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S U M M A R Y
In the kinematic dynamo problem Maxwell’s equations are solved for the magnetic field given
a prescribed fluid velocity. Although no dynamic equations are involved, it does provide an
accurate link between the magnetic field and fluid velocity and can therefore be used to infer
something about the flow underlying the observed geomagnetic field. In this sense it com-
plements the commonly used frozen-flux theory for inverting secular variation for core flow,
in which electrical diffusion is neglected, and can be used to show up some of the strengths
and weaknesses of the frozen-flux approximation. It might be thought that kinematic models
have been superceded by dynamic models that include the momentum and heat equations,
but this is not the case. Even the biggest numerical simulation cannot approach the correct
parameters for the Earth’s core, and the classes of flows that result are, in fact, quite restricted
as well as being too complex for simple physical interpretation. A variety of simple flows have
been studied for dynamo action; of particular interest here are a broad class of flows, based
loosely on extensions of the early simple choice of Bullard & Gellman and to some extent
representative of what might be generated by convection in the Earth’s rapidly rotating core:
this paper reviews the implications of the solutions for geomagnetism. The non-axisymmetric
flows mimic convection rolls in a rotating sphere, the axisymmetric poloidal flows describe
meridional circulation, a likely secondary flow, and the axisymmetric toroidal flow is a sim-
ple differential rotation. Helicity, which seems to be important for dynamo action, is related
to spiralling of the rolls. Dipole, rather than quadrupole, fields are preferred when spiralling
is eastward and differential rotation westward at the surface. Magnetic flux tends to be con-
centrated at stagnation points of the flow, and dynamo action fails when this concentration
becomes so intense that steep gradients develop so as to enhance energy loss by diffusion. On
the surface these stagnation points are centres of downwelling that concentrate vertical flux.
Flux concentration plays an important role in determining the magnetic field’s symmetry: for
example, concentration of vertical flux in high latitudes favours dipolar fields while concen-
tration near the equator, where dipole symmetry requires a change of sign, favours quadrupole
symmetry. Steady fluid flow can only produce steady or oscillatory solutions to the kinematic
problem at onset of instability. Steady solutions are preferred in three dimensions, in contrast
to predictions of axisymmetric mean-field dynamo theory, where oscillatory solutions are the
most common. Oscillatory solutions are preferred when poloidal and toroidal field coincide,
which is unlikely to happen in the Earth because poloidal field is concentrated at high latitudes
around the tangent cylinder while the toroidal field is probably strongest in mid-latitudes. Ge-
omagnetic reversals are not oscillatory in nature and, therefore, require time-dependent flow,
but kinematic examples show that only a tiny change in flow is needed to produce a realistic
geomagnetic reversal. Linear modes of the induction equation of all symmetries are beginning
to guide work on the dynamics of the geodynamo.

Key words: Dynamo: theories and simulations; Geomagnetic excursions; Reversals: process,
time scale, magnetostratigraphy.

1 I N T RO D U C T I O N

The geomagnetic field is generated by a dynamo process operating

in the liquid iron core. We advance our understanding of this process

by studying simple models of convection of electrically conducting

fluid in a rapidly rotating sphere surrounded by an electrical insu-

lator. Although the basic features of the geomagnetic field seem

simple—a steady dipole aligned with the spin axis—the dynamo
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theory is not simple and mostly involves numerical modelling. Com-

plexity is necessitated because a homogeneous sphere of conducting

fluid must regenerate magnetic field by the same mechanism as an

engineering dynamo, which is multiply connected with a compli-

cated geometry. Several results, such as Cowling’s theorem which

states that no dynamo can generate a magnetic field that is sym-

metric about an axis, can be lumped roughly into the statement that

‘nothing simple works’. This is unsatisfactory: theories should be

elegant but we persist with the dynamo theory because ‘nothing else

works’.

Early studies focused on the basic question of whether any ho-

mogeneous sphere of fluid can generate a magnetic field by address-

ing the kinematic problem in which the fluid velocity is specified

and Maxwell’s equations are solved for the magnetic field (Elsasser

1946; Bullard & Gellman 1954; Backus 1958; Herzenberg 1958).

Dynamo action is declared if the magnetic energy persists indefi-

nitely. In practice, this usually involves solving for the fastest grow-

ing mode of the linear induction equation in the form B exp pt and

searching for � (p) ≥ 0. Recently, Livermore & Jackson (2004a)

have introduced a different approach based on the transient growth

of magnetic energy, M . If M decays with time initially for all candi-

date magnetic fields the system is stable; an initial growth of M may

indicate instability or a transient that ultimately decays. Thus � (p) <

0 is a necessary condition for stability while dM /dt > 0 is a nec-

essary condition for instability. The distinction becomes important

when considering time-dependent flows or turbulent flows in which

only the statistical properties of the flow are known. The eigenvalue

method for determining linear stability breaks down in these cases

(except in the case of time-periodic flows, see Section 3.3.2) but

the energy method still gives information about possible dynamo

action. Transients that grow initially but then decay under induction

by one steady flow may continue to grow when the flow changes at

a later time, giving dynamo action when linear stability analysis of

individual snapshots of the flow find only decaying modes at every

stage. Backus’ early dynamo worked in this way (Backus 1958),

but the idea of using time-dependent flows was not revisited until

recently.

Progress on the dynamics was made through simplified studies

of rotating convection, first without and then with an imposed mag-

netic field, avoiding the need for the system to generate its own

magnetic field (e.g. Roberts 1968; Busse 1970; Zhang 1999). Even-

tually computer power grew to the point when it became possible

to explore fully self-consistent dynamo models by solving the cou-

pled equations of momentum, heat, and induction (Zhang & Busse

1990; Glatzmaier & Roberts 1995; Olson et al. 1999; Jones 2000).

These models involve disarmingly few input parameters: measures

of the heating (Rayleigh number), rotation (Ekman number), diffu-

sion (Prandtl numbers) and the boundary conditions, but Earth-like

values remain beyond foreseeable computer power. Even simplified

choices of parameters yield magnetic fields that are quite Earth-

like; unfortunately they are also chaotic with considerable spatial

complexity and are, therefore, hard to understand.

In this paper, I review results for the kinematic dynamo problem

and their implications for the geodynamo. This return to kinematics

needs some justification in view of the current success of dynamic

models. There are a number of advantages.

(i) It complements work on core flows using the frozen flux hy-

pothesis. The induction equation connects the magnetic field to the

fluid velocity in the core. This is central to using geomagnetic obser-

vations to infer core flow and understand the dynamics. The usual

approach to finding core flow is to neglect diffusion and use Alfvén’s

theorem of frozen-in magnetic field to determine core motion from

secular variation (Roberts & Scott 1965). This approximation, al-

most by definition, eliminates the slow, steady flows responsible for

generating the magnetic field because the dynamo is a balance of

diffusion and advection (Love 1999). The frozen-flux approxima-

tion is valid only if the flow varies on a timescale that is longer

than that of the magnetic field but shorter than the diffusion time

(Braginsky & Le Mouël 1993; Gubbins & Kelly 1996; Gubbins

1996). Diffusion must be included if we are to determine the com-

ponent of core flow that remains steady for a magnetic diffusion

time (25 kyr) or longer, and probably for some historical secular

variation events as well.

It is now possible to examine the accuracy of the frozen flux ap-

proximation using synthetic SV data obtained from dynamic mod-

els; Rau et al. (2000) have done this and found the method repro-

duced the surface flow adequately; Aubert et al. (2007) have also

used output from dynamic dynamo calculations in a core motion

study. This does not mean, however, that the method will work for

the Earth. Current geodynamo models are a long way from real-

ity because they employ parameter values that are very different

from those of the Earth. While they reproduce some aspects of ge-

omagnetic behaviour surprisingly well, they do not reproduce all

behaviour faithfully. Most importantly in the present context they

rarely, if ever, produce the kind of flux expulsion now underway in

the Southern Hemisphere, which is the very feature showing present

departure from frozen flux in the Earth. This restriction on the pa-

rameter values that can be explored numerically produces a rather

restricted class of flows that may be unrepresentative of the Earth.

