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Special relativity and Generalized Sagnac effect 

Alexandro Palacios 

On 1913, the French scientist George Sagnac conducted an experiment showing that it is possible to get 

velocities higher than light speed in an accelerated frame. Sagnac himself described the effect as a violation to 

special relativity because it was in accordance with Galilean mechanics. However, it was shown that the effect 

is, indeed, possible in the frame of Einstein theory because special relativity does not apply to accelerating 

frame, so it must be described in the frame of general relativity. Nowadays, the Sagnac effect is very important. 

It is useful for laser gyroscopes and fiber optic gyroscopes, based on the phase shift of two light beams travelling 

clockwise and counter-clockwise.

The Sagnac effect 

The Sagnac effect is the phenomenon in 

which two light beams travel in a rotating 

interferometer. The detector of the apparatus is co-

moving with the interferometer clockwise. In 

theory, the light beam that is travelling counter-

clockwise would need to travel less distance than the 

light beam travelling clockwise, causing a time 

difference in the arrival to the detector (figure 2). It 

is important to remark that the light source and the 

detector are in the same place along the experiment 

(figure 1), so if M is the initial position of the source, 

it will be the initial position of light beams too. In 

theory, if the interferometer were not rotating, there 

would not be time difference in the arrival, as both 

light beam would travel the same distance (figure 1). 

Nevertheless, if there exists rotation, one light beam 

would travel a larger distance to reach the detector 

than the other would (figure 2). In fact, experiments 

had demonstrated that the time difference depends 

of the angular velocity of the interferometer, the 

higher the angular velocity, the higher the time 

difference and the other way around. Therefore, if 

the apparatus has an angular velocity Ω, the 

tangential or linear speed will be V = ΩR, where R 

is the radius of the interferometer (figure 2). So, 

from the reference frame of a the detector moving 

clockwise, the light beam moving clockwise, (figure 

2 - green light) is moving at a speed C + V or if want 

to use angular velocity: C + ΩR, and the light beam 

that is travelling counter-clockwise, (figure 2 - red 

light) will travel at a speed C - V or if want to use 

angular velocity: C - ΩR from the detector reference 

frame, which is in accordance with Galilean 

mechanics. 

 

Figure 1: the interferometer is not rotating so there is not travel time 
difference. M is the initial position of both light beams and the 
detector 

 

Figure 2: the interferometer is rotating at an angular velocity Ω. The 
green light beam is moving with the detector and the red light beam 
is travelling opposite to the detector. M is the initial position of the 
source/detector, and M’ is the final position. 



2 
 

This is important because it means that we can 

imagine the Sagnac interferometer as a linear 

interferometer (figure 3). The length of the 

interferometer is 16 m. and it is moving at a linear 

speed of 5 m/s. The initial position of the detector is 

8 m., in the middle of the interferometer. The initial 

position of green light beam is 0 m. and for red light 

beam is 16 m. 

 

Figure 3: M is the initial position of the detector, v is the constant 
linear speed of the detector. 

Therefore, we can use Newtonian rectilinear 

uniform movement formula to calculate the time 

difference between both light beams as is shown 

here: 

𝑥′ = 𝑥0 + 𝑣𝑡 

 x0 is the initial position.  

 v is the linear velocity of the light beam 

measured, which is C. 

 x’ is the target position.  

So, the formula for the clockwise light beam, 

(figure 3 - green light) would be: 

𝑥′ = 0 𝑚 + 299792458
𝑚

𝑠
 . 𝑡 

 In addition, for the counter-clockwise light 

beam (figure 3 - red light) would be: 

𝑥′ = 16 𝑚 − 299792458
𝑚

𝑠
 . 𝑡 

 Moreover, for the detector, the above 

formula would be: 

𝑥′ = 8 𝑚 + 5
𝑚

𝑠
 . 𝑡 

Thus, if we want to find out the time in which 

the green light beam would reach the detector, we 

need to do the following calculation: 

As both distances x’ are the same for the 

detector and green light when the light beam reach 

the detector: 

0 𝑚 + 299792458
𝑚

𝑠
 . 𝑡 =  8 𝑚 + 5

𝑚

𝑠
 . 𝑡 

299792458
𝑚

𝑠
 . 𝑡 − 5

𝑚

𝑠
 . 𝑡 =  8 𝑚 

𝑡1 =  
8 𝑚

299792458
𝑚
𝑠  − 5

𝑚
𝑠

 

Therefore, we can write that: 

𝑡1 =
𝐿

𝐶 − 𝑉
 

Where L is the length of the interferometer, 

C is light speed and V is the velocity of the 

interferometer. 

