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 On Foucault's Pendulum.

 BY WILLIAM DUNCAN MACMILLAN.

 ? 1. Introduction.

 A number of papers have appeared during the past sixty years on the

 .theory of the motion of the Foucault pendulum,* but the theory is still far from

 being in a satisfactory state. The theory given in the various treatises on

 mechanics includes only the case of infinitesimal oscillations. For oscillations

 of this type the equations of motion are completely integrable, and it is found

 that, if the motion is referred to a horizontal plane rotating in clockwise direc-

 tion with uniform angular speed of period si 2 hours, where d is the latitude

 of the place, the pendulum describes a relatively long, narrow ellipse in which

 the ratio of the minor to the major axis is the same as the ratio of the period
 of a single oscillation of the pendulum to the period of the rotating plane.

 This result is independent of the azimuth of the initial vertical plane of the
 pendulum, so that the theory for this case is complete.

 For finite oscillations, however, only approximate solutions have been

 given. If (a represents the angular rate of the earth's rotation, and if terms of

 the order (02 and higher are neglected in convenient places, the equations of
 motion can be integrated by means of elliptic functions.t Since the quantity
 Ca2 is very small, the results obtained by this process doubtless represent the
 motion very accurately for a considerable interval of time; but as the results
 obtained do not satisfy the equations of motion, no inferences can be drawn
 from them with safety over extended intervals of time.

 It is the purpose of the present paper to set forth explicitly two rigorous

 particular sol-utions of the equations of motion as they are usually given.t In

 these equations the oblateness of the earth and the terms in 02 are neglected.
 It will be shown that if the pendulum is started from rest in the plane of the
 meridian, if certain conditions of commensurability are satisfied, and if the

 * References to the literature of this subject are given in the " Encyklopadie der Mathematischen
 Wissenschaften," IV, 7, S. 6.

 f Chessin, AMERICAN JOURNAL OF MATHEMATICS, VOI. XVII, 1895.
 4 Poisson, Journal Polytechnique, 1838. Routh, "Advanced Rigid Dynamics," p. 27. Appel, " Traite

 de Me'canique Rationelle," II, p. 310, edition of 1896.
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 96 MACMiILLAN: On Foucault's Pendulum.

 oscillations of the pendulum are not too large, then the motion of the pendulum

 is always periodic. Furthermore, it will be shown that the period of the rotat-

 ing plane, which is 24 hours divided by the sine of latitude for infinitesimal

 oscillations, increases as the amplitude of the oscillations of the pendulum

 increases. Similar results are obtained when the pendulum is started into

 motion with an initial impulse.

 ? 2. The Differential Equations.

 It is assumed that the earth is a sphere and that the xy-plane is tangent

 to the sphere at the place of observation. The positive end of the x-axis is

 towards the south, the positive end of the y-axis is towards the east, and the

 positive end of the z-axis is directed downward. The origin is taken at the

 point of suspension of the pendulum. We will let (a denote the rate of the

 earth's rotatlon, 6B the latitude, I the length and mT the tension of the suspend-

 ing wire, and g the acceleration of gravity. The equations of motion are

 d2x T dy
 dt2 1 x+2ca sin: (c

 d y _ T dx ~ dz
 dt2 -- y-2ca sinf3l dt ?+ 26 cos d dt (1)
 d2z T7 dy

 z +g-2 cos3 2 cos

 Since the pendulum is of ilnvariable length 1, the following relations are always
 satisfied:

 2+y2+z2-l2
 x

 cvdx dy dz dt +Y t i+ dt } (2
 d 2 d2y d2z [(d)2 (dY2 (dZ)2]

 and the energy integral is

 dx\2(dy)2+(dz 2 1z (

 + - t)2g1K -C) (3)
 where c is the constant of integration. Combining (1), (2) and (3), it is found

 without difficulty that

 T _ _ N26F(dy dx\ .z dy l
 3 2 c+ Y t) sin +(Yd-z )cos . (4)

