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PREFACE

The present book is intended, as far as possible, to give an exact
insight into the theory of Relativity to those readers who, from a
general scientific and philosophical point of view, are interested
in the theory, but who are not conversant with the mathematical
apparatus of theoretical physics. The work presumes a standard
of education corresponding to that of a university matriculation
examination, and, despite the shortness of the book, a fair
amount of patience and force of will on the part of the reader.
The author has spared himself no pains in his endeavour to
present the main ideas in the simplest and most intelligible
form, and on the whole, in the sequence and connection in
which they actually originated. In the interest of clearness, it
appeared to me inevitable that I should repeat myself frequently,
without paying the slightest attention to the elegance of the
presentation. I adhered scrupulously to the precept of that bril-
liant theoretical physicist L. Boltzmann, according to whom mat-
ters of elegance ought to be left to the tailor and to the cobbler. I
make no pretence of having withheld from the reader difficulties



which are inherent to the subject. On the other hand, I have
purposely treated the empirical physical foundations of the the-
ory in a “step-motherly” fashion, so that readers unfamiliar with
physics may not feel like the wanderer who was unable to see the
forest for trees. May the book bring some one a few happy hours
of suggestive thought!

December, 1916 A. EINSTEIN

NOTE TO THE FIFTEENTH EDITION

In this edition I have added, as a fifth appendix, a presentation of
my views on the problem of space in general and on the gradual
modifications of our ideas on space resulting from the influence
of the relativistic view-point. I wished to show that space-time is
not necessarily something to which one can ascribe a separate
existence, independently of the actual objects of physical reality.
Physical objects are not in space, but these objects are spatially
extended. In this way the concept “empty space” loses its meaning.

June 9th 1952 A. EINSTEIN

prefacex



Part I
The Special Theory of Relativity





1
PHYSICAL MEANING OF

GEOMETRICAL PROPOSITIONS

In your schooldays most of you who read this book made
acquaintance with the noble building of Euclid’s geometry, and
you remember—perhaps with more respect than love—the
magnificent structure, on the lofty staircase of which you were
chased about for uncounted hours by conscientious teachers. By
reason of your past experience, you would certainly regard
everyone with disdain who should pronounce even the most
out-of-the-way proposition of this science to be untrue. But
perhaps this feeling of proud certainty would leave you immedi-
ately if some one were to ask you: “What, then, do you mean by
the assertion that these propositions are true?” Let us proceed to
give this question a little consideration.

Geometry sets out from certain conceptions such as “plane,”
“point,” and “straight line,” with which we are able to associate
more or less definite ideas, and from certain simple propositions
(axioms) which, in virtue of these ideas, we are inclined to
accept as “true.” Then, on the basis of a logical process, the



justification of which we feel ourselves compelled to admit, all
remaining propositions are shown to follow from those axioms,
i.e. they are proven. A proposition is then correct (“true”) when
it has been derived in the recognised manner from the axioms.
The question of the “truth” of the individual geometrical pro-
positions is thus reduced to one of the “truth” of the axioms.
Now it has long been known that the last question is not only
unanswerable by the methods of geometry, but that it is in itself
entirely without meaning. We cannot ask whether it is true that
only one straight line goes through two points. We can only say
that Euclidean geometry deals with things called “straight
lines,” to each of which is ascribed the property of being
uniquely determined by two points situated on it. The concept
“true” does not tally with the assertions of pure geometry,
because by the word “true” we are eventually in the habit of
designating always the correspondence with a “real” object;
geometry, however, is not concerned with the relation of the
ideas involved in it to objects of experience, but only with the
logical connection of these ideas among themselves.

It is not difficult to understand why, in spite of this, we feel
constrained to call the propositions of geometry “true.” Geo-
metrical ideas correspond to more or less exact objects in nature,
and these last are undoubtedly the exclusive cause of the genesis
of those ideas. Geometry ought to refrain from such a course, in
order to give to its structure the largest possible logical unity.
The practice, for example, of seeing in a “distance” two marked
positions on a practically rigid body is something which is
lodged deeply in our habit of thought. We are accustomed fur-
ther to regard three points as being situated on a straight line, if
their apparent positions can be made to coincide for observation
with one eye, under suitable choice of our place of observation.

If, in pursuance of our habit of thought, we now supple-
ment the propositions of Euclidean geometry by the single
proposition that two points on a practically rigid body always

special theory of relativity4



correspond to the same distance (line-interval), independently
of any changes in position to which we may subject the body,
the propositions of Euclidean geometry then resolve themselves
into propositions on the possible relative position of practically
rigid bodies.1 Geometry which has been supplemented in this
way is then to be treated as a branch of physics. We can now
legitimately ask as to the “truth” of geometrical propositions
interpreted in this way, since we are justified in asking whether
these propositions are satisfied for those real things we have
associated with the geometrical ideas. In less exact terms we can
express this by saying that by the “truth” of a geometrical prop-
osition in this sense we understand its validity for a construction
with ruler and compasses.

Of course the conviction of the “truth” of geometrical pro-
positions in this sense is founded exclusively on rather
incomplete experience. For the present we shall assume the
“truth” of the geometrical propositions, then at a later stage (in
the general theory of relativity) we shall see that this “truth” is
limited, and we shall consider the extent of its limitation.

1 It follows that a natural object is associated also with a straight line. Three
points A, B and C on a rigid body thus lie in a straight line when, the points A
and C being given, B is chosen such that the sum of the distances AB and BC is
as short as possible. This incomplete suggestion will suffice for our present
purpose.

geometrical propositions 5



2
THE SYSTEM OF
CO-ORDINATES

On the basis of the physical interpretation of distance which has
been indicated, we are also in a position to establish the distance
between two points on a rigid body by means of measurements.
For this purpose we require a “distance” (rod S) which is to be
used once and for all, and which we employ as a standard
measure. If, now, A and B are two points on a rigid body, we
can construct the line joining them according to the rules of
geometry; then, starting from A, we can mark off the distance
S time after time until we reach B. The number of these opera-
tions required is the numerical measure of the distance AB. This
is the basis of all measurement of length.1

Every description of the scene of an event or of the position of

1 Here we have assumed that there is nothing left over, i.e. that the measurement
gives a whole number. This difficulty is got over by the use of divided
measuring-rods, the introduction of which does not demand any funda-
mentally new method.



an object in space is based on the specification of the point
on a rigid body (body of reference) with which that event or
object coincides. This applies not only to scientific description,
but also to everyday life. If I analyse the place specification
“Trafalgar Square, London,”1 I arrive at the following result.
The earth is the rigid body to which the specification of place
refers; “Trafalgar Square, London,” is a well-defined point, to
which a name has been assigned, and with which the event
coincides in space.2

This primitive method of place specification deals only with
places on the surface of rigid bodies, and is dependent on the
existence of points on this surface which are distinguishable
from each other. But we can free ourselves from both of these
limitations without altering the nature of our specification of
position. If, for instance, a cloud is hovering over Trafalgar
Square, then we can determine its position relative to the surface
of the earth by erecting a pole perpendicularly on the Square, so
that it reaches the cloud. The length of the pole measured with
the standard measuring-rod, combined with the specification of
the position of the foot of the pole, supplies us with a complete
place specification. On the basis of this illustration, we are able to
see the manner in which a refinement of the conception of
position has been developed.

(a) We imagine the rigid body, to which the place specifica-
tion is referred, supplemented in such a manner that the object
whose position we require is reached by the completed rigid
body.

(b) In locating the position of the object, we make use of a

1 I have chosen this as being more familiar to the English reader than the
“Potsdamer Platz, Berlin,” which is referred to in the original. (R. W.  L.)
2 It is not necessary here to investigate further the significance of the expression
“coincidence in space.” This conception is sufficiently obvious to ensure that
differences of opinion are scarcely likely to arise as to its applicability in
practice. 
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number (here the length of the pole measured with the
measuring-rod) instead of designated points of reference.

(c) We speak of the height of the cloud even when the pole
which reaches the cloud has not been erected. By means of
optical observations of the cloud from different positions on the
ground, and taking into account the properties of the propaga-
tion of light, we determine the length of the pole we should have
required in order to reach the cloud.

From this consideration we see that it will be advantageous if,
in the description of position, it should be possible by means of
numerical measures to make ourselves independent of the exist-
ence of marked positions (possessing names) on the rigid body
of reference. In the physics of measurement this is attained by
the application of the Cartesian system of co-ordinates.

This consists of three plane surfaces perpendicular to each
other and rigidly attached to a rigid body. Referred to as a system
of co-ordinates, the scene of any event will be determined (for
the main part) by the specification of the lengths of the three per-
pendiculars or co-ordinates (x, y, z) which can be dropped from
the scene of the event to those three plane surfaces. The lengths
of these three perpendiculars can be determined by a series of
manipulations with rigid measuring-rods performed according
to the rules and methods laid down by Euclidean geometry.

In practice, the rigid surfaces which constitute the system
of co-ordinates are generally not available; furthermore, the
magnitudes of the co-ordinates are not actually determined by
constructions with rigid rods, but by indirect means. If the
results of physics and astronomy are to maintain their clearness,
the physical meaning of specifications of position must always
be sought in accordance with the above considerations.1

1 A refinement and modification of these views does not become necessary
until we come to deal with the general theory of relativity, treated in the
second part of this book.

special theory of relativity8



We thus obtain the following result: Every description of
events in space involves the use of a rigid body to which such
events have to be referred. The resulting relationship takes for
granted that the laws of Euclidean geometry hold for “dis-
tances,” the “distance” being represented physically by means of
the convention of two marks on a rigid body.

the system of co-ordinates 9



3
SPACE AND TIME IN

CLASSICAL MECHANICS

The purpose of mechanics is to describe how bodies change
their position in space with “time.” I should load my conscience
with grave sins against the sacred spirit of lucidity were I to
formulate the aims of mechanics in this way, without serious
reflection and detailed explanations. Let us proceed to disclose
these sins.

It is not clear what is to be understood here by “position” and
“space.” I stand at the window of a railway carriage which is
travelling uniformly, and drop a stone on the embankment,
without throwing it. Then, disregarding the influence of the air
resistance, I see the stone descend in a straight line. A pedestrian
who observes the misdeed from the footpath notices that the
stone falls to earth in a parabolic curve. I now ask: Do the “posi-
tions” traversed by the stone lie “in reality” on a straight line or
on a parabola? Moreover, what is meant here by motion “in
space”? From the considerations of the previous section the
answer is self-evident. In the first place we entirely shun the



vague word “space,” of which, we must honestly acknowledge,
we cannot form the slightest conception, and we replace it by
“motion relative to a practically rigid body of reference.” The
positions relative to the body of reference (railway carriage or
embankment) have already been defined in detail in the preced-
ing section. If instead of “body of reference” we insert “system
of co-ordinates,” which is a useful idea for mathematical
description, we are in a position to say: The stone traverses a
straight line relative to a system of co-ordinates rigidly attached
to the carriage, but relative to a system of co-ordinates rigidly
attached to the ground (embankment) it describes a parabola.
With the aid of this example it is clearly seen that there is no
such thing as an independently existing trajectory (lit. “path-
curve”1), but only a trajectory relative to a particular body of
reference.

In order to have a complete description of the motion, we must
specify how the body alters its position with time; i.e. for every
point on the trajectory it must be stated at what time the body is
situated there. These data must be supplemented by such a defin-
ition of time that, in virtue of this definition, these time-values
can be regarded essentially as magnitudes (results of measure-
ments) capable of observation. If we take our stand on the
ground of classical mechanics, we can satisfy this requirement
for our illustration in the following manner. We imagine two
clocks of identical construction; the man at the railway-carriage
window is holding one of them, and the man on the footpath
the other. Each of the observers determines the position on his
own reference-body occupied by the stone at each tick of the
clock he is holding in his hand. In this connection we have not
taken account of the inaccuracy involved by the finiteness of the
velocity of propagation of light. With this and with a second
difficulty prevailing here we shall have to deal in detail later.

1 That is, a curve along which the body moves.
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4
THE GALILEIAN SYSTEM

OF CO-ORDINATES

As is well known, the fundamental law of the mechanics of
Galilei-Newton, which is known as the law of inertia, can be stated
thus: A body removed sufficiently far from other bodies con-
tinues in a state of rest or of uniform motion in a straight line.
This law not only says something about the motion of the
bodies, but it also indicates the reference-bodies or systems of
co-ordinates, permissible in mechanics, which can be used in
mechanical description. The visible fixed stars are bodies for
which the law of inertia certainly holds to a high degree of
approximation. Now if we use a system of co-ordinates which is
rigidly attached to the earth, then, relative to this system, every
fixed star describes a circle of immense radius in the course of an
astronomical day, a result which is opposed to the statement of
the law of inertia. So that if we adhere to this law we must refer
these motions only to systems of co-ordinates relative to which
the fixed stars do not move in a circle. A system of co-ordinates
of which the state of motion is such that the law of inertia holds



relative to it is called a “Galileian system of co-ordinates.” The
laws of the mechanics of Galilei-Newton can be regarded as
valid only for a Galileian system of co-ordinates.

the galileian system of co-ordinates 13



5
THE PRINCIPLE OF RELATIVITY

(IN THE RESTRICTED SENSE)

In order to attain the greatest possible clearness, let us return to
our example of the railway carriage supposed to be travelling
uniformly. We call its motion a uniform translation (“uniform”
because it is of constant velocity and direction, “translation”
because although the carriage changes its position relative to the
embankment yet it does not rotate in so doing). Let us imagine a
raven flying through the air in such a manner that its motion, as
observed from the embankment, is uniform and in a straight
line. If we were to observe the flying raven from the moving
railway carriage, we should find that the motion of the raven
would be one of different velocity and direction, but that it
would still be uniform and in a straight line. Expressed in an
abstract manner we may say: If a mass m is moving uniformly in
a straight line with respect to a co-ordinate system K, then it will
also be moving uniformly and in a straight line relative to a
second co-ordinate system K′, provided that the latter is exe-
cuting a uniform translatory motion with respect to K. In



accordance with the discussion contained in the preceding
section, it follows that:

If K is a Galileian co-ordinate system, then every other co-
ordinate system K′ is a Galileian one, when, in relation to K, it is
in a condition of uniform motion of translation. Relative to K′
the mechanical laws of Galilei-Newton hold good exactly as
they do with respect to K.

We advance a step farther in our generalisation when we
express the tenet thus: If, relative to K, K′ is a uniformly moving
co-ordinate system devoid of rotation, then natural phenomena
run their course with respect to K′ according to exactly the same
general laws as with respect to K. This statement is called the
principle of relativity (in the restricted sense).

As long as one was convinced that all natural phenomena
were capable of representation with the help of classical
mechanics, there was no need to doubt the validity of this
principle of relativity. But in view of the more recent devel-
opment of electrodynamics and optics it became more and
more evident that classical mechanics affords an insufficient
foundation for the physical description of all natural phenom-
ena. At this juncture the question of the validity of the prin-
ciple of relativity became ripe for discussion, and it did not
appear impossible that the answer to this question might be in
the negative.

Nevertheless, there are two general facts which at the outset
speak very much in favour of the validity of the principle of
relativity. Even though classical mechanics does not supply us
with a sufficiently broad basis for the theoretical presentation of
all physical phenomena, still we must grant it a considerable
measure of “truth,” since it supplies us with the actual motions
of the heavenly bodies with a delicacy of detail little short of
wonderful. The principle of relativity must therefore apply with
great accuracy in the domain of mechanics. But that a principle of
such broad generality should hold with such exactness in one
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domain of phenomena, and yet should be invalid for another, is
a priori not very probable.

We now proceed to the second argument, to which, more-
over, we shall return later. If the principle of relativity (in the
restricted sense) does not hold, then the Galileian co-ordinate
systems K, K′, K″, etc., which are moving uniformly relative to
each other, will not be equivalent for the description of natural
phenomena. In this case we should be constrained to believe that
natural laws are capable of being formulated in a particularly
simple manner, and of course only on condition that, from
amongst all possible Galileian co-ordinate systems, we should
have chosen one (K0) of a particular state of motion as our body of
reference. We should then be justified (because of its merits for
the description of natural phenomena) in calling this system
“absolutely at rest,” and all other Galileian systems K “in
motion.” If, for instance, our embankment were the system K0,
then our railway carriage would be a system K, relative to which
less simple laws would hold than with respect to K0. This dimin-
ished simplicity would be due to the fact that the carriage K
would be in motion (i.e. “really”) with respect to K0. In the
general laws of nature which have been formulated with refer-
ence to K, the magnitude and direction of the velocity of the
carriage would necessarily play a part. We should expect, for
instance, that the note emitted by an organ-pipe placed with its
axis parallel to the direction of travel would be different from
that emitted if the axis of the pipe were placed perpendicular to
this direction. Now in virtue of its motion in an orbit round the
sun, our earth is comparable with a railway carriage travelling
with a velocity of about 30 kilometres per second. If the prin-
ciple of relativity were not valid we should therefore expect that
the direction of motion of the earth at any moment would enter
into the laws of nature, and also that physical systems in their
behaviour would be dependent on the orientation in space with
respect to the earth. For owing to the alteration in direction of
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the velocity of revolution of the earth in the course of a year, the
earth cannot be at rest relative to the hypothetical system K0

throughout the whole year. However, the most careful observa-
tions have never revealed such anisotropic properties in terres-
trial physical space, i.e. a physical non-equivalence of different
directions. This is a very powerful argument in favour of the
principle of relativity.

the principle of relativity 17



6
THE THEOREM OF THE

ADDITION OF VELOCITIES
EMPLOYED IN CLASSICAL

MECHANICS

Let us suppose our old friend the railway carriage to be travelling
along the rails with a constant velocity v, and that a man traverses
the length of the carriage in the direction of travel with a velocity
w. How quickly or, in other words, with what velocity W does
the man advance relative to the embankment during the process?
The only possible answer seems to result from the following
consideration: If the man were to stand still for a second, he
would advance relative to the embankment through a distance v
equal numerically to the velocity of the carriage. As a con-
sequence of his walking, however, he traverses an additional
distance w relative to the carriage, and hence also relative to the
embankment, in this second, the distance w being numerically
equal to the velocity with which he is walking. Thus in total he
covers the distance W = v + w relative to the embankment in the



second considered. We shall see later that this result, which
expresses the theorem of the addition of velocities employed in
classical mechanics, cannot be maintained; in other words, the
law that we have just written down does not hold in reality. For
the time being, however, we shall assume its correctness.

classical mechanics 19



7
THE APPARENT

INCOMPATIBILITY OF THE
LAW OF PROPAGATION OF

LIGHT WITH THE PRINCIPLE
OF RELATIVITY

There is hardly a simpler law in physics than that according to
which light is propagated in empty space. Every child at school
knows, or believes he knows, that this propagation takes place in
straight lines with a velocity c = 300,000 km./sec. At all events
we know with great exactness that this velocity is the same for all
colours, because if this were not the case, the minimum of emis-
sion would not be observed simultaneously for different colours
during the eclipse of a fixed star by its dark neighbour. By means
of similar considerations based on observations of double stars,
the Dutch astronomer De Sitter was also able to show that the
velocity of propagation of light cannot depend on the velocity of
motion of the body emitting the light. The assumption that this



velocity of propagation is dependent on the direction “in space”
is in itself improbable.

In short, let us assume that the simple law of the constancy of the
velocity of light c (in vacuum) is justifiably believed by the child at
school. Who would imagine that this simple law has plunged the
conscientiously thoughtful physicist into the greatest intellectual
difficulties? Let us consider how these difficulties arise.

Of course we must refer the process of the propagation of
light (and indeed every other process) to a rigid reference-body
(co-ordinate system). As such a system let us again choose our
embankment. We shall imagine the air above it to have been
removed. If a ray of light be sent along the embankment, we see
from the above that the tip of the ray will be transmitted with the
velocity c relative to the embankment. Now let us suppose that
our railway carriage is again travelling along the railway lines
with the velocity v, and that its direction is the same as that of the
ray of light, but its velocity of course much less. Let us inquire
about the velocity of propagation of the ray of light relative to
the carriage. It is obvious that we can here apply the consider-
ation of the previous section, since the ray of light plays the part
of the man walking along relatively to the carriage. The velocity
W of the man relative to the embankment is here replaced by the
velocity of light relative to the embankment. w is the required
velocity of light with respect to the carriage, and we have

w = c − v.

The velocity of propagation of a ray of light relative to the
carriage thus comes out smaller than c.

But this result comes into conflict with the principle of relativ-
ity set forth in Section 5. For, like every other general law of
nature, the law of the transmission of light in vacuo must, accord-
ing to the principle of relativity, be the same for the railway
carriage as reference-body as when the rails are the body of
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reference. But, from our above consideration, this would appear
to be impossible. If every ray of light is propagated relative to the
embankment with the velocity c, then for this reason it would
appear that another law of propagation of light must necessarily
hold with respect to the carriage—a result contradictory to the
principle of relativity.

In view of this dilemma there appears to be nothing else for it
than to abandon either the principle of relativity or the simple
law of the propagation of light in vacuo. Those of you who have
carefully followed the preceding discussion are almost sure to
expect that we should retain the principle of relativity, which
appeals so convincingly to the intellect because it is so natural
and simple. The law of the propagation of light in vacuo would
then have to be replaced by a more complicated law conformable
to the principle of relativity. The development of theoretical
physics shows, however, that we cannot pursue this course. The
epoch-making theoretical investigations of H. A. Lorentz on the
electrodynamical and optical phenomena connected with mov-
ing bodies show that experience in this domain leads conclu-
sively to a theory of electromagnetic phenomena, of which the
law of the constancy of the velocity of light in vacuo is a necessary
consequence. Prominent theoretical physicists were therefore
more inclined to reject the principle of relativity, in spite of
the fact that no empirical data had been found which were
contradictory to this principle.

At this juncture the theory of relativity entered the arena. As a
result of an analysis of the physical conceptions of time and
space, it became evident that in reality there is not the least incompatibil-
ity between the principle of relativity and the law of propagation of light, and
that by systematically holding fast to both these laws a logically
rigid theory could be arrived at. This theory has been called the
special theory of relativity to distinguish it from the extended theory,
with which we shall deal later. In the following pages we shall
present the fundamental ideas of the special theory of relativity.
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8
ON THE IDEA OF TIME

IN PHYSICS

Lightning has struck the rails on our railway embankment at two
places A and B far distant from each other. I make the additional
assertion that these two lightning flashes occurred simul-
taneously. If I ask you whether there is sense in this statement,
you will answer my question with a decided “Yes.” But if I now
approach you with the request to explain to me the sense of the
statement more precisely, you find after some consideration that
the answer to this question is not so easy as it appears at first sight.

