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Relativity in the Future of Engineering 
Neil Ashby 

Absti-act-Improvements in clock technology make it possible 
to develop extremely accurate timing, ranging, navigation, and 
communications systems. Three relativistic effects, time dilation, 
the Sagnac effect, and gravitational frequency shifts, must be 
accounted for in order for modern systems to work properly. 
These effects are related in a nonmathematical way to funda- 
mental relativity principles: constancy of the speed of light, and 
the principle of equivalence. Examples of current and future 
engineering applications are discussed, such as in the Global Posi- 
tioning System, in time synchronization systems, communications, 
and geodesy. 

1. INTRODUCTION 

ELATIVISTIC effects become important in applications R requiring very accurate timing, time transfer, or syn- 
chronization. Many engineering systems are beginning to rely 
on modern atomic clocks which have fractional frequency 
stabilities of the order of or An excellent 
example is the Global Positioning System (GPS), in which 
about a dozen relativistic effects must be accounted for in order 
for the system to work properly. Atomic clock technology 
not only provides the basis for the definition of the second 
as the unit of time, but, in addition, this technology is 
expected to improve rapidly in the future. Vessot et al. [l] 
have summarized potential future performance improvements 
in several promising devices including cryogenic H-masers, 
Cs fountains, and trapped Hg ions: these predictions are 
summarized in Fig. 1. Such analyses show there is hope that 
fractional frequency stabilities in the range to can 
be achieved. In this paper however, a conservative fractional 
frequency stability figure of is adopted as a guideline 
for judging what relativistic effects might be important in the 
future. 

11. CONSTANCY OF THE SPEED Of LIGHT 

Relativity enters metrology in a most fundamental way 
through the so-called “Second Postulate” of the special theory 
of relativity, the principle of the constancy of the speed of 
light, c. This now widely accepted principle states that the 
speed of light in free space has the same value in all inertial 
systems, independent of the motion of the source. (The speed 
of light is also independent of the motion of the observer.) 
The numerical value of c has been defined by convention 

c = 299 792 458 meterslsecond. (1) 

Manuscript received July 26,1993; revised December 6, 1993. Invited paper 
presented at IEEE Intemational Frequency Control Symposium, June 2-4, 
1993, Salt Lake City, UT USA. 

The author is with the Department of Physics, University of Colorado, 
Boulder, CO 80309 USA. 

IEEE Log Number 9402046. 

.12 

I I ----r I I - I  
-18 I I I I I I I I 

o 1 2 3 4 5 6 7 
log(Avar8glng tlma [seconds]) 

Fig. 1. 
assumes no systematic effects in Cs and Hg devices.) 

Predicted Allan variance for future frequency standards [I]. (This 

In conjunction with the adopted unit of time, this value for 
c defines the SI unit of length, the meter. In thinking about 
the speed of light, a convenient rule of thumb is that c is 
approximately equal to 30 centimeters (cm) per nanosecond 
(1 nanosecond = 1 ns = second). No signal can 
transport energy or information at a speed greater than c. To 
overcome this limitation, much of the development of present- 
day computers has involved increasing component density so 
that the distance signals must travel between components is 
reduced. 

In an inertial frame of reference, the principle of the 
constancy of c provides a means for synchronizing remotely 
placed clocks. Consider two standard clocks, A and B, placed 
at rest a distance L (meters) apart. (The distance L could be 
found by measuring the time on clock A required for a light 
signal to propagate from A to B and back, and multiplying by 
c/2. This would not depend on the presence of a clock at B.) 
Now suppose a signal originates at clock A at time t A .  The 
time required for the signal to propagate in one direction from 
A to B is Llc. The clock at B will then be synchronized with 
that at A if the signal arrives at the time t g  given by 

This procedure is called “Einstein Synchronization,” and 
clocks distributed at rest in any inertial frame will be presumed 
to be synchronized by this or an equivalent procedure. 

The above discussion of electromagnetic signals ignores 
quite a few practical difficulties. Signals must have sufficient 
spectral bandwidth that it is possible to reconstruct well- 
defined pulses in time. Noise in real clocks and frequency drifts 
due to environmental factors, etc., are not a concern here. Also 
being ignored are effects on propagation speed which might 

0018-9456/94$04.00 0 1994 IEEE 



506 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 43, NO. 4, AUGUST 1994 

Fig. 2. Idealized conception of a navigation and time transfer system. 

arise because the signals propagate through a medium rather 
than through a vacuum. 

A .  Navigation 

Keeping these caveats in mind, the constancy of c leads to 
the following idealized conception of a navigational system. 
Referring to Fig. 2, suppose four transmitters, each with its 
own standard clock, are placed at known locations rj. Assume 
the clocks are synchronized by the Einstein procedure. There 
is a receiver at unknown position r carrying a standard 
clock which has not been synchronized. Let these transmitters 
rapidly transmit synchronized pulses which are tagged with the 
transmitter’s position and time, so that a receiver can determine 
the time t j  and the location rj of the pulse from transmitter 
j. The receiver’s position r and clock time t can then be 
determined by solving four simultaneous propagation delay 
equations: 

(3) 

for the unknowns r and t. These equations just express the 
principle of the constancy of c in an inertial frame. Clearly 
a timing error of one nanosecond would lead to an error of 
about 30 cm in position determination. 