 It will be supposed that the pendulum is initially displaced towards the

 south through an angle whose sine is ,u. Then the initial values are
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 MACMILLAN: On Foucault's Pendulum. 97

 x2tL, y0 Z -a-V - 2 d = dy dzd z~lV1~~2,dt - dt -dt- (5

 from which it follows that c =/I y2.
 Let us now make a change of variables by the transformation

 x l[i cos nt+?' sin nt], 1

 y 1[- sinnt+ncosnt], t (6)

 so that i2+n2+ (1-<)9-1 and for brevity let us take (a-sin /3=a, X cos /ac1.
 Then the motion of the pendulum is referred to a system of rectangular axes

 rotating with the angular velocity n, where i is an arbitrary at our disposal,

 and the differential equations are

 d2~ FT 2dvid
 dt2 + n 2n (n +21 sin ntd

 d2n +?T n2- 2n(n-a) +2(n-) <?--2ao1cosntd, (7) t2 +~~~~~~~~~~~~t
 d2-+ T T-g 2<1(ni-dv)cos nt-2a(d +nn)sinnt.

 From the relation <= I1-Vi- (g2+2) it is seen that, if g and v are small
 quantities of the first order, # is a small quantity of the second order. Neg-

 lecting terms of the second and higher orders and choosing n=r, the differen-

 tial equations become simply

 2 + [g + f2]0=ol 8 dt 118

 A2 + + CY2 ] =o.J dt2 + LI n 8

 In order to satisfy the initial conditions in the xy-plane we must have at t=O,

 0 n=07 -d' _dta, and therefore the solution is

 f=ytLcosXJg? +a2t7 \/+ a +sinXl2 +a2t, (9)

 which is an ellipse of which the semi-major axis is p and the semi-minor axis

 is < Hence the theorem of Chevilliet for infinitesimal oscillations,

 13
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 98 MACMIILLAN: On Foucault's Pendulum.

 "The r-atto of the major to the minor axis is equal to the ratio of the period

 of the rotating plane to the period of oscillation in the ellipse."

 There is no difficulty in introducing an azimuth constant into this solution

 if it is so desired.

 ? 3. Development of a Periodic Solution..

 The choice n=oa certainly simplifies the differential equations. Neverthe-

 less it does not seem to be convenient to develop a periodic solution in this

 manner. For finite oscillations we will take n= 1 where x is an arbitrary

 constant, the form and value of which will be determined by the initial and peri-

 odicity conditions. It will be convenient also to take l= 1+ 0 where lo is a

 fixed constant and X is a constant of the same type as, x. We will transform

 the independent variable by taking t= (1+x)er so that nt=cer, and, finally,

 we will write g +a2=p2. Since the length of the pendulum is invariable

 throughout the motion, we can discard the differential equation in ;, and there
 remains

 ie"t + [ (1 +x)2 4- + (1 + 2x)c2 ]= +2x7'+2 (1+x)a'l' sin ar,]

 f +[(1+X)2 1 +(1+2x)a2 n=-2x(1'-2(1+x)0)C'cosar,

 where accents denote derivatives with respect to r, and

 (+ x)2 l + x)2(l+X) 0 [3 V/1- (2+2) - 2 V1 - 2]

 +2 (1+ x) (22i'-) 272(1+ c) (02+n2)

 + 2 (1 + x) a+(c -) c _ os + ) ) COS a
 Vi- (~~~~~~~2)2 - 172

 +-(an + V1_(i2+n2) + v1 0+2 ) sin (11)

 and ; 1 -V/1 (62+n2). The integral becomes

 i2+ 2g + (02+_2 _ (or1'- ') _2(122+)2
 J_~~~~+-1 > (1+2)22) (0+2 g2U.(2
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 MACMILLAN: On Foucault's Pendulumn. 99

 We propose to integrate these equations as power series in p, and we
 therefore assume

 t- nl[A+ ntty+n3,U3+ ..