After some time perhaps the following answer would occur to
you: “The significance of the statement is clear in itself and
needs no further explanation; of course it would require some
consideration if I were to be commissioned to determine by
observations whether in the actual case the two events took place
simultaneously or not.” I cannot be satisfied with this answer for
the following reason. Supposing that as a result of ingenious
considerations an able meteorologist were to discover that the
lightning must always strike the places A and B simultaneously,



then we should be faced with the task of testing whether or not
this theoretical result is in accordance with the reality. We
encounter the same difficulty with all physical statements in
which the conception “simultaneous” plays a part. The concept
does not exist for the physicist until he has the possibility of
discovering whether or not it is fulfilled in an actual case. We
thus require a definition of simultaneity such that this definition
supplies us with the method by means of which, in the present
case, he can decide by experiment whether or not both the
lightning strokes occurred simultaneously. As long as this
requirement is not satisfied, I allow myself to be deceived as a
physicist (and of course the same applies if I am not a physicist),
when I imagine that I am able to attach a meaning to the state-
ment of simultaneity. (I would ask the reader not to proceed
farther until he is fully convinced on this point.)

After thinking the matter over for some time you then offer
the following suggestion with which to test simultaneity. By
measuring along the rails, the connecting line AB should be
measured up and an observer placed at the mid-point M of the
distance AB. This observer should be supplied with an arrange-
ment (e.g. two mirrors inclined at 90°) which allows him visu-
ally to observe both places A and B at the same time. If the
observer perceives the two flashes of lightning at the same time,
then they are simultaneous.

I am very pleased with this suggestion, but for all that I cannot
regard the matter as quite settled, because I feel constrained to
raise the following objection: “Your definition would certainly
be right, if only I knew that the light by means of which the
observer at M perceives the lightning flashes travels along the
length A → M with the same velocity as along the length B → M.
But an examination of this supposition would only be possible if
we already had at our disposal the means of measuring time. It
would thus appear as though we were moving here in a logical
circle.”
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After further consideration you cast a somewhat disdainful
glance at me—and rightly so—and you declare: “I maintain my
previous definition nevertheless, because in reality it assumes
absolutely nothing about light. There is only one demand to be
made of the definition of simultaneity, namely, that in every real
case it must supply us with an empirical decision as to whether
or not the conception that has to be defined is fulfilled. That my
definition satisfies this demand is indisputable. That light
requires the same time to traverse the path A → M as for the path
B → M is in reality neither a supposition nor a hypothesis about the
physical nature of light, but a stipulation which I can make of my
own freewill in order to arrive at a definition of simultaneity.”

It is clear that this definition can be used to give an exact
meaning not only to two events, but to as many events as we care
to choose, and independently of the positions of the scenes of
the events with respect to the body of reference1 (here the rail-
way embankment). We are thus led also to a definition of “time”
in physics. For this purpose we suppose that clocks of identical
construction are placed at the points A, B and C of the railway
line (co-ordinate system), and that they are set in such a manner
that the positions of their pointers are simultaneously (in the
above sense) the same. Under these conditions we understand by
the “time” of an event the reading (position of the hands) of
that of one of these clocks which is in the immediate vicinity (in
space) of the event. In this manner a time-value is associated
with every event which is essentially capable of observation.

This stipulation contains a further physical hypothesis, the

1 We suppose further, that, when three events A, B and C occur in different
places in such a manner that A is simultaneous with B, and B is simultaneous
with C (simultaneous in the sense of the above definition), then the criterion
for the simultaneity of the pair of events A, C is also satisfied. This assumption
is a physical hypothesis about the law of propagation of light; it must certainly
be fulfilled if we are to maintain the law of the constancy of the velocity of
light in vacuo.
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validity of which will hardly be doubted without empirical evi-
dence to the contrary. It has been assumed that all these clocks
go at the same rate if they are of identical construction. Stated more
exactly: When two clocks arranged at rest in different places of a
reference-body are set in such a manner that a particular position
of the pointers of the one clock is simultaneous (in the above sense)
with the same position of the pointers of the other clock, then
identical “settings” are always simultaneous (in the sense of the
above definition).
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9
THE RELATIVITY OF

SIMULTANEITY

Up to now our considerations have been referred to a particular
body of reference, which we have styled a “railway embank-
ment.” We suppose a very long train travelling along the rails
with the constant velocity v and in the direction indicated in Fig.
I. People travelling in this train will with advantage use the train

as a rigid reference-body (co-ordinate system); they regard
all events in reference to the train. Then every event which
takes place along the line also takes place at a particular point of
the train. Also the definition of simultaneity can be given relative
to the train in exactly the same way as with respect to the

Figure 1



embankment. As a natural consequence, however, the following
question arises:

Are two events (e.g. the two strokes of lightning A and B)
which are simultaneous with reference to the railway embankment also
simultaneous relatively to the train? We shall show directly that the
answer must be in the negative.

When we say that the lightning strokes A and B are simul-
taneous with respect to the embankment, we mean: the rays of
light emitted at the places A and B, where the lightning occurs,
meet each other at the mid-point M of the length A → B of the
embankment. But the events A and B also correspond to posi-
tions A and B on the train. Let M′ be the mid-point of the distance
A → B on the travelling train. Just when the flashes1 of lightning
occur, this point M′ naturally coincides with the point M, but it
moves towards the right in the diagram with the velocity v of the
train. If an observer sitting in the position M′ in the train did not
possess this velocity, then he would remain permanently at M,
and the light rays emitted by the flashes of lightning A and B
would reach him simultaneously, i.e. they would meet just
where he is situated. Now in reality (considered with reference
to the railway embankment) he is hastening towards the beam
of light coming from B, whilst he is riding on ahead of the beam
of light coming from A. Hence the observer will see the beam of
light emitted from B earlier than he will see that emitted from A.
Observers who take the railway train as their reference-body
must therefore come to the conclusion that the lightning flash B
took place earlier than the lightning flash A. We thus arrive at the
important result:

Events which are simultaneous with reference to the
embankment are not simultaneous with respect to the train, and
vice versa (relativity of simultaneity). Every reference-body (co-
ordinate system) has its own particular time; unless we are told

1 As judged from the embankment.
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the reference-body to which the statement of time refers, there is
no meaning in a statement of the time of an event.

Now before the advent of the theory of relativity it had always
tacitly been assumed in physics that the statement of time had an
absolute significance, i.e. that it is independent of the state of
motion of the body of reference. But we have just seen that this
assumption is incompatible with the most natural definition of
simultaneity; if we discard this assumption, then the conflict
between the law of the propagation of light in vacuo and the
principle of relativity (developed in Section 7) disappears.

We were led to that conflict by the considerations of Section
6, which are now no longer tenable. In that section we con-
cluded that the man in the carriage, who traverses the distance w
per second relative to the carriage, traverses the same distance also
with respect to the embankment in each second of time. But,
according to the foregoing considerations, the time required by
a particular occurrence with respect to the carriage must not be
considered equal to the duration of the same occurrence as
judged from the embankment (as reference-body). Hence it
cannot be contended that the man in walking travels the distance
w relative to the railway line in a time which is equal to one
second as judged from the embankment.

Moreover, the considerations of Section 6 are based on yet a
second assumption, which, in the light of a strict consideration,
appears to be arbitrary, although it was always tacitly made even
before the introduction of the theory of relativity.
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10
ON THE RELATIVITY OF THE
CONCEPTION OF DISTANCE

Let us consider two particular points on the train1 travelling
along the embankment with the velocity v, and inquire as to
their distance apart. We already know that it is necessary to have
a body of reference for the measurement of a distance, with
respect to which body the distance can be measured up. It is the
simplest plan to use the train itself as reference-body (co-
ordinate system). An observer in the train measures the interval
by marking off his measuring-rod in a straight line (e.g. along
the floor of the carriage) as many times as is necessary to take
him from the one marked point to the other. Then the number
which tells us how often the rod has to be laid down is the
required distance.

It is a different matter when the distance has to be judged
from the railway line. Here the following method suggests itself.
If we call A′ and B′ the two points on the train whose distance

1 e.g. the middle of the first and of the twentieth carriage.



apart is required, then both of these points are moving with the
velocity v along the embankment. In the first place we require to
determine the points A and B of the embankment which are just
being passed by the two points A′ and B′ at a particular time t—
judged from the embankment. These points A and B of the
embankment can be determined by applying the definition of
time given in Section 8. The distance between these points A
and B is then measured by repeated application of the
measuring-rod along the embankment.

A priori it is by no means certain that this last measurement will
supply us with the same result as the first. Thus the length of the
train as measured from the embankment may be different from
that obtained by measuring in the train itself. This circumstance
leads us to a second objection which must be raised against the
apparently obvious consideration of Section 6. Namely, if the
man in the carriage covers the distance w in a unit of time—
measured from the train,—then this distance—as measured from the
embankment—is not necessarily also equal to w.
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11
THE LORENTZ

TRANSFORMATION

The results of the last three sections show that the apparent
incompatibility of the law of propagation of light with the prin-
ciple of relativity (Section 7) has been derived by means of a
consideration which borrowed two unjustifiable hypotheses
from classical mechanics; these are as follows:

(1) The time-interval (time) between two events is independ-
ent of the condition of motion of the body of reference.

(2) The space-interval (distance) between two points of a
rigid body is independent of the condition of motion of
the body of reference.

If we drop these hypotheses, then the dilemma of Section 7
disappears, because the theorem of the addition of velocities
derived in Section 6 becomes invalid. The possibility presents
itself that the law of the propagation of light in vacuo may be
compatible with the principle of relativity, and the question



arises: How have we to modify the considerations of Section 6
in order to remove the apparent disagreement between these
two fundamental results of experience? This question leads to a
general one. In the discussion of Section 6 we have to do with
places and times relative both to the train and to the embank-
ment. How are we to find the place and time of an event in
relation to the train, when we know the place and time of the
event with respect to the railway embankment? Is there a think-
able answer to this question of such a nature that the law of
transmission of light in vacuo does not contradict the principle of
relativity? In other words: Can we conceive of a relation between
place and time of the individual events relative to both reference-
bodies, such that every ray of light possesses the velocity of
transmission c relative to the embankment and relative to the
train? This question leads to a quite definite positive answer, and
to a perfectly definite transformation law for the space-time
magnitudes of an event when changing over from one body of
reference to another.

Before we deal with this, we shall introduce the following
incidental consideration. Up to the present we have only con-
sidered events taking place along the embankment, which had
mathematically to assume the function of a straight line. In the
manner indicated in Section 2 we can imagine this reference-
body supplemented laterally and in a vertical direction by means
of a framework of rods, so that an event which takes place any-
where can be localised with reference to this framework. Simi-
larly, we can imagine the train travelling with the velocity v to be
continued across the whole of space, so that every event, no
matter how far off it may be, could also be localised with respect
to the second framework. Without committing any fundamental
error we can disregard the fact that in reality these frameworks
would continually interfere with each other, owing to the
impenetrability of solid bodies. In every such framework we
imagine three surfaces perpendicular to each other marked out,
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and designated as “co-ordinate planes” (“co-ordinate system”).
A co-ordinate system K then corresponds to the embankment,
and a co-ordinate system K′ to the train. An event, wherever it
may have taken place, would be fixed in space with respect to K
by the three perpendiculars x, y, z on the co-ordinate planes, and
with regard to time by a time-value t. Relative to K′, the same event
would be fixed in respect of space and time by corresponding
values x′ , y′, z′, t′, which of course are not identical with x, y, z, t.
It has already been set forth in detail how these magnitudes are
to be regarded as results of physical measurements.

Obviously our problem can be exactly formulated in the fol-
lowing manner. What are the values x′, y′, z′, t′, of an event with
respect to K′, when the magnitudes x, y, z, t, of the same event
with respect to K are given? The relations must be so chosen that
the law of the transmission of light in vacuo is satisfied for one and
the same ray of light (and of course for every ray) with respect to
K and K′. For the relative orientation in space of the co-ordinate
systems indicated in the diagram (Fig. 2), this problem is solved
by means of the equations:

x′ =
x − vt

�1 −
v2

c2

Figure 2
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y′ = y
z′ = z

t′ =
t −

v

c2
.x

�1 −
v2

c2

This system of equations is known as the “Lorentz
transformation.”1

If in place of the law of transmission of light we had taken as
our basis the tacit assumptions of the older mechanics as to the
absolute character of times and lengths, then instead of the
above we should have obtained the following equations:

x′ = x − vt
y′ = y
z′ = z
t′ = t.

This system of equations is often termed the “Galilei transform-
ation.” The Galilei transformation can be obtained from the
Lorentz transformation by substituting an infinitely large value
for the velocity of light c in the latter transformation.

Aided by the following illustration, we can readily see that, in
accordance with the Lorentz transformation, the law of the
transmission of light in vacuo is satisfied both for the reference-
body K and for the reference-body K′. A light-signal is sent
along the positive x-axis, and this light-stimulus advances in
accordance with the equation

x = ct,

1 A simple derivation of the Lorentz transformation is given in Appendix 1.
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i.e. with the velocity c. According to the equations of the Lorentz
transformation, this simple relation between x and t involves a
relation between x′ and t′. In point of fact, if we substitute for
x the value ct in the first and fourth equations of the Lorentz
transformation, we obtain:

x′ =
(c − v)t

�1 −
v2

c2

t′ =
�1 −

v

c �t

�1 −
v2

c2

,

from which, by division, the expression

x′ = ct′

immediately follows. If referred to the system K′, the propagation
of light takes place according to this equation. We thus see that
the velocity of transmission relative to the reference-body K′ is
also equal to c. The same result is obtained for rays of light
advancing in any other direction whatsoever. Of course this is
not surprising, since the equations of the Lorentz transformation
were derived conformably to this point of view.
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12
THE BEHAVIOUR OF

MEASURING-RODS AND
CLOCKS IN MOTION

I place a metre-rod in the x′-axis of K′ in such a manner that one
end (the beginning) coincides with the point x′ = 0, whilst the
other end (the end of the rod) coincides with the point x′ = 1.
What is the length of the metre-rod relative to the system K? In
order to learn this, we need only ask where the beginning of the
rod and the end of the rod lie with respect to K at a particular
time t of the system K. By means of the first equation of the
Lorentz transformation the values of these two points at the time
t = 0 can be shown to be

x(beginning of rod) = 0�1 −
v2

c2

x(end of rod) = 1.�1 −
v2

c2
,



the distance between the points being �1 −
v2

c2
. But the metre-

rod is moving with the velocity v relative to K. It therefore fol-
lows that the length of a rigid metre-rod moving in the direction
of its length with a velocity v is �1 − v2/c2 of a metre. The rigid
rod is thus shorter when in motion than when at rest, and the
more quickly it is moving, the shorter is the rod. For the velocity
v = c we should have �1 − v2/c2 = 0 and for still greater velocities
the square-root becomes imaginary. From this we conclude that
in the theory of relativity the velocity c plays the part of a limit-
ing velocity, which can neither be reached nor exceeded by any
real body.

Of course this feature of the velocity c as a limiting velocity
also clearly follows from the equations of the Lorentz transform-
ation, for these become meaningless if we choose values of v
greater than c.

If, on the contrary, we had considered a metre-rod at rest in
the x-axis with respect to K, then we should have found that the
length of the rod as judged from K′ would have been �1 − v2/c2;
this is quite in accordance with the principle of relativity which
forms the basis of our considerations.

A priori it is quite clear that we must be able to learn something
about the physical behaviour of measuring-rods and clocks from
the equations of transformation, for the magnitudes x, y, z, t, are
nothing more nor less than the results of measurements obtain-
able by means of measuring-rods and clocks. If we had based our
considerations on the Galileian transformation we should not
have obtained a contraction of the rod as a consequence of its
motion.

Let us now consider a seconds-clock which is permanently
situated at the origin (x′ = 0) of K′. t′ = 0 and t′ = 1 are two succes-
sive ticks of this clock. The first and fourth equations of the
Lorentz transformation give for these two ticks:
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t = 0

and

t =
1

�1 −
v2

c2

As judged from K, the clock is moving with the velocity v; as
judged from this reference-body, the time which elapses
between two strokes of the clock is not one second, but

1

�1 −
v2

c2

 seconds, i.e. a somewhat larger time. As a con-

sequence of its motion the clock goes more slowly than when at
rest. Here also the velocity c plays the part of an unattainable
limiting velocity.

rods and clocks in motion 39



13
THEOREM OF THE ADDITION

OF VELOCITIES. THE
EXPERIMENT OF FIZEAU

Now in practice we can move clocks and measuring-rods only
with velocities that are small compared with the velocity of light;
hence we shall hardly be able to compare the results of the
previous section directly with the reality. But, on the other hand,
these results must strike you as being very singular, and for that
reason I shall now draw another conclusion from the theory, one
which can easily be derived from the foregoing considerations,
and which has been most elegantly confirmed by experiment.

In Section 6 we derived the theorem of the addition of
velocities in one direction in the form which also results from
the hypotheses of classical mechanics. This theorem can also be
deduced readily from the Galilei transformation (Section 11). In
place of the man walking inside the carriage, we introduce
a point moving relatively to the co-ordinate system K′ in
accordance with the equation



x′ = wt′.

By means of the first and fourth equations of the Galilei trans-
formation we can express x′ and t′ in terms of x and t, and we
then obtain

x = (v + w)t.

This equation expresses nothing else than the law of motion
of the point with reference to the system K (of the man with
reference to the embankment). We denote this velocity by the
symbol W, and we then obtain, as in Section 6,

W = v + w . . . (A).

But we can carry out this consideration just as well on the
basis of the theory of relativity. In the equation

x′ = wt′

we must then express x′ and t′ in terms of x and t, making use of
the first and fourth equations of the Lorentz transformation. Instead
of the equation (A) we then obtain the equation

W =
v + w

1 +
vw

c2

. . . (B),

which corresponds to the theorem of addition for velocities in
one direction according to the theory of relativity. The question
now arises as to which of these two theorems is the better in
accord with experience. On this point we are enlightened by a
most important experiment which the brilliant physicist Fizeau
performed more than half a century ago, and which has been
repeated since then by some of the best experimental physicists,
so that there can be no doubt about its result. The experiment is
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concerned with the following question. Light travels in a
motionless liquid with a particular velocity w. How quickly does
it travel in the direction of the arrow in the tube T (see the
accompanying diagram, Fig. 3) when the liquid above men-
tioned is flowing through the tube with a velocity v?

In accordance with the principle of relativity we shall cer-
tainly have to take for granted that the propagation of light
always takes place with the same velocity w with respect to the liquid,
whether the latter is in motion with reference to other bodies or
not. The velocity of light relative to the liquid and the velocity of
the latter relative to the tube are thus known, and we require the
velocity of light relative to the tube.

It is clear that we have the problem of Section 6 again before
us. The tube plays the part of the railway embankment or of the
co-ordinate system K, the liquid plays the part of the carriage or
of the co-ordinate system K′, and finally, the light plays the part
of the man walking along the carriage, or of the moving point in
the present section. If we denote the velocity of the light relative
to the tube by W, then this is given by the equation (A) or (B),
according as the Galilei transformation or the Lorentz trans-
formation corresponds to the facts. Experiment1 decides in

Figure 3

1 Fizeau found W = w + v�1 −
1

n2�, where n =
c

w
 is the index of refraction of the

liquid. On the other hand, owing to the smallness of 
vw

c2
  as compared with 1,

we can replace (B) in the first place by W = (w + v)�1 −
vw

c2�, or to the same

order of approximation by w + v�1 −
1

n2�. which agrees with Fizeau’s result.
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favour of equation (B) derived from the theory of relativity, and
the agreement is, indeed, very exact. According to recent and
most excellent measurements by Zeeman, the influence of the
velocity of flow v on the propagation of light is represented by
formula (B) to within one per cent.

Nevertheless we must now draw attention to the fact that a
theory of this phenomenon was given by H. A. Lorentz long
before the statement of the theory of relativity. This theory was
of a purely electrodynamical nature, and was obtained by the use
of particular hypotheses as to the electromagnetic structure of
matter. This circumstance, however, does not in the least dimin-
ish the conclusiveness of the experiment as a crucial test in
favour of the theory of relativity, for the electrodynamics of
Maxwell–Lorentz, on which the original theory was based, in no
way opposes the theory of relativity. Rather has the latter been
developed from electrodynamics as an astoundingly simple
combination and generalisation of the hypotheses, formerly
independent of each other, on which electrodynamics was built.
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14
THE HEURISTIC VALUE OF THE

THEORY OF RELATIVITY

Our train of thought in the foregoing pages can be epitomised in
the following manner. Experience has led to the conviction that,
on the one hand, the principle of relativity holds true and that
on the other hand the velocity of transmission of light in vacuo has
to be considered equal to a constant c. By uniting these two
postulates we obtained the law of transformation for the rect-
angular co-ordinates x, y, z and the time t of the events which
constitute the processes of nature. In this connection we did not
obtain the Galilei transformation, but, differing from classical
mechanics, the Lorentz transformation.

The law of transmission of light, the acceptance of which is
justified by our actual knowledge, played an important part in
this process of thought. Once in possession of the Lorentz trans-
formation, however, we can combine this with the principle of
relativity, and sum up the theory thus:

Every general law of nature must be so constituted that it is
transformed into a law of exactly the same form when, instead



of the space-time variables x, y, z, t of the original co-ordinate
system K, we introduce new space-time variables x′, y′, z′, t′ of a
co-ordinate system K′. In this connection the relation between
the ordinary and the accented magnitudes is given by the
Lorentz transformation. Or in brief: General laws of nature are
co-variant with respect to Lorentz transformations.

This is a definite mathematical condition that the theory of
relativity demands of a natural law, and in virtue of this, the
theory becomes a valuable heuristic aid in the search for general
laws of nature. If a general law of nature were to be found which
did not satisfy this condition, then at least one of the two fun-
damental assumptions of the theory would have been disproved.
Let us now examine what general results the latter theory has
hitherto evinced.
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15
GENERAL RESULTS OF

THE THEORY

It is clear from our previous considerations that the (special)
theory of relativity has grown out of electrodynamics and optics.
In these fields it has not appreciably altered the predictions of
theory, but it has considerably simplified the theoretical struc-
ture, i.e. the derivation of laws, and—what is incomparably more
important—it has considerably reduced the number of
independent hypotheses forming the basis of theory. The special
theory of relativity has rendered the Maxwell-Lorentz theory so
plausible, that the latter would have been generally accepted by
physicists even if experiment had decided less unequivocally in
its favour.

Classical mechanics required to be modified before it could
come into line with the demands of the special theory of relativ-
ity. For the main part, however, this modification affects only the
laws for rapid motions, in which the velocities of matter v are
not very small as compared with the velocity of light. We have
experience of such rapid motions only in the case of electrons



and ions; for other motions the variations from the laws of clas-
sical mechanics are too small to make themselves evident in
practice. We shall not consider the motion of stars until we come
to speak of the general theory of relativity. In accordance with
the theory of relativity the kinetic energy of a material point of
mass m is no longer given by the well-known expression

m =
v2

2
,

but by the expression

mc2

�1 −
v2

c2 

.

This expression approaches infinity as the velocity v approaches
the velocity of light c. The velocity must therefore always remain
less than c, however great may be the energies used to produce
the acceleration. If we develop the expression for the kinetic
energy in the form of a series, we obtain

mc2 + m
v2

2
+

3

8
m

v4

c2
+ . . . .

