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The Radiation Theories of Tomonaga, Schwinger, and Feynman
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Institute for Advanced Study, Princeton, En@ Jersey

(Received October 6, 1948)

A unified development of the subject of quantum electrodynamics is outlined, embodying
the main features both of the Tomonaga-Schwinger and of the Feynman radiation
theory. The theory is carried to a point further than that reached by these authors, in the dis-
cussion of higher order radiative reactions and vacuum polarization phenomena. However, the
theory of these higher order processes is a program rather than a definitive theory, since no
general proof of the convergence of these eRects is attempted.

The chief results obtained are {a)a demonstration of the equivalence of the Feynman and
Schwinger theories, and (b) a considerable simplification of the procedure involved in applying
the Schwinger theory to particular problems, the simplification being the greater the more
complicated the problem.

I, INTRODUCTION

S a result of the recent and independent dis-
coveries of Tomonaga, ' Schwinger, ' and

Feynman, ' the subject of quantum electrody-
namics has made two very notable advances. On
the one hand, both the foundations an~ the
applications of the theory have been simplified

by being presented in a completely relativistic
way; on the other, the divergence difficulties
have been at least partially overcome. In the
reports so far published, emphasis has naturally
been placed on the second of these advances;
the magnitude of the first has been somewhat
obscured by the fact that the new methods have
been applied to problems which were beyond
the range of the older theories, so that the sim-

plicity of the methods was hidden by the com-
plexity of the problems. Furthermore, the theory
of Feynman differs so profoundly in its formula-
tion from that of Tomonaga and Schwinger, and
so little of it has been published, that its par-
ticular advantages have not hitherto been avail-
able to users of the other formulations. The
advantages of the Feynman theory are simplicity

' Sin-itiro Tomonaga, Prog. Theoret. Phys. 1, 27 {1946);
Koba, Tati, and Tomonaga, Prog. Theoret. Phys. 2, 101
198 (1947);S. Kanesawa and S. Tomonaga, Prog. Theoret.
Phys. 3, 1, 101 (1948); S. Tomonaga, Phys. Rev. 74, 224
(1948).

~ Julian Schwinger, Phys. Rev. V3, 416 (1948); Phys.
Rev. 74, 1439 (1948). Several papers, giving a complete
exposition of the theory, are in course of publication.

«R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948);
Phys. Rev. 7'4, 939, 1430 (1948); J. A. Wheeler and R. P.
Feynman, Rev. Mod. Phys. 1V, 157 (1945). These articles
describe early stages in the development of Feynman's
theory, little of which is yet published.

and ease of application, while those of Tomonaga-
Schwinger are generality and theoretical com-
pleteness.

The present paper aims to show how the
Schwinger theory can be applied to specific
problems in such a way as to incorporate the
ideas of Feynman. To ~ake the paper reasonably
self-contained it is necessary to outline the
foundations of the theory, fo11owing the method
of Tomonaga; but this paper is not intended as a
substitute for the complete account of the theory
shortly to be published by Schwinger. Here the
emphasis will be on the application of the theory,
and the major theoretical problems of gauge-
invariance and of the divergencies will not be
considered in detail. The main results of the
paper will be general formulas from which the
radiative reactions on the motions of electrons
can be calculated, treating the radiation inter-
action as a small perturbation, to any desired
order of approximation. These formulas will be
expressed in Schwinger's notation, but are in
substance identical with results given previously
by Feynman. The contribution of the present
paper is thus intended to be twofold: first, to
simplify the Schwinger theory for the benefit of
those using it for calculations, and second, to
demonstrate the equivalence of the various
theories within their common domain of ap-
plicability. *

*After this paper was written, the author was shown a
letter, published in Progress of Theoretical Physics 3, 205
(1948) by Z. Koba and G. Takeda. The letter is dated
May 22, 1948, and brieRy describes a method of treatment
of radiative problems, similar to the method of this paper.
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RAD IATIDN THEORIES

II. OUTLINE OF THEORETICAL FOUNDATIONS

Relativistic quantum mechanics is a special
case of non-relativistic quantum mechanics, and
it is convenient to use the usual non-relativistic
terminology in order to make clear the relation
between the mathematical theory and the re-
sults of physical measurements. In quantum
electrodynamics the dynamical variables are the
electromagnetic potentials A„(r) and the spinor
electron-positron field f (r); each component of
each field at each point r of space is a separate
variable. Each dynamical variable is, in the
Schrodinger representation of quantum me-

chanics, a time-independent operator operating
on the state vector C of the system. The nature
of C (wave function or abstract vector) need not
be specified; its essential property is that, given
the C of a system at a particular time, the results
of all measurements made on the system at that
time are statistically determined. The variation
of C with time is given by the Schrodinger
equation

f
ih[8/Bt]4 = H(r)d 4,

where H(r) is the operator representing the total
energy-density of the system at the point r. The
general solution of (1) is

C(i)=exp [ it/5] —H(r)dr Cp,

with C 0 any constant state vector.
Now in a relativistic system, the most general

kind of measurement is not the simultaneous
measurement of field quantities at different
points of space. It is also possible to measure
independently field quantities at different points
of space at different times, provided that the
points of space-time at which the measurements
are made lie outside each other's light cones, so
that the measurements do not interfere with
each other. Thus the most comprehensive general
type of measurement is a measurement of field
quantities at each point r of space at a time t(r),

Results of the application of the method to a calculation
of the second-order radiative correction to the Klein-
Nishina formula are stated. All the papers of Professor
Tomonaga and his associates which have yet been pub-
lished were completed before the end of 1946. The isolation
of these Japanese workers has undoubtedly constituted a
serious loss to theoretical physics.

the locus of the points (r, t(r)) in space-time
forming a 3-dimensional surface 0 which is space-
like (i.e., every pair of points on it is separated
by a space-like interval). Such a measurement
will be called "an observation of the system on
0." It is easy to see what the result of the meas-
urement will be. At each point r' the field quan-
tities will be measured for a state of the system
with state vector C(t(r')) given by (2). But all
observable quantities at r' are operators which
commute with the energy-density operator H(r)
at every point r different from r', and it is a
general principle of quantum mechanics that if
8 is a unitary operator commuting with A, then
for any state C the results of measurements of A
are the same in the state C as in the state BC.
Therefore, the results of measurement of the
field quantities at r' in the state C (t(r')) are the
same as if the state of the system were

C(0) =exp —[i/Ii] t(r)H(r)dr Co, (3)

which differs from C(t(r')) only by a unitary
factor commuting with these field quantities.
The important fact is that the state vector C(o)
depends only on 0 and not on r'. The conclusion
reached is that observations of a system on r
give results which are completely determined

by attributing to the system the state vector
C(o) given by (3).

The Tomonaga-Schwinger form of the Schrod-
inger equation is a differential form of (3).
Suppose the surface 0 to be deformed slightly
near the point r into the surface tT', the volume
of space-time separating the two surfaces being
V. Then the quotient

[c'(o' ) —c'(o') j/ U

tends to a limit as V~O, which we denote by
BC'/80(r) and call the functional derivative of 4'

with respect to 0 at the point r. From (3) it
follows that

ihc[BC/Bo(r) j=H(r)C, (4)

and (3) is, in fact, the general solution of (4).
The whole meaning of an equation such as (4)

depends on the physical meaning which is at-
tached to the statement "a system has a constant
state vector Co.

" In the present context, this
statement means "results of measurements of
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fieM quantities at any given point of space are
independent of time. " This statement is plainly
non-relativistic, and so (4) is, in spite of ap-
pearances, a non-relativistic equation.

