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Preface

Prior to the development of the first lasers in the 1960s, optical coherence was not
a subject with which many scientists had much acquaintance, even though early
contributions to the field were made by several distinguished physicists, including
Max von Laue, Erwin Schrodinger and Frits Zernike. However, the situation
changed once it was realized that the remarkable properties of laser light
depended on its coherence. An earlier development that also triggered interest in
optical coherence was a series of important experiments by Hanbury Brown and
Twiss in the 1950s, showing that correlations between the fluctuations of mutually
coherent beams of thermal light could be measured by photoelectric correlation
and two-photon coincidence counting experiments. The interpretation of these
experiments was, however, surrounded by controversy, which emphasized the
need for understanding the coherence properties of light and their effect on the
interaction between light and matter. ’

Undoubtedly it was the realization that the subject of optical coherence was not
well understood that prompted the late Dr E. U. Condon to invite us, more than
three decades ago, to prepare a review article on the subject of coherence and
fluctuations of light for publication in the Reviews of Modern Physics, which he
then edited. The article was well received and frequently cited, and this encour-
aged us to expand it into a book. Little did we know then how rapidly the subject
would develop and that it would become the cornerstone of an essentially new
field, now known as quantum optics. Also the first experiments dealing with
non-classical states of light were reported in the 1970s, and they provided the
impetus for the new quantum mechanical developments. As an indication of the
growth of the field we note that the book Principles of Optics, by M. Born and E.
Wolf, published in 1959, the year before the laser was invented, had a chapter of
just over 60 pages on partially coherent light, which covered most of what was
then known about the subject. It was based entirely on the classical wave theory,
quantum optics barely existed at that time. By contrast, in the present book more
than twice as much space is devoted to quantum as to classical phenomena. The
book is perhaps unusual in covering both the classical and the quantum theory of
fluctuating electromagnetic fields in some depth.

Despite the length of the book, we make no claim as to its completeness,
especially with respect to the quantum mechanical sections, and several topics are
treated only cursorily or not at all. For example, only a short section deals with
the subject of laser cooling and trapping, which has grown to merit a book of its
own, and the important new field of atom interferometry is not treated at all.
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Although at first we tried to be consistent in the use of notation throughout the
book, later we abandoned the attempt, in part because the size of the book made
it impractical, and partly because the use of certain symbols has become standard
in some subfields. As regards the much debated question of the best choice of
units for electromagnetic quantities, we have demonstrated our open-mindedness
by employing both Gaussian and SI units. However, SI units are always used in
discussing experiments.

Much of the book is an outgrowth of lectures that we have both given over
more than 30 years at the University of Rochester, New York, and elsewhere. In
particular Section 3.2 of the book on the angular spectrum representation of
wavefields is based on lectures first given by one of us (EW) at the former
National Bureau of Standards in Gaithersburg, Maryland in 1979 and 1980. Part
of the text was prepared by him during sabbatical leaves at the University of
California in Berkeley and at the Schlumberger-Doll Research Laboratory in
Ridgefield, Connecticut, and he wishes to acknowledge his indebtedness to
Professor Sumner P. Davis and to Dr Robert P. Porter for providing congenial
facilities for the work.
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less accessible references.
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1
Elements of probability theory

1.1 Definitions

The concept of probability is of considerable importance in optics, as in any
situation in which the outcome of a given trial or measurement is uncertain.
Under these conditions it is desirable to be able to associate a measure with the
likelihood of the outcome or the event in question; such a measure is called the
probability of the event.

Several different definitions of probability have been adopted at various times
in the past. The classical definition is based on an exhaustive enumeration of the
possible outcomes of an experiment or trial. If the trial has N distinguishable,
mutually exclusive outcomes, which are equally likely to occur, and if » out of
these N possible outcomes have an attribute or characteristic that we call
‘success’, then the probability of success in any one trial is given by the ratio n/N.
For example, if we roll a die, and if each of the six digits is equally likely to be on
top when the die comes to rest, there are N = 6 distinguishable outcomes. If we
identify success with an even number, for example, then since there are three
different ways in which success can be achieved, it follows that the probability of
success when the die is rolled is given by 3/6 = 1/2. Unfortunately, an exhaustive
enumeration of all possibilities is not always feasible.

Another common definition of probability is based on the notion of relative
frequency of success. If in a large number of N independent trials the successful
attribute appears n times, then the relative frequency of success is n/N. When N
becomes very great, we identify this ratio with the probability of success in any
one trial. However, n/N does not have a limit as N — « in the mathematical
sense.

Alternatively, the concept of probability can be introduced in an axiomatic
way, in which we simply associate measures p(4), p(B), p(C), . .. that we call
probabilities with all possible outcomes or events 4, B, C, ... of a trial. If the
total event space is denoted by £, then A € Q, B € 2, etc. It is convenient to
introduce the following notation which is illustrated geometrically by the Venn
diagrams in Fig. 1.1:

AUB=A+B

denotes the combination or union of the two events A and B, which implies
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(@) ®)

Fig. 1.1 Venn diagrams for certain combinations of events A and B. The
shaded area illustrates the notion of (a) A or B or both; (b) both A and B; (c)
not A; (d) A but not B.

either 4, or B, or both (see Fig. 1.1(a));
ANB=A,B

denotes the intersection of the two events A and B, which implies both A and B
(see Fig. 1.1(b));

A=-4
denotes the complement of the event A, which implies not A (see Fig. 1.1(c));
ANB=A-B

denotes the intersection of event A with the complement of B, which implies 4
but not B (see Fig. 1.1(d)). The null event &J is the complement of Q. In all cases
the notation on the right is the one customary in probability theory, and that on
the left is the usual set theoretic notation. Figures 1.1(a) to 1.1(d) illustrate the
notions of union of two events, intersection of two events, etc., etc., geometric-
ally. Two events A and B are said to be disjoint or mutually exclusive if they do
not overlap at all, or the intersection A, B is the null event &.

The following three axioms suffice to determine the properties of the probabil-
ity p(A) of a given event:

(a) p(4)=0, (1.1-1)
(®) p(=1, (1.1-2)
(c) if Ay, Ay, A;, ... are mutually exclusive events, then

PAT+ Ay + As+ .. )= p(A) + p(A)) + p(As) + ... (1.1-3)

Equation (1.1-2) may be interpreted to mean that the probability of an outcome
that is certain is unity. As A + A = £, and 4 and A are mutually exclusive, it
follows from Eq. (1.1-3) that

p(A) + p(4) = p(A + 4) = p(®),
and from Egs. (1.1-1) and (1.1-2)
0=p4)=1. (1.1-4)

The bounds on any probability are therefore zero from below and unity from
above.
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1.2 Properties of probabilities

Several important corollaries follow immediately from these relations. If the
events Ay, Ay, As, ..., Ay are mutually exclusive and represent the set of all
possible outcomes, so that A; + A, + ... + Ay = Q, then from Egs. (1.1-2) and
(1.1-3) it follows that

N N
gpvm=w{;AJ=paﬁ=L (1.2-1)

Also, if A is a subset of B, or A C B, as illustrated by the Venn diagram in Fig.
1.2, then A and B — A are mutually exclusive, and their unjon is B, so that by

Eq. (1.1-3)

p(A) + p(B - A) = p(B),
or

p(A) =< p(B) when A C B. (1.2-2)
Finally, we note that an event that cannot occur has probability zero, because
@+ Q= Q, so that

p@) + p(Q) = p(Q),
and
p(@) =0. (1.2-3)

Thus if A and B are mutually exclusive, then the probability of both A and B
p(A, B)=0.

1.2.1 Joint probabilities

Events that are obtained by compounding other events are known as joint events,
and the corresponding probabilities are joint probabilities. Thus p(A, B) is the
Joint probability of both events A and B, or the probability of the intersection of
A with B. The order in which the events A and B are listed is immaterial. As the

compound event 4, B is a subset of the event A (see Fig. 1.1(b)), it follows from
Eq. (1.2~2) that

p(A, B) < p(A),
and similarly (1.2-4)
p(A, B) < p(B).

Fig. 1.2 Illustrating 4 as a subset of B.
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The joint probability for two events is therefore always less than or equal to the
probability for one of the events alone.

If By, B, ..., By is a set of all possible mutually exclusive events, then
M
S p(4, B) = p(A4, ) = p(4). (1.2-5)

i=1

This result follows immediately from the fact that A, By A, B, ... is also a set of
mutually exclusive events spanning the whole space (see Eq. (1.1-3)). More
generally, joint probabilities may involve more than two events. fC, G, ...,
Cy is a complete set of mutually exclusive events, then

N
S p(4,B,Ci, D,..)=p(A, B, D,...). (1.2-6)
k=1

Let us now consider the situation in which two events A and B are not
necessarily mutually exclusive (see Fig. 1.1(a)), and let us calculate the probabil-
ity p(A + B) of the union A + B. We cannot apply the summation law (1.2—6? to
A and B directly. However, we note that the two events A and B — A (cf. Figs.
1.1) are mutually exclusive, and their union is A + B. Then according to Eq.

(1.1-3),
p(A) + p(B — A) = p(4 + B). (1.2-7)
Also, B— A and A, B are mutually exclusive with union B, so that
p(B)=p(B — A) + p(4, B).
If we substitute for p(B — A) in Eq. (1.2-7), we obtain immediately
p(4 + B) = p(4) + p(B) — p(A, B), (1.2-8)
so that
p(A + B) < p(A) + p(B). (12-9)

Equation (1.2-8) is known as the composition law for two events that are not
necessarily mutually exclusive. The relation is readily generalized to N events A,

A, ..., Ay, for which it may be proved by induction that
N N N N N N
(AL + Ay + ...+ Ay) = 2 p(A) — 2> p(Ai 4) + E;;,ﬁkE p(A;, 4j, Ar)
i=1 i#j i#]
N N ik
(@) paies & )‘:'iple\s
— L+ (CDVTIp(AY, Ay, L AR (1.2-10)

Also, by repeated application of the inequality (1.2-9), one readily finds that
p(A1+A2+‘.‘+AN)$p(A1+A2+.‘.+AN_1)+p(AN)
< p(Ay+ Ay + ..+ Ay=y) + p(An-1) + p(Aw)
< p(A) + p(A) + ... + p(An), (1.2-11)

with the equality sign holding for the special case of mutually exclusive events.
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1.2.2 Conditional probabilities

The probability of some event A conditioned on some other event B is known as
the conditional probability of A given B, and it is frequently denoted by P(A|B).
It is given by the ratio

P(A[B) = p(A, B)/p(B), (1.2-12)

and it is, of course, defined only when B is not a null event. From Eq. (1.2-4) it
follows immediately that

0<P(A|B) <1, (1.2-13)

so that a conditional probability is a true probability, with all the properties given
earlier. If Ay, Ay, ..., Ay is a complete set of mutually exclusive possible
outcomes, then by virtue of the property (1.2-5) we have

N
>P(A{B) = 1. (1.2-14)
i=1

If the conditional probability of A given B is equal to the unconditional
probability of A, or
P(A[B) = p(A), (1.2-15)

then it evidently does not matter whether event B occurs, or not, so far as event
A is concerned. Events A and B are then described as being stafistically
independent. From Egs. (1.2-15) and (1.2-12) we see that

p(A, B) = p(A)p(B) (1.2-16)

whenever A and B are statistically independent, and this is sometimes taken to be
the defining relation for statistical independence. More generally, the necessary

and sufficient condition for N events A;, A,, ..., Ay to be statistically
independent is that the joint probability factorizes in the form
p(Al, A2, PRFP AN) = p(Al)p(Az) e p(AN) (12—17)

A similar relation then holds for any subset of the N events. Needless to say,
events that are mutually exclusive cannot be statistically independent, because the
joint probability for mutually exclusive events is zero (except for the trivial case in
which one or more of the events cannot happen at all).

A simple example may be helpful. Suppose that a die is rolled, and the number
ending up on top is registered. We are interested in events of type A in which the
number is divisible by 2, events B in which the number is divisible by 3, and
events C in which the number is prime. These events are described by the
following sets, with the indicated probabilities:

A=(2,4,6), p(4)=;
B=(,6), p(B)=} (1.2-18)
C=(2,35, p(C)=;
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The intersections among these sets are given by
(A4, B)=(6), p(4,B)=¢%
(4,0 =), p(4,0) =% (1.2-19)
(B,C)=(3). p(B,C)=%
It follows that
p(A, B) = p(A)p(B) 1
p(A4, ) # p(4)p(C)
p(B,C) = p(B)p(C)J

so that A and B are statistically independent, as are B and C, but A and C are
not statistically independent.

(1.2-20)

1.2.3 Bayes’ theorem on inverse probabilities
From the definition (1.2-12) of conditional probability the following two relations
follow:
p(A, B) = ®'(A|B)p(B)
p(A, B) = ®(B|A)p(4).
On equating both expressions for p(A, B) we obtain for mutually exclusive
events A and B

gy = PBlAPA) _ PBIAPEA) (1.2-21)
AR =T E S emlAn@
allA

where we have made use of Eq. (1.2-5) in the last expression. This r;}ation is
known as Bayes’ theorem. If we call P(B|A) the conditior{a'I probabthy of B
given A, we may think of P'(A|B) as the inverse probability o'f A given B.
Bayes’ theorem then allows the inverse probability to be deFermmed from thg
forward conditional probability together with p(A). Ip practice the theorem is
often applied to experimental situations in which A is to be de.ter'mmed frgm
measurements of B, but little or nothing is known about the a priori probability
p(A). Some assurnption about the a priori charaj:terlstlcs of p(A)Athen I}as t.o be
made before Eq. (1.2-21) can be used, and this introduces a certain arbitrariness
into the procedure, which has been criticized. ‘

Let us illustrate the problem by a simple example. A vessel contains N balls,
which are either black or white, in unknown proportion. A ball is p1ckeq at
random and is found to be white. We wish to determine the ipverse Probablhty
that the vessel contained » (0 < n < N) white balls originally in the hgl}t Qf the
experiment. Let ®(1|n) be the conditional probability that a white ball is picked
when the vessel actually contains » white balls (n=0,1, ..., N). From the
nature of the problem it is evident that P(1{n) = n/N Then ~frorn Eq. '(1‘2—21)
the inverse probability ®'(n|1) that the vessel originally contained » white balls,

1.3 Random variables and probability distributions 7

given that a white ball is picked, is given by

p(alty = 2UMRC)___(/N)p(m)

N
ZO@(llﬂ)p(n) Zo(n/N)P(n)

where p(n) is the a priori probability that the vessel contains 7 white balls.
Unfortunately, nothing is known about p(n), so that, strictly speaking, Eq.
(1.2~22) cannot be applied. However, in the absence of further information, if we
arbitrarily assign equal weights to all values of »n from 0 to N a priori, then
p(n) = 1/(N + 1) and Eq. (1.2-22) leads to the solution

(12-22)

_ n
IN(N +1)

@'(nl1) = =" (1.2-23)

>n

n=0
By making some assignment to the a priori probabilities p(n), we have been able
to calculate the inverse probabilities %'(n|1). Although it may not be possible to
give a formal justification for this procedure, it nevertheless leads to quantitative
estimates that are often valuable.

1.3 Random variables and probability distributions

When the possible outcomes A of a trial or experiment are numbers, then the
outcomes are automatically mutually exclusive. It is convenient to regard these
numbers as the values of some variable x, which is known as a random variable or
variate. If the possible values of x consist of the countable set of numbers X1, Xo,
x3, ..., then x is known as a discrete random variable, whereas if the possible
values are any numbers in some interval (a, b) (which may be infinite), x is
known as a continuous random variable. The set of all possible outcomes is
known as the ensemble of x. Usually the random variable is taken to be real, but
complex random variables z = x +1iy, whose real and imaginary parts x, y are
both random variables, will also be encountered.

With each of the possible outcomes or values xy, x5, . . . of the discrete variate
we may associate a probability p; (i =1, 2, ...), and as the different values are
mutually exclusive, the corresponding probabilities must sum to unity, by virtue
of Eq. (1.2-1),

>pi=1 (1.3-1)
all ¢
A graph of the probability p; versus x; as in Fig. 1.3(a) consists of a series of
points or lines, and illustrates the distribution of probability over the interval. In
the special case in which one value x; is certain, and none of the other values X1,
X3, ... occurs, the form of p; is

pi = Sy, (1.3-2)

where &y is the Kronecker delta symbol, i.e. 8;=1if i = j and &; = 0 otherwise.
If x is a continuous variate in the interval (a, b), it is convenient to associate a
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Fig. 1.3 Tllustrating () discrete, {b) continuous probability distributions.

probability density p(x) with the ensemble of x, such that p(x)dx gives the
probability for x to be found in the infinitesimal interval from x to x + dx. Then,
corresponding to Eq. (1.3-1), we have the normalization condition

jbp(ﬂodx =1 (1.3-3)

The form of p(x) gives the probability distribution of the variate x (see Fig.
1.3(b)). The probability P(x < X) for x to be equal to or below X (a<X<b)is
given by the integral

P(x< X) = pr(x)dx. (1.3-4)

Corresponding to Eq. (1.2-2) we have the relation
P(x < X)) < P(x < X;) when X; < Xy (1.3-5)

P(x < X) is therefore an increasing function of X that is bounded by unity, and
its derivative is the probability density

dP(x < X)
dXx

The probability density p(X) may not exist as an ordinary function when
P(x < X) is discontinuous, but it cannot be more singular than a Dirac delta
function. If the continuous random variable x takes on the value x, with
certainty, then p(x) has the form

p(x) = &(x — xo), (1.3-7)

which can be compared with Eq. (1.3-2) for a discrete random variable. The need
for delta functions to describe probability densities can be avoided by ‘the use of
Stieltjes integrals (Yaglom, 1962, Chap. 2, Sec. 9), but we shall not hesitate to use
delta functions here. Indeed, by the introduction of delta functions we can
incorporate the treatment of discrete variates in the treatment of continuous
variates. If a discrete variate takes on the values xi, x;, . . . with probabilities py,

= p(X). (1.3-6)

D2, - -+, then we can formally describe this situation by a continuous variate x
having the following probability density p(x):
p(x) = 2 pi6(x — x7). (1.3-8)

1.3 Random variables and probability distributions 9

Because of this, and in order to avoid repetition, we shall henceforth formally
regard x as a continuous variate.

A cautionary note regarding notation may be in order here. If x and y are two
different random variables, their probability densities are sometimes denoted by
p(x) and p(y), respectively, without any implication that the functional forms of
the two probability distributions are equal. However, it is generally safer to use
different symbols, e.g. p(x) and P(y), for two probability densities that are not
necessarily equal.

1.3.1 Transformations of variates

Let x be a random variable defined on the interval (a, b) with probability density
p(x). It is sometimes necessary to make a transformation from x to a new
variable y, where

y=f(x), As<y=<B, (1.3-9)

and we wish to determine the probability density P(y) of y. Let us first suppose
that the transformation (1.3-9) has a single-valued inverse,

x = g(y). (1.3-10)

Then if x and y correspond to each other, and the interval dx corresponds to the
interval dy, then evidently

P(y)ldyl = p(x)ldx|,
so that

P(y) = p(x)

g
d

= pleMlg’ )

- ple»)] ) 1.3-11
0] (13710

More generally, if the inverse is multivalued, and to a given y there correspond
several x’s

x1 = g1(y)
x2 = 82(y) (1.3-12)

then we need to add the probabilities associated with these different, mutually
exclusive x’s, and we have in place of Eq. (1.3-11)

P(y) = Xp(x)

dx
d

x=x;

= 2 pla)]lgi)l

-y _Play)] (13-13)

s
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The same result can also be formally expressed in the more compact form

P(y) = f p(x)dly ~ f(x)]dx, (1.3-14)
if we expand the delta function in the usual way in terms of its zeros,
8(x — x;)
8y — f(x)] = X ——7 (1.3-15)
Ve

Equation (1.3-14) can be interpreted to mean that the probability density of y is
obtained by integrating the probability density p(x) of x over all those values of x
that correspond to y, i.e. those which are subject to the constraint y = f(x).

As an example we consider the change of probability under the transformation
y = x%, which has the double-valued inverse

x=tyy

dy 2y
In this case Eq. (1.3-14) gives
P(y) = 2O L PCVY) g y. (1.3-16)
2Vy 2Vy
Next we consider the more general situation in which we have a set of N
variates xy, X3, . .., Xy, with joint probability density p(xy, x3, . . ., Xy), and we
wish to transform to a new set yj, y,, ..., yy, with probability density
P(y1, y2,- - ., yn)- If the transformation

Yr=f(x1, X2, ..., xn), (r=12,..., N)
has a single-valued inverse

% =8,y sy, (r=12,...,N),

then
P(y1, y2, -5 ynldyrdys ... dynl = p(xe, 32, . . ., xy)| day dxy . .. dayl,
(1.3-17a)
and
P(y1, y25 -+ -5 YN) = U‘P(Xla X5 o XND, (1.3-17b)

where J is the Jacobian of the transformation

(81, 82, &)
a(yh Y250 yN)
Once again we can express the transformation of the probability with the help of

] =
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delta functions in the more compact form

P(y1, yas > yN) =

fP(xl, Xp, - XNy = )02 — f2) .. Oy — fu)dxidxy ... dxy,
(1.3-18)

which also holds when the inverse is multivalued.

If the random variable z is complex, with z = x + iy, then we are effectively
dealing with two real variates x, y. The probability density P(z) of z is then
simply the joint probability density of x and y, and the normalization condition
on P(z) becomes

f P(z)dz =1, (1.3-19)

where d’z is a shorthand notation for dxd y. Probability densities of complex
variates can be treated in a manner that is a natural generalization of the
foregoing treatment of real variates.

1.3.2 Expectations and moments

Perhaps the most important quantity associated with a random variable x is its
average or mean or expectation value, which will be denoted by (x). The mean is
obtained by weighting each value of x by the associated probability p(x)dx for
that value and integrating over the allowed range of x. Thus,

(x) = fxp(x) dx, (1.3-20)

provided that the integral exists. More generally, if x is a random variable, any
function f(x) of x is itself a random variable, and its mean or expectation, if it
exists, is given by

(F@) = [fx)p(x)ax. (1.3-21)

Among the functions of x that are of particular interest are the powers x” (r = 1,
2, ...), for which

v, ={(x") = fx’p(x) dx. (1.3-22)

v, or (x) is known as the r’th moment of x. The mean (x), which is of course
the first moment v, is often the most important moment, whereas the higher
moments generally are progressively less important. It is worth noting that if p(x)
does not fall off sufficiently rapidly with x for large x, some of the moments may
not exist. An example is provided by the Cauchy probability density
alm

a® + (x — x)?
whose moments all diverge.

p(x) = (a>0, -0 <x <), (1.3-23)
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When the random variable takes on only integer values n =0, 1, 2, ... with
probabilities pg, p1, p2, . . ., we define the moments in a completely analogous

manner by the formula
v,=(n") =3 n'p, (1.3-24)
n=0

However, another kind of moment defined by

(WY =(nn-D(n=2)...(n=r+1))=Snn-1)...(n— 1+ )py,

n=0
(1.3-25)

and known as the r’th factorial moment of n, sometimes turns out to be simpler
for integer variates, as we shall see below. In the following definitions we limit
ourselves to continuous variates, in order to avoid repetition.

Equation (1.3-22) defines the moments of x about the origin x = 0, but it is
often more useful to deal with moments taken about some other value, such as
the mean (x). In that case they are known as central moments, and we shall
denote them by u,,

pe= (0= (2))) = [ = (2)) Py ax. (1.3-26)
The difference between x and its expectation {x ) is known as the deviation
Ax =x — (x),

so that we may write u, = ((Ax)"). The first central moment y; = (Ax) = 0 from
the definition, but the higher central moments are non-zero in general, although a
probability density p(x) that is symmetric about its mean will have zero odd
central moments. The second central moment y, is known as the variance or the
mean-squared deviation or the dispersion. It is an important measure that
determines the effective width of the probability density p(x). The variance , is
necessarily non-negative, and it vanishes only in the special case in which p(x) is a
delta function, i.e. when there is no uncertainty at all in the outcome x. The
square root of the variance is known as the root-mean-squared deviation or
standard deviation o, and like the variance, it is 2 measure of dispersion, but is of
the same dimensions as the mean {x). The standard deviation is sometimes used
to normalize the higher moments of x. For example, the ratio

a3 = #3/03, (13—27)

which can be positive or negative, is known as the coefficient of skewness, and it
provides a dimensionless measure of the asymmetry of the probability density
p(x) (see Fig. 1.4). Similarly, the dimensionless ratio

oy = w/ot, (1.3-28)

which is known as the kurtosis, conveniently distinguishes probability distribu-
tions which are tall and thin from those that are short and wide (see Fig. 1.5). It
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px)

a3 >0

ay <0

X

Fig. 1.4 Tlustrating probability distributions with positive, zero and negative
skewness.

px)

X

Fig. 1.5 Illustrating probability distributions with kurtosis greater than, equal
to, and less than 3.

has the value 3 for a Gaussian distribution, which plays a central role in
probability theory, as we shall see.

By making a binomial expansion under the integral in Eq. (1.3-26) and
integrating term by term, we arrive at the following relation between the ordinary
and the central moments,

o= 3t (13-29)

s=0\ S
where vy = 1. In particular, the variance is given by
= Vs — VA, (1.3-30)

The first and second moments characterize the most important features of the
probability distribution. It is sometimes convenient to transform from x to a new
variate y defined by

y=(x—{(x})/o, (1.3-31)

which has the property that its mean is zero, and its standard deviation is unity.
The new variate y is said to be in standard form, and calculations are often
simplified by this transformation.

Moments can also be defined jointly for several random variables x, y, z, .. . If
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p(x,y,z,...) is the joint probability density of x, y, z, ..., then the central
moment of order /, m, n, ... is given by the expectation

Uimn... = {(Ax)!(Ay)"(B2)" . ..). (1.3-32)

In particular, for two random variables there are three different variances:
oo = {(Ax)), pp = {(Ay)?), wy = (AxAy); the last is known as the cova-
riance. An alternative notation that is commonly used is to distinguish the

different random variables by a suffix, so that they become xq, x,, ... xy. The
covariance between x; and x; is then written
,ui/- = (Axiij). (1A3"‘33)

The covariances y;; can be regarded as the elements of a symmetric N X N matrix
known as the covariance matrix, whose diagonal elements are the variances

((Ax)?), ((Bx2)*), ..., {(Dxn)?).

From the Schwarz inequality one can readily show that
lug* = ity = 0120,2‘, (1.3-34)

where we have written o; = ((Ax;)?)2, etc. for the standard deviation of x;. The
normalized quantity

Py = y/0i0; (1.3-35)

is known as the correlation coefficient and is evidently bounded by —1 and +1.
Two variates whose correlation coefficient is +1 or —1 are said to be completely
correlated or completely anticorrelated, respectively. For example, if x, =
ax; + b, where a, b are real numbers, it is clear that x; and x; fluctuate up and
down together when a is positive and in opposition when a is negative. As
Ax; = aAx, the correlation coefficient is readily found to be p;, = a/|al, which is
+1 or —1, so that the two variates x;, x, are completely correlated or anticorrel-
ated in this case. By contrast we note that p;; =0 if x; and x, are statistically
independent, because

0102012 = f AxAxap(x, 1) dxy dx = [Axip(n) dny [ Axap()ax; = 0.

By a generalization of the same argument we can readily show that if x, x5, . . .
are statistically independent random variables, then

(AxAxAx, ...) =0 ifi,j, k, ... are all different. (1.3-36)
The covariance matrix ; is then diagonal.
Linear combinations of statistically independent variates x, x,, ... are often
encountered in practice. Let y be a new variate defined by
y = Zaixiv (1.3-37)
b
where the coefficients ay, a,, . .. are arbitrary real numbers, and the x4, x,, . ..
are independent. Then it follows immediately from the definition that
(y) = Salx), (1.3-38)
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and from Eq. (1.3-36) that
Ay)?) = aa(AxAx) =S alo’. (1.3-39)
y j ]
i 7

Finally we note that averages and moments can also be introduced for complex
random variables by an obvious generalization of Eqs. (1.3-21) and (1.3-22). If
21, 22, . . . are complex random variables, the covariance matrix is the Hermitian
matrix defined by

= (AzAz]). (1.3-40)

The correlation coefficient p; given by Eq. (1.3-35) is then complex, but the
standard deviations o; = (|Az;[*)'2 are real as before, and |os] is bounded by
unity.

1.3.3 Chebyshev inequality

One sometimes wishes to know the probability that some randomly fluctuating
quantity exceeds a certain threshold value. The Chebyshev inequality allows one
to put an upper bound on this probability without detailed knowledge of the
actual form of the probability distribution.

Let p(x) be the probability density of some real random variable x, and let
g(x) be a non-negative real function of x. Suppose that g(x)= K, where K is
some positive number, whenever x lies in the domain D. Then the probability
Plg(x) = K] that g(x) exceeds K is evidently the probability that x lies within D,
and is given by

Plg(x) = K] = po(x) dx. (1.3-41)

Let us now calculate the expectation of g(x). By virtue of the non-negative
character of g(x) and p(x), we have

(6) = [)p()dx = | g@p()dr = K| p(x)dx = KPlg(x) = K],

so that
Plg(x) = K] =< (g(x))/K. (1.3-42)

This formula is known as the Chebyshev inequality . Note that it is sufficient for us
to know the expectation of (g(x)) in order to determine an upper bound for
P[g(x) = K], although the upper bound is often rather weak.

As an example, let us calculate the probability that the value x departs from its
mean (x) by more than 75 standard deviations 0. Let g(x) = (Ax)?. Then the
requir{ed probability is P[(Ax)* = 170%]. Now

(g(x)) = ((ax)") = o*,
so that from Eq. (1.3-42), with K = 7?0?,
1

,'72

Pl|Ax| = no] < (1.3-43)
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This is known as the Bienaymé—Chebyshev inequality. Thus, if n =3, it tells us
that the probability of encountering a fluctuation from the mean greater than
three standard deviations is less than 1/9. Actually, if x were a Gaussian variate,
the probability P[|Ax|=30] would be less than .003, so that the Bienaymé-
Chebyshev inequality provides only a weak upper bound.

1.4 Generating functions
1.4.1 Moment generating function

It is sometimes possible to generate the moments more simply and conveniently
from another function, known as the generating function, rather than to calculate
them directly. For example, the function defined for real § by

M(E) = () = [ ep(x) dx, (1.4-1)

is known as the moment generating function, provided it exists. On expanding the
exponential as a power series and integrating term by term, we find that

M) = Zl’g—r, (1.4-2)

=0 r!

so that the moment v, can be obtained from M (&) either by making a power
series expansion in & or by differentiation, in which case we obtain

v = |IME] 14—
,[dgr y (14-3)

For a discrete random variable, such as a random integer n, we simply replace
the integral in Eq. (1.4-1) by a sum over », and write

ME) = Zoe"gp(n). (1.4-4)

This equation generates the moments of n as before. It is also possible to derive
the factorial moments (#(7) in an analogous manner. For that purpose we
introduce the factorial moment generating function F(&) defined by

Fo=(1+8n =3 30z (ior+ by

n=0r=0 r! p<n)

=
- ZO__< = dgr, (1.4-5)

which generates the factorial moments by power series expansion. It should be
noted that the series is infinite if there is. no upper bound on n. To avoid
repetition we shall focus mainly on the continuous variate below.
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1.4.2 Characteristic function

The moment generating function may not exist for every &. However, another
generating function, defined by

& = (") = [ ar, (1.4-6)

and known as the characteristic function always exists as an ordinary function,
because it is simply the Fourier transform of an absolutely integrable function
(Goldberg, 1961, Chap. 2). In general C(&) is complex. When p(x) is square-
integrable, Eq. (1.4-6) can be inverted to yield the probability density

=1 -ixg _
p(x) 2”fC(E)e dx, (1.4-7)

but even when p(x) contains delta function contributions, Egs. (1.4-6) and
(1.4-7) are valid within the framework of generalized function theory. It is clear
that the moments, if they exist, can be derived just as readily by differentiation
from C(&) as from M (&) above. However, it is worth noting that the characteristic
function C(&) exists even when the moments do not. As an example we again
consider the Cauchy distribution given by Eq. {1.3-23) above, which has no
moments, for which

©

ixg .
c®== — eTAY gl ginod, (1.4-8)
T @+ (x- x0)?

The right-hand side is not differentiable with respect to & at £=0, and therefore
cannot be used to generate the moments. Even when the moments exist, the
probability density is not always uniquely determined by its moments, although
counter-examples tend to be pathological and unphysical (Kendall, 1952,
Chap. 4). B

Characteristi¢ functions are very rich in mathematical properties and whole
books have been devoted to them (Lukacs, 1960). The following are a few of the
more useful properties:
(a) ' co) =1, (1.4-9)

as is obvious from the definition.

(b) [C®)| = C0). (1.4-10)

This follows from the fact that

IC(®)| = f]ei"sp(x)Idx = Jp(x)dx = 1.

The characteristic function can therefore never rise above its value at & = 0.
(c) C(&) is continuous on the real axis, even if p(x) has discontinuities. This can
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be seen from the inequality
|G + 1) = C(E) = [I=E — 5¥]p(x) dx = 2 fsin o) p(x) dx
(1.4-11)
because the right-hand side tends to zero as h — 0 for all £.
(d) C(=§ = C*®, (1.4-12)

where the asterisk denotes the complex conjugate. This follows immediately
from the definition by virtue of the fact that p(x) is necessarily real.
(e) C(&) is non-negative definite, which means that for an arbitrary set of N

real numbers &, &, . .., &y and N arbitrary complex numbers a1, a3, . . -,
an,
N N
SaiaCE - &)=0. (1.4-13)
i=1j=1

This result follows from the inequality
N 2

< > ajett > =0
j=1

when the average on the left is written as an integral. We then have
N N

S 3 [ala e 0p() dx = 0

i=1j=1

which, with the help of Eq. (1.4-6), leads immediately to the inequality
(1.4-13).

There is an important theorem due to Bochner (1959, pp. 325-328; see also
Goldberg, 1961, Chap. 5) which in its elementary form asserts that every
non-negative definite function of a broad class has a non-negative Fourier
transform and, conversely, that the Fourier transform of every non-negative
function of a broad class is non-negative definite. This class includes functions
which fall off sufficiently rapidly at infinity to ensure that their Fourier transforms
are continuous functions. Absolutely integrable functions are of this kind. It
follows that a complex function C(&) that satisfies the conditions (1.4-13) and
C(0) = 1 is a characteristic function.

From the definitions it is evident that the three generating functions M(§),
F(E), C(E), when they exist, are related as follows:

M(i&) = C(§)
F(e¥ — 1) = C(&) (1.4-14)
F(&) = M[In(1 + &)

Finally, if z = x + iy is a complex random variable with probability density p(z),
so that

jp(z) &#z =1, (dz=dxdy),
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the characteristic function C(u) is defined to be the two-dimensional Fourier
transform of p(z). This may be written

C(u) —= jez4*z—uz*p(z) dZZ, (14_15)

. *r—puz® . . . .
where u is a complex parameter, and e* ?™* is the two-dimensional Fourier

kernelin x, y.

1.4.3 Cumaulants

Another generating function that is sometimes useful is the logarithm of the
moment generating function,

K(&) =In[M(B)], (1.4-16)

known as the cumulant generating function. It can be given a power series
expansion in & with coefficients that are known as the cumulants «,,

K(&) = 21—-—";’: . (1.4-17)

There is no constant term in the expansion because M(0) =1 and K(0) =0. It
can be shown that the series is either infinite or it terminates at the second term.
This result is an immediate consequence of a theorem of Marcinkiewicz (see
Lukacs, 1970, p. 213).

Cumulants have a number of interesting invariance properties, and they are
particularly convenient when one is dealing with combinations of statistically

independent variates. Let x3, X,, . . ., Xy be statistically independent, with
N
y = > cx;, (1.4-18)
i=1

where the coefficients ¢; are constants. Let us first examine the relation between
the moment generating functions M,(&) and M, (&) of y and x;, respectively. By
definition

N N N N
25) B <Hé> = [1(e) = [[ M, (c),
= =1 =1 i=1

=1

My(8) = (%) = <exp

(1.4-19)

where the last step is a consequence of the assumed statistical independence of the
x;. It follows from Eq. (1.4-16) that the corresponding relation between cumulant
generating functions is

N
Ky (&) = > K. (c8), (1.4-20)
i=1
and for the r’th cumulants

N
&P = Sl (1.4-21)
=1
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In particular, if the constants ¢; are all unity, the r’th cumulant of y is the sum of

the r’th cumulants of the x;’s.
Cumulants behave particularly simply under translation of the random variable
x. Consider the linear transformation from x to y,

y=Mx=-a), (A>0) (1.4-22)

that represents both a translation through @ and a change of scale A. From Eq.
(1.3-11) the probability densities p(x) of x and P(y) of y are seen to be related
by

1 [y )
P(y) = =p|= +a]. (1.4-23)
() )'P( A
Hence, we have for the corresponding moment generating function

M,(&) = j e’ P(y) dy

= J’e‘("‘“)fp(x) dx
= e MEM(AE). (1.4-24)
We see that the effect of the translation on the moments is more complicated than
the effect of the scale change. If a = 0, the moments are related very simply by
)y =2, (1.4-25)
but if A=1 and a+0, there is no simple relation between (y") and (x").
However, from Eq. (1.4-24), we have on taking logarithms,

Ky(g) = "AUE + Kx(lg)v (14—26)
so that the cumulants are connected by the relations
& = Akl — Aa
(1.4-27)
K(’,V) = A’K(,X), (r=2).

In particular, if there is no scale change, so that A=1, all the cumulants except
the first remain completely unchanged. Cumulants (except for the first) are
therefore invariant under translation.

In the special case in which a = (x) and A =1, the transformation (1.4-22)
represents a translation by the mean, so that y = Ax and the moments of y are
the central moments of x. Then we have from Eq. (1.4-26)

Kai(8) = =(x)§ + K:(8) (1.4-28)

We can readily use the defining relation to establish a connection between the
cumulants and the central moments. We start from the relation

Kax(8) = In[Max(8)],
and differentiate both sides with respect to &. This gives

dKac(®) _ dMar(®)

3
MAX(E/ d§ dE
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On substituting the power series expansions (1.4-2) and (1.4-17) for M4, (&) and
Kxx(E), using Eq. (1.4-28) and recalling that the moments of Ax are the central
moments Y, l, . . . , Wwe obtain

2 3 2
g4 ls s +...][—(x)+K1+———K2§ L
2! 3! 1! 2!

wE | e
+ 22 g B
ok 2! 31

+ ...

(1.4-29)

Equating coefficients of equal powers of & leads to the following relations
between the cumulants of x and the central moments of x,

Ky = (x)
Ky = g
K3 =
e (1.4-30)
Ky = pq — 313
Ks = ps — 10113

The first cumulant is seen to be the mean, and all higher cumulants are
independent of the choice of origin.

1.5 Some examples of probability distributions
1.5.1 Bernoulli or binomial distribution

Consider a sequence of N independent trials or observations, in which we focus
on some particular feature (success) that has a probability 8 of showing up in any
one trial. We wish to determine the probability py(n) that there are n successes
out of the N trials (n < N). As all the trials are independent, the probability of
encountering a particular sequence of n successes and N — n failures is the
product of the corresponding probabilities, which is (1 — B)¥ ™", irrespective of

. . . N\ .
the order in which the successes and failures occur. But there are " different

arrangements of the n successes and N — n failures, each of which has the same
probability. The total probability py(n) is therefore the sum of the probabilities

for these (ﬁ) different arrangements, or

pn(n) = (f{)ﬁ"(l - BN, (0<n<N). (1.5-1)

This probability distribution is known as the Bernoulli or binomial distribution,
the latter because py(n) is a term in the binomial expansion of [f+ (1 — B)]V.
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We note that py(n) contains two free parameters N, 3, and that
N
Sovm)=[B+1-p1" =1,
n=0

as required. The form of the probability distribution is illustrated in Fig. 1.6 for
the symmetric case f3 = %

It is not difficult to calculate moments of n directly from Eq. (1.5-1), but we
can determine the moment generating function equally easily. From Eq. (1.5-1)
we have

N
M(E) = 3 & pu(n)

- 3 (Mpera- o

=[1+ Bef - DIV, (1.5-2)

from which the moments are calculated by making a power series expansion in &.
The factorial moments turn out to be much simpler than the ordinary moments,
and we find for the generating function

N
F(§) = 20(1 + &)"pn(n)
NN
- 3 s+ arraa- oo
= (1+ &)~
I (1.5-3)
S
r=0
i) 0.4‘
N=S5
0.3 // \/ N=10
/ \\ T~
0.2 // \/ W —_
N N=15
/ // \(\;l/ / 1
/ “\ // \
on / 4 A
/ / ]«/\ H\\ \\
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Fig. 1.6 Some forms of the Bernoulli distribution with § = 1/2.
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The r’th factorial moment (x("7), which is the coefficient of £"/r!, is therefore
given by

(n)y =N(N=1)...(N=r+1)f, (r<N). (1.5-4)
In particular, by choosing r = 1, 2, we obtain for the first two moments,
v=(n)=Nf
v, ={(n?) = NB+ NN - 1) (1.5-5)

i =v—vi=NB1-p).
The higher-order moments get progressively more complicated. The variance is
greatest when f = % for any given N, i.e. when the distribution is symmetric about
n= %N. Although the width or standard deviation o= [NS(1 — B)1Y2 increases
with N, it should be noted that the relative width

tends to zero as N — o, so that in a relative sense the distribution becomes
narrower with increasing N. The skewness a3 and the kurtosis ay defined by Eqgs.
(1.3-27) and (1.3-28) are (1 — 2B)/[NB(1 — ﬂ)]lfZ and 3 - 6/N + 1/[NB(1 - )],
respectively. The former becomes zero when =3, and tends to zero as N — o
irrespective of §, while the latter tends to 3 as N — .

1.5.2 Poisson distribution

When the number of trials N tends to infinity and the probability of success in
any one trial 8 tends to zero in such a way that the expectation (n) = Nf
remains constant, the Bernoulli distribution simplifies. To see this we write
NN=1)(N=-2)...(N—-n+1)p1~-pg""

n!
_(A=1YN{A-2N) ... (= (n = D/N)BN)"A - A"

n!

pn(n) =

and replace B by (n)/N, so that
n-1

n) = _rmt (1= (n)/N)Y

o) {Hl(l N)] n (- (n)/N)"

As N — o while n remains finite, the product term tends to unity, as does the
factor (1 — (n)/N)". However, the factor (1 — (n)/N)" tends to e™{", so that
finally

{n)"e“(”>
n! ’

Lim py(n) = p(n) = (1.5-6)
This is known as the Poisson distribution in n. It contains but a single parameter
(n), and is useful for describing random events that occur at some known average
rate. We shall see later in Chapter 9 that when light from a single-mode laser falls
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on a photodetector, photoelectric pulses are produced at random at an average
rate proportional to the mean light intensity, and the number of pulses emitted
within a given time interval therefore obeys a Poisson distribution.

Both the moment generating function and the factorial moment generating
function are readily calculated from Eq. (1.5-6). Thus

Me = 3 eendnr e
n=0 n!
= exp[(n)(ef = 1), (1.5-7)

and

bt . n.—(n})
FE =30+ g
n=0 n!
= o(mE
(n)& (1.5-8)

n
= z .
r=0

r!

The factorial moments can be obtained by inspection of Eq. (1.5-8) and we have

(n) = (n)", (1.5-9)
from which it follows that the variance
= (n?) = {n)? = (n). (1.5-10)

Like the Bernoulli distribution, the width of the Poisson distribution increases
with (n), but the relative width becomes progressively smaller as (1) — .

Finally, we calculate the cumulant generating function K (&) from Eq. (1.5-7)
and obtain

K(E) = In[M(&)] = (n)(eF ~ 1)
3L (1.5-11)

r=1 7!
As the r’th cumulant k, is the coefficient of £/r! in this expansion, we see
immediately that

k,=(n), r=1,2,... (1.5-12)

Having all cumulants equal to the mean is an important characteristic of a Poisson
distribution. Finally, we note from the third and fourth moments that the
skewness a3 = pa/o® = 1/A/(n) is always positive because of the infinite tail of
p(n), and that the kurtosis is oy = ue/o* =3 +1/(n), which tends to 3 as
(n) — . The limiting values of a3 and ay as (n)— » are characteristic of a
Gaussian, as we show below.

One sometimes encounters situations in which a random variable n is the sum
of N different, statistically independent Poisson variates ny, ng, ..., ny. Then
the moment generating function of n is given by

o
4

1.5 Some examples of probability distributions

My(§) = (elritrr )

N
= [t

k4

= leXPKn;)(éE = 1]

i

N
= exp [§1<ni>(e§ - 1)]. (1.5-13)

This describes another Poisson distribution, whose parameter {n) is the sum of
the parameters of the component distributions. Hence n is also a Poisson variate
and the sum of independent Poisson variates is also a Poisson variate.

1.5.3 Bose-Einstein distribution

When the outcomes that enter into the Bernoulli distribution above are intrinsic-
ally indistinguishable, the combinatorial factor (,}," ) in Eq. (1.5-1) does not
appear, and we have the simpler probability distribution

pn(n) = Kyp*(1 = PN™", 0<n<N, (1.5-14)
in which Ky is a normalization constant. Let us denote /(1 — ) by 7 and let
N — o with the understanding that < 1. Then

pn(n) = p(n) = Kn*, 0<n,
where K is another normalization constant. Summation over n shows immedi-
ately that X = (1 — 5), so that
p(n)=(1-nn" (1.5-15)

This is known as the Bose—Einstein distribution. 1t describes, for example, the
probability distribution of photons in one cell of phase space when the optical
field is in thermal equilibrium.

The moment generating function is given by

ME = 5 0= ne

- 1-n (1.5-16)
1-nef

while the factorial moment generating function is

F& = 20(1 + 51~ "

1-n1+8
1
- 1.5-17
1~ ng(1-mn ( )
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A power series expansion in & immediately leads to the first two moments:
(n) =1,
1=n
2
(nn =) =2 2
-7

((An)?) = (n)(1 + (n)).

Equations (1.5-18) show that the fluctuations are greater than for a Poisson
distribution with the same mean, which may be regarded as a consequence of the
intrinsic indistinguishability of the particles being counted. Equation (1.5-18)
enables us to re-express p(n) in terms of (n), by substituting n = (1 + 1/(rn)) 7,
in the form

(1.5-18)

_ 1
A+ (N +1/(n))y

p(n) (1.5-19)

1.5.4 The weak law of large numbers

Let us return to the Bernoulli distribution (1.5-1), for which the probability of
success in any one trial is B, and use it to show that the ratio n/N of successes to
trials tends towards 3 with probability unity when the number of trials N tends to
infinity. Let ¢ be some arbitrarily small number. Then the probability that
|n/N — B| exceeds ¢ is given by

P( 28
N
We note that n — Nf3= An is the deviation of n from its expectation value. We

now introduce a parameter 6 such that Ne = 6o, where 0 = [NB(1 — A1V is the
standard deviation. Then 6 = NY2¢/[(1 — B)]*2,

Pl L -8
(5
and by the Bienaymé—Chebyshev inequality (1.3-43),

n 25) <1 _BA-pH_ 1 (1.5-20)

A

N 92 N 82 4 N€2

since fB(1 - B) s%. It follows that for any ¢, no matter how small,
P[|(n/N) — Bl = €] can be made as small as we wish by choosing N to be
sufficiently large, i.e.

= e) = P(n — NB| = N¢).

= 5) = P(|An| = 60),

. n
IIVJLIB. P(l—&— - Bl = e) =0, (1.5-21a)
or
. n
L Bl<egl=1. 5-
{752 P(lN ,BI s) 1 (1.5-21b)
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Hence, as the number of trials tends to infinity, n/N tends to the constant 3 with
probability unity. This result is known as the weak law of large numbers, and it
provides the justification for a determination of the probability of success from a
large number of independent trials. There is a stronger version of the law of large
numbers that involves the higher moments, but we shall not consider it here.

1.5.5 Normal or Gaussian distribution

Let x be a continuous random variable defined on the infinite interval from —c
to . The variable x is known as a Gaussian random variable if its probability
density p(x) is of the form

p(x) = — el (1.5-22)
@mPo
The probability distribution p(x) is illustrated in Fig. 1.7. It has two free
parameters, which are the mean (x) and the standard deviation o, and it is
normalized so that

fwwp(x)dx =1.

The normal or Gaussian probability distribution (1.5-22) plays a central role in
probability theory for several reasons. It has an especially simple structure, it is
the limiting form of several other probability distributions, and because of the
central limit theorem (see Section 1.5.6 below), it is a probability distribution that
is encountered under a great variety of different conditions. We shall therefore
examine the properties of the Gaussian distribution at some length.

The moment generating function M(§) can readily be calculated by completing

054 op(x)

PSP SRR PR PR SO U SR TN SR SR S S T S
3 ) 1 0 I 2 3 e

Fig. 1.7 The Gaussian probability distribution with mean (x) = 0.
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the square in the exponent. We obtain

M(E) = f ¥ (= (20?20 4,
\/(2 )o
_ \/(21 ; eg(x>ea2§2/zr e-le= (02 +(xNPR? 4
7)o
= o&(x) g0 (1.5-23)

The characteristic function C(§) follows immediately if we replace £ by i& in Eq.
(1.5-23). Alternatively we may proceed from first principles by taking the Fourier
transform of p(x) and obtain,

C(E) = elb¥) =82, (1.5-24)

From the transformation law (1.4-24), the moment generating function and the
characteristic function of Ax are

My (&) = 78R
Cax(8) = e8P,

The central moments u, then follow immediately by expansion of M, (&) in a
power series in &, because y, is just the coefficient of £7/r!. We obtain the
following expressions for the central moments

(1.5-25)

w =0, ifrisodd; (1.5-26a)
_ G
an!
a'rl
r(r=2)(r—4)...4-2
o'(r=1)(r=3)...53-1

(r — DHo", ifriseven, (1.5-26b)

where (r — )!'=(r = 1)(r —3) ... 5-3-1. The variance is 02, the skewness
a3 = /0> = 0, and the kurtosis oz4 = /o = 3.

The cumulant generating function K (&) is especially simple, and we find at
once from Eq. (1.5-23) that

K(8) = In[M(§)] = &(x) + 30°E". (1.5-27)

There are therefore only two non-vanishing cumulants, the mean x; = (x) and
the variance k, = 0. All higher cumulants are zero. The converse is also true: a
probability density whose cumulants beyond the second order vanish is Gaussian.
We shall not prove the result here, but it can be shown that there is no other
probability distribution whose cumulant generating function is a polynomial in .
This theorem is essentially Marcinkiewicz’ theorem, which we have already
encountered (Section 1.4.3).

When the Gaussian distribution is put in standard form, with zero mean and

1.5 Some examples of probability distributions 29

unit variance, it simplifies to

p(x) = T/E“) e ¥, (1.5-28)
and
M(§) = &5
C(&) = e~ (1.5-29)
K(8) =38

Many other probability distributions tend to the Gaussian form in a certain
limit. As an example, we will show that the Poisson distribution tends to become
Gaussian as (n) — . From Eq. (1.5-11) the cumulant generating function of the
Poisson variate # is given by

K, () = (n)(eb ~ 1).
We now transform # to standard form by introducing the transformed variate
n=(n) _n—(n
o V{n)

which may be regarded as effectively continuous for large (n). From the
transformation law (1.4-26), the cumulant generating function of x is given by

X =

K(® = ~V(n >e3+1<(\/< >)

_ " 1 §2 1 53
= -V >f,=+<>[\/(> 2!<n)+3!<n>3/2+,..]
_1 1 §3 g _
_lg o [3' TR +] (1.5-30)

For any given &, this expression tends to 3&% as (n)— o, which is, by Egs.
(1.5-29), the cumulant generating function of a Gaussian variate in standard
form.

A complex variate z = x +1iy is said to be Gaussian (for simplicity of zero
mean) if x and y are both Gaussian variates of zero mean with the same standard
deviation o, and if they are statistically independent. Then the joint probability
density p(x, y) has the form

1 —(2yp0?
p(x,y)= e T,
210°
which can be written
1 _ippe | Y
p(z) = elPRd? o Lol (1.5-31)
2no 75?

where 3% = (|z[?>) = 20? is the variance of the complex variate z. When z is not of

zero mean, z has to be replaced by Az in Eq. (1.5-31).
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1.5.6 The central limit theorem

In many practical situations in which a fluctuating random variable y is being
investigated, the fluctuations contain contributions from many independent
causes. The central limit theorem asserts that, under rather general conditions, y
will tend to become a Gaussian variate, as the number of causes becomes large.

Let x;, x5, ..., xy be a set of N statistically independent variates, all of which
are in standard form, but with arbitrary probability densities. Then

y = ;/—l];]—(xl txp L+ xy) (1.5-32)

is a new variate in standard form, because its mean is also zero, and its variance
1 N 2
2
(y)==>&=1
Ni=1

Simce each x; is in standard form, the corresponding cumulant generating function
is

K& =1+ T8 Siz s 0@), (1.5-33)
r=3 r

where O is the usual order symbol. By the composition rule (1.4-20), the
cumulant generating function of y is given by

N
K, (&) = ;K;;(&/v N)

Mligr, [ &Y
=§1[EE+O(N—3/2)]

1y w8
lgy o(__) (15-34)
2 Z:l N3/2
As N — « the sum tends to zero because of the facter N*?2 in the denominator,
so that K,(§) — %52. Hence, y becomes Gaussian irrespective of the forms of the
probability distributions of the x’s. The central limit theorem is very powerful,
and it helds under more general conditions than we have considered here.

1.5.7 Gamma distribution

‘The gamma distribution is another continuous one-parameter distribution for a
randem variable x defined on the interval 0 < x < w. If the probability density
p(x) is given by

X

x"le”
plx) = ———
I'(n)
then x is known as a y-variate of parameter n (n need not be an integer), or as a
y(n)-variate. If n is an integer, then a y(n + 1)-variate has the probability

, (n>0), (1.5-35)

w
faey
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distribution
x n e -X

p(x) = ——

(1.5-36)
n!

This should not be confused with the Poisson distribution, which looks similar but
is a probability distribution of n rather than of x. Some examples of the
y-distribution are shown in Fig. 1.8.

The moment generating function exists for & < 1, and we have

M(§) = L feg"x"‘le"‘dx

I'(n)Jo
S
1-8"
=3 (_”)(_g)f. (1.5-37)
r=0\ 7
The r’th moment is the coefficient of £7/r!, and we find that
v=(x")=nn+Dn+2)...(n+1-1), (1.5-38)
so that the mean is the parameter 7,
(x) =n, (1.5-39)
and the variance is
w={x?) - {x)=n (1.5-40)

also. Although the dispersion increases with 7, the relative width o/(x) = 1/\/n
decreases with n. From Eq. (1.5-37) the cumulant generating function is

K(§)=-nln(i-§

* zr
=n3 & (1.5-41)
r=1 7V
A
P(x)
081
n=1
0.6+
0.4+ n=2
n=3
02f n=4
. L L L x
0 1 2 3 4 5

Fig. 1.8 Some examples of the y-distribution for integer values of the para-
meter n.
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which allows us to determine the cumulants by inspection:
Kk, = n(r - DL (1.5-42)
With the help of Eq. (1.4-30) we find that the skewness is always positive,

b _ K3 2
=== (1.5-43)
o @ Vn
although it tends to zero as # — o, while the kurtosis is
+ 363
o=t o Kat3K) 5 6 (1.5-44)
ot ot n

and tends to 3. This suggests that the y-distribution tends to the Gaussian form as
n — o, as can be shown explicitly. If we transform x to standard form by putting

y = X —=n
Vn
we find immediately with the help of the transformation rule (1.4-26) that
K(© = Vmg = nin(1- )

Vn

2 3 4

& + . <§_ + £ + .. .), (1.5-45)
2 Vr\3  4/n

and this tends to %‘;‘2 as n — %, which is characteristic of the cumulant generating
function of a Gaussian variate in standard form.

Independent y-variates can combine to form other y-variates. To show this we
consider a set of N independent y-variates xi, x, ..., Xy with parameters ng,
ny, . .., Hy, respectively, and let

y=x1+x,+ ...+ xp.

From the general composition rule (1.4-20) it follows that the cumulant generat-
ing function of y is

I

N
K,V ;KX((g)

N
—1In (1 - E)z n;
i=1

il

—nln(l - &), (1.5-46)

where n = > .[.1n;. Hence, y is a new y-variate whose parameter is the sum of the
parameters of the original y-variates. This property is similar to that encountered
earlier for Poisson variates and is sometimes known as the reproducing property.

Finally, we note that if x is a Gaussian variate with mean (x) and standard
deviation o, then

y= G ) ;U(;‘ i (1.5-47)
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is a gamma half-variate. To show this we use the general transformation rule
(1.3-13), and we find for the probability density of y

1 o 1 - o

P(y) = e + e
Veme  V@y) Veme V(@)
L o-1pe-y
=— e
Vo'
1 -2y
= eY, (1.5-48)
re
which is a y-variate of the general form (1.5-35) with » = 3. In the light of the
composition law embodied in Eq. (1.5-46), it follows that if xq, x5, ..., xy are
independent Gaussian variates, then
3 = (x)?
i=1 20,2

is a y-variate of parameter %N .

1.6 Multivariate Gaussian distribution

Gaussian variates are often encountered in groups and they have to be treated
jointly. Let us consider a number of Gaussian variates xj, Xz, ..., Xy with
standard deviations oy, 0y, ..., Oy, respectively. Then each variate has a
probability distribution of the form (1.5-22). If all the variates are statistically
independent, we can immediately write down the joint probability distribution

p(x1, x2, . . ., xy), which takes the form of a product:
N 2
1 Axi
p(xl) X2y oy xN) = N2 €Xp ["%2 ( 2) ]. (1A6—1)
2m) Roroy ... 0y i=1 0}

The x’s are jointly Gaussian, but they are independent, so that this formula
certainly does not describe the most general multivariate Gaussian distribution.
The covariance matrix g of x;, xp, ... xy is diagonal, u;= éiio%, and its
determinant is

detp = 0%0%03 - U%A (1.6-2)

The exponent in Eq. (1.6-1) can be written in matrix form. Let X be the column
matrix

and x' its adjoint row matrix. Similarly, let Ax be the column matrix with
elements Ax;. Then we can express the N X N covariance matrix as

= (AxAx"), (1.6-3)
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and we can write the sum in Eq. (1.6-1) in the form

N 2

Ax:
E(LZ') = Ax'plAx, (1.6-4)
i=1 o}

where p~! is the reciprocal covariance matrix

-1 1
ui' =
/ y 0[2
This allows us to express Eq. (1.6-1) in the more compact form

1

(2m)"(det p)'/?
We shall refer to this probability distribution as the general multivariate Gaussian
distribution, irrespective of whether the covariance matrix p is diagonal or not.

We now consider a homogeneous linear transformation from x;, x, . . . , Xy to
Y1, Y2, --., YN, and show that this preserves the structure of Eq. (1.6-5),
although the covariance matrix will no longer be diagonal in general. If y is the
column matrix with elements yi, y,, ..., yy, then it can always be expressed in
the form

p(x1, X2, . .. Xn) exp (—3AxTplAX).  (1.6-5)

y = Ux, (1.6-6)

where U is the N X N transformation matrix. The same transformation connects
Ay and Ax. For simplicity we shall take U to be orthogonal (i.e. unitary with real
elements). Then the Jacobian of the transformation is unity, so that

UU" =1 = U'U, and the joint probability density of V1> Y25 -+, yn is (cf. Eq.
(1.3-17))
PO y2s ) = Pt %o ]0) = m exp (~3AxTH1AX).
(1.6-7)
We now express X in terms of y. By inversion of Eq. (1.6-6) we have
x =Uly,
so that
Ax'pTlAx = AytUpT U Ay, (1.6-8)
Also the covariance matrix § of y is given by
¥ = (AyAy") = U(AxAx")UT = Upu?t, (1.6-9)
and it is positive definite. In general it is no longer diagonal, and its reciprocal is
gl =upTiut, (1.6-10)
as can be verified by direct multiplication. Hence, from Egs. (1.6~8) and (1.6-10)
Ax'p~lax = Ayt Ay, (1.6-11)

As the determinant of the Hermitian matrix g does not change under unitary
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transformation, detp = det ' and Eq. (1.6-7) becomes
S
@m)N(det )12
This has exactly the same structure as Eq. (1.6-5), except that i, unlike y, is not

necessarily diagonal. The exponent is therefore not as simple as in Eq. (1.6-1),
and instead of being quadratic it has the bilinear form

P(y1, y2,-- -, yN) = exp (—38y W TlAy).  (1.6-12)

N N
Wy Y =35 S Ay Ay, (1.6-13)
. =1 j=1
which is characteristic of the general multivariate Gaussian distribution.
If we integrate P(y;, y2, ..., yy) over N — 1 variates, say y,, ¥3, ... Yy, We
obtain

exp[~(Ay))}/203],

(1.6-14)

1
P(y1) =fP(Y1,)’2, o yn)dyadys ~-d)’N=—\/—(‘2-ﬂ-)a——
Y1

which is the usual form of a Gaussian probability density in one variable. It is
apparent from Eq. (1.6-12) that all higher-order moments and correlations of y;,
Y2, ..., yy must be expressible in terms of the second-order moments y;, and
that Gaussian variates remain Gaussian under linear transformation.

Let us apply these results to the special case of a bivariate Gaussian distribution
p(x1, x2), in which the covariance matrix p is not necessarily diagonal. With the
help of the correlation coefficient py, = p;,/010, we can express the covariance
matrix f in the form

2
01 P120107
= , 1.6-15
: [0120102 U% J ( )
while its reciprocal is
= 1 1/0} —012/2102] ‘ (1.6-16)
(1 - p%) —pr/o10, 1/o3

Then
detp = a303(1 - pl),

and we obtain for the bivariate Gaussian probability distribution the following
form

1 1 Ax? 2ppAxiAx,  Axl

p(x1, x3) = 2172 €xp [— 2 ('““21 R *—22 :
210105(1 — p12) 2(1 = p)\ o1 0102 02

(1.6-17)

It is apparent from this equation that, whenever two Gaussian variates are
uncorrelated so that p;, = 0, the joint probability density factorizes into a product
of the probability densities for the two separate variates. In other words, if two
Gaussian variates are uncorrelated they are also statistically independent. This is
not true of random variables in general.
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1.6.1 The Gaussian moment theorem

Gaussian variates have the remarkable property that all higher-order correlations
among them are expressible in terms of second-order correlations between pairs

of variates. Let x1, X,, ... be a set of Gaussian variates. Then for any set of n
indices iy, iy, . . ., Iy,
(AxyBx, ... Ax;,) =0, if n is odd

= 3 (AxAx,)(AxyAx,) ... (Ax, Ax,) if niseven.
all(n—1)1!
pairings

(1.6-18)

This result is known as the Gaussian moment theorem (see for example, Mehta,
1965, Appendix Al).

To prove the theorem we start from a set of independent Gaussian variates y;,,
Yis - - - Yiy» and we note that

<Ayi1Ayi2 ce Ayi,.>

vanishes if all the suffices are different, and more generally unless each suffix
appears an even number of times. Then the number of factors has to be even, and
the correlation is of the form

<(Ayi1)2m‘(AYiz)2nlz S <(A}’i1)2m‘>((AYiz)2""> cee
= (2n, — DN((Ay:)?) " (2ns; = DI(Ay)?) " ..
(1.6-19)

with the help of Eq. (1.5-26). But this is just the sum over all non-vanishing
pairings of the original correlation, so that we can write formally for the
correlation of an even number of independent Gaussian variates

(Ayy Ay, .. Ay, = 3 (AyyAyy) - Ay, Ay,).  (1.6-20)
1
pa;ings

We now make a unitary transformation U from the y’s to a set of variates x1, X,
..., X,, which are no longer independent in general,

i), (1.6-21)
vi= U:fjx,u

Then

(AX“AX,'Z ce Axl-n) = Uilfl e Ui,.j,.<ij]ijz e ij">,
and application of Eq. (1.6-20) leads immediately to the general moment
theorem (1.6-18).

We now consider two useful applications. If all the x; in Eq. (1.6-18) are equal,
we obtain immediately

((Ax)*"y = 3 ((Ax)*)" = (2n — Do, (1.6-22)
all2n-1)1!
pairings

which simply recovers the results given by Eq. (1.5-26b). For a less trivial
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application we consider two correlated Gaussian variates x, y. Then
((Ax(Ay)) = ((Ax)*) ((Ay)*) + (AxAy)(AxAy) + (AxAy) (AxAy)
02031 + 20%), (1.6-23)

so that ((Ax)%(Ay)?) always exceeds ((Ax)?)((Ay)?). We shall see later (in
Chapter 8) that this formula finds application in the treatment of the intensity
correlations of thermal light.

1.6.2 Moment generating function and characteristic function

We consider a multivariate Gaussian distribution p(x;, x5, . . . Xy), in which the
variates Xy, x5, ..., Xy may be correlated. The moment generating function is
given by

N
M(Ely §29 LA EN) = <exp(§:§ixi)> = <e§TX>’ (1‘6‘24)
i=1

where we have used § and x to denote the column matrices with elements §; and
x; and E' is the adjoint row matrix. To determine M (&, &, ..., Ey) we have to
evaluate the integral

1
M, &, )
(@m)"2 (det )¥?
For this purpose we now consider the following bilinear form

HAX — pE)TuH(Ax — pE) = JAxTu T Ax + FETHE ~ E'AX, (1.6-26)
in which we have made use of the properties that u' = p because p is Hermitian
and that E'Ax = AX'. This allows us to re-write the exponent in Eq. (1.6-25),
and we obtain

M(&l! 527 ey §N) =
R e R LR R

The integral becomes the usual Gaussian integral if we replace the mean {x) by
(x) — pE, the factor in the square brackets then becomes unity, so that finally

M(&,5,....6n) = e¥'(X) Uk
N LA
= exp [Z&i(%‘) +22, Egi.uij&j}
i=1 i=1j=1
Similarly, we may show that the characteristic function of the multivariate
Gaussian distribution is given by
ClEr, Eav oy By) = (%) = ¥ 0 780, (1.6-28)

and the cumulant generating function follows from Eq. (1.6-27) on taking
logarithms, namely

: N NN
K& & o5 En) = 2 E(x) + 12 > Sty (1.6-29)
i=1

i=1j=1

f exp (E'x — 3Ax"pAX) dVx.  (1.6-25)

(1.6-27)
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Again we note that the series in & is a second-order polynomial in the N variables

511 §2>"-7‘§N~

1.6.3 Multiple complex Gaussian variates

We have already seen that a complex Gaussian variate z of zero mean has the
probability density (cf. Eq. (1.5-31))

p(z) = L e~lebin,
m
where u= (AzAz*) is the variance of z. If 2, 25, ..., zyis aset of N complex
Gaussian variates, then the general multivariate Gaussian probability distribution
has the form

p(z1, 22, 2w) = — eAzluTiaz (1.6-30)
7 detp

in which p = (AzAz') is the covariance matrix, Az is the column matrix with

elements z; — (z;), as before, and Az is its Hermitian adjoint. As each complex

variate involves two real variates, p(zy, z,, ..., zy) has a structure that is

reminiscent of the square of p(xy, x5, . . ., xy). Just as for the real variate X,  is

positive definite.

The characteristic function can be obtained by taking the 2N-dimensional
Fourier transform of p(zy, z2, ..., zy). We introduce a set of complex para-
meters uy, Uy, ... uy forming a column matrix u. Then the matrix product
u'z — z'u is purely imaginary, and ¢“’27%" is the 2N-dimensional Fourier kernel.
Hence, we can express the characteristic function in the compact form

Clug, g, . .., uy) = f Uz (7) @2V, (1.6-31)

and an analysis like that used above to derive the moment generating function of
a set of real Gaussian variates leads to the following expression for the character-
istic function:

. .
Cuy, iy, . .., uy) = ¥ (@~ {D)u—ulpu

N N N
= exp Zl(uﬂzi) = (z)*uw) = X 3 (uimu)|.  (1.6-32)
i= i=1j=1
It should be noted that the single sum is purely imaginary and the double sum is
real, just as for real variates.
The Gaussian moment theorem has a counterpart when the variates are
complex. It may be shown that (Mehta, 1965, Appendix A2)

(Az}Azy .. Az} Az, ... Az) =0, N #M
= S (Aztag)(Amaz) . (A405)

pairinés
ifN =M.

(1.6-33)

Problems to Chapter 1 39

It follows from this, for example, that if (z;) =0 = {z,), then
(lz:lza?) = (2T21)(2322) + (2122) (z321)

= {lz1) |z (@ + [P (1.6-34)

Problems

1.1 ¢ is a random phase angle that is distributed uniformly over the range 0 to
27, a is a constant, and
x =acos¢, y=asing.
Calculate (a) the probability distributions of x and y; (b) the joint probabil-
ity distribution of x and y; (c) the covariance of x and y. Are the variates x
and y statistically independent?

1.2 Examine the question whether there exists a random variable x whose
characteristic function C(&) is real for real & and has the form illustrated
below, and if so, for what values of a, b. What is the corresponding
probability density? Calculate the moments of x.

&(¢5)

1

1

|
|
|
|
I
a

b -a 0 b

1.3 A certain experiment is performed repeatedly and independently, and it has
probability « of being successful at any one time. What is the probability
P(m, n) of obtaining m failures and n successes in m + n trials that
end with the n’th success? Calculate the r’th factorial moment of m for a

given n.

[You may use the relation (m tn- 1) = (_1),,,(—11)‘]
m m

1.4 A line of unit length is divided into two parts by a point on the line chosen at
random. Calculate (a) the average length of each part; (b) the average ratio
of the shorter to the longer part; (c) the covariance matrix for the lengths of
the two parts.

1.5 In a laboratory experiment to measure the acceleration of a body under
gravity (g = 981 cm/s?), which is capable of 1% accuracy, a student claims to
have obtained the following four answers from four independent measure-
ments: 980 cm/s?, 981 cm/s?, 983 cm/s?, 981 cm/s’. Has the student been
cheating? Use the x’-test of hypothesis to give the level of confidence of
your conclusion.
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1.6 Show that the probability P(n) that at least two out of any group of n
people have the same birthday is given by

_ 2
P(ny=1- exp( n730n )

approximately, for moderate values of . What is the smallest group of » for
which P(n) > 12

(Take the year to have 365 days, with each day equally likely as someone’s
birthday.)

1.7 A certain system having only two possible states 4 or B is measured 2N
different times independently, after being prepared in exactly the same way
each time. It is found to be N times in state A4 and N times in state B.
Assuming that nothing is known initially about the prior probability g of
finding the system in state A, use Bayes’ theorem to calculate the probability
distribution of g in the light of the 2N different observations, and make a
graph of the distribution for N = 0,2,4,6.

1.8 A drunkard moves in one dimension by taking a step forward or backward at
random, with probabilities o and 1 — «, respectively. He stands a distance of
n steps from the edge of a cliff. Calculate the probability that he will go over
the cliff as a function of n and «. What is the smallest value of « for which
he is certain to fall off no matter where he starts? What is the asymptotic
form of this probability as 5 — ?

(Hint: try a composition law for constructing the probabilities. )

1.9 x, y are two real Gaussian random variables of zero mean with joint
probability density

1 1 x? 2xy y2
p(x, y) = €xp [~ (—- - e
2m0,0,(1 — p?) 200~ \oz o0, o

in which o, = (x2)}2, 5, = ()2, p = (xy)/0.0,. Show that the new real
variables u, v defined by the transformation

U =xcosf — ysin @

v=2xsin6 + ycos6,
are also bivariate Gaussian and determine the angle 6 for which u, v are
statistically independent.

1.10 Show that any real characteristic function C(h) obeys the inequality

1= C(W) = —{1-C@"h)] forn=0,1,23, .. .
4n

2

Random (or stochastic) processes

2.1 Intreduction to statistical ensembles

The concept of a random or stochastic process or function represents a generaliza-
tion of the idea of a set of random variables x;, x,, . .., when the set is no longer
countable and the variables form a continuum. We therefore introduce a continu-
ous parameter ¢, such as time, that labels the variates. We call x(¢) a random
process or a random function of t if x does not depend on ¢ in a deterministic
way. Random processes are encountered in many fields of science, whenever
fluctuations are present. Examples of a real random process x(z) are the fluctuat-
ing voltage across an electrical resistor, and the coordinates of a particle under-
going Brownian motion. We shall see shortly that the optical field generated by
any realistic light source must also be treated as a random function of position and
time. Of course the parameter ¢ may also stand for some quantity other than
time, but for simplicity we shall take it to represent time. In our applications x(2)
will frequently represent a Cartesian component of the electric or magnetic field
vector in a light beam. To begin with we shall take x(t) to be real, but complex
random processes will also be encountered,

2.1.1 The ensemble average

As x does not depend on ¢ deterministically, we can only describe its values
statistically, by some probability distribution or probability density. For every
value of ¢, x() is a random variable in some domain, with probability density
plx(O))or p(x, £). After integrating over the domain, we have

fp(x’ ndx =1,

as usual for a probability density. It should be noted that, because of the
dependence on ¢, p(x, t) now stands not for one, but for an infinite family of
probability distributions. The totality of all variates x at all times ¢ constitutes the
random process x(¢). We may calculate the expectation of x at time ¢ by using the
probability density p(x, 1),

(x(1)) = fxp(x, £)dx. (2.1-1a)

41
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Alternatively, we may consider the set of all possible realizations or samples of
the function x(z), such as those illustrated in Fig. 2.1, as the random process. The
countable collection of all possible realizations is known as the ensemble of x(t).
In an experiment a sample function may describe the outcome of a measurement
as a function of time ¢, but repetition of the experiment will generally yield
different sample functions or realizations, which may be labeled successively
Wx(2), Px(2), . .., etc. We can then form the average or expectation of x at time
t by averaging over the ensemble of all realizations

N
(x()) = Lim %§1<’)x(t). (2.1-1b)

Equations (2.1-1a) and (2.1-1b) are equivalent definitions of the ensemble
average.

The foregoing concepts and definitions are equally applicable to a complex
random process z(t), for which the random variable associated with a particular
parameter ¢ is complex. By writing z(¢) = x(z) +iy(¢), we see that a complex
random process may be regarded as a pair of real random processes x(¢), y(t).
The probability density p(z, ¢) is then the joint probability density of x, y at time
t. The average of z(t) may be calculated from p(z, ¢) by an obvious generaliza-
tion of Eq. (2.1-1a), which we may write as

(2(1)) = fzp(z, 1) d’z, (2.1-2a)

with d?z =dxdy. This quantity is again equivalent to an average over the
ensemble of all realizations 7z (r),

N
(2() = Lim %gf’&(r). (2.1-2b)

For simplicity, we shall concentrate on real random processes in this section.

Ox(e)

@sx(1)

Oix(r)

Fig. 2.1 The representation of a real random process x(¢) by an ensemble of
realizations, or sample functions, Vx(¢), (j =1,2,3,...).

| —

e e
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2.1.2  Joint probabilities and correlations

Although p(x, ¢) stands for an infinite family of probability densities, it still does
not describe the random process completely. For example, it contains no informa-
tion about possible correlations between x(¢1) and x(#,) at two different times #;
and t,. Such information is provided by the joint or two-fold probability density of
the variates at t1, ¢,, and it is usually expressed in the following equivalent ways,

palxa(f2); x1(t1)] or  pa(xa, 2 x1, t1) o  pa(xa, X1; tas £1),

which depends on two variates x;, x, and two parameters ¢, f,. The probability
density py(x,, t3; X1, 1) allows us to calculate two-time correlation functions such
as

F(tb t2) = (x(tl)x(t2)> = fx1xzpz(xz, Iy, X1, t1)IdX1dX2. (21—3)

The probability density p,(x,, tp; x1, t1) contains all the information carried by
p(x, t), which can also be written as p;(x, ¢), in addition to new information, for
we have, from the usual property of joint probabilities, that

fpz(xz, ty; X1, t1) dxy = pi(xy, 11). (2.1-4)

It should be noted that the parameter ¢, must disappear in the process of
integrating over all x, for reasons of compatibility, i.e. the internal consistency of
the theory.

The quantity I'(zy, t5) = (x(#1)x(t;)) is known as the (two-time) autocorrela-
tion function of the random process x(¢). After the mean (x(r)), it is the quantity
next in order of importance in the description of the random process, because it
yields information on how far correlations extend in time.

Although p,(x,, t7; x1, £;) contains more information than py(x, ¢), it still does
not allow us to calculate some expectation values, e.g. a three-time correlation
function such as {x(t;)x(f7)x(z3)), for which the three-fold joint probability
density pa(xs, f3; x5, f3; X1, t) is required. Evidently there exists an infinite
hierarchy of probability densities,

pl(x7 t)

Paxa, t2; X1, 1)

p3(x3, t35 X, t25 Xy, 1)

pn(xm tns Xn—1, tn—l; ey X, [1):

each of which contains more information than the preceding ones, and each of
which encompasses all the information contained in the preceding ones. p,(x,, t;
Xy—1s a1 - - - 3 X1, t1)dx;dx, ... dx, is the n-fold joint probability that at time
t; the random variable has a value between x; and x; + dx;, that at time ¢, it has
a value between x; and x, + dx,, etc. The probability density p,(X,, tn; Xu—1, -1;
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... X1, t1) must satisfy the consistency condition

jpn(xm Iy Xpety bucts - o0 5 X1, 1) Ay dxgys ... dx,

= P> i e, temns - X, 1), (2.1-5)
for any integer k <n. The time ¢ associated with the variate x; therefore

disappears when we integrate over all x;. Also p, (¥, 1} Xpoys lat - - . 3 X1, ty) is
symmetric in the variates, which implies that

pn(xm Iny Xp—15 ta=1; - - - s X1, tl) = pn(l—_[[xnv Iny Xp—ts Ineyy o 05 X1, [1]),

(2.1-6)

where [] stands for any permutation of the indices 1 to #. Once Pn is known it
can be used to calculate a multi-time correlation of the n’th order [or of order
lower than n with the help of Eq. (2.1-5)]:

(x(t)x(ta) - . x(t)) =
J'xlxz’.". < XnPa(Xns b Xn=1s bt - o5 X1, 1) dxpdxg .. dy,. (2.1-7)

In general the higher-order correlation functions of a random process contain
progressively more information, just as p, contains more information than Pn-1-
An exception to this arises in the case of a Gaussian random process, in which
Pr(Xns tas Xne1y tye1; - - .5 X1, £1) is a multivariate Gaussian probability density of
the form given by Eq. (1.6-5). In that case, by virtue of the Gaussian moment
theorem [see Egs. (1.6-18)], we have for the n’th-order correlation function of a
real Gaussian random process x(¢) of zero mean,

(x(t)x(t) ... x(2,)) =0 if n is odd.
= “(2_1 Il(x(tl)x(tz))(x(t3)x(t4)> s (x (=) x (1))
apa:lring)s”
if n is even,
(2.1-8)

where (n — 1)!t=(n~1)(n =3) ... 5-3-1. In this. case the second-order auto-
correlation function therefore already contains all the information about higher-
order correlations.

2.1.3 The probability functional

Although p, contains more information than p,_,, there is no upper bound on
when 7 is a continuous parameter, and no p, for finite n can, in general, describe
the process completely. Only the joint probability density of infinite order at all
times ¢, or the probability functional p({x(t)}), in which {x(z)} stands for the
infinite set of all x’s at all times ¢, contains the full statistical description of the
random process. However, the explicit form of p({x(¢)}) is often not known.
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Nevertheless, the concept of the probability functional is sometimes useful, for
example to describe the expectation of some functional f({x(t)}) of {x(t)}. One
then writes

{fx()) = ff({X(t)})P({X(f)})d{X(t)}, (21-9)

where d{x(t)} is a shorthand notation for | [, dx(¢). By analogy with the
characteristic function for N variates, for example,

N
CE & En) = <exp (izles,»)>,
7

one can associate a characteristic functional with the probability functional
p({x(1)}), defined by

cteon = (s [xrra])
= jexp[ijw')&(r')dt']p«x(r)})d{x(x)}. (2.1-10)

In particular, for a Gaussian random process of zero mean one has, by an obvious
generalization of Eq. (1.6-28), the characteristic functional

C({&(D)}) = exp [‘%” §(NEEML', 1) dt’dt"], (2.1-11)

where u(t', t"y=I(t', t") = (x(¢')x(¢t")) is the covariance matrix, which is also
the autocorrelation function. In principle, multi-time moments or correlations of
the random process x(¢) may be derived from C({&(#)}) by functional differenti-
ation*, but we shall not use this technique.

2.2 Stationarity and ergodicity

Random functions of time frequently have the property that the character of the
fluctuations does not change with time, even though any realization of the
ensemble x(¢) changes continually in time. Such a process is said to be statistically
stationary. An example is illustrated in Fig. 2.2. More precisely, we call a random
process stationary if all the probability densities py, pa, p3, ... governing the
fluctuations are invariant under an arbitrary translation of the origin of time®,
ie.if
pn(xm bny Xp—1s In=15 + « « 5 X15 tl) = pn(xna th + T; Xn—1> In-1 + T; N STR 2t T)
forall T. (2.2-1)

Under these circumstances, the expectation value of any function of x(¢;), x(2),

+ For an account of the technique of functional differentiation required here see, for example, Beran
(1968).

¢ For a more thorough treatment of the mathematical foundations of the theory of stationary random
processes see, for example, Yaglom (1962).
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Fig. 2.2 Tllustrating a realization of a stationary random process x(z).

.. .1is also invariant under time translation i.e.

) x(), D) = (fle(u + T, x(0 + T), .. ). (22-2)

It is clear from Eq. (2.2-1) that py(x, ) cannot depend on ¢ at all for a
stationary process, and neither can the expectation (x(¢)). For, by choosing
n=1and T = —¢, we have

n(x, 1) = pi(x, 0)

(2.2-3)
(x(8)) = fxpl(x, f)dx = jxpl(x, 0)dx.
Also by choosing T = .~ 1, we have from Eq. (2.2-1),
Pr(%ns by Xty bum1s o3 X1, 1) = Py, by ~ 145 X1, by =ty .5 %, 0),
(2.2-4)

so that the joint probabilities p, can be expressed as functions only of the
differences between one of the n time arguments and the remaining » — 1 time
arguments. In particular, for the autocorrelation function we obtain

I(t1, 1) = (x(t)x(8)) = fxlxzpz(xz, ty; x1, 1) dxy dxy

= fxlxzpz(xz, L+ ty — t1; xq, t)dx; dx,

= {x()x(t + 15 — 7)) (2.2-5)

for all values of ¢, which depends only on the difference between the two time
arguments. Therefore, I'(¢y, £,) is frequently written as I'(z, — ¢;). By replacing ¢
in Eq. (2.2-5) by 1 — 1; + 1; we observe that I'(t, — 1;) is symmetric, i.e. that

I(t, = 0))=T(t; — 1) (2.2-6)

for a real stationary process. More generally, we can see by an argument similar
to the one used in deriving Eq. (2.2-5) that for the N’th-order correlation
function of a stationary random process

I‘(N)(tl, tr, . .., IN) = (x(tl)x(tz). . .X([N)> = <X(f1 + T)X(tz + T) .. .X(tN + T))
2.2-7)

for all T'. However, higher-order correlations are encountered less frequently.
When only the mean (x(r)) and the second-order correlation function I” (11, 1)

Lk DLAUULIAIILY GHU LLEUUILILY @4/

are of interest, a weaker form of stationarity is often invoked. Specifically when
x(t) is such that its mean (x(#)) is independent of ¢ and its autocorrelation
function I'(#,, t,) depends on # and ¢, only through the difference of the two
time arguments, the process is said to be stationary in the wide sense.

If instead of a real random process x(t), we have a complex random process
z(#), the autocorrelation function I'(¢,, ,) is defined by the equation

(1, 1) = (2%(t))z(12)) = jZ’l)‘Zsz(ZL ty; 21, t1) A2y d2z,.

In this case, when the process is stationary, at least in the wide sense, (z(z)) is
independent of ¢, I'(¢y, t;) = I'(t; — t;) and it obeys the Hermiticity condition

I(t; = 1) = T*(t1 — t2), (2.2-8)

instead of the symmetry condition (2.2-6).

2.2.1 The time average of a stationary process

So far the means, or expectations, have been calculated by averaging over the
ensemble of all realizations. However, sometimes only a single realization of the
ensemble is available, say the k’th one (9z(f), and one wishes to determine jts
average over a certain time interval T', or perhaps over all time. Let us define the
finite time average of the k’th realization of a stationary random process z(¢),
which may be complex, by

1 t+T/2
[y = — J Wz(rydr'. (2.2-9)
TJi-1f2

Then [(®z(£)]7 is itself a random process, and one might expect its fluctuations to
become smaller as T increases. When T — =, Eq. (2.2-9) gives the fime average
of ®z(1)

N 1 t+T/2
Kz = Lim — ®z(tyde, (2.2-10)
T—e T Ji-Th2
which no longer depends on ¢ or T, but in general does depend on the particular
realization k of the ensemble that we have chosen. In principle, there may be as
many different time averages as there are elements of the ensemble.