It - rjl = c(t - t j ) ;  j = 1,2,3,4,  

B.  Event Detection 
There is a kind of reciprocity in this situation which can be 

used for event detection: suppose that instead of transmitters 
at the locations rj there are receivers, tied to synchronized 
standard clocks. Suppose that an event occurs at the position 
r at time t causing a signal to be transmitted, which is received 
at the four receivers at the respective known positions rj at the 
measured times t j  . Then by solving four propagation equations 
of the form of (3), the position of the event and the time at 
which it occurs can be determined. If some information about 
the position of the event is available, it may be possible to 
locate the event by solving fewer than four propagation delay 
equations. 

C .  Fault Location 
An example of event detection using only two synchronized 

clocks, is the problem of determining the location and time of 
a fault that occurs in a power line stretching between two 
detectors a distance L apart. In Fig. 3, clocks at the ends 
of the line are synchronized from some independent primary 
reference clock. A fault occurring at distances L1 and LZ from 
the respective detectors at the ends of the lines sends out a 
signal at time t which is received at times tl  and t z  at the 

I - L  c 

Fig. 3. Fault location using constancy of c. 
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Fig. 4. Thought experiment illustrating relativity of simultaneity. 

respective ends of the line. A ground survey would give the 
total length L: 

L = L1+ Lz, (4) 

whereas from the constancy of c, the times tl and t z  are related 
to the time t by propagation delay equations: 

tl = t + Ll/C, tz = t + L2/c. ( 5 )  

Solution of only two propagation delay equations, in conjunc- 
tion with (4), gives the time and position of the fault. To 
locate the fault to within 30 cm requires synchronization to 
better than a nanosecond. 

111. BREAKDOWN OF SIMULTANEITY 

The discussion above assumes that the clocks are at rest 
in some inertial reference frame. Usually, however, clocks 
are in motion; for example in Fig. 2 the transmitters could 
be orbiting the earth. Relative motion introduces subtle new 
effects; perhaps the most profound of these is the breakdown of 
the Newtonian concept of simultaneity. Events which appear 
to occur simultaneously in one inertial frame may not appear 
simultaneous to observers in some other inertial frame, which 
is moving with respect to the first. This is a direct consequence 
of the principle of the constancy of c. 

In discussing measurements made by observers in two dif- 
ferent, relatively moving inertial frames, one always imagines 
that each observer is equipped with hisher own measuring 
rods and standard clocks, that the clocks used by observers 
in one frame are at rest, and that they are synchronized by 
the Einstein procedure. In each of the inertial frames, any 
particular electromagnetic signal propagates with speed c. 

Consider then as in Fig. 4 two events consisting of two 
lightning strokes which hit the two ends of a train of length 
L = 2x simultaneously as seen by observers on the ground. 
The train is assumed to be moving to the right at speed v 
relative to the ground. For ease of discussion, the ground is 

alan
Highlight



ASHBY: RELATIVITY IN THE FUTURE OF ENGINEERING 507 

called the “rest” frame, and the train is called the “moving” 
frame. Observers on the ground (in the rest frame) can 
determine the midpoint between the two lightning strokes, a 
distance x from either end of the initial position of the train. 
They will then find that light signals from the two events will 
propagate along the tracks and collide at the midpoint. This 
has nothing to do with the motion of the train. 

Now look at the sequence of events involving a moving 
observer, sitting at the midpoint of the moving train. As 
the train moves forward, this observer moves toward the 
approaching light emitted from the event at the front of the 
train, and recedes from the light signal emitted from the event 
at the back of the train. Therefore the moving observer will 
encounter light from the front event first, and will have to 
conclude that the event at the front of the train occurred first. 
By the principle of the constancy of c, light must travel with 
speed c no matter what the value of the relative speed v is. So 
if light from event A arrives before that from event B, which 
is the same distance away, then event A must occur first. 

To analyze this approximately is not difficult. Suppose the 
zero of time for observers in both the rest and the moving 
kames is set to occur at the instant the midpoint of the train 
encounters the signal from the lightning stroke at the front 
of the train. Primes denote quantities measured by the moving 
observer. Then to the moving observer, the time t’ of the stroke 
at the front of the train is 

X 

e 
t’= _ _  

To observers in the rest frame, however, the midpoint of the 
train and the wavefront are approaching each other at the 
relative speed c + w, so to first order in U, 

Therefore 

(7) 

The term -vx/e2 is a relativistic correction for breakdown of 
simultaneity. The effect is proportional to the relative velocity 
and proportional to the distance x. 

Putting in some numbers, suppose v = 1000 kmhour 
(typical for jet aircraft) and x = 3500 km. Then the correction 
is 108 ns. The negative sign in (8) means that of two events 
simultaneous in the rest frame, to the moving observer the 
event farther out in front, at the more positive x, occurs earlier. 