The key to validity of frozen flux lies in having a rather precise set

of timescales, with the field changing rather rapidly on the diffusion

timescale. Dynamic models are necessarily run at high Ekman num-

ber and high Rayleigh number, putting them into a chaotic regime

that would favour frozen flux. Since only the induction equation is

involved in determining the evolution of the field and its inversion

for core flow by frozen flux, all the dynamic equation does is to

restrict the possible flow. It is better, therefore, to examine the valid-

ity of frozen-flux theory using a kinematic approach with plausible

flows.

(ii) Long-time integrations are unnecessary. Solutions of the in-

duction equation with steady flow vary exponentially with time and

a positive real part to the exponent guarantees dynamo action. This

is a distinct computational advantage over non-linear dynamo simu-

lations that can only demonstrate dynamo action by time integration.

The kinematic approach loses much of its attraction when the flow

is time dependent because then time stepping is also needed. An ex-

ception is the study of time-periodic flows, when the magnetic field

varies with time as an exponential multiplied by a periodic function

with the same period as the velocity (Willis & Gubbins 2004).

(iii) The induction equation must be satisfied by any dynamo.

Solutions are relevant if the fluid flow also satisfies the dynami-

cal equations. Finding flows that produce Earth-like magnetic fields

and then determining the dynamics that might produce them is a

valid, observation-led approach. A good example of this is the con-

centration of magnetic flux by downwelling. This kinematic result

(Hutcheson & Gubbins 1994) was used to propose downwelling

induced by cold regions of the mantle, a dynamic result first con-

firmed in non-magnetic convection by Zhang & Gubbins (1996),

later in dynamical dynamo runs (Glatzmaier et al. 1999; Bloxham

2000; Christensen & Olson 2003), and finally in a solution with

narrow downwelling plumes locked to the boundary (Gubbins et al.
2007). Another example is the observed switch between steady and

oscillatory solutions when the meridional circulation is changed in
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a kinematic solution (Gubbins & Gibbons 2002; Willis & Gubbins

2004), which led to new interpretation of a reversal in a dynamical

dynamo (Sarson & Jones 1999; Sarson 2000). In a more quantitative

approach Sarson (2003) has modified a class of flows studied exten-

sively for kinematic dynamo action so that it satisfies the thermal

wind equation, a first step towards determining a dynamical dynamo

from kinematic solutions that produce magnetic fields of a desired

type.

(iv) The kinematic approach amounts to exploring solutions of

the induction equation, or finding the modes of the induction op-

erator. The modes could be useful in exploring the full dynamical

solution because any candidate magnetic field can be expanded in

the set of modes. It remains to be seen how successful this approach

will be given the numerical effort required to find the modes in the

first place. For example, the Backus dynamo (Backus 1958) is a

simple example of a kinematic dynamo with time dependent flow:

the same steady flow is switched on and off periodically. The general

solution for this time-dependent flow can be represented in terms

of modes of the induction equation when the flow is turned on and

by the decay modes when the flow is turned off. Each mode decays

or grows exponentially with time, so the time dependence can be

followed by applying the growth or decay factors and transforming

between the two bases each time the flow is switched. The numer-

ical scheme is only efficient when most of the modes decay very

quickly and it is only necessary to use a small number of modes.

In another example, Melbourne et al. (2001) presented a simple

dynamical system exhibiting a heteroclinic cycle as a model for ge-

omagnetic reversal behaviour. The system possesses three saddle

points and cycles between them, remaining near a saddle for a long

time before switching to another saddle. The saddles represent solu-

tions of the induction equation with different symmetry (for exam-

ple, steady and oscillatory modes) and the transition between them

a breakdown from one symmetry to another. The study requires

prior knowledge of modes of the induction equation for suitable

flows.

Kinematic theory is limited in two major respects: we do not know

the flow in the core, and an impossibly large class of flows would

need to be explored in order to establish a definitive connection

between the fluid flow and the observed field. Nevertheless, generic

results can be drawn from a limited study and these may be tested

by appropriate dynamical studies.

Recent results from a number of kinematic dynamo studies are

based on the flow chosen by Kumar & Roberts (1975). This flow

has the advantage of generating a magnetic field with a fourfold

symmetry that resembles that of the Earth. The resemblance is for-

tuitous because the original authors were simply building flows they

thought would act as dynamos, guided by the previous attempts of

Bullard & Gellman (1954) and Lilley (1970) and the Braginsky the-

ory (Braginsky 1964). The model has convective downwelling on

the great circle φ = ±90◦ that tends to concentrate surface flux; in

the core the surface flux is concentrated around the Pacific. This

similarity adds real geophysical relevance to a whole class of flows

based on the original Bullard–Gellman flow. The flows have been

extended in the recent studies of Nakajima & Kono (1991, 1993),

Hutcheson & Gubbins (1994), Sarson & Gubbins (1996), Sarson &

Busse (1998), Gubbins et al. (2000a,b), Gubbins & Gibbons (2002)

and Sarson (2003).

The theory and method of solution is described in Section 2. Sec-

tion 3 reviews the generic results relevant for the Earth’s magnetic

field. The results are interpreted in terms of dynamo action, field

morphology and time dependence in Section 4.

2 T H E O RY

In the kinematic dynamo problem the fluid velocity v is specified

and the magnetic field is governed by the induction equation:

∂ B

∂t
= Rm∇ × (v× B) + ∇2 B, (1)

where Rm =μσ Vc is the dimensionless magnetic Reynolds number,

μ the magnetic permeability, σ the electrical conductivity, and c the

linear dimension. Eq. (1) is solved in a sphere of radius c with

insulating boundary conditions, so that B must match a potential

external field at r = c.

When v is independent of time solutions of (1) take the form

B = B0 exp (p + iω)t . The growth rate p and oscillation frequency

ω may be found efficiently as an eigenvalue problem. Dynamo action

is said to occur if the growth rate p(Rm) ≥ 0. The critical magnetic

Reynolds number Rc
m yields zero net growth in B: p(Rc

m) = 0. When

v is time dependent (1) must be solved by time stepping unless

v is periodic in time with period T , when solutions take the form

Bq exp[qt] where Bq is periodic with period T and q is a Floquet

parameter. The eigenvalue problem may then be solved efficiently

by a few time integrations of one period (Willis & Gubbins 2004).

Many different geometries and different flows have been con-

sidered; spherical geometry is the most relevant to the geodynamo

and the flows are usually expressed in terms of vector spherical

harmonics

v =
∑
lmst

εmt
l tm

l + εms
l sm

l , (2)

where tm
l , sm

l are toroidal and poloidal vector spherical harmonics:

t
m{c/s}
l = ∇ × [

tm
l (r )Pm

l (cos θ ){cos / sin}(mφ)er

]
, (3)

s
m{c/s}
l = ∇ × ∇ × [

sm
l (r )Pm

l (cos θ ){cos / sin}(mφ)er

]
, (4)

(r, θ , φ) are spherical coordinates, Pm
l are Schmidt-normalized as-

sociated Legendre functions, and er is the unit radial vector. Flows

consistent with convection influenced by rotation are expected to

be dominated by symmetry about the equator, which requires the

toroidal harmonics to have l − m odd and poloidal harmonics to have

l − m even (Gubbins & Zhang 1993). This amounts to invariance

under the transformation θ → π − θ . Other symmetries have been

considered and may prove important in geomagnetic field behaviour.

