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TRANSLATORS' PREFACE 

T H~~ Theory of Relativity is at the moment the 
subject of two main lines of inquiry : there is 
an endeavour to express its principles in logical 

and concise form, and there is the struggle with ana
lytical difficulties which stand in the way of further 
progress. In the midst of such problems it is easy 
to forget the way in which the theory gradually grew 
under the stimulus of physical experiment, and thus 
to miss much of its meaning. It is this growth which 
the present collection of papers is designed chiefly 
to exhibit. In the earlier papers there are some 
things which the authors would no doubt now ex
press differently ; the later papers deal with problems 
which are not by any means yet fully solved. At 
the end ,ve must confess that Relativity is still very 
much of a problem-and therefore worthy of our 
study. 

The authors of the papers are still actively at 
work on the subject-all save Minkowski. His paper 
on " Space and Time" is a measure of the loss which 
mathematical physics suffered by his untimely death. 

The translations have been made fro1n the text, 
as published in a German collection, under the title 
"Des Relativitatsprinzip" (Teubneri 4th ed., 1922). 
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The second paper by Lorentz is an exception to this. 
It is reprinted from the original English version in 
the Proceedings of the Amsterdam Academy. Some 
minor changes have been made, and the notation has 
been brought more nearly into conformity with that 
employed in the other papers. 

W. P. 
G. B. J. 
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MICHELSON'S INTERFERENCE EXPERIMENT 

BY H. A. LORENTZ 

1. AS Maxwell first rema.rked and as follows from a 
very simple calculation, the time required by a ray 
of light to travel from a point A to a point B and 

back to A must vary when the two points together undergo 
a displacement without carrying the ether with them. The 
difference is, certainly, a magnitude of second order; but it 
is sufficiently great to be detected by a sensitive interference 
method. 

The experiment was carried out by Michelson in 1881. * 
His apparatus, a kind of interferometer, had two horizontal 
arms, P and Q, of equal length and at right angles one to 
the other. Of the two mutually interfering rays of light the 
one passed along the arm P and back, the other along the 
arm Q and back. The whole instrument, including the 
source of light and the arrangement for taking observations, 
coulcl be revolved about a vertical axis; and those two 
positions come especially under consideration in which the 
arm P or the arm Q lay as nearly as possible in the direction 
of tho Earth's motion. On the basis of Fresnel's theory it 
was anticipated that when the apparatus was revolved from 
one of these principal positions into the other there would 
be a displacement of the interference fringes. 

But of such a displacement-for the sake of brevity we 
will call it the Maxwell displacement-conditioned by the 
change in the times of propagation, no trace was discovered, 
and accordingly Michelson thought himself justified in con
cluding that while the Earth is moving, the ether does not 
remain at rest. The correctness of this inference wa.s soon 
brought into question, for by an oversight Michelson had 

* Michelson, American Journal of Science, 22, 1881, p. 120. 
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4 MICHELSON'S EXPERIMENT 

taken the change in the phase difference, which was to be 
expected in accordance with the theory, at twice its proper 
value. If we make the necessary correction, we arrive at 
displacements no greater than might be masked by errors of 
observa.tion. 

Subsequently Michelson* took up the investigation anew 
in collaboration with Morley, enhancing the delica.cy of the 
experiment by causing each pencil to be reflected to and fro 
between a number of mirrors, thereby obtaining the same 
advantage as if the arms of the earlier apparatus had been 
considerably lengthened. The mirrors were mounted on a 
massive stone disc, floating on mercury, and therefore easily 
revolved. Each pencil now ha.d to travel a total distance of 
22 meters, and on Fresnel's theory the displacement to be 
expected in passing from the one principal position to the 
other would be 0·4 of the distance between the interference 
fringes. Nevertheless the rotation produced displacements 
not exceeding O 02 of this distance, and these might well be 
ascribed to errors of observation. 

Now, does this result entitle us to assume that the ether 
takes part in the motion of the Earth, and therefore that the 
theory of aberration given by Stokes is the correct one? 
The difficulties which this theory encounters in explaining 
aberration seem too great for me to share this opinion, a.nd 
I would rather try to remove the contradiction between 
Fresnel's theory and Michelson's result. An hypothesis 
which I brought forward some time ago,t and which, as I 
subsequently learned, has also occurred to Fitzgerald,! enables 
us to do this. The next paragraph will set out this hypo
thesis. 

2. To simplify matters we will assume that we are work
ing with apparatus a.s employed in the first experiments, and 
that in, the one principal position the arm P lies exactly in 

* Michelson e.nd Morley, American Journal of Science, 34, 1887, p. 888; 
Phil. Mag., 24, 1887, p. 4:49. 

t Lorentz, Zittingsverslagen der Ake.d. v. Wet. te Amsterdam, 1892-93, 
p. 74. 
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the direction of the motion of the Earth. Let v be the 
velocity of this motion, L the length of either arm, and hence 
2L the path traversed by the rays of light. According to the 
theory,* the turning of the apparatus through 90° causes the 
time in which the one pencil travels along P and back to be 
longer than the time which the other pencil takes to complete 
its journey by 

Lv2 

There would be this same di ff ere nee if the translation had no ., 

influence and the arm P were longer than the arm Q by 
1Lv2 /c2

• Similarly with the second principal position. 
Thus we see that the phase differences expected by the 

theory might also arise if, when the apparatus is revolved, first 
the one arm and then the other arm were the longer. It 
follows that the phase differences can be compensated by 
contrary changes of the dimensions. 

If we assume the arm which lies in the direction of the 
r 

Earth's motion to be shorter than the other by ½Lv2/c2, and, 
at the same time, that the translation has the influence wp.ich 
Fresnel's theory allows it, then the result of the Michelson 
experiment is explained completely. 

Thus one would have to imagine that the motion of a 
solid body ( such as a brass rod or the stone disc employed in 
the later experiments) through the resting ether exerts upon 
the dimensions of that body an influence which varies accord
ing to the orientation of the body with respect to the direction 
of motion. If, for example, the dimensions parallel to this 
direction were changed in the proportion of 1 to 1 + o, and 
those p.erpendicular in the proportion of 1 to 1 + E, then we 
should have the equation 

. (1) 

in which the va,lue of one of the quantities 8 and e would 
remain undetermined. It might be that e = 0, 8 == - tv2 /ci, 
but also e = ½v 2 /c2, 8 = 0, ore = iv2 /c2

, and o = - iv2 /c2
• 

3. Surprising as this hypothesis may appear at first sight, 

* Cf. Lorentz, Arch. N ~erl., 2, 1887, pp. 168-176. 
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yet we shall have to admit that it is by no means far-fetched, 
as soon as we assume that molecular forces are also trans
mitted through the ether, like the electric and magnetic forces 
of which we are able at the present time to make this as
sertion definitely. If they are so transmitted, the translation 
will very probably affect the action between two molecules or 
atoms in a manner resembling the attraction or repulsion be .. 
tween charged particles. Now, since the form and dimensions 
of a solid body are ultimately conditioned by the intensity of 
molecular actions, there cannot fail to be a change of di .. 
mensions as well. 

From the theoretical side, therefore, there would be no 
objection to the hypothesis. As regards its experimental 
proof, we must first of all note that the lengthenings and 
shortenings in question are extraordinarily small. We have 
v2/c2 = 10-s, and thus, if e = 0, the shortening of the one 
diameter of the Earth would amount to about 6·5 cm. 
The length of a meter rod would change, when moved from 
one principal position into the other, by about ~ micron. 
One could hardly hope for success in trying to perceive such 
small quantities except by means of an interference method. 
We should have to operate with two perpendicular rods, and 
with two mutually interfering pencils of light, allowing the 
one to travel to and fro along the first rod, and the other 
along the second rod. But in this way we should come back 
once more to the Michelson experiment, and revolving the 
apparatus we should perceive no displacement of the fringes. 
Reversing a previous remark, we might now say that the dis
placement produced by the alterations of length is com
pensated by the Maxwell displacement. 

4. It is worth noticing that we are led to just the same 
changes of dimensions as have been presumed above if we, 
firstly, without taking molecular movement into consider
ation, assume that in a solid body left to itself the forces, at
tractions or repulsions, acting upon any molecule maintain 
one another in equilibrium, and, secondly-though to be sure, 
there is no reason for doing so-if we apply to these molecular 
forces the law which in another place* we deduced for 

• Viz., § 23 of the book, "Versuch einer Theorie der elektrischen und opti• 
schen Erscheinungen in bewegt~n Korpern." 
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electrostatic actions. For if we now understand by S1 and 
82 not, as formerly, two systems of charged particles, but two 
systems of molecules-the second at rest and the first moving 
with a velocity v in the direction of the axis of x-between the 
dimensions of which the relationship subsists as previously 
stated; and if we assume tha.t in both systems the x com
ponents of the forces are the sa.me, while they and z com-
ponents differ from one another by the factor ✓1 - v'l/c"', then 
it is clear that the forces in S1 will be in equilibrium when
ever they are so in S2• If therefore 82 is the state of equilibrium 
of a solid body at rest, then the molecules in 81 have precisely 
those positions in which they can persist under the influence 
of translation. The displacement would naturally bring about 
this disposition of the molecules of its own accord, and 
thus effect a shortening in the direction of motion in the 
proportion of 1 to ✓1 - v2/c2, in accordance with the formulm 
given in the above-mentioned paragraph. This leads to the 
values 

v2 
8 = - ½2 , e :a: 0 

C 

in agreement with (1). 
In reality the molecules of a body are not at rest, but in 

every '' state of equilibrium " there is a stationary movement. 
What influence this circumstance may have in the phe
nomenon which we have been considering is a question which 
we do not here touch upon; in any case the experiments of 
Michelson and Morley, in consequence of unavoidable errors 
of observation, afford considerable latitude for the values of 
a and e. 
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ELECTROMAGNETIC PHENOMENA IN A SYSTEM 
MOVING WITH ANY VELOCITY LESS THAN 
THAT OF LIGHT 

BY H. A. LORENTZ 

§ 1. THE problem of determining the influence exerted 
on electric and optical phenomena by a translation, 
such as all systems have in virtue of the Earth's 

annual motion, admits of a comparatively simple solution, so 
long as only those terms need be taken into account, which 
are proportional to the first power of the ratio between the 
velocity of translation v and the velocity of light c. Cases in 
which quantities of the second order, i.e. of the order v2/c2 , 

may be perceptible, present more difficulties. The first ex
a)nple of this kind is Michelson's well-known interference
experiment, the negative result of which has led Fitzgerald 
and myself to the conclusion that the dimensions of solid 
bodies are slightly altered by their motion through the ether. 

Son1e ne\V experiments, in which a second order effect was 
sought for, have recently been published. Rayleigh* and 
Brace t have examined the question whether the Earth's 
motion may cause a body to become doubly refracting. At 
first sight this 1night be expected, if the just mentioned 
change of dimensions is admitted. Both physicists, how
ever, have obtained a negative result. 

In the second place Trouton and Noble t have endeavoured 
to detect a turning couple acting on a charged condenser, 
the plates of which make a certain angle with the direction of 
translation. The theory of electrons, unless it be modified 
by some new hypothesis, would undoubtedly require the 

* Rayleigh, Phil. Mag. (6), 4, 1902, p. 678. 
t Brace, Phil. Mag. (6), 7, 1904, p. 817. 
::: Trouton and Noble, Phil. Trans. Roy. Soc. Lond., A 202, 1908, p. 165. 

11 



12 ELECTROMAGNETIC PHENOMENA 

existence of such a couple. In order to see this, it will suffice 
to consider a condenser with ether as dielectric. It may be 
shown that in every electrostatic system, moving with a 
velocity v, • there is a certain amount of '' electromagnetic 
momentum.'' If we represent this, in direction and magni
tude, by a vector O, the couple in question will be determined 
by the vector product t 

[O. v] . . (1) 

Now, if the axis of z is chosen perpendicular to the con
denser plates, the velocity v having any direction we like ; 
and if U is the energy of the condenser, calculated in the 
ordinary way, the components of O are given :J: by the follow
ing formulre, which are exact up to the first order, 

2U 2U 
Gx = c2 Vx, Gy = c'l. Vy, Gz = 0. 

Substituting these values in (1), we get for the compon-
ents of the couple, up to terms of the second order, 

2U 2U 
- 2- VyVz, - - 2 VxVz, 0. 
C C 

These expressions show that the axis of the couple lies in 
the plane of the plates, perpendicular to the translation. If 
a is the angle between the velocity and the normal to the 
plates, the moment of the couple will be U(v/c)2 sin 2a; it 
tends to turn the condenser into such a position that the 
plates are parallel to the Earth's motion. 

In the apparatus of Trouton and Noble the condenser was 
fixed to the beam of a torsion-balance, sufficiently delicate to 
be deflected by a couple of the above order of magnitude. 
No effect could however be observed. 

§ 2. The experiments of which I have spoken are not the 
only rea.son for which a new examination of the problems 
connected with the motion of the Earth is desirable. Poin-

• A vector will be denoted by a Ola,rendon letter, its magnitude by the cor
responding Latin letter. 

t See my article: "Weiterbildung der Ma,xwell'schen Theorie. Electron
entheorie," Mathem. Encyclopiidie1 V, 14, § 21, a. (This article will be quoted 
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son's negative result, the introduction of a new hypothesis 
has been required, and that the same necessity may occur 
each time new facts will be brought to light. Surely this 
course of inventing -special hypotheses for each new experi
mental result is somewhat artificial. It would be more 
satisfactory if it were possible to show by means of certain 
fundamental assumptions and without neglecting terms of 
one order of magnitude or another, that many electromagnetic 
actions are entirely independent of the motion of the system. 
Some years ago, I already sought to irame a theory of this 
kind. t I believe it is now possible to treat the subject with 
a better result. The only restriction as regards the velocity 
will be that it be less than that of light. 

§ 3. I shall start from the fundamental equations of the 
theory of electrons.t Let D be the dielectric displacement in 
the ether, H the magnetic force, p the volume-density of the 
charge of an electron, v the velocity of a point of such a 
particle, and F the ponderomotive force, i.e. the force, 
reckoned per unit charge, which is exerted by the ether on a 
volume-element of an electron. Then, if we use a fixed 
system of co-ordinates, 

div D = p, div H = 0, l 
1 (~D ) curlH=- -+pv, 
C c)t 

l~H 
curlD=--- j 

c; ~t ' 

F = D + ! [v. H]. 
C 

. (2) 

I shall now suppose that the system as a whole moves in 
the direction of a: with a constant velocity v, and I shall 
denote by u any velocity which a point of an electron ma.y 
ha.vein addition to this, so that 

Vx = V + Uz, Vy = Uy, 'Vz = u~. 

* Poinoe.r6, Rapports du Oongres de physique de 1900, Paris, 1, pp. 22, 28. 
t Lorentz, Zittingsverslag Ake.d. v. Wet., 7, 1899, p. 507 ; Amsterdam 

Proo., 1898-99, p. 427. 
+"ME '' § 2 .... .. ., . 
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If the equations (2) are at the same time referred to axes 
moving with the system, they become 

div D = p, div H = 0, 

~Hz - ~~Y = !(~ - V -~)Dx + !p(v + Ux) 
"'i)y <)Z C ot oX C ' 

c)Hx - oH~ = !(~ - V -~)Dy + !puy 
~z ().V C "?Ji QX C ' 

"Dm ()Dz 
---= 

<)Z <)X 

"?JDy ()Dx 
-- --= ox -ay 

§ 4. We shall further transform these formul~ by a change 
of variables. Putting 

c2 
-- 1.)2 

c2 - v2 - tJ ' • 
. (3) 

and understanding by l another numerical quantity, to be 
determined further on, I take as new independent variables 

x' = f3lx, y' = ly, z' = lz, . 

, l 1.>lv t = 13t - tJ c2x, . 

and I define two new vectors D' and H' by the formulm 

. (4) 

. (5) 
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D'x = f.nx, D'11 = i( Dy - ~H.), D', = !( Dz + ~Hy), 

H'x = iR., H'y = ~(H11 + ~D ), H'z = i(n. - ~n11), 

for which, on account of (3), we may also write 

15 

Dx = l2D',,, Dy = ,Bz2(D'11 + ~H'z), D,= .Bl2( D'. -~H'11) t6) 

H.,, = l2H'.,,, Hy= ,Bl'(H'u - ~D',), H,=,Bl2 ( H',+~D'11) J 
As to the coefficient l, it is to be considered as a function 

of v, whose value is 1 for v = 0, and which, for small values 
of v, differs from unity no more than by a quantity of the 
second order. 

The variable t' may be cal1ed the" local time" ; indeed, 
for /3 = 1, l = 1 it becomes identical with what I formerly 
denoted by this name. 

If, finally, we put 
1 

{3la P = P 
8 2 ' Q I Q I Ux = 'll, x, JJUy = Uy, JJUz = U z, , 

(7) 

. (8) 

these latter quantities being considered as the components of 
a. new vector u', the equations take the following form:-

d • , D' (i vu· x) , d . , , O 1 
1 v = - c2 - p , 1 v H - , l 

11 H' 1 ( c) D, I , ) (9) cur = c -;,t + p u , 

I' , 1 ~H' cur D =- - -·-c "at' ' ) 

Fx = l'{D'x + ~(u'11H'z - u',H'y) + ;,;(u'yD'y + u'zD'z) }, 1 
Fy= ~{D'11 + ~(u',H',,, - u'xH'z)- ; 2u'xD'11}, r (10) 

F z2{D' 1 r , H' , H' ) v , D' 
Z _, - Z + -·\ U X y - U 1J CC - -U X Z} • 

/3 C c2 ) 

The meaning of the symbols div' and curl' in (9) is similar 
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to that of div and curl in (2); only, the differentiations with 
respect to x, y, z a.re to be replaced by the corresponding 
ones with respect to x ', y', z'. 

§ 5. The equations (9) lead to the conclusion that the 
vectors D' and H' may be represented by means of a scalar 
potential cf,' and a vector potential A'. These potentials 
satisfy the equations* 

'2,1,.' - 1 c)2cp' -- , 
"v "' c2 <)t'2 - p 

'2A' 1 <)2 A' 1 ' ' 
, "v - c2 "at'2 = - cp u' 

and in terms of them D' and H' are given by 

D' = 1 <)A' d' ,1,.' V d' A' - c c)t' - gra "' + 0 gra x 

H' = curl' A' 

. (11) 

. (12) 

. (13) 

. (14) 

Th b 1 '2 • bb . t· f 7J2 7J2 <')2 e sym o '1 1s an a rev1a ~on or c)a;'2 + "i)y'2 + c)z'2, 

and grad' cf/ denotes a vector whose components are 

3cp' -act,' -acp' 
~x'' ";)y' ' 7Jz' • 

The expression grad' A'x has a similar meaning. 
In order to obtain the solution of (11) and (12) in a 

simple form, we may take x', y', z' as the co-ordinates of a 
point P' in a space S', and ascribe to this point, for each 
value of t', the values of p', u', cf,', A', belonging to the corre
sponding point P (x, y, z) of the electromagnetic system. 
For a definite value t' of the fourth independent variable, the 
potentials cf,' and A' at the point P of the"'system or at the 
corresponding point P' of the space S', are given by t 

</>' = iJ::las· . 
A' = _!__J[p'~']dS' 

4,rc r 

• 

'M.E.," I§ 4 a.nd 10. t Ibid., §§ 5 and 10. 

. (15) 

. (16) 
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Here dS' is an element of the space S', r' its distance from 
P', and the brackets serve to denote the quantity p' and the 
vector p'u' such as they are in the element dS', for the value 
t' - r'/c of the fourth independent variable. 

Instead of (15) and (16) we may also write, taking into 
account (4) and (7), 

. (17) 

(18) 

the integrations now extending over the electromagnetic 
system itself. It should be kept in mind that in these 
formuloo r' does not denote the distance between the element 
dS and the point (x, y, .z) for which the calculation is to be 
performed. If the element lies at the point (xi, y1, z1), we 
must take 

r' = l✓ 131.(x - x 1)t + (y - y1Y, + (z - z1)2. 

It is also to be remembered that, if we wish to determine 
¢' and A' for the instant at which the local time in P is t', we 
must take p and pu', such as they are in the element dS at 
the instant at which the local time of that element is t' - r'/c. 

§ 6. Tt will suffice for our purpose to consider two special 
cases. The first is that of an electrostatic system, i.e, a 
systen1 having no other motion but the translation with the 
velocity v. In this case u' = 0, and therefore, by (12), A' = 0. 
Also, cp' is independent of t', so that the equations (11), (13), 
and (14) reduce to 

'r7'2,.J...' ' } v't'--p 
D' - - g;ad' cp', 
H' = 0 

. (19) 

After having determined the vector D' by means of these 
equations, we know also the ponderomotive force acting on 
electrons that belong to the system. For these the formuloo 
(10) become, since u' = 0, 

. (20) 
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The result may be put in a simple form if we compare the 
moving system $, with which we are concerned, to another 
electrostatic system $' which remains at rest, and into which 
i is changed if the dimensions parallel to the axis of x are 
multiplied by ~l, and the dimensions which have the direction 
of y or that of z, by l-a deformation for which (/3l, l, l) is an 
appropriate symbol. In this new system, which we may 
suppose to be placed in the above-mentioned space S', we 
shall give to the density the value p', determined by (7), so 
that the charges of corresponding elements of volu1ne and of 
corresponding electrons are the same in I and '!'. Then we 
shall obtain the forces acting on the electrons of the moving 
system '!, if we first determine the corresponding forces in 
'!', and next mu]tiply their components in the direction of 
the axis of x by l2, and their components perpendicular to 

z2 
that axis by 13. This is conveniently expressed by the 

formula 

. (21) 

It is further to be remarked that, after having found D' by 
(19), we can easily calculate the electromagnetic momentum 
in the moving system, or rather its component in the 
direction of the 1notion. Indeed, the formula 

0 = H(D. H)dS 

shows that 

Gx = H(DyH• - DzHy)dS. 

Therefore, by (6), since H' = 0 

G., = ..e:~4vJ(Dy'2 + D;2)dS = ~~v J (D1/ 2 + Dz'2)dS'. (22) 

§ 7. Our second special case is that of a particle having 
an electric moment, i.e. a small space S, with a total charge 

JpdS = 0, but with such a distribution of density that the 
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integrals J pxdS, J pydS, J pzdS have values differing from 0. 

Let ~' µ,, , be the co-ordinates, taken relatively to a fixed 
point A of the particle, which may be called its centre, and 
let the electric moment be defined as a vector P whose com
ponents are 

P., = Jp~dS, Py = J,,.,as, P. ~ JptdS . . (23) 

Then 

Of course, if E, 'f/, tare treated as infinitely small, Ux, Uy, u% 

must be so likewise. We shall neglect squares and products 
of these six quantities. 

We shall now apply the equation (17) to the determination 
of the scalar potential ¢' for an exterior point P (x, y, z), at a 
finite distance from the polarized particle, and for the instant 
at which the local time of this point has some definite value 
t'. In doing so, we shall give the symbol [p], which, in (17), 
relates to the instant at which the local time in dS is t' - r' /c, 
a slightly different meaning. Distinguishing by r'0 the value 
of r' for the centre A, we shall understand by [p] the value 
of the density existing in the element dS at the point 
(E, 'f/, t), at the instant t0 at which the local time of A is 
t' - r0/c. 

It may be seen from (5) that this instant precedes that 
for which we have to take the numerator in (17) by 

p2vf + ~(r' o - 1·') = 132~f + ~ (E~r' + ~ + >""i)r') 
c'J. le c2 le ()a; 'YJ '3y ~ c)z 

units of time. In this last expression we may put for the 
differential coefficients their values at the point A. 

In (17) we have now to replace [p] by 

2vE["P] /3 ( <)r' "i)r' "i)r')['3p] 
[p] + /3 c2 "i) t + le E "i)x + 11 "i>y + t ~z () t (25) 

where[!:] relates a.gain to the time t0• Now, the value of t' 

for which the calculations are to be performed having been 
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chosen, this time t0 will be a function of the co-ordinates x, 
y, z of the exterior point P. The value of [p] will therefore 
depend on these co-ordinates in such a way that 

()[p] == - ~ <)r'[~P] etc 
~x le ~x ~t-' • 

by which (25) becomes 

[p] + ~2vE["P] _ (E~[p} + 'l~[p] + ,~[p]). 
c2 c>t c)x "i)y "i)z 

Again, if henceforth we understand by r' what has above 

been called r'0, the factor 1, must be replaced by 
r 

1 ~ (1 ) i, (1 ) "c) (1 ) 
r' - E-ax r' - TJ'i)y r' - ~~z r' ' 

so that after all, in the integral (17), the element dS is 
multiplied by 

[p J ~2vf["PJ _ c> f[p] c) 11[p] <> ~p] 
r' + c2r' ~t ()X 7 - "3y 7 - <)z 7 • 

This is simpler than the primitive form, because neither 
r', nor the time for which the quantities enclosed in brackets 
are to be taken, depend on x, y, z. Using (23) and re-
membering that f pdS = 0, we get 

cf,' = ~2v [~] _ _! { ~[Px] + <) [Py] + ~[P:.]} 
4pc2r' ~t 4p ~x r' ay r' c,z r' ' 

a formula in which all the enclosed quantities are to be 
taken for the instant at which the local time of the centre of 
the particle is t' - r'/c. 

We shall conclude these calculations by introducing a new 
vector P', whose components are 

P'x = ~lPx, P'y = lPy, P'z = lPz, . . (26) 

passing at the same time to x', y', z', t' as independent vari
ables. The final result is 
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finitely small vector u'. Having regard to (8), (24), (26), and 
(5), I find 

A' = __ ! ___ ()[P'] 
47rcr' ot' • 

The field produced by the polarized particle is now wh_olly 
determined. The formula (13) leads to 

D' _ 1 c>2 [P'J 1 d'{ O [P'x] 0 [P'?I] () [P'z]} (or-1) 
- - 4~ 't'\? --, + 4- gra :;, ' + :;;;, , + " --, ~ ' 7rC u r 7r vX r uy r ,,z r 

and the vector H' is given by (14). We may further use the 
equations (20), instead of the original formulro (10), if we 
wish to consider the forces exerted by the polarized particle 
on a similar one placed at some distance. Indeed, in the 
second particle, as we11 as in the first, the velocities u may be 
held to be infinitely small. 

It is to be remarked that the formulffi for a system 
without translation are implied in what precedes. For 
such a system the quantities with accents become identical 
to the corresponding ones without accents ; also ~ = 1 and 
l = 1. The components of (27) are at the same time those 
of the electric force which is exerted by one polarized particle 
on another. 

§ 8. Thus far we have used only the fundamental 
equations without any new assumptions. I shall now suppose 
that the electrons, which I take to be spheres of radius R in 
the state of rest, have their dimensions changed by the effect 
of a translation, the dimensions in, the direction of 1notion 
becoming ~l thnes and those in perpendicular directions l 
times smaller. 

In this deforrnation, which may be represented by 

(tz• } , f), each element of volume is understood to preserve 

its charge. 
Our assumption amounts to saying that in an electro

static system ~' moving with a velocity v, all electrons are 
flattened ellipsoids with their smaller axes in the direction of 
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motion. If now, in order to apply the theorem of § 6, we 
subject the system to the deformation ({3l, l, l), we shall 
have again spherical electrons of radius R. Hence, if we 
alter the relative position of the centres of the electrons in I 
by applying the deformation (/3l, l, l), and if, in the points 
thus obtained, we place the centres of electrons that remain 
at rest, we shall get a syste1n, identical to the imaginary 
system I', of which we have spoken in § 6. The forces in 
this system and those in I w1ll bear to each other the rela .. 
tion expressed by (21). 

In the second place I shall suppose that the forces be-
tween uncharged particles, as well as those between such 
particles and electrons, are influenced by a translation in 
quite the same way as the electric forces in an electrostatic 
system. In other terms, whatever be the nature of the 
particles composing a ponderable body, so long as they do 
not move relatively to each other, we shall have between the 
forces acting in a system (~') wHhout, and the same system 
(~) with a translation, the relation specified in (21), if, as re
gards the relative position of the particles, I' is got from I 
by the deformation (/3l, l, l}, or I from t' by the deformation 

( 1 1 1) 
f.3l' l' [ • 

We see by this that, as soon as the resulting force is zero 
for a particle in I', the same must be true for the correspond
ing particle in t. Consequently, if, neglecting the effects of 
molecular motion, we suppose each particle of a solid body 
to be in equilibrium under the action of the attractions and 
repulsions exerted by its neighbours, and if we take for 
granted that there is but one configuration of equilibrium, we 
may draw the conclusion that the system I', if the velocity v 
is imparted to it, will of itself change into the system I. In 
other terms, the translation will produce the deformation 

( 1 1 1) 
/3l' l ' l • 

The case of molecular motion will be considered in § 12. 
It will easily be seen that the hypothesis which was 

formerly advanced in connexion with Michelson's experi
ment, is implied in what has now been said. However, 
the present hypothesis is more general, because the only 
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limitation imposed on the motion is that its velocity be less 
than that of light. 

§ 9. We are now in a position to calculate the electro
magnetic momentum of a single electron. For simplicity's 
sake I shall suppose the charge e to be uniformly distributed 
over the surface, so long as the electron remains at rest. 
Then a distribution of the same kind will exist in the system 
I' with which we are concerned in the last integral of (22). 
Hence • 

and 

It must be observed that the product f3l is a function of v 
and that, for reasons of symmetry, the vector O has the 
direction of the translation. In general, representing by v 
the velocity of this motion, we have the vector equation 

e2 

0 = 671'c2R,8Zv • . (28) 

Now, every change in the motion of a system will entail 
a corresponding change in the electromagnetic momentum 
and will therefore require a certain force, which is given in 
direction and magnitude by 

F = dO 
dt 

. (29) 

Strictly speaking, the formula (28) may only be applied 
in the case of a uniform rectilinear translation. On account 
of this circumstance-though (29) is always true--the theory 
of rapidly varying motions of an electron becomes very com
plicated, the more so, because the hypothesis of § 8 would 
imply that the direction and amount of the deformation are 
continually changing. It is, indeed, hardly probable that the 
form of the electron wi 11 be determined solely by the velocity 
existing at the moment considered. 

N everthcless, provided the changes in the state of motion 
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be sufficiently slow, we shall get a satisfactory approximation 
by using (28) a.t every instant. The application of (29) to 
such a quasi-stationary translation, as it has been called by 
Abraham,* is a very simple matter. Let, at a certain instant, 
a1 be the acceleration in the direction of the path, and a2 the 
acceleration perpendicular to it. Then the force F will con
sist of two components, having the directions of these acce
lerations and which are given by 

F1 = m1a1 and F2 = m2a2, 

if 

. (30) 

Hence, in phenomena in which there is an acceleration 
in the direction of motion, the electron behaves as if it 
had a mass m1 ; in those in which the acceleration is normal 
to the path, as if the mass were m2• These quantities m1 

and m2 may therefore properly be called the " longitudinal " 
and " transverse " electromagnetic masses of the electron. I 
shall suppose that there is no other, no " true " or 
" material " mass. 

Since ~ and l differ from unity by quantities of the order 
v2/c2, we find for very small velocities 

e'l 

1n1 = 111,2 - 61rc2R. 

This is the mass with which we are concerned, if there 
are small vibratory motions of the electrons in a. system 
without translation. If, on the contrary, motions of this 
kind are going on in a, body moving with the velocity v in the 
direction of the axis of x, we shall have to reckon with the 

• 
mass mi, as given by (30), if we consider the vibrations 
parallel to that axis, and with the mass m2, if we treat of 
those that are parallel to OY or OZ. Therefore, in short 
terms, referring by the index I to a moving system and by 
!' to one that remains at rest, 

. (31) 

* A bra.ham, Wied. Ann., 10, 1908, p. 105. 
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§ 10. We can now proceed to examine the influence of the 
Earth's motion on optical phenomena in a system of trans
parent bodies. In discussing this problem we shall fix our 
attention on the variable electric moments in the particles or 
" atoms " of the system. To these moments we may apply 
what has been said in § 7. For the sake of simplicity we 
shall suppose that, in each particle, the charge is concentrated 
in a certain number of separate electrons, and that the 
" elastic " forces that act on one of these, and, conjointly 
with the electric forces, determine its motion, have their 
origin within the bounds of the same atom. 

I shall show that, if we start from any given state of 
motion in a system without translation, we may deduce from 
it a corresponding state that can exist in the same system 
after a' translation has been imparted to it, the kind of corre
spondence being as specified in what follows. 

(a) Let A'i, A' 2 , A'3 , etc., be the centres of the particles in 
the system without translation (I') ; neglecting molecular 
motions we shall assume these points to remain at rest. The 
system of points A1, A2, A3, etc., formed by the centres of the 
particles in the moving system t, is obtained from A\, A' 2, 

A' 8, etc., by means of a. deformation (~l' ~, t). According to 

what has been said in § 8, the centres will of themselves take 
these positions A\, A'2, A'3, etc., if originally, before there 
was a translation, they occupied the positions A1, A2, A3, 

etc. 
We may conceive any point P' in the space of the 

system "i' to be displaced by the above deformation, so that 
a definite point P of "i corresponds to it. For two corre
sponding points P' and P we shall define corresponding 
instants, the one belonging to P', the other to P, by stating 
that the true time at the first instant is equal to the local 
time, as determined by (5) for the point P, at the second 
instant. By corresponding times for two corresponding 
particles we shall understand times that may be said to 
correspond, if we fix our attention on the centres A' and A of 
these particles. 

(b) As regards the interior state of the atoms, we shall as
sume that the configuration of a particle A in I at a certain 
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time may be derived by means of the deformation (Jl' f,}) 
from the configuration of the corresponding particle in ~', 
such as it is at the corresponding instant. In so far as 
this assumption relates to the form of the electrons them
selves, it is implied in the first hypothesis of § 8. 

Obviously, if we start from a state really existing in the 
system I', we have now completely defined a state of the 
moving system I. The question remains, however, whether 
this state will likewise be a possible one. 

In order to judge of this, we may remark in the first place 
that the electric moments which we have supposed to exist 
in the moving system and which we shall denote by P, will 
be certain definite functions of the co-ordinates x, y, z of the 
centres A of the particles, or, as we shall say, of the co
ordinates of the particles themselves, and of the time t. The 
equations which express the relations between P on one hand 
and x, y, z, t on the other, may be replaced by other equations 
containing the vectors P' defined by (26) and the quantities 
x', y', z', t' defined by (4) and (5). Now, by the above as
sumptions a and b, if in a particle A of the moving system, 
whose co-ordinates are x, y, z, we find an electric moment P 
at the time t, or at the local time t', the vector P' given by 
(26) will be the moment which exists in the other system at 
the true time t' in a particle whose co-ordinates are x', y', z'. 
It appears in this way that the equations between P', x', y', 
z', t' are the same for both systems, the difference being only 
this, that for the system I' without translation these symbols 
indicate the moment, the co-ordinates, and the true time, 
whereas their meaning is different for the moving system, P', 
x', y', z', t' being here related to the moment P, the oo-ordin
ates x, y, z and the general time t in the manner expressed 
by (26), (4), and ( 5). 

It has already been stated that the equation (27) applies 
to both systems. The vector D' will therefore be the same 
in I' and I, provided we al ways compare corresponding 
places and tin1es. However, this vector has not the sa1ne 
1neaning in the two cases. In ~' it represents the electric 
force, in I it is related to this force in the way expressed by 
(20). We may therefore conclude that the ponderomotive 
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forces acting, in I and in "£', on corresponding particles at 
corresponding instants, bear to each other the relation deter
mined by (21). In virtue of our assumption (b), taken in con
nexion with the second hypothesis of § 8, the same relation 
will exist between the "elastic" forces; consequently, the 
formula (21) may also be regarded as indicating the relation 
between the total forces, acting on corresponding electrons, 
at corresponding ins tan ts. 

It is clear that the state we have supposed to exist in the 
moving system will really be possible if, in I and :I,', the pro-
ducts of the mass m and the acceleration of an electron are 
to each other in the same relation as the forces, i.e. if 

ma~) = ( l2, :, :) ma{t') . . (32) 

Now, we have for the accelerations 

. (33) 

as may be deduced from (4) and (5), and combining this with 
(32), we find for the masses 

m(~) = (/33l, {3l, /3l)m(I'). 

If this is compared with (31), it appears that, whatever be 
the value of l, the condition is always satisfied, as regards the 
masses with which we have to reckon when we consider 
vibrations perpendicular to the translation. The only con
dition we have to impose on l is therefore 

d(/3lv) _ f.)sz 
dv - /J • 

But, on account of (3), 

so that we must put 

d(~v) = /.)3 

dv tJ ' 

dl 
d- = 0, l = const. 

'I) 

The value of the constant must be unity, because we know 
already that, for ·v = 0, l = 1. 
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We are therefore led to suppose that the influence of a 
translation on the dimensions (of the separate electrons and 
of a ponderable body as a whole) is confined to those that 
have the direction of the motion, these becoming ~ times 
smaller than they are in the state of rest. If this hypothesis 
is added to those we have already made, we may be sure that 
two states, the one in the moving system, the other in the 
same system while at rest, corresponding as stated above, 
may both be possible. Moreover, this correspondence is not 
limited to the electric moments of the particles. In corre-' 
sponding points that are situated either in the ether between 
the particles, or in that surrounding the ponderable bodies, 
we shall find at corresponding times the same vector D' and, 
as is easily shown, the same vector H'. We may sum up by 
saying: If, in the system without translation, there is a state 
of motion in which, at a definite place, the components of P, 
D, and H are certain functions of the time, then the same 
system after it has been put in motion (and thereby deformed) 
can be the seat of a state of motion in which, at the corre
sponding place, the components of P', D', and H' are the same 
functions of the local time. 

There is one point which requires further consideration. 
The values of the masses m1 and m2 having been deduced 
from the theory of quasi-stationary motion, the question 
arises, whether we are justified in reckoning with them in 
the case of the rapid vibrations of light. Now it is found on 
closer examination that the motion of an electron may be 
treated as quasi-stationary if it changes very little during the 
time a light-wave takes to travel over a distance equal to the 
diameter. This condition is fulfilled in optical phenomena, 
because the diameter of an electron is extremely small in com
parison with the wave-length. 

§ 11. It is easily seen that the proposed theory can 
account for a large number of facts. 

Let us take in the first place the case of a system without 
translation, in some parts of which we have continually 
P = 0, D = 0, H = 0. Then, in the corresponding state for 
the maying system, we shall have in corresponding parts (or, 
as we may say, in the sa1ne parts of the deformed system) 
P' = 0, D' = 0, H' =- 0. These equations implying P = 0, 
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D = 0, H :::a 0, as is seen by (26) and (6), it appears that those 
parts which are dark while the system is at rest, will remain 
so after it has been put in motion. It will therefore be im
possible to detect an influence of the Earth's motion on any 
optical experi1nent, made with a terrestrial source of light, 
in which the geometrical distribution of light and darkness is 
observed. Many experiments on interference and diffraction 
belong to this class. 

In the second place, if, in two points of a system, rays of 
light of the same state of polarization are propagated in the 
same direction, the ratio between the amplitudes in these 
points may be shown not to be altered by a translation. 
The latter remark applies to those experiments in which the 
intensities in adjacent parts of the field of view are compared. 

The above conclusions confirm the results which I formerly 
obtained by a similar train of reasoning, in which, however, 
the terms of the second order were neglected. They also 
contain an explanation of Michelson's negative result, more 
general than the one previously given, and of a somewhat 
different form; and they show why Rayleigh and Brace could 
find no signs of double refraction produced by the motion of 
the Earth. 

As to the experiments of Trouton and Noble, their 
negative result becomes at once clear, if we admit the hypo
theses of § 8. It may be inferred from these and from our 
last assumption (§ 10) that the only effect of the translation 
must have been a contraction of the whole system of elec
trons and other particles constituting the charged condenser 
and the beam and thread of the torsion-balance. Such a 
contraction does not give rise to a sensible change of 
direction. 

It need hardly be said that the present theory is put for
ward with all due reserve. Though it seems to me that it 
can account for all well-established facts, it leads to some 
consequences that cannot as yet be put to the test of experi
ment. One of these is that the result of Michelson's experi
m~nt must remain negative, if the interfering rays of light 
are made to travel through some ponderable transparent 
body. 

Our assumption about the contraction of the electrons 
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cannot in itself be pronounced to be either plausible or in
admissible. What we know about the nature of electrons 
is very little, and the only means of pushing our way farther 
will be to test such hypotheses as I have here made. Of 
course, there will be difficulties, e.g. as soon as we come to 
consider the rotation of electrons. Perhaps we shall have to 
suppose that in those phenomena in which, if there is no 
translation, spherical electrons rotate about a diameter, the 
points of the electrons in the moving syste1n will describe 
elliptic paths, corresponding, in the manner specified in § 10, 
to the circular paths described in the other case. 

§ 12. There remain to be said a, few words about molecular 
motion. We may conceive that bodies in which this bas 
a sensible influence or even predominates, undergo the same 
deformation as the systems of particles of constant relative 
position of which alone we have spoken till now. Indeed, in 
two systems of molecules S' and~' the first without and the 
second with a translation, we may imagine molecular motions 
corresponding to each other in such a way that, if a particle 
in I' bas a certain position at a definite instant, a particle in 
~ occupies at the corresponding instant the corresponding 
position. This being assumed, we may use the relation (33) 
between the accelerations in all those cases in which the 
velocity of molecular motion is very small as compared with v. 
In these cases the molecular forces may be taken to be deter
mined by the relative positions, independently of the velocities 
of molecular motion. If, finally, we suppose these forces to 
be limited to such small distances that, for particles acting 
on each other, the difference of local times may be neglected, 
one of the particles, together with those which lie in its 
sphere of attraction or repulsion, will form a system which 
undergoes the often mentioned deformation. In virtue of 
the second hypothesis of § 8 we may therefore apply to the 
resulting molecular force acting on a particle, the equation 
(21). Consequently, the proper relation between the forces 
and the accelerations will exist in the two cases, if we sup• 
pose that the masses of all particles are influenced by a trans
lation to the same degree as the electromagnetic masses of the 
elel]trons. 

§ 13. The values (30), which I have found for the longi-
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tudinal and transverse masses of an electron, expressed in 
terms of its velocity, are not the same as those that had 
been previously obtained by Abraham. The ground for this 
difference is to be sought solely in the circumstance that, in 
bis theory, the electrons are treated as spheres of invariable 
dimensions. Now, as regards the transverse mass, the re
sults of Abraham have been confirmed in a most remarkable 
way by Kaufmann's measurements of the deflexion of 
radium-rays in electric and magnetic fields. Therefore, if 
there is not to be a most serious objection to the theory I 
have now proposed, it must be possible to sho,v that those 
measurements agree with my values nearly as well as with 
those of Abraham. 

I shall begin by discussing two of the series of measure
ments published by Kaufmann* in 1902. From each series 
he has deduced two quantities ?'/ and ,, the " reduced " 
electric and magnetic deflexions, which are related as follows 
to the ratio ry = v/c :-

' 'Y = k1-, 
7J 

. (34) 

Here y ( 'Y) is such a function, that the transverse mass is 
given by 

. (35) 

whereas k1 and k2 are constant in each series. 
It appears from the second of the formulre (30) that my 

theory leads likewise to an equation of the form (35); only 
Abraham's function ,; (ry) must be replaced by 

4 4 313 = 3 (1 - ry2)-1/2. 

Hence, my theory requires that, if we substitute this 
value for + (ry) in (34), these equations shall still hold. Of 
course, in seeking to obtain a good agreement, we shall be 
justified in giving to k1 and k other values than those of 
Kaufmann, and in taking for every measurement a proper 

value of the velocity v, or of the ratio 'Y· Writing sk,, ! k'2 

* Kaufmann, Physik. Zeitschr., 4, 1902, p. 55, 
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and ry' for the new values, we may put (34) in the form 

ry' = sk1 t . (36) 
71 

and 

. (37) 

Kaufmann has tested his equations by choosing for k1 

such a value that, calculating 'Y and k2 by means of (34), he 
obtained values for this latter number which, as well as might 
be, rernained constant in each series. This constancy was 
the proof of a sufficient agreement. 

I have followed a similar method, using, however, some 
of the numbers calculated by Kauf1nann. I have computed 
for each measure1nent the value of the expression 

k''J. m: (1 - ry'2)½t(,y)k~i, . . (38) 

that may be got from (37) combined with the second of the 
equations (34). The values of ,Jr (ry) and k2 have been taken 
from Kauf1nann's tables, and for ry' I have substituted the 
value he has found for ry, 1nultiplied bys, the latter coefficient 
being chosen with a view to obtaining a good constancy of 
(38). The results are contained in the tables on opposite 
page, corresponding to the Tables III and IV in Kaufmann' s 
paper. 

The constancy of k'2 is seen to come out no less satis
factorily than that of k2, the more so as in each case the value 
of s has been determined by means of only two measure
ments. The coefficient has been so chosen that for these two 
observations, which were in Table III the first and the last 
but one, and in Table IV the first and the last, the values of 
k'2 should be proportional to those of k.2. 

I shall next consider two series from a later publication 
by Kaufrnann,* which have been calculated by Runge t by 
rneans of the method of least squares, the coefficients k1 

and k2 having been determined in such a way that the 
values of 77, calculated, for each observed s, from I{aufmann's 
equations (3-!), agree as closely as may be with the observed 
values of 77. 

* Kaufmann, Gott. Nachr. 1\1:ath. phys, Kl., 1903, p. 90. 
t Runge, ibid., p. 326. 
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III. s = 0·933. 

'Y• t/1( 'Y ). k2, -y'. k'2· 

0·851 2·147 1·721 0·794 2·246 
0·766 1·86 1·736 0·715 2·258 
0·727 1·78 1·725 0·678 2·256 
0·6615 1·66 1·727 0·617 2·256 
0·6075 1·595 1655 0·o67 2·175 

I .. 

IV. s = 0·954. 

'Y· t/1(-y). k.1., -y'. ",, , 2· 

0·968 3·28 8·12 0·919 10·36 
0•949 2·86 7·99 0·Sm5 9·70 
0·933 2·78 7·46 0·890 9·28 
0·888 2·31 8·82 0·842 10·36 
0·860 2·195 8·09 0·820 10·15 
0·830 2·06 8·13 0·792 10·23 
0·801 1·96 8•13 0·764 10·28 
0·777 1·89 8·04 0·741 10·20 
0·752 l ·83 8·02 0·717 10·22 
0·732 1 ·785 7·97 0·698 10·18 

I have determined by the same condition, likewise using 
the method of lea.st squares, the constants a and b in the 
formula 

r," = ar,3 + bt4' 

which may be deduced from my equations (36) and (37). 
Knowing a and b, I find ,y for each measurement by means 
of the relation _, 

'Y = ✓a 11· 

For two plates on which Kaufmann had measured the 
electric and magnetic deflexions, the results are as follows 
(p. 34), the deflexions being given in centimetres. 

I have not found time for calculating the other tables in 
Kaufmann's paper. As they begin, like the table for Plate 
15 (next page) with a rather large negative difference be
tween the values of r, which have been deduced from the 
observations and calculated by Runge, we may expect a satis
factory agreement with my formulm. 
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Plate No. 15. a = 0·06489, b = 0·3089. 

1'/ 'Y 

( 
Calculated Calculated by 

Di:tf. Calculated Observed. by R. by L. Diff. R. L. 
----

0·1495 0·0388 0·04:04 - 16 0·0400 - 12 0·987 0·951 
0·.199 0·0548 0·0550 - 2 0·0552 - 4 0-9~4 0·918 
0·2475 0·0716 0·0710 + 6 0·0715 + 1 0·930 0·881 
0·296 0·0896 0·0887 + 9 0·0895 + 1 0·889 0·842 
0 3435 0·1080 0·1081 - 1 0·1090 - 10 0·847 0·803 
0·391 0·1290 0·1297 - 7 0·1805 - 15 0·804 0·763 
0·437 0·1524 0·1527 - 3 0·1532 - 8 0·763 0·727 
0·4 25 0·1788 O·l 777 + 11 0·1777 + 11 0·~24 0·692 
0·5265 0·2033 0·2089 - 6 0•2033 0 0·688 0·660 

Plate No. 19. a = 0-05867, b = 0·2591. 

,, 'Y 

' Calculated by Calculated Calculated Observed. by R. Ditf. by L. Diff. R. L. 

0·1495 0·0404 0·0388 + 16 0·0379 + 25 0·990 0·954 
0·199 0·0529 0·0527 + 2 0·0522 + 7 0·969 0·923 
0·247 0·0678 0·0675 + 8 0·0674 + 4 0·939 0·888 
0·296 0·0834 0·0842 - 8 0-0544 - 10 0·902 0·849 
0·3435 0·1019 0·1022 - 3 0·1026 - 7 0·862 0•811 
0·391 0·1219 0·1222 - 3 0·1226 - 7 0·822 0·773 
0·487 0·1429 0·1434 - 5 0·1487 - 8 0·782 0·786 
0·4825 0·1660 0·1665 - 5 0•1664 - 4 0·744 0·702 
0·5265 0·1916 0·1906 + 10 0·1902 + 14 0·709 0·671 
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ON THE ELECTRODYNAMICS OF MOVING 
BODIES 

BY A. EINSTEIN 

IT is known that Maxwell's electrodynamics-as usu
ally understood at the present time-when applied 
to 1noving bodies, leads to asynuuetries which do not 

appear to be inherent in the phenomena. Take, for example, 
the reciprocal electrodynamic action of a magnet and a con
ductor. The observable phenomenon here depends only on 
the relative n1otion of the conductor and the magnet, where
as the customary view draws a sharp distinction between the 
two cases in which either the one or the other of these bodies 

' 
is in motion. For if the magnet is in motion and the con-
·ductor at rest, there arises in the neighbourhood of the 
magnet an electric field with a certain definite energy, pro
ducing a current at the places where. parts of the conductor 
are situated. But if the magnet is stationary and the con
ductor in motion, no electric field arises in the neighbour
hood of the magnet. In the conductor, however, we find an 
electromotive force, to which in itself there is no correspond
ing energy, but which gives rise-assuming equality of 
relative- motion in the two cases discussed-to electric curr~n ts 
of the same path and intensity as those produced by the 
electric forces in the former case. 

Examples of this sort, together with the unsuccessful at
tempts to discover any motion of the earth relatively to the 
"light medium," suggest that the phenomena of electro
dynamics as well as of mechanics possess no properties corre
sponding to the idea of absolute rest. They suggest rather 
that, as has already been shown to the first order of small 
quantities, the same laws of electrodynamics and optics will 
be valid for all frames of reference for which the equations of 

37 
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mechanics hold good.* We will raise this conjecture (the 
purport of which will hereafter be called the " Principle of 
Relativity '') to the status of a postulate, and also introduce 
another postulate, which is only apparently irreconcilable 
with the former, namely, that light is always propagated in 
empty space with a definite velocity c which is independent 
of the state of motion of the emitting body. These two 
postulates suffice for the attainment of a simple and consistent 
theory of the electrodynan1ics of moving bodies based on 
Maxwell's theory for stationary bodies. The introduction of a 
" luminiferous ether " will prove to be superfluous inasmuch 
as the view here to be developed will not require an " ab
solutely stationary space" provided with special properties, 
nor assign a velocity-vector to a point of the empty space in 
which electron1agnetic processes take place. 

1,he theory to be developed is based-like all electro
dynamics-on the kinen1atics of the rigid body, since the 
assertions of any such theory have to do with the relation
ships between rigid bodies (systems of co-ordinates), clocks, 
and electromagnetic processes. Insufficient consideration of 
this circumstance lies at the root of the difficulties which the 
electrodynamics of moving bodies at present encounters. 

I. .KINEMATICAL PART 

§ 1. Definition of Simultaneity 

Let us take a system of co-ordinates in which the 
equations of Newtonian mechanics hold good.t In order to 
.render our presentation more precise and to distinguish this 
system of co-ordinates verbally from others which will be 
introduced hereafter, we call it the " stationary system.'' 

If a rnaterial point is at rest relatively to this system of 
co-ordinates, its position can be defined relatively thereto by 
the employment of rigid standards of measurement and the 
methods of Euclidean geometry, and can be expressed in 
Cartesian co-ordinates. 

If we wish to describe the motion of a material point, we 

* The preceding memoir by Lorentz was not at this time known to the 
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give the values of its co-ordinates as functions of the time. 
Now we must bear carefully in mind that a mathematical 
description of this kind has no physical meaning unless we 
are quite clear ~s to what we understand by "time." We 
have to take into account that all our judgments in which 
time plays a part are always judgments of simultaneous 
events. If, for instance, I say, " That train arrives here at 
7 o'clock,u I mean something like this: '' The pointing of 
the small hand of my watch to 7 and the arrival of the train 
are simultaneous events."* 

It might appear possible to overcome all the difficulties 
attending the definition of "time " by substituting "the 
position of the small hand of my watch '' for " time." And 
in fact such a definition is satisfactory when we are concerned 
with defining a ti1ne exclusively for the place where the 
watch is located ; but it is no longer satisfactory when we 
have to connect in time series of events occurring at different 
places, or-what comes to the same thing-to evaluate the 
times of events occurring at places remote from the watch. 

We might, of course, content ourselves with time values 
determined by an observer stationed together with the watch 
at the origin of the co-ordinates, and co-ordinating the corre
sponding positions of the hands with light signals, given out 
by every event to be timed, and reaching him through empty 
space. But this co-ordination has the disadvantage that it is 
not independent of the stand point of the observer with the 
watch or clock, as we know from experience. We arrive at 
a much more practical determination along the following line 
of thought. 

If at the point A of space there is a clock, an observer at 
A can determine the time values of events in the immediate 
proximity of A by finding the positions of the hands which 
are simultaneous with these events. If there is at the point 
B of space another clock in all respects resembling the one at 
A, it is possible for an observer at B to determine the time 
values of events in the immediate neighbourhood of B. But 
it is not possible without further assumption to compare, in 

* We shall not here discuss the inexactitude which lurks in the concept 
of simultaneity of two events at approximately t,he same place, which can 
only be removed by an abstraction. 
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respect of tilne, an event at A with an event at B. We have 
so far defined only an '' A time " and a " B time." We 
have not defined a common "ti1ne '' for A and B, for the 
latter cannot be defined at all unless we establish by definition 
that the "time'' required by light to travel from A to B 
equals the "time" it requires to travel from B to A. 
Let a ray of light start at the "A time" tA from A towards 
B, let it at the " B time'' tB be reflected at B in the direction 
of A, and arrive again at A at the " A time " tB' 

In accordance ,vith definition the two clocks synchronize 
if 

iB - tA = t' A - tB, 

"'\Ve assume that this definition of synchronism is free 
from contradictions, and possible for any nurnber of points; 
and that the following relations are universally valid :-

1. If the clock at B synchronizes with the clock at A, the 
clock at A synchronizes with the clock at B. 

2. If the clock at A synchronizes with the clock at B and 
also with the clock at C, the clocks at B and C also syn
chronize with each other. 

Thus with the help of certain imaginary physical experi
ments we have settled what is to be understood by synchron
ous stationary clocks located at different places, and have 
evidently obtained a definition of "simultaneous," or " syn
chronous,'' and of "time." The " time '' of an event is 
that which is given simultaneously with the event by a 
stationary clock located at the place of the event, this clock 
being synchronous, and indeed synchronous for all time deter
minations, with a specified stationary clock. 

In agreement with experience we further assume the 
quantity 

2AB 
t i t = c, 

A - A 

to be a universal constant-the velocity of light in empty 
space. 

It is essential to have time defined by means of stationary 
clocks in the stationary system, and the time now defined 
being appropriate to the stationary system we call it "the 
time of the stationary system." 
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§ 2. On the Relativity of Lengths and Times 

The foil owing reflexions are based on the principle of 
relativity and on the principle of the constancy of the 
velocity of light. These two principles we define a,s 
follows:-

1. The laws by which the states of physical systems 
undergo change are not affected, whether these changes of 
state be ref erred to the one or the other of two systems of co
ordinates in uniform translatory motion. 

2. Any ray of light moves in the " stationary " system of 
co-ordinates with the determined velocity c, whether the ray 
be emitted by a stationary or by a moving body. Hence 

l . t _ light path 
ve oci Y - ti tn e interval 

where time interval is to be taken in the sense of the definition 
in § 1. 

Let there be given a stationary rigid rod; and let its 
length be l as measured by a measuring-rod which is also 
stationary. We now imagine the axis of the rod fying 
along the axis of x of the stationary system of co-ordinates, 
and that a uniform motion of parallel translation with velocity 
v along the axis of x in the direction of increasing x is then 
imparted to the rod. We now inquire as to the length of the 
moving rod, and imagine its length to be ascertained by the 
following two operations :-

(a) The observer moves together with the given measur
ing-rod and the rod to be measured, and measures the length 
of the rod directly by superposing the measuring-rod, in 
just the same way as if all three were at rest. 