In addition, if we want to find out the time in 

which the red light beam would reach the detector, 

we need to do the same calculation, but for a 

counter-clockwise beam: 

16 𝑚 − 299792458
𝑚

𝑠
 . 𝑡 =  8 𝑚 + 5

𝑚

𝑠
 . 𝑡 

16 𝑚 − 8 𝑚 =  299792458
𝑚

𝑠
 . 𝑡 + 5

𝑚

𝑠
 . 𝑡 

8 𝑚 =  299792458
𝑚

𝑠
 . 𝑡 + 5

𝑚

𝑠
 . 𝑡 

𝑡2 =  
8 𝑚

299792458
𝑚
𝑠

+ 5
𝑚
𝑠

 

Therefore, we can write that: 

𝑡2 =
𝐿

𝐶 + 𝑉
 

Moreover, the only thing we need to do to 

calculate the time difference between both light 

beams is 

∆𝑡 = |𝑡1 −  𝑡2| 

Alternatively: 

∆𝑡 = |
𝐿

𝐶 − 𝑉
− 

𝐿

𝐶 + 𝑉
| 

 

∆𝑡 = |
(𝐶 + 𝑉). 𝐿

(𝐶 + 𝑉). (𝐶 − 𝑉)
− 

(𝐶 − 𝑉). 𝐿

(𝐶 − 𝑉). (𝐶 + 𝑉)
| 

 

∆𝑡 = |
(𝐶 + 𝑉). 𝐿 − (𝐶 − 𝑉). 𝐿

(𝐶 − 𝑉). (𝐶 + 𝑉)
 | 
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∆𝑡 = |
𝐿𝐶 − 𝐿𝑉 − 𝐿𝐶 − 𝐿𝑉

(𝐶 − 𝑉). (𝐶 + 𝑉)
 | 

 

∆𝑡 = |
−2𝐿𝑉

(𝐶 − 𝑉). (𝐶 + 𝑉)
 | 

 

∆𝑡 = | −
2𝐿𝑉

𝐶2 − 𝑉2
| 

As C2 – V2 ≈ C2 we obtain: 

∆𝑡 ≈  
2𝐿𝑉

𝐶2
 

 

On the other hand, if we want to have the 

formula in the frame of angular velocity: 

As V = ΩR and L = 2πR we obtain: 

∆𝑡 ≈  
2.2𝜋𝑅. Ω𝑅

𝐶2
 

∆𝑡 ≈  
4𝜋𝑅2Ω

𝐶2
 

Alternatively: 

∆𝑡 ≈  
4𝐴Ω

𝐶2
 

Where A is the area of the 

circumference (𝜋𝑅2). 

 

 

Generalized Sagnac effect 

 Although it is believed that the Sagnac effect 

only applied to rotational motion, experiments 

conducted by Wang et al. [1] [2] showed that in fact, 

the effect does not disappear in linear motion. They 

built a modified Sagnac interferometer, which 

includes rotational and linear motion in the same 

experiment. The results were that every part of the 

loop contribute to the total time difference between 

both light beams.  

 The interferometer they built has the 

following shape (figure 4), and as the traditional 

interferometer, the detector and the source are 

moving with the interferometer. 

 

Figure 4: modified Sagnac interferometer for measured linear Sagnac 
effect. The initial position of the detector and the source is the same, 
and they move at a velocity V. 

 Their experiments have shown that total 

time difference is in accordance with the traditional 

formula of Sagnac effect for rotational motion, 

which is: 

∆𝑡 =
2𝐿𝑉

𝐶2
 

The formula derivation is the same we do in 

“The Sagnac effect” section, where L is the total 

length of the fiber conveyor, and V is the conveyor 

speed. Therefore, the generalized Sagnac effect is in 

conflict with Special relativity, because the Galilean 

velocity addition applied. 

 

What Special relativity predicts in generalized 

Sagnac effect 

 The second postulate of Special relativity 

says that light speed must be C independent of the 

source speed and observer/detector speed. Thus, if a 

person were travelling at 0.9 C, in his reference 

frame light speed still would be C. Therefore, we can 

make the following assumption: if an observer or 

detector is travelling at a constant speed V in a linear 

interferometer as shown in figure 5, both light beams 

would travel at speed C from the detector´s 

reference frame. 
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Figure 5: the detector is moving at a speed V. From the detector’s 
reference frame, both light beams (green and red) are travelling at C. 

