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Preface 

A few years ago, in my role as a member of the editorial board of Advances in 
Atomic, Molecular, and Optical Physics, I proposed that a special volume in that 
series be devoted to the rapidly emerging field of Atom Interferometry. This 
suggestion was met enthusiastically by the editors of that series, Benjamin 
Bederson and Herbert Walther. With their encouragement, I started to solicit 
contributions for this volume in the spring of 1994. Since I was fortunate enough 
to obtain commitments from many of the researchers who were instrumental in 
the development of atom interferometry, a decision was made to go ahead with 
the publication of a special volume in the Advances series. Somewhere along the 
line, the publishers at Academic Press, with the consent of Bederson and 
Walther, decided that it would be better for this book to be published as a stand- 
alone volume rather than as a special supplement to the Advances series. Be that 
as it may, the contributions to this book were written in the spirit of Advances 
articles, that is, reasonably long contributions summarizing recent accomplish- 
ments of the authors. 

When I was on the faculty at New York University, I developed a course for 
nonscience majors entitled 20th Century Concepts of Space, Time, and Matter, 
which I now teach at the University of Michigan. An important component of 
that course, as well as any introductory physics sequence, is an appreciation of 
the fact that both electromagnetic radiation and matter exhibit wave-like proper- 
ties. The wave nature of electromagnetic radiation is often illustrated using some 
form of Young's double slit apparatus, which produces interference fringes that 
are explained in terms of constructive and destructive interference of the radia- 
tion that has traveled different optical path lengths to the screen on which the 
pattern is displayed. The wave nature of matter is often illustrated using electron 
diffraction patterns. 

Although the equations that govern the propagation of electromagnetic radia- 
tion (Maxwell's equations) and nonrelativistic matter waves (Schrrdinger's 
equation) are not the same, many of the basic wave-like properties of electro- 
magnetic waves and matter waves are quite similar. Thus, it is possible for both 
electromagnetic radiation and matter to exhibit particle-like behavior if the 
wavelength of the radiation or matter waves is much smaller than all the relevant 
length scales in the problem, such as the size of obstacles that are scattering the 
waves. On the other hand, both electromagnetic waves and matter exhibit wave- 
like properties when the wavelength of the radiation or matter waves is compara- 
ble with the dimensions of the obstacles that are scattering the waves. 

xiii 
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An interferometer is a device that exploits the wave nature of light. Typically, 
an interferometer contains a beam splitter that separates an incident beam of 
radiation or matter into two or more mutually coherent outgoing beams. The 
beams then recombine on a screen and exhibit interference fringes. Sometimes, 
additional beam splitters or mirrors are used to recombine the beams. Radiation 
and matter interferometers work on the same principle mthey  differ only in the 
wavelength of the working medium (radiation or matter) and the nature of the 
beam splitters and mirrors that are needed. The wavelength associated with mat- 
ter waves is typically 100 to 1000 times smaller than the wavelength of visible 
light. 

Interferometers using visible light as the working medium date to the 19th 
century. The wave nature of electrons was demonstrated by Davisson and Ger- 
mer in 1927 by scattering electrons from nickel crystals. Crystals, microfabri- 
cated slits, and electric fields can be used as "optical" elements for scattering 
electron waves. Electron interferometers were constructed using electron 
biprisms in the 1950s [for a review, see M611enstedt, G. and Lichte, H., in Neu- 
tron Interferometry, edited by Bonse, U. and Rauch, H. (Clarendon Press, Ox- 
ford, 1979), pps. 363-388]. Neutron interferometers were developed first in the 
1960s using refraction from biprisms and Bragg scattering from crystals, but 
major advances in the field occurred following the use of interferometers cut 
from single Si crystals [for reviews, see, for example, Neutron Interferometry, 
edited by Bonse, U. and Rauch, H. (Clarendon Press, Oxford, 1979) and Neutron 
Optics by Sears, V. F. (Oxford University Press, New York, 1989)]. With the 
development of ultra-cold neutron sources, the de Broglie wavelength could be 
increased from a characteristic value of about 1.0 Afor thermal neutrons to tens 
of Afor ultra-cold neutrons, enabling one to use slits as optical elements [for re- 
views, see, for example, Ultra-Cold Neutrons by Golub, R., Richardson, D., and 
Lamoreaux, S. K. (Adam Hilger, Bristol, 1991) and G~ihler, R. and Zeilinger, A., 
Am. J. of Phys. 59, 316-324 (1991)]. 

The major stumbling block in the development of atom interferometers has 
been development of atom optics, that is, beam splitters and mirrors for atom 
matter waves of which the de Broglie wavelengths are typically a fraction of an 
angstrom. In the past five years, however, significant advances have been made 
in atom interferometry. Many of the research groups that contributed to these 
advances and pioneered the field of atom interferometry are represented in this 
volume. 

The chapter by Schmiedmayer, Chapman, Ekstrom, Hammond, Kokorowski, 
Lenef, Rubenstein, Smith, and Pritchard reviews many of the important contri- 
butions to atom interferometry made by this group. The atom interferometers are 
constructed using a beam of sodium atoms as the matter wave and microfabri- 
cated structures as the "optical" elements. Diffraction from a single grating has 
allowed them to distinguish between sodium atoms and sodium dimers in their 
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beam. Using a three grating Mach-Zehnder atom interferometer, they were able 
to measure the electric polarizability of the ground state of sodium and the index 
of refraction of the sodium matter waves in a buffer gas environment. A key fea- 
ture of their measurements was the physical separation of the matter waves in 
the two arms of the interferometer. They were also able to monitor the loss of 
atomic coherence resulting from scattering of radiation from the matter waves in 
the interferometer. 

Batelaan, Bernet, Oberthaler, Rasel, Schmiedmayer, and Zeilinger also report 
on an atom interferometer of the Mach-Zehnder type, but with standing-wave 
fields rather than microfabricated gratings used as the optical elements. The 
matter wave used in their experiments was metastable argon, and different tran- 
sitions could be used to study the effect of spontaneous emission on the interfer- 
ence signals. In addition, they carried out an experiment using three microfabri- 
cated structures to scatter the metastable argon atoms, in which the atoms' 
center-of-mass motion could be treated classically. They show that the "shadow" 
or moir6 pattern that is formed when atoms pass through the gratings can be 
used to measure the value of the acceleration of gravity and the Sagnac effect 
(modification of the fringe pattern resulting from rotation of the apparatus). 
Finally, they study scattering from standing wave light fields in the Bragg scat- 
tering limit. 

Clauser and Li compare interferometers in which the scattered matter waves 
are separated physically within the interferometers with those in which the scat- 
tered waves overlap within the interferometer. Both the Talbot and Talbot-(Ernst) 
Lau interferometers are examples of the latter class of interferometers. Clauser 
and his colleagues were the first to stress that Talbot-Lau interferometry had im- 
portant potential applications in atom interferometry. In this article, Clauser and 
Li discuss the basic features of both the Talbot and Talbot-Lau interferometers, 
and present results from experiments in which potassium atoms were used as the 
matter waves in a three (microfabricated) grating Talbot-Lau interferometer. Ap- 
plications discussed include Sagnac and electric polarizability measurements, as 
well as interferometric studies of matter wave decoherence produced by light 
scattering. 

The chapter by Shimizu includes a review of his work on two-slit interference 
patterns using metastable neon atoms released from a magneto-optical trap. This 
is followed by a description of a method for creating a binary hologram. When 
such a hologram is fabricated on a SiN film and illuminated with a matter wave 
of neon, the original object is reconstructed. Also included in this contribution is 
a report of a measurement of the second order correlation function associated 
with a matter wave. 

Kurtsiefer, Spreeuw, Drewsen, Wilkens, and Mlynek explore several aspects 
of atom optics in their contribution. They begin by reviewing the interaction of 
atoms with radiation fields. For a beam of atoms scattered by a standing-wave 
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optical field that is detuned from the atomic transition frequency, the radiation 
field can be considered as a lens for the matter waves. Methods for correcting 
the various aberrations associated with this type of lens are discussed, as well as 
applications to atom lithography and surface probes. The authors then describe 
an experiment using metastable helium atoms scattered by a resonant standing- 
wave field; as a result of spontaneous emission following the atom-field interac- 
tion, the visibility of the atom interference pattern is reduced. The visibility can 
be restored by measuring only those atomic events that are correlated with spe- 
cific spontaneous emission modes. Additional methods are described for prepar- 
ing entangled states involving the atoms and one or more photons. Finally a pro- 
posal for an atomic boson laser is set forth in which spontaneous emission into 
bound states of an optical lattice is stimulated by identical atoms already in that 
state. 

The subject matter shifts slightly with the article by Briegel, Englert, Scully, and 
Walther. They begin a discussion of atom interferometry in which intemal state la- 
bels of the atoms take on an important role. The first part of their chapter is devoted 
to a study of internal state atomic interference for atoms passing through modified 
versions of the Young's double slit experiment. They discuss complementarity and 
the importance of "which path" information in establishing interference patterns. 
The use of micromaser cavities in such experiments and the role played by the 
quantized field modes in the cavities is emphasized. The second half of the chapter 
contains a critical assessment of the possibility to recombine different spin states of 
atoms that have been split by a Stem-Gerlach magnet. 

In his contribution, Bord6 presents a general discussion of the theory of atom 
interferometers, including those employing either microfabricated slits or stand- 
ing-wave fields as beam splitters and combiners. The role played by the internal 
states of the atoms is stressed. He studies Bragg scattering in the limit of off-res- 
onance excitation and also uses a wave packet approach in analyzing the inter- 
ferometers. Bord6 presents a unified approach to matter-wave interferometry in 
which the atoms, represented by Dirac .fields, are coupled to the electromagnetic 
field and to inertial fields. Effects such as the recoil splitting, gravitational shift, 
Thomas precession, Sagnac effect, Lense-Thirring effect, spin-rotation effect, 
and topological phase effects emerge naturally from this treatment. 

The next chapter by Sterr, Sengstock, Ertmer, Riehle, and Helmcke contains 
contributions from groups at the University of Hannover and the Physikalisch- 
Technische Bundesanstalt. The atom interferometers studied by these groups use 
either calcium or magnesium atoms as the active element and optical fields as 
the beam splitters and combiners. Internal state labeling plays an important role 
in these interferometers, in which the scattered waves overlap within the inter- 
ferometer. Experiments are carded out for a geometry corresponding to a Ram- 
sey-Bord6 interferometer using both continuous wave (cw) and pulsed optical 
fields. For the cw experiments, thermal or laser-cooled atomic beams are sent 
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through several field regions where state-dependent scattering occurs. In the 
pulsed experiments, the interferometer is constructed in the time domain rather 
than the spatial domain. Among the measurements discussed are those of de 
Stark shift and polarizability, ac Stark effect, Aharonov-Bohm effect, Aharonov- 
Casher effect, and the Sagnac effect. Also included are applications of the inter- 
ferometers as frequency standards. 

The chapter by Young, Kasevich, and Chu also discusses Ramsey-type inter- 
ferometers, although the working atomic transition is one between different 
ground state sublevels rather than between a ground state level and a long-lived 
excited state level as in the case of calcium and magnesium. A review of the the- 
ory of the Ramsey interferometer is given, including effects of atomic recoil. 
The beam splitters and combiners used by Young, Kasevich, and Chu are based 
on single or multiple Raman pulses of counterpropagating optical fields, or on 
adiabatic transfer between the ground state sublevels. Both of these methods are 
reviewed. Atom interferometric measurements of the acceleration of gravity, 
variations in the acceleration of gravity, and the fine structure constant are re- 
ported, and the potential use of the interferometer as a gyroscope is discussed. 

The article by Dubetsky and myself returns to calculations of Talbot and Talbot- 
Lau interferometry using microfabricated slits as scatterers for the matter waves. 
Scattering in the classical and Fresnel diffraction (Talbot and Talbot-Lau effects) 
limits is interpreted in terms of the recoil that atoms undergo when they are scat- 
tered from the microfabricated gratings. It is shown that it is possible to produce 
atomic density profiles having periods that are a fraction of the periods of the mi- 
crofabricated structures in both the classical and Fresnel diffraction limits. More- 
over, it is shown that Talbot effect fringes can be produced even when the atomic 
beam has a thermal longitudinal velocity distribution. Processes that lead to modu- 
lation of the atomic density profile are classified into those that rely critically on 
quantization of the atoms' center-of-mass motion and those that do not. 

Of course, in a volume of this size it is impossible to present chapters from all 
the individuals and groups who have made important contributions to atom inter- 
ferometry. In particular, material directly related to atom interferometers has 
been included somewhat at the expense of research focused in the areas of atom 
optics and atom lithography. Moreover, since atom interferometry is a rapidly 
developing field, many new and important contributions will have appeared be- 
tween the planning stage and publication date of this volume. Readers are re- 
ferred to the chapters of this book for additional references as well as the follow- 
ing journal volumes, which are special issues devoted to atom interferometry: 

�9 Applied Physics, Volume B 54, Number 5, May, 1992 

�9 Journal de Physique H, Volume 4, Number 11, November, 1994 

�9 Quantum and Semiclassical Optics, Volume 8, Number 3, June, 1996. 
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I. Introduct ion 

In the 19th century, the work of Fizeau (1853), Michelson (1881), Rayleigh 
(1881), and Fabry and Perot (1899) with light interferometers established a tra- 
dition of beautiful experiments and precise measurements that continues to this 
day. Shortly after the de Broglie 1924 proposal that every particle should exhibit 
wavelike behavior, atomic diffraction was observed in scattering from crystal 
surfaces (Estermann and Stern 1930). Subsequently, matter wave interferometry 
with electrons (Marton, 1952; Marton et al., 1954; Mollenstedt and Duker, 
1955) and neutrons (Maier-Leibnitz and Springer 1962; Rauch et al., 1974) was 
demonstrated. Today, neutron and electron interferometry are invaluable tools 
for probing fundamental physics, for studying quantum mechanical phenomena, 
and for making new types of measurements. For an overview of matter wave in- 
terferometry, see Bonse and Rauch (1979) and Badurek et al. (1988). 

The scientific value of interferometry with atoms, and even molecules, has 
long been recognized. In fact, the concept of an atom interferometer was 
patented in 1973 (Altschuler and Franz 1973) and has been extensively dis- 
cussed (Chebotayev et al., 1985; Bordr, 1989; Special Issue Atom Optics, 1992, 
1994). Atom interferometry offers great richness, stemming from the varied in- 
ternal structure of atoms, the wide range of properties possessed by different 
atoms (e.g., mass, magnetic moment, absorption frequencies, and polarizability), 
and the great variety of interactions between atoms and their environment (e.g., 
static E-M fields, radiation, and other atoms). 

The technology for the production and detection of beams of atoms and mol- 
ecules of many different species is well developed. Even a sophisticated super- 
sonic molecular beam machine like the one used in our experiments (and de- 
scribed in Section II) can be built largely of commercially available components 
at moderate expense, unlike the nuclear reactor required for neutron beams. 
Hence, the delay in the development of atom interferometers can be attributed to 
the lack of suitable optical elements for coherently manipulating atomic and 
molecular de Broglie waves. Therefore, it is appropriate that our review address 
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(in Section III) the recent advances in atom optics that have allowed the develop- 
ment of atom interferometers. We concentrate mostly on atom optics techniques 
based on nanofabrication technology, since this is the type employed in our atom 
and molecule interferometer. 

These advances have allowed us to construct a versatile three grating 
Mach-Zehnder atom and molecule interferometer (Keith et al., 199 l a; Schmied- 
mayer et al. 1993; Chapman et al., 1995a). Over the past few years our work at 
MIT has focused on the development of new techniques for atom and molecule 
interferometry (Schmiedmayer et al., 1994a; Hammond et al., 1995; Chapman et 
al., 1995a) and especially on the application of atom interferometers to the three 
classes of scientific problems for which they are ideally suited: study of atomic 
and molecular properties (Ekstrom et al., 1995; Schmiedmayer et al., 1995a), in- 
vestigation of fundamental issues (Chapman et al., 1995c, Schmiedmayer et al., 
1995b), and measurement of inertial effects (Lenef et al., 1996). 

In this chapter, we provide an overview of the recent accomplishments in 
atom and molecular optics and interferometry at MIT. We begin with a discus- 
sion of the details of our experimental apparatus (Section II) and give an 
overview of our recent~accomplishments in atom and molecular optics (Section 
III). We then describe our atom and molecule interferometer, which is unique in 
that the two interfering components of the atom wave are spatially separated and 
can be physically isolated by a metal foil (Section IV), and give an overview of 
atom interferometry techniques (Section V). 

Our interferometer is especially well suited to the study of atomic and molec- 
ular properties (Section VI), as it enables us to apply different interactions to 
each of the two components of the wave function, which in turn permits spectro- 
scopic precision in the study of interactions that shift the energy or phase of a 
single state of the atom. We describe an experiment in which we have used this 
capability to determine the ground state polarizability of sodium to 0 .3%man  
order of magnitude improvementmby measuring the energy shift due to a uni- 
form electric field applied to one component of the wave function. In a different 
experiment, we measured the index of refraction seen by sodium matter waves 
traveling through a gas sample, thus determining previously unmeasureable col- 
lisional phase shifts, which we interpreted to reveal information about the form 
of the long-range interatomic potential. 

Our studies of fundamental issues (Section VII) have both investigated and 
taken advantage of effects arising from the internal structure of atoms. In partic- 
ular, we have addressed the limitations to interferometry due to complexity of 
the interfering particles and conducted experiments investigating the loss of co- 
herence due to the scattering of a single photon from each atom passing through 
the interferometer. As a probe of the basic process of measurement in a quantum 
system, we performed a correlation experiment in which the lost coherence was 
regained. Finally, as a demonstration of the application of atom interferometers 
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as inertial sensors, we demonstrated both the accuracy and the sensitivity of  out 
interferometer to rotation (Section VIII). 

II. Beam Machine 

All the experiments described in this review were carried out in a 3-meter-long 
beam machine using a Na or Na 2 beam seeded in a supersonic noble carrier gas. 
After an overview of the apparatus, we will outline the various techniques used 
to prepare and detect atomic and molecular beams. The reader more interested in 
atom interferometry and its applications may wish to skip this section and return 
later for more information on the experimental details. 

A. VACUUM SYSTEM 

The vacuum envelope of  our atom beam machine consisted of  five differentially 
pumped chambers (Fig. 1). The first chamber, which enclosed the supersonic 
beam source, was pumped by a special high throughput 4 in Stokes ring jet 

Stokes Booster 
Pump 

I st Differential 
Source Pumping Chamber 2nd Differential Interferometer Chamber 

Chamber - Pumping Chamber 

10" Diffusion 
Pump 

Detector Chamber 

Bellows for 
vibration isolation~ 

80 l/s Turbo Pump 
4" Diffusion Pump 

4" Diffusion 
Pump 

Skimmer Stern Gerlach Magnet 
Se dium. / [ i . J ] 1st Atom Grating,, \ 2nd Atom Grating 3rd Atom Grating s . . . . . . . .  ~x,,x. \ - ~ gz::::::~ l I 1 1 J . 

[~ ' O p t i c a l ~  ] / t  'I ~ / ~ 7  ~ ] ~ [ ~ ~ "  L ~ ~ ~  
PumDin~ L , ~ / t . Seco d " "ght nterferometer Hot Wire Detector Region \ Knife Edge 

First Slit for "Broom" 
FIG. 1. T h e  vacuum chamber of our atomic beam machine. The lower figure gives a top view, 

showing the paths of both the atom interferometer and the laser intefferometer (which is used to 
measure the relative positions of the atom diffraction gratings). 
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booster diffusion pump with a pumping speed of 100 liter/sec at 0.015 torr. The 
gas load from the source into this chamber was about 0.5 torr-liter/sec, resulting 
in a typical pressure of a few mtorr. A conical skimmer removed the central por- 
tion of the expanding gas from the oven and also formed the aperture into the 
second chamber, allowing roughly 0.3% of the gas load from the source into this 
differential pumping region. 

The second and third chambers provided access for beam preparation, colli- 
mation, and manipulation as well as the differential pumping needed to achieve a 
good vacuum in the main experimental chamber. In the second chamber the 
pressure was maintained at 2 x 10 -6 torr by an unbaffled 10 in diffusion pump 
(4200 liter/sec). The beam traveled only about 20 cm in this chamber, then en- 
tered the third chamber through the first of two collimation slits. The third cham- 
ber was held at a pressure near 5 x 10 -7 torr by a 4 in diffusion pump (800 
liter/sec) hung from a water cooled elbow. The aperture between the third cham- 
ber and the main chamber was 1 cm in diameter and could be sealed with a 
transparent Plexiglas gate valve that allowed optical alignment within the evacu- 
ated main chamber with the source chamber open to air. 

The 150 cm long main chamber contained all of the interferometer compo- 
nents except the detector. Pumped by a 4 in baffled diffusion pump, the pressure 
in this chamber was typically 3 X 10 -7 torr, good enough to limit losses from 
scattering to below 10%. A 1 cm aperture with another Plexiglas gate valve sep- 
arated the main chamber from the detector chamber. 

The detector chamber required the lowest possible pressure, to reduce false 
counts in the detector due to residual background gas. This chamber was 
pumped with a turbo pump and in addition had a liquid nitrogen pumping sur- 
face, a combination yielding pressures of 2 to 5 X 10 -8 torr. The turbo pump 
was hung on a 6 in vacuum bellows to isolate its vibrations from the rest of the 
machine. 

To further reduce vibrations in the machine, the roughing pumps were situ- 
ated several meters from the machine and mounted on vibration isolation pads. 
Roughing lines were mounted solidly to a wall and connected to the machine 
with flexible vibration isolating lines. In addition, we could lift up the whole 
vacuum system and hang it from the ceiling, thereby significantly reducing the 
higher frequency vibrations transmitted by the building floor. 

B. SUPERSONIC SOURCE 

The atomic and molecular sodium beams were produced in an inert gas supersonic 
expansion seeded with sodium vapor. The most important feature of this source was 
that it produced an intense beam with a narrow longitudinal velocity distribution 
(<5% rms), which was necessary for most of the experiments that we undertook. 
Sodium metal, contained in a stainless steel reservoir, was heated to temperatures as 
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high as 800~ (>5 torr vapor pressure of sodium) and mixed with a noble gas at 
high pressure (typically > 2  atm). The noble gas/sodium mixture flowed through a 
70/xm diameter nozzle into vacuum, producing an isenthalpic supersonic expan- 
sion. The result was a very cold beam. The 500/xm skimmer orifice leading to the 
first differential pumping chamber was located inside this expansion, allowing the 
cooler core of the supersonic beam to propagate down the rest of the machine with 
low probability of further collisions. The total detected brightness of the sodium 
beam was as large as 1021 atoms str -1 sec -1 cm -2. 

Clogging of the 70/xm nozzle was prevented by carefully purifying the inert 
carrier gas before transferring it into the source. We used two gas purifier stages 
between the gas handling system and the source, yielding residual water and 
oxygen impurities of a few ppb. With the gas purifier system in place, we were 
able to operate our source continuously for several weeks. 

An additional feature of this source is that the velocity (and hence the de 
Broglie wavelength) of the atomic or molecular sodium is (to within a few per- 
cent) determined by v = ~/5kbT/mcarder, where mcarrie r is the mass of the inert car- 
rier gas (Scoles, 1988). Hence, the velocity of the source could be varied by 
changing the carrier gas (Table I). With a source temperature of 700~ and argon 
as the cartier gas, our supersonic sodium beam had a mean velocity of 1000 
m/sec, which corresponds to a de Broglie wavelength of hdB " -0 .17  ~.  By mix- 
ing carrier gases, we were able to vary the beam velocity continuously from 650 
m/sec using pure xenon to 3300 m/sec using pure helium (Table I). 

The velocity distribution of the source also varies according to changes in 
carrier gas pressure. We have produced velocity distributions with a FWHM 
ranging from Av/v = 70% with no carrier gas to Av/v < 8% at 3 atm of argon, 
the latter figure corresponding to an rms velocity width of 3.4%, and a (longitu- 
dinal) translational temperature of 1.6 K. Narrower velocity distributions with 
lower final temperature are obtainable with helium, in part because it does not 
heat the expansion by forming dimers. 

TABLE I 
TYPICAL PARAMETERS FOR OUR Na AND Na 2 SOURCE 

Seed gas Kr Ar Ne He 
Ve 1 oc i ty (m/sec) 750 1000 1700 3300 

Na 
)tdB (/~) 0.23 0.17 0.10 0.05 
Separation (/,~m) 75 55 34 18 

Na 2 
AdB (,/k) 0.125 0.085 0.05 0.025 
Separation (/xm) 38 28 17 9 
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C. ATOMIC BEAM 

After exiting the source chamber, the supersonic sodium beam passed through a 
series of operations preparing it for use in the interferometer. In general, our ex- 
periments required that the beam be fairly monochromatic and well collimated, 
and sometimes that the ensemble of sodium atoms be prepared in a particular 
quantum state. 

Beam collimation was provided by two slits, 20 (or 10)/xm wide, the second 
of which could be rotated under vacuum for proper alignment. The slits were 
spaced 87 cm apart, yielding a ribbon-shaped beam up to 3 mm high with a typi- 
cal beam divergence of 23 (12) /xrad FWHM. For a 1000 m/sec atomic Na 
beam, this collimation represents a transverse velocity of about 2 (1) cm/sec, or 
23 (�89 of the recoil velocity induced by a single photon, and a corresponding 
transverse "temperature" of 0.5 (0.25)/xK. 

To prepare the Na atoms in a single hyperfine state, we optically pumped 
them to the 3S1/2 F = 2, m F = 2 state using a circularly polarized laser beam 
tuned to the F = 2 ~ F'  = 3 transition of the sodium D 2 line. An additional side- 
band tuned to the F = 1 ~ F ' =  2 transition pumped atoms out of the F = 1 
ground state. A standing wave dye laser (Coherent 599) generated the resonant 
F - 2 ~ F '  = 3 light. This light was directed through an electro-optical modula- 
tor to generate sidebands at 1713 MHz and then transferred to the beam machine 
via single mode, polarization preserving optical fiber. We employed a locking 
technique described in Gould et al., (1987) to select a specific atomic state and 
to achieve long-term frequency stability of the laser (McClelland and Kelley, 
1985). This technique is based on the fact that the transverse position of the fluo- 
rescent spot formed when the laser intersects a diverging atomic beam depends 
on the laser frequency due to the spatially varying doppler shift. The differential 
signal obtained by imaging this spot onto a split photodiode provides the error 
signal for laser frequency locking (Gould, 1985). 

Because atoms optically pumped in this manner necessarily have scattered 
many photons, these atoms are deflected relative to the other beam constituents. 
For this reason, we chose to optically pump the atoms in the first vacuum cham- 
ber, before the first collimation slit, so that we still obtained good beam collima- 
tion and so that by optimizing the positions of the collimation slits we could 
greatly reduce the background of Na 2 molecules and unpolarized atoms. Weak 
(--~4 Gauss) magnetic guide fields provided a quantization axis for the optically 
pumped atoms, and maintained the atomic polarization throughout the interfer- 
ometer. The direction and strength of these fields were variable, allowing us to 
select the orientation of the atomic spins in our experiments. 

Due to the rapid transit of atoms through the collimation slits, any residual 
magnetism in these slits can cause nonadiabatic transitions, also known as Mar-  
jorana flops,  with resulting loss of polarization. We observed significant depolar- 
ization when using stainless steel slits, even after they had been demagnetized, 
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so we elected to fabricate our own slits out of silicon. Employing the silicon 
slits, we achieved better than 95% polarization, as determined by a two-wire 
Stern-Ger lach  magnet (Ramsey 1985), located 30 cm after the second collimat- 
ing slit, used to measure the state-dependent deflections of the atomic beam. 

D. MOLECULAR BEAM 

To prepare a pure beam of molecules for molecular optics and interferometry ex- 
periments, a number of additional steps were necessary. By heating the sodium 
reservoir to 800~ (Na vapor pressure ---6.5 torr), we were able to enhance the 
population of sodium dimers in the beam to as much as 30% of the detected 
beam intensity. To obtain a pure beam of molecules, we deflected atoms out of 
the beam using resonant laser light applied halfway between the two collimating 
slits (Fig. 2) (this required less than 2hk of transverse momentum). Sodium mol- 
ecules are not resonant with the deflecting laser beam and therefore were unaf- 
fected [the X ~ Eg----~ A ~ s transition to the first excited dimer state lies around 
680 nm (Herzberg, 1950)]. A knife edge, positioned directly upstream from the 
laser beam, blocked atoms that could have been deflected back into the now 
purely molecular beam. At a carder gas pressure of 2000 torr, our Na 2 beam had 
only 3.5% rms longitudinal velocity spread, corresponding to a (longitudinal) 
translational temperature of 2 K. 

E. DETECTOR 

In the detection chamber, individual sodium atoms and molecules were ion- 
ized on the surface of a 50 /xm rhenium wire heated to approximately 850~ 
and detected by a channeltron electron multiplier. To reduce background 

FIG. 2. Production of a pure molecular beam by removing the sodium atoms. The deflecting laser 
imparts a transverse momentum to the sodium atoms, deflecting them away from the second collima- 
tion slit. The knife edge prevents scattering of sodium atoms back into the molecular beam. 
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noise the wire was cleaned thoroughly by baking it out at temperatures 
>2500~ Furthermore, we employed specially designed electric fields so that 
only ions from the hot wire were collected, and thermally emitted electrons 
were prevented from ionizing the residual gas in the detector chamber. To 
achieve high efficiency, we grew an oxide layer on the wire by periodically 
oxidizing it at a low pressure (10 -4 torr 02) and high temperature (again 
>2500~ for 10 sec. Typical performance characteristics of the Na atom de- 
tector were a response time of 1 msec, and background count rate of less than 
50 counts per second (cps). 

The use of this detector for Na 2 dimers raises the interesting question of 
whether an Na 2 dimer will produce one or two detector counts (Parrish and 
Herm 1969). If the molecule dissociates on the hot surface and each atom gets 
ionized independently, then we might see two separate counts. Using our molec- 
ular beam, we measured the time correlation function of neighboring counts. For 
single counts arriving randomly, the correlation exhibited an exponential decay, 
reflecting the average count rate. A pair of counts from a single dimer that was 
thermally dissociated before ionization had a faster correlation decay, reflecting 
the average ionization time scale. To use this difference to study the degree of 
thermal dissociation, we chose a higher than normal operating temperature of 
the hot wire to make the ionization time fast enough that a correlated ion pair 
from a Na 2 molecule could be distinguished from the random counts. From the 
correlation data (Fig. 3), we find the probability of detecting a pair of disassoci- 
ated ions to be at least 5%. This figure includes an estimated single ion detection 
efficiency of 20%. From this data we can also estimate a lower boundary of the 
ionization efficiency of the hot Re surface to be >50%, and a probability of the 
Na 2 molecule to break up at the surface to be larger than 66%. 

III. Optics for Atoms and Molecules 

The field of atom/molecule interferometry has been opened up by recent ad- 
vances in atom optics. Optical elements based on both the mechanical forces 
of light (Gould et al., 1986; Bord6, 1989; Kasevich and Chu, 1991; Riehle et 
al., 1991; Sterr et al., 1992) and nanofabricated structures (Keith et al., 1988, 
1991a; Carnal and Mlynek, 1991; Shimizu et al., 1992) allow sufficiently co- 
herent manipulation of de Broglie waves that atomic/molecular interferome- 
ters can now be built and used in a variety of different experimental applica- 
tions. These two types of optical elements for atoms and molecules are 
complimentary in many respects: nanofabricated optics are inexpensive, 
rugged, reliable, and species insensitive, whereas light-based optics are 
species and state selective, require light from stabilized single-mode lasers, 
are highly precise, and do not clog up if used with high intensity atom beams. 
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FIG. 3. Histogram of the time between successive counts obtained if Na 2 molecules impinge on 

our Re hot wire detector. Two different time scales can be distinguished. The first is an exponential 
decay that matches our constant count rate of 240 counts per second. The second feature is a steeper 
decay at short time delays. We attribute this to two sodium ions being produced from a single sodium 
dimer and infer that the time constant of the decay reflects the time response of the detector wire. 
Subtracting our background of 125 counts/sec we can estimate that for about 5% of the Na 2 mole- 
cules we see two counts. 

We predict  that both will see wide future application,  perhaps combined  in 
the same exper iment  as we have done for molecules  (see Sect ions III.B and 
IV.G). Many  of the light force based deve lopments  in a tom optics are re- 
v iewed in special issues of JOSA-B.  (Special  Issue Mechanica l  Effects of  
Light,  1985, 1989; Special Issue Atom Optics, 1992, 1994). 

Our group was instrumental in the development  of atom and molecule dif- 
fraction gratings, elements used in practically all atom interferometers,  using 
both of the major approaches described previously: light forces (Moskowitz et 
al., 1983; Gould et al., 1986; Martin, et al. 1988) and nanofabricated optical ele- 
ments (Keith, et al. 1988, 1991b, Ekstrom et al., 1992 and references therein). 
The earlier atom optics work performed by our group, which was concerned pri- 
marily with light forces, is covered in several previous articles and reviews 
(Moskowitz et al., 1983; Gould et al., 1986, 1987b, Martin et al., 1988; Oldaker 
et al., 1990; Gould and Pritchard, 1996) and will not be discussed here. There- 
fore, in this section, we shall concentrate on nanofabricated atom/molecule  ele- 
ments such as those used in our interferometer. 
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A. NANOFABRICATION TECHNOLOGY 

The major enabling factor for our atom/molecule interferometer was the de- 
velopment of nanofabricated diffraction gratings, consisting of thin (100-200 
nm) low-stress silicon nitride membranes with precisely patterned holes (see 
Fig. 4). These structures are used as diffractive optical elements for atoms and 
molecules. The fabrication process has been described in detail in Keith et al. 
(1991b) and Ekstrom et al. (1992), we will give only a quick overview here 
(see Fig. 5). 

Our procedure for fabricating atom optics devices begins with the deposi- 
tion of low-stress silicon nitride by low-pressure chemical vapor deposition 
on both sides of a standard double polished < 1 0 0 >  silicon wafer 250 /xm 
thick. We then apply a layer of optical photoresist on which a pattern of 
windows is exposed. Each window is etched entirely through the silicon, 
leaving a suspended nitride "window pane" on the front of the wafer. We 
next apply a 120-210 nm layer of PMMA (polymethyl methacrylate) to the 
front side of the wafer, on which is evaporated a thin layer of gold to prevent 
distortions due to the accumulation of charge from the electron beam. After- 
ward, the desired pattern is written into the PMMA using electron beam lith- 
ography. 

To make diffraction gratings suitable for use in the interferometer, great care 
has to be taken that the pattern is written with positional accuracy below a small 
fraction of the grating period (typically a few tens of nanometers). Since the 
electron beam writer must piece together many (80/xm square) fields to write a 
large area pattern such as our gratings, "stitching" errors can occur. To prevent 

FIG. 4. Transmission electron microscope picture of a 140 nm period grating. The orthogonal 
support structure has a 4/zm period. 
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FIG. 5. Construction steps to produce a patterned, free-standing silicon nitride membrane (after 
Keith et al., 1991b). 

this misalignment of the many small fields, we write markers on the chip that 
subsequently are used to realign the translation stage prior to writing each small 
area (Rooks et al., 1995). 

The areas in the PMMA exposed by the e-beam writer are washed away with 
a mixture of methyl isobutyl ketone (MIBK) and isopropanol (IPA). The ex- 
posed pattern is then directly transferred onto the silicon nitride window using a 
specially developed reactive ion etching gas mixture (Keith et al., 199 l b), leav- 
ing a free-standing pattern of slots in the silicon nitrate membrane (Fig. 4). Us- 
ing this method, we can fabricate gratings possessing better than 10 nm accuracy 
over areas as large as 0.8 x 0.8 mm. 
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B. DIFFRACTION OF ATOMS AND MOLECULES 

We have investigated atomic and molecular  diffraction by directing our Na and 
Na 2 beams through nanofabricated gratings with various periods (Keith et al., 
1988; Chapman et al., 1995a). Diffraction patterns for a pure Na 2 beam and a 
mixed N a - N a  2 beam, obtained using a 100 nm grating, are shown in Fig. 6. 
Note that the various atomic diffraction orders are sufficiently separated to per- 
mit easy identification of  the intermediate  molecu la r  diffraction peaks at half  the 
atomic diffraction angle (Fig. 6b). This is exactly as we would expect  since 
atoms and molecules  in the argon-seeded supersonic beam have nearly identical 
velocities, while their unequal masses result  in a factor of  2 difference in de 
Broglie  wavelength.  Further  compar ison of  the two patterns in Fig. 6 reveals that 
our pure Na 2 beam contains residual Na contaminat ion of less than 2%. 

These diffraction patterns were powerful  tools for analyzing atoms and mole-  
cules in our supersonic expansion. Knowing  the diffraction angle, we deter- 
mined an average beam velocity using 0diff = AdB/dg = (h/mv)(1/dg) where dg is 
the grating per iod and Ada = 27r/k o is the de Brogl ie  wavelength.  Further, we ex- 
tracted the width of our beam's  velocity distribution from the broadening of  
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FIG. 6. Diffraction of 750 m/sec sodium atoms and molecules (Kr as a carrier gas) by a 100 nm 
period nanofabricated diffraction grating: (a) Diffraction of the mixed atom-molecule beam (de- 
flecting laser off). One can clearly distinguish the atoms from the Na 2 molecules by their different 
diffraction angle. A fit to the combined diffraction pattern (thin solid line) indicates 16.5% of the in- 
tensity is molecules. The thick solid line is the fit to the Na 2 diffraction pattern in (b). For this mea- 
surement the deflecting laser was on. The fits determine the grating open fraction to be 30% and are 
a very good measurement (<. 1%) of the de Broglie wavelength (velocity) of the atomic/molecular 
beam. 
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higher order diffraction peaks. In experiments with mixed beams, we were able 
to determine the mean fraction of dimers in the beam, as well as the center and 
width of the velocity distributions for both atoms and dimers. We observed a ve- 
locity slip between the atoms and slower moving molecules of as much as 
3.5(6)% at low source pressures (400 torr). At a more typical source pressure of 
1500 torr, the slip was less than 1% (Scoles, 1988). 

A good fit to the measured diffraction pattern also provides information about 
the open fraction (ratio of slit width to grating period) and homogeneity of the 
grating. Due to imperfections in the fabrication process, the width of the grating 
bars, and hence the open fraction, is not uniform. We modeled this nonunifor- 
mity as an incoherent sum of diffraction patterns with a distribution of various 
open fractions. Fits to diffraction patterns from many different gratings suggest 
that our grating bars are uniform to within + 10 nm. 

Using these and other diffraction techniques to investigate the properties of 
atomic and molecular beams has the advantage of being non-destructive. Indeed, 
our method and gratings have recently been used to produce unequivocal evi- 
dence for the existence of the weakly bound Van der Waals molecule He 2 (and of 
higher He n clusters as well) (Sch611kopf and Toennies, 1994). 

C. NEAR FIELD ATOM OPTICS: THE TALBOT EFFECT 

To more directly measure the homogeneity of the gratings, one could place two 
gratings close to each other in an atomic beam and examine the moir6 pattern 
due to the "shadow" of the first grating falling on the second. The difficulty is 
that the "shadow" quickly blurs downstream from the first grating due to diffrac- 
tion. However, further downstream, the shadows remarkably return at discrete 
distances from the first grating. These "self-images" of the first grating are 
known as Talbot images (Talbot, 1836), and in this section we discuss our mea- 
surement of these images using atom waves. This effect is well-known in classi- 
cal optics and has many applications in image processing and synthesis, pho- 
tolithography, optical testing, and optical metrology (Patorski, 1989). 

Classical wave optics recognizes two limiting cases, near and far field. In the 
far-field limit, the intensity pattern of the beam is characterized by Fraunhofer 
diffraction, in which the curvature of the atom wave fronts is negligible. How- 
ever, in the near-field limit the curvature of the wave fronts must be considered. 
In this case, the intensity pattern of the beam is characterized by Fresnel diffrac- 
tion. Our study of the Talbot effect is one example of near-field atom optics, the 
self-imaging of a periodic structure (Chapman et al., 1995b). 

We can understand the Talbot effect by considering the image formed by the 
interference of three plane waves: the 1st, 0th, and - 1 s t  diffracted orders from a 
grating. At a characteristic distance beyond the grating known as the Talbot 
length, LTalbot = 2dZ/AdB (dg is the grating period, AdB is the wavelength of the in- 
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cident wave), the three diffraction orders are laterally displaced from their initial 
positions by an even number of grating periods and interfere to form a grating 

1 self-image. At ~ LTalbot an image identical to the grating is formed, which is later- 
ally shifted by half a period. Images of both grating and shifted self-images ap- 
pear repetitively further downstream, spaced one Talbot length apart. Other self- 
images with smaller periods dg/n (n = 2,3,4 . . . .  ) are produced at intermediate 
distances (Cowley and Moodie, 1957; Rogers, 1964; Winthrop and Worthington, 
1965; Clauser and Reinisch, 1992) if diffraction into higher orders is significant. 
A full treatment of the problem, including the other diffracted orders and more 
detailed predictions of the positions and contrast of the subperiod images, re- 
quires solving the Fresnel diffraction problem with more formal techniques 
(Patorski, 1989; Clauser and Reinisch, 1992; Clauser and Li, 1994). 

We investigated these successive self-images with atom waves (Schmied- 
mayer et al., 1993; Chapman et al., 1995b), using transmission gratings with 
two different periods, 200 and 300 nm, which yield Talbot lengths of 4.7 and 
10.6 mm, respectively, for our atomic beam. The Talbot self-images were de- 
tected by masking them with a second transmission grating placed downstream 
(see inset of Fig. 7). When the second grating, whose period exactly matched 
that of the image, was scanned laterally across the self-image, the total transmit- 
ted intensity measured by the detector behind the grating revealed a high-con- 
trast moir6 fringe pattern. 

In our experiment, we varied the separation between the gratings from 3.5 to 
13.5 mm, and the contrast of the moir6 fringe pattern was determined as a func- 
tion of grating separation. Experimental results for both the 200 and 300 nm 
gratings are shown in Fig. 7. The contrast of the images damps out for larger 
grating separations, primarily because of the transverse incoherence of our atom 
beam as determined by the imperfect collimation of the source. 

An especially promising application of Talbot (or Lau) imaging with atoms is 
atom lithography (Timp et al., 1992). It should be possible to write small fea- 
tures using the reduced period intermediate images discussed earlier. These im- 
ages have been used successfully in x-ray lithography to write half-period grat- 
ings (Flanders et al., 1979). Grating self-images may also be used in quantum 
optics experiments to produce a periodic atom density in an optical resonator. 

D. RABI OSCILLATIONS OBSERVED USING MOMENTUM TRANSFER 

If an atom traverses a running light wave that is focused to a narrow waist so 
that the traversal time is smaller than the radiative decay time, then damping by 
spontaneous emission is negligible and the state of the atom after the traversal is 
determined by the coherent interaction with the light field. The probability for res- 
onant excitation in a two-state system (ignoring damping), is given by the Rabi 
formula P(g---~e)=sin 2 (toRt/2) (here to R = 27r. 10 MHz ~ / I / ( 1 2 m W / c m  2) 
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FIG. 7. The experimental data and calculations showing the contrast of the Talbot self-image as a 

function of grating separation for 200 nm gratings (above) and 300 nm gratings (below). The insert 
shows a schematic of the experimental apparatus. The distance between the two gratings, z, can be 
varied from 0.35 to 1.35 cm. The lateral position of the second grating is scanned using a PZT. 

for the 3P3/2 transition in Na and I is the intensity of the excitation light). The os- 
cillations of  the probability are called Rabi oscillations. 

We observed these predicted Rabi oscillations, corresponding to the coherent 
exchange of photons, in our atomic beam. Rabi oscillations correspond to the al- 
ternate absorption and (stimulated) emission of one photon from the laser beam. 
Since the transferred momen tum is respectively lhk  and - l h k ,  there is a corre- 
sponding oscillation in the transverse momen tum of the atoms. Excited atoms 
were identified by the deflection imparted to them by the absorbed photon. An 
atom exiting the laser field in the excited state will have received lhk  of momen-  
tum in the direction of propagation of the laser and the subsequent spontaneous 
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photon will transfer another l hk  of momentum in a random direction. Therefore, 
excited atoms will be deflected with momentum around l hk. 

For this experiment, the atoms were first prepared in the F = 2,m F = 2 ground 
state by optical pumping (---95% efficiency) with a o-+ polarized laser beam 
(see Section II.C). They were then excited from this state to the F '  = 3 m '  = 3 ' F 

excited state (this constitutes a closed two-level system) using resonant o-+ po- 
larized laser light focused to a---15 /xm waist (FWHM of the field) along the 
atom propagation direction. A cylindrical lens was used to defocus the beam in 
the direction perpendicular to the atomic beam to ensure uniform illumination 
over the full height of the beam (---1 mm). Using 3000 m/sec atoms from a He 
driven expansion, the transit time through the waist (5 ns) was smaller than the 
lifetime of the excited state (16 nsec), and hence the probability for resonant ex- 
citation in the two-state system showed weakly damped Rabi oscillations as a 
function of laser power. Data taken with the detector wire displaced from the 
atomic beam axis by a distance corresponding to a single photon recoil are 
shown in Fig. 8. 

In conducting our single-photon scattering experiments (see Section VII), we 
used this effect as a tool to align our laser beam relative to the atomic beam and 
to adjust the laser intensity to produce a rr-pulse, ensuring as nearly as possible 
that exactly one photon was scattered by each atom. 
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FIG. 8. Observing Rabi flops in momentum transfer. The detector is displaced from the col l ima- 

tion axis by one photon recoil,  and we  measure the count rate as a function of  laser intensity. As  the 
power  increases,  the atoms have an oscil latory probability o f  be ing  excited that is g iven by the Rabi  
formula. To scatter a single photon, we  set the power  to the value at the first max imum of  these osci l-  
lations, which  c lose ly  corresponds to a 7r pulse.  



18 J6rg Schmiedmayer et al. 

IV. Interferometry with Atoms and Molecules 

In this section we will outline the theoretical  and design principles underlying 
the construct ion of  our a tom/molecule  interferometer.  

m. THREE GRATING MACH--ZEHNDER ATOM INTERFEROMETER 

The MIT atom interferometer  (Keith et al., 1991a; Schmiedmayer  et al., 1993) 
was built with a M a c h - Z e h n d e r  geometry  employing  three 200 nm period 
nanofabricated transmission gratings (Keith et al., 199 l b; Eks t rom et al., 1992) 
mounted on separate translation stages inside the vacuum chamber  (Fig. 9). The 
first grating diffracts the atomic beam primari ly into the diverging orders - 1 ,  0, 
and + 1. The  0th and 1st orders are diffracted through the second grating a dis- 
tance L downstream. The second grating diffracts a port ion of each of the two in- 
coming beams toward each other. These diffracted beams,  which are the - 1 s t  
and + 1st orders of the two incident beams,  respectively, overlap after traveling 
another distance L, forming a standing matter  wave pattern, just  upst ream of the 
third grating, whose crests are parallel  to the longitudinal  axis of  the interferom- 
eter. This standing wave pattern propagates  along the longitudinal  axis through 
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Source 
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Stages 

Photodiode Photodiode 
Signal 

Interaction Region Hot Wire 
10 gm Copper Foil Detector 

He-Ne < 0.6 m 
Laser i < 0.6 m > > 

FIG. 9. A schematic, not to scale, of our atom interferometer (thick lines are atom beams). The 
0th and 1 st order beams from the first grating strike the middle grating where they are diffracted in 
the 1 st and -1  st orders. These orders form an interference pattern in the plane of the third grating, 
which acts as a mask to sample this pattern. The detector, located beyond the third grating, records 
the flux transmitted through the third grating. The 10 cm long interaction region with the 10 /zm 
thick copper foil between the two arms of the interferometer is positioned behind the second grating. 
An optical interferometer (thin lines are laser beams) measures the relative position of the 200 nm 
period atom gratings (which are indicated by vertical dashed lines). 
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the third grating, which then acts as a mask, with its transverse position relative 
to the interference pattern determining the total transmitted flux. This flux is then 
measured by the detector (a 50/zm wire, which is much wider than a grating pe- 
riod). Uniform translation of either the standing wave pattern or the grating re- 
sults in a periodic change in the transmitted intensity, creating an observable 
fringe pattern. The diamond shaped pattern of the interfering beams forms the 
classic Mach-Zehnder interferometer. We have observed atomic interference 
patterns with up to 50% contrast (Fig. 10) and obtained maximum interfering 
amplitudes of more than 50000 counts/sec at slightly lower contrast. 

An interferometer geometry employing three equally spaced transmission 
gratings but without  the collimation that would restrict it to the Mach-Zehn-  
der geometry just described also creates a robust interferometer (Chang et al., 
1975). Like the Mach-Zehnder  geometry, it is white fringe, with phase and 
period of the interference pattern independent of the wavelength, wavelength 
spread, width, and initial direction of the input beam. This second geometry 
obviously offers the advantage of greatly enhanced signal, and we have ap- 
plied it in studies where it is not necessary to physically isolate the two inter- 
fering atom waves. 

An added benefit of both geometries just discussed is that the grating period- 
icity (200 nm) determines the scale of transverse dimensional stability required, 
rather than the much smaller de Broglie wavelength of sodium atoms (16 pm) or 
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FIG. 10. Interference pattern from 30 sec of data (1 sec per point). The contrast is 49% and the 

phase uncertainty is < 10 mrad. 
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molecules (8 pm). Requirements on the longitudinal spacing are much less re- 
strictive (Turchette et al., 1992). 

To understand the principles of our interferometer, it is helpful to review the 
theoretical foundations of matter wave interferometry using semi-classical 
physics. We begin by considering the difference in phase between two possible 
paths F 1 and F 2 through the interferometer from source to detector, since this 
difference determines the phase of the interference pattern. The difference be- 
tween the phases accumulated along each path can be expressed in terms of the 
classical actions along these paths S~, 2 (Feynman and Hibbs 1965; Storey and 
Cohen-Tannoudji, 1994): 

1 
= ~ ( s ,  - s2).  (1) 

The classical action is defined in terms of the Lagrangian, which is (for a one- 
dimension system with a position-dependent potential) 

L(x, Yc) = ~ mYc 2 _ V(x) (2) 

for a particle with mass m in a potential V(x). The classical action along each 
path then becomes (for i = 1,2) 

- ~  L[x(t),Yc(t)] dt Si 
aF i 

= , m v - - ~ -  V(x) + - ~  dt (3) 

= I -  (p  dx - H dt) 
aF i 

where H is the Hamiltonian governing the classical motion of the particle. In a 
time-independent problem, H is constant and the phase difference accumulated 
along the classical paths can be written as 

~= fr kl(x) dx - fr kz(x) dx (4) 

where k(x) = ~V/2m(E - V(x)) is the local k vector. 
To answer the question "What will the interference pattern look like?" we 

must consider in detail (Turchette, 1991; Turchette et al., 1992) the superposi- 
tion of both contributing paths in the interferometer [Eq. (1)]. In doing this, we 
discover that the phase of the interference pattern can be attributed to two sepa- 
rate terms: a term dependent on the paths through the interferometer and a term 
dependent on any interaction that alters the de Broglie wavelength along these 
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paths" that is, q~ = ~position +- m ~ .  The first phase contribution, hereafter referred 
to as the pos i t ion  phase, is a function of the relative transverse grating positions, 
x i, given by 

27r 
%osition --  d -  (xl  - 2x2 + x3) --  kg(xl  --  2x2 + x3) (5 )  

g 

where kg = 27r/dg is the lattice vector of the grating. The second or in teract ion 
phase shift (Aq~) arises from the difference between the interactions along the 
two paths" 

A =-hl fro L[x(t),k(t)] d t - l f r - h  o L[x(t),.;c(t)] dt (6) 

where F ~ and F ~ now denote classical paths through the interferometer with 
x~ = x 3 = 0 and with no applied interaction. This split is allowed because the 
action is stationary with respect to small perturbations of the paths. By splitting 
the observed phase in this manner, we can focus our attention on analyzing the 
phase difference between just the two paths F ~ and F ~ rather than solving the 
full path integral problem (Feynman and Hibbs, 1965). It is important to note 
here that Aq~ is 0 when the action along both paths are equal; that is, only a dif- 
ference in the applied potential V(x) along the two paths will lead to an interac-  
tion phase shift A q~. 

B. PHASE AND CONTRAST MEASUREMENT 

The near field detection scheme discussed above, in which the third grating 
masks the interference pattern, gives rise to oscillations in the total transmitted 
flux as the grating is translated with respect to the pattern. This method gives in- 
terference fringes like those shown in Fig. 10. 

The detected intensity, I, from the portion of the two interfering beams pass- 
ing through the third grating is 

i -  I,Vl 2 -- z 2 + Z 2 + 2A1A 2 cos (q~) (7) 
= (I) (1 + C cos(q~)) 

where A~, A 2 are the amplitudes of these interfering beams and q~ is their phase 
difference. The second preceding equation has been reformulated in terms of the 
mean intensity (I) = a]  + a 2 and contrast: 

I - I 2A 1A2 C ~ max min = (8 )  
/ ax  + / i n  a 2 + a  2" 

The output of the interferometer signal is fitted to Eq. (7) to determine the 
phase difference, q~, the contrast, C, and the mean intensity, (I). Since the atoms 
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in the interferometer do not interact with each other, the contrast is independent 
of the source intensity. Moreover, if the intensity of one of the interfering beams 
is attenuated by some factor, the contrast is reduced by only the square root of 
this factor. Thus, an interference pattern with 1% contrast may be obtained even 
if one beam is attenuated by as much as 10 -4 (Rauch et al., 1990; Schmied- 
mayer et al., 1995a). 

C. OPTIMIZING CONTRAST AND SIGNAL TO NOISE 

One of our primary goals in designing this experiment was to be able to deter- 
mine the phase of an interference pattern as accurately as possible. Neglecting 
systematic errors and assuming Poissonian counting statistics, the theoretical 
limit on the rms error in the phase measurement (Rauch et al., 1990; Dowling 
and Scully, 1993) is given by 

1 
o - =  V~C (9) 

where N is the total number of atoms contributing to the recorded interference 
pattern and C is the observed contrast. The quantity V~C depends strongly on 
the open fractions ~i of the three amplitude gratings. For example, the third grat- 
ing alone contributes a reduction in the observed fringe amplitude of sin(Tr/33)/Tr, 
and a reduction in contrast of sin(Tr/33)/7r/33. 

The problem of determining the ideal open fractions can be split into two 
parts: optimizing the interference pattern and optimizing the open fraction of the 
third grating for near field detection. Taking into account all possible paths 
through the interferometer, the largest interference signal at the position of the 
third grating is obtained for/3~ = 0.56 and/32 = 0.5. Maximizing V~C for the 
third grating yields ~3 = 0.37 as the best value. With these open fractions, we 
expect a maximum contrast of 67% and a maximum detected signal of 1% of the 
initial beam. Note that higher contrasts (up to 100%) can be obtained with small 
first and third grating open fractions, but only at the expense of a reduced trans- 
mitted intensity. 

D. GRATING ALIGNMENT 

Parallel alignment of the axes of the three gratings with respect to each other 
was essential to the production of high-contrast fringes in our experiment. 
Roughly, the gratings had to be aligned to better than half a grating period over 
the beam height. For our interferometer, this corresponds to about 0.1 mrad (100 
nm/1 mm). An expression for the contrast reduction due to rotational misalign- 
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ment  results f rom assuming an extended incoherent  source and an extended de- 
tector in the plane of  the third grating. The total interference pattern is then an 
incoherent  sum over all possible interferometers  located in all a l lowed planes. 
The total contrast  depends on the relative rotations of  the gratings a 1 = 01 - 02 
and a3 = 03 - 02 according to Ekst rom (1993): 

C ( a  l ,  a 3 ,  h o, h 3) --- 

( L ) 
sin k h  o L + 2 L al 

L 
/ .  L 

'~g"o Ls + 2 L Ol 1 

( Lso 3)) 
sin kgh3 0ll + L s + 2 L 

LsOt 3 ) 
�89 kh3 al + L s +  2 L 

(lO) 

where h 0 and h 3 are the source and detector  heights respectively, L s is the dis- 
tance from the source to the first grating, and L the separation between gratings. 
Figure 11 illustrates the relat ionship be tween the contrast  and the rotational 
a l ignment  of  the third grating. 
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Third Grat ing Rotat ion (mrad) 
FIG. 11. The dependence of the contrast in our interferometer on grating rotation. The data 

shown is for the rotational alignment of the third grating. The insert illustrates the geometric arrange- 
ment discussed in the text and Eq. (10). 
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E. SENSITIVITY TO MOTIONS OF GRATINGS 

In our discussions up to this point, we have assumed that the gratings were fixed 
in an inertial frame, although both vibrations and overall acceleration of the ap- 
paratus cause this assumption to fail. To account for the time-dependent dis- 
placements of the gratings from an inertial reference frame Eq. (5) must be gen- 
eralized. The time-dependent phase of the interference depends on the position 
of each grating when the atom passed through it: 

%osition(t) = kg(X l ( t -  27-) - 2 x 2 ( t -  7") -+- x3(t)) (11)  

where z -  L/v is the time it takes a particle with velocity v to travel between two 
gratings separated by a distance L. It is convenient to rewrite Eq. (11) as 

qgposition(t ) = qggrating(t- T) q- kg(X l ( t -  2"/') - X l ( t -  T)) -k- kg(X3(t ) - x 3 ( t -  T)) 
(12) 

where the first term, which is called the grating phase and is given by 
qggrating(t ) -- kg(Xl(t ) - 2Xz(t ) + Xa(t)), is the position phase [Eq. (5)] at the instant 
when the particle passed through the middle grating, while the other two terms 
describe the effects of grating motion during the free flight of the particle 
through the interferometer. 

If the changes in position of the gratings are due to acceleration and rotation 
of the interferometer as a whole, we can derive expressions for phase shifts due 
to these non-inertial motions. Assuming that changes in the rotation rate and ac- 
celeration occur over much longer time periods than the particles' transit time 
through the interferometer, we express the time-dependent grating positions that 
determine the observed phase [Eq. (12)] in terms of the velocity and acceleration 
of the interferometer, then rearrange terms to reflect these specific non-inertial 
motions: 

qgposition(t ) ~ qggrating(t- 7") -k- qgrotation(t- 7") -F ~acceleration(t- 7"). (13)  

Here, the phase from rotation 

qgrotation(t ) = k g(Jc 3(t ) - Jc l (t))7" = kgLl~ 7" (14) 

is determined by the difference in the velocities of the first and last gratings, 
which follows from the rotation rate, 1~; and the phase from acceleration 

1 
q~acceleration(t) = kg ~(Xl(t) + .~3(t))7- 2 (15)  

is given by the average acceleration of the first and last gratings. 
Because of these time-dependent phase shifts, vibrations of the gratings can 

wash out the fringe pattern if it is not observed on a sufficiently short time scale. 
Since the gratings are mounted on independent stages on three different flanges, 
a reasonable model to assess the contrast loss due to vibrations invokes the as- 
sumption of independent, random, Gaussian distributed positions for each of the 
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three gratings, each with variance O-~x. Following Eq. (5) we separately consider 
the positions at the time of passage through the middle grating and the subse- 
quent displacements A x  = x( t  - z) - x( t)  of the gratings during the passage of a 
particle through the interferometer. The displacements zLr are also assumed to 

T 

for << 1). Aver- be Gaussian distributed (variance or2with or orx O)vibT/V2 ('Ovib '/" 
T T 

aging over a time larger than the characteristic time scale of the displacements, 
we find that this model predicts that the contrast of the interferometer will be re- 
duced to 

1 (or2(~grating) + or2(~inertial))) C = C O exp( -  

= C O exp(-kg2(3o-~ + or~)) (16) 

-- r T )). -~k"  O'x2(6 + - C O exp( 1 2 2 2 

The first term in the e x p o n e n t  (or2(~0grating) --6k2orx 2) comes from the random 
grating phase ~grating(t -- T), and the second t e rm  (org2(~inertial) -- 20"2) comes from 
the random movements of the gratings during the flight of the atoms through the 
interferometer (inertial noise). Equation (16) implies significant (70%) reduction 
of the contrast at rms displacement amplitudes of or~ ~ 1/10 of the grating pe- 
riod, or ---20 nm. Thus, vibration reduction represents a serious experimental 
challenge. 

The best way to prevent grating motion from reducing contrast would be to 
isolate the whole interferometer and mount it on a stable inertial platform. This 
was not practical in our experiment, as it is very hard to isolate the whole vac- 
uum chamber. We therefore adopted a combination of passive isolation of the 
apparatus from sources of vibration, active grating control, and digital data pro- 
cessing that corrected for the vibrational misalignment. Both of the latter reme- 
dies required knowledge of the relative positions of the gratings, which was pro- 
vided by a light interferometer formed by three 3.3 /xm phase gratings rigidly 
connected to our atom optics gratings (see Fig. 9). 

Our active control system assured long-term alignment of the gratings by ser- 
voing the second grating to stay at a given position relative to the other two grat- 
ings. This point was picked to ensure that the light interferometer was always 
near its maximum sensitivity point for position measurements. As an added 
bonus, the servo allowed us to apply a well-defined grating phase to the interfer- 
ometer by deliberately shifting the second grating. 

The position information from the light interferometer also made it possible 
to digitally correct our data after it had been collected: the light interferometer 
measured the grating phase qggrating in real time, allowing us to make suitable cor- 
rections for the dominating first term in Eq. (16). During each sampling period 
At, the readings from the light interferometer were recorded and stored along 
with the rest of the associated experimental data. During analysis, the data were 
sorted according to the measured relative grating positions (which corresponds 
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tO sorting with respect to q~grating ). Typically data were taken over a range of 
q)grating' and a fit to this data (a plot of atom counts as a function of  qggrating ) of the 
form of Eq. (7) was made. Recalling that ~p = ~position -Jr" A(~ and plugging in Eq. 
(13), we can express the total phase of the interference pattern as 
~O = (~rotation q- ~0acceleration q- ~grating ~- m(~). Thus, this fit determines the sum of 
the phases due to interaction and non-inertial motion, the variables we observed 
in our experiments. 

The combined effect of the servo and plotting atom intensity versus  q)grating is 
to effectively remove the contribution of the first term of Eq. (16) to the noise. 
The residual average grating motion, after this correction, corresponded to an ef- 
fective rms displacement 0.(x 1 - 2x 2 + x3,At), of typically 10-30  nm during the 
sampling period, resulting in a typical rms grating phase 0.(qggrating,At) of  0.3-0 .9  
rad for a 200 nm grating period. The best operating conditions were achieved by 
keeping the position servo relatively loose 0.x ~ 300 nm to suppress the higher 
frequency components caused by a tight lock. The typical contrast reduction was 
then about 25%. 

While this method was effective in reducing noise due to independent grating 
vibrations, the problem remained of collective rotations or accelerations of the 
whole interferometer as expressed by 0 "2. The effect of this collective motion T 
was found to be significantly smaller than that of the vibrations and was most 
evident when the interfering particles were moving relatively slowly (e.g., in ex- 
periments using Kr as a carrier gas). For our slowest atoms (700 m/sec) we ob- 
serve a 25% contrast reduction due to residual accelerations and rotations. This 
could be corrected for by measuring the rotation and acceleration directly with a 
pair of accelerometers mounted close to the first and third gratings. In the future, 
we will employ this technique to improve the performance of the interferometer 
when operating at lower velocities. 

F. INTERACTION REGION 

A unique feature of our interferometer is that the two interfering beams have 
been physically isolated by inserting a foil or "septum" between them where 
they are spatially separated immediately behind the second grating. To fit be- 
tween the beams, whose centers are separated by only 55/xm, this septum must 
be thin andvery flat (<30/xm peak to peak ripple over its whole length). 

Our interaction region was 10 cm long and the stretched foil was held sym- 
metrically between two side electrodes. The foil was spaced from the side plates 
with insulating 2 mm thick precision ground alumina spacers (Fig. 12). We cut 
the foil in a "butterfly" shape, then pulled all wrinkles out of the area that was 
used in the final interaction region by clamping it in a special jig that stretched 
the edges away from the center and flattened the foil. The stretched foil was then 
carefully clamped between the spacers and side plates using a mounting clamp. 
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FIG. 12. Exploded view of the interaction region. The foil is black. The insulating alumina spac- 
ers are shown in white, and the aluminum side plates are gray. The split atomic beams of the interfer- 
ometer enter from the front (lower left) and pass on either side of the foil. 

We have made good septa using both 10/xm thick copper foil and 12/xm thick 
metalized mylar. 

The interaction region was mounted behind the second grating on a stack of 
manipulators. These provided transverse translation to move the foil in and out 
of the beam line and rotation about both the vertical axis and the beam axis to 
align the plane of the foil parallel to the ribbon-shaped atomic beam. A typical 
10 cm long septum, aligned to the atomic beam, cast a shadow on the detector 
which was 2 0 - 3 0 / x m  wide. This is wider than the nominal 10/xm foil thick- 
ness due to overall deviations from planarity, waviness, and material rolled over 
at the cut ends. With the septum carefully positioned using precision translator 
and rotators between the beams in the interferometer, we have observed fringes 
with 23% contrast and an interference amplitude of more than 2800 counts/sec 
(Fig. 10). 

This conducting physical barrier between the separated beams allows the ap- 
plication of different interactions to the two paths in the interferometer and mea- 
surement of the resulting differential phase shift. The sensitivity of this phase 
shift measurement is set by the interaction time. The intrinsic line width is 10 
kHz for a 1050 m/s beam and 10 cm long interaction region. In an typical exper- 
iment we can determine the phase of the interference pattern with a precision of 
5 mrad in one min, which corresp_onds to a sensitivity to energy shifts of roughly 
3 x 10 -14 eV/m~/-~n or 8 Hz/Vmin. 
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G. MOLECULAR INTERFEROMETRY 

Combining our pure Na 2 beam (described in Section II.D) with our three grating 
atom interferometer, we constructed a Mach-Zehnder  interferometer for mole- 
cules (Chapman et al., 1995a) (Fig. 13a). With 200 nm gratings, our molecular 
beam produced high-contrast fringes (Fig. 13b). Molecular and atomic fringes in 
our interferometer have the same period, since the period is independent of de 
Broglie wavelength in our white fringe interferometer. Therefore, we used two 
different methods to verify that the observed interference was actually from mol- 
ecules: 

�9 We introduced a (decoherence) laser that destroyed the atom interference 
pattern by scattering resonant light from the split atomic wave function in- 
side the interferometer. 

�9 We checked that the molecular interference signal (or fringe height) was 
maximum at a smaller detector offset from the beam axis than the atomic 
interference signal. Since the de Broglie wavelength of Na 2 is smaller than 
Na, the molecules diffract at smaller angles and pass through the interfer- 
ometer on different paths than the atoms (Fig. 13a). 

The results from a study combining these two methods together with turning 
on and off the laser used to deflect the atoms out of the molecular beam are 
shown in Fig. 13b. We observed the largest interference signal from the com- 
bined atom and molecule fringe pattern (both deflection and decoherence lasers 
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FIG. 13. Interferometry with molecules: In (a), we show a schematic of our three grating interfer- 
ometer displaying the different paths of Na and Na 2. In (b), the variation of the interfering signal vs. 
the third grating offset from the collimation axis is shown for the mixed N a - N a  2 beam (o = no laser 
on) and the pure Na 2 beam (•  = decoherence laser on, A = deflecting laser on, # = both lasers on). 
Calculated curves are discussed in the text. The inset shows the interference fringe data for the mixed 
N a - N a  2 beam (e) and the pure Na 2 beam (0) observed for a third grating offset of - 10/xm. 
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off). The amplitudes of the interference fringes were reduced by the same 
amount with either the deflection or decoherence laser beam on, suggesting that 
only molecules contribute to the interference in both of these cases. This inter- 
pretation was confirmed by the fact that the fringe amplitude did not decrease 
further when both lasers were on simultaneously. The maximum interference 
signal for the predominately atomic beam was observed at 55/xm from the colli- 
mation axis, as expected from the diffraction angle for Na in Ar carrier gas, 
whereas the molecular interference signal maximized much closer to this axis. In 
Fig. 13b, the data are compared with curves calculated in the far-field limit using 
a convolution of the trapezoidal beam profiles with the 50-~m acceptance of the 
third grating. The upper curve is normalized to the maximum observed interfer- 
ence signal and the lower curve follows from the known fraction of molecules 
(27% of the detected signal). 

For both the mixed interferometer and the purely molecular interferometer, 
the maximum observed contrast was nearly 30% and was the same to within 1%. 
We observed no degradation in interference signal despite the plethora of close 
lying rotational-vibrational states in the molecules. This is not very surprising 
since the first order interference observed in an interferometer involves only the 
interference of each particle with itself. The fact that two nearby molecules are 
very unlikely to have the same quantum numbers for both the rotational-vibra- 
tional state and total angular momentum projection is irrelevant. Although the 
300 K thermal background photon energies typically exceed the internal level 
spacing of molecules (--- 1 cm-~ for rotations and --- 100 cm-~ for vibrations), de- 
coherence effects due to transitions between vibrational or rotational levels or 
spontaneous emission are minimized because electric dipole transitions between 
rotational-vibrational levels in the same electronic state are not allowed in a 
homonuclear diatomic molecule (Herzberg 1950). Scattering of the molecules 
on the nanofabricated diffraction gratings could also cause rotational or vibra- 
tional transitions, since a beam velocity of 1000 m/sec and a grating thickness of 
200 nm produces Fourier components up to 5 GHz (or 0.17 cm-~). However, 
this is less than the smallest allowed rotational transition 4B (B is the rotational 
constant) of 0.61 cm -~ and much smaller than the vibrational spacing of 159 
cm-~. The fact that we did not observe any contrast reduction places only a weak 
bound on the probability of these transitions. 

Using Kr as the carrier gas, our Na 2 interferometer produced a beam separa- 
tion of 38/xm at the second grating. This just exceeded the beam width at that 
position and allowed insertion of an interaction region with a thin foil barrier be- 
tween the interfering beams. The foil cast a shadow 20/xm wide, which partially 
blocked the edges of the two beams and reduced the contrast from 19% without 
the foil to 7% with the foil. The lower observed contrast with Kr as the carrier 
gas (even without the inserted foil) is attributed to the slower beam velocity, 
which enhanced the inertial sensitivity of the interferometer, making it more vul- 
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nerable to vibrations of the entire apparatus. A similar contrast reduction was ob- 
served with atoms when using Kr as a carrier gas. 

V. Atom Interferometry Techniques 

We are now in a position to examine how interferometric techniques can be used 
to obtain useful physical information. We concentrate first on what information 
can be extracted from the phase of the interference pattern and the limits to the ac- 
curacy with which the phase can be determined. Then we describe how the con- 
trast may be exploited to infer properties of the interaction even though the various 
unselected internal states of the atoms or molecules have different phase shifts. In 
the last section, we discuss a new technique that will greatly reduce the systematic 
errors and contrast loss arising from velocity averaging. 

A. SIGNIFICANCE OF PHASE SHIFTS 

We can learn a great deal about various interactions by measuring the phase shift 
of an interference pattern caused by the applied interaction. In most of our ex- 
periments, we exploited the ability to physically separate the two arms of our in- 
terferometer by applying a time-independent interaction potential V(x) to one 
arm only (classical path F~ Since the other arm of the interferometer has no po- 
tential applied, the interaction induces a relative phase difference between the 
two arms (see Eq. (6)). 

We recall that the interaction phase Aq~ from Eq. (6) is 0 for the case of no ap- 
plied interaction to either area. Hence, if one arm is unshifted, the overall phase 
shift of the interference pattern is given by the difference between the phase ac- 
cumulated along the shifted arm with the interaction on and the phase accumu- 
lated along this arm if there were no applied interaction. 

Thus, the phase shift induced by the potential is of the form: 

A,p(ko)=fr (k(x)-ko(x))dX=fr Ak(x) dx (17) 
o o 

where k 0 = 1 / h ~  and k(x)= 1/hV'2m(E- V(x)) are the unperturbed and 
perturbed k vectors, respectively. If the potential V is much smaller than the en- 
ergy of the atom E (as is the case for all of the work described here), the phase 
shift can be expanded to first order in V/E: 

f v(x) - l f v(x) _ - l f A'P(k~ = ~ k~ - - U  dx = h---~ - - U  V(t) dt (18) 
a 

where, in the integral over the time, we used the fact that the potential is time 
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independent and one can apply the paraxial approximation using t = x/v. Al- 
ternatively, we can think of the potential V(x) as giving rise to a refractive in- 
dex: 

k V 
n = ~  = 1 2E (19) 

where the phase shift can now be expressed as Aq~(k) = kf(n(k)  - 1) dx. We 
can see from Eq. (18) that the phase shift due to a constant scalar potential 
applied over a length Lin t is Atp(k0)--(-m/h2ko)VLinc In our interferometer 
with a 10 cm long interaction region and 1000 m/sec Na atoms, an applied 
potential of V =  6.6 x 10 -12 eV corresponds to a refractive index of 
I1 - nl = 2.7 x 10 -11 and gives a phase shift of 1 rad. Note that positive V 
corresponds to a repulsive interaction that reduces k in the interaction region, 
giving rise to an index of refraction less than unity and a negative phase 
shift. 

Equation (18) shows that the phase shift associated with a constant potential 
depends inversely on velocity and therefore is dispersive (it depends linearly on 
the de Broglie wavelength). If, on the other hand, the potential has a linear ve- 
locity dependence, as in the Aharonov-Casher effect (Aharonov and Casher, 
1984), the phase shift becomes independent of atomic velocity. Similarly, a po- 
tential applied to all particles for the same specific length of time, rather than 
over a specific distance, will produce a velocity-independent phase shift 
Aq~= 1/hfV(t)dt,  the scalar Aharonov-Bohm effect (Allman et al., 1993; 
Badurek et al., 1993). 

B. AVERAGING OVER THE VELOCITY DISTRIBUTION: THE COHERENCE LENGTH 

Real experiments are not performed with monochromatic beams, and since atom 
sources tend to have relatively large velocity spreads, velocity averaging is an 
important consideration in the analysis of our experiments (our velocity spread 
is typically about 4% rms). In our previous analysis, we have not discussed the 
fact that the observed phase shift, Aq~, and contrast, C, result from weighted av- 
erages over the different velocity components present in the beam. 

In general, one can represent the averaged interference pattern by an averaged 
phase vector C e ia~~ in the complex plane. Velocity (momentum) averaging is 
calculated by integrating over the normalized initial atomic k vector (velocity) 
distribution f(k): 

-C e iA~ = k)Co(k) e iA~k) dk (20) 

where we take into account a possible dependence of the original contrast of the 
interferometer, Co(k), on the wave vector k. The average phase shift Aq~ and con- 
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trast C are the argument and magnitude of the averaged phase vector, respec- 
tively. 

In the simplified case, when the contrast of the interference fringes is 
independent of the velocity of the atoms, then -C e ia~ = C O f f (k)e  iA~k) dk and one 
finds for the observed phase shift A~o, and contrast, C: 

�9 { f f ( k )  sin(Aq~(k)) dk 
A ~o = arctan �9 - ~ } (21 ) 

\ f f ( k )  cos(Aq~(k)) d-k 

-C = Co~/[ f f (k  ) sin(Aq~(k)) dk] 2 + [ f f ( k )  cos(Aq0(k)) dk] 2 = CoP(Aq~ ) (22) 

where C o is the contrast at zero phase shift and p(Aq~) is the relative retained 
contrast as a function of the applied phase. 

Due to the non-linear dispersion of the phase shift (1/k o for a scalar poten- 
tial, 1/k 2 for a deflection in a potential gradient), Aq~ is not simply the phase 
shift for particles traveling at the mean velocity. This nonlinear dispersion 
causes systematic phase shifts that depend on the width, and to a lesser extent 
on the form, of the velocity distribution. For precision measurements these 
shifts must be accounted for in the analysis. For a 4% Gaussian velocity 
spread, the contrast is reduced to 28% of its initial value and the observed 
phase [given by Eq. (21)] differs from the applied phase q~(v o) by 0.20% at 
Aq~ = 40 rad. This phase error can be avoided by the velocity multiplexing 
technique described later. 

In our experiments, the reduction of the contrast can be parametrized by the 
coherence length defined by l~oh = 1/tr, of the beam. In the case of linear disper- 
sion, iff(k) is a Gaussian distribution with rms width tr, centered at k 0, the above 
equation then reduces to 

C = C o exp - ~[Aq~(ko)]2 ,-D-: . 

These assumptions are reasonable because seeded supersonic beams give a 
flux density that varies approximately as v 3 exp( - (v  - VO)2/2Av2), which is quite 
Gaussian when Av << v0, the mean velocity. Furthermore, the true 1/v dispersion 
is well represented by a linear (negative) dispersion over our narrow velocity 
distribution. Our contrast data were fit within estimated total errors by this ex- 
pression when the differential phase shift was supplied by a constant potential 
due to an electric field (see Fig. 14). 

It is important to note that, unlike photons in vacuum, the coherence length 
and wave packet size for matter waves are not the same, except perhaps at spe- 
cific points in time. This is because the vacuum is dispersive for matter waves. In 
our beam, the coherence length is only 0.65 A (1.6 ./~ FWHM) at the source. 
But, by the time a minimum uncertainty wave packet that could be created at the 
source reaches the third grating (where the interference "occurs"), its length 
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FIG. 14. Reduction of the interference contrast with applied phase. From the width of  the con- 
trast curve, we calculated a coherence length of  0 .65(3) /~  in good agreement with a determination of  
the velocity distribution from a measurement of  the diffraction pattern. 

would be on the order of 10 cm FWHM, an increase by a factor of 108 (Klein et 
al., 1983; Kaiser et al., 1983). 

C. CONTRAST INTERFEROMETRY 

If all atoms in our interferometer have the same interaction potential and the 
same velocity, their interference patterns will all be in phase and will combine 
to give an observed interference pattern of maximum contrast. Observations 
of decreased contrast therefore allow investigation of the differences among 
the interfering atoms (Schmiedmayer et al., 1994a). Of particular interest is 
the case when the internal states of atoms or molecules in our beam respond 
differently to some applied interaction. As we shall now discuss, this can re- 
sult in a periodic degradation and revival of the contrast of fringes in our in- 
terferometer. This effect can be employed to gain new, highly accurate in- 
formation from measurements of the c o n t r a s t - - w e  call this contras t  interfer-  
ometry.  
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We consider now the case in which each internal state interacts differently. 
Atoms in each state therefore form independent interference patterns, and the 
observed intensity is the incoherent sum of all these individual patterns 

/observed = ~ C0( l  -k- L" Cos(Aq~i)) (24)  
i 

where f,. is the fraction of atoms in the ith state, A q~; is the phase shift of atoms in 
that state, and C O is the contrast of atoms in a pure state. Both the phase and the 
contrast of the interference pattern thus reflect this average over internal states. 

The key point is that, if there are a finite number of internal states, one can 
expect destructions and revivals of the total contrast, especially if the phase 
shifts of these states are regularly spaced. The presence of revivals gives contrast 
interferometry the potential for high-accuracy measurements. 

As a demonstration of contrast interferometry, we studied the interactions of a 
magnetic field with the ground level of sodium atoms (Schmiedmayer et al., 
1994a). The sodium ground state, 2S1/2, consists of two hyperfine levels with to- 
tal angular momentum F = 1, 2, respectively. In the presence of a weak mag- 
netic field, B, each atom experiences a potential V(x )=- Ix"  B = gFtZemFB 
(Zeeman splitting), where gFtZBF is the atom's total magnetic moment and 
--grl.t,BmF i s  the projection of the magnetic moment in the direction of the field. 
This interaction splits these levels into eight magnetic substates, each with one 
of five possible magnetic moment projections: gFl~BmF--- ( - 2 ,  - 1 ,  0, 1, 2)/xJ2 

1 1 1 1 1 with associated f / -  8, 4, 4, 4, 8- 
By applying field magnitudes differing by AB(x) to the two arms of our inter- 

ferometer, we introduced a relative phase shift Aq~, which is given by mf 
A~k~ = ~ o  gFI,~BmFZ~kB(x) fix. (25) 

For a 1000 m/sec Na atom in a F = 2, m F - -  +- 2 state in a magnetic field of 0.01 
G, we found a phase shift of 8 rad corresponding to a refractive index of 
(1 - n) ~ 2.5 • 10-10. 

Since the relative phase shift given by the preceding equation differs for the 
five possible values of gFmF , the total interference pattern is an incoherent sum 
of five individual patterns averaged over the incoming velocity distribution. The 
contrast of the interference pattern, as a function of the velocity averaged phase 
shift A~o 2 of the (F = 2, m F = 2 )  stretched state, therefore is 

C(Aq92)=-C~[P(Aq92)cos(Acp2)+2P(~~-)cos(~2)+ 1] (26) 

where C o is the 'initial' contrast a n d  p(Aq~2) is defined in Eq. (22). The main feature 
of Eq. (26) is a rapid decrease in contrast with rising phase shift and later revivals of 
the contrast at specific values of A~o 2, where the interference patterns rephase. The 
nth revival occurs when [A~o21 = 4nlr for the ImFI = 2 states, IAq~21 = 2nzr for the 
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[mFI = 1 states, and 0 for the m F -- 0 states. If mq) 2 is small (Aq~ 2 < k/ok), the aver- 
age over the velocity distribution tends to diminish and broaden the rephasing reso- 
nances. As the applied phase shift becomes larger, (~lq~ 2 >> k/ok),  such averaging 
reduces the contrast to 0 for all atoms except those in m F = 0 states, which experi- 
ence no Zeeman shift. The total contrast in the large phase shift limit thus is de- 
creased to one quarter of the original contrast. Data from a typical rephasing experi- 
ment are shown in Fig. 15, together with a fit from Eq. (26). 

Contrast interferometry has various applications. If a particular interaction is 
known accurately, as in the case of the magnetic interaction just described, it be- 
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FIG. 15. Contrast and phase of the interference pattern versus septum current I s. The upper graph 
shows the contrast revivals from constructive rephasing of the independent interference patterns of 
the eight different magnetic substates of the sodium atom. The lower graph shows the phase (in rad) 
of the observed interference pattern. The inset shows the septum geometry, currents, and magnetic 
fields as used in the magnetic rephasing experiment. The upper inset shows a schematic of the metal 
septum separating the two interfering beams, the current connections, and the current flowing 
through the septum. For clarity, the side plates of the interaction region were omitted. The lower in- 
set shows a detail of the interaction region and the magnetic fields for the rephasing experiment. The 
dark arrows are magnetic fields, and the light arrows represent the atomic beams. 
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comes possible to measure the beam's velocity distribution. Altematively, if rephas- 
ing techniques are applied to systems where the interaction is unknown, they may 
reveal new information about it. One such system is a molecule having a tensor po- 
larizability, which causes an orientational dependence of the polarizability. States 
with different projections of the total angular momentum [mj] have different interac- 
tions, leading to variations in the contrast that may be used to infer the tensor polar- 
izability (the phase shift basically is determined by the isotropic polarizability). 

Another use of contrast techniques in interferometry is to isolate the interfer- 
ence pattern of atoms in a single state by destroying the contrast of interference 
patterns of all other states. This may be achieved by applying a large dispersive 
state-independent phase shift to one arm of the interferometer and then selec- 
tively regaining the contrast in the desired state by applying a state-dependent 
interaction to the other arm whose magnitude cancels the dispersion only in the 
desired state. We demonstrated this idea by using a Stark phase shift to compen- 
sate for a large magnetic phase shift (Atp >> k/crk) with the same dispersion 
properties (i.e., Atp ~ 1/v) but opposite sign. Contrast was regained for one spe- 
cific magnetic substate at a time, allowing experiments with polarized atoms 
even though the atomic beam was unpolarized (Fig. 16). 

30 i] 11[I [lllllllU/  
20 , R~_ Bseptu m 

Bbias 

1 0 -  I 

0 - mF[ - - -1  

-10 - 

600 800 1000 
Septum Current (mA) 

FIG. 16. Magnetic phase shift for Irnrl = 2 and ImFI = 1 states as observed with an unpolarized 
beam in a "magnetic rephasing" experiment. An additional dc Stark phase shift of 65 rad is applied in 
one arm of the interferometer. For 400-700 mA septum current, one of the ImFI = 2 states and, between 
700 and 1050 mA, two of the IrnFI = 1 states are shifted back in coherence. The two slopes of the phase 
correspond to different magnetic moment projections being within their coherence length. The insert 
shows a schematic for the field configurations of the E - B  balance experiment. 
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D. VELOCITY MULTIPLEXING 

We have proposed a rephasing technique that recovers the contrast lost due to 
velocity averaging (Eq. 22) with a constant potential (Hammond et  al . ,  1995). 
The basic idea is to make the velocity distribution discontinuous, selecting a dis- 
crete set of velocities such that the acquired phase shifts are all multiples of an 
applied phase. At some applied phase, the acquired phase shifts will all be multi- 
ples of 27r and the interference patterns of atoms in all velocity classes will 
rephase. This creates a contrast revival analogous to those just discussed for con- 
trast interferometry. Another view of this is that those velocities that do not add 
constructively to the final interference pattern are filtered out. 

The desired velocity distribution can be formed by two fast choppers (beam 
shutters) a distance L c apart that are periodically and simultaneously opened for 
a time f A t ,  where f is the open fraction and At is the period. These cut the origi- 
nal velocity distribution of the beam into a comb of velocities. The transmitted 
atoms will have a velocity distribution with peaks at velocities 
v = Lc/ t  , = L~ /nAt .  The integer n is the number of shutter cycles that occur dur- 
ing the traversal time t ,  = n A t  between the two shutters for a particle with veloc- 
ity v n. For an interaction V = htoin t applied to one arm of the interferometer over 
an interaction region length Lint, the applied phase shift for velocity class v ,  is 
~ n  --~ ('Oint/int = ('Oint (Lint/tc) n A t .  The phase shifts of the different velocity classes 
will be equally spaced and the mth rephasing will occur when tOint(Lint/Lc) A t  = 
2mTr. All velocity classes will then have accumulated phase shifts that are a mul- 
tiple of 2rr and will be in phase, resulting in a contrast revival. 

This rephasing technique will allow us to apply much larger phase shifts 
without losing contrast due to the velocity dependence of the phase. More im- 
portant, the nonlinear relation between phase shift and velocity that causes 
pulling of the averaged phase from its center value acts only within the individ- 
ual narrow velocity slices; consequently the phase pulling is small enough to 
permit an overall fractional uncertainty of less than 1 part in 105. 

Velocity multiplexing combines the advantage of very narrow velocity slices 
with the high intensity of an unchopped beam. The optimum parameters for best 
phase determination using this velocity multiplexing technique show a broad 
maximum around open fraction f =  0.375, where 14% of the original beam is 
transmitted. Increasing the chopping frequency widens the spacing between con- 
trast revivals and permits a more accurate determination of V. Numerical calcu- 
lations show that high precision phase measurements can be made even with a 
thermally effusive beam with a velocity width of 100% (Fig. 17). 

E. MEASURING DEFLECTIONS 

Another potential application of matter wave interferometers utilizes their high 
spatial resolution to measure small deflections resulting from the application of a 
uniform potential gradient applied across the region traversed by the atoms. Ap- 
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FI6. 17. Revivals in the contrast are shown as a function of applied phase ~v0) and n (top axis) for 

three velocity distributions. Revivals occur at n = 40 (m = 1), n = 80 (m = 2), etc. The inset shows a de- 
tailed study of the first revival in contrast for an open fraction of f = 0.375. The contrast (top) and the 
progression of the observed phase (middle) are shown as a function of applied phase ~v0). A phase 0 in 
%bs coincides with the contrast maximum to better than 1 part in 105. A vertical dashed line is drawn 
through the contrast maximum to guide the eye. The generation of the lower graph is described in the 
text. It shows that the phase difference is very linear in the region of the contrast maximum. 

plying a potential gradient across the entire interferometer leads to a phase shift 
between the interfering paths proportional to the difference of the potentials on 
the two paths traversed, as described in the previous section. 

The primary difference between applying a uniform potential gradient and 
uniform (but different on the two arms) potentials is that, in an interferometer 
with diffractive beam splitters (like ours), the separation between the interfering 
paths depends on the de Broglie wavelength and hence on the velocity of the 
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atom. When passing through a potential gradient, slower atoms therefore will 
have a bigger separation between the two arms and see a bigger potential differ- 
ence than fast atoms. This adds one additional power of 1/v to the dispersion, re- 
sulting in a total velocity dependence of 1/v 2 in experiments where a constant, 
velocity independent potential gradient is applied (the other power of 1/v comes 
from Eq. (18). This means that averaging over realistic velocity distributions will 
give more blurring of the fringes when using a potential gradient rather than a 
stepwise uniform potential. 

Not only the 1/v 2 dispersion, but also the absolute amount of phase shift of 
the atoms in the potential gradient may be calculated from the classical displace- 
ment Ax of the atoms' trajectories in passing through the potential gradient (i.e., 
force), converted to a phase A~o = Ax kg by multiplying by the grating vector kg. 
The interference pattern, the envelope of the fringe pattern, and the fringes them- 
selves all move as a unit in a potential gradient, following the classical trajectory 
of the atoms (Ehrenfest's theorem). 

VI. Measuring Atomic and Molecular Properties 

Atom interferometers will find wide application in the study of atomic and mole- 
cular interactions, particularly through measurements of the phase shifts due to 
differential interactions applied to the arms of the interferometer. A separated 
beam atom interferometer has the important advantage that one can investigate 
ground state atomic properties and interactions with spectroscopic precision, 
even in cases where atomic beam resonance techniques (Ramsey, 1985) are in- 
applicable because all the sublevels are shifted by the same amount. We discuss 
next the first application of an atom interferometer in this manner, a precise mea- 
surement of the polarizability of atomic Na. 

When the observed phase shift results from the time integral of some applied 
interaction potential, as described in Section V.A, the interferometer is essentially 
measuring energy level shifts, and it is unlikely that the phenomenon under study 
cannot be studied by some sort of spectroscopy. However, a separated beam inter- 
ferometer can also directly investigate phase shifts associated with interactions like 
collisions with other atoms or surfaces, which are often not accessible by other 
techniques. Such a novel application will be discussed later in this sect ion--the 
measurement of the index of refraction of a gas for atomic matter-waves. 

A. ELECTRIC POLARIZABILITY OF NA 

We have used our separated beam atom interferometer to perform a high-accu- 
racy measurement of the electric polarizability, a, of the Na atom (Ekstrom, 
1993; Ekstrom et al., 1995). The dramatic increase in accuracy achieved here 
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came from two sources: our ability to apply a very well-controlled interaction 
characterized by a uniform electric field and our ability to gain precise knowl- 
edge of the interaction time by measuring the beam velocity using single-grating 
diffraction patterns (Section Ill.B). Previous methods relied on deflection of an 
atomic beam in a potential gradient, and were limited by the uncertainties in the 
characterization of the applied gradient and the velocity distribution of the 
atomic beam (Molof et al., 1974). 

In our experiment, we applied a uniform electric field, E, to one of the sepa- 
rated atomic beams, shifting its energy by the Stark potential V = - aEe /2 .  The 
resulting induced phase shift is quadratic in the applied potential and given by 
(Eq. 18): (~ 

Aq~=~v ~aEZ(x)  dx - - ~ v ~ a  ~ Le. (27) 

where v is the mean velocity of the atomic beam, �9 is the voltage applied to one 
side of the interaction region across a distance D, the spacer width, and Lef f is the 
effective interaction region length defined as 

(.)2 f L e f  t ---- E 2 dx. (28) 

In our interferometer with a 10 cm long interaction region (Lef  t ~ 10 cm) and 
a beam velocity of v--  1000 m/sec, an electric field of 280 V/cm produces a 
phase shift of 1 rad. A typical measurement of the Stark phase shift is shown in 
Fig. 18. The phase shift for various voltages was measured with respect to the 
phase with no voltage applied. To correct for drifts and fluctuations of the 0 
phase, we took frequent measurements of the 0 reference phase. We found the 
Stark phase shift to be a quadratic function of the applied voltage whose coeffi- 
cient we measured with a statistical uncertainty of typically 0.2%. 

For an accurate determination of the electric polarizability, the crucial ele- 
ments are the knowledge of the magnitude of the applied fields, the exact geom- 
etry of the interaction region, and the width and mean of the velocity distribution 
of the Na atoms. The main contributor of uncertainties in the electric field and 
Lef f were the spacer thicknesses D and the fringing fields near the ends of the 
septum. The spacer thicknesses D were measured to 0.05% with a dial indicator 
calibrated with precision gauge blocks. The electric fields around the ends of the 
interaction region were calculated numerically using standard relaxation meth- 
ods, and the results were parameterized by an effective length Lef  t .  

We performed polarizability measurements with three different interaction re- 
gions, displaying different field configurations. The first and second interaction 
regions had foils with lengths 10 cm and 7 cm, but no guard electrodes. The 
third interaction region had guard electrodes located at the ends of the side plates 
and spaced 6 cm apart (Fig. 18 insert), which were held at the same potential as 
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FIG. 18. Measurement of the electric polarizability of Na: (a) shows a schematic of the separated 
beam interferometer with the interaction region installed behind the second grating; (b) shows the 
measured phase shifts vs. applied voltage. The two different signs of the phase shift stem from the 
voltage being applied on either the left (open circles) or the right (filled circles) side of the interac- 
tion region (arm of  the interferometer). The fit is to a quadratic and the residuals are shown in the 
lower graph. 

the foil to minimize the fringing fields. In this interaction region, the fringe fields 
had a much smaller contribution to Lef f. We also performed polarizability mea- 
surements with voltages applied to the right side or the left side of the interac- 
tion region (see Fig. 18), using both the left and the right interferometer. In addi- 
tion we measured the asymmetry of the interaction region (it was 0.1%) by 
applying a voltage to the septum with the side plates grounded. 

The mean velocity and velocity width of the Na beam were determined to 
0.15% from a fit to the diffraction pattern produced by the first grating (period 
200 +__ 0.1 nm) (see Section Ill.B). The velocity distribution of our beam compli- 
cated this simple analysis. The rms width of the velocity distribution was on the 
order of 3 -5%,  and we had to average over the actual velocity distribution to ex- 
tract the polarizability accurately from the phase of the interference pattern (see 
Eq. (21) and the discussion in Section V.B). 

Additional systematic shifts can arise, because the velocity distribution con- 
tributing to the interference pattern may differ from the velocity distribution of 
the atomic beam as determined from the diffraction pattern. This can be caused 
by blocking of atoms by the septum or variation in the detector position, both of 
which are velocity selective because faster atoms have a smaller diffraction an- 
gle and therefore travel closer to the axis than slower ones. These effects consti- 
tuted a correction of about 0.4% and were measured by changing the positions 
of the interaction region and the detector. These data were found to agree with a 
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model obtained with a ray tracing algorithm. We estimated that these corrections 
introduced an additional uncertainty of 0.15% into our determination of the po- 
larizability. 

Taking all corrections and all sources of errors into account, we found the 
Stark shift of the ground state of sodium to be 40.56(10)(10) kHz/(kV/cm) a, 
which corresponds to an electric polarizability of a = 24.11(6)(6) • 10 -24 cm 3, 
where the first error is statistical and the second is systematic (Ekstrom et al., 
1995). Our systematic error was dominated by uncertainties in the geometry of 
the interaction region and uncertainties in the determination of our velocity dis- 
tribution, and our statistical error was dominated by the short-term stability of 
the phase reference in our experiment and to a lesser extent by counting statis- 
tics. 

Our measurement represents a nearly 30-fold improvement on the best previ- 
ous direct measurement of the polarizability of sodium 24.4(1.7) • 10 -24 cm 3 
(Hall and Zorn 1974), a 7% result. The currently accepted value 23.6(5) • 10 -24 
cm 3, with a 2% uncertainty (Molof et al., 1974), comes from a measurement of 
the Na polarizability with respect to that of the 23S1 metastable state of He, 
which is calculated (Chung and Hurst, 1966). Using our measurement together 
with the experiment of (Molof et al., 1974) allows us to determine the polariz- 
ability of the 3S~ metastable state of He to be 47.7(1.0) x 10 -24 cm 3, in good 
agreement with the calculated value 46.77 • 10 -a4 cm 3, (Chung and Hurst, 
1966). The error in the experimental value is dominated by the experimental er- 
ror of Molof, et al. (1974).  

Significant improvements in our technique would result from an interaction 
region whose spacing was determined more accurately (e.g., with light interfer- 
ometry) and from finding a better way to determine the velocity of the interfer- 
ing atoms. Better determination of the velocity distribution can be accomplished 
by a magnetic or radio frequency rephasing experiment (Schmiedmayer et al., 
1994a; see also Section V.C) or by using our velocity multiplexing scheme 
(Hammond et al., 1995; see also Section V.D). With these improvements it 
seems feasible to perform polarizability measurements with uncertainties in the 
10 -4 range. 

B. REFRACTIVE INDEX FOR NA MATTER WAVES 

In this section, we discuss a study of an atomic property that was inaccessible to 
measurement before the advent of atom intefferometers - -  the index of refraction 
seen by atomic de Broglie matter waves traveling through a gas sample 
(Schmiedmayer et al., 1995a). This effect is the direct counterpart to the well- 
known index of refraction found in optical physics, in which an optical wave is 
phase shifted (and possibly attenuated) while passing through a dispersive 
medium. In the case of atomic de Broglie waves, the index of refraction arises 
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from the collision-induced phase shift between the ground state Na atoms and 
the molecules in the gas (Schmiedmayer et al., 1993). Our studies of the phase 
shift in collisions add significant information to long-standing problems, such as 
solving ambiguities in the inversion of the scattering problem to find the poten- 
tial (Chadan and Musette 1989), the attempts to interpret other data sensitive to 
the form of the long-range interatomic potential (Bagnato et al., 1993; Lett et 
al., 1993; Cline et al., 1994; Walker and Feng, 1994) and to collective effects in 
a weakly interacting gas (Stoof, 1991; Moerdijk et al., 1994; Moerdijk and Ver- 
haar, 1994; Stwalley et al. 1994). 

From the perspective of wave optics, the evolution of the wave function, ~ ,  
propagating through a medium in the x direction for a distance x is given by 

27r 27r 
xIt(x) = xlt(O) eiko x ei ~ Nx Re(f(k,'mO)) e -  ~ Nx tm(f(k,.m'O)). (29) 

Here k 0 is the wave vector in the laboratory frame, k cm is the wave vector in 
the center of mass frame of the collision, N is the density of the medium and 

f(kcm,O ) is the forward scattering amplitude. To measure the index of refrac- 
tion, we introduce a gas in the path of one arm of the interferometer. The 
phase shift of �9 on the arm with the medium relative to the arm with no 
medium is then given by 

27/" 
A(#(X) = K ~cm Nx  Re(f(kcm,O)) ( 3 0 )  

which is proportional to the real part of the forward scattering amplitude. In ad- 
dition, the amplitude of �9 is attenuated in proportion to the imag inary  part of 
the forward scattering amplitude, which is related to the total scattering cross 
section by the optical theorem 

471" 
Oto t = kc m Im(f(kcm,O)).  (31) 

In analogy to light optics, one defines the complex index of refraction 

27]" 
n = 1 + N "f(kcm,O). (32) 

k0kcm 
We elected to use the ratio of the real and imaginary parts of the forward scat- 

tering amplitude, Re[ f ( k ,O) ] / Im[ f ( k ,O) ] ,  as the primary variable to be measured 
and compared with theory. This ratio proves to be a more natural theoretical 
variable with the advantage that it gives quite "orthogonal" information to the 
previously studied total scattering cross section. In addition, it has the experi- 
mental advantage of being independent of our knowledge of the absolute pres- 
sure in the scattering region, which is known less accurately than the 3% accu- 
racy with which we were able to determine this ratio by measuring the slope of 
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the observed phase shift plotted as a function of the log of the fringe amplitude 
for each particular gas density (see also Fig. 19c)" 

-Aq~(N) Re[f(k,O)] 
ln[A(N)/A(O)] Im[f(k,0)]" 

(33) 

Since both A and Aq~ could be determined from the same interference scan, this 
method did not rely on a pressure measurement at all. This procedure also took 
advantage of the fact that the interference amplitude decreases only as the square 
root of the intensity in the attenuated beam (Rauch et al. 1990) and therefore is 
easier to measure at high target gas densities, where the intensity of the beam 
passing through the gas-filled side of the interaction region is strongly reduced. 

We have used our separated beam atom/molecule interferometer to measure 
the ratio Re[f(k,O)]/Im[f(k,O)] for the scattering of Na atoms on various 
monatomic rare gases He, Ne, Ar, Kr, and Xe and the molecular gases N 2, CO 2, 
NH 3, and H20 (Table II) (Schmiedmayer et al., 1995a). In addition, we have 
measured both the phase shift and attenuation of Na 2 de Broglie waves that pass 
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Fro. 19. Experiment to measure the refractive index for Na matter waves when passing through a 
dilute gas: (a) The detail of the interaction region shows the 10 p,m mylar foil suspended between the 
side plates. The side plates that form the gas cell are indicated in black at both ends. (b) The phase 
shift of Na matter waves passing through He, Ne, Ar, and Xe gas as a function of the estimated gas 
density in the cell. (c) The phase shift of Na matter waves plotted vs. the interfering amplitude when 
passing through He, Ne, and Ar in the gas cell. The slope of the fitted line is a direct measurement of 
the ratio Re[f(k,O)]/Im[f(k,O)]. 
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TABLE II 
PHASE SHIFT Aqg, REFRACTIVE INDEX n, AND THE RATIO Re[f(k,O)]/Im[f(k,O] FOR 1000 M/SEC Na 

ATOMS PASSING THROUGH VARIOUS GASES AT 300 K AND 1 MTORR PRESSURE 

Experiment Calculations 

A~p ( n -  1) 10 l~ (6 -8)  (6-12)  General 
mtorr-l mtorr-1 Re (f ) / Im ( f )  Potentials Potentials Potentials 

He 0.50 0.14 _+ 1.18i 0.12(2) 
Ne 2.0 0.55 _+ 0.56i 0.98(2) 
Ar 3.9 1.07 -+- 1.81i 0.59(3) 
Kr 5.4 1.51 _+ 2.45i 0.62(6) 
Xe 6.5 1.81 _ 2.49i 0.73(3) 
N 2 4.7 0.91 __+ 1.39i 0.60(2) 
NH 3 3.3 1.30 _ 2.16i 0.65(4) 
CO 2 5.0 1.37 __+ 2.21i 0.62(2) 
H20 6.2 1.71 __+ 2.40i 0.72(3) 

1.24 
0.69 

0.75 0.73 
0.76 0.73 

0.26 
1.1 
0.65 

Note." The data are compared to JWKB calculations using (6 -8 )  (Gottscho et al. 1981) and 
(6-12)  (Duren et al. 1972 and Barwig et al. 1966) potentials and in the last column for potentials 
given by J. Pascale (He) (1983) and Tang and Toennies (Ne, Ar) (1977). 

through Ne gas in one path of the interferometer (Chapman et al., 1995a). To 
perform these experiments, we modified the interaction region so that a gas tar- 
get could be inserted in one arm of the interferometer. An inlet was added to the 
center of one side plate for the introduction of gas, and end tabs were added to 
restrict the openings at the entrance and exit to only 200/xm (Fig. 19a). This al- 
lowed us to send one portion of the atom wave through a gas with pressure of 
"~ 10 -3 torr without noticeably attenuating the atom wave passing on the other 
side of the septum. By changing the carrier gas used in our source (see Section 
11.2 and Table I), and hence the velocity of our atomic beam, we also measured 
the velocity dependence off(k,0) for the rare gases (Fig. 20) or equivalently the 
dispersion of the refractive index. 

Our experimental procedure was to determine both the amplitude reduction 
A(N)/A(O), proportional to exp(-27r/km)N Im[f(kcm,O)]), and the phase shift 
Aq~(N), proportional to -(2rr/kcm)N Re[f(kcm,O)] , from a fit to the observed inter- 
ference fringes with and without gas in one arm of the atom interferometer. We 
positioned the interaction region with the stronger 0th order beam passing 
through the gas sample so that the absorption at first equalized the amplitude of 
the two interfering beams, resulting in higher contrast for the observed fringes. 
Interference patterns were recorded alternately: first while leaking gas into the 
interaction region and then with zero gas flow. This procedure provided the ref- 
erence amplitudes and 0 phase points. The gas flow into the interaction region 
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was varied, and interference patterns were recorded with amplitude reductions 
varying by over a factor of 30, corresponding to beam attenuations through the 
gas cell of more than a factor of 1000. The corresponding pressures in the main 
chamber were also recorded. 

In a separate experiment, the absorption of a well-collimated Na or Na 2 beam 
was measured. This allowed us to verify that the amount of gas that caused a 
factor of b reduction in the amplitude of the interference fringes caused a factor 
b 2 attenuation of the transmitted beam intensity, and also allowed us to measure 
the relative attenuations for Na or Na 2 in Ne. 

The measured phase shift was found to be a linear function of the pressure 
rise (Fig. 19b). It is noteworthy that the measured phase shifts/torr vary by a fac- 
tor of 13, whereas the total scattering cross sections vary by only a factor of 4. 
Comparing the measured attenuations for Ar, Kr, and Xe to the cross sections 
calculated from the potentials (Buck and Pauly, 1968; Dfiren et al., 1968, 1972) 
allowed us to estimate the column density of the gas in our interaction region. 

The refractive index of matter for de Broglie waves has been demonstrated in 
electron holography (Lichte, 1988) and extensively studied in neutron optics 
(Sears, 1990), especially using neutron interferometers (Badurek et al., 1988). In 
neutron optics, scattering is dominantly s wave and measuring the refractive in- 
dex gives information about the scattering length. 

In contrast, many partial waves (typically ~max--Xr/}tdB = a few hundred) 
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contribute to scattering in the present study because the range of the interatomic 
potential x r between two atoms is much larger than the de Broglie wavelength 
(0.17 ]k for 1000 m/s Na atoms). This results in the differential cross section 
having a considerable angular structure at the scale 1/~max, which is a few milli- 
radians. Fortunately, the angular acceptance of our interferometer (30/xrad) is 
much smaller than the size of this structure, so we are exclusively sensitive to 
f ( k ,O)  as assumed previously. 

Using the standard partial wave treatment for central potential scattering, we find 
the real and imaginary parts of the scattering amplitude in the forward direction: 

1 
Re[f(k,0)] = ~ ~ (2f + 1) sin 26 e (34) 

~ 0 ~- 

1 
Im[f(k,0)] = ~ e ~  ~ (2e + 1)2 sin26 e (35) 

where 6 e is the phase shift of the partial wave with angular momentum e. For a 
typical interatomic potential with a reasonably deep attractive well, the rapidly 
oscillating sin 26 e term in Eq. (34) averages to zero at most impact parameters 
(this is the random phase approximation), and the main contribution to 
Re[f(k,0)] comes from large impact parameters beyond the potential minimum, 
where the phase shift is on the order of 7r or less. In contrast, the sin 2 6 e term on 

1 Eq. (35) averages to ~ for impact parameters inside the point at which 6 e = rr 
where the random phase approximation is valid. The value of Im[f(k,0)] and 
therefore the total cross section basically is determined by the location of this 
point. Figure 20 shows a typical calculation for the phase shifts 6 e and their con- 
tribution to Re[f(k,0)] and Im[f(k,0)]. 

To make comparisons with our data, any theory must be averaged over the ve- 
locity distribution of the target gas (Schmiedmayer et al., 1995a). This averaging 
is best done by calculating the mean scattering amplitude as seen by the atoms. 
This velocity averaging is very strong in the case of N a - H e  scattering (the mean 
velocity of the He atoms is comparable to the beam velocity) and gets less and 
less for heavier target atoms. 

Our measurements show that Re[f(k,0)] varies substantially more than 
Im[f(k,0)] with the collision system. The theoretical models discussed by 
Schmiedmayer et al. (1995a) show that Re[f(k,0)] gives new information about 
the shape  of the long range potential. In the following paragraphs, we will sum- 
marize these calculations and give some simple illustrative examples. 

In the case of a hard sphere with radius r H, the sum over all partial wave 
phase shifts can be evaluated numerically. We have shown that the constraint that 
the wave function vanish at r H affects partial waves whose classical impact para- 
meter b = ( ( +  1/2) /k  is smaller than r ,  and, due to tunneling through the cen- 
trifugal barrier, also slightly beyond r/4. The numeric sum can be approximated 
by R e [ f ( k , O ) ] / I m [ f ( k , O ) ]  ~ -1 /V~r  H, roughly equal to the inverse of the square 
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root of the number of partial waves contributing to the scattering process. Fur- 
thermore, the ratio of real to imaginary parts of the scattering amplitude is al- 
ways negative, reflecting the repulsion of the partial waves affected by tunneling. 

In the case of a pure long-range attractive interaction potential of the form 
Cnr -n, it is possible to predict analytically the ratio Re[f(k,O)]/Im[f(k,O)].  Cal- 
culating the partial wave phase shifts in the Eikonal approximation and convert- 
ing the partial wave sums in Eqs. (34) and (35) into an integral over the impact 
parameter (the semi-classical approximation) we find, for an r -n potential, ( 1) F 1 1 F + - -  
Re[f(k,0)] 2 n -  1 n -  1 ( 7r ~ 

- - - = +tan (36) 
Im[f(k,0)l F F 

n - 1  n - 1  

where the upper signs are for attractive potentials. This ratio is independent of 
both the strength of the potential (i.e., of Cn) and de Broglie wavelength, which 
follows because no length scale is defined by the potential. It depends strongly 
on n (Table III). For neutral atoms in s-states one would expect the long range 
tail of the actual potential to be a van der Waals interaction, Vdw(r) - -C6  r-6, 
in which case we would expect Re[f(k ,O)]/Im[f(k ,O)] ~-0.72. This approxima- 
tion fails at small energies (i.e., for ultracold atomic collisions) because there are 
not enough partial waves to justify the semi-classical approximation. Applying it 
to real systems requires that the actual potential be reasonably well-represented 
by a power law into small enough distances to apply the random phase approxi- 
mation; consequently it will certainly not be applicable to potentials whose wells 
are not deep enough to generate a phase shift of several ~. 

To make a more detailed comparison of our results with theory we used the 
JWKB approximation to calculate the phase shifts 6e in Eqs. (34) and (35) lead- 
ing to the forward scattering amplitude for modified 6 - 1 2  potentials (Buck and 
Pauly 1968; Dtiren et al. 1968) and 6 - 8  potentials (Barwig et al., 1966; Dtiren 
et al., 1972; Gottscho et al., 1981) as well as more sophisticated dispersion po- 
tentials from Tang and Toennies (1977, 1984, 1986), and Proctor and Stwalley 
(1977) determined from scattering and spectroscopic data. Based on these calcu- 

TABLE III 
THE RATIO Re[f(k,O)l/Im[f(k,O)] CALCULATED FOR A LONG-RANGE 1 / r  n POTENTIAL 

n 5 6 7 8 

Re[f(k,0)]/Im[f(k,0)] 1.00 0.72 0.58 0.48 
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lations, we can give the following basic characteristics of the phase shifts and 
the ratio Re[f(k,O)]/Im[f(k,O)] in a tom-atom collisions. 

�9 The biggest contribution to the real part of the scattering amplitude and there- 
fore to the observed phase shift A~o stems from regions of the potential where 
the partial wave phase shifts t~ e are slowly varying and smaller than 7r. This is 
certain to be the case for large interatomic separation. In contrast, all partial 
waves contribute to the imaginary part of the scattering amplitude and the total 
cross section. Therefore, the phase shift A~o and the ratio Re[f(k,O)]/Im[f(k,O)] 
carry new information about the long-range part of the scattering amplitude. 

�9 The phase shift A~o and the ratio Re[f(k,O)]/Im[f(k,O)] both show glory os- 
cillations similar to those seen in the total cross section, but shifted. In the 
experiment, these oscillations were reduced by the velocity averaging, but 
indications of them can be seen in our 1993 data (Fig. 21) as described by 
Schmiedmayer et al. (1994b). These glory oscillations have also been pre- 
dicted by Audouard et al. (1995). 

�9 For the light gases with a weak interaction potential (t~ e< 7r at the potential 
minimum), the ratio Re[f(k,O)]/Im[f(k,O)] is very sensitive to the minimum 
of the potential and therefore also to the form of the inner core. 

�9 For the heavy gases with a strong interaction potential, the ratio 
Re[f(k,O)]/Im[f(k,O)] tends to approach the simple pure long range limit 
[Eq. (36)]. 

Using these basic characteristics, we can say several qualitative things about 
the collisional phase shifts we have observed. We find that the collision-induced 
phase shift for sodium atom waves passing through a variety of target gases is 
much more strongly dependent on the collision partner than the previously mea- 
sured cross sections (Diaren, 1980). Semi-classical calculations of this phase 
shift show that it is very sensitive to the shape of the interatomic potential at in- 
teratomic separations beyond where the random phase approximation is valid. 

As a general trend, we see that the depth of the minimum of the interatomic 
potential varies considerably from He to Xe. Helium has the weakest long range 
attraction, a very shallow minimum, and it behaves most like a hard sphere. The 
ratio Re[f(k,O)]/Im[f(k,O)] for N a - H e  scattering is very small, but its positive 
sign gives clear evidence of an attractive long-range interaction. The large ratio of 
real to imaginary part for N a - N e  results from the fact that the maximum of the 
phase shift near the potential minimum is never larger than 1 rad, generating a 
large contribution to the sum in Eq. (34). The N a - X e  potential, on the other 
hand, has a well deep enough to generate many radians of phase, and so the long- 
range part of the potential should dominate. Its ratio comes closest to the value 
expected for a long-range r - 6  interaction. The values measured for the other gases 
N a - K r  and N a - A r  deviate progressively further from this ratio as the well depth 
decreases (which it does monotonically with decreasing mass of the rare gas). 
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For the scattering of Na 2 molecules on Ne gas (Chapman et al., 1995a), we 
find the ratio Re[f(k,O)]/Im[f(k,O)] = 1.413). For better comparison with the Na 
atom, we have separately measured the total absorption of Na 2 by Ne (i.e., 
(47r/k)Im[f(k,O)]) to be 57(2)% larger than the corresponding absorption of Na. 
These measurements are in qualitative agreement with N a - N e  potentials from 
Tang and Toennies (1977, 1984) if extended to Na 2 using combination rules 
from Tang and Toennies (1986). 