(b) By means of stationary clocks set up in the stationa.ry 
system and synchronizing in accordance with § 1, the ob
server ascertains at what points of the stationary system the 
two ends of the rod to be measured are located at a definite 
time. The distance between these two points, measured by the 
measuring-rod already employed, which in this case is at rest, 
is also a length which may be designated " the length of the 
rod.'' 

In accordance with the principle of relativity the length 
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to be discovered by the operation (a)-we will call it "the 
length of the rod in the moving system "-must be equal to 
the length l of the stationary rod. 

The length to be discovered by the operation (b) we will 
call " the length of the (moving) rod in the stationary system." 
This we shall determine on the basis of our two principles, 
and we shall find that it differs from l. 

Current kinematics tacitly assumes that the lengths deter
mined by these two operations are precisely equa.l, or in other 
words, that a 1noving rigid body at the epoch t may in geo
znetrical respects be perfectly represented by the same body 
at rest in a definite position. 

We imagine further that at the two ends A and B of the 
rod, clocks are placed which synchronize with the clocks of 
the stationary system, that is to say that their indications 
correspond at any instant to the "time of the stationary 
system" at the places where they happen to be. These clocks 
are therefore "synchronous in the stationary system." 

We imagine further that with each clock there is a mov
ing observer, and that these observers apply to both clocks 
the criterion established in § 1 for the synchronization of two 
clocks. Let a ray of light depart from A at the time* tA, let 
it be reflected at B at the time tB, and reach A again at the 
time t' A• Taking into consideration the principle of the con
stancy of the velocity of light we find that 

rAB , TAB 
tn - tA =---= --- and t A - tB = 

C - V C + V 

where r AB denotes the length of the moving rod-measured 
in the stationary system. Observers moving with th~ moving 
rod would thus find that the two clocks were not synchronous, 
while observers in the stationary system would declare the 
clocks to be synchronous. 

So we see that we cannot attach any absolute signification 
to the concept of simultaneity, but that two events which, 
viewed from a system of co-ordinates, are simultaneous, can 
no longer be looked upon as simultaneous events when en-

*"Time,, here denotes "time of the stationary system,, and also "posi
tion of hands of the moving clock situated at the place under discussion." 
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visaged from a system which is in motion relatively to that 
system. 

§ 3. Theory of the Transformation of Co-ordinates and 
Times from a Stationary System to another System 
in Uniform Motion of Translation Relatively to the 
Former 

Let us in '' stationary" space take two systems of co
ordinates, i.e. two systems, each of three rigid material lines, 
perpendicular to one another, and issuing from a, point. Let 
the axes of X of the two systems coincide, and their axes of 
Yand Z respectively be parallel. Let each system be provided 
with a rigid measuring-rod and a number of clocks, and let 
the two measuring-rods, and likewise all the clocks of the'two 
systems, be in all respects alike. 

Now to the origin of one of the two systems (k) let a con
stant velocity v be imparted in the direction of the increasing 
x of the other stationary system (K), and let this velocity be 
communicated to the axes of the co-ordinates, the relevant 
measuring-rod, and the clocks. To any time of the stationary 
system K there then will correspond a definite position of the 
axes of the moving systen1, and from reasons of symmetry 
we are entitled to assume that the motion of k may be 
such that the axes of the moving system are at the time t 
(this " t " always denotes a time of the stationary system) 
parallel to the axes of the stationary system. 

We now imagine space to be measured from the stationary 
system K by means of the stationary measuring-rod, and also 
from the moving system k by means of the measuring-rod 
moving with it; and that we thus obtain the co-ordinates 
x, y, z, and f, "l, , respectively. Further, let the time t of 
the stationary system be determined for all points thereof 
at which there are clocks by means of light signals in the 
manner indicated in § 1 ; similarly let the time r of the 
moving system be deter1nined for all points of the moving 
system at which there are clocks at rest relatively to that 
system by applying the method, given in § 1, of light signals 
between the points at which the latter clocks are located. 

To any system of values x, y, z, t, which completely defines 
the place and time of an event in the stationary system, there 
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belongs a system of values E, .,,, t, T, determining that event 
relatively to the system k, and our task is now to find the 
system of equations connecting these quantities. 

In the first place it is clear that the equations must be 
linear on account of the properties of homogeneity which we 
attribute to space and time. 

If we place x' = x - vt, it is clear that a point at rest in 
the system k must have a system of values x', y, z, inde
pendent of time. We first define T as a function of x', y, z, • 
and t. To do this we have to express in equations that T is 
nothing else than the summary of the data of clocks at rest 
in system k, which have been synchronized according to the 
rule given in § 1. 

From the origin of system k let a ray be emitted at the 
time To along the X-axis to x', and at the time T1 be reflected 
thence to the origin of the co-ordinates, arriving there at the 
time T2; we then must have t (T0 + T2) = T1, or, by inserting 
the arguments of the function T and applying the principle 
of the cop.stancy of the velocity of light in the stationary 
system:-

t[T(O, 0, 0, t) + T(o, 0, 0, t + -31___ + _£_)] = T(x', 0, 0, t + _!!_). c-v c+v c-v 

Hence, if x' be chosen infinitesimally small, 

( 1 } )()T ~T } 

t c~, + C + V • Z>t = <)x' + C -
or 

c)r V ~T 

~x' + c2 - v2 ~t = O. 

It is to be noted that instead of the origin of the co-ordin
ates we might have chosen any other point for the point of 
origin of the ray, and the equation just obtained is therefore 
valid for all values of x', y, z. 

An analogous consideration-applied to the axes of Y and 
Z-it being borne in mind that light is always propagated 
along these axes, when viewed from the stationary system, 
with the velocity J(c2 - v2), gives us 

~T = Q <)7 = 0 
"i)y_ ' <>z • 
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Since T is a linear function, it follows from these equations 
that 

• T = a(t - V z') 
c'I. - v2 

where a is a function <f,(v) at present unknown, and where 
for brevity it is assumed that at the origin of k, T = O, when 
t = 0. 

With the help of this result we easily determine the 
quantities E, 'TJ, , by expressing in equations that light (as re
quired by the principle of the constancy of the velocity of 
light, in combination with the principle of relativity) is also 
propagated with velocity c when measured in the moving 
system. For a ray of light emitted at the time -r = 0 in the 
direction of the increasing E 

E = CT or E = ac(t - 2 v tx'). 
C - V 

But the ray moves relatively to the initial point of k, when 
measured in the stationary system, with the veiocity c - v, 
so that , 

X = t. 
C - V 

If we insert this value of t in the equation for E, we obta.in 

2 f: C , 
S" = a 2 2X. 

C - V 

In an analogous manner we find, by considering rays moving 
along the two other axes, that 

when 

Thus 

"I = c-r = ac(t - 2 v ll) a - V 

C C 
'1J = a✓(a2 - v2)Y and t = a✓(c2 - v2)z. 

Substituting for x' its value, we obtain 
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T = cf,(v)/3(t - vx/c2), 

E = cf,(v)/3(x - vt), 
'Y/ = cf,(v)y, 
t = cf,(v)z, 

1 
~ = ✓<l -v2/c2)' 

and cf, is an as yet unknown function of v. If no assumption 
whatever be made as to the initial position of the moving 
system and as to the zero point of -r, an additive constant is 
to be placed on the right side of each of these equations. 

We now have to prove that any ray of light, measured in 
the moving system, is propagated with the velocity c, if, as 
we have assumed, this is the case in the stationary system; for 
we have not as yet furnished the proof that the principle of 
the constancy of the velocity of light is compatible with the 
principle of relativity. 

At the time t = T == 0, when the origin of the co-ordinates 
is common to the two systems, let a spherical wave be 
emitted therefrom, and be propagated with the velocity c in 
system K. If (x, y, z) be a point just attained by this wave, 
then 

x2 + y2 + z2 -= c2fJ. 

Transforming this equation with the aid of our equations 
of transformation we obtain after a, simple calculation 

r + '1}2 + f -= C2T2, 

The wave under consideration is therefore no less a 
spherical wave with velocity of propagation c when viewed 
in the moving system. This shows that our two funda
mental principles are compatible.* 

In the equations of transformation which have been de
veloped there enters an unknown function cf, of v, which 
we will now determine. 

For this purpose we introduce a third system of co-ordin-

* The equations of the Lorentz transformation may be more simply de
duced directly from the condition that in virtue of those equations the re
lation :.t2 + y'i. + a2 == c2tj shall have as its consequence the second relation 

- - . 
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ates K', which relatively to the system k is in a state of 
parallel transla tory motion parallel to the a.xis of X, such that 
the origin of co-ordinates of system k moves with velocity 
- v on the axis of X. At the time t = 0 let all three origins 
coincide, and when t = x = y = z = 0 let the time t' of the 
system K' be zero. We call the co-ordinates, measured in 
the system K; x', y', z', and by a twofold application of our 
equations of transformation we obtain 

t' = ¢( - v)/3( - -v)(,- + vf/c2) = <p(v)<p( - v)t, 
x' = ¢( - v)/3( - v)(~ + v,-) = cp(v)cf,( - v)x, 
y' = <p( - v }r1 = cp( v )<p( - v)y, 
z' = cp( - v)t = cp(v)cp( - v)z. 

Since the relations between x', y', z' and x, y, z do not 
contain the time t, the systems K and K' are at rest with re
spect to one another, and it is clear that the transformation 
from K to K' must be the identical transformation. Thus 

cf,(v)cp( - v) = 1. 

We now inquire into the signification of ¢(v). We give our 
attention to that part of the axis of Y of system k which lies 
between E = 0, '1J = 0, , == 0 and E = 0, 11 = l, t = 0. This 
part of the axis of Y is a rod moving perpendicularly to its axis 
with velocity v relatively to system K. Its ends possess in K 
the co-ordinates 

l 
x1 - vt, y1 - <J>(v)' z1 - 0 

and x2 =- vt, y2 - 0, z2 - 0. 

The length of the rod measured in K is therefore l/c/J(v); and 
this gives us the meaning of the function cf,( v ). From 
reasons of symmetry it is now evident that the length of a 
given rod moving perpendicularly to its axis, measured in 
the stationary system, must depend only on the velocity and 
not on the direction and the sense of the motion. The 
length of the moving rod measured in the stationary system 
does not change, therefore, if v and - v are interchanged. 
Hence follows that l/<p(v) = l/cp( - v), or 

<f,(v) - ¢( - v). 

It follows from this relation and the one previously found 
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that 4'(. v) == 1, so that the transformation equations which 
have been found become 

where 

T == ~(t - vx/c2), 

E = ~(x - vt), 
'1/ = y, 
'= z, 

§ 4. Physical Meaning of the Equations Obtained in Re
spect to Moving Rigid Bodies and Moving Clocks 

We envisage a rigid sphere * of radius R, at rest relatively 
to the moving system k, and with its centre at the origin of 
co-ordinates of k. The equation of the surface of this sphere 
moving relatively to the system K with velocity v is 

ti + "Is + t2 == R2. 

The equation of this surface expressed in x, y, z at the time 
t == 0 is 

x.2 2 2 R2 
(✓(1 - v2/c2))2 + y + z = • 

A rigid body which, measured in a state of rest, has the form 
of a sphere, therefore has in a state of motion-viewed from 
the stationary system-the form of an ellipsoid of revolution 
with the axes 

R J (1 - v2/c2), R, R. 

Thus, whereas the Y and Z dimensions of the sphere (and 
therefore of every rigid body of no matter what form) do not 
appear modified by the motion, the X dimension appears 
shortened in the ratio 1 : ✓<I - v2/c2), i.e. the greater the 
value of v, the greater the shortening. For v = call moving 
objects-viewed from the " stationary " system-shrivel up 
into plain figures. For velocities greater than that of light 
our deliberations become meaningless ; we shall, however, 
find in what follows, that the velocity of light in our 
theory plays the part, physica.lly, of an infinitely great 
velocity. 

*The.tis, a. body possessing spherical form when examined at rest. 
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It is clear that the same results 4old good of bodies at rest 
in the " stationary " system, viewed from a system in uniform 
motion. 

Further, we imagine one of the clocks which are qualified 
to mark the time t when at rest relatively to the stationary 
system, and the time T when at rest relatively to the moving 
system, to be located at the origin of the co-ordinates of k, 
and so adjusted that it marks the time T, What is the rate 
of this clock, when viewed from the stationary system? 

Between the quantities x, t, and T, which refer to the 
position of the clock, we have, evidently, x = vt and 

'11hereforc, 

T = t✓(l - v2/c2) = t - (l - ✓(1 - v2/ rl'))t 

whence it follows that the time m~rked by the clock (viewed 
in the stationary system) is slow by 1 - ✓(l - v2/c2) seconds 
per. second, or-neglecting magnitudes of fourth and higher 
order--by tv2/c2• 

From this there ensues the following peculiar consequence. 
If at the points A and B of K there are stationary clocks 
which, viewed in the stationary system, are synchronous ; and 
if the clock at A is mov_ed with the velocity v along the line 
AB to B, then on its arrival at B the two clocks no longer 
synchronize, but the clock moved from A to B lags behind 
the other which has remained at B by ½tv2/c'l (up to magni
tudes of fourth and higher order), t being the time occupied 
in the journey from A to B. 

It is at once apparent that this result still holds goqd if 
the clock moves from A to B in any polygonal line, and also 
when the points A and B coincide. . 

I£ we assume that the result proved for a polygonal line 
is also valid for a continuously curved line1 we arrive at this 
result : If one of two synchronous clocks at A is moved in a 
closed curve with constant velocity until it returns to A, the 
journey lasting t seconds, then by the clock which has 
remained at rest the travelled clock on its arrival ~t A 
will be ½tv2/c2 second slow. Thence we conclude that a 
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balance-clock* at the equator must go more slowly, by a 
very small amount, than a precisely similar clock situated at 
one of the poles under otherwise identical conditions. 

§ 5. The Composition of Velocities 
In the system k moving along the axis of X of the system 

K with velocity v, let a point move in accordance with the 
equations 

E = wrr, ,,, = w.,,'T, , = o, 
where w~ and w.,., denote constants. 

Required ; the motion of the point relatively to the system 
K. If with the help of the equations of transformation de
veloped in § 3 we introduce the quantities x, y, z, t into the 
equations of motion of the point, we obtain 

x-~t+v t 
- 1 + vwic2 ' 

✓<1 - v2/c2) 

Y = 1 + vw~/ c2 w.,,t, 
z = 0. 

Thus the law of the parallelogram of velocities is valid ac
cording to our theory only to a first approximation. We set 

( dx) 2 (dy) 2 

V2 = dt + dt ' 
w2 == wl + w.,,2' 
a = tan - 1 wy/w:n, 

a is then to be looked upon as the angle between the velocities 
v and w. After a simple calculation we obtain 

V = ✓[(v2 + w2 + 2vw cos a) - (vw sin a/c2) 2] 

1 + vw cos a/c'J. • 

It is worthy of remark that v and w enter into the expression 
for the resultant velocity in a symmetrical manner. If w also 
has the direction of the axis of X, we get 

V= v+w, 
1 + vw/c2 

* Not a pendulum-clock, which is physically a system to which the Earth 
belongs. This case had to be excluded. 
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It follows from this equation that from a. composition of two 
velocities which are less than c, there always results a velocity 
less than c. For if we set v = c - ,e, w = c - X, ,e and X 
being positive and less than c, then 

.. 2c - " - X 
V = o2 / <c. 

C - " - X + /CA C 

It follows, further, that the velocity of light c cannot be 
altered by composition with a velocity less than that of light. 
For this case we obtain 

C + W 
V = / = c. 1 +WC 

We might also have obtained the formula for V, for the case 
when v and w have the same direction, by compounding 
two transformations in accordance with § 3. If in addition 
to the systems K and k figuring in § 8 we introduce still 
another system of co-ordinates k' moving parallel to k, its 
initial point moving on the axis of X with the velocity w, we 
obtain equations between the quantities x, y, z, t and the 
corresponding quantities of k', which differ from the equations 
found in § 3 only in that the place of '' v '' is taken by the 
quantity 

V + 'W ----· 
1 + vw/c2 ' 

from which we see that such parallel transformations-neces
sarily--form a group. 

We have now deduced the requisite laws of the theory of 
kinematics corresponding to our two principles, and we pro
ceed to show their application to electrodynamics. 

II. ELECTRODYNAMICAL PART 

§ 6. Transformation of the Maxwell-Hertz Equations for 
Empty Space. On the Nature of the Electromotive 
Forces Occurring In a Magnetic Field During Motion 

Let the Maxwell-Hertz equations for empty space hold 
good for the stationary system K, so that we have 
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l~X ~N "c)M 1 c)L c)Y <)Z 

o clt = ay" - c)z ' c ~t = <)z - <)y' 

1 clY clL 'bN 1 ~M clZ ~X 

1 c)Z ~M clL 1 c)N "c)X "c)Y 
c u == c)x - ~y ' c M == "'t>y - c)x' 

where (X, Y, Z) denotes the vector of the electric force, and 
(L, M, N) that of the magnetic force. 

If we apply to these equations the transformation de
veloped in § 3, by referring the electromagnetic processes to 
the system of co-ordinates there introduced, moving with the 
velocity v, we obtain the equations 

.! ()X = ~ {!3(N _ !'y)} - ~{~(M + !!z)}, 
C ~T c)17 C c)' C 

- :,{J3(N - ;)Y }· 

where 

Now the principle of relativity requires that if the 
Maxwell-Hertz equations for empty space hold good in 
system K, they also hold good in system k ; that is to say that 
the vectors of the electric and the magnetic force-(X', Y', Z') 
and (L', M', N')-of the moving system k, which are defined 
by their ponderomotive effects on electric or magnetic masses 
respectively, satisfy the following equations:-
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1 'c)X' aN' aM' 
--== - --, 
c aT c),, at 
1 t',Y' aL' 'c)N' 
C c)r = c) t - I af ' 
l t',Z' <')M' aL' 
c <)r = ~E - ()71 ' 

1 aL' aY' az' 
oTT = c)t - a,,' 
1 aM' az' ax' 
C c)-r -= ~ - c,t' 

1 'c)N' ax' <) Y' ----=---. 
c a'T a,, aE 
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Evidently the two systems of equations found for system 
k must express exactly the same thing, since both systems of 
equations are equivalent to the Ma.xwell-Hertz equations for 
system K. Since, further, the equations of the two systems 
agree, with the exception of the symbols for the vectors, it 
follows that the functions occurring in the systems of equa
tions at corresponding places must agree, with the exception 
of a, factor ,Jr(v), which is common for all functions of the 
one system of equations, and is independent of E, '1J, , and T 

but depends upon v. Thus we have the relations 

X' = ,fr(v)X, L' = ,fr(v)L, 

Y' = ,fr(v),e( Y - ~N ), M' = t(v),e( M + ~Z ), 

Z' = ,fr(v),e( Z + !M ), N' = ,fr(v),e( N - ~y ). 

If we now form the reciprocal of this system of equations, 
firstly by solving the equations just obtained, and secondly 
by applying the equations to the inverse transformation (from 
k to K), which is characterized by the velocity - v, it follows, 
when we. consider that the two systems of equations thus ob
tained must be identical, that ,y(v),y( - v) = 1. Further, 
from reasons of symmetry* ,y(v) = +( - v), and therefore 

,fr(v) = 1, 

and our equations assume the form 

* If, for example, X = Y = Z = L = M = 0, and N =I= O, then from 
reasons of symmetry lt is clear that when v changes sign without changing 
its numerical value, Y' must also change sign without changing its numerical 
value. 
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X' = X, L' = L, 

Y' = ;3(Y - ~N), M' = J3(M + ~z), 

Z' = ;3(z + :M), N' = ;3(N - ~y). 

As to the interpretation of these equations we make the 
following remarks: Let a point charge of electricity have 
the magnitude "one" when measured in the stationary 
system K, i.e. let it when at rest in the stationary system 
exert a force of one dyne upon an equal quantity of electricity 
at a distance of one cm. By the principle of relativity this 
electric charge is also of the magnitude " one " when 
measured in the moving system. If this quantity of elec
tricity is at rest relatively to the stationary system, then by 
definition the vector (X, Y, Z) is equal to the force acting 
upon it. If the quantity of electricity is at rest relatively to 
the moving system (at least at the relevant instant), then the 
force acting upon it, measured in the moving system, is equal 
to the vector (X', Y', Z'). Consequently the first three 
equations above allow themselves to be clothed in words in 
the two following ways :-

1. If a unit electric point charge is in motion in an 
electromagnetic field, there acts upon it, in addition to the 
electric force, an " electromotive force it which, if we neglect 
the terms multiplied by the second and higher powers of v/c, 
is equal to the vector-product of the velocity of the charge 
and the magnetic force, divided by the velocity of light. 
(Old manner of expression.) 

2. If a unit electric point charge is in motion in an 
electromagnetic field, the force acting upon it is equal to the 
e]ectric force which is present at the locality of the charge, 
and which we ascertain by transformation of the field to 
a system of co-ordinates at rest relatively to the electrical 
charge. (New manner of expression.) 

The analogy holds with '' magnetomotive forces." We 
see that electromotive force plays in the developed theory 
merely the part of an auxiliary concept, which owes its intro
duction to the circumstance that electric and magnetic forces 
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do not exist independently of the state of motion of the 
system of co-ordinates. 

Furthermore it is clear that the asymmetry mentioned in 
the introduction as arising when we consider the currents 
produced by the relative motion of a magnet and a conductor, 
now disappears. Moreover, questions as to the "seat " of 
electrodynamic electromotive forces (unipolar machines) now 
have no point. 

§ 7. Theory of Doppler's Principle and of Aberration 

In the system K, very far from the origin of ea-ordinates, 
let there be a source of electrodyna1nic waves, which in a 
part of space containing the origin of co-ordinates may be 
represented to a sufficient degree of approximation by the 
equations 

where 

X = X0 sin cl>, L = L0 sin cl>, 

Y = Y0 sin <I>, M = M0 sin <I>, 

Z == Z0 sin <I>, N = NO sin cl>, 

<I> = M{t - ~(lx + my + nz)} 

Here (X0, Y0, Z0) and (L0, M0, N0) are the vectors defining 
the amplitude of the wave-train, and l, m, n the direction
cosines of the wave-normals. We wish to know the consti
tution of these waves, when they are examined by an 
observer at rest in the moving system k. 

Applying the equations of transformation found in § 6 for 
electric and magnetic forces, and those found in § 3 for the 
co-ordinates and the time, we obtain directly 

X' = X0 sin cl>', L' = L 0 sin <I>', 

Y' = /3(Y0 - vN 0/c) sin ti>', M' = J3(M0 + vZ0/c) sin ti>', 

Z' = J3(Z0 + vM0/c) sin <I>', N' = /3(N0 - vY0/c) sin <I>', 

<I>' = M' { T - ~(l'~ + m•.,, + n'~} 
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where 
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<iJ 1 = <iJ,8(1 - lv/c), 

l' = l - v/c 
1 - lv/c' 

, m 
m=----

/3(1 - lv/c)' 

I n 
n xz ,8(1 - lv/c) • 

From the equation for w' it follows that if an observer is 
moving with velocity v relatively to an infinitely distant 
source of light of frequency v, in such a way that the connect
ing line " source-observer " makes the angle ¢ with the 
velocity of the observer referred to a system of co-ordinates 
which is at rest relatively to the source of light, the frequency 
11' of the light perceived by the observer is given by the 
equation 

, 1 - cos ¢ . v/c 
v = v ✓ (l - v2 / c2) • 

This is Doppler's principle for any velocities whatever. 
When <p = 0 the equation assumes the perspicuous form 

, _ ✓1 - v/c 
V - V l I . + V C 

We see that, in contrast with the customary view, when 
' V = - C, 11 = 00. 

If we call the angle between the wave-normal (direction 
of the ray) in the moving system and the connecting line 
" source-observer " q,', the equation for l' assumes the form 

¢' cos cf, - v/c 
cos = 1 - cos cf, . v / c. 

This equation expresses the law of aberration in its most 
general form. If q, = t 77", the equation becomes simply 

cos ¢' = - v/c. 

We still have to find the amplitude of the waves, as it 
appears in the moving system. If we call the amplitude of 
the electric or magnetic force A or A' respectively, accordingly 
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as it is measured in the stationary system or in the moving 
system, we obtain 

A''l = A2(1 - cos 4>. v/c) 2 

1 - v2/o2 

which equation, if cf, = 0, simplifies into 

A'2 = A2l - v/c. 
1 + v/c 

It follows from these results that to an observer approach
ing a source of light with the velocity o, this source of light 
must appear of infinite intensity. 

§ 8. Transformation of the Energy of Light Rays. Theory 
of the Pressure of Radiation Exerted on Perfect 
Reflectors 

Since A2/8w equals the energy of light per unit of volume, 
we have to regard A'2/81r, by the principle of relativity, as the 
energy of light in the moving system. Thus A'2/A2 would 
be the ratio of the " measured in motion '' to the " measured , ... 
at rest" energy of a given light complex, if the volume 
of a light complex were the same, whether measured in 
K or in k. But this is not the case. If l, m, n are the 
direction-cosines of the wave-normals of the light in the 
stationary system, no energy passes through the surface 
elements of a spherical surface moving with the velocity of 
light:-

(x - lct)2 + (y - mct)2 + (z - nct)2 = R2• 

We may therefore say that this surface permanently encloses 
the same light complex. We inquire as to the quantity of 
energy enclosed by this surface, viewed in system k, that 
is, as to the energy of the light complex relatively to the 
system k. 

The spherical surface-viewed in the moving system-is 
an ellipsoidal surface, the equation for which, at the time 
T = 0, is 

(/3E - lf3Ev/c)2 + (11 - m/3Ev/c)2 + (' - nf3Ev/c)2 = R2• 

If S is the volume of the sphere, and S' that of this ellipsoid, 
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then by a simple calculation 

S' ✓1 - v2 /c2 
- = ---------:-s 1 - cos cp . v/ c· 

Thus, if we call the light energy enclosed by this surface E 
when it is measured in the stationary system, and E' when 
measured in the moving system, we obtain 

E' A'28' _ 1 - cos ¢ . v(c 
E = A2S - ✓(1 - v2/c2 ) ' 

and this formula, when cf, = 0, simplifies into 

E' = ✓l - v/c 
E 1 + v/c· 

It is remarkable that the energy and the frequency of a 
light complex vary with the state of motion of the observer 
in accordance with the same law. 

Now let the co-ordinate plane ~ = 0 be a perfectly reflect
ing surface, at which the plane waves considered in § 7 are 
reflected. We seek for the pressure of light exerted on the 
retlecting surface, and for the direction, frequency, and in
tensity of the light after reflexion. 

Let the incidental light be defined by the quantities A, 
cos ¢, v (referred to system K). Viewed from k the corre
sponding quantities are 

A' = A 1 - cos ¢. v/c 
✓ (1 - v2/c2) ' 

, cos cf, - v/c 
cos¢ = 1 - cos cp. v/c' 

, 1 - cos cp . v/c 
v = v ✓ (1 - v'J. I c2) • 

For the reflected light, referring the process to system k, we 
obtain 

A'' = A' 
cos cp" = - cos ¢' 

II I V = V 

Finally, by transforming back to the stationary system K, 
we obtain for the reflected light 
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A"' =z A''l + cos <b" • v/c = A 1 - 2 cos cf, • v/c + v2 /c2 

✓(l - v2/c2) 1 - v2/ c2 ' 

cos cf>'" = cos ¢" + v/o (1 + v2/c2) cos cf> - 2v/c 
1 + cos cp" . v / c = - l - 2 cos r.f, . v / c + v2 / c2 

,,, ,,1 + cos <f,"v/c 1 - 2 cos cf>. v/c + v2/ c2 

v = v ✓(l - v2/ c2) = v I - v2/ c2 • 

The energy (measured in the stationary system) which is 
incident upon unit area of the mirror in unit time is evidently 
A2(c cos¢ - v)/8-rr. The energy leaving the unit of surface 
of the mirror in the unit of time is A"'2( - c cos cp'" + v)/81T'. 
The difference of these two expressions is, by the principle of 
energy, the work done by the pressure of light in the unit of 
time. If we set down this work as equal to the product Pv, 
where P is the pressure of light. we obtain 

A2 (cos cf> - v/c)2 

p = 2 . -8 1 2/ 2 • 
7T' - V C 

In agreement with experiment and with other theories, we 
obtain to a first approximation 

A2 
P = 2 . 8,r cos2 cf>. 

Al I problems in the optics of moving bodies can be solved 
by the method here employed. What is essential is, that the 
electric and magnetic force of the light which is influenced 
by a moving body, be transformed into a system of co-ordin
ates at rest relatively to the body. By this means all problems 
in the optics of moving bodies will be reduced to a series of 
problems in the optics of stationary bodies. 

§ 9. Transformation of the Maxwell-Hertz Equations when 
Convection-Currents are Taken into Account 

We start fron1 the equations 

!{()x + Uxp} = ()N _ ,fl\f, 1 oL c) Y oZ 
C ot ~y oz - - = - - -, 

C ~t ()Z oy 

!{oY + uyp} = c)L _ c,N 
C ot ()z ()x' 

! {"~ + Uzp} z= ()M - c)L 
C ot <°)X <)y' 

1 <lM c,Z ()X 
c Tt = ox - ~z' 

1 oN ()x oY - ----- = - .. -
C ot ?Jy ~X' 



60 

where 
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denotes 4?T times the density of electricity, and (uz, Uy, uz) 
the velocity-vector of the charge. If we imagine the electric 
charges to be invariably coupled to small rigid bodie~ (ions, 
electrons), these equations are the electromagnetic basis of 
the Lorentzian electrodynamics and optics of moving bodies. 

Let these equations be valid in the system K, and trans
form them, with the assistance of the equations of transform
ation given in §§ 3 and 6, to the system k. We then obtain 
the equations 

where 

and 

l{oX' '} ~N' <)M' 1 <)L' oY' <)Z' c oT + utp = ~11 - ot ' c ~7' = <)t - <),,, ' 

1 Jo Y' '} c)L' ~N' 1 c)M' oZ' ~X' 
al oT + u.,,p = ()t - of ' c 'c)T = ()E - "' ' 

!{~ + uHJ'} - c,l\il' _ oL' ! oN' = ax' c,Y' 
c aT v 'c)E c).,, ' c c)7" c)'rJ - oE ' 

Ua, - V 

ui == I - ua:v/c'J. 

U( == /3(1 - Ua:v/c2)' 

, oX' o Y' 'c)Z' 
p=~+~+~ 

= ,8(1 - UxV / c2) p. 

Since-as follows from the theorem of addition of velocities 
(§ 5)-the vector (u~, u.,,, uc) is nothing else than the velocity 
of the electric charge, measured in the system k, we have the 
proof that, on the basis of our kinematical principles, the 

• electrodynamic foundation of Lorentz's theory of the electro
dynamics of moving bodies is in agreement with the prin
ciple of relativity. 

In addition I may briefly remark that the following import-
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ant law may easily be deduced from the developed equations: 
If an electrically charged body is in motion anywhere in 
space without altering its charge when regarded from a 
system of co-ordinates moving with the body, i~s charge also 
remains-when regarded from the '' stationary " system K
constant. 

§ 1 o. Dynamics of the Slowly Accelerated Electron 

Let there be in motion in an electromagnetic field an 
electrically charged particle (in the sequel called an " elec
tron"), for the law of motion of which we assume as 
follows:-

If the electron is at rest at a given epoch, the motion of 
the electron ensues in the next instant of time according to 
the equations 

d2x 
mdt'J. = €X 

d2y 
rndt"'· = eY 

d2z 
mdt2 = eZ 

where x, y, z denote the co-ordinates of the electron, and m 
the mass of the electron, as long as its motion is slow. 

Now, secondly, let the velocity of the electron at a given 
epoch be v. We seek the law of motion of the electron in the 
immediately ensuing instants of time. 

Without affecting the general character of our consider
ations, we may and will assume that the electron, at the 
moment when we give it our attention, is at the origin of 
the co-ordinates, and moves with the velocity v along the 
axis of X of the system K. It is then clear that at the given 
moment (t = 0) the electron is at rest relatively to a system 
of co-ordinates which is in parallel motion with velocity v 
along the axis of X. 

From the above assumption, in combination with the 
principle of relativity, it is clear that in the immediately en
suing time (for small values of t) the electron, viewed from 
the system k, moves in accordance with the equations 



62 ELEC1,.RODYN AMI CS 

d2E , 
nidT2 = eX' 

d2'1} , 
mdT2 = eY' 

in which the symbols E, 11, ,, -r, X', Y', Z' refer to the system 
k. If, further, we decide that when t = x = y = z = 0 then 
T =-= E = 11 = t = 0, the transformation equations of §§ 3 and 
6 hold good, so that we have 

E = /B(x - vt), '1J = y, t = z, T = /B(t - vx/c2) 

X' = X, Y' = fJ(Y - vN/c), Z' = /B(Z + vM/c). 

With the help of these equations we transform the above 
equations of motion from system k to system K, and obtain 

d2x e 
dt2 == m /B3X 

d2y =- _E (Y - !'N) 
dt2 'nl, {:3 C 

. (A) 

d2z € ( v ) -=- Z +-M 
dt2 m /3 c 

Taking the ordinary point of view we now inquire as 
to the " longitudinal ,, and the '' transverse " mass of the 
moving electron. We write the equations (A) in the form 

d2 
,QS X X X' 

mt-' dt2 = e = E ' 

mf32~~f = e/3( Y - ~N) = EY', 

and remark firstly that eX', eY', eZ' are the components of 
the ponderomotive force acting upon the electron, and a.re so 
indeed as viewed in a system moving at the moment with the 
electron, with the same velocity as the electron. (This force 
might be measured, for example, by a spring balance at rest 



A. EINSTEIN 68 

in the last-mentioned system.) Now if we call this force 
simply "the force acting upon the electron,''• and maintain 
the equation-mass x acceleration == force-and if we also 
decide that the accelerations are to be measured in the 
stationary system K, we derive from the above equations 

Longitudinal mass = ✓- m 2 / 2 •• 
( 1 - V C ) 3 

m 
Transverse mass = 1 ~ / ::! • 

- V C 

With a different definition of force and acceleration we ., 

should naturally obtain other values for the rnasses. This 
shows us that in comparing different theories of the motion 
of the electron we must proceed very cautiously. 

We remark that these results as to the mass are also valid 
for ponderable material points, because a, ponderable material 
point can be made into an electron (in our sense of the word) 
by the addition of an electric charge, no matter how small. 

We will now determine the kinetic energy of the electron. 
If an electron moves from rest at the origin of co-ordinates of 
the system K along the axis of X under the action of ~n 
electrostatic force X, it is clear that the energy withdrawn 
from the electrostatic field has the value f EXdx. As the elec
tron is to be slowly accelerated, and consequently may not give 
off any energy in the form of radiation, the energy withdrawn 
from the electrostatic field must be put down as equal to the 
energy of motion W of the electron. Bearing in mind that 
during the whole process of motion which we are consiclering, 
the first of the equations (A) applies, we therefore obtain 

W = f t:Xdx = m j;f33vdv 

= mc2 { .;r~-i,•}c• - 1} · 
Thus, when v :a c, W becomes infinite. Velocities 

* The definition of force here given is not a.dvantageous, as was first shown 
by M. Planck. It is more to the point to define force in such a. wa.y that the 
laws of momentum and energy assume the simplest form. 
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greater than that of light have-as in our previous results
no possibility of existence. 

This expression for the kinetic energy must also, by 
virtue of the argument stated above, apply to ponderable 
masses as well. 

vVe will now enumerate the properties of the motion of 
the electron which result from the system of equations (A), 
and are accessible to experiment. 

1. Fron1 the second equation of the system (A) it follows 
that an electric force Y a.nd a magnetic force N have an 
equally strong deflective action on an electron moving with 
the velocity v, when Y = Nv/c. Thus we see that it is pos
sible by our theory to determine the velocity of the electron 
from the ratio of the magnetic power of deflexion Am to the 
electric power of deflexion Ae, for any velocity, by apply
ing the law 

Am, V 

Ae = o 
This relationship may be tested experimentally, since the 

velocity of the electron can be directly measured, e.g. by 
means of rapidly oscillating electric and magnetic fields. 

2. From the deduction for the kinetic energy of the 
electron it follows that between the potential difference, P, 
traversed and the acquired velocity v of the electron there 
must be the relationship 

p = Jxdx = 7c2{JC! vi/if - I} 
3. We calculate the radius of curvature of the path of 

the electron when a magnetic force N is present (as the only 
deflective force), acting perpendicularly to the velocity of the 
electron. From the second of the equations (A) we obtain 

_d2y=~==!_~N f1_v2 
dt2 R m c "J c'l. 

or 
mc2 v/c 1 

R = 7· ✓(1 -v2/c2) ·N· 

These three relationships are a complete expression for 
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the laws according to whiqh, by the theory here advanced, 
the electron must move. 

In conclusion I wish to say that in working at the 
problem here dealt with I have had the loyal assistance of my 
friend and colleague M. Besso, and that I am indebted to 
him for several valuable suggestions. 
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DOES THE INERTIA OF A BODY DEPEND UPON 
ITS ENERGY-CONTENT? 

BY A. EINSTEIN 

T HE results of the previous investigation lead to 
a very interesting conclusion, which is here to be 
deduced. 

I based that investigation on the Maxwell-Hertz equa
tions for empty space, together with the Maxwellian 
expression for the electromagnetic energy of space, and in 
addition the principle that :-

The laws by which the states of physical systems alter alf'e 
independent of the alternative, to which of two systems of co
ordinates, in uniform motion of parallel translation relatively 
to each other, these alterations of state are refe1·'fed (principle 
of relativity). 

With these principles* as my basis I deduced inter alia 
the following result (§ 8) :-

Let a system of plane waves of light, referred to the 
system of co-ordinates (x, y, z), possess the energy l; let the 
direction of the ray (the wave-normal) make an angle <f, with 
the axis of x of the system. If we introduce a new system of 
co-ordinates (E, 71, ,) moving in uniform para.llel translation 
with respect to the system (x, y, z), and having its origin of 
co-ordinates in motion along the axis of z with the velocity v, 
then this quantity of light-measured in the system (E, 11, t') 
-possesses the energy 

V 
1 - - cos cJ, 

l * = l•--::=c=:;:::;:;;:;: 
✓l - v2/c2 

* The principle of the constancy of the velocity of light is ot course 
contained iJJ. Maxwell's equations. 
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where c denotes the velocity of light. We shall make use of 
this result in what follows. 

Let there be a stationary body in the system (x, y, z), 
and let its energy-referred to the system (x, y, z)-be E 0• 

Let the energy of the body relative to the system (E, 11, t), 
moving as above with the velocity v, be H0• 

Let this body send out, in a direction making an angle cp 
with the axis of x, plane waves of light, of energy ½ L 
measured relatively to (x, y, z), and simultaneously an equal 
quantity of light in the opposite direction. Meanwhile the 
body remains at rest with respect to the system (x, y, z). The 
principle of energy must apply to this process, and in fact 
(by the principle of relativity) with respect to both systems 
of co-ordinates. If we call the energy of the body after the 
emission of light E1 or H1 respectively, measured relatively to 
the system (x, y, z) or (~, 71, t) respectively, then by employ
ing the relation given above we obtain 

E 0 = E1 + tL + ½L, 

V V 
1 - - cos ¢ 1 + - cos ¢ 

Ho = H1 + tL c + ½L--;::=c===-
✓1 - v2/c 2 ✓1 - v2/c2 

L 
= H1 + ✓ 2/ 2· 1 - 'l> C 

By subtraction we obtain from these equations 

Ho - Eu - (H1 - E1) = Lt/1 = v2/c2 - 1}. 
The two differences of the form H - E occurring in this ex
pression have simple physical significations. H and E are 
energy values of the same body referred to two systems of 
co•ordinates which are in motion relatively to each other, the 
body being at rest in one of the two systems (system (x, y, z)). 
Thus it is clear that the difference H - E can differ from the 
kinetic energy K of the body, with respect to the other 
system (~, 17, t), only by an additive constant C, which de
pends on the choice of the arbitrary additive constants of the 
energies H and E. Thus we may place 
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H 0 - Eo = Ko + C, 
H 1 - E 1 == K1 + C, 

71 

since C does not change during the emission of light. So we 
have 

Ko - K1 = L{✓l ~ v2/c2 - 1}, 

The kinetic energy of the body with respect to (E, 'TJ, ~) 
diminishes as a result of the emission of light, and the amount 
of diminution is independent of the properties of the body. 
Moreover, the difference K 0 - Ki, like the kinetic energy of 
the electron (§ 10), depends on the velocity. 

Neglecting magnitudes of fourth and higher orders we 
may place 

Fro1n this equation it directly follows that:-
// a body gives off the energy L in the form of radiation, 

its mass diminishes by L/c2• The fact that the energy with
drawn from the body becomes energy of radiation evidently 
makes no difference, so that we are led to the more general 
conclusion that 

The mass of a body is a measure of its energy-content ; if 
the energy changes by L, the mass changes in the same sense 
by L/9 x 10~0, the energy being measured in ergs, and the . 
mass 1n grammes. 

It is not impossible that with bodies whose energy-con
tent is variable to a high degree (e.g. with radium salts) the 
theory may be successfully put to the test. 

If the theory corresponds to the facts, radiation conveys 
inertia between the emitting and n,bsorbing bodies. 
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SP ACE AND TIME 

BY H. MINKOWSKI 

T HE views of space and time which I wish to lay be
fore you have sprung from the soil of experimental 
physics, and therein lies their strength. They are 

radical. Henceforth space by itself, and time by itself, are 
doomed to fade away into 1nere shadows, and only a kind 
of union of the two will preserve an independent reality. 

I 
First of all I should like to show how it might be possible, 

setting out from the accepted mechanics of the present day, 
along a purely mathematical line of thought, to arrive at 
changed ideas of space and time. The equations of N e,vton's 
mechanics exhibit a two-fold invariance. Their form re-
1nains unaltered, firstly, if we subject the underlying system 
of spatial co-ordinates to any arbitrary change of position; 
secondly, if we change its state of 1notion, na1nely, by impart
ing to it any uniform translatory motion,· furthermore, the 
zero point of time is given no part to play. We are ac
customed to look upon the axioms of geometry as finished with, 
when we feel ripe for the axioms of 1nechanics, and for that 
reason the two invariances are probably rarely mentioned in 
the same breath. Each of them by itself signifies, for the 
differential equations of mechanics, a certain group of trans
formations. The existence of the first group is looked upon 
as a fundamental characteristic of space. The second group 
is preferably treated with disdain, so that we with un. 
troubled 1ninds may overcome the difficulty of never being 
able to decide, from physical phenomena, whether space, 
which is supposed to be stationary, may not be after all in a 
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state of uniform translation. Thus the two groups, side by side, 
lead their lives entirely apart. Their utterly heterogeneous 
character may have discouraged any attempt to compound 
them. But it is precisely when they are compounded that 
the complete group, as a whole, gives us to think. 

We will try to visualize the state of things by the graphic 
method. Let x, y, z be rectangular co-ordinates for space, 
and let t denote time. The objects of our perception invari
ably include places and times in combination. Nobody has 
ever noticed a place except at a time, or a time except at a 
place. But I still respect the dogma that both space and 
time have independent significance. A point of space at a 
point of time, that is, a system of values x, y, z, t, I will call 
a world-point. The multiplicity of all thinkable x, y, z, t 
systems of values we will christen the world. With this 
most valiant piece of chalk I might project upon the blackboard 
four world-axes. Since merely one chalky axis, as it is, con
sists of molecules all a-thrill, and moreover is taking part in 
the earth's travels in the universe, it already affords us ample 
scope for abstraction ; the somewhat greater abstraction as
sociated with the number four is for the mathematician no 
infliction. Not to leave a yawning void anywhere, we will 
imagine that everywhere and everywhen there is something 
perceptible. To avoid saying " matter '' or " electricity " I 
will use for this something the word " substance." We fix 
our attention on the substantial point which is at the world
point x, y, z, t, and imagine that we are able to recognize this 
substantial point at any other time. Let the variations dx, 
dy, dz of the space co-ordinates of this substantial point 
correspond to a time element dt. Then we obtain, as 
an image, so to speak, of the everlasting career of the sub
stantial point, a curve in the world, a world-line, the points 
of which can be referred unequivocally to the parameter t 
from - oo to + oo. The whole universe is seen to resolve 
itself into similar world-lines, and I would fain anticipate 
myself by saying that in my opinion physical laws might find 
their most perfect expression as reciprocal relations between 
these world-lines. 

The concepts, space and time, cause the x, y, z-manifold 
t = 0 and its two sides t > 0 and t < 0 to fall asunder. If, 
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for simplicity, we retain the same zero point of space and 
time, the first-mentioned group signifies in mechanics that 
we may subject the axes of x, y, z at t = 0 to any rotation we 
choose about the origin, corresponding to the homogeneous 
linear transformations of the expression 

x2 + y2 + z2. 

But the second group means that we may-also without 
changing the expression of the laws of mechanics-replace 
x, y, z, t by a; - at, y - {3t, z - ryt, t with any constant values 
of a, /3, ry. Hence we may give to the time axis whatever 
direction we choose towards the upper half of the world, 
t > 0. Now what has the requirement of orthogonality in 
space to do with this perfect freedom of the time axis in an 
upward direction ? 

To establish the connexion, let us take a, positive para
meter c, and consider the graphical representation of 

c2t2 - x2 - y2 - z2 = 1. 

It consists of two surfaces separated by t = 0, on the analogy 
of a hyperboloid of two sheets. Vv.,. e consider the sheet in 
the region t > 0, and now take those homogeneous linear 
transformations of x, y, z, t into four new variables a;', y', z', t', 
for which the expression for this sheet in the new variables 
is of the same form. It is evident that the rotations of 
space about the origin pertain to these transformations. 
Thus we gain full comprehension of the rest of the 
transformations simply by taking into consideration one 
among them, such that y and z remain unchanged. We draw 
(Fig. 1) the section of this sheet by the plane of the axes of x 
and t-the upper branch of the hyperbola c2t2 - x2 = 1, with 
its asymptotes. From the origin O we draw any radius 
vector QA' of this branch of the hyperbola; draw the tangent 
to the hyperbola at A' to cut the asymptote on the right at B'; 
complete the parallelogram OA'B'C'; and finally, for subse
quent use, produce B'O' to cut the axis of x at D'. Now if 
we take OC' and OA' as axes of oblique co-ordinates x', t', 
with the measures OC' = 1, OA' = 1/c, then that branch of 
the hyperbola again acquires the expression c2t'2 - x'2 = 1, 
t'> 0, and the transition from x, y, z, t to x', y', z', t' is one of 
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the transformations in question. With these transformations 
we now associate the arbitrary displacements of the zero 
point of space and time, and thereby constitute a group of 
transformations, which is also, evidently, dependent on the 
parameter c. This group I denote by Ge. 

If we now allow c to increase to infinity, and 1/c therefore 
to converge towards zero, we see from the figure that the 

t 

0 D1 C X 

p' 
., 

,,, 

p p 

FIG. 1. 

branch of the hyperbola bends more and more towards the 
axis of a:, the angle of the asymptotes becomes more and more 
obtuse, and that in the limit this special transformation 
changes into one in which the axis of t' may have any up
ward direction whatever, while x' approaches more and more 
exactly to x. In view of this it is clear that group Go in the 
limit when c = oo , that is the group G 00 , becomes no other 
than that complete group which is appropriate to Newtonian 
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mechanics. This being so, and since Ge is mathematically 
more intelligible than GOC), it looks as though the thought 
might have struck some mathe1natician, fancy-free, that after 
all, as a matter of fact, natural phenomena do not possess an 
invariance with the group G ro, but rather with a group Ge, c 
being finite and detarminate, but in ordinary units of measure, 
extremely great. Such a premonition would have been an 
extraordinary triumph for pure mathematics. Well, mathe
matics, though it now can display only staircase-wit, has the 
satisfaction of being wise after the event, and is able, thanks 
to its happy antecedents, with its senses sharpened by an un
hampered outlook to far horizons, to grasp forthwith the 
far-reaching consequences of such a metamorphosis of our 
concept of nature. 

I will state at once what is the value of c with which we 
shall finally be dealing. It is the velocity of the propagation 
of light in empty space. To avoid speaking either of space or 
of emptiness, we may define this magnitude in another way, 
as the ratio of the electromagnetic to the electrostatic unit of 
electricity. 

The existence of the invariance of natural laws for the 
relevant group Ge would have to be taken, then, in this 
way:-

From the totality of natural phenomena it is possible, by 
successively enhanced approximations, to derive more and 
more exactly a system of reference x, y, z, t, space and time, 
by means of which these phenomena then present themselves 
in agreement with definite laws. But when this is done, 
this system of reference is by no means unequivocally deter
mined by the phenomena. It is still possible to make any 
change in the system of reference that is in conformity with 
the tra,nsformations of the group Ge, and leave the expression 
of the laws of nature unaltered. 

For example, in correspondence with the figure described 
above, we may also designate time t', but then must of neces
sity, in connexion therewith, define space by the manifold of 
the three parameters x', y, z, in which case physical laws 
would be expressed in exactly the same way by means of 
x', y, z, t' as by means of x, y, z, t. We should then have in 
the world no longer space, but an infinite number of spaces, 
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analogously as there are in three-dimensional space an infinite 
number of planes. Three-dimensional geometry becomes a 
chapter in four-dimensional physics. Now you know why I 
said at the outset that space and time are to fade away into 
shadows, and only a world in itself will subsist. 

II 

The question now is, what are the circumstances which 
force this changed conception of space and time upon us? 
Does it actually never contradict experience? And finally, is 
it advantageous for describing phenomena? 

B~fore going into these questions, I must make an im
portant remark. If we have in any way individualized space 
and time, we have, as a world-line corresponding to a stationary 
substantial point, a straight line parallel to the axis of t; 
corresponding to a substantial point in uniform motion, a 
straight line at an angle to the axis of t; to a substantial 
point in varying motion, a world-line in some form of a curve. 
If at any world-point x, y, z, t we take the world-line passing 
through that point, and find it parallel to any radius vector 
OA.' of the above-mentioned hyperboloidal sheet, we can 
introduce OA' as a new axis of time, and with the new con
cepts of space and time thus given, the substance at the 
world-point concerned appears as at rest. We will now intro
duce this fundamental axiom:-

The substance at any world-point may always, with the 
appropriate determination of space and time, be looked upon 
as at rest. 

The axiom signifies that at any world-point the expression 

c2dt2 - dx2 - dy2 - dz2 

always has a positive value, or, what comes to the same thing, 
that any velocity v always proves less than c. Accordingly c 
would stand as the upper limit for all substantial velocities, 
and that is precisely what would reveal the deeper significance 
of the magnitude c. In this second form the first impression 
made by the axiom is not altogether pleasing. But we must 
bear in mind that a modified form of mechanics, in which the 
square root of this quadratic differential expression appears, 
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will now 1nake its way, so that cases with a velocity greater 
than that of light will henceforward play only some such 
part as that of figures with imaginary co-ordinates in 
geometry. 

Now the impulse and true motive for assuming the group 
Ge came from the fact that the differential equation for the 
propagation of light in empty space possesses that group Ge.* 
On. the other hand, the concept of rigid bodies has meaning 
only in mechanics satisfying the group G00 • If we have a 
theory of optics with Ge, and if on the other hand there were 
rigid bodies, it is easy to see that one and the same direction 
of t would be distinguished by the two hyperboloidal sheets 
appropriate to Ge and G00 , and this would have the furtJ1er 
consequence, that we should be able, by employing suitable 
rigid optical instruments in the laboratory, to perceive some 
alteration in the phenomena when the orientation with re
spect to the direction of the earth's motion is changed. But 
all efforts directed towards this goal, in particular the f am.ous 
interference experiment of Michelson, have had a negative 
result. To explain this failure, H. A. Lorentz set up an hypo
thesis, the success of which lies in this very invariance in 
optics for the group Ge. According to Lorentz any moving 
body must have undergone a contraction in the directioµ of 
its motion, and in fact with a velocity v, a contraction in the 
ratio 

1: ✓1 - v2/c2 • 

This hypothesis sounds extremely fantastical, for the con
traction is not to be looked upon as a consequence of resist .. 
ances in the ether, or anything of that kind, but simply as a 
gift from above,-as an accompanying circumstance of the 
circumstance of motion. 

I will now show by our figure that the Lorentzian hypothesis 
is completely equivalent to the new conception of space and 
time, which, indeed, makes the hypothesis much more intelli
gible. If for simplicity we disregard y and z, and imagine a 
world of one spatia.l dimension, then a parallel band, upright like 
the axis of t, and another inclining to the axis of t (see Fig. 1) 

* An application of this fact in its essentials has already been given by 
W. Voigt, Got ... inger N achrichten, 1887, p. 41. 
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represent, respectively, the career of a body at rest or in uni
form motion, preserving in each case a constant spatial extent. 
If OA' is parallel to the second band, we can introduce t' as 
the time, and x' as the space co-ordinate, and then the second 
body appears at rest, the first in uniform motion. We now 
assume that the first body, envisaged as at rest, has the 
length l, that is, the cross section PP of the first band on the 
axis of x is equal to l . OC, where OC denotes the unit of 
measure on the axis of x ; and on the other band, that the 
second body, envisaged as at rest, has the same length l, 
which then means that the cross section Q'Q' of the second 
band, measured parallel to the axis of x', is equal to l. 00'. 
We now have in these two bodies images of two equal 
Lorentzian electrons, one at rest and one in uniform 1notion. 
But if we retain the original co-ordinates x, t, we must give 
as the extent of the second electron the cross section of its 
appropriate band parallel to the axis of x. Now since Q'Q' 
== l. OC', it is evident that QQ = l . OD'. If dx/dt for the 
second band is equal to v, an easy calculation gives 

OD' = OC,-./1 - v2/c2, 

therefore also PP: QQ = 1: ✓1 - v2/c2• But this is the 
meaning of Lorentz's hypothesis of the contraction of 
electrons in motion. If on the other hand we envisage the 
second electron as at rest, and there£ ore adopt the system of 
reference x' t', the length of the first must be denoted by the 
cross section P'P' of its band parallel to 00', and we should 
find the first electron in co1nparison with the second to be 
contracted in exactly the same proportion ; for in the figure 

P'P' : Q'Q' = OD : OC' = OD' : OC = QQ : PP. 

Lorentz called the t' combination of x and t the local time 
of the electron in uniform motion, and applied a physical 
construction of this concept, for the better understanding of 
the hypothesis of contraction. But the credit of first recog
nizing clearly that the time of the one electron is just as good 
as that of the other, that is to say, that t and t' are to be 
treated identically, belongs to A. Einstein.* Thus time, as a 

* A. Einstein, Ann. d. Phys., 17, 1905, p. 891; Jahrb. d. Radioaktivitat 
und Elektronik, 4, 1907, p. 411. 
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concept unequivocally determined by phenomena, was first 
deposed from its high seat. Neither Einstein nor Lorentz 
made any attack on the concept of space, perhaps because in 
the above-mentioned special transformation, where the plane 
of x', t' coincides with the plane of x, t, an interpretation 
is possible by saying that the x-axis of space maintains its 
position. One may expect to find a corresponding violation 
of the concept of space appraised as another act of audacity 
on the part of the higher mathematics. Nevertheless, this 
further step is indispensable for the true understanding of 
the group Ge, and when it has been taken, the word relativity .. 
postulate for the requirement of an invariance with the group 
Ge seems to me very feeble. Since the postulate comes to 
mean that only the four-dimensional world in space and time 
is given by phenomena, but that the projection in space and in 
time may still be undertaken with a certain degree of freedom, 
I prefer to call it the postulate of the absolute world (or briefly, 
the world-postulate). 

III 
The world-postulate permits identical treatment of the 

four co-ordinates x, y, z, t. By this means, as I shall now 
show, the forms in which the laws of physics are displayed 
gain in intelligibility. In particular the idea of acceleration 
acquires a clear-cut character. 

I will use a geometrical manner of expression, which sug .. 
gests itself at once if we tacitly disregard z in the triplex 
x, y, z. I take any world-point O as the zero-point of space
time. The cone c2t2 - w2 - y2 - z2 = 0 with apex 0 (Fig. 2) 
consists of two parts, one with values t < 0, the other with 
values t > 0. The former, the front cone of 0, consists, let 
us say, of all the world-points which " send light to O," the 
latter, the back cone of 0, of all the world-points which " re
ceive light from O." The territory bounded by the front cone 
alone, we may call "before" 0, that which is bounded by 
the back cone alone, '' after '' 0. The hyperboloidal sheet 
already discussed 

F = ,l·t2 - ~ 2 - y2 - z2 = 1, t > 0 

lies after 0. The territory between the cones is filled by the 
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one-sheeted hyperboloidal figures 

- F = x2 + y2 + z2 - c2t2 = k2 

for all constant positive values of k. We are specially 
interested in the hyperbolas with O as centre, lying on the 
latter figures. The single branches of these hyperbolas 
may be called briefly the internal hyperbolas with centre 0. 
One of these branches, regarded as a world-line, would repre
sent a motion which, for t = - oo and t = + oo , rises 
asymptotically to the velocity of light, c. 