 In addition, in special relativity, it is 

impossible to detect which frame is moving and 

which frame is stationary, so we can imagine that the 

detector is stationary and the interferometer is 

moving at speed V (figure 6). This is the same 

interferometer we have drawn in figure 3, but in this 

apparatus, the detector is stationary, and the source 

of light beams is in the middle of the conveyor, as 

shown in figure 5. Therefore, from the detector´s 

frame, both light beams travel at speed C. Now, it is 

easy to imagine there must be a beam that will reach 

the end of the interferometer faster than the other 

will, because the interferometer would be travelling 

towards one beam, and the other would need to 

travel a longer distance to reach the extreme of the 

fiber at speed C. Consequently, we can say that the 

light beam travelling to the left in the interferometer 

shown in figure 6 would be travelling at speed C – 

V, where V is the velocity of the conveyor because 

the left extreme of the interferometer is moving 

away from the left light. Moreover, the light beam 

travelling to 

 

Figure 6: it is the same interferometer shown in figure 5, but the 
detector is stationary and the fiber interferometer is moving at speed 
V. 

the right in the interferometer shown in figure 6 

would be travelling at speed C + V, because the right 

extreme of the interferometer would be approaching 

to the right light beam. Thus, we can affirm that from 

the reference frame of the detector, both light beams 

would reach their respective extremes with a time 

difference. It is important to remark that the addition 

of velocity C ± V we are analysing here is in 

accordance with relativity, because what we  are 

actually measuring is the distance difference both 

beams need to travel to reach the extreme of the fiber 

when the interferometer is moving favouring one of 

them. We can calculate it using the same formula we 

used above for the classical Sagnac effect: 

𝑥′ = 𝑥0 + 𝑣𝑡 

Assuming that the length of the 

interferometer is 16 m., the initial position of the 

source/detector is 8 m., and the interferometer is 

moving at speed V = 5 m/s , for the light beam 

moving to the right of the interferometer in figure 6, 

the formula would be: 

𝑥′ = 8 𝑚 + (𝐶 + 𝑉)𝑡 

𝑥′ = 8 𝑚 + (299792458
𝑚

𝑠
+ 5

𝑚

𝑠
)𝑡 

𝑥′ = 8 𝑚 + 299792463
𝑚

𝑠
. 𝑡 

Therefore, if we want to find out the time 

when the beam reach the right extreme, we need to 

replace 𝑥′ with the right extreme of the conveyor, 

which is 16 m: 

16 𝑚 = 8 𝑚 + 299792463
𝑚

𝑠
. 𝑡 

16 𝑚 − 8 𝑚 = 299792463
𝑚

𝑠
. 𝑡 

𝑡1 =
8 𝑚

299792463
𝑚
𝑠

 

Alternatively: 

𝑡1 =
𝐿

𝐶 + 𝑉
 

In addition, for the light beam moving to the 

left of the interferometer in figure 6, the formula 

would be: 

𝑥′ = 8 𝑚 − (𝐶 − 𝑉)𝑡 

𝑥′ = 8 𝑚 − (299792458
𝑚

𝑠
− 5

𝑚

𝑠
)𝑡 

𝑥′ = 8 𝑚 − 299792453
𝑚

𝑠
. 𝑡 
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Therefore, if we want to find out the time 

when the beam reach the left extreme, we need to 

replace 𝑥′ with the left extreme of the conveyor, 

which is 0 m: 

0 𝑚 = 8 𝑚 − 299792453
𝑚

𝑠
. 𝑡 

8 𝑚 = 299792453
𝑚

𝑠
. 𝑡 

𝑡2 =
8 𝑚

299792453
𝑚
𝑠

 

Alternatively: 

𝑡2 =
𝐿

𝐶 − 𝑉
 

 Consequently, if we do the same calculation 

we did above in “The Sagnac effect” section, we 

obtain that: 

∆𝑡 = |𝑡1 −  𝑡2| 

∆𝑡 = |
𝐿

𝐶 + 𝑉
− 

𝐿

𝐶 − 𝑉
| 

∆𝑡 ≈  
2𝐿𝑉

𝐶2
 

At this part of the reading, it may sounds 

confusing that an experiment that disproves 

relativity is in accordance with the formula that 

Special relativity predicts. However, what we have 

just calculated is the time difference only on the 

bottom arm. If we make an analysis of the complete 

interferometer, we will see that Special relativity is 

no appropriate to describe the generalized Sagnac 

effect phenomenon.  