When 
v2

c2
 is small compared with unity, the third of these

terms is always small in comparison with the second, which last
is alone considered in classical mechanics. The first term mc2

does not contain the velocity, and requires no consideration if
we are only dealing with the question as to how the energy of
a point-mass depends on the velocity. We shall speak of its
essential significance later.
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The most important result of a general character to which the
special theory of relativity has led is concerned with the concep-
tion of mass. Before the advent of relativity, physics recognised
two conservation laws of fundamental importance, namely, the
law of the conservation of energy and the law of the conserva-
tion of mass; these two fundamental laws appeared to be quite
independent of each other. By means of the theory of relativity
they have been united into one law. We shall now briefly con-
sider how this unification came about, and what meaning is to
be attached to it.

The principle of relativity requires that the law of the conser-
vation of energy should hold not only with reference to a co-
ordinate system K, but also with respect to every co-ordinate
system K′ which is in a state of uniform motion of translation
relative to K, or, briefly, relative to every “Galileian” system of
co-ordinates. In contrast to classical mechanics, the Lorentz
transformation is the deciding factor in the transition from one
such system to another.

By means of comparatively simple considerations we are led
to draw the following conclusion from these premises, in con-
junction with the fundamental equations of the electrodynamics
of Maxwell: A body moving with the velocity v, which absorbs1

an amount of energy E0 in the form of radiation without suffer-
ing an alteration in velocity in the process, has, as a consequence,
its energy increased by an amount

E0

�1 −
v2

c2

.

In consideration of the expression given above for the kinetic

1 E0 is the energy taken up, as judged from a co-ordinate system moving with
the body.
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energy of the body, the required energy of the body comes out
to be

�m +
E0

c2�c2

�1 −
v2

c2

.

Thus the body has the same energy as a body of mass �m +
E0

c2�
moving with the velocity v. Hence we can say: If a body takes
up an amount of energy E0 then its inertial mass increases by an

amount 
E0

c2
; the inertial mass of a body is not a constant, but

varies according to the change in the energy of the body. The
inertial mass of a system of bodies can even be regarded as a
measure of its energy. The law of the conservation of the mass of
a system becomes identical with the law of the conservation of
energy, and is only valid provided that the system neither takes
up nor sends out energy. Writing the expression for the energy
in the form

mc2 + E0

�1 −
v2

c2

,

we see that the term mc2, which has hitherto attracted our atten-
tion, is nothing else than the energy possessed by the body1

before it absorbed the energy E0.
A direct comparison of this relation with experiment is not

possible at the present time (1920; see Note, p. 50), owing to the

1 As judged from a co-ordinate system moving with the body.
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fact that the changes in energy E0 to which we can subject a
system are not large enough to make themselves perceptible as a

change in the inertial mass of the system. 
E0

c2
 is too small in

comparison with the mass m, which was present before the
alteration of the energy. It is owing to this circumstance that
classical mechanics was able to establish successfully the conser-
vation of mass as a law of independent validity.

Let me add a final remark of a fundamental nature. The suc-
cess of the Faraday–Maxwell interpretation of electromagnetic
action at a distance resulted in physicists becoming convinced
that there are no such things as instantaneous actions at a dis-
tance (not involving an intermediary medium) of the type of
Newton’s law of gravitation. According to the theory of relativ-
ity, action at a distance with the velocity of light always takes the
place of instantaneous action at a distance or of action at a dis-
tance with an infinite velocity of transmission. This is connected
with the fact that the velocity c plays a fundamental rôle in this
theory. In Part II we shall see in what way this result becomes
modified in the general theory of relativity.

N.—With the advent of nuclear transformation processes, which result
from the bombardment of elements by α-particles, protons, deuterons, neu-
trons or γ-rays, the equivalence of mass and energy expressed by the relation
E = mc2 has been amply confirmed. The sum of the reacting masses, together
with the mass equivalent of the kinetic energy of the bombarding particle (or
photon), is always greater than the sum of the resulting masses. The difference
is the equivalent mass of the kinetic energy of the particles generated, or of the
released electromagnetic energy (γ-photons). In the same way, the mass of a
spontaneously disintegrating radioactive atom is always greater than the sum of
the masses of the resulting atoms by the mass equivalent of the kinetic energy
of the particles generated (or of the photonic energy). Measurements of the
energy of the rays emitted in nuclear reactions, in combination with the equa-
tions of such reactions, render it possible to evaluate atomic weights to a high
degree of accuracy.

R. W. L.
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16
EXPERIENCE AND THE SPECIAL

THEORY OF RELATIVITY

To what extent is the special theory of relativity supported by
experience? This question is not easily answered for the reason
already mentioned in connection with the fundamental experi-
ment of Fizeau. The special theory of relativity has crystallised
out from the Maxwell–Lorentz theory of electromagnetic phe-
nomena. Thus all facts of experience which support the electro-
magnetic theory also support the theory of relativity. As being of
particular importance, I mention here the fact that the theory of
relativity enables us to predict the effects produced on the light
reaching us from the fixed stars. These results are obtained in an
exceedingly simple manner, and the effects indicated, which are
due to the relative motion of the earth with reference to those
fixed stars, are found to be in accord with experience. We refer
to the yearly movement of the apparent position of the fixed
stars resulting from the motion of the earth round the sun (aber-
ration), and to the influence of the radial components of the
relative motions of the fixed stars with respect to the earth on



the colour of the light reaching us from them. The latter effect
manifests itself in a slight displacement of the spectral lines of
the light transmitted to us from a fixed star, as compared with
the position of the same spectral lines when they are produced
by a terrestrial source of light (Doppler principle). The experi-
mental arguments in favour of the Maxwell-Lorentz theory,
which are at the same time arguments in favour of the theory of
relativity, are too numerous to be set forth here. In reality they
limit the theoretical possibilities to such an extent, that no other
theory than that of Maxwell and Lorentz has been able to hold its
own when tested by experience.

But there are two classes of experimental facts hitherto
obtained which can be represented in the Maxwell-Lorentz
theory only by the introduction of an auxiliary hypothesis,
which in itself—i.e. without making use of the theory of
relativity—appears extraneous.

It is known that cathode rays and the so-called β-rays emitted
by radioactive substances consist of negatively electrified par-
ticles (electrons) of very small inertia and large velocity. By
examining the deflection of these rays under the influence of
electric and magnetic fields, we can study the law of motion of
these particles very exactly.

In the theoretical treatment of these electrons, we are faced
with the difficulty that electrodynamic theory of itself is unable
to give an account of their nature. For since electrical masses of
one sign repel each other, the negative electrical masses consti-
tuting the electron would necessarily be scattered under the
influence of their mutual repulsions, unless there are forces of
another kind operating between them, the nature of which has
hitherto remained obscure to us.1 If we now assume that the
relative distances between the electrical masses constituting the

1 The general theory of relativity renders it likely that the electrical masses of
an electron are held together by gravitational forces.
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electron remain unchanged during the motion of the electron
(rigid connection in the sense of classical mechanics), we arrive
at a law of motion of the electron which does not agree with
experience. Guided by purely formal points of view, H. A.
Lorentz was the first to introduce the hypothesis that the form of
the electron experiences a contraction in the direction of motion
in consequence of that motion, the contracted length being pro-

portional to the expression �1 -
v2

c2
. This hypothesis, which is

not justifiable by any electrodynamical facts, supplies us then
with that particular law of motion which has been confirmed
with great precision in recent years.

The theory of relativity leads to the same law of motion,
without requiring any special hypothesis whatsoever as to the
structure and the behaviour of the electron. We arrived at a
similar conclusion in Section 13 in connection with the
experiment of Fizeau, the result of which is foretold by the
theory of relativity without the necessity of drawing on
hypotheses as to the physical nature of the liquid.

The second class of facts to which we have alluded has refer-
ence to the question whether or not the motion of the earth in
space can be made perceptible in terrestrial experiments. We
have already remarked in Section 5 that all attempts of this
nature led to a negative result. Before the theory of relativity was
put forward, it was dificult to become reconciled to this negative
result, for reasons now to be discussed. The inherited prejudices
about time and space did not allow any doubt to arise as to the
prime importance of the Galileian transformation for changing
over from one body of reference to another. Now assuming that
the Maxwell–Lorentz equations hold for a reference-body K, we
then find that they do not hold for a reference-body K′ moving
uniformly with respect to K, if we assume that the relations of
the Galileian transformation exist between the co-ordinates of K
and K′. It thus appears that, of all Galileian co-ordinate systems,
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one (K) corresponding to a particular state of motion is physic-
ally unique. This result was interpreted physically by regarding K
as at rest with respect to a hypothetical æther of space. On the
other hand, all co-ordinate systems K′ moving relatively to K
were to be regarded as in motion with respect to the æther. To
this motion of K′ against the æther (“æther-drift” relative to K′)
were attributed the more complicated laws which were sup-
posed to hold relative to K′. Strictly speaking, such an æther-drift
ought also to be assumed relative to the earth, and for a long
time the efforts of physicists were devoted to attempts to detect
the existence of an æther-drift at the earth’s surface.

In one of the most notable of these attempts Michelson
devised a method which appears as though it must be decisive.
Imagine two mirrors so arranged on a rigid body that the reflect-
ing surfaces face each other. A ray of light requires a perfectly
definite time T to pass from one mirror to the other and back
again, if the whole system be at rest with respect to the æther. It
is found by calculation, however, that a slightly different time T′
is required for this process, if the body, together with the mir-
rors, be moving relatively to the æther. And yet another point: it
is shown by calculation that for a given velocity v with reference
to the æther, this time T′ is different when the body is moving
perpendicularly to the planes of the mirrors from that resulting
when the motion is parallel to these planes. Although the esti-
mated difference between these two times is exceedingly small,
Michelson and Morley performed an experiment involving
interference in which this difference should have been clearly
detectable. But the experiment gave a negative result—a fact very
perplexing to physicists. Lorentz and FitzGerald rescued the the-
ory from this difficulty by assuming that the motion of the body
relative to the æther produces a contraction of the body in the
direction of motion, the amount of contraction being just suf-
ficient to compensate for the difference in time mentioned
above. Comparison with the discussion in Section 12 shows that
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also from the standpoint of the theory of relativity this solution
of the difficulty was the right one. But on the basis of the theory
of relativity the method of interpretation is incomparably more
satisfactory. According to this theory there is no such thing as a
“specially favoured” (unique) co-ordinate system to occasion
the introduction of the æther-idea, and hence there can be no
æther-drift, nor any experiment with which to demonstrate it.
Here the contraction of moving bodies follows from the two
fundamental principles of the theory, without the introduction
of particular hypotheses; and as the prime factor involved in this
contraction we find, not the motion in itself, to which we cannot
attach any meaning, but the motion with respect to the body of
reference chosen in the particular case in point. Thus for a co-
ordinate system moving with the earth the mirror system of
Michelson and Morley is not shortened, but it is shortened for a
co-ordinate system which is at rest relatively to the sun.
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17
MINKOWSKI’S FOUR-
DIMENSIONAL SPACE

The non-mathematician is seized by a mysterious shuddering
when he hears of “four-dimensional” things, by a feeling not
unlike that awakened by thoughts of the occult. And yet there is
no more common-place statement than that the world in which
we live is a four-dimensional space-time continuum.

Space is a three-dimensional continuum. By this we mean that
it is possible to describe the position of a point (at rest) by
means of three numbers (co-ordinates) x, y, z, and that there is
an indefinite number of points in the neighbourhood of this
one, the position of which can be described by co-ordinates
such as x1, y1, z1, which may be as near as we choose to the
respective values of the co-ordinates x, y, z of the first point. In
virtue of the latter property we speak of a “continuum,” and
owing to the fact that there are three co-ordinates we speak of it
as being “three-dimensional.”

Similarly, the world of physical phenomena which was briefly
called “world” by Minkowski is naturally four-dimensional in



the space-time sense. For it is composed of individual events,
each of which is described by four numbers, namely, three space
co-ordinates x, y, z and a time co-ordinate, the time-value t. The
“world” is in this sense also a continuum; for to every event
there are as many “neighbouring” events (realised or at least
thinkable) as we care to choose, the co-ordinates x1, y1, z1, t1
which differ by an indefinitely small amount from those of the
event x, y, z, t originally considered. That we have not been
accustomed to regard the world in this sense as a four-
dimensional continuum is due to the fact that in physics, before
the advent of the theory of relativity, time played a different and
more independent rôle, as compared with the space co-
ordinates. It is for this reason that we have been in the habit of
treating time as an independent continuum. As a matter of fact,
according to classical mechanics, time is absolute, i.e. it is
independent of the position and the condition of motion of the
system of co-ordinates. We see this expressed in the last equation
of the Galileian transformation (t′ = t).

The four-dimensional mode of consideration of the “world”
is natural on the theory of relativity, since according to this
theory time is robbed of its independence. This is shown by the
fourth equation of the Lorentz transformation:

t′ =
t −

v

c2
x

�1 −
v2

c2

.

Moreover, according to this equation the time difference ∆t′ of
two events with respect to K′ does not in general vanish, even
when the time difference ∆t of the same events with reference to
K vanishes. Pure “space-distance” of two events with respect to K
results in “time-distance” of the same events with respect to K′.
But the discovery of Minkowski, which was of importance for
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the formal development of the theory of relativity, does not lie
here. It is to be found rather in the fact of his recognition that the
four-dimensional space-time continuum of the theory of relativ-
ity, in its most essential formal properties, shows a pronounced
relationship to the three-dimensional continuum of Euclidean
geometrical space.1 In order to give due prominence to this
relationship, however, we must replace the usual time co-
ordinate t by an imaginary magnitude �− 1.ct proportional to it.
Under these conditions, the natural laws satisfying the demands
of the (special) theory of relativity assume mathematical forms,
in which the time co-ordinate plays exactly the same role as the
three space co-ordinates. Formally, these four co-ordinates
correspond exactly to the three space co-ordinates in Euclidean
geometry. It must be clear even to the non-mathematician that,
as a consequence of this purely formal addition to our know-
ledge, the theory perforce gained clearness in no mean measure.

These inadequate remarks can give the reader only a vague
notion of the important idea contributed by Minkowski. With-
out it the general theory of relativity, of which the fundamental
ideas are developed in the following pages, would perhaps have
got no farther than its long clothes. Minkowski’s work is doubt-
less difficult of access to anyone inexperienced in mathematics,
but since it is not necessary to have a very exact grasp of this
work in order to understand the fundamental ideas of either the
special or the general theory of relativity, I shall leave it there at
present, and revert to it only towards the end of Part II.

1 Cf. the somewhat more detailed discussion in Appendix 2.
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Part II
The General Theory of Relativity





18
SPECIAL AND GENERAL

PRINCIPLE OF RELATIVITY

The basal principle, which was the pivot of all our previous
considerations, was the special principle of relativity, i.e. the prin-
ciple of the physical relativity of all uniform motion. Let us once
more analyse its meaning carefully.

It was at all times clear that, from the point of view of the idea
it conveys to us, every motion must be considered only as a
relative motion. Returning to the illustration we have frequently
used of the embankment and the railway carriage, we can
express the fact of the motion here taking place in the following
two forms, both of which are equally justifiable:

(a) The carriage is in motion relative to the embankment.
(b) The embankment is in motion relative to the carriage.

In (a) the embankment, in (b) the carriage, serves as the body
of reference in our statement of the motion taking place. If it is
simply a question of detecting or of describing the motion



involved, it is in principle immaterial to what reference-body we
refer the motion. As already mentioned, this is self-evident, but
it must not be confused with the much more comprehensive
statement called “the principle of relativity,” which we have
taken as the basis of our investigations.

The principle we have made use of not only maintains that we
may equally well choose the carriage or the embankment as our
reference-body for the description of any event (for this, too, is
self-evident). Our principle rather asserts what follows: If we
formulate the general laws of nature as they are obtained from
experience, by making use of

(a) the embankment as reference-body,
(b) the railway carriage as reference-body,

then these general laws of nature (e.g. the laws of mechanics or
the law of the propagation of light in vacuo) have exactly the same
form in both cases. This can also be expressed as follows: For the
physical description of natural processes, neither of the reference-
bodies K, K′ is unique (lit. “specially marked out”) as compared
with the other. Unlike the first, this latter statement need not of
necessity hold a priori; it is not contained in the conceptions of
“motion” and “reference-body” and derivable from them; only
experience can decide as to its correctness or incorrectness.

Up to the present, however, we have by no means maintained the
equivalence of all bodies of reference K in connection with the
formulation of natural laws. Our course was more on the follow-
ing lines. In the first place, we started out from the assumption
that there exists a reference-body K, whose condition of motion
is such that the Galileian law holds with respect to it: A particle
left to itself and sufficiently far removed from all other particles
moves uniformly in a straight line. With reference to K (Galileian
reference-body) the laws of nature were to be as simple as pos-
sible. But in addition to K, all bodies of reference K′ should be
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given preference in this sense, and they should be exactly equiva-
lent to K for the formulation of natural laws, provided that they
are in a state of uniform rectilinear and non-rotary motion with respect to
K; all these bodies of reference are to be regarded as Galileian
reference-bodies. The validity of the principle of relativity was
assumed only for these reference-bodies, but not for others (e.g.
those possessing motion of a different kind). In this sense we
speak of the special principle of relativity, or special theory of
relativity.

In contrast to this we wish to understand by the “general
principle of relativity” the following statement: All bodies of
reference K, K′, etc., are equivalent for the description of natural
phenomena (formulation of the general laws of nature), what-
ever may be their state of motion. But before proceeding farther,
it ought to be pointed out that this formulation must be replaced
later by a more abstract one, for reasons which will become
evident at a later stage.

Since the introduction of the special principle of relativity has
been justified, every intellect which strives after generalisation
must feel the temptation to venture the step towards the general
principle of relativity. But a simple and apparently quite reliable
consideration seems to suggest that, for the present at any rate,
there is little hope of success in such an attempt. Let us imagine
ourselves transferred to our old friend the railway carriage,
which is travelling at a uniform rate. As long as it is moving
uniformly, the occupant of the carriage is not sensible of its
motion, and it is for this reason that he can without reluctance
interpret the facts of the case as indicating that the carriage is at
rest, but the embankment in motion. Moreover, according to the
special principle of relativity, this interpretation is quite justified
also from a physical point of view.

If the motion of the carriage is now changed into a non-
uniform motion, as for instance by a powerful application of
the brakes, then the occupant of the carriage experiences a
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correspondingly powerful jerk forwards. The retarded motion is
manifested in the mechanical behaviour of bodies relative to the
person in the railway carriage. The mechanical behaviour is dif-
ferent from that of the case previously considered, and for this
reason it would appear to be impossible that the same mechan-
ical laws hold relatively to the non-uniformly moving carriage,
as hold with reference to the carriage when at rest or in uniform
motion. At all events it is clear that the Galileian law does not
hold with respect to the non-uniformly moving carriage.
Because of this, we feel compelled at the present juncture to
grant a kind of absolute physical reality to non-uniform motion,
in opposition to the general principle of relativity. But in what
follows we shall soon see that this conclusion cannot be
maintained.
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19
THE GRAVITATIONAL FIELD

“If we pick up a stone and then let it go, why does it fall to the
ground?” The usual answer to this question is: “Because it is
attracted by the earth.” Modern physics formulates the answer
rather differently for the following reason. As a result of the
more careful study of electromagnetic phenomena, we have
come to regard action at a distance as a process impossible with-
out the intervention of some intermediary medium. If, for
instance, a magnet attracts a piece of iron, we cannot be content
to regard this as meaning that the magnet acts directly on the
iron through the intermediate empty space, but we are con-
strained to imagine—after the manner of Faraday—that the
magnet always calls into being something physically real in the
space around it, that something being what we call a “magnetic
field.” In its turn this magnetic field operates on the piece of
iron, so that the latter strives to move towards the magnet. We
shall not discuss here the justification for this incidental concep-
tion, which is indeed a somewhat arbitrary one. We shall only
mention that with its aid electromagnetic phenomena can be



theoretically represented much more satisfactorily than without
it, and this applies particularly to the transmission of electro-
magnetic waves. The effects of gravitation also are regarded in an
analogous manner.

The action of the earth on the stone takes place indirectly. The
earth produces in its surroundings a gravitational field, which
acts on the stone and produces its motion of fall. As we know
from experience, the intensity of the action on a body dimin-
ishes according to a quite definite law, as we proceed farther and
farther away from the earth. From our point of view this means:
The law governing the properties of the gravitational field in
space must be a perfectly definite one, in order correctly to
represent the diminution of gravitational action with the dis-
tance from operative bodies. It is something like this: The body
(e.g. the earth) produces a field in its immediate neighbourhood
directly; the intensity and direction of the field at points farther
removed from the body are thence determined by the law which
governs the properties in space of the gravitational fields
themselves.

In contrast to electric and magnetic fields, the gravitational
field exhibits a most remarkable property, which is of funda-
mental importance for what follows. Bodies which are moving
under the sole influence of a gravitational field receive an
acceleration, which does not in the least depend either on the material or on
the physical state of the body. For instance, a piece of lead and a piece
of wood fall in exactly the same manner in a gravitational field
(in vacuo), when they start off from rest or with the same initial
velocity. This law, which holds most accurately, can be expressed
in a different form in the light of the following consideration.

According to Newton’s law of motion, we have

(Force) = (inertial mass) × (acceleration),

where the “inertial mass” is a characteristic constant of the
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accelerated body. If now gravitation is the cause of the accelera-
tion, we then have

(Force) = (gravitational mass) × (intensity of the
gravitational field),

where the “gravitational mass” is likewise a characteristic
constant for the body. From these two relations follows:

(acceleration) =
(gravitational mass)

(inertial mass)
× (intensity of the

gravitational field).

If now, as we find from experience, the acceleration is to be
independent of the nature and the condition of the body and
always the same for a given gravitational field, then the ratio of
the gravitational to the inertial mass must likewise be the same
for all bodies. By a suitable choice of units we can thus make this
ratio equal to unity. We then have the following law: The
gravitational mass of a body is equal to its inertial mass.

It is true that this important law had hitherto been recorded in
mechanics, but it had not been interpreted. A satisfactory interpret-
ation can be obtained only if we recognise the following fact: The
same quality of a body manifests itself according to circumstances
as “inertia” or as “weight” (lit. “heaviness”). In the following
section we shall show to what extent this is actually the case, and
how this question is connected with the general postulate of
relativity.
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20
THE EQUALITY OF INERTIAL
AND GRAVITATIONAL MASS

AS AN ARGUMENT FOR
THE GENERAL POSTULATE

OF RELATIVITY

We imagine a large portion of empty space, so far removed from
stars and other appreciable masses, that we have before us
approximately the conditions required by the fundamental law
of Galilei. It is then possible to choose a Galileian reference-body
for this part of space (world), relative to which points at rest
remain at rest and points in motion continue permanently in
uniform rectilinear motion. As reference-body let us imagine a
spacious chest resembling a room with an observer inside who
is equipped with apparatus. Gravitation naturally does not exist
for this observer. He must fasten himself with strings to the floor,
otherwise the slightest impact against the floor will cause him to
rise slowly towards the ceiling of the room.