Generated magnetic fields have the same or lower symmetry than the

underlying flow. For example, flow with this ‘equatorial’ symmetry

may generate magnetic fields that are either antisymmetric about

reflection in the equatorial plane, the so-called dipolar family, or

symmetric about reflection in the equatorial plane, the quadrupole

family. The different symmetries are usually expressed in terms of

the leading harmonic in the poloidal field, l = 1, m = 0 or l = 2,

m = 0. Solutions with different symmetry are linearly independent

in the kinematic problem because the induction eq. (1) is linear; any

linear combination is also a solution. The full dynamical dynamo

problem is non-linear and solutions may not be combined, but they

are separable and may exist in isolation. This adds relevance to the

study of independent solutions of the kinematic problem.

The radial functions tm
l (r) and sm

l (r) must be chosen to satisfy

the boundary conditions and continuity conditions at the origin

(although this has not always been followed); they are otherwise

arbitrary. Most authors have chosen simple polynomial and trigono-

metric functions, sometimes modified by a taper function near the

boundary. Some authors have used spherical Bessel functions, which

amounts to expanding the flow in the natural decay modes of the
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(c)(a) (b)

Figure 1. Fluid flow defined by eq. (5). (a) contours of vφ , controlled by pa-

rameter ε0, in meridian section (b) streamlines of meridional circulation (ε1)

in meridian section (c) streamlines of convection rolls (ε2, ε3) in equatorial

section.

sphere, because they optimize the helicity. The wide variety of radial

function emphasizes the arbitrary nature of the kinematic problem

but it is, in fact, no more or less arbitrary than the use of vector

harmonics, which have no better case for admission other than that

they satisfy the solenoidal and continuity conditions. We seek ro-

bust, generic results that should be independent of the particular

choice of radial function, but this can never be guaranteed. Dudley

& James (1989) review most of these flows.

The most intensive study of a single class of flows has been con-

ducted for generalizations of the Kumar–Roberts dynamo (Kumar

& Roberts 1975) itself a development of the failed Bullard–Gellman

dynamo. The flow is defined as:

v = ε0t0
1 + ε1s0

2 + ε2s2c
2 + ε3s2s

2 , (5)

with radial functions defined by

t0
1 (r ) = r 2(1 − r 2),

s0
2 (r ) = r 6(1 − r 2)3,

s2c
2 (r ) = r 4(1 − r 2)2 cos(nπr ),

s2s
2 (r ) = r 4(1 − r 2)2 sin(nπr ). (6)

The first harmonic represents differential rotation about the coordi-

nate axis (which is implicitly assumed to be also the rotation axis),

the second meridional circulation, and the last two convective over-

turn. These three constituents of the flow are shown in Fig. 1; in

some sense they are the simplest flows that can generate the basic

features of the Earth’s magnetic field and mimic convection in a

rotating sphere. Bullard & Gellman (1954) used only harmonics t0
1

and s2c
2 ; Lilley (1970) added s2s

2 to remove the plane of symmetry

found to prevent dynamo action in the Braginsky limit (Braginsky

1964) (we would now say it adds helicity to the flow); and Kumar &

Roberts (1975) added s0
2 because it was found to promote steady so-

lutions in mean-field αω dynamos (Roberts 1972b). Sarson & Busse

(1998) added higher wavenumbers to the convective part (sm
l ) in or-

der to study the effect of more convection rolls and non-sectorial

(l �= m) behaviour. Sarson (2003) further modified the flow so that it

satisfied the thermal wind equation, bringing the flow closer to what

might be driven by temperature differences. This involves removing

the meridional circulation (ε1 = 0) and adding toroidal harmonics

t
2{c/s}
3 based on the radial functions

t2{s/c}
3 = ±4

5

(
d

dr
− 3

r

)
s2{c/s}

2 . (7)

Initial studies focused on values of the parameters {ε i} close to

the asymptotic regime studied by Braginsky (1964), the rather com-

plicated limit Rm → ∞ with ε1 Rm, ε2R1/2
m , and ε3R1/2

m remaining

finite (Nakajima & Kono 1991; Hutcheson & Gubbins 1994; Sarson

& Gubbins 1996). This allowed comparison with existing solutions

for the simpler, axisymmetric, Braginsky mean field equation, iden-

tical with the αω equation of mean field electrodynamics (Steenbeck

et al. 1966; Roberts 1972b).

This choice of flow has another advantage for studying the geo-

dynamo: the symmetry of periodic repetition in φ (only m = 2 terms

are present). The present geomagnetic field has approximately this

symmetry, and there is palaeomagnetic evidence to suggest that the

same symmetry has persisted for a long time. Not all choices of the

ε i are independent because of this additional symmetry. The trans-

formations φ → φ + π /2 and φ → −φ show the equivalence of the

four combinations:

(ε0 ε1 ε2 ε3), (ε0 ε1 −ε2 −ε3), (−ε0 ε1 −ε2 ε3),

(−ε0 ε1 ε2 − ε3). (8)

(Dudley & James 1989). The four different solutions for B separate

because of these symmetries, depending on whether they change

sign under reflection in the equatorial plane or rotation through an

angle π about the coordinate axis. The four symmetries are denoted

by their leading poloidal vector spherical harmonic: axial dipole Da

(led by l = 1, m = 0), axial quadrupole Qa(l = 2, m = 0), equatorial

dipole De(l = 1, m = 1), and equatorial quadrupole Qe(l = 2,

m = 1) [notation of Holme (1997)]. The same symmetries apply to

the higher wavenumbers and thermal wind flows studied by Sarson

& Busse (1998) and Sarson (2003). Many studies have concentrated

on the case ε2 = ε3 to optimize helicity in the convective overturn.

Changing the sign of Rm reverses the flow, so the second of these

combines with Rm → −Rm to produce the combination (−ε0 −
ε1 ε2 ε3). If we set ε2 = ε3, we can also restrict Rm to positive

values and still explore the full range of dynamo solutions defined

by the two parameters ε0 and ε1.

Rm must be defined consistently to compare dynamo action be-

tween different flows, particularly when comparing the Braginsky

regime with more balanced flows.

The Braginsky regime is completely dominated by differential

rotation, so one has to be careful to state whether Rm is based on

the small but essential radial flow or the much larger azimuthal

flow. In the first comprehensive study of kinematic dynamo action

of this class of flows outside the Braginsky regime, Gubbins et al.
(2000a) defined Rm so that the total kinetic energy of the flow is

unity:∫
v2dV = αε2

0 + βε2
1 + γ ε2

2 + δε2
3 = 1, (9)

where the scalars α, β, γ , δ are integrals of the radial functions (6).

The fraction of energy in the meridional circulation is then

M = sgn(ε1)βε2
1 , (10)

and that for differential rotation

D = sgn(ε0)αε2
0 . (11)

The remaining energy lies in convection or radial overturn

C = 1 − |M | − |D|. (12)

The entire class of flows is defined by the diamond |M | + |D| ≤
1. D > 0 gives westward surface flow; M > 0 gives surface flow

towards the equator and away from the poles.

The Braginsky limit becomes:

Rm → ∞, |D| → ±1, |M | → 0 (13)

in such a way that

1 − |D|2 = K |M |, (14)
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Figure 2. Dynamo action of two-parameter family of flows. Blank squares

do not support dynamo action. Greyscale gives solution symmetry with

lowest Rc
m. White lines are where oscillatory solutions have been found

corresponding to oscillatory solutions in the Braginsky limit. After Gubbins

& Gibbons (2002).

where K is a finite non-zero constant. Eq. (13) describes quadratics

in (D, M) parameter space (Fig. 2) passing through each of the limit

points D = ±1.