Let take just one beam to make the 

calculation. For example, the green light which is 

moving to the right (figure 7). Assuming that the 

total conveyor length is 40 m, the wheel radius is 

1,2732 m, the conveyor speed is 5 m/s, and the initial 

position of the detector is the middle of the bottom-

arm. 

 

 

Figure 7: Same configuration shown in figure 6, but here we have the 
complete interferometer as in figure 4. The conveyor is mobbing at 
constant speed V. Both light beams are travelling at speed C from the 
detector´s reference frame 

 Therefore, to make a correct analysis we 

must separate the interferometer in five parts for 

each light beam: the bottom-arm (a), left-perimeter 

(b), top-arm (c), and right-perimeter (d). Thus, if we 

want to know the length of each segment of the loop, 

we need to do this calculation: 

  

For (b) and (d): 

𝐿𝑏 = 𝐿𝑑 =
2𝜋𝑅

2
 

𝐿𝑏 = 𝐿𝑑 =
2𝜋 × 1,2732 m

2
 

 Consequently: 

𝐿𝑏 + 𝐿𝑑 = 2𝜋𝑅 

 Here we have the formula for both 

perimeters (b) and (d). Now we need to find out the 

length of the bottom-arm (a), and top-arm (c). We 

can affirm that 𝐿𝑡 =  𝐿𝑎 + 𝐿𝑏 + 𝐿𝑐 + 𝐿𝑑, where 𝐿𝑡 

is the total conveyor length. Therefore: 

𝐿𝑡 =  𝐿𝑎 + 𝐿𝑐 + 2𝜋𝑅 

 

If Lt = 40 m, we have: 

 

40 𝑚 =  𝐿𝑎 + 𝐿𝑐 + 2𝜋𝑅 

40 𝑚 − 2𝜋𝑅 =  𝐿𝑎 + 𝐿𝑐 

40 𝑚 − 2𝜋 × 1,2732 m =  𝐿𝑎 + 𝐿𝑐 

32 𝑚 =  𝐿𝑎 + 𝐿𝑐 
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As the bottom-arm (a) in equivalent to the top-arm 

(c), we obtain: 

𝐿𝑎 = 𝐿𝑐 

𝐿𝑎 = 𝐿𝑐 =
32 𝑚

2
 

𝐿𝑎 = 𝐿𝑐 = 16 𝑚 

 The result we obtained above is equivalent to 

the example we have used for figure 6, therefore, if 

the detector’s initial position is at the middle of the 

bottom-arm, we can say that it is equal to 
16 𝑚

2
=

8 𝑚, and we can apply the same formula we have 

made in figure 6 analysis, which is: 

∆𝑡 =  
2𝐿𝑉

𝐶2
 

As we saw before, let take just one light 

beam, for example the green light (figure 7). If the 

initial time of the experiment is t0 = 0 s, from the 

reference frame of the detector the green light beam 

will reach the right extreme of the conveyor at time 

given by this formula: 

𝑡1 =
𝐿𝑎1

𝐶 + 𝑉
 

Where La1 is equal to 8 m, because the ∆𝐿 of 

the green beam at the bottom-arm is 16 m – 8 m.  

Then, the light beam would enter to the right 

perimeter (d) at time 𝑡1 from the detector´s reference 

frame. As we said before, the (d) length is equal to: 

𝐿𝑑 =
2𝜋𝑅

2
 

Consequently, we can say that the green light 

beam would reach the top-arm (c) at time: 

𝑡1 =
𝐿𝑎1

𝐶 + 𝑉
+

2𝜋𝑅
2

𝐶 − 𝑉
 

Alternatively: 

𝑡1 =
𝐿𝑎1

𝐶 + 𝑉
+

𝐿𝑑

𝐶 − 𝑉
 

 

It is important to remark that in this case, it 

is 

2𝜋𝑅

2

𝐶−𝑉
 and not 

2𝜋𝑅

2

𝐶+𝑉
 because the green light beam 

passing through (d) is travelling at the same 

direction of the fiber, thus, as we saw at the first 

section “The Sagnac effect”, the light beam moving 

with the detector would have to travel a longer 

distance to reach it again.  

After that, the light beam would enter to the 

top arm (c) at time 𝑡1 from the detector´s reference 

frame. In this part of the loop, the light beam would 

be moving towards the detector (figure 8), not with 

the detector, therefore, the time difference while the 

green light beam is passing through (c) is given by: 

𝑡1 =
𝐿𝑎1

𝐶 + 𝑉
+

𝐿𝑑

𝐶 − 𝑉
+

𝐿𝑐

𝐶 − 𝑉
 

Where Lc is equal to 16 m. 