To the middle of the lid of the chest is fixed externally a hook
with rope attached, and now a “being” (what kind of a being is
immaterial to us) begins pulling at this with a constant force.
The chest together with the observer then begin to move
“upwards” with a uniformly accelerated motion. In course of
time their velocity will reach unheard-of values—provided that
we are viewing all this from another reference-body which is
not being pulled with a rope.

But how does the man in the chest regard the process? The
acceleration of the chest will be transmitted to him by the reac-
tion of the floor of the chest. He must therefore take up this
pressure by means of his legs if he does not wish to be laid out
full length on the floor. He is then standing in the chest in
exactly the same way as anyone stands in a room of a house on
our earth. If he release a body which he previously had in his
hand, the acceleration of the chest will no longer be transmitted
to this body, and for this reason the body will approach the floor
of the chest with an accelerated relative motion. The observer
will further convince himself that the acceleration of the body towards the
floor of the chest is always of the same magnitude, whatever kind of body he may
happen to use for the experiment.

Relying on his knowledge of the gravitational field (as it was
discussed in the preceding section), the man in the chest will
thus come to the conclusion that he and the chest are in a gravi-
tational field which is constant with regard to time. Of course he
will be puzzled for a moment as to why the chest does not fall in
this gravitational field. Just then, however, he discovers the hook
in the middle of the lid of the chest and the rope which is
attached to it, and he consequently comes to the conclusion that
the chest is suspended at rest in the gravitational field.

Ought we to smile at the man and say that he errs in his
conclusion? I do not believe we ought to if we wish to remain
consistent; we must rather admit that his mode of grasping the
situation violates neither reason nor known mechanical laws.
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Even though it is being accelerated with respect to the “Galileian
space” first considered, we can nevertheless regard the chest as
being at rest. We have thus good grounds for extending the prin-
ciple of relativity to include bodies of reference which are acceler-
ated with respect to each other, and as a result we have gained a
powerful argument for a generalised postulate of relativity.

We must note carefully that the possibility of this mode of
interpretation rests on the fundamental property of the gravi-
tational field of giving all bodies the same acceleration, or, what
comes to the same thing, on the law of the equality of inertial
and gravitational mass. If this natural law did not exist, the man
in the accelerated chest would not be able to interpret the
behaviour of the bodies around him on the supposition of a
gravitational field, and he would not be justified on the grounds
of experience in supposing his reference-body to be “at rest.”

Suppose that the man in the chest fixes a rope to the inner side
of the lid, and that he attaches a body to the free end of the rope.
The result of this will be to stretch the rope so that it will hang
“vertically” downwards. If we ask for an opinion of the cause of
tension in the rope, the man in the chest will say: “The sus-
pended body experiences a downward force in the gravitational
field, and this is neutralised by the tension of the rope; what
determines the magnitude of the tension of the rope is the gravi-
tational mass of the suspended body.” On the other hand, an
observer who is poised freely in space will interpret the condi-
tion of things thus: “The rope must perforce take part in the
accelerated motion of the chest, and it transmits this motion to
the body attached to it. The tension of the rope is just large
enough to effect the acceleration of the body. That which
determines the magnitude of the tension of the rope is the inertial
mass of the body.” Guided by this example, we see that our
extension of the principle of relativity implies the necessity of the
law of the equality of inertial and gravitational mass. Thus we
have obtained a physical interpretation of this law.
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From our consideration of the accelerated chest we see that a
general theory of relativity must yield important results on the
laws of gravitation. In point of fact, the systematic pursuit of
the general idea of relativity has supplied the laws satisfied by the
gravitational field. Before proceeding farther, however, I must
warn the reader against a misconception suggested by these con-
siderations. A gravitational field exists for the man in the chest,
despite the fact that there was no such field for the co-ordinate
system first chosen. Now we might easily suppose that the exist-
ence of a gravitational field is always only an apparent one. We
might also think that, regardless of the kind of gravitational field
which may be present, we could always choose another
reference-body such that no gravitational field exists with refer-
ence to it. This is by no means true for all gravitational fields, but
only for those of quite special form. It is, for instance, impossible
to choose a body of reference such that, as judged from it, the
gravitational field of the earth (in its entirety) vanishes.

We can now appreciate why that argument is not convincing,
which we brought forward against the general principle of rela-
tivity at the end of Section 18. It is certainly true that the obser-
ver in the railway carriage experiences a jerk forwards as a result
of the application of the brake, and that he recognises in this
the non-uniformity of motion (retardation) of the carriage. But
he is compelled by nobody to refer this jerk to a “real” acceler-
ation (retardation) of the carriage. He might also interpret his
experience thus: “My body of reference (the carriage) remains
permanently at rest. With reference to it, however, there exists
(during the period of application of the brakes) a gravitational
field which is directed forwards and which is variable with
respect to time. Under the influence of this field, the embank-
ment together with the earth moves non-uniformly in such a
manner that their original velocity in the backwards direction is
continuously reduced.”
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21
IN WHAT RESPECTS ARE
THE FOUNDATIONS OF

CLASSICAL MECHANICS AND
OF THE SPECIAL THEORY

OF RELATIVITY
UNSATISFACTORY?

We have already stated several times that classical mechanics
starts out from the following law: Material particles sufficiently
far removed from other material particles continue to move uni-
formly in a straight line or continue in a state of rest. We have
also repeatedly emphasised that this fundamental law can only
be valid for bodies of reference K which possess certain unique
states of motion, and which are in uniform translational motion
relative to each other. Relative to other reference-bodies K the
law is not valid. Both in classical mechanics and in the special
theory of relativity we therefore differentiate between reference-
bodies K relative to which the recognised “laws of nature” can be



said to hold, and reference-bodies K relative to which these laws
do not hold.

But no person whose mode of thought is logical can rest
satisfied with this condition of things. He asks: “How does it
come that certain reference-bodies (or their states of motion)
are given priority over other reference-bodies (or their states of
motion)? What is the reason for this preference? In order to show clearly
what I mean by this question, I shall make use of a comparison.

I am standing in front of a gas range. Standing alongside of
each other on the range are two pans so much alike that one may
be mistaken for the other. Both are half full of water. I notice that
steam is being emitted continuously from the one pan, but not
from the other. I am surprised at this, even if I have never seen
either a gas range or a pan before. But if I now notice a luminous
something of bluish colour under the first pan but not under the
other, I cease to be astonished, even if I have never before seen a
gas flame. For I can only say that this bluish something will cause
the emission of the steam, or at least possibly it may do so. If,
however, I notice the bluish something in neither case, and if I
observe that the one continuously emits steam whilst the other
does not, then I shall remain astonished and dissatisfied until I
have discovered some circumstance to which I can attribute the
different behaviour of the two pans.

Analogously, I seek in vain for a real something in classical
mechanics (or in the special theory of relativity) to which I can
attribute the different behaviour of bodies considered with
respect to the reference-systems K and K′.1 Newton saw this
objection and attempted to invalidate it, but without success. But
E. Mach recognised it most clearly of all, and because of this
objection he claimed that mechanics must be placed on a new

1 The objection is of importance more especially when the state of motion of
the reference-body is of such a nature that it does not require any external
agency for its maintenance, e.g. in the case when the reference-body is rotating
uniformly.
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basis. It can only be got rid of by means of a physics which
is conformable to the general principle of relativity, since the
equations of such a theory hold for every body of reference,
whatever may be its state of motion.
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22
A FEW INFERENCES

FROM THE GENERAL
PRINCIPLE OF

RELATIVITY

The considerations of Section 20 show that the general principle
of relativity puts us in a position to derive properties of the
gravitational field in a purely theoretical manner. Let us suppose,
for instance, that we know the space-time “course” for any nat-
ural process whatsoever, as regards the manner in which it takes
place in the Galileian domain relative to a Galileian body of
reference K. By means of purely theoretical operations (i.e. sim-
ply by calculation) we are then able to find how this known
natural process appears, as seen from a reference-body K′ which
is accelerated relatively to K. But since a gravitational field exists
with respect to this new body of reference K′, our consideration
also teaches us how the gravitational field influences the process
studied.

For example, we learn that a body which is in a state of



uniform rectilinear motion with respect to K (in accordance
with the law of Galilei) is executing an accelerated and in
general curvilinear motion with respect to the accelerated
reference-body K′ (chest). This acceleration or curvature
corresponds to the influence on the moving body of the
gravitational field prevailing relatively to K′. It is known that a
gravitational field influences the movement of bodies in this
way, so that our consideration supplies us with nothing
essentially new.

However, we obtain a new result of fundamental import-
ance when we carry out the analogous consideration for a ray
of light. With respect to the Galileian reference-body K, such a
ray of light is transmitted rectilinearly with the velocity c. It
can easily be shown that the path of the same ray of light is
no longer a straight line when we consider it with reference
to the accelerated chest (reference-body K′). From this we
conclude, that, in general, rays of light are propagated curvilinearly in
gravitational fields. In two respects this result is of great
importance.

In the first place, it can be compared with the reality.
Although a detailed examination of the question shows that
the curvature of light rays required by the general theory of
relativity is only exceedingly small for the gravitational fields
at our disposal in practice, its estimated magnitude for light
rays passing the sun at grazing incidence is nevertheless 1.7
seconds of arc. This ought to manifest itself in the following
way. As seen from the earth, certain fixed stars appear to be in
the neighbourhood of the sun, and are thus capable of obser-
vation during a total eclipse of the sun. At such times, these
stars ought to appear to be displaced outwards from the sun
by an amount indicated above, as compared with their appar-
ent position in the sky when the sun is situated at another
part of the heavens. The examination of the correctness or
otherwise of this deduction is a problem of the greatest

the general theory of relativity76

alan


alan


alan


alan


alan


alan


alan


alan


alan


alan


alan


alan


alan


alan


alan


alan


alan


alan


alan




importance, the early solution of which is to be expected of
astronomers.1

In the second place our result shows that, according to the
general theory of relativity, the law of the constancy of the
velocity of light in vacuo, which constitutes one of the two fun-
damental assumptions in the special theory of relativity and to
which we have already frequently referred, cannot claim any
unlimited validity. A curvature of rays of light can only take place
when the velocity of propagation of light varies with position.
Now we might think that as a consequence of this, the special
theory of relativity and with it the whole theory of relativity
would be laid in the dust. But in reality this is not the case. We
can only conclude that the special theory of relativity cannot
claim an unlimited domain of validity; its results hold only so
long as we are able to disregard the influences of gravitational
fields on the phenomena (e.g. of light).

Since it has often been contended by opponents of the theory
of relativity that the special theory of relativity is overthrown by
the general theory of relativity, it is perhaps advisable to make
the facts of the case clearer by means of an appropriate com-
parison. Before the development of electrodynamics the laws of
electrostatics were looked upon as the laws of electricity. At the
present time we know that electric fields can be derived correctly
from electrostatic considerations only for the case, which is
never strictly realised, in which the electrical masses are quite at
rest relatively to each other, and to the co-ordinate system.
Should we be justified in saying that for this reason electro-
statics is overthrown by the field-equations of Maxwell in
electrodynamics? Not in the least. Electrostatics is contained

1 By means of the star photographs of two expeditions equipped by a Joint
Committee of the Royal and Royal Astronomical Societies, the existence of the
deflection of light demanded by theory was first confirmed during the solar
eclipse of 29th May, 1919. (Cf. Appendix 3.)
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in electrodynamics as a limiting case; the laws of the latter lead
directly to those of the former for the case in which the fields are
invariable with regard to time. No fairer destiny could be allotted
to any physical theory, than that it should of itself point out the
way to the introduction of a more comprehensive theory, in
which it lives on as a limiting case.

In the example of the transmission of light just dealt with, we
have seen that the general theory of relativity enables us to derive
theoretically the influence of a gravitational field on the course
of natural processes, the laws of which are already known when
a gravitational field is absent. But the most attractive problem, to
the solution of which the general theory of relativity supplies
the key, concerns the investigation of the laws satisfied by the
gravitational field itself. Let us consider this for a moment.

We are acquainted with space-time domains which behave
(approximately) in a “Galileian” fashion under suitable choice
of reference-body, i.e. domains in which gravitational fields are
absent. If we now refer such a domain to a reference-body K′
possessing any kind of motion, then relative to K′ there exists a
gravitational field which is variable with respect to space and
time.1 The character of this field will of course depend on the
motion chosen for K′. According to the general theory of relativ-
ity, the general law of the gravitational field must be satisfied for
all gravitational fields obtainable in this way. Even though by no
means all gravitational fields can be produced in this way, yet we
may entertain the hope that the general law of gravitation will be
derivable from such gravitational fields of a special kind. This
hope has been realised in the most beautiful manner. But between
the clear vision of this goal and its actual realisation it was neces-
sary to surmount a serious difficulty, and as this lies deep at the
root of things, I dare not withhold it from the reader. We require
to extend our ideas of the space-time continuum still farther.

1 This follows from a generalisation of the discussion in Section 20.
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23
BEHAVIOUR OF CLOCKS
AND MEASURING-RODS
ON A ROTATING BODY

OF REFERENCE

Hitherto I have purposely refrained from speaking about the
physical interpretation of space- and time-data in the case of the
general theory of relativity. As a consequence, I am guilty of a
certain slovenliness of treatment, which, as we know from the
special theory of relativity, is far from being unimportant and
pardonable. It is now high time that we remedy this defect; but I
would mention at the outset, that this matter lays no small
claims on the patience and on the power of abstraction of the
reader.

We start off again from quite special cases, which we have
frequently used before. Let us consider a space-time domain in
which no gravitational field exists relative to a reference-body K
whose state of motion has been suitably chosen. K is then a
Galileian reference-body as regards the domain considered, and



the results of the special theory of relativity hold relative to K.
Let us suppose the same domain referred to a second body of
reference K′, which is rotating uniformly with respect to K. In
order to fix our ideas, we shall imagine K′ to be in the form of a
plane circular disc, which rotates uniformly in its own plane
about its centre. An observer who is sitting eccentrically on the
disc K′ is sensible of a force which acts outwards in a radial
direction, and which would be interpreted as an effect of inertia
(centrifugal force) by an observer who was at rest with respect
to the original reference-body K. But the observer on the disc
may regard his disc as a reference-body which is “at rest”; on
the basis of the general principle of relativity he is justified in
doing this. The force acting on himself, and in fact on all other
bodies which are at rest relative to the disc, he regards as the
effect of a gravitational field. Nevertheless, the space distribution
of this gravitational field is of a kind that would not be possible
on Newton’s theory of gravitation.1 But since the observer
believes in the general theory of relativity, this does not disturb
him; he is quite in the right when he believes that a general law
of gravitation can be formulated—a law which not only
explains the motion of the stars correctly, but also the field of
force experienced by himself.

The observer performs experiments on his circular disc with
clocks and measuring-rods. In doing so, it is his intention to
arrive at exact definitions for the signification of time- and
space-data with reference to the circular disc K′, these definitions
being based on his observations. What will be his experience in
this enterprise?

To start with, he places one of two identically constructed
clocks at the centre of the circular disc, and the other on the

1 The field disappears at the centre of the disc and increases proportionally to
the distance from the centre as we proceed outwards.
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edge of the disc, so that they are at rest relative to it. We now
ask ourselves whether both clocks go at the same rate from
the standpoint of the non-rotating Galileian reference-body K.
As judged from this body, the clock at the centre of the disc
has no velocity, whereas the clock at the edge of the disc is in
motion relative to K in consequence of the rotation. According
to a result obtained in Section 12, it follows that the latter
clock goes at a rate permanently slower than that of the clock
at the centre of the circular disc, i.e. as observed from K. It is
obvious that the same effect would be noted by an observer
whom we will imagine sitting alongside his clock at the
centre of the circular disc. Thus on our circular disc, or, to
make the case more general, in every gravitational field, a
clock will go more quickly or less quickly, according to the
position in which the clock is situated (at rest). For this rea-
son it is not possible to obtain a reasonable definition of time
with the aid of clocks which are arranged at rest with respect
to the body of reference. A similar difficulty presents itself
when we attempt to apply our earlier definition of simul-
taneity in such a case, but I do not wish to go any farther into
this question.

Moreover, at this stage the definition of the space co-ordinates
also presents insurmountable difficulties. If the observer applies
his standard measuring-rod (a rod which is short as compared
with the radius of the disc) tangentially to the edge of the disc,
then, as judged from the Galileian system, the length of this rod
will be less than 1, since, according to Section 12, moving bod-
ies suffer a shortening in the direction of the motion. On the
other hand, the measuring-rod will not experience a shortening
in length, as judged from K, if it is applied to the disc in the
direction of the radius. If, then, the observer first measures the
circumference of the disc with his measuring-rod and then the
diameter of the disc, on dividing the one by the other, he will
not obtain as quotient the familiar number π = 3.14 . . ., but a
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larger number,1 whereas of course, for a disc which is at rest
with respect to K, this operation would yield exactly. This proves
that the propositions of Euclidean geometry cannot hold exactly
on the rotating disc, nor in general in a gravitational field, at least
if we attribute the length 1 to the rod in all positions and in
every orientation. Hence the idea of a straight line also loses its
meaning. We are therefore not in a position to define exactly the
co-ordinates x, y, z relative to the disc by means of the method
used in discussing the special theory, and as long as the co-
ordinates and times of events have not been defined, we cannot
assign an exact meaning to the natural laws in which these occur.

Thus all our previous conclusions based on general relativity
would appear to be called in question. In reality we must make
a subtle detour in order to be able to apply the postulate of
general relativity exactly. I shall prepare the reader for this in the
following paragraphs.

1 Throughout this consideration we have to use the Galileian (non-rotating)
system K as reference-body, since we may only assume the validity of
the results of the special theory of relativity relative to K (relative to K′ a
gravitational field prevails).

the general theory of relativity82



24
EUCLIDEAN AND NON-

EUCLIDEAN CONTINUUM

The surface of a marble table is spread out in front of me. I can
get from any one point on this table to any other point by
passing continuously from one point to a “neighbouring” one,
and repeating this process a (large) number of times, or, in other
words, by going from point to point without executing
“jumps.” I am sure the reader will appreciate with sufficient
clearness what I mean here by “neighbouring” and by “jumps”
(if he is not too pedantic). We express this property of the
surface by describing the latter as a continuum.

Let us now imagine that a large number of little rods of equal
length have been made, their lengths being small compared with
the dimensions of the marble slab. When I say they are of equal
length, I mean that one can be laid on any other without the
ends over-lapping. We next lay four of these little rods on the
marble slab so that they constitute a quadrilateral figure (a
square), the diagonals of which are equally long. To ensure the
equality of the diagonals, we make use of a little testing-rod. To



this square we add similar ones, each of which has one rod in
common with the first. We proceed in like manner with each of
these squares until finally the whole marble slab is laid out with
squares. The arrangement is such, that each side of a square
belongs to two squares and each corner to four squares.

It is a veritable wonder that we can carry out this business
without getting into the greatest difficulties. We only need to
think of the following. If at any moment three squares meet at a
corner, then two sides of the fourth square are already laid, and,
as a consequence, the arrangement of the remaining two sides of
the square is already completely determined. But I am now no
longer able to adjust the quadrilateral so that its diagonals may
be equal. If they are equal of their own accord, then this is an
especial favour of the marble slab and of the little rods, about
which I can only be thankfully surprised. We must needs experi-
ence many such surprises if the construction is to be successful.

If everything has really gone smoothly, then I say that the
points of the marble slab constitute a Euclidean continuum with
respect to the little rod, which has been used as a “distance”
(line-interval). By choosing one corner of a square as “origin,” I
can characterise every other corner of a square with reference to
this origin by means of two numbers. I only need state how
many rods I must pass over when, starting from the origin, I
proceed towards the “right” and then “upwards,” in order to
arrive at the corner of the square under consideration. These two
numbers are then the “Cartesian co-ordinates” of this corner
with reference to the “Cartesian co-ordinate system” which is
determined by the arrangement of little rods.

By making use of the following modification of this abstract
experiment, we recognise that there must also be cases in which
the experiment would be unsuccessful. We shall suppose that the
rods “expand” by an amount proportional to the increase of
temperature. We heat the central part of the marble slab, but not
the periphery, in which case two of our little rods can still be
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brought into coincidence at every position on the table. But our
construction of squares must necessarily come into disorder
during the heating, because the little rods on the central region
of the table expand, whereas those on the outer part do not.

With reference to our little rods—defined as unit lengths—the
marble slab is no longer a Euclidean continuum, and we are also
no longer in the position of defining Cartesian co-ordinates
directly with their aid, since the above construction can no
longer be carried out. But since there are other things which
are not influenced in a similar manner to the little rods (or
perhaps not at all) by the temperature of the table, it is possible
quite naturally to maintain the point of view that the marble
slab is a “Euclidean continuum.” This can be done in a satisfac-
tory manner by making a more subtle stipulation about the
measurement or the comparison of lengths.

But if rods of every kind (i.e. of every material) were to
behave in the same way as regards the influence of temperature
when they are on the variably heated marble slab, and if we
had no other means of detecting the effect of temperature than
the geometrical behaviour of our rods in experiments analo-
gous to the one described above, then our best plan would be to
assign the distance one to two points on the slab, provided
that the ends of one of our rods could be made to coincide with
these two points; for how else should we define the distance
without our proceeding being in the highest measure grossly
arbitrary? The method of Cartesian co-ordinates must then be
discarded, and replaced by another which does not assume the
validity of Euclidean geometry for rigid bodies.1 The reader will

1 Mathematicians have been confronted with our problem in the following
form. If we are given a surface (e.g. an ellipsoid) in Euclidean three-dimen-
sional space, then there exists for this surface a two-dimensional geometry, just
as much as for a plane surface. Gauss undertook the task of treating this
two-dimensional geometry from first principles, without making use of the
fact that the surface belongs to a Euclidean continuum of three dimensions. If
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notice that the situation depicted here corresponds to the one
brought about by the general postulate of relativity (Section
23).

we imagine constructions to be made with rigid rods in the surface (similar to
that above with the marble slab), we should find that different laws hold for
these from those resulting on the basis of Euclidean plane geometry. The
surface is not a Euclidean continuum with respect to the rods, and we cannot
define Cartesian co-ordinates in the surface. Gauss indicated the principles accord-
ing to which we can treat the geometrical relationships in the surface, and thus
pointed out the way to the method of Riemann of treating multi-dimensional,
non-Euclidean continua. Thus it is that mathematicians long ago solved the
formal problems to which we are led by the general postulate of relativity.
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25
GAUSSIAN CO-ORDINATES

According to Gauss, this combined analytical and geometrical
mode of handling the problem can be arrived at in the following
way. We imagine a system of arbitrary curves (see Fig. 4) drawn
on the surface of the table. These we designate as u-curves, and
we indicate each of them by means of a number. The curves
u = 1, u = 2 and u = 3 are drawn in the diagram. Between the
curves u = 1 and u = 2 we must imagine an infinitely large num-
ber to be drawn, all of which correspond to real numbers lying
between 1 and 2. We have then a system of u-curves, and this
“infinitely dense” system covers the whole surface of the table.