IV. SAGNAC EFFECT 
The above discussion of the breakdown of simultaneity 

can be used to understand some peculiar physics in a slowly 
rotating coordinate frame. The prime engineering application 
is to time transfer and synchronization on the surface of the 
rotating earth. For numerical examples, therefore, the angular 
velocity will be that of the earth’s rotation, w = 7.29 x 
rad/s, and the radius will be the earth’s equatorial radius, 
R = 6.378 x lo6 meters. 

In this case the rest frame is a local nonrotating frame, with 
axes pointing toward the “fixed” stars, but with origin at the 

Fig. 5. For a sequence of Einstein synchronization processes around the 
closed circuit on the rotating earth’s surface, the Sagnac effect is proportional 
to the shaded area, which is the area enclosed by the circuit, projected onto 
the earth’s equatorial plane. 

center of the earth. The moving frame is a reference frame 
extending over a small portion of the rotating earth’s surface, 
having velocity v = W T  relative to the rest frame, where r is 
the distance of the clocks from the rotation axis. 

Now imagine two clocks fixed a small east-west distance 
2 apart on the surface of the earth. Viewed from the nonro- 
tating frame they will be moving with approximately equal 
speeds v = wr. If a clock synchronization process involving 
electromagnetic signals were carried out by two earth-fixed 
observers using Einstein synchronization in the moving frame, 
then the two clocks would not be synchronous when viewed 
from the nonrotating frame. The magnitude of the discrepancy 
is vx/c2 = wrx/c2 = (2w/c2)(rx/2) .  If this synchronization 
process is performed successively all the way around the 
equator, then effectively the distance is x = 2xr,  and the 
time discrepancy is thus 

2w 
At = - x T?, 

C2 
(9) 

where 7rr2 is the area enclosed by the path followed during the 
synchronization process. For example, synchronization around 
the earth’s equator involves a discrepancy 

upon arriving back at the starting point. 
This effect is known as the Sagnac effect, If the synchroniza- 

tion path were westward around the earth rather than eastward, 
then the discrepancy would be of opposite sign. This means 
that Einstein synchronization in a rotating reference frame 
is not self-consistent: If A is synchronized with B and B is 
synchronized with C, then A is not necessarily synchronized 
with C. In order to avoid difficulties with such nontransitivity 
it is best to adopt time in the nonrotating frame as the measure 
of time in the rotating frame. Thus one discards Einstein 
synchronization in the rotating frame. 

To put it another way, if Einstein synchronization is used 
in the earth-fixed rotating frame, then it is necessary to apply 
additional “Sagnac corrections” to the readings of clocks on 
the rotating earth, in order to obtain an internally consistent 
“coordinate time” on the earth’s surface. 

This is illustrated in Fig. 5 ,  which is a sketch of a flattened 
rotating earth. For a sequence of synchronization processes 
forming a closed circuit on the rotating earth, upon projecting 
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Fig. 6. Distribution of synchronization for a communications network. 

the path onto the equatorial plane of the earth one can 
determine the projected area AE.  The Consultative Committee 
for the Definition of the Second and the International Radio 
Consultative Committee have agreed that, in order to obtain 
consistently synchronized clocks on the earth’s surface at the 
subnanosecond level, the correction term to be applied is of 
the form 

2w 
At = - x AE,  

C2 

where AE is the projected area on the earth’s equatorial plane 
swept out by the vector whose tail is at the center of the earth 
and whose head is at the position of the electromagnetic signal 
pulse. The area AE is taken as positive if the head of the vector 
moves in the eastward direction. If two clocks located on the 
earth’s surface are compared by using electromagnetic signals 
in the rotating frame of the earth, then At must be subtracted 
from the measured time difference (east clock minus west 
clock) in order to synchronize the clocks so they will measure 
coordinate time on the rotating earth. They will effectively 
measure time in the local nonrotating frame attached to the 
earth’s center. 

Lack of transitivity in synchronization has implications for 
devices which rely on accurate synchronization. Suppose a 
communications network distributes synchronization through 
a series of nodes, along two different paths, to the ends of a 
communication link as in Fig. 6. If the area enclosed by the 
path, projected onto the earth’s equatorial plane, is not zero, 
then problems with inconsistent synchronization can arise. For 
example, suppose one synchronization link goes from San 
Francisco directly to New York, while a second link goes 
from San Francisco to Miami and then to New York. The 
discrepancy in synchronization between these two paths due 
to the Sagnac effect is about 11 ns. While this is not significant 
if the signal is 60 Hz as in a power grid, in an optical 
communications network operating at 1015 Hz the discrepancy 
amounts to lo7 cycles of oscillation. Depending on the design 
of the system this may become significant in the future. 

I r  +VI - r  I = cr o s  

Fig. 7. Propagation of a signal from a satellite at position rs to a receiver 
which moves a distance ut during the propagation time. The Sagnac effect 
will be automatically included if m i v e r  motion due to earth rotation during 
signal propagation is accounted for. 

