l)AS 

= (5 ® 5)As EB (10 ® lO)As EB (5 ® 10) EB (5 ® 1) EB (10 ® 1) (24.13) 

= 10 © 45 EB 5 EB 45 Et 5 EB 10 

Note that this is a real representation. The symmetric part is 

(5 + 10 + 1)@ (5 + 10 + l)s 

= (5 ® 5)s EB (10 ® lO)s EB (1 ® l)s EB (5 ® 10) EB (5 ® 1) EB (10 ® 1) 

= 15 EB 5 EB 50 EB 1 EB 5 EB 45 EB 5 EB 10 
(24.14) 
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Since the 10 is 5 + 5, the 126 is 

15 EB 50 EB 1 EB 45 EB 5 EB 10 (24.15) 

This representation is complex, and it contains the SU(5) singlet component 
that we want to give the right-handed neutrino a mass. This is particularly 
useful, because an SU(5) singlet vacuum value cannot give mass to any of 
the other particles, because their masses require a vacuum value that breaks 
SU(2) x U(l). Thus if the vacuum value of the SU(5) singlet component 
of the 126 is very large, it will give a large mass to the right-handed neu
trino, but all the other matter particles will remain massless until we tum on 
vacuum value for the Higgs that breaks SU(2) x U(l). This vacuum value 
can be much smaller (and indeed, as in SU(5) is has to be if the couplings 
are to come out correctly), which explains why we don't see the right-handed 
neutrino - it is much heavier than all the other fermions. 

Either with the 126 or the 16 and an extra singlet, we get rid of the right
handed neutrino and break the SO(10) symmetry down to SU(5), we can 
then discuss the further breaking of SU(5) by asking what SO(10) represen
tations contain the SU(5) representations that we discussed for the breaking 
of SU(5). 

24.4 * Breaking SO(10) --+ SU(3) x SU(2) x U(l) 

As in SU ( 5), the obvious representation to consider is the adjoint represen
tation, the 45 dimensional representation, D 2, which is a real two-index an
tisymmetric tensor. Let us ask how this SO(10) representation transforms 
under SU(5). We can find this by noting that the antisymmetric tensor prod
uct of two IOs is a 45. Since the 10 is 5 EB 5, the 45 is 

45 --+ 24 + 10 + 10 + 1 (24.16) 

This is encouraging. Because (24.16) contains an SU(5) 24, we might expect 
to find a possible vacuum value that breaks SO(10) to SU(3) x SU(2) x 
U(l). 

It is not quite that simple, however. The most general possible vacuum 
value for the antisymmetric tensor can be brought, by an SO(10) transforma-
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lion into the following canonical form: 

0 ai 0 0 0 0 0 0 0 0 
-a1 0 0 0 0 0 0 0 0 0 

0 0 0 a2 0 0 0 0 0 0 
0 0 -a2 0 0 0 0 0 0 0 
0 0 0 0 0 a3 0 0 0 0 

(24.17) 
0 0 0 0 -a3 0 0 0 0 0 
0 0 0 0 0 0 0 a4 0 0 
0 0 0 0 0 0 -a4 0 0 0 
0 0 0 0 0 0 0 0 0 a5 
0 0 0 0 0 0 0 0 -a5 0 

The only way this can commute with SU(3) x SU(2) x U(l) is if two of 
the as, say a1 and a2 are equal. and the other three as are equal, so that the 
vacuum value has the form 

(24.18) 

where the first block is 4 x 4, written as a tensor product of two two- dimen
sional spaces, and the second is 6 x 6, written similarly as tensor product of 
two- and three-dimensional spaces. This commutes with matrices of the form 

(24. 19) 

where the As are antisymmetric and the Ss are symmetric matrices in the 
appropriate spaces. The A2 + a2 S2 generate an SU(2) x U(l), while the 
A3 + a2 S3 generate an SU(3) x U(l). There is an extra U(l) here that we 
do not want, but it is broken by the vacuum value of the I 6 or I 26. Thus 
together with the 16 or I 26, the 45 can do the required symmetry breaking 
down to SU(3) x SU(2) x U(l). 