Other special cases of (5) have been the focus of attention, usually

with somewhat different radial functions (Dudley & James 1989;

Holme 2003). Axisymmetric flows with m = 0, on the boundary

of the diamond in Fig. 2, cannot generate axisymmetric magnetic

fields because of Cowling’s theorem but they can generate non-

axisymmetric magnetic fields. Solutions have the form B ∝ exp imφ

and each mode can be represented by a sum of harmonics with just

one value of m. This makes for a much simplified set of equations

and an easy numerical solution, which is why they have received so

much attention. The dominant m = 1 field is an equatorial dipole.

If one wants to fit this to a geodynamo one could rotate the whole

dynamo through 90◦ to give a dominant axial dipole, but the flow

would not obey the symmetry expected in a rotating system.

Eq. (1) is solved numerically by expanding v, B (both are

solenoidal, ∇ · v= ∇ · B = 0) in vector spherical harmonics and ap-

proximating the radial derivatives by some suitable finite difference

or collocation scheme. The resulting algebraic eigenvalue problem

is solved by standard methods, the Iteratively Restarted Arnoldi

Method (IRAM) of (Lehoucq et al. 1998) being the most successful

general method available. Dynamo action can never be established

rigorously by numerical means. This statement goes beyond the

usual cautionary remark for numerical rather than analytical solu-

tions because in practice we increase Rm until p becomes positive or

until the numerical scheme is incapable of representing the solution.

If no dynamo exists within the accessible range of Rm we still can-

not rule out dynamo action at higher Rm. The edges of each dynamo

region in Fig. 2, where dynamo action fails, present the most severe

numerical convergence problems. At these boundaries Rc
m typically

rises dramatically, B becomes spatially complex, and dynamo action

is lost with little warning. Further details of the numerical methods

are described in Gubbins et al. (2000a).

For time-periodic flows the solutions are found by integration in

time. Provided we integrate for long enough the fastest growing

mode will ultimately dominate (the slowest decaying mode domi-

nates if there are no growing modes). We can do better than this

by restarting the time integration after each period T . An arbitrary

initial solution is time-stepped for one period, then restarted with a

solution orthogonal to the first. Repeated integration and orthogonal-

ization after each cycle soon leads to a set of modes that accurately

represents the fastest growing (or slowest decaying) solution. The

method is fast and requires very little memory, unlike IRAM, which

must store a large banded matrix. This matrix-free Krylov subspace
method is described further in Willis & Gubbins (2004).

3 R E S U LT S

3.1 Dynamo action

Dynamo practitioners have two opposing experiences, either that no

obvious choice of flow works as a dynamo (viz. Bullard & Gellman

1954; Lilley 1970), or that almost all sufficiently complicated flows

act as dynamos e.g. Roberts (1972a). The Kumar–Roberts class of

flows were, therefore, studied to determine what proportion act as

dynamos. Over half of the flows with ε2 = ε3 generate magnetic field

of one symmetry or another; many generate fields of 2 symmetries or

even 3 with different Rc
m; and a few generate two distinct symmetries

with identical Rc
m—for example the ones lying on the boundary lines

between zones in Fig. 2.

The sides of the diamond in Fig. 2 have C = 0 and flows that

are axisymmetric. They cannot generate Da or Qa fields because

of Cowling’s theorem, which states that no axisymmetric field can

be sustained by dynamo action, but De and Qe fields are possi-

ble. None have been found with the original Kumar–Roberts choice

of radial functions but similar flows were studied by Bullard &

Gubbins (1977) and Dudley & James (1989) using slightly differ-

ent radial functions. Both found De fields for some of their flows.

Bullard & Gubbins (1977) noted strongly sheared magnetic fields

near the outer boundary with their first choice of flow, which did

not produce dynamo action. Adding an outer layer of stagnant fluid

did produce dynamo action. The stagnant conducting layer reduced

field gradients near the outer boundary, thus reducing energy loss

by diffusion. Dudley & James (1989) used very much simpler ra-

dial functions and obtained dynamo action without a stagnant layer.

Holme (1997) modified the Kumar–Roberts flow by changing the s0
2

radial function to r3(1 − r2)2, a close approximation to the Dudley

& James (1989) trigonometric function, and obtained De solutions.

Love & Gubbins (1996b) addressed the problem of choosing suit-

able radial functions by developing an optimization technique to find

flows that produce smooth, and therefore well converged, magnetic

fields. Holme (2003) used an optimization technique to explore the

efficiency of radial functions in promoting dynamo action and found

a spatial separation of poloidal and toroidal shear helped dynamo

action; he concluded the Dudley & James flow is close to optimal.

The line D = 0 has purely poloidal motion. It is well known that

purely toroidal motion cannot sustain a magnetic field (Bullard &

Gellman 1954), and a similar antidynamo theorem has been con-

jectured for purely poloidal motions; this numerical demonstration

shows the conjecture not to be true (Love & Gubbins 1996b). The

solution at the centre has no differential rotation and generates a De

field (Holme 1997). No convincing dynamo exists at D = M = 0

with the original Kumar–Roberts flows, although recent exploration

has revealed a number of oscillatory De and Qe solutions near the

centre of the diamond (Gubbins 2008).
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The line M = 0 has no meridional circulation; the dynamo studied

by Lilley (1970) is on this line close to D = 1. Lilley’s choice lies just

outside the dynamo region, and a tiny change in his flow produces a

successful dynamo. Unfortunately, the growing solution he reported

was a numerical artefact. Bullard & Gellman (1954) had M = 0 with

ε3 = 0 and also reported a growing solution that turned out to be a

numerical artefact.

3.1.1 Helicity

Helicity is thought to promote dynamo action by converting toroidal

to poloidal field. Bullard & Gellman (1954) envisaged pushing and

twisting of the toroidal field by helical flow to put energy into the

dipole field, but by omitting the s2s
2 harmonic they lost the helicity.

The α-effect of the Braginsky dynamo requires both s2c
2 and s2s

2 har-

monics and is related to the axisymmetric average of the helicity.

Pekeris et al. (1973), in an early study of a dynamo with harmonics

s2c
2 , t2c

2 , chose Beltrami flows with v parallel to ∇ × v in order to

maximize the helicity. Beltrami flows have radial functions based

on spherical Bessel functions. Nakajima & Kono (1993) made a

thorough study of the effect of helicity on kinematic dynamos, in-

cluding the Pekeris dynamo, and concluded that the dynamo was

more efficient for larger mean helicity.

Most studies have concentrated on the case ε2 = ε3, which opti-

mizes the helicity. Kumar & Roberts (1975) found numerical con-

vergence was best in this case, and Hutcheson & Gubbins (1994)

found that when ε2 and ε3 differ by too much the dynamo fails. The

flows near the Braginsky limit points D = ±1 act as αω dynamos,

the link being formal in the appropriate limit. Flows near the centre

line D = 0 might be expected to behave like α2 dynamos, and to

some extent they do. Steenbeck & Krause (1969b) [translated in

Roberts & Stix (1971)] originally proposed that the Earth had an

α2 dynamo because its field was steady, while the Sun had an αω

dynamo because its field was oscillatory.

Maximizing the mean helicity does not always lead to enhanced

dynamo action. For the Kumar–Roberts dynamo the helicity of the

flow depends only on the convective part of the motion and is pro-

portional to the product ε2ε3. There is an axisymmetric part and a

non-axisymmetric part:

h = v · ∇ × v = ε2ε3[H0(D, M) + H1(D, M) cos 2φ]. (15)

Surprisingly, Love & Gubbins (1996a) found that the most efficient

dynamo (the one with lowest Rc
m normalized by the kinetic energy)

on the D = 0 line was not at the centre M = 0, where the helicity is

a maximum for the kinetic energy available, but at a point where the

non-axisymmetric part of the helicity [H 1 in (15)] is a maximum.

