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Influence of the Coriolis force in atom interferometry
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In a light-pulse atom interferometer, we use a tip-tilt mirror to remove the influence of the Coriolis
force from Earth’s rotation and to characterize configuration space wave packets. For interferometers
with large momentum transfer and large pulse separation time, we improve the contrast by up to
350% and suppress systematic effects. We also reach what is to our knowledge the largest space-
time area enclosed in any atom interferometer to date. We discuss implications for future high
performance instruments.

Light-pulse atom interferometers use atom-photon in-
teractions to coherently split, guide, and recombine freely
falling matter-waves [1]. They are important in measure-
ments of local gravity [2], the gravity gradient [3], the
Sagnac effect [4], Newton’s gravitational constant [5], the
fine structure constant [6], and tests of fundamental laws
of physics [7–9]. Recent progress in increased momen-
tum transfer led to larger areas enclosed between the in-
terferometer arms [10–12] and, combined with common-
mode noise rejection between simultaneous interferome-
ters [13, 14], to strongly increased sensitivity. With these
advances, what used to be a minuscule systematic effect
now impacts interferometer performance: The Coriolis
force caused by Earth’s rotation has long been known to
cause systematic effects [2]. In this Letter, we not only
demonstrate that it causes severe loss of contrast in large
space-time atom interferometers, but also use a tip-tilt
mirror [15] to compensate for it, improving contrast (by
up to 350%), pulse separation time, and sensitivity, and
characterize the configuration space wave packets. In ad-
dition, we remove the systematic shift arising from the
Sagnac effect. This leads to the largest space-time area
enclosed in any atom interferometer yet demonstrated,
given by a momentum transfer of 10 ~k, where ~k is the
momentum of one photon, and a pulse separation time
of 250ms.
Fig. 1 shows the atom’s trajectories in our appara-

tus. We first consider the upper two paths: At a time
t0, an atom of mass m in free fall is illuminated by a
laser pulse of wavenumber k. Atom-photon interactions
coherently transfer the momentum of a number 2n of
photons to the atom with about 50% probability, plac-
ing the atom into a coherent superposition of two quan-
tum states that separate with a relative velocity of 2nvr,
where vr = ~k/m is the recoil velocity. An interval T
later, a second pulse stops that relative motion and an-
other interval T ′ later, a third pulse directs the wave
packets towards each other. The packets meet again at
t4 = t1 + 2T + T ′ when a final pulse overlaps the atoms.
The probability of detecting an atom in a particular out-
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FIG. 1. Simultaneous conjugate Ramsey-Bordé interferome-
ters. Left: atomic trajectories. Beam splitters (π/2 pulses)
split and recombine the wave packets. Right: plotting the
populations A throughD at the outputs of the interferometers
versus each other yields an ellipse whose shape is determined
by ∆φ+

−∆φ− = 16n2(~k2/2m)T .

put of the interferometer is given by cos2(∆φ/2), where
∆φ is the phase difference accumulated by the matter
wave between the two paths. It can be calculated to
be ∆φ± = 8n2(~k2/2m)T ± nkgT (T + T ′), the sum of a
recoil-induced term 8n2(~k2/2m)T and a gravity induced
one, nkgT (T +T ′), where g is the acceleration of free fall
and ± correspond to upper and lower interferometer, re-
spectively (Fig. 1) [14].

Because of Earth’s rotation, however, the interferome-
ter does not close precisely. We adopt cartesian coordi-
nates in an inertial frame, one that does not rotate with
Earth. We take the x axis horizontal pointing west, the
y axis pointing south, and the z axis such that the laser,
pointing vertically upwards, coincides with it at t1, see
Fig. 2. Later, at t2, t3, and t4, the laser is rotated rel-
ative to the inertial frame, changing the direction of the
momentum transfer. As a result, the wave packet’s rel-
ative velocities during the intervals [t1, t2], [t2, t3], [t3, t4]
and [t4,∞] are, to first order in Ω⊕,

v12 = 2nvr(0, 0, 1), v23 = 2nvr (Ω⊕T cosϑ, 0, 0) ,

v34 = 2nvr (Ω⊕(2T + T ′) cosϑ, 0,−1) , v4∞ = 0, (1)

respectively, where Ω⊕ is the angular frequency of
Earth’s rotation and ϑ = 37.87◦, the latitude of the lab-
oratory in Berkeley, California. Thus, at t4, the wave
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FIG. 2. Left: Location of the experiment relative to Earth’s
rotation. Right: Setup. Red, yellow and green arrows rep-
resent the cooling, Bragg, and detection beams, respectively.
The wave packets in the interferometer are separated by up
to 8.8mm with 2n = 10, T = 250ms.