There are other options for the SO( 10) breaking. We will just mention 
one. The symmetry can be broken by the vacuum value of a 54, a real trace
less, symmetric tensor. This is also simple to analyze, because like the 45, it 
can be brought into a simple canonical form by an S0(10) transformation. 
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In fact, this is even simpler - the 54 can be diagonalized 

where 

a1 

0 
0 
0 
0 
0 
0 
0 
0 
0 

0 0 0 O 
a2 0 0 0 
0 a3 0 0 
0 0 a4 0 
0 0 0 as 
O O O 0 
0 0 0 0 
0 0 O 0 
0 0 0 0 
O O O O 

10 

0 0 O 
0 0 0 
0 0 O 
0 0 0 
0 0 0 

a6 0 0 
0 a7 0 
0 0 as 
0 O 0 
0 0 O 

:E aj =o 
j=l 

0 
0 
0 
0 
0 
0 
0 
0 

ag 

0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
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(24.20) 

(24.21) 

The only way this can commute with SU(3) x SU(2) x U(l) is if four 
of the as are equal, so that there is an unbroken SO( 4) that contains the 
SU(2) x U(l), and the other six as are equal, so that there is an unbroken 
SO(6) that contains SU(3). Thus a vacuum value for the 54 that preserves 
SU(3) x SU(2) x U(l) automatically preserves a larger symmetry, SO(6) x 
SO(4), which is in fact just the SU(2) x SU(2) x SU(4) subgroup that we 
discussed at the beginning of this section. But in fact, this is really all we need 
from the 54. The 16 or 126 vacuum value breaks the SU(2) x SU(2) x SU( 4) 
the rest of the way down to SU(3) x SU(2) x U(l). 

24.5 * Breaking SO(10) ~ SU(3) x U(l) 

Finally, we can think about what SO(lO) representations can be responsible 
for breaking SU ( 2) x U ( 1) and giving mass to the quarks and leptons. We 
have seen that these must contain a 5 or 45 of SU(5) and they should be 
contained in the tensor product of two 16s, (24.12). You can see that all three 
of the representations in 16 x 16 can do the job. Each gives a somewhat 
different pattern of mass relations among the particles of different charges 
and colors. 

24.6 * Lepton number as a fourth color 

There is one more thing that is worth mentioning about the SU(2) x SU(2)' x 
SU(4) subgroup of SO(lO). This algebra is interesting because it is the 
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smallest that contains the SU(3) x SU(2) x U(l) symmetry in a semi
simple algebra. This is physically interesting, because it leads automatically 
to the quantization of electric charge. A simple algebra is not necessary for 
charge quantization, because it is only U(l) factors that are not constrained 
by commutation relations. As we mentioned above, the SU(2)' factor is a 
right-handed version of the electroweak SU(2), so that in this model, the 
left-handed nature of the electroweak interactions is picked out not by the al
gebra, but by the vacuum - by whatever spontaneously breaks SU(2)' much 
more strongly than SU(2). But the SU(4) is also quite interesting. One can 
think of it as treating lepton number as a fourth color. The neutrino is part 
of an SU ( 4) 4 with the three colors of u quarks, and the electron is part of 
an SU ( 4) 4 with the three colors of d quarks. It is only the spontaneous 
symmetry breaking, which leaves the color SU(3) subgroup unbroken, that 
distinguishes leptons from quarks. 1 

Problems 

24.A. Show that the matrices 

where i3, f, if and fJ are independent sets of Pauli matrices, generate a spinor 
representation of SO(lO). Find an SU(2) x SU(2) x SU(4) subgroup in 
which one of the SU(2) factors is generated by the subset if(l + p3)/4. 

24.B. What is the dimension of the SO(lO) representation with highest 
weight 2µ 5. How do you know? Hint: consider D 5 ® D 5. 

'This idea, along with the SU(4) x SU(2) x SU(2) model, was an important precursor 
to unification, discussed in J. Pati and A. Salam, Phys. Rev. D 10 (I 974) 275. 



Chapter 25 

Automorphisms 

An automorphism A of a group G is a mapping of the group onto itself 
which preserves the group multiplication rule: 

(25.1) 

For a Lie group, an automorphism of the group induces a mapping of the 
Lie algebra onto itself which preserves the commutation relations. Under an 
automorphism, the generators are mapped into linear combinations of gener
ators 

(25.2) 

such that 
(25.3) 

implies 
(25.4) 

25.1 Outer automorphisms 

Some automorphisms are trivial in the sense that the mapping they induce on 
the generators is an equivalence: 

(25.5) 

where R = i 9a Ta is a group element. This is called an inner automorphism. 
But some of the Lie algebras have non-trivial or outer automorphisms. 