If we now, on the analogy of vectors in space, call a 
directed length in the manifold of x, y, z, t a vector, we have 
to distinguish between the time-like vectors with directions 
from O to the sheet + F = 1, t > 0, and the space-like vectors 

Fm. 2. 

with directions from Oto - F = 1. The time axis may run 
parallel to any vector of the former kind. Any world-point 
between the front and back cones of O can be arranged by 
means of the system of reference so as to be simultaneous 
with 0, but also just as well so as to be earlier than O or 
later than 0. Any world-point within the front cone of O is 
necessarily always before O ; any world-point within the 
back cone of O necessarily al ways after 0. Corresponding to 
passing to the limit, c = oo , there would be a complete flatten
ing out of the wedge-shaped segment between the cones into 
the plane manifold t = 0. In the figures this segment is 
intentionally drawn with different widths. 

We divide up any vector we choose, e.g. that from O to 
x, y, z, t, into the four components re, y, z, t. If the directions 

r 
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of two vectors are, respectively, that of a radius vector OR 
from Oto one of the surfaces+ F = 1, and that of a tangent 
RS at the point R of the same surface, the vectors are said 
to be normal to one another. Thus the condition that the 
vectors with components x, y, z, t and x1, y1, Zi, t1 may be 
normal to each other is 

c2tt1 - xx1 - yy1 - zz1 = 0. 

For the measurement of vectors in different directions the 
units of measure are to be fixed by assigning to .a space-like 
vector from O to - F = 1 always the magnitude 1, and to a 
time-like vector from O to + F = 1, t > 0 always the magni
tude 1/c. 

If we imagine at a world-point P (x, y, z, t) the world
line of a substantial point running through that point, the 
magnitude corresponding to the time-like vector dx, dy, dz, 
dt laid off along the line is therefore 

dT = ! ✓ (J°l'dt2 - dx2 - dy2 - dz 2. 
C 

The integral ~dr = T of this amount, taken along the world
line from any fixed starting-point P O to the variable end
point P, we call the proper time of the substantial point at P. 
On the world-line we regard x, y, z, t-the components of the 
vector OP-as functions of the proper time r; denote their 
first differential coefficients with respect to 7' by x, fl, z, i; 
their second differential coefficients with respect to ,- by 
!i, y, z, t; and give names to the appropriate vectors, calling 
the derivative of the vector OP with respect to T the velocity 
vector at P, and the derivative of this velocity vector with 
respect to T the acceleration vector at P. Hence, since 

c2i2 - x2 - iJ2 - z2 = c2, 
we have 

c2t't - x?i - yy - zz = 0, 

i.e. the velocity vector is the time-like vector of unit magni
tude in the direction of the world-line at P, and the accelera
tion vector at Pis normal to the velocity vector at P, and is 
therefore in any case a space-like vector. 

Now, as is readily seen, there is a definite hyperbola 
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which has three infinitely proximate points in common with 
the world-line at P, and whose asymptotes are generators of 
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a " front cone " and a " back cone " (Fig. 3). 
Let this hyperbola be caUe·d the hyperbola, 
of curvature at P. If Mis the centre of this 
hyperbola, we here have to do with an in
ternal hyperbola with centre M. Let p be 
the magnitude of the vector MP ; then we 
recognize the acceleration vector at P as the 
vector in the direction MP of magnitude 
c2/p. 

If x, fl, z, t are all zero, the hyperbola of 
curvature reduces to the straight line touch
ing the world-line in P, and we must put 
p = 00. 

IV 
To show tha.t the assumption of group 

FIG. 3. 
Ge for the laws of physics never leads to a 

contradiction, it is unavoidable to undertake a revision of 
the whole or" physics on the basis of this assumption. This 
revision has to some extent already been successfully carried 
out for questions of thermodynamics and heat radiation,* for 
electromagnetic processes, and finally, with the retention of 
the concept of mass, for mechanics. t 

For this last branch of physics it is of prime importance 
to raise the question-When a, force with the components 
X, Y, Z parallel to the axes of space acts at a ~orld-point P 
(x, y, z, t), where the velocity vector is x, iJ, z, t, what must 
we take this force to be when the system of reference is in 
any way changed ? Now there exist certain approved state
ments as to the ponderomotive force in the electromagnetic 
field in the cases where the group Ge is undoubtedly admis
sible. These statements lead up to the simple rule :-When 
the system of reference is changed, the force in question 
transforms into a force in the new space co-ordinates in such 
a way that the appropriate vector with the components tX, 

* M. Planck," Zur Dyne.mik bewegter Systeme," Berliner Berichte, 1907, 
n n49. • Al~n ;n Ann ;1_ -Phvr:z 9.R lQOR_ n 1 _ 
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tY, tZ, tT, where 

T == - xX + ~y + ~Z 1 (. • • ) 
c2 t t t 

is the rate at which work is done by the force at the world
point divided by c, remains unchanged. This vector is always 
normal to the velocity vector at P. A force vector of this 
kind, corresponding to a force at P, is to be called a '' motive 
force vector '' at P. 

I shall now describe the world-line of a substantial point 
with constant mechanical mass m, passing through P. Let 
the velocity vector at P, multiplied by m, be called the 
" momentum vector" at P, and the acceleration vector at P, 
multiplied by m, be called the " force vector" of the motion 
at P. With these definitions, the law of motion of a point 
of mass with given motive force vector runs thus :-* The 
.Force Vector of Motion is Equal to the Motive Force Vector. 
This assertion comprises four equations for the components 
corresponding to the four axes, and since both vectors men
tioned are a priori normal to the velocity vector, the fourth 
equation may be looked upon as a consequence of the other 
three. In accordance with the above signification of T, the 
fourth equation undoubtedly represents the law of energy. 
Therefore the component of the momentum vector along the 
axis of t, multiplied by c, is to be defined as the kinetic 
energy of the point mass. The expression for this is 

rnc2~! = nic2/,.j 1 - v2 / c'!. 
dT ' 

i.e., after removal of the additive constant mc2, the expression 
imv2 of Newtonian mechanics down to magnitudes of the 
order 1/c2• It comes out very clearly in this way, how the 
energy de:pends on the system of reference. But as the axis 
of t may be laid in the direction of any time-like vector, the 
law of energy, framed for all possible systems of reference, 
already contains, on the other hand, the whole system of the 
equations of motion. At the limiting transition which we 
have discussed, to c = co, this fact retains its importance for 

* H. Minkowski, loc. cit., p 107. Cf. also M. Planck, Verha.ndlunge.n 
der physika,lischen Gesellschaft, 4, 1906, p. 136. 
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the axiomatic structure of Newtonian mechanics as well, and 
has already been appreciated in this sense by I. R. Schlitz.* 

We can determine the ratio of the uni ts of length and 
time beforehand in such a way that the natural limit of 
velocity becomes c = 1. If we then introduce, further, 
J - 1 t = s in place of t, the quadratic differential ex-. 
press1on 

dr = - dx2 - dy2 - dz2 - ds2 

thus becomes perfectly symmetrical in x, y, z, s ; and this 
symmetry is communicated to any law which does not contra
dict the world-postulate. Thus the essence of this postulate 
may be clothed mathematically in a very pregnant 1nanner in 
the mystic formula 

3. 105 km = ✓ - 1 secs. 

V 
The advantages afforded by the world-postulate will per

haps be most strikingly exe1nplified by indicating the effects 
proceeding from a point charge in any kind of motion accord

e, e t 

M 

FIG. 4. 

ing to the Maxwell-Lorentz theory. 
Let us imagine the world-line of such 
a point electron with the charge e, and 
introduce upon it the proper time T 

~ from any initial point. In order to find 
the field caused by the electron at any 
world-point P 1, we construct the front 

....... cone belonging to P 1 (Fig. 4). The cone 
evidently meets the world-line, since the 
directions of the line are everywhere 
those of time-like vectors, at the single 
point P. We draw the tangent to the 
world-line at P, and construct through 
P 1 the normal P 1Q to this tangent. 
Let the length of P 1Q be r. Then, by 

the definition of a front cone, the length of PQ must be r/c. 
Now the vector in the direction PQ of magnitude e/r repre-

* I. R. Schiitz, u Das Prinzip der absoluten Erhe.ltung der Energie," 
Gottinger Nachr., 1897, p. 110. 
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sents by its components along the axes of x, y, z, the vector 
potential multiplied by c, and by the component along the 
axis of t, the scalar potential of the field excited by e at the 
world-point P. Herein lie the elementary laws formulated 
by A. Lienard and E. Wiechert.* 

Then in the description of the field produced by the 
electron we see that the separation of the field into electric 
and magnetic force is a relative one with regard to the under
lying time axis ; the most perspicuous way of describing the 
two forces together is on a certain analogy with the wrench 
in mechanics, though the analogy is not complete. 

I will now describe the ponderomotive action of a moving 
point charge on another moving point charge. Let us 
imagine the world-line of a second point electron of the 
charge· e1, passing through the world-point P 1. We define P, 
Q, r as before, then construct (Fig. 4) the centre M of the 
hyperbola of curvature at P, and finally the normal MN from 
M to a straight line imagined through P parallel to QP J.' With 
P as starting-point we now determine a system of reference 
as follows :-The axis of t in the direction PQ, the axis of x 
in direction QPi, the axis of y in direction MN, whereby 
finally the direction of the axis of z is also defined as normal 
to the axes of t, x, y. Let the acceleration vector at P be 
x, ii, z, t, the velocity vector at P 1 be x1, i/1, z1 , ti- The motive 
force vector exerted at P 1 by the first moving electron e on 
the second moving electron e1 now takes the form 

- ee1 ( i1 - : 1 ).re, 
where the components 5?x, 5?11, S?'z, 5?t of the vector .re satisfy 
the three relations 

1 .. 
cS?t - Rx = 2 , Ry = ! , Rz = 0, r er 

and where, fourthly, this vector j? is normal to the velocity 
vector at P 1, and through this circumstance alone stands in 
dependence on the latter velocity vector. 

* A. Lienard, "Champ electrique et magnetique produit par une charge 
concentree en un point et a.nimee d'un mouvement quelconque," L'Ecla.ire.ge 
Electrique, 16, 1898, pp. 5, 53, 106; E. Wiechert, '' Elektrodynamiscbe 
Elementa.rgesetzo," Arch. Neerl. (2), 5, 1900, p. 549. 
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When we compare this statement with previous formu
lations• of the same elementary law of the ponderomotive 
action of moving point charges on one another, we are com
pelled to admit that it is only in four dimensions that the 
relations here taken under consideration reveal their inner 
being in full simplicity, and that on a three dimensional 
space forced upon us a priori they cast only a very com
plicated projection. 

In mechanics as reformed in accordance with the world
postulate, the disturbing lack of harmony between Newtonian 
mechanics and modern electrodynamics disappears of its own 
accord. Before cop.eluding I will just touch upon the attitude 
of Newton's law of attraction toward this postulate. I shall 
assume that when two points of mass m, m1 describe their 
world-lines, a motive force vector is exerted by m on m1, of 
exactly the same form as that just given in the case of 
electrons, except that + mm1 must now take the place of 
- ee1. We now specially consider the case where the ac
celeration vector of m is constantly zero. Let us then intro
duce t in such a way that m is to be taken as at rest, and let 
only m1 move under the motive force vector which proceeds 
from m. If we now modify this given vector in the first 
place by adding the factor i - 1 = ✓l - v2/c 2, which, to the 
order of 1/c2, is equal to 1, it will be seen t that for the posi
tions x1, y1, z1, of m1 and their variations in time, we should 
arrive exactly at Kepler's laws again, except that the proper 
times r1 of m1 would take the place of the times t1. From 
this simple remark it may then be seen that the proposed 
law of attraction combined with the new mec;hanics is no less 
well adapted to explain astronomical observations than the 
Newtonian law of attraction combined with Newtonian 
mechanics. 

The fundamental equations for electromagnetic processes 
in ponderable bodies also fit in completely with the world
postulate. As I shall show elsewhere, it is not even by any 
means necessary to abandon the derivation of these funda-

* K. Schwarzwa.ld, Gottinger Nachr., 1908, p. 182; H. A. Lorentz, 
Enzykl. d. me.th. Wissensch., V, Art. 14, p. 199. 

t H. Minkowski, loc. cit., p. 110. 
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mental equations from ideas of the electronic theory, as 
taught by Lorentz, in order to adapt them to the world
postulate. 

The validity without exception of the world-postulate, I 
like to think, is the true nucleus of an electromagnetic image 
of the world, which, discovered by Lorentz, and further re
vealed by Einstein, now lies open in the full light of day. In 
the development of its mathematical consequences there will 
be ample suggestions for experimental verifications of the 
postulate, which wi1l suffice to conciliate even those to whom 
the abandonment of old-established views is unsympathetic 
or painful, by the idea of a pre-established harmony between 
pure mathematics and physics. 



NOTES 

by 

A. SOMMERFELD 

The following notes are given in an appendix so as to interfere in no way 
with Minkowski's text. They are by no means essential, having no other pur
pose than that of removing certain small formal mathematical difficulties 
which might hinder the comprehension of Minkowski's great thoughts. The 
bibliographical references are confined to the literature dealing expressly with 
the subject of his address. From the physical point of view there is nothing 
in what Minkowski says that must now be withdrawn, with the exception of 
the final remark on Newton's law of attraction. What will be the epistemo
logical attitude towards Minkowski's conception of the time-space problem is 
another question, but, as it seems to me, a question which does not essentially 
touch his physics. 

(1) Page 81, line 8. " On the other hand, the concept of rigid bodies has 
meaning only in mechanics satisfying the group G 00 ." This sentence was con
firmed in the widest sense in a discussion on a paper by his disciple M. Born, 
e. year after Minkowski's death. Born (Ann. d. Physik, 30, 1909, p. 1) 
had defined a relatively rigid body as one in which every element of volume, 
even in accelerated motions, undergoes the Lorentzian contraction appropriate 
to its velocity. Ehrenfest (Phys. Zei-tschr.~ 10, 1909, p. 918) showed that 
such a body cannot be set in rotation; Herglotz (Ann. d. Phys., 31, 1910, 
p. 898) and F. Nether (Ann. d. Phys., 81, 1910, p. 919) that it has only three 
degrees of freedom of movement. The attempt was also made to define a 
relatively rigid body with six or nine degrees of freedom, But Planck 
(Phys. Zeitschr., 11, 1910, p. 294) expressed the view that the theory of 
relativity can operate only with more or less elastic bodies, and Laue (Phys. 
Zeitschr., 12, 1911, p. 48), employing Minkowski's methods, and his Fig. 2 
in the text above, proved that in the theory of relativity every solid body must 
have an infinite number of degrees of freedom. Finally Herglotz (Ann. d. 
Physik, 86, 1911, p. 453) developed a relativistic theory of elasticity, accord
ing to which elastic tensions always occur if the motion of the body is not rela
tively rigid in Born's sense. Thus the relatively rigid body plays the same 
pa.rt in this theory of elasticity as the ordinary rigid body plays in the ordinary 
theory of elasticity. 

(2) Page 82, line 18. '' If dx/dt for the second band is equal to v, an easy 
caJculaiion gives OD' = 00 Jl - v2/c'A." In Fig. 1, let ci = LA'OA, {3 = LB'OA' 
= LC'OB', in which the equality of the last two angles follows from the sym
metrical position of the asymptotes with respect to the new axes of co-ordin
ates (conjugate diameters of the hyperbola).* Since ci + f3 = }1r, 

sin 2,8 = cos 2ci. 

* Sommerfeld seems to take ct a.s a co-ordinate in the graph in place oft a.s 
used by Minkowski.-TRANS. 
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In the triangle OD'C' the law of sines gives 

or, as 00' = OA', 

OD' _ sin 2fJ _ cos 2a 
00' - COS Cl - COS a 

OD' = OA'cos 2" = OA' cos cz(l - tan2 a) 
cos a 

93 

. (1) 

If x, tare ~he co-ordinates of the point A' in the ~, t system, and therefore 
x . OA and ct . 00 = ct. OA respectively are the corresponding distances from 
the a.xes of co-ordinates, we have 

a: . OA = sin a . OA', ct . OA = cos a. OA', ~t = tan a = E . (2) 
C C 

Inserting these values of x and ct in the equation of the hyperbola, we find 

OA'2(cos2 a. - sin2 a) = OA2, OA' = OA 
cos a ,v' (1 - tan2 a) 

therefore, on account of (1) and (2), 

OD' = OA ,J(l - tan2 ci) = OA,J(l - v2/c2). 

This, because OA = 00, is the formula to be proved. 
Further, in the right-angled triangle 00D, 

00 OA 
OD=-=-· 

COS Cl COB a 

Equation (3) may therefore be also written in this we.y, 

OA' = ,J(l ~~an2 a) or g~, = ✓( 1 - ;:). 

This, together with (4), gives the proportion, 

OD : OA' = OD' : OA, 

which, as OA' = OC' and OA = 00, is identical with 

OD:OC' = OD':OC 

employed on page 82, line 29. 

I (3) 

(3) Page S,i, line 15. "Any world-point between the front a.nd back cones 
of O can be arranged, by means of the system of reference, so as to be simultane
ous with 0, but also just as well so as to be earlier than 0, or later than 0. ,i 
M. Laue (Phys. Zeitscbr., 12, 1911, p. 48) traces to this observation the 
proof of Einstein's theorem: In the theory of relativity no process of causality 
can be propagated with a velocity greater than that of light (" Signal veloclty 
< c ''). Assume that an event O causes another event P, and that the world
point Plies in the region between the cones of O. In this case the effect would 
have been conveyed from O to P with a velocity greater than that of light, rela
tively to the system of reference~, tin question, in which, of course, the effect 
P is assumed to be later than the cause 0, tp > 0. But now, in accordance 
with the words quoted above, the system of reference may be changed, so tha,t 
P comes to be earlier than O, that is to se.y, a system x', t' may be chosen in 
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infinitely many ways so that t'p becomes< O. This is irreconcilable with the 
idea, of causality. P must therefore lie either" after" 0 or on the back 
cone of O, i.e. the velocity of propagation of a, signal to be sent from 0, which 
is to ca.use a second event at the world-point P, must of necessity be < c. (Of 
course it is possible, even in the theory of relativity, to define processes propa
gated with velocity greater than light. This can be done geometrically, for 
example, in a, very simple way. But 1mch processes ca.n never serve as signals, 
i.e. it is impossible to introduce them arbitrarily and by them, for example, to 
set e. relay in motion at a distant place. There may be e.g. optical media, in 
which the "velocity of light " is greater than c. But in that case what is 
understood by the velocity of light is the propagation of phases in an infinite 
periodic wave-train. These can never be used for signalling. On the other 
hand a wa.ve-front is propagated, in all circumstances and with any con
stitution of the optical medium, with the velocity c; cf. e.g. A. Sommerfeld, 
"Festschrift Heinrich Weber," Leipzig, Teubner, 1912, p. 388, or Ann. 
d. Physik, 44, 1914, p. 177. 

(4) Page 85, line 18. As Minkowski once remarked to me, the element of 
proper time a,.,. is not a complete differential. Thus if we connect two world· 
points O and P by two different world-lines 1 and 2, then 

Si&r =t= S2dT. 

If 1 runs parallel to the t-a.xis, so that the first transition in the chosen system 
of reference signifies rest, it is evident that 

On this depends the retardation of the moving clock compared with the clock 
at rest. The assertion is based, as Einstein has pointed out, on the unprov
able assumption that the clock in motion actually indicates its own proper 
time, i.e. that it always gives the time corresponding to the state of velocity, 
regarded as constant, at any instant. The moving clock must naturally have 
been moved with acceleration (with changes of speed or direction) in order 
to be compared with the stationary clock e.t the world-point P. The retard
ation of the moving clock does not therefore actually indicate "motion," but 
"accelerated motion.'' Hence this does not contra.diet the principle of 
relativity. 

(5) Page 86, line 4. The term " hyperbola o! curvature " is formed exactly 
on the model of the elementary concept of the circle of curvature. The analogy 
become ane.lytica.l identity if instead of the real co-ordinate of time t the 
imaginary u = ict is employed, that is, c times the co-ordinate employed by 
Minkowski, page 88, line 6. 

By page 84 a.n internal hyperbola. in the a:, t-plane has the equation, with 
k = p, 

therefore in the x, u plane 

Hence it may be written in parametric form, when 'P denotes a purely imagin
ary angle, 

x - p cos 4>, u = p sin cf>• 
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So, as I suggested in the Ann. d. Phys., 88, p. 649, § 8, hyperbolio motion me.y 
also be denoted as" cyclio motion,'1 whereby its chief properties (convection of 
the field, occurrence of a kind of centrifugal force) are characterised with 
particular clea.rness. For the hyr,erbolio motion we have 

and thus 

dT = !✓( -dui - dx~) = e I dcp I 
C C 

. dx . . . clu . 
X = - = - 1,C Sln 4>, 'U = - = + ic cos 4> 

dT dT 

.. dx c2 
X = - = - COS cf, 

dT p ' 

d • 2 .. U C . 
U = - = - Slll tf>• 

dT p 

The magnitude of tho acceleration vector in hyperbolic motion is therefore c2/p. 
Since any given world-line is touched by the hyperbola of curve.tore at three 
points, it has the same acceleration vector as the hyperbolic motion, and 
its magnitude is l 1·/p, as indicated on page 86, line 11. 

The centre M of the cyclic motion x2 + u2 = p2 is evidently the point 
x = 0, u = 0, and from this centre all points of the hyperbola have the con
stant '' distance," i.e. a constant magnitude of the radius vector. Therefore p 
denotes the interval marked MP in Fig. 8. 

(6) Page 87, line 1. A force X, Y, Z, to be m&de into a "force vector," 
must be multiplied by i = dt/dT. This may be explained as follows. 

According to Minkowski, page 87, line 10, the momentum vector is defined 
by mx, my, mi, mt, where m denotes the "constant mechanical mass,'' or, as 
Minkowski says more plainly elsewhere, the " rest mass." If we retain 
Newton's law of motion (time rate of change of momentum equal to force), we 
have to set 

:t(mx) = X, ;t(niy) = Y, 1lmz) = z. 
Multiplication by £ makes the left-hand sides into vector components in 
Minkowski's sense. Therefore lX, lY, iz are also the first three components 
of the'' force vector." The fourth component T follows without ambiguity 
from the requirement that the force vector is to be normal to the motion 
vector. M:1nkowski's equations for the mechanics of the mass point are there
fore, with constant rest mass, 

rnx = iX, my = tY, mz = lz, 1nt = lT. 

The assumption of constancy of rest mass can only be maintained, however, 
when the euorgy-content of the body is not changed in its motion, or in the 
words of Planck, when the motion ensues'' adiabatically and isochorically." 

(7) Pages 88 and 89. What is characteristic of the constructions here given, 
is their com.plate independence of any special system of reference. They give, 
as Minkowski postulates on page 88, "reciprocal relations between world•lines" 
(or world-points) as" the most perfect expression of physical laws." On page 89, 
for example, the electrodynamic potential (four.potential) is not referred to the 
axes of co-ordinates a:, y, z, t until it is to be conventionally divided into a 
scalar a.nd a vector portion, which have no independent invariant meaning 
from the relativistic standpoint. 

Rv WAV nf 1>nm-rnAnta10u f-.n Mh, lrnnralr~ 1 ha,no ..1o.r1nnarl l'W\Yn 1\,Jn,,_,...,:11, .. 
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equations, by :Minkowski's methods, an invariant analytical form for the four
potential and the ponderomotive action between two electrons, and so given 
another view of these constructions of Minkowski. Instead of going into de
tails here, I may refer to my article in Ann. d. Phys., 33, 1910, p. 649, § 7, 
or to 1\L Laue, " Das Relativitatsprinzip," Braunschwe1g, Vieweg, 1913, § 19. 
Compare also 1\finkowski's address on the principle of relativity, edited by my
self, in Ann. d. Phys., 47, 1915, p. 927, where the four-potential is placed at 
the head of electrodynamics, and this theory thus reduced to its simplest form. 

(8) Page 89, line 6. The invariant representation of the electromagnetic field 
by a" vector of the second kind" (or, as I proposed to call it, a'' six-vector," a 
term which seems to be winning acceptance) is a particularly important part 
of Minkowski's view of electrodynamics. Whereas Minkowski's ideas on the 
vector of the first kind, or four-vector, were in part anticipated by Poincare 
(Rend. Gire. 1\fat. Palermo, 21, 1906), the introduction of the six-vector is 
new. Like the six-vector, the wrench of mechanics (standing for a single force 
and a couple) depends on six independent parameters. And as in the electro
magnetic field "the separation into electric and magnetic force is a relative 
one," so with the wrench, as is well known, the division into single force 
and couple can be made in very many ways. 

(9) Page 90, line 9. Thiinkowski's relativistic form of Newton's law for the 
special case of zero acceleration mentioned in the text is included in the more 
general form proposed by Poincare (loc. cit.). On the other hand, in taking ac
celeration into consideration, it goes further than the latter. Minkowski's or 
Poincare's formulation of the law of gravitation shows that it is possible in 
many ways to reconcile Newton's law with the theory of relativity. That law 
is viewed as a point law, and gravitation therefore in a certain sense as action 
at a distance. The general theory of relativity, which Einstein has been 
developing from 1907 on, gets a deeper grip of the problem of gravitation. 
Gravitation is not only regarded as a field action and described by space-time 
differential equations-which seems from the present standpoint irrefutable
but it is also united organically with the principle of relativity extended to any 
transformations, whereas Minkowski and Poincare had adapted it to the postu
late of relativity in a more external manner. In the general theory of relativity 
the space-time structure is determined, from or together with, gravitation. Thus 
the principle of relativity, by an extension of 1\finkowski's ideas, is so formu
lated tha,t it postulates the co-variance of physical quantities with reference to 
a.11 point transformations, so that the coefficients of the invariant linear element 
enter into the laws of physics. 

(10) Page 90, line 33. Tho "fundamental equations for electromagnetic 
processes in ponderable bodies" are developed by Minkowski in Gottinger 
Nachrichten, 1907. It was not granted him to complete the "deduction of 
this eq nation on the basis of the theory of electrons." His essays in this 
direction have been worked out by M. Born, and together with the "Funda
mental Equations" make up the first volume of the series of monographs edited 
by Otto Blumenthal (Leipzig, 1910). 
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ON THE INFLUENCE OF GRAVITATION ON TBE 
PROPAGATION OF LIGHT 

BY A. EINSTEIN 

I N a memoir published four years ago * I tried to answer 
the question whether the propagation of light is in
fluenced by gravitation. I return to this theme, because 

my previous presentation of the subject does not satisfy 
me, and for a stronger reason, because I now see that one of 
the most important consequences of my former treatment 
is capa.ble of being tested experimentally. For it follows 
from the theory here to be brought forward, that rays of 
light, passing close to the sun, are deflected by its gravita
tional field, so that the angular distance between the sun and 
a fixed star appearing near to it is apparently increased by 
nearly a second of arc. 

In the course of these reflexions further results are yielded 
which relate to gravitation. But as the exposition of the 
entire group of considerations wou1d be rather difficult to 
follow, only a few quite elementary reflexions will be given 
in the following pages, from which the reader will readily be 
able to inform himself as to the suppositions of the theory 
and its line of thought. The relations here deduced, even if 
the theoretical foundation is sound, are valid only to a first 
approximation. 

§ 1. A Hypothesis as to the Physical Nature of the 
Oravitational Field 

In a homogeneous gravitational field (acceleration of 
gravity ,y) let there be a strJtionary system of co-ordinates K, 
orientated so that the lines of force of the gravitational field 
run in the negative direction of the axis of z. In a space free 

* A. Einstein, Ja.hrbuch ftir Radios.kt. und Elektronik, 4, 1907, 
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of gravitational fields let there be a second system of co
ordinates K', moving with uniform acceleration (,y) in the 
positive direction of its axis of z. To avoid unnecessary com
plications, let us for the present disregard the theory of 
relativity, and regard both systems from the customary point 
of view of kinematics, and the movements occurring in them 
from that of ordinary mechanics. 

Relatively to K, as well as relatively to K', material points 
which are not subjected to the action of other material points, 
move in keeping with the equations 

d2x d2y d2z 
dt2 = O, dt2 = O, dt2 = - ry. 

For the accelerated system K' this follows directly from 
Galileo's principle, but for the system K, at rest in a homo
geneous gravitational field, from the experience that all bodies 
in such a field are equally and uniformly accelerated. This 
experience, of the equal falling of all bodies in the gravi
tational field, is one of the most universal which the obser
vation of nature has yielded ; but in spite of that the law 
has not found any place in the foundations of our edifice of 
the physical universe. 

But we arrive at a very satisfactory interpretation of this 
law of experience, if we assume that the systems Kand K' are 
physically exactly equivalent, that is, if we assume that we 
may just as well regard the system K as being in a space free 
from gravitational fields, if we then regard K as uniformly 
accelerated. This assumption of exact physical equivalence 
makes it impossible for us to speak of the absolute accelera
tion of the system of reference, just as the usual theory of 
relativity forbids us to talk of the absolute velocity of a 
system ; * and it makes the equal failing of all bodies in a 
gravitational field seem a matter of course. 

As long as we restrict ourselves to purely mechanical pro
cesses in the realm where Newton's mechanics holds sway, 
we are certain of the equivalence of the systems K and K'. 

* Of course we cannot replace any arbitrary gravitational field by a state of 
motion of the system without e. gravitational field, any more than, by a trans
formation of relativity, we can transform all points of a. medium in any kind of 
motion to rest. 
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But this view of ours will not have any deeper significance 
unless the systems K and K' are equivalent with respect to 
all physical processes, that is, unless the laws of nature with 
respect to K are in entire agreement with those with respect 
to K'. By assuming this to be so, we arrive at a principle 
which, if it is really true, has great heuristic importance. 
For by theoretical consideration of processes which take place 
relatively to a system of reference with uniform acceleration, 
we obtain information as to the career of processes in a homo
geneous gravitational field. We shall now show, first of all, 
from the standpoint of the 9rdinary theory of relativity, what 
degree of probability is inherent in our hypothesis. 

§ 2. On the Oravitation of Energy 
One result yielded by the theory of relativity is that the 

inertia mass of a body increases with the energy it contains; 
if the increase of energy amounts to E, the increase in inertia 
mass is equal to E/c2, when c denotes the velocity of light. 
Now is there an increase of gravitating mass corresponding 
to this increase of inertia mass ? If not, then a body would 
fall in the same gravitational field with varying acceleration 
according to the energy it contained. That highly satisfactory 
result of the theory of relativity by which the law of the con
servation of mass is merged in the law of conservation of 
energy could not be maintained, because it would compel us 
to abandon the law of the conservation of mass in its old 
form for inertia mass, and maintain it for gravitating mass. 

But this must be regarded as very improbable. On the 
other hand, the usual theory of relativity does not provide us 
with any argument from which to infer that the weight of a 
body a·epends on the energy contained in it. But we shall 
show that our hypothesis of the equivalence of the systems 
K and K' gives us gravitation of energy as a, necessary con
sequence. 

Let the two material systems S1 and S2, provided with instru
ments of measurement, be situated on the z-axis of Kat the 
distance h from each other,* so that the gravitation potential 
in S2 is greater than that in S1 by ryh. Let a definite quantity 

* The dimensions of S1 and S2 are regarded as infinitely small in compari
son with h. 
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of energy Ebe emitted from 82 towards 81• Let the quantities 
of energy in 81 and 82 be measured by contrivances which
brought to one place in the system z and there compared
shall be perfectly alike. As to the process of this conveyance 
of energy by radiation we can make no a priori assertion, be
cause we do not know the influence of the gravitatiqnal field 
on the radiation and the measuring instruments in 81 and 82• 

But by our postulate of the equivalence of K and K' we 
are able, in place of the system Kin a homogeneous gravi
tational field, to set -the gravitation-free system K', which 
moves with uniform acceleration in the direction of positive 
z, and with the z-axis of which the material systems 81 and 
8 2 are rigidly connected. 

h 

We judge of the process of the transference of energy by 

z 

FIG. 5. 

radiation from 82 to 81 from a system K0, 

which is to be free from acceleration. At 
the moment when the radiation energy E 2 

is emitted from 82 toward 81, let the 
velocity of K' relatively to K0 be zero. 
The radiation will arrive at S1 when the 
time h/c has elapsed (to a first approxi
mation). But at this moment the velo-

y city of S1 relatively to K0 is ,yh/c = v. 
The ref ore by the ordinary theory of re
la ti vi ty the radiation arriving at 81 does 

X not possess the energy E 2, but a greater 
energy Ei, which is related to E2 to a 
first approximation by the equation * 

E 1 = E 2(1 + ~) = E2(1 + 1!) . (1) 

By our assumption exactly the same relation holds if the 
same process takes place in the system K, which is not acceler
ated, but is provided with a gravitational field. In this case 
we may replace ryh by the potential <I> of the gravitation vector 
in 82, if the arbitrary constant of cf> in S1 is equated to zero. 
We then have the equation 

E 1 = E 2 + E22cll . (la) 
C 

* See above, pp. 69-71. 
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This equation expresses the law of energy for the process 
under observation. The energy E 1 arriving at 81 is greater 
than the energy E2, measured by the same means, which was 
emitted in 82, the excess being the potential energy of the 
mass E2/c2 in the gravitational field. It thus proves that for 
the fulfilment of the principle of energy we have to ascribe 
to the energy E, before its emission in 82, a potential energy 
due to gravity, which corresponds to the gravitational mass 
E/c2• Our assumption of the equivalence of K and K' thus 
removes the difficulty mentioned at the beginning of this 
paragraph which is left unsolved by the ordinary theory of 
relativity. 

The meaning of this result is shown particularly clearly if 
we con$ider the following cycle of. operations :-

1. The energy E, as measured in 82, is emitted in the form 
of radiation in 82 towards Si, where, by the result just ob
tained, the energy E(l + .ryh/c2), as measured in 81, is ab
sorbed. 

2. A body W of mass M is lowered from 82 to S1, work 
Mryh being done in the process. 

3. The energy E is transferred from S1 to the body W 
,vhile W is in Sr Let the gravitational mass M be thereby 
changed so that it acquires the value M'. 

4. Let W be again raised to S2, work M'ryh being done 
in the process. 

5. Let E be transferred from W back to 82• 

The effect of this cycle is simply that S1 has undergone 
the increase of energy Eryh/c2, and that the quantity of 
energy M'ryh - Mryh has been conveyed to the system in the 
form of mechanical work. By the principle of energy, we 
must therefore have 

or 

Ery; = M',yh - Mryh, 
G 

M' - M == E/c2 •• . (lb) 

The increase in gravitational mass is thus equal to E/c2, and 
therefore equal to the increase in inertia mass as given by the 
theory of relativity. 

The result emerges still more directly from the equivalence 
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of the systems Kand K', according to which the gravitational 
mass in respect of K is exactly equal to the inertia mass in 
respect of K'; energy must therefore possess a gravitational 
mass which is equal to its inertia mass. If a mass M0 be 
suspended on a spring balance in the system K', the balance 
will indicate the apparent weight M0,y on account of the 
inertia of M0• If the quantity of energy E be transferred 
to M0, the spring balance, by the law of the inertia of 
energy, will indicate (M0 + E/c2),y. By reason of our funda
mental assumption exactly the same thing must occur when 
the experiment is repeated in the systen1 I{, that is, in the 
gravitational field. 

§ 3. Time and the Velocity of Light in the Gravitational 
Field 

If the radiation emitted in the uniformly accelerated 
system K' in 82 toward 81 had the frequency v2 relatively to 
the clock in 82, then, relatively to 81, at its arrival in 81 it no 
longer has the frequency v2 relatively to an identical clock in 
S1, but a greater frequency v1, such that to a first approxi
mation 

. (2) 

For if we again introduce the unaccelerated system of refer
ence K0, relatively to which, at the ti1ne of the emission of 
light, K' has no velocity, then 81, at the time of arrival of the 
radiation at 81, has, relatively to K0, the velocity ,yh/c, from 
which, by Doppler's principle, the relation as given results 
immediately. 

In agreement with our assumption of the equivalence of 
the systems K' and K, this equation also holds for the 
stationary syste1n of co-ordinates K, provided with a uniform 
gravitational field, if in it the transference by radiation takes 
place as described. It follows, then, that a ray of light 
emitted in S2 with a definite gravitational potential, and pos
sessing at its emission the frequency v2-compared with a 
clock in 82-will, at its arrival in 81, possess a different fre
quency v1-measured by an identical clock in Si- For ,yh we 
substitute the gravitational potential <I> of S2-that of 81 
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being taken as zero-and assume that the relation which we 
have deduced for the homogeneous gravitational field also 
holds for other f crms of field. Then 

V1 = V2 ( 1 + :) . . . . (2a.) 

This result (which by our deduction is valid to a first ap
proximation) permits, in the first place, of the following appli
cation. Let v0 be the vibration-number of an elementary 
light-generator, measured by a delicate clock at the same 
place. Let us imagine them both at a place on the surface 
of the Sun (where our S2 is located). Of the light there 
emitted, a portion reaches the Earth (81), where we measure 
the frequency of the arriving light with a clock U in all re
spects· resembling the one just mentioned. Then by (2a), 

v = v0( 1 + :), 

where <I> is the (negative) difference of gravitational potential 
between the surface of the Sun and the Earth. Thus accord
ing to our view the spectral lines of sunlight, as compared 
with the corresponding spectral lines of terrestrial sources of 
light, must be somewhat displaced toward the red, in fact by 
the relative amount 

Vo - V = - ~ = 2 • 10-- 6 
Vo C 

If the conditions under which the solar bands arise were 
exactly known, this shifting would be susceptible of measure
ment. But as other influences (pressure, temperature) affect 
the position of the centres of the spectral lines, it is difficult 
to discover whether the inferred influence of the gravitational 
potential really exists.* 

On a superficial consideration equation (2), or (2a), 
respectively, seems to· assert an absurdity. If there is con
stant transmission of light from 82 to S1 , how can any other 
number of periods per second arrive in S1 than is emitted 

* L. F. Jewell (Journ. de Phys., 6, 1897, p. 84) and particularly Ch. 
Fabry and H. Boisson (Comptes rendus, 148, 1909, pp. 688-690) have actually 
found such displacements of fine spectral lines toward the red end of the 
spectrum, of the order of magnitude here calculated, but have a.scribed them 
to an effect of pressure in the absorbing layer. 
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in 82 ? But the answer is simple. We cannot regard v2 or 
respectively v1 simply as frequencies (as the number of periods 
per second) since we have not yet determined the time in 
system K. What v2 denotes is the number of periods with 
reference to the time-unit of the clock U in 82, while v1 de
notes the number of periods per second with reference to the 
identical clock in S1 . Nothing compels us to assume that the 
clocks U in different gravitation potentials must be regarded 
as going at the same rate. On the contrary, we must certainly 
define the time in Kin such a way that the number of wave 
crests and troughs between 82 and 81 is independent of the 
absolute value of time; for the process under observation is 
by nature a stationary one. If we did not satisfy this con
dition, we should arrive at a definition of time by the appli
cation of which time would merge explicitly into the laws 
of nature, and this would certainly be unnatural and un~ 
practical. Therefore the two clocks in 81 and 82 do not both 
give the "time " correctly. If we measure time in S1 with 
the clock U, then we must measure time in 8,) with a clock 

" 
which goes 1 + <P/c2 times more slowly than the clock U when 
compared with U at one and the same place. For when 
measured by such a clock the frequency of the ray of light 
which is considered above is at its emission in 8,) .. 

v2 ( 1 + :) 

and is therefore, by (2a), equal to the frequency v1 of the same 
ray of light on its arrival in 81. 

This has a consequence which is of fundamental impor
tance for our theory. For if we measure the velocity of light 
at different places in the accelerated, gravitation-free~system 
K', employing clocks U of identical constitution, we obtain 
the same magnitude at all these places. The same holds 
good, by our fundamental assumption, for the system K as 
well. But from what has just been said we must use clocks 
of unlike constitu~ion, for measuring time at places with 
differing gravitation potential. For measuring time at a 
place which, relatively to the origin of the co-ordinates, has 
the gravitation potential <I>, we must employ a clock which
when removed to the origin of co-ordinates-goes (l + <1>/c2) 
times more slowly than the clock used for measuring time at 
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the origin of co~ordinates. If we call the velocity of light at 
the origin of co-ordinates c0, then the velocity of light c at a 
place with the gravitation potential cI> will be given by the 
relation 

C = Co ( 1 + !) , (3) 

The principle of the constancy of the velocity of light holds 
good according to this theory in a different form from that 
which usually underlies the ordinary theory of relativity. 

§ 4. Bending of Light- Rays in the Gravitational Field 
Frorr1 the proposition which has just been proved, that the 

velocity of light in the gravitational field is a function of the 
place, ,ve may easily infer, by means of Huyghens's principle, 
that light-rays propagated across a gravitational field undergo 
deflexion. For let Ebe a wave front of a plane light-wave at 
the time t, and let P1 and P 2 be two points in that plane at 

: /P./2), C, di---_, ----;::::-&-:r-=::::-2 d-r --

Pz ___ n,.' 
FIG. 6. 

unit distance from each other. P1 and P2 lie in the plane of 
the paper, which is chosen so that the differential coefficient 
of <I>, taken in the direction of the normal to the plane, 
vanishes, and therefore also that of c. We obtain the corre
sponding wave front at time t + dt, or, rather, its line 
of section with the plane of the paper, by describing circles 
round the points P 1 and P~ with radii c1dt and c2dt respectively, 
where ·c1 and c2 denote the velocity of light at the points P1 

and P2 respectively, and by drawing the tangent to these 
circles. The angle through which the light-ray is deflected 
in the path cdt is therefore 

~c 
( c1 - c2)dt = - ~n,dt, 

if we calculate the angle positively when the ray is bent to
ward the side of increasing n'. The angle of deflexion per 
unit of path of the light-ray is thus 

1 c)c , 1 <)<I> 
- - ~, , or by (3) - -:. "' 

Cun C"' un 
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Finally, we obtain for the deflexion which a light-ray experi
ences toward the side n' on any path (s) the expression 

a = - c~g:,as . . (4) 

We might have obtained the same result by directly consider
ing the propagation of a ray of light in the uniformly acceler
ated system K', and transferring the result to the system K, 
and thence to the case of a gravitational field of any form. 

By equation (4) a ray of light passing along by a heavenly 
body suffers a deflexion to the side of the diminishing gravi
tational potential, that is, on the side directed toward the 
heavenly body, of the magnitude 

where k denotes the constant of gravitation, M the mass of 
the heavenly body, 6. the distance of the 
ray from the centre of the body. A ray 
of light going past the Sun would accord-

L1 

FIG. 7. 

ingly undergo deflexion to the amount of 
4·10 - 6 = ·83 seconds of arc. The angu
lar distance of the star from the centre of 

S the Sun appears to be increased by this 
amount. As the fixed stars in the parts 
of the sky near the Sun are visible 
during total eclipses of the Sun, this 
consequence of the theory may be com
pared with experience. With the planet 
Jupiter the displacement to be expected 
reaches to about "rto of the amount 

given. It would be a most desirable thing if astronomers 
would take up the question here raised. For apart from 
any theory there is the question whether it is possible with 
the equipment at present available to detect an influence of 
gravitational fields- on the propagation of light. 
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THE E'OUNDATION OF THE GENERAL THEORY 
OF RELATIVITY 

BY A. EINSTEIN 

A. FUNDAMENTAL CONSIDERATIONS ON THE POSTULATE OF 
RELATIVITY 

§ 1. Observations on the Special Theory of Relativity 

T HE special theory of relativity is based on the 
following postulate, which is also satisfied by the 
mechanics of Galileo and Newton. 

If a system of co-ordinates K is chosen so tha.t, in re
lation to it, physical laws hold good in their simplest form, 
the same laws also hold good in relation to any other system 
of co-ordinates K' moving in uniform translation relatively 
to K. This postulate we call the '' special principle of 
relativity." The word " special " is meant to intimate 
that the principle is restricted to the ca.se when K' has a 
motion of uniform translation relatively to K, but that the 
equivalence of K' and K does not extend to the case of non
uniform motion of· K' relatively to K. 

Thus the special theory of relativity does not depart from 
classical mechanics through the postulate of relativity, but 
through the postulate of the constancy of the velocity of light 
in vacuo, from which, in combination with the special prin
ciple of relativity, there follow, in the well-known way, the 
relativity of simultaneity, the Lorentzian transformation, and 
the related laws for the behaviour of moving bodies and 
clocks. 

The modification to which the special theory of relativity 
has subjected the theory of space and time is indeed far
reaching, but one important point hais rema,ined unaffected. 

111 
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For the laws of geometry, even according to the special theory 
of relativity, are to be interpreted directly as laws relating to 
the possible relative positions of solid bodies at rest; and, in 
a more general way, the laws of kinematics are to be inter
preted as laws which describe the relations of measuring 
bodies and clocks. To two selected material points of a 
stationary rigid body there always corresponds a distance of 
quite definite length, which is independent of the locality and 
orientation of the body, and is also independent of the time. 
To two selected positions of the hands of a clock at rest 
relatively to the privileged system of reference there always 
corresponds an interval of time of a definite length, which is 
indepeadent of place and time. We shall soon see that the 
general theory of relativity cannot adhere to this simple 
physical interpretation of space and time. 

§ 2. The Need for an Extension of the Postulate of 
Relativity 

In classical mechanics, and no less in the special theory 
of relativity, there is an inherent epistemological defect which 
was, perhaps for the first time, clearly pointed out by Ernst 
Mach. We will elucidate it by the following example :-Two 
fluid bodies of the same size and nature hover freely in space 
at so great a distance from each other and from all other 
masses that only those gravitational forces need be taken into 
account which arise from the interaction of different parts of 
the same body. Let the distance between the two bodies be 
invariable, and in neither of the bodies let there be any 
relative movements of the parts with respect to one another. 
But let either mass, as judged by an observer at rest 
relatively to the other mass, rotate with constant angular 
velocity about the line joining the masses. This is a verifi
able relative motion of the two bodies. Now let us imagine 
that each of the bodies bas been surveyed by means of 
measuring instruments at rest relatively to itself, and let the 
surface of 81 prove to be a sphere, and that of 82 an ellipsoid 
of revolution. Thereupon we put the question-What is the 
reason for this difference in the two bodies ? No answer can 
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reason given is an observable fact of experience. The law of 
causality has not the significance of a statement as to the 
world of experience, except when observable facts ultimately 
appear as causes and effects. 

Newtonian mechanics does not give a satisfactory answer 
to this question. It pronounces as follows :-The laws of 
mechanics apply to the space R 1) in respect to which the body 
81 is at rest, but not to the space R 2, in respect to which the 
body 82 is at rest. But the privileged space R 1 of Galileo, 
thus in traduced, is a merely/ actitious cause, and not a thing 
that can be observed. It is therefore clear that Newton's 
mechanics does not really satisfy the requirement of causality 
in the case under consideration, but only apparently does so, 
since it makes the factitious cause R 1 responsible for the ob
servable difference in the bodies S1 and 82. 

The only satisfactory answer must be that the physical 
system consisting of S1 and 82 reveals within itself no imagin
able cause to which the differing behaviour of 81 and S2 can 
be referred. The cause must therefore lie outside this system. 
We have to take it that the general laws of motion, which in 
particular determine the shapes of 81 and S2, must be such 
that the mechanical behaviour of S1 and S2 is partly con
ditioned, in quite essential respects, by distant masses which 
we have not included in the system under consideration. 
These distant masses and their motions relative to S1 and 
S2 must then be regarded as the seat of the causes (which 
must be susceptible to observation) of the different behaviour 
of our two bodies 81 and S2• They take over the role of the 
factitious cause R1. Of all imaginable spaces R1, R2, etc., in 
any kind of motion relatively to one another, there is none 
which we may look upon as privileged a priori without re
viving the above.mentioned epistemological objection. The 
laws of physics must be of such a nature that they apply to 
systems of reference in any kind of motion. Along this road 
we arrive at an extension of the postulate of relativity. 

In addition to this weighty argument from the theory of 

* Of course an answer may be satisfactory from the point of view of episte. 
mology, and yet be unsound physically, if it is in conflict with other experi
ences. 
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knowledge, there is a well-known physical fact which favours 
an extension of the theory of relativity. Let K be a Galilean 
system of reference, i.e. a system relatively to which (at least 
in the four-dimensional region under consideration) a mass, 
sufficiently distant from other masses, is moving with uniform 
motion in a straight line. Let K' be a second system of 
reference which is moving relatively to K in unif orrnly 
accelerated translation. Then, relatively to K', a mass 
sufficiently distant from other masses would have an acceler 9 

ated motion such that its acceleration and direction of 
acceleration are independent of the material composition and 
physical state of the mass. 

Does this permit an observer at rest relatively to K' to 
infer that he is on a " really " accelerated system of reference? 
The answer is in the negative ; for the above-mentioned 
relation of freely movable masses to K' may be interpreted 
equally well in the following way. The system of reference 
K' is unaccelerated, but the space-time territory in question 
is under the sway of a gravitational field, which generates the 
accelerated motion of the bodies relatively to K'. 

This view is made possible for us by the teaching of 
experience as to the existence of a field of force, namely, the 
gravitational field, which possesses the remarkable property 
of imparting the same acceleration to all bodies.* The 
mechanical behaviour of bodies relatively to K' is the same 
as presents itself to experience in the case of systems which 
we are wont to regard as " stationary " or as " privileged." 
Therefore, from the physical sta11dpoint, the assumption 
readily suggests itself that the systems K and K' may both 
with equal right be looked upon as " stationary," that is to 
say, they have an equal title as systems of reference for the 
physical description of phenomena. 

It will be seen from these reflexions that in pursuing the 
general theory of relativity we shall be led to a theory of 
gravitation, since we are able to "produce " a gravitational 
field merely by changing the system of co-ordinates. It will 
also be obvious that the principle of the constancy of the 
velocity of light in vacuo must be modified, since we easily 

* Eotvos bas proved experimentally that the gravitational field ha.s this 
- J --- ..! -- -- - - L - - - - - - - - - --
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recognize that the path of a ray of light with respect to K' 
must in general be curvilinear, if with respect to K light is 
propagated in a straight line with a definite constant velocity. 

§ J, The Space-Time Continuum. Requirement of Oeneral 
Co-Variance for the Equations Expressing General 
Laws of Nature 

In classical mechanics, as well as in the special theory of 
relativity, the co-ordinates of space and time have a direct 
physical meaning. To say that a point-event has the X1 co
ordinate x1 means that the projection of the point-event on the 
axis of X1, determined by rigid rods and in accordance with the. 
rules of Euclidean geometry, is obtained by measuring off a 
given rod (the unit of length) x1 times from the origin of co
ordinates along the axis of X1. To say that a point-event 
has the X4 co-ordinate x4 = t, means that a standard clock, 
made to measure time in a definite unit period, and which is 
stationary relatively to the system of co-ordinates and practic
ally coincident in space with the point-event,* will have 
measured off x4 = t periods at the occurrence of the event. 

This view of space and time has always been in the minds 
of physicists, even if, as a rule, they have been unconscious 
of it. This is clear from the part which these concepts play 
in physical measurements ; it must also have underlain the 
reader's reflexions on the preceding paragraph (§ 2) for 
him to connect any meaning with what he there read. But 
we shall now show that we must put it aside and replace it 
by a more general view, in order to be able to carry through 
the postulate of general relativity, if the special theory of 
relati-vity applies to the special case of the absence of a gravi
tational field. 

In a space which is free of gravitational fields we introduce 
a Galilean system of reference K (x, y, z, t), and also a system 
of co-ordinates K' (x', y', z', t') in uniform rotation relatively 
to K. Let the origins of both systems, as well as their axes 

* We assume the possibility of verifying " simultaneity ,, for events im
mediately proximate in space, or-to speak more precisely-for immediate 
proximity or coincidence in space-time, without giving a definition of this 
fundamental concept. 
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of Z, permanently coincide. We shall show that for a space
time measurement in the system K' the above definition of 
the physical meaning of lengths and times cannot be main
tained. For reasons of symmetry it is clear that a circle 
around the origin in the X, Y plane of K may at the same 
time be regarded as a circle in the X', Y' plane of K'. We 
suppose that the circumference and diameter of this circle 
have been measured with a unit 1neasure infinitely small 
compared with the radius, and that we have the quotient of 
the two results. If this experiment were performed with a 
measuring-rod at rest relatively to the Galilean system K, the 
quotient would be 'TT'. With a measuring-rod at rest relatively 
to K', the quotient would be greater than 7T. This is readily 
understood if we envisage the whole process of measuring 
from the " stationary " system K, and take into consideration 
that the measuring~rod applied to the periphery undergoes 
a Lorentzian contraction, while the one applied along the 
radius does not. Hence Euclidean geometry does not apply 
to K'. The notion of co-ordinates defined above, which pre
supposes the validity of Euclidean geometry, therefore breaks 
down in relation to the system K'. So, too, we are unable 
to introduce a time corresponding to physical requirements 
in K', indicated by clocks at rest, relatively to K'. To 
convince ourselves of this impossibility, let us imagine two 
clocks of identical constitution placed, one at the origin of 
co-ordinates, and the other at the circumference of the 
circle, and both envisaged from the " stationary ,, system 
K. By a familiar result of the special theory of relativity, 
the clock at the circumference-judged from K-goes more 
slowly than the other, because the former is in motion and 
the latter at rest. An observer at the common origin of 
co-ordinates, capable of observing the clock at the circum
ference by means of light, would therefore see it lagging be
hind the clock beside him. As he will not make up his mind 
to let the velocity of light along the path in question depend 
explicitly on the time, he will interpret his observations as 
showing that the clock at the circumference " really " goes 
more slowly than the clock at the origin. So he will be 
obliged to define time in such a way that the rate of a clock 
depends upon where the clock may be. • 
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We therefore reach this result :-In the general theory of 
relativity, space and time cannot be defined in such a way 
that differences of the spatial co-ordinates can be directly 
measured by the unit measuring-rod, or differences in the 
time co-ordinate by a standard clock. 

The 1nethod hitherto employed for laying co-ordinates 
into the space-time continuum in a definite manner thus breaks 
down, and there seems to be no other way which would allow 
us to adapt systems of co-ordinates to the four-dimensional 
universe so that we might expect from their application a 
particularly simple formulation of the laws of nature. So 
there is nothing for it but to regard all imaginable systems 
of co-ordinates, on principle, as equally suitable for the 
description of nature. This comes to requiring that:-

The general laws of natu,re are to be expressed by equations 
which hold good for all systems of co-ordinates, that is, are 
co-variant with respect to any substitutions whatever (generally 
co-variant). 

It is clear that a physical theory which satisfies this 
postulate will also be suitable for the general postulate of 
relativity. For the sum of all substitutions in any case in
cludes those which correspond to all relative motions of three
dimensional systems of co-ordinates. That this requirement 
of general co-variance, which takes away from space and 
time the last remnant of physical objectivity, is a natural 
one, will be seen from the following reflexion. All our 
space-time verifications invariably amount to a determination 
of space--time coincidences. If, for example, events consisted 
merely in the motion of material points, then ultimately 
nothing ,vould be observable but the meetings of two or more 
of these points. Moreover, the results of our measurings are 
nothing but verifications of such meetings of the material 
points of our measuring instruments with other material 
points, coincidences between the hands of a clock and points 
on the clock dial, and observed point-events happening at the 
same place at the same time. 

The introduction of a system of reference serves no other 
purpose than to facilitate the description of the totality of such 
coincidences. We allot to the universe four space-time vari
ables x1, x2, x3, x4 in such a way that for every point-event 
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there is a corresponding system of values of the variables 
x 1 .•• x4• To two coincident point-events there corre
sponds one system of values of the variables x1 . . • x4 , i.e. 
coincidence is characterized by the identity of the co-ordinates. 
If, in place of the variables x1 .•• x4, we introduce functions 
of them, x'i, x'2, x'3, x'4, as a new system of co-ordin3!tes, so 
that the systems of values are made to correspond to one 
another without ambiguity, the equality of all four co-ordin
ates in the new system will also serve as an expression for 
the space-time coincidence of the two point-events. As all 
our physical experience can be ultimately reduced to such 
coincidences, there is no immediate reason for preferring 
certain systems of co-ordinates to others, that is to say, we 
arrive at the requirernent of general co-variance. 