The simplest way to introduce a new state
vector + which shall be a relativistic invariant is
to require that the statement "a system has a
constant state vector 0"' shall mean "a system
consists of photons, electrons, and positrons,
traveling freely through space without inter-
action or external disturbance. " For this pur-
pose, let

H(r) =Hp(r)+Hi(r),

where II0 is the energy-density of the free electro-
magnetic and electron fields, and II» is that of
their interaction with each other and with any
external disturbing forces that may be present.
A system with constant + is, then, one whose H»
is identically zero; by (3) such a system corre-
sponds to a 4 of the form

4(o.) =T(o)4p,

T(o) = exp [p/h—] t(r)Hp(r)dr . (6)

where H, (xp) is the time-dependent form of the
energy-density of interaction of the two fields
with each other and with external forces. The
left side of (9) represents the degree of departure
of the system from a system of freely traveling
particles and is a relativistic invariant; Hi(xp)
is also an invariant, and thus is avoided one of
the most unsatisfactory features of the old
theories, in which the invariant H» was added to
the non-invariant Hp. Equation (9) is the starting
point of the Tomonaga-Schwinger theory.

111. INTRODUCTION OF PERTURBATION THEORY

Equation (9) can be solved explicitly. For this
purpose it is convenient to introduce a one-
parameter family of space-like surfaces filling
the whole of space-time, so that one and only
one member o(x) of the family passes through
any given point x. Let 0.0, a», 0~, ~ ~ be a se-
quence of surfaces of the fami1y, starting with
0& and proceeding in small steps steadily into
the past. By

p pro

Hi(x)dx
o'»

It is therefore consistent to write generally

4(o) = T(o)@(o),

is denoted the integral of Hi(x) over the 4-
dimensional volume between the surfaces cr» and

(7) o'p ', similarly, by

thus defining the new state vector 4' of any
system in terms of the old C. The differential
equation satisfied by 4' is obtained from (4), (5),
(6), and (7) in the form

phc[B@/Bo(r)] = (T(o)) 'Hi(r) T(o)e. (8)

Now if g(r) is any time-independent field opera-
tor, the operator

e(xp) =(T(o)) 'g(r)T(o)

Hi(x)dx, )t Hi(x)dx

are denoted integrals over the whole volume to
the past of o.0 and to the future of 00, respectively.
Consider the operator

t'
V= U(op) =( 1 —[p/hc7 Hi(x)dx )

Xi 1 —[i/hcj t IZi(x)dx (, (10)( . r"
O'Q

is just the corresponding time-dependent opera-
tor as usually defined in quantum electrody-
namics. ' It is a function of the point xa of space-
time whose coordinates are (r, ct(r)), but is the
same for all surfaces 0 passing through this
point, by virtue of the commutation of Hi(r)
with Hp(r') for r'Wr Thus (8) m. ay be writ

the product continuing to infinity and the sur-
faces 0.0, cr», . being taken in the limit infinitely
close together. U satisfies the differential equation

ten phc[B U/Bo(xp) g =Hi(xp) U,

(9) and the general solution of (9) is

Op

phc[B%/Bo(xp) j='Hi(xp) 4,
'See, for example, Gregor Wentzel, Zinfa7hrung in die +(o) = U( )

Quanteetheorie der W'ellenfelder (Fra»»g Deuticke, Wien,
1943), pp. 18-26. with 0'0 any constant vector.
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top&0

U = 1+( p/—hc) Hi(xi) dx i+ ( i/—hc)'

p&0

X Hi(xi)Hi(xp)dxp+ ~ . (13)

Further, U is by (10) obviously unitary, and

p
O'0

U-' = U = 1+ (i/hc) Hi(xi)dxi+ (p/hc)'

Expanding the product (10) in ascending
powers of Hj, gives a series

small perturbation as was done in the last section.
Instead, H' alone is treated as a perturbation,
the aim being to eliminate H' but to leave H' in
its original place in the equation of motion of
the system.

Operators S(p) and S(~) are defined by re-
placing Hi by H' in the definitions of U(o) and
U(~). Thus S(o) satisfies the equation

phc[BS/8~(xp) j=H'(x p) S. (17)

Suppose now a new type of state vector Q(o) to
be introduced by the substitution

(pro )e(sl)
dxi Hi(xp)Hi(xi)dxp+ . (14)

It is not difficult to verify that U is a function
of op alone and is independent of the family of
surfaces of which ro is one member. The use of a
finite number of terms of the series (13) and (14),
neglecting the higher terms, is the equivalent in
the new theory of the use of perturbation theory
in the older electrodynamics.

The operator U(~), obtained from (10) by
taking ro in the infinite future, is a transforma-
tion operator transforming a state of the system
in the infinite past (representing, say, converging
streams of particles) into the same state in the
infinite future (after the particles have interacted
or been scattered into their final outgoing dis-
tribution), This operator has matrix elements
corresponding only to real transitions of the
system, i.e., transitions which conserve energy
and momentum. It is identical with the Heisen-
berg 5 matrix. 5

IV. ELIMINATION OF THE RADIATION
INTERACTION

In most of the problem of electrodynamics, the
energy-density Hi(xp) divides into two parts—

Hi(xp) =H'(xo)+H'(xp), (15)

H*'(x.) = —51/cubi. (xo)~p(«). (16)

the first part being the energy of interaction of
the two fieMs with each other, and the second
part the energy produced by external forces.
It is usually not permissible to treat H' as a

~ sterner Heisenberg, Zeits. f. Physik 120, 513 (1943),
120, 673 {1943),and Zeits. f. Naturforschung 1, 608 (1946}.

By (9), (15), (17), and (18) the equation of mo-
tion for Q(o) is

phc[&Q/8n(xo) j= (S(o)) 'H'(xo) S(ir) Q. (19)

The elimination of the radiation interaction is
hereby achieved; only the question, "How is the
new state vector Q(o) to be interpreted?, "
remains.

It is clear from (19) that a system with a con-
stant 0 is a system of electrons, positrons, and
photons, moving under the inHuence of their
mutual interactions, but in the absence of ex-
ternal fields. In a system where two or more
particles are actually present, their interactions
alone will, in general, cause real transitions and
scattering processes to occur. For such a system,
it is rather "unphysical" to represent a state
of motion including the effects of the inter-
actions by a constant state vector; hence, for
such a system the new representation has no
simple interpretation. However, the most im-
portant systems are those in which only one
particle is actually present, and its interaction
with the vacuum fields gives rise only to virtual
processes. In this case the particle, including the
effects of all its interactions with the vacuum,
appears to move as a free particle in the absence
of external fields, and it is eminently reasonable
to represent such a state of motion by a constant
state vector. Therefore, it may be said that the
operator,

Hr(xo) = (S(o))-'H'(x )S(o), (20)

on the right of (19) represents the interaction of
a physical particle with an external field, in-
cluding radiative corrections. Equation (19)
describes the extent to which the motion of a
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single physical particle deviates, in the external
field, from the motion represented by a constant
state-vector, i.e., from the motion of an ob-
served "free" particle.

If the system whose state vector is constantly
Q undergoes no real transitions with the passage
of time, then the state vector Q is called "steady. "
More precisely, Q is steady if, and only if, it
satisfies the equation

S(~)n=n. (21)

As a general rule, one-particle states are steady
and many-particle states unsteady. There are,
however, two important qualifications to this
rule.

First, the interaction (20) itself will almost
always cause transitions from steady to unsteady
states. For example, if the initial state consists
of one electron in the field of a proton, Hp wilI
have matrix elements for transitions of the elec-
tron to a new state with emission of a photon,
and such transitions are important in practice.
Therefore, although the interpretation of the
theory is simpler for steady states, it is not pos-
sible to exclude unsteady states from con-
sideration.