For example, consider complex conjugation. If Ta are the generators of 
some representation, the mapping 

(25.6) 
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is an automorphism in which generators corresponding to imaginary antisym
metric matrices are unchanged, while generators corresponding to real sym
metric matrices change sign (note that we can always choose the generators 
to be either antisymmetric or symmetric in the highest weight construction). 
Thus, an algebra can have complex representations only if it has some non
trivial automorphism. 

We can identify the nontrivial automorphisms by looking at the sym
metries of the Dynkin diagram. For example, consider SU(4) with Dynkin 
diagram 

0-0-0 (25. 7) 

al a2 a3 

Since a 1 and a 3 appear symmetrically, the diagram with a 1 and a 3 inter
changed has all the same lengths and angles and thus generates the same 
algebra. So there is an automorphism of SU(4) in which the corresponding 
generators are interchanged, 

(25.8) 

along with all the other changes this induces in the explicit construction of 
the algebra from the diagram. This automorphism is nontrivial, since it inter
changes the fundamental representations D1 and D3, which are inequivalent. 
In fact, since these representations are complex conjugates of one another, 
this is just the automorphism induced by complex conjugation, up to some 
trivial equivalence. All of the complex conjugation automorphisms are ob
tained in this way, associated with reflection symmetries of the Dynkin dia
gram. 

But not all reflection symmetries correspond to complex conjugation. For 
example, the SO( 4n) groups have only real representations. Thus the reflec
tion symmetries of their Dynkin diagrams correspond to nontrivial automor
phisms that are not complex conjugations. The most interesting (and bizarre) 
example of this is the group S0(8), with Dynkin diagram 

(25.9) 

Here there is a separate automorphism for each permutation for a 1, a 3 and 
a4. 
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25.2 Fun with S0(8) 

The roots of the S0(8) Dynkin diagram are 

aj = ej - ej+l for j = 1 to 3, a 4 = e 3 + e 4 (25.10) 

The fundamental representations D 1, D 3, and D 4 , with highest weights µ 1, 

µ3, and µ4, are each 8 dimensional. D 1 is the defining representation, an 
8-vector. D3 and D4 are the two real spinor representations. The automor
phisms map these three representations into one another in all possible ways. 

First consider the mapping between D 3 and D 4. This corresponds to the 
symmetry of the Dynkin diagram that interchanges a? and a 4 with a 1 and 
a 2 held fixed. This is implemented by changing the sign of e4

• That means 

(25.11) 

and 
(25.12) 

This, of course, is what we found when we explicitly constructed these rep
resentations. Mjk for j, k = I to 7 were the same for both representations, 
while 

H4 = M1s = 2 
{ 

_!a5aJa~ 

1 1 2 3 2 a3 a3 a3 

for D 3 

(25.13) 
for D4 

The rest follow from commutation. Of course in this case, we got the re
sult just from the symmetry of the Dynkin diagram, without constructing the 
representation explicitly. 

Now consider the automorphism that interchanges a 1 and a 3 with a 2 

and a 4 held fixed. This is rather weird, because it interchanges the vector 
representation D 1, generated by the antisymmetric matrices with only two 
non-zero elements with the spinor representation D 3 , generated by products 
of Pauli matrices, whose square is proportional to the identity. The relevant 
mapping in terms of the weights is 

el - e2 +-t e3 - e4 

e2 - e3 --+ e2 - e3 

e3 + e4 --+ e3 + e4 

(25.14) 
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Solving this for the e1 s we find 

el --t ~ ( el + e2 + e3 - e4) 

e2 --t } ( el + e2 - e3 + e4) 

e3 --t ~ ( e 1 - e2 + e3 + e4) 

e4 --t t ( -el + e2 + e3 + e4) 

so the Cartan generators get mapped in the same way 

or 

H1 --t ½(H1 + H2 + H3 - H4) 
H2 --t ½ ( H1 + H2 - H3 + H4) 
H3 --t ½(H1 -H2 + H3 + H4) 
H4 --t ½ (-H1 + H2 + H3 + H4) 

M12 --t ~ ( M12 + M34 + M56 - M7s) 

Af 34 --t ~ ( M12 + Af 34 - M56 + M7s) 

M56 --t ½( M12 - M34 + M56 + M7s) 

M7s --t ~ (-M12 + M34 + M56 + M7s) 

(25.15) 

(25.16) 

(25.17) 

Note how cleverly the theory has solved the mapping problem. The anti
symmetric generators, M2j-l,2j of the vector representation get mapped into 
matrices of the form 

whose square is 1/4. 