More generally, if we are interested in multi-time correlations, such as the
average of z*(#)z(t + 1), for example, we simply construct a new random process
Z(t) from z(r) by letting

(k)Z(t) = U”z*(t)(")z(z‘ + 1)
for each realization k. We can then ask the same questions about () Z(¢) that we
have just asked about ¥z(r). For example, we can calculate the time average of

¥ Z(¢) and compare it with the ensemble average. Once again we find that the
time average

R 1 (i+T/2
7 = Lim — Bz de’
T—e TJie1h

may depend on the particular realization k.
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2.2.2 Ergodicity

It frequently happens in practice that every realization of the ensemble carries the
same statistical information about the stationary random process as every other
realization. The different time averages (¥)z are then all equal and coincide with
the ensemble average (z), and the same also applies to any other process Z(t)
that can be constructed from z(z). The stationary random process z(z) is then said
to be an ergodic process. o

It is not difficult to find a condition that ensures that the time average ()7
coincides with the ensemble average (z) of a stationary random process z(t). If
we average [(¥z()] over the ensemble, we obtain

t+T/.
(O = 3] (®ate) ar

1

|
—

~N
~
[="
~

(2), (2.2-11)

so that the ensemble average of [(¥)z()] coincides with the ensemble average of
the random process z(¢) for all T. Next we calculate the dispersion of [(Vz(#)]7:

(IA[O2(0]7 ) = UNPz(0]r - (2)P)
= {[@z* 01 [Pz()]r) — 2)P

1 r+T/2(k) . ][1 +T/2 J>
= A de | — (k) My de” - 2
<[T£_M ewyar|[ 2] e (2)]

1 +T/2
— "oy 2 ’ ”
‘F” (" = ') = [(2)Pdr ar,
=T/

where we have made use of the definition I'(+” — ') = {z*(¢')z(¢")). By sub-
stituting ¢’ =t + #;, t" =t + 1, We can symmetrize the limits on the integral, so
that
/2
(1a[®z(01 ) = —1; j j ({2 = 1)) = [(2)P]dndr,. (2.2-12)
T
Because the integrand on the right of Eq. (2.2-12) depends only on the difference
between the two time arguments f; and ¢, it can be converted into a single
integral over the variable 7= t, — ;. This conversion can be done by a simple
geometrical argument. Consider a contribution to the integral from a strip of
length / along the line 7= t, — #; = constant, shown shaded in Fig. 2.3. Along
this strip, I'(7) is constant and hence the contribution to the integral of this strip is
[[(v) = {z)]*]1dr/y/2. It follows from elementary geometry that [=1/2
(T — |7]). Hence the contribution from the strip is [I'(7) — [(z)*}T ~ |«|)dr.
Using this result we obtain the formula

Qa0nF) = L[ (1= Lhir) - 12y Plas

<.2  Stationarity and crgodivity 49

L7}
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Fig. 2.3 Tllustrating the geometry for the double integral in Eq. (2.2-12)
leading to the inequality (2.2-13b).

T
< % f_Tlr(r) - (2)P de (2.2-13a)

MOz = [ 1) - () Pla. (2.2-13b)

Evidently with increasing T, the dispersion of [(¥'z(f)]; tends to zero whenever
the integral is finite. But when T — o, [(9z(£)]; becomes the time average ®7.
It follows that )z coincides with the ensemble average (z) whenever

fill“(r) = Kz)ldz < e, (2.2-14)

This condition is sufficient for the two averages to be the same, although it is not
necessary, and a somewhat weaker but less convenient condition can be obtained
from Eq. (2.2-13a). However, condition (2.2-14) still does not ensure that the
process z(?) is ergodic in the full sense, e.g. that the time average of another
process Z(t) = z*(t)z(t + 1), constructed from z(¢), equals the ensemble average
of Z(t). For that purpose we would need to calculate the autocorrelation function
of Z(f) and to apply the same test to the random process Z(r). In general an
infinity of different criteria is needed to ensure the full ergodicity of the random
process z(¢). However, for the special case of the Gaussian random process z(f),
for which all higher-order correlations are expressible in terms of second-order
correlations (see Section 1.6), the criterion expressed by Eq. (2.2-14) is sufficient
for full ergodicity.

Condition (2.2-14) has a simple physical interpretation. Since Az = z(t) —
(2(1)) and (Az*(1)Az(t + 7)) = I'(t) — |[(z) >, we see that the integral is finite if
(Az*(1)Az(t + 7)) tends to zero sufficiently rapidly as 7—» . In other words,
ergodicity holds if correlations of the random process die out sufficiently rapidly
in time. In that case a sufficiently long record of a single realization *)z(#) of the
random process can be divided up into sections of shorter lengths which are
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uncorrelated, so that an ensemble can be constructed from a single realization.
The average over this ensemble then equals the average over time, because a
single realization of sufficient length already contains all the information about
the emsemble. If the process is stationary and ergodic, all realizations of the
random process look somewhat similar and differ only in detail.

Finally, we point out that, although the single condition (2.2-14) does not
ensure ergodicity of the process z(t), in general, if the integral in Eq. (2.2-14)
diverges, then the process z(r) is not ergodic, even though the possibility that
)z = (z) is not ruled out.

2.2.3 Examples of random processes

We now consider two simple examples of random processes, in order to illustrate
the notions of stationarity and ergodicity we have been discussing.
(a) Consider the ensemble of complex functions

N
(1) = > a,eTiont, (2.2-15)
n=1

in which w;, w,, ..., wy are fixed frequencies, but the coefficients ay, a,, . . .,
ay are random variables. As each set of possible values of the variates ay, as,
., ay defines a different realization, z(¢) is evidently a random process.
Examples of possible realizations of the ensemble are illustrated in Fig. 2.4. Let
us examine whether z(¢) is stationary in the wide sense.
From Eq. (2.2-15) we find for the expectation

N
(z(0)) = 3 (a,) e7iom, (2.2-16)
n=1
and for the autocorrelation function

N N
Lt t+ )= (z*Nz(t + 7)) = 3 3 (aka,)e@—omieTiont  (32_17)
n=1lm=1

Re[z()]
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Fig. 2.4 Tllustrating some possible realizations of the real part of the random
process z(t). This process is not ergodic.
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In order that both (z(¢)) and I'(¢, t + 1) be independent of ¢, we require that
(ay) =0,
) (2.2-18)
(afan) = <'an| ) S

where §,,, is the Kronecker symbol, i.e. §,, has the value 1 or 0 according as

‘m = n or m+ n. In other words, if the variates a;, ay, ..., ay are all of zero

mean and if they are all uncorrelated, then z(¢) is stationary in the wide sense.

Assuming that this is the case, let us examine whether the process z(t) is
ergodic. According to the criterion given by Eq. (2.2-14), we need to calculate
the integral

dr,

N
S, () e
n=1

which evidently diverges, because correlations never die out. In this case, time
averages of functions of the random process calculated from different realizations
of the ensemble will, in general, not equal the ensemble average, and will differ
also from each other. Therefore we do not have a single time average, but an
infinity of them. Nevertheless, it so happens that ¥z =0 = (z). However, we
may readily show that for the random process |z(¢)|* we obtain for the time
average the result

[PF = Sjaldr,
n

which evidently depends on the particular realization & of the ensemble. A glance
at Fig. 2.4 shows why that is so: the different realizations of the ensemble are not
statistically equivalent, and each one will yield a different answer; hence the
process z(t) is not ergodic.

(b) For our second example we consider the real random process x(r)
illustrated in Fig. 2.5, which is sometimes known as the random telegraph signal
(Rice, 1944). The process x(¢) takes on two fixed values, a and —a, alternately
and jumps instantaneously between them at completely random times, at an
average rate R.

It is apparent from the construction of the process x(f) that there is no
preferred origin of time, so that x(¢) is stationary not only in the wide sense but

x(1)

Fig. 2.5 Illustrating a realization of the random telegraph signal x(t).
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also in the strict sense. Moreover if the values a and —a are equally probable, we
have

(x(£)) =0. C(2.2-19)

Let us now calculate the autocorrelation function I'(t) = (x(#)x(t + 7)). The
product x(£)x(t + 7) can take on only the two values a* and —a®. If x(¢) has
switched an even number of times in the interval from ¢ to ¢+t then
x(£)x(t + 7) = a®, whereas the product yields —a® if there have been an odd
number of switches. If p(n, 7) is the probability of » switches in the interval 7, it
follows that

I'(z) = a* i p(n, 1) — a* i p(n,7)

n=024,... n=1,3,5,...
= @3 (~1)"p(n, ). (2.2-20)
n=0

As the switches occur at random at an average rate R, p(n,7) is a Poisson
distribution with parameter (n) = R, i.e.

p(n, 7) = @—T)n—"iR— (2.2-21)

When this expression is inserted in Eq. (2.2-20), it yields

® n .—RT
rm=ay SR
n=0 n!

— aZ e—ZRr (.[ = 0)’
and, since I'(—1) = I'(7),
I'(z) = a*e72RM (2.2-22)

for all values of 7.

The autocorrelation therefore decays exponentially to zero with increasing |7|
and I'(7) satisfies the criterion (2.2-14) for ergodicity. It is also apparent from the
construction of the random process that any long realization will be statistically
very similar to any other long realization, so that the process is ergodic. Finally we
note that, despite the repeated discontinuities of the process x(t), its autocorrela-
tion function I'(z) is a continuous function of 7. This continuous behavior is a
general property of all autocorrelations, as we show in the next section.

2.3 Properties of the antocorrelation function

Because of the importance of the autocorrelation function I'(z) for any real or
complex stationary random process z(t), we now summarize and examine some of
its properties.

(a) r©0)=0. 2.3-1)
This follows immediately from the definition I'(0) = {|z(#)?). It is worth
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(®

©

(d

©

noting that I'(0) can vanish only in the trivial case in which the random
process z(t) is identically zero for all times ¢.

I(~17) = *(2). (2.3-2)

This Hermiticity property follows from the fact that z(¢) is stationary, which
allows us to make an arbitrary translation of the time origin. Consequently

I(t) = (z5()z(t + 1)) = (z*(t — Dz(1)) = [*(—7).

IN(t)| < I'(0). (2.3-3)
This property follows from the Schwarz inequality:

TP = [(2*(0)z(t + D) = (2*(D2()){2*(t + D)z(t + 7)) = T*(0),

which implies that |I'(7)] can never exceed its initial value I'(0), although it
can fall below I'(0) and then return to I'(0).

I'(7) is a non-negative definite function.

To establish this property we use the fact that for any positive integer N,
for any N time-arguments #;, #,, ..., &y and for any N real or complex
numbers a4, a5, . . ., ay, we necessarily have

[

which implies, since (z*(#;)z(#)) = I'(t; — 1;), that
N N

21 ' lafail“(tj —1)=0. (2.3-4a)
i=1j=

N
> agz(t;)
i=1

This inequality shows that the autocorrelation function I'(t) is non-negative
definite. Alternatively an integral form of the non-negative definiteness
property may be obtained by starting from the obvious inequality

T2 2
w F()z(t)dt >>o,
at

where f(t) is an arbitrary function and T and T, are arbitrary times. We
then obtain by a similar argument the alternative form of the non-negative
definiteness condition,

T2 T
f f POV = )dede’ = 0. (2.3-4b)
1307
Let ty, tp, ..., ty be any N times and let I'(¢; — ;) = I'y. Then
detI; =0, (2.3-5)

where detI; denotes the determinant of the N X N matrix Iy, This
inequality follows from the non-negative definiteness condition (2.3-4a),
which can be written in matrix notation as

a'ra=0. (2.3-6)
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®

Here a is an arbitrary N X 1 column matrix and a' is the conjugate 1 X N
row matrix. Now according to Eq. (2.3-2) I' is Hermitian, and it can
therefore be diagonalized by an N x N unitary transformation U (satisfying
the conditions UUT = 1 = U™U), j.e.

uru' =T, (2.3-7)

where [ is a diagonal matrix. Hence we can rewrite the inequality (2.3-6)
as

a'U'urutua=o0

or
b'Fb=0, (2.3-8)

where b=Ua is another column matrix with arbitrary elements. If we
choose b; = &,;, where §,, is the Kronecker symbol, Eq. (2.3-8) reduces to

Ta=0, (2.3-9)

T, being the n’th eigenvalue (diagonal element) of 7. All eigenvalues are
therefore non-negative, and so is the determinant det 7, which is identical
to the determinant det I of the original matrix and this evidently implies the
inequality (2.3-5). .

When the matrix T’ i is of order N =1, Eq. (2.3-5) becomes identical to
Eq. (2.3-1). When I'; is of order N =2, Eq. (2.3-5) reproduces the
inequality (2.3-3). When N = 3 or greater a large number of new inequali-
ties can be derived from Eq. (2.3-5), which we shall not explore here.

If the stationary random process z(t) is differentiable, then the ‘velocity’
&(r) = z(¢) (dot denotes differentiation with respect to time) of the process
is a wide sense stationary random process of zero mean, and its autocorrela-
tion function is

Te(7) = -1, (2. (2.3-10)

To prove this result, we make use of the definition of the derivative and
readily find that

(50) = (200 = g O - (D20 g

2.3-11)
Also
Te(7) = {2*()z(t + v))
_ Lim<[z*(x + hy) = 2% [z(t + T4 Ry) - z(t + 1)]>

h1—0 h h
h;—»O 1 2

=Lim[rl(f— hy + h2) _FZ(T"' hl) _ Fz(":+ h2) —Fz(r)]L
h1—0 hy hz /’11

hy—0
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= Lim rz(f - hl) - fz(f)
h1—0 hl

= —I,(7).
&(1) is therefore stationary, at least in the wide sense.

(g) If the stationary random process is differentiable, then z(r) and its ‘velocity’
&(t) = z(¢) have the cross-correlation function I",(t). Once again we have
from first principles,

(Z*(DE( + 1)) = Lim <

2*¥()[z(t + T+ h) — z(t + r)]>

h
— Lim FZ(T + h) - FZ(T)
h—0 h
= I",(v). (2.3-12)

As a corollary to this equation we conclude that a real, stationary
differentiable random process x(#) is uncorrelated with its derivative at the
same time. For we find, using the symmetry property for the real process
x(t), namely

I(=7) = I(v),
that
I'(—1) = —I'(%)
1(0) = —1(0),
and therefore
F(0)=0. (2.3-13)

Hence from Eq. (2.3-12)
(x()x(8)) = ['(0) = 0. (2.3-14)

We conclude our discussion of the autocorrelation function by noting that its
normalized version,

-1 23—

¥(7) )’ (2.3-15)
is in its mathematical structure equivalent to a characteristic function. This is so
because y(0) = 1 and y(r), like I'(7), is non-negative definite [property (d) above]
and therefore satisfies the requirements of Bochner’s theorem (see Section 1.4.2).
Consequently the Fourier transform of y(z) has all the properties of a probability
density. As we shall see shortly, the Fourier transform of the un-normalized
function I'(7) has an important physical significance.

The fact that the normalized autocorrelation function y(z) has the mathematical
structure of a characteristic function is perhaps the single most important property
of I'(7). It implies a wealth of results established in the field of probability theory
(see, for example, Lukacs, 1970). The properties (a)-(g) that we have just
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discussed are consequences of this fact. Another important property of the
autocorrelation function which can be deduced from this equivalence follows at
once from Eq. (1.4-11), namely

(h) I'(z) is continuous.
This is so even when the random process z(¢) has jump discontinuities, such
as, for example, the process illustrated in Fig. 2.5.

2.4 Spectral properties of a stationary random process
2.4.1 Spectral density and the Wiener—Khintchine theorem

One of the most important attributes of a stationary random process z(t) is its
spectrum. We could try to introduce the spectrum heuristically as follows. Let us
formally represent z(t) as a Fourier integral,

2(1) = f " 3w e da, (2.4-1a)

-0

and let us assume that the integral exists and may be inverted, i.e. that
Hw) = [ aeean (2.4-1b)
21 J-e

We might then attempt to define the spectrum S(w) of z(¢) by the expectation
value of |Z(w)[?, i.e.

S(w) = (|Z()*) (24-2)

so that S(w) would be a measure of the strength of the fluctuations associated
with a particular Fourier component of z(t). However simple considerations show
that the definition (2.4-2) is mathematically unsound. For if z(¢) is a stationary
random process, it does not tend to zero as t—> +% and —, because the
underlying probability densities that characterize the fluctuations of z(r) are
invariant with respect to the translation of the origin of time [see Eq. (2.2-1)].
Thus, in the statistical sense, z(¢) cannot behave any differently for large values of
|t| than it does for any other value of r. Consequently z(t) is neither square-
integrable nor absolutely integrable and hence the Fourier integral (2.4-1a) does
not exist within the framework of the theory of ordinary functions.

The difficulty just noted was overcome by Wiener (1930) in a classic paper
which was the origin of a whole new branch of mathematics, the so-called
generalized harmonic analysis. Wiener considered a broad class of functions z(t)
[measurable in the sense of Lebesgue ~ see Titchmarsh (1939), Chapt. 10;
Kestelman (1960), Chapt. 3] for which the integral

im L[ d 2.4-3
r<r)=gngﬁf_rz (Dz(r + ) dt (2.4-3)

exists. Such functions evidently need not tend to zero as T — to. Wiener
showed that the quantity

@ iwt ’
ow) = [ rn=——dr, Q.4-4)
27 - it

+
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which he called the spectrum of z(¢), also exists. For reasons that will soon
become apparent, it is now more appropriate to refer to o(w) as the integrated
spectrum. If o(w) is a differentiable function of w and the order of differentiation
and integration may be interchanged, it follows that

S =229 — L[ rgerar (2.4-5)
dw 27

The function S(w) may be identified with the spectrum or, more precisely, with
the spectral density, also called the power spectrum, of z(t). Although Eq.
(2.4-5) appears to have no resemblance to the formula (2.4-2) by which we
introduced the spectrum heuristically, we shall soon see that the identification of
the integral on the right of (2.4-5) with the spectral density of the random process
z(t) is quite appropriate.

Wiéner’s analysis pertained to a single function z(¢), rather than to an ensemble
of functions, and he did not employ any statistical concepts in his analysis.
However, when dealing with a stationary and ergodic ensemble of random
functions, one can replace the autocorrelation function, defined by the time
average (2.4-3), by the autocorrelation function

(%) = (*(D)z(t + 1), (2.4-6)

defined as an ensemble average, because the two averages are then equal.

Four years after the publication of Wiener’s classic paper, Khintchine (1934)
,showed, with the help of Bochner’s theorem (Section 1.4.2), that for a function
I'(7) to be the autocorrelation function of a continuous stationary random process
it must be expressible in the form of a Fourier—Stieltjes integral (Yaglom, 1962,
Chapt. 2, Sec. 9)

—o

i =

Ir(m= f ™1 do(w), (2.4-7)
—0

where o(w) is a real, non-decreasing, bounded function. Although Khintchine’s

approach was entirely different from Wiener’s, if one identifies Wiener’s time-

averaged function I'(7) with the autocorrelation function of an ergodic process,

one may also identify Wiener’s integrated spectrum with the distribution function

o(w) in the Khintchine representation (2.4-7).

It is worth noting that both Wiener and Khintchine employed the notion of
integrated spectrum rather than of spectral density, probably because the spectral
density may become singular, though no more singular than the Dirac delta
function. In the following, as elsewhere in this book, we do not hesitate to use
the Dirac delta function and we will, therefore, work with the spectral density. Its
use can be justified rigorously within the framework of the theory of distributions
or generalized function theory (Bremerman, 1965; Nussenzveig, 1972, Appendix
A; Jones, 1982, and references cited in these texts). Actually, when one deals
with a statistically stationary source and a stationary field, rather than with a
* This fact is evident from the formal analogy, noted at the end of Section 2.3, between the

characteristic function and the autocorrelation function which, in turn, implies a formal analogy

between the Fourier transforms of these quantities, i.e. between the probability density and the

normalized spectral density. In particular, as noted in Section 1.3, the probability density cannot be
more singular than the Dirac delta function and hence the same is true about the spectral density.
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stationary random function, the use of singular functions and generalized func-
tions may be avoided altogether, as has been shown by Wolf (1981, 1982). We will
discuss this topic in Section 4.7.

Let us now examine why the integral in Eq. (2.4~5) may be identified with the
spectral density. For this purpose we will use again the Fourier transform
relations (2.4-1a) and (2.4-1b), regarding them now as symbolic formulas which,
as just noted, can be given rigorous mathematical meaning, if one goes beyond
ordinary function theory.

For each realization (9z(¢) of the stationary random process, the transform
(2.4-1b) will generate a realization ¥Z(w) and hence Z(w) is evidently also a
random process, in which the frequency is the parameter rather than the time. Let
us now consider the expectation, or ensemble average, of the product Z*(w)zZ(w').
From Eq. (2.4-1b) we have, if we interchange the operations of averaging and
integration, that

o

~ ~ 1 (w't'—
(TH(w)Z(w)) = (z¥(1)z(1")) @9 qr dy’, (2.4-8)
=)
Since the process z(r) is assumed to be stationary,
(2*(0)z(1)) =I'(t' = 1), (2.4-9)

where I is the autocorrelation function of z(#). On substituting from Eq. (2.4-9)
into the integral in Eq. (2.4-8), and setting ¢’ — ¢ = 7, we find that

(FH(w)i(w)) = (2111)2 fw dt elle'—o) f_: dl(v) e,
which implies that
(FHW)F (")) = T(w)d(w — o), (2.4-10)
where
7 — 1 iwt _
Fw)=—- j_mr(r) et dr. (2.4-11)

The formulas (2.4-10) and (2.4-11) are two very important relations. The first,
Eq. (2.4-10), shows that the (generalized) Fourier components of a stationary
random process belonging to different frequencies are uncorrelated, and that
T'(w) is 2 measure of the strength of the fluctuations of the Fourier component at
frequency w, i.e. I' (w) may be identified with the spectral density S(w) of z(t):

S(w) = I'(w). (2.4-12)

The singularity at o’ = @ in Eq. (2.4-10) can be removed if we integrate both
sides over a small w'-range around w. We then obtain, if we also use Eq.
(2.4-12), the following expression for the spectral density:

w+Awf2
S(@) = Lim [ (@) do, (24-13)

The similarity between this expression for the spectral density and the naive
definition (2.4-2) should be noted.
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To bring out the significance of the formulas (2.4-10) and (2.4-11), we will
re-write them in terms of S(w) rather than I' (w) by using Eq. (2.4-12):

(Z*()Z(w")) = S(w)é(w — ") (2.4-14)
and

S(w) = é fwr(r) gl d, (2.4-15)

We may regard the formula (2.4-14) as defining the spectral density or power
spectrum® S(w) of a stationary random process z(t). The expression (2.4-15) for
the spectral density is seen to be in agreement with the (liberally interpreted)
formula (2.4-5) based on Wiener’s theory, provided that the function z(t) in
Wiener’s definition (2.4-3) of I'(7) is regarded as a realization of a stationary
ergodic random process.

The formula (2.4-15), together with its inverse

re = [ swe o, 2.4-16)

are generally known as the Wiener—Khintchine theorem. Stated more explicitly
the theorem asserts that the autocorrelation function of a stationary random
process and the spectral density (or power spectrum) of the process form a Fourier
transform pair?.

As an example we note that for the random telegraph signal treated in Section
2.2, whose autocorrelation function I'(7) is given by Eq. (2.2-22), S(w) is the
Lorentzian spectral density

1 4Ra?

21 4R + o
This function, illustrated in Fig. 2.6, is centered at zero frequency and has a width
at half height of

S(w) = (2.4-17)

Aw=4R, (2.4-18)
which is seen to be approximately the reciprocal of the range of I'(7).

t An alternative definition of the spectral density which is sometimes used, and which does not involve
singular functions, generalized functions or Stieltjes integrals is based on the following truncation
procedure. One defines the function z4(¢) by

z7(t) = z(r) whenlt| < T
=0 when [1]| > T

and its Fourier transform by
Wy T) = Lr zr(t) e dw.
27 e

The spectral density may then be expressed in the form
(2¥(w; T)Z(w: T))

2T '
(cf. Goldman, 1953, Sec. 8.4; Middleton, 1960, Sec. 3.2).
It was not generally known until long after the publications of the papers by Wiener and Khintchine
that the essential aspects of this theorem were discovered much earlier by Einstein (1914). For an
English translation of this paper see Einstein (1987). An interesting commentary on Einstein’s paper
was given by Yaglom (1987).

Sta) = Fim
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S(w)

! | i 1 el
=2 -1 0 1 2 2R

Fig. 2.6 Illustrating the form of the Lorentzian spectral density given by Eq.
(2.4-17).

When the random process z(f) describes an optical field, S(w) will generally be
peaked at optical frequencies of the order of w = 10** s™! and become vanishingly
small outside the optical range.

2.4.2 Singularities of the spectral density

The spectral density S(w), defined by Eq. (2.4-14), may contain delta function
singularities if the mean is non-zero or if z(¢) contains oscillatory components. To
illustrate how the singularities arise, we start by considering a stationary, ergodic
random process zo(¢) of zero mean, that satisfies the ergodicity condition
(2.2-14). This condition ensures that the autocorrelation function I'y(7) of zo(¢) is
absolutely integrable. Its Fourier transform So(w) therefore exists and is a
continuous function of w. This last feature may be seen as follows. From Eq.
(2.4-15) we have

|So(w + dw) — So(w)| = ZLU To()felletto)r — gior] dg
T -0

<1 [ 7 o(0) Isin [y (0w dr, (2.4-19)
mTJ—x

and the right-hand side tends to zero as dw— 0 for all w. On the other hand, if
correlations of z(t) gradually die out, but so slowly that I'(z) is not absolutely
integrable, then S(w) may contain delta function singularities. To illustrate such a
situation we consider a stationary random process z(t) that differs from zy(¢) only
by a constant, which is of course the mean (z). Then the autocorrelation function
I'(7) of z(2) is related to I'y(7) by

I'(z) = I'o(o) + ()", (2.4-20)

It follows from the absolute integrability of I'g(t), that I'(t) — [(z)|* is also
absolutely integrable, and that the process z(¢) is ergodic, but evidently I'(7) is
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not absolutely integrable. If we take the Fourier transform of both sides of Eq.
(2.4-20) and use Eq. (2.4-15), we obtain for the spectral density S(w) of z(¢),

S(w) = So(@) + [{z)[&(w), (2.4-21)

where &(w) is the Dirac delta function. By virtue of the non-zero mean of the
process z(t), its spectral density now has a delta function singularity at zero
frequency.

Finally, we suppose that the random process contains periodic contributions at
various frequencies.w;, @,, . . . as well. Then its autocorrelation function I'(7) will
have the general form

I(7) = To(r) + [(2) P + 3 Aje™r. (2.4-22)
i
Its spectral density, obtained by taking the Fourier transform of the expression
(2.4-22), is given by

S(w) = So(w) + [{2)[P8(w) + F 4;0(0 = wp), (2.4-23)

and it is seen to have additional delta function singularities at each of the
frequencies wy, wy, . . . .

2.4.3 Normalized correlations and normalized spectral densities

It is sometimes convenient to introduce a normalized autocorrelation function
y(7) and a normalized spectral density $(w) for a random process z(t) (Davenport
and Root, 1958, Chapts. 4 and 6). When {z) # 0 we define y(7) by the formula

_ 2
y(r = L= K2F |<z>|2 . (2.4-24)
I0) - ()l
Evidently y(0) = 1. Also by virtue of the inequality (2.3-3) we have
o<ly(v) =1 (2.4-25)

The subtractions of |{z)|* in the definition ensure that y(7) — 0 as 7— % when
the process z(f) is ergodic, because I'(r) must then tend to |[{z)[* as the
correlations die out. As defined, y(7) is mathematically equivalent to a character-
istic function, and its Fourier transform $(w), known as the normalized spectral
density, has the properties of a true probability density. We therefore have

— 17 iwt T _
(@)= - f_wy(r)e d (2.4-26)
and
f " s(w)do=1. (2.4-27)

By using the definition (2.4-24) of y(7) in Eq. (2.4-26), we can immediately
relate 8(w) to the un-normalized spectral density S(w), and we find
S(w) = [(2)P8(e)

(0) =
7T - P

(2.4-28)
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We note that the singularity in S(w) when (z) is non-zero is subtracted out.
Therefore, 8(w) is a continuous function of w for an ergodic process z(t), whether
z(t) is of zero mean or not.

Because y(0) = 1 and y(t) is absolutely integrable for an ergodic process [cf.
Eq. (2.2-14)], the area under the curve |y(7)[? is always finite and is a convenient
measure of the range over which correlations of z(r) extend in time. We can
therefore define a correlation time T, for the random process z(¢) by

T.= | " Iy P dr. (2.4-29)

By Parseval’s theorem connecting the Fourier conjugates y(z) and 8(w), T is also
given by

T,=2n J #(w) do. (2.4-30)

The reciprocal of T, provides a convenient measure of the bandwidth of 8(w).

Other measures of coherence time and bandwidth (e.g. based on moments of
time with respect to the correlation function or moments of frequency with
respect to the spectral density) can be constructed. Some are discussed in Section
4.3.3, in connection with the correlation properties of an optical field.

2.4.4 Cross-correlations and cross-spectral densities

The cross-correlation function of two real random processes x1(¢) and x,(z) is
defined by the average product (x;(#;)x»(2,)) at two different times t;, f3, in
complete analogy with the definition of the autocorrelation. If the two processes
z1(t) and z,(¢) are complex, we define the cross-correlation function by the

formula
Tty ¢+ 1) = {z5(Dza(t + 7)) (2.4-31)

If z1(¢) and z,(¢) are jointly stationary, then I';p(t, t + 1), like I'(t,¢+ 1), is a
function of 7 only, and one may then denote it by I';(7). It obeys the condition

Iu(n) = Th(-1), (2.4-32)

which can readily be derived from the definition of I'y; by making a translation of
the origin of time. However, many of the interesting properties of the autocorre-
lation function I'(t) are not shared by the cross-correlation function I'iy(7). For
example, in general I';;(7) does not have the properties of a characteristic
function.

Let z1(¢), z2(t), . . ., zn(f) be a set of N different, jointly stationary random
processes. Then

ri(t)=(z;i(Oz(t + 1), Gj=12,...,N) (2.4-33)
is an N X N matrix known as the cross-correlation matrix. If the means (z;(t))
fori=1,2,..., N are all zero, I';(7) is often called the covariance matrix of the

set of random processes. It is not difficult to show that I';(7) obeys a-kind of
non-negative definiteness condition that is reminiscent of the conditions (2.3-4)
obeyed by the autocorrelation function. To derive this condition we observe that
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for an arbitrary set of » times #;, t,, . . ., ¢, (n < N) and for an arbitrary set of n
complex numbers ay, a;, . . ., a,,

2
=0.

n
Eaizi(ti)
i=1

On taking expectations of.both sides of this inequality and using Eq. (2.4-33) we
obtain the inequality

aialy(y — 1) = 0. (2.4-34)

MM =
N =

-~
It

i=1j=1
By analogy with the definition (2.4-14) of the spectral density S(w), we may
define the so-called cross-spectral density (or cross power spectrum), Wi(w), of

the jointly stationary random processes z,(¢) and z;(t) by the formula
(Z7(@7(0")) = Wy(w)d(w — ). (2.4-35)

In this formula Z;(w) is the (generalized) Fourier transform of z;(¢) [cf. Eq.
(2.4-1b)]. Formula (2.4-35) shows that (generalized) Fourier components that
belong to different frequencies are uncorrelated. The cross-spectral density Wi(w)
is evidently a measure of the correlations between the fluctuations of different
components at the same frequency. When j = i the cross-spectral density reduces
to the spectral density, i.e.

W) = S(w), (2.4-36)

where S;(w) is the spectral density of the random process z;(z).
By an argument similar to that used in deriving Eq. (2.4~15), one can readily
show that

1 ;
Wy(w) = E_f‘f Ty(r) et dr, (2.4-37)

Le. the cross-spectral density function of z,(¢) and z;(¢) is the Fourier transform of
their cross-correlation function. Equation (2.4-37), together with its Fourier
inverse

Ty(7) = f_:Wi/(w) ™" da, (2.4-38)

may evidently be regarded as a generalized Wiener— Khintchine theorem.

We note some properties of the cross-spectral density. Wi(w), just like I'y(1), is
an element of an N X N matrix. However, unlike I';(7), Wi(w) is Hermitian, for
it follows from Egs. (2.4-32) and (2.4-37) that

Wi(w) = Wi (w). (2.4-39)

Although, unlike the spectral density, the cross-spectral density is neither real
nor necessarily positive in general, it may be shown to satisfy a non-negative
definiteness condition somewhat similar to the condition (2.4-34) for the cross-
correlation matrix, namely:

M=

n
_1a?‘a,»W,-,~(w) =0. (2.4-40)

i

il
-
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Here again n is a positive integer and ay, az, ..., ap (B N) are arbi@ary
complex numbers. To establish the inequality (2.4-40) we start with the obvious

inequality
wote[
< J [ a,'z,-(a))] dw
wo—e1 Li=1

where w is any chosen frequency and & >0, & > 0 are arbitrary. It follows from
this inequality that
-0

<

If we interchange the orders of averaging and of the integrations and summations,
we may re-write the inequality in the form

2
> >0, (2.4-41)

wot ez wo+ &2 non - N
J dw dw'[E Ea’,-"a,»zf(w)zj(w')]
wo— €1 wo— €1

i=1j=1

[ 4w wmdw'[z‘ Ea’,-*a,(zf(w)z,(w'))] >0. (2.4-42)
wo—¢1 wo—€1

i=1 j=1

Next we substitute for the expectation value in this inequality from Eq. (2:4—35)
and carry out the trivial integration with respect to w’. We then obtain the simpler
inequality

J wm[zl ElaTa,w,.(w)] dw=0. (2.4-43)
wo—e1 Li=1j=

Since & and &, are arbitrary non-negative quantities if the Wj;(w)’s are continuous
functions of w, the non-negative definiteness condition (2.4-40) follows at once

from this formula. .
In the special case when n =1, the inequality (2.4-40), together with Eq.
(2.4-36), implies that

Wu(w) = Sl((JJ) =0, (24—44)

i.e. that the spectral density is real and non-negative, as we learned earlier-. If we
take n = 2, the inequality (2.4-40) and Eq. (2.4-44) imply that the determinant

Si(w)  Wi(w)
Waulw)  Sx(w)

=0,

or, if we also use the Hermiticity of W, expressed by Eq. (2.4-39),
[Wia(@)] =< [S1(@)S()]. (2.4-45)
We may define a normalized cross-correlation function y;(7) by the formula
Iy(r) = (zi){z)
[L(0) — [(z) PV 5(0) = [(z;) P12
_ (Azf(t)Az,-(t + r))’ (2.4-46)
[z (jaz)]
which will be recognized as the correlation coefficient of Az,(¢) and Az(t + 7) [ef.

yy(T) =
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Eq. (1.3-35)]. It is normalized so that

with the upper bound of unity achievable only when the two processes z;(¢) and
z;(t) are completely correlated. In general y;(0) # 1.
Let us denote the Fourier transform of y;(7) by wy(w):

wi(w) = El;r—]— y;(7) €97 dr. (2.4-48)

This quantity is sometimes known as the normalized cross-spectral density,
although it is not normalized in any obvious way. Another normalized cross-
spectral density function is often more useful for problems in which the random
process is of zero mean. It is normalized like a correlation coefficient [cf. Eq.
(1.3-35)], and is given by (Wolf, 1982, 1986; see also Carter and Wolf, 1975;
Wolf and Carter, 1975, 1976; Mandel and Wolf, 1976, 1981)

Wi(w)

T 2.4-49
O B (2.4-492)
or, with the help of Eq. (2.4-36),
) = e ot 2.4-49b
,ux}(w) [Si(w)]lﬂ[%(w)]l/z 2. )

wj(w) measures the degree of correlation between two Fourier components of
zi(t) and zi(t) at the frequency w. From the inequality (2.4-45) it follows
immediately that

0< |ug(w)| <1. (2.4-50)

Normalized correlation and spectral density functions will be discussed in more
detail within the context of optics, in Section 4.3 below.

2.5 Orthogonal representation of a random process

In their study of the statistical properties of blackbody radiation, Einstein and
Hopf (1910) suggested that, in any finite time interval, the field may be repre-
sented in the form of a Fourier series with coefficients which are normally
distributed, independent random variables with zero mean. Shortly afterwards
von Laue (1915a) questioned the correctness of this suggestion and a polemic
ensued (Einstein, 1915; von Laue, 1915b), but no agreement was reached.
Blackbody radiation may be shown to be a stationary Gaussian random process
(see Section 2.1.2) and the Einstein-Hopf representation was later used for the
representation of such processes in spite of the unresolved disagreements.

The question of expanding a random process in a Fourier series was later
studied by Davis (1953) and Root and Pitcher (1955). It follows from these papers
that, for the Einstein—Hopf representation to exist, the process must be not only
Gaussian but also periodic with period T, i.e. if one has for all ¢, x(t + T) = x(¢),
with probability 1. Blackbody radiation obviously does not satisfy the periodicity
requirement, so that, as von Laue had claimed, the Einstein-Hopf expansion
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cannot be strictly valid. However it follows from the analysis of Root and Pitcher
that, if in an arbitrary interval 0 < ¢ =< T one represents a stationary Gaussian
random process x(¢) as a Fourier series with random coefficients, the correlation
between the coefficients tends to zero as T —» . In this limit, the Fourier
expansion does not exist, of course, but the result implies that if T is large
enough, the assumption of independent coefficients, though not strictly correct, is
in general, a reasonable approximation.

In 1947 Kac and Siegert introduced a new type of expansion for a stationary
Gaussian random process, in which the expansion coefficients are strictly inde-
pendent. At about the same time Karhunen (1946) showed that, whether or not a
process is stationary or Gaussian, an ‘orthogonal expansion’ of the process is, in
general, possible. Expansions of the Karhunen-Loéve type have been finding
increasing use in treatments of random processes. We will, therefore, briefly
discuss such expansions.

2.5.1 The Karhunen—-Loéve expansion

Let us consider a complex random process z(f), (=T <¢<T), which is not
necessarily stationary. For the sake of simplicity we assume that

(z2(6)) = 0. (2.5-1)

We consider the possibility of expanding each realization of the process in the
form

z(t) = zcn"pn(t)’ (2.5-2)

where the functions ¥,(¢) form an orthonormal set on the interval —T < =< T,
i.e.

[ 45 0¥ndt = O, 253
-T

S, being the Kronecker symbol. The coefficients ¢, are uncorrelated random
variables, i.e.

<C;':cm> = Ané)‘nm: (25"4)

and the A,’s are non-negative constants.

Let us for the moment assume that such an expansion exists and let us examine
whether we can determine the functions ,(t) and the constants A,. For this
purpose we form the autocorrelation function I'(t;, t;) of the process. Evidently

I(ty, ty) = {2*(t1)z(22))
= 22(0ﬁ0m>1/¢(t1)wm(f2)

= S V(1) ¥m(12), (2.5-5)

when Eqgs. (2.5-2) and (2.5-4) are used. If we multiply both sides of Eq. (2.5-5)
by ,(1), integrate with respect to #; over the range —T<1t;=<T, and use the
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orthogonality condition (2.5-3), we obtain the relation

T
L#ﬁh@%MNH:MWM) (2.5-6)

Equation (2.5-6) is a homogeneous Fredholm integral equation for the ,,’s.
More precisely, the v,’s are seen to be the eigenfunctions of an integral operatnor
whose kernel, assumed to be continuous, is the autocorrelation function I' (21, t25
of the process, and the A,’s are the corresponding eigenvalues. Now the kernel
I'(#1, t2) obeys the Hermiticity condition I'(t, t;) = I'*(t4, t,), and we shall also
assume that it is a Hilbert—Schmidt kernel, i.e. that

T T

T 2
. f_Tf_T[ (11, 1) dty diy < oo (2.5-7)
Under thf.:se conditions one may draw the following conclusions about the
eigenfunctions and eigenvalues of our integral equation (Riesz and Nagy, 1955,

Sec. 97; Pogorzelski, 1966, Chapt. 5; Smithies, 1970, Chapt. 7):

(a) The integral equation (2.5-6) has at least one non-zero eigenvalue.

(b) Each eigenvalue has at most a finite degeneracy.

(c) There is a (finite or infinite) orthonormal sequence of eigensolutions of Eq.
(2.5~6) with the property that any function F(¢) that is square-integrable on
the interval — 7 < ¢t < T, can be represented, in the sense of convergence in
the mean*, in the form

F(1) = h(2) + X fuwa(0), (2.5-8)
where A(t) is a function such that
T
f_rr(tl’ f2)h(21)dey =0, (2.5-9)
and
T K
fi= j_Twn(r)F(t)dt. (2.5-10)

(d) The l?ernel I'(ty, t;) of the integral equation (2.5-6), i.e. the autocorrelation
function of the process, may be expanded in the form of Eq. (2.5-5), with
the series converging to I'(¢1, ) in the mean.

The results that we have just stated hold under the assumption that I'(¢y, £,) is
a Herplitian, Hilbert—-Schmidt kernel, i.e. that it obeys the condition (2.5-7)
(cf. Riesz and Nagy, 1955, p. 365). However, one can readily show that I' is
also non-negative definite, i.e. that for any N real or complex numbers a;, as,
<5 aNs

M=
M=

aTajF(fi, 4) = 0. (2.5-11)

fl

!

i

1j=1
This inequality can be established in a way strictly similar to that used in deriving

* Aseries 2 115,(2) is said to converge in the mean to S(¢) if Limy_... [2.18(6) = 2 s (P de=0
n=1%n = V.
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the corresponding inequality (2.3-4a) for the autocorrelation function of a
stationary random process. With this property of I" one can show that

(e) The expansion (2.5-5) is uniformly convergent (Mercer’s theorem).
(f) The eigenvalues are non-negative real numbers.

Finally we note that, if the non-negative definiteness condition on I' may be
replaced by the stronger condition of positive definiteness, i.e. if the equality sign
in Eq. (2.5-11), or, more precisely, in the equivalent integral form [see Eq.
(2.3-4b)], cannot be attained except in the trivial case when I'(¢) =0, then Eq.
(2.5~9) can hold only if ~£(t) = 0. In this case, as is evident from Eq. (2.5-8), the
eigenfunctions form a complete set in the Hilbert space of square-integrable
functions.

It follows that, if the sample functions of our random process z(r) are
square-integrable on the interval =7 <t < 7T and the autocorrelation function
I'(ty, t;) of the process obeys the convergence condition (2.5-7) and is positive
definite (rather than just non-negative definite), an expansion of the form (2.5-2)
exists, subject to conditions (2.5-3) and (2.5-4). This representation is known as
the Karhunen and Loéve expansion of the random process z(t).

2.5.2 The limit T — «; an alternative approach to the Wiener~Khintchine theorem

Suppose that the random process z(t), again assumed to be of zero mean, is
stationary, at least in the wide sense, so that its autocorrelation function is of the
form
I(ty, t) = I'(ty — ;). (2.5-12)

We will consider, for this case, the limiting form of the Karhunen-Loéve
expansion as T - o, and we will show that it leads to the Wiener—Khintchine
theorem.

By analogy with many eigenvalue problems, we may expect that, in the limit as
T — oo, the spectrum of the integral operator IZT[‘(Z‘z —ty) ... df; will be
continuous rather than discrete. For example, the eigenvalue problem associated
with a harmonic oscillator on a finite interval leads to a Fourier series, whereas on
an infinite interval it leads to a Fourier integrai. Hence, instead of a series
representation of the form given by Eq. (2.5-2), we may now expect an integral
representation of the form

z(1) = flc(w)w(t; w) da, (2.5-13)

and, in place of Eqgs. (2.5-3) and (2.5-4), we may expect orthogonality conditions
of the form

wa Yt w)y(t @) dt = S(w - ') (2.5-14)
21 J—w

(X(w)e(@)) = Mw)d(w — o), (2.5-15)

where 8(w) is the Dirac delta function. We will try to determine the functions
¥(t; w) and A(w) that obey these conditions.
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We will proceed as we did before for finite 7. We assume that a representation
of the form (2.5-13) exists, subject to the requirements (2.5~14) and (2.5-15). It
then follows that

I(ty = 1) = (2*(t)a(t2))
= J’I<C*(w1)c(w2))w*(fi; w)Y(t2; ;) dwy da,,
and hence, with the help of Eq. (2.5-15),

It = 1) = [ ey (s ayutea; o) do. (2.5-16)

We now multiply both sides of the equation by y(f;; @') and integrate with
respect to t; over the range — to . We then readily find, after rearranging the
order of the terms on the right-hand side, that

[1t = ewtes @) an = [ dwi@ns o) dnw (s eyt o),

which implies that

%f_wr(zz = )Yty @')de = Mw)y(ty; o'). (2.5-17)

The last line follows immediately with the help of Eq. (2.5-14). The relation
(2.5-17) corresponds to the integral equation (2.5-6) derived for the case when
the time interval is finite and the process is not necessarily stationary.

If the assumed representation (2.5-13) exists, the functions 9(¢; w) must be the
eigenfunctions and the A(w)’s the eigenvalues of the integral equation (2.5-17).
We must, therefore, examine whether there exist non-trivial solutions to this
equation. We will do so using Fourier transform techniques. We represent the
autocorrelation function I'(t) and the eigenfunctions ¥(t; ), if they exist, as
Fourier integrals:

I(v) = f :S (m) e dn, (2.5-18)

vt 0) = [ G 0)e an (2:5-19)

Then, if we make use of the convolution theorem on Fourier transforms, we
obtain from Eq. (2.5-17) the relation

S(nyg(n; @) = M@)i(n; ). (2.5-20)

Now if we attempt to cancel the common factor ¥(n; w) [which cannot be
identically zero under our assumption that a non-trivial eigensolution of Eq.

(2.5-17) exists], we are led to the conclusion that S (n) = Mw), which is imposs-

ible if $(») is not a constant. Thus, we conclude that Eq. (2.5-20) does not admit
solutions for 4(n; w) that are ordinary functions. However, it is not difficult to see-
that the equation has singular solutions, a result that can be established rigorously
by means of the theory of generalized functions. As elsewhere in this book, we
avoid the use of generalized function theory, and instead we make formal use of
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the Dirac delta function. The singular solutions of (2.5-20) may then be ex-
pressed in the form

Y(m; @) = 8(n — @) (2.5-21)
Mw) = S(w). (2.5-22)

These solutions must be understood in the sense that if we substitute them into
Eg. (2.5-20), multiply each side of the equation by an arbitrary test function
F(n), and integrate both sides with respect to 7 from —o to ®, we obtain a
consistent result.

Let us now examine the implication of such singular solutions. From Egs.
(2.5-21) and (2.5-22) it follows at once that the eigenfunctions of the integral
equation (2.5-17) are the functions

w([, w) = e—iwl, (25-—23)

i.e. they are periodic exponentials, irrespective of the nature of the autocorrela-
tion function I'(7) of the process. The orthogonal representation (2.5-13) then
becomes

2(t) = f c(w)e " do, (2.5-24)
which is just the Fourier integral representation of z(t). From what has been said
above it is clear that this equation must also be interpreted in the semse of
generalized function theory. Moreover, according to Eqgs. (2.5-15) and (2.5-22),

{(c*(w)c(w")) = S(w)§w — o). (2.5-25)

Thus, we have indeed found a limiting form, as T — o, of the Karhunen-Loéve
expansion for a random process that is stationary, at least in the wide sense.

Comparison of Egs. (2.5-24) and (2.5-25) with Egs. (2.4-1a) and (2.4-14)
shows that the eigenvalue A(w) = S(w) of the integral equation (2.5-17) is the
spectral density of the random process z(1). Moreover, from Eq. (2.5-18) S(w) is
the Fourier transform of the autocorrelation function I'(7). This conclusion is
nothing else than a statement of the Wiener-Khintchine theorem (cf. Section
2.4.1), which has been derived here from the Karhunen-Loéve expansion of the
stationary random process z(¢) in the limit T — . Moreover, this expansion on
the infinite interval is seen to be just the generalized Fourier integral represent-
ation of z(1).

2.6 Time development and classification of random processes
2.6.1 Conditional probability densities

We have already seen that there exists a whole hierarchy of joint probability
densities p1(x, t), pa(x2, t2; X1, t1)s -+ o> injwhich the higher-order p, generally
contain progressively more and more informétion about the random process x (1)
and how it develops in time (see, for example Oppenheim, Shuler and Weiss
1977, Chapt. 2). Because the future time development of x(¢) is in general
influenced by its past behavior, it is often convenient to introduce conditional
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probability densities P, ;., giving the n-fold joint probability density that x has the
value X1 at time 41, Xg4o at time fg4g, . . ., and x4, at time f,,, conditioned
on the values x; at the earlier time #, X;_; at time f;_y, ..., x; at time #;. In
analogy with Eq. (1.2-12), @, , is expressible as the ratio of two probability
densities

Pk (Frns tetns -+ Xet1s esl X, B o o5 X, 1)

- Pran(Fuctns Uewns Xern—1s tetn=15 - - - 5 X1, 1)
P> By Xie—15 Le=15 - -+ > X1 £1)
and the times are now understood to be ordered so that t; <f, <t3<... P, is
normalized to unity in the usual way when it is integrated over all x;1q, X492,
Xi+n-
If we multiply both sides of Eq. (2.6~1) by py, put K =1 = rn and integrate
both sides with respect to x;, we obtain

. (2.6-1)

B

jPz(Xz, ta; X1, t1)dxy = pi(xs, ) = f@m(xz, Llxy, t)pa(xy, 1) dxy. (2.6-2)

This allows the probability distribution of x at a later time to be obtained from the
distribution at an earlier time, when the conditional probability density P, is
known. However &, ; may be governed by the past history of the process. In the
special case in which the two times f, t, are equal, P;; must reduce to a delta

‘ function,

P11, tlxg, 1) = 8(x; — x1). (2.6-3)

How strongly the values of x at earlier times influence x(f) at later times ¢
depends on the dynamics of the random process. Some random processes evolve
in ways that are only weakly influenced by their history, and in other cases x(¢) is
strongly influenced by the past. In the following we introduce a natural classifica-
tion, based on the influence of the past.

2.6.2 Completely random or separable process

This is a process x(¢) in which successive values of x are completely independent
of past \.ralues‘ It follows that if the times are all different, then the conditional
probability density equals the unconditional probability density, or

Pk Kictns Devms -+ 5 Xiwts bewt [ s - -3 X1, 1) =
pn(xk«i»ns T e tk+1)' (26-4)
With the help of Eq. (2.6-1), and on putting K = 1, we obtain
Prat(inets tvts 3 X1 1) = Pty fasts - - -5 X2, £2)D1(x1, 1),

which is a recursion formula that allows p,,; to be expressed in terms of p,.
Repeated application leads to the result,

Pa(Xn, by - o5 X1, 1) = p1(Xs 8) P11y tam1) - - DaX1, 1), (2.6-5)

which shows that the variates x,, x,, . .., x, at different times are all statistically
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independent of each other. The random process x(t) is therefore also known as
separable. An example is a delta-correlated Gaussian random process, for which
the two-time correlation function (x(1;)x(f;)) is proportional to &(t; — 1),
because the lack of correlation of the variates at different times implies their
statistical independence.

2.6.3 First-order Markov process

After considering a process which is independent of its history, we now consider
one which is influenced only by its immediate or most recent past, for which the
conditional probability density satisfies the relation

P (Xt ns tens -+ 5 Xiea1s ertlXes te 5 X1, 1)
=P 1(Xksns terns -+ -3 X ts el ). (hSnh<sty<..) (2.6-6)

In other words, only the most recent past governs the time evolution of the
process. We can express this by saying that the future of x(¢) is influenced by the
present, but not by its earlier history. Such a process is known as a Markov
process, or more precisely as a first-order Markov process, to distinguish it from
higher-order Markov processes described below.

It follows from Eq. (2.6-1) that

pn(xna by oo o5 X1 tl) =
@I,II—I(XI’U [n!xn~1: Lp—1s o« o5 X1, [l)pn~l(xn—17 [ MR S T) tl)’
and with the help of the Markovian property (2.6-6) we have
pn(xrn Ly v 3 X1 tl) = @l,l(xm tn|xn~17 [n——l)pn‘l(xn—lv [ ST D) tl)'
This is in the form of a recursion relation, and repeated application leads to the
result
pn(xm Ly o5 Xy, tl) =
P11 (K tlXo1s G- )P11(Kn1s et ¥y fa2) - - Pra(, folxa, ) pa(e, 1)
2.6-7)
For a Markov process the conditional probability density P 1 (%, tn|¥%u—1, ta—1) is
known as the transition probability density. It is governed only by the dynamics of
the random process, and is independent of the behavior at times earlier than ¢,_;.
The joint probability density p, of any order » is then completely determined by
p1 together with the transition probability density %, whose suffices (1, 1) are
often dropped because they are understood. This makes the treatment of the
first-order Markov process particularly simple.
The transition probability density P(x,, t,|x,-1, t,-1) Obeys a simple integral
relation for a Markov process (Smoluchowski, 1906; Chapman, 1916; Kolmo-
goroff, 1931). We start from the general consistency relation with t3 = t, = #;

Pa(x3, t3; X3, 1) = fps(xa, 13; Xo, by} X1, £1) dxy,
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which holds for any process x(r), and we use Eq. (2.6-7) to substitute for p;
under the integral. We then obtain

pa(x3, t3; X1, 1) = J@(X& t3lxp, 12)P(x2, talx1, 1) p1(x1, t1) dxy,

and division of both sides by p;(x;, ¢;) leads to the integral relation

Plxs, ta]xy, 11) = f@(xa, t3lx2, 1)P(x2, t2|x1, t1) dx,,

(tz=t,=1) (2.6-8)

which is known as the Smoluchowski—Chapman-Kolmogorov relation. 1t is a
necessary, although not sufficient, condition for the process to be a first-order
Markov process.

2.6.4 Higher-order Markov process

The next stage in the categorization of random processes is reached when the
conditional probability density ?, , depends only on the two most recent values
of x,i.e.

Pok(Fhtns Ut -+ - Xer1s lee1lXes B -+ -5 X1, 1)
= @2 (Kerns terns » -5 Xk beadl X s Xem1s 1) (2.6-9)

Such a process is known as a second-order Markov process. With the help of the
same kind of argument as that leading to Eq. (2.6-7) one finds from Eq. (2.6-9)

pn(xna tn; ceey X1, tl)
= P12 (%ns talXuots Bamt Xuczs 0-2)P12(6n-15 Lum1|Xam2s bim2) Xno; tems)
X oo Py a(xs, t3lxa, b2 X1, 1) p2(X2, 25 X1, 11), (2.6~10)

so that all higher-order joint probability densities are determined by ®; , and p,.
From this equation we obtain the following generalization of the Smoluchowski—
Chapman-Kolmogorov relation (2.6-8):

P12(xa, talxs, 1 X1, 1) = f@l,z(xm talxa, 133 Xg, 02)P10(x3, t3lxs, £35 x4, 17) dics,
(ts=t3= = 4). (2.6-11)

It is clear that we can introduce a hierarchy of higher-order Markov processes
by proceeding in this manner. A third-order Markov process would be one in
which the evolution of the random process is governed by the three most recent
values of x(¢), and all fourth- and higher-order joint probability densities are
expressible in terms of P; 3 and p;, and so on. The essential element in a Markov
process of any order is that memory about the past history of the process does not
persist indefinitely, but eventually dies out.

Finally, there exist random processes whose time evolution depends on their
entire history. In that case no finite-order transition probability density ®, , can
completely describe the evolution.
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2.7 Master equations in integro-differential form

We shall now use the general integral relation (2.6~2) that connects the probabil-
ity density p;(x,, t;) with pi(xy, t;) at an earlier time to obtain the time derivative
of pi(x,t). If we put ty=1¢ and 1, =1+ &t in Eq. (2.6-2) we obtain (after
dropping the suffix 1 on p;(x, ¢) for simplicity)

plx, 1+ 81) = [@m(x, t+ 8tlxy, £)p(xy, £)dx,. (2.7-1)

By making use of the normalization of @y ; (x1, t + d¢|x, ¢) when it is integrated
with respect to x; we may also write

p(e, 1) = [@raer, £+ 8efx, Op(r, ) dx,. (2.7-2)
It then follows from first principles that
op(x, 1)
ot

1
= Lim —[p(x, t + 81) = p(x,
Him—lp(x, ¢+ 80 = p(x, 1)]

= %’in%gl"j[gbl,l(x’ ‘+ 61")(1, [)p(xlv t) - gPl,l(xla L+ 51"1, [)p(xi t)] dx,
11— t

.1
= Lim = [{([@1(x, £ + 8tlxy, 1) = P1a(x, thoy, )]p(as, )
81—0 § ¢

= [Praler, £+ 8tlx, 1) — P4 (xq, t]x, O]p(x, 1)} dxy,

(2.7-3)
where we have made explicit use of the result [cf. Eq. (2.6-3)]
Pralx, they, 1) = 8(x ~ x1) = Py1(x, tlx, 1).
We now introduce the following notation for the rate of change of ? 4,

(x, 11, £) = Lim gl—[@m(x, t+ 8txy, 1) = Pyax, thr, O] (2.7-4)
> t

When %;; is a transition probability density, #(x, x;, f) is known as the
transition rate. It satisfies a number of simple relations, which follow immediately
from the definition. First

A(x, x1, ) =0 if x # xp, (2.7-5)

because Py 1(x, t|x, t) is then zero, whereas Py ;(x, ¢ + 8t|x;, ) is non-negative.
Also

J sA(x, x1, ) dx = 0, (2.7-6)

because both conditional probability densities in Eq. (2.7-4) integrate to unity.
However, s{(x, x1, £) can be a highly singular function in some cases, as we shall

\
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see in the example in Section 2.10 below. When the definition (2.7-4) is used in
Eq. (2.7-3), we immediately obtain the equation of motion

D) = flatte, . Dp(en, 1) = stlxn, %, Op(x, D] drs. (277)

This equation is sometimes known as the Pauli master equation, after Pauli
(1928, p. 30) who obtained a similar equation for a quantum system, with the help
of certain assumptions that are not needed here (see Section 17.3 below). It has
the character of a rate equation, and it tells us that p(x, ¢) increases at a rate
governed by transition rates from other values x; to x, and decreases at a rate
governed by transition rates from x to other values x;.

By virtue of the property (2.7-6), the second term in Eq. (2.7-7) integrates to
zero, and the relation may be written as

ap(X, t) - f‘ﬂ(x’ X1, t)p(xl, t)dxy, (2.7—8)
ot

although the more symmetric form (2.7-7) is sometimes preferable. In the special
case when the transition rate is symmetric,

A(x, x1, 1) = A(xy, x, 1), (2.7-9)
Eq. (2.7-7) simplifies to
op(x, 1)
R fsst(x, xy, Op(x1, 1) = plx, )] dx;. (2.7-10)
Finally we note that for a random process taking on only the discrete values x1,
X3, X3, . . . the master equation (2.7-7) takes the form

9—‘%& = St 5, 02, 0 = il %, Op(x, O] @71
PAatd
In Eq. (2.7-11) p(x;, t) is the probability rather than probability density.
Although the master equation we have derived, holds in principle for any
random process x(¢), it is generally useful only for a first-order Markov process.
The reason is that only in that case is P, 1(x, ¢ + 5¢|x;, f) determined entirely by
the dynamics of the process and independent of all other probabilities, and
similarly for the tramsition rate &{(x,x;,t). In the more general situation,
S(x, xq, t) depends on the probabilities of the process at earlier times. It is then
preferable to deal with the time evolution of the joint probability density p,,
which involves transition rates conditioned on earlier values of the random
process (Oppenheim, Shuler and Weiss, 1977, chapt. 3; Srinivas and Wolf, 1977).
We shall not deal with this more general case here.

2.8 Master equations in differential form

We shall now derive an equation of motion for p(x, 1) in the form of a partial
differential equation, which is often more useful than the integro-differential
equation (2.7-7).
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2.8.1 The Kramers—Moyal differential equation

Our starting point is again Eq. (2.7-1) for p(x,t+ 6t), which allows us to
express the rate of change of p(x, t) in the form

a”(a"t’ ) = Lim {p(x, 1 + 80 = p(x, 1)

—le—[f@(x 1+ 8tlxy, Op(x, £)dx, — plx, t)]
810 § ¢

We have discarded the suffices 1, 1 of ®,;, with the understanding that the
relation is really useful only when %y ; is a true transition probability density. We
now make the change of variable x — x; = Ax, and write
op(x, 1) _

ot

%mg “@(x — Ax + Ax, t + 8t|x — Ax, t)p(x — Ax, t)dAx — p(x, t)]
-0 &

(2.8-1)

The integrand can be regarded as a function f(y,z) of the two variables
y = x — Ax and z = Ax. With respect to the variable y, let us expand f(y, z)ina
Taylor series about y = x, keeping z constant,

fx - Ax, z) = 2( 1) (Ax)’ f(x 2). (2.8-2)

When this expansion is substituted under the integral in Eq. (2.8-1) we obtain the
equation
op(x,t) _

or

Lim — U (Cax)” & ——P(x + Ax, t + 8tlx, H)p(x, £)dAx — p(x, 1)|.
8i—0 §¢ r! ox’

(2.8-3)

We now interchange the order of summation and integration and integrate term
by term. The term r = 0 integrates to p(x, t), which cancels the last term. For the
remaining terms we define the quantities

Dy(x, ) = %ingéif(Ax)”@(x +Ax, t+8ilx, NdAx, r=1,2,..., (2.8-4a)
=0 &

which are known as the transition moments of the random process x(t). The
transition moment D,(x, t) is proportional to the r’th moment of the change of
the process in a short time 8¢, subject to the initial value x at time ¢. This is
sometimes expressed in the form

D%, 1) = Lim ) Lo <(A") Jur (2.8-4b)
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With the help of the definition (2.8-4a), Eq. (2.8-3) can be re-written in the
more compact form

3@, 1) _ Z( 1) a’[ D,(x, Dp(x, )], (2.8-5)

ot r=1

which is known as the Kramers—Moyal differential equation (Kramers, 1940;
Moyal, 1949). In general, it is a partial differential equation of infinite order,
although the order may become finite in certain cases, as we shall see.

The effect of the first term on the right involving D; on the change of p(x, 1) in
a short time 8¢ is given by

~8:-2[Dy(x, )p(x, D)),
dx

and this is illustrated in Fig. 2.7(a) for the case in which D; is a positive constant.
The gradient of p(x, t) determines the change of p(x, t) and the term involving
D, clearly causes the probability density to drift to the right when it is positive.
Dy (x, t) is therefore known as the drift coefficient.

The effect of the term involving D, on the change of p(x, ) is given by

32
#®1—[Ds(x, Op(x, 1],
ox

and this is illustrated in Fig. 2.7(b) for the case D, is constant and positive.
Evidently D, causes the probability density to spread out, and it is known as the
diffusion coefficient. The higher transition moments have no well-established
names.

Finally, we point out once again that, although no explicit Markovian assump-
tion was made in the derivation of Eq. (2.8-5), because Eq. (2.7-1) that forms
the starting point holds quite generally, it is nevertheless only for a first-order
Markov process that the results are really useful. The reason is that only when
P(x, t]xo, to) is a transition probability density are the transition moments deter-
mined by the dynamics of the random process, and independent of the probabili-
ties of x at earlier times.

When x(¢) is a first-order Markov process, it is not difficult to see that the
transition probability density ®(x, t|xo, o) must also obey a partial differential

(@) pln) ®)

- X

Fig.2.7 Effect of (2) the drift term and (b) the diffusion term on the change of
the probability density p(x, ¢) in a short time interval from ¢; to #,.
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equation like Eq. (2.8-5). From the Smoluchowski-Chapman-Kolmogorov rela-
tion (2.6-8) we have

P(x, t + 8t]xg, to) = f@(x, t 4 dtlxy, 1)P(xy, tilxg, to)dxy, (848121, ).

(2.8-6)

This relation is completely analogous to Eq. (2.7-1), except that p(x, t) on both
sides of the equation is replaced by the conditional or transition probability
density P(x, t]xq, 15). As the value x4(to) plays no role in the differentiation or
integration, the argument leading to Eq. (2.8-5) can be repeated step by step,
and we obtain instead of Eq. (2.8-5)

P t) 5 N F p 6 vo6 the, ) (2.8-7)
ot =1 rloaxf

P(x, t|xg, to) and p(x,t) therefore obey the same equation of motion for a
first-order Markov process.

2.8.2 Vector random process

One sometimes needs to deal with a random process that has several different
components, and is most conveniently treated as a vector x(¢). For example, the
complex random process z(f), with real and imaginary components x;(¢) and
x,(t), may be regarded as a real, two-dimensional vector process x(t). For a
vector process Eq. (2.7-1) still holds, except that the integration is with respect to
the vector x;, and we write

p(x, 1+ 81) = f@(x, t+ 8tlxy, £)p(xy, 1) dx, (2.8-8)

The argument leading to the partial differential equation (2.8-5) can now be
repeated with only trivial changes. The Taylor series (2.8-2) becomes an expan-
sion of a scalar function of a vector, and we have instead

2
Fx = AX) = f(x) = Axi—f(x) + S AxAn—2
ox; 2! 9x,0x;
where summation over repeated indices is implied. This leads to the partial
differential equation

Ap(x, 1) 3 1 @
= ——[Di(x, )p(x, 1)] + —
ot ax,[ . 0P, 1) 2! 3xdx;

in which the r’th transition moment is a Cartesian tensor of rank r,

f&—..., (2829

[Dy(x, )p(x, )] = ..., (2.8-10)

Dy, (x, 1) = g.ina(-sl—fo,-Ax,Axk < P(x + Ax, 1+ O3, £)dAx.  (2.8-11)
1> t

Except for this feature, the equation of motion is similar to Eq. (2.8-5) and an

analogous relation can also be derived for P(x, txq, t,) for a first-order vector

Markov process x(¢). The first-order moment Dy(x, f) is known as the drift vector,

and the second-order moment Dy(x, t) as the diffusion tensor.
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2.8.3 The order of the Kramers—Moyal differential equation

Although the Kramers-Moyal differential equation (2.8-5) is formally of infinite
order, the order can become finite if all transition moments D, for r greater than
some value N vanish. We now use an argument of Lax (1966) to show that there
are severe constraints on the order N.

From the Schwarz inequality we have for any integers 4, r,,

2
[ f (Ax)"(AX)?P(x + Ax, t + dt|x, 1) dAx]
< f(Ax)Zf@(x + Ax, 1 + 8tlx, 1) dAx

X [(Ax)zrz@(x + Ax, t + 8t|x, t) dAx,

and with the help of the definition (2.8-4) of the transition moment D, this leads
to the inequality

D3x+r2 = D2r1D2r2- (28—12)

As this relation holds for any integer values ry, r, we may, in particular, put
ri=1, r,= N —1, and obtain

D% < DyDyy_s. (2.8-13)

Now let us suppose that all transition moments D, above some value r = N
vanish. Then the Kramers—-Moyal equation becomes an N’th-order partial dif-
ferential equation. If N =3, then 2N — 2= N + 1, so that both Dy,; =0 and
Dyn-2 =0. But from Eq. (2.8-13) we see that if Dyy_, =0, then Dy =0. It
follows that if the transition moments vanish above order N, they also vanish
above order N — 1.

This argument can be repeated recursively, to show that all transition moments
above N — 2, N — 3, etc. vanish also, so long as the order remains greater than
the second. When N =2 or N = 1, the argument breaks down, because it is then
no longer true that 2N —2= N + 1. It follows that, if the Kramers—Moyal
differential equation is of finite order, then it must be of the first or of the second
order. In that case the equation is known as the Fokker—Planck equation. A
similar result, known as Marcinkiewicz’s theorem (see e.g. Lukacs, 1970, p. 213),
which we encountered in Section 1.4.3, holds in connection with the theory of
characteristic functions.

2.9 Langevin equation and Fokker—Planck equation

Many processes x(¢) in nature are governed by an equation of motion of the
general form

S Ak 1)+ q(0), (2.9-1)
dr

where A(x, ¢) is a deterministic function of x, t and q(¢) is a random function of r.
For example, if the vector x(¢) represents the momentum of a particle undergoing
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Brownian motion, the left-hand side is the rate of change of momentum and the
right-hand side represents the fluctuating force on the particle. This force has
been divided into its short-term average A(x, ¢) together with a rapidly fluctuating
part q(t) representing the departure from the average. As q(r) is a random
process, it follows that x(¢) is also a random process in general, and the equation
of motion (2.9-1) is known as the stochastic equation.

In order to determine the statistical properties of x(f) we have to specify the
statistics of q(¢). We shall take g(f) to be a Gaussian random process of zero
mean

{q(1)) =0, (2.9-2)
with extremely rapid fluctuations. We shall therefore approximate the two-time
correlation function by a delta function, and write

(qi(t)gi(t")) = gi(1)6(z = 1'). (2.9-3)

Under these conditions, Eq. (2.9~1) is usually known as the Langevin equation.t

As the random process g(t) evolves in its own way so as to drive x(?), it is
apparent that x(t,) will be uncorrelated with q(t,) at a later time ?5, OT

(xi(t1)gi(t2)) =0, 1>ty (2.9-4)

Moreover, the future evolution of x(¢) through Eq. (2.9-1) is governed only by
the present, and the past history of x(¢) plays no role, so that x(¢) is Markovian of
the first order. The statistics of x(¢) are therefore completely determined by the
probability density p(x, t) and by the transition probability density P(x, t|xos to),
which obey Fokker—Planck equations, as we now show.

2.9.1 Transition moments for the Langevin process
We start by calculating the first-order transition moment. After integrating Eq.
(2.9-1) over a very short time interval &t, we have

Axi(f) = x(t + 8¢) — x;(t) = Ail(x, 1)d1 + Jt+6tq,-(t’)dt'. (2.9-5)

Although 8¢ is very small, the integral in Eq. (2.9-5) cannot be replaced by
gi(t)dt, because g;(t'), being delta-correlated, can fluctuate even in an infinite-
simal interval. If we calculate the average of both sides of this equation, subject to
the constraint that x(f) has some given value, divide by ot and. proceed to the
limit 8¢ 0, we obtain the drift vector D;(x, t) of the random process [cf. Eq.
(2.8-4b)]. Now

(0 + 50— 50 = A 00+ [ {a(1) 3
= A,‘(X, t)ﬁ[,

by virtue of Bq. (2.9-2), so that
Di(x, 1) = Ai(x, ). (2.9-6)

+ For a more complete discussion of Langevin and Fokker—Planck equations see Risken, 1984.
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We have therefore shown that the average forcing term in the Langevin equation
is the drift vector of the random process. This is also apparent from the fact that
A;(x, 1) is the conditional average of the velocity of x(1).

Next we calculate the diffusion tensor from Eq. (2.9-5). This requires that we
average the product Ax;Ax; subject to the constraint (indicated by subscript x, ¢)
that x has a given value at time . We obtain

e 1 1+t , , t+6¢
Dy(x, t)_gﬂxggq/ai(x, z)6t+L qi(t)dt][A,-(x, r)é:+]l qj(t')dt’]>

X,

= %%[A;(x, £ Ai(x, )0t + <A,-(x, t)f%t(;j(z’)) Idt'
1+81
+ < 46 0f qi<r'>>

The first term on the right vanishes in the limit 6¢— 0, and the second and third
terms average to zero by virtue of the fact that x(¢) is independent of q(¢') at later

times ¢’ [cf. Eq. (2.9-4)]. For the fourth term we make use of Eq. (2.9-3), and
obtain finally

, 1 1481 t+01
de’ + 6_J( f (qit) g (t") dt’dt”]‘
r

t
B

L1 rHdecrtde
Dy = Lim [ [ gy(1)(¢" — ey ar'der

It follows that the strength of the Langevin noise yields the diffusion tensor.

A similar argument can now be used to calculate any higher-order transition
moment Dy (X, ¢), etc., and it will be found that all higher-order moments vanish
in the limit 8¢ — 0. It follows from Eq. (2.8-10) that p(x, t) obeys the second-
order Fokker-Planck equation

9p(x, 1) 3 1
= ——[Aix, )p(x, )] + =
ot ox Pl 1) 2 3x8x;

and si.milarly also for P(x, t|x, o). The Langevin process obeying the stochastic
equation (2.9-1) is therefore a Fokker—Planck process.

[gij(x> t)p(X, t)]’ (29_8)

2.9.2 Steady-state solution of the Fokker—Planck equation
The Fokker-Planck equation (2.9-8) can always be formally re-written in the
form

op(x, t) 9 .
——_——+—i :t =0, P
o ax,.’(x ) (2.9-9)

(summation over repeated indices being implied) in which

%, 8) = Ai(x, Dp(x, 1) — %% [ga(, O)p(x, 1)] (2.9-10)
k

is known as the probability current density. Equation (2.9-9) will be recognized
as the conservation law for probability.
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We shall examine the steady-state solution of Eq. (2.9-9) when A, and g are
independent of time, and when g; is diagonal, i.e. when

gs(x) = 6;D(x). (2.9-11)

In the steady state 9p/dt =0, so that from Eq. (2.9-9) the divergence of the
probability current density j vanishes also. In one dimension this would imply that
the scalar j is a constant, and as the probability density and its derivatives vanish
at infinity, it then follows from Eq. (2.9-10) that the constant must be zero.
However, in several dimensions it is by no means obvious that

Jsx) =0 (2.9-12)

is the most general steady-state solution (the subscript s stands for steady state),
because any divergence-free vector current density satisfies Eq. (2.9-9) in the
steady state. In the following we shall nevertheless adopt Eq. (2.9-12) as the
starting point for obtaining the steady-state solution of the Fokker—Planck
equation (2.9-9).

If py(x) is the solution in the steady state, then Eq. (2.9-12) implies that

Ap, —3V(Dp;) =0,

so that
%DVPS = ps[A — %VD]
or
1 2A 1
—Vp, = V(In == - =VD. 2.9-13)
5 Ds (In py) D D (

Because the vector on the right is the gradient of the scalar field In p, it must be
irrotational, and therefore

_a_(% - _1_8_13) - __a_<ﬁ - la_D)
ox; D D aX} ax} D D ox;

2 (282 (2)
ax\ D/ ax\ D/

Hence 2A/D is also irrotational, and is therefore expressible as the gradient of a
scalar. Let us put

or

2A(x) _

D(x)
where U(x) is a scalar potential that may be expressed as a line integral from
some reference point Xg to x along any path,

-VU(x), (2.9-14)

Ux) = _f;}DA(% - dx + constant. (2.9-15)

S
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Then, on combining Eq. (2.9-13) with Eq. (2.9-14) we have
vu=-Lyp- Ly,
D Ds

L v(Dp,)

s

~Vin(Dpy).

This equation can be integrated at oﬁce, and we obtain
U(x) = —In(Dp,) + constant
or
K —U(x)
p (X) =—=¢ N 2.9-16
T D) ( )

where K is a normalization constant. As U(x) is defined only up to a constant,
the normalization is frequently included in the definition of the potential U(x),
and the constant K can then be set equal to unity.

2.9.3 Time-dependent solution of the Fokker—Planck equation

In order to obtain the general time-dependent solution of Eq. (2.9-9) with 4; and
g; constant we can attempt to make a separation of variables, by writing

px, 1) = f(x)O(1), (2.9-17)

and then substituting back into the Fokker—Planck equation. If &£ stands for the
differential operator

2

S8, 1@

ox; 2 3x;0x;

(summation over repeated indices being again implied), the resulting equation has
the form

1 do( 1

~ L 400 _ L gy
() dr fx)

As the left-hand side depends only on ¢, whereas the right-hand side depends only
on x, each expression must be a constant A. We are therefore led to the two
differential equations

Lf(x) = Af(x) (2.9-18)
de(r) _
= A0(1). (2.9-19)

Equation (2.9-18) is an eigenvalue equation with an infinity of eigensolutions
fimy(x) and eigenvalues Ay, that are labeled by an infinite set of integers {n}. The
dimensionality of the set is the dimensionality of the random process x(1), i.e., in
the case of the three-dimensional process x(f), {n} stands for n;, n,, ns.
Equation (2.9-19) can be integrated immediately, and the general solution for
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p(x, 1) is then a linear combination of all possible eigensolutions, i.e., it is of the
form

p(x, 1) = (E_‘Sc(n)f(n} (X) exp (_)'(n) t)’ (2~9"20)

where the constants C(,) are determined by the initial conditions, and the
My = 0.

(I)t is possible to transform Eq. (2.9-18) to a Sturm-Liouville equation by a
suitable transformation (see, for example, Morse and Feshbach, 1953, p. 719 et
sec.), but we shall not go into the general procedure here. The method will be
illustrated in Chapters 18 and 19, in connection with the solution of the Fokker—
Planck equation for the laser.

2.10 The Wiener process (or one-dimensional random walk)
2.10.1 The random walk problem

As an illustrative example of a simple random process, we now consider an
idealized model of a body performing a one-dimensional random walk on a
lattice, which has been discussed by Einstein (1906). It is often taken as a model
of Brownian motion, and is also known as the drunkard’s walk.

We consider a particle (or drunkard) located initially at the origin, that takes
successive unit steps either forwards or backwards with equal probability. From
the nature of the problem it is apparent that any future position is governed by
the most recent past position without reference to the more distant past, so that
the random process is Markovian. We wish to determine the probability P(n, N)
that the particle will be located at position n (n =0, £1, *2, .. .) after N steps.
Let n,, n_ be the number of steps taken forwards and backwards, respectively.
Then evidently

ny+n_-=N
(2.10-1)
n,—n_=n,
so that
1
n,=5N+n
* f< ) (2.10-2)
n. =3N —n).

It is obvious from the definition that N and n must have the same parity, because
only an even position can be reached after an even number of steps, etc. The
probability P(n, N) is given by a Bernoulli distribution in which 7, is the number
of ‘successes’ out of N trials, each of which occurs with probability 1 [f. Eq.
(1.5-1)]. Hence

o (Y
e

e

We now substitute for n, and n— from Eq. (2.10-2), and assume that the
numbers are large, so that all factorials can be well approximated by Stirling’s
theorem

_ NI~ Qm)ANN+12e-N, (2.10-4)
We then obtain
P(n, N)
_ N!
(N+n)|(N—n)’2N
2 ' 2 !
. NN+Y2 =N
(ZW)I/ZZN[(N + n)/z](N+"+1)/2[(N _ n)/z](N—n+1)/2 e N
2 1

N (ZTJ'N)VZ 1+ n/N)(N+"+1)/2(1 _ n/N)(N—n+1)/2

2 [ 1 n)_1 n

=—=— _—exp|-=(N+n +1)1n(1 +—)—— N-n+1 ln(l——)].
@n N)1/2 2 N 2( ) N

We expand each logarithm in a power series, and make use of the fact that when

ny and n_ are large they tend to become approximately equal by symmetry, so

that n/N <« 1. We therefore discard terms of order (n/N)? in the exponent. After

collecting terms we obtain

P(n, N) = —2exp [—1”—2 + 0<i)z]. (2.10-5)
@uN)2 2N N
We now introduce the position coordinate x and the elapsed time ¢, by writing
X =na
e NT,} (2.10-6)

where a is the size of each step and T is the interval between successive steps.
When a and T are small and when the nurmbers » and N are sufficiently large, we
are justified in considering x and ¢ as essentially continuous variables. If p(x, f) is
the probability density of x, then

p(x, 1)dx = P(n, N)on,

with dx/5n = a. The factor § appears because of the parity restriction on n.
Hence from Eq. (2.10-5)

P, 1) = —— exp('UZT)‘
Qut/TYa 2 a%t

If we now let a—0 and T — 0 in such a way that a?/T = D remains constant,
then

= 1 —x2/2Dt
p(x, 1) ———————(ZTTD t)1/2 e . (2.10-7)
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This is a Gaussian probability distribution in x, with zero mean and dispersion
((Ax)?) = Dt. (2.10-8)

The form of p(x, t) is illustrated in Fig. 2.8 for several different times. Evidently
the probability density is non-stationary and steadily diffuses and consequently
x(t) is known as a diffusion process. Another name is the Wiener process, after
Wiener (1923, 1930), who studied its features.

It is not difficult to obtain an expression for the conditional probability density
P(x, t|xo, to). Let us first note that p(x,t) given by Eq. (2.10-7) is also
P(x, t|0,0), because it was assumed that x(0) = 0. But from the nature of the
process it is apparent that its evolution is independent of where or when it starts;
P(x, t|xg, to) only depends on the difference x — x, and on the time interval
t = to (> tg). It follows that P(x, t|x,, £5) can be obtained immediately from Eq.
(2.10-7), and must be of the form

—_}____e—(x—xo)z/ZD(lﬂo)‘ (2.10-9)
[27D(t — 15)]*
It is a true transition probability density, independent of any other probability.

P(x, t]xg, fo) =

2.10.2  Joint probabilities and autocorrelation
Once p(x, ) and P(x, t|x, to) are known, we can construct any joint probability
density p, (X, t,; - - . ; X1, ;) by making use of the Markovian property (2.6-7).

Thus, for n = 2 we find that
\

pa(xy, ta; X1, 1) = 1 e~ (a=x1)¥2D(12—13) 1 e—xf/wn’

[27D(1, = 11)]? (27 D12
(2, > t;) (2.10-10)

which allows us to calculate the autocorrelation function of x() in the usual way,

(11, t2) = {x(t)x (1)) = Hxlxzpz(xz, ty; X1, tp) dxg dx;.

plx0)

I

X
Fig. 2.8 The time evolution of p(x, ¢) for the random walk at three different
times (8 < t; < t3).
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With the help of Eq. (2.10-10) and the substitution x, — x; = x5, we obtain

1 e-X§/2D(lz—ll) 1 e—ﬁ/ZDfl dx; dx;
[27D(t, — 1))V (2 Dty)"?

= Dt; (1= ty), (2.10-11)

I(ty, ty) = j7x1(11 + x3)

because the second integral involving the product xix; vanishes. The answer is
unusual in that it is independent of the later time 1,, because the change of x is
independent of the initial value of x. Had ¢, been less than t; we would have
obtained Dt,. The two answers can be combined with the help of the unit step
function

6(ty=1 fort>0
= % fort=0
=0 fort<Q,
in the form

r(fl, fz) = D[tle(tz - tl) + [29([1 - 12)]. (210—12)

2.10.3 Equation of motion of the Wiener process

Once the transition probability density P(x, t|xo, ¢¢) is known, the transition rate
A(x, xg, t) can be calculated from Eq. (2.7-4), according to which

sA(x, %o, 1) = Lim 6l[9;>(x, t+8tlxo, 1) = 8(x — x)].  (2.10-13)
> t
We now make use of the Gaussian character of P(x, t + d¢|xg, ), to express the
transition probability density as a Fourier integral of the characteristic function
[cf. Eq. (1.5-24)], in the form
P(x, t + dtlxg, 1) = % f e8P il sk g (2.10-14)
T J—
The delta function can also be represented by a Fourier integral,
8(x — xq) = 51{ im0t g (2.10-15)
T )

If we use Egs. (2.10-14) and (2.10-15) in Eq. (2.10-13), expand exp (—&2D&¢/2)
as a power series in 8¢, and proceed to the limit ¢ — 0, we immediately obtain

A, 7, 0 = [ (-4gD)e e ag
T J—oo

2 ©
=1p @ 17 e-it-ait g
2 ox? 27w
1. 3
= =D——8x — xq). (2.10-16)
2 9x?
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This is a highly singular function. Nevertheless, sd(x, xq, t) satisfies the two
general conditions (2.7-5) and (2.7-6) for transition rates, and viewed as a
distribution and used under an integral, it leads to reasonable results.

Thus, from the general master equation (2.7--8), we obtain with the help of Eq.
(2.10-16) the following equation of motion for p(x, f):

op(x, 1) _ [®1 [32 ]
—r = =D|—8(x — x Xg, ¢)dx
5 2 axz( 0)|p(x0, t) dxg

2
=-1p8

2 ax?
This will be recognized as the diffusion equation, which might of course have been
expected for the process illustrated in Fig. 2.8.
The Wiener process is also sometimes represented by the stochastic Langevin
equation with zero drift, namely

plx, 1). (2.10-17)

() _ o), (2.10-18)
dt
in which g(¢) is a d-correlated Gaussian noise of zero mean,
(g(n)) =0
) (2.10-19)
(g(ngq(r)) = D&(t — 1').

It then follows from the general relationship between Langevin and Fokker-
Planck equations (cf. Section 2.9), that p(x,r) obeys the equation of motion
(2.10-17). However, it was already pointed out by Einstein (1906) that the
stochastic equation (2.10-18) leads to an internal contradiction, because the
velocity really does not exist. If we attempt to define a r.m.s. velocity for the
Wiener process through the ratio ([x(t + 8t) — x(2)]?)¥2/5¢, we obtain with the
help of Eq. (2.10-12)

6i<[x<r +81) - x(OP)2 = 51;[<x2<z +81)) + (x2(1)) = 2(x(Ox(t + 1))~
t
= L(D@ + 81) + Dt — 2D4]2
3t

D)”2
- (S? ,

and this has no limit as 6 — 0. The stochastic equation (2.10-18) is therefore not
strictly meaningful.

(2.10-20)

Problems
2.1 Consider the complex random process
z2(t) = u(t) + v,

in which u(r) is a complex stationary random process and v is a complex
time-independent random variable that is statistically independent of u(¢).

‘
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2.2

2.3

2.4

2.5

2.6

Determine whether z(¢) is (a) stationary in the wide sense and (b) ergodic
with respect to its mean.

Show that the characteristic functional C({y}) of the real Gaussian random
process x(t) of zero mean is given by

Cy)) = exp [—% [ ey, o),
where I'(t1, t;) = (x(t1)x(t2)).

If x(¢) is a real, wide-sense, stationary, random process and y(t) is a local
time average of x(t) over the interval 2T defined by

) 1 +7T
t) = — x(t")ydt
¥( nf,-r( )

show that the autocorrelation functions I',,(7) and Iy, (7) of x(¢) and y(¢)
are related by the equation

Iy ()= 1 ” (1 - M)I"M(r - t')dr’.
2T J-2r 2T

x(t) is a real stationary random process of zero mean and autocorrelation
function

I'(7) = e *pq.

Find the Karhunen-Loéve expansion of x(¢) in the time interval —T <
t<T.

A real random process x(f) consists of a sequence of constant segments
alternating between positive and negative values. The process x(¢) switches
from one value to the next at random, at an average rate R per second. The
positive values x, and the negative values x_ of x(¢r) have different
probability distributions, with dispersions o, and o. but with (x,)=
—(x-), and each value is independent of every other value. Calculate the
spectral density of x(¢).

A one-dimensional random process x{¢) obeys the stochastic differential
equation '

dx Ax — x3q(¢),

ds

in which A is a constant, and g(¢) is a Gaussian white noise with
(q(t)) =0,
(q(D)q(1")) = D&(t - 1).
Calculate the probability density of x in the steady state.
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2.7

2.8

Consider the complex random process defined by the equation
2(t) = a e 'E(r) + bIE(),

in which a, b, w, are fixed numbers, and &(f) is a complex Gaussian,
stationary and ergodic random process, with spectral density S(w). Calculate
the spectral density of z(¢). Is z(¢) stationary in the wide sense? Is z(¢)
ergodic?