Furthermore, if the trouble is taken to incorporate hardware 
delays to compensate for the Sagnac effect while sending in 
one direction, then if the communications were sent back the 
other way over the same link with the same delay, the effect 
will become twice as big. The effect is asymmetric. The same 
effect will occur in optical fiber communications networks 
where the speed of signal propagation may be significantly 
less than e. In the rotating reference frame the Sagnac effect 
is a property of space and time, not dependent on signal 
propagation speed. The S’agnac effect is the basis for laser 
gyroscopes. 

An equivalent way of looking at this phenomenon is dia- 
grammed in Fig. 7, which shows a signal transmitted from a 
satellite to a ground-based receiver. From the point of view of 
the nonrotating frame, the signal goes in a straight line with 
speed c, from the initial transmitter position rs to the final 
receiver position. If in this frame one accounts for the motion 
of the receiver during the propagation of the signal, then the 
Sagnac effect will be automatically accounted for. Thus if the 
initial position of the the receiver is ro, the velocity of the 
receiver is U ,  and the signal propagation time is t ,  constancy 
of e requires 

lro +ut - r s (  = (e t ) .  (12) 

Iterative solution of (12) for t is equivalent to calculating the 
Sagnac correction. 

V. TIME DILATION 
The previous section discusked two effects which are of first 

order in the velocity: the breakdown of simultaneity, and the 
Sagnac effect. This section discusses another famous effect, 
time dilation, which is of second order in the velocity. Imagine 
two inertial frames, a “rest” frame or laboratory frame, and 
a moving frame. A clock in the moving frame beats more 
slowly than clocks in the rest frame to which it is successively 
compared. The following thought experiment should readily 
convince the reader that this is a consequence of the principle 
of the constancy of e. A prime denotes quantities measured in 
the moving frame. 

Suppose that observers in the two inertial frames each 
possess a set of rectangular Cartesian coordinate axes which 
they orient so that the x,x’ and y,y’ axes are parallel. The 
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Thought exwriment v i m d  
in ‘moving‘ frame. 

- 
Thought experiment viewed 
in  ’rest‘ frame. 

t y’ 

Fig. 8. Thought experiment showing that “moving” clocks beat more slowly 
than clocks that remain “at rest.” 

direction of relative motion is parallel to the z, x’ axes. The 
moving observer orients a rod of length L’ along the y’ axis, 
and sends a light signal up along this rod from one end to the 
other. The situation is diagrammed in Fig. 8. To simplify the 
discussion one assumes that the light starts out at the instant 
the origins of the two reference frames pass by each other. 

The upper part of Fig. 8 shows the situation from the point 
of view of observers in the moving frame. The time t’ required 
for light to travel along the rod is simply 

t‘ = L’/c. (13) 

The clock faces on the upper part of Fig. 8 indicate time at 
the beginning and end of the experiment. 

The lower part of Fig. 8 shows the experiment from the 
point of view of observers in the rest frame. Breakdown of 
simultaneity would create difficulties for measurements of 
lengths oriented parallel to the relative velocity. But since 
this rod is oriented perpendicular to the relative velocity, by 
symmetry it is not possible for the rod to appear changed in 
length. So this rod has length L = L’ as it moves through the 
rest frame. The rod moves to the right with speed v and the 
light travels along the rod, so there has to be a horizontal 
component of velocity of the light pulse equal to U. The 
vertical component of the velocity of the light certainly has 
to be less than c; therefore the time required for the light to 
reach the upper end of the rod certainly has to be. greater 
than L/c. This argument shows qualitatively that the clocks in 
the moving frame will beat more slowly than the sequence of 
clocks with which they are compared in the rest frame. 

The lower part of Fig. 8 actually gives the right answer, for 
by the principle of the constancy of c, the vertical component 
of the light velocity in the rest frame is just d p .  Thus 
for observers in the rest frame, the time t required for the light 
to reach the upper end of the rod is just 

t = L / d n ’ .  (14) 

t’ = d-t. (15) 

So the relationship between t’ and t obtained by eliminating L 
and L’ from (13) and (14), and using the equality L = L’, is 

Usually the ratio v/c is small, so the square root can be 
expanded, giving approximately 

t‘ x (1 - 1 v2 

The fractional slowing is given by the correction w2/2c2 in 
the above equation. This correction is also commonly called 
the second-order Doppler shift, or transverse Doppler shift. 

Some examples of the size of this effect are as follows. For 
a clock at rest on the earth’s equator, and viewed from the 
nonrotating frame, 

- _ -  O2 x -1.2 x 10-12; 
2 c= 

this would accumulate to about 104 ns in one day. For a clock 
in a satellite orbiting the earth at 100 km altitude, 

1 0 2  

2 c2 
--- x -3.4 x 10-l0. 

For a clock in a GPS satellite, 

1212 

2 c2 
--- x -8.34 x 

Keeping in mind that in the future the fractional frequency 
stability of orbiting clocks may approach a part in these 
are very large effects. Even for clocks of frequency stability 
1 x as in the GPS Block II satellites, the second-order 
Doppler shift for an earth-fixed clock is significant. 