§ 4. The Relation of the Four Co-ordinates to Measure
ment in Space and Time 

It is not my purpose in this discussion to represent the 
general theory of relativity as a system that is as simple and 
logical as possible, and with the minimum number of axioms; 
but my main object is to develop this theory in such a way 
that the reader will feel that the path we have entered upon 
is psychologically the natural one, and that the underlying 
assumptions will seem to have the highest possible degree 
of security. With this aim in view let it now be granted 
that:--

For infinitely small four-dimensional regions the theory 
of relativity in the restricted sense is appropriate, if the co
ordinates are suitably chosen. 

For this purpose we must choose the acceleration of the 
infinitely small (" local ") system of co-ordinates so that no 
gravitational field occurs; this is possible for an infinitely 
small region. Let X1, X2, X3, be the co-ordinates of space, 
and X4 the appertaining co-ordinate of time measured in the 
appropriate unit.* If a rigid rod is imagined to be given as 
the unit measure, the co-ordinates, with a given orientation 
of the system of co-ordinates, have a direct physical meaning 

* The unit of time is to be chosen so that the velocity of light in vacuo as 
measured in the " local" system of co-ordinates is to be equal to unity. 
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in the sense of the special theory of relativity. By the 
special theory of relativity the expression 

ds2 = - dX: - dX: - ax: + dX: . ( 1) 

then has a value which is independent of the orientation of 
the local system of co-ordinates, and is ascertainable by 
measurements of space and time. The magnitude of the 
linear element pertaining to points of the four-dimensional 
continuum in infinite proximity, we call ds. If the ds belong
ing to the element dX1 ••• dX4 is positive, we follow 
Minkowski in calling it time-like ; if it is negative, we call it 
space-like. 

To the " linear element '' in question, or to the two infin
itely .proximate point-events, there will a.1so correspond 
definite differentials dx1 • • • dx4 of the four-dimensional 
co-ordinates of any chosen system of reference. If this 
system, as well as the " local " system, is given for the region 
under consideration, the dXv will allow themselves to be 
represented here by definite linear homogeneous expressions 
of the dx <J' :-

Inserting these expressions in (1), we obtain 

ds2 = '$grrrdx(Tdx,,.,. 
'TO' 

. (2) 

(3) 

where the g(f,,. will be functions of the Xu, These can no 
longer be dependent on the orientation and the state of 
motion of the " local " system of co-ordinates, for ds2 is a 
quantity ascertainable by rod-clock measurement of point
events infinitely proximate in space-time, and defined inde
pendently of any particular choice of co-ordinates. The g(f,,. 
are to be chosen here so that gu,,. = g,,..(f ; the summation is 
to extend over all values of u and T, so that the sum consists 
of 4 x 4 terms, of which twelve are equal in pairs. 

The case of the ordinary theory of relativity arises out of 
the case here considered, if it is possible, by reason of the 
particular relations of the g(f,,. in a finite region, to choose the 
system of reference in the finite region in such a way that 
the g q-r assume the constant values 
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- 1 0 0 0 
0 - 1 0 0 
0 0 - 1 0 
0 0 0 + 1 

. (4) 

We shall find hereafter that the choice of such co-ordinates 
is, in general, not possible for a finite region. 

From the considerations of § 2 and § 3 it follows that 
the quantities g,,.tT are to be regarded from the physical stand
point as the quantities which describe the gravitational 
field in relation to the chosen system of reference. For, if 
we now assume the special theory of relativity to apply to a 
certain four-dimensional region with the co-ordinates properly 
chosen, then the guT have the values given in (4). A free 
material point then moves, relatively to this system, with 
uniform motion in a straight line. Then if we introduce new 
space-time co-ordinates Xi, x~, x3, x4, by means of any substi
tution we choose, the g<rr in this new system will no longer 
be constants, but functions of space and time. At the san1e 
time the motion of the free material point will present itself 
in the new co-ordinates as a curvilinear non-uniform 1notion, 
and the law of this motion will be independent of the nature 
of the moving particle. We shall therefore interpret this 
motion as a motion under the influence of a gravitational 
field. vVe thus find the occurrence of a gravitational field 
connected with a space-time variability of the gu . So, too, 
in the general case, when we are no longer able by a suitable 
choice of co-ordinates to apply the special theory of relativity 
to a finite region, we shall hold fast to the view that the g<J'T 

describe the gravitational field. 
Thus, according to the general theory of relativity, gravi

tation occupies an exceptional position with regard to other 
forces, particularly the electromagnetic forces, since the ten 
functions representing the gravitational field at the same time 
define the metrical properties of the space 1neasured. 

B. MATHEMATICAL AIDS TO THE FORMULATION 011, 

GENERALLY COVARIANT EQUATIONS 

Having seen in the foregoing that the general postulate 
of relativity leads to the requirement that the equations of 
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physics shall be covariant in the face of any substitution of 
the co-ordinates x 1 • . • x4, we have to consider how such 
generally covariant equations can be found. We now turn 
to this purely mathematical task, and we shall find that in its 
solution a fundamental role is played by the invariant ds 
given in equation (3), which, borrowing from Gauss's theory 
of surfaces, we have called the '' linear element." 

The fundamental idea of this general theory of covariants 
is the following :-Let certain things (" tensors ") be defined 
with respect to any system of co-ordinates by a number of 
functions of the co-ordinates, called the "components " of 
the tensor. There are then certain rules by which these 
components can be calculated for a new system of co-ordin
ates, if they are known for the original system of co-ordinates, 
and if the transformation connecting the two systems is 
known. The things hereafter called tensors are further 
characterized by the fact that the equations of transformation 
for their components are linear and homogeneous. Accord
ingly, all the components in the new system vanish, if they 
all vanish in the original· system. If, therefore, a law of 
nature is expressed by equating all the components of a tensor 
to zero, it is generally covariant. By examining the laws 
of the formation of tensors, we acquire the means of formu
lating generally covariant laws. 

§ 5. Contravariant and Covariant Four-vectors 
Contravariant Four-vectors.-Tbe linear element is de

fined by the four "components" dx,,, for which the law of 
transformation is expressed by the equation 

d , ~ 'ax' (J'd 
X, (T = ,.,-- x,, . 

.,, c)x,, 
. (5) 

The dx' o- are expressed as linear and homogeneous functions 
of the dxv. Hence we may look upon these co-ordinate differ
entials as the components of a " tensor " of the particular 
kind which we call a contravariant four-vector. Any thing 
which is defined relatively to the system of co-ordinates by 
four quantities Av, and which is transformed by the same law 

A'u = ~~x'u Av, . . . (5a) 
J' ~J;" 
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we also call a contra variant four-vector. From ( 5a) it 
follows at once that the sums A" + Bo- are also components 
of a four-vector, if A" and B" are such. Corresponding rela
tions hold for all "tensors " subsequently to be introduced. 
(Rule for the addition and subtraction of tensors.) 

Covariant Four-vectors.-We call four quantities Av the 
components of a covariant four-vector, if for any arbitrary 
choice of the contravariant four-vector B" 

l1A.,B,, = Invariant . (6) 
JI 

The law of transformation of a. covariant four-vector follows 
from this definition. For if we replace B,, on the right-hand 
side of the equation 

I A' a-B'" = ~ A.,B,, 
O' .,, 

by the expression resulting from the inversion of (5a), 

~'t)x:' B'", 
u c>x u 

we obtain 

Since this equation is true for arbitrary values of the B'<T, it 
follows that the law of transformation is 

• . (7) 

Note on a Simplified Way of Writing the Expressions.
A glance at the equations of this paragraph shows that there 
is always a summation with respect to the indices which 
occur twice under a, sign of summation ( e.g. the index v in 
(5)), and only with respect to indices which occur twice. It 
is therefore possible, without loss of clearness, to omit the sign 
of summation. In its place we introduce the convention:
If an index occurs twice in one term of an expression, it is 
always to be summed unless the contrary is expressly stated. 

The difference between covariant and contravariant four
vectors lies in the law of transformation ((7) or (5) respectively). 
Both forms are tensors in the sense of the general remark 
above. Therein lies their importance. Following Ricci and 
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Levi-Ci vita, we denote the contra variant character by placing 
the index above, the covariant by placing it below. 

§ 6. Tensors of the Second and Higher Ranks 

Contravariant Tensors.-If we form all the sixteen pro
ducts A"'., of the components A"' and B" of iwo contravariant 
four-vectors 

. (8) 

then by (8) and (5a) A"'., satisfies the law of transformation 

A'O'" = c,a;' "'- "ax'~ A"'" 
~Xµ. ~Xv 

I (9) 

We call a thing which is described relatively to any system 
of reference by sixteen quantities, satisfying the law of trans
formation (9), a contravariant tensor of the second rank. Not 
every such tensor allows itself to be formed in accordance 
with (8) from two four-vectors, but it is easily shown that 
any given sixteen A"'., can be represented as the sums of the 
AµBv of four appropriately selected pairs of four-vectors. 
Hence we can prove nearly all the laws which apply to the 
teJ1sor of the second rank defined by (9) in the simplest 
manner by demonstrating them for the special tensors of the 
type (8). 

Contravariant Tensors of .Any Rank.-It is clear that, on 
the lines of (8) and (9), contravariant tensors of the third and 
higher ranks may also be defined with 43 components, and so 
on. In the same way it follows from (8) and (9) that the 
contravariant four-vector may be ta.ken in this sense as a 
contravariant tensor of the first rank. 

Covariant Tensors.-On the other hand, if we take the 
sixteen products Aµ.v of two covariant four-vectors Aµ. and Bv, 

Aµv = AµBv, . . (10) 

the law of transformation for these is 

. (11) 

This law of transformation defines the covariant tensor of 
the second rank. All our previous remarks on contravariant 
tensors apply equally to covariant tensors. 
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NoTE.-It is convenient to treat the scalar (or invariant) 
both as a contravariant and a covariant tensor of zero rank. 

Mixed Tensors.-We may also define a tensor of the 
second rank of the type 

A; = AµB" . . (12) 

which is covariant with respect to the indexµ, and contra
variant with respect to the index v. Its law of transforma
tion is 

. (13) 

Naturally there are mixed tensors with any number of 
indices of covariant character, and any number of indices of 
contravariant character. Covariant and contravariant tensors 
may be looked upon as special cases of mixed tensors. 

Symmetrical Tensors.-A contravariant, or a covariant 
tensor, of the second or higher rank is said to be symmetrical 
if two components, which are obtained the one from the other 
by the interchange of two indices, are equal. The tensor A"'v, 
or the tensor Aµ.v, is thus symmetrical if for any combination 
of the indices µ, v, 

or respectively, 
. (14) 

. (14a) 

It has to be proved that the symmetry thus defined is a 
property which is independent of the system of reference. 
It follows in fact from (9), when (14) is taken into consider
ation, that 

,, ,, ~, ,, ,, ,, 
A'tTT = uX (J' vX T Aµv = ~ vX.,. Avµ = vX (J' ~Aµ.v = A'Ttr 

()xµ. ()xv c>xµ c>xv c>x,, ()Xµ • 

The last equation but one depends upon the interchange of 
the summation indices µ, and v, i.e. merely on a change of 
notation . 

.A.ntisymmetrical Tensors.-A contravariant or a covariant 
tensor of the second, third, or fourth rank is said to be anti. 
symmetrical if two components, which are obtained the one 
from the other by the interchange of two indices, are equal 
a.nd of opposite sign. The tensor A,,.,.,, or the tensor Aµv, is 
therefore antisymmetrical, if always 
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. (15) 

Aµv = - Avµ. . . (15a) 
Of the sixteen components A"'v, the four components AP."' 

vanish ; the rest are equal and of opposite sign in pairs, so 
that there are only six components numerically different (a 
six-vector). Similarly we see that the antisymmetrical tensor 
of the third rank Aµ.vu bas only four numerically different 
components, while the antisymmetrical tensor A"'vu-r has only 
one. There are no antisymmetrical tensors of higher rank 
than the fourth in a continuu1n of four dimensions. 

§ 7. Multiplication of Tensors 
Oute1· Multiplication of Tensors.-We obtain from the 

components of a tensor of rank n and of a tensor of rank m
the components of a tensor of rank n + m by multiplying 
each component of the one tensor by each component of the 
other. Thus, for example, the tensors T arise out of the 
tensors A and B of different kinds, 

T µBIO' = Aµ-,,Bo-, 
T/J,VO'T = A"VB (J"", 

T O'T - A BO'V 
- µ.11 • µ.v 

The proof of the tensor character of T is given directly 
by the representations (8), (10), (12), or by the laws of trans
formation (9), (11), (13). The equations (8), (10), (12) are 
themselves exam pies of outer multiplication of tensors of the 
first rank. 

"Contraction" of a Mixed Tensor.-From any mixed 
tensor we may form a tensor whose rank is less by two, by 
equating an index of covariant with one of contravariant 
character, and summing with respect to this index (" con
traction "). Thus, for example, from the mixed tensor of the 
fourth rank A';,, we obtain the mixed tensor of the second 
rank, 

A; = A:; ( == ~A~;), 
µ 

and from this, by a second contraction, the tensor of zero 
rank, 
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The proof that the result of contraction really possesses 
the tensor character is given either by the representation of a 
tensor according to the generalization of (12) in combination 
with (6), or by the generalization of (13). 

Inner and Mixed Multiplication of Tensors.-These consist 
in a combination of outer multiplication with contraction. 

Examples.-From the covariant tensor of the second rank 
Aµ.,, and the contravariant tensor of the first rank Bu we form 
by outer inultiplication the mixed tensor 

D;v = Aµ..,Bu. 

On contraction with respect to the indices v and u, we obtain 
the•covariant four-vector 

Dµ. =-= n;v = Aµ...,Bv. 

This we call the inner product of the tensors Aµv and Bu. 

Analogously we form from the tensors Aµ.v and Bu'I', by outer 
multiplication and double contraction, the inner product 
Aµ.vB'·0 '. By outer multiplication and one contraction, we 
obtain from Aµ.,, and BITT the mixed tensor of the second rank 
n; = Aµ.,B 11T. This operation may be aptly characterized as 
a mixed one, being "outer" with respect to the indices µ, 
and -r, and '' inner '' with respect to the indices v and fJ. 

We now prove a proposition which is often useful as evi
dence of tensor character. From what has just been ex
plained, Aµ.11B"'v is a scalar if Aµ.11 and Bu1' are tensors. But 
we may also make the following assertion : If AµvBfA, 11 is 
a scalar for any choice of the tensor B"'v, then Aµ.v has tensor 
character. For, by hypothesis, for any substitution, 

A, B'a-" - A B,...11 
<TT . - µ11 • 

But by an inversion of (9) 

B"'" - c)xµ iXvB'IT'f 
- <>x' rr ~x',., • 

This, inserted in the above equation, gives 

( A' - "x~ "l)x,, A )B'IT'T = 0 
"" 'c,x' o- "l,x' T' µv • 

This can only be satisfied for arbitrary values of B'u" if the 
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bracket vanishes. The result then follows by equation (11). 
This rule applies correspondingly to tensors of any rank and 
character, and the proof is analogous in all cases. 

The rule 1nay also be demonstrated in this form : If B"' 
and C" are any vectors, and if, for all values of these, the 
inner product AµvBµ.Cv is a scalar, then Aµv is a covariant 
tensor. This latter proposition also holds good even if only 
the more special assertion is correct, that with any choice of 
the four-vector B"' the inner product AµvB"Bv is a scalar, if 
in addition it is known that Aµv satisfies the condition of 
symmetry Aµv = Avµ. For by the method given above we 
prove the tensor chniracter of (Aµv + Avµ), and from this the 
tensor character of Aµv follows on account of symmetry. 
This also can be easily generalized to the case of covariant 
and contravariant tensors of any rank. 

Finally, there follows from what has been proved, this 
law, which may also be generalized for any tensors: If for 
any choice of the four-vector B" the quantities AµvB" form a 
tensor of the first rank, then Aµv is a tensor of the second 
rank. For, if Cµ is any four-vector, then on account of the 
tensor character of AµvBv, the inner product Aµ11B"Cµ is a 
scalar for any choice of the two four-vectors Bv and QM. From 
which the proposition follows. 

§ 8. Some Aspects of the Fundamental Tensor g µv 

The Co1Jariant Fundamental Te-nsor.-In the invariant 
expression for the square of the linear element, 

ds 2 = UµvdxµdXv, 

the part played by the dxµ, is that of a contravariant vector 
which may be chosen at will. Since further, gµ,, = gvµ., it 
follows from the considerations of the preceding paragraph 
that g µv is a covariant tensor of the second rank. We call 
it the "fundamental tensor.'' In what follows we deduce 
some properties of this tensor which, it is true, apply to any 
tensor of the second rank. But as the fundamental tensor 
plays a special part in our theory, which has its physical basis 
in the peculiar effects of gravitation, it so happens that the 
relations to be developed are of importance to us only in the 
case of the fundamental tensor. 
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The Oontravariant Fundamental Tensor.-!£ in the deter• 
minant formed by the elements gµ,,,, we take the co-factor of 
each of the gµ.11 and divide it by the determinant g = I gµv I , 
we obtain certain quantities gµv( = g11µ) which, as we shall 
demonstrate, form a contravariant tensor. 

By a known property of determinants 

gµ.q(J'V(T = 8; . . (16) 

where the symbol 8; denotes 1 or 0, according asµ = v or 
µ. + v. 

Instead of the above expression for ds2 we may thus write 

fJµo-o:dxµdx,,, 
or, by (16) 

But, by the n1ultiplication rules of the preceding paragraphs, 
the quantities 

form a covariant four-vector, and in fact an arbitrary vector, 
since the dxµ. are arbitrary. By introducing this into our ex
pression we obtain 

ds 2 = gtTTd~<Tdfr, 

Since this, with the arbitrary choice of the vector d~(T, is a 
scalar, and gG"t' by its definition is symmetrical in the indices 
u and -r, it follows from the results of the preceding paragraph 
that gu-r is a contravariant tensor. 

It further follows from (16) that Sµ is also a tensor, which 
we may call the mixed fundamental tensor. 

The Determinant of the Fundamental Tensor.-By the 
rule for the multiplication of determinants 

I fh,.aga.v I - I g µa. I X I gav I • 

On the other hand 
I gµo.gav I - I s; I = 1. 

It the ref ore follows that 

I g µ.v I X I g µv \ = 1 , . (17) 

The Volume Scalar.-We seek first the law of transfor-
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mation of the determinant g = I gµ.., I . In accordance with 
(11) 

Hence, by a double application of the rule for the multipli
cation of determinants, it follows that 

g' = l ~Xµ ' I "Xv I I ~Xµ 12 I ~xi; r • ~x7.; • I gµ., J = I ~x'O' g, 
or 

✓ g' = II ?Jx~ ,.jg. 
3x O' 

On the other hand, the law of transformation of the element 
of volume 

dr = J dx1dx 2dx3dx4 

is, in accordance with the theorem of Jacobi, 

dT' = I c)x' O' I d-r. 
~Xµ 

By multiplication of the last two equations, we obtain 

. (18). 

Instead of ✓u, we introduce in what follows the quantity 
,.j- g, which is always real on account of the hyperbolic 
character of the space-time continuum. The invariant.../ - gdT 
is equal to the magnitude of the four-dimensional element 
of volume in the " local " system of reference, as measured 
with rigid rods and clocks in the sense of the special theory 
of relativity. 

Note on the Character of the Space-time Oontinuum.-Our 
assumption that the special theory of relativity can always 
be applied to an infinitely small region, implies that ds2 can 
always be expressed in accordance with (1) by means of real 
quantities dX1 ••. dX4. If we denote by d-r0 the "natural" 
element of volume dX1, dX2, dX3, dX4, then 

dT0 =-= J - gdT 
f.R. 9 

. (18a) 
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If ✓ - g were to vanish at a, point of the four-dimensional 
continuum, it would mean that at this point an infinitely small 
" natural " volume would correspond to a finite volume in 
the co-ordinates. Let us assume that this is never the case. 
Then g cannot change sign. We will assume that, in the 
sense of the special theory of relativity, g always has a finite 
negative value. This is a hypothesis as to the physical 
nature of the continuum under consideration, and at the same 
time a convention as to the choice of co-ordinates. 

But if - g is always finite and positive, it is natural to settle 
the choice of co-ordinates a posteriori in such a way that this 
quantity is always equal to unity. We shall see later that 
by such a restriction of the choice of co-ordinates it is possible 
to achieve an important simplification of the laws of nature. 

In place of (18), we then have simply dT' = dT, from 
which, in view of Jacobi's theore1n, it follows that 

= 1 . . (19) 

Thus, with this choice of co-ordinates, only substitutions for 
which the determinant is unity are permissible. 

But it would be erroneous to believe that this step indicates 
a partial abandon1nent of the general postulate of relativity. 
We do not ask "What are the laws of nature which are co
variant in face of all substitutions for which the determinant 
is unity? " but our question is " What are the generally co
variant laws of nature ? " It is not until we have formulated 
these that we sin1plify their expression by a particular choice 
of the system of reference. 

Tlie Formation of New Tensors by Means of the Funda-
1nental Tensor.-Inner, outer, and mixed multiplication of a 
tensor by the fundamental tensor give tensors of different 
character and rank. For example, 

A"' = gu.O" A<J', 
A = g µ.vAµ". 

The following forms may be specially noted :

Aµ" = gµ"gvf3Aa.{3, 

Aµ.v = g µag1113A a.(J 
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(the ''complements" of covariant and contravariant tensors 
respectively), and 

Bµv = gµvga./JAa./J• 

We call Bµv the reduced tensor associated with Aµ.11• Similarly, 

B~" = gµvg a./JA a.f3. 

It may be noted that gµ. 11 is nothing more than the comple
ment of g µv, since 

§ 9. The Equation of the Oeodetic Line. The Motion of a 
Particle 

As the linear element ds is defined independently of the 
systern of co-ordinates, the line drawn between two points P 
and P' of the four-dimensional continuum in such a way that 
ids is stationary-a geodetic line-has a meaning which also 
is independent of the choice of co-ordinates. Its equation is 

lP' 

o ds=O. 

p 

. (20) 

Carrying out the variation in the usual way, we obtain 
from this equation four differential equations which define the 
geodetic line ; this operation will be inserted here for the sake 
of completeness. Let A be a function of the co-ordinates x11 , 

and let this define a family of surfaces which intersect the 
required geodetic line as well as all the lines in immedia~e 
proximity to it which are drawn through the points P and P'. 
Any such line n1ay then be supposed to be given by expres
sing its co-ordinates xv as functions of X. Let the symbol o 
indicate the transition from a point of the required geodetic 
to the point corresponding to the same X on a neighbouring 
line. Then for (20) we may substitute 

J::oindx = o 1 
2 dxµ dx.,,J 

w = Uµ.v dX dX 

. (20a) 

But since 
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0 _ !{! ";jgµv dx"' dxv O dx,.,,0(dxv)} 
w - w 2 ()x(J' dX d"'A. x a- + g µ.v d"'A. d"'A. ' 

and 

s(~) = t<Bx.), 

we obta.in from (20a), after a partial integration, 

where 

. (20b) 

Since the values of 8xu are arbitrary, it follows from this that 

Ito- = 0 . (20c) 

are the equations of the geodetic line. 
If ds does not vanish along the geodetic line we may 

choose the'' length of the arc" s, measured along the geodetic 
line, for the parameter"-· Then w = I, and in place of (20c) 
we obtain 

dl'x"' + c,gµ.v dxu dx"' _ ! c,gµ.v dxµ. dxv _ O 
g,,.,, ds 2 'c)xa- ds ds 2 <'lxu ds ds -

or, by a, mere change of notation, 

d2xa. [ ]dx,.,. dxv O 
Uau ds 2 + µ,v, <r ds ds = 

where, following Christoffel, we have written 

[µv, u] = !('c)gµO' + "dgv'! - 'c)gµ.v) 
2 ~Xv ~Xµ. ~Xu 

. (20d) 

. (21) 

E,inally, if we multiply (20d) by grr,,. ( outer multiplication with 
respect to T, inner with respect to <r), we obtain the equations 
of the geodetic line in the form 

d2xr { }dxµ. dx.,, 0 
ds2 + µ,v' T ds ds = • . (22) 

where, following Christoffel, we have set 

{µ,v, r} = g"'a.[µv, a] . (23) 
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§ 10. The Formation of Tensors by Differentiation 
With the help of the equation of the geodetic line we can 

now easily deduce the laws by which new tensors can be 
formed from old by differentiation. By this means we are 
able for the first time to formulate generally covariant 
differential equations. We reach this goal by repeated appli
cation of the following simple law :-

If in our continuum a curve is given, the points of which 
are specified by the arcual distance s measured from a fixed 
point on the curve, and if, further, <f, is an invariant function 
of space, then d<f,jds is also an invariant. The proof lies in 
this, that ds is an invariant as well as dcp. 

As 

therefore 
+ = ~cf, dx"' 

dx"' ds 
is also an invariant, and an invariant for all curves starting 
from a point of the continuum, that is, for any choice of the 
vector dxµ., Hence it immediately follows that 

A - ocf, (24) 
µ. - axµ. • • • 

is a covariant four-vector-the "gradient" of rp. 
According to our rule, the differential quotient 

X = d'1r 
ds 

taken on a. curve, is similarly an invariant. Inserting the 
value of y, we obtain in the first place 

_ i)2cf, dx"' dx,, 'c>cp d2x"' 
X - ox,,.~Xv ds ds + axp. ds2 • 

The existence of a tensor cannot be deduced from this forth
with. But if we may take the curve along which we have 
differentiated to be a geodetic, we obtain on substitution for 
iil'x v/ ds2 from (22), 

( i)2cf, c)cp )dx"' dxv 
X == ~x,,_i)x., - {µ,v, T} i)x.,. ds ds • 

Since we may interchange the order of the differentiations, 
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and since by (23) and (21) {µ,v, T} is symmetrical inµ and v, 
it follows that the expression in brackets is symmetrical in µ, 
and v. Since a geodetic line can be drawn in a.ny direction 
from a point of the continuum, and therefore dxµ./ds is a four~ 
vector with the ratio of its components arbitrary, it follows 
from the results of § 7 that 

-a2cp ?Jcp 
Ap.v = <) ?, - {µ,v, T}~ . . (25) 

Xµ. Xv u:1;1' 

is a covariant tensor of the second rank. We have therefore 
come to this result : from the covariant tensor of the first 
rank 

~cf> A = --
"' ?Jx" 

we can, by differentiation, form a covariant tensor of the 
second rank 

. (26) 

We call the tensor Aµv the'' extension" (covariant derivative) 
of the tensor Aµ- In the first place we can readily show that 
the operation leads to a tensor, even if the vector A,.,. cannot 
be represented as a gradient. To see this, we first observe 
that 

,,,. 'c)cf, 

~x,.,. 
is a covariant vector, if v- and cf, are scalars. The sum of 
four such terms 

cp~(l) "3cp{4) 
Sµ. = ,;<I>-:;:- + . + • + ,;<4) ~--, 

vXµ uXµ 

is also a covariant vector, if -yCl>, ct,<1> . . . v<4>, ct,<4> are scalars. 
But it is clear that any covariant vector can be represented 
in the form S"'. For, if A"' is a vector whose components are 
any given functions of the x 11 , we have only to put (in terms 
of the selected system of co-ordinates) 

cf,(1) = X1, 
,1,,(2) - l')1 

"t" - w2, 
,1,.(3) - ,y, 
'f" - w3, 

.. rA(4) _ A. . ,1,.(4) == x 
"I' - .l'l.4, ' ..,., 4 ' 

in order to ensure that·Sµ. shall be equal to Aw 
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Therefore, in order to demonstrate that A"'" is a tensor if 
any covariant vector is inserted on the right-hand side for A11-, 
we only need show that this is so for the vector S"'. But for 
this latter purpose it is sufficient, as a glance at the right
hand side of (26) teaches us, to furnish the proof for the case 

A,,.= ~,,.. ~
" ~x"' 

Now the right-hand side of (25) multiplied by i/r, 
c)2cf, "¢ 

,y ~x14c)xv - {µ,v, -r}i/rc)xT 

is a tensor. Similarly 

()Xµ. c>x11 

being the outer product of two vectors, is a, tensor. By ad
dition, there follows the tensor character of 

-a!.( ,Jr!!) - {~v, -r}( ,Jr!!) 
As a glance at (26) will show, this completes the demon
stration for the vector 

,,,. "¢ 
c>xl£ 

and consequently, from what has already been proved, for any 
vector Aw 

By means of the extension of the vector, we may easily 
define the " extension '' of a covariant tensor of any rank. 
This operation is a generalization of the extension of a vector. 
We restrict ourselves to the case of a tensor of the second 
rank, since this suffices to give a clear idea of the law of 
formation. 

As has already been observed, any covariant tensor of the 
second rank can be represented * as the sum of tensors of the 

* By outer multiplication of the vector with arbitrary components A11, A11t, 

A13, A14 by the vector with components 1, 0, 0, 0, we produce a tensor with 
components 

Au A12 
0 0 
0 0 
0 0 

By the addition of four tensors of this type, we obtain the tensor Aµ,, with any 
ssigned components. 
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type A,,.B.,. It will therefore be sufficient to deduce the ex
pression for the extension of a tensor of this special type. 
By (26) the expressions 

~Aµ - {erµ,, 'T}An 
vXu 

are tensors. On outer multiplication of the first by Bv, and 
of the second by A,,., we obtain in each case a tensor of the 
third rank. By adding these, we have the tensor of the third 
rank 

. (27) 

where we have put AP.., = A,,.Bv- As the right-hand side 
of (27) is linear and homogeneous in the Aµv and their first 
derivatives, this law of formation leads to a tensor, not only 
in the case of a tensor of the type Aµ.B.,, but also in the case 
of a sum of such tensors, i.e. in the case of any covariant 
tensor of the second rank. We call Aµvu the extension of the 
tensor Aµ..,,. 

It is clear that (26) and (24) concern only special cases 
of extension (the extension of the tensors of rank one and 
zero respectively). 

In general, all special laws of formation of tensors are in
cluded in (27) in combination with the multiplication of 
tensors. 

§ 11. Some Cases of Special Importance 
The Fundamental Tensor.-We will first prove· some 

lemmas which will be useful hereafter. By the rule for the 
differentiation of determinants 

. (28) 

The last member is obtained from the last but one, if we bear 
in mind that g p.vgµ'v = o:', so that g µ.vg11." = 4, and conse
quently 

g µ.vdgµ.v + gµv dg µ.v = 0 • 
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From (28), it follows that 

1 "'l>✓ - g = ½<>log ( - g) == lg1£v 'cJg,,_v = ½g,,.v~~. (29) 
,./ - g <)Xu c')zu ~Xo- ()Xa 

Further, from g ,,.ugva = 8~, it follows on differentiation that 

g 11,vdg110- -= - g"a dg µ.u} 
g "Uva = _ gva"'l>gµ.O' 

p.u c)x>. c)x,\ 

I (30) 

From these, by mixed multiplication by gu-r and U11>- re
spectively, and a change of notation for the indices, we have 

and 

"-g/J,V 'g (31) 
dg,,.., = - g"'o.gvfJ dg a.fJ} 

V - gP.a.gvfJ ~ • 
1xu = "'l>xu 

dgµ,v = - g,,.a.gvfJ dga.f3} 
"'l>g,,.., c)ga.fJ 
c)xu = - g µ.a.gvfJ ~Xu 

. (32) 

The relation (31) admits of a transformation, of which we 
also have frequently to make use; From (21) 

!Ua.~ = [aa, ,8] + (,gcr, a] . . (33) 
Xu 

Inserting this in the second formula of (31), we obtain, in 
view of (23) 

. (84) 

Substituting the right-hand side of (34) in (29), we have 

1 "✓ - g ::J~· ~Xu == {µa, µ} I (29a) 

The "Divergence" of a Oontravariant Vector.-!£ we 
take the inner product of (26) by the contra variant funda
mental tensor g"v, the right-hand side, after a transformation 
of the first term, assumes the form 
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In accordance with (31) and (29), the last term of this ex
pression may be written 

c)gTv ogTJJ. l ()✓ - g 
½-•-AT + t-• -A,,. + --:===- -------gµ.v A,,.. 

OXv c)xµ ✓ - g OXa 

As the symbols of the indices of summation are immaterial, 
the first two terms of this expression cancel the second of the 
one above. If we then write gµv Aµ. = A11 , so that A" like Aµ. 
is an arbitrary vector, we finally obtain 

. (35) 

This scalar is the divergence of the contravariant vector Av. 
The" Curl'' of a Covariant Vector.-The second term in 

(26) is symmetrical in the indices µ., and v. Therefore 
A,.,.., - Avµ. is a particularly simply constructed antisym
metrical tensor. We obtain 

. (36) 

A ntisymrnetrical Extension of a Six-vector.-Appiying 
(27) to an antisymmetrical tensor of the second rank Aµ.v, 

forming in addition the two equations which arise through 
cyclic permutations of the indices, and adding these three 
equations, we obtain the tensor of the third rank 

B A A A ?JAµ.v oAvu oAu,.,. (S7) 
p.v<r = µ.vu + vuµ. + tTµv = -"'\- + , - + "'\ 

uXu oXJA vXv 

which it is easy to prove is antisymmetrical. 
The Divergence of a Six-vecto1·.-Taking the mixed pro

duct of (27) by gµ.agvfJ, we also obtain a tensor.. ri:he first 
term on the right-hand side of (27) may be written in the 
form 

If we write AU: for gµag 11fJ Aµv(J' and A af3 for gµ«g 11fJ Aµv, and in 
the transformed first term replace 

c)gv/3 c,gµa 
- and 
<>Xu c)Xu 
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by their values as given by (34), there results from the right
hand side of (27) an expression consisting of seven terms, of 
which four cancel, and there remains 

. (38) 

This is the expression for the extension of a contravariant 
tensor of the second rank, and corresponding expressions for 
the extension of contravariant tensors of higher and lower 
rank may also be formed. 

We note that in an analogous way we ma.y also form the 
extension of a mixed tensor :-

A:u = c,A: - {a-µ,, -r}A~ + {o-T, a}A; . . (39) 
~Xu 

On contracting (38) with respect to the indices /3 and u 

(inner 1nultiplication by o;), we obtain the vector 

A a. = ~,A "-ti + {;3,y, (3}A a.y + {/3"'/, a}AYfJ. 
4JXp 

On account of the symmetry of {/3,y, a} with respect to the in
dices fJ and ,y, the third term on the right-hand side vanishes, 
if Aa.f3 is, as we will assume, an antisymmetrical tensor. The 
second ter1n allows itself to be transformed in accordance 
with (29a). Thus we obtain 

. ( 40) 

This is the expression for the divergence of a contravariant 
six-vector. 

The Divergence of a Mixed Tenso1· of tlie Second Rank.
Contracting (39) with respect to the indices a and a-, and 
taking (29a) into consideration, we obtain 

.j - gA,,. = <)(.j .,- gA:) - {op., T}.j--:_g'A~ . (41) 
Xu 

If we introduce the contra variant tensor APCT = gP.,. A: in the 
last term, it assumes the form 

- [a-µ,, p]✓ - gAP(T. 
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If, further, the tensor AP"' is symmetrical, this reduces to 

- t✓ - g~gp<T APO". 
c)x#,L 

Had we introduced, instead of AP", the covariant tensor 
Apu = gpu.UuFJAa.fJ, which is also symmetrical, the last term, by 
virtue of (31), would assume the form 

~-"3gpu 
t✓ - g~Apu• 

(}x#,L 

In the case of symmetry in question, (41) may therefore be 
replaced by the two forms 

~A,,. = 1'(✓ - gA:) - ½ 1'gpu ,J - gAP" . ( 41a) 
c)xo- "Xp. 

✓ - gA,,. = ?J(✓ - gA;) + ½ ?JgPu ✓-~Apu . (41b) 
1'xu 1'xµ 

which we have to employ later on. 

§ 12. The Riemann-Christoffel Tensor 
We now seek the tensor w~ich can be obtained from the 

fundamental tensor alone, by differentiation. At first sight 
the solution seems obvious. We place the fundamental 
tensor of the gl-L" in (27) instead of any given tensor AI.L"' and 
thus have a new tensor, namely, the extension of the funda
mental tensor. But we easily convince ourselves that this 
extension vanishes identically. We reach our goal, however, 
in the following way. In (27) place 

Ap.v = :A/.L - {,uv, p}Ap, 
ux,, 

i.e. the extension of the four-vector A"'. Then (with a some
what different naming of the indices) we get the tensor of the 
third rank 

A ?J2A11- { }"aAp { }-aAp ";)Aµ 
p.uT = -- - µ<r, p - - µT, p - - {<TT, p}C,Xu?JX, 1'x, 1'xu ?Jxp 

+ [ - ()~, {µo-, p} + {µ-r, a}{aa, p} + {a-r, a}{aµ, p} ]A .. 



A. EINSTEIN 141 

This expression suggests forming the tensor AJJ.tT" - Aµ.Ttr• 

For, if we do so, the following terms of the expression for 
Aµ,rr cancel those of AµTtr, the first, the fourth, and the 
member corresponding to the last term in square brackets ; 
because all these are symmetrical in u and r. The same 
holds good for the slim of the second and third terms. T~us 
we obtain 

. (42) 

where 

+ {µ,r, a}{au, p} ( 43) 

The essential feature of the result is that on the right side of 
( 42) the Ap occur alone, without their derivatives. From :the 
tensor character of Aµ,rr - Aµr<J in conjunction with the fact 
that Ap is an arbitrary vector, it follows, by reason of § 7, 
that B~rr-r is a tensor (the Riemann-Christoffel tensor). 

The mathematical importance of this tensor is as follo:ws : 
If the continuum is of such a nature that there is a co-ordinate 

cl 

system with reference to which the gµ.v are constants, then 
all the B~o-r vanish. If we choose any new system of co
ordinates in place of the original ones, the g µv referred 
thereto will not be constants, but in consequence of its tensor 
nature, the transformed components of B~(J..,. will still vanish 
in the new system. Thus the vanishing of the Riemann 
tensor is a necessary condition that, by an appropriate choice 
of the system of reference, the gµv may be constants. In our 
problem this corresponds to the case in which,* with a 
suitable choice of the system of reference, the special 
theory of relativity holds good for a finite region of the 
continuum. 

• Contracting ( 43) with respect to the indices T and p we 
obtain the covariant tensor of second rank 

* The mathematicians have proved that this is also a sufficient condition~ 
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where 
(44) 

Note on the Choice of Co-ordinates.-It has already been 
observed in § 8, in connexion with equation (18a), that the 
choice of co-ordinates may with advantage be made so that 
✓ - g = I. A glance at the equations obtained in the last 
two sections shows that by such a choice the laws of forma
tion of tensors undergo an important simplification. This 
applies particularly to Gµv, the tensor just developed, which 
plays a fundamental part in the theory to be set forth. For 
this specialization of the choice of co-ordinates brings about 
the vanishing of Sµv, so that the tensor G,.,.v reduces to Rµv-

On this account I shall hereafter give all relations in the 
simplified form which this specialization of the choice of co
ordinates brings with it. It will then be an easy matter to 
revert to the generally covariant equations, if this seems 
desirable in a special case . 

• C. THEORY OF THE GRAVITATIONAL FIELD 

§ 13. Equations of Motion of a Material Point in the 
Gravitational Field. Expression for the Field-com
ponents of Gravitation 

A freely movable body not subjected to external forces 
moves, according to the special theory of relativity, in a 
straight line and uniformly. This is also the case, according 
to the general theory of relativity, for a part of four-di
mensional space in which the system of co-ordinates I{0, may 
be, and is, so chosen that they have the special constant 
values given in ( 4). 

If we consider precisely this movement from any chosen 
system of co-ordinates Ki, the body, observed from K1, moves, 
according to the considerations in § 2, in a gravitational field. 
The law of motion with respect to K1 results without diffi-
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culty from the following consideration. With respect to K0 

the law of motion corresponds to a four-dimensional straight 
line, i.e. to a geodetic line. Now since the geodetic line 
is defined independently of the system of reference, its 
equations will also be the equation of motion of the matei;ial 
point with respect to K1. If we set 

. (45) 

the equation of the motion of the point with respect to K1, 

becomes 

. (46) 

,ve now make the assumption, which readily suggests itself, 
that this covariant system of equations also defines the motion 
of the point in the gravitational field in the case when there 
is no system of reference K0, with respect to which the 
special theory of relativity holds good in a, finite region. 
We have all the more justification for this assumption as ( 46) 
contains only first derivatives of the g"'.,,, between which even 
in the special case of the existence of K0, no relations sub
sist.* 

If the r;v vanish, then the point moves uniformly in a 
straight line. These quantities therefore condition the devi
ation of the motion from uniformity. They are the com
ponents of the gravitational field. 

§ 14. The Field Equations of Oravitation in the Absence 
of Matter 

We make a distinction hereafter between "gravitational 
field" and "matter'' in this way, that we denote everything 
but the gravitational field as '' matter." Our use of the word 
therefore includes not only matter in the ordinary sense, but 
the electromagnetic field as well. 

Our next task is to find the field equations of gravitation 
in the absence of matter. Here we again apply the method 

* It ia only between the second (and first) derivatives that, by § 12, the 

relations B~O'T :z O subsist. 
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employed in the preceding paragraph in formulating the 
equations of motion of the material point. A special case in 
which the required equations must in any case be satisfied is 
that of the special theory of relativity, in which the gµv have 
certain constant values. Let this be the case in a certain 
finite space in relation to a definite system of co-ordinates K0• 

Relatively to this system all the components of the Riemann 
tensor B µ.:,., defined in ( 43), vanish. For the space under 
consideration they then vanish, also in any other system of 
co-ordinates. 

Thus the required equations of the matter-free gravita-
tional field must in any case be satisfied if all B µ.:,,. vanish. 
But this condition goes too far. For it is clear that, e.g., the 
gravitational field generated by a n1aterial point in its environ
ment certainly cannot be" transformed away" by any choice 
of the system of co-ordinates, i.e. it cannot be transformed to 
the case of constant gµv• 

This prompts us to require for the matter-free gravitational 
field that the symmetrical tensor Gµv, derived from the tensor 
B P , shall vanish. Thus we obtain ten equations for the ten µ.ll"r 

quantities gµ. 11 , which are satisfied in the special case of the 
vanishing of all Bµ~r· With the choice which we have made 
of a system of co-ordinates, and taking (44) into considera
tion, the equations for the matter-free field are 

~ r:v no- I' 13 = 0 } 
OXa. + .L µ./3 va • 

,.j - g = I 
. ( 47) 

It must be pointed out that there is only a minimum of 
arbitrariness in the choice of these equations. For besides 
Gµv there is no tensor of second rank which is formed from 
the gp.v and its derivatives, contains no derivations higher than 
second, and is linear in these derivatives.* 

These equations, which proceed, by the method of pure 

* ProperJy speaking, this can be affirmed only of the tensor 
Gµv + "-gµ.vgC1.RQafJ 1 

where 'J\ is a. constant. If, however, we set this tensor== 0, we come back again 
to the equations G µ.v = 0. 



A. EINSTEIN 145 

mathematics, from the requirement of the general theory of 
relativity, give us, in combination with the equations of 
motion (4G), to a first approximation Newton's law of ,at
traction, and to a second approximation the explanation of 
the motion of the perihelion of the planet Mercury discovered 
by Leverrier (as it remains after corrections for perturbation 
have been made). These facts must, in my opinion, be 
taken as a convincing proof of the correctness of the theory. 

§ 15. The Hamiltonian Function for the Oravltationa;J 
Field. Laws of Momentum and Energy 

To show that the field equations correspond to the laws of 
momentum and energy, it is most convenient to write t~em 
in the following Ha1ni1tonian f or1n :-

ii J Hd-r = 0 
. (47a.) 

where, on the boundary of the finite four-dimensiona,l region 
of integration which we have in view, the variations vanish. 

We first have to show that the form (47a) is equivalent 
to the equations ( 4 7). For this purpose we regard H as a 
function of the g11-v and the t"; ( = "'tJg11-vf()xa.). 
Then in the first place 

oII = r;fJr~a. og,,.v + 2g11-vr:13 o~,,, 

= - r:~r!a. ogp.v + 2r:/J o(g11-11Tta.). 
But 

The terms arising from the last two terms in round brackets 
are of different sign, and result from each other (since the de
nomination of the summation indices is immaterial) through 
interchange of the indicesµ and /3. They cancel each other 
in the expression for 8H, because they are multiplied by the 
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quantity r:fJ' which is symmetrical with respect to the in· 
dices µ and /3. Thus there remains only the first term in 
round brackets to be considered, so that, taking (31) into ac
count, we obtain 

oH = - r:_f3r~11Sgµv + r;pog:fl. 
Thus 

. ( 48) 

Carrying out the variation in (47a), we get in the first place 

~(<)H) - vH = 0 . (47b) 
OXa <)g~v "l1gp.v ' • 

which, on account of (48), agrees with (47), as was to be 
proved. 

If we multiply (47b) by g"';, then because 

we obtain the equation 

or* 

" ( µvoH ) 
OX o. g O' <)g:v 

ot11 

~ = 0 
OXa 

oH - --- = 0 
<)xu 

- 21tta. gµv o H t':H 
u = u O µ,v - 0., ga. 

. ( 49) 

where, on account of (48), the second equation of (47), and 
(34) 

. (50) 

* Jhe reason for the introduction of the factor - 2,c wi11 be apparent later. 
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It is to be noticed that t: is not a tensor; on the other 
hand (49) applies to all systems of co-ordinates for which 
✓ - g = 1. This equation expresses the law of conservation 
of momentum and of energy for the· gravitational field. 
Actual1y the integration of this equation over a three
dimensional volume V yields the four equations 

a!Jt~dV = Jcu~ +mt!+ nt~)dS. . (49a) 

where l, m, n denote the direction-cosines of direction of the 
inward drawn normal at the element dS of the bounding sur
face (in the sense of Euclidean geometry). We recognize in 
this the expression of the laws of conservation in their usual 
form. The quantities t; we call the '' energy components " 
of the gravitational field. 

I will now give equations (4 7) in a third form, which is 
particularly useful for a vivid grasp of our subject. By 
multiplication of the field equations ( 4 7) by gv(]' these are ob
tained in the '' mixed " form. Note that 

~r:v () ( r., ) ?Jgvtr a. 
gvtr ~Xa c:s ~Xa. gvtr µ.v - ~X" I',.u,, 

which quantity, by reason of (34), is equal to 

i)!. ( g•a r;:.) - g•/3 r:~r::. - gaf3 r;.r: .. 
or (with different symbols for the surnmation indices) 

i) t~ ( g"/3 r;./3) - gyB r; /Jrr ,,_ - gva r;: /Jr!.. 

The third term of this expression cancels with the one arise 
ing fron1 the second term of the field equations (47); using 
relation (50), the second term may be written 

K( t: - ½o;t ), 

where t = t:. Thus instead of equations ( 4 7) we obtain 

<):,. (gcrf3r;fj) = - ,c( t: - ½o:t)} . 
- . (51) 
✓ - g = 1 
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§ 16. The General Form of the Field Equations of 
Gravitation 

The field equations for matter-free space formulated in 
§ 15 are to be compared with the field equation 

V2cf, = 0 

of Newton's theory. We require the equation corresponding 
to Poisson's equation 

'v2cf, = 41r,cp, 

where p denotes the density of matter. 
The special theory of relativity has led to the conclusion 

that inert mass is nothing more or less than energy, which 
finds its complete mathematical expression in a symmetrical 
tensor of second rank, the energy-tensor. Thus in the 
general theory of relativity we must introduce a correspond-
ing energy-tensor of matter T:, which, like the energy-com-

ponents ta- [equations (49) and (50)] of the gravitational field, 
will have mixed character, but will pertain to a symmetrical 
covariant tensor.* 

The system of equation (51) shows how this energy-tensor 
(corresponding to the density p in Poisson's equation) is to 
be introduced into the field equations of gravitation. For if 
we consider a complete system (e.g. the solar system), the 
total mass of the system, and therefore its total gravitating 
action as well, will depend on the total energy of the system, 
and therefore on the ponderable energy together with the 
gravitational energy. This will allow itself to be expressed 
by introducing into (51), in place of the energy-components 
ot the gravitational field alone, the sums t: + T; of the energy
components of matter and of gravitational field. Thus instead 
of (51) we obtain the tensor equation 

<l!}g.-11T:11) = - "[Ct: + T:) -- ~s:(t + T)J, l . (S2) 

✓ -g=l j 
where we have set T = T: (Laue's scalar). These are the 
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required general field equations of gravitation in mixed form. 
Working back from these, we have in place of ( 4 7) 

~!.r:. + r:~f'!. = - ,e(T,. .. - !g,..T),} . (53) 

✓ -u= 1 

It must be admitted that this introduction of the energy
tensor of matter is not justified by the relativity postulate 
alone. For this reason we have here deduced it from the 
requirement that the energy of the gravitational field shall 
act gravitatively in the same way as any other kind of energy. 
But the strongest reason for the choice of these equations 
lies in their consequence, that the equations of conservation 
of momentum and energy, corresponding exactly to equations 
(49) and (49a), hold good for the components of the total 
energy. This will be shown in § 17. 

§ 17. The Laws of Conservation In the General Case 
Equation ( 52) may readily be transformed so that the 

second term on the right-hand side vanishes. Contract (52) 
with respect to the indices µ and <T, and after multiplying the 
resulting equation by ts;, subtract it from equation (52). 
This gives 

~ () (g"fJI';fJ - ,iS;g>-tJr';.tJ) = - K(t: + T:). (52a) 
vXa 

On this equation we perform the operation ()/-axu. We have 

'2)2 ( "I' a. ) = _ -1 '2)2 [ ufJ a.>-(~U"">- + ~f/13>._ _ "3g_!!:~)J 
c)Xa.c)Xu g fJ,J. ~().Xa.c)Xu g g ()XfJ c)Xµ ~X>. • 

The first and third terms of the round brackets yield con
tributions which cancel one another, as may be seen by 
interchanging, in the contribution of the third term, the 
summation indices a and u on the one hand, and /3 and A 
on the other. The second term may be re-modelled by (31), 
so that we have 

~2 ( ) ~3g«f3 

c).Ca~Xo- gufJr:.(3 = t <)x4 c)xi3c)Xµ • • ( 54) 

The second term on the le£ t-hand side of ( 5 2a) yields in the 
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first place 

- ½i)x~~x,. ( gAflT;_/l) 
or 

¼ <)2 [g"f3ga1,(";)gs1-. + "'3gs13 _ c)gAfJ)]. 
~Xa.~Xµ ~XfJ c)XA axs 

With the choice of co-ordinates V\1hich we have made, the 
term deriving from the last term in round brackets disappears 
by reason of (29). The other two may be combined, and 
together, by (31), they give 

"33ga.f3 
-½---, 

"aXa. ~XfJ()Xµ 

so that in consideration of (54), we have the identity 

i)x:;x., ( g•flI',./l - ½B:0>.flT;11) = O 

From (55) and (52a), it follows that 

<)(t" + T 0') 
µ µ - 0 

c)XCT - • 

. (55) 

. (56) 

Thus it results from our field equations of gravitation 
that the laws of conservation of momentum and energy are 
satisfied. This may be seen most easily from the consider
ation which leads to equation (49a); except that here, instead 
of the energy components t(T of the gravitational field, we have 
to introduce the totality of the energy components of matter 
and gravitational field. 

§ 18. The Laws of Momentum and Energy for Matter, as 
a Consequence of the Field Equations 

Multiplying (53) by ~g"v/~x(T, we obtain, by the method 
adopted in § 15, in view of the vanishing of 

"agp.v 
gµv c)xtT' 

the equatimn 
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or, in view of (56), 

. (57) 

Comparison with (41b) shows that with the choice of 
system of co-ordinates which we have made, this equation 
predicates nothing more or less than the vanishing of di
vergence of the material energy-tensor. Physically, the 
occurrence of the second term on the left-hand side shows 
that laws of conservation of momentum and energy do not 
apply in the strict sense for matter alone, or else that they 
apply only when the gµ. 11 are constant, i.e. when the field in
tensities of gravitation vanish. This second term is an ex
pression for n1omentum, and for energy, as transferred per 
unit of' volume and time from the gravitational field to matter. 
This is brought out still more clearly by re-writing (57) in the 
sense of (41) as 

(57a) 

The right side expresses the energetic effect of the gravita
tional field on matter. 

Thus the field equations of gravitation contain four con
ditions which govern the course of material phenomena. 
They give the equations of material phenomena completely, 
if the latter is capable of being characterized by four differ
ential equations independent of one another.* 

D. MATERIAL PHENOMENA 

The mathematical aids developed in part B enable us 
forthwith to generalize the physical laws of matter (hydro
dynamics, Maxwell's electrodynamics), as they are formulated 
in the special theory of relativity, so that they will fit in with 
the general theory of relativity. When this is done, the 
general principle of relativity does not indeed afford us· a 
further limitation of possibilities ; but it makes us acquainted 
with the influence of the gravitational field on all processes, 

* On this question cf. H. Hilbert, Nachr. d. K. Gesellsch. d. Wiss. -zu 
Gottingen, Math.-phys. Klasse, 1915, p. 3. 
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without our having to introduce any new hypothesis what
ever. 

Hence it comes about that it is not necessary to introduce 
definite assumptions as to the physical nature of matter (in 
the narrower sense). In particular it may remain an open 
question whether the theory of the electromagnetic field in 
conjunction with that of the gravitational field furnishes a 
sufficient basis for the theory of matter or not. The general 
postulate of relati-vity is unable on principle to tell us anything 
about this. It must remain to be seen, during the working 
out of the theory, whether electromagnetics and the doctrine 
of gravitation are able in collaboration to perform what the 
former by itself is unable to do. 

§ 19. Euler's Equations for a Frictionless Adiabatic Fluid 

Let p and p be two scalars, the farmer of which we call 
the "pressure," the latter the "density " of a fluid; and let 
an equation subsist between them. Let the contravariant 
symmetrical tensor 

Ta.FJ __ a.B,,,, dx a dx fJ 
- g • .F + P ds ds • 

be the contravariant energy-tensor of the fluid. 
the covariant tensor 

. (58) 

To it belongs 

dxa dxtJ 
Tµv = - g µvP + gµa.gµ13 ds ds p, • . ( 58a) 

as well as the mixed tensor* 

Ta = 0a. dxf3 dx""p 
u - uP + ga13 ds ds . ( 58b) 

Inserting the right-hand side of (58b) in (57a), we obtain the 
Eulerian hydrodynamical equations of the general theory of 
relativity. They give, in theory, a complete solution of the 
problem of motion, since the four equations (57a), together 

* For an observer using a system of reference in the sense of the speciaJ 
theory of. relativity for an infinitely small region, and moving with it, the 
density of energy T! equals p - p. This gives the definition of p. Thus p is 
not constant for an incompressible fluid. 



A. EINSTEIN 158 

with the given equation between p and p, and the equation 

dxa. dxfJ _ 1 
Ua.tJ ds ds - ' 

are sufficient, go,s being given, to define the six unknowns 

dx1 dx 1 dx 8 dx, 
p, p, ds ' ds ' ds ' ds • 

If the g"'v are also unknown, the equations ( 53) are 
brought in. These are eleven equations for defining the ten 
functions g"'.,, so that these functions appear over-defined. 
We must remember, however, that the equations (57a) are 
alrea.dy contained in the equations (53), so that the latter 
represent only seven independent equations. There is good 
reason for this lack of definition, in that the wide freedom of 
the choice of co-ordinates causes the problem to remain 
mathematically undefined to such a degree that three of the 
functions of space may be chosen at will.* 

§ 20. Maxwell's Electromagnetic Field Equations for Free 
Space 

Let cf,v be the components of a covariant vector-the 
electromagnetic potential vector. From them we form, in 
accordance with (36), the components F pu of the covariant 
six-vector of the electromagnetic field, in accordance with 
the system of equations 

F - ~<pp - "3c/>u 
P" - c)a;O' ()a;p 

It follows from (59) that the system of equations 

() F pu + '1 F a-T + ~ F "P = Q . 
~XT ~Xp <>xu 

. (59) 

. (60) 

is satisfied, its left side being, by (37), an antisymmetrical 
tensor of the third rank. System (60) thus contains essenti
ally four equations which a.re written out as follows:-

.. On the abandonment of the choice of co-ordina.tes with g = - 1, there 
rems.in fou'I' functions of space with liberty of choice, corresponding to the four 
arbitrary functions at: our disposal in the choice of co-ordinates. 
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0F23 + 0F34 + <)F42 = o 
<>X4 llX2 ()X3 

aF34 + oF41 + ~F1s = O 
llX1 DX3 llX4 

aF41 + ~F12 + ~F24 = o 
VX2 OX4 oxl 

. (60a) 

oFl? + 0F2a + 0Fs1 = 0 
OX3 OX1 OX2 

This system corresponds to the second of Maxwell's 
systems of equations. We recognize this at once by setting 

(61) 

Then in place of (60a) we may set, in the usual notation of 
three-dimensional vector analysis, 

- <>H_ = curl E} ot 
div H = 0 

(60b) 

We obtain Maxwell's first system by generalizing the 
form given by Minkowski. We introduce the contravariant 
six-vector associated with F"fJ 

(62) 

and also the contra variant vector J/.1. of the density of the 
electric current. Then, taking (40) into consideration, the 
following equations will be invariant for any substitution 
whose invariant is unity (in agreement with the cliosen co
ordinates) :-

Let 
F 23 = H're, F14 = - E'x} 
Fa1 = H'11, F24 = - E' y 

F l2 _ H' F34 - E' - z, - - z 

which quantities are equal to the quantities Rx 

. (63) 

. (64) 

• • • Ez in 
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the special case of the restricted theory of relativity ; and in 
addition 

J l _ ,; J2 _ j•y J3 _ J• J4 _ p 
- J :£' - ' - z, - , 

we obtain in place of (63) 

<>E' • I H'} <)t + J = cur 
div E' = p 

. (63a) 

The equations (60), (62), and (63) thus forrn the generali
zation of Maxwell's field equations for free space, with the 
convention which we have established with respect to the 
choice of co-ordinates. 