This appears to hold rather generally, well away from the Braginsky

limit. Fig. 3 shows the non-axisymmetric part of the helicity com-

pared to Rc
m for the Da symmetry solutions. It seems that axisym-

metric helicity, in which the flow pushes and twists the toroidal field

in the same sense for all φ, does not lead to reconnection of the field

to reinforce the poloidal field (Love & Gubbins 1996a).

3.1.2 Effect of stagnation points and concentration of magnetic
flux on dynamo action

The boundaries between dynamo and non-dynamo regions in Fig. 2

are usually characterized by a rapidly rising critical magnetic

Reynolds number and concentration of magnetic flux into a few iso-

lated spots. Flux concentration is independent of the sign of B and is

often enhanced at stagnation points of the flow, where magnetic field

may be carried in from many directions and, in some circumstances,

12000

D
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M

M

B

D

G A

E

C

F

(b)

(a)

Rmc

Figure 3. (a) Flows giving dynamo action with Da symmetry. Letters A–G

label distinct regions of dynamo action separated by areas where no dy-

namos have been found. Rc
m as shown by the grey scale at bottom right. (b)

Non-axisymmetric helicity of the flow, H 1(D, M) in (15). Note the corre-

spondence with Rc
m, suggesting H 1 promotes dynamo action. After Gubbins

et al. (2000a).

is limited only by diffusion. At high Rm the flux is concentrated into

narrow zones with diffusion enhanced accordingly. Since the only

degree of freedom in this kinematic calculation is to change Rm,

there comes a point at which increasing Rm enhances diffusion more

rapidly than enhancing the dynamo action, the dynamo fails, and the

growth rate becomes a decreasing function of Rm. Stagnation points

are, therefore, central to determining the dynamo action. On the

surface, stagnation points are identified as centres of upwelling and

downwelling; flux tends to be concentrated over downwellings.

3.1.3 Boundary effects

A major problem with early searches for kinematic dynamo action

lay with the choice of radial function. The work of G. O. Roberts
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on periodic dynamos in infinite media showed that dynamo action

would be possible if the flow took on a cellular form with field re-

generation taking place by interaction between cells away from the

insulating boundary (Roberts 1972a). This led to the choice of mul-

tiple cells in radius, as in Gubbins (1972) and the Kumar–Roberts

dynamo [eqs (6) with n > 1]. Bullard & Gubbins (1977) identified

a current sheet developing near the insulating boundary of many

single-cell dynamos and attributed loss of dynamo action to en-

hanced ohmic diffusion near the boundary. They achieved dynamo

action by adding a stagnant layer of fluid around the region of mo-

tion; this allows electric currents to flow out of the region where

field is generated, reduces the diffusion, and allows dynamo action.

There is no hard-and-fast rule about the advantages of a stagnant

layer, it depends on whether the field regeneration leads to produc-

tion of radial current density near an insulating boundary. Changing

boundary conditions from insulating to perfectly conducting (where

the current density is required to be normal rather than parallel to

the boundary) usually improves dynamo action.

Dudley & James (1989) obtained dynamo action with axisym-

metric flows based on very simple radial functions. This model has

received considerable attention because of its simplicity but numer-

ical convergence in the radial direction is slow, presumably because

of enhanced surface currents [although note Livermore & Jackson

(2004b) attribute the difference to differences in shear at the origin].

This high sensitivity of dynamo action to changes in radial function

is another example of the sudden change from dynamo generation

to dynamo failure seen at the edges of dynamo regions in Fig. 2.

The problem of boundary-enhanced diffusion has surfaced more

recently with the attempt to obtain dynamo action in the labora-

tory, where magnetic Reynolds numbers are necessarily restricted

to low values and dynamo action must be made as efficient as pos-

sible. Kaiser & Tilgner (1999) studied a Ponomarenko dynamo sur-

rounded by stagnant fluid. They found cases where dynamo action

was impaired as well as enhanced, but concluded that laboratory

models would benefit from leaving some of the fluid stationary.

These conclusions were confirmed in a separate study by Stefani

et al. (2006b).

3.2 Spatial symmetry selection

The geophysically relevant solutions have Da symmetry and are

steady. Other symmetries may be relevant to the Sun, which has

an oscillatory magnetic field reversing every 11 yr, or some of the

other planets. Magnetic fields of Uranus and Neptune have been

discussed in this context by Holme (1997), who found that Da fields

are preferred only in the presence of strong differential rotation.

Fig. 1 shows that Da fields are favoured by D > 0. There are two

possible explanations of this, described in the next 2 subsections.

3.2.1 Sign of αω or dynamo number

Magnetic field generation by αω dynamos, whether Braginsky or

mean-field, depends on the product of the two magnetic Reynolds

numbers, Rα and Rω, known as the dynamo number (Parker 1979).

The αω dynamo equations are axisymmetric and attention has fo-

cused almost exclusively on Da and Qa axisymmetric solutions.

The Da solutions are favoured by positive dynamo numbers, the Qa

solutions by negative dynamo numbers [see Parker (1979) for an

extensive discussion]. Parity selection was also resolved by Proctor

(1977a,b), who showed further that Da and Qa fields would be gen-

erated at similar dynamo numbers. The sign of the dynamo number

depends simply on the sign of the flow because α is quadratic and

ω linear in v. The symmetry relations (8) show that it is possible to

change the sign of D (ε0) and α (ε2ε3) and obtain a dynamo solution

with the same Rc
m. All these transformations preserve the dynamo

number.

In the Kumar–Roberts dynamo these results are born out by 3-D

calculations near the Braginsky limit points. The dynamo number is

proportional to the product DM ; Da solutions dominate for D > 0,

while Qa solutions dominate for D < 0. This reflects the result from

Parker’s simple αω theory, where parity selection is governed by the

sign of the product DM . The 3-D results are not fully symmetric

with respect to M but become more symmetric when the effective

meridional circulation of the full Braginsky theory is used. Fig. 2

shows the crossover of parity at slightly negative values of D. Proctor

(1977a) used the solutions of the adjoint αω dynamo problem with

modified boundary conditions to determine symmetry selection and

the critical dynamo number; in the 3-D problem the adjoint induction

operator is formed simply by change of sign of v and change of

boundary conditions (Gibson & Roberts 1966), suggesting that a

change of sign of both D and M is needed to the change symmetry

of the solution. This has been confirmed using flows with stagnant

upper layers to reduce and effectively remove the effects of the

boundary conditions, which are different for the adjoint problem

(Sarson & Gubbins 1996). Fig. 2 confirms the switch from Da to Qa

with D → − D, M → − M near the limit points D = ±1.

3.2.2 Effects of stagnation points and concentration of magnetic
flux on symmetry selection

We have already seen that flux concentration can impair dynamo

action. It can also influence symmetry selection. Each symmetry

places constraints on the magnetic field, and a symmetry will not

be favoured if the flow is such as to generate strong components of

field in places forbidden by symmetry. Similarly, a symmetry will

be favoured if it allows field components in places where it is con-

centrated by the flow. Flows that generate more than one symmetry

generally do not have strong concentrations of flux.

For example, flows in the centre of the diamond in Fig. 2, those

with small D and M , tend to generate strong radial field Br near the

surface at the downwelling limbs of the convection (Gubbins et al.
2000b). Da and Qe require a change of sign of Br across the equa-

tor, which can only be accommodated with steep field gradients at

the equator and high diffusion. Meridional circulation tends to shift

surface radial field towards the poles, which inhibits De symmetry

and favours Da symmetry. Differential rotation promotes axisym-

metric fields and, therefore, favours both Da and Qa. The sign of

D determines whether surface field is concentrated on the equator,

favouring Qa solutions, or towards the poles, favouring Da solutions

(Gubbins et al. 2000b). The result is the same as discussed in the

previous section in connection with the sign of the dynamo number;

it provides a more geometrical explanation of the effect. Flux con-

centration is easiest to see in the surface radial field and is the most

important for geophysical interpretation, but flux concentration of

other components within the core appears to have similar effects

(Gubbins et al. 2000b).