A certain discrete random process x(¢) takes on only one of three possible
values x;, X, x3 and the value always changes after an interval T.
The conditional probabilities P(x;, ¢ + Tlx;, t; x;, t — T) are given in the
following table:

j=1,k=2 j=1,k=3lj=2,k=1|j=2,k=3lj=3,k=1|j=3,k=2

- .
o
W N =

~
I

2.9

2.10

0
0
1

0
1
0

RN O
[(SE ST
W= O Nl
(=R STPENNT

By considering two different sets of initial probabilities p,(x;, ¢; x¢, ¢ — T) in
turn, namely

Ik=11k=2[k=3 |k=1|k=2|k=3

i=1
j=2
j=3

and j=1

N O

D= O o=

O O\ O
i

A= Bl O

o o g~

O e

show explicitly that the equation
p(xi, t + T) = 3 P(x;, t + Tlx;, H)p(x;, 1)
i

is satisfied in both cases, but that ®(x;, ¢+ Tlx;, ¢) is not a transition
probability.

The following complex random process is occasionally used to represent the
field of an ideal two-mode laser:

2(t) = aexp {~i[wyt + ¢1(1)]} + aexp {~i[wyt + p2(N)]}.

Here a is a complex constant, wy and @, are fixed frequencies, and the two
phases ¢, () and ¢,(t) are independent Wiener processes; i.e. each performs
a one-dimensional random walk with diffusion constant D. Calculate the
spectral density of the random process |z(£)?. Is |z(¢)|? stationary in the
wide sense?

A stationary, ergodic, complex Gaussian random process z(f) of zero mean
has normalized spectral density 8;(w). Calculate the normalized spectral
density 8,(w) of the random process |z(¢)|*, and derive the relation between
the mean-squared widths {(Aw)?) of 8;(w) and 8,(w).
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211

2.12

(Use the definition (w"),, = L j w"s1(w) dw).
27—

Show that $,(w) is symmetric about @ =0, no matter what the form of
@1(60)‘

A complex stationary, ergodic random process of zero mean has the
normalized autocorrelation function y(¢). Show that for any three instants

of time 1y, 5, 13,
ly(ts = 1) = ¥(t, — t)y(ts — )2 < [1 = [y = )P = |y(ts = 1)1,
and for any T
I@F + [y + [yGDP < 1 + 2Re [1(D)y@D)y*GD)],

where Re denotes the real part.
Consider a complex stationary Gaussian random process z(t) of zero mean.
Let

z7(t) = z(t) when|t|<T

=0 when |¢| > T,

and let §(v, T) be the Fourier inverse of z7(¢). Further let

Sy = £ DERT)

and
S(v) = Lim ($7().

Show that at any frequency v for which S(v) #0, the variance of the
process Sz(¥) does not tend to zero as T — «. What is the implication of
this result for the problem of determining the spectral density function of
the process from one of its sample functions?
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Some useful mathematical techniques

3.1 The complex analytic signal

The basic variables in optics, e.g. the current and charge densities and the electric
and magnetic fields, are real functions of position and time. In the study of their
correlation properties it is, nevertheless, useful to represent them by certain
complex functions. The representation is a natural generalization of one that is
frequently employed in connection with real monochromatic signals and, as we
will see later (Section 11.12), it has a counterpart in the description of the
electromagnetic field on the basis of quantum field theory.

In this section we will discuss this complex representation for deterministic
functions and examine some of its main properties. In later chapters we will make
use of it in connection with random functions.

3.1.1 Definition and basic properties of analytic signals

Let x(¢) be a real function of a real variable ¢, defined on the range — <t <o
and let us assume that it is square-integrable, i.e. that

f x2(1)dt < . (3.1-1)
We may represent x(t) as a Fourier integral
x(1) = j " (e gy, (3.1-2a)
where )
i) = f x(1) ™ dr. (3.1-2b)

Since x(t) is real, the (generally complex) spectral amplitudes ¥(v) obey the
relation
X(—v) = X*(v). (3.1-3)

We see from Eq. (3.1-3) that the negative frequency components (v < 0) do not
carry any information not already contained in the positive frequency components
(v>0), and hence there will be no loss of generality if, in place of x(¢), we
employ a function z(¢) which is obtained from the Fourier integral (3.1-2a) by

92
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suppressing the negative frequency components:

2(1) = f Zi(v) e dv, (3.1-4)

where
Z(v)=%(v) whenv=0
() =x (3.1-4a)
=0 when v < 0.
The function z(t), defined by Eq. (3.1-4), is evidently a complex function of the
real variable ¢. For reasons that will become apparent shortly it is known as the
complex analytic signal* associated with the real signal x(z).
Since we assumed that x(¢) is square-integrable, its Fourier transform X(v) is,
according to Plancherel’s theorem, also square-integrable. It then follows from
Eq. (3.1-4) that the same is true about z(?), i.e. that

fw [z()f dr < . (3.1-5)
With the help of Eq. (3.1-3), x(¢) may be represented in the alternative form
x(t) = j:a(v) cos[@(v) — 2mvr]dv, (3.1-6)
where
a(v) ¥ = 27(v), [a(¥), @(v) real] (3.1-6a)

and the analytic signal z(f) may then be expressed in the form
() = %j a(v) ele=2ml gy, (3.1-7)
0

The transition from Eq. (3.1-6) to Eq. (3.1-7) shows that the complex analytic
signal is a natural generalization of the complex representation that is frequently
used in connection with real monochromatic wavefields.

It is clear from Egs. (3.1-6) and (3.1-7) that

x(8) = z() + 2%(0), (3.1-8a)

x(t) = 2Re 7(1), (3.1-8b)

where Re denotes the real part. Equation (3.1-8b) shows that the real part of the
complex analytic signal z(t) is one-half of the real signal x(¢) from which it was
derived.

The analytic signal representation has many interesting properties. Its most

* This concept is due to Gabor (1946). Gabor’s original definition differs trivially from ours, by the
presence of a multiplicative factor 2 in front of the integral (3.1-4). For our purposes the present
definition is preferable since, as we shall see later (Section 11.11), it leads to a more elegant
correspondence between the classical and the quantum theory of optical coherence.

Some applications of analytic signals to problems of communication engineering were discussed by
Gabor, op. cit., Ville (1948, 1950) and by Oswald (1956).
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important feature becomes apparent when one examines the possibility of extend-
ing the definition of z(r) to complex valued arguments. Let us introduce the
complex variable

w=t+1is, (z,sreal) (3.1-9)

and let us try to continue z(r) analytically from the real t-axis into the complex
w-plane, by means of Eq. (3.1-4). We then have, formally at any rate,

z(w) = fo wf(v, wydv, - (3.1-10)
where
fv, w) = Z(v)e 2 (3.1-11)

We see that for each value of v, the integrand f(v, w) in Eq. (3.1-10) is an entire
analytic function of w, i.e. it is analytic and regular in the whole complex
w-plane. Now according to a well-known mathematical theorem, a sum (and in an
appropriate limit also the integral) of such functions is itself analytic and regular
provided that certain continuity and convergence requirements are satisfied.
Now from Egs. (3.1-10) and (3.1-11) we see that the integral (3.1-10) will
converge if s < 0. This heuristic argument suggests that if ¥(v) is sufficiently well
behaved z(w) is an analytic and regular function of w in the whole lower half of the
complex w-plane. Or, put in a slightly different way, the function z(t), defined by
Eq. (3.1-4) is then the boundary value on the real t-axis of a function that is
analytic and regular in the lower half of the complex w-plane.

It can be shown that the result that we have just stated is true under somewhat
more general conditions than our heuristic derivation might suggest. In fact the
square-integrability requirement (3.1-5) is both a necessary and a sufficient
condition for its validity.}

According to Eq. (3.1-8b), the real part of z(¢) is 2x(¢). Let us denote the
imaginary part of z(¢) by %y(r), ie.

2(6) = Hx (1) +iy(0)], (3.1-12)

where y(z) is also real. The analytic property of z(¢) that we have just discussed
may be shown to imply that x(¢) and y(r) form a Hilbert transform pair (known
also as conjugate pair), i.e. that

1) = ipf X g, (3.1-132)
T Jew t' —t

(1) = —in 2 gy (3.1-13b)
T J-o t' — ¢

where P denotes theCauchy principal value taken at t'=t. For a rigorous
derivation of these relations we must refer elsewhere (Titchmarsh, 1948,
p. 128, Theorem 95 and p. 125, Theorem 93). However, if we assume that x(¢) is

* Sufficiency requirements are discussed, for example, in Copson (1935), p. 110.
§ cf. Paley and Wiener, (1934), p. 8, Theorem V. This result is closely related to the so-called
Titchmarsh theorem of which an excellent account is given in Nussenzveig, (1972), pp. 27-28.
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not only square-integrable but is also continuous on the real time axis
(—o <t < ®), asimple derivation of these relations can be obtained by the use
of the extended Cauchy integral formula of the theory of analytic functions. This
theorem states (Copson, 1935, p. 66 and p. 134) that if a function z(w) of a
complex variable w =t +is, (¢, s real), is analytic and regular throughout a
closed domain D of the w-plane and is continuous on the boundary C of D, then
(Morse and Feshbach, 1953, p. 368)

§ )4y = 2miz(wg) ifwge D (3.1-14a)
cW — Wy
=miz(wg) ifwygeC (3.1-14b)
=0 otherwise, (3.1-14¢c)

where the integration is taken around the curve C in the counterclockwise sense.
In the case when wy lies on the boundary curve C the integral must be interpreted
as the Cauchy principal value.

Let us apply this theorem to the analytic signal and let us choose as the contour
C the curve consisting of the portion —7T < ¢t < T of the real axis and a semi-circle
I" of radius T in the lower half plane, centered at the origin (see Fig. 3.1). Let
wg =t be a point on the segment of the real axis in the interval —T <¢ < T. It
then follows from the formula (3.1-14b) that in the limit as T — o

Pl 2 gy 4 Limf 20 4y = i (o). (3.1-15)
+o =t Tsejrw—t
Now it may be deduced from Egs. (3.1-10) and (3.1-11), using the square-
integrability of X¥(v), that
Lim [ 2 g, = ¢ (3.1-16)
Toelrw—1t

and hence Eq. (3.1-15) implies that

Pf 2() Gy = —ig(s). (3.1-17)
—ot! — ¢t

On substituting from Eq. (3.1-12) into this formula and equating the real and the
imaginary parts, the Hilbert transform relations (3.1-13) follow.

S

Fig. 3.1 Notation relating to formula (3.1-15). w = ¢ + is.
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Relations of the form (3.1-13), but involving frequencies rather than time, play
an important role in physics, where they are often referred to as dispersion
relations. This terminology has its origin in the fact that such relations were first
found to arise in the theory of dispersion of light in material media. Dispersion
relations usually appear in physical theories as a consequence of causality (Nus-
senzveig, 1972, Chapt. 1). If one deals with a linear system whose response is
characterized by a function K(¢), (e.g. the dielectric susceptibility of a linear
medium responding to an incident electric field), then causality demands that
K(t) =0 for t <0 (no output before an input is applied). This condition may be
shown to impose certain relations between the real and the imaginary parts of the
Fourier transform k(v) of K(z), of which the Hilbert transforms are the simplest.
In the present problem, the appearance of relations of this form is not due to
causality, because these relations hold in the time domain and not in the
frequency domain. The mathematical origin of these relations is, however, the
same in both cases. They arise essentially from the fact that the Fourier transform
K(t) of k(v) and the Fourier transform Z(v) of z(r) [see Eq. (3.1-4a)] vanish
identically for negative values of their arguments.

It is sometimes useful to express the transition from a real signal x(7) to the
associated complex analytic signal z(¢#) by means of one of the well-known
singular functions of field theory, namely the so-called negative frequency part of
the Dirac delta function®, defined symbolically by the expression

5_(1) = fo ¥ dy (3.1-18a)

= 1[5(:) - L.Pl], (3.1-18b)
2 mot

where P denotes, as before, the Cauchy principal value. It follows from Egs.
(3.1-18a) and (3.1-2), that

f X(t’)6~(t‘—t)dt’=f dt’x(z’)f dverive' =1
o e X

o o
- j dve-Zﬂnvtj dt'x(t’) e2n-ivr’
0 —w

= f F(v)e 2 dy, (3.1-19)
i
Now according to Eq. (3.1-4), the right-hand side of Eq. (3.1-19) is precisely the
analytic signal z(r) associated with x(¢). Hence

(1) = j x(¢)o_(t' — 1)dr'. (3.1-20)
This formula shows that z(z) is a linear transform of x(z), the kernel of the
transform being the singular function 6_. If we use the representation (3.1-18b)

= This terminology denves from the following decomposition of the Dirac deita function: &(¢) =
[zoexp(=2mive)dv=5_(r) + 8.(1), where O_(t) = [%.exp(~2rivt)dv= [ exp (2mivt)dv and
8,(1) =J3“ exp (—2mivt)dv. For a fuller discussion of these singular functions see Heitler (1954), Sec.
8. See also Appendix A4.1.
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of the d_ function, Eq. (3.1-20) implies that

2(1) = l[x(r) + iPr —f@—dt’], (3.1-21)
2 7 Joet =t

in agreement with Egs. (3.1-12) and (3.1-13).
Finally we note the following relations that may readily be derived by the use of
formulas (3.1-2a), (3.1-4), (3.1-12) and (3.1-3):

% 2 " " 24; = 2[ 17002 dv _
wa (1)dt = f_my (1) dt 2f_w|z(z)[ de 2jo|z( Wdv  (3.1-22)

and

f x(t)y(H)dt = 0. (3.1-23)

3.1.2 Quasi-monochromatic signals and their envelopes

We will now show that the analytic signal provides an unambiguous definition of
the envelope of a real fluctuating signal.

In practice one often encounters real signals whose Fourier transforms (Fourier
spectra) are effectively confined to the frequency range

vo—2Avs s v +3Av (>0, Av>0) (3.1-24)
around some frequencies v, where

AY w1 (3.1-25)
Yo
More explicitly, if we represent x(f) in the form of a Fourier integral [Eq.
(3.1-2a)] then |%¥(v)| is essentially zero outside the ranges defined by the inequali-
ties (3.1-24) (see Fig. 3.2). Such a signal is said to be quasi-monochromatic.
According to Eqgs. (3.1-4) and (3.1-4a), the analytic signal associated with x(t)
may be expressed in the form

z(1) = f_m Z(v)e i dy, (3.1-26)

©

where
Z(v) =%(v) whenv=0 '
(3.1-27)
=0 when v < 0].

For a quasi-monochromatic signal whose spectral amplitude distribution is indic-
ated in Fig. 3.2(a), |Z(v)| will have the form indicated in Fig. 3.2(b).
Were the signal strictly monochromatic, of frequency vy, one would have

x(f) = e T 4 ggetm (3.1-28a)
= 2Re (& e~270n) (3.1-28b)
= Agcos (Py — 2mvt), (3.1-28¢)
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1%

®

; v
0 vy

Fig.3.2 An example of (a) a Fourier spectrum of a quasi-monochromatic
signal x(¢) and of (b) the associate analytic signal z(r). Only the absolute
values of the Fourier spectra are shown.

where Ay and &, are real constants and
B = 340€'. (3.1-29)
In this case the Fourier spectrum of x(¢) clearly is
E(V) = E38(v + %) + Ed(v = w), (3.1-30)
where 6 denotes the Dirac delta function, and the analytic signal associated with
the monochromatic signal (3.1-28) is
2(1) = Gy
= 14, eil0-2mv0r], (3.1-31)
If instead of being strictly monochromatic the signal is quasi-monochromatic,
with its Fourier spectrum occupying the small frequency range given by the

inequalities (3.1-24), we may represent it in a form resembling Eq. (3.1-28c),
namely

x(t) = A(t)cos[D(t) — 2mwyt], (3.1-32)

where the ‘amplitude’ A and the ‘phase’ ¢ are, however, no longer constants but
are functions of time. The representation (3.1-32), although often written in this
way, is clearly not unique. For there are many ways of choosing the two functions
A(t) and &(¢) so that the right-hand side of Eq. (3.1-32) is equal to x(¢).
However, a unique choice of A and ¢ may be made (subject to the constraint
0= &(r) <27) if we demand that the analytic signal z() associated with x(¢) is of
a form analogous to the representation (3.1-31), namely

2(0) = 3[x (1) + iy(1)]
= LA (1) el ®0-2mv0r] (3.1-33)
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For we now have, according to Eq. (3.1-13a), that

y(t) = ipj ___)f(‘ ) (3.1-34)
7T o Jewt —
and, according to Eqs. (3.1-33) and (3.1-12),
y(r) = A(r)sin[D(1) — 2mvpe]. (3.1-35)

If x(¢) is given, y(r) may be determined from Eq. (3.1-34), and Egs. (3.1-32)
and (3.1-35) then give, if Eq. (3.1-33) is also used,

A(r) = [x2(e) + y2(O]2 = 2|z(1)], (3.1-362)
&(1) = 2mvpt + (1), (3.1-36b)
where
—1x(0 =120 _
cos x(t) 2|z(t)[’ sin x(¢) 2|z(t)|. (3.1-36¢)

It is seen from Eq. (3.1-36a) that A(¢) is independent of the exact choice of the
frequency v and Egs. (3.1-36b) and (3.1-36¢) imply that &(r) depends on v,
only through the simple additive factor 2mvyz.

Let us examine the behavior of A(¢) and &(¢) more closely. According to Egs.
(3.1-33) and (3.1-26)

BN = [ 730 gy, (3.1-37)

—c

If we set
V== U (3.1-38)

and recall that according to Eq. (3.1-27) Z(v) =0 when v<0, Eq. (3.1-37)
implies that

14(1)ei®® = j E(u) et dy, (3.1-39)
o
where

Ew) = (v + 1), u=—w. (3.1-40)

Thus {(u) is of the same form as Z(v) but is shifted by the amount v, in the
negative v-direction (see Fig. 3.3).

Since the spectral amplitudes |7(v)| have appreciable values only in the range
defined by the inequalities (3.1-24), |£(w)| will be appreciable only for values of u
in the range

“tAvspu<lav. (3.1-41)

Consequently, the integral on the right of Eq. (3.1-39) consists of low-frequency
components only. Moreover, in view of the quasi-monochromatic assumption
expressed by the inequalities (3.1-24), it is clear from Eq. (3.1-37) that A(t) and
(1) will vary much more slowly with ¢ than cos 27vyz and sin 2mvyt. In fact, A(f)
and &(t) will be essentially constant over any time interval for which the term
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Fig. 3.3 The absolute value of the shifted Fourier spectrum {(u) = Z(vo + ).

2mut, (%Avs U< %A’V), in the exponential in Eq. (3.1-39) is small compared to
2m, i.e. over any time interval of duration At such that

NP (3.1-42)
Av

Hence the two real signals, given by the expressions (3.1-32) and (3.1-35), are
nearly periodic functions of r, with frequency v, slowly modulated in amplitude
by A(¢) and in phase by @(¢). The modulation is negligible over any time interval
which is appreciably smaller than the inverse bandwidth 1/Av (see Fig. 3.4).
Consequently, the following relations follow at once from Egs. (3.1-32), (3.1-35)

and (3.1-33):
x*(1) = yA(1) = 34%(1) = 202()F%, (3.1-43)

where the curly lines indicate a ‘short-time’ average, i.e. an average over a time
interval of duration that is short compared to 1/Av but long compared to 1/vp.

Since A(t) and ¥(z) remain essentially constant over any time interval which is
much shorter than 1/Av, it follows from Egs. (3.1-32) and (3.1-35) that

y(£) = —x(t = 1/4w) (3.1-44)
and also that
1 dx(z)
f) = 3.1-45a
y() v dt ( )
1 dy(s)
£~ —— 3.1-45b
*(1) 2mvy  dt ( )
/A(l)=2|2(r)|
< e
4 I° '
| | | '
—-»{/'4— i<—=-1/Av—»{
~1/v,

Fig. 3.4 Tllustrating the behavior of a quasi-monochromatic signal x(¢) and of
its real envelope A(t).
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From Fig. 3.4 and Eq. (3.1-33) it is obvious that the function
A1) €20 = 27(1) 2! (3.1-46)

may be regarded as representing the complex envelope® of the real quasi-mono-
chromatic signal x(t). The envelope changes slowly with ¢ in comparison with the
periodic factor.

There are several interesting theorems concerning the envelope that we have
just defined. Suppose that the real signal x(z) is strictly bandlimited to the
frequency range v, — 2a < |V} < % + 1o i.e. that the Fourier spectrum ¥(v) of x(t)
is zero everywhere outside this range. Let us now consider the Fourier spectrum
o(v) of the squared amplitude A(t) = 4|z(t)|* of the complex envelope of x(¢). It
is given by the formula

o) =4[ [a(nf e as (3.1-47)
or, using Eq. (3.1-4) and the convolution theorem on Fourier transforms,
o(v) = 4 f FHOOF(v+ V) dv. (3.1-48)
0

Since ¥(v) vanishes outside the ranges defined by Eq. (3.1-24) it is clear from Eq.
(3.1-48) that o(v) will vanish when |v| > o. Hence we have established the
following theorem due to Dugundji (1958), illustrated in Fig. 3.5: If x(¢) is strictly

[

; + + t ? ¢ v
—(vo+ia) -vo-(vo—3a) O vo—la vy vy tia
loﬁv)f

v
—a 0 a

Fig. 3.5 Illustrating Dugundji’s theorem. If the signal x () is bandlimited to the
range v — 3 < || < % + a, its square amplitude A%(r) = 4/z(¢)[? is necessar-
ily bandlimited to the range —a<v=<a. The term X(v) is the Fourier
spectrum of x() and o(v) is the Fourier spectrum of A%(r).

* A formally different definition of an envelope for a certain class of narrow-band signals was given by
Rice (1944, Sec. 3.7). It was shown by Dugundji (1958) that, whenever Rice’s definition is
applicable, it is equivalent to the present one.
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bandlimited to the range v, — %oz svsy+ %a' then the squared amplitude A*(t)

of its complex envelope is bandlimited to the range —a < v< a.

As we already noted, the envelope representation (3.1-32) of a real quasi-
monochromatic signal is not unique. The question then arises as to the properties
that distinguish the definition based on the analytic signal from other possible
ones. Within the context of stationary ensembles of real, quasi-monochromatic
signals this was answered by Mandel (1967). His result may be stated as follows.
Suppose that with each member x(r) of the ensemble we associate another signal
y(¢), which is a linear transform of x(¢), with a real kernel K(¢):

() = f K(t = t)x(t') dt". (3.1-49)
Let us now define the complex function
2(8) = 3x (1) + iy(1)], (3.1-50)
and let
z(1) = zo(r)e ™", (3.1-51)

Then the expectation

_ [ 1dzo(?)
p—< dt

will be a minimum when the mean-squared deviation

2
> (3.1-52)

f (v = %)*S(v) dv = minimum

with
j vS(v)dv
o m— (3.1-53)

wa(v) v

where S(v) is the power spectrum (see Sec. 2.4.1) of z(¢) and the minimum is
attained when the kernel K(¢) of the transform (3.1-49) is the Hilbert transform
kernel, i.e. when z(t) is the analytic signal associated with the real signal x(¢).
This result implies that of all possible envelopes defined by means of linear
transforms on the real signal, the one defined by means of the analytic signal
exhibits the slowest rate of fluctuations of the complex envelope in the mean-
squared sense.

3.1.3 Relationships between correlation functions of real and associated complex
analytic random processes

We will now establish a number of useful relations involving cross-correlation
functions of real stationary random processes, the conjugate processes, and the
associated complex analytic processes.
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Let x;(t) and x,(¢) represent two real jointly wide-sense stationary random
processes of zero mean and let z;(f) and z,(¢) be the associated analytic signals.
Since the sample functions of a stationary random process are not square-
integrable [see Section 2.4], the transition from x(¢) to zi(¢), (j = 1, 2), has to be
interpreted with some caution. To avoid mathematical complexity we will form-
ally define the analytic signals in the same way as we did in Section 3.1.1; precise
justification of the formulas can, however, only be given within the framework of
generalized function theory. Thus if we write

3

x(1) =j F(me ™ dy, (j=1,2), (3.1-54)
then
Z(t) = f Z,(v) e dv, (3.1-55)
where
Zi(vy=X;(v) whenv=0
i) = F( } (5156
=0 when v < 0.
Further
(1) = fx(1) +iy(0], (G =1,2), (3.1-57)

where the (real) functions x;(t) and y,(¢) are related by Hilbert transforms [Egs.
(3.1-13)].
Since x;(t) was assumed to be of zero mean, i.e. since

((1)y =0, (j=1,2), (3.1-58)

and since y;(t) and z;(t) are homogeneous linear transforms of x{(¢), they both are
also of zero mean, i.e.

() =0, (j=1,2), (3.1-59)
(z()) =0, (j=12). (3.1-60)

Moreover, just like x;(¢) the processes y,(¢) and z(¢) are stationary, at least in the
wide sense.
Let us now consider the cross-correlation function

Tip(7) = (2f(Dzo(t + 1) (3.1-61)

of two complex processes. According to the generalized Wiener—Khintchine
theorem [Eq. (2.4-38)]

Ti(e) = j Win(v) e 2 dv, (3.1-62)

where Wi,(v) is the cross-spectral density of the two processes defined by the
formula

(ZEWZD(V)) = Wip(v)d(v = v'). (3.1-63)



104 Some useful mathematical techniques

Now according to Eq. (3.1-56), Z;(v) =0, (j = 1, 2), when v <0 and hence Eq.
(3.1-63) implies that

Wi(v) =0, whenv<0. (3.1-64)
Consequently Eq. (3.1-62) may be written as

Iy(7) = fo Wi e v, (3.1-65)

Since the integration on the right extends over positive frequency only, I'15(7) is
an analytic signal. If we assume that I';5(7) is a square-integrable function of
and use the basic property of analytic signals expressed by Egs. (3.1-13), we have
the following theorem:

Theorem I: If z,(t) and z,(t) are the complex analytic signal representations
of two real, jointly wide-sense stationary random processes of zero means,
then the cross-correlation function (assumed to be square-integrable) I'i,(1) =
(2¥()z2(t + 7)) is also an analytic signal and its real part I §'2)(r) and
its imaginary part I’ g‘z)(r), [Fp(t)y=T (fz)(r) + il @(r)], form a Hilbert transform
pair, i.e.
o D
r@(r)=lpf Te@) g (3.1-662)

T w7 — 7

© oy
r1£(f) dr.

rgm=-Lp f (3.1-66b)
—F

w7 -7
In order to derive another useful theorem involving z;(f) and z(¢) let us
consider the cross-correlation function
"Tip(7) = (28 (Dz2(t + 7)), (3.1-67)
where
'21(0) = 25(1). (3.1-68)

According to Egs. (3.1-55) and (3.1-56) one readily finds that the function 'z;(¢)
has the Fourier representation

'z1(1) = f Zi(v) e dv, (3.1-69)
where
'Zi(v) =0 when v > 0
(3.1-70)

=Xf(v) whenv=<0.

The cross-spectral density function 'Wy,(v) of 'z;(t) and z,(t) is defined by the
formula [see Eq. (2.4-35)]

('ZE(MZ(v)) = " Wp(v)d(v - ¥). (3.1-71)

Now according to Eq. (3.1-70), 'Zy(v) is zero for all positive frequencies and
according to Eq. (3.1-56) Z,(v) is zero for all negative frequencies. It therefore
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follows from Eq. (3.1-71) that

"Wyp(v) =0 forallv+#0. 3.1-712)
Further, according to the generalized Wiener—Khintchine theorem [Eq. 2.4-38],
the cross-correlation function (3.1-67) has the Fourier representation

"Typ(e) = j Win(¥) e 27 dv, (3.1-73)

and, using Eq. (3.1-72), we see that
'Fu('ﬂ) = 0. (31—74)

Hence we have established the following theorem.

Theorem II: Under the same conditions as stated in Theorem 1,
Tp(7) = (z1(Hza(t + 7)) =0 (3.1-75)

for all values of t.

From Theorems I and II several other interesting results readily follow. On
substituting from Egq. (3.1-57) into Eq. (3.1-75) and on equating real and
imaginary parts, we obtain at once the following theoren:

Theorem IIL: If x1(t) and x,(t) are two real, jointly wide-sense stationary random
processes of zero means and y,(t) and y,(t) are the corresponding conjugate
processes (i.e. their Hilbert transforms), then

(x1(D)x2(t + 7)) = {y1(D)yat + 7)) (3.1-76a)

and
(xa()ya(t + 1)) = =(y1(Dx(2 + 7)) (3.1-76b)

In the special case when x,(¢) = x;(f) we have, of course, y,(¢) = y1(f) and we
obtain at once from Egs. (3.1-76), if we take 7=0 and drop the (common)
suffices,

(x2(1) = (YA (3.1-77a)
and
(x()y()) = 0. (3.1-77b)
Since according to Egs. (3.1-58) and (3.1-59) we also have (x(2)) = (y(#)) =0,
Egs. (3.1-77) imply:

Theorem IV: The variance {(x — (x))?) of a real, wide-sense stationary random
process x(t) of zero mean is equal 10 the variance {(y — {(y))?) of its conjugate
process y(t) and, at each instant of time, the two processes are uncorrelated.

Let us express the complex cross-correlation function I'ip(7), defined by Eq.
(3.1-61), in terms of the real processes x;(¢) and y;(¢) by the use of Eq. (3.1-57).
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If we also make use of the relations (3.1-76) we obtain the formula

Tip(7) = 5[{x1(xa(t + 1)) + i{xy(D)ya(t + D). (3.1-78)

If as before, we denote the real and imaginary parts of I'p(7) by I’ (r)(r) and
(r) respectively, and equate the real and imaginary parts in Eq. (3.1-78) we
obtam

Theorem V: Under the same conditions as stated in Theorem III, the real and
imaginary parts of the cross-correlation function I';(7) of the complex analytic
signals z1(t) and z,(t) associated with the real signals x,(t) and x,(t) are given by
the formulas

rij(z) = Hx(Dxa(t + 7)), (3.1-79a)
I = 3@yt + 0). (3.1~79b)

There is an interesting consequence of this theorem and of Theorem I for a
quasi-monochromatic, wide-sense stationary, real random process x(f). The
power spectrum’ of such a process x() is appreciable only in a spectral range
whose width is small compared to the mean frequency. Now according to Eq.
(3.1-79a) and Theorem I, {x(£)x(t + 7)) = 2I'V(7) = 2Re I'(7), where I'(z) is
the autocorrelation function of the analytic signal z(¢) associated with x(¢) and Re
again denotes the real part. Now we have learned in Section 3.1.2 that
I'(7) exp (2mivy1) is the complex envelope of I'™(7) and hence, according to Eq.
(3.1-79a), it is also the complex envelope of 5(x(£)x(t+ )). The general
behavior of the real autocorrelation function (x(f)x(t+ 7)) and of 2|I'(7)| is
shown in Fig. 3.6. It is clear that the effective width of [I'(t)| is a measure of the
correlation time 7. of the real process x(¢), i.e. of the time interval T over which
x(t) and x(¢ + 1) are effectively correlated. In optics, where x () usually repre-
sents a fluctuating real field, this correlation time is known as the coherence time
of the field. It will be defined more precisely later (Section 4.3.3).

3.1.4 Statistical properties of the analytic signal associated with a real Gaussian
random process

Let x(¢) be a real, wide-sense stationary Gaussian random process of zero mean.
Its probability density at any instant of time is given by the formula

R 3.1-80

px) = gy ( )

where 0% = (x?) is the variance of x. The process y(z), conjugate to x(¢), is a
linear transform of x(¢) [given by Eq. (3.1-13a)] and hence, according to a
well-known theorem, (Davenport and Root, 1958, Sec. 8.4) is also a wide-sense
stationary Gaussian random process of zero mean. Moreover, according to
Theorem IV [Eq. (3.1-77)], the variance of y is equal to the variance o of x.

¥ We stress that this assumption now refers to the power spectrum of a random signal and not to the
Fourier spectrum of a deterministic signal, as was the case before.
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Fig. 3.6 Tllustrating the relation between the correlation functions of a real
quasi-monochromatic signal x(¢) and of the associated complex analytic signal.

Hence

1 Y
= e VP, (3.1-81)
p(y) =~ T
According to Eq. (3.1-77b) the random processes x and y are uncorrelated and
consequently their joint probability p(x, y) is just the product of p(x) and p(y);
hence
px, y) = — e e, (3.1-82)
27o?
i.e. it is a two-dimensional Gaussian distribution. Since the loci of constant values
of the distribution (3.1-82) are circles, such a Gaussian distribution is said to be
circular.
Let us now consider the joint probability density* p(A4, @) of the modulus
(amplitude) A(?) and the argument (phase) ¢(t) of the associated analytic signal
[Egs. (3.1-12) and (3.1-33)]

2(6) = Yx (1) + ip(2)] = 3A(r) €70, (3.1-83)
According to the elementary law for transformation of probabilities
p(A, )ydAde = p(x, y)dxdy. (3.1-84)

Since x = Acos@ and y = Asin¢, we readily find that dxdy = AdA de and
hence Eqgs. (3.1-84) and (3.1-82) give
PA, @) = —A_ -2, (3.1-85)
270?
Since @ does not appear on the right-hand of Eq. (3.1-85), it is clear that all
values of the phase (0 < @ < 2m) are equally probable, i.e. the probability density
of @is

p(p = L (3.1-86)
2

The probability density of the amplitude is obtained by integrating Eq. (3.1-85)

* The symbol p stands here collectively for ‘probability density of’ rather than for a specific functional
form.
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with respect to @ over the range 0 < ¢ < 27 and evidently is
p(a) = L ematndt (3.1-87)
o

which is the Rayleigh distribution. It is illustrated in Fig. 3.7.

Because the joint probability density p(4, ¢) [Eq. (3.1-85)] is the product of
the probability densities p() and p(A) given by Eqs. (3.1-86) and (3.1-87), the
phase ¢(¢) and the amplitude A(r) of the analytic signal are, at each instant of
time 1, statistically independent. However, the random processes ¢(¢) and A(r)
are, in general, statistically dependent.

Finally, let us consider the probability density of the square of the instanta-
neous amplitude. We will refer to it, for short, as the instantaneous intensity and
denote it by I(z):

(1) = A%(s). (3.1-88)

Again using the elementary law for transformation of probabilities (see Section
1.3.1),

p(1)dl = p(A)dA, (3.1-89)
we readily find from Eqs. (3.1-87)—(3.1-89) that
1
p(I)=——e D Tz, (3.1-90)
1)

where (I) =20%. Equation (3.1-90) shows that the instantaneous intensity has
an exponential distribution. It is illustrated in Fig. 3.8. The nth moment {I") of
this distribution may be shown to be n!{I)".

We have only considered some of the simplest statistical properties of the
complex process associated, via the analytic signal representation, with a real,
wide-sense stationary Gaussian random process. The much more difficult problem
of determining, from knowledge of the statistical properties of any real fluctuating
field, the statistical properties of the associated complex analytic field was studied
by Agarwal and Wolf (1972).

plA)

Fig. 3.7 The Rayleigh distribution p(A4) = % e~ A,
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Fig. 3.8 The (scaled) exponential distribution p(l) = % e

3.2 The angular spectrum representation of wavefields

In this section we will describe a useful mathematical technique for studying the
properties of wavefields in homogeneous media. It is based on a certain integral
representation, known as the angular spectrum of plane waves. In its simplest
form the representation applies to deterministic fields, but it can be generalized
(as will be done in Section 5.6.3) to random fields. On the other hand it is
restricted to wavefields in a domain that is either a half-space or that is bounded
by two mutually parallel planes. Apart from its simplicity, the usefulness of this
method lies in its strong intuitive appeal, which often makes it possible to obtain a
qualitative understanding of various physical phenomena without carrying out
detailed calculations. We begin by deriving the angular spectrum representation
in a slab geometry.

3.2.1 The angular spectrum of a wavefield in a slab geometry
Consider a monochromatic scalar wavefield
Vir, t) = U(r)e ™ (3.2-1)
in a slab D (see Fig. 3.9) occupying the region
0szs< Z, (3.2-2)

in a homogeneous medium of refractive index n(w). We assume that the sources
of the field are located outside D. Then throughout D, the space-dependent part
U(r) of V(r, t) will satisfy the Helmholtz equation

(V% + KHU(r) = 0, (3:2-3)

where
k = n(w)ko, (3.2-4a)
ko = w/c, (3.2-4b)
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(V2 + kA U(r) =0

Fig. 3.9 Notation relating to the angular spectrum representation of a wave-
field in a slab geometry.

(c being the speed of light in vacuo) are the wave numbers in the medium and in
free space respectively, associated with frequency w.

Let us assume that in any plane z = constant in the slab D, the field may be
represented as a Fourier integral, namely

w©

Ux,y, z) = ”%(u v; z) ™) dy d, (3.2-5)

—%0

(r= X, ¥, z). On substituting from Eq. (3.2-5) into Eq. (3.2-3) and on inter-
changing the operation (V? + k?) and integration, we obtain the formula

ﬂ[xﬂ + KA[U(u, v; ) €= dudo = 0. (3.2-6)
After carrying out the differentiation under the integral sign we find that
ﬁ[(—uz 0P 4 U, v ) + TR0 D) | eeron qudy = 0. (32-7)
£ oz
Since Eq. (3.2-7) holds for all values of x and y, the term in the brackets under

the integral sign must be zero. Hence the function AU(u,v;z) satisfies the
differential equation

a2gu P
S 032) | iy s g) =0, (3.2-8)
3z?
where
w? = k% — u? — 2 (3.2-9)
For the sake of definiteness we denote by w the root of Eq. (3.2-9) defined as
+(k? = u? = ) when u? + v? < K2 }

+i(u? + 0 — K5 when u? + v? > K2,

w

(3.2-10)

The general solution of the differential equation (3.2-8) is

U(u, v; 2) = A(u, v) e + B(u, v)e ¥, (3.2-11)

s
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where A(u,v) and B(u,v) are arbitrary functions. On substituting from Eq.
(3.2-11) into the Fourier integral (3.2-5) we obtain the following expression for
the wavefield within the slab:

@ @

Ulx, y,2) = “’A(u, u)ei(”‘”””“) dudv + ij(u. ) Moy =w3) qy dp,

(3.2-12)

This formula represents the wavefield within the slab as a linear superposition of
contributions of the form exp (iIK* - r) and exp (iK™ -r), where K* = (u, v, w).
According to Egs. (3.2-9) and (3.2-4) we see that (K*)? =u? + v* + w’ = &
[=kon(w)]?. This result can be readily seen to imply that each term of the
integrands in Eq. (3.2-12) satisfies the same differential equation, namely the
Helmbholtz equation (3.2-3), as does the field U(r). Consequently the exponen-
tial terms in the integrals (3.2-12) are modes of that equation and we may say
that the formula (3.2-12) is a mode representation of the wavefield in a slab
geometry. It should not be confused with a Fourier representation which it
superficially resembles. Unlike the mode representation (3.2-12), a Fourier
representation of a function of three real variables would involve three-folded,
not two-folded integrals and, because U(x, y, z) was assumed to be known only
in the strip 0 < z < Z rather than throughout all space, the Fourier decomposi-
tion, unlike the decomposition (3.2-12), is not unique and is not a mode
representation of the wavefield.

We will now turn our attention to the physical significance of the formula
(3.2-12) under the assumption that the medium within the slab is non-absorbing.
The refractive index n(w) and, consequently, the wave number k are then real
quantities. The formula (3.2-12) then represents the wavefield in terms of
contributions from four types of plane-wave modes:

(a) ety +wd)  with w = +(k2 — u2 — o2, wr +o? < K2 (3.2-13a)
These are clearly homogeneous plane waves’ that propagate from the
boundary plane z = 0 towards the boundary plane z = Z > 0.

(b) glaroy+wd) ith v = 4i(u? + 0> — KDY, Wt + 02 > K2 (3.2-13b)
Since in this case e = e”I"¢ the surfaces of constant amplitude of such
waves are given by z = constant, whereas the surfaces of constant phase are
given by ux + vy = constant. These waves are obviously inhomogeneous.

Their amplitudes decay exponentially on propagation from the plane z =0
towards the plane z = Z > 0 of the slab.

(©) ilwrroy=wa) yith o= (k2 — u? — 0)Y2, WP+ P =< KA (3.2-13¢)

Evidently these waves are homogeneous plane waves that propagate from
the boundary plane z = Z > 0 towards the boundary plane z = 0.

(d) ilwxtoy=we) gith = i(u? + 0% — K)Y2, W2 + 0P > KA (3.2-134d)

# A wave is said to be homogeneous if its surfaces of constant amplitude and constant phase coincide.
If that is not so, the wave is said to be inhomogeneous.
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Since now e~ = el*1* such waves are inhomogeneous and are similar to
those discussed under (b) above, except that their amplitudes decay ex-
ponentially as the wave propagates from the plane z = Z towards the plane
z = 0 of the slab.

It is clear that modes of all the four types that we just discussed are needed, in
general, to represent the wavefield uniquely in a domain 0 < z < Z. Because of
the physical significance of these modes as plane waves, the representation
(3.2-12) is said to be a representation of the wavefield as an angular spectrum of
plane waves.

3.2.2 The angular spectrum of a wavefield in a half-space

In many wave-propagation problems, e.g. in the analysis of diffraction at an
aperture in a plane screen or in studies of beam propagation from a laser, one
deals with wavefields in a half-space, say z = 0. In such cases it is often useful to
make use of a mode representation of a wavefield in that half-space. Such a
representation may be derived from the main result that we have just obtained for
a slab geometry [Eq. (3.2-12)] by proceeding to the limit Z — .

We will assume that n(w) = 1 throughout the half-space z = 0 and that the field
is outgoing at infinity; more specifically that if s = (s,, s, 5, = 0) is any fixed unit
vector pointing into the half-space z > 0, then asymptotically (see Sec. 3.3.4),

eikor

U(rs) ~ F(s) as kor — . (3.2-14)

r
The function F(s) is known as the radiation pattern of the field.

Since the half-space z = 0 may be regarded as the limit of the slab0 < z < Z as
Z — ®, it is clear that the wavefield in the half-space may also be represented in
the form given by Eq. (3.2-12). However, the assumed outgoing behavior of the
wavefield and some simple physical considerations lead to a simplification, as we
will now show. For this purpose it is useful to separate the second integral on the
right-hand side of Eq. (3.2-12) into contributions from homogeneous and
inhomogeneous waves:

J'f B(u, v) == dy dp

o

= ” B(u, v) el +oy=¥12) dy dp + ” B(u, v) €l +on) ez 4y dy,
w24 v2<k} w42kl

(3.2-15)

where w is given by Eq. (3.2-10). Since |w]|= (4 + v — kp)? when
w4 2> k%, the amplitudes of all the plane-wave modes in the second integral
on the right-hand side of Eq. (3.2-15) increase without limit as z increases. For
any realizable field such modes will obviously be absent, which implies that
B(u,v) =0 when u? + v? > kb, (3.2-16a)

Next let us consider the first integral on the right-hand side of Eq. (3.2-15). It
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represents contributions from homogeneous plane waves which propagate
towards the plane z =0 and it seems obvious that their combined effect will
represent a field that is incoming rather than outgoing, as required by Eq.
(3.2-14). That this is indeed so can be shown rigorously by the use of the
principle of stationary phase (see also Miyamoto and Wolf, 1962, p. 615,
Appendix) that will be discussed in Section 3.3. We may, therefore, conclude that
in addition to requirement (3.2-16a) we must also have

B(u,v) =0 when u? + v? < ki. (3.2-16b)

It follows from Egs. (3.2-12) and (3.2-16) that any wavefield in the half-space
z = 0 which is square-integrable in any plane® z = const. and which is outgoing at
infinity in that half-space may be represented in the form
U(x,y,z)= fjA(u, v) e +or W) qu dp, (3.2-17)
where w is given by Egs. (3.2-10).
For later purposes it will be useful to change variables by setting

u=kop, v=koq, w=kom, (3.2-18)

where kj is, as before, the free-space wave number associated with the temporal
frequency w [Eq. (3.2-4b)]. Then the formula (3.2-17) becomes

Ux,y,2) = ﬁa(p, q) e*oPr et dp dg, (3.2-19)
where
a(p, q) = kA (kop, koq) (3.2-20)
and
m=+(1-p*—qgH"” whenp’+q’<1 (3.2-21a)
= +i(p? + ¢ = D? when p* + g% > 1. (3.2-21b)

The formulas (3.2~19) and (3.2-17) are equivalent versions of the representation
of a monochromatic wavefield in the half-space z = 0, which is outgoing at infinity
in that half-space, in the form of an angular spectrum of plane waves. The
plane-wave modes are of two kinds. Those for which p? + g> <1 are homo-
geneous waves that propagate into the half-space z =0. And those for which
p? + ¢* > 1 are inhomogeneous waves that decay exponentially in amplitude with
increasing distance z from the boundary plane z =0 of the half-space and are
known as evanescent waves.

We have postulated that the field is outgoing at infinity, i.e. that it has the
asymptotic behavior indicated by Eq. (3.2-14). That the angular spectrum
representation (3.2-19) has indeed this behavior will be seen later [Eq. (3.2-34)

* It follows from Eq. (3.2-17) and an elementary inequality on integrals that this requirement will be
satisfied whenever the boundary value U(x,y,0) is square-integrable. Some other sufficiency
conditions for the validity of the angular spectrum representation of wavefields in a half-space were
discussed by Lalor (1968).
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and also Eq. (3.3-95)]. According to the later formula, one has, in general,*

: ikor
U(rs)=Ulx, y, 2) ~ —@(i)a<i, l)e Y askor— o (3.2-22)
ko\r ror/or
in any fixed direction s (s, =x/r,s, = y/r,s,=z/r=0), with r=(x2+ y> +
z%)¥2, pointing into the half-space z = 0 (Fig. 3.10).

The formula (3.2-22) shows that the (generally complex) spectral amphtude of
one and only one plane wave of the angular spectrum representation contributes
to the asymptotic behavior of the field in a fixed direction (x/r, y/r, z/r); namely
the one that is labeled by the parameters p = x/r, g = y/r. Since (x/r)? +
(y/r)* <1 this plane wave is necessarily homogeneous and is precisely that plane
wave that propagates in the s-direction for which the asymptotic (far-zone) limit is
being considered. The physical reason for this result will become evident later
(Sec. 3.3), when the asymptotic evaluation of certain integrals, based on the
method of stationary phase, will be discussed.

‘We have just seen that there is an intimate relationship between the far field
and the spectral amplitudes of the homogeneous plane-wave modes in the angular
spectrum representation of the field in the half-space z = 0. We will now show
that there is also a simple relationship between the spectral amplitudes of all the
plane-wave modes and the boundary values of the field in the plane z = 0; and
that this relationship provides a simple physical picture of the information that
each plane-wave mode carries. For this purpose let us first represent the field in
the plane z = 0 as a two-dimensional Fourier integral

U(x, y,0) f j To(u, v) e™=+29 dy dv, (3.2-23)

where, in the notation used in Eq. (3.2-5), Uy(u, v) =U(u, v;0). In physical
terms Eq. (3.2-23) represents the boundary values of the field in the plane z =0

Plxy.z)

0 z

z=0
Fig. 3.10 Illustrating the asymptotic (far-zone) behavior of the angular spec-
trum representation (3.2-19) of a wavefield in the half-space z = 0. The field
at a point P(rs) in the far zone is given by formula (3.2-22), namely

ikor

U(rs) ~ —-El—a(s,, Sy) i
ko r

cos 6,

where s,, s, s, = cos 8 are the Cartesian components (direction cosines) of the
unit vector s.

* Under special circumstances there may be points in the far field where the asymptotic formula
(3.2-22) does not apply (Sherman, Stamnes and Lalor, 1976).
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in terms of all possible two-dimensional spatial periodic components, labeled by
two-dimensional spatial frequencies (u,v) [-® <u<®, —w<v< o], The
(generally complex) Fourier amplitudes Up(u, v), which are given by the Fourier
inverse of U(x, y,0),

To(u, v) = “weruy) dy dy, (3.2-24)

represents the strengths with which the spatial-frequency component (u, v) con-
tributes to the boundary value of the field in the plane z = 0.
It follows at once from the angular spectrum representation (3.2-19) that

U(x, vy, 0) = jJ’a(P, q)eikﬁ(ﬂv\’*”q)‘) dpdg, (3.2_25)

or, if we change the variables of integration from (p, ¢) to (u, v) according to the
first two relations in Eq. (3.2-18), the formula (3.2-25) takes the form

Ulx, y,0) = ——“ ( : ) @) 4y, dy. (3.2-25a)
A comparison of this equation with Eq. (3.2-23) shows that
Tolu, v) = —%a(i, i), (3.2-26)
kO k(] kg
which implies that
a(p. q) = ksUo(kop, kog). (3.2-27)

This relation shows that the spectral amplitude a(p, q) of each plane-wave mode in
the angular spectrum representation of the field is uniquely specified by one and
only one spatial-frequency component (Fourier component) of the boundary value
of the field Uy(x, y) = U(x, y,0) in the plane z = 0; namely the one labeled by the
spatial frequency

u=kop, v=koq. (3.2-28)

Some additional insight into the intimate relationship that exists between the
angular spectrum modes and the boundary values of the field in the plane z =0
may be obtained if we introduce the spatial periods Ax, Ay [0<Ax <o,
0 =< Ay < =] associated with the spatial frequencies (u, v) via the relations

Ax =2 Ay=2T (3.2-29)

Tl 0]
Since, according to Eq. (3.2-18) u = kop = 27p/Ag and v = kog = 21q /A, where
X = 27/ky is the wavelength of the monochromatic field, Eqs. (3.2-29) imply that

Ax = —Ai, Ay = 2o (3.2-30)

|p| lql
Since for homogeneous waves p? + g% <1 and for evanescent waves p* + g% > 1
it follows at once from Egs. (3.2-30) that the homogeneous waves are associated
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||

0 [ax] :

Fig.3.11 Illustrating the meaning of the distance L. defined by Eg. (3.2-32).

with spatia] periods for which

Ly L <1 (3.2-31a)
(A (AayyY %
and the evanescent waves are associated with spatial periods for which
L, 1 .1 (3.2-31b)

> =
(ax)* Ay’ i

To see clearly the physical significance of f the above inequalities let us introduce
a length L, which represents the distance ON of the perpendicular dropped from
a corner O of a rectangle with sides Ax and Ay onto the opposite diagonal of the
rectangle (Fig. 3.11). If 6 is the angle that ON makes with the x-axis one
obviously has L = Axcos § = Ay sin 6 and hence

S, S (3.2-32)
(axy  (ay? 17
From what we have just learned it is clear that spatial-frequency components of
U(x, y,0) for which L = A, give rise to homogeneous waves, whereas those for
which L < Ag give rise to evanescent waves.

We note that in the special case when Ay — « (one-dimensional boundary
field) the length L is just equal to Ax. There is no such simple correspondence for
a two-dimensional boundary field but we may still regard L as a measure of the
size of the periodic component with which it is associated via Eq. (3.2-32). With
this understanding the inequalities (3.2-31a) and (3.2-31b) imply, roughly speak-
ing, that the homogeneous waves carry information about periodic details of the
field in the plane z =0 which are larger than the wavelength, whereas the
evanescent waves carry information about periodic details that are smaller than
the wavelength. A precise delimitation between the two Ax, Ay domains is
shown in Fig. 3.12.

It is clear from Eqs. (3.2-18) and (3.2-21) that homogeneous waves are
associated with those spatial frequencies for which

W+t <k} (3.2-33a)

whereas the evanescent waves are associated with spatial frequencies for which
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| Ay | /Ao

5y

4

3

(a) Homogeneous

2

v2 /

. W,

(b) Evanescent/ // /
o e o

1

Fig. 3.12 The spatial periodicities of the field in the plane z = 0 about which
information is carried by (a) homogeneous waves and (b) evanescent waves.

W+ 0? >k (3.2-33b)

Spatial frequencies that satisfy the inequality (3.2~33a) are often said to be low
spatial frequencies whereas those that satisfy the inequality (3.2-33b) are said to
be high spatial frequencies.

Let us now briefly return to the formula (3.2-22) for the far field. If we
substitute for the spectral amplitude function the expression (3.2-27), equation
(3.2-22) becomes

thor

cos @ as kogr — o (3.2-34)

U(rs)=U(x, y,2) ~ —27;11«0(70(/(01, kOL) -
along any fixed @ direction (cos 6 = z/r) which points into the half- space z=0.
Since (x/r)? + (y/r)? cannot exceed unity, (kox/r)?+ (koy/r)* =< k} and the
formula (3.2-34) shows that the far field is specified entirely by the low spatial-
frequency components of the field in the plane z = 0. This was to be expected,
because, as we have just learned, the high spatial frequencies give rise to
evanescent waves and since the amplitude of such waves decays exponentially
with the distance z from the boundary plane z =0, they do not, in general
contribute to the far field.* The expression (3.2-34), which will be derived more
directly in Section 3.2.5 [Eq. (3.2-88)], is a precise version of the well-known
Fraunhofer formula of elementary diffraction theory (cf. Goodman, 1968, p. 61).

* Wavefields in a half-space, which do not contain evanescent waves at all in their angular spectrum
representation, have a number of interesting properties, that were first discussed by Sherman (1969).
Such fields are often very good approximations to fields encountered in practice, except close to
sources and boundaries of objects with which the field may interact.
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3.2.3  An example: diffraction by a semi-transparent object?

To illustrate the physical insight that the angular spectrum representation can
provide, we will consider the transmission of light through a thin, semi-trans-
parent, weakly scattering object. Suppose that the object is placed on a plane
z =0 and is illuminated by a monochromatic plane wave that propagates along
the positive z-direction (see Fig. 3.13). The space-dependent part of the wave can
then be represented as

UD(x, y, z) = Cetkoz, (3.2-35)

where C is a constant. If the refractive index changes slowly throughout the
object, we may assume that the field U that emerges from it is, to a good
approximation, given by

Ux, y,0) = T(x, ) UD(x, y, 0). (3.2-36)

If we allow only the light that passes through the object to reach the half-space
z = 0 then evidently T(x, y) =0 at all points (x, y) that are located outside the
area of the plane z = 0 occupied by the object. The function T(x, y) is called the
transmission function of the object or the amplitude transmittance (for normal
incidence, at the given temporal frequency of the incident light). The modulus of
T is a measure of how much light the object absorbs on transmission and the
phase of T is a measure of the optical thickness of the object. It is this kind of
information that one often seeks. Typically one would place an optical imaging
system, €.g. a microscope, to the right of the object (i.e. in the half-space z > 0)
and one would try to deduce the properties of the object from the analysis of its
image.

Assuming that Eq. (3.2-36) describes sufficiently accurately the change in the
incident wave due to the presence of the object it is clear that the maximum
information the imaging system can provide about the object is its transmission
function T'(x, y). We will examine how much information about T(x,y) is
contained in the transmitted wave before it reaches the imaging system.

It is clear from Egs. (3.2-36) and (3.2-35) that in the plane z = 0, the field

Object ‘ ‘
/
Lens system
———————— —— 2
U0 = ceter 49
Object plane Image plane
(z=0)  Entrance Exit pupil
pupil

Fig. 3.13 Imaging of a thin semi-transparent object.

i This example and our method of analysis is essentially due to Gabor (1961).
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emerging from the object is given by
Ulx, y,0) = CT(x, y). (3.2-37)

In the absence of the imaging system, Eq. (3.2-37) represents the boundary
values of a field that propagates freely in the half-space z >0 and is outgoing at
infinity in that half-space. Hence, according to Egs. (3.2-19), (3.2-27), and
(3.2-37), the field throughout that half-space may be represented in the form

Ux, y,2) = j j CKET(kop, kog) eXP 0+ ™) dpdg,  (3.2-38)

where

! UT(x, )emier o gy gy (3.2-39)
@em?ls
it being understood that T(x,y)=0 outside the region of the object plane
occupied by the object.

According to Eq. (3.2-38) the amplitude of a typical plane wave, labeled by
(P, q) in the angular spectrum representation of the transmitted field, is

a(p, q) = CksT(kop, koq). (3.2-40)

We see that the wave carries information about the Fourier components of the
transmission function labeled by the (two-dimensional) spatial frequency
u = kop, v = koq that corresponds to the spatial periods Ax, Ay that are related
to p and g by the formulas (3.2-30), which we will re-write as

T(u, v) =

Ao Ao
pl=-"", |ql=—. 3.2-41
pl=—>"la ~ ( )

Obviously if Ax and Ay are large enough, |p|> + |¢° < 1, i.e. the wave will
propagate in a direction which makes a small angle 6 with the z-axis (see Fig.
3.10). With decreasing values of Ax and Ay, f will increase and it will eventually
become so large that the corresponding homogeneous waves will not enter the
imaging system at all. Consequently this information will be lost. This simple
argument clearly shows the true origin of the loss of resolution in optical image
formation.

Next let us consider the information about very small details, indicated by the
inequality (3.2-31b), of the object structure, which is carried by evanescent
waves. Since the amplitude of an evanescent wave decays exponentially with
increasing distance from the object plane this information will obviously be harder
and harder to discern the further one is away from the object plane. As an
example consider a periodic element with periods

Ax = Agf5, Ay = o, (3.2-42)

(The second formula in Eq. (3.2-42) implies that the object is one-dimensional,
extending only in the x-direction.) According to Eqs. (3.2-41) and (3.2-42)
information about this element is carried by evanescent plane-wave modes for
which

lpl=5, lql=0. (3.2-43)
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For this wave, we have, according to Egs. (3.2-43) and (3.2-21b),
m =125 - D2 =~ 4.9i, (3.2-44)
and hence [cf. Eq. (3.2-38)] the space-dependent part of the wave is given by
Ux, y, 2) = CkiT(kop, 0) e'ers g ~kolmlz
= Ck3T(kqp, 0) eSkox g=49koz, (3.2-45)
Since

e~ VkoT 6-31"/}“, (3.2-46)

the amplitude of this wave will decay by a factor e™*! in a distance of only one

wavelength from the object plane and by a factor e in a distance of ten
wavelengths! Thus for all practical purposes information about such fine detail of
the object is lost on propagation.

3.2.4 The Weyl representation of a spherical wave

In a well-known paper dealing with the propagation of electromagnetic waves
over a conducting sphere Weyl (1919) derived a new representation of a spherical
wave. It may be regarded as the angular spectrum representation of a wavefield in
free space, generated by a point source located at the origin. Because the
spherical wave is the Green’s function of the Helmholtz operator, the Weyl
representation has found many useful applications in connection with analyses of
radiation, diffraction and scattering problems by the use of the angular spectrum
techniques.

Because the spherical wave has a singularity at its center, a rigorous derivation
of the Weyl representation requires some mathematical sophistication. We will
ignore the underlying subtleties and give a purely formal derivation. Rigorous
treatments may be found elsewhere (see, for example, Bafios, 1966, Sec. 2.13).

Let us consider the diverging spherical wave (the time-dependent factor e~ ¢!
being omitted)

eikor
G(r) = , (3.2-47)

r

where r = |r| is the distance of the field point from the center of the wave. At any
point except at the origin r = 0, G(r) satisfies the Helmholtz equation.

(V2 + kD)Gr) =0, (r+0). (3.2-48)

Hence it seems reasonable to assume that, if we choose a rectangular Cartesian
coordinate system with the origin at the source point, we might be able to
represent G(r) in each of the half-spaces z >0 and z <0 in the form of an
angular spectrum of plane waves. Let us consider first the representation G(r) in
the half-space z > 0. We will then have, formally at any rate,

etkor ® &

= [[atp, )™+t dpdg, (z>0), (3.2-49)

r @«

where m is given by the expressions (3.2-21), namely
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m=+(1-p?—g)¥” whenp?+q*=1 (3.2-50a)
= +i(p® + ¢* — D2 when p* + ¢ > 1. (3.2-50b)

Suppose that a function a(p, q) exists which admits the representation (3.2-49)
and, moreover, that the formula (3.2-49) remains valid as z — 0, except at the
origin (the singularity of the spherical wave). Then, in the limit as z — 0,

exp [iko(x? + y?)¥?
(xz + y2)1/2
On making a trivial change of the variables of integration and applying the

Fourier inversion formula, we obtain the following expression for the spectral
amplitude function a(p, q):

L [[atp, ayerpliketon + aiapda. 3251

2 ® ; 2 241/2
a(p, q) = (%) ” 2P [(;kzof y:)lfz) ] exp[—iko(px + qy)]dxdy. (3.2-52)

The integral on the right-hand side of Eq. (3.2-52) may be evaluated in a closed
form. For this purpose we set
x = Rcosy, y = Rsiny, (3.2-53a)
p = pcosy, q = psiny. (3.2-53b)
Then Eq. (3.2-52) becomes

k 2 w27 X .
a(p,q)=(2—:;) jo fo glfoR g=ikoRpeos(¥=2) 4R dap. (3.2-54)

The integration with respect to 1 can be carried out at once and gives [Watson,
1944, p. 20, Eq. (5), with an obvious substitution)

27
f e HkoRPeOs(W=1) Gy = 27 o (koRp), (3.2-55)
0

where Jo(x) is the Bessel function of the first kind and zero order. Hence Eq.
(3.2-54) reduces to
Kb (=
a(p, q) = 2—0 f R J(koRp) dR. (3.2-56)
7 Jo

The integral on the right may be evaluated by using two well-known Hankel-
transform formulas [Erdelyi, 1954, p. 7, Sec. 8.2, formulas (5) and (6)]

©

J SO Io(xy)V (x) dx = 0
0

when0 <y <a

Vx

2 2

12
=( J ) whena <y <
y —a

Vx z

- 12
[ Smaxlo(xy)\/(xy)dx - ( ; Y ) when0 <y <a
a -y

=0 whena <y < w,
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On taking the complex combination of these expressions and canceling some
common factors we obtain the formula
i
( @ - y2)1/2
1
(yZ _ a2)1/2

[ e Jo(xy) dx when0 <y <a
0

(3.2-57)

when y < g < o,

If we set a=kg, x =R, y=kop in these formulas and use the fact that,
according to Eq. (3.2-53b), p? = p? + ¢°, we find that

i
ko(1 = p* = gH¥?
.
ko(p* + ¢* = D'
On substituting from the formula (3.2-58) into Eq. (3.2-56) and recalling the

definition (3.2-50) of the quantity m, we obtain the following simple expression
for the angular spectrum amplitude:

il

f e'*R Jy(koRp) dR when p? + ¢g* < 1 l
0

(3.2-58)

i

when p? + ¢ > I.J

ko 1
a(p,q) = ko1 (3.2-59)
2mr m

On substituting from Eq. (3.2-59) into Eq. (3.2-49) we finally obtain the
required representation of the spherical wave:

eikor

= ko j f eklprrarimD) 4 dg (7> 0). (3.2-60)
-
More refined analysis shows that this formula is indeed valid not only throughout
the half-space z > 0, but, as we assumed, also on the plane z = 0 except at the
origin.

In a strictly similar manner, or by using a symmetry argument, one can show
that when z <0 Eq. (3.2-60) holds with z replaced by |z|. Combining the two
formulas we have, for all z,

exkor _ lko

r 27

H’ 1 giko(pa+ay +mlzh dpdgq. (3.2-61)

The expression-on the right-hand side of Eq. (3.2-61) is one form of the Wey/
representation of a diverging spherical wave. It expresses the spherical wave in
each half-space z <0 and z =0 as an angular spectrum of plane waves, with the
homogeneous waves propagating into the far zone and with the evanescent waves
decaying exponentially in amplitude with increasing distance |z| from the plane

= 0. We note that the angular spectral amplitude function of each of the plane
waves, given by Eq. (3.2-59), is singular when m = 0, i.e. when p? + ¢? = 1. This
is precisely the circle in the p, g-plane, where the nature of the plane-wave modes
changes the modes being homogeneous when p? + g% <1 and evanescent when
p? + g% > 1. The singular behavior of the spectral amplitude a(p, g) on this circle
is a reflection of the singularity of the spherical wave at the origin. These
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singularities in the integrand in the Weyl representation (3.2-61) are, however,
integrable, except, of course, when x = y = z = 0. Another reflection of the
presence of the singularity of the spherical wave is the non-analytic nature of the
integrand [the appearance of |z| rather than z in Eq. (3.2~61)].

Before proceeding further let us briefly consider the corresponding Wey!
representation of a converging spherical wave. It can be obtained at once by taking
the complex conjugate of Eq. (3.2-61). This gives, if we also change the variables
of integration from p and ¢ to —p and ~q,

e _ _iko ” eikolpxray=mad) 4 p dg (3.2-62)

where the asterisk denotes the complex conjugate. If we recall that according to
Eq. (3.2-50) m* = m for homogeneous waves and m* = —m for evanescent
waves, we can readily see that the formula (3.2-62) represents the converging
spherical wave in each half-space z > 0 and z <0 as superposition of homogen-
eous waves that propagate from the far zone towards the origin and of evanescent
waves whose amplitudes decay exponentially with increasing |z|. Thus, as com-
pared with the case of a diverging wave, each homogeneous wave propagates in
the reverse direction but the evanescent waves are unchanged®.

A somewhat different version of the Weyl formula may readily be obtained
from Eq. (3.2-61) by introducing different variables of integration. For this
purpose we set

p=sinacosf, q=sinasinf, m=cosa. (3.2-63)

Recalling that p? + g2 + m? = 1, [a condition which ensures that each term under
the integral sign is a mode of the Helmholtz equation (V2 + k3)U(r) = 0], it is
clear that for homogeneous waves (p? + g*<1) a and f3 are just the spherical
polar angles of their directions of propagation, with the polar axis being along the
positive z-direction. However, since for evanescent waves (p?+ g2>1) m is
complex, the transformation (3.2-63) requires that for such waves « itself be
complex. It may readily be verified that for homogeneous waves

Osa<7f2, 0= f<2nm, (3.2-64)

whereas for evanescent waves
o= §+ i, 0<p<2m, (3.2-65)
with —e < o' < 0. In Fig. 3.14(a) the portion of the a-contour associated with

# If we subtract Eq. (3.2-62) from Eq. (3.2-61), the contnbutions from the evanescent waves cancel
out. We then obtain, after simple algebraic manipulations. the well-known formula (see, for
example, Courant and Hilbert, 1962, p. 195)

sin kgr 1 .
= ——| exp(ikys -r)d.
kor  4n Jw P (ikos -1

Here s is a real unit vector, d€2 is an element of solid angle [cf. Eq. (3.2-66)] and the integration is

taken over the whole 47-sohd angle generated by s. In physical terms the tunction sin (kor)/ker may

be regarded as arising from the superposition of homogeneous plane waves, all of the same
amplitude 1/47, propagating in all possible directions.
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Fig. 3.14 The a-contours used in the Weyl representations of a spherical wave.
In (a) each point on the horizontal segment C; is associated with a homogen-
eous plane wave and each peint on the vertical line C; is associated with an
evanescent wave in the formula (3.2-61). The curve C in (b) is the contour
used in the formula (3.2-67).

homogeneous waves is denoted by C; and the portion associated with evanescent
waves is denoted by C,. One can readily show by calculating the Jacobian of the
transformation p, ¢ — «, (3 that in both cases

dpdg _ sin da df. (3.2-66)
m

Evidently for real values of «, the expression (3.2-66) represents an element of
solid angle formed by the (real) directions of propagation of the homogeneous
plane waves in the integrand in Eq. (3.2-61). On making use of the relation
(3.2-66) in Eq. (3.2-61) we obtain the following alternative representation of a

diverging spherical wave:
e _ ko f z"dﬁ f ekalpxray+mlz) gip o d . (3.2-67)

r 2m Jo Ci+C;

Here p, g and m are, of course, given by Egs. (3.2-63).

By applying well-known rules relating to integration in the complex plane, the
contour C; + C, may be distorted into a contour such as that denoted by C in Fig.
3.14(b). It is any curve in the complex a-plane that begins at the origin,
approaches asymptotically the point 7/2 — i®, and lies entirely within the shaded
strip. The formula (3.2-67) with C; + C, replaced by C is essentially the original
version of Weyl’s representation of a diverging spherical wave.

Let us examine the behavior of the mode functions along such a contour C.
Since each of the three parameters p, g and m takes on complex values at every
point on C except at the origin, we will set

p=p1+ip;, qg=q1+iqy, m=m +imy, (3.2-68)
where pi1, P2, 41, G2, t; and m, are real. We then obviously have

etkolprtay+mlzl) — giko(pre+qiy+milzl) g ~kolpzx+aay +malzl) (3.2-69)
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showing that, except for special values of the parameters, the surfaces of constant
amplitude and of constant phase are distinct. Hence these modes are inhomogen-
eous plane waves which propagate in directions whose direction cosines are
proportional to py, g1, =m; and whose amplitudes decay exponentially along the
directions py, q,, £m;. Here the upper or the lower signs are taken in front of m,
and my according as z > 0 or z < 0. These modes are obviously generalizations of
the evanescent waves that we encountered earlier.

3.2.5 The Rayleigh diffraction formulas

We will now show how, with the help of the Weyl representation of the spherical
wave, one may readily solve the Dirichlet and the Neumann boundary value
problems of the Helmholtz equation for a half-space.

Let us first consider the Dirichlet problem, i.e. the problem of determining the
solution of the Helmholtz equation (3.2-3) for the wavefield U(x, y, z), valid
throughout the half-space z >0, from knowledge of the boundary values
U(x, y,0) on the plane z =0. We will assume that U(x, y, z) is outgoing at
infinity in the half-space z > 0.

We begin with the angular spectrum representation (3.2-19) of the field
throughout the half-space, namely

Ux, y,2) = ”a(p, g)eiklprrartma) 4 p qq (3.2-70)

where, according to Egs. (3.2-27) and (3.2-24),

ko \? (7 S
a(p, q) = (ﬁ) jf Ux', y', O)ye kox'+ay) qx ' dy (3.2-71)

If we substitute from Eq. (3.2-71) into Eq. (3.2-70) and interchange the order of
the integrations, we obtain the following expression for the field in terms of the
boundary values:

Ux,y,2)= J'm[ Ux', y',0Gp(x —x',y —y', z)dx"dy’, (3.2-72)

where -
Gpx —x',y —y',2) = (%)zﬁ eiklp—x)+90=y)+mal 4y dg . (3.2-73)
Now we have according to Weyl’s_:ormula (3.2-60) with r=(x,y,z>0),

r'=(x,y,0)

eikolr—r'| _ _iﬁJ'J_1_eikg[p()c—x')+q(y—,V')+ml] dpdg. (3.2-74)
r=r| 27/ m

o

If we differentiate this formula with respect to z and interchange the order of
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differentiation and integration on the right we find that

1kgle=r’ 2 ®
__8_[& “ I] = —ﬂf[ eikolp(x—x")+q(y=y")+mz] dpdg. (3.2-75)

3z ljr — r'|
On comparing Egs. (3.2-73) and (3.2-75) we see that
1 3 e“‘“R)
Gp(x —x',y—y',2)=——"—"— R 3.2-76)
n( y=y,2) - az( = (
where
R=lr—r|=[(x~x)+@-y)+IT" (3.2-77)

Finally on substituting from Eq. (3.2-76) into Egq. (3.2-72) we obtain the
required solution to the Dirichlet problem:

Ux, y, 2) = —~———”U( Y O)—m( )dx dy'.  (3.2-78)

This formula was first derived by Rayleigh* (1897) and is sometimes called the
Rayleigh diffraction formula of the first kind.

The solution of the corresponding Neumann problem, i.e. the problem of
determining the (outgoing) solution of the Helmholtz equation throughout the
half-space z >0 from knowledge of the boundary values of the derivative
3U(x,y,z)/3z on the plane z =0, may be obtained in a somewhat similar
manner. We have, on differentiating Eq. (3.2-70) with respect to z and on
interchanging the order of differentiation and integration,

[a_U(J;_yZ_)] = ikofj ma(p, q) €*PE+9) dp dg. (3.2-79)
z z2=0 EX4

On taking the Fourier inverse of this formula (after making a trivial change of the
variables of integration) we obtain the following expression for the spectral
amplitude function of the field:

a(p,q) = ( ko ) jj’[aU(x » Y Z)} e~iko(px'+qy") dx'dy’. (32;80)
ikgm 7=0

Next we substitute a(p, ¢) from this equation into Eq. (3.2-70) and interchange
the order of the integrals. We then find that

UG, y,2) = ”[@%]

where

Gn(x —x',y =y, z)dx"dy’, (3.2-81)
=0

_— ]
Gnlx —x',y — vy, 2)=— (12 (;2 ff L ikolp(e=xy+ar—y)+mz ddpdg. (3.2-82)
7

* A different derivation of Rayleigh’s formula (based on the method of images) valid under somewhat
broader conditions. was given by Luneburg (1964), Sec. 45. For a very simple derivation of this
formula and also of the second Rayleigh formula {Eq. (3.2-84) below], using the Helmholtz-Kirch-
hoff integral theorem, see Baker and Copson (1950, pp. 157-158).
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On comparing this formula with the Weyl representation (3.2-60) of the spherical
wave we see at once that
G y= L et (3.2-83)
x-—x,y=-y,)=- ) 2-
N ( Y m R
where R is again given by Eq. (3.2-77). Finally on substituting from Eq. (3.2-83)
into Eq. (3.2-81) we find that

> ‘ ' 1kgR
U(x,y’z).: _LIJ[SU(X Y ’Z)] < dx'dy'. (32‘—84)
2mJ =0 R

This formula is the required solution of the Neumann problem. It is sometimes
referred to as the Rayleigh diffraction formula of the second kind (Rayleigh,
1897).

We conclude this section by considering the behavior of the far field on the
basis of the Rayleigh diffraction formula of the first kind [Eq. (3.2-78)]. For this
purpose we note that when r is large enough,

R~r—s-r, (3.2-85)
where s is the unit vector in the direction of r (see Fig. 3.15). Hence
1kgR tkor A ,
° ~ & emikos ' as kgr — oo, (3.2-86)
R r

with s being kept fixed. On differentiating Eq. (3.2-86) with respect to z we
readily find that in this limit

ikoR 1kgr i
ﬂ(eR )~ik0(i)e g ko T (3.2-87)

9z r/ r
On substituting from Eq. (3.2-87) into Eq. (3.2-78) we obtain the formula

ikor

U(rs) = Ulx, y, z) ~ —2771k0( )Uo(ko— kol> as kor — «, (3.2-88)
r

7

where Uy(u, v) is the Fourier transform of U(x, y, 0), defined by Eq. (3.2-24).
This formula for the far field is in agreement with Eq. (3.2-34), which was
obtained in a different manner.

R:\r-r'\ P

z=0(

Fig. 3.15 Illustrating the far-zone approximation (3.2-85). Q(r'), [r' = (x". y’,
0)], and P(r), [r = (x. y, z)], are points in the plane : = 0 and in the far zone
respectively. When r is sufficiently large QP ~ OP — ON, where N is the foot
of the perpendicular dropped from () onto the line OP.ie. R~r—s-r'.
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3.3 The method of stationary phase

A very useful procedure for obtaining approximations to various integrals that
fre.quently occur in wave theory is based on the so-called method (or the
principle) of stationary phase. It provides an asymptotic approximation to inte-
grals for large values of an appropriate parameter. Before explaining the essence
of the'method it will be useful to explain what is meant by an asymptotic
expansion.

3.3.1 Definition of an asymptotic expansion

Suppose that

N
F) = G(E)[Z% + RN(E)] (3.3-1)

n=l1

where, for all N,
ENRN(E) > 0 (3.3-2)

as |§|.—> % within some range of arg £, the a,’s being constants and G(&) is some
function of &. One then writes

F(§) ~ G(E)[ao + f;—l + g% +. ] (3.3-3)

and one says that the right-hand side of the formula (3.3-3) is the asymptotic
expansion of F(&) for the particular range of arg £, The formula (3.3-2) implies
that when |£| is large enough the absolute value of the difference between
F(8)/G(&) and the sum of the finite series > ~-,a,/&" is of the order of 1/]g|N+1,

A§ymptotic expansions may behave very differently from ordinary series. In
particular they may fail to converge for some or all values of &. Nevertheless they
often provide excellent approximations for sufficiently large values of |&|. In fact
when |&] is large enough, the first term a,G(€) on the right of Eq. (3.3-3) alone
may provide a very good approximation to F(E). If only this first term (or the first
few tergs) of the asymptotic expansion is used, one sometimes speaks of an
asymptotic approximation to F(E).

A discussion of the general properties of asymptotic series is outside the scope
of this book®, as is a rigorous treatment of the method of stationary phase, We
will only briefly explain the essence of the method and make its validity plausible
by an argument that has a strong physical appeal. We will use the method later to
obtain a formal derivation of the asymptotic approximation to some integrals that
frequently occur in optics.

3.3.2  Method of stationary phase for single integrals

Let us consider an integral of the form
b .
F(k) = [ F(x) ek80) gy (3.3-4)

* g?lr degailed and rigorous treatments of the subject see, for example, Whittaker and Watson (1940)
ap. 8. ‘
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where f(x) and g(x) are real, well-behaved functions of a real variable x and a
and b are real constants. The parameter k is also assumed to be real. Without loss
of generality, we may assume k to be positive. In physical applications F (k) often
represents the combined effect of waves of amplitudes f(x), phases g(x), all

having the same wave number k.
To obtain some idea about the behavior of the integral (3.3-4) as a function of

k, we consider a simple example. We take
fy=1, gx) =x% (3.3-5)

and consider the real part (denoted by Re) of the integral:
b
Re Fy(k) = j cos (kx?)dx, (a<0,b>0). (3.3-6)
a

Let us compare the behavior of the integrand
G(x, k) = cos kx? (3.3-7)

in Bq. (3.3-6) for different values of k. With fixed k, G(x, k) will oscillate
between the values +1 and —1, with the rate of the oscillations depending on the
value of k. Since, with k fixed, the zeros of G(x, k) are given by

x==x[(n+ Pk, n=0,1,2,3,...,

it is clear that if one takes k larger and larger, G(x, k) will oscillate more and
more rapidly (see Fig. 3.16).

Suppose now that we drop the assumption that f(x)=1, but still take
g(x) = x?. Instead of Eq. (3.3-6) we then have the integral

Re Fy(k) = f bf(x)cos(kxz) dx. (3.3-8)

The factor f(x) will give rise to ‘amplitude modulation’ of the cosine term; but it
is clear that irrespective of the exact form of f(x), if only k is large enough, the
integrand of the integral on the right-hand side of Eq. (3.3~8) will again oscillate
very rapidly and there will be a tendency for the positive and negative contributions
of the integrand to cancel out. Moreover this cancellation can be expected to take
place irrespective of whether g(x) = x? (as in our example) or whether it has
some other form. However, for sufficiently larger values of k, the cancellation
will not be complete in the neighborhood of points (if any) where g(x) is
stationary within the interval of integration, i.e. where

dglx) _y, (3.3-9)
dx
(the origin x = 0 in the above examples}, and also at the end points
x=a and x=0b. (3.3-10)

These special points are called critical points of the integrand in Eq. (3.3-4).
Those that satisfy Eq. (3.3-9) are said to be critical points of the first kind, and
the end points (3.3-10) are said to be critical points of the second kind. Of course,
in special cases several critical points may coincide or one or both of the end
points may themselves be stationary points of g(x). Other complications may
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Fig. 3.16 Illustrating the principle of stanonary phase. Comparison of the
behavior of the functions (a) G(x, 1)—cosx (b) G(x,4) =cos4x?; (c)
G(x,9) = cos9x?; (d) G(x, 16) = cos 16x2.

arise, for example when g(x) or f(x) have singular behavior. However, excluding
these more complicated situations one can show that the asymptotic behavior as
k — o of an integral of the form (3.3-4) is determined entirely by the behavior of
the integrand at the critical points, and, moreover, the leading term in the
asymptotic expansion of F(k) often depends on the critical points of the first
kind, i.e. on interior points in the range of integration where g(x) is stationary.
This fact is the essence of the principle of stationary phase.

In wave-theoretical problems, the absence of contributions from the whole
range of integration except from the critical points may be regarded as a
manifestation of destructive wave-interference. In fact, the method of stationary
phase was originally introduced in connection with problems involving water
waves (in 1887 by W. Thompson, who later became Lord Kelvin). It should be
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contrasted with another well-known asymptotic technique, the method of steepest
descent. (See, for example, Copson, 1967, Sec. 7; Dennery and Krzywicki, 1967,
p. 87 et seq.) Although the method of steepest descent has a formal similarity with
the method of stationary phase, it has quite a different physical significance, in
that in its wave-theoretical context it may be interpreted in terms of amplitude
decay, rather than in terms of phase interference. Also from the mathematical
standpoint there are basic differences between the two methods, because the
method of steepest descent makes use of the analytic properties of the functions
f(x) and g(x), considered as functions of a complex rather than a real variable,
whereas the method of stationary phase may be developed entirely within the
framework of functions of a real variable’, For this reason the method of
stationary phase, unlike the method of steepest descent, may readily be extended
to two-dimensional integrals (see Section 3.3.3). Moreover, unlike the method of
stationary phase, the method of steepest descent cannot be readily used when the
integral has finite limits.

We will now use the principle of stationary phase to determine the asymptotic
behavior of the integral (3.3-4) for large values of k. Our derivation will be
heuristic, but the results may be justified by rigorous analysis. (See, for example,
van der Corput, 19341935, 1936; Focke, 1954; Erdelyi 1955, Sec. 2.9; Braun,
1956).

(a) Contribution from critical points of the first kind

Let us assume that in the integral (3.3-4) f(x) is continuous and g(x) is twice
continuously differentiable in the interval a < x < b. Suppose, to begin with, that
there is one and only one critical point of the first kind, i.e. that there is one point
x; and no other point in the interval at which

g'(x1) =0, (3.3-11)

where the prime denotes differentiation with respect to x. We also assume that
the second derivative of g(x), i.e. g"(x), is not zero at x = xy:

g"(x1) #0. (3.3-12)
Then at points x in the immediate neighborhood of x;,
g(x) = g(x1) + 3(x — x1)8"(x1). (3.3-13)

Since, according to the principle of stationary phase, the asymptotic approxima-
tion to the integral for large values of k comes from the immediate neighborhood
of x;, we have from Egs. (3.3-4) and (3.3-13)

b ) ) .
F(k) ~ [ Fxy) k) k=g (/2 gy (3.3-14)

For the same reason we may extend the range of integration from (a, b) to (—,
+0) and we obtain the formula

F(K) ~ f(x,) eHet f T etk 02 gy (3.3-15)

* That the method of stationary phase should not be regarded as a step-child of the method of steepest
descent was stressed particularly by van Kampen (1958).
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If we change the variable of integration from x to u=x — x; and use the
symmetry of the integrand, the formula (3.3-15) becomes

F(k) ~ 2f(x;) eiketxn) f " ek P gy (3.3-16)
0

The integral on the right side is the well-known Fresnel integral, whose value is
(Gradshteyn and Ryzhik, 1980, 395, #3.691 1)

@ 12

f e dy = l(i) etint (3.3-17)
0 2\ |a|

where the upper or the lower sign is taken according as a = 0. With the help of

this result, Eq. (3.3-16) becomes

-——2’1—_]1/2 flx)) etket e*imt g ks oo (3.3-18)
kig"(x1)] ’ '
where the upper or lower sign is taken, according as* g”(x;) Z0 and we have
written F((k) rather than F(k) to stress that the expression on the right-hand
side of Eq. (3.3-18) is a contribution from a critical point of the first kind.

In deriving the formula (3.3-18) we assumed that the integrand had only one
critical point of the first kind. If it has several such points, xq, X, . . . , %, say, the
corresponding asymptotic approximation to F(k) is obtained by summing the
contributions, given by expressions of the form (3.3-18), from all of them, i.e.
one then has

FO(k) ~ [

12 n
FO(k) ~ (2—”) S f(x) eiketn, (3.3-19)
=TT T
where
g; = e according as g"(x) Z 0, (3.3-20)
it being assumed, of course, that g"(x;) #0, (j =1,2,..., n).

(b) Contributions from critical points of the second kind

Next we will determine the contributions from critical points of the second kind,
namely end points of the interval of integration. We will assume that the end
points are not stationary points of g(x), i.e. that

g'(a) #0, g'(b)y#0.

We re-write the integral (3.3-4) in the form

b
jf(x) elk8(*) gy = ijb[ieikg(x) f(x) dr.
a itkJal dx g’(x)

+ The term |g"(x,)| has a simple geometrical meaning. According to elementary differential geometry
the radius of curvature p(x) at a typical point of the curve y = g(x) is given by p(x)=
(1 + y")¥/y"|. Hence at a point x = x, where y is stationary, p(x;) = 1/ly"(x,)| and we see that the
factor 1/|g"(x,)|¥* which appears to the right-hand side of Eq. (3.3-18) is just the square-root of the
radius of curvature of the phase function g(x) at the stationary point.
The other factor, e*"* 1n the formula (3.3-18) often has an interesting interpretation also, for
example, in connection with the well-known phase anomaly of waves near focus (see Born and Wolf,
1980, Sec. 8.8.4).
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Integrating by parts on the right-hand side we obtain the formula

jbf(x)eikg(x) dx = i[ f(b) cike) _ f(a) eikg(a)] _ ij_d__[ fx) ]eikg(x)dx‘
a iklg'(b) g'(a) kJe dx Lg'(x)

(3.3-21)

Again integrating by parts, we find at once that the third term on the right-hand
side of Eq. (3.3-21) is of the order of 1/k* and hence can be neglected in
comparison with the two other terms. Thus we may conclude that the contribution
from critical points of the second kind is

FO@) ~ L[ LB citsey _ Fa) ks, (3.3-22)
iklg'(b) g'(a)
The preceding analysis indicates that when k is large enough
F(k) ~ FO(k) + FO(k), (3.3-23)

where FO(k) is given by the formula (3.3-19) and F®(k) by the formula
(3.3-22). Rigorous mathematical analysis shows that under the conditions that we
assumed, the expression (3.3-19) for F®(k) and the expression (3.3-22) for
F®(k) indeed represent the leading terms in the asymptotic expansions’ of the
contributions of the critical points of the first and of the second kind, respectively,
to the integral F(k), as k— «.

Finally we note that, since for large values of k, F®(k) is of the order of 1/\/k
whereas F®(k) is of the order of 1/k, the contributions of the interior stationary
points, if there are any, are more important than the contributions of the end
points.

3.3.3 Method of stationary phase for double integrals

Next we consider the asymptotic approximation as k — o to a double integral of
the form

F(k) = ffo(x, y)e*er) dx dy, (3.3-24)

where f(x, y) and g(x, y) are real, well-behaved functions of two real variables x
and y and D is a two-dimensional, simply-connected closed domain. We assume
that the curve, C say, bounding D is smooth, i.e. that the tangent to C varies in a
continuous manner along the curve.