 X- =X6L+X2P2+X3t3+ ..
 X= *-1 1+ 2Y 2+ X31ta+.*

 In these series the constants xi and Xi will be chosen so that the coefficients ,.
 tj shall be periodic functions of r. As is seen from equations (8), the free

 period of the differential equations is 2 and the forced period , It is neces-

 sary to assume, therefore, that the constant 1o has such a value that p -4 % + a2

 is commensurable with a. This assumption is of importance in the theory of
 convergence of the series, but, obviously, is of little importance physicallv. It
 is found readily.by a few preliminary computations that xl= 1-/ 1 a1 2-O ?
 and - Utilizing these facts to simplify the expansions, the differ-
 ential equations become

 00

 11 [X+ p2Ej]_
 j=l

 [-2a(cynj+li)0j sin atr+aj(02?+2)' sin rr 2
 + p2_) +2X2 + p( + a2) +Vp2 + I 2) (02 + V12) $

 +2a-1-,n' cOs er?+ (2aY(n1n2)'-2aani1n2) sin lr'V]pu

 + [ - ( (p2-a2) 23+2p2X3) 41 + 2x3an'+ (3p2 +cr2) 037pl2-22a$1 ( 1l2- 2ni') +2X2 f?2

 + 2-2f101( 3-) ) + ~~~ ~~+ ai(jnqi?( ) +n O

 + 2a, ({163 +(njn3+)++ .2+jP2n + 7:r (02+n2) ( 2+2P17)

 +C2O'V7(07 o oe''2rl(+2)' o t2t1a1~n sin aeKI4 LU...............,(3)

 Goo

 ? [-X + +2rj] (32+a2)2-2a1($.) e [ -2aj (anj+ 1) nj sin ar-a 0l +2 'O coser] yS

 (p2_a2)2 2 (p2- +pa2?_ (p2 + a2) tl+ 1 ( 2) (02+n2)Vj
 +2ajnj(n2 COS aer)'-2aj(n1V>72)' COS ar 2aj(an1+gl')n2 sin ae] t]3

 _(p _a2)A %,)j2x,(p'nj+agl) + (3 p2 + 2) 2 - 2a nj.( 0ln2' C 2)
 (p_2) 2 +2p2 2 + p 2+ a2 } n2+ (3p2+G2) (02+n2l)w2 aW t O

 + J-2a1n1(aY3 n3) I 1 ) 2a, (0103 + nj3) -2al2n2

 _Jajq(a2+ 2) } 2sin 2t]_u4+ . ..2(14)
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 100 MACMILLAN: Ont Foucault's Pendulum.

 From the initial conditions (5) and the equations of transformation (6),
 it is found that the initial values of $ and -q are

 i(O)_Y7 n(0)=0; ('(0)_O, n'(0)=ay.
 Consequently,

 t1(?)=1, n1(?)=?i 01(?)=?s n,(?)=a; _ (15)
 Ej(O)=02 nj(O) Q; &,(0)=0, n'(0)=02 j-22....oo.J

 Equating the coefficients of the first powers of u in the left and right mem-
 bers of (13) and (14) , we find

 {'1 +P2$i=O,} (16)

 and the solutions of these equations which satisfy the initial conditions are

 {1= Cos per, n71= sin pe.} (17)
 p -

 From these expressions it results that

 2 2 2-2 2 ~2+n - pp22 p-aT.I
 12+ P?= + acos 2pr, y1+..-- sinper, ay1 - =O. (18)

 From the coefficients of the second power of , in (13) and (14), and from
 the values given in (17) and (18), it is found that

 i"2 +P2'02=0?

 (p2_a2) aai (p + C) 2(p-_a)cril
 '2 +P2)72= p 2 sinarr+ - 2P2 sin (2p-c) Lr, (19)

 + (p ) (p2+ sin 2 + aer
 2p 2 si 2p+)r

 On integrating these equations and imposing the initial conditions, we find

 2 - 6 (p2-a2)a1 al sain ?.t_ (p + spin-(2p)+a)2| 0
 p (gp_,,)Slnp p 22p2 (3p?+a) i(Pa~ (20)

 (p + ay) 2a in2-)rj 2p2(3p-a) s(2p-a
 Similarly, the differential equations obtained fron the coefficients of the

 third power of jy in (13) and (14) are
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 MACMILLAN: On Foucault's Pendulum. 101

 0"3 + P%_3

 (2U2+2X2) + - (3p2 ).I ] _(_a2) COS pr
 + [3~2+a2 (3P2a)] (p2-ag2) CT 62p2a2 cs p

 + 2+ -p2 (9p2 (p2_a2 C2

 + I( )(P 2 'cos(2p_a)?r co? 3(pr p+) al(2p--a)
 82p (9 2-a2) ap(9p2-a2)