(

±0'2 

1 0 
2 0 

0 

(25.18) 

The way the rest of the mappings go is this. The other generators break 
up into 6 sets of 4, each of which mix up among themselves like the four 
M12, M34, M56 and M78 that we just dealt with. 
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SO(8) has a very interesting subgroup - SU(2) x SU(2) x SU(2) x 
SU(2). It is easy to see that this is a maximal subalgebra. It is just SO(4) x 
SO(4). But the way the automorphism works on the different SU(2) factors 
is instructive. Let us look at the extended Dynkin diagram. It is 

(25.19) 

where the lowest root, a 0 is -e1 -e2. Evidently, we get the SU(2) x SU(2) x 
SU(2) x SU(2) subalgebra by removing a 2

• The four SU(2)s are associated 
with the four mutually orthogonal roots, 

ct.°= -e1 
- e2 

a?= e3 
- e4 

a/= e1 
- e2 

a4 = e3 + e4 
(25.20) 

Now consider the action of this subalgebra on the spinor representation D3, 

with weights 
for II T]j = -1 (25.21) 

j 

These break up into two sets transforming irreducibly under the subalgebra. 
The set 

} ( el + e2 + e3 - e4) ' 
1 ( 1 2 3 4) 
2 -e - e + e - e , 

} ( el + e2 - e3 + e4) ' 
1 ( 1 2 3 4) 
2 -e -e - e + e 

(25.22) 

is orthogonal to a 1 and a 4, and thus transform trivially, like singlets under 
the two SU(2) associated with a 1 and a4 . But each weight is a component 
of doublet under the SU(2) associated with a 0 and a 3. Similarly, the set 

}(el - e2 + e3 + e4)' 

} ( -el + e2 + e3 + e4) ' 

~ ( el - e2 - e3 - e4) ' 
~(-el+ e2 - e3 - e4) 

(25.23) 

is orthogonal to a 0 and a 3 , and thus transform trivially, under these two 
SU(2), and are components of doublet under the SU(2) associated with a 1 

and a 4 . Thus we say that under the 

SU(2) 0 x SU(2) 1 x SU(2) 3 x SU(2) 4 (25.24) 
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subgroup, the spinor representation D 3 transforms as 

(2, 1, 2, 1) EB (1, 2, 1, 2) (25.25) 

There are two other similar possibilities for the tranformation property of 
an 8: 

(2, 2, 1, 1) EB (1, 1, 2, 2) 

and (25.26) 

(2, 1, 1, 2) EB (1, 2, 2, 1) 

These correspond to DI and D4 respectively. How do we know which is 
which? 

Problems 

25.A. Carry through the argument discussed at the end of the chapter 
and determine which representation in the last equation in the chapter is DI 
and which is D4 • 

25.B. Does S0(8) have an S0(5) subgroup under which one spinor 
(D4 , say) transforms like two S0(5) spinors while the other spinor (D3) 

transforms like an SO( 5) vector and three singlets? Explain. 



Chapter 26 

Sp(2n) 

One reason that I want to discuss Sp(2n) in more detail is that it is a good 
excuse to introduce another notation for SU(n) which is often easier to work 
with. 