Significant discrepancies remain between our experiments and the predic- 
tions based on potentials obtained by standard scattering experiments (Dfiren, 
1980; Table II), especially for the velocity-dependent measurements for 
Na-He ,  N a - N e ,  and N a - A r  (Fig. 21). This shows the power of refractive in- 
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FIG. 21. Velocity dependence of the ratio Re[f(k,O)]/Im[f(k,O)] for Na matter waves passing 

through He, Ne, Ar, and Xe gas. The data for the heavy gases (Ar, Kr, Xe) show indication of glory 
oscillations. The calculated curves stem from various potentials found the literature. 
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dex measurements to test existing potentials, and indicates an opportunity to 
refine these potentials using this new technique. Considerably more effort is 
required to understand both the velocity-selective data and the molecular 
data. 

We think that information from phase shift experiments may add signifi- 
cant understanding to atom-atom and atom-molecule interactions and, we 
hope, will allow us to learn more about the interatomic potentials in these 
simple systems. We also hope to study the effects of inelastic processes and 
excitations in forward scattering. These should cause a reduction in the ratio 
of Re[f(k,O)]/Im[f(k,O)] if they occur at large impact parameters (but no evi- 
dence for this is seen here). 

VII. Fundamental Studies 

Interferometers of all types have had application to fundamental problems and 
precision tests of physical theories, especially in quantum mechanics, and atom 
interferometers are sure to continue this tradition (see also other contributions in 
this volume; for example, the measurement of h/m for Cs by Young et al.). In 
this section, we focus our attention on the fundamental question, "What limits 
do the size and complexity of particles place on the ability of their center of 
mass motion to exhibit interference effects?" 

The quantum mechanical treatment of the center of mass motion of in- 
creasingly complex systems is an important theme in modern physics. This is- 
sue is manifest theoretically in studies of the transition from quantum through 
mesoscopic to classical regimes and experimentally in efforts to coherently 
control and manipulate the external spatial coordinates of complex systems, 
as exemplified by the wide interest in matter wave optics and interferometry. 
As described earlier, matter wave optics and interferometry have been ex- 
tended to atoms and molecules, systems characterized by many degenerate 
and non-degenerate internal quantum states. In this section, we will investi- 
gate if and where there might be limits, in theory or practice, to coherent ma- 
nipulation of the center of mass motion of larger and more complex particles. 
We shall first consider the effect of particle size and mass, showing that the 
minimum transit time needed in the interferometer varies as a high power of 
the particle size. We then will consider the interaction of radiation with the 
atom as it is passing through the interferometer, actually performing a 
gedanken experiment suggested by Feynman. This will lead naturally to an 
understanding of the limitations to observing interference with macroscopic 
objects posed by their coupling to the environment. Whereas internal state co- 
herences in complex molecules have long been cleverly manipulated in spec- 
troscopy in both the radio (Ramsey 1985) and optical frequency domains 
(Bord6 et al., 1994; Chebotayev et al., 1985), we re-emphasize our concern 
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here with the limits to the coherent manipulation of the center of mass mo- 
tion. Finally, we shall consider the question of what happens to the coherence 
lost when the particle passing through the interferometer interacts with radia- 
tion, demonstrating that it becomes entangled with the scattered rad ia t ion- -  
and showing that this coherence can be regained by selectively detecting par- 
ticles that scatter this radiation into a subspace of possible scattered photon 
directions. 

A. PARTICLE SIZE 

First we will concentrate on particle size and complexity and their influence on 
interference. Our experiments described previously demonstrate that interference 
fringes can be observed when the size of the particle (--~6 & for Na 2 molecules) 
is considerably larger than both its de Broglie wavelength (0.16 &) and its coher- 
ence length, typically 1/~ (Schmiedmayer et al., 1993; Chapman et al., 1995a). 

If the particle's size relative to its de Broglie wavelength or coherence length 
pose no fundamental limits to matter wave interferometry, large mass or physical 
size may limit the ability to observe interference fringes in a more practical 
sense. To produce interference fringes in a grating interferometer with particles 
of large mass, the single slit diffraction angle Oa~fe-~ Ada/d ~ from the first grating 
must be large enough to include at least two adjacent slits in the second grating. 

2 This implies that L >> dg/Aaa > S2/AdB , where L is the spacing between the first 
and second gratings, dg is the grating period, and s is the particle diameter. (The 
last inequality follows from the requirement that the particle must be able to pass 
between the grating bars.) The quantity L = d2/Ada is exactly half the Talbot 
length (see Section Ill.C). Fulfilling this condition will allow interferometry in 
the Talbot-Lau regime (but not with separated beams). For heavier particles, the 
diffraction angle would be reduced further and there would be no opportunity for 
two different paths to interfere. The pattern observed in a three-grating geometry 
would then be a classical moir6 fringe pattern (Batelaan et al., 1997 in this vol- 
ume and Oberthaler et al., 1996) and not interference fringes. 

We can rewrite this limit in terms of the mass density p of the (assumed 
spherical) particle and the transit time between gratings r = L/v as 

ps 5 
~" >> - - .  (37) 

h 

For example, an interferometer with a 1 sec transit time (between gratings) 
would be able to interfere particles with a diameter smaller than 70 nm (typically 
clusters of about 8 • 107 sodium atoms). Even if we waited one year, we could 
not expect to observe interference from composite particles with a diameter ex- 
ceeding 2/xm, corresponding to an atomic weight of about 1013; this is the size 
of a large bacterium. 
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B. COHERENCE LOSS DUE TO SCATTERING A SINGLE PHOTON--DISCUSSION 

The principle that a system can be in a coherent superposition of different states 
and exhibit interference effects is a fundamental element of quantum mechanics. 
Immediately, the question arises as to what happens to the interference if one 
tries to determine experimentally which state the system is in. This is the basis 
of the famous debate between Bohr and Einstein, in which they discussed 
Welcher Weg ("which way") information in the Young's double slit experiment 
(Bohr, 1949; Feynman et al., 1965; Wooters and Zurek, 1979; Zeilinger, 1986). 
In a more recent gedanken experiment suggested by Feynman, a Heisenberg 
light microscope is used to provide Welcher Weg information in a Young's two- 
slit experiment with electrons (Feynman et al., 1965) or atoms (Sleator et al., 
1991; Tan and Walls, 1993). In this section, we will discuss our experimental re- 
alization of this gedanken experiment using our atom interferometer. Since the 
contrast of the fringes is a measure of the amount of the atomic coherence, com- 
plementarity suggests that the fringes must disappear when the slit separation 
(more generally the path separation at the point of measurement) is large enough 
that, in principle, one could detect through which slit the particle passed (Scully 
et al., 1991) using a Heisenberg microscope. This explains why scattering pho- 
tons from the atoms in our interferometer at a location, where the separation of 
the paths was many wavelengths of light, completely destroyed the atomic inter- 
ference fringes (Section IV.G). 

Since the loss of contrast is caused by the measurement of the atom's position 
by the photon, it is necessary to consider a quantum treatment of the measure- 
ment process. The measurement interaction here is the elastic scattering of the 
photon by the atom that causes their initially separable wave function to evolve 
into an entangled state (Schrrdinger 1935)- -a  sum of separable wave functions, 
each one of which conserves the total momentum and energy of the system, that 
no longer can be written as a product of separate atom and photon wave func- 
tions. This entanglement can result in a loss of atomic coherence when informa- 
tion about the scattered photon is disregarded. The effects of such entanglement 
is an important issue in contemporary quantum mechanics, particularly with re- 
gards to EPR-type correlations and for understanding the measurement process 
and the loss of coherence in the passage from quantum to classical mechanics. 
The details of the loss of coherence of one system due to entanglement with an- 
other can be studied directly in interferometry experiments like the one dis- 
cussed here by scattering a probe particle off an interfering superposition of the 
observed system. 

In this section, we discuss experiments we performed to measure the loss of 
atomic coherence due to scattering single photons from the atoms inside our 
three grating Mach-Zehnder interferometer (see Fig. 22). Our experiments 
(Chapman et al., 1995c) demonstrate that the loss of coherence may be attrib- 
uted to the random phase imprinted by the scattering process and that it depends 
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FIG. 22. A schematic, not to scale, of our atom interferometer. The original atom trajectories 

(dashed lines) are modified (solid lines) due to scattering a photon (wavy lines). The inset shows a 
detailed view of the scattering process. 

on the spatial separation of the interfering waves at the point of scattering com- 
pared with the wavelength of the scattering probe. 

Our experiments also address the questions of where the coherence is lost to 
and how it may be regained. Although the elastic scattering of a photon pro- 
duces an entangled state, it is not per se a dissipative process and may be 
treated with Schr6dinger's equation without any ad hoc dissipative term. There- 
fore, the coherence is not truly lost but rather becomes entangled with the scat- 
tered photon, which may be considered a simple reservoir, consisting of only 
the vacuum radiation modes accessible to it. We show that this indeed is the 
case by demonstrating that selective observation of atoms which scatter photons 
into a restricted part of the accessible phase space results in fringes with re- 
gained contrast. 
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C. COHERENCE LOSS DUE TO SCATTERING A SINGLE PHOTON m EXPERIMENT 

To study the effects of photon scattering on the atomic coherence as a function 
of the interfering path separation, single photons were scattered from the atoms 
within the interferometer. The contrast and the phase of the interference pattern 
were measured as a function of the separation of the atom paths at the point of 
scattering (Chapman et al., 1995c). 

In the absence of scattering, the atom wave function at the third grating may 
be written ~(x) = ul(x) + ei~u2(x) eik~ x, where Ul, 2 a r e  (real) amplitudes of the up- 
per and lower beams, respectively; kg = 27r/dg, where dg is the period of the grat- 
ings, and q~ is the phase difference between the two beams. To describe the effects 
of scattering within the interferometer, we first consider an atom within the inter- 
ferometer elastically scattering a photon with well-defined incident and final 
(measured) momenta, k i and  kf wi th  [ki[ = [kf [ - -  kphoton. After this well-defined 
scattering event, the atomic wave function becomes 

XII"(X ) oc Ul(X -- ~ f )  + ei~u2(x -- ,~f)  eikRx+A~. (38)  

The resulting atomic interference pattern shows no loss in contrast but acquires a 
phase shift (Bordr, 1989; Storey and Cohen-Tannoudji, 1994): 

Aq~ = Ak.  d = Akxd (39) 

where Ak = k f -  k i, and d is the relative displacement of the two arms of the in- 
terferometer at the point of scattering. Equation (38) shows that there is a spatial 
shift of the envelope of the atomic fringes due to the photon recoil given by 
Ax = (2L - 7,)Akx/katom , where katom = 277"/AdB , and (2 L - z) is the distance from 
the point of scattering to the third grating. 

In the case that the photon is disregarded, the atom interference pattern is 
given by an incoherent sum of the interference patterns with different phase 
shifts (Stem et al., 1990) corresponding to different final photon directions (i.e., 
a trace over the photon states): 

cos(kgX + Aq~') = f d(Akx)P(Akx)C o cos(kgX + Akxd) (40) C' 

where P(Akx) is the probability distribution of transverse momentum transfer 
and C O is the original contrast or visibility of the atomic fringe pattern. For scat- 
tering a single photon (shown in the insert to Fig. 23), P(Ak x) is given by the ra- 
diation pattern of an oscillating dipole. The average transverse momentum trans- 
fer is hAk x = l hk (the maximum of 2hk occurs for backward scattering of the 
incoming photon and the minimum of Ohk occurs for forward scattering). Due to 
the average over the angular distribution of the unobserved scattered photons, 
there will be a loss of contrast (C' -< C 0) and a phase shift Aq~' of the observed 
atomic interference pattern. It follows from Eq. (40) that the measured contrast 
(phase) of the interference pattern as a function of the separation d of the atom 
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FIG. 23. Relative contrast and phase shift as a function of the separation of the interferometer 

arms at the point of scattering. The inset shows the angular distribution of spontaneously emitted 
photons projected onto the x axis. The dashed curve corresponds to purely single-photon scattering, 
and the solid curve is a best fit that includes contributions from atoms that scattered no photons (4%) 
and two photons ( 14 %). 

waves will vary as the magnitude (argument) of the Fourier transform of P(Akx). 
Equation (40) is equivalent to the theoretical results obtained for the two-slit 
gedanken experiment (Sleator et al. 1991; Tan and Walls 1993) (in which case d 
is the slit separation), even though explicit which-path information is not neces- 
sarily available in our Mach-Zehnder interferometer, in which the atom wave 
functions can have a lateral extent (determined by the collimating slits) much 
larger than their relative displacement, d. 

We arranged to scatter a single photon from each atom within the interferom- 
eter by using a short interaction time and a laser field strength most likely to re- 
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suit in the scattering of a single photon (Fig. 22). The scattering cross section 
was maximized using o'+ polarized laser light tuned to the D2 resonant line of 
Na ('~photon-- 589 nm) connecting the F = 2, m F = 2 ground state to the F'  = 3, 
m F' = 3 excited state. This ensured that the scattering left the atom in the same 
hyperfine state. The atomic beam was prepared in the F = 2, m F = 2 state by op- 
tical pumping with a tr+ polarized laser beam intersecting the atomic beam be- 
fore the first collimating slit (see Section II.C). We typically achieved ---95% 
optical pumping, as measured (to within a few percent) by a two-wire 
Stern-Gerlach magnet, which caused state-dependent deflections of the atomic 
beam. 

The excitation laser beam was focused to a --~ 15 /xm waist (FWHM of the 
field) along the atom propagation direction. A cylindrical lens was used to defo- 
cus the beam in the y direction to ensure uniform illumination over the full 
height of the atomic beam (---1 mm). The transit time through the waist was 
smaller than the lifetime of the excited state, hence the probability for resonant 
scattering in the two-state system showed weakly damped Rabi oscillations, 
which we observed by measuring the number of atoms deflected from the colli- 
mated atom beam as a function of laser power (see Section III.D and Fig. 8.). To 
achieve one photon scattering event per atom, we adjusted the laser power to the 
first maximum of these oscillations, closely approximating a zr pulse. 

The contrast and phase of the measured atomic interference patterns are 
shown in Fig. 23 for different path separations. The contrast was high when the 
separation d at the point of scattering was much less t han  ,~photon/2 (correspond- 
ing to A k x d  << zr), but fell smoothly to zero as the separation was increased to 
about half the photon wavelength, at which point A k x d  ~- 7r. (This would occur 
exactly at d = ,~photon/2 if the scattered photon angular distribution were 
isotropic.) As d increased further, a periodic rephasing of the interference gave 
rise to partial revivals of the contrast and to a periodic phase modulation. 

The observed behavior of the contrast (Chapman et  al. 1995c) is consistent 
with the complementarity principle. Considering the photon scattering as a posi- 
tion measurement of the atom, complementarity suggests that fringe contrast 
must disappear when the path separation is approximately half the wavelength of 
the scattered light, since this is the smallest distance that can be resolved by a 
perfect optical microscope for this wavelength. At larger separations, we see not 
only the general suppression of the fringe contrast expected from complementar- 
ity, but also several subsequent revivals of the fringe contrast. These contrast re- 
vivals reflect the inability (because of diffraction) of an optical system to spa- 
tially localize the atom using a single scattered photon. If light were scattered 
from an atom localized on one side of the interferometer and imaged with a lens, 
this image would have diffraction tings determined by the wavelength of the 
scattered photon (even in the limit of an infinitely large lens). Thus, if a single 
photon is recorded where it would be expected if it had scattered from an atom 
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localized on the upper arm of the interferometer, it may actually have come from 
an atom on the lower arm if one of the diffraction rings coincides with the posi- 
tion of the recorded photon. Under these circumstances there is significant un- 
certainty as to which side the atom that emitted the photon really traversed; con- 
sequently the fringe contrast can be (and is) revived to some extent. 

While the contrast generally decreases as d increases, the phase shift A q~ of 
the fringes exhibits a sawtooth oscillation that is damped by the finite resolution 
of the machine. Starting at d = 0, it increases linearly, with slope 27r. This is the 
slope expected for momentum transfer of l hk, which is the average momentum 
transfer of the symmetrical distribution of momentum transfer (Fig. 23). After 
each 0 of the contrast, the sign of the interference pattern is reversed, subtracting 
7r from the phase and resulting in the observed sawtooth pattern. 

In studying the decoherence and phase shift, we used a 50/xm detector wire, 
which is larger than the deflection Ax of the atom beam that results from the re- 
coil momentum imparted by the scattered photon. The finite collimation of the 
atomic beam further degrades the overall momentum resolution of the apparatus. 
The result of this lack of resolution is that the measured interference patterns are 
averaged evenly over all values of Ax, which can be as big as 40/xm in our ex- 
per iment-corresponding to displacement of the envelope of the fringe pattern 
by --- 100- 200 fringes. 

These numbers highlight the distinction between the expectation value of the 
atom's classical transverse position (the peak of the fringe envelope) and the 
phase of the fringes (which are never shifted by more than half a fringe). In fact, 
moving the point of scattering further downstream reduces the displacement of 
the fringe envelope for a given k I, while monotonically increasing the corre- 
sponding phase shift. Therefore, the measured loss of fringe visibility cannot 
simply be understood as resulting from the transverse deflections of the atom at 
the detection screen (in our case, the third grating) due to the photon momentum 
transfer, as it can be for the two-slit gedanken experiments. We point out that Ax 
(or equivalently the x component of the photon momentum transfer) is precisely 
what is measured in determining the transverse momentum distribution of an 
atomic beam after scattering a photon. These distributions have been measured 
for diffraction of an atomic beam passing through a standing light wave and un- 
dergoing a single (Pfau et al., 1994) or many (Gould et al., 1991) spontaneous 
emissions, as well as for a simple collimated beam excited by a traveling light 
wave (Oldaker et al., 1990). These results are usually discussed using a simple 
classical argument: the recoil momentum from spontaneous emission produces 
random angular displacements that smear the far-field pattern, a viewpoint also 
applicable to two-slit gedanken experiments. Clearly the quantum phase shift 
measured in our experiment is distinct from the "deflection" of the atom Ax due 
to the photon recoil. It reflects the phase difference of the photon wave function 
where it intersects the two arms of the interferometer. 
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These results also are interesting as a contrast to the gedanken experiments re- 
cently proposed in which loss of contrast in an atom interferometer occurs after 
emission of a photon by the atom, even though there is insufficient momentum 
transfer to the wave function to explain this loss on the basis of dephasing (Englert 
et al., 1994). In our experiment the opposite occurs: there is sufficient momentum 
transfer to the atom by the emitted photon to be easily detected, but the interference 
pattern is not destroyed for small separations. In both experiments the interaction 
with the radiation adds insignificant relative phase difference between the two arms 
of the interferometer. The crucial difference is that in the gedanken experiment of 
Englert et al., 1994), the photon emitted by the atom is retained in one of two cavi- 
ties located symmetrically on the two sides of the interferometer and can be used to 
determine which path the atom traversed (assuming the cavities were initially in 
number states), whereas in our experiment the scattered photon scatters without 
constraint and no subsequent measurement can determine which path was traversed 
by the atom (for the case considered here). Indeed, if a metal foil were interposed 
between the two sides of our interferometer, and a beamsplitter and mirrors added 
so the laser beam was split and excited both sides with well determined relative 
phase, detection of the scattered photon would then determine which side of the foil 
the atom traversed, and would destroy the interference pattern even though the 
phase shift imparted to the atoms was negligible, just as in (Englert et al., 1994). 

D. COUPLING TO THE ENVIRONMENT 

An important limitation to matter wave interferometry is posed by the interac- 
tion of the interfering particle with the environment, of which the most trouble- 
some aspect is interaction with thermal radiation. The mechanism of dephasing 
will then be the scattering of blackbody photons from the interfering particle as 
just discussed, their absorption by the particle resulting in a change of internal 
state or possibly the emission of spontaneous thermal radiation by the particle. 

In general, the interference pattern will be destroyed if the interaction with 
the environment will allow, even in principle, the path of the interfering particle 
to be determined with certainty (Scully et al., 1991). For interference that results 
from internal coherences, as in Ramsey type experiments where the particles 
travel in different states, this implies that any scattering that can differentiate 
which state the particle is in (e.g., by frequency of absorption or polarization 
sensitivity of the scattering) will destroy the interference. This is illustrated by 
the necessity of working at temperatures below 4 K in separated oscillatory reso- 
nance experiments using high n Rydberg atoms. 

The formation of interference fringes requires that the final internal states of 
the particle wave along the interfering paths be the same (or at least nonorthogo- 
nal). If the particle arrives in different, orthogonal states along the two paths, no 
interference will be observable. This makes an interferometer the ultimate state- 
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sensitive detector: Any change of internal state induced by radiation confined to 
one side of the interferometer will completely destroy the interference pattern. 
This would allow the detection of low-frequency transitions that cause reorienta- 
tion or rotational state changes in molecules, for example. Even if the absorption 
or spontaneous emission is accompanied by the same change of state on both 
paths, interference will not be observed if the radiation on the two sides is un- 
coupled (e.g., a barrier is present to shield the fields) so that a subsequent mea- 
surement of the fields, in principle, could determine which side the atom was on 
when it underwent the transition. 

In interferometers in which the particles are initially in the same state in both 
arms, the absorption, spontaneous emission, or scattering of a photon is not nec- 
essarily sufficient to destroy the interference pattern if no barrier is present. 
While such an event can be exploited to indicate that a particle passed through 
the interferometer and possibly to determine its initial and final internal states, it 
must be able to provide Welcher Weg (Scully et al., 1991) information in order to 
destroy the interference. Even if the separation of the paths at the point of scat- 
tering is several half wavelengths of the radiation, some coherence may be re- 
tained as shown in our experiment earlier. 

The dephasing experiment discussed in the preceding section of this review 
shows the extent to which the scattering of a single photon from an atom in an 
interferometer destroys the interference. This work shows that the destruction of 
interference due to scattering of a single photon may be regarded as being 
caused by a random dephasing of the interfering wave function's external phase 
caused by the uncertainty in the direction of the scattered photon. In the likely 
event that a strongly interacting particle like a polar molecule or a Rydberg atom 
interacts with a number of photons from a thermal radiation field, one can use a 
random phase diffusion model to evaluate the destruction of spatial coherence 
between two paths separated by a distance d. Each interaction with a background 
radiation photon kphoton will imprint a random phase -kphotond < Aq~ < kphotond. 
Since thermal photons have typical k vectors on the order of about 500 c m  - 1  the 
typical imprinted phase for separations on the order of 1 mm is 0.05 rad. Conse- 
quently, many scattering events will be needed to destroy the coherence. 

In this limit, we expect that, for N isotropic scattering events, the contrast will 
be reduced to 

C = (sin<kphotond)) N 
Co \ ~photon d 

exp[-  N(kphotond )2 / 6]. (41) 

Assuming a scattering rate of n photons per second, the interference contrast 
will be destroyed after a characteristic time %: 

6 (  ;o. )2 
% ~ n  kph d " 

(42) 



OPTICS AND INTERFEROMETRY 61 

This clearly shows that the coherence in the external motion can be preserved 
much longer than internal coherences. Thus, a large particle with dense internal 
levels coupling to a thermal radiation field does not have to be completely iso- 
lated from the environment to exhibit interference. 

For ground state atoms, this dephasing by thermal radiation poses no prob- 
lem, since the photon density at typical excitation energies of 2 eV are negligibly 
small. However, the same does not hold for slowly moving more massive parti- 
cles like molecules or clusters, or especially Rydberg atoms. 

E. REGAINING ENTANGLED COHERENCE BY SELECTIVE OBSERVATIONS 

Returning to the loss of coherence by scattering of single photons from atoms in 
the interferometer, we now address the questions of where the coherence is lost 
to and how it may be regained. We performed an experiment (Chapman et al., 
1995c) to show that selective observation of atoms that scatter photons into a re- 
stricted part of the accessible phase space results in fringes with regained con- 
trast. This demonstrates that the coherence is not truly lost, but becomes entan- 
gled with the scattered photon, which may be considered as a simple reservoir 
consisting of only the vacuum radiation modes. 

In this experiment, we observed atoms that are correlated with photons 
scattered in a narrow range of final directions. In principle, this could be 
achieved by detecting the photons scattered in a specific direction in coincidence 
with the detected atoms. With Akxd now being a known quantity, the fringe shift 
is predicted to be the same for all the atoms; consequently, the fringe patterns of 
this restricted set of atoms would line up and no coherence would be lost. Unfor- 
tunately, such an approach is not feasible in our experiment for a number of 
technical reasons--principally the slow response of our atom detector and the 
inefficiency of photon detectors. 

Fortunately, an alternative experimental approach is made possible by the fact 
that the change of momentum of the photon, Ak x, is imparted to the atom and 
can be measured by the atom's deflection 2ix. Hence, a measurement of an 
atom's 2tx gives the Ak x of its scattered photon. Furthermore, it is easily possible 
to measure 2tx in our three grating interferometer, because (since we scatter the 
photons close to the first grating) the deflection of the envelope of the atomic 
fringes for a particular Ak x is 100 times larger than the associated fringe shift, 
Akxd. In practice, this approach is superior to a correlation experiment because 
no inefficiencies or accidental coincidences are introduced by the measurement 
of the scattered photon: the measurement of an atom's position reliably indicates 
the momentum transferred to that particular atom. 

We have performed an experiment based on this technique to demonstrate the 
recovery of the entangled coherence. By using very narrow beam collimation in 
conjunction with a smaller detector, we can selectively detect only those atoms 
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correlated with photons scattered within a limited range of Ak x. This restricts the 
possible final photon states and results in a narrower distribution P'(Akx) in Eq. 
(40). We performed experiments with recoil distributions centered on three dif- 
ferent photon momenta. Figure 24 shows three different realizations (referred to 
as Cases I-III) with the corresponding momentum transfer distributions, 
P~ (Akx), i = I, II, III. The contrast is plotted as a function of d for Cases I and III, 
where we preferentially detect atoms that scattered photons in the forward and 
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FIG. 24. Relative contrast and phase shift of the interferometer as a function of d for the cases in 

which atoms are correlated with photons scattered into a limited range of directions. The dashed 
curve is for the uncorrelated case. The inset shows the acceptance of the detector for each case com- 
pared to the original distribution (dotted line). Case I corresponds to predominantly forward-scat- 
tered photons (minimal transfer of momentum), Case III corresponds to backward-scattered photons 
(transfer of 2 photon momenta), and Case II lies in between. 
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backward directions, respectively. The contrast for Case II is similar to Case I 
and is not shown. The measured contrasts in this figure were normalized to the 
d = 0 (laser on) values, since a different number of atoms was detected with the 
laser off due to the absence of the deflection by the photons. 

Our results show that the contrast falls off much more slowly than previ- 
o u s l y - i n d e e d ,  we have regained over 60% of the lost contrast at d ~ A/2. The 
contrast falls off more rapidly for the faster beam velocity (Case III, 
Vbeam = 3200 m/sec) than the slower beam velocity (Cases I and II, Vb~am = 1400 
m/sec) because the momentum selectivity for the final photon states is corre- 
spondingly lower. 

The phase shift is plotted as a function of d for the three cases in the lower 
half of Fig. 24. The slope of Case III is nearly 47r, indicating that the phase of 
the interference pattern is determined predominantly by the backward-scattering 
events. Similarly, the slope of Case I asymptotically approaches a small constant 
value due to the predominance of forward-scattering events. Case II is an inter- 
mediate case in which the slope of the curve, --~37r, is determined by the mean 
accepted momentum transfer of 1.Shk. The lower inset shows the transverse mo- 
mentum acceptance of the detector for each of the three cases (i.e., the functions 
P~(Akx)), which we determined using the known collimator geometry and beam 
velocity. The fits for the data in Fig. 24 were calculated using Eq. (40) and the 
modified distributions P~(Ak x) and include effects of velocity averaging as well 
as the effects of those few atoms that scattered no or two photons. 

E SCATTERING A SINGLE PHOTON OFF AN ATOM IN Two INTERFEROMETERS 

Our atom interferometer employs thin diffraction gratings that split the incident 
beam into many diffracted beams. As a consequence, in the absence of addi- 
tional collimation, there are always at least two or more equivalent interferome- 
ters in which the atom can be found. By positioning the detector at specific 
points between two interferometers, one can selectively detect atoms that were 
in a superposition of more than two states (and are in more than one interferom- 
eter). This is especially interesting if one considers photon scattering off of an 
atom in such states. In general, the picture will be more complicated than the 
simple two path case discussed previously. Different final photon momenta can 
now cause the atom from different interferometers to be found at the same detec- 
tor position (see inset in Fig. 25). Photons in different final photon momentum 
states leading to the atom being scattered into the detector are distinguishable 
and therefore carry information about which of the two interferometers the atom 
went through. This dramatically alters the observed contrast patterns. 

In Fig. 25, we show measurements for the simplest case in which the detector 
(third grating) is centered between the deflected profiles of the two principle in- 
terference orders. The atom has two possibilities to be detected: The atom either 
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FIG. 25. Experimental data (solid markers) for the detector centered between the deflected pro- 
files of the two central interference orders as shown in the upper right graph. The solid curves in the 
lower graph are calculated with the modified distribution shown in the upper left graph, and are com- 
pared with the original (dashed). 

comes from the first interferometer, scattering a photon with nearly maximal 
momentum transfer Aka tom -"  2Akphoton , or it comes from the other interferometer, 
scattering the photon in the forward direction with nearly no momentum transfer 
Akatom-- 0. These photons are distinguishable, and the two interference patterns 
add incoherently, with a differential phase shift determined by the beam separa- 
tion d. This will lead to a "beating" between the two interference patterns, show- 
ing strong contrast revivals with an envelope given by the single interferometer 
contrast. As predicted by the calculation, the contrast showed striking revivals 
(Fig. 25). The first revival was twice as high as for the uncorrelated case. The 
agreement with the calculation is quite good for the contrast data. For the phase 
data, the agreement is very good up until d = A and less satisfactory thereafter, 
which we attribute to contributions from interferometers containing higher dif- 
fraction orders. 

This information about from which interferometer the atom was emitted can 
be erased by building a cavity around the scattering point and mixing the two 
photons. This opens up the possibility of combining cavity QED experiments, 
which focus on the quantum states of the radiation field, with atomic interfer- 
ence experiments probing the coherence of the center of mass motion of the 
atoms. 
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VIII. Inertial Effects 

Phase shifts that arise in accelerat ing frames have been discussed by many  au- 
thors in both nonrelat ivist ic and relativistic contexts  (see, e.g., Colel la  et  al . ,  
1975; Anandan,  1977; Greenberger  and Overhauser ,  1979; Werner  et  al . ,  1979; 
Clauser,  1988). Because  such phase shifts increase with the mass  of  the interfer- 
ing particle, a tom interferometers  are especial ly sensitive to inertial effects and 
may  be developed into accelerometers ,  rotation sensors,  gravimeters ,  and gra- 
diometers.  

The inertial sensitivity of  an a tom interferometer  arises because the freely 
propagat ing atoms form fringes with respect  to an inertial reference frame. 
These fringes appear  shifted if the in terferometer  moves  with respect  to this iner- 
tial f rame while  the a toms are in transit. To illustrate this, we now present  a sim- 
ple calculat ion of  the fringe shift that results f rom accelerat ion a of  a three grat- 
ing interferometer  in a direction perpendicular  to both the grating bars and the 
atomic beam axis. 

In the t ime z = L / v  that it takes an a tom moving  with velocity v to travel the 
distance L be tween  adjacent gratings (Fig. 26), the in terferometer  moves  a dis- 
tance a~'2/2 = D / 2 .  Atoms moving  with an initial t ransverse veloci ty V t r a n  s = 

a t ~ 2  = a L / 2 v  with respect  to the in terferometer  axis at the t ime the a toms passed 

a a 

t ~ t= 2x- 

�9 " l 
a " "__L_ 2~. 

r L ~, L 

T, = L / v  
FIG. 26. The interferometer in motion under the influence of a transverse acceleration. The 

atomic beam travels from left to right in the laboratory frame but interacts with the progressively dis- 
placed gratings of the moving apparatus. Because a centerline (short dash) between the atom beam 
paths passes through the middle of the first grating at t = 0, and is offset by a transverse velocity, 
Vtr~s = 1/2a'r, it also passes through the middle of the displaced second grating at t = z. The dashed 
curve (long dash) represents the displacement of the interferometer due to acceleration. The center- 
line of the accelerating interferometer is shown (short-long dash) at t = 0 and t = 2~', where fringes 
have a relative displacement of -D. 
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through the first grating therefore will pass through the first and second gratings 
of the accelerating interferometer at the same positions as would on-axis atoms 
in the case of a nonaccelerated interferometer. These atoms continue with this 
transverse velocity, forming a fringe pattern at the third grating that is displaced 
by Vtrans T = a T  2 =  D from the original axis. When these atoms now reach the 
third grating, the interferometer will have moved a(2z)2/2 = 2D from its original 
position, resulting an apparent fringe shift of - D .  This is observed as a phase 
shift: 

(~acceleration ~--- 2rr d a h2 a (43) 

where dg is the period of the gratings, A~B = h/mv is the de Broglie wavelength 
for an atom with mass m and velocity v, and A = L2(AdJdg) is the area enclosed 
by the two arms of the interferometer. This expression can also be obtained di- 
rectly from Eq. (15) and the discussion about the sensitivity of our interferome- 
ter to vibrations (see Section IV.E). It should be noted that the phase shift in our 
three grating white light geometry is independent of the mass of the particle, and 
was derived using classical physics. 

The phase shift due to rotation of the interferometer (called the Sagnac effect) 
follows by noting that rotation with angular rate fl  gives rise to a Coriolis accel- 
eration a -- 2v • 1~, allowing one to use Eq. (43) to calculate the phase shift due 
to rotation: 

 rotation  44' 

where we call the bracketed factor the rotational response factor. This expres- 
sion can also be directly obtained from Eq. (14) in the discussion about the sen- 
sitivity of our interferometer to vibrations (see Section IV.E). 

The results of these simple derivations agree with the nonrelativistic phase 
contributions derived by various more sophisticated methods (Greenberger and 
Overhauser 1979; Werner et al., 1979; Clauser, 1988). Relativistic contributions 
to the phase shift caused by accelerations and rotations are of the o r d e r  Eldn/mC 2 
smaller than the nonrelativistic terms (Anandan, 1977) and are unresolvable in 
our experiments. 

The Sagnac effect is not dispersive per se and is independent of the velocity 
of the particle in an interferometer in which the area is constant (as it would be 
for an interferometer employing conventional beam-splitters). However, since 
most atom interferometers employ diffractive beam splitters (as does ours), their 
rotational response factors will exhibit 1/v dependence. This dependence arises 
from the variation of the enclosed area, which in turn results from the variation 
of the diffraction angle with velocity. In contrast to rotations, the phase shift due 
to linear accelerations [see Eq. (43)] varies with velocity as  1/v 2. Thus atom in- 
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terferometers that use slow atoms will be relatively more sensitive to accelera- 
tion than to rotation. 

Phase shifts due to rotation and acceleration, as well as shifts due to gravita- 
tional fields (which give the same response factor as acceleration due to the 
equivalence principle), have been observed in many kinds of matter wave inter- 
ferometers. Accelerations were measured using neutron interferometers (Colella 
et al. 1975; Werner et al., 1979) and using atoms (Kasevich and Chu, 1991, 
Oberthaler et al., 1996). The Sagnac phase shift for matter-waves has been veri- 
fied with accuracy on the order of 1% for neutrons (Werner et al., 1979; Atwood 
et al., 1984) and electrons (Hasselbach and Nicklaus, 1993), and to about 10% 
for atoms using both interferometers (Bord6, 1989; Riehle et al., 1991) and clas- 
sical moire regime atom optics (Oberthaler et al., 1996). 

In view of the numerous demonstrations of the sensitivity of matter wave in- 
terferometers to noninertial motion, the motivation for such experiments is prin- 
cipally technological: Can such devices become the sensors of choice in practi- 
cal applications or can they demonstrate such high sensitivity that they open up 
new scientific possibilities? With these considerations in mind, the observation 
that the rotation-induced phase shift in an atom interferometer exceeds the 
Sagnac phase for light of frequency to by an amount mc2/hto (typically 101~ 
suggests the tremendous potential of atom interferometer rotation sensors 
(Clauser, 1988). 

We now estimate the minimum angular velocities and accelerations de- 
tectable by our atom interferometer using the atomic velocities and signal inten- 
sities achieved in our apparatus. We assume that only Poissonian detection statis- 
tics degrade the signal-to-noise ratio, which is therefore proportional to C V~, 
where C is the fringe contrast and N is the total number of counts (see Section 
IV.C). The response factor and corresponding (purely statistical) rotational noise 
are summarized in Table IV. 

TABLE IV 
RESPONSE FACTORS AND ROTATIONAL SHOT NOISE FOR INERTIAL SENSITIVITY MEASUREMENTS 

Response Factor Rotational Noise 

Atom interferometer: rotation 1.86 rad/O e 5.8 x 10 -4 ~'~7 ~ r  

Commercial laser gyroscope: rotation ---2 rad/~ e 1.7 X 10 -4 ~-~e ] V ~  

Atom interferometer: acceleration 116 rad/g 9.2 • 10-6g/V~ 

Note: In obtaining these estimates, we used actual values for our interferometer, which are an 
average beam velocity of 1075 m/sec, a contrast of 12.9%, and an rms rate of 29 kcounts/sec for 
data taken in the reproducibility experiment (one earth rate is 7.3 X 10 -5 rad/sec). 
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We performed experiments to measure both the response factor and the repro- 
ducibility for rotations of our interferometer, comparing the response factor with 
the predictions of Eq. (44) and reproducibility with the noise predicted in Table 
IV. Both measurements were made by suspending the interferometer by a cable 
from the ceiling and then driving it with a sinusoidally varying force applied at 
some distance from the center of mass, thereby giving the interferometer a rota- 
tion rate of 

fl(t) = ~0 sin(2"n'ft). (45) 

The rotation rate ~0 was typically several earth rates (11 e = 7.3 X 10 -5 rad/sec) 
for the response factor measurement, and about ~-~e/10 for the noise measure- 
ments. For the response measurements, f was chosen just over 1 Hz in order to 
minimize deformations of our interferometer (which has several prominent me- 
chanical resonances in the 10-30  Hz frequency range). For the noise measure- 
ments, f was around 4.6 Hz, where the measured residual rotational noise spec- 
trum of the apparatus had a broad minimum. 

Our procedure was to measure the acceleration of the suspended interferome- 
ter using accelerometers at the sites of the first and third gratings. While modu- 
lating the grating phase, q)grating' with a sawtooth pattern at a frequency just less 
than 1 Hz, we recorded accelerations (from both accelerometers), (~grating' and the 
atom counts each millisecond. Readings from the accelerometers allowed us to 
infer the atom phase expected from the acceleration and rotation rate of the in- 
terferometer using equations (14, 15). We called this predicted inertial phase 

~predicted" 
To study the magnitude and constancy of the response factor, we binned these 

data according to the ~predicted predicted from the accelerometer readings after 
suitable correction for their known frequency response. Since the frequency of 
the sawtooth modulation of q~grating was  chosen to be incommensurate with f, the 
data in a bin with a particular value of ~predicted had a variety of values q~grating' al- 
lowing us to make a fit using Eq. (7) to determine the inertial phase contribution 
to Eq. (1), which is (~rotation" A plot of (4~rotation VS. ~Opredicte d is shown in Fig. 27 from 
a combination of 20 sec runs totaling ---400 sec (i.e., ---10 sec of data in each 
(4)predicted bin). The data reveal a linear response and an average response factor 
within error (0.8%) of that predicted from Eq. (44). 

To study the reproducibility of our interferometer we employed a phase mod- 
ulation technique to immediately convert atom counts into ~Oot~t~on(t ). This was 
accomplished by scanning the second grating (~grating) at 1 Hz to produce a car- 
rier modulation on the atom count rate in Eq. (7). The rotation of the interferom- 
eter introduced a phase modulation qgrotation(t ) onto the carrier that was demodu- 
lated by homodyne detection, using the sine of 27r/dg times the grating position 
signal from the optical interferometer as the local oscillator. 

From each of 21 data sets 32 sec long, we analyzed samples of different 
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FIG. 27. A plot of the measured interferometer phase, q0rotation , v e r s u s  the inferred phase from the 
accelerometer readings, qOpredicted, from a combination of 20 sec runs totaling approximately 400 sec 
of data ( - 1 0  sec of data per point). There is a 0.8% difference between these measurements with a 
total error of 1%. 

sizes to find the rotation rate ~-~measured(t) measured from the rotation phase 
qgrotation(/) of the interferometer. The samples were taken from the middle of 
each data set and ranged in duration, T, from 0.66 to 10.66 sec. Each sample 
was Fourier transformed and the magnitude of the amplitude of the rotation 
at drive frequency f found. The rms fluctuations in the amplitudes for given 
sample lengths were then determined for the various averaging times, T. In 
Fig. 28, they are plotted and compared to the shot noise limit computed in 
Table IV. 

For averaging times up to 2 sec, the reproducibility is close to the predicted 
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FIG. 28. Reproducibility of the rotation measurement while driving the interferometer by a 4.6 
Hz sinusoidally varying force. The standard deviation of the fluctuations in the measured rotation of 
the 4.6 Hz spectral peak is plotted versus integration time (circles). This is compared to the shot 
noise limited error verses integration time (dashed line). 

statistical noise; for longer intervals, the observed fluctuations rise above this 
limit. Since long-term zero drift of the interferometer does not contribute to the 
amplitude of the rotation at 4.6 Hz, we think this irreproducibility reflects contri- 
butions from drive amplitude fluctuations, residual 4.6 Hz rotational noise of the 
interferometer, and possibly other unidentified sources of rotation such as fluctu- 
ations in cooling water pressure. 

We regard these results as highly encouraging for the future of inertial sen- 
sors using atom interferometers. Our interferometer was designed for separated 
beam interferometry, not inertial sensing. This resulted in restricting the usable 
area of our small 1 mm x 200/zm gratings by a combined factor of 100 for both 
ends of the machine. Furthermore, the vacuum envelope, with heavy diffusion 
pumps hung at odd angles, had numerous low frequency mechanical resonances. 
Despite these difficulties, we verified the rotational response factor to better than 
1%, indicating that atom interferometric rotation ~_perform as sensors predicted. 
Moreover, we achieved reproducibility at the 10 mf~e/Vhr level. This is about 
three orders of magnitude more sensitive than previous rotation measurements 
using atom interferometry (Riehle et al., 1991) and approaches the sensitivities 
of much more difficult neutron interferometry measurements that required inte- 
gration times of many minutes per point (Werner et al., 1979). Clearly, a dedi- 
cated rotation sensor using atom interferometric techniques would perform many 
orders of magnitude better than ours and should considerably exceed the per- 
formance of laser gyroscopes. 
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I X .  O u t l o o k  

In documenting both scientific and technical advances made with atom interfer- 
ometers, this chapter demonstrates that atom interferometers have progressed be- 
yond the "demonstration" phase and now must be considered as instruments for 
performing a variety of scientific and technological measurements. Even without 
new developments, which are expected in atom optics and slow atom technol- 
ogy, atom interferometers can be expected to make further scientific advances in 
the three basic areas we have discussed: atomic and molecular physics, funda- 
mental studies, and inertial sensing. We shall now discuss several applications in 
these areas, enumerating in each several developments that we forsee. 

A. ATOMIC AND MOLECULAR PHYSICS 

We expect to see increased application of atom and molecule interferometers to 
atomic and molecular physics. It is certainly possible to use such devices to make 
significant advances in the accuracy of atomic and molecular measurements. 
Techniques such as velocity multiplexing (Section V.D) can produce atomic or 
molecular beams with narrow velocity widths, making it feasible to perform mea- 
surements with uncertainties in the 10 -4 range. This level of precision would be 
particularly welcome for the measurement of the polarizability of cesium, since a 
better determination of this quantity would help constrain the atomic structure 
theories used to determine the Weinberg angle from measurements of parity vio- 
lation in this system (Noecker et al., 1988; Wood et al., 1995). 

A qualitatively new application of atom and molecule interferometers would 
be to measure the separate parallel and perpendicular components of the polariz- 
ability of a dimer molecule such as Na 2 in the ground state manifold (or else the 
anisotropy of polarizability of an atom with ground state electron spin greater 

l than ~). This could be done using our technique of contrast interferometry (Sec- 
tion V.C) to determine the anisotropy of the polarizability, while simultaneously 
determining the weighted average of the ground state polarizability from the av- 
erage phase shift, which is a function of electric field squared (see Section 
VI.A). An even more elegant technique would be to apply the same magnitude 
of electric field to both sides of the interferometer, but in orthogonal directions. 
Then the average polarizability would cause the same phase shift on both sides 
of the interferometer, giving no average phase shift, while the contrast would be 
reduced at a rate proportional to the anisotropy of the polarizability. 

Our measurement of the index of refraction of a gas for matter-waves (Sec- 
tion VI.B) has been shown to provide unique information about the long-range 
shape of the potential interaction between two colliding atoms or molecules. By 
varying the relative velocity of the two colliding particles, a more detailed study 
of the index of refraction of various gases for matter-waves could be obtained. 
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This is a relatively straightforward measurement in our apparatus, since the ve- 
locity of the Na beam can be varied simply by changing the mass of the cartier 
gas in our beam source. 

It is an open question whether atoms will bounce coherently from a surface 
(although they are known to bounce specularly from some surfaces, suggesting 
that there should be some coherence). Investigation of this phenomenon may be 
possible by studying the phase shift for bounces of atoms from surfaces using 
atom interferometry. Perhaps the most interesting investigation here would be to 
vary the surface and observe the consequent phase change. 

B. FUNDAMENTAL STUDIES 

We predict that the most fruitful area for scientific application of atom interferome- 
ters will be to the study of a wide variety of fundamental processes. While interfer- 
ometry experiments with neutrons will continue to illuminate many fundamental 
points, atoms possess many advantages. Atoms have much larger magnetic dipole 
moments, very large electric polarizabilities, strong interactions with laser light, and 
easily accessible (with RF or laser radiation) internal structure. The availability of 
species with either Fermi or Bose statistics also presents interesting opportunities 
for experiments. Furthermore, atom interferometers are in a rapid stage of develop- 
ment and great increases in signal strength can be anticipated. 

In the following brief overview of fundamental experiments that we foresee, 
we will first discuss geometric phases (e.g., Berry's phase), then phases that 
come from the interaction of the atoms with B or E fields induced by the motion 
of the atom through E or B fields, respectively, then address the contentious is- 
sue of whether these induced fields produce potentials whose derivative causes 
observable forces on the particles. 

C. BERRY'S PHASE 

When a quantum system evolves (even adiabatically) around a cyclic pat?, in 
phase space, it gains an additional phase, as first described by Berry (Berry, 
1984, 1990; Wilczek and Shapere, 1989). Various demonstrations of this effect 
have been performed with photons (Chiao and Wu, 1986; Kwiat and Chiao, 
1991), spin rotation experiments with neutrons (Bitters and Dubbers, 1987; 
Wilczek and Shapere, 1989), and atomic hydrogen (Miniatura et al., 1992). With 
our separated beam interferometer, we can measure the geometric phase result- 
ing from transport of the state vector of the atoms through two different paths in 
phase space back to their starting points (Schmiedmayer et al., 1993). For exam- 
ple, atoms with a definite spin projection could traverse a magnetic field configu- 
ration arranged such that the spin (which would follow the field adiabatically) 
evolves through different paths in the two arms of the interferometer. If atoms on 
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the two different arms see the same total integrated magnetic field, and hence ac- 
quire the same total dynamic phase, the only phase shift observed will be the 
purely geometric phase shift, Aq~geometric = mFm~-~evolution, given by the (easily var- 
ied) difference between the solid angle that the magnetic field and hence the 
state vector subtends on the two arms. Measurements with even and odd m F have 
not previously been performed; in addition, the adiabaticity can be varied by 
changing the total field strengths, thus probing nonadiabatic geometrical phases. 
It is interesting to point out that an experiment like this can also be seen as a 
demonstration of geometric forces (Stem, 1992; Aharonov and Stem, 1992). The 
phase shift has the same relation to the geometric force as the Aharonov-Bohm 
phase shift has to the Lorentz force. 

D. RELATIVISTIC EFFECTS IN ELECTROMAGNETIC INTERACTIONS 

Atoms are so sensitive to electric and magnetic fields that even the small fields gen- 
erated by their motions (i.e., E = (v/c) X B and B = - ( v / c )  X E) produce observ- 
able effects, some of which are especially interesting because the extra linear power 
of v cancels the usual 1/v dispersion of phase shifts in the interferometer, producing 
an effect independent of velocity. An example of this is the Aharonov-Casher (AC) 
effect. In its simplest form, this effect manifests itself as a phase shift of the interfer- 
ence pattern of a particle possessing a magnetic moment whose interfering paths 
form a loop around a line of charge (Anandan, 1982; Aharonov and Casher, 1984). 
The fundamental importance of the AC effect, as well as the Aharonov-Bohm ef- 
fect (Aharonov and Bohm, 1959), is the prediction of a phase shift of the atom 
wave even though the classical force on the particle vanishes. The first measure- 
ment of the AC phase was made with a neutron interferometer (Cimmino et  al., 
1989). Several recent measurements have employed single-beam Ramsey atom in- 
terferometers to measure the phase shift to within a few percent (Sangster et al., 
1994; Zeiske et al., 1995; G6flitz et al., 1995). An atom interferometer like ours 
could measure the AC phase shift to better than 1% using a geometry that would 
also allow examination of the hitherto unstudied dependence of the effect on the 
relative orientation of the magnetic moment and the line charge. 

An effect complimentary to the AC effect involves the electric fields induced 
by motion through magnetic fields. The small electric fields produced by such 
motion may be sensitively detected by exploiting the fact that a polarizable atom 
responds quadratically to the applied electric field. If a large dc electric field, 
Eheterodyne , is applied oppositely to the two arms of the interferometer, the total 
phase shift would then have a form like 

[ v v ] 
A~motio n --  Of (Eheterodyne + - B) 2 - ( - -Ehe terodyne  + -- B)2 /2 C C 

V 
= O f -  Eheterodyne �9 B c 

(46) 
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assuming v and B are perpendicular. It was recently proposed that this effect 
should be observable (Wei et al. 1995). Finally, motion of an electric dipole 
(even one induced by an electric field) through a magnetic field can also cause a 
geometrical phase analogous to the Aharonov-Casher topological phase 
(Wilkens 1994). 

E. DIFFERENTIAL FORCE INTERFEROMETRY 

Any matter-wave interferometer is very sensitive to differences in longitudinal 
force applied between the two arms because these change the relative momenta 
and hence the relative energy of the two particle waves that are recombined, re- 
sulting in time-varying phase shifts. The great sensitivity of atoms to electro- 
magnetic fields makes it easy to construct a region where differential forces re- 
sult from differences in the field gradients on the two sides of the interferometer. 
Assuming that the atoms entering such a region are initially in a mixture of pure 
momentum states (as is the case for an atomic beam emitted by an effusive 
oven), a small differential force will destroy the time-averaged interference con- 
trast. A larger differential force could be studied by means of its ability to 
rephase a momentum correlation that was induced in the atom beam upstream 
by some modulation process (e.g., a fast beam chopper). 

Using the intrinsically time-varying methods just described, a generalization 
of the scalar Aharonov-Bohm effect (Aharonov and Bohm, 1959) might be per- 
formed. Instead of measuring the phase accumulated by the interaction of the 
atom's magnetic dipole moment with a uniform magnetic field present during 
some fixed interval, one could apply a magnetic field gradient during this inter- 
val. 

Differential force interferometer experiments could address two separate con- 
troversies that have recently arisen in discussions of the AC effect and related 
theoretical issues involving the interaction of the dipole with a time-varying 
magnetic field induced by the motion of the atom in a time-varying electric field. 
The first concems whether a motion-induced magnetic field can be treated ex- 
actly like an applied magnetic field, as Boyer claims in his analysis of the AC 
phase shift (Boyer 1987). If this is the case, then there will be a longitudinal 
force on the dipole as it enters or leaves the gradient at the ends of the applied 
electric field. Varying the electric field while the atom is present in the interac- 
tion region would then make the gradient experienced by the atom exiting the in- 
teraction different from the one it experienced on entering, causing a differential 
momentum that could be detected as described earlier. If, as others (Aharonov et 
al., 1988; Goldhaber, 1989; Casella, 1994) claim, a full classical analysis finds 
the net force in the rest frame of the spin equal to 0 (in the special case when the 
spin is along the direction of the line charge) then no differential force will be 
observed and at most a fixed relative phase shift would result. 
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A second controversy concerning forces on moving dipoles centers on the ob- 
servability of the force term 

F = V(IX. B) 1 0E 2/x I X x -  + E X (IXX B) (47) c Ot -~c 

derived by Anandan (1989) for a magnetic dipole moving through crossed elec- 
�9 1 tric and magnetic fields. Casella and Wener (1992) claim that for a spm-~ parti- 

cle the last term in this expression is unobservable in principle, but Anandan's 
group disagrees (Anandan and Hagen 1994). Atom interferometers could resolve 
this controversy by applying a spatially varying electric field to atoms whose 
magnetic moments are precessing about a parallel magnetic field at a rate chosen 
so that the force on the atoms due to the E x (Ix x B) term keeps the same sign 
throughout the interaction but is opposite on the two sides of the interaction re- 
gion. 

E INERTIAL MEASUREMENTS 

In view of the smallness of relativistic contributions to the response of atom inter- 
ferometers to inertial motion, there is little likelihood that atom interferometers will 
uncover any flaws in the theories presented in section VIII. Therefore, we argue that 
performance and performance per unit cost are the parameters by which atom inter- 
ferometric inertial sensors ultimately must be judged. Since their cost is unlikely to 
be low, their best opportunity lies in spectacular performance. 

We first discuss rotation sensing. We have calculated that a 1 m long atom inter- 
ferometer with three microfabricated matter gratings 1 cm 2 in area would give rota- 
tional noise of 2 x 10 -8 fle/V~r (earthrate per square root hour) with a consump- 
tion rate of 1 g of cesium per hour. Slightly improved performance could be 
achieved using light gratings instead of matter gratings, owing to the larger overall 
throughput. This performance is four orders of magnitude better than commercially 
available laser gyros and might have interesting applications to study of the geo- 
physics of earthquakes and other short-term phenomenon. Zero drift of such an in- 
strument would result from long-term mechanical misalignment of the gratings and 
would constitute a formidable problem, even if overall drifts in grating alignment 
are corrected for by running atoms in two directions through the interferometer. 
Overall sensitivity and stability could be improved by using slow atoms, but only at 
the price of increasing sensitivity to accelerations. 

G. CONCLUSION 

The work presented in the bulk of this chapter, together with the suggestions for 
the future just presented, show that atom interferometers have considerable 
prospect for future study of fundamental physical phenomena and atomic and 
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molecular properties and as tools for measurement of noninertial motion. While 
this much can be anticipated with fair certainty, we hope that there will be excit- 
ing developments for applications not anticipated here. 
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A p p e n d i x :  F r e q u e n t l y  U s e d  S y m b o l s  

A area of interferometer 
A fringe amplitude 
A~, A 2 amplitudes for beam paths 1, 2 
B rotational constant of molecular energy level 
B magnetic field 
C contrast 
C observed contrast 
C O initial contrast (before taking into account vibrations) 
Co(k) original contrast of interferometer 
C n coefficient of 1/r -n potential 
D spacer width 
D transverse distance moved by interferometer 
E energy 
E electric field 
Eheterodyne heterodyne electric field 
Eki n kinetic energy 
F total angular momentum 
G gauss 
H Hamiltonian 
(I) mean detected intensity 
I laser intensity 
/max' I m i n  maximum, minimum intensity 
lob . . . .  d observed intensity 
L grating separation 
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kphoton 
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F H 
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Talbot length 
shutter separation 
effective length of interaction region 
length of applied potential region, length of interaction region 
source to 1 st grating distance 
number of counts, density of medium 
relative retained contrast as a function of applied phase 
probability distribution of transverse momentum transfer 
probability of transition from ground to excited state 
action 
action along classical path 
average time 
temperature (in Kelvins) 
potential 
Van der Waals potential 
acceleration (transverse to gratings and atomic beam) 
interferometer fringe amplitude reduction factor 
classical impact parameter 
speed of light 
separation of two arms of interferometer at point of scattering 
grating period 
frequency of rotation of interferometer 
shutter open fraction 
fraction of atoms in ith state 
atomic k vector (velocity) distribution 
forward-scattering amplitude 
g factor 
source height 
detector height 
wave vector 
initial wave vector of atoms 
lattice vector of grating 
atom wave vector 
Boltzmann constant 
wave vector in center of mass frame 
initial and final photon momentum 
magnitude of photon momentum 
coherence length 
angular momentum 
highest contributing partial wave 
mass of atom 
magnetic quantum number 
mass of carrier gas atom 
index of refraction, number of shutter cycles during traversal time 
momentum 
hard sphere radius 
particle diameter 
time 
traversal time 
amplitudes of upper and lower beams in interferometer 
velocity of atomic beam 
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particle velocity 
transverse velocity 
particle position 
transverse position of grating i 
range of interatomic potential 
path 
paths with x I -- x 3 = 0 
dynamic phase 
phase shift induced by a potential 
observed phase shift 
phase shift for stretched state 
geometric phase shift 
phase shift of atoms in a particular state 
difference in solid angle subtended by state vectors on two paths 
differential magnetic field between two arms of the interferometer 
change in photon momentum during scattering event 
x component of change in photon momentum 
average value of Ak x 
sampling period, shutter period 
velocity width 
classical displacement 
deflection due to photon recoil 
displacements of grating (due to random vibrations) 
electric field 
voltage (potential) 
wave function 
rotation rate of interferometer 
base rotation rate 
dynamic phase contribution 
rotation rate measured 
electric polarizability 
relative grating rotations 
open fraction of grating i 
phase shift of the partial wave 
diffraction angle 
rotation angle of grating i 
de Broglie wavelength 
photon wavelength 
magnetic moment 
Bohr magneton 
mass density 
circularly polarized light 
rms width of Gaussian k vector distribution of atoms 
total scattering cross section 
variance of grating position (due to random vibrations) 
transit time between gratings 
decoherence time 
rms error in phase measurement 
phase difference between two paths 
phase due to interferometer accelerations 
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qPgrating 
~inertial 
~%osition 
qPposition(t) 
@predicted 
~rotation 
O) 
wR 
O-)vi b 

phase due to relative grating positions 
inertial phase 
grating phase 
measured phase 
rotational phase of interferometer predicted by the accelerometers 
phase due to interferometer rotations 
angular frequency of light 
Rabi frequency 
vibration frequency of gratings 
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I. Introduction 

A t o m s  n o w  p r o v i d e  us wi th  the  pos s ib i l i t y  o f  i n v e s t i g a t i n g  bo th  the  c l a s s i ca l  and  
the  q u a n t u m  m o t i o n  o f  pa r t i c l e s  in p e r i o d i c  s t ruc tu re s  in g r ea t  de ta i l .  A t o m i c  
sou rces  are  r e a d i l y  ava i l ab l e  ( R a m s e y ,  1985) ,  and  a t o m s  can  be  eas i ly  m a n i p u -  
l a ted  wi th  the  a t o m  op t i c s  ( M l y n e k  et al., 1992;  B a u d o n  and  M i n i a t u r a ,  1994;  
A d a m s  et al., 1994)  and  l ase r  c o o l i n g  t e c h n o l o g y  d e v e l o p e d  in r e c e n t  yea r s  
( M e y s t r e  a n d  S t e n h o l m ,  1985;  C h u  and  W i e m a n ,  1989;  A r i m o n d o  et al., 1992) .  

A t o m s  o f fe r  an  a d d i t i o n a l  a d v a n t a g e  ove r  o t h e r  pa r t i c l e s  s ince  they  in t e rac t  
s t r ong ly  w i th  e l e c t r o m a g n e t i c  f ields,  w h i c h  can  be  v e r y  p r e c i s e l y  e n g i n e e r e d  us-  
ing laser  t e c h n o l o g y .  U s i n g  d i f f rac t ive  op t i cs  and  h o l o g r a p h y ,  one  can  bu i l d  a 
g rea t  va r i e ty  o f  s t ruc tu res  in the  l a b o r a t o r y  (Co l l i e r  et al., 1971) .  In  add i t ion ,  one  
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can change the interaction between the object and the atom at will, allowing 
(1) very weak, elastic interactions such as those in dynamical diffraction, (2) 
very strong interactions as in channeling, and (3) those interactions dominated 
by dissipative processes using on-resonant light. 

In this chapter, we describe our first attempts to exploit the unique possibili- 
ties of atomic beams and their interactions with light fields for fundamental 
physics. The first simple experiments commenced in our laboratory in 1992 and 
funding for large-scale projects was obtained in 1993. The following sections es- 
sentially cover that part of our activities which concentrates on investigating the 
motion of atoms in designed, periodic structures, both fabricated mechanical 
structures and structures constituted by light. 

We will start our overview with a short description of our experimental appa- 
ratus (Section II) and then describe a classical experiment: a three grating moir6 
imaging device based on classical ray optics (Section III) (Oberthaler et al., 
1996a). We show that this classical device is a very sensitive inertial sensor, ca- 
pable even of surpassing present-day commercial sensors. 

We then describe our three grating de Broglie wave atom interferometer 
based on diffraction at standing light waves (Section IV) (Rasel et al., 1995) and 
subsequently discuss the similarities between the classical moir6 apparatus and 
the quantum apparatus, the interferometer (Section V). 

In the last section (VI), we will comment on the new features one might expect 
in the study of coherent motion in periodic structures made of light, which we call 
light crystals. Starting from the similar and well-developed fields of dynamical dif- 
fraction (Rauch and Petrascheck, 1978; Batterman, 1964) in neutron, electron, and 
x-ray physics, we give an introduction into the different regimes accessible by ex- 
periment and show the first realizations of some of the expected effects. 

II. Experimental Apparatus 

All the experiments were performed using a beam of metastable argon atoms 
(Rasel, 1996). Our atomic beam apparatus is designed to resolve the tiny deflec- 
tion of atoms when diffracted at a standing light wave with a 405 nm (Alighe/2) 
period (0di f f  ~ 32/xrad for 800 m/sec atoms). 

A. THE ARGON ATOM 

Our main reasons for choosing metastable 4~ for our experiments are that its 
radiative transitions can be driven by diode lasers and metastable atoms can be 
detected easily using a channeltron. Furthermore, the lifetime of the metastable 
state is >> 10 sec, which is much longer than the flight time of the atoms (<  10 
msec); hence, it can be regarded as a stable state for all our experiments. 
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Metastable 4~ has a simple but very interesting level scheme (see Fig. 1 and 
Table I). Argon has no nuclear spin and, hence, no hyperfine structure. There are 
two long lived metastable states in Argon, 4~ [3p54s]lS5 and [3p54s]lS3 , both 
of which can be used for laser manipulation. 

�9 Starting from the ls 5 metastable state, there is a closed transition 
(lss---* 2P9) at 811 nm (J = 2---*J = 3) and an open transition (lss---* 2P8 ) 
at 801 nm (J = 2---*J = 2), both accessible with standard laser diodes as 
well as with a TiSaph- laser .  The closed transition at 811 nm can function 
as a closed (two-level) system for laser manipulations. The open transition 
at 801 nm has the additional advantage that there is a 72% probability for 
the 2p8 state to decay to the l s  4 state, which then decays back to the Ar 
ground state. Thus, resonant 801 nm light can be used to optically pump the 
l s 5 state to the ground state. Such a process can be viewed as absorption for 
the ls 5 metastable atoms. 

�9 Starting from the other metastable state (ls3) there are no closed transitions. 
The transition ( l s  3 ----* 2P4 ) at 795 nm (J = 0---* J - 1) can be used again as 
an open transition and to pump the l s 3 s t a t e  to the ground state. 

j-1/2 j-3/2 
J=O J=l J=2 J=O J=l J=2 J=3 

2p,~,~. 2 p ~., 2P9 

/ 
/ l,s  

-'7 
is~ 

1So1~ 

,/ 
f 

FIG. 1. Level scheme of metastable Ar. 
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TABLE I 
TRANSITIONS IN METASTABLE Ar AS DISCUSSED IN THE TEXT 

Transition A (]k) A ik (sec- l) Branching Ratio (%) 

A = 811 nm 
ls 5 - 2P9J = 2---~J = 3 8115.3 3.66 x 107 100.0 

Total 3.66 x 107 
A = 801 nm 

ls 5 - 2P8J = 2---*J -- 2 8014.8 9.60 X 1 0  6 27.8 
1S 4 - -  2P8J-- 1 ~ J = 2 8424.7 2.33 X 1 0  7 67.5 
ls 2 - 2P8J = 1 ---*J-- 2 9784.5 1.61 X 1 0  6 4.7 

Total 3.45 X 1 0  7 

A -- 795 nm, A = 715 nm 
1S 5 - -  2PaJ -= 2---*J = 1 7147.0 6.50 X 105 1.9 
I s  4 - -  2PaJ-  1 ---*J = 1 7471.2 2.50 X 104 0.1 
1s 3 - 2PaJ--0----~J-- 1 7948.2 1.96 X 107 56.0 
1S 2 - -  2PnJ - -  1 ---*J = 1 8521.4 1.47 X 1 0  7 42.0 

Total 3.50 X 1 0  7 

Note: In the upper part of the table, we give the parameters for the closed transition at A -- 811 
nm, in the middle the parameters for the open transition at A = 801 nm, both starting from the l s 5 
metastable state. In the lower part of the table, we give the parameters for the open transitions to the 
2P4 state at A - 795 nm, starting from the l s 3, and at A = 715 nm, starting from the Is 5 metastable 
state. A;k are the Einstein coefficients. 

�9 T h e  t r ans i t i on  v ia  the  2P4 e x c i t e d  s ta te  a l l o w s  c o h e r e n t  t r a n s f e r  b e t w e e n  the 
l s 5 a n d  1s 3 m e t a s t a b l e  s ta tes .  T h e  t r ans i t i on  (lss----~ 2P4) at 715  n m  
( J - -  2 ~ J = 1) is v e r y  w e a k  a n d  has  a p r o b a b i l i t y  o f  o n l y  1 .9% to d e c a y  
b a c k  to the  l s 5 s tate ,  but  a 5 6 %  p r o b a b i l i t y  to d e c a y  to the  l s 3 m e t a s t a b l e  
s tate  a n d  a 4 2 %  p r o b a b i l i t y  to d e c a y  to the  g r o u n d  s ta te  v i a  the  l s  2 state.  
Th i s  is an  idea l  t r ans i t i on  to s t u d y  the  s ca t t e r i ng  o f  a s ing le  p h o t o n  f r o m  an 
a tom.  

T h e  s t r o n g  d e c a y  c h a n n e l s  in to  the  g r o u n d  s ta te  fo r  the  o p e n  t r ans i t i ons  o f f e r  
the  i n t e r e s t i n g  p o s s i b i l i t y  o f  r e a l i z i n g  a m p l i t u d e  g r a t i n g s  w i th  s t a n d i n g  l igh t  
f ie lds  as w e l l  as s t u d y i n g  the  loss  o f  c o h e r e n c e  by  s p o n t a n e o u s  e m i s s i o n .  

B. ATOMIC BEAM MACHINE 

1. Vacuum Sys tem 

T h e  v a c u u m  s y s t e m  cons i s t s  o f  f ive c o m p o n e n t s :  the  s o u r c e  c h a m b e r ,  the  first  
c o l l i m a t o r ,  the  m u l t i p u r p o s e  c h a m b e r  fo r  s t u d y i n g  the  a t o m - l i g h t  i n t e r a c t i o n ,  
the  s e c o n d  c o l l i m a t o r ,  a n d  the  d e t e c t o r  unit .  T h e  p r e s s u r e  in the  v a c u u m  s y s t e m  
w a s  l o w  e n o u g h  ( < 1 0  -4 to r r  in the  s o u r c e  a n d  t y p i c a l l y  10 -7 to r r  in the  o t h e r  
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sections) that beam attenuation due to collisions with the residual gas could be 
neglected. To achieve this pressure, the apparatus is divided into three sections, 
separated from each other by differential pumping diaphragms. The source with 
the high gas load and the first collimator were separately evacuated by two tur- 
bomolecular pumps having pumping speeds of 2200 and 300 liter/sec, respec- 
tively, while the other three parts were pumped together using one turbomolecu- 
lar pump (600 liter/sec). 

The high resolution for transverse deflections is obtained with the two sepa- 
rate collimation sections, each formed by two narrow slits (typically 5 /zm wide) 
with a spacing of 1 m. We obtain an angular resolution of about 7/~rad FWHM, 
significantly smaller than the deflection angle produced as a result of scattering 
of a single 800 nm wavelength photon (about 16/zrad for 800 m/sec atoms)~ 

2. Source 

Argon, like the other noble gases, has to be excited to a metastable state to be ac- 
cessible with conventional lasers. The energy difference between the ground and 
the first excited state is on the order of 15 eV and corresponds to radiation in the 
tar UV. This energy has to be supplied to the atom, usually by electronic colli- 
sions. 

The extreme collimation of the atomic beam requires a bright source to pro- 
vide enough intensity over a small solid angle. High intensities of metastable 
atoms can be produced in a dc discharge providing the electronic collisions (up 
to 100 eV) for excitation of atoms into a mixture of highly excited states, which 
subsequently decay into the 4~ metastable states, l s~ and l s 3, with relative 
weights of about 85%: 15%. The overall efficiency of the whole process is be- 
tween 10 .-4 and 10 --6. 

The discharge is burned from a cold stainless steel electrode inside a gas cell 
through the nozzle (diameter 0.5 mm) to the skimmer. Burning outside the dis- 
charge cell is essential for a high yield of metastable atoms. In our configuration, 
we apply a potential of about - 1.5 kV to a current-limiting resistor connected to 
a stainless steel cathode; the skimmer is connected to ground. A stable discharge 
operates at a typical pressure of about 10 mbar in the cell and draws a current of 
about 10 mA. The mean flux of metastable argon atoms is on the order of 1014 
atoms/(sterad sec). 

The emerging beam of metastable atoms has a most probable velocity deter- 
mined by the temperature of the source. Without cooling, this was typically 850 
m/sec, corresponding to a de Broglie wavelength of 0.12 ~.  The velocity spread 
and, hence, width of the wavelength distribution in the beam was 60% FWHM. 
Thus, the characteristics of the atomic beam are in between an effusive and a jet 
beam. 

Our source can also be operated in a pulsed mode by pulsing the applied volt- 
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age (up to 3 kV). The pulsed source operates in two regimes with different ve- 
locity distributions: one giving a faster mean velocity, the other a slower mean 
velocity for the atoms. One can move continuously between the two regimes. In 
the transition region, our pulsed metastable argon source generates two sharply 
separated peak velocities of 600 and 920 m/sec, having FWHMs of 140 m/sec 
and 260 m/sec, respectively (at room temperature, without cooling). This dou- 
ble-peaked structure is probably generated by different types of gas discharges 
burning during a short (5/xsec) pulse. By adjusting other source parameters (gas 
pressure, distance between cathode and skimmer, discharge voltage), it is possi- 
ble to get almost equal count rates for the two velocity peaks. A typical time of 
flight spectrum of the atoms is shown later as an insert in Fig. 5. 

By cooling the source with liquid nitrogen (Kawanaka et al., 1993), we re- 
cently achieved velocities as low as 330 m/sec corresponding to a de Broglie 
wavelength of 0.3 A. 

3. Detector 

The overwhelming advantage of metastable noble gas atoms, especially he- 
lium, neon, and argon, is their ease of detection, which is both simple and 
very efficient. Due to the high internal energy, metastables can be detected 
with high selectivity on impact at a surface by de-excitation and subsequent 
detection of the emitted Auger electrons with charge detectors. In our appara- 
tus, the Auger electrons were detected with a channeltron (Galileo type 4860). 
This method is insensitive to ground state atoms and the low background rate 
of less than 1 count/sec compensates the rather inefficient production of the 
metastables. However, one should note that discharges also cause an intense 
background of UV radiation (A--- 100 nm), large enough to saturate the detec- 
tor in direct view to the source. In the present experiment, the radiation was 
scattered away from the detector by diffraction at the collimation slits. One 
10-/~m slit reduces the transmitted photons through the next 10-/xm slit sepa- 
rated by 1 m by a factor of about 1000. 

Finally, the fine spatial resolution of the detector was achieved by scanning a 
small (10-/~m) slit in front of the channeltron. 

III. Classical Atom Fringes: The Moir~ Experiment 

The first experiment we describe is concerned with classical ray atomic optics in 
a regime where diffraction effects can be neglected (see also Dubetsky and 
Berman, 1996, in this book). We discuss the formation of classical moir6 fringes 
in a three grating setup and its application to precision measurements of atomic 
deflections. 
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A. CLASSICAL THREE GRATING OPTICS 

1. Three Grating Moird Imaging 

A schematic sketch of our moir6 imaging setup is shown in Fig. 2. It consists of 
three material gratings that are equally spaced and aligned exactly parallel to 
each other and perpendicular to the atomic beam. The first two gratings select 
transversal directions of an originally diverging atomic beam in such a way that 
they overlap exactly at the position of the third grating. Each pair of slits (one in 
the first grating, the second in the second grating) form a well-collimated atomic 
beam. The many beams overlap at distances given by the geometry of the grat- 
ings and form a shadow image in which the atoms are distributed in the form of 
fringes, very similar to an atom interferometer. These fringes can be measured 
by scanning the third grating in a direction transverse to the atomic beam. This 
kind of imaging is a characteristic self-focusing feature of any two grating setup, 
which can be explained easily by drawing the geometric paths of an undirected 
beam through the grating slits as shown in Fig. 2. The local atomic density mod- 
ulation is detected using the moir6 effect by superposing it with the third grating, 

Scanning Direction I 

L ~ ' ~ ~  L 
First  Second Th i rd  

Gra t ing  (30% O p e n  Fract ion)  
FIG. 2. Principle of a moir6 deflectometer. The first two identical gratings separated by distance 

L act as collimation for an originally uncollimated atomic beam. The figure shows only those classi- 
cal rays that pass through both the first and the second grating. After a distance L, an image of the 
collimation gratings is formed. At this position, a third, identical, probe grating is placed, which de- 
tects the intensity modulation using the moir6 effect. By scanning this grating a periodical transmis- 
sion modulation is obtained. 
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which has the same spatial frequency. If this grating is scanned in the direction 
of its grating vector, the transmission of the atoms will oscillate with the grating 
period. A similar three grating setup was discussed theoretically by Dubetsky 
and Berman (1994) with emphasis on atomic lithography applications. 

The contrast of the three grating moir6 imaging device depends on the open 
fraction of the amplitude gratings. This can be seen by calculating the classical 
shadow pattern of a two grating arrangement. For high-contrast fringes, the 
beams formed by the first two gratings at the position of the third grating must be 
narrower than the grating period (see Fig. 2). Calculations assuming a geometric 
propagation of an uncollimated beam through a set of three identical thin gratings 
show that the contrast, C, of the moir6 fringes equals 100% for an open fraction 
of less than 25% and decreases linearly in the range of 25-50%. Simultaneously, 
the transmission of the grating set increases. Best resolution to a small fringe shift 
A~ (AOmi n = 1/(C~f-N), where N is the total number of detected atoms) is ob- 
tained at an open fraction of approximately 30%, which we then used in our ex- 
perimental setup. In this case, the fringe contrast is C = 80% and the mean trans- 
mission of the three grating set is 2.7% of the original atomic beam intensity. 

Our moir6 imaging device is very well-suited for measuring deflections by 
a classical force F(x). The fringe shift AO is given by the classical deflection 
Ax obtained by the solution of the classical equations of motion 
d2x/dt 2= F(x)/m: 

2Ir 
A(I) -- z ~  . . . . .  z~,Xkgrating. ( 1 ) 

dgrating 
The high resolution of our device arises from the small spatial structure of the 
grating (period dgrating ) a n d  the large atomic flux that passes through the large 
area gratings. The flux is n2/2 (n being the number of slits in the grating) 
times higher than that of a single collimated beam with the same spatial reso- 
lution. 

It should be noted that a broad velocity distribution of the atomic beam de- 
creases the contrast in a CW experiment for large fringe shifts. For a classical 
deflection with a velocity-independent force, the dispersion varies as 1/v 2, and 
therefore, the fringe shift, AO(v), depends on the inverse square of the velocity. 
One has to average the fringe patterns over the velocity distribution, which leads 
to a reduction of the fringe contrast. For example, the width of the velocity dis- 
tribution (50% FWHM) of our atomic beam limits the bandwidth of our moir6 
experiment for rotation measurements to a maximal rotation rate of 50 mrad/sec. 
Nevertheless, the contrast reduction decreases with decreasing rotation rates and 
is negligible (better than 1 x 10 -5) in our experiments. In addition, the 1/v 2 dis- 
persion implies that the measured average fringe shift is not exactly the fringe 
shift for the averaged velocity. 
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2. Sensitivity to Inertial Effects 

The inertial sensitivity of atom-optical devices originates because a freely prop- 
agating beam defines a local inertial system (Colella et al., 1975; Anandan, 1977; 
Staudenmann et al., 1979; Greenberger and Overhauser, 1979; Clauser, 1988; 
Young et al., 1996, in this book). Thus, any apparent deviation from the linear 
flight in the reference frame of an observer has to be attributed to an accelerated 
motion of this system, like a rotation or an acceleration, or to a force acting on 
the atomic beam, for example, gravitation. The inertial sensitivity of matter wave 
interferometers was demonstrated in many experiments using neutrons [rota- 
tions: (Werner et al., 1979; Atwood et al., 1984), acceleration and gravity: 
(Colella et al., 1975; Werner et al., 1988)], electrons [rotations: (Nicklaus, 1989)] 
and atoms [rotations: (Riehle et al., 1991)], gravity: (Kasevich and Chu, 1991)]. 

In our case, the inertial sensitivity of the moir6 deflectometer arises because 
the image formed by the atoms is located at a predetermined location in inertial 
space, which appears shifted if the device accelerates during the time the atoms 
are in transit. Consider atoms moving with a velocity v in the laboratory frame. 
They spend the time ~-= L/v between each pair of gratings separated by the dis- 
tance L. The atoms pass the three gratings at times t - -  -2~-, -~-, and 0, respec- 
tively. If zi(t) is the transverse position of the ith grating, then the final displace- 
ment X of the atom fringes z z 3 (0) with respect to the position of the third grating 
z3(0) is 

X = z  a 3 (0)  - -Z 3 (0)  =2z2( -~ ' ) - z1 ( -2 r ) .  (2) 

The corresponding fringe shift is 

~ 4  = kg-[2z2(-~-) - zl( -2~-)] (3) 

where kg is the reciprocal grating vector with ke] = 27r/dg and de is the period of 
the gratings. Applied to the case of a linear acceleration a of the whole setup 

i at~k, ,  we get X = az2k, and perpendicular to the grating bars, where Zi( t )  = ~ g 

(IOac c = - k g a z  2. (4) 

In the case of a rotation of the whole system with angular rate ~ around a center 
located in the deflectometer plane at a distance I from the position of the second 
grating, we get z~(t) = D,, • (i - L)t and z2(t ) = 1~ • It, which yields 

(I)rot--- 2k1~ li VT2 (5)  

where f~ tt is the component of the rotation vector 1~ parallel to the grating bars. 
Note that the same result is obtained by substituting the Coriolis acceleration 
a -- 2v • 1~ into Eq. (4). 
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If we define the resolution R of our setup as the infinitesimal fringe shift that 
occurs as a function of an infinitesimal change in rotation frequency or accelera- 
tion, we get, according to Eqs. (4) and (5), 

~(I)ro t 
Rro t - -  ~_~ = 2Vkg,r 2 

I Or~ Race = 3a = kg'r2" 

(6) 

(7) 

Obviously, the inertial resolution of the moir6 deflectometer depends only on the 
geometrical properties of the experiment--the dimensions of the deflectometer 
and the velocity of the atoms. On the other hand, the accuracy of practical mea- 
surements depends also on the statistical precision achievable in the phase deter- 
mination of a recorded data track, which depends on the number of registered 
atoms. This can be taken into account by defining the sensitivity S of our setup 
as the minimal rotation or acceleration that can be detected during a given time 
(S -- 1/(RCVNo), where N O is the mean number of atoms detected per unit time). 

B. INERTIAL EXPERIMENTS 

1. Experimental  Setup 

In our experiment (Oberthaler et al., 1996a), the moir6 setup consists of three 
commercially available (Heidenhain) identical 3 • 3 mm 2 gold gratings with a 
grating period of 10 /zm and a slit width of 3 /zm. The three gratings are 
mounted symmetrically on an optical bench with successive gratings separated 
by 27 cm. They are aligned exactly parallel to each other (within 200/zrad) and 
perpendicular to the atomic beam. The last grating is mounted on a flexure trans- 
lation stage and can be shifted by a few grating periods perpendicular to the 
grating bars. The moir6 fringes are then measured by linearly moving the third 
grating and observing a periodic modulation in the transmitted atomic flux. Our 
experimentally achieved fringe contrast is typically 70%, which is reasonably 
close to the maximal theoretical contrast of 80% expected for our gratings with 
an open fraction of 30%, as explained previously. 

2. Sagnac Experiment  

To test the sensitivity of our moir6 deflectometer to rotations, the whole optical 
bench with the three gratings is mounted on a torsion spring and can be oscil- 
lated around a vertical axis (rotation vector parallel to gravity) located at the 
center of the bench (see Fig. 3). Resonant vibrations of the whole bench are pro- 
duced by an oscillating piezo crystal. For the most part, frequencies of 10 Hz 
and 577 Hz are used, having typical oscillation amplitudes of 5/xm and 100 nm, 
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FIG. 3. Experimental setup for measuring rotations (upper graph) and gravitation (lower graph). 
For measuring the fringe shift due to the Coriolis force, the moir6 setup is mounted on an optical 
bench that is oscillated with a small amplitude around its center. If the transit time of the atoms is 
short enough, one can neglect the change in angular velocity during the crossing of the atoms. For 
measuring the local gravitation, the optical bench is turned 90 ~ . The parabolic trajectories of the 
atoms result in a velocity-dependent fringe shift. By measuring this fringe shift as a function of the 
time of flight of the atoms, the value of g can be extrapolated. 

respectively. For the 10-Hz vibration, the whole  bench can be assumed to rotate 
with an a lmost  constant  angular  f requency during the travel t ime of 0.75 msec  of  
an a tom through the 54 cm long moir6 setup. For  the 577-Hz oscil lat ion,  a cor- 
rection of 35% to the measured  fringe shifts has to be taken into account  due to 
the l imited bandwidth  given by the transit t ime z =  0.75 msec of  the a toms 
through our system. 

The angular  accelerat ion of  the optical  bench is measured  with two mechani -  
cal accelerat ion sensors (Briel & Kjaer)  and, independent ly ,  using an optical in- 
terferometer,  by measur ing  the relative veloci ty of  the two outer  edges of the op- 
tical bench. F rom both these measurements ,  we can extract the vibrat ion 
ampli tude,  the angular  velocity, and the angular  accelerat ion of  the optical 
bench. Both these independent  measuremen t s  agree within 5% uncertainty. 
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It may be noted that, in our experiment, only the three grating-setup is rotated 
and not the atomic source, which is in contrast to typical applications where the 
moir6 deflectometer would be used to sense a rotation from inside of a system. 
However, due to the broad angular width of the atomic beam, the two setups ac- 
tually correspond to the same physical situation. If the atomic source is also ro- 
tating, just another part of the originally undirected atomic beam enters the three 
grating setup, which has no effect on the moir6 fringes. 

We measure the phase of the moir6 fringes for each rotation rate occurring 
during the optical bench vibrations. We use a digital lock-in technique by 
synchronizing the linear scanning motion of the third grating (slow) to the 
bench vibration (fast). The scanning time for the third grating is selected to be 
a multiple of the bench vibration's period, and each grating scan is synchro- 
nized to the signal driving the bench vibrations. The transmitted atoms are 
then counted as a function of their arrival time relative to the start of the grat- 
ing scan. For data processing, it is necessary to extract all data points that be- 
long to the same angular velocity. This is done by sampling the data track 
with the exact period of the fast bench vibrations. This yields, simultaneously,  
the phase shift of the moir6 fringes at the different rotation frequencies,  
which occur during one bench oscillation. 

The results of our rotation measurements are summarized in Fig. 4. The 
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FIG. 4 Shift of the moir6 fringes as a function of the angular rotation velocities for a I0-Hz 
bench oscillation with an amplitude of 18/zm. The linear slope yields the experimental resolution of 
our setup, corresponding to 130 X 2rr rad/Hz. The inset shows the results of a measurement using 
the resonant 577 Hz bench vibration with an amplitude of only 20 nm, where we demonstrated a sen- 
sitivity better than one earth r a t e  (~-~earth - -  7.3 x 10 -5 rad/sec). 
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fringe shifts measured during a bench oscillation show a linear behavior, as ex- 
pected from Eq. (5). The resolution of our experiment is derived from the slope 
of this plot as 130 x 27r rad/Hz, which is in good agreement with the theoretical 
value of 122 X 27r rad/Hz calculated using Eq. (5) with our geometrical parame- 
ters. The small deviation is due mainly to our poor knowledge of the atomic 
beam velocity during dc operation of the source. 

3. Acceleration Experiment  

A full measurement of the inertial motion of a system also includes a measure- 
ment of the acceleration (Colella et al., 1975; Staudenmann et al., 1979). Due to 
the equivalence principle of relativity theory, acceleration is indistinguishable 
from the action of gravity. For simplicity, we decided to determine the gravita- 
tional action on the moir6-fringes in our experimental demonstration. We also 
show how the velocity dispersion of the moir6 fringes can be used to perform an 
absolute measurement with no external calibration and independent of any bend- 
ing effects. 

For measuring the value of the local gravitation, g, the whole optical bench in 
the moir6 setup is turned 90 ~ around its longitudinal axis. The three gratings are 
then oriented horizontally and the flexure translation stage scans the third grating 
parallel to the grating vector, which is now in the vertical direction (Fig. 3). The 
parabolic trajectory of the atomic beam yields a fringe shift of the transmitted 
atoms with respect to the vertical alignment used before. 

An estimate of the resolution of this setup for acceleration measurements 
from Eq. (6) yields 0.08 rad/(m/sec 2) for v = 750 m/sec. Thus, the effect of 
the earth's gravitational field is an easily observable phase shift of 0.8 rad. In 
our measurement of the acceleration due to local gravity, g, we use the veloc- 
ity dispersion of the fringe shift as given in Eq. (4) by performing a time of 
flight measurement with a pulsed atomic source having a broad velocity spec- 
trum (see Section II.B.2). In the experiment, we synchronized the scans of the 
third grating (slow) with the typical 100-Hz pulse repetition rate of the pulsed 
source (fast), similar to the Sagnac experiment. Both the fringe shift as a 
function of the atomic velocities and the time of flight spectrum of the atoms 
are shown in Fig. 5. The source operated in a special mode, generating a dou- 
bly peaked velocity distribution with peaks at 600 and 920 m/sec, respec- 
tively. 

From the parabolic functional dependence of the fringe shift, the value of g is 
determined as g = (9.86 _+ 0.07) m/sec 2. The absolute accuracy of this value is 
limited by our knowledge of the geometric constants in our setup and not by the 
counting statistics. The total time elapsed in this experiment was 105 min, yield- 
ing an experimentally achieved sensitivity of 0.56 g s~~ec. 
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FIG. 5. Parabolic dependence of the fringe shift as a function of time of flight in the gravity ex- 

periment. From the data, we obtain a value of g = (9.86 _+ 0.07) m/sec 2. The dashed line corresponds 
to the time-of-flight spectrum of a single pulse. 

4. Future Moir~ Inertial Sensors 

Our moir6 setup, with its simple design, has practical applications as an inertial sen- 
sor. We demonstrated that, even with our test device, rotation rates below the earth's 
rotation frequency could be detected in a few seconds and a measurement of the lo- 
cal gravity was performed (see also Table II). A major advantage of moir6 inertial 
sensors is that, in principle, rotations and accelerations can be measured simultane- 
ously with the same device and independent of external calibrations. This allows 

TABLE II 
RESOLUTIONS AND SENSITIVITIES FOR INERTIAL M E A S U R E M E N T S ,  U S I N G  A T H R E E  GRATING M O I R E  

S E T U P  ( 8 0 %  C O N T R A S T )  

Velocity Grating Distance Resolution 
Measurement (m/sec) (/zm) (cm) (rad/lqe~h) Sensitivity 

Sagnac (Ar) 750 10 25 7.6 mrad/f~eart h 5 X 10 -1 ~-~earth/VrHz 
Sagnac (Cs) 250 10 100 365 mrad/f~em h 3 x 10 -5 ~-~earth/X/-Hz 
Acceleration (Ar) 750 10 25 0.7 rad/g 6 x 10 -3 g~ V~zz 
Acceleration (Cs) 250 10 100 100 rad/g 1.2 x 10 -7 g/~/Hzz 

Note." The values for Ar are for our present test measurement (10/zm gratings with 9 mm 2 and a 
typical count rate of 105 per second. The values quoted for Cs are for a typical Cs beam with a count 
rate of 10 l~ per second (f~e~h = 7.3 X 105 rad/s). 
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tracing the complete motion of an accelerated system. In an application as an iner- 
tial sensor our experimental device should be modified two ways: 

1. For distinguishing rotations from accelerations, the sensor can be modified 
so that two counterpropagating atomic beams can be used in the same setup. 
Thus rotations and accelerations can be distinguished, because they give differ- 
ent signs for the fringe shift ~i" The fringe shifts due to acceleration and rota- 
tions then are given by 

1 1 
(I)acr = 2 ((J~l -- ( f12)  (l)rot-" 2 ((J~l -~- (~2)" (8)  

Another method for achieving the same purpose has already been demonstrated 
in the gravity experiment described earlier. The velocity dispersion of the moire 
fringes allows one, in principle, to calibrate the setup and determine the rotation 
and the acceleration simultaneously, by measuring the phase of the fringes at 
three different atomic velocities. 

2. The third grating should be slightly rotated relative to the other two grat- 
ings or the third grating should have a slightly different period, so that a fringe 
shift translates into an intensity pattern along the grating bars, corresponding to 
the original moir6 effect. Using a position-sensitive detector, one could then 
measure the phase of the fringes with no movement of the gratings, which will 
give the device a high bandwidth, limited only by the transit time of the atoms. 

The sensitivities obtained in our experiment can be increased by several or- 
ders of magnitude using an optimized design. Increasing the distance between 
adjacent gratings from 25 cm to 1 m yields an increase in resolution of 16. Fur- 
thermore, by exchanging our metastable argon atomic source with a cesium 
atomic source such as that used in atomic frequency standards, with a velocity of 
250 m/sec and a beam intensity of > 101~ atoms/sec (a factor of 105 larger than 
our actual intensity), would result in a further increase of the sensitivity to small 
inertial effects by a factor of 103. Typical achievable sensitivities for the opti- 
mized design and our current experiment are summarized in Table II. 

Applied to the case of rotation sensing, the resulting sensitivity of such a 
moire inertial sensor (3 • 10 -5 ~e~h sXf~ec) would be comparable with the best 
reported rotation sensor, in Canterbury, New Zealand (2 x 10 -5 ~ e m h ~ ) ,  a 
highly sophisticated, large-size active ring laser gyroscope, located 30 m under- 
ground in a cave due to its requirements for mechanical and temperature stability 
(Stedman et al., 1993; Anderson et al., 1994). 

In the case of acceleration or gravitation sensing, a theoretical sensitivity of 
1.2 • 10 -7 g s~ec can be reached. This is better than typical mechanical devices. 
Such an accuracy would be sufficient for detecting the gravitational effect of a 
10-ton mass at a distance of 2.5 m in 100 sec. Furthermore, by using time- 
resolved measurements, an absolute calibration standard is inherently available, 
as demonstrated in our experiment. 
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IV. Quantum Fringes: The Interferometer 

Experiments utilizing and investigating the wave character of quantum motion of 
massive particles and, in particular, interferometry with matter waves (Badurek 
et al., 1988), have had a significant impact on our understanding of fundamental 
physics. Experiments with electron interferometers (Marton et al., 1953; M61- 
lenstedt and Dtiker, 1955) and neutron interferometers (Rauch et al., 1974; Gru- 
ber et al., 1989) have provided both demonstrations of many fundamental as- 
pects of quantum theory and precision tests against alternative theories (Badurek 
et al., 1988). Most recently, interferometry with matter waves has been greatly 
expanded by the experimental realization of atom interferometers [for an 
overview see the chapters in this book and the special issues on atom optics: 
(Mlynek et al., 1992; Baudon and Miniatura, 1994)]. 

Atom interferometers can be divided in two classes. In the first class, called 
a tomic  s tate  in ter ferometers  by Sokolov (Sokolov and Yakovlev, 1982), the 
beam splitter produces a superposition of internal states, which is the mechanism 
for coherently splitting the beams (Sokolov and Yakovlev, 1982; Bord6, 1989; 
Riehle et al., 1991; Kasevich and Chu, 1991; Robert et al., 1991; Sterr et al., 
1992). In the other class of interferometers, the beam splitter does not change 
the internal state of the atom. Here, diffraction produces a superposition of exter- 
nal states and thus directly creates distinctly different paths in real space (Cheb- 
otayev et al., 1985; Carnal and Mlynek, 1991 ; Keith et al., 1991; Shimizu et al., 
1992; Rasel et al., 1995; Giltner et al., 1995a). Such interferometers, where the 
beam splitting process is directly linked to the wave nature of the external mo- 
tion, we call de Brogl ie  wave  in ter ferometers .  

In this section, we describe our Mach-Zehnder type interferometer for 
atomic de Broglie waves (Rasel et al., 1995), where we use diffraction at stand- 
ing light waves as beam splitters. This interferometer is the exact mirror image 
of a grating interferometer for light, with switched roles for atoms and light. 

A. A MACH--ZEHNDER INTERFEROMETER USING DIFFRACTION BY STANDING 
LIGHT WAVES 

In our interferometer beam separation and recombination occurs by diffraction 
at three standing light waves operating as phase diffraction gratings for the 
atomic de Broglie waves (Fig. 6). Incident atom waves are divided at the first 
standing light wave, which produces a coherent superposition of mainly zeroth 
and first order beams. These beams then impinge on the second standing light 
wave, where they are redirected to superpose at the position of the third grating. 
Finally, after the third standing light wave, a number of beams emerge. Some of 
these are coherent superpositions of different trajectories through the three grat- 
ings, forming an interferometer. We use either of the two skew symmetric inter- 
ferometers formed by zeroth and first diffraction orders at the first grating, first 
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FIG. 6. Schematic arrangement of our interferometer setup (not to scale). The collimation slits 
for the incoming beam, the three standing light waves created by retroreflection at the mirrors, and 
the two final slits, one selecting a specific interferometer (thick lines) and the other selecting a spe- 
cific output port are shown. For reasons of presentation, the wavelength of the light beams is greatly 
exaggerated. In the experiment, the atomic beam was wide enough to cover more than 12 light wave 
antinodes. 

diffraction orders at the second grating, and finally zeroth and first diffraction or- 
ders at the third grating. The interferences are detected by translating the third 
grating and observing the intensity modulations in either of the two outgoing 
beams in the far field. The two output beams of the Mach-Zehnder  interferome- 
ter show complementary intensity oscillations (Fig. 7). 
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FIo. 7. Measured atom interference pattern for the two output ports of the interferometer. The 

complementary intensity variation of the two output beams observed is a consequence of particle 
number conservation. The solid line is a fitted sinusoid. 
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With a separation of 25 cm between each of the standing light waves, our in- 
terferometer has an overall length of 50 cm (Fig. 6). The diffraction angle of 32 
~rad leads to a beam separation of about 8/xm, which is larger than the width of 
the collimated beam (5/xm). Thus, the two interfering beams are spatially sepa- 
rated. 

1. Standing Light Waves 

In the experiment, standing light waves were realized by retroreflecting a ribbon- 
shaped, tightly focused beam of linearly polarized light at three ultraflat (A/30) 
mirrors. The ribbon-shaped laser beams were created by using three separate 
telescopes, each consisting of a cylindrical lens ( f  = 30 mm) and a spherical 
lens ( f  = 300 mm). The incident laser beam is focused to a waist of 90/xm in 
the direction along the atomic beam and expanded to more than 30 mm in the di- 
rection perpendicular to the atomic beam. A retroreflecting mirror is placed in 
the focus of the laser beam. The atomic beam passes at a distance of less than 
5 mm from the mirror surfaces, within the Rayleigh range of the Gaussian focus 
(--~8 mm). In this region, the quality of the grating is limited only by the preci- 
sion of the mirror surface (A/30). The maximum deviation from an ideal grating 
is less than 40 nm. The interaction time, z, between the atoms and the light field 
is very short (~'---100 nsec) and, therefore, the atoms pass a thin grating, which 
can be viewed as having zero thickness (see also Section VI). 

Diffraction of atoms at near resonant standing light waves can be viewed as 
diffraction from a sinusoidal phase grating (Moskowitz et al., 1983; Gould et al., 
1986b; Henkel et al., 1994). The strength of the nth diffraction order is then given 
by Pn = ~(q~0/2), where q~0 = V'Tr/2 1~2~'/A is the maximum phase shift of the 
atomic wave function when traversing a Gaussian standing wave at the antinodes of 
the electric field (Gould, 1986a), f~0 is the Rabi frequency, and Jn is a Bessel func- 
tion. The strength of diffraction orders and, therefore, the characteristics of the 
beam splitters in our interferometer can be varied by changing either the detuning, 
A, or the laser intensity, lq 0, of the light field. 

For an ideal two level system, one can optimize the strength of the diffraction 
gratings to maximize the signal to noise ratio in the atomic interferometer. An opti- 
mum is obtained for q~0 --2.16 for the first and third grating and q~0 = 3.68 for the 
second grating. The contrast is then 100% in the symmetric outgoing beams, and 
7.8% of the total incoming beam intensity is found in the interfering beam. In our 
case of metastable Ar, diffraction at the light gratings is altered both by the differ- 
ing dipole moments of the different m states of the Ar* ls 5 metastable state and by 
our 60% FWHM-wide velocity distribution, resulting in different interaction 
times. In addition, stray magnetic fields in our apparatus mix the m states. Taking 
all these influences into account, the optimal interaction strengths for a 
J = 2----~J = 3 transition like the lss----~ 2P9 transition at 811 nm are such that 
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FIG. 8. Atom diffraction at each of the three standing light waves (,~ --  811 nm) used in the atom 
interferometer. The solid lines show a theoretical calculation including the various effects of the 
magnetic sublevel structure, of both the velocity distribution and divergence of the atomic beam and 
of spontaneous emission. The separation between the diffraction orders is best for the first grating, 
which is at the farthest distance (1.25 m) from the detector. 

% = 2.56 for the first and third grating and % - 4.34 for the second grating. Then, 
theoretically, our configuration has 90% contrast in the symmetric beams and an 
interfering amplitude of 6.6% of the total incoming beam intensity. This is about 
an order of magnitude improvement over any optimized absorption grating inter- 
ferometer. Figure 8 shows typical diffraction patterns for each of the three standing 
light waves in the configuration used for our interferometer. 

2. Alignment of the Interferometer 

The contrast of the interferometer depends critically on grating alignment. For 
efficient diffraction, the standing light waves have to be exactly orthogonal to the 
atomic beam. Deviations lead to a reduction of diffraction efficiency, and thus, 
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beam splitting requires a more intense standing light wave. However, an increase 
in power enlarges spontaneous emission and causes additional losses. Therefore, 
the mirrors have to be oriented parallel along the atomic beam to much better 
than one grating period over the grating thickness. The mirrors were first aligned 
parallel to each other to better than 10 -3 rad, and the atomic beam was finally 
aligned parallel to the mirror surfaces by optimizing the diffraction efficiency. 

Furthermore, the vertical parallel orientation of the retroreflecting mirrors has 
to be much better than one grating period over the atomic beam height. We 
achieved a vertical parallel alignment of the three mirrors on the order of 3" 10 -5 
rad (100 nm over the 3 mm beam height) by an autocollimation technique. 

3. Vibrations and Inertial Stability 

The phase of the interferometer depends on the relative positions of the diffrac- 
tion gratings. Vibrations and random motions will result in random phase shifts 
and reduced contrast. To avoid vibrations, we mounted the mirrors on a stiff op- 
tical bench inside the vacuum chamber. The bench itself was vibration isolated 
from the vacuum chamber by a stack of steel plates spaced by viton O rings. The 
residual motions of the mirrors were measured with a high-precision doppler in- 
terferometer mounted on a damped pendulum. According to these measure- 
ments, our vibration isolation suppressed frequencies above 50 Hz. Below 50 
Hz, the amplitude of the motions was small enough to result in a total contrast 
reduction of only 10%. Thus, we could avoid active control of our interferometer 
and of the mirror positions. 

B. ATOMIC INTERFERENCE FRINGES 

For the standing light waves in our interferometric experiments, we used both 
the closed cycle transition 1S5----~2P9 at 811 nm and the open transition 
1 s 5 ~ 2P8 at 801 nm. 

1. Experiments with the Closed Transition at 811 nm 

The 811 nm, J = 2 - - -~J -  3 transition, in Ar involves five sublevels in the 
ground state and seven sublevels in the excited state. For linearly polarized light, 
the coupling of the five sublevels in the ground state differs by up to 45%. 

For the experiments with the closed transition, we used a large detuning of 
about 360 MHz (--~60 times the natural line width). Thus, excitation and, hence, 
spontaneous emission were largely suppressed (<1%).  Figure 8 shows typical 
diffraction patterns for each of the three standing light waves in the configura- 
tion used for our interferometer. Combining all three in an interferometer, we 
observed an interference contrast of about 12%. These results are in good agree- 
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ment with Monte Carlo simulations, assuming our actual collimation and veloc- 
ity distribution. Our beam collimation is not perfect and, therefore, the detector 
sees parts of other noninterfering diffraction orders reducing the contrast to 
40%. For instance, according to this model an improvement of our atomic beam 
collimation by a factor of 2 would yield a contrast of 60%. Misalignment of the 
gratings further lower the contrast to 25%. For matter wave interferometers with 
a nonzero enclosed area, Sagnac phase noise from rotational vibrations is signifi- 
cantly more detrimental than phase noise caused by translational vibrations 
(Shull, 1982). Optically measured rotations of our interferometer then decrease 
the contrast to 17%. The final discrepancy can be attributed to mechanical drifts 
during a 1-hr interference scan. 

We expect to improve the contrast significantly by using slower atoms, better 
collimation, and actively stabilizing the mirror positions. 

2. Experiments with the Open Transition at 801 nm 

For the 801 nm transition the total angular momentum does not change, 
J = 2 ~ J -- 2, and both the excited and the ground states have the same number 
of sublevels. However, only four of these levels contribute to the atom laser in- 
teraction, unfortunately with rather different dipole moments. Consequently, the 
adjustment of the grating diffraction strengths cannot be optimized as effectively 
as for 811 nm, which results in a reduced interference contrast. 

The interferometric experiments with the open transition at 801 nm were 
performed with a small detuning of about 80 MHz. Here, the mean percentage 
of spontaneously emitting atoms was 10% per grating. We successfully oper- 
ated the interferometer in this regime and observed a contrast of about 4%, 
which is only a factor of 2.5 smaller than that of the far off-resonance interfer- 
ometer. 

Close to resonance, the percentage of spontaneously emitting atoms per grat- 
ing can be very high (close to 100%). For the open transition at 801 nm, 72% of 
those atoms are lost in the ground state and, hence, are not detectable. This has 
the advantage that the total flux reduction due to spontaneous decay can be used 
to estimate the number of detected atoms that emitted one photon. Operating one 
grating of the interferometer, or even the whole interferometer in this regime, 
will allow us to study the effect of spontaneous emission on the atomic interfer- 
ence. As discussed later, spontaneous emissions at the first and third gratings 
does not destroy the interference contrast (see also Chapman et al., 1995; 
Scbmiedmayer et al., 1996). Only at the second grating, where the beam separa- 
tion is much larger than the optical wavelength, does an emitted photon carry 
Welcher Weg in-fc..nna~en that leads to a loss of interference contrast. We plan to 
~se &~s to i~.wes~igate the effect ,~,c ~,, s,,cr,ta~,ec~us scattering ca the obJserved i;~ter- 
ference paaern in future atom ,n~,~.,e~,~,,e._e.. experimee.~s. 
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C. THE QUESTION OF COHERENCE IN ATOM DIFFRACTION 

Operating our atomic interferometer demonstrates experimentally that diffrac- 
tion at a standing light wave is a coherent beam splitting process. We will now 
consider in more detail the conditions under which diffraction from standing 
light waves acts as a coherent beam splitter. 

1. Diffraction f rom a Coherent  State vs. a Number  State 

If the standing light wave is regarded as a superposition of two counterpropagat- 
ing waves with photon momenta hk and - h k ,  respectively, then the coherence 
of the beam splitting mechanism is not obvious. An atom can then be viewed as 
absorbing a photon out of one of these waves and re-emitting it via stimulated 
emission into the other, picking up a momentum change of 2hk. One could ar- 
gue that, under specific conditions, a measurement of the number of photons in 
these modes leads to information about whether or not the atom has been dif- 
fracted. The atom can be entangled with the light field and Welcher Weg infor- 
mation can be obtained, thus destroying the atomic interferences. We will ana- 
lyze this argument in more detail in the next paragraphs. 

First, and in a general sense, a beam splitter is coherent if a stationary phase  
relation exists between the (two) outgoing beams that is not spoiled by the beam 
splitter itself. This phase relation has to be stable for the time interval needed to 
measure the interference. As an example, splitting the beam by diffraction af- 
fords a stable phase between the diffraction orders. The simplest requirement for 
coherence between the diffraction orders is that the grating has to be fixed in po- 
sition relative to the apparatus measuring the coherence (a grating moving rela- 
tive to the apparatus will give a time-dependent phase shift in the interference 
pattern, see Section III.A.2). 

For a standing light wave, the position of the nodes and antinodes that form 
the grating has to be fixed for coherent beam splitting. If one adopts the picture 
of a standing light wave as a superposition of two modes (E~ =E~, 0 
cos [kz -  tot + ~01(t)] and E 2 -- E2, 0 c o s [ -  k z -  tot + qgz(t)] ) counterpropagating 
relative to each other, one can quantify the preceding condition. The nodes and 
antinodes depend on the relative phases of the two interfering light waves: 

E 2 2 2 StWa -- El,0 + E2,0 + El,0 E2,0 {1 + cos [2kz - q~l(t) + qgz(t)] } (9) 

and, therefore, the two interfering waves must have a rigid or at least known 
phase relation during the time of the experiment. For all practical purposes, this 
basically requires that both waves have a "common source" and sufficiently long 
coherence length. The simplest way to realize such a condition is to retroreflect a 
running wave by a mirror. We will analyze this configuration now in more detail. 

The distance from the atomic beam to the retroreflecting mirror (dAM) defines 
the time difference, A t = t 1 - t 2 = 2dAM/C. For the nodes and antinodes of the 
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standing light wave to be fixed to the mirror surface, dAM has to be much smaller 
than the length over which the phase of the light field gets randomized, the co- 
herence length of the radiation. Under this condition, the position of the standing 
light wave is determined by the mirror position and, for a stable mirror, the beam 
splitting will be coherent. This condition is necessary and, as we will show in the 
next paragraph, it is also sufficient for coherent diffraction. 

Now we return to the question of detecting the path the atom took by measur- 
ing the photon field. Here, the photon statistics in the two running waves build- 
ing up the standing light field become important because, if each wave has a 
well-defined photon number, in principle one could determine the path by the 
exchange of photons between the two counterpropagating waves. One therefore 
could expect that uncertainty of the photon number is a necessary condition for a 
standing light wave to act as a coherent beam splitter; thus, coherent states of the 
light field, but not Fock states, would coherently split the beam. This is mislead- 
ing for the practical case of creating the standing light wave by retroreflecting 
from a mirror because, if one satisfies the minimal requirements for coherent 
beam-splitting given previously, one actually erases completely the Welcher Weg 
information, since an observer could not decide if the momentum of a photon se- 
lected out of the standing wave is reversed by the mirror or by absorption and 
stimulated reemission by the atom (At<<tco h, the coherence time). Therefore, the 
earlier classical condition on the stability of the nodes of the standing light wave 
is necessary and sufficient for coherently splitting an atomic beam by any photon 
state, if retroreflected from a mirror. 

If the standing light waves are not built up by retroreflecting from a mirror or 
by splitting and recombining a single light beam, but as a superposition of two 
independent light beams, different considerations apply. For instance, a com- 
pletely different situation arises if one uses parametric downconversion as a 
source for two one-photon states. In this case, the photon number in the two 
modes after diffraction carries the Welcher Weg information and the atomic dif- 
fraction will not be coherent. 

2. Diffraction with Spontaneous Emission 

We can now apply similar arguments to the question whether diffraction accom- 
panied by a spontaneous emission event can still be seen as a coherent beam 
splitter. Spontaneous emission or, better, the scattering of a photon into the vac- 
uum modes entangles the atom with the photon, whereby the initially separable 
state evolves into an entangled state such that the total momentum and energy of 
the system is conserved for each possible outcome. Through energy and momen- 
tum conservation, the final photon momentum is related to the momentum trans- 
fer to the atom. The scattering of the photon has two effects on the atom: first a 
classical momentum transfer (kick) and second, if the atom is in a superposition 
of different spatial modes, the entanglement results in additional phase shifts of 
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the different spatial components of the atomic wave function. These phase shifts 
depend on the spatial separation of the superposed atomic de Broglie waves and 
are correlated with the final mode of the photon (Chapman et al., 1995; 
Schmiedmayer et al., 1995). 

At the beam splitter all the different modes are not spatially separated yet and 
the only effect the photon has is the classical momentum transfer to the atom 
(Oldaker et al., 1990; Gould et al., 1991; Pfau et al., 1994) and, if the line width is 
much larger than the recoil shift hkZ/2M no Welcher Weg information about the 
atom's diffraction order can be extracted from the photon. Therefore, simple spon- 
taneous emission at a diffraction grating does not destroy the coherence of the beam 
splitting process (see also Chapman et al., 1995; Schmiedmayer et al., 1996). 

D. ADVANTAGES OF OUR INTERFEROMETER 

Finally, we would like to mention the advantages of the present interferometer 
and compare it to existing atomic interferometers. 

Our interferometer is nondispersive; that is, the fringe position depends only 
on the relative orientation of the three diffraction gratings. It provides spatial 
separation that allows the insertion of any material or field into one of the inter- 
ferometric arms for precision measurements. A significant advantage of gratings 
of light is that their frequencies and, hence, their period can be far better defined 
than the dimensions of mechanical gratings. 

Another striking advantage of our interferometer is that the phase, polariza- 
tion, or amplitude of the three standing light waves can be varied rather easily, 
corresponding to a modulation of the beam splitter properties, unachieved in any 
previous type of matter wave interferometers. In addition, the diffrcction charac- 
teristics of standing light waves can also be modified by changing their Fourier 
decomposition. It is obvious that the ease of manipulation and modulation of the 
standing light wave opens the way for fundamental coherence studies in ques- 
tions of quantum chaos and quantum localization (Graham et al., 1992; Moore et 
al., 1994; Bardroff et al., 1995; Robinson et al., 1995) and of time-dependent 
quantum mechanics (see Section VI.B). 

V. Comparing Classical and Quantum Fringes: 
The Classical Analog to an Interferometer 

A. MOIRE FRINGES AND INTERFERENCE PATTERNS 

In this section, we will argue that the moir6 deflectometer (see Section III), in a 
certain sense, represents the classical analog to a Mach-Zehnder-type three 
grating, interferometer with amplitude gratings. S~ecifical~y,, we will s1~,ow that 
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the fringe shift of the moir6 deflectometer due to any accelerated motion of the 
whole setup, or to the application of a gradient potential (a classical force), cor- 
responds exactly to the phase shift obtained in the interferometer. 

In our three grating moir6 experiment, the fringes are formed by classical ray 
optics. The principle of a Mach-Zehnder-type interferometer is to split the in- 
coming atom beam with the first grating into two plane waves that are redirected 
by the second grating to superpose at the position of the third grating. These two 
setups, the moir6 deflectometer and the atomic interferometer, form a similar 
fringe pattern with the same period as the first two gratings. The pattern is an in- 
terference pattern in the case of an interferometer and a shadow pattern in the 
classical case. Scanning of the third absorption grating over the modulation pat- 
tern yields periodic transmission oscillations. The shape of the oscillations is ex- 
actly sinusoidal for an interferometer. In the moir6 experiment, they have a very 
similar but slightly different form, given by the convolution of the shadow image 
with the third grating. 

One can show (Oberthaler et al., 1996a) that, in the static case, the atomic 
fringes resulting from interferometric superposition of the split de Broglie wave 
have exactly the same spatial phase as in the moir6 experiment (Fig. 2). The dy- 
namical case will be investigated in the next section. 

The underlying reason for the similar behavior of a Mach-Zehnder  interfer- 
ometer and our moir6 apparatus is that both employ the same three grating 
geometry and, thus, both exhibit white-light fringes. In an inertial system, the in- 
terference fringes formed by all k components, with arbitrary absolute value and 
direction, coincide. Therefore, even for a (Mach-Zehnder) interferometer nei- 
ther spatial nor temporal coherence of the incoming de Broglie waves is neces- 
sary. Therefore, the moir6 sensor can be viewed as the correspondence limit of 
the Mach-Zehnder interferometer, which is achieved if the mass of the atoms 
and, hence, the de Broglie frequency become infinitely large. 

A natural borderline for a distinction between the classical and the quantum me- 
chanical cases arises if the diffraction angle of the beam at the gratings is large 
enough to redirect the beam, on its way between two successive gratings, by one 
grating period. This leads to the requirement for the relations between the grating 
period dg, the de Broglie wavelength of the atoms A~B, and the grating separation L: 

d <<~/AdB L ( 1 O) 

for the quantum case, and 

dg >> V/AdB L ( 11 ) 

for the classical case, where diffraction is negligible. Note that the characteristic 
separation corresponds to the double Talbot length L T = 2d~/AoB (Talbot, 1836). 
A similar three grating setup designed to work in the Talbot regime has been 
demonstrated by (Clauser and Li, 1994). 
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B .  I N E R T I A L  S E N S I T I V I T Y  

As an example of the similarities between the two apparatuses, we will discuss 
the sensitivity to inertial effects such as rotations and accelerations. 