The Energy-components of the Electromagnetic Field.
We form the inner product 

. (65) 

By (61) its components, written in the three-dimensional 
manner, are 

. (65a) . . 
"4 == - (jE) 

"" is a covariant vector the components of which are 
equal to the negative momentum, or, respectively, the energy, 
which is transferred from the electric masses to the electro
magnetic field per unit of time and volume. If the electric 
masses are free, that is, under the sole influence of the 
electromagnetic field, the covariant vector Ktr will vanish. 

To obtain the energy-components T: of the electromagnetic 
field, we need only give to equation "(J' = 0 the form of 
equation (57). From (63) and (65) we have in the first place 

The second term of the right-hand side, by reason of (60), 
permits the transformation 

F,.. i> F .,,. = - i F,.;a F ,.. = - ½g,.•g•~F ./<>!:•' 
~<)xv ~x~ 



156 THE GENERAL THEORY 

which latter expression may, for reasons of symmetry, a.lso 
be written in the form 

[ c>F ~F fJ J - t g11.o.gv~F o.fJ--1!:!!. + gP.o.gvfJ_o._F p.v • 
<>Xu ()Xu 

But for this we may set 

~ ~ - l ~(g"o.gv~F a.fJF p.v) + ¼ F o.fJF µv~(g1-to.gv/J), 
vXu vXu 

The first of these terms is written more briefly 

- ¼~(F".,,F ""); 
uXu 

the second, after the differentiation is carried out, and after 
some reduction, results in 

- 1" F'-''TF µvgvp ~gu,.• 
<JXu 

Taking all three terms together we obtain the relation 

where 

. (66) 

Equation (66), if ,c" vanishes, is, on account of (30), 
equivalent to (57) or (57a) respectively. Therefore the T; 
are the energy-components of the electromagnetic field. 
With the help of (61) and (64), it is easy to show that these 
energy-components of the electromagnetic field in the case 
of the special theory of relativity give the well-known Maxwell
Poynting expressions. 

We have now deduced the general laws which are satisfied 
by the gravitational field and matter, by consistently using a 
system of co-ordinates for which ..j - g == 1. We have 
thereby achieved a .considerable simplification of formuloo 
and calculations, without failing to comply with the require
ment of general covariance; for we have drawn our equations 
from generally covariant equations by specializing the system 
of co-ordinates. 
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Still the question is not without a formal interest, whether 
with a correspondingly generalized definition of the energy
components of gravitational field and matter, even without 
specializing the system of co-ordinates, it is possible to formu
late laws of conservation in the form of equation (56), and 
field equations of gravitation of the same nature as (52) or 
(52a), in auch a manner that on the left we have a divergence 
(in the ordinary sense), and on the right the sum of the 
energy-components of matter and gravitation. I have found 
t!lat in both cases this is actually so. But I do not think 
that the communication of my somewhat extensive reflexions 
on this subject would be worth while, because after all they 
do not give us anything that ia materially new. 

E 

§ 21. Newton's Theory as a First Approximation 

As has already been mentioned more than once, the 
special theory of relativity as a special case of the general 
theory is,characterized by the g,,.v having the constant values 
(4). From what has already been said, this means complete 
neglect of the effects of gravitation. We arrive at a closer 
approximation to reality by considering the case where the 
gµ.,, differ from the values of (4) by quantities which are small 
compared with 1, and neglecting small quantities of second 
and higher order. (First point of view of approximation.) 

It is further to be assumed that in the space-time territory 
under consideration the g14v at spatial infinity, with a suitable 
choice of co-ordinates, tend toward the values (4); i.e. we are 
considering gravitational fields which may be regarded as 
generated exclusively by matter in the finite region. 

It might be thought that these approximations must lead 
us to Newton's theory. But to that end we still need to ap
proximate the fundamental equations from a second point of 
view. We give our attention to the motion of a material 
point in accordance with the equations (16). In the case of 
the special theory of relativity the components 

dx1 dx2 dx3 
ds' ds' ds 
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may take on any values. This signifies that any velocity 

v = /(dx1)
2 + (dx2)

2 + (dx3)
2 

~ dx4 dx4 dx4 

may occur, which is less than the velocity of light in vacuo. 
If we restrict ourselves to the case which almost exclusively 
offers itself to our experience, of v being small as compared 
with the velocity of light, this denotes that the components 

dx 1 dx2 dx 3 

ds' ds' ds 

are to be treated as small quantities, while dx4/ds, to the 
second order of small quantities, is equal to one. (Second 
point of view of approximation.) 

Now we remark that from the first point of view of ap-
proximation the magnitudes r;11 are all small magnitudes of 
at least the first order. A glance at ( 46) thus shows that in 
this equation, from the second point of view of approximation, 
we have to consider only terms for which µ, = v = 4. Re
stricting ourselves to terms of lowest order we first obtain in 
place of ( 46) the eq nations 

d'l. 
Xr 

dt2 = I'J.i 

where we have set ds = dx4 = dt; or with restriction to terms 
which from the first point of view of approximation are of 
first order :-

!i• = [44, -r] (-r = 1, 2, 3) 

d'l. 
d;4 = - [44, 4]. 

If in addition we suppose the gravitational field to be a quasi
static field, by confining ourselves to the case where the 
motion of the matter generating the gravitational field is but 
slow (in comparison with the velocity of the propagation of 
light), we may neglect on the right-hand side differentiations 
with respect to the time in comparison with those with re
spect to the space co-ordinates, so that we have 
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~:: = - ½ i)::: (T = 1, 2, 3) . . (67) 

This is the equation of motion of the material point accord
ing to Newton's theory, in which ¼g44 plays the part of the 
gravitational potential. What is remarkable in this result 
is that the component g44 of the fundamental tensor alone 
defines, to a first approximation, the motion of the material 
point. 

We now turn to the field equations (53). Here we 
have to take into consideration that the energy-tensor of 
"matter" is almost exclusively defined by the density of 
matter in the narrower sense, i.e. by the second ter1n of the 
right-hand side of (58) [or, respectively, (58a) or (58b)]. 
If we fonu the approximation in question, all the components 
vanish with the one exception of T 44 = p = T. On the left
hand side of (53) the second term is a small quantity of 
second order ; the first yields, to the approximation in 
question, 

c) o o ~ 
~ [µ,v, I] + ~[µ,v, 2] + ~[µ,v, 3] - ~[µ,v, 4]. 
uX1 uX 2 uX 3 uX4 

Forµ = v = 4, this gives, with the omission of terms differ
entiated with respect to time, 

- -1.(()2g!4 + c,2g44 + 02g44) = - j__'v2g44. 
~ ox~ ox2 oal ""2" 

l 2 3 

The last of equations (53) thus yields 

V2g44 = "P . (68) 

The equations (67) and (68) together are equivalent to 
Newton's law of gravitation. 

By (67) and (68) the expression for the gravitational 
potential becomes 

- !!_J pdr . (68a) 
8w r • • 

while Newton's theory, with the unit of time which we have 
chosen, gives 
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in which K denotes the constant 6· 7 x 10 - 8, usually called 
the constant of gravitation. By comparison we obtain 

81rK 2 
IC = 2 = 1 ·87 X 10 - 7 • (69) 

C 

§ 22. Behaviour of Rods and Clocks in the Static Oravi
tational Field. Bending of Light ... rays. Motion of 
the Perihelion of a Planetary Orbit 

To arrive at Newton's theory as a first approximation we 
had to calculate only one component, g44, of the ten gµ., of the 
gravitational field, since this component alone enters into the 
first approximation, (67), of the equation for the motion of the 
material point in the gravitational field. From this, however, 
it is already apparent that other components of the g14., must 
differ from the values given in (4) by small quantities of the 
first order. This is required by the condition g = - 1. 

For a field-producing point mass at the origin of co-ordin
ates, we obtain, to the first approximation, the radially 
symmetrical solution 

gpu = - Opu - a~p~<T (p, <r = l, 2, 3) 
r 

gp4 = g4p = 0 (p = 1, 2, 3) 
a 

g44 = 1 - --,,~ 

. (70) 

where Opq is 1 or 0, respectively, accordingly asp = <r or p -4= a, 

and r is the quantity + ✓ x: + x! + x~ On account of (68a) 

KM 
a = 4'71'' • . (70a) 

if M denotes the field-producing mass. It is easy to verify 
that the field equations (outside the mass) are satisfied to the 
first order of small quantities. 

We now examine the influence exerted by the field of the 
mass M upon the metrical properties of space. The relation 

ds2 = gµ..,dXµ.dx.,,. 

always holds between the "locally"(§ 4) measured lengths 
and times ds on the one hand, and the differences of co-ordin
a tes dx., on the other hand. 
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For a unit-measure of length laid " parallel " to the axis 
of x, for example, we should have to set ds2 = - 1 ; dx2 = dx3 

== dx4 = 0. Therefore - 1 = g11dx~. If, in addition, the 

u~it-measure lies on the axis of x, the first of equations (70) 
gives 

From these two relations it follows that, correct to a first 
order of small quantities, 

a 
dx = l - 2r . . (71) 

The unit measuring-rod thus appears a little shortened in 
relation to the system of co-ordinates by the presence of the 
gravitational field, if the rod is laid along a radius. 

In an analogous manner we obtain the length of co
ordinates in tangential direction if, for example, we set 

ds2 = - 1; dx1 = dx3 = dx4 = 0; x1 = r, x2 == x3 = 0. 
The result is 

- 1 = g22dx! = - dx: . . (71a) 

With the tangential position, therefore, the gravitational 
field of the point of mass has no influence on the length of a 
rod. 

Thus Euclidean geometry does not hold even to a first ap
proximation in the gravitational field, if we wish to take one 
and the same rod, independently of its place and orientation, 
as a realization of the same interval; although, to be sure, a 
glance at (70a) and (69) shows that the deviations to be ex
pected are much too slight to be noticeable in measurements 
of the earth's surface. 

Further, let us examine the rate of a unit clock, which is 
arranged to be at rest in a static gravitational field. Here we 
have for a clock period ds = 1 ; dx1 = dx2 = dx3 = 0 
Therefore 
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or 

. (72) 

Thus the clock goes more slowly if set up in the neighbour
hood of ponderable masses. From this it follows that the 
spectral lines of light reaching us from the surface of large 
stars must appear displaced towards the red end of the 
spectrum.* 

We now examine the course of light-rays in the static 
gravitational field. By the special theory of relativity the 
velocity of light is given by the equation 

- dx 2 - dx - dx2 + dx2 = 0 1 ll 3 4 

and therefore by the general theory of relativity by the 
equation 

ds2 = g "'.,dx,.,.dxv = 0 . (73) 

If the direction, i.e. the ratio dx1 : dx 2 : dx3 is given, equation 
(73) gives the quantities 

dx1 dx2 dx3 

dx/ dx4' dx4 

and accordingly the velocity 

f(dx1)
2 + (~X2)

2 + (dx3) 2 = ry -V dx4 dx4 dx4 

defined in the sense of Euclidean geometry. We easily 
recognize that the course of the light-rays must be bent with 
regard to the system of co-ordinates, if the gµ.,, are not con
stant. If n is a direction perpendicular to the propagation of 
light, the Huyghens principle shows that the light-ray, en
visaged in the plane (ry, n), has the curvature - ?Jry/'3n. 

We examine the curvature undergone by a ray of light 
passing by a mass M at the distance 6. If we choose the 
system of co-ordinates in agreement with the accompanying 
diagram, the total bending of the ray ( calculated positively if 

* According to E. Freundlich, spectroscopical observations on fixed stars of 
certain types indicate the existence of an effect of this kind, but a crucial 
test of this consequence has not yet been made. 
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concave towards the origin) is given in sufficient approxi
mation by 

J+ 00 

B= 
- co 

while (7B) and (70) give 

'I = ✓ ( -:::) = 1 - ;r ( 1 + ;:). 

Carrying out the calculation, this gives 

B =:; = ;!. . (74) 

Fm. 8. 

According to this, a ray of light going past the sun under
goes a deflexion of I ·7''; and a ray going past the planet 
Jupiter a deflexion of about ·02". 

If we calculate the gravitational field to a higher degree 
of approximation, and likewise with corresponding accuracy 
the orbital motion of a material point of relatively infinitely 
small mass, we find a deviation of the following kind from 
the Kepler-Newton laws of planetary motion. The orbital 
ellipse of a planet undergoes a slow rotation, in the direction 
of motion, of amount 

a2 

e = 247r3 T2e2(1 - e2) • . (75) 
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per revolution. In this formula a denotes the major semi
axis, c the velocity of light in the usual measurement, e the 
eccentricity, T the time of revolution in seconds.* 

Calculation gives for the planet Mercury a rotation of the 
orbit of 43" per century, corresponding exactly to astronomical 
observation (Leverrier); for the astrono1ners have discovered 
in the motion of the perihelion of this planet, after allowing 
for disturbances by other planets, an inexplicable remainder 
of this magnitude. 

* For the calculation I refer to the original papers: A. Einstein, 
Sitzungsber. d. Preuss, Akad. d. Wiss., 1915, p, 881; K. Schwarzschild, 
ibid., 1916, p. 189, 
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HAMILTON'S PRINCIPLE AND THE GENER.AL 
THEORY OF RELATIVITY 

BY A. EINSTEIN 

T HE general theory of relativity has recently been 
given in a particularly clear form by H. A. Lorentz 
and D. Hilbert,* who have deduced its equations 

from one single principle of variation. The same thing 
will be done in the present paper. But my purpose here 
is to present the fundamental connexions in as perspicuous 
a manner as possible, and in as general terms as is per
missible from the point of view of the general theory of 
relativity. In particular we shall make as few specializing 
assumptions as possible, in marked contrast to Hilbertt s 
treatment of the subject. On the other hand, in antithesis 
to my own most recent treatment of the subject, there is to 
be complete liberty in the choice of the system of co-ordinates. 

§ 1. The Principle of Variation and the Field-equations of 
Oravitation and Matter 

Let the gravitational field be described as usual by the 
tensor t of the g 11-v ( or the g""") ; and matter, including the 
electromagnetic field, by any number of space-time functions 
q<P>· How these functions ma,y be characterized in the theory 
of invariants does not concern us. Further, let -0 be a function 
of the 

gµv, g~( = !~) and g~(-= <)~;;;.,), the q(p) and q(p)a( = !~:)). 
* Four papers by Lorentz in the Publications of the Koninkl. Aka.d. van 

Wetensch. ta Amsterdam, 1915 and 1916; D. Hilbert, Gottinger Ne.chr., 1915, 
Pe.rt 8. 

t No use is ma.de for the present of the tensor character of the gµv. 
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The principle of variation 

iJ .f,dT = 0 . (1) 

then gives us as many differential equations as there are 
functions g,,.,, and q<P> to be defined, if the g/A,v and q<P) are 
varied independently of one another, and in such a way that 

at the limits of integration the oqcp), 8g""", and , ~ (Bg,,.v) all 
vXu 

vanish. 
We will now assume tha.t -6 is linear in the Uu-,, and that 

the coefficients of the u:; depend only on the g/A,v. We may 
then replace the principle of variation (1) by one which is 
more convenient for us. For by a.ppropriate partial integra
tion we obtain 

J.f>dT = J .f,*dT + F • . (2) 

where F denotes an integral over the boundary of the domain 
in question, and '6* depends only on the g1>-11 , g";;, q,P>, qcp)o., and 
no longer on the u:;. From (2) we obtain, for such vari
ations as are of interest to us, 

iJ.pdT - 8 I ,P*dT, . (3) 

so that we may replace our principle of variation (l) by the 
more convenient form 

sJ .f>*d"" = o. . (la) 

By carrying out the variation of the gP." and the q<P> we 
obtain, as field-equations of gravitation and matter, the 
equations t • 

• . (4) 

• • . (5) 

t For brevity the summation symbols a.re omitted in the formula,. In
dices occurring twice in a term are always to be taken as summed. Thus in 

(4), for example, -:::.~ ( 00*) denotes the term ~~o ( 0~*). 
Vwci og:v a. uXa. og:v 
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§ 2. Separate Existence of the Gravitational Field 

If we make no restrictive assumption as to the manner in 
which -0 depends on the gµ.v, g':, g:;, q{p), q<p>a., the energy-com-
ponents cannot be divided into two parts, one belonging to 
the gravitational field, the other to matter. To ensure this 
feature of the theory, we make the following assumption 

• . (6) 

where @ is to depend only on the gµv, g':, g:;, and rol only on 
gl-'v, q(p), q(p)ci• Equations ( 4), (4a,) then assume the form 

• . (7) 

. (8) 

Here @* stands in the same relation to @ as ~* to ~-
It is to be noted carefully that equations (8) or (5) would 

have to give way to others, if we were to assume 9Jl or ~ to be 
also dependent on derivatives of the q<P> of order higher than 
the first. Likewise it might be imaginable that the q<P> would 
have to be taken, not as independent of one another, but as 
connected by conditional equations. All this is of no im
portance for the following developments, as these are based 
solely on the equations (7), which have been found by vary
ing our integral with respect to the g"-v. 

§ 3. Properties of the Field Equations of Oravitation 
Conditioned by the Theory of Invariants 

We now introduce the assumption that 

ds2 = g µ.vdx µdXv • • . (9) 

is an invariant. This determines the transformational char
acter of the gµ.v• As to the transformational character of the 
qcp>, which describe matter, we make no supposition. On the 

other hand, let the functions H - ,./ .f> , as well as 
-g 
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G = !_, and M = ~' be invariants in relation to any 
✓ -g ,./-g 

substitutions of space-time co-ordinates. From these assump
tions follows the general covariance of the equations (7) and 
(8), deduced from (1). It further follows that G (apart from 
a constant factor) must be equal to the scalar of Riemann's 
tensor of curvature; because there is no other invariant with 
the properties required for G. t Thereby @* is also perfectly 
determined, and consequently the left-hand side of field 
equation (7) as well.! 

From the general postulate of relativity there follow 
certain properties of the function@* which we shall now de
duce. For this purpose we carry through an infinitesimal 
transformation of the co-ordinates, by setting 

. (10) 

where the t:::.xv are arbitrary, infinitely small functions of the 
co-ordinates, and x'v are the co-ordinates, in the new system, 
of the ·world-point having the co-ordinates xv in the original 
system. As for the co-ordinates, so too for any other magni
tude ,Jr, a law of transformation holds good, of the type 

t'' = t + At, 
where ~"Y must al ways be expressible by the !:::.xv. From 
the covariant property of the gµv we easily deduce for the g11-v 
and g1'"; the laws of transformation 

o(Ax ) "(Axµ) Agµ:v = gµa 11 + gva. __ _ 
()Xa <lXa 

. (11) 

A µv = ~(Agµv) _ µvO (AX a) 
g (J' <lXo- g a OX er • (12) 

Since @* depends only on the g"'v and g"';, it is possible·, with 
the help of (11) and (12), to calculate~@*. We thus obtain 
the equation 

✓ - a( ~) = sv()(Axa-) + 2()@;uµv ~2Axa-, (13) 
• g ✓ - g <T OXv "2)g: ~xv<)Xo; 

t Herein is to be found the reason why the general postulate of relativity 
leads to a very definite theory of gravitation. 

::: By performing partial integration we obtain 

@* = J - g gµv[{µo;, ,B} {v,8, «} - {µv, a} {«,B, ,B}]. 
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where for brevity we have set 

o@* o@* "®* 
Sv = 2--gµv + 2-gµ:v + @*Bv - -gµ"'· (14) 

<f ~gµ.u "g:<f a. <f 7.)g~a <f 

From these two equations we draw two inferences which are 

important for what follows. We know that @ - is an in-
✓ - g 

variant with respect to any substitution, but we do not know 

this of ✓®-* g" It is easy to demonstrate, however, that the 

latter quantity is an invariant with respect to any linear 
substitutions of the co-ordinates. Hence it follows that the 

right side of (13) must always vanish if all ~2
~:a vanish. 

X11 Xa 

Consequently @* must satisfy the identity 

s;=o . (15) 

If, further, we choose the ~x11 so that they differ from 
zero only in the interior of a given domain, but in infinitesimal 
proximity to the boundary they vanish, then, with the trans
formation in question, the value of the boundary integral oc
curring in equation ('2) does not change. Therefore .6F = 0, 
and, in consequence, t 

But the left-hand side of the equation must vanish, since 

both ✓f!J._ and ,.,/ - g dr are invariants. Consequently the 
-· g 

right-hand side also vanishes. Thus, taking (14), (15), and 
(16) into consideration, we obtain, in the first place, the 
equation 

Jc,@• µv<)2(dx(J') dT = 0 . 
-ag:(fg ()x.,7.)xa. . (16) 

Transforming this equation by two partial integrations, and 
having regard to the liberty of choice of the f:lxu, we obtain 

t By the introduction of the quantities @ and @* instead of~ and ~•. 
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the identity 

• • . (17) 

From the two identities (16) and (17), which result from 

the invariance of ~' and therefore from the postulate of 
,./-g 

general relativity, we now have to draw conclusions. 
We first transform the field equations (7) of gravitation 

by mixed multiplication by g"'rr. We then obtain (by inter
changing the indices rr and v), as equivalents of the field 
equations (7), the equations 

c)! (gl'•~@;) - - (~~ + t~) 
a ug4 

. (18) 

where we have set 

• . (19) 

The last expression fort; is vindicated by (14) and (15). By 
differentiation of (18) with respect to xl', and summation for-,,, 
there follows, in view of (17), 

c) 

c)x.,(x; + t;) = 0 . (21) 

Equation (21) expresses the conservation of momentum and 
energy. We call ~: the components of the energy of matter, t; 
the components of the energy of the gravitational field. 

Having regard to (20), there follows from the field equations 
(7) of gravitation, by multiplication by g"'; and summation 
with respect toµ, and v, 

~t; t ,.w~ID? - 0 
- + g O' clg"-"' - ' -az,., 



A. EINSTEIN 
or, in view of (19) and (21), 

()~v 

_!!. + tg:"~'"' = 0 
<)xv 

178 

. (22) 

where :°tµ,, denotes the quantities gva-~:. These are four 
equations which the energy-components of matter have to 
satisfy. 

It is to be emphasized that the (generally covariant) laws 
of conservation (21) and (22) are deduced from the field equa
tions (7) of gravitation, in combination with the postulate of 
general covariance (relativity) alone, without using the field 
equations (8) for material phenomena. 
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COSMOLOGICAL CONSIDERATIONS ON THE 
GENERAL THEORY OF RELATIVITY 

Bv A. EINSTEIN 

IT is well known that Poisson's equation 
'72¢ = 47T Kp . . . . (1) 

in combination with the equations of motion of a material 
point is not as yet a perfect substitute for Newton's theory 
of action at a distance. There is still to be taken into account 
the condition that at spatial infinity the potential cp tends 
toward a fixed limiting value. There is an analogous state 
of things in the theory of gravitation in general relativity. 
Here, too, we must supplement the differential equations by 
limiting conditions at spatial infinity, if we really have to 
regard the universe as being of infinite spatial extent. 

In my treatment of the planetary problem I chose these 
limiting conditions in the form of the following assumption: 
it is possible to select a system of reference so that at spatial 
infinity all the gravitational potentials gµ.v become constant. 
But it is by no means evident a priori that we may lay down 
the same limiting conditions when we wish to take larger 
portions of the physical universe into consideration. In the 
following pages the reflexions will be given which, up to the 
present, I have made on this fundamentally important 
question. 

§ 1. The Newtonian Theory 

It is well known that Newton's limiting condition of the 
constant limit for ct, at spatial infinity leads to the view that 
the density of matter becomes zero at infinity. For we 
imagine that there may be a place in universal space round 
about which the gravitational field of matter, viewed on a 
large scale, possesses spherical symmetry. It then follows 
from Poisson's equation tha.t, in order that q, may tend to a, 

177 
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limit at infinity, the mean density p must decrease toward 
zero more rapidly than 1/r2 as the distance 1· from the 
centre increases.* In this sense, therefore, the universe 
according to Newton is finite, although it may possess an 
infinitely great total mass. 

From this it follows in the first place that the radiation 
emitted by the heavenly bodies will, in part, leave the 
Newtonian system of the universe, passing radially outwards, 
to become ineffective and lost in the infinite. May not 
entire heavenly bodies fare likewise? It is hardly possible 
to give a negative answer to this question. For it follows 
from the assumption of a finite limit for ¢ at spatial infinity 
that a heavenly body with finite kinetic energy is able to 
reach spatial infinity by overcoming the Newtonian forces of 
attraction. By statistical mechanics this case must occur 
from time to time, as long as the total energy of the stellar 
system-transferred to one single star-is great enough to 
send that star on its journey to infinity, whence it never can 
return. 

We might try to avoid this peculiar difficulty by assuming 
a very high value for the limiting potential at infinity. That 
would be a possible way, if the value of the gravitational 
potential were not itself necessarily conditioned by the 
heavenly bodies. The truth is that we are compelled to 
regard the occurrence of any great differences of potential of 
the gravitational field as contradicting the facts. These 
differences must really be of so low an order of magnitude 
that the stellar velocities generated by them do not exceed 
the velocities actually observed. 

If we apply Boltzmann's law of distribution for ga.s 
molecules to the stars, by comparing the stellar system with 
a gas in thermal equilibrium, we find that the Newtonian 
stellar system cannot exist at all. For there is a finite ratio 
of densities corresponding to the finite difference of potential 
between the centre and spatial infinity. A vanishing of the 
density at infinity thus implies a vanishing of the density 
at the centre. 

* p is the mean density of matter, calculated for a region which is large as 
compared with the distance between neighbouring fixed stars, but small in 
-----....!--.- -!L1- L1-- .!I! ______ ,! ___ -.1. L1-- _,__,_ -L-..11-- ---L--
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It seems hardly possible to surmount these difficulties on 
the basis of the Newtonian theory. We may ask ourselves 
the question whether they can be removed by a modification 
of the Newtonian theory. First of all we will indicate a 
method which does not in itself claim to be taken seriously ; 
it merely serves as a foil for what is to follow. In place of 
Poisson 1s equation we write 

'\12¢ - X¢ = 41r "P 
where i\ denotes a universal constant. 
tlensity of a distribution of mass, then 

47TK 
cf, = - TPo 

. (2) 

If Po be the uniform 

• . (3) 

is a solution of equation (2). This solution would correspond 
to the case in which the matter of the fixed stars was dis
tributed uniformly through space, if the density Po is equal 
to the actual mean density of the matter in the universe. 
The solution then corresponds to an infinite extension of 
the central space, filled uniformly with matter. If, without 
making any change in the mean density, we imagine matter 
to be non-uniformly distributed locally) there will be, over 
and above the cp with the constant value of equation (3), an 
additional cp, which in the neighbourhood of denser masses 
will so much the more resemble the Newtonian field as Xcf, is 
smaller in comparison with 41rKp. 

A universe so constituted would have, with respect to its 
gravitational field, no centre. A decrease of density in spatial 
infinity would not have to be assumed, but both the mean 
potential and mean density would remain constant to infinity. 
The conflict with statistical mechanics which we found in 
the case of the Newtonian theory is not repeated. With a 
definite but extremely small density, matter is in equilibrium, 
without any internal material forces (pressures) being required 
to maintain equilibrium. 

§ 2. The Boundary Conditions According to the Oeneral 
Theory of Relativity 

In the present paragraph I shall conduct the reader over 
the road that I have myself travelled, rather a rough a,nd 
winding road, because otherwise I cannot hope that be will 
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take much interest in the result at the end of the journey. 
The conclusion I shall arrive at is that the field equations of 
gravitation which I have championed hitherto still need a 
slight modification, so that on the basis of the general theory 
of relativity those fundamental difficulties may be avoided 
which have been set forth in § 1 as confronting the Newtonian 
theory. This modification corresponds perfectly to the transi
tion from Poisson's equation (1) to equation (2) of § 1. We 
finally infer that boundary conditions in spatial infinity fall 
away altogether, because the universal continuum in respect 
of its spatial dimensions is to be viewed as a self-contained 
continuum of finite spatial (three-dimensional) volu1ne. 

The opinion which I entertained until recently, as to the 
limiting conditions to be laid down in spatial infinity, took 
its stand on the following considerations. In a consistent 
theory of relativity there can be no inertia relatively to" space," 
but only an inertia of masses relatively to one another. If, 
therefore, I have a mass at a sufficient distance from all other 
masses in the universe, its inertia must fall to zero. We will 
try to formulate this condition mathematically. 

According to the general theory of relativity the negative 
momentum is given by the first three components, the energy 
by the last component of the covariant tensor multiplied by 
✓--::-g 

m~ . ( 4) 

where, as always, we set 
ds2 = gµvdxµdXv . . (5) 

In the particularly perspicuous case of the possibility of 
choosing the system of co-ordinates so that the gravitational 
field at every point is spatially isotropic, we have more simply 

ds2 = - A(dx~ + dx: + dx:) + Bdx:. 
If, moreover, at the same time 

✓ - g = I = ,../ A3B 

we obtain from ( 4), to a first approximation for small 
velocities; 
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for the components of momentum, and for the energy (in the 
static case) 

m,./B. 

From the expressions for the momentum, it follows that 

m JB plays the part of the rest mass. As m is a constant 

peculiar to the point of mass, independently of its position, 
this expression, if we retain the condition ,./ g - == 1 at 
spatial infinity, can vanish only when A diminishes to zero, 
while B increases to infinity. It seems, therefore, that such 
a degeneration of the co-efficients g"'.,, is required by the postu
late of relativity of all inertia. This requirement implies 
that the potential energy m✓B becomes infinitely great at 
infinity. Thus a point of mass can never leave the system; 
and a more detailed investigation shows that the same thing 
applies to light-rays. A system of the universe with such 
behaviour of the gravitational potentials at infinity would not 
therefore run the risk of wasting away which was mooted 
just now in connexion with the Newtonian theory. 

I wish to point out that the simplifying assumptions as 
to the gravitational potentials on which this reasoning is based, 
have been introduced merely for the sake of lucidity. It is 
possible to find general formulations for the behaviour of the 
g µ.v at infinity which express the essentials of the question 
without further restrictive assumptions. 

At this stage, with the kind assistance of the mathe
matician J. Grommer, I investigated centrally symmetrical, 
static gravitational fields, degenerating at infinity in the way 
mentioned. The gravitational potentials g"'" were applied, and 
from them the energy-tensor T,.u, of matter was calculated on 
the basis of the field equations of gravitation. But here it 
proved that for the system of the fixed stars no boundary con
ditions of the kind can come into question at all, as was also 
rightly emphasized by the astronomer de Sitter recently. 

For the contra.variant energy-tensor T"'" of ponderable 
matter is given by 

where pis the density of matter in natural measure. With 
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an appropriate choice of the system of co-ordinates the 
stellar velocities are very smalJ in comparison with that of 
light. We may, therefore, substitute ✓g44 dx4 fords. This 
shows us that all components of TM11 must be very small in 
comparison with the last component T44 • But it was quite 
impossible to reconcile this condition with the chosen boundary 
conditions. In the retrospect this result does not appear 
astonishing. The fact of the small velocities of the stars 
allows the conclusion that wherever there are fixed stars, the 
gravitational potential (in our case ✓B) can never be much 
greater than here on earth. This follows from statistical 
reasoning, exactly as in the case of the Newtonian theory. 
At any rate, our calculations have convinced me that such 
conditions of degeneration for the gµ. 11 in spatial infinity may 
not be postulated. 

After the failure of this attempt, two possibilities next 
present themselves. 

(a) We may require, as in the problem of the planets, 
that, with a suitable choice of the system of reference, the gµ.11 

in spatial infinity approximate to the values 

- 1 0 0 0 
0 - 1 0 0 
0 0 - 1 0 
0 0 0 1 

(b) We may refrain entirely from laying down boundary 
conditions for spatial infinity claiming general validity; but 
at the spatial limit of the domain under consideration we 
have to give the gµ.11 separately in each individual case, as 
hitherto we were accustomed to give the initial conditions 
for time separately. 

The possibility (b) holds out no hope of solving the prob
lem, but amounts to giving it up. This is an incontestable 
position, which is ta.ken up at the present time by de Sitter.* 
But I must confess that such a complete resignation in this 
fundamental question is for me a difficult thing. I should 
not make up my mind to it until every effort to make head
way toward a satisfactory view had proved to be vain. 

Possibility (a) is unsatisfactory in more respects than one. 

* de Sitter, Akad. vatl. Wetensch. ta Amsterdam, 8 Nov., 1916. 
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In the first place those boundary conditions pre-suppose a 
definite choice of the system of reference, which is contrary 
to the spirit of the relativity principle. Secondly, if we adopt 
this view, we fail to comply with the requirement of the 
relativity of inertia. For the inertia of a material point of 
mass ni (in natural measure) depends upon the g,,.v; but 
these differ but little from their postulated values, as given 
above, for spatial infinity. Thus inertia would indeed be 
influenced, but would not be conditioned by matter (present 
in finite space). If only one single point of mass were present, 
according to this view, it would possess inertia, and in fact 
an inertia almost as great as when it is surrounded by the 
other masses of the actual universe. Finally, those statistical 
objections must be raised against this view which were 
mentioned in respect of the Newtonian theory. 

From what has now been said it will be seen that I have 
not succeeded in formulating boundary conditions for spatial 
infinity. Nevertheless, there is still a possible way out, 
without resigning as suggested under (b ). For if it were 
possible to regard the universe as a continuum which is 
finite ( closed) with respect to its spatial dirnensions, we should 
have no need at all of any such boundary conditions. We 
shall proceed to show that both the general postulate of 
relativity and the fact of the small stellar velocities are com
patible with the hypothesis of a spatially finite universe; 
though certainly, in order to carry through this idea, we need 
a generalizing modification of the field equations of gravitation. 

§ 3. The Spatially Finite Universe with a Uniform 
Distribution of Matter 

According to the general theory of relativity the metrical 
character (curvature) of the four-dimensional space-time con
tinuu1n is defined at every point by the matter at that point 
and the state of that matter. Therefore, on account of the 
lack of uniformity in the distribution of matter, the metrical 
structure of this continuum must necessarily be extremely 
complicated. But if we are concerned with the structure 
only on a large scale, we may represent matter to ourselves 
as being uniformly distributed over enormous spaces, so that 
its density of distribution is a variable function which varies 
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extremely slowly. Thus our procedure will somewhat re
semble that of the geodesists who, by means of an ellipsoid, 
approximate to the shape of the earth's surface, which on a 
small scale is extremely complicated. 

The most important fact that we draw from experience 
as to the distribution of matter is that the relative velocities 
of the stars are very small as compared with the velocity of 
light. So I think that for the present we may base our 
reasoning upon the following approximative assumption. 
There is a, system of reference relatively to which matter 
may be looked upon as being permanently at rest. With 
respect to this system, therefore, the contravariant energy
tensor Tl£" of matter is, by reason of (5), of the simple form 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
p 

. (6) 

The scalar p of the (mean) density of distribution may be 
a priori a function of the space co-ordinates. But if we 
assume the universe to be spatially finite, we are prompted 
to the hypothesis that p is to be independent of locality. 
On this hypothesis we base the following considerations. 

As concerns the gravitational field, it follows from the 
equation of motion of the material point 

d2xv { r., }dxa dxfJ = O 
d ·~ + a1--1, v d d S"" S S 

that a material point in a static gravitational field can remain 
at rest only when g44 is independent of locality. Since, further, 
we presuppose independence of the time co-ordinate x4 for 
all magnitudes, we may demand for the required solution 
that, for all Xv, 

. (7) 

Further, as always with static problems, we shall have to set 

g14 = 924 = g34 = 0 . (8) 
It remains now to determine those components of the 
gravitational potential which define the purely spatial-geo
metrical relations of our continuum (g11,g12 , . • . g33). From 
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our assumption as to the uniformity of distribution of the 
masses generating the field, it follows that the curvature of 
the required space must be constant. With this distribution 
of mass, therefore, the required finite continuum of the 
X1, x2, x3, with constant x4, will be a spherical space. 

We arrive at such a space, for example, in the following 
way. We start from a Euclidean space of four dimensions, 
E1, E2, Ea E4, with a linear element da-; let, therefore, 

da2 = d~: + dE: + dE2a + dE: . . . (9) 

In this space we consider the hyper-surface 

R 2 - l:2 2 t:? s,,,'l (10) 
- s-1 + E2 + S'a + ~4, • • 

where R denotes a constant. The points of this hyper-surface 
form a three-dimensional continuum, a spherical space of 
radius of curvature R. 

The four-dimensional Euclidean space with which we 
started serves only for a convenient definition of our hyper
surface. Only those points of the hyper-surface are of 
interest to us which have metrical properties in agreement 
with those of physical space with a uniform distribution of 
matter. For the description of this three-dimensional con
tinuum we may employ the co-ordinates Ev f2, Es (the pro
jection upon the hyper-plane E4 = 0) since, by reason of (10 ), 
E4 can be expressed in terms of E1, E2, Ea- Eliminating E4 from 
(9), we obtain for the linear element of the spherical space 
the expression 

du2 = "'fµvdfµdEv } 

8 E11-Ev 
"/µ.v = µv + R~ _ p'J. 

. (11) 

where Bµv = 1, ifµ = v; 01-411 = 0, ifµ =f= v, and p2 = E~ + E: + E:. 
The co-ordinates chosen are convenient when it is a question 
of examining the environment of one of the two points 
E1 = E 2 = Es = o. 

Now the linear element of the required four-dimensional 
space-time universe is also given us. For the potential g/J,VJ 
both indices of which differ from 4, we have to set 

. (12) 
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which equation, in combination with (7) and (8), perfectly 
defines the behaviour of measuring-rods, clocks, and light
rays. 

§ 4. On an Additional Term for the Field Equations of 
Gravitation 

My proposed field equations of gravitation for any chosen 
system of co-ordinates run as follows :-

G"'v = 

Gµv = (13) 

The system of equations (13) is by no means satisfied 
when we insert for the gµv the values given in (7), (8), and 
(12), and for the ( contra variant) energy-tensor of matter the 
values indicated in (6). It will be shown in the next para
graph how this calculation may conveniently be made. So 
that, if it were certain that the field equations (13) which I 
have hitherto employed were the only ones compatible with 
the postulate of general relativity, we should probably have 
to conclude that the theory of relativity does not admit the 
hypothesis of a spatially finite universe. 

However, the system of equations (14) allows a readily 
suggested extension which is compatible with the relativity 
postulate, and is perfectly analogous to the extension of 
Poisson's equation given by equation (2). For on the left
hand side of field equation (13) we may add the fundamental 
tensor gµ.v, multiplied by a universal constant, - X, at present 
unknown, without destroying the general covariance. In 
place of field equation (13) we write 

Gµv - "'A-gµ.v = - K(Tµv - ½gµ.11T) , . (13a) 

This field equation, with "'A. sufficiently small, is in any case 
also compatible with the facts of experience derived from 
the solar system. It also satisfies laws of conservation of 
momentum and energy, because we arrive at (13a) in place 
of (13) by introducing into Hamilton's principle, instead 
of the scalar of Riemann's tensor, this scalar increased by a 
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universal constant; and Hamilton's principle, of course, 
guarantees the validity of laws of conservation. It will be 
shown in § 5 that field equation (13a) is compatible with 
our conjectures on field and matter. 

§ 5. Calculation and Result 
Since all points of our continuum are on an equal footing, 

it is sufficient to carry through the calculation for one point, 
e.g. for one of the two points with the co-ordinates 

X 1 = X2 == X3 = X4 = 0. 

Then for the gµv in (13a) we have to insert the values 

- 1 0 0 0 
0 - 1 0 0 
0 0 - 1 0 
0 0 0 1 

wherever they appear differentiated only once or not at all. 
We thus obtain in the first place 

- ~ ~[ ] ~[ "21og ✓ - g Gµ., - , [µv, 1] + "' µ,v, 2 + "' µv, 3] + ---'---'--_;;..• 
uX1 uX2 uX 3 OXµ.OX., 

From this we readily discover, taking (7), (8), and (13) into 
account, that all equations (13a) are satisfied if the two 
relations 

2 Kp "P 
- R~ + X = - 2' - X = - 2' 

or 

. (14) 

are fulfilled. 
Thus the newly introduced universal constant A defines 

both the mean density of distribution p which can remain in 
equilibrium and also the radius R and the volume 2,r2R3 of 
spherical space. The total mass M of the universe, accord
ing to our view, is finite, and is in fact 

M = p. 21r2R3 = 41r~R = w2 / 32 . . (15) 
K '\J ,e3p 

Thus the theoretical view of the actual universe, if it is in 
correspondence with our reasoning, is the following. The 
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curvature of space is variable in time and place, according to 
the distribution of matter, but we may roughly approximate 
to it by means of a spherical space. At any rate, this view is 
logically consistent, and from the standpoint of the general 
theory of relativity lies nearest at hand ; whether, from the 
standpoint of present astronomical knowledge, it is tenable, 
will not here be discussed. In order to arrive at this con
sistent view, we admittedly had to introduce an extension of 
the field equations of gra vita ti on which is not justified by our 
actual knowledge of gravitation. It is to be e1nphasized, 
however, that a positive curvature of space is given by our 
results, even if the supplementary term is not introduced. 
That term is necessary only for the purpose of making 
possible a quasi-static distribution of matter, as required by 
the fact of the small velocities of the stars. 
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DO GRAVITATION AIJ FIELDS PLAY AN ESSENTIAL 
PART IN THE STRUCTURE OF THE ELEM~N-
TARY PARTICL~S OF MATTER? • 

BY A. EINSTEIN 

N EITHER the Newtonian nor the relativistic theory 
of gravitation has so far led to any advance in the 
theory of the constitution of matter. In view of this 

fact it will be shown in the following pages that there are 
reasons for thinking that the elementary formations which go 
to make up the atom are held together by gravitational forces. 

§ 1. Defects of the Present View 

Great pains have been taken to elaborate a theory which 
will account for the equilibrium of the electricity constituting 
the electron. G. Mie, ·in particular, has devoted deep re-
searches to this question. His theory, which has found con
siderable support among theoretical physicists, is based 
mainly on the introduction into the energy~tensor of sup
plementary terms depending on the components of the 
electro-dynamic potential, in addition to the energy terms of 
the Maxwell-Lorentz theory. These new terms, which in 
outside space are unimportant, are nevertheless effective in 
the interior of the electrons in maintaining equilibrium 
against the electric forces of repulsion. In spite of the 
beauty of the formal structure of this theory, as erected ·by 
Mie, Hilbert, and Weyl, its physical results have hitherto 
been unsatisfactory. On- the one hand the multiplicity of 
possibilities is discouraging, and on the other hand those 
additional terms have not as yet allowed themselves to be 
framed in such a, simple form that the solution could be 
satisfactory. 

191 
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So far the general theory of relativity has made no change 
in this state of the question. If we for the moment disregard 
the additional cosmological term, the field equations take the 
form 

. (1) 

where G,.c.v denotes the contracted Riemann tensor of curva
ture, G the scalar of curvature formed by repeated contraction, 
and T'"'" the energy-tensor of "matter." The assumption 
that the Tµv do not depend on the derivatives of the gµv is in 
keeping with the historical development of these equations. 
For these quantities are, of course, the energy-components in 
the sense of the special theory of relativity, in which variable 
g"'.,, do not occur. The second term on the left-hand side 
of the equation is so chosen that the divergence of the left
hand side of (1) vanishes identically, so that taking the 
divergence of (1), we obtain the equation 

. (2) 

which in the limiting case of the special theory of relativity 
gives the complete equations of conservation 

~TIA:V = O 
~Xv • 

Therein lies the physical foundation for the second term of 
the left-hand side of (1). It is by no means settled a priori 
that a limiting transition of this kind has any possible mean
ing. For if gravitational fields do play an essential part in 
the structure of the particles of matter, the transition to the 
limiting case of constant gµ.,, would, for-them, lose its justifi
cation, for indeed, with constant g,,.., there could not be any 
particles of matter. So if we wish to contemplate the possi
bility that gravitation may take part in the structure of the 
fields which constitute the corpuscles, we cannot regard 
equation (1) as confirmed. 

Placing in (1) the Maxwell-Lorentz·energy-components of 
the electromagnetic field cJ,/A,.,,, 

. (3) 
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we obtain for (2), by taking the divergence, and after some 
reduction,* 

cf,,_.,u3u = 0 

where, for brevity, we have set 

. (4) 

() afO"T 

,--( ✓ - g c/> p.vglA-" g"'T) = ~ == 3" . ( 5} 
vXr vXT 

In the calculation we have e1nployed the second of Maxwell's 
systems of equations 

~cpµv + acf,,,I! + <><ppµ. = 0 . ( 6) 
aXp ()Xµ. ax,, 

We see from (4) that the current-density 3" must everywhere 
vanish. Therefore, by equation (1), we cannot arrive at a 
theory of the electron by restricting ourselves to the elec~ro
magnetic components of the Maxwell-Lorentz theory, as has 
long been known. Thus if we hold to (1) we are driven on 
to the path of Mie's theory.t 

Not only the problem of matter, but the cosmological 
problem as well, leads to doubt as to equation (1). As I have 
shown in the previous paper, the general theory of relativity 
requires that the universe be spatially finite. But this view 
of the universe necessitated an extension of equations (1), 
with the introduction of a new universal constant"-, standing 
in a fixed relation to the total mass of the universe ( or, re
spectively, to the equilibrium density of matter). This 1s 
gravely detrimental to the formal beauty of the theory. 

§ 2. The Field Equations Freed of Scalars 

The difficulties set forth above are removed by setting in 
place of field equations (1) the field equations 

• . (la) 

where T,-w denotes the energy-tensor of the electromagnetic 
field given by (3 ). 

The formal justification for the factor - ¼ in the second 

* Cf. e.g. A. Einstein, Sitzungsber. d. Preuss. Akad. d. Wiss., 1916, 
pp. 187, 188. 

t Cf. D. Hilbert, Gottinger Nachr., 20 Nov., 1915. 
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term of this equation lies in its causing the scalar of the left
hand side, 

(/µv(Gµ.v - ¼9,.o,G), 

to vanish identically, as the scalar gvµTµv of the right-hand 
side does by reason of (3 ). If we had reasoned on the basis 
of equations (1) instead of (la), we should, on the contrary, 
have obtained the condition G = 0, which would have to 
hold good everywhere for the g,,.v, independently of the electric 
field. It is clear that the systern of equations [(la), (3)] is 
a consequence of the system ((1), (3)], but not conversely. 

We might at first sight feel doubtful whether (la) together 
with (6) sufficiently define the entire field. In a generally 
relativistic theory we need n - 4 differential equations, in
dependent of one another, for the definition of n independent 
variables, since in the solution, on account of the liberty of 
choice of the co-ordinates, four quite arbitrary functions 
of all co-ordinates must naturally occur. Thus to define 
the sixteen independent quantities g,,.v and <pµv we require 
twelve equations, all independent of one another. But as it 
happens, nine of the equations (la), and three of the equations 
(6) are independent of one another. 

Forming the divergence of (la), and taking into account 
that the divergence of Gµv - ½gp.vG vanishes, we obtain 

cf,,raJa + _!_ ~~ = 0 . . ( 4a) 
4" <)xu 

Fro1n this we recognize first of all that the scalar of curvature 
G in the four-dhnensional domains in which the density of 
electricity vanishes, is constant. If we assume that all these 
parts of space are connected, and therefore that the density 
of electricity differs fro1n zero only in separate " world
threads," then the scalar of curvature, everywhere outside 
these world-threads, possesses a constant value G0 • But 
equation ( 4a) also allows an important conclusion as to the 
behaviour of G within the domains having a density of elec
tricity other than zero. If, as is cust9mary, we regard elec
tricity as a moving density of charge, by setting 

Ju _ ~u dxu (7) 
- ✓ -g = PTs' • 
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we obtain from ( 4a) by inner multiplication by Jo-, on account 
of the antisymmetry of cpµ.v, the relation 

oG ddxu = 0 . (S) 
OXo- 8 

Thus the scalar of curvature is constant on every world-line 
of the motion of electricity. Equation ( 4a) can be interpreted 
in a graphic rnanner by the state1nent: The scalar of curva
ture plays the part of a negative pressure which, outside of 
the electric corpuscles, has a constant value G0 . In the in
terior of every corpuscle there subsists a negative pressure 
(positive G - G0 ) the fall of which maintains the electro
dynamic force in equilibrium. The minimum of pressure, or, 
respectively, the maximum of the scalar of curvature, does 
not change with time in the interior of the corpuscle. 

We now write the field equations (la) in the form 

(G.,. - -½q,,.G) + ¼,q.,.G0 = - ,c( T,.,. + Lg,,.(G - G0)) (9) 

On the other hand, we transform the equations supplied with 
the cosmological term as already given 

G,.w - Agµ.v = - tc{Tµv - ½gµvT). 

Subtracting the scalar equation multiplied by ½, we next 
obtain 

( Gµv - ½g µvG) + g µ.vA = - KT µ.v• 

Now in regions where only electrical and gravitational fields 
are present, the right-hand side of this equation vanishes. 
For such regions we obtain, by forming the scalar, 

- G + 4X = 0. 

In such regions, therefore, the scalar of curvature is constant, 
so that A may be replaced by ¼G0• Thus we may write the 
earlier field equation ( 1) in the form 

. (10) 

Comparing (9) with (10), we see that there is no difference 
between the new field equations and the earlier ones, except 
that instead of T,.1.11 as tensor of "gravitating mass" there now 
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1 
occurs T~v + 4" gµ11(G - G0) which is independent of the 

scalar of curvature. But the new formulation has this great 
advantage, that the quantity i\ appears in the fundamental 
equations as a constant of integration, and no longer as a 
universal constant peculiar to the fundamental law. 

§ 3. On the Cosmological Question 

The last result already per111its the surinise that with our 
new formulation the universe 1nay be regarded as spatially 
finite, without any necessity for an additional hypothesis. 
As in the preceding paper I shall again show that with a 
uniform distribution of rnatter, a spherical world is compatible 
with the equations. 

In the first place we set 

ds 2 = - ,YikdXidXk + dx! (i, k = 1, 2, 3) (11) 

Then if Pik and P are, respectively, the curvature tensor of 
the second rank and the curvature scalar in three-dimensional 
space, we have 

G ik = P ik ( i, k = I, 2, 3) 
Gl4 = G 4i = G 44 = 0 
G = - p 
- g = 'Y· 

It therefore follows for our case that 

Gik - ½gikG = Pik - ½o/ikP (i, k = l, 2, 3) 
G44 - ½g44G = tP. 

We pursue our reflexions, fron1 this point on, in two ways. 
Firstly, with the support of equation (la). Here Tµv denotes 
the energy-tensor of the electro-magnetic field, arising from 
the electrical particles constituting matter. For this field 
we have everywhere 

~: + ~: + ~: + :r: = 0. 

The individual :t; are quantities which vary rapidly with posi. 
tion; but for our purpose we no doubt may replace them by 
their mean values. We therefore have to choose 

~! = ~: = ~: = - rr: = const.} . (12) 
:t; = 0 (forµ + 11 ), 
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and therefore ~· ~· 'l\:k = ½ ,.j~'Yik, T44 = ,./~' 

In consideration of what has been shown hitherto, we obtain 
in place of (la) 

• . (13) 

. (14) 

The scala,r of equation (13) agrees with (14). It is on this 
account that our fundamental equations permit the idea of a. 
spherical universe. For from (13) and (14) follows 

4 ,c:l'.' 
Pik + a ✓;'}'ik = o . . (15) 

and it is known* that this system is satisfied by a. (three
dimensional) spherical universe. 

But we may also base our reflexions on the equations (9). 
On the right-hand side of (9) stand those terms which, from 
the phenomenological point of view, are to be replaced by the 
energy-tensor of matter; that is, they a.re to be replaced by 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 p 

where p denotes the mean density of matter assumed to be 
at rest. We thus obtain the equations 

Pik - ½,yitl' - t'YikG0 = 0 

½P + ¼Go = - "P 

. (16) 

. (17) 

From the scalar of equation (16) and from (17) we obtain 

G0 == - JP = 21ep, . . (18) 

and consequently from (16) 

Pik - "P'Yik = 0 • . (19) 

* Cf. H. Weyl, "Ra.um, Zeit, Ma.terie," § 88. 
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which equation, with the exception of the expression for the 
co-efficient, agrees with (15). By comparison we obtain 

$! = ¾P✓'Y• • (20) 

This equation signifies that of the energy constituting matter 
three-quarters is to be ascribed to the electromagn-etic field, 
and one-quarter to the gravitational field. 

§ 4. Concluding Remarks 

The above reflexions show the possibility of a theoretical 
construction of matter out of gravitational field and electro
magnetic field alone, without the introduction of hypothetical 
supplementary terms on the lines of Mie's theory. This 
possibility appears particularly promising in that it frees us 
from the necessity of introducing a special constant X for the 
solution of the cosmological problem. On the other hand, 
there is a peculiar difficulty. For, if we specialize (1) for the 
spherically symmetrical static case we obtain one equation 
too few for defining the gµ.v and cpµ.v, with the result that any 
spherically syrrimetrical distribution of electricity appears 
capable of remaining in equilibrium. Thus the problem of 
the constitution of the elementary quanta cannot yet be 
s~lved on the immediate basis of the given field equations. 
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GRAVITATION AND ELECTRICITY* 

BY H. WEYL 

ACCORDING to Riemann,t geometry is based upon 
the following two facts :-

1. Space is a Three-dimensional Continuum.-The 
manifold of its points may therefore be consistently repre
sented by the values of three co-ordinates x1, x2, x3 . 

2. (Pythagorean Theorem) .-The square of the distance ds 
between two infinitely proximate points 

P = (x1, x2, x3) and P' = (x1 + dx1, x2 + dx2, x3 + dx3) (1) 
(any co-ordinates being employed) is a quadratic form of the 
relative co-ordinates dxµ. :-

. (2) 
µ,V 

The second of these facts may be briefly stated by saying 
that space is a metrical continuum. In complete accord with 
the spirit of the physics of immediate action we assume the 
Pythagorean theorem to be strictly valid only in the limit 
when the distances are infinitely small. 

The special theory of relativity led to the discovery that 
time is associated as a fourth co-ordinate ( x4) on an equal 
footing with the three co-ordinates of space, and that the 
scene of material events, the world, is therefore a four-dimen
sional, metrical continuuni. And so the quadratic form (2), 
which defines the metrical properties of the world, is not 
necessarily positive as in the case of the geometry of three
dimensional space, but has the index of inertia 3.t Riemann 

* The footnotes in square brackets are later additions by the author. 
t Math. Werke (2nd ed., Leipzig, 1892), No. XII, p. 282. 
:t: Tho.t is to say that if the co-ordinates are chosen so that at one particular 

point of the continuum ds2 = + dx~ + dx; ± dx: ± dx!, then in every case 
three of the signs will be + and one - (TH.ANS.). 
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himself did not fail to point out that this quadratic form was 
to be regarded as a physical reality, since it reveals itself, e.g. 
in centrifugal forces, as the origin of real effects upon matter, 
and that matter therefore presumably reacts upon it. Until 
then all geometricians and philosophers had looked upon the 
metrical properties of space as pertaining to space itself, in
dependently of the matter which it contained. It is upon this 
idea, which it was quite impossible for Riemann in his day to 
carry through, that Einstein in our own time, independently 
of Riemann, has raised the imposing edifice of his general 
theory of relativity. According to Einstein the phenomena 
of gravitation must also be placed to the account of geometry, 
and the laws by which matter affects measurements are no 
other than the laws of gravitation: the gµ. 11 in (2) form the 
components of the gravitational potential. While the gravi
tational potential thus consists of an invariant quadratic 
differential form, electromagnetic phenomena are governed by 
a four-potential of which the components cf,µ. together com
pose an invariant linear differential form 'tcpµ.dxµ., But so 
far the two classes of phenomena, gravitation and electricity, 
stand side by side, the one separate from the other. 