Similar considerations as those that we have just outlined in connection with the
one-dimensional integral lead to the conclusion that, for sufficiently large values
of k, the term exp[ikg(x, )] in Eq. (3.3-24) oscillates so rapidly as the point
(x, y) explores the domain of integration that the various contributions cancel
out, except for contributions from the immediate neighborhood of certain special
points, again called crirical points. This is the essence of the method of stationary
phase for double integrals of the form (3.3-24).

* The complete asymptotic expansions are given by Focke (1954). See also Stamnes (1986), Sec. 8.
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The most important critical points are: points (if any) within the domain of
integration, at which the function g(x, y) is stationary, i.e. points (x1, y1) within
the domain D where

dglx,y)| 38 y)1 g (3.3-25)
dx X1,Y1 ay LY
and points on the boundary curve C for which g(x, y) is stationary with respect to
a small displacement d/ along C, i.e. points on C where

%8 _qg (3.3-26)
3l
Points within the domain D which satisfy the requirement (3.3-25) are called
critical points of the first kind and those on the curve C which satisfy the
requirement (3.3-26) are called critical points of the second kind (see Fig. 3.17).
We will now give a heuristic derivation of the contributions of these types of
critical points to the asymptotic behavior of the double integral (3.3-24) for large
values of k*.

(a) Contributions from critical points of the first kind

We assume that in the double integral (3.3-24), f(x, y) is continuous and that
g(x, y) has continuous second-order partial derivatives throughout the domain D.
We also assume, to begin with, that there is only one critical point Py(x;, y;) of
the first kind in D. Throughout the immediate neighborhood of that point,

g(x, y) = g(xls )’1) + %[(X - xl)zgxx + Z(X - X1)(y - yl)gxy + (y - .V1)zgyy]’
(3.3-27)

where g,, = 82g/dx? etc., evaluated at P. We assume that at P;

8xx8yy — g)zcy # 0. (343—28)

On substituting from Eq. (3.3-27) into Eq. (3.3~24) and by using a strictly similar
argument based on the principle of stationary phase as we made before in

(a) b o

Fig. 3.17 (a) A critical point P; of the first kind: an interior stationary point of
g(x, y). (b) A critical point P, of the second kind: point on the boundary C of
the domain of integration where g(x,y) is stationary with respect to a
displacement d/ along the boundary, measured from some fixed point O on C.

+ More rigorous and more complete treatments are given by Focke (1954), Jones and Kline (1958),
and Chako (1965).
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connection with one-dimensional integrals, we have, when k is large enough,
F(k) - f(xh yl)eikg(,n,)q)fj exp [%ik(gxxsz + 2g\‘y'§77 + gyynz)] dé:dﬁ,

(3.3-29)
where we set
E=x—x;, N=y~-y. (3.3-30)

The term in the exponent of the integrand in Eq. (3.3-29) may be simplified by
a suitable rotation of the &, n-axes about the origin & = n = 0. For that purpose
we set

u==E&cosf + nsin b, (3.3-31a)
v=—&sinf + necos ¥, (3.3-31b)
and choose @ so that the quadratic form in the integrand reduces to the sum of
squares, i.e. so that
gxxgz + 28,50 + g),),r]2 = Au® + Bv?, (3.3-32)
where A and B are some constants, which we will determine later. Then Eq.
(3.3-29) becomes
F(k) ~ f(xy, y1) €8O L (k) I (k). (3.3-33)
where
Li(k) =2 J:exp Gikaud) du, Ip(k) =2 Jomexp GikB?)do. (3.3-34)
The integrals (3.3-34) are given by the formula (3.3-17) and using it, the
expression (3.3-33) becomes
2mELER

alipy e (3.3-35)

F(k) ~
where
e, = e according as A 20,
(3.3-36)

ey = e*"* according as B =2 0.

Next we express the factor (|A||B|)"? in the formula (3.3-35) in terms of the
second-order partial derivatives of the phase function g(x, y). To do so we use
the fact that, under rotation of axes expressed by the formulas (3.3-31), a
quadratic form in two variables has two invariants, namely the trace

3= 8xx + vy (33*378)
and the determinant®

A= gugy — 8y (3.3-37b)

* The quantity A may be shown to be proportional to the Gaussian curvature of the surface
g(x, y) = constant [Eisenhart, 1947, p. 225, Eq. (40.10)].
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In the present case [see Eq. (3.3-32)]

Y¥=A+ B, (3.3-38a)
and
A= AB. (3.3-38b)
It will be convenient to set
€465 = i0. (3.3-39)

If we use Egs. (3.3-37) and (3.3-38) we readily find that
A >0, B> 0implies that A >0, 3> 0,
A <0, B <0implies that A > 0, £ <0, (3.3-40)
A>0,B<0or A<Q0.B>0implies that A < 0.

With the help of these inequalities the formula (3.3-35) becomes

FO(K) ~ 2P0 f(x,, g lenn, (3:3-41)

k|4l

where
o=1 when A >0, ¥ >0,
= -1 whendA >0, 2<0, (3.3-42)
= —i when A <0.

On the left of Eq. (3.3-41) we have written F(k) rather than F(k) to stress that
the expression represents the contribution to the asymptotic approximation from
a critical point of the first kind, assuming there is such a critical point, and that
the requirement (3.3-28) is satisfied.

If the integrand of the integral (3.3-24) has several critical points of the first
kind, the corresponding asymptotic approximation to F(k) is obtained by adding
together their individual contributions, each of which is given by an expression of
the form (3.3-41).

(b) Contribution from critical points of the second kind

We will now give a heuristic derivation for the contribution from a critical point of
the second kind, i.e. for the contribution from a point P,(x,, y,) on the boundary
C of the domain D, where the phase function g(x, y) is stationary with respect to
a small displacement along C [see Eq. (3.3-26)].

Let O be some fixed origin on C and let [ be the distance from O to a typical
point P, on C, taken as positive in the counter-clockwise sense. Let o be the
angle between the tangent to C at that point and the positive x-direction, as
shown in Fig. 3.18. Denoting differentiation with respect to [ by prime we have,
at the critical point £;,

g =gx' +gy =0 (3.3-43)
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y
C
D
c
[+3
D' &)
/
X

O g

Fig. 3.18 Notation relating to evaluation of the contribution from a critical
point P, of the second kind to the two-dimensional integral (3.3-24), in the
asymptotic limit k — .

Hence at P,
tan o = y_/ = ~é. (3.3-44)
x 8y
We first assume that at P,
x'#0 and g,+0. (3.3-45)

It is understood that all the quantities in Egs. (3.3-43)—(3.3-45) are evaluated
at P. 2.
For later purposes we note the following formulas:

1 8

x'=cosa=* =+ J , 3.3-46a
(1 + tan® a)? (g% + gi)l/2 ( )
y =sine=F — 20 _ g — (3.3-46b)

(1 + tan® a)'2 (g% + gy)lf2

or, if we introduce a factor 7 defined as

n= %1 accordingas x'g, Z0, (3.3-47a)

we obtain [noting that according to Egs. (3.3-43), y'g, = —x'g,]

r— — 7]8)'
x'=cosa=— 2 (3.3-48a)
(85 + )"

y =sino =18 (3.3-48b)

(8 + &)
We note that according to Eq. (3.3-43) we have, at P,,

x'y'(gex' + gy') =0

(8y)x"* + (gx")y? = 0.
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Hence in place of Eq. (3.3-47a) we may also write
n==*1 accordingasy'g, S0. (3.3-47b)

In order to evaluate the contribution from P,, we restrict the domain of
integration, in agreement with the method of stationary phase, to a small
neighborhood D’ lying within D (see Fig. 3.18) and make use of Green’s
theorem:

°9Q _oP - )
”D,(ax ay)dx dy fC,[de + Qdy], (3.3-49)

where C' is the boundary of D’, a part of which coincides with a portion of C and
the rest of which lies wholly within D and is described in the counter-clockwise
sense. It will be sufficient to consider the special case when O =0. Then the
identity (3.3-49) becomes

_ij’%dx dy = jcpdx. (3.3-50)

Let us take P = fe*8. Then 3P/dy = ikg,fe' + f,&'* and Eq. (3.3-50) gives

—ik” g,fe*8 dxdy —” ]},e"‘gdxdy=J feedx.  (3.3-51)
D’ D' C’

Now when k is sufficiently large, the second term on the left may evidently be
neglected compared with the first one. Further, since the domain D’ may be
taken to be arbitrarily small, we may replace the factor g, in the integrand of the
first integral by its value at the critical point Py(x,, ;). Moreover, we may also
replace dx on the right by x’ d/. We then obtain the formula

—ikgyffleeikg dxdy = jc’fe‘kgx'dL (3.3-52)

Now in the integral on the right we may replace f and x' by the values these
quantities take at Py(x,, y,), the latter being given by Eq. (3.3-48a). We then
find, after dividing both sides by ~ikg,(x,, y,), that

i i f ik
” Feike dxdy = ~Tz—j neike di, (3.3-53)
. 2 )
D k (gx+ g e
with g in the last integral being regarded as a function of the arclength / of C'.
Next we expand the phase function about the critical point P, which, for

simplicitly, we now take to be at the origin O from which the arclength [ is
measured. We then have, for points on C’,

g() = g(0) + 38"(0)2 (3.3-54)

and hence

J neikg dl = eikg(O)f nelkg"(())ﬂ/z dl
c c

~ ¢k f " el @R gf (3.3-55)
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for sufficiently large values of k. Using Eq. (3.3-17) again, and the symmetry of
the integrand in Eq. (3.3-55), we find that

I

eikg(mr nes @2 gy = (L)m,} ks O£n/4] (3.3-56)
- k|g"(0)]

with the upper or lower sign being taken according as g"(0) 2 0. On substituting

from Egs. (3.3-56) and (3.3-55) into Eq. (3.3-53) we see at once that

jj feikg dx dy ~ 1775\/(277) fe‘kg (3 3,_57)
> Y ) 202 oR | e :
|g | (gx + g_v) 2

where

e=e** according as g"(0) Z 0.

Next we will express the quantity g"(0) (i.e. the value of g"” at the critical point
P,) in a more explicit form. We have at any point on C,

g =8x +gy, (3.3-58)
g” = (gxxX, + gxyy,)x’ + (gyxx, + gyyy,)yl + gxx” + gyy”- (33—59)

We also have, at any point on C,

x'=coswa, y'=sina, (3.3-60)
x" = —(sina)a’, y”=(cosa)a, (3.3-61)
where
=321 (3.3-62)
d/ P

p being the radius of curvature of the curve C at the critical point P,, taken as
positive or negative (i.e. « increasing or decreasing), according as the center of
curvature lies on the same side as the domain D' or on the opposite side, with
respect to the boundary element at P, [p is positive in Fig. (3.18)]. From Egs.
(3.3-60) to (3.3-62),

xr==L =X (3.3-63)

o o
and using these expressions in Eq. (3.3-59), we obtain for g” the expression

" 1 7 ! 15 1 1 !
8" = guxt +2g,x'y + gyt + ;(~g,ty +gx).  (3.3-64)

Now the values of x’ and y' at the critical points are given by Egs. (3.3-48) and,
hence Eq. (3.3-64) gives

2 2

" 8xx - 2nggx v T 8yy8x

g(0) = Bufr T “EoBE T Bpx | T (o7 4 gy (3.3-65)
&xt & P

Finally, on substituting from Eq. (3.3-65) into Eq. (3.3-57) we obtain the

required contribution from a critical point P;(x3, y;) of the second kind to the
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asymptotic approximation to the double integral (3.3-24) as k — c:

FO ) ~ YOOI g ) it (3.3-66)
avre

where

Q= |gug) — 28488y + &nx + (1)(&3 + gi)w] (3.3-67a)
4 *2,Y2
n= %1 according as (x'gy)x,,, Z 0 (3.3-67b)
and

e =e*™* according as Q2 = 0. (3.3~67c)

Finally we will examine whether the formula (3.3-66) remains valid when
x'=0 and g, =0 at P,, a case which we explicitly excluded in the preceding
analysis [see Eq. (3.3-45)]. If x' =cosa = 0, then y’' = sina = *1 and it follows
from Eq. (3.3-43) that at P,, g, =0. We may assume that g, #0 at P,, for
otherwise P, would also be a critical point of the first kind, a situation that we
exclude. In place of Eq. (3.3-50) we now use Green’s theorem in the form

” 90 4y dy = j 0dy. (3.3-68)
D' Ox lod

If we take Q = f ei*8 we obtain, in a manner strictly similar to that used to obtain
Eq. (3.3-52), the formula

ikgx”'D’fe”‘g dxdy = Lfe"kgy’dl, (3.3-69)

On replacing f and y' on the right by the values which these quantities take at P,
and on using Egs. (3.3-48b) and (3.3-47b) we obtain the formula (3.3-53) again,
where now (g2 + g2)"? = |g,|, because g, = 0. The rest of the calculation is the
same as before and leads again to the formula (3.3-66), except that 7 is now given
by Eq. (3.3-47b) rather than by Eq. (3.3-67b).

In general, there will be several critical points of the second kind. Their
combined contribution to the asymptotic approximation to F(k) is obtained by
just adding their individual contributions, each of which is given by the formula
that we have just derived.

Finally we note that according to Eq. (3.3-41) the contribution from critical
points of the first kind to the asymptotic approximation of the double integral
(3.3-24) is of the order of 1/k, whereas according to Eq. (3.3-66) the contribu-
tion from critical points of the second kind is of the order of 1/ k*2. Hence if the
integrand has critical points of the first kind, their contributions will be, in
general, more important than the contributions from critical points of the second
kind.

We assumed throughout that the boundary curve C of the domain D is smooth.
If this is not so, e.g. if there are points on C where the slope of the tangent has a
discontinuity, (a corner of a square domain, for example), such points will also
contribute to the asymptotic approximation. Points of this kind are called critical
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points of the third kind and may be shown to provide a contribution of the order
of 1/k? (see, for example, Stamnes, 1986, Sec. 9.1.4).

3.3.4 An example: far-zone behavior of the angular spectrum representation of
wavefields

As an example of the usefulness of the formula (3.3-41) for the asymptotic
approximation of certain types of double integrals, we will now derive an
expression for the far-zone behavior of a wavefield which is represented in the
form of an angular spectrum of plane waves.

We consider a wavefield U(x, y, z)e ' in the half-space z = 0 (assumed to be
free space), outgoing at infinity in that half-space. According to Eq. (3.2-19) the
space-dependent part of the wavefield in that domain has an angular spectrum
representation of the form

Ulx,y,2) = f{a(p’ q) ekelprrartma) qp g (3.3-70)

where -
= 4+(1 - p2—g)¥  when p? + =<1 (3.3-71a)
= +i(p?+ g2 = D whenp? + ¢> > 1 (3.3-71b)

and kg = w/c, c being the speed of light in vacuo.

Since the evanescent waves, i.e. the plane waves in the integrand of Eq.
(3.3-70) for which Eq. (3.3-71b) applies, decay exponentially in amplitude with
increasing distance from the plane z = 0 they will not, in general, contribute to
the field in the far zone. Hence, for the purpose of determining the far-zone
behavior of the field we may, instead of the integral (3.3-70), consider the
integral

Un(x, y,2) = ” L ap e dpag, (33T
petgr=

which contains contributions from homogeneous waves only.
Let us consider the behavior of Uy at a point P(x, y, z > 0), in the far zone, in
a direction specified by a unit vector s (s,, s, s, > 0). Then

=2, s, =L, 5, =50, (3.3-73)
r r r
where
r=(+y?+ )P (3.3-74)

is the distance of P from the origin (see Fig. 3.10). On substituting from Eq.
(3.3-73) into Eq. (3.3-72) for x, y and z we obtain for Uy the expression

Un(x, y, 2) = H A, q) e*aPa55) dp dg. (3.3-75)
ptges

where

K = kyr, (3.3-76)
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(D, q; 5x> 8y) = pse + gsy + msy, (3.3-77)
with m being given by Eq. (3.3-71a) and
5, = (1= 52— s (3.3-78)

We are interested in the far-zone behavior of Uy; more specifically in the
asymptotic behavior of the double integral on the right of Eq. (3.3-75), as k — <,
with s, and s, being kept fixed. The integral is of the form (3.3-24) and hence the
required asymptotic approximation to Uy is given by the formula (3.3-41) (with
obvious change in the notation), provided the ‘phase function’ g(p, g; S, Sy) has a
single stationary point i.e. a single critical point of the first kind within the domain
of integration. Assuming for the moment that this is so, the formula (3.3-41),
applied to the present case, gives

Ug(sur, 5,7+ 527) ~ 1% gy, qu)eelrmaisnsn, (33-79)

xV|A|

where (p1, g1) is the stationary point, i.e. the point where

g =8 =10 (3.3-80)
(g, = 9g/op. g, = 9g/3q). Further

oc=+1 when A>0,X>0, (3.3-81a)
=—-1 whenA>0,X<0, (3.3-81b)
=—i whenA <0, (3.3-8lc)

where .
A = (gp8ag — 8paht (3.3-82)
2= (gpp + gg)t (3.3-83)

(gop = 3%g/ap? etc.) and the subscript 1 following the parentheses indicates that
the expression in the parentheses is evaluated at (p1, q1). We also assume that the
requirement (3.3~28) is satisfied, i.e. that 4 # 0.

Let us now examine whether, in the present case, the phase function has a
stationary point. We have, on differentiating the expression (3.3-77),

& = Sx + Mps;. (3.3-84)
Now from Eq. (3.3-71a)
m, = —£ (3.3-85)
m

and, with the help of this expression, Eq. (3.3-84) becomes

8 = Sx — Asz. (3.3-86a)
m
Similarly
8= Sy~ —q—sz. (3.3-86b)
m

Hence g will be stationary [Eqgs. (3.3-80) will be satisfied] when p = p1, ¢ = 41,
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with
Sy Sy
P& 41 S (3.3-87a)
miy Sz my S,
where {see Eq. (3.3-71a)]
my = +(1 - pi— qD". (3.3-87b)

Since. the ratiAos 5y/s, and s,/s, are fixed we see from Eq. (3.3-87a) that the phase
function has indeed one and only one stationary point. Moreover since s is a unit
vector,

s, = +(1 - sk — )P (3.3-88)
and it follows from Eqs. (3.3-87) and (3.3-88) that
D1 = Sz, 41 = Sy, My =S, (33—89)

In view of what we have already learned about the physical significance of the
principle of stationary phase this result implies that, in general, one and only one
plane wave in the angular spectrum representation of the field contributes to the far
field at a point located in the direction of the unit vector s, namely the wave that
propagates in that particular direction, the effect of the other waves being canceled
by destructive interference.

To determine the asymptotic approximation to the field in the far zone in the
s-direction we must, according to Eqgs (3.3-80) and (3.3-82), also evaluate the
?zcg)ng )derivatives of the phase function. We have. on differentiating Eq.

.3-84),

m — pm
g = _52($)

m

or, using Eq. (3.3-85),
s. 2
gp[) = —_“(1 + L’?)
m -
Hence, at the stationary point p;, g; given by Egs. (3.3-8%), we have

—[1 + (5—)7] (3.3-90a)

Sz

(gpp)l

In a similar way one finds that

2
(8ggh = —[l + (?) ] (3.3-90b)
(81 = —(—SS—}) (3.3-90¢)

Wit.h these expressions and using the identity (3.3-88). the quantities A and X
defined by Egs. (3.3-82) and (3.3-83) are readily found to have the value

1+ L

2

Sz

S=-

1
A= (3.3-91)
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Hence according to Eq. (3.3-81b) we have, in the present case,
o= -1 (3.3-92)

We must also evaluate a(p, q) and g(p.q) at the stationary point (py, 41),
given by Eqs. (3.3-89). Evidently,

a(pr, q1) = a(se, s,) (3.3-93)
and on substituting from Eq. (3.3-89) into Eq. (3.3-77)
g(p1. 413 56, 5,) = sy + 55 + 57 =1, (3.3-94)

Finally, on substituting from Eq. (3.3-76) and Egs. (3.3-91)-(3.3-94) into the
formula (3.3~79) and recalling that, in general, the far-zone behavior of U and of
Uy are the same, we obtain for the far field the asymptotic formula

: ikor
U(x, y, z) ~ —@(i)a(i, _y_)e ’ as kor — @, (3.3-95)
ko \r ror/r
with the limit being taken along any fixed direction s, =x/r, s,=y/r,

s, =z/r >0(r? = x%+ 2 + z?) pointing into the half-space z > 0.

We note that in view of the elementary relation (3.2-26) between the Fourier
transform Uy(u, v) of the field in the boundary plane z =0 and the angular
spectrum amplitude function a(p, gq), the asymptotic formula (3.3-95) is in
agreement with Eq. (3.2-88), derived from the Rayleigh diffraction integral of
the first kind.

Problems
3.1 Determine the Hilbert transforms of the following functions:
(1) sinwx,
(i) =25,
1
1+ (x/a)? '

where w and a are real non-zero constants.

(iit)

3.2 A scalar wavefield U(r) obeys the Helmholtz equation
(V2 + KHU@r) =0
throughout the half-space z > 0 and behaves as an outgoing wave at infinity
in that half-space. In addition it has the property that in two planes z =
z3;>0and z =z, > 73
Ulx, y, 22) = Ulx, y, 21)

for all values of x and y. Show that:
(a) the field distribution in the plane z = 0 can only have spatial frequency

Problems to Chapter 3 145

33

34

35

3.6

components (u, v) that satisfy the condition

2

u? + vt =k - (——2&) , (u=0,1,2,...);
22— 2

(b) the field distributions in the half-space z > 0 are identical in all planes

that are at distances N(z, — z;) from the plane z = z;, where N is any

integer.

UD(x, y,2) and UP(x,y,z) represent two scalar wavefields which pro-
pagate into the half-space z > 0. Both fields are bandlimited to the spatial
frequency domain u? + v® < k% in a plane z = constant = 0. Show that if in
some plane z = z; > 0 the fields are complex conjugates of each other, i.e. if

U(z)(x’ y,z1) = [U(l)(xz ¥, z0)]*
for all values of x and y, then
U(2)(x’ Y, z1+ d) = [U(l)(x’ Y. 21 d)]*

for all values of d such that |d| < z; and for all values of x and y.

Consider a monochromatic wavefield, U(x, y, z)e™*', which propagates
into the half-space z >0 and whose angular spectrum representation con-
tains only homogeneous waves.

Derive an expression for the field U(x, y,0) in the plane z = 0 from the
knowledge of the field in the plane z = z; >0 in a form analogous to the
Rayleigh diffraction formula.

Consider a monochromatic wavefield U(x, y, z) 7%, propagating into the
half-space z > 0. Let

CEmz)= ”U(C+ x,n+y, 2)U¥x, y, z)dxdy

be the spatial autocorrelation function of the field in a particular z-plane.

(a) Express C(, 7; z) in terms of the complex spectral amplitude function
a(p, q) of the angular spectrum representation of the field.

(b) Show that it is possible for C(¢, n; z) to be independent of z. Find the
general condition which the field in the boundary plane z = 0 must satisfy in
this case. Can this condition be satisfied if the field in the boundary plane is
of finite support? Justify your answer.

Show that there are solutions of the Helmholtz equation representing
propagation into the half-space z > 0 which are of the form

U(x, y,2) = #f(x, y),

where S is a real constant.

Derive a general expression for the function f(x, y) when 0 < 8 < k and
discuss the structure of the angular spectrum representation of such fields.
Why are solutions of this kind known as non-diffracting beams?
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3.7 Solutions to a wide class of two-dimensional monochromatic wave-propaga-
tion problems are expressible in the form

+1 i H — 12 0s 6]
kr, 6 =j f(l) elkr[zsxn8+(1 12)M2c dr,
wkr, 0) = [

where (r, 8), 0 < § <x/2, are polar coordinates of a field point and k is a
positive constant (wave number). ' ‘
Obtain an asymptotic approximation for y(kr, 6) as kr — o, with 6 fixed.

3.8 Starting from the integral representation
1 (™ s
]n(x) — _J’ el(xsmz—nl) dr
27 J-n

of the Bessel function of the first kind, derive an asymptotic approximation
for J,, valid for large values of x (x > n).

3.9 In the theory of diffraction of waves at a circular aperture, the following
integral arises:

27 eikao
7= [ "S- peosydo,
0
where p is a positive constant and
o= (1—-2pcos¢ + A2,
Further & = 2m/A is the wave number and a is the radius of the aperture.

Assuming that p# 1 find the asymptotic approximation to J, when the
radius of the aperture is large compared to the wavelength A (ka >> 1).

4

Second-order coherence theory of scalar
wavefields

4.1 Introduction

We will now study the properties of fluctuating electromagnetic fields, paying
attention mainly to the optical region of the electromagnetic spectrum. It seems
hardly necessary to stress that every electromagnetic field found in nature has
some fluctuations associated with it. Even though these fluctuations are, as a rule,
much too rapid to be observed directly, one can deduce their existence from
suitable experiments that provide information about correlations between the
fluctuations at two or more space-time points.

The simplest manifestations of correlations in optical fields are the well-known
interference effects that arise when two light beams that originate from the same
source are superposed. With the availability of modern light detectors and
electronic circuitry of very short resolving time, other types of correlations in
optical fields began to be studied in more recent times. These investigations, as
well as the development of lasers and other novel types of light sources, led to a
systematic classification of optical correlation phenomena and the complete
statistical description of optical fields. The area of optics concerned with such
questions is now generally known as oprical coherence theory.

The first investigations of coherence phenomena are due to Verdet (1865, 1869)
and von Laue (1907a, b). Some early investigations of Stokes (1852) and
Michelson (1890, 1891a, b, c, 1892, 1920) although not explicitly mentioning
coherence — because this concept is of a much later origin — have also contributed
to the clarification and development of this subject. These investigations were
carried further chiefly by Wiener (1927-1928, 1929, 1930), van Cittert (1934)
Zernike (1938), Hopkins (1951, 1953, 1957), Wolf (1954a,b, 1955, 1959, 1981a, b,
1982, 1986); Blanc-Lapierre and Dumontet (1955), Pancharatnam (1956, 1957,
1963a, b, 1975), and Agarwal and Wolf (1993). The main outcome of these
researches’ was the introduction of a precise measure of the correlations between
the fluctuating field variables at two space-time points and the formulation of
dynamical laws which the correlation functions (in general a set of second-rank

# For a fuller discussion of the historical development of coherence theory, see Born and Wolf, (1980),
Sec. 10.1. Some of the basic papers on this subject are reprinted in Selected Papers on Coherence and
Fluctuations of Light, L. Mandel and E. Wolf eds., (Dover, New York, 1970), Vol. 1 (1950-1960),
Vol. II (1961-1966); reprinted by SPIE Optical Engineering Press Milestone Series, MS 19, Parts I
and II (Bellingham, WA, 1990). These two volumes also contain a comprehensive bibliography.
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correlation tensors involving the electric and the magnetic fields) obey in free
space. This ‘second-order’ theory provides a unified treatment of all the well-
known interference and polarization phenomena of traditional optics.

Soon after this stage of development of the subject was completed, some quite
new optical correlation phenomena were discovered that required for their
elucidation the analysis of correlation properties of a wider class (which will be
discussed in Chapter 6). Studies of such effects have eventually led to the
formulation of a general theory of optical correlations and to the complete
statistical description of optical fields. This general formulation has been obtained
within the framework of both the classical and the quantum theory.

In this and in the next two chapters we will present an account of optical
coherence theory on the basis of the classical theory of the optical field. An
account based on quantum theory will be presented in later chapters.

4.2 Some elementary concepts and definitions

It will be useful to begin with a few elementary concepts and definitions that are
customarily employed in discussions of simple optical correlation experiments.

4.2.1 Temporal coherence and the coherence time

Consider a beam of light from a small source 0. We assume that the light is
quasi-monochromatic, i.e. that its bandwidth Av is small compared to its mean
frequency ¥ and that it is macroscopically steady.t Suppose that the beam is
divided into two beams in a Michelson interferometer at a point P; and that the
two beams are re-united after a path difference Al = cAt (c being the speed of
light in vacuum) has been introduced between them (Fig. 4.1). If the path
difference Al is sufficiently small, interference fringes are formed in the plane of
observation %. The formation of the fringes is said to be a manifestation of
temporal coherence between the two beams, since their ability to form the fringes
may be explained as arising from correlations that exist between them under
conditions where a time delay At has been introduced between the beams. It is a
well-known experimental fact that the interference fringes will be formed only if
the time delay At is such that

AtAv=<1, ©(42-1)
where Av is the bandwidth of the light. The time delay
At~ L (4.2-2)
Av
is known as the coherence time of the light and the corresponding path difference
Al = cAt ~ - (4.2-3)
Av

# By ‘macroscopically steady’ we mean that it does not exhibit fluctuations on a macroscopic
time-scale. In the more precise language of the theory of random processes, the fluctuations can be
represented as a stationary random process (Section 2.2), whose mean period and correlation time
are much shorter than the averaging interval needed to make an observation.
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Ll My

|

B
Fig. 4.1 Temporal coherence illustrated by means of an interference experi-
ment using a Michelson interferometer. o = source, D = beam divider, M,,
M, = mirrors, & = plane of observation. (For the sake of simplicity, a com-
pensating plate and a collimating lens system are not shown.)

is called the coherence length, or more precisely, the longitudinal coherence length
of the light. Since v = ¢/A, where A is the wavelength, Av~ cAA/A?, the expres-
sion for the coherence length may also be expressed in the form

A\-
Al~ (H)a’ (4.2-4)

where 1 is the mean wavelength.

A rough understanding of this phenomenon may be obtained as follows. The
fringes in the observation plane % may be considered to arise from the addition of
spatially periodic distributions, each of them being formed by a frequency
component present in the spectrum of the light. Now the periodic distributions
formed by light of different frequency components will have different spatial
periodicities. Hence, with increasing time delay between the two beams, their
addition will lead to a less and less well-defined fringe pattern, because the
maxima of the various monochromatic contributions will get more and more out
of step. For a sufficiently long time delay, the periodic intensity distributions will
get so much out of step that the superposed pattern will no longer exhibit any
pronounced intensity maxima and minima, i.e. no fringe pattern will be formed.
Simple calculations show that with increasing time delay the fringes will disappear
when At reaches a value that is of the order of magnitude indicated by the
relation (4.2-2).

Alternatively we may gain some understanding of these effects from the
following considerations, which utilize the concept of correlations. According to
Section 3.1.2 a sample function of a quasi-monochromatic light disturbance,
regarded as a stationary random process, may be pictured as a succession of
slowly modulated wave trains, whose mean frequency coincides with the mean
frequency of the light and whose duration is of the order of the reciprocal
bandwidth of the light, i.e. of the order of the coherence time [Eq. (4.2-2)]. The
beam divider D of the Michelson interferometer splits each wave train into two
wave trains of the same general form but of reduced amplitudes. At the plane of
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observation 9% the wave trains of the two partial beams become superposed after a
time delay has been introduced between them, i.e. after the corresponding wave
trains in the two beams have been shifted relative to each other. Clearly there will
be a strong correlation between the fluctuations in the two beams at 9 if the time
delay introduced is short compared to 1/Av, i.e. short compared to the coherence
time of the light, and there will be effectively no correlation between them when
the time delay is much greater than 1/Av. The formation or the absence of
interference fringes in the observation plane % is thus directly related to the
correlation or the lack of correlation, respectively, between the fluctuations of the
two partial beams reaching %.

In Section 7.3 we will discuss this phenomenon in a broader context and from a
more rigorous standpoint, in connection with Michelson’s well-known method for
determining the energy distribution in spectral lines from two-beam interference
experiments.

We conclude this elementary discussion by two simple examples which illustrate
the order of magnitude of the coherence time and of the coherence length in
typical cases. For light generated by thermal sources (incandescent matter, gas
discharge) with a high degree of monochromaticity (i.e. a narrow spectral width),
the bandwidth Av is typically of the order of 10® 57! or greater. The correspond-
ing coherence time Ar is of the order of 107%s and the coherence length
Al ~3 %100 cms™! x 1078 s ~ 3m. On the other hand, for a well-stabilized laser
Av can be as large as 10° s™* (10 kHz), so that light generated by such a laser has a
coherence time of the order of 10™*s and a coherence length Al ~3 X 10 ems™!
x 107*s ~ 30km.

4.2.2 Spatial coherence and the coherence area

Next let us briefly consider another type of interference experiment, the Young’s
interference experiment with quasi-monochromatic light from an extended source
o (Fig. 4.2). We assume that o is a thermal source, such as incandescent matter or
gas discharge. We consider a symmetrical arrangement for simplicity, with the
source having the form of a square of sides As. If the pinholes Py and P, are
sufficiently close to the axis of symmetry, interference fringes will be observed in

Py
K6
As R 0 P
o
Py
o B

Fig. 4.2 Spatial coherence illustrated by means of Young's interference experi-
ment with light from a thermal source o.
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the neighborhood of the axial point P at the plane of observation %. The
appearance of the fringes is said to be a manifestation of spatial coherence
between the two light beams reaching P from the two pinholes P; and P,
because the ability of the two beams to form fringes may be explained as arising
from the correlation that exists between them under conditions where a spatial
separation (the distance P;P;) has been introduced. In performing an interference
experiment of this kind it is found that if the separation between the source and
the plane ${ containing the pinholes is large enough, interference fringes will be
formed near P only if

AbAs < 1, (4.2-5)
where A6 is the angle that the distance PP, of separation between the pinholes
subtends at the source and A = ¢/¥ is a mean wavelength of the light. If R denotes
the distance between the plane of the source and the plane containing the
pinholes, the foregoing result implies that, in order to observe fringes in the
neighborhood of P, the two pinholes must be situated within a region around the
axial point Q in the plane s{, whose area AA is given by the order of magnitude
relation

272
AA ~ (RABY ~ ——RSA , (4.2-6)

where § = (As)? is the area of the source. This region is said to be the coherence
area of the light in the plane ${ around the point O and the square-root of the
coherence area is sometimes called the transverse coherence length. It should be
noted that according to Eq. (4.2-6), the coherence area becomes larger and
larger with increasing R. However, there is an invariant quantity associated with
the coherence area, independent of the distance R, namely the solid angle
AA/R?. According to Eq. (4.2-6) this solid angle is given by the expression

AQ~77/S. (4.2-7)

It is sometimes useful to express the coherence area in an alternative form, that
involves the solid angle A2’ that the source subtends at Q. Since S = R?AQ’ we
obtain at once from (4.2—6) the expression

AA ~ /ALY (4.2-8)

for the coherence area.

A rough elementary derivation of Eq. (4.2-5) may be obtained as follows.
Each source point gives rise to an interference pattern in the plane of observation.
Since fluctuations in the light from different points of a thermal source may be
assumed to be mutually independent and hence have no fixed phase relationship
to each other, the intensity distribution in the plane % is obtained by adding
together, at each point, the intensities of the individual patterns generated by the
different source points. Now the maxima of these patterns will be displaced with
respect to each other. If the source and the positions of the planes & and & are
kept fixed but the separation between the two pinholes is gradually increased
from near coincidence to larger and larger values, i.e. if the angle A6 in Fig. 4.2 is
gradually increased, the individual patterns will get more and more out of step
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and will eventually give rise to an essentially uniform distribution near the axial
point in the plane of observation. A simple calculation shows that this happens
when A6 ~ A/As, in agreement with Eq. (4.2-5).

As in the case of temporal coherence, we may gain a somewhat deeper
understanding of the phenomenon of spatial coherence if we analyze the experi-
ment in terms of the concept of correlations. This will be done in Section 4.3. It is
however possible, as we will now show, to obtain a qualitative understanding of
the origin of correlations in a field, generated by an extended thermal source,
from very simple considerations.

The essence of the phenomenon may be readily understood by considering,
instead of the extended source o, two point sources S; and S, (Fig. 4.3). Let us
assume that the light emitted by these sources is quasi-monochromatic, with the
same mean frequency v and the same effective spectral range Av and that the
sources are statistically independent, so that there are no correlations between the
two light fields generated by them. Let us now consider the light disturbances at
the two points P; and P, in the space surrounding the source. If we ignore, for the
sake of simplicity, the polarization properties of the field, we may represent the
light disturbances reaching P; from the source points S; and S, by complex
analytic scalar signals V;(¢) and V,(t), respectively. Similarly we may represent
the light disturbances reaching P, from the two source points by complex analytic
signals V() and V5(¢). o .

If the difference between the distances Ry = S;P; and Ry = $; P, is small
compared to the coherence length (~ ¢/Av) of the light, one obviously has, except
for a deterministic phase factor,

Vi) = Vi(2). (4.2-9a)
Similarly if the difference between Ry = S, P; and Ry = 5P, is smgllhcc?mpared
to the coherence length of the light, one has, except for a deterministic phase
factor,

Vi(r) = Va(1). (4.2-9b)
The total field at P, arises from the superposition of the two fields generated by
each of the two point sources (see Fig. 4.3) and hence is given by

V(Pl, t) = Vl([) + Vz(t); (42—103)

Py

Fig. 4.3 Illustrating the origin of spatial coherence at two points P, and P,
generated by two uncorrelated point sources §; and S;.

(%]
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similarly, the total field at P, is given by
V(Py, t) = Vi(t) + Vi(0). (4.2-10b)

Now since Vi(f) and V(1) are generated by the source points S; and S, which
are statistically independent, these two disturbances will not be correlated. For
the same reason Vi(t) and V5(t) will also not be correlated. However the two
sums Vi(t) + Vo(t) and Vi(z) + V() will evidently be correlated because of the
relations (4.2-9). This conclusion is illustrated graphically in Fig. 4.3, where the
(essentially identical) wave trains V; and V{ arriving at the points P; and P, from
S; are drawn in solid lines, and the (essentially identical) wave trains V, and V}
arriving at P; and P, from §, are shown in dashed lines. Clearly, although the
solidly drawn wave trains and the wave trains drawn in dashed lines may be of
completely different forms, the sum of the two wave trains arriving at P; and the
sum of the two wave trains arriving at P, will be similar to each other. Thus the
fields at P, and P,, represented by equations (4.2-10), will indeed be strongly
correlated. Hence we see that, even though the two sources S, and S, are
statistically independent, they will give rise to correlations in the field and these
correlations are generated in the process of propagation and superposition.

The model that we just discussed applies only to a particular geometrical
situation (Ry; ~ Ry, Ry ~ Ry). It is clear that, when the geometrical conditions
are relaxed, the situation becomes somewhat more complicated. Instead of a high
degree of correlation between the total fields at the points P; and P,, one then
evidently finds a somewhat lower degree of correlation, depending on the exact
location of the two points. We will return to this problem in Section 4.4.4 in a
more general context.

We will illustrate our elementary analysis relating to spatial coherence by a few
examples. Suppose that the linear dimension of the thermal source o (Fig. 4.2) is
As =1mm and that the source emits quasi-monochromatic light of mean wave-
length A = 5000 A.. Let the plane £ of the pinholes be situated at a distance R =2
meters from the plane containing the source. Then, according to Eq. (4.2-6), the
coherence area in the plane s of the pinholes is

2 x 10?
1071

2
AA = ( ) (5 x 1079 cm? = | mm?, (4.2-11)
i.e. its linear dimensions are of the order of 1 mm.

As a second example let us estimate the coherence area in a beam of sunlight,
illuminating the surface of the earth. To satisfy our assumption of quasi-mono-
chromaticity, we would first have to pass the sunlight through a filter with a
narrow passband, say around the wavelength 1 ~ 5000 A. Now the angular radius
that the sun’s disk subtends at the surface of the earth is approximately
a = 0°16' ~ 0.00465 radians. Hence, neglecting limb darkening, the solid angle
A that the sun’s disk subtends at the earth’s surface is AQ' =~ 7ma? ~
3.14 X (4.65 x 1073)? s1. ~ 6.81 x 107% sr. and thus, according to Eq. (4.2-8) the
coherence area ist
AA ~ (X107 em? = 3.67 x 1073 mm?. (4.2-12)

6.81 x 1073

# This result for sunlight appears to be the first estimate of the size of a region of coherence that can be
found in the literature. It was obtained by Verdet (1865, 1869).



154 2nd-order coherence theory of scalar wavefields

Hence the linear dimension of the coherence area on the surface of the earth of
filtered sunlight is of the order of (3.67 x 107%)¥? mm ~ 0.061 mm.

It is instructive to compare the coherence area of light reaching the earth from
the sun with the coherence area of light that arrives from a more distant star. For
this purpose we first note that, according to Eq. (4.2-8), the coherence area
varies inversely with the solid angle that the source subtends at the axial point Q
of the plane where the coherence area is to be estimated. Now when viewed from
the earth’s surface, the angular diameter of a typical star will be many orders of
magnitude smaller than the angular diameter of the sun. Hence the coherence
area of the star light reaching the earth’s surface must be very much larger than
that of sunlight. Consider, for example, the star Betelgeuse (o Orionis). This
actually is the first star whose angular diameter was determined by an interfero-
metric technique (described in Section 7.2) and it was found to have the value
2a ~ 0.047 seconds of arc ~ 2.3 X 1077 radians. The solid angle A€ that this star
subtends at the surface of the earth is, therefore, AQ' ~ma? ~4.15 x 1074
sr. Hence the coherence area of light from Betelgeuse on the earth’s surface, after
the light has been passed through a filter that transmits a narrow band around the
wavelength A = 5000 A, is

(5 x107% em)®
4.15 x 107

AA ~ 6 m?. (4.2-13)

This result implies the existence of appreciable correlations between light vibra-
tions reaching the earth’s surface from Betelgeuse at two points on earth up to a
maximum separation of about /6 meters ~ 2.45 meters ~ 8 feet. Actually many
stars have angular diameters that are appreciably smaller than that of Betelgeuse,
so that a high degree of correlation exists over even greater areas in the light
reaching the earth’s surface from such stars.

Our analysis also gives a rough indication as to why stellar images formed by
well-correlated telescopes have, on good observing nights (i.e. in the absence of
appreciable atmospheric tremor), the appearance of a diffraction pattemn, very
familiar from the theory of imaging with strictly coherent light [see, for example,
Born and Wolf (1980), Sec. 8.5]. For as we just saw, there exists a high degree of
correlation in the star light entering the aperture of the telescope over areas which
are generally much larger than that of the aperture. Consequently, the secondary
wavelets entering the telescope and propagating to the image plane will superpose
essentially in the same way as wavelets in a completely coherent beam.

We introduced the concept of spatial coherence of light generated by a thermal
source that directly illuminates a distant plane in free space. It is, however,
evident that this concept applies much more generally, irrespective of the nature
of the source and of the surrounding medium. The existence of spatial coherence
in the field may be revealed by interference effects in a two-pinhole experiment.
The appearance of the interference fringes is again a manifestation of the
correlations between light vibrations at the two pinholes. Naturally the coherence
area will not, in general, be given by the simple formulas (4.2-6) and (4.2-8). We
will learn later on (Section 4.4) how the degree of correlation may be determined
for light generated by any type of source.
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4.2.3 Coherence volume and the degeneracy parameter

We will now introduce two other concepts which are also useful in gaining
intuitive insight into the coherence properties of light.

Consider an optical field consisting of a nearly plane, quasi-monochromatic,
linearly polarized wave. The right-angle cylinder, whose base is the coherence
area AA in a plane perpendicular to the direction of propagation of the wave and
whose height is the longitudinal coherence length (Al) (see Fig. 4.4), is known as
the coherence volume. It clearly occupies a domain of volume

AV = AAAL. (4.2-14)

For a quasi-monochromatic plane wave, the coherence volume would be inde-
pendent of the specific location of the volume. In the more realistic case when the
wavefield is only approximately a plane wave, A4, and consequently AV, will
depend on the location, and hence it is then more appropriate to speak about the
coherence volume around a particular point in the field.

Suppose that the field is generated by a thermal source ¢ that has the form of a
square of area S and that emits quasi-monochromatic light of mean wavelength A.
Then, according to Eq. (4.2-6), the coherence area around the axial point O in a
plane ¢ parallel to the source and at a large distance R from it (see Fig. 4.2) is
given by AA ~ (R?/S)2%. According to Eq. (4.2-4) the coherence length is given
by Al ~1?/AA. Hence Eq. (4.2-14) leads to the following expression for the
coherence volume around the point Q:

LATRAT

AV ~ ( )(——)ﬁ (4.2-15a)
S /\AA

Since S/R? = AQ' is the solid angle that the source area S subtends at the point

Q, we may also express AV as

AV ~ L <i>z3. (4.2-15b)
AQ'\ AL

Let us estimate the coherence volume for the three examples that we con-

sidered in Section 4.2.2 in connection with the coherence area, assuming that in

each case the effective wavelength range of the filtered light AA=10""A~

5x 10" A, with 1~5000A as before. In this case, the coherence length,

Area of coherence, A4

Fig. 4.4 Illustrating the concept of the coherence volume.
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according to Eq. (4.2-4) is Al =5m. For a two-dimensional thermal source of
area 1 mm?, we found that the coherence area around the axial point Q in a plane
parallel to the source and at distance R =2 m from it has size AA ~1 mm? [Eq.
(4.2-11)]. Hence, according to (4.2-14) the coherence volume around Q is

AV ~1mm? x 5m = 5cm’. (4.2-16)

For filtered sunlight reaching the earth’s surface, we found [Eq. (4.2-12)] that
AA ~3.67 X 107> mm?, so that the coherence volume of sunlight on the earth’s
surface is

AV ~3.67 % 107 mm® X 5m ~ 18 mm?. (4.2-17)

For filtered light from the star Betelgeuse, we found that AA ~6m? [Eq.
(4.2-13)] so that

AV ~6m? x 5m = 30m’, (4.2-18)

We derived the expressions (4.2-15) for the coherence volume on the assump-
tion that we are dealing with radiation far from a thermal source. However, the
concept of a coherence volume clearly applies much more generally. Consider, for
example, light from a common type laboratory He:Ne laser. Let as assume that
the cross-section of the laser beam is 1 mm? and that the mean wavelength of the
light is = 6 X 107> cm (¥ ~ 5 x 10" Hz). Over a short time interval, of the order
of a few seconds, one can easily achieve stability that ensures a narrow bandwidth
Av~ 10° Hz, implying an effective wavelength range AA~1.2x 107" cm. Ac-
cording to Eq. (4.2-3) the coherence length during such a short time interval will
be of the order Al ~3x 10° X 107%cm ~ 3 x 10%cm. Assuming that the laser
beam is spatially coherent over its whole cross-section (which would be the case if
the laser operated on a single mode), Eq. (4.2-14) may clearly be used to provide
an estimate of the coherence volume AV and one finds that

AV ~ 1072 x 3 x 10* em® = 300 cm®. (4.2-19)

The concept of coherence volume has an interesting interpretation in the
context of quantum mechanics, when the light is analyzed in terms of photons. To
see this let us again assume, for the sake of simplicity, that the field is that of a
nearly plane, quasi-monochromatic wave and let p(py, py, p;) be the momentum
of a photon that is located* in the neighborhood of a point r(x, y, z). We may
associate with the field a six-dimensional phase space of the photons, with
coordinates x, y, Z, Py, Py, P;- Now x and p, cannot be measured simultaneously
with accuracy greater than allowed by the Heisenberg uncertainty relation
AxAp,=hf2 (h= h/2m, h being Planck’s constant) and similarly for the other
conjugate pairs Ay, Ap, and Az, Ap,. It is thus natural to imagine the phase
space to be divided into cells, each of which has the size

AxAyAzApAp,Ap, = k3. (4.2-20)

Photons of the same polarization, which belong to a region of the phase space

 Caution must be exercised in speaking about the position of a photon, since a photon cannot be
localized more closely than to a distance of the order of the wavelength (see Section 12.11).

4.2 Some elementary concepts and definitions 157

whose size is not greater than indicated by Eq. (4.2-20), are imtrinsically
indistinguishable from each other.

The coherence volume that we introduced from considerations based on
classical theory alone may now readily be shown, at least in typical cases of
practical interest, to be precisely the volume AxAyAz of ordinary space, given by
the formula (4.2-20), subject to the constraints imposed on the product
Ap.Ap,Ap, by the geometry and by the bandwidth of the light.* In other words
the coherence volume is that region of space throughout which the photons in the
field are intrinsically indistinguishable from each other. To justify this statement let
us first estimate the uncertainty in the components of the momentum of a photon
in the far zone of a field generated by a plane, quasi-monochromatic thermal
source o of linear dimensions As. Let 2¢ denote the angle that the source
subtends at a point O, assumed for simplicity to lic on the normal to o, at
distance R from o in the far zone (Fig. 4.5). According to the de Broglie relation
(Born and Wolf, 1980, Sec. 3 of Appendix II), the momentum p of the photon is
related to its wavelength A by the formula

h
=5 4.2-2
P (4:2-21)

where s is the unit vector in the direction of p. The uncertainties in the x- and
y-components of the momentum arise from our ignorance of the exact point of
the source from which the photon was emitted and is clearly given by the
projections of the momentum vector onto the x- and y-axes, assumed to lie in the
plane of the source. Hence
Ap, = Ap, ~2psing
or, using Eq. (4.2-21),
2h . h As
Ap, = Ap, ~ “Z=sin p ~ ——, 4.2-22

x y s o ( )
where 1 is the mean wavelength of the light. With ¢ assumed to be sufficiently
small, the uncertainty in the z-component of the momentum arises principally
from the uncertainty in the wavelength. If AA is the effective wavelength range of
the light, we have from Eq. (4.2-21)

h

Ap, ~ Ez—A)L. (4.2-23)

As \\Q

R |

z

Thermal source o

Fig. 4.5 Tllustrating the analysis leading to Egs. (4.2-22) and (4.2-23) for the
uncertainties in the components of the momentum of a photon emitted by an
extended thermal source.

# This result was first noted by Hanbury Brown and Twiss (1957), Appendix I, p. 321.
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If follows from Eqs. (4.2-22) and (4.2--23) that in the present case
(ALS

W RY
where again S = (As)? is the order of magnitude of the source size. On substitut-
ing from (4.2-24) into the expression (4.2-20) for the size of a cell in phase

space, we see that the volume of space around the point @, throughout which
photons emitted by our source are intrinsically indistinguishable, is

o\ 3

AxAyAz = (R—)(i)/?. (42-25)
S J\AA

Comparison of Eq. (4.2-25) with Eq. (4.2-15a) shows that this value is precisely

the coberence volume derived by considerations based on classical theory. Thus

we have justified, in this special but important practical case, our earlier assertion

as to the quantum-mechanical significance of the coherence volume.

As another example let us consider blackbody radiation in a large thermally
insulated enclosure. It is well known that photons in a region of volume V' inside
the enclosure, with energies in the range AE = hAv around the mean energy
E = h¥, will belong to the same cell of phase space if

ApAp,Ap, = h (4.2-24)

8V Ay < 1. (4.2-26)
c
This result implies that the maximum size of any region inside the cavity,
throughout which the photons are indistinguishable, is given by V = /(87 AY)
or, using the relation ¥ = ¢/4,

V= L(i)ﬁ. (4.2-27)
8T\ AA

This formula is precisely of the form of Eq. (4.2-15b) with the angle A<
replaced by the factor 87. Now AQ" in Eq. (4.2-15b) represents the solid angle
that the source subtends at the point Q, i.e. the solid angle formed by all the
directions along which radiation from the source can reach the coherence volume.
Blackbody radiation inside a thermally insulated cavity can be regarded as a
mixture of plane waves (with an appropriate statistical distribution of amplitudes
and phases) which propagate in all possible directions. Hence in this case
A = 4n. The extra factor 1/2 can also be readily understood,; it arises from the
fact that the blackbody radiation is unpolarized and may thus be regarded as
consisting of two independent polarized states (e.g. linear or circular) for each
direction of propagation. Thus Eq. (4.2-27), derived from considerations of
indistinguishability of photons, is again in complete agreement with the expres-
sion for the coherence volume, based on classical wave theory.

It is of interest also to examine the average number of photons of the same
spin-state that are contained in a coherence volume for typical optical fields. This
quantity is known as the degeneracy parameter of the field (Mandel, 1961a). In
the language of quantum statistics, the degeneracy parameter represents the
expectation value of the number of photons that are in the same quantum state.
We will see later (Section 14.6) that this parameter plays an important role in
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connection with photoelectric detection of light fluctuations. The values of the
degeneracy parameter can be significantly different for thermal light and for laser
light as we will now show.

For blackbody radiation at equilibrium temperature 7, the value of the
degeneracy parameter § at frequency v is known from early work of Einstein
(1912) (see also Bothe, 1927 and Fiirth, 1928) to be given by

5= 1

= ST (4.2-28)

(h is Planck’s constant, kg is Boltzmann’s constant). For light of frequency
v=75x 10" Hz from a typical incandescent source at temperature 7 = 3000K,
one obtains from (4.2-28) the value

5~3%107%, (4.2-29)

implying that such light is highly non-degenerate (6 << 1). In order that 6§~ 1 at
this frequency it is necessary for the temperature to be of the order T ~
3 x 10* K, as can be readily deduced from Eq. (4.2-28).

The situation is quite different for laser light. Consider, for example, 2 common
type laboratory He:Ne laser with a 1 milliwatt power output, generating a beam
of 1 mm? cross-section, of mean wavelength A =6x 107 cm (v~ 5 X 10 Hz).
The number of photons per unit volume, i.e. the energy per unit volume
expressed in terms of energy of a single photon, in a light beam generated by such
a laser is

1073
p =
1072 X (6.67 X 107%) x (3 x 101) x 3 x 10%°
~ 107 photon/fem’. (4.2-30)

photon/cm®

We have seen earlier [Eq. (4.2-19)] that over a short enough time interval, the
stability of the output is such that the laser light has a coherence volume
AV ~ 300 cm’. Hence in this case the degeneracy parameter has the value

§=p AV ~1x 107 x 3 x 102 = 3 x 10°. (4.2-31)

Such light is therefore highly degenerate (&>>1). Comparison of Eq. (4.2-31)
with Eq. (4.2-29) shows a difference of 13 orders of magnitude in the degenera-
cies of blackbody radiation and of the laser beam.

4.3 Interference of two stationary light beams as a second-order correlation
phenomenon

In the preceding section we introduced rough criteria which indicate conditions
under which simple interference effects may be expected to take place. We also
briefly noted that such phenomena depend on correlations that exist between the
light fluctuations in the interfering beams. Correlations may, of course, be
analyzed by means of the mathematical techniques of the theory of stochastic
processes, described in Chapter 2. A general treatment along these lines will be
presented in Chapter 8. However, when one is concerned with the average
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intensity, as is often the case, one only needs to take into account second-order
correlations (correlations between the light vibrations at two space-time points).
We will now introduce a precise measure for such correlations from a detailed
analysis of a simple interference experiment. This measure, which is classical in
this context, will later be shown (in Chapter 12) also to correspond to a measure
defined quantum mechanically.

4.3.1 The laws of interference. The mutual coherence function and the complex
degree of coherence

In order to bring out the essential aspects of the theory we will ignore polarization
phenomena throughout this chapter. These will be treated in Chapter 6.

Let V®(r, r) denote a real field variable at a point represented by a position
vector r, at time r. This function may represent, for example, a Cartesian
component of the electric field or of the vector potential. We purposely do not
specify the nature of V{® more closely at this stage, since the main analysis is
independent of any particular choice of the field variable and different choices
may be best suited for describing different experimental situations. In the case of
photoelectric detection, it is appropriate, as will be shown in Section 14.1, to
consider the vector potential (more precisely the analytic signal associated with it)
as the basic field variable. But there are other detection processes for which other
choices may be more suitable.

For any realistic light beam, V' will be a fluctuating function of time, which
may be regarded as a typical member of an ensemble consisting of all possible
realizations of the field. There are several reasons why V® will fluctuate. When
the light is produced by a thermal source the fluctuations arise mainly because
V@ consists of a large number of contributions that are effectively independent of
each other, so that their superposition gives rise to a fluctuating field which can
only be described in statistical terms. But even light from a well-stabilized source,
such as a laser, will exhibit some random fluctuations, since the effect of
spontaneous emission is never entirely absent. In addition there will be other
sources of irregular fluctuations, for example, vibrations of the mirrors at the end
of the resonant cavity.

It is convenient to carry out the analysis not in terms of the real field variable
V®(r, t), but rather in terms of the associated analytic signal V (r, ), which we
discussed in detail in Chapter 3. We will see later (Section 14.2) that the complex
field V(r, t) appears naturally in the theory of photoelectric detection of light
fluctuations as an eigenvalue of the operator which represents the annihilation of
a photon at the space-time point (r, ¢).

Consider now a quasi-monochromatic light represented by a statistically station-
ary ensemble of analytic signals V(r, ¢). By quasi-monochromatic light we mean,
as mentioned earlier, that the effective bandwidth of the light, i.e. the effective
width Av of its power spectrum at each point r, is small compared with its mean
frequency v:

g & 1. (4.3-1)

v
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One may regard such a field as being represented at each point by an ensemble of
quasi-monochromatic signals (see Section 3.1.2) centered at the frequency 7.

Because of the high frequency of optical vibrations, V cannot be measured as a
function of time with commonly available optical detectors. Optical periods are of
the order of 1071 5, whereas photoelectric detectors have typically resolving times
of the order of 10™"s, though special techniques exist by means of which still
shorter resolving times may be achieved. However, although one cannot study the
rapid time variations of the field, one can make measurements of the correlations
of the field at two or more space-time points. Let us consider such measurements
when the optical field is a well-collimated quasi-monochromatic light beam.

Suppose that the light vibrations at points Pi(r;) and P,(r;) in the beam are
isolated by placing an opaque screen s across the beam, with pinholes at the two
points, and that we observe the intensity distribution resulting from the superposi-
tion of the light emerging from the two pinholes, on a screen % at a distance d
from o (see Fig. 4.6). We assume that d is large compared with optical
wavelengths. The instantaneous field at a point P on the screen @ is, to a good
approximation, given by

V(I', [) = K1V<l'1, t - tl) + K;)V(l'z, = [2), (43—'2)
where
ty = Rife, 1, = Ry/e, (4.3-2a)

are the times needed for the light to travel from P; to P and from P, to P
respectively, c is the speed of light in vacuo and K; and K, are constant factors
that depend on the size of the pinholes and on the geometry. It follows from
elementary diffraction theory* that K and K, are purely imaginary numbers.

The instantaneous intensity I(r, ¢), at the point P(r) at time ¢ may be defined

Py(ry) A i

-~ R

Py(ra)

o~
o

o o

Fig. 4.6 Notation relating to Young’s interference experiment from which the
second-order correlation functions of a light beam may be determined.

# See, for example, Born and Wolf (1980}, Sec. 8.3.
When the beam is incident on the plane & of the pinholes along or close to the direction normal to
s and the angles that the diffracted directions P, P and P,P make with the normal to o are also

small, then K, = K, = —i(ds)/(AR), where R is the distance P, P = F,P and dsl is the area of each
aperture.



162 2nd-order coherence theory of scalar wavefields

by the formula®

I(r, 1) = V¥r, O)V(x, t). (4.3-3)
From Eqgs. (4.3-2) and (4.3-3) it follows that
I(r, ) = [K\PIy(ey, 1= 0) + Ky Iy(ry, £ = 1)
+ 2Re (KK, VH(ry, £ — 1)V(rs, £ — 1)), (4.3-4)

where Re denotes the real part. If we take the average of I(r,t) over an
ensemble of different realizations of the field and denote this ensemble average
by (...)., we obtain the formula

(I(r. 0))e = |Ki* (I (ry, t = 1)) + 1K2|2<1(1‘21 I=13))e
+ 2Re {K{KI(ry, vy, £ — 11, £ — 1)}, (4.3-5)
where
D(ry, r5 1y, 12) = (V¥ry, 1) V(12 1)) (4.3-6)
and
(I(xj, 5))e = (V*(x;, V(X 5))e =Ty 8, 8), (j=1,2). (43-7)

The function I'(r;,r,, t1, £;), defined by Eq. (4.3-6) will be recognized as the
cross-correlation function of the random processes V(ry, ) and V(r,,t) (see
Section 2.4.4). It represents, in the present context, the correlation that exists
between the light vibrations at the pinholes at P; and P,, at times f; and ¢,
respectively. The quantity (I(r;, t;)). represents the (ensemble) averaged inten-
sity of the light at the pinhole P; at the time f (j = 1, 2). We shall see later [Eq.
(4.3-19)] that, under usual circumstances, the third term on the right-hand side of
Eq. (4.3-5) gives rise to a sinusoidal modulation of the averaged intensity
(I(r, 1)) withr.

Usually one is concerned with stationary fields, in which case all the ensemble
averages are independent of the origin of time; moreover the field is as a rule also
ergodic. Under these circumstances, as we have learned in Section 2.2.2, the
ensemble averages become time-independent and may be replaced by the cor-
responding time averages.

Let us denote the time average of a stationary random process f(¢) by {f(¢)).,
ie.

T
(FO) = Lim [ f(r)ar (4.3-8)

Then the ‘ensemble cross-correlation function’ I'(r;, ry; t;, t;) may be replaced by
the corresponding temporal cross-correlation function and this function depends

* The instantaneous intensity /(r, ¢), defined by Eq. (4.3-3), is not strictly proportional to the square
of a typical realization of the real field variable V@(r, r). However, with the help of the envelope
representation of real quasi-monochromatic signals the average of the square of a realization of
V@)(r, t), taken over a time interval of a few mean periods of the light vibrations, may readily be
shown to be equal to 2I(r, t)[cf. Eq. (3.1-43)].
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on the two time arguments only through their difference ¢, — ¢;. Hence if we set
T

Py, ) = (V¥ OV, 0+ D)= Lim [ Vs, V(e £+ D),
S _r

(4.3-9)

the expression (4.3-5) for the averaged intensity at P becomes, under the
assumption of stationarity and ergodicity,

(I(r, 0)) = |K\P{I(er, 0)) + [ Ko (I(ra. 1)) + 2Re {K{K I (ry, 1y, 11 — 1)},
(4.3-10)

where we have omitted the subscripts t or e for the two types of averages, since it
is now unnecessary to distinguish between them.

We note that, if the last term on the right-hand side of Eq. (4.3-10) does not
vanish, the averaged intensity (I(r, t)) is not equal to the sum of the (averaged)
intensities of the two beams which reach the point P of observation from the two
pinholes. It differs from their sum by the term 2Re {K{K,I'(r;, 13, t; — t5)}.
Since K; # 0, K, # 0 it follows that if I" # 0, the superposition of the two beams
will give rise to interference.

The cross-correlation function I'(ry,r,, 7) is known as the mutual coherence
function (Wolf, 1955) and is the central quantity of the elementary theory of
optical coherence. From the definition (4.3-3) of the instantaneous intensity
I(r,t) and from the definition (4.3-9) of the mutual coherence function
I'(ry, ry, T), it follows at once that I'(r, r, 0) represents the averaged intensity at
the point r:

{I(x, 1)) = (V*(x, OV (x, 1)) = I'(r, r, 0). (4.3-11)
It is convenient to normalize the mutual coherence function by setting
I'(ry, 1y,
¥(ry, 15 7) = (“7” 2 (4.3-12a)
[F(ry, r1, O]V (r2, 10, O
- I(ry, 12, 7) (4.3-12b)

[, 1P, )]
For reasons that will become apparent shortly, y(r;,r,, 7) is called the complex
degree of coherence of the light vibrations at the points Pi(r;) and P,(r,).
According to the inequality (2.4-47), which the cross-correlation function of any
two jointly stationary random processes satisfies, we have

0<[y{ry, r. 0] =1 (4.3-13)

for all values of the arguments ry, r,, and 7 of y.

The first two terms on the right-hand side of Eq. (4.3-10) have simple
meanings. To see this suppose that the pinhole P; is closed, so that only the light
from the pinhole P, reaches the plane % of observation. In this case K, =0 and it
is clear from Eq. (4.3~10) that in this case

[Ky|*(I(ry, 1)) = (IO, 0)) (4.3-14a)
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represents the averaged intensity of the light at the point P(r), which reaches this
point from the pinhole Py, only. Similarly

| K2 (I(rs, 1)) = (I(r, 1)) (4.3-14b)

represents the averaged intensity of the light at the point P(r) which reaches this
point from the pinhole P, only.

The last term on the right-hand side of (4.3-10) may readily be expressed in
terms of (IV), (I®) and y. We have from Egs. (4.3-12b), (4.3-14a) and
(4.3-14b), if we also use the formula (4.3-2) and recall that the factors K; and
K} are purely imaginary,

KTKZF(FI: Iy, Iy — t2) = [(1(1)(1‘, t))]l/z[<'[(2)(r> t))]l/z}’[rl’ ra, (Rl - R2)/C]

Using this relation and Eqs. (4.3-14a) and (4.3-14b) in Eq. (4.3-10), we finally
obtain the following expression for the averaged intensity of the light at P when
the light reaches the plane of observation % via both the pinholes:

(I(x, 1)) = (1D, ) + (ID(r. 1))
+ 2010, )PLUD(x, )] Reylry, 1y, (R, — Ry)/c]. (4.3-15)

We see at once from Eq. (4.3-15) that measurements of the averaged intensi-
ties (I(r, 1)), (IN(r, 1)) and (ID(r, 1)) make it possible to determine the real
part of the complex degree of coherence y(ry, ry, 7). Moreover, it is apparent
from Eq. (4.3-12b) that if, in addition, measurements of the averaged intensities
(I(ry, 1)) and (I(ry, £)) of the light at the two pinholes are made, the real part of
the mutual coherence function I'(ry, ry, ) may then be determined.

Although, as we just saw, direct measurements of the averaged intensities
provide information about the real parts of the correlation functions I” and y only,
the imaginary parts could, in principle, be determined from the knowledge of
their real parts for all values of the parameter 7. This may be seen as follows.
Since V(ry, t) and V(ry, r) are analytic signals, it follows from Theorem I of
Section 3.1.3 that their cross-correlation function, i.e. the mutual coherence
function I'(ry, 1y, 7), is also an analytic signal and hence the real part, ReI', and
the imaginary part Im I, of I" are coupled by the Hilbert transform relations®

ImI(ry, rp, 1) = ipj Mdf/’
T Jew

tor (4.3-16)
Ref(rbrz’ '[) = —in Mdf’,
T Jeo T -7

where P denotes the Cauchy principal value of the integrals at t' = 7. Moreover,

* According to Theorems III and V, of Section 3.1.3, the real and imaginary parts of I" may be
expressed in terms of the real field VO(r, ¢) and its conjugate field VO(r, r) (the Hilbert transform
of V®) as follows.

Rel = X(VO(r;, )V ry, £ + 7)) = KVO(t;, OVO(ry, £ + 1)),
Im I =XV, )VO(r,, ¢ + 1) = =HVOr,HVO(r,, t + 1)),

Since V ={[V® +iV0] it follows at once from these relations that (VO(r, 1)) = (VO(r, 1) =
2(V*r, )V(r, 1)) = 2{I(r, 1)) and that (V@(r, Hya(r, ) =0.
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since the complex degree of coherence y differs from the mutual coherence
function I" by a multiplicative factor that does not depend on 7, y is also an
analytic signal and hence its real and imaginary parts are likewise coupled by the
Hilbert transform relations.

However, it is the absolute value of the complex degree of coherence y, rather
than its real part, that is a true measure of the ‘sharpness’ of the interference
effects to which superposition of the two beams give rise. To see this let us
examine more closely the expression (4.3-15) for the averaged intensity (I(r, t))
of the light in the plane % of observation. Let us set

Y(re 2, 1) = |y(ry, 1y, g)felemimn=2m (4.3-17)
where
a(ry, ry, T) = arg y(ry, vy, T) + 2701 (4.3-18)

On substituting from Eq. (4.3-17) into Eq. (4.3-15), we obtain the following
expression for (I(r, 1)):

(I(r, D)) = (ID(x, 1)) + (IP(r, 1))
+ 2010, )PIID, )]2y[ry, 1y, (Ry — Ry)/c]|

X cos {afry, 1o, (R, — Rp)/c] — ). (43-19)
where
5=V (R, — R;) = K(R, - Ry), (43-20)
C
with
Fo2mv_ 2m (4.3-21)
c A

A denoting the mean wavelength of the light. Now since we assumed that the
plane of observation B is many wavelengths away from the plane s of the
pinholes, the averaged intensities (7) and (I®) of the two beams will change
slowly with the position P(r), on the screen 3. Moreover, since we also assumed
that the light is quasi-monochromatic, it follows from the properties of the
envelope representation (see Section 3.1.2) that |y| and o will also change slowly
over any part of the plane of observation % for which the change in the distance
Ry = R, (the path delay [PP;] — [PP,] introduced between the light emerging
from the two pinholes) is small compared to the coherence length of the light.
Hence the changes in |y| and o due to the changes in the argument (R, — Ry)/c
on the right-hand side of Eq. (4.3-19) may be neglected, provided that

c
IRy = Rylp = |Ry = Rylp| v (4.3-22)
v
where |R; — Ry|p represents the difference in the distances of the points P from

the two pinholes, |R; — R;|p represents this difference for a neighboring point P’
in the plane % and Av denotes the effective bandwidth of the light. However, the
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cosine term on the right-hand side of Eq. (4.3-19) will change rapidly with the
position r of the point P on the screen & because of the presence of the term 6.
According to (4.3-20) this term is inversely proportional to the (small) mean
wavelength A of the light. Hence over a sufficiently small portion of the plane of
observation R, the averaged intensity {I(r, t)) will vary nearly sinusoidally with
position, provided that |y| # 0.

The usual measure of the sharpness of interference fringes is the so-called
visibility , a concept introduced by Michelson (1890). The visibility ¥ (r) at a point
P(r) in an interference pattern is defined by the formula

OV(I‘) - <I>max - <I>min, (43_23)
<I>max + <]>min
where (I)pa and (I),, represent the maximum and the minimum values that
the averaged intensity assumes in the immediate neighborhood of P. Now from
Eq. (4.3~19) we have, to a good approximation,

(Dmax = (1D, 1)) + (I1P(r, 1))

+ 2T, NPT, )] 2]ylr1, v, (R = Ry)/cll, (4.3-24a)
(Dmin = (10, ) + (I19(x, 1))

= 210, NP, 0)1y[r1, 15, (R = Ry)/cll, (4.3-24b)

and hence (4.3-23) becomes

-1
V(r) = 2[n(r) + i} [¥[r1, r2, (Ry = Ry)/c]l, (4.3-25)
n(r)
where
_ [, r)>}1’2
n(r) = m . (4.3-26)

In particular when the averaged intensities of the two beams at P are equal, as is
frequently the case. then n = 1 and Eq. (4.3-25) reduces to

V(r) = |y[r1, ra2, (R — Rp)/c]], (4.3-25a)

i.e. |y| is then just equal to the visibility of the fringes. The behavior of the
averaged intensity in the plane of observation is shown in Fig. 4.7, under the
assumption that the averaged intensities of the two interfering beams are equal.
According to Eq. (4.3-13), 0=<|y|<1. We see from the figure that, in the
extreme case |y| =1, the averaged intensity around any point P in the fringe
pattern then undergoes the greatest possible periodic variation, between the
values 4(7™) and zero. In the other extreme case, y = 0, no interference fringes
are formed at all; the averaged intensity distribution in the neighborhood of P is
then essentially uniform. These are the cases that traditionally are said to
represent complete coherence (more precisely complete second-order coherence)
and complete (second-order) incoherence, respectively. The intermediate values
(0 <|y| < 1) characterize partial coherence; the averaged intensity distribution in
the fringe pattern around P then exhibits periodic variation between the values
201+ Y1) and 2(1 - [y)(1D).

The argument (phase) of y also has a simple significance. It follows from Egs.
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Fig. 4.7 Behavior of the averaged intensity (/) around a point P(r) in the
plane of observation %, produced by the superposition of two quasi-monochro-
matic beams of equal averaged intensity (/M) in Young’s interference experi-
ment illustrated in Fig. 4.6:

U(r, ) =
201D, )L + |¥lr1, 2, (Ry = Ro)/c]| cos {alr1, x2, (Ry = Ry)je] — 8}].
The curves illustrate the following three cases: (a) |y| = 1: complete (second-

order) coherence, (b) 0 <|y| < 1: partial (second-order) coherence, (c) y = 0:
complete (second-order) incoherence.

(4.3-18) and (4.3-19), that the locations of the maxima of the averaged intensity
in the fringe pattern are, to a high degree of accuracy, given by

arg y[ry, vy, (Ry — Ro)/e] = afry, vy, (Ry — Ry)fe] — 20U Ry — Ry)/c
=2mn (m=0,x1,£2,...). (4.3-27)

The positions of the maxima, given by (4.3-27), coincide with those which would
be obtained if the two pinholes were illuminated by strictly monochromatic light
of wavelength 1 and the phase of the vibrations of the light at P; were retarded
with respect to the phase of the light vibrations at P, by the amount &fr, r;,
(Ry — Ry/c]. Hence, for the purpose of describing the interference effects near
the point P, we may regard ofry, ry, (R; — Ry)/c] as representing the ‘effective
retardation’ of the light at P; with respect to the light at P,. Equation (4.3-27)
shows that the argument of y may be determined by measuring the position of the
maxima of the fringe pattern. More precisely, let us use the fact that, with
monochromatic illumination of the two pinholes, a phase retardation of amount
2w leads to a displacement of the interference pattern in the direction parallel to
P, P, by an amount al/d, [Born and Wolf, 1980, Sec. 10.4, Eq. (6)], a being the
distance between P; and P, and d the distance between the planes & and . We
see that the fringes in our experiment are displaced relative to the fringes that
would be formed with monochromatic light of wavelength A and with co-phasal
illumination of the pinholes by an amount

= %(%)&[1‘1, I, (Rl - RZ)/C]
= i{(Rl - Ry) + iarg Y[ry, ra, (Ry — Rz)/C]} (4.3-28)
d 2m

in the direction parallel 10 the line joining the two pinholes.
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We have seen that, on the one hand, v is a measure of the correlation of the
complex field at two points P; and P, [Eq. (4.3-12)]. On the other hand, it is a
measure of the sharpness of the fringes [Eq. (4.3-25)], obtained by superposing
the beams propagated from these points, and it also specifies the location of the
fringe maxima [Eq. (4.3-28)]." Since the sharpness of the fringes may be regarded
as a manifestation of coherence between interfering beams, it is evident that the
term ‘complex degree of coherence’ of the field at points P; and P, conveys the
significance of y in interference experiments. This term is, however, somewhat
ambiguous, since y depends not only on the location of the two points P; and P,
but also on the delay v = (R; — Ry)/c. It would be more appropriate to reserve
the term ‘complex degree of coherence’ for the quantity y(ry, ry, 7o), where Tg is
that value of T which maximizes |y(ry, ry, 7)|, with r; and r; kept fixed. However,
when the light is quasi-monochromatic, as we assumed, and when the interference
fringes are observed in a region in the plane 8 where the visibility is maximum, as
is usually the case, this distinction is not very significant. For, as is evident from
the discussion following Eq. (4.3-21), |y(ry, 1y, 7)| and a(ry, 1y, T) = arg y(ry,
Iy, T) + 2mvt change very slowly with 7 and remain sensibly constant over any
7-range which is short compared to the coherence time (1/Av) of the light. Hence

¥(r1, 12, 1) = ¥(ry, 1y, T) eI (4.3-29)

for any two values of 7; and 7, such that
o1 — 7] < —. (4.3-30)
Av

Thus over a t-range that satisfies the condition (4.3-30) v (and also I') is
effectively periodic in 7, with period equal to the mean period T = 1/¥ of the
light; this result applies, in particular, to the t-range around the value 1, that
maximizes |y|.

In practice one is often interested in interference effects under conditions close
to geometrical symmetry, so that only those values of the correlation functions
I'(ry, rp, ©) and y(r;, ry, T) play a role for which the 7-argument has values close
to zero. According to Eq. (4.3-29) and the analogous relation for I', we may then
approximate the correlation functions by the expression:

I(ry, 1y, 7) = J(ry, rp) ™27, (4.3-31)
¥(r1, 12, 7) = j(r1, rp) e, (4.3-32)
provided that
[t < 1/Av. (4.3-33)
The quantities J(ry, ry) and j(ry, ry) are the ‘equal-time correlation functions’
J(x1, 1) = D(r1, 10, 0) = (V¥(ry, DV (x5, 1)), (4.3-34)

* The experimental arrangement (essentially that of a Young's interference experiment) by means of
which we elucidated the significance of the complex degree of coherence y(ry,r;, ) is not
appropriate when r, = r,. In that case one deals with the complex degree of self-coherence y(r,r, T)
whose significance may be elucidated by means of the Michelson interferometer. This situation will
be discussed in Section 7.3.
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J(ry, 1a)
[y, e)] 2 (rp, 1))
The equal-time correlation function J(ry, r,) is called the mutual intensity of the
light vibrations at the points P;(ry) and P,(ry) and j(ry, ry), just like y(ry, r, 7),
is usually known as their complex degree of coherence. These two less general
correlation functions are adequate for the analysis of many coherence problems of
instrumental optics.

Since the correlation effects that we discussed in this section are characterized
by a correlation function that depends only on two space-time points, we will
refer to them as coherence effects of the second order. A general classification of
coherence effects will be given in Chapter 8.

It is evident that the phenomena of temporal and spatial coherence that we
briefly discussed in rough qualitative terms in Sections 4.2.1 and 4.2.2 are
characterized by I'(ry,ry, T) (known sometimes as the self-coherence function)
and by I'(ry, 1y, 0) [or, more generally, by I'(ry, r;, 7g) where 1) is a constant],
respectively. In the first case the dependence of the correlation on the parameter
T is crucial, with the points P; and P, being coincident and kept fixed; in the
second case the dependence on the position of the two points is crucial, while, the
time delay 7 is kept essentially fixed; more precisely it is restricted to a range that
is short compared to 1/Av. However, only in very simple cases can one sharply
distinguish between temporal and spatial coherence. In general these two types of
coherence phenomena are not independent of each other, since, as we will learn
in Sections 4.4 and 4.6, the dependence of the mutual coherence function
I'(r1, 1y, 7) on the position variables r; and r, and on the temporal variable 7 is
coupled. We will soon learn (Section 4.3.2) that the mutual coherence function
also provides information about two-point correlations in the field for any
particular frequency component of the light.

In relating the correlation functions I" and y to results of measurements we
have, of course, implicitly assumed that the detecting apparatus measures the
average of the instantaneous intensity I(r, ) = V*(r, t)V(r, ¢). In practice this
will almost certainly be the case if V is identified with the appropriate field
variable and if the detector performs a time average over a time interval that is
long compared to the time scales of the fluctuating field, i.e. long compared to the
mean period and to the coherence time of the light. (Alternatively, the ensemble
average of the intensity may be found from a succession of measurements,
whether the measurement times are long or short). Under these conditions the
measured time average may be assumed to differ negligibly from the average over
an infinitely long time span, defined by Eq. (4.3-8). If these conditions are not
satisfied, other types of interference effects (transient interference) may take
place. Such effects are discussed, for example, in Mandel and Wolf (1965,
Sec. 7).

We conclude this section by noting a number of properties of the mutual
coherence function, which follow at once from the general results relating to the
cross-correlation function of two jointly stationary complex random processes.
Corresponding to Eq. (2.4-32) we have the property that

F(I‘g, ry, T) = F*(rl: r, _t)' (43—36)

J(ry, 1) = y(ry, 1, 0) = (4.3-35)
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The non-negative definiteness condition (2.4-34) implies that, with any n pairs

of values of the space-time variables (ry, t;), (ra, t3), ..., (¥,,,), where n is
any arbitrary positive integer, and with any » real or complex numbers ay, aj,
o an’

M:

afa (v, vy, 4 — 1) 2 0. (4.3-37)
1

1l

n
>
j=1

In particular, if we choose n =1, Eq. (4.3-37) implies that I'(r;,r;,0) =0 for
any point ry, a result that is obvious from the definition of the mutual co-
herence function. If we choose n =2, Eq. (4.3-37) implies that |I'(r{, r;, 7)| <
[I(ry, vy, O[T (x,,15,0)]¥2, a result that we have used in normalizing the
mutual coherence function [Egs. (4.3-12) and (4.3-13)].

k

4.3.2 Second-order correlations in the space-frequency domain. The cross-spectral
density and the spectral degree of coherence

In our general study of stochastic processes we have learned (Section 2.4) that an
important concept is that of the cross-spectral density [Eq. (2.4-35)]. We will now
consider the cross-spectral density in the context of optical coherence theory.

Let V(r, t) again denote the analytic signal, representing the fluctuating optical
field at the space-time point (r, ). We assume that the optical field is stationary,
at least in the wide sense, and ergodic, and we represent V(r, t) as a Fourier
integral (in the sense of the theory of generalized functions) with respect to the
time variable:

Vi, o) = j() V(r, v)e 2 dy. (4.3-38)

The cross-spectral density function W(r), ry, ¥) (the cross-power spectrum) of the
light disturbances at points r; and r, at frequency v may be defined by the
equation [cf. Eq. (2.4-35)]

(V*(ry, MV (rs, v))) = W(ry, £y, WS(v — v'), (4.3-39)

where the (ensemble) average on the left-hand side of Eq. (4.3-39) is taken over
the different realizations of the field and the & on the right-hand side is the Dirac
delta function. It is clear from Eq. (4.3-39) that the cross-spectral density
function is a measure of the correlation between the spectral amplitudes of any
particular frequency component of the light vibrations at the points ry and r,.

According to the generalized Wiener—Khintchine theorem [Egs. (2.4-37) and
(2.4-38)], the mutual coherence function and the cross-spectral density function
form a Fourier transform pair:

I(ry, 1y, 1) = f W(ry, rs, v) e 2V dy, (4.3-40a)
0

W(ry, o, v) = f I(ry, ry, 7) ¥V dr. (4.3-40b)

In the special case when the two points r; and r, coincide, the cross-spectral
density function becomes a function of the location of only one point and of the
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frequency and, according to Egs. (2.4-14) and (2.4~15). this function represents
the spectral density (the power spectrum) of the light. We will denote it by
S(r, v):

S(r,v) = W(r,r.v). (4.3-41)
Using Egs. (4.3-40a) and (4.3-41) we have
rer,r, 1) = f S(r, v)e " dy, (4.3-422)
0
S(r, v) = j I'(r, r, 7)e2™ dr. (4.3-42b)

We note a few properties of the cross-spectral density function. In view of Egs.
(4.3-36) and (4.3-40b) it is clearly Hermitian in the sense that

W(ry, 1y, v) = W¥(rp, rp. ). (4.3-43)

Moreover, according to Eq. (2.4-40), it is a non-negative definite function: for
any n points ry, I, . . ., Iy (with » being an arbitrary positive integer), for any n
real or complex numbers ay, as, . . ., a, and for any frequency v,

n
2
=1

In particular, with the choice n =1, Egs. (4‘3—44.) and (4.3-41) imply that the
spectral density is non-negative.

afaW(r;, r., v) = 0. (4.3-44)

IZE

k=1

S, v) =0, (4.3-45)

which, of course, is to be expected from its significance as a measure of the
average energy density at the point r, at frequency v. With the choice n = 2, Eq.
(4.3-44) implies that

[W(ry, ra, V| < [W(ry, ry, V]V [W(rs, ra. 1)) 2 (4.3-46)
It is useful to normalize the cross-spectral density function be setting

W(ry, rz.v)

Wry, Ta, V) = (4.3-47a)
[W(ry, 1y, V)]I/Z[W(Tb I, ")]1/2
o Wiy (4.3-47b)
[SCer, MIPIS(ra, M)
In view of the inequality (4.3-46) we have
0<lu(ry, Ml =1 (4.3-48)

for all values of the arguments ry, ry and v. We will refer to u(r;, ry, v) as the
spectral degree of coherence at frequency v, of the light at the points Py(r;) and
Py(r;). It is sometimes also referred to as the complex degree of spatial (or
spectral) coherence at frequency v (see Wolf and Carter, 1975, 1976, Mandel and
Wolf, 1976 and Bastiaans, 1977).

It may be worthwhile to note that, in spite of some formal similarity between
the definitions of the complex degrees of coherence y(r,,r,, v} [Egs. (4.3-12)]



72 2nd-order coherence theory of scalar wavefields

and pu(r;, ry. 1) [Eqs. (4.3-47)] and the fact that I'(r}, ry, T) and W(r,, r5, v) form
a Fourier transform pair, y and u are, in general, not Fourier transforms of each
other. The relationship between the two degrees of coherence is discussed in a
note by Friberg and Wolf (1995).

Let us now again consider the two-beam interference experiment which we
discussed in Section 4.3.1 and which is illustrated in Fig. 4.6. We will examine the
relationship between the spectral densities of the light emerging from the pinholes
and the light reaching the plane % of observation. For this purpose we first derive
a generalization of Eq. (4.3-10), namely an expression for the self-coherence
function,

I(r,r,7) ={V¥r, OV (r, t + 1)) (4.3-49)

rather than for the averaged intensity at a typical point P(r) in the plane of
observation. On substituting for V(r, ¢) from Eq. (4.3-2) into Eq. (4.3-49) we
find that

L(r.r, 1) = [KX(VHry, e = )V, t+ 1= 1))
+ K (V. t = )V (g, t + T 1))
+ K¥K (V¥ t — 1) V(g t + T—13))
+ KSK (Vg t = t)V(r, £+ 1~ 1)), (4.3-50)

If we use the fact that the field is stationary, at least in the wide sense, we have
the formula (V*(ry, t — 1))V(ry, 1 + 7= 1)) = (V*(ry, )V (rq, t + 7)) etc. and
Eq. (4.3-50) may be expressed in the form

L(r.r,7) = |K\PI(ry, v 1) + [ KGPT (e, 12, 7)
+ KfKI(ry, ro, T+ 11 — 1)) + K3K I(xp, 11, T+ £ — 11).
(4.3~51)

Next we multiply both sides of Eq. (4.3-51) by e?™7 and integrate with respect to
7 from — to +. In carrying out the integrations on the right-hand side of
(4.3-51) we may neglect the weak dependence of the factors K; and K; on the
frequency, because the light is assumed to be quasi-monochromatic. If we recall
Eq. (4.3-40b). we obtain the following expression for the spectral density at the
point P(r) in the plane of observation:

W(r,r, v) = |K\PW (e, v) + [KPW(r, ra, )
+ K{KoW(ry, ry, v) e ™07 4 KK W (rp, 1y, v) e 72 i),
(4.3-52)

By an argument similar to that given in connection with Eq. (4.3-14a), it follows
that the first term on the right-hand side of (4.3~52), namely

KA PW(ey e, v) = WO, r, v), (4.3-532)

represents the spectral density at frequency v of the light that reaches the point
P(r) from the pinhole P; only. Similarly the second term on the right-hand side of
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(4.3-52), namely
| Ko W(rs, 12, v) = WO(r, 1, v), (4.3-53b)

represents the spectral density of the light that reaches the point P(r) from the
pinhole P, only.