packets miss each other by

~δ = 4nvrΩ⊕T (T + T ′) cosϑ(1, 0, 0). (2)

An estimate of the size of the atomic wave pack-
ets is provided by the thermal de Broglie wavelength
h/

√
2πmkBT , where kB is the Boltzmann constant. For

cesium atoms at a temperature T of 2µK (typical of a
moving molasses launch), this is about 100 nm. For typi-
cal parameters, e.g., T = 100ms, T ′ = 5ms, and 2n = 2,
we find δ = 13 nm. Even though this will not lead to a
substantial loss of contrast, it will still lead to system-
atic errors that we discuss below. For large momentum
transfer beam splitters and longer pulse separation times,
however, δ = 0.33µm (at 2n = 10, T = 250ms), giving
rise to a significant contrast reduction. (Use of condensed
atoms increases wave-packet size [16], but does not re-
duce the systematic effects arising from rotation.)
Our experiment is based on a 1.5m tall fountain of

cesium atoms in the F = 3,mF = 0 quantum state,
launched ballistically using a moving optical molasses.
The launched atoms have a 3-dimensional temperature
of 1.2µK, determined by a time-of-flight measurement.
A Doppler-sensitive two-photon Raman process selects a
group of atoms having a subrecoil velocity distribution
along the vertical launching axis.
Because of the extreme sensitivity of interferometers

with large momentum transfer and long pulse separation
time, suppression of the sensitivity to vibrations is impor-
tant. For this reason, we operate a pair of simultaneous
conjugate Ramsey-Bordé interferometers [14], see Fig. 1.
The direction of the recoil is reversed between them,
reversing the sign of the gravity-induced term in their
phases ∆φ±. The influence of gravity and vibrations
cancels out, and the signal can be extracted even when
vibrations lead to zero visibility of the fringes for each
interferometer. For beam splitting, we use multiphoton
Bragg diffraction [10, 17]: An atom absorbs a number

n of photons from a first laser beam with wavevector ~k1
while being stimulated to emit the same number of pho-
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FIG. 3. Raw data obtained without Coriolis compensation
(left) and with (right) at T = 180ms, T ′ = 2ms, and 10~k
momentum transfer. The axes are normalized population dif-
ference as shown in Fig. 1. The contrast of upper interferom-
eter are 20% and 27% for left and right figure, respectively.

tons having a wavevector ~k2 by a second, antiparallel,
laser beam, without changing its internal quantum state.

The process transfers a momentum n~(~k1 − ~k2) to the

atom and thus a kinetic energy of n2
~
2(~k1 − ~k2)

2/(2m).
Energy-momentum conservation selects one particular
Bragg diffraction order n, depending on the laser’s fre-
quency difference ω1 − ω2. We generate the two laser
beams from a common 6W titanium:sapphire laser and
use acousto-optical modulators to shift the frequency of
the laser [18] and optimize the efficiency of the Bragg
diffraction beam splitter by adjusting Gaussian pulses
width to about 100µs [11, 14]. The beam is collimated
at an 1/e2 intensity radius of 3.6mm and sent vertically
upwards to a retroreflection mirror inside the vacuum
chamber. The Doppler effect due to the free fall of the
atoms singles out one pair of counterpropagating frequen-
cies that satisfy the above resonance condition.

The retroreflection mirror is flexibly mounted on the
top of the vacuum chamber with a bellows and can be
rotated by piezoelectric actuators, see Fig. 2. The rota-
tion axes are roughly pointing west (x′) and south (y′),
enclosing an angle of 82◦. In order to rotate the mirror,
a linear electrical ramp is applied to the piezos. The sen-
sitivity of the actuators has been calibrated against an
Applied Geomechanics 755-1129 tilt sensor. We can use

this to give the momentum transfer ~k1−~k2 a constant di-
rection as seen from the inertial frame, in spite of Earth’s
rotation, to compensate for the Coriolis force.