We discussed the inertial sensitivity of the moir6 setup extensively in Section 
III.A.2. The same arguments apply as well to the inertial sensitivity of a three 
grating interferometer. As a comparison here we will give a different viewpoint 
of the phase shifts in an interferometer. 

The inertial sensitivity of an interferometer for nonuniform motions can be 
seen as due to the fact that the de Broglie waves experience different Doppler 
shifts on their different paths from the first to the last grating (Dresden and Yang, 
1979). The additional frequency A~o of a de Broglie wave due to a grating mov- 
ing with velocity Vg is Am - ___kg �9 Vg, for diffraction into the __+ 1st diffraction or- 
ders, respectively. If such a frequency offset is applied during a time interval tg, 
then a corresponding phase shift ~o  = +-f0 ~ kg-Vg(t)dt is picked up by the de 
Broglie wave, as compared to another wave that experiences no Doppler shift. In 
an interferometer, the total phase difference between the two paths yields the 
fringe shift of the accelerated interferometer with respect to the motionless case. 
In the Mach-Zehnder  geometry, this difference is given by 

~1 = g. vgl(t) dt - 2 g- Vg2(t ) dt (12) 
2 

where ~" is again the transit time of the atom between two adjacent gratings, and 
Vg~ = Zl, vg2 = z2, are the velocities of the first and second gratings, respectively. 
By using these relations and performing the integration, we get 

(I) I = k g  �9 [ 2 z 2 (  - 7") - Z l (  - 2T)]. (13) 

This result, which is valid for all types of (nonrelativistic) movements, is 
identical to the phase shift, ~M, in the moir6 deflectometer as obtained in Section 
III.A.2. Note that this reveals a surprising correspondence between a quasi-static 
"snapshot" description, where the grating positions are regarded only at fixed 
points in time, and a "dynamic" Doppler effect description, where the velocity of 
the gratings during the whole transit time is important because the correspond- 
ing phase shift has to be integrated. In an interferometer, the particles are de- 
scribed as matter waves by assigning a wave vector, katom , to an atom with mass, 
ma. One gets for the interferometer that 

~ 
2m a 

= = - -  D, = A .  D~ (14) 
maV 

where a = IAI = LZ(kg/katom) is the area enclosed by the paths of the interferome- 
ter. This phase shift due to rotation is the well-known Sagnac effect for interfer- 
ometers. Note that this formula, which is usually derived by quantum mechani- 
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cal analysis, is now obtained just by "artificially" substituting v = hkatom/m a into 
the purely classical derivation of the moir6 deflection. In the same way, originat- 
ing from Eq. (13), the quantum description of a uniformly accelerated interfer- 
ometer yields 

( L )  2 m2 
. . . .  asA (15) ~acc = - kg a r  2 kg a h2kato m 

where a s is the acceleration in the plane of the device orthogonal to the beam. 
We have related the transit time to the area of the interferometer. 

Comparing the moir6 deflectometer with the Mach-Zehnder  interferometer, 
it is striking that, in the moir6 deflectometer, only geometric properties of the ex- 
periment determine the resolution of the se tupmthe dimensions of the deflec- 
tometer and the velocity of the atoms. On the other hand, the interferometric 
phase shift [Eqs. (14) and (15)] includes a material property, the mass of the 
atoms. Obviously, this is canceled out due to the proportionality between the 
atomic mass, the wave vector of the atoms, and the area enclosed by the interfer- 
ometer paths. Therefore, from Eqs. (14) and (15), it is obvious that, due to their 
different velocities, atom devices with the same physical dimensions are much 
more sensitive than sensors using light (Chow et al.,  1985; Bergh et al.,  1981; 
Anderson et al.,  1994). 

C. PHASE SHIFT VS. ENVELOPE SHIFT 

The preceding similarities between the classical apparatus and a quantum me- 
chanical interferometer can be understood by investigating the behavior of the 
phase shift (fringe shift) as compared to the classical deflection, resulting in an 
envelope shift of the atomic beam. 

Applying a classical force, F, the change in the direction of the propagation 
of an atom is identical to the application of a phase gradient to the atomic plane 
wave. The force F can be viewed as stemming from a potential gradient 
(F = -VU) .  In this potential, a propagating matter-wave will experience a po- 
sition-dependent phase gradient, which is exactly the one needed to account for 
the deflection. This is because the phase gradient leads to a tilting of the wave 
front and the propagation direction of a plane wave in an isotropic medium, in 
our case the vacuum, is always normal to the wave fronts. One easily sees then 
that, in this case of a potential gradient acting in a matter-wave optical appara- 
tus. The fringe shift is the same as the classical deflection, shown as the enve- 
lope shift (see Fig. 9). This holds for the cases of both a moir6 deflectometer 
and an atom interferometer. One measures only the classical deflection but 
uses a very small ruler. This explains the high sensitivity of the three grating 
apparatus. 
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fringe shift = envelope shift fringe shift but no envelope shift 

'(a) ' ic) ' 

(d) 

FIG. 9. Phase shift vs. envelope shift for a gradient potential (a) and (b) and for a separated beam 
experiment (c) and (d), when the same phase shift of 3-rr is applied to one of the arms of the inter- 
ferometer (d). 

Very generally speaking, one can say that in all experiments,  that can be ex- 
plained by simple classical mechanics,  the fringe shift is the same as the enve- 
lope shift (Zeilinger, 1986). 

On the other hand, in many cases the fringe shift is not identical to the enve- 
lope shift. A rather trivial case occurs if one applies a constant potential to one 
arm of an interferometer in such a way that there is no classical deflection; nev- 
ertheless, a fringe shift will be observed. This fringe shift is different from the 
envelope shift (see Fig. 9). A different, more interesting case arises when one ap- 
plies a t ime-dependent  spatially constant potential to one arm of the interferome- 
ter, so that the atom never sees a gradient in space. Then, clearly, no change 
whatsoever will occur in the classical motion but one still obtains a fringe shift 
(Zeilinger, 1984). Another possible situation arises when purely topological 
phases, like the A h a r o n o v - B o h m  phase, are involved. In such situations, one 
clearly utilizes the full quantum mechanical  properties of an interferometer. 

VI. Atoms in Light Crystals 

In the previous experiments we considered fringes caused by a series of three thin 
optical elements; that is, diffraction or shadow gratings. A grating of thickness D G 
can be regarded as thin when the separation between different diffracted orders 
when leaving the grating is smaller than the grating period. Quantitatively, this 
implies that DcAoB/dG<<d G, where AdB is the de Broglie wavelength, d G is the 
grating constant and AdB/d  G = Odiff is the diffraction angle. This can be rewritten as 

1 D c << d2/)kda = ~ LTalbot where LTamo t is the Talbot length of near-field diffraction 
(Talbot, 1836). If that criterion is fulfilled, all diffracted orders sample the grating 
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in the same way, and so the grating can be viewed as having no extension along 
the direction of the beam and is equivalent to a two-dimensional structure. 

If the periodic structure, from now on called a crystal, extends for longer than 
a Talbot length D a >> d2/AdB , then diffraction orders cross the lattice planes and 
we will call such a crystal thick. Waves passing through thick crystals can not be 
described by simple diffraction anymore. One has to consider the interference of 
all the different scattered waves and a plethora of multipath interference phe- 
nomena arises. 

If one discusses atomic motion in thick crystals, a second distinction 
arises: whether the motion transverse to the incoming beam direction is free 
or bound. Depending on these characteristics one can distinguish between 
two regimes: 

�9 Quantum channeling of particles can be observed if the light shift potential 
U represented by the planes of the three-dimensional grating is high enough 
that the particle is confined to one row or plane. This can be formulated ei- 
ther by requiring that there is at least one bound state in a row or plane or 
by demanding that 

U >> h2kzc (16) 
2M 

where ka is the reciprocal grating vector and M is the mass of the particle. 
The quantity Er~ c = hZkZ/2M is also referred to as a recoil energy, associ- 
ated with the transfer of momentum hk c to the particle. 

�9 Dynamical diffraction describes the motion of particles if the potential is 
much smaller than Er~ c: 

h 2 ~  
U << . (17) 

2M 

Then, the motion transverse to the lattice planes is quasi-free and the waves 
scattered at different lattice planes interfere and, typical for dynamical dif- 
fraction, multibeam interference phenomena arise. 

Bragg scattering of atoms from thick standing light waves was first observed 
by Martin et al. (1988) and more recently by Giltner et al. (1995b) and Dtirr et 
al. (1996). 

Numerous investigations of channeling or dynamical diffraction with many 
different types of particles have been performed (Batterman, 1964; Rauch and 
Petrascheck, 1978). Investigating the coherent motion of atoms in light fields has 
many advantages for studying these regimes of diffraction. Using diffractive op- 
tics and holography, one can build a wide variety of three-dimensional light 
structures. Atoms interact strongly and in a well-controllable manner with the 
light fields, and one can change the interaction between the light crystal and the 
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atom continuously from very weak to very strong and from elastic, using far de- 
tuned light, to dissipative dominated, using on-resonant  light. 

In the next two sections, we will provide an outlook into this new area of 
atom optics and atomic interference and present two experiments illustrating the 
fascinating new possibilities arising from dynamical diffraction and multibeam 
interferences. 

A. DYNAMICAL DIFFRACTION OF ATOMS: ANOMALOUS TRANSMISSION 

Of the many dynamical diffraction phenomena realized for X-rays (Batterman, 
1964) and neutrons (Rauch and Petrascheck, 1978), one of the most striking 
ones is the so-called anomalous transmission effect (Borrmann, 1941). This ef- 
fect results when a wave is incident on an absorbing crystal under Bragg diffrac- 
tion conditions. One then observes that the transmitted intensity can be signifi- 
cantly higher than that expected from simple absorption considerations; that is, 
the transmission for oblique angles of incidence. The effect can be understood 
when one realizes that, inside the crystal, two wave fields are excited by the inci- 
dent Bragg wave, one having nodes and the other having antinodes at the lattice 
planes. While the one with the antinodes is rapidly absorbed, the one with the 
nodes has a much smaller probability of overlapping with the absorber, and 
hence, it has a much higher chance to survive the transmission. 

With atoms, we can expect to observe anomalous transmission if, instead of an 
absorptive crystal, we use a standing light wave tuned on-resonance to an open 
transition such that the atom can be excited to the intermediate state and then de- 
cay to a different ground state and thus be lost for the detection process. In full 
analogy with the neutron and X-ray cases, we expect here, too, that the atom will 
be in a superposition of two standing matter-wave fields in the standing light 
wave, one of which will be pumped to the undetected ground state with a high ef- 
ficiency, while the other one will have a much higher chance of surviving the 
transmission through the standing light wave than if the beam were off-Bragg. 

In our experiments (Oberthaler et al., 1996b) we exploit the fact that the Argon 
atoms are detected only if they are in a metastable state. The light crystal was 
formed using the open 801 nm transition (see Section II.A). A spontaneous decay 
from the excited state leads, with 72%, to the ground state of the atom not detected. 

In the experiment, the metastable argon beam had a mean velocity of 500 
m/sec with a corresponding de Broglie wavelength of about 20 pm. The collima- 
tion was better than one third of the Bragg angle (0Bragg"~30/xrad). The far-field 
diffraction pattern was scanned with a 10/xm slit 1.4 m downstream and the to- 
tal transmission was measured by removing the third slit and measuring the inte- 
gral intensity of the atoms. 

The standing light wave was 3 cm thick and realized by a mirror inside the 
vacuum chamber and a telescope for the laser beam expansion. The mirror was 

1 tiltable with a piezoactuator with a reproducibility of ~ Bragg angle. 



CLASSICAL AND QUANTUM ATOM FRINGES 115 

Our first experimental results are shown in Fig. 10. The lowest curve repre- 
sents the intensity of the forward-diffracted beam as a function of the angle, if 
the detuning is large enough that spontaneous emission could be neglected. The 
intensity reduces for two angles for which the incident beam satisfy the Bragg 
condition. The inset shows a scan of the third slit showing the far-field pattern. 
The intensity lost in zeroth order appears in first order. This was used as a 
marker for the Bragg angle. For the upper trace, the last slit was removed so that 
the detector measures the integral intensity of zero and first order. If the laser is 
exactly on resonance, spontaneous emission, and hence absorption of the atoms, 
is no longer negligible. The data clearly show that the total transmission in- 
creases at the Bragg angle. This is a clear indication of the interference of the 
forward- and Bragg-scattered beams inside the crystal. 

29000 

('~ 28000 

c 
ci 
0 

27000 

0 
8000 

7000 

6000 

B g angle 
FIG. 10. "Rocking curves" showing Bragg scattering and anomalous transmission. The lower 

trace shows the intensity of the transmitted beam as a function of Bragg angle for light far off reso- 
nance. The far-field pattern for Bragg scattering is given in the inset, where the corresponding mirror 
angle is indicated by the arrow. The upper trace shows the total transmission as a function of the mir- 
ror angle and for on-resonant light. The two peaks at the two symmetric Bragg positions clearly 
show the anomalous transmission of atoms through an on resonant light crystal. 
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In this experiment, exactly on-resonance, the real part of the refractive index 
for de Broglie waves vanishes and one can realize a purely absorptive Bragg 
crystal for atoms. 

B. TIME-DEPENDENT BRAGG SCATTERING: THE DE BROGLIE WAVE MODULATOR 

In "conventional" optics, Bragg diffraction at a running sound wave is used as an 
efficient frequency shifter for light waves. In acousto-optic modulators, photons 
are diffracted at a traveling refractive index grating produced by propagating 
sound waves in a crystal. We have built an analogous coherent frequency shifter 
for atomic de Broglie waves, which are diffracted at traveling light crystals. 

To set up "slowly" traveling light waves in front of a retroreflection mirror, 
the intensity of the light is modulated in the sub-MHz regime. This produces fre- 
quency sidebands separated symmetrically from the carrier by the intensity mod- 
ulation frequency v r The standing light wave in front of the mirror can be 
viewed as a superposition of (three) different frequency components" the carder 
frequency and (two) sidebands. The superposition of two counterpropagating 
light waves with a frequency difference A v leads to a slowly traveling intensity 
grating with a velocity of v r = A vAL/2, where A L is the average wavelength of 
the light. We can show (Bemet et  al . ,  1996) that Bragg diffraction of the atomic 
beam with velocity v A now occurs under a detuned Bragg angle AOBragg---- VT/V A. 
Due to energy conservation, the de Broglie frequency of the diffracted wave is 
shifted by the frequency difference between the counterpropagating waves. 

It is interesting to note that the superposition of the carrier frequency with the 
two first sidebands leads to four traveling waves with the same velocities, 
+_ vIAL/2. Thus, there are two contributions for each diffraction process when the 
corresponding angle of incidence is detuned by +_vIAL/2VA from the original 
Bragg angle. It can be shown (Bernet et  al . ,  1996a, 1996b) that both contribu- 
tions interfere perfectly constructively in the case of sideband production by in- 
tensity modulation. However, further analysis shows that, in the case where the 
frequency sidebands are created by phase modulation instead of intensity modu- 
lation, the interference is destructive and diffraction under the same detuned 
Bragg angles is suppressed. 

In Fig. 11 we show the results of Bragg-diffraction experiments of our Argon 
atomic beam at intensity modulated light waves. The detection slit is located 
such that only atoms deflected into the first diffraction order are registered. The 
diffraction efficiency is measured as a function of the angle of our light crystal, 
which we detune by tilting the retroreflection mirror. This keeps the spatial posi- 
tion of the first diffraction order constant for any velocities of the traveling inten- 
sity grating. 

The lower graph in Fig. 11 shows the result of a mirror "rocking" curve with- 
out intensity modulation of the light field. Only o n e  peak occurs where the mir- 
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FIG. 11. Bragg diffraction of an argon atom beam at an intensity modulated light grating. "Rock- 

ing curves" are obtained by measuring the number of diffracted atoms in the first diffraction order as 
a function of the incidence angle of the atom beam at the light crystal. The lower curve shows the re- 
sult without intensity modulation. A single peak is obtained where the angle of incidence equals the 
Bragg angle. The upper curve shows the same measurement with diffraction at an intensity-modu- 
lated light grating. The modulation frequency was 250 kHz, which is within the homogeneous line 
width (1 MHz) of our diode laser. Now, in addition to the previous Bragg peak, two side peaks ap- 
pear at symmetrically detuned angles. They correspond to Bragg-deflected atoms at intensity grat- 
ings, which propagate with a velocity of _ 10 cm/sec. The de Broglie frequency of the atoms in the 
side peaks is coherently shifted by _ 250 kHz with respect to the central frequency. 

ror angle corresponds to the static Bragg angle. The width of the curve is l imited 
mainly by the velocity distribution of our atom beam and not by the angular  ac- 
ceptance of Bragg diffraction. 

In the upper  graph, the light intensity was modula ted  with a frequency of 250 
kHz, which is fast compared with the transit t ime (0.1 msec) of the atoms 
through the light crystal (5 cm long in this experiment) .  Now, two pronounced  
side peaks appear  in addition to the central peak. They correspond to atoms dif- 
fracted at a traveling intensity grating, which is composed  by two contributions: 
the center f requency that superposes with any of  the sideband frequencies.  The 
traveling velocity is _+_ 10.1 cm/sec. We could verify the expected linear depen- 
dence of the Bragg angle detuning from the intensity modula t ion frequency 
within 9% uncertainty of the mirror  adjustment.  

In a similar exper iment  with phase- instead of in tensi ty-modulated light, no 
diffraction at these detuned angles was observed,  as expected from the destruc- 
tive interference between the sideband contributions.  
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I. Introduction 

More than 20 years ago, Altshuler and Frantz (1973), with great foresight, pro- 
posed the possibility of directly observing the de Broglie wave spatial interfer- 
ence exhibited by the propagation of whole neutral atoms. More recently, the 
idea of building an atom interferometer again was proposed independently by 
Dubetskii et al., (1984), Chebotayev and coworkers (1985), and Clauser (1988, 
1989, 1991). Soon thereafter, a wide variety of atom interferometer configura- 
tions was demonstrated. Among these are what are commonly called grating in- 
terferometers. In a solid grating interferometer, coherent path separation is ac- 
complished by passing atom de Broglie waves through carefully tailored 
aperture sets (e.g., slits) in a solid membrane, while in a "light grating" interfer- 
ometer a standing-wave phase grating replaces the solid amplitude grating. 

This chapter describes a particular form of grating interferometer that we 
have developed, called the generalized Talbot-Lau (GTL) interferometer. In 
Sections II and III, we first identify a significant weakness (low throughput) of 
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its progenitor form, separated beam envelope (SBE) interferometry, outline the 
operating principles of GTL interferometry, and show how GTL interferometry 
remedies this weakness. GTL interferometry is based on a unique form of inter- 
ference, intimately associated with Fresnel diffraction, that occurs when Fraun- 
hofer diffraction orders overlap. This effect was originally discovered in the op- 
tical domain using lenses and gratings and is called the Talbot effect. Its 
diffraction pattern consists of so-called Fourier and Fresnel fringes that, surpris- 
ingly, are actually multiply "aliased" near self-images of a grating's periodic 
complex amplitude transmission function. In Sections IV and V, we introduce 
the Talbot effect and give a brief historical outline of work contributing to its un- 
derstanding. Sections VI and VII summarize its surprising properties. Sections 
VIII and IX then introduce the related Lau effect and Talbot interferometer, re- 
spectively; and Section X shows how we combine these to create generalized 
lens-free Talbot-Lau interferometers, suitable for de Broglie wave interferome- 
try. Since we have been unable to find a treatment of Kirchoff scalar diffraction 
theory for wave propagation in a medium with inhomogeneous index of refrac- 
tion, we derive its basic results in an appendix, applied to de Broglie wave prop- 
agation in a spatially varying potential. Section XI then applies this result to a 
general discussion of Fresnel diffraction and the Talbot effect for the case of a de 
Broglie wave interferometer in the earth's gravity field. Finally, Sections 
XII-XIV discuss atom interferometry experiments that employ the GTL and 
Talbot effects. 

II. SBE Interferometry 

The progenitor form of the GTL solid grating interferometer is the separated 
beam envelope (SBE) solid grating interferometer, first proposed by Clauser 
(1989) and shown in Fig. la. It has been used extensively by Pritchard's group at 
MIT (Keith et al. 1991), (Schmiedmayer et al. 1995), (Chapman et al. 1995a), 
(Ekstrom et al. 1995). In it, grating G1 is illuminated by a carefully collimated 
atomic beam. Grating G1 coherently separates the input beam into separated 
beams via Fraunhofer diffraction. Two of these separated beams are then redi- 
rected by a second grating pair, G2A and G2B, to superpose, interfere, and form 
a transverse standing wave on the face of a third grating, G3. The standing wave 
is then masked by G3 to form a moir6 pattern, so that a measurement of the flux 
of transmitted atoms allows detection of the interference. 

The SBE configuration has quite remarkable image-forming properties. As a 
result, the standing wave's visibility is unaffected by direction and magnitude 
variations of the incident k vector (i.e., by coma or chromatic aberration). Unfor- 
tunately, the parameter range appropriate to atom interferometry usually does 
not allow one to fully exploit these properties, as strong collimation of the inci- 
dent atomic beam is required to fully separate the Fraunhofer orders at G2A, 
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FIG. 1. Layouts for (a) an SBE interferometer, (b) a GTL interferometer. 

G2B, and G3. For illumination by a source of atoms with a fixed brightness, B, 
the transmitted atomic current (in two-dimensions) scales as 

Current SBE ~ B Lc ~ B (1)  
(L i + Lc) 2' 

where L c is the collimator length, L i is the interferometer length, W c is the colli- 
mator width, a is the period of the gratings, and AOB is the atomic de Broglie 
wavelength. Unfortunately, for typical available values for AdB and a, Eq. (1) sets 
a severe limit to the atomic current transmitted by a SBE interferometer. 

III. GTL Interferometry vs. SBE lnterferometry 

The layout for a GTL interferometer is shown in Fig. lb. It eliminates the colli- 
mator entirely and consists simply of a set of three very wide diffraction gratings 
Gs, Gd, and Gm, in sequence. (Rather than identifying these gratings as G 1, G2, 
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and G3, as we have in previous works, here we use the notation Gs, Gd, and 
Gm to indicate their functions as source, diffraction, and mask gratings.) A 
GTL interferometer's transmitted atomic current correspondingly scales as 
BWGsWGm/Li, where L i is the interferometer's total length, and Wcs and WGm are 
the Gs and Gm grating widths. Since there is no limitation to the widths WGs and 
Wcm, then, relative to a SBE interferometer, a GTL interferometer provides an 
enormously higher throughput atomic current for a given source brightness. For 
interferometry with slow atoms, where available source brightness is consider- 
ably less than that for fast atoms, the increased throughput (ratio of fringe inten- 
sity to illuminating source brightness) can be dramatic. For example, in our first 
GTL atom interferometer (Clauser and Li, 1994a), the source brightness was 
2500 times weaker than that of MIT's first SBE interferometer (Keith et al., 
1991). Nonetheless, the peak-to-peak transmitted current variation of the inter- 
ference signal was 3000 times stronger. This throughput improvement (by nearly 
a factor of 107) can be readily extended by another factor of 103 through the use 
of larger gratings and/or gratings with a higher open area fractions. 

How does it work? In a GTL interferometer, each point within each slit of Gs 
acts as an independent source. For each such source, diffraction grating Gd pro- 
duces strongly overlapped Fraunhofer diffraction orders on the face of Gm. How- 
ever, in this overlap region, Fresnel diffraction applies and the various orders coher- 
ently superpose to create a form of wave interference unique to Fresnel diffraction, 
called the Talbot effect. As with SBE interferometry, the interference produces a 
standing de Broglie wave on the face of Gm, thereby allowing Gm to act as a mask, 
so that the wave interference may be detected by laterally scanning a grating's posi- 
tion. The finite slit widths of Gs and Gm only slightly wash out the transmitted cur- 
rent's associated fringe variation. Thus, while the gratings still physically separate 
an atom's interfering paths within the beam's envelope, that envelope itself does not 
separate. Interfering paths within the envelope consist topologically of many sets of 
nested diamonds, starting in a given slit on Gs, passing through the various Gd slits, 
and terminating at a point on Gm, where they interfere. 

Now, if Gs is suitably periodic, each Gs slit produces essentially the same stand- 
ing wave as that produced by other Gs slits. The contributions by all Gs slits then 
add to the intensity without deteriorating the fringe visibility. This incoherent addi- 
tion of Talbot fringe patterns is called the Lau effect. It is noteworthy that, while the 
usual demonstrations of the optical Talbot and Lau effects require the presence of 
one or more lenses, our generalization of these effects allows a lens-free system. 
Additionally, our GTL configuration retains or even improves on many of the desir- 
able features of SBE interferometry. It has higher grating-misalignment tolerance. 
Since no collimation is needed, the formation of the standing wave is independent 
of the source area; hence, no coma occurs. The price paid for the increased angular 
acceptance, however, is increased chromatic aberration. The standing wave formed 
at Gm is strongly dependent on illumination wavelength and is not a simple geo- 
metric shadow effect but a true interference effect. Depending on illumination 
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wavelength, the standing wave period appears at various different harmonics of the 
shadow period. ~ Actually, this chromatic aberration manifests itself as a resonant 
chromatic selectivity that proves to be desirable in many instances and can even act 
as a de Broglie wave interference filter (see Section XV). 

There is another dramatic difference between SBE and GTL interferometry. 
For a given A,m and interferometer length, GTL interferometry allows grating pe- 
riods that are at least an order of magnitude larger than those for SBE interfer- 
ometry. This grating period difference results from different scaling mechanisms 
for the two schemes. Equation (1) shows that, to maintain a minimum through- 
put and interferometer size, as the particle mass increases, the SBE grating pe- 
riod must scale directly with AdB = h / (mv) .  It is noteworthy that MIT's current 
SBE experiments use microfabricated gratings with a period (~200 nm) close to 
the current lower limit for microfabrication. Thus, SBE interferometry with very 
massive particles seems precluded. 

On the other hand, with GTL interferometry, the necessary grating period 
,~/2 Figure 2 shows the required Gd grating period, a d, as a function of scales as "'dB" 

]The discussion by Dubetsky and Berman (1994) of the transmission of atoms by three sequential 
gratings employs only the wavelength independent (n = 0, see later) shadow moir6 effect, even 
though their arrangement affords a wide variety of moir6 fringe multiplicities, because of the higher 
spatial frequencies introduced by Gs. 
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FIG. 2. Required Od grating period, a d, as a function of species atomic mass number for a 3 m 

long m = 2 GTL interferometer. 



126 J. F. Clauser  and  Shi fang Li  

atomic mass number for a 3 m long interferometer. The two lines on the left are 
for the most probable particle velocity in thermal beams at 300 K and 3 K, re- 
spectively, while the right side's limiting line is for freely falling particles gravi- 
tationally accelerating in the 3-m interferometer length. The interferometer is as- 
sumed here to operate with a s = a m : 2a  a at the n = 1, m = 2 resonance (see 
later), allowing it to demonstrate wave interference unambiguously. It can be 
seen that GTL de Broglie wave interferometry with very massive particles such 
as very large atomic clusters (i.e., very small rocks) or even small live viruses 
may be achievable in the near future. 

IV. What Happens When Fraunhofer 
Diffraction Orders Overlap? 

To appreciate the Talbot effect, it is helpful to understand what happens when 
Fraunhofer diffraction orders overlap. Consider the simple two-dimensional 
(2D) Fresnel scalar diffraction pattern formed by the Young's N-slit interferome- 
ter depicted in Fig. 3. A point source located at r s = (Xs,Z s) emits monochromatic 
waves (classical or quantum mechanical) with wavelength A. The waves are then 
passed by a planar finite-extent periodic complex transmitting object (diffraction 
grating). The grating contains N periods, with period a a, and is located at z = z a 
with R ~ -  z a - z  s, with its axis of symmetry located on the z axis. The general 
solution to this problem will provide the complex amplitude for waves imping- 

Image 
Source 
point Grating plane 

,Zd ) 

i 1 
I of symmetry I ~ 

i age point I ' - - -  Ri _1_ -I- R2 -I of symmetry 
FIG. 3. Young's N-slit interferometer arrangement for demonstrating Fresnel scalar diffraction. 
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ing on the z = z m plane, here called the i m a g e  p l a n e ,  at a point r m = (Xm,Zm)  , with 
R 2 =-- z m - z a. Because of complications arising from quadratic phase factors in 
the Fresnel approximation, this general solution with finite N was delayed until 
1992, when it was found by Clauser and Reinsch (1992). A summary of impor- 
tant features of the Clauser and Reinsch (1992) solution is given in Sections VI 
and VII. 

An important distinction between this problem and that for Fraunhofer dif- 
fraction is that, in the latter case, plane-wave illumination is assumed, where- 
upon one must specify R~ = oo, and then the resulting pattern's scale depends 
only on the length R 2. In marked contrast, the solution to the present Fresnel 
problem requires a careful consideration of b o t h  lengths R~ and R 2. It is conve- 
nient to reparameterize these in terms of two other parameters, the "reduced 
length," p, defined as 

R~ R 2 p = (2) 
R ~  + R  2 

and the geometric shadow magnification, M, defined as 

R + R 2 R 2 R 2 M =  ~ = 1 +  = . (3) 
R1 R 1 P 

It will soon become apparent that the quantity 
2/p 

XTR ~ a d (4) 

named the T a l b o t - R a y l e i g h  w a v e l e n g t h  by Clauser and Reinsch (1992), is also a 
very important parameter in this problem. 

Surprising features emerge from the solution of this simple diffraction prob- 
lem. These are illustrated by a straightforward numerical evaluation of the Kir- 
choff diffraction integral, as is done by Clauser and Reinsch (1992) and 
reprinted here in Figs. 4a-4f .  For all of this figure the calculation is for a simple 
binary grating composed of 12 unit-transmission slits, each of width '~a, with 
~ d / a d  = 1/3, R 2 = 1, a d - -  10 -6, and A = 5 • 10-8- -a l l  held constant, thereby 
freezing the positions of the Fraunhofer diffraction orders to integral multiples 
of 500 X 10 -6. (If MKS units are assumed, the parameter range spanned will be 
found to be appropriate for a typical atom interferometer.) Each successive part 
of the figure represents a situation with the source moved progressively closer to 
the grating. That is, among these parts, the value of R~ varies, starting in Fig. 4a 
at R~ = o0, taking on progressively decreasing values, and yielding correspond- 
ingly increasing values for ATR and M. Each part displays two graphs. The upper 
trace shows the image intensity, and the lower trace shows the associated geo- 
metric shadow (A = 0) image of the grating. 

Fraunhofer order overlap does not occur (Clauser and Reinsch, 1992, Sec- 
tion 1.5) as long as the product NATR is less than the illuminating wave- 
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fixed A and R 2. Fraunhofer orders always occur at integer multiples of 500 (see text). Fresnel patterns 
are normalized correctly only relative to each other, while shadow patterns are renormalized to 1. 
(Figure adapted from Clauser and Reinsch, 1992.) 

length,  A. For  the presen t  calcula t ion,  R 2 w a s  chosen  suff icient ly large that  
NATR is smal le r  than A for both  Figs.  4a and 4b. In turn, these two parts  dis- 
play we l l - fo rmed  Fraunhofe r  d i f f ract ion orders .  F igure  4c co r re sponds  to 
NATR = A, where  the order  s t ructure now resembles  a step funct ion.  F igures  
4d, 4e, and 4f, all co r re spond  to cases with NATR > A. Figures  4 d - 4 f  show 
cases with NATR > nATR = A, where  n ( < N )  is an in teger  (3, 2, and 1, respec-  
tively). Each  part  shows n equal ly  spaced,  non s inusoidal  " f r inges"  f o rm ed  
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FIG. 4. (continued) 

per order separation. When this calculation is performed for a grating with 
much larger N, the features in Figs. 4 d - 4 f  "fringes" become rectangles, with 
the same shapes (except for Gibbs phenomena) as those of the associated 
geometric shadows. 

The presence of these regular "fringes" in Figs. 4 d - 4 f  is not self-evident 
from an inspection of the form of the Kirchoff diffraction integral. Moreover, for 
intermediate choices for R 1 such that n is not an integer, the pattern displays 
highly irregular features. The regular features seen here are examples of what we 
call the generalized (finite-N) Talbot effect. 
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V. H i s t o r i c a l  D e v e l o p m e n t  o f  t h e  G e n e r a l i z e d  T a l b o t  E f f e c t  

A different manifestation of the surprising periodicities evident in Figs. 4 d - 4 f  
was first noticed experimentally (with light) by Talbot (1836). His apparatus is 
shown in Fig. 5a. A beam of monochromatic light is focused to parallel by a lens 
and directed through a coarse periodic binary transmission grating (Ronchi rul- 
ing) with large N. In analogy with the arrangement of Fig. 3, his arrangement ef- 
fectively sets R 1 = oo and M = 1. In contrast to the variation of Fig. 4, it varies 
ATR by varying R 2. In addition, a second identical grating is placed in the trans- 
mitted light to act as a mask, aligned so that its slits and plane are maintained 
parallel to those of the first grating. An observation consists of varying the lateral 
position of either grating while monitoring the transmitted light for different 
choices for the separation R 2 between the grating planes. 

When the spacing between the gratings R 2 is 0 (i.e., when they contact each 
other), the lateral position variation yields a simple moir6 (triangular) variation 
of the transmitted intensity. When the gratings are slightly separated, diffraction 
initially blurs the moir6 variation. However, at grating spacings, R 2, equal to in- 
tegral multiples of a characteristic length, the moir6 fringes reappear at nearly 
100% visibility! The inescapable conclusion is that, with monochromatic light, a 
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FIG. 5. (a) Talbot's experiment, (b) Lau's experiment. 
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grating at these spacings can produce a nearly exact image of itself. Further- 
more, this self-imaging must intimately involve wave interference, since the 
characteristic length is wavelength dependent. 

Talbot's effect remained totally mysterious until Lord Rayleigh (1881) noted 
that it is intimately associated with a nonvanishing wavefront curvature and 
identified the characteristic length in Talbot's experiment. The first detailed ex- 
planation of this long-standing mystery was first given in 1957 in the landmark 
work by Cowley and Moodie (1957). They solved the problem depicted in Fig. 3 
for an infinite periodic transmission grating with an arbitrarily shaped (real) sin- 
gle-period transmission function. To do so, they used a Fourier series technique. 
Self-evident in their resulting formulas is a direct prediction of the self-images 
observed by Talbot. They named these images Fourier images. 

In their further experimental observations, however, Cowley and Moodie 
(1957) found a wide variety of additional, now even more mysterious, shorter- 
period periodic images. 2 The regularities of these images are not self-evident 
from an inspection of the Cowley and Moodie (1957) formulas. 3 They named 
these additional mysterious images Fresnel images. Rogers (1963) studied Fres- 
nel images numerically, while Hiedemann and Breazeale (1959) presented addi- 
tional experimental evidence for them. Winthrop and Worthington (1965, 1966) 
provided a (not particularly transparent) method for calculating Fresnel images 
by introducing what they called the Fresnel transform but provided no transform 
inversion method. 

The first correct classification of Fresnel images was given by Gori (1979; see 
also, Sudol and Thompson, 1979), working in the domain of binary gratings 
with "sufficiently narrow" slits. Gori showed that the resulting fringe "multiplic- 
ities" (relative to the geometric shadow period) are governed by a ratio of two 
integers, n and m, in which m controls the fringe multiplicity, while n accounts 
for the periodic recurrence of the self-images. He also experimentally demon- 
strated this effect. Additionally, Gori presents a qualitative argument to show that 
the finite extent of a binary grating limits the allowed multiplicity of the Fresnel 
images, while Smirnov (1979) gives an order-of-magnitude estimate for their 
depth of focus. Patorski (1989, 1993) provides reviews of these and other treat- 
ments up to 1992. 

The problem depicted in Fig. 3 with both finite and infinite periodic complex 
gratings was first given an exact analytic solution by Clauser and Reinsch 

2Cowley and Moodie (1957) comment, "In fact it is observed that with gratings of this type a large 
number of sharp and frequently complicated out-of-focus patterns are generated." 

3These images may be calculated using the Cowley and Moody (1957) formulas, although Cowley 
and Moodie did not appear to recognize this fact. Indeed, they comment (Cowley and Moodie, 1957, 
p. 499) that "No obvious relationship exists between the positions of the delta functions and the max- 
ima and minima of the real and imaginary parts of the Fourier transform of the Fresnel wave func- 
tion." 
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(1992). They provide formulas for calculating both the detailed fringe and enve- 
lope shape. More important, in the Clauser and Reinsch (1992) formulas the for- 
mation of both Fourier and Fresnel images is self-evident by inspection. Further, 
Clauser and Reinsch (1992) show that in the N ~ oo limit the image amplitude of 
the Fourier images become exact complex amplitude self-images of the grating. 
With finite gratings, "filtered" amplitude self-imaging occurs instead. Clauser 
and Reinsch also show that Fresnel images consist of multiply added (aliased) 
laterally displaced Fourier self-images. In addition, they give a formula for the 
spatial frequency spectrum of the fringe intensity showing finite-width "reso- 
nances" at the integer ratios discovered by Gori. In the finite-N domain, the 
Clauser and Reinsch (1992) formulas also predict a small spatial frequency shift 
of the fringe pattern, new effects associated with a detuning from a resonance, 
limitations to the spatial frequency spectrum set by finite grating extent, and a 
number theoretical relationship between n and N. 

VI. Spatial Properties of the Generalized 
Talbot Effect "Image" 

The Clauser and Reinsch (1992) analysis shows that the basic requirement for a 
"fringe" resonance to occur, or equivalently for a Fourier or Fresnel "image" to 
form, is set by Gori's (1979) condition: 

ATR _ a2 _ m 
h hp n 

- +  ~ (5) 

where m and n are small integers, generalized by Clauser and Reinsch to allow 
for a tuning error, e. These integers are what we call here resonance indexes 
(quantum numbers). Equation (5) represents a fundamental constraint for the 
generalized (finite-N) Talbot effect to occur. 

So-called Fourier fringes are formed on the image plane for m = 1 and integer 
values of n -> 1. The terms fringe and image may be applied only loosely to the 
pattern formed on the "image plane," as the pattern's shape, in general, is nonsi- 
nusoidal and not an image, either, in the usual sense. Indeed, the pattern's ampli- 
tude is a magnified (by M) near replica of the complex grating amplitude trans- 
mission function itself. For N < 0% the pattern is a filtered (slightly rounded) 
amplitude self-image, with the associated filtering given by the Clauser and 
Reinsch (1992) Eqs. (25)-(27). In the N----~o% E = 0 limit, the self-image is an 
exact magnified replica. For N < ~, the filtered self-image has a finite envelope 
(produced via Clauser and Reinsch (1992) Eq. (25)) that is comparable to the 
grating's magnified finite shadow width. For a finite N, approximate self-imaging 
persists for a finite range of E ~ 0, limited by the inequality, le I < 2/(nN), which 
results from a finite remainder in the integer division of Eq. (5). 
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It should be noted further that the Clauser and Reinsch (1992) treatment 
holds exactly only when n is a factor (rational divisor) of N, the number of slits. 
For modestly large N, the Clauser and Reinsch (1992) Eqs. (23)-(27) still yield 
an approximate but increasingly accurate prediction for the resulting pattern. Re- 
cently, Clauser and Dowling (1996) show further that with small slit widths, all 
such "fringes" will have the same height if and only if n is a rational divisor of 
N. They then use this result to show that the simple Young's N-slit interferometer 
depicted in Fig. 3 can be used as an analog computer to find the integer factors 
of N. 

So-called Fresnel fringes are formed on the image plane for integer values, 
m > 1 and n-> 1. Clauser and Reinsch (1992) generalize the Gori (1979) and 
Cowley and Moodie (1957) results to cover general complex gratings, so as to 
show that the pattern now consists of m copies (aliases) of the "filtered" m = 1 
(Fourier) amplitude self-image per geometric shadow period, with the associated 
complex amplitudes all added together. The result is a periodic pattern with pe- 
riod Mad/m. Thus, the resonance index m is referred to as the alias multiplicity. 
Because of this addition, the added set of images is no longer a self-image of the 
original grating, although each of the added components is such a self-image. 
Correspondingly, for m > 1, the summed pattern for a binary grating does not 
preserve the original grating's slit-width to period-width ratio. Also, when the 
added components overlap, their added amplitudes interfere, so that the integer 
fraction m/n is always reduced to its lowest terms. 

The m = 1 case is obviously consistent with the m > 1 case, as the Fourier 
image case represents the Fresnel image case, where only one copy, the filtered 
self-image itself, is present. Correspondingly, other features of the m = 1 case 
discussed earlier, also persist in the m > 1 case. Finally, it should be noted that, 
whenever the produce m X n is odd (whether or not N is finite), the whole pat- 
tern is shifted laterally (relative to the position of the geometric shadow pattern) 
by half a shadow (magnified) period. 

VII. Wavelength Dependence of the Spatial 
Spectrum of the Fringe Intensity 

Even with small integer values for the resonance indexes, m and n, many possi- 
ble rational fractions occur, with each such fraction providing a "resonance." 
The effect of m > 1 aliasing will be to introduce (or intensify) the mth harmonic 
of the basic geometric shadow period into (in) the spatial spectrum of the image 
intensity. Each of the intensity's various spatial frequency components then con- 
tains a regular set of finite-width resonances as a function of the illuminating 
wavelength, A. These are shown in Fig. 6. Here we display the A dependence of 
the lowest (m-dominated) five Fourier coefficients of the intensity for the limit- 
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ing case of a binary grating composed of an infinite number (N = ~) of slits, 
where the intensity has become exactly periodic. Here, the slits have a width, ~d, 
and period, a d, with ~d/ad = 1/4. In contrast to the geometric variation employed 
in Section IV, here the geometry (and ArR) is held fixed and only the wavelength 
varies. The Fourier series expansion of the intensity used here has all real coeffi- 
cients and should not be confused with Cowley and Moodie's Fourier expansion 
of the image amplitude. 

For the important case of a binary grating (used for Fig. 6), each resonance 
has sharply defined boundaries (Clauser and Reinsch 1992, Eqs. (57) and (59), 
and the resonance full widths are given by 

ir I <_ rn~ d AA = 2% (6) 
n2ad ' h na d" 

For modestly high ~d/ad, the contribution by each multiplicity-m alias is associ- 
ated dominantly with the associated mth harmonic content. Cases a, c, and e in 
the figure show odd valued multiplicities, m = 1, 3, and 5. Correspondingly, 
these spectra display negative values for the associated Fourier coefficient when 
m • n is odd, as a result of the associated half-period shift of the pattern. Cusps 
occur in the m = 4 resonances shown in Fig. 6d, because, when the wavelength 
is tuned exactly to a resonance, with ~d/ad = 1/4, four quarter-period slit images 
add together to produce a fiat intensity distribution. 

The condition n = 0, �9 = 0, holds when the wavelength A exactly vanishes; 
that is, the A---~0 (n = 0, �9 0) limit is the geometric shadow limit. Figure 6 
shows that for small but finite A, the mth Fourier coefficient of the shadow pat- 
tern vanishes abruptly at MATR = ,~d/(mad), with the coefficient for the funda- 
mental (m = 1) component correspondingly persisting to longest wavelength. 

For N < 0% the image is no longer periodic and each Fourier component ob- 
tains a finite spectral width, while the number of resonances for each value of m 
is limited by N and results in image filtering. The N < ~ spatial spectrum is 
given by the Clauser and Reinsch (1992) Eqs. (57) and (59). We further note that 
these formulas hold whether or not n is a factor of N. As a result, when multi- 
plied by the Fourier transforms of the Gs and Gm intensity transmissions (suit- 
ably adjusted by the "shifting theorem"), they provide the least computationally 
intensive method for numerically calculating the exact intensity transmission for 
a GTL interferometer as a function of grating displacement. 

VIII. The Lau Effect 

Lau (1948) performed an experiment similar to that by Talbot. A diagram of his 
apparatus is shown in Fig. 5b. In Lau's experiment, a diffuse extended (spatially 
incoherent) monochromatic source illuminates a wide, coarse binary grating. 
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The transmitted light then passes through a second identical grating and a lens. 
A screen is placed at the focal distance of the lens to observe the magnified pat- 
terns thus produced. As before, when the grating spacing, R 1, is an integral mul- 
tiple of Rayleigh's characteristic length, nearly exact images of the gratings are 
formed on the screen. 

One may assume negligible transverse coherence in the narrow bandwidth 
light illuminating Lau's first grating, Gs. Each point within a slit of Gs then acts 
as an isolated, independent point source illuminating grating Gd, spaced from 
Gs by R 1. Each such source point generates a Talbot effect image on the screen. 
Lau has effectively placed the image at R 2 = oo by the use of a lens. Incoherently 
averaging the intensity produced by all such points within a given source grating 
slit yields the intensity produced by one such slit. Now, since the resulting pat- 
tern is periodic, a second Gs slit spaced at a distance a s = a d from the first slit 
will produce the same pattern, simply shifted by one period. Hence, all source 
slits produce essentially the same periodic image (except for finite envelope- 
width effects) that is observed on the screen for one slit, and the intensities from 
all Gs slits add. 

IX. The Talbot Interferometer 

The next step in understanding the operation of a GTL interferometer is to dis- 
cuss what is commonly referred to as the Talbot interferometer, first demon- 
strated by Lohmann and Silva (1971). Its configuration is essentially identical to 
that of Fig. 5a, with an imaging screen acting as the detector (following the sec- 
ond grating). The spacing R 2 is set so that the m = 1, n = 1 resonance obtains for 
Gd. In a variant configuration by Yokozeki and Suzuki (1971), a laser replaces 
the point source and lens. When a refractive object is inserted between the two 
gratings, a shadow image of the object forms on the screen. Image features de- 
pend on the object's refractive index gradient distribution. 

X. Generalized Lens-Free Taibot -Lau Interferometers 

Given an understanding of the Lau effect, one can see that another interferometer, 
similar to the Talbot interferometer, may be created by combining the Talbot and 
Lau effects. This may be done by simply adding a "masking" grating, Gm, to the 
image plane in Lau's experiment. Equivalently, one can replace Talbot's point 
source with a diffuse source, followed by a "source" grating Gs. However, neither 
combination is particularly useful for atom interferometry, since both involve the 
use of a lens. Indeed, Patorski reviews a variety of experiments using similar 
arrangements, all involving the inclusion of one or more lenses. Unfortunately, in- 
terferometric quality lenses do not, as yet, exist for atom de Broglie waves. 
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We can see, however, that lenses are readily eliminated from a Talbot-Lau 
interferometer by suitable choices for the grating periods or for the resonance in- 
dexes associated with diffraction by Gd. Thus, a lens-free generalized Talbot- 
Lau interferometer (Reinsch and Clauser, 1991) suitable for atom de Broglie 
wave interferometry may be created by simply placing three gratings in se- 
quence and employing spatially incoherent de Broglie wave illumination, as we 
have done in Fig. lb. 

Consider the simple symmetric (R l = R 2) example shown in Fig. lb. If the 
wavelength, grating spacing, and Gd period, a d, are chosen so that the m = 1, 
n = 1 resonance obtains, then the fringe period formed on Gm by a point source 
on the Gs plane will be M a d / m  = 2a  d. If the Gs and Gm periods are chosen to be 
a s = a m = 2 a  d, then the Lau effect will occur and the resulting self-image 
"fringes" formed on the Gm plane may be detected by moir6 techniques, as be- 
fore, by monitoring the transmission of Gm and its variation under a lateral 
translation of any one of the three gratings. 

It should be noted that a wide variety of choices is possible for grating peri- 
odicities, resonance indexes, and associated grating spacings. To obtain highest 
throughput, gratings with periods a s = M a d / ( m M -  m )  and a m = M a d / m  are ap- 
propriate. Clauser and Reinsch (1992) experimentally demonstrate operation of 
a lens-free asymmetric GTL interferometer for light operating at the m = 3, 
n = 1 resonance that employs illumination by a spatially incoherent sodium dis- 
charge lamp. Another useful variant is with R~ = R 2, m = 2, and a s = a d = a m .  

This latter case, however, will not allow one experimentally to distinguish m = 1 
and m = 2 resonances from each other. 

A gravity gradiometer (Clauser, 1988, 1989, 1991), (Marzlin and Audrecht, 
1995) may be built using a GTL interferometer composed of four gratings, 
shown in Figs. 7a and 7c. Here, Gs and Gd separated by R 1 (T 1) create a periodic 
"real" image at an image plane a distance R 2 (T 2) behind Gd. Rather than placing 
a masking Gm grating at this plane, this image acts as a periodic source for a 
second Gd' diffraction grating placed R' 1 = R 2 behind Gd. A final masking Gm 
grating placed R 2 = R 1 behind Gd' then detects the fringes. 

Finally, it should be noted that, since self-images are amplitude images, one 
may use a phase grating for Gd. Indeed, Janike and Wilkens (1994) use a stand- 
ing wave laser beam to act as an atom de Broglie wave phase grating in an 
arrangement useful for high-resolution lithography. One may also consider the 
possibility of observing a "temporal" Talbot effect, where laser phase gratings 
are sequentially pulsed so that the atomic velocities multiplied by the time inter- 
vals yield appropriate values for R 1 and R 2 (see Section XI). Analyzed in this re- 
gard, however, it will be seen that the experiment by Mossberg et  al.  ( 1 9 7 9 )  op- 
erates in the n = 0 geometric shadow regime.* 

*See endnote, p. 150. 
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FIG. 7. (a) Gravity gradiometer configuration using GTL interferometry and four gratings. (b) 
Vertical GTL interferometer in a gravitational field. (c) Gravity gradiometer configuration of (a) with 
R 1 and R 2 having equal fall times, also showing typical (patented) figure 8 interfering paths within 
the beam's envelope. 

Xl. Fresnel Diffraction and the Talbot Effect 
with a Spatially Varying Potential 

So far, we have discussed Fresnel diffraction and the Talbot effect for de Broglie 
wave propagation under a constant potential, V(r)= V. In such case we have 
k----Ik(r) i = 2 m [ E -  V]l/2/h,-  2rr/Ada and the path integral (see the appendix) 
is just simply kit - r '  I. However, we noted in Section IX that a detectable fringe 
shift will result if, at any place between the gratings of a Talbot interferometer, a 
change in the intervening index of refraction occurs. For de Broglie waves the 
index of refraction is given by n ( r ) =  [1 - V(r)/E] 1/2 and will be spatially vary- 
ing in the presence of nonvanishing Coriolis, gravitational, electric, and/or mag- 
netic fields. The appendix presents a derivation of the Kirchoff diffraction inte- 
gral for de Broglie wave diffraction in the presence of a slowly spatially varying 
(with respect to AOB) potential V(r). Here, we apply the results of this appendix 
to demonstrate how the Talbot effect still occurs and how the associated fringe 
shifts may be evaluated for a few simple cases. 

When V(r)<< E is not constant, a simple approximation may be used to 
evaluate the path integrals (Anadan, 1984), (Greenberger and Overhauser, 
1979). The approximation is to neglect the path curvature, which is now 
small, and perform the path integration along a straight-line path, which is not 
far from the desired classical path Fcl. Moreover, if the variation of V(r) is 
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uniform through the propagation volume, as is the case when V(r) is due to 
gravity, it will contribute a common error to all paths that will cancel. The use 
of exactly horizontal or vertical gratings significantly improves the accuracy 
of this approximation. For the case of fast particles in a gravitational field, 
when the trajectory is roughly horizontal, this approximation yields a simple 
classical fall of the envelope and the fringes at the image plane for both SBE 
and GTL interferometers. 4 

With very slow atoms (and long AdB), unless one somehow eliminates the pull 
of the earth's gravity, then the potential energy, V(r) = mgzr z, is not small with 
respect to E and the associated classical path curvature may not be neglected, 
even in an interferometer with exactly horizontal gratings. Consider a particle 
falling from a point r~ = (x = 0, z = 0) to a point r 2 - - (x = X2, Z-----L). The 
path integral, via Eq. (A6), is then given by 

2mgl/2[ 1 ] 
(I)(r~'r2) = 3-----~ 2e+ L + ~ (4Le+ 4 e 2 - ~ )  '/2 

• {[L + 2e+ (L 2 +~)1/2 _ [L + 2 e -  (L 2 +~),/2]l/z} (7) 

where t e = E/(mg). 
We now apply Eq. (7) to a vertical axis interferometer with horizontal grat- 

ings operating in the earth's gravity field, as shown in Fig. 7b. We calculate the 
phase difference between two representative paths, a straight down reference 
path and one passing through a Gd slit a distance x a off the axis. To apply the 
Fresnel approximation, we express Eq. (7) as a power series in x a, keeping terms 

2 <<4~R. only to the second order. Terms of higher order are negligible for x d l 
The phase difference is then given by 

Oa 1) 
+ . ( 8 )  

2rr 2h T 1 T 2 

Here, T1 and T 2 are the fall times for a classical particle through the associated 
distances R~ and R 2. A comparison of the form of Eq. (8) with that for the V - 0 
case (Clauser and Reinsch 1992, Eq. (4)), Ad)/(27r) = xa 2 / (2Ap), provides the de- 
finition 

h T1T 2 
0 k d B P ) e f f  ~ (9) m T l  + T 2 

which, in turn, may be used in place of Eq. (2) to allow a direct application of 
the Clauser and Reinsch (1992) formulas for GTL interferometry in terms of the 
classical fall times in place of axial vertical fall distances. Equation (7) may be 
used in similar fashion to evaluate higher order phase shifts, aberrations, the ef- 

4Note, however, that in a (two-loop) gravity gradiometer the envelope falls but the fringes do not. 
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fects of grating period foreshortening associated with a path's oblique incidence 
on a grating, and so forth, for an arbitrarily inclined interferometer in the earth's 
gravity field. 

XII. GTL Atom lnterferometry Experiments with K and Li z 

The first working GTL atom interferometer was demonstrated by us at the Uni- 
versity of California--Berkeley (UCB) (Clauser and Li, 1994a). The experi- 
mental arrangement is shown in Fig. 8. The atomic beam source actually gener- 
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FIG. 8. Generalized Talbot-Lau atom interferometer used by Clauser and Li (1994a). Grating ro- 
tational alignment uses a HeNe laser that forms a SBE optical interferometer using all three atom 
gratings and a fourth additional identical grating, displaced to one side of Gd. (Figure adapted from 
Clauser and Li, 1994a.) 
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ates two copropagating atomic beams" a dc hot thermal beam and an ac-modu- 
lated cold slow potassium beam. Thermal potassium atoms effuse from an oven, 
pass through a wide collimating slit (needed for velocity selection only), and 
then through an atom de Broglie wave GTL interferometer to a hot wire (surface 
ionization) detector. The oven slit is offset from the interferometer axis so that 
only one wing of the collimated thermal beam (produced by scattering near the 
oven slit) passes through the interferometer to the detector. Cold slow atoms are 
velocity selected by using laser light to deflect them out of the offset parent ther- 
mal beam onto the interferometer axis (Li and Clauser, 1994). The laser beam 
crosses the atomic beam immediately below the collimating slit at 20" from co- 
moving parallel. The parallel component of the laser's propagation vector pro- 
vides Doppler velocity selection of atoms from the low-velocity portion of the 
parent beam's thermal distribution, while the perpendicular component provides 
momentum transfer for deflection. The small deflection angle (~.5 mrad.) re- 
quires scattering of only about seven photons, so that perpendicular heating of 
the slow atoms is minimal and a source brightness of about 4 X 1015 atoms cm -2 
sr -~ sec -~ is achieved for 182 m/sec atoms. 

The ac modulation of the deflecting laser allows the transmission of the two 
different beam components to be measured independently. The average dc hot 
wire signal represents that due to the thermal velocity component of the atomic 
current. The weak ac component of the current is synchronously detected by an 
"up/down boxcar integrator." The maximum transmitted ac current is roughly 
4 X 105 atoms per sec at 182 m/sec. The dc current is about 130 times stronger, 
and the signal to noise ratio of the AC signal is limited by the shot noise of the 
much larger copropagating dc current. 

The interferometer consists of a sequence of three microfabricated rectangular 
vacuum-slit transmission gratings. The gratings are microfabricated from 1 /xm- 
thick silicon nitride membranes supported by silicon frames, with parallel slits 
etched through the membranes. Grating fabrication was done by us at UCB's 
Microfabrication Lab via conventional optical lithography and etching techniques. 
The interferometer's parameters are R~ = R 2 - - -  46.2 cm, a s = a m - 16.2/xm, a d = 

8.1 /zm, N s = 22, N d -- 111, and N m = 76 slits. All gratings are 8.5 mm long with 
6/a ~ 1/8. Fringes are sensed by measuring the interferometer's transmission as a 
function of Gd position. The fringe pattern and transmitted current contain various 
spatial harmonics of the geometric shadow period, with each harmonic resonant in 
the interferometer at a different atomic velocity (different AOB). The hot beam pro- 
duces a pattern that appears as diffracti0n-limited shadow moir6 fringes, shown in 
Fig. 9a. Its high spatial frequency Talbot fringe structure is washed out by the ther- 
mal velocity average. (In Section XIV, we show how components of this structure 
may be recovered and observed.) The ac-modulated slow beam produces high- 
visibility interference fringes at the 5th and 6th spatial harmonics of the shadow 
moirr, via excitation of the ( m , n )  = (5,1), and (6,1) interferometer resonances, evi- 
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dent in the ac signal, shown in Fig. 9b, and in agreement with numerical simula- 
tions. 

In these experiments, we also observed that a strong Sagnac phase shift of the 
pA dc (fast atom) fringe signal was immediately (tin t < 1 mS) evident whenever 
the chamber was touched, even lightly. Using the straight-line path integral ap- 
proximation of Section XI, we find that this translates to a sensitivity to rotations 
of 122~ ~ 7 • 10 -3 rad/sec, as the rotation rate needed to provide a 27r phase 
shift. For the ac (slow atom) sixth harmonic fringes, rotations at f~2~ ~ 4 x l 0  -4 
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rad/sec (at a count rate of almost 106 atoms/sec) caused similar fringe shifts. For 
comparison purposes, the atom interferometry experiment by Riehle et  al.  
(1991) yielded 122~ ~ 0.4, the neutron interferometer Sagnac effect measurement  
by Werner et  al.  (1979) yielded 122~ ~ 3 x 10 -5 and the electron interferometer 
Sagnac effect measurement by Hasselbach and Nicklaus (1993) yielded 
~2,~ ~ 46. Subsequently, we have used the same apparatus (after some modifica- 
tion) to observe fringes from thermal Li 2 molecules. Inserting electric field gra- 
dient electrodes, we have used our apparatus to determine the electric polariz- 
ability of Li 2. 

XIII. Talbot Interferometer Using Na 

An example of a de Broglie wave Talbot interferometer (Section IX) was 
demonstrated using sodium by Chapman et  al.  (1995b). A diagram of their appa- 
ratus is shown in Fig. 10a. There is no Gs, since this is not a GTL configuration. 
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FIG. l0 (a) Talbot interferometer apparatus used by Chapman et al. (1995b) (b) Observed fringe 
"visibility" as a function of R 2, showing the n = l, m -  1 and n -  2, m = 1 resonances. (Figures 
adapted from Chapman et al., 1995b.) 
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Instead, they produce a quasi-parallel atomic beam by configuring R~ > >  R 2. The 
resulting low throughput is compensated for, using brute force, by employing a 
very bright fast-atom source. Their experiment was performed as a near parallel 
to Talbot's experiment. By varying the spacing R 2 between the gratings, they ob- 
served both the n = 1, m = 1 and n = 2, m - 1 resonances. Figure 10b shows the 
observed fringe "visibility" as a function of R 2. The visibility of higher n self- 
images is reduced by a combination of finite collimator size, lack of exact beam 
parallelism (equivalently, M # 1), and finite atomic velocity spread. 

XIV. "Heisenberg Microscope" Decoherence 
G T L  Atom Interferometry 

Walls et al. (1991; see also Tan and Walls, 1993) and, independently, Sleator et 
al. (1992) have analyzed a problem, analogous to that of the "Heisenberg micro- 
scope" gedanken experiment for freely propagating atoms with well-defined mo- 
menta that form de Broglie wave fringes in a Young's two-slit interferometer. 
They consider a situation where both slits are simultaneously illuminated by a 
single photon that is resonant with an atomic transition and calculate the result- 
ing atomic fringe visibility as a function of slit separation. They predict that, 
when the slits are separated sufficiently that a Heisenberg microscope viewing 
the fluorescent reemission of the photon could image this light to determine 
which slit an atom passes, the atomic fringe visibility will vanish. But, when the 
slit spacing is comparable to the optical wavelength, such a determination by the 
microscope exceeds its resolving power, and then the atomic interference pattern 
will persist. 

While performing the GTL atom interferometry experiment of Section XIII, 
we recognized that our interferometer could be modified simply to allow testing 
this prediction in the limit of large slit spacing. While a similar effect had been 
earlier observed by Sterr et al. (1992) with high-intensity scattered light, we 
were the first to demonstrate (Clauser et a l . ,  1993a-c; Clauser and Li, 1994b) 
that the scattering of a single low energy photon by an atom passing through an 
N-slit interferometer with wide slit spacing, a d >>/~photon' will totally destroy the 
de Broglie wave interference fringes formed. 

To do this, we reconfigured our experiment to that of Fig. 11. For this experi- 
ment, we passed only a thermal velocity distribution of potassium atoms through 
the GTL atom interferometer. It produced a thermal velocity average of different 
fringe Fourier components, with each component resonant in the interferometer 
at a different atomic velocity. As noted previously, the velocity distribution aver- 
ages and hides the high-frequency fringe components. To recover a specific com- 
ponent, we pass very weak ac-modulated laser light diagonally through the inter- 
ferometer near the middle grating to scatter off of the transiting atoms. Since 



GENERALIZED TALBOT-LAU INTERFEROMETRY 145 

FIG. 11. "Heisenberg microscope" decoherence GTL atom interferometry apparatus used by 
Clauser and Li (1994b). (Figure adapted from Clauser and Li, 1994b.) 

imaging of the scattered fluorescent light could be used to determine which slit 
an atom passes, the scattering removes the contribution to the averaged pattern 
by atoms whose velocity corresponds to the laser's Doppler-shifted wavelength. 
That velocity component (only) thus is ac modulated and detected. Its ac modu- 
lation then reveals the destroyed high spatial-frequency fringe contribution. 
Thus, to observe the destroyed fringe pattern, we record the ac transmitted atom 
current as a function of Gd position, while holding the laser tuning fixed. The re- 
suits are shown in Fig. 12. 

When the laser is on, photons are scattered by the atoms. Given our GTL 
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FIG. 12. (a) The dc signal (thermal beam transmission) recorded for the arrangement of Fig. 11 
as a function of Gd lateral position. (b) The associated ac signal for constant laser tuning displaying 
the interference fringe pattern destroyed by the scattering of a single photon. (Figure adapted from 
Clauser and Li, 1994b.) 

geometry and sufficient momentum transfer from the photon, atoms may be 
scattered into open slits and thence transmitted. We model this process assuming 
a classical atomic trajectory and use the pointwise momentum-transfer photon 
scattering model developed by Einstein in his discussion of the kinematics re- 
quired for thermal equilibrium to be produced when a gas is irradiated by ther- 
mal light. The potassium hyperfine structure effectively limits the number of 
photons scattered by an atom to about one via the high probability that following 
a scattering the atom will optically be pumped and thereafter be transparent to 
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the laser radiation. To further assure less than one photon's scattering per atom 
in an atom's flight time through the laser beam, and to provide a narrow effective 
laser bandwidth, the laser is attenuated heavily. 

To test this model, we measure the velocity (laser-tuning) dependence of the 
ac signal while holding the grating positions fixed. While the hyperfine structure 
is not resolved in the fluorescence spectrum, by contrast, the ac transmission 
spectrum displays two well-resolved peaks whose spacing corresponds to the 
hyperfine structure. In effect, we thus have used the chromatic selectivity of a 
GTL interferometer to create here what amounts to an atom interference filter. 
The filter's velocity selectivity has allowed us to narrow the effective transmitted 
velocity range, to provide an improvement in the optical fluorescence spectral 
resolution. 

Subsequently, Pfau et al. (1994) have further improved on our experiment by 
measuring the coherence loss as a function of slit spacing. Pfau's group is now 
pursuing a third generation experiment in which the scattered photon is detected 
in coincidence with the scattered atom. 

XV. Conclusions and Future Applications 

The fringe deflection at the final masking grating produced by a weak external 
field, such as that resulting from gravitational and Coriolis forces, is the classical 
deflection in either a SBE or GTL interferometer. Hence, for comparable mask- 
ing of grating slit widths and comparable atomic velocities, the fringe shifts due 
to these forces (or any other weak deflecting force) are identical. However, for 
comparable source brightness, the transmitted atomic current in a GTL interfer- 
ometer is many orders of magnitude higher than that of a SBE interferometer. In 
addition, the brightness afforded by most sources for very slow atoms generally 
is too weak to be used in SBE interferometers. Hence, GTL interferometry of- 
fers much higher sensitivity than SBE interferometry for the measurement of 
weak deflecting forces, in view of its potential for dramatically superior signal to 
noise ratio. 

The study of GTL interferometry also is a source of new physics. Figure 2 
shows that GTL interferometry may be applied to species with very large mass 
and thereby can probe the fundamental limits for a possible breakdown of de 
Broglie wave interference as the classical domain is approached. As the study of 
the quantum mechanics of large atoms and molecules advanced beyond consid- 
erations of the hydrogen atom, it yielded new surprises and new quantum num- 
bers. In a direct parallel, extending one's consideration of Young's two-slit con- 
figuration to that of the N-slit configuration has revealed new surprises in 
diffraction theory, including new quantum numbers (m and n), a rich new spec- 
troscopy (see Fig. 6), a surprising relationship between number theory and dif- 
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fraction theory, and possible new insights for quantum computing (Clauser and 
Dowling, 1996). 

Presently in progress in our laboratory is an experiment to observe de Broglie 
wave interference with freely falling very cold Rb atoms. Using now standard tech- 
niques to provide a bright source, the atoms are dropped from a MOT (see Shimizu 
et al., 1992) and focused with a magnetic lens (see Comell et al., 1991) through a 
GTL interferometer. This configuration is particularly interesting for study, since 
the atoms experience a form of gravitational pseudo-cooling during their fall (some- 
times referred to as dynamic velocity compression), so that the velocity distribution 
incident on Gd (as viewed in the lab frame) is much narrower than that of the MOT. 

Appendix: Kirchoff Diffraction with Spatially Varying V(r) 

Unlike a light-pulse interferometer, a grating interferometer is an inherently sta- 
tic device. Thus the wave function, O(r), of a particle with energy E propagating 
through such a device in the presence of a static potential V(r) must satisfy the 
time-independent Schrrdinger equation, which may be written in the form of the 
Helmholtz equation as 

[72  + k2(r)]~(r) = 0 (A1) 

with kz(r)= 2 m [ E -  V(r)]/h 2. Since the Helmholtz equation is the time-inde- 
pendent parent equation for propagation of many other types of waves, our dis- 
cussion applies to these cases as well. In turn, the Green's function, G(r; r ' )  for 
this problem satisfies the equation 

[VZr -'F kZ(r)]G(r; r ' )  = ~(r - r ').  (A2) 

The diffraction problem to be solved involves the boundary conditions of Fig. 
3. Consider a trial Green's function: 

ei4~r;r ') 
G(r,r ' )  = - -  (A3) 

Ir-r'l " 
Substituting Eq. (A3) into Eq. (A2), we find that the phase function, th(r; r ') ,  
satisfies the equation 

I [ ]} [ ] 2 (r r,i ~ �9 V 4'@; r 3 = 0. (A4) k2(r) - Vrq~(r; r ' )  + i V 2 - I r -  r r 

For a slow spatial variation of V(r) (with respect to AdB) such that the WKB ap- 
proximation holds, that is, such that Iv,el: >> Iv:~+l holds, and outside of the 
"very near-field" region such that Iv4,[ >> 1/Ir - r ' l  holds, then Eq. (A4) becomes 

[Vrq~(r; r')12 ~ kZ(r) = 2m[E - V(r)]]h 2. (A5) 
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Without a loss of generality, we take th(r; r ) =  0. Then, given the identity 
r rl ) _- fr2 Vth(r; r l ) ' d r  for any integration path, we see that 14,(r2; rz) ] must 
be no greater than the extremum among possible integration paths, F, of the 
p a t h - d e p e n d e n t  line integral f r2  r IV4~r; r~)l d/(r). This extremum occurs for 
the path that is always locally tangent to Vr4)(r; rl); that is, for the path for 
which [V~r ;  r l ) -dr  [ = [V~b(r; rl) [ dl(r) holds throughout. However, a classical 
particle with energy E traveling from r~ to r 2 under the influence of V(r) will 
have its momentum Pcl( r ) - -mvd(r)  always tangent to its trajectory, Fcl, with 
[Pcl(r)[ 2 =  2m [ E -  V(r)]. The path Fcl may be found by solving Hamilton's 
equations for the classical motion. By Eq. (A5), we then have [Pcl(r)[ 2 =  h 2 
[Vrth(r; r')[ 2, and from M a u p e r t u i s ' s  p r i n c i p l e  o f  l eas t  ac t ion ,  we know that the 
path Fc~ is the desired extremum integration path. Therefore, the solution to Eq. 
(A5) is given by the path integral 

"r2 ~ r2 
h~b(r2; rl) = _+ Pcl(r)- dr = _ V~2m[E - V(r)] dl(r). (A6) 

Jrl;F I arl;F ~ 
Given our trial Green's function of Eqs. (A3) and (A6), we may write the am- 

plitude transmitted by the grating of Fig. 3 with amplitude transmission t(rd) at 
any point r d on the z = z d plane, in response to a point source at r s, as 

eiCb~:(r ~ ;r,) 
+(r  d) = ]r d _ rs I t (rd)~(rs) .  (A7) 

For the solution to the right of the grating for the problem of Fig. 3, we con- 
struct a Green's function satisfying the Rayle igh-Sommerfe ld  boundary condi- 
tions, using instead [6(r - r ' )  + 6(r - r" ) ] /2  for the right-hand side of Eq. (A2), 
where we have defined r " -  r '  - 2 (z - Zd)6~ ., and take the limit as r '  ~ r". It is 
given by 

ei4~r;r') ei~r;r ") 
G(i',r ') = + (A8) 

] r -  r ' l - [ r  - r"l" 

Via Green's theorem, the amplitude at any point r m o n  the z = z m image plane is 
given by the integral over the z = z d surface S as 

fS ei[~rs;ra) + qb(rd;rm)] 
O(rm) ~ iO(rs) X ir s _ rd I ]r d _ rm [ ez "Pcl(rd)t(rd)  da(rd) (A9) 

where da(r d) is a differential area on S. 
We note a formal resemblance between the Green's function G(rl; r:) and the 

Feynmann propagator K(rl,tl; rz,t:). The latter is used by Storey and Cohen-Tan- 
noudji (1994) in their application of Feynmann path-integral methods to atom 
interferometers. While their method is more appropriate for time-dependent 
problems (such as light-pulse interferometers), ours is more suitable for time-in- 
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dependen t  p roblems .  Both  me thods  evaluate  the final ampl i tude  by an integra-  
tion over  all poss ib le  classical  path contr ibut ions  to the final ampl i tude .  Both  
methods  evaluate  the phase  shift a long a "c lass ica l"  path f rom r 1 to r 2 and inte- 
grate over  a variat ion of  an endpoin t  for this c lassical  mot ion ,  thereby speci fy ing 
a family of  integrat ion paths. However,  the classical physics  assumed  f o r  the mo- 
tions along these paths  is quite different, as are the paths  within each family.  In 
our  family (that for the Kirchoff  diffraction integral),  the classical  paths Fc~ are 
all for a part icle  with a constant  energy  E but with a varying p ropaga t ion  time; 
while  in a F e y n m a n n  path integral  family, they are all for a part icle with a fixed 
propaga t ion  t ime t 2 - t 1 but with a varying total energy  E. 
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Endnote 

After completion of this manuscript, an example of the "temporal" Talbot effect predicted herein was 
experimentally demonstrated by Weitz et al. (1996). Effectively, in their experiment 5-slit multipath 
de Broglie wave interference is created in momentum space via a sum of quadratic phase factors, 
wherein the interfering paths form nested diamonds. The "slits" are magnetic sublevels of a cesium 
atom excited by a sequence of three "walking-wave" light pulses, equally spaced in time. Nonsinu- 
soidal interference fringes are observed in the fluorescence as a function of optical phase-shift. 
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I. Introduction 

Metastable rare gas atoms offer attractive features for the study of interferomet- 
ric phenomena of atomic waves. Metastable rare gas atoms, whose excited state 
energies exceed several electronvolts, can be detected with high quantum effi- 
ciency by conventional particle detectors. They can be cooled to an ultracold 
temperature by laser fields (Shimizu et al., 1989). The long de Broglie wave- 
length of cooled atoms is an advantage when designing interferometric measure- 
ments. In addition, the lowest excited state of rare gases has two metastable lev- 
els, one of which is the zero angular momentum level, J = 0. The J = 0 atoms 
have no magnetic level degeneracy and are nearly free from electromagnetic in- 
teractions. This also simplifies the behavior of atoms. 

We describe, in this chapter, three experiments with a laser-cooled metastable 
neon atomic beam in a J = 0 state. We first describe the configuration of our atomic 
source. Then, we show the result of the Young's double-slit interferometer, which is 
the simplest example of atomic interferometry (Shimizu et al., 1992a). In the fourth 
section, we discuss a more sophisticated atom interferometric application, the ma- 
nipulation of an atomic beam by a computer-generated hologram (Fujita et al., 
1996). We also describe, in the last section, an interferometric effect concerning 
more than one atom, which has not previously been demonstrated experimentally. 

II. Atomic Beam Source 

Photons do not interact with each other. The maximum intensity of an optical 
beam, therefore, is limited only by the damage threshold of optical components. 
In an atomic beam, the interaction among atoms cannot be neglected and deter- 
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mines the maximum intensity. As a result, the flux of an atomic beam is many 
orders of magnitude less than that of an optical beam. When designing the inter- 
ferometric apparatus, it is important to design the beam source to maximize the 
spatially coherent atomic flux. 

We consider releasing atoms from a reservoir through a hole having diameter 
D. On average, atoms in the reservoir collide with each other in a time 
rco I = 1/(an), where c~ is the binary collisional rate constant and n is the atomic 
density. The released atoms must move without collision over a minimum dis- 
tance, D, if they are to form an atomic beam. Therefore, rco 1 ----- D / v  s, where vs is 
the average atomic velocity in the source. This gives the maximum atomic flux 
F: 

nv "a" D 2  _ "rrvZD 
F = ----~ - - . (1) 

4 4 16a 

To obtain interference the atomic wave has to be spatially coherent, and only the 
atoms emitted within the diffraction angle 

AdB __ h 
0 d i f =  D - m v s D  

can be used. Therefore, the usual flux Fco h is 

7rh 2 
Fc~ = F02if  -- 16am2D" (2) 

At low temperatures, the collisional rate constant a is nearly constant and the 
coherent atomic flux Fdi f does not depend on the atomic velocity. Ground state 
atoms can collide any number of times in the reservoir. However, a single colli- 
sion changes the internal state of the metastable atoms. This sets the limit to the 
product of the diameter and the atomic density of the trap. To obtain a large den- 
sity, the size of the reservoir must be as small as possible, and the maximum flux 
F is obtained when the reservoir diameter is approximately equal to D. The 
J = 0 metastable rare gas beam described below automatically satisfies this con- 
dition. The atoms are collected from 47r directions, are cooled, and immediately 
released after they have been collected in the trap. 

In many interferometric applications, only one-dimensional coherence is re- 
quired. In such a case the flux is given by 

"B'h V s 
F1D = F0coh = 16cem 

and the thermal source produces much higher flux than the laser-cooled source. 
Figure 1 shows the energy diagram of neon relevant to the atomic source. 

Other rare gas atoms have similar level structure. The lowest excited state multi- 
plex Is has four fine structure levels, of which two are metastable. They have a 
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t r,, 2ps (J= 1 ) 150774cm1 

2p ,, 2Pg(J=3)149659cm ~ 
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G ~ ~ 0cml 
Ground state 

FIo. 1. The energy diagram of neon relevant to the generation of the ultracold metatable atomic 
beam. Spacings between the ground, l s, and 2p staes are not to scale. 

lifetime of order 10 2 s e c  and can be considered to be stable for the present appli- 
cations. The metastable states have an energy of approximately 17 eV, and the 
atoms are easily detected with high quantum efficiency by using a conventional 
charged-particle detector such as an electron multiplier, channeltron or mi- 
crochannel plate detector (MCP). One of the metastable levels has angular mo- 
mentum J = 2 and is used to cool and trap the atoms. The cooling is on the tran- 
sition between the J = 2 level and a J = 3 level in the upper excited state 
multiplet 2p. The other metastable level has zero angular momentum, and there 
is no efficient method for cooling the beam using this transition. We use optical 
pumping from the cooled J = 2 metastable state to generate the J = 0 level. Four 
J = 1 levels in the 2p state are optically connected to the J = 2 metastable level. 
The atoms in the J = 1 level can decay to any one of the four levels in ls by 
emitting a spontaneous photon. If an atom decays to one of the two J = 1 levels, 
it cascades to the ground state by emitting a 74 nm VUV photon. For an appro- 
priate excitation scheme, approximately a half of the J = 2 metastable atoms are 
transferred to the J = 0 metastable level using optical pumping. All cooling and 
optical pumping transitions for Ne, Ar, and Kr are either in the red or near- 
infrared region. Therefore, those processes can be driven with diode or argon-ion 
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laser pumped dye lasers. The transfer process involves only a single spontaneous 
emission process, and the heating is on the order of 1/xK. 

Both the J = 2 and J = 0 atoms are good candidates for an ultracold atomic 
beam. They are generated from the ground state gas either by electron bombard- 
ment or simply by discharge. In optimized conditions, a beam flux of order 1015 
sec-]1~-~ is possible. The first stage of the cooling is to send a counter propagat- 
ing laser beam resonant with the ls(J = 2) to 2p(J = 3) transition. The velocity 
spread can be reduced by adding a copropagating laser beam that has a slightly 
lower frequency and produces a moving standing wave with velocity designed 
for the atomic beam (Faulstich et al., 1992). In principle, this cooling scheme 
compresses the velocity spread to the limiting velocity of doppler cooling. The 
energy spread mvAv, however, is higher than the doppler-limited temperature. To 
obtain further cooling, one has to trap the atoms and release them. When freed 
from the optical and electromagnetic force, the atoms are accelerated by gravity. 
Since the energy spread remains constant, the velocity spread is reduced as the 
atoms are accelerated. For the J = 2 metastable atoms, the generated beam is in- 
evitably intermittent, because the trapping and releasing of atoms has to be alter- 
nated. The J = 0 metastable atomic beam can be made continuous, because the 
atoms are not affected by the trapping light and the quadrupole magnetic field of 
the trap. 

Figure 2 shows the configuration of the Ne atomic source we used in our ex- 
periments. The metastable atoms were generated using a weak discharge through 
a glass capillary having a diameter of approximately 0.5 mm. The cathode was 
inside the glass tube, and a grounded metal disk outside the capillary served as 
the anode. The current through the capillary was typically 20 mA. The source 
part was surrounded by a liquid nitrogen shroud to reduce the average velocity 
of the beam. A typical temperature of the beam was 300 K. The beam passed 

Ne 
discharge 
tube 

. , , 5 9 8  nm 640nm laser \\ "~Transfer laser 

Collimator Zeeman tuning solenoid \ \ I/ 
d e f l e c t o r  ,~iiii~ ............... ~~._ ~ IJ 
(2 dimensional) iNi:,:,:,::::::::::i::::qi!::iiiiiiiiiiiiiii~i::i::ii::i~,~.. II 

is > . . . .  <- . . . . . . . . .  - 
M-LM..I 5. ............................................................................... 1 s 5 Trap~ 640 nm 
~--"~ I iiiiiiiiiiiiiiiii~iii!!iiiiiiiiiiii~ii":!!iiiiiiiiiiiiiii!!!!!!iii~ ~'~" = ............. Cooling and 

trappinglaser 

Trapping laser / 

I lS 3 neon beam 
(3 beams) / / 

FIG. 2. A schematic diagram of the J = 0 metastable atomic source. 
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through a two-dimensional beam collimator, which consisted of two sets of a 
concave and convex mirrors whose centers of curvature were placed at the same 
point. A resonant laser beam was sent perpendicular to the atomic beam, and it 
zigzagged between two mirrors as shown in the figure. This bent and simultane- 
ously collimated the atomic beam to a direction parallel to the wavefront of the 
laser at the exit of the mirror set. This increased the J = 2 metastable atomic in- 
tensity by a factor of 30 and reduced the number of ground state atoms entering 
the trapping region. The atomic beam was led into a region where there was an 
axial magnetic field gradient and slowed by a counterpropagating laser, using 
standard Doppler tuning techniques. At the end of this slowing stage, the direc- 
tion of the magnetic field was reversed, forming an axially symmetric quadru- 
pole field. Atoms were trapped at the center of the quadrupole field by four laser 
beams directed toward the center. The size of the atomic cloud and its tempera- 
ture were adjusted by changing the magnetic field gradient, laser intensity, and 
detuning from resonance. The minimum velocity we obtained for the neon trap 
corresponded to a temperature of approximately 80/xK. 

The J = 0 metastable atoms were generated by sending the focused laser 
beam into the trap. The laser field pumped the l s (J  = 2) atoms to the 2p(J  = 1) 
level, which then decayed to the l s (J  = 0) level (Shimizu et al., 1992a). The 
J = 0 atoms were freed from the trapping forces and dropped vertically under 
the action of  gravity. The interferometric components were placed nearly vertical 
from the beam source. 

The cold atomic beam generated by this procedure has many excellent fea- 
tures. First, it is a continuous atomic beam with the characteristics of a scalar field 
that is influenced very slightly by optical and electromagnetic perturbations. Sec- 
ond, its temperature is extremely low. The beam was constantly accelerated by 
gravity, and the velocity spread rapidly decreases as the atoms dropped. At a ver- 
tical distance of 1 m, the typical velocity spread Av/v ~ V2s/(2v 2) is of order 10 -3. 
Third, the size of the source can be adjusted by varying the size of the focused 
pumping laser and the trap size. 

The collision rate a of neon atoms in the trap is of order 10 -9 c m  -3 sec  - l .  
This gives a maximum density of n ~ 10 ~2 cm -3 for the trap diameter D = 0.2 
mm and v s = 20 cm/sec. The coherent flux achievable from this trap is 
Fco h ~ 103 sec -l at the trap density n ~ 1012 cm -3. To keep this density, we need 
an incoming atomic flux of N = ('rr/6)D3n/'rcol--7rv2D/(6ce) ~ 4 • 109 sec -1. 
The present source and slowing stage can supply a flux that is at least 102 times 
this amount. Therefore, it will be possible to further increase the coherent flux 
Fco h by inducing the stimulated process when converting the atomic state from 
ls 5 to ls 3 by optical pumping. The optical pumping process can dissipate mo- 
mentum up to h/A, where A is the wavelength of the scattered photon. If one can 
squeeze the l s  3 a t o m s  into a single mode of the trap, the coherent flux should in- 
crease by a factor of (D/A) 2. 
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I I I .  Y o u n g ' s  D o u b l e - S l i t  E x p e r i m e n t  

The Young's double-slit interferometer is the simplest atom interferometer and 
was first demonstrated by Carnal and Mlynek (1991) using a thermal beam. 
Since the de Broglie wavelength of a thermal atom is on the order of its classical 
size, the spacing of the interference pattern is usually extremely small. When the 
double-slit interferometer is operated with laser-cooled atoms, the interference 
pattern becomes sufficiently large to be resolved by a commercially available 
position-sensitive detector. As is shown in Fig. 3, we can produce an image of 
the interference pattern similar to the analogous optical, double-slit interference 
patterns commonly displayed in optics texts. Because of the small kinetic en- 
ergy, the cold-atom interferometer is very sensitive to perturbing potentials. The 
acceleration of atoms by gravity in the interferometer may change the atomic ve- 
locity by an order of magnitude, and the atomic trajectory is not straight but par- 
abolic. 

We consider a double-slit interferometer that is aligned parallel to the direc- 
tion of gravity. The phase difference of  the atomic wave between two points, r] 
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a n d  r 2, is obtained in semiclassical approximation by integrating the wave vector 
along the classical atomic path 

where Vg is the group velocity of the atom. For an atom that falls vertically by a 
distance l, the phase 4~ as a function of the deviation ~ from the vertical line is, if 
~: << l (see Fig. 4), 

~2mVO+ v 
+ = constant + - -  + (Ox 4) 

21 h 2 

where v 0 and v are the initial and final velocity, respectively. The phase difference 
Ark between atomic waves from two slits that are separated by d therefore, is, 

x d m v o  + V A + - - - - -  
l h 2 

Double 
slit 

>x 
Screen 
(detector) 

FIG. 4. The trajectory of falling atoms in the double-slit interferometer. 
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and the interference fringe separation Ax is 

l h  2 
a x  = (3) 

d m v o + V "  

This form is exactly the same as that of an optical interferometer, where the opti- 
cal wavelength is replaced by the average de Broglie wavelength. 

In the experiment shown in this section, the atomic source, double slit, and 
the detector were placed along a vertical line. The distance between the source 
and the detector, 10 + 1, was 82 cm. Two parallel slits were cut in gold foil. Each 
slit had a width of 2/xm, a length of 2 mm, and the slits were separated by d = 6 
/xm. An atom that passed through the double slit was detected by a two-stage 
microchannel plate detector (MCP) equipped with a fluorescent plate. The im- 
ages of individual atoms were recorded on videotape. Their positions were read 
by an image processor from the tape, and the interferometric pattern was recon- 
structed from the position data. Figure 3 shows the pattern when the double slit 
was placed 35 mm below the source, and the initial atomic velocity was nearly 
0. The figure contains approximately 8 x 103 points, and the effective accumula- 
tion time was approximately 10 min. 

An atom takes approximately a fraction of a second to reach the MCP from 
the source. Therefore, the variation of the interference pattern with atomic de 
Broglie wavelength can be investigated by pulsing the optical pumping laser 
synchronously with the video frame. Figure 5 shows the variation of the interfer- 
ence pattern as a function of the transit time of the atom from the source to the 
MCP. The top curve shows the interference pattern produced by atoms whose 
initial velocity was approximately 0. The middle and bottom curves are the pat- 
terns taken 50 and 100 msec, respectively, before the top curve. The atomic ve- 
locity at the source, v 0, in those curves is 50 and 100 cm/sec, respectively. The 
variation of the fringe spacing with atomic velocity is clearly seen in those 
curves. The shift of the peak position was caused by the horizontal displacement 
of the trap and the double slit. 

The number of fringes in the double slit interferometer depends on the ra- 
tio between the slit width d w and separation d; it is approximately d / d  w when 
d >> d w. In an atom interferometer it is rather difficult to increase this num- 
ber owing to the limited beam intensity. The length difference of two atomic 
paths in the central peak is 0 and at most several de Broglie wavelengths, 
even in the outermost peak. Therefore, the double-slit interferometer is not a 
device to measure accurately the wavelength of atoms. However, it is ex- 
tremely sensitive to the difference of perturbing potentials between two 
paths. We have demonstrated the phase shift caused by the gradient of the 
Stark potential (Shimizu et al.,  1992b). The phase shift accompanying elastic 
collisions was measured by Schmiedmayer et al. (1995) using a thermal Na 
beam. 
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FIG. 5. Variation of the interference pattern with the transit time of the atoms. The transit times 
of atoms from the source to the detector are 400 msec (top curve), 350 msec (middle curve), and 300 
msec (lower curve). 

IV. Holographic Manipulation of Atoms 

The double slit interferometer may be considered a simple form of atomic beam 
manipulation. More elaborate structures, such as a grating (Keith et al., 1988, 
1991) and Fresnel zone plate (Carnal et al., 1991), were used to deflect and fo- 
cus an atomic beam by interferometric means. In optics, holographic methods 
can be used to manipulate an optical beam to an arbitrary shape by passing it 
through a hologram that is a semitransparent film with an interferometric pat- 
tern. For an atomic beam, it is not possible to make a semitransparent film, and 
the hologram for atoms has to have a binary pattern composed of either totally 
transparent or totally opaque areas. The technique to approximate continuous 
change of transmission by a binary pattern was also developed in optical holo- 
graphy to generate a hologram by computer; this is called binary holography 
(Lohmsann and Paris, 1967). We describe, in this section, the simplest example 
of a computer-generated atomic binary hologram that generates a Fourier trans- 
formed wave front of the object wave. By transmitting a plane wave through the 
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hologram, the plane wave front is converted to a wave front that generates the 
pattern of the object at infinite distance. 

The scheme to construct the binary Fourier hologram is illustrated in Fig. 6. 
We divide the object pattern we want to reconstruct into N • N square cells, 
where N is an integral power of 2. We assign a value to each cell that is equal to 
the average transmission inside the cell. Each value is then multiplied by a ran- 
dom phase factor, a procedure that increases the stability of the reconstructed 
pattern against defects of the hologram. Then, we calculate the Fourier transform 
of the object pattern by a FFT algorithm. The resulting N • N complex numbers 
Ann exp(i~bnm), where n, m = 1 . . . . .  N, represent the transmittance and phase 
change of cells of the Fourier hologram. To express a complex number, it is nec- 
essary to encode the phase as well as amplitude information. To accomplish this 
task, we cut a slit parallel to a side of the cell whose length is proportional to 
Ann, at a position Ax = (~bnm/27r)Al from the edge of the cell, where AI is the 
length of the cell. When the hologram is illuminated by a plane wave, the com- 
plex amplitude of the wave transmitted through the slit at the reference plane 
that has an angle 0 =  hda/Al is proportional to Ann exp(iq~nm ). This reference 
plane corresponds to that of the first order diffracted wave from the grating that 
has pitch AI. In the hologram that we used in the experiment, a cell was divided 
into 77 • 77 subcells, and the complex amplitude is approximated by the number 
and positions of transparent subcells. The example in Fig. 6 shows the value 
- 1 + 3i when 77 = 4. The transmitted wave consists of diffracted waves of dif- 
ferent orders with an average diffraction angle 

O(n,m ) = (nhaB/l,mhda/l), 

Object ~ Hologram 

IF '" ..... 1 Fourier ", " ..... 
t transform |t !! ",, ....... ,J 

.--'":-'," '~':,' '" ' ~'~x ....... /a '.,, "... 

Z / ' / /" ,"" "', ""', 
. . . . . . . . .  . .... ",,, Structure of 
T ....... , . . . . .  '. a ceil 

J "  ' ' ,,'--'. - T '  , ~ x  ", " .... 
 J.l/ i Ho,ogr= 

..... j plane 

Wave front 
of thelstorder o ~ = 3r~2 
diffracted wave (3i- 1) 

FIG. 6. Coding of the phase and amplitude on a binary Fourier hologram. 



INTERFEROMETRY WITH METASTABLE RARE GAS ATOMS 163 

where n indicates the diffraction order perpendicular to the slit direction, and m 
is the order parallel to the slit. The intensity of the wave with n or m larger than 
r /decreases rapidly with increasing order, because the amplitude of the wave is 
canceled out owing to phase variations inside a subcell. The diffracted waves of  
order (1, m) produce a pattern corresponding to an object at infinite distance. 
The waves with (r/n - 1, m) have the conjugate pattern. All waves with (r/n, m) 
do not carry phase information, and the image is a spot. 

The hologram was fabricated on a SiN film having a thickness of 100 nm by 
using the preceding procedure. The number of  cell divisions N was 128, and the 
size of the subce l l / / r /=  l/4 was 0.3/zm. Figure 7 shows the pattern of the recon- 
structed image, when the hologram was placed 45 cm above the MCP. 

The relative resolution of  a binary holography, determined by the number of  
cells, is approximately 1/N, provided that the atomic beam is monochromatic.  
The size of  N is limited only by the capacity of the computer. The monochro- 
maticity depends on the velocity spread at the atomic source. For the beam in 
Section II, the velocity spread at the source is approximately 20 cm/sec, and 
Av/v is reduced to 10 -3 at a vertical distance of lm. Therefore, a pattern having a 
resolution of  103 can be expected. In the example just described, we did not use 
a focusing device, and the resolution of  the reconstructed image was limited by 
the size of  the diaphragm placed near the hologram. Though it is difficult to de- 
sign two-dimensional imaging optics of atoms using electromagnetic potentials, 
it is relatively easy to implement the focusing effect into the hologram. When the 
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FIG. 7. Reconstructed atomic pattern of the hologram: (a) the entire view, (b) an expanded view 

of the (1,0) diffraction pattem. (Fig. 7 continues next page.) 
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focusing is approximated by a parabolic phase shift, the correction to the Fourier  
hologram is accomplished by imposing a phase shift on the object pattern (Mori- 
naga, 1996). 

V. T w o - A t o m  Corre lat ion  

So far we have discussed interferometric effects originating from the quantum 
mechanical  wave nature of a single atom. In optics, various higher order interfer- 
ometric effects have been discussed and experimental ly  demonstrated.  In con- 
trast multiparticle interferometric effects have never been experimental ly  tested 
for a particle beam with a finite mass. The major  obstacle was the beam inten- 
sity. To observe two-atom interferometric effects, two atoms have to be found in 
a single external quantum state�9 This probabili ty was completely  negligible with 
a conventional atomic beam. Therefore,  no mul t ia tom quantum effects could be 
expected. This situation has changed owing to advances in laser cooling tech- 
niques. In this section, we describe an exper iment  involving a laser-cooled neon 
beam, which is the atomic analog of  the Hanbury-Brown and Twiss intensity 
correlation exper iment  (Hanbury-Brown and Twiss, 1957). To our knowledge,  
this is the first exper iment  to be carried out that measures  matter  wave correla- 
tions between two atoms. 

The joint probability to find an atom at (r,t) and then at (r',t ') is (Mandel, 1983) 

e(r, t;  r ' , t ' )  = < q~lS t (r , t ) r t ( r ' , t ' )8 (r '  t ' )6 ( r , t ) l~  > (4) 
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where 6t(r, t)  and 6(r,t) are atomic creation and annihilation operators. The 
atomic wave function may be written 

1 
~ =  E c(nl'n2 . . . .  ) V/nl 

nl,n 2 .... !n 2 . . . .  
(a~)n'(at2)n2...lO> 

t is the creation operator of the atom that is in the single-atom eigenstate where a i 
qJi(r)exp(-itoit). For boson-like atoms, n; can take any positive integer value, 
while for fermion-like atoms r / i  = 1 or 0. Insertion of this expression into Eq. (4) 
gives terms proportional to qJi (r)~(r ' )~(r)d/~(r ' ) .  If the atoms are in a chaotic 
state, all terms other than i = k, j = 1 and i = 1, j = k vanish on average. There- 
fore, 

P(r,t; r',t ') = E 
all combination of 

(i,j)ninjlc(n 1 . . . . .  nj . . . . .  )[e 

[l~Pi (r)121q,j(r')12 + l ~(r)]2] qJi(r')[2 + f31 qJ~(r)~b~(r')~(r)$i(r') 
ei(t.oi _ ojj)(t- t,) .at_ ~t}(r)~b~(r,)qti(r)~.(r,)e - i ( o ) i _  toj)(t- t') }] 

where /3  = 1 for boson-like atoms and /3  = - 1  for fermion-like atoms. We as- 
sume that the eigenfunctions d/i(r ) are nearly plane waves at the detector and that 
the detector surface is matched to the wave front of the eigenfunctions. Then, we 
may drop the r dependence of qt, and replace the summation 

2 E 
all combination of (i, j) 

by the integration 

ninjlc(n ~ . . . . .  n i . . . . .  nj . . . .  )121 i1=1 12 

f w(o.)i) W(t.oj)doJtdo) j 

where W(to) is the kinetic energy distribution of the atoms in the source. This gives 

I"2(g ) = e(r,t; r',t + r) = f W(t.oi)W((oj)  [ 1 + 13 c o s  { ( ( o i -  t.oj)'/'} ]dcotdto j. 

Our time-of-flight measurement shows that the velocity distribution of the atoms 
is nearly Gaussian, with a width corresponding to the theoretical limit of Doppler 
cooling: 

W(v z) = ~ e x p \  v2 / 

with v o = V'h y~ (2m), where y is the natural width of  the cooling transition and m 
is the mass of  the atom. Using to = mv~/(2h),  we obtain 

/3 
F2('r) = 1 + V'I + Ato2"fl (5) 
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where Ato =mv~/(2h). Therefore, we expect a peak at z = 0 with width approxi- 
mately equal to the energy spread of the atoms in the source and with height 
equal to the background count. 

The basic experimental setup of the two-atom correlation measurement is 
simple. We detect the 1s 3 neon  beam at some distance from the source and mea- 
sure the distribution of the time interval between two successive pulses hitting 
the detector. The detector surface has to match the wave front of the atomic wave 
within the accuracy of the longitudinal coherence length of the atomic waves. 
Since atoms move very slowly compared to photons, the coherence length is 
usually shorter than the depth of a commercial particle detector. In our case, the 
average velocity of the atom at the detector was v = 4 m/sec, and the energy 
spread Ato/2,n'= 2 MHz. Therefore, the coherence length was approximately 
v/(TrAto) = 0.6 /xm. To satisfy this condition, we used a gold-coated concave 
mirror as the metastable atom detector. An electron was emitted when a 
metastable atom hit the mirror surface and was detected by a microchannel plate 
detector. The electron pulse signal from the MCP was fed into a time interval 
counter and then processed to give the interval distribution of metastable atoms. 
This measurement gave the time-interval distribution. However, the deviation 
from the second order correlation function was negligible in the range 
z -  1/(Ato), because, in our experiment, the probability to detect more than one 
atom in this period was very small. 

In the actual experiment, a complicated procedure was necessary to discrimi- 
nate the signal from the transient effect of the electronics. The largest spurious 
transient signal was caused by the MCP. The microchannel plate detector appar- 
ently had a small probability to produce a noise pulse within 1 ~sec when it was 
hit by an electron. Although this probability was of order 10 -3 or less, the noise 
pulses completely masked the signal. To eliminate the noise signal, we divided 
the mirror surface into four quadrants, and electrons that were emitted from dif- 
ferent quadrants were detected by separate MCPs. Furthermore, to ensure that 
the observed correlation spectrum was of a quantum statistical nature, we re- 
peated the experiment with two different configurations, from which different 
spectral shapes were expected. 

Figure 8 shows the setup for the correlation measurement. The 1s 3 neon 
atomic source, electrostatic lenses, and the detector mirror were aligned verti- 
cally within an accuracy of 3 x 10 -4. The mirror was placed 82 cm below the 
atomic source and the electrostatic lens was 33.6 cm above the mirror. The lens, 
which had an aperture of diameter 2.3 mm, expanded the atomic beam coher- 
ently to cover the entire mirror surface. When a voltage of 6 kV was applied to 
the lens, the angular divergence of the atoms increased approximately by a factor 
of 40, and only those atoms that passed through the central 0.4 mm diameter hit 
the mirror. When the voltage was off, all atoms that passed through the aperture 
hit the mirror. In the former case, the atomic beam was nearly coherent. In the 
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FIG. 8. The experimental setup for the correlation measurement. 

latter case, the phase variation of the atoms emitted from different parts of the 
source was much larger than 27r and the beam could be considered spatially in- 
coherent. The one-dimensional defocusing lens placed 15 cm below the source 
was used to equalize the average atomic count between the two cases. 

Figure 9 shows the spectrum in two cases. Equation (5) shows that the spec- 
trum should have a peak around ~" = 0 with a width of approximately 2/Ato when 
the transverse spatial coherence of the atomic beam is perfect. If the atomic 
beam is partially coherent, the height of the peak will decrease, but its width will 
remain approximately constant. This feature is clearly seen in the figure. By as- 
suming Ato = 2 x 106 sec -1, which was determined from a time of flight mea- 
surement of the velocity spread, one can fit the experimental data using Eq. (5) 
to obtain/3 = 1.0 __+ 0.31 for the coherent case in Fig. 9(a) and fl = 0.27 _+ 0.22 
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FIG. 9. The time interval spectrum (a) for the spatially coherent atomic beam and (b) for the spa- 

tially incoherent atomic beam. 

for the incoherent case of Fig. 9(b). The value o f /3  in the incoherent case is 
larger than that expected from the degree of the coherence of the atomic beam. 
However, the values of/3 in the two cases differ by more than four standard de- 
viations. This shows clearly that the peak observed in Fig. 9(a) is due mainly to 
quantum statistics. 

The second order correlation measurement described previously measures the 
energy spread of the atomic source. Though such measurements are of little 
practical importance, they are still interesting as a demonstration of the quantum 
mechanical nature of a system of many identical particles. The sign of the peak 
at ~-= 0 should change if the atoms have fermi�9 statistics. If th~ atomic 
source has an energy distribution with two peaks separated by AE, the correla- 
tion should show beating at the frequency of AE/h. Recent reports of the Bos6 
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Einstein condensation of alkali atoms (Anderson et al. ,  1995; Bradley et al., 
1995; Davis et al.,  1995) show that we can prepare a sample of atoms with vari- 
ous statistics. For a correlated sample of atoms the temporal correlation mea- 
surement is an interesting technique to test its statistical characteristics. 
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character of matter has meanwhile been confirmed for most fundamental particles 
and also composed particles like ions, atoms, and even molecules. 

The physics of atomic matter waves is the subject of atom optics, which is de- 
voted to a systematic study of their propagation, reflection, refraction, diffraction, 
and interference [ 1 ]. In this respect, atom optics shares many of its principles with 
other optics, be it neutron optics, electron optics, optics of alpha particles or - - las t  
but not least--classical light optics. What makes atom optics differ from these oth- 
ers are the additional possibilities associated with the electronic or magnetic de- 
grees of freedom of the atoms; that is, their interaction with the electromagnetic 
field and in particular their strong coupling to near-resonant laser fields. 

Indeed, the electromagnetic fields may be used not only to manipulate the in- 
ternal degrees of freedom of atoms, but also to influence their center-of-mass de- 
grees of freedom via the concomitant ponderomotive forces. This aspect finds its 
most amazing expression in the reflection of atoms from light-covered surfaces, 
in the diffraction of an atom wave from a standing wave laser field, and in the fo- 
cusing of atoms using "lenses of light" [2-4].  

In this chapter, we concentrate on our experiments in atom optics in which 
laser fields play a predominant role in the manipulation of the center-of-mass 
motion of atoms. A brief introduction to the theory of the mechanical effects of 
laser light is given in Section II (see also [5]). 

In the course of a tom-l ight  interaction, all three participating degrees of free- 
d o m - - t h a t  is, the electronic and the center-of-mass degrees of freedom of the 
atom and the degrees of freedom of the electromagnetic field m become entan- 
gled. This entanglement may be used, for example, to gain information about the 
center-of-mass position (or momentum) of an atom by actually measuring the 
state of the electromagnetic field to which it is coupled. Recently, this possibility 
has attracted attention both theoretically [6-10] and also experimentally [11, 
12]. Furthermore, it may be speculated that the a tom-laser  interaction allows for 
the preparation of multiparticle a tom-photon correlated states and in particular 
for the preparation of the so-called Greenberger-Horne-Zeil inger  (GHZ) en- 
tangled states. These states are believed to be of interest for the so-called foun- 
dations of quantum mechanics since they should allow one to test Bell's inequal- 
ities on the basis of single events [ 13]. 

The entanglement of atoms and photons leads to effects that are manifestly 
nonclassical; that is, they cannot be understood on the level of "classical" wave 
optics, which reveals the effects of only first order coherence of the atom matter 
field. Another instance of nonclassical behavior in atom optics is encountered 
when the temperature of an atomic gas becomes so low that the thermal coher- 
ence length of the atoms exceeds the average distance between pairs of atoms. In 
this case, the quantum statistical effects become manifest that lead, for example, 
to the recently observed Bose-Einstein condensation of trapped atomic gases 
[14-16].  A very similar, but even more ambitious goal, is the realization of a 
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laserlike source of atoms, where many atoms occupy the same center of mass 
state of motion. This project has recently attracted quite some attention from the 
theoretical side and various schemes have been proposed [ 17-21 ]. In contrast to 
schemes that rely on tunneling to pump the resonator and evaporation to load the 
"lasing" mode [20], in our scheme both pumping and loading are based on spon- 
taneous emission. Thus a high pump rate can be achieved and the difficulties as- 
sociated with the in -ou t  symmetry of tunneling are avoided [21 ]. 

This chapter is organized as follows. In Section II, we introduce our notation and 
review the basic ingredients of the mechanical effects of atom-laser interactions. In 
Section III, we discuss focusing of atoms using "lenses of light," we present field 
configurations that realize achromatic lenses, and we outline our experimental ac- 
tivities in atom lithography. The following sections are devoted to "nonclassical" 
atom optics. The entanglement of photons and atoms lies at the core of Section IV, 
in which we present our experiments that demonstrate the underlying principle of a 
Heisenberg microscope. Also contained in this section are the first results of 
atom-photon correlation experiments, which should ultimately lead to the realiza- 
tion of GHZ entangled states. Effects of quantum degeneracy finally are addressed 
in Section V, where we present a scheme for a laserlike source of atoms and where 
we outline our experimental efforts to build resonators and waveguides for atoms. 

II. Models and Notation 

The mechanical effects of laser light on single atoms are easily understood by 
means of a simple generalization of the a tom-laser  interaction in which the po- 
sition and momentum of the atom are treated as dynamical variables. In the elec- 
tric dipole approximation, the interaction of a single atom with the electromag- 
netic field of a laser is described by 

Hint( t  ) --  - d -  E(r,t) (1) 

where d is the electric dipole operator and the vector field E(r,t) denotes the 
electric field strength of the laser at the center-of-mass position r of the atom. 

In most of our experiments, the electric field may be treated as a classical 
field. For a single-mode laser of frequency w, 

E(r,t) = E (+)(r) e-iojt "l- C. C., (2) 

where the positive frequency component E(+)(r) defines both the polarization 
and the spatial characteristics of the laser field. A standing wave laser field that 
is spatially periodic in the x direction and linearly polarized in the y direction, 
for example, is described by 

E(+)(x) = eyeog(x,y,z ) cos qx (3) 
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where % is a field amplitude, ey is the polarization unit vector, q is the effective 
wave number of the standing wave, and the slowly varying function g(x ,y , z )  with 
peak value gmax-- 1 accounts for the profile of the laser field. Note that, in our 
notation, the peak value of the total electric field is given by 2%. Note also that 
the effective wave number q in Eq. (3) may differ from its natural value k =- odc. 
For example, if a propagating laser field is reflected from a mirror oriented per- 
pendicular to the x direction, the resulting field is a standing wave in the x direc- 
tion with effective wave number 

q = k cos c~ (4) 

where a is the angle of incidence of the laser. 

A. TwO-LEVEL APPROXIMATION 

The electric dipole operator d acts in the Hilbert space of electronic states of the 
atom. In the important case that the polarization of the laser field is spatially uni- 
form and spontaneous emission plays no role, the electronic degrees of freedom 
of the atom may be modeled by a two-level system with electronic levels ]e) and 
Ig) having energies E e and E ,  respectively, and a corresponding Bohr transition 
frequency w 0 - - (E  e -Eg)/h. For the particular laser field (3), the quantization 
axis for the electronic degrees of freedom is most conveniently chose along the y 
direction, and the dipole transition operator becomes that of a Am = 0 transition: 

d = --goey[or + ort] (5) 

where go is the reduced matrix element of the dipole transition, and or = Ig)(el is 
an atomic ladder operator that transfers the atom from the excited state into the 
ground state. 

In the following, the laser field is assumed to be nearly resonant with the 
] e)~---~ ]g) transition, and we denote by A -- w 0 - to the atom-laser  detuning. Us- 
ing the rotating wave approximation in an interaction picture with respect to the 
laser frequency, the Hamiltonian describing the atomic dynamics, both internal 
and center-of-mass, is given by 

p2 
H . . . . . .  + 13(r) (6) 

2M 

where 

h 
13(r) = hAor*or + ~ 7~(r) [or + or*] 

defines the atom-laser  interaction matrix with 

R(r)  = 2goey. E(+)(r)/h 

(7) 

(8) 
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being the spatially dependent bare Rab i f requency  of the atom-laser  interaction. 
In the field (3), R(r)  is cosinusoidal in the x direction with peak value 
R o = 2~%1h. 

B. PARAXIAL APPROXIMATION 

In our experiments, the atomic beam propagates predominantly in the z direction 
with nearly constant velocity v = V'V2x + v 2 + v 2-~ v z and only small velocity y z 
components in the transverse direction v x, Vy << v Z. Also, in all our applications, 
the laser field is nearly homogeneous in the y direction, which allows to drop the 
y dependence in first approximation. With the Ansatz  ~(r , t )  = e i(Mvz - Et)/h(~(X'~ Z) 
where E = Mv2/2, in neglect of 02/Oy 2 and 02/Oz 2 in a slowly varying envelope ap- 
proximation,  the Schr6dinger equation that describes our experiments becomes 

{ } ihv 4~(x;z) = 2M Ox 2 + l~l(x; z) 4~(x; z) (9) 

where 4~(x; z ) =  q~e(x; z)[e)+ q~g(x; z)[g)is the wave function of the two-level 
atom. 

Note that Eq. (9) has exactly the form of a t ime-dependent  Schr6dinger equa- 
tion in one dimension, with z/v playing the role of a fictitious time r. With this 
interpretation, the spatial evolution of phase fronts of the atom beam along the z 
axis can be analyzed in terms of the dynamics of a one-dimensional model of 
particles moving in the x direction. 

The Hamiltonian governing the dynamics in Eq. (9) may be written in an al- 
ternative form: 

~2 h 
H = + -- O" �9 Beff(x; z) (10 )  

2M 2 

where ~ = - ih(b /~x) ,  ~r = (~rl,o'2,o" 3) is the vector of Pauli spin matrices, and 

Beff(x; z) ----- [ ~ ( x ;  z ) ,0 ,A]  (l l) 

is an effective "magnetic" field vector. In this notation, the or in Eq. (7) is given by 
o" = (o" 1 - io-2)/2. As it stands, the Hamiltonian (10) describes the precession and 
center-of-mass motion of a fictitious spin in an external "magnetic" field Beef(x; z). 
Spatial variations of this field give rise to the atom optical S t e rn -  
Gerlach effect; that is, the splitting of the atomic center-of-mass wave function [2 la]. 

C. ADIABATIC APPROXIMATION 

In many of our experiments, the detuning is large enough to allow for a decou- 
pling of the two amplitudes in Eq. (9) using a so-called adiabatic approximation. 
Formally, this approximation is obtained by a local diagonalization of the inter- 
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action matrix 0 and by neglecting the spatial variations of the corresponding 
transformation matrix. 

The approximation proceeds by introducing so-called dressed states: 

~9 0 
I +)X,.z = cos ~-le) + sin 2-[g) (12) 

O O 
]-)x,.z = cos ~ Ig) - sin ~ le) (13) 

where the Stiickelberg angle O -- Of, x; z) is defined via 

A 
cos O =  V~l~x; z)12 + A2. (14) 

The dressed states are eigenstates of the interaction matrix 

h A2 +) O(x; z)l -- + -  v'l z)l + I z ~ ~ x ;  ' 2 z 

where the square root defines the dressed Rabi f requency .  
The transformation in the dressed state basis is achieved by expanding the 

state ~b(x; z) in terms of dressed states 

~b(x; z) = q~+ (x; z) l+)x:z + q~- (x; z) I -)x:z (16) 

where the amplitudes q~ -+ (x; z) are ordinary c-number functions. Inserting (16) 
into (9) and neglecting the spatial variations o f [ _  +)x;.. in an adiabatic approxima- 
tion, problem (9) decouples into two independent Schr6dinger equations for the 
dressed states amplitudes: 

I 1 ihv -~zq~+ - 2M _+ --2 V'IR(x; z)12 + A2 ~+" (17) 

The meaning of the dressed states I_+) depends on the sign of the detuning; 
that is, on the frequency of the laser field relative to the atomic transition. For 
positive detuning (red detuning), the dressed state I-)~;z connects smoothly to 
the bare ground state Ig) outside the interaction region. In this case, the ground 
state atoms are attracted toward regions of high laser intensity. This effect is ex- 
ploited in focusing atoms, which is described in detail in the next section. 

In contrast, for negative detuning (blue detuning), the dressed state ]+)~;z con- 
nects smoothly to the bare ground state ]g), and ground state atoms are repelled 
from regions of high field intensity. This latter case is of particular importance 
for the dissipation-free confinement of atoms using "mirrors" of blue light; see 
Section V for details. 

In most of our experiments, atoms enter the interaction zone in the ground 
state. To obtain a unified description for the motion of these atoms that is valid 
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for both signs of the detuning, we introduce an amplitude function q~(x; z), which 
is defined to connect smoothly to the electronic ground state outside the interac- 
tion region. The Schr0dinger equation for this amplitude reads 

ihv -~z~x, z) = - ~  + U(x; z) qo(x; z) (18) 

where 

hA 
O(x; z) : ~ V'l + IR(x; z)lZ/A z (19) 

is the ponderomotive potential of the atomic motion. The gradient of that poten- 
tial defines the induced dipole force: 

0 
= U(x; z). (20) Fdip OX 

lIl. Atom Focusing and Applications 

A. INTRODUCTION 

Focusing of atomic beams by various methods has been investigated during the 
last 50 years [22-35]. Due to the development of tunable lasers and the strong 
coupling of intense near-resonant laser light to atoms through the induced dipole 
moment, lenses based on the induced dipole force have drawn much attention. 
The induced dipole forces have first been applied by Bjorkholm et al. in 1978 to 
focus a sodium beam along a traveling TEM00 laser beam in two dimensions 
[25]. Lenses based on the light field of a TEM10 (donut mode) of a laser beam 
co- or counterpropagating with an atomic beam were later proposed but not 
tested [26-28]. More recently, standing wave light fields have been used as 
more compact focusing elements. Sleator et al. demonstrated the focusing of a 
metastable helium beam down to a diffraction limited spot size of 4 /xm in one 
dimension using a long period standing wave [29], and atoms focused into struc- 
tures with a width of about 50 nm on surfaces have been reported [30-32]. Di- 
pole lenses have been the ones most successful in producing small spot sizes 
during the past, and they seem to be promising for applications. Therefore, in the 
following, only focusing elements based on the dipole force will be discussed, 
we know well that the whole field of atom focusing will not be covered. After a 
short introduction to focusing with induced dipole forces (Section Ill.B), various 
limitations on focusing will be discussed (Section Ill.C). In Section Ill.D, we 
present schemes for dipole lenses that dramatically decrease chromatic aberra- 
tion. The last subsection (Section Ill.E) considers applications such as atomic 
probes for surfaces and atom lithography. 
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B. FOCUSING ATOMS BY DIPOLE FORCES 

According to Eq. (19), the adiabatic coupling of an atom in the dressed particle 
state to the standing wave field of a laser is described by the ponderomotive po- 
tential: 

hA ~/1 + (R~/A 2) cos2qx. (21) U(x) = 2 

Expanding U(x) around one of its minima and dropping an uninteresting con- 
stant, the potential becomes harmonic: 

1 
U(x) = -~ K(X - x0) 2 (22) 

where the spring constant K and spatial offset x 0 depend on the sign of the detun- 
ing. 