The last two terms on the right-hand side of (4.3-52) may readily be expressed
in terms of W®, W@ and u. We have from Egs. (4.3-47), (4.3-53a) and
(4.3-53b), if we also use the fact that the factors K and K, are purely imaginary,

KfK,W(ry, 13, v) = [W(l)(r, r, V)]m[W(Z)(ry r, V)]l/zﬂ(l'h ry, V).

Next we make use of this relation and of Egs. (4.3-53) and (4.3-43) in the
formula (4.3-52). If we also recall the fact that, when its two spatial arguments
are equal, the cross-spectral density reduces to the spectral density [Eq. (4.3-41)]
and also that 1; = Ry/c, and 1, = Ry/c (see Fig. 4.6), the formula (4.3-52) gives
the following expression for the spectral density of the light at the point P(r) on
the plane % of observation:

S(r, v) = SO, v) + $O(r, v)
+2[SD(, VSO, V]2 Re [u(ry, 1y, v) e 2THARTRIC],
(4.3-54)

The formula (4.3~54), sometimes called the spectral interference law, shows
that, in general, the spectral density S(r, v) of the light at P is not just the sum of
the spectral densities S (r, v) and S®(r, v) of the two beams reaching P from
the two pinholes, but differs from it by the last term on the right-hand side. This
term depends on the spectral degree of coberence u(ry, ry, v) of the light at the
two pinholes. In particular it follows from Eq. (4.3~54) that even when the two
beams have the same spectral distributions, i.e. when S®@(r,v) = SU(r,v), the
spectral distribution of the light obtained by superposing the two beams will, in
general, be different. Spectral changes produced on interference will be discussed
in Section 5.8.

We note that the expression (4.3~54) for the spectral density at a typical point
in the plane % has a similar form as the expression (4.3-15) for the averaged
intensity. The similarity suggests that, by analogy with the expression (4.3-23), it
may be useful to introduce the concept of spectral visibility and we will do so later
[Eq. (4.5-18)]. Here we only mention that the spectral interference law and the
concept of spectral visibility have found useful applications (see, for example,
Heiniger, Herden and Tschudi, 1983 and James, Kandpal and Wolf, 1995).

The cross-spectral density function W(r, ry, v) and the spectral density S(r, v)
can, in principle, be determined from measurements of the mutual coherence
function I'(ry, ry, 7) and the self-coherence function I'(r, r, 1) by the use of the
Fourier transform relationship (4.3-40b). The spectral degree of coherence
w(ry, ry, v) can then be obtained from the formula (4.3-47b). Alternatively it may
also be determined with the help of narrow-band filters, as we will now show,
following an analysis due to Wolf (1983).

As we learned earlier, one may determine the mutual coherence function
I'(ry,r;, ) of the light at the two pinholes in a Young’s interference experiment
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from measurements of the (averaged) intensities at the pinholes and the visibility
and the location of intensity maxima in the fringe pattern. Now the mutual
coherence function is, according to Eq. (4.3-40a), just the Fourier transform of
the cross-spectral density W(ry, r,, v) which may be defined by Eq. (4.3-39).

Suppose that we place identical narrow-band filters behind each pinhole. If
T(v) is the complex amplitude transmission function of each filter, the cross
spectral density W(r, r,, v) of the light emerging from the filters is given by a
formula of the form (4.3-39), but with ¥(r, v) replaced by T(WV(r, v), i.e. by
the formula

(T*WP @y, VTV (e, v)) = WEry, 10, WO(v — V). (4.3-55)

Since T(v) is a deterministic function, it may be taken outside the averaging
brackets in Eq. (4.3-55) and, if we make use of Eq. (4.3-39), we obtain the
following relation between the cross-spectral densities of the filtered and the
unfiltered light at the two pinholes:

Wy, 1y, v) = [TMPW(ry, 13, V). (4.3-56)

It follows at once from Egs. (4.3-56) and (4.3-40a) that the mutual coherence
function of the filtered light'at the two pinholes is given by

'y, 1y, 1) = J IT(WMPW(ry, 1y, v) e 2 dy. (4.3-57)
0

Suppose now that each filter has a passband of effective width Av, centered on
a frequency v. If the cross-spectral density W(r;, rz, v) of the light incident on
the pinholes is a continuous function of v, as we now assume, and if Avis so small
that W(r,,r,, v) does not appreciably change across the effective passband
vy — %Av svsy+ %Av of the filters (see Fig. 4.8), we may replace W(ry,r;, v)
in the integral in Eq. (4.3-57) by W(ry, r;, ). We then obtain the following

/ [ W(rpra,v) |

/’_\

/IT(V)J

Av

v

Yo

Fig. 4.8 Schematic illustration of the relative frequency dependence of the
modulus of the complex amplitude transmission function, T(v), of the filters
placed in front of the pinholes in Young's interference experiments, and of the
absolute value of the cross-spectral density W(ry, r;, v) of the unfiltered light
at the pinholes. The effective passbands vy — %Avs v+ %Av of the filters
are assumed to be so narrow that with r; and r, fixed, both the modulus and
the phase (not shown) of W(ry, r;, v) [and also of W(r;,ry, v) and W (ra, rz, V)]
are approximately constant over the passbands.
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expression for I'");
Ty, 12, 1) = Wi, ) [ [T e dv. (4.3-58)
0

In a similar way it follows that if the spectral densities W (ry, ry, v) and W(ry, 15,
v) at the two pinholes are continuous functions of the frequency v and if Av is
small enough then, to a good approximation,

F(+)(r,,rj,r)=S(rj,vo)fO[T(v)lze"Z”i"dv, (G=1,2. (43-59

The formulas (4.3-58) and (4.3-59) imply that the cross-spectral density W (ry,
ry, v) and the spectral densities S(r;, v), (j =1, 2), of the light incident on the
pinholes may be determined from measurements of the mutual coherence func-
tion and the self-coherence function, respectively, of the filtered light and from
the knowledge of the transmission function T(v) of the filters.

On substituting from Egs. (4.3-58) and (4.3-59) into Eq. (4.3-12a) we obtain
the following expressions for the complex degree of coherence of the filtered light
emerging from the two pinholes:

Y1, r2, ) = wlry, v, v0)0(0), (4.3-60)
where
Wi(ry, ry,
ey, 5, ) = (X1, 72, o) (43-61)
[S(r1s Vo)]l/ [S(rs, Vo)]l/2
and

fm! T(v)|2 e~2m’vr dv
o= - : (4.3-62)
fo |T(v)|* dv

The factor u(ry, ry, w), defined by Eq. (4.3-61), which appears on the
right-hand side of Eq. (4.3-60), is precisely the spectral degree of coherence at
frequency vy {Eq. (4.3-47b)] of the unfiltered light at the two pinholes. It is also
equal to the spectral degree of coherence 1(*)(r, r,, vo) of the filtered light, as is
readily seen on substituting from Eq. (4.3-56) into Eq. (4.3-47b), with W
replaced by W), and on comparing the resulting expression with Eq. (4.3-61).
Hence the spectral degree of coherence remains unchanged by filtering. On the
other hand the complex degree of coherence y(ry, r,, ) of the unfiltered and the
filtered light may readily be shown to differ from each other. The other factor,
6(t), which appears on the right-hand side of Eq. (4.3-60) is, according to Eq.
(4.3-62), the normalized Fourier transform of the squared modulus of the
transmission function 7' (v) of each filter.

It is evident from Eq. (4.3-60) that, considered as a function of T, |y(*)] attains
its maximum when |6(7)| reaches it maximum, i.e. when 7 = 0. Moreover, since
6(0) = 1 it follows that one then has

Y ey, 12, 0) = plry. ra. vp). (4.3-63)
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This formula implies that the ‘equal-time’ complex degree of coherence j (e, 1)
= v(*)(x,, r,, 0) [Eq. (4.3-35)] of the filtered light at the two pinholes is equal to
the spectral degree of coherence u(ry, T2, %) of the unfiltered (and also of the fil-
tered) light for the mid- frequency v of the filters. From this result it is clear that both
the modulus and the phase of the spectral degree of coherence can be deter-
mined from the interference experiments discussed in Section 4.3.1, provided
identical filters with sufficiently narrow passbands are placed behind the pinholes.

Since, with the positions of the pinholes fixed, |y{*)(ry, r, 7)| attains its
maximum when 7 = 0, the interference fringes formed by the filtered light will be
sharpest near the center of the fringe pattern, i.e. in the neighborhood of the
point which is equidistant from both pinholes. Now according to Eq. (4.3~48) the
modulus of the spectral degree of coherence can take on any value between zero
and unity, with both the extrema being attainable. Hence it is clear from Eq.
(4.3-63), (4.3-60) and from the relation (4.3-25) between the fringe visibility V’
and |y| that the maximum visibility of the interference fringes formed by the filtered
light will not, in general, tend to unity as the passband of the filters decrease. It is,
of course, assumed that measurements are made on a time scale that involves
averaging over a time interval which is long compared with the reciprocal
bandwidth of the filters and that the detector is sensitive enough to measure the
reduced intensities of the filtered light. It is actually not difficult to realize
conditions under which the maximum visibility ¥V ,,, will have any chosen value in
the range 0 <V, < 1, irrespective of how narrow the effective bandwidth Av of
the filters may be. One only needs to illuminate the pinholes by a distant, spatially
incoherent, uniform, circular, quasi-monochromatic source of mean frequency in
the neighborhood of v= v, placed symmetrically with respect to the pinholes,
and to separate the pinholes by an appropriate distance that may be readily
calculated from the van Cittert—Zernike theorem (Section 4.4.4).

Although under conditions when Eq. (4.3-60) applies, the maximum fringe
visibility will not change if the bandwidth Av of the fiiters is further reduced, the
interference pattern will, nevertheless, be modified. If Av is decreased but the
transmissivity |T(v)| of the filters at the mid-frequency v is kept fixed, the
effective width of |6(t)| will increase, as can be readily deduced from Eq.
(4.3-62). Consequently the effective width of |y (r1, ry, 7)] (with rq, r; fixed)
will also increase, as is evident from Eq. (4.3-60). This implies that the visibility
of the fringes in the plane of observation will then fall off more slowly with
distance from the center of the fringe pattern.

In the formula (4.3-60) for the complex degree of coherence of the filtered
light, the spatial coherence properties, characterized by w(ry, ra, ¥%), and the
temporal coherence properties, characterized by 6(7), are completely separated.
This separation is a manifestation of the so-called cross-spectral purity of the
filtered light, which will be discussed in Section 4.5.1.

4.3.3 Coherence time and bandwidth

In our elementary discussion of temporal coherence given in Section 4.2.1 we
introduced the concept of the coherence time. This quantity is a measure of the
time interval in which appreciable amplitude correlations and phase correlations
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of the light vibrations at a particular point P in a fluctuating optical field will
persist. We introduced the coherence time At from considerations of a simple
interference experiment and we gave a rough estimate for it, namely

At = 1/Av, (4.3-64)

where Av is the effective spectral width of the light at P. We will now define the
coherence time in a more precise way and will also introduce a corresponding
definition of the bandwidth.

We learned in Section 4.3.1 that a measure of the correlations of the light
vibrations at a point P in a stationary optical field at time instants separated by a
time interval 7 is the self-coherence function '

I(t)y = (V¥P,)V(P, t + 1)), (4.3-65)
where V(P,t) is the complex analytic signal representation of the field at the
point P. (For the sake of simplicity we do not display from now on the
dependence of the self-coherence function and of the spectral density function on
position.) It seems, therefore, natural and mathematically convenient to define
the coherence time At at P as the normalized root-mean square (r.m.s.) width of
the squared modulus of I'(t), i.e. by the formula*

200 dr
by s ——m—. (4.3-66)
| Ir@ra
Similarly, we may define the effective spectral width Av (the bandwidth) of the

light at the point P as the normalized r.m.s. width Av of the spectral density
function S(v),

S = [ rmetrdr, (4.3-67)
by the formula

ea(v — V282 (v) dv

(Av)? = - , (4.3-68)
f S%(v) dv
0
where
J’msz(v) dv
v= —Om— (4.3-69)
J S2(v)dv
0

may be identified with the mean frequency of the light.

* The average value 7 = ff,.r|1‘(t)|2 de/[2.Jr(D)] dr of 7 is zero because |I'(7)] is an even function
of 7. It is assumed here, of course, that the various moments appearing in these formulas exist.
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The expressions (4.3-66) and (4.3-68) for the coherence time and the effective
spectral width may be re-written in a slightly different form, from which a basic
inequality relating to their product may readily be deduced. We set

PE)= ST+ &) when &= —v (a)
=0 when £ < =% (b) (4.3-70)
Y(1) = I(7) ™. (©)
We shall assume that $(&) is a square-integrable and continuous function of &
(— < § < ). The continuity requirement implies, in particular, that ¢(—¥) =
S(0)=0.* From Eq. (4.3-67) and our assumption of square-integrability it
follows that the functions y(z) and ®(&) form a Fourier transform pair:

v = [ e@e s w© = [ woedar @3-
and the expressions for At and Avbecome
o= L[ 2paPar, @=L #E@dE @3m)
where
N= [ ke [ #@e (4.3-73)

The equality of the two integrals in Eq. (4.3-73) follows from Parseval’s theorem
on Fourier transforms.

Next we express the integral that appears in the expression for Av in Eq.
(4.3-72) in terms of 9. We have, on using the second expression in Eq. (4.3-71),

v =L fag ] pmenar

= [ 1 Zd_z ® 2migt
-1 [_wdwm(%) L a@enas

117" d
= -2 vy
472 NJ-e dr?

-1 f ©ldy

472 N)-=| dt
In passing from the second to the third line, the first relation in Eq. (4.3-71) was
used, together with the fact that, since @(&) is the ‘shifted spectral density’ [see
Egs. (4.3-70a) and (4.3-70b)], it is necessarily real. In passing from the third to
the fourth line we integrated by parts and used the fact that y(1) — 0 as 7— =,
this is so because (1) was assumed to be square-integrable.

It follows from the first relation in Eq. (4.3-72), from Eq. (4.3-74) and from

2
dr. (4.3-74)

¥ This condition 1s necessary for the integral in the numerator of Eq. (4.3-68) to converge (see Wolf,
1958). The more general case when S(0) # 0 was investigated in a somewhat different context by Kay
and Silverman (1957). See also Kharkevich (1960), Sec. 12.
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the first relation in (4.3-73) that
" |dv

4(fwr2|w(r)}2dr)(j% - zdr)

(ADav? = L  (43-75)

2 P 2
o ([ weorar)

Now there is a mathematical lemma (Weyl, 1950, pp. 393-394; Born and Wolf,
1980, Appendix VIII), according to which the term in the large brackets on the
right-hand side of (4.3-75) is greater than or equal to unity for any function (z)
for which the integrals exist. Hence with the definitions given by Eqs. (4.3-66)
and (4.3-68) we obtain the following reciprocity inequality:

AtAv= 1/47. (4.3-76)

. One can readily show that the bracketed term on the right-hand side of Eq.

(4.3-75) will equal unity, and hence the equality sign in the formula (4.3-76) will
apply, if and only if y(7) is a Gaussian function (Born and Wolf, 1980, Appendix
VIII). Now ®(&) is a Fourier transform of () and, since the Fourier transform
of a Gaussian function is again a Gaussian function, ®(£) is also Gaussian in this
case. Hence it will not vanish for any value of its argument (—o < & < ).
However, as is seen from Eq. (4.3-70b), (which is a consequence of the fact that
I'(7) is an analytic signal), &(&), as defined by Eqgs. (4.3-70), does not obey this
requirement. Thus in the present context the equality sign in the formula (4.3-76)
never strictly holds. However, when the spectral density S(v) is approximately of
Gaussian form and its mean frequency ¥ is large compared to the effective
spectral range, then the inequality sign in Eq. (4.3-76) may clearly be replaced by
the order of magnitude relation

AtAv~ 1/4r. (4.3-77)

The definitions of the coherence time and of the effective spectral range that we
have just discussed are useful when the light is quasi-monochromatic and when its
spectrum has a single reasonably well-defined peak. It is more difficult to provide
useful definitions of these quantities when the spectrum has several peaks (as is
the case with multimode laser light) or when the absolute value of the mutual
coherence function is multiply peaked (as, for example, is the case with white-
light Brewster fringes, where it is doubly peaked). If the spectrum consists of two
lines, whose widths are much smaller than their separation, the concept of an
effective spectral range evidently no longer has an unambiguous meaning.

Different definitions of the coherence time and of the spectral range from those
that we discussed may be introduced from considerations of the extent of a unit
cell of photon phase space (see Mandel, 1959). The coherence time (A7)’ is then
defined by the formula

@9 = [ P, @3-78)

where
_ _IL‘L’) _ (V¥P, )V(P, t + 7))
r(0) (VX(P, )V(P, 1))

y(t) (4.3-79)
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is the complex degree of ‘self-coherence’; and the effective spectral range is then
defined as

(Av)' = ———1——, (4.3-80)
J g2 (v)dv
0
where
8(v) = [ ) y(v) e dt (4.3-81)

is the normalized spectral density [see Egs. (2.4-26) and (2.4-27)]. From Egs.

(4.3-78) and (4.3-79) it follows that (A1)’ may be expressed as

(ary = —L_
[F(O)]

and from Egs. (4.3-80), (4.3-81), (4.3-79) and (4.3-67), with the use of
Parseval’s theorem, it follows that (Av)' is expressible in the form

I (P (4.3-82)

(Av) = _ror (4.3-83)
j S2(v) dv
0

If now we take the product of the expression (4.3-82) and (4.3-83) and again use
Parseval’s theorem we obtain the relation

(A7) (AV) = 1. (4.3-84)

Thus, with these definitions, the coherence time is always the reciprocal of the
effective spectral width.

It may be shown (Mandel and Wolf, 1962; Mehta, 1963) that, with simple types
of spectral profiles, Av=(Av)’ and At~ (At)’. However, if the spectral density
distribution is of 2 more complicated form, the two sets of definitions may lead to
results of quite different orders of magnitude. Hence in some cases caution must
be exercised in applying a particular definition.

4.4 Propagation of correlations

In Section 4.2.2 we indicated by a simple argument that the state of coherence of
light may be appreciably changed in the process of propagation. More specifically,
we showed that, even if the light originates from uncorrelated point sources, the
field at points sufficiently far away from the sources may be highly correlated.
From the standpoint of the general theory of partial coherence, this change in the
state of coherence may be understood as a consequence of the fact that the
mutual coherence function obeys two precise propagation laws. In free space they
are just two wave equations. We will now derive these equations and also two
related differential equations for the cross-spectral density.

4.4 Propagation of correlations I8t

4.4.1 Differential equations for the propagation of the mutual coherence and of the
cross-spectral density in free space

Let VW(r, t) represent as before, a sample function of the real random process
that characterizes the fluctuating light disturbance at the point r, at time ¢. If we
identify V® with a Cartesian component of the electric field or of the vector
potential, it will obey, in free space, the wave equation

13*v9, 1)
c? a? '

{c, as before, is the speed of light in vacuo). It can readily be shown that the
complex analytic signal V (r, ¢) associated with V©(r, r) also obeys this equation.
To demonstrate this fact, let us represent V®(r, t) as a (generalized) Fourier
integral

Vv O(r, 1) = (4.4-1)

VO, 1) = f P(r, vye ™ dy. (4.4-2)

On taking the Fourier transform of Eq. (4.4-1) we obtain the well-known result
that V(r, v) obeys the Helmholtz equation

VIV (r, v) + KBV (r, v) = 0, (4.4-3)

where
k = 2mv/c. (4.4-4)
The analytic signal V(r, ) associated with our real field V®(r, 1) is obtained by

suppressing the negative frequency components on the right-hand side of Eq.
(4.4-2):

Vi, t) = f V(r, vy e 2 gy, (4.4-5)
0

If we apply the operator V? — (1/¢%)8%*/a* to both sides of Eq. (4.4~5) and
interchange, on the right-hand side, the order of this operator and of the integral
operator, we find that

2 @
Ve, 1) - 22V @00 f [V, ) + K2V, v)]e ™ dv. (4.4-6)
2 3 2
C t Y
If we make use of Eq. (4.4-3), we see that the integral on the right-hand side
vanishes identically. Hence it follows that, in free space, the complex disturbance
V(r, t) indeed satisfies the wave equation

2
VV(r, t) = 1V,
o

Let us now take the complex conjugate of Eq. (4.4-7) and write r; in place of r
and ¢, in place of t. We then obtain the equation
PVH(ry, t
VIVH(ry, 1) = }"—(r;, )
Ve P51

(4.4-7)

, (4.4-8)
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where Vi is the Laplacian operator taken with respect to the point r;. Next we
multiply both sides of Eq. (4.4-8) by V(r,, t,). Since the differential operators in
Eq. (4.4-8) are taken with respect to the variables ry, #;, we may place V (x4, t3)
under the operator signs and we obtain the equation

- _1 8t
ViV*(ry, 1)V (rs, 15)] = —2[V (r1, 1)V (ra, 12)]. (4.4-9)
1

c*at
Let us take the ensemble average of Eq. (4.4-9), over the different realizations of
the field. If we interchange the order of the ensemble average and of the
differential operators and recall the definition (4.3-6) of the second-order correla-
tion function, we obtain the equation

2

VI (r1 35 11, 02) = =T 1s 1, ). (4.4-10a)
C2 atl

In a strictly similar way we can also derive the equation

2
ViI(ry, ) 1, 1) = i'a—'r(rl, ;5 11, 1), (4.4-10b)
¢t at%
where V3 is the Laplacian operator taken with respect to the point ry. Thus we
have established the important result that in free space the second-order correla-
tion function I'(ry. ry; ty. t;) of an optical field obeys the two wave equations
(4.4-10a) and (4.4-10b).

Suppose now that the ensemble that represents the statistical properties of the
field is stationary, at least in the wide sense, and is also ergodic. The correlation
function I'(ry. ry; 1y, £3) will then depend on the two time variables only through
their difference 7, — 1, = v and, moreover, it is then immaterial whether the
correlation function is defined by means of an ensemble average or a time
average. Also it is clear from the definition of 7 that the operators 3%/3t3 and
3%/at5 on the right-hand sides of Egs. (4.4-10) may each be replaced by 8%/87%.
Hence Eqgs. (4.4-10) reduce to the following two wave equations, which the
mutual coherence function of the field in free space necessarily obeys:

2 19
Vlf(rl, Iy, T) = -——F(rl, ry, T), (44—113)

ctar?

2 19
Vzr(rl, ry, T) = —2——71"(1‘1, Iy, T)‘ (44’1lb)

c“ ot

These two wave equations were first obtained by Wolf (1955).

Each of the two wave equations (4.4-11) describes the changes in the mutual
coherence function as one of the two points (ry or ry) is kept fixed, whilst the
other one and the parameter v vary. Now 7 represents the difference between the
two time instants ¢, t, at which the correlation between the light vibrations at the
two points Py(r;) and P,(r;) is being considered. In experiments 7 only appears in
the expressions through the difference between the geometrical path lengths,
R, — Ry = ct [cf. Fig. 4.6 and Eq. (4.3-2a)]. The actual time makes, therefore,
no appearance in the basic formulas of coherence theory of stationary fields.

We noted earlier, that spatial coherence is characterized by the dependence of
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the mutual coherence function on r; and rp, and that temporal coherence is
characterized by its dependence on 7. Since Egs. (4.4-11) couple the dependence
of I' on all the variables r;, r, and 7, it is clear that, in general, spatial and
temporal coherence properties of light are not independent of each other. A good
example of such a dependence is the fact, discussed from an elementary stand-
point in Section 4.2.2 (cf. Fig. 4.3), that light generated by a spatially incoherent
source acquires a finite degree of spatial coherence in the process of propagation.
Our rough elementary explanation of this phenomenon was in terms of finite
wave trains emitted by different source points. The finite duration of the wave
trains implies that the emitted light has a finite, non-zero bandwidth and hence
possesses some temporal coherence. Because of the coupling implied by Egs.
(4.4-11) between spatial and temporal coherence, spatial coherence can be
generated in the field produced by the spatially incoherent source. The two wave
equations (4.4-11) provide a basis for a precise quantitative description of this
phenomenon. We will analyze it more fully in Sections 4.4.2-4.4.5.

Since the cross-spectral density function W(r,, r;. v) is the Fourier transform of
the mutual coherence function [Eq. (4.3-40b)], we obtain at once, on taking the
Fourier transform of Egs. (4.4-11), the following two Helmholtz equations that
W must satisfy in free space:

VIW(ry, 1y, v) + K2W(r,. r5. v) = 0, (4.4-12a)
VIW(r,. 15, %) + EW(r, o, ) = 0, (4.4-12b)
where k = 27v/c.

It is clear that the problem of determining the mutual coherence function and
the cross-spectral density at any pair of points in a domain in free space, bounded
by a closed surface, is now reduced to a standard problem in the theory of partial
differential equations. Numerous techniques, both exact and approximate, for
solving such problems are well known. We will consider in detail only two
problems of this kind, which are of practical interest.

4.4.2 Propagation of correlations from a plane

Consider a fluctuating optical field V(r, r), which propagates into the half-space
z > 0. We will derive a formula for the mutual coherence function of the light
vibrations at any pair of points Pi(ry), Py(ry) in the field in terms of the values of
the mutual coherence function and of some of its derivatives at all pairs of points
S1(r1) and S,(r}) in the plane z = 0 (Fig. 4.9).

Since the cross-spectral density function obeys the Helmholtz equations
(4.4-12), which are simpler than the wave equations for the mutual coherence
function, we consider first the propagation of the cross-spectral density. For this
purpose we make use of the Green’s functions appropriate to the Dirichlet
boundary value problem for the Helmholtz equation in a half-space. One must,
however, take care to correctly represent the behavior of W(ry, r,, v), far away
from the origin in the half-space z > 0. Since the field propagates into the
half-space z >0, it is clear from Eq. (4.3-39) that W(r;, ry, v) behaves asymp-
totically as an outgoing wave with respect to r,, but as an incoming wave with
respect to ry.
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P,

Fig. 4.9 Illustrating the notation relating to the propagation of the cross-
spectral density and of the mutual coherence from the plane z =0 into the
half-space z > 0.

Let us first determine the solution of Eq. (4.4-12b) for W(ry, ra, v) in terms of
W(ry, r5, v), with rj constrained to be located in the plane z = 0 and with ry kept
fixed for the moment. We have, according to Rayleigh’s first diffraction formula
[Eq. (3.2-78)]

ikR;
Wenrnv) = - W, v)ai(f——

)dzrﬁ, (4.4-13)
2m J(z=0) 22

Ry
where R, = |r, — r3| and 8/3z, indicates differentiation along the positive z-direc-
tion. In a similar way we obtain the formula

Wity = ———[ Wi, v)i(

27 J(z=0) 921 1

where R; = |r; — ri|. On substituting from Eq. (4.4~14) into Eq. (4.4-13) we
obtain the formula

—1kR ikRy
W(ry, 13, %) = — I W(ra,rs_,v)[ ° (e )][ 8 (e )]dzridzré-
@am? ) e=u a1\ R 3z, \ Ry

e—ile

)dzri, (4.4-14)

(4.4-15)

This formula expresses the cross-spectral density function of the field in the
half-space z >0 in terms of its boundary values on the plane z =0. We will
re-write it in a more explicit form. We have

—ikR —ikR;
_a__( e ) = —(ik + L) e sy, (4.4-16a)
aZl R] Rl Rl

~ikR; ikR;
—a——( c ) = —(—ik + ——1—)6 cos 6, (4.4-16b)
aZz Rz R2 RZ

where 6, and 6, are the angles that the lines S;P; and S; P, make with the
positive z-direction. On substituting from Egs. (4.4-16) into Eq. (4.4-15) we
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obtain the formula
£ \2
W(rls rp, V) = (—‘) f W(l‘i, I'é, V)
21 (z=0)
(1 _ 1)+ 1 1 et

—_— cos 8, cos B, d2r) d*rj.
R, R} KRR, RR,

x[1+L
k

(4.4-17)

Equation (4.4-17) is the required expression for the propagation of the cross-
spectral density.

Before proceeding further we note an approximate form of Eq. (4.4-17) valid
when the points Pj(r;) and P(r;) are many wavelengths away from the plane
z = 0. Since we then have R; > A, R, > A, it follows that 1/R; < k, 1/R, << k.
Under these circumstances Eq. (4.4-17) reduces to

k 2 ei/((Rz— Ry)
W(ry, 12, v) =~ [— J W(rl, 5, ) c0s 8; cos 8, d2r{ dr.
2 (z=0) 14%2

(4.4-18)

From Eq. (4.4-17) we can readily obtain the required law for the propagation
of the mutual coherence function. We multiply both sides of Eq. (4.4~17) by
¢”2™7 and integrate over the range 0 < v << . The left-hand side then represents
the mutual coherence function I'(ry, T3, 7) [see Eq. (4.3—40a)]. On the right-hand
side we use the fact that

I(r},rh, 1) = j W(r}, r5, v)e 2" dv, (4.4-19)
0
and we have, on interchanging the orders of integrations and differentiation,
aI(r!. rh , ® .
1ol m _ f (GK)W(r}, 15, v) e 2" dv, (4.4-192)
c ot 0
and
ZI'\ ’ ! o .
Lortirh D [ @RPWeL s ey, (44-19)
c? or 0

where use was made of the relation 2mv/c = k. We then obtain the following
formula, essentially due to Parrent (1959), for the mutual coherence function of
the light at any two points in the haif-space z > 0:

[ (&) R, — R
T(ry,ts, 1) = 1 H( 0)cos 1 coS Zgbr(ri,rﬁ,r——z——l—>d2r‘1d2ré,
7=

2n)? R2R2 ¢
(4.4-20)
where 9 is the differential operator
- 2
g1+ Ro RR3 (4.4-20a)

¢ art  a
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Equation (4.4-20) shows that the values of the mutual coherence function, for all
pairs of points Pi(r;) and P,(r,) in the half-space z >0 into which the light
propagates, and for all t-values, may be determined from the knowledge of the
mutual coherence function and its first and second derivatives with respect to t at
all pairs of points Sy(rj) and S,(r5) in the plane z = 0.

If the points Py(r;) and P,(r,) are so far away from the plane z =0 that
Ry >» A, Ry>» A for all points S;(r{) and S,(rj) in this plane and for all
wavelengths A= c/v =2n/k for which the absolute value |W(r{,rj, v)| of the
cross-spectral density function is appreciable, the formula (4.4-20) takes a simpler
form. We may obtain this form by simply taking the Fourier transform of Eq.
(4.4-18) and making use of Eq. (4.4-19b). We then find that

6 cos 6 R, -~ R
RO p— ” CO8 71008 2T"<ri, rh,T— 2L l)dzridzré,
@me)? ) Ja=0)  R\R; ¢

(4.4-21)

where I'" represents the second derivative of I" with respect to 7.

With the help of the preceding formulas, one may derive a number of useful
results that have a bearing on the coherence properties of optical images, on
problems encountered in radiometry in connection with determining the angular
distribution of the radiant intensity from sources of different states of coherence,
etc. We will consider such questions later.

4.4.3 Propagation of correlations from finite surfaces

The formulas that we have just derived, relating to the propagation of the
cross-spectral density function and the mutual coherence function from a plane
surface, are exact consequences of the differential equations satisfied by these
correlation functions. One can also derive corresponding formulas for propaga-
tion from curved surfaces. However, such formulas are of limited use as they
require knowledge of the Green’s functions associated with such surfaces and,
except for the simplest geometrical shapes, the Green’s functions cannot be
obtained in a closed form. It is possible, however, to derive an approximate
propagation law that is quite adequate for many situations frequently encountered
in practice. The approximate law, which we will now derive, may, in a sense, be
regarded as a counterpart of the well-known Huygens—Fresnel principle for
propagation of monochromatic light.

Let us consider a light wave which emerges from an optical system and let s be
a (fictitious) open surface intercepting the wave (see Fig. 4.10). Suppose that the
values of one of the second-order correlation functions (the mutual coherence
function or the cross-spectral density function) are known for all pairs of points
S1(r1) and Sy(r3) on the surface s{. We wish to determine the values of this
correlation function at all pairs of points P;(r;), P,(r}) on that side of the surface
o into which the light propagates.

Let V(ri,t) and V(rj, 1) be the complex light disturbances at S;(r{) and
Sy(r3) and let V(r{,v) and V(rs,v) be their corresponding spectral amplitudes.
More precisely these four quantities refer to a typical realization of the underlying
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Fig. 4.10 Illustrating the notation relating to the approximate propagation laws
for the cross-spectral density and for the mutual intensity.

stochastic process that characterizes the fluctuating field. We will assume that the
process is stationary, at least in the wide sense, and is also ergodic. The spectral
amplitudes must then be interpreted as generalized functions. The complex
amplitudes at the points Pi(r;) and P,(r;) may be expressed in terms of the
complex amplitudes at all points on the surface o in the following approximate
form, which is the mathematical expression of the Huygens—Fresnel principle
(Born and Wolf, 1980, Sec. 8.2):

~ ~ eikR1 .
V(ry, v) = f 4V(r{, 'V)TAl d?r, (4.4-22a)
& 1

elkR2

Vs, v) = f Vs, vE— A, d*rs. (4.4-22b)
A

2
Here R, and R, are the distances Sy P; and S, P,, respectively, and A; and A, are
inclination factors. If the angles of diffraction at the exit pupil are sufficiently
small, one has approximately

Ag(l) = Ay() ~ lzf;— (4.4-23)

From Eqgs. (4.4-22) it follows that

- - N N QiK' Ra=kR1) X
V*(rm,V)V(rz,V’)*fjV*(ri,V)V(fﬁ, v AT A (k') P ri dry
/s 142

(4.4-24)

where, of course, k =27v/c and k' = 2mv'Je. If now we take the ensemble
average of both sides of Eq. (4.4-24) over the different realizations, interchange
averaging and integration on the right-hand side and recall the definition (4.3-39)
of the cross-spectral density function, we obtain the following propagation law:

1k(R2—R
W(r1, rp, v) = f f W(r{, r}, v)e—('—”/\ﬁkmz(k)d%g d’ry. (4.4-25)

51951 R1R2
If we assume that the light is quasi-monochromatic around a mean frequency ¥,
we may derive from Eq. (4.4-25) a propagation law for the mutual coherence
function. For this purpose we first neglect the weak dependence of A, and A, on
the frequency, i.e. we replace these quantities by the values A; and A,, which
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they take at the mean frequency. Next we multiply both sides of Eq. (4.4-25) by
e 2" integrate over v (0 < v < ), and recall the relation (4.3-40a) between
the cross-spectral density function and the mutual coherence function. We then
obtain the required propagation law:

I /, l’ — R _ o
reyra =] | I3, 15,7 = (Ro = RO/ 2uz 201 drs. (4.4-26)
sl RiRy
In practice the path ditference {R, — Ry| is usually small compared to the
coherence length (~ ¢/Av) of the light; i.e. the retardation term on the right-hand
side of Eq. (4.4-26) is small compared to the coherence time:
R, — Ry <« i. (4.4-27)
c Av
Under these circumstances we have, from the properties of the envelope re-
presentation of real signals (Section 3.1.2),

Ilri, r3, T = (Ry = Ry)fe] = I'(x, 15, 7) eiE(RZ"R‘), (4.4-28)

(k =2m¥/c), and the formula (4.4-26) gives

ll\(Rz-Rl)
I(r1, 1, 7) = f fr(rl,rz,r) " ArA,d2ridr). (4.4-29)
1 2

More generally, if the region between the surface o and the field points Py(r;)
and P,(r,) is not free space, one would clearly have, in place of Eq. (4.4~25), the
formula

W(ry, 12, v) = f f W(r, r5, WK*(ry, tl, VK (s, th, V) d2ri d2ry.  (4.4-30)
Al

In this formula the function K(r,r’,v) is a transmission function (the impulse
response function) that characterizes the propagation in the domain beyond the
surface s, i.e. it represents the complex disturbance at r due to a monochromatic
point source of frequency v, and of unit strength and zero phase, situated at r’ on
the surface «. If the effective band of the light is sufficiently narrow, one obtains
from Eq. (4.4-30), in a similar way to that employed in deriving Eq. (4.4-29),
the following approximate generalized propagation law for the mutual coherence
function:

Py w2, 0) = [ [ P, v 0K v K 2w, 9 ErdPrs. (443

4.4.4 The van Cittert—Zernike theorem

One of the central theorems of the elementary theory of partial coherence was
formulated by van Cittert (1934) and later, in a more general form, by Zernike
(1938). It expresses the field correlations at two points in the field, generated by a
spatially incoherent, quasi-monochromatic, planar source.

The van Cittert—Zernike theorem may be readily derived by starting from our
formula (4.4-29). We set t= 0 in Eq. (4.4-29) and recall that, according to Eq.
(4.3-34), I'(ry, 5, 0) is just the mutual intensity J(r;, ry). If we also make in Eq.
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Planar incoherent
source ¢

Fig. 4.11 Tllustrating the notation relating to the van Cittert-Zernike theorem.

(4.4-29) the small angle approximation indicated by Eq. (4.4-23), we obtain the
following formula, sometimes called Zernike’s propagation law for the mutual
intensity:

eik(Re=R1)

J(rl,r2)=( ) j j J(rh, o) S @ & (4.4-32)

Suppose now that the open surface s coincides thh the radiating surface o of a
spatially incoherent, planar, quasi-monochromatic secondary source. Then, for
any two points S1(r1) and S»(r5) on 0,

J(rs, r4) = I(r)dP (rs — ry), (4.4-33)

where I(r') is a measure of the intensity at r' and 6@ is the two-dimensional
Dirac delta function. The presence of the delta function on the right-hand side of
Eq. (4.4-33) expresses the fact that any two elements of the source are assumed
to be mutually uncorrelated. This, of course, is an idealization. Any source found
in nature will be correlated over distances that are at least of the order of the
mean wavelength of the light. This is true even for sources that are generally
regarded as spatially completely incoherent, e.g. blackbody sources, as we will see
later (Section 13.1). However, if the correlations extend over distances that are
not larger than about a mean wavelength and if the linear dimensions of such a
source are large compared to the mean wavelength, as we now assume, the
idealization expressed by Eq. (4.4-33) usually leads to a good approximation for
the mutual intensity of the field.
On substituting from Eq. (4.4-33) into Eq. (4.4-32), we obtain the formula

lk(st Ris)

I(ry, 1) =( )fl( ——d’r, (4.4-34)

RisRos
where R;s and R,s are the distances from a typical point S(r’) on the source to
the points Py(r;) and P,(r;), respectively (see Fig. 4.11).
If we normalize Eq. (4.4-34) according to Eq. (4.3~35) we obtain the following
expression for the (equal-time) complex degree of coherence of the field gener-
ated by our spatially incoherent source o:

1

o8> (L) e, s
jry, )= —mM8M8m —— | — r')——————dr’, A4
' P22\ 2m ] o 7 RisRys
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where
7 \2 '
1)) = J(x), ) = (_"_) jl(_r_)dzr', (=12,  (44-36)
2 a R?S

is the intensity at the field point P(r;).

The formula (4.4-35) is the mathematical formulation of the van Cittert—Zer-
nike theorem. It expresses the equal-time degree of coherence at two points
Py(r;) and P,(r,) in the field generated by a planar, spatially incoherent,
quasi-monochromatic source o in terms of the intensity distribution I(r') across
the source and the intensities /(r;) and I(r,) at the two field points. We stress
that Eq. (4.4-35) was derived on the assumption that the path differences
|Rys — Rys| are small compared to the coherence length of the light and that the
angles which the lines SP; and SP, make with the normal to the source are small.

The integral that appears in the expression (4.4-35) is of the same form as one
which is frequently encountered in quite a different connection, namely in
calculations of diffraction patterns on the basis of the Huygens—Fresnel-Kirch-
hoff diffraction theory (Born and Wolf, 1980, Sec. 8.2 and Sec. 8.3). More
specifically the van Cittert—Zernike theorem, expressed by the formula (4.4-35),
implies that, under the conditions stated, the equal-time degree of coherence
j(ri,ra), is equal to the normalized complex amplitude in a certain diffraction
pattern: namely, the normalized complex amplitude at a point Py(ry) in the
diffraction pattern formed by a monochromatic spherical wave of frequency kc/2m
converging towards the point Py(ry) and diffracted at an aperture in an opaque
screen, of the same size, shape and location as the incoherent source o, with the
amplitude distribution across the aperture being proportional to the intensity
distribution across the source.

In many cases of practical interest the field points Pi(r;) and P,(r,) are situated
in the far-zone of the source. Under these circumstances the van Cittert—Zernike
theorem takes a simpler form, which we will now derive.

Let us take the origin O of the position vectors to be in the source region o,
and let s; and s, be the unit vectors pointing in the directions from O to the field
points Pi(r;) and P,(r;) (see Fig. 4.12). Then

Iy =181, Tz =138, (4.4-37)

Pylrp

Primary planar
mcoherent source o

Fig. 4.12 Illustrating the notation relating to the far-zone form of the van
Cittert—Zernike theorem.
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We will consider the asymptotic behavior of the integral in Eq. (4.4-35) as
kry— o, kry— , with the two directions specified by the unit vectors s; and s,
fixed. When r; and r; are sufficiently large

Rig~r—sir', Rys~ry—sr (4.4~38)
If we substitute from Eq. (4.4-38) into the formulas (4.4-34) to (4.4-36) and

neglect in the denominators the terms s; - r’ and s, - r’ in comparison with r; and
r, respectively, the formulas simplify to

J(ry, ) = (i)z-emf I(r') e Kemsr g2y (4.4-39)
27 rry o
and
I(r") ez e g2y
j(ry, rg) = ek 2 . (4.4-40)
1y er

a

We see that when the field points Pi(r;) and Py(r,) are in the far zone of the
source, the mutual intensity J(rj,r;) and the equal-time degree of coherence
j(r1, 1) are expressible in terms of the Fourier transform of the intensity I(r")
across the source, We may refer to the formula (4.4-40) as the far-zone form of
the van Cittert—Zernike theorem.

As an example let us consider an incoherent, quasi-monochromatic, circular
source o, of radius a, centered at O and of uniform intensity /(r’) = constant.
For the sake of simplicity we take the points Py(rq) and P,(r;) in the far zone to
be situated at the same distance r (= r{ = ry) from the origin O and close to the
normal direction. The expression (4.4—-40) then reduces to

e~i1€(s;—sl)-r' &y

r'sa

J(ryra) = : (4.4-41)

J d?.rr
r'sa

To evaluate the integral in the numerator of Eq. (4.4-41) we set

r' = (pcos @, psinB), sy, —sp; = (wcosy, wsiny), (4.4-42)
where s;, and s, are the projections, considered as two-dimensional vectors, of
the three-dimensional unit vectors s; and s; onto the source plane. The formula
(4.4-41) then becomes

1 a2r -
frir) = — [ [ e odpas. (4.4-43)
ma 070

The integral that appears on the right-hand side is well known in the theory of
Fraunhofer diffraction at a circular aperture (see, for example, Born and Wolf,
1980, Sec. 8.5.2). On substituting its value into Eq. (4.4-43) one finds that

jrira) = M (4.4-44)

1%
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Here
v = kalsyy ~ sy, (4.4-45)
and Ji(x) is the Bessel function of the first kind and first order. We note that,
since
s = (fl EAY o), S2. = (-xﬁ 22 ) (4.4-46)
ror ror

the variable v may also be expressed as
b= fc(i)du = %(i)[(xl — 0P+ (iR, (@4-47)
r r

where evidently d; is the distance between the points Py (r;) and Py(x,).

The behavior of the function 2J;(v)/v, which according to Eq. (4.4-44)
represents the equal-time degree of coherence in the present example, is shown in
Fig. 4.13. We see that it decreases steadily from the value 1 for v = 0 to the value
0 for v =3.83. Hence, with increasing separation of the two points P;(r;) and
P,(r;) the (equal-time) degree of coherence j(ry, r,) decreases steadily at first and
there is complete incoherence [/(ry, ry) = 0] when
3.83( r) _0.61r1

dy =22 (4.4-48)

k
A further increase in the separation leads to a re-introduction of a small amount
of coherence, but the degree of coherence remains, in absolute value, smaller
than 0.14, and there is further complete incoherence at v =7.02. Since the
function 2J;(v)/v changes sign as v passes through each of its zeros, the phase of
the complex degree of coherence changes there by 7.
The function 2J;(v)/v decreases steadily from the value 1 for v = 0 to the value
0.88 for v = 1, i.e. for the separation

diy = 0.164r/a. (4.4-49)

a a

27 (wlv

1.0 1

0.8

0.6 1

0.4 4

021

Fig. 4.13 The function 2J,(v)/v.
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Now, in practice, a drop from the ideal value of unity, which does not exceed
about 12%, is not regarded as very significant. Therefore, in the far zone and
close to the direction normal to the source plane and parallel to i, the light
produced by a spatially incoherent, quasi-monochromatic, uniform, circular source
of radius a is approximately coherent over a circular area AA whose diameter is
0.16}/a, where « = afr is the angular radius subtended by the source, when viewed
from AA. We note that AA = 7(0.163/2a)?, i.e. that

AA = 0.063r242/s, (4.4-50)

where S =7a? is the area of the source. This expression is seen to be in

agreement with the order of magnitude relation (4.2-6) which we derived earlier
by a rough intuitive argument.

4.4.5 Propagation of correlations from primary sources

In the preceding sections we considered the propagation of second-order correla-
tions in free space, without paying any special attention to the way in which the
fluctuating field was generated in the first place. The field fluctuations are, of
course, a reflection of the fact that the sources of the field emit radiation by a
mechanism that is never strictly deterministic and can only be described in
statistical terms. We will now examine how the correlations of a field are related
to the correlations of its source.

Let Q©(r, ) represent a realization of a (real) fluctuating scalar source,
assumed to occupy a finite domain D in free space, and let VO(r, 1) be the field
generated by the source. Then V®(r,t) and Q®(r,?) are related by the
inhomogeneous wave equation

21/(x)
oV gl‘, 1) = —477Q<’)(r, L‘). (44_51)

V2V O(r, 1) — =
C2

Let us associate with V® and Q® the analytic signals V and Q, respectively. By
a straightforward extension of the analysis that led to Eq. (4.4-7), it follows that
V(r, t) obeys the inhomogeneous wave equation
13V, 1) _
2 ot?

Let us write ; in place of r and #; in place of ¢ and then take the complex
conjugate of the equation. This gives
13°V*(ry, 1y)
c? 8t%
where V3 is the Laplacian operator taken with respect to r;. Next we write r, in
place of r and ¢, in place of ¢ in Eq. (4.4-52), and we obtain the equation
13°V(ry, 1) _

&2 a;%

V2V(r, t) - —47Q(r, 1). (4.4-52)

C

Viv(ry, 1) — = —4rQ*(ry, 1), (4.4-53)

V3V (ry, t2) — —47Q(ry, 1), (4.4-54)

where V3 is, of course, the Laplacian operator taken with respect to r,. If we
multiply the left-hand side of Eq. (4.4-53) by the left-hand side of Eq. (4.4-54)
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and also multiply together the right-hand sides, we find at once that

(v% - ia—)(V% - %—a—)v (r12 )V (12, 12) = (4720, )00, 12).
c 8[1 ¢ 8t2
(4.4-55)

If we take averages of both sides of Eq. (4.4-55) over the source ensemble, we
find that

1 3 1 3%
(V2 )(V% - — )FV(H, ry; ty, ty) = (477)2FQ(1'1’ y; t, 1),
2

¢ atl T
(4.4-56)
where
Ty(ry, x5 11, 1) = (V¥(ry, 1)V (12, 12)), (4.4-57)
Lo(ry, to; 1y, 12) = (OQ*(ry, 1) O(ra, 12)). (4.4-58)

We see that the correlation functions of the field and of the source are coupled by
a fourth-order differential equation.

Suppose that the statistical ensemble which represents the fluctuations of the
source is stationary, at least in the wide sense. The source correlation function
Tp(rysra; 1y, 12) will then depend on its two time arguments only through the
time difference ¢, — t;; and, since the relationship between the field variable V
and the source variable Q is, according to Eq. (4.4-52), linear, the same is true
for the field correlation function I'y(ry, ry; t1, £2). We may, therefore, set

Ty(ry, vg; 11, 1) = Ty(ry, 1o, 1 — 1), (4.4-59)
Do(ry,xos 11, t2) = Tp(ry, 1o, 1 = 11). (4.4-60)
The function 'y (ry, Iy, 7) is, of course, the mutual coherence function of the field
that we denoted before by I'(ry, rp, ), where T = t, — ¢;. The operators az/azl
and 82/3¢3 on the right-hand side of Eq. (4.4-56) may each be replaced by 3%/37°.
It follows that when the source is stationary, at least in the wide sense, the

second-order correlation functions of the field and of the source are related by the
fourth-order differential equation

(Vl - ii)(vz — _1._—>[‘V(r1, ry), 1) = (477)2FQ(r1, 1y, 7). (4.4-61)
Far 2372

Let us represent I'y and I in terms of the cross-spectral densities Wy and Wy
of the field and of the source, via the Fourier transform relations

Ty(ry, 1y, ) = [ Wy(ry, Ty, v) e M dv, (4.4-62a)
0

Tp(ry, 1, 7) = jo Wo(ry, £, v) €72 dy. (4.4-62b)

On substituting from Egs. (4.4-62) into Eq. (4.4-61) and interchanging the order
of differentiation and integration we obtain the following fourth-order differential
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equation, which relates the two cross-spectral densities:
(Vi + KD(VE + K Wlrr, 12, ) = (4m) Wo(ry, 10, 7),  (4.4-63)

where
k =2mv/c (4.4-64)

is the wave number associated with the frequency v.

Equation (4.4-61) or (4.4-63) may be taken as the starting point in studying
the properties of fields generated by steady-state primary sources of any state of
coherence. We will consider such problems later (Section 5.2). Here we will only
derive a useful formula which we will then need later. It provides an explicit
solution of Eq. (4.4-63) for Wy, in terms of Wy, when the source radiates in free
space. We will obtain the solution in two stages. First we re-write Eq. (4.4-63) in
the form

(V3 + IOV + KOWylry, rp, V] = @m)2Wo(ry, rp,v)  (4.4-65)

and solve this equation for (V% + k)YWy(rq, 1o, v), whilst keeping r; fixed. The
solution of such a ‘reduced wave equation’ is well known to be (see, for example,
Papas, 1965, Sec. 2.1)

1kRy
(V3 + KWy (ry, 12, v) = —477[ Wo(ry, 15, v)—eR a5, (4.4-66)
D 2

where (see Fig. 4.14)
Ry = |r; — rj] (4.4-67)

and the integration extends throughout the source region D. Equation (4.4-66) is
of the same general form as Eq. (4.4-65) and so we may obtain its solution also at
once. However, we must bear in mind that V' (r;) and V(r,) enter the definition
of Wy, as complex conjugates. Hence the corresponding Green’s function will be
exp (—ikR;)/R; rather than exp (ikR,)/R,. We then obtain the required solution
of Eq. (4.4-63):

) eik(Ra=R1)
Wy(ry, 1, v) =f f Wo(ri, 5, V)——— d*r{ d%r4, (4.4-68)
D/D RiR,
where
Ri=Ir;—rjl, (j=12). (4.4-69)

Pi(ry)

Sirp)

) Pars)

Source domain D

Fig. 4.14 Illustrating the notation relating to Egs. (4.4-66) to (4.4-70).
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The corresponding solution of Eq. (4.4-61) may be obtained in a similar way,
starting with the well-known retarded Green’s function solution of the inhomo-
geneous wave equation; or, more simply, by just taking the Fourier transform of
Eq. (4.4-68) and using Egs. (4.4-62). The result is

Ly(ry,rp, 7) = j f Tofri, r, T = (Ry ~ Ry)/c]
D/D R1R2

Erid’ry.  (4.4-70)

4.5 Fields of special types
4.5.1 Cross-spectrally pure light

We have seen in Section 4.3.2 that, if light of the same spectral distribution
emanates from two pinholes at P; and P, and one examines the superposed light
at a screen %, some distance away from the plane containing the pinholes, one
will find that, in general, it will have different spectral compositions at different
points on the screen. We will now show that, under certain circumstances which
are often encountered in practice, the spectral composition of the superposed
light depends on the spectral composition of the two interfering beams in a
relatively simple manner.

According to the spectral interference law (4.3-54) the spectral density S(r, v)
of the light at the point P(r) is related to the spectral densities SV(r, v) and
$@(r, v) of the light reaching P from the two pinholes P, and P;, respectively, by
the formula

S(r,v) = SO(r,v) + SO, v) + 2[SW(r, ,,)}1/2[5(2)(1., v]Y2Re (u(ry, 1p, v) €277
(4.5-1)

where pu(ry, 15, v) is the spectral degree of coherence of the light at the two
pinholes Py(r;) and P,(r,) and

P P] =[PP
o= PPl (PP 45-2)
C
is the difference in the times needed for light to travel from P; to P and from P,
to P respectively (see Fig. 4.6).

Suppose now that the relative spectral distributions of the light at the two
pinholes are the same, i.e. that

S(ry, v) = CpS(ry, v), (4.5-3)

where Cy, is a positive proportionality factor which is independent of the
frequency. The spectral densities of the light reaching the point P in the plane %
of observation from the two pinholes are, according to Egs. (4.3-53) and (Eq.
(4.3-41), given by

SO(r, v) = [K[*S(ry, v), (4.5-4a)
SO(r, v) = [K2S(ra, v) = Cpl Ko PS(xy, v). (4.5-4b)
On substituting from Egs. (4.5-4) into Eq. (4.5-1) we obtain the following

4.5 Fields of special types 197

expression for S(r, v):
S(r, v) = S(ry, W{K:1? + CplKaf? + 2V(Cr)l Kuf | Ko Re [ulry, rp, v) €727}
(4.5-5)

Suppose now that there is a point, Py(rg) say, on the screen % where the spectral
density of the light is the same as that at the pinholes, except for a proportionality
factor that is independent of the frequency, and let 7, be the corresponding
t-value, i.e.

o= (P10} — [PoPo] (4.5-6)

c

It is clear that, for this to be the case, the term in the curly brackets in Eq.
(4.5-5), with T replaced by 15, must be independent of the frequency. Now the
factors K; and K are each inversely proportional to the wavelength, i.e. directly
proportional to the frequency (see footnote on p. 161). If we assume that the
spectrum of the light at each pinhole is not too broad, we may neglect the
frequency dependence of these two factors. The last term on the right-hand side
of Eq. (4.5-5), (with 7 replaced by 7;) will be independent of the frequency if

wry, 12, v) e = f(ry, 1), T), (4.5-7)

where f(ry, 3, 7o) is some function of ry, r,, and 7, only.

When a region exists around a point Py in the plane of observation % such that
the spectral distribution of the light in this region is of the same form as the
spectral distribution of the light at the pinholes, we say that the light at the
pinholes is cross-spectrally pure * This will evidently be the case when Eq. (4.5-7)
holds. The time delay 7y, given by Eq. (4.5-6), then specifies the location of the
point Fg.

We will now show that cross-spectrally pure light has a number of interesting
properties. According to Eqs. (4.3-40a) and (4.3-47b), the mutual coherence
function I'(ry, ry, T) may be expressed in the form

F(l‘], r, T) = J:O[S(rlv V)]I/Z[S(rzz V)]l/zﬂ(rl’ I, V)e_zmw dv. (45_8)

On substituting from Egs. (4.5-3) and (4.5-7) into Eq. (4.5-8) we obtain the
following expression for I'(ry, r, )

I(ry, rp, T) = V(Cp) f(ry, 12, ro)fo S(ry, v) e M) gy, (4.5-9)

Now according to Egs. (4.3-40a) and (4.3-41), the integral on the right-hand side
of Eq. (4.5-9) is precisely I'(ry, ¥y, T — 7p) and hence Eq. (4.5-9) may be written
as

I(ry, 12, 1) = V(Cp)f(x1, 12, 1) T(ry, 11, T~ To). (4.5-10)

From this equation we can readily see the physical significance of the function

+ This concept is due to Mandel (1961b), who also established some of the special properties that such
light exhibits. The present treatment is largely based on the analysis of Mandel and Wolf (1976).
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f(ry, vy, 1) that we introduced rather formally via Eq. (4.5-7). For this purpose
we first note that, because of Eq. (4.5-3). we now have, from Eq. (4.3-40a).
I'(ry, 1y, T) = CypI'(r;. ry, 7) and hence

[I(ry, 1y, O)]l/z[r(rzv ra, 0)]1/2 = \/(Clz)r(rls r;, 0). (4.5~-11)

On dividing both sides of Eq. (4.5-10) by this factor and recalling the definition
(4.3-12a) of the complex degree of coherence y, we obtain the relation

Y(rb ra, T) = f(r1> I, IO)Y(rl: r, T~ TO)' (45-12)

Finally if we set T = 1 in Eq. (4.5-12) and recall that y(ry,r;,0) =1, we obtain
the result that

f(rl’ r2, TO) = }’(r1, r2, TO)' (45—13>

Thus the function f(ry, r,, Tp) is precisely the complex degree of coherence of the
light vibrations at the two pinholes, for time delay 5. On making this identifica-
tion in Eq. (4.5-7) we see that our condition for cross-spectrally pure light is

u(ry, ry, v) = y(ry, ra, Tp) e?mivio, (4.5-14)

Strictly speaking this relation must hold for spectral components of every fre-
quency Vv that is contained in the spectrum of the light at P; and P,. However, to
a good approximation, it may clearly be relaxed by demanding that it be satisfied
only for those frequency components that contribute significantly to the average
intensity at P; and P;.

In physical terms the condition (4.5-14) implies that when the light at Py and P,
is cross-spectrally pure, the absolute value of the spectral degree of coherence u(ry,
ra, V) is the same for every frequency v present in the spectrum of the light at P;
and P, and is equal to the absolute value of the degree of coherence y(ry, ry, 7);
and that, moreover, the phases of p and of y only differ by an additive term
2mvry. Of course, for the light at P; and P, to be cross-spectrally pure, it must
satisfy, in addition to (4.5-14), the requirement (4.5-3) that expresses the fact
that the spectra of the light at P; and P, are the same, except possibly for a
proportionality constant.

The condition (4.5-14) for cross-spectrally pure light bas an immediate implica-
tion with regards to the form of the spectral distribution of the light at any point
P(r) in the plane of observation. On substituting from Eq. (4.5-14) into the
general expression (4.5-5) for the spectral density we find that for cross-spectrally
pure light

S(r.v) =
S(ry, v){A + Bly(ry, ry, To)| cos [arg y(ry, ra, To) — 217'v(—}il——:—R—Z - 1:0)]},
(4.5-15)
where R; and R; are the distances from the pinholes P, and P, to P, and
A=K + CplKol', B =2V(Cp)|Ky| K. (4.5-16)
It is seen from Eq. (4.5-15) that, as the point P(r) explores the plane of
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observation, the spectral demsity S(r,v), with the frequency v fixed, varies
sinusoidally between the values

Smax(r» V) = S(rlw V)[A + B|’}/(I‘1, rs. TO)“}
Smm(n V) = S(rl’ V)[A - B|Y(rl’ ra, TO)[] .

By analogy with the definition (4.3-23) of the visibility of interference fringes we
may define the spectral visibility V(r, v) at frequency v, at a point P(r) in the
interference pattern, by the formula

Smax(r, V) - Smm(rw V)

(4.5-17)

V(r,v) = . (4.5-18)
Smax(r: V) + Smin(r7 V)
On substituting from Egs. (4.5-17) into Eq. (4.5-18) we find that*
B
V(r,v) = Zh/(rl’ ry, 7). (4.5-19)

Since both the factors |K;| and |K,| are proportional to frequency, we see from
(4.5-16) that the ratio B/A is frequency-independent and hence the spectral
visibility of interference fringes formed by two cross-spectrally pure beams is
independent of the frequency. Moreover, since | K| and |K,| and hence the ratio
B/A depend rather weakly on the position of the point P, the spectral visibility
(with P, and P, fixed) is effectively constant over a portion of the plane of
observation.

The sinusoidal variation of the spectral density across the interference pattern
as given by Eq. (4.5-15), with the spectral visibility independent of the frequency,
expresses the spectral modulation law for cross-spectrally pure beams.

We have noted several times already that the temporal and the spatial coher-
ence properties of light are, in general, not independent of each other. However,
cross-spectrally pure light is rather exceptional in this regard, as is seen at once if
we substitute from Eq. (4.5-13) into Eq. (4.5-12). We then obtain the relation

Y(rla ra2, I) = Y(rla T, 'Co)}/(r], ry, T— TO)' (45—20)

We see that the complex degree of coherence y(r;.r,, 7) is now expressible as the
product of two factors: one factor characterizes spatial coherence at the two
pinholes for time delay 1, and the other characterizes temporal coherence at one
of the pinholes. The formula (4.5-20) is usually referred to as the reduction
formula for cross-spectrally pure light. It may also be expressed in the equivalent
form

I(ry, 12, ) = I'(ry, 12, 1) ¥(T). 1y, T = ), (4.5-202)

# More generally, whether or not the beams are cross-spectrally pure one can readily show by the use

of Egs. (4.5-18) and (4.3-54) that [cf. Eqgs. (4.3-25) and (4.3-26)]
V(r, v) = 2n(r, v) + 1/n(c, N7y 1 ).

where 7(r, v) = [SW(r, v)/S@(r, v)]2. Further one can also readily deduce from Eq. (4.3-54) that
the location of the maxima of the spectral density S(r, v), with the frequency v fixed, is given by the
formula [cf. Eq. (4.3-27)] a(r|, 12, v) — 20WR) — Ry)/c = 2mm. (m = 0, £1, *2, . .), where
a(r),ry, v) is §he argument (phase) of the spectral degree of coherence: u(ry,r,,v)=
lulry, v, v)|exp fia(ry, ra, v)].
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which follows at once from Eq. (4.5-20) on multiplying both sides by the product
[I(ry, 1, ) (xs, £y, O)]lf2 and recalling the definition (4.3-12a) of the complex
degree of coherence in terms of the mutual coherence function.

Conversely one can show that, when the reduction formula (4.5-20) holds with
some value of 7y, and the spectral densities of the light at the points P, and P, are
equal to each other, except perhaps for a frequency-independent proportionality
factor, then the light at these two points is cross-spectrally pure.

Cross-spectrally pure light can be generated, for example, by linear filtering of
the light that emerges from the two pinholes in a Young interference experiment
(see, for example, Kandpal, Saxena, Mehta, Vaishya and Joshi, 1993). We have
shown in Section 4.3.2 that if the filters have sufficiently narrow passbands, the
degree of coherence of the filtered light is given by Eq. (4.3-63), namely y*)(rs,
Iy, 0) = u(ry, r3, %), where v is the mid-frequency of the filters. This relation is
seen to be in agreement with the condition (4.5~14) for cross-spectrally pure light.
Other examples of such light are given by Mandel (1961b).

4.5.2 Coherent light in the space-time domain®

We showed earlier that the absolute values of the complex degrees of coherence
y(r1, ry, T) and p(ry, ra, v) have upper bounds equal to unity. We saw that, when
these upper bounds are attained, one can produce interference fringes of max-
imum possible visibility (unity) in suitable interference experiments. These limit-
ing cases represent complete second-order coherence.

Complete second-order coherence in the space-time domain implies certain
functional forms of the complex degree of coherence y(ry, ry, t) and of the
mutual coherence function I'(r;, ry, 7); and complete coherence in the space-fre-
quency domain implies certain functional forms of the spectral degree of coher-
ence u(ry, ry, v) and of the cross-spectral density W(ry, ra, v).

In the present section we consider the implications of complete second-order
coherence in the space-time domain. The corresponding results relating to com-
plete second-order cohererce in the space-frequency domain will be discussed in
the subsequent section (Section 4.5.3).

We begin with the non-negative definiteness condition satisfied by the complex
degree of coherence y(ry, ry, 7), namely the inequality

n n
S S atay(r, v, T — 1) =0, (4.5-21)
j=1k=1
valid with any positive integer n, any set of points ry, ra, ..., I, any set of
temporal parameters t, %, . . ., T, and any real or complex constants a;, as, - - -,

a,. The inequality (4.5-21) follows from Eqs. (4.3-37) and (4.3~12a). If we chose
n =3 it implies that
1 Y(ry, r2, = ) Y(rp, X3, T3 = W)
y(ry, T, 71 — %) 1 Yry, 13, 13— 1) | =0 (4.5-22)
y(r3, 11, 11— T3)  ¥(r3, Iy, T~ T3) 1

+ The analysis presented in this section is based on an investigation of Mehta, Wolf and Balachandran
(1966).
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for all real values of 73, 7, 73 and for any set of points ry, r,, rs in the domain D
in which the complex degree of coherence y(r;, ry, 7) is defined. On evaluating
the determinant in Eq. (4.5-22) and on using the Hermiticity relation

V() Ty T = T;) = Y*Xi> Tjs Tj — Ti)s (4.5-23)

which follows from Egs. (4.3-36) and (4.3-12a) of Section 4.3, we obtain the
following inequality valid for all values of 7y, 7, and 3

ly(rs, 12, T — T3) — y(r1, T2, T — TYY(EX3, Ty, Ty — T3))
= [1 - [Y(rb Ty, T — TI)IZ][l - |Y(r3¢ r;,, 7y — T3)12]' (45‘24)

With the help of this inequality we may readily derive a number of theorems
relating to complete second-order coherence in the space-time domain.

(a) Complete self-coherence at a fixed point

Suppose that the light at some particular point r =R in the domain D is
completely coherent in the sense that

(R, R, 7)] = 1. (4.5-25)
for all values of 7. This assumption implies that
YR, R, 7) = "7, (4.5-26)

where ¢(7) is some real function of the real variable t and also perhaps of R (not
displayed). Since y satisfies the relation (4.5-23), ¢(r) must obey the relation

#(—71) = —¢(7) + 2mm, (4.5-27)

where m is an integer.
Letussetr; =r, =R and r3 =r € D in the inequality (4.5-24) and let us also
make use of Eq. (4.5-25). We then obtain the inequality

IY(r’ R, 75— T3) - Y(R, R: T2~ Tl)Y(ry R, T~ 1‘-3)]2 =0 (45_28)

Since the left-hand side cannot be negative, it is clear that the inequality (4.5-28)
can only hold if the left-hand side vanishes, i.e. if

y(r,R, 5 — 1) = y(R,R, &, — 1)¥(r, R, 7y — T3). (4.5-29)
If we choose 1; = 13 = T, — 7 it follows that
y(r, R, 1) = (R, R, 7)y(r, R, 0). (4.5-30)

Next let us set r=R in Eq. (4.5-29) and make use of Egs. (4.5-26) and
(4.5-27). We then obtain the following functional equation for ¢:

P(r — 1) + ¢(r = T3) + (73 — 1)) = 2m7, (4.5-31)

where m is any integer.
To solve the functional equation (4.5-31) we will make use of the fact that it
holds for all values of 7, 7, and 7;. Let us differentiate it with respect to t; and
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then set 7, = 13 = 1, + 7. This gives the following differential equation for ¢(7):
dé() _
dr

where v; = —(d¢/dt),—¢/27 is a constant. On integrating Eq. (4.5-32) with
respect to 7 we see that ¢(t) must have the form

—21v,, (4.5-32)

o(t) = —2mwT + B, (4.5-33)
where f3 is a constant. From Egs. (4.5-33) and (4.5-26) it follows that
Y(R, R, 7) = lf=2m0o0), (4.5-34)

Now y(R,R,0) = 1. Hence the constant 3 in Eq. (4.5-34) must be an integral
multiple of 27. Moreover, since y, just like I', is an analytical signal which
contains only positive frequency components, the constant v, must be positive.
Hence

y(R, R, 1) = e™2M07 (4, > 0). (4.5-35)

On substituting from Eq. (4.5-35) into Eq. (4.5-30) we obtain for y(r, R, ) the
expression

y(r,R, 1) = y(r, R, 0) e 27 (v > 0). (4.5-36)
From this formula and the relation (4.5-23) we also obtain at once the expression
(R, 1, 1) = y(R, 1, 0)e 707 (y5 > 0). (4.5-37)

We may summarize the main result that we just obtained by saying that if the
light is completely self-coherent at some point R € D in the sense expressed by Eq.
(4.5-25), then y(R, R, ©), y(r, R, 1) and y(R, r, t) with r € D are, for all values
of T, necessarily of the form given by Egqs. (4.5-35) to (4.5-37), i.e. they are
periodic in T.

(b) Complete mutual coherence at two fixed points

Next let us examine the case when the light is mutually completely coherent at
two points r; = Ry, r, = Ry, both of which are located in the domain D contain-
ing the optical field. Expressed mathematically, we assume that

|¥(R;, Ry, 7)) =1 forallt (4.5-38)

with the points R; and R, fixed. To see the implications of Eq. (4.5-38) we
proceed in a similar way as before. We set ry =Ry, r; =R, and rs=re D in
Eq.(4.5-24) and use Eq. (4.5-38). We then obtain the inequality

(v, Ry, 1y — 13) = Y(Ry, Ry, 1 — 1) y(r, Ry, 7y — Ta)'z <0, (45-39)
which can evidently only be satisfied if the relation
7(r Ry, 1 — 13) = YRy, Ry, 1 — 1) y(r, Ry, 7y — 13) (4.5-40)

holds for all values of 71, 1, and 73. On taking the absolute values of both sides of
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Eq. (4.5-40), setting r = R; and on using Eq. (4.5-38) once more, it follows that
[Y(Ry, Ry, 1) =1 forall . (4.5-41)
In a similar way, with r = R, one finds that
[Y(Ry, Ry, )] =1 forall 7. (4.5-42)

Now Egs. (4.5-41) and (4.5-42) imply that the field is completely self-coherent at
each of the points Ry and R, and hence, according to the results that we obtained
earlier [Egs. (4.5-35) to (4.5-37)],

Y(R1, Ry, 7) = ¥(Rq, Ry, 7) = €727 (v > (), (4.5-43)

and
Y(Ry, Ry, 7) = y(Ry, Ry, 0) 7207 (v > (), (4.5-44)

However, since in view of Eq. (4.5-38), y(Ry, Ry, 0) is unimodular, Eq. (4.5-44)
implies that
Y(Ry, Ry, 7) = #7200, (4.5-45)

where 3 is a real constant. Finally, setting 7; = 7, = 73 + v in Eq. (4.5-40) and
making use of Eq. (4.5-45), we obtain the formula

y(r, Ry, 7) = y(r, Ry, ), (4.5-46)

valid for all 7.

We have thus shown that if the light at two points Ry € D, Ry € D is mutually
completely coherent in the sense expressed by Eq. (4.5-38), then y(Ry, Ry, 17),
YRy, Ry, 7) and y(Ry, Ry, 1) are, for all values of t, necessarily of the forms
given by Egs. (4.5-43) and (4.5-44); and that, moreover, if r is any other point in
D, y(r, Ry, T) and y(r, Ry, 1) are related by Eq. (4.5-46), where B is a real
constant.

(c) Complete coherence throughout a volume

Finally we will consider the case when the light is completely coherent throughout
a volume D, in the sense that

ly(ri,r2, 7)) =1 forallt (4.5-47)

and for all r; € D, ry e D. We start once again with the inequality (4.5-24),
where we now set 7y = 7, = 13 and make use of the assumption (4.5-47). We then
obtain the relation

¥(rs, 12, 0) = y(r1, 12, 0)¥(rs, r1, 0). (4.5-48)
Equation (4.5-47) implies that
y(r,, 1y, 0) = el (g =12 3), (4.5-49)

where ¢ is real. From Eqs. (4.5-48) and (4.5-49) it follows that the phase
function ¢ satisfies the functional equation

o(rq, 17, 0) + P(rs, ry, 0) = ¢(r3, ry, 0) + 2mm, (4.5-50)
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where m is an integer. Since the origin in D is arbitrary, we may take r3 = 0, and
we obtain from Eq. (4.5-50) the relation

P(ry, 12, 0) = a(ry) — ofry) + 2mm, (4.5-51)

where a(r) = ¢(0, r, 0) is a function of r only.
From Egs. (4.5-49) and (4.5-51) it follows that

¥(ry, 13, 0) = ello@=alr], (4.5-52)

Now under the assumption of complete second-order coherence expressed by Eq.
(4.5-47), the formula (4.5-44) applies with R; —ry, R, —r; and hence, if we
substitute from Eq. (4.5-52) into Eq. (4.5-44), we obtain the following expres-
sion for y(ry, ra, T):

y(ry, 1y, T) = ei[d(rz)—w(n)—anr]’ (vg > 0). (4.5-53)

Hence we have established the following result: If a field is completely coherent
throughout a volume D, i.e. if |y(ry, r2, T)| = 1 for all points v1 € D, rp € D and
for all values of v, then the complex degree of coherence has necessarily the form
given by Eq. (4.5-53), with «(r) being a real function of position. If we recall the
definition of the complex degree of coherence [Eq. (4.3-12a)], it follows that,
under these circumstances, the mutual coherence function has the ‘factorized’
T-periodic form

(1, ry. 1) = UX(r) U(r) e ™2™, (v > 0), (4.5-54)
where
U(r) = [I(x, r, 0)]'7 e (4.5-55)

I'(r,r,0) = {V*(r, t)V(r, 1)) is, of course, the average intensity at the point r,
«(r) is a phase factor and v, is a positive constant.

If the domain D is free space, the mutual coherence function I'(ry, rz, 7)
satisfies the two wave equations (4.4-11). On substituting from Eq. (4.5-54) into
these equations it follows that the function U(r) then necessarily satisfies the
Helmbholtz equation

V2U(r) + kyU(r) = 0, (4.5-56)
where
ko = ZTTVO/C. (45‘57)

¢ being the speed of light in vacuum.

We have shown in this section that complete coherence in the space-time
domain always implies strictly periodic 7-dependence of the degree of coherence
and of the mutual coherence function. Hence the spectral- and cross-spectral
densities of such fields are represented by Dirac delta functions, with their
singularities at some positive frequency ¥%. Clearly such fields cannot occur in
nature. They should be regarded as representing a mathematical limit, rather than
a realizable optical field.

We will next consider complete coherence in the space-frequency domain.
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4.5.3 Coherent light in the space—frequency domain®

We begin with the non-negative definiteness condition satisfied by the spectral
degree of coherence, pu(ry, Iy, v), namely the inequality

n n
S S afagurj, ry, v) =0, (4.5-58)
j=1k=1
which is valid with any positive integer », any sets of points ry, r3, . . ., r,, and any
set of real or complex constants aj, 4z, . . ., @,. This inequality follows at once

from Egs. (4.3-44) and (4.3-47).
Let 1y, ry, 3 be any three points in the domain D containing the optical field.
If we choose n = 3 in Eq. (4.5-58) the inequality implies that

25 Y 5 VI Uk
w1 p2 s | =0, (4.5-59)
Mzr Mz MH33
where we used the abbreviation
e = HCE), Ty ). (4.5-60)

Now according to Eqgs. (4.3-43) and (4.3-47) the spectral degree of coherence is
Hermitian, i.e.

Hij = Mﬁc (4.5-61)
Moreover, from its definition [Eq. (4.3—-47)] we see that
i =1. (4.5-62)
Hence the inequality (4.5-59) implies that
1w s
wh 1 | =0 (4.5-63)
uhoowhs 1

On evaluating the determinant we obtain the inequality

2Re (unptinsidls) = il + s + ls* = 1, (4.5-64)

where Re denotes the real part.
Suppose now that the field is spatially fully coherent at some particular
frequency vq, throughout a volume D, i.e. that

lu(ry, ray vo)l = 1, v > 0O fixed, (4.5-65)

for all r; € D, o € D. Then, in particular, |u* = |maf* = |usi* =1 and the
inequality (4.5-64) reduces to

Re (uppppspds) = 1, (4.5-66)

where the frequency argument of the py (f, k = 1, 2, 3) is understood to be v. In
view of the assumption (4.5-65), w; is of the form

i = €V, (4.5-67)

+ The analysis of this section is largely based on an investigation of Mandel and Wolf (1981).
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where Yy = (r;, 1y, vp) is real. Because of the Hermiticity relation (4.5-61), we
also have

Yig =~ Y. (4.5-68)
If we make use of Egs. (4.5-67) and (4.5-68), the inequality (4.5-66) is seen to
imply that
cos (Y12 = Yar + Ya1) = L. (4.5-69)
Since |cos 6] cannot exceed unity for real values of § and is equal to unity when
6 = 2mm where m is any integer, the inequality (4.5-69) implies that
Y(r1, T2, vo) + (X3, 11, V) = P(r3, T, Vo) + 2m, (4.5-70)

where m is an integer. Since the origin in D is arbitrary, we may take r3 = 0 and
we then obtain from Eq. (4.5-70) the relation

W(ry, Ty, Vo) = B(ry; vo) — Blry; v) + 2mm, (4.5-7)

where S(r; vo) = ¥(0, r, vp).
From Egs. (4.5-67) and (4.5-71) it follows that the spectral degree of coher-
ence must have the form

wry, vy, vg) = elfrzvo)-plruw)] (4.5-72)

Hence we have established the following result. If a field is spatially fully coherent
at some particular frequency vy throughout a volume D, i.e if |u(ry, ry, v)| =1
for all ry € D. vy e D, then the spectral degree of coherence has necessarily the
form given by Eq. (4.5-72), where B(r; vy) is a real function of position. If we
recall the definition (4.3-47) of the spectral degree of coherence, it follows that,
under these circumstances, the cross-spectral density at frequency vy has the
factorized form

W(ry, ra, o) = UHry, v)U(r2, vo), (4.5-73)
where
U(r, vp) = [S(r, vp)]2 e, (4.5-74)

with S(r, w) representing the spectral density at frequency v, at the point r and
B(r; ) is a phase factor.

If the domain D is free space, the cross-spectral density W(ry, r,, v) satisfies
two Helmholtz equations [Egs. (4.4-12)]. On substituting from Eq. (4.5-73) into
these equations we readily find that the function %U(r, %) necessarily satisfies the
Helmbholtz equation

V2U(r, vo) + kSU(r, v) = 0 (4.5-75)
where
ko = 2mvy/c. (4.5-76)

We considered in this section a field that is completely coherent, at some
particular frequency v, throughout a volume D. Let us now suppose that the
field is completely coherent throughout D at each frequency v (0 < v < ). Then,

4.6 Free fields of any state of coherence 207

according to the result that we just established, the cross-spectral density at each
frequency v of such a field must necessarily have the factorized form (4.5-73).
Consequently, since the mutual coherence function and the cross-spectral density
form a Fourier transform pair (4.3-40), it follows that the mutual coherence
function of a field that is completely coherent at all frequencies must necessarily be
expressible in the form

I(ry, 1y, 1) = L U (ry, V)U(Ts, V) e 2™ v, (4.5-77)

We note that a mutual coherence function of the form (4.5~77) will, in general,
not be periodic in T and hence the field that it represents will have a spectral
density

S(r, v) = W(r,r, v) = U, v (4.5-78)

of non-vanishing width. In view of this fact and the discussion following Eq.
(4.5-57), it would seem that complete coherence in the space-frequency domain is
a more realistic concept than complete coherence in the space-time domain.

An example of a field which is completely coherent in the space-frequency
domain occurs in connection with a single-mode laser resonator, as is shown in
Section 7.4. Such a field is, however, not fully coherent in the space-time domain.

4.6 Free fields of any state of coherence

All fields encountered in nature are generated by sources located at finite
distances from the observer and the fields generally interact with material media
(lenses, mirrors, screens, etc.). Nevertheless. for reasons that we will note
shortly, it is of interest to consider idealized fields that have no sources, except
perhaps at infinity and that do not interact with any material objects. Such fields
are known as free fields. We will consider free fields of any state of coherence.

Although free fields represent an idealization, the concept of such fields is
useful, because most measurements are performed at distances that are many
optical wavelengths away from the sources of the fields and from objects with
which the fields interact. Under these circumstances the field in the region of
interest may usually be well approximated by a free field, which differs from the
actual field by the absence of evanescent waves (see Section 3.2). Such waves
decay exponentially in amplitude with increasing distance from their sources. The
contributions of the evanescent waves in regions where measurements on the field
are made are usually negligible. Naturally, free fields are easier to analyze
mathematically than more general fields.

We have seen in Section 4.4.1 that the space-time correlation function of a field
in free space satisfies two wave equations, i.e. differential equations which are
second-order in time and space variables. Sudarshan (1969) showed that, if the
domain is the whole space, i.e. if one deals with a free field, the second-order
space-time correlation function also obeys equations which are first-order in time,
but are non-local in space. This result has a number of interesting physical
consequences.
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In this section we will derive Sudarshan’s equations for propagation of correla-
tion functions of free fields and will then briefly discuss some of their conse-
quences.

4.6.1 Sudarshan’s equations for the propagation of second-order correlation
functions of free fields

Let V(r, t) be a realization of a statistical ensemble of free fields. We take V (r, )
to be the complex analytical signal associated with the real field variable. It
satisfies the wave equation (4.4-7)

V2V (r, 1) =

1 3%V(r, 1)
S (4.6-1)

c ar?
throughout the whole space. The general formal solution of Eq. (4.6~1), valid

throughout the whole space, may be expressed as superposition of plane-wave
modes, namely

V(r, 1) = j a(K) e ® K g3 f b(K) eiE K PR (4.6-2)

where K =|K| and the integrations extend over the whole three-dimensional
K-space.

The representation (4.6-2) of a free field may be readily established as follows.
We express V(r, 1) as a (possibly generalized) three-dimensional Fourier integral,

Vi, 1) = [ VK, )R TPk, (4.6-3)

and substitute this expression into the differential equation (4.6-1). On
interchanging the order of differentiation and integration and taking the Fourier
inverse of the resulting equation, we readily find that

2 13%\ s
-K* = =—V(,t)=0. (4.6-4)
c*ar?
The general solution of Eq. (4.6-4) is
V(K, 1) = a(K) e 5 4+ p(K) ek, (4.6-5)

where a(K) and h(K) are arbitrary functions of K. On substituting for V(X, )
from Eq. (4.6-5) into Eq. (4.6-3) the representation (4.6~2) follows.

Since we are representing the field by a complex analytic signal, it cannot
contain any negative frequency components and hence 5(K) =0 in Eq. (4.6-2).
Consequently the field is represented by an ensemble of realizations of the form

Vir, 1) = fa(K) eil® r=Ke) g3 g (4.6-6)

If we differentiate both sides of Eq. (4.6-6) with respect to ¢, we obtain the
equation

aa_V_ - —ICJKCI(K) el(K'r—I\’cl) $K. (46_7)
t

4.6 Free fields of any state of coherence 209

The integral on the right-hand side of this formula may be expressed in terms of a
certain non-local operator acting on V(r, t). This operator, usually denoted by
V(=V?), is well known in particle physics and in quantum field theory and may be
defined as follows:

Let F(r) be any scalar function of r that has a Fourier integral representation

F(r) = f F(K) e d°K. (4.6-8)
Then
V2F(@r) = - j K?F(K) e T K. (4.6-9)

This formula suggests the use of the symbolic notation \/(—V?)F(r) to denote the
integral that appears on the right-hand side of Eq. (4.6-9):

V(-V)F(r) = JKF(K) KK, (4.6-10)

This formula defines the operator \/(—V?). We may express the right-hand side of
Eq. (4.6-10) directly in terms of F(r) rather than in terms of F(K) by substituting
for F(K) the expression

T _ 1 1 —iK-r' 33 1 _
F(K)—ij)e &, (4.6-11)

which is the Fourier inverse of Eq. (4.6-8). One then obtains after simple
algebraic manipulation the formula

\/(——VZ)F(r) = jF(r’)H(r -r') &r, (4.6-12)
where

— 1 iK-R 13
H(R) = wae #K. (4.6-13)

It is shown in Appendix 4.1 that the kernel H(R), given by Eq. (4.6-13), of the
integral transform in Eq. (4.6-12) may be symbolically expressed in the form
: 2
HE®) = 9 [s9(R) - 6)(R)], (4.6-14)
2rR dR?
where R =|R| and &(R) and &)(R) are the positive and the negative
frequency parts of the Dirac delta function, defined in Appendix 4.1 [Eq.
(A4.1-4)]. Equation (4.6-12) shows that the operator V/(—V?2) is non-local, i.e.
the value of \/(~V?) F(r) depends not only on the value of F at the point r but on
the values of F at all points in space.
Let us now return to Eq. (4.6-7). We note that the integral which appears on
the right-hand side of that equation is just —ic\/(—Vz)V(r, t), and hence we see
that the analytic signal representation of any free field satisfies the equation

_13V(r, 1)
ic a1
This equation was first derived by Sudarshan (1969).

V(=V)V(r, 1) = (4.6-15)
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Because Eq. (4.6-15) is first-order in time, it is possible to determine the values
of V(r,¢) for all r and all ¢ from the knowledge of V(r, ') at any particular
instant of time ¢’. An explicit formula for this time evolution can be obtained as
follows. We first take the Fourier inverse of Eq. (4.6-6). This gives

a(K) = Le”m'fx/(r/, e K By, (4.6-16)
@m)?

Next we substitute from Eq. (4.6-16) into Eq. (4.6-6) and interchange the order
of integrations. We then obtain the formula

V(r, 1) = fV(r’, G -1, 1~ 1) dr, (4.6-17)
where
GR,T) = — f K R-KT) 3 g (4.6-18)
(2m)®
It is shown in Appendix 4.2 that G(R, T) may be expressed in the form
1 2
GR.T) = ————[8" )R = cT) + 8RR + cT)], 4.6-19
) R aR[ ( ) ( )] ( )
where R = |R|.

The formula (4.6-17) for the time-development of the analytic signal is valid
not only for all values of r> ¢’ but also for all values of z < ¢’. This fact is a
reflection of the requirement that in order to construct the complex analytic signal
associated with a real signal the values of the signal must be known for all values
of t (~o0 <t < ) [see Eq. (3.1-21)].