Second, if a one-particle state as hitherto de-
fined is to be steady, the definition of S(0) must
be modified. This is because S(~) includes the
effects of the electromagnetic self-energy of the
electron, and this self-energy gives an expecta-
tion value to S(~) which is different from unity
(and indeed infinite) in a one-electron state, so
that Eq. (21) cannot be satisfied. The mistake
that has been made occurred in trying to repre-
sent the observed electron with its electromag-
netic self-energy by a wave field with the same
characteristic rest-mass as that of the "bare"
electron. To correct the mistake, let bm denote
the electromagnetic mass of the electron, i.e. ,
the difference in rest-mass between an observed
and a "bare" electron. Instead of (5), the divi-
sion of the energy-density H(r) should have
taken the form

H(r) = (H, (r)+~mc' 0*(r)Pg(r))-
+ (Hi(r) fimcV*(r)PP(r) ). —

The first bracket on the right here represents the
energy-density of the free electromagnetic and
electron fields with the observed electron rest-

mass, and should have been used instead of
Ho(r) in the definition (6) of T(o). Consequently,
the second bracket should have been used in-
stead of Hi(r) in Eq. (8).

The definition of S(a) has therefore to be
altered by replacing H'(xo) by'

H'(xo) =H'(xo) +Hs(xo) =H'(xo)
—Smc'P(x, )P(x,). (22)

The value of bm can be adjusted so as to cancel
out the self-energy e&ects in S( ao ) (this is only a
formal adjustment since the value is actually
infinite), and then Eq. (21) will be valid for
one-electron states. For the photon self-energy no
such adjustment is needed since, as proved by
Schwinger, the photon self-energy turns out to be
identically zero.

The foregoing discussion of the self-energy
problem is intentionally only a sketch, but it
will be found to be sufficient for practical applica-
tions of the theory. A fuller discussion of the
theoretical assumptions underlying this treat-
ment of the problem will be given by Schwinger
in his forthcoming papers. Moreover, it must be
realized that the theory as a whole cannot be
put into a finally satisfactory form so long as
divergencies occur in it, however skilfully these
divergencies are circumvented; therefore, the
present treatment should be regarded as justified
by its success in applications rather than by its
theoretical derivation.

The important results of the present paper up
to this point are Eq. (19) and the interpretation
of the state vector Q. The state vector 4' of a
system can be interpreted as a wave function
giving the probability amplitude of finding any
particular set of occupation numbers for the
various possible states of free electrons, positrons,
and photons. The state vector Q of a system with
a given 4' on a given surface 0 is, crudely speak-
ing, the 4' which the system would have had in
the infinite past if it had arrived at the given 0 on
0 under the influence of the interaction IP(xo)
alone.

The definition of Q being unsymmetrical be-
tween past and future, a new type of state
vector Q' can be defined by reversing the direc-
tion of time in the definition of Q. Thus the Q'

of a system with a given 4" on a given 0 is the +
~ Here Schwinger's notation P=P*P is used.
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which the system would reach in the infinite
future if it continued to move under the inHuence
of H'(xo) alone. More simply, Q can be defined

by the equation

Q'(o) =S(~)Q(o). (23)

Since S(~ ) is a unitary operator independent of
0, the state vectors 0 and 0' are really only the
same vector in two diferent representations or
coordinate systems. Moreover, for any steady
state the two are identical by (21).

V. FUNDAMENTAL FORMULAS OF THE
SCHViGNGER AND FEYNMAN

THEORIES

The Schwinger theory works directly from
Eqs. (19) and (20), the aim being to calculate
the matrix elements of the "effective external
potential energy" H~ between states specified
by their state vectors Q. The states considered in
practice always have 0 of some very simple kind,
for example, 0 representing systems in which
one or two free-particle states have occupation
number one and the remaining free-particle
states have occupation number zero. By analogy
with (13), S(oo) is given by

p
O'0

S(o o) = 1+(—i/hc)
~

H'(x~)dx~+ ( i/hc)'—

p ~'0 p &(&1)

dxg) H'(xg)H'(x2)dxg+, (24)

and (S(oo)) ' by a corresponding expression
analogous to (14). Substitution of these series
into (20) gives at once

~(*0) o (*1)

Hp(xo) = Q (~/hc)")I dx() dx2

p&(~a-1)

X~ dx„X[HI(x„), [,[IP(x,),
[H'(») H'(xo)3l. . ]j (25)

The repeated commutators in this formula are
characteristic of the Schwinger theory, and their
evaluation gives rise to long and rather dificult
analysis. Using the first three terms of the series,
Schwinger was able to calculate the second-order
radiative corrections to the equations of motion
of an electron in an external field, and obtained

satisfactory agreement with experimental re-
sults. In this paper the development of the
Schwinger theory will be carried no further;
in principle the radiative corrections to the
equations of motion of electrons could be calcu-
lated to any desired order of approximation from
formula (25).

In the Feynman theory the basic principle is
to preserve symmetry between past and future.
Therefore, the matrix elements of the operator
IIy are evaluated in a "mixed representation;"
the matrix elements are calculated between an
initial state specified by its state vector 0& and
a final state specified by its state vector Q~'.

The matrix element of Hp between two such
states in the Schwinger representation is

Qm*HpQg =Q2'*S( ~ )HpQg, (26)

and therefore the operator which replaces IIp in
the mixed representation is

Hp(xp) =S(~)Hp(xp)
=S(~)(S(o)) 'H'(xo)S(o) (27)

Going back to the original product definition of
S(o) analogous to (10), it is clear that S(~)
X(S(o)) ' is simply the operator obtained from
S(a) by interchanging past and future. Thus,

R( ) =S( )(S( )) '=1+( i/hc)—

~ 00

X H'(x&)dx&+( i/hc)' —dx)

X ~ H'(xm)H'(x&)dx2+ (28)
~ &(&x)

The physical meaning of a mixed representa-
tion of this type is not at all recondite. In fact,
a mixed representation is normally used to de-
scribe such a process as bremsstrahlung of an
electron in the field of a nucleus when the Born
approximation is not valid; the process of
bremsstrahlung is a radiative transition of the
electron from a state described by a Coulomb
wave function, with a plane ingoing and a spheri-
cal outgoing wave, to a state described by a
Coulomb wave function with a spherical ingoing
and a plane outgoing wave. The initial and final
states here belong to different orthogonal systems
of wave functions, and so the transition matrix
elements are calculated in a mixed representa-
tion. In the Feynman theory the situation is
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analogous, " only the roles of the radiation inter-
action and the external (or Coulomb) field are
interchanged; the radiation interaction is used
instead of the Coulomb field to modify the state
vectors (wave functions) of the initial and final
states, and the external field instead of the
radiation interaction causes transitions between
these state vectors.

In the Feynman theory there is an additional
simplification. For if matrix elements are being
calculated betmeen tmo states, either of which
is steady (and this includes all cases so far
considered), the mixed representation reduces to
an ordinary representation. This occurs, for
example, in treating a one-particle problem such
as the radiative correction to the equations of
motion of an electron in an external field; the
operator HF(xp), although in general it is not
even Hermitian, can in this case be considered
as an effective external potential energy acting
on the particle, in the ordinary sense of the
words.

This section will be concluded with the deriva-
tion of the fundamental formula (31) of the
Feynman theory, which is the analog of formula
(25) of the Schwinger theory. If

Fi(xi), , F„(x„)
are any operators defined, respectively, at the
points xi, -, x„of space-time, then

P(Fi(xi), , F„(x )) (29)

mill denote the product of these operators, taken
in the order, reading from right to left, in which
the surfaces a(xi), , a(x ) occur in time. In
most applications of this notation F,(x;) will
commute with F,(x;) so long as x; and x, are
outside each other's light cones; when this is the
case, it is easy to see that (29) is a function of the
points x~, *, x„only and is independent of the
surfaces o(x;). Consider now the integral

dx„P(H'(xp),

H'(xi), , H'(x, )).
Since the integrand is a symmetrical function of
the points x~, . , x„, the value of the integral
is just n! times the integral obtained by re-
stricting the integration to sets of points xi,
x„ for which a.(x,) occurs after a(x;+i) for each i

The restricted integral can then be further
divided into (n+1) parts, the j'th part being the
integral over those sets of points with the prop-
erty that o(xp) lies between o(x; i) and o(x;)
(with obvious modifications for j=1 and j=n
+1).Therefore,

tIF(&0) p~(&e-I)

I„=n!g ) dx," ) dx„
00 Go

X, dx, i i
dxiXH'(x, )

o (+o) ~ pr(x2)

H'(x, i)H'(xp)Hi(x;) IP(x„) (30).