3.2.3 Preference for axial symmetry?

It is possible the top of the Earth’s core is stably stratified, either

because the temperature gradient is below the adiabatic gradient

or because light elements have accumulated in the upper core. The

C© 2008 The Author, GJI, 173, 79–91

Journal compilation C© 2008 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/173/1/79/556948 by guest on 15 January 2024



86 D. Gubbins

kinematic results described above show that this may not be detri-

mental to dynamo action, quite the opposite, but it may have a

strong influence on the geomagnetic field at the core surface. A sta-

bly stratified region will not be stagnant because horizontal flows are

possible; they will be driven by lateral variations in density and by

the magnetic force. Love (2000) has explored the effect of toroidal

motions in a layer above a kinematic dynamo driven by the Kumar–

Roberts flow. His primary aim was to explain the magnetic field

of Saturn, which has a high degree of axial symmetry, but his re-

sults could also apply to the Earth. He found that simple differential

rotation often enhances the axisymmetric part of the field but not

always. For the Earth, a layer of purely toroidal flow at the top of

the core could improve the match of dynamo model fields with the

observed geomagnetic field.

Livermore & Jackson (2006) applied the energy method to a va-

riety of flows that have been studied for kinematic dynamo action.

They examine magnetic energy growth and decay for transients for

candidate magnetic fields and plot the envelope function, the maxi-

mum energy achieved by any field at a particular time. The important

fields for dynamo action are the ones for which energy persists the

longest, rather than those that grow the most in a short initial burst.

They find axisymmetric fields persist the longest, and suggest this

is why axisymmetric fields are generally the dominant component

of real dynamos. They also suggest that axisymmetric fields may be

dominant in a growth phase of a dynamo, such as when the Earth’s

field is recovering from a reversal (Livermore & Jackson 2004b).

They do not give any examples of working dynamos to back up this

suggestion. Their results could explain the experiment of Peffley

et al. (2000), who used flows similar to those of Dudley & James

(1989) and found the dominant magnetic modes to be axisymmetric.

This was not a dynamo experiment and all the modes decayed, but

the dominance of axial symmetry appeared contrary to Cowling’s

theorem. Tilgner (2002) showed the results were consistent with

kinematic theory, but the prevalence of axial symmetry suggests

the energy method is effective in predicting the behaviour of real

experiments.

3.3 Time dependence

3.3.1 Dynamo waves

Steady flows can only produce steady or oscillatory magnetic fields.

Early studies of mean field αω dynamos suggested that oscillatory

solutions were preferred (Steenbeck & Krause 1969a), but later sim-

ple models showed that steady solutions were possible on separation

of α and ω in space (Stix 1973; Deinzer et al. 1974; Gibbons 1998)

or on addition of meridional circulation (Roberts 1972b). Similar

results hold for 3-D kinematic dynamos: oscillatory solutions arise

when regions of strong poloidal and toroidal components of flow

are in the same place, and oscillatory solutions only arise for a very

narrow range of meridional circulation around the zero in effective

meridional circulation in the Braginsky limit (Gubbins & Gibbons

2002): the zone of oscillatory solutions in Fig. 2 has thickness less

than 10−2 in M . The absence of oscillatory 3-D solutions is re-

markable and in stark contrast to the axisymmetric αω results. The

explanation is simple: it is easier to separate poloidal and toroidal

parts in three dimensions than 2.

The transition from steady to oscillatory solutions can involve

either a change of mode or a pair of steady modes coalescing into

a complex conjugate pair (eigenvalues of a real operator are ei-

ther real or occur in complex conjugate pairs). Three possibilities
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Figure 4. Schematic examples of growth rate curves. Solid lines indicate

real growth rates, dotted lines complex growth rates (oscillatory solutions).

(a) A pair of real eigenvalues A and B coalesce to a complex conjugate pair

at C, which revert to a pair of real at D. The physically realisable solution is

the one with positive growth rate at lowest Rm, which depends on whether

p ≥ 0. The oscillatory mode is realized in the figure as drawn; any change in

fluid velocity that places C above, or D below, the line p = 0 will produce

a steady realisable solution. (b) Two separate modes; AB is steady and CD
oscillatory. As drawn AB is preferred but a small change in flow can shift CD
to make it unstable first. (c) ABC is steady and preferred as shown. If a small

change in flow places B below p = 0 the oscillatory mode DF becomes the

only dynamo mode.

are sketched in Fig. 4. When the same mode changes from real to

complex the generated field tends to be similar at certain parts of

the cycle. Flux in the oscillatory solutions tends to migrate north-

south rather than azimuthally, with flux reversal taking place by new

patches forming at the equator (poles) and migrating towards the

poles (equator). For some flows both steady and oscillatory solutions

are generated with the same critical magnetic Reynolds number.

3.3.2 Time-dependent flow

An interesting result is that time-dependent flows can be better dy-

namos than steady flows, in the sense that the growth rate is greater

than the mean growth rate of the constituent snapshots of the flow

(Gog et al. 1999; Normand 2003; Willis & Gubbins 2004). This

could arise, for example, from movement of the stagnation points to

reduce flux concentration and its attendant enhanced diffusion (see

Section 3.1.2). It is made possible by non-orthogonality of the modes

of the induction equation: if the equation were self-adjoint then vary-

ing the flow would not assist dynamo action. With non-orthogonal

modes a transient may grow initially but then decay because it is

a combination of decaying modes, but as the flow changes so does

the spectrum of modes. The field is now a different combination

of modes and a new transient may grow, leading to dynamo action.

If the modes were orthogonal and all decaying the field would in-

evitably continue to decay. Livermore & Jackson (2006) used the

energy method to explore growth of transients and find them to be
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quite robust to changes in flow, suggesting they may hold clues to

the form of the generated field.

Steady flow is also a great restriction on the possible time be-

haviour of the magnetic field: it can never produce an Earth-like

polarity reversal, for example. Periodic flows are rather special but

they allow us to explore some of the possible behaviour of time

dependent flow. In particular, it allows us to simulate reversals. If v
is periodic in time with period T the solution for B takes the form

Bq(t) exp [qt] with Bq (t + T ) =Bq (t). Fourier expansion in time of

the periodic quantities is the usual analytical method of solution, but

a much more efficient numerical method is to time-step one period

for a sequence of orthogonal starting conditions (Willis & Gubbins

2004).

Periodic, time-dependent flows are specified by allowing the ve-

locity parameters D, M to be periodic functions of time, defining a

closed curve in the parameter space of Fig. 2. The narrowness of the

band of oscillatory solutions means that only very slight changes

in fluid velocity are required to change from steady to oscillatory

solutions. If the orbit in (D, M)-space is designed to cross or just

enter the oscillatory region it is possible to obtain a solution that is

almost steady for most of the orbit and oscillates for only a short

time. If the period of the orbit is chosen so that the flow remains in

the oscillatory region for about half a cycle the field reverses. The

solution is periodic with the field remaining almost stationary for

most of the cycle and the reversal taking place in a short time.