Figure 4



These u-curves must not intersect each other, and through each
point of the surface one and only one curve must pass. Thus a
perfectly definite value of u belongs to every point on the surface
of the marble slab. In like manner we imagine a system of v-
curves drawn on the surface. These satisfy the same conditions as
the u-curves, they are provided with numbers in a corresponding
manner, and they may likewise be of arbitrary shape. It follows
that a value of u and a value of v belong to every point on the
surface of the table. We call these two numbers the co-ordinates
of the surface of the table (Gaussian co-ordinates). For example,
the point P in the diagram has the Gaussian co-ordinates u = 3,
v = 1. Two neighbouring points P and P′ on the surface then
correspond to the co-ordinates

P: u, v
P′: u + du, v + dv,

where du and dv signify very small numbers. In a similar manner
we may indicate the distance (line-interval) between P and P’, as
measured with a little rod, by means of the very small number ds.
Then according to Gauss we have

ds2 = g11du2 + 2g12dudv + g22dv
2,

where g11, g12, g22, are magnitudes which depend in a perfectly
definite way on u and v. The magnitudes g11, g12 and g22 determine
the behaviour of the rods relative to the u-curves and v-curves,
and thus also relative to the surface of the table. For the case in
which the points of the surface considered form a Euclidean
continuum with reference to the measuring-rods, but only in
this case, it is possible to draw the u-curves and v-curves and to
attach numbers to them, in such a manner, that we simply have:

ds2 = du2 + dv2.
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Under these conditions, the u-curves and v-curves are straight
lines in the sense of Euclidean geometry, and they are per-
pendicular to each other. Here the Gaussian co-ordinates are
simply Cartesian ones. It is clear that Gauss co-ordinates are
nothing more than an association of two sets of numbers with
the points of the surface considered, of such a nature that
numerical values differing very slightly from each other are
associated with neighbouring points “in space.”

So far, these considerations hold for a continuum of two
dimensions. But the Gaussian method can be applied also to a
continuum of three, four or more dimensions. If, for instance, a
continuum of four dimensions be supposed available, we may
represent it in the following way. With every point of the con-
tinuum we associate arbitrarily four numbers, x1, x2, x3, x4, which
are known as “co-ordinates.” Adjacent points correspond to
adjacent values of the co-ordinates. If a distance ds is associated
with the adjacent points P and P′, this distance being measurable
and well-defined from a physical point of view, then the
following formula holds:

ds2 = g11dx1
2 + 2g12dx1dx2 . . . . + g44dx4

2,

where the magnitudes g11, etc., have values which vary with the
position in the continuum. Only when the continuum is a Eucli-
dean one is it possible to associate the co-ordinates x1 . . x4 with
the points of the continuum so that we have simply

ds2 = dx1
2+dx2

2 + dx3
2 + dx4

2.

In this case relations hold in the four-dimensional continuum
which are analogous to those holding in our three-dimensional
measurements.

However, the Gauss treatment for ds2 which we have given
above is not always possible. It is only possible when sufficiently
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small regions of the continuum under consideration may be
regarded as Euclidean continua. For example, this obviously
holds in the case of the marble slab of the table and local varia-
tion of temperature. The temperature is practically constant for
a small part of the slab, and thus the geometrical behaviour of
the rods is almost as it ought to be according to the rules of
Euclidean geometry. Hence the imperfections of the construc-
tion of squares in the previous section do not show themselves
clearly until this construction is extended over a considerable
portion of the surface of the table.

We can sum this up as follows: Gauss invented a method for
the mathematical treatment of continua in general, in which
“size-relations” (“distances” between neighbouring points) are
defined. To every point of a continuum are assigned as many
numbers (Gaussian co-ordinates) as the continuum has dimen-
sions. This is done in such a way, that only one meaning can be
attached to the assignment, and that numbers (Gaussian co-
ordinates) which differ by an indefinitely small amount are
assigned to adjacent points. The Gaussian co-ordinate system is a
logical generalisation of the Cartesian co-ordinate system. It is
also applicable to non-Euclidean continua, but only when, with
respect to the defined “size” or “distance,” small parts of the
continuum under consideration behave more nearly like a
Euclidean system, the smaller the part of the continuum under
our notice.
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26
THE SPACE-TIME CONTINUUM

OF THE SPECIAL THEORY OF
RELATIVITY CONSIDERED AS A

EUCLIDEAN CONTINUUM

We are now in a position to formulate more exactly the idea of
Minkowski, which was only vaguely indicated in Section 17. In
accordance with the special theory of relativity, certain co-
ordinate systems are given preference for the description of
the four-dimensional, space-time continuum. We called these
“Galileian co-ordinate systems.” For these systems, the four
co-ordinates x, y, z, t, which determine an event or—in other
words—a point of the four-dimensional continuum, are defined
physically in a simple manner, as set forth in detail in the first
part of this book. For the transition from one Galileian system to
another, which is moving uniformly with reference to the first,
the equations of the Lorentz transformation are valid. These last
form the basis for the derivation of deductions from the special
theory of relativity, and in themselves they are nothing more



than the expression of the universal validity of the law of
transmission of light for all Galileian systems of reference.

Minkowski found that the Lorentz transformations satisfy the
following simple conditions. Let us consider two neighbouring
events, the relative position of which in the four-dimensional
continuum is given with respect to a Galileian reference-body K
by the space co-ordinate differences dx, dy, dz and the time-
difference dt. With reference to a second Galileian system we
shall suppose that the corresponding differences for these two
events are dx′, dy′, dz′, dt′. Then these magnitudes always fulfil the
condition1

dx2 + dy2 + dz2 − c2dt2 = dx′2 + dy′2 + dz′2 − c2dt′2

The validity of the Lorentz transformation follows from this
condition. We can express this as follows: The magnitude

ds2 = dx2 + dy2 + dz2 − c2dt2,

which belongs to two adjacent points of the four-dimensional
space-time continuum, has the same value for all selected
(Galileian) reference-bodies. If we replace x, y, Z, �− 1ct, by x1,
x2, x3, x4, we also obtain the result that

ds2 = dx1
2 + dx2

2 + dx3
2 + dx4

2

is independent of the choice of the body of reference. We call
the magnitude ds the “distance” apart of the two events or
four-dimensional points.

Thus, if we choose as time-variable the imaginary variable
�−1ct instead of the real quantity t, we can regard the space-time

1 Cf. Appendices 1 and 2. The relations which are derived there for the co-
ordinates themselves are valid also for co-ordinate differences, and thus also for
co-ordinate differentials (indefinitely small differences).
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continuum—in accordance with the special theory of
relativity—as a “Euclidean” four-dimensional continuum, a
result which follows from the considerations of the preceding
section.
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27
THE SPACE-TIME CONTINUUM
OF THE GENERAL THEORY OF

RELATIVITY IS NOT A
EUCLIDEAN CONTINUUM

In the first part of this book we were able to make use of space-
time co-ordinates which allowed of a simple and direct physical
interpretation, and which, according to Section 26, can be re-
garded as four-dimensional Cartesian co-ordinates. This was
possible on the basis of the law of the constancy of the velocity
of light. But according to Section 21, the general theory of
relativity cannot retain this law. On the contrary, we arrived at
the result that according to this latter theory the velocity of light
must always depend on the co-ordinates when a gravitational
field is present. In connection with a specific illustration in Sec-
tion 23, we found that the presence of a gravitational field
invalidates the definition of the co-ordinates and the time, which
led us to our objective in the special theory of relativity.

In view of the results of these considerations we are led to the



conviction that, according to the general principle of relativity,
the space-time continuum cannot be regarded as a Euclidean
one, but that here we have the general case, corresponding to the
marble slab with local variations of temperature, and with which
we made acquaintance as an example of a two-dimensional con-
tinuum. Just as it was there impossible to construct a Cartesian
co-ordinate system from equal rods, so here it is impossible to
build up a system (reference-body) from rigid bodies and
clocks, which shall be of such a nature that measuring-rods and
clocks, arranged rigidly with respect to one another, shall
indicate position and time directly. Such was the essence of the
difficulty with which we were confronted in Section 23.

But the considerations of Sections 25 and 26 show us the
way to surmount this difficulty. We refer the four-dimensional
space-time continuum in an arbitrary manner to Gauss co-
ordinates. We assign to every point of the continuum (event)
four numbers, x1, x2, x3, x4 (co-ordinates), which have not the
least direct physical significance, but only serve the purpose of
numbering the points of the continuum in a definite but arbi-
trary manner. This arrangement does not even need to be of such
a kind that we must regard x1, x2, x3, as “space” co-ordinates and
x4 as a “time” co-ordinate.

The reader may think that such a description of the world
would be quite inadequate. What does it mean to assign to an
event the particular co-ordinates x1, x2, x3, x4 if in themselves
these co-ordinates have no significance? More careful consider-
ation shows, however, that this anxiety is unfounded. Let us
consider, for instance, a material point with any kind of motion.
If this point had only a momentary existence without duration,
then it would be described in space-time by a single system of
values x1, x2, x3, x4. Thus its permanent existence must be charac-
terised by an infinitely large number of such systems of values,
the co-ordinate values of which are so close together as to give
continuity; corresponding to the material point, we thus have a
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(uni-dimensional) line in the four-dimensional continuum. In
the same way, any such lines in our continuum correspond to
many points in motion. The only statements having regard to
these points which can claim a physical existence are in reality
the statements about their encounters. In our mathematical
treatment, such an encounter is expressed in the fact that the two
lines which represent the motions of the points in question have
a particular system of co-ordinate values, x1, x2, x3, x4, in com-
mon. After mature consideration the reader will doubtless admit
that in reality such encounters constitute the only actual evi-
dence of a time-space nature with which we meet in physical
statements.

When we were describing the motion of a material point
relative to a body of reference, we stated nothing more than the
encounters of this point with particular points of the reference-
body. We can also determine the corresponding values of the
time by the observation of encounters of the body with clocks,
in conjunction with the observation of the encounter of the
hands of clocks with particular points on the dials. It is just the
same in the case of space-measurements by means of
measuring-rods, as a little consideration will show.

The following statements hold generally: Every physical
description resolves itself into a number of statements, each of
which refers to the space-time coincidence of two events A and
B. In terms of Gaussian co-ordinates, every such statement is
expressed by the agreement of their four co-ordinates x1, x2, x3,
x4. Thus in reality, the description of the time-space continuum
by means of Gauss co-ordinates completely replaces the descrip-
tion with the aid of a body of reference, without suffering from
the defects of the latter mode of description; it is not tied down
to the Euclidean character of the continuum which has to be
represented.
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28
EXACT FORMULATION OF
THE GENERAL PRINCIPLE

OF RELATIVITY

We are now in a position to replace the provisional formulation
of the general principle of relativity given in Section 18 by an
exact formulation. The form there used, “All bodies of reference
K, K′, etc., are equivalent for the description of natural phenom-
ena (formulation of the general laws of nature), whatever may
be their state of motion,” cannot be maintained, because the use
of rigid reference-bodies, in the sense of the method followed in
the special theory of relativity, is in general not possible in
space-time description. The Gauss co-ordinate system has to take
the place of the body of reference. The following statement
corresponds to the fundamental idea of the general principle of
relativity: “All Gaussian co-ordinate systems are essentially equivalent for the
formulation of the general laws of nature.”

We can state this general principle of relativity in still another
form, which renders it yet more clearly intelligible than it is



when in the form of the natural extension of the special prin-
ciple of relativity. According to the special theory of relativity,
the equations which express the general laws of nature pass over
into equations of the same form when, by making use of the
Lorentz transformation, we replace the space-time x, y, z, t, of a
(Galileian) reference-body K by the space-time variables x′, y′, z′,
t’, of a new reference-body K′. According to the general theory of
relativity, on the other hand, by application of arbitrary substitutions
of the Gauss variables x1, x2, x3, x4, the equations must pass over
into equations of the same form; for every transformation (not
only the Lorentz transformation) corresponds to the transition
of one Gauss co-ordinate system into another.

If we desire to adhere to our “old-time” three-dimensional
view of things, then we can characterise the development which
is being undergone by the fundamental idea of the general
theory of relativity as follows: The special theory of relativity
has reference to Galileian domains, i.e. to those in which no
gravitational field exists. In this connection a Galileian reference-
body serves as body of reference, i.e. a rigid body the state of
motion of which is so chosen that the Galileian law of the
uniform rectilinear motion of “isolated” material points holds
relatively to it.

Certain considerations suggest that we should refer the same
Galileian domains to non-Galileian reference-bodies also. A gravi-
tational field of a special kind is then present with respect to
these bodies (cf. Sections 20 and 23).

In gravitational fields there are no such things as rigid bodies
with Euclidean properties; thus the fictitious rigid body of refer-
ence is of no avail in the general theory of relativity. The motion
of clocks is also influenced by gravitational fields, and in such a
way that a physical definition of time which is made directly
with the aid of clocks has by no means the same degree of
plausibility as in the special theory of relativity.

For this reason non-rigid reference-bodies are used, which
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are as a whole not only moving in any way whatsoever, but
which also suffer alterations in form ad lib. during their motion.
Clocks, for which the law of motion is of any kind, however
irregular, serve for the definition of time. We have to imagine
each of these clocks fixed at a point on the non-rigid reference-
body. These clocks satisfy only the one condition, that the “read-
ings,” which are observed simultaneously on adjacent clocks (in
space) differ from each other by an indefinitely small amount.
This non-rigid reference-body, which might appropriately be
termed a “reference-mollusc,” is in the main equivalent to a
Gaussian four-dimensional co-ordinate system chosen arbitrar-
ily. That which gives the “mollusc” a certain comprehensibility
as compared with the Gauss co-ordinate system is the (really
unjustified) formal retention of the separate existence of the
space co-ordinates as opposed to the time co-ordinate. Every
point on the mollusc is treated as a space-point, and every
material point which is at rest relatively to it is at rest, so long as
the mollusc is considered as reference-body. The general prin-
ciple of relativity requires that all these molluscs can be used as
reference-bodies with equal right and equal success in the for-
mulation of the general laws of nature; the laws themselves must
be quite independent of the choice of mollusc.

The great power possessed by the general principle of relativ-
ity lies in the comprehensive limitation which is imposed on the
laws of nature in consequence of what we have seen above.
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29
THE SOLUTION OF THE

PROBLEM OF GRAVITATION ON
THE BASIS OF THE GENERAL

PRINCIPLE OF RELATIVITY

If the reader has followed all our previous considerations, he will
have no further difficulty in understanding the methods leading
to the solution of the problem of gravitation.

We start off from a consideration of a Galileian domain, i.e. a
domain in which there is no gravitational field relative to the
Galileian reference-body K. The behaviour of measuring-rods
and clocks with reference to K is known from the special theory
of relativity, likewise the behaviour of “isolated” material points;
the latter move uniformly and in straight lines.

Now let us refer this domain to a random Gauss co-ordinate
system or to a “mollusk” as reference-body K′. Then with respect
to K′ there is a gravitational field G (of a particular kind). We
learn the behaviour of measuring-rods and clocks and also of
freely-moving material points with reference to K′ simply by



mathematical transformation. We interpret this behaviour as the
behaviour of measuring-rods, clocks and material points under
the influence of the gravitational field G. Hereupon we introduce
a hypothesis: that the influence of the gravitational field on
measuring-rods, clocks and freely-moving material points con-
tinues to take place according to the same laws, even in the case
where the prevailing gravitational field is not derivable from the
Galileian special case, simply by means of a transformation of
co-ordinates.

The next step is to investigate the space-time behaviour of the
gravitational field G, which was derived from the Galileian spe-
cial case simply by transformation of the co-ordinates. This
behaviour is formulated in a law, which is always valid, no mat-
ter how the reference-body (mollusc) used in the description
may be chosen.

This law is not yet the general law of the gravitational field, since
the gravitational field under consideration is of a special kind. In
order to find out the general law-of-field of gravitation we still
require to obtain a generalisation of the law as found above.
This can be obtained without caprice, however, by taking into
consideration the following demands:

(a) The required generalisation must likewise satisfy the general
postulate of relativity.

(b) If there is any matter in the domain under consideration,
only its inertial mass, and thus according to Section 15 only
its energy is of importance for its effect in exciting a field.

(c) Gravitational field and matter together must satisfy the law
of the conservation of energy (and of impulse).

Finally, the general principle of relativity permits us to deter-
mine the influence of the gravitational field on the course of all
those processes which take place according to known laws when
a gravitational field is absent, i.e. which have already been fitted
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into the frame of the special theory of relativity. In this connec-
tion we proceed in principle according to the method which has
already been explained for measuring-rods, clocks and freely-
moving material points.

The theory of gravitation derived in this way from the general
postulate of relativity excels not only in its beauty; nor in remov-
ing the defect attaching to classical mechanics which was
brought to light in Section 21; nor in interpreting the empirical
law of the equality of inertial and gravitational mass; but it has
also already explained a result of observation in astronomy,
against which classical mechanics is powerless.

If we confine the application of the theory to the case where
the gravitational fields can be regarded as being weak, and in
which all masses move with respect to the co-ordinate system
with velocities which are small compared with the velocity of
light, we then obtain as a first approximation the Newtonian
theory. Thus the latter theory is obtained here without any par-
ticular assumption, whereas Newton had to introduce the
hypothesis that the force of attraction between mutually attract-
ing material points is inversely proportional to the square of the
distance between them. If we increase the accuracy of the calcu-
lation, deviations from the theory of Newton make their appear-
ance, practically all of which must nevertheless escape the test of
observation owing to their smallness.

We must draw attention here to one of these deviations.
According to Newton’s theory, a planet moves round the sun in
an ellipse, which would permanently maintain its position with
respect to the fixed stars, if we could disregard the motion of the
fixed stars themselves and the action of the other planets under
consideration. Thus, if we correct the observed motion of the
planets for these two influences, and if Newton’s theory be
strictly correct, we ought to obtain for the orbit of the planet an
ellipse, which is fixed with reference to the fixed stars. This
deduction, which can be tested with great accuracy, has been
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confirmed for all the planets save one, with the precision that is
capable of being obtained by the delicacy of observation attain-
able at the present time. The sole exception is Mercury, the planet
which lies nearest the sun. Since the time of Leverrier, it has been
known that the ellipse corresponding to the orbit of Mercury,
after it has been corrected for the influences mentioned above, is
not stationary with respect to the fixed stars, but that it rotates
exceedingly slowly in the plane of the orbit and in the sense of
the orbital motion. The value obtained for this rotary movement
of the orbital ellipse was 43 seconds of arc per century, an
amount ensured to be correct to within a few seconds of arc. This
effect can be explained by means of classical mechanics only on
the assumption of hypotheses which have little probability, and
which were devised solely for this purpose.

On the basis of the general theory of relativity, it is found that
the ellipse of every planet round the sun must necessarily rotate
in the manner indicated above; that for all the planets, with the
exception of Mercury, this rotation is too small to be detected
with the delicacy of observation possible at the present time; but
that in the case of Mercury it must amount to 43 seconds of arc
per century, a result which is strictly in agreement with
observation.

Apart from this one, it has hitherto been possible to make
only two deductions from the theory which admit of being
tested by observation, to wit, the curvature of light rays by the
gravitational field of the sun,1 and a displacement of the spectral
lines of light reaching us from large stars, as compared with the
corresponding lines for light produced in an analogous manner
terrestrially (i.e. by the same kind of atom)2. These two deduc-
tions from the theory have both been confirmed.

1 First observed by Eddington and others in 1919. (Cf. Appendix 3,
pp. 126–129).
2 Established by Adams in 1924. (Cf. p. 135).
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Part III
Considerations on the Universe
as a Whole





30
COSMOLOGICAL DIFFICULTIES

OF NEWTON’S THEORY

Apart from the difficulty discussed in Section 21, there is a
second fundamental difficulty attending classical celestial mech-
anics, which, to the best of my knowledge, was first discussed in
detail by the astronomer Seeliger. If we ponder over the question
as to how the universe, considered as a whole, is to be regarded,
the first answer that suggests itself to us is surely this: As regards
space (and time) the universe is infinite. There are stars every-
where, so that the density of matter, although very variable in
detail, is nevertheless on the average everywhere the same. In
other words: However far we might travel through space, we
should find everywhere an attenuated swarm of fixed stars of
approximately the same kind and density.

This view is not in harmony with the theory of Newton. The
latter theory rather requires that the universe should have a kind
of centre in which the density of the stars is a maximum, and
that as we proceed outwards from this centre the group-density
of the stars should diminish, until finally, at great distances, it is



succeeded by an infinite region of emptiness. The stellar uni-
verse ought to be a finite island in the infinite ocean of space.1

This conception is in itself not very satisfactory. It is still less
satisfactory because it leads to the result that the light emitted by
the stars and also individual stars of the stellar system are per-
petually passing out into infinite space, never to return, and
without ever again coming into interaction with other objects of
nature. Such a finite material universe would be destined to
become gradually but systematically impoverished.

In order to escape this dilemma, Seeliger suggested a modifi-
cation of Newton’s law, in which he assumes that for great dis-
tances the force of attraction between two masses diminishes
more rapidly than would result from the inverse square law. In
this way it is possible for the mean density of matter to be
constant everywhere, even to infinity, without infinitely large
gravitational fields being produced. We thus free ourselves from
the distasteful conception that the material universe ought to
possess something of the nature of a centre. Of course we pur-
chase our emancipation from the fundamental difficulties
mentioned, at the cost of a modification and complication of
Newton’s law which has neither empirical nor theoretical foun-
dation. We can imagine innumerable laws which would serve
the same purpose, without our being able to state a reason why

1 Proof—According to the theory of Newton, the number of “lines of force”
which come from infinity and terminate in a mass m is proportional to the
mass m. If, on the average, the mass-density p0 is constant throughout the
universe, then a sphere of volume V will enclose the average mass p0V. Thus
the number of lines of force passing through the surface F of the sphere
into its interior is proportional to p0V. For unit area of the surface of the
sphere the number of lines of force which enters the sphere is thus pro-

portional to p0 
V

F
 or to p0R. Hence the intensity of the field at the surface

would ultimately become infinite with increasing radius R of the sphere,
which is impossible.
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one of them is to be preferred to the others; for any one of these
laws would be founded just as little on more general theoretical
principles as is the law of Newton.
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31
THE POSSIBILITY OF A

“FINITE” AND YET
“UNBOUNDED” UNIVERSE

But speculations on the structure of the universe also move in
quite another direction. The development of non-Euclidean
geometry led to the recognition of the fact, that we can cast
doubt on the infiniteness of our space without coming into conflict
with the laws of thought or with experience (Riemann, Helm-
holtz). These questions have already been treated in detail and
with unsurpassable lucidity by Helmholtz and Poincaré, whereas
I can only touch on them briefly here.