Now if the series (24) and (28) are substituted
into (27), sums of integrals appear which are
precisely of the form (30). Hence finally

Hp(xp) = Q ( i/hc) "[1—/n!]I.
n=o

OP
OQ

=Q ( i/hc—)"[1/n!j I dxi . .
n=o

OQ

XP(H'(xp) H'(xi) IP(x )). (31)

By this formula the notation Hz(xp) is justified,
for this operator now appears as a function of
the point xo alone and not of the surface 0.. The
further development of the Feynman theory is

mainly concerned with the calculation of matrix
elements of (31) between various initial and final

states.
As a special case of (31) obtained by replacing

H' by the unit matrix in (27),

g(pp) =Q ( i/hc)"—[1/n!$ t dxi I dx
n~o pc} ~00

P(Hi(xi) . . . HI(x )) (32

VI. CALCULATION OF MATRIX ELEMENTS

In this section the application of the foregoing
theory to a general class of problems will be
explained. The ultimate aim is to obtain a set
of rules by which the matrix element of the
operator (31) between two given states may be
written down in a form suitable for numerical

evaluation, immediately and automatically. The
f'act that such a set of rules exists is the basis of
the Feynman radiation theory; the derivation
in this section of the same rules from what is
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4 -(x) = Z 4-(x)~., (34)

where the p (x) are spinor wave functions of
free electrons and positrons, and the a„are
annihilation operators of electrons and creation
operators of positrons. Similarly, the adjoint
operator

0-(x) =2 4-(x)~., (35)

where a„are annihilation operators of positrons
and creation operators of electrons. The electro-
magnetic 6eld operator is

A„(x) = Q (A,„(x)b„+A,„'(x)5,), (36)

~here b„and 5, are photon annihilation and
creation operators, respectively. The charge-
current 4-vector of the electron field is

j„(x)=f«y(x) p„y(x); (37)

strictly speaking, this expression ought to be
antisymmetrized to the form'

i.(x) = 2~«I|f.(x)A(x) —A(x)k-(x) I (v.)-s. (38)

but it will be seen later that this is not necessary
in the present theory.

Consider the product I' occurring in the n'th

~ See Wolfgang Pauli, Rev. Mod. Phys. 13, 203 (1941},
Eq. (96), p. 224.

fundamentally the Tomonaga-Schwinger theory
constitutes the proof of equivalence of the two
theories.

To avoid excessive complication, the type of
matrix element considered will be restricted in
two ways. First, it will be assumed that the ex-
ternal potential energy is

II'(xo) = —L1/c7j„(xo)A„'(xa), (33)

that is to say, the interaction energy of the elec-
tron-positron field with electromagnetic poten-
tials A„'(xo) which are given numerical functions
of space and time. Second, matrix elements will

be considered only for transitions from a state A,
in which just one electron and no positron or
photon is present, to another state 8 of the
same character. These restrictions are not essen-
tial to the theory, and are introduced only for
convenience, in order to illustrate clearly the
principles involved.

The electron-positron field operator may be
written

integral of (31); let it be denoted by I' . From
(16), (22), (33), and (37) it is seen that P„ is a
sum of products of (n+1) operators P, (n+1)
operators P, and not more than e operators A„,
multiplied by various numerical factors. By Q„
may be denoted a typical product of factors P,f, and A„, not summed over the indices such
as a and p, so that I' is a sum of terms such as
Q„.Then Q„will be of the form (indices omitted)

Q-=0( *o)4( o)0( *)4( ) 4( '.)4(x'.)
XA (xi i). . A(xi.„), (39)

where i o, i&, , i „ is some permutation of the
integers 0, 1, - *, n, and j~, , j„are some, but
not necessarily all, of the integers 1, ~, n in
some order. Since none of the operators P and

f commute with each other, it is especially im-

portant to preserve the order of these factors.
Each factor of Q„ is a sum of creation and
annihilation operators by virtue of (34), (35),
and (36), and so Q„ itself is a sum of products of
creation and annihilation operators.

Now consider under what conditions a product
of creation and annihilation operators can give a
non-zero matrix element for the transition A~8.
Clearly, one of the annihilation operators must
annihilate the electron in state A, one of the
creation operators must create the electron in
state 8, and the remaining operators must be
divisible into pairs, the members of each pair
respectively creating and annihilating the same
particle. Creation and annihilation operators re-
ferring to different particles always commute or
anticommute (the former if at least one is a
photon operator, the latter if both are electron-
positron operators). Therefore, if the two single
operators and the various pairs of operators in
the product all refer to different particles, the
order of factors in the product can be altered so
as to bring together the two single operators and
the two members of each pair, without changing
the value of the product except for a change of
sign if the permutation made in the order of the
electron and positron operators is odd. In the
case when some of the single operators and pairs
of operators refer to the same particle, it is not
hard to verify that the same change in order of
factors can be made, provided it is remembered
that the division of the operators into pairs is
no longer unique, and the change of order is to
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be made f'or each possible division into pairs and
the results added together.

It follows from the above considerations that
the matrix element of Q for the transition A —+8
is a sum of contributions, each contribution
arising from a specific way of dividing the factors
of Q„ into two single factors and pairs. A typical
contribution of this kind mill be denoted by 3I.
The two factors of a pair must involve a creation
and an annihilation operator for the same par-
ticle, and so must be either one P and one f or
two A; the two single factors must be one g and
one f. The term M is thus specified by fixing an
integer k, and a permutation ro, r~, , r„of the
integers 0, 1, , n, and a division (si,ti), (s2,t2),

, (si„ti,) of the integers ji, , j„into pairs;
clearly m=2k has to be an even number; the
term 3I is obtained by choosing for single factors
it(xq) and f(xri, ), and for associated pairs of
factors (P(x,),P(xr,)) for i =0, 1, , k —1,
1'i+1, , n and (A (xs;),A(xi;)) for i = 1, . . . , h.
In evaluating the term 3f, the order of factors
in Q„ is first to be permuted so as to bring to-
gether the two single factors and the two mem-
bers of each pair, but without altering the order
of factors within each pair; the result of this
process is easily seen to be

Q'=~P(k(»)A'(x o)) P(4(x.) ~t (x"))
)&P(A (xsi),A (xii)) ' P(A (xsg),A (xtg)), (40)

a factor e being inserted which takes the value
&1 according to whether the permutation of f
and f factors between (39) and (40) is even or
odd. Then in (40) each product of two associated
factors (but not the two single factors) is to be
independently replaced by the sum of its matrix
elements for processes involving the successive
creation and annihilation of the same particle.