Stefani & Gerbeth (2005) have studied reversals in mean-field

αω dynamos with equilibration forced by alpha-quenching (Stefani

et al. 2006a). They also find reversal behaviour where flows pro-

duce both steady and oscillatory kinematic solutions at the same

magnetic Reynolds number—places where the growth rate curve

for a pair of complex eigenvalues bifurcates into two curves for real

eigenvalues as in Fig. 4(a). For high Rm they find these bifurcation

points tend to cluster around the zero growth-rate axis, suggesting

high Rm-dynamos are prone to reversal behaviour. The mean-field

approximation is a limitation and, like any kinematic dynamo, it suf-

fers from the arbitrary choices of α and ω. The relative scarcity of

oscillatory solutions in 3-D kinematic dynamos (see Fig. 2) would

suggest this argument may be restricted to mean-field dynamos.

4 I M P L I C AT I O N S F O R T H E

G E O DY N A M O A N D DY N A M I C M O D E L S

The kinematic dynamo can help understand the geodynamo in two

ways: first, it provides an interpretation of the observed surface

magnetic field in terms of the underlying core flow, and secondly

it provides physical insights into the dynamo mechanism that can

guide further work on the forces driving the flow.

4.1 Main field

The clearest connection between flow and surface field in the dy-

namo solutions discussed here is concentration of vertical flux by

fluid downwelling. This is easy to see for steady flows but harder

in dynamic solutions where the flow is often chaotic and varying

too much in time for the effect to show up in anything other than a

time average. The effect has now been found in a quasi-steady dy-

namic model dominated by lateral variations in heat flux or temper-

ature at the outer boundary (Gubbins et al. 2007; Willis et al. 2007;

Sreenivasan & Gubbins 2007). These solutions have heat flux

boundary conditions determined by lower mantle seismic tomog-

raphy or a single Y 2
2 spherical harmonic, and narrow downwellings

coincide with high radial flux or cold spots on the boundary. In

the tomographic case the flux spots match the 4 main lobes of the

present geomagnetic field well, indicating a strong mantle influence

on the geomagnetic field. The opposite effect, absence of radial sur-

face flux above upwelling, is also observed. The absence of surface

flux within the tangent cylinder in the geomagnetic field suggests

upwelling there, which places a constraint on the vigour of convec-

tion in the whole core (Sreenivasan & Jones 2006). Downwelling

near the equator, where with Da symmetry there is no surface ra-

dial field to concentrate, tilts the toroidal field below the surface

to produce a typical cloverleaf pattern on the equator. The effect is

weak or absent when differential rotation is large, presumably be-

cause azimuthal flow dominates the downward flow. Such patterns

are often seen in dynamic models and there is a hint of this pattern

on the core surface beneath Indonesia (Bloxham & Gubbins 1985),

but nothing as strong as is usually seen in the models. This absence

may be because of strong azimuthal flow or weak vertical motion

near the core mantle boundary resulting from local stratification, as

discussed in Section 3.2.3

The primary feature of the geomagnetic field is the dominant

axial dipole, which has persisted throughout Earth’s history. The

kinematic models reported on here require significant differential

rotation to produce axial dipole symmetry, solutions with weak dif-

ferential rotation and meridional circulation being dominated by De

and Qe symmetry. Differential rotation tends to produce a large,

axisymmetric toroidal field that promotes axisymmetric poloidal

fields. Da symmetry is preferred when the differential rotation leads

to surface azimuthal drift in the same sense as the spiralling of the

convection rolls. In the Earth the surface drift is predominantly west-

ward, so we should expect a predominantly eastward spiralling, but

this is not seen clearly in the shape of the main lobes of the geo-

magnetic field. This may be because what we observe is a blurred

combination of several individual rolls that are obscured by the

limited resolution of core field maps, it may be that convection is

suppressed near the CMB and we observed the blurred effect of a

more complex field at depth, or it may simply be that spiralling is

weak under core conditions.

Axial dipole symmetry is also favoured by flux concentration at

high latitudes because no sharp field gradients are needed. In dy-

namic models flux tends to be concentrated outside the tangent cylin-

der, near 70◦N and S, also favouring Da symmetry. However, the

kinematic dynamos discussed here have no inner core yet still lead

to flux concentration at high latitudes. There is no reason, therefore,

to expect any dramatic change in geomagnetic field morphology in

earlier times when the inner core may have been smaller. Dynamical

studies tend to confirm this [for example, Bloxham (2000)].

Spiralling of the rolls not only provides the helicity required by

the Braginsky theory, it also provides a succession of rolls that over-

lap with radius [Fig. 1(c)], enabling the reconnection of small scale

fields within each roll to reinforce the large scale field, as hap-

pens in turbulent or periodic dynamos. Such intuition, based on the

Braginsky theory, remains useful for large areas of the parameter

space defining the 3-D flows, and is an important aid to understand-

ing dynamo action in general.

The early picture of a geomagnetic field with a dipole moment

remaining stationary for several hundred thousand years between

polarity reversals has been shown by fine resolution paleointensity

studies to be false [e.g. Guyodo & Valet (1999)]: the geomagnetic

field strength is continually fluctuating by a large fraction of its

maximum value and never remains constant for very long. This

suggests the core flow is also continually changing. Kinematic stud-

ies show that steady flows make poor dynamos because they contain
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stagnation points; it is also worth noting that some of the dynamos

driven by time-dependent, oscillatory flows studied by Willis &

Gubbins (2004) had lower critical magnetic Reynolds numbers than

any dynamo driven by a stationary, instantaneous flow in the cycle

[see also Gog et al. (1999)]. Most dynamic dynamo models have

chaotic flows that are highly time dependent and, therefore, avoid

this problem: it seems that any sufficiently chaotic and vigorous flow

will generate a magnetic field. The mixing properties of these time

dependent flows ensure that severe flux concentrations do not arise.

It is worth asking how dynamic solutions avoid severe diffusion

arising from flux concentration—does the Lorentz force reduce the

flow speeds in these locations or does it change the pattern of flow?

In the limited number of studies undertaken it would seem that the

flow pattern is changed, moving or removing the stagnation points;

the Lorentz force rarely becomes strong enough to oppose the flow

directly before diffusion associated with the flux expulsion becomes

too large. The dynamo instability appears to be stronger when the

system has the extra degrees of freedom associated with a chang-

ing flow, as in the dynamical case, as opposed to a fixed flow, as in

the kinematic case. The study of dynamo action by steady flows be-

comes highly relevant if the mantle influences the core flow strongly.

The boundary-locked regime of Gubbins et al. (2007) was hard to

find and only exists for a small range of the accessible parameters.

This is partly because increasing the lateral buoyancy parameter,

which controls the amplitude of lateral variations of heat flux on the

boundary, ultimately causes the dynamo to fail. Usually dynamo

failure occurs when lateral heat flux variations become comparable

with the mean vertical heat flux, and may be associated with a locked

flow that is nearly steady and has stagnation points.

4.2 Secular variation: frozen-flux theory

Ever since the time of Halley our changing magnetic field has been

used to infer mass motion inside the Earth. The idea was formalized

in Backus’ (1968) theory by invoking induction near the core surface

and neglecting diffusion. The theory has been used many times in

different guises to infer fluid motion at the core surface. Estimates

are required of both Br and its time derivative Ḃr [or a record of Br(t)
over an interval of time] downward continued to the CMB. Dynamo

action requires a balance between induction and diffusion, and it is

obvious that frozen-flux theory, by setting diffusion to zero, cannot

return the flow responsible for dynamo action directly: inferences

made about the geodynamo from maps of core motions must be

indirect at best. A circular argument underlies our basic estimate of

the core’s magnetic Reynolds number because it relies on a velocity

estimate based on observed secular variation, which in turn relies

on neglect of diffusion!

Kinematic dynamos provide many examples where frozen-flux

fails. Most obvious are the steady solutions, where surface flow

inversions relying on frozen-in fields inevitably yield zero flow. Love

(1999) gives examples of kinematic dynamos with slowly varying

magnetic fields for which frozen-flux yields completely misleading

fields. Kelly (1996) provides examples of time-varying magnetic

fields generated by fluid flow in a spherical shell with magnetic

field obtained from a kinematic dynamo solution fixed at the base.