 ( 2p4?P3o?9PhC2?5pa3 3U4)a21 S (p+2o}zt
 4p3 (3p+a)

 + (-2p4-p2+ 9 + -5p a) 3 cs2cos (p-2a)-)
 4 ( p3-' (3p-2_a)

 (- )2 ( 5c(p+23 co (P +a) 2a(p-)+ COS ( 3p-2a)r, (21) 4p34 ,3 pa))

 54_p2+a + (P2 4 3a2)f (p2 -a2)sinp

 3 (p2-a2) (p+2'2) (p-5) sin(2p+cs)p

 p3(3p2-a2)

 3(p2-_2) (2p 2a) ( 3p + 2 p) 2 c 3 2 ( 2 p- ) 2

 4p 3p ( 3y pp +3 )(Y
 +p2

 p (93a2)(pI_ p_2

 (p4+3p3fa+ gp2a2-+7p23 6a4)a1 . 2

 + 4p3(3p-F2) smn(p 2_)'2

 3 (pGa) (p 2)a+ sin (3p ?2) - 4p(3p-a)

 In order that the solution of tpese equations may be periodic, it is neces-
 sary and sufficient that the coefficient of cos pxr in (21) and thle coefficient of

 sin pt in (22) should vanish. Both of these coefficients carry (p-a2)2 as a
 factor, but this factor cannot vanish, since a is very small as compared w-ith p.

 The coefficient of sin p~t in (22) carries a/p as a factor, and this can vanish

 only at the earth's equator. F5or other places on the earth's surface we must

 have
 p2+2X2 + 8p2 fp_a2

 5p2+3pp2 (7p2-3a2) a-6
 2 -3p3a 9pa 7 - 6+sin(p -92-cr
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 102 MACMILLAN: On Foucault's Pend tlum.

 From these equations it results that

 A +5p2+3a2 (7p2 3 12)a2 1 8p2 p2(9p2_-a2) ' 23

 + 3p2 +a2 (5p2a2)a2 1(2)
 2- 8p2 p2 (gp2_a2)

 Since a and a, are very small as compared with p, it is seen that a2 is approxi-
 mately equal to -8, and X2 is approximately equal to +j.

 Using the values of a2 and x2 given in (23), the solutions of (21) and

 (22) which satisfy the initial conditions are

 [(3p2+a2) (p_-a2) _2 (243p8-256p6a2 + 208p4f4-4p2a6+ I-8)2 af
 3L 64p4 8p4(p2- a2) (9p2 2)2 c

 r (3p2+-a2) (p2_-&) (3p2_a2) (p2_-as)ai2 ? 6a(2
 L 64p4 8p4(9p2-2) j P p+p2_2cosa

 3(p2-a2) (p-a)ay 2) cos (2p +a)'r
 p(p3a) (3p- a) (9p2- 2)

 3 (p2-a2) (p?a)a2

 -3 C O p 1)

 + 16p ((p+ C )(3p a )coS c3p s (2p---a )er 63(P+y) o 3-( ,(2

 p (p -a3f) (3p p-a) (9p2-a() cos (P21-r) ](

 + (2pp a pa-5pa 3a cos (p si2cr) er 16p 3a(p+a) (3 p-Ha)

 (2p4H9 pa+ 5pa8-3a4)aCrcos (p-2a)et
 16p3a (p -a) (3p -a)

 + ( p4_ 3 3 +9p2 + a)736f4 3a2i(

 ? (p-a) aI cos (3p+22a)er+ (p-H)aI cosi(3p-2a),r, (24)
 16p (p+a) (3p+-a) 16p3(p-a)(3p-a)

 [3 (3 p2 -Ha2) (2-ar2 ) a _ (27p8 -1 900 p6a2-572p4a4-H32 p2a6 -3a') a2]sn '
 'n3 6~4p5 8p2a (9p2_-a2) 2

 p2a)(p2-a2) a (p2-H a2) (p2-_a2) aa2 (2-2a2)a si2 c
 -[ (p2-6a2) 8p 5(9p2_a2) snpc?p2 (9p2-a2)

 +3(p-a)(p -a) (p-H2a)aI sin (2p + a),r
 ? ~2(p+) (3p-Ha) (9p2-a 2)
 __3(p2-a2) (p-Ha) (p2)2 p2(p-p)(3p-a) sin (2p -a) er

 p 2 p_a (3-a)(9p2-a 2)

 16p' 33a(pa-7a)(3p-6a sina(p + 2a)'zr
 16p a (p-+a) (3p p-a) sn(-a'

 (p-a3)paa sin(7p p?2a6si (p- 2a) er
 16p(p3a) (3p?-a) 16((3)p3p-)si-3oa)r)(5
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 MACMILLAN: On Foucault's Pendulurn. 103

 ? 4. Properties of the Solution.