In the first place, we imagine an existence in two-dimensional
space. Flat beings with flat implements, and in particular flat
rigid measuring-rods, are free to move in a plane. For them noth-
ing exists outside of this plane: that which they observe to hap-
pen to themselves and to their flat “things” is the all-inclusive
reality of their plane. In particular, the constructions of plane
Euclidean geometry can be carried out by means of the rods,



e.g. the lattice construction, considered in Section 24. In con-
trast to ours, the universe of these beings is two-dimensional;
but, like ours, it extends to infinity. In their universe there is room
for an infinite number of identical squares made up of rods, i.e. its
volume (surface) is infinite. If these beings say their universe is
“plane,” there is sense in the statement, because they mean that
they can perform the constructions of plane Euclidean geometry
with their rods. In this connection the individual rods always
represent the same distance, independently of their position.

Let us consider now a second two-dimensional existence, but
this time on a spherical surface instead of on a plane. The flat
beings with their measuring-rods and other objects fit exactly on
this surface and they are unable to leave it. Their whole universe
of observation extends exclusively over the surface of the sphere.
Are these beings able to regard the geometry of their universe as
being plane geometry and their rods withal as the realisation
of “distance”? They cannot do this. For if they attempt to
realise a straight line, they will obtain a curve, which we “three-
dimensional beings” designate as a great circle, i.e. a self-
contained line of definite finite length, which can be measured
up by means of a measuring-rod. Similarly, this universe has
a finite area that can be compared with the area of a square
constructed with rods. The great charm resulting from this
consideration lies in the recognition of the fact that the universe of
these beings is finite and yet has no limits.

But the spherical-surface beings do not need to go on a
world-tour in order to perceive that they are not living in a
Euclidean universe. They can convince themselves of this on
every part of their “world,” provided they do not use too small a
piece of it. Starting from a point, they draw “straight lines” (arcs
of circles as judged in three-dimensional space) of equal length
in all directions. They will call the line joining the free ends of
these lines a “circle.” For a plane surface, the ratio of the circum-
ference of a circle to its diameter, both lengths being measured
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with the same rod, is, according to Euclidean geometry of the
plane, equal to a constant value π, which is independent of the
diameter of the circle. On their spherical surface our flat beings
would find for this ratio the value

π

sin �r

R�

�r

R�
,

i.e. a smaller value than π, the difference being the more con-
siderable, the greater is the radius of the circle in comparison
with the radius R of the “world-sphere.” By means of this rela-
tion the spherical beings can determine the radius of their uni-
verse (“world”), even when only a relatively small part of their
world-sphere is available for their measurements. But if this part
is very small indeed, they will no longer be able to demonstrate
that they are on a spherical “world” and not on a Euclidean
plane, for a small part of a spherical surface differs only slightly
from a piece of a plane of the same size.

Thus if the spherical-surface beings are living on a planet of
which the solar system occupies only a negligibly small part of
the spherical universe, they have no means of determining
whether they are living in a finite or in an infinite universe,
because the “piece of universe” to which they have access is in
both cases practically plane, or Euclidean. It follows directly from
this discussion, that for our sphere-beings the circumference of a
circle first increases with the radius until the “circumference of
the universe” is reached, and that it thenceforward gradually
decreases to zero for still further increasing values of the radius.
During this process the area of the circle continues to increase
more and more, until finally it becomes equal to the total area of
the whole “world-sphere.”

Perhaps the reader will wonder why we have placed our
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“beings” on a sphere rather than on another closed surface. But
this choice has its justification in the fact that, of all closed sur-
faces, the sphere is unique in possessing the property that all
points on it are equivalent. I admit that the ratio of the circum-
ference c of a circle to its radius r depends on r, but for a given
value of r it is the same for all points of the “world-sphere”; in
other words, the “world-sphere” is a “surface of constant
curvature.”

To this two-dimensional sphere-universe there is a three-
dimensional analogy, namely, the three-dimensional spherical
space which was discovered by Riemann. Its points are likewise
all equivalent. It possesses a finite volume, which is determined
by its “radius” (2π2R3). Is it possible to imagine a spherical space?
To imagine a space means nothing else than that we imagine an
epitome of our “space” experience, i.e. of experience that we can
have in the movement of “rigid” bodies. In this sense we can
imagine a spherical space.

Suppose we draw lines or stretch strings in all directions from
a point, and mark off from each of these the distance r with a
measuring-rod. All the free endpoints of these lengths lie on a
spherical surface. We can specially measure up the area (F) of
this surface by means of a square made up of measuring-rods. If
the universe is Euclidean, then F=4πr2; if it is spherical, then F is
always less than 4πr2. With increasing values of r, F increases
from zero up to a maximum value which is determined by the
“world-radius,” but for still further increasing values of r, the
area gradually diminishes to zero. At first, the straight lines
which radiate from the starting point diverge farther and farther
from one another, but later they approach each other, and finally
they run together again at a “counter-point” to the starting
point. Under such conditions they have traversed the whole
spherical space. It is easily seen that the three-dimensional spher-
ical space is quite analogous to the two-dimensional spherical
surface. It is finite (i.e. of finite volume), and has no bounds.
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It may be mentioned that there is yet another kind of curved
space: “elliptical space.” It can be regarded as a curved space in
which the two “counter-points” are identical (indistinguishable
from each other). An elliptical universe can thus be considered
to some extent as a curved universe possessing central
symmetry.

It follows from what has been said, that closed spaces without
limits are conceivable. From amongst these, the spherical space
(and the elliptical) excels in its simplicity, since all points on it
are equivalent. As a result of this discussion, a most interesting
question arises for astronomers and physicists, and that is
whether the universe in which we live is infinite, or whether
it is finite in the manner of the spherical universe. Our experi-
ence is far from being sufficient to enable us to answer this
question. But the general theory of relativity permits of our
answering it with a moderate degree of certainty, and in this
connection the difficulty mentioned in Section 30 finds its
solution.
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32
THE STRUCTURE OF SPACE

ACCORDING TO THE GENERAL
THEORY OF RELATIVITY

According to the general theory of relativity, the geometrical
properties of space are not independent, but they are determined
by matter. Thus we can draw conclusions about the geometrical
structure of the universe only if we base our considerations on
the state of the matter as being something that is known. We
know from experience that, for a suitably chosen co-ordinate
system, the velocities of the stars are small as compared with the
velocity of transmission of light. We can thus as a rough
approximation arrive at a conclusion as to the nature of the
universe as a whole, if we treat the matter as being at rest.

We already know from our previous discussion that the
behaviour of measuring-rods and clocks is influenced by gravi-
tational fields, i.e. by the distribution of matter. This in itself is
sufficient to exclude the possibility of the exact validity of
Euclidean geometry in our universe. But it is conceivable that



our universe differs only slightly from a Euclidean one, and this
notion seems all the more probable, since calculations show that
the metrics of surrounding space is influenced only to an
exceedingly small extent by masses even of the magnitude of our
sun. We might imagine that, as regards geometry, our universe
behaves analogously to a surface which is irregularly curved in
its individual parts, but which nowhere departs appreciably
from a plane: something like the rippled surface of a lake. Such a
universe might fittingly be called a quasi-Euclidean universe. As
regards its space it would be infinite. But calculation shows that
in a quasi-Euclidean universe the average density of matter
would necessarily be nil. Thus such a universe could not be
inhabited by matter everywhere; it would present to us that
unsatisfactory picture which we portrayed in Section 30.

If we are to have in the universe an average density of matter
which differs from zero, however small may be that difference,
then the universe cannot be quasi-Euclidean. On the contrary,
the results of calculation indicate that if matter be distributed
uniformly, the universe would necessarily be spherical (or ellip-
tical). Since in reality the detailed distribution of matter is not
uniform, the real universe will deviate in individual parts from
the spherical, i.e. the universe will be quasi-spherical. But it will
be necessarily finite. In fact, the theory supplies us with a simple
connection1 between the space-expanse of the universe and the
average density of matter in it.

1 For the “radius” R of the universe we obtain the equation

R2 =
2

κρ
.

The use of the C. G. S. system in this equation gives 
2

κ
= 1.08.1027; ρ is the

average density of the matter and is a constant connected with the Newtonian
constant of gravitation.

considerations on the universe116



APPENDIX 1

Simple Derivation of
the Lorentz Transformation

[Supplementary to
Section 11]

For the relative orientation of the co-ordinate systems indicated
in Fig. 2, the x-axes of both systems permanently coincide. In the
present case we can divide the problem into parts by considering
first only events which are localised on the x-axis. Any such event
is represented with respect to the co-ordinate system K by the
abscissa x and the time t, and with respect to the system K′ by the
abscissa x′ and the time t′. We require to find x′ and t′
when x and t are given.

A light-signal, which is proceeding along the positive axis of
x, is transmitted according to the equation

x = ct



or

x − ct = 0 . . . (1).

Since the same light-signal has to be transmitted relative to K′
with the velocity c, the propagation relative to the system K′ will
be represented by the analogous formula

x′ − ct′ = 0 . . . (2).

Those space-time points (events) which satisfy (1) must also
satisfy (2). Obviously this will be the case when the relation

(x′ − ct′) = λ(x − ct) . . . (3).

is fulfilled in general, where λ indicates a constant; for, accord-
ing to (3), the disappearance of (x − ct) involves the disappear-
ance of (x′ − ct′).

If we apply quite similar considerations to light rays which are
being transmitted along the negative x-axis, we obtain the
condition

(x′ + ct′) = µ(x + ct) . . . (4).

By adding (or subtracting) equations (3) and (4), and intro-
ducing for convenience the constants a and b in place of the
constants λ and µ, where

a =
λ + µ

2

and

b =
λ − µ

2
,
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we obtain the equations

x′ = ax−bct

ct′ = act − bx � . . . (5).

We should thus have the solution of our problem, if the con-
stants a and b were known. These result from the following
discussion.

For the origin of K′ we have permanently x′ = 0, and hence
according to the first of the equations (5)

x =
bc

a
t.

If we call v the velocity with which the origin of K′ is moving
relative to K, we then have

v =
bc

a
(6).

The same value v can be obtained from equations (5), if we
calculate the velocity of another point of K′ relative to K, or the
velocity (directed towards the negative x-axis) of a point of K
with respect to K′. In short, we can designate v as the relative
velocity of the two systems.

Furthermore, the principle of relativity teaches us that, as
judged from K, the length of a unit measuring-rod which is at
rest with reference to K′ must be exactly the same as the length,
as judged from K′, of a unit measuring-rod which is at rest relative
to K. In order to see how the points of the x′-axis appear as
viewed from K, we only require to take a “snapshot” of K′ from K;
this means that we have to insert a particular value of t (time of
K), e.g. t = 0. For this value of t we then obtain from the first of the
equations (5)
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x′ = ax.

Two points of the x′-axis which are separated by the distance
∆x′ = 1 when measured in the K′ system are thus separated in our
instantaneous photograph by the distance

∆x =
1
a

. . . (7).

But if the snapshot be taken from K′(t′ = 0), and if we eliminate
t from the equations (5), taking into account the expression (6),
we obtain

x′ = a �1 −
v2

c2� x.

From this we conclude that two points on the x-axis separated
by the distance 1 (relative to K) will be represented on our
snapshot by the distance

∆x′ = a �1 −
v2

c2� . . . (7a).

But from what has been said, the two snapshots must be
identical; hence ∆x in (7) must be equal to ∆x′ in (7a), so that
we obtain

a2 =
1

1 −
v2

c2

. . . (7b).

The equations (6) and (7b) determine the constants a and b.
By inserting the values of these constants in (5), we obtain the
first and the fourth of the equations given in Section 11.
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x′ =
x − vt

�1 −
v2

c2

. . . (8).

t′ =
t −

v

c2
x

�1 −
v2

c2











Thus we have obtained the Lorentz transformation for events
on the x-axis. It satisfies the condition

x′2 − c2t′2 = x2 − c2t2 . . (8a).

The extension of this result, to include events which take place
outside the x-axis, is obtained by retaining equations (8) and
supplementing them by the relations

y′ = y

z′ = z � . . . . (9).

In this way we satisfy the postulate of the constancy of the vel-
ocity of light in vacuo for rays of light of arbitrary direction, both
for the system K and for the system K′. This may be shown in the
following manner.

We suppose a light-signal sent out from the origin of K at the
time t = 0. It will be propagated according to the equation

r = �x2 + y2 + z2 = ct.

or, if we square this equation, according to the equation

x2 + y2 + z2 − c2t2 = 0 . . (10).
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It is required by the law of propagation of light, in conjunc-
tion with the postulate of relativity, that the transmission of the
signal in question should take place—as judged from K′—in
accordance with the corresponding formula

r′ = ct′,

or,

x′2 + y′2 + z′2 − c2t′2 = 0 . (10a).

In order that equation (10a) may be a consequence of equation
(10), we must have

x′2 + y′2 + z′2 − c2t′2 = σ(x2 + y2 + z2 − c2t2) (11).

Since equation (8a) must hold for points on the x-axis, we
thus have σ=1. It is easily seen that the Lorentz transformation
really satisfies equation (11) for σ = 1; for (11) is a consequence
of (8a) and (9), and hence also of (8) and (9). We have thus
derived the Lorentz transformation.

The Lorentz transformation represented by (8) and (9) still
requires to be generalised. Obviously it is immaterial whether
the axes of K′ be chosen so that they are spatially parallel to those
of K. It is also not essential that the velocity of translation of K′
with respect to K should be in the direction of the x-axis. A
simple consideration shows that we are able to construct the
Lorentz transformation in this general sense from two kinds of
transformations, viz. from Lorentz transformations in the special
sense and from purely spatial transformations, which corres-
ponds to the replacement of the rectangular co-ordinate system
by a new system with its axes pointing in other directions.

Mathematically, we can characterise the generalised Lorentz
transformation thus:
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It expresses x′, y′, z′, and t′, in terms of linear homogeneous
functions of x, y, z, t, of such a kind that the relation

x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t2 . (11a).

is satisfied identically. That is to say: If we substitute their expres-
sions in x, y, z, t, in place of x′, y′, z′, t′, on the left-hand side, then
the left-hand side of (11a) agrees with the right-hand side.
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APPENDIX 2

Minkowski’s Four-dimensional
Space (“World”)

[Supplementary to Section 17]

We can characterise the Lorentz transformation still more simply
if we introduce the imaginary �−1.ct in place of t, as time-
variable. If, in accordance with this, we insert

x1 = x
x2 = y
x3 = z
x4 = �−1.ct,

and similarly for the accented system K′, then the condition
which is identically satisfied by the transformation can be
expressed thus:



x1′2 + x2′2 + x3′2 + x4′2 = x1
2 + x2

2 + x3
2 + x4

2. (12).

That is, by the afore-mentioned choice of “co-ordinates,”
(11a) is transformed into this equation.

We see from (12) that the imaginary time co-ordinate x4

enters into the condition of transformation in exactly the same
way as the space co-ordinates x1, x2, x3. It is due to this fact that,
according to the theory of relativity, the “time” x4 enters into
natural laws in the same form as the space co-ordinates x1, x2, x3.

A four-dimensional continuum described by the “co-
ordinates” x1, x2, x3, x4, was called “world” by Minkowski, who
also termed a point-event a “world-point.” From a “happening”
in three-dimensional space, physics becomes, as it were, an
“existence” in the four-dimensional “world.”

This four-dimensional “world” bears a close similarity to the
three-dimensional “space” of (Euclidean) analytical geometry. If
we introduce into the latter a new Cartesian co-ordinate system
(x′1, x′2, x′3) with the same origin, then x′1, x′2, x′3, are linear
homogeneous functions of x1, x2, x3, which identically satisfy the
equation

x1′2 + x2′2 + x3′2 = x1
2 + x2

2 + x3
2.

The analogy with (12) is a complete one. We can regard
Minkowski’s “world” in a formal manner as a four-dimensional
Euclidean space (with imaginary time co-ordinate); the Lorentz
transformation corresponds to a “rotation” of the co-ordinate
system in the four-dimensional “world.”
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APPENDIX 3

The Experimental Confirmation of the
General Theory of Relativity

From a systematic theoretical point of view, we may imagine the
process of evolution of an empirical science to be a continuous
process of induction. Theories are evolved and are expressed in
short compass as statements of a large number of individual
observations in the form of empirical laws, from which the
general laws can be ascertained by comparison. Regarded in this
way, the development of a science bears some resemblance to
the compilation of a classified catalogue. It is, as it were, a purely
empirical enterprise.

But this point of view by no means embraces the whole of the
actual process; for it slurs over the important part played by
intuition and deductive thought in the development of an exact
science. As soon as a science has emerged from its initial stages,
theoretical advances are no longer achieved merely by a process



of arrangement. Guided by empirical data, the investigator
rather develops a system of thought which, in general, is built up
logically from a small number of fundamental assumptions, the
so called axioms. We call such a system of thought a theory. The
theory finds the justification for its existence in the fact that it
correlates a large number of single observations, and it is just
here that the “truth” of the theory lies.

Corresponding to the same complex of empirical data, there
may be several theories, which differ from one another to a
considerable extent. But as regards the deductions from the the-
ories which are capable of being tested, the agreement between
the theories may be so complete, that it becomes difficult to find
any deductions in which the two theories differ from each other.
As an example, a case of general interest is available in the prov-
ince of biology, in the Darwinian theory of the development of
species by selection in the struggle for existence, and in the
theory of development which is based on the hypothesis of the
hereditary transmission of acquired characters.

We have another instance of far-reaching agreement between
the deductions from two theories in Newtonian mechanics on
the one hand, and the general theory of relativity on the other.
This agreement goes so far, that up to the present we have been
able to find only a few deductions from the general theory of
relativity which are capable of investigation, and to which the
physics of pre-relativity days does not also lead, and this despite
the profound difference in the fundamental assumptions of the
two theories. In what follows, we shall again consider these
important deductions, and we shall also discuss the empirical
evidence appertaining to them which has hitherto been
obtained.

(a) MOTION OF THE PERIHELION OF MERCURY

According to Newtonian mechanics and Newton’s law of
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gravitation, a planet which is revolving round the sun would
describe an ellipse round the latter, or, more correctly, round the
common centre of gravity of the sun and the planet. In such a
system, the sun, or the common centre of gravity, lies in one of
the foci of the orbital ellipse in such a manner that, in the course
of a planet-year, the distance sun-planet grows from a minimum
to a maximum, and then decreases again to a minimum. If
instead of Newton’s law we insert a somewhat different law of
attraction into the calculation, we find that, according to this
new law, the motion would still take place in such a manner that
the distance sun-planet exhibits periodic variations; but in this
case the angle described by the line joining sun and planet dur-
ing such a period (from perihelion—closest proximity to the
sun—to perihelion) would differ from 360°. The line of the
orbit would not then be a closed one but in the course of time it
would fill up an annular part of the orbital plane, viz. between
the circle of least and the circle of greatest distance of the planet
from the sun.

According also to the general theory of relativity, which dif-
fers of course from the theory of Newton, a small variation from
the Newton-Kepler motion of a planet in its orbit should take
place, and in such a way, that the angle described by the radius
sun–planet between one perihelion and the next should exceed
that corresponding to one complete revolution by an amount
given by

+
24π3a2

T2c2(1 − e2)
 .

(N.B.—One complete revolution corresponds to the angle 2π
in the absolute angular measure customary in physics, and the
above expression gives the amount by which the radius sun–
planet exceeds this angle during the interval between one peri-
helion and the next.) In this expression a represents the major
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semi-axis of the ellipse, e its eccentricity, c the velocity of light,
and T the period of revolution of the planet. Our result may also
be stated as follows: According to the general theory of relativ-
ity, the major axis of the ellipse rotates round the sun in the
same sense as the orbital motion of the planet. Theory requires
that this rotation should amount to 43 seconds of arc per cen-
tury for the planet Mercury, but for the other planets of our solar
system its magnitude should be so small that it would necessarily
escape detection.1

In point of fact, astronomers have found that the theory of
Newton does not suffice to calculate the observed motion of
Mercury with an exactness corresponding to that of the delicacy
of observation attainable at the present time. After taking
account of all the disturbing influences exerted on Mercury by
the remaining planets, it was found (Leverrier—1859—and
Newcomb—1895) that an unexplained perihelial movement of
the orbit of Mercury remained over, the amount of which does
not differ sensibly from the above-mentioned +43 seconds of arc
per century. The uncertainty of the empirical result amounts to a
few seconds only.

(b) DEFLECTION OF LIGHT BY A
GRAVITATIONAL FIELD

In Section 22 it has been already mentioned that according to
the general theory of relativity, a ray of light will experience a
curvature of its path when passing through a gravitational field,
this curvature being similar to that experienced by the path of a
body which is projected through a gravitational field. As a result
of this theory, we should expect that a ray of light which is
passing close to a heavenly body would be deviated towards the

1 Especially since the next planet Venus has an orbit that is almost an exact
circle, which makes it more difficult to locate the perihelion with precision.
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latter. For a ray of light which passes the sun at a distance of ∆
sun-radii from its centre, the angle of deflection (a) should
amount to

a =
1.7 seconds of arc

∆
.

It may be added that, according to the theory, half of this
deflection is produced by the Newtonian field of attraction of
the sun, and the other half by the geometrical modification
(“curvature”) of space caused by the sun.

This result admits of an experimental test by means of the
photographic registration of stars during a total eclipse of the
sun. The only reason why we must wait for a total eclipse is
because at every other time the atmosphere is so strongly
illuminated by the light from the sun that the stars situated near
the sun’s disc are invisible. The predicted effect can be seen
clearly from the accompanying diagram. If the sun (S) were not
present, a star which is practically infinitely distant would be
seen in the direction D1 as observed from the earth. But as a
consequence of the deflection of light from the star by the sun,

Figure 5
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the star will be seen in the direction D2, i.e. at a somewhat greater
distance from the centre of the sun than corresponds to its real
position.

In practice, the question is tested in the following way. The
stars in the neighbourhood of the sun are photographed during
a solar eclipse. In addition, a second photograph of the same
stars is taken when the sun is situated at another position in the
sky, i.e. a few months earlier or later. As compared with the
standard photograph, the positions of the stars on the eclipse-
photograph ought to appear displaced radially outwards (away
from the centre of the sun) by an amount corresponding to the
angle α.

We are indebted to the Royal Society and to the Royal Astro-
nomical Society for the investigation of this important deduc-
tion. Undaunted by the war and by difficulties of both a material
and a psychological nature aroused by the war, these societies
equipped two expeditions—to Sobral (Brazil), and to the island of
Principe (West Africa)—and sent several of Britain’s most cele-
brated astronomers (Eddington, Cottingham, Crommelin,
Davidson), in order to obtain photographs of the solar eclipse
of 29th May, 1919. The relative discrepancies to be expected
between the stellar photographs obtained during the eclipse and
the comparison photographs amounted to a few hundredths of a
millimetre only. Thus great accuracy was necessary in making
the adjustments required for the taking of the photographs, and
in their subsequent measurement.