For blue detuning (A < 0), the potential has to be expanded around one of the 
nodes of the standing wave, for example, x 0 = rr/2, and 

h ~ q 2  
K = A < 0 .  (23) 

21Al ' 

For red detuning (A > 0), the expansion is around one of the antinodes, for ex- 
ample, at x 0 = 0, and 

h~R~q 2 
A > 0 .  (24) K = 2V/A 2 + ~ ,  

Note that the spring constants, (23) and (24), assume the same functional depen- 
dence in the limit of strong detuning, ]A[ >> R 0. 

Two regimes in which it is possible to derive a simple expression for the focal 
length for lenses based on a potential of the form (22) are: (1) the "thin" lens 
regime, which is based on the assumption that the atom does not change its posi- 
tion in the lens plane while it passes through the light field, and (2) the "thick" 
lens regime, where the focusing takes place inside or closely behind the light 
field. 

1. Thin Lenses 

In the thin lens regime, the momentum transferred to the atom along the x axis is 
given by 

0 
- -  U ( X ) T i n t - - - - K ( X -  Xo)'rin t (25) AP x(X) ,gx 

where Tin t i s  the time it takes to traverse the interaction region. For a laser field of 
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thickness L, Tin t = L/v, where v is the longitudinal velocity of the atomic beam. 
For an initially collimated beam, the geometrical focusing condition 

leads to a focal length f: 

6px(X)  _ (x  - % )  
- - ( 2 6 )  

Mv f 

M v  2 
f = ~ .  (27) 

~L 

The thin lens approximation is justified for short interaction times: 

Tint < <  [ 0 / OX U(x)[ 

which also corresponds to the so-called Raman-Nath  regime. 

(28) 

2. Thick Lenses 

In the thick lens regime, an initially collimated beam is focused after an interac- 
tion time Tin t equal to one quarter of the oscillation period rose = 27rVM/K of the 
harmonic potential, and hence the focal length can be written as 

/..._... 

f v T~ "rr ~/M = = -- v (29) 
4 2 

with the standing wave result obtained by introducing Eq. (23) or (24) into Eq. 
(29), depending on the laser detuning. 

C. LIMITATIONS OF FOCUSING 

As is the case for lenses that focus light, the performance of lenses that focus atoms 
is limited by diffraction and by various aberrations. The finite size of the atomic 
sources, in many cases, is another limiting factor for the focal spot size. Various 
limitations are discussed next with the emphasis on light-induced dipole lenses. 

1. Diffraction Limit 

For many focusing situations one can neglect the wave nature of atoms and use 
just classical ray tracing (geometrical optics) to calculate the properties of the 
lens systems. However, ultimately, one may have to consider the effect of dif- 
fraction of the de Broglie wave associated with the atomic motion in the lens 
plane. The diffraction limited spot size Wspot is given by 

2fhdB w ~ ~ (30) spot O 
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where D is the opening aperture of the lens and AdB = 27rh/Mv is the de Broglie 
wavelength. Especially for small numerical apertures, which is often the case for 
thin lenses, diffraction can become a problem; while for strong thick dipole 
lenses, other limitations dominate. 

2. Chromatic Aberration 

Chromatic aberration comes into play when the longitudinal momentum 
distribution of the atomic beam is broad (e.g., a thermal effusive beam) or, 
equivalently, when the variation in the de Broglie wavelengths is large in 
the beam. For the dipole lenses discussed earlier, the variation of focal 
length with atomic momentum is linear (thick lens) or even quadratic (thin 
lens). This means that, for typical thermal beams, the focal length varies 
more than a factor of 2, which can be a severe limiting factor. One way to 
reduce the chromaticity is to create an atomic beam with a very narrow ve- 
locity distribution. This can be achieved, for instance, by using supersonic 
atomic beam sources, or compressing the initial velocity distribution by 
laser cooling [36], or simply by mechanically selecting a certain velocity 
class. In Section Ill.D, the possibility to create partly achromatic dipole 
lenses will be discussed. 

3. Spherical Aberration 

For dipole lenses, spherical aberration occurs because the optical potential is 
nearly parabolic only in a certain region. Deviations from a perfect harmonic po- 
tential makes the focal point dependent on the atom path through the lens and, 
hence, enlarges the spot size. For dipole lenses based on a standing wave, the po- 
tential is harmonic only for a fraction of the standing wave period. Spherical 
aberration in principle, can be reduced by introducing a slit or an orifice in front 
of the lens. However, this also raises the diffraction limit. When a standing wave 
is used as a lens array (see Section Ill.E), the effect of spherical aberration is 
hard to eliminate and actually is assumed to be an important limiting factor in 
the experiments reported by McClelland et al. [30]. 

4. Astigmatism 

Astigmatism can also occur for atomic lenses. For instance, when a two-dimen- 
sional lens is constructed by crossing two standing waves, an intensity imbal- 
ance between the beams will lead to astigmatism. Astigmatism in dipole lenses 
can easily be avoided by adjusting the laser intensities. 
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5. Diffusive Aberration 

Light-based lenses suffer from another aberration type, diffusive aberration, 
which is due to spontaneous emission and is not present in other atom lens sys- 
tems. Lenses based on the radiation pressure force [33] are inherently limited by 
this aberration. For dipole lenses, in addition to the small random momentum 
kick transferred to atoms by the photon recoil, spontaneous emission can lead to 
a sign change of the optical potential because of population in the "wrong" 
dressed state [37]. In the case of a strongly focusing potential, the latter plays 
a dominant role. The total rate at which spontaneous emission occurs is given 
by [37] 

with 

Fto t = FNC + F C (31) 

1 
FNC= ~ [ 1 -  1/V'I + R(x)2/A2]F (32) 

1 
F c = -7 [1 - 1/(1 + ~x)2/A2)]F (33) 

4 

where F is the natural decay rate, FNC is the rate of potential preserving transi- 
tions, and F c is the rate of potential sign changing ones. From Eqs. (31), (32), 
and (33), it follows immediately that focusing with negatively detuned (blue) 
laser light fields is affected less by spontaneous emission, since the light field 
has a local intensity minimum at the lens axis. When the interaction time is only 
a fraction of the excited lifetime of the atom, however, the diffusive aberration is 
negligible both for positive and negative detuning. By introducing a slit or an 
orifice in front of a negatively detuned dipole lens, the diffusive aberration can 
further be diminished. 

6. Atomic Sources 

As most light sources before the advent of the laser, atomic beam sources are of- 
ten not spatially coherent. As a consequence the ultimately achievable spot size 
is generally dependent on the atomic source extension and on the spread in the 
transverse velocity. Atomic sources always can be improved by inserting narrow 
slits or orifices into the beam but with a corresponding reduction of the atomic 
flux. Laser cooling is an alternative solution that not only makes the beam effec- 
tively more coherent but also typically results in an enhanced beam intensity. Fi- 
nally, the recent realization of Bose-Einstein condensates [14-16],  and the pro- 
posals for laserlike sources for atoms (see Section V) opens new ways of 
creating coherent atomic beams. 
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D. ACHROMATIC DIPOLE LENSES 

Chromatic aberration is generally a severe limitation for atom lenses. To solve 
this problem, an achromatic doublet lens based on a combination of a Fresnel 
zone plate and an electro/magnetostatic lens has been proposed in Ref. 38 while, 
in Ref. 33, the possibility of using the Doppler effect to create radiation pressure 
lenses that are less sensitive to chromatic effects was discussed. We have been 
investigating the possibility of constructing light field configurations that can 
minimize the chromatic effect of dipole lenses [39]. The idea is to make the de- 
tuning velocity dependent through the Doppler effect. Our goal is then to make 
the induced dipole force dependent on the atomic velocity. 

1. Singlet Achromatic Dipole Lenses 

If the effective (Doppler-shifted) detuning A'(v) is given in the form 

A'(v) = A + q'v (34) 

where v is the atomic velocity and q' is the component of the wave vector in the 
direction of the atomic beam, then for negative detuning, chromatic aberration is 
compensated to the first order in v around a central velocity v 0 if 

3q ' v  o. (35) ~x=-~ 
With Eq. (35) fulfilled, the focal lengths for thin and thick lenses become 

f (~) = My2 (1 - 3s c 2 -  2s c3) (36) 
K(vo)L 

and ~r~M 
f (~ )=  2 K(V o) V0 V/1 - 3~ 2 - 2~ 3 (37) 

respectively, where K(Vo) is the spring constant [Eqs. (23) and (24)] of the op- 
tical potential for the detuning A'(v0), and ~ - - ( v -  Vo)/V o is the normalized 
relative velocity. Figure 1 compares the relative focal length f(~)/f(O) of a 
standard standing wave thin lens and f (~ ) / f (O)= 1 -  3~2-2sc3 of a corre- 
sponding achromatic lens. For velocities within 10% of the central velocity 
( - 0 . 1  <-s c_< 0.1), the variation in focal length for the uncompensated lens is 
about 40%, whereas it is less than 3% for the velocity-dependent light poten- 
tial. The same improvement is found for the thick lens. The large suppression 
of the chromatic aberration gets even more pronounced for narrower velocity 
distributions. 

For positive detuning it is also possible, in principle, to obtain velocity-com- 
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FIG. 1. The relative focal length of a thin lens formed by a standing wave (dashed line) and a cor- 
responding achromatic lens (solid line) as a function of the relative velocity displacement 

- -  ( v  - Vo) /V  o. The focal length is normalized to the value ~ = 0. 

pensated dipole lenses, but in practice, spontaneous emission poses a problem in 
this case in terms of a large diffusive aberration [39]. 

Figure 2 shows two possible experimental realizations of achromatic lenses 
for one-dimensional focusing. In Fig. 2a, a velocity-dependent detuning is real- 
ized in a standing light field along the x axis created by two traveling light 
waves, whose propagation directions are defined by two angles, ce and/3. The k 
vectors of the two traveling waves make an angle 7 r -  2ce, so that the standing 
wave has a period " n ' / ( k  cosc0 = A/(2 cosc0. If an atom is moving along the 
y axis with a velocity v, the effective detuning of the SW light field is A' = A + 
kv sin/3 sin c~; that is, in the form of Eq. (34). 

An even simpler achromatic dipole lens can be constructed with the use of 
TEM01 (Hermite-Gaussian)  laser beams, as shown in Fig. 2b. With the indicated 
angle/3, the effective detuning becomes A' = A + kv sin/3. In this case, the size 
of the lens opening is proportional to the waist parameter perpendicular to the 
atomic beam. Because of its simplicity, a combination of two such lenses in se- 
ries seems particularly interesting for focusing in two dimensions. 

To show that other aberrations do not necessarily dominate chromatic errors, 
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( a )  TEMoo laser beams (b) TEM lO laser beams 

atomic / @ - ~  focal atomic 
slit beam \ plane beam 

z T 

focal 

13 plane 

1 / 
T 

FIG. 2. (a) Proposed setup for a standing wave achromatic lens. The angle a is defined as 
7r/2 - T/2, where y is the angle between the two wave vectors. /3 is the angle between the plane 
spanned by the two wave vectors and the x - z plane. (b) Proposed setup for a TEMol mode achro- 
mat. Here,/3 is the angle between the z axis and the wave vector. 

Fig. 3 presents simulations of atomic beam profiles in the focal plane for experi- 
ments with thin lenses. The solid curve corresponds to an achromatic lens, while 
the dashed line refers to a standard thin dipole lens with the same focal length. 

In the calculation, we used a dressed-atom Monte Carlo simulation [40] for 
the atom-l ight  field interaction and beam parameters that are realistic for the 
metastable helium beam apparatus in Konstanz [29]; that is, Av/v o = 0.2 and 
v 0 - 1800 m/sec. The distance from the atomic source to the dipole-lens setup is 
set to 1 m and the focal length is chosen to be about 15 cm. The source slit is 
chosen to be 2 /zm and a 30/zm slit just in front of the lens limits the spherical 
aberration. The two traveling laser beams are assumed Gaussian in the direction 
of the atomic beam with a waist of 2 mm and a maximum Rabi frequency 
R 0 = 340F, where F is the decay rate from the l s2p 3p t o  the metastable 0,1,2 
state ls2s 3S~. The angles a and 13 were chosen to be 89.85 ~ and 30 ~ respec- 
tively, which gives a detuning A = - 2 4 5 F .  In the simulation, the achromatic 
lens yields a threefold increase in the on-axis atomic intensity as compared to 
the normal chromatic lens. Furthermore, the original top-hat profile of the source 
is better reproduced by the achromat. The limitation of the scheme for achro- 
matic lenses lies essentially in the restriction given by Eq. (35) to choose the de- 
tuning for a given atomic velocity v 0. As a consequence, for dipole-allowed tran- 
sitions, it is not possible to make short focal length lenses for slow atoms 
without encountering problems with spontaneous emission and deviation from 
adiabatic following of the optical potential. 
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FIG. 3. Dressed-state Monte Carlo simulations of the atomic beam intensity at the focal plane as 

a function of the position from the beam center for a realistic focusing experiments with metastable 
helium. The solid line represent the results with a achromatic thin lens, while the dashed line corre- 
sponds to a normal standing wave lens. The intensity is normalized to the intensity at the lens. Exper- 
imental parameters are given in the text. 

2. Achromatic Doublets 

The achromatic singlets discussed previously were corrected for chromatic aber- 
ration to the first order. However, dipole lenses can be corrected to even higher 
orders if composed of several laser beams. Examples of such lens systems are 
lenses consisting of two successive thin dipole lenses around laser intensity min- 
ima. The focal length of such a combined system can be written as 

AI(v)Az(V)  v 2 (38) 
f (v)  ~ AI(v )~L2  + A2(v)R2L 1 

where m i - -  m i o  -'1- qi v is the effective velocity dependent detuning, R i is the Rabi 
frequency, and L i is the thickness of the two lenses. The proportionality constant 
depends on the laser beam configuration; such as standing waves or TEM0~, but 
not on the velocity. This doublet lens system can be compensated for in chro- 
matic aberrations to the second order in v around a specific velocity v 0 if 

Of(v) 02f(v) 
= = 0. (39) 

OV OV 2 
V 0 V 0 
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This leads to the two conditions 

with/3  defined as 

A10 A20 _- 6 + 3/3 
ql q2 3 +  fl v2 (40) 

A10 + A20_ 8 G- /~ 
- - -  v o (41)  

ql q2 3 + /3 

RZLlq2 + RZL2ql 
= v 0. (42) /3 RZL~A2 ~ + RZL2~Xl0 

It can be shown that a solution to Eqs. (40) and (41) exists i f /3  ~ [ - 3 . 1 5 , - 0 . 8 5 ]  
and the velocity dependent part of  the focal length expression is given by 

(3 + /~)~,-4 __ (8 -~- 3fl)~ "3 + (6 + 3fl)~ "2 V 
f(sr,/3) = , sr -- . (43)  

1 + fist v 0 

Figure 4 presents the relative focal  length versus velocity  for some  particular 
values of  the parameter/3 .  For /3  < - 2 . 5 ,  the variation in focal length for a ve- 
locity distribution with A v / v  o = 0.6 is less than 10% and hence chromatic aberra- 
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tion would not be a large problem even for a thermal atomic beam. For a fixed 
value of/3, it can be shown that the absolute focal length scales with the parame- 
ter q~V3o/(R2L~). The behavior of the absolute focal length as a function of /3  is 
given in Fig. 5. Unfortunately, the focal length increases dramatically for larger 
negative values of/3, where the chromatic compensation is best. A value around 
- 2 . 5  for/3 seems to be a good compromise. Calculations for a metastable he- 
lium beam with v 0 = 1800 m/sec show that it should be possible, using realistic 
laser parameters, to create an achromatic doublet with a focal length of f ~  10 
cm and/3 = - 2 . 5 .  The nonadiabatic following of the optical potentials is also an 
issue of concern for doublet lenses. For too small values of/3,  this is a problem 
even for thermal beams, but fortunately not when/3  is smaller than ~ - 2 . 5 .  In 
principle, lens systems composed of even more thin lenses could be considered, 
but the improvement obtainable with the achromatic doublets seems sufficient. 

E. APPLICATIONS 

In addition to being intense and well-defined sources for atomic physics experi- 
ments (e.g., atomic collision experiments), focused atomic beams have a poten- 
tial in fields such as atom-surface interaction studies, where the focused beam 
can serve as a spatially well-defined probe, and atom lithography, where the aim 
is to write nanostructures on surfaces. 
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1. Atoms as Surface Probes 

Atomic beams have frequently been applied as a surface probe [41]. In contrast 
to other techniques for surface probing, such as low-energy electron diffraction 
(LEED), thermal atomic beams probe only the outermost layer and hence offer a 
higher surface sensitivity. Moreover, the low kinetic energy associated with ther- 
mal atomic beams (= 10 meV) makes atomic probes essentially nondestructive if 
inert gases are used. Using such gases, surface phonon dispersion relations have 
been obtained from the diffraction pattern of atomic beams [42]. The internal 
structure of atoms also allows for probing surface properties such as the surface 
density of electronic states [43-45]. So far, only nonfocused atomic beams have 
been applied, leading to a relatively poor spatial resolution. The de Broglie 
wavelength of thermal atoms is AdB<0.1 nm, which means that atomic scale res- 
olution is possible, in principle. However, it seems difficult to create a single in- 
tense atomic probe with a resolution much better than ~ 100 nm, even with the 
new focusing schemes presented previously. Nevertheless, many mesoscopic 
structures could be revealed with this resolution. In secondary electron spec- 
troscopy, for example [43-45],  a resolution beyond the spot size of the atomic 
beam could be obtained using electron optics. The use of coherent atomic 
sources in this field could give additional insight into the surface structures 
through the diffraction pattern of the scattered atoms. 

2. Atom Li thography 

Lithography, that is, the creation of fine structures on a substrate, at present is 
done using a variety of techniques. Optical lithography, by far the most applied 
technique, is limited in resolution to ~100 nm, either by diffraction for 
visible/UV light or by poor optics for x rays. Far higher resolution is obtained by 
electron/ion-beam lithography, where structures as small as ~ 1 nm can be pro- 
duced routinely [46]. In pioneering work of Timp et al. [47] and McClelland et 
al. [30] it was demonstrated that atom lithography using inhomogenous light 
fields as focusing elements could compete very well with these more traditional 
techniques. In 1993, McClelland et al. produced a set of chromium lines on a 
silicon substrate with a spatial resolution of 65 nm ([30-32]). In the meantime, 
similar results were also obtained in our group. In Fig. 6 we show the litho- 
graphic pattern of Cr lines written on a silicon substrate using the standing wave 
laser field of a frequency doubled Ti:sapphire laser. The line spacing is ~212.5 
nm, which corresponds to the period of the optical potential induced by the laser 
field. The width of the Cr lines is ~70  nm. 

From theoretical considerations (including limitations as discussed in Section 
Ill.C), it should even be possible with this technique to produce structures with 
typical sizes below 10 nm. However, parameters such as the atom diffusion time 



CLASSICAL AND NONCLASSICAL ATOM OPTICS 189 

FIG. 6. Atom force microscopy image of chromium lines on a silicon substrate written with a 
standing light field of wavelength 425 nm. The line separation corresponds to half the optical wave- 
length, width (FWHM) ~-70 nm (courtesy of U. Drodofsky, Universit~it Konstanz). 

on the surfaces relative to the deposition time may be crucial for experimentally 
achieving this. Forming structures having a fractional periodicity of the standing 
wave is possible in principle by using the near-field pattern of a focused atomic 
beam whose transverse coherence is larger than the standing wave period [48]. 
Exposing self-assembled monolayers with focused metastable rare gas atoms 
that locally damage the layer may be another fruitful approach to atom lithogra- 
phy [49]. While the electron/ion-beam techniques remove material in a serial 
way, atom lithography is a parallel technique, with the prospect of writing more 
than 106 identical small structures per mm 2 on a single substrate. This makes 
atom lithography an interesting technique in nano-technology. 

Since the dipole lenses are element specific, they can also be used in a related 
process, which we call structural doping. A structure grown from an effusive 
beam of an element A can be doped in a structural way by a second element B 
being focused by a dipole lens array. By controlling the flux of element B, 3D 
structured doping should be possible. Such a technique could be an elegant 
method for the mass production of quantum wires or dots. 
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IV. Correlation Experiments with Atoms and Photons 

A. INTRODUCTION 

It appears that one of the most puzzling aspects of quantum theory is the imple- 
mentation of the measurement process on a quantum mechanical system and un- 
derstanding the back action of this process on the system. The spontaneous 
emission of a photon from an atom can be regarded as such a process. In fact, a 
gedanken experiment from the very early days of quantum mechanics dealing 
with this problem was proposed by Heisenberg in 1927 [50]. In this section, we 
want to have a closer look at a single spontaneous emission process. 

The position of the particle in each fundamental step is described by its center 
of mass wave function, which may have a certain spatial extent. A critical com- 
ponent of the measurement is the observation of scattered light from this parti- 
cle. The uncertainty Ax of the measurable origin of the scattered wave is given 
from classical optics by the wavelength A of the light used for the illumination of 
the particle. One expects a localization of the object, since a position measure- 
ment is carried out with a resolution on the order of A. 

To analyze the measurement process, the action of the scattered light on the 
momentum of the particle has to be studied. As light carries not only energy, one 
has to consider the momentum transfer from the light field to the particle. If this 
particle is smaller than the wavelength of the scattered light, the scattered wave 
may be conveniently described in a spherical basis. To evaluate the momentum 
distribution of such a light field, it has to be projected onto a basis of plane 
waves. Assuming momentum conservation for the scattering process, the mo- 
mentum distribution from that projection must be transferred to the particle un- 
der observation. For an efficient measurement process, the back action on the 
particle for a certain amount of achievable information should be as small as 
possible. The smallest amount of momentum transfer to the particle is given by 
the smallest detectable amount of light necessary for the localization of the parti- 
cle, which is a single photon. The momentum uncertainty contained in a spheri- 
cal wave of one photon is just given by Ap = hk, where k = 27r/A and A is the 
wavelength of the photon. 

This process, in fact, is not restricted to a certain combination of particles and 
scattering waves but may be extended to a whole variety of pairs. As atom optics 
allows for preparation and investigation of subrecoil atomic momenta, we use an 
atom as the quantum particle the position of which should be measured. For the 
investigation of a single measurement step by one photon, as considered in the 
Heisenberg gedanken experiment, we use the spontaneously emitted photon pro- 
duced from a decaying excited internal state of the atom. 

In this section, we describe how such an entangled state between a photon 
and an atom can be generated and discuss the experimental techniques for inves- 
tigating it. Having the tool of generation and observation of entangled pair sys- 
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tems in hand, more sophisticated states can be produced. We will show how we 
can restrict the entanglement in the continuous momentum space between a pho- 
ton and an atom as a consequence Of momentum conservation in the conceptu- 

�9 1 ally simpler spln-~ space for the single particles. With this method, some of the 
puzzling highly entangled states between more than two distinguishable particles 
should be accessible to experimental investigation. 

B. THE ATOM--PHOTON PAIR 

To investigate the balance of information contained in both particles of an 
a tom-photon  pair, we first have to look closer at its preparation. For simplicity, 
we restrict our quantum mechanical treatment of the particle motion in an 
atomic beam to the transverse direction x. First, an atom in our experiment [ 11 ] 
has to be prepared in a state with a known motional wave function ~(x).  The 
simplest state of this type is a momentum eigenstate with Px = 0; the wave func- 
tion �9 (x) there is constant for all x, and the initial position x is unknown. 

Then, the atom has to be in an internally excited state to allow for a single 
spontaneous emission. The excitation process of the atom must not allow for a 
localization of the atom; that is, the coherence properties of the separated parts 
of the matter field have to be preserved. This is necessary for a clean entangle- 
ment between the atom and the subsequent spontaneously emitted photon. Such 
an excitation can be achieved by using a quasi-classical light field. It has been 
shown that the change in the "purity" of a quantum mechanical single particle 
state of the atom in this case is very low, because the amount of extractable in- 
formation may be arbitrarily small in the quasi-classical field, which has lost one 
photon by the excitation of the atom. 

Within some lifetimes of the excited internal state after the atom has been 
prepared in an excited state, a single spontaneous emission of a photon takes 
place. The atom then is entangled with the photon owing to momentum conser- 
vation. 

C. SINGLE PARTICLE COHERENCE FUNCTION 

Initially, we ignore the information encoded in the spontaneously emitted photon 
and expect, therefore, a loss of spatial coherence of the atomic matter field. Ide- 
ally, an atom in our experiment [ 11 ] is prepared in a state where the external mo- 
tion can be described by a discrete set of plane waves. After the decay, the atom 
is in a momentum state complementary to that of the photon. Since the photon 
momentum distribution is not detected, there appears a momentum uncertainty 
in the atomic center-of-mass motion, reflecting the momentum distribution of 
the emitted photon. 

The momentum uncertainty may be regarded as a loss of momentum infor- 
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mation on the atom and can be described as a loss of spatial coherence, which is 
an experimentally accessible quantity. Spatial coherence of a wavelike phenome- 
non is expressed with the two-point correlation function of a field. Physically, 
this function describes the possibility of interference between Huygens wavelets 
originating from separated points of the space carrying the matter field. Because 
we regard only the transverse motion, the two-point correlation function will be 
called the transverse coherence function in the following [51 ]. 

If the center-of-mass motion is described by a classical mixture of momen- 
tum eigenstates, the coherence of the matter field �9 depends only on the separa- 
tion x between two test points. The coherence function is then identical to the 
autocorrelation function of the field [52], 

g<~)(x) = f q~(x' -x)~*(x ')  dx' (44) 

which is identical to the Fourier transform of the transverse atomic momentum 
distribution l(px), 

g<~)(x) = y[l(px)] (45) 

where Px denotes the transverse component of the atomic momentum. 
After the spontaneous emission of a photon from an atom, the initial coher- 

ence function for the atom has to be multiplied by the Fourier transform of the 
momentum distribution induced by the photon recoil, which is complementary 
to the momentum distribution l(hk x) of the spontaneously emitted light. For an 
atom initially in a plane wave state corresponding to a 6-shaped momentum dis- 
tribution, the initial coherence function would be 1 for all distances x, as a plane 
wave state is completely delocalized. Assuming spontaneous emission with an 
isotropic emission probability with a fixed absolute wave vector k, the one- 
dimensional momentum distribution of the light field is given by a square func- 
tion ranging from - h k  to hk. The corresponding coherence function of the mat- 
ter field after the spontaneous emission is then given by 

sin (kx) 
g<l)(x) = ~ .  (46) 

kx 

The extent of this coherence function has been reduced to a small region, with a 
separation A of the first nodes of g<l)(x). Furthermore, the coherence function 
shows an oscillatory behavior in the wings (see Fig. 7). 

D. MEASUREMENT OF THE COHERENCE FUNCTION 

A proposal for the measurement of this coherence function by Sleator et al. [53] 
uses the visibility of an atomic far-field diffraction pattern from a double slit, be- 
cause the far-field distribution essentially contains the transverse momentum dis- 
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FIG. 7. Momentum distribution l(Px) and coherence function g(l)(x) of the atom before and after 
the spontaneous emission. 

tribution I(Px) of an atomic beam. If an atom is allowed to spontaneously emit a 
photon shortly after having passed the double slit (i.e., in the near field of the 
diffraction pattern), this photon allows for a localization of the atom, and the vis- 
ibility of the diffraction pattern should be reduced according to the amount of 
position information extractable from the photon. For certain ratios of the slit 
separation and the wavelength of the emitted photon, there should be an inver- 
sion of the contrast of the far-field diffraction pattern (see Fig. 8a), and for a 
large slit separation, the visibility should completely vanish, since Welcher Weg 
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FIG. 8. Diffraction of atomic matter waves from (a) a double slit, and (b) from an on resonant 
standing light wave, in both cases followed by a spontaneous emission of a photon. 

information is accessible to an observer. A detailed theoretical treatment of the 
expected diffraction pattern can be found in Ref. 54. 

An operational definition of the visibility V of a double slit diffraction pattern 
uses the Fourier component  of the atomic momentum distribution at the trans- 
verse momentum h/27rd, where d is the slit separation. With this definition, neg- 
ative values of V may occur which correspond to a contrast inversion of the dif- 
fraction pattern. The coherence function is then simply given by this visibility as 
a function of the slit separation d: 

g~l)(d) = V ( d ) =  ..Tx : d[l(Px)] �9 (47) 

E. EXPERIMENTAL IMPLEMENTATION 

Because it is difficult to realize a double slit with a variable slit separation exper- 
imentally, we have chosen a different approach to generate a diffraction pattern. 
The diffractive structure is formed by a resonant standing light wave with a vari- 
able period (see Fig. 8b). This setup allows not only a continuous variation of 
the diffraction period and thereby a continuous measurement of g~)(x) but also 
has a higher transmission for the atoms than a double slit. Furthermore, the exci- 
tation of the internal degrees of freedom of the atom is contained in this interac- 
tion region. The spontaneous emission process can be clearly separated from the 
excitation process, if the interaction time between an atom and the light field is 
shorter than the natural lifetime of the excited state. 

A sketch of the experimental setup is shown in Fig. 9. The atomic species we 
use is helium excited to the metastable triplet state 3S~ within a gas discharge 
atomic source with a mean velocity of  v = 2150 m/sec..The plane wave state for 
the external motion of the atom is prepared by collimation of the atomic beam 



CLASSICAL AND NONCLASSICAL ATOM OPTICS 195 

FIG. 9. Setup for the atomic beam experiment. Atoms are diffracted from a standing light wave 
with a variable period. 

using two narrow slits (10/zm)  having a separation of 110 cm. The variable pe- 
riod standing light wave was produced by reflecting a Gaussian laser beam at a 
variable angle a off a mirror close to the second collimation slit. For such a 
setup, the desired light field configuration with the variable period standing light 
field is produced in a region close to the mirror surface. The light was generated 
by a LNA laser tuned to the 2 3S~ - 2 3P 2 transition in helium at 1083.3 nm. 
During the interaction of  the atom with the light field, the probability of  a spon- 
taneous emission of a photon is very small, since the interaction with the light 
field takes place within a time of 17 nsec, whereas the spontaneous emission 
should occur on a time scale of the natural lifetime ~" = 100 nsec of  the excited 
state. Therefore, the region of spontaneous emission is clearly separated from 
the standing light field but still is in the near field of the diffraction from the dif- 
fracting region. The diffraction pattern itself was detected in the far field of  the 
light grating, so the momentum distribution l(Px) was converted in a position 
distribution, which was mapped out using a 5 ~ m  wide scanning slit and a chan- 
neltron detector. 

To extract the coherence function from the diffraction patterns, the excitation 
process has to be analyzed in more detail. For a light field in resonance with the 
atom, the interaction can be treated by regarding the local eigenenergies of  a 
two-level atom coupled to a light field as optical potentials [37] for the local en- 
ergy eigenstates, [-Z-_) = (Ig) --Z- [e))/V2. The light field intensities and interaction 
times in our experiment are high enough that the field can be treated classically. 
This also ensures that no significant loss of information occurs on the atomic 
wave function associated with the excitation process. The effect of  diffraction of  
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the atoms from this light field can be explained by regarding the interaction re- 
gion as a phase modulating object for the matter wave. The phase acquired by 
atoms in the two energy eigenstates depends on their transverse position: 

A~b+(x) = _+a sin(qx) (48) 

where a is a constant containing the light field strength and the interaction time, 
and q = k cos (a). Because the atoms are in the ground state of the two-level 
model system before the interaction and this ground state does not coincide with 
an asymptotic energy eigenstate for a light field exactly on resonance, the atomic 
state has to be projected onto the dressed states. After the interaction, these 
states, with their different acquired phase shifts, have to be re-expressed in the 
bare state basis of the atom. The resulting total transverse wave function of the 
atom after the interaction takes the form 

�9 (x) = cos[a sin(qx)] [g) + i sin [a sin(qx)] [e). (49) 

With this procedure, atoms in the ground state leaving the interaction region 
are diffracted in orders having a transverse momentum corresponding to even 
multiples of hq, whereas the atomic component in the excited state populate the 
odd momentum orders. The laser is tuned on-resonance; therefore, half of the 
atoms leave the interaction region in the ground state and half in the excited state. 

Only the atoms in the excited state emit a photon, so the observed visibility 
for the diffraction pattern has to be corrected for the contribution of atoms leav- 
ing the interaction zone in the ground state. This correction was carried out in a 
reference diffraction experiment, where the light field was detuned from the 
atomic resonance. In this case, the asymptotic energy eigenstates of the atom 
light interaction are the bare states, and for sufficiently large detuning, the atoms 
travel adiabatically through the light field. Therefore, the atoms leave the inter- 
action region in the ground state, and for a proper choice of the light field inten- 
sity and detuning, the ground state contribution to the diffraction patterns with 
the resonant laser is reproduced. 

Figure 10 shows two pairs of measured atomic diffraction patterns for differ- 
ent standing light wave periods. In both Figs. 10a and 10b, the visibility for the 
laser on-resonance is smaller due to the loss of transverse coherence by sponta- 
neous emission. For a larger period (Fig. 10b), the diffraction orders are more 
closely spaced, since the far-field pattern represents the momentum distribution. 
Also a reduction of the visibility for the laser off resonance at a large standing 
wave period can be seen, which is due to the limited momentum resolution in 
the experiment corresponding to 0.5 hk. To correct for that contribution to the 
visibility and take into account the finite size of the diffraction pattern, we nor- 
malized the visibility of the excited state component to the visibility of patterns 
with an off-resonant laser. This final visibility functien for atoms in the excited 
state is plotted in Fig. 10c as a function of the standing wave period. Experimen- 
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FIG. 10. Experimental diffraction patterns for a standing wave period of 0.55 A in (a) and A in 

(b). The diffraction orders are more closely spaced with increasing period and the visibility is re- 
duced for an on-resonant laser. (c) Normalized visibility of the diffraction patterns. The solid line 
shows the theoretical prediction for the transverse coherence function after one spontaneous emis- 
sion. 

tally, we have access to  g(1)(x) for x ranging from h/2 to 3h/2, corresponding to 
incident angles a varying from 0 ~ to 70 ~ of the laser beam on the mirror. The 
solid line in the figure shows the one-dimensional Fourier transform of the angu- 
lar emission characteristic for the atomic transition 2 3P 2 - 2 3S~, taking into ac- 
count the excitation with linearly polarized light. This theoretical description ex- 
plains the measured visibility within our experimental accuracy. A similar study 
was carried out by measuring the loss of visibility of fringes in a three grating 
atom interferometer [55]. 

f .  CORRELATION EXPERIMENTS 

In the experiment described previously, we observed the momentum of the atom 
after a spontaneous emission of a photon and ignored the information carried 
away by the photon. The uncertainty in the momentum of the emitted photon 
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was transferred to an uncertainty of the atom, leading to a loss of coherence of 
the atomic wave function. 

In a more general picture, the spontaneous emission process may be de- 
scribed in a larger space, where not only the atomic wave function is regarded 
but also the wave function of the photon. To experimentally observe the entan- 
glement of  this two-particle system, one has to carry out correlation experiments 
between atoms and photons. 

One such an experiment would be an implementation of Heisenberg's  
gedanken experiment (see Fig. 11). Excited atoms are diffracted from a double 
slit with a slit separation d >> A. Therefore, by detecting the photon with a mi- 
croscope, in principle one can tell through which of  the two slits the atom went. 
As a consequence, the interference should be destroyed in a correlation experi- 
ment, where atoms and the corresponding photons are detected. 

If the resolution of the microscope is reduced by closing its aperture, a de- 
tected photon will contain more and more information about the momentum of 
the photon, and information about its origin will vanish. Analogously to the dis- 
cussion of  "Einstein's recoiling slit" gedanken experiment, in the case of an al- 
most closed aperture, the photon is detected in a momentum basis and no 
Welcher Weg information is available. In such a basis, the two-particle wave 
function becomes disentangled and the interference pattern should show maxi- 
mum fringe visibility, as if no spontaneous emission had occurred. 

For such an experiment, once again, the excitation process must be controlled 
carefully so as not to destroy the coherence properties of  the matter wave func- 
tion. An excitation process that just shifts the momentum of the atom by one 
photon recoil hk in a deterministic way involves rapid adiabatic passage [56] in a 

FIG. 11. Experimental setup to observe conditional diffraction patterns. The photon could be 
measured either directly in a momentum basis without collection optics or in a position basis using a 
microscope. 
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classical light field with a detuning chirp induced by the atom passing a curved 
wave front. For experiments with fast atomic beams of metastable helium, the 
excitation efficiency can be higher than 96% [57]. 

Furthermore, a correlation measurement between atoms and photons will 
be repeated for many pairs in an actual atomic beam experiment. Then, a 
clear association between an atom and its corresponding spontaneously emit- 
ted photon has to be ensured. The way we achieve this pair identification in- 
volves a time of flight measurement for each atom being emitted from a 
pulsed source. Thus, the instant of the spontaneous emission of a photon can 
be calculated back from the velocity for each atom, given the longitudinal po- 
sition of the spontaneous emission region. Comparing detection times tph of 
photo events with arrival times tat of atoms, we are able to identify corre- 
sponding atom-photon pairs. 

Major experimental problems for the atom-photon pair identification are the 
properties of near-infrared single photon counting devices, mainly their large 
dark count rate and low quantum efficiency. Although devices are available with 
quite good performance for optical wavelengths around 800 nm, single photon 
counting at the wavelength for the optical transition is still a difficult task for he- 
lium (A = 1083 nm), which i smdue  to the long lifetime of the excited state and 
the large recoil velocity mextraordinarily suited for the two-particle state prepa- 
ration. Typical dark count rates are in the range of 1000 sec -t, while the quan- 
tum efficiency may reach a few percent for silicon avalanche diodes. The actual 
atom-photon correlation signal then sits atop a large background of artificial co- 
incidences. To distinguish the true correlations from the background, one can 
use the fixed ratio between the time delay tph between the release of an atom 
from the source and the spontaneous emission of a photon and its time of flight 
/at from the source to the atom detector. 

Using an experimental setup like that in Fig. 11, Fig. 12 shows a two-dimen- 
sional record of all registered pairs (tph,tat) for a large number of source pulses, 
which were normalized to a flat distribution of atomic arrival times /'at" This fig- 
ure is dominated by artificial coincidences, forming a flat distribution for the 
photon time tph in the interval from 0 to 1450/xsec. On top of that, the detection 
of the spontaneously emitted light from the atoms can be observed for photo 
event times, tph, around 500/xsec, reflecting the atomic velocity distribution. In 
this region, one can recognize a diagonal line along which pair events tend to be 
more probable than for the other regions in this plot. The slope of this line repre- 
sents exactly the length ratio between source-photodetector and source-atom 
detector, and its appearance indicates that, with such a time-resolved detection 
technique, atom-photon pair identification is possible. 

With this tool of pair identification in hand, one should be able to investigate 
conditional atomic interference patterns with a detector giving both arrival time 
and position information for the individual atoms. 
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FIG. 12. A record of pair events of atoms and photons. Pairs tend to occur more often for a 
line for a fixed detection time ratio /ph/tat -- 0.55 than for other ratios, indicating a correlation of 
corresponding a tom-pho ton  pairs. The distribution is normalized to a constant density of atomic 
arrival times /at" Furthermore, at tph = 500 /xsec, an uncorrelated fluorescence signal is visible, 
because the atom detector efficiency is not unity in this plot. This signal reflects the atomic ve- 

G. TRANSITION TO A DISCRETE SPACE FOR THE PARTICLES 

Up to now, the entanglement between atoms and photons was discussed in a 
continuous space, such as momentum or position space. However, a simple 

�9 1 method can prepare the spontaneously emitted photon and/or atom into spln-~ 
spaces. The preparation technique for the atom was used already in the previous 
section. An atom having passed the coherently illuminated double slit is in a lin- 
ear superposition of having passed one of the two slits. 

In a similar way, the emitted photon may be treated as in a linear superpo- 
sition of two origins (s,s'),  if their separation is larger than the optical wave- 
length of the photon. Such a photon can be transferred by some imaging optics 

�9 1 into a pair of optical fibers f, f '  and may be treated there as a spln-~ particle. 
Such a quantum mechanical system allows for a convenient state manipulation 
with widely established classical optical components like retarders and 
Mach-Zehnder  interferometers [58]. 

Assuming a spherical emission characteristic for the atomic transition and 
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unity coupling efficiency to the optical fibers, the combined system formed by 
the atom and the photon is then in an entangled state: 

1 
~I, = ~ (Is> If> + Is'> If'}). (50) 

In the following, we will discuss briefly some experiments with particles in 
those discrete spaces that can be realized with atom optical methods. 

H. TwO-PARTICLE EXPERIMENTS 
�9 1 Probably the most prominent experiment with a pair of entangled spm-~ parti- 

cles goes back to a suggestion of Einstein, Podolsky, and Rosen (the EPR exper- 
iment), where quantum mechanics predicts a violation of Bell-type inequalities 
[59]. To test local hidden variable theories, the detection of both the atom and 
the choice of the measurement basis for the photons should occur in two space- 
like regions. Such experiments were first performed with a pair of photons emit- 
ted from a cascading atom [60]. Today, EPR experiments are very efficiently 
performed with photons from parametric downconversion [58]. 

The atom-photon state (Eq. 51) is exactly a representation of the Bell state 

1 
v~ (It1' > + I$$ >) (5~) 

. 1 in a product space of two spm-~ Hilbert spaces. Once the photon propagates in 
the fiber pair, the setting of the phase shifters X and q5 determines the basis [ d -+) 
on which the photon part of the entangled state will be projected. With these 
phase shifters, a unitary transformation in the two-dimensional Hilbert space of 
the photon can be realized in the following way: 

ixsin  e ix cos  

e cos~ -s ,n~ 
(52) 

f D 
1 +__ sin ~b cos (X + ~  d) 

I(Px) 
L 0 

for Ipxl < hk 

elsewhere 
(53) 

where Px is the transverse atomic momentum and k is the modulus of the wave 
vector of the photon. 

The projection of the photon part of the entangled state on the detector states 
]d +-) leads to a general conditional atomic momentum distribution: 
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The visibility of the conditional double slit pattern is given by sin ~b, and the 
period of the interference pattern by 2zr/d. The phase X in the photon detection 
scheme is directly transferred into the atomic interference pattern, reflecting the 
entanglement of the atom-photon state. The term (px/h)d represents the atomic 
phase, which is not freely variable in the discussed setup. To check the perfect 
correlation of the system, it is sufficient to record the conditional interference 
pattern and verify its full visibility, l 

The envelope of the conditional interference pattern is obtained by the projec- 
tion of the radiation pattern on the transverse axis. This reflects the fact that the 
photon can transfer, at most, one photon momentum hk in the transverse direc- 
tion. 

Surprisingly, the presence of the slit for the atom is not necessary at all; the im- 
age of the fiber mode at the position of the atomic beam defines which of the pho- 
tons are actually transported to the detection unit for the photon. Then, the width 
of those "virtual slits" is given by the uncertainty of the origin of the radiation 
mode coupled to one fiber. In the case of nonspherical radiation patterns and lim- 
ited collection efficiencies, the effective radiation modes seen by the fibers are 
changed. This will affect the envelope of the interference pattern, and if the over- 
lap of the two modes does not vanish, its visibility should be reduced. 

In essence, the detection of the spontaneously emitted photon in a certain ba- 
sis leads to a conditional double slit interference pattern without the physical 
presence of a double slit. This represents Popper's historical "virtual double slit" 
experiment for atoms [61 ]. 

One difficulty in an atom-photon EPR experiment would be the very differ- 
ent propagation velocities of atoms and photons from the origin of the EPR pair 
to the detection systems. Therefore, the photon must be delayed by nearly the 
atomic transit time to the detector, for example, in a reasonably long fiber (about 
100 km for our current experimental parameters), before the choice of the mea- 
surement basis and the detection is carried out (see Fig. 13). The actual choice of 
the base in which the photon is detected can be performed with a Mach-Zehn- 
der interferometer, followed by single-photon detectors (see Fig. 14). 

I. THE PREPARATION OF MULTIPLE-PARTICLE ENTANGLED STATES 

Up to now, we discussed the use of a single spontaneous emission for the gener- 
ation of a pair of entangled particles. However, the emission process following a 
nondissipative excitation of an atom can be applied more than once, causing the 
generation of additional photons that are still entangled with the atom. As the 
single "splitting process" of a photon from an atom is very efficient, such a 
method therefore allows for efficient generation of several entangled quantum 

~An idealized setup would contain a variable atomic phase shifter and a recombination of the two 
paths of the atom using a beam splitter. 
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FIG. 13. A possible experimental setup for an EPR experiment between an atom and a photon. 
The spontaneously emitted photon is coupled into a pair of fibers to allow the atom to get close to a 
momentum detector. Then, a measurement basis for the photon is chosen and the particles are de- 
tected in two spacelike regions. 

particles. Those  particles are dist inguishable,  and the state space for such a sys- 
tem is considerably  larger than the mult iple-par t ic le  space for indis t inguishable  
particles. There  has been recent  interest in such systems in the context  of quan- 
tum computa t ion  and a great interest in physical  sys tems that can produce highly 
entangled states with a high efficiency, whereas  the successive downconvers ion  
of photons seems not to be advantageous  for this purpose because of the low 
conversion efficiency in nonl inear  crystals.  

In Ref. 13, it is shown that the en tang lement  of  more  than two particles leads 
also to a new and in some sense more  striking version of  Bel l ' s  relat ionships for 
the so-called G H Z  states. 

Fol lowing the discussion in the previous section, two sequential ly scattered 

FIG. 14. The photon is in a linear combination with running waves in the two fibers, f, f ' .  The 
choice of the retardation angles X, ~o allows one to detect the photon in an arbitrary basis in the spin- 

space at the photodetectors d, d'. 
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photons (see Fig. 15), which are both detected by a fiber pair lead to a three par- 
ticle state of the following form: 

1 
= ~ (I s) lf~ l f2) + I s ')  If'l If'2)) (54) 

where f~ 2 and f '  represent the basis states of the respective scattered photon. 
, 1 ,2  

This is a representation of the GHZ state 

1 
(ITTT> + (55) 

�9 1 of three entangled particles, each living in a spm-~ Hilbert space. 
In this situation, the conditional atomic momentum distribution and, there- 

fore, the far field diffraction pattem has the following form: 

l(Px/h) = [1 ___ sin ~b 1 sin q~2 cos(xl +X2 +kad)] (56) 

where the sign _+ depends on the combination of detector events chosen. If, for 
example, d~ and d 2 fire, the sign is negative. If X~ + X2 + Px/hd is chosen to be a 
multiple of zr, the photons and the atoms are perfectly correlated and a test of 
Bells theorem without inequality [ 13] should be possible. 

The proposed scheme seems experimentally realistic if, for example, a near- 
infrared transition in metastable rare gas atoms is used. In this case, the required 
integration times for a signal to noise ratio of 1 in the conditional atomic inter- 
ference pattern is on the order of minutes if realistic collection and detection ef- 
ficiencies for the emitted photons and present atomic beam intensities are con- 
sidered. 

FIG. 15. Extended scheme for the preparation of a GHZ state by scattering two photons from one 
atom that is delocalized in the transverse direction. The two photons are detected by four detectors 
d~, 2 through two Mach-Zehnder interferometers with variable phase shifters Xi,2 and ~bl, 2. 
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V. Scheme for an Atomic Boson Laser 

A. A NEW SOURCE FOR COHERENT ATOMIC DE BROGLIE WAVES ? 

Experiments in atom optics typically involve the following three ingredients: a 
source of atoms, an interaction region (containing optical elements such as 
lenses and beam splitters), and a detection region. During the past few years, 
progress has been rapid on the development of optical elements (see Ref. 1 for a 
review), whereas progress has been less dramatic on the source end. Laser-cool- 
ing techniques have produced bright, cold, and slow atomic beams, which could 
perhaps be considered sophisticated atom-optical lamps. Naturally, then, look- 
ing at the revolution that the laser has caused in light optics, one would like to 
develop coherent atom sources that could play a similar role in future atom op- 
tics as the laser does in light optics. Such a coherent emitter of de Broglie waves 
could potentially have a tremendous impact on the field of atom optics. 

In this section, we present a scheme that could lead to the realization of such 
an "atom laser," which is based on quantum statistical effects in a system of 
identical bosons. The atom laser considered here is related to Bose-Einstein 
condensation (BEC) [ 14-16]. In fact, other schemes for realizing an atom laser, 
based on BEC, have been proposed by several authors [17]. Here, we take an ap- 
proach more closely analogous to the well-known optical laser [ 18, 19]. Instead 
of the usual approach of cooling toward the BEC phase-transition point, we start 
from an atomic de Broglie wave resonator and seek to overcome losses by gain. 
Whereas cooling methods usually yield ensembles in thermal equilibrium, we 
show that the atom laser yields nonthermal ensembles. 

B. ATOMIC DE BROGLIE WAVE CAVITIES 

The backbone of an optical laser is usually formed by the optical cavity. Such a 
cavity supports a certain set of modes with a discrete frequency spectrum, which 
results from the boundary conditions imposed on the electromagnetic field on 
the mirror surface. Similarly, an atom resonator imposes boundary conditions on 
the atomic de Broglie wave; that is, on the wave function describing the center- 
of-mass (CM) motion, leading to a discrete energy spectrum of trapped atom 
states. These trapped CM states serve as the modes of the atom laser. 

In principle, any atom trap could be discussed in terms of its discrete CM 
states. In practice, however, this mode structure becomes important mostly when 
the confinement is strong and hence the mode spacing large. We concentrate 
here on atom resonators constructed from potentials due to the light shift in blue 
detuned near-resonant laser light. The induced dipole force then pulls the atoms 
into the dark regions of the light field. Confining the atoms in the dark has the 
important advantage of minimizing the photon scattering rate and hence also res- 
onant dipole-dipole interaction between the atoms. The reason to use light at all 



206 C. Kurtsiefer et al. 

rather than, say, a magnetic trap is to achieve state selectivity: A potential can be 
created that affects only atoms in a given internal state and not atoms in other 
states. This feature plays an important role in our atom lasing scheme. The use 
of light also allows stronger confinement than in a magnetic trap. 

An atom resonator that closely resembles the well-known Fabry-Perot  res- 
onator, as used in most optical lasers, was proposed by Wilkens et  al. [62], see 
Fig. 16. The mirrors in this case are Gaussian-shaped potential barriers, created 
with blue-detuned Gaussian laser beams. The transmissivity of the mirrors, de- 
termined by the tunneling probability, is extremely low except for atoms with an 
energy close to the top of the barrier. Consequently, the Fabry-Perot  resonances 
are extremely narrow and loading atoms into it through the mirrors seems im- 
practical. Nevertheless, in combination with the loading scheme we will discuss, 
this resonator may provide a useful atom laser cavity. 

It is also possible to replace one of the mirrors with an evanescent wave and 
let gravity perform the task of the second mirror. In principle, this so-called 
gravito-optical cavity provides an example of a dark atom resonator [63]. How- 
ever, experiments of this type so far were performed entirely in the classical do- 
main, where one observes atoms bouncing on the evanescent wave as if on a 
trampoline [64-66]. 

Quantized atomic motion has been observed in optical lattices [67-72],  
where atoms are very strongly confined on a subwavelength scale. These first ex- 
periments were on "bright" lattices, where atoms are trapped in the intensity 
maxima of a light field; that is, the antinodes in the interference pattern of sev- 
eral light beams. In bright lattices, the atoms interact strongly through resonant 
dipole-dipole interaction. Therefore, to observe quantum collective effects, 
"dark" lattices are much more promising. Recently, dark lattices have been real- 
ized where atoms were trapped in states that do not couple to the light field [73, 
74]. Another possibility is to use blue-detuned light and actually trap atoms in 
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FIG. 16. F a b ~ - P e r o t  resonator for atoms as proposed by Wilkens et al. Gaussian laser beams 
serve as atomic mirrors (from Ref. 62). 
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places where the light intensity vanishes. We consider here the latter possibility, 
in particular for the case that the light is far off-resonant. We then obtain essen- 
tially blue-detuned versions of the so-called far off-resonance trap [75]. 

In the low saturation limit, s(r) << 1, the light shift is proportional to the local 
intensity: U(r) = - 1/2s(r)hA, with the saturation parameter defined as 

R2(r) /2  R2(r) 
s(r) ~ A2 + F2/4 ~ 2A 2 . (57) 

Here R(r )  is the Rabi frequency at the CM position r of the atom and 
A = w 0 = w/~ is the detuning between the laser frequency co L and the atomic tran- 
sition with frequency 60 o and line width F. The approximate equality in Eq. (57) 
applies to the far off-resonant situation considered in this chapter. With (large) 
blue detuning, A < 0, we have U ( r ) >  0, so that the atoms can be confined to 
dark spots. 

Near intensity minima, the trapping potential is effectively harmonic. In a 
standing wave, where U ( r ) -  - ( h R g / 4 A )  sin 2 (kLx), a harmonic approximation 
around the nodes yields a trap vibrational frequency lI  = RoV'wrec/IA], where 
R 0 is the peak Rabi frequency and Wr~c = hkZ/2M is the recoil frequency, with k c 
the laser wave vector and M the mass of the atom. Strictly speaking, the eigen- 
states of the potential are delocalized Bloch states. For a sinusoidal potential, 
Schr6dinger's equation takes the form of Mathieu's equation [76]. We here make 
the approximation of independent harmonic oscillators located in the field 
nodes. The possibility of using Block states as the atom lasing modes remains an 
intriguing subject for further study. 

C. ATOM GAIN: EMISSION STIMULATED BY ATOMS 

In an optical laser, gain has its origin in stimulated emission, which at first sight 
would seem impossible for an atom laser. It is important to realize, however, that 
no new atoms need be created, they must be only brought into the same quantum 
state. Consider a two-level atom (assumed to be a boson) in the excited state. 
The emission of a photon by this atom can be stimulated in two ways; namely, 
either because the optical mode into which the photon is emitted was already oc- 
cupied or because the final state of the ground state atom was already occupied, 
see Fig. 17. The latter possibility can produce gain on an atom resonator mode. 

The principles of our atom laser are illustrated by Fig. 18. The scheme uses 
four different internal atomic states, labeled la), Ib), ]e), and Ig), with la) and [e) 
(meta-)stable. Such level schemes can be found, for example, for rare gas or al- 
kaline earth atoms. The transition ] g ) ~  le) is driven by a far blue-detuned laser 
so that the resulting ac Stark shift ("light shift") creates potential wells for state 
Ig). We neglect the opposite potential acting on le), the radiative width of this 
state being larger than the induced potentials. 
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Pho tons  A t o m s  
FIG. 17. Emission of a photon (le)---" Ig) + photon), stimulated by (a) identical photons (optical 

laser) or (b) identical atoms that occupy the final state of the emitting atom (atom laser). In the latter 
case, the upward arrow denotes a transition of the electromagnetic field from the vacuum state to a 
state with one photon. 

Shown in Fig. 18 is the potential created by a standing wave laser field. The 
wells, separated by one-half laser wavelength, AL/2, confine atoms to better than 
A L (Lamb-Dicke limit, LDL). We consider in particular the 3D generalization, 
an optical lattice of quantum dots [69-71].  We label the bound levels for the 
center-of-mass motion in the wells (the modes of the atom laser) by ]L,). This is 
shorthand for (light-shifted) internal state Ig) plus three vibrational quantum 
numbers Iv x, Vy, v z) for the spatial directions. Quantum statistical effects in a 
cooling process in the LDL with a fixed number of atoms (closed system) have 
been discussed by Cirac et al. [77]. Here, we consider an open system, where 
atoms are continuously leaving the trap and are replenished by new ones. 
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FIG. 18. Principle of the proposed atom laser. After being precooled in state [a), atoms are ex- 
cited into le), from where they can decay into one of the bound levels Iv) in an optical lattice; S indi- 
cates Franck-Condon factors, K are loss rates. The transition into I1.,) can be stimulated by the pres- 
ence of identical atoms (bosons) in Iv). 
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Gain is created by pumping atoms into the modes Iv) out of a cold reser- 
voir in state la), produced by laser cooling on the closed transition l a ) ~  Ib). 
The pumping process proceeds by excitation from la) to le) at a rate r, fol- 
lowed by decay into one of the modes Iv), under emission of a photon. It may 
be necessary to use a 1D or 2D array of quantum dots, so that the emitted 
photon can leave the trapping region without being reabsorbed. If reabsorp- 
tion can be neglected, population inversion between Ig) and ]e) is not re- 
quired. The transition [ a ) ~  [e) is assumed weak so that spontaneous decay 
from le) back to la) is negligible. 

Initially, when no population is present in the modes Iv), the transitions from 
le) into Iv) will be spontaneous. As population builds up, the probability to end 
up in Iv} will be enhanced by a factor 1 + N ,  if N identical bosonic atoms are 
already present in Iv). This factor arises from the permutation symmetry of the 
many-boson wave function, which must be totally symmetric [77]. When the 
pump rate r exceeds a threshold value r 0, such that the gain exceeds the loss rate 
K for a given mode, we expect a buildup of a macroscopic population ( N  >> 1) 
in that mode. 

D. CAVITY LOSS 

We assume that the scattering of a trap-laser photon always leads to the loss of 
the atom from the trap and that this is the major loss mechanism. We treat here 
only the density-independent or "small signal" loss, assuming that these deter- 
mine the lasing threshold. Density-dependent losses also will occur due to elas- 
tic and inelastic collisions between the atoms; these processes are not included 
here. 

In the low-saturation limit the photon-scattering rate is F s(r)/2. Making a har- 
monic approximation around the field nodes, the loss rates K due to photon scat- 
tering may be estimated by the mean value (s(r))~, 

Kv ~ 21al V i -Jr- -~ i" ( 5 8 )  
' ~  , , t x y z  

Substituting typical numbers, F/2rr = 5.5 MHz, A/2rr = - 2  THz and 12/2rr = 
30 kHz, we find, for the ground state, K 0 = 0.4 sec-1. 

Note that the harmonic oscillator quality factor, Q = I)/K o = 5 • 105, is or- 
ders of magnitude larger than in red-detuned optical lattices ( Q - - - 1 -  10) 
[67-69]. Atoms in higher lying harmonic oscillator levels have a shorter trap- 
ping time than those in lower lying levels, because they penetrate deeper into the 
light field and hence scatter a photon more quickly. This selective removal of 
atoms from the higher levels provides a natural mode-selection mechanism. As a 
result, a uniform distribution over all levels (T = oo) at time t = 0 should evolve 
into a distribution at time t = r with effective temperature T ~ r-1. 
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E. ATOM MODE MATCHING 

The probability that an excited atom in state ]e) ends up by spontaneous emis- 
sion in a "target" mode Iv) can be considered a problem of "atom mode match- 
ing." We find that mode matching is best for the lowest bound level 10). This can 
be expressed in a Franck-Condon (FC) factor, which describes the overlap of 
the momentum distribution of the cold reservoir with the available bound states. 
The FC factor for a transition from the momentum state p (in electronic state le)) 
into level Iv) is given by the overlap Sup = [ [ ( p  - hklv)12]k. Here, hk denotes the 
recoil due to photon emission and [ . . . ] k  denotes an average over the dipole-ra- 
diation pattern. We neglect the recoil, assuming that the reservoir temperature is 
well above the recoil temperature htorec/k B and average the FC factors over the 
thermal momenta p. Since the atom can fall into any of the wells of the lattice, it 
is convenient to normalize the momentum states Ip) in a box with a volume of 
one unit cell. The same normalization volume applies to the pump rate, so that r 
is the pump rate per unit cell. 

For a one-dimensional standing wave, with period AL/2 and in the harmonic 
approximation, the thermally averaged FC factors are 

Sv =-(Svp) = A c ~/1 + ha /2kBT  ~ (H2v(~))' (59) 

where AdB----h/V'27rMkBT is the thermal de Broglie wavelength, H ( ~ )  are Her- 
mite polynomials, s c = p/~/Mhf~, and ( . . . )  indicates a Gaussian average with 
(~) = 0 and (s c2) = (2 + hl~/ksT) -1. Note that S is inversely proportional to the 
unit cell size AL/2. For a 3D lattice, the FC factors are the product of the FC fac- 
tors for the three spatial directions. The FC factors are largest for transitions into 
the low-lying states. For example, So/S ~ = 1 + hl)/2ksT,  so that for temperatures 
ksT<__ hf~ transitions into the CM ground state dominate. A typical number for 
the ground state FC factor (in 3D) is S000 ~ 10 -2. 

A close analogy exists between the FC factors and the so-called spontaneous 
emission coefficient /3 of an optical laser. The latter describes the fraction of 
spontaneous emission that couples into the lasing mode [78]. This parameter can 
be approximated by 

1 (A/n) 3 A 
/3 = 477" 2 V AA (60) 

where A is the wavelength, AA is the emission line width, n is the refractive in- 
dex, and V is the mode volume. Both/3 and the FC factors are inversely propor- 
tional to the mode volume, measured in optical wavelengths or in de Broglie 
wavelengths, respectively. Further comparison of the two expressions suggests 
that the temperature in Eq. (59) plays a role similar to the linewidth of the gain 
medium. Typical values for/3 are in the range 10-5_ 10-9. Much effort has been 
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devoted  recent ly  to deve lop ing  micro lase rs  such tha t /3  approaches  unity, which  
wou ld  cor respond  to a th reshold less  laser  [78]. 

E NUMERICAL MODEL 

We have invest igated the a tom laser  jus t  ou t l ined  numer ica l ly .  Several  basic fea- 
tures can be obta ined  f rom a set of  s imple  evolu t ion  equat ions  for the m e a n  oc- 
cupat ion  n u m b e r s  N :  

v 

w m 

N v = _ K v N  v + ['NeSv(1 + N v) (62) 

where  Ne is the mean  popula t ion  of  ]e). The  s u m m a t i o n  in Eq. (61) runs over  the 
bound  levels and ~ S < 1 (not all levels are bound) .  Note  that the rate for a tran- 
sition into level I~,) contains  the Bos6 e n h a n c e m e n t  factor 1 + N .  This  indicates 
the similari ty to s t imulated emiss ion  in optical  lasers, where  in that case N de- 
notes the n u m b e r  of  photons  in laser mode  ~,. 

In Fig. 19a, we show an example  d i sp lay ing  threshold  behav io r  and m o d e  
5 compet i t ion  be tween  two modes  with S O = 0.01, Sj = 0.95 S 0, and K l -- ~ %. The  

s teady-s ta te  solut ion of  Eq. (62) is shown as a funct ion  of  the no rma l i zed  p u m p  
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FIG. 19. Steady-state numerical results: (a) Mean occupation numbers No. ~ of two competing 
modes, with S o 0.01, S 1=0.95S 0,K~ 5 = = ~ %. Mode 0 reaches threshold at pump rate r = r o --Ko/S o 
and has a slope efficiency above threshold of d N / d r  = K o ~. In the absence of mode 0, mode 1 would 
have its lasing threshold at r/r o = KISo/KoS ~ = 1.75. (b) Probability distribution P ( N  o) for the occupa- 
tion of a single mode with S o = 0.01, when no other modes are present. 
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rate r/r o, where r 0 = % / S  o is the threshold pump rate for mode 0. With % = 0.4 
sec-~, we have r 0 = 40 sec-1, which we estimate to be three orders of magnitude 
beyond the present experimental state of the art. The curves are well approxi- 
mated by 

N0 ~ ~ 1  r 1 + - 1 + 4S 0 (63) 
zo o 

] N l = rl 1 + - 1 (64) 

with r 1 = KI/S 1. Equation (63) is exact in the one-mode case and a good approxi- 
mation in the two-mode case for the parameters chosen. Far above the threshold, 
the slope efficiency is d N / d r  = Ko 1. Mode competition is evident from Fig. 19a, 
because in the absence of mode 0, mode 1 would have its lasing threshold at 
r/r o = K1So/%S1 = 1.75. In the presence of mode 0, the buildup of population N 1 
is suppressed. This is expressed directly by Eq. (64), which is exact within the 
model of Eqs. (61) and (62) and implies N 1 < (r l /r  o - 1)-1, irrespective of the 
pump rate r (here, N 1 < 1.33). 

Information about statistical distributions is obtained by simulating the evolu- 
tion of the density matrix PN, where N = {N000, N~0 o . . . .  } stands for a config- 
uration with N0o 0 atoms in state Iv x, Vy, Vz) = 10, 0, 0), and so forth. Since F >> r, 
K, the pumping process is described as a direct transfer ] a ) ~  Ig), bypassing the 
intermediate state le). We propagate PN by iterating p(")= L P p  ("-  ~, mapping 
the density matrix p of the trapped atoms just before the arrival of the nth atom 
onto the density matrix just before the arrival of the (n + 1)st atom. The super 
operator s describes loss during the time interval between successive arrivals 
of two atoms. The pump super operator P describes the addition of one new 
atom to the configuration N. The explicit form of L and P will be published 
elsewhere [79]. 

In Fig. 19b, we show the steady-state result of this procedure for the case of 
only one mode, with S O = 0.01. The distribution function P(No)  for the occupa- 
tion number N O is shown, for three different values of the normalized pump rate 
r/r o. Like in an optical laser, the distribution is super-Poissonian below threshold 
( r/r o = 0.9) and becomes Poissonian far above threshold (r/r o >> 1). 

G. LIMITATIONS 

1. In terac t ions  

An important  assumption of our model  is the omission of the interaction be- 
tween the atoms. Concerning electronic g r o u n d - g r o u n d  interactions, this 
ideal gas approximat ion is justified as long as the average pair interaction 
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energy per particle does not exceed hl~. A simple estimate shows that this 
condition is well satisfied for a number of atoms up to the order of lo/a, 
where l 0 is the characteristic size of the trap ground state and a the s-wave 
scattering length. This ratio is much larger than unity and varies widely, de- 
pending on the geometry (l 0) and choice of atom (a). Concerning collisions, 
the ideal gas approximation is justified provided thermalization due to colli- 
sions is slower than the pump process. If the thermalization is faster than 
the pump process, the mechanism leading to quantum degeneracy in the 
"lasing" mode can be looked upon as a continuous Bos6-Eins te in  conden- 
sation in an open system. 

2. Photon Reabsorption 

Another limitation that has, so far, been left out of the description is that of pho- 
ton reabsorption. The photon emitted in the transition [e)----> [g) can be reab- 
sorbed by atoms in the lasing mode, which are then lost. The reabsorption prob- 
lem seems to be especially severe for mode volumes larger than h 3 [19, 80]. One 
way around this problem could be to choose a one- or two-dimensional geome- 
try, so that the emitted photon has a large solid angle where it can escape with- 
out encountering any absorber atoms. Such low-dimensional structures perhaps 
even could be loaded quite efficiently using an atomic trampoline [66], if the 
pumping process ( [ a ) ~  le) in Fig. 18) takes place in the classical turning point 
of the atomic trampoline. 

H. ATOM LASERS VS. BEC 

The atom laser as described here displays typical laserlike features, such as 
threshold behavior, mode competition, and Poisson statistics above thresh- 
old. For use as a coherent source of de Broglie waves in atom optics, the 
most important feature is the occupation of the ground state by a macro- 
scopic number of atoms. This raises the question of how the atom laser 
compares to Bose-Eins te in  condensation, which also produces a macro- 
scopic occupation of the ground state of a trap. Whereas in B EC atoms are 
driven into the ground state by collisions that take place during the cooling 
process, in the optical laser this is taken care of by a stimulated optical 
process. The atom laser therefore tends to produce a situation of thermal 
nonequilibrium. In principle, it should also be possible to obtain atom las- 
ing in a trap level other than the ground level, such as by creating extra loss 
for the ground level, so that its lasing threshold is raised. A detailed com- 
parison of the atom laser and BEC as sources in atom optics remains a sub- 
ject for future study. 
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I. Introduct ion 

I n t e r f e r o m e t r y ,  tha t  s u p r e m e l y  e l e g a n t  a n d  p r o f o u n d l y  p r a c t i c a l  pa r t  o f  c o n v e n -  
t iona l  op t i c s  is d e e p l y  e n r i c h e d  b y  the  a d v e n t  o f  n e u t r o n  a n d  a t o m  i n t e r f e r o m e -  
t ry  fo r  s eve ra l  r e a s o n s .  F o r  e x a m p l e ,  the  s h o r t e r  de  B r o g l i e  w a v e l e n g t h  o f  m a s -  
s ive p a r t i c l e s  m a k e s  p o s s i b l e  n e w  d e v i c e s  s u c h  as the  m a t t e r - w a v e  g y r o s c o p e ,  1 
w h o s e  sens i t iv i t i es ,  in p r inc ip l e ,  fa r  e x c e e d  t h o s e  o f  the i r  e l e c t r o m a g n e t i c  p r e d e -  
ce s so r s ,  s u c h  as the  l a se r  g y r o s c o p e .  

~The first step toward such a device has been reported in Riehle et al. (1991), demonstrating the 
Sagnac effect for atoms. For a review on atom interferometric experiments, see, for instance, Adams 
et al. (1994). 
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Apart from the practical relevance of high-precision measurement of wave- 
lengths, interferometers have long been used in experiments testing the founda- 
tions of physics�9 A famous example is the disproof of the ether hypothesis by 
Michelson and Morley (1887) at the end of last century. 

These days, optical interferometers still play an important role in studying 
fundamental questions of physics�9 For instance, novel techniques in quantum 
and nonlinear optics open the possibility of generating photon pairs with the aid 
of parametric processes, which can be used for the study of second-order corre- 
lations. Examples of experiments include the measurement of single-photon tun- 
neling times, Einstein-Podolsky-Rosen-type experiments, and investigations of 
the dual (particle/wave) aspects of light. For a review, see Chiao et al. (1994). 

Atom interferometers offer the new and, from the perspective of this chapter, 
most interesting advantage that the interfering particles have internal structure 
such as the neutron spin or excited atomic states. The possibility of a differential 
interaction of the interfering beams with external quantities such as an electro- 
magnetic or a gravity field has led to fundamental experiments; for example, the 
Aharonov-Bohm effect (Tonomura, 1993), tests of the principle of equivalence 
in general relativity (Werner et al., 1979), and the demonstration of the spatial 

�9 1 47r symmetry associated with the spln-~ of neutrons (Rauch, 1995). 
As noted previously, the internal structure of the atom gives us an additional 

handle not available for photons, electrons, or even neutrons. It allows us to ex- 
perimentally readdress fundamental aspects of the quantum theory of measure- 
ment. Problems that used to be issues of only philosophical debates on the inter- 
pretation of quantum theory now, or at least in the near future, can be 
experimentally investigated owing to rapid progress in modem quantum and 
atom optics. 

One of the most fundamental problems is the principle of complementarity, 
which lies at the heart of quantum theory. Fundamental questions of its interpre- 
tation are these: How does the loss of coherence in a measurement of a quantum 
system come about? And, what role is played by macroscopic devices in a mea- 
surement on microscopic objects? This review summarizes a series of publica- 
tions of the last few years that addressed these problems and made specific pro- 
posals for their experimental realization. 

This chapter consists of two main parts. The first part, Section II, discusses 
the role of complementarity and Welcher Weg information in the context of two 
modem versions of Young's double-slit experiment (Scully and Drtihl, 1982; 
Eichmann et al., 1993; Scully et al., 1991). In a Ramsey-type setup, using two 
identical micromaser cavities (Englert et al., 1992), this discussion is extended 
and applied to a model of an atom interferometer whose experimental realization 
is under way. 

The second part, Section III, addresses the more practical aspect of how a 
macroscopic device with many degrees of freedom affects the measurement of a 
microscopic object. The macroscopic device is here a Stern-Gerlach interfer- 
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�9 1 ometer in which two partial beams of spln-~ atoms are macroscopically sepa- 
rated and then reunited (Englert et al., 1988; Schwinger et al., 1988; Scully et 
al., 1989). The question is, What in-principle and in-practice requirements must 
be placed on such a device that spin coherence is maintained? 

II. Fundamental Physics and Atom Interferometers 

A. INTERFERENCE AND INDISTINGUISHABILITY OF PATHS 

One criterion for interference is the indistinguishability of paths. If a system can 
evolve from an initial state [A) into a final state IB) via two or more intermediate 
states II), I = 1, 2, the probability for a detection of state B is 

p(B,A) = I<B[~,> + <nl~b2>l 2 
-Iq~,(B)] 2 + Iq,2(B)l 2 + 2 Re{ tp*(B)tP2(B ) } (1) 

where ]qJ~) and Iqt2) denote those parts of the final state that involve the corre- 
sponding intermediate states during their evolution. In an interferometer, ab- 
stractly speaking, one makes use of the term in the curly bracket in (1), since this 
term oscillates as some parameter, which characterizes the effective path length, 
is varied. 2 If the intermediate states, per the experimental arrangement, are dis- 
tinguishable, one has to add up the probabilities rather than the amplitudes asso- 
ciated with the individual paths; that is, 

p(B,A) = II~l(B)l 2 Jr-il]/2(B)I 2 (2) 

and the interference term disappears. This fact lies at the heart of quantum me- 
chanics and the quantum theory of measurement. With the tools of modem quan- 
tum optics, we are now in a position to study in detail and for specific experi- 
mental arrangements how the vanishing of the interference term in (1) is 
enforced; that is, how complementarity is enforced. 

Consider a modem version of Young's double-slit experiment as in Fig. 1, 
where a low-intensity light beam is scattered by two atoms kept in a trap. 
This system, which has been studied by Scully and Drtihl (1982) several years 
ago, has recently been realized in an experiment by Eichmann et al. (1993) 
that confirmed the complementary aspects of Welcher Weg information and in- 
terference. 

The scattering atoms have three levels and are excited by an incoming pulse 
from the ground state c to some upper state a, and interference fringes between 
photons emitted by atoms 1 and 2 on the a ~ b transition are sought. If the lev- 
els b and c are distinguishable, the scattered photon leaves information as to 
"which path" it took; that is, the atom that was excited and subsequently de- 

2More precisely, the interference term in (1) describes a first-order correlation. 
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")/1 
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2 

(a) 

7 

1 7 

b c 

(b) (c) (d) 
FIG. 1. Scattering of light by two trapped three-level atoms: (a) Photons Yl and 3'2 of an incom- 

ing pulse l are scattered from two atoms at sites 1 and 2 and produce interference fringes at screen. 
(b) Two-level atom is excited by pulse I and emits a photon y on the a ~ b transition. (c) Three-level 
atom with distinguishable lower levels b and c. Scattering event leaves atom in level b, providing 
Welcher Weg information. (d) Second pulse l' to auxiliary fourth level d and subsequent decay to c 
erases Welcher Weg information. 

c a y e d  to the i n t e rmed ia t e  level  b is d i s t i ngu i shed  f rom its par tner ,  w h i c h  is in the 
g r o u n d  state c. T h e  in te r fe rence  f r inges  wi l l  then  d isappear .  

The  re levan t  " w a v e  func t i on"  in this e x p e r i m e n t  is the quan t i ty  

qffr,t) = (01E~+)(r,t)lq,) (3) 

w h o s e  m o d u l u s  square  is the field co r r e l a t i on  func t ion  

G<~)(r,t) = (qjlE<-)(r,t)E<+)(r,t)[~O)= Iq,(r,t)l 2 (4) 
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that describes the interference pattern associated with the scattered light 
(Glauber, 1963) E{+)(r,t) and E(-)(r,t) are the positive and negative frequency 
parts of the scattering-field operators, and <01 denotes the vacuum photon state. 

If the states b and c are not distinguishable or if the atoms have only two lev- 
els a and b to begin with (see Fig. lb), then the final state after the scattering is 
given by 

[ 0 ) -  [b~,b2>[Y,) + [b,,b2>lY2)= I0,> + 102) (5) 
which is the sum of two individual terms corresponding to the two different pos- 
sibilities of scattering the photon off either atom. Here, [bl,b2) indicates that both 
atoms 1 and 2 are in the de-excited state [b). From Wigner-Weisskopf theory, 
one can derive the following approximate expression for the states [y~) and [Y2) 
of the scattered photon (Scully and Zubairy 1997), 

from which 

f gk e-ik'r lYj) = dk (c lkl -  o~) + iF/2 Ilk) (6) 

(O'E(+)(r,t)[~.)-- ~rjO(t -- ~)e-i(t-A~c )(C~ (7) 

is found for the wave function. In these expressions, rj denotes the position of 
the jth atom; Arj = [r - rj[, its distance from the detector screen at r; gk is a con- 
stant depending on the strength of the atom-field coupling; o9 is the atomic fre- 
quency; F is the atomic decay rate on the la>---" [b> transition; % is a constant; 
and l1 k) denotes a one-photon state with wave vector k. Possible normalization 
constants in (6) and (7) are absorbed in gk and %, respectively. 

The correlation function involves the modulus square of (7): 

G(')(r,t) = <b,,b2lb,,b2>[<OlE(+)(r,t)ly,> + <0[E(+)(r,t)[T2>l 2 

+ O(t - -~)O(t  - -~ )  e-r(t-~) e-~(t-~) 

1 )< eic(Ar,-Ar2)/(ArlAr2 ) + terms with 1 <--+ 2~ 
o) (8) 

J 

which is the interference pattern of Young's double-slit experiment generalized 
to the present scattering problem. 

If the atoms have two distinguishable lower levels b ~ c, as in Fig. l c, then 
the situation is different. The composed state after the scattering is then given by 

[0>-- Ib~,c2>l'y,> + Ic,,b2>ly2> (9) 
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in which the atomic states are entangled with the state of  the scattered photon. 
The correlation function in this situation is 

G(1)(r,t) : (b,,czlb~,c2)J(OlE<+)(r,t)13~,)l 2 + (c,,bz]c~,b2)l(OlEr +)(r,t)[ ~,2)12 
+ {(b~,c2]c,,b2)(e~]E~-)(r,t)E~+)(r,t)l~z) + c.c.}. (10) 

The term in the curly brackets now vanishes, since the two final states ]bl,c 2) and 
Ic~,b 2) are orthogonal.  This means that we can tell f rom which atom the photon 
was scattered, and the interference pattern is gone. 

This result is not surprising, since it just  represents one more  example  of the 
general principle of  complementar i ty  that excludes the s imultaneous availability 
of Welcher Weg information (we can look at the atoms and find out which of  
them is in state b) and interference fringes. On the other hand, it makes very 
clear that the loss of  coherence here has nothing to do with the introduction of  
uncontrollable phase factors into the interfering beams.  Instead, the loss of  co- 
herence originates in correlations between the "measur ing  apparatus" (here, the 
internal state of  the atoms) and the system under  observat ion (here, the light 
beam). Please note that, due to advances in laser-cooling techniques, the atoms 
or ions may be kept in the ground state of  the trap and Heisenberg 's  uncertainty 
relation cannot be made responsible for the disappearance of  the fringes. Inci- 
dentally, if pos i t ion-momentum uncertainty were responsible,  the fringes would 
not be observed for the two-level atom case either. 

Since we find that the correlation between the measur ing apparatus and the 
system, established by the availability of Welcher Weg information, leads to the 
loss of  the fringes, it is natural to ask the following question: What  would hap- 
pen if we deliberately erased 3 this (path) information? Would the fringes then 
reappear? The answer  is yes, given that we do not s imply throw away this infor- 
mation but instead establish a connection between the photon counts on the 
screen and the "eraser counts." 

In Fig. 1 d, after the scattering has taken place, we apply an additional pulse to 
the atoms in such a way that any populat ion in level b is transferred to an auxil- 
iary fourth level, d, which is strongly coupled to c. This way, the atom will decay 

3As has been emphasized by Bohr (1949), perhaps mindful of a question raised by von Weizs~icker 
(1931, 1941), it does not matter at which instant we decide about the kind of measurement to be 
made at the final stage of an experiment. In particular, this decision can be made when the particle 
has already passed through a considerable portion of the interferometer. This possibility of "delayed 
choice" was later popularized by Wheeler (1978), using mainly examples in which the choice is be- 
tween detecting the path or observing the fringe pattern. Experimental realization of two versions-- 
one in space, the other in timemis reported by Hellmuth et al. (1987). On the other hand, Jaynes 
(1980) and Scully and Driihl (1982) showed that it is possible even to delay the choice until much 
later: The interfering particle can have been observed already; but as long as the final state of the 
Welcher Weg detector has not been determined, one can still recover the interference pattern. This 
scenario, called quantum eraser, has been discussed repeatedly, see, e.g., Greenberger and Ya'sin 
(1986), Zajonc (1984), as well as Scully et al. (1991). 
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to the ground state after a short time. After the application of such an eraser 
pulse, the atoms no longer contain the Welcher Weg information. Instead, this in- 
formation is now carried by the emitted photon, whose state we designate by 
Ithj). The state of the system including the emitted eraser photon is now 

I~} = Ic~,c2) (Itb~}ly,} + 1r (11) 

where the subscripts 1 and 2 identify the atom from which the r photon is emit- 
ted. The specification of Ir is the same as that of the y photon state, given in 
(6), with the appropriate changes made for the wave vector, the decay rates, and 
so on. 

To model a controlled annihilation of the eraser photons, we imagine an ex- 
perimental arrangement like the one in Fig. 2, where they are absorbed by a pho- 
todetector placed at the common focus of two elliptical cavities. These cavities 
are assumed to be reflective for ~b photons but transparent for the y photons. 

At this point it is important to realize that not every scattering event described 
by (11) leads to a photon count in the eraser detector. This would be the case if 
either one atom had been excited or the other. But, (11) describes a superposi- 

de tec to r  

FIG. 2. Quantum eraser for photon scattering by two three-level atoms. Detection of y photons at 
the screen is correlated to (eraser) counts of ~b photons. Due to the symmetry of the setup, only 50% 
of y detections are followed by a r detection. 
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tion of these possibilities that are entangled. Owing to the symmetry of the de- 
tector arrangement, only symmetric (eraser) photon states 

1 
16+> = (16,> + 16 >) (12) 

will lead to a count, whereas antisymmetric combinations will not. Hence, we 
are led to the question, Which detection of a 3, photon on the screen is followed 
by a click of the eraser detector? The quantity that describes this is the two- 
photon-counting correlation function (Glauber, 1963): 

G(2)(r,/; p,T) = (@E(~-)(r,t)E(~-)(p,T)E(~+)(p,T)E(~+)(r,t)IO> (13) 

which measures the correlation between the detection of 3/radiation on the 
screen at position r and time t and a subsequent detection of ~b photons (by the 
eraser) at the double focus p and time ~'. Here, the subscripts 3/and ~b denote 
field operators containing frequency components in the vicinity of ~O~b and ~O~d, 
which are the frequencies of the transitions I n ) ~  ]b) and ] c ) ~  ]d>, respectively. 

Inserting (11) into (13) yields 

G(2)(r,t; p,~')= <~/+[E(r-)(r,t)E(r+)(r,t)[~/+)<d~+lE~-)(p,r)E(~+)(p,r)ld)+) (14) 

where IT+> = (l~/l) + 1~/2))/x/~ is the symmetric scattered-photon state similar to 
(12). Denoting the second factor by Gr(p,r), we can write 

G(2)(r,t; p,~') = G , ( p , r ) l % 1 2 1  �9 �9 �9 I ( 1 5 )  

where the curly brackets stand for the respective interference term of (8). Please 
note that only 50% of all scattering events and therefore photon counts are fol- 
lowed by an eraser count. If we keep track of these counts (for instance, by 
marking them on the screen), we retrieve the interference fringes in that 
subensemble of screen counts. If, on the other hand, we keep only those counts 
not  followed by an eraser click, the corresponding subensemble will show the 
antifringes. Finally, if we count all screen even t s - -we  do not care whether there 
are subsequent eraser counts or not; that is to say, ignore the correlations with 
the measurement device m w e  find no fringes and the interference pattern is lost 
in the unresolved system-detector correlations. 

Let us now discuss a realization of Young's experiment that uses an atomic 
beam instead of light (Scully and Walther, 1989, Scully et al., 1991). 4 In Fig. 3, a 
collimated atomic beam is incident on a two-slit arrangement, which produces 
an interference pattern on a remote screen. As pointed out earlier, in an atomic 
beam, the atoms themselves may carry Welcher Weg information due to their in- 
ternal structure. 

In the experiment, one uses this property by exciting the atoms with a laser 

4A related discussion in the context of a Stem-Gerlach interferometer (see Section III) is given by 
Scully et al. (1989). 
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collimators micromasers 
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a tom 
wave 
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III1 I I I I I I I I I  
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,I 
I I I I I I I I  Il i l  

cavity 2 I r 

I 

i :  

p(r) 

laser screen with ( ) 
beam and without ( . . . .  ) 

interference fringes 
FIG. 3. Young's double-slit experiment with an atomic beam and micromaser Welcher Weg detec- 

tors. A set of wider slits collimates two partial beams, which illuminate the narrow slits where the in- 
terference pattern originates. Each partial beam passes through a cavity. Inside the resonator, the 
atoms perform resonant transitions between the Rydberg levels a and b. The left-behind microwave 
photon provides the Welcher Weg information. 

before they enter the microwave resonators in Fig. 3. In passing through one of 
the resonators, the atom will emit a photon. If the cavities are cooled to ultra-low 
temperatures and initially contain no photons, the change in the field will then 
tell us which path the atom took. We come back to the details of this interaction 
in the next section in the context of a more realistic experimental arrangement. 
Here we just assume that the emission of the telltale photon can be arranged 
with certainty and that this photon can be kept long enough in the cavity to be 
detectable (Walther, 1992). 

If there are no cavities at all, the probability density of the particles falling on 
the screen at position r is given by 

p ( r )  = I r)l  = 101(r)[ 2 + [02(r)[ 2 + 2 Re{ ~*(r)~2(r)} (16) 

where ~1 and qJ2 denote those parts of the wave function that correspond to scat- 
tering from the slits 1 and 2, respectively, and the term in curly brackets gives 
rise to the fringes, as in (8) or in (1). Next consider the situation where two ultra- 
cold micromaser cavities are put into the two paths, as indicated in Fig. 3. Be- 
fore entering the cavities, the laser beam excites the atoms to the long-lived Ryd- 
berg level a. After passing through the cavities and emitting a photon via the 
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transition to the lower lying level b, shown later in Fig. 6a, the state of the corre- 
lated atomic beam and maser system is given by 

air(r) = {qJ~(r)]ll,02)+ qs2(r)lO~,12)}lb ) (17) 

where, for example, I 1 ~,02) denotes the state in which one photon is in the first 
cavity and no photon in the second cavity. This state corresponds to the entan- 
gled state (9) (projected onto (r]- (01E(-)(r), in that situation). The probability 
density on the screen is now given by 

I~r)12 = Iq,~(r)l ~ + Iq,2(r)l 2 + 2 Re{(ll,02]01,1z)~t~(r)qt2(r)} (18) 

where the term in the curly brackets vanishes because of the orthogonality of 
the different final states in the micromaser cavities, just as in (10). Note that, 
in practice, thermal photons may be in the cavities or some other state may 
have a photon number that is not sharply defined. In this case, the emission of 
a photon need not change the state of the cavities significantly, and the final 
states need not be orthogonal. The interference fringes then are not reduced or 
reduced only partly. We will carry this discussion further in the next section. 
Another point is that the loss of interference does not result from a distur- 
bance of the center-of-mass motion of the atoms. A detailed analysis shows 
that the micromaser Welcher Weg detectors are recoil free, which means there 
is no net momentum transfer to the atoms due to their interaction with the 
cavity field (Englert et al., 1990, 1994). It is thus only the correlation of the 
center-of-mass wave function to the photon degrees of freedom that is respon- 
sible for the loss of interference. 5 

As in the photon scattering experiment one may ask here, Is it possible to re- 
trieve the interference pattern by erasing the Welcher Weg information stored in 
the cavities? A possible eraser configuration for the present thought experiment 
is shown in Fig. 4, where electro-optical shutters have been added to the cavities, 
separating them from a common thin-film semiconductor wall that absorbs mi- 
crowave photons and acts as a photosensor. 

When the shutters are closed, we have the same situation as in Fig. 3, and 
since Welcher Weg information is available, there will be no fringes on the 
screen. To treat the situation with open shutters, we include the degree of free- 
dom of the sensor in our description and write 

xIr(r) = {~l(r)[l~,02)+ ~2(r)[0~,lz)l[b)[d) (19) 

where [d) indicates that the sensor is initially in its (de-excited) ground state. 
Upon absorbing a photon, it will be found in the excited state [e). 

Since the interaction Hamiltonian between the field and the sensor depends 

SThis conclusion has been challenged by Storey et al. (1994), who hold photon momentum recoil re- 
sponsible for the disappearance of the fringe pattern. We disagree with their analysis. 
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laser screen with ( ) eraser photon? 
beam and without ( . . . .  ) ( ~ )  yes 

interference fringes ( . . . .  ) no 
FIG. 4. Quantum eraser configuration for the atomic beam experiment with micromaser Welcher 

Weg detectors. Electro-optical shutters separate the cavities from a common wall that acts as a photo- 
sensor. When the shutters are closed (a), the situation is as in Fig. 3. For open shutters (b), the detec- 
tion of particles on the screen can be correlated to photoncounts in the sensor wall. 

only on symmetric combinations of the field variables, only the symmetric state 
I+) out of the combinations 

1 ,02) + 101,12)] (20) 

couples to the sensor. Therefore, it is convenient to rewrite (19) in terms of these 
symmetric and antisymmetric states as well as the corresponding combinations 

1 
qJ_+ (r) = ~ [ ~/1 (r) + %(r)]  (21) 

for the atomic wave function. The composed state (19) then becomes 

�9 (r) = { ~ + ( r ) l + ) +  0_( r ) l - )} ]b ) ld ) .  (22) 

The action of the eraser produces 

xlr(r) = {~+(r)101,02)[e ) + qJ_(r ) l - ) ld) l [b)  (23) 

since the interaction leaves the antisymmetric state I - )  unchanged. Because of 
the orthogonality of the sensor states Id) and le), the probability density is finally 
found to be given by 

p(r )  = [~t+(r)[ 2 + [~_(r)l 2 =  [~tl(r)[2 + [~2(r)[ 2 (24) 
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and shows no fringes. As we have learned in the photon scattering experiment, 
the fringes are not really lost but rather hidden in the correlation between the 
system and the sensor. In the present context we have to ask for the jo in t  proba- 
bility density Pe(r) for finding both the sensor excited and the atom on the screen 
at r. The answer is 

1 
Pe(r) = IqJ+(r)[Z = ~ [IqJ~(r)[ 2 + IqJ2(r)l 2] + Re{ qJ*(r)qJ2(r)} (25) 

which shows the same fringes as Eq. (16) and is indicated in Fig. 4 as a solid 
line. Similarly, the joint probability for finding the sensor de-excited (no click) 
and the atom at r is 

1 
pa(r) = IqJ_(r)[ 2 :  ~ [JqJ,(r)l 2 + Iq~z(r)l 2] - Re{ qJT(r)qJ2(r)} (26) 

which gives rise to antifringes as indicated by the broken line in Fig. 4. The su- 
perposition of (25) and (26), corresponding to the probability of finding an atom 
at r, regardless of a sensor count in the micromaser cavity, of course, is identical 
with (24). 

We have thus demonstrated, by the analysis of specific experiments, how the 
loss of interference is enforced by a Welcher Weg measurement. 6 In both exam- 
pies, the interference has been lo s t - -o r  not los t - - in to  the correlation between 
the states of the measuring device and the system. Neither argument involved the 
posi t ion-momentum uncertainty relation or uncontrolled phase shifts. The or- 
thogonality of the final detector states, however, played an essential role. If this 
orthogonality is absent, the detector will not distinguish clearly between the two 
different paths. Since in this situation one obtains only partial Welcher Weg in- 
formation, the fringe contrast may also be reduced only partially. This possibility 
will be further analyzed in the next section, where we look at a more practicable 
atom interferometer using a Ramsey-type setup (Ramsey 1956). 

B. THE MICROMASER RAMSEY INTERFEROMETER 

The experimental arrangement (Englert et al., 1992) is as in Fig. 5 and uses an 
atomic beam which traverses two identical high-Q micromaser cavities in se- 
quence, one atom at a time. The beam could consist of Rb atoms in the highly 
excited Rydberg state 63P3/2, whose transition to the lower state 61D5/2 couples 
resonantly to the TE~2~-mode of the microwave resonator. The niobium res- 
onators can be cooled down to ultralow temperatures of less than 0.1 K, corre- 
sponding to less than 10 -4 thermal photons. 

6Welcher Weg experiments with photons have been realized by Zou et al. (1991), Kwiat et al. (1992), 
and others. For a review, see Chiao et al. (1994). 
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FIc. 5. Ramsey-type setup of an atomic beam interferometer using two identical micromaser 
cavities. In reaching the de-excited state, the atoms can emit a photon either in the first or in the sec- 
ond cavity, as shown in Fig. 6. The probability amplitudes for these processes interfere and give rise 
to oscillations in the final de-excitation probability p(q~). The argument q~ denotes a phase shift intro- 
duced to the atomic beam between the two cavities. 

In passing through the resonators, the atom couples to the mode at about 21.5 
GHz, as shown in Fig. 6a. Since the mode density near the resonant frequencies 
in such a cavity is much higher than in free space, see Fig. 6b, this coupling is so 
strong that, in practice, one can realize a transition to the lower state by "sponta- 
neous" photon emission into the mode with unit probability, even if the cavity is 
initially empty. 

The quantity measured in this experiment  is the probability for the atoms to 
be detected in the lower state after they leave the second resonator. The detection 
can be done with the aid of state-selective field ionization techniques, where 
only the atoms in the upper state are ionized and lead to a detection signal. Since 
initially excited atoms can reach the final de-excited state via two p a t h s w e m i s -  
sion in the first or second cavity, see Fig. 5 - - i n t e r f e r e n c e  must be observable. 7 

Consider first the situation when both cavities contain classical microwave ra- 
diation with a relative phase ~0 between the two fields. The probability for find- 
ing the atom in the lower state is then 

1 
p(q~) = ~ sin2(2g~" (~n) ) [1  + cos(q~ + q~0)] (27) 

where (n) is the (large) mean number  of photons in either cavity, g is the vacuum 

7A modified scheme that uses atoms with an off-resonant transition frequency can be utilized to 
make a (quantum nondemolition) measurement of the photon number (Haroche and Raimond, 1994). 
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61D5/2 - b 
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(b) 

cavity / 

free space 

~d 

FIG. 6. Interaction of highly excited rubidium atoms with a micromaser field. (a) In passing 
through the cavity, the atoms make a transition from the Rydberg state 63P3/2 to 61D5/2 and emit a 
microwave photon. The probability for this process depends on the initial state of the field inside the 
cavity. (b) Density of modes o-(eo) in free space ( . . . .  ) and in a microwave cavity ( ~ ) ,  sketched 
as a function of the frequency to. 

Rabi frequency, and ~" is the interaction time of the atoms with the cavity field. 
The phase q~ is introduced by a phase shifter applied to the beam between the 
first and the second resonators, as indicated in Fig. 5. A specific example could 
be a weak electrostatic field that produces an additional phase proportional to the 
differential Stark shift between the atomic levels. On varying q~, the Ramsey 
fringes in (27) are exhibited. A large counting rate is achieved by a choice of pa- 
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rameters such that the squared sine function is close to unity. Then there is a 
50% probability for the atomic transition in either cavity. 

The main difference between this scheme and Young's double-slit arrangement 
discussed in the previous section is the practicality of the present scheme. Here, 
one could use a single collimated beam of atoms, as in the standard micromaser 
experiments (Meschede et al., 1985; Walther, 1992; Raithel et al., 1994), to pump 
the cavities and at the same time measure the Ramsey fringes. The principle point 
of interest in this discussion is how the state of the radiation field inside the cavi- 
ties affects the interference properties. Following the basic principles of quantum 
mechanics, part of the answer is straightforward: Interference will be destroyed as 
soon as the individual paths a ~ a ~ b and a ~ b ~ b in Fig. 5 are distinguish- 
able; that is to say, if the changes in the photon state corresponding to these alter- 
natives are measurable and hence contain real Welcher Weg information. 

An extreme example of such a situation is given when number states are prepared 
in both cavities. The two paths shown in Fig. 5 then correspond to the changes 

In,n>---" In,n + 1) or In + 1,n> (28) 

in the photon states, where In,m> denotes the situation with n photons in the first 
and m photons in the second cavity. Since, obviously, the final photon number in 
the first cavity, for example, indicates which path has actually been realized, no 
interference is possible. The probability for finding the atom finally in the upper 
state is now 

1 
p(q~) = ~ sin2(2g~'V~n) (29) 

independent of the phase q~, and therefore does not display interference fringes. 
To see how a general cavity state affects the fringes, one uses the model of 

Jaynes and Cummings (1963) for the interaction of the two-level atom with two 
single modes of the radiation field. Within the rotating-wave approximation, one 
obtains the following expression 

p(q~) = <C1C1)<azat2SzS2> 4- (a~a~S,SI)(C2C2) + 2 Re{ <SlalC,)<f2at2S2) e -i~} 
(30) 

in which cavity damping and spontaneous (incoherent) decay of the atom have 
been neglected. In this expression, we use the following abbreviations: 

sin(g ~'Vaaj a~) 
Sj= V~ajaj t , Cj = cos(gz~aja]),  ~ = cos(g'rV'~aj) (31) 

where aj and a t are the photon ladder operators for the field in the j th cavity 
( j  - 1, 2). The expectation values in (30) refer to an instant prior to the atom en- 
tering the first cavity and therefore to the photon fields as they are initially pre- 
pared. 
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When inserting a number state In) into (30), one immediately verifies that the 
interference term in the curly brackets disappears. A coherent state, on the other 
hand, gives a nonvanishing contribution. For large photon numbers, n (or their 
mean (n), respectively) such that Vnn >> 1, Eq. (30) leads to the results (27) and 
(29). If the interaction time is such that 

= c~ 2'  sinZ(2g~'V~n)-- 1 (32) sin2(g-r~/n) 

then these results are particularly simple, and one obtains 

1 
p(~) = ~ [ 1 + cos(~ + %) ] (3 3) 

for classical (coherent) radiation and 

1 
p(q~) = ~ (34) 

for the nonclassical number state. 
Incidentally, condition (32) corresponds to a 7r/2 pulse, which leaves an ini- 

tially excited atom in a superposition state having 50% excited and 50% de- 
excited. This analog of a semi-reflective mirror has been employed in an optical 
Ramsey setup in other atom interferometers (Riehle et al., 1991; Sterr et al., 
1992). For a review, see, for instance, Adams et al. (1994). 

Please note that the lack of Welcher Weg information does not automatically 
lead to fringes. For example, if there is just thermal radiation with a large mean 
number n b --  (a~al) = (atza2) of photons in the cavity, then the density operators 
for the photon fields are 

1 ( nb ) ataj . (35) 
PJ = IIb d- 1 n o + 1 

The expectation values in the curly brackets of (30) vanish in this situation as 
well, and the fringes are lost. Since the spread + ~/nb(n b + 1) ~-- +_ n b of the pho- 
ton number in a thermal field is so large that one cannot detect a change due to a 
single photon, this radiation field provides an example in which neither Ramsey 
fringes nor Welcher Weg information is available. For a discussion of the micro- 
maser Welcher Weg detector with general states of the radiation field, see Englert 
and Scully (1990). 

The complementarity of Welcher Weg information and interference fringes 
can be illuminated further by considering the initial state 

Iq ' ) -  c~ln> +/3In + 1) (36) 

with I 12 + It 12 = 1, wh ich  is a coherent superposition of two neighboring num- 
ber states. It combines some aspects of both a coherent state and a number state: 
Its field expectation value (a) -- af t*kin + 1 can be large, and we can associate 
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a phase with it; however, the spread in its photon number is small enough that 
the emission of a single photon may change the state in a detectable manner. 

In the following, we assume that, in both cavities, the same state (36) is pre- 
pared, up to a relative phase, identified by e i% = (al)*(a2)/l(al)(a2) I. After the 
passage of an atom, the density matrix of the field in the first cavity, 

/)before-" (aln) + 3In + 1))(a*(n] + fl*(n + 1[) (37) 

is changed into 

1 
Pafter--" 2 (aln) + flln + 1))(a*(n[ + fl*(n + 1]) 

1 (aln + 1) + flln + 2))(a*(n + 1[ + fl*(n + 21) (38) 

assuming again V~n >> 1, for simplicity. The final de-excitation probability (30) 
becomes 

1 
p(q~) = ~ [1 + 1a121/312 cos(q~ + ~P0)]- (39) 

For [13[ = 0 (and [a I = 1), one has a pure number state and immediately recov- 
ers (34) from (39). For ]a[2 = 1/3[ 2 = 1/2, the electric field is maximal and the sit- 
uation is closer to a coherent state. Equation (39) then reduces to 

l( 1 ] 
p(q~) = ~ 1 + ~ cos(q~ + q~0) (40) 

which is the classical case (33) with the fringe contrast reduced by the factor 
lal21fll 2 = 1/4. The final cavity state, in this situation, is given by 

1 1 1 
Pafter----- 4 In)(n] + -~ [ n + 1)(n + 1[ + ~ In + 2)(n + 2[ + off-diagonal terms 

(41) 

which means that in one quarter of all cases n + 2 photons will be found in the 
cavity, telling us for sure that the atom went through it and emitted a photon. 
Here, one obtains Welcher Weg information in 25% of all runs, corresponding to 
a 25% fringe contrast. In this sense, we have an intermediate situation between a 
classical radiation field (100% fringes, 0% Welcher Weg information) and a pure 
number state (0% fringes, 100% Welcher Weg information). 8 

8Quantitative studies of the connection between Welcher Weg information and interference are given, 
e.g., by Wootters and Zurek (1979) for the Einstein recoil double-slit arrangement (Bohr, 1949), 
Mandel (1991) who analyzes the connection between the degree of coherence of a signal and the de- 
gree of indistinguishability of its sources, and Courtois et al. (1995) for an atomic Mach-Zehnder 
interferometer. Most recently, a quantification of the notion of path distinguishability has been 
achieved (Englert, 1996); compromises between partial fringe visibility and partial Welcher Weg 
knowledge are subject to a fundamental inequality. 
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For reasons of notational simplicity, we have assumed a large mean photon 
number in most results of this section. This is not an essential requirement, how- 
ever. Similar arguments apply for initial states that contain only a few photons, 
which are experimentally more feasible than, for instance, a Fock state with a 
large photon number. A special example is given by initial vacuum states, which 
can be prepared by cooling the cavities to ultralow temperatures (Walther, 1992; 
Raithel et al., 1994). For an interaction time r such that sin2(gr) = 1/2, the emis- 
sion probability is 50% and the atoms will take both paths of the interferometer 
equally often. Nevertheless, there will be no interference, since the emission of a 
photon definitely leads to Welcher Weg information. On the other hand, if the ini- 
tial state is a superposition of the vacuum and a one-photon state, corresponding 
to (36) with n = 0, then partial interference will be observed. 

C. RAMSEY INTERFERENCE WITH ONE CAVITY 

In the following we would like to review an experiment with the micromaser 
where atomic interference phenomena in the cavity have been observed (Raithel 
et al., 1995). Since a nonclassical field is generated in the maser cavity, it was 
possible for the first time to investigate atomic interference under the influence 
of nonclassical radiation; owing to the bistable behavior of the maser field, the 
interferences display quantum jumps and the quantum nature of the interaction 
becomes directly visible. Interferences occur, since a coherent superposition of 
the combined atom-field states (dressed states) is produced by mixing the states 
at the entrance and exit holes of the cavity. This leads to interferences that are 
similar to those observed in a separated two-field interaction, known as Ramsey 
interferences (Ramsey, 1956). 

Micromaser work has been reviewed recently by Raithel et al. (1994); the 
setup used in the experiment to be discussed here is identical to the one de- 
scribed by Benson et al. (1994). However, the flux of atoms through the cavity is 
by a factor of 5 - 1 0  higher than in the previous experiments, where the 
63P3/z-61Ds/2 transition was also used. The atoms are excited into the upper 
maser level, 63P3/2, shortly before they enter the cylindrical cavity. The velocity 
of the atoms can be selected by exciting a velocity subgroup. Behind the cavity, 
the atoms are detected in separate detectors for upper and lower maser levels. 
The Q value of the cavity, cooled to 0.1 K, was 6 • 109, corresponding to a pho- 
ton decay time of 42 msec. 

Figure 7 shows the standard maser resonance in the uppermost plot, which is 
obtained when the resonator frequency is tuned. At large values of the atomic 
flux/Vex (/Vex > 89) sharp, periodic structures appear. These typically consist of a 
smooth wing on the low-frequency side, and a vertical step on the high-fre- 
quency side. The visibility of the pattern rapidly decreases when Nex increases to 
190 or beyond. We will see later that these structures have to be interpreted as 
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FIG. 7. Shift of the maser resonance 63P3/2-61Ds/z for fast atoms (tin t - 35/xsec). The parameter 
Nex represents the number of atoms passing through the cavity in the decay time of the cavity field. 
For N x --- 89, the lines display periodic structures, which have to be interpreted as interferences in a 
quantized field. The figure is taken from Raithel et al. (1995). 

interferences. It can be seen that the atom-field resonance frequency is red 
shifted with increasing N x, the shift reaching 200 kHz for 1Vex = 190. Under 
these conditions, roughly 100 photons on average are in the cavity. The large red 
shift cannot be explained by the ac Stark effect, which for 100 photons would 
amount to about 1 kHz for the transition used. Therefore, it is obvious that other 
reasons must be responsible for the observed shift. 

It is known from previous maser experiments (see, e.g., Benson et al., 1994) 
that there are small static electric fields in the entrance and exit holes of the cav- 
ity. It is supposed that this field is generated by patch effects at the surface of the 
niobium metal resulting from rubidium deposits caused by the atomic beam or 
from microcrystallites formed when the cavities are tempered after machining. 
The influence of those stray fields is observable only in the cavity holes; in the 
center of the cavity, they are negligible, owing to the large a tom-wal l  distances. 
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Figure 8 shows the variation of the structure when the interaction time tin t be- 
tween the atoms and the cavity field is changed. 9 The substructure disappears for 
tin t > 47/xsec. In the second plot from the top, a substructure is still present on 
the left side, but it is less pronounced than in the uppermost one. Furthermore, 
an increasing shift of the whole structure to low frequencies is observed when tin t 
is increased. 

To understand the observed phenomena, the atom-field interaction has to be 
analyzed. The basis is the Jaynes-Cummings operator, which describes the in- 
teraction of a single mode of a quantized field with a single atom, leading to the 
dressed states as eigenstates (see, for example, Cohen-Tannoudji et al., 1992). 
Through the interaction the coupled atom-field states split depending on the 
vacuum Rabi-flopping frequency I~, the photon number n, and the atom-field 
detuning t~. We face a special situation at the entrance and exit holes of the cav- 
ity. There we have a position-dependent variation of the cavity field, as a conse- 
quence of which f~ is position dependent. An additional variation results from 

9To conform with the notational convention of Raithel et al. (1995), the interaction time is denoted 
by tin t here (rather than by ~'as in Section II.B) and the Rabi frequency by l~ (rather than by g). 
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FIG. 8. Maser resonance lines for large/Vex and the indicated values of the interaction time tint. 
The period and clarity of the additional structures reduce when tin t i s  increased. Furthermore, the cen- 
ter of the resonance shifts to a lower frequency with increasing tin t. The figure is taken from Raithel 
et al. (1995). 
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the stray electric fields in the entrance and exit holes. Owing to the Stark effect, 
which differently affects the upper and lower maser states, these fields lead to a 
position-dependent atomic transition frequency. 

The interaction couples only pairs of dressed states. Therefore, it is sufficient 
to consider the dynamics within such a pair. Prior to the atom-field interaction, 
the system is in one of the two dressed states. For experimental parameters 
where the periodic substructures in Figs. 7 and 8 are observed, the dressed states 
are mixed only at the beginning and end of the atom-field interaction. The mix- 
ing is due to a crossing of the dressed states' energy levels at a location where 
the position-dependent atomic transition frequency equals the cavity resonance 
frequency. At this location, the repulsion of the dressed states, which is propor- 
tional to the maser field strength, determines whether this crossing is passed 
more or less adiabatically; that is, whether or not a transition from one dressed 
state to the other is possible. The crossing at the beginning creates a coherent su- 
perposition of the dressed states. Afterward, the system develops adiabatically, 
whereby the two dressed states accumulate a differential dynamic phase ~ ,  
which strongly depends on the cavity frequency. 

Mixing the dressed states at the entrance and exit holes of the cavity, in com- 
bination with the intermediate adiabatic evolution, generates a situation similar 
to the Ramsey two-field interaction. There, the coherent superposition of the two 
atomic levels is generated in two spatially separated interaction zones. Interfer- 
ences occur due to the two possible "paths," corresponding to transition in the 
first or second zone. 

To explain the observed periodic substructures, a quantitative calculation on 
the basis of the micromaser theory (Filipowicz et al.,  1986; Lugiato et al. ,  1987) 
can be performed in the following way. First, the variation of the static electric 
field in the cavity has to be estimated. This is done by numerically solving the 
Laplace equation with the boundaries of the cavity and assuming a particular 
field strength in the cavity holes. Then, for different interaction times, photon 
numbers, and cavity frequencies, the dynamics of the atom-field wave function 
is calculated by numerical integration based on the Jaynes-Cummings model. 
This integration has to include the local variation of f~ inside the cavity owing to 
the mode structure of the microwave field (in our case the TEl21 mode). Further- 
more, the variation of the detuning 6 resulting from the static electric fields in 
the cavity holes has to be considered. To use the micromaser model, we extract 
the values/3,, which denote the probabilities of an atom emitting a photon in a 
field of n - 1 photons prior to the interaction. 

In the second step of the calculation, with the values of/3 n the photon number 
distribution P(n)  of the cavity field under steady-state conditions is obtained 
from the recursion formula 

P(n)  = nb 1 -! P ( n  - 1). (42) 
+ 1 nn h /7 b 
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Here n b stands for the number of thermal photons. The angle brackets indicate 
that the ~n have to be averaged over all statistical fluctuations, such as the spread 
o f  tin t caused by the velocity distribution. The fact that the atoms pass in slightly 
different directions through the cavity holes and thus experience slightly differ- 
ent stray fields is also included in the averaging. The latter phenomenon may 
lead to a disappearance of the interferences for long tin t and large Nex. With P(n),  
the normalized average photon number (n)/Nex is calculated. This quantity corre- 
sponds to the probability of finding an atom in the lower state, as do the experi- 
mental results displayed in Figs. 7 and 8. 

A theoretical result for Pu = (n)/Nex obtained in this way is shown in Fig. 
9. The uppermost  plot shows the maser  resonance line expected with no sta- 
tic electric field. With increasing dc field strength in the cavity holes, the 
structure changes,  the curve for 309 mV/cm coming very close to those dis- 
played in Fig. 7 for Nex = 89 and 125 and at the top of Fig. 8. We have to 
stress that the field values indicated in Fig. 9 correspond to the max imum 
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FIG. 9. Theoretical maser resonances for the indicated values of the static electric field strength 

in the cavity holes. The theoretical model is explained in the text. For the calculation Nex = 100 and 
= 45 krad/sec is used. The interaction time is tin t - 35  /,t, sec. The figure is taken from Raithel et al. 

(1995). 
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field strength in the cavity holes. The field value in the central part of the 
cavity is roughly 100 times smaller and, therefore, without significance in 
low-flux maser experiments. Figure 9 also shows that the qualitative struc- 
ture of the maser line is the same for all fields larger than about 200 mV/cm. 
Thus, the conditions required to find the periodic substructures experimen- 
tally are not very stringent. 

The calculations also reproduce the experimental finding that the maser line 
shifts to lower frequencies when/Vex is increased. The mechanism for this can be 
explained as follows: The high-frequency edge of the maser line does not shift 
with/Vex at all, since this part of the resonance is produced in the central region 
of the cavity, where practically no static electric fields are present. The low-fre- 
quency cutoff of the structure is determined by the location where the mixing of 
the dressed states occurs. With decreasing cavity frequency, those points shift 
closer to the entrance and exit holes. There, the passage behavior of the atoms 
through the mixing regions gets nonadiabatic for the following reasons. First, the 
maser field strength reduces toward the holes. This leads to reduced repulsion 
of the dressed states. Second, the stray electric field strongly increases toward 
the holes. This implies a larger differential slope of the dressed state energies at 
the mixing locations, and therefore leads to a stronger nonadiabatic passage. At the 
same time, the observed signal extends further to lower frequencies. Since the 
photon emission probabilities/3 n decrease toward lower frequencies, their behav- 
ior finally defines the low-frequency boundary of the maser resonance line. With 
increasing Nex, the photon number n increases. As for larger values of n, the pho- 
ton emission probabilities/3, get larger. Also, an increasing Nex leads to an ex- 
tension of the range of the signal to lower frequencies. 

The shift of the maser line toward lower frequencies with increasing tin t (Fig. 
8) also follows from the developed model: The red shift increases with tin t since 
a longer interaction time leads to a more adiabatic behavior in the same way as a 
larger Nex. 

The calculations reveal that, on the vertical steps displayed in the signal, 
the photon number distribution has two separate maxima and the maser field 
shows a bistable behavior. This situation is identical to the one discussed by 
Benson et al. (1994). Therefore, the maser field exhibits hysteresis and 
metastability under the present conditions as well (for details, see Raithel et 
al. 1995). 