26.1 Weights of SU(n) 

The weights of the defining representation of SU ( n), 1} for i = 1 to n, have 
the following properties 

- k l 1 
v1 . v = t5Jk - 2n ' 

n 

I: vj =o 
i=l 

(26.1) 

The condition on the sum follows from the tracelessness of the generators. 
The n vi span an n- 1 dimensional space, but we can make things much 
more obvious by embedding the vJ·s in an n dimensional space, as follows: 

. 1 ( . ) 
v1 = v'2 e1 

- "E,/n (26.2) 

where the e1 are an orthonormal basis and the vector I: is 

(26.3) 

In this notation, the simple roots of SU ( n) take the form 

al = vi - vi+ 1 = ~ ( ej - ei + 1) , for j = 1 to n - 1 (26.4) 
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These are also the first n-1 simple roots of Sp(2n). The last simple root is 

(26.5) 

where vn+l is a unit vector orthogonal to ei for j = 1 to n. Now the point 
is that we can take 

vn+l = _1_ E 
vii 

(26.6) 

Then 

an= J2en (26.7) 

We could have guessed this from the Dynkin diagram by comparing with 
our form for the roots of S0(2n + 1). The only difference here is overall 
normalization of the roots and that the last root is longer than the others, 
rather than shorter. But you should now see the connection with the previous, 
somewhat cumbersome notation. 

So the roots are 

±ei ± ek 
for j # k and (26.8) 

or equivalently 

±ei ± ek 
v2 for all j, k (26.9) 

The weights of the 2n dimensional representation are 

±d/V2 (26.10) 

so D1 has highest weight 

µI= el/J2 (26.11) 

It is easy to see that the other fundamental representations have highest 
weight 

j 

µi = :E ek;J2 (26.12) 
k=l 

which is related to the antisymmetric tensor product of j D 1s. 
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26.2 Tensors for Sp(2n) 

If we invent a tensor language in which the states of D 1 have a lower index 
(as in SU ( n )), the tensor coefficients have upper indices and transfonn in the 
usual way 

(26.13) 

where a and (3 run from 1 to 2n. It is most convenient to write these in 
the tensor product notation we introduced in which a = (j, x) where j runs 
from 1 to n and x from 1 to 2. Then Ta are the generators of the defining 
representation, with the form 

(26.14) 

An arbitrary linear combination of Sp(2n) generators has this form where 

the S are three independent real symmetric n x n matrices and A is an an
tisymmetric n x n matrix. For example we could denote the generators as 
follows: 

[Tµjj]t = ~ OjkOje [aµ]xy forµ= I to 3 

[Tµij ]}; = t ( OikOje + o1koie) [a µ]xy 

for µ = I to 3 , i -=I= j 

[Toij ]}t = ½ ( OikOje - OjkOie) Oxy 

(26.15) 

The complex conjugate representation, with a lower index transforms as 

(26.16) 

But this representation is pseudoreal, because 

(26.17) 

where 
(26.18) 

R is antisymmetric, so the representation is pseudoreal. As we saw with 
the orthogonal groups, R is an invariant tensor with two upper indices and 
R- 1 is an invariant tensor with two lower indices (they happen to have equal 
matrix elements in this case). Thus we need never consider tensors with lower 
indices, because we can always raise the lower indices and obtain tensors with 
the same information. 
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Now we can use this tensor notation to analyze the irreducible represen
tations as tensor products of the defining representation. The point is that 
tensor analysis looks very much like that in SU(2n ), except that the exis
tence of the invariant tensors R and R- 1 allows us to get rid of lower indices 
and to reduce antisymmetric combinations. For example, consider the tensor 
product D 1 ® D1, which explicitly looks like 

(26.19) 

The symmetric combination 

(26.20) 

is irreducible because we cannot use R to decompose it further. This has 
highest weight 2v 1 , so this is that adjoint representation. Note that the number 
of components is right: 

2n (2n + 1) = 3 x _n(.:.....n_+_I-'-) + _n (.:.....n_-_1-'-) 
2 2 2 

(26.21) 

But the antisymmetric combination 

(26.2'.l) 

can be reduced, because the combination 

(26.23) 

is a non-zero singlet. The combination 

(26.24) 

satisfies 
(26.25) 

because 
(26.26) 

Therefore kl'..B is the irreducible representation D 2 and we can write the prod
uct in terms of irreducible combination as 

(26.27) 
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It is sometimes useful to see all this explicitly in the tensor product no
tation. Here the discussion should remind you of our treatment of symmetry 
and antisymmetry in the spinor representations of the orthogonal groups. The 
point is that the matrix generators of D 1 provide an invariant tensor that de
scribes how the adjoint representation appears in D 1 ® D 1. However, this 
tensor has one upper and one lower index. To find the invariant tensor in 
D 1 ® D 1, we must raise the lower index with R. That is, if we multiply the 
generators on the right by R which in the tensor product notation is just 0-2, 

we should get symmetric matrices with two upper indices. And this is right, 
because 

(26.28) 

is symmetric because in each term the factors in the two spaces have the 
same symmetry. In the same notation, one sees that a-2 itself is the singlet in 
D 1 ® D 1, and that D 2 has the form 

A · iJ + S 0-2 ( -, ') (26.29) 

where S' is constrained to be traceless. 