Fig. 3 shows data obtained with and without Coriolis
compensation. The increase in contrast is obvious. We
fit the data with an ellipse [14] and determine the con-
trast by the length of the projection of the fitted ellipse
onto the axes, separately for the upper and lower inter-
ferometer. For the remainder of the paper, data is quoted
for the upper interferometer. By grouping the data into
bins of 20 points, the contrast and its standard error is
determined by statistics over the bins. Fig. 4 shows the
contrast as a function of the tip-tilt rotation rate around
the y′ axis for various pulse separation times. A Gaus-
sian function of the rotation rate (with the center Ωopt,
width σΩ, amplitude and offset as fit parameters) fits the
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FIG. 4. Contrast versus tip-tilt mirror rotation rate for var-
ious pulse separation times (T = 130, 160, 180, 220, 250ms;
T ′ = 2ms). The y′-axis rotation rate is varied, the x′-axis
rotation rate is fixed at -26.2µrad/s. The loss of contrast for
larger T is mainly due to the thermal expansion of the atomic
cloud and wavefront distortion in the interferometer beam.

TABLE I. Ωopt and σΩ are the fitting center and width from
Fig. 4. σ is calculated from σΩ and Eq. (4).

T [ms] Ωopt [µrad/s] σΩ [µrad/s] σ [nm]
130 49± 4 124± 8 106± 7
160 51± 2 81± 4 105± 5
180 50± 2 66± 3 108± 5
220 52± 2 38± 5 92± 12
250 54± 2 34± 4 107± 13

data within the standard error. The fit results are tab-
ulated in Tab. I. A weighted average for the optimum
tip-tilt rotation rate is Ωopt=(51.3±0.8)µrad/s. We also
performed a similar measurement for the x′ axis, Fig. 5
(left). From both measurements, we compute the magni-
tude of the rotation rate, (58.5± 1.0)µrad/s (taking into
account the actual angle of 82◦ between x′ and y′). This
agrees with Ω⊕ cos θ = 57.4µrad/s within a ∼ 1σ error.
To model this loss of contrast, we calculate the over-

lap integral 〈ψ′(~x)|ψ(~x)〉 of the interfering wave pack-
ets at t = t4. Since the free time evolution of a
wave packet is given by a unitary operator U(t, t0),
the overlap integral of the wave packet 〈ψ′(t)|ψ(t)〉 =
〈ψ′(t0)U

†(t, t0)|U(t, t0)ψ(t0)〉 = 〈ψ′(t0)|ψ(t0)〉 is inde-
pendent of the free time evolution and depends on the
relative position only. For example, the atom may ini-
tially be represented by a Gaussian wave packet

ψ =

(

detA

π3

)1/4

e−
1

2
~xA~x, (3)

where the matrix A can be taken as symmetric. In its
principal frame, A is diagonal with elements σ−2

1 , σ−2
2 ,

and σ−2
3 . The overlap integral is independent of time,

∫

d3rψ∗(~r + ~δ)ψ(~r) = e−
1

4
~δA~δ, (4)
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FIG. 5. Left: Contrast versus tip-tilt mirror rotation rate
in x′ direction (T = 180ms, T ′ = 2ms). The y′-axis rotation
is fixed at 69.8µrad/s. The Gaussian fit has its maximum at
(−22 ± 1)µrad/s with a width of 53 ± 4µrad/s, which leads
to an estimate of σy = (86 ± 7) nm. Right: Contrast versus
delay of t4 in Fig. 1. The width of the fit is (23.1 ± 0.6) µs.

where δ is given by Eq. (2). The experiment validates
this model: Figs. 4, 5 show that the data is well de-
scribed by Gaussian functions. According to Tab. I, the
measured widths of the overlap integral agree with one
another for all measured T . From the data, we can de-
termine the parameters of the overlap integral. The sym-
metry of the atomic fountain suggests that the principal
axes of the matrix A coincide with the x, y, z laboratory
frame. In what follows, we neglect the small difference of
the x, x′ and y, y′ directions. The weighted average of the
numbers in the last column of Tab. I is σx = (105±3)nm.
The fit shown in Fig. 5, left, yields σy = (86± 7) nm. To
determine σz , we vary the time interval between t3 and t4
(Fig. 1), see Fig. 5, right. The fitted width corresponds
to σz = (813± 21) nm.