 

 

Figure 9: Both light beam passing through segment (a), (d) and (c) of 
the loop. 

 Then, the green light beam will pass through 

segment (b) of the loop (figure 9). The time 

difference formula is the same we use for segment 

(d), that is: 

𝐿𝑑 = 𝐿𝑏 =
2𝜋𝑅

2
 

Therefore: 

𝑡1 =
𝐿𝑎1

𝐶 + 𝑉
+

𝐿𝑑

𝐶 − 𝑉
+

𝐿𝑐

𝐶 − 𝑉
+

𝐿𝑏

𝐶 − 𝑉
 

 

Lastly, the green light beam will pass 

through segment (a-2) of the loop (figure 9). The 

time difference formula when the green light would 

reach the detector again is given by: 

Figure 8: complete travel of the green light beam. 
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𝑡1 =
𝐿𝑎1

𝐶 + 𝑉
+

𝐿𝑑

𝐶 − 𝑉
+

𝐿𝑐

𝐶 − 𝑉
+

𝐿𝑏

𝐶 − 𝑉
+

𝐿𝑎2

𝐶 + 𝑉
 

 

 It is important to remark that La2 is not equal 

to La1 because we should remember that 

when the light beam is passing through La2 

the detector is going to be a little bit further 

from its initial point. Thus: 

𝐿𝑎2 = 𝐿𝑎1 + 𝐿𝑎𝑢𝑥1 

 Consequently: 

 

𝑡1 =
𝐿𝑎1

𝐶 + 𝑉
+

𝐿𝑑

𝐶 − 𝑉
+

𝐿𝑐

𝐶 − 𝑉
+

𝐿𝑏

𝐶 − 𝑉
+

𝐿𝑎1 + 𝐿𝑎𝑢𝑥1

𝐶 + 𝑉
 

 As: 

𝐿𝑎1

𝐶 + 𝑉
+

𝐿𝑎1 + 𝐿𝑎𝑢𝑥1

𝐶 + 𝑉
=

2𝐿𝑎1 + 𝐿𝑎𝑢𝑥1

𝐶 + 𝑉
 

 We obtain: 

 

𝑡1 =
2𝐿𝑎1 + 𝐿𝑎𝑢𝑥1

𝐶 + 𝑉
+

𝐿𝑑

𝐶 − 𝑉
+

𝐿𝑐

𝐶 − 𝑉
+

𝐿𝑏

𝐶 − 𝑉
 

 Then: 

𝑡1 =
2𝐿𝑎1 + 𝐿𝑎𝑢𝑥1

𝐶 + 𝑉
+

𝐿𝑑 + 𝐿𝑐 + 𝐿𝑏

𝐶 − 𝑉
 

 

𝑡1 =
(𝐶 − 𝑉)(2𝐿𝑎1 + 𝐿𝑎𝑢𝑥1)

(𝐶 − 𝑉)(𝐶 + 𝑉)
+

(𝐶 + 𝑉)(𝐿𝑑 + 𝐿𝑐 + 𝐿𝑏)

(𝐶 + 𝑉)(𝐶 − 𝑉)
 

 

𝑡1 =
(𝐶 − 𝑉)(2𝐿𝑎1 + 𝐿𝑎𝑢𝑥1) + (𝐶 + 𝑉)(𝐿𝑑 + 𝐿𝑐 + 𝐿𝑏)

(𝐶 − 𝑉)(𝐶 + 𝑉)
 

 As  𝐿𝑑 = 𝐿𝑏 

 

𝑡1 =
(𝐶 − 𝑉)(2𝐿𝑎1 + 𝐿𝑎𝑢𝑥1) + (𝐶 + 𝑉)(𝐿𝑐 + 2𝐿𝑏)

𝐶2 − 𝑉2  

 

𝑡1

=
2𝐿𝑎1𝐶 +  𝐿𝑎𝑢𝑥1𝐶 − 2𝐿𝑎1𝑉 − 𝐿𝑎𝑢𝑥1𝑉 + 𝐿𝑐𝐶 + 𝐿𝑐𝑉 + 2𝐿𝑏𝐶 + 2𝐿𝑏𝑉

𝐶2 − 𝑉2
 

 We organize the formula: 
𝑡1

=
2𝐿𝑎1𝐶 + 𝐿𝑐𝐶 + 2𝐿𝑏𝐶 + 𝐿𝑎𝑢𝑥1𝐶 + 𝐿𝑐𝑉 − 2𝐿𝑎1𝑉 + 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉

𝐶2 − 𝑉2  

 

 As 𝐿𝑐 = 2𝐿𝑎1 we obtain: 

𝑡1

=
𝐿𝑐𝐶 + 𝐿𝑐𝐶 + 2𝐿𝑏𝐶 +  𝐿𝑎𝑢𝑥1𝐶 + 𝐿𝑐𝑉 − 2𝐿𝑎1𝑉 + 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉

𝐶2 − 𝑉2
 

𝑡1

=
2𝐿𝑐𝐶 + 2𝐿𝑏𝐶 +  𝐿𝑎𝑢𝑥1𝐶 + 𝐿𝑐𝑉 − 2𝐿𝑎1𝑉 + 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉

𝐶2 − 𝑉2
 

𝑡1 =
2𝐿𝑐𝐶 + 2𝐿𝑏𝐶 +  𝐿𝑎𝑢𝑥1𝐶 + 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉

𝐶2 − 𝑉2
 

𝑡1 =
𝐶. (2𝐿𝑐 + 2𝐿𝑏 +  𝐿𝑎𝑢𝑥1) + 𝑉. (2𝐿𝑏 − 𝐿𝑎𝑢𝑥1)

𝐶2 − 𝑉2
 

 

 In addition, if we want to do the same 

calculation for red light, we obtain that 𝑡2 has this 

value (appendix[a]): 

 

𝑡2 =
𝐿𝑎3

𝐶 − 𝑉
+

𝐿𝑑

𝐶 + 𝑉
+

𝐿𝑐

𝐶 + 𝑉
+

𝐿𝑏

𝐶 + 𝑉
+

𝐿𝑎4

𝐶 − 𝑉
 

 

The only thing that changes is that where for 

𝑡1 it was 
𝐿

𝐶+𝑉
 now it is 

𝐿

𝐶−𝑉
 because the light beam is 

travelling in the opposite direction. In addition, we 

include two new variables, 𝐿𝑎3 (which is equal to 𝐿𝑎1) 

and 𝐿𝑎4 (which is not equal to 𝐿𝑎2). Therefore, we 

obtain: 

 

𝑡2 =
𝐶. (2𝐿𝑐 + 2𝐿𝑏 +  𝐿𝑎𝑢𝑥2) + 𝑉. (2𝐿𝑏 − 𝐿𝑎𝑢𝑥2)

𝐶2 − 𝑉2
 

 

Now we have found out the travel time of 

both light beams that is expected by Special 

relativity for the entire loop, we can obtain the travel 

time difference, which is:  

 

∆𝑡 = |𝑡1 −  𝑡2| 

Alternatively: 
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∆𝑡 = |
𝐶. (2𝐿𝑐 + 2𝐿𝑏 +  𝐿𝑎𝑢𝑥1) + 𝑉. (2𝐿𝑏 − 𝐿𝑎𝑢𝑥1)

𝐶2 − 𝑉2
− 

𝐶. (2𝐿𝑐 + 2𝐿𝑏 −  𝐿𝑎𝑢𝑥2) + 𝑉. (−2𝐿𝑏 − 𝐿𝑎𝑢𝑥2)

𝐶2 − 𝑉2
| 

∆𝑡 = |
(𝐶. (2𝐿𝑐 + 2𝐿𝑏 +  𝐿𝑎𝑢𝑥1) + 𝑉. (2𝐿𝑏 − 𝐿𝑎𝑢𝑥1)) − (𝐶. (2𝐿𝑐 + 2𝐿𝑏 −  𝐿𝑎𝑢𝑥2) + 𝑉. (−2𝐿𝑏 − 𝐿𝑎𝑢𝑥2))

𝐶2 − 𝑉2
| 

∆𝑡 = |
(2𝐿𝑐𝐶 + 2𝐿𝑏𝐶 + 𝐿𝑎𝑢𝑥1𝐶 + 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉) − (2𝐿𝑐𝐶 + 2𝐿𝑏𝐶 − 𝐿𝑎𝑢𝑥2𝐶 − 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥2𝑉)

𝐶2 − 𝑉2
| 

∆𝑡 = |
2𝐿𝑐𝐶 + 2𝐿𝑏𝐶 + 𝐿𝑎𝑢𝑥1𝐶 + 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉 − 2𝐿𝑐𝐶 − 2𝐿𝑏𝐶 + 𝐿𝑎𝑢𝑥2𝐶 + 2𝐿𝑏𝑉 + 𝐿𝑎𝑢𝑥2𝑉