As discussed, the maser model explains all the observed experimental facts. 
The periodic structures in the maser lines are interpreted as Ramsey-type inter- 
ferences. In addition to other phenomena, the bistable character of the micro- 
maser field can be observed in jumps of the interferences; the observed interfer- 
ences thus show a discontinuous behavior, owing to the quantum properties of 
the f i e l d u i t  is the first time that such a discrete quantum behavior is directly 
observed in interference fringes. An application of the described Ramsey inter- 
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ferometer could be the quantum-nondemolition measurement of the photon 
number in a cavity along the lines proposed by Brune et al. (1990). For this pur- 
pose, the atoms in the cavity have to be dispersively coupled to a third level via a 
second quantum field. The second field could be another cavity mode. If the 
photon lifetime of the second field is much longer than the photon lifetime cor- 
responding to the maser transition, the number of photons in the second field can 
be determined from the shift of the interference patterns. 

III. The Stern-Gerlach  lnterferometer 

A.  SPIN COHERENCE IN THE S G I  

When speaking of a Stern-Gerlach interferometer (SGI), we refer to an ex- 
�9 1 perimental arrangement as depicted in Fig. 10. A beam of polarized spln-~ 

particles is split macroscopically into two separated partial beams, which are 
later reunited so that a single beam emerges. In the region of maximum sepa- 
ration, one could apply some additional external field and, for example, mea- 
sure the resulting shift in the Larmor angle of the emerging atoms. We are not 
going into details of such an experiment. The objective of this analysis is 
more moderate. We ask, To what degree is it possible at all to reunite the 
beam without losing spin coherence, even if there is no further manipulation 
of either partial beam? 

vedge  v t flat j 
S S 

. . . . . . . .  y 

II z l  

Down N N 
l I A A flat edge 

vedge  v t flat 
N N 

out  

S S 
I I A A 

flat edge 
FIG. 10. Scheme of the Stern-Gerlach interferometer. Four pairs of Stern-Gerlach magnets, 

similar to those shown in Fig. 11, are used to separate and later reunite the beam in both position and 
momentum. 
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The motivation for questioning this possibility goes back to a qualitative 
argument by Heisenberg (1930) that was later taken up by Wigner (1963). In 
short, it says that the macroscopic separation of the partial beams will intro- 
duce a large dispersion of phases within the individual beams, which has to 
be reversed during their refocusing in the second half of the interferometer. 
Since the force necessary to separate and reunite the beams relies on a macro- 
scopic gradient of the potential energy, a single beam will have large phase 
variations, which will be impossible to reverse unless the magnetic fields are 
controlled with a "fantastic" precision, as David Bohm remarked many years 
ago (1951). 

The subsequent quantitative analysis of this problem follows and summarizes 
the treatment presented in a series of papers by Englert et al. (1988), Schwinger 
et al. (1988), and Scully et al. (1989). 

In the first part we give a simplified analysis, in which the longitudinal mo- 
tion of the atom is treated classically. This analysis suffices to obtain order-of- 
magnitude estimates for the precision to which the magnetic fields have to be 
controlled. In the second part, we discuss the corrections to the simplified theory 
that arise from details concerning the geometric structure of the magnetic fields 
in the SGI, such as fringing fields, and a fully quantized treatment of the atomic 
motion. 

1. The Stern-Gerlach Apparatus 

The Stern-Gerlach interferometer of Fig. 10 is composed of four pairs of mag- 
nets, which are required to separate and later reunite the beams in both position 
and momentum. To see this, let us first consider a single pair of magnets that 
constitute a Stern-Gerlach apparatus (SGA). As sketched in Fig. 11, a beam of 

�9 1 spm-~ atoms, running along the y axis, passes through a symmetric magnetic 
field with a large inhomogeneity in z direction. The resulting forces _if 'e ,  act on 
the atoms' magnetic moment Ix and split the beam in two with different z com- 
ponents/Zz: "spin up" and "spin down." 

Since this splitting is to be macroscopic, the momentum transfer Apz = ++_yT 
on the particles during the time T must be large compared to their spread ~Pz in 
momentum prior to entering the SGA: 

y T  >> 3Pz. (43) 

The force y = -bE/~z  originates in a spatially dependent potential energy E, 
which contributes to the phase of the wave function. The total change of phase 
during the time T amounts roughly to ET/h. Since different parts of the wave 
function probe the potential energy at different points in space, this phase varies 
within the wave packet as a consequence of the spread 8z in position. The 
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�9 1 FIG. 11. (a) Scheme of the Stern-Gerlach apparatus. An incident beam of spln-~ particles is split 
macroscopically into two partial beams with different spin components in z direction. (b) Geometry 
of the magnetic field in the SGA. The plane of symmetry (x,z) is perpendicular to the direction (y) of 
the incident beam. The strong inhomogeneity of the field in z direction splits the incident beam. 

macroscopic splitting (43) therefore is accompanied by large phase varia- 
tions 

0E 
8(-ET/h) = 6zT/h= FT6z/h >> 6pzSz/h>- 1/2 (44) 

Oz 
or  

8(-ET/h) >> 1 (45) 

where Heisenberg's uncertainty relation has been used. It must be emphasized 
that (45) describes the dispersion of phases within each of the partial beams, not 
of the relative phases between them. The formidable task in a Stern-Gerlach in- 
terferometer consists in reversing this phase dispersion during the refocusing of 
the beam. 
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As mentioned earlier, this refocusing requires four such Stern-Gerlach appa- 
rati. When leaving the SGA in Fig. 11, the two partial beams are split in both po- 
sition and momentum. A second SGA with a reversed field gradient will only 
undo the momentum splitting. To reunite the partial beams also in position, an- 
other pair of SGA is needed in a symmetric configuration as indicated in Fig. 10. 
Ideally, then, a single beam emerges. 

2. Spin and External Motion of the Atoms 

The dynamic variables of the atom are its position r(t), its momentum p(t), and 
its spin s(t). The question of spin coherence refers to the expectation value of s 
and can be put as follows. If the atoms enter the SGI at time t = 0 in an x polar- 
ized state, that is, 

is it possible to recombine an emerging beam with the same polarization 

(h sx(T)} = 1  (47) 

or will it inevitably be lost? The loss would be indicated by 

= 0 

Here, T denotes the time when the atoms leave the SGI. To achieve the equality 
in (47), one not only has to do a perfect job "unscrambling" the phase variations 
within the partial beams, but also must precisely control the Larmor angle that 
the atoms acquire. Since the latter can be changed with the aid of a homoge- 
neous magnetic field acting on the single beam, however, it is not essential for 
the coherence property. 

A more general definition of spin coherence refers to the length of the spin 
(or Bloch) vector (s}: 

2 2 
C - - ~ [ ( s } l  "~ ~ v/(Sx) 2 -Jr- (Sy) 2 -+- (Sz) 2 . (49) 

Two extreme situations are 

1. C(t)= 1, in which the beam is totally polarized, with perfect spin coher- 
ence; 

2. C(t) = 0, in which the beam is unpolarized, with no spin coherence; 
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and the ratio (C(0) - C ( T ) ) / C ( O )  measures the loss of coherence due to the inter- 
action with the SGI. 

To estimate this loss of coherence, one has to calculate the time dependence 
of the spin s(t), which is connected to the time dependence of the spatial vari- 
ables r(t) and p(t). The Hamilton operator for the problem is 

1 
H = p 2 _  Ix" B(r) (50) 

2m 

wherein m denotes the mass of the atom, Ix = (2/x/h)s is its magnetic moment, 
and B(r) is the (static) magnetic field in the SGI. 

The Heisenberg equations of motion 

ds 2/z 
= - - s  • B(r) 

dt h 

dr p 
dt m 

dp 2/x 
= - -  V[s. B(r)] 

dt h 
(51) 

cannot be solved explicitly under general circumstances. The special symmetry 
of the SGI setup in Fig. 10, however, allows for certain natural simplifications 
which transform (51) into a simpler form that can be solved. 

In Fig. 11, the beam runs down the center of the SGI and stays in the y,z 
plane. We assume that it probes the field only in the vicinity of this plane so 
that the dominant field component is B z. We also assume that the z displace- 
ment of the beam is sufficiently small relative to the center z = 0 and the de- 
pendence of B z on z is linear in this range. We therefore approximate the mag- 
netic field by 

[ 1 B = e z Bz(y)  + -~z (y)  " (52) 

Further, we consider an experimental arrangement in which the beam has a well- 
defined velocity v in the y direction. As we shall show in the next section, this 
velocity will not change significantly during the interaction with the field, so that 
y = vt is a justifiable replacement that turns the spatial dependence in (52) into a 
time dependence. We are then left with an effective Hamilton operator 

1 2 _ 2  2 
H =-~m Pz -h E ( t ) s  z - -h F ( t ) z s  z (53) 

for the evolution of z, Pz, and s, in which the parameters E ( t ) =  t.d3z(vt) and 
F ( t )  = Ix(OBz/OZ)(Vt) are numerical functions of time. The equations of motion 



ATOM INTERFEROMETRY AND QUANTUM MEASUREMENT 245 

for s z, s+ = s x - iSy ,  z ,  Pz are now simpler than the set (51) and can be integrated 
explicitly. This results in 

s+(t) = e -i*(O exp -~-[z(O)Ap(t)  - pz(O)Az(t)] s+(O) 

Sz(t ) = Sz(O ) 
t ( 

z(t) = z(O) +- -pz (O)  + Az(t) + 
m 

2 
t Ap(t)  -h sz(O ) 
m 

2 
pz(t) = pz(O) + Ap(t) -h sz(O ) (54) 

where the numerical functions Ap(t) and Az( t )+  (t/m)Ap(t) measure the dis- 
placements of the partial beams in position and momentum, and ~(t)  is the accu- 
mulated Larmor precession angle. Explicit expressions for these functions are 

fo' Ap(t) = dt'..T(t') 

fo' Az(t) = - dt' t' ~ ( t ' ) /m  

�9 (t) = ~ dt' E(t ' ) .  (55) 

These displacements lead to a loss of coherence once the partial beams are sepa- 
rated and have to be controlled with high accuracy in order to recombine the beams 
and possibly re-establish spin coherence. Typical time dependences of the force 
ff'(t) and the displacements are plotted in Fig. 12. As indicated there, the atom en- 
ters the SGI at t = 0 and leaves it at t = T, so that E(t) and y ( t )  are nonzero only 
f o r 0 < t <  T. 

Consider now an initially x-polarized state, as in (46), having maximum co- 
herence C ( 0 ) =  1. In terms of the spatial probability amplitudes qJ(z')--(z'lq~ ) 
and qffp') = (p'lqJ) that refer to position and momentum measurements at time 
t = 0, the coherence function at time t, 

C(t) = I s+(t) I = ] exp - - ~  (z(O)Ap(t) - p(O)Az(t)) ~ s+(O) I (56) 

can be written as 

C(t) = I f  dz' O*(z' - Az(t))e-2iz'~P(t)/ht[t(z ' + ~Xz(t))l 

= [ (  dp~qt*(p~ - Ap(t)) e2ip'az(t)/hq~ + Ap(t))]. (57) 
J 



246 H.-J. Briegel et al. 

7(t) 

~t  

Ap(t) 

~ T  ~t  0 

Az(t) + t/Xp(t) 

T/2 
, ~ t  

T 

FIc. 12. Typical time dependence of the gradient force y ( t )  and the atomic displacement in posi- 
tion and momentum in the SGI. 

The exponential phase factors under the integrals illustrate Heisenberg's argu- 
ment that a displacement Ap(t) produces a phase variation in the z' description 
and vice versa. One can see that these integrals vanish if, for instance, the over- 
lap of the wave functions for the partial beams becomes too small. 

With these expressions at hand, we can return to quantitative criteria for the 
Stern-Gerlach interferometer. 

i. Macroscopic Separation. A functioning SGA enables one to select one par- 
tial beam. The maximal separation, which ideally happens at the time t = T/2 
(and Ap = 0) therefore must be macroscopic. That is, 

Az(T/2) >> 6z(T/2)= 6z (58) 
where 6z(t) is the spread in position of either of the partial beams at time t and 
8z is the initial spread. The latter statement of (58) reflects the requirement that 
the spreading of the wave function must not be too significant during the time 
T. 1~ As a consequence of (58), the product 

qr*(z'- Az(T/2))qt(z' + Az(T/2)) (59) 

and therefore the first integral in (57) vanishes. Similarly, the second integral 
vanishes because of rapid oscillations of the exponential factor, 8p~ Az(T/2) >> 1. 
Spin coherence is thus lost, C(T/2) = 0, as soon as the beam is split. 

l~ there is no initial correlation between z and Pz, this spreading is the same as for a free particle, 
[6z(T)] 2 = [6z(0)] 2 + (T/m)2[6pz(O)] 2. The moderate spreading of the beam in the course of the exper- 
iment, therefore, corresponds to a duration of order of magnitude T --- m6z/6pz. 
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ii. Microscopic Recombination. The crucial quest ion for the SGI is whether  
spin coherence can be maintained or re-establ ished after the recombinat ion  
of  the partial beams. Ideally, that is, for C(T)= 1, this requires Az = 0, 
Ap = 0, which are also ideal condit ions of  the spatial reconstruct ion of  the 
beam. To obtain a quantitative estimate for the scale of  precision i n v o l v e d m  
that is, to answer the quest ion how large a deviat ion from the ideal values 
can be t o l e r a t e d m w e  consider  a beam initially descr ibed by a minimal  un- 
certainty state 

~(2") -- (27r')-1/4(6~:')-1/2 e -(z'/2&):. (60) 

Inserted in (57), this results in 

- 

which is very small unless Az(T) << & and Ap(T) << ~p, and therefore 

1 Az(T)Ap(T)( << )26z6p = -2 h. (62) 

To arrive at an estimate without a reference to specific wave functions, we ex- 
pand the unitary operator form of C(t) in (56). On observing the relation 

1 
[ (e~) l  = 1 - ~ (6.4) 2 + (_o(a 4) (63) 

which holds for a hermitean operator A having (6.4)2 << 1, we obtain 

h . . + (  ] (64) 

as the dominant terms. ~l The condition C -- 1 here requires Az(T) << h/~pz and 
Ap(T) << h/&. We therefore recognize that the relevant scale on which Az is 
measured is the coherence length h/~p, not the spread &; and likewise h/&, not 
6/9, sets the scale for the momentum transfer Ap. Taking the product, we find the 
generalization of (62), 

h 2 Az(T)Ap(T)(<<) 2 ~ (65) 
&'~Pz" 

Of course, it contains (62) as a limiting case when 6z6pJh--~ 1. In a typical 
atomic beam experiment, the product &6pz/h, however, is on the order of  103. 
This leads us to the following conclusion: To ensure a spin-coherent output 

~In the experiment, the quantities Az and Ap are essentially random variables, which can have posi- 
tive or negative values, so that their ensemble average is zero. In contrast, the squares (Az) 2 and (Ap) 2 
in (64) refer to an ensemble average that is positive and finite. 
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beam, the spatial motion of the atoms, governed by macroscopic  magnetic fields, 
has to be controlled with submicroscopic  precision. Since, in the end, macro- 
scopic magnets are made of atoms with their own natural quantum limits, we 
can say that ideal maintenance of spin coherence in the Stern-Gerlach interfer- 
ometer is impossible in principle.  

If one is satisfied with just enough coherence to be detected, the result is a bit 
less discouraging. For a marginal signal, 0 < C << 1, (64) requires only 

h 2 
A z ( T ) A p ( T )  ,--. ~ . (66) 

&6Pz 

Yet, a state close to that of minimum uncertainty will still be needed if the con- 
trol of the magnetic fields on the microscopic level is to be sufficient. 

Incidentally, the requirement of macroscopic separation of the partial beams 
did not enter the considerations leading to (65) or (66). If, for practical interfero- 
metric purposes, the partial beams are to be split macroscopically, then the maxi- 
mum values of Az and Ap obey ]AzImax]AP]max(>>)2•Z•pz, which leads, together 
with (65), to the condition 

Az(T)Ap(T) (<<)4( h )2 
]Az(T/Z)I[Ap(T/2)[ 6-~p z . (67) 

This further requirement may motivate the desire to construct a magnetic inter- 
ferometer that does not rely on a transverse separation of partial beams at all. We 
will come back to this question when discussing the longitudinal SG effect in the 
Section III.B. 

2. Higher  Order  Effects 

The treatment in the previous section was based on a certain set of simpli- 
fying assumptions concerning the nature of the magnetic fields produced 
by the S te rn-Ger lach  deflectors. The real spatial dependence of B is some- 
what complicated, since the transition regions where the beam enters and 
leaves the individual segments of the SGI require an essential y depen- 
dence of the magnetic field. Further, Maxwell 's  equation V �9 B = 0 implies 
that, in addition to a field gradient in the z direction, there must also be one 
in the x ,y  plane. 

Let us first consider the most essential assumption of the simplified treat- 
ment; namely, that the y dependence of the field can be replaced by a t de- 
pendence. To be able to estimate the quality of this approximation, it is con- 
venient to employ a more general description of the particles' spin, which 
will also allow us to treat the SGI with particles of spin 1 or higher spin. 
The Bose-Eins te in  realization of a general spin observable S(t) in terms of 
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�9 1 spm-~ annihilation (77) and creation (r/t) operators was given by Schwinger  
(1965) and reads 

S(t) = E r/~,(t)(~r' ~ cr ~r">r/~.(t) = r/t(t) ~ ~rr/(t). (68) 
o - ' , o t '  = __+ 

The dynamic variables associated with the spin in this description are the r /and 
r/t operators, satisfying equal-time Bose-Einste in  commutation relations, ~2 and 
er denotes the standard set of numerical Pauli matrices. For example, the z com- 
ponent of the spin is 

h n*_ h S z = -~ (n*+rl+ - rl_) =-- -~ (n+ - n_) (69) 

�9 1 where n+ and n_ are the number operators for excited and de-excited spm-~ 
components contained in S~. In the corresponding number-s ta te  description, one 
has 

h Szln'+,n'> = In'+,n' > ~ (n'+ - n'_) (70) 

and the total spin (S2/h2) ' = s(s + 1) of a system is specified by a fixed value of 
t �9 1 the sum s = (n '§ + n_ )/2 of excited and de-excited spm-~ components. 

The question of spin coherence refers to the length of the vector 

2 <S(t)) = < r/t(t)~rr/(t)) (71) 
h 

and how it changes from an initial unit value, say, to some smaller value at 
time t = T. To calculate this, one has to know the time dependence of r/(t). The 
corresponding Heisenberg equation of motion as obtained from (50) and (68) 
reads 

d /x 
i ~ r/(t) = - ~ -  er .  B[r(t)]r/(t). (72) 

The solutions for the spatial variables are the same as in the previous treat- 
ment if the spin operator s in (51) is replaced by S = r/t(h/2)o'r/. On integrating 
the last two equations in (51), the implicit time dependence in the magnetic field 
can be written in the form 

( t r o t  ) B[r(t)] = B r + - - p  + d t ' ( t -  t ') ~ VB[r( t ' ) ] .  rlt(t')~rl(t') (73) 
m m 

~2That is to say, the commutation relation [Sx(t),Sy(t)] = ihSz(t ) and cyclic permutations thereof are 
here replaced by [r/~,(t),r/t,,(t)] = 6, ,,and vanishing commutators involving pairs of r/or r/t. 
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wherein r - r(0) and p = p(0) are the variables of position and momentum at 
the initial time t = 0. To obtain the expectation value (71), we calculate the 

�9 1 state r/(T)l) from r/(0)[), where 1) denotes an initial spln-~ state. The differen- 
tial equation is the same as (72) with r/(t) replaced by r/(t)l). Since the latter is 

�9 1 a null spm-~ state, a further application of the (annihilation) operator r/(t') 
gives zero. As a result, the integral in (73) does not contribute if applied to 
n(t)l), and we obtain 

d /x t 
i ~ r/(t)l) = - ~- or.  B(r + --  p)r/(t)l). (74) 

m 

Here is the special advantage of employing the general spin description in this 
context. 

To distinguish between the macroscopic scale of length, set by the inhomoge- 
neous magnetic fields, and the microscopic scale given by the spatial localizabil- 
ity of the atoms, it is convenient to write 

t t t 
r + -  p = (r) + -  (p) + (r - (r)) + -  (p - (p)). (75) 

rn m m 

A Taylor expansion of the magnetic field around the macroscopic (average) 
quantities yields 

with 

t [ t ] B(r+--p)~-B(t)+ ( r -  (r)) + - - ( p - ( p ) )  .VB(t) 
m m 

( t ) 
B~t~  - B ( r )  + - ( p )  . 

m 

(76) 

(77) 

(79) 
1( 

C -~ 1 - {as before} - ~  ~ (py)] 

Here, we see the natural appearance of effective time-varying fields that justifies 
the dynamic approximation made earlier. 

On replacing B and VB by the dominant components ezB z and ezez~)Bz/OZ, Eq. 
(72) can be integrated, and one obtains 

I 
rl(t) = e i ~ ( t )  eitrz[Z(O)Apz(t)-pz(O)Az(t)]/hTl(O) (78) 

�9 1 where the application of both sides of the equation on a spm-~ state is under- 
stood. Inserted into (71), this yields the expression (56) or (57) for the coherence 
measure C(t).  

If, on improving on the approximation y ~- vt, the operator nature of y and py 
is taken into account, a more detailed analysis (Schwinger et al., 1988) leads to 
the expression 
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where the term in curly brackets is the same as in (64). So one needs 

r 
]cI)l (~y) << 1 

for C--- 1 and 

(8O) 

6 o  
la, I ~ --- t (81) 

for 0 < C << 1. Since B z in Fig. 10 has different signs in the two halves of the 
SGI, the overall precession angle (I) can be made small and the condition (81) or 
perhaps even (80) can possibly be met. 

Next, if we take the x spatial motion into account, we recognize that the 
atoms have a spread 6x and the beams probe the magnetic fields also outside the 
y,z plane of symmetry. Therefore, approximation (52) must be replaced by a 
realistic field. Maxwell's equations T .  B = 0, T x B = 0 imply a nonvanishing 
B x component (mainly inside) and a nonvanishing By component (mainly in the 
fringing fields). Thus, 

d Sz(t) = 2-# (SxBy - SyB ) # 0 (82) 
dt 

the z component of the magnetic moment is not really conserved in an SGA. 
However, because of the Larmor precession, the right-hand side in (82) oscil- 
lates very rapidly so that a sizeable change of s cannot accumulate. Neverthe- 
less, the extension of the beam in the x direction, where it is exposed to an av- 
erage Bx--~ 6x~)B/~)z, leads to a loss of coherence, both for s z and s~,Sy, on the 
order of 

~ = ~ (83) 

which is the squared ratio of the microscopic quantity ~x and the macroscopic 
length l~ = B z/(OBz/OZ). As such, it is a small number, but not zero. A similar 
contribution arises from the fringing fields. 

For particles with higher spin, the integral in (73) does not vanish when 
applied to the state rl(T)l) as in (74). The correction that arises from this inte- 
gral increases with higher spin values, since it involves the number operator 
rlt 7/. The approximation of an effective t dependence for the y motion there- 
fore gets worse with higher spin. From these considerations and others we in- 
fer that, in the classical l imi t - - tha t  is, for particles with a macroscopic mag- 
netic momen t - - t he  maintenance of spin coherence in a Stern-Gerlach 
interferometer becomes increasingly more difficult and eventually quite im- 
possible. 
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B. THE LONGITUDINAL STERN--GERLACH EFFECT 

The additional term found in Eq. (79) originates in what is called the l o n g i t u d i -  
n a l  S t e r n - G e r l a c h  e f f ec t .  When an atom enters the region with the (strong) 
magnetic field, Eq. (52), it acquires a potential energy 

h 2/z 2 - ~ .  B(r) = SzB (y)  ~ - - -  S Bz(Vt)  = - E ( t ) s  z. (84) 

This induces a compensating change pyAvy in the kinetic energy, so that 

1 2  aVy = - -  E(t)Sz. (85) pyh 
As a consequence, there is an accumulated displacement in the longitudinal y di- 
rection relative to the force-free motion, which depends on the spin state: 

or  

fo T 1 2 fo T 1 A y  = d t A v  = s z dtE(t) = --  Cb(T)s  z py h py (86) 

h h 
A y = _ - - ~ ( T )  for s z =  _ ~ .  (87) 2py 

This displacement appears in the y analogs of the integrals of (57) and yields the 
additional term in (79). 

In contrast to the transverse Stern-Gerlach effect, no net momentum change 
arises in the longitudinal one. This suggests that the realization of an interferom- 
eter that exploits the longitudinal effect should be much simpler. This, indeed, is 
the case. 

A longitudinal Stern-Gerlach interferometer consists of two stretches of 
magnetic field oriented in the z direction with gradients predominantly in the y 
direction of the atomic motion. The first stretch splits the atom's center-of-mass 
wave function longitudinally, the second stretch attempts to recombine it, aiming 
at a reconstruction of the initial spin state. Although the recombination is much 
simpler in the longitudinal arrangement than in the transverse one, the fringe 
contrast still gets lost if the first magnetic field separates the spin components by 
too much. 

In a simplified description that ignores the quantum nature of the center-of- 
mass motion, a longitudinal Stem-Gerlach interferometer would appear as a de- 
vice for studying spin precession and would at best be regarded as a variant of 
spin-echo experiments. An important point is then missed; namely, that the inter- 
nal longitudinal separation must be undone and that there are limits to the preci- 
sion that can be achieved. 

These general remarks are confirmed by the experiments reported by Robert 
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et al. (1992) who summarize their work on the longitudinal Stern-Gerlach inter- 
ferometer at Paris-Nord. These experiments employ atomic magnetic moments. 
It is also possible, of course, to use the nuclear magnetic moments of diamag- 
netic atoms. Measurements by DeKieviet et al. (1995) in Heidelberg have 
achieved an impressive energy resolution of 15 neV in an interferometer of the 
nuclear type. The longitudinal separation associated with an accumulated Rabi 
angle of cI) ~ 3000 x 27r halfway through the interferometer leads to a loss of 
fringe contrast of about 50% in one of their measurements. 

IV. Conclusion 

Atom interferometry enables us to address fundamental aspects of the quantum 
theory of measurement in the context of real experiments. Some of the most in- 
triguing questions are, How is the principle of complementarity enforced in spe- 
cific measurements? How is interference lost by obtaining Welcher Weg informa- 
tion? Can it be recovered by erasing that information after the corresponding 
interaction has taken place? What is the role of a macroscopic device, with its 
many degrees of freedom, in a measurement on microscopic objects? And, is 
there a dynamic resolution of the postulate of state reduction, introduced by von 
Neumann many years ago? In this review, we have readdressed a few of these 
topics in the framework of matter-wave interferometry. The application of 
quantum and matter-wave optics to the quantum theory of measurement 
promises to yield many more fascinating insights. 
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I. Physics of the Generalized Beam Splitter 

The key e l emen t  of  mos t  mat te r -wave  in ter ferometers  is a diffractive b e a m  split- 
ter. Ideally,  a diffractive beam spli t ter  is a scat ter ing potent ia l  for the incident  
particles,  which is spatial ly per iodic  with a wave vector  kerr: V(r) ~ exp(ikeff r + 
i q~] + c.c. and hence  couples  two modes  I and II differing only  by their  mo-  
menta ,  e i ther  p and p + hk~ff or p and p - hkef f. This  cor responds  to the case of  
the neut ron in ter ferometer  [ 1], but also to an a tom in te r fe rometer  us ing a me-  
chanical  grat ing [2] or off - resonant  s tanding laser  waves [ 3 - 5 ] .  It is poss ib le  to 
genera l ize  this b e a m  spli t ter  potent ia l  to t ime varying potent ia ls  such as 
V(r,t)  ~ e x p [ - i ( % f f t -  k~ff. r + q~)] + c.c. if the incident  part icles  s imul tane-  
ously  may  undergo  a change  of  their  internal  state a----> b, states whose  respec-  
tive energies  are E a and E b [ 6 - 9 ]  (Fig. 1). If  the resonant  condi t ion  
hoJef f = hOgba = E b - E a is satisfied (we examine  later  what  happens  out  of  reso- 
nance) ,  the change  of  internal  state provides  only  an addi t ional  label  to the mo-  
m e n t u m  label  for channels  I and II: I -  (a,0), I I -  (b,hkeff). We may  cons ider  
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~ ,  E a 

--> I P,Ea 

Eb-Ea+h~ 
FIG. 1. Generalized beam splitter and Bragg condition. In the ideal case where the splitter is 

thick enough to have a narrow momentum distribution width Ak << k, because of energy and mo- 
mentum conservation, the incident particle interacts with only one of the two traveling waves and is 
diffracted from channel I to channel II (two-beam approximation). The labels I and II correspond pri- 
marily to a different momentum in each channel: p and p +-- hk but may include also secondary addi- 
tional labels such as the spin projection on a fixed axis or the quantum numbers corresponding to an 
internal state. 

that the process is still elastic (no extra energy is given to translation) and the 
Bragg condition results from the conservation of kinetic energy: 

kef f �9 (p + hkeff/2) = 0 (1) 

from which, the Bragg angle 08 is given by 

sin08 = hdB 
2Ae-~f. (2) 

where hda is the de Broglie wavelength and he f = 2-rr/kee e. 
The only condition required to have a large diffraction angle 0 8 is to have 

matched wavelengths AOB ~ A ff. In neutron interferometers, this matching re- 
sults from the short interatomic distance in the silicon crystal. In atom interfer- 
ometers, it can be obtained by an increase of AOB, which becomes comparable to 
an optical wavelength for cold atoms or, in the future, by using very short optical 
wavelengths in the case of atoms and molecules at ordinary (room) tempera- 
tures. If this is not the case, the two output channels I and II may not be fully re- 
solved in space, but for a number of applications, this is not an obstacle, since 
the extra-label of the internal state a,b may then be used to discriminate between 
I and II. It should be emphasized that the splitting in space occurs only because 
of momentum conservation, not because of a change in the internal state, al- 
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though it may be accompanied by such a change. We thus have a general class of 
interferometers in which the splitters change, in general, both the external mo- 
tion and the internal state in a single step. This includes, as a special case, inter- 
ferometers in which the splitters change only the external motion ( a -  b). Of 
course, we have also another class of interferometers, in which the first step is to 
create a superposition of states (labels), either internal or external (e.g., spin 
states in Stern-Gerlach interferometers [ 10]), and the second step is to separate 
these states in physical space by a diagonal state (label) dependent potential 
Vaa(r) or Vbb(r). The interferometers of Refs. 6, 8, and 9 do not belong to this 
second class, contrary to what is stated in Ref. 3. 

In addition to the potential's phase, the potential's amplitude may be modu- 
lated either spatially or temporally. For example, a rectangular potential profile 
in space is obtained with silicon crystal splitters in the neutron interferometer 
and also with suitably shaped cw laser beams. In this case, energy conservation 
allows only one momentum modulus p but the Bragg condition is partly relaxed 
with respect to the direction of p, owing to the width Ak of the spatial Fourier 
transform of the potential. On the other hand, if the potential envelope is a plane 
wave rectangularly pulsed in time [9], only one momentum hkef f can be ex- 
changed, but the Bragg condition is partly relaxed because of the Fourier width, 
Ato, which allows departure from elasticity. These two cases are not equivalent, 
and a simple coordinate transformation from the laboratory frame to the atomic 
frame will not turn one into the other. Rather, one should exchange the roles of 
the space x and time t coordinates, on the one hand, and of the momentum Px and 
energy E, on the other hand. An atom interferometer in space using the first kind 
of splitter will be turned into an interferometer in space-t ime with the second 
kind of splitter. 

If, in addition toeff ~ toba' the Bragg condition no longer is satisfied, but as we 
P shall see, energy conservation is satisfied because the atom acquires a k eff ~ kef f 

in the Fourier transform of the splitter potential (within the width Ak) in the case 
o f  the spatial pulse and another effective to'~ff ~ to ff (within the Fourier width 
Ato) in the case of the temporal pulse. This will result in extra phase factors cor- 
recting the laser carrier phase with a momentum correction in the first case and 
an energy correction in the second case. 

A. THE EQUIVALENT TwO-LEVEL SYSTEM AND THE EFFECTIVE HAMILTONIAN 

Most beam splitters used so far in atom interferometry can be described in terms 
of an effective traveling wave interacting with an effective two-level system, 
whether single-photon or multiphoton transitions are used, 1 provided that the in- 
termediate states are off-resonance and can be removed adiabatically (Fig. 2). 

~In Refs. 6 and 7, it is explicitly stated that beam splitters can also use two-photon transitions. 
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b 

a 

(a) 

b 

co ,-k 
c0cff= 2 co c 

(c) 

0 3 c f r ~  2 b 

(b) 

]tX~'c~ 2'-k2/ b 

~" - - -~=  kl+k 2 
(d) 

a=b ~ , / 7 ~  % a=b 

m~=O k~e=2k m~=O k~= 4k 
(e) (f)  

FIG. 2. Energy-momentum diagrams display equivalent two-level systems and effective Hamil- 
tonians and fields in three-level systems: (a) pure two-level system; (b) cascade two-photon transi- 
tion with copropagating waves; (c) cascade two-photon transition with counterpropagating waves; 
(d) folded two-photon (Raman) transition with counterpropagating waves; (e) standing-wave case, 
first-order Bragg diffraction; (f) standing-wave case, second-order Bragg diffraction. 

For a two-level system, we shall write the electric dipole Hamiltonian matrix 
element as 

Vab = - h f ~ b a U ( r , t ) e x p [ i ( t o t -  k .  r + ~)] (3) 

where ~'~ba = [-Labgo/(2h) is the Rabi frequency and U(r,t) the field envelope. 
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For a folded three-level system (Ea< E b < Ec) interacting with two fields, the 
matrix elements corresponding to the equivalent two-level system are 

Vaa "- h s I~.ac]ZUj(r,t)U*(r,t)/Awjca 
j=  1,2 

Vbb = h E II~ibc]2Uj(r't)U*(r't)/A~176 
j=  1,2 

Vab = h(l~lac~2cb/Ao92cb)Ueff(r,t)exp[i(~%fft- kef f �9 r + %ff)] 

Wba = h(~lca~2bc/A~olca)U*eff(r,t)exp[--i(%fft- kef f " r + %ff)] (4) 

with %ef = % - w2, keff = k l  - k2, U~ef(r,t) = Ul(r,t)U~(r,t), q~ff = q~l - q~2 and 
where 

= o + -  k j - v -  (5) 

is the detuning from the intermediate state c, corrected by the Doppler and recoil 
shifts. In these equations, field l, having envelope Ul(r,t  ), wave vector kj, phase 
q~l, frequency %,  and associated Rabi frequency l~a c, drives the a-c  transition; 
and field 2, having envelope U2(r,t ), wave vector k 2, phase q~2, frequency oJ 2, and 
associated Rabi frequency 1~2b,., drives the b-c  transition. Using the resonance 
condition, we check that 

~"~e. __ __ ( ~'-~lac~'~2cb/A O)2cb) -- -- (~'~lca~"~2bc/A ('O1 ca) *" ( 6 )  ba 
These formulas can be generalized easily for higher order interactions. A special 

case is that of the standing wave of frequency % = w 2 = ~o for which Wee f = 0 and 
k ff = 2nk for the nth order Bragg angle. Thus, the diffraction from a standing wave 
results from the diffraction by an equivalent effective traveling wave with zero fre- 
quency. This conclusion applies also to the case of the silicon crystal of the neutron 
interferometer. Let us point out, however, that there is an interesting new possibility 
with the standing-wave beam splitter in the atomic case, which is to use polarized 
light to induce transitions between magnetic sublevels. In this case, the extra labels 
a and b are replaced by magnetic quantum numbers M a and M a +- 2n, which there- 
fore will be different along the two arms of the interferometer without the need for 
an additional spin flipper as in the neutron interferometer. 

Similar formulas hold for the two-photon cascade case (E a < Er < E b) [ 11 ]: 

Waa = h s [~jacl2Uj(r,t)U~(r,t)/Amjca 
j=  1,2 

Vbb-- -h  ~ [~bcl2Uj(r,t)U*(r,t)/Ao% 
j =  1,2 

Vab = -h(fllacf~2cb/Aw2bc)U~ff(r,t)exp[i(%eft- k f e �9 r + q~ff)] + (1 (---)2) 

Vba = h(~lca~2bc/Amlca)U*eff(Ir,t) exp[--i(%fft -- k ff" r + %ff)] + (1 ~ 2) (7) 
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with to ff = tol + to2, k ff = k 1 + k2, U re(r,t ) = Ul(r,t)U2(r,t), q~ff = q01 + q~2- Us- 
ing again the resonance condition, we check that 

~-~effba = (~'~lac~'~2cb/m O')2bc) - -  - -  (~"~lca~"~2bc/m tolca )*"  

In the special case of a standing wave tore = 2to and kef f = 0. 
One therefore can vary kef r from 0 to 2nk and toeff from 0 to 2to. The theory 

and the physics to be discussed apply to all these cases. From now on, we shall 
drop the notation eft for toefr, k~ff, q~ff, U~fr(r,t), and f~ff ha" 

B. TIME-INDEPENDENT TREATMENT OF THE TRAVELING-WAVE BEAM SPLITTER 

A common theoretical approach thus can be given for all cases, including peri- 
odic potentials created by a crystalline or by a fabricated structure (this structure 
should be thick enough for the two-beam approximation to hold). Here, we pre- 
sent only a very simplified version of this theory which is a straightforward gen- 
eralization of the two-beam dynamical diffraction theory [ 1 ]. 

We start with the time-dependent Schrrdinger equation written for the iso- 
I'- "1 

spinor ~ ( r , t ) =  ['I"I(r'/)/ [ ~ i ( r , t  ) J in the Schrrdinger representation in the laboratory frame 

ihO~(r't)- [ h2 V2 ] 
at - -2--M + H~ + V(r,t) ~ ( r , t )  (8) 

where H 0 and V are the following Hamiltonian matrices: 

H0 __ E a 4- E b htoba 
2 ~176 + 2 tr3 (9) 

V(r,t)= [Vbb - hf~baU*(x- xl)exp[-i(tot - k. r + q0)]] 
-h~'~baU(X- x l ) e x p [ i ( t o t -  k - r  + q~)] V a (10) 

where the rotating-wave approximation has been used and ~ denotes the Pauli 
matrices with o" 0 the unit matrix. 

To eliminate the time dependence from the Hamiltonian, we perform the fol- 
lowing transformation to a frame rotating at frequency to: 

qKr,t) = exp[i(tot + r ). (11) 

In the case of a constant field amplitude (U(x - x 1) -- 1), we may then look for 
stationary plane wave solutions: 

~r't)=[~b'k(r't)]=[ exp[i(K+k)'r]~a,o(r,t)] 0 exp[iK-r]0] ~(t) (12) 
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with 

ubk(p)] exp(-iEt/h) ~t(t) = ["a',dP)] (13) 

satisfying 

ihO~  ̂ = [Ho hto + ( h2(K+k)2/2M+Vbb --hl~b~ ) ] ~ = E ~  
at 2 ~ -h~-~Oa h2K2/2M -~- V a 

(14) 

where M is the atomic mass and 

p2 ho9 
E = 2M + Ea -~- ~ "  (15) 2 

Finally, one obtains 

[h2(K + k ) 2 / 2 M -  p2]2M + Vbb + h(Ogba- O9)]Ubk(p) -- h~baUao(P)= 0 
--hl~baUb,k(p) + [h2K2/2M-p~/2M + Vaa]Ua,o(p)= 0. (16) 

At resonance or when b = a and w = 0, these coupled equations are identical 
to those of the dynamical neutron diffraction [ 1 ] within the two-beam approxi- 
mation. This demonstrates the equivalence of mechanical, crystal, and laser 
beam splitters at resonance. The indices a,b are redundant with respect to 0,k. 

1. Solutions in the Symmetric Laue Case" Pendell6sung and Rabi Oscillations 
These equations can be solved for the unknown vector K. One finds the four 
waves 

@~bl, i,2)(r,t) = ~U0/(2~/1 + y2)exp{i[(p + hk) -  r + E i , 2 ( p / c o s ' y ) x -  Et]/h} 
~b~a~b2)(r,t), = (Uo/2)(1 + y/~/1 + yZ)exp{i[p �9 r + El,z(p/cosy)x- Et]/h} (17) 

where 

hM~-~ba 
•1,2-- p2 ( -Y + V/i + y2) _ 

and where 

MVa . 
p2 ' COS)' = p �9 ~]p (18) 

[(hk) 2 + 2 h k .  p ] / ( 2 h M )  - ( o J -  O)ba ) s t- ( W b b -  Va)/h 
Y - 2~ba (19) 

is the usual parameter of dynamical diffraction theory that determines the degree 
to which the Bragg condition is violated, corrected by a term involving the de- 
tuning in the case of atoms. 
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The superscripts 1,2, correspond to the a and fl branches of the neutron dy- 
namical diffraction theory [ 1, 12, 13]. Let us point out that the momenta 

hK~l,2) = p ( 1 , 2 )  _ .  p + el,2Pi]COSy (20) 

are usually very close to p, since the correction factor is of order h/(2a), where 
2a is the thickness of the splitter that is to be compared with the de Broglie 
wavelength. All calculations are performed to the first order in e. Exact calcula- 
tions are possible but they require the consideration of reflected waves, which 
we have ignored here for the sake of simplicity. 

Combining Eqs. (11)-(20), one obtains 

~ i i ( r , t )  _ ia0/V' 1 + y2 sin [~ba~/i + y2X/Vx] exp [ - - i ( to t -  k "  r + ~o)] 
�9 exp {i[p.  r - (E a + p2/(2M))t]/h} exp [ - i ( V J h  + ~-~baY)X/Vx] 

~( r , t )  = ao{COS [l)b~X/1 + y2X/Vx] + i(yA/1 + y2) sin [l)baV'l +y2X/Vx]} 
�9 exp {i[p �9 r - (E a + p2/(2M))t]/h} e x p  [ - i (Waa/h  + ~-~baY)X/Vx] (21) 

with v x -- Px/M. 
For the same problem with a square pulse in the time domain (14), the solu- 

tion for q~n(r,t) is 

qtii(r,t ) = ia0/V' 1 + y2 sin [~baV/1 + yZt] exp [ - - i ( w t -  k .  r + q~)] 
exp {i[p. r - (E a + p2/(2M))tl/h } exp [-i(Vaa/h + l~baY)tl. (22) 

We see that the two expressions correspond to each other with an exchange of 
the roles of time and space coordinate x and energy and momentum Px. 

The energy oscillations between the primary and reflected beams are 
known as the pendellgsung oscillations in the case of neutrons [15] and as 
Rabi oscillations in the case of atoms. In the case of atoms, the extra label of 
the internal energy can be used to monitor these oscillations even if the 
Bragg angle is too small to resolve the beams by their scattering angles 
(Fig. 3) [16, 17]. 

2. Neutron or Atomic Currents: A Wave Packet Approach 

From the plane wave solutions Eq. (21), one can build wave packets by integra- 
tion over a momentum distribution u ( p -  P0) and look for the trajectories of 
these wave packets. Each of these has the following structure: 

F(r,t) = f d3p exp [-ipZt/(2mh)] exp [ip.  r/h + i~p)x /h]u(p  - P0) (23) 

where q~(p) stands for el,2p/cos y = ~.l,2pZ/px . 
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FIG. 3. Rabi oscillations for a two-level atomic system: A molecular (SF6) beam crosses a per- 

pendicular cw traveling (CO2) laser beam at resonance [ 16, 17]. The excited state population is mon- 
itored after the interaction zone and plotted versus the laser electric field amplitude. The two output 
channels, I and II, are not resolved angularly in this case, because the molecules travel too fast to 
have a de Broglie wavelength comparable to the laser wavelength, but the extra label provided by the 
internal (vibrational) state is used to discriminate between channels I and II. This experiment with 
molecules is equivalent to Shull's pendell6sung experiment with neutrons [ 15]. 

We can introduce the true momentum p~ = p + qo(p)i with a change of variable: 
P = Pz - ~ l ( P l )  ~ 
q~(Pl) = q~(P) (24) 

which gives to F the canonical structure 

F(r,t) = ~ d3Pl exp [ - i ( p  1 - q~l(pl)fOzt/(2Mh)] 
J �9 exp [ ipl .  r/h]u(p 1 - q~l(Pl)~- Po) (25) 

from which we extract the central component at Po with a Taylor expansion 
t ,  around Po- 

F(r,t)--~ exp [-iPoZt/(2Mh)] exp [iPo- r/h] exp [iPo- f~q~(Po)t/(Mh)] 

Jd,<p, -po> exp [i(Pl - Po)" r/h] exp [ - i ( p ~  -po2)t/(2Mh)] 

�9 exp {i(p~ - Po)" Vp[Vxq~(p~)]t/h}u(p~- Po)~  exp [iq~(Po)X/h] exp [ip~t/(2Mh)] 
�9 exp [iPo. ( r -  Pot/M)]f{r- Pot/M + [~'p,(Vxq~l(pl))]po t} (26) 
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where P0 = P0 + q~l(Po) i = P0 + ~Po)  ~ and where 

f ( r )  = f d3p exp [i(p - P0)" r /h]u(p  - P0) (27) 

is the envelope of the wave packet. We check from this expression that the enve- 
lope travels at the group velocity and the overall phase factor is given by the ac- 
tion integral and by the dephasing introduced by the splitter taken at the value of 
the central momentum. The group velocity can also be calculated directly from 
the dispersion relation: 

E(p~) = [ P l -  q~l(Pl) i ]2/(2M) (28) 

and Vg = Vp E(pl). 
The corresponding wave packet structure obtained from Eq. (22), in the time 

domain, can be written as 

F(r,t) = f d3p exp { - i [p  2 - 2px~p(p)]t/(2Mh)} exp [ip.  r /h]u(p  - P0)" (29) 

The group velocity is the same as in the previous case, since to the first order 

{VP~ [Vx~I(pl ) ]  }Po"" {VP [vxqg(p)] }Po" (30) 

The main difference is that the momentum distribution in this case corresponds 
to an energy distribution in the previous case. If the same manipulation is per- 
formed as in Eq. (26), one finds that the spatial phase factor exp [iqffPo)X/h] is 
replaced by the temporal phase factor exp [ i v ~ P o ) t / h ] .  

One finds the following expressions for the group velocities: 

p~l,2) hk ( y ) 
v ~t'2) = + 1 u (31) 

g M 2M V'I + y2 

where all functions are evaluated for the center of the wave packet P0- 
This means that, inside the splitter, the incident wave splits into two groups of 

two waves (the a and/3 branches) whose trajectories are symetrically located on 
both sides of the normal to the input face of the splitter, making an angle with 
this normal Ill, 2 given by z (Fig. 4) 

tan ~~1,2 _ -- Y 
- - ~ - ~  ( 3 2 )  

tan 0 B V ' i +  y2" 

For incidence at the Bragg angle and at resonance in the case of atoms, this 

2From Eq. 31, one can show easily that the tangential components of the velocities satisfy k �9 vg-~ 
_ (k �9 Po/M)yA/1 + y2, while the normal components are nearly the same. 
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FIG. 4. Neutron or atomic currents in the beam splitter: Under Bragg incidence and at resonance 
the particles travel perpendicularly to the input surface of the splitter. Otherwise, the beam splits 
along two trajectories within the so-called Borrmann fan, with an angle 1~, which is greatly amplified 
in comparison with the deviation from the Bragg angle 0 B. At the ouput surface, these two waves 
split again in two free-space solutions in channels I and II. 

angle is equal to 0 and all waves propagate perpendicularly to the input surface. 
Any small deviation from the Bragg incidence angle is greatly amplified [18], 
and for atoms, a detuning will have the same effect. 

One consequence of these separate trajectories is a correction to the phase 
shift that one could calculate from a naive theory ignoring them. This has been 
the case in the calculations of the gravitational phase shift in the neutron Collela, 
Overhauser, Werner (COW) [45] experiment, where important corrections have 
been found [ 13]. Also, the existence of four waves within the beam splitter gives 
rise to four waves leaving the splitter, and this multiplies the number of interfer- 
ometers to be considered in phase-shift calculations [ 19]. 

3. Inelastic versus Elastic Scattering 

An elegant way to introduce the boundary conditions between field zones and 
field-free zones is to extend the previous analysis to varying field envelopes U. 
In this case K is replaced by - id/dx in Eqs. (16), which become 

d2 
(hZ/2M)-~x 2 + p~/2M + 

h [ o ) -  tOba- kv z - 6 -  Vbb(X- Xl)/h 
[ l)baU(X -- X~) 

~baU*(x--xl)]}(lt(x,t)=O 
- V a a (  X - X l ) / h  

(33) 
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whose solution is 

r  = exp [px(x  - xo) - E ( t  - to)] ."J"exp 1 - -  

V x 

~'~baU(X ' - X l )  - V a a ( X  t -  xl)/h j ~(Xo'to) 
where 

(34) 

is the recoil shift and 7"is an ordering operator. Finally, 

~n(r,t) = exp [h  (P + hk)" ( r - r 2 ) ]  

[ x 
exp i (~o-  % 0 -  kVz-  3) - - ~Ii(rz,t) (36) 

V x 

where ~n(rz,t) corresponds to the solution given by Eq. (21) in the case of a 
constant field which cancels at r = r 2. From this expression, we see that an addi- 
tional momentum h6k~  = ( ~ o - % - k v - 6 ) I v  x is transferred to the atomic 
wave along the x axis. The origin of this extra momentum lies in the inelastic 
character of the scattering when the effective laser frequency is out of resonance 
(Fig. 5) [20, 211. In this case, the additional energy transferred to the atoms is 
converted into kinetic energy, hence a boost of the atoms along the diffracted 
path. This is a new feature of the generalized beam splitter that could not be ob- 
tained with silicon crystals or mechanical gratings. 

The additional momentum h 6 k  x is easily found by invoking conservation of 
energy for a two-level system in the laboratory frame (see formulas (61) and 
(64) in Ref. [11]). Using the relationship E = p - v -  L, where L is the La- 
grangian, one finds 

( P b -  Pa)" v [ h  --" 0 9 -  09ba~/1 [~2 __ 6 (37) 

where fl = v / c ,  a n d  v = pa~/1 - f l 2 / M  [11 ]. 
Since, in each zone, the interaction may involve many photon exchanges, the 

overall momentum hk '  exchanged in Eq. (37) results from these multiple suc- 
cessive one-photon exchanges. This overall exchanged momentum exchanged is 
written a s  ( P b  - -  Pa) = h(k + 6k). Neglecting 6kzV z in Eq. (37), we infer that the 
correction 6 k  x is given by 

6kxV x -~ A - 3 -  k .  v (38) 

where A = o J -  wbaV ~1 L r2 is the detuning corrected by the transverse Doppler 
effect. 

h k  2 
= (35) 

2M 
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FIG. 5. Inelastic versus elastic scattering or how to communicate momentum along one of the interfer- 

ometer arms: At resonance, energy conservation requires elasticity in the splitting process and the Bragg 
condition has to be satisfied. The exchanged momentum hk'  can have any value within the spatial Fourier 
content hk +__ hAk of the splitter profile. On the x axis perpendicular to the splitter, this gives a narrow dis- 
tribution of momenta, but for each value of the momentum of the incoming particle, the modulus of the 
momentum is the same on the two output channels. Out of resonance, the additional amount of exchanged 
energy (positive or negative) is transferred to kinetic energy and the modulus of the momentum is changed 
in channel II. To the first order, the increase of momentum along the x axis is proportional to the detuning 
A. The exchanged momentum hk'  still has to lie within the spatial Fourier content hk _ hAk of the split- 
ter profile and this limits the possible detuning. It is however possible to tilt k to increase this range and to 
transfer the recoil continuously from the transverse z direction to the longitudinal x direction. 
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To the second order, there is also a small momentum correction h6k z along 
the z axis, which is obtained as a solution of the following equation: 

26k z = -[(6kx) 2 + (6kz)2]/k (39) 

derived using k' = k. 
If one solves the same problem in the case of a pulse in the time domain, the 

corresponding solution would be 

[' 1 �9 ii(r,t) = exp - ~  (E a + pZ/(2M) + h t o ) ( t -  t2) 

exp ( i ( to -  toba -- kVz - 6) ( t -  tz)]~ii(r,t2) (40) 

where ~ii(r,t2) is given by (22) in the case of a square pulse. 
The exchanged momentum (Pb - Pa = hk) is fixed and the extra energy com- 

ing from the inelastic character appears as a change in energy along the dif- 
fracted path. From the energy-momentum balance (37), one finds, this time, 
that the effective energy exchanged is 

h t o ,  = htobaV/1 _ ~2 ..1_ h 6  + (Pb- p,).v (41) 

hence the correction factor to the laser carrier frequency to. This is again an il- 
lustration of the correspondence between the two types of problems. 

C. SCATTERING MATRIX IN THE TIME-DEPENDENT APPROACH AND PROPAGATORS 
BETWEEN FIELD ZONES 

We can unify the cases of spatial and temporal pulses in a more general ap- 
proach based on a time-dependent description of the evolution of wave packets. 
The basis of this treatment is the use of the interaction representation with re- 
spect to H 0 and those parts of the Hamiltonian connected only with the external 
motion 

I~(t)) = Uo(t,tl)l~ (t)) (42) 

where 

Uo(t,tl) = Ue(t,tl) exp [ - i H 0 ( t -  tl)/h] (43) 

is the free evolution operator in the absence of V in which Ue(t,t 1) describes the 
external motion. 

The transformed ket [x~(t)) satisfies 

ihOtl~(t))--  9(rop,pop,t)lx~(t)) (44) 
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with 

and 

l?(rop,Pop,t ) = Uo 1 (t, tl)V(rop,t)Uo(t,t 1) 
= exp [iH0(t - tl)/h]V[rop(t, tl),t ] exp [- iH0(t  - t~)/h] 
= V[rop(t, tl),t ] (45) 

rop(t,t l) = U~ 1 (t, tl)rop UE(t, tl). (46) 

For expressions for the evolution operators Uo(t,t') in the presence of inertial 
fields see Refs. 7 and 22. 

In free space, UE(t, tl) reduces to exp [-i(pZp/2M)(t - tl)/h], in which case, 

rop(t,t 1) = rop + Pop(t- tl)]M. (47) 

The formal solution of Eq. (44) is ('/"is a time-ordering operator) 

I'(Ir(t)) = O(t,to)l~(to) ) 

= 'T'exp - i  dt' ,t~),t] ~(to) ). (48) 

1. The ~S Matrix in the Two-Beam Approximation 
Within the two-beam approximation, we shall consider the following isospinor, 
in the position representation 

(~b  k(r,t) / 
(rlqt(t)) = ~t(r , t )= ~ta '0(r , t ) ] .  (49) 

\ - ! 

A great simplification occurs if we calculate the matrix elements of U(t,to) 
with the assumption of very narrow (quasi-plane) wave packets in momentum 
space, with a correction for the recoil 

l' (rlP(t,to)lr') = 'T'exp [ - i  dt' V(t ' ) /h]6(r  - r ' )  
.,t o 

= S ( r , t l ) 6 ( r -  r ' )  (50) 

where Hamiltonian matrix V(t) is given by 

[ Vbb[r + p ( t -  tl)/M,t] V~a[r + (p + h k / 2 ) ( t -  tl)/M,t] ] 
V(t) = I Va-b[r + (p + h k / 2 ) ( t -  tl)/M,t] • exp[iWba(t- tl)] ] . (51) 

[ X exp[--iWba(t- tl) ] Vaa[r + p ( t -  tl)/M,t] 

(V~- a and V- b are the exp(ik,  r) and exp ( - i k  �9 r) parts of Vba and Vab, respec- 
tively). 
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A simple way to derive this result is to start with Eq. (44) in the position rep- 
resentation: 

ihOta~tb,k(r,t ) = f d3p'(rl(/ba[rop + Pop(t tl )/M,t] lp ')(p ' l(a[~(t)) 

+ f dap'(rlf/bb[rop + Pop(t- t~)/M,t]lp')(p'l(bl~(t)) 

~--1/(27rh)a/zf dap ' exp [ i p ' - r / h ] f  dak ' (/+ba'Ck"t)exp {ik ' .  [r + p ' ( t - t l ) / M ] }  

exp [i h k ' 2 ( t -  t l)/2M](p'l(al~(t)) 

+ 1/(27rh)a/zf dap ' exp [i p ' .  r/h] l d3k' (/ bb(k ',t) 

exp [i k ' .  [r + p ' ( t -  tl)/M](p'l(bl~(t)).  (52) 

where we have introduced the spatial Fourier transforms 

"~(r,t) - dak'V(k',t) exp [i k' �9 r] (53) 

and where we have neglected the recoil for the diagonal terms. 
Finally, with the assumption that X[ta,0(r,t) and ~h,k(r,t) represent narrow wave 
packets centered around p and p + hk, one finds 

ihi)t~b,k(r,t) ~-- W;a[r + (p + h k / 2 ) ( t -  t')/M,t]~a,o(r,t) 
+ Vhb(r + p ( t -  t ')/M,t)~bk(r,t) (54) 

and a similar equation for ~a,0(r,t). 
As an example, in the case of the electric dipole interaction, V(t) is given by [23] 

Vbh[X -- X C + vx(t -- tl),t -- to] - h ~ - ~ b a U *  [x  - Xc+ Vx(t - tl),t - t] 
"if(t) = --h~,baU[x- xc+ Vx(t- t l ) , t -  tc] • exp{- i [wt-  k((z + Vz(t- t~))+q~] 

• exp{ i(tot- k[(z + Vz(t- tl)] + q~]} • exp[i(tOba + 6)(t--tl)] 
• exp[i(tOba + 6)( t-  tl)] V~o[X- x c + Vx(t- t l ) , t -  t C] 

(55) 

Expressions for the matrix S(r,t~) can be found for spatial pulses in Refs. 20 and 
23. From Eq. (50) and from the previous expression, one finds 

S(r,t) = e x p [ - i ( t o t -  k " r + q~)o'3/2] exp [ i ( w -  tOba - kVz - 6) x - xc ] v o-3/2 M 

exp [ i ( to t -  k . r + ~p)o-3/2] exp [ - i ( t o -  tOba - kVz - 6) x - X~c (56) 
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where the matrix M is given by 

M = 'T'exp 

Ii f__*~ dt[f~ v --Vbb(Vxt)/h 
[ baU(xt) • exp[i(A -- k v -  3)t] 

l~baU*(Vxt)•  Vaa(Vxt) / h 

(57) 

which, in the case of fields having rectangular spatial profiles of length 2a, 

U ( x -  Xc) = Y [ ( x -  xr + 1] - Y [ ( x -  xr - 1] 
Vjj(x - Xc) = { Y[(x - Xc)/a + 1] - Y[(x - xc)/a - 1]l Vjj (58) 

where Y is a step function, can be expressed as 

M(A,C'3 = exp [--i(Vbb + Vaa)/h(a/vx)] 

[ [ c o s A - i ( C " / A ,  sin A] exp iC' 2 i (A /a )  sin a ] 
• 2 i (A/A)  sin A (cos A + i (C"/A)  sin A) exp( - iC ' )  (59) 

where A = flbaa/v x, C"= C' + (Vbb -- Vaa)/h(a/vx),C' = - ( A  - kv z - 6)a/v x = 
C + 6a/vx,C = - (A - kvz)a/v~, and A = v~4A2 _~ C,,2. 

Similar expressions valid for temporal pulses can be derived from Eq. (50), 
which are consistent with Eq. (40); that is, 

S(r,t) = exp [-i(o~t - k �9 r + q~)o'3/2] 

exp [i(a~- O~ba- kv - 6)(t 1 - tc)Or3/2]M(A,C ) 

exp [ i (wt -  k .  r + q~)or3/2 ] exp [ - i ( o ~ -  OJba - -  k v  z - -  ~ ) ( t  I - -  to)%~2 ]. (60) 

This approach can be used also to connect the formulas obtained for tem- 
poral [14, 24] and spatial splitters in the presence of a gravitational field. In 
this case, the free evolution operator UE(t,t~) given in Refs. 7 and 22 is used to 
calculate 

rop(t,t 0 = rop + pop(t - tl)/M + t~(t,t l) (61) 

which shifts the spatial coordinates in V(t) by 

~(t,t 1) = g ( t -  tl)2/2 (62) 

in the case of a constant field g. The S(r,t) matrix is then calculated with either 
U ( t -  t c) or U ( x -  Xc). In this way, the problem that we mentioned previously, of 
having to calculate the gravitational phase shift along the trajectories in the beam 
splitter can be avoided. 
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2. Free Propagators  and  Calculat ion o f  Phase  Shifts 

The general idea is then to write the evolution operator U(t,to) as a product of 
free evolution operators and of S matrices, which give the evolution in the beam 
splitters: 

U(t, to) = Uo(t, t l)Uo~(t,t ,)U(t,  to)Uo~(t~,to)Uo(t~,to)= Uo(t,t~)l)(t, to)Uo(t~,to). (63) 

We have then 

f 
( r l~(t))  = J d 3 r l  d3roGo(r,rl,t , t l)S(rl,t l)Go(ri,ro,tl , to)(rol~(to )) (64) 

where Go(r,r ' , t , t ' )  = (r[Uo(t,t')[r') is the propagator outsides the field zones. The 
expressions for the propagators in the presence of inertial fields can be found in 
Refs. 7 and 22. The matrix elements of the free-space propagator are given by 

, , 2 / 2 M ) ( t -  t ' ) /h][r' ,a).  (65) G ( r , r  ,t,t ) = ( r ,a  I e x p [ - i ( H  0 + Pop 

For a wave packet centered about p~, these matrix elements can be approxi- 
mated by [22] 

G pl(r,r ' , t  - t ') = e x p [ - i ( E  - p~/2M)(t - t ' ) /h]6[r - r '  - pl(t - t ' ) /M].  (66) 

This approximation neglects the wave packet spreading and remains good to the 
first order in 6p if p~ is replaced by P l + 6p. 

One can then combine S matrix elements and G propagators for the various 
elements of an interferometer to derive the interference signal. For example, we 
can use Eq. (64) and the previous propagator to recover formulas (36) and (40), 
which apply to the case of a single interaction zone (Fig. 6): 

~n(r , t )  = ~ d3rl d3roGb,p + hk,(r,rl, t -- tl) ~ (rl,tl)Ga,p(rl,ro,tl - to)a(ro,to) 
J 

f d3rl d3r0 exp{- i [E  b - (p + h k ' ) 2 / 2 M ] ( t -  tl)/h} 

�9 6[r - r 1 - (p + h k ' ) ( t -  tl)/M] exp [ - i ( w t  1 - k �9 r I + q~) + irkx(x 1 - Xc)]Mba 
�9 e x p [ - i ( E  a - p2 /2M)( t -  t i ) /hr[r  1 - r 0 - p(t 1 - to)/M]ao(ro,to) (67) 

with k'  = k + 6kxY~ and a0(r,t) = a o exp { [i(p �9 r - ( E  a -k- p2/(2M))t]/h ]. 
The sensitivity of atomic interferometers to external fields can be estimated 

with general expressions for the phase difference obtained by the same formal- 
ism. If we denote b y ] . ~  ~ (t)) the solution in the absence of interaction from t o t o  
t, Eq. (48) becomes 1~0)(t)) = ]~(t0)) and we may rewrite Eq. (48) as i(, - -  

I~(t)) = T e x p  [ - ~  dt '9[rop( t ' , t l ) , t )] l~~ 
�9 ,t o 

(68) 
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 o,to) 

i (P + h/~) 2 ] 
Gbb ~ exp - " h  (Eb - 2 M  ) ( t -  t l) 

~(F - ~ - (~  + h~: ) ( t  - t~ ) / M )  

E 1 '~ba "~ exp -io~tl + i k . ~  - iq) 
+ i ~ k x ( x  I - xc )  

I J i p2 
G aa --> exp ---~(E a - 2 M - ) ( t , -  t o) 

15(~ - F 0 - p( t  I - t 0) / M)  

a(ro,to ) 

FIG. 6. Treatment of a single beam splitter by the S matrix method. 

implying that Eqs. (50) and (51) can be used, quite generally, to calculate the 
phase shift introduced along an interferometer path by the perturbation I71. 

For example, for an atom in free space, the first-order phase shift is given by 
the first-order S matrix: 

8q~ = - R e  dt' exp[-- i~OBA(t-  t')]V-~A [r -- (p + h k / 2 ) ( t -  t ' ) /M,t ' ] / t i  (69) 
t o 

where B and A are isospinor or Pauli spinor states. 
The phase shift is thus obtained by integrating the perturbation along the clas- 

sical path with a recoil correction, which can be rewritten with the derivative of 
the perturbation taken also along the classical path: 

8q~ = - R e  dt'  exp[- - iO)BA( t -  t')] 
�9 ,t o 

V ~ A [ r -  p ( t -  t ' ) /M, t ' ] /h  - ~  r~(t,t �9 VV~-A[r- p ( t -  ) /M, t ' l / t i  (70) 
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where 

hk 
rl(t,t ') = ~ -  ( t -  t') (71) 

is the deviation from the unperturbed trajectory. This result generalizes that de- 
rived in Ref. 25 by a perturbation expansion of the action integral. 

If V is an interatomic potential, the same formula gives the index of refraction 
of a gas for the matter wave [26-28].  In this case the S or T matrices are ex- 
pressed in terms of the diffusion amplitudes. 

The previous formalism and Eq. (69) can also be generalized to include the 
relativistic time-dilation factors and to Dirac spinors v(p) [11, 29]: 

f t  6q~ --~ - R e  dt' exp[--i~oBaV'l -- v 2 / c Z ( t -  t')] 
t o 

v ; ( p  + h k ) V [ ~ a [ r -  (0 + hk/2lV'l  - v 2 / c 2 ( t -  t ' ) / M , r ] v a ( O ) / h  (72) 

with the normalization condition v*v = 1. 

II. Architecture of Interferometers 

A. THE Two-ZONE RAMSEY INTERFEROMETER 

The simplest configuration for an interferometer would be the Ramsey separated 
fields method using only two field zones [30]. Using the previous rules to derive 
the phase shift for two field zones at coordinates x~ and x 2, one finds the follow- 
ing phase factor (Fig. 7): 

e x p [ - i 6 k x ( X  2 - -  Xl) ] exp[i(q~ 1 -- (492)] 

= exp[- i(A - 6 + kzVz)(X 2 - Xl)/V x] e x p [ - i k x ( X  2 - xl)] exp[i(q~ 1 - q~2)]- (73) 

With this approach, in which the atomic motion is quantized, the origin of the 
Ramsey fringes lies in the difference 6k x in momentum along each arm induced 
by the inelasticity in the interaction and not from a comparison between an 
atomic clock traveling along a classical trajectory and an electromagnetic clock 
in two places. 

However, because of recoil, this interferometer cannot be closed in space and 
the fringes result from only a partial transverse overlap of the wave packets. As a 
result, these fringes wash out because of the tranverse velocity distribution F(Vz). 
The limit case of a flat interferometer is obtained with two-photon excitation 
with counterpropagating waves in each zone and an effective k z - 0 .  We note 
that, even in this case, the fringes result from the change 6k x in momentum along 
one arm. This is to be contrasted with the case of pulsed temporal excitation by 
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PHASE-SHIFT C A L C U L A T I O N  FOR A PAIR OF FIELD ZONES 
X 

T ~ Z 

i .... 
- i co t -  ik .F 

exp + i 6 k ~ ( x -  x2)- iq% 

E / 1 exp - ~ ( E ~  - 2M)T~ 

a ( F -  ~T~ / M )  

a 
P 

a 

/ b 
b x2 i /~ - h/~ '2 

_ _  

/3~-hk  I -icO('- T1) ] 
/ | 

L+iak  X_Vxr_X, _i  j 
a 

exp[ - idkx(x  2 - Xl)]exp[i(~o I - q92) ] 

e x p [ - i ( A -  6 + kzVz)d /v , , ]exp[- ik , ,d]exp[ i ( tp t -~02)  ] 
FIG. 7. Phase-shift calculation for a pair of field zones at coordinates x~ and x z with x z - x t = d: 

Only phase factors are displayed on the figure. To each field zone corresponds an S matrix with the 
laser carrier and a phase factor introduced by the correction momentum.  Between field zones, we 
have phase factors corresponding to the action integral for free propagation. If a common 
space - t ime  point (r , t)  is chosen after the second field zone, the two paths originate from different 
space - t ime  points before the first field zone. 

plane waves, for which the fringes arise from phase factors corresponding to a 
change of energy, without frequency-dependent momentum change 6k. 

B. MULTIPLE-ZONE INTERFEROMETERS 

If we want to close the interferometer on itself, we need to deflect the paths in 
the intermediate region (Fig. 8) and, in general, use four field zones [6, 16, 17, 
31, 32]. In some cases, the two opposite wave vector components of the same 
field can be used to deflect both paths in the middle region and the number of 
zones can be reduced to three [9, 33]. 

The four traveling waves can propagate in the same direction or one can use 
two counterpropagating pairs of copropagating waves [7]. In the latter case, 
there should be a small angle 0 between the two pairs to satisfy the Bragg condi- 
tion at resonance, and the phase factor is found to be [20] 

exp[2i(A u 6)d/Vx] exp[2ikd sin (0/2)] exp[i(q~ 4 - q~3 + q~2- q~l)] (74) 
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INTERFEROMETER GEOMETRIES 
SYMMETRICAL MACH-ZEHNDER 

SKEW-SYMMETRIC 

TRAPEZOIDAL 

(a) \ 
FIG. 8. Multiple zones intefferometers. (a) Intefferometer geometries, which include the neutron 

interferometers [1] and atom interferometers using microfabricated grids [2] as well as those using 
laser beams for the atomic splitters. Atomic interferometers comprising three or four copropagating 
traveling waves have been demonstrated in space-time with temporal pulses by Kasevich and Chu 
[9] and in space with spatial field zones by Morinaga and Ohuchi [59]. Atomic interferometers com- 
prising two counterpropagating pairs of copropagating traveling waves have been demonstrated in 
Refs. 8, 16, and 31. The phase shifts for all these interferometers have been calculated in Ref. 7. 

where  d is the c o m m o n  dis tance be tween  the last two and first two field zones .  
Let  us e m p h a s i z e  again  that, to in t roduce  the recoi l  shift  6, it is necessa ry  to 
quant ize  the a tomic  mo t ion  and that, in this case,  the first t e rm arises only  f rom a 
different  m o m e n t u m  a long two paths  in space and hence  cannot  be exp la ined  
outs ide the contex t  o f  a tom in te r fe romet ry  in a cons is ten t  way. 

The  first demons t r a t ion  of  a mo lecu l a r  in te r fe romete r  has been  carr ied out  us- 
ing an I 2 b e a m  [20] by varying  ei ther  the de tun ing  A or the angle  0, in condi t ions  
where  the recoi l  6 is measu rab le  (Fig. 9) [34]. 
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0/2 

II 

LASER BEAMS LASER BEAMS 

b 

a 

(b) exp[2i (A -Y- 5 )d  / v x ]exp[2ikd sin(0 / 2)] 
FI6. 8. (b) Details of the two possible trapezoidal interferometers and corresponding phase fac- 

tors. 

1. Recoil Shift and Atomic-Mass Measurements 

The 7- sign of the recoil shift corresponds to two possible interferometers, which 
differ by internal state labels in the middle zone and which arm the intermediate 
deflections are along. 

These two fringe systems have been observed for the first time with a calcium 
beam, in an interferometer configuration using three standing waves [35]. In a 
cell, saturation spectra result from the superposition of interferometers with all 
possible values for the distance d, letting only the central fringe survive the cor- 
responding average. The two sets of interferometers then give rise to the recoil 
splitting first observed in methane at 3.39 /xm [36]. It was suggested, at that 
time, that this splitting could be used for a precise frequency measurement of 
h/M for atomic systems. With the advent of cold atoms this possibility was beau- 
tifully illustrated by Chu and coworkers [37], who demonstrated an accuracy in 
the range of 10 -7 in the case of cesium. For this purpose, new interferometer 
geometries have been designed to increase the recoil shift thanks to an increase 
of the deflection of one arm using multiple intermediate 7r pulses (Fig. 10) [38]. 
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FIG. 9. Fringes obtained with a molecular iodine interferometer: (a) versus frequency, (b) versus 
angle from [20]. (Reprinted from Ch. J. Bordr, N. Courtier, E du Burck, A. N. Goncharov, and M. 
Gorlicki, "Molecular Interferometry Experiments," Phys. Let. A 188, 187-197 (1994). Used with 
permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KY Amsterdam, The Nether- 
lands.) 
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~2 7r-pulses 
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FIo. 10. Optimization of the recoil shift with multiple intermeaiate ~ pulses (from [38]). (a) 
Space- t ime and energy-momentum diagrams for an interferometer with Iml-- 3 exchanged mo- 
mentum quanta per interaction sequence. The two-level system interacts with effective multiphoton 
fields of opposite directions either perpendicular or collinear to the atomic motion. The space- t ime  
diagram displays the deflection along the optical axis versus the proper time in the "atomic frame" at 
the velocity p/M. A coherent superposition of the two states ]a,0) and [b,m) is created (wiggly line) 
and travels freely during the time T leading to a phase shift ~p = (to~ - to2 + to3 + t~ - % + % - 
2 %  - 188)T. A second interferometer with opposite recoil shift is obtained by exchanging the roles 
of states a and b. 

III. Sensitivity to Gravitational and Electromagnetic Fields" A 
Unified Approach through the Dirac Equation 

To describe consistently and rigorously the various phase shifts resulting from 
interactions with external electromagnetic or gravitational fields, it is necessary 
to introduce a framework in which the motion of  the center-of-mass of  atoms is 
treated relativistically. This is possible because one can associate a relativistic 
quantum field with each internal state of  the atoms [ 11 ]. In other words, an atom 
in a given internal state is considered an elementary particle with a mass corre- 
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FIG. 10. (b) Corresponding diagrams for an interferometer that starts with a coherent superposi- 

tion of states la,0) and la',0), created without momentum exchange, e.g., by a Doppler-free two-pho- 
ton interaction or by a Raman process with copropagating beams. States a and a '  may be either dif- 
ferent energy states (e.g., 1S and 2S states of hydrogen) or different Zeeman sublevels of the same 
energy state (e.g., M F = +__ 1 sublevels of the 2S (F = 1) state of hydrogen). With a proper choice of 
frequencies (or polarizations), recoil momentum is transferred only to the path starting with state 
la',0). (Reprinted from Laser Spectroscopy, Int. Conf. 1994, p. 77, with permission of the publisher, 
American Institute of Physics.) 

sponding to its rest energy and a spin equal to the total angular momentum of the 
1 state. An atomic state having F = 0, ~, 1 . . . .  corresponds, respectively, to a 

Kle in-Gordon  field, a Dirac field, a Proca field . . . .  

A.  COVARIANT DIRAC EQUATIONS 

As an example that avoids the complications and difficulties of higher spins but 
still retains the richness introduced by angular momentum, we shall consider the 

1 �9 case of two-level atoms with F = ~ m each level. The interaction with the elec- 
tromagnetic field F~h is introduced via off-diagonal electric-dipole and diagonal 
magnetic-dipole terms in the Lagrangian. Inertial and gravitational fields can be 
introduced in two ways: first, via the Dirac equation in curved space - t ime  [39]; 
second, as a second-rank tensor field in fiat space- t ime  [40]. 
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1. Curved Space -T ime  Approach 

In the first approach, the following coupled Dirac equations are written for each 
level 3 (with %123 = 1): 

^ . ~ ~ , ,  ^ 

ih')~e~t~(~tz + F/x)I//b - MbCl[I b -- (ild, b /2C)F~t~ j ' ) l~b  -- ( l ] . s  --  0 
i h ~ e  ~t~( Olx -4- F/z)I//a - MaC ~l a - ( i ldl,a / 2 C ) F ~ ~3")~'yl~a - ( i / . L a f f a ) F ~ / ~ ' ) ~  b --  0 

(75) 
where e~ is a tetrad or vierbein that defines a local inertial coordinate system in 

1 " " �9 which a spinor can be introduced [41] and F = g [U,y~]e~V e #  is a spinorial 
connection. The tetrad field is obtained from ~he metric tensor by the condition: 

e~e~,gm, = 'q,~t~ = diag(+ - - - ) .  (76) 

As pointed out in Ref. 39, these equations can be cast together as a single 
equation for an e ight-component  isospinor and one can introduce a general-  
ized covariant derivative and a general ized connection. Quite generally, a 
matter-wave interferometer  can be viewed as a device to detect this connec- 
tion. 

2. Case o f  lnertial Fields 

As an example, for the acceleration a and the rotation l'l, the tetrads can be writ- 
ten as [42] 

1 [1~ • x]t'/c 
o O; i 1 (77) 0= e~ : - el= e; = eo 1 + a .  x / c  2' 1 + a .  x / c  2' 

and the coupled Dirac equations become 

ih~t~b b = [Y~ + a .  x/c 2) -~- c o [ . p  + [(a-  x ) (a  �9 p) 
+ (r p ) ( a .  x ) ] / 2 c -  I I .  (L + S)]~b + ( i /xb /2 )y~  t~tpb 
+ a 

i h ~ t ~  a = [3/~ 4- a "  x / c  2) -+- c ~ . p  + [ ( a  �9 x) (o t  �9 p )  
+ ( a -  p ) (a -  x ) ] / 2 c -  I I . ( L  + 8)]~/a --[- ( i t . , .J2c)y~ 
+ (78) 

where L is the orbital angular momentum operator and S = h~,/2. These equa- 
tions display clearly the red-shift effects, the kinetic energy term, the Sagnac ef- 

3For particles without internal states, the internal state labels a and b can be replaced by the channel 
labels I and II to designate two resolved momentum states. For charged particles (electrons or atomic 
ions), one should add the interaction with the four-vector potential A through the minimal coupling 

~ - i (q/h)A.  
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fect, and the spin-rotation coupling. In their nonrelativistic limit, one obtains the 
Thomas precession Hamiltonian term as 

(1 /2Mc2)S  �9 (a x p). (79) 

3. Weak  Grav i ta t iona l  Fie lds  

For more general weak gravitational fields, it is usual to introduce a quasi- 
Minkowskian coordinate system and to write the metric tensor as 

g~, = r/~, + h (80) 

where h is a small departure (]h I<< 1) from the Minkowski metric (linearized 
theory o~ ~ ~ gravity). This approximation holds very well in most cases. Various 
choices can be made for the tetrads calculated from conditions (76). In Ref. 39 
the following choice was made: 

1 1 ~hO. (81) e~ = ~0(1 - h00/2); eq = ~ - ~h~  - 

Another choice consistent with Eq. (77) would be 

1 
e~ = ~o - ~ ~o hoo - 3~h~ 

1 6~'h~. (82) e ~ = ~ - ~  

Finally, a natural and covariant choice is 

1 
e~ = 6 ~ - h ~' 

Z. 
(83) 

with which the coupled Dirac equations become 

i h y ~ j j  a - MocqJ o - ( i h / 2 ) h ~ y  b qja - ( ih /4) (~  h~,~)y ddo 
+ ( i h / 4 ) ( O h ~ y ~ q J  b - ( i t X b / 2 C ) y ~ F ~ q J b  -- (itZ*ab/4)TaTl3~r = 0 

i h y J ' O  1~r a - m a c ~ r  a - ( i h / 2 ) h ~ y  O ~l/a - -  (ih/4)(t) h , ~ ) y  qJ 
Ix Ix ~ Iz v u _ 

+ (ih/4)(O,h~7~'qJa - (ilJ, a/2C)TaTl3Falj~a - (itJ, ab/4)TaT/3Falj~b = O. (84) 

4. F la t  S p a c e - T i m e  A p p r o a c h  

It is remarkable that the same equations are obtained within the framework of 
the tensor-field theory of gravity in fiat space and time with the Lagrangian 

L = ( i h / 2 ) q ,  a r ~ q ,  a - ( ih /2 )~_q 'ae"q 'a  -- M.Cq'aq'a 5 (1/2c)h~.~" 
-- (itZa/2C)F~VqtaT~Tv~ a - (itZaJ4)F~VqtaT~Tv~to + (a~--~ b) (85) 
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where the coupling with the tensor field h describing gravitation is written in 
the most natural way with the atomic ene rgy -momen tum tensor: 

T~a,, - (ihc/4)(qtaT~D,~Pa + ffJa')tv~lxffi a ~__ ~txffJa~VffJ a --)v~rta~tZffla) 
- rl~,,'{ (ihc/2)[qja,yp~Opq, a - ~9pqJa'yPqJa] -- MaC2dZaqJa }. (86) 

Therefore, it is also possible to give a description of gravitational effects in 
atom interferometry, using quantum field theory in flat space- t ime  and the scat- 
tering matrix for the one-graviton exchange between the atom and an external 
source. 

5. Equations for  the "Renormalized Spinor" 

The difficulty that we meet with the previous equations is that the atomic density 
probability involves the field h v and a "renormalization" of the spinor is re- 
quired. We define new spinors 

Oa, b (1 --  h00 /4  -1-- h p / 4 -  h 0 i 4  = % 7  / )ffJa,b P (87) 

such that the probability density is 

Jo/c = O*aOa + (88) 

The evolution of these spinors is governed by the equation (39) 

1 
ih~tO a = -ihcT~ + MoC2T~ - (c[4){pj,hooT~ Oa + ~ Mac2hoo3t~ 

+ (ihc/8)(Oihoj- ~jhoi)'yi'yJOa + (c/2){pj,h ~ } 0 a -~ (c/4){pj, y~ 0 a 

+ (iP, a/2)T~ + (itZabC/4)TO'ya'yI3['al30 b 

with Pi = ihOi and a similar equation for 0 b in which (a ~ b). 

(89) 

B. GRAVITATIONAL AND ELECTROMAGNETIC PHASE SHIFTS 

Equation (89) displays all the terms that may lead to a phase shift in an interfer- 
ometer: 4 

�9 The kinetic energy term gives rise to the recoil splitting already discussed. 
�9 The terms involving h00 lead to the gravitational shift, to shifts involving 

higher derivatives of the gravitational potential [44], and to the Thomas preces- 
sion. Among these, the gravitational shift - k  �9 gT 2 [7] first observed with neu- 
trons in the COW experiments [45], has been measured using atom interferome- 

4For the gravitational terms, which do not involve the spin and the internal structure of the atoms, Eq. 
(72) gives the same first-order phase shifts as the Linet-Tourrenc formula [43]. 
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try with an accuracy of 3.10 -8 by Kasevich and Chu [9] using a temporal se- 
quence of three Raman pulses. As noted in Ref. 7 the absence of the mass in the 
phase shift expression is a consequence of the equivalence principle, which is 
also applicable to the neutron interferometer. Precision gravitometers are 
presently under construction. 

�9 The next term, which involves h ~ describes the Sagnac effect, with 

h = {h0k } = ~ • x/c  (90) 

and leads to a shift equal to 

47rA �9 II/(AdBV). (91) 

It was first demonstrated for atomic waves by Riehle and coworkers (Fig. 
11) [8]. For identical areas [A I, the effect is Mc2/hz, times larger than that for 
photons. Large atom interferometers being developed should have a sensitivity 
of 10 -11 rad/s/V~z [46], which might be sufficient to detect the Lense-Thirring 
effect. This is a general relativity effect, specifically a dragging of the metric by 
a nearby rotating mass that induces a rotation on the order of 10 -14 rad/s in the 
case of the earth. 

�9 The next term, also due to rotation known as the spin-rotation effect, gives 
a shift equal to -211  �9 ST. This effect is used in magnetic resonance gyroscopes 
[47] and should be accessible using atom interferometry if, for example, one 
changes the spin on one of the two coincident paths of a Doppler-free two-pho- 
ton, two-zone interferometer. 

�9 The seventh term describes genuine general relativity effects and involves 
h~ components, which exist, for example, in the Schwarzschild metric produced 
by a massive spherical body or which are produced by a gravitational wave. In 
the case of the Schwarzschild metric, this term would induce the de Sitter pre- 
cession (in combination with the Thomas precession quoted previously) [39]. 
The Hamiltonian term created by a gravitational wave is very similar to the ki- 
netic energy term and the corresponding shift has an expression comparable to 
the recoil shift [29]" 

+ h(h~o2]McZ)T "~ + h(i~.dB/l~opt)(d/i~opt) (92) 

where h is the amplitude of the gravitational wave. In addition, there is also a 
very small spin-gravitation effect [39], owing to the coupling between the spin 
and the space-t ime curvature. 

Finally, the coupling terms with the electromagnetic field describe the follow- 
ing" 

�9 The diagonal magnetic dipole interaction is responsible for the Zeeman ef- 
fect and its motional counterpart gives the Aharonov-Casher effect in a static 
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FIG.  1 I. Sagnac effect for atomic waves (from [8]). (a) Experimental setup: Typical atom inter- 
ferometer using two counterpropagating pairs of copropagating laser waves to split, deflect, and re- 
combine the calcium beam from an oven at T - -  I000 K. The dye laser is tuned across the resonance 
with the intercombination transition 3P 1 - ~S 0 of 4~ at 657.46 nm. The whole apparatus can be ro- 
tated at the angular velocity ~ .  (b) interference signal obtained by monitoring the fluorescence from 
the excited state: Curves b and d correspond to opposite rotation directions at ~ - ___0.09 sec -~ and 
the three others to ~ = 0. The two central fringes are separated by a recoil splitting of 23.1 kHz. 



288 C. J. Bord~ 

u I n I , ,  i n ' ,  u .......j;/~" m I i I I 

. -  ,/,,-.- 

k H z  - e~e$ m 

I s- 
- �9 �9 m~ ~ 

Av - ~ 

1 ! I I I I I 

0 . 0 5  0 . 1  s - 1  

(c) 
FIG. 11. (C) Measured Sagnac shift versus rotation angular velocity for d + D = 45 mm (dots) 

and 24 mm (squares) in good agreement with theoretical predictions. 

electric field [48], for which a very nice demonstration has been given in Ref. 
49. 

�9 The off-diagonal electric dipole interaction is responsible for light shifts 
[50] (and also for the beam splitting). 

In the case of electrons or ions, one should not forget the minimal coupling 
term that gives rise to the A h a r o n o v - B o h m  effect [51 ]. 

IV. Conclusions and Directions of Future Progress 

We have seen that, to a large extent, we can unify the description of 
ma t t e r -wave  interferometers: the description of the beam splitters can be given 
in terms common to particles with and without internal structure. Particles with 
internal structure, such as atoms or molecules, offer the additional interesting 
possibility to be excited inelastically by the splitter. The use of quantum field 
theory provides another ground for a unified framework of all particles used in 
interferometry, from photons to the most massive ones and from bosons to 
fermions, all of which are considered interacting fields. Furthermore, one can 
write these interactions in a covariant way and thus introduce the relativistic ef- 
fects in the most natural and consistent way. This scheme has also the advantage 
that it underlines similarities and differences between the various interactions; 
for example, some gravitational effects can be presented as gravitomagnetic or 
gravitoelectric using the four-vector potential hoo,hoy, but clearly this analogy ig- 
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nores the other components of the tensor h . Much work is still to be done (es- /xv 
pecially on coordinate systems) to get a clear and full picture of all possible rela- 
tivistic effects and to conclude whether or not they are detectable by a given in- 
terferometer, but we hope that the present approach can be of some help in this 
direction. 

Among the possibilities of improving seriously the sensitivity of atom inter- 
ferometers, we may speculate on these: 

1. Methods for slowing molecular beams or improved beam splitters using 
higher laser frequencies (UV, VUV) with good optical quality allowing one to 
use thermal molecular beams at room temperature; new interaction schemes 
such as the adiabatic fast passage [7, 52, 53]. 

2. More generally, better atom optics, such as high-quality mirrors, magnetic 
mirrors, magnetic guiding of the atoms, and atom fibers. 

3. Better interferometer architecture, such as multiple 7r pulses and figure 8 
interferometers to detect the Lense-Thirring effect. 

4. Coherent sources of atoms. Presently the minimum phase shift that can be 
detected is related to the number of atoms by [54]: 

1 

~(~ ~ ~/Natoms (93) 

and the path difference is limited by the coherence of atomic beams. Clearly, it 
would be interesting to use either the Bose-Einstein condensates recently 
demonstrated [55] or future atomasers [56, 57] as new sources of atoms for atom 
interferometry. It has been suggested [58] that the previous sensitivity might be 
replaced by 

1 
6~o ~ ~ .  (94) 

Ntoms 
In the future, active atomic systems should offer a large gain in sensitivity to 

external fields; for example, one could imagine building a ring atomic wave 
gyro. Finally, the recent success of atom interferometers in detecting the index 
of refraction of an atomic cloud [26-28] suggests the following experiments: 

1. One could explore the index of refraction of a cloud of excited atoms, to 
demonstrate stimulated emission of atoms. The formula for the index is obtained 
by exchanging real and imaginary parts in the formula for the gain in Refs. 56 
and 57. 

2. One could use an atom interferometer in the same way to detect Bose -  
Einstein condensation in a cold cloud of atoms and to investigate interactions 
and correlations in the condensate. 

3. Beyond the index for spin zero or depolarized particles, one could think of 
probing the index properties of atomic media for polarized atomic waves with 
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higher  spins, genera l iz ing the usual  effects of  b i ref r ingence and dichroism for 
optical waves.  Optical ly  active molecu les  should exhibit  rotatory power  and cir- 
cular d ichroism also for polar ized atomic waves,  through the chiral part  of  the 
in termolecular  potential;  and this could be explored,  for  example ,  in a 
S t e r n - G e r l a c h  in ter ferometer  [ 10] crossing a c loud of  such molecules .  It should 
also be noted that the possibi l i ty to use chiral molecu les  in the molecu la r  inter- 
fe rometer  itself, leads to interest ing new tests of  pari ty violation; for  example ,  
one could test the equivalence  principle against  pari ty in a C O W  type experi-  
ment.  

In these cases,  genera l ized  interferometers ,  with different internal states in 
both arms, should be useful  tools. 
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I. Introduction 

T h e  r e c e n t  d e v e l o p m e n t  in  a t o m  i n t e r f e r o m e t r y  h a s  g r e a t l y  s t i m u l a t e d  n e w  f i e l d s  

in  a t o m i c  p h y s i c s  a n d  q u a n t u m  o p t i c s ,  o p e n i n g  u p  n e w  a r e a s  in  f u n d a m e n t a l  a n d  

a p p l i e d  r e s e a r c h .  A t o m  i n t e r f e r o m e t r y  o f f e r s  i n t e r e s t i n g  p o s s i b i l i t i e s  f o r  c a r r y i n g  

o u t  f u n d a m e n t a l  r e s e a r c h  in  s u c h  f i e l d s  as  q u a n t u m  o p t i c s  a n d  a t o m  o p t i c s ;  
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moreover, one can envision many practical applications for atom interferometry, 
such as the construction of highly sensitive, miniaturized gravitational detectors, 
frequency standards, or accelerometers. The basic ideas for matter wave interfer- 
ence and interferometry were introduced in the beginning of this century, in di- 
rect connection with the early quantum mechanics. They played a central role in 
the quest for understanding and interpreting the new quantum physics. Many dif- 
ficult and unexpected aspects have been discussed with the help of simple 
gedanken experiments such as Einstein's double-slit paradox and the Heisenberg 
microscope (Heisenberg, 1927). These discussions led to fundamental concepts 
like the uncertainty principle, the concept of complementarity, or new ideas re- 
lated to the role of the observer in measurements. In contrast to a classical de- 
scription of matter, the wave description of matter associates a phase with the 
matter wave. This phase introduces a new degree of freedom, which is accessible 
only by interferometry, as has already been discussed in the 1920s. In the 1950s, 
the relevance of the phase of matter waves was extended to nonclassical phase 
shifts such as the Aharonov-Bohm effects (Aharonov and Bohm, 1959, 
Aharonov and Casher, 1984). Subsequently, these phenomena were experimen- 
tally observed using matter wave interferometers. 

In addition / to their potential for probing fundamental quantum mechanical 
questions, the possible high sensitivity and resolution of matter wave interferom- 
eters motivated studies on matter-wave interferences and interferometers. The 
small de Broglie wavelength of particles may improve the sensitivity by several 
orders of magnitude compared with optical interferometers. On the other hand, 
the small de Broglie wavelength of massive particles, which ranges from 
nanometers for electrons and hundreds of picometers for neutrons to a few pi- 
cometers for atoms at thermal energies, is the reason why experimental realiza- 
tions of matter wave interferometers are difficult to achieve. 

The first interference effects with matter waves were observed in the diffrac- 
tion of electrons as early as 1927 by Davisson and Germer (1927) and by Ester- 
mann and Stem (1930) in the diffraction of helium atoms off NaC1 single crystal 
surfaces. Interferences with atoms were observed in the scattering of atoms (see, 
e.g., Hundhausen and Pauly, 1965). 

The first macroscopic matter wave interferometer was based on electrons 
(Marton, 1952; Mrllenstedt and Dtiker, 1956). With electron interferometer 
phase shifts introduced by such effects as the inner potential of metals (Mrllen- 
stedt and Keller, 1957), a vector potential (Mrllenstedt and Bayh, 1962), and ro- 
tations (Sagnac effect) (Hasselbach and Nicklaus, 1988, 1993) have been ob- 
served. 

A neutron interferometer was first demonstrated by Maier-Leibnitz and 
Springer (1962), utilizing a biprism as beam splitter. The real breakthrough of 
neutron interferometry was achieved in 1975, by using Bragg reflections of neu- 
trons in single crystals (Rauch et al., 1975). With the lattice constant of silicon 
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matched to the de Broglie wavelength, large deflection angles leading to beam 
separations of approximately 2 cm are achieved. Such interferometers were suc- 
cessfully employed to study fundamental questions of interferometry such as co- 
herence length problems (Kaiser et al., 1983) and phase shifts caused by such 
effects as gravitation (Colella et al., 1975), the Sagnac effect (Colella et al., 

�9 1 1975; Staudenmann et al., 1980), the change of sign of a spln-~ wave function 
under a spatial rotation of 27r (Rauch et al., 1975; Werner et al., 1975) and the 
Aharonov-Casher effect (Kaiser et al., 1988). 

The main interest in atom interferometry arises because typical de Broglie 
wavelengths for atoms are much smaller than those of electrons and neutrons, 
because it is possible to carry out atom interferometry experiments in a labora- 
tory of modest size, and especially because atoms offer additional internal de- 
grees of freedom. Atom interferometry, therefore, opens new pathways to 
extremely sensitive studies of atomic properties (internal excitations, polarizabil- 
ities, collisions, etc.), studies of more complex geometries for topological and 
geometrical phases, multiparticle entanglement experiments, extremely sensitive 
gravitational detectors, Sagnac interferometers, and the search for fundamental 
symmetries, to name only a few. 

In addition, atom interferometers with a coherent atom ensemble as input will 
lead to fundamentally new effects, such as quantum statistical effects, and will 
improve the limits in sensitivity and signal to noise levels in a manner similar to 
that which occurred following the introduction of the laser in photon optics. 

Like any kind of interferometry, atom interferometry requires coherence-pre- 
serving beam splitters and mirrors. The lack of suitable beam splitters has pre- 
vented the realization of atom interferometers for a long time. Only recently 
have advances in quantum optics and micromechanics led to practicable atom in- 
terferometers. 

An elegant mode of atom interferometry utilizes the additional internal de- 
grees of freedom of atoms for beam splitting and reflection. The splitting of the 
atomic wave function is then based on the energy and momentum transfer from 
the light field to the atom by absorption, stimulated emission, or redistribution of 
single light quanta. Interferometers based on this kind of beam splitting will be 
the main subject of this chapter. 

The coherent diffraction of electrons by a nearly resonant standing wave was 
first predicted by Kapitza and Dirac (1933). For atoms, the diffraction in stand- 
ing waves was discussed by Altshuler et al. (1966). This concept was later ex- 
tended to a standing wave interferometer by Chebotayev et al. (1985). The first 
experimental verification of the diffraction of atoms in a standing light field was 
realized by Pritchard's group (Moskowitz et al., 1985; Martin et al., 1988). 

The quantum mechanical nature of the coherent interaction between light 
quanta and atoms opens up a whole class of beam splitters, mirrors, and other 
atom optical elements, which can operate either as classic beam splitters or ele- 
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ments leading to more complex entanglement configurations, where the different 
paths within an interferometer are labeled by the internal states of the atoms. For 
interferometric applications, mirrors and beam splitters have to preserve coher- 
ence. Therefore it is important to keep in mind, that for atom optical elements 
based on l ight-matter  interaction, the stochastic character of a single sponta- 
neous emission event will usually destroy the coherence of the de Broglie wave. 
A discussion on the influence of spontaneous emission in interferometers will be 
given in Section VII. In the first sections, we will neglect spontaneous emission. 

Different ways in which light fields can act as beam splitters are described 
next: 

1. The absorption of a photon from a running wave by an atom leads to a re- 
coil of hk of the excited atom. Quantum mechanically, there is a certain probabil- 
ity p for this excitation, depending on the intensity of the light field, the duration 
of the interaction, and the frequency of the light field, which will leave the atom 
in a coherent superposition of ground and excited states (Fig. la). Since the atoms 
have different momenta in both states, it is more appropriate to use the picture of 
wave packets. The interaction zone can act as 50% beam splitter (p = 0.5) or mir- 
ror (p = 1). A necessary condition for interferometer setups based on this kind of 
beam splitter and mirror is a long lifetime of the upper state compared to the time 
of flight of the atoms through the interferometer. As in photon optics, this beam 
splitter, of course, also can be used to recombine the partial beams. 

2. Similarly to case 1, the probability for the redistribution of photons be- 
tween different field modes, such as the two counterpropagating waves that 
make up a standing wave optical field, typically produces coherent beams which 
differ in momentum by multiples of 2hk  (Fig. lb), in addition to the single-pho- 
ton events of case 1. If the conditions are chosen such that the excited state pop- 
ulation is negligible, all atoms leave the interaction zone in their ground state 
and different parts of the wave function differ only in their external degrees of 
freedom. 

3. Raman transitions between ground state levels induced by two laser beams 
having momenta hk~, hk 2 can impart a momentum h(k 1 - k2) to the atoms (Ka- 
sevich and Chu, 1991). 

4. Efficient mirrors can be built with the method of adiabatic transfer (Kuk- 
linski et al., 1989). This me thodmay  be used to increase the momentum_ split- 
ting between the partial beams by multiples of 2hk  (Marte et al., 1991; Goldner 
et al., 1994); that is, to increase the area of the interferometer. 

5. Dark resonances may be used as beam splitters by creating coherent su- 
perpositions of momentum states differing by 2hk  with a very narrow momen- 
tum width (Aspect et al., 1988). 

In this contribution, we will concentrate on atom interferometers using beam 
splitters based on methods 1 and 2. Momentum transfer is based on single ex- 
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FIG. 1. Scheme for a beam splitter based on a one-photon excitation from the atomic ground 
state (solid line) into a metastable state (dashed line) for a running wave laser beam (a) or a standing 
wave (b). 

changes of photons in running waves or on the exchange of a few discrete pho- 
ton momenta in standing waves. Matter-wave interferometers are built by com- 
bining these elements with zones of free propagation. Interferometers relying on 
the other methods mentioned are discussed in other contributions to this book. 

Historically, the well-known Ramsey setup constitutes an interferometric 
geometry. In this arrangement, an atomic beam passes two interaction zones sep- 
arated in space (Ramsey, 1950). Single photon absorption and emission events 
split and deflect the atomic wave function. Ramsey's method of separated field 
excitation was successfully used for microwave spectroscopy of atomic and mol- 
ecular energy levels since the early 1950s and extended to the optical region 
conceptionally by Baklanov et al. (1976), Berquist et al. (1977), Barger et al. 
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(1979), Bord6 et al. (1982, 1984), and Helmcke et al. (1982). Subsequently, op- 
tical Ramsey spectroscopy was refined and very successfully utilized, as is dis- 
cussed in the following sections. The method was interpreted in terms of the in- 
ternal degrees of freedom of the atom, mostly in the picture of rotating B loch 
vectors, where evolving phases of the internal degrees of freedom and the phases 
of the freely oscillating electromagnetic field are compared. 

The important step connecting Ramsey spectroscopy with atom interferome- 
try was the discovery by Bord6 (1989) that the four traveling-wave optical Ram- 
sey geometry constitutes an atom interferometer of the Mach-Zehnder type, 
where the light fields split, deflect, and recombine the atomic wave function in 
space, and that different paths are labeled by their different internal states (Fig. 
2), as will be discussed in Section II. In the literature, this kind of interferometer 
is often called a R a m s e y - B o r d ~  or Bord~ interferometer. In the following we 
will refer to it as a Bordd interferometer. 

The discovery that the four-zone optical Ramsey setup constitutes an atom in- 
terferometer not only provided a much better understanding of the observed 
Ramsey fringes in frequency space as atom interferences, but also opened up the 
whole field of atomic interferometry and provided a clear way of how to deter- 
mine phase shifts caused by the influence of additional interactions and poten- 
tials. A purely mechanical interpretation of the interferometer explaining the ob- 
served interference signals resulting from spatial shifts of the partial wave 
packets was later given by Sterr et al. (1992). 

This type of interferometer was used to measure the influence of rotations 
(Riehle et al., 1991), and the dc and ac polarizability of atoms (Sterr et al., 1992; 
Riehle et al., 1992a; Rieger et al., 1993). 

i / " "KY  \ \ 

/ 
/ 

D ~ d - - " F " ~ - D  -'-, 

FIG. 2. Scheme of the Bord6 atom interferometer, using four laser beams as beam splitters. The 
atomic beam from left to right is split, reflected, and recombined in the two exit ports A and B. For 
simplicity, only one interferometer is depicted (see the text). 
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In parallel with a better understanding of this type of atom interferometer, 
ideas and experiments for generalized interferometers (Bord6, 1992) have been 
developed. Extended and specialized interferometer geometries include, for ex- 
ample, the use of crossover resonances (Dingler et al., 1994), copropagating 
laser waves (Morinaga and Ohuchi, 1995), and multiple laser beam setups 
(Morinaga, 1992). We will discuss these interferometers in Section III. 

A further important step was the use of laser cooled atoms as source for the 
interferometer, allowing one to vary the de Broglie wavelength in a large range 
and increase the sensitivity for a certain class of experiments. Witte et al. (1992) 
used a laser decelerated and deflected atomic Ca beam. A different class of ex- 
periments uses laser stored atoms nearly at rest in space and pulsed excitation 
(Sengstock et al., 1993a, Kisters et al., 1994). This leads as a new concept to in- 
terference in the time domain, which offers several advantages compared with 
interference in the spatial domain, as will be explained in Sections II and IV. 

One of the main advantages of Bord6 type interferometers is that each of the 
partial beams and, also important, each of the different exit ports of the 
Mach-Zehnder  interferometer can be labeled by an internal atomic state. This 
allows one to easily introduce additional state-selective interactions within the 
interferometer. That the exit ports differ in the internal state allows for a conve- 
nient read-out of the interference signal by detecting the number of atoms with a 
given internal state behind the interferometer. The detection of the exit ports in 
space is also possible, of course, but it is not necessary and normally rejected in 
favor of the use of extended and dense atomic samples, increasing the signal to 
noise ratio by several orders of magnitude, as will be shown in Section IV. 

We will discuss examples of highly sensitive measurements of physical quan- 
tities with Bord6 interferometers in Section V and measurements of topological 
phase shifts in Section VI. In section VII, quantum measurements with Bord6 in- 
terferometers will be discussed. Section VIII will concentrate on the application 
of Bord6 interferometers as frequency discriminators for optical frequency stan- 
dards and atomic clocks. 

II. Theoretical Framework 

It is often helpful to compare atom interferometers with the well-known optical 
interferometers. Like an optical interferometer, an atom interferometer consists 
of beam splitters and zones of free propagation. As such, we can separate the ef- 
fects of additional interactions that occur in the partial beams from the action of 
the beam splitters. In the types of interferometers we are going to discuss here, 
the momentum exchanges connected with the optical excitation of atoms and 
molecules play the roles of beam splitters and reflectors. The use of laser beams 
as beam splitters offers a new way of constructing interferometers. Instead of us- 
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ing beam splitters fixed in space with the atoms traveling through the interferom- 
eter, we also can apply a sequence of laser pulses to a spatially extended atomic 
sample and create an interferometer in the time domain. This pulsed interferom- 
eter is of particular importance because the velocity of the atoms can be con- 
trolled by laser light. As shown in the following sections, this type of interferom- 
eter is even easier to analyze. 

The de Broglie wavelength hdB of the matter wave is given by 

h 
/ ~ d B  = - -  (1) 

P 

where p denotes the atomic momentum and h is Planck's constant. For atoms 
with thermal energies, this wavelength is on the order of tens of picometers. Be- 
cause the optical wavelength is large compared with the de Broglie wavelength, 
the diffraction angle is only a few microradians. This exemplifies the problem 
one faces in constructing an atom interferometer. 

To illustrate the theoretical aspects of atom interferometry, we discuss a par- 
ticular interferometer, the four-zone Bord6 interferometer, with four interactions 
in the spatial or the temporal domain, as an example of the theoretical descrip- 
tion. 

A. THE FOUR=BEAM BORDI~ INTERFEROMETER 

We treat this interferometer using a simple mechanical interpretation. The in- 
terferometer consists of an atomic beam interacting with two counterpropa- 
gating pairs of traveling laser beams (Fig. 3). The distance between the co- 

I 

FIG. 3. Four-beam Bord6 interferometer, showing all possible atomic paths. The two exit points 
of the two closed interferometers are indicated by circles. 
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propagating beams is denoted D, the central distance is d. The beams act as 
beam splitters, mirrors, and combiners for the atomic wave packets. In each 
interaction zone, an incoming partial wave is further split into two parts. 
From the 16 possible partial beams at the output of the interferometer, only 
the two closed paths indicated in Fig. 3 lead to beams that superimpose 
coaxially at the output. If we detect an atom behind the fourth interaction 
zone, we cannot decide which path the atom took and, consequently, we ex- 
pect interference. The interference pattern for the other paths, not superim- 
posing colinearly, will wash out and not contribute to atom interference. The 
coherent superposition of the coaxial partial waves at each exit port leads to 
a periodic variation of the atomic flux with their phase difference. It will be 
shown in the following text, that this phase difference depends on the fre- 
quency of the beam splitter beams. As the different exit ports also differ in 
their internal states, these interference fringes are usually detected by ob- 
serving the total flux of excited atoms, such as by detecting their fluorescent 
decay. 

For typical experimental conditions, the separation of these partial beams 
within the interferometer amounts to tens of micrometers. To increase the signal, 
usually a much wider atomic beam, with a diameter of about 1 mm is used, with 
each atom forming its own interferometer. Hence, in this case, the separation of 
the partial beams is not resolved. 

An explanation of the dependency of the fringes on the laser detuning relies 
on a thorough examination of energy conservation during the interaction of an 
atom with a single beam splitter, taking into account a detuning between the 
laser frequency ~o L and the atomic eigenfrequency ~o 0. In this stationary problem 
of scattering an atom by a light field, energy has to be conserved. For simplicity, 
we examine the kinematics of two-level atoms with level separation ho~ 0. We as- 
sume that the atomic beam is propagating along the x axis and the laser beams 
are propagating along the z direction. 

After the excitation into a long-lived state the internal atomic energy is well- 
defined and equal to h~00. The difference between hoJ 0 and the photon energy 
hoJ  L has to be provided by the atomic kinetic energy. 

The energy conservation condition is 

p2 (p + hk)2 
- - +  h ~  t = + ho9 o. (2) 2m 2m 

This equation gives a condition for the wave vector k of the absorbed photon: 

k .  p - -  A o h k 2  
m 2m (3) 

with the detuning A 0 = w c - too" Because the beam splitter laser beam is not an 
infinite plane wave but a localized (Gaussian) beam, its momentum decomposi- 
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tion contains a range of wave vectors. Equation (3) shows that the atom absorbs 
a photon from that momentum distribution, which just compensates for the de- 
tuning. Depending on the right-hand side of Eq. (3), a component of the ab- 
sorbed photon momentum k also will lie along the direction of the atomic beam; 
that is, in the longitudinal direction. This change in velocity in one partial beam 
(Sterr et al., 1992) leads to a longitudinal displacement of both partial waves at 
the exit port by an amount of 

&x = 2Th(A 0 _+ 6)/pz (4) 

where the plus (minus) sign applies to the lower (upper) interferometer in Fig. 3. 
The quantity T----D/v x denotes the time of flight through the distance D and 

=-hk2/2m denotes the recoil shift of Eq. (3). In addition, as will be shown in 
the following section, in each excitation-de-excitation process, the phase ___ @i of 
the ith laser beam at the location of the interaction is added to the phase of the 
atomic wave function. 

The interference between both partial waves leads to a periodic variation of 
the excited state population Pe at the output A of the interferometer (Fig. 2): 

Pe ~ cos\  ~dB + @L = COS(2T(A0 -+ 6) + @L) (5) 

where @/. - -  @ 2 -  @1 "1-" @ 4 -  @3 is the phase introduced by the phases @i of the 
laser beams. This variation of the excited state probability describes the well- 
known optical Ramsey fringes. Equation (5) assumes an infinite coherence 
length Xcoh; that is, a monochromatic atomic beam with momentum width 
Ap = 0. With a finite coherence length X~o h --- h/(2Ap),  fringes are visible only as 
long as the displacement 2tx is smaller than the coherence length. Therefore, 
with thermal beams, usually only a few fringes are visible. 

B. PULSED INTERFEROMETER 

In pulsed interferometers (Sengstock et al., 1993a; Kisters et al., 1994), the 
laser fields that an atom experiences in crossing the spatial sequence of four 
laser beams is mimicked by a temporal sequence of four laser pulses with 
separations T - t - T  acting simultaneously on all atoms (Fig. 4). Like the 
four-beam interferometer, the atomic wave function is split and recombined 
in space by the photon recoil but now with a pulsed experiment; energy con- 
servation (Eq. 2) no longer has to be fulfilled. Instead, the energy uncertainty 
of the laser pulse (duration ~') provides the energy difference between the av- 
erage laser frequency hw L and the atomic internal energy. Between the 
pulses, the atomic wave packet evolves freely with the dynamical phase 
e x p ( - i E t / h )  due to its total energy E, which is the sum of the internal energy 
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(hw o for the exci ted  state and 0 for the g round  state wave packet)  and the ki- 

(p + hk)2 p2 h p - k  h2k 2 
Ekin= 2m -- 2m + + - -  and m 2m 

p2 
Ekin = 2m 

netic energy  

(6) 

for the excited state and the ground state, respectively. The difference between 
the kinetic energies leads to a Doppler  term proport ional  to the m o m e n t u m  
(which cancels in the third dark period; i.e., be tween the third pulse and fourth 
pulse) and the recoil shift. During the laser pulses, the phases of  the light field at 
the time of interaction are imprinted onto the atomic wave functions. At the exit 
ports the interference between the phases of free propagat ion and the laser 
phases leads to a periodic variation of the excited state populat ion Pe of the same 
form as in the four-beam setup: 

Pe oc cos[2T(A ~ ___ 6) + q~L]- (7) 

The atomic wave packets are split and recombined in the direction of  the laser 
beams independent  of the laser frequency, and in contrast to the interferometer  
using an atomic beam, no spatial shift between wave packets is introduced by a 

a) 

I t t,  JJJJJ  JJJJJJJJJJJ JJJJJ  

b) 

- 0 

FIG. 4. Scheme for four-zone Bord6 interferometry on an atomic beam (a) and a trapped atomic 
sample (b); for details on the resulting phase q~/~ as a sum of laser phases q~i, see the text. 
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laser detuning. Consequently, the signal is independent of the atomic coherence 
length, and the number of visible interference fringes is limited only by the aber- 
rations of the beam splitters (see the following subsection). 

C. GENERAL DESCRIPTION 

In the following text, we provide a more detailed theoretical description of an 
atom interferometer in two steps. In the first step (Section II.C.1), we look at the 
beam splitters in the time and the space domains. The evolution of the atomic 
wave function between the beam splitters is treated in Section II.C.2. Finally, the 
influence of additional potentials is discussed in Section II.C.3. 

1. Beam Splitters and Combiners 

As already mentioned in Section II.A, the laser beams and laser pulses split the 
atomic wave packets into partial waves with different momenta and different in- 
ternal atomic states. As in optics, the beam splitters can also be used to combine 
the partial waves. In the following text, we derive the complex coefficients that 
describe the probability for the transfer from an input port to an output port. 
These coefficients are similar to the complex Fresnel coefficients that describe 
the action of a dielectric beam splitter on optical fields. 

We describe the interaction between an atom and a light field by the 
Schrtidinger equation. We assume a two level atom with ground state Ig>, ex- 
cited state le> with optical dipole moment ~['e and a monochromatic light field 

1 E(r,t) = ~E0(r,t ) exp( -  iwLt) + c.c. with spatially and temporally variable com- 
plex amplitude E0(r,t). 

If the light polarization in all zones is the same, the interaction Hamiltonian H mt 
in the rotating wave approximation (Allen and Eberly, 1975) is given by 

1 
H i n  t - E(r, t) .  ~e = ~ hO,(r , t )exp(-  iou)le)(g ] + c.c. (8) 

Here ~ = Eo. gte/h denotes the (complex valued) Rabi frequency, which deter- 
mines the coupling of the laser field to the atomic wave due to absorption-stim- 
ulated emission. The phase of l~(r,t) is the phase of the laser field. In general, 
the Rabi frequency depends on the atomic position and on time for a pulsed ex- 
periment. 