The results of the measurements confirmed the theory in a
thoroughly satisfactory manner. The rectangular components
of the observed and of the calculated deviations of the stars
(in seconds of arc) are set forth in the following table of
results:
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(c) DISPLACEMENT OF SPECTRAL LINES
TOWARDS THE RED

In Section 23 it has been shown that in a system K′ which is in
rotation with regard to a Galileian system K, clocks of identical
construction, and which are considered at rest with respect to
the rotating reference-body, go at rates which are dependent on
the positions of the clocks. We shall now examine this depend-
ence quantitatively. A clock, which is situated at a distance r from
the centre of the disc, has a velocity relative to K which is given
by

v = ωr,

where ω represents the angular velocity of rotation of the disc K′
with respect to K. If v0 represents the number of ticks of the clock
per unit time (“rate” of the clock) relative to K when the clock is
at rest, then the “rate” of the clock (v) when it is moving relative
to K with a velocity v, but at rest with respect to the disc, will, in
accordance with Section 12, be given by

v = v0�1 −
v2

c2
,

or with sufficient accuracy by
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v = v0 �1 − 1–2

v2

c2�.

This expression may also be stated in the following form:

v = v0 �1 −
1

c2

ω2r2

2 �.

If we represent the difference of potential of the centrifugal force
between the position of the clock and the centre of the disc by ,
i.e. the work, considered negatively, which must be performed
on the unit of mass against the centrifugal force in order to
transport it from the position of the clock on the rotating disc to
the centre of the disc, then we have

 = −
ω2r2

2
.

From this it follows that

v = v0 �1 +


c2�.

In the first place, we see from this expression that two clocks of
identical construction will go at different rates when situated at
different distances from the centre of the disc. This result is also
valid from the standpoint of an observer who is rotating with
the disc.

Now, as judged from the disc, the latter is in a gravitational
field of potential , hence the result we have obtained will hold
quite generally for gravitational fields. Furthermore, we can
regard an atom which is emitting spectral lines as a clock, so that
the following statement will hold:
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An atom absorbs or emits light of a frequency which is dependent on the
potential of the gravitational field in which it is situated.

The frequency of an atom situated on the surface of a heavenly
body will be somewhat less than the frequency of an atom of the
same element which is situated in free space (or on the surface

of a smaller celestial body). Now  = − K
M

r
, where K is Newton’s

constant of gravitation, and M is the mass of the heavenly body.
Thus a displacement towards the red ought to take place for
spectral lines produced at the surface of stars as compared with
the spectral lines of the same element produced at the surface of
the earth, the amount of this displacement being

v0 − v

v0

=
K

c2

M

r
 .

For the sun, the displacement towards the red predicted by
theory amounts to about two millionths of the wave-length. A
trustworthy calculation is not possible in the case of the stars,
because in general neither the mass M nor the radius r are
known.

It is an open question whether or not this effect exists, and at
the present time (1920) astronomers are working with great
zeal towards the solution. Owing to the smallness of the effect in
the case of the sun, it is difficult to form an opinion as to its
existence. Whereas Grebe and Bachem (Bonn), as a result of
their own measurements and those of Evershed and
Schwarzschild on the cyanogen bands, have placed the existence
of the effect almost beyond doubt, other investigators, particu-
larly St. John, have been led to the opposite opinion in con-
sequence of their measurements.

Mean displacements of lines towards the less refrangible end
of the spectrum are certainly revealed by statistical investigations
of the fixed stars; but up to the present the examination of the
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available data does not allow of any definite decision being
arrived at, as to whether or not these displacements are to be
referred in reality to the effect of gravitation. The results of
observation have been collected together, and discussed in detail
from the standpoint of the question which has been engaging
our attention here, in a paper by E. Freundlich entitled “Zur
Prüfung der allgemeinen Relativitäts-Theorie” (Die Naturwissen-
schaften, 1919, No. 35, p. 520: Julius Springer, Berlin).

At all events, a definite decision will be reached during the
next few years. If the displacement of spectral lines towards the
red by the gravitational potential does not exist, then the general
theory of relativity will be untenable. On the other hand, if the
cause of the displacement of spectral lines be definitely traced to
the gravitational potential, then the study of this displacement
will furnish us with important information as to the mass of the
heavenly bodies.

N.—The displacement of spectral lines towards the red end of the spec-
trum was definitely established by Adams in 1924, by observations on the
dense companion of Sirius, for which the effect is about thirty times greater
than for the sun.

R. W. L.

experimental confirmation 135



APPENDIX 4

The Structure of Space according to the
General Theory of Relativity

[Supplementary to Section 32]

Since the publication of the first edition of this little book, our
knowledge about the structure of space in the large (“cosmo-
logical problem”) has had an important development, which
ought to be mentioned even in a popular presentation of the
subject.

My original considerations on the subject were based on two
hypotheses:

(1) There exists an average density of matter in the whole of
space which is everywhere the same and different from
zero.

(2) The magnitude (“radius”) of space is independent of
time.



Both these hypotheses proved to be consistent, according to
the general theory of relativity, but only after a hypothetical
term was added to the field equations, a term which was not
required by the theory as such nor did it seem natural from a
theoretical point of view (“cosmological term of the field
equations”).

Hypothesis (2) appeared unavoidable to me at the time, since
I thought that one would get into bottomless speculations if one
departed from it.

However, already in the ’twenties, the Russian mathematician
Friedman showed that a different hypothesis was natural from a
purely theoretical point of view. He realized that it was possible
to preserve hypothesis (1) without introducing the less natural
cosmological term into the field equations of gravitation, if one
was ready to drop hypothesis (2). Namely, the original field
equations admit a solution in which the “world radius”
depends on time (expanding space). In that sense one can say,
according to Friedman, that the theory demands an expansion
of space.

A few years later Hubble showed, by a special investigation of
the extra-galactic nebulae (“milky ways”), that the spectral lines
emitted showed a red shift which increased regularly with the
distance of the nebulae. This can be interpreted in regard to our
present knowledge only in the sense of Doppler’s principle, as
an expansive motion of the system of stars in the large—as
required, according to Friedman, by the field equations of gravi-
tation. Hubble’s discovery can, therefore, be considered to some
extent as a confirmation of the theory.

There does arise, however, a strange difficulty. The interpret-
ation of the galactic line-shift discovered by Hubble as an expan-
sion (which can hardly be doubted from a theoretical point of
view), leads to an origin of this expansion which lies “only”
about 109 years ago, while physical astronomy makes it appear
likely that the development of individual stars and systems of
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stars takes considerably longer. It is in no way known how this
incongruity is to be overcome.

I further want to remark that the theory of expanding space,
together with the empirical data of astronomy, permit no deci-
sion to be reached about the finite or infinite character of (three-
dimensional) space, while the original “static” hypothesis of
space yielded the closure (finiteness) of space.
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APPENDIX 5

Relativity and the Problem of Space1

It is characteristic of Newtonian physics that it has to ascribe
independent and real existence to space and time as well as to
matter, for in Newton’s law of motion the idea of acceleration
appears. But in this theory, acceleration can only denote
“acceleration with respect to space”. Newton’s space must thus
be thought of as “at rest”, or at least as “unaccelerated”, in order
that one can consider the acceleration, which appears in the law
of motion, as being a magnitude with any meaning. Much the
same holds with time, which of course likewise enters into the

1  As with the original translation of this book in 1920, my old friend Emeritus
Professor S. R. Milner, F.R.S. has again given me the benefit of his unique
experience in this field, by reading the translation of this new appendix and
making numerous suggestions for improvement. I am deeply grateful to
him and to Professor A. G. Walker of the Mathematics Department of Liver-
pool University, who also read this appendix and offered various helpful
suggestions. R. W. L.



concept of acceleration. Newton himself and his most critical
contemporaries felt it to be disturbing that one had to ascribe
physical reality both to space itself as well as to its state of
motion; but there was at that time no other alternative, if one
wished to ascribe to mechanics a clear meaning.

It is indeed an exacting requirement to have to ascribe phy-
sical reality to space in general, and especially to empty space.
Time and again since remotest times philosophers have resisted
such a presumption. Descartes argued somewhat on these lines:
space is identical with extension, but extension is connected
with bodies; thus there is no space without bodies and hence no
empty space. The weakness of this argument lies primarily in
what follows. It is certainly true that the concept extension owes
its origin to our experiences of laying out or bringing into con-
tact solid bodies. But from this it cannot be concluded that the
concept of extension may not be justified in cases which have
not themselves given rise to the formation of this concept. Such
an enlargement of concepts can be justified indirectly by its
value for the comprehension of empirical results. The assertion
that extension is confined to bodies is therefore of itself certainly
unfounded. We shall see later, however, that the general theory of
relativity confirms Descartes’ conception in a roundabout way.
What brought Descartes to his remarkably attractive view was
certainly the feeling that, without compelling necessity, one
ought not to ascribe reality to a thing like space, which is not
capable of being “directly experienced”.1

The psychological origin of the idea of space, or of the neces-
sity for it, is far from being so obvious as it may appear to be on
the basis of our customary habit of thought. The old geometers
deal with conceptual objects (straight line, point, surface), but
not really with space as such, as was done later in analytical
geometry. The idea of space, however, is suggested by certain

1 This expression is to be taken cum grano salis.
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primitive experiences. Suppose that a box has been constructed.
Objects can be arranged in a certain way inside the box, so that it
becomes full. The possibility of such arrangements is a property
of the material object “box”, something that is given with the
box, the “space enclosed” by the box. This is something which
is different for different boxes, something that is thought quite
naturally as being independent of whether or not, at any
moment, there are any objects at all in the box. When there are
no objects in the box, its space appears to be “empty”.

So far, our concept of space has been associated with the box.
It turns out, however, that the storage possibilities that make up
the box-space are independent of the thickness of the walls of
the box. Cannot this thickness be reduced to zero, without the
“space” being lost as a result? The naturalness of such a limiting
process is obvious, and now there remains for our thought the
space without the box, a self-evident thing, yet it appears to be
so unreal if we forget the origin of this concept. One can under-
stand that it was repugnant to Descartes to consider space as
independent of material objects, a thing that might exist without
matter.1 (At the same time, this does not prevent him from treat-
ing space as a fundamental concept in his analytical geometry.)
The drawing of attention to the vacuum in a mercury barometer
has certainly disarmed the last of the Cartesians. But it is not to
be denied that, even at this primitive stage, something unsatisfac-
tory clings to the concept of space, or to space thought of as an
independent real thing.

The ways in which bodies can be packed into space (e.g. the
box) are the subject of three-dimensional Euclidean geometry,
whose axiomatic structure readily deceives us into forgetting
that it refers to realisable situations.

1 Kant’s attempt to remove the embarrassment by denial of the objectivity of
space can, however, hardly be taken seriously. The possibilities of packing
inherent in the inside space of a box are objective in the same sense as the box
itself, and as the objects which can be packed inside it.
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If now the concept of space is formed in the manner outlined
above, and following on from experience about the “filling” of
the box, then this space is primarily a bounded space. This limita-
tion does not appear to be essential, however, for apparently a
larger box can always be introduced to enclose the smaller one.
In this way space appears as something unbounded.

I shall not consider here how the concepts of the three-
dimensional and the Euclidean nature of space can be traced
back to relatively primitive experiences. Rather I shall consider
first of all from other points of view the role of the concept of
space in the development of physical thought.

When a smaller box s is situated, relatively at rest, inside the
hollow space of a larger box S, then the hollow space of s is a part
of the hollow space of S, and the same “space”, which contains
both of them, belongs to each of the boxes. When s is in motion
with respect to S, however, the concept is less simple. One is then
inclined to think that s encloses always the same space, but a
variable part of the space S. It then becomes necessary to appor-
tion to each box its particular space, not thought of as bounded,
and to assume that these two spaces are in motion with respect
to each other.

Before one has become aware of this complication, space
appears as an unbounded medium or container in which
material objects swim around. But it must now be remembered
that there is an infinite number of spaces, which are in motion
with respect to each other. The concept of space as something
existing objectively and independent of things belongs to pre-
scientific thought, but not so the idea of the existence of an
infinite number of spaces in motion relatively to each other. This
latter idea is indeed logically unavoidable, but is far from having
played a considerable rôle even in scientific thought.

But what about the psychological origin of the concept of
time? This concept is undoubtedly associated with the fact of
“calling to mind”, as well as with the differentiation between
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sense experiences and the recollection of these. Of itself it is
doubtful whether the differentiation between sense experience
and recollection (or simple re-presentation) is something psy-
chologically directly given to us. Everyone has experienced that
he has been in doubt whether he has actually experienced some-
thing with his senses or has simply dreamt about it. Probably the
ability to discriminate between these alternatives first comes
about as the result of an activity of the mind creating order.

An experience is associated with a “recollection”, and it is
considered as being “earlier” in comparison with “present
experiences”. This is a conceptual ordering principle for recol-
lected experiences, and the possibility of its accomplishment
gives rise to the subjective concept of time, i.e. that concept of
time which refers to the arrangement of the experiences of the
individual.

What do we mean by rendering objective the concept of
time? Let us consider an example. A person A (“I”) has the
experience “it is lightning”. At the same time the person A also
experiences such a behaviour of the person B as brings the
behaviour of B into relation with his own experience “it is light-
ning”. Thus it comes about that A associates with B the experi-
ence “it is lightning”. For the person A the idea arises that other
persons also participate in the experience “it is lightning”. “It is
lightning” is now no longer interpreted as an exclusively per-
sonal experience, but as an experience of other persons (or even-
tually only as a “potential experience”). In this way arises the
interpretation that “it is lightning”, which originally entered
into the consciousness as an “experience”, is now also inter-
preted as an (objective) “event”. It is just the sum total of all
events that we mean when we speak of the “real external world”.

We have seen that we feel ourselves impelled to ascribe a
temporal arrangement to our experiences, somewhat as follows.
If β is later than α and γ later than β, then γ is also later than α
(“sequence of experiences”). Now what is the position in this
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respect with the “events” which we have associated with the
experiences? At first sight it seems obvious to assume that a
temporal arrangement of events exists which agrees with the
temporal arrangement of the experiences. In general, and
unconsciously this was done, until sceptical doubts made them-
selves felt.1 In order to arrive at the idea of an objective world, an
additional constructive concept still is necessary: the event is
localised not only in time, but also in space.

In the previous paragraphs we have attempted to describe how
the concepts space, time and event can be put psychologically
into relation with experiences. Considered logically, they are
free creations of the human intelligence, tools of thought, which
are to serve the purpose of bringing experiences into relation
with each other, so that in this way they can be better surveyed.
The attempt to become conscious of the empirical sources of
these fundamental concepts should show to what extent we are
actually bound to these concepts. In this way we become aware
of our freedom, of which, in case of necessity, it is always a
difficult matter to make sensible use.

We still have something essential to add to this sketch concern-
ing the psychological origin of the concepts space-time-event
(we will call them more briefly “space-like”, in contrast to con-
cepts from the psychological sphere). We have linked up the
concept of space with experiences using boxes and the arrange-
ment of material objects in them. Thus this formation of con-
cepts already presupposes the concept of material objects (e.g.
“boxes”). In the same way persons, who had to be introduced
for the formation of an objective concept of time, also play the
rôle of material objects in this connection. It appears to me,
therefore, that the formation of the concept of the material
object must precede our concepts of time and space.
1 For example, the order of experiences in time obtained by acoustical means
can differ from the temporal order gained visually, so that one cannot simply
identify the time sequence of events with the time sequence of experiences.
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All these space-like concepts already belong to pre-scientific
thought, along with concepts like pain, goal, purpose, etc. from
the field of psychology. Now it is characteristic of thought in
physics, as of thought in natural science generally, that it
endeavours in principle to make do with “space-like” concepts
alone, and strives to express with their aid all relations having the
form of laws. The physicist seeks to reduce colours and tones to
vibrations, the physiologist thought and pain to nerve processes,
in such a way that the psychical element as such is eliminated
from the causal nexus of existence, and thus nowhere occurs as
an independent link in the causal associations. It is no doubt this
attitude, which considers the comprehension of all relations by
the exclusive use of only “space-like” concepts as being possible
in principle, that is at the present time understood by the term
“materialism” (since “matter” has lost its rôle as a fundamental
concept).

Why is it necessary to drag down from the Olympian fields of
Plato the fundamental ideas of thought in natural science, and to
attempt to reveal their earthly lineage? Answer: In order to free
these ideas from the taboo attached to them, and thus to achieve
greater freedom in the formation of ideas or concepts. It is to the
immortal credit of D. Hume and E. Mach that they, above all
others, introduced this critical conception.

Science has taken over from pre-scientific thought the con-
cepts space, time, and material object (with the important spe-
cial case “solid body”), and has modified them and rendered
them more precise. Its first significant accomplishment was the
development of Euclidean geometry, whose axiomatic formu-
lation must not be allowed to blind us to its empirical origin
(the possibilities of laying out or juxtaposing solid bodies). In
particular, the three-dimensional nature of space as well as its
Euclidean character are of empirical origin (it can be wholly
filled by like constituted “cubes”).

The subtlety of the concept of space was enhanced by the
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discovery that there exist no completely rigid bodies. All bodies
are elastically deformable and alter in volume with change in
temperature. The structures, whose possible congruences are to
be described by Euclidean geometry, cannot therefore be repre-
sented apart from physical concepts. But since physics after all
must make use of geometry in the establishment of its concepts,
the empirical content of geometry can be stated and tested only
in the framework of the whole of physics.

In this connection atomistics must also be borne in mind, and
its conception of finite divisibility; for spaces of sub-atomic
extension cannot be measured up. Atomistics also compels us to
give up, in principle, the idea of sharply and statically defined
bounding surfaces of solid bodies. Strictly speaking, there are
no precise laws, even in the macro-region, for the possible
configurations of solid bodies touching each other.

In spite of this, no one thought of giving up the concept of
space, for it appeared indispensable in the eminently satisfactory
whole system of natural science. Mach, in the nineteenth cen-
tury, was the only one who thought seriously of an elimination
of the concept of space, in that he sought to replace it by the
notion of the totality of the instantaneous distances between all
material points. (He made this attempt in order to arrive at a
satisfactory understanding of inertia).

The field

In Newtonian mechanics, space and time play a dual rôle. First,
they play the part of carrier or frame for things that happen in
physics, in reference to which events are described by the space
co-ordinates and the time. In principle, matter is thought of as
consisting of “material points”, the motions of which constitute
physical happening. When matter is thought of as being con-
tinuous, this is done as it were provisionally in those cases where
one does not wish to or cannot describe the discrete structure. In
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this case small parts (elements of volume) of the matter are
treated similarly to material points, at least in so far as we are
concerned merely with motions and not with occurrences
which, at the moment, it is not possible or serves no useful pur-
pose to attribute to motions (e.g. temperature changes, chemical
processes). The second rôle of space and time was that of being
an “inertial system”. From all conceivable systems of reference,
inertial systems were considered to be advantageous in that, with
respect to them, the law of inertia claimed validity.

In this, the essential thing is that “physical reality”, thought of
as being independent of the subjects experiencing it, was con-
ceived as consisting, at least in principle, of space and time on
one hand, and of permanently existing material points, moving
with respect to space and time, on the other. The idea of the
independent existence of space and time can be expressed dras-
tically in this way: If matter were to disappear, space and time
alone would remain behind (as a kind of stage for physical
happening).

The surmounting of this standpoint resulted from a develop-
ment which, in the first place, appeared to have nothing to do
with the problem of space-time, namely, the appearance of the
concept of field and its final claim to replace, in principle, the idea of
a particle (material point). In the framework of classical physics,
the concept of field appeared as an auxiliary concept, in cases in
which matter was treated as a continuum. For example, in the
consideration of the heat conduction in a solid body, the state of
the body is described by giving the temperature at every point
of the body for every definite time. Mathematically, this means
that the temperature T is represented as a mathematical expres-
sion (function) of the space co-ordinates and the time t (Tem-
perature field). The law of heat conduction is represented as a
local relation (differential equation), which embraces all special
cases of the conduction of heat. The temperature is here a simple
example of the concept of field. This is a quantity (or a complex
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of quantities), which is a function of the co-ordinates and the
time. Another example is the description of the motion of a
liquid. At every point there exists at any time a velocity, which is
quantitatively described by its three “components” with respect
to the axes of a co-ordinate system (vector). The components
of the velocity at a point (field components), here also, are
functions of the co-ordinates (x, y, z) and the time (t).

It is characteristic of the fields mentioned that they occur only
within a ponderable mass; they serve only to describe a state of
this matter. In accordance with the historical development of the
field concept, where no matter was available there could also
exist no field. But in the first quarter of the nineteenth century it
was shown that the phenomena of the interference and motion
of light could be explained with astonishing clearness when
light was regarded as a wave-field, completely analogous to the
mechanical vibration field in an elastic solid body. It was thus
felt necessary to introduce a field, that could also exist in “empty
space” in the absence of ponderable matter.

This state of affairs created a paradoxical situation, because, in
accordance with its origin, the field concept appeared to be
restricted to the description of states in the inside of a ponder-
able body. This seemed to be all the more certain, inasmuch as
the conviction was held that every field is to be regarded as a
state capable of mechanical interpretation, and this presupposed
the presence of matter. One thus felt compelled, even in the
space which had hitherto been regarded as empty, to assume
everywhere the existence of a form of matter, which was called
“aether”.

The emancipation of the field concept from the assumption of
its association with a mechanical carrier finds a place among the
psychologically most interesting events in the development of
physical thought. During the second half of the nineteenth cen-
tury, in connection with the researches of Faraday and Maxwell,
it became more and more clear that the description of electro-
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magnetic processes in terms of field was vastly superior to a
treatment on the basis of the mechanical concepts of material
points. By the introduction of the field concept in electro-
dynamics, Maxwell succeeded in predicting the existence of
electromagnetic waves, the essential identity of which with light
waves could not be doubted, because of the equality of their
velocity of propagation. As a result of this, optics was, in prin-
ciple, absorbed by electrodynamics. One psychological effect of
this immense success was that the field concept, as opposed to
the mechanistic framework of classical physics, gradually won
greater independence.

Nevertheless, it was at first taken for granted that electro-
magnetic fields had to be interpreted as states of the aether, and it
was zealously sought to explain these states as mechanical ones.
But as these efforts always met with frustration, science grad-
ually became accustomed to the idea of renouncing such a
mechanical interpretation. Nevertheless, the conviction still
remained that electromagnetic fields must be states of the aether,
and this was the position at the turn of the century.

