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1. Introduction. The problem of convection in a layer heated from below has 
received considerable attention since it is a simple example of fluid motion 
generated by the instability of a basic state. This instability occurs when the 
Rayleigh number, which describes the balance between the available potential 
energy and the energy loss due to dissipation, exceeds a critical value Rc . 

For Rayleigh numbers close to the critical value it has been shown by Schluter, 
Lortz and Busse (1965)1 that among all possible convective motions only the 
two-dimensional convection in the form of rolls is a stable stationary solution 
of the equation of motion in the Boussinesq approximation. Because the two
dimensional solution is relatively simple, it has been explored by various methods. 
Kuo (1961) used an expansion in powers of the convection amplitude. Veronis 
(1965) and Lortz, in an unpublished work, obtained results up to Rayleigh 
numbers of about 40 times the critical value in the case of free boundaries by 
expanding the depending variables in Fourier series. The equations have also 
been solved numerically by Deardorff (1964) and for a very extended range by 
Fromm (1965). 

With the exception of an attempt by Lortz, the problem of the stability of the 
two-dimensional solution at higher Rayleigh number has not been attacked. 
Since instabilities have been observed experimentally by Malkus (1954) and 
others, the question of stability is of particular physical interest. The mathe
matical problem, however, is very difficult because in addition to the gravita
tional cause of instability, the convection flow may become hydrodynamically 
unstable. Yet in the case of large Prandtl number the hydrodynamic cause of 
instability can be disregarded, since the corresponding nonlinear terms are small. 
For this reason we will restrict ourselves in this paper to the limit of infinite 
Prandtl number in which only the gravitational cause for instability is present. 
The importance of this type of instability can be shown by the following simple 
consideration. 

The Rayleigh m1mber for a horizontal layer of depth d with temperature dif
ference !:.T between the boundaries is defined by 

R = ag!:.Td
3 

IIX 

where a is the expansion coefficient, g is the gravitational acceleration, II is the 
kinematic viscosity and x is the thermometric conductivity. At high Rayleigh 
numbers when the heat is transported mainly by convection, the horizontal 
average of the temperature is almost constant throughout the layer. Only near 
the boundaries does it change rapidly to satisfy the prescribed values of the tem-

1 Hereafter referred to as "I". 
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perature at the boundaries. Neglecting the influence of all fluctuating quantities, 
one can define a local Rayleigh number Rb for these boundary layers with the 
thickness a: 

1 (0)3 Rb = 2R d 

Since near the boundary the heat is transported by conduction only, the ratio 
d/o is approximately equal to the Nusselt number Nu which is defined as the 
ratio between the heat transport with convection and the heat transport without 
convection. Thus the condition for the static stability of the boundary layer 
Rb < R. gives a lower bound for the heat transport of a stable convective motion: 

Nu> C~)! 
In the case of free boundaries this condition seems to be satisfied by the two
dimensional solution. In the more realistic case of rigid boundaries, which impose 
a larger constraint on the convection, we expect instability due to this rough 
estimate. 

The problem of stability in dependence on the Rayleigh number has not been 
the only motive for the work described in this paper. Since no horizontal bound
aries are prescribed the two-dimensional solution depends on a wave number a 

corresponding to its spatial periodicity. For supercritical Rayleigh numbers sta
tionary solutions are possible for a certain range of a, depending on the Rayleigh 
number. It turns out that they are stable only in a much smaller range of a, 
and it is interesting to compare their stability property with other properties as 
for example the heat transport. 

The following analysis is divided into two parts. In the first part we describe 
the method for the solution of the stationary convection equations. The method 
can be called a Galerkin procedure applied to a nonlinear problem since it reduces 
the nonlinear partial differential equation to a system of nonlinear algebraic 
equations for the coefficients of a complete set of functions. The algebraic equa
tions are solved numerically. In the second part we analyze the stability of the 
stationary solution against infinitesimal disturbances which are nonoscillatory 
with respect to time. This problem leads to a linear homogeneous equation for 
the disturbances with the growth rate u as eigenvalue. The solution of this 
problem can be obtained in close analogy to the stationary problem. 