The Hamiltonian H 0 for the evolution of the atom contains the internal and ki- 
netic energies: 

Ho = p2____pp + h~ (9) 
2m 

where Pop denotes the momentum operator. 
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The atomic evolution is governed by the time-dependent Schr6dinger 
equation for the two-component wave function �9 = ((elqt) ,(glq~)) r with the 
Hamiltonian H = H 0 + Hin t. First we want to treat the interaction with a run- 
ning wave along the z direction: E(r,t) = 1 E0(r,t ) e x p ( -  itoct + ik zz) + c.c., 
with frequency tOE and wave vector k z. The field amplitude E 0 characterizes 
the pulse form and the spatial profile of the laser beam. The Schr6dinger 
equation is 

ih 0 ~(r , t )  
Ot 

2   r,t exp -i t+ikzZ ]}. r 
[2m -2 f~*(r,t) exp(itoLt -- ikzz) 0 

,t). (10) 

We can include the excitation energy by going to new basis states, which shift 
the energies of both states by __+ toE~2: 

[~e(r,t) exp ( -  itoLt/2) ] 
xp' = [ ~g(r,t) exp(itott/2) 1" (11) 

The wave functions ~g and (I)  e n o w  give the amplitude of finding the atom at 
point r in the ground state or excited state. This transformation and the rotating 
wave approximation simplifies Eq. (10) to 

",r /, ex ,i,zz,  1 ih 0 ~ ( r , t ) =  I p0p + 
0t {2m l~*(r,t) exp(- ikzz )  Ao ] ~(r , t )  (12) 

with detuning A 0 = tOE- t~ Equation (12) describes the coupling between the 
two states Ig) and le), differing in momentum by hk, in the form of a 2 x 2 ma- 
trix. Because o f  the complicated dependence of the laser intensity or, equiva- 
lently, of the Rabi frequency I~(r,t) on time and position, it is not possible to 
give a general solution to Eq. (12). Luckily, the two cases that are experimen- 
tally realized are very well approximated by a purely temporal dependence for 
the pulsed experiment and by a stationary, but spatially varying, Rabi frequency 
in the beam experiment. 

a. Pulsed Beam Splitters. In the first, conceptually more simple case of the 
pulsed experiment (see Fig. 4b), the times ti(i = 1, 2, 3, 4) of the interactions are 
well defined by the experiment. If we neglect the movement of the atoms during 
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the pulse, the momentum can be treated as a complex number and Eq. (12) sim- 
plifies to 

ih 0t0 ~ ( r ' t ) =  2hi f~*-A(r,t) l~(r't) ] ~ ( r ' t ) A  (13) 

which can be easily integrated to give the well-known Rabi oscillations. Here A 
denotes the Doppler-shifted detuning. Including the first- and second-order 
doppler shifts, it is given by 

A = A o - 8 -  k . p / m  + tOoV2/2c 2. (14) 

In general, an atom in the ground state with momentum p, Ig,P), is transferred 
during the interaction into a coherent superposition [~(r)> of ground state and 
excited state, which is given for resonant pulses of length ~" and temporal con- 
stant Rabi frequency f~(r) by 

I~( r ) )  = cos[~2(r) r /2] lg ,p)  - ie ~* sin[l)(r)~ ' /2]le ,p + hk) .  (15) 

Here 11 denotes the absolute value of the Rabi frequency and ~0 its phase. 
In typical experiments, the laser beams for the Ramsey excitation are much 

wider than the atomic cloud, so that the spatial variation of the laser beam inten- 
sity and Rabi frequency in Eq. (15) can be neglected, and the effect of the (reso- 
nant) laser pulse is described simply by the 2 • 2 matrix 

: cos ) isin( ;)ei  
isin( )ei  cos( ) 

In addition to an intensity-dependent splitting ratio for the outgoing partial 
waves, one also finds that the phase of the light field is replicated as a phase 
difference between the exit ports. Note that we have already incorporated the 
laser frequency to/~ into the definition of the wave function �9 (see Eq. (12); in 
the bare states, ~ ,  this phase factor would be the total laser phase tOLt i + q~i" A 
50% beam splitter-combiner is realized with a "pulse area" .t" l~(t) d t -  
11~--- 7r/2; that is, with the well-known 7r/2 pulse, and a mirror with phase 
shift ~o is realized with a 7r pulse. The periodic variation of the splitting ratio 
with the interaction time is analogous to the "pendell6sung" of a Bragg inter- 
ferometer for neutrons or x-rays (see, e.g., Greenberger and Overhauser, 
1979). 

Important properties of a beam splitter are its chromatic and angular aberra- 
tions; that is, its dependence on the atomic momentum. As the interaction time is 
given by the length ~" of the pulse, there is no dependence on the velocity compo- 
nent perpendicular to the direction of the pulsed laser beams (neglecting a sec- 
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ond-order Doppler effect). A velocity component in the direction of the pulsed 
laser beams, however, leads to an additional Doppler shift as given in Eq. (14). 
For laser detunings A different from 0, we see from Eq. (13) that the interaction 
matrix is changed only slightly as long as the detuning A is much smaller than 
the Rabi frequency ~1. In terms of spectroscopy, this corresponds to saturation 
broadening of the transition. So, in principle, by going to high intensities and 
short pulses, the beam splitter can be made nearly insensitive to the transverse 
velocity spread. In many experiments, however, the available laser intensity is 
not sufficient, limiting the acceptance ranges of the beam splitters to transverse 
velocities. 

It is worthwhile to consider energy conservation in the case of nonzero laser 
detuning. Even if the laser frequency is not exactly on-resonance, after the pulse 
we will find some atoms in the excited state. This is no violation of energy con- 
servation, because the pulse of length ~" has an energy uncertainty on the order of 
hit.  

The situation is more complicated when a pulsed standing wave is used as 
beam splitter. Now multiple absorption-stimulated-emission cycles from one 
wave to the other can occur, which can transfer multiple photon momenta. The 
Hamiltonian now couples an infinite number of momentum states: 

Ig, n> = Ig,P + nhk>, n even, and 
le,n) = le,p + nhk>, n odd. (17) 

This leads to a complicated dependence of the ratio of different orders on the 
laser frequency, the Rabi frequency, and the angle between p and k. 

For zero detuning and short pulse length, ~', the laser beam acts like a thin 
phase grating, and the wave function in the output is given by (Bord6 et al., 
1984) 

1 [(I)) = iZnJ2n eiZn~~ - i 2n+lJzn+l 

where Jn denotes the Bessel function of order n. The probability for an outgoing 
partial wave to have acquired nhk of momentum in the z direction is equal to the 
square of the nth order Bessel function. Because of the many states involved, 
usually only a few interfere, and the performance of this kind of beam 
splitter-mirror is not as efficient as the running wave interferometer. The chro- 
matic and angular aberrations are similar to the case of a single running wave. 

A different regime for standing-wave light fields is reached when the detun- 
ing is much larger than the inverse temporal width of the pulse. In that case, 
"real" excitation into the excited state is strongly suppressed and all the exiting 
waves correspond to ground state atoms. This kind of beam splitter is very simi- 
lar to a mechanical grating beam splitter in the sense that the internal atomic 
structure plays no important role. 



308 u. Sterr et al. 

b. Laser Beams as Beam Splitters. The interaction of a moving atom with a cw 
laser beam is not as easily described. In this case the spatial structure of the 
beam is essential, and the time invariance of the problem leads to a strict conser- 
vation of energy. As a consequence, we can treat the interaction as a scattering 
between the atom and a laser beam. In this case, we are looking for stationary 
solutions; that is, with constant energy in the excited state and ground state, sep- 
arately, which are plane waves in the inward and outward channel with the ap- 
propriate momentum in the direction of the laser beams (z direction): 

](I~in ) : e x p ( -  iEt/h)lg, p) (19) 

I(I~out) -- ~g e x p ( -  iEt/h)]g,p) + (~e e x p ( -  iEt/h + ik z)le,p) (20) 

for running waves, and 

I(I)out)-- Z { ~/)g,2n e x p ( -  iEt/h + 2inkzz)lg, p) 
n 

+ ~be2n+ 1 e x p [ -  iEt/h + i(2n + 1)kzz][e,p)} (21) 

for standing waves, where ~b denotes the amplitude of the partial wave. 
As energy is conserved, we expect that, with a laser detuning different 

from 0, the energy difference is provided by the center of mass motion. 
Therefore, in addition to the momentum transfer along the direction of the 
laser beams, we expect a change in the longitudinal velocity to compensate 
for the energy difference between photon energy and internal atomic energy, 
as explained previously. 

This longitudinal momentum component stems from the momentum uncer- 
tainty of the localized laser beam. If we denote the momentum of the absorbed 
photon by hk, the requirement for energy conservation for an atom leaving the 
beam splitter in the excited state with a transfer of n photon momenta is 

p2 (p + nhk)2 
- - +  h~o L = + h~o 0. ( 2 2 )  
2m 2m 

This leads, for odd n, that is, for channels with atoms in the excited state, to 

np �9 k hn2k2 
m = ~~ - % - 2----~" (23) 

For atomic wave packets leaving the beam splitter in the ground state (even n), 
the laser detuning does not enter in the energy conservation, and we obtain the 
Bragg condition: 

This means that, as in the case of a running wave, depending on the detuning, 
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the absorbed photon momentum hk contains a component along the atomic mo- 
mentum proportional to the detuning for the excited states. 

This effect is well known in atomic scattering from a standing wave. Because 
of the finite size of the interaction, even inside the laser waist, the field is com- 
posed of a set of wave vectors with a width Ak = 1/w o. For a small waist size w 0 
we observe Kapitza-Dirac scattering; that is, several orders are populated 
(Gould et al., 1986). For bigger waists (i.e., highly collimated laser beams), en- 
ergy conservation allows scattering into one order only. This is known as Bragg 
scattering (Martin et al., 1988). The situation is complementary to the pulsed ex- 
periments. There, energy was conserved because of the energy-time uncer- 
tainty; here, it is because of the posit ion-momentum uncertainty. The use of 
standing waves as beam splitters was also demonstrated by Giltner et al. (1995) 
and Rasel et al. (1995). 

To get a quantitative description of the excitation probabilities in a beam ex- 
periment with a running wave, we insert the two coupled states of Eq. (20) in 
Eq. (12). Because of the translational symmetry along the direction of the laser 
beams (z-direction), the Schr6dinger equation separates into a free motion along 
z for both coupled states and a time-independent Schr6dinger equation for the 
motion perpendicular to the laser beams: 

= { h2 02 iPh--O + p~2 + _h[-A l~(x)])~(x) 
E~(x )  2m Ox 2 m Ox 2m 2 l~*(x) A 

where A is defined in Eq. (14). 

(25) 

If we suppose that we can neglect the second derivative (Raman-Nath ap- 
proximation), we can introduce a new variable ~" =mX/Px and end up with 

0 h I I ~ A  1~( , ) ]~ ( , )  (26) 
ih 0--~ ~(~:) = 2 (s c) A " 

This is exactly equivalent to Eq. (13) of the time dependent case, with t replaced 
by ~= x/v x. 

We now check whether the conditions for the Raman-Nath approximation 
are justified. We have to compare the value of the first and the second derivatives 
of �9 with respect to x. From the solution of Eq. (26), we estimate ~ / ~ x  to be on 
the order fUv x, and ~2(I)/~X2 ~" ~'-~/WVx, where w denotes the radius of the laser 
beam. The second derivative is small if 

w >> h/Px 

which is very well fulfilled for typical experimental parameters. For example, even 
for atoms having a momentum Px equal to the single-photon recoil momentum hk, 
the fight side is equal to the optical wavelength, which is typically small compared 
to the radius of the laser beam. For the phase associated with atomic recoil to be 
small in the interaction region, one must also require that w/vx << (hk2/2m) - 1. 
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The chromatic aberrations of a beam splitter with laser beams are twofold. 
First and most important, the interaction time is inversely proportional to the 
longitudinal atomic velocity. As, to the first order, the excitation probability is 
periodic in the "pulse area" Or, a 50% beam splitter ( l ) r =  7r/2), can be 
achieved for only a single transverse velocity. On averaging over the velocity 
distribution of a thermal atomic beam, because of the nonoptimal beam splitter 
ratios, the maximum averaged contrast of the interferences drops significantly. 
The aberration due to the transverse velocity is the same as in the pulsed beam 
splitter. 

2. Phases Due to Free Propagation 

We will now discuss the free propagation within an atom interferometer. In addi- 
tion, we are interested in a formalism that allows for easy introduction of addi- 
tional influences on the atoms during their passage through the interferometer, 
such as gravitational fields or additional light fields. For the connection between 
classical physics and quantum mechanics, Feynman's path integral method 
(Feynman and Hibbs, 1965) provides a convenient way. 

Classically, the path Fc~ of the particle in a potential V is determined by the 
principle of minimum action, 6S = 0 with 

f' "g S = [r(t),/'(t)] d t =  p .  dr - Hdt.  (27) 
s cl 

1 Here L denotes the Lagranian L(r,i') = ~ m/"2 -V( r )  and V(r) the potential. 
The corresponding quantum mechanical expression was given by Feynman 

for the transition amplitude U(rl,tl,r2,t2) between two points, r 1 and r 2. The main 
idea is that, in quantum mechanics, this complex amplitude is determined by all 
possible paths F from r l , t  1 t o  r2,t 2, each contributing a phase Sr/h.  Usually the 
phase is very sensitive to the path, so most of the paths interfere destructively. It 
is only near paths with a stationary phase, that is, near the classical path Fcl,  that 
many paths can interfere constructively and give a significant contribution to the 
transition amplitude. For interferometers, with dimensions large compared to the 
atomic de Broglie wavelength, the quantum mechanical phase is then given by 
S r / h .  

din the pulsed interferometer with no additional potentials, the internal energy 
in the times between the pulses for excited-state atoms is hw 0 and the La- 
grangian for ground and excited-state atoms is 

2 2 mv mv 
L = 2m and L = - h w  0 + -  (28) 2m 

respectively, where v denotes the actual atomic velocity. Taking into account the 
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time-dependent transformation of Eq. (11) for the Bord6 four-beam interferome- 
ter, this reproduces the expression Eq. (5) for the interference signal (Storey and 
Cohen-Tannoudji, 1994). 

In the interferometer using cw laser beams, the same Lagrangian can be ap- 
plied. The internal energy is the same, but the kinetic energy of the excited state 
now depends on the detuning, as the energy difference between internal energy 
and photon energy has to be provided by the atomic kinetic energy. Again, Eq. 
(5) is reproduced for the example of the four-zone Bord6 interferometer. In con- 
clusion, a free propagation is described simply by a phase factor proportional to 
the difference between internal energy and photon energy. 

3. Influence of Additional Potentials 

In many applications, the matter-wave interferometer is used to measure phase 
shifts due to additional potentials that are introduced deliberately into the inter- 
ferometer. 

For small additional potentials, it is possible to start with an ideal interferom- 
eter and then treat the potentials as small perturbations. Then, the phase change 
Aq~ is given by the integral along the unperturbed path, F 0. 

In the pulsed experiment, if the additional potential is spatially constant and 
varies only in time, the path remains the same and the only change in the inte- 
grand comes from the change in the potential V: 

Aq~ = --~ V(t) dt. (29) 
F,  

For an atomic beam with cw excitation zones, the total energy remains constant, 
so the only phase change is due to the change in the momentum 

Aq~= ~ Ap.dr .  (30) 
o 

A semi-classical wave function that takes into account the phase Sr/h for condi- 
tions where the change of the wave function over one de Broglie wavelength is 
small is given by the WKB wave function 

�9 (r,t)~ exp ~ (p dr - E dt) (31) 

where the momentum p is the classical momentum at a constant energy: 

p = V~2m[E- V(r)]. (32) 

The phase term of Eq. (31) is also known as the eikonal. 
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For weak potentials V << E, this expression can be expanded, and the phase 
shift (Eq. 30) introduced by the potential is 

a~= fAp/h~x=-~fV(r)Or. (33) 

A special class of potentials arises from potentials connected withinert iat  
forces like accelerations, gravitation, or rotations. These are not localized to an 
interaction zone well between the beam splitters but affect the whole interferom- 
eter. The classical paths in larger additional potentials do not completely overlap, 
so wave fronts originating from different source points interfere. This is similar 
to an optical shearing interferometer. In this case, the interference pattern is de- 
termined by the coherence properties of the source. For a deeper discussion with 
respect to a neutron interferometer, see Greenberger and Overhauser (1979). 

In the next section we will present an overview of different types of interfer- 
ometers using lasers as beam splitters, where we will briefly discuss the influ- 
ence of various potentials. 

III. Discussion of Different Types of Interferometers 

Now that we have presented all the building blocks, we have to combine them to 
form a working interferometer. As in optics, it is not enough to split and recom- 
bine the wave. The interferometer also has to be designed to work with the given 
coherence length of the source; that is, to combine waves from the same coher- 
ence volume. In an interferometer using thermal atoms, these issues are even 
more difficult because of the small wavelength and the short coherence length. 
In the case of mat ter-wave interferometers with lasers as beam splitters, the de- 
pendence of the interference fringes on the laser frequency and the aberrations 
of the beam splitter (e.g., Doppler shift) also have to be considered. 

A very convenient way to visualize the interferometer is by drawing the clas- 
sical paths within the interferometer. Important characteristics can be read from 
these diagrams. Because of its experimental simplicity, usually the integral flux 
in the excited state or ground state in all output beams is measured. In this case, 
only interference from partial waves with atoms in the same internal state can be 
observed. 

To obtain interference patterns in the integral flux, the phase shift has to be 
constant across the width of the atomic beam. Therefore, the exit paths have to 
be parallel to an angle a better than ce < Ads/2r, where 2r is the diameter of the 
atomic beam. Otherwise, spatial interference fringes, such as those observed in 
optical interferometers, appear that will wash out any interference when aver- 
aged over the size of the atomic beam. Because of the small atomic de Broglie 
wavelength, this is a very stringent condition. In interferometers based on sepa- 
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rated light fields, however, the transverse momentum transfer is given by the 
photon momenta; and this condition is usually easy to fulfill. From the discus- 
sion of the momentum transfer in the preceding section, it is worthwhile to note 
that, in a beam experiment, the exact direction of the wave vector of the ab- 
sorbed and stimulated-emitted photon is determined solely from energy conser- 
vation; any misalignment of the laser beams changes only the spatial spectrum 
of the available wave vectors and therefore the probability of the absorption- 
emission process but not the direction of the absorbed or emitted wave vector 
and the "alignment" of the atom interferometer. For the Bord6 interferometer, 
this was experimentally demonstrated by Bord6 et al. (1994) .  

In addition to the limitations imposed by angular errors of the output beams, 
any transverse separation of the interfering beams at the exit ports restricts the 
acceptance to transverse velocities. As in classical optics, a transverse separation 
Az larger than the transverse coherence length Azco h will destroy the interference. 
The coherence length of an atomic beam is 

h 
Azco h = 2 m A v  z (34) 

where Av is the transverse velocity width. The coherence length of a wave 
~ 

packet with minimal uncertainty is equal to its size. However, the spreading of 
the wave packet does not lead to an increase in the coherence length (Kaiser et 
al., 1983). This was incorporated in the billiard ball model by Friedberg and 
Hartmann (1993), where atoms are treated like classic billiard balls with a size 
equal to their coherence length. No spreading occurs and the balls always have 
the same size. In this model, interferences can occur, if the balls overlap at the 
output port. As already mentioned in Section II, a similar condition is valid for 
the longitudinal coherence length or the coherence time. For example, an addi- 
tional potential in one arm leads to a longitudinal path difference between the 
exit beams. A detuning of the beam splitter laser also leads to a longitudinal mo- 
mentum transfer and a longitudinal path difference between the partial beams. 
To observe interferences, the sum of both differences has to be smaller than the 
coherence length. 

Depending on the application, one important issue is the dependence of the 
interference pattern on the detuning and the stability of the lasers. Responsible 
for this dependence is the difference between the phase evolution in the arms of 
the interferometer with the atomic eigenfrequency to o and the laser frequency toL. 
The frequency of the interference signal can be determined by comparing the 
phases of the partial waves versus detuning. Bord6 (1992) has pointed out that 
different interferometer configurations are sensitive or insensitive to the detun- 
ing. 

Another important issue is the amplitude of the interference fringes in rela- 
tion to the incoherent background due to noninterfering paths; that is, the inter- 
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ference contrast. In a first approximation (50% beam splitters, no beam splitter 
aberrations) with n beam splitters, there are a total of 2 n output partial waves of 
the same amplitude 1/2 n/2, half of them in the ground state and half in the excited 
state, leading to an incoherent contribution of ~. In Fig. 3, only 12 waves are vis- 
ible at first glance, because the 4 waves that interfere overlap completely at the 
output of the interferometer. The interference term from each of those overlap- 
ping waves is twice the product of the amplitudes; that is, 2/2 n. In general, for m 
closed paths, there are m overlapping beams, each in ground and excited states, 
leading to m such terms for interference in the excited state. If the relative 
phases between the interfering waves of each closed path are the same, all those 
interference terms will add up and the total amplitude of the interference signal 
will be 2m/2n; hence the contrast, defined as difference between interference 
maxima and minima divided by their sum, which is the amplitude divided by the 
incoherent part is in the ratio 4m:2  n. 

The simplest  in terferometer  is the original two-zone Ramsey  setup, which 
is used for microwave spectroscopy (Fig. 5a) (Ramsey, 1950). Because  the 
two exit ports are displaced by an amount  Az = hkT/m, it is sensitive to the 
transverse coherence length of  the atomic beam; that is, to the degree of  col- 
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FIG. 5. Overview of different kinds of atom interferometers based on separated light fields (for 
details, see the text). In (d)-(f) not all interferometers are shown. 
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limation. In terms of optical interferometers, it constitutes a lateral shearing 
interferometer (Born and Wolf, 1980) and, with a spatially resolved detec- 
tion, could be used, for example, to examine the wave fronts of atomic 
beams. For microwave photons the transverse displacement Az usually is 
much smaller than the transverse coherence length, so interferences can be 
detected easily, and the maximum contrast is 1. For optical frequencies, 
however, the separation is much bigger, and no interferences can be observed 
unless the collimation is improved dramatically, as was demonstrated by 
Adam et al. (1986). 

The interference term can be found to be 

(ele) o~ cos[T(A-  k . v -  6 ) -  ~o 1 + ~2 ]. (35) 

To become independent of the transverse coherence length and the transverse ve- 
locity, the four-beam optical Ramsey setup was introduced (see Section I and 
Figs. 2 and 5b). Here, a second pair of counterpropagating lasers compensates 
the transverse separation and closed paths are formed. Therefore the interference 
is independent of the transverse velocity; that is, Doppler free. Because, in both 
partial beams, the atom spends different times in the ground and excited states, 
the interference pattern still depends on the laser detuning. As shown in Eq. (4), 
a longitudinal shift occurs at the output of the atomic wave packets in both par- 
tial beams. With increasing detuning, the shift is increased beyond the coherence 
length, and the interference signal disappears. For a pulsed experiment, there is 
no such restriction, and the width of the interference pattern ultimately is limited 
by the frequency dependence of the beam splitter and any misalignment of the 
laser beams. A detailed calculation can be found in (Bord6 et al., 1984), and the 
interference term for both recoil components is given (see Eq. 5) by 

(ele)int--A cos 2T A 0 + - + + 
1 2C 2 2m ] q~/~ ' 

a 2 cos 2T zX 0 + ~ + 2 m  + q~L (36) 

where A 1 and A 2 denote the amplitude of the two recoil components, 
A 0 = w L - ~o 0 is the laser detuning, and q~L = - ~1 -t- ~ 2 -  ~3 + q~4 is the phase 
difference between the laser beams. From the number of interfering paths (16) to 
the 2 closed paths, the maximum contrast of overlapping recoil components is 
1"2. 

The high contrast and the frequency dependence makes this type of interfer- 
ometer especially useful for the measurements of small phases and as an optical 
frequency standard. Most measurements using Bord6 atom interferometers so far 
have been performed with this type. Some examples will be given next. 

It has been argued, even in fairly recent publications, that this setup repre- 
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sents only an internal state interferometer. However, the partial waves are sepa- 
rated typically by a few tens of micrometers, and for example, the measurement 
of the Sagnac effect with this type of interferometer (Riehle et al., 1991) clearly 
has shown an effect due to a spatial separation of the partial waves. This demon- 
strates that the Bord6 interferometer is not simply an internal state interferome- 
ter but also a genuine de Broglie wave interferometer, as defined by Sokolov and 
Yakovlev (1982). 

As the separation between the two innermost beam splitters is reduced to 0, 
the arrangement of Baba and Shimoda (1981) is obtained (Fig. 3c). With the 
standing-wave beam splitter, more diffraction orders show up that do not lead to 
any closed interferometers, so the contrast is reduced compared to the previous 
type using four running waves, but the frequency dependence and the influence 
of the signal on potentials remain the same. 

Separated field excitation in the optical region was first proposed by Bak- 
lanov et al. (1976) in an arrangement of three standing waves (Fig. 3d), demon- 
strated by Bergquist et al. (1977), and later used in a pulsed version by Kisters et 
al. (1994). The frequency dependence is again given by Eq. (36). There are six 
interferometers, four of them sensitive to the detuning. Because of the additional 
diffraction orders of standing waves, the achievable contrast is not quite as high 
as in the case of four running waves. Because of the symmetry, however, this 
setup is not as susceptible to phase errors introduced by rotations or by misalign- 
ment of the laser beams. Because of the reversed orientation, the phase shift due 
to rotations has a different sign in each of the opposite interferometers. There- 
fore, rotations lead to only a reduced contrast but not to a phase shift. 

By using laser beams that are not perfectly perpendicular to the atomic beam, 
it is possible to tune the interferometer by communicating with different longitu- 
dinal velocity classes (Bord6 et al., 1994). The extreme case is the longitudinal 
Ramsey interferometer, as examined by Snyder et al. (1983).  This interferometer 
selects only one narrow, precisely known longitudinal velocity class and thus al- 
lows the precise knowledge of the second-order Doppler shift. 

All interferometers presented so far, even with several interfering beams, 
have been essentially two-beam interferometers that lead to a sinusoidal varia- 
tion of the interference signal with the laser detuning and additional phase shifts. 
Efforts have been made to extend those kinds of interferometers to produce mul- 
tiple-beam interferences with the intention of obtaining sharper interference 
fringes, resembling the interference pattern from a grating. Following the pro- 
posal by Ramsey (1958), Adam et al. (1986) performed experiments with inter- 
ferometers of the type shown in Fig. 5a that lead to narrower structures. In the 
experiment of Morinaga (1992), (Fig. 5e), the first and the last laser beam in the 
four-beam Bord6 interferometer were replaced by up to 10 separate laser beams. 
This gives a larger number of interfering beams, which exhibit different phase 
shifts, depending on the laser frequency. Unfortunately, there are many more 
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paths that spend only short times in different internal states than there are paths 
with long times. Consequently, the sharper structures expected from multiple- 
beam interferences therefore are only barely visible. 

The interferometers just presented are sensitive to the laser detuning, which 
makes them especially suitable for optical frequency standards. In measurements 
of small potentials in a beam experiment, this frequency dependence can also be 
used to introduce a well-defined path difference that can be compared to the in- 
fluence of additional potentials on the interference pattern, which allows for a 
discrimination between dispersive and nondispersive phase shifts (see Section 
V). A different class of interferometer types, set up with all laser beams traveling 
in the same direction, has been proposed by Bord6 (1992) and realized by Mori- 
naga and Ohuchi (1995), see Fig. 5f. Because of symmetry between both partial 
beams, there is no net frequency dependence of the interference signal, and the 
interference depends only on the relative phases of the laser beams: 

(ele)int = cos ( -  q91 + 992 + q93- (~t~4). (37) 

This setup has been used successfully to measure phase shifts introduced by the 
ac-Stark potential of an additional laser (see Section V). 

Audretsch and Marzlin (1994) and Marzlin and Audretsch (1996) have calcu- 
lated the general dependence of Bord6 interferometer setups with an arbitrary 
number of beam splitters on accelerations, rotations, and space curvature. They 
have proposed interferometers, which are insensitive to accelerations and rota- 
tions, that can be used to measure the space-time curvature predicted by general 
relativity, such as in a "figure 8" setup. 

Still another class of interferometer, which is described in great detail in an- 
other chapter of this book, uses standing waves with large detuning as beam 
splitters (Giltner et al., 1995; Rasel et al., 1995). In this case, only ground state 
atoms play a role. Exceptionally high interference contrast has been demon -~ 
strated with one of these interferometers (Giltner et al., 1995). As no internal 
atomic state is populated, there is no sensitive dependence on the laser fre- 
quency. The interference pattern is influenced only by additional potentials and 
the movement of the standing waves but not by the laser detuning. Even the 
phases of the laser beams do not enter into the observed phase shift. In this re- 
spect those interferometers are analogous to interferometers using mechanical 
gratings. 

Finally, we want to comment on the requirements on the laser coherence for 
these interferometric setups. In all setups, where the interference signal contains 
differences of the light phases of the laser beams, it is absolutely crucial that the 
temporal phase fluctuations of the laser have to be small compared to 7r during 
the time an atom spends within the interferometer. As well as a mechanical sta- 
bility of the beam line, this translates into a requirement on the laser line width. 
For typical times of about 100/xs this sets stringent requirements on the short- 
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time line width to be smaller than 10 kHz. In addition, for frequency-dependent 
interferometers, the absolute frequency stability during the measurement of a 
complete interference pattern has to be sufficiently good to prevent measurement 
errors. This requires sophisticated setups for the stabilization of the interferome- 
ter laser (see Section VIII). 

IV. Experimental Realization of Bord~ lnterferometry 

In this section, we describe the experimental setup of the interferometers we use 
at the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig on cal- 
cium atoms and at the University of Hannover on magnesium atoms. 

For all interferometric experiments that include "real" excitation into a higher 
level, a metastable upper level is required, as described in the previous section, 
so that atoms do not undergo spontaneous emission within the interferometer. 
On the other hand, the techniques of laser cooling and trapping for the prepara- 
tion of cold, dense samples requires atoms to have a cooling transition in which 
the upper level decays relatively fast. Of the many atoms and molecules used so 
far for Bord6 interferometers, very few possess these fast transitions. Different 
candidates have been discussed in the literature (see, e.g., Ertmer et al., 1983), 
and up to now, two groups are exploring the interesting opportunities contained 
in the singlet and triplet states of alkaline earth elements with the use of laser 
cooled atoms (Witte et al., 1992, Sengstock et al., 1993b). 

In alkaline earth atoms, the ~S 0 ground state is connected via a fast transition 
to the ~P~ excited state and through a spin-forbidden transition to the metastable 
3P 1 level�9 Simplified level schemes of Mg and Ca showing the relevant energy 
levels are depicted in Fig. 6. 

While for magnesium the cooling transition is closed, all heavier alkaline 
earth elements have low-lying ~D states, which limit accumulation times due to 
optical pumping For calcium, however, the leak from the ~P state to the 

�9 1 

metastable ~D e state has a branching ratio of about 10 -5 (Beverini et al., 1989), 
which does not limit the slowing by laser light but the trapping time in a mag- 
neto-optical trap. 

The lifetime of the metastable triplet state is about 5.1 ms (Godone and 
Novero, 1992) for magnesium and about 0.5 ms for calcium (Strumia, 1972). 
This leads to a natural line width of the intercombination transition ~S 0 - 3p for 
magnesium of about 30 Hz at 457 nm and for calcium of about 300 Hz at 657 
nm. The transition frequency for both elements is insensitive to perturbations 
from external fields to a high degree, which makes them suitable for optical fre- 
quency standards (see Section VIII). The cooling transition is at 285 nm for 
magnesium and at 423 nm for calcium. 

In the following pages, we will describe important aspects of our experi- 
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FIG. 6. Atomic level schemes of Mg and Ca showing the transitions relevant for atom interfer- 
ometers. 

ments. This includes a description of both the four-zone optical Ramsey experi- 
ments on a thermal beam and the experiments on interferometry with laser 
trapped atoms. For this purpose the magneto-optical trap, with its efficient cap- 
ture process and, in particular, its dynamics in the presence of the spectroscopic 
light, will be discussed briefly. Here, because of the different level schemes, 
some important differences between the experiments with Ca and Mg are intro- 
duced. 

The central part of this section is formed by the presentation of our results 
on Ramsey resonances on both the thermal beam and the trap under various 
conditions. We have performed detailed studies on the dependence of fringe 
width, fringe position, fringe phase, and fringe periodicity on interaction zone 
distance, laser power, laser phase, laser beam misalignment, suppression of 
either recoil component, and detection geometry (Sengstock, 1993; Sengstock 
et al. ,  1994). 

Our experiments allow for the simultaneous measurements on a thermal 
atomic beam and on a cold atomic ensemble stored in a magneto-optical trap 
(Fig. 7). For the experiment with Mg atoms, laser radiation at 457 nm, sup- 
plied from a high-precision dye laser spectrometer, interacts either with an 
atomic beam by crossing it perpendicularly four times or in the form of four 
pulses. The pulses are produced by cutting two pairs of light pulses of defi- 
nite shape, duration, and delay from two antiparallel laser beams with 
acousto-optic modulators (AOM2, AOM3 of Fig. 7). These two experiments 
are actually run in paral le l - - the  light necessary for beam splitting is 
switched between the two setups with the aid of another modulator 
(AOM1)mso that a direct comparison of the performance of the two schemes 
can be made (Sengstock et al.,  1993a, b). A similar geometry is used for the 
Ca experiment at PTB (Kisters et al. ,  1994), where the interferometer is gen- 
erated by three pulses of standing-wave laser fields. 
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FIG. 7. Experimental setup for simultaneous interferometry on a thermal beam and laser cooled 
atoms. 

A. INTERFEROMETRY ON A THERMAL ATOMIC BEAM 

For Bord6 interferometry on a thermal  beam of atoms,  we use an interaction 
geomet ry  with four running laser waves perpendicular ly  crossing an a tomic 
beam. For example ,  in the Mg exper iment  (Fig. 8), the atomic beam effuses f rom 
a heated furnace at 700 K. The 1 m m  diameter  orifice together  with a pinhole  of  
the same size placed 200 m m  downs t ream col l imates  the beam to 5 mrad  diver- 
gence. The laser beam at 457 nm having a beam diameter  of 2.4 m m  and a 

457nm =j~ 
retroreflector 

I ..o.o .,o.o 

'cots eye' ~ [~ retroreflector 

FIG. 8. Experimental setup for Bord6 interferometry on an atomic beam. 
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power between 30 and 50 mW enters the vacuum vessel through optically flat 
fused silica viewports. 

As described in section III, the Ramsey-Bord6 setup with two pairs of coun- 
terpropagating laser beams places strict requirements on the stability of the laser 
phases during the time of flight of the atoms through the four laser beams. Addi- 
tionally, a high degree of parallelism is required to guarantee sufficient excita- 
tion probabilities in the individual laser beams. 

For retroreflection with angular deviations of less than 1 /xrad, achromatic 
lenses ( f =  400 mm) and high-reflecting mirrors in the "cat's eye" configuration 
(Snyder, 1975) are used. This configuration ensures high phase stability on long 
time scales because movements of the optical elements, in the first order, do not 
change the overall phase of the laser geometry. 

The unavoidable residual spherical aberrations of the lenses limit the usable 
range of distances of the laser beams from the optical axis for our lenses to 
slightly more than 30 mm. The spherical aberrations can be thought of as a vari- 
ation of the focal length with the distance from the optical axis. By adjusting the 
positions of the mirrors appropriately, it is in general possible to make three 
laser beams exactly parallel, but the final outgoing beam direction will remain 
slightly tilted against the normal. 

After passing the four laser interaction zones, the atoms enter a separate vac- 
uum chamber through a small hole. In this chamber, the population of the ex- 
cited 3P 1 level is probed. Due to the long lifetime of the upper level, excitation 
and detection can be separated spatially. An excited atom at a velocity of 700 
m/s travels a mean path of 3.5 m before decaying to the ground state. 

For calcium, the specifications of the apparatus are similar; the shorter life- 
time of Ca leads to a decay length of about 20 cm. As a consequence different 
velocity classes are favored for most efficient detection within the setup and, in 
addition, the two interferometric components may differ in contrast for a spa- 
tially extended region between the second and the third laser beams (see Fig. 3). 
This region has no influence on the interferometric resolution or phase, but the 
two recoil components are in different internal levels and a spontaneous decay 
from the excited state reduces the red recoil component. 

Figure 9 shows signals obtained with the magnesium interferometer. The 
overall shape of the signal consists of three parts: (a) the Doppler profile of the 
velocity distribution in the laser beam direction with a typical width of a few 
MHz, (b) the saturation dip whose spectral width of several hundred kHz is re- 
lated to the single-field interaction time, and (c) the coherent part consisting of 
the fringe system whose periodicity is determined by the time separation be- 
tween the interactions. For magnesium atoms the two recoil components are sep- 
arated by 80 kHz in frequency space and for calcium by 23 kHz. 

The Doppler profile and saturation dip are generated by the incoherent contri- 
butions from those paths that are not closed (see Fig. 3). In the following presen- 
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FIG. 9. Overview of atom interferences measured on a thermal Mg atomic beam. The upper 

curve shows the Doppler-broadened signal together with the saturation dip. The expanded spectrum 
(bottom) shows the interference fringes of the two recoil component interferometers. 

tations of data, they will usually be suppressed by subtraction using a suitable 
numerical model. Asymmetries in these background terms can have a small in- 
fluence on the determination of the line center of the fringe system. A convenient 
method to remove these residual uncertainties has been discussed by Morinaga 
et al. (1989). A more detailed presentation of the dependence on the signal on 
various experimental parameters will be given at the end of this section and in 
Section VIII.C. 

B. INTERFEROMETRY ON A LASER COOLED ATOMIC BEAM 

Because of the broad velocity distribution in a thermal atomic beam, the longitu- 
dinal coherence length of the atomic waves is rather small and only the zero and 
first order interference fringes are visible. The velocity distribution can be nar- 
rowed, that is, cooled, by means of a counterpropagating laser beam (see, e.g., 
Ertmer et al., 1985, Prodan et al., 1985). The transfer of photon momentum 
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slows the atomic beam. To keep the atom in resonance with the slowing laser 
while they are decelerated, the effective detuning has to be adjusted to the 
changing Doppler shift. In this experiment on calcium, the Doppler shift was 
compensated for by the Zeeman shift in an inhomogenious magnetic field (Pro- 
dan et al., 1985). With this setup, thermal calcium atoms are decelerated from 
about 600 m/s to a few tens of m/s within a distance of about 0.4 m (Witte et al., 
1992). Because the slowing laser is superimposed on the atomic beam and also 
on the decelerated atoms, the Bord6 interferometer would be strongly disturbed 
by the intense cooling laser light. To prepare a pure, slow, and monoenergetic 
atomic beam, in a second step, a tilted (30 ~ optical molasses is applied to the 
atomic beam (Fig. 10). This light force bends the slow atoms from the beam 
while leaving the high-velocity tail of uncooled atoms. After leaving the mo- 
lasses, the velocity width of the atomic beam amounts to about 10 m/s at an av- 
erage velocity of about 30 m/s. After that zone, the slow atoms now cross the 
four laser beams in the same way as in the thermal beam setup. With slow 
atoms, detection for Ca atoms is difficult because most of the atoms decay while 
they are on their way to the detection zone. In this regard, the use of atoms with 
zero average velocity offers many advantages and, in addition, allows easy varia- 
tion of the different laser excitation parameters. 
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FIG. 10. Setup for interferometry on a laser decelerated and deflected atomic beam. 
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C. INTERFEROMETRY ON TRAPPED ATOMS 

To prepare dense ensembles of cold atoms, modified versions of the well-known 
magneto-optical trap (MOT) (Raab et al.,  1987) are used. The trap consists of 
three pairs of counterpropagating laser beams and a magnetic quadrupole field. 
By the use of appropriate polarization of the laser beams, a light force is created 
that cools the atoms and also forces them toward the center of the trap. The de- 
tection schemes for the interference fringes are different in the experiments on 
Mg and Ca due to the different lifetimes of the excited interferometer states. 
First, we want to give the experimental details of the magnesium experiment. 

The trap can be filled from either a thermal or, with increased efficiency, a 
laser-slowed atomic beam. Using a trapping beam diameter of 3.4 mm, we are 
able to store up to 4- 105 atoms in an approximately Gaussian shaped cloud with 
a diameter of 250/xm corresponding to a peak density of 101~ cm -3. The mea- 
surement of the velocity distribution with a time-of-flight method yields a rms 
velocity below 1 m/s in accordance with standard Doppler theory for our trap 
parameters. Due to the large line width of the trapping transition, the velocity 
capture range even for the rather small beam diameter exceeds 50 m/s. The large 
capture range also allows trapping from the thermal atomic beam, but with three 
orders of magnitude fewer atoms in the trap. 

For a constant loading rate, the observation of the trap fluorescence intensity, 
which should be exactly proportional to the trap population, allows for the deter- 
mination of changes in the decay constant due to additional loss mechanisms. 
One such loss mechanism can be the laser induced excitation to the metastable 
3P 1 state by the interferometric process. In this way the "electron shelving" ef- 
fect, well known from the spectroscopy of trapped ions (Nagourney et al.,  1986), 
is used to detect a weak transition with high-quantum efficiency. Furthermore, 
the trap dynamics in the MOT enables the action of another signal amplification 
mechanism due to atom "recycling." Both mechanisms together allow for effi- 
cient detection of the interferometric process. 

A typical interferometric experimental cycle (Fig. 11) consists of first switch- 
ing off the trapping laser light and switching the magnetic field from the quadru- 
pole shape needed for trapping to a homogeneous offset field. This is done for 
the preparation of the trapped atoms as a free cloud, no longer influenced by any 
trapping fields. Then a sequence of four laser pulses with suitable intensity and 
duration is applied to the freely expanding cloud of atoms, as theoretically de- 
scribed in Section II. Finally, the magnetic and light fields for the trap are 
switched on again and the trap fluorescence light on the fast transition is moni- 
tored. Atoms not excited by the interferometric process m f o r  typical experimen- 
tal parameters these are more than 98%mare  recaptured, compressed, and ve- 
locity scrambled and thus made ready to participate in the next spectroscopic 
cycle. In the experiments, these cycles are repeated at a rate between 65 and 95 
Hz, so that on average on atom has more than 40 chances to jump to the 3P 1 level 
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FIG. 11. Time sequence for pulsed interferometry on laser trapped atoms (for details, see the 
text). 

before leaving the trap for other reasons. This leads to a strong decrease in the 
number of trapped atoms due to the interferometric cycles and a "quantum am- 
plified" sensitive monitoring of the interferometric excitation probability. 

Indeed, a straightforward but lengthy calculation shows that, under the as- 
sumption that the inverse repetition rate t c is small compared with the undis- 
turbed trap lifetime ~'t, the new equilibrium number of trapped atoms N E is given 
by (Sengstock et al. ,  1993a, b; and Sengstock, 1993) 

N e = No (38) 
1 + P~-t/tc 

where P denotes the excitation probability to t he  3P 1 level for one cycle and N o is 
the number of atoms in the undisturbed trap. During the interferometric experi- 
ments, we generally choose to work with a trap filled from the thermal atomic 
beam, because it tended to be more stable and the high signal amplification fac- 
tor compensated for the lower initial number of atoms. Of course, for large am- 
plifications the signal tends to saturate and the contrast of spectroscopic features 
is diminished, but the freely chooseable repetition frequency can be adjusted to 
optimize the signal contrast. In the case of calcium, the shorter lifetime makes 
the direct detection of the fluorescence from the metastable triplet state more fa- 
vorable. 

As in the experiments on an atomic beam, the shape of the signal on trapped 
atoms is the sum of the unsaturated Doppler profile, the saturation dip, and inter- 
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ference fringes, whose periodicity is determined by the time separation T of the 
interactions. The main difference between interferometry on an effusive beam 
and on trapped atoms is that the dark time is no longer determined by the time of 
flight of the atoms. Therefore it does not depend on the velocity distribution but 
is determined only by the accurately adjustable dark time of copropagating laser 
pulses on the trap. Therefore, the fringe patterns cover a much broader frequency 
interval than the recoil separation and fringes from the individual and indepen- 
dent recoil doublets overlap to form the overall signal. In our experiments, the 
pulse separation T, and thereby the fringe period, is adjusted such that both pat- 
terns overlap constructively. Examples will be given next. 

D. DISCUSSION OF EXPERIMENTAL PARAMETERS 

We now turn to a discussion of the parameters and processes that influence the 
interferometric signals in thermal beam and cold atom interferometry. 

Different distances, D, between the counterpropagating laser beams affect the 
periodicity of the fringes (Fig. 12). Since each velocity distribution contributes a 
different second-order Doppler shift, the line shape becomes asymmetric and 
slightly broadened (Barger, 1981). The influence of the second-order Doppler ef- 
fect on the signal shape is most pronounced for spectra taken at large separations 
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D = 9 . 0 r a m  

D = 1 2 . 0 m m  

D = 2 1 . 0 m m  

FIG. 12. Atom interferences obtained with a thermal Mg beam for different separations D be- 
tween copropagating laser beams. Dotted lines indicate the positions of the centers of the two recoil 
components. 
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between the laser fields; that is, when the resolution becomes comparable to the 
second-order Doppler broadening, typically, a few kHz. The solid lines in Fig. 
12 are numerical calculations of the interference signals including the experi- 
mental parameters of laser power, overall laser phase, beam waist, atomic beam 
geometry, and detection efficiencies. The model is capable of describing the in- 
terferometric signal quite well (Sengstock, 1993, Sengstock et al., 1994); the 
only free parameter in the fit is the absolute signal strength. One can see the sec- 
ond-order Doppler shift and also the increasing asymmetries of the fringes, 
which can be explained by asymmetric shifts of the signals associated with dif- 
ferent velocity classes. With our parameters the second-order Doppler effect 
leads to a shift of 1.5 kHz, in good agreement with the numerical calculations. 
For Ca, the shift amounts to about 1.8 kHz, owing to the higher mean velocity of 
the atoms. In contrast, for the trapped atoms, the second-order Doppler effect is 
reduced by four orders of magnitude and therefore is negligible. 

The laser power influences the atom interferences through the excitation 
probability in two ways: For low powers, the total number of contributing atoms 
decreases and the most probable contributing velocity is shifted toward lower 
velocities. Less participating atoms reduce the signal, while low contributing ve- 
locities result in narrower fringe width. This effect is clearly demonstrated in 
Fig. 13. However, the figure also shows that the loss in contrast for low laser 
power is not compensated for by the gain in resolution. 
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FIG. 13. Atom interferences on Mg atoms for different laser power P. 
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The exact position of the fringe minimum is highly sensitive to the laser 
phases ~0 i, as can be seen from Eq. (36). By influencing the phase of only one of 
the laser beams by tilting the phase plate indicated in Fig. 8, different phases for 
the Ramsey fringes can be obtained. A series of such measurements is presented 
in Fig. 14. Optical misalignments of the cat's eye reflector can easily cause un- 
wanted phase differences between the laser beams and thus shift the position of 
the fringe minimum. For example, in the scans of Fig. 13, a phase shift of ap- 
proximately 60 ~ is visible. 

A main advantage of pulsed interferometry is that it does not suffer from this 
problem, since the light pulses can be cut from a single laser beam (see Figs. 4 
and 7). The overall phase in Eq. (36) is the sum of the phase differences of co- 
propagating laser pulses and therefore cancels exactly to zero in the experimen- 
tal setup (Sengstock et al., 1993a). There might be a minimal phase shift of the 
second pulse due to the heating of the AOM crystal by the first rf pulse. The tem- 
perature increase in the AOM caused by a 1 s long pulse was measured to pro- 
duce a phase shift of 150 mrad. This scales down to 0.3/~rad for the 2/xs long 
pulses used in the experiment and hence is completely negligible. Larger phase 
differences between the oppositely directed pulses are conceivable; however, as 
explained earlier, only the difference in phase between copropagating pulses de- 
termines the phase of the atom interferences. The wave vectors and the phases of 
the copropagating pulses are inherently the same. 

Figure 15 displays examples of atom interference signals on Ca atoms for 
pulsed excitation of trapped atoms. 
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FIG. 15. Atom interferences (counts per/zs versus detuning) measured on laser trapped Ca atoms 

for different dark times T between copropagating pulses. 

E. SUPPRESSION OF ONE RECOIL COMPONENT 

The superposition of the signals from the two recoil interferometers may lead to 
possible systematic fringe shifts. There have been several theoretical suggestions 
and experimental demonstrations of different ways to eliminate either the low- 
or high-frequency recoil component (Bord6, 1977, Riehle et al., 1988, 1992a, 
1992c; Sterr et al., 1992; Kurosu and Morinaga, 1992). 

The idea is either to destroy the coherence of one of the two interferometers 
with an additional laser beam in the region between the second and the third 
laser beams or to suppress the excitation of one recoil interferometer by an addi- 
tional magnetic field and appropriate laser polarization. Both methods are exper- 
imentally rather easy to realize. 

For example, the high-frequency recoil component is suppressed by introduc- 
ing a laser between the second and third interaction zones resonant with the fast 
singlet transition, thus destroying coherence for atoms in the ground state in this 
region (Sterr et al., 1992; Riehle et al., 1992a). One can also use crossover reso- 
nances between the 3Pl(m = -+-1) levels to eliminate the low frequency recoil 
component (Dingler et al., 1994). Examples are presented in Fig. 16. 

With a thermal Mg beam, it is easy to increase the resolution to a point where 
both recoil components are clearly separated in frequency space so that the 
fringe systems do not overlap. However, the saturation dip backgrounds related 
to each component still overlap, so that an exact determination of the true line 
center is complicated. 
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FIG. 16. Suppress ion  o f  the blue recoi l  interferences  by means  o f  an addit ional  laser beam (b) 
and exci tat ion o f  only  the blue recoi l  interferences  based on crossover  resonances  (c) for M g  atoms.  
For compar i son ,  spectra with both recoil  contr ibut ions  are s h o w n  in (a) and (d). 

For pulsed Ramsey resonances using the trap, both the fringe systems and the 
saturation dips overlap. Line shifts due to frequency pulling of the recoil compo- 
nents can be reduced by choosing the fringe periodicity to be an integer fraction 
of the recoil separation. In this case, the constructive superposition of the two 
fringe systems doubles the fringe contrast. For small deviations from this opti- 
mum superposition, however, the residual pulling AtOp for the low-frequency re- 
coil component amounts to 

AT 
AtO = 6 - -  (39) P T 

where AT denotes the difference between the actual pulse separation and the op- 
timum value T = n/46 with integer n and 6 = hkZ]2m. To reduce the pulling be- 
low 1 Hz, the fractional error in pulse separation has to be below 2 . 5 . 1 0  -5 in 
the case of Mg. This shows clearly that, for frequency standard applications of 
the Bord6 interferometer, the superposition of recoil components has to be taken 
into account. The suppression of the high-frequency recoil component, however, 
can be achieved easily by turning on the trapping laser for a few microseconds 
after the first pair of interferometer pulses. 

In conclusion, the experimental realization of the Bord6 atom interferometry 
turns out to require stability conditions comparable to those for atom interferom- 
eters based on mechanical beam splitters. The central element necessary for op- 
eration, of course, is a highly stable laser system with requirements for fre- 
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quency stability as discussed in Section III. Details on these systems can be 
found in Helmcke et al. (1987) and in Sengstock et al. (1994). 

Compared to atom interferometers based on mechanical beam splitters, one of 
the main advantages is the easy state-selective readout of the exit ports, which al- 
lows for the use of broad, intense atomic beams or trapped ensembles. The second 
main advantage is the possibility for state-selective interactions with one of the 
arms of the interferometer, for which examples will be given in the next section. 

In addition, the pulsed version on laser trapped atoms offers further possibili- 
ties for flexible and easy change of the excitation geometries and for the applica- 
tion of additional pulsed potentials, such as those that are encountered in the 
topological phase shift measurements that are described in Section VI. 

V. Precision Determination of Physical Quantities 

The high sensitivity of the atom interferometer allows accurate measurement of 
energy shifts of atomic states in external fields. Several examples using the 
Bord6 interferometer have been investigated, like the phase shifts of the atom in- 
terferences in Mg and Ca due to the influence of static electric fields (Section 
V.A), ac electric fields (Section V.B), and the measurement of the dipole moment 
of weak transitions (Section V.C). 

A. MEASUREMENTS OF DC STARK SHIFT AND ATOMIC POLARIZABILITIES 

The frequency shift of spectral lines in an electric field is well known since the 
investigations by Stark (1914). For typical electric fields, the interaction energy 
between atoms in the low-lying states and the electric field is small compared to 
the internal energy of the atom and consequently, this interaction is treated in 
perturbation theory. The interaction of a neutral atom is possible via the electric 
dipole moment of the atom induced by the electric field. The accurate knowl- 
edge of atomic polarizabilities is interesting for several reasons; for example, 
they determine material properties like the dielectric constant or the van der 
Waals forces. If the Bord6 atom interferometer is utilized as an optical frequency 
standard (Section VIII), it is inevitably necessary to calculate frequency shifts 
due to electric fields or to determine quantitatively the influence of the black- 
body shift. The polarizability a of an atom can be measured in an atom interfer- 
ometer due to the modification of the potential energy for the atomic wave pack- 
ets in the region of the electric field. Introducing a potential V into one of the 
arms of any two-beam atom interferometer, like the Bord6 interferometer, leads 
to a phase shift of the corresponding partial wave (see Section II.C.3). The elec- 
tric field E(x) influences the internal energy of the atoms by the dipole interac- 
tion. Since the atom enters the electric field slowly compared to the rearrange- 
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ment time of the internal structure, this leads to a potential for the external mo- 
tion. For the dc Stark effect, V is given by the atomic polarizability c~: 

1 V(x) = - ~ o~E2(x). (40) 

If the two partial beams are spatially separated, it is possible to apply the electric 
field to only one beam. Ekstrom et al. (1995) have conducted such an experi- 
ment to measure the polarizability of sodium atoms in the ground state. 

In the Bord6 atom interferometer, the width of the atomic beam is usually, but 
not necessarily, bigger than the separation of the partial waves. Nevertheless, the 
influence of electric fields on the phase of the atomic waves also can be deter- 
mined quantitatively in this type of interferometer. Between the first and the sec- 
ond beam splitting laser fields and between the third and fourth laser fields, one 
of the two partial waves forming the interferometer is in the excited state and the 
other one in the ground state (see Fig. 3). If both states have different polariz- 
abilities, the respective phases of the corresponding de Broglie waves are shifted 
differently in the region of the electric field. Rieger et al. (1993) have performed 
measurements in their Bord6 interferometer with Mg matter waves, where they 
placed a small capacitor between one pair of these copropagating laser fields, 
however, extending across both arms of the interferometer (see Fig. 17). Since 
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FIG. 17. Experimental setup used by Rieger et al. (1993) to measure the difference between the 
polarizabilities t~(ISo)-a(3Pl) of Mg in a Bord6 interferometer. The Stark effect leads to a spatially 
dependent potential V(x) for the atomic wave packets in the field region inside the capacitor. 
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the separated atomic wave packets are in different internal (1S 0 or  3P1) states, 
they experience different Stark shifts. The resulting potential difference leads to 
a relative spatial shift of the wave packets and a shift of the envelope of the atom 
interference pattern in frequency space. Later, Rieger (1996) used a larger capac- 
itor where all four beam splitting laser fields were inside the region of the elec- 
tric field. Zeiske (1995) (see Fig. 18) and Morinaga et al. (1996) also used larger 
capacitors in their Ca atom interferometers to determine the difference of the po- 
larizabilities where either all four beam splitting laser fields or two adjacent ones 
were inside the region of the electric field. The larger area of the capacitor re- 
duces the stray fields, a noticeable source of error, as Rieger et al. (1993) have 
pointed out. The inclusion of the interaction zones into the region of the electric 
field also shifts the transition frequency leading to a shift of the incoherent con- 
tribution to the interference signal (see Fig. 19). In this technique the geometri- 
cal quantities, like the length of the capacitor or the distance D between the laser 
beams, do not enter the determination of the polarizabilities. Results of measure- 
ments of the difference of the polarizabilities of the IS 0 and the  3P 1 states of Mg 
and Ca are given in Table I. 

Zeiske (1995) and Rieger (1996) have used these measurements together with 

j /  / f . ~ /  
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FIG. 18. Bord6 interferometer placed in an electric field of a capacitor (only one interferometer, 
corresponding to the high-frequency recoil component, is shown). A magnetic field parallel to the 
laser beams defines the orientation of the magnetic moment Ix which differs from 0 only in the ex- 
cited 3P 1 state (full line). 
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ca lcula t ions  to derive scalar  and tensor  polar izabi l i t ies  of  the exci ted  state with 
reduced  uncertaint ies .  

Itano et  al. ( 1981 )  have pointed out that the room-tempera ture  b lackbody radia- 
tion may shift the energy levels of  a tom and ion f requency standards via the corre- 
sponding ac Stark shift. Bava et  al. (1983) have est imated this influence by sum- 
ming up the oscillator strengths in the case of  Mg and Ca. Due  to the different 

TABLE I 

MEASURED DIFFERENCES OF THE POLARIZABILITIES Aot -- c e ( 3 P ] ) - a ( l S 0  ) INTERCOMBINATION LINES OF 
MG AND CA FOR DIFFERENT ZEEMAN COMPONENTS m 

Atoms Component (m) Aa (kHz/(V/cm) 2) Reference 

Mg 

Ca 

1 8.0 +__ 1.0 Rieger et al. (1993) 
1 9.0 • 0.3 Rieger (1996) 
0 3.9 • 0.1 Rieger (1996) 

1 33.7 • 0.4 Zeiske (1995) 
0 24.7 • 0.4 Zeiske (1995) 
0 24 • 4 Morinaga et al. (1996) 
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sources of the data the accuracy of these results for the intercombination transitions 
was expected to be good only to an order of magnitude. Since both the dc Stark 
shift and the nonresonant shift of the blackbody radiation are determined by the 
same dipole matrix elements, the measurement of the dc Stark shift of the intercom- 
bination transitions of Mg and Ca allows one to reduce this uncertainty consider- 
ably. In the case of Mg, the frequency shift caused by the blackbody radiation (e.g., 
-0 .5  Hz _ 0.05 Hz for Mg at 300 K) now can be corrected if the atom interferome- 
ter is used as an optical frequency standard (see Section VIII). 

B. PHASE SHIFTS BY THE AC STARK EFFECT 

Even though, between the first and second and between the third and fourth 
beam splitting laser fields of the Bord6 interferometer, the two atomic partial 
waves are in different internal states, both states are affected simultaneously by 
the dc Stark effect. To address only one of the two states, the ac Stark interaction 
of a laser field tuned somewhat off-resonance of an allowed transition from this 
state has been used by Riehle et al. (1992a), Sterr et al. (1992), and Morinaga et 
al. (1993) in the Bord6 interferometer with four traveling waves. 

In the first two experiments, an additional laser was tuned closely to the 
~S 0 -  ~P~ transition of Ca and Mg with A = 423 and 285 nm, respectively, 
whereas in the last experiment the additional laser was used to couple the 3P l ex- 
cited state of Ca with a higher lying 3S~ state (A = 612 nm). The interaction of 
the additional light field with the atomic waves in the ground state or in the ex- 
cited state, respectively, leads to an acceleration and consecutive deceleration or 
vice versa of the respective atomic partial wave, depending on the sign of the de- 
tuning of the additional laser. This results from the dipole force in a spatially 
varying electric field E(x), such as that associated with a laser beam having a 
Gaussian spatial profile. This acceleration and consecutive deceleration of the 
atomic partial wave in the ground state or in the excited state leads to a phase 
shift of this partial wave with respect to the unaffected one. The ac Stark effect 
or dipole force is conveniently described in the dressed-atom picture (Dalibard 
and Cohen-Tannoudji, 1985). Under certain conditions, the influence of the di- 
pole force can be described by a spatially dependent potential energy V(x). 
These conditions require that the amplitude of the interacting laser field de- 
scribed in terms of the Rabi frequency 1"~ varies slowly enough that the internal 
degrees of freedom of the atomic wave can follow adiabatically and that sponta- 
neous transitions between the dressed states can be neglected. Then the corre- 
sponding potential energy depends on the Rabi frequency 1"~ and on the detuning 
A as 

h A  1 + - 1 ~ ~ - -  (41) 
V = - ~  ~ 4 A A" 
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The approximation on the right-hand side of Eq. (41) holds if the detuning A 
is large compared to the Rabi frequency ~.  In this case the potential is deter- 
mined by the light-shift parameter HA, where I is the intensity of the laser 
field. If the potential energy V is small compared to the atomic kinetic energy 
W (V ~ 10-1~ W in the experiments reported here), the corresponding phase 
shift of the partial wave and the frequency shift A v of the interference pattern 
can be calculated according to Eq. (33) and compared to the measured one 
(see Fig. 20 a and b). 

The linear dependence of the phase shift on the laser intensity and on the 
light-shift parameter was measured by Riehle et  al.  (1992a, 1992c) and 
Morinaga et  al.  (1993) for Ca and by Mtiller et  al.  (1995) for Mg. The de- 
pendence of the shift on the detuning is shown in Fig. 21. For high laser 
power and small detuning, however, the spontaneous emission probability 
increases. Since each spontaneous emission destroys the coherence, this 
leads to a decreasing fringe contrast, which eventually is completely lost 
on-resonance (Fig. 20c). The described experiments gave quantitative agree- 
ment with theory within an uncertainty of about 20% limited by the deter- 
mination of atomic and geometrical quantities like laser power, beam ra- 
dius, or transition probability. 
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FIG. 20. Atom interferences in a Mg Bord6 interferometer (curve b) are shifted by a near-reso- 

nant additional laser beam (detuning 2 GHz, curve a) or destroyed (curve c) by a resonant one. 
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beam. 

C. DETERMINATION OF THE DIPOLE MOMENT OF A WEAK TRANSITION 

It has been pointed out in Section ll.B. 1 that the excitation probability in a beam 
splitting laser field is periodic in the pulse area f~'. Consequently, a 50% beam 
splitter can be realized only for those atomic waves where 

l~r = r = 2 (42) 

and where the Rabi frequency is determined by the dipole moment tx e of the 
weak transition and the electric field E. Maximum contrast of the atom inter- 
ferences is obtained only if the excitation probability of 50% is obtained for 
each atom in each of the four interaction zones independent of the direction 
and velocity of the atoms. Complications result when, due to the spatial 
profile of the beam splitting laser beams, the excitation probability becomes 
spatially dependent. In general, the interference contrast is determined by a 
rather complicated interplay among atomic, geometric, and laser beam quan- 
tities, to be addressed step by step in the following text. Consequently, the op- 
timum beam splitting ratio, in general, is achieved for only a particular veloc- 
ity group, and the atoms with different velocities contribute less to the 
interference pattern. This is particularly the case along the y direction of the 
atomic beam, where the excitation probability depends on the particular elec- 
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tric field distribution in the laser beam. Ishikawa et al. (1994) have shown 
that, even if the radius Wy = 1.6 mm of the laser beams is larger than the ra- 
dius r = 0.5 mm of the atomic beam, the field amplitude varies by about 10% 
along the full height of the atomic beam. 

Taking into account the spatially varying distribution of the laser field E(x ,y )  
along the direction of the atomic beam, one must replace Eq. (42) by 

f_ ~ 1 f_~ 7r (43) 12 dt - -h [.1~ e E(x ,y )  dt  = 2 
o o  o o  

1 where the intensity l (x ,y)  = ~ ce  o E(x ,y )  2 for the case of a Gaussian laser beam is 

( l (x ,y)  = ~ -5  exp - 2  
X 2 -I- y2)  

w2 (44) 

with P the power of the laser beam and w its radius. Inserting Eq. (44) into Eq. 
(43) and integrating along y = 0, using the relationship x = vt for the atomic ve- 
locity v, one finds ; (y2)i ( v2,2  

1 4Prr/a exp - - -  dt 
1~ dt = h tx e ce~ 2 exp - w-5 W 2 / 

1 4P 7r 7r12 -- (45) 
= -h ]'Ze CE.o V2 - 2"  

If the laser power P is varied to give optimum contrast of the atomic interfer- 
ences (P = P~/2), Eq. (45) can be used to determine the dipole moment/'~e of the 
transition for a given velocity v of the atoms. Morinaga and Helmcke (1988) 
have selected a narrow velocity group applying pulsed separated-field excitation 
to determine the dipole moment of the weak intercombination transition of Ca. 
From their data, one calculates k~e = 1.8" 10 -31 A-s-m, which compares well 
with the value of 1.46. 10 -31 A.s.m derived by Riehle et al. (1992b) from mea- 
surements of the saturation dip. 

If no velocity selection is applied and the atoms have a broad velocity distrib- 
ution such as in an effusive atomic beam, then Eq. (45) has to be modified. De- 
tailed numerical calculations have shown that the experimental interference pat- 
tern can be modeled in detail (Sengstock et al., 1994; Sengstock, 1993), taking 
into account the velocity distribution as well as the geometry of laser and atomic 
beams. Zeiske et al. (1995)  have Fourier analyzed the atomic interference pat- 
tern to derive the velocity distribution of the atomic waves together with a mean 
velocity that in principle can be used in Eq. (45). Zeiske et al. (1995) have 
pointed out that velocity distribution derived this way automatically properly 
takes into account both the velocity-dependent detection probability and the in- 
fluence of the laser power. 
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VI. Geometrical and Topological Phases 

The knowledge of all possible effects that are able to shift the phase of matter 
waves is indispensable if an atom interferometer is to be used as a precision 
measurement tool. The occurrence of an unknown phase overlooked in a partic- 
ular measurement may lead to an erroneous result. For instance, if the atom in- 
terferometer is used as an optical frequency standard (see Section VIII), any 
evolving phase may lead to modulation sidebands, spectral broadening, or even 
to frequency shifts, as has been shown by Simon et al. (1988). This is in partic- 
ular true also for the so-called geometric phases. The evolution of the phase 
factor of a quantum mechanical system like a matter wave is completely deter- 
mined by the time-dependent Schr6dinger equation. For cyclic evolutions in a 
slowly varying environment, in addition to the well-known dynamical phase 
factor resulting from the time integral of the frequency, which is proportional to 
the energy of the system, there is an additional nondynamical phase factor. 
Berry (1984) pointed out that the additional phase factor can be interpreted geo- 
metrically in the Hilbert space of states. This geometric phase attracted much 
attention during the following years, and it is interesting because it is deter- 
mined in a nonlocal way by (parameter) space regions the quantum mechanical 
system has not visited classically. The associated phase shift is readily measur- 
able in matter wave interferometry and consequently serves as a probe of topo- 
logical phases. 

Of primary interest are geometric phases when the phase shift of the matter 
wave does not depend on the trajectories (topological phase) or velocity (nondis- 
persive phase) of the particles. Dispersive and nondispersive phase shifts are eas- 
ily recognized in a four-beam Bord6 interferometer described by Eq. (5) and 
shown in Fig. 2. The detuning term A and the recoil term ~ both affect the phase 
of the matter wave by an amount proportional to T = D/v leading to a shift of the 
whole wave packet (see Fig. 2). In contrast to this dispersive phase shift, the 
phase shifts of the matter wave resulting from the laser phases ~0/~ in Eq. (5) are 
nondispersive. Due to the short coherence length of typical atomic beams used 
in our experiments dispersive phase shifts may lead to a rapid loss of contrast of 
the interference structure. 

Nondispersive effects shift the phase of the matter wave without shifting the 
wave packet (Badurek et al., 1993). If we apply these considerations to the four- 
beam Bord6 atom interferometer of Fig. 2, then large nondispersive phase shifts 
may be measured without loss of contrast by variation of the phase of a particu- 
lar laser beam produced, for example, by using a phase plate (Morinaga et al., 
1989). Dispersive phase shifts such as the recoil shift 6 or the dc Stark shift are 
compensated for, preferably by the laser frequency (detuning A) to keep the visi- 
bility of the interference fringes high. 
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Berry (1984) noticed that the effects described by Aharonov and Bohm 
(1959) showing the physical significance of potentials in quantum theory repre- 
sent important special cases of a geometric phase. In their famous paper, 
Aharonov and Bohm (1959) showed that electrons should acquire phase shifts 
when passing through regions of space where electric or magnetic potentials but 
no electric or magnetic fields are present; that is, when no classical force is act- 
ing on the particles. The Aharonov-Bohm effect resulting from the interaction 
of the charge of the electron with the vector potential A attracted much attention, 
both theoretically and experimentally, since it represented a stringent proof for 
nonlocal, topological effects in quantum physics. This effect has been demon- 
strated experimentally by Chambers (1960) for the case of electron wave packets 
that have been split coherently and recombined behind an iron whisker. A series 
of beautiful experiments by various groups, culminating in the results of Tono- 
mura (1988), later replaced the whisker with a solenoid or tiny ferromagnetic 
toroids. 

Later, Aharonov and Casher (1984) showed that the interaction of a mag- 
netic dipole moment ~1, m with an electric field leads to an effect identical to 
the Aharonov-Bohm effect. Wilkens (1994) gave other examples of the quan- 
tum phase of a moving dipole, and Mtiller et al. (1995)  gave a classification 
of various variations of a generalized Aharonov-Bohm effect for interfering 
matter waves carrying a charge, magnetic or electric dipole moments. In the 
following sections, we discuss examples of each the scalar and vectorial ef- 
fects. They were measured using the Bord6 interferometer with magnesium 
and calcium matter waves in the time and spatial domains, discussed in Sec- 
tion VI.A and VI.B, respectively. The Sagnac effect (Section VI.C) represents 
a different example of a Berry phase. Another manner in which one can inves- 
tigate a Berry phase using a Bord6 interferometer, where the adiabatic cyclic 
process needed for the appearance of a Berry phase consists of the adiabatic 
change of population in one of the interferometer arms, has been devised by 
Reich et al. (1993). 

A. MEASUREMENT OF THE SCALAR AHARONOV-BOHM EFFECT 

The scalar variant of the topological effect proposed by Aharonov and Bohm 
(1959) relies on the phase shift a charged particle (electron) suffers in a scalar 
potential ~b even though, owing to the absence of any electric field, no force is 
acting on the electron. To fulfill the latter requirement, Aharonov and Bohm as- 
sumed that the coherently split electron packet travels through two independent 
conducting cylinders with a field-free region inside. If the potential ~b of one 
cylinder is varied during the time of the transit of the wave packet but is adjusted 
to its original value before the wave packet leaves the cylinder, this wave packet 
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would suffer a phase shift with respect to the second wave packet that can be 
calculated using Eq. (33) and the potential energy V = - e~. 

This type of experiment using charged particles has yet to be performed. 
However, as has been pointed out by Allman et al. (1992) in the case of neu- 
trons, the scalar potential energy V = - e ~  can be easily replaced by 
V-- - Ix  m �9 B. These authors have conducted such an experiment representing a 
special scalar Aharonov-Bohm effect. According to Anandan (1989), Wilkens 
(1994), and MiJller et al. (1995), a scalar potential energy V = - i x  e �9 E also oc- 
curs for an electric dipole moment ~kt e in an electric field E. MUller et al. (1995) 
have used the large dipole moment of a Mg atom induced by a nearly resonant 
field on the strong 1S 0 - 1p~ transition (A = 285.2 nm) to generate such a poten- 
tial energy. This energy [see Eq. (41)] leads to a strong potential for the center- 
of-mass movement of the Mg atom in the ground state. In the excited state, the 
coupling to the (3s5d)3D1,2,3 states (A = 284.9 nm) is several orders of magnitude 
smaller, due to the larger detuning. Consequently, this potential is selective only 
for the ~S 0 states, and a restriction of the additional laser to only one arm is not 
necessary. To avoid spontaneous decay from the ~P state, which would lead to a 
loss of coherence, the detuning A is chosen large compared to the Rabi fre- 
quency 1~, which validates the approximation leading to the right side of Eq. 
(41). Applying the laser radiation that provides the light-shift potential during a 
pulse time, 'Tadd, leads to a phase shift of the Mg wave packet in the ground state 
of if 1 (T.~. hf~Z(t) 

Aq~ = - -h  V(t) dt = - ~  Jo 4---A-- dt (46) 

(see Fig. 21). To investigate a purely topological effect there must be no forces 
along the classical trajectory of the wave packet. There is a distinct difference 
between the scalar Aharonov-Bohm effect with electrons in a conducting cylin- 
der whose potential is changed by a voltage pulse and the Mg atoms that are ex- 
posed to the laser pulse. In the latter case, the Mg atoms experience a transient 
acceleration during the leading and trailing edges of the pulse, leading to an ad- 
ditional phase shift. However, MiJller et al. (1995) have pointed out that this ad- 
ditional phase shift is smaller than the Acp of Eq. (46) by a factor v/c with v be- 
ing the velocity of the atoms and c being the speed of light. Therefore, it is 
completely negligible. Another source of possible forces results from gradients 
of the potential due to the spatial variation of the laser beam. These had to be 
avoided by using a beam radius that was large compared to the dimensions of 
the interferometer. Badurek et al. (1993) pointed out that the signature of the 
topological phase is the observation that the phase change is independent of the 
velocity. The detuning-dependent phase shift (according to Eq. (46)), however, is 
affected via the Doppler effect. The contribution of the corresponding velocity 



342 U. Sterr et al. 

dependence of the potential is reduced if the detuning, A, is large compared to 
the Doppler shift of the atoms. 

The experiments used the pulsed version of the Bord6 interferometer (Sec- 
tion IV) in an ensemble of laser cooled and trapped Mg atoms where 
103--4 �9 105 atoms formed a cloud of 0.3 mm diameter. The measured rms ve- 
locity was close to the attainable limit of 0.8 m/s set by the line width of the 
cooling transition (the so-called Doppler limit). Two pairs of counterpropa- 
gating pulses used as nearly resonant beam splitters on the ~S 0 - 3 P  1 transi- 
tion (A = 457 nm) were provided by a highly stable dye- lase r  spectrometer. 
The pulses for interferometry were cut from single beams of a line width of 
about 2 kHz, using acousto-optic modulators. To avoid phase shifts due to the 
Zeeman effect or unpredictable ac Stark shifts as well as interference loss due 
to the spontaneous emission, the trapping light fields and the quadrupole 
magnetic fields are switched off. After 20/xsec, the freely expanding atomic 
cloud is irradiated by the first interferometer pulse. The delay time, T, be- 
tween two consecutive pulses of the same direction was typically or 6.3 or 
12.5/xsec. After the sequence of the four pulses, the trap is switched on again 
and its fluorescence monitored. 

Between the first and second interferometer pulses, light-shift pulses of a du- 
ration of 2/xs -< tad d -< 4/xs were applied. These pulses were cut from a beam of 
an independent laser by another AOM. The beam size of 2.9 • 3.7 mm 2 was 
large enough to ensure a homogeneous intensity distribution over the cloud of 
Mg atoms with a phase shift variation of less than 2% for all atoms contributing 
to the signal. The pulse rise time of 50 ns in the AOM was long enough to ensure 
adiabatic evolution for detunings much larger than the corresponding 27r. 20 
MHz. In this experiment, the interference pattern was recorded for several peri- 
ods with and without the scalar potential generated by the additional laser field 
(see Fig. 22). To suppress the influence of the frequency drift of the laser spec- 
trometer, both interference signals were recorded at each frequency step with 
and without the additional light pulse. The phase shift of the interference pattern 
with the light-shift potential was recorded using various values of the intensity, I, 
of the light-shift generating laser pulse, its detuning 0.2 GHz --< A _< 2 GHz, and 
its duration tad ~, as well as the delay time, T, between the pulses of the two inter- 
ferometer beams. The observed additional geometric phase depended linearly, as 
expected, on the product of the light-shift parameter//A and tad d. The variation 
of the delay time between the interferometry pulses allows one to vary the path 
of the interfering Mg partial waves in space and time. No variation of the phase 
shift was observed, which is expected from the topological nature of this phase 
shift. For a particular experiment, the measured and calculated phase shift of 2.9 
rad and 3.5 rad, respectively, agreed within 20% of the combined uncertainty of 
the parameters, which was limited mainly by the uncertainty of the intensity of 
the UV laser. 



ATOM INTERFEROMETRY BASED ON SEPARATED LIGHT FIELDS 343 

150 

120 

-o 9O 

r 
r 60 

t- 
ca. 30 

0 1 2 3 

I /D * T' [a rb .  un i t s ]  
FIG. 22. Observed phase shift of the interference pattern of the pulsed-light Bord6 interferometer 

applying a pulsed light-shift potential together with a linear fit (solid line). The term I/D*T' corre- 
sponds to HA �9 ~'add in the text. 

B. MEASUREMENT OF THE AHARONOV--CASHER EFFECT 

Aharonov and Casher (1984) pointed out that a geometrical phase is produced 
when matter waves associated with neutral particles having magnetic moment  
~.L m encircle a closed path around a charged wire. In terms of the electric field E 
of the wire, the phase shift of the matter wave is 

~AC = he  2 [jL m X E(s)" ds. (47) 

The Aharonov-Casher  (AC) effect can be thought of to be dual to the (vector) 
Aharonov-Bohm effect if the roles of the magnetic moments and the electric 
charge are interchanged. Cimmino et al. (1989) have measured it using neutrons, 
and an experiment with reduced uncertainties has been reported by Kaiser et al. 
(1991). In their difficult and delicate experiment, these authors were able to ver- 
ify the occurrence of the expected small phase shift of 1.5 mrad within the 2o- 
uncertainty of their measurement. In this experiment, the beam of neutrons was 
split coherently and the two partial waves enclosed an electrode system before 
being recombined again. Due to the higher intensity of atomic beams and the 
higher magnetic moment compared to neutrons, the relative 1 o- uncertainty of 
16% of the neutron experiment was expected to be reduced considerably. Sang- 
ster et al. (1993), Zeiske et al. (1994, 1995; Zeiske, 1995), and G6rlitz et al. 
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(1995) used atomic systems to reduce the uncertainty to 4, 2.2 and 1.4%, respec- 
tively. Including the neutron experiment, the four experiments investigate experi- 
mentally different aspects of the AC effect. In the neutron experiment, the two 
partial waves having identical magnetic moments traverse two regions where the 
electric field has a different direction. Sangster et al. (1993) and G6rlitz et al. 
(1995) do not separate the path at all but rather use a coherent superposition of 
magnetic moments in the electric field. 

The experiments of Zeiske et al. (1994, 1995; Zeiske, 1995) utilize a Bord6 
interferometer in the homogeneous electric field of a capacitor (see Fig. 18). 
Even though the partial waves of an incoming Ca wave packet are split, they 
travel in the same constant field. Between the first and second and between the 
third and fourth beam-splitting laser fields, the two partial waves are in different 
states, which possess a magnetic moment, ix m, only in the excited, 3P l, state and 
no magnetic moment in the ground state, ~S 0. To have a maximum of ~1, m X E ,  
the quantization axis was aligned with the help of a magnetic field parallel to the 
laser beams. The applied electric field will shift the interference pattern due to 
the AC effect. 

In addition to the AC effect, the interference structure is shifted by the inter- 
action of the electric dipole moment induced by the electric field and the electric 
field itself (Stark effect). 

Zeiske et al. (1995) showed that the phase shift due to both effects is 

Aq~E = 2D 1 A a E 2  + - ' ( ~ m  • E) (48) 
hv 2 c 

where the first part in the brackets represents the Stark shift and the second one, 
the Aharonov-Casher shift. For the geometry of the experiment with E,~m, and 
v being mutually perpendicular, the AC phase shift leads to a frequency shift of 
the interference pattern of 

V 
ZXVAC = hc 2 ~m E. (49) 

For typical values of the electric field used in the experiment by Zeiske et al. 
(1995), the Stark shift exceeds the Aharonov-Casher shift by three orders of 
magnitude. Due to the linear dependence of the AC effect and the quadratic de- 
pendence of the Stark effect on the electric field, a separation of both effects is 
possible by measuring the shift of the interference structure for a field reversal 
and subtracting the results. Since the AC shift reverses with the direction of the 
electric field vector, it remains after this procedure. A (linear) drift of the high- 
resolution dye-laser spectrometer (<100 Hz/s) was compensated for by the 
measurement sequence, where the electric field was alternated in the sequence 
(+E, - E ,  - E ,  +E), and the corresponding intensities of the interference pattern 
were recorded with an integration time of 1 s for each field direction. The AC 
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frequency shift was measured for both the o "+ and tr- components, where the 
shift changes sign due to the opposite directions of their magnetic moments. Any 
frequency shift, independent of the direction of the magnetic moment but de- 
pending on the direction of the electric field, such as a constant offset of the 
electric field, is eliminated by taking the frequency difference of the two mea- 
sured frequency shifts. A total of 1000 sequences were averaged to give a total 
integration time per data point of 8000 s. The measured frequency shift, A uAC, as 
function of the applied electric field (Fig. 23) confirms the expected linear rela- 
tionship of Eq. (49). 

The quantitative comparison of the experimental and theoretical phase shift 

A~bcxp = AAcV/47rD = 0.99 __+ 0.022 (50) 
mt~theo r tzmE/hc 2 

depends on the combined uncertainty of the measured parameters. Zeiske et al. 
(1995; Zeiske, 1995) showed that the largest contributions to the uncertainty re- 
sulted from the experimental determination of the frequency shift, AUAc (2%); 
the evaluation of the mean velocity of the Ca atoms, v (0.7%); the accuracy of 
the angles between Ix m, E, and v (0.3%); and the determination of the electric 
field between the plates of the capacitor. The precise determination of the fre- 
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FIG. 23. The measured frequency shift of the interference pattern (with linear fit, solid line) is a 

measure of the Aharonov-Casher phase depending on the electric field. 
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quency shift due to the AC effect was affected by effects such as the frequency 
drift of the laser spectrometer and the fluctuation of the density of the atomic 
beam. For each of the six electric field values, the standard deviation of the mean 
frequency shift averaged over all measurements was smaller than 10 Hz. A com- 
bination of the six values led to a relative uncertainty of 5%/V/-6 = 2%, for a 
mean shift of the interference pattern of 200 Hz due to the AC effect. The veloc- 
ity distribution of the atoms contributing to the interference pattern was derived 
from a Fourier analysis of the interference pattern itself, and the mean velocity, 
v, was determined from this distribution rather than from a Maxwell distribution 
of the atoms in the beam. As pointed out in Section V, this procedure ensured 
that all the relevant velocity-dependent influences in the spectrum are taken into 
account properly such as the velocity-dependent detection probability or the 
power-dependent excitation probability in the beam splitting interferometer 
beams. The latter means that the velocity of the atoms that experience a 7r/2 
pulse, and consequently contribute most to the interference pattern, is propor- 
tional to the amplitude of the beam splitting laser field. A reduction in the laser 
power resulted in a decrease in the mean velocity from v = (698 +__ 5) m/s to 
v = (643 ___ 5) m/s. The reduction in the velocity led to an increased splitting an- 
gle a = hv/mvc for the matter waves from 21.8 to 23.4/xrad. The AC phase mea- 
sured for both velocities was the same within the uncertainty of the experiment, 
which is a signature of the topological AC effect. 

C. MEASUREMENT OF THE S AGNAC EFFECT 

A good deal of the development of atomic interferometers is motivated by the 
hope of creating inertial and gravitational sensors of unprecedented high sensi- 
tivities. Since the coupling between a particle and any gravitational or rotational 
field stems from the mass, M, of the particle used in the interferometer, this hope 
is based on the higher mass of atoms as compared to neutrons, electrons, or pho- 
tons (E/c 2) together with the use of interferometric methods. Several atomic in- 
terferometers sensitive to the effects of acceleration or gravitation have been de- 
scribed; for example, by Clauser (1988). In the following text, we will 
concentrate on effects of rotation. The development of such interferometers as 
sensors of rotation is highly desirable, for instance, for geophysical investiga- 
tions like the earth's variable rotation is described by Hide and Dickey (1991) or 
the measurement of subtle effects like space- t ime curvature (Marzlin and Au- 
dretsch, 1996). Interferometric detection of rotations proposed by Lodge (1893) 
and related commonly to the experiments of Sagnac (1913) used the fact that co- 
herent waves of particles split in a rotating interferometer with the angular ve- 
locity 1~ and encircling an area A experience a relative phase shift of 

2 
m (~Sagnac = h c  2 EA g2. (51) 
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Since, according to Eq. (51), the phase shift due to the Sagnac effect is propor- 
tional to the relativistic energy E of the particles used in the interferometer, the 
attainable Sagnac phase shift can be increased using particles of higher rest 
mass. Electrons, neutrons, or atoms already have been utilized by Hasselbach 
and Nicklaus (1988), Staudenmann et al. (1980), and Riehle et al. (1991), re- 
spectively. Bord6 (1989; 1992) has shown that Eq. (51) can be derived from an 
effective interaction Hamiltonian 

VR = - -  D"(t)'rop • Pop" (52) 

Riehle et al. (1991) have derived the frequency shift of the interference fringes 
from Eq. (51) in the case of a Bord6 interferometer rotated around an axis per- 
pendicular to the interferometer plane as 

= l.~d + D 
ml;sagna c /~ (53) 

where D and d are the separation between the two outer and two innermost beam 
splitting laser beams, respectively. 

In their experiment, Riehle et al. (1991) mounted a Bord6 atomic interferom- 
eter consisting of a thermal beam of Ca atoms on a rotational table. Electric 
power and signals, cooling water, and laser radiation were transferred to the 
table via long cables, tubes, and a polarization-preserving optical fiber. 

Atomic interferences were observed as a function of laser frequency by moni- 
toring the fluorescent decay of the excited atoms at the output of the interferom- 
eter (see Fig. 24). These spectra were recorded with the apparatus at rest (Fig. 24 
a, c, and e) or rotating clockwise (b) or counterclockwise (d). The spectra are 
composed of the two interference systems, corresponding to the two interferom- 
eters; that is, recoil components that show a shift proportional to the angular ve- 
locity lq (see Fig. 25). The measured shifts agree well with the ones expected 
from Eq. (53) for two different areas of the interferometers. Even though this ex- 
periment was merely a first demonstration rather than a high-precision experi- 
ment, it is interesting to look for the ultimate sensitivity limits. For comparison 
of gyroscopes operated with photons or atoms, according to Eq. (51), the prod- 
uct M.  A represents a "figure of merit" of the respective interferometer. In the 
atom interferometer experiment described by Riehle et al. (1991),  the energy of 
a Ca atom is about 2.10 l~ times the energy of a photon. The area A, however, of 
the Bord6 interferometer was about 10 -7 m 2, whereas in an optical Sagnac inter- 
ferometer the energy is about 2 eV and the area can be chosen to be easily sev- 
eral square meters. Although in this experiment a sensitivity of 10 -2 rad/s in 
about 10 s corresponding to 0.3 rad s -~ Hz -~/2 was obtained (see Fig. 25), Bord6 
and L~immerzahl (1996) envisage that a sensitivity as low as 10-1~ rad s- ~ Hz-  1/2 
may be achieved. 

The high sensitivity of matter waves to gravitational or rotational forces may 
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FIG. 24. The observed atomic interference pattern is shifted if the Bord6 interferometer is rotated 
with an angular velocity f l  = - 0 . 0 9  s -1 (curve b) or with ~ = +0 .09  s -] (curve d) with respect to 
the cases when the interferometer is not rotating (1"~ = 0; curves a, c, e). 

also represent a burden to high-precision experiments performed on earth. The 
Bord6 interferometer, however, employing separated-field excitation as beam 
splitters, easily allows modifications that are virtually insensitive to gravitational 
fields. Several examples like the "figure 8" or the "figure 81'' geometry have 
been suggested by Clauser (1988) and Marzlin and Audretsch (1996). 

Hendriks and Nienhuis (1990) considered the Sagnac effect from the point of 
view of a corotating observer and showed that the Sagnac effect for matter 
waves in the nonrelativistic case is fully analogous to the Aharonov-Bohm ef- 
fect in a uniform magnetic field. Accordingly, the Sagnac effect represents an- 
other example of Berry's phase. 
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FIG. 25. Observed frequency shift A ~, of the atomic interferences for different angular velocities 
1~ and two different distances, d + D, between the beam splitters (dots, d + D = 45 mm; squares, 
d + D = 24 mm) as compared to the expected result according to the Sagnac phase shift. 

VII. Influence of the Quantum-Mechanical Measurement 
Process in the Interferometer 

A great deal of the appeal of "particle interferometry" results from the 
wave-part icle  duality encountered when the terms of classical physics are 
used to describe quantum-mechanical phenomena. This is the most prominent 
example of complementarity in quantum mechanics, which has received con- 
tinuous attention over many decades such as in the EPR paradox presented by 
Einstein et al. (1935). Even though the paradox is resolved in textbooks, such 
as the one by Feynman et al. (1965), as a mere conflict between reality and 
our feeling of what reality should be, beautiful experiments have been de- 
vised recently to demonstrate this behavior of quantum mechanics in detail. 
There are good reasons for this continuing interest. First, with the new ex- 
perimental tools provided by quantum optics or atomic interferometry, experi- 
ments can now be conducted that previously were only gedanken experiments. 
Second, these experiments can be used to clarify misconceptions that arise from 
our "feelings" of what is intuitively reasonable. A third reason is the hope that 
a deeper understanding of these effects will enable us to devise experiments, 
such as those with highly entangled states, that will allow us to ask and 
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answer the relevant questions, leading to a deeper foundation of quantum 
mechanics. 

The Bord6 atomic interferometer (see Fig. 2) allows one to discuss the 
wave-particle duality in terms of the well-known Welcher Weg experiment. The 
principle of complementarity in such an interferometer requires that the interfer- 
ence pattern disappears if one can determine which of the two paths the atom 
took in the interferometer. Due to their internal structure this information can be 
obtained easily in the case of atoms; for instance, by scattering photons from the 
atoms. Sleator et al. (1992) have calculated and Pfau et al. (1994) and Chapman 
et al. (1995) have demonstrated in their interferometers how the contrast of the 
interference pattern is lost and partially regained when the separation of the two 
interfering paths is varied. This behavior was explained by the spatial resolution 
function of a single scattered photon, showing that the interference tends to dis- 
appear if the spacing of the two interfering paths becomes much larger than the 
wavelength of the light; that is, if the atom's path can be distinguished. 

In the Bord6 interferometer, however, between the first and second interaction 
zones (and equally between the third and fourth interaction zones), the atom's 
path can be identified irrespective of the distance, because the two partial waves 
are in different internal states. If, for instance, in these dark zones, atoms are 
scattering photons from an additional laser tuned closely to the ~S 0 - 3p~ transi- 
tion of Ca (A = 423 nm) and Mg (A = 285 nm), they are unambiguously identi- 
fied as resulting from atoms being in the ground state. In the same way, any 
other laser connecting the excited state to another allowed state in the respective 
atom can be used to identify atoms in the excited state or detect which path the 
atom took. Consequently, the disappearance of the interference pattern has been 
observed by Riehle et al. (1992a) and by Sterr et al. (1992) when the laser fre- 
quency was tuned closely to resonance to allow spontaneous decay to appear 
(see Fig. 20c). 

This method has also been used by Sterr et al. (1992) and by Riehle et al. 
(1992a) to destroy the interference pattern of the interferometer corresponding to 
the high-frequency recoil component, where these authors had applied the addi- 
tional laser beam in the dark zone between the second and third interaction zone 
and consequently affected both paths at the same time. Here and as in most of 
the analyses of complementarity, it was argued that the momentum of the photon 
used to determine which path was used by the atom disturbs the momentum of 
the atomic waves, leading to the loss of the interference contrast. Scully et al. 
(1991) pointed out, for example, that Welcher Weg (or particlelike) information 
can be gained in a matter wave interferometer without scattering or introducing 
large uncontrolled phase shift to the relevant partial wave. This can be achieved 
by performing a quantum nondemolition (QND) measurement, as proposed by 
Brune et al. (1990). Scully et al. (1991) have suggested the use of micromasers 
for such a QND measurement where the weak momentum of the microwave 
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photon produces virtually no change in the center-of-mass motion of the matter 
wave and the position-momentum uncertainty therefore cannot explain the re- 
sults asked for by complementarity. Scully et al. (1991) demonstrated how com- 
plementarity still is applicable in this situation. 

The interaction of a coherent laser beam with the atoms in the excited state or 
similarly in the ground state via the ac Stark effect leads to a frequency shift of 
the interference pattern (Section V.B) that can be used to probe the laser field in 
such a way that no energy is exchanged with a given photon mode. Sleator et al. 
(1992) pointed out that this implies that it is possible to perform a QND mea- 
surement of the photon number in an ac Stark shifting laser beam. 

VIII. Applications of Atom Interferometry in 
Optical Frequency Standards 

Atom interferometers generated by separated field excitation have been success- 
fully used as optical frequency standards. Such standards provide precision fre- 
quency references in the optical range of the spectrum. They are needed in preci- 
sion spectroscopy, in length metrology, for fundamental measurements, and for 
optical clocks. In an optical frequency standard, the frequency of a laser is stabi- 
lized with high precision to the center of a suitable, narrow atomic or molecular 
line. High spectral resolution and a sufficient signal to noise ratio are important 
ingredients for the development of such standards. Both can be provided by the 
Bord6 interferometer and its modifications discussed in Section III. We have 
used both spatially separated excitation of an effusive atomic beam and time 
separated excitation of laser cooled and trapped atoms, leading to two different 
types of atom interferometers. In each of these interferometers, the phase differ- 
ence between the two partial atomic waves depends strongly on the detuning of 
the laser from the line center (Eq. (36)). This phase difference, in turn, can be 
determined by the interference signal and used to determine the center of the ab- 
sorption line. 

Compared to microwave frequencies, the use of optical frequencies is advan- 
tageous since a high line Q = v/6v and consequently a high resolution can be 
achieved at these high frequencies with short interaction times. Excellent ab- 
sorption lines are provided, for example, by the intercombination transitions 
3P 1 - ~S 0 of the alkaline earths, calcium at A ~ 657 nm (Bergquist et al., 1979) 
and magnesium at A ~ 457 nm (Ertmer et al., 1983). Their natural line widths of 
6v ~- 300 Hz for calcium and 6v ~30  Hz for magnesium correspond to Q factors 
of more than 1012 and 1013 , respectively. The frequency of the transition with 
mj = 0----~ mj = 0 has only negligible quadratic dependencies on electric and 
magnetic fields. Furthermore, laser cooling and trapping has been demonstrated 
for Ca by Beverini et al. (1989a) and Kurosu and Shimizu (1992), and for Mg by 
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Beverini et al. (1989b) and Sengstock et al. (1993a). The use of laser cooled, 
trapped atoms allows one to reduce the influence of the Doppler effect to a negli- 
gible level and reduce systematic errors (see Section IV). In addition, the most 
abundant isotopes 24Mg and 4~ have no hyperfine structure and their ground 
states are not degenerate. Consequently, each atom in the ground state will be 
available for the excitation and therefore can contribute to the clock transition. 
Compared to calcium, magnesium has the principal advantage that the natural 
width of its clock transition is about an order of magnitude narrower than that of 
Ca. On the other hand, at the present time, lasers having the frequencies needed 
to drive the cooling and the clock transitions of calcium are more readily avail- 
able and simpler to operate than those needed to drive the cooling and the clock 
transitions of magnesium. Hence, a laser stabilized to the Ca intercombination 
transition has already been recommended for the realization of SI unit of length, 
the meter (Quinn, 1994). 

In the following sections, we will concentrate on an optical frequency stan- 
dard based on Ca atoms. We note that the described methods can be applied as 
well to a frequency standard based on Mg atoms. Section VIII.A discusses the 
frequency stabilization of a laser to the fringe center of an atom interference for 
an effusive atomic beam as well as for atoms stored in a trap. The determination 
of the optical frequency is described in Section VIII.B. As a typical example, 
Section VIII.C contains an analysis of the perturbations that determine the fre- 
quency uncertainty of an optical frequency standard based on an atom interfer- 
ometer. 

A. ATOM INTERFERENCE AS A DISCRIMINATOR FOR FREQUENCY STABILIZATION 

We have seen in Section III.A that the interference signal of the Bord6 interfer- 
ometer using two pairs of counterpropagating laser beams (Figs. 2 and 8) 
strongly depends on the detuning v L-  v 0 of the laser from the atomic resonance 
(see Eq. (36)). In contrast to conventional saturation spectroscopy, where the 
number of atoms contributing to the signal is determined by the interaction time 
broadening and consequently decreases with increasing resolution, the size of 
the interference signal is independent of the resolution in separated field excita- 
tion. Here, the number of atoms contributing to the interference signal depends 
on the interaction time in one zone, and the resolution can be chosen indepen- 
dently by the time intervals, T, between the excitations. 

For the experiments, an effusive 4~ beam and 4~ atoms trapped in a mag- 
neto-optical trap (MOT) were used. The configuration for the separated field ex- 
citation of thermal atoms is shown in Fig. 8. The dominant contribution to the 
uncertainty of the standard is produced by the second-order Doppler effect 
VoV2](2c 2) and by phase errors in the optical excitation 6q~ L. The latter, corre- 
sponding to a residual first-order Doppler effect, can be corrected by reversing 
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the propagation direction of the laser beams, leading to a precise alignment pro- 
cedure of the cat's eye retroreflectors (Morinaga et al., 1989). When the laser 
frequency was stabilized to an interference fringe generated in an effusive beam, 
residual small frequency drifts and offsets caused by optical phase errors or by 
the second-order Doppler effect occurred (see Section VIII.C). These could be 
reduced to negligible levels by applying separated field excitation to laser 
cooled, trapped atoms. 

We therefore have stabilized the laser frequency to the center of an interfer- 
ence fringe of Ca atoms stored in a magneto-optical trap. The experimental setup 
is similar to the one shown in Fig. 7. The stabilization is performed in three 
stages: (1) a prestabilization to a resonance of an optical cavity and (2) to a sta- 
bilization to the center of an interference fringe generated in an effusive beam 
and (3) in a trap. In the first step, the frequency noise of the "clock dye laser" is 
reduced by a fast stabilization of the laser frequency to an eigenfrequency of a 
stable optical resonator. The residual line width of the laser radiation is in the 
range of 2 and 3 kHz (Helmcke et al., 1987). 

In the next two steps, the laser is stabilized to the intercombination transition 
of Ca atoms in an effusive beam and in a trap. The atomic beam is excited by the 
laser radiation diffracted in the first-order of an acousto-optic modulator (AOM 1 
in Fig. 7). To generate the error signal for the stabilization we square-wave mod- 
ulate the laser frequency v~ (diffracted at AOM1), using a total modulation width 
of 10 kHz. The error signal then results from the difference between the ampli- 
tudes of the interference signals at v L + 5 kHz and v L - 5 kHz, which is calcu- 
lated automatically by a computer. In the vicinity of the fringe center, this differ- 
ence depends linearly on the laser frequency and has a zero crossing at the 
center. The described generation of the error signal corresponds to a first har- 
monic detection scheme, which is often used in frequency stabilization schemes. 
When the stabilization is operating, the error signal is used to control the dye 
laser frequency. With this stabilization, the laser frequency stays locked for sev- 
eral hours. For the described stabilization to an effusive beam, the uncertainty in 
the value of the center of the clock transition, compared with that of an unper- 
turbed atom at rest, is determined mainly by the frequency shift caused by the 
residual first-order and second-order Doppler effects. We estimate the corre- 
sponding uncertainty to be in the range of about 1-10-12 for the Ca (Morinaga et 
al., 1989) and the corresponding Mg (Sengstock et al. 1994) experiment. 

A rigorous approach to reduce all contributions of the Doppler effect results 
in the use of laser cooled and trapped atoms. Therefore, the laser frequency was 
stabilized in the third step (Fig. 7) to interference fringes generated by stored 
atoms (Kisters et al., 1994; Sengstock, 1993). Typically, about 106 Ca or Mg 
atoms can be stored in such a trap. For the stabilization to the trapped atoms, we 
can use the radiation passing through AOM1 in the zeroth order (Fig. 7), which 
is already stabilized to the atomic beam. This "prestabilization" to thermal atoms 
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strongly reduces laser frequency drifts and facilitates the selection of the correct 
interference fringe (Fig. 15) of the pulsed interferometer. Differing from the 
scheme shown in Fig. 7, the PTB group used three pulses of standing laser 
waves for the separated field excitation, equivalent to a proposal by Baklanov et 
al. (1976) for spatially separated excitation. This scheme allows one to precisely 
align the co- and counterpropagating laser beams and to omit the acousto-optic 
modulator AOM3 shown in Fig. 7 at the cost of a slightly lower interference 
contrast, as discussed in Section III. The servo control was similar to that used 
with the atomic beam. The pulse separation is chosen so that the period of the 
interference fringes (or its multiples) coincides with the recoil splitting. In the 
Ca setup, this led to line widths of 11.6 kHz and 3.8 kHz, respectively. 

B. OPTICAL FREQUENCY MEASUREMENT 

The use of the stabilized laser as a frequency or wavelength standard requires the 
knowledge of its frequency. It has to be determined by a frequency comparison 
with the primary standard of time and frequency, the Cs atomic clock. To avoid 
the introduction of additional uncertainties in the comparison of the two stan- 
dards, a phase-coherent frequency measurement is required. In this section, we 
describe the first frequency measurement of visible radiation by a phase-coher- 
ent comparison with the Cs atomic clock. This measurement clearly demon- 
strates the accuracy potential of optical frequency standards based on atom inter- 
ferometry. 

The precise measurement of optical frequencies is hampered by the large fre- 
quency ratio of >50 000 between the two standards. To bridge this large gap, the 
frequency measurement is performed in several steps, using a chain of interme- 
diate oscillators. The oscillators' frequencies are phase coherently compared to 
each other by harmonic mixing. Figure 26 shows the basic setup used to mea- 
sure the frequency of the Ca intercombination line (Schnatz et al., 1996). 

Schnatz et al. (1996) have operated the frequency measurement chain in the 
phase-coherent mode three times in 1995 for a total time of several hours. For 
the first measurement (February 12, 1995; Fig. 27), the dye laser was stabilized 
to the high- and to the low-frequency recoil components of the Ca atoms in the 
effusive beam. Frequency shifts due to optical phase errors, Aq~ L, were compen- 
sated for largely by the method of laser beam reversal (Morinaga et al., 1989). 
The influence of the second-order Doppler effect was corrected for. For this pur- 
pose, the velocity distribution of the effusive beam was derived from a Fourier 
analysis of the interference pattern (Morinaga and Helmcke, 1988). In the subse- 
quent measurements (May 17 and December 15) the laser was stabilized simul- 
taneously to the atoms in the effusive beam and in the trap. Figure 27 shows the 
results of all frequency measurements performed so far. The last two sets of 
measurements were obtained on December 15, 1995, with different resolutions 
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FIG. 26. Scheme of the phase-coherent measurement of  an optical frequency standard based on a 
Ca atom interferometer (h = 657 nm). Each auxiliary oscillator is phase locked to the Cs clock. 

(11.6 kHz and 3.8 kHz). The mean of all measurements is UCA = 455, 986, 240, 
494.07 (35) kHz. 

C. FREQUENCY UNCERTAINTY OF THE OPTICAL FREQUENCY STANDARD 

The frequency uncertainty of a frequency standard is determined by the uncer- 
tainty of the line center compared with that of a single, isolated, and undisturbed 
atom at rest and by ~ the uncertainty of the frequency measurement. The various 
estimated contributions are listed for calcium in the second column of Table II 
together with the attainable uncertainties in the third column. The Hannover 
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FIG. 27. Frequency of the Ca optical frequency standard measured three times in 1995, shown 
relative to the mean value %A = 455,986, 240, 494.07 (35) kHz. 

TABLE II 
CONTRIBUTIONS TO THE FREQUENCY UNCERTAINTY OF AN OPTICAL FREQUENCY STANDARD BASED ON 

ATOM INTERFERENCES WITH LASER COOLED AND TRAPPED CA ATOMS (Riehle et al., 1996). 

Effect Achieved Uncertainty Attainable Uncertainty 

First-order Doppler effect <5 Hz < 1 Hz 
Second-order Doppler effect <3 mHz <3 mHz 
Magnetic fields (1.1 Hz/G 2) <0.5 Hz <0.5 Hz 
Stark effect, 24 mHz/(V/cm) 2 45 mHz 45 mHz 
ac Stark effect <5 Hz <0.1 Hz 
Blackbody radiation (300 K) <30 mHz <30 mHz 
Collision of cold atoms < 100 Hz < 1 Hz 
Influence of Second recoil component <7 Hz 7 mHz 
Stabilization scheme <300 Hz <0.4 Hz 
Counting errors < 100 Hz <0.1 Hz 
H maser 15 Hz <0.5 Hz 
Cs clock 7 Hz <0.5 Hz 
Total uncertainty, 6v <0.35 Hz < 1.7 Hz 
Total relative uncertainty, 61,/v < 8-10-13 <4.10-14 

Note: For Mg atoms, similar estimates were obtained (Bettermann et al., 1996). 
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group has undertaken detailed studies on the uncertainty values for magnesium 
atoms that are approximately of the same size as those for the calcium atom. 
Note that the values given in the third column are based on extrapolations of ex- 
perimental results and do not represent principal limits. 

Presently, the dominant contributions to the estimated uncertainty result from 
the stabilization procedure in the trap (300 Hz), the unknown influence of colli- 
sions of cold atoms (100 Hz), and counting errors in the frequency chain (100 
Hz). As discussed before, the stabilization scheme uses a first-harmonic tech- 
nique that is known to produce offsets if a background slope is present. The con- 
tribution to the uncertainty resulting from the overlap of the two recoil compo- 
nents, which is estimated to be 7 Hz at present, can be strongly suppressed by 
using the methods of suppression of one recoil component described in Section 
IV.E. The uncertainty due to a residual first-order Doppler effect (phase errors of 
the pulsed laser fields) for the excitation of the intercombination line resulting 
from gravitational acceleration and the expanding atomic cloud can be reduced 
by using a Fabry-Perot  resonator in which the optical axis is aligned horizon- 
tally. 

We have investigated the frequency reproducibility of the standard by com- 
paring two traps, MOT1 and MOT2. As indicated in Fig. 7, we have just one 
clock laser, which we divide into several beams by means of acousto-optic mod- 
ulators (AOMs). The frequencies of these different laser beams now can be con- 
trolled independently by the AOMs. The laser beam leaving AOM1 in the first 
order is stabilized to the effusive Ca beam. Since the control signal is fed back to 
the laser, the zeroth order is as well stabilized. The laser beam leaving AOM2 
now is switched alternately to traps MOT 1 and MOT 2 and frequency locked to 
the center of the fringe. The difference in the two stabilized laser frequencies is 
just the difference in the servo-controlled frequencies driving AOM2. Our mea- 
surement, of course, requires that the laser frequency "prestabilized" to the effu- 
sive beam is constant during the time of the comparison. In future series of mea- 
surements, we plan to stabilize to both traps simultaneously and detect the 
difference in the frequencies driving the two AOMs. Since switching from one 
trap to the other could be performed within a few minutes, the stability of the 
thermal beam was sufficient to find that the laser frequencies stabilized to the 
two traps coincided within about 100 Hz, corresponding to 2.10-13t,. 

The Bord6 interferometer generated by separated field excitation of an effu- 
sive atomic beam by two pairs of counterpropagating waves and its modification 
using pulsed excitation of stored atoms are well suited for the development of a 
highly accurate optical frequency standard. The described realization of a Ca fre- 
quency standard used dye lasers exclusively for the excitation. The introduction 
of already available laser diodes will greatly reduce the size, the complexity, and 
the power consumption of such standards (Celikov et al., 1994). Combined with 
a small atomic beam, the development of a transportable optical frequency stan- 
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dard is envisaged for the near future. Using a diode laser spectrometer, we have 
already observed Ca interference structures as narrow as 2 kHz. The described 
phase-coherent frequency chain allows one to determine the frequency ratio be- 
tween the Cs clock and the Ca standard over a longer period of time. We expect 
that such measurements eventually will result in more accurate information 
about potential variations of fundamental constants with time (Godone et  al. ,  
1993). 

IX. Conclusions 

Less than a decade after the first atom interferometers were demonstrated, a 
wide variety of different types of atom interferometers has been brought into op- 
eration. We believe that the class of the atom interferometers based on separated 
light fields have proven themselves to be versatile, flexible devices well under- 
stood theoretically and particularly well suited to measurements of fundamental 
effects that improve our understanding of quantum mechanics. Examples pre- 
sented in this chapter include measurements of topological phases, such as the 
Aharonov-Casher  phase, with an order of magnitude reduced uncertainty com- 
pared to earlier neutron interferometric measurements. Measurements of atomic 
constants and properties also profit from the high sensitivity and signal to noise 
ratio of interferometric measurements with the Bord6 interferometer. Among the 
more mature applications is the use of Bord6 interferometry for an optical fre- 
quency standard, with perspectives for limits of relative precision and accuracy 
in the range of 10 -~5. 

The recent progress in the field'of laser cooling and trapping as well as solid- 
state laser technology allows the development of compact atom interferometers 
of the Bord6 type for flexible use. This type of atom interferometer will allow 
for a continuously growing number of applications in basic research, metrology, 
and applied research. 
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I. Introduct ion 

There are two demonstrated approaches to atom interferometry. In analogy to 
optical interferometers, slits or diffraction gratings have been used to divide and 
recombine beams of atoms (Adams, 1994). The gratings and slits can be either 
material structures or periodic light fields. An alternative approach is to generate 
atomic interference of internal states. In this class of interferometers, the spatial 
separation of the atoms is accomplished by the momentum recoil induced by the 
electromagnetic field used to drive the atoms from one internal state to another. 
Thus, the internal and external degrees of freedom are intimately connected. 
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In this chapter, we develop the theory of atom interferometry based on optical 
pulses. The interference of magnetic spin states used in magnetic resonance and 
later generalized to electronically excited states of atoms is a mature field. Con- 
sequently, the wealth of theoretical and experimental techniques that have been 
developed for over a half century can be exploited for atom interferometry. In 
our discussion, we will be concerned particularly with high precision interfer- 
ometers with long measurement times and, consequently, focus on the interfer- 
ence of atoms in the ground state. Momentum transfer based on stimulated Ra- 
man transitions and adiabatic transfer of atoms between ground states will be 
analyzed. We then discuss several applications of these techniques, including 
gravitational acceleration and gradiometry, gyroscopes, and a precision measure- 
ment of h/mcs. 

The fundamental starting point of atom interferometry based on optical 
pulses is that light can be used to detect the motion of atoms. Changes in the ve- 
locity of individual atoms are registered essentially through changes in the fre- 
quency of atomic resonances due to the Doppler effect. For example, consider a 
two-level atom falling due to gravity, which is driven by a vertically propagating 
light wave. To resonantly drive the atomic transition, the frequency of the laser 
must be chirped to compensate for the Doppler shift induced by the acceleration 
of the atom. In the limit where the line width of the transition is narrow com- 
pared with the change in the Doppler shift over the measurement interval and 
narrow compared to the characteristic Rabi frequency of the driving field, the 
chirp rate becomes a sensitive probe for the magnitude of the acceleration: Small 
changes in the acceleration will detune the transition over the course of the inter- 
rogation time and thus inhibit the population transfer from one atomic level to 
the other. Measurement of atomic populations in the second level, in turn, pro- 
vides a mechanism for matching the chirp rate to the acceleration. 

To see the potential sensitivity of this method, consider a visible optical tran- 
sition with an interrogation time of 1 sec. In this case, the gravitationally in- 
duced Doppler shift is ---10 MHz in 1 sec, while the transit time limited line 
width is --~ 1 Hz. Hence, a 10 -7 fractional change in the acceleration is sufficient 
to spoil population transfer between resonantly coupled states. Sensitivity is fur- 
ther enhanced since many atoms are dropped simultaneously, allowing accurate 
determination of the center of the resonance response. For example, if 108 atoms 
are probed simultaneously, a shot noise limited signal allows determination of 
the acceleration to 10-1~ after 1 sec. 

The method just described suffers the drawbacks that it (1) is sensitive to the 
initial atomic velocity and (2) perturbs the atom over the entire interaction time. 
The sensitivity to initial velocity allows only a small fraction of the initial atomic 
ensemble to contribute to the signal, even when laser cooled atoms are used, 
thus limiting the overall signal to noise ratio. For example, if the preceding ex- 
periment were performed using Cs atoms laser cooled to --~ 1 /xK, only about 
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0.01% of the atoms would contribute to the signal. Second, a perturbation-free 
environment is desirable for high-accuracy measurements. 

It is possible to circumvent these problems by having the atoms interact with 
the electromagnetic field for brief amounts of time, interspaced with long peri- 
ods of time where the atoms can be in a perturbation-free environment. This 
method is a natural generalization of the separated oscillatory field method 
(Ramsey, 1950). In this technique, the atom is put into a superposition of two in- 
ternal states with an initial pulse from a driving field. The atom then drifts for a 
long time before being exposed to a second pulse. If the atomic superposition 
state is in-phase with the second pulse, the transition from the initial state to the 
final state is completed. As a consequence of the momentum recoil of the atom 
from the photon field, the original pulse will also cause the two internal states of 
the atom to begin spatially separating. To have atomic interference, the two in- 
ternal states of the atom must be spatially overlapped during the time of the final 
pulse. Thus, the pulse sequences used in our atom interferometers are the mini- 
mal modifications needed for generalized Ramsey spectroscopy when atomic re- 
coil effects become important. 

II. Interferometer Theory 

We develop the theory for the light pulse interferometer by deriving the Rabi 
formula, the exact solution for a two-level atom subjected to a square pulse of 
radiation. We then show how this solution is used to obtain expressions for Ram- 
sey's separated oscillatory field technique. In this treatment, the external degrees 
of freedom of the atom, such as position and momentum, are assumed to be de- 
coupled from the internal degrees of freedom since the small momentum recoil 
of an rf photon does not cause an atom put into a coherent superposition of two 
atomic states to spatially separate. 

The effects of momentum recoil are then introduced by combining the Hilbert 
space associated with the internal degrees of freedom with the space describing 
the external position and momentum variables. To compensate for the wave- 
packet separation due to the recoil effect, one is led naturally to consider either a 
7r/2- 7r- 7r/2 or a 7r/2- 7r/2- 7r/2- rr/2 pulse sequence. 

An additional internal atomic level is introduced to discuss stimulated Raman 
transitions and adiabatic transfer between ground states of a three-level atom. The 
transfer of momentum can be seen either as generated by the stimulated absorption 
and emission of photons from opposing beams through virtual excited states or as 
the interference of the polarization field with the incident driving fields. In the sec- 
ond picture, the field generated by the oscillating polarization interferes with the in- 
cident field in such a way as to alter the momentum distribution of the total field. 
The momentum recoil of the atom is given by Newton's third law. 



366 B. Young, M. Kasevich,  and S. Chu 

A. THE TwO-LEVEL ATOM AND THE RABI FORMULA 
The Hamiltonian for a two-level atom coupled to an electromagnetic field, in the 
absence of spontaneous emission, is 

t-I = htOele)(e [ + h % l g ) ( g [ -  d. E (1) 
where the electromagnetic field is 

E = E 0 cos(tot + th). (2) 

The electric dipole coupling term V = - d .  E = ]e]r. E, where r is defined as 
the vector from the nucleus of the atom to the electron position. The time evolu- 
tion of any quantum state 

(3) [~(t)) = ae(t)le ) + ag(t)[g) 
is given by the Schr6dinger equation 

d 
ih ~lqs(t)) = f/lq,(t)). (4) 

In terms of the time-dependent coefficients, the Schr6dinger equation becomes 
ihhe(t  ) = htOeae(t ) + Vegag(t) 
ihag(t) = V*egae(t ) + htoga g(t) (5) 

where 
Veg = (elVlg) 

= h~-~ (ei(~~ + e-i(c~ 
eg k 2 (6) 

and the Rabi frequency is defined as 

(eld �9 Gig) 
~-~eg -'- h " (7) 

For simplicity, we will assume that the amplitude of the electric field E 0 is con- 
stant when the light is on. 