𝐶2 − 𝑉2
| 

∆𝑡 = |
2𝐿𝑐𝐶 + 2𝐿𝑏𝐶 + 𝐿𝑎𝑢𝑥1𝐶 + 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉 − 2𝐿𝑐𝐶 − 2𝐿𝑏𝐶 + 𝐿𝑎𝑢𝑥2𝐶 + 2𝐿𝑏𝑉 + 𝐿𝑎𝑢𝑥2𝑉

𝐶2 − 𝑉2
| 

∆𝑡 = |
2𝐿𝑐𝐶 + 𝐿𝑎𝑢𝑥1𝐶 + 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉 − 2𝐿𝑐𝐶 + 𝐿𝑎𝑢𝑥2𝐶 + 2𝐿𝑏𝑉 + 𝐿𝑎𝑢𝑥2𝑉

𝐶2 − 𝑉2
| 

∆𝑡 = |
𝐿𝑎𝑢𝑥1𝐶 + 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉 + 𝐿𝑎𝑢𝑥2𝐶 + 2𝐿𝑏𝑉 + 𝐿𝑎𝑢𝑥2𝑉

𝐶2 − 𝑉2
| 

∆𝑡 = |
𝐿𝑎𝑢𝑥1𝐶 + 4𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉 + 𝐿𝑎𝑢𝑥2𝐶 + 𝐿𝑎𝑢𝑥2𝑉

𝐶2 − 𝑉2
| 

 We organize the formula: 

 

∆𝑡 = |
𝐿𝑎𝑢𝑥1𝐶 + 𝐿𝑎𝑢𝑥2𝐶 + 𝐿𝑎𝑢𝑥2𝑉 + 4𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥1𝑉

𝐶2 − 𝑉2
| 

 

∆𝑡 = |
𝐶. (𝐿𝑎𝑢𝑥1 + 𝐿𝑎𝑢𝑥2) + 𝑉. (𝐿𝑎𝑢𝑥2 + 4𝐿𝑏 − 𝐿𝑎𝑢𝑥1)

𝐶2 − 𝑉2
| 

 As 𝐶2 − 𝑉2 ≈ 𝐶2 : 

∆𝑡 ≈ |
𝐶. (𝐿𝑎𝑢𝑥1 + 𝐿𝑎𝑢𝑥2) + 𝑉. (𝐿𝑎𝑢𝑥2 + 4𝐿𝑏 − 𝐿𝑎𝑢𝑥1)

𝐶2
| 

 

 

 The formula above can be used by Special 

relativity to find out the total time difference 

between the red and green light to reach the 

detector. We can notice that it is longer than the 

formula that Wang et al. have used for their 

interferometer, which is: 

∆𝑡 ≈  
2𝐿𝑉

𝐶2
 

Consequently, Special relativity is not 

appropriate to describe the generalized Sagnac 

effect. 

Conclusion 

After the analysis we did above we can 

conclude that Special relativity is not appropriate to 

describe the generalized Sagnac effect. Wang et al. 

have made many experiments in order to verify if 

the classic formula of Sagnac effect can be applied 

to the generalized version of the effect. The results 

indicate that it is true. If apply relativity clock 

synchronization we obtain a total different formula.  
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Appendix 

[a] Look at figure 10 for a better understanding of the formula 

𝑡2 =
𝐿𝑎3

𝐶 − 𝑉
+

𝐿𝑑

𝐶 + 𝑉
+

𝐿𝑐

𝐶 + 𝑉
+

𝐿𝑏

𝐶 + 𝑉
+

𝐿𝑎4

𝐶 − 𝑉
 

 

 It is important to remark that La3 is not equal to La4 because we should remember that when the light 

beam is passing through La4 the detector is going to be a little bit further from its initial point, in other 

words, closer to the red light beam. Thus: 

𝐿𝑎4 = 𝐿𝑎3 − 𝐿𝑎𝑢𝑥2 

 Consequently: 

 

𝑡2 =
𝐿𝑎3

𝐶 − 𝑉
+

𝐿𝑑

𝐶 + 𝑉
+

𝐿𝑐

𝐶 + 𝑉
+

𝐿𝑏

𝐶 + 𝑉
+

𝐿𝑎3 − 𝐿𝑎𝑢𝑥2

𝐶 − 𝑉
 

 As: 