The later work of Levi-Civita,* Hessenberg,t and the 
author+ shows quite plainly that the fundamental conception 
on which the development of Riemann's geometry must be 
based if it is to be in agreement with nature, is that of the 
infinitesimal parallel displacement of a vector. If P and P* 
are any two points connected by a curve, a given vector at P 
can be moved parallel to itself along this curve from P to P*. 
But, generally speaking, this conveyance of a vector fro1n P 
to P* is not integrable, that is to say, the vector at P* at 
which we arrive depends upon the path along which the dis
placement travels. It is only in Euclidean "gravitationless" 
geometry thatintegrabilityobtains. TheRiemannian geometry 
referred to above stiJl contains a residual element of finite 
geometry-without any substantial reason, as far as I can see. 

* "Nozione di parallelismo ... ", Rend. del Circ. Matern. di Palermo, 
Vol. 42 (1917) . 

.a.,, 1:Tei.1~+1"\~;nllh 4QJ'\.NM-l~"'"'rl11.Y\.N ~--M n:#_..,. __ ,.:_, __ ...,. ___ L ...... !- '' ,..,,._L,_ .. ____ TT 'I 
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It seems to be due to the accidental origin of this geometry 
in the theory of surfaces. The quadratic form (2) enables us 
to compare, with respect to their length, not only two vectors 
at the same point, but also the vectors at any two points. 
But a truly infinitesimal geometry must recognize only the 
principle of the transference of a length from one point to 
another point infinitely near to the first. This forbids us to 
assume that the problem of the transference of length from 
one point to another at a finite distance is integrable, more 
particularly as the problem of the transference of direction has 
proved to be non-integrable. Such an assurnption being re
cognized as false, a geometry comes into being, which, when 
applied to the world, explains in a surprising manner not 
only the phenomena of gravitation, but also those of the elec
tromagnetic field. According to the theory which now takes 
shape, both classes of phenomena spring from the same 
source, and in fact we cannot in general make any arbitrary 
separation of electricity from gravitation. In this theory 
all physical quantities have a meaning in world geometry. 
In particular the quantities denoting physical effects appear 
at once as pure numbers. The theory leads to a world-la'w 
which in its essentials is defined without ambiguity. It even 
permits us in a certain sense to comprehend why the world 
has four dimensions. I shall now first of all give a sketch of 
the structure of the amended geometry of Riemann without 
any thought of its physical interpretation. Its application to 
physics will then follow of its own accord. 

In a given system of co-ordinates the relative co-ordinates 
d.xµ. of a point P' infinitely near to P-see (1)-are the com
ponents of the infinitesimal displacement PP'. The transition 
from one system of co-ordinates to another is expressed by 
definite formu1ro of transformation, 

x,,. = x,/ x:, x; . . . x;) µ = 1, 2, . . . n, 
which determine the connexion between the co-ordinates of 
the same point in the two systems. Then between the com
ponents dxp. and the co1nponents dx; of the same infinitesimal 
displacement of the point P we have the linear formuloo of 
transformation 

. (3) 
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in which «11.11 are the values of the derivatives !x: at the point 
uX 11 

P. A contravariant vector x at the point Preferred to either 
system of co-ordinates has n known numbers Eµ. for its com
ponents, which in the transition to another system are trans
formed in exactly the same way (3) as the components of an 
infinitesimal displacement. I denote the totality of vectors 
at the point Pas the vector-space at P. It is, firstly, linear 
or affine, i.e. by multiplication of a vector at P by a number,, 
and by addition of two such vectors, there al ways arises a 
vector at P ; and, secondly, it is metrical, i.e. by the sym
metrical bilinear form belonging to (2) a scalar product 

X . Y = Y, X = °Igµ.vfµ.'1/' 
µ.v 

is invariantly assigned to each pair of vectors x and y with 
components E'\ TJ"'. We take it, however, that this form is 
determined only as far as to a positive factor of proportion
ality, which remains arbitrary. If the manifold of points of 
space is represented by co-ordinates Xµ., the gµ.v are determined 
by the metrical properties at the point P only to the extent 
of their proportionality. In the physical sense, too, it is only 
the ratios of the g11.v that has an immediate tangible meaning. 
For the equation 

µ.11 

is satisfied, when P is a given origin, by those infinitely 
proximate world-points which are reached by a light signal 
emitted at P. For the purpose of analytical presentation we 
have firstly to choose a definite system of co-ordinates, and 
secondly at each point P to determine the arbitrary factor of 
proportionality with which the gp.v are endowed. Accordingly 
the formulm which emerge must possess a double property of 
invariance: they must be invariant with respect to any con
tinuous transformations of co-ordinates, and they must remain 
unaltered if Xgµ.v, where X is an arbitrary continuous function 
of position, is substituted for the g1411• The supervention of 
this second property of invariance is characteristic of our 
theory. 

If P, P* are any two points, and if to each vector x at Pa 
vector x* at P* is assigned in such a way that in general «!' 
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beco1nes ax*, and x + y becomes x* + y* ( a. being any as
signed number), and the vector zero at P is the only one to 
which the vector zero at P* corresponds, we then have made an 
affine or linear replica of the vector-space at P on the vector .. 
space at P*. This replica has a particularly close resemblance 
when the scalar product of the vectors x*, y* at P* is propor
tional to that of x and y at P for all pairs of vectors x, y. (In 
our view it is only this idea of a sin1ilar replica that has 
an objective sense; the previous theory pern1itted the more 
definite conception of a congruent replica.) The meaning of 
the parallel displacement of a vector at the point P to a 
neighbouring point P' is settled by the two axiomatic postu
lates. 

1. I1y the parallel displacement of the vectors at the point 
P to the neighbouring point P' a similar image of the vector
space at Pis made upon the vector-space at P'. 

2. If P1, P2 are two points in the neighbourhood of P, and 
the infinitesimal vector PP2 at Pis transfor1ned into P1P 12 

by a parallel displacement to the point P 1, ,vhile PP1 at Pis 
transformed into P2P~n by parallel displacement to P 2, then 
P12 , P21 coincide, i.e. infinitesimal parallel displacements are 
commutative. 

That part of postulate 1 which says that the parallel dis
place1nent is an affine transposition of the vector-space from 
P to P', is expressed analytically as follows: the vector Eµ. at 
P = (x1, x2, .. Xn) is by displacernent transformed into a 
vector g'" + d~µ at P' = (:v1 + dx

1

, x
2 

+ dx
2

, .•. Xn + dxn) 
the components of which are in a linear relation to ~,.,.,-

. (4) 
JI 

The second postulate teaches that the dry~ are linear differ
ential forms 

dry~ = $r:pdx p, 
p 

the coefficients of which possess the symmetrical property 

. (5) 

If two vectors Eµ, 'l'J"' at P are trans£ armed by parallel dis
placement at P' into ~µ + df'\ '1J~ + d1J"', then the postulate 



206 GRAVITATION AND ELECTRICITY 

of similarity stated under 1 above, which goes beyond affinity, 
tells us that 

µ.II 

must be proportional to 

UV 

If we call the factor of proportionality, which differs infinit
esimally frorn I, 1 + def,, and define the reduction of an index 
in the usual way by the formula 

we obtain 

- ~g V aµ. - - µ.va ' 
V 

dgµ.v - (d"/vµ. + dryµ.v) = g1,n,dcp (6) 

From this it follows that dKf, is a linear differential form 
dcp == ~cpµ.dXµ. • ( 7) 

If this is known, the equation (6) or 

r /-'• vp + f' v, µp = %~; - g µv,f,p, 

together with the condition for symmetry (5), gives unequivo
cally the quantities r. The internal metrical connexion of 
space thus depends on a linear forrn (7) besides the quadratic 
form (2)-which is determined except as to an arbitrary 
factor of proportionality.* If we substitute "'A.gµ. 11 for gµv with-

* [I have now modified this structure in the following points (cf. the final 
presentation in ed. 4 of "Raum, Zeit, Materie," 1921, §§ 13, 18). (a) In place 
of postulates 1 and 2, which the parallel displacement has to fulfil, there is 
now one postulate: Let ~here be a system of co-ordinates at the point P, by 
the employment of which the components of every vector at Pare not altered 
by parallel displacement to any point in infinite proximity to P. This postu
late characterizes the essence of the parallel displacement as that of a trans
position, concerning which it may be correctly asserted that it leaves the 
vectors "unaltered." (b) To the metrics at the single point P, according to 
which there is attached to every vector x ={µ.at Pa tract of such a kind that 
two vectors define the same tract when, and only when, they possess the same 
measure-number l = lgµ. 11{µ.~v, there must now be added the metrical con
nexion of P with the points in its neighbourhood: by congruent transposition 
to the infinitely near point P' a. tract at P passes over into a definite tract at P'. 
If we make a requirement of this concept of congruent transposition of tracts 
analogous to that which has just been postulated, under (a), of the concept of 
parallel displacement of vectors, we see that this process (in which the measure
number Z of the tract is increased by dl) is expressed in the equations 

dl = ld<1>; d4> = 'l</>"'dx,.... 
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out changing the system of co-ordinates, the quantities dr/:, 
do not change, dryµ.v assumes the factor A-, and dgµ.11 becomes 
A.dgµ.v + gµ.vd-X. Equation (6) then shows that dcp beco1nes 

dX 
dcp + -X- = def, + d (log A.). 

\iVhat re1nains undeter1nined, therefore, in the linear ior1u 
~cp-µdxµ is not a factor of proportionality which would have 
to be settled by an arbitrary choice of a unit of measurement, 
but, rather, the arbitrary element inherent in it consists in an 
additive total differential. For the analytical representation 
of geometry the forms 

g µvd X µ.dXv, cp µdXµ . 

are on an equal footing with 

A, . g µvdxµdXv and <pµ.dx,... + d (log A) 

. (8) 

. (9) 

where A. is any positive function of position. Hence there is 
invariant significance in the anti-sym1netrical tensor with the 
components 

. (10) 

i.e. the form 

which depends bilinearly on two arbitrary displacernents dx 
and ox at the point P-or, rather, depends linearly on the 
surface element with the components .a.xµv = dxµ.Sx 11 - dxvSXµ 
which is defined by these two displace1nents. The special 
case of the theory as hitherto developed, in which ·the 
arbitrarily chosen unit of length at the origin allows itself 
to be transferred by parallel displacement to all points of 
space in a manner which is independent of the path traversed 
-this special case occurs when the gµ.v can be absolutely 
determined in such a way that the cpµ vanish. The r~P are 

In these circumstances the 1netrics and the metrical connexion determine the 
"affine'' connexion (parallel displacement) without ambiguity-and indeed, 
according to my present view of the problem of space this is the most funda
mental fact of geometry-whereas according to the presentation given in the 
text it is the linear form d<[, that remains arbitrary in the given metrics at 
the parallel displacement.] 
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then nothing else than the Christoffel three-indices symbols. 
'I.1he necessary and sufficient invariant condition for the 
occurrence of this case consists in the identical vanishing of 
the tensor F µ.v• 

This naturally suggests interpreting cf,,,. in world-geometry 
as the four-potential, and the tensor F consequently as electro
magnetic field. For the absence of an electromagnetic field 
is the necessary condition for the validity of Einstein's theory, 
which, up to the present, accounts for the phenomena of 
gravitation only. If this view is accepted, it will be seen 
that the electric quantities are of such a nature that their char
acterization by numbers in a definite system of co-ordinates 
does not depend on the arbitrary choice of a unit of measure
ment. In fact, in the question of the unit of measurement 
and of dimension there must be a new orientation of the 
theory. Hitherto a quantity has been spoken of as, e.g., a 
tensor of the second rank, if a single value of the quantity 
determines a matrix of numbers a,,.v in each system of co
ordinates after an arbitrary unit of measurement has been 
selected, these numbers forming the coefficients of an in
variant bilinear form of two arbitrary, infinitesimal displace
ments 

. (11) 

But here we speak of a tensor, if, with a system of co-ordin
ates taken as a base, and after definite selection of the factor 
of proportionality contained in the gµ.v, the components aµ.v 
are determined without ambiguity and in such a way that on 
transforming the co-ordinates the form (11) remains invariant, 
but on replacing g µ.v by Xg ,.,.v the aµ.v become xea,,.v. We then 
say that the tensor has the weight e, or, ascribing to the linear 
element ds the dimension" length = l," that it is of dimension 
z2e. Only those tensors of weight O are absolutely invariant. 
The field tensor with the components F µ.vis of this kind. By 
(10) it satisfies the first system of the Maxwell equations 

~F vp + <)F pµ. + ()F ,-tv = 0. 
<)z,,_ <)xv "Xp . 

When once the idea of parallel displacement is clear, geometry 
and the tensor calculus can be established without difficulty. 
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(a) Geodetic Lines.-Given a point P and at that point a 
vector, the geodetic line from Pin the direction of this veqtor 
is given by continuously moving the vector parallel to itself 
in its own direction. Employing a suitable parameter T the 
differential equation of the geodetic line is 

d'2:J?_I!- .I rµ. ~Xv a~~p = O 
d " 7 • d d • T~ vp T T 

(Of course it cannot be characterized as the line of smalJest 
length, because the notion of curve-length has no meaning.) 

(b) Terisor Oalculus.-To deduce, for example, a tensor field 
of rank 2 by differentiation from a covariant tensor field of 
rank 1 and weight 0 with co1nponents />-t, we call in the help 
of an arbitrary vector fµ. at the point P, form the invariant 

/µ~µ, and its infinitely small alteration on transition fro'!ll the 
point P with the co-ordinates Xµ, to the neighbouring point P' 
with the co-ordinates xµ. + dxµ. by shifting the vector along a 
parallel to itself during this transition. For this alterat.ion 
we have 

The quantities in brackets on the right are therefore the com
ponents of a tensor field of rank 2 and weight 0, which is 
formed from the field / in a perfectly invariant manner. 

( c) Cttrvature.-To construct the analogue to Riemann's 
tensor of curvature, let us begin with the figure employed 
above, of an infinitely s1nall parallelogram, consisting of the 
points P, Pi, P 2, and P 12 = P 21 .* If we displace a vector 
x = fJ, at P parallel to itself, to P 1 and from there to P 12 , and 
a second time first to P 2 and thence to P 21 , then, since P 12 

and P21 coincide, there is a meaning in forming the difference 
~x of the two vectors obtained at this point. For their com
ponents we have 

. (12) 

where the LiR: are independent of the displaced vector x, but 

* [Here it is not essential tliat opposite sides of the infinitely small " paral
lelogram " are produced by parallel displacement one from the other; we are 
concerned only with the coincidence of the points P12 and Pi1.] 
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on the other hand depend linearly on the surface-element 
defined by the two displacements PP1 = dx"', PP2 = ox,,.. 
Thus 

.i:iR~ = R:pudxpSXo- = ½ R:pu~Xpcr• 

The components of curvature R:PIT, depending solely on the 
place P, possess the two properties of symmetry that 
(1) they change sign on the interchange of the last two indices 
p and rr, and (2), if we perform the three cylic interchanges 
vp<T, and add up the appropriate components, the result is 0. 
Reducing the indexµ, we obtain at R,...,po- the components of 
a covariant tensor of rank 4 and weight 1. Even without 
calculation we see that R divides in a natural, invariant 
manner into two parts, 

R:pu = P:pu - is:Fpo- (o:· = 1 ifµ.= v; = 0 ifµ.~~ v), (13) 

of which the first, P:pu' is anti-symmetrical, not only in the in ... 
dices p<T, but also in µ. and v. Whereas the equations F µv = 0 
characterize our space as one without an electromagnetic 
field, i.e. as one in which the problem of the conveyance of 
length is integrable, the equations P:pcr = 0 are, as (13) shows, 
the invariant conditions for the absence of a gravitational field, 
i.e. for the problem of the conveyance of direction to he 
integrable. The Euclidean space alone is one which at the 
same time is free of electricity and of gravitation. 

The simplest invariant of a linear copy like (12), which to 
each vector x assigns a vector ax, is its '' spur '' 

l aR". 
1l, µ. 

For this, by (13), we obtain in the present case the form 

- ½ lt\udx p8Xu 
which we have already encountered above. The simplest in
variant of a tensor like - i F po- is the " square of its magni
tude'' 

. (14) 

L is evidently an invariant of weight - 2, because the tensor 
F has weight 0. If g is the negative determinant of the g"'"' 
and 
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the volume of an infinitely small element of volume, it is 
known that the Maxwell theory is governed by the quantity 
of electrical action, which is equal to the integral ~Ldw of this 
simplest invariant, extended over any chosen territory, and 
indeed is governed in the sense that, with any variations of 
the (Jµ.v and cpµ, which vanish at the limits of world-territory, 
we have 

where 

iJ Ldw = J (Sµdrf,,, + T"vbg,,.)dw, 

sµ ~ ~ o( ✓ g p1-tv) 
-- ✓(J oxv 

are the left-hand sides of the generalized Maxwellian 
equations (the right-hand sides of which are the components 
of the four-current), and the T,...v form the energy-momentum 
tensor of the electromagnetic field, As L is an invariant of 
weight - 2, whereas the volume-ele1nent in n-dimensional 
geometry is an invariant of weight in, the jntegral has 
significance only when the number of dimensions n = 4. 
Thus on our interpretation the possibility of the Maxwell 
theory is restricted to the case of four di1nensions. In the 
four-dimensional world, however, the quantity of electro
magnetic action becomes a pure number. Nevertheless, the 
magnitude of the quantity 1 cannot be ascertained in the 
traditional units of the £.g.s. system until a physical problem, 
to be tested by observation (as for example the electron), has 
been calculated on the basis of our theory. 

Passing now fro1n geon1etry to physics, we have to assu1ne, 
following the precedent of Mie's theory,* that all the laws of 
nature rest upon a definite integral invariant, the action
quantity 

Jwa,,, = Jm3dx, m3 = W✓g, 
in such a way that the real world is distinguished fro1n all 
other possible four-dimensional metrical spaces by the char
acteristic that for it the action-quantity contained in any part 
of its domain assumes a stationary value in relation to such 
variations of the potentials gµ.v, <pµ. as vanish at the limits of 

* Ann. d. Physik, 37, 39, 40, 1912-13. 
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the territory in question. W, the world-density of the action, 
must be an invariant of weight - 2. The action-quantity is 
in any case a pure number; thus our theory at once accounts 
for that atomistic structure of the world to which current 
views attach the most fundamental importance-the action
quantum. The simplest and most natural conjecture which 
we can make for W, is 

W = Rf,L R vpo- = ( R I 2 • 
vprr 1-L I 

For this we also have, by (13), 

w = Ip I 2 + 4L. 

(There could be no doubt about anything here except perhaps 
the factor 4, with which the electric term L is added to the 
first.) But even without particularizing the action-quantity 
we can draw some general conclusions fro1n the principle of 
action. For we shall show that as, a~cording to investiga
tions by Hilbert, Lorentz, Einstein, Klein, and the author,* 
the four laws of the conservation of matter (the energy
momentum tensor) are connected with the invariance of the 
action quantity ( containing four arbitrary functions) with re
spect to transformations of co-ordinates, so in the same way 
the law of the conservation of electricity is connected with 
the ''measure-invariance" [transition from (8) to (9)] which 
here makes its appearance for the first tirne, introducing a 
fifth arbitrary function. The manner in which the latter as
sociates itself with the principles of energy and 1nomentun1 
seems to me one of the strongest general arguments in favour 
of the theory here set out-so far as there can be any ques
tion at all of confirmation in purely speculative matters. 

For any variation which vanishes at the limits of the 
world-territory under consideration we have 

oJ ~dx = I (~'"Ogµ, + l\)µOcf,µ)dx (~µ• = m3µ•) (15) 

* Hilbert, "Die Grundlagen der Physik," Gottinger Nachrichten, 20 
Nov., 1915; H. A. Lorentz in four papers in the Versl. K. Ak. van 
Wetensch., Amsterdam, 1915-16 ; A. Einstein, Berl. Ber., 1916, pp. 1111-6 ; 
F. Klein, Gott. Nachr., 25 Jan., 1918; H. Weyl, Ann. d. Physik, 54, 1917, 
pp. 121-5. 
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The laws of nature then take the form 

~f-'JI = 0, \l)µ = 0 . (16) 

The former may be regarded as the laws of the gravitational 
field, the latter as those of the electromagnetic field. The 
quantities w:, w,,. defined by 

m3: = ✓gW~, n,µ a.: ✓gwµ. 

are the mixed or, respectively, the contravariant components 
of a tensor of rank 2 or 1 respectively, and of weight - 2. 
In the system of equations (16) there are five which are re
dundant, in accordance with the properties of invariance. 
This is expressed in the following five invariant identities, 
which subsist between their left-hand sides :-

~wµ. === m!µ 
VXµ - µ 

~~! - r:13®! = ½F~vmµ. . 
<lXµ 

. (17) 

. (18) 

The first results from the measure-invariance. For if in 
the transition from (8) to (9) we assume for log \. an in
finitely small function of position op, we obtain the variation 

o(op) 
og /J.JI = g µvop, 0¢,,. = 3 . 

Xµ. 

For this variation (15) 1nust vanish. In the second place if 
we utilize the invariance of the action-quantity with respect 
to transformations of co-ordinates by means of an infinitely 
s1nall deformation of the world - continuum,* we obtain the 
identities 

<lm3: 'vga.{3i;ma.f1 (<)"'/J. )--, - - t ~~ + ½ --:,. -<pv - I'o.vtt!°' =0 
uXµ. vXv uXµ.. 

which change into (18) when, by (17) l)n,JJ./~xµ. is replaced by 
9a.f3[Bo.f3 

From the gravitational laws alone therefore we already obtain 

. (19) 

*Weyl, Ann. d. Physik, 54, 1911, pp. 121-5; F. Klein, Gott. Ne.chr., 
25 Jan., 1918. 
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and from the laws of the electromagnetic field alone 

<) 00"). µ a. 00"). fJ 
~~v - I' v~~Q. = 0 ,,xP. 

In Maxwell's theory tt,"' has the for1n 

"'" = ~(✓gFp.v) - a" ap. = 'g-s"' 
~Xv ' " 

. (20) 

where sµ. denotes the four-current. Since the first part here 
satisfies the equation (19) identically, this equation gives us 
the law of conservation of electricity 

--~ - ~(✓gs~) = 0 
✓ g ()XI-' • 

Similarly in Einstein's theory of gravitation m3: consists of 
two terms, the first of which satisfies equation (20) identi
cally, and the second is equal to the mixed components 
of the energy-momentum tensor T~ multiplied by ✓ g. 

Thus equations (20) lead to the four laws of the conservation 
of matter. Quite analogous circumstances hold good in our 
theory if we choose the form (14) for the action-quantity. 
The five principles of conservation are "eliminants '' of the 
field laws, i.e. they follow from them in a twofold manner, 
and thus den1onstrate that among them there are five which 
are redundant. 

With the form (14) for the action-quantity the l\iaxwell 
equations run, for example :-

. (21) 

and the current is 

sµ = l( Ref,µ + !!), 
where R denotes that invariant of weight - 1 which arises 
from R:pa- if we first contract with respect toµ, p and then 
with respect to v and u. If l{* denotes Riemann's invariant 
of curvature constructed solely fro1n the g"'v' calculation 
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gives 
3 - 3 

R = R* - --= <J(✓ gcf/A·) + -cf,µ.cf,P.. 
✓ll <JX 11 2 

In the static case, where the space components of the electro
magnetic potential disappear, and all quantities are inde
pendent of the time x0, by (21) we must have 

3 
R = R* + 2cf,0cp0 = canst. 

But in a world-territory in which R + 0 we may make 
R = const. = + 1 everywhere, by appropriate determination 
of the unit of length. Only we have to expect, under con
ditions which are variable with time, surfaces R = 0, which 
evidently will play some singular part. R cannot be used as 
density of action (represented by R* in Einstein's theory of 
gravitation) because it has not the weight - 2. The conse
quence is that though our theory leads to Maxwell's electro
magnetic equations, it does not lead to Einstein's gravitation 
equations. In their place appear differential equations of 
order 4. But indeed it is very improbable that Einstein's 
equations of gravitation are strictly correct, because, above 
all things, the gravitation constant occurring in them is not 
at all in the picture with the other constants of nature, the 
gravitation radius of the charge and 1nass of an electron, for 
example, being of an entirely different order of magnitude 
(1020 or 1040 times as small) from that of the radius of the 
electron itself.* 

It was my intention here merely to develop briefly the 
general principles of the theory. t The problem naturally 

* Cf. Weyl, Ann. d. Physik, 54, 1017, p. 133. 
t [The problem of defining all W inva.ria.nts allowable as action-quantities, 

under the requirement that they should contain the derivatives of the g p.v only 
to the second order at most, and those of the 'Pp. only to the first order, was 
solved by R. Weitzenbock (Sitzungsber. d. Akad. d. Wissensch. in Wien, 
129, 1920; 130, 1921). If we omit the invariants W for whioh the variation 
afWdw vanishes identically, there remain according to a later calculation by 
R. Ba.oh (Ma.th. Zeitschrift, 9, 1921, pp. 125 and 189) only three combine.
tions. The real W seems to be a linear combination of Maxwell's L and the 
square of R. This conjecture has been tested more carefully by W. Pauli 
(Physik. Zeitschrift., 20, 1919, pp. 457-67) and myself; in particular we 
succeeded in advancing so far on this basis as to deduce the equations of 
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presents itself of deducing the physical consequences of the 
theory on the basis of the special form for the action-quantity 
given in (14), and of comparing these with experience, exam
ining particularly whether the existence of the electron and 
the peculiarities of the hitherto unexplained processes in the 
atom can be deduced from the theory.* The task is extra
ordinarily con1plicated from the mathematical point of view, 
because it is impossible to obtain approximate solutions if we 
restrict ourselves to the linear terms; for since it is certainly 
not permissible to neglect terms of higher order in the 
interior of the electron, the linear equations obtained by 
neglecting these may have, in general, only the solution 0. 
I propose to return to all these 1natters in greater detaH in 
another place. 

motion of a material particle. The invariant (14) selected above, at hazard 
in the first place, eeems on the contrary to play no part in nature. Cf. Raum, 
" Zeit, Materie," ed. 4, §§ 35, 36, or Weyl, Physik. Zeitschr. 1 22, Hl21, pp. 
473-80.] 

* [Meanwhile I have quite abandoned these hopes, raised by Mie's theory; 
I do not believe that the problem of matter is to be solved by a mere field 
theory. Cf. on this subject my article "Feld und Materie," Ann. d. Physik, 
65, 1921, pp. 541-63.] 
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and line illustrations. Index. 2,Spp. 53/s x 8. T518 Paperbound $1.45 

SPACE AND TIME, Emile Borel. An entirely non-technical introduction to relativity, by world
renowned mathematician, Sorbonne Professor. (Notes on basic mathematics are included 
separately.) This book has never been surpassed for insight, and extraordinary clarity of 
thought, as it presents scores of examples, analogies, arguments, illustrations, which ex
plain such topics as: difficulties due to motion; gravitation a force of inertia; geodesic 
lines; wave-length and difference of phase; x-rays and crystal structure; the special theory 
of relativltY; and much more. Indexes. 4 appendixes. 15 figures. xvi + 243pp. 53/s x 8. 

T592 Paperbound $1.45 

THE RESTLESS UNIVERSE, Max Born. New enlarged version of this remarkably readable 
account by a Nobel laureate. Moving from sub-atomic particles to universe, the author 
explains in very simple terms the latest theories of wave mechanics. Partial contents: air 
and its relatives, electrons & ions, waves & particles, electronic structure of the atom, 
nuclear physics. Nearly 1000 illustrations, including 7 animated sequences. 325pp. 6 x 9. 

T412 Paperbound $2.00 
' j 

SOAP SUBBLES, THEIR COLOURS AND THE FORCES WHICH MOULD THEM, C. V. Boys. Only com
plete edi1ion, half again as much material as any other. Includes Boys' hints on performing 
his experiments, sources of supply. Dozens of lucid experiments show complexities of 
liquid films, surface tension, etc. Best treatment ever written. Introduction. 83 illustrations. 
Color plate. 202pp. 53/s x 8. T542 Paperbound 95~ 

' SPINNING TOPS AND GYROSCOPIC MOTION, John Perry. Well-known classic of science still 
unsurpassed for lucid, accurate, delightful exposition. How quasi-rigidity is Induced in flexible 
and fluid bodies by rapid motions; why gyrostat falls, top rises; nature and effect on climatic 
conditions of earth's precessional movement; effect of internal fluidity on rotating bodies, 
etc. Appendixes describe practical uses to which gyroscopes have been put in ships, com
passes, monorail transportation. 62 figures. 128pp. 53/a x 8. T416 Paperbound $1.00 

MATTER & LIGHT, THE NEW PHYSICS, L. de Broglie. Non-technical papers by a Nobel laureate 
explain electromagnetic theory, relativity, matter, light and radiation, wave mechanics, 
quantum physics, philosophy of science. Einstein, Planck, Bohr, others explained so easily 
that no mathematical training is needed for all but 2 of the 21 chapters. Unabridged. Index. 
300pp. 53/a x 8. T35 Paperbound $1.&0 



book when science had just crossed the threshold of the new phy'sics, and he commun-icates 
the excitement felt then as he discusses electromagnetic theories, statistical methods, e11olu
tion of the concept of light, a step-by-step description of how he de11eloped his own momen
tous theory, and many more of the basic ideas behind modern physics. Formerly "A" Sur11ey 
of Physics." Bibliography. Index. 128pp. 53/s x 8. S650 Paperbound $1.15 

THE NATURE OF LIGHT AND COLOUR IN THE OPEN AIR, M. Minnaert. Why is falling. snow 
sometimes black? What causes mirages, the fata morgana, multiple suns and moons in the 
sky? How are shadows formed? Prof. Minnaert of the University of Utrecht answers these and 
similar questions in optics, light, colour, for non-specialists. Particularly valuable to nature, 
science students, painters, photographers. Translated by H. M. Kremer-Priest, K. Jay. 202 
illustrations, including 42 photos. xvi + 362pp. 53/s x 8. 1196 Paperbound $1.95 

THE STORY OF X-RAYS FROM RONTGEN TO ISOTOPES, A. R. Bleich. Non-technical history of 
x-rays, their scientific explanation, their applications in medicine, industry, research, and 
art, and their effect on the individual and his descendants. Includes amusing early reactions 
to Rontgen's discovery, cancer therapy, detections of art and stamp forgeries, potential 
risks to patient and operator, etc. Illustrations show x-rays of flower structure, the gall 
bladder, gears with hidden defects, etc. Original Dover publication. Glossary. Bibliography. 
Index. 55 photos and figures. xiv + 186pp. 53/e x 8. T662 Paperbound $1.35 

TEACH YOURSELF ELECTRICITY, C. W. Wilman. Electrical resistance, inductance, capacitance, 
magnets, chemical effects of current, alternating currents, generators and motors, trans
formers, rectifiers, much more. 230 questions, answers, worked examples. List of units. 115 
illus. 194pp, 67/e x 41/4. Clothbound $2.00 

TEACH YOURSELF HEAT ENGINES, E. De Ville. Measurement of heat, de11elopment of steam and 
internal combustion engines, efficiency of an engine, compression-ignition engines, production 
of steam, the ideal engine, much more. 318 exercises, answers, worked examples. Tables. 
76 illus. 220pp. 67,ls x 4¼. Clothbound $2.00 

TEACH YOURSELF MECHANICS, P. Abbott. The fever, centre of gravity, parallelogram of force, 
friction, acceleration, Newton's laws of motion, machines, specific gravity, gas, liquid 
pressure, much more. 280 problems, solutions. Tables. 163 illus. 271pp. 6"1/s x 4¼. 

Clothbound $2.00 

GREAT IDEAS OF MODERN MATHEMATICS: THEIR NATURE AND USE, Jagjit Singh. Reader with 
only high school math will understand main mathematical ideas of modern physics, astron
omy, genetics, psychology, evolution, etc., better than many who use them as tools, but 
comprehend little of their basic structure. Author uses his wide knowledge of non-mathe
matical fields in brilliant exposition of differential equations, matrices, group theory, logic, 
statistics, problems of mathematical foundations, imaginary numbers, 11ectors, etc. Original 
pub I ication. 2 appendixes. 2 indexes. 65 illustr. 322pp. 53/e x 8. S587 Paperbound $1.55 

MATHEMATICS IN ACTION, 0, G. Sutton. Everyone with a command of high school algebra 
will find this book one of the finest possible introductions to the application of mathematics 
to physical theory. Ballistics, numerical analysis, waves and wavelike phenomena, Fourier 
series, group concepts, fluid flow and aerodynamics, statistical measures, and meteorology 
are discussed with unusual clarity. Some calculus and differential equations theory is 
developed by the author for the reader's help in the more difficult sections. 88 figures. 
Index. viii + 236pp. 53/s x 8. 1440 Clothbound $3.50 

FREE! All you do is ask for it! 
A DOVER SCIENCE SAMPLER, edited by George Barkin. 64-page booki sturdily 
bound, containing excerpts from over 20 Dover books explaining science. 
Edwin Hubble, George Sarton, Ernst Mach, A. d'Abro, Galileo, Newton, others, 
discussing island uni11erses, scientific truth, biological phenomena, stability 
in bridges, etc. Copies limited, no more than 1 to a customer. FREE 

THE FOURTH DIMENSION SIMPLY EXPLAINED, edited by H. P. Manning. 22 essays, originally 
Scientific American contest entries, that use a minimum of mathematics to explain aspects 
of 4-dimensional geometry: analogues to 3-dimensional space, 4-dimensional absurdities and 
curiosities {such as removing the contents of an egg without puncturing its shell), possible 
measurements and forms, etc. Introduction by the editor. Only book of its sort on a truly 
elementary level, excellent introduction to advanced works. 82 figures. 251pp, 53/e x 8. 

T711 Paperbound $1.35 

FAMOUS BRIDGES OF THE WORLD, D. B. Steinman. An up-to-the-minute revised edition of a 
book that explains the fascinating drama of how the world's great bridges came to be built. 
The author, designer of the famed Mackinac bridge, discusses bridges from all periods and 
all parts of the world, explaining their various types of construction, and describing the 
problems their builders faced. Although primarily for youngsters, this cannot fail to interest 
readers of all ages. 48 illustrations in the text. 23 photographs. 99pp. 61/s x 9¼. 

1161 Paperbound $1.00 



BRIDGES AND THEIR BUILDERS, David Steinman and Sara Ruth Watson. Engineers, historians, 
everyone who has ever been fascinated by great spans will find this book an endless 
source of information and interest. Dr. Steinman, recipient of the Louis Levy medal, was 
one of the great bridge architects and engineers of all time, and his analysis of the great 
brid~es of history is both authoritative and easily followed. Greek and Roman bridges, 
medieval bridges, Oriental bridges, modern works such as the Brooklyn Bridge and the 
Golden Gate Bridge1 and many others are described in terms of history, constructional prin
ciples, artistry, ana function. All in all this book is the most comprehensive and accurate 
semipopular history of bridges in print in English. New, greatly revised, enlarged edition. 
23 photographs, 26 line drawings. Index. xvii + 401pp. 53JS x 8. T431 Paperbound $2.00 

FADS AND FALLACIES IN THE NAME OF SCIENi.'fE, Martin Gardner. Examines vari~us cults, 
quack systems, frauds, delusions which at various times have masqueraded as science. 
Accounts of hollow-earth fanatics like Symmes; Velikovsky and wandering planets; Hoer
biger; Bellamy and the theory of multiple moons; Charles Fort; dowsing1 pseudoscientific 
methods for finding water, ores, oil. Sections on naturopathy, iridiagnos1s, zone therapy, 
food fads, etc. Analytical accounts of Wilhelm Reich and orgone sex energy; L. Ron Hubbard 
and Dianetics; A. Korzybski and General Semantics; many others. Brought up to date to 
include Bridey Murphy, others. Not just a collection of anecdotes, but a fair, reasoned 
appraisal of eccentric theory. Formerly titled IN THE NAME OF SCIENCE. Preface. Index. 
x + 384pp. 53/s x 8. T394 Paperbound $1.50 

See also: A PHILOSOPHICAL ESSAY ON PROBABILITIES, P. de Laplace; ON MATHEMAtlCS AND 
MATHEMATICIANS, R. E. Moritz; AN ELEMENTARY SURVEY OF CELESTIAL MECHANICS, Y. RyabOYj 
THE SKY AND ITS MYSTERIES, E. A. Beet; THE REALM OF THE NEBULAE, E. Hubble; OUT Ot 
THE SKY, H. H. Nininger; SATELLITES AND SCIENTIFIC RESEARCH, D. King-Hele; HEREDITY 
AND YOUR LIFE, A. M. Winchester; JNSECTS AND INSECT LIFE, S. W. Frost; PRINCIPLES OF 
STRATIGRAPHY, A. W. Grabau; TEACH YOURSELF- SERIES, 

HISTORY OF SCIENCE AND MATHEMATICS 

DIALOGUES CONCERNING TWO NEW SCIENCES, Galileo Galilei. This classic of experimental 
science, mechanics, engineeringJ is as enjoyable as it is important. A great historical docu
ment giving insights into one or the world's most original thinkers, it is based on 30 years' 
experimentation. It offers a lively exposition of dynamics, elasticity, sound, ballistics, 
strength of materials, the scientific method. "Superior to everything else of mine," Galileo. 
Trans. by H. Crew, A. Salvio. 126 diagrams. Index. xxi + 288pp. 53/s x 8. 

S99 Paperbound $1.65 

A DIDEROT PICTORIAL ENCYCLOPEDIA OF TRADES .AND INDU'StRY, Manufacturing 1and the 
Technical Arts in Plates Selected from 11L'Encyclopedie ou Dictionnaire RaisonnA des Sciences, 
des Arts, et des Mlltiers" of Denis Diderot. Edited with text by c. Gillispie. This first modern 
selection of plates from the high point of 18th century French engraving is a storehouse 
of valuable technological informatiqn to the historian of arts and science. Over 2000 
illustrations on 485 full page plates, most of them original size, show the trades and 
industries of a fascinating era in such great detail that the processes and shops might 
very well be reconstructed from them. The plates teem with life, with men, women, and 
children performing all of the thousands of operations necessary to the trades before and 
during the early stages of the industrial revolution. Plates are in sequence, a1'd show 
general operations, closeups of difficult operations, and details of complex machinery. Such 
important and interesting trades and Industries are illustrated as sowing, harvesting, bee• 
keeping, cheesemaklng, operating windmills, milling flour, charcoal burning, tobacco process
ing, indigo, fishing, arts of war, salt extraction, mining, smelting, casting iron, steel, 
extracting mercury, zinc, sulphur, copper, etc., slating, tinning, silverplating, gildlng, 
making gunpowder, cannons, bells, shoeing horses, tanning, papermaking, printing, dyeing, 
and more than 40 other categories. Professor Gillispie, of Princeton, supplies a full com
mentary on all the plates, identifying operations, tools, processes, etc. This material, pre
sented in a lively and lucid fashion, is of great interest to the reader interested In history 
of science and technology. Heavy library cloth. 920pp. 9 x 12. T421 Two volume set $18.50 

OF. MAGNETE, William Gilbert. This classic work on magnetism founded a new science. Gilbert 
was the first to use the word "electricity", to recognize mass as distinct from weight, to 
discover the effect of heat on magnetic bodies; invent an electroscope, differentiate 
between static electricity and magnetism, conceive of the earth as a magnet. Written by 
the first great experimental scientist, this lively work is valuable not only as an historical 
landmark, but as the delightfully easy to follow rec.Ord of a perpetually searching, Ingenious 
mind. Translated by P. F. Mottelay. 25 page biographical memoir. 90 figures. lix + 368pp. 
53/s x 8. S470 Paperbound $2.00 



CHARLES BABBAGE AND HIS CALCULATING ENGINES, edited by P. Morrison and E. Morrison. 
Babbage, leading 19th century pioneer in mathematical machines and herald of modern 
operational research, was the true father of Harvard's relay computer Mark I. His Difference 
Engine and Analytical Engine were the first machines in the field. This volume contains a 
valuable introduction on his life and work; major excerpts from his autobiography, revealing 
his eccentric and unusual P,)rsonality; and extensive selections from "Babbage's Calculating 
Engines," a compilation of hard-to-find journal articles by Babbage, the Countess of Lovelace, 
L. F. Menabrea, and Dionysius Lardner. 8 illustrations, Appendix of miscellaneous papers. 
Index. Bibliography. xxxviii + 400pp. 53/a x 8. T12 Paperbound $2.00 

A HISTORY OF ASTRONOMY FROM THALES TO KEPLER, J. L. E. Dreyer. (Formerly A HISTORY 
OF PLANETARY SYSTEMS FROM THALES TO KEPLER.) This is the only work in English to give 
the complete history of man's cosmological views from prehistoric tirries to Kepler and 
Newton. Partial contents: Near Eastern astronomical systems, Early Greeks, Homocentric 
Spheres of Eudoxus, Epicycles, Ptolemaic system, medieval cosmology, Copernicus, Kepler, 
etc. Revised, foreword by W. H. Stahl. New bibliography. xvii + 430pp. 53/s x 8. 

S79 Paperbound $1,98 

A SHORT HISTORY OF ANATOMY AND PHYSIOLOGY FROM TH,E GREEKS TO HARVEY, Charles 
Singer. Corrected edition of THE EVOLUTION OF ANATOMY, classic work tracing evolution of 
anatomy and physiology from prescientific times through Greek & Roman periods, Dark Ages, 
Renaissance, to age of Harvey and beginning of modern concepts. Centered on individuals, 
movements, periods that definitely advanced anatomical knowledge: Plato, Diocles, Aristotle, 
Theophrastus, Herophilus, Erasistratus, the Alexandrians, Galen, Mondino, da Vinci, Unacre, 
Sylvius, others. Special section on Vesalius; Vesalian atlas of nudes, skeletons, muscle 
tabulae. Index of names, 20 plates. 270 extremely interesting illustrations of ancient, 
medieval, Renaissance, Oriental origin. xii + 209pp. 53/a x 8. T389 Paperbound $1.75 

FROM MAGIC TO SCIENCE, Charles Singer. A great historian examines aspects of medical 
science from the Roman Empire through the Renaissance. Includes perhaps the best discus
sion of early herbals, and a penetrating physiological interpretation of "The Visions of 
Hildegarde of Bingen." Also examined are Arabian and Galenic influences; the Sphere of 
Pythagoras; Paracelsus; the reawakening of science under Leonardo da Vinci, Vesalius; the 
Lorica of Gildas the Briton: etc. Frequent quotations with translations. New Introduction by 
the author. New unabridged, corrected edition. 158 unusual illustrations from classical 
and medieval sources. Index. xxvii + 365pp. 53/a x 8. T390 Paperbound $2.00 

HISTORY OF MATHEMATICS, D. E. Smith. Most comprehensive non-technical history of math 
in English. Discusses lives and works of over a thousand major and minor figures, with 
footnotes supplying technical information outside the book's scheme, and indicating dis
puted matters. Vol I: A chronological examination, from primitive concepts through Egypt, 
Babylonia, Greece, the Orient, Rome, the Middle Ages, the Renaissance, and up to 1900. 
Vol 2: The development of ideas in specific fields and problems, up through elementary 
calculus. Two volumes, total of 510 ii lustrations, 1355pp. 53/a x 8. Set boxed in attractive 
container. T429, 430 Paperbound, the set $5.00 

A SHORT ACCOUNT OF THE HISTORY OF MATHEMATICS, W. W. R. Ball. Most readable non
technical history of mathematics treats lives, discoveries of every important figure from 
Egyptian, Phoenician mathematicians to late 19th century. Discusses schools of Ionia, 
Pythagoras, Athens, Cyzicus, Alexandria, Byzantium, systems of numeration; primitive arith
metic; Middle Ages, Renaissance, including Arabs, Bacon, Regiomontanus, Tartaglia, Cardan, 
Stevinus, Galileo, Kepler; modern mathematics of Descartes, Pascal, Wallis, Huygens, Newton, 
Leibnitz, d'Alembert, Euler, Lambert, Laplace, Legendre, Gauss, Hermite, Weierstrass, 
scores more. Index. 25 figures. 546pp. 53/a x 8. S630 Paperbound $2.00 

A SOURCE BOOK IN MATHEMATICS, D. E. Smith. Great discoveries in math, from Renaissance 
to end of 19th century, in English translation. Read announcements by Dedekind, Gauss, 
Delamain, Pascal, Fermat, Newton, Abel, Lobachevsky, Bolyai, Riemann, De Moivre, Legendre, 
Laplace, others of discoveries about imaginary numbers, number congruence, slide rule, 
equations, symbolism, cubic algebraic equations, non-Euclidean forms of geometry, calculus, 
function theory, quaternions, etc. Succinct selections from 125 different treatises, articles, 
most unavailable elsewhere in English. Each article preceded by biographical, historical 
introduction. Vol. I: Fields of Number, Algebra. Index. 32 illus. 338pp. 5% x 8. Vol. 11: 
Fields of Geometry, Probabllity, Calculus, Functions, Quaternions. 83 illus. 432pp. 53/a x 8. 

Vol. l: S552 Paperbound $1.85 
Vol. 2: S553 Paperbound $1.85 

2 vol. set, boxed $3.50 

A HISTORY OF THE CALCULUS, AND ITS CONCEPTUAL DEVELOPMENT, Carl B. Boyer. Pro
vides laymen and mathematicians a detailed history of the development of the calculus, 
from early beginning in antiquity to final elaboration as mathematical abstractions. Gives 
a sense of mathematics not as a technique, but as a habit of mind, in the progression of 
ideas of Zeno, Plato, Pythagoras, Eudoxus, Arabic and Scholastic mathematicians, Newton, 
Leibnitz, Taylor, Descartes, Euler, Lagrange, Cantor, Weierstrass, and others. This first com
prehensive critical history of the calculus was originally titled "The Concepts of the 
Calculus." Foreword by R. Courant. Preface. 22 figures. 25-page bibliography. Index. v + 
364pp. 5~'a x 8. S509 Paperbound $2.00 
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ideas, techniques from Ancient Near East, Greece, Islamic science, Middle Ages, Renaissance, 
modern times. Important mathematicians are described in detail. Treatment is not anecdotal, 
but analytical development of ideas. 11 Rich in content, thoughtful in interpretation," U.S. 
QUARTERLY BOOKLIST. Non-technical; no mathematical training needed. Index. 60 illustra
tions, including Egyptian papyri, Greek mss., portraits of 31 eminent mathematicians. Bib
liography. 2nd edition. xix + 299pp. 53/s x 8. T255 Paperbound $1.75 

See also: NON-EUCLIDEAN GEOMETRY, R. Bonola; THEORY OF DETERMINANTS IN ~ISTORICAL 
ORDER OF DEVELOPMENT' T. Muir; HISTORY OF THE THEORY OF ELASTICITY AND STRENGTH 
OF MATERIALS, I. Todhunter and K. Pearson; A SHORT HISTORY OF ASTRONOMY, A. Berry; 
CLASSICS OF SCIENCE. 

PHILOSOPHY Of SCIENCE AND MATHEMATICS 

FOUNDATIONS OF SCIENCE: THE PHILOSOPHY OF THEORY AND EXPERIMENT, N. R. ''Campbell. 
A critique of the most fundamental concepts of science in general and physics in particular. 
Examines why certain propositions are accepted without ques·tion, demarcates science from 
philosophy, clarifies the understanding of the tools of science. Part One analyzes the pre
suppositions of scientific thought: existence of the material world, nature of scientific 
laws, multiplication of probabilities, etc.: Part Two covers the nature of experiment and the 
application of mathematics: conditions for measurement, relations between numerical laws 
and theories, laws of error, etc. An appendix covers problems arising from relativity, force, 
motion, space, and time. A classic in its field. Index. xiii + 565pp. 55/s x 83/s. 

S372 Paperbound $2.95 

WHAT IS SCIENCE?, Norman Campbell. This excellent introduction explains scientific method, 
role of mathematics, types of scientific laws. Contents: 2 aspects of science, science & 
nature, laws of science, discovery of laws, explanatlon of laws, measurement & numerical 
laws, applications of science. 192pp. 53/a x 8. S43 Paperbound $1.25 

' 
THE VALUE OF SCIENCE, Henri Polncar6. Many of the most mature ideas of the "last. scientific 
universalist" covered with charm and vigor for both the beginning student and the advanced 
worker. Discusses the nature of scientific truth, whether order is innate in the universe 
or Imposed upon it by man, logical thought versus intuition (relating to math, through the 
works of Weierstrass, Lie, Klein, Riemann), time and space (relativity, psychological time, 
simultaneity), Hertz's concept of force, interrelationship of mathematical physics to pure 
math, values within disciplines of Maxwell, Carnot, Mayer, Newton, Lorentz, etc. Index. 
Ill + 147pp. 53/s x 8. S469 Paperbound $1.35 

SCIENCE AND METHOD, Henri Poincari. Procedure of scientific discovery, methodology, experi• 
ment, idea-germination-the intellectual processes by which discoveries come Into being. 
Most significant and most Interesting aspects of development, application of ideas. Chapters 
cover selection of facts, chance, mathematical reasoning, mathematics, and logic; Whitehead, 
Russell, Cantor; the new mechanics, etc. 288pp. 53/s x 8. S222 Paperbound $1.35 

SCIENCE AND HYPOTHESIS, Henri Polncar6. Creative psychology In science. How such con• 
cepts as number, magnitude, space, force, classical mechanics were developed, and how the 
modern scientist uses them in his thought. Hypothesis in physics, theories of modern 
physics. Introduction by Sir James Larmor. "Few mathematicians have had the breadth of 
vision of Poincare, and none is his superior in the gift of clear exposition," E. T. Bell. 
Index. 272pp. 53/a x 8. S221 Paperbound $1.35 

PHILOSOPHY AND THE PHYSICISTS, L. &. Stebbing. The philosophical aspects of1 modern 
science examined in terms of a lively critical attack on the ideas of Jeans and Eddington. 
Discusses the task of science, causality, determinism, probability, consciousness, the relation 
of the world of physics to that of everyday experience. Probes the philosophical significance 
of the Planck-Bohr concept of discontinuous energy levels, the inferences to be drawn from 
Heisenberg's Uncertainty Principle, the implications of "becoming" involved in the 2nd law 
of thermodynamics, and other problems posed by the discarding of Laplacean determinism. 
285pp. 53/a x 8. T480 Paperbound $1.65 

EXPERIMENT AND THEORY IN PHYSiCS, Max Born. A Nobel laureate examines the nature and 
value of the counterclaims of experiment and theory in physics. Synthetic versus analytical 
scientific advances are analyzed in the work of Einstein, Bohr, Heisenberg, Planck, Eddington, 
Milne, and others by a fellow participant. 44pp. 53/s x 8. S308 Paperbound &OC 



THE NATURE OF PHYSICAL THEORY, P. W. Bridgman. Here is how modern physics looks to a 
highly unorthodox physicist-a Nobel laureate. Pointing out many absurdities of science, and 
demonstrating the inadequacies of various physical theories, Or. Bridgman weighs and ana
lyzes the contributions of Einstein, Bohr, Newton, Heisenberg, and many others. This is a 
non-technical consideration of the correlation of science and reality. Index. xi + 138pp. 
53/a x 8. S33 Paperbound $1.25 

THE PHILOSOPHY OF SPACE AND TIME, H. Reichenbach. An important landmark in the develop
ment of the empiricist conception of geometry, covering the problem of the foundations of 
geometry, the theory of time, the consequences of Einstein's relativity, including: relations 
between theory and observations; coordinate and metrical properties of space; the psycholog
ical problem of visual intuition of non-Euclidean structures; and many other important topics 
in modern science and philosophy. The majority of ideas require only a knowledge of inter
mediate math. Introduction by R. Carnap. 49 figures. Index. xviii + 296pp. 53/a x 8. 

S443 Paperbound $2.00 

MATTER & MOTION, James Clerk Maxwell, This excellent exposition begins with simple par
ticles and proceeds gradually to physical systems beyond complete analysis: motion, force, 
properties of centre of mass of material system, work, energy, gravitation, etc. Written with 
all Maxwell's original insights and clarity. Notes by E. Larmor. 17 diagrams. 178pp. 53/e x 8. 

Sl88 Paperbound $1.35 

THE ANALYSIS OF MATTER, Bertrand Russell. How do our senses concord with the new 
physics? This volume covers such topics as logical analysis of physics, prerelativity physics, 
causality, scientific inference, physics and perception, special and general relativity, Weyl's 
theory, tensors, invariants and their physical interpretation, periodicity and qualitative series. 
"The most thorough treatment of the subject that has yet been published," THE NATION. 
Introduction by L. E. Denonn. 422pp. 53/a x 8. T231 Paperbound $1.95 

SUBSTANCE AND FUNCTION & EINSTEIN'S THEORY OF RELATIVITY, Ernst Cassirer. Two books 
bound as one. Cassirer establishes a philosophy of the exact sciences that takes into con
sideration newer developments in mathematics, and also shows historical connections. Partial 
contents: Aristotelian logic, Mill's analysis, Helmholtz & Kronecker, Russell & cardinal num
bers, Euclidean vs. non-Euclidean geometry, Einstein's relativity. Bibliography. Index. xxi + 
465pp. 5:Ya x 8. TSO Paperbound $2.00 

PRINCIPLES OF MECHANICS, Heinrich Hertz. This last work by the great 19th century 
physicist is not only a classic, but of great interest in the logic of science. Creating a new 
system of mechanics based upon space, time, and mass, it returns to axiomatic analysis, 
to understanding of the formal or structural aspects of science, taking into account logic, 
observation, and a priori elements. Of great historical importance to Poincare, Carnap, Ein
stein, Milne. A 20-page introduction by R. S. Cohen, Wesleyan University, analyzes the impli
cations of Hertz's thought and the logic of science. Bibliography. 13-page introduction by 
Helmholtz. xiii + 274pp. 53/a x 8. S316 Clothbound $3.50 

S317 Paperbound $1.85 

THE PH(LOSOPHICAL WRITINGS OF PEIRCE, edited by Justus Buchler. (Formerly published as 
THE PHILOSOPHY OF PEIRCE.) This is a carefully balanced exposition of Peirce's complete 
system, written by Peirce himself. It covers such matters as scientific method, pure chance 
vs. law, symbolic logic, theory of signs, pragmatism, experiment, and other topics. Intro
duction by Justus Buchler, Columbia University. xvi + 368pp. 53/a x 8. 

T217 Paperbound $1.95 

ESSAYS IN EXPERIMENTAL LOGIC, John Dewey. This stimulating series of essays touches upon 
the relationship between inquiry and experience, dependence of knowledge upon thought, 
character of logic; judgments of practice, data and meanings 1 stimuli of thought, etc. Index. 
viii + 444pp. 5:Ya x 8. T73 Paperbound $1.95 

LANGUAGE, TRUTH AND LOGIC, A. Ayer. A clear Introduction to the Vienna and Cambridge 
schools of Logical Positivism. It sets up specific tests by which you can evaluate validity of 
ideas, etc. Contents: Function of philosophy, elimination of metaphysics, nature of analysis, 
a priori, truth and probability, etc. 10th printing. "I should like to have written it myself," 
Bertrand Russell. Index. 160pp. 5¾ x 8. no Paperbound $1.25 

THE PSYCHOLOGY OF INVENTION IN THE MATHEMATICAL FIELD, J. Hadamard, Where do ideas 
come from? What role does the unconscious play? Are ideas best developed by mathematical 
reasoning, word reasoning, visualization? What are the methods used by Einstein, Polncare, 
Galton, Riemann? How can these techniques be applied by others? Hadamard, one of the 
world's leading mathematicians, discusses these and other questions. xiii + 145pp. 53/a x 8. 