2. The Stationary Solution. For the description of convective motions in a 
fluid layer heated from below, generally the Navier-Stokes equations of motion 
are used in the Boussinesq approximation. This takes into account the tempera
ture dependence of the density in the gravity term only. Thus the equations for 
the velocity vector Ui of the fluid and the heat equation for the deviation (} of 
the temperature from the static state have the following form in the usual dimen
sionless units based on the depth d as length scale, d2}{-1 as time scale, and 
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R-1tJ.T as scale of the temperature: 

tJ.u· + }"'{J - a·p = Pr-1 (U a U + ~u.) • ., J J' at' 

a 
tJ.O + RAjUj = UJaj(J + at (J 

a,Uj = ° 
(1) 

We assume a system of Cartesian coordinates with x, y in the horizontal dimen
sions and z in the vertical direction opposite to the direction of the gravity force. 
In this system the unit vector A. has the components (0, 0, 1). The fluid layer 
is confined between two horizontal solid boundaries at z = ±!, on which con
stant temperatures are prescribed. Hence the boundary conditions of the problem 
are given by 

Ui = 0, (J = 0, at z = ±!. 
The equations (1) contain two different nonlinear terms. The term with the 

inverse of the Prandtl number as factor describes the momentum advection; 
the nonlinear term in the second equation gives the divergence of the convective 
heat flux. The latter term is characteristic for the convection problem, and there
fore the essential features of finite amplitude convection are still present in the 
case of infinite Prandtl number in which the nonlinear term of the first equation 
in (1) vanishes. In this limiting case it is easily shown that the vertical com
ponent of the curl of the velocity vanishes, since the corresponding part of the 
equation of motion 

tJ.(a",UII - a1lU.,) = 0 

together with the boundary condition admits only the vanishing solution. Using 
this fact, we will write the horizontal components of the velocity as the gradient 
of a potential a,v. Because the vertical component is determined by the continu
ity equation, the general form of a velocity field with vanishing divergence and 
vanishing vertical component of the vorticity can be written 

U. o,v 

with 

O. = aiaj"i - AitJ. = (a"a" alia., -a!" - a~lI) 

Eliminating the pressure term we obtain the following equations for v and (J: 

tJ.tJ.v - (J = 0 

tJ.(J - R (a;z + a;lI) v 

wi th the boundary conditions 

(J = v = a,v = ° 

a 
OjVaj(J + - (J 

at 

at z = ±!. 

(2) 

(3) 
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Since we are interested in stationary two-dimensional solutions of the prob
lem, we will neglect the derivatives with respect to the t- and y-coordinates for 
the rest of this section. Assuming further that the solution is periodic in the x
direction, we expand 8 into a complete set of Fourier modes which satisfy the 
boundary condition for 8. 

8 = LA,. bA.eiAax sin I'1I"(z + !) (4) 

The summation runs through all integers - 00 < 'A < 00, 1 ~ I' < 00 with 
b'A = b..--}.. Using the general form (4) for 8 we can solve the linear equation (2) 
for v exactly: 

where 

v. ('Aa,z) sin I'1I"(z +!) 
[('Aa)2 + (1'11")2)2 

V LA,. bA.eiAaxv.('Aa,z) 

1 'nh a h h a inh 2 S1 'A 2 cos 'Aaz - z cos 'A? s 'Aaz 
------------------------------(foroddl') 

sinh 'A ~ cosh 'A ~ - A. ~ 
2 2 2 1'11" 

+ [('Aa)2 + (1'11")2)21 ! cosh 'A ~ sinh 'Aaz - z sinh 'A; cosh 'Aaz 
2 2 (for even 1') 

sinh 'A ~ cosh A. ~ - 'A ~ 
2 2 2 

is the solution of 

[a~. - ('Aa)2]2v.('Aa,z) = sin I'1I"(z + !) 
with the boundary condition (3) for v. in place of v. 

In order to determine the unknown coefficients bx. we multiply the remaining 
second equation in (2) by e-iXax sin /-I1I"(z + !) and take the average over the 
fluid layer. Using for )( and /-I all integers in the range of 'A and 1', we obtain an 
infinite set of algebraic equations for the coefficients bA, as functions of the Ray
leigh number R. The analysis of these equations can be simplified because of the 
symmetry of the equation. The symmetry of the equation with respect to x 
allows us to assume the same symmetry for the solution. Furthermore, the non· 
linear part is quadratic and antisymmetric in z. Because of this fact the com
plete set of equations contains a subset of equations in which only coefficients 
with even 'A + ~ appear. We will restrict ourselves to this subset of equations 
since the corresponding subset of solutions contains all possible solutions at 
low Rayleigh number, Le., below the critical Rayleigh number of solutions cor
responding to a layer with half the depth of the given layer. 