Given a bilinear operator such as A„(x)A„(y),
the sum of its matrix elements for processes
involving the successive creation and annihila-
tion of the same particle is just what is usually
called the "vacuum expectation value" of the
operator, and has been calculated by Schwinger.
This quantity is, in fact (note that Heaviside
.units are being used)

not be given here, because it turns out that the
vacuum expectation value of P(A„(x),A „(y))
takes an even simpler form. Namely,

(P(A„(x),A.(y))).=,'ac~„.D,(x—y), (41)

where Dp is the type of D function introduced by
Feynman. Di (x) is an even function of x, with
the integral expansion

Dr(x) = —[i/2''] ~" exp$inx']dn, (42)
~a

where x' denotes the square of the invariant
length of the 4-vector x. In a similar way it
follows from Schwinger's results that

(P(~t-(x),A(y)))o = 2n(»y) ~n-(x —y), (43)

where
Sps. (x) = —(v, (&/», )+~o)p.~~(x), (44)

Kp is the reciprocal Compton wave-length of the
electron, it(x,y) is —1 or +1 according as &r(x)

is earlier or later than 0(y) in time, and Ap is a
function with the integral expansion

Substituting from (41) and (44) into (40), the
matrix element M' takes the form (still omitting
the indices of the factors P, P, and A of Q„)

i&= e g (-', it(x;,xr,)Sp(x;—xr;))
i& Ie

Xrr(-:~ D.(,—.,»P(~("),~(".» (46)
j

The single factors iaaf(xi,.) and P(xri, ) are conveni-
ently left in the form of operators, since the
matrix elements of these operators for effecting
the transition A —+8 depend on the wave func-
tions of the electron in the states A and B.
Moreover, the order of the factors iit(xq) and

P(xri, ) is immaterial since they anticommute
with each other; hence it is permissible to write

P(P(xi,),P(xrg)) = s(xg, xri, )g (xg,)P(xri, )

Therefore (46) may be rewritten

M= ' g (-,'5 (x;—x.,))g(-,'hcD (x.,—x;))
(A „(x)A.(y)) p

———,'1'tc8„,I D &'&+iD I (x—y),

where D&'& and D are Schwinger's invariant D
functions. The definitions of these functions will

with
e' = egit(x;, xr;).

i
(48)

Xg(xi,)P(x.i), (4"/)
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Now the product in (48) is (—1)&, where P is the
number of occasions in the expression (40) on
which the P of a I' bracket occurs to the left of
the P. Referring back to the definition of c after
Eq. (40), it follows that e' takes the value +1 or
—1 according to whether the permutation of P
and f factors between (39) and the expression

is even or odd. But (39) can be derived by an
even permutation from the expression

4(«)4(x0). 0(&.)4(~.) (50)

and the permutation of factors between (49)
and (50) is even or odd according to whether the
permutation rp, ~ ~, r „of the integers 0 ~, n is
even or odd. Hence, finally, e' in (47) is +1 or
—1 according to whether the permutation rp,

, r„ is even or odd. It is important that e'

depends only on the type of matrix element M
considered, and not on the points xp, ' ', x„;
therefore, it can be taken outside the integrals
in (31).

One result of the foregoing analysis is to justify
the use of (37), instead of the more correct (38),
for the charge-current operator occurring in II'
and H'. For it has been shown that in each
matrix element such as M the factors f and P in

(38) can be freely permuted, so that (38) can be
replaced by (37), except in the case when the two
factors form an associated pair. In the excep-
tional case, M contains as a factor the vacuum
expectation value of the operator j„(x~) at some
point x;; this expectation value is zero according
to the correct formula (38), though it would be
infinite according to (37); thus the matrix ele-
ments in the exceptional case are always zero.
The conclusion is that only those matrix ele-
ments are to be calculated for which the integer
r; differs from i for every i&4, and in these
elements the use of formula (3?) is correct.

To write down the matrix elements of (31) for
the transition A~8, it is only necessary to take
all the products Q„, replace each by the sum of
the corresponding matrix elements 3f given by
(47), reassemble the terms into the form of the
P„ from which they were derived, and finally
substitute back into the series (31).The problem
of calculating the matrix elements of (31) is
thus in principle solved. However, in the follow-

ing section it will be shown how this solution-in-
principle can be reduced to a much simpler and
more practical procedure.

VII. GRAPHICAL REPRESENTATION OF
MATRIX ELEMENTS

Let an integer n and a product I' occurring
in (31) be temporarily fixed. The points xo, xi,

, x„may be represented by (n+1) points
drawn on a piece of paper. A type of matrix
element M as described in the last section will
then be represented graphically as follows. For
each associated pair of factors (P(x;),P(x.;)) with
i&4, draw a line with a direction marked in it
from the point x; to the point x.;. For the single
factors g(«), P(xri, ), draw directed lines leading
out from x~ to the edge of the diagram, and in
from the edge of the diagram to x~A, . For each
pair of factors (A (xs;),2 (xi~)), draw an un-

directed line joining the points xa; and x&;. The
complete set of points and lines will be called
the "graph" of M; clearly there is a one-to-one
correspondence between types of matrix ele-
ment and graphs, and the exclusion of matrix
elements with r; =i for i/k corresponds to the
exclusion of graphs with lines joining a point to
itself. The directed lines in a graph will be called
"electron lines, " the undirected lines "photon
lines.

Through each point of a graph pass two elec-
tron lines, and therefore the electron lines to-
gether form one open polygon containing the
vertices x~ and x.~, and possibly a number of
closed polygons as well. The closed polygons will

be called "closed loops, " and their number
denoted by /. Now the permutation rp, ~ ~, r„
of the integers 0, , n is clearly composed of
(1+1) separate cyclic permutations. A cyclic
permutation is even or odd according to whether
the number of elements in it is odd or even.
Hence the parity of the permutation r p, ~, r„
is the parity of the number of even-number
cycles contained in it. But the parity of the
number of odd-number cycles in it is obviously
the same as the parity of the total number (n+1)
of elements. The total number of cycles being
(1+1),the parity of the number of even-number
cycles is (l —n). Since it was seen earlier that
the e' of Eq. (47) is determined just by the parity
of the permutation rp, . , r„, the above argu-
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ment yieMs the simple formula

( 1) l-a

This formula is one result of the present theory
which can be much more easily obtained by
intuitive considerations of the sort used by
Feynman.

In Feynman's theory the graph corresponding
to a particular matrix element is regarded, not
merely as an aid to calculation, but as a picture
of the physical process which gives rise to that
matrix element. For example, an electron line
joining x& to x2 represents the possible creation
of an electron at x~ and its annihilation at x2,
together with the possible creation of a positron
at x2 and its annihilation at x~. This interpreta-
tion of a graph is obviously consistent with the
methods, and in Feynman's hands has been
used as the basis for the derivation of most of
the results, of the present paper. For reasons of
space, these ideas of Feynman will not be dis-
cussed in further detail here.

To the product I' correspond a finite number
of graphs, one of which may be denoted by t

all possible G can be enumerated without dif-
ficulty for moderate values of m. To each 6
corresponds a contribution C(G) to the matrix
element of (31) which is being evaluated.

It may happen that the graph G is discon-
nected, so that it can be divided into subgraphs,
each of which is connected, with no line joining
a point of one subgraph to a point of another.
In such a case it is clear from (47) that C(G) is
the product of factors derived from each sub-

graph separately. The subgraph G~ containing
the point xo is called the "essential part" of G,
the remainder G2 the "inessential part. " There
are nom two cases to be considered, according to
whether the points x~ and x.~ lie in G2 or in G~

(they must clearly both lie in the same sub-
graph). In the first case, the factor C(G2) of
C(G) can be seen by a comparison of (31) and
(32) to be a contribution to the matrix element
of the operator S(~) for the transition A~8.
Now letting G vary over all possible graphs with
the same G~ and different t"2, the sum of the
contributions of all such G is a constant C(G&)
multiplied by the total matrix element of S(~)
for the transition A —+B. But for one-particle
states the operator S(~) is by (21) equivalent

to the identity operator and gives, accordingly,
a zero matrix element for the transition A —+B.
Consequently, the disconnected 0 for which x~
and xrl, lie in G2 give *zero contribution to the
matrix element of (31), and can be omitted from
further consideration. When xl, and xrj, lie in G~,
again the C(G) may be summed over all G con-
sisting of the given G~ and all possible Gm, but
this time the connected graph G~ itself is to be
included in the sum. The sum of all the C(G) in
this case turns out to be just C(G&) multiplied by
the expectation value in the vacuum of the
operator S(~). But the vacuum state, being a
steady state, satisfies (21), and so the expecta-
tion value in question is equal to unity. There-
fore the sum of the C(G) reduces to the single
term C(G~), and again the disconnected graphs
may be omitted from consideration.