VI. GRAVITATIONAL FREQUENCY S H a S  

The Sagnac effect and the second-order Doppler shift are 
effects which can be understood on the basis of the Special 
Theory of Relativity. A third effect, the gravitational frequency 
shift, occurs when signals are sent from one location to 
another having a different gravitational potential. The effect 
can be understood in an elementary way using the fundamental 
assumption of the General Theory of Relativity-Einstein’s 
Principle of Equivalence [2]. 

A. The Principle of Equivalence 
Einstein’s Equivalence Principle states that over a small 

region of space and time, a fictitious gravitational field induced 
by acceleration cannot be distinguished from a gravitational 
field produced by mass. Thus the fictitious centrifugal force 
one feels in turning a comer in a vehicle has the same physical 
effects as a real gravitational field. An immediate consequence 
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Fig. 9. (a) Laboratory near the earth’s surface where the acceleration due to 
gravity is g. All objects fall with equal accelerations. (b) By the Equivalence 
Principle, experiments performed in an accelerated lab in free space have the 
same outcomes. 

of the Equivalence Principle is that gravitational fields can be 
reduced to zero by transforming to a freely falling reference 
frame. The fictitious gravitational field due to the acceleration 
then exactly cancels the real gravitational field. 

All experiments performed in a real gravitational field, such 
as in a laboratory on the surface of the earth where there is a 
gravitational field g, will have the same results as experiments 
performed in a laboratory in free space which is accelerated in 
the opposite direction with acceleration a = -9. In Fig. 9(a) 
are sketched some experiments performed in a laboratory 
fixed on the earth’s surface. For example, two objects of 
different compositions are observed to fall downward with 
equal accelerations g. (This is related to the deep experimental 
fact of the strict proportionality of inertial and gravitational 
mass, a subject we shall not go into here [3].) In Fig. 9(b), a 
similar experiment is performed in a laboratory in free space 
which is being pulled upward with acceleration g. In this case 
a nonaccelerated observer sees that the apple and the lead ball 
have no forces exerted on them. They remain at rest with 
respect to each other and the laboratory is accelerated past 
them, whereas the observer in the accelerated frame sees the 
objects “fall” downward with identical accelerations g. 

The equivalence of the two laboratories implies that a beam 
of light is deflected toward the source of the gravitational field. 
Let a beam of light, which travels in a straight line in free 

space, enter the side of the accelerated laboratory [near the 
top, in Fig. 9(b)]. The observer in this laboratory is accelerated 
past the light, so it must appear to fall down just as do the 
massive objects. The experiment must have the same outcome 
in the nonaccelerated laboratory on earth, so to an observer 
in a real gravitational field light must fall down. A beam of 
light passing near any massive body will be deflected towards 
the body. 

B.  Time Delay 

If one imagines the wavefronts in a beam of light as the 
beam is deflected toward the massive source of a gravitational 
field, then one can picture the portions of the wavefront nearest 
the mass being slowed down slightly with respect to the 
portions of the wavefront farther away from the source. The 
wavefront then tilts over and the beam is thereby deflected. 
This means that of two beams of light passing near a massive 
source, the one which passes closer will take longer to pass 
by. Thus not only is light deflected, it is slowed down by a 
gravitational field. 

Time delays of signals in the neighborhood of the earth 
can be a few tenths of a nanosecond. Such time delays are 
determined by a complicated logarithmic function of signal 
path parameters, times the quantity ~ G M E / c ~ ,  where G is 
the Newtonian gravitational constant and ME the earth’s mass. 
For earth GME/c’ = 0.443 cm, so the scale of such effects 
near earth is 

(20) 

This is not enough to worry about at the present time but 
could be significant in the future: a timing error of 0.1 ns in a 
navigational system would give rise to a 3 cm error in position. 

~ G M E  1.77cm 
!z- = 0.06 ns. -- 

c e2 C 

C .  Gravitational Frequency Shifts 

It follows from the Equivalence Principle that an electro- 
magnetic signal passing upwards in a gravitational field will be 
redshifted. In Fig. 10 is a sketch of an experiment performed 
in an equivalent laboratory, a rocket having acceleration g 
upwards in free space. Imagine the situation from the point 
of view of a nonaccelerated frame. Suppose a signal leaves 
the accelerated transmitter at the initial instant, when the 
transmitter velocity is still zero. The signal travels upwards 
a distance L, and is received by the accelerated receiver. The 
time required for the signal to propagate from transmitter to 
receiver is 

t = L / c .  (21) 

(22) 

During this time, the receiver has picked up a velocity 

v = gt = gL/c .  

To the receiver, the signal appears to come from a receding 
source and is Doppler shifted. In a first approximation the 
fractional frequency shift is Afl f  = - v / c ;  therefore the 
fractional frequency shift in the “effective” gravitational field 
g is 

(23) _ -  Af - -‘--sL - 
f c  c2 . 



ASHBY: RELATIVITY IN THE FUTURE OF ENGINEERING 

Fig. 10. A signal traveling upwards in a gravitational field is shifted towards 
lower frequencies. 

The quantity gL can be interpreted as the change in gravita- 
tional potential, Aq5, of the signal. 