Problems 

26.A. Find a set of Cartan generators for iJ · §+A that makes it obvious 
that this defining representation is the fundamental representation µ 1. 

26.B. Find D 1 ®D2 in Sp(6) using tensor methods. Find the dimensions 
of each of the irreducible representations that appear in the tensor product. 



Chapter 27 

Odds and Ends 

27 .1 Exceptional algebras and octonians 

The search for interesting unified theories, like the S'U(5) and 80(10) the
ories, leads naturally to an interesting theory based on the algebra, E 6, one 
of the exceptional Lie algebras. The exceptional algebras are associated with 
the octonians, a peculiar set of objects of the form 

(27.1) 

where a and the ba for a = 1 to 7 are real numbers. The ia are a set of seven 
"imaginary units" which are generalizations of i and of the quaternions, J. 
The ia have the following multiplication law: 

(27.2) 

where 9af3, is completely antisymmetric. In some basis, 9 is 

9123 = 9247 = 9451 = 9562 = 9634 = 9375 = 9716 = 1 (27.3) 

with all other components either zero or obtainable from (27.3) by antisym
metrization. This multiplication law can be obtained from the following pie-
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ture: 

1 .... 
/ .... .... 

/ .... .... 
7 / 2 

/ .,.,. 
/ 

,,., .,.,. 
/ .,.,. ,,., 

/ ,,., 
/ 

.,.,. .,.,. 
/ 

.,.,. 
(27.4) .,.,. 

/ .,.,. .,.,. 
/ .,.,. 

3 4 

6 5 

The seven sets {jke} for which 9jkl is not zero are obtained by rotating the 
doted triangle, with the cyclic order of the indices maintained. 

The algebra (27.2) shares with the real numbers, the complex numbers 
and the quaternions a nice property that was discussed in chapter 19. It is a di
vision algebra with an absolute value that obeys a product rule. The absolute 
value, 

(27.5) 

is preserved under multiplication. If A and B are octonians, then 

IABI = IAIIBI. (27.6) 

However, the octonian multiplication law is not associative! For example, 

(27.7) 

Because of the lack of associativity, octonionic matrices do not generally 
form groups (whose multiplication laws must be associative). However, the 
octonians are connected with the exceptional algebras in less direct ways. For 
example, G2 is the subgroup of S0(7) that leaves the object 9af3, appearing 
in (27.2) invariant. 
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27 .2 E6 unification 

Now back to E5. Note first that to go from Es -+ E1 -+ E 6 , you remove one 
circle from the left branch of the Dynkin diagram, as shown below. 

Es 

(27.8) 

Es= SO(10) 

E4 = 8U(5) 

Continuing the same series, you see that Es = SO(10) and E4 = 8U(5). 
Because E 4 and Es both give sensible unified theories, E 6 is worth looking 
at. Of course, this argument is only suggestive, because it turns out that E7 
and Es are not useful for unification. But E 6 does tum out to be interesting. 

Let us begin by considering the root system and some of the fundamental 
representations. Label the roots as shown below: 

(27.9) 

The Cartan matrix is then 

2 -1 0 0 0 0 
-1 2 -1 0 0 0 
0 -1 2 -1 0 -1 

(27.10) 
0 0 -1 2 -1 0 
0 0 0 -1 2 0 
0 0 -1 0 0 2 
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From this we can construct the weights of the representation D 1 using the 
Dynkin coefficients. The result (without all the lines - there were too many 
to draw) looks like this: 

~ 
~ 
~ 

~ 
~~ 
~ 

~ 
~ 
~ 

~ 
~ 
~ 

~ 
~ 
~ 

~ 
~ 
~ 

(27.11) 
There are 27 weights here. This looks a little complicated, but one thing 
is clear. This is a complex representation- it is not symmetrical about the 
origin in weight space. To understand the structure of this object in terms of 
things we are more familiar with, let us see how this representation transforms 
under the two maximal regular subalgebras of E5; 8U(3) x 8U(3) x SU(3) 
and 8U(6) x SU(2). We can do this by considering the extended Dynkin 
diagram and finding the Dynkin coefficients of the 27 under the subalgebras. 