1107 Paperbound $1.25 

FOUNDATIONS OF GEOMETRY, Bertrand Russell. Analyzing basic problems in the overlap area 
between mathematics and philosophy, Nobel laureate Russell examines the nature of geo
metrical knowledge, the nature of geometry, and the application of geometry to space. 
It covers the history of non-Euclidean geometry, philosophic interpretations of geometry
especially Kant-projective and metrical geometry. This is most interesting as the solution 
offered in 1897 by a great mind to a problem still current. New introduction by Prof. Morris 
Kline of N. Y. University. xii + 201pp. 53/a x 8. S232 Clothbound $3.25 

S233 Paperbound $1.60 



Relativity, quantum theory, nuclear physics 

THE PRINCIPLE OF RELATIVITY, A. Einstein, H. Lorentz, M. Minkowski, H. Wey_l. These are 
the 11 basic papers that founded the general and special theories of relativity, all trans
lated into English. Two papers by Lorentz on the Michelson experiment, electromagnetic 
phenomena. Minkowski's SPACE & TIME, and Weyl's GRAVl'rATION & ELECTRICITY. 7 epoch
making papers by Einstein: ELECTROMAGNETICS OF MOVING BODIES, INFLUENCE OF GRAVI· 
TATION IN PROPAGATION OF LIGHT, COSMOLOGICAL CONSIDERATIONS, GENERAL THEORY, and 
3 others. 7 diagrams. Special notes by A. Sommerfeld. 224pp. 53/s x 8. 

S81 Paperbo1,1nd $1.75 

SPACE TIME MATTER, Hermann Weyl. "The standard treatise on the general theory of rela
tivity," (Nature), written by a world-renowned scientist, provides a deep clear discussion of 
the logical coherence of the general theory, with introduction to all the mathematical tools 
needed: Maxwell, analytical geometry, non-Euclidean geometry, tensor calculus, etc. Basis is 
classical space-time, before absorption of relativity. Partial contents: Euclidean space, 
mathematical form, metrical continuum, relativity of time and space, general theory. 15 dia• 
grams. Bibliography. New preface for this edition. xviii + 330pp, 53/s x. 8. 

S267 Paperbound $1.85 

PRINCIPLES OF QUANTUM MECHANICS, W. V. Houston. Enables student with worki~g knowl
edge of elementary mathematical physics to develop facility in use of quantum mechanics, 
understand published work in field. Formulates quantum mechanics in terms of Schrqedinger's 
wave mechanics. Studies evidence for quantum theory, for inadequacy of classical me
chanics, 2 postulates of quantum mechanics; numerous important, fruitful applications of 
quantum mechanics in spectroscopy, collision problems, electrons in solids; other topics. 
"One of the most rewarding features ... is the interlacing of problems with text," Amer. 
J. of Physics. Corrected edition. 21 illus. Index. 296pp. 53/s x 8. S524 Paperbound $1,85 

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg. A Nobel laureate dis
cusses quantum theory; Heisenberg's own work, Compton, Schroedinger, Wilson, Einstein, 
many others. Written for physicists, chemists who are not specialists in quantum theory, 
only elementary formulae are considered in the text; there is a mathematical appendix 
for specialists. Profound without sacrifice of clarity. Translated by C. Eckart, F. Hoyt. 18 
figures. 192pp. 53/s x 8. S113 Paperbound $1.25 

SELECTED PAPERS ON QUANTUM ELECTRODYNAMICS, edited by J. Schwinger. Facs'imiles of 
papers which established quantum electrodynamics, from initial successes through today's 
position as part of the larger theory of elementary particles. First book publication in any 
language of these collected papers of Bethe, Bloch, Dirac, Dyson, Fermi, Feynman, Heisen
berg, Kusch, Lamb, Oppenheimer, Pauli, Schwinger, Tomonoga, Weisskopf, Wigner, etc. 34 
papers in all, 29 In English, 1 in French, 3 in German, 1 in Italian. Preface and historical 
commentary by the editor. xvii + 423pp. 61/s x 9¼. S444 Paperbound $2.45 

THE FUNDAMENTAL PRINCIPLES OF QUANTUM MECHANICS, WITH ELEMENTARY APPLICATIONS, 
E. c. Kemble. An inductive presentation, for the graduate student or specialist in some 
other branch of physics. Assumes some acquaintance with advanced math; apparatus neces
sary beyond differential equations and advanced calculus is developed as needed. Although 
a general exposition of principles, hundreds of individual problems are fully treated, with 
applications of theory being interwoven with development of the mathematical structure. 
The author is the Professor of Physics at Harvard Univ. "This excellent book would be of 
great value to every student ... a rigorous and detailed mathematical discussion of all 
of the principal quantum-mechanical methods . . . has succeeded in keeping his presenta
tions clear and understandable," Dr. Linus Pauling, J. of the American Chemical Society. 
Appendices: calculus of variations, math. notes, etc. Indexes. 61lpp. 53/s x 8. 

S472 Paperbound $2.95 

ATOMIC SPECTRA AND ATOMIC STRUCTURE, G. Herzberg, Excellent general survey for chemists, 
physicists specializing in other fields. Partial contents: simplest line spectra and elements 
of atomic theory, building-up principle and periodic system of elements, hyperfine structure 
of spectral lines, some experiments and applications. Bibilography. 80 figures. Index. xii 
+ 257pp. 53/s x 8. S115. Paperbound $1.95 

THE THEORY AND THE PROPERTIES OF METALS AND ALLOYS, N. F. Mott, H. Jones.' Quantum 
methods used to develop mathematical models which show interrelationship of basic chem
ical phenomena with crystal structure, magnetic susceptibility, electrical, optical properties. 
Examines thermal properties of crystal lattice, electron motion in applied field, cohesion, 
electrical resistance, noble metals, para-, dia-, and ferromagnetism, etc. "Exposition . . . 
clear ... mathematical treatment ... simple," Nature. 138 figures. Bibliography. Index. 
xiii + 320pp. 51/s x 8. S456 Paperbound $1.85 

FOUNDATIONS OF NUCLEAR PHYSICS, edited by R. T. Beyer. 13 of the most important papers 
on nuclear fhysics reproduced in facsimile in the original languages of their authors: the 
papers mos often cited in footnotes, bibliographies. Anderson, Curie, Jollot, Chadwick, 
Fermi, Lawrence, Cockcroft, Hahn, Yukawa. UNPARALLELED BIBLIOGRAPHY. 122 double
columned pages, over 4,000 articles, books classified. 57 figures. 288pp. 61/e x 91/4, 

S19 Paperbound $1.75 



MESON PHYSICS, R. E. Marshak. Traces the basic theory, and explicity presents results of 
experiments with particular emphasis on theoretical significance. Phenomena involving 
mesons as virtual transitions are avoided, eliminating some of the least satisfactory pre
dictions of meson theory, Includes production and study of 1r mesons at nonrelativistic 
nucleon energies, contrasts between 1r and u mesons, phenomena associated with nuclear 
interaction of 7f' mesons, etc. Presen1s early evidence for new classes of particles and 
indicates theoretical difficulties created by discovery of heavy mesons and hyperons. Name 
and subject indices, Unabridged reprint. viii + 378pp. 53/s x 8. S500 Paperbound $1.95 

See also: STRANGE STORY OF THE QUANTUM, B. Hoffmann; FROM EUCLID TO EDDINGTON, 
E. Whittaker; MATTER AND LIGHT, THE NEW PHYSICS, L. de Broglie; THE EVOLUTION OF 
SCIENTIFIC THOUGHT FROM NEWTON TO EINSTEIN, A. d'Abro; THE RISE OF THE NEW 
PHYSICS, A, d'Abro; THE THEORY OF GROUPS ANO QUANTUM MECHANICS, H. Weyl; SUBSTANCE 
AND FUNCTION, & EINSTEIN'S THEORY OF RELATIVITY, E. Cassirer; FUNDAMENTAL FORMULAS 
OF PHYSICS, D. H. Menzel. 

Hydrodynamics 

HYDRODYNAMICS, H. Dryden, F. Murnaghan, Harry Bateman. Published by the National 
Research Council in 1932 this enormous volume offers a complete coverage of classical 
hydrodynamics. tncyclooedic in quality. Partial contents: physics of fluids, motion, turbulent 
flow, compressible fluids, motion in 1, 2, 3 dimensions; viscous fluids rotating, laminar 
motion, resistance of motion through viscous fluid, eddy viscosity, hydraulic flow in channels 
of various shapes, discharge of gases, flow past obstacles, etc, Bibliography of over 2,900 
items. Indexes. 23 figures. 634pp. 53AJ x 8. S303 Paperbound $2.75 

A TREATISE ON HYDRO~YNAMICS, A, B. Basset. Favorite text on hydrodynamics for 2 genera
tions of physicists, hydrodynamical engineers, oceanographers, ship designers, etc. Clear 
enough for the beginning student, and thorough source for graduate students and engineers on 
the work of d'Alembert, Euler, Laplace, Lagrange, Poisson, Green, Clebsch, Stokes, Cauchy, 
Helmholtz, J. J. Thomson, Love, Hicks, Greenhill, Besant, Lamb, etc. Great amount of docu
mentation on entire theory of classical hydrodynamics. Vol I: theory of motion of frictionless 
liquids, vortex, and cyclic irrotational motion, etc. 132 exercises. Bibliography. 3 Appendixes. 
xii + 264pp. Vol 11: motion in viscous liquids, harmonic analysis, theory of tides, etc. 112 
exercises. Bibliography, 4 Appendixes. xv + 328pp. Two volume set. 53/s x 8. 

S724 Vol I Paperbound $1.75 
S725 Vol 11 Paperbound $1.75 

The set $3.50 

HYDRODYNAMICS, Horace Lamb. Internationally famous complete coverage of standard refer
ence work on dynamics of liquids & gases. Fundamental theorems, equations, methods, 
solutions, background, for classical hydrodynamics. Chapters include Equations of Motion, 
Integration of Equations in Special Gases, lrrotational Motion, Motion of Liquid in 2 Dimen
sions, Motion of Solids through liquid-Dynamical Theory, Vortex Motion, Tidal Waves, Surface 
Waves,· Waves of Expansion, Viscosity, Rotating Masses of I iquids. Excellently planned, ar
ranged; clear, lucid presentation. 6th enlarged, revised edition. Index. Over 900 footnotes, 
mostly bibliographical. 119 figures. xv + 738pp. 61/s x 9¼. S256 Paperbound $2.95 

See also: FUNDAMENTAL FORMULAS OF PHYSICS, D. H. Menzel; THEORY OF FLIGHT, R. Yon 
Mises; FUNDAMENTALS OF HYDRO· AND AEROMECHANICS, L. Prandtl and 0. G. Tietjens; 
APPLIED HYDRO- AND AEROMECHANICS, L. Prandtl and O. G. Tietjens; HYDRAULICS AND 
ITS APPLICATIONS, A. H. Gibson; FLUID MECHANICS FOR HYDRAULIC ENGINEERS, H. Rouse. 

Acoustics, optics, electromagnetics 

ON THE SENSATIONS OF TONE, Hermann Helmholtz. This Is an unmatched coordination of 
such fields as acoustical physics, physiology, experiment, history of music. It covers the 
entire gamut of musical tone. Partial contents: relation of musical science to acoustics, 
physical vs. physiological acoustics, composition of vibration, resonance, analysis of tones 
by sympathetic resonance, beats, chords, tonality, consonant chords, discords, progression 
of parts, etc. 33 appendixes discuss various aspects of soun~, physics, acoustics, music, etc. 
Translated by A. J. Ellis. New introduction by Prof. Henry Margenau of Yale. 68 figures. 43 
musical passages analyzed. Over 100 tables. Index. xix + 576pp, 61/s x 9¼. 

Sl14 Paperbound $2.95 



THE THEORY OF SOUND, Lord Rayleigh. Most vibrating systems likely to be encountered in 
practice can be tackled successfully by the methods set forth by the great Nobel laureate, 
Lord Rayleigh. Complete coverage of experimental, mathematical aspects of sound theory. 
Partial contents: Harmonic motions, vibrating systems in general, lateral vibrations of bars, 
curved plates or shells, applications of Laplace's functions to acoustical problems, fluid 
friction, plane vortex-sheet, vibrations of solid bodies, etc. This is the first inexpensive 
edition of this great reference and study work. Bibliography. Historical introduction by R. B. 
Lindsay. Total of 1040pp. 97 figures. 53/a x 8. 

S292, S293, Two volume set, paperbound, $4.00 

THE DYNAMICAL THEORY OF SOUND, H. Lamb. Comprehensive mathematical treatment of the 
physical aspects of sound, covering the theory of vibrations, the general theory of sound, and 
the equations of motion of strings, bars, membranes, pipes, and resonators. Includes chap
ters on plane, spherical, and simple harmonic waves and the Helmholtz Theory of Audition. 
Complete and self-contained development for studeni and specialist; all fundamental differ
ential equations solved completely. Specific mathematical details for such important phenom
ena as harmonics, normal modes, forced vibrations of strings, theory of reed pipes, etc. Index. 
Bibliography. 86 diagrams. viii + 307pp. 53/a x 8. S655 Paperbound $1.50 

WAVE PROPAGATION IN PERIODIC STRUCTURES, L. Brillouin. A general method and appllca
tion to different problems: pure physics, such as scattering of X-rays of crystals, thermal 
vibration in crystal lattices, electronic motion in metals; and also problems of electrical 
engineering. Partial contents: elastic waves in I-dimensional lattices of point masses. 
Propagation of waves along I-dimensional lattices. Energy flow. 2 dimensional, 3 dimensional 
lattices. Mathieu's equation. Matrices and propagation of waves along an electric line. 
Continuous electric lines. 131 illustrations. Bibliography. Index. xii + 253pp. 53/a x 8, 

S34 Paperbound $1.85 

THEORY OF VIBRATIONS, N. W. Mclachlan. Based on an exceptionally successful graduate 
course given at Brown University, this discusses linear systems having 1 degree of freedom, 
forced vibrations of simple linear systems, vibration of flexible strings, transverse vibra
tions of bars and tubes, transverse vibration of circular plate, sound waves of finite ampli
tude, etc. Index. 99 diagrams. 160pp. 53/a x 8. S190 Paperbound $1.35 

LOUD SPEAKERS: THEORY, PERFORMANCE, TESTING AND DESIGN, N. W. Mclachlan. Most com
prehensive coverage of theory, practice of loud speaker design, testing; classic reference, 
study manual in field. First 12 chapters deal with theory, for readers mainly concerned with 
math. aspects; last 7 chapters will interest reader concerned with testing, design. Partial 
contents: principles of sound propagation, fluid pressure on vibrators, theory of moving
coil principle, transients, driving mechanisms, response curves, design of horn type moving 
coil speakers, electrostatic speakers, much more. Appendix. Bibliography. Index. 165 illustra
tions, charts. 41lpp. 53/a x 8. S588 Paperbound $2.25 

MICROWAVE TRANSMISSION, J. S. Slater. First text dealing exclusively with microwaves, 
brings together points of view of field, circuit theory, for graduate student in physics, 
electrical engineering, microwave technician. Offers valuable point of view not in most 
later studies. Uses Maxwell's equations to study electromagnetic field, important in this 
area. Partial contents: infinite line with distributed parameters, impedance of terminated 
line, plane waves, reflections, wave guides, coaxial line, composite transmission lines, 
impedance matching, etc. Introduction. Index. 76 illus. 319pp. 53/a x 8. 

S564 Paperbound $1.50 

THE ANALYSIS OF SENSATIONS, Ernst Mach. Great study of physiology, psychology of percep
tion, shows Mach's ability to see material freshly, his "incorruptible skepticism and in
dependence." (Einstein). Re1ation of problems of psychological perception to classical 
physics, supposed dualism of physical and mental, principle of continuity, evolution of 
senses, will as organic manifestation, scores of experiments, observations in optics, acoustics, 
music, graphics, etc. New introduction by T. S. Szasz, M. D. 58 illus. 300-item bibliography. 
Index. 404pp. 53/a x 8. S525 Paperbound $1.75 

APPLIED OPTICS AND OPTICAL DESIGN, A. E. Conrady. With publication of vol. 2, standard 
work for designers in optics is now complete for first time. Only work of its kind in English; 
only detailed work for practical designer and self-taught. Requires, for bulk of work, no 
math above trig. Step-by-step exposition, from fundamental concepts of geometrical, physical 
optics, to systematic study, design, of almost all types of optical systems. Vol. 1: all ordi
nary ray-tracing methods; primary aberrations; necessary higher aberration for design of 
telescopes, low-power microscopes, photographic equipment. Vol. 2: (Completed from author's 
notes by R. Kingslake, Dir. Optical Design, Eastman Kodak.) Special attention to high-power 
microscope, anastigmatic photographic objectives. "An indispensable work," J., Optical Soc. 
of Amer. "As a practical guide this book has no rival," Transactions, Optical Soc. Index. 
Bibliography. 193 diagrams. 852pp. 61/a x 9¼. Vol. 1 T611 Paperbound $2.95 

Vol. 2 T612 Paperbound $2.95 

THE THEORY OF OPTICS, Paul Drude. One of finest fundamental texts in physical optics, 
classic offers thorough coverage, complete mathematical treatment of basic ideas. Includes 
fullest treatment of application of thermodynamics to optics; sine law in formation of 
Images, transparent crystals, magnetically active substances, velocity of light, apertures, 
effects depending upon them, polarization, optical instruments, etc. Introduction by A. A. 
Michelson. Index. 110 illus. 567pp. 53/a x 8. S532 Paperbound $2.45 



OPTICKS, Sir Isaac Newton. In its discussions of light, reflection, color, refraction, theories 
of wave and corpuscular theories of light, this work is packed with scores of insights and 
discoveries. In its precise and practical discussion of construction of optical apparatus, 
contemporary understandings of phenomena it is truly fascinating to modern physicists, 
astronomers, mathematicians. Foreword by Albert Einstein. Preface by I. B. Cohen of Har
vard University. 7 pages of portraits, facsimile pages, letters, etc. cxvi + 414pp. 53/s x 8. 

S205 Paperbound $2.00 

OPTICS AND OPTICAL INSTRUMENTS: AN INTRODUCTION WITH SPECIAL REFERENCE TO 
PRACTICAL APPLICATIONS, B. K. Johnson. An invaluable guide to basic practical applications 
of optical principles, which shows how to set up inexpensive working models of each of the 
four main types of optical instruments-telescopes, microscopes, photographic lenses, optical 
projecting systems. Explains in detail the most important experiments for determining their 
accuracy, resolving power, angular field of view, amounts of aberration, all other necessary 
facts about the instruments. Formerly "Practical Optics." Index. 234 diagrams. Appendix. 
224pp. 53/s x 8. S642 Paperbound $1.65 

PRINCIPLES OF PHYSICAL OPTICS, Ernst Mach. This classical examination of the propagation 
of light, color, polarization, etc. offers an historical and philosophical treatment that has 
never been surpassed for breadth and easy readability. Contents: Rectilinear propagation of 
light. Reflection, refraction. Early knowledge of vision. Dioptrics. Composition of light. 
Theory of color and dispersion. Periodicity. Theory of interference. Polarization. Mathematical 
representation of properties of light. Propagation of waves, etc. 279 illustrations, 10 por• 
traits. Appendix. Indexes. 324pp. 53/s x 8. S178 Paperbound $1.75 

FUNDAMENTALS OF ELECTRICITY AND MAGNETISM, L. B. Loeb. For students of physics, chem
istry, or engineering who want an introduction to electricity and magnetism on a higher level 
and in more detail than general elementary physics texts provide. Only elementary differential 
and integral calculus is assumed. Physical laws developed logically, from magnetism to 
electric currents, Ohm's law, electrolysis, and on to static electricity, induction, etc. Covers 
an unusual amount of material; one third of book on modern material: solution of wave equa
tion, photoelectric and thermionic effects, etc. Complete statement of the various electrical 
systems of units and interrelations. 2 Indexes. 75 pages of problems with answers stated. 
Over 300 figures and diagrams. xix +669pp. 53/a x 8. S745 Paperbound $2.75 

THE ELECTROMAGNETIC FIELD, Max Mason & Warren Weaver. Used constantly by graduate 
engineers. Vector methods exclusively: detailed treatment of electrostatics, expansion meth
ods, with tables converting any quantity into absolute electromagnetic, absolute electrostatic, 
practical units. Discrete charges, ponderable bodies, Maxwell field equations, etc. Introduc
tion. Indexes. 416pp. 53/s x 8. Sl85 Paperbound $2.00 

ELECTRICAL THEORY ON THE GIORGI SYSTEM, P. Cornelius. A new clarification of the funda
mental concepts of electricity and magnetism, advocating the convenient m.k.s. system of 
units that is steadily gaining followers in the sciences. Illustrating the use and effectiveness 
of his terminology with numerous applications to concrete technical problems, the author 
here expounds the famous Giorgi system of electrical physics. His lucid presentation 
and well-reasoned, cogent argument for the universal adoption of this system form one of 
the finest pieces of scientific exposition in recent years. 28 figures. Index. Conversion tables 
for translating earlier data into modern units. Translated from 3rd Dutch edition by L. J. 
Jolley. x + 187pp. 5½ x 8¾. S909 Clothbound $6.00 

THEORY OF ELECTRONS AND ITS APPLICATION TO THE PHENOMENA OF LIGHT AND RADIANT 
HEAT, H. Lorentz. Lectures delivered at Columbia University by Nobel laureate Lorentz. 
Unabridged, they form a historical coverage of the theory of free electrons, motion, 
absorption of heat, Zeeman effect, propagation of light in molecular bodies, inverse Zeeman 
effect, optical phenomena in moving bodies, etc. 109 pages of notes explain the more 
advanced sections. Index. 9 figures. 352pp. 53/s x 8. $173 Paperbound $1.85 

TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell. For more than 80 years 
a seemingly Inexhaustible source of leads for physicists, mathematiciansL engineers. Total 
of 1082pp. on such topics as Measurement of Quantities, Electrostatics, t.lementary Mathe
matical Theory of Electricity, Electrical Work and Energy in a System of Conductors, General 
Theorems, Theory of Electrical lmages1 Electrolysisl Conduction, Polarization, Dielectricst 
Resistance, etc. "The greatest mathema1ical physicis1 since Newton," Sir James Jeans. 3ra 
edition. 107 figures, 21 plates. 1082pp, 53/s x 8. S636-7, 2 volume set, paperbound $4.00 

See also: FUNDAMENTAL FORMULAS OF PHYSICS, D. H. Menzel; MATHEMATICAL ANALYSIS OF 
ELECTRICAL & OPTICAL WAVE MOTION, H. Bateman. 

Mechanics, dynamics, thermodynamics, elasticity 
MECHANICS VIA THE CALCULUS, P. W. Norris, W. S. Legge. Covers almost everything, from 
linear motion to vector analysis: equations determining motion, linear methods, compounding 
of simple harmonic motions Newton's laws of motion, Hooke's law, the simple pendulum 
motion of a particle in 1 piane, centers of gravity, virtual work, friction, kinetic energy of 
rotating bodies, equilibrium of strings, hydrostatics, sheering stresses, elasticity, etc. 550 
problems. 3rd revised edition. xii + 367pp. 6 x 9. S207 Clothbound $3.95 



MECHANICS, J. P. Den Hartog. Already a classic among introductory texts the M.I.T. profes• 
sor's lively and discursive presentation is equally valuable as a beginner's text, an engineering 
student's refresher, or a practicing engineer's reference. Emphasis in this highly readable tex1 
Is on illuminating fundamental principles and showing how they are embodied in a great 
number of real engineering and design problems: trusses, loaded cables, beams, jacks, hoists, 
etc. Provides advanced material on relative motion and gyroscopes not usual in introductory 
texts. 11Very thoroughly recommended to all those anxious to improve their real understanding 
of the principles of mechanics." MECHANICAL WORLD. Index. List of equations. 334 problems, 
all with answers. Over 550 diagrams and drawings. ix + 462pp. 53/s x 8. 

S754 Paperbound $2.00 

THEORETICAL MECHANICS: AN INTRODUCTION TO MATHEMATICAL PHYSICS, J. S. Ames, F. D. 
Murnaghan. A mathematically rigorous development of theoretical mechanics for the ad• 
vanced student, with constant practical applications. Used In hundreds of advanced courses. 
An unusually thorough coverage of gyroscopic and baryscopic material, detailed analyses of 
the Corilis acceleration, applications of Lagrange's equations, motion of the double pen
dulum, Hamilton-Jacobi partial differential equations, group velocity and dispersion, etc. 
Special relativity is also Included. 159 problems. 44 figures. Ix + 462pp. 5:Vs x 8. 

S461 Paperbound $2.00 

THEORETICAL MECHANICS: STATICS AND THE DYNAMICS OF A PARTICLE, W. D. MacMillan. 
Used for over 3 decades as a self-containe~ and extremely comprehensive advanced under
graduate text in mathematical physics, physics, astronomy, and deeper foundations of engi
neering. Early sections require only a knowledge of 8eometry; later, a working knowledge 
of calculus. Hundreds of basic problems, including proJectiles to the moon, escape velocity, 
harmonic motion, ballistics, falling bodies, transmission of power, stress and strain, 
elasticity, astronomical problems. 340 practice problems plus many fully worked out examples 
make it possible to test and extend principles developed in the text. 200 figures. xvii + 
430pp. 53/a x 8. S467 Paperbound $2.00 

THEORETICAL MECHANICS: THE THEORY OF THE POTENTIAL, W. D. MacMillan. A comprehensive, 
well balanced presentation of potential theory, serving both as an introduction and a refer
ence work with regard to specific problems, for physicists and mathematicians. No prior 
knowledge of integral relations is assumed, and all mathematical material Is developed as it 
becomes necessary. lndudes: Attraction of Finite Bodies; Newtonian Potential Function; 
Vector Fields, Green and Gauss Theorems; Attractions of Surfaces and Lines; Surface Distrl• 
bution of Matter; Two-Layer Surfaces; Spherical Harmonics; Ellipsoidal Harmonics; etc. 11The 
great number of particular cases . . . should make the book valuable to geophysicists and 
others actively engaged In practical applications of the potential theory," Review of Scientific 
Instruments. Index. Bibliography. xiii + 469pp. 53/s x 8. S486 Paperbound $2.25 

THEORETICAL MECHANICS: DYNAMICS OF RIGID BODIES, W. D. MacMillan. Theory of dynamics 
of a rigid body Is developed, using both the geometrical and analytical methods of instruc
tion. Begins with exposition of algebra of vectors, it goes through momentum principles, 
motion in space, use of differential equations and infinite series to solve more sophisticated 
dynamics problems. Partial contents: moments of inertia, systems of free particles, motion 
parallel to a fixed plane, rolling motion, method of periodic solutions, much more. 82 figs. 
199 problems. Bibliography. indexes. xii + 476pp. 53/a x 8. S641 Paperbound $2.00 

MATHEMATICAL FOUNDATIONS OF STATISTICAL MECHANICS, A. I. Khinchin. Offering a precise 
and rigorous formulation of problems, this book supplies a thorough and up-to-date exposi
tion. It provides analytical tools needed to replace cumbersome concepts, and furnishes 
for the first time a logical step-by-step introduction to the subject. Partial contents: geom
etry & kinematics of the phase space, ergodic problem, reduction to theory of probability, 
application of central limit problem, ideal monatomic gas, foundation of thermo-dynamics, 
dispersion and distribution of sum functions. Key to notations. Index. viii + 179pp. 5¾ x 8. 

S147 Paperbound $1.35 

ELEMENTARY PRINCIPLES IN STATISTICAL ME'CHANICS, J. W. Gibbs, last work of the great 
Yale mathematical physicist, still one of the most fundamental treatments available for 
advanced students and workers In the field. Covers the basic principle of conservation of 
probability of phase, theory of errors in the calculated phases of a system, the contribu
tions of Clausius, Maxwell, Boltzmann, and Gibbs himself, and much more. Includes valuable 
comparison of statistical mechanics with thermodynamics: Carnot's cycle, mechanical defini
tions of entropy, etc. xvi + 208pp. 53/s x 8. S707 Paperbound $1.45 

THE DYNAMICS OF PARTICLES AND OF RIGID, ElASTIC, AND FLUID BODIES; BEING LECTURES 
ON MATHEMATICAL PHYSICS1 A. G. Webster. The reissuing of this classic fills the need for 
a comprehensive work on aynamics. A wide range of topics is covered in unusually great 
depth, applying ordinary and partial differential equations. Part I considers laws of motion 
and methods applicable to systems of all sorts: oscillation, resonance, cyclic systems, etc. 
Part 2 is a detailed study of the dynamics of rigid bodies. Part 3 introduces the t~eory of 
potential; stress and strain, Newtonian potential functions, fYrostatics, wave and vortex 
motion!. etc. Further contents: Kinematics of a point; Lagrange s equations; Hamilton's prin• 
clple; :systems of vectors; Statics and dynamics of deformable bodies; much more, not easily 
found together In one volume. Unabridged reprinting of 2nd edition. 20 pages of notes on 
differential equations and the higher analysis. 203 Illustrations. Selected bibliography. Index. 
xi + 588pp. 5% x 8. S522 Paperbound $2.35 



A TREATISE ON DYNAMICS OF A PARTICLE, E. J. Routh. Elementary text on dynamics for 
beginning mathematics or physics student. Unusually detailed treatment from elementary defi
nitions to motion In 3 dimensions, emphasizing concrete aspects. Much unique material im
portant in recent applications. Covers impulsive forces, rectilinear and constrained motion in 
2 dimensions, harmonic and parabolic motion, degrees of freedom, closed orbits, the conical 
pendulum, the principle of least action, Jacobi's method, and much more. Index. 559 problems, 
many fully worked out, incorporated into text. xiii + 418pp. 53/a x 8. 

S696 Paperbound $2.25 

DYNAMICS OF A SYSTEM OF RIGID BODIES (Elementary Section), E. J. Routh. Revised 7th edi
tion of this standard reference. This volume covers the dynamical principles of the subject, 
and its more elementary applications: finding moments of inertia by integration, foci of 
inertia, d'Alembert's principle, impulsive forces, motion in 2 and 3 dirnensions, Lagrange's 
equations, relative indicatrix, Euler's theorem, large tautochronous motions, etc. Index. 55 
figures. Scores of problems. xv + 443pp, 53/s x 8. S664 Paperbound $2.35 

DYNAMICS OF A SYSTEM OF RIGID BODIES (Advanced Section), E. J. Routh. Revised 6th edi• 
tion of a classic reference aid. Much of its material remains unique. Partial con\ents: moving 
axes, relative motion, oscillations about equilibrium, motion. Motion of a body under no 
forces, any forces. Nature of motion given by linear equations and conditions of stability. 
Free, forced vibrations, constants of integration, calculus of finite differences, variations, 
precession and nutation, motion of the moon, motion of string, chain, membranes. 64 figures. 
498pp. 53/s x 8. S229 Paperbo4nd $2.35 

DYNAMICAL THEORY OF GASES, James Jeans. Divided into mathematical and physical chapters 
for the convenience of those not expert in mathematics, this volume discusses the mathe
matical theory of gas in a steady state, thermodynamics, Boltzmann and Maxwell, kinetic 
theory, quantum theory, exponentials, etc. 4th enlarged edition, with new material on quan
tum theory, quantum dynamics, etc. Indexes. 28 figures. 444pp. 61/s x 9¼. 

S136 Paperbound $2.45 

FOUNDATIONS OF POTENTIAL THEORY, 0. D. Kellogg. Based on courses given at Harvard this 
is suitable for both advanced and beginning mathematicians. Proofs are rigorous, and much 
material not generally avialable elsewhere is included. Partial contents: forces of gravity, 
fields of force, divergence theorem, properties of Newtonian potentials at points of free 
space, potentials as solutions of Laplace's equations, harmonic functions, electrostatics, 
electric images, logarithmic potential, etc. One of Grundlehren Series. ix + 384pp. 53/s x 8. 

S144 Paperbound $1.98 

THERMODYNAMICS, Enrico Fermi. Unabridged reproduction of 1937 edition. Elementary In 
treatment; remarkable for clarity, organization. Requires no knowledge of advanced math 
beyond calculus, only familiarity with fundamentals of thermometry, calorimetry. Partial 
Contents: Thermodynamic systems; First & Second laws of thermodynamics; Entropy· Thermo
dynamic potentials: phase rule, reversible electric cell; Gaseous reactions: van't Hoff reaction 
box, principle of LeChatelier; Thermodynamics of dilute solutions: osmotic & vapor pressures, 
boiling & freezing points; Entropy constant. Index. 25 problems. 24 illustrations. x + 16Opp. 
53k x a S361 Paperbound $1.75 

THE THERMODYNAMICS OF ELECTRICAL PHENOMENA IN METALS and A CONDENSED COLLEC
TION OF THERMODYNAMIC FORMULAS, P. W. Bridgman. Major work by the Nobel Prizewinner: 
stimulating conceptual introduction to aspects of the electron theory of metals, giving an 
intuitive understanding of fundamental relationships concealed by the formal systems of 
Onsager and others. Elementary mathematical formulations show clearly the fundamental 
thermodynamical relationships of the electric field, and a complete phenomenological theory 
of metals is created. This is the work in which Bridgman announced his famous "thermo
motive force" and his distinction between "drivin~" and 11working" electromotive force. 
We have added In this Dover edition the authors long unavailable tables of thermo
dynamic formulas, extremely valuable for the speed of reference they allow. Two works 
bound as one. Index. 33 figures. Bibliography. xviii + 256pp. 5% x 8. S723 Paperbound $1.65 

REFLECTIONS ON THE MOTIVE POWER OF FIRE, by Sadi Carnot, and other papers on the 2nd 
law of thermodynamics by E. Clapeyron and R. Clausius. Carnot's "Reflections" laid the 
groundwork of modern thermodynamics. Its non-technical, mostly verbal statements examine 
the relations between heat and the work done by heat in engines, establishing conditions for 
the economical working of these engines. The papers by Clapeyron and Clausius here reprinted 
added further refinements to Carnot's work, and led to its final acceptance by physicists. Selec
tions from posthumous manuscripts of Carnot are also Included. All papers in English. New 
introduction by E. Mendoza. 12 illustrations. xxii + 152pp. 53/s x 8. 

S661 Paperbound $1.50 

TREATISE ON THERMODYNAMICS, Max Planck. Based on Planck's original papers this offers 
a uniform point of view for the entire field and has been used as an introduction for 
students who have studied elementary chemistry, physics, and calculus. Rejecting the earlier 
approaches of Helmholtz and Maxwell, the author makes no assumptions regarding the 
nature of heat, but begins with a few empirical facts, and from these deduces new physical 
and chemical laws. 3rd English edition of this standard text by a Nobel laureate. xvi ~ 
297pp. 53/a x 8. S219 Paperbound $1.75 



THE THEORY OF HEAT RADIATION, Max Planck. A pioneering work in thermodynamics, provid· 
ing basis for most later work. Nobel Laureate Planck writes on Deductions from Electro
dynamics and Thermodynamics, Entropy and Probability, Irreversible Radiation Processes, etc. 
Starts with simple experimental laws of optics, advances to problems of spectral distribu
tion of energy and irreversibility. Bibliography. 7 illustrations, xiv + 224pp. 53/s x 8. 

S546 Paperbound $1.50 

A HISTORY OF THE THEORY OF ELASTICITY AND' TH~ STRtRGnt Of MATtllALS, 1: toitl.un·ter· and 
K. Pearson. For over 60 years a basic reference, unsurpassed in scope or authority. Both a 
history of the mathematical theory of elasticity from Galileo, Hooke, and Mariotte to Saint 
Venant, Kirchhoff, Clebsch, and Lord Kelvin and a detailed presentation of every important 
mathematical contribution during this period. Presents proofs of thousands of theorems and 
laws, summarizes every relevant treatise, many unavailable elsewhere. Practically a book apiece 
is devoted to modern founders: Saint Venant, Lame, Boussinesq, Rankine, Lord Kelvin, F. 
Neumann, Kirchhoff, Clebsch. Hundreds of pages of technical and physical treatises on specific 
applications of elasticity to particular materials. Indispensable for the mathematician, 
physicist, or engineer working with elasticity. Unabridged, corrected reprint of original 3-
volume 1886-1893 edition. Three volume set. Two indexes. Appendix to Vol. I. Total of 2344pp. 
53/e X 83/a. S914-916 The set, Clothbound $12.50 

THE MATHEMATICAL THEORY OF ELASTICITY, A. E. H. Love. A wealth of practical illustration 
combined with thorough discussion of fundamentals-theory, application, special problems 
and solutions. Partial Contents: Analysis of Strain & Stress, Elasticity of Solid Bodies, 
Elasticity of Crystals, Vibration of Spheres, Cylinders, Propagati'on of Waves in Elastic Solid 
Media, Torsion, Theory of Continuous Beams, Plates. Rigorous treatment of Volterra's theory 
of dislocations, 2-dimensional elastic systems, other topics of modern Interest. ,.,For years 
the standard treatise on elasticity," AMERICAN MATHEMATICAL MONTHLY. 4th revised edi
tion. Index. 76 figures. xviii + 643pp. 61/a x 9¼. S174 Paperbound $2.95 

RAYLEIGli'S PRINCIPLE AND ITS APPLICATIONS TO ENGINEERING, G. Temple & "'· Bickley. 
Rayleigh's principle developed to provide upper and lower estimates of true value of funda
mental period of a vibrating system, or condition of stability of elastic systems. Illustrative 
examples; rigorous proofs in special chapters. Partial contents: Energy method of discussing 
vibrations, stability. Perturbation theory, whirling of uniform shafts. Criteria of elastic sta
bility. Application of energy method. Vibrating systems. Proof, accuracy, successive approxi
mations, application of Rayleigh's principle. Synthetic theorems. Numerical, graphlcal methods. 
Equilibrium configurations, Ritz's method. Bibliography. Index. 22 figures. ix + 156pp. 53/a x 8. 

S307 Paperbound $1.50 

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOV~MEMT, A1berl tlristein: 'Reprints 
from rare European journals. 5 basic papers, including the Elementary Theory of the 
Brownian Movement, written at the request of Lorentz to provide a simple explanation. 
Translated by A. D. Cowper. Annotated, edited by R. Furth. 33pp. of notes elucidate, give 
history of previous investigations. Author, subject indexes. 62 footnotes. 124pp. 53/a x 8. 

S304 Paperbound $1.25 

See also: FUNDAMENTAL FORMULAS OF PHYSICS, D, H. Menzel, 

ENGINEERING 
THEORY OF FLIGHT, Richard von Mises. Remains almost unsurpassed as balanced, well-written 
account of fundamental fluid dynamics, and situations in which air compressibility effects 
are unimportant. Stressing equally theory and practice, avoiding formidable mathematical 
structure, it conveys a full understanding of physical phenomena and mathematical concepts. 
Contains perhaps the best introduction to general theory of stability. "Outstanding," ·scientific, 
Medical, and Technical Books. New introduction by K. H. Hohenemser. Bibliographical, histor
ical notes. Index. 408 illustrations. xvi + 620pp. 53/s x 83/s. S541 Paperbound $2.85 

THEORY OF WING SECTIONS, I. H. Abbott, A. E. von Doenhoff. Concise compilation of subsonic 
aerodynamic characteristics of modern NASA wing sections, with description of their geom
etry, associated theory. Primarily reference work for engineers, students, it gives methods, 
data for using wing-section data to predict characteristics. Particularly valuable: chapters on 
thin wings, airfoils; complete summary of NACA's experimental observations, system of 
construction families of airfoils. 350pp. of tables on Basic Thickness Forms, Mean Lines, 
Airfoil Ordinates, Aerodynamic Characteristics of Wing Sections. Index. Bibliography. 191 
illustrations. Appendix. 705pp. 53/s x 8, S558 Paperbound $2.95 

SUPERSONIC AERODYNAMICS, E. R. C. Miles. Valuable theoretical introduction to the super
sonic domain, with emphasis on mathematical tools and principles, for practicing aerody
namlcists and advanced students in aeronautical engineering. Covers fundamental theory, 
divergence theorem and principles of circulation, compressible flow and Helmholtz laws, the 
Prandtl-Busemann graphic method for 2-dimensional flow, oblique shock waves, the Taylor
Maccoll method for cones in supersonic flow, 1he Chaplygin method for 2-dimensional flow, etc. 
Problems range from practical engineering problems to development of theoretical results. 
"Rendered outstanding by the unprecedented scope of its contents ... has undoubtedly filled 
a vital gap," AERONAUTICAL ENGINEERING REVIEW, Index. 173 problems, answers·. 106 dia
grams. 7 tables. xii + 255pp. 53/s x 8. S214 Paperbound $1.45 



WEIGHT-STRENGTH ANALYSIS OF AIRCRAFT STRUCTURES, F. R. Shanley. Scientifically sound 
methods of analyzing and predicting the structural weight of aircraft and missiles. Deals 
directly with forces and the distances over which they must be transmitted, making it possible 
to develop methods by which the minimum structural weight can be determined for any 
material and conditions of loading. Weight equations for wing and fuselage structures. In
cludes author's original papers on inelastic buckling and creep buckling. "Particularly success
ful in presenting his analytical methods for investigating various optimum design principles," 
AERONAUTICAL ENGINEERING REVIEW. Enlarged bibliography. Index. 199 figures. xiv + 404pp. 
55/s x 83/a. S660 Paperbound $2.45 

INTRODUCTION TO THE STATISTICAL DYNAMICS OF AUTOMATIC CONTROL SYSTEMS, V. V. Solo
dovnikov. First English publication of text-reference covering important branch of automatic 
control systems-random signals; in its original edition, this was the first comprehensive 
treatment. Examines frequency characteristics, transfer functions, stationary random proc
esses, determination of minimum mean-squared error, of transfer function for a finite p-eriod 
of observation, much more. Translation edited by J. B. Thomas, L. A. Zadeh. Index. Bibliog
raphy. Appendix. xxii + 308pp. 53/a x 8. S420 Paperbound $2.25 

TENSORS FOR CIRCUITS, Gabriel Kron. A boldly original method of analysing engineering prob
lems, at center of sharp discussion since first introduced, now definitely proved useful in 
such areas as electrical and. structural networks on automatic computers. Encompasses a 
great variety of specific problems by means of a relatively few symbolic equations. "Power 
and flexibility ... becoming more widely recognized," Nature. Formerly "A Short Course 
in Tensor Analysis." New introduction by B. Hoffmann. Index. Over 800 diagrams. xix + 
250pp. 53/a x 8. S534 Paperbound $1.85 

DESIGN AND USE OF INSTRUMENTS AND ACCURATE MECHANISM, T. N. Whitehead. For the 
instrument designer, engineer; how to combine necessary mathematical abstractions with 
Independent observation of actual facts. Partial contents: instruments & their parts, theory 
of errors, systematic errors, probability, short period errors, erratic errors, design precision, 
kinematic, semikinematic design, stiffness, planning of an instrument, human factor, etc. 
Index. 85 photos, diagrams. xii + 288pp. 53/a x 8. S270 PapE!rbound $1.95 

APPLIED ELASTICITY, J. Prescott. Provides the engineer with the theory of elasticity usually 
lacking in books on strength of materials, yet concentrates on those portions useful for 
immediate apptication. Develops every important type of elasticity problem from theoretical 
principles. Covers analysis of stress, relations between stress and strain, the empirical basis 
of elasticity, thin rods under tension or thrust, Saint Venant's theory, transverse oscillations 
of thin rods, stability of thin plates, cylinders with thin walls, vibrations of rotating disks, 
elastic bodies in contact, etc. "Excellent and important contribution to the subject, not 
merely in the old matter which he has presented in new and refreshing form, but also in the 
many original investigations here published for the first time," NATURE. Index. 3 Appendixes. 
vi + 672pp. 53/s x 8. S726 Paperbound $2.95 

STRENGTH OF MATERIALS, J. P. Den Hartog. Distinguished text prepared for M. I. T. course, ideal 
as introduction, refresher, reference, or self-study text. Full clear treatment of elementary 
material (tension, torsion, bending, compound stresses, deflection of beams, etc.), plus much 
advanced material on engineering methods of great practical value: full treatment of the 
Mohr circle, lucid elementary discussions of the theory of the center of shear and the "Myoso
tis" method of calculating beam deflections, reinforced concrete, plastic deformations, photo
elasticity, etc. In all sections, both general principles and concrete applications are given. 
Index. 186 figures (160 others in problem section). 350 problems, all with answers. List of 
formulas. viii + 323pp. 53/a x 8. S755 Paperbound $1.95 

PHOTOELASTICITY: PRINCIPLES AND METHODS, H. T. Jessop, F. c. Harris. For the engineer, 
for specific problems of stress analysis. Latest time-saving methods of checking calcula
tions in 2-dimensional design problems, new techniques for stresses in 3 dimensions, and 
lucid description of optical systems used in practical photoelasticity. Useful suggestions 
and hints based on on-the-job experience included. Partial contents: strained and stress
strain relations, circular disc under thrust along diameter, rectangular block with square 
hole under vertical thrust, simply supported rectangular beam under central concentrated 
load, etc. Theory held to minimum, no advanced mathematical training needed. Index. 164 
illustrations. viii + 184pp. 61/a x 9¼. S137 Clothbound $3.75 

MECHANICS OF THE GYROSCOPE, THE DYNAMICS OF ROTATION, R. F. Deimel, Professor of 
Mechanical Engineering at Stevens Institute of Technology. Elementary general treatment 
of dynamics of rotation, with special application of gyroscopic phenomena. No knowledge 
of vectors needed. Velocity of a moving curve, acceleration to a point, general equations of 
motion, gyroscopic horizon, free gyro, motion of discs, the damped gyro, 103 similar 
topics. Exercises. 75 figures. 208pp. 5% x 8. S66 Paperbound $1.65 

Sl44 Paperbound $1.98 

A TREATISE ON GYROSTATICS AND ROTATIONAL MOTION: THEORY AND APPLICATIONS, Andrew 
Gray. Most detailed, thorough book in English, generally considered definitive study. Many 
problems of all sorts in full detail, or step-by-step summary. Classical problems of Bour, 
Lattner, etc.; later ones of great physical interest. Vibrating systems of gyrostats, earth 
as a top, calculation of path of axis of a top by elliptic integrals, motion of unsymmetrical 
top, much more. Index. 160 illus. 550pp. 53/a x 8. S589 Paperbound $2.75 



FUNDAMENTALS OF HYDRO- AND AEROMECHANICS, L. Prandtl and 0. G. Tietjens. The welt
known standard work based upon Prandtl's lectures at Goettingen. Wherever possible hydro• 
dynamics theory Is referred to practical considerations in hydraulics, with the view of 
unifying theory and experience. Presentation is extremely clear and though primarily physical, 
mathematical proofs are rigorous and use vector analysis to a considerable extent. An 
Englnering Society Monograph, 1934. 186 figures. Index. xvi + 270pp. 51/e x 8, 

S374 Paperbound $1.85 

APPLIED HYDRO- AND AEROMECHANICS, L. Prandtl and 0. G. Tietjens. Presents, for the most 
part, methods which will be valuable to engineers. Covers flow in pipes, boundary layers, 
airfoil theory, entry conditions, turbulent flow In pipes, and the boundary layer, determining 
drag from measurements of pressure and velocity, etc. "Will be welcomed by all students 
of aerodynamics," NATURE. Unabridged, unaltered. An Engineering Society Monograph, 1934. 
Index. 226 figures, 28 photographic plates illustrating flow patterns. xvi + 31lpp. 53/s x 8. 

S375 Paperbound $1.85 

HYDRAULICS AND ITS APPLICATIONS, A. H. Gibson. Excellent comprehensive textbook for the 
student and thorough practical manual for the professional worker, a work of great stature 
in its area. Half the book is devoted to theory and half to applications and practical prob
lems met in the field. Covers modes of motion of a fluid, critical velocity, viscous flow, eddy 
formation, Bernoulli's theorem, flow in converging passages, vortex motion, form of effluent 
streams, notches and weirs, skin friction, losses at valves and elbows, siphons, erosion of 
channels1 jet propulsion, waves of oscillation, and over 100 similar topics. Final chapters 
(nearly 400 pages) cover more than 100 kinds of hydraulic machinery: Pelton wheel, speed 
regulators, the hydraulic ram, surge tanks, the scoop wheel, the Venturi meter, etc. A 
special chapter treats methods of testing theoretical hypotheses: scale models of rivers, 
tidal estuaries, siphon spillways, etc. 5th revised and enlarged (1952) edition. Index. Ap
pendix. 427 photographs and diagrams. 95 examples, answers. xv + 813pp. 6 x 9. 

S791 Clothbound $8.00 

FLUID MECHANICS FOR HYDRAULIC ENGINEERS, H. Rouse. Standard work that gives a' coherent 
picture of fluid mechanics from the point of view of the hydraulic engineer. Based on courses 
given to civil and mechanlcal engineering students at Columbia and the California Institute 
of Technology, this work covers every basic principle, method, equation, or theory of 
Interest to the hydraulic engineer. Much of the material, diagrams, charts, etc., in this 
self-contained text are not duplicated elsewhere. Covers irrotational motion, conformal map
ping, problems in lamlnar motion, fluid turbulence,_ flow around immersed bodies, transporta
tion of sediment, general charcteristics of wave pnenomena, gravity waves In open channels, 
etc. Index. Appendix of physical properties of common fluids. Frontispiece + 245 figures and 
photographs. xvi + 422pp. 53/a x 8. S729 Paperbound $2.25 

THE MEASUREMENT OF POWER SPECTRA- FROM THl: POIN1 OF V1£W OF COMMU"ic'AflONs· 
ENGINEERING, R. B. Blackman, J. W. Tukey. This pathflnding work, reprinted from the .. Bell 
System Technical Journal," explains various ways of getting practically useful answers in 
the measurement of power spectra, using results from both transmission theory and the 
theory of statistical estimation. Treats: Autocovariance Functions and Power Spectra; Direct 
Analog Computation; Distortion, Noise, Heterodyne Filtering and Pre-whitening; Aliasing; 
Rejection Filtering and Separation; Smoothing and Decimation Procedures; Very Low Fre
quencies; Transversal Filtering; much more. An appendix reviews fundamental Fourier tech• 
nlques. Index of notation. Glossary of terms. 24 figures. XI I tables. Bibliography. General 
index. 192pp. 53/a x 8. S507 Paperbound $1.85 

MICROWAVE TRANSMISSION DESIGN DATA, T. Moreno. Originally classified, now 'rewritten 
and enlarged (14 new chapters) for public release under auspices of Sperry Corp. Material 
of immediate value or reference use to radio engineers, systems designers, applied physicists, 
etc. Ordinary transmission line theory; attenuation; capacity; parameters of coaxial lines; 
higher modes; flexible cables; obstacles, discontinuities, and injunctions; tuneable wave 
guide Impedance transformers; effects of temperature and humidity; much more. "Enough 
theoretical discussion is included to allow use of data without previous background," 
Electronics. 324 circuit diagrams, figures, etc. Tables of dielectrics, flexible cable, etc., 
data. Index. Ix + 248pp. 53/8 x 8. S459 Paperbound $1.50 

GASEOUS CONDUCTORS: THEORY AND ENGINEERING APPLICA'l'IONS, J. D. Cobine. ·An indis
pensable text and reference to gaseous conduction phenomena, with the engineering view
point prevalling throughout. Studies the kinetic theory of gases, ionization, f!mission phe
nomena; gas breakdown, spark characteristics, glow, and discharges; engineering applica
tions in circuit interrupters, rectifiers, light sourcest etc. Separate detailed treatment of 
high pressure arcs (Suits); low pressure arcs (Langmuir and Tonks). Much more. 11Well 
organized, clear, straightforward," Tonks, Review of Scientific Instruments. Index. Bibliog
raphy. 83 practice problems. 7 appendices. Over 600 figures. 58 tables. xx + 606pp. 
5% x 8. S442 Paperbound $2.85 

See also: BRIDGES AND THEIR BUILDERS, D. Steinman, S. R. Watson; A DIDEROT PiCTORIAL 
ENCYCLOPEDIA OF TRADES AND INDUSTRY· MATHEMATICS IN ACTION, O. G. Sutton• THE 
THEORY OF SOUND, Lord Rayleigh; RAYLEIGH'S PRINCIPLE AND ITS APPLICATION 10 'ENGI
NEERING G. Temple, w. Bickley; APPLIED OPTICS AND OPTICAL DESIGN, A. E. Conrady; 
HYDRODYNAMICS, Dryden, Murnaghan, Bateman; LOUD SPEAKERS, N. W. Mclachlan; HIS• 
TORY OF THE THEORY OF ELASTICITY AND OF THE STRENGTH OF MATERIALS, I. Todhunter, 



K. Pearson; THEORY AND OPERATION OF THE SLIDE RULE, J. P. Ellis; DIFFERENTIAL EQUA
TIONS FOR ENGINEERS, P. Franklin; MATHEMATICAL METHODS FOR SCIENTl~TS AND ENGi, 
NEERS, L. P. Smith· APPLIED MATHEMATICS FOR RADIO AND COMMUNICATIONS ENGINEERS, 
C. E, Smith; MATHEMATICS OF MODERN ENGINEERING, E. G. Keller, R. E. Doherty; THEORY 
OF FUNCTIONS AS APPLIED TO ENGINEERING PROBLEMS, R. Rothe, F. Ollendorff, K. Pohlhausen. 

CHEMISTRY AND PHYSICAL CHEMJSTRY 
ORGANIC CHEMISTRY, F. C. Whitmore. The entire subject of organic chemistry for the practic
ing chemist and the advanced student. Storehouse of facts, theories, processes found else
whera only in specialized journals. Covers aliphatic compounds (500 pages on the properties 
and synthetic preparation of hydrocarbons, halides, proteins, ketones, etc.)1 alicyclic com
pounds, aromatic compounds, heterocyclic compounds, organophosphorus ana organometallic 
compounds. Methods of synthetic preparation analyzed critically throughout. Includes much o~ 
biochemical interest. ''The scope of this volume is astonishing," INDUSTRIAL AND ENGINEER· 
ING CHEMISTRY. 12,000-reference index. 2387-item bibliography. Total of x + 1005pp. 53/s x 8. 
Two volume set. S700 Vol I Paperbound 12.00 

S701 Vol 11 Paperbound 2.00 
The set 4.00 

THE PRINCIPLES OF ELECTROCHEMISTRY, D. A. Macinnes. Basic equations for almost every 
subfield of electrochemistry from first principles, referring at all times to the soundest and 
most recent theories and results; unusually useful as text or as reference. Covers coulometers 
and Faraday's Law, electrolytic conductance, the Debye-Hueckel method for the theoretical 
calculation of activity coefficients, concentration cells, standard electrode potentials, thermo
dynamic ionization constants, pH, potentiometric titrations, irreversible phenomena, Planck's 
equation, and much more. "Excellent treatise," AMERICAN CHEMiCAL SOCIETY JOURNAL. 
"Highly recommended," CHEMICAL AND METALLURGICAL ENGINEERING. 2 Indices. Appendix. 
585-item bibliography. 137 figures. 94 tables. ii + 478pp. 55/s x 83/s. 

S52 Paperbound $2.35 

TllE CHEMISTRY OF URANIUM: THE ELEMENT, ITS BINARY AND RELATED COMPOUNDS, J. J. Katz 
and E. Rabinowitch. Vast post-World War 11 collection and correlation of thousands of AEC 
reports and published papers in a useful and easily accessible form, still the most complete 
and up-to-date compilation. Treats "dry uranium chemistry," occurrences, preparation, prop
erties, simple compounds, isotopic composition 1 extraction from ores, spectra, alloys, etc. Much 
material available only here. Index. Thousanas of evaluated bibliographical references. 324 
tables, charts, figures. xxi + 609pp. 53/s x 8. S757 Paperbound $2.95 

KINETIC THEORY OF. LIQUIDS, J. Frenkel. Regarding the kinetic theory of liquids as a gen
eralization and extension of the theory of solid bodies, this volume covers all types of 
arrangements of solids, thermal displacements of atoms, interstitial atoms and ions, 
orientational and rotational motion of molecules, and transition between states of matter. 
Mathematical theory is developed close to the physical subject matter. 216 bibliographical 
footnotes. 55 figures. xi + 485pp. 53/a x 8. S94 Clothbound $3.95 

S95 Paperbound $2.45 

POLAR MOLECULES, Pieter Debye. This work by Nobel laureate Debye offers a complete guide 
to fundamental electrostatic field relations, polarizab i I ity, molecular structure. Pa rtia I con• 
tents: electric intensity, displacement and force, polarization by orientation, molar polariza
tion and molar refraction, halogen-hydrides, polar liquids, ionic saturation, dielectric con
stant, etc. Special chapter considers quantum theory. Indexed. 172pp. 53/s x 8. 