At the surface of the earth, 

(24) g/c2 = 1.09 x per km, 

which is very important for today’s time standards. For ex- 
ample, a signal of definite frequency originating at mean sea 
level would be redshifted by 1.79 parts in 1013 upon arriving 
at the altitude of the NIST frequency standards laboratory in 
Boulder, CO. Consequently the contribution of the NIST time 
standard to Universal Coordinated Time (UTC) requires that a 
paper correction of -15.5 ns/day be applied to the NIST clock 
before it can be compared to time standards at mean sea level. 

For a clock in a satellite orbiting the earth at 100 km altitude 
compared to one on the geoid, 

3 = 1.08 x lo-’’ 
C2 

Not only will these effects be large in the future when 
clock stabilities approach a part in 1015 or better, it will be 
necessary to compute them quite accurately. This will mean, 
for example, that there will be a need for improved accuracy 
of the ephemerides of clock-carrying satellites. 

VII. THE GLOBAL POSITIONING SYSTEM 
The best existing example of an engineering system in 

which relativity plays an essential role is the GPS. This 
consists of a constellation of perhaps 24 earth-orbiting satel- 
lites carrying atomic clocks which synchronously transmit 
navigation signals, much as described in the discussion of 
Fig. 2. The satellite orbits are at approximately 20200 km 
altitude. Therefore clocks in the satellites will be significantly 
blueshifted in rate, compared to clocks on the ground. The 

511 

second-order Doppler shift of such clocks was given in (20). 
Also, if the orbits are not perfectly circular (and they almost 
never are), the clocks’ yo-yo motions towards and away 
from the earth will generate additional periodic gravitational 
frequency shifts, and periodic second-order Doppler shifts. 
Further, observers on the ground who wish to make use of 
the navigational signals will experience the Sagnac effect due 
to the earth’s rotation. 

A complete discussion of all the significant relativistic ef- 
fects, with analytical expressions for the necessary corrections, 
can be found elsewhere [4], [5]. Here rough magnitudes of 
some of the corrections are given. 

First, consider ground-based clocks in receivers which are 
at rest on the earth’s surface. Standard clocks on the geoid 
are used to define the unit of time; however, from the point 
of view of a local, nonrotating frame, there is a frequency 
shift due to the earth’s mass; the fractional frequency shift is 
about -7 x lo-’’. The earth’s oblateness is associated with 
a quadrupole contribution to the gravitational potential which 
cannot be neglected; the fractional frequency shift is about 
-4 x If earth-based clocks are not on the geoid they 
suffer a gravitational frequency shift [see Eqs. (23) and (24)]. 
Finally there is a second-order Doppler shift due to the earth’s 
rotation; the fractional frequency shift from this effect can be 
as large as -1.2 x [see (17)]. 

For GPS receivers in motion relative to the earth’s surface, 
there is an additional second-order Doppler shift due to their 
speed with respect to the ground; this can be of the order 
of lo-’’ depending on the ground speed. Also, the Sagnac 
effect, or motion of the receiver during propagation of the 
navigation signal, may give rise to effects of several hundred 
nanoseconds magnitude. 

The transmitters themselves suffer a frequency shift due to 
the earth’s gravitational potential, and a second-order Doppler 
shift due to orbital motion; these effects are several parts in 
10”. The additional frequency shifts due to orbital eccen- 
tricities can be tens of nanoseconds; for a GPS satellite of 
eccentricity e = 0.01, the maximum size of the effect is about 
23 ns. 

Signals propagating from transmitter to receivers are subject 
to the Sagnac effect, involving relativistic corrections of up 
to several hundred nanoseconds. Relativistic time delay of 
signals or relativistic deflection of signals is a few tenths of a 
nanosecond and is currently neglected in the GPS. 

VIU. THE! CONCEPT OF COORDINATE TIME 

With so many significant relativistic effects occurring on 
earth-fixed and earth-orbiting clocks, the problem of synchro- 
nization of the clocks becomes an acute one. Rates are affected 
by motional and gravitational effects; synchronization on the 
spinning earth is inconsistent if the Einstein procedure is used. 
How is it possible to synchronize a network of distributed, 
rapidly moving clocks so that a navigational system will 
work as conceived in Fig. 2? What has been found to work 
extremely well in the GPS is to use the time in the hypothetical 
underlying local inertial frame, with origin attached to the earth 
but not spinning, as the measure of time. This time is not time 
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on any standard clock orbiting the earth, instead one makes 
use of general relativity to correct the readings of such clocks 
so they would agree with hypothetical clocks at rest in the 
local inertial frame. The time obtained by so correcting all the 
clocks in the system, is an example of coordinate time. 

Thus, imagine an underlying nonrotating frame, or local 
inertial frame, unattached to the spinning earth, with its origin 
at the center of the earth. This frame is sometimes called 
the “Earth-Centered Inertial” frame, or ECI frame. In this 
frame, introduce a fictitious set of standard clocks available 
anywhere, all synchronized via the Einstein procedure, and 
running at agreed upon rates such that synchronization is 
maintained. Gravitational effects are incorporated by choosing 
one clock as a Master Clock and requiring that all other clocks 
be synchronized to the Master Clock by simple transmission of 
signals without any frequency shift corrections. The resulting 
time scale is called coordinate time. 