Because each atom interferes only with itself, these
measured quantities are properties of individual atoms,
averaged over the atomic ensemble. They need not be
related to the temperature of the ensemble. This is illus-
trated by the data: The expectation value of the squared
momentum along the ith coordinate 〈p2i 〉 of the wave
packet Eq. (3) allows one to compute an expectation
value 〈ψ|p2i /2m|ψ〉 = ~

2/(2mσ2
i ). If we set this equal to

kBTi/2, where Ti has the dimension of temperature, we
obtain Tx = (0.33± 0.02)µK and Ty = (0.49± 0.07)µK.
Since our atomic ensemble is not a Bose-Einstein con-
densate, these values are unrelated to (specifically, lower
than) the 1.2µK ensemble temperature. For Tz, we ob-
tain (5.5±0.3) nK. This low value results from the veloc-
ity selection in our atomic fountain: The Fourier width of
the 1/

√
e intensity duration σvs of the Gaussian velocity

selection pulse corresponds to a Doppler velocity width
of c/(ωσvs) and, per ∆x∆p = ~/2 (the minimum uncer-
tainty product applies to Gaussian wave packets), a po-
sition envelope function having a 1/

√
e width of vrσvs/2,

where vr = ~k/m. For σvs = 500µs, this evaluates to
880nm, in reasonable agreement with the observed value.

Uncompensated rotation also causes systematic effects
[2]. For a Mach-Zehnder interferometer, e.g., the result-

ing phase shift is given by ∆φ = 2~Ω⊕ · (~v0 ×~k)T 2, where
~v0 is the atom’s initial velocity. If the interferometer is
used for gravity measurements, the corresponding grav-



4

ity offset is ∆g = 2~Ω⊕ · (~v0 × k̂), where k̂ is a unit vec-
tor pointing along the laser beams. This is zero when
the launch has no horizontal velocity component, but in
practice a small horizontal component is inevitable due
to alignment error. If, e.g., we assume a horizontal ve-
locity of 1 cm/s typical of a laser-cooled atomic fountain,
∆g = 6 × 10−8g due to Earth’s rotation, a dominant
contribution to the accuracy of atom intererometers [2].
Coriolis compensation as employed here can remove it
without a need to know ~v0. The accuracy from our ro-
tation measurement, ∆Ω/Ω ∼ 0.017, would reduce ∆g
to 1 × 10−9g and thus below the precision of state-of-
the-art instruments. A tip-tilt mirror using actuators
with active feedback could easily increase this accuracy
further, and maximizing the contrast provides an inde-
pendent verification of successful compensation. Possible
remaining imperfections of the overlap of the wave pack-
ets are due to the vibration of the retroreflection mirror
and the gravity gradient. We note that Coriolis compen-
sation removes the leading order effect of Earth’s rotation
but higher order effects remain [15]. However, they are
negligible here.

We have used a tip-tilt mirror to compensate the in-
fluence of Earth’s rotation in atom interferometry, and
also to characterize the overlap integral of the interfering
atomic wave packets. The observations are well described
by Gaussian wave packets, whose properties were deter-
mined from the data. Coriolis compensation allows us
to reach better contrast, larger space-time enclosed area
and reduce systematic effects in atom interferometry. For
example, from the measured width of the overlap integral
(Tab. I) together with the displacement Eq. (2), an un-
compensated Coriolis force would reduce the contrast by
a factor of exp[−(Ω⊕ cosϑ)2/(2σ2)] = 0.28, for 2n = 10

and T = 250ms. At T = 130ms, we reach a contrast of
40%. Coriolis compensation is thus crucial for the most
sensitive large-area, large momentum transfer atom inter-
ferometers. We also note that Coriolis compensation has
allowed us to experimentally demonstrate the atom inter-
ferometer with the largest enclosed space-time area thus
far: The gravitationally-induced phase 2nkgT (T + T ′)
in our interferometer is 6.3 × 107 rad (2n = 10 and
T = 250ms), compared to 3.2 × 107 rad in Ref. [9].
(Other work [19] has reached higher momentum trans-
fer but substantially smaller T and thus lower overall
phase shift.) The recoil-induced phase 16n2(~k2/2m)T
between our simultaneous conjugate interferometers is
1.2× 106 rad, compared to 5× 105 rad in Ref. [14]. Such
a measurement can be used to determine the fundamen-
tal constants ~/m and α, the fine structure constant.
Our data allows a resolution in ~/m of 12 ppb within

42 minutes (10 ppb
√
hr), twice as good as in Ref. [14].

We expect that Coriolis-compensation will enhance fu-
ture high-performance interferometers, e.g., in gravity
wave detection [20], measurements of ~/m, α [6], Avo-
gadro constant NA, new tests of general relativity [21],
and inertial sensing, with applications in navigation and
geophysics. The technique will be especially important
for achieving high performance in mobile and space-borne
atom interferometers [22, 23], which must cope with ro-
tation rates that are orders of magnitude larger than
Earth’s rotation.
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