Now, in the present context, V(r, ¢) is a realization (sample function) of a
fluctuating free field, whose second-order correlation function may be defined in
the usual way as

L(ry, 1151, 13) = {V*(xry, 1)V (s, 12)). (4.6-20)

Let V/(=V3) and V/(—V3) denote the operator V/(—V?), acting with respect to
spatial variables r| and r,, respectively. Let us apply the operator \/(—V?), (j=1L
2), to Eq. (4.6-20) and interchange the order of the operations on the right-hand
side of the resulting equations. This gives

VYD, im0, 1) = (V=YD VA, i)V, 0), (=1,2). (4.6-21)

On making use of Eq. (4.6-15) on the right-hand side of Eq. (4.6-21) and
interchanging again the order of the operations. we obtain Sudarshan’s equations
(Sudarshan, 1969)

3
V=YD, 1112 1) =~ Py, 151y, 1), (4.6-22a)
ic 9ty
I 19
V(=VDI(ry, 11219, 1) = _T’a I(ry, 11512, 12), (4.6-22b)
1¢ [2

which must be satistied by the second-order correlation function I'(r), ¢;; ra, t3)
of any ensemble of free fields.
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We note that unlike the wave equations (4.4-10) for I', Sudarshan’s equations
are first-order in the temporal variables and are non-local in the spatial variables.
This fact implies that the knowledge of the correlation function I'(ri, t1; rj, t5)
for all values of rj and r5, but with #{, ¢ fixed, determines I'(ry, #;; s, t;) for all
values of its arguments. We will derive shortly the solution to this ‘initial value’
problem and discuss some of its physical consequences.

Since most optical fields that one encounters in nature are stationary, at least in
the wide sense, we will specialize Eqs. (4.6-22) to fields of this kind. For such
fields I'(ry, t1; ry, tp) will depend on its two time arguments only through the
difference = t, — t; and becomes the mutual coherence function I'(ry, r;, 7).
Since now —93/3¢; = 3/dt, = 9/37, Egs. (4.6-22) become

V=V, 1, ) = — Iy, 1. 7). (4.6-23a)
ic 31

VTDIE121) = =~ 1), (4.6-230)
1C T

Finally, if we take the Fourier transform of Eqs. (4.6-23) and recall that the
Fourier transform of the mutual coherence function is just the cross-spectral
density W(ry, ra, v) [Eq. (4.3-40b)], we obtain the equations

V(=VHW(ry, 12, v) = kW (ry. 15, %) = 0. (4.6-24a)
V(=VHW(ry, 1y, ¥) — kW(r), 1. %) = 0, (4.6-24b)

where k = 2mv/c.

4.6.2 Time evolution of the second-order correlation functions of free fields*

Let us again consider an ensemble of free fields which. to begin with, we do not
restrict to being stationary. The time evolution of each realization V(r, 1) is given
by Eq. (4.6-17). On substituting from Eq. (4.6-17) into Eq. (4.6-20) that defines
the correlation function I", we obtain the formula

I'(ry, ty515, 1) =
HH%HJ%@GWVWLH—mah*ﬁhféﬂm@%y@&%)

where G(R, T) is the Green’s function (4.6~19). This formula, which is valid for
all values of ¢; and 1, (1; Z 11, t, 2 15) describes, 1 a closed form, the time
evolution of the correlation function I of a free field. It makes it possible to
determine I'(ry, ty; 1y, tp) for values of all its arguments from the knowledge of
I'(r1, t{; r5, t5), where ri and rj take on all possible values, but ¢; and t; are any
two (fixed) temporal arguments.

Next we will specialize the formula (4.6-25) to free fields which are stationary,
at least in the wide sense. For this purpose we set 1, — ty =1, 5 — t; = v’ and
eliminate ¢, and tj from Eq. (4.6-25) by means of these relations. We now also
have I'(rq, t1; Fg, t;) = [(rq, 19, T), ['(r{, t{; 13, t5) = ['(r}, r5, '), and we obtain

* The main results of this section are due to Wolf, Devaney and Foley (1981). p. 123.
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the formula

F(rla Iy, ‘L') =
[ [Pt e, )GH @ — i 1 = )G = 5, T 1 = 7 = ) Eri .

(4.6-26)

If we set 1y = t{ = 0 in Eq. (4.6~26) we obtain the formula
I(ry, 1, 7) = ”r(rg, 5, T)G*(ry — rf, 0)G(ry — 15, T — 7)dr{ d*rs. (4.6-27)

It follows from Eq. (4.6-18) and from the Fourier integral representation of the
Dirac delta function that

G*(R, 0) = SA(R). (4.6-28)

If we substitute from Eq. (4.6-28) into Eq. (4.6-27), we obtain the following
formula for the time evolution of the mutual coherence function of any free field
which is stationary, at least in the wide sense:

I(r, 12, 7) = fF(rl, rj, T)G(r; — 15, 7 — ) dr, (4.6-29)

where t'(Z 1) is arbitrary.

4.6.3 A relationship between temporal and spatial coherence properties of free fields

The formula (4.6-29) that we have just derived has a number of interesting
consequences which we will briefly consider in this and in the next section.

Since the parameter v’ in Eq. (4.6-29) is arbitrary we may, in particular, set it
equal to zero. The correlation function that then enters the integrand of Eq.
(4.6-29) is the ‘equal-time’ coherence function I'(rj, ry, 0), i.e. the mutual
intensity that we encountered earlier {Eq. (4.3-34)] and denoted by J(r, r;). We
thus obtain the formula

I(ry, 19, 7) = f J(r1, ©5)G(rs — 13, T &7, (4.6-30)

which expresses the mutual coherence function (i.e. an unequal-time correlation
function) in terms of the mutual intensity (i.e. an equal-time correlation func-
tion).

If we take r, = r; (=r say) and denote the variable of integration by r’ rather
than rj, Eq. (4.6-30) becomes

I'(r,r, 1) = j](r, r)G(r — ', 1) d*r'. (4.6-31)

The function on the left is the self-coherence [see the discussion that follows Eq.
(4.3-35)], which is a measure of the temporal coherence of the field at the point
r, whereas the function J(r,r’) on the right is a measure of the spatial coherence
at the two points r and r’. Hence Eq. (4.6-31) expresses the temporal coherence
properties of a (stationary) free field in terms of its spatial coherence properties.
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4.6.4 A relationship between spectral properties and spatial coherence properties of
free fields*t

If we take the Fourier z-transform of Eq. (4.6-30) and use Eq. (4.3-40b), we
obtain the relation

Wenr, ) = [J, 1) — v, V) 'rs, (4.6-32)

where W(r, 1y, v) is the cross-spectral density of the field and G(R, v) is the
Fourier transform of the Green’s function (4.6-19), namely

GR, V) = j G(R, T)e*™T dT. (4.6-33)
This Fourier transform is evaluated in Appendix 4.2 and is found to be
2 .
GR,v) = k—( S kR) when v> 0
mc \ kR (4.6-34)
=0 when v < 0,

where k = 27v/c. On substituting from Eq. (4.6-34) into Eq. (4.6-32) we obtain
another interesting relation, namely
sin klr, — 1

2
W(ry, 1z, V) = k—f](rl, r}) - dry  whenv>0 (4.6-35a)
e kil‘z - l'2|

=0 when v<0.  (4.6-35b)

The fact that W(ry, r, v) = 0 when v <0 was, of course, to be expected, since
I(ry, 1y, T) is an analytic signal [see discussion that follows Eq. (4.3-15)]. The
formula (4.6-35a) expresses the cross-spectral density of a free, stationary field in
terms of its mutual intensity or, to put it somewhat differently, it expresses its
spectral properties in terms of its spatial coherence properties.

If we choose r; =r; (=r say), the left-hand side of Egs. (4.6-35) reduces to
the spectral density S(r, v) = W(r, r, v) of the light at the point r. If we denote
the variable of integration on the right of Eq. (4.6-35a) by r' rather than r;, we
obtain the following expression for the spectral density of the field in terms of the
mutual intensity:

2 : o
S, v) = - [, Lk i NG (4.6-36)
7c klr — r'|
Some implications of the formulas (4.6-35) and (4.6-36) for one-dimensional,

statistically stationary, homogeneous free fields were discussed by Wolf, Devaney
and Gori (1983).

4.7 Coherent-mode representation and ensemble representation of sources and
fields in the space-frequency domain

We have noted earlier (Section 2.4.1) that a stationary random function, V(t)
say, does not admit a Fourier integral representation within the framework of

* The results in this section are due to Wolf and Devaney (1981).



214 2nd-order coherence theory of scalar wavefields

ordinary function theory, because the sample functions do not tend to zero as
t— *oo. In the previous section of this chapter we ignored this difficulty and we
formally employed the Fourier integral representation in order to provide a
heuristic description of fluctuating fields in the space-frequency domain, rather
than in the space-time domain. The main results that we obtained by this
non-rigorous approach can be justified by more sophisticated mathematical tech-
niques, such as generalized harmonic analysis and the theory of generalized
functions.

In spite of the impossibility of defining the Fourier spectrum of a stationary
random function, one can obtain, as first shown by Wolf (1982; see also 1981a, b,
1986 and Agarwal and Wolf, 1993), a mathematically rigorous representation of
stationary random sources and of stationary random fields in the space-frequency
domain, in terms of ensembles of ordinary functions, at least within the frame-
work of second-order theory. Naturally this representation does not use as a basis
the time harmonic Fourier kernels e 2™ but rather, as we will see, the eigenfunc-
tions of an integral equation whose kernel is the cross-spectral density. In this
section we will present an outline of this theory. We will make considerable use of
the theory in Chapters 5 and 7.

4.7.1 Coherent-mode representation of partially coherent fields in free space

Let us consider a stationary optical field V(r, t) in some finite closed domain D in
free space and let I'(r;, ry, 7) be its mutual coherence function. We assume that
I'(ry, ry, 7) falls off sufficiently rapidly with 7 as |t/ — « to ensure that, for all
points ry € D and r; € D, the mutual coherence function is absolutely integrable
with respect to T, i.e. that

r IT(ry, s, T)[d7 < o0, 4.7-1)

It then follows from a well-known theorem of Fourier integral analysis (Goldberg,
1965, p. 6) that I'(ry, ry, 7) has a Fourier frequency transform

o

W(ry, Iy, v) = j I'(ry, ry, T)e*7dr (4.7-2)
and that this transform, namely the cross-spectral density function W(ry, 1y, v), is
a continuous function of v.

It also readily follows from Eq. (4.3-12a) and the inequality (4.3~13) involving
the cross-correlation function of a stationary random function that absolute
integrability of the mutual coherence function I" implies its square-integrability:

j IT(r,. 12, )2 dt < 0. (4.7-3)

—c0

Consequently by Parseval’s relation (Goldberg, 1965, p. 51) the cross-spectral
density is square-integrable with respect to v:

f( |W(ry. ry, VP dv < =, (4.7-4)
)
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and Eq. (4.7-2) may be inverted:
I(ry,rp, 1) = f W(ry, 1y, v)e " dv. (4.7-5)
0

On the right-hand side of Eq. (4.7-5) the lower limit of integration is 0 rather
than —« because the mutual coherence function is an analytic signal.

Equations (4.7-2) to (4.7-5) and the continuity of the cross-spectral density as
a function of v are consequences of the single assumption expressed by Eq.
(4.7-1). We will now also assume, that the cross-spectral density is a continuous
function of r; and r, throughout the domain D. Then |W(ry, 14, v)|* will neces-
sarily be bounded in D. Consequently

ff!W(rl,rz,v)Fd3r1d3rz < o (4.7-6)
D/ D

We have seen earlier [Eq. (4.3-43)] that the cross-spectral density satisfies the
condition

W(ry, r, v) = WH(ry, ra, v). 4.7-7)

It is also a non-negative definite function in the sense that

[D jDWm, £y, V() f(re) ry dry = 0, (4.7-8)

where f(r) is any square-integrable function. This inequality, which may be
regarded as a ‘continuous analogue’ of the inequality (4.3-44), may be established
by a similar argument as was used in Section 2.4.4 in proving the non-negative
definiteness of the cross-spectral density matrix Wy (v), but replacing the sum in
Eq. (2.4-40) by an integral [cf. Eqs. (2.3—4a) and (2.3-4b)].

The condition (4.7-6) implies that the cross-spectral density function is a
Hilbert-Schmidt kernel and Egs. (4.7-7) and (4.7-8) show that the kernel is
Hermitian and non-negative definite. By the multi-dimensional version of Mer-
cer’s theorem discussed in Section 2.5.1 it follows that the cross-spectral density,
assumed to be continuous, may be expressed in the form

W(rly I, V) = zan(")wﬁ(l‘p V)wn(rb V)s (47_9)

the series on the right being absolutely and uniformly convergent. The functions
Yo(r, v) are the eigenfunctions and the coefficients «,(v) are the eigenvalues of
the integral equation

j W(ry, r2, VUu(e1, V) Py = (M, (ra, V), (4.7-10)
D

which is seen to be a homogeneous Fredholm integral equation of the second
kind. As in the one-dimensional version of Eq. (4.7-10), discussed in Section 2.5,
the Hermiticity of W ensures that the integral equation (4.7-10) has at least one
non-zero eigenvalue, and the Hermiticity and the non-negative definiteness of W
ensures that all the eigenvalues are real and non-negative, i.e. that

a,(v) = 0. (4.7-11)
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Moreover one can again assume, without loss of generality, that the eigenfunc-
tions form an orthonormal set, i.e. that

j WA, W, V) ET = S 47-12)
D

where 8, is the Kronecker symbol.
In the present context the Mercer expansion (4.7-9) has an interesting physical
significance. To see this we re-write it in the form

W(r,, ry, v) = Zaf,,(v)W(”)(rl, ra, V), (4.7-13)

where
W (ry, ra, v) = Yh(ry, v)(rz, v). (4.7-14)

An expression of the form (4.7-14) represents the cross-spectral density function
of a field that is completely coherent in the space-frequency domain, as is clear
from a theorem derived in Section 4.5.3 [see Bq. (4.5-73)]; or more directly, by
noting that the corresponding spectral degree of coherence

W(")(rl: r2, V)
[W(")(l‘l, Ty, V)]l/z[W(")(rZ’ ra, V)]l/z

is unimodular [ (r1, £y, ¥)] = Lforallr; € D, rp € D
We have shown earlier [Eqs. (4.4-12)] that in free space the cross-spectral
density obeys the two Helmholtz equations

W (ry, 1y, v) = (4.7-15)

VIW(ry, 12, v) + KW (rg, 2, %) = 0, (4.7-1632)
VAW (ry, 12, v) + K2W(ry, 12, v) = 0, (4.7-16b)

where
k = 2mv/e (4.7-17)

is the wave number associated with the frequency v. If we substitute the
expansion (4.7-9) for W into Eq. (4.7-16b), multiply the equation by v, (ry, v),
integrate both sides of the equation with respect to ry over the domain D,
interchange the order of summation and integration and use the orthonormality
relations (4.7-12), we readily find that

V2, (r, v) + K2y,(r,v) =0 (4.7-18)
throughout D. From Eqs. (4.7-14) and (4.7-18) one then immediately finds that
W) satisfies the two Helmholtz equations

VAW (ry, 1y, v) + KW (ry, 1, %) = 0, (4.7-192)
VW (ry, 15, v) + KEWO(ry, 15, %) = 0. (4.7-19b)
Thus, for each n, W(")(rl, r,, v) satisfies the same equations as does the
cross-spectral density of the field and hence we may regard W (ry, s, v) as

_representing a mode of the field. Thus we have shown that the expansion (4.7-13)
represents the cross-spectral density of the field as a superposition of modes that are
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completely coherent in the space-frequency domain. For this reason the expansion
(4.7-9) is sometimes referred to as the coherent-mode representation of the
cross-spectral density.

It can also be readily shown from the definition (4.7-14) of W™, by the use of
the orthonormality relations (4.7-12), that the modes are mutually orthonormal;
more precisely that

foD[W‘")(rl, 2, WEW (0, 10, M B dry = 8, (4.7-20)

Let us now briefly consider the spectral density of the field. According to Eq.
(4.3-41), the spectral density S(r, v) of the light at the point r is just the ‘diagonal
element’ of the cross-spectral density, i.e.

S(r, vy = W(r,r, v). (4.7-21)

On substituting from Eq. (4.7-13) into Eq. (4.7-21) we obtain for the spectral
density the expression

S, v) = 3 a,(nSM(r, v), (4.7-22)

where
SO(r, vy = W(r, £, v) = |y, (r, v)*. (4.7-23)

If we integrate Eq. (4.7-22) throughout D, interchange the order of summation
and integration and use the formula

f SO, vy &Pr =1, (4.7-24)
D

which follows at once from the definition (4.7-23) of $/ and from the ortho-
normality relation (4.7-12), we obtain the relation

JDS(r, W&r = Sa,(v). (4.7-25)

Equation (4.7-22), together with Eq. (4.7-23), shows that the contribution of
the mode labeled by the index n to the spectral density at the point r is
a,(W|wa(r, v)|? and Eq. (4.7-25) shows that its contribution to the integral of
the spectral density throughout the domain D, which is a measure of the total
energy in D at frequency v, is precisely a,(v).

Finally we note that according to Egs. (4.7-5) and (4.7-13), the mutual
coherence function of the field may be expressed in the form

I(ry, 12, 7) = ST (ry, 150 1), (4.7-26)
n

where I’ (")(rl, ry, 7), the mutual coherence function of the mode labeled by the
index n, is given by
Iy, 1g, 7) = f W (WD (e, 1g, v) e 2 dy (4.7-27a)
0

o

= [ it Do, e (@47-275)
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From Eq. (4.7-27a) one can readily show, with the help of the orthogonality
relations (4.7-20), that the I"")’s are also orthogonal in the sense that
f dr[ &r f ErlI (e, 1, DT, 19, 1) = Sy [ &2(V)dv.  (4.7-28)
-~ Jp D 0
However, unlike the spectral degree of coherence (" (ry, r;, v) the complex
degree of coherence y™)(ry, r,, 7) of each mode, obtained on substituting from
Eq. (4.7-27b) into Eq. (4.3-12a) is not, in general, unimodular. Hence the
modes I" (")(rl, ry, T) are not, in general, coherent in the space-time domain. This
conclusion was to be expected, since the expressions (4.7-27) are not of the form

given by Eq. (4.5-54), which follows from the requirement of complete coherence
in that domain.

4.7.2  Rigorous representation of the cross-spectral density as a correlation function

With the help of the coherent-mode representation that we have just discussed we
will now construct an ensemble of strictly monochromatic wave functions
{U(r, v)e 2™} all of the same frequency v, such that the cross-spectral density
W(ry, rz, v) is equal to their cross-correlation function. The mathematical analysis
that underlies the construction is similar, in part, to that which we encountered
earlier in connection with the Karhunen-Loéve orthogonal expansion of a
random process (Section 2.5.1), but the physical consequences of the results go
beyond it.

Let us consider a set of functions {U(r, v)}, each member of which is a linear
superposition of the eigenfunctions 1, (r, v) of the integral equation (4.7-10):

Ur, v) = X an(MPu(r, v). (4.7-29)

In this expansion a, are random coefficients, whose properties we will specify
shortly. The cross-correlation of U(ry, v) and U(r,, v) at two points r; and r, in
the field is then given by

<U*(I‘1, V)U(rb V))v = 2 Z(aﬁ(v)am(v) >vwﬁ(r15 V)Wm(r% V)a (47—30)

where the angle brackets, with suffix v, denote the average over the ensemble of
the frequency-dependent functions U(r, v) or, equivalently, over the ensemble of
the random coefficients a,(v). Suppose now that we choose the random coeffi-
cient a,(v) so that ‘

(aﬁ(V)am(V»v = “rz(v)énm! (47“31)

where the «,’s are the eigenvalues of the integral equation (4.7-10) and §,,, is
the Kronecker symbol. We also demand that, for each realization,

Dlan(MP < oo, (4.7-32)

Such an ensemble {a,(v)} can always be chosen, for example, by taking

a,(v) = [a, (]2 e, (4.7-33)
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where, for each, n, 6, is a real random variable that is uniformly distributed in
the interval 0 < 6, < 27 and 6, and 6,, are statistically independent when n # m.
With this choice, the requirement (4.7-31) is evidently satisfied. The requirement
expressed by Eq. (4.7-32) is then also satisfied because we have

E(;an(v)|2>v = Za/n(v) (47_34)

and the sum of the eigenvalues of the integral equation (4.7-10) with a continu-
ous Hilbert—Schmidt kernel is known to be finite [Tricomi, 1957, Sec. 3.12, Eq.
(8), with &, = 1/A,]. That the sum on the right-hand side of Eq. (4.7-34) is finite
is also obvious from the relation (4.7-25).

Each of the sample functions U(r,v) given by an expansion of the form
(4.7-29), subject to the constraint (4.7-32), may be readily seen to be square-
integrable over the domain D. To show this we integrate the squared modulus of
U(r,v) throughout D. If then we substitute in the integrand the expansion
(4.7-29) for U(r, v} and interchange the order of integration and summation, we
obtain the formula

j 1U(r,v>|2d3r=zzamv)am(v)jpw:(r, Vipm(, V&Pr.  (4.7-35)
D nm

Since according to Eq. (4.7-12), the y,’s form an orthonormal set, Eq. (4.7-35)
reduces to

f U, WPdr = a2, (4.7-36)
D n

and the right-hand side of this equation is finite, because of the requirement
(4.7-32).

Let us now substitute from Eq. (4.7-31) into Eq. (4.7-30). We then obtain the
formula

<U*(r17 V>U(r21 V))v = Zdn(")wﬁ(rh V)wn(rl’ V)- (4-7_37)

On comparing the right-hand side of this equation with the right-hand side of the
Mercer-type expansion (4.7-9) for the cross-spectral density, we see that they are
equal. The left-hand sides must, therefore, also be equal and hence we obtain the
formula

W(ry, 12, v) = (U*(ry, v)U(ry, W) (4.7-38)

Thus we have constructed an ensemble {U(r, v)} of random fields that provide a
representation of the cross-spectral density W(ry, r,, v) of the given field as the
cross-correlation function over this ensemble.

Since according to Eq. (4.7-18) each term in the expansion (4.7-29) for
U(r, v) satisfies the Helmholtz equation, it follows that each member of our
ensemble {U(r, v)} will also satisfy this equation, i.e. that

V2U(r, v) + K2U(r, v) = 0, (4.7-39)

.where & = 27v/c is the wave number associated with frequency v.
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We note that the result expressed by Eq. (4.7-38) has some resemblance to the
formula (4.3-39) for the cross-spectral density in terms of V(r, v). Moreover,
V(r, ), just like U(r,v), satisfies the Helmholtz equation [Eq. (4.4-3)] in free
space. However, all our earlier derivations of results relating to stationary fields,
which involved V(r, v), must be regarded as being heuristic, because V(r, v) was
formally introduced as the Fourier transform of the random function V(r, t); and,
as we have noted several times already, the Fourier transform of a stationary
random function does not exist within the framework of ordinary function theory.
It can only be rigorously interpreted as a generalized function. On the other hand,
the functions U(r, v) of the present theory are ordinary functions. They may be
used to provide a rigorous formulation of many of the results that we obtained
earlier by plausibility arguments.

Apart from greater mathematical rigor, the formula (4.7-38) for the cross-
spectral density and its ‘diagonal’ form

S(r, vy = (U*, WU (r, v)), (4.7-40)

for the spectral density of the field at a point r agree well with the intuitive
physical meanings of these quantities. For, in view of Egs. (4.7-38) and (4.7-39),
we may regard each member U(r, v) of our ensemble as the time-independent
part of a monochromatic wave function.

V(r, t) = U(r, v)e ™, (4.7-41)

and the spectrum and the cross-spectrum of the field are then expressed as
averages of quantities that are quadratic in their complex amplitudes.

4.7.3 Natural modes of oscillations of partially coherent primary sources and a
representation of their cross-spectral density as a correlation function

Representations strictly similar to those given by Egs. (4.7-9) and (4.7-38) for
the cross-spectral density of a stationary field can also be obtained for the
cross-spectral density of a stationary source. The ‘source-analogues’ to these two
formulas, which we will derive in this section, lead to the concept of natural
modes of oscillations of a partially coherent source and they provide a useful
method for the study of the properties of fields generated by such sources in terms
of coherent modes.

Let us consider a primary fluctuating scalar source localized in some finite
domain o in free space. Let Q(r, t) be the source distribution, which we take to
be the analytic signal associated with a real source distribution QW(r, 1). We
assume that the fluctuations are characterized by a statistical ensemble that is
stationary, at least in the wide sense, and we denote by I'g(ry, r;, 7) the
cross-correlation function of Q, namely

To(ry,rp, 1) = (Q*(ry, 1)Q(ra, t + 7). (4.7-42)

We assume, by analogy with the assumption expressed by Eq. (4.7-1), that I’y
is absolutely integrable with respect to 7, and hence similar results will hold for
the source distribution as those expressed by Egs. (4.7-2) to (4.7-5) for the
optical field. In particular the cross-spectral density of the source distribution,
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namely
Wo(ry, ra, v) = f Ty(ry, 1y, 7) e dr, (4.7-43)

will exist and will be a continuous function of v. We also assume that Wy(ry, ry,
v) is a continuous function of r; and r, throughout the source domain ¢. Then Wy
will be a non-negative definite Hilbert—Schmidt kernel and it follows, by analogy
with Eq. (4.7-9), that it can be represented in the form of Mercer’s expansion,
namely

WQ(rl’ Iy, V) = Zﬁn(v)¢:(rl: V)(Pn(rZ’ V)! (47*44)

which is absolutely and uniformly convergent. The ¢,’s are the eigenfunctions
and the 3,’s are the eigenvalues of the integral equation

[ Wolws, 12, Vn(rs, )& = B, (00n(x2, ). (4.7-45)
o
Again the eigenvalues are necessarily real and non-negative,

B.(v)y =0, (4.7-46)

and the eigenfunctions may be taken to be orthonormalized:

| 1 Pnlr, V) & = 5, (4.7-47)

The expansion (4.7-44) represents the cross-spectral density of the source as a
linear superposition of the cross-spectral densities

W&y, 12, v) = vy, Vu(rs, V), (4.7-48)

which are seen to factorize with respect to the two spatial variables r; and r;,. This
fact implies that the associated spectral degree of coherence
Wgr1, rs, %)

WS s, 10, MIPIWE (12, 10, ]
is unimodular. Hence the expansion (4.7-44) represents the cross-spectral density
of the source as a linear superposition of elementary sources which are completely
coherent in the space-frequency domain. We may regard these elementary
sources ¢,, or rather the products ¢, (r, v) e >™, as representing natural modes
of oscillations of the given source. By analogy with Eq. (4.7-20) one can also
show that the cross-spectral densities of the different modes are mutually ortho-
gonal.

Of special interest for applications of this mode representation is an- anologue
to Eq. (4.7-38), namely the formula

w1, 10, 0) = (4.7-49)

Wolry, 12, v) = (U¥H(ry, v) Ug(ry, v) )y (4.7-50)

It represents the cross-spectral density of the source distribution as a correlation
function in the space-frequency domain. In Eq. (4.7-50) the Up’s are sample
functions of a statistical ensemble, of which each member has the form
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UQ(r’ V) = an(v)¢,,(r, V)’ (47_51)
where the b,(v)’s are random variables satisfying the requirements
(BEWMb(V) )y = Br(v)Onm (4.7-52)
and
E(}bn("”z)v < . (4.7-53)

The average in (4.7-50) is, of course, taken over the ensemble of the Uy or,
equivalently, over the ensemble of the random coefficients b,. The formula
(4.7-50) may be derived by the same argument as employed in the derivation of
the corresponding formula (4.7-38) for the cross-spectral density of the field.

Let us now consider the field V (r, ¢) generated by the fluctuating source and let
Wy (ry, 1y, v) be the cross-spectral density of this field. According to Eq. (4.4-63),
Wy is related to the cross-spectral density Wy(ry, ry, v) of the source by the
equation

(Vi + KB(V5 + EWy(ry, 1y, v) = (4n) Wo(ry, 1y, V). (4.7-54)

Now as we have already noted, the expansion (4.7-44) represents Wy as a linear
combination of contributions from completely coherent elementary sources. Each
such elementary source ¢, may be expected to generate a field vy, that is an
outgoing solution of the Helmholtz equation

(V2 + ) y,(r, v) = —dng,(r, v). (4.7-55)

Assuming, for the sake of simplicity, that the region outside the source domain o
is unbounded free space, the outgoing solution of Eq. (4.7-55) is

exp(ikir —r')
=1l
If, on the other hand, the region outside the source domain ¢ contains material
objects that respond linearly to an incident field, or if the region is bounded, one
would have, in place of Eq. (4.7-56), a formula of the same form, but with the
outgoing spherical wave function exp(iklr — r’])/lr — r'| replaced by the
appropriate Green’s function.
If we now construct the ensemble of functions

Uy(r, v) = Eb,,(v)ip,,(r, v), (4.7-57)

Palr, V) = j Dulr’, ) &r. (4.7-56)

where the y,’s are given by Eq. (4.7-56) and the b,’s are the same expansion
coefficients as those that appear in Eq. (4.7-51). Equations (4.7-57), (4.7-55)
and (4.7-51) imply that Uy(r, v) is an outgoing solution of the reduced wave
equation

(V2 + K2 Uy(r, v) = —4rUp(r, V). (4.7-58)
From Egs. (4.7-58) and (4.7-50) it readily follows that
(Vi + I3 + I (UH (1, I Uylra, V), = @0 Wo(ry, 10, v), - (4.7-59)
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which implies, in view of Eq. (4.7-54), that
Wy(ry, t, V) = (UH(ry, v) Uy(rs, V). (4.7-60)

This formula expresses the cross-spectral density of the field generated by the
primary source as a correlation function in the space-frequency domain.

Finally if we substitute from Eq. (4.7-57) into Eq. (4.7-60) and use Egq.
(4.7-52), we obtain the following expansion for Wy .

WV(rl’ ra, V) = Eﬁn(v)wt(rlz V)Wn(rb V)' (47—61)

Now each term in this series is factorized with respect to the two spatial variables
ry and r, and consequently its associated spectral degree of coherence is unimodu-
lar. Hence Eq. (4.7-61) represents the cross-spectral density of the field produced
by the primary source as a linear combination of elementary fields, each generated
by a natural source mode which is completely coherent in the space-frequency
domain. However, unlike the natural modes of the source, these partial fields are
not, in general, mutually orthogonal but, in view of Eq. (4.7-52), their contribu-
tions B,(v)wi(ry, v)Yu(ry, v) to the cross-spectral density Wy of the field are
uncorrelated.

Appendix 4.1
The kernel H(R) of the integral transform representation of the operator V(=V?
[Eq. (4.6-14)]
In this Appendix we obtain a formal evaluation of the integral (4.6-13), namely

1 iK-R 33
H(R) = —— K d°K, Ad.1-1

where the integration extends over the whole K-space.
We introduce spherical polar coordinates (K, 8, ¢) in K-space, with the polar
axis 6 = 0 along R. The formula (A4.1-1) then becomes

“© 27 T )
H(R) = —i—f dKK3f dq)J d6 sin § eI KRS8, (A4.1-2)
@2m)Jo 0 0
The integration with respect to ¢ gives 27 and, if we set x = cos 8, Eq. (A4.1-2)
reduces to
HER) = ——[ dKK? f dx iR
(2m? o -1
_ 1 fwK3 KR _ o-iKR

(2m)* o iKR

___1__[__1__[ KZ eiKR dK — __}___J KZ efoR C]K]
2rR 1 2w Jo 2m Jo

. 2 o 2 ©
:___1_{_ d [L[ e;KRdK]+ d [_1_f e-del}’
2rR\ dR*L2mJo AR 27 Jo

dK
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ie.
i &
H(R) = ———[6"")(R) = §(R)], (A4.1-3)
7R dR?
where

1 © _ 1 o iKE
sHey = L e‘KEdK, 5 == | ¢"KE4GK. A4.1-4
&= ® =5 (A4.1-4)

These positive and negative frequency parts of the Dirac delta function are
trivially related to the singular functions &_ and 6, which we encountered in
Section 3.1. The reason for the slightly different notation used here is due to the
difference in the signs of the arguments of the exponential kernels which appear
in the temporal and the spatial Fourier transforms. The functions 84)(E) and
87)(&) may also be represented in the form [Heitler (1984), Sec. 8]

8B = %{6(5) ¥ %Pé], (A4.1-5)

where P denotes the Cauchy principal value.
The formula (A4.1-3) is Eq. (4.6-14) of the text.

Appendix 4.2

The Green’s function G(R, T) for the time evolution of the analytic signal
representation of free fields and its Fourier transform G(R, v) [Egs. (4.6—-19) and
(4.6-34)].

The Green’s function G(R, T) which appears in Eq. (4.6-17) for the time
evolution of the analytic signal representation of free fields is defined by the
formula (4.6-18), namely

GR, T)= —— je“K‘R‘KCT) K, (A4.2-1)
(@n)®
where the integration extends over the whole K-space.

We proceed in a similar manner as we did in Appendix 4.1 in evaluating the
kernel H(R). We introduce spherical polar coordinates (X, 6, ¢) in K-space,
with the polar axis 8 = 0 along R, integrate with respect to ¢ and set x = cos 6.
The expression (A4.2-1) for the Green’s function then becomes

o 1 .
GR, T) = — fodKKzfldxe'“RH”

@@m)?
_ 1 J,sz e-—iKcT[ eiKR _ e—lKR ] %
@2m)* o iKR

_ 1 [ijle S K(R=<D) 4 — LJ'WiK e KR+ g |
2nR 1 27 Jo 27 Jo
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GR,T) = —Z%Ea—a};[a(”(}e —T) 4+ SR+ )], (A4.2-2)

where ) and &) are the functions defined by Eqgs. (A4.1-4). The formula
(A4.2-2) is Eq. (4.6-19) of the text.
We will next determine the Fourier transform

GR,v) = f G(R, T)e¥™T dT (A4.2-3)
of GR, T). We can obtain it almost at once by starting from the second
expression in Eq. (A4.2-2) above, which we re-write in the form

G(R, T) = f g(k) e T dk, (A4.2-4)
0
where
2k? sin kR
g(k) = ="— ) A4.2-5
(217)2 kR ( )

If in the integral in Eq. (A4.2-4) we change the variable of integration from k to
v, where

kc = 2mv (A4.2-6)
we obtain for G(R, T) the expression

GR, T) = ZL[ g@rv/c)e™™7 dv. (A4.2-7)
c Jo

On taking the Fourier inverse of Eq. (A4.2-7) and comparing it with Eq.
(A4.2-3) we find that

> 2m
G(R, v) = —g(2 h >0
R, v) ; g(2mv/c) whenv (Ad.2-8)
=0 when v < 0.
On substituting from Eq. (A4.2-5) into Eq. (A4.2-8) and again using the relation
(A4.2-6) we finally obtain for G(R, v) the expression

~ k2 (sin kR ) l
G(R, v) = — when v > 0
R =\ (A4.2-9)
=0 when v <0,
which is Eq. (4.6-34) of the text.
Problems

4.1 The mutual intensity function for all pairs of points on a surface intercepting
a certain stationary quasi-monochromatic light beam is of the form

J(P1, Py) = f(P)g(Py),
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4.2

4.3

4.4

where f(P) and g(P) are known functions of position on the surface. Show
that

(a) g(P)= af*(P) where « is a real constant, and the asterisk denotes the
complex conjugate.

(b) The light in the space into which it propagates is completely spatially
coherent within the framework of second-order coherence theory.

The cross-spectral density function of a planar, secondary source, at points,

specified by position vectors p; and p,, has the factorized form
pLtp
W(p].? P2, (U) = F("‘Lz——z, Q))G(pz - P15 (.0).

Show that in order that F(p, w) represents the spectral density and G(p, w)
the spectral degree of coherence of light across the source, the spectral
density has to satisfy a certain functional equation. Show further that the
functional equation is satisfied by any spectral density distribution whose
spatial dependence has the form

SO(p, w) = SO(x, y, 0) = SO0, 0; w) ePri+hoy)

where f3; and 3, are constants.

The mutual coherence function of a stationary optical field in free space is of
the form

I'(ry, vy, 7) = F(ry, r))G(7).

Show that the function F(r;,r;) must satisfy two Helmholtz equations and
determine the most general form of G(1).

Consider a statistically stationary field in free space. Show that the complex
degree of coherence y(r;,ry,T) and the spectral degree of coherence
u(ry, ry, v) of the field are related by the formula

}/(rls r, T) = j v §(I‘1, V) v g(1‘27 V),u(l‘l, I, V) e—2mwdv,
0

where

8(r, v) = _ Sy

f:S(r. vydv

is the normalized spectral density at r.
Suppose next that the normalized spectral densities at two points ri and r3
are equal to each other and that

wri.ry, v) = n(ry, r)e
with 7(r3, ri) = n*(ri,r3) and =(ri,r3) is real and satisfies the relation
7(rs, ri) = —7(r{, r5). Show that under these circumstances y(r1, rj, 7) obeys
the reduction formula for cross-spectrally pure beams, namely

2mivi(ri,rs)

y(ri, r3, T) = y(ry, ri, 1) y(ry, ri, T = T12),

where 17, depends on rq and rj.
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4.5

4.6

4.7

Let rs (s> =1) be the position vector (referred to an origin in the source
domain) of a point in the far zone of a planar, secondary, statistically
stationary source occupying a finite region o in the plane z = 0. Show that
the ‘longitudinal’ spectral degree of coherence u(*)(r;s, rss, v) of the far
field is unimodular, i.e. that the field at any two points in the far zone,
located along the same outward direction from the source, is spatially fully
coherent at each frequency v.

Using the relation given by the first formula of problem 4.4, show that the
complex degree of coherence y(*)(r;s, rys, ) is not unimodular in general,
but that ™) (rys, rys, 1) = 1fora particular value 7, of 7. Determine 7, and
interpret the result in physical terms.

Consider the integral equation

1
| K x)p(x) d’ = A9(x)
with the non-Hermitian kernel
K(x, x) = (1 +iV3x)(1 +iV3x).

(a) Show that the integral equation has no solution with A # 0.

(b) Show that if one of the i’s in the expression for K (x, x') is changed to
—i (so that the kernel becomes Hermitian), the equation has a solution, with
the eigenvalue A = 4.

A monochromatic plane wave of frequency w, propagating in the positive
z-direction, is incident on a diffuser which moves with constant speed v in
the positive y-direction (see figure). An opaque screen, pierced by small

Moving Opaque screen
diftuser with two pinholes (fixed)
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4.8

pinholes at points Py(y;) and Py(yz) is placed immediately behind the
diffuser. The amplitude transmission function of the diffuser, assumed to be
statistically homogeneous and non-absorbing, is £(y).

(a) Determine the complex degree of coherence y12(7) of the light at Py
and Pz.

(b) Determine the spectral degree of coherence p;(w) of the light at Py
and P;.

(c) Estimate the coherence time of the light emerging from one of the
pinholes for the case when the correlation function of the diffuser is
exp (—a’y?), a being a positive constant.

In the theory of atmospheric turbulence one frequently deals with real fields
f(r) (e.g. the refractive index function), which are random functions of the
position vector r. One defines its correlation function as

R(ry, rp) = (fr)f(r)),

the angular brackets denoting ensemble average. If R(ry, rs) depends only
on the ‘difference vector’ r=r, —ry, e.g. if R(rj,r)=R(r;—r) the
random field f(r) is said to be statistically homogeneous.

(a) The spectrum S(k) of a homogeneous random field f(r) may be
identified with the Fourier inverse of its correlation function, i.e.

S(k) = —— f R(r)e ™ dr.
@ny’
Assuming that £(r) is also statistically isotropic, i.e. that R(r) depends only
on the magnitude r = |r|, show that S(k) is a function of the magnitude

k = |k| only and that

S(k) =

> J'rR(r)sinkrdr
2k Jo

and
R(r) = 4—”[ kS(k) sin kr dk.
r Jo

(b) For such a field it is also convenient to introduce a related spectral
function V(k), as the one-dimensional Fourier inverse of R(r), i.e.

v =——[ R(nevar,
27w

where, for negative values of its arguments, R is formally defined by the
relation R(—r) = R(r). Express S(k) in terms of V (k).

5

Radiation from sources of any state of
coherence

5.1 Introduction

In this chapter we will apply the correlation theory of scalar wavefields developed
in the previous chapter to study radiation from localized primary and secondary
scalar sources of any state of coherence. In general both the spectral density and
the coherence properties of the source will determine the nature of the field.
Among the topics which we will consider in some detail are partially coherent
optical beams, the role of coherence in the radiometric model of energy transport
and the influence of coherence properties of sources on the spectra of the emitted
radiation.

It is convenient and mathematically simpler to employ the space-frequency
rather than the space-time description in treating these problems, i.e. to charact-
erize the correlation properties of the sources and fields by the cross-spectral
density function rather than by the mutual coherence function. Corresponding
results in the space-time and space-frequency domains are, of course, related via
the basic Fourier transform relations (4.3-40).

5.2 Radiation from three-dimensional primary sources
5.2.1 General formulas

Let us consider radiation from a fluctuating primary source, which occupies a
finite domain D. We assume that the fluctuations may be described by an
ensemble which is stationary, at least in the wide semnse. According to Eq.
(4.4-68), the cross-spectral density function W(ry,ry, v) of the field which the
source generates at any two field points Py(r;) and P,(r,) is expressible in terms
of the cross-spectral density function Wp(ri, r3, v) of the source distribution by
the formula

eik(Ra-R)
W(r, 1g, v) = j f Wo(ri, 3, v &ridr, (5.2-1)
D/D 1442
where ri and rj are the position vectors of any two source points S; and S5,
R] = |r] - rj’|7 (] = 17 2)7 (52_2)

and k =2mv/c (c being the speed of light in vacuum) is the wave number
associated with the frequency v.

229
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One is frequently interested in the behavior of the field in the far zone of the
source. The formula (5.2-1) then appreciably simplifies, as we will now show. We
take the origin O of the position vectors ry, r,, ri, I3 to be at some fixed point in
the source region and set (see Fig. 5.1)

ry =r8;, T =1y, (5.2-3)

where r; = |ry|, r, = |r,| and s, and s, are unit vectors pointing from the origin O
to the two field points. If the field points are sufficiently far away from the origin,
we may make, in the exponent of the integrand in Eq. (5.2-1), the approximation

Ri=lr—ril=r—-ri's;, Re=inp-rml=n—ris, (52-4

whilst in the denominator we may just make the approximation Ry = ry, Ry = r,.
We then obtain the following expression for the cross-spectral density:

etk(ra=r1)

Wty 1y, v) = jJWQ(ri,rﬁ, V) e ik TS @30 43,0 (5.2-5)
DJD

nr
We wrote W{*) rather than W on the left-hand side of Eq. (5.2-5) to stress that
the formula applies to the far field.

The right-hand side of Eq. (5.2-5) is the product of two factors. The first one
depends only on the distances r; and r, from the origin O of the points Py and P,
in the far zone. The second depends only on the directions, specified by the unit
vectors s; and s, pointing from the origin O to P; and P,. It is useful to
emphasize this directional dependence and for this reason we rewrite Eq. (5.2-5)
as

eik(rg—n)

W (ris1, 1282, v) = L(s1, 83, V) ————, (5.2-6)
rr;

where
L(sy, 80, v) = J J’ Wo(ry, 15, v) e ke rimsieh) g3, @3ps (5.2-7)
DD

The function L(sq,s,, v) is known as the radiant cross-intensity of the radiated
field. It will be seen later [Eq. (5.6-52)] that the radiant cross-intensity is also a
measure of correlations between the plane-wave modes of frequency v of the field
which propagate in directions specified by the unit vectors s; and s,.

P

Fig. 5.1 Illustranng the notation relating to the formula (5.2-5) for the cross-
spectral density of the far field generated by a three-dimensional primary
source.
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We derived Eq. (5.2-6) using several approximations but it may be shown, for
example with the help of the principle of stationary phase, that it is the exact
asymptotic formula for W(r;s;. r58;, V) as kry— o and kr,— ©, with s; and s,
being kept fixed. This fact may be verified by the use of Egs. (4.7-38), (3.3-95)
and (3.2-27).

Formulas of the form given by Eq. (5.2-6) are known also to apply to other
situations. For example, the cross-spectral density in the far zone of a field
scattered by a localized object may be shown to have this form. Of course, the
radiant cross-intensity is then no longer given by Eq. (5.2-7).

Since the cross-spectral density Wy(r1, r3, v) of the source has zero value when
either ri or rj or both represent points outside the source domain D, we may
extend the integrations in Eq. (5.2-7) formally over all space. We then obtain for
the radiant cross-intensity the expression

L(s1, 53, v) = Qm)*Wo(—ksy, ksy, v), (5.2-8)
where

1
(2m)f
is the six-dimensional spatial Fourier transform of the cross-spectral density of the
source.

Equation (5.2-6), together with the expression (5.2-8) for the radiant cross-
intensity, is the basic formula relating to radiation from fluctuating ‘steady-state’
(more precisely wide-sense stationary) three-dimensional sources. We see from
Eq. (5.2-8) that not all the spatial Fourier components of W, contribute to the
far field. Only those contribute that are labeled by the pairs of three-dimensional
vectors

Wo(Ky, Ky, v) = HWQ(ri, rj, v)e BrrirKemd) g3 @3s (5.2-9)

K] = “ksl, K2 = kS'_y_. (52—10)

Since s; and s, are unit vectors, the magnitudes of the spatial-frequency vectors
that enter the expression (5.2-8) are

K| = |Ky| = k = 2mv/e, (5.2-11)

i.e. their magnitudes are equal to the free-space wave number k, associated with
the temporal frequency v.

In the special case when the points P; and P, in the far zone coincide, we
obtain at once from Eq. (5.2-6) the formula

$E) rs, v) = I(s, v)/r. (52-12)
Here
S (rs, vy = W(“)(rs, s, V). (5.2-13)

i.e. the "diagonal elements’ of W(m)(rlsl, r282. V), represent the spectral density of
the field at the point P specified by the position vector rs and

J(s, v) = L(s,s.v). (5.2-14)

The function J(s, v) is known as the radiant intensiry of the field.
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We have introduced the radiant intensity here from considerations based on Fhe
far-zone behavior of the field. We will learn later, in connection with radiation
from 2 planar source [Eq. (5.7-35)], that the radiant intensity also r’epres.ents the
rate at which the source radiates energy, at frequency v, per unit solid angle
around the s-direction. . .

Tt follows from Egs. (5.2-14) and (5.2-8) that the radiant intensity may be
calculated from knowledge of the cross-spectral density of the source by means of
the formula

I(s, v) = Qm)*Wo(— ks, ks, v). (5.2-15)

The use of this expression for determining the radiant intensity makes it necessary
to evaluate a six-fold Fourier transform. However, because thg two spatial-
frequency arguments on the right-hand side of Eq. (5.2-15) only differ from each
other in sign, the formula may be expressed in a simpler form, as we will now
show.

From Eq. (5.2-9) it follows that

Wo(=ks, ks, v) = ! ”WQ(ri, rh, v)e ks wr @B @y (5.2-16)
(@m®
Let us change the variables of integration from rj and r5 to r’ and r by making
the transformation
-ri=r, ¥rj+ry)=r, (5.2-17a)
whose inverse is
rp=r-— %r’, ry=r-+ %r'. (5.2-17b)

The Jacobian of the transformation (5.2-17b) can readily bfe shown to l?e unity
and hence we obtain from Eq. (5.2-16) the following expression for
Wo(—ks, ks, v):

WQ(-kS, ks, v) = ! [JWQ(r i+ i, v) ek @Brddr, (5.2-18)
(@m°
where the integration extends formally over all possible values of the variables of

integration.
It is convenient to set

fWQ(r — e+ &= Colr', v). (5.2-19)
We will refer to the function Cp(r’',v) as the source-integrated cross-spectral
density .
It follows from Egs. (5.2~18) and (5.2-19) that

. 1~
W (=ks, ks, v) = ——Co(ks, ), (5.2-20)
olmks @

where

~ 1 it ~
Colf, V) = o j Co(r', e ' dr (5.2-21)
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is the three-dimensional spatial Fourier transform of the source-integrated cross-
spectral density. Finally on substituting from Eq. (5.2-20) into Eq. (5.2-15) we
obtain the following alternative expression for the radiant intensity:

J(s, V) = @n)*Cy(ks, v). (5.2-22)
Let us now consider the spectral degree of coherence [cf. Eq. (4.3-47b)] of the
far field, namely
W (risy, rase, v)
(S (rasy, WIS sz, I
We may express the right-hand side of Eq. (5.2-23) in terms of the radiant
cross-intensity and the radiant intensity by making use of Egs. (5.2~6), (5.2-13)
and (5.2-12) and we then obtain the following expression for u(*):

L(sy, 83, v)
(2, VI (s2, ]2
If we substitute for the radiant cross-intensity and for the radiant intensity from
Egs. (5.2-8) and (5.2-15), we obtain the following expression for the spectral

degree of coherence of the far field in terms of the Fourier transform of the
cross-spectral density of the source:

/u(w)(rlsl) r282, V) =

(5.2-23)

,u(“’)(rlsl, 128, V) =

ekl (5.2-24)

WQ(_ksl’ k527 V)

1k(r2—r1)
[WQ(— ksy, ks, v)]l/z[WQ(—Jcsz, ks,, v)]l/2

/“(m)(rlsla 7282, V) =

[

(5.2-25)
When the two points in the far zone are at equal distances from the origin (i.e.
when r; = r;), one often speaks of transverse coherence. The spectral degree of
coherence of the far field at such a pair of points is given by Eq. (5.2-25), with
the exponential factor replaced by unity. Clearly, it is independent of the common
distance (r, = r;) from the origin.
When the two points in the far zone are located in the same direction (s, = s;)
one speaks of longitudinal coherence. The spectral degree of coherence of the far
field at such a pair of points is, according to Eq. (5.2-25), given by

U (718, o8, v) = elk2mr), (5.2-26)

Now the modulus of this expression is unity for all values r; and r, associated with
points in the far zone. Hence the field at any two points in the far zone, which lie
along the same direction when viewed from the source, is completely coherent at
each temporal frequency v, irrespective of the distance r, — r; between the two
points.

5.2.2 Radiation from some model sources

We will illustrate the general results that we have just obtained by considering
radiation from a class of model sources which represent rather well many sources
encountered in nature or used in the laboratory.

Let Wo(ry, r7, v) be again the cross-spectral density of a source which occupies
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a finite domain D and whose statistical behavior is characterized by an ensemble
which is stationary, at least in the wide sense. Then

Solr, v) = Wp(r, r, v) (5.2-27)
represents the spectral density of the source distribution and
- WQ(rly I, V) (52—28)
[Solrs, VI¥2LSo(r2, VI

is its spectral degree of coherence.
We will assume that pp(r;,ry,v) depends on r; and r, only through the

difference r, — r1, i.e. that it is of the form

/uQ(rlr Iy, V)

po(ry, 1y, V) = golra = 11, %) (5.2-29)

for each effective frequency v present in the source spectrum. Sources of this km@
are known as (primary) Schell-model sources, because such sources (actually thlelr
analogue for two-dimensional secondary sources) appear to have been first
considered by Schell, (1961, 1967). It is clear from Egs. (5.2-29) and (5.2-28)
that the cross-spectral density of a Schell-model source is of the form

Wo(ry, 12, ) = [So(rr, VIVSo(r2, W]V go(rs = x1,v).  (52-30)

We will consider a particular class of Schell-model sources, namgly those for
which the spectral density Sp(r, v), considered as a fun?tlon of r, varies so slowly
with position that it is approximately constant over dlstar}ces across the solurce
that are of the order of the correlation length A (the effectlve. width of |go(r ,'v)}
—see Fig. 5.2). It is customary to describe this situati‘on by se?ymg thaF §Q(r, v)isa
slow function of r and that go(r', v) is a fast function of r'. In addition we also
assume that the linear dimensions of the source are large compared with th.e
wavelength A = ¢/v and with the correlation length A. Schell-model sources of this
kind are known as quasi-homogeneous sources and, as we will see, they genergte
fields which are relatively simple to analyze mathematically and yet are rich
enough in their properties to represent a variety of situations of practical interest.

s | gotr ol So(r.v)

Fast tunction Slow function

Fig. 5.2 Illustrating the concept of a quasi-homogeneous source. Thg m'odu.lus
lgo(r’, v)| of the spectral degree of coherence of the source distribution
changes much more rapidly with r’ than its spectrall density Sp(r, v) ch.anges
with r. For the purpose of illustration, the source is taken to be one-dimen-

sional.
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When A is sufficiently small, of the order of or smaller than the wavelength A,
such a source may be said to be ‘locally’ spatially incoherent at the frequency v.
When A4 is of the order of many wavelengths, the source may be said to be locally
spatially coherent. This distinction is sometimes useful, because, as we will see
later, the fields generated by quasi-homogeneous sources belonging to these two
categories have somewhat different structure. Quasi-homogeneous sources are, of
course, always spatially rather incoherent in the ‘global’ sense, because their
linear dimensions are large compared with the correlation length A.

Since for a quasi-homogeneous source the spectral density So(r, v) is assumed
to vary slowly with position over the effective width A of lgo(r’, v)|, we may
make on the right-hand side of Eq. (5.2-30) the approximation

So(rs, v) = So(rs, v) = Spl3(ry + 12), v). (5.2-31)

Using this approximation in Eq. (5.2-30) we see that the cross-spectral density
Wo(ri,ry, v) of a quasi-homogeneous source may be expressed, to a good
approximation, in the form :

Wo(r1, ra, ) = Spla(ry + r2), vigo(rs = 4, ¥). (5.2-32)

The six-fold Fourier transform of the cross-spectral density of the source, which
enters the expressions (5.2-8) and (5.2-15) for the radiant cross-intensity and the
radiant intensity, reduces in this case to the product of two three-dimensional
Fourier transforms. To see this we substitute from Eq. (5.2-32) into Eq. (5.2-9)
and change the variables of integration from r} and r5 to r and r’ by the use of the
transformation (5.2-17b). We then find at once that

WQ(Kl, Ky, v) = So(K; + K, v)gQ[%(Kz - Ky, v], (5.2-33)

where S‘Q(K, v) and go(K’, v) are the three-dimensional spatial Fourier trans-
forms of Sp(r, v) and go(r’, v) respectively, namely

So(K, v) = —(—;f—)sfsQ(r, vye K TPy, (5.2-34)
~ , = 1 s Kt 43,
Zo(K',v) = o f golr', v) e K T 3y, (5.2-35)

Thus we see that, when the cross-spectral density Wy(ry,r,, v) factorizes in the
form (5.2-32) appropriate to a quasi-homogeneous source, its six-dimensional
spatial Fourier transform WQ(Kl, K3, v) also factorizes, in the form given in Eq.
(5.2-33). Moreover, since for a quasi-homogeneous source So(r,v) is a slow
function of r and gu(r’, ¥) is a fast function of r’, it follows from the reciprocity
relation involving the effective widths of Fourier transform pairs [Eq. (4.3-76)]
that the first factor §5(K, ) on the right-hand side of Eq. (5.2-33) is a fast
function of K and the second factor go(K'.v) is a slow function of K'. We will
make use of these properties shortly.

On substituting from Eq. (5.2-33) into Egs. (5.2-8) and (5.2-15) we obtain the
following expressions for the radiant cross-intensity and the radiant intensity of
the field radiated by a three-dimensional, primary, quasi-homogeneous source:

L(si, 5, %) = (2m) Splk(s2 = s1). VIEglik(st +52), %] (5.2-36)
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and
I(s, v) = 2m°S,(0, vEp(ks, v), (5.2-37)

with k = 2mv/c. Further, on substituting from Egs. (5.2-36) and (5.2-37) into the
formula (5.2-24), we find that the spectral degree of coherence of the far field,
generated by the source, is given by the expression

S —s), v
U (r18y, rasy, v) = Go(ksy, ksy, V)—L[li—(fz—sl)—ﬂe‘k(’r”), (5.2-38)
SQ(O, V)

where

Zolk(si+ )M (5.2-39)
(Zo(ksy, VIV2[Zo(ksz, V]2
Now as we have already noted, §Q(K,v) is a fast function of K, whereas
go(K', ) is a slow function of K'. It is, therefore, clear that, for arguments
k(s; — s;) for which the factor Sg[k(sz — 1), v/85(0,v) in Eq. (5.2-38) differs
appreciably from zero, s, may be replaced by s; on the right-hand side of Eq.
(5.2-39). Hence we may set in Eq. (5.2-38)

Go(ksy, ksy, v) = Go(ksy, ksy, v) = 1. (5.2-40)

On making use of this approximation in Eq. (5.2-38) we obtain the following
expression for the spectral degree of coherence of the far field generated by a
three-dimensional, primary, quasi-homogeneous source:

Golksy, ksy, v) =

SQ[k"(SZ - Sl)’ V] eik(rz—rx)_ (5‘2_41)
So(0, v)
The formulas (5.2-37) and (5.2-41) bring into evidence the following two
interesting reciprocity relations that pertain to radiation generated by sources of
this type:

u(w)(rlsh 1282, V) =

(a) The angular distribution of the radiant intensity J(s, v) is proportional to the
three-dimensional spatial Fourier transform of the spectral degree of coherence of
the source [Eq. (5.2-37)).

(b) The spectral degree of coherence of the far field is, apart from a simple
geometrical phase factor, equal to the normalized three-dimensional spatial
Fourier transform of the spectral density of the source [Eq. (5.2-41)].

Thus we see that the influences of the spatial distributions of the spectral
density of the source and of its spectral degree of coherence on the far field are
quite distinct. The result expressed by the theorem (b) above [Eq. (5.2-41)] may
be regarded as an analogue for three-dimensional, primary, quasi-homogeneous
sources of the far-zone form of the van Cittert—Zernike theorem [Eq. (4.4-40)].

We will illustrate these results by a simple example. Let us consider a three-
dimensional, primary, isotropic, quasi-homogeneous source, whose spatial dis-
tributions of the spectral density and of the spectral degree of coherence are both
Gaussian:

So(r, V) = [AMPePH0, gy, v) =70, (52-42)
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where A(v), os(v), and og(v) are positive quantities, r = |r| and r’ = |r'|. The
assumption that the source is quasi-homogeneous at a frequency v implies that
a5(v) >> ag(v). (5.2-43)

The three-dimensional spatial Fourier transforms of the expressions (5.2-42)
are readily found to be [if we no longer display the frequency dependence of
A(V)’ US(V)v and Ug(v)]a

3 3
S Js - 2 ~ (o (K2
SoK, v) = Az(—> e~ (Kasyf2 oK', v) = ( & ) e~ (K02,
e) V{(2m)
(5.2-44)

On substituting from Eq. (5.2-44) into Eq. (5.2-37) we obtain the following
expression for the radiant intensity generated by the source.

I(s,v) = Qnoso,y’ AZe ko2, (5.2-45)

The radiant intensity is now seen to be independent of direction {characterized by
the unit vector s) as it must be, because the source was assumed to be isotropic; it
is also seen to be proportional to the effective volume (477/3)0% of the source. We
note that when the effective correlation distance o, of the source is smaller than
about the wavelength A = 27/k associated with the frequency v, i.e. when the
source is locally incoherent, the expression (5.2-45), for the radiant intensity
reduces to

J(s, v) = (2mos0,)° A% (5.2~46)

Thus the radiant intensity is now proportional not only to the effective volume of
the source, but also to its effective volume of coherence, (47/3)02.

08+
06+
044

0.2+

0 t t + : } koy
1 2 3 4 s

Fig. 5.3 The normalized radiant intensity, calculated from Eq. (5.2-4S),
I(s, v)/N = (ko) exp[—3(ko,)?], with N = (21/k)*A%03, as function of the
normalized effective correlation distance ko,, generated by a three-dimen-
sional, Gaussian, quasi-homogeneous source characterized by Eqs. (5.2-42).
Note that the normalization constant N is proportional to the effective source
volume (47/3)0%. (After Carter and Wolf, 1981b.)
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The dependence of the radiant intensity on the effective correlation distance o,
of the source, computed from Eq. (5.2-45), is shown in Fig. 5.3.

Let us now briefly also examine the coherence properties of the far field,
generated by the type of source under consideration. The spectral degree of
coherence is obtained on substituting for S’Q(K, v) from Eq. (5.2-44) into Eq.
(5.2-41). We then find that

UPV(ri8, Fasa. v) = e (KosPlsrmsiFf2 gik(ra=ry), (5.2-47)
Now since s; and s; are unit vectors we have (see Fig. 5.4)
Is; — 81 = [2sin (8/2)]%, (5.2-48)

where 6 is the angle between the unit vectors s; and s,. On substituting from Eq.
(5.2-48) into Eq. (5.2-47) we obtain the following expression for u{™:

#(w)("lsh rysy, V) = e~ 2(kos)?sin? (6/2) gik(ra—r) (5.2-49)

It follows at once from this formula that the angular separation 8, for which the
spatial coherence at frequency v in the far zone is appreciable, must satisfy the
order of magnitude relation
L
2(kog)?
Let us examine two extreme cases. If the effective linear dimension og of the
source is much smaller than the wavelength [subject, of course, to the (now rather
idealized) assumption (5.2-43)], then kos<« 1 and the inequality (5.2-50) is
satisfied for all possible angular separations between the unit vectors s; and s,.
i.e. for 0 < 6 <. The far field is then spatially completely coherent at the
frequency v. If, on the other hand, the effective linear dimension oy of the source
is much larger than the wavelength, ko >> 1 and the value of sin?(6/2), which
satisfies the inequality (5.2-50), may then be approximated by (6/2)*. It follows
that, under these circumstances. spatial coherence at frequency v in the far zone
of the source extends over an angular region for which

sin? (6/2) < (5.2-50)

/
g= V2 (5.2-51)
kog
The behavior of the absolute value of the spectral degree of coherence of the
far field, as function of the angular separation 6. computed from Eq. (5.2-49). is
shown in Fig. 5.5 for a few selected values of the normalized effective linear
dimension ko of the source.

0

Fig. 5.4 Tllustrating the formula (5.2-48).
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Fig. 5.5 The behavior of the absolute value of the spectral degree of coherence
U= (risy, ra82, v) given by Eq. (5.2-49), of the far field generated by a
three-dimensional, Gaussian, quasi-homogeneous source, characterized by
Egs. (5.2-42) and (5.2-43), as a function of the angle 6 between s; and s;.
(After Carter and Wolf, 1981b.)

In this section we have illustrated the general results derived in Section 5.2.1
with reference to quasi-homogeneous sources. Radiation from other types of
sources, including completely coherent and completely incoherent sources, as well
as Gaussian Schell-model sources are discussed in two papers by Carter and Wolf
(1981a,b).

5.3 Radiation from planar, secondary sources

Many sources employed in the laboratory are secondary planar sources. A source
of this kind is usually an aperture in an opaque planar screen, illuminated either
directly or via an optical system by a primary source. In this section we will study
radiation fields produced by such sources.

We will take the primary source to be located on one side, say z <0, of the
aperture plane and to radiate into the half-space z > 0 on the other side of it.

5.3.1 General formulas

Within the framework of correlation theory, a secondary planar source may be
characterized by the cross-spectral density WO(p,, p, v) of the fluctuating field
V(p. 1) in the source plane z = 0. We assume that the fluctuations of V(p, r) may
be represented by an ensemble which is stationary, at least in the wide sense.

It follows from Eq. (4.4-18) that the cross-spectral density W(ry, ry. v) of the
field at two points Pi(r;) and Py(r;), located at distances from the secondary
source o which are large compared with the wavelength A = 27/k = ¢/v, is given
by

elk(RzAR‘)

£ \2
W(ry,r, v)=|— J[W(O)p.pz.v—————
(ri, (2”) . (p1 ) R

1442

cos 8 cos 63 d*p, d*p,.

(5.3-1)

¢ Radiation from primary planar sources of any state of coherence was discussed by Wolf and Carter
(1978).



240 Radiation from sources of any state of coherence

Here
Ri=l|ri—pil, Re=I|r—p (5.3-2)

are the distances from the source points Si(p;) and Sy(py) to the field points
Py(ry) and Py(ry), respectively, and 0 and 6 are the angles that the lines S; Py
and S, P, make with the positive z-axis (Fig. 5.6).

Suppose now that the field points are situated in the far zone of the source. If
we denote by s;, and s, the projections, considered as two-dimensional vectors,
of the unit vectors s; and s, respectively onto the source plane z = 0 we may then
make the approximation

Ri=ri—pi:si, Ro=r—pysy (5.3-3)

(R, = |Ry| etc.) in the exponent of the integral. In the denominator of the integral
in Eq. (5.3-1) we may make the approximation Ry = ry, Ry = ra. We also replace
the angles 6} and 65 by the fixed angles 6; and 6, which the lines OP; and OP,
make with the normal to the source plane. The formula (5.3-1) then becomes
(again writing W for the far-zone value of W)

eik(rz—n)
W(m)(rlsl, 7282, v) = L(sy, 82, V), (5~3‘4)
rr

where

L(sy, 82, v) =

K\ :
(5—‘) cos 6, cos sz [ WO (py, pa, V) exp[=ik(szs - p2 = s1o - p)] 01 Epy.
m alo

(5.3-5)

Since the secondary source occupies a finite region ¢ of the plane z = 0,
wO(py, ps, v) will have zero values when p; or p, represent points in the source
plane which are located outside the source region. We may, therefore, extend the
integrals on the right-hand side of Eq. (5.3-5) over the whole plane z = 0 and the
formula (5.3-5) may then be rewritten in a more compact form as

L(sy. 53, v) = Quk)?WO(—ksyy, ksy,, v) cos 6; cos 6, (5.3-6)

Source o

Fig. 5.6 Illustrating the notation relating to the calculation of the cross-spectral
density of the far field generated by a planar source. $; and §, are two source
points, P and P, are two points in the far zone.
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where
~ 1 T .
WO, £, v) = WJJW(O)(‘O" pa, v)e Mt @p, @20, (5.3-7)
7

is the four-dimensional spatial Fourier transform of WOp,, pa, v). Since s;; and
s, are the projections of unit vectors, sy, | =<1, |s;,| < 1. Therefore it is clear
from Eq. (5.3-6) that only those Fourier components, labeled by spatial-
frequency vectors f; and f, for which |fi| < k and |f;| < k, contribute to the
correlation properties of the far field.

It follows at once from Eq. (5.3-6) that the radiant intensity J(s, v) = L(s, s, v)
is given by the formula

J(@s, v) = QukYPWO(—ks,, ks, v)cos® 6, (5.3-8)

where 6 is the angle which the vector OP = rs makes with the normal to the
source plane (Fig. 5.7).

As in the case of radiation from three-dimensional primary sources, it is
sometimes convenient to express the radiant intensity in an alternative form, in
terms of the source-integrated cross-spectral density

COp',v) = [WOp —3p', p + 30", 1) Fp. (53-9)
From Egs. (5.3-8), (5.3-7) and (5.3-9) it follows that
J(s, v) = kK2CO(ks, , v)cos® 6, (5.3-10)

where CO(f, v) is the two-dimensional spatial Fourier transform of ', v),
namely

~ 1 ) —if-p’ )
O, v) = W[c«’)(p Ve e d2p! (5.3-11)

The spectral degree of coherence of the far field is given by the equation [cf.
Eq. (5.2-24)]

L(sy, 52, v) eik(ra=r)

W (risy, rasy, v) = (5.3-12)

[J(s1, VI (53, V)]

Source o

Fig. 5.7 Illustrating the notation relating to formula (5.3-8) for the radiant
intensity generated by a planar source. The projection (not shown), considered
as a two-dimensional vector, of the three-dimensional unit vector s onto the
source plane z = 0 is represented by s, .
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Cn substituting Egs. (5.3-6) and (5.3-8) into Eq. (5.3-12) we obtain for u(*) the
formula
W(O)(‘ksu, ksy1, V)
[W(O)(_ksu, ksi1, V)]l/z[W(O)("kSu, ksyy, V)ll/z
(53-13)

eik(rz-—n)'

y<°°)(r1s1, 7287, V) =

Similar conclusions can be drawn from Eq. (5.3-13) regarding transverse and
longitudinal coherence of the far field as those obtained in connection with the
corresponding formula (5.2-25) pertaining to radiation from three-dimensional
primary sources.,

5.3.2 Radiation from planar, secondary, quasi-homogeneous sources

Among the variety of fields to which the general formulas that we have just
derived apply, those generated by certain types of sources are of particular
interest in practice. These are secondary, planar sources analogous to the three-
dimensional primary sources discussed in Section 5.2.2. Chief amongst them are
Schell-model sources characterized by the property that their spectral degree of
coherence u(o)(pl, P2, v) in the source plane depends on p; and p, only through
the difference p, — py, i.e. it is of the form

tO(py, pa, v) = glp2 — p1. V). (53-14)

Recalling the definition (4.3—-47b) of the spectral degree of coherence it follows
that the cross-spectral density function of a secondary, planar Schell-model source
has the form

W(O)(pla P2 V) = [Sm)(pl’ v)]l/z[S(O)(pZ: V)]l/zg(o)(pl ~ P2 V)v (53‘15)

where S@(p, v) is the spectral density of the light at a typical point in the source
plane.

Frequently the spectral degree of coherence g®(p’, v) of the light in the source
plane varies much more rapidly with p' than the spectral density S©(p, v) varies
with p’ for each frequency component v present in the light. Moreover, the linear
dimensions of the source are usually large compared with the wavelength A = ¢/v
and with the spectral correlation length of the light [the effective spatial width of
g@(p’, v)] in the source plane. The source is then said to be a quasi-homogeneous,
planar, secondary source. Just like the three-dimensional, primary, quasi-homo-
geneous sources which we studied in Section 5.2.2, planar, secondary, quasi-
homogeneous sources are also rather incoherent in the ‘global’ sense because
their linear dimensions are large compared to their effective spectral correlation
lengths. Again it is useful to distinguish between ‘locally coherent’ and ‘locally
incoherent’ quasi-homogeneous sources. For the former, the spectral correlation
length of the light in the source plane is large compared to the wavelength
A = c/v; for the latter it is of the order of, or smaller than, the wavelengths. As we
will see in Section 5.6.3, locally coherent, Gaussian-correlated, quasi-homogen-
eous sources, unlike the locally incoherent ones, can generate beams.

Because the spectral density of a quasi-homogeneous source is a ‘slow function’
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of p, whereas its spectral degree of coherence is a ‘fast function’ of the difference
variable p' = p; — p;, the expression (5.3-15) for its cross-spectral density may
be well-approximated by the expression

WO(py, p2, v) = SOL(ps + p2), VgD (p> — p1, v). (5.3-16)

The four-dimensional spatial Fourier transform, defined by Eq. (5.3-7), of the
expression (5.3-16) is given by the formula

WO, £5, v) = SOt + £, VIEOR(E: - 1), ). (5.3-17)

where SO(f, v) and gO(f', v) are the two-dimensional spatial Fourier transforms
of SO (p, v) and gO(p’, v) respectively, defined by formulas

3(0)(f’ V) - 1 IS(O)(p’ V) emifp d?.p’ (53—18)
@n)?

g(o)(f/) V) = 1 fg(O)(pl* V) e—if‘ p! dzp,l (53_19)
(my?

On substituting from Eq. (5.3-17) into Egs. (5.3-6) and (5.3-8) we obtain the
following expressions for the radiant cross-intensity and the radiant intensity of
the field generated by a quasi-homogeneous, secondary planar source:

L(s1, 52, v) = (2mk)28OLk(s2, ~ s11), V]E(O)[%k(su + 831), vjcos 6; cos 0,
(5.3-20)
J(s, v) = k) 590, vgO(ks, , v)cos? 6. (5.3-21)

An expression for the spectral degree of coherence #(m)(ﬁsb 1,83, v) of the far
field is also readily obtained on substituting from Eqgs. (5.3-17) into Eq. (5.3-13).
If we then make a similar approximation to that made in passing from Egq.
(5.2-38) to Eq. (5.2-41), we find that

S(O)(k(su —811), V) k(=)
SO, v)

We note that Egs. (5.3-21) and (5.3-22) are very similar to the corresponding
formulas (5.2-37) and (5.2-41) for radiation from three-dimensional, primary
quasi-homogeneous sources.

The formulas (5.3-21) and (5.3-22) bring into evidence the following two
reciprocity relations due to Carter and Wolf (1977; see also Goodman, 1965,
Appendix A and Goodman, 1979, Sec. 4C) for radiation from planar, secondary,
quasi-homogeneous sources:

W risy, 1285, v) = (5.3-22)

(a) The angular distribution of the radiant intensity J(s, v) is proportional to the
product of the two-dimensional spatial Fourier transform of the spectral degree of
coherence of the field in the source plane and the square of the cosine of the angle
which the s-direction makes with the normal to the source plane [Eq. (5.3-21)].

(b) The spectral degree of coherence of the far field is equal, apart from a simple
geometrical phase factor, to the normalized two-dimensional spatial Fourier
transform of the spectral density of the field in the source plane [Eq. (5.3-22)].
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The reciprocity relation (a) implies that a quasi-homogeneous source may
generate radiant intensity which is rotationally symmetric about the normal of the
source plane, irrespective of the shape of the source and irrespective of the spatial
distribution of the spectral density across it. Some examples of this fact are
discussed in a paper by Li and Wolf (1982).

The reciprocity relation (b) is essentially a generalization for quasi-homogen-
eous sources of the far-zone form of the van Cittert-Zernike theorem [Eq.
(4.4-40)]. However the van Cittert-Zernike theorem in its traditional formula-
tion applies to the equal-time degree of coherence j(risy, r28;), whereas the
formula (5.3-22) pertains to the spectral degree of coherence pi(r18y, r28z, v). This
distinction is often insignificant when the light is quasi-monochromatic.

We will illustrate the reciprocity relations by considering radiation from a
planar, secondary, quasi-homogeneous source of radius a>> A whose spatial
distributions of the spectral density and the spectral degree of coherence are both
Gaussian,* i.e.

SO(p, v) = AX(v) e P whenp=<a
- when p> (5.3-23)
and
gO(p', v) = e P, (5.3-24)

where A, og and o, are real and positive. Since the source is assumed to be
quasi-homogeneous we must have

05 > 0. (5.3-25)
To simplify the calculations we will also assume that
05 < a. (5.3-26)

The two-dimensional spatial Fourier transforms, defined by formulas (5.3-18)
and (5.3-19), of the Gaussian distributions (5.3-23) and (5.3-24) are

2 2
5O, v) = ATTS o-dre, (5.3-27)
27

2
gO, v = - e, (5.3-28)
v

In calculating §® use was made of the assumption (5.3-26), which allowed the
replacement of the truncated Gaussian distribution (5.3-23) by the complete
Gaussian distribution in determining its Fourier transform.

On substituting from Eqs (5.3-27) and (5.3-28) into Eq. (5.3-21) and making
use of the relation s> = sin® 8, we obtain the following expressmn for the radiant
intensity:

I(s, v) = JO(v) cos? g e [(kow?sin? 62 (5.3-29)

' The radiant intensity and the far-zone coherence properties of model sources of other kinds were
studied by Baltes, Steinle and Antes (1976); Steinle and Baltes (1977) and Baltes and Steinle (1977).
See also Section 5.4.2. below. Far-zone range criteria for radiation generated by planar, secondary,
quasi-homogeneous sources were given by Leader (1978).
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where
JO®) = (kAggos). (5.3-30)

Let us briefly consider two limiting cases. When ko, — 0, the source becomes
spatially incoherent (zero correlation length) at frequency v and Eq. (5.3-29)
shows that in this case

(——J(S’ V)) — cos? 6; (5.3-31)
](0)(1/) incoh.

hence the radiant intensity falls off with @ as cos® 8, i.e. more rapidly than with a
Lambertian source [cf. Eq. (5.3-45) below]. In the limiting case when kg, —
[but retaining the assumption (5.3-25) in taking this limit] the source becomes
locally coherent and Eq. (5.3-29) and (5.3-30) imply that one now has

(M) =0 when6#0
JO) /eob (5.3-32)

=1 when6 =0,

i.e. in this limit the source radiates only in the direction & =0 normal to the
source plane.

The behavior of the normalized distribution of the radiant intensity, calculated
from Eq. (5.3-29) for selected values of the spectral correlation width oy, is
shown on a polar diagram in Fig. 5.8(a).

Next let us consider the spectral degree of coherence u{*)(rysi, r,8;, v) of the
far field. We find at once, on substituting from Eq. (5.3-27) into Eq. (5.3-22),
that

U (181, ra8p, v) = e ke U2 giklamr), (53-33)
where
up = I8y = suil- (5.3-34)

The behavior of the spectral degree of coherence W™, given by Eq. (5.3-33), is
shown in Fig. 5.8(b) for different values of the effective linear source size og. It is
not difficult to show that, when the points P(rys1) and P,(r,s;) in the far zone
are sufficiently close to the forward direction and are situated in the same
meridional plane (i.e. a plane containing the z-axis), the variable u;; represents
the angular separation of the two points as viewed from the source. Figure 5.8(b)
shows that as the effective linear size os of the source increases, the angular
separation of the points at which the far field has appreciable correlation then
becomes smaller and smaller.

5.3.3 An inverse problem for planar, secondary, quasi-homogeneous sources

In the preceding section (Section 5.3.2) we obtained expressions for the radiant
intensity and for the spectral degree of coherence of the far field generated by a
planar, secondary, quasi-homogeneous source. We will now consider the inverse
problem, namely that of determining the spectral density and the spectral degree
of coherence of the source from far-field measurements.
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Fig. 5.8 (a) Polar diagram of the normalized radiant intensity, given by Eq.
(5.3-29),and (b) the behavior of the absolute value of the spectral degree of
coherence, given by Eq. (5.3-33), of the far field generated by a Gaussian,
quasi-homogeneous, planar, secondary source. The variable us, is defined by
Eq. (5.3-34). (Adapted from Carter and Wolf, 1977.)

We have from Eq. (5.3-21),

J(s, v)
rk)*59(0, v)cos® 6
This formula gives the two-dimensional spatial Fourier component of the spectral
degree of coherence of the source, labeled by the spatial-frequency vector
f=ks,, in terms of the radiant intensity of the field associated with one
particular direction: namely with the direction specified by the unit vector
s = (S, 5y, §,), where s, 5, are the Cartesian components of the two-dimensional
vector s, and s. = +(1 ~ s2)¥2 = cos . However, since |s,| <1, only the low-
frequency spatial Fourier components, i.e. those for which |f{ <k, can be
determined from the knowledge of the radiant intensity. The high-frequency
spatial Fourier components, i.e. those for which |f| > k, are associated with
evanescent waves (see Section 3.2.2). In many cases of practical interest, the
high-frequency spatial Fourier components are negligible. Under these circum-
stances we may, to a good approximation, omit them. We then obtain from Eq.
(5.3-35), if we use the relation cos 6 = +(1 — §2)'2, the following approximate
expression for g@:

ks, , v = (5.3-35)

1 25— iksyp' 32

O, v) = ——————— - ! ks p df (ks ). (5.3-36)

g2, V) |, (1= s TG, e .
(2mk)25O(0, v) si=1

Now, since the spectral degree of coherence g@(p’, v) has the value unity when

p’ =0, it follows from Eq. (5.3-36) that

500, v) = f (1= 2)7(s, v) (ks ). (5.3-37)

1
(2rk)?Isi=1
Further from Egs. (5.3-36) and (5.3-37),
Jacd = s, e @y

T - (5.3-38)
Jae(1 = s1) (s, vy dPsy

g0p', v) =
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This formula provides an approximate solution to the problem of determining the
spectral degree of coherence of a planar, secondary, quasi-homogeneous source
from measurements of the angular distribution of the radiant intensity produced
by the source.

To determine the distribution of the spectral density across the source from
far-field measurements it will be convenient to first re-write the formula (5.3-22)
as

W (risy, sy, v) = g k(syy = sy0), v] ek, (5.3-39)

where
§(0)[k(su =s11), V]
500,

We note that when ry = r, (= r say), i.e. when the two field points P;(r;s;) and
Py(rys,) in the far zome are at equal distances from the origin, u(*) and g(*
become equal, i.e.

g(w)[k(su —81.), V] =

(5.3-40)

ru(w)(rsla 7Sy, V) = g(w)[k(SZL - SlJ.)‘ V]‘ (53_41>

The formula (5.3-40) expresses some of the normalized spatial Fourier compo-
nents, labeled by spatial-frequency vectors

f=k(sy, —s10) (5.3-42)

of the spectral density distribution SOp_ ), in terms of the spectral degree of
coherence g(™[k(syy — s11), v] of the far field, at equidistant points from the
origin, in directions s; and s,. Since |s;,| <1 and |s;, | < 1, we see that only those
spatial-frequency components of the normalized spectral density distribution
across the source for which |f] < 2k may be obtained from measurements of the
spectral degree of coherence of the far field. For the same reason as given earlier
in connection with determining the spectral degree of coherence of the source
from measurements of the radiant intensity, we will neglect spatial-frequency
components for which [f| >2k. We then obtain, on taking the inverse Fourier
transform of Eq. (5.3-40), the following expression for the spectral density of the
source:

5O(p, v) = 590, v) f ™)t Vet P d2f, (5.3-43)
[fl<2k

where f and the unit vectors s; and s are related by Eq. (5.3-42) and $©(0, v) is
given by Eq. (5.3-37). It follows at once from the definition of the Fourier
transform [See Eq. (5.3-18)] that

5 1
SO0, v) = —— 1| SO(p, v) dp, 5.3-44
oo [0 (5.3-44)

showing that (0, v) is proportional to the integral of the spectral density taken
over the source.

The formulas (5.3-38) and (5.3-43) make it possible to determine the spectral
degree of coherence and the normalized spectral density of a quasi-homogeneous,
secondary, planar source from far-field measurements.
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We will illustrate the use one of the inversion formulas by determining the
spectral degree of coherence of a quasi-homogeneous, secondary, planar, Lam-
bertian source. The angular distribution of the radiant intensity generated by a
Lambertian source obeys Lambert's law

J(s, v) = JO(v) cos 8, (5.3-45)

where J@(v) >0. On substituting from Eq. (5.3-45) into the formula (5.3-38)
and recalling that sT =52+ si we find that

4Op’, v)

. (5.3-46)
400, v)

g0, v) =
where

1 "
GO(p', v) = = ek s ds,,  (5.3-47)
> 2 2 xy
sesta [L = 8% = 5312

x', y’ being the Cartesian components of p’.
To evaluate the integral on the right-hand side of Eq. (5.3-47) we set
Sy = TCOSY, §, =TSiny, (5.3-48a)
x'=p'cosf, y' =p'sinb. (5.3-48b)
The formula (5.3—47) then becomes

27
GO(p' V) = | dy| ———
(p',v) IO on[l —apn

1
eikto'cos(x=0) r 47 (53—49)

The integration with respect to y may be carried out at once by recalling a
well-known integral representation of the Bessel function Jy(x) of the first kind
and zero order [Watson, 1966, p. 20, Eq. (5)], namely

vis
=l [T = @y = nknp). (5.3-50)
27 /o
By use of this formula, Eq. (5.3-49) reduces to
1
1

m]g(ktp’) rdz. (5.3-51)

GO p', vy = 271‘[
0

This integral may be evaluated in closed form (see, for example, Gradshteyn and
Ryzhik, 1980, p. 682, Formula 2 of 6.554) and one then obtains the following
expression for 4

GO p', v) = 2ﬂ<__sm kp ) (5.3-52)
kp'

It follows from Egs. (5.3-46) and (5.3-52), since evidently ¢”(0, v) = 27, that

sinklpy — paf (5.3-53)

§%p, - p1,v) =
klps — ml
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We thus conclude that all quasi-homogeneous, secondary, planar, Lambertian
sources have the same degree of spatial coherence, given by Eq. (5.3-53)}
provided that contributions from its high-frequency spatial Fourier components
(lf| > k) are negligible. The behavior of the function sin kp'/kp’ is shown in Fig.
5.9. We see that the field correlations across a Lambertian source extend over a
distance Ap’ such that kAp’ < 7/2, i.e. over distances Ap’' < A/4, where A = ¢/vis
the wavelength. Thus a Lambertian source is spatially not strictly incoherent,
although its correlation widths, at optical frequencies, are very small, being of the
order of the wavelength for each spectral component.

One encounters generalizations of the Lambertian distribution of radiant inten-
sity, given by Eq. (5.3-45), when one studies the correlation properties of a
quasi-homogeneous source which generates an arbitrary rotationally symmetric
distribution J(s, v). We may then represent J(s, v) as a series involving powers of
cos 6:

J(s, v) = 3 ay(v)cos” 6. (5.3-54)
n=0
Because of the linearity of the inverse formula (5.3-38), the cross-spectral density
of the quasi-homogeneous source that gives rise to J(s, v) is a linear combination
of cross-spectral densities produced by the more elementary sources (all of which
are also assumed to be quasi-homogeneous), each of which generates a radiant
intensity of the form {see Fig. 5.10(a)]

J(s, v) = a,(v)cos” 6. (5.3-55)

The inverse problem associated with the radiant intensity distribution (5.3-55)
was considered in several papers (Antes, Baltes and Steinle, 1976; Baltes, Steinle
and Antes, 1976; Carter, 1984; see also Baltes, 1977, Secs. 3.3 and 3.4 and

0.8 )

| sin kp’
0.6
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02
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} 1/ } 4 kp'
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Fig. 5.9 The spectral degree of coherence g!%(p’, v) = sin(kp')/(kp'), where
p' = |p2 — p1|, of a planar, secondary, quasi-homogeneous Lambertian source
[Eq. (5.3-53)].

* This result is consistent with known correlation properties of blackbody sources. In this connection
see Carter and Wolf (1975), Sec. II.
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(@)

Fig. 5.10 The polar diagram (a) illustrating the angular distribution J™(s, v)/
a,(v) [Eq. (5.3-55)] of the normalized radiant intensity, generated by a
Bessel-correlated, planar, secondary, quasi-homogeneous source. Figure (b)
shows the behavior of the spectral degree of coherence of the source [Eq.
(5.3-56)]. The numbers on the curves represent the values of the parameter 7.
The dashed curve (for n = 1) corresponds to a Lambertian source. (Adapted
from Baltes, Steinle and Antes, 1976.)

McGuire, 1979). It was found that the spectral degree of coherence g® (p',v)ofa
quasi-homogeneous secondary source which generates the radiant intensity
(5.3-55) is given by the formula

¢Pp', v) = 2”/2I‘(1 + i)—_—’"ﬂ““’ ), (5.3-56)
2) (kpry®
where J,5 is a Bessel function of the first kind and I is the gamma function, it
being assumed that its high-frequency spatial Fourier components (|f| > k) may
be neglected. The formula (5.3-56) is valid for all values of n =0, not just for
non-negative integral values and, as may readily be verified, it reduces correctly
to the formula (5.3-53) when n = 1.