The elimination of disconnected graphs is,
from a physical point of view, somewhat trivial,
since these graphs arise merely from the fact
that meaningful physical processes proceed si-
multaneously with totally irrelevant Auctuations
of fields in the vacuum. However, similar argu-
ments will now be used to eliminate a much
more important class of graphs, namely, those
involving self-energy eBects. A "self-energy part"
of a graph 0 is defined as follows; it is a set of
one or more vertices not including x0, together
with the lines joining them, which is connected
with the remainder of G (or with the edge of the
diagram) only by two electron lines or by one or
two photon lines. For definiteness it may be
supposed that G has a self-energy part Ji, which
is connected with its surroundings only by one
electron line entering Ii at x~, and another
leaving I' at x2, the case of photon lines can be
treated in an entirely analogous way. The points
x~ and x2 may or may not be identical. From G
a "reduced graph" Go can be obtained by omit-
ting Ji completely and joining the incoming line
at xj. with the outgoing line at x2 to form a single
electron line in Go, the newly formed line being
denoted by ).Given Go and X, there is conversely
a well determined set r of graphs G which are
associated with Go and X in this way; Go itself is
considered also to belong to F. It mill now be
shown that the sum C(F) of the contributions
C(G) to the matrix element of (31) from all the
graphs G of I' reduces to a single term C'(Go).
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Suppose, for example, that the line ) in Go

leads from a point x3 to the edge of the diagram.
Then C(Go) is an integral containing in the inte-
grand the matrix element of

4-(xo) (52)

(This is, of course, a consequence of the special
character of the graphs of I'.) It is required to
calculate the matrix element of (54) for a transi-
tion from the vacuum state 0 to the state 8, i.e. ,

for the emission of an electron into state B. This
matrix element will be denoted by Z, ; C(I") in-

volves Z in the same way that C(Go) involves
(53). Now Z, can be evaluated as a sum of
terms of the same general character as (47);
it will be of the form

Z- =2 ) &*'(y' —») I'p(y')dy*,

where the important fact is that E; is a function
only of the coordinate differences between y;
and xo. By (53), this implies that

Z-= R-p(P) I'p(»), (55)

with R independent of x3. From considerations
of relativistic invariance, R must be of the form

4.R4(P')+(P.v.)p-R=(P')

where p' is the square of the invariant length of
the 4-vector p. But since the matrix element
(53) is a solution of the Dirac equation,

P'= —k'«' (Pov.)p. I'p =ik« I'.,

and so (55) reduces to

Z =RgI' (xo),

for creation of an electron into the state B. Let
the momentum-energy 4-vector of the created
electron be p; the matrix element of (52) is of
the form

Y (xo) =a exp[ —i(P xo)/k] (53)

with a independent of x3. Now consider the
sum C(I'). lt follows from an analysis of (31)
that C(r) is obtained from C(Gp) by replacing
the operator (52) by

00 p 00 00

P (—i/kc) "[1/»4!] ' dye dy.
n 0

X~+.(x ), II'(y.), ~, ~'(y.)) (54)

—',s(x„x4)S»p. (x,—x4), (58)

which is the vacuum expectation value of the
operator

&(k-(xo),A(x4)) (59)

according to (43). Now in analogy with (54),
C(I') is obtained from C(Gp) by replacing (59) by

00 Qo 00

Q ( —i/kc) "[1/n!] dy, , dy„
0

X&(4.( ), 4 (. ), ~'(y ), , ~'(y.)), (60)

and the vacuum expectation value of this opera-
tor will be denoted by

—,'17(xo,x4) S'» p, (xo —x4). (61)

By the methods of Section Vl, (61) can be ex-
panded as a series of terms of the same char-
acter as (47); this expansion will not be dis-
cussed in detail here, but it is easy to see that it
leads to an expression of the form (61), with
S»'(x) a certain universal function of the 4-
vector x. It will not be possible to reduce (61) to
a numerical multiple of (58), as Z was in the
previous case reduced to a multiple of F . In-
stead, there may be expected to be a series ex-
pansion of the form

S»p, (x) = (Ro+a4( ' —~oo)+ao( '—~po)o

+ )S~p-(x)+(bi+ho( ' —~o')+ . )
X (y, [4t/», ]—4o)pQ», (x), (62)

where ' is the Dalembertian operator and the
a, b are numerical coe%cients. In this case C(I')
will be equal to the C'(Go) obtained from C(Go)
by the replacement

S»(xo —x4)-+S»'(xo —x4).

with Rj, an absolute constant. Therefore the sum
C(1') is in this case just C'(Gp), where C'(Go) is
obtained from C(Gp)by the replacement

|P(xo)-+R g (x,). (56)

In the case when the line ) leads into the graph
Go from the edge of the diagram to the point x~,
it is clear that C(I') will be similarly obtained
from C(Gp) by the replacement

P(Xo) 4R4'P(Xo). (57)

There remains the case in which X leads from
one vertex x3 to another x4 of Go. In this case
C(Go) contains in its integrand the function
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Applying the same methods to a graph 6 with
a self-energy part connected to its surroundings

by two photon lines, the sum C(F) will be ob-
tained as a single contribution C'(Go) from the
reduced graph Ga, C'(G4) being formed from

C(Go) by the replacement

Dg(x4 x4) ~D—i'(x4 x4). — (64)

'I'he function DJ.' is defined by the condition that

i;hc7i„.Di."
(x4 x4)— (65)

is the vacuum expectation value of the operator

XE(A„(x4), A, (x4), H'(yi), , IP(y„)), (66)

and may be expanded in a series

Dp'(x) = (84+ci '+cm( ')'+ )Dp(x). (67)

Finally, it is not dif6cult to see that for graphs G
with se/f-energy parts connected to their sur-
roundings by a single photon line, the sum C(I')
will be identically zero, and so such graphs may
be omitted from consideration entirely.

As a result of the foregoing arguments, the
contributions C(G) of graphs with self-energy
parts can always be replaced by modified con-
tributions C'(G4) from a reduced graph GD. A
given G may be reducible in more than one way
to give various G0, but if the process of reduction
is repeated a finite number of times a G4 will be
obtained which is "totally reduced, " contains no
self-energy part, and is uniquely determined by
G. The contribution C'(Go) of a totally reduced
graph to the matrix element of (31) is now to be
calculated as a sum of integrals of expressions
like (47), but with a replacement (56), (57), (63),
or (64) made corresponding to every line in G4.
'Ihis having been done, the matrix element of
(31) is correctly calculated by taking into con-
sideration each totally reduced graph once and
once only.

The elimination of graphs with self-energy
parts is a most important simplification of the
theory. For according to (22), Hr contains the
subtracted part H8, which will give rise to many
additional terms in the expansion of (31). But
if any such term is taken, say, containing the
factor Hs(x4) in the integrand, every graph cor-

responding to that term will coatain the point x;
joined to the rest of the graph only by two elec-
tron lines, and this point by itself constitutes a
self-energy part of the graph. Therefore, all
terms involving Hs are to be omitted from (31)
in the calculation of matrix elements. The in-
tuitive argument for omitting these terms is
that they were only introduced in order to cancel
out higher order self-energy terms arising from
H', which are also to be omitted; the analysis
of the foregoing paragraphs is a more precise
form of this argument. In physical language, the
argument can be stated still more simply; since
bm is an unobservable quantity, it cannot appear
in the final description of observable phenomena.

VIII. VACUUM POLARIZATION AND CHARGE
RENORMALIZATIO N

The question now arises: What is the physical
meaning of the new functions Bp' and Sp', and
of the constant Ri, ? In general terms, the answer
is clear. The physical processes represented by
the self-energy parts of graphs have been pushed
out of the calculations, but these processes do
not consist entirely of unobservable interactions
of single particles with their self-fields, and so
cannot entirely be written ofF as "self-energy
processes. " In addition, these processes include
the phenomenon of vacuum polarization, i.e. ,

the modification of the Geld surrounding a
charged particle by the charges which the par-
ticle induces in the vacuum. Therefore, the ap-
pearance of Dp', Sp', and R~ in the calculations
may be regarded as an explicit representation of
the vacuum polarization phenomena which were
implicitly contained in the processes now ignored.