Now introduce a set of standard clocks distributed around 
the surface of the rotating earth, or orbiting the earth. To 
each one of these standard clocks apply a set of systematic 
corrections, so that at each instant the standard clock as 
corrected agrees with the time on a fictitious standard clock, at 
rest in the ECI frame, with which it instantaneously coincides. 
The set of corrected standard clocks will therefore be keeping 
coordinate time. In other words, coordinate time is equivalent 
to time measured by standard clocks in the ECI frame [4]. 

Time measured this way on coordinate clocks has two highly 
desirable properties. First, synchronization is reflexive: if A is 
synchronized with B, then B is synchronized with A. Second, 
synchronization is transitive: if A is synchronized with B, and 
B is synchronized with C,  then A is synchronized with C. 
Intemal inconsistencies are thereby eliminated. 

GPS time is an example of coordinate time. To an observer 
on the earth’s geoid, a standard clock in a GPS satellite in 
a nominally circular orbit would appear to be blueshifted by 
0.4465 parts per billion, or about 39000 ns per day; this is 
a net effect of gravitational frequency shifts, and motional 
Doppler shifts of satellite clocks, relative to reference clocks 
fixed on the ground. To compensate for this, the 10.23 MHz 
reference frequency of satellite clocks is adjusted downward 
to 10.229 999 995 43 MHz. The adjustment is accomplished 
on the ground before the satellites are launched. 

Also, if the orbit of the satellite clock is not perfectly 
circular, there will be additional gravitational and motional 
rate shifts which have to be accounted for. The additional 
correction required to achieve synchronization when the orbit 
eccentricity e is not zero is given by the expression [5] 

At = +4.428 x 10-lOe& sinE s, (26) 

where a is the semimajor axis in meters and E is the eccentric 
anomaly. Usually the software in the user’s receiver makes 
this correction. 

Ix. APPLICATION OF SATELLITE NAVIGATION IN GEODESY 

The motivation to obtain accurate measurements of move- 
ments of the earth’s crustal plates is intense. Knowledge 
of these very slow motions is crucial to the development 

of improved earthquake prediction capability; the potential 
impact on construction codes, building restrictions, etc., is 
considerable. In recent years the GPS has been successfully 
used to measure very long baselines between fiducial points 
on different crustal plates by a method described as “carrier 
phase double difference.” Two receivers are placed at the ends 
of a baseline of interest, and signals from two satellites are 
then “double differenced” in a manner to be described below. 
Differencing removes the need for some systematic corrections 
but as will be seen, there are residual relativistic effects which 
must be accounted for. 

Referring to Fig. 7 and the propagation time t given in (12), 
let the satellite position at the instant of transmission ts  be 
denoted by r S  and the receiver or observer position at the 
same instant be denoted by 20. Let the coordinate time of 
arrival of the signal at the observer be denoted by to. Then 
solving (12) for the propagation time gives [4], [5]  

where w is the earth’s angular velocity of rotation, K repre- 
sents a possible time offset or error of the receiver’s clock, 
and the receiver velocity U = w x ro has been inserted. The 
last term is the Sagnac correction. The rate adjustment applied 
to satellite clocks means that the quantity ts will have the 
correct scale when received on the geoid. There is a further 
correction, from the noncircular motion of the satellite, given 
by (26). Thus when all relativistic effects are incorporated, 

+ 4.428 x 10-lOe& sinE. (28) 

Let subscripts 1 and 2 denote the two different satellites and 
the two different observers. Suppose there are receivers at two 
different positions which receive a time signal originating from 
a single satellite. Upon taking the first difference of the arrival 
times, it is immediately seen that the eccentricity term cancels 
out, leaving the expression: 

The Sagnac correction is still needed. The time of transmission 
of the signal, ts, cancels out which lessens the impact of 
selective availability. 

Now the same set of measurements is taken, at essentially 
the same time, using signals from a second satellite. Writing 
another equation similar to (29) for the second set of mea- 
surements and taking the difference, it can immediately be 
seen that even the clock offsets in the receivers cancel out, 
leaving only the usual propagation delay terms with relativistic 
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Fig. 11. Scatter in baseline lengths for several different baselines measured 
during the Southwest Pacific 1992 GPS Campaign. The data were provided 
by UNAVCO. 

corrections due to the rotation of the earth: 
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(30) 
The Sagnac correction is still necessary. In this application 
the correction is largest when the baseline is at right angles 
to the line between the satellites; it can be several hundred 
nanoseconds. 