Since no method is known to solve the infinite system analytically, we have to 
approximate the solution by the solution of a finite system which can be solved 
numerically, It turns out to be appropriate to reduce the infinite system by omit-
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ting all modes with I A I + v > N, where N is a positive even integer. We will 
regard a solution of this finite system as a satisfactory approximation if it differs 
by a sufficiently small amount from the solution obtained with N + 2 instead 
of N. As a measure for the quality of an approximation we introduce the con
vective heat transport. This quantity is given by the average value of - (J.B 
at the boundary 

H - L:;'..1 v1f'bo• 

30rl----------------------------------~ 

~ 
I 
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FIG. 1: The dependence of the Fourier components of (J on the Rayleigh number for 
(Ji = 3.117. 

and is very sensitive to the influence of the higher modes. We will follow Veronis 
(1965) in regarding the approximation as satisfactory if the corresponding 
approximation of the heat transport 

HN - 2:::=1 v1f'bov 

differs from HN+2 by less than 1%. Since the number of equations increases 
rapidly with N and the results show a strong convergence of H N , the deviation 
from the exact value H is of the same magnitude. The results of the calculations 
are shown in several figures. Figures 1 and 2 show the dependence of the lowest 
Fourier components ~v on the Rayleigh number. It is interesting to note that 
they vary approximately as powers of R - Rc. The convective heat transport 
approaches the power law 

H 
(

R - Rc)·260 
R - Rc = 645.3 
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We have plotted the results only for a = 3.117 which is the value of the solution 
at the critical Rayleigh number Rc = 1707.8. The dependence of the Fourier 
components for other values of a is qualitatively the same. As an example the 
dependence on a for the Rayleigh number 10,000 is shown in Figure 3. In slight 
violation of our criterion above, we used data obtained with N = 6 in the case 
of R = 5,000, for which Hs differs from H6 by 1.1 %. This is indicated in Table I 
where we give values of the heat transport for different values of a and for dif-

• I ... 
,D..t 

100 1= 
80 

2 4 6 8 10 20 
10-a(R-Rc) 

FIG. 2: The Fourier components of (J in dependence of R - R. for a = 3.117 

ferent approximations. They show that the value a of the solution with maximum 
heat transport increases with R. 

3. Stability Analysis. The method of solution for the stationary problem which 
was described in the last section has the advantage that it can be easily com
bined with a stability analysis. For the determination of the stability of a station
ary solution we superpose infinitesimal disturbances. If any disturbance exists 
with growing time dependence, the stationary solution is unstable; otherwise we 
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FIG. 3: The Fourier components of () at R = 10000 

TABLE I 
CONVECTIVE HEAT TRANSPORT H N 

R N a = 2.4 a = 2.7 I a = 3.117 a = 3.6 
I 

a = 4.0 a = 4.5 

2000 6 430.5 352.5 
2500 6 1202.8 1120.5 
3000 6 2013.5 1953.6 1776.4 1403.3 
5000 6 5420.3 5614.5 5627.1 5483.4 

8 5551.1 
I 10000 6 

I 

16595 I 
8 15234 15761 16233 16482 I 16483 16244 

10 I 16133 
20000 10 40552 41859 42272 43260 43669 
30000 10 72802 74969 76022 

12 74431 
I 

will regard it as stable. The equations for the infinitesimal disturbances v, 8 
follow from eq. (2): 

AM-8=O 

- (2 2) - a-AfJ - R axx + allY v = Ojv(}jfJ + OjVaJO + at fJ 

(6) 

In order to make a complete stability analysis we have to admit disturbances 
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o with arbitrary dependence on the three spatial coordinates restricted only by 
the boundary condition. However, since the equations (6) are linear differential 
equations with constant coefficients with respect to the time and the y-coor
dinate and with periodic coefficients with respect to the x-coordinate, the general 
solution can be written as a sum of solutions which depend exponentially on the 
three coordinates multiplied by a function ot x with the same periodicity as the 
stationary solution. Hence it is suffi cient to discuss disturbances of the general 
form 

o = (L>.v b>..ei>.ax sin V'lr(z + t) )e'(dx+blll+~t 
where the summation runs through all integers - 00 < X < 00, 1 ~ " < 00. 

As in the stationary problem we satisfy the first equation in (6) and the boundary 
conditions for fJ exactly by writing 

fJ = I L>.v b>.vei>.axvv( V (Xa + d)2 + b2,zl e'(dx+bYl+~t 
By multiplying the second equation in (6) with sin jJ.'lr(z + !)e-·(xax+dx+blll-u

t 

and averaging it-the indices x, jJ., running through the same range as the in
dices X, v--:we transform the equation into a system of linear equations for the 
coefficients b>. •• Because of the symmetry of the stationary solution the system 
separates into a system for the coefficients with even X + " and a system with 
odd X + v. To approximate these infinite systems by a finite number of equa
tions, we neglect-as in the case of the stationary solution-all modes with 

\X\ +" > N. 

Thus we have reduced the stability problem to the determination of the eigen
value u with the highest real part for two finite systems of equations. 