Sources whose spectral degree of coherence is given by Eq. (5.3-56) are
sometimes said to be Bessel correlated. In Fig. 5.10(b) the spectral degree of
coherence of such sources is plotted as a function of kp’ for selected values of the
parameter n.

5.4 Equivalence theorems for planar sources which generate the same radiant
intensity

One of the very useful .properties of laser sources is their ability to generate
optical beams, i.e. to produce fields that are highly directional. The radiant
intensity J(s, v) of such fields is concentrated in a very narrow solid angle; more
precisely, J(s, v), considered as function of s, is sharply peaked around some
particular direction s;. Because a laser source is a highly coherent source, one
might assume that only coherent sources can generate beams. Actually this is not
so. It was found that sources with entirely different coherence properties may
generate identical distributions of the radiant intensity. In particular it was shown
that quasi-homogeneous sources which, as we learned earlier, are rather incoher-
ent in the global sense can produce the same distribution of radiant intensity as a
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fully spatially coherent laser source. This discovery triggered off investigations
that led to the formulation of a number of ‘equivalence theorems’. These
theorems provide conditions under which sources of different states of coherence
and different spatial distributions of spectral density will generate fields which
have the same radiant intensity. The coherence properties of the light generated
by two equivalent sources will, of course, be different. This fact suggests a
number of potential applications. For example, beams of low spatial coherence
will not produce the detrimental speckle effects which are usually present when
highly coherent laser beams are used; this property is useful, for example in
lithography where very high resolution is required.

In the present section we will formulate the main equivalence theorems and we
will illustrate them by numerical examples and by some experimental results.

5.4.1 An equivalence theorem for planar sources

According to Eq. (5.3-8) the radiant intensity generated by a planar, secondary
source is given by the formula

I(s, V) = Quk)*WO(—ks, , ks, v)cos* 6, (5.4-1)

where WO(f,, f,, v) is the four-dimensional spatial Fourier transform, defined by
Eq. (5.3-7), of the cross-spectral density W«’)(pl, py. v) of the field distribution
vO(p, 1) in the source plane, namely

WO, £, 1) = —— [[7 1. 2 myemrtm @p, g, (5.4-2)
(@2m*
where the integrations extend formally over the whole source plane.

According to Eq. (5.4-1) the radiant intensity is fully determined by certain
spatial Fourier components of the cross-spectral density W@, namely by those
components labeled by pairs of spatial-frequency vectors f; and f, which satisfy
the relation f, = —f;. The corresponding Fourier components of W are said to
be anti-diagonal components. Moreover as we have already noted, and as is
evident at once from Eq. (5.4~1), only the low spatial-frequency Fourier compo-
nents, i.e. those for which |f;| <k, |f,] <k, appear in the expression for the
radiant intensity. Hence we have the following equivalence theorem for radiant
intensity,, due to Collett and Wolf (1978; see also Collett and Wolf, 1979; Saleh,
1979; Saleh and Irshid, 1982): Two planar secondary sources, whose cross-spectral
density functions W (py, p,, v) have the same low-frequency anti-diagonal spatial
Fourier components, generate the same distribution of the radiant intensity .

It is important to appreciate that, even though the anti-diagonal low-frequency
elements of the two sources may be identical, the other low-frequency elements
(for which f, % —f;) may be entirely different. Consequently the two sources will,
in general, have different coherence properties and different spatial distributions
of their spectral densities. This in turn implies, as can immediately be seen from
Eqgs. (5.3-4) and (5.3-6), that, although the two sources will generate the same
radiant intensity, the far fields which they produce will have different coherence
properties.

It is not difficult to understand the physical reasons why entirely different
sources may generate the same distribution of the radiant intensity. For this
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purpose let us first express the cross-spectral density of the source in terms of its
spectral density and its spectral degree of coherence [Eq. (4.3-47b)]:

WO(py, po, v) = [SQpy, VIISOp2, WIV2UO(p1, P2, v).  (5.4-3)

On substituting from Eq. (5.4-3) into Eq. (5.4-2) and setting f; = —ks,,
f, = ks, we obtain the following expression for the low-frequency anti-diagonal
Fourier components of the cross-spectral density of the source:

> 1
WO(=ks.. ks, ) = — [ [[80p1, MIPISV (o2, IFZuO(p1, p2. )
(2m)
x g7tk (=0 @y d2p,. (5.4-4)

We see that both the spectral density and the spectral degree of coherence of the
source appear under the integral sign on the right-hand side of Eq. (5.4-4). It is,
therefore, possible that W@ (—ks,, ks,,v) and hence also the radiant intensity,
given by Eq. (5.4-1), may be identical, even when the two sources are quite
different. Stated in another way, it is possible to replace S@(p,v) and
19 (py, py, v) by different functions 'SO(p, v) and "% (py, py, v) respectively,
without changing the value of the integral in Eq. (5.4-4). Hence one can make a
‘trade-off’ between coherence and the spatial distribution of the spectral density of
the source, without affecting the distribution of the radiant intensity which the
source generates.

Another formulation of the equivalence theorem may be based on the formula
(5.3-10), namely

J(s, v) = k*CO(ks, v)cos® 6, (5.4-5)

rather than on Eq. (5.4-1). Here C(f, v) is the two-dimensional spatial Fourier
transform of the source-integrated cross-spectral density

O, = [WOp =3 p + 10, . (5.4-6)

The formula (5.4-5) brings at once into evidence the following alternative
formulation of the equivalence theorem for the radiant intensity: two planar
sources, whose source-integrated cross-spectral density COp', v) has the same
low-frequency (|f| < k) Fourier components, will generate the same distribution of
the radiant intensity .

An interesting consequence of the equivalence theorem which we have just
discussed is the possibility of producing sources which are globally rather incoher-
ent but which can nevertheless generate fields that are highly directional. In
particular such sources can generate the same distribution of radiant intensity as a
fully coherent laser source. Examples of such equivalent sources will be given in
the next two sub-sections (5.4.2 and 5.4.3).

5.4.2 Example: equivalent Gaussian Schell-model sources

We will illustrate the equivalence theorem that we just discussed for a particular
class of Schell-model sources. We recall that such a source is characterized by the

5.4 Equivalence theorems for planar sources 253

property that its spectral degree of coherence u‘o)(pl, p2, v) depends on p; and p,
only through the difference p’ = p, — p,. Consequently the cross-spectral density
of a Schell-model source has the form indicated by (5.3-15), namely

WO(py, p2, v) = [SO(p1, MIPLSOp2, VIO (py — p1,4).  (5.4-7)

On substitating from Eq. (5.4~7) into (5.4-6) one finds that for a Schell-model
source

COp',v) = g9p", WHO(p", v), (5.4-8)
where
H(O)(p’, V) _ f[S(O)(p _ %p/’ V)]I/Z[S(O)(p + %077 V)]I/Z d2p' (54_9)

Suppose now that the spatial distributions of the spectral density and of the
spectral degree of coherence are both Gaussian, namely

SO(p, v) = A%(v)e P25, (5.4-10)

, 2R
g0p', v) = PP, (5.4-11)

where A, oy and o, are all positive. We will refer to such a source as a Gaussian
Schell-model source.

. On substituting from Eq. (5.4-10) into Eq. (5.4-9) and evaluating the resulting
integral we readily find that in this case

HOp', v) = 2 42(v) o (v) e P850, (5.4-12)

and if we substitute from Eqgs. (5.4-12) and (5.4-11) into Eq. (5.4-8) we find that
for a Gaussian Schell-model source

CO(p', ) = 2w AX(V)o5(v) e P15, (5.4-13)

where

1 1 1
=t =
&) 4o5(v)  og(v)
The Fourier transform, defined by Eq. (5.3-11), of the expression (5.4-13) is
readily found to be

(5.4-14)

COE, v) = (A0sd) e /P, (5.4-15)

On the right-hand side of this formula and also in some of the formulas which
follow we do not show explicitly the dependence of some of the quantities on the
frequency v.

It follows from the second form of the equivalence theorem stated below Eg.
(5.4-6) and from Egs. (5.4-15) and (5.4-14) that two Gaussian Schell-model
sources, for which the quantities

() —
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have the same value and also the products
(b) Aos

are the same, generate the same distribution of the radiant intensity*.

The radiant intensity J(s, v) produced by such a rotationally symmetric source,
in a direction making an angle 6 with the normal to the source plane, is obtained
at once by substituting for C® from Eq. (5.4-15) into Eq. (5.4-5) and by making
use of the relation s> = sin® 6. One then finds that

J(s, v) = JO(v) cos? g ¢ Uk sin?6)/2. (5.4-16)

where
JOW) = (kAosd)? (5.4-17)

is the radiant intensity in the direction normal to the source plane (6 = 0).

The expression (5.4-16), together with (5.4-17), shows explicitly that Gaussian
Schell-model sources for which the parameters & and also the products Ao have
the same values will indeed generate the same distribution of the radiant
intensity. The dependence of the parameter 4, defined by Eq. (5.4~14), on o
and o, illustrates the ‘trade-off’ between the state of coherence of the source
(characterized by o) and the suitably normalized spatial distribution of spectral
density (characterized by o), which is at the root of the equivalence theorem.
This fact is also illustrated in Figs. 5.11 and 5.12.

We note two extreme cases. In the quasi-homogeneous limit, characterized by
the condition

05 > ag, (5.4-18)

Area of coherence

O

(a) Laser source

Scale:

T T
(b) Equivalent quasihomogeneous source 01234 5mm
Fig.5.11 Iilustrating the effective sizes of (a) a laser source and of () an
‘equivalent’ quasi-homogeneous source. The coherence area of the quasi-
homogeneous source is shown shaded in Fig. (b). (After Wolf, 1978.)

 An equivalence theorem for Gaussian Schell-model sources which generate fields with the same
distribution of the spectral degree of coherence in the far zone was formulated by Kandpal and Wolf

(1994).
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Fig. 5.12 The spectral degree of coherence g®(p’, v) and the distribution of
spectral density S®(p,v) across four planar, secondary, Gaussian, Schell-
model sources which generate identical distributions of the radiant intensity.
The curves in (a) pertain to a completely (spatially) coherent source (e.g. a
single-mode laser) and the curves in (d) to a rather incoherent source. The
parameters characterizing the four sources are: (a) 0, = ®, o5 =1mm, A =1
(arbitrary units); (b) o, =5mm, o5 =1.09mm, 4 = 0.84; (c) 0p = 2.5 mm,
o5 =1.67mm, 4=0.36; (d) 0,=2.1mm, o5=328mm, A=0.09. The
normalized radiant intensity generated by all these sources is given by the
expression (5.4-16), namely J(6)/7(0) = cos?8 exp [~3(k&)?sin26), with 6=
2 mm. (After Wolf and Collett, 1978.)

the Gaussian Schell-model source becomes globally rather incoherent and we see
from Eq. (5.4-14) that in this case

8= og. (5.4-19)
In this limit the expression (5.4-16) for the radiant intensity correctly reduces to
Eq. (5.3-29).
In the other extreme case, when
05 K 0O, (5.4-20)

the source is essentially spatially coherent in the global sense and Eq. (5.4-14)
then gives

8~ 20s5. (5.4-21)



256 Kadiation from soutces of any state of coherence

It follows from Egs. (5.4-16), (5.4-17) and (5.4-21) that the radiant intensity is
now, to a good approximation, independent of the exact value of the effective
correlation length o, of the source.

The limit o, — « characterizes, of course, a Gaussian Schell-model source
which is spatially completely coherent at frequency v, i.e. for which

g@p’,v)=1 forallp'. (5.4-22)

Instead of the the approximate relation (5.4-21) we then have from Eq. (5.4-14)
the exact relation & = 205. Examples of such sources are lasers with flat output
mirrors, each of which operates in its lowest-order mode, provided effects arising
from diffraction at the edge of the mirror are neglected. Let us re-write Eq.
(5.4-10), appropriate io such a source, in the form

SO(p, v) = Al e 2oL, (5.4-23)

where 6 = 2(0g)L, the subscript L indicating that the parameters now pertain to
a laser [(0,)L— ). It is clear from the equivalence theorem which we just
discussed that Gaussian Schell-model sources for which 8= 6 =2(os). and
Aags = Ay (og)L will generate the same angular distribution of radiant intensity as
the laser source. Written out more explicitly the first condition implies, according
to Eq. (5.4-14), that
SRS (5.4-24)
4(o5);, 405 fop
from which we see that
os = (0s)L (5.4-25)
and
Ug = Z(US)L' (54—26)

Hence a partially coherent Gaussian Schell-model source which is ‘equivalent’ to
the fully coherent laser source must have a larger effective size than the laser and
must be correlated over distances that are at least twice as large as the effective
linear dimensions of the laser source. Those with the smallest correlation lengths
{og = 2(05)L] are quasi-homogeneous sources because, according to Eq. (5.4-24),
o must then be necessarily much greater than o,. A comparison of a laser source
with such an ‘equivalent’ quasi-homogeneous source is indicated in Fig. 5.11.
Figure 5.12 shows the degree of coherence and the distribution of the spectral
density across some other Gaussian Schell-model sources which generate the same
distribution of radiant intensity as a laser (see also Gori and Palma, 1978; De
Santis, Gori and Palma, 1979; Gori, 1980a,b).

5.4.3 An experimental test of the equivalence theorem

An experimental test of the equivalence theorem for radiant intensities was made
by De Santis, Gori, Guattari and Palma (1979), using an optical system shown
schematically in Fig. 5.13. A Gaussian spot of laser light was produced via a lens

™~
n
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Fig. 5.13 The experimental set up used for testing the equivalence theorem for
radiant intensity. The meanings of the symbols are explained in the text.
(Adapted from De Santis, Gori, Guattari and Palma, 1979.)

L, on a ground glass plate G. The plate was located in the focal plane of a lens
L, which was followed by an amplitude transmission filter F that has a Gaussian
transmission function. As was first demonstrated by Martienssen and Spiller
(1964), if the plate is continuously rotated, the cross-section of the beam that
emerges from the plate is essentially a spatially incoherent secondary source,
provided that the spot size is large compared with the inhomogeneity scale of the
ground glass plate. Using the van Cittert—Zernike theorem and the propagation
law for the cross-spectral density one can show that the light in a plane o which
follows the filter F is a Gaussian Schell-model source. The r.m.s. widths of the
two distributions (5.4~10) and (5.4-11) which characterize this source are found
to depend on:

(a) The r.m.s. width of the surface roughness correlation function of the ground
glass plate;

(b) The r.m.s. width of the transmission function of the amplitude filter F;

(c) The focal length of the lens L,.

By choosing these three parameters appropriately one can produce Gaussian
Schell-model sources with desired parameters.

The angular distribution of the radiant intensity generated by such sources may
be studied with the help of an optical system formed by lenses L; and L,. The
image produced by this system was scanned by a photodetector PH.

In these experiments the angular distribution produced by the Gaussian laser
beam in the absence of both the ground glass plate G and the amplitude filter F
was first measured. Next, corresponding measurements were made with a ground
glass plate and an amplitude filter in place. The r.m.s. widths of the ground glass
plate correlation function and of the filter transmission function were chosen so
that the coherent laser source and the partially coherent Schell-model source
satisfied the conditions of the equivalence theorem.

In Fig. 5.14 the observed optical intensities in the cross-section of the coherent
laser beam (a) and of the beam just emerging from the ground glass plate when it
is not rotating (b) are shown. The average size of the speckles in Fig. 5.14(b) is a
rough measure of the r.m.s. width of the transverse correlations (of the order of
0,) of the light which emerges from the plate when it is rotated. In spite of the
considerable difference between the two sources, the far-zone intensity distribu-
tions were found to be essentially the same (Fig. 5.15), except for a scale factor
which was left somewhat arbitrary in these experiments.

A different arrangement for testing some of the theoretical predictions relating
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Fig. 5.14 Intensity distribution across a coherent laser source (a), and across
an ‘equivalent’ partially coberent source o (b). (Adapted from De Santis,
Gori, Guattari and Palma, 1979.)

to radiation from partially coherent sources was employed by Farina, Narducci
and Collett (1980). It will be described later, in Section 5.6.4, in connection with
Gaussian Schell-model beams. Here we only mention that the secondary source
used in these experiments was obtained by placing, in the path of a laser beam, a
rotating phase screen created by spraying a finishing mist on a clear glass blank.
With appropriate coating a quasi-homogeneous source was produced and it was
shown that such a source can indeed generate highly directional beams.

Other methods of producing sources with different coherence properties have
been described in the literature. One of them utilizes liquid crystals to scatter a
laser beam (Scudieri, Bertolotti and Bartolino, 1974; Carter and Bertolotti, 1978).
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Fig. 5.15 The measured angular distributions of the radiant intensity J,(6) (in
arbitrary but identical units) generated by the two sources illustrated in Fig.
5.14. (Adapted from De Santis, Gori, Guattari and Palma, 1979.)

By applying a d.c. electric field to the liquid crystal, the coherence properties of
the scattered light were modified. Other methods utilize various transmission
filters or holographic filters to change the coherence properties of the light which
passes through them (Courjon and Bulabois, 1979; Courjon, Bulabois and Carter,
1981). Methods for modifying the coherence of light by interaction with sound
waves have also been developed (Ohtsuka and Imai, 1979; Imai and Ohtsuka,
1980; Turunen, Tervonen, Friberg, 1990; Tervonen, Friberg and Turunen, 1992).
A method has also been proposed for generating Gaussian Schell-model sources
from primary quasi-homogeneous sources by the use of feedback systems (De-
champs, Courjon and Bulabois, 1983). Sources of controlled degree of coberence,
constructed by means of these and other techniques, are finding useful applica-
tions in fields such as microdensitometry (Kinzly, 1972; Reynolds and Smith,
1973), line width measurements (Nyyssonen, 1977, 1979), and lithography (Old-
ham, Subramanian and Neureuther, 1981), where high spatial coherence of light
has sometimes detrimental effects, because it gives rise to speckled images which
make it difficult to obtain good resolution. An example showing how reduction of
spatial coherence may improve resolution is shown in Fig. 5.16.

5.5 Coherent-mode representation of Gaussian Schell-model sources

Throughout this chapter we have illustrated some of our analysis with reference to
Schell-model sources (which include quasi-homogeneous sources in an appropri-
ate limit). Because of the importance of model sources of this type and also in
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order to obtain better insight into some basic differences between globally
coherent and globally incoherent sources, we will consider the coherent-mode
representation, described in Section 4.7, of Gaussian Schell-model sources. To
keep the analysis as simple as possible we will consider only one-dimensional
sources of this class.

Fig. 5.16 Hlustrating the improvement in resolution by changing the spectral
degree of coherence of light. (a): Photograph of text obtained with spatially
coherent He:Ne laser light. The speckles that are produced obscure the image,
making the words nearly unreadable. (b): Photograph of the same text
obtained with light from a quasi-homogeneous (i.e. globally incoherent)
source. The speckles have disappeared and the text has become readable.
(Courtesy of L. M. Narducci and J. D. Farina.)
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A one-dimensional, secondary, Gaussian Schell-model source is characterized
by a cross-spectral density of the form [cf. Egs. (5.3-15), (5.3-23) and (5.3-24)]

WO(xy, x2, ) = [SO(xy, WSO (xy, V2O (x; — x1,v),  (5.5-1)

where the spatial distribution of the spectral density S(x, v) and the spectral
degree of coherence g (x', v) are given by expressions of the form

SO(x, v) = AX(v) e, (5.5-2)
g0, v) = e ¥, (5.5-3)

where A(v), o5(v) and g,(v) are positive.
According to the one-dimensional analogue of Eq. (4.7-44), the cross-spectral
density W@ (xy, x,, v) may be expressed in the form

WO(x1, x5, V) = 2 Ba(VPE(x1, Vu(x2, ), (5.5-4)

where B,(v) are the eigenvalues and ¢,(x, v) are the (orthonormalized) eigen-
functions of the homogeneous Fredholm integral equation

[ WO 1, 00000, Va1 = FuDlan D (5.5-5)

In physical terms Eq. (5.5-4) represents the cross-spectral density function of the
secondary source as a linear superposition of elementary cross-spectral density
modes, each of which is completely spatially coherent at each frequency.

The integral equation (5.5-5), with the kernel given by Egs. (5.5-1) to (5.5-3)
may be solved in a closed form. The (normalized) eigenfunctions and the
eigenvalues are found to be (see, for example, Gori, 1980b, or Starikov and Wolf,
1982)

2\ 1 2
ouie 9 = (2] Loy, (5.5-6)
(2"}1!)1/2
/2 n
Ba(V) = Az( T )1 ( b ) , (5.5-7)
a+b+c a+b+c
where H,(x) are the Hermite polynomials and
1
= , b(v) = , 5.5-8
) 40%(v) ( Zaé(v) ( ?
c(v) = [a¥(V) + 2a(v)b()]*2. (5.5-8b)

From Eq. (5.5-7), which gives the eigenvalues for a Gaussian Schell-model
source, we can at once obtain a simple expression for the relative weights with
which the different modes contribute to the cross-spectral density of the source.
The ratio of the eigenvalue f3,, to the lowest eigenvalue f3; is evidently given by

Bn _ b "
be (i)
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We may express Eq. (5.5-9) in a physically more significant form by dividing the
numerator and the denominator on the right by the factors . We then obtain the
following simple expression for the ratio 3,/B,:

B _ 1 §
B Lg¥2) + 1+ ql(g/2? + 11217

where the parameter g is the ratio of the r.m.s. width of the spectral degree of
coherence to that of the spectral density function:

(5.5-10)

gy = 26, (5.5-11)
as(v)
Clearly this parameter may be regarded as a measure of the degree of global
coherence of a Gaussian Schell-model source. Let us consider two extreme cases.
When o, >> og the source is spatially very coherent in the global sense.
According to Eq. (5.5~11) we have in this case ¢ >> 1 and it then follows from Eq.
(5.5-10) that

B 1 (5.5-12)

This formula implies that, for all n # 0, 8, < 8y and hence in the coherent limit
the behavior of the source is well approximated by the lowest-order mode.

In the other extreme case, when 0, < 05 the source is spatially very incoherent
in the global sense and belongs to the class of quasi-homogeneous sources which
we considered earlier (Sec. 5.3.2). According to Eq. (5.5-11) we now have g < 1
and it then follows from Eq. (5.5-10) that

—ﬁ—"— ~=1-ng. (5.5-13)
Bo
This formula implies that a large number of modes (of the order 1/g) is now
needed to represent the source adequately.

In Fig. 5.17 the behavior of the ratio 3,/ as a function of »n is shown, for
various selected values of the parameter g. It is seen from the figure that as we
proceed from highly (globally) coherent sources to incoherent ones, more and
more modes are needed to represent the spatial correlation properties. The
contributions of the different modes to the intensity in the far field have been
studied by Starikov and Wolf (1982). The contributions of the different modes to
the cross-spectral density in any transverse cross-section z = constant were ob-
tained by Gori (1983).

The eigenfunctions, given by Eq. (5.5-6), and sometimes called Hermite—
Gaussian functions, are well known in the theory of laser resonators. They
represent the x-dependent parts of the transverse modes of confocal laser
resonators with spherical mirrors and rectangular boundaries along the x- and
y-directions, when diffraction produced by the edges of the mirrors is neglected
(see, for example, Kogelnik and Li, 1966; Siegman, 1971, Sec. 8.4). We will study
the structure of the lowest-order transverse mode in Section 5.6.2.
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Fig.5.17 The ratio of the (n + 1)th eigenvalue f, to the lowest-order eigen-
value f3y of a one-dimensional, secondary, Gaussian, Schell-model source as a
function of n, [Eq. (5.5~10)], for selected values of the degree of global
coherence g = 0,/05. Values g » 1 and g < 1 characterize sources that are
spatially coherent and spatially incoherent in the global sense, respectively.
(After Starikov and Wolf, 1982.)

5.6 Optical beams

Up to now we have been mainly concerned with properties of fields in the far
zones of fluctuating sources. We will now consider fields at arbitrary distances
from the sources and we will study the changes which the fields undergo on
propagation. Because of the complexity of the problem, we will restrict ourselves
to highly directional fields, i.e. to beams.

We will first derive conditions under which a monochromatic planar source
generates a beam. We will then obtain two useful representations of monochro-
matic beams. One of them is in terms of the angular spectrum of plane waves; the
other is an integral-transform formulation, which utilizes an appropriate Green’s
function. We will apply the results to study the structure of a monochromatic
Gaussian beam. We will then generalize the results to partially coherent beams,
generated by planar sources of any state of spatial coherence. Finally we will
study the main properties of beams produced by Gaussian Schell-model sources.

5.6.1 Monochromatic beams
Let us consider a monochromatic wave field of frequency v,

V(x,y,z,0) = U(x, y, z; V) e ™, (5.6-1)
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propagating into the half-space z > 0, which is assumed to be free space. As we
have learned in Section 3.2.2, under usual circumstances, the space-dependent
part U(x, y, z; v) may be expressed throughout the half-space z =0 as a super-
position of plane waves, all with the same wave number

k = 2mv/e, (5.6-2)
namely [Eq. (3.2-19) with k written now in place of ko]

Ux,y,2,v) = ”a(p, g; v)elkPrrotm) 4p dg, (5.6-3)

where
m=+[1-p?- g} whenp®+q’<1 (5.6-4a)
= +i[p? + g* = 1]¥» when p* + ¢*> 1. (5.6~4b)

As we noted in Section 3.2.2, the plane waves for which p* + q2.§ 1 are ordinary
homogeneous plane waves which propagate in directions specified by the unit
vector (p, g, m). Those for which p? + ¢* > 1 represent evanescent plane waves,
whose amplitudes decay exponentially with increasing z.

We will need the following two results derived in Section 3.2.2:

(a) The spectral amplitude function a(p, g; v) can be expressed in terms of the
boundary values of the field U(x, y, z; v) in the plane z = 0 as [Eq. (3.2-27)]

a(p, g3 v) = KTO(kp. kq; v), (5.6-5)
where
TOW, v, v) = ij Ulx, y, 0; v) e+ dx dy (5.6-6)
@n)?is

is the two-dimensional spatial Fourier transform of U(x, y, 0; v).
(b) Let
r=[x?+ y?+ P2 (5.6=7)

be the distance of the field point P(x, y, z) from the Qrigin. Then as P recedes
from the origin in any fixed direction specified by a unit vector s = sy, s, 5z > 0,
one has, in the asymptotic limit as kr — =, [Eq. (3.2-22)]

. ikr
Ulrs, v) ~ U™ (rs, v) = —z-zlcos 0 a5y 553 e (5.6-8)
r

Here 0 is the angle which the unit vector s makes with the positive z-axis (see Fig.
5.18).

TI)1e preceding relations are valid quite generally. We will now specialize. them
to the case when the field is beam-like. Clearly in that case the amplitudes
U™)(rs; v) of the far field will be negligible, except for s-directions wt}ich are
close to the beam axis. If we take the beam axis to be the z-direction, this result
implies, according to Eq. (5.6-8), that the algso]uge values ]a(sx,sy; v)| of the
spectral amplitudes will be negligible unless s + 5% < 1. This result means, in
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Plxy.2)

z

Fig. 5.18 Illustrating the notation relating to Eq. (5.6-8). s is a unit vector in
the direction OP.

physical terms, that for a beam which propagates close to the positive z-direction,
only those plane waves will be present with non-negligible amplitudes in its angular
spectrum representation (5.6-3), whose directions fall within a narrow solid angle
around the z-axis, as one would intuitively expect. From this result and from the
relation (5.6-5) we obtain at once a necessary and sufficient condition for a field
distribution U(x, y, 0; v)e™™" in the plane z = 0 to generate, in the half-space
2 >0, a beam which propagates close to the positive z-direction: U(x, y, 0;v)
must essentially contain only very low spatial-frequency components, i.e. the
modulus of its two-dimensional spatial Fourier transform U (u, v;v) must be
negligible unless u® + v? < k2.

Since, as we just saw, for a beam which propagates close to the z-direction one
has

la(p, q; v)| =0 unless p? + g% <«< | (5.6-9)

only the first of the two expressions (5.6-4) for m now applies; and that
expression can be approximated by the first two terms of its binomial expansion,
i.e. by

m=1-3p*+ q?). (5.6-10)
If we substitute from Eq. (5.6-10) into Eq. (5.6-3) we obtain the following
representation of a monochromatic beam (with the periodic time-dependent

factor €72 omitted) which propagates close to the z-axis into the half-space
z2>0

Ux,y,z;v) = e“‘l”a(p, g; v) kD) =ik a2 4p dg  (5.6-11)

it being understood that the (generally complex) amplitude function a(p, ¢; v)
satisfies the constraint (5.6-9).

If we use in Eq. (5.6~11) the simple relation Eq. (5.6-5) between a(p, q; v)
and U (kp, kq;v) and change the variables of integration from p and g to
u = kp, v =kq, we obtain at once the following representation of the beam in
terms of the Fourier transform of its boundary values in the plane z = 0:

Ux, y, z;v) = f f TO(u, v; v) el +on) e izb+D2k gy gy (5.6-12)



it is being understood that
[TOu, v, v)] = 0 unless u? + v? «< k2. (5.6-13)

We may also represent the beam throughout the half-space z >0 directly in
terms of the boundary values of the field in the plane z = 0. For this purpose we
substitute for UO(u, v; v) from Eq. (5.6-6) into Eq. (5.6-12) and interchange
the order of the integrations. We then obtain the following formula for the beam
[writing now U(x, y, z) in place of U(x, y, z; ), etc.]:

Ux,y, z) = e”“fo(x’, y,0Gx -x',y =y, 2)dx'dy’, (5.6-14)

—x

where

Glx—x',y =y, 2) = —1 [[ etk g1t qudo. (5.6-15)
@em? i,

The double integral on the right is a product of two simple integrals, each of
which is a one-dimensional Fourier transform of a Gaussian distribution with an
imaginary variance. Its value and also the values of several other integrals that we
will encounter later can readily be obtained from the formula [Gradshteyn and
Ryzhik, 1980, p. 307, Eq. (2) of Sec. 3.323, together with the formulas 9.253 and
8.956(1)]

j e PrleTiedr = l/ﬁﬁe—qz/“ﬂz, (Re > 0). (5.6-16)
We then readily find that
G(x,y,2) = _ ke gktrteyip, (5.6-17)
2mz

Instead of using the angular spectrum to obtain a representation of a beam, one
often employs an alternative approach which we will now briefly discuss. Let us
set

Ux, y,2) = 9(x, y, 2) e (5.6-18)

For a strictly unj-directional beam (i.e. a homogeneous plane wave) which
propagates in the positive z-direction, v will be constant. For any physically
realizable beam that propagates close to the z-axis, y(x, y, z) will, of course,
vary with x, y and z, but if the angular spread of the beam is sufficiently small, it
may be expected to vary very slowly with z. Let us assume that this variation is so
slow that [3%4/822) <« 2k|31/3z]; or, what may readily be shown to amount to
essentially the same thing, that the change in |8v/3z] in a z-interval of the order
of a wavelength is negligible compared with the value of |3y/3z]| itself. On
substituting from Eq. (5.6-18) into the Helmholtz equation for U [Eq. (4.7-39)]
and on neglecting the term 8°y/3z> we find that, to a good approximation,
y(x, y, z) satisfies the so-called paraxial equation

2
P (5.6-19)
ax?  ay? 3z

By applying to the paraxial equation (5.6-19) the same procedure that we
applied in Section 3.2 to the Helmholtz equation, it is not difficult to show that
the most general solution of Eq. (5.6-19), which propagates into the half-space
z >0, may be expressed in the form

Y(x, y,2) = ”a(p,q)e“”“””m e kP2 qpaq,  (5.6-20)

where a(p, ¢) is an arbitrary function of the parameters p and g, and that the
solution of Eq. (5.6-19) which takes on the prescribed boundary values Wwx,y,0)
on the plane z = 0 is*

Yx, y,2) = Hw(x’,y',O)G(x —x',y =y, z)dx'dy’, (5.6-21)

where G(x —x',y —y’,z) is the Green’s function (5.6-17). To derive this
formula one needs only to set z = 0 in Eq. (5.6-20), invert the resulting formula
to determine a(p, g) in terms of y(x, y, 0) and then substitute this expression for
a(p, q) into Eq. (5.6-20).

In view of the relationship (5.6-18) between w(x, y,z) and U(x, y, z) the
formulas (5.6-20) and (5.6-21) are seen to be in agreement with the formulas
(5.6-11) and (5.6-14). However, it should be noted that the solution (5.6-20) of
the paraxial equation (5.6-19) will not represent a beam, unless the function
a(p, q) satisfies the requirement (5.6-9). Nor will the solution (5.6-21) of the
paraxial equation represent a beam, unless y(x, y, 0) is effectively bandlimited to
a circle in the spatial-frequency plane, whose radius is much smaller than the wave
number k, ie. unless the modulus of the Fourier transform w(u,v,0) of
W(x, y,0) is negligible, except when u? + v? << k%. These results imply that,
whilst every well-behaved solution of the paraxial equation may be expressed in
the forms (5.6-20) and (5.6-21), not all solutions of that equation represent
beams. It is for this reason that we based our representation of beams on the
concept of the angular spectrum of plane waves rather than on the paraxial
equation. Such an approach also provides a clear insight into many of the
physically significant features of wavefields, whether or not they have a beam-like
structure.

5.6.2 Example: monochromatic Gaussian beams

We will now make use of one of the beam representations derived in Section 5.6.1
to elucidate the main properties of Gaussian beams. Such beams are produced by
many commonly used lasers.

A Gaussian beam is a very directional field which is generated by the field
distribution

U(x, y,0) = Ae & (5.6-22)

¥ Apart from normalization and scaling factors, the integral transform that appears on the right-hand
side of Eq. (5.6~21), with the kernel G given by Eq. (5.6-17), is known as the (two-dimensional)
Fresnel transform. Some of the main properties of Fresnel transforms are discussed, for example, by
Gori (1981, 1994).



268 Radiation from sources of any state of coherence

in some plane z = 0. In Eq. (5.6-22) A and w, are positive constants. We note
that when the distance

o =[x2+ y” (5.6-23)

is equal to wy, U drops to 1/e times its axial value U(0,0,0) = A. Hence wy is
the effective radius of the circularly symmetric distribution in the plane z = 0. For
this reason the parameter wy is usually called the minimum Spot size.

The Gaussian distribution (5.6-22) is often an approximation to the true field
in the plane z = 0 for distances p which do not exceed some value p=a. If a is
significantly larger than wo, the effect of approximating the field in the plane
z = 0 by the full Gaussian distribution is, as a rule, negligible in determining the
field throughout the half-space z > 0 into which the beam propagates.

In order to represent the field generated by the planar secondary source with
boundary values given by Eq. (5.6-22) in the form of an angular spectrum of
plane waves [Eq. (5.6-3)] we must first determine its spectral-amplitude function
a(p, q). It is obtained by substituting for U(x, y,0) from Eq. (5.6-22) into Eq.
(5.6-6) and using the relation (5.6-5). We then obtain for a(p, ¢) the expression

2
a(p, q) = A(_k_) J'j e~y omik(pr+9Y) dx dy . (5.6-24)
2n) /4

* The double integral on the right-hand side of Eq. (5.6-24) may be evaluated at
once using the formula (5.6-16) and we find that

Al —(onoipteah (5.6-25)

4

In order that the expression (5.6-25) is the spectral amplitude function of a
beam which propagates close to the z-axis, the condition (5.6-9) must also be
satisfied, i.e. |a(p, ¢)| must only have appreciable values when p?+q* <« 1. Now
the expression (5.6-25) attains its maximum when p = ¢ = 0 and decreases to 1/e
of its maximum value when 3(kwg)?(p? + ¢%) = 1. Hence |a(p, q)| has appreci-
able values only when

a(p,q) =

pz + q2 = (56—26)

(ka)2'
It follows that the beam condition (5.6-9) will be satisfied in the present case

provided that 4/(kwg)* << 1, i.e. provided that wo >> 2/k. Since k = 2m/A where A
is the wavelength, this condition is equivalent to the requirement that

wo 3> M. (5.6-27)

Hence, provided that the minimum spot size Wy is much larger than the wave-
length, the Gaussian distribution (5.6-22} in the plane z =0 will generate a
beam, known as a Gaussian beamn.

According to Egs. (3.6-11) and (5.6-25) a Gaussian beam has the following
angular spectrum representation throughout the half-space z = 0:

A(kwg)? :

U(x,y,2) =
41

ikz H o~ [(owoarike/2)(p2+a) Ik (Pr+9Y) dp dg.  (5.6-28)
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The double integral on the right-hand side of Eq. (5.6-28) may be readily
evaluated by the use of the formula (5.6-16). If we write U(p, z) in place of
U(x,y,z), where

p=(x,y) (5.6-29)
is t.he ‘transverse vector’ which, together with z, specifies the location of the field
point (x, y, z), we obtain, after evaluating the integral in Eq. (5.6-28), the
following expression for the beam: :

A(kwo)*
(kwo)? + 2ikz
We next express the right-hand side of Eq. (5.6-30) in a form that shows

explicitly the amplitude and the phase of U{(p, z). After long but straightforward
calculation one finds that

U(p, 2) = e~ {(kp)?/[(knoy2+2ikz]} gikz (5.6-30)

peele (ol (v I I A
= -2 - _
(kwo)? + 2ikz  (kw)? W ’ (5.6-31)
(kwo)* (Wo) ;
= X0 eiv, 6
(kwo)? + 2ikz w (5.6-32)
e~((kp)2/[(kwo)2+2ilcz]} = e“PZ/W2 eikPZ/ZR, (5.6—33)

where the quantities, w, 1 and R, each of which is a function of z, are defined by
the formulas

w(z) = wo[l + (fi-%)z}m, (5.6-34a)
cos y(z) = W“(’i) , (5.6-34b)
siny(z) = ~[1 - ( W’Zz) )T/Z, (5.6-34c)
R(z) = 2|1+ (%“92] (5.6-34d)

The behavior of the quantities w(z), y(z) and R(z), defined by these formulas, is
illustrated in Fig. 5.19.

OI} substituting from Egs. (5.6-32) and (5.6-33) into Eq. (5.6-30) we finally
obtain the following expression for a monochromatic Gaussian beam (with the
periodic time-dependent factor e =" omitted):

Ulp, z) = A[_W_O] o= PUWDP gilkiz+p2R()+w(2)} (5.6-35)
w(z)
Let us examine some implications of this expression.
We see that, as the beam propagates from the plane z = 0 into the half-space
z >0, the field amplitude |U(p, z)| remains Gaussian in each transverse cross-
section z = constant, but its width increases with increasing values of z. The
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w(2)/wg
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Fig. 5.19 The behavior of the quantities w(z), ¥(z) and R(z) [defined by Egs.
(5.6-34)], associated with a monochromatic Gaussian beam as functions of the
normalized distance & =2z/(kw?) = Az/(nw?) from the waist z =0 of the
beam.

amplitude in each transverse cross-section falls off to 1/e times its axial value at
distance p = w(z) from the axis. For this reason w(z) is known as the spot size at
distance z. The smallest beam radius is, according to Eq. (5.6-34a), just the
minimum spot size wy and the plane in which this minimum spot size occurs is
called the waist of the beam .

Next let us examine the phase, ¢(p, z) say, of the Gaussian beam. We see from
Eq. (5.6-35) that it changes from its initial value ¢(p,0) = 0 at the waist to the
value

2
2) = k|7 + £ ]+ , 5.6-36
o0.2)= s + =]+ v (5.6-36)
after propagating a distance z. The first term on the right represents the distance
from the source plane, expressed in units of 1/k = A/27. The second term,
kp*/2R(z), represents the distance, expressed in the same units, between a
spherical surface of radius R(z) and the corresponding z-plane, at height p from
the axis. According to Eq. (5.6-34d) the spherical surface is centered on the
beam axis at distance

k2w
2z

behind the source plane (i.e. in the half-space z < 0) (see Fig. 5.20). The last term
¥(z), on the right of Eq. (5.6-36), represents an additional phase shift which is

d(z) = (5.6-37)
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Spherical surface of radius R,
centered at the point A

Wy

AT—10 z

b4
d(z)l/‘ z=0

(Plane of secondary source)

Fig.5.20 Hlustrating the geometrical significance of some of the parameters
that characterize a monochromatic Gaussian beam. The quantities w(z), R(z),
d(z) and 6 are given by Egs. (5.6-34a), (5.6-34d), (5.6-37) and (5.6-40)
respectively.

associated with the so-called phase anomaly near focus (Born and Wolf, 1980,
Sec. 8.8.4).

Let us next examine the behavior of the beam in the far zone of the secondary
source. The simplified form of the expression (5.6-35), appropriate to the far
field, may be obtained by substituting into Eq. (5.6-35) the asymptotic values, as
kz — o, of the quantities w(z), y¥(z) and R(z), obtained from the formulas
(5.6-34). Alternatively, the far-zone expression for the beam may be obtained by
substituting into the general asymptotic formula (5.6-8) the spectral amplitude
function (5.6-25) for a Gaussian beam and making use of the fact that, for a
beam-field, kr ~ kz in the far zone. One then obtains the following expression for
the far field U)(8, z):

_ ikz
U8, 7) = ~bikAwd e~ (kw2 giiccep) € (5.6-38)
Z
where

g P (x? + y2)i2

z z '

and we have also used the small angle approximation cos 6 = 1, sin § = 6.
We see from Eq. (5.6-38) that the amplitude of the Gaussian beam in the far

zone drops to 1/e of its value on the beam axis § =0 when 6 = 8, where

(kwg)*8%/4 = 1, i.e. when

(5.6-39)

P (5.6-40)

6 is known as the angular spread of the Gaussian beam.
Finally let us determine the radiant intensity J(s, v) of the Gaussian beam.
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I(s, vy = 28 (rs, v), (5.6-41)

where §()(rs, v) is the spectral density at a point P in the far zone, specified by
position vector rs, which makes an angle 6 with the positive z-axis. But
§5()(rs, v) is also equal to the squared amplitude of the field at the point P.
Hence for a Gaussian beam we have from Eq. (5.6-38)

2\2
SO (rs, v) = UG, 2)P2 = (—k‘;ﬂ> e UkmoOPf2, (5.6-42)
¥4

On substituting from Eq. (5.6-42) into Eq. (5.6-41) and on making the approxi-
mation kr ~ kz appropriate for a beam we obtain the following expression for the
radiant intensity of a monochromatic Gaussian beam:

I(s, v) = GkAw()? e~ (r0e*h2, (5.6-43)

Except for a trivial difference in notation, this formula is in agreement with the
coherent limit (ko, — ») of the expression (5.4-16) for the radiant intensity
generated by a Gaussian Schell-model source, specialized to a beam (sinf = 9,
cos 0 =1).

5.6.3 Partially coherent beams

We learned in Section 5.5 that for a source to generate a beam, it is not necessary
that it be spatially fully coherent. In fact, as we have seen, even sources that are
globally rather incoherent can generate fields of this type. We will now discuss the
mathematical representation of partially coherent beams. In Section 5.6.4 we will
illustrate the results by applying them to beams produced by Gaussian Schell-
model sources.

In our study of monochromatic beams in Section 5.6.1 we found it useful to
start with the angular spectrum representation of monochromatic fields. When we
deal with a fluctuating field whose statistical properties can be described by an
ensemble which is stationary, at least in the wide sense, the basic quantity to
consider is the mutual coherence function I'(ry, ry, 7) or its Fourier transform, the
cross-spectral density W(r;,r;, v). Now according to Eq. (4.7-38), the cross-
spectral density can always be represented as a correlation function,

W(ry, £y, v) = (U*(ry, VU2, v)), (5.6-44)

where the average [previously denoted by (.. .),] is taken over an ensemble of
monochromatic wavefields { U (r, v) exp (—2mivt)}, all of the same frequency v.

Starting from Eq. (5.6-44) we may readily generalize the angular spectrum
representation to fields of any state of coherence that propagate into the
half-space z > 0. For this purpose we first express each member U (r, v) of the
statistical ensemble which represents the partially coherent field in the form of an
angular spectrum of the plane waves [Egs. (5.6-3)], namely

U(r, V) = ffa(P’ q; 'V) eik(p)c+qy-+-mz) dp dq, (56‘"45)

where

m=+L~p- - q )" whenp +q .1, {5.0-160)
= +i(p? + ¢ - 1)"2 when p? + ¢* > 1, (5.6-46b)

r={(x,y,z) and k =2nv/c, ¢ being the speed of light in vacuo. It is to be noted
that, since U(r, v) is now a random function, so is the spectral-amplitude function
a(p, q; v). On substituting from Eq. (5.6-45) into Eq. (5.6-44) and interchanging
the order of averaging and integration we obtain the following “‘double angular
spectrum representation” of the field at the points [r; = (x1, y1, z; =0), ry = (xa,
Y2, 22 = 0)], in the half-space z = 0:

W(rh Iy, V) = fff &Q(Pl, q15 P2, 925 V)

x eik(p2xatqayztmaza—prri—qiy1-miz) dpydq,dp,dg;  (5.6-47)

where
A(p1, 915 P2> 923 v) = {a*(p1, 415 VIa(pa, q2; V). (5.6-48)

The formula (5.6—47) represents the cross-spectral density of the field through-
out the half-space z =0 as a superposition of correlated pairs of plane waves,
both homogeneous (p? + ¢ < 1) and evanescent (p? + g2 > 1), which propagate
into that half-space. The plane waves forming each pair are, in general, correlated
and their correlation is characterized by the function (py, q1; p2, ¢2; v), known
as the angular correlation function of the field (Marchand and Wolf, 1972). We
will see shortly that it is related in a very simple way to the radiant cross-intensity
of the field.

If we set z;=2,=0 in Eq. (5.6-47) and take the Fourier inverse of the
resulting formula, we obtain the following expression for the angular correlation
function in terms of the Fourier transform of the cross-spectral density of the field
in the plane z = 0:

Ap1» q15 P2, 925 V) = KW O~ kpy, —kqy; kps, kga; v),  (5.6-49)

where

0) ) T | i ) )
(ug, v1; Uz, v; V) ant )] W(x1, y1, 0; x2, y2, 0; v)

X e—i(u1x1+uly1+uzxz+uzyz) dxl d)’1 dxz dyz
(5.6-50)

When the field points Py(r;) and P,(r;) are in the far zone of the source, the
expression (5.6-47) for the cross-spectral density takes a much simpler form that
can be most easily derived with the help of the asymptotic formula (5.6-8).
Suppose that Pi(ry) and P,(r;) recede to infinity in fixed directions specified by
the unit vectors s; = (51, 51y, 51, > 0), 83 = (525, 52y, 52, > 0) respectively. In the
asymptotic (i.e. far-zone) limit as kr; — « and krp — ®, we obtain, on substitut-
ing from Eq. (5.6-8) into Eq. (5.6-44) and on using Eq. (5.6-48), the following
expression for the cross-spectral density W (*):

eik(rz~ r)

2
W (1481, 1285, V) = (2777) A(81,,87,, V———cos Oy cos 8. (5.6-51)

rin
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Here s1, = (514, 515, 0) and s, = (524, 52, 0) are the projections, considered as
two-dimensional vectors, of the unit vectors s; and s, on the plane z =0,
A(s11,820, V) = A(s1e, S1y5 5245 S2y3 V), and Oy and 6, are the angles which the
unit vectors sy and s, make with the positive z-axis (see Fig. 5.6).

On comparing the formula (5.6-51) with Eq. (5.3-4) we see that the angular
correlation function and the radiant cross-intensity are related by the simple
formula:

2
L(sy, sy ) = (27”) sd(syy, Sa1, ¥) cOs 8y cos 6. (5.6-52)

The radiant intensity J(s, v) of the field is, according to Eq. (5.2-14), just the
‘diagonal element’ of the radiant cross-intensity. Hence it follows from Eg.
(5.6-52) that the radiant intensity is related to the ‘diagonal element’ of the
angular correlation function by the formula

2
I(s, V) = (27”) (s, , 5,1, v)cos” 6. (5.6-53)

If we substitute from Egs. (5.6-52) and (5.6-53) into Eq. (5.3-12), we obtain
the following expression for the spectral degree of coherence of the far field in
terms of the angular correlation function:

1, 20, ) k=) (5.6-54)
(611, 810, VI[(s20, 20, VIV
In view of Eq. (5.6-48), the first factor on the right of Eq. (5.6-54) is evidently a
quantitative measure of the correlation that exists between the plane-wave modes
of the field which propagate in directions specified by the unit vectors s; and s;.
For this reason this factor is sometimes called the degree of angular correlation of
the field.

So far we have not imposed any restrictions on the fluctuating field, except that
it is represented by a statistical ensemble that is stationary, at least in the wide
sense, and that it propagates into the half-space z > 0. Suppose now that the field
is beam-like and that it propagates close to the z-direction. The radiant intensity
J(s, v) of such a field will then be appreciable only for those s-directions that lie
within a narrow solid angle around the z-axis. This implies, according to Eq.
(5.6-53), that |sd(s,, s, , v)| will only be appreciable when s} << 1. Consequently,
in view of the inequality

|54'(sl.La SZJ_:‘ V)[ = [‘ﬂ(sll > 8115 V)]l/z[&q'(sll > 8245 V)]l/zw (56~55)
which follows at once from Eq. (5.6—-54) and from the fact that the absolute value

of the spectral degree of coherence cannot exceed unity* [Eq. (4.3-48)], |#(s1,,
s,., v)| will be only appreciable when |s;, | << 1 and |s;, | < 1. Hence Eq. (5.6-47)

W) (ris, rasg, v) =

t This argument establishes the inequality (5.6-55) only when s;, and s;, are associated with
homogeneous waves of the angular spectrum representation of the field, because in Eq. (5.6-54)
|si.] <1 and [s,,| < 1. This is the range of interest here. However the inequality (5.6-55) holds in
the more general form |4(py, q1; Par 2 VI < [4(P1, 913 P1y 41 VIPL( P2, 425 P2 g2 ¥)I2 for all
real values of the variables py, ¢, pa, g, Whether associated with homogeneous waves (p* + g% < 1)
or with evanescent waves (p? + g% > 1). This general relation may be derived directly from the
definition (5.6-48) of the angular correlation function by the use of the Schwarz inequality.
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is a representation of the cross-spectral density of a beam which propagates close
to the z-direction, provided that

l4(p, g5 p, @3 V)| =0 unless p* + g* < 1. (5.6-56)

If we make use of Eq. (5.6~-49) we may readily express the condition for a
partially coherent beam in terms of a constraint on the boundary value of the
cross-spectral density in the plane z = 0, namely: WO(x;, y;,0; x5, y5, 0; v) must
contain only low spatial-frequency anti-diagonal components, i.e.

[WO(—u, —v;u, v, v)| =0 unless u? + v? <« k2. (5.6-57)

It follows from Eq. (5.6-46a) that when p% + q% <«1and p3 + q% «1, my and
m, may be approximated as follows:

my~1-3(pi+4qd), my~1-14pi+q)). (5.6-58)

Making use of these approximations in Eq. (5.6-47) we see that the cross-spectral
density of a beam, which propagates close to the +z-direction, may be expressed
in the form

Wrr, 12, 9) = X [ [ [[d(py, 55 pa, ga; v) st amnpmimawn)

x elkl(pi+aDzi~(pi+adza)2 dp,dg;dp,dq,.
(5.6-59)

We note in passing that the cross-spectral density (5.6-59) of a beam of any
state of coherence is identical to the cross-spectral density of an ensemble of
monochromatic beams, all of the same frequency v, whose spectral amplitudes
a(p, g, v) are random variables, with correlation function s(p1, ¢1; p, 2; ¥) =
(a*(p1, 915 V)a(p2, g2; v) ). This result follows at once on substituting from Eq.
(5.6-11) into Eq. (5.6~44), interchanging the operations of averaging and integra-
tion and comparing the resulting expression with Eq. (5.6-59).

If we substitute on the right-hand side of Eq. (5.6-59) the expression (5.6-49)
for the angular correlation function and change the variables of integration from
P1s 915 P2, g2 tO Uy = _kPh v = —kql, Uy = kpz, Uy = qu, we obtain the
following representation for the cross-spectral density of the beam throughout the
half-space z >0, in terms of the Fourier transform of its boundary values in the
plane z = 0:

®
Wles,x2, ) = eik(zrn)ffffww)(“b V1; Uy, Uy; V) ellasitoituanteyg)

x elf@llta+odn=(d+odzl g dy; duy dv,.  (5.6-60)

We may also readily represent the cross-spectral density of the beam through-
out the half-space z >0 in terms of the boundary values of the cross-spectral
density itself in the plane z = 0, rather than in terms of its Fourier transform. For
this purpose we substitute for W on the right-hand side of Eq. (5.6-60) from
Eq. (5.6-50) and interchange the order of integrations. We then obtain the
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formula
ey, vz, ) = 00 [ | j ] W(xl, yi, 05 x5, yh 0 ¥)G*(xy = x4, y1 = ¥i, 21)

X G(xy = x5, y2 = 3, 22) dxydyidxzdys,
(5.6-61)

where G is the Green’s function (5.6-15), whose explicit form is given by Eq.
(5.6-17).

5.6.4 Gaussian Schell-model beams

We will now apply some of the general results that we have just established to
study the properties of beams generated by planar, secondary, Gaussian, Schell-
model sources. Such sources have cross-spectral densities of the form given by
Eq. (5.4-7), namely

WO(py, pa, v) = [SO(py, VIS (s, VI8V (p; = 1, v), (5.6-62)

with
SO(p, v) = AX(v) e P50, (5.6-63)
gOp’, v) = =Pl (5.6~64)

representing the spectral density and the spectral degree of coherence of the light
in the source plane, A, o5 and ¢, being positive quantities. We have shown in
Section 5.4.2 that, with a suitable choice of o5 and oy, such a source can generate
a field whose radiant intensity J(s, v) has appreciable values only within a cone of
narrow solid angle, i.e. it can generate a beam. Such beams are called Gaussian
Schell-model beams.

On substituting from Egs. (5.6-63) and (5.6-64) into Eq. (5.6-62) we obtain
for WO the expression

WO (py, po, v) = AZe (apivasi=2bpr-p2), (5.6-65)

where (if we omit the explicit dependence of some of the quantities on the
frequency v)

a=—L s L p=_1 (5.6-66)

4a§ 202 ' 20§
Since W is rotationally symmetric about the origin in the source plane z = 0, it
is clear that the cross-spectral density W(ry, rz, v) of the field in the half-space
z >0 into which the source is assumed to radiate will have rotational symmetry
about the z-axis. It is, therefore, convenient to specify the location of each point
r(x, y, z) in the half-space by the variables p, z, where p is a two-dimensional
transverse vector with components (x, y). The cross-spectral density W(ry,r, V)
will then become a function of py, z1, P2, 22 and v and we will denote it by
W(p1, 21; P2, 22; V). We will denote the four-dimensional Fourier transform,
defined by Eq. (5.6-50), of the cross-spectral density function of the field across
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the source plane by WO(f;, £,, v), rather than by WO(uy, vy; u,, vy; V), where
f) = (u1, v1) and £, = (4, vy) are two-dimensional spatial-frequency vectors. With
this notation the expression (5.6-60) for the cross-spectral density of the field, in
the approximation appropriate for a beam, takes the form

W(p1, 215 p2, 225 V) =
k) [ [0ty 1y, v) el pivt o0 BRI T2 2, 7y, (5.6-67)
where, according to Eq. (5.6-50),
— 1 e
WOt £, ) = o j j WO (p1, p3, v)e IO Pitted) @250 2p . (5.6-68)
73

The integrations on the right-hand side of Eq. (5.6-67) extend over the complete
f;, f,-planes and in Eq. (5.6-68) they extend twice independently over the source
plane z = 0.

On substituting from Eq. (5.6-65) into Eq. (5.6-68) we obtain the following
expression for the four-dimensional Fourier transform of the cross-spectral den-
sity of the field distribution across a Gaussian Schell-model source:

AZ
(em)*

This four-dimensional Fourier transform may be evaluated by a long but straight-
forward calculation with the help of the formula (5.6-16). The result is:

W(O)(fb f29 V) =

f j e (@pi+api=2bpi: pi) =il pivta D) g1 @201 (5.6-69)

- 2 "
WO, 15, v) = — A7 e~(afttari+2pn n) (5.6-70)
(4m)(a? - b) ’ '

where

a B = b
4 - b?)’ 4 - b
We have so far not imposed any restrictions on the parameters to ensure that
the Gaussian Schell-model source generates a beam. The required condition is
obtained on substituting from Eq. (5.6-70), with f, = (—u, —v), f, = (u, v) into
the general beam condition expressed by Eq. (5.6-57). We then find that, for a
Gaussian Schell-model source to generate a beam, we must have

(5.6-71)

e Xe=Pf* ~ 0 unless £ « k2. (5.6-72)

The exponential term in Eq. (5.6-72) has the value unity when f=0 and
decreases to the value 1/e when 2(a — §)f? = 1. Hence the exponential term will
have appreciable value only when f? =< 1/2(« — ). The requirement (5.6-72) will
therefore be satisfied if

1
(e~ B)
If we substitute for & and f§ from Egs. (5.6-71) and recall the definitions (5.6-66)

of the parameters a and b and also use the relation k = 27/A, where A is the
wavelength we obtain the following necessary and sufficient condition for a

< k2. (5.6-72a)
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planar, secondary, Gaussian Schell-model source to generate a beam:

2
L+ L (5.6-73)
2oy) gy A

We note two extreme cases:

(a) When o, > og the source is essentially spatially coherent and the beam
condition (5.6—73) then implies that
og > A . (5.6-74)
2my/2
Hence, roughly speaking, the effective linear dimensions of the source must now
be large compared with the wavelength.

(b) When 0, « o the source is quasi-homogeneous (globally essentially spatially
incoherent — cf. Section 5.3.2) and the beam condition implies that

A
g, >> ——. (5.6-75)
& /2
Hence the correlation length of the light across the source must now be large
compared with the wavelength, i.e. in order to generate a beam, a quasi-
homogeneous source must be locally rather coherent.

Let us now return to the more general case. Assuming that the beam condition
(5.6-73) is satisfied we obtain at once, on substituting from Eq. (5.6-70) into Eq.
(5.6-67), the following integral representation of the cross-spectral density of a
beam generated by a Gaussian Schell-model source:

A2 eik(za=z1)
(4m?*(a® — b%)

x [fe—(71ff+yzf§+23f1'fz) edvp+ter) g2 e @2, (5.6-76)

W(p1, 215 P2, 223 V) =

where
iZ] ) iZZ
=o - —, = o+ —=. 5.6-77

"1 2% Y2 % ( )
The four-fold Fourier transform on the right-hand side of Eq. (5.6-76) may again
be evaluated with the help of the formula (5.6-16) and one then obtains the
following expression for the cross-spectral density:
Wip1; 245 P2, 22, V) =

A? RUICT P FE S
16(a® = b*) (7172 — ) 4rira - B

m&+h£~Mmm4~
(5.6-78)

Here the constants «, 8, y; and y, are defined by Eqgs. (5.6-71) and (5.6-77)
with the constants ¢ and b related to the source parameters og and o, by Egs.
(5.6-66).
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We will now discuss some implications of the formula (5-6-78). In particular we
will study the correlations at pairs of points in transverse cross-sections of the
beam and also the distribution of the spectral density throughout the beam.

Let us set z; = z; = z in Eq. (5.6-78) and let us use the abbreviated notation
W(p1, pa, z; v) for W(py, z; pa, z; v). The formula (5.6~78) then becomes

W(ph P2, 25 V) =

2 ;12 o CXP ! (vo1 + 703 — 2Bp; - po)|,
16(a* = b3)(yy* - ) Ayy* = B
(5.6-79)
where
iz
= o+ — -
¥ - (5.6-80)

and y* is, of course, the complex conjugate of y. After a long but straightforward
calculation the expression (5.6-79) may be recast into a physically more meaning-
ful form. We will only indicate the main steps of the calculations.

From the definitions (5.6-66) it follows that

a? —pt= L
40%8 '

(5.6-81)

where

1.t 4L (5.6-82
&’ (20) aé . 08
We note that the parameter & represents the same quantity which enters the beam
condition (5.6-73); we also encountered it earlier [Eq. (5.4-14)} in connection
with the equivalence theorem for the radiant intensity.
We deduce from Eqs. (5.6~80), (5.6-71) and (5.6-81) that

yy* = B = [30564(2)], (5.6-83)

where
AzZ) = +[1 + (z/kos6) ]2, (5.6-84)

For reasons that will become apparent shortly the quantity A(z) is sometimes
called the expansion coefficient of the beam. We note that A(z) > A(0). We find
at once from Egs. (5.6-80), (5.6-83) and (5.6-81) that
AZ A2
= . 5.6—
16(a® = ) (yy* = B [AQR)P? (659
Also, if we use the expressions (5.6-80) and (5.6~71) for y, o and S and make
use of Eq. (5.6-83), we find that

YOL+ Y3 =2Bpiopy _ 1 [apl+aph—2bp,-p, e 2)]
v — B [0s8APL e - b7 T |

(5.6-86)
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The expression on the right of Eq. (5.6-86) can be expressed in a simpler form.
Let us consider first its real part. If we substitute for the parameters a and b from
Eq. (5.6-66) and make use of Eq. (5.6-81) we find after a long calculation that

L api+apd=2bpipr_ (rtp) (P o o
[os0A@)F  4(a* = b?) gos{A@F  28A@)P
Next let us consider the imaginary part of the expression on the right of Eq.
(5.6-86). If we recall the definition of A(z) given by Eq. (5 .6—84) we readily find
that

N R S ik(pt = p3) (5.6-88)
2[50A()F 2R(z)
where
R(z) = 2|1+ (’“’S‘S)z]. (5.6-89)
Z

On adding Eqs. (5.6-87) and (5.6-88) and using Eq. (5.6-86) we obtain the
following expression for the exponent in the last factor on the right-hand side of
Eq. (5.6-79):

vol+ v = 2Bpips _ (bt ), (e | iKGh=pD)
Ayr* - B 802[A()2  28A()P 2R(z)

(5.6-90)

Finally, on substituting from Egs. (5.6-90) and (5.6-85) into Eq. (5.6-79), we
obtain the following expression, derived previously by Friberg and Sudol (1982;
see also Friberg and Sudol, 1983), for the cross-spectral density in any transverse
cross-section of the beam generated by a planar, secondary, Gaussian, Schell-
model source:

W(p1, P2, 2; V) =
A [_ (e + 2] [_ (Pz—P1)2]eX [ik(p%—p%)]. (5.6-91)
(AP 8o5[A(2)) 284 2R(2)

As a partial check of Eq. (5.6-91) let us consider its limiting form as z — 0. We
see from Egs. (5.6-84) and (5.6-89) that A(0) = 1 and 1/R(0) = 0 and hence

2 2
W(py, p2, 0; v) = Alexp [_Ql_izﬂ&)_] exp [—M] (5.6-92)
80’5 2(52
If we recall the definition (5.6-82) of the parameter J, we can readily verify that
Eq. (5.6-92) agrees with the assumed expression (5.6-65) for the cross-spectral
density in the source plane z = 0.

We see that W (p,, p3, 0; v) is the product of three terms, namely the constant
factor A2 and two Gaussian distributions, one being a function of the sum of p,
and p, and the other of their difference. On comparing Egs. (5.6-91) and
(5.6-92) we see that, as the light propagates from the source plane z =0 to any
transverse plane z = const. > 0, the cross-spectral density retains the same form
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except that it acquires a phase factor* k(% — p3)/2R(z). The first factor A? is
reduced to A2/[A(z)]?. The second and the third factor again represent Gaussian
distributions of the sum and the difference of the transverse variables, but their
effective widths increase with z, og having been replaced by osA(z) and 8 by
8A(z). It is for this reason that we referred to A(z) as the expansion coefficient of
the beam. The behavior of A(z) and of R(z) for several values of the parameter
q = 0g/0s [Bq. (5.5-11)] that characterizes the degree of global coherence is
shown in Fig. 5.21.

Next let us briefly consider the limiting form of the formula (5.6-91), when the
Gaussian Schell-model source is spatially completely coherent, i.e. when its
spectral degree of coherence g%(p')=1. In this case, as we see from Eq.
(5.6-64), g, — = and the parameter §, defined by Eq. (5.6-82), has the value
(with subscript ¢ denoting the coherent limit)

S, = 205; (5.6-93)
and the expressions (5.6-84) and (5.6-89) become

Ac(z)={1+( z )z]m, Rc(z)=z[1+(2k:23)2]. (5.6-94)

2ka’
The formula (5.6-91) for the cross-spectral density now reduces to
2 2, 2 e(o? — of
Wolp1, P2y 239) = — o — S exp[— Pz P2 2]6}( [1 (P2~ P1) ] (5.6-95)
[Ac(2)] 405[Ac(2)] 2R(2)
We note that this formula may be expressed in the factorized form
Wc(pl’ P2, 25 V) = U’:(pl, Z; V)Uc(pZ’ Z; V): (56"96)
R(z)/z
;] \
4T \ 20 e
3 1.0
2L\ 0 \-
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Fig. 5.21 The behavior of (a) the expansion coefficient A(z), defined by Eq.
(5.6-84), and of (b) the quantity R(z)/z, defined by Eq. (5.6-89), for a
Gaussian Schell-model beam as functions of the normalized distance ¢ = z/ko%
from the source plane, for selected values of the degree of global coherence
g = 0,4/0s. Values ¢ >>1 and g <1 are associated with beams generated by
spatially coherent and spatially incoherent sources respectively.

% The significance of this phase factor can be understood by considering the coherent-mode decompo-
sition of the beam. One finds (Gori, 1983) that each coherent mode contains a phase factor
kp*/2R(z) which is associated with the curvature of its wave front. This, in turn, implies that the
cross-spectral density of the beam, in any transverse cross-section, will contain the phase factor
k(03— pD/2R(2).
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where

Up, 23 %) = : P]exp[ 2] explion(al, (5:6-97

exp [— P

A(z) 4U§[AC(Z) 2R(z)

with ¢.(z) being some function of z. This function could be determined by
considering the coherent limit of the cross-spectral density W(p1, z1; p2, 22; V) at
points (py, z1), (p2,2,) in two different cross-sections, rather than at points
(p1, 2), (p2, z) in the same cross-section, because when z; = z; = z the exponen-
tial term exp [ip.(z)] cancels out in the product U¥(py, z1; V) Uclp2, 225 v). The
fact that the expression (5.6-91) now factorizes implies that the beam is spatially
completely coherent at frequency v (see Section 4.5.3) in any transverse cross-
section z = const. > 0, as one would expect. Moreover, it may be readily verified
that, with an appropriate choice of ¢«(z), the expression (5.6-97) agrees (except
for notation) with our earlier expression (5.6-35) for a monochromatic Gaussian
beam.

Let us now return to the more general case of a beam generated by a Gaussian
Schell-model source of any state of coherence. If we set p; =p,=p in Eq.
(5.6-91) we obtain the following expression for the spectral density (i.e. the
optical intensity at frequency v) of the beam field:

AZ pZ

S(p,z;v) = exp [— ] (5.6-98)
AP 205[A()F

We see that, in any transverse cross-section of the beam, the spectral density at

frequency v has a Gaussian profile and has the value A*/[A(2)T? on the axis p =0

of the beam. If we define the beam radius pg(z) in a cross-section z = const. >0

as the value of p at which the spectral density at frequency v drops to 1/e of its

axial value, we see at once from Eq. (5.6-98) that

ps(2) = osAR)V2. (5.6-99)
Since according to Eq. (5.6-84) 4(0) =1,
ps(0) = o5 V2, (5.6-100)

and it follows from Egs. (5.6-99), (5.6-100) and (5.6-84) that the beam radius
changes with distance z according to the ‘beam expansion law’

ps(z) = [p5(0) + 85717, (5.6-101)
where, if Eq. (5.6—-82) is also used,
gi-_2 - L[ L. _12-] (5.6-102)
K& KLlQos)* o
We see from Eq. (5.6-101) that as z — ©
bs@) g (5.6-103)
b4

so that O represents the angular spread of the beam.*

t It should be noted that we define the angular spread of the (partially coherent) beam in terms of a
1/e drop in the spectral density, whereas for the monochromatic Gaussian beam [Eq. (5.6-40)] we
defined it in terms of a 1/e drop in field amplitude, as is customary.
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In Fig. 5.22 the increase in the beam radius with distance z from the source is
shown for selected values of the parameters o and o, which, according to Egs.
(5.6-63) and (5.6-64), characterize the effective source size and the effective
spectral coherence width of the source. Figure 5.22(a) shows that, for beams with
the same initial beam radii, those which are more coherent, i.e. those for which
o, is larger, are more directional. Figure 5.22(b) shows that, for beams with the
same spectral degree of coherence, those which have smaller initial radii are less
directional. Figure 5.23 shows the z-dependence of the beam radii for four beams
that satisfy the conditions of the equivalence theorem for radiant intensity
(Section 5.4.2). We see that, with increasing distance from the sources, the radii
of the beams tend to the same value, in spite of the fact that the sources have
different effective sizes and different spectral coherence widths.

In addition to the angular spread of the beam we may also determine the entire
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Fig. 5.22 (a) The beam radii for Gaussian Schell-model beams with the same
initial radii (os=0.1cm), but with different degrees of coherence, as a
function of distance z. The wavelength of each beam was taken to be 6328 A.
(b) The beam radii for beams with the same initial spectral degree of
coherence (0, = 0.2 cm), but with different initial radii. The wavelength of
each beam was again taken to be 6328 A. (Adapted from Foley and Zubairy,
1978.)

Ps(z)
lem
0.8 -
06
(d)
0.4 -

©)
02 [(5)

@
L 1 ! I L L 1 I 5
0 20 40 60 80 100 m

Fig. 5.23 The beam radii of Gaussian Schell-model beams as functions of the
distance z from four sources which satisfy the conditions of the equivalence
theorem for radiant intensity (¢f. Sec. 5.4.2) and hence have the same angular
spread 6.

The parameters for the sources generating these beams are: (a) o5 =0.1cm
and g, = ®, (b) 05=0.109 cm and 0, =0.5 cm, (¢) 05 = 0.167 cm and o, =
0.25 cm, (d) o5 = 0.328 cm and 0, = 0.21 cm. The wavelength for each beam is
6328 A. (Adapted from Foley and Zubairy, 1978.)
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angular distribution of the radiant intensity. To do so we make use of Eq.
(5.2-12) and the fact that, when the field is beam-like, we may replace r by z in
the far-zone limit, i.e. )

I(s,v) = 132‘_{3 228(p, 7; V), (5.6-104)

where the direction s, and consequently the angle 6= p/z, are fixed. Now
according to Eq. (5.6-84),

A(Z) ~_% as kz — oo (5.6—105)
. ko'Sé

and, if we substitute from Eq. (5.6-105) into Eq. (5.6-98) and then substitute the

resulting expression into Eq. (5.6-104), we find that

I(s, v) ~ (kAogb)* e~ ko2, (5.6-106)

This formula is in agreement with the ‘beam-limit’ (cos 8 = 1, sin 8 = 8) of Eq.
(5.4-16) that we derived earlier in a different manner, in connection with the
equivalence theorem for the radiant intensity generated by Gaussian Schell-model
sources.

Let us now turn our attention to the spectral degree of coherence of the beam.
One finds on substituting from Egs. (5.6-91) into Eq. (4.3-47) and making use of
Eq. (5.6-82) that the spectral degree of coherence of the beam in any transverse
cross-section is given by

_ (pz -], [ik(pi - pd) ] (5.6-107)
205[A(2)F 2R(z)

We see that the absolute value of u is given by a Gaussian distribution. Since
according to Eq. (5.6-84) A(z) increases with z, the coherence area of the light in
a transverse cross-section of the beam also increases with z. If we define the
spectral coherence width p,(z) of the beam as that separation |p, — p4| of points in
a transverse cross-section at which |u| drops from its maximum value unity (for
[p, — p1| = 0) to the value 1/e, we see at once from Eq. (5.6-107) that

pu(2) = 0,A(2)V2. (5.6-108)

On comparing this expression for the spectral coherence width with the formula
(5.6-99) for the beam radius, we see that both obey the same ‘expansion law’ and
that

wp1, P2s 25 V) =eXp[

Pul2) _ % (5.6-100)

ps(z) o
This formula implies that the ratio of the spectral coherence width of the light in
any transverse cross-section of the beam to the beam radius in that cross-section is
constant on propagation, i.e. it is the same for all cross-sections. Moreover this
constant ratio is just the degree of global coherence of the source {Eq. (5.5-11)].
More generally, the ratio p,(z')/ps(z") may be interpreted as the degree of global
coherence of the light in the plane z = z'. Hence Eq. (5.6-109) implies that the
degree of global coherence of the light in any transverse cross-section of a Gaussian
Schell-model beam is invariant on propagation.
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If we substitute into Eq. (5.6-108) the expression (5.6-84) for A(z) and also
make use of the expression (5.6-82), we obtain the following explicit formula for
the dependence of the spectral coherence width (at frequency v) on z:

Pu(2) = [Pu0) + 82272, (5.6-110)

where
5u(0) = a,\/2 (5.6-111)

and
5 = _2_(&)1 - L(*)[ L _1_] (5.6-112)
# k2 Jg 52 k2 Js (20’5)2 OZ
It follows from Eq. (5.6-110) that as z — «
P2 B, (5.6-113)
z

Hence éﬂ represents the semi-angle of the solid-angle cone, with vertex at the
origin, within which the light in any transverse cross-section in the far zone is
essentially spatially coherent at frequency v. For this reason 9# is sometimes
called the far-zone coherence angle.

It follows at once from Egs. (5.6~111) and (5.6-102) that

- 1 o 22
pu(0)8s = ?[4 + (J—) ] , (5.6-114)
as
and from Eqgs. (5.6-100) and (5.6-112) that
o o \2v2
P08, = s+ (2] (5.6-115)
gs

These formulas bring into evidence two reciprocity relations between a Gaussian
Schell-model source which generates a beam and the far-zone behavior of the
beam:* The first [Eq. (5.6-114)] shows that the angular beam spread is inversely
proportional to the spectral coherence width of the light in the source plane. The
other [Eq. (5.6-115)] shows that the far-zone coherence angle is inversely
proportional to the effective linear size of the source.

If we substitute in Egs. (5.6-114) and (5.6-115) for 5,(0) and ps(0) from Egs.
(5.6-111) and (5.6-100) and recall that k& = 2#/A, the reciprocity relations may be

expressed in the form
B 2712
B = ( A )-1—[4 + (&) } , (5.6-116a)
2my/2) o, o '

- 2 —1_ ,C_fi 2]1/2 ~
6, (211'\/2) o [4 + (Cfs) . (5.6-116b)

We note that, in the special case when the source is globally very coherent

* Reciprocity relations that apply to a broader class of partially coherent sources and the far fields that
they generate were formulated by Friberg and Wolf (1983).
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(04> 05), Egs. (5.6-116a) and (5.6-116b) reduce to

gsz( A )L éﬁ( A )(ﬁg_)i (5.6-117)
20v2/ o 20V2/)\ ag Os

When the source is globally rather incoherent (0y < 05), ie. when it is a
quasi-homogeneous source, Egs. (5.6-116a) and (5.6-116b) reduce to

b~ (-2 )L g [ A)L 5.6-118)
O (ﬂ\/z)ag’ O (77'\/2)05 (

Some of the theoretical results discussed in this section were tested experiment-
ally by Farina, Narducci and Collett (1980). A secondary Gaussian qgasi-
homogeneous source was obtained by illuminating a suitable phase screen with a
helium-neon (He:Ne) laser beam which was broadened and colhr.nated .b.y a
beam-expanding telescope. The phase screen was produced by spraying a f1n1§h-
ing mist on a clear glass substrate. The spray gave rise to a uniform rough coating

/Sczmering medium Mirror
- [ \

He:Ne laser and beam expander

Rotation stage

f

Linear
PM.T. | translation
stage

Mirror (a)

0 . L -z (in meters)
2 4 6 8 10 12

®
Fig. 5.24 (a) The experimental set up for measurement of the angular distribu-
tion of the radiant intensity generated by planar, secondary, Gaussian, quasi-
homogeneous sources, (b) The effective beam diameter 254(z) as a function of
the distance z from the source. The solid line in (b) was calculated from
theory. The dots represent results of measurements (Adapted from Farina,
Narducci and Collett, 1980.)
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the secondary source. The results, shown in Fig. 5.24(b), were found to be in
good agreement with the theory. Other theoretical predictions, relating to beams
generated by secondary Gaussian quasi-homogeneous sources, were also verified
with this experimental set up.

5.7 Foundations of radiometry

Up to now we have studied the properties of fields generated by fluctuating
sources within the framework of second-order classical coherence theory. The

Radiometry and the theory of radiative energy transfer have developed quite
independently of modern theories of radiation and, in spite of their long history,
their foundations have not yet been fully clarified (cf. Wolf, 1978). In this section
we will discuss results of investigations that clarify this question to some extent.
We will largely confine ourselves to elucidating the connection between some of
the basic concepts of these older disciplines and those of optical coherence theory.

We begin with a brief discussion of energy conservation in scalar wavefields.

5.7.1 Energy density, energy Slux and the energy conservation law in scalar
wavefields

Two important quantities that are associated with any electromagnetic field are
the energy density and the energy flux density, the first of which is a scalar while

# An account of the early work in this field is given in an article by Trotter (1919). Radiometry appears
to have been systematized in the early years of the twentieth century, in connection with the theory
of heat radiation. Max Planck’s The Theory of Heat Radiation (1959), the first edition of which was
published in 1906, remains to this day one of the most comprehensive accounts of this subject.

¢ For accounts of the theory of radiative energy transfer see. for example, Hopf (1934) or Chandrasek-
har (1960). Some of the basic papers on this subject are reprinted in Menze] (1966).
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the second is a vector. They are related by a well-known conservation law,
sometimes known as Poynting’s theorem (see, for example Born and Wolf, 1980,
Sec. 1.1.4). With scalar wavefields one can also associate scalar and vector
densities, which obey a similar conservation law and which may be regarded as
analogues of the energy density and the energy flux density of an electromagnetic
field. In this section we will introduce these quantities for scalar wavefields,
derive the corresponding conservation law and discuss some of its implications.
We will consider both deterministic and random wavefields.

Let V(r, t) be a complex deterministic wavefield in a region in free space. It
satisfies the wave equation

V2V(r, t) =

1 2*V(r, 1) _
— =t (5.7-1)

¢t ar?

c being the speed of light in vacuum. General field-theoretical considerations
suggest (see, for example, Wentzel, 1949, Sec. 8) that the (real) scalar

*
H(r, f) = a[lﬂa—‘i + V- vv] (5.7-2)
¢? dr dt
can be identified with the energy density and the (real) vector
%
F(r, 1) = —a{?al’—vv + aa—Vvv*] (5.7-3)
t t

with the energy flux density vector. Here « is a positive constant, whose value
depends on the choice of units.

If we take the time derivative of H and the divergence of F and use Eq.
(5.7-1), we readily find that

Q%L) + VB, 1) =0. (5.7-4)
t
Let us integrate Eq. (5.7-4) throughout a domain D. This gives
fiid3r+fV~Fd3r=0. (5.7-5)
D ot D

If in the first term we interchange the operations of integration and differentiation
and apply Gauss’ theorem to the second term, Eq. (5.7-5) becomes

d 3
= H({,t)d@r + | F(r, 1) ndo =0, 5.7-6
RO [Fe 0 (5.7-6)

where the second integral is taken over the surface ¢ bounding the volume D and
n is the outward unit normal to D at the element do. The formula (5.7-6) may be
given the following interpretation. The rate of increase (or decrease) of the
energy contained in D at any given instant ¢ is equal to the rate at which energy
enters (or leaves) D through the boundary o. With this interpretation Eq. (5.7-6)
represents the energy conservation law of the field. The formula (5.7-4) is the
differential form of this law. -

The physical significance of the energy flux vector F(r, t) must be interpreted
with some caution, as can be seen from the following considerations. According
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to elementary vector calculus one has the identity V- (V x f) =0, where f(r, t) is
any vector function which is twice continuously differentiable with respect to the
spatial variables. Hence Egs. (5.7-4) and (5.7-6) remain unchanged if one adds
to F the curl of any sufficiently well-behaved vector field f, showing that the flux
density vector F, defined by Eq. (5.7-3), is not the only vector that is consistent
with energy conservation. These remarks indicate that one cannot regard F(r, t)
as representing the rate of energy flow at the point r, at time ¢. It is only the
integral of the normal component of the energy flux vector, taken over any closed
surface in the region of space containing the field, that has an unambiguous
physical meaning.*

Let us next assume that the complex function V (r, t) is an analytic signal which
represents a monochromatic field of frequency v, i.e.

V(r, t) = U(r, v) e ™", (5.7-7)

The expressions (5.7-2) and (5.7-3) for the energy density and for the energy
flux density vector now become, (with k = 2mv/c),

Hyr) = ak?| U*U + %VU*'VU , (5.7-8)

F,(r) = —iakc[U*VU — UVU*], (5.7-9)

where we have written H,(r) and F,(r) in place of H(r, t) and F(r, ) to stress
that these guantities are now independent of ¢ but depend on the frequency v.
The differential form [Eq. (5.7-4)] of the energy conservation law now becomes

V-F,(r)=0. (5.7-10)

So far we have considered the field variable to be deterministic. Suppose now
that it is random and that it represents a fluctuating optical field. Assuming that
the fluctuations may be represented by a statistical ensemble which is stationary,
at least in the wide sense, the cross-spectral density of the field may be expressed
in the form [cf. Eq. (4.7-38)]

W(ry, 1y, v) = (U*(xy, U(ry, v)). (5.7-11)

Here the angular brackets denote the expectation value, taken over an appropri-
ate ensemble of strictly monochromatic wave fields, all of frequency v. The
average energy density and energy flux density at frequency v are then given by
the expectation values of the expressions (5.7-8) and (5.7-9), namely by

(H (1)) = ak®)|{U*U) + %(VU*-VU) (5.7-12)
and

(F(r)) = —iakc[(U*VU) — (UVU*)]. (5.7-13)
Furthermore on taking the ensemble average of Eq. (5.7-10) and interchanging
* In this connection the following passage from Lorentz (1909, p. 25) seems worth quoting: ‘in general

it will not be possible to trace the path of parts or elements of energy in the same sense in which we
can follow in their course the ultimate particles of which energy is made up.’
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the order of averaging and differentiation we obtain the differential form of the
conservation law for random, statistical stationary wavefields:

V- (F,(r)) = 0. (5.7-14)

If we make use of Eq. (5.7-11) we may express { H,) and (F,) in terms of the
cross-spectral density rather than in terms of the ensemble {U}, and we then find
that

(H,(r)) = ak*|W(r,r,v) + LLimLimV2-VIW r, I, V)|, (5.7-15
k2

1> rp—-r
and

(Fy(r)) = —iokc LimLim[V, W (ry, 1, ¥v) — ViW(ry, 12, V)], (5.7-16)
T1=TF 21
An equivalent expression for the average energy flux density vector which
involves one rather than two limiting processes is sometimes useful. One can
derive it in the following way. We set

r= %(rl +r;3), r'=r;—-r;. (5.7-17)

We then have W(ry, 15, v) = W(r — 3r',r + %r’, v) where
W =3 r+ 3, v) = (Ut ~ ', WU + 3, v). (5.7-18)
If we apply to both sides of Eq. (5.7-18) the gradient operator V', taken with

respect to the ‘difference variable’ r’, interchange the orders of differentiation
and averaging and then proceed to the limit r’ — 0, we obtain the formula

Lim V' (W (r - ' r+ 3, v) = HUX@)VUE) — UE)VU*()).

On comparing this formula with Eq. (5.7-13) we obtain an alternative expression
for the average energy flux density vector:

(Fy(r)) = —2iocke LimV'W(r - e+, v, (5.7-19)
'

There is also the following alternative expression for ( H,(r)), involving a
single limiting process, which can be derived from Eq. (5.7-15):

(H,(r)) = —2aLim VAW =+ i, v). (5.7-20)
1’

Let us now suppose that the field point P(r) is in the far zone of a planar
radiating source which occupies a finite portion of the plane z = 0 and radiates
into the half-space z > 0. We will show that there exist simple relations between
the energy density, the energy flux density vector and the spectral density at the
point P. To demonstrate this we first represent each member of the statistical
ensemble {U(r, v)} that express the field throughout the half-space z > 0 in the
form of an angular spectrum of plane waves {Eq. (3.2-19), with k written in place
of kq and with other trivial changes in notation], namely

Ur, v) = f a(s'y, v) ek T &, (5.7-21)
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where s’ = (s, 5}, 53), 81 = (5%, 5}, 0) and
sp=4[1 - s - 3}2]1/2 when s'% + s_’f <1 (5.7-22a)
=+ils?+ 57— 1" whens +s57 > 1. (5.7-22b)

It follows at once from Eq. (5.7-21) that
VU(r,v) = ikfs'a(s;, vy ek T dls (5.7-23)

We have shown earlier [Eq. (3.2-22)] that the far-zone form of the expression
(5.7-21), as the point r = rs, (s* = 1) recedes to the far zone (kr — ) in a fixed
direction specified by a unit vector s, is

: tkr
U (rs, v) = —Z—ZICOS Ba(s,, v)e—, (5.7-24)
r

From this expression, or by applying the principle of stationary phase to the
integral (5.7~23), we find that

ikr
VU (rs, v) = 2mcos fa(s,, v)o—s. (5.7-25)
r

In these formulas 6 is the angle which the unit vector s makes with the positive
z-axis and s, is the projection, considered as a two-dimensional vector, of the unit
vector s onto the source plane z =0 (see Fig. 5.18). On substituting from Egs.
(5.7-24) and (5.7-25) into the formulas (5.7-12) and (5.7-13) we obtain the
following expressions for the average energy density and the average energy flux
density vector in the far zone of the source:

2
(H) = 20m ast(s,, 50, )20, (5.7-26)
r
2
(FEr)) = 220 acsi(s,, 5., )2 O (5.7-27)
r
In these formulas
Alsy, s, v) = (a*(s, va(s;, v)) (5.7-28)

is the ‘diagonal element’ of the angular correlation function of the radiated field
[cf. Eq. (5.6-48)]. It is related to the cross-spectral density of the field in the
source plane by Eq. (5.6-49). Now it follows from Egs. (5.6-53) and (5.2-12)
that the spectral density of the far field, $®)(rs, v) = W()(rs, rs, v) = J(s, v)/r?,
is expressible in the form

2 2
S (rs, v) = (zﬁ—) Alsy,s,,v) cos” 6 . (5.7-29)
k r?
So far the constant « has been arbitrary. Let us now make the choice
a=_t - < (5.7-30)
2ck?  8n*?