In the present theory there are two kinds of
vacuum polarization, one induced by the ex-
ternal field and the other by the quantized elec-
tron and photon fields themselves; these will be
called "external" and "internal, " respectively.
It is only the internal polarization which is

represented yet in explicit fashion by the sub-
stitutions (56), (57), (63), (64); the external
will be included later.

To form a concrete picture of the function D~',
it may be observed that the function Dp(y s)—
represents in classical electrodynamics the re-
tarded potential of a point charge at y acting
upon a point charge at s, together with the re-
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tarded potential of the charge at s acting on the
charge at y. Therefore, Dp may be spoken of
loosely as "the electromagnetic interaction be-
tween two point charges. " In this semiclassical
picture, DI' is then the electromagnetic inter-
action between two point charges, including the
efFects of the charge-distribution which each
charge induces in the vacuum.

The complete phenomenon of vacuum po-
larization, as hitherto understood, is included in
the above picture of the function Dp'. There is
nothing left for Sp' to represent. Thus, one of
the important conclusions of the present theory
is that there is a second phenomenon occurring
in nature, included in the term vacuum polariza-
tion as used in this paper, but additional to
vacuum polarization in the usual sense of the
word. The nature of the second phenomenon can
best be explained by an example.

The scattering of one electron by another
may be represented as caused by a potential
energy (the Manlier interaction) acting between
them. If one electron is at y and the other at s,
then, as explained above, the eRect of vacuum
polarization of the usual kind is to replace a
factor Dp in this potential energy by DI'. Now
consider an analogous, but unorthodox, repre-
sentation of the Compton efFect, or the scattering
of an electron by a photon. If the electron is at y
and the photon at s, the scattering may be again
represented by a potential energy, containing
now the operator Si (y —s) as a factor; the po-
tential is an exchange potential, because after
the interaction the electron must be considered
to be at z and the photon at y, but this does not
detract from its usefulness. By analogy with the
4-vector charge-current density j„which inter-
acts with the potential DI, a spinor Compton-
eRect density I may be defined by the equation

and an adjoint spinor by

These spinors are not directly observable quan-
tities, but the Compton eRect can be adequately
described as an exchange potential, of magnitude
proportional to Si (y —s), acting between the
Compton-eRect density at any point y and the
adjoint density at s. The second vacuum polariza-

tion phenomenon is described by a change in
the form of this potential from Sp to Sp'. There-
fore, the phenomenon may be pictured in
physical terms as the inducing, by a given
element of Compton-eRect density at a given
point, of additional Compton-efFect density in
the vacuum around it.

In both sorts of internal vacuum polarization,
the functions DI and Sp, in addition to being
altered in shape, become multiplied by numerical
(and actually divergent) factors Rs and Rm, also
the matrix elements of (31) become multiplied
by numerical factors such as R&R&*. However, it
is believed (this has been verified only for second-
order terms) that all n'th-order matrix elements
of (31) will involve these factors only in the form
of a multiplier

(eRgR3&) ";
this statement includes the contributions from
the higher terms of the series (62) and (67).
Here e is defined as the constant occurring in
the fundamental interaction (16) by virtue of
(37), Now the only possible experimental de-
termination of e is by means of measurements of
the eRects described by various matrix elements
of (31), and so the directly measured quantity
is not e but eR2R3&. Therefore, in practice the
letter e is used to denote this measured quantity,
and the multipliers R no longer appear explicitly
in the matrix elements of (31); the change in

the meaning of the letter e is called "charge
renormalization, " and is essential if e is to be
identified with the observed electronic charge.
As a result of the renormalization, the divergent
coe%cients Ri, Rm, and R3 in (56), (57), (62),
and (67) are to be replaced by unity, and the
higher coefficients a, b, and c by expressions in-
volving only the renormalized charge e.

The external vacuum polarization induced by
the potential A„' is, physically speaking, only a
special case of the first sort of internal polariza-
tion; it can be treated in a precisely similar
manner. Graphs describing external polarization
efFects are those with an "external polarization
part, " namely, a part including the point xo
and connected with the rest of the graph by
only a single photon line. Such a graph is to be
"reduced" by omitting the polarization part
entirely and renaming with the label xo the
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point at the further end of the single photon line.
A discussion similar to those of Section VII leads
to the conclusion that only reduced graphs need
be considered in the calculation of the matrix
element of (31), and that the effect of external
polarization is explicitly represented if in the
contributions from these graphs a replacement

A „'(x)~A„"(x) (68)

is made, After a renormalization of the unit of
potential, similar to the renormalization of
charge, the modified potential A„"takes the form

A "(x)= (1+c, 'yc2( ')'+ )A„'(x), (69)

where the coefficients are the same as in (67).
It is necessary, in order to determine the

functions D~', Sp', and A „",to go back to for-
mulas (60) and (66). The determination of the
vacuum expectation values of the operators (60)
and (66) is a problem of the same kind as the
original problem of the calculation of matrix
elements of (31), and the various terms in the
operators (60) and (66) must again be split up,
represented by graphs, and analyzed in detail.
However, since DI' and Sp' are universal func-
tions, this further analysis has only to be carried
out once to be applicable to all problems.

It is one of the major triumphs of the
Schwinger theory that it enables an unambiguous
interpretation to be given to the phenomenon of
vacuum polarization (at least of the first kind),
and to the vacuum expectation value of an
operator such as (66). In making this interpreta-
tion, profound theoretical problems arise, par-
ticularly concerned with the gauge invariance of
the theory, about which nothing will be said
here. For Schwinger's solution of these problems,
the reader must refer to his forthcoming papers.
Schwinger's argument can be transferred without
essential change into the framework of the
present paper.

Having overcome the difficulties of principle,
Schwinger proceeded to evaluate the function
Dp' explicitly as far as terms of order n= (e'/
4irAc) (heaviside units). In particular, he found
for the coeflicient ci in (67) and (69) the value

( n/15s F02) to t—his order. ' It is hoped to publish

'Schwinger's results agree with those of the earlier,
theoretically unsatisfactory treatment of vacuum polariza-
tion. The best account of the earlier work is V. F.Keisskopf,
Kgl. Danske Sels. Math. -Fys. Medd. 14, No. 6 (1936).

in a sequel to the present paper a similar evalua-
tion of the function S~, the analysis involved is
too complicated to be summarized here.

IX. SUMMARY OF RESULTS

In this section the results of the preceding
pages will be summarized, so far as they relate
to the performance of practical calculations. In
effect, this summary will consist of a set of rules
for the application of the Feynman radiation
theory to a certain class of problems.

Suppose an electron to be moving in an ex-
ternal field with interaction energy given by
(33). Then the interaction energy to be used in

calculating the motion of the electron, including
radiative corrections of all orders, is

XP(H'(xo), H*(xi), , H'(x )) (70)

with H' given by (16), and the P notation as
defined in (29).

To find the effective n'th-order radiative cor-
rection to the potential acting on the electron,
it is necessary to calculate the matrix elements of
J„ for transitions from one one-electron state
to another. These matrix elements can be
written down most conveniently in the form of
an operator E„bilin erain P and f, whose matrix
elements for one-electron transitions are the
same as those to be determined. In fact, the
operator E„itself is already the matrix element
to be determined if the P and P contained in it
are regarded as one-electron wave functions;

To write down E„, the integrand I'„ in J„ is
first expressed in terms of its factors f, P, and A,
all suffixes being indicated explicitly, and the
expression (37) used for j„.All possible graphs G
with (n+1) vertices are now drawn as described
in Section VII, omitting disconnected graphs,
graphs with self-energy parts, and graphs with
external vacuum polarization parts as defined in

Section VIII. It will be found that in each graph
there are at each vertex two electron lines and
one photon line, with the exception of xo at
which there are two electron lines only; further,
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such graphs can exist only for even e. E„is the
sum of a contribution X(G) from each G.