S64 Paperbound $1.50 

ELASTICITY, PLASTICITY AND STRUCTURE OF MATTER, R. Houwlnk. Standard treatise on 
rheological aspects of different technically important solids such as crystals, resins, textiles, 
rubber, clay, many others. Investigates general laws for deformations; determines divergences 
from these laws for certain substances. Covers general physical and mathematical aspects 
of plasticity, elasticity, viscosity. Detailed examination of deformations, internal structure 
of matter In relation to elastic and plas1:ic behavior, formation of solid matter from a fluid, 
conditions for elastic and plastic behavior of matter. Treats glass, asphalt, gutta percha, 
balata, proteins, baker's dough, lacquers, sulphur, others. 2nd revised, enlarged edition. 
Extensive revised bibliography in over 500 footnotes. Index. Table of symbols. 214 figures. 
xviii + 368pp. 6 x 9¼. S385 Paperbound $2.45 

THE PHASE RULE AND ITS APPLICATION1 Alexander Findlay. Covering chemical phenomena 
of 1, 2, 3, 4, and multiple component systems, this 11standard work on the subject!' 
(NATURE, London), has been completely revised and brought up to date by A. N. Campbell 
and N. O. Smith. Brand new material has been added on such matters as binary, tertiary 
liquid equilibria, solid solutions in ternary systems, quinary systems of salts and water. 
Completely revised to triangular coordinates in ternary systems, clarified graphic repre
sentation, solid models, etc. 9th revised edition. Author, subject indexes. 236 figures. 505 
footnotes, mostly bibliographic. xii + 494pp. 53/a x 8. S91 Paperbound $2.45 



TERNARY SYSTEMS: INTRODUCTION TO THE THEORY OF THREE COMPONEN1' SYSTtMS, G. 
Masing. Furnishes detailed discussion of representative types of 3-components systems, both 
in solid models (particularly metallic alloys) and isothermal models. Discusses mechanical 
m1 xturc without compounds and without solid solutions; unbroken solid solution series; 
solid solutions with solubility breaks in two binary systems; iron-silicon-aluminum alloys; 
allotropic forms of iron in ternary system; other topics. Bibliography. Index. 166 illustra
tions. 178pp. 55/a x 83/s. S631 Paperbound $1.45 

THE ·STORY OF ALCHEMY AND EARLY CHEMISTRY, J, M. Stillman. An authoritative, scholarly 
work, highly readable, of development of chemical knowledge from 4000 B.C. to downfall 
of phlogiston theory in late 18th century. Every important figure, many quotations. Brings 
alive curious, almost incredible history of alchemical beliefs, practices, writings of 
Arabian Prince Oneeyade, Vincent of Beauvais, Geber, Zosimos, Paracelsus, Vitruvius, scores 
more. Studies work, thought of Black, Cavendish, Priestley, Van Helmont, Bergman, Lavoisier, 
Newton, etc. Index. Bibliography, 579pp. 53/a x 8. S628 Paperbound $2.45 

See also: ATOMIC SPECTRA AND ATOMIC STRUCTURE, G. Herzberg; INVESTICATTbNS 't)N THE 
THEORY OF THE BROWNIAN MOVEMENT, A. Einstein; TREATISE ON THERMODYNAMICS, M. Planck. 

ASTRONOMY AND ASTROPHYSICS 
AN ELEMENTARY SURVEY OF CELESTIAL ME"CHliNICS, Y. Ryabov. Elementary exposition of 
gravitational theory and celestial mechanics. Historical introduction and coverage of basic 
principles, including: the elliptic, the orbital plane, the 2- and 3-body problems, the dis
covery of Neptune, planetary rotation, the length of the day, the shapes of galaxies satel• 
lites (detailed treatment of Sputnik I), etc. First American reprinting of successful Russian 
popular exposition. Elementary algebra and trigonometry helpful, but not necessary; presenta
tion chiefly verbal. Appendix of theorem proofs. 58 figures. 165pp. 53/a x 8. 

T756 Paperbound $1.25 

THE SKY AND ITS MYSTERIES, E. A. Beet. One of most lucid books on mysteries of universe; 
deals with astronomy from earliest observations to latest theories of expansion of universe, 
source of stellar energy, birth of planets, origin of moon craters, possibility of life on 
other planets. Discusses effects of sunspots on weather; distances, ages of several stars; 
master plan of universe; methods and tools of astronomers; much more. ''Eminently readable 
book," London Times. Extensive bibliography. Over 50 diagrams. 12 full-page plates, fold-out 
star map. Introduction. Index, 238pp. 5¼ x 7½. T627 Clothbound $3.00 

THE REALM OF THE NEBULAE, E. Hubble. One of the great astronomers of our time "records 
his formulation of the concept of "island universes," and its impact cm astronomy. Such 
topics are covered as the velocity-distance relation; classification, nature, distances, general 
field of nebulae; cosmological theories; nebulae in the neighborhood of the Milky Way. 39 
photos of nebulae, nebulae clusters, spectra of nebulae, and velocity distance relations 
shown by spectrum comparison. "One of the most progressive lines of astronom.ical re• 
search," The Times (London). New introduction by A. Sandage. 55 illustrations. Index. iv + 
20lpp. 5% x 8. S455 Paperbound $1.50 

OUT OF THE SKY, H. H. Nininger. A non-technical but comprehensive introduction to "me• 
teoritics", the young science concerned with all aspects of the arrival of matter from 
outer space. Written by one of the world's experts on meteorites, this work shows ~ow, 
despite difficulties of observation and sparseness of data, a considerable body of knowledge 
has arisen. It defines meteors and meteorites; studies fireball clusters and processions, 
meteorite composition, size, distribution, showers, explosions, origins, craters, and much 
more. A true connecting link between astrooomy and geology, More than 175 photos, 22 other 
illustrations. References. Bibliography of author's publications on meteorites. Index. viii + 
336pp. 53/s x 8. T519 Paperbound $1.85 

SATELLITES AND SCIENTIFIC RESEARCH, D. King-Hele. Non-technical account of the manmade 
satellites and the discoveries they have yielded up to the spring of 1959. Brings together 
information hitherto published only in hard-to-get scientific journals. Includes the life history 
of a typical satellite, methods of tracking, new information on the shape of the earth, zones 
of radiation, etc. Over 60 diagrams and 6 photographs. Mathematical appendix. Bibliography 
of over 100 items. Index. xii + 180pp. 53/4 x 8½. T703 Clothbound $4.00 

HOW TO MAKE A TELESCOPE", Jean Texereau. Enables the most inexperienced to choose, 
design, and build an f /6 or f/8 Newtonian type reflecting telescope, with an altazimuth 
Couder mounting, suitable for lunar, planetary, and stellar observation. A practical step-by
step course covering every operation and every piece of equipment. Basic principles of 
geometric and physical optics are discussed (though unnecessary to construction), and the 
merits of reflectors and refractors compared. A thorough discussion of eyepieces, finders, 
grinding, installation, testing, using the instrument, etc. 241 fif ures and 38 photos show 
almost every operation and tool. Potential errors are anticipa ed as much as posslble. 
Foreword by A. Couder. Bibliography and sources of supply listing. Index. xiii. + 191pp. 
6¼ x 10. f 464 Clothbound $3.50 



AN INTRODUCTORY TREATISE ON DYNAMICAL ASTRONOMY, H. C. Plummer. Unusually wide con
nected and concise coverage of nearly every significant branch of dynamical astronomy, stress
ing basic principles throughout: determination of orbits, planetary theory, lunar theory, pre• 
cession and nutation, and many of their applications. Hundreds of formulas and theorems 
worked out completely, important methods thoroughly explained. Covers motion under a 
central attraction, orbits of double stars and spectroscopic binaries, the libration of the moon, 
and much more. Index. 8 diagrams. xxi + 343pp. 55/s x 83/s. S689 Paperbound $2.35 

A COMPENDIUM OF SPHERICAL ASTRONOMY, S. Newcomb. Long a standard collection of basic 
methods and formulas most useful to the working astronomer, and clear full text for students. 
Includes the most important common approximations; 40 pages on the method of least squares; 
general theory of spherical coordinates; parallax; aberration; astronomical refraction; theory 
of precession; proper motion of the stars; methods of deriving positions of stars; and much 
more. Index. 9 Appendices of tables, formulas, etc. 36 figures. xviii + 444pp. 53/s x 8. 

S690 Paperbound $2.25 

AN INTRODUCTORY TREATISE ON THE LUNAR THEORY, E. W. Brown. Indispensable for all 
scientists and ell'gineers interested in orbital calculation, satellites, or navigation of space. 
Only work in English to explain in detail 5 major mathematical approaches to the problem of 
3 bodies, those of Laplace, de Pontecoulant, Hansen, Delaunay, and Hill. Covers expressions 
for mutual attraction, equations of motion, forms of solution, variations of the elements in 
disturbed motion, the constants and their interpretations, planetary and other disturbing 
influences, etc. Index. Bibliography. Tables. xvi + 292pp. 55/s x 83/e. 

S666 Paperbound $2.00 

LES METHODES NOUVELLES DE LA MECANIQUE CELESTE, H. Poincare. Complete text (in 
French) of one of Poincare's most important works. This set revolutionized celestial mechanics: 
first use of integral invariants, first major application of linear differential equations, study 
of periodic orbits, lunar motion and Jupiter's satellites, three body problem, and many other 
important topics. "Started a new era . . . so extremely modern that even today few have 
mastered his weapons," E. T. Bell. Three volumes. Total 1282pp. 61/s x 9¼. 

Vol. 1. S401 Paperbound $2.75 
Vol. 2. S402 Paperbound $2.75 
Vol. 3. S403 Paperbound $2.75 

The set $7 .50 

SPHERICAL AND PRACTICAL ASTRONOMY, W. Chauvenet. First book in English to apply mathe
matical techniq,ues to astronomical problems is still standard work. Covers almost entire 
field, rigorously, with over 300 examples worked out. Vol. 1, spherical astronomy, applications 
to nautical astronomy; determination of hour angles, parallactic angle for known stars; 
interpolation; parallax; laws of refraction; predicting eclipses; precession, nutation of fixed 
stars; etc. Vol. 2, theory, use, of instruments; telescope; measurement of arcs, angles in 
general; electro-chronograph; sextant, reflecting circles; zenith telescope; etc. 100-page 
appendix of detailed proof of Gauss' method of least squares. 5th revised edition. Index. 15 
plates, 20 tables. 1340pp. 53/s x 8. Vol. 1 S618 Paperbound $2.75 

Vol. 2 S619 Paperbound $2.75 
The set $5.50 

THE INTERNAL CONSTITUTION OF THE STARS, Sir A. S. Eddington, Influence of this has been 
enormous; first detailed exposition of theory of radiative equilibrium for stellar interiors, 
of all available evidence for existence of diffuse matter in interstellar space. Studies quantum 
theory, polytropic gas spheres, mass-luminosity relations, variable stars, etc. Discussions of 
equations paralleled with informal exposition of intimate relationship of astrophysics with 
great discoveries in atomic physics, radiation. Introduction. Appendix. Index. 42lpp. 53/a x 8. 

S563 Paperbound $2.25 

ASTRONOMY OF STELLAR ENERGY AND DECAY, Martin Johnson. Middle level treatment of 
astronomy as interpreted by modern atomic physics. Part One is non-technical, examines 
physical properties, source of energy, spectroscopy, fluctuating stars, various models and 
theories, etc. Part Two para I lels these topics, providing their mathematical foundation. 
"Clear, concise, and readily understandable," American Library Assoc. Bibliography, 3 indexes. 
29 illustrations. 216pp. 53/s x 8. S537 Paperbound $1.50 

RADIATIVE TRANSFER, S. Chandrasekhar. Definitive work in field provides foundation for 
analysis of stellar atmospheres, planetary illumination, sky radiation; to physicists, a study 
of problems analogous to those in theory of diffusion of neutrons. Partial contents: equation 
of transfer, isotropic scattering, H-functions, diffuse reflection and transmission, Rayleigh 
scattering, X, Y functions, radiative equilibrium of stellar atmospheres. Extensive bib I iog
raphy. 3 appendices. 35 tables. 35 figures. 407pp. 55/s x 83/s. S599 Paperbound $2.25 

AN INTRODUCTION TO THE STUDY OF STELLAR STRUCTURE, Subrahmanyan Chandrasekhar. Out
standing treatise on stellar dynamics by one of world's greatest astrophysicists. Uses classical 
& modern math methods to examine relationship between loss of energy, the mass, and 
radius of stars in a steady state. Discusses thermodynamic laws from Caratheodory's axio• 
matic standpoint; adiabatic, polytropic laws; work of Ritter, Emden, Kelvin, others; Stroemgren 
envelopes as starter for theory of gaseous stars; Gibbs statistical mechanics (quantum); 
degenerate stellar configuration & theory of white dwarfs, etc. "Highest level of scientific 
merit," BULLETIN, AMER. MATH. SOC. Bibliography. Appendixes. Index. 33 figures. 509pp. 
53/s x 8. S413 Paperbound $2.75 



PRINCIPLES OF STELLAR DYNAMICS, S. Chandrasekhar. A leading astrophysicist here presents 
the theory of stellar dynamics as a branch of classical dynamics, clarifying the fundamental 
issues and the underlying motivations of the theory. He analyzes the effects of stellar en
counters in terms of the classical 2-body problem, and investigates problems centering about 
Liouville's theorem and the solutions of the equations of continuity. This edition also includes 
4 important papers by the author published since ••stellar Dynamics," and equally indispens
able for al! workers in the field: "New Methods in Stellar Dynamics" and "Dynamical Friction," 
Parts I, 11, and 111. Index. 3 Appendixes. Bibliography. 50 illustrations. x + 313pp. 53/s x8. 

S659 Paperbound $2.00 

A SHORT HISTORY OF ASTRONOMY, A. Berry. Popular standard work for over 50 years, this 
thorough and accurate volume covers the science from primitive times to the end of the 19th 
century. After the Greeks and the Middle Ages, individual chapters analyze Copernicus, Brahe, 
Galileo, Kepler, and Newton, and the mixed reception of their discoveries. Post-Newtonian 
achievements are then discussed in unusual detail: Halley, Bradley, Lagrange, Laplace, 
Herschel, Bessel, etc. 2 Indexes. 104 illustrations, 9 portraits. xxxi + 440pp. 53/s x 8. 

T210 Paperbound $2.00 

THREE COPERNICAN TREATISES, translated with notes by Edward Rosen. 3 papers available 
nowhere else in English: "The Commentariolus" and "Letter against Werner" of Coper• 
nicus; the "Narratio prima" of Rheticus. The 11Commentariolus" is Copernicus's most lucid 
exposition of his system. The 11 Letter against Werner" throws light on development of 
Copernicus's thought. The .. Narratio prima" is earliest printed presentation of the new 
astronomy ... Educational and enjoyable," Astrophysical Journal. Corrected edition. Biograph
ical introduction. 877-item bibliography of virtually every book, article, on Copernicus 
published 1939-1958. Index. 19 illustrations. 218pp. 53/a x 8. S585 Paperbound $1.75 

EARTH SCIENCES 

PRINCIPLES OF STRATIGRAPHY, A. W. Grabau. Classic of 20th century geology, unmatched in 
scope and comprehensiveness. Nearly 600 pages cover the structure and origins of every kind 
of sedimentary, hydrogenic, oceanic, pyroclastic, atmoclastic, hydroclastic, marine hydroclastic, 
and bioclastic rock; metamorphism; erosion; etc. Includes also the constitution of the atmos
phere; morphology of oceans, rivers, glaciers; volcanic activities; faults and earthquakes; and 
fundamental principles of paleontology (nearly 200 pages). New introduction by Prof. M. Kay, 
Columbia U. 1277 bibliographical entries. 264 diagrams. Tables, maps, etc. Two volume set. 
Total of xxxii + 1185pp. 53/a x 8. S686 Vol I Paperbound $2.50 

S687 Vol 11 Paperbound $2.50 
The set $5.00 . 

THE GEOLOGICAL DRAMA, H. and G. Termier. Unusual work by 2 noted French geologists: not 
the usual survey of geological periods, but general principles; continent formation, the influ
ence of ice-ages and earth movements in shaping the present-day land masses, the creation and 
advance of life, the position of man. Readable and authoritative survey for the layman; excel
lent supplement for the student of geology; important collection of recent European theories 
for the American geologist. Much material appears here for the first time in a non-technical 
work. Index, 30 photographs, 5 diagrams. 5 maps. 144pp. 6 x 9. T702 Clothbound $3.95 

THE EVOLUTION OF THE IGNEOUS ROCKS, N. L. Bowen. Invaluable serious Introduction' applies 
techniques of physics and chemistry to explain igneous rock diversity In terms of chemical 
composition and fractional crystallization. Discusses liquid immiscibility in silicate magmas, 
crystal sorting, liquid lines of descent, fractional resorption of complex minerals, petrogenesis, 
etc. Of prime importance to geologists & mining engineers, also to physicists, chemists 
working with high temperatures and pressures. "Most important," TIMES, London. 3 indexes. 
263 bibliographic notes. 82 figures. xviii + 334pp. 53/a x 8. S311 Paperbound $1.85 

INTERNAL CONSTITUTION OF THE EARTH, edited by Beno Gutenberg. Completely 'revised. 
Brought up-to-date, reset. Prepared for the National Research Council this is a complete & 
thorough coverage of such topics as earth origins, continent formation, nature & behavior 
of the earth's core, petrology of the crust, cooling forces in the core, seismic & earthquake 
material, gravity, elastic constants, strain characteristics and similar topics. 110ne is filled 
with admiration ... a high standard ... there is no reader who will not learn something 
from this book," London, Edinburgh, Dublin, Philosophic Magazine. Largest bibliography in 
print: 1127 classified items. Indexes. Tables of constants. 43 diagrams. 439pp. 61/s x 9¼. 

S414 Paperbound $2.45 

HYDROLOGY, edited by Oscar E. Meinzer. Prepared for the National Research Council. De
tailed complete reference library on precipitation, evaporation, snow, snow surveying, 
glaciers, lakes, infiltration, soil moisture, ground water, runoff, drought, physical changes 
produced by water, hydrology of limestone terranes, etc. Practical in application, especially 
valuable for engineers. 24 experts have created 11 the most up-to-date, most complete 
treatment of the subject," AM. ASSOC. of PETROLEUM GEOLOGISTS. Bibliography. Index. 165 
Illustrations. xi + 712pp. 61/e x 9¼. S191 Paperbound $2.95 



T~E BIRTH AND DEVELOPMENT OF THE GEOLOGICAL SCIENCES, F. D. Adams. Most thorough 
history of the earth sciences ever written. Geological thought from earliest times to the end 
of the 19th century, covering over 300 early thinkers & systems: fossils & their explanation, 
vulcanists vs. neptunists, figured stones & paleontology, generation of stones, dozens of 
similar topics. 91 illustrations, including medieval, renaissance woodcuts, etc. Index. 632 
footnotes, mostly bibliographical. 5llpp. 53/a x 8. TS Paperbound $2.00 

DE RE METALLICA, Georgius Agricola. 400-year old classic translated, annotated by former 
President Herbert Hoover. The first scientific study of mineralogy and mining, for over 
200 years after its appearance in 1556, it was the standard treatise. 12 books, exhaustively 
annotated, discuss the history of mining, selection of sites, types of deposits, making pits, 
shafts, ventilating, pumps, crushing machinery; assaying, smelting, refining metals; also 
salt, alum, nitre, glass making. Definitive edition, with all 289 16th century woodcuts of 
the original. Biographical, historical introductions, bib I iography, survey of ancient authors. 
Indexes. A fascinating book for anyone interested in art, history of science, geology, etc. 
Deluxe edition. 289 illustrations. 672pp. 6¾ x 10¾. Library cloth. S6 Clothbound $10.00 

GEOGRAPHICAL ESSAYS, William Morris Davis. Modern geography & geomorphology rest on 
the fundamental work of this scientist. 26 famous essays presenting most important theories, 
field researches. Partial contents: Geographical Cycle, Plains of Marine and Subaerial Denuda
tion, The Peneplain, Rivers and Valleys of Pennsylvania, Outline of Cape Cod, Sculpture 
of Mountains by Glaciers, etc. "Long the leader & guide," ECONOMIC GEOGRAPHY. "Part of 
the very texture of geography ... models of clear thought," GEOGRAPHIC REVIEW. Index. 
130 figures. vi + 777pp. 53/s x 8. S383 Paperbound $2.95 

A HISTORY OF ANCIENT GEOGRAPHY, E. H. Bunbury. Standard study, in English, of ancient 
geography; never equalled for scope, detail. First full account of history of geography from 
Greeks' first world picture based on mariners, through Ptolemy. Discusses every important 
map, discovery, figure, travel, expedition, war, conjecture, narrative, bearing on subject. 
Chapters on Homeric geography, Herodotus, Alexander expedition, Strabo, Pliny, Ptolemy, 
would stand alone as exhaustive monographs. Includes minor geographers, men not usually 
regarded in this context: Hecataeus, Pythea, Hipparchus, Artemidorus, Marinus of Tyre, etc. 
Uses information gleaned from military campaigns such as Punic wars, Hannibal's passage of 
Alps, campaigns of Lucullus, Pompey, Caesar's wars, the Trojan war. New introduction by 
W. H. Stahl, Brooklyn College. Bibliography. index. 20 maps. 1426pp. 53/s x 8. 

T570-l, clothbound, 2 volume set $12.50 

URANIUM PROSPECTING, H. L. Barnes. For immediate practical use, professional geologist con• 
siders uranium ores, geological occurrences, field conditions, all aspects of highly profitable 
occupation. Index. Bibliography. x + 117pp. 53/s x 8. T309 Paperbound $1.00 

BIOLOGICAL SCIENCES 
THE ORIGIN OF LIFE, A. I. Oparin. A classic of biology. This is the first modern statement 
of the theory of gradual evolution of life from nitrocarbon compounds. A brand-new evaluation 
of Oparin's theory in light of later research, by Dr. S. Morgulis, University of Nebraska. 
xxv + 270pp. 5% x8. S213 Paperbound $1.75 

HEREDITY AND YOUR LIFE, A. M. Winchester. Authoritative, concise explanation of human 
genetics, in non-technical terms. What factors determine characteristics of future genera
tions, how they may be altered; history of genetics, application of knowledge to control 
health, intelligence, number of entire populations. Physiology of reproduction, chromosomes, 
genes, blood types, Rh factor, dominant, recessive traits, birth by proxy, sexual abnormalities, 
radiation, much more. Index. 75 illus. 345pp. 53/s x 8. 1598 Paperbound $1.45 

MATHEMATICAL BIOPHYSICS: PHYSICO-MATHEMATICAL FOUNDATIONS OF BIOLOGY, N. Rashevsky. 
One of most important books in modern biology, now revised, expanded with new chapters, 
to include most significant recent contributions. Vol. 1: Diffusion phenomena, particularly 
diffusion drag forces, their effects. Old theory of cell division based on diffusion drag 
forces, other theoretical approaches, more exhaustively treated than ever. Theories of -ex
citation, conduction in nerves, with formal theories plus physico-chemical theory. Vol. 2: 
Mathematical theories of various phenomena in central nervous system. New chapters on 
theory of color vision, of random nets. Principle of optimal design, extended from earlier 
edition. Principle of relational mapping of organisms, numerous applications. Introduces 
into mathematical biology such branches of math as topology, theory of sets. Index. 236 
illustrations. Total of 988pp. 5% x 8'. S574 Vol. 1 (Books 1, 2) Paperbound $2.50 

S575 Vol. 2 (Books 3, 4) Paperbound $2.50 
2 vol. set $5,00 



ELEMENTS OF MATHEMATICAL BIOLOGY, A. J. Lotka. A pioneer classic, the first major attempt 
to apply modern mathematical techniques on a large scale to phenomena of biology, blo• 
chemistry, psychology, ecology, similar life sciences. Partial Contents: Statistical meaning 
of irreversibility; Evolution as redistribution; Equations of kinetics of evolving systems; 
Chemical, inter-species equilibrium; parameters of state; Energy transformers of nature, 
etc. Can be read with profit even by those having no advanced math; unsurpassed as study
reference. Formerly titled ELEMENTS OF PHYSICAL BIOLOGY. 72 figures. xxx + 460pp. 
5318 x 8. S346 Paperbound $2.45 . 
FRESHWATER MICROSCOPY, W. J. Garnett. Non-technical, practical book for the layman and 
student. Contains only Information directly confirmed by the distinguished British scientist's 
personal observation. Tells how to collect and examine specimens, describes equipment and 
accessories, mounting, staining, correct illumination, measuring, the mlcroprojector, etc. 
Describes hundreds of different plant and animal species, over 200 illustrated by micro
photos. Many valuable suggestions on the work amateurs can do to throw new light on 
the field. Index. 51 full-page plates. 50 diagrams. Bibliography. 2 Appendices. Glossary of 
scientific terms. xii + 300pp. 6 x 9. S790 Clothbound $5.95 

, ~ ", ,,,.. .. ..f..c1: r" 

CULTURE METHODS FOR INVE'ATEBltAT~ ANIMALS, P. S. Galtsoff, F. E. Lutz, P. S. Welch, J. G. 
Needham, eds. A compendium of practical experience of hundreds of scientists and techni
cians, covering Invertebrates from protozoa to chordata, in 313 articles on 17 phyla. Explains 
In great detail food, protection, environment, reproduction conditions, rearing methods, 
embryology, breeding seasons, schedule of development, much more. Includes at least one 
species of each considerable group. Half the articles are on class insecta. Introduction. 97 
illustrations. Bibliography. Index. xxix + 590pp. 53/s x 8. S526 Paperbound $2.75 

, 1 • 

THE BIOLOGY OF THE LABORATORY MOUSE, edited by G. D. Snell. 1st prepared in 1941 
by the staff of the Roscoe B. Jackson Memorial laboratory, this is stlll the standard treatise 
on the mouse, assembling an enormous amount of material for which otherwise you spend 
hours of research. Embryology, reproduction, histology, spontaneous tumor formation, genetics 
of tumor transplantation, endocrine secretion & tumor formation, milk, influence & tumor 
formation, Inbred, hybrid animals, parasites, infectious diseases, care & recording. Classified 
bibliography of 1122 Items. 172 figures, including 128 photos. ix + 497pp. 61/e x 9¼. 

S248 Clothbound $6.00 
r' 

THE BIOLOGY OF THE AMPHIBIA, G. K. Noble, Late Curator of Herpetology at the Am. Mus. 
of Nat. Hist. Probably the most used text on amphibia, unmatched in comprehensiveness, 
clarity, detail. 19 chapters plus 85-page supplement cover development· heredity; life history; 
speciation; adaptation; sex, integument, respiratory, circulatory, digestive, muscular, nervous 
systems; instinct, intelligence, habits, environment, economic value, relationships, classlfica
tion, etc. "Nothini comparable to it," C. H. Pope, Curator of Amphibia, Chicago Mus. of 
Nat. Hist. 1047 bibliographic references. 174 illustrations. 600pp. 53/s x 8. 

S206 Paperbound $2.98 

STUDIES ON THE STRUCTURE AND DEVELOPMEtlt tiff VEAtlfRAttS: E. S. ·coodrfcti:·A d~finitive' 
study by the greatest modern comparative anatomist. Exceptional in its accounts of the 
ossicles of the ear, the separate diVisions of the coelem and mammalian diaphragm, and 
the 5 chapters devoted to the head region. Also exhaustive morphological and phylogenetic 
expositions of skeleton, fins and limbs, skeletal visceral arches and labial cartilages, 
visceral clefts and gills, vascular1 respiratory, excretory, and periphal nervous systems, etc., 
from fish to the higher mamma s. 754 illustrations. 69 page biographical study by C. C. 
Hardy. Bibliography of 1186 references. 11 What an undertaking ... to write a textbook which 
will summarize adequately and succinctly all that has been done in the realm of Verte
brate Morphology these recent years,'' Journal of Anatomy. Index. Two volumes. Total 906pp. 
53/s x 8. Two vol. set S449-50 Paperboun'd $5,00 

THE GENETICAL THEORY OF NATURAL SELECTION, R. A. Fisher. 2nd revised edition of a vital 
reviewing of Darwin's Selection Theory in terms of particulate inheritance, by one of the 
great authorities on experimental and theoretical genetics. Theory is stated in mathematical 
form. Special features of particulate inheritance are examined: evolution of dominance, 
maintenance of specific variability, mimicry and sexual selection, etc. 5 chapters on man 
and his special circumstances as a social animal. 16 photographs. Bibliography. Index. 
x + 310pp. 5¾ x 8. S466 Paperbound $1.8!1 

,~ , 

THE AUTOBIOGRAPHY OF CHARLES DARWIN, AMD SELECTED LETTERS edited by Francis 
Darwin. Darwin's own record of his early life; the historic voyage aboard the "Beagle"; 
the furor surrounding evolution, and his replies; reminiscences of his son. Letters to 
Henslow, Lyell, Hooker, Huxley, Wallace, Kingsley, etc., and thoughts on religion and 
vivisection. We see how he revolutionized geology with his concept of ocean subsldenceL 
how his great books on variation of plants and animals, primitive man, the expression o, 
emotion among primates, plant fertilization, carnivorous plants, protective coloratlon, etc., 
came into being. Appendix. Index. 365pp. 53/a x 8. T479 Paperbound $1.65 

THE LIFE OF PASTEUR, R. Vallery-Radot. 13th edition of this definitive biography, cited In 
Encyclopaedia Britannica. Authoritative, scholarly, well-documented with contemporary quotes, 
observations; gives complete picture of Pasteur's personal life; especially thorough presenta
tion of scientific activities with silkworms, fermentation, hydrophobia, innoculatlon, etc. 
Introduction by Sir William Osler. Index. 505pp. 5¾ x 8. 1633 Paperbound $2.00 



ANTONY VAN LEEUWENHOEK AND HIS "LITTLE ANIMALS," edited by Clifford Dobell. First 
book to treat extensively, accurately, life and works (relating to protozoology, bacteriology) 
of first microbiologist, bacteriologist, micrologist. Includes founding papers of protozoology, 
bacteriology; history of Leeuwenhoek's life; discussions of his microscopes, methods, 
language. His writing conveys sense of an enthusiastic, naive genius, as he looks at rain
water, pepper water, vinegar, frog's skin, rotifers, etc. Extremely readable, even for non
specialists. "One of the most interesting and enlightening books I have ever read," Dr. 
C. C. Bass, former Dean, Tulane U. School of Medicine. Only authorized edition. 400-item 
bibliography. Index. 32 lllust. 442pp. 53/a x 8. S594 Paperbound $2.25 

MICROGRAPHIA, Robert Hooke. Hooke, 17th century British universal scientific genius, was a 
major pioneer in celestial mechanics1 optics, gravity, and many other fields, but his greatest 
contribution was this book, now reprinted entirely from the original 1665 edition which gave 
microscopy its first great impetus. With all the freshness of discovery, he describes fully his 
microscope, and his observations of cork, the edge of a razor, insects' eyes, fabrics, and 
dozens of other different objects. 38 plates, full-size or larger, contain all the original 
illustrations. This book is also a fundamental classic in the fields of combustion and heat 
theory, light and color theory, botany and zoology, hygrometry, and many other fields. It con
tains such farsighted predictions as the famous anticipation of artificial silk. The final section 
is concerned wi·th Hooke's observations on the moon and stars. 323PP, 5:Ys x 8. 

Paperbound $2.00 

CONDITIONED REFLEXES: AN INVESTIGATION OF THE PHYSIOLOGICAL ACTIVITIES OF THE 
CEREBRAL CORTEX, I. P. Pavlov. Full, authorized translation of Pavlov's own survey of his 
work in experimental psychology reviews entire course of experiments, summarizes conclu
sions, outlines psychological system based on famous "conditioned reflex" concept. Details 
of technical means used in experiments, observations on formation of conditioned reflexes, 
function of cerebral hemispheres, results of damage, nature of sleep, typology of nervous 
system, significance of experiments for human psychology. Trans. by Dr. G. V. Anrep, Cam
bridge Univ. 235-item bibliography. 18 figures. 445pp. 5:Ya x 8. S614 Paperbound $2.25 

THE PRINCIPLES OF PSYCHOLOGY, William James. The full long course unabridged, of one of 
the great classics of Western science. Wonderfully lucid descriptions of human mental activity, 
consciousness, emotions, reason, abnormal phenomena, and similar topics. Examines motor 
zones, sensory aphasia, phosphorus and thought, cerebral thermometry, neural process in 
perception, ideo-motor action-in short, the entire spectrum of human mental activity. 
11Standard reading ... a classic of interpretation," PSYCHIATRIC QUARTERLY. 94 illustrations. 
Two volume set. Total of 1408pp. 5% x 8. T381 Vol I Paperbound ,2.50 

T382 Vol 11 Paperbound 2.50 
The set 5.00 

THE TRAVELS OF WILLIAM BARTRAM, edited by Mark Van Doren. This famous source-book of 
American anthropology, natural history, geography is the record kept by Bartram in the 
1770's, on travels through the wilderness of Florida, Georgia, the Carolinas. Containing 
accurate and beautiful descriptions of Indians, settlers, fauna, flora, it Is one of the finest 
pieces of Americana ever written. Introduction by Mark Van Doren. 13 original illustrations. 
Index. 448pp. 5% x 8. Tl3 Paperbound $2.00 

FRUIT KEY AND TWIG KEY TO TREES AND SHRUBS (FRUIT KEY TO NORTHEASTERN TREES, 
TWIG TREE TO DECIDUOUS WOODY PLANTS OF EASTERN NORTH AMERICA), w. M. Harlow. 
The only guides with photographs of every twig and fruit described-especially valuable to 
the novice. The fruit key (both deciduous trees and evergreens) has an Introduction explain• 
ing seeding, organs involved, fruit types and habits. The twig key introduction treats growth 
and morphology. In the keys proper, identification is easy and almost automatic. This 
exceptional work, widely used in university courses, is especially useful for identification 
in winter, or from the fruit or seed only. Over 350 photos, up to 3 times natural size. 
Bibliography, glossary, index of common and scientific names, in each key. xvii + 125pp. 
55/a x 8%. T511 Paperbound $1.25 

TREES OF THE EASTERN AND CENTRAL UNITED STATES AND CANADA, W. M. Harlow, Professor 
of Wood Technology, College of Forestry, State University of N. Y., Syracuse, N. Y. This 
middle-level text is a serious work covering more than 140 native trees and Important 
escapes, with information on general appearance, growth habit, leaf forms, flowers, fruit, 
bark, and other features. Commercial use, distribution, habitat, and woodlore are also given. 
Keys within the text enable you to locate various species with ease. With this book you 
can identify at sight almost any tree you are likely to encounter; you will know which trees 
have edible fruit, which are suitable for house planting, and much other useful and interest
ing Information. More than 600 photographs and figures. xiii + 288pp. 4s;13 x 6½. 

T395 Paperbound $1.35 

HOW TO KNOW THE FERNS, F. T. Parsons. Ferns, among our most lovely native plants, are all 
too little known. This modern classic of nature lore will enable the layman to identify any 
American fern he is likely to come across. After an introduction on the structure and life 
of ferns, the 57 most important ferns are fully pictured and described (arranged upon a 
simple identification key). Index of Latin and English names. 61 illustrations and 42 full-page 
plates. xiv + 215pp. 53/s x 8. T740 Paperbound $1.25 



INSECT LIFE AND INSECT NATURAL HISTORY, S. W. Frost. Unusual for emphasizing habits, 
social life, and ecological relations of insects, rather than more academic aspects of classifi
cation and morphology. Prof. Frost's enthusiasm and knowledge are everywhere evident as he 
discusses insect associations, and specialized habits like leaf-mining, leaf-rolling, and case
making, the gall Insects, the boring Insects, aquatic insects, etc. He examines all sorts of matters 
not usually covered in general works, such as: insects as human food; insect music and 
musicians; insect response to electric and radio waves; use of insects in art and literature. 
The admirably executed purpose of this book, which covers the middle ground between 
elementary treatment and scholarly monographs, is to excite the reader to observe for 
himself. Over 700 illustrations. Extensive bibliography. x + 524pp. 53/a x ·a. 

T517 Paperbound $2.25 

COMMON SPIDERS OF THE UNITED STATES, J. H. Emerton. Only non-technical, but thorough, 
reliable guide to spiders for the layman. Over 200 spiders from all parts of the country, 
arranged by scientific classification, are identified by shape and color, number of eyes, habitat 
and range, habits 1 etc. Full text, 501 line drawings and photographs, and valuable introduction 
explain webs, poisons, threads, capturing and preserving spiders, etc. Index. New synoptic 
key by S. W. Frost. xxiv + 225pp. 53/a x 8. T223 Paperbound $1.35 

BEHAVIOR AND SOCIAL LIFE OF THE HONEYBEE, Ronald Ribbands. Outstanding scientific study; 
a compendium of practically everything known about social life of the honeybee. Stresses 
behavior of Individual bees in field, hive. Extends Frisch's experiments on communication 
among bees. Covers perception of temperature, gravity, distance, vibration; sound production; 
glands; structural differences; wax production; temperature regulation; recognition, communi
cation; drifting, mating behavior, other highly interesting topics. Bibliography of 690 
references. Indexes. 127 diagrams, graphs, sections of bee anatomy, fine photographs. 352pp. 
5½ x 8½. S410 Clothbound $4.50 

ANIMALS IN MOTION, Eadweard Muybridge. Largest, most comprehensive selection of Muy
bridge's famous action photos of animals, from his ANIMAL LOCOMOTION. 3919 high-speed 
shots of 34 different animals and birds in 123 different types of action: horses, mules, oxen, 
pigs, goats, camels, elephants, dogs, cats, guanacos, sloths, lions, tigers, jaguars, rac• 
coons, baboons, deer, elk, gnus, kangaroos, many others, in different actions - walking, 
running, flylng, leaping. Horse alone shown in more than 40 different ways. Photos taken 
against ruled backgrounds; most actions taken from 3 angles at once: 90°, 60°, rear. 
Most plates original size. Of considerable interest to scien1ists as a classic of biology, as 
a record of actual facts of natural history and physiology. 11A really marvellous series of 
plates," NATURE (London). ., A monumenta I work," Waldemar Kaempffert. Photographed by 
E. Muybridge. Edited by L. S. Brown, American Museum of Natural History. 74-page intro
duction on mechanics of motion. 340 pages of plates, 3919 photographs. 416pp. Deluxe bind
ing, paper. (Weight 4½ lbs.) 77/a x 105/a. T203 Clothbound $10.00 

THE HUMAN FIGURE IN MOTION. Eadweard Muybridge. This new edition of a great' classic 
In the history of science and photography is the largest selection· ever made from the 
original Muybridge photos of human action: 4789 photographs, illustrating 163 types of 
motion: walking, running, lifting, etc. in time-exposure sequence photos of speeds up to 
116000th of a second. Men, women, children, mostly undraped, showing bone and muscle 
positions against ruled backgrounds, mostly taken at 3 angles at once. Not only was this 
a great work of photography, acclaimed by contemporary critics as a work of genius, it was 
also a great 19th century landmark in biological research. Historical introduction by Prof. 
Robert Taft, U. of Kansas. Plates original size, full detail. Over 500 action strips. 407pp. 
7¾ x 105/a. Deluxe edition. T204 Clothbound $10.00 

See also: ANALYSIS OF SENSATIONS, E. Mach; ON THE SENSATIONS OF TONE, H. Hei'mholtz; 
FROM MAGIC TO SCIENCE, C. Singer; A SHORT HISTORY OF ANATOMY AND PHYSIOLOGY F~OM 
THE GREEKS TO HARVEY, C. Singer; ELEMENTARY STATISTICS, WITH APPLICATIONS IN MEllf
CINE AND THE BIOLOGICAL SCIENCES, F. E. Croxton. 

MEDICINE 
CLASSICS OF CARDIOLOGY, F. A. Willius and T. E. Keys. Monumental collection of 52 papers 
by 51 great researchers and physicians on the anatomy, physiology, and pathology of the heart 
and the circulation, and the diagnosis and therapy of their diseases. These are the original 
writings of Harvey, Senac, Auenbrugger, Withering, Stokes, Einthoven, Osler, and 44 others 
from 1628 to 1912. 27 of the papers are complete, the rest in major excerpts; all are in 
English. The biographical notes and introductory essays make this a full history of cardiology 
-with exclusively first-hand material. 103 portraits, diagrams, and facsimiles of title pages. 
Chronological table. Total of xx + 858pp. 55/a x 83/s. Two volume set. 

T912 Vol 1 Paperbound 12.00 
T913 Vol 11 Paperbound 2.00 

The set 4.00 



SOURCE BOOK OF MEDICAL HISTORY, compiled, annotated by Logan Clendening, M.D. Un
equalled collection of 139 greatest papers in medical history, by 120 authors, covers almost 
every area: pathology, asepsis, preventive medicine, bacteriology, physiology, etc. Hippocrates, 
Gain, Vesalius, Malpighi, Morgagni, Boerhave, Pasteur, Walter Reed, Florence Nightingale, 
Lavoisier, Claude Bernard, 109 others, give view of medicine unequalled for immediacy. 
Careful selections give heart of each paper. save you reading time. Selections from non
medical literature show lay-views of medicine: Aristophanes, Plato, Arabian Nights, Chaucer, 
Moli~re, Dickens, Thackeray, others. "Notable ... useful to teacher and student alike," 
Amer. Historical Review. Bibliography. Index. 699pp. 53/s x 8. T621 Paperbound $2.15 

CLASSICS OF MEDICINE AND SURGERY, edited by C. N. B. Camac. 12 greatest papers in 
medical history, 11 in full: Lister's "Antiseptic Principle;" Harvey's "Motion in the Heart 
and Blood;" Auenbrugger's "Percussion of the Chest;" Laennec's "Auscultation and the 
Stethoscope;" Jenner's "Inquiry into Smallpox Vaccine," 2 related papers; Morton's "Admin
istering Sulphuric Ether," letters to Warren, "Physiology of Ether;" Simpson's "A New 
Anaesthetic Agent;" Holmes' "Puerperal Fever." Biographies, portraits of authors, bibliog
raphies. Formerly "Epoch-making Contributions to Medicine, Surgery, and the Allied Sciences." 
Introduction. 14 illus. 445pp. 53/s x 8. S539 Paperbound $2.25 

FREE! All you do is ask for it! 
A WAY OF LIFE, Sir William Osler. The complete essay, stating his philosophy 
of life, as given at Yale University by this great physician and teacher. 
30 pages. Copies limited, no more than 1 to a customer. 

EXPERIMENTS AND OBSERVATIONS ON THE GASTRIC JUICE AND THE PHYSIOLOGY OF DIGESTION, 
William Beaumont. A gunshot wound which left a man with a 2½ inch hole through his 
abdomen into his stomach (1822) enabled Beaumont to perform the remarkable experiments 
set down here. The first comprehensive, thorough study of motions and processes of the 
stomach, "his work remains a model of patient, persevering investigation .... Beaumont is 
the pioneer physiologist of this country." (Sir William Osler, in his introduction.) 4 illustra
tions. xi + 280pp. 53/s x 8. S527 Paperbound $1.50 

AN INTRODUCTION TO THE STUDY OF EXPERIMENTAL MEDICINE, Claude Bernard, 90-year-old 
classic of medical science, only major work of Bernard available in English, records his 
efforts to transform physiology into exact science. Principles of scientific research illustrated 
by specific case histories from his worki roles of chance, error, preliminary false conclusions, 
in leading eventually to scientific truth; use of hypothesis. Much of modern application of 
mathematics to biology rests on the foundation set down here. New foreword by Professor 
I. B. Cohen, Harvard Univ. xxv + 266pp, 5:Vs x 8. T400 Paperbound $1.50 

A WAY OF LIFE, AND OTHER SELECTED WRITINGS, Sir William Osler, Physician and humanist, 
Osler discourses brilliantly in thought provoking essays and on the history of medicine. 
He discusses Thomas Browne, Gui Patin, Robert Burton, Michael Servetus, William Beaumont, 
Laennec. Includes such favorite writings as the title essay, ' 1The Old Humanities and the 
New Science," 1'Creators, Transmitters, and Transmuters," .,Books and Men," .,The Student 
Life," and five more of his best discussions of philosophy, religion and literature. 5 photo
graph~. Introduction by G. L. Keynes, M.D., F .. R.C.S. Index. xx + 278pp. 5% x 8. 

T488 Paperbound $1.50 

LANGUAGE AND TRAVEL AIDS FOR SCIENTISTS 

Trubner foreign language manuals 
These unusual books are members of the famous Trubner series of colloquial manuals. They 
have been written to provide adults with a sound colloquial knowledge of a foreign lan
guage, and are suited for either class use or self-s'1:udy. Each book is a complete course in 
itself, with progressive, easy to follow lessons. Phonetics, grammar, and syntax are covered, 
while hundreds of phrases and idioms, reading texts, exercises, and vocabulary are included. 
These books are unusual in being neither skimpy nor overdetailed in grammatical matters, 
and in presenting up-to-date, colloquial, and practical phrase material. Bilingual presentation 
is stressed, to make thorough self-study easier for the reader. 

COLLOQUIAL HINDUSTANI, A. H. Harley, formerly Nizam's Reader In Urdu, U. of London. 30 
pages on phonetics and scripts (devanagari & Arabic-Persian) are followed by 29 lessons, 
including material on English and Arabic-Persian influences. Key to all exercises. Vocabulary. 
5 x 7½. 147pp. Clothbound $1.75 

COLLOQUIAL GERMAN, P. F. Doring. Intensive thorough coverage of grammar in easily-followed 
form. Excellent for brush-up, with hundreds of colloquial phrases. 34 pages of bilingual 
texts. 224pp. 5 x 7½. Clothbound $1.75 



COLLOQUIAL ARABIC. Delacy O'Leary. Foremost Islamic scholar covers language of Egypt, 
Syria, Palestine, & Northern Arabia. Extremely clear coverage of complex Arabic verbs & noun 
plurals; also cultural aspects of language. Vocabulary. xviii + 192pp. 5 x 7½. 

Clothbound $1.75 

COLLOQUIAL PERSIAN, L. P, E1well-Sutton. Best Introduction to modern Persian, wlth 90 page 
grammatical section followed by conversations, 35 page vocabulary. 139pp. Clothbound $1.75 

COLLOQUIAL SPANISH, W. R. Patterson. Castilian grammar and colloquial language, loaded 
with bilingual phrases and colloquialisms. Excellent for review or self-study. 164pp. 5 x 7½. 

Clothbound $1.75 
I 

COLLOQUIAL RUMANIAN, G. Nandris, Professor of University of London. Extremely thorough 
coverage of phonetics, grammar, syntax; also included 70 page reader, and 70 page vocabulary. 
Probably the best grammar for this increasingly important language. 340pp. 5 x 7½. 

Clothbound $2.50 

COLLOQUIAL FRENCH, W. R. Pattersoh. 16th revised edition of this extremely popular manual. 
Grammar explained with model clarity, and hundreds of useful expressions and phrases; 
exercises, reading texts, etc. Appendixes of new useful words and phrases. 223pp. 5 x 71/2. 

Clothbound $1.75 

COLLOQUIAL CZECH, J. Schwarz, former headmaster of Lingua Institute, Prague. Full easily 
followed coverage of grammar, hundreds of immediately useable phrases, texts. Perhaps the 
best Czech grammar in print. "An absolutely successful textbook," JOURNAL OF CZECHO
SLOVAK FORCES IN GREAT BRITAIN. 252pp. 5 x 7½. Clothbound $3.00 

COLLOQUIAL ITALIAN, A. L. Hayward. Excellent self-study course in grammar, vocabulary, 
idioms, and reading. Easy progressive lessons will give a good working knowledge of Italian 
in the shortest possible time. 5 x 7½. Clothbound $1.75 

AN ENGLISH-FRENCH-GERMAN-SPANISH WORD FREQUENCY DICTIONARY, I[ S.~ Eaton.• An °indis
pensable language study aid, this is a semantic frequency list of the 6000 most frequently 
used words in 4 languages-24,000 words in all. The lists, based on concepts rather than 
words alone, and containing all modern, exact, and idomatic vocabulary, are arranged side by 
side to form a unique 4-language dictionary. A simple key indicates the importance of the 
Individual words within each language. Over 200 pages of separate indexes for each language 
enable you to locate individual words at a glance. Formerly "Semantic Frequency List." 
2 Appendixes. xxi + 44lpp. 6 x 9. T738 Paperbound $2.45 

NEW RUSSIAN-ENGLISH AND ENGLISH-RUSSIAN DICTIONARY, M. A. O'Brien. Unusually· compre
hensive guide to reading, speaking, writing of Russian for both advanced and beginning 
students. Over 70,000 entries provided in new orthography, with full information on accen
tuation, grammatical classification. Shades of meaning, idiomatic uses, colloquialisms; 
tables of irregular verbs for both languages. Individual entries indicate stems, transitiveness, 
perfective and imperfective aspects, conjugation, regular and irregular souna changes, shift 
of accent, etc. Includes pronunciation instruction. Used at Harvard, Yale, Cornell, etc. 
738pp. 4¼ x 6½. T208 Paperbound $2.00 

PHRASE AND SENTENCE DICTIONARY OF SPOKEN RUSSIAN. English-Russian, Russi~n-English. 
Based on phrases and complete sentences, rather than isolated words; recognized as one of 
the best methods of learning the idiomatic speech of a country. Over 11,500 entries, indexed 
by single words, with more than 32,000 English and Russian sentences and phrases, in imme
diately useable form. Probably the largest list ever published. Shows accent changes in con
jugation and declension; irregular forms listed in both alphabetical place and under main 
form of word. 15,000 word introduction covering Russian sounds, writing, grammer, syntax. 
15 page appendix of geographical names, money, important signs, given names, foods, 
special Soviet terms, etc. Travellers, businessmen, students, government employees have 
found this their best source for Russian expressions. Originally published as U.S. Government 
Technical Manual TM 30-944. iv + 573pp. 55/s x 83/s. T496 Paperbound $2.75 

PHRASE AND SENTENCE DICTIONARY OF SPOKEN SPANISH, Spanish-English, English-Spanish. 
compiled from spoken Spanish, emphasizing idiom and colloquial usage in both Castilian and 
Latin-American. More than 16,000 entries containing over 25,000 idioms--the largest list of 
idiomatic constructions ever published. Complete sentences given, indexed under single words 
-language in immediately useable form, for travellers, businessmen, students, etc. 25 page 
introduction provides rapid survey of sounds, grammar, syntax, with full consideration of irreg
ular verbs. Especially apt in modern treatment of phrases and structure. 17 page glossary 
gives translations of geographical names, money values, numbers, national holidays, important 
street signs, useful expressions of high frequency, plus unique 7 page glossary of Spanish and 
Spanish-American foods and dishes. Originally published as U.S. Government Technical Man
ual TM 30-900. iv + 513pp. 53/s x 8. T495 Paperbound $1.75 

MONEY CONVERTER AND TIPPING GUIDE FOR EUROPEAN TRAVEL, Charles Vomacka. A con
venient purse-size handbook crammed with information about currency regulations and tipping 
for every European country. Newly added sections cover Israel, Turkey, Czechoslovakia, 
Rumania, Egypt, Russia, Poland. Telephone, cablegram, postal rates; duty-free imports, pass
ports, visas, health certificates; foreign clothing sizes; weather tables. What and when to 
tip in every conceivable travel situation. 6th year of publication. 128pp, 5½ x 5¼. Sturdy 
pape.- binding. T260 Paperbound 60~ 



ESSENTIALS OF RUSSIAN record, A. von Gronicka, H. Bates-Yakobson. 50 minutes spoken 
Russian based on leading grammar will improve comprehension, pronunciation, increase 
vocabulary painlessly. Complete aural review of phonetics, phonemics-words contrasted to 
highlight sound differences. Wide range of material: talk between family members, friends; 
sightseeing; adaptations of Tolstoy's "The Shark;" history of Academy of Sciences; proverbs, 
epigrams; Pushkin, Lermontov, Fet, Blok, Maikov poems. Conversation passages spoken 
twice, fast and slow, let you anticipate answers, hear all sounds but understand normal 
talk speed. 12" 33113 record, Album sleeve. 44-page manual with entire record text. 
Translation on facing pages, phonetic instructions. The set $4.95 

Note: For students wishing to use a grammar as well, set is available with grammar-text 
on which record is based, Gronicka and Bates-Yakobson's "Essentials of Russian" {400pp., 
6 x 9, clothbound; Prentice Hall), an excellent, standard text used in scores of colleges, 
institutions. Augmented set: book, record, manual, sleeve $10.70 

SPEAK MY LANGUAGE: SPANISH FOR YOUNG BEGINNERS, M. Ahlman, Z. Gilbert. Records pro
vide one of the best, and most entertaining, methods of introducing a foreign language to 
children. Within the framework of a train trip from Portugal to Spain, an English-speaking 
child is introduced to Spanish by a native companion. (Adapted from a successful radio 
program of the N.Y. State Educational Department.) Though a continuous story, there are a 
dozen specific categories of expressions, including greetings, numbers, time, weather, food, 
clothes, family members, etc. Drill is combined with poetry and contextual use. Authentic 
background music is heard. An accompanying book enables a reader to follow the records, 
and includes a vocabulary of over 350 recorded expressions. Two 10" 331/J records, total 
of 40 minutes. Book. 40 illustrations. 69pp. 5¼ x 10½. T890 The set $4.95 

Listen and Learn 
LISTEN & LEARN is the only language record course designed especially to meet your travel 
and everyday needs. It is available in separate sets for FRENCH, SPANISH, GERMAN, 
PORTUGUESE, MODERN GREEK, ITALIAN, RUSSIAN, or JAPANESE, and each set contains three 
33 1/J rpm long-playing records-1½ hours of recorded speech by eminent native speakers who 
are professors at Columbia, New York University, Queens College. 

Check the following special features found only in LISTEN & LEARN. 
Dual-language recording. 812 selected phrases and sentences, over 3200 words, spoken 
first in English, then in their foreign language equivalents. A suitable pause follows 
each foreign phrase, allowing you time to repeat the expression. You learn by uncon
scious assimilation. 

128· to 206-page manual contains everything on the records, plus a simple phonetic 
pronounciation guide. 

Indexed for convenience. The only set on the market that js completely indexed. No 
more puzzling over where to find the phrase you need. Just look in the rear of the 
manual. 

Practical. No time wasted on material you can find in any grammar. LISTEN & LEARN 
covers central core material with phrase approach. Ideal for the person with limited 
learning time. 

Living, modern expressions, not found in other courses. Hygienic products, modern 
equipment, shopping-expressions used every day, like "nylon" and "air-conditioned." 

Limited objective. Everything you learn, no matter where you stop, is immediately use- • 
ful. You have to finish other courses, wade through grammar and vocabulary drill, before 
they help you. 

High-fidelity recording. LISTEN & LEARN records equal in clarity and surface-silence 
any record on the market costing up to $6 per record. 

"Excellent ... the spoken records ... impress me as being among the very best on the 
market," Prof. Mario Pei, Dept. of Romance Languages, Columbia University." "Inexpensive 
and well-done ... it would make an ideal present," CHICAGO SUNDAY TRIBUNE. "More 
genuinely helpful than anything of its kind which I have previously encountered," Sidney 
Clark, well-known· author of "ALL THE BEST" travel books. 

UNCONDITIONAL GUARANTEE. Try LISTEN & LEARN, then return it within 10 days for full 
refund, if you are not satisfied. It is guaranteed after you actually use it. 

LISTEN & LEARN comes in 6 useful modern languages-FRENCH, SPANISH, GERMAN, ITALIAN, 
PORTUGUESE, MODERN GREEK, RUSSIAN or JAPANESE-one language to each set of three 
33113 rpm records. 128- to 206-page manual. Album. 

Spanish the set $5.95 German the set $5.95 Japanese the set $5.95 
French the set $5.95 Italian the set $5.95 Russian the set $5.95 
Modern Greek the set $5.95 Portuguese the set $5.95 



14 minutes of speech-12 minutes of normal but relatively slow speech, 2 minutes at 
normal conversational speed 

120 basic phrases and sentences covering nearly every aspect of everyday life and 
travel-introducing yourself, travel in autos, buses, taxis, etc., walking, sightseeing, 
hotels, restaurants, money, shopping, etc. 

32 page booklet containing everything on the record plus English translations and an easy
to-fol low phonetic guide 

Clear, high fidelity quality recordings 

Unique bracketing system and selection of basic sentences enabling you to expand the 
use of your SAY IT CORRECTLY records with a dictionary so as to fit thousands of addi
tional situations and needs. 

Use this record to supplement any course or text. All sounds in each languag~ are illustrated 
perfectly for you. Imitate the speaker in the pause which follows each foreign phrase in the 
slow section and you will be amazed at the increased ease and accuracy of your pronuncia
tion. Available, one language per record, for 

French Modetn Greek 
Italian Japanese 
Spanish Russian 
Dutch Portuguese 
German Serbo-Croatian 
Turkish 

7" (331/3 rpm) record, album, booklet. $1.00 
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Dover publishes books rm a.rt, music, philosophy, literature, languagea, history. social 
sciences, psychology, handcrafts. orientalia., puzzles and entertainments, chess, pets 
and gardens, books explaining science, intermediate a.nd higher ma.thematics math
ematical physics, engineering, bioloaicat sciences, earth sciences, classics of science, etc. 
Write to: 

Dept. ca.trr. 
Dover Publications, Inc. 
180 Va.rick Street, N. Y. 14, N. Y. 
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