The rapid oscillation of ae(l) and ag(t) at the atomic frequencies O) e and tOg, re- 
spectively, can be factored out by writing 

a e(t ) = C e(t ) e-it~ t 
a g(t) = Cg(t) e-i% t (8) 

where Ce(t ) and Cg(t) are slowly varying if l)eg << (.De, % .  Substituting Eqs. (8) 
into Eqs. (5) and formally integrating gives, for example, 

( t  (ei(oJt'+4~) q_ e-i(~ot'+4~)) 
C e(t ) -- C e(tO) -- i~eg dt 'Cg(t ' )  eit% t' 

~to 2 
(9) 
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where toeg- toe -  tog" S i n c e  Cg(t') is a slowly varying amplitude, the integral of 
the "off-resonant" term ei(Weg +~~ will be much smaller than the integral of the 
resonant term, ei(%g -~ W e  will adopt the "rotating-wave approximation" 
(RWA) and consider only the resonant term. In terms of the slowly varying coef- 
ficients, the Schr6dinger equation then becomes 

i~.e(t ) __ ~-~eg2 e-i(6t+4') Cg(t) 

~'~e*g ei(&+4~)Ce(t ) ib g(t) = - ~  (10) 

where 6 -  t o -  toeg" 
In the spinor representation, where ]e) and [g) are given by [+) and [ - )  spinor 

states, respectively, the Hamiltonian is described by 

e-i(gt+4~) ) h 0 ~"~eg 
/Q = 2 ~'~* e i(6t+4~) 0 " eg 

(11) 

For nonzero detunings, the weakly t ime-dependent Hamiltonian can be 
turned into a time-independent Hamiltonian by the transformation of vari- 
ables Ce(t ) -- de( t  ) e -i8//2 and Cg(t) = dg(t) e i6//2. Physically, this transformation 
describes the quantum states in terms of a frame rotating about the z axis 
with frequency ~. (Similarly, the transformation from the Schr6dinger pic- 
ture to the interaction picture can be viewed as a transformation to a frame 
rotating at (.Oeg.) This transformation is analogous to the magnetic resonance 
transformation to the rotating frame in which the oscillating magnetic field 

�9 1 inducing a transition on a spln-~ system appears as a static torque (Allen and 
Eberly, 1975). 

The transformation of a ket 1~) to a ket [~>R in a frame rotated through an 
angle - &  about the ~ axis is given by 

D(~, - 8t)lq'> = [q'>R (12) 

where the rotation operator DO,, -6 t )  has the representation [ei/ 0] 
DO,, - &) ~ e i~t/2 - (13) 0 e -i~//2 

where o- z is a Pauli spin matrix (Sakurai, 1994). 
The description of Schr6dinger's equation in the rotating frame is found by 

starting with 

d (Dt[~>R) =/S/(DtI~>R). ih dt (14) 
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Operating on the left with D, we get 

ih dt = 

The term in brackets defines/2/R, which when evaluated becomes 

h i - 6  ~'~ege -i4~] 
eg 

The eigenvalues A+of t t  R are 

(15) 

(16) 

hl~ r A+ = _+ (17) 
- 2 

where the off-resonant Rabi frequency is defined as ~-~r ~ X/[~egl 2 + 62. 
Since the overall phase of the quantum state is arbitrary, the initial phase r is 

assumed to be combined with the phase of l~eg to make l)eg real and positive. 
Then the eigenstates of /JR are given by (see, for example, Cohen-Tannoudji et 
al., 1977) 

0 0 
= cos ~le) R e -i4'/2 + sin ~[g)R ei4#2 

0 0 
[A_) = - sin ~[e) n e -i4'/2 + cos ~]g)R eidp/2 (18) 

where 0 is defined by the relations 

sin0 = l-lex/~ r, COS 0 = -- 6/1~ r, 0 --< 0 --< ~. (19) 

The eigenenergies A+ of the new eigenstates ]A+) and ]A_) include the energy 
level shifts AE+ = (A+) -Y- h]6]/2 due to the presence of the light (the ac Stark 
shift). As a simple exa~nple, consider the far-detuning limit (]6[ >> fleg) for posi- 
tive detuning of the laser field (6 > 0). Then 0 = ~r, so the new eigenfunctions 
(neglecting phase factors) will be IA+)-=-Ig)R and IA_)= le)R. Thus, expanding 
Eq. (17) for A+ in powers of l)eg/6, we see that the ground state Ig)R will be 
shifted up in energy by AE+ = hl)~g/46, while ]e) R will be shifted down in en- 
ergy an equal amount. If 6 < 0, however, then 0--~ 0 so ]A_)= Ig)R- Conse- 
quently, the ground state will be shifted down in energy. This light shift was the 
basis for the first optical trap (Chu et al., 1985). 

The time evolution of an arbitrary ket has a particularly simple expression in 
the basis of the new eigenstates IA+). Suppose that, at time t 0, the atom is in the 
state 

IXIf(tO) ) -- Ce(to)le ) + Cg(to)[g ) (20) 
and a pulse of length 7 is applied. Since the eigenstates are defined in the rotat- 
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ing frame, we first transform the initial state into the rotating frame as in Eq. 
(12). Then ]W(t0)) R is projected onto the basis of eigenstates. The two projections 
evolve with time at their corresponding eigenfrequencies. At the end of the 
pulse, the state of the atom in the rotating frame is 

IW(t 0 + r)) R = (e-i~+*/hlx+)(A+l + e-i~-*/hiA_)(A_l ) O(z, -6t0)lxP'(t0)). (21) 

Using the inverse D-1 = D t  of the rotation operator from Eq. (13) to express the 
final state vector in the interaction pictures gives 

Iq'(t o + ~')) = O * ( z , -  6(t o + ~'))l~(t o + ~'))R- (22) 

Combining Eqs. (21) and (22) with D from Eq. (13), A+ from Eq. (17), and ]A+) R 
from Eqs. (18), 

Ce(tO + "r) = e-i6zl2[Ce(to)[COS(-~) -- i COS0 s i n ( - ~ ) ]  

+ cg( to)e- i (S to+d>)[-- is inOsin(-~)]}  (23a) 

ei '2{Ce ,0 ei t0+ [ isin0sin( )] 
+c(,o)[cost- )+icosOs,nt )j. 

Equations (23a,b) give the new probability amplitudes after a time ~" of the two 
stable atomic states for constant amplitude electromagnetic coupling. These 
equations in the interaction picture are equivalent to Ramsey's Eqs. (V.26) in the 
SchrSdinger picture (Ramsey, 1956). 

In the absence of the applied field, a r = I 1, o o s 0 -  and sin0 = 0, so 
Eqs. (23a,b) reduce to 

Ce(t 0 + "1") = Ce(to)e-iS~/2[cos(]6[7"[2) + i(~i/l~l)sin(18[~'/2)] = Ce(t O) 
Cg(t o + r ) =  cg(to)ei**12[cos(i61r/2) -- i(6/i61)sin(16ir/2)] = Cg(to). (24) 

Since the original eigenenergies of states Ig) and le) have already been factored 
out in the interaction picture, the free-precession frequencies do not appear in 
Eqs. (24). 

As another simple example of Eqs. (23a,b), consider applying on-resonant 
light (3 = 0) to an atom initially in Ig) at time t o = 0. Since sin0 = 1, cos0 = 0, 
Ce(O) = 0, and cg(O) = 1, Eq. (23a) simplifies to 

s i n { - ~ / e  -i4, (25) 
# % 

Ce(~') = - - i  
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and the probability of finding the atom in [e) is 

1 
ICe(Z)[ 2 = ~ [1 -- COSK~egZ]. (26)  

Thus, the atom "Rabi flops" between [g) and le) with frequency ~-~eg' in keeping 
with the definition of the Rabi frequency given in Eq. (7). If the driving field is 
not tuned to resonance, the population oscillation frequency increases to O r , but 
the atom cannot be transferred to le) with unity probability. 

B. RAMSEY'S SEPARATED OSCILLATORY FIELD METHOD 

We are now in a position to discuss an important early example of atom interfer- 
ometry introduced by Ramsey (1950). Consider an atom initially in Ig), so that 
Ce(O) = 0 and Cg(O) = 1. After applying a "rr/2" excitation pulse of length ~" de- 
fined by ~'~r T = 7r/2, Eqs. (23a,b) give the probability amplitudes 

Ce(T ) = e -i8r/2 e - i4 ' ( - - i  sin0)/V~ 

Cg('r) = ei8~/2(1 + i cos0)/V2. (27) 

Next, the coupling radiation is turned off for a time T, during which the interac- 
tion picture probability amplitudes are unchanged according to Eqs. (24). Then, 
at time ~" + T, another 7r/2 pulse is applied, so a final application of Eqs. (23a,b) 
gives 

Ce(27 + T) = e-iSr/2[Ce(7")(1 - i cos0) + Cg(~') e-i t~+r)+~l(-i  sin0)}/V2. (28) 

Inserting Eqs. (27) for c e and cg gives 

Ce(27" + T ) = - i  s in0[cos(--~-)+ cos0 sin(--~-)] e -i6T/2 e -i(8r+r (29) 

The probability of finding the atom in le) is 

[Ce(27" + T)[ 2 = sin 0 cos ~ + cos0 sin . (30) 

If the laser is tuned near resonance with << ae , then cos0-~ 0, and sin0 = 1, 
and the population in the excited state will oscillate as 

1 
ICe(2,l- -k- T)] 2 = ~ [1 + cos(b'T)]. (31) 

We see that the Ramsey technique has a narrow "resonance line" of width 
6FWHM = 7r/T, but has an ambiguity modulo 217". Methods of removing this ambi- 
guity in interferometer measurements will be discussed in Section VI B. 
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C. THE QUANTUM TREATMENT OF ATOM INTERFEROMETRY 

The formalism just presented was originally developed for rf and microwave ex- 
citation. In those cases, the lateral dimensions of an atomic beam are much 
smaller than the wavelength of the electromagnetic waves. Consequently, all 
atoms passing through two traveling microwave fields will interact with nearly 
the same relative phase. Furthermore, the position of the atoms can be consid- 
ered to be a classical variable. 

If one wants to extend the Ramsey technique to the optical domain, both 
the spatial extent of the atomic source and the spread of transverse momenta 
present problems. With submicron separation of the optical phase fronts, 
typical atomic beams have a sufficiently broad distribution of transverse mo- 
menta that atoms interact with different relative phases in separated field re- 
gions. In addition, an atomic source with a very low transverse temperature 
could have atoms with de Broglie wavelengths that exceed the wavelength 
of the light. In this case, the semi-classical approximation breaks down and 
the "position of the atom" relative to a particular crest of the wave has no 
meaning. 

One approach to analyzing atom interferometers is to consider explicitly the 
propagation of spatial wave packets. In this approach, the interferometer phase 
shifts are calculated using a set of phase shift rules for the atom-light  interac- 
tion points and for the free-space propagation time. Free propagators and S ma- 
trices (including nonzero transit time and second-order Doppler shifts for both 
standing and traveling wave interactions) have been described by Ishikawa et al. 
(1994). For pulsed-light interferometers with cold atoms, it is generally simpler 
to calculate interferometer phase shifts and signal amplitudes using rules such as 
those tabulated by Friedberg and Hartmann (1993). These results have been gen- 
eralized to account for ac Stark shifts in two-photon transitions by Weiss et al. 
(1994). 

Rather than develop a wave-packet description of the atomic trajectories, 
we begin with a quantum treatment where the atomic wave packets are taken 
to be the sum of momentum plane-wave states. The momentum transfer due 
to the interaction of the electromagnetic field (e.g., single-photon absorption, 
stimulated Raman transition, or adiabatic transfer) is calculated for a given 
plane-wave component, and the integral over all of the momentum states in 
the atomic ensemble is performed last. In this basis, each of the atomic states 
is described in terms of a tensor product of the Hilbert space describing the 
internal energy state of the atom and the Hilbert space describing the external 
degrees of freedom: 

le,p e} - le) | IPe} 

]g,Pg> = ]g) | IPg)" (32) 
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The Hamiltonian becomes 

[1 = ~2m + h~ + h % l g > < g l  - d .  E (33) 

where ~ operates on the momentum portion of the basis states. The interaction 
term is modified to include the spatial dependence of the electric field 

E = E 0 cos(k �9 x - ~ot + ~b). (34) 

The new term of the electric field operator, e ik'x can be rewritten with the clo- 
sure relation 

1. e ---ik'x : f d3p e---ik" Xlp)(p[ 

fd3plp • hk)(p[. (35) 

The spatial dependence of the electric field in the momentum basis yields the 
well-known result: The absorption or emission of a photon of wave vector k 
changes the atom's total momentum by an amount hk. This one-to-one corre- 
spondence between the internal and external degrees of freedom implies that the 
basis states simplify to Ig,P) and ]e,p + hk). 

The time evolution of the ket can be written in terms of slowly varying coeffi- 
cients Ce,p+hk(t ) and Cg,p(t) 

Ce,p+hk(t)le,p+hk)e-i( ~ + ]P + hkl2/t ( lpl2 ~t [~(t)) = 2mhJ + Cg,p(t)lg,p)e-i.~ (36) 

The detuning now has additional terms 

= 09 -- (09eg + p ' k  + hlkl2/ 
m 2m ] (37) 

corresponding to the Doppler shift p -  k/m and the photon-recoil shift hlkl2/2m. 
When a photon of momentum hk puts an atom into a coherent superposition 

of two energy states, the recoil will cause the parts of the atom in each of its in- 
ternal states Ig) and le) to separate with a velocity v r = hk/m. If these two wave 
packets are to interfere at some later time, they must be made to spatially over- 
lap. If optical photons are used in an atomic fountain, the recoil distance can ap- 
proach a centimeter, much larger than the spatial coherence of the atomic source. 
In these cases, interference will not be observed unless the parts of the atom sep- 
arated during the first 7r/2 pulse are made to recombine at some later time. Thus, 
the application of Eqs. (23a,b) as modified by Eqs. (36) and (37) must also con- 
sider the spatial overlap of wave packets. Since the momentum basis states Ip) 
are spatially delocalized, the preceding formalism will not account for nonover- 
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lapping wave packets unless an explicit sum over a superposition of momentum 
states is made. 

The simplest optical pulse atom interferometer is the 7r/2-7r-7r/2 pulse se- 
quence demonstrated by Kasevich and Chu (1991, 1992). The effect of the 
a tom- l igh t  interactions in this pulse sequence are determined from conservation 
of momentum. If the momentum of an atom is such that the atom is in resonance 
with the driving field, the first 7r/2 pulse acts as a beam splitter, introducing a ve- 
locity difference v r = hk/m between the two states. After a time T, the 7r pulse 
acts as a mirror and redirects the wave packets so that they overlap at the time 2T 
of the second 7r/2 pulse. Even if the inhomogenous velocity distribution is suffi- 
ciently broad that the spectral width of the 7r pulse (~w--= 1/•-) is less than the 
Doppler-broadened line width, atoms partially in resonance with the laser will 
receive the same momentum transfer and register the same net interferometer 
phase shift for this pulse sequence. Thus, the center of mass of the entire wave 
packet addressed by this pulse sequence is affected as illustrated in Fig. 1 a. 

(a) =.,...~.= 

S'~ i ="- 
I0) SS S ~,~ SSS 
, , "  ,,; rt/2 Jg).,,,'"" , . , , , "  

v v 

t " . , " "  / ....e / 

i g>_,,,,, I., e> ' ' ' ' "  ,, .el ""...... 
"~  =v  

FIG. 1. Recoil diagrams for two atom interferometer geometries. The vertical axis is the position 
z of an atom relative to a reference frame freely falling along the initial trajectory of the atom. Solid 
and dashed lines indicate paths for which the atom is in Ig) and le), respectively. The vertices are 
points of interaction with light pulses, with kef f indicated by the direction of the arrows. (a) The 
rr /2-rr-7r /2 geometry used for the g measurement. (b) The Ramsey-Bord6 sequence used for the 
photon-recoil measurement. Note that the orientation of keff is reversed for the second pair of 7r/2 
pulses. 
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A pulse sequence consisting of one pair of 7r/2 pulses followed by a pair of 
oppositely directed 7r/2 pulses is another pulse scheme used to redirect the tra- 
jectories of the atoms (Baklanov et al., 1976; Berquist et al., 1977). This pulse 
sequence was originally used to extend the Ramsey separated oscillatory field 
technique to the optical domain, and the interpretation of the experiment in 
terms of an atom interferometer with separated wave packets followed eight 
years later (Bord6 et al., 1984). We have used this pulse sequence to measure the 
recoil velocity of an atom, which then yields a value for h/m (Weiss et al., 1993, 
1994). The atomic trajectories for this type of interferometer are shown in Fig. 
lb. The analysis of this pulse sequence is very similar to the analysis for the 
7r/2-7r-zr/2 sequence and will not be presented here. 

We use Eqs. (23a,b) to analyze a 7r/2-zr-7r/2 pulse sequence. For simplicity we 
take 161 << ~-~r' SO that cos0 = 0 and sin0--~ 1. (For a more complete treatment, in- 
cluding small deviations from ideal pulse areas and detunings that cause ac Stark 
shifts, see Weiss et al. (1994).) We assume that ~"~r is the same for all three pulses. 
Consequently, if 7" is the duration of the 7r pulse, then the rr/2 pulses have length 
7"/2. First we simplify Eqs. (23a,b) for the special case of a rr pulse of length 7": 

Ce(t o + 7")= --icg(t0)e - i r r /2  e-i(&o+4~) 
Cg(t o + 7") = --iCe(t o) e i8z/2 eiCSto +~) (38) 

and a rr/2 pulse of length 7"/2: 

Ce(t 0 + 7"/2) = e-iSr/4[Ce(tO ) -- ice(t0) e - i ( & 0 q - q ' ) ] / V ~  
Cg(t 0 q- 7"/2) = e i8r/4 [--iCe(tO) e i(&0q-4') q- Cg(tO)]/~/2. (39) 

Consider an atom initially in Ig,P)- A crucial component of light-pulse atom 
interferometers is the phase of the atom relative to the driving fields. Suppose 
that the laser detuning 6 is constant for the entire pulse sequence and the phase 
4, for each pulse may vary. Then, the successive applications of Eqs. (38) and 
(39) for a 7r/2 pulse at t l, a 7r pulse at t 2 = T + 7"/2 + t 1 and a rr/2 pulse at 
t 3 = 2T + 37"/2 + t~ yields 

where 

i e_irz /2  eirz/2 e_iA4~ ) Ce,p+hk(t3 q- 7"/2)= - ~  e - i [ r t a q - ~ t 2 ) ] ( 1  - -  (40) 

A~b = 4Kt,) - 2q~(t 2) + q~(t3). (41) 

At each time ti, ~(ti) is the phase of the light, relative to the atom, referenced to 
the phase at some fixed time point. The probability of finding the atom in the ex- 
cited state is 

1 
ICe.p+hk(2T + 27")12 -- ~ [1 -- cos(A~b- 67"/2)]. (42) 
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Note that A~b is not a function of the momentum, so that atoms in different mo- 
mentum states will contribute coherently to the interference signal. Conse- 
quently, the phase shift of a coherent sum over a large number of momentum 
states (i.e., a wave packet) will be given by this equation. For the pulse times 
given here, if the atoms see a constant detuning and the phase of the driving light 
field is not changed, then A~b = 6"r/2, so by Eq. (42), the atom will be found in 
the ground state after the last pulse. The atomic population will be modulated if 
the relative phase of the pulses relative to the atoms is changed. This effect is the 
basis for inertial force measurements and the photon-recoil measurement de- 
scribed in the following sections. 

III. Multiphoton Transitions 

Implementation of the preceding sequences requires an atomic level scheme 
where the excited state is stable against radiative decay for the duration of the 
pulse sequence. With laser cooled atomic sources, this time can approach 1 s. 
For Cs, the ground state hyperfine clock transition I F = 3, m F = O) ~ I F = 4 ,  
m F = 0) fulfills this requirement. In addition, the transition is magnetic field 
insensitive, so that the atom is easily isolated from the perturbing effects of 
stray magnetic field gradients (which would give rise to spurious noninertial 
forces on the atomic wave packet). The Doppler sensitivity of the single-pho- 
ton rf transition connecting these levels is only A w  o = (Y/C)O)eg , which 
amounts to a Doppler shift of about 0.3 Hz for an atom moving at a speed of 
v = 1 cm/s. 

Significantly enhanced sensitivity can be obtained by driving two-photon 
stimulated Raman transitions between these levels. Consider the three-level 
atom in Fig. 2, consisting of two ground state hyperfine levels Ig) and [e) with rf 
splitting o9eg coupled by optical transitions to an intermediate state li). Assume 
the atom is initially prepared in state Ig). Two counterpropagating beams of fre- 
quency wj and w 2 induce stimulated Raman transitions to level le) if 
o91- o92- Ao9o = %g, where Ao9 o = (k 1 - k 2 ) -  v. When the beams counter- 
propagate, Ao9 o = 2k 1 �9 v, so the transition has a Doppler sensitivity twice that 
of a single-photon optical transition. For Cs, the two-photon Raman transition 
has a Doppler sensitivity of 23.5 kHz/(cm/s) when the Raman beams are nearly 
resonant with the 852 nm optical transition m nearly five orders of magnitude 
larger than that of a single-photon microwave transition. 

Ultrastable lasers are not needed to successfully implement this scheme; it is 
necessary only that the difference frequency o91 - o92 be phase coherent with the 
rf transition over the interrogation time. When the frequency o92 is generated 
from o9~ by an electro-optic modulator or by a phase-lock technique (i.e., 
~ = o9~ + OgLO, where OgLO is the frequency of the rf local oscillator used to drive 
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FIc. 2. Three-level atom. Two light fields at frequencies % and o92 couple states Ig) and le) via 
the intermediate state i). The one- and two-photon detunings are A and 6, respectively. Additional ac 
Stark shifts are caused by the interaction of o9~ and o92 with the "wrong" levels, as indicated by the 
dashed arrows. 

the modulator or the phase-lock frequency reference), any frequency jitter in the 
laser frequency 0)1 will cancel in the frequency difference 0)~ - 0)2" 

The high Doppler sensitivity of stimulated Raman transitions is related to 
their large velocity recoils. This is simply a consequence of momentum conser- 
vation. An atom initially in state ]g) and with momentum p absorbs of photon of 
momentum hk~ and subsequently emits a photon of momentum hk 2 in the oppo- 
site direction, leaving the atom in state le) with momentum p + h(k~ - k2). For 
Cs, the stimulated Raman transition recoil momentum translates into a velocity 
kick of about 0.7 cm/s. 

A. STIMULATED RAMAN TRANSITIONS 

We present a brief summary of the theory underlying the two-photon, velocity- 
sensitive Raman transition. The essential results are (1) in certain regimes the 
three-level system can be viewed as a two-level system coupled with an effective 
Rabi frequency given by the two-photon transition rate, (2) the internal state of 
the atom is correlated with its momentum, and (3) the two-photon Raman excita- 
tion can be modeled by a traveling wave excitation of frequency (.O 1 - -  0 )  2 ~ 0)eg 
and effective propagation v e c t o r  kef f ~- k 1 - k 2 ~ 2k 1 for counterpropagating 
beams. 

The key assumption in the treatment that follows is that the detuning of the 
frequencies 0)1 and 0)2 from the optical resonance is large enough that sponta- 
neous emission from the intermediate level li) can be neglected. When the detun- 
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ing from the intermediate level is large, the intermediate level can be adiabati- 
cally eliminated from the interaction picture Schrrdinger equations and the dy- 
namics of the three-level system reduces to those of a two-level system. 

The Hamiltonian for the three-level system is 
~2 

= ~2m + h%le ) ( e l  + h00ili)(il + h w g l g ) ( g [ -  d" E. (43) 

In this case, the driving electric field contains two frequency components: 

E = E 1 cos(k 1 �9 x - 001t + ~bl) + E 2 cos(k 2 �9 x - 002 t + 4)2). (44) 

The frequencies 001 = 00 i -  00g and 00 2 ~ 00 i -  We' while the difference frequency 
001 - 002 ~ 00eg" For counterpropagating beams k~--= - k  2. We have explicitly ne- 
glected spontaneous emission from the off-resonant excitation of the optical 
transition. 

Following the procedure given in Section II.A while using the interaction co- 
efficients from Eq. (36) along with an additional coefficient for the correspond- 
ing intermediate state Ii,P + hk~), one obtains a set of coupled first-order differ- 
ential equations for co.,, c. , ,~ , and c ,,~_ _ In the limit where the detunings ~,v !,v--hk I e,v--hken" 
001-  (00 i -  % )  and 002-  ( 0 0 i -  We) are much larger than the Rabi frequencies, 
the coefficients c(t) vary slowly compared to the explicitly time-dependent 
terms. Therefore, we can adiabatically eliminate all coefficients for the interme- 
diate states. We are then left with coupled equations for a two-level system in an 
external driving field. In the spinor representation for [e,p + hkef f) and Ig,P), the 
Hamiltonian describing this time evolution is 

! [ f~Ac + / /:/ (45) 
\ "  -'~(~-~eff/2 ) ei6,2t+ ~eff ) ~"~AC ] 

h e (~'~eff/2) e-i(~,2 t 4'eft) 

g 

where we define 

K~ A c =  [K~el 2 K~ A c =  I I,K~, 2 
e 4A ' g 4A 

hlkeffl2 ) 
~12 ~ ( 0 0 1 -  00")2 ) --  00eg -~ P" keffm j- 2m J 

1~-= (ild'E21e) f~ = (ild'Ellg) 
e h ' g h 

(46) 

(47) 

(48) 

~'~ e~'g ei(4 ' , -  4,2) (49) ~"~eff ~ e-i4'eff ~ 2 A  

with the real angle ~bef f chosen to m a k e  ~'~eff a positive real number. Here 
A ~-- 001 - ( 0 0 i -  % )  is the detuning from the optical resonance, as illustrated in 
Fig. 2. As expected, momentum recoil shows up explicitly in the one-to-one cor- 
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relation between the atom's internal state and its momentum for the two states 
le,p + hk~ef) and Ig,P) coupled by this Hamiltonian, and the dynamics are gov- 
erned by the difference frequency to 1 - to 2. The effective detuning 612 from the 
Raman resonance contains the expected Doppler shift and recoil shift terms. The 
main diagonal elements of the Hamiltonian are the ac Stark shifts of levels le) 
and Ig). The relative shift of the two levels caused by ac Stark shifts is 

6 ac - (1"1 ac - 12Ac). (50) - e g - 

For simplicity we have neglected contributions to the ac Stark shift from the 
couplings shown in Fig. 2 by the dashed lines. These additional terms can be 
found in Weiss et al. (1994). 

This Hamiltonian is similar in form to Eq. (11) for a two-level atom except for 
the ac Stark shift terms on the main diagonal. Given one additional step, it is possi- 
ble to transform it into a time-independent Hamiltonian of the exact form of Hg in 
Eq. (16) so that the solution of Eqs. (23a,b) for a two-level atom can be directly ap- 
plied. This extra step is to first make a uniform shift of the energy scale by 
- h ( ~  Ac + ~AC)/2. This antisymmetrizes the main diagonal elements to +__hSAC/2, 
which can be combined with the -T-hS12/2 terms that arise in the transformation to 
the rotating frame. After the solutions are obtained from Eqs. (23a,b), the energies 
are shifted back by multiplying both coefficients by a phase factor e -i(ar +a~ '~)~/2. 
The solution for this equivalent two-level system including ac Stark shifts is 

Ce,p+hkaf(to + 'r) = e-i( l~2c+l~ c)'r/2 e-iS'2r/2[Ce,p+hk.ff(to) COS - -  

-i coso sin( '/l [ - -  + Cgp(to)e-'(8,2'o+~o.) - i  sinO sin - -  (51) 

+ T)= e-i(D:c+~:c)~/2ei~'2~/2Ic[ e'p+hkeff(t0> ei(8'2t~ ~beff)[t_--isinO s'nk-2]/" [ a ; ~ \ ]  Cg,p(t0 
\ / . . . i  

+ Cg,p(to)[COS(~-~-----7)+i c o s  O sin(~~-r-----r)]} 

where the quantities describing the time evolution in the rotating frame, 

(52) 

= _ , ~ A c ) 2  VC e , f + (' 12 (53) 

sin O = ~"~eft/~-~, COS O = --(812 -- 6AC)/~, 0 ----- O ----- zr (54) 

are defined in terms of the detuning corrected for the ac Stark shift, while the 
terms e---i812 r/2 and e--+i812t0, which arise from the transformation to the rotating 
frame, use the unshifted detuning 812. The other substitutions in going from sin- 
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gle-photon to two-photon pulsed excitations are more straightforward; for exam- 
ple, k ~ kef f for the propagation vector and th ~ ~bef f for the laser phase. 

B. MANY-PULSE SEQUENCES 

The sensitivity of atom interferometers can be enhanced by using multiple-pulse 
sequences to create large momentum differences between interferometer paths. 
For example, in the case of Sagnac-effect gyroscopes,  sensitivity scales linearly 
with the area enclosed by the two interferometer arms, so that larger momen tum 
differences produce larger areas (all else the same). In the case of  a gravimeter, 
sensitivity increases linearly with wave packet separation (for fixed T), so again 
larger momen tum recoil implies greater sensitivity. For this interferometer, the 
geometric area is 0, but this linear enhancement  of sensitivity with area can be 
seen if the area is measured on a recoil diagram, such as Fig. 1. In this sense, 
such interferometers can be referred to as large area interferometers. Sensitivity 
for a recoil-shift measurement  also can be significantly enhanced (Bord6, 1994). 

Figure 3(a) illustrates a sequence of pulses that can replace a single 7r pulse but 

(a) 

(b) 

~~ S SS 

FIG. 3. Techniques for increasing momentum transfer. The sensitivities of atom interferometers 
constructed with 17" and ~r/2 pulses can be enhanced by replacing each pulse with a sequence of 
pulses with greater momentum transfer. (a) An effective 7r pulse or "mirror." (b) An effective 7r/2 
pulse or "beam splitter." It is assumed that the photon recoil frequency shift is greater than the Rabi 
frequency, so that the laser can be tuned to deflect only one of the two paths. 
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provide larger momentum transfer. Consider an atom initially in [g) with momen- 
tum p. A Raman feld with effective wave vector keff is used to resonantly stimulate 
the atom to le) with a 7r pulse. Next, a second 7r pulse with reversed propagation 
vector -ke f  f is used to stimulate the atom back to its ground state. The momentum 
of the atom is now p + 2hkee r Additional pulses, with alternating propagation di- 
rections, may be used in a similar manner to increase the momentum transfer. A se- 
quence of N such 7r pulses transfers momentum Nhkef ~ to the atom. Note that when 
the Rabi frequency is less than the recoil shift, the frequency of the driving light 
field must be switched to maintain the resonance condition. Momentum transfer by 
this approach has been demonstrated with over 300 photon momenta by Weitz et al. 
(1993). Replacing the first 7r pulse in Fig. 3(a) with a 7r/2 pulse, as in Fig. 3(b), cre- 
ates a beam splitter with increased momentum transfer. (We assume here that the 
Rabi frequency is chosen smaller than the recoil frequency shift so that the driving 
field is resonant with just one of the two wave packets.) 

The sequences of pulses in Fig. 3 can be applied to improve the momentum 
transfer of the 7r/2 and 7r pulses in the three- and four-pulse interferometer se- 
quences described previously. For example, a 7r/2 pulse followed immediately by 
( N -  1) 7r pulses, with alternating directions for all N pulses, generates a beam 
splitter of momentum transfer Nhkef r Similarly, the beam combining pulse se- 
quence consists of ( N -  1) 7r pulses and then a final 7r/2 pulse, while the mirror 
pulse sequence is just a sequence of 2N 7r pulses. Using the methods described ear- 
lier, the sensitivity for interferometers configured as gravimeters and gyroscopes us- 
ing the enhanced momentum transfer pulse sequences described can be evaluated. 
One can show that the interferometer fringe shift for a gravimetry configuration is 
A t e ) - - - ( N k e f f  ) �9 gT 2. The gyroscope fringe shift is A~b= 2(Nk ff). ( ~  • v)T 2, 
where ~ is the angular velocity of the rotating frame and v is the atom velocity. In 
both cases the sensitivity of the interferometer has improved by a factor of N. 

A variant of this scheme could have important applications to atom interfer- 
ometer based gyroscopes, where it is crucial to transfer momentum quickly. In 
this variant, an rf 7r/2 pulse is used to prepare a three-level atom (two ground 
state hyperfine levels Ig) and le) and an optical level Ii)) in a superposition of its 
ground state hyperfine levels. A fast 7r pulse resonant with the Ig)---' li) transition 
places the atom in the [i) state, transferring momentum hk to the atom. The fast 
pulse is retroreflected so that the returning pulse stimulates the atom back down 
to Ig), transferring another hk of momentum to the atom. The time envelope of 
the fast pulse is chosen to be much less than the natural lifetime of the excited 
state, and the distance to the retroreflecting mirror is large enough that the atom 
does not see the incident and retroreflected pulse simultaneously. The advantage 
of this scheme over stimulated Raman transitions is that large amounts of mo- 
mentum may be exchanged in relatively short times by applying multiple 7r 
pulses. An important feature of this scheme is that, as with stimulated Raman 
transitions, an ultrastable laser is not required. In this case, the phase correlation 
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between the incident and reflected pulses ensures that the final state of the atom 
does not depend on the arbitrary initial phase of the light pulse but only on the 
distance of the atom from the mirror and the propagation vector of the light. An 
interferometer pulse sequence, for example, could consist of an rf zr/2 pulse fol- 
lowed immediately by 10 optical ~r pulses, a time delay T, an rf ~r pulse, 20 opti- 
cal zr pulses, another rf ~r pulse, another delay T, 10 optical ~ pulses, and finally 
an rf zr/2 pulse. Stimulated momentum transfer using fast pulses has been 
demonstrated by Voitsekhovich et al. (1994) and Bloch et al. (1996). 

C. ADIABATIC TRANSFER 

The first atom interferometers were constructed using stimulated Raman transi- 
tions, which have the many advantages discussed in Section III.A. Disadvan- 
tages of this technique in precision measurements include its sensitivity to spa- 
tial inhomogeneity of the laser beams and laser intensity fluctuations and the 
systematic errors that can arise from ac Stark shifts. As mentioned in Section 
III.B, several atom interferometer experiments have sensitivities that can be 
greatly enhanced by applying multiple light pulses to deliver a large number of 
photon recoils. Unfortunately, adding more pulses also increases the sensitivity 
of the interferometer to intensity variations. An alternative technique for chang- 
ing the states of atoms and molecules is adiabatic passage, which was first used 
in magnetic spin resonance (Slichter, 1990) and later applied in the optical 
regime. It has advantages over stimulated Raman transitions that include less in- 
tensity sensitivity and smaller ac Stark shifts, so it has good prospects for im- 
proving certain atom interferometry experiments. 

First, consider the sensitivity of stimulated Raman transitions to laser inten- 
sity inhomogeneities and fluctuations. For square light pulses of duration ~', the 
condition for a zr pulse is l~effZ = zr, where l~ef f is the effective Rabi frequency. 
For a laser beam with a Gaussian intensity profile, l~ef f = l~eff(X), SO that the zr 
pulse condition cannot be simultaneously met for atoms at all locations in the 
beam. This limits the transfer efficiency for a cloud of atoms of nonzero extent. 
Increasing the laser beam waist reduces this problem but also decreases the Rabi 
frequency (for fixed laser power), which reduces the atom signal size for typical 
experimental parameters. In the first version of the photon recoil experiment, 
spatial variation of the beam intensity limited the zr pulse transfer efficiency to 
85%. Fluctuations of the beam intensities also cause deviations from the desired 
17" pulse condition. This effect is of the second order in the fractional intensity 
noise, but if several pulses are applied, it can still become a significant noise 
source unless the laser intensities are actively controlled. The most pernicious 
effects of intensity fluctuations, however, involve ac Stark shifts. 

With stimulated Raman transitions, ac Stark shifts can make sizable contribu- 
tions to the atom interferometer phase. Typically, the ac Stark shift of the two- 
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photon transition OAC is of the same size as the effective Rabi frequency l)ef f. 
Consequently, for a single 7r pulse, the ac Stark shift can cause a phase shift that 
is a sizable fraction of a complete cycle. The average Stark shift can generally be 
brought to zero by properly adjusting the ratio of beam intensities, but the phase 
shift remains linearly sensitive to intensity variations and inhomogeneities 
around the set values. For example, a major source of systematic error in the first 
recoil measurement was the ac Stark shift caused by standing waves. The aver- 
age ac Stark shift had been brought to zero in this experiment, but the presence 
of standing waves caused a strong modulation of the ac Stark shift along the di- 
rection of the beam, which caused a systematic shift of the interferometer phase. 

An alternative approach that reduces both the sensitivity to beam intensities 
and the magnitude of the ac Stark shift is stimulated Raman adiabatic passage, 
as described by Oreg et al. (1984), Gaubatz et al. (1988), Kuklinski et al. 
(1989), Gaubatz et al. (1990), and Marte et al. (1991). In adiabatic passage, 
time-delayed, on-resonant light fields efficiently transfer atoms between two 
states. The atoms adiabatically follow an eigenstate of the atom-field interaction 
Hamiltonian that is not coupled to the excited state, yielding two important ben- 
efits. First, despite the use of on-resonant light, spontaneous emission can be al- 
most completely avoided; and second, the atoms experience very low ac Stark 
shifts (Weitz et al., 1994a). Population transfer with adiabatic passage was first 
demonstrated in the optical regime by passing a molecular beam through two 
displaced Gaussian beams (Gaubatz et al., 1988). The possibility of using coun- 
terpropagating beams to obtain momentum transfer for use in atom interferome- 
try was quickly pointed out by Marte et al. (1991) and Bord6 (1992). Momen- 
tum transfer via adiabatic passage has been demonstrated by Pillet et al. (1993), 
Lawall and Prentiss (1994), and Goldner et al. (1994). More recently, we have 
demonstrated complete atom interferometer using adiabatic passage to split, 
redirect, and recombine the atomic wave packets (Weitz et al., 1994b). 

1. Theory 

Consider the three-level atom of Fig. 2 interacting with counterpropagating laser 
beams of frequencies ~o 1 and ~o 2. For adiabatic passage, the single-photon detun- 
ing is generally set near 0, so the relaxation rate F of the intermediate state ]i) 
cannot be neglected. Its effect can be included by adding to the Hamiltonian of 
Eq. (43) a non-Hermitian term, as in Oreg et al. (1984). The total Hamiltonian is 
then 

= 2---m + h~ + h(~ - iF/2)[i)(i[ + h%lg)(gl- d-  E (55) 

where the electric field is given by Eq. (44). We will neglect here the off-reso- 
nant couplings of le) and Ii) by ~ol, and ]g) and Ii) by w 2, as shown by the dashed 
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lines in Fig. 2. (These couplings are important, however, as they can limit the 
transfer efficiency and be the dominant source of ac Stark shifts. The numerical 
simulations by Weitz et al. (1994a) include these couplings.) We again use the 
interaction picture as in Section III.A. For adiabatic passage, however, we cannot 
adiabatically eliminate the population of the excited state, so the interaction state 
vector has the form 

Ce, p + hkeff(t) 1 
I111) = Ci,p+hk(t) l (56) 

%,,(t) / 
where k ff is the effective wave vector for the two-photon transition. The interac- 
tion Hamiltonian is 

h / 0 ~-~e ei(Azt- 4~2) 0 t 
/Q int = -2 ~-~e e-i(Az/-~b2) - i F  ~"~ge -i(Alt-qb,) 

0 ~"~* e i(A~/- 4~1) 0 g 

where the single-photon detunings of to~ and to 2 are 

A 1 --  091 --  (O) i -  % )  -+" 
_ I ~ Ipl z Ip + hk, 

2mh 

(57) 

A2-- o)2- ((.o i -  % ) +  
_ [2 IP + hkCffl 2 [P + hkl (58) 2mh 

the Rabi frequencies ~'-~e and f~g are given by Eqs. (48), and the two-photon de- 
tuning 6~ 2 = A~-  A 2 agrees with the definition given in Eq. (47). In the zero- 
detuning case, A~ = A 2 = 0, the Hamiltonian of Eq. (57) simplifies to 

0 ~~*e -i4~2 0 e �9 h 
/~/int = ~ l~e ei~ - i F  f~ge i6, . (59) 

0 ~-~*e -i4', 0 g 

Then, for any f~e and f~g, there exists an eigenvector of/7/int with eigenvalue 0, 
given by 

(sin 00e-i~ / (60) 

Iq'o>- \ cos 0 / 

where the real angles 0 and ~b are defined by the relation 

tan0 e -i4' = - ~'~----~g e i(~bl - ~b2) (61) 
~'~e 

This eigenvector is of particular interest because the amplitudes for excitation 
from the two lower levels to the excited state exactly cancel. Consequently, de- 
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spite the presence of on-resonance light, an atom in 1~o) will not experience 
spontaneous emission. This state is consequently referred to as the noncoupled, 
or dark, state. Since the single-photon detuning is 0, the ac Stark shift is much 
smaller than for stimulated Raman transitions. In fact, for a three-level system, 
the ac Stark shift is 0 even if the transfer is not completely adiabatic (Weitz et 
al., 1994a). The presence of additional energy levels causes the ac Stark shift to 
deviate from 0, but if the detuning of these states is sufficient, the ac Stark shift 
can still contribute much less than one cycle of phase shift to an interferometer 
during the time of the light pulse. Numerical calculations of transfer efficiencies 
and ac Stark shifts for realistic experimental parameters have been performed by 
integrating the time-dependent Schr6dinger equation by Weitz et al. (1994a). 
The simulations have demonstrated superior performance of adiabatic transfer 
over stimulated Raman transitions for both transfer efficiency and ac Stark 
shifts. 

If ~~e = ~e (t) and  ~-~g-- ~g(t), but the variation with time is sufficiently slow 
that the system can evolve adiabatically, then the steady-state solution of Eq. 
(60) would still apply (Kuklinski et al., 1989). To characterize the requirements 
for adiabaticity, we define an effective Rabi frequency 

1-1 ~ = V'I I2 + f~2. (62)  
g 

If an atom is in the dark state defined by the light fields at one time and then the 
dark-state parameters 0 and ~ are varied gradually over a time r >> 1/1-10 for 
~0 >> F, or ~" >> F / ~  for ~0 >> F, the atom will follow along in the dark state 
defined by the light, without undergoing excitation into ]i). Note that this adia- 
baticity criterion does not preclude turning on a single beam instantaneously or 
suddenly turning both beams on or off together, since none of these operations 
forces a rapid change of 0 or ~. 

The population transfer achieved with adiabatic passage is qualitatively very 
different from the transfer achieved with stimulated Raman transitions. For stim- 
ulated Raman transitions, the atomic state vector evolves coherently regardless 
of the initial state of the system when the light pulse is applied. Consequently, 
light pulses that take an atom from [g> to {e) will also take an atom from {e> to 
Ig>. The effects of adiabatic transfer pulses, however, depend strongly on the ini- 
tial state of the system. For example, if an atom starts out in {g>, then ~-~e must  be 
turned on alone at the beginning of the adiabatic pulse sequence to avoid sponta- 
neous emission. If ~'~e alone were applied to an atom initially in {e>, then the 
atom would scatter photons, eventually resulting in an incoherent transfer into 
{g) via optical pumping. More generally, suppose the state of the atom at time 
t = 0- is 1~0-)> and that the laser beams are turned on at time t = 0 with phases 
and intensities defining a dark state 1~o(0+)>. The projection {~o(0+))(~o 
(0+)1~0-)> of the initial atomic state onto the dark state gives the fraction of the 
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initial state that will not scatter photons and will adiabatically follow the dark 
state as it slowly changes to [Wo(t)). Assuming that the beam intensities are var- 
ied sufficiently slowly that the transfer is completely adiabatic, the coherently 
transferred part of the wave function immediately after the end of an adiabatic 
transfer pulse of duration ~" is 

I~'r+)> = I~o(,r-)><~o(0+)lg(0-)>. (63) 

2. Atom Interferometry Using Adiabatic Transfer 

Figure 4 shows the pulse sequences that, along with their complements formed 
by interchanging ~-~e and l~g, are the basis for constructing atom interferometers 
using adiabatic passage. The dark state at any time during the sequences is deter- 
mined by substituting the laser phases and Rabi frequencies into Eqs. (60) and 
(61). The net effect of each of these sequences can be determined from Eq. (63), 
using the dark states 1~o(0+)) and [~o(z-)) corresponding to the beam phases 
and intensities at the beginning and end of the pulse sequence, respectively. In 
Fig. 4a, the initial and final dark states are [~o(0+))= [g) and [~D(Z-))= [e), so 
an atom initially in [g) is completely transferred to [e). Reversing the roles of 
fl e and Ilg provides for the opposite transfer. In Fig. 4(b), the initial dark state is 
still [g), but the final dark state is ([g) + [e))/V~, so this sequence transfers an 
atom in [g) into an equal coherent superposition of [g) and [e). A pulse of this 
type splits a single path into two paths for an atom interferometer. Figure 4(c) is 
the time reversal of Fig. 4(b), so it projects the initial state of the atom onto the 
equal coherent superposition with phase defined by [~o(0+)), and then transfers 
that fraction of the wave function into [g). This sequence combines or redirects 
paths in an atom interferometer. Similarly, Fig. 4(d) projects the initial state onto 
the superposition state defined by [~D(0+)), but then leaves the atom still in that 

(a) (b) (c) (d) 
~ .Q(t) 

' -  " ' 5 :  - - - - 

_ t ' ,  _ b . a s  ',_ 
FIG. 4. Building blocks for constructing atom interferometers using adiabatic transfer. Changing 

the field amplitudes ~ and ~ with time (a) transfers an atom from g) to [e), (b) transfers an atom g e 

from Ig) to ([g) + le))/~/2, (c) transfers an atom from (g)  + e))/V2 to Ig), and (d) projects an atom 
onto (Ig) + e))/X/2, and then leaves it off in that state. 
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superposition state. This pulse sequence is used to split interferometer paths 
when the atom must start and remain in a superposition state. 

The pulse sequences of Fig. 4 b - d  require sudden simultaneous transitions of 
both beam intensities. The first demonstrations of momentum transfer via adia- 
batic passage used beams of atoms or molecules passing through displaced 
Gaussian beams at frequencies to~ and to 2. This caused the atoms to experience 
time-dependent fields similar to those in Fig. 4a, except that, in the latter case, 
the sequence is truncated at both ends since long turn-on and turn-off times for a 
single beam are not required to maintain adiabaticity. Unfortunately, with spa- 
tially displaced beams, it is not easy to create sudden uniform intensity transi- 
tions. Our experiments with adiabatic transfer use laser cooled atoms launched 
in a vertical trajectory, centered in a pair of vertical laser beams. By indepen- 
dently controlling beam intensities using acousto-optic modulators, we can di- 
rectly replicate all of the pulse sequences of Fig. 4. In fact, the atoms remain 
within the ~ 2 cm beams for up to about 1 sec, so that many pulses can be ap- 
plied with this single pair of beams. Hence, we can create interferometers with 
practically arbitrary complexity. 

Figure 5 shows a standard Ramsey-Bord6 interferometer and a straightfor- 
ward implementation using the adiabatic transfer pulses from Fig. 4. The first 
pulse splits the initial state into a coherent superposition of Ig) and le). After the 
atom is allowed to freely evolve for a time T, a second pulse is applied that pro- 
jects the atomic wave function onto the dark superposition state I,I,o(q)), where 
t 2 is the starting time of the second pulse, as shown in Fig. 5b. Then l)g is turned 
off so that the atom is left in Ig). (Turning off ~~e instead also leads to a valid in- 
terferometer, which is the upper interferometer of Fig. lb for the photon recoil 
measurement.) The fraction of the wave packet that is out of phase with ]Wo) 
will undergo spontaneous emission and thus lose coherence. It may contribute to 
the background signal of the interferometer but will cause no systematic shift of 
the fringes. The third pulse splits each of the two paths in state ]g) into superpo- 
sition states. After waiting again for a time T, two of the paths overlap spatially. 
A final pulse applied at this time projects the wave function onto the superposi- 
tion state I,t,o(q)), again evaluated at the start of the pulse. This final pulse is tai- 
lored to force the atoms to exit in whichever state is preferable for detection, in 
this case Ig>. If the phase of the atomic coherence at the overlap point matches 
the phase of the dark state, then the atom signal will be at a maximum. Scanning 
312 changes the relative phase of the atomic coherence and the field, allowing 
observation of fringes in the atom populations. We have demonstrated atom in- 
terferometers with this configuration using adiabatic passage (Weitz et al., 
1994a). 

Creating an analog of the three pulse 7r/2-7r-7r/2 interferometer using adia- 
batic transfer presents special difficulty due to the lack of a substitute for the 7r 
pulse. The center pulse in the interferometer is required to redirect both paths, 
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FIG. 5. Ramsey-Bord6 interferometer implemented by adiabatic passage. (a) Recoil diagram: At 

the second and fourth interactions, the multiple arrows indicate atoms that spontaneously emit be- 
cause they are in the coupled state, so that their resulting momenta vary. For a three-level system, all 
of these atoms are optically pumped into Ig), so they contribute to the background signal of the inter- 
ferometer. The diagram omits the spreading of the wave packets that occurs for nonzero 7. Neglect- 
ing ac Stark shifts, the interferometer phase shift depends only on T not on z. (b) The adiabatic pas- 
sage pulse sequence required for implementing the interferometer shown in (a). 

while leaving the atoms in a coherent superposition of ]g) and le). The only adia- 
batic transfer sequence that can accomplish this is Fig. 4d. The phase of the co- 
herence at the time of the 7r pulse depends on the motional Doppler  shift kef f �9 v. 
For a collection of atoms with a velocity spread such that keff- vT >> 2 r  r, where 
T is the time between pulses, the phase of the coherence varies greatly over the 
collection of  atoms. Consequently, the phase of the dark state cannot be set to si- 
multaneously deflect the paths of all of  the atoms. Half  of the initial atoms are 
lost to spontaneous emission in the projection operation. For a three-pulse inter- 
ferometer implemented using stimulated Raman transitions, a 7r pulse can com- 
pletely redirect either state, so a corresponding loss does not occur. 

Similar problems limit the use of adiabatic transfer for creating large-area inter- 
ferometers such as that in Fig. 6a, in which multiple stimulated Raman 7r pulses 
are used to further separate the arms of an interferometer. (In contrast to Fig. 3, 
here we assume that the Rabi frequency far exceeds the recoil splitting, so that 
both paths are simultaneously deflected.) For this example, the addition of N rr 
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FIG. 6. "Large area" interferometers with enhanced sensitivity. (a) Analog of the 7r/2- rr- 7r/2 in- 
terferometer with about three times the normal area. (b) Modified Ramsey-Bord6 interferometer 
geometry used for the photon recoil measurement. Adding N = 2 mirror pulses between the pairs of 
beam splitter pulses increases the recoil splitting between the two interferometers of Fig. 1 b by a fac- 
tor of (N + 1) = 3. 

pulses before or after each of the original pulses increases the interferometer area 
by a factor of roughly 2N + 1. Unfortunately, when implementing these 7r pulses 
using adiabatic transfer, the pulses must be of the type of Fig. 4d. Consequently, 
there will be a 50% loss of signal for each added pulse, leading to a rapid exponen- 
tial signal loss while the sensitivity grows only linearly. Another difficulty of adia- 
batic transfer for this class of interferometers arises because as the paths are sepa- 
rated further apart, the Doppler shift difference between them grows. 
Consequently, either the effective width of the transition must be much larger than 
the recoil splitting, which is difficult to achieve for the large-diameter beams typi- 
cally used in atom interferometry, or else the two states must be addressed inde- 
pendently. It is feasible with stimulated Raman transitions to separately address 
the two states because A >> F; if 612 is sufficiently large, then the other path will 
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experience an ac Stark shift but will not scatter photons. With adiabatic transfer, 
however, typical motion-induced detunings 612 that detune an atom from the dark 
state still leave A~ sufficiently close to 0 that the atom will scatter photons. Conse- 
quently, to achieve large N with adiabatic transfer for this type of interferometer, a 
third metastable state must be added to preserve one of the branches of the inter- 
ferometer from scattering photons while the other path is deflected. 

The atom interferometer geometry in Fig. 6b, on the other hand, is easily im- 
plemented using adiabatic transfer, since for either the upper or lower interfer- 
ometer, the atoms are in the same internal state when the 7r pulses are applied. 
Consequently, these 7r pulses can be replaced by pulse sequences as in Fig. 4a 
and its complement. This is the approach presently used for the photon recoil 
measurement, which provides a factor of N + 1 enhancement of the sensitivity. 

Another possible route for achieving large-area interferometers using adia- 
batic transfer is to apply a single adiabatic transfer pulse that involves the inter- 
change of multiple photons, e.g., using o -+ - o-- beams to transfer an atom be- 
tween the m F - -  - F  to m F = + F  ground state sublevels of an atom (Goldner et 
al., 1994; Featonby et al., 1996). For a valid dark state, the frequency width of 
the dark state must be larger than the total recoil splitting between the two states, 
which can require considerable laser powers for typical beam diameters. Also, 
these approaches generally involve the use of magnetic-field sensitive transi- 
tions. For most precision measurement experiments, magnetic-field inhomo- 
geneities cannot be controlled to the level that such transitions can be used. 

A final consideration regarding the use of adiabatic transfer for atom interfer- 
ometry is the level of background atoms that appears in the interferometer signal. 
In the present case of a collection of three-level systems, it would be difficult to 
distinguish the atoms transferred by adiabatic transfer from those transferred by 
optical pumping. On average, the momentum transfer would be smaller for opti- 
cal pumping, but this would be hard to distinguish without subrecoil initial cool- 
ing of the atoms. Incorporating an adiabatic transfer pulse into an atom interfer- 
ometer would reveal a loss of fringe contrast corresponding to the fraction of 
optically pumped atoms. In more complex systems, careful selection of beam po- 
larizations allow optical pumping predominantly into states other than the states 
used for the adiabatic transfer. This allows the coherently and incoherently trans- 
ferred atoms to be distinguished in the detection stage, so that the optical pump- 
ing does not cause a severe degradation of fringe contrast (Weitz et al., 1994a). 

IV. Inertial Force Measurements 

Inertial forces manifest themselves by changing the relative phase of the de 
Broglie matter waves with respect to the phase of the driving light field, which is 
anchored to the local reference frame. The physical manifestation of this phase 
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shift is a change in the number of atoms in, for example, the ]e) state, after the 
interferometer pulse sequence, as described previously. Experimentally, this shift 
is observable by measuring the number of atoms in the le) state. 

One distinguishing feature of atom interferometer inertial sensors over con- 
ventional sensors is that a free atom serves as the inertial reference. An advan- 
tage of using an atom as the inertial reference is that it is easily isolated from 
perturbing forces. Additionally, the sensor provides absolute accuracy since dis- 
tances are measured essentially in terms of the wavelength of a laser light source 
whose frequency is stabilized to an atomic resonance. 

A. GRAVIMETRY 

Consider an atom undergoing an acceleration g due to gravity, which is excited 
by a ~r/2-1r-lr/2 pulse sequence using vertically oriented laser beams. In the 
frame falling with the atom, the frequency of the driving laser changes linearly 
with time at the rate of -keff" gt. We can incorporate the effects of this fre- 
quency chirp on the phase shift A q5 of Eq. (41) through a minor modification of 
the results derived in Section II.C. 

The essential modification is to note that the phase shift given in Eq. (41) de= 
pends on the effective phase of the driving field at the times t l, 12, and t 3, when 
the light beams are flashed on. Generalizing to the case of a detuning that chirps 
in time, the effective phase at time t n is 

f tn d~n = 6( t' ) dt' (64) 
t o 

and the overall phase shift is 

a4, = 4 ' , -  24'2 + 4'3- (65) 

Calculating the phase shifts ~n from Eq. (64) for the gravitationally induced 
chirp and then substituting the ~b n into Eq. (65) gives 

Aq~ = -kef f �9 gT 2. (66) 

In practice, the effective Rabi frequency, l~ef f < 100 kHz, whereas the change 
in the Doppler shift Ik~n- gTI > 1 MHz. Hence, for beams with fixed Raman de- 
tuning 8 in the lab frame, an atom in resonance with the first 7r/2 pulse will be 
far out of resonance with the remaining pulses. By actively changing the fre- 
quency difference Aw(t) = % ( t ) -  to2(t), we can compensate for the atom's ac- 
celeration. For example, if the first 7r/2 pulse resonantly drives the atom with 
Ato = tOo, then it will be resonantly driven for all three pulses if AtO-- tOo + tOm 
for the 7r pulse and AtO = tOo + 2tOm for the final 7r/2 pulse, with tOm --~ keff" gT. 

Suppose that each of the three frequencies is derived from an independent 
synthesizer at constant frequency tOn = tOo + ntOm' as in the first gravimetry ex- 
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periment (Kasevich and Chu, 1992). If th~ the phase of the nth synthesizer at 
the location of the atom at time t = 0, then the phase at a later time t at the new 
position of the atom is 

q~n( t )  = ton t - -  kef f �9 g t  2 + t~ ~ (67) 

Evaluating Eq. (67) for each of the three synthesizers at the time t n o f  the nth Ra- 
man pulse gives 

t~l(/l ) = toot I _ keff . g ~  + $0 
th2(t2) = (to o + tom)t2- k ff " g~ + t# ~ 
t~3(t 3) = (to o + 2tom)t 3 -- kef f " g ~  + t~ ~ (68) 

In this case, the interferometer phase is 

A ~  = 2to, , ,T-  k ff. gT 2 + A~b ~ (69) 

The term Ark ~ = ~b ~ - 24 o + ~b ~ represents the initial phase relationship be- 
tween the three pulse frequencies. 

Rather than using three independent frequencies, the resonance could have 
been maintained equally well by a phase-continuous sweep of the frequency dif- 
ference Ato, so that 

Ato(t) = to o + f l ( t -  to). (70) 

Evaluating Eq. (69) in the falling frame for this situation gives 

Ath = ( / 3 -  kef f �9 g)T 2. (71) 

When fl = keff" g, there is no relative phase shift: The Doppler shift is exactly 
cancelled by the frequency sweep of the Raman driving field. Note that this ex- 
pression is insensitive to the time origin t o of the sweep. The accuracy of the 
phase-continuous sweep is critical if the full resolution for the interferometer is 
to be realized. The introduction of direct digital frequency synthesis techniques 
allows phase-continuous sweeps while remaining locked to a stable reference os- 
cillator. 

In the gravimetry experiment, a cloud of laser cooled and trapped atoms was 
launched vertically on a ballistic trajectory. The atomic wave packets were then 
separated and recombined using a sequence of three light pulses configured to 
excite stimulated Raman transitions between atomic ground state hyperfine lev- 
els. A first 7r/2 pulse was followed T--- 100 msec later by a 7r pulse, which in 
turn was followed a time T later by a final zr/2 pulse. The velocity recoil of the 
two-photon transition was ~ 6 cm/sec, so the wave packets were separated 
by---6 mm before being redirected toward one another by the 7r pulse. The ex- 
treme sensitivity to acceleration followed from the relatively long drift times al- 
lowed by laser cooled atoms and from the large recoil kick associated with stim- 
ulated Raman transitions. The rate of Doppler shift for the Raman transitions is 
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33 MHz/sec, corresponding to a phase shift of--- 105 cycles. Signal to noise was 
sufficient to split the fringe to 3 X 10 -3,  giving an overall sensitivity of 
3 •  10 -8. 

In our first work, we achieved this sensitivity of 3 parts in 108 after integrat- 
ing for 2000 sec (Kasevich and Chu, 1992). More recently, we have been able to 
improve the sensitivity using a cesium fountain to 4 X 10-8g/VH-~z in a noisy lab- 
oratory environment. This work is comparable to the precision obtained by mea- 
suring g with a falling comer cube under the best seismic conditions (Peter et 
al., 1993). We expect to improve this sensitivity by another order of magnitude 
shortly and achieve an absolute accuracy of 10-10 (Peters et al., 1996). The data 
in Fig. 7 shows typical fringes, where each point represents one launch and the 
time between launches is 1.33 sec. Two important improvements include the ad- 
dition of a low-frequency active vibration isolation system and accurate control 
of the Raman beam frequency difference. The vibration isolation system is 
briefly discussed in Section VI.C. 

Sensitive accelerometers can be used in a variety of precision experiments 
that search for weak forces. Examples of such experiments include searches for 
net charge on atoms, "fifth" force experiments, and tests of general relativity. 
Geophysical applications include earthquake prediction and studies of global 
warming. 
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FIG. 7. Recent atom interferometer fringes in the g measurement. The interferometer phase A~b 
from Eq. (66) is varied by scanning the phase 4~2 of the middle pulse of a ~ / 2 - 7 r - 7 r / 2  sequence with 
150 msec between pulses. The fraction of detected atoms in the Cs F = 4 ground state hyperfine 
level is plotted along the vertical axis. The solid curved is a least squares fit to a sinusoid. The phase 
of these fringes, taken over a period of about 1 min, can be determined to +0.016 rad, which corre- 
sponds to a sensitivity of 4.9 • 10-9g. 
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B. GRAVITY GRADIOMETRY 

Local mapping of the earth's gravitational field has important applications in 
covert navigation, geodesy, and oil and mineral exploration. Each of these appli- 
cations requires the gravity-sensing instrument to be mounted on a moving plat- 
form, which is subject to accelerations originating from the platform's motion. 
These accelerations render high-resolution measurements of the acceleration due 
to gravity difficult, as platform accelerations are in principle indistinguishable 
from gravitationally induced accelerations. A well-established means of circum- 
venting this problem is to measure gradients in the gravitational field by compar- 
ing acceleration measurements at two locations separated by a fixed distance. In 
this case, the acceleration of the mounting platform, to which both acceleration 
measurements are referenced, cancels as a common mode. 

The use of two independent atom-interferometer accelerometers, as described 
earlier, is well suited to this type of measurement. In this geometry, the light 
pulses propagate along a line of sight passing through two spatially separated 
ensembles of laser cooled atoms. Following a three-pulse interferometer se- 
quence, the number of atoms making the transition at both regions is recorded, 
and from these signals, the gravitationally induced phase shifts at the first and 
second positions, A~b~ and A~b 2, are extracted. The change of the projection of g 
along the direction of kef f may then be derived from the difference"At hi -- A~b 2 
and the distance between the sources. 

Figure 8 shows a schematic illustration of the instrument currently under con- 
struction at Stanford. Our design sensitivity of--~ 10 -9 sec-2/V~z competes fa- 
vorably with existing instruments. By employing current optoelectronic tech- 
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FIG. 8. Schematic illustration of the apparatus for gravity gradiometry. 
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nologies, our goal is to produce a device robust enough to operate outside of the 
laboratory environment. 

C. GYROSCOPES 

Wemer et al. (1979) observed a neutron interferometer fringe shift due to the 
earth's rotation. The principle of operation was essentially that of a Sagnac effect 
interferometer for light: A rotating reference frame induced a path length differ- 
ence between two arms of a Mach-Zehnder type interferometer. In this case, sen- 
sitivity to rotation scales linearly with the area enclosed by the interfering paths, 
linearly with the total energy of the interfering particle, and with the square root 
of the particle flux for a shot noise limited signal. (This scaling can be checked 
for the light pulse configuration by substituting into Eq. (66) the Coriolis acceler- 
ation a c = 2 ~  • v, where 1~ is the angular velocity of the rotating frame and v is 
the atom's velocity.) Assuming that the geometric areas of the two interferometers 
are equal and the source fluxes are equivalent, the potential sensitivity of a neu- 
tron-based interferometer would exceed that of a photon-based interferometer by 
a factor of roughly m n C 2 / ( h o g )  "~ 10 9, where m n is the neutron mass, c is the speed 
of light, and ~o is the photon frequency. This factor of 10 9 quickly erodes, how- 
ever, when the large discrepancies in count rate (--~ 10~5/s for photons vs.--- 
1/s with neutrons) and area (---10 6 c m  2 for a fiber-optic based gyroscope vs.--~ 10 
cm 2 for the neutron interferometer) are taken into account. In practice, the sensi- 
tivity of a photon-based system exceeds that of the neutron system. 

In contrast with the neutron interferometer, an atom-based system, in princi- 
ple, competes favorably with the light-based system. The increased mass of the 
atom over the neutron coupled with ready availability of high-flux sources more 
than compensates for the relatively small enclosed area. For example, for a Cs 
atomic source having a flux of--- 10 ~~ atoms/s in a_g_eometry of area ---10 cm 2, 
the shot noise limited sensitivity is 10 -13 (rad/s)/VHz, more than five orders of 
magnitude greater than that of a 106 cm 2 fiber-optic gyroscope with 10 ~5 pho- 
tons/s at 633 nm. Figure 9 illustrates a Cs atomic interferometer currently oper- 
ating in our laboratory. We have recently demonstrated a sensitivity of 2 • 108 
(rad/s)/~zz, which is comparable to the best optical gyroscopes (Gustavson et 
al., 1996). Simultaneous measurements on counterpropagating atomic beams are 
used to suppress systematic phase shifts arising from the acceleration due to 
gravity and stray magnetic fields. 

Perhaps the most important purely scientific motivation for pursuing this 
work is the possibility of achieving levels of sensitivity high enough to observe 
the geodetic and Lense-Thirring (~-10 -14 rad/s) general relativistic effects. 
From a more pragmatic perspective, this work could produce a gyroscope with 
greater sensitivity than other current instruments. In this regard it may find appli- 
cations in geophysical studies. 
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V. Photon-RecOil  M e a s u r e m e n t  

The objective of the photon-recoil measurement is an experimental value for the 
fine structure constant, a. At present, the most accurate determination of a, with 
an uncertainty of 5 x 10 -9, is obtained from the electron anomalous magnetic 
moment a e = ( g  - -  2)/2. Assuming that quantum electrodynamics (QED) is valid, 
equating the QED calculation for a e (Kinoshita, 1995) to the experimental value 
(Van Dyck et al., 1987) determines a value for a. If the most accurate determina- 
tion of a did not assume the validity of QED, then the a e theory and experiment 
comparison would further test QED. Other determinations of a use the quantum 
Hall effect (Cage et al., 1989), neutron diffraction (Kruger et al., 1995), and the 
ac Josephson effect (Williams et al., 1989), with relative uncertainties of 
2.3 x 10 -8, 3.8 x 10 -8, and 3.7 X 10 -8, respectively. These measurements have 
statistically significant differences, so a new approach for measuring a to the 
10 -8 level or better is of interest. 

A. BASIC PRINCIPLE 

The photon-recoil measurement is a determination of the frequency difference 
between the resonances of the two distinct atom interferometers in Fig. lb. This 
frequency shift arises because the Cs atoms contributing to the two interferome- 
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ters have momenta differing by a known integer number of photon momenta. 
Doppler-sensitive stimulated Raman transitions both impart this momentum dif- 
ference to the atoms and measure the resulting velocity shift. The two-photon 
resonances for the interferometers are separated in frequency by a known integer 
multiple of 

2h~eff 
Afrec = (72) 

mcs c2 

where h is the Planck constant, mcs is the Cs atomic mass, and Vee f = clk~ff[/(2~r) 
is the frequency of a single photon that would deliver the same momentum recoil 
as the stimulated Raman transition. 

We determine a from the photon-recoil measurement using the relation 

2R_____~ h 
a 2 = " ' .  (73) 

c m e 

Since the Rydberg constant Ro~ is known to 2 • 10 -11 (Nez et al., 1992) and the 
speed of light c and 2 are defined, the uncertainty in the ratio of h to the electron 
mass m e limits the calculation of a from this relation. We can expand Eq. (73) to 
obtain 

o2 cR tmcs/(2h ff  
=-~eff me \ m e ]  mcsC2] " (74) 

The proton-electron mass ratio has been measured to 2 • 10 .9 (Farnham et al., 
1995). The Cs-proton mass ratio is presently known only to 3 • 10 -8 (Stolzen- 
berg et al., 1990) but may be improved to --~ 10 .9 (Pritchard, 1996). We can fix 
the photon frequency to about 10 -9 by locking the laser relative to a Cs transi- 
tion. The absolute frequency of that transition is known only to 4 • 10 -8 (Weber 
and Sansonetti, 1987), but it can feasibly be measured to better than 10 -9. Con- 
sequently, an accurate measurement of Afrec could determine a with an uncer- 
tainty at the 10 -9 level. 

Suppose that, for the atom interferometers in Fig. l b, the two-photon differ- 
ence frequencies of the first two pulses are held fixed on-resonance, while the 
frequencies of the last two pulses are scanned. Then two resonances are ob- 
served in the atomic state populations. The two resonances, which are separated 
by Afrec, have interference fringes with periodicity 1/T, where T is the time be- 
tween pulses. To realize high experimental sensitivity, we want to simultane- 
ously maximize T and Afrec. The key starting point for achieving a large T is to 
use a fountain of laser cooled atoms. Since Doppler-sensitive transitions are sen- 
sitive to mirror vibrations, we also need very good vibration isolation to allow 
resolution of fringes as narrow as our interaction time allows. An obvious way to 
increase Afr~ is to use a lower mass atom, such as H, He, or Li. The disadvan- 
tage of that solution is that it is harder to cool lighter atoms to as low velocities 
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as Cs, so the gain in mfrec comes  at the expense of a decrease in T. The alterna- 
tive approach that we have taken is to add mirror pulses between the two beam 
splitter pairs as shown in Fig. 6b. Adding N pulses causes the frequency separa- 
tion of the two interferometers to increase to (N + 1)Afrec, while leaving the 
fringe spacing unchanged. 

B. EXPERIMENT 

In the first version of this experiment (Weiss et al., 1993, 1994), we obtained a 
resolution of 10 -7 from 2 hr of data taken with typical parameters of T = 18 
msec and N = 15. Systematic errors limited the measurement at the 10 -6 level. 
Since then, we have made several changes to both reduce several suspected sys- 
tematics and boost the resolution of the measurement. These changes include 
improved vibration isolation, reduced magnetic field shifts, longer interaction 
times, more efficient atomic state transfers, smaller wave front errors, and re- 
duced ac Stark shifts. 

Previously, horizontal laser beams delivered the interferometer pulses. In that 
geometry, gravity did not shift the transitions. Additionally, adequate vibration 
isolation to below 1 Hz was achieved passively with a horizontal air rail. Unfor- 
tunately, however, the short time the atoms remained near the center of the 2 cm 
laser beam limited T to about 25 msec. Also, generating a uniform bias field over 
the trajectory was difficult with large diameter horizontal beams. With vertical 
Raman beams, however, the atoms remain in the beam and the bias field is suffi- 
ciently uniform to guarantee quadratic geeman shift errors below 10 -9 for T as 
long as 200 msec. The vertical geometry also allows partial cancellation of wave 
front phase errors, since the atoms stay at nearly the same radial positions in the 
beams for all of the interferometer pulses. 

In the first version of the experiment, the atomic states were changed using 
stimulated Raman transitions with the two lasers detuned about 2 GHz from the 
6P3/2 excited state. In the present version of the experiment, the interferometers 
are implemented using adiabatic passage, for the reasons given in Section III.C. 
We have achieved 95% transfer efficiency using adiabatic transfer, as compared 
to the 85% transfer efficiency we previously obtained with far-detuned Raman 
transitions. With this higher efficiency, we can add three times as many transfer 
pulses for the same loss of atoms. 

Atom interferometer fringes for T = 100 msec and N = 0 are shown in Fig. 10. 
Frequencies are measured relative to the resonance frequencies calculated for the 
two interferometers using the accepted value ~acc" The difference of the phases of 
these two sets of fringes is a measure of the discrepancy between ar215 and aac c. Af- 
ter 100 rain of data, taken mostly with T = 20 or 40 msec and N = 20, that differ- 
ence is cSa/a = +0.6 + 1 x 10 -v. At present, this uncertainty includes only statisti- 
cal fluctuations. We have not yet tested for systematic errors to the 10 -v level. 
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Varying T and N is a powerful test for systematics such as ac Stark shifts, 
quadratic Zeeman shifts, line pulling, wave front phase errors, and Doppler-free 
transitions. We have ruled out large dependencies on these parameters, but fur- 
ther testing is needed. We can also check for systematics with many other exper- 
imental parameters such as beam detunings, beam intensities, and bias magnetic 
field. 

These preliminary results indicate a factor of 10 better agreement with the ac- 
cepted value for a than in the first version of the experiment. By reducing sev- 
eral technical sources of noise and simultaneously using long T and large N, we 
hope to greatly improve the resolution. With T = 150 msec and N = 50, the in- 
terference fringes are 3.3-Hz wide and the recoil splitting is 1.5 MHz. If we 
could measure the fringe centers to 10 -3 with a few hours of data, we would 
have a reasonable chance to make a measurement of h/mcs with an uncertainty 
of 3 • 10 -9, giving a 1.5 • 10 -9 measurement of c~. 

V I .  E x p e r i m e n t a l  T e c h n i q u e s  

A. EXPERIMENTAL METHODS FOR FREQUENCY GENERATION 

Several methods have been used to produce the microwave frequency offset be- 
tween frequencies to 1 and to2: (1) frequency modulation with an electro-optic 
modulator, (2) direct modulation of a diode laser junction current, and (3) an op- 
tical phase-locked loop. 

In the first scheme, the output from a single-frequency laser passes through 
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an electro-optic modulator, which is driven near the atomic hyperfine frequency 
%g. Although straightforward to implement, this method suffers from the com- 
plication that several frequencies copropagate. To select one, and only one, of 
the many sidebands to drive the Raman transitions, a second beam was over- 
lapped with the modulated beam. This second beam was frequency shifted using 
a low-frequency acousto-optic modulator so that the difference frequency be- 
tween it and a frst-order sideband in the electro-optically modulated beam 
would be resonant with the Raman transition. All other possible frequency pairs 
were off-resonant. An alternative is to use the electro-optically modulated beam 
and its retroreflection to directly drive the Raman transitions. In this case, sev- 
eral pairs of frequencies match the Raman resonance condition. The resulting in- 
terference among these pairs gives rise to a spatial modulation in the strength of 
the effective Rabi frequency. If a laser diode is used for the Raman frequencies, 
the frequency-modulated beams can be generated by direct-current modulation 
of the diode laser current (method 2). Modulation efficiency is enhanced with 
external cavity stabilized diodes by choosing the free spectral range of the exter- 
nal cavity to match the modulation frequency. Finally, optical phase-locking 
techniques can be used to lock the frequency of the heterodyne beat note taken 
between two independent sources to a stable rf generator. 

B. PHASE-SHIFT READOUT 

In this section, we briefly address the problem of extracting a phase-shift value 
from the atom interferometer experiments just described. The phase-shift mod- 
ulo 27r can be determined by varying either the Raman beam detuning or phase 
and measuring the oscillation of populations between levels ]g) and le). For ex- 
ample, for the 77"/2-7r-7r/2 geometry of the gravimetry measurement, an overall 
shift of the detuning or phase for all of the pulses does not shift the phase of the 
fringes. If, however, the detuning or phase of just one or two of the pulses is 
shifted, then the phase of the fringes shift, allowing a determination of the initial 
(i.e., equal phase and detuning) phase-shift modulo 2rr. In the gravimetry experi- 
ment, the phase ~b ~ with one of the 7r/2 pulses is varied by shifting the 
phase of the reference rf oscillator for that pulse. In the photon-recoil measure- 
ment, the frequencies of the last two 7r/2 pulses for each of the two interferome- 
ters are shifted to obtain fringes. In both experiments, the spacing of the fringes 
is set by the interrogation time T. To remove the 2NTr (N integer) overall uncer- 
tainty in the phase, we perform a series of measurements for different T. For ex- 
ample, T can initially be chosen so short that A~b < 27r when tuning over the en- 
tire Rabi width of the transition. This allows easy identification of the center 
fringe, so a rough value of g, h/m, and the like can be extracted. This rough esti- 
mate subsequently can be used to remove the phase ambiguity for more precise 
(i.e., longer interrogation time) measurements. Using this bootstrap technique, 
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the phase ambiguity for the longest interrogation times can be removed by a se- 
quence of several lower accuracy measurements. 

C. VIBRATION ISOLATION 

The atom interferometer measurements just described are relative measurements in 
the sense that the motion of atoms are being measured with respect to the spatial 
phase of the driving light field. Observation of interference, and particularly, accurate 
measurement of the phase of the interference, requires that the phase of this field be 
stable relative to the freely falling frame of the atoms in vacuum. Vibrations in the 
laboratory do not affect the motion of the falling atoms, but vibrations of the Raman 
beam mirrors can perturb the phase of the light field in the interaction region. 

The best approach for guaranteeing sufficient phase stability of the light field 
depends on the particular type of measurement and the spectroscopic techniques 
applied. For example, vibration isolation is typically simpler in experiments for 
which the Raman beams run horizontally rather than vertically. Also, switching 
from stimulated Raman transitions to adiabatic transfer generates additional 
complications for vibration isolation. 

The simplest technique for obtaining phase-stable light fields applies when 
the two Raman beams at frequencies co~ and co 2 can be allowed to copropagate 
through all of the same optics until they pass through the interaction region. 
Since k~ and k: differ only at the ---10 -5 level, the Doppler shifts from vibrations 
of these mirrors are nearly identical for the two beams, so they cancel with high 
accuracy in the Raman frequency difference. All of the experiments described in 
the previous section use velocity-sensitive transitions, which require counter- 
propagating beams. Consequently, a final mirror is used after the interaction re- 
gion to retroreflect both beams back through the interaction region. If the atoms 
are moving at a nonzero velocity along the direction of kef f, then the Doppler 
shift of the two-photon detuning can be used to select which pair of velocity- 
sensitive beams drives the transition. For velocity-sensitive transitions, only one 
of the two driving beams refects off of the final mirror, so Doppler shifts from 
vibrations of that mirror do not cancel common-mode. Consequently, the prob- 
lem of obtaining stable phase fronts reduces to vibrationally isolating the final 
retroreflection mirror: A measurement of the motion of an atom is a measure- 
ment of its motion relative to that mirror. 

This retroreflection mirror can be vibrationally isolated either passively or ac- 
tively. Both the first generation g measurement (Kasevich and Chu, 1992) and 
the first version of the photon-recoil measurement (Weiss et al., 1994) reduced 
vibrational noise by passively isolating a single retroreflection mirror. For exam- 
ple, in the g measurement, we vibrationally isolated the retroreflecting mirror by 
suspending it from the lab ceiling with lengths of surgical tubing. This platform 
was stable at the --~ l O-TgN-Hz level for frequencies well above its 0.5 Hz reso- 
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nance frequency. For the level of accuracy generally desired in these interferom- 
eter experiments, the isolation must extend down into the mHz regime. Passive 
isolation at such low frequencies using a mechanical system with a resonant fre- 
quency to = ~ ,  where k is the spring constant and m is the mirror mass, 
would require either an extremely weak spring constant or a very large mass. 
This is feasible for horizontal isolation, but requires unreasonably large spring 
extensions when the isolated system is supported against gravity. (Note that a 
vertical orientation of the beams in the interaction region dictates that vertical 
isolation must be achieved, since the beams can not be redirected horizontally 
before retroreflection without adding vibrational noise specific to a single beam.) 
Consequently, for optimum resolution in experiments for which vertical Raman 
beams are either required or preferred, it is necessary to use an actively isolated 
reference frame. 

A schematic  d iagram for the active vibrat ion isolat ion system present ly  
in use for the g measurement  is shown in Fig. 11. An acce le rometer  r igidly 

FIG. 11. An active vibration isolation system. An accelerometer measures the vibrations of the 
reference platform. Feedback electronics (not shown) drive the solenoid to reduce the amplitude of 
the vibrations. The air bearing allows the platform to be translated nearly frictionlessly in the vertical 
direction. The springs support the weight of the system as well as provide additional high-frequency 
isolation. 
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connected  to the reference mirror  measures  the accelerat ions of that surface. 
A feedback loop consist ing of the accelerometer ,  an appropriate  electronic 
loop filter, and a t ransducer  (in this case a solenoid) reduces the ampli tude 
of the accelerat ions.  Since typical t ransducers  cannot  support  the fairly 
massive acce lerometer  and optics or move them at high f requencies ,  the en- 
tire structure is supported by springs,  which also passively enhance  the 
h igh-f requency isolation. An active vibrat ion isolation system with a single 
retroreflect ion mirror  is present ly in use for gravimetry  exper iments .  The re- 
duction of  the acce lerometer  error signal with the feedback loop closed is 
shown in Fig. 12. The error signal indicates that the active isolation de- 
creases the vibrat ions by a factor of up to 200 in the f requency range f rom 
0.01 to 100 Hz. To actually achieve this level of isolation along kef f requires 
a ---1 mrad a l ignment  of the sensor  axis to  k ef f and a similarly good align- 
ment  of the atomic trajectory below the sensor  to avoid problems due to tilt 
(Hensley et al., 1996). 

Although mechanically and electronically easier to implement, the retrore- 
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FIG. 12. The reduction of the accelerometer error signal with an active isolation system. The up- 

per curve indicates the level of acceleration noise on the optical table. The lower curve shows the ac- 
celeration noise measured when the active isolation is turned on. 
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flection approach has the drawback that extra beams are present in the interac- 
tion region. These beams may introduce spurious phase shifts in the atomic co- 
herence due to, for example, the ac Stark effect or mechanical effects from 
standing wave potentials. Furthermore, this approach is completely unacceptable 
when using adiabatic transfer instead of stimulated Raman transitions. In that 
case, the Doppler shift of the atoms can be large enough to detune the two-pho- 
ton resonance for the undesired beam pair but not the single-photon resonance, 
so the atoms will incoherently scatter photons from those beams. Consequently, 
for interferometers using adiabatic transfer or those using stimulated Raman 
transitions either near zero velocity or for which the undesired light shifts are 
unacceptable, % and o92 must be independently directed to the interaction re- 
gion. 

Since the photon recoil measurement uses an atom interferometer based on 
adiabatic passage, o9~ and o92 must reflect off of several mirrors that are not 
shared by the two beams, so there is no common-mode cancellation of vibra- 
tions. Rather than trying to vibrationally isolate all of these mirrors, we in- 
stead use a single vibration isolation system to create a stable reference plat- 
form on which we construct an optical interferometer to measure the net 
effect of all the vibrations. The Raman frequency difference is then corrected 
for these measured vibrations via a 100-kHz-bandwidth feedback loop. This 
bandwidth is sufficient to suppress all typical vibrational noise in the labora- 
tory. The optical interferometer on the reference platform measures the beat 
note between the upward- and downward-propagating beams. Since the phase 
of the light must be stable from the instant that it is pulsed on, it is not suffi- 
cient to measure the vibrations by detecting the beat note between the Raman 
beams. Instead, we overlap with the Raman beams a cw tracer beam detuned 
8 nm from the atomic resonance. This interferometer platform is shown in 
Fig. 13. 

In practice, the signal to noise ratios in these interferometers, when used with 
the maximum available interrogation times, currently are limited by vibrational 
phase noise rather than shot noise. Consequently, the benefits of good isolation 
clearly can be seen in the interferometer fringe contrast and signal to noise. The 
observed improvement of the g measurement signal to noise with active vibra- 
tion isolation matches to within a factor of 2 the optimum performance expected 
from the reduction of the accelerometer error signal. The effect of vibration iso- 
lation on fringe contrast has been observed for the photon-recoil measurement. 
Without vibration corrections, the fringe contrast falls 50% as T is increased to 
about 1 msec. When vibrations are canceled using the tracer beams, with the ac- 
tive platform isolation disabled, the contrast drops 50% by T ~ 30 msec. With 
the active isolation enabled, the contrast is still over 60% of its initial value at 
T = 150 msec. 
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FIG. 13. Interferometer platform for vibration isolation measurement. The beam splitter (BS) and 
mirror (M) overlap the upper and lower cw tracer beams that copropagate with the pulsed Raman 
beams. The frequencies of the two tracer beams are offset, so the photodiode (PD) detects a beat note 
of frequency I%, - %21 modulated by the mirror vibrations. An interference filter (IF) blocks the 
Raman beams before the photodiode. This allows a cw measurement of the net vibrations of the mir- 
rors along the optical paths. The detuning 8 of the Raman beams is corrected for this vibrational 
shift. The entire interferometer platform is actively isolated from vibrations to guarantee the accu- 
racy of the vibration measurement. 

VII. Conclusions 

W e  h a v e  d e m o n s t r a t e d  tha t  p r e c i s i o n  m e a s u r e m e n t s  wi th  a t o m  i n t e r f e r o m e t r y  
are  n o w  poss ib l e .  In  ou r  p r e s e n t  r o u n d  o f  e x p e r i m e n t s ,  a t o m  i n t e r f e r o m e t r i c  
m e a s u r e m e n t s  a re  b e g i n n i n g  to su rpas s  the  p r e c i s i o n  a c h i e v a b l e  w i th  a n y  o t h e r  
m e t h o d .  
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I. Introduct ion 

In 1973, Altshuler and Frantz patented an idea for creating an atom interferome- 
ter (Altshuler and Frantz, 1973). The beam splitter in their apparatus was a 
standing wave optical field. Their ideas were rekindled by Dubetsky et al. 
(1984), who presented detailed calculations of atomic scattering by standing 
wave fields in the context of atom interferometry. Not until recently, however, 
were experimentalists successful in constructing the first atom interferometers. 
Double-slit interference (Carnal and Mlynek, 1991; Shimizu et al., 1992), Fraun- 
hofer diffraction by microfabricated structures (MS) (Keith et al., 1991; Ekstrom 
et al., 1995) or by resonant standing wave fields (SW) (Rasel et al., 1995; Giltner 
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et al., 1995), and Fresnel diffraction by one (Chapman et al., 1995) or two 
(Clauser and Li, 1994) MS have all been observed using atomic beams as matter 
waves. 

Two types of atom-optical elements have been used as beam splitters in 
these experiments, standing wave fields and microfabricated structures. A SW 
beam splitter allows one to operate with relatively dense atomic beams, having 
densities up to 101~ cm -3 and flow densities up to 1015 cm-2sec -1. Moreover, by 
varying the atom field detuning, one can use SW beam splitters as either ampli- 
tude or phase gratings. Additional degrees of freedom are provided by the polar- 
ization of the field, which can act selectively on targeted magnetic state sub- 
levels. A theory of atom interference in standing wave fields has been developed 
by Altshuler and Frantz (1973), Dubetsky et al. (1984), Chebotayev et al. 
(1985), Bord6 (1989), Friedberg and Hartmann (1993a,b), Dubetsky and Berman 
(1994), and Janicke and Wilkens (1994). In contrast to SW beam splitters, MS 
usually scatter atoms in a state-independent manner; as a consequence, most ex- 
periments involving MS use atoms in their ground (or, possibly, metastable) 
states. Microfabricated structures provide 100% modulation of the incident 
atomic beam. They offer the additional advantage that their period and duty cy- 
cle (ratio of slit opening to period) can be chosen arbitrarily within the limits of 
current lithographic technology. A theory of atom interference using MS has 
been developed by Turchette et al. (1992), Clauser and Reinsch (1992), and Car- 
nal et al. (1995). 

Both the splitting of an atomic beam into two or more beams coherent with 
respect to one another and the recombining of the scattered beams are physical 
processes essential to the operation of an atom interferometer. We consider scat- 
tering of atoms by an ideal MS, having an infinite number of slits, period d, duty 
cycle f, and 100% transmission through the slits. Each MS is normal to the y 
axis, and the slits are oriented in the z direction, so that the axis of the MS is in 
the x direction (see Fig. 1). After scattering from a MS, each incoming atomic 
state q, having x component of center-of-mass momentum p splits into a set of 
outgoing states q'n having x components of momenta p + n h k  (k = 27r/d, n is an 
integer), which evolve as 

Interference of two components, such as O0 and q'l, on a screen (see Fig. l a) 
leads to an atomic density grating 

p oc R e [ ~ o ~  ] = cos [kx] (2) 

having the same period d as the MS. 
Observation of this grating in the experiments listed earlier often has been 

considered as direct evidence for matter-wave interference. Nevertheless, one 
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can easily see that such a conclusion is not necessarily justified. For particles 
moving along classical trajectories (Fig. l b) and for a beam whose angular di- 
vergence is sufficiently small to satisfy 

d 
0 b < < -  (3) 

L 

where L is a distance on the order of the distance between the MS and the 
screen, a shadow of the MS can be seen on the screen at distances L where all 
matter-wave effects are completely negligible. This example is the simplest man- 
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FIG. 1. Matter-wave interference (a) and the shadow effect (b) for a collimated atomic beam inci- 
dent on a microfabricated structure (MS). (a) When an atom having given center-of-mass momentum 
state p II ~ scatters from a MS having wave vector k = 27ri/d, where d is the period of the MS, the 
output wave function consists of a set of momenta states p + n h k  (two of them, p and p + hk, are 
shown). A superposition of these states' wave functions leads to an interference pattern on the screen 
having the same period d as the MS. (b) When a collimated beam of particles moving along the clas- 
sical trajectories scatters from the MS, the beam profile imprinted by the MS is copied on the screen. 
A beam consisting of two velocity subgroups, having zero (v = 0) and nonzero (v ~ 0) velocity pro- 
jections on the x axis is shown. Gratings associated with these two subgroups are shifted on the 
screen from one another by Ax = vt = (v /u )L ,  where t is the time of flight between the MS and the 
screen. 
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ifestation of the classical shadow effect (Chebotayev et al., 1985; Dubetsky and 
Berman, 1994). 

To distinguish quantum matter-wave interference from the classical shadow 
effect, one needs to observe additional features of the phenomena or to choose a 
scheme where one of the effects is excluded. Young's double-slit experiment 
(Carnal and Mlynek, 1991; Shimizu et al., 1992), as well as interference pro- 
duced by a phase grating created using light that is far-detuned from atomic tran- 
sition frequencies (Rasel et al., 1995), cannot be explained in terms of atoms 
moving on classical trajectories. A matter-wave interpretation is also necessary if 
one observes a shift in the fringe pattern resulting from an index change in one 
of the arms of an interferometer (Ekstrom et al., 1995). We determine later those 
particular conditions for which pure quantum interference can be obtained using 
MS. 

Let us estimate a typical distance for which quantum interference effects have 
to be included. Consider an incident beam that has no angular divergence. The 
atoms are assumed to be in a pure state having momentum p - (0,py,0) (see Fig. 
2). Localization of the atoms inside each slit leads to an uncertainty in the x 
component of atomic momentum 8p---ti/d, where it is assumed that the slit 
width fd  is comparable with the MS period d. A beam passing through the slits 
acquires an angular divergence 80--- 8p/py, and atoms passing through a given 
slit are deposited on the screen with a spot size 8x--- LSO--- Lft/dpy. Interference 
occurs when spots produced by neighboring slits overlap; that is, when 8x--0 d. 

p=(0 ,py)  

MS 
2d 2 r L - L T  - 

II \80- ~ -  Py dp) 

Screen 

8x- LS0] 
FIG. 2. The incident atomic wave function after scattering from a MS is transformed into a su- 

perposition of divergent waves emitted from each slit, having angular divergence 80 inversely pro- 
portional to the MS's period d. One estimates the Talbot distance as the distance between the MS and 
the screen that is large enough to provide overlap of neighboring divergent waves. 
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One finds, therefore, that the characteristic distance for which matter-wave inter- 
ference plays an essential role is given by 

where 

L ~ L T (4) 

L r =  2dZ/hdB (5) 

is the so-called Talbot distance and hob = h/py is the atomic de Broglie wave- 
length. 

The manner in which this distance appears in the theory of the optical or 
atomic Talbot effect is well known in the context of the Fresnel -Kirchhoff  the- 
ory of diffraction [see, for example, (Patorski, 1989; Winthrop and Worthington, 
1965) for optical Talbot effect theory and (Chapman et al., 1995; Turchette et al., 
1992; Clauser and Reinsch, 1992; Carnal et al., 1995) for atomic Talbot effect 
theory]. One can obtain Eqs. (4) and (5) using another description. When the 
number of slits in the MS and the area of the incident atomic beam are infinite, 
constructive interference occurs only for those directions in which p is changed 
by an integral multiple of the recoil momentum hk. In the atomic "rest frame" (a 
frame moving along the y axis with velocity 

u = py/M (6) 

where M is the atomic mass), an outgoing state (1) with momentum p + nhk  ac- 
quires a phase ~b n - %+nhkt/h, where Ep = pZ/2M is the kinetic energy associated 
with atomic motion along the x axis and t is the time after scattering from the 
MS. Comparing this phase with the phase ~b 0 that an atom would acquire in the 
absence of the MS, one sees that a dephasing 605 = ~b - ~b 0 occurs for the dif- 
ferent outgoing state amplitudes as a result of diffraction. The relative dephasing 
is 

where 

6qb = ndpo + nZ~t (7a) 

dpD = kvt (7b) 

~t = wkt (7c) 

v = p /M is the x component of atomic velocity, and 

hk 2 
wk = 2M (8) 

is a recoil frequency, related to the energy an atom, having initial momentum 
p - 0, acquired as a result of recoil during scattering. The two contributions to 
the dephasing (7a) have different origins. The phase ~b D is a Doppler phase that 
does not disappear in the classical limit h ~ 0; consequently, it must be classical 



412 B. Dubetsky and P. R. Berman 

in nature. It is evident from Fig. l b that, for atoms incident with a nonzero value 
of p, the shadow moves along the x axis together with atoms. The nodes in the 
shadow are displaced by a distance Ax = vt along the x axis, which corresponds 
to a phase shift of 2 7 r A x / d  for the atomic grating, a phase shift that coincides 
with ~b o. The phase ~b o is analagous to the phase a moving dipole driven by an 
optical field would acquire in its rest frame as a result of the Doppler frequency 
shift. 

The phase ~b t in Eq. (7c) is a quantum addition to the dephasing, resulting 
from recoil. This contribution is responsible for atomic scattering and matter- 
wave interference. Quantum effects have to be included when this phase is of or- 
der unity; that is, for times of order 

t T = 27r/~o k. (9) 

One finds that length associated with this time in laboratory frame coincides 
with the Talbot distance: 

L T = ut T. (10) 

Thus, we are led to the same conclusion reached previously by considering the 
scattering from two adjacent slits; for ookt T ~> 1 or L ~> L T, one must use a quan- 
tized description of the atomic center-of-mass motion. 

In this chapter, we consider the Talbot effect and other interference phenom- 
ena as a consequence of the recoil effect. In the context of the nonlinear interac- 
tion of optical fields with an atomic vapor, the recoil effect was considered by 
Kol'chenko et al. (1968) and observed by Hall et al. (1976). Quantum structure 
resulting from the scattering of atoms by a resonant standing wave (resonant 
Kapitza-Dirac effect), which can be attributed to atomic recoil, was discussed 
theoretically by Kazantsev et al. (1980) and observed by Moskovitz et al. 
(1983). Splitting of optical Ramsey fringes (Baklanov et al., 1976) associated 
with the resonant Kapitza-Dirac effect was discussed theoretically by Dubetsky 
and Semibalamut (1978) and observed by Barger et al. (1979). Matter-wave in- 
terference resulting from resonant Kapitza-Dirac scattering in a standing wave 
field has been studied theoretically by Altshuler and Frantz (1973) and Dubetsky 
et al. (1984) and observed by Rasel et al. (1995).  The theory of atom interfer- 
ence presented here, based on an interpretation of scattering of atoms by MS in 
terms of the recoil effect, is a natural extension of the work involving standing 
wave fields. 

This chapter is organized as follows. In the next section, we discuss condi- 
tions necessary for the observation of matter-wave interference in different 
regimes. Rigorous proof of the equivalence of theories based on Fresnel-Kirch- 
hoff integrals and on the recoil effect is given in Section III, as is a discussion of 
the atomic gratings that can be produced as a consequence of the Talbot effect. 
The classical shadow effect is analyzed in Section IV. Section V is devoted to a 
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theory of the Talbot-Lau effect. The Talbot and Talbot-Lau effects for a ther- 
mal beam are considered in the Section VI, in the limit where the characteristic 
length scale in the problem is larger than the Talbot length L r. A discussion of 
the results is given in Section VII. 

II. Qualitative Considerations 

The scattering of atoms by gratings can be separated roughly into three cate- 
gories: classical scattering, Fresnel diffraction, and Fraunhofer diffraction [the 
limit of Bragg scattering (Martin et  al. ,  1988), in which % l ' / u - >  1, where l' is 
the grating thickness, is not discussed in this chapter]. 

A. FRESNEL DIFFRACTION 

The Fresnel diffraction limit occurs when % t - ~  1 or L --- L r. Owing to the angu- 
lar divergence 0 b of the incident beam, it is possible that the diffraction pattern at 
L --- L r will be washed out. To ensure that this does not occur, it is necessary that 
the spread of Doppler phases, ku t rO b = k L r O  b be smaller than unity. This re- 
quirement corresponds to inequality (3) when L --~ L r.  Using Eq. (5), the condi- 
tion on 0 b can be restated as 

O h << 0 d (11) 

where 

hk_ hdB 
0 d = - -  - (12) py d 

is the angle associated with a single atomic recoil at the MS ( r p  = hk) .  The Tal- 
bot effect refers to the self-imaging of a grating in the Fresnel diffraction limit. 
For self-imaging to occur, the displacement of the scattered atomic beam L r O  d 
must be much smaller than the beam diameter D, which translates into the con- 
dition 

D >> d. (13) 

In this limit, one can consider the beam diameter to be infinite to first approxi- 
mation; finite beam effects (or, equivalently, gratings with finite slit numbers) are 
discussed by Clauser and Reinsch (1992). 

Conditions (4), (11), and (13) are sufficient to observe the Talbot effect. In 
this case, the contribution to the wave function's phase resulting from atomic re- 
coil is of order unity, the scattered beams overlap almost entirely with one an- 
other on the screen, and the atomic gratings are not washed out after averaging 
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over atomic velocities v in the incident beam. Matter-wave interference is a criti- 
cal component  of the Talbot effect. 

B. FRAUNHOFER DIFFRACTION 

Although the Talbot effect illustrates a matter-wave interference phenomenon,  it 
does not result in an atom interferometer having two arms that are not overlap- 
ping. We refer to the Fraunhofer diffraction limit as one in which the various dif- 
fraction orders are nonoverlapping at a distance L from a single grating. The 
grating then serves as a beam splitter that physically separates the incident beam 
into two or more beams. To physically separate the various diffraction orders 
over a distance L, one requires that 

LO d >> D. (14) 

Using the fact that 0 d = AdB/d, and setting t = L/u one can recast this inequality as 

tOkt >> D/d,  L/L T >> D/d  (15) 

which requires the quantum phase ~b t (7c) be larger than D/d  >> 1. Conse- 
quently, quantum effects play an essential role in an atom interferometer having 
nonoverlapping beam paths. Note that the Fraunhofer limit cannot be reached 
for a beam having infinite diameter. We do not consider matter-wave interfer- 
ence in the Fraunhofer limit in this work. 

C. TALBOT-LAU REGIME 

To achieve spatial separation of the beams in the Fraunhofer limit and to observe 
the Talbot effect, the angular divergence 0 b of the incident beam must be less 
than 0 a. For typical values d--~ 200 nm, M --- 20 A.u., u --~ 105 cm/sec, the deflec- 
tion angle 0 d --~ 10 -4 rad. Atomic beams having O h << 0 d have been used to ob- 
serve atomic scattering by standing waves (Moskovitz et. al., 1983), to build a 
two-arm atom interferometer (Keith et al., 1991; Rasel et al., 1995; Giltner et 
al., 1995), and to observe the Talbot effect (Chapman et al., 1995). Such strong 
collimation results in a decrease in the atomic flux and a corresponding decrease 
in signal strength that may be a limiting factor in certain applications of matter- 
wave interference, such as atom lithography (Timp et al., 1992). Alternatively, 
one can observe matter-wave interference in beams having larger angular diver- 
gence using the atomic Ta lbo t -Lau  effect (see, for example, Dubetsky et al., 
1984). In the atomic Ta lbo t -Lau  effect, two or more MS are used. Doppler de- 
phasing following the first MS washes out the normal Talbot effect, but subse- 
quent scattering by a second MS can result in a Doppler rephasing that ulti- 
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mately leads to a Talbot-like interference pattern. The dephasing-rephasing 
process is analogous to that occurring in the production of photon echoes 
(Dubetsky et al., 1984). The atomic Talbot-Lau effect has been observed re- 
cently by Clauser and Li (1994) using a K beam scattered by MS. The incident 
beam is not separated into nonoverlapping beams in the Talbot-Lau effect, but 
the origin of the interference pattern can still be traced to matter-wave interfer- 
ence since it is related to Fresnel diffraction. 

D. CLASSICAL SCATTERING 

It is worthwhile at this point to return to the classical shadow effect. The shadow 
effect in a collimated beam is obvious; the atomic grating produced by the MS 
simply propagates in space over a distance in which diffraction can be ignored 
(L/L r << 1). If one has an ensemble of atoms incident on a MS from different 
angles, each velocity subgroup creates its own grating. Just after passing through 
the MS, all the gratings are the same, having the profile of the MS. Downstream 
from the MS, the atomic gratings corresponding to different velocity classes 
move in different directions (two of them are shown in Fig. l b). The grating of 
the ensemble as a whole is washed out at a distance I from the MS, provided that 

lOh>-d. (16) 

For 

Le~ >> d (lV) 

the shadow of the atomic grating is washed out well before reaching the screen 
or any subsequent MS in the experimental setup. 

The washing out of the grating can be viewed in two ways. As discussed ear- 
lier, the washing out is a result of the different classical trajectories of the atoms. 
An alternative view allows one to relate this phenomenon to that encountered in 
optical coherent transients. Imagine that the incident beam consists of a number 
of velocity subgroups, having v x = v -  u0 b. When the atoms are scattered by a 
MS having a transmission function X~(x), the atomic density immediately fol- 
lowing the grating is proportional to Xl(X)- Downstream from the MS, the atomic 
grating in the x direction simply propagates with velocity v, leading to a density 
distribution that varies as X ~ ( X -  vt), where t = y/u and y is the distance from the 
grating. If this density distribution is expanded in a Fourier series, one finds 
terms in the sum that vary as c o s [ n k ( x -  vt)], where n is an integer. In this pic- 
ture, particles in velocity subgroup v acquire a Doppler phase (7b) of order 

qb o --~ kvt --~ ObL/d >> 1 (18) 

as they propagate a distance of order L from the MS. The decay of the macro- 
scopic grating is analogous to the free-induction decay of the macroscopic polar- 
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ization of a Doppler-broadened atomic vapor following excitation by an optical 
pulse. In this approach, one can draw on many processes that are well known in 
the theory of optical coherent transients. 

Although the atomic grating is washed out following the interaction with the 
MS, it is possible to restore the original macroscopic atomic grating by placing a 
second MS between the first MS and the screen. In the classical trajectory pic- 
ture, the restoration of the grating corresponds to a moir6 pattern. In the Doppler 
dephasing picture, the restoration is analogous to the dephas ing-rephas ing  
process that occurs for a photon echo. The first MS starts a dephasing process 
for the different velocity subgroups, and the second MS results in a rephasing 
process (see Section IV.A). At a particular focal plane, where the rephasing is 
complete, a macroscopic grating appears. For 

L << L r (19) 

effects relating to quantization of the atomic center-of-mass motion play no 
role. ~ 

If L--~ L r one has to include recoil effects. Gratings appearing in this regime 
are usually associated with the Ta lbo t -Lau  effect; that is, with the interference 
of light for the optical case or quantum interference of matter waves in the case 
of the atomic Ta lbo t -Lau  effect. As shown in Section V, however, that the posi- 
tion of the focal planes and gratings' periods are often the same as in the classi- 
cal case. From this point of view, the Ta lbo t -Lau  effect is a quantum generaliza- 
tion of the shadow effect. 

In summary, one can conclude that interference is qualitatively different for 
collimated beams and beams with large angular divergence. For collimated 
beams (0hL << d), one has two interesting regimes, 

L --- L r [%t --~ 1 ] (20a) 

and 

L/L r >> D/d [%t >> D/d] (20b) 

corresponding to Fresnel (Talbot effect) and Fraunhofer diffraction (nonoverlap- 
ping scattered beams), respectively. For beams having angular divergence 
OhL >> d, the Fresnel and Fraunhofer diffraction patterns would wash out fol- 

~The scattering of atoms by standing-wave fields, rather than MS, is a bit more subtle. For resonant 
standing wave fields, which can act as amplitude gratings, the situation is unchanged. On the other 
hand, off-resonant fields act as phase gratings for the atoms; as such, they produce no effect on clas- 
sically moving particles. Strictly speaking, therefore, one must quantize the center-of-mass motion to 
calculate the scattering of the atoms by the fields. Nevertheless, in a manner analogous to the normal 
photon echo, it is possible to assign phases to the atoms while they are freely evolving between the 
MS and the screen and still consider the motion as classical in these regions. 
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lowing a single MS. Restoration of the atomic gratings in this limit can be 
achieved using two or more MS. Distances L .--. L r correspond to the atomic Tal- 
b o t - L a u  effect and distances 

L < < L  r wkt << l (21) 

correspond to the classical shadow effect. 

III. Talbot Effect 

A. TALBOT EFFECT AS A RECOIL EFFECT 

In this section, we show that the Talbot effect is a consequence of the recoil an 
atom undergoes when it passes through a microfabricated structure. We assume 
that the MS is located in the plane y = 0, normal to the direction of propagation 
of the atomic beam. The MS consists of an infinite number of slits oriented in 
the z direction; as such, only the x dependence of the atomic wave function 
changes when atoms pass through the slits. Atomic motion in the y direction can 
be considered as classical in nature provided that AdB/d << 1, but motion along 
the x axis must be quantized. In this section, it is assumed that the incident beam 
is strongly collimated, 0 b << d/L, where d is the period of the MS and L is the 
distance from the MS to the screen. As such, we can neglect any spread in the 
transverse velocities in the initial beam and consider all atoms to be incident 
with transverse momentum p = 0. 

After passing through the MS, the wave function for an atom is given by 

q4x) = r/(x) (22) 

where r/(x) is the amplitude transmission function associated with the MS. In the 
momentum representation, ~ x )  can be written as a superposition of states hav- 
ing momenta p = mhk,  where m is an integer and k = 2 rr/d. Explicitly, one finds 
that the Fourier transform of ~ x )  is given by 

where 

~lt(p) "-- 2~~ E TImr - mhk) (23) 
m 

f d x  T~m = --d-- e-imkxl"/(X) (24) 

is a Fourier coefficient. Unless indicated otherwise, all sums run from -oo to 
+ ~ .  The terms with m ~ 0 in Eq. (23) can be associated with atomic scattering 
at angles mhk/py,  where py is the longitudinal momentum in the atomic beam. It 
is assumed that py is constant for all atoms in the b e a m - - t h i s  restriction is re- 
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laxed in Section VI. In analogy with electron scattering from a standing wave 
field (Kapitza-Dirac effect; Kapitza and Dirac, 1993) or atomic scattering from 
a resonant standing wave field (resonant Kapitza-Dirac effect; Kazantsev et al., 
1980), the scattering from the MS can be interpreted as arising from the recoil 
the atoms undergo when they acquire mhk of momenta by scattering from the 
MS. 

The classical motion of the atoms in the y direction associates a distance y 
with a time 

t = y/u (25) 

where u = py/M and M is the atomic mass. For a given u, the momentum space 
wave function evolves as 

~(p,t) = e-i'pt/h~t(p) = ~ - ~  ~a "Om exp[-im2t~ - mhk) (26) 
m 

where ep = pZ/2M is the kinetic energy of an atom having center of mass mo- 
mentum p, and w k = hkZ/2M is a recoil frequency. In the coordinate representa- 
tion 

qt(x,t) = f_~ dp eipx/h ~ ~O(p,t) (27) 

one finds 

~x,t) = Z "Om exp[ imkx-  im2cht] 
m 

where the Talbot phase is defined by 

(28) 

ckt = wkt. (29) 

Superposition of the different terms in Eq. (28) leads to a spatial modulation 
of the atomic density 

f(x,t) = Iq~x,t)[ 2 (30) 

The interference terms in Eq. (30) are a direct manifestation of matter-wave in- 
terference. One can see that, as a function of the time of flight t = y/u, the wave 
function (28) undergoes oscillations on a time scale o~k -1. As a consequence, the 
atomic spatial distribution (30) contains quantum beats at frequencies 
( m  2 -  nZ)wk, for integrals m, n. Such quantum beats have been predicted by 
Chebotayev et al. (1985) and observed by Chapman et al. (1995). 

It follows from Eq. (28) that the atomic wave function coincides with the am- 
plitude transmission function of the MS when 

t = t r =  27r/%. (31) 
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At this time, atoms are found in the focal plane at 

y = L r = ut v = 2dZ]Ada (32) 

and a self-image of the MS is produced. In general one finds that the atomic 
wave function is a periodic function of the Talbot phase tht having period 27r, a 
periodic function of the time t having period 27r/to k, and a periodic function of 
the distance y having period L r. 

The self-imaging of a periodic structure is well known in classical optics as 
the Talbot effect. To describe this effect, one usually starts from the 
Fresnel -  Kirchhoff equation: 

1 dx' ~ x )  - V, iAoBY ~ r/(X') exp [ikda(X -- X')2/2y] (33) 

which is written here in the parabolic approximation. To establish an equivalence 
between Eqs. (33) and (28), one can substitute the Fourier expansion of the func- 
tion r/(x') in Eq. (33), carry out the integration, and express y in terms of t. 

It is possible to derive a useful symmetry property for f ( x , t )  when the trans- 
mission function r/(x) is real, as it is for the MS. For real r/(x), there is pure am- 
plitude modulation of the atomic wave function and r/m = 77*_ m . It then follows 
from Eqs. (28) and (30) that the atomic spatial distribution is invariant under in- 
version with respect to the plane y = LT/2; that is, 

f(x,t)14,t = f(x,t)12= _ 4,t 

f (x,t) -- f (x,t r - t) 

(34a) 

(34b) 

(34c) f (x, t) ly = f (x , t ) lLr_  y. 

Therefore, one need calculate f ( x , t )  in the range 0 <-y <--LT/2 to obtain the dis- 
tribution for all y. 

B. CALCULATION OF THE ATOMIC DENSITY PROFILE 

We have seen that, for a sufficiently collimated atomic beam, self-imaging of a 
MS occurs at integral multiples of the Talbot length. To analyze the diffraction 
pattern for arbitrary y, it is convenient to use Eqs. (24) and (28) to reexpress the 
atomic wave function as the convolution (Winthrop and Worthington, 1965) 

I]l(X,(~t ) = ( l /d)  rl (x ' )Z(x  --  X t , ~ t  ) d x '  (35) 
- d  

where 

Z(x ' l~ ) t )  - -  Z exp [-im2t~t + imkx]. (36) 
m 
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In the following discussion, we calculate I~l(X, ff) t = 27ry/L T) at fractions of the 
Talbot length; that is, for 

or, equivalently, for 

where n is a positive integer. 

y = L r / n  (37) 

dpt = 2rr/n (38) 

When n = 2, one can show that the diffraction pattern is a self-image of the 
MS, shifted by half a period. For n = 2, ~b t = rr, and 

Using the equality 

one finds 

Z(x,'n') = (1 - eikX)Ze2iqkx. (39) 
q 

Z eiq~ - 2 " r r Z 6 ( a -  2~rs) (40) 
q s 

For the integration range in Eq. (35) only the s = 1 term contributes when Eq. 
(41) is substituted into Eq. (35), leading to 

That is, at half-integral multiples of the Talbot length, there are self images of 
the MS shifted by half a period. For an arbitrary n, it is convenient to write 

m = nq + r (43) 

where 0 --< r -< n - 1 and q and r are integers. It then follows that 

exp (-imZ4~t) = e x p ( - 2 ~ m Z / n )  - exp (-i2~rrZ/n) (44) 

and 

where 

s:) 
as(n ) = -  exp [ 2 r r i r ( s -  r)/n]. 

nr=o 

(45a) 

(45b) 
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The atomic wave function (35) is then given by 

~x '2 ' r r /n )=~las(n)r l (  x - s = o  s d )  " (46) 

The meaning of this equation is clear. At distances y - Lv/n, the wave func- 
tion consists of n self-images of the amplitude transmission function r/(x), hav- 
ing different amplitudes as(n ) (some of which might vanish), spaced from one 
another by the distance d/n. For appropriately chosen r/(x) and n (see following), 
the atomic density (30) associated with the wave function (46) is a periodic 
function of x having period 

dg = d/n, or dg = 2d/n. (47) 

Thus, the Talbot effect can be used to generate spatial modulation of an atomic 
beam having a period that is a fraction of the period of the MS. We refer to such 
profiles as higher order atomic gratings. 

To simplify the expression for the coefficients as(n), one can use an alterna- 
tive approach for evaluating Z(x, ch,) (Winthrop and Worthington, 1965). The sum 
in Eq. (36) can be written in the form 

1 f Z(x, dp,) = ~ dm dz exp [ - iz (q  - m) - im24~, + imkx]. (48) 

Carrying out the integration over m, summation over q (using Eq. (40)), and in- 
tegration over f, one arrives at 

= z,(x, ch,) (49a) 
r 

where 

Zr(X, Cht) -- exp [i(kx + 27rr)214qbt]. (49b) 

At distances y = Lr/n, one finds 

exp [inkx q + + in~] ,  for r -  2q + 1 

zr(x,27r/n) = exp [in(kx)2/8~ "] exp (inkxq), for r - 2q 

(50) 
where q is an integer. Substituting this expression into Eq. (49a) and summing 
over r, one arrives again at Eq. (45a), but with an alternative expression for as(n)" 

1 as(n) = ~ [ 1 + ( -  1)s einrr/2] eiTrs2/2n. (51) 
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C. HIGHER ORDER GRATINGS USING THE TALBOT EFFECT 

One can conclude from Eq. (46) that, owing to matter-wave interference, the 
transmission function r/(x) imprinted on the atomic wave function by the MS can 
be copied n times in the plane y = Lr/n, with each copy separated by d/n. This 
effect occurs for arbitrary transmission functions and can be used to generate 
higher order atomic gratings. 