Given G, E(G) is obtained from J„by the
following transformations. First, for each photon
line joining x and y in G, replace two factors
A„(x)A.(y) in P„(regardle ssof their positions) by

', Acb„„D-p'(x y), — (71)

with Do' given by (67) with Ro=1, the function

Do being defined by (42). Second, for each elec-
tron line joining x to y in G, replace two factors
it (x)Po(y) in P„(re gardle ssof positions) by

o S'~o.(x—y) (72)

with So' given by (62) with Ro ——1, the function
So being defined by (44) and (45). Third, replace
the remaining two factors P(g~(s), fo(w)) in P„
by P~(s)go(oc) in this order. Fourth, replace
A„'(xp) by A„"(xp).given by

A„"(x)=A„'(x) —La/15pri~oo] 'A '(x) (73)

or, more generally, by (69). Fifth, multiply the
whole by (—1) ', where I is the number of closed
loops in G as defined in Section VII.

The above rules enable X to be written down

very rapidly for small values of n. It should be
observed that if E„is being calculated, and if it
is not desired to include effects of higher order
than the n th'th, en Dp', So', and A„" in (71),
(72), and (73) reduce to the simple functions
DI, S~, and 2„'. Also, the integrand in J„ is.a
symmetrical function of x~, , x„; therefore,
graphs which differ only by a relabeling of the
vertices x~, ~ . , x„give identical contributions
to E„and need not be considered separately.

The extension of these rules to cover the
calculation of matrix elements of (70) of a more
general character than the one-electron transi-
tions hitherto considered presents no essential
difficulty. All that is necessary is to consider
graphs with more than two "loose ends, " repre-
senting processes in which more than one particle
is involved. This extension is not treated in the
present paper, chieRy because it would lead to
unpleasantly cumbersome formulas.

X. EXAMPLE—SECOND-ORDER RAMATIVE
CORRECTIONS

As an illustration of the rules of procedure of
the previous section, these rules will be used for
writing down the terms giving second-order

X2

FrG. i.

radiative corrections to the motion of an electron
in an external field. Let the energy of the ex-
ternal field be

—L1/c]j„(xo)A „'(xp). (74)

Then there will be one second-order correction
term

U= [a/157riipo][1/c]j„(xp) 'A„'(xp)

arising from the substitution (73) in the zero-
order term (74). This is the well-known vacuum
polarization or Uehling term. '

The remaining second-order term arises from
the second-order part Jo of (70). Written in ex-

panded form, J~ is

A=ie' dx, dx,P(4.(xo)(y~).pgp(xo)~~'(xo),
J „

tt.(») (V.).oA(»)~. (»),
4.(xo) (~.) rA(xo)~. (»))

Next, all admissable graphs with the three
vertices xo, xy, x2 are to be drawn. It is easy to
see that there are only two such graphs, that G
shown in Fig. 1, and the identical graph with x~

and xm interchanged. The full lines are electron
lines, the dotted line a photon line. The contribu-
tion Z(G) is obtained from 2'o by substituting
according to the rules of Section IX; in this case
I=0, and the primes can be omitted from (71),
(72), (73) since only second-order terms are re-
quired. The integrand in X(G) can be re-
assembled into the form of a matrix product,
suppressing the su%xes a, , I. Then, multi-

plying by a factor 2 to allow for the second graph,
the complete second-order correction to (74)
arising from J~ becomes

f t'

L = —iLe'/Shc]
~

dxi dxoDF(xi x.)A„'(xo)—

XP(xi)y So(xo —xi)y„Sp(xo —xo)y f(xo).
9 Robert Serber, Phys. Rev. 48, 49 {i935);E.A. Uehling,

Phys. Rev. 4S, 55 {1935).
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This is the term which gives rise to the main

part of the Lamb-Retherford line shift, " the
anomalous magnetic moment of the electron"
and the anomalous hyper6ne splitting of the
ground state of hydrogen. "

The above expression L, is formally simpler
than the corresponding expression obtained by
Schwinger, but the two are easily seen to be
equivalent. In particular, the above expression
does not lead to any great reduction in the labor
involved in a numerical calculation of the Lamb
shift. Its advantage lies rather in the ease with
which it can be written down.

In conclusion, the author mould like to ex-
press his thanks to the Commonwealth Fund of
New York for financial support, and to Pro-
fessors Schwinger and Feynman for the stimulat-
ing lectures in which they presented their re-
spective theories.

Pates added in proof (To Section II). The argument of
Section II is an over-simplification of the method of
Tomonaga, ' and is unsound. There is an error in the deriva-
tion of (3); derivatives occurring in H(r} give rise to non-

commutativity between H(r) and field quantities at r'
when r is a point on a infinitesimally distant from r'. The

' W. E. Lamb and R. C. Retherford, Phys. Rev. 72,
241 (1947)."P. Kusch and H. M. Foley, Phys. Rev. 74, 250 (1948).

'~ J. E. Nafe and E. B. Nelson, Phys. Rev. 73, 718
(1948};Aage Bohr, Phys. Rev. 73, 1109 (1948).

argument should be amended as follows. 4 is defined only
for flat surfaces t{r)=t, and for such surfaces (3) and (6)
are correct. 0 is defined for general surfaces by (12) and
(10), and is verified to satisfy (9). For a flat surface, C and
+ are then shown to be related by (7). Finally, since H&

does not involve the derivatives in H, the argument leading
to (3) can be correctly applied to prove that for general 0.

the state-vector +{0) will completely describe results of
observations of the system on 0.,

(To Section I II), A covariant perturbation theory similar
to that of Section III has previously been developed by
E. C G. Stueckelberg, Ann. d. Phys. 21, 367 (1934);
Nature, 153, 143 (1944).

(To Section V). Schwinger's "e6ective potential" is not
Hz given by (25), but is Hz ' = QHz Q '. Here Q is a "square-
root" of 5( ~ ) obtained by expanding (5(~ ) )& by the
binomial theorem. The physical meaning of this is that
Schwinger specifies states neither by 0 nor by 0', but by
an intermediate state-vector 0"=QO=Q '0', whose defi-
nition is symmetrical between past and future. Hp' is also
symmetrical between past and future. For one-particle
states, Hg and Hp' are identical.

Equation {32)can most simply be obtained directly from
the product' expansion of S( ~ ).

(To Section VII). Equation (62) is incorrect. The function
Sg' is well-behaved, but its fourier transform has a loga-
rithmic dependence on frequency, which makes an expansion
precisely of the form (62) impossible.

(To Section X). The term I. still contains two divergent
parts. One is an "infra-red catastrophe" removable by
standard methods. The other is an "ultraviolet" diverg-
ence, and has to be interpreted as an additional charge-
renormalization, or, better, cancelled by part of the charge-
renormalizatioti calculated in Section VIII.
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Attention is called to a theorem of Bloch, from which it is shown that even when inter-

electronic interactions are taken into account, the state of lowest electronic free energy corre-
sponds to a zero net current. This result contradicts the hypothesis that superconductivity
is caused by spontaneous currents.

"ANY attempts" have been made to explain
~ ~ superconductivity in terms of spontaneous

currents, which arise because there is a special
group of states of the electron gas as a whole,
for which the free energy, Ji=E—'1S, is lower

'%'. Heisenberg, Zeits. f. Naturforschg 32, 65 (1948).' M. Born and K. C. Cheng, Nature 161, 1017 (1948).

when a finite current flows than when no current
Bows at all. In some of the theories, it is suggested
that the current-carrying states in question may
have energies which are below that of the state
of zero current, while in others, it is suggested
that the current-carrying states may have so
high a statistical weight that their free energy is