At time t = 0 the flow in the shell jumps from zero to v, generating

a time-varying magnetic field at the upper surface that is inverted

for the flow using frozen-flux theory. Initially the inversion gives

a flow that is approximately correct but it weakens with time and

eventually reduces to zero as the transients die away and the magnetic

field becomes stationary. Stopping the flow at this point generates

more transients but now frozen-flux theory yields −v rather than the

correct v = 0! These examples show that the results from frozen-

flux theory must be treated with caution and will depend critically

on the time history of the flow.

The problem with Backus’ theory is that the limit η → 0 is sin-

gular: setting η = 0 is, therefore, likely to yield artificial results.

The problem is made clearer by considering the first order correc-

tion to the frozen-flux solution, which turns out to depend on the

ratio (η/ω)
1
2 rather than η, where ω is the frequency of time vari-

ations of Br (Braginsky & Le Mouël 1993; Gubbins 1996). The

approximation is clearly wrong for steady fields, where ω = 0. The

steady motion theorem of Voorhies & Backus (1985), which asserts

that flows found by frozen-flux theory are unique provided the flow

remains steady, is flawed for the same reason (Gubbins & Kelly

1996). The frozen-flux approximation is only valid if the magnetic

field changes sufficiently rapidly in time, yet it is only useful if the

flow changes sufficiently slowly in time to allow an estimate to be

made.

In practice secular variation must be estimated by differencing

magnetic field measurements made over an interval of time suffi-

ciently long to reduce the errors incurred by the differencing—about

a decade for ground measurements but significantly less for the data

from the new generation of satellites. This defines the shortest time

scale that can be studied. We may be lucky in having rapid geo-

magnetic changes, such as jerks, that appear to be consistent with

slower changes in fluid flow (Zatman & Bloxham 1997; Bloxham

et al. 2002). Success with frozen-flux inversions of dynamical geo-

dynamo simulations could also be attributed to rapid variations in

field associated with rather slow changes in flow, perhaps as a re-

sult of advection of small scale magnetic field. However, the main

evidence for diffusion at the surface of the Earth’s core comes from

changes in the reverse flux patches in the southern hemisphere dur-

ing the last century or so, where upwelling appears to bring toroidal

flux to the surface (Gubbins 2007). Diffusion may, and probably

does, act as strongly elsewhere where there is upwelling but we can-

not discriminate between diffusion and induction unless a patch of

flux is surounded by a null-flux curve where Br = 0.

4.3 Excursions and reversals

The present fall in dipole moment is related to reversal of flux in the

south Atlantic region and is thought by some to be the beginning

of a geomagnetic excursion or even a reversal. The present flux re-

versal is almost certainly caused by expulsion of toroidal field from

deeper within the core, which is rarely seen in dynamic models of

the geodynamo. It appears similar to the development of a dynamo

wave in the Braginsky regime, in which flux reverses near the equa-

tor to produce a patch that migrates poleward (Gubbins & Sarson

1994; Gubbins & Gibbons 2002). The present development in the

south Atlantic could be modelled as part of a dynamo wave cycle;

a change in flow is required to prevent the field from oscillating

regularly but the change need only be small in order to produce

the desired effect. Consider a flow with parameters on the bound-

ary between oscillatory and steady solutions in Fig. 2, on the line

emanating from the D = 1 Braginsky limit point. Such a flow gen-

erates oscillatory and stationary magnetic fields at the same critical

magnetic Reynolds number. Changing the flow slightly favours the

steady solution, changing it again will favour the oscillatory solu-

tion. By small, slow changes in time it is possible to construct a

time-dependent flow that produces reverse flux patches as part of a

dynamo wave (or overstability) but reverts to the steady field before
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progressing far through the wave cycle. Such events may be studied

kinematically by constructing time-periodic flows, where the repeat

period of the flow is much longer than the oscillation period of the

dynamo wave. Leaving the flow in the oscillatory state for longer

would simulate an excursion, and leaving it for half a cycle produces

a reversal (Willis & Gubbins 2004).

The symmetry of the dynamo equations under change of sign

of field has always meant reversed states were possible, the inter-

esting question is how the geodynamo changes from one state to

the other. From a dynamic point of view this may be achieved by

symmetry breaking, where a solution of one symmetry becomes

unstable to a solution of another symmetry. The critical points de-

termining such evolution are those where solutions with more than

one symmetry exist, such as the boundaries between preferred sym-

metries in Fig. 2. For example, flows with M < 0 and small D lie

close to the boundary between Da and Qa preferred solutions. A

time-dependent solution with flow in this region would produce a

combination of the symmetries, with Da giving way to Qa, possibly

producing hemispheric oscillations of the sort studied recently in dy-

namic calculations by Busse & Simitev (2006). A reversed Da may

eventually be established, the transition field indicating the nature

of the reversal mechanism. The transition via an oscillatory solu-

tion is an alternative symmetry breaking (the symmetry in this case

being invariance under translation in time); it seems a more likely

candidate for geomagnetic reversals than Qa symmetry-breaking

because it produces systematic VGP paths in the transition field,

as is sometimes observed (Love & Mazaud 1997). However, static

‘intermediate states’ occurring during transition, as have been pro-

posed by Hoffman (2000) and others, might point to a different

symmetry; and the same VGP path recorded at all sites would point

to a the presence of a De mode. Stefani & Gerbeth (2005) model

asymmetrical reversals, as proposed by Valet & Meynadier (1993),

with a mean-field dynamo, but the observations are disputed (Kok

& Tauxe 1996; Mazaud 1996; Laj et al. 1996) and it is perhaps too

early to read much into the comparison. The kinematic approach

to reversals may, however, help interpret observed transition fields

when data improve.

5 C O N C L U S I O N S

Kinematic studies provide a useful bridge between observation and

dynamical theory by indicating the type of flow in the core required

to produce certain magnetic behaviour. They are limited because the

fluid flow is always to some extent arbitrary, and only a small frac-

tion of possible flows can be studied. Nevertheless, some generic

conclusions may be drawn about the type of flow and dynamics re-

sponsible for generating a magnetic field with some of the properties

of the geomagnetic field.

First, dynamo action requires helicity in the form defined by

Braginsky’s � (Braginsky 1964). Furthermore, this helicity is re-

lated to the spiralling of convection rolls, which is known to occur

in rotating convection but has not yet been observed in the geo-

magnetic field. The Braginsky limit as originally applied involved

implausibly large toroidal fields, but the asymptotics hold well away

from the limit and can be usefully applied to more geophysically

realistic kinematic dynamos. Magnetic flux is concentrated at stag-

nation points in the flow, suggesting that the centres of the four main

lobes of the geomagnetic field are centres of downwelling.

Secondly, the geomagnetic field’s dipolar structure requires a spe-

cific combination of westward drift and eastward spiralling, corre-

sponding to a positive dynamo number, as indicated by convection

studies. Furthermore, stagnation points that concentrate flux in high

latitudes also favour axial dipole fields over axial quadrupole or

equatorial dipole fields because the axial dipole requires a change

of sign of radial field at the equator.

Finally, although geomagnetic-type reversals in which the field

retains the same polarity for long times between rapid reversals

are not possible with steady flow, they can be produced by flow that

changes very slightly, by less than 0.1 per cent in kinetic energy. The

relatively infrequent nature of reversals and absence of oscillations is

attributed to the spatial separation of toroidal and poloidal fields, the

latter being strongest at high and low latitudes and the former, while

not directly observed, being probably strongest in mid-latitudes.
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