The extended Dynkin diagram is given by 

(27.12) 
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It follows from (20.15)-( a) that 

ci + a 1 + 2a2 + 3a3 + 2a4 + ci + 2a6 = 0 (27.13) 

Thus we can compute the Dynkin coefficient of the weight µ for the root a 0
, 

R.o - 2ao. µ 
- ao2 

as linear combinations of the 6 coefficients: 

e0 = -e1 - ze2 - 3f3 
- 2e4 

- R.5 
- 2e5 

The result is shown below where the last column is e0
. 

I 1x1111-1-111 I 
I 111-1!-IIXI I 
~ 

I -1 IIXXXl-1 I 

~ 
I 1x11-11-111 I I 1x11x1-11-1 I 
~ 

I 1-1111-IIXI I 
I 1-11-l(XXI I 
~ 

1-I IIXXI-I I I 

I 11-IIIXXl·I I 
I iXl-11111-1 I 

I 1xx1-111-1 I 

1-IIXII-IIXI 1 

I -1111-IIXXI I 
1-11-IIXIIII I 

I O-ll(Xl-11 I 
~ 
~ 

(27.14) 

(27.15) 

(27.16) 
If we now remove one of the roots to get a regular maximal subalgebra, 

we can simply remove the Dynkin coefficients corresponding to the removed 
weight from (27.16), and what remains will be the Dynkin coefficients of 
the subalgebra. Below, we show the result of removing the root a 3 to get 
SU(3) x SU(3) x SU(3). We also write the remaining coefficients in the 
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order 120654. We do this so that in each of the three SU(3) factors, the 
two roots appear together and the root on the outside of the extended Dynkin 
diagram appears first. 

~ 
~ 
~ 

~ 
~~ 
~ 

~ 
~ 
~ 

~ 
~ 
~ 

~ 
~ 
~ 

~ 
~ 
~ 

These can be organized into three sets of nine weights: 

1 {10.-11,0-1}{01,1-1,-10}001. 1 {01,1-1,-10}00{ 10,-11,0-1} 1. 

and !oO{lO-ll,0-1}{01,l-1,-10} I 

(27.17) 

(27.18) 

In the set {10, -11, 0 - 1 }, we recognize the Dynkin coefficients of the 3 of 
SU(3). The set {01,1-1,-10} is the 3. Tom, the 27 transforms as 

27 ,.._, (3, 3, 1) EB (1, 3, 3) EB (3, 1, 3) (27.19) 

An analogous argument, removing the root a 6, shows that the 27 trans
forms under the SU(6) x SU(2) subgroup as 

27 ,.._, (6, 2) EB (15, 1) (27.20) 
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where the 15 is the fundamental representation D 4
, antisymmetric in 4 upper 

( or two lower) indices. 
Note that 80(10) and S'U(5) are regular but not maximal subalgebras of 

E 6 . You can probably guess how the 27 transforms under S0(10) and SU(5) 
from what we have already seen. But it is easy to check by removing the first 
Dynkin coefficient from (27.11) that the transformation law under 80(10) is 

27 ,.._, 16 EB 10 EB 1 

where the 16 is D 5 and the transformation law under S'U(5) is 

27 ,.._, 5 EB 10 EB 1 EB 5 EB 5 EB 1 

(27.21) 

(27.22) 

From equations (27.21) and (27.22), you can see that E5 unification can 
be related to 80(10) much as 80(10) is related to S'U(5). In addition to the 
complex 80(10) representation, 16, the 27 of E5 contains real representa
tions which can be given a large mass by the symmetry breaking. 