We deduce at once from Egs. (5.7-26), (5.7-27) and (5.7-29) that with this



choice
(HS(rs)) = =5 rs, ) (5.7-31)
¢

and
(FS(rs)) = S (rs, v)s. (5.7-32)

The formulas (5.7-31) and (5.7-32) imply that in the far zone we may picture
energy transport as propagation of energy along straight lines in the outward
radial directions (i.e. in directions pointing from the origin to the field point) with
the vacuum speed of light. We stress that this simple model is, in general, only
appropriate for energy transport in the far zone of the radiating source.

From the significance of the flux density vector it is clear that the rate at which
energy at frequency v is radiated by the source into the half-space z >0 is given
by

F, = [ (F(rs)) -sr2dQ, (5.7-33)
)

where the integration extends over the 27-solid angle generated by all the unit
vectors s pointing into the half-space z > 0. If we substitute into this formula the
expression (5.7-32) for the averaged flux density vector, we obtain for %, the
expression

F, = f P25 (rs, v) dQ. (5.7-34)
@n

Now according to Eq. (5.2-12), the integrand on the right-hand side of Eq.
(5.7-34) is just the radiant intensity J(s, v). Hence %, may also be expressed in
the form

F, = J (s, v) d€. (5.7-35)
@n)

This formula shows that the radiant intensity, which we introduced in Section
5.2.1 from considerations of the far-zone behavior of the spectral density,
represents the rate at which the source radiates energy at frequency v per unit
solid angle around the s-direction.

5.7.2 Basic concepts of radiometry

A basic assumption of radiometry may be expressed by the following elementary
radiometric law. The fate d°%, at which energy at frequency v is radiated into an
element d2 of solid angle by an element do of a planar steady-state source 0 is
given by the expression

@%F, = BO(p, s) cos HdadQ. (5.7-36)

Here p is the (two-dimensional) position vector of the point Q in the source plane
at which the element do is located, s is the unit vector along the axis of the
element d of solid angle and (0 < 6 < 7/2) is the angle which the unit vector s
makes with the normal to the source plane (Fig. 5.25). The function B(VO)(p, s) is

Source ¢ z
Normal to source plane

Fig. 5.25 Illustrating the notation relating to the definition of the radiance
B.(p.s) [Eq. (5.7-36)].

called the (spectral) radiance or brightness. In view of its apparent physical
significance this quantity must evidently satisfy the following two requirements:

BP(p,s)=0 whenpeo (5.7-372)
and
BP(p,s)=0 whenp¢o. (5.7-37b)

The formula (5.7-36) implies that the rate d%, at which the source radiates
energy at frequency v into the element d£2 of solid angle is given by

dF, = cos § f BO(p,s)dp (5.7-38)
g

and that the total rate %, at which the source radiates energy at that frequency is
expressible in the form

@V=f dgcosef @pBO(p, s). (5.7-39)
(@2m) o

The first integral on the right of Eq. (5.7-39) extends over the 27-solid angle
subtended by a hemisphere in the half-space into which the source radiates, the
center of the hemisphere being in the source region.

Comparing Egs. (5.7-39) and (5.7-35) we see that the elementary radiometric
law expressed by Eq. (5.7-36) will be consistent with physical optics if the radiant
intensity is expressible in terms of the radiance by the formula

J(s, v) = cos 6 f BO(p, s)d2p. (5.7-40)
a
Now we derived earlier the following expression for the radiant intensity in terms

of the cross-spectral density WO(p,, py, v) of the light in the source plane [Egs.
(5.3-8) and (5.3-7)]:

K\ ,
](S, V) = ('2‘;) COS2 Bf J’ W(O)(pl, P2, V) e"lkSL “(p2—p1) d2p1 dzpz. (57_41)
a’o
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On comparing Egs. (5.7-41) and (5.7-40) we see that the following relation must
hold for all real unit vectors s = (s, sy, 5, = 0), with s, = (s, 5, 0):

\2 ,
fB(VO)(py s)d?p = (%) cos 9[[ WO(py, py, v)e hsr 2= d2p, d?p,.
a T o’ o

(5.7-42)

It turns out that many functions BE,O)(p, s) will satisfy the requirement (5.7-42).
However, as was shown by Friberg (1979), none of them can be expressed as a
linear transform of the cross-spectral density W of the field distribution across
the source and also satisfy the constraints (5.7-37) for all possible sources.
However, if one relaxes some of the requirements on the radiance function, one
can obtain a kind of generalization of the radiance function that is useful in some
applications. In this connection one should bear in mind that traditional ra-
diometry has developed in connection with radiation from thermal sources, which
are spatially rather incoherent. We will show in Section 5.7.3 that for such sources
and, in fact, for the broader class of quasi-homogeneous sources, a generalized
radiance function can be introduced which has the properties usually attributed to
the radiance and which is consistent with physical optics.

Let us drop the requirement expressed by Eq. (5.7-37b) and let us extend the
p-integrations in Egs. (5.7-40) and (5.7-42) throughout the entire source plane,
which we take to be the plane z=0. Since the cross-spectral density
WO (py, py, v) has zero value whenever p; or p, (or both) represent points in the
plane z = 0 which are located outside the source region o, we can formally extend
both double integrals on the right-hand side of Eq. (5.7-42) over the whole plane
z = 0. We then obtain the relation

2
j B0(p, s)d’p = (f—) cos § j j WO (py, py, v)e ks brpd d2p, dpy,  (5.7-43)
"

where all the integrals are taken over the entire source plane z = 0. Let us now
change the variables of integration on the right-hand side of Eq. (5.7-43) from
p1, p2to p, p’, where

p=3p1+p), P =p—pr (5.7-44)
Equation (5.7-43) then becomes
2
|86, ) #p = (zi) cos 8] [WO(p ~ 3’ p + 30, v) e ¥ Py’
T
(5.7-45)
This relation is obviously satisfied with the choice
2
%(VO)(p, s) = (—2%) cos BJW(O)(p —ip.p+ip, Vet dlp . (5.7-46)

This expression for the generalized radiance was introduced by Walther (1968)
and is frequently used in the analysis of radiometric problems which involve
partially coherent sources (see, for example, Marchand and Wolf, 1974a). In view
of our earlier remarks it is not surprising that it can take on negative values
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(Marchand and Wolf, 1974a,b), in violation of the implicit postulate (5.7-37a).’
However, it can be shown that it is always real.

Another possible (generally non-equivalent) definution of a generalized ra-
diance is provided by the formula

2
'%ﬁf’)(p, s) = (ZL) cos@e"‘sl"’JW(o)(p, pl vyeTksLp dzp’. (5.7-47)
T

In order to deduce some of the properties of ’%E,O)(p, s) we will express it in a
somewhat different form. For this purpose we represent W in the form given by
Eq. (5.7-11), namely

WO(p, p',v) = (UO*(p, yUO(p', v)). (5.7-48)
On substituting from Eq. (5.7-48) into Eq. (5.7-47) we find that
’QB(VO)(p, s) = k2cos 8{[UD(p, WI*TO (ks , v)) eihs+ 2, (5.7-49)
where

1
2m)?

TOE, v) = ( [ UO(p’, v)e ¢ d2p! (5.7-50)
is the two-dimensional spatial Fourier transform of U@ (p’, v).

It is clear from Eq. (5.7-49) that ’%io)(p, s) is, in general, a complex quantity.
However, its integral with respect to p, taken over the entire source plane z =0,
is necessarily real and non-negative. This fact follows at once from Eq. (5.7-49)
which yields, on integration,

['%s‘”(p, s)d2p = (27k)*cos O([UO (ks , v)]*TO(ks,, v)) = 0. (5.7-51)

Because this integral is real-valued it remains unchanged if ’%f,o)(p, s) is replaced
by

‘B (p,s) =Re' BV (p, s), (5.7-52)

where Re denotes the real part. Hence it is clear that in calculating the radiant
intensity via the radiometric formula (5.7-40), any of the expressions (5.7-46),
(5.7-47) or (5.7-52) for the radiance function could be used. A definition of the
generalized radiance, essentially equivalent to ”%f,o)(r, s) was first proposed by
Walther (1973; see also Walther, 1978a,b).i However, just like the radiance
defined by Eq. (5.7-46), "%io)(r,s) may sometimes take on negative values
(Marchand and Wolf, 1974b; Walther, 1974).

The mathematical structure of the formulas (5.7-46) and (5.7-47) contains a
hint about the reasons for the difficulties encountered when one tries to define the
radiance function on the basis of physical optics. These formulas have the same
mathematical structure as expressions for generalized phase-space distribution
functions, also known as quasi-probabilities, which are sometimes employed in
calculations of the expectation values of quantum mechanical operators by
methods similar to those used in classical statistical mechanics [cf. Section 11.8].

* Many of the basic papers concerning the foundations of radiometry are reprinted in Selected Papers
on Coherence and Radiometry, ed. A. T. Friberg (1993).
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Because such generalized distribution functions are functions of c-number repre-
sentatives of non-commuting operators, they are not true probabilities* and
consequently they may become negative or even complex. In particular, the
formula (5.7-46) resembles an expression for the so-called Wigner distribution
function (Wigner, 1932),% whilst the formula (5.7-47) resembles a phase-space
distribution function introduced by Margenau and Hill (1961).

Whichever expression for the generalized radiance function is adopted, it must
always satisfy the requirement (5.7-39), which ensures that it yields the correct
value for the rate at which the source radiates energy into the half-space z > 0.
The formula (5.7-39) may be expressed in two alternative, but equivalent forms,
namely

F, = J J(s, v) 8 (5.7-53)
(2m)
and (again extending the p-integration over the entire source plane)
F, = J E,(p)dp. (5.7-54)

In the first formula, which is just Eq. (5.7-35), J(s,v) is the radiant intensity,
which is expressible in terms of the generalized radiance by Eq. (5.7-40). The
radiant intensity represents the rate at which the source radiates energy at the
frequency v per unit solid angle around the s-direction. In the formula (5.7-54)

EJp) = f(z )Bif”(p, s) cos §dQ. (5.7-55)

E.(p) is another radiometric quantity, known as the radiant emittance. According
1o Eq. (5.7-54) it may be regarded as representing the rate at which the source
radiates energy at frequency v per umit area of the source as a function of the
position vector p. We will now derive an expression for the (generalized) radiant
emittance in terms of the cross-spectral density.

Since, as we have already noted, the generalized radiance is not uniquely
determined by the cross-spectral density, it is evident from Eq. (5.7-55) that the
same is true about the generalized radiant emittance. We will derive an expres-
sion for the radiant emittance associated with the generalized radiance defined by
Eq. (5.7-46). On substituting on the right-hand side of Eq. (5.7-55) from Eq.
(5.7-46), interchanging the orders of integration and making use of the expres-
sion dQ = ds, ds,/cos 8 for the element of the solid angle we readily find that

%,(p) = [ WO@p —3p', p + 30", VK (p)dp', (5.7-56)
where
k\? T
Kv(p’)=(——) ” cos B e~ P ds, ds,, (5.7-57)
2m) L0
sytsyst

t The impossibility of introducing phase-space distribution functions which would obey all the
postulates of probability theory was demonstrated by Wigner (1971), p. 25.

¢ For an excellent discussion of the Wigner distribution function see Imre, Ozizmir, Rosenbaum and
Zweifel (1967).
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sy =(sy,8) and cos§ = [1— 52— si]l/z. The integral on the right-hand side of
Eq. (5.7-57) may readily be evaluated by changing the variables of integration to
polar coordinates and making use of the integral representation (5.3-50) of the
Bessel function Jy(x) and of the spherical Bessel function, namely,

1 [sinx

jilx) = —-(——— - cosx). (5.7-58)
x\ x

One then obtains for the kernel K,(p’) of the integral transform (5.7-56) the
expression (cf. Marchand and Wolf, 1974a)
K { J1(kp")
2r L kp'

On substituting from Eq. (5.7-59) into Eq. (5.7-56) we obtain the following
expression for the generalized radiant emittance:

K/p) = (5.7-59)

K? 1(kp’
800 = (WO ~dprp 4 b W[ 2D | 570
P

It may be shown that the generalized radiant emittance given by Eq. (5.7-60) can
take on negative values indicating that, just like the radiance, it is not in general a
measurable quantity.

5.7.3 Radiance function of a planar, secondary, quasi-homogeneous source?

We mentioned earlier that radiometry has largely developed in connection with
problems involving thermal sources, i.e. blackbody sources or sources whose
output may be derived from blackbody sources by linear filtering [cf. Section
13.2]. Sources of this kind usually belong to the class of quasi-homogeneous
sources. It is, therefore, of interest to examine the forms of the expressions for
the basic radiometric quantities for sources of this kind.

For a planar, secondary, quasi-homogeneous source the cross-spectral density
has the form [Eq. (5.3-16)]

WO(p1, . v) = SO(p1 + p2), gV (02 — 1, V), (5.7-61)

where the spectral density $O(p, v) varies much more slowly with p than the
spectral degree of coherence g®(p’,v) varies with p’. Moreover the linear
dimensions of such a source are large compared with its spectral coherence width,
at frequency v, of the light distribution across the source, i.e. compared with the
effective width of [g@(p’, )| (cf. Fig. 5.2).

If we substitute from Eq. (5.7-61) into Eq. (5.7-46), we readily obtain the
following expression for one of the generalized radiance functions of a quasi-
homogeneous source:

BO(p, s) = K25P(p, Vg (ks,, v)cos 6, (5.7-62)

# The discuss.ion presented in this section is largely based on an investigation of Carter and Wolf (1977;
see also Friberg, 1981). For some analogous calculations relating to Gaussian Schell-model sources
see Baltes and Steinle (1977) and Baltes, Steinle and Antes (1978).
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where
~ 1 / —if- p’ '
20 = —— [g%0, e dp (5.7-63)
@m)

is the two-dimensional spatial Fourier transform of g®(p").

We see that the radiance function, given by Eq. (5.7-62), has a factorized
form, being at each frequency the product of a function of p and a function of s.
The first factor k*S©@(p,v) is, of course, non-negative. The second factor,
g@(ks,, v) is also non-negative, because it is the Fourier transform of a correla-
tion coefficient which is necessarily non-negative definite, and hence by Bochner’s
theorem (Section 1.4.2)

3O, v =0 (5.7-64)

for all two-dimensional vectors f. Moreover, since 0 < 8 < /2, the last factor
cos 8 is also non-negative. Thus Eq. (5.7-62) shows that the radiance function
(5.7-46) of a quasi-homogeneous source is necessarily non-negative:

% p,s) = 0. (5.7-65)

Moreover, since the spectral density S©@(p, v) vanishes at all points in the source
plane outside the region ¢ occupied by the source,

B0(p,s)=0 whenp¢o. (5.7-66)

Thus we see that the radiance function, defined by Eq. (5.7-46), of a quasi-
homogeneous source satisfies the postulates (5.7-37a) and (5.7-37b) of traditional
radiometry. Further, if we substitute from Eq. (5.7-61) into the two other
definitions of the radiance function [Egs. (5.7-47) and (5.7-52)] and use the fact
that S®(p, v) varies much more slowly with p than g@(p’, v) varies with p' we
find that, to a good approximation, each is equal to the expression (5.7-62), so
that

B9(p,5) = 'B0p, ) = "B(p, 5), (5.7-67)

i.e. for a quasi-homogeneous source the three definitions of the radiance function
are essentially equivalent to each other.

Let us now consider the radiant emittance. If we substitute from Eq. (5.7-61)
into the formula (5.7-60) we obtain at once the following expression for the
radiant emittance of a quasi-homogeneous source:

€p) = C(MSVp. ), (5.7-68)

where
2 (ko'
C,(v = k—jg(o)(p’, V)[M] &p'. (5.7-69)
2m kp'

The formulas (5.7-68) and (5.7-69) show that the generalized radiant emittance
[based on the expression (5.7-46) for the radiance] of a quasi-homogeneous
source is proportional to the spectral density SO (p,v), the proportionality factor
Cy(Vv) depending on the spectral degree of coherence of the light distribution across
the source. For reasons that will become apparent shortly, the factor Cy(v) is

5.7 Foundations of radiometry 299

sometimes called the efficiency factor of the source. It can be expressed in a
somewhat different form, from which its main properties may be readily derived.
If we substitute from Eq. (5.7-62) into Eq. (5.7-55) and compare the resulting
expression with Eq. (5.7-68), we find that

C,() = sz(z )§<°>(ks“ V) cos? 6dQ. (5.7-70)
.

Since according to Eq. (5.7-64) g (ks ., v) = 0 for all values of its arguments, we
see from Eq. (5.7-70) that
Cy(v) = 0. (5.7-71)

If we make use in Eq. (5.7-68) of this result and also use the fact that the spectral
density S (p, v) is non-negative, it follows that

%.(p) = 0. (5.7-72)

Hence the generalized radiant emittance of a quasi-homogeneous source, associ-
ated with the generalized radiance (5.7-46), is necessarily non-negative. (In view
of Eq. (5.7-67) the same is true if, instead of the expression (5.7-46), one uses
either of the alternative expressions (5.7-47) or (5.7-52) for the radiance).
Moreover, since the spectral density SO(p, v) is zero when the point p is situated
outside the source area o, it follows from Eq. (5.7-68) that

¢, (p)=0 whenp¢o. (5.7-73)

From Eq. (5.7-69) we may also obtain an upper bound on C,(v). For this
purpose we take the Fourier inverse of Eq. (5.7-63), set p’ = 0 and use the fact
that g©(0, v) = 1. We then find that

ffz kz§<°><f, vy d*f + f 7 Azg“”(f, v d'f = 1. (5.7-74)
< >k

If we set f = ks, = (ks,, ks,) and use the inequality (5.7-64), it follows that

sz f 7O(ks,, v)ds, ds, < 1. (5.7-75)

ksl ’

Since dQ = ds, ds,/cos 8 it follows at once from Egs. (5.7-75) and (5.7-70) that
Co(v) < 1. (5.7-76)

We see from the inequality (5.7-76) and from Eq. (5.7-68) that the radiant
emittance of a quasi-homogeneous source at any source point is smaller or equal to
the spectral density at that point.

The behavior of the efficiency factor C, for a secondary, planar, Gaussian
correlated, quasi-homogeneous source as a function of its effective spectral
coberence width g, is shown in Fig. 5.26. We see that C, increases monotonically
with o, from the value zero for a completely incoherent source (0, < 4) to the
value unity for a locally coherent source (o, >> A). For a Lambertian quasi-
homogeneous source the value of C, was shown to be 1/2 (Wolf and Carter,
1978a).

The radiant intensity J(s, v) generated by a quasi-homogeneous source may be
obtained on substituting from Eq. (5.7-62) into Eq. (5.7-40). We then find at
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Fig. 5.26 The efficiency factor C, of a planar, secondary, Gaussian—correlat?d
[8®(p") = exp (—p'*/20%)], quasi-homogeneous source, as a function of its
normalized effective correlation width ko, (Adapted from Wolf and Carter,
1978a.)

once that
J(s, v) = 2rk25(0, Vg (ks , v)cos® 6, (5.7-77)

where $©(0, v) is the Fourier transform of the spectral density distribution across
the source, evaluated for the spatial frequency f =0, i.e.

$®, v) = _1*.}'5(0)(‘0’ V) d2p. (5.7-78)
(@n)

The expression (5.7-77) is in agreement with the formula (5.3-21), which was
derived in a different manner.

Finally we note that the rate at which a quasi-homogeneous source radiates
energy at frequency v is, according to Egs. (5.7-54), (5.7-68) and (5.7-78) equal
to

F, = 1) C(vSP(0, v). (5.7-79)

We see from this formula and from Eq. (5.7-78) that, for a quasi-homogeneous
source, ¥, is proportional to the source-integrated spectral density at frequency v.
Now according to Eq. (5.7-69) the proportionality factor Ce(v), (0= C(v=1),
depends only on the spectral degree of coherence of the source and hence is a
measure of the radiation ‘efficiency’ with which sources, having the same spectral
density but different spectral degrees of coherence, generate radiation. It is for
this reason that C,(v) is referred to as the efficiency factor.

We have demonstrated in this section that the radiometric model, when applied
to radiation from quasi-homogeneous sources, is consistent with physical optics,
at least as regards properties of the basic radiometric quantities [cf. Egs. (5.7-65),
(5.7-66), (5.7-72) and (5.7-73)]. This is a rather satisfactory conclusion, since
thermal sources, around which traditional radiometry has been developed and to
which it is mainly applied, usually belong to this class of sources. For other types
of sources the radiometric model has to be interpreted with caution, because the
radiance and the radiant emittance may not possess all the properties that are
commonly attributed to them. Nevertheless the concepts of radiance and of
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radiant emittance can always be used in calculating measurable radiometric
quantities, such as radiant flux and radiant intensity.

5.7.4 Radiative energy transfer model

The theory of radiative energy transfer is a generalization of the radiometry that
we discussed in the preceding sections. The simple radiometric model, expressed
by Eq. (5.7-36) for the rate at which energy is radiated from an element of a
planar source, is broadened in the sense that the radiance is generalized to a field
quantity. The surface element do may now be any portion of a (generally
fictitious) surface in a region of space which contains radiation. Instead of
radiance one then usually speaks of the specific intensity of the radiation. We will
denote the specific intensity by I,(r, s), where r denotes the position vector of the
element do and s denotes a unit vector specifying a direction. According to the
radiative transfer model one may regard energy as being transported across the
surface element do along pencils of rays. The rate d°%, at which energy at
frequency v is transported, in a steady-state field, across do into an element d£2 of
solid angle about the s-direction is assumed to be given by

&F, = I(r,s)cos §dod®, .(5.7-80)

where 8 is the angle between the unit vector s and the unit vector normal n to do
(see Fig. 5.27). In the special case when do coincides with an element of a planar
radiating surface, the specific intensity becomes just the radiance B,(r, s) and the
formula (5.7-80) reduces to the basic radiometric law, expressed by Eq. (5.7-36).
Since according to Eq. (5.7-80) the specific intensity represents the rate at which
energy at frequency v is transported per unit projected area (projected onto a
plane perpendicular to s) per unit solid angle, it is necessarily non-negative, i.e.

I(x,s)=0 (5.7-81)

for all values of its arguments.

One usually introduces two other basic quantities in the phenomenological
theory of radiative energy transfer, which are defined in terms of the specific
intensity: the so-called space density of radiation, 'H (r), and the net flux 'F.(r),

Fig. 5.27 Illustrating the notation relating to the definition (5.7-80) of the
specific intensity of radiation I,(r, s).
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at the point r in the field, at frequency v. They are defined by the formulas
(Planck, 1959, Sec. 22; Chandrasekhar, 1960, Sec. 2.2 and 2.3)

H(r) = % L JRECOLY (5.7-82)

and
F(r) = j L(r, 5)s d€2. (5.7-83)
)

In Eq. (5.7-82) c¢ denotes the speed of light in vacuum and the integrations in
Egs. (5.7-82) and (5.7-83) extend over the complete 47-solid angle generated by
the unit vector s. It is generally taken for granted that the space density of
radiation, 'H,(r) may be identified with the expectation value of energy density
and 'F,(r) with the expectation value of the energy flux density vector at the point
r, at frequency v.

By elementary considerations involving nothing more than simple quasi-
geometric arguments regarding energy conservation, one is led to an integro-
differential equation for the propagation of the specific intensity in any isotropic
medium, known as the equation of radiative energy transfer. This equation may be
written in the form (Hopf, 1934, Sec. 2)

s VI[(r,s) = —ayr,s)],(r,s) + j B.(x,s,8)(r,s")dQ + D,r,s).
(4m)

(5.7-84)

The functions a,(r,s), B,(r,s,s’), and D,(r,s) are known as the extinction
coefficient, the differential scattering coefficient and the source function, respect-
ively. The left-hand side of Eq. (5.7-84) represents the rate of change of the
specific intensity in the direction s. On the right-hand side, the first term
represents the rate of decrease in energy due to absorption along the s-direction,
the second term (with the integration extending over the 4m-solid angle of
directions generated by the unit vector s’) represents the rate of increase in
energy along the s-direction due to scattering from all s’-directions and the last
term represents the rate at which energy is generated by sources of the field.

In spite of the extensive use of the theory of radiative energy transfer, no
satisfactory derivation of its basic equation, Eq. (5.7-84), from electromagnetic
theory or even from scalar wave theory has been obtained up to now, except in
some special cases.

Solutions of the equation (5.7-84) for two special cases are worth noting. When
scattering is negligible (3, ~ 0) and no sources are present (D, = 0), the equation
reduces to

s-VI[r,s) = —a,(r,s),(r,s). (5.7-85)
It follows from this equation that the specific intensity I,(r,s) at any point r,

connected to the point ry by a vector in the s-direction, is related to the specific
intensity I,(rq, s) at the point ro by the formula

I(r,s) = I,(rg,s)exp {—fray(r, s) dl}, (5.7-86)

To
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where the integration is taken along the line joining ry to r [(Fig. 5.28)]. The
formula (5.7-86) is known as Beer’s law.
In free space (&, = 8, = D, = 0) the equation of radiative energy transfer takes
on the simple form
s+ VI(r,s)=0. (5.7-87)

It will be seen shortly that Eq. (5.7-87) may be regarded as a basic equation of
radiometry in free space. It implies that, along a line in the s-direction joining the
points ro and r,

L(r,s) = I(ro, s). (5.7-88)

This result is usually expressed by saying that in free space the specific intensity is
constant along a ray.

5.7.5 Radiometry as a short wavelength limit of statistical wave theory with
quasi-homogeneous sources’

In Section 5.7.3 we introduced a generalized radiance function for a planar,
secondary, quasi-homogeneous source. We will now show that a natural extension
of the definition of one such function is suitable to represent the generalized
radiance not only for points in the source plane but also for all points throughout
the half-space z >0. We will show further that, in the short-wavelength limit
(more precisely in the asymptotic limit as the wave number k — o), this function
obeys all the basic postulates of traditional radiometry and satisfies the free-space
form (5.7-87) of the equation (5.7-84) of radiative energy transfer.
Let us return to the definition (5.7-49) of the generalized radiance, namely

'Bp,s) = ks, ([UQp, WIFTO(ksL, v)) e*+?,  (5.7-89a)

where we have made use of the relation cos @ = s, and have written Uy and U,
rather than U and U to stress that these quantities now pertain to points in the
source plane z =0. According to Eq. (3.2-27) we may express the formula
(5.7-892) in the alternative form

'B(p, 5) = 5, ([UO(p, ]*a(s ., v)) e+ 7%, (5.7-89b)

where a(s,, v) is the angular spectrum amplitude of the (random) field U(r,v)
generated by the source in the half-space z > 0.

Ty

Fig. 5.28 Illustrating the meaning of some of the symbols appearing in Eq.
(5.7-86).

 The main part of the analysis presented in this section is based on investigations by Foley and Wolf
(1985, 1991). Some further developments of their theory are described in Wolf (1994) and in Foley
and Wolf (1995).
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The structure of the formula (5.7-89b) suggests the following extension,
denoted by B,(r,s) of the function '%E,O)(p, s), to points at arbitrary locations
r =(x, y, z) in the half-space z >0 into which the source radiates:

B(r, s) = s, {U*(x, v)alsy, V) elksr, (5.7-90)

where s = (s,, 5,5, >0) is, as usual, a real unit vector and s, = (sy, sy, 0).
Evidently

Lim @,(r, s) = '3 p,s) [p=(x,y,0)] (5.7-91)
=

We next show that the extension (5.7-90) of the definition (5.7-89b) is
physically meaningful, for radiation generated by quasi-homogeneous sources, at
least in the asymptotic limit as k — . For this purpose we first express the field
variable U(r, v) in terms of its boundary values U®(p, v) in the plane z =0 by
the use of the Rayleigh diffraction formula of the first kind [Eq. (3.2-78)],
namely

U@, v = [ UOp, WGR, N p, (5.7-92)
where
19 e“‘R)
G(R, V) = ———| —|» 5.7-93
(R ") 27 az( R ( )
R=]r—p| (5.7-94)

and the integration extends over the source domain 0. On substituting from Eq.
(5.7-92) into Eq. (5.7-90), interchanging the order of averaging and integration
and making use of Eq. (5.7-89b) we find that

B(r, s) = kT f 'BO(p, s)GH(R, v)e s+ &p. (5.7-95)

In general this quantity is complex and hence cannot represent a true radiance
function. However, the situation is different when the source is quasi-homogen-
ecous and the wavelength of the radiated field is short enough, as we will now
show.

For a planar, secondary, quasi-homogeneous source the generalized radiance
function in the source plane is given by Eq. (5.7-62) [see also Eq. (5.7-67)]. On
substituting that expression into Eq. (5.7-95) we obtain for Br, s) the following
expression:

B(r,s) = k25,80 (ks 1, VCir,s.) ™, (5.7-96)
where
Cor,s1) = f G(R, WSO (p, v) eiks: 2 dp. (5.7-97)
g

In the formula (5.7-96) FO(f, v) is again the two-dimensional Fourier transform
[defined by Eq. (5.7-63)] of the spectral degree of coherence of the source and
SO(p, v) is the spectral density at a typical source point.
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Let us now consider the behavior of the expression (5.7-96) for very short
wavelengths A or, more precisely, in the asymptotic limit as k=2m/A— o,
keeping, however, the source unaffected by this limiting process. For this purpose
we first carry out the differentiation on the right-hand side of Eq. (5.7-93) and
substitute the resulting expression for the Green’s function G(R,v) into Eq.
(5.7-97). We then find that

Cyr,s,) = CO,s,) + COr,s.), (5.7-98)
where
ik®d(R,p)
O, s =£z—js<°> 0 & 57—
v ( .L) mits (P ) R2 P ( 7 99)
ikd(R,p)
e, 51) = =] S0, v E——dp (5.7-100)
21 Jo R3
and
(R, p) = P(x,s.,p)=|r—pl+5,p. (5.7-101)

As k becomes larger and larger, the exponential term in the above integrals
will, in general, oscillate more and more rapidly as p explores the domain of
integration (the source domain) and can then be evaluated by the use of the
principle of stationary phase for double integrals (Section 3.3.3). Moreover as is
evident by comparing the two expressions on the right-hand sides of Egs. (5.7-99)
and (5.7-100), C? is of a lower order in k as k — o. Hence, except perhaps
for some special cases, (e.g. where the field points are located on, an axis of
symmetry), we can omit the contribution C (vz) in the asymptotic evaluation of C,
and we then have

Cr,s.) ~ CP(x,s,) ask— . (5.7-102)
The asymptotic evaluation of C il)(r, s, ) is carried out in Appendix 5.1 and one
finds that
O, s,) ~ SO(pg, el T ifpye o

5.7-103
~ O(—k—ll/—z—) ifpo¢o ( )

(O being the order symbol) as k — %, where p, (denoted by py, in Appendix 5.1)
is a point in the source plane, given by the formula

po=r, — =s,. (5.7-104)
SZ
On substituting from Eq. (5.7-103) into Eq. (5.7-96) we find, to the leading
order in k in the asymptotic approximation as k — o,

Br, s) ~ K25,50(pg, V3OV (ks,,v) ifpoec

o A U} (5.7-105)

On comparing the expression (5.7-105) with the expression (5.7-62) for the
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radiance function of a quasi-homogeneous source, namely

BP(p,s) = Ks5,50(p, VE (ks 1, W), (peo),  (57-106)
and recalling that s, = cos 8 we see that in the asymptotic limit as k — o,
B(r,8) = By(po,s) iipgeo } (5.7-107)
=0 if Po ¢ a,

with the position vector pg of a point in the source plane related to a typical field
point r by the formula (5.7-104). . .

To see more clearly the physical significance of the result which we have just
obtained, let us denote the points with position vectors py and r, related by Eq.
(5.7-104), by Qp and by P respectively. One can then show by elemc.entary
geometry that Qg is precisely the point at which the line through P, in tpe
direction specified by the unit vector s, intersects the source plane z = 0 (see Fig.
5.29). Hence Egs. (5.7-107) and (5.7-106) imply that

BP,s) = szzS(O)(Qm V)gw)(ksl: v) ifsep (5.7-108)
=0 ifs ¢ Cp, ’

where Qp denotes the solid angle generated by the vectors pointing from all the
source points to P. .

From the simple relation (5.7-107) and from Egs. (5.7-65) and (5.7—66)‘1t
follows that, in the asymptotic limit as k — o, the function %, is nec§ssarxly
non-negative and that it vanishes at all points in the source plane which are
located outside the source region. Hence it obeys the two basic postulates of
traditional radiometry. Moreover we see at once from Egs. (5.7-104) and
(5.7-107) that

BUP,s) = BU(Q, 9) (5.7-109)

ie. B(P,s) is constant along each straight line in the half-space z > 0. ’lt'h'e
formula (5.7-109), which is formally identical with Eq. (5.7-88) for the specific
intensity of radiation, implies that in free space the function B,(P,s) = B.(r,s)

Source o

Fig. 5.29 Ilustrating the notation relating to the formulas (5.7-108). The poir.n
Oy in the source plane, whose position vector pg is given by Eq. (5.7-104), is
the point of intersection with the source plane z =0 of the line through the
point P in the direction of the real unit vector s.
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satisfies the equation (5.7-87) of radiative energy transfer, namely
s VB (r,s) =0. (5.7-110)

Evidently in this case %,(r, s) may be identified with the specific intensity I (r, s)
(Section 5.7.4) and also with the radiance function B,(r,s) of traditional
radiometry. For this reason we will denote this limiting form by B (r, s).

We may summarize the main results that we have derived in this section by the
following statement: In the asymptotic limit as k = 2n/A = 27v/c — ® the radiance
function given by Eq. (5.7-105) or, more explicitly [if Eq. (5.7-104) is also used],’
by the formula

By(r,s) = K5, [SOr, — (z/s.)s0, VIEOks ., v)  (5.7-111)

correctly describes the behavior of the field generated by any planar, secondary,
quasi-homogeneous source. We stress that the formula (5.7-111) shows that the
radiance depends not only on the distribution of the spectral density S©(p, v)
across the source but also on the degree of coherence g@(r, —ry, v) of the
source.

In Figure 5.30, polar diagrams calculated from Eq. (5.7-105) are shown,
illustrating the behavior of the radiance function of fields generated by some
quasi-homogeneous sources. They show, as was to be expected, that the coher-
ence properties of a source can considerably affect the radiance function.

The starting point of the preceding analysis was the definition (5.7-49) of the
generalized radiance function in the plane of the secondary source. The same
results were shown to follow from the alternative definition (5.7-46) (Kim and
Wolf, 1987). In fact there are some indications that in the asymptotic limit as
k> many other possible definitions of generalized radiances will yield the

* same result (Agarwal, Foley and Wolf, 1987; Friberg, Agarwal, Foley and Wolf,

1992).

5.8 Effects of spatial coherence of a source on the spectrum of radiated fields

In Sections 5.2 and 5.3 we considered radiation from sources of arbitrary state of
coherence and we learned how coherence properties of a source affect the spatial
distribution of the radiated energy at any chosen frequency. In this section we will
examine how coherence properties of the source affect the spectral distribution of
energy, i.e. how they affect the spectrum of the emitted radiation, considered as a
function of frequency. It turns out that the changes in the state of spatial
coherence of the source can lead to appreciable changes in the spectrum of the
radiated field.

We begin by considering a very simple example which illustrates the essence of
this phenomenon.

5.8.1 Spectrum of the field generated by two partially correlated sources*

We consider the field generated by two fluctuating sources, located at points Py
and P,. Let {Q(P;, w)} and {Q(P,, ®)} be the ensembles that represent the

¥ The analysis in this section follows closely that given by Wolf (1987¢).
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Fig. 5.30 Polar diagrams, calculated from Eq. (5.7-105), of the spectral
radiance function ®.(r,s) at various points in the x, y-plane, generated by
some planar, secondary sources. The points with subscripts 1, 2, 3, 4 and 5 are
at distances 4 cm, 6 cm, 8 cm, 10 cm and 12 cm respectively from the center O
of the source. (a) For a uniform circular, quasi-homogeneous, Lambertian
source of radius a = 2 cm. (b) For a circular, quasi-homogeneous, Lambertian
source of radius @ = 2 cm, whose spectral density at the frequency v falls off as

source fluctuations, assumed to be statistically stationary, and let {U(P, w)} be
the ensemble that represents the field generated by the sources at a point P (Fig.
5.31).% If the sources are sufficiently small, each realization U(P, w) may be
expressed in the form

eikR] eikRz
U(P> CU) = Q(Pl’ w)— + Q(PZ) UJ)—‘——, (58_1)
R R,

$ Following the notation employed in most of the publications referred to in this section, we now use
the angular frequency w rather than the circular frequency v = w/2m.
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Caption for Fig. 5.30 (cont.).

a Gaussian function (Eq. (5.3-23)] with r.m.s. width os(v) = 1 cm. (c) For a
uniform, circular, quasi-homogeneous, Gaussian-correlated source [Eq. (5.3—
24)] of radius @ = 2 cm, with 0,(v) = 0.5A. (d) For a circular, Gaussian-correl-
ated source of radius a =2 cm, o,(v) =0.54, whose spectral density at fre-
quency v falls off as a Gaussian function, with os(v) = 1 cm. (After Foley and
Wolf, 1991.)

where R; and R, are the distances from P; to P and from P, to P respectively
anq k = w/c, ¢ being the speed of light in vacuo. The spectrum of the field at the
point P is given by the expression

Where, as usual, the angular brackets denote the ensemble average. On substitut-
ing from Eq. (5.8-1) into Eq. (5.8~2) one readily finds that

1 1 ik(Ry—Ry)
S(P, w) = (— + ———)SQ(w) + [W (P, P; S
Q 3 , @ + c.c.i{. 5.8-
R} R} v RiR, cel (58-3)
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P

Py

Py

Fig. 5.31 Geometry and notation relating to the determination of the spectrum
S(P, ) of the field at a point P, produced by two small sources with identical
spectra Sg(w), located at points Py and P;.

Here
So(w) = (Q*(Py, ) Q(P1, w)) = (Q*(Py, )Q(P, w))  (5.8-4)
is the spectrum, assumed to be the same, of each source,

Wo(Py, Py, ) = (Q*(Pr, ©)Q(P2, w)) (5-8-5)
is the cross-spectral density of the two sources and c.c. denotes the complex
conjugate.

Let us introduce the degree of correlation of the two sources by the formula
WQ(P 1s P 25 CU)
So(w)

[cf. Eq. (4.3-47b)]. On substituting from Eq. (5.8-6) for Wy into Eq. (5.8-3) we
find that

uo( Py, Py, w) = (5.8-6)

S(P, @) = Sy ){ 1 1 [ (P.. Py, ) eik(Ra— Rp)
, W) = W) — + — T [ Koy 2, O)————
¢ R% R% 2 Ry R,
For the sake of simplicity, let us choose the field point P to be located on the
perpendicular bisector of the line joining P; and P;. Then R, = R, (= R say) and
the formula (5.8-7) reduces to

+ c.c.]}. (5.8-7)

S(P, w) = %SQ(@H + Reup(Py, P2, )], (5.8-8)

where Re denotes the real part.

We see from Eq. (5.8-8) that in the special case when up(P1, P2, w) = 0 for all
frequencies present in the source spectrum Sp(w), i.e. when the two sources are
uncorrelated, the field spectrum S(P, w) is proportional to the source spectrum
So(w). However, in general, the two spectra S and So will not be proportional to
each other, because of the presence of the degree of correlation po(Py, Py, w) in
the expression (5.8-8). Moreover, as can be seen at once from Eq. (5.8-7), the
field spectrum S(P, w) will be different, in general, at different points in space.
This simple example shows clearly that source correlations can modify the
spectrum of the emitted field in a non-trivial way.

The modified field-spectrum may take on many different forms, depending on

5.8 Effects of spatial coherence on spectrum 311

the nature of the frequency-dependence of the correlation coefficient ug(P;, P,,
w). Consider, for example, the situation when

to(Py, Py, w) = ae™(@ @020 — g (5.8-9)

where a, w; and §; <K w; are positive constants. In order that the expression
(5.8-9) represents a correlation coefficient, it must satisfy the inequality
0= |pp| <1, which implies that a < 2.

Suppose also that the spectrum Sp(w) of each of the two sources consists of a
single spectral line of Gaussian profile:

So(w) = A e~ (@e0?28, (5.8-10)

where A, wy and §; << w, are also positive constants.
On substituting from Egs. (5.8-9) and (5.8-10) into the formula (5.8-8) we
obtain the following expression for the spectrum of the field at the point P:

S(P, w) = 248 (0~ w28} g—(0- 0128} (5.8-11)
R? '
By a straightforward calculation, performed most simply by using the so-called
product theorem for Gaussian functions (see Appendix 5.2), one can show that
this expression may be re-written in the form

S(P, w) = A'e(@m ol (5.8-12)
where
A = (2&) ei(wl‘wﬁ)zﬂ(éé"’éb’ (58—13)
R2
,_s2 2 2 2
wh = (S1wy + Sgw1)/(85 + 67) (5.8-14)
and
1
-1 + 1 (5.8-15)

&2 & &

Equation (5.8-12) shows that the spectrum of the field at the point P consists
of a single line of Gaussian profile. However this line is not centered, in general,
at the center frequency wy of the source spectrum Sp(w) but is centered at the
frequency wj given by Eq. (5.8-14).

If the two sources were uncorrelated {(ug = 0), we would have, according to
Eqgs. (5.8-8) and (5.8-10),

[S(P, ) ucorr. = (%) e (e, (5.8-16)
Comparison of this expression with Eq. (5.8-12) shows that although both lines
have Gaussian profiles, they differ from each other. Since according to Eq.
(5.8~15) 8 < &y, the spectral line of the field produced by the correlated sources
is narrower than the spectral line produced by the uncorrelated ones. Further we
can readily deduce from Eq. (5.8-14) that wy = wy according as w; Z w,. Hence
if w; < wy the spectral line (5.8-12) of the field is centered on a lower frequency
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than the spectral line (5.8-16) produced by two uncorrelated sources or, as one
says, it is redshifted; and if w; > w,, the spectral line (5.8-12) is centered on a
higher frequency and it is then said to be blueshifted. These results are illustrated
in Fig. 5.32. Examples of other kinds of spectral changes produced by suitable
source correlations are given in Figs. 5.33 and 5.34. (See also Gamliel and Wolf,
1988; Gamliel, 1988.)

The prediction that correlations between radiating sources can give rise to shifts
of spectral lines was first demonstrated, with acoustical rather than optical waves,
by Bocko, Douglass and Knox (1987). Two partially correlated sources (speakers)
with the same spectrum were obtained with the help of two independent genera-
tors which produced random signals X(¢) and Y (¢). The combined signals

O(P, 1) =X(1) + Y(1) (5.8-17a)
and
O(Py, 1) =Y (1) — X(1) (5.8-17b)

drove the two speakers, located in the neighborhood of the points P; and P, (Fig.
5.35). It follows from Egs. (5.8-17) that

(0*(Pr, DQ(Pr, t + 7)) = (Q*(P2, NQ(P2, t + T))
= (X*OX(t + 1) +{Y*O)Y( + 7)), (5.8-18)
where we have used the fact that
(XHOY(t+ 1) = (Y¥)X(t + 1)) =0, (5.8-19)

because the two generators were independent. On taking the Fourier transform of
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Fig. 5.33 Line narrowing (a) and line broadening (b) produced by source
correlations, calculated from Eq. (5.8-8). The source spectrum is a single line
of Lorentzian profile Sp(w) = Ao[(w — we)* + I’ 2171 and the spectral degree of
coherence is

Afw — we)® + I _

L,
Ag(w — w)? + I7?

po(w) =

with wy=3.77 x 10¥s7!, Ty=5% 10°s7* In case (a), j=1, 1 =2.5%
101571, A;/Ag=0.4. In case (b), j=2, I =10"s"}, A,/A;=1.5. The
normalization factor N = Ay/T'3.
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Fig. 5.32 Redshift and blueshift of a spectral line as predicted by formulas
(5.8-12) to (5.8-15). The spectrum Sp(w) of both of the two source distribu-
tions is a single line of a Gaussian profile given by Eq. (5.8-10) with A =1,
wo = 4.32201 X 10" 57! (Hg line A = 4358.33 A), 8 =5 x 10° 5™, (a) The field
spectrum S(P, w) at P when the two sources are uncorrelated [po = 0]. (b)
The field spectra at P when the two sources are correlated in accordance with
Eq. (5.8-9), with a=1.8, §;=7.5X% 10°s7!, and with w; = wp — 28; (red-
shifted line) and (¢) w; = we + 28 (blueshifted line). (After Wolf, 1987c.)

Egs. (5.8-18) and making use of the Wiener—Khintchine theorem [Egs. (2.4~15)
and (2.4-16)] we see at once that the spectra of the two sources are the same,
each being given by

So(w) = Sx(@) + Sy(w) (5.8-20)

where Sy(w) and Sy(w) are the (power) spectra of X(¢) and Y (z) respectively.
It further follows from Egs. (5.8-17) that the cross-correlation function of the
two sources is given by the expression

(Q*(Py, )Q(Py, t + 1)) = —(X*()X(t + 7)) + (Y*(1)Y(t + 7)). (5.8-21)

On taking the Fourier transform of this formula and using the Wiener—Khintchine
theorem again we obtain for the cross-spectral density of the two sources the
expression

WQ(P], Pz, CU) = “Sx(w) + Sy((l)) (58—22)
From Egs. (5.8-22) and (5.8-20) it follows that the degree of correlation
to(Py, Py, w) of the two sources, defined by Eq. (5.8-6), is given by the formula

—Sx(w) + Sy(w
uo(Py, Py ) = K@)+ S¥(), (5.8-23)

Sx(@) + Sy(w)
In this experiment a microphone M was placed at a location equidistant from
the two acoustic sources. The spectra were measured at the microphone one at a
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Fig. 5.34 Generation of two spectral lines, calculated from Eq. (52 . 8~8)2, ﬁom a
single spectral line of Lorentzian profile Sp(w) = Aol(w — wp)* + I't]”" and
spectral degree of coherence
@) 2 A (w— w) + T§
w) = —_—_———
e iAo (0— w)? + I
with g = 3.87700 x 105 57!, Iy =5 x 10¥ 57", w; = 3.87690 x 10¥ 57!, I'; =
8% 10°s71, A,/Aop=0.01, w, =3.87715 X 10¥s™1, I = 8 X 10° 571, Ay/A¢ =

0.004. The normalization factor N = A/I'}. Figure (a) shows the spectral lines
and figure (b) shows the behavior of the spectral degree of coherence uo(w).

1,

time, with one source switched off and then the other. The spectra were found to
have the same shape as the spectra of the two sources. Next, with both sources
switched on, the spectrum S(M, w) of the sound at the microphone M was
measured. According to Eq. (5.8~8), with Sp(w) given by Eq. (5.8-20) and
uo( Py, Py, w) given by Eq. (5.8-23), one finds that

S(M, w) = %Sy(w). (5.8-24)
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Speaker Speaker
e S
Py P2

M
Microphone
Fig. 5.35 The configuration of the acoustical experiment which was used to
demonstrate the generation of frequency shifts of spectral lines by source
correlations. (Adapted from Bocko, Douglass and Knox, 1987.)

This spectrum is evidently not proportional to the spectrum Sp(w) [Eq. (5.8-20)]
of each of the two sources, unless Sy(w) is proportional to Sy(w). Depending on
the forms of Sy(w) and Sy(w) the peak of the field spectrum S(M, w) can be
displaced with respect to the peak of the source spectrum S, and this was
observed in the experiment. With suitable choices of the spectra of the signals
X(¢) and Y(z), both redshift [Fig. 5.36(a)] and blueshift [Fig. 5.36(b)] were
observed.

An optical experiment illustrating shifts of spectral lines produced by two
partially correlated sources was performed by Gori, Guattari, Palma and Pado-
vani (1988) soon afterwards. Secondary sources P; and P, were produced by

(a) ()
z z
1 Z
£ B £
& =
5 3
1 1 - L
0 0.5 1.0 1.5 20 2.5 0 05 1.0 1.5 2.0 2.5

Frequency w/2m [kHz} Frequency w/2s [kHz]

Fig. 5.36 Square-root of the spectral density of the measured lines in the
acoustical experiment outlined in Fig. 5.35. The curves A and B are the
spectral lines measured at the microphone M when only one of the sources was
switched on. The curves C represent the measured spectral lines at M when
both sources were switched on. The line is seen to be redshifted with respect to
A and B in case (a) and blueshifted in case (b), depending on the choice of the
correlation coefficient ug. (Reproduced from Bocko, Douglass and Knox,
1987.)
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simultaneously illuminating two pinholes with two coherent but mutually inde-
pendent beams B,, Bg, using a beam splitter BS. (Fig. 5.37). The correlation
between the sources P; and P, depends on the orientation of the beam splitter
and can be varied by changing the inclination of the beam splitter with respect to
the normal to the plane # which contains the two pinholes.

The spectrum of the field produced by the secondary sources Py and P, was
examined by a spectrum analyzer SA, located in the vicinity of a point, at the
same distance R from each source. Both redshifted and blueshifted spectra were
observed with this arrangement (Fig. 5.38).

An interesting technique for producing two small sources which can be correl-
ated in any prescribed manner was described by Faklis and Morris (1992).

Another conceptually simple way to illustrate the effect of coherence on the

BS

Bg
Fig. 5.37 The lay-out of an optical experiment used to demonstrate the genera-
tion of frequency shifts of spectral lines due to source correlations. (After
Gori, Guattari, Palma and Padovani, 1988.)
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Fig. 5.38 Results of measurements (denoted by heavy dots), demonstrating
shifts of spectral lines due to correlation between two small optical sources,
with the arrangement of Fig. 5.37. For the sake of clarity the experimental Flata
points have been connected by lines. Redshifted spectrum (a), blueshifted
spectrum (b) and the source spectrum, multiplied by a factor 2 (c). (After
Gori, Guattari, Palma and Padovani, 1988.)
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spectrum of light is by means of a Young’s interference experiment. If the
pinholes are illuminated by partially coherent light, the spectrum of the light in
the fringe pattern will differ from the spectrum of the light incident on the
pinholes for two reasons: because of diffraction at the pinholes and because of the
correlation between the light at the two pinholes. However, the change arising
from partial coherence is only appreciable when the bandwidth of the incident
light is sufficiently broad, as was first shown by James and Wolf (1991a,b). We
will present a brief account of the main part of their analysis.

Suppose the two pinholes are illuminated by a distant, planar, incoherent,
uniform circular source, as shown in Fig. 5.39. We assume a symmetric arrange-
ment, with the planes of the pinholes being parallel to the source plane. It readily
follows from one of the reciprocity theorems for quasi-homogeneous sources [Eq.
(5.3-22)] that the spectral degree of coherence of the light incident on the
pinholes is given by

_ 2Jy(dwa/c)

P, P,
u(Py, Py, @) dwajc

(5.8-25)
where J; is the Bessel function of the first kind and first order, 2« is the angular
diameter which the source subtends at the midpoint O between the two pinholes
and d is the distance between them, c being the speed of light in vacuum. Let us
for simplicity consider the spectrum S(Pp, ) at a point P, some distance behind
the plane containing the pinholes, on the normal CO to the source plane. It
readily follows from Egs. (4.3-54) and (5.8-25) and an elementary formula for
diffraction at a pinhole that

2
S(Py, @) = 2(i) wz[l + M]S@(w), (5.8-26)
2mer dwa/c

(@ = 27v), where S9(w) is the spectrum of the light incident on the two pinholes,
A is the area of each pinhole (assumed to be sufficiently small) and r is the
distance PPy (= P,P,). Figure 5.40 shows the form of the spectrum S(FP;, w),
calculated from Eq. (5.8-26) for different separations d of the pinholes, when the
spectrum of the incident light is the Planck spectrum

Aw
exp (hafkgT) — 1

$O(e) = (5.8-27)

Source plane

Plane of the pinholes

Fig. 5.39 Illustrating the geometry and notation relating to Eq. (5.8-25).
(After James and Wolf, 1991a.)
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Fig. 5.40 The changes produced at the axial point Py (Fig. 5.39) in the Planck
spectrum by interference, with different pinhole separations d. The source was
assumed to be at temperature 7 = 3000 K and to subtend an angular semi-
diameter @ = 2.96 x 107 radians at O. The units on the vertical axis are
arbitrary. (After James and Wolf, 1991a.)

Here A’ is a constant, # is the Planck’s constant divided by 27, kg is the
Boltzmann constant and T is the temperature. The figure shows that there is quite
a drastic change in the spectrum at P; as the two pinholes are separated by larger
and larger distances, i.e. as the spectral degree of coherence u(Py, P,, w) of the
light incident on the two pinholes changes with their separation distance d. This
effect was demonstrated experimentally by Kandpal, Vaishya, Chander, Saxena,
Mehta and Joshi (1992) and by Santarsiero and Gori (1992).

We see from Eq. (5.8-25) that the spectral degree of coherence depends on w
and d only through their product. If we write u(d, w; ) in place of u(P;, P, w)
this result implies that

wd, w; @) = w(pd, w/f; @) (5.8-28)

where f is any positive number. This formula shows that, under the circumstances
for which the formula (5.8-25) applies, the spectral degree of coherence at
frequency w, of the light at points separated by a distance d, is the same as the
spectral degree of coherence at frequency w/f of the light at points separated by a
distance d. Thus there exists a ‘trade off’ between frequency and separation
distance. This result is an example of the so-called interferometric equivalence
principle for certain types of fields (James and Wolf, 1991c). Such fields are
produced, for example, by all planar, quasi-homogeneous sources, which have the
same normalized spectrum at all source points. This principle is of interest in
connection with attaining high resolution in radio astronomy using only two radio
telescopes with fixed separation.

5.8.2 Spectrum of the far field generated by planar, secondary, quasi-homogeneous
sources

We have just seen that when light from two small correlated sources with the
same spectrum is superposed the spectrum will, in general, change. It might be
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expected that spectral changes will also occur when light is produced by an
extended partially coherent or by a completely coherent source, i.e. that the
spectrum of light produced by such sources will, in general, not be invariant on
propagation. In this section we will briefly consider such changes when the light
originates in a planar, secondary source o. which we will assume to be quasi-
homogeneous.

We begin with Eq. (5.3-21) for the radiant intensity produced by such a source,
namely

J(s, @) = 2rk)* 50, )89 (ks , . @) cos? 6. (5.8-29)
Here
300, w) = —— j SO(p, w)dp. (5.8-30)
(2m)*Jo
S®(p, w) being the spectral density of the field at a tvpical source point and
B0 ) = ——[g0p" w)e ¢ (5.8-31)
(2m*

is the two-dimensional spatial Fourier transform of the spectral degree of coher-
ence g9(p, — p;. w) of the light in the source plane. Further

k= wfe (5.8-32)

denotes, as usual, the wave number associated with frequency w, 6 is the angle
which the unit vector s makes with the normal to the source plane (see Fig. 5.41)
and s, is the projection. considered as a two-dimensional vector, of the unit
vector s onto the source plane.

Since we are interested in the spectrum S'™)(rs, w) in the far zone rather than
in the radiant intensity J(s, w), we make use of the simple relation (5.2-12),
namely

SN rs, w) = J(s. w)/r*, (5.8-33)
and we then obtain from Eq. (5.8-33) and (5.8-29) the following formula for the
far-zone spectrum:

2
SE(rs, w) = (gﬂ) 500, )7 (ks. , w)cos? 6. (5.8-34)
r

Secondary source ¢

Fig. 5.41 Notation relating to the derivation of Eq. (5.8-34) for the far-zone
spectrum produced by a planar, secondary, quasi-homogeneous source.
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Suppose now that the normalized spectrum, $”(w) say, is the same at every
source point, i.e. that

5O(p, w) = 1'9(p)8"" () (5.8-35)
where
I(p) = j:sw’(p, w) do. (5.8-36)
Evidently
f;s(‘”(m) do = 1. (5.8-37)

The function I(p), defined by Eq. (5.8-36), represents the optical intensity of
the light at the source point Q(p). On substituting from Eq. (5.8-35) into Eq.
(5.8-34) we obtain the following expression for the far-zone spectrum:

S (rs, @) = (M>27(O)ﬁ(°)(w)§(°)(ksl, w)co? 6,  (5.8-38)
r
where
~ 1 2
10) = ——[ 1(p) dp. 5.8-39
0= [ 1ordp (5.8-39)

The formula (5.8-38) shows that, apart from simple geometrical factors, the
spectrum of the light in the far zone differs, in general, from that in the source
plane for two reasons:

(a) Because of the presence of the proportionality factor k* = (w/c)*, which is
reminiscent of the proportionality factor that appears in formulas which
describe the effect of diffraction of light at an aperture.

(b) Because of the presence of the frequency-dependent factor g% (ks , ®),
which depends on the correlation properties of the light in the source plane.

If, in particular, the source spectrum $O(w) consists of a single spectral line
centered at frequency wp and if §@ is peaked at a different frequency wi, the
far-field spectrum will be centered at some frequency which differs from @ by an
amount depending on w;. Thus, just as in the simple case discussed in Section
5.8.1, of a radiating system consisting of two correlated sources, correlations of
the field across a planar, secondary, guasi-homogeneous source can produce
changes in the spectrum of the radiated field and these changes may appear
essentially as a shift of the spectral line. It is not a true shift because the displaced
line is slightly distorted. Moreover, because of the presence of the quantity ks, in
the argument of g9, spectral changes will, in general, also depend on the
direction of observation, s.

As an example let us consider the situation when the normalized spectrum of
the secondary source is just a single line of Gaussian profile. Then

s () = e lwm w028 (8, << wy), (5.8-40)

.
S0V (2m)

* An analogous formula for the tar-zone spectrum of the radiation generated by a primary, three-
dimensional, quasi-homogeneous source was derived by Wolf (1987a). See also Wolf (1987b).
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where 8§ and wg are positive constants. We assume that at each effective
frequency o, the spectral degree of coherence of the light in the source plane is
given by a Gaussian function, i.e. that

£p', ) = e 7, (5.8-41)
where 0, is much smaller than the scale length of variation of the intensity

function I(p), defined by Eq. (5.8-36).
The two-dimensional spatial Fourier transform of the expression (5.8—41) is

2
50, w) = g o, (5.8-42)
27

On substituting from Egs. (5.8~40) and (5.8-42) into the formula (5.8-38) and
using Eq. (5.8-32) and the fact that s% = sin? 8, we obtain the following expres-
sion for the far-zone spectrum:

S (rs, w) = %wz e (w0020} o ~wl2ak(8) (052 g (5.8-43)
¥
where
2m) 0210

4= YenolO0) ;‘C’f © (5.8-44)

0

2
-;1-9—) =i sin? . (5.8-45)

[

The product of the two Gaussian functions on the right-hand side of Eq. (5.8-43)
can be expressed as a single Gaussian function, for example by the use of the
product theorem for Gaussian functions (see Appendix 5.2). One then finds that

o~ (0= w0228 =202 _ o~ wi/2ASi+a?) e—(w—5)2/232’ (5.8-46)
where
o wya? ()
w(0) = Rt ) (5.8-47a)
1 1 1

— =+ —. 5.8-47b
50 8 o6 ( :
On substituting from Eq. (5.8-46) into Eq. (5.8-43) we finally obtain the
following expression for the far-zone spectrum:

S (rs, w) = [éz e‘“’%/2[‘5%""’2(9)]]ou2 el AOPRE®) o2 g, (5.8-48)
r

The formula (5.8-48) shows that the far-field spectrum is proportional to the
product of «? and a Gaussian distribution. The factor w? produces a slight
distortion of the Gaussian. Except when 6 =0 [see Eq. (5.8-49) below], this
Gaussian is not centered at the mean frequency wy of the source spectrum but at a
lower frequency, @(6), given by Eq. (5.8-47a). Further, according to Eq.
(5.8-47b) &(8) < & (except when 0 = 0); i.e. the far-zone spectrum is narrower
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than the spectral line of the source. For § = 0, i.e. for the case when the direction
of observation is perpendicular to the source plane, Egs. (5.8-45), (5.8-47a) and
(5.8-479) give 1/a(0) = 0, &(0) = w, and 8(0) = &, and the expression (5.8-48)
for the far-zone spectrum reduces to

[SCrs, w)]gmp = S0P o), (5.8-49)
r

Some examples of spectral changes, calculated from Eq. (5.8-48), are shown in
Fig. 5.42.

We have implicitly assumed in the preceding discussion that 0, #0, i.e. that the
field in the source plane has a non-zero correlation length. Let us briefly consider
the extreme case when the source is spatially completely incoherent, i.e. when

A
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Fig. 5.42 (a) Far-zone spectra S®)(8, w) = §()(rs, w) (given by Eq. 5.8-48)
in units of M = Awj/r?, as functions of the direction of observation 6,
produced by a Gaussian-correlated [Eq. (5.8~41)], planar, secondary, quasi-
homogeneous source, whose normalized spectrum is a line of Gaussian profile
[Eq. (5.8-40)]. The constants were taken as o, = 3% = 3Ay/2m, A = 5500 A
(wg=3.43 x 10%s7Y and & = 6 x 1072 wy. (b) The relative shift of the center
frequency 2(8) = [y — &(6))/@(6) = [A(6) — Aol/A0, X(6) = 2mc/ad(6).
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0, — 0. This limit is to be understood in the sense that 027 (0) remains finite as
0, =0 to ensure that the factor A, defined by Eq. (5.8-44), has a non-zero
value. We see from Eq. (5.8-45) that in this case 1/a— 0, irrespective of the
angle § of observation. The formulas (5.8-47) now give &(0) = wp and 8(6) = &
for all values of 6 in the range 0 < 6 < 7/2, and Eq. (5.8-48) reduces to the
right-hand side of Eq. (5.8-49), i.e. we have, with a spatially incoherent source
(subscript ‘incoh.’),

(SIS, @)lieon, = 07 (028 cog? g, (5.8-50)
r

We note the far-zone spectrum generated by the incoherent source depends on
the direction of observation, its peak value falling off as cos? 6.

We see that, in the two cases represented by Egs. {5.8-49) and (5.8-50), the
far-zone spectra are proportional to the product of the normalized source spec-
trum $%(w) [Eq. (5.8-40)] and the factor w?, which produces a very slight
distortion of the line and a small amount of blueshift.

We have so far only considered the effects of source correlations on the spectra
of radiated fields in free space. In practice diffracting and sometimes also
dispersive elements will be interposed between the source and the detector.t A
diffracting aperture will, in general, change the coherence properties of the light
which passes through it, even in the absence of dispersion. For example, if
partially coherent light is diffracted by an aperture whose linear dimensions are of
the order of or smaller than the width of the tramsverse correlations of the
incident light, the light which emerges from the aperture will be essentially
spatially coherent. However, if the size of the aperture is sufficiently large, the
emerging light will be partially coherent. Consequently one can expect the
spectrum of the light which is transmitted by the aperture to be, in general,
affected by the size of the aperture. This effect was first noted by Kandpal,
Vaishya and Joshi (1989).

Systematic studies of the effect of aperture size on the spectrum of the light
diffracted by an aperture were made by Foley (1990, 1991). He considered a
simple system, illustrated in Fig. 5.43. An uniform, spatially incoherent, planar,
circular source ¢ of radius ag was located in the front focal plane of a thin lens L
of focal length f. An opaque screen, containing a circular aperture & of radius a,
was placed in the back focal plane of the lens. Foley found that the spectrum of
the diffracted light in the far zone differs from the spectrum of the light in the
aperture by a factor which depends chiefly on the ratio of the aperture radius to
the effective spectral correlation length

(@) = 261

wag

(5.8-51)

of the light in the aperture. An example of such a spectral change is illustrated in
Fig. 5.44.
Returning to Eq. (5.8-34) it is clear that with suitable choice of the spectral

! A general expression relating to spectral changes due to the propagation of light from a source of any
state of coherence through a linear, time-invariant system was derived by Wolf and Fienup (1991).
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Fig. 5.43 An arrangement for studying the effect of the aperture size on the
spectrum of partially coherent light. o is a uniform, spatially incoherent,
planar, circular source of radius as, located in the front focal plane of a thin
lens L. A circular aperture s of radius a is placed in the back focal plane of
the lens. The plane of observation % is in the far zone of the aperture.
(Adapted from Foley, 1990.)

2.0 25 30 3.4 3.9 4.4
w (X 10357

Fig. 5.44 Illustrating the effect of an aperture on the spectrum of light, for the
system shown in Fig. 5.43. Normalized on-axis far-zone spectrum (dashed line)
and normalized spectrum in the aperture (solid line), for the case when the
normalized spectrum in the aperture has a Lorentzian profile 8 (w) =
ATY{(w — @)* + I'?], (A = const.), with ®=3.2x 10" s™", [ =0.6 X 105 571
and a/l = 0.25, [ being the effective correlation width of the light in the
aperture, at frequency @. (After Foley, 1990.)

degree of coherence of the source, one can produce changes more drastic than
line shifts, as is also evident from the theoretical predictions illustrated in Figs.
5.33 and 5.34. A system for synthesizing sources (not necessarily quasi-homogen-
eous) with prescribed coherence properties has been developed by Indebetouw
(1989). It is shown schematically in Fig. 5.45. The input is a thin slit illuminated
by spatially incoherent polychromatic light of uniform spectral density. The siit is
imaged by a two-lens afocal system (lenses L; and L, with focal lengths f) onto a
mask in plane 3. The pupil of this imaging system (plane 2 in Fig. 5.45) contains
an aperture and a prism which shift the image of the slit along the y;-axis by an
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Fig. 5.45 An optical system used for synthesizing planar, secondary sources
with prescribed coherence properties. (After Indebetouw, 1989.)

amount which depends on frequency. Under suitable experimental conditions the
plane 3 acts as an intermediate secondary source which is spatially incoherent
along the xs-axis and spectrally dispersed along the ys-axis. A pupil mask with
complex amplitude transmission function T'(x3, w) is used to produce the desired
spectral degree of coherence in a plane 0 behind another prism, which is identical
to the first. The purpose of this second prism is to eliminate a certain unwanted
phase term.

A detailed calculation shows that, in the plane 0, one obtains a secondary
source whose spectral density is the same at each point and whose spectral degree
of coherence varies along the x-direction and is proportional to the Fourier
transform of the squared modulus of the pupil mask transmission function
T (x3, w) which modulates the dispersed image of the slit.

An example of a pupil mask used to synthesize a source with a particular degree
of coherence is shown in Fig. 5.46. The synthesized source had an approximately
uniform spectral density, S(w) = S, = const., over a certain frequency range, and
the spectral density was zero outside this range. The far-field spectra, produced
by this source in three selected directions of observation, are shown in Fig. 5.47.

y3 w
. N

S L

(@) ®)
Fig. 5.46 A pupil mask (a) used to synthesize a source whose spectrum is

uniform (b) which produces the far-field spectra shown in Fig. 5.47. (After
Indebetouw, 1989.)
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Fig. 5.47 Far-field spectra observed in directions () 6 = 3°, (b) 8 = 0° and (c)
0 = —3°, produced by the synthesized, spectrally uniform source, generated by
means of the pupil mask shown in Fig. 5.46. (After Indebetouw, 1989.)

Finally it should be noted that, in all the situations leading to spectral changes
which we have discussed so far, no new frequency components were generated by
the correlation mechanism. This fact is evident, for example, from Eq. (5.8-38)
which shows that §©)(rs, w) = 0 whenever 8®(w) = 0. Source correlations pro-
duce essentially enhancements or reductions in the strengths of the various
frequency components contained in the original spectrum, but they do not create
new ones. Consequently the largest spectral shifts which can be produced in this
way are of the order of the effective width of the original spectral line. Similar
remarks apply to spectral changes induced by the somewhat analogous mechanism
of scattering on partially correlated, static, random media [cf. Section 7.6.4(c),
especially Eq. (7.6-59)]. However for dynamic scattering or, more specifically.
for scattering from random media whose responses to the incident field vary not
only in space, but also in time, spectral components may be generated in the
scattered light which are not present in the incident light. In particular such a
process can give rise to large line shifts. Under certain circumstances the spectral
changes which are produced in this manner can imitate the Doppler effect in its
main features, even though the source, the scatterer and the observer are at rest
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with respect to each other. (Wolf, 1989; James, Savedoff and Wolf, 1990; James
and Wolf, 1990, 1994). An example is given in Fig. 7.9.

5.8.3 A condition for spectral invariance: the scaling law for planar, secondary,
quasi-homogeneous sources

We showed in the preceding section that the far-zone spectrum of the light
generated by a planar, quasi-homogeneous, secondary source differs, in general
from the source spectrum even on propagation in free space. We may’express thi;
fact by saying that the spectrum of the light is, in general, not invariant on
proPagation. On the other hand, such spectrat changes have not been observed
until relatively recently. This suggests that the usual laboratory sources have some
rather special coherence properties. We will see shortly that this is indeed the
case.

Let us again consider the field produced by a planar, secondary, quasi-
homogene.ous source, whose normalized source spectrum $O(w) [cf. Eq.
(5.8-35)] is the same at every source point. We will first derive a condition which
the spectral degree of coherence of the source must satisfy in order for the
normalized spectrum of the far field produced by the source to be independent of
the direction s of observation. For this purpose we make use of two inversion
formulas which we derived in Section 5.3. The first of them [Eq.(5.3-37)]
becomes, if we make use of Eq. (5.8-33), ’ o

»2
(2my?
where we have assumed that the high spatial-frequency components (f2 > k?) of
the s;?ectral degree of coherence of the light in the source plane are negligible.
Now if the normalized spectrum 8 is the same at every source point, we have,

on taking the two-dimensional spatial Fourier transform of Eq. (5.8-35) and
evaluating it at the spatial frequency f = 0,

500, w) = fz 1(1 — 1)) (rs, w) dls (5.8-52)

SO0, w) = 1(0)sO(w), (5.8-53)
where (0) is. propf)rtional to the source-integrated intensity [Eqs. (5.8-39) and
(5.8-36)]. Using this relation in Eq. (5.8-52) we obtain the following formula for
the reconstructed (subscript ‘rec’) normalized source spectrum:

BO(0)]ee = 1=s1)7'™0s, w)d%s, . (5.8-54)

r? f (
(2m)21(0) Jsi=1
If we integrate both sides of this equation over the complete frequency range and
use the normalization condition (5.8-37), we see at once that

(7)1 (0 » 1 ooy
—r2(_) - fo do[ (1 =521 (rs. w)dis, | (5.8-55)

sy=1

On substituting from this equation into Eq. (5.8-54) we finally obtain the
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following expression for the normalized source spectrum in terms of the far-zone
spectrum:

jz 1 = 518 (rs, w)d2s,
(80 = ——— . (5.8-56)
dof (1 -s3)"28)(rs, w)d?s,
0 2<1

sy <

Further, on making use of the simple relation (5.8-33) in the second inversion
formula [Eq. (5.3-38)], for quasi-homogeneous sources we obtain the cor-
responding expression for the spectral degree of coherence of the source:

1 - s3)71SE)(rs, w) exp (iks, - p') dsy
) p

si=1
[g(O)(p’7 w)]rec = . (5.8—57)
jz 1 - s3I rs, w) s,
si=<l1

The formulas (5.8~56) and (5.8-57) bring into evidence an interesting fact;
namely that, for the class of sources under consideration, the far-zone spectrum
allows the determination of both the normalized source spectrum and the spectral
degree of coherence of the source, provided that the high spatial-frequency
components (|f| > k) of the spectral degree of coherence are negligible, as is
usually the case. Examples of such reconstructions from normalized far-zone
spectra, [defined by Eq. (5.8-58) below] are presented in Fig. 5.49, for the case
when both the normalized source spectrum and the spectral degree of coherence
have Gaussian profiles [see Egs. (5.8-40) and (5.8-41)]. The far-zone spectra are
then given by Eq. (5.8—48) and are shown in Fig. 5.48.

We see from Fig. 5.49 that with sources to which these calculations pertain the
reconstructed source spectra and the reconstructed spectral degree of coherence
of the source reproduce very closely the assumed source data provided that the
r.m.s. width of the spectral degree of coherence of the source is of the order of or
greater than 0.51. Assuming that the high spatial-frequency components of the
spectral degree of coherence are negligible, we evidently need not distinguish
between the true and the reconstructed data and we will, therefore, drop the
subscript ‘rec’ from now on.

Let us introduce the normalized far-zone spectrum

5C)(rs, w)

§)(rs, w) = &0 (5.8-58)
where
1®)(rs) = fo “s@)(rs, w) do. (5.8-59)
Evidently this normalization ensures that
fo e (rs, @) dw = 1. (5.8-60)

It is clear from the relation (5.8-33) between the far-zone spectrum and the
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Fig. 5.48 Normalized far-zone spectra
8 (rs, w) = §C)(rs, w)/f §)(rs, w)do,
0

calculated from Eq. (5.8-48), in units of [8,V/(27)]™!, produced by a planar,
secondary, quasi-homogeneous source, whose normalized source spectrum is a
single line of Gaussian profile and whose spectral degree of coherence is also
Gaussian, with wp = 3.43 X 10 Hz, &/wy = 1/20, 0, = 0.54. (After Wolf,

1992.)
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Fig. 5.49 (a) The reconstructed normalized source spectra [8 ()]s in units
of [&V(@m)]™ and (b) the reconstructed spectral degree of coherence
[g9(p’, w)]ee (With the argument wp suppressed in the figure), calculated
from the far-zone spectra shown in Fig. 5.48, using Eqs. (5.8-56) and (5.8-57).
(After Wolf, 1992.)

radiant intensity and from the definition (5.8-58) that 8*)(rs, w) is, in fact,
independent of the distance r of the point of observation in the far zone from the
origin. Suppose now that it is also independent of the direction s of observation.
We may then write 8(*)(w) in place of 8*)(rs, w) and Eq. (5.8-58) implies that

S (rs, w) = 8 (w)I*)(rs). (5.8-61)
On substituting from Eq. (5.8-61) into the first inversion formula (5.8-56),
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making use of the normalization condition (5 .8-60) and neglecting contributions
from the high spatial-frequency components, we obtain the result that
8 (w) = 8O (w). (5.8-62)

We have thus established the following theorem.

Theorem: Consider a planar, secondary, quasi-homogeneous source with the same
normalized spectrum at each source point. If the normalized spectrum of the field
generated by such a source is the same throughout the far zone, it is necessarily
equal to the normalized source spectrum.

Further if we substitute from Eq. (5.8-61) into the second inversion formula
[Eq. (5.8-57)] and again neglect the contributions from high spatial-frequency
components, we obtain the following expression for the spectral degree of
coherence of the source:

L 1- si)‘ll("’)(rs) exp (iks, - p') d%s,

si<

00, w) = - (5.8-63)
fz 1(1 - szl)‘11<°°)(rs) d?s

si<

We see that ¢ now has a particular functional form, namely (writing p, — p; in
place of p’)

g%(p2 = pr, ©) = hlk(py — p)]. (k = wfc = 20/2), (5.8-64)

i.e. it is a function of the variable
£=klp: = p) =m0 (5.8-65)

only. For obvious reasons a spectral degree of coherence which has the functional
form (5.8-64) is said to obey the scaling law.

The result which we have just established, together with that expressed by Eq.
(5.8-62), may be summarized in the following theorem, first formulated by Wolf
(1986, 1992):

Theorem: Consider the field produced by a planar, secondary, quasi-homogeneous
source which has the same normalized spectrum at each source point. In order that
the normalized spectrum of the light generated b Y the source is the same throughout
the far zone as at the source itself, the spectral degree of coherence of the light in the
source plane must satisfy the scaling law, i.e. it must have the functional form
(5.8-64).

Examples of sources which satisfy the scaling law are all planar, secondary,
quasi-homogeneous Lambertian sources, because according to Eq. (5.3-53) all
such sources have the spectral degree of coherence

sin klp, — pif (5.8-66)

g%p, — p1, ) = ,
klp, — pyl
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which evidently obeys the scaling law (5.8-64). Because quasi-homogeneous
Lambertian sources are so often encountered in the laboratory and because, as we
have just learned, the normalized spectrum of the light throughout the far zone
generated by such a source is the same as the normalized source spectrum,
‘spectral invariance’ was until recently taken for granted. However, as we have
just learned, such invariance is, in fact, not a general property of light. This result
was first predicted by Wolf (1986) and was soon afterwards confirmed by Morris
and Faklis (1987) by means of experiments which we will now briefly describe.

Morris and Faklis illuminated an aperture in plane I (see Fig. 5.50) by light
from a broadband, essentially incoherent thermal source (a tungsten lamp),
located directly in front of the aperture. A planar, secondary, quasi-homogeneous
source was produced in plane II by means of (4) an ordinary lens of focal length f
and (b) an achromatic Fourier transform lens. The spectra of the light produced
by these two sources was measured in the far zone (plane III), for different
directions of observation 6. These spectra were compared with the spectra of the
secondary sources in plane II.

Provided that the aperture in plane II is sufficiently large, the spectral degree of
coherence of the secondary source in plane II, formed by the lens in arrangement
(a), may be shown to satisfy the scaling law. On the other hand the spectral
degree of coherence of the light in plane II formed by the achromatic Fourier
transform lens may be shown not to obey the scaling law. According to the
theoretical analysis presented earlier in this section we can expect that, with the
experimental set up shown in Fig. 5.50(a), the normalized spectrum of the far
field (plane III) will be the same for all directions 6 and will be equal to the
normalized source spectrum; and that, for the arrangement shown in Fig. 5.50(b),
the normalized far-zone spectrum will be different for different 8-directions and
consequently, except perhaps for some special directions, it will also differ from
the normalized source spectrum. This is indeed what the experiments of Morris
and Faklis demonstrated. Their main results are shown in Fig. 5.51.

We stress that the scaling law is a condition for spectral invariance in the far
zone of a planar, secondary, quasi-homogeneous source. Closer to the source, the

4 r x u
(@)
4 4 i D
n y v
f— f T f =
1 1 I
¢ x \ u
®) Achromatic a
Fourier %
n transform lens y v
-—————

1 1 m

Fig.5.50 The experimental configurations for realization of a planar, secon-
dary, quasi-homogeneous source in plane II, which (a) obeys the scaling law
and (b) does not obey it. (After Morris and Faklis, 1987.)
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Fig. 5.51 Measured values in different directions 6 of the normalized spectrum
in the far zone produced by a source (a) which satisfies the scaling law and (b)
which does not satisfy it, obtained by using the experimental arrangements
shown in Fig. 5.50. For the scaling-law source (a) all the normalized far-zone
spectra, as well as the source spectrum, were found to be the same; hence only
one curve is shown in that figure. (Adapted from Morris and Faklis, 1987.)

field spectrum may differ both from the far-zone spectrum and from the source
spectrum.

Appendix 5.1

Derivation of the asymptotic approximation (5.7 -103)*

We have, according to Eq. (5.7-99)

O, 5,) = LN (r,5), (A5.1-1)
2mi
where, (if we write p’ in place of p),
Miers.) = [ 896, S g (45.1-2)
o R?
and
@(r,s,p)=R+s,.p, (A5.1-3)
with
R=Ir—-pl (A5.1-4)
Let
r=(x,y,2),p =x",y,0). (A5.1-5)

+ After Foley and Wolf (1991).
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The formula (A5.1-2) then becomes

Nyr,s.) = Jf(X’, y'; r; Vel s dy dy, (A5.1-6)
where ’
flx', ylsesv) = %S(O)(x’, y'sv), (A5.1-7a)
glx', y'sris.) = 8x' + 5,y + R, (A5.1-7b)
with
R=[(x' = x?+(y = y)* + 27" (A5.1-8)

The asymptotic behavior as k — o of the integral (A5.1-6) may be deter-
mined, using the principle of stationary phase for double integrals discussed in
Section 3.3.3. In this limiting process the source is taken to be unchanged, i.e. the
spectrum S@(x’, y’, v) in the integral is kept fixed. We must first determine the
location of the critical points of the first kind (if any) of the integrand. These are
points at which the function g(x’, y'; r; s,, §,) is stationary within the source
region o, with respect to variations of (x’, y'), i.e. where

& =8y =0 (A5.1-9)

within o, with g,- and g, denoting the first partial derivatives of g with respect to
x" and y' respectively. Now from Egs. (A5.1-7b) and (A5.1-8)

_ X' —x _ y' =

e e e Y, (AS5.1-10)

From Eqgs. (A5.1-10) and (A5.1-8) it follows that, if a point x’ = xg, y' = ygis a
critical point of the first kind, it must satisfy the equations

xh—x = =5 [(xh — X + (b — y)* + P (A5.1-11a)
and
yo—y=-s5[(xh— x)* + (v — )’ + 2212 (A5.1-11b)

On squaring both sides of these equations we obtain the simultaneous equations
for the quantities (x4 — x)* and (y§ — y)?. They can be readily solved and give

dh=x—-2z, yp=y-2g (AS5.1-12a)
Sz Sz
or, more explicitly in vector form, with pj = (x4, 6,0),r. = (x, y,0),

ph=r, - Zs,. (AS5.1-12b)
Sz
The formulas (A5.1-12) show that the function g(x', y'; r; sy, s,) has one and
only one stationary point in the source plane z = 0 . This point will be a critical
point of the first kind of the integrand on the right-hand side of Eq. (A5.1-2)
only if it is located within the source region ¢. The geometrical significance of this
point is illustrated in Fig. 5.29 of the text, where it is denoted by Q.
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According to the general formula (3.3-41) the asymptotic approximation to
the integral (AS5.1-6) is given by [if we ignore the dependence of the function
f(x'. y', r; v) on v, which is justified for reasons explained in Section 5.7.5]

Nur,s;)~ —2—11—1a/—f(x(), Yo, T v)eikg("b""’""“) as k— o, (A5.1-13)
k1A
where
A= (gx‘x’gy'y’ - gi'y’)‘xb.yé (A51"14)
and

a=+1 whenA>0,2>0

=—1 whenA>0,X<0 (A5.1-15)
= ~i when A <0,
2= (gex + 8yy)xbyt (A5.1-16)

it being assumed that A # 0. The term g,-,- denotes the second partial derivative
of g with respect to x’, etc. These derivatives are readily obtained by differentiat-
ing the expressions (AS5.1-10). One then obtains the following formulas:

g L[l _ ﬁ~_x)z]

R R?
Y PR O 0
8yy = E[l —T , (AS5.1-17)
R A O s 0.
8yt — . -
R3

The values of these quantities at the critical point x’ = x{, y’ = yj, can be
obtained at once on substituting from Egs. (A5.1~12a) into Eq. (A5.1-17). One
finds that

S
8ewlvoye = (1 = 53),
Z
S 2
&y haye = —(L = 53), (A5.1-18)
z
$,8y8,
g)')"'xh.)‘o = -—7)‘,
where we used the fact that
Rlpyp = = (A5.1-19)
S,

which readily follows from Egs. (A5.1-8) and (AS.1-12a).
On substituting from Egs. (A5.1-18) into the formulas (AS5.1-14), (A5.1-15)
and (AS.1-16) we find that
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2\2 )
A= (S—) , a=1, and X>0. (A5.1-20)

Furthermore, on substituting from Eqgs. (AS5.1-12a) into Egs. (A5.1-7), and
making use of Eq. (A5.1-19), we obtain for f(xp, y§;r, v) and g(x¢, yo; r;s,) the
expressions

2
FCrh yhi V) = (—) SO(xh, 0. ), (A5.1-21)
Z

g(xp, yo;r,81) = x5, + ys, + zs5. =r"s. (A5.1-22)

On substituting from Egs. (A5.1-20), (AS5.1-21) and (A5.1-22) into the

general formula (A5.1-13) we find that
Nyr s}~ %?}*S(O}(pb, v)el s T as k— o, (AS5.1-23)

Z
provided that the point pj, specified by Eq. (A5.1-12b), lies within the domain of
integration (the source domain). If it does not, the contributions to the asymptotic
approximation to N,(r, s, ) comes from critical points of the second kind, which
are located on the boundary curve of o [cf. Section 3.3.2(b)] and which give
(except in some special cases)
Nur,s,) ~ o(—l—) as k — . (A5.1-24)
KR

Finally on substituting from Eqgs. (A5.1-23) and (AS5.1-24) into Eq. (A5.1-1)
we see that, as k — o,
Cf,l)(r, s.) ~ SOy, viers' ™ when py e o
(A5.1-25)

~ O( ki/“ ) when pj ¢ o,

where pg is given by Eq. (A5.1-12b). Equation (A5.1-25) is the formula
(5.7-103) used in the text.

Appendix 5.2
Product theorem for Gaussian functions®
In this appendix we will establish the following theorem, known as the Product
theorem for Gaussian functions:
If G(w — wj; &) represents the Gaussian function
G(w — w); &) = exp[—(w — a),-)z/Zéi]‘ (A5.2-1)

then the product of two such functions is proportional to another Gaussian

* After Wolf, Foley and Gori (1989)
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function, given by

G(w = wy; 8)G(w ~ wy; &) = Glw, — wy; (8} + ) G(w — @; §),

(A5.2-2)
where
2 2
&= M (A5.2-3)
& + 83
and
L1, iz (A5.2-4)
8 8 6

To establish this theorem let us multiply together two Gaussian functions and
express the product in the form

G(w = wy; 1) G(w — wy; &) = exp[—g(w)]. (AS.2-5)
Then
glw) = Py 6%[67(60 w)? + 80 — )]
6262((12002 2bw + ¢), (A.5.2-6)
where
A= 8+ &, (A5.2-7a)
b= w5 + 0,64, (A5.2-7b)
¢ = widh + wib. (A5.2-7¢)

On completing the square in Eq. (A5.2-6) we find that

a? b )2 1 ( b2)
= w——) +—fc——
ga) 25252( a® 20785 a

1 2 b?
= T(w - (U) + o) Cc = —}, (A52—8)
261(52 (12
where
-4 -1 (A5.2-9)
& &8 8 8
and
b w85+ w8
B=—=A2 2 (A5.2-10)
az 6% + 62
By using Egs. (A5.2-7a) to (A5.2-7¢) on