Since the stability problem not only depends on the parameters R and a 
introduced by the stationary solution but also on the free parameters band d] 
the amount of numerical calculations is still considerable. For this reason we 
calculate only the eigenvalue with the lowest absolute value using an iterative 
method [see for example Zurmiihl (1964)]. Since it is known from the analysis 
in I that stable two-dimensional solutions exist in the neighborhood of the 
critical Rayleigh number] this method determines the growth rate with the high
est real part as long as this growth rate is real. 

It seems unlikely that complex growth rates with higher real parts exist be
cause all eigenvalues are real in the neighborhood of the critical Rayleigh number 
according to the analysis in §I, and because the calculated eigenvalues turn out 
to be real in all cases. We can not exclude, however, this possibility, and hence 
the stability analysis is incomplete in this sense. For simplicity we will use the 
term "stability" in the further discussion as an abbreviation for "stability with 
respect to disturbances with nonoscillatory time dependence". 

Since the calculations showed in all cases that the most critical disturbances 
with the highest value of the growth rate for given values of R, a, b, correspond 
to vanishing d, we can neglect the parameter d in the further discussion. 

The range of stability of the stationary solution is mainly limited by the solu-



148 F. H. BUSSE 

tions of the system with odd A + P. The highest growth rates in this case are 
plotted in Fig. 4 with horizontal Rayleigh numbers as labels. The value b of the 
most critical disturbance is approximately constant for a given Rayleigh number 
and varies from 3.117 at the critical Rayleigh number to 4.5 at the second criti
cal Rayleigh number at which the stability range of the stationary solution 
closes. The amount of the higher modes in the disturbances increases more 
rapidly than in the stationary solution, indicating the destabilizing influence of 
the temperature boundary layer. The calculation of the growth rate nevertheless 
remains sufficiently accurate and differs by less than .05 when N is replaced by 

0.2 

0.1 .. 
I 
1= 
X 
b 
I 

0 

-0.1 

2 3 4 
a-

FIG. 4: The growth rates of disturbances with odd A + /I (solid lines) and with even 
A + /I (dashed lines). 

N + 2. The corresponding difference for the second critical Rayleigh number 
can be used as an error estimate: 

R2 = 22600 ± 100 

Although the calculations have been carried out for selected values of R and a 
only, we have plotted the range of stability in Fig. 5 because the results seem 
to depend very smoothly on the parameters. 

The stability boundary for a < a c and Rayleigh numbers less than 8000 is 
formed by solutions of the system with even A + P. An exact solution of this 
system is given by ()' = 0, v = iJzv, () = iJzO, which follows by differentiation of 
the stationary equations. The solutions with positive growth rate are adjacent 
to this exact solution. Since the growth rate and the value of b for the most 
critical disturbance increase quadratically from zero after crossing the stability 
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boundary, the calculations in this case are less accurate. The growth rates for 
these disturbances are plotted in Fig. 4 with dashed lines. The connection with 
the exact solution shows that this type of instability tends to establish a roll 
solution of higher wave number. On the other side the relatively high wave num
ber b of the critical disturbances with odd A + v at higher Rayleigh numbers 
indicates that this kind of instability leads to a new three-dimensional form of 
convection. In the neighborhood of the critical Rayleigh number, Rc , the form 
of the stability region is compatible with the prediction of the theory in 1.2 
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FIG. 5:The region of stability of two-dimensional convection with respect to disturb
ances with non-oscillatory time dependence. 

4. Conclusion. The results of the stability analysis show that stationary two
dimensional solutions are stable in a small part. of the wave-number range of 
possible solutions up to the Rayleigh number 22600 where all two-dimensional 
solutions become unstable. The value of the parameter 0: for the most stable 
solution remains essentially constant with increasing Rayleigh number. Like the 
stationary solution with maximum heat. t.ransport, however less pronounced, 
the most stable solution has a slightly increasing wave number 0:. A third physi
cally distinguished solution, which shows a similar dependence on the wave num
ber 0:, is the solution with minimum potential energy. Besides these analogies, 
however, no direct connections can be drawn between the property of stability 
and other simple physical properties. 

Although the limit case of infinite Prandtl number can only be approximated 
in experiments, some evidence seems to exist for a transition corresponding to the 

2 Figure 1 in I has been drawn incorrectly. The right side of the stability boundary 
is given by 11 parabola instead by a straight line. 
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second critical Rayleigh number. Heat transport measurements by Malkus (1954) 
indicate transitions either at the Rayleigh numbers 11000 and 26000 or at 18000. 
The optical observations by T. Rossby (1966) show a change from two-dimen
sional flow to three-dimensional flow at Rayleigh numbers of about 20000. To 
confirm this evidence, however, more experiments are necessary. 
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