27.3 Breaking E6 

One of the features of E6 unification is that the 27, in which the matter parti
cles live, also contains SU(2) doublets, living in the 10 of S0(10), that could 
be responsible for the breaking of SU(2) x U(l) at low energy. One might 
ask the following group theory question. Can one break the E5 symmetry 
down to the low energy SU(3) x SU(2) x U(l) entirely with Higgs trans
forming like 27s. The answer is no. You can see this from (27 .22). If there 
are 27s with vacuum values in the two SU(5) singlet directions, that breaks 
the symmetry down to SU(5). But there are no other SU(3) x SU(2) x U(l) 
singlet components in the 27, because there are none in the SU ( 5) 10, 5 or 5. 
Thus anything in the 27 that preserves SU(3) x SU(2) x U(l) also preserves 
SU(5). Something else is needed. Here we will simply state without proof 
that the additional breaking can be provided by a Higgs transforming like the 
78 dimensional adjoint representation. 

27.4 SU(3) x SU(3) x SU(3) unification 

In passing, it is worth noting that the SU(3) x SU(2) x U(l) symmetry is 
actually completely contained in the SU(3) x SU(3) x SU(3) subgroup of 
E6 . Observe further that the transformation properties of the 27 of E6 , from 
(27 .19), are invariant under cyclic permutations of the three SU( 3) factors. 
This cyclic symmetry is an inner automorphism of the E5 algebra, and thus a 
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discrete subgroup of E6 . It is related to the symmetry of the extended Dynkin 
diagram of E6 , (27.12). But it is an inner, rather than an outer automorphism, 
because it is not a symmetry of the Dynkin diagram. 

While SU(3) x SU(3) x SU(3) is not simple, if it is supplemented by 
the cyclic discrete symmetry, it shares many of the properties of a unified 
theory. The 27 is irreducible under the combination of the continuous and 
discrete symmetry. In this model, one can do the symmetry breaking entirely 
with Higgs transforming like the 27. 

27.5 Anomalies 

There is a peculiar constraint on unified theories that follows from the struc
ture of quantum field theory, the mathematical language in which all these 
theories are formulated. The constraint is that if the creation operators for 
all the right-handed spin 1/2 particles transform according to a representation 
generated by matrices TaR, then TaR must satisfy 

(27.23) 

You can show that this symmetric trace of three generators vanishes for 
all simple Lie algebras except SU(N) for N 2: 3 (and 80(6) which is equiv
alent to SU(4)). In SU(N), suppose that Tf generate the representation D 
of SU(N). Then define the invariant tensor dabc as follows: 

(27.24) 

for the defining representation D 1. Then, for any representation, you can 
show that 

(27.25) 

where A(D) is an integer, which is called the anomaly of the representation 
D. Thus (27.23) is the statement that the creation operators for the right
handed particles transform according to an anomaly free representation of 
the unifying group. 

You can easily derive the following properties of A(D) (see problem 
27.C): 

A(D) = -A(D) 

A(D1 EB D2) = A(D1) + A(D2) 

A(D1 ® D2) = dim(D1) A(D2) + dim(D2) A(D1) 

(27.26) 

(27.27) 

(27.28) 
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For SU(5), or SU(2) x U(l), the anomaly of the 10 is the same as the 
anomaly of the 5 (see problem 27 .B), thus 5 EB 10 is anomaly free. This in tum 
implies that the representation (18.12) of a family of right-handed particles 
under SU(2) x U(l) is anomaly free, because the generators of SU(2) x U(l) 
in this representation are just a subset of the generators of SU(5) in the 5EB10. 

Problems 

27.A. Find A(D) for the 6, and 10 of SU(3). 

27.B. You can find the anomaly of the fundamental representations of 
SU(n) by calculating the anomaly of the SU(3) subalgebra of SU(n) under 
which the n transforms like a single 3 and n - 3 singlets. Use this to show 
that the anomaly of the 10 is the same as the anomaly of the 5 in SU(5). 

27.C. Prove (27.27) and (27.28). 



Epilogue 

Lie algebras, physics and mathematics 

I hope that the reader has come to the end of this book with an enhanced ap
preciation for the mathematics of Lie algebras and its application to particle 
physics. This mathematics is a jewel - a crystalline treasure to appreciate 
for all time. The physics to which it is applied, however, is not such an unal
loyed and eternal beauty. In physics, unlike mathematics, we are constantly 
pulled in opposite directions. At one pole, there is unification, simplicity and 
elegance - the Platonic ideal of Nature that is created by and creates mathe
matics. At the other, there is the marvelous chaos of this particular world -
messy, contingent, and constantly evolving with our experimental ability to 
probe its richness. Good physics must embrace these antipodes. That is what 
makes it so much fun! 
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