 It is not necessary to carry the computation any further, though by induc-

 tion it will be shown that it is possible to carry it as far as is desired, and that

 the constants Xi-1 and zi-, can always be determined in the coefficient of LU' so as
 to keep the solution periodic. So far as it has been computed, g is a cosine

 series and V7 is a sine series. Let us suppose that, this property holds up to and

 including the coefficients of yt-1. Then from (11) and from the properties of
 evenness and oddness it is seen that T/l is a cosine series up to and including the
 coefficient of yt-1. Then it follows from (10) that the differential equations for

 i and w, have the form

 +P2= [-(At- + 2x,i_1) (p2-a2) -+ Ai] cos per + other cosine terms,

 n'i +p2nji[-2i-l ( p2_a-) + Bi sin pt'+ other sine terms, 1(26) (p

 where Ai and Bi are known constants. In order that the solution may be peri-
 odic, we m-ust have

 Xi- 1+2xc1 - p2a'

 X Bip
 a (p2 -_2)

 and these equations uniquely determine 2i-2 and xi-,. The solution of (26)
 which satisfies the initial conditiorns is then

 ti= sum of cosine terms,
 ni sum of sine terms.

 Thus $i and vi have the properties which were assumed for gi_l and - The
 property holds, therefore, for every i, and consequently 0 is a periodic cosine

 seriLes and v is a periodic sine series.

 We have therefore formally determined a periodic solution of the equa-

 tions of motion, and we are assured of its convergence by the general existence
 theorem of periodic solutions.*

 A second property of the solution which has just been obtained is as fol-
 sin

 lows: If cos (ip ?ja)tr is a term in the solution, then i+j is an odd integer.

 This is certainly true up to and including the coefficients of It3. That it is gen-
 eral is readily seen by induction. Bearing in mind the properties of even and odd
 mnultiples, it is readily seen from (11) that if i+j is an odd integer in all coeffi-

 * MacMillan, "An Existence Theorem for Periodic Solutions," Transactions of the American Mathe-
 maticat Society, Vol. XIII (1912), p. 146.

This content downloaded from 
�����������99.121.112.97 on Tue, 05 Mar 2024 09:18:11 +00:00������������ 

All use subject to https://about.jstor.org/terms



 104 MACMILLAN: On Foucault's Penduluim.

 cients of $ and V7 up to and including ',u then the expansion of T1' contains
 only terms in which i+j is an even integer; and consequentlv from (10) it is

 seen that $,, and n,, contain only terms in which i+j is odd. The property
 is therefore general.

 We have already supposed that p and c are commensurable numbers. Let us

 take, then, p = mcp and - ncp, where m and n are integers relatively prime.
 Cos Cos

 Any term in the solution, siia (ip + j) er, can therefore be written siia (i'm ? jn) cpr.

 If m and n are both odd, then (im?+ jn) is necessarily odd and the solution con-

 tains only odd multiples of cpr. The projection of the path described by the

 pendulum upon the rotating ?n-plane is therefore symmetrical with respect to

 both the 4-axis and the n-axis. In the fixed xy-plane, however, since

 x -[$ cos ar+ i sin or],

 y =lI[- sin a'r?,7 cos ar],

 the expressions for x and y will contain only even multiples of qt. Therefore

 nt 2nt
 the xy-curve described in the interval <- _t < is identical with that described

 in the interval 0 <_ er < 7, though in the rotating plane they are distinct. Since

 x is a cosine series and y is a sine series, the orbit is symmetrical with respect

 to the x-axis, and it has a cusp at the point for which t=0. The pendulum is

 again at this cusp when 1=-_. Since the orbit is symmetrical with respect to

 the x-axis, it. follows that at et the orbit again crosses the x-axis perpendic-
 2qp

 ularly or at a cusp.