Since the values of as(n) appearing in Eq. (46) are not necessarily equal, the 
wave function (46) is periodic with period d, but not necessarily with period dg<  d. 
Moreover, it is possible for the different copies corresponding to different s to over- 
lap. We specify a pure, higher order atomic grating as one in which the different 
grating images do not overlap and for which dg < d. When the width fd  of the slits 
in the MS is smaller than the spacing d/n, different terms in the wave function (46) 
do not overlap with one another, and one finds for the atomic density (30) 

m ( 
f(x,t) = ~a las(n)12 n x -  s -  . (52) 

s=0 /'/ 

Pure higher order atomic gratings are produced only if the nonvanishing 
]as(n) ] are equal. From Eq. (51), one sees that 

~/~ (nTr/4)], for even s 
las(n)l= { II:i~ (n 7r/4)1, for odds  " (53) 

Three different situations can be distinguished: 

n = 2 m +  1 
n =  2 (2m+ 1) 
n = 4 m  

(54) 

for integers m --> 0. 
In the first case, ]as(n) ] = 1/Vnn, independent of s. At distances y = LT/3, 

y = LT/5 . . . . .  pure, higher order atomic gratings having periods dg = d/3, 
d/5 . . . . .  are produced. 

In the second case, las(n)l = 0 for s even and [as(n)[ = 2X/Z/n,  independent of 
s, for s odd. In the plane y = LT/2, the atomic grating is shifted by a half-period 
d/2 from the initial grating (as found previously); in the plane y = LT/6, only 
terms located at x = d/6, d/2, 5d/6 in Eq. (52) contribute to the sum (for 
0 -< x < d), corresponding to an atomic grating having period dg= d/3, that is, 
shifted by a distance d/6 from the initial grating; in general, in the focal plane 
y = Lr/[2(2m + 1)], one finds an atomic grating having period dg = d/(2m + 1), 
which is shifted by a distance d/[2(2m + 1)] from the initial grating. 

In the third case, la~(n)l- V 2 / n ,  independent of s, for s even, and l a s ( n ) l -  0 
for s odd. In the planes y = LT/4, y = LT/8 . . . . .  one finds atomic gratings hav- 
ing periods dg = d/2, d/4 . . . .  

The atomic density profile can no longer be written in the form (52) when 

f d  > dg. (55) 
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In this limit, different components in the wave function (46) overlap and can in- 
terfere with one another in forming the atomic density. Even though the atomic 
distribution function can still contain narrow peaks having a size on the order of 
dg, the amplitudes of the peaks are not equal and the period of the overall dif- 
fraction pattern reverts to the period d of the initial grating. 

These different regimes are illustrated in Fig. 3, plotted for an amplitude 
transmission function defined in the interval 0 -< x < d as 

1, for O <_ x <_ d f  
~(x) = 0, f o r d f <  x < d 

(56) 
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FIG. 3. One period of the atomic density in the planes located at distances y = L r / n  (n = 1 . . . . .  
16). In this and subsequent figures, the atomic density is normalized to the incident beam flux. The 
duty cycle of the MS is f = 0.16. The Talbot effect leads to atomic gratings that are multiple images 
of the MS provided the period dg of the atomic grating is larger thanfd. The dependence of d R on n is 
given in the text. 
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The Talbot effect enables one to create pure, higher order atomic gratings having 
periods that are limited only by the slit widths in the MS. 

IV. Shadow Effect with Microfabricated Structures 

In the previous section, it was assumed that the angular divergence 0 b of the inci- 
dent beam was less than d / L  r.  If this inequality is not satisfied, the diffraction 
patterns associated with different velocity subgroups in the incident atomic beam 
result in a washing out of the overall diffraction pattern. For typical beam para- 
meters, this condition restricts 0 b to be less than 10 -5 -10  - 4  rad. The restriction 
on 0 b is a limiting factor on the maximum flux of the atomic beam. It is possible 
to avoid this restriction and increase the atomic flux if echo-like techniques are 
used. 

Using echo techniques that are analogous to those encountered in the study of 
coherent transients, one can observe matter-wave interference in beams having a 
large angular divergence (Dubetsky et  al . ,  1984). It turns out, however, that the 
dephasing and rephasing of the atomic gratings that occur in such schemes does 
not depend in any critical manner on quantization of the atomic center-of-mass 
motion. In other words, the dephasing-rephasing mechanism is the same 
whether or not L - - - L  r (Talbot effect) or L << L r (classical limit). As such, it 
makes sense to consider the limit of classical scattering first, since the analysis is 
easier and a simple geometric interpretation can be given to the results (Dubet- 
sky and Berman, 1994). Thus, we consider the limit L << L r in this section and 
defer a discussion of the case L --~ L r to Section V. 

In this and the following section, we consider the interaction of an atomic 
beam with two MS, separated by a distance L. The angular divergence of the in- 
cident beam is sufficiently large to satisfy the inequality 

0 b >> d/L .  (57) 

The first MS produces a sum of atomic gratings, one for each velocity subgroup 
in the initial atomic beam. Immediately following the MS, these gratings overlap 
and mirror the transmission function of the grating, but downstream from the 
MS, they dephase relative to one another. As a result, the macroscopic atomic 
grating is washed out at a distance 

7 ~ d/o~ << L (58) 

from the MS. 
Although the macroscopic grating produced by the first MS washes out in a 

distance of order I << L, it is possible for the second MS to lead to a restoration 
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of the atomic gratings. For particles moving on classical trajectories, we refer to 
this process as a s h a d o w  effect ,  since it can be interpreted completely by the 
"shadow" of the incident beam formed by the two MS (Chebotayev et al., 1985) 
(see Fig. 4). For a beam having large angular divergence (0  b --~ 1), the initial 
grating produced by the first MS washes out in a distance comparable with the 
MS's period, in accordance with Eq. (58). After passing through the second MS, 
however, macroscopic gratings reappear in specific focal planes. A grating hav- 
ing the same period as the MS is focused in the focal plane y = 2L, while higher 
order gratings having periods d / n  (for integer n) are focused at other locations 
(to be determined later). The shadow effect can also be demonstrated easily us- 
ing incoherent light (Chebotayev, 1986). 

Although the shadow effect occurs for classical particles, it can be interpreted 
in terms of a dephasing and rephasing of atomic gratings. The relevant phases 
are the Doppler phases associated with various Fourier components of the 
atomic density, as discussed in the Introduction. In such a picture, the final im- 
age on the screen depends on a cancellation of Doppler phases in the spatial re- 

Microfabricated Atomic gratings 
~L~L~ ~ ~L 2L , f  structures. .~l  •177177 • • 1 

Atomi 
beam 

X 

5 4 3  2 3 
Y Gratings' periods 

FIG. 4. Diagram indicating how the classical shadow effect can be used to produce atomic grat- 
ings having periods smaller than the structures from which the atoms are scattered. An atomic beam 
is incident from the left. Higher order atomic grating are produced in focal planes following the sec- 
ond scatterer. The gratings visible in the diagram for y < L appear because we have included only 
those trajectories passing through the second grating. When all trajectories are included, no higher 
order gratings appear for 0 < y < L. 
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gions 0---> L and L--o 2L, for example. In other words, the signal is sensitive to 
the relative Doppler phases in two spatial regions and is a measure of this rela- 
tive phase. Insofar as interferometers are measures of relative phase, the echo- 
like rephasing of the atomic gratings can be viewed as a manifestation of atom 
interferometry. On the other hand, this rephasing is not  related to the wave na- 
ture of matter. A shadow effect interferometer of this type was used by Batelaan 
et al. (Chapter 2 of this volume) to measure the displacement of atomic gratings 
produced by rotation and by gravity. 

The same type of Doppler dephasing and rephasing that occurs using MS can 
also occur when atoms interact with two or more nearly resonant standing wave 
fields (Baklanov et al., 1976; Barger et al., 1979; Dubetsky, 1976; Chebotayev, 
1978; Chebotayev et al., 1978, LeGou/St and Berman, 1979; Mossberg et al., 1979; 
Dubetsky and Semibalamut, 1982; Bordr, 1989; Dubetsky and Berman, 1994). 
When standing wave optical fields are used for modulation of the atomic spatial 
distribution, the atomic gratings often are monitored by applying a probe pulse in 
the focal planes that transfers the phase associated with an atomic state population 
to one associated with an atomic coherence. Atom interferometers of this type have 
been used for precision measurements of gravitational (Kasevich and Chu, 1991) 
and inertial (Riehle et al., 199 l) phenomena (for a review, see Mtiller et al., 1995). 
In these cases, external fields give rise to a displacement of the atomic gratings. 

A. DEPHASING--REPHASING PROCESSES USING TWO SPATIALLY SEPARATED MS 

Before calculating the particles' distribution function, we derive some general 
properties of grating formation. In this section, it is convenient to make a Fourier 
decomposition of the atomic density profile in the x direction. The propagation 
of each of the Fourier components is then treated separately. 

Consider the case when the two MS (1 and 2) have periods d 1 and d: and are 
separated from one another by a distance L. A MS forms a periodic spatial distri- 
bution (shadow) that is the same for all atomic velocity subgroups just after 
passing through the MS. The profile created by the first MS contains a sum of 
harmonics in the x direction having spatial periods 

dm, = d/ lm,I  (59) 

where m 1 is an integer. Immediately following the MS the mlth spatial harmonic 
varies as cos(mlklX) ,  where k 1 = 2zr/d 1 is the wave number associated with the 
first MS. As the atoms move downstream from the first MS, the m~th harmonic 
acquires a Doppler phase (7a) given by 

t~ml(t ) = mlklVt  (60) 

where v is the x component of atomic velocity and t = y/u as before. For a time, 

t d --- 1/(k 1 v) (61) 
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the Doppler phases becomes large, Chm~(t)~ 1, and the macroscopic grating 
washes out on averaging over v. Since v--- uO b, the time t d (61) corresponds to 
the distance I (58). 

The atoms pass through the second MS at time T = L/u  (y  = L). Downstream 
from the second MS, each spatial harmonic acquires an additional phase (i.e., a 
phase in addition to ~bml (t), which itself continues to increase following the sec- 
ond MS) 

~bm2(t) = m 2 k 2 v ( t -  T )  (62) 

where m 2 is another integer. Since the mask created by the second MS is super- 
imposed on the shadow from the first MS, the resulting shadow consists of har- 
monics having wave numbers 

k h = Im~k~ + m2k2l (63) 

and velocity-dependent Doppler phases 

(t) + (64) 4,(t) = ~m 1 ~m2(t). 

The two phases in the right-hand side of this equation can cancel one another at 
the so-called echo time t e > T defined by 

f~(t e) = 0 (65) 

corresponding to a focal plane Ye = Ute" At such times, one produces a harmonic 
in the atomic density that is independent of v; as a consequence, this grating sur- 
vives any averaging over the velocity distribution in the incident beam. From Eq. 
(65) one sees gratings are focused when 

1 
t e[T = YelL = . (66) 

1 + (m l /m2) ( k l / k2 )  

The dephasing-rephasing process is illustrated in Fig. 5. (To satisfy Eq. (65), 
the integers m 1 and m 2 must have opposite signs; for the sake of illustration, we 
take ml as negative in the examples following.) 

We assume that the ratio of the MS's periods is rational, 

dl /d  2 = k2/k 1 = j~ l (67) 

where j and l are the smallest  positive integers that can be used to satisfy this 
equation. In this case, an infinite number of harmonics associated with pairs 
(ml,m2), having the same ratio of ml[m 2, contribute at a given focal plane. It fol- 
lows from Eqs. (66) and (67) that for 

m:: n / 
m 2 
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O(t) 

0 T m 
Fic. 5. The Doppler phase ~ t ) =  mlklVt  (for t < T) and 4~(t)= mlk lv t  + m 2 k 2 v ( t -  T )  (for 

t > T) as a function of t. Each spatial harmonic of the atomic density acquires a phase following 
scattering by the MS. Shown in the diagram are the phases corresponding to m~ = j ( m -  n) and 
m 2 = - m l  = - j m ( k / k 2 ) ,  where j / l  = d l /d  2 and m and n are integers with m > n. Independent of v, 
the spatial harmonic varying as cos[(m~k~ + m2k2)x ] = cos( jnk~x)  is focused in the plane Ye = (m/n)L.  

where m and n are positive integers having no common factors with m > n, grat- 
ings in the atomic spatial distribution appear at echo times 

m 
t e = - -  T ( 6 9 )  

n 

or at focal planes located at 

m 
Ye -~ - - L .  ( 7 0 )  

n 

From Eq. (63), one finds that harmonics having 

Imllk 1 
(71/ kh = m 1 

n 

are focused in this plane. 
For example, consider the limiting case in which d 1 ----d 2 ----d ( j  = l = 1), 

analogous to the situation studied by Dubetsky and Berman (1994). In the plane 
y = 2 L  ( m / n = 2 ) ,  all harmonics having m z / m l = - 2  (i.e., {ml,m2} = 
{ - 1 , 2 } ; { - 2 , 4 } ; { - 3 , 6 } ;  etc.) are focused. As a result (see Eq. (63)), harmonics 
having k h = k, 2k, 3k, and so on are focused in the plane y -  2L. The period of 
this atomic grating dg corresponds to the smallest value of kh; namely, 
dg= 2"a'/k = d. Similarly, in the plane y = 3L/2 (m/n  = 3/2), all harmonics hav- 
ing m z / m  1 ----- - - 3  (i.e., { m l , m 2 }  -- { - 1 , 3 } ; { - 2 , 6 } ; { - 3 , 9 } ;  etc.) are focused. As 
a result [see Eq. (63)], harmonics having k h = 2k, 4k, 6k, and so on are focused 
in the plane y = (3/2)L. The period of this atomic grating is dg = 27r/2k = d/2. 
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For m = (n + 1), one finds that atomic gratings having period dg = d /n  are fo- 
cused in the plane y = [(n + 1)/n]L. 

To treat the case of arbitrary rational, dl/d 2 = j/l ,  we set 

m 1 = - ) ( m -  n)q, m 2 = -l mq (72) 

where q is an integer 

) = j / tz;  -1 = //I~ (73) 

and/z is the largest common factor of j (m - n) and lm. Harmonics having wave 
numbers (71) 

k h = n) k, [q[ (74) 

are focused in the plane Ye = (m/n)L. The minimum possible wave number 

k - n)k I (75) 

determines the period of the focused grating 

2~  d 1 
- = . ( 7 6 )  d ~ -  kg )n  

One concludes that it is possible to create a higher order atomic grating, having 
a period that is jn times smaller than that of the first MS, by passing an atomic 
beam having a large angular divergence through two MS. Although both the Talbot 
and shadow effects lead to higher order atomic gratings, there is a qualitative dif- 
ference between the two cases. In the Talbot effect, the structure of the MS is 
copied n times in the image plane y - LT/n, giving rise to a profile having period 
d e = dl/n or 2dl/n, provided t h a t  dg  > f i l l" The minimum period is determined by 
the slit width. In contrast, the period of the atomic grating produced by the shadow 
effect in the plane Ye = (m/n)L is given by Eq. (76) and is not limited by the slit 
width of the MS (although the contrast is determined by the slit width). The period 
of the atomic grating is equal to d~/j in the focal plane Ye = 2L and is compressed 
by a factor n in the plane Ye = (m/n)L. This compression lies at the heart of the 
shadow effect's application to atomic lithography (Dubetsky and Berman, 1994). 
Atomic gratings having periods smaller than those of the MS and even smaller 
than the slit width of the MS can be obtained. In this respect, the shadow effect has 
yet an additional advantage over the Talbot effect, where higher order grating pro- 
duction is not accompanied by compression. 

Before proceeding to calculate the atomic density distribution, we should like 
to estimate the depth of focus of the various gratings. The distances between fo- 
cal planes are comparable with the distance L between the MS. One can estimate 
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the depth of focus lg from the requirement that the phase (64) be smaller than 
unity in the region of the focal plane. For m i given by (72), one finds 

dp(t) = qkg v6y/u (77) 

where 6), = ( y -  (m /n )L )=  ( y -  Ye) in the neighborhood of the focal plane at 
y = (m/n)L. Setting q = 1, ~b(t)--- 1, and 6y = lg and using Eq. (75) and the fact 
that 0 o --~ v/u, one obtains 

~ l" ~ 
l - - -~  --< l (78) nj 

~ 

where l is given by (58) with d = d~. Since L >> 1 has been assumed, it is possi- 
ble to separate the various gratings. The sharpening of depth of focus of  the 
higher order gratings predicted by Eq. (78) is in qualitative agreement with the 
results shown in Fig. 4. 

B. P A R T I C L E S '  D I S T R I B U T I O N  P R O F I L E  

We now turn our attention to a calculation of the atomic density profile. In contrast to 
the Talbot effect, it is not possible to find self-imaging does not occur for the shadow 
effect, since the scattering coefficients for the different spatial harmonics are not the 
same. Let the transmission functions for the two MS be denoted by Xs(X) (s = 1 or 
2). Here, Xs(x) is a transmission function for atomic density, while rls(X) is a trans- 
mission function for atomic state amplitudes; for MS having transmission of either 1 
or 0, these functions are identical. Atoms are scattered by the MS in the planes y -- 0 
and y = L, or, equivalently, at times, T 1 - -  0 and T 2 - -  T = L/u. Calculations are car- 
ried out using t = y/u as a variable. In some sense, this corresponds to working in the 
atomic rest frame. As a result of scattering, the atomic density is modified as 

f(x,v,T+s) = Xs(X)f(x,v,Ts) (79) 

where T + are the times just after or before a scattering event. Following the scat- s 
tering event, the distribution evolves as 

f (x,v, t)  = f [ x  - v(t - Ts),V,T+s ]. (80) 

We assume that, for t < 0, the atoms are distributed homogeneously in the 
transverse direction; that is, 

f(x,v,t)lt < 0 = 1. (81) 

The assumption of a homogeneous velocity distribution is consistent with a 
beam having angular divergence (57), since in this limit, the transverse velocity 
distribution is approximately constant over the range ds/L. The spatial distribu- 
tion of the atomic density for t > T is given by 

f (x , t )  = ( X l ( X -  v t ) x 2 [ x -  v ( t -  T)]) (82) 
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where ( . . . )  represents an average over velocities. Expanding Xs(X) in a Fourier 
series 

,u = ~.I X~ ) e i m k s X  

m 

where k s = 27r/d s is the "wave number" of structure s, one finds 

(83) 

f(x,t) = Z 1((1)1((2)exp[i(klml + k2m2)x](,exp [-i~b(t)]) 
t~. ml r,, m 2 

ml ,m 2 

(84) 

where ~t) ,  as defined by Eq. (64), is also a function of m~ and m 2. Owing to condi- 
tion (57), for t --- T--~ L/u  and v --- uO b, the phase factor in the brackets of Eq. (84) is 
large, of order L O J d  s >> 1. On averaging over velocities, one finds a nonvanishing 
contribution only at the particular focal planes or echo times given by Eq. (65). 

Retaining contributions from only those m i given by (72) corresponding to 
the various focal planes, one finds from Eq. (84) that the atomic density in the 
focal planes is given by 

" " "  (1) , , ( 2 )  exp( iqkgx)  (85) f (X, te)  = ~_aX )i(n-m)q/~ imq 
q 

where kg is the wave number of the focused atomic grating given in Eq. (75). 
Therefore, owing to the shadow effect, at the echo time (69), an atomic grating is 
focused, having period 

dg - 2 7r/k g = d , /On) .  (86) 

Note that the period of this grating is nj times smaller than the period of the first 
microfabricated structure. 

To re-express the density function at the focal planes in terms of the transmis- 
sion functions, we write the Fourier harmonic amplitude X~ ) as 

L aj dx 
X ]  ) = ~ Xj(x) e x p ( - i k j s x )  (87) 

from which one finds the atomic density at the focal planes given by 

f ( x , t  e) = d i d 2  exp l iq [kgX + ]] (m  - n)klX 1 - m-lkzx2] } XI(Xl)X2(x2) .  

(88) 
The sum over q leads to an infinite set of 6 functions, 

e i q a - -  27r~]  6(c~- 27rs') (89) 
q s '  
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which allows one to carry out the integration over x 1, for example. Only the values 

dl [ X2 -- X 1 
X l = j ( m _ n )  s' +m-l-~22 ~ (90) 

in the range [O,d~) contribute, resulting in the inequality 

x ml x2 X X 2 ----<s' < ml + j ( m -  n) (91) 
d d 2 r d22 

for integer s'. One finds that a finite number of terms contribute, having 

where s = 0, 1 . . . . .  } ( m -  n ) -  1. In Eq. (92) and for the remainder of this 
chapter, a notation is adopted in which we set A = [A] t + {A }F, where [A] t and 
{A }F are the integral and fractional parts of A, respectively. Using Eqs. (90) and 

)(m~-- I fod2 dX 2 
s=0 ~-2 X2(X2) 

"Xl ( m -  n) s +  ml~22 F 

Consider in detail the case when the microfabricated structures have duty cy- 

(92), we obtain 

1 
f ( x , t  e) )j(m - n) 

cles (ratio of slit openings to periods)fj: 

Introducing dimensionless variables 

w = x/dg, 

for <> fj. 
F 

(94) 

z = Xz/(dzf  e) (95) 

and taking into account that the argument of function X~ in Eq. (93) is positive, 
one obtains 

f2 ~ 
f (X'te) = j - n) = hs(W) (96a) 

where 

f0 1 
ks(W ) = dzO[j~ - (s -+ { olz - W JF)] ] 

a = m-lf2, ~ = j ( m -  n)fl 

(96b) 

(96c) 
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and 

0(x) = [ ; ,  x < > 0  

is the Heavis ide  step function. It is sufficient to cons ider  only the range 

0 --< w --< 1. (97) 

For 0 -< s --< [~] i  - 1, the integrand in Eq. (96b) is equal  to unity. Therefore ,  

f ( X ' t e ) = j ( m  - n )  [[/311+ h[t~l,(w)] (98) 

and one needs to evaluate the express ion  (96b) only  for s = [/311: 

f0 1 
ht#l , (W) = dzO({/~} F - -  [ O~Z - -  W }F). (99 )  

The first term in Eq. (98) parenthesis  is independent  of  w = x / d ;  consequent ly ,  
only the second term corresponds  to the a tomic gratings.  

A method  for evaluat ing the integral (99) is given in the appendix  to this 
chapter. Using this method,  one finds 

h[#] (w) = [ { f l l F [ a ] i  + S ( w ) ] / a  

where  the funct ion S ( w )  is given by 

(100) 

S(w) = 

S(w) = 

S(w) = 

{Ol]F-- W, for0 < -- w~  1 - {/~]F 
{/3}r + {a} r -- 1, for 1-- {~}F<-W < -- {a}F , if  {/3}F~>max ({a}F, 1 - -{a}F ) 
{/3} r + w -  1, for {a}r<-- W <- 1 + {a} F -  {/3} F 
{O~]F , for 1 + {O~}F-- {~]F~W~ 1 (101a) 

{O~}F-- W , for0 ~ w~  {O~}F 
0, for {O~}F ~ W ~  1 - {~}F 
{~}F+W-- 1, for l -- {~}F<~ W<~ I + {Or}F-- {~}F 
{O~}F , for 1 + {O~}F-- {~}F~W~ 1 

,if {a}F<~ {][~}F ~ 1 - -  {a}F 
(101b) 

{~}F' f~ w-< {O~}F-- {/~}F 
{O~}F- W, for {O~}F--{~[~}F ~ W ~  1 -  {~}F 
{ / 3 } r +  { a } F - -  l ,  f o r l - { ~ } F ~ W ~ { O I } F  
{ / ~ } F + W - -  1, for{ot}F<--W<-I 

,if 1 - {a}F~ { ~ } F  - <  {a}F 
(101c) 

S(w) = 

{/~}F' f o r 0 -  w -  {Og}F-- {/~}F 
{O~}F -- W, for {O~}F -- {/~}F ~ W ~  {OglF 
0, for {a}F~< W ~  < 1 -- {~}F 
{fl}r+W--1, forl--{fl}F<--W<-I 

, if {/3}F-- < min (la} r, 1 -- {a}F) 

(lOld) 
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Substituting Eq. (100) in the right-hand side of Eq. (98), one finds that the 
atomic beam profile at a given focal plane is equal to 

f(X,te)  = [a[fl]t + {]~}F[a]l -]- S ( w  -- x/dg)]/[m(m - n)l j .  (102) 

C. MAIN FEATURES 

All dependencies in (I01 a) coincide if 
I 

{a}F  = {/3}F = - 2  

when 

I'1 S ( w )  = w - ~ . 

(103) 

(104) 

In this case, the grating amplitude 

A = f(X,te)ma x -- f (X, te)mi n (105) 

for given m, l, j, and n achieves a maximum value A = [2ml j (m  - n)] -1. To max- 
imize this quantity for a given grating period, one has to choose l = j = 1 and 
m = n + 1 0 = j = 1), which corresponds to the focal planes y = 2L (n = 1), 
y = (3 /2 )L(n  = 2), y = (4 /3 )L(n  = 3) . . . . .  where gratings having periods dg = 
dl/n a r e  focused. To satisfy condition (103), one can choose 

fl = 1/2, f2 = 1/[2(n + 1)] (106) 

for which 

A = 1/[2(n + 1)]. (107) 

The constant background term o f  f ( x , t  e) (the first two terms in the numerator of 
Eq. (102)) vanishes, since 

1 
a = 13 = ~ .  (108) 

To achieve this maximum signal, one must use slits in the second microfabri- 
cated structure whose width is smaller than the atomic grating period 
(f2d2 = d~/2(n + 1) < dg - d~/n). Using the shadow effect technique, one can also 
observe atomic gratings having the same amplitude (107), whose period is smaller 
than the slit width, but some background term appears for these gratings. Indeed, if 
f2 = (2q+ 1)/[2(n + 1 ) ] , / = j  = 1,m = n + 1 (leading to {C~}r = 1/2, /3-- 1/2), for 
positive integers q-< n, then Eq. (103) still holds providing the grating amplitude 
(107), but the background term is q times larger than the grating amplitude. 

For illustration, in Fig. 6 we plot the grating profiles at different focal planes 
Ye = [(n + 1)/n]L (n = 1 . . . . .  5) for MS having the same periods d 1 = d 2 and 
duty cycles f~ = 1/2, f2 = 5/12, such that the parameters a and/3  are given by 
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II 

o �9 ! , . .~ 

�9 v . . , t  

g, 

o 

< 

o ix=0 Ye =2L x=d~ 
- 

3 
0 I x=O Y ~ = / 2 L  x=d 1 I 
~ . . 2 ~  - 

4 
o i x=O Y~=/'3 L x = d l  I 
~..25 . . . . . . . .  -- 

5 
0 n x=O Ye = / 4 L  x=d 1 I 
~ 2 ~  - 

0 i x = 0  ye=6/5 L x=d,  

x 
FIG. 6. Grating profiles produced by two MS having equal periods ( d  I = d2) and duty cycles 

f] = 1/2, f2 = 5/12 at different focal planes. The parameters have been chosen to optimize the fifth- 
order grating focused at the plane Ye - 6 / 5 L .  This grating has amplitude A -- 1/12 superimposed on a 
background signal having amplitude equal to 1/6. 

a = (5/12)(n + 1), /3 = 1/2. This case corresponds to the fifth-order grating at 
the plane Y e -  6/5L having maximum amplitude. When the amplitude of the 
fifth-order grating is optimized and f2 -~ 0.5, the amplitudes of the gratings that 
are focused in the planes Ye = [(n + 1)/niL (n = 1 . . . . .  4) are less than or equal 
to the amplitude of the fifth-order grating. This feature is seen in Fig. 6. 

The geometric simulation introduced previously allows one to obtain the po- 
sitions of the atomic gratings. It can also be used to provide some quantitative 
results. For example, one finds from Eqs. (101) and (102) that the shadow effect 
disappears at the focal plane y -  2L if both MS have the same period 
( d  1 = d 2 -- d )  and duty cycles, f l  - - f 2  -- 0 .5 .  In this case, m = 2, n = j = l = 1, 
and from Eq. (96c), one finds that a = 1, /3 = 0.5. From Eq. (101b) one finds 
that S(w) - 0; there is no atomic grating. The reason for the absence of the grat- 
ing under these conditions is evident from Fig. 7. 

The geometrical picture can also be used to explain the absence of background 
terms at the focal planes y = [(n + 1)/n]L produced by MS having duty cycles (106) 
and equal periods (d 1 = d  2 = d). One can see from Eq. (102) and (104) that the 
background disappears, because no particles are at the points Xq = (d/n)(q + 1/2), 
where q is integral. A geometric interpretation of this result is presented in Fig. 8. 
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Microfabricated 
structures 

I 

A t o m i c ~  ~ O ( x , 2 L )  

b e a m /  B' 

I I 
y=0 y=L 

FIG. 7. A diagram to help explain the absence of the shadow effect at the focal plane y = 2L for 
MS having the same periods and duty cycles f~ = f2 = 1/2. Illumination of an arbitrary point O at this 
focal plane from a given slit AB of the second MS is determined by the number of particles moving 
into the point O inside angle AOB; that is, it is proportional to the length of the bold part of A'B', 
given by s = IA 'B '[ -  d/2. Since IA'B'I- 21A81 - d, s is always equal to d/2 independent of the x co- 
ordinate of point O. Consequently, any variation in the particles' distribution at the focal plane 
y = 2L disappears. 

y=0 

d/2 

Atomi :  beam// 1 

Microfabricated 
structures 

y=L 

Focal 
plane 
y = ] L  

�9 X q  

�9 X 1 

�9 X 0 ~ X - I  

FIG. 8. To prove that two MS having equal periods (d I = d  2 = d) and duty cycles f~ = 1/2 and 
f2 = (1/2)(n + 1) (the case corresponding to n = 3 is shown) produce a background-free atomic grat- 
ing at the focal plane y = [(n + 1)/n]L, one notes that the MS block the particles from reaching the 
points Xq = d8( q + 1/2) (dg - din is a grating period and q is an integer). This result follows from the 
fact that a trajectory built from any point Xq and an arbitrary slit of the second MS always intersects 
an opaque part of the first MS. 
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V. Talbot-Lau Effect 
When the spatial separation of the MS is increased to the point where 

L ~ L r = 2d2/AdB (109) 

it is no longer possible to neglect quantization of the atomic center-of-mass in 
calculating the transverse motion of the atoms. Just as in the Talbot effect, the 
recoil an atom undergoes on scattering from a grating must be taken into ac- 
count. However, the Doppler dephasing and rephasing encountered in analyzing 
the problem of classical scattering by MS still can be given a classical interpreta- 
tion when L --~ L~r, provided that the angular divergence of the incident beam is 
sufficiently large, 0 b >> d / L  T = Ads/d = 0 d. In other words, even though we must 
account for quantization of the atoms' center-of-mass motion, effects related to 
Doppler dephasing (which are automatically included in a quantized motion ap- 
proach) are unchanged from the classical case. 

We have already alluded to this result in the introduction. Recall that matter- 
wave interference results from the overlap of atomic wave functions associated with 
states having center-of-mass momenta p and p + n h k .  T h e  relative dephasing be- 
tween these states given by (7a) contains a Doppler part (7b) and a quantum part 
(7c). Since the washing out and restoration of the macroscopic atomic gratings is 
connected with an averaging over atomic velocities v, one expects that the Doppler 
part, proportional to v, to be responsible for the dephasing-rephasing effect. This 
contribution is actually classical in nature (it does not vanish in the limit h ~ 0) and 
enters the calculations whether or not the quantum contribution to the phase has to 
be considered. As a consequence, the dephasing-rephasing process is the same for 
the classical shadow effect and the quantum Talbot-Lau effect. However, for sepa- 
rations of the MS equal to a rational multiple of the Talbot length, the Talbot effect 
can actually result in a decrease of the period of the atomic gratings from those pe- 
riods that would result from the classical shadow effect result. The decrease in pe- 
riod occurs for MS consisting of open slits and opaque strips; it would not occur in 
resonant standing wave fields, for example. 

Since the Doppler dephasing determines the position of the focal planes and 
the period of the atomic grating, one can carry over the results Eqs. (69), (70), 
and (76) obtained in Section IV for the shadow effect. In this section, we are in- 
terested in the variation of the atomic gratings in a given focal plane as a func- 
tion of the separation of the MS. In other words, we look for those separations L 
for which the Talbot effect significantly modifies the gratings that would have 
been produced by the shadow effect alone. This is analogous to photon echo 
studies of atomic relaxation, in which the echo amplitude is monitored as a func- 
tion of the separation between the excitation pulses. 

It should be noted that the Talbot-Lau effect has been studied using light by 
Clauser and Reinsch (1992) for the parameters 

d~ = 3; Ye = 3L (110) 
d 2 
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corresponding to {m, n, j ,  1,j,l} = {3, 1, 3, 1,1,1/3} (recall that)  = j /Ix; -I = l/Ix, 
where Ix is the largest common factor of j ( m -  n) and ml) and a grating period 
dg = d I. The atomic Talbot-Lau effect was demonstrated by Clauser and Li 
(1994) using K atoms for the parameters 

d~ = 2, Ye = 2L (111) 
d 2 

{m, n , j ,  l,j,l} = {2, 1, 2, 1,1,1/2}, dg = d 1. A theoretical study of the atomic Tal- 
bo t -Lau  effect was also carried out for the parameters (111) by Carnal et al. 
(1995). The conclusions as to the period and location of the atomic gratings fol- 
low from purely classical considerations in this case; there is no need to invoke 
arguments related to the wave nature of matter (Clauser and Reinsch, 1992; 
Clauser and Li, 1994; Carnal et al., 1995). 

A. GRATING FORMATION 

The geometry is the same as that considered for the classical shadow effect, ex- 
cept that L is no longer restricted to be less than L r. Again, it is convenient to 
work in the atomic rest frame defined by t = y/u. As discussed previously, it is 
necessary to quantize the atomic motion only in the x direction. The atoms un- 
dergo scattering at the MS at times T s = LJu  (T  1 - 0 ,  T 2 = T = L/u). For thin 
gratings, the atomic wave function qt(x,t) undergoes jumps at the MS given by 

qt(x,T+s ) = ?qs(X)~x,T-j) (112) 

where qt(x,T~) is the wave function on either side of grating s,~Ts(X) is the ampli- 
tude transmission function of grating s, and 

Xs(X): I,?s(x)l 2 (113) 
is the transmission function of grating s [for MS consisting of a series of slits, 
~s(X) = Xs(X)]. 

To characterize the atomic beam using a quantized center-of-mass descrip- 
tion, one can use the Wigner distribution function defined by 

f d3; 5: 5: f (x ,p, t )  = ~ h  e x p ( - i p S c / h ) ~ x  + -~ ,t)qr*(x - -~,t). (114) 

For scattering at a MS, one finds 

2'rrh s x - -~ f (x ,p  ,Ts). (115) 

When rls(X ) is a periodic function of x, one can write Eq. (115) as 

f (x ,p ,r+,)  = ~ ,  exp(im,k2c)rl~ ) [n~ )] *f x,p  (n s + n;),L- (116a) 
r t  ' 
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where 

and 

m s = n s - n' s (116b) 

fOd ~s inksx'l~ (X) 7/(s) = e -  s (116c) 

is a Fourier component of ~Ts(X), having period d s and wave number k s = 27r/d s. 
For times other than T s, the Wigner distribution function evolves freely as 

f (x ,p , t )  = f [ x  - v(t - Ts),P,T+s] (117) 

where v = p/M.  
Applying Eqs. (116a) and (117) one obtains the atomic distribution function 

for times t > T (y > L) to be 

f (x,p,t) = 

(1) ,,,..(1)1, * k 1 x -  v ( t -  T ) -  v ~Tq . ,  ['tn',J r/~n2~)[ n(2) ] exp im 1 - (n 2 + n'2) 
-"'~ 2M lli,?l ~ 

+ imzkz[x-  v ( t -  T)] x -  v -  2M (n2 + n'2) T -  v ( t -  T) ,  

' 1 p - - ~  [kl(n 1 + n'l) + k2(n 2 -t- n'2) ] (118) 

where f ( x , p )  is the Wigner distribution function of the incoming atomic beam. 
The atomic spatial distribution is given by 

( 
f (x , t )  = J dpf(x,p,t)  

which can be obtained from Eq. (118) as 

f ( x , t )  = 

(119) 

ni, n,T~n [3qn;] 71 X-- v + - ~ ( k l ( n l + n l ) + k 2 ( n 2 + n 2 )  ) ( t - T )  

[ " ] } I [ ] - v + 2M (nl + n'l) T,p exp i(mlk 1 + mzk2) x - ~ - M ( n  2 + n ; ) ( t -  T )  

I hkl ] ] 
- i v + 2M (nl -t- n'l) [mlklt + m z k z ( t -  T)] . (120) 

In this expression, terms having (mlk 1 -t- mzk2) r 0 contribute to the atomic grat- 
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ings. Owing to the assumption of an incident beam having large angular diver- 
gence 0 b --~ v/u >> d/L,  the Doppler phases associated with these terms oscillate 
rapidly as a function of p, except in the echo focal planes. As a consequence, the 
positions and periods of the atomic gratings are the same as those in the classical 
shadow effect [see Eqs. (69), (70), and (76)]. In the remainder of this section, we 
calculate the atomic density in the focal planes Ye  or, equivalently, at times, 
t e = Ye/U given in Eqs. (69) and (70). 

It is possible to simplify Eq. (120) if we assume that the angular divergence 
0 b of the incident beam is less than 0 D = D/L,  so that a freely propagating beam 
would undergo negligible diffraction over a distance of order L. For 
p ~ MuO b << M D / T ,  one can neglect the dependence on n i and n~ of the distribu- 
tion function appearing in Eq. (120). Then, the sum over n; can be carried out us- 
ing the formula 

- n  ~ = r/s  x -  r /s  x + (121) 
n v 

where 

s d d Xs x [F(x)] ~ = e-i~k, XF(x) (122) 

is a Fourier component of the function F(x). As a result one finds that the atomic 
density in the echo focal planes is given by 

= e ~ ,l~-j(m-~)q r12 X -  qd  2 i rl2 x + qd  2 
q mlq 

(123) 

where XCs ~) is a Fourier component of the transmission function Xl (x), 

) 2(m - n) 
~r (m 'n )  = -l % T (124) 

is a Talbot phase associated with a specific focal plane, and 

f (x )  = J- dpf(x,p) (125) 

is the initial spatial distribution in the atomic beam. Since the beam diameter is 
much larger than the period of the gratings, 

D >> dg (126) 

one can neglect the variation off(x) and setf(x) = 1 in Eq. (123). 
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The distribution function (123) is identical with the shadow effect result 
(85), except for the presence of the Talbot phases. The main features of the 
dependence of the atomic density on the Talbot phase in the Talbot -Lau ef- 
fect are the same as those for the Talbot effect considered in Section III. The 
density (123) is an oscillating function of c~7.(m,n) having period 2zr. If 
qbT(m,n) is increased by 27r, or, equivalently, if the separation between the MS 
is increased by LT(m,n) ,  the density distribution in the corresponding echo 
plane is unchanged. The Talbot distance associated with a given focal plane is 
defined here as 

LT(m,n)  =_ 2cl 2 1 
AOB j 2(m -- n)" (127) 

In terms of Lr(m,n) ,  the Talbot phase (124) is equal to 

qbT(m,n) = 2'n'[L /LT.(m,n)]. (128) 

In our notation, the Talbot phase is a function of L, while the Talbot distance 
is independent of L. Note that, as defined by Eq. (127), a different Talbot 
length is associated with the signal for different focal planes, Ye = (m/n)L.  We 
wish to examine the signal in a given focal plane as a function of the separa- 
tion L of the MS or, equivalently, as a function of ~bT(rn,n). When L = LT(rn,n ) 
[~bT(rn,n) = 27r] the atomic density (123) is the same as that of the shadow ef- 
fect (85). 

Using arguments similar to those leading to Eqs. (34), one can prove that, for 
pure amplitude modulation of the wave functions, that is, for real amplitude 
transmission functions r/j(x)= r/*(x), the dependence of the particles' distribu- 
tion on the Talbot phase is symmetric with respect to the point ckr(m,n)= "rr, 
(L = Lr(m,n)/2);  that is, 

f (X,te)]~(m,,) = f(X,  te)12~_q,T(m,n) (129) 

f(X,te)lL = f(X,te)lL _ L. (130) 

The question arises as to what values of dpT(m,n) lead to especially interesting 
results; that is, atomic gratings that differ significantly from the gratings that 
would be produced by the shadow effect. We have found that the atomic gratings 
are significantly modified by the Talbot effect when the Talbot phase is a rational 
multiple of 27r, 

dpr(m,n ) 217- mr  = (131) 
n T 

where m r and n r are positive integers having no common factors. We proceed to 
analyze the atomic density function in the focal planes for separations of the MS 
corresponding to Eq. (131); that is, for L = Lr(m,n)(rnr/nr). 
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For Talbot phases given by Eq. (131), the sum in Eq. (123) can be divided 
into n r independent sums having 

q = n r q '  + r (132)  

where 0 <- r <- n r - 1. For Talbot phases given by Eq. (131), any dependence on 
q' disappears in the last factor of Eq. (123), allowing one to rewrite Eq. (123) as 

f(X,te) = ~ dXl dx2 exp{ i(q'n r + r) 
r-0 q' did2 

( mr ) ( mr ) 
�9 [kgX q - j  (m - n ) k l X  1 - m-lk2x2]}Xl(Xl)rl2 x 2 - r ~ d  2 ~1" x 2 + r ~ d  2 

n T  2 n T  

(133) 

to sum over q' using Eq. (89) and to integrate over x~. The calculations are simi- 
lar to those used to obtain Eq. (93) from Eq. (88), and one can obtain 

1 n r - 1 ) ( m -  n)n r -  1 f~12 OX 2 

f ( X ' t e ) = j n r ( m - n )  r~O= s=0 ~ J0 

"expI27rir[s+[nr(m-lX2-~)],]][ nr d 2 

�9 rl2 x 2 -  r - - d  2 rl2 x 2 +  r - - d  2 Xl 
n r n r ( m -  n)n r 

X 2 _ X 

B. HIGHER ORDER GRATINGS USING THE TALBOT-LAU EFFECT 

Equation (134) is the basic result of this section. It gives the atomic density function 
in the focal plane for separation of the MS that corresponds to Talbot phases that 
are rational multiples of 27r. For specified transmission functions, it can be evalu- 
ated numerically in focal planes defined by t e = Ye/U = (m/n )T  = 
(m/n)L/u for arbitrary j / l  = d~/d 2 [recall that j = j / Ix; - l  = l/Ix,  where Ix is the 
largest common factor of j(m - n) and lm], m r and n r [L = Lr(m,n)(mv/nr)] .  In this 
section, we are interested primarily in showing that, owing to the Talbot effect, peri- 
odic atomic density gratings can be produced whose periods d r are smaller than the 
corresponding periods dg that would have been produced by the shadow effect. 

The first thing to note is that the function X~ in Eq. (134), considered as a 
function of x, is periodic with period 

d r = dg/n r (135) 
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which is n r times smaller than the period dg of the shadow effect grating. Unfor- 
tunately, this does not guarantee that f (X, te)  is periodic with period d r,  owing to 
the exponential term in Eq. (134). Under the transformation x ~ x + d r,  the ex- 
ponential term is multiplied by the phase factor 

exp (2"a'ir/nr) (136) 

which is a function of the summation index r. If the summation over r in Eq. (134) 
somehow was restricted to r = 0, the atomic grating would have period d r. Restrict- 
ing the summation to r = 0 can be accomplished by choosing the amplitude trans- 
mission function such that the product r/2[x 2 - (r/nr)d2]rl* 2 [X2 + (r/nr)d2] is nonvan- 
ishing only for r = 0. To simplify the discussion, we have taken m r =  1 
[L = L~(m,n)/nr)  ]. 

For MS consisting of slits and opaque strips, both the amplitude transmission 
functions r/j(x) and transmission functions Xj(x) are equal to the Heaviside step 
function 

rlj(X) = ~.(x) = 0 - (137) 
F 

where fj is the duty cycle of MS j. The functions { (xz/d 2) +_ (r/n r) } F shown in Fig. 
9 represent the profile of the second MS displaced by +__(r/nr)d 2. In the range 
0 -< x 2 < d 2, the product r/z(X 2 - (r /nr)dz)r/* 2 (x 2+ (r /nr)d  2) = O(f 2 - {(xz/d 2) + 
(r/nr)}F)O~2 -- I (xz /d  2) - (r/nO}F),  which represents a product of profiles of the 
second MS displaced by ___ (r /nr)d  2, vanishes for r r 0 provided that f2 is suffi- 
ciently small and provided that r/n r r 1/2 (if r/n r = 1/2, the gratings are dis- 
placed by d2/2 and overlap for any f2)" 

If 

f2 <- rain ,1 (138) 

the only regions where r/z[X 2 ___ ( r /nr)d  21 do not vanish are 

x2 [ r nr ] x~ [~r  ~r]  �9 1 - - - , f 2  + 1 and e 'f2 + (139) 
62 n T 

respectively. These two intervals have no common regions if f2 + 1 -  (r/n r) <- 
r/n r or f2 + (r/n r) <-- 1 - (r/nr); that is, if 

F 
f2 -< 1 - 2 - -  . (140) 

n T 

Inequality (140) must hold for all r # 0 to guarantee that the atomic grating has 
period d r = dg/n r. Clearly, inequality (140) does not hold for r = n r / 2  when n r 
is even. While this does not preclude the possibility of higher order gratings for 
n r even, it does suggest that we consider separately the cases of even and odd n r. 
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{x2/d2-a}F 

1-{ a}F t'2 
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FIG. 9. Plots of  the functions { (x2/d2) +_ a }F. The ampli tude t ransmission function r/2(x 2 _+ ad2) is 
nonzero in the shaded areas only. When  f2 < min ({a}r  - {a}F), there are no shaded areas in the 
vicinity of  the point x 2 = 0. If, also, f2 < I1 - 2{a}FI, the shaded areas have no common  points and 
the product  r/2(x 2 + ad2)rl2(x2 - ad2) vanishes for any x 2. 

1. n r O d d  

In this case, we write 

n r =  2 n ' +  1 (141) 

where n' is a positive integer or 0. For the summation range 0 <- r <- n T - 1 in 
Eq. (134), the minimum value of the right-hand side of both inequalities (138) 
and (140) is 1/n r, which occurs for r = 1 or r = 2n' in (138) and r = n' or 
r = n' + 1 in (140). Hence, provided that 

1 
f2 <- (142) 2n' + 1 

one can produce atomic gratings having period d T = dg/(2n' + 1) in the focal 
plane y = (m/n)L  for separations between the MS equal to L = Lz/ (2n '  + 1) or, 
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equivalently, for a Talbot phase (124) equal to 27r/(2n' + 1). Under these condi- 
tions, one omits terms having r # 0 in Eq. (134) and finds 

f(X'te) = j ( m  -- n)n v hs(W) 
s=0 

1 

hs(W) = dzO[fl'  - -  (S  -Jr- { Olt Z - -  W JF)  ] 

ce' = nva  = m-l(2n'  + 1)f 2, / 3 ' =  nv~ = j (m - n)(2n' + 1)f~ 

where ce and/3 are given by (96c), and dimensionless variables 

(143a) 

(143b) 

(143c) 

X 
W = 

have been introduced. Note that the ratio 

X 2 z = (144) 

a//3 = ce'/fl' = m f2 l _ _ m f2 d2 (145) 
m -  n f l j  m -  n f l d  I 

depends on the focal plane and ratio of slit widths. In a manner similar to arriv- 
ing at Eq. (102), one can obtain 

f (x , t )  = [ce'[/3']/+ { ~ '  }F[Of']I -~- S(w)] / [m(m - n) l j (2n '  + 1)2] (146) 

where S(w)  is given by Eqs. (101) with the replacements a ~ a ' , / 3  ~ / 3 ' .  
The amplitude of the grating (146) is maximum when m = n + 1, j -  l -  1, 

and 

1 
{Ce'}F = {/3'}F = ~ (147) 

for which 

2ql + 1 2q2 + 1 
f~ = 2(2n' + 1) '  f2 = 2(n + 1)(2n' + 1) (148) 

where 0 -< ql -< 2n', 0 --< q2 -< n are integers. Under these conditions, one finds 

f ( X ' t e ) -  qlq2 + -2 (ql + q2) + [ dl F - -  ~ 

This grating has amplitude 

A = 1/[2(n + 1 ) ( 2 n ' +  1) 2] 

/ [ (n  + 1)(2n' + 1)2]. 

(149) 

(~5o) 
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and a background term whose amplitude is (2q~q2 + q~ + q2) times larger than 
A. Ta lbo t -Lau  gratings for different values of the Talbot phase are shown in Fig. 
10. 

2. n r Even 

The atomic density patterns in Fig. 10 have been drawn for both even and odd 
values of n r. From this figure, one sees that qualitatively new features appear for 
even values of n r. When the Talbot phase dpr(m,n) = 17, 7r/3, 17"/5 (n T = 2, 6, 1 O) 
gratings having period dg, de~3, dg/5, or 

d r' = 2dg/nr = dg](nv/2) ( 151 ) 

are focused. When the Talbot phase dpr(m,n) = 17"/2, 17"/4, 7r/6 (n r = 4, 8, 12), the 
gratings are washed out entirely. To explain these results, one needs to return to 
the general expression (134). If 

n r =  2n' (152) 

where n' is a positive integer, one divides the sum over r in Eq. (134) into two 
parts, having 

r = n 'q  + r' (153) 

with q = 0 or 1, and with r '  restricted to the range 0 <- r '  <- n' - 1. In the second 
part (q = 1), one shifts the integration variable from x 2 to (x 2 + ~ d2), which 
leads to the same factors r/2, r/~, X1 in both the q = 0 and q = 1 terms. In this 
manner, one arrives at the expression 

1 n~12)(m~_dn'-l~od2dx 2 
f (X'te) = 2}n' (m -- n) r' =0 s=0 d2 

�9 { 1 + ( -  1) t~r' +n')mrm-l+s+[2n'(m-l(x2/dz)-(x~/d~))]t]} 

�9 e x p I T r i r ' I s + [ 2 n ' ( m - l X 2 - X  d2) 

�9 ( - - )  {j dl [ ( ( ~g)} ]]. (154) �9 7/2 x 2 +  r '  m r d  2 X1 _ s +  2n' ml x z -  
2n ' (m n)n r d22 F 

The transmission function X~ still has period dg/n r = dg/(2n'), but the first fac- 
tor in the integrand has twice this period, d r = 2dg/n r = dg/n'. As in the case of 
odd n r, one must  choose f2 sufficiently small to eliminate all but the r '  = 0 terms 



A T O M  I N T E R F E R E N C E  U S I N G  M I C R O F A B R I C A T E D  S T R U C T U R E S  4 4 7  

II 

o 

< 

,o L=LT ~, = -" 

0 
L=LT/5 - ~L ~ ~ 

~L 
0 

9 L=I-,r/lO ~ L=I.,r/11 

/4 

I" 

1 r 
�9 /13 -I.,r/i4 

x/ 

-. 15 -. 16 

FIG. 10. Atomic spatial distribution created in the focal plane Ye = 3 / 2 L  (m = 3, n = 2) by two 
microfabricated structures, having the same periods d I = d 2 and duty cycles fl = 1/2, f2 - 1/6, as a 
function of the separation L of the MS. From the shadow effect alone, one would expect an atomic 
grating having period d = d l /2 .  Matter-wave interference leads to higher order gratings if one 
chooses the distance L as an integral fraction of the Talbot distance (L = Lv /n  r = 4d~ /nrAdB  , n T = 
1 . . . . .  16), which corresponds to a Talbot phase q5 r = 2'n'/n r. For a sufficiently small duty cycle of 
the second MS, f2 -< 1/nr  (f2 <- 2 / n r ) ,  one observes gratings having spacing d r = d g / n r =  d~/2n r 
(cl r = 2dg/n  r = d l / n  r )  for distances between MS equal to odd (even) fractional parts of the Talbot dis- 
tance; that is, for odd (even) n r.  An exception is the case when n r is a multiple of 4 (L = L r / 4 ,  
L = L r / 8 ,  L = L r / 1 2 ) ,  where, for f2 --< 2/n  r ,  matter-wave interference leads to an entire washing out 
of the gratings. 
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in the sum to ensure that the atomic grating has period d r. For m r = 1 and 
r = r ' ,  inequalities (138) and (140) are satisfied if 

1 
f2 _< (155) 

2n' 

which is a sufficient condition for neglect of terms with r'  r 0 in Eq. (154). As a 
result, one arrives at 

L ~ '  hs(W ) (156a) f (X'te) -- 2)n' (m -- n) s=0 

h s(W ) = fo I dz[1 + (--1)n'mrm-l+s+[a'z-~ ' -- [S + {O~'Z- W}F]} (156b) 

a'  = nra  = 2n'm-lf2 (156c) 

fl '  = n r~  = 2n'~j ( m -  n ) f  l (156d) 

x 
w = - - .  (156e) 

dr 

This expression can be evaluated in the same manner used to evaluate Eq. (143), 
but the evaluation is more complicated owing to two factors, contributions hs(W) 
with s < [/3'] 1 are not independent of w, and, for s = [/3']/, one has to consider sepa- 
rately contributions from odd and even values of [a 'z  - w] r The  situation simplifies 
for integer fl', when the 0 factor equals 1 for s < / 3 '  and 0 for s = fl', independent 
of the values of z, w, and a ' .  This is the only limit considered in the section. For in- 
teger fl', one can carry out the summation over s in Eq. (156a). 

t3'-1 )s For even/3 ' ,  when ~s__0 ( -  1 = 0, the gratings are washed out and 

f ( x , t )  = f~f2" (157) 

This result is consistent with the vanishing of the atomic gratings in Fig. 10 for 
Talbot phases equal to rr/2, 7r/4, and 7r/6, corresponding to values of /3 '  equal to 
2, 4, and 6. 

When/3 '  is odd one finds 

f (x,t) = f l f 2 ( l + (-1)n'mrm-; ) a ' fl '  h' (w) (158a) 

{fo I; w}l h ' ( w ) -  a '  2 dzO - 2 F (158b) 
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where the equality 

(--1)[x]I=20[ 2 -- { 2 } ]  1 F  - -  (159) 

has been used. Equation (158b) can be reduced to Eq. (99) with the replace- 
ments/3, a, w ~ 1/2, a'/2, w/2. Using these values in Eqs. (101 b and c), one ob- 
tains, for { a'/2 }F X 1/2, 

' ( I o ' l  _ / w, 

h'(w) = 2~ 

- 

2 < w < l  
F 

1 < w <  1 + 2 [ a 2 } p  

1 + 2  < W < 2  
F 

0 < w < 2  - 1 
F 

2 - 1 < w <  1 
F 

1 + 2  < w < 2  
F 

(160) 

This expression describes an atomic grating having period A w =  2 or 
&x = dg/n', which is n' times narrower than that caused by the shadow effect. 
For the parameters chosen in Fig. 10, values of the Talbot phase are equal to 
dPT(m,n ) = zr/n'(n' = 1, 3, or 5), a '  = fl' = n', and the atomic density is given by 

f(X,te) = -~  1 -- ~ 2 -- 1 -- . (161) 
F 
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Since the atomic density is a periodic function of the distance between the 
MS having period L r, the dependence of the grating amplitude A at a given focal 
plane must also be a periodic function of L having period L r for a fixed value of 
the ratio Ye/L. One period of A(L) is shown in Fig. 11 at the focal planes Ye = 2L, 
3L/2. This dependence is plotted for values of L equal to rational multiples of 
the Talbot length L = (mr/nr)L r. One cannot expect the dependence of A(L) to 
be smooth, because the transmission function (137) is discontinuous; even small 
changes in the ratio m r/n r can lead to dramatic changes in the atomic density 
(134). 

C. COMPARISON OF THE TALBOT AND TALBOT--LAU EFFECTS 

Qualitatively, the transition from the shadow effect to the Talbot -Lau effect 
for a beam having a large angular divergence that is scattered by two MS 
parallels the transition from spatial modulation to Talbot self-imaging of a 
collimated beam that is scattered by a single MS. The similarities and dif- 
ferences of these transitions, which occur when the characteristic length 
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FIG. 11. Grating amplitudes A(L) at the focal planes Ye -- 2L and Ye = 3/2L as a function of the 

distance L between microfabricated structures. The MS have the same period (d~ = d 2) and duty cy- 
cles f, = 1/2,f2 = 1/4. 
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scale in the problem changes from L << L r to L -~ L r, can be summar ized  as 
follows: 

Transition from Shadow to Talbot-like Profile 
(collimated beam) 

Transition from Shadow Effect to Talbot-Lau 
Effect (divergent beam) 

Atomic density is a periodic function of the 
distance L between the MS and the screen 
having period L r = 2d2/AdW 

Higher order gratings (with respect to the MS 
grating) can be obtained at distances L = 
L r / n r ;  if, for example, n T is odd, an atomic 
grating having period d / n  r is produced if the 
MS duty cycle f < 1/n T . 

The atomic grating's profile is the same as MS 
profile, no compression occurs (see Fig. 3). 

Atomic density at a given focal plane y = ( m / n ) L  
is a periodic function of the distance L 
between the two separated MS, having period 
L r = (2d~/Ada)[7/j2(m - n)]. 

Higher order gratings (with respect to those fo- 
cused in the shadow effect regime) can be ob- 
tained at distances L = L r / n r ;  if, for example, 
n r is odd, an atomic grating having period 
d l / } n n  r is produced if the second MS duty cy- 
clef2 < 1/n r .  

The atomic grating's profile is the corresponding 
shadow effect grating's profile compressed by 
a factor n r (see Fig. 10). 

D.  ADDITIONAL EXAMPLES, INCLUDING A QUANTUM TALBOT -- LAU EFFECT 

To make some connection with previous work, we analyze the atomic density 
for the parameters of Eq. (111), corresponding to the T a l b o t - L a u  effect stud- 
ied theoretically by Carnal et al. (1995) and realized experimental ly by 
Clauser and Li (1994). The appropriate parameters are {m, n, j ,  l,j,l} = {2, 1, 
2, 1,1,1/2 }, 

dg = d,, LT(2, 1) = d~ Ada d 1 2d 2. (162) 

When the distance between the MS is L = LT(2,1)/2, corresponding to thr = 7r 
(the case analyzed by Carnal et al., 1995), one has n T = 2 n ' =  LT(2,1) /L = 2, 
and the corresponding values of a '  and/3'  obtained from Eqs. (156) are 

a '  = 2f2, /3' = 2fl. (163) 

As in Carnal et al. (1995), we choose f2 = 1/2 andf l  = 1/2 or f l  = 1/4. To apply 
the results of Section V.B.2, it is necessary that f2 -< 1/nr = 1/2; clearly, this re- 
quirement is met. 

When f~ = 1/2, the parameter/3 '  is an integer (fl' = 1) and one can use Eqs. 
(158) and (160) to obtain the atomic density 

f(X,te) = ~ 1 -- -- 1 (164) 
F 

coinciding with the profile obtained by Carnal et al. (1995).  Since, in this case, 



452 B. Dubetsky and P. R. Berman 

both parameters a '  and fl' are integers, the shadow effect does not lead to the 
any atomic grating (see later). The grating (164) arises entirely as a result of 
matter-wave interference. 

Whenf l  = 1/4, the parameter fl' = 1/2, and one has to return to Eq. (156a), in 
which only the s = 0 term in the sum contributes. Carrying out the integration in 
Eq. (156b), one finds 

0 forI: ] 1 < - -  

F 4 

F 4' f o r ~  <-- e <---2 

f (x,t ) = 
1 1 [~} 3 

- -  _ ~  ~ -  
4' for 2 r 4 

- -  , f o r - - -  < -- 1 
1 - -  d l F  4 F 

(165) 

coinciding with the distribution calculated by Carnal et al. (1995). To compare 
this profile with that caused by the shadow effect, one finds from Eqs. (102) and 
(101d) that the shadow effect distribution function is given by f(X,te)[shado w = 
f ( x -  dl/2,te). Therefore, owing to matter-wave interference, the atomic grating 
(165) is shifted by a half-period from the grating that would have been produced 
by the shadow effect alone. 

In general, the atomic gratings produced when a beam scatters from two 
separated MS cannot be attributed entirely to quantum effects, since the clas- 
sical shadow effect contributes to grating formation. If the parameters are 
chosen in such a way that the classical shadow effect vanishes, however, then 
any atomic gratings formed can be attributed solely to quantum matter-wave 
interference. We already have alluded to this result. Returning to Eqs. (10 l a) 
and (102), one finds that the shadow effect grating S(w) disappears if the pa- 
rameters a = m-l f2 or ~ = j (m - n)fl are integers. One can guarantee that a is 
integral by choosing 

1 
fl =f2  = 2 '  n 1, m = 2, j 1, l =  1 (166) 

which corresponds to Ye = 2L, d 1 = d 2, j = l - -  1, a = 1, 13 = 1/2, and a Talbot 
phase ~b r = 2"rr[L/Lr(2,1)]. The atomic density in this focal plane as a function 
of Talbot phase is shown in Fig. 12. 
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FIG. 12. Evolution of the atomic spatial distribution at the echo point t e = 2T (focal plane 

Ye - -  2L) induced by two separated MS having the same periods and duty cycles fl =f2 = 1/2, as a 
function of the distance L between the MS. No grating is produced by the classical shadow effect 
for these parameters�9 The atomic gratings arises solely from matter-wave interference. The 
atomic grating as a function of L is shown for L < (1/2)L T in steps of (1/31)L T starting from the 
shadow regime�9 

VI. Talbot and T a l b o t - L a u  Effects in a Thermal  Atomic  Beam 

U p  to this point ,  all e f f ec t s  re lated  to a d i s tr ibut ion  o f  l o n g i t u d i n a l  v e l o c i t i e s  u in 
the a t o m i c  b e a m  h a v e  b e e n  n e g l e c t e d .  A v e r a g i n g  o v e r  u is not  impor tant  for  the 
s h a d o w  ef fec t ,  s i n c e  the f o c a l  p l a n e s  are l o c a t e d  at Ye = (m/n)L, i n d e p e n d e n t  o f  u. 
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In both the Talbot and Talbot-Lau effects, the Talbot phase depends on the Talbot 
length L r = 2d2/hda , which, in turn, is proportional to u owing to the presence of 
the de Broglie wavelength. To achieve the maximum contrast in the Talbot and 
Talbot-Lau effects, it is necessary to longitudinally cool the atomic beam 
(Clauser and Li, 1994). The results of Sections IV and VI must be averaged over 
u once changes in the Talbot phase originating from the distribution of longitudi- 
nal velocities becomes of order unity. For a thermal beam having a Maxwellian 
distribution over longitudinal velocities, the averaging can be carried out using 
the function tabulated by Kruse and Ramsey (1951). For other distributions, nu- 
merical integration is needed. Such calculations are not included in this contribu- 
tion. 

Instead, we examine the role of the longitudinal velocity distribution when 
the width ~ of the longitudinal velocity distribution is on the order of the average 
velocity, 

---, u (167) 

for distances 

(D/d)L r >>y >>L r (168a) 

in the Talbot effect and separations L between the MS 

(D/d)L r >>L >>L r (168b) 

in the Talbot-Lau effect. We want to examine whether or not it is possible under 
these conditions to obtain atomic gratings having periods smaller than the MS 
producing the scattering. 

To understand how the gratings can survive the average over longitudinal 
velocities u, one should note that the atomic density (30) and not the wave 
function amplitude is averaged. The phase factors in the atomic density de- 
pending on the Talbot phase can be unity for specific combinations of the spa- 
tial harmonics in the atomic wave functions. The way in which this can be 
achieved is illustrated in Fig. 13. When, on the screen, one combines compo- 
nents of the scattered atomic states associated with momenta hk and - h k ,  
2hk  and - 2 h k ,  and the like, the amplitudes of the combining states acquire 
the same Talbot phases, since the energy of the scattered atoms do not depend 
on the direction of scattering. The interference from these pairs of states leads 
to a superposition of atomic gratings having period d/2, d/4, and so forth; the 
overall period of the grating is d/2. Gratings originated from the Ta lbot -Lau  
effect can survive in a similar manner. 
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FIG. 13. Origin of the Talbot effect in a thermal beam at an asymptotic distance L >> L r. The in- 

cident beam of atoms having momenta p splits into a set of scattered beams having momenta 
p +_ nhk. The wave functions of the states associated with momenta p + hk and p - hk, p + 2hk 
and p - 2hk . . . . .  p + nhk and p - nhk acquire the same Talbot phase and therefore no dephasing 
between these states occurs, independent of the distance L and atomic velocity u. Interference of 
these states leads to the second, fourth . . . . .  harmonics in the atomic distribution, which form an 
atomic grating having period dg = d/2 on the screen. 

A. ATOMIC DENSITY PROFILE FOR A THERMAL BEAM 

1. T a l b o t  E f f e c t  

Cons ide r  first the Talbot  effect; that  is, the a tomic  grat ing p roduced  when  an 
a tomic  b e a m  having  negl ig ib le  angu la r  d ivergence  but a finite spread of  longi tu-  
dinal  veloci t ies  is scat tered by a M S  hav ing  per iod  d. For  a given u, the a tomic  
densi ty  in the p lane  y = ut  is g iven by (see Eqs. (28) and (30)) 

fu (x , t )  = ~ a  "On'O~n ' exp [i(n - n ' ) k x -  i(n 2 -  n'2)f~t(u)] 
n , n  ' 

(169) 

where  the Talbot  phase  d~t(u) = ooky/u, as given by Eq. (29), is a func t ion  of  u for 
a fixed y. Recal l  that 'l~n is a Four ie r  c o m p o n e n t  of  the ampl i tude  t r ansmiss ion  
funct ion  r/(x). Since the Talbot  phase  is m u c h  greater  than uni ty  in the a symp-  
totic region  (168a),  the dis t r ibut ion (169) osci l la tes  rapidly  as a func t ion  of  u. 
Af ter  averaging over  u, a nonze ro  resul t  arises f rom only  those  te rms hav ing  

n '  = •  (170) 

A cons tant  background  te rm ]r (for a MS consis t ing  of  an array of  slits, )~ is equa l  
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to the duty cycle f of the MS) corresponds to contributions with n' = n, and an 
interference term [f(x,t) corresponds to contributions from n' = - n .  Neglecting 
all other terms, one finds 

f (x,t)  = ]~ + f (x,t) ,  (171 a) 

where 

. -d-  X(X') 

and 

a dx' s  dx" 
f ( x , t )  = --~ 7 "q(x')r/*(x") s exp [ ink (2x  - x'. - x")]. 

n:/:O 

The atomic density profile has a period given by 

(171b) 

(171c) 

d 
d = - .  (172) 

2 

Note that the density profile is independent of t for the times t >> L r / u  under 
consideration. 

To evaluate the atomic distribution (17 l a) it is convenient to introduce new 
variables 

1 
= 2 (x' + x") .~= x ' - x " .  (173) 

After adding and subtracting a term having n = 0 in Eq. (17 l c), one can carry out 
the summation to obtain ( d / 2 ) s  s ~ - x - sd/2),  making use of Eq. (40). Switching 
integration variables from ( x ' , x " )  to (~,J), one sees that the 6 functions having s = 0 
and 1 are the only ones that contribute to the sum, and it follows from Eq. (171 c) that 

where 

f (x,t)  = f - fo ~dx' -d- n(x') (174) 

F(N) = r/* 
]<2min(x,d-x) d r/ 2 + ~ - . (175) 

For a transmission function corresponding to a periodic array of slits having duty 
cycle f, one finds if  = fd  o ( d x ' / d ) x ( x ' )  = f ,  and 

F ( x )  = 2 - 2 x e -  for ~ Nf .  (176) 
F 
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When f <  1/2, the two F functions in Eq. (174) do not overlap with one another, 
and the atomic density is given by 

r 
w, f o r 0 < w <  f 

2 

f (x , t )  = f (1  - f )  + 2 
f 

f -  w, for c < w < f  (177) 
2 

1 
0, for f <  w < -  

2 

where w = 1/2 {2x/d}F. This function has period d/2. For f >  1/2, one arrives at 

f (x,t) = f(1 - f )  + 2 

the distribution 
r 

1 
f - - - -  2 '  

W, 

f o r 0 < w < f - -  

1 f 
for f -  - < w < - (178) 

2 2 
_ 1 

f - w ,  f o r f <  w < - 
2 2 

which also has period d/2. The amplitude of the atomic grating (177) and (178) 
is given by 

a = min [f,(1 - f)] .  (179) 

The manner in which the atomic density profile changes as y varies from y << L T 
to y >> L T is shown in Fig. 14 for several values of the duty cycle f. 

2. T a l b o t - L a u  Effect 

To evaluate the Talbot-Lau density profile in the asymptotic limit (168b), one 
must return to Eq. (123) and average it over longitudinal velocities. Using the 
Fourier expansion of the amplitude transmission functions in Eq. (123) and set- 
ting the smooth envelope function f ( x )  equal to unity, one finds 

f(X,te) = 

Z exp (iq[kgx - chT(m,n;u)(2n2 - m-lq)])X~ m ,,~2) [,,~2) _ 1. (180) 
- n)q  "tn 2 "In 2 - m l q  j 

q ,n 2 

where qbr(m,n;u) is given by (124). 
On averaging over u for qbr(m,n;u) >> 1, one finds that only those terms in the 

sum having q = 0 or 

n 2 = ml 2, q 4 :0  (181) 
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FIG. 14. Talbot effect in a thermal beam. The initial atomic distribution (dashed lines), created 

just after passing through a microfabricated structure having duty cyclefand period d, is transformed 
into a second-order grating (having period d/2) at distances much larger than the Talbot distance ow- 
ing to matter-wave interference. 

contribute to the density. The q = 0 term is a background, given by fl f2 [~ is de- 
fined in terms of Xj in the same way that j? is defined in terms of X 
in Eq. (171 b)], while the terms satisfying Eq. (181) lead to the atomic grating. 
Explicitly, one finds 

['2 12] f(X'te) = fl -- -~2 rlz(X2) + ]f(x,t e) (182a) 

f(X,te) = ~ exp - (l) ( iqkx)x_) (m F (2) -n)q mlq ( 1 8 2 b )  
q 

where the summation over q includes q = 0 and other values of q leading to inte- 
gral n 2 in Eq. (181). The function F~ ) is a Fourier component of the function 
Fz(x) defined in terms of r/z(X) in the same way that F is defined in terms of r/ in 
Eq. (175). The density is independent of t e for spatial separations L >> L r of the 
MS. 

When ml is even all q are allowed according to Eq. (181). When ml is odd, 
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only even values of q contribute, which means that the grating (182b) has a pe- 
riod equal to dg/2. Equation (182b) has the same structure as Eq. (85). Repeating 
the calculations leading to Eq. (93), one arrives at the formula 

1 J(ms-~0-1 f0~/2 dx2 [~ dl [ I( x2 ~gg)]]} f ( X ' t e ) = j ( m  - n) -~2 Fz(Xz)X'  (m - n) s +  ~ m-l-~22 - r 

(183) 

where 

1, for ml even 
sc = 2, formlodd " 

(184) 

Consider now the case of MS having transmission functions (94), when the 
function F2(x) is given by fight-hand side of Eq. (176), with d and f replaced by 
d 2 and f2. Using dimensionless variables 

w = ~ / d g ,  z - -  x2/f2d 2 (185) 

one arrives at equations that are the analogs of Eqs. (96); namely, 

f (X' te)  = f l f 2 (1  -- f2) + }e(X'te) (186a) 

f ( X ' t e )  = ) ( m  - n) = hs(w) (186b) 

fO 
hs(W ) = dzP(z )O[~  - (s -Ji- { olz - W}F)] 

:,z,:4i Zlz 
(186c) 

1 
for z X - (186d) 

2 

a = ~m-lf2, ~ = j (m - n) f l .  (186e) 

Omitting further calculations, which are essentially the same as those used to de- 
rive Eqs. (101) and (102), one finds 

f2 ( _ _  n) [~l, ) 
f (X ' te )  = ) ( m  [/311 + E F(as'bs)  + f '(w) (187) s=l 

where 

fa b 
F(a ,b )  --  dz/~(z) (188) 
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is given by 

I 1 
(b 2 - a2), max  (a,b) --< 

1 
F ( a , b ) =  " 4 / b - 2 ( a  2 + b  2 ) -  1, a - - < ~ - <  b 

1 
(b - a)(2 - b - a) min  (a,b) --> 

the quanti t ies a s and b s are given in the appendix  by Eqs. (A3) and (A5),  and 

(189) 

In principle,  one can use Eqs. (182a),  (187), and (190) to derive a general  an- 
alytical express ion  for the a tomic densi ty distr ibution,  but given the large num-  
ber  of  cases, such an express ion  is of  l imited use. Instead,  one can write  a com-  
puter  code based  on these equat ions  to obtain the a tomic densi ty profile. Us ing  
this code,  we varied the duty cycles of  the MS to opt imize  the a tomic  grat ing 
ampl i tude in the focal planes y = [(n + 1)/n]L for n = 1 - 4  and equal  per iods  of  
the MS,  j = l = 1. Calculat ions  show that one has to choose  

1 
f l  : f 2  = ~ (191) 

(; (at~jt + 1,1), f o r 0 -  w < - 1 - { ~ } F  

(ai~11 + 1,1) + F(O,bo), for 1 - {J~}F ~< W ~ <  { a } F  

f'(w) = ~ F(O'b~ for {a}F<--W<-- 1 + {a} r ,if { f l } F - - > m a x  

/ -- {J~}F ( { ~ } F  '1 --  {Of}F) 

F(O,bo) + F(b[,ll,1), for 1 + {a} F - { I ~ } F  

-< w -- 1 (190a) 

tF(at,~t ! for0- -  W ~  < { O f } F  
1,1), + 

0 ,  for {t~}F ~< W ~  < 1 -- { ~ } F  , i f  { a } r ~ <  { ~ } F  
f ' (w)  = F(O,bo), for 1 - {~}r ~< W ~< 1 + {a} F <-- 1 - { O t } r  

- - { J ~ } r  
~ F(O,bo) + F(bl~ll,1), for 1 + {a} F - {fl}r < -- W-- 1 (190b) 

IF(alall for0 ~ 142 ~ {Ot}F -- { ~ } F  l'bla] ! + + I 
F(al,~l t + t,l), for { a }  g -- { f l }F  < - -  W - -  < 1 

f'(w) = - { ~ } F  , i f l  -- {Of}F<~ {~}F  

~ < { a }  F 
1F(O,bo)+F(aI,~ll 1,1), forl--{fl}F<--w<--{a} F 
~ F(0,bo), for {a} F --< w --< 1 (190c) 

(F(al,~lt+ l), for0 <-w-< {alF-- {fllF l ,b[a] /+ 
-- < W  < { a }  i f { [ 3 } r < m i n ( { o t }  r f'(w) = )F(ai~i/+ l ' l ) '  for {Ot}F {J~}F- -  - -  F ' - -  ' 

0]q, for {Ot}F ~< W<~ 1 - { ~ } F  1 -- {O~}F ). 

(0,b0), for 1 - {fl}r < -- W < -- 1 (190d) 
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in all cases except n = 3, where the optimal duty cycles are given by 

1 1 
fl 2 '  f2 - 4" (192) 

For these optimal values of the duty cycles, it is a simple matter to obtain an- 
alytical expressions for the atomic density profile in a given focal plane. For ex- 
ample, at the echo plane y = 2L (n = 1, m = 2) the parameters a and/3 equal 1 
and 1/2, respectively, and the atomic density is given by 

f ( X ,  te) ----8 + -4 F ( a l ' b l )  + 0 w - [F(0,b0) + F(bl,1)] (193) 

where w = {x/d~} F, b0,1 = w - T -  1/2, a 1 = W. Using Eq. (189) one arrives at the 
atomic grating profile 

1 {~ + 2w(1 - 2w)} 1 
f (X' te)  = 4 - -  2w(3 - 2w) for w X ~ .  (194a) 

Similar calculations leads to the following atomic grating profiles: 

1 [ 9  + 2w(1 - 2w) ]  1 
f (X' te)  -- 3-6 [ 11 -- 2W(3 -- 2W)J ~ for w X ~ (194b) 

at the focal plane y = (3/2)L, where w = {4x/dl}F; 

1 { ;  + w(1 - 2w)l  1 
f (X,te)  "-- ~ - -  w(3 - 2w) J for w X ~ (194c) 

at the focal plane y = (4/3)L, where w - {3X/dl}F; and 

1 {25 + 2w(1 - 2w) 1 1 
f (X' te)  = ~ 27 -- 2W(3 -- 2W)J for w X ~ (194d) 

at the focal plane y = (5/4)L, where w = { 8x/d 1 } F" These atomic density profiles are 
shown in Fig. 15. Since the optimal duty cycles, (191) and (192), correspond to the 
limit where the shadow effect vanishes, the density profiles (194) cannot be vestiges 
of the shadow effect. They must originate from matter-wave interference. One can 
compare the density profile (194b), valid for distances L between the MS larger 
than the Talbot distance, with that of Fig. 10 for L --- L r (Talbot- Lau effect). 

VII. Conclusions 

Atom interferometry is an emerging field of atomic, molecular, and optical 
physics. In this review, we have focused on the scattering of atoms by one or 
more microfabricated structures. We have seen that the scattering can be de- 
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FIG. 15. Talbot-Lau effect in a thermal beam. The atomic density distribution at different focal 

planes Ye are plotted for optimum duty cycles of the separated microfabricated structures ~1 - 1/2 
and f2 = 1/2 in all cases except for focal plane y = 4/3L, where f2 = 1/4). The distance between MS 
is assumed to be much larger than the Talbot distance. In spite of this, one can observe higher order 
spatial gratings. For the parameters chosen, the contribution to the atomic grating from classical scat- 
tering vanishes and the gratings arise solely from matter-wave interference. 

scribed in purely classical terms for characteristic length scales L << L r ,  where 
L r is the so-called Talbot length. For L >~ L r, a classical description of the atomic 
center-of-mass motion is no longer adequate. Our approach has relied on an in- 
terpretation of the phenomena in terms of the recoil an atom acquires when it is 
scattered from a MS. With this approach, we could make a connection with the 
theory of coherent transients, for which a rich literature has already been devel- 
oped. We have considered both collimated beams (Talbot effect) and beams hav- 
ing large angular divergence (shadow effect, Talbot-Lau effect) and have al- 
lowed for a broad distribution of longitudinal velocities in the atomic beam 
(Talbot and Talbot-Lau effects in a thermal beam). The next step would be to 
extend our considerations to regimes corresponding to Bragg scattering and 
Fraunhofer diffraction, allowing for an analysis of atom interferometers that split 
atomic wave functions into nonoverlapping paths. 

Scattering of atoms by MS shares both similarities and differences with scat- 
tering of atoms by standing wave optical fields. Similarities include periodic re- 
covery of the atomic interference pattern at multiples of the Talbot distance (32) 
(or (127) for the Talbot-Lau effect), a compression of the atomic gratings with 
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respect to the periods of the MS or SW, spatial separation of the higher order 
atomic gratings in different focal planes, and splitting of the incident beam into 
an infinite set of scattered beams having momenta (p • n hk). The differences 
are due in large part to the nature of the scattering. The MS produce a piecewise 
continuous atomic density profile, while the SW produce a smooth atomic den- 
sity profile. As a result, the decrease in period relative to that of the classical 
shadow effect, observed in the Talbot-Lau effect using MS, does not occur for 
scattering by standing wave fields. Moreover, the possibility of observing a Tal- 
bo t -Lau  effect caused entirely by matter-wave interference (see Fig. 12) does 
not occur for the smooth amplitude modulation by SW (Dubetsky and Berman, 
1994). In the case of scattering by MS, the fact that the shadow effect does not 
give rise to atomic gratings in the focal plane y = 2L for MS having duty cycles 
f / =  1/2 is directly related to the stepwise amplitude modulation of the atomic 
beam produced by the MS, as is evident from Fig. 7. 

For scattering by MS, the qualitative nature of the atomic density profile de- 
pends on the properties of the incident atomic beam. When one observes the Tal- 
bot effect using a monovelocity beam, the atomic gratings are discontinuous 
functions (see Fig. 3), but when one averages these gratings over longitudinal 
velocities, the atomic density is transformed into a piecewise continuous profile 
(compare with Fig. 14). Similarly, the shadow effect and Talbot-Lau effect 
atomic gratings (which are averaged over transverse velocities) are piecewise 
continuous, but they are transformed into profiles that are discontinuous only in 
the second derivative when averaged over longitudinal velocities (compare Figs. 
10 and 15). These examples show that averaging over transverse or longitudinal 
velocities tends to smooth out the atomic density profiles. 

It is clear that many of the situations analyzed in this chapter have direct appli- 
cations to atom lithography. We can expect that future developments in this emerg- 
ing field will incorporate many of the basic ideas encountered in our discussion. 

Appendix 

A method for calculating the integral 

fo 1 h[~]t(W ) = d z  O[ { j~ } F --  { OlZ - -  W } F] (A1) 

with 0-< w-< 1 is presented here. The function 0 is the Heaviside step function 
and [a] 1 and { a } F refer to the integral and fractional parts of a. Depending on the 
values of the parameters a, /3, and w the integrand in this equation can jump 
from 0 to 1 several times inside the range z E [0,1 ]. The value of the integral is 
the total length of the intervals in this range where 

~(Z) ~- { OIZ - -  W } F  ~ {]3}F. (A2) 
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To determine this length one needs to find the values of  z for which the function 
{ a z  - w }  F equals 0 and where it equals {fl}F" This function is shown in Fig. 16. 
When  a z  - w = r - 1, where r is an integer, ~'(z) = 0; that is, zeros of st(z) are 
given by 

Z = a r = ( r -  1 + w ) / a .  

For z > a r the function ~'(z) evolves as 

and equals {/3 } F at the point 

(A3) 

( ( z )  = Ce(Z - -  a r )  (A4) 

Z "- b r - -  a r + {fll_______FF = ( r -  1 + w + Ifllr)/C~. ( A 5 )  

Since contributions to the integral (A1) vanish unless a r ~  1 and b r ~ O  and 
since 0 -< w -< 1, it follows from Eqs. (A3) and (A5) that 0 -< r -< (1 + [a]t). For 
the time being, we assume that a > 1. 

All intervals [ar,br] totally or partially within the range [0,1] contribute to the 
integral (A1). Let us denote the contribution from the range [ar ,b r ]  b y  A r and the 
total value of  the integral by 

hits] (w) = Ar. (A6) 
r - " 0  

{ ocz -w  }F z = l  

I I 

{13}F - . . . .  

I i  ', l ;  I / ,  
r ', I I ', I ( (  

, I /  ; I /~  
I 1 I �9 / 

boa1 bl ( 

_,/_ j / ,, ',/! r I I ' ,  ' ' , ' , / ~  
I I I I 

' ' /  ' f' [ Z I dr  I I ,.._ 

at.~, bt.~at,,j.,., b~%+l 
FIG. 16. The function { a z  - w) F undergoes jumps at points a r -- ( r -  1 + w ) / a  and is equal to 

{/3} F at the points b, = ( r -  1 + w + { f l } r ) /a .  This diagram can be used to obtain contributions to 
the integral appearing in the theory of the shadow effect and Talbot-Lau effect. 
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W h e n  a r > 0 and b r < 1 the interval [ a r , b r ]  lies entirely to the range [0,1 ] and 

{/31F 
A r = b  r - a  r =  ; a r > O  and b r < l .  (A7) 

OZ 

When 1 > a r > 0 and b r ~ 1, the maximum value of z contributing to the integral 
(A1) is z = 1 and 

A r = 1 - ar; 1 > a r > 0 

Similarly, for a r < 0 and 0 < b r < 1, 

and b r - -  1. (A8a) 

A r = br; a r < 0 and 0 < b r < 1 (A8b) 

a n d  f o r  b r ~ O, 

A r -- 0; b r <-- O. (A8c) 

For given r, a, and/3, the values of a r and b r c a n  depend on w, giving rise to a 
dependence of hro, on w. Note that ( b  r - ar) ~ 1, which follows from Eq. (A5) 

tpJ  ! 

and the assumption that ce > 1. 
We first consider the range 1 <- r <- [a] I - 1, for which b r < 1 and a r > 0 for 

any w e [0,1]. It then follows from Eq. (A7) that the total contribution A' to the 
integral (A1) from the region [a~,b[,~l,_ 1] is given by io l 

A '  = A r "-- { ]~]F([O~]I -- 1)/oz. (A9) 
r= l  

This contribution is independent of w and represents a constant background 
term. 

Since r-< [a] t + 1, the only remaining contributions to the integral can come 
, and A. .  l These terms depend on w and represent the atomic from A 0, A[~I, _ [~Jt + " 

gratings. Let us first consider A 0. If r = 0, b o = ( - 1  + w + { ~ } F ) / a  < 1 and 
a o - ( -  1 + w ) / a  < O. It then follows from Eqs. (A8) that 

A0 = {(w + {]~}F0 - 1 ) / a  for w -->forw --< w ( l  -- {~[3}F ) ~ W. (A10) 

We now turn our attention to A[~], and A[~]~ + 1" It follows from Eq. (A3) that 
a[~, ~. [0,1 ]. Only the points b[,~l ' , a[,~l ~ + 1, b[a]~ + 1 c a n  lie to the right of the range 
[0,1], which occurs when 

w ~ ( { a }  F +  1--  {/3}F ) ~ W  1 
w - [c~} F - w 2 

W ~  ({O~}F--  { f i ]F )  ~ W3 ( A l l )  
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respectively. From Eqs. (A8), one finds that AI~ b, and Al~b+ ~ are given by 

AtalI= I 

1 
b t . l , -  at.l, = { ~ } F / c e  w % w  1 

{ c e } r -  W q- 1 1 1 - a t . l ,  = ce 

(A12a) 

W 3 ~ 0 ~ W - - ~  W2; [{/3}F-->max({ce}F,1-  {Ce}F)] (A14a) 

w3~--O~--w2~w [{Ce}F ~< {f~}F ~ 1 -- {Ce}F ] (A14b) 

0 ~  W 3 ~ W  ~ W2; [1 -- {O~}F~ {/~}F ~ {Ce}F (A14c) 

0--< w3--< w2 - < ~ ;  [{fl}F<--min({a}F, 1 -- {Ce}F)]" (A14d) 

Consider, for example,  the case (A 14a) for the range of w given by 

0 - < w < - - ~ .  (A15) 

For in teger /3 ,  this co r r e sponds  to the ent i re  range  of  a l lowed  w, 0 <- w--< 1. 
F rom Eqs. (A10)  and (A12)  one finds A 0 = 0, A t , b =  {fl}F/a, and At,,b + 1 = 
({a}F -- W)/ce. As a result ,  one  f inds that  A(w) = A o + Arab+ At,,1,+ 1 is g iven 
by 

A(w) = ({~}F "1"- {CeIF-  W)[Ce. (A16) 

By combining Eqs. (A9) and (A16), one obtains 

h[~]l(W ) --  ({[~}F[Ce]I -~- { a } F -  W)//Ce. (A17) 

Even though Eq. (A17) has been derived for ce >- 1, one can verify that it holds 
for any arbitrary ce. 

Other values of  w and other cases ( A 1 4 b - d )  can be considered in the same 
manner. As a result, one arrives at Eqs. (100) and (101) of  the text. 

0 W ~ W  2 

{ CeIF --  W 
= - = w 3 < w < w 2 (A12b) A[ab+ 1 1 a[a]t+ 1 ce 

bt~l,+l - at~l,+l = {[3}F/Ce W < W 3. 
In order to sum A ,  At_,, and A , ,  , it is convenient  to separate regions of  a and 0 t~J~ tail+ 1 
/3 according to the relative values of  w l, w 2, w 3, and ~.  Since 

w 3 --- w 2 -< w 1 (A13a) 

w 3 ----- ~ ----- w 1 (A13b) 

and w 2 = { a} F >- O, one can distinguish four cases 
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A 

Aberration 
in interferometers 

chromatic, 122, 124-125, 147 
coma, 122, 124 
gravity induced, 138-140 

in lens for atoms 
astigmatic, 180 
chromatic, 180 
diffusive, 181 
spherical, 180 

ac Stark shift, 281,286, 368, 377-378, 381-388 
Adiabatic 

approximation, 175 
elimination, 259, 377 
rapid passage, 289 
transfer, 381-389.  See also Dark state 

ac Stark shifts in, 381-382 
criterion, 384 
efficiency, 383 
in atom interferometer, 385-389 
intensity sensitivity of, 381-382 
theory of, 382-385 

Aharonov-Bohm effect, 288, 340 
scalar effect, 340, 343 

Aharonov-Casher effect, 73,286, 343 
Aliasing. See Self-image 
Anandan force, 75 
Antifringes. See Fringes, reversed 
Anomalous transmission, 114 
Architecture of interferometers. See 

Interferometer, architecture of 
Argon. See also Atomic beam 

level scheme, 87 
transition coupling strengths, 88 

Atom grating. See Grating, formed by matter 
wave 

Atom interferometer. See Interferometer, atom 
Atom laser, 205-  213,289 

analogy to thresholdless laser, 211 

Bose enhancement factor, 211 
comparison with Bose-Einstein condensation, 

213 
gain, 207 
mode competition, 211 
photon reabsorption, 213 
threshold behavior, 211 
threshold pump rate, 212 

Atom lithography. See Lithography, atom 
Atom-photon pairs 

correlation. See Correlation, atom-photon 
EPR experiments with, 201 
discrete space for, 200 
identification, 199 

Atom resonator. See Cavity, for matter waves 
Atom wave packet 

current, 264 
group velocity, 266 

Atomaser. See Atom laser 
Atomic beam 

brightness of, 124, 141, 144 
deflection due to photon recoil, 37, 57 
laser cooled, 322-326 
of Ar, 88 -90  

detection, 90 
optical pumping, 7, 56 
source 

coherent, 289 
for Ar, 89 
for K, 144, 145 
for Na, 143, 144 
for Ne, 153 
oven, 140, 141,145 
supersonic, 5 
using laser cooling and trapping, 148, 156 
using velocity selection, 141 

spin polarization, 7 
velocity spread, 31 

Atomic clock, 354 
Atomic mass measurement. See Recoil, shift, 

measurement of 

469 
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B 

Beam, atomic. See Atomic beam 
Beam combiner. See also Interferometer, atom; 

Grating, diffraction, for atoms 
using light, 10, 11,101,304 
using mechanical grating, 94, 95,257 

Beam, molecular. See Molecular beam 
Beam splitter for matter waves 

diffractive, 257 
generalized, 257 
using light 

dependence on photon statistics of light, 
106-107 

in Raman-Nath approximation, 309 
off-resonance, 102 
on-resonance, 114 
principle, 297, 301 
pulsed version, 305-307 
running wave field, 262, 296, 301,304 
standing wave field, 100-103, 195,296, 

307,407,408 
theoretical description, 304- 310 
types, 296 
using dark resonance, 296 
using Raman transition, 296 

using mechanical grating, 10, 11, 94, 257, 
408. See also Interferometer, atom; 
Grating, diffraction 

Berry's phase. See Phase, geometrical 
Blackbody radiation, 335,356 
Bloch states, 207 
Bord6 interferometer. See Interferometer, 

Bord6 
Bose-Einstein condensation, 289 
Bragg. See also Atom laser 

angle, 258 
condition, 258,308 
diffraction 

first order, 260 
second order, 260 

scattering of matter waves, 112-117, 413, 
462 

time-dependent, 116 

C 

Calcium, 318, 351. See also Atomic beam; 
Frequency, standard 

dipole moment, 338 

polarizability, 334 
use in interferometer, 318 

Cascade transition. See Three-level system 
Cavity 

for matter waves, 206, 208- 210 
loss, 209 
modes, 208- 210 
quality factor, 209 

Coherence 
function, transverse 

definition, 191 
measurement of, 192 

length, 3 l, 32, 302 
of matter waves, 53 

loss due to scattering, 55, 60, 107, 194 
recovery thr, ough selective observation, 61 

spin, 240, 243,245,247,248,249, 251. See 
also Interferometer, Stern Gerlach 

criteria for maintenance of, 246-248, 251 
definition, 243,249 
for arbitrary spin, 249, 250 
loss of, 244, 245,248, 251 
time dependence of, 245 

Collela, Overhauser, and Werner (COW) type 
experiments. See Inertial sensing using 
interferometers 

Collimator, 122-128 
through-put limitation set by, 123 

Complementarity, 218, 219, 222, 232, 253, 
349-351 

and Welcher Weg information, 222, 232 
used to explain coherence loss, 53, 56, 222, 

232 
Contrast in matter wave interferometer. See 

Interferometer, atom, contrast in 
Contrast interferometry. See Interferometry, 

contrast 
Coriolis acceleration. See Inertial sensing using 

interferometers 
Correlation 

atom-photon, 190 
first-order, 219 
function 

for single-photon counting, 220, 221,222 
for two-photon counting, 224 

of signals at different detectors, 223, 224, 
226, 227,228 

second-order, 218 
two-atom, 164 

intensity of, 164 
spectrum of, 165 



Index  471  

Cowley and Moodie. See Fourier series, use in 
Talbot effect 

Curved space-time. See Dirac equation 

Dark state, 384-389. See also Adiabatic, 
transfer 

Delayed choice, 222 
de Broglie 

wave. See Matter wave 
wavelength, 125, 138-139, 294, 300 

as function of mass and velocity, 125 
scaling of fringe pattern in Talbot effect 

with, 125, 133-135 
de Sitter precession, 286 
Differential force interferometry. See 

Interferometry 
Diffraction of matter waves 

Bragg. See Bragg, diffraction 
by beam splitter. See Beam splitter for matter 

waves 
dynamical theory of, 113,262 
Fraunhofer, 122-128,407, 414, 416, 462 

order, effect of overlapping, 124-126 
Fresnel, 122, 124, 408, 413, 415 

by a finite grating, 131 
Kirchoff integral for, 122, 127, 129, 

148-150, 411,419 
parabolic approximation, 127, 139, 419 

with a spatially-varying potential, 
138-139 

pattern, 13, 41, 197. See also Interference, 
pattern 

conditional, 198 
produced by overlap of Fraunhofer orders, 

126-129 
visibility, 194 

using light. See Beam splitter for matter 
waves, using light 

using mechanical grating. See Beam splitter 
for matter waves, using mechanical 
grating 

Diffraction grating. See Grating, diffraction 
Dipole force 

induced, 177 
Dipole moment 

electric, measurement of in weak transition, 
337 

optical, 304 

Dirac equation, 281-284. See also Inertial 
sensing using interferometers 

coupled equations, 283 
curved space-time in, 283 
eight component isospinor in, 283 
generalized connection in, 283 
spinorial connection in, 283 
tetrad field in, 283 
tetrad or vierbein in, 283 
theory of gravity in, 284-285 

Doppler 
dephasing-rephasing process, 415, 416, 424, 

426, 437 
phase, 411, 415,426, 440 
shift, 306, 364, 372 

second-order, 306, 326-327 
transverse, 268 
use in selecting cold atoms, 141 
use of in Heisenberg microscope 

decoherence experiment, 145 
Dressed state, 176 

mixing, 234, 237, 239 
Dynamic velocity compression, 148 

Einstein-Podolsky-Rosen (EPR) 
experiment, with atom-photon pairs, 201 

Electric dipole coupling. See Interaction, 
electric dipole 

Electric dipole interaction. See Interaction, 
electric dipole 

Electric dipole moment. See Dipole moment, 
electric 

Electric polarizability. See Polarizability, 
electric 

Energy-momentum 
balance, 268 
diagrams, 260 
tensor, atomic, 285 

Entangled states, 53, 61,190, 222, 226 
involving multiple particles, 202 
Greenberger-Horne-Zeilinger state, 204 

Equivalence principle, 286 
and parity, 290 

Eraser, 222, 224, 226, 227 
counts of, 222, 223,224 
detector for, 223,224 
photon, 223,224 
pulse, 222 
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Eraser (continued) 
quantum, 222, 223,226, 227 

delayed choice with. See Delayed choice 
using three-level atoms, 222-224 
using micromaser cavities, 226-228 

Feynman path integral. See Path integral 
Fine structure constant, 395-398 
Focal plane, 416, 427,437, 440 

depth of focus at, 429 
Focusing of atoms. See Lens, for atoms, 

focusing by 
Fourier 

image. See Self-image 
series expansion, use in Talbot effect 

for wave amplitude by Cowley and 
Moodie, 131, 135 

for wave intensity, 135 
transform, 135 

Franck-Condon factor, 210 
Fraunhofer diffraction. See Diffraction, 

Fraunhofer 
Frequency 

measurement, 354 
standard, 351-358 

using Ca, 351 
using Mg, 351 

Fresnel diffraction. See Diffraction, Fresnel 
Fresnel-Kirchoff integral. See Diffraction, 

Fresnel, Kirchoff integral for 
Fringes 

interference, 122, 124, 127-129, 132-135, 
138, 141 - 145, 147. See also Diffraction, 
pattern; Interference, pattern; 
Interferometer; Phase, shift 

contrast, 233 
in separated beam interferometer, 

122-123 
loss of, 219,220, 222, 226, 228, 231, 

232 
partial, 226, 233,234 
quantum vs. classical, 108-112, 

413-417 
Ramsey type, 230, 231,232, 233,234, 239, 

302, 321,326-331 
retrieval of, 222, 224, 228 
reversed (antifringes), 224, 227,228 

G 

Generalized Talbot effect. See Talbot 
effect 

Generalized Talbot-Lau (GTL) interferometer. 
See Interferometer, Talbot-Lau 

Generalized Talbot-Lau effect. See Lau effect 
Geometrical shadow. See Grating, diffraction, 

for atoms, mechanical 
Geometrical phase. See Phase, geometrical 
Gori, 131 - 132 
Gradiometer, gravity, 137, 139, 393- 394 
Grating 

diffraction 
binary, 130, 131,135, 136, 137 
duty cycle of, 22,422, 443 
for atoms, 11 - 12, 22, 24, 26, 121, 122, 

123-125, 127-129, 130, 133, 
135-137, 139, 140, 141,143, 145. 
See also Beam splitter for matter 
waves; Interferometer, atom 

probe of homogeneity of, 14 
Ronchi, 130. See also Grating, diffraction, 

binary 
using light, 10, 121 
with complex transmission function, 122, 

131-133 
formed by matter wave, 408, 412 

amplitude of, 408, 416, 417 
compression of, 429,451 
imprinted by mechanical grating, 

416 
of reduced period (higher order grating), 

415,416, 417,421,422, 424,425, 
427,428,429, 434, 437,443,445, 
448. See also Grating, diffraction 

symmetry property of, 419, 441 
using a thermal beam, 453-463 

Gravimeter. See Inertial sensing using 
interferometers 

Gravitational wave, 286 
Gravity. See Inertial sensing using 

interferometers 
Green's function, 148 - 150 
Greenberger-Horne-Zeilinger (GHZ) state. See 

Entangled state 
Gyroscope. See Inertial sensing using 

interferometers, of rotation ring, using 
matter waves. See Matter waves, using ring 
gyroscope 
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H 

Hanbury-Brown Twiss experiment, 164 
Heisenberg microscope, 53 

decoherence in, 144-147 
Holography, atom 

binary, 161 
Fourier, 162 

Index of refraction. See Matter wave, index of 
refraction for 

Indistinguishability, of paths, 219 
and interference, 217- 228 

Inertial sensing using interferometers, 65, 75, 
93, 98, 110, 346, 347. See also Sagnac 
effect 

Collela, Overhauser, and Werner (COW) type 
experiment, 285,286 

of acceleration, 24, 66 
due to gravity, 93, 94, 267, 273,285,364, 

379-380, 389-392 
of grating motion, 24 
of rotation, 24, 66, 93, 94, 286, 379-380, 

394-395 
Interaction 

electric dipole, 260, 282, 283,366 
magnetic dipole, 282, 283 
region, 26 

Interference 
pattern. See also Diffraction, pattern; Fringes, 

interference 
in Ramsey interferometer 229, 235,236, 

239 
in Young's experiment, 221- 222, 224, 225, 

226 
retrieval of, 226 
system-detector correlations, 222, 224, 226 
using shadow effect, 424-436 
using Talbot effect, 417-424, 455-457 
using Talbot-Lau effect, 437-453, 

457-461 
visibility of, 194, 222, 228 
with two-level atoms, 221 
With three-level atoms, 222 

quantum, limits to, 52, 59, 125-126 
Interference filter for atoms, 147 
Interference fringes. See Fringes, interference 

Interfering amplitude, 19 
Interferometer 

atom 
as state selective detector, 60 
Bord6 type, 277, 287, 296-297, 298, 299, 

300-304, 310, 311,312-331,339, 
351,386- 389 

contrast in, 19, 21, 23, 24, 26, 29, 32, 37, 
53, 56, 60, 315-317 

generalized Talbot-Lau type, 121 - 126, 
135, 136-137, 140-143, 147-148 

gravitational effects in, 138-140, 148, 159 
internal state labeling, 100, 258. See also 

Interferometer, atom, Bord6 type 
MIT, 18 
Moir6 type, 90-99. See also Shadow 

effect; Moir6 effect 
multiple pulses in, 379-381,387-389 
sensitivity to external fields, 274 
separated beam envelope (SBE), 26, 39, 

122-124 
shadow-effect type, 424-436 
Talbot type, 136, 143-144, 417-424 
Talbot-Lau type, 437-453 
through-put of, 123, 124, 141,143 
using microfabricated slits, 18- 30, 90-  99, 

287,407,408,414-416, 418,422, 
424, 437,452, 461,463 

using separated light fields, 100-108, 293, 
295,300. See also Interferometer, 
atom, Bord6 type 

using standing-wave fields, 100-108,407 
Young's double slit, 158,407, 410 
Young's N-slit, 126-129, 133, 147 

Mach-Zehnder, 18, 299 
molecule, 28,278 
neutron, 257, 287 
optical, 29 
Ramsey type 

general setup, 297 
two-zone, 276, 278, 286 
with one micromaser cavity, 234-240 
with two micromaser cavities, 228-234 

semi-classical theory of, 20 
Stern-Gerlach, 240-253,259, 290 

control of magnetic field, 241,243 
classical limit, 251 
criteria for, 246-248 
dispersion of phases, 241,242 
Heisenberg equation of motion, 244, 249 
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Interferometer (continued) 
higher-order effects, 248-251 
Larmor angle, 240, 243,245 
longitudinal, 252- 253 
partial beam, 245,246, 247,248. See also 

Coherence, spin 
macroscopic separation, 246 
microscopic recombination, 247-248 
scheme of, 240 

white fringe, 19 
Interferometry 

contrast, 33, 71 
applications, 35 
experimental demonstration, 34 

differential force, 74 
future applications, 71 
matter wave, 2, 9, 18 

Jaynes-Cummings model, 231,236, 237 

K 

Kapitza-Dirac scattering. See Scattering 
Kirchoff integral. See Diffraction, Fresnel 

Lamb-Dicke limit, 208 
Laser 

atom. See Atom laser 
cooling, 156, 396. See also Atomic beam, 

source, using laser cooling and trapping 
phase of. See Phase, shift, of laser field 

Larmor angle. See Interferometer, Stern-Gerlach 
Lau effect, 124, 125. See also Talbot-Lau effect; 

Interferometer, generalized Talbot-Lau 
experiment using, 130, 135 

Lens, 
elimination of in GTL interferometer, 122, 

136-137 
for atoms 

achromatic, 182, 183, 185 
applications, 188 
focusing by, 177, 179. See Aberration, in 

lens for atoms 

thick, 179 
thin, 178 

use in Lau effect, 136 
use in Talbot effect, 130 
use in Talbot interferometer, 122, 136 

Lense-Thirring effect, 286 
Light shift. See ac Stark shift 
Light crystals. See Optical lattices 
Lithography, atom, 188,414, 429, 463 

sources for, 181 

M 

Mach-Zehnder interferometer. See 
Interferometer, Mach-Zehnder 

Magnesium, 318, 351 
polarizability, 334 
use in interferometer, 318. See also Atomic 

beam; Frequency, standard 
Matter wave 

birefringence and dichroism for, 290 
index of refraction for, 31, 42, 71,276 

attenuation associated with, 43 
for molecules, 50 
in an atomic cloud, 289 
phase shift, 43 
measurement, 45 
role of collision partner, 49 
sensitivity to shape of long range potential, 

47 
theoretical analysis, 47 

interference. See Interferometer, atom 
interferometer, 294, 349 

history of, 294 
thermal source for, 312. See also 

Interferometer, atom 
polarized, optically active molecules 

circular dichroism of, 290 
rotary power of, 290 

red shift effects, 283 
ring gyroscope using, 289 

Micromaser, 218, 219, 225,226, 227,228, 229, 
230, 232, 234, 235,236, 237 

as part of Ramsey interferometer, 219, 228, 
229, 230 

as Welcher Weg detector, 225,226, 227,'228, 
231,232 

atom-field interaction in, 230 
density of modes in, 229, 230 
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Ramsey fringes for, 
with one cavity, 234, 235,236, 237,239 
with two cavities, 230, 231 

Microscope. See Heisenberg microscope 
Microwave spectroscopy, 297 
Mode selection. See Cavity, for matter waves 
Mode matching. See Cavity, for matter waves 
Mode volume. See Cavity, for matter waves 
Moir6 effect, 91,122, 130, 137, 141-142. See 

also Interferometer, atom, moir6 type; 
Shadow effect 

Momentum 
basis. See Quantum, treatment of center-of- 

mass motion 
distribution, after spontaneous emission, 192. 

See also Coherence, of matter waves, 
loss due to scattering 

conditional, 201 
Multiple pulses. See Interferometer, atom, 

multiple pulses in 

Neon. See also Atomic beam 
level scheme, 153, 154, 163 
lifetime of levels in, 155 

Optical dipole moment. See Dipole moment 
Optical frequency measurement. See Frequency, 

measurement 
Optical frequency standard. See Frequency, 

standard 
Optical lattice, 112, 206 
Orthogonality, of final (detector) states, 226, 

227,228 
versus position-momentum uncertainty 

relation, 228 

Paraxial approximation, 175. See also 
Diffraction, Fresnel, parabolic 
approximation 

Path-integral, 138-140, 149-150, 
310 

Pendellrsung, 264, 306 
Phase 

Doppler. See Doppler, phase 
geometrical, 72, 339. See also Aharonov- 

Bohm effect; Aharonov-Casher effect 
grating; Beam splitter for matter waves, 
using light, off-resonance 

object, 196 
of laser field, 302 
shift, 274, 285,370, 374, 377-378, 380, 

390-392, 399-400. See also Fringes, 
interference 

averaging, 32 
best achievable resolution, 92 
dispersive, 222, 228, 241,242, 339 
due to acceleration/rotation. See Inertial 

sensing using interferometers; Sagnac 
effect 

due to applied potential, 27, 30, 311, 
331-338 

due to atom-gas scattering, 42 
due to atom-photon scattering, 55 
dynamical, 302 
from partial wave expansion, 49 
function of path separation, 56 
minimal detectable, 289 
nondispersive, 339 
readout of, 399-400 
uncontrolled. See Phase, shift, dispersive 
velocity dependence, 31, 32, 39, 66, 

73 
versus envelope shift, 111 

Photon-atom scattering inside interferometer. 
See Scattering, photon-atom 

Photon recoil shift. See Recoil, shift 
Polarizability, electric 

of atoms, 331 - 335 
of Na, 39 

experimental parameters for, 40 
of Na 2, 71 
phase shift in interferometer produced by. See 

Phase, shift, due to potential 
Ponderomotive potential, 177 
Potential measurement. See Phase, shift, due to 

potential 
Propagater, free, 270 
Pulsed interferometer. See Interferometer, atom, 

Bord6 type 
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Q 

Quantum 
channeling, 113 
computing, 133, 148 
dots. See optical lattice 
eraser. See Eraser 
treatment of center of mass motion, 51, 

371 - 372, 408 
vs classical fringes. See Fringes, interference 

Quality factor. See Cavity, for matter waves 

Rabi 
formula, 366- 370 
frequency, 175, 176, 304, 366, 368, 370, 

375-379 
effective two-photon, 384 

oscillations, 264 
exciting atom with a single photon, 56 
observation using momentum transfer, 15 

Raman pulse sequence, 375-379 
Raman transition. See Three-level system, 

folded 
Raman-Nath regime. See Scattering 
Ramsey fringes. See Fringes, Ramsey type 
Ramsey-Bord6 interferometer. See 

Interferometer, atom, Bord6 type 
Ramsey interferometer. See Interferometer, 

Ramsey type 
Recoil 

effect, 411, 412, 417,437,462 
shift, 268, 285,302 

measurement of, 279, 395-398,403 
optimization of, 279 

splitting, 303, 321,326-333 
of Lamb dip, 412 
of Ramsey fringes, 412 
suppression of, 329 

Recoiling slit, gedanken experiment, 198 
Relativistic effects in electromagnetic 

interactions, 73 
Rotating frame transformation, 367 
Rotating wave approximation, 174, 367 
Rydberg atom 

in micromaser Ramsey interferometer, 228, 
230 

in Young's double slit experiment, 225 
interaction with micromaser cavity, 230 

S matrix. See Scattering, matrix 
Sagnac effect, 66, 110, 142-143,283,286, 287, 

288. See also Inertial sensing using 
interferometers, of rotation 

measurement of, 75, 94, 110, 346-349 
using atom interferometer, 68, 110 
using Cs interferometer, 75 
using moir6 interferometer, 94 
reproducibility in, 68 

velocity dependence, 66 
Scalar Aharonov-Bohm effect. See Aharonov- 

Bohm effect 
Scattering 

forward amplitude for, 43 
derivation of, 47-48 
ratio of real to imaginary parts, 43 

glory oscillations in, 49 
inelastic vs elastic, 267 
Kapitsa-Dirac, 309, 412 
matrix, 270 

in two-beam approximation, 271 
photon-atom, inside interferometer 

coherence loss, 54 
contrast recovery, 62 
contrast revivals, 57 
direction of scattered photon, 61 
effects, 55, 57 
using two interferometers, 63. See also 

Coherence, of matter waves, loss due 
to scattering; Fringes, interference 

Raman-Nath regime, 179 
Second order Doppler shift. See Doppler, shift 
Self-image, 122, 130-133. See also Fringes, 

interference; Talbot effect 
filtered, 132-133, 135 
Fourier, 122, 131-133 
Fresnel, 122, 131,133 
multiple aliasing of, 122, 131,133-135 

Separated beam envelope (SBE) interferometer. 
See Interferometer, atom 

Separated light fields. See Interferometer, atom 
Shadow effect, 409, 415,424, 437,441,443, 

450, 452. See also Grating, formed by 
matter wave; Grating, diffraction, for 
atoms; Interferometer, atom, shadow type 

comparison with Talbot-Lau effect, 437, 440, 
441,452 

difference from matter-wave interference, 410 
geometrical interpretation, 424 
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of background-free gratings, 435 
of loss of pattern, 435 

using incoherent light, 425 
Signal to noise optimization, 22, 67 
Source. See Atomic beam 
Spin coherence. See Coherence 
Spin-rotation coupling, 283,286 
Spontaneous emission 

coefficient, of a laser, 210 
inside an interferometer. See Coherence, of 

matter waves, loss due to scattering 
single, 190 

Stark effect, 332-337 
Stern-Gerlach 

apparatus, 241 - 243 
effect, optical, 175 
interferometer. See Interferometer 
scheme, 242 

Stuckelberg angle, 176 
Surface probes, 188 

Talbot distance, 14, 52, 411. See also Talbot- 
Rayleigh wavelength 

for collimated beam, 419 
for divergent beam, 437, 441, 451 

Talbot effect. See also Self-image; 
Interferometer, Talbot type; Grating, atom, 
of reduced period 

for matter waves, 15, 122, 124, 126, 
130-132, 411,413,414, 417 

application to lithography, 15 
comparison with Talbot-Lau effect, 136, 

451 
consequence of atomic recoil, 412, 417 
experiment, 130-131 
fringes, 124, 141 
generalized, 130-135 
number theory in Talbot effect, 133, 147 
resonance in, 125 - 126, 131 - 132, 

133-135, 137, 141,143-144,  147 
temporal, 137 
using thermal beam, 453,455 

optical, 14, 411, 419 
Talbot phase, 411,414, 418,441,452 

averaging over in thermal beam, 454 
Talbot-Lau effect. See also Lau effect; 

Interferometer, atom, generalized Talbot- 
Lau type 

atomic 
as generalization of shadow effect, 416 
caused by matter-wave interference only, 452 
in a thermal beam, 453,460, 461 

optical, 414, 416 
Talbot-Rayleigh wavelength. See Wavelength 
Telltale photon, 225 
Thomas precession, 284, 285 
Three-level system 

cascade, 260, 261 
folded, 260, 261 

Through-put of interferometer. See 
Interferometer, atom 

Time domain interference. See Interferometer, 
atom, Bord6 

Topological phase. See Phase, geometrical 
Trap 

magnetic, 157 
magneto-optical trap (MOT), 148, 323 
optical, 368 

Trapped atoms, 319, 324 
Two-level approximation, 174 

Uncertainty, position-momentum, 222, 228,242 
phase dispersion in, 242 

Visibility of atom interference pattern. See 
Interference 

Vacuum system, 4 
differential pumping, 5 
vibration isolation, 5 

Velocity multiplexing, 37, 71 
Vibration 

cause of contrast reduction, 24 
isolation, 396-  397 ,400-404  
observed in interferometer, 26 
reduction, 25 

Virtual slits, 202 

W 

Wavelength 
de Broglie, 125, 138-139 

as function of species mass and velocity, 125 
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Wavelength (continued) 
scaling of fringe pattern in Talbot effect 

with, 125, 133-135 
Talbot-Rayleigh, 127-129, 132-135. See 

also Talbot distance 
Welcher Weg, 53, 56 

detector, 222, 225,226, 227, 232. See also 
Welcher Weg, information 

information, 193, 218, 220, 222-226, 228, 
231,232- 234 

and complementarity, 222, 232 
and loss of interference, 220, 222, 224, 

228, 231,232 
experiment, 350 
in diffraction, 106-108 
in interferometer, 105 
partial, 233,234 
role of momentum recoil, 226 
with three-level atoms, 219- 222 
with micromaser cavities, 225-228, 

231 - 234 

Which way information. See Welcher Weg 
Wigner distribution function 

free evolution, 439 
jumps of on microfabricated structures, 

438 
Wigner-Weisskopf approximation 

for light scattering from trapped atoms, 
221 

Young's double-slit experiment, 218, 219, 221, 
224, 225, 231. See also Interferometer, 
atom 

by scattering light from two atoms in a trap, 
219-224 

with micromaser Welcher Weg detector, 
224-228 

Young's N-slit interferometer. See 
Interferometer, atom 
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