𝐿𝑎3

𝐶 − 𝑉
+

𝐿𝑎3 − 𝐿𝑎𝑢𝑥2

𝐶 − 𝑉
=

2𝐿𝑎3 − 𝐿𝑎𝑢𝑥2

𝐶 − 𝑉
 

 We obtain: 

 

𝑡2 =
2𝐿𝑎3 − 𝐿𝑎𝑢𝑥2

𝐶 − 𝑉
+

𝐿𝑑

𝐶 + 𝑉
+

𝐿𝑐

𝐶 + 𝑉
+

𝐿𝑏

𝐶 + 𝑉
 

 Then: 

𝑡2 =
2𝐿𝑎3 − 𝐿𝑎𝑢𝑥2

𝐶 − 𝑉
+

𝐿𝑑 + 𝐿𝑐 + 𝐿𝑏

𝐶 + 𝑉
 

 

𝑡2 =
(𝐶 + 𝑉)(2𝐿𝑎3 − 𝐿𝑎𝑢𝑥2)

(𝐶 + 𝑉)(𝐶 − 𝑉)
+

(𝐶 − 𝑉)(𝐿𝑑 + 𝐿𝑐 + 𝐿𝑏)

(𝐶 − 𝑉)(𝐶 + 𝑉)
 

 

𝑡2 =
(𝐶 + 𝑉)(2𝐿𝑎3 − 𝐿𝑎𝑢𝑥2) + (𝐶 − 𝑉)(𝐿𝑑 + 𝐿𝑐 + 𝐿𝑏)

(𝐶 − 𝑉)(𝐶 + 𝑉)
 

 As  𝐿𝑑 = 𝐿𝑏 
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𝑡2 =
(𝐶 + 𝑉)(2𝐿𝑎3 − 𝐿𝑎𝑢𝑥2) + (𝐶 − 𝑉)(𝐿𝑐 + 2𝐿𝑏)

𝐶2 − 𝑉2
 

 

𝑡2 =
(2𝐿𝑎3𝐶 − 𝐿𝑎𝑢𝑥2𝐶 + 2𝐿𝑎3𝑉 − 𝐿𝑎𝑢𝑥2𝑉) + (𝐿𝑐𝐶 − 𝐿𝑐𝑉 + 2𝐿𝑏𝐶 − 2𝐿𝑏𝑉)

𝐶2 − 𝑉2
 

 

𝑡2 =
2𝐿𝑎3𝐶 −  𝐿𝑎𝑢𝑥2𝐶 + 2𝐿𝑎3𝑉 − 𝐿𝑎𝑢𝑥2𝑉 + 𝐿𝑐𝐶 − 𝐿𝑐𝑉 + 2𝐿𝑏𝐶 − 2𝐿𝑏𝑉

𝐶2 − 𝑉2
 

 We organize the formula: 

 

𝑡2 =
2𝐿𝑎3𝐶 + 𝐿𝑐𝐶 + 2𝐿𝑏𝐶 −  𝐿𝑎𝑢𝑥2𝐶 + 2𝐿𝑎3𝑉 − 𝐿𝑐𝑉 − 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥2𝑉

𝐶2 − 𝑉2
 

 

 As 𝐿𝑐 = 2𝐿𝑎3 we obtain: 

 

𝑡2 =
𝐿𝑐𝐶 + 𝐿𝑐𝐶 + 2𝐿𝑏𝐶 − 𝐿𝑎𝑢𝑥2𝐶 + 2𝐿𝑎3𝑉 − 𝐿𝑐𝑉 − 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥2𝑉

𝐶2 − 𝑉2
 

 

𝑡2 =
2𝐿𝑐𝐶 + 2𝐿𝑏𝐶 −  𝐿𝑎𝑢𝑥2𝐶 + 2𝐿𝑎3𝑉 − 𝐿𝑐𝑉 − 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥2𝑉

𝐶2 − 𝑉2
 

 

𝑡2 =
2𝐿𝑐𝐶 + 2𝐿𝑏𝐶 −  𝐿𝑎𝑢𝑥2𝐶 − 2𝐿𝑏𝑉 − 𝐿𝑎𝑢𝑥2𝑉

𝐶2 − 𝑉2
 

 

𝑡2 =
𝐶. (2𝐿𝑐 + 2𝐿𝑏 −  𝐿𝑎𝑢𝑥2) + 𝑉. (−2𝐿𝑏 − 𝐿𝑎𝑢𝑥2)

𝐶2 − 𝑉2
 

 

 

 

 

 

 

 

 

 

 

Figure 10: complete travel of the red light beam. 
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