 If nm and n are not both odd (thley cannot both be even since they are rela-

 tively prime), then the expressions for g and n in the rotating plane contain
 both even, and odd multiples of qbr, and the orbit, while symmetrical with respect

 to the a-axis, is not symmetrical with respect to the n-axis.

 The period of the rotating plane is- - - (1+x). It is seen from (23)

 that, for small values of It, x is approximately +?,82. Coonsequeintly the period
 of the rotating plane increases as the amplitude of the pendulum increases.

 The mean period of oscillation of the pendulum is n. In order to find the
 p
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 MACMILLAN: On Foucault's Pendulum. 105

 dr2
 impose the condition that r2=2+r2 is a maximum, i. e., d =0. This condition

 gives the equation

 -F (p2-Ca2) sin 12 l(p2-a2) Ca,c1si O = [-() sin * pen] +[-)2 ) ? sin 2ps.
 p pEn ~p 22 2_a 8 (3 p2 + 2) fa1 a 3 2af2af . f

 92--2 cos 2nn -+ 9 2 2s'2nn - 3 +

 from whichi is obtained

 [F 16a2aoU ,,7c
 En = (p22) (9p2 2) sin 2n+

 Substitutingr - +E in the expressions for $ and n, we have the coordi-

 nates of the apse. or the end of the oscillation. The expression for the n-coor-
 dinate of the apse is

 (az[ sin 32a2alp sn2n~>1z
 7a- =[-sin (p2-_2) (9p2_-a) sin 2n7+*

 Since cy and cr each carry X as a factor, this quantity is of the order c(). Thus

 the line of apsides does not rotate with uniform angular motion, but its depar-
 ture from uniformity is exceedingly small.

 At first thought, it might seem that this solution should reduce at the

 north pole to that of the simple pendulum referred to rotating axes, and conse-

 quently the rotating axes should hlave the period of 24 hours exactly. On

 second thought, however, it is seen that at the poles the Foucault pendulum
 becomes a spherical pendulum referred to rotating axes, for initially the pendu-
 lum is at rest with respect to the earth and therefore in motion with respect to

 fixed axes. Since this motion is counter-clockwise when tlle pendulum is

 released, and since in the motion of the spherical pendulum the line of apsides
 rotates in the same direction as the motion of the pendulum itself, it follows

 that the line of apsides rotates in the same direction as the earth itself. There-

 fore it takes the earth more than 24 hours to come back to the same position
 with respect to the pendulum. The expression for the period of the rotating
 axes is P- (1+X2 8t2+ ... .) 24', and the value of x2 at the pole is positive.

 ? 5. Foucault's Pendulum with Initial Impulse.

 If, however, the pendulum is started from relative rest, in which it hangs
 freely from its point of suspension, with an initial impulse, the solution so

 derived should reduce to the simple pendulumn at the poles. By exactly the
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 106 MACMILLAN: On Foucautlt's Pendqilum.

 same method as has been used above, a periodic solution can. be obtained, pro-
 vided the initial impulse be directed towards the east or towards the west.

 With the same notation as before, let us suppose that the initial condi-
 tions are

 which implies an initial impulse towards the east. The solution is found to be

 F 4p2raa1 C5pl pG1co(p+l
 y +[ (p2_-2) (9p2-a2) 2(p? a) (3?

 2 (p -a) (3p-) -J)

 [sin per]It4p+ (p28_G2) (gp2__2) s2( 2 a ) sin ll(r

 a1 sa 2 a) +sin (2p-a)}zi}t2 +..
 2(p+a) (3p +) sin(2p[u)r[ 2(p-a) (3p-a)

 _2_+_ 2 (1jp2-3a2)u C
 - L 2) -- -(p2-a2) (9p2-a2 +

 [ r.. .4p2a2 12+
 (p2_a2) (9p2 2) 2 .

 The period of the rotating axes is P= (1 +X2y2.... )24h; and since

 =,-C cos 3, it is seen that this is 24 hours exactly, at the poles, as it should be.

 UNIVERSITY OF CHICAGO, February 20, 1914.
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