In Fig. 11  are plotted some baseline measurement data taken 
repeatedly on baselines in the Southwest Pacific, of lengths up 
to 2500 km [6]. Only the length of the baseline is shown here. 
The vertical scatter in the plotted points gives a measure of 
the errors involved. For the 2500 km baseline the spread is 
only a few cm. 

x. IMPACT ON FUNDAMENTAL METROLOGY 
The previous sections were devoted almost exclusively 

to the impact of relativity on the measurements of time, 
with distance derived by multiplying by c. At the level 
of a centimeter or less, there are additional effects on the 
measurement of position which arise because space in the 
neighborhood of a massive body is distorted. Consider as in 
Fig. 12 an attempt to establish a system of spatial coordinates 
in the neighborhood of the earth, against which to measure 
the positions of the earth’s crustal plates. Suppose that we 
wish to measure angles in the usual Euclidean way, so that a 
circle of coordinate radius T centered on the earth would have 
a circumference 27rr, measured with standard rods or with the 
help of the constancy of c. Two such circles, of coordinate 
radii T I  and r2, are indicated in Fig. 12. The standard distance 
from the inner circle straight out along a radius to the outer 
circle is not 7-2 - T I ;  instead one finds the standard distance 
d is [7] 

E N 4  or space curvature: 

The correction due to space curvature is of the order of 1 cm. 

Stmdard distance from A to B 

Fig. 12. Effect of spatial curvature on standard distance measurements. 

More generally, the fact that c has a defined numerical value 
means that the physical unit of length depends on the clock 
used to define the unit of time. For example, in barycentric 
dynamical time (TDB), the unit of time is the same as that of 
clocks on earth, in orbit around the sun, and the point of view 
taken is that of an observer in a reference frame at rest with 
respect to the solar system barycenter. The clocks on earth 
beat more slowly than clocks at rest at infinity in this system 
by the factor [8] 

1 - L = 1 - 1.55 x (32) 

Therefore, the meter is physically longer, so the length of a 
physical object is numerically smaller by this factor. The mass 
of the earth can be used to construct a quantity having the 
physical dimensions of a length, namely G M E / c ~ .  However, 
c has a defined value; this means that in TDB coordinates, 
GME is numerically smaller than in SI units: 

XI. SOME REMARKABLE CANCELLATIONS 
The earth is actually an oblate ellipsoid; clocks near one 

pole will be closer to the center of the earth than clocks on 
the equator, and will therefore be subject to a gravitational 
redshift; on the other hand in the ECI frame such clocks are 
moving more slowly than clocks near the equator and are 
subject to less second-order Doppler shift. This is diagrammed 
in Fig. 13. Over the ages the earth’s surface has assumed 
the approximate shape of a hydrostatic equipotential in the 
rotating frame: the average shape of the ocean’s surface defines 
the geoid. It is a remarkable fact that on the geoid, there is 
a very precise cancellation of gravitational frequency shifts 
and motional Doppler shifts, so that all clocks at rest on 
the geoid beat at the same rate! Therefore it is possible to 
construct a network of standard clocks on the earth’s geoid, 
all beating at the same rate. However, to synchronize these 
clocks consistently it is necessary to correct for the Sagnac 
effect, due to the earth’s rotation. 

Also, what about the possibility that the sun, moon, or other 
planets might contribute to gravitational frequency shifts? The 
earth’s orbit is not perfectly circular so one might expect a 
yo-yo effect on the rates of earth-orbiting clocks somewhat 
analagous to the correction given in (25) for GPS clocks. 
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Fig. 13. On the oblate rotating earth’s geoid, changes in gravitation fre- 
quency shift are precisely compensated by second-order Doppler shifts. 

For example, when a satellite is in the earth’s shadow its 
clock should be gravitationally blueshifted as compared to a 
satellite-borne clock between the sun and earth. For such a 
configuration, the fractional frequency shift between clocks in 
the two satellites, due to the sun, is about three parts in a 
trillion, which in an hour would cause a 12 ns timing error 
to build up. Fortunately we do not have to worry about this! 
This effect is cancelled to high precision by other relativistic 
effects arising because the entire system of earth plus satellites 
is in free fall around the sun. By the principle of equivalence, 
we should not be surprised that for a system in free fall, the 
gravitational effects of the sun are transformed away. Detailed 
analysis of this situation is rather delicate; when comparing 
clocks in the ECI frame, which is falling around the sun, 
with clocks in the solar system center-of-mass frame, there 
is disagreement about the meaning of simultaneity in the 
two frames. Using coordinate time in the ECI frame, with 
clocks synchronized by the Einstein procedure (modified by 
gravitational effects), the gravitational effects due to other 
solar system bodies will cancel to high accuracy. The residual 
gravitational effects are due to tidal potentials only, and are 
less than one part in 

XII. CONCLUSIONS 
In this paper, numerous examples of relativistic effects 

which are important for current and future navigation, timing, 
and communications systems have been discussed. Relativistic 
effects are always systematic, but depend on knowledge of 
the positions and velocities of the various clocks in the given 

reference frame. These effects are not noise; they are well- 
understood, and can be corrected for to a high level of 
accuracy. As clock stability and accuracy continues to improve 
it will become increasingly important for system designers 
and practitioners to become familiar with these effects so they 
will be accounted for properly. Hopefully this paper will help 
in a small way to educate those for whom the mathematical 
apparatus of general relativity is excessively cumbersome. 
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