The aether-theory brought with it the question: How does the
aether behave from the mechanical point of view with respect to
ponderable bodies? Does it take part in the motions of the bod-
ies, or do its parts remain at rest relatively to each other? Many
ingenious experiments were undertaken to decide this question.
The following important facts should be mentioned in this con-
nection: the “aberration” of the fixed stars in consequence of the
annual motion of the earth, and the “Doppler effect”, i.e. the
influence of the relative motion of the fixed stars on the fre-
quency of the light reaching us from them, for known frequen-
cies of emission. The results of all these facts and experiments,
except for one, the Michelson–Morley experiment, were
explained by H. A. Lorentz on the assumption that the aether
does not take part in the motions of ponderable bodies, and that
the parts of the aether have no relative motions at all with respect
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to each other. Thus the aether appeared, as it were, as the
embodiment of a space absolutely at rest. But the investigation of
Lorentz accomplished still more. It explained all the electro-
magnetic and optical processes within ponderable bodies known
at that time, on the assumption that the influence of ponderable
matter on the electric field—and conversely—is due solely to the
fact that the constituent particles of matter carry electrical
charges, which share the motion of the particles. Concerning the
experiment of Michelson and Morley, H. A. Lorentz showed that
the result obtained at least does not contradict the theory of an
aether at rest.

In spite of all these beautiful successes the state of the theory
was not yet wholly satisfactory, and for the following reasons.
Classical mechanics, of which it could not be doubted that it
holds with a close degree of approximation, teaches the equiva-
lence of all inertial systems or inertial “spaces” for the formula-
tion of natural laws, i.e. the invariance of natural laws with
respect to the transition from one inertial system to another.
Electromagnetic and optical experiments taught the same thing
with considerable accuracy. But the foundation of electro-
magnetic theory taught that a particular inertial system must be
given preference, namely that of the luminiferous aether at rest.
This view of the theoretical foundation was much too unsatisfac-
tory. Was there no modification that, like classical mechanics,
would uphold the equivalence of inertial systems (special
principle of relativity)?

The answer to this question is the special theory of relativity.
This takes over from the theory of Maxwell-Lorentz the assump-
tion of the constancy of the velocity of light in empty space. In
order to bring this into harmony with the equivalence of inertial
systems (special principle of relativity), the idea of the absolute
character of simultaneity must be given up; in addition, the
Lorentz transformations for the time and the space co-ordinates
follow for the transition from one inertial system to another. The
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whole content of the special theory of relativity is included in
the postulate: The laws of Nature are invariant with respect to
the Lorentz transformations. The important thing of this
requirement lies in the fact that it limits the possible natural laws
in a definite manner.

What is the position of the special theory of relativity in regard
to the problem of space? In the first place we must guard against
the opinion that the four-dimensionality of reality has been
newly introduced for the first time by this theory. Even in clas-
sical physics the event is localised by four numbers, three spatial
co-ordinates and a time co-ordinate; the totality of physical
“events” is thus thought of as being embedded in a four-
dimensional continuous manifold. But on the basis of classical
mechanics this four-dimensional continuum breaks up object-
ively into the one-dimensional time and into three-dimensional
spatial sections, only the latter of which contain simultaneous
events. This resolution is the same for all inertial systems. The
simultaneity of two definite events with reference to one inertial
system involves the simultaneity of these events in reference to
all inertial systems. This is what is meant when we say that the
time of classical mechanics is absolute. According to the special
theory of relativity it is otherwise. The sum total of events which
are simultaneous with a selected event exist, it is true, in relation
to a particular inertial system, but no longer independently of
the choice of the inertial system. The four-dimensional con-
tinuum is now no longer resolvable objectively into sections, all
of which contain simultaneous events; “now” loses for the spa-
tially extended world its objective meaning. It is because of this
that space and time must be regarded as a four-dimensional
continuum that is objectively unresolvable, if it is desired to
express the purport of objective relations without unnecessary
conventional arbitrariness.

Since the special theory of relativity revealed the physical
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equivalence of all inertial systems, it proved the untenability of
the hypothesis of an aether at rest. It was therefore necessary to
renounce the idea that the electromagnetic field is to be regarded
as a state of a material carrier. The field thus becomes an irredu-
cible element of physical description, irreducible in the same
sense as the concept of matter in the theory of Newton.

Up to now we have directed our attention to finding in what
respect the concepts of space and time were modified by the spe-
cial theory of relativity. Let us now focus our attention on those
elements which this theory has taken over from classical mech-
anics. Here also, natural laws claim validity only when an inertial
system is taken as the basis of space-time description. The prin-
ciple of inertia and the principle of the constancy of the velocity
of light are valid only with respect to an inertial system. The field-
laws also can claim to have a meaning and validity only in regard
to inertial systems. Thus, as in classical mechanics, space is here
also an independent component in the representation of phy-
sical reality. If we imagine matter and field to be removed,
inertial-space or, more accurately, this space together with the
associated time remains behind. The four-dimensional structure
(Minkowski-space) is thought of as being the carrier of matter
and of the field. Inertial spaces, with their associated times, are
only privileged four-dimensional co-ordinate systems, that are
linked together by the linear Lorentz transformations. Since
there exist in this four-dimensional structure no longer any sec-
tions which represent “now” objectively, the concepts of hap-
pening and becoming are indeed not completely suspended, but
yet complicated. It appears therefore more natural to think of
physical reality as a four-dimensional existence, instead of, as
hitherto, the evolution of a three-dimensional existence.

This rigid four-dimensional space of the special theory of
relativity is to some extent a four-dimensional analogue of H. A.
Lorentz’s rigid three-dimensional aether. For this theory also the
following statement is valid: The description of physical states
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postulates space as being initially given and as existing
independently. Thus even this theory does not dispel Descartes’
uneasiness concerning the independent, or indeed, the a priori
existence of “empty space”. The real aim of the elementary dis-
cussion given here is to show to what extent these doubts are
overcome by the general theory of relativity.

The concept of space in the general theory of relativity

This theory arose primarily from the endeavour to understand
the equality of inertial and gravitational mass. We start out from
an inertial system S1 whose space is, from the physical point of
view, empty. In other words, there exists in the part of space
contemplated neither matter (in the usual sense) nor a field (in
the sense of the special theory of relativity). With reference to S1

let there be a second system of reference S2 in uniform acceler-
ation. Then S2 is thus not an inertial system. With respect to S2

every test mass would move with an acceleration, which is
independent of its physical and chemical nature. Relative to S2,
therefore, there exists a state which, at least to a first approxima-
tion, cannot be distinguished from a gravitational field. The fol-
lowing concept is thus compatible with the observable facts: S2 is
also equivalent to an “inertial system”; but with respect to S2 a
(homogeneous) gravitational field is present (about the origin
of which one does not worry in this connection). Thus when the
gravitational field is included in the framework of the consider-
ation, the inertial system loses its objective significance, assum-
ing that this “principle of equivalence” can be extended to any
relative motion whatsoever of the systems of reference. If it is
possible to base a consistent theory on these fundamental ideas,
it will satisfy of itself the fact of the equality of inertial and
gravitational mass, which is strongly confirmed empirically.

Considered four-dimensionally, a non-linear transformation
of the four co-ordinates corresponds to the transition from S1 to
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S2. The question now arises: What kind of non-linear transform-
ations are to be permitted, or, how is the Lorentz transformation
to be generalised? In order to answer this question, the
following consideration is decisive.

We ascribe to the inertial system of the earlier theory this
property: Differences in co-ordinates are measured by stationary
“rigid” measuring rods, and differences in time by clocks at rest.
The first assumption is supplemented by another, namely, that
for the relative laying out and fitting together of measuring rods
at rest, the theorems on “lengths” in Euclidean geometry hold.
From the results of the special theory of relativity it is then con-
cluded, by elementary considerations, that this direct physical
interpretation of the co-ordinates is lost for systems of reference
(S2) accelerated relatively to inertial systems (S1). But if this is
the case, the co-ordinates now express only the order or rank
of the “contiguity” and hence also the dimensional grade of
the space, but do not express any of its metrical properties. We
are thus led to extend the transformations to arbitrary continu-
ous transformations.1 This implies the general principle of
relativity: Natural laws must be covariant with respect to arbi-
trary continuous transformations of the co-ordinates. This
requirement (combined with that of the greatest possible logical
simplicity of the laws) limits the natural laws concerned
incomparably more strongly than the special principle of
relativity.

This train of ideas is based essentially on the field as an
independent concept. For the conditions prevailing with respect
to S2 are interpreted as a gravitational field, without the question
of the existence of masses which produce this field being raised.
By virtue of this train of ideas it can also be grasped why the laws
of the pure gravitational field are more directly linked with the
idea of general relativity than the laws for fields of a general kind

1 This inexact mode of expression will perhaps suffice here.
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(when, for instance, an electromagnetic field is present). We
have, namely, good ground for the assumption that the “field-
free”, Minkowski-space represents a special case possible in nat-
ural law, in fact, the simplest conceivable special case. With
respect to its metrical character, such a space is characterised by
the fact that dx1

2 + dx2
2 + dx3

2 is the square of the spatial separation,
measured with a unit gauge, of two infinitesimally neighbour-
ing points of a three-dimensional “space-like” cross section
(Pythagorean theorem), whereas dx4 is the temporal separation,
measured with a suitable time gauge, of two events with com-
mon (x1, x2, x3). All this simply means that an objective metrical
significance is attached to the quantity

ds2 = dx1
2 + dx2

2 + dx3
2 − dx4

2 . (1).

as is readily shown with the aid of the Lorentz transformations.
Mathematically, this fact corresponds to the condition that ds2 is
invariant with respect to Lorentz transformations.

If now, in the sense of the general principle of relativity, this
space (cf. eq. (1)) is subjected to an arbitrary continuous trans-
formation of the co-ordinates, then the objectively significant
quantity ds is expressed in the new system of co-ordinates by the
relation

ds2 = gikdxidxk . . . (1a).

which has to be summed up over the indices i and k for all
combinations 11, 12, . . . up to 44. The terms gik now are not
constants, but functions of the co-ordinates, which are deter-
mined by the arbitrarily chosen transformation. Nevertheless,
the terms gik are not arbitrary functions of the new co-ordinates,
but just functions of such a kind that the form (1a) can be
transformed back again into the form (1) by a continuous
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transformation of the four co-ordinates. In order that this
may be possible, the functions gik must satisfy certain general
covariant equations of condition, which were derived by
B. Riemann more than half a century before the formulation of
the general theory of relativity (“Riemann condition”). Accord-
ing to the principle of equivalence, (1a) describes in general
covariant form a gravitational field of a special kind, when the
functions gik satisfy the Riemann condition.

It follows that the law for the pure gravitational field of a
general kind must be satisfied when the Riemann condition
is satisfied; but it must be weaker or less restricting than the
Riemann condition. In this way the field law of pure gravitation
is practically completely determined, a result which will not be
justified in greater detail here.

We are now in a position to see how far the transition to the
general theory of relativity modifies the concept of space. In
accordance with classical mechanics and according to the special
theory of relativity, space (space-time) has an existence
independent of matter or field. In order to be able to describe at
all that which fills up space and is dependent on the co-
ordinates, space-time or the inertial system with its metrical
properties must be thought of at once as existing, for otherwise
the description of “that which fills up space” would have no
meaning.1 On the basis of the general theory of relativity, on the
other hand, space as opposed to “what fills space”, which is
dependent on the co-ordinates, has no separate existence. Thus a
pure gravitational field might have been described in terms of
the gik(as functions of the co-ordinates), by solution of the gravi-
tational equations. If we imagine the gravitational field, i.e. the
functions gik, to be removed, there does not remain a space of the

1 If we consider that which fills space (e.g. the field) to be removed, there still
remains the metric space in accordance with (1), which would also determine
the inertial behaviour of a test body introduced into it.
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type (1), but absolutely nothing, and also no “topological space”.
For the functions gik describe not only the field, but at the same
time also the topological and metrical structural properties of
the manifold. A space of the type (1), judged from the stand-
point of the general theory of relativity, is not a space without
field, but a special case of the gik field, for which—for the co-
ordinate system used, which in itself has no objective
significance—the functions gik have values that do not depend on
the co-ordinates. There is no such thing as an empty space, i.e. a
space without field. Space-time does not claim existence on its
own, but only as a structural quality of the field.

Thus Descartes was not so far from the truth when he believed
he must exclude the existence of an empty space. The notion
indeed appears absurd, as long as physical reality is seen
exclusively in ponderable bodies. It requires the idea of the field
as the representative of reality, in combination with the general
principle of relativity, to show the true kernel of Descartes’ idea;
there exists no space “empty of field”.

Generalised theory of gravitation

The theory of the pure gravitational field on the basis of the
general theory of relativity is therefore readily obtainable,
because we may be confident that the “field-free” Minkowski
space with its metric in conformity with (1) must satisfy the
general laws of field. From this special case the law of gravitation
follows by a generalisation which is practically free from arbi-
trariness. The further development of the theory is not so
unequivocally determined by the general principle of relativity;
it has been attempted in various directions during the last few
decades. It is common to all these attempts, to conceive physical
reality as a field, and moreover, one which is a generalisation of
the gravitational field, and in which the field law is a generalisa-
tion of the law for the pure gravitational field. After long

relativity and problem of space 157



probing I believe that I have now found1 the most natural form
for this generalisation, but I have not yet been able to find out
whether this generalised law can stand up against the facts of
experience.

The question of the particular field law is secondary in the
preceding general considerations. At the present time, the main
question is whether a field theory of the kind here contemplated
can lead to the goal at all. By this is meant a theory which
describes exhaustively physical reality, including four-
dimensional space, by a field. The present-day generation of
physicists is inclined to answer this question in the negative. In
conformity with the present form of the quantum theory, it
believes that the state of a system cannot be specified directly,
but only in an indirect way by a statement of the statistics of the
results of measurement attainable on the system. The conviction
prevails that the experimentally assured duality of nature (cor-
puscular and wave structure) can be realised only by such a
weakening of the concept of reality. I think that such a far-
reaching theoretical renunciation is not for the present justified
by our actual knowledge, and that one should not desist from
pursuing to the end the path of the relativistic field theory.

1 The generalisation can be characterised in the following way. In accordance
with its derivation from empty “Minkowski space”, the pure gravitational field
of the functions gik has the property of symmetry given by gik = gki(g12 = g21,
etc.). The generalised field is of the same kind, but without this property of
symmetry. The derivation of the field law is completely analogous to that of the
special case of pure gravitation.

appendix 5158



BIBLIOGRAPHY

BIOGRAPHICAL

Out of My Later Years: Albert Einstein. (Constable, 1950).
Einstein—His Life and Times: Philipp Frank. (Cape, 1948).

INTRODUCTORY OR GENERAL

The Special Theory of Relativity: H. Dingle. (Methuen, 1940).
The Expanding Universe: A. Eddington. (Cambridge, 1933).
Space, Time and Gravitation: A. Eddington. (Cambridge, 1923).
The Meaning of Relativity: A. Einstein. (Fifth revised edition; Methuen,

1951).
Evolution of Physics: A. Einstein and L. Infeld. (Cambridge, 1947).
Relativity Physics: W. H. McCrea. (Methuen, 1947).
Albert Einstein: Philosopher—Scientist. (The Library of Living Philosophers,

Vol. VII.) Edited by P. A. Schilpp. (Cambridge, 1950).
Space-Time Structure: E. Schrödinger. (Cambridge, 1950).
The Structure of the Universe: G. J. Whitrow. (Hutchinson’s University

Library, No. 29, 1949).



MATHEMATICAL

Introduction to the Theory of Relativity: P. G. Bergmann. (Prentice-Hall,
1942).

The Mathematical Theory of Relativity: A. Eddington. (Cambridge, 1924).
Relativity, Gravitation and World Structure: E. A. Milne. (Oxford, 1935).
Kinematic Relativity: E. A. Milne. (Oxford, 1948).
The Theory of Relativity: C. Moller. (Oxford, 1952).
Relativitätstheorie: W. Pauli, Jr. (Sonderabdruck aus der Enzyklopädie

der mathematischen Wissenschaften, V (2), 543–773). (Teubner,
Leipzig, 1921).

Relativity, Thermodynamics and Cosmology: R. C. Tolman. (Oxford, 1934).
Space, Time and Matter: H. Weyl. (Methuen, 1922).

I am indebted to my former colleagues Dr. B. Donovan (Northern Poly-
technic, London) and Professor A. G. Walker (Liverpool University) for
suggestions in the choice of books.

R. W. L.

bibliography160



INDEX

aberration 51, 149
absorption of energy 48
acceleration 66, 69, 71, 139
action at a distance 50
Adams 103, 135
addition of velocities 18, 40
adjacent points 89
æther 54, 148 et seq.

-drift, 54, 55
α-particle 50
arbitrary substitutions 98
astronomy 8, 102
astronomical day 12
atomic weights, evaluation of

50
atomistics 146
axioms 4, 126

truth of 4

Bachem 134
basis of theory 46
“Becoming” 152

“Being” 69, 110
β-rays 52
biology 127
bombardment of elements 50
bounded space 142

Cartesian system of co-ordinates 8,
84, 125

Cathode rays 52
causal associations 145
celestial mechanics 107
centrifugal force 80, 133
chemical processes 147
chest 69
classical mechanics 10, 15, 16, 18,

32, 46, 72, 102, 103, 127,
150, 156

truth of 15
classical physics 147, 149, 151
clocks 11, 25, 80, 81, 95, 96, 98–9,

102, 115, 132, 154
rate of 132



conception of mass 48
position 7

conservation of energy 48, 101
impulse 101
mass 48, 49

continuity 96
continuum 56, 83, 147, 156

two-dimensional 95
three-dimensional 58
four-dimensional 89, 91, 93, 95,

125, 151
space-time 78, 91–6
Euclidean 84, 85, 88, 92
non-Euclidean 86, 90

co-ordinate differences 92
differentials 92
planes 34

corpuscular structure 158
cosmological term of field equations

136
Cottingham 131
counter-point 113
covariant 45, 135
covariant equations of condition 156
Crommelin 131
curvature of light rays 75, 103, 129

space 130
curvilinear motion 76
cyanogen bands 134

Darwinian theory 126
Davidson 131
deductive thought 126
density of matter in space 136
derivation of laws 45
Descartes 140 et seq.
De Sitter 20
deuterons 50
displacement of spectral lines 103,

132, 135, 137
distance (line-interval) 4, 5, 9, 29,

30, 84, 87, 110

physical interpretation of 5
relativity of 30

Doppler principle (effect) 51, 137,
149

double stars 20
duality of nature 158

eclipse of star 20
Eddington 103, 131
elastic solid body 148
electricity 77
electrodynamics 15, 21, 42, 45, 77,

149
electromagnetic theory 50

waves 66, 149
electron 46, 53

electrical masses of 52
electrostatics 77
elliptical space 113
empirical laws 125, 139

results 140
empty space 139 et seq.
encounter (space-time coincidence)

95
equality of inertial and gravitational

mass 67 et seq. 152, 153
equivalence of inertial systems

150
mass and energy 50

principle of 155
equivalent 16
Euclidean geometry 1, 4, 57, 81, 85,

88, 110, 115, 124, 141,
145, 154

propositions of 4, 9
space 57, 85, 125, 142, 145

events 143
objective 144
physical 151

Evershed 134
expanding space (universe) 15
experience 50, 51, 143 et seq.

index162



extension 139 et seq.
sub-atomic 146

Faraday 49, 65, 148
field 146 et seq.

components 148
laws 151
theory 158

relativistic 157
FitzGerald 53
fixed stars 12
Fizeau 41, 50, 53

experiment of 41
frequency of atom 133
Friedman 137
fundamental concepts, empirical

sources of 144

Galilei 11
transformation 35, 38, 40, 44,

53
Galileian system of co-ordinates 13,

15, 16, 47, 79, 92, 98,
99

γ-photons 50
γ-rays 50
Gauss 86, 89
Gaussian co-ordinates 87–9, 95,

96–8
generalised theory of gravitation

157
general theory of relativity 61–103,

97, 135, 152 et seq.
experimental confirmation of

126 et seq.
geometers 140
geometrical ideas 4, 5

propositions 1
truth of 1–5

geometry, empirical content of 146
gravitation 65, 70, 78, 101, 157

generalised theory of 157

gravitational equations 156
field 65, 68, 75, 78, 94, 98, 99,

100, 115, 153, 154
potential of 132–5

mass 66, 70, 101, 153
Grebe 134
group-density of stars 107

“Happening” 152
heat conduction 146
Helmholtz 110
heuristic value of relativity 43
Hubble 137
Hume 145

induction 125
inertia 66, 146, 152
inertial mass 48, 66, 70, 100, 102,

153
space 151
system 146, 151, 153, 156

instantaneous photograph (snapshot)
120

intensity of gravitational field 108
interference of light 148
intuition 126
invariance of natural laws 150
ions 146

Kant 141
Kepler 128
kinetic energy 46, 100

lattice 111
law of gravitation 157

inertia 12, 63, 64, 98, 146
laws of Galilei-Newton 15

Nature 52, 72, 99, 150, 154,
155

lengths, in Euclidean geometry 154
Leverrier 102, 129
light, as a wave field 148

index 163



light-signal 35, 117, 121
light-stimulus 35
light waves 149
limiting velocity (c) 38, 39
lines of force 108
Lorentz, H. A. 21, 42, 46, 50, 51–4,

149, 150, 152
transformation 34, 40, 44, 91, 97,

98, 117, 121, 122, 123,
150, 152

(generalised) 122, 153

Mach, E. 73, 145, 146
magnetic field 65
Manifold (see Continuum)
mass of heavenly bodies 135
materialism 145
material object, concept of 144
material points 146, 147
matter 101, 145, 152
matter, discrete structure of 146
Maxwell 43, 46, 50–2, 53, 148, 150

fundamental equations 47, 78
measurement of length 85
measuring-rod 5, 8, 30, 80, 81, 94,

99, 101, 113, 115, 119
Mercury 103, 127–8
mercury barometer 141
Mercury, orbit of 102, 103, 129
metrical properties 153, 156
metric space 157
Michelson 53–5, 150
Michelson-Morley experiment 54,

149
Minkowski 56–8, 91, 124, 152, 154
Minkowski space 152, 154

“field-free” 154, 157
Morley 54, 55, 149
motion 16, 61
motion of a liquid 147
motion, of heavenly bodies 15, 16,

47, 101, 115

neutrons 50
Newcomb 129
Newton 12, 73, 102, 107, 127, 139,

151
Newtonian mechanics 146
Newton’s constant of gravitation 133

law of gravitation 49, 79, 108, 128
motion 66, 138

space 138
non-Euclidean geometry 110
non-Galilelan reference-bodies 97
non-uniform motion 63
“Now” 151, 152
nuclear reactions 50
nuclear transformation processes 50

objective concept of time 142
event 143
world 144

optics 15, 22, 46, 149
organ-pipe, note of 16

parabola 10, 11
particle 146
path-curve 11
Perihelion of Mercury 127–9
physical happening 146

reality 146, 152, 157, 158
physicist 145
physics 8

of measurement 8
physiologist 145
place specification 7, 8
plane 1, 110, 111
Plato 145
Poincaré 110
point 1, 140
point-mass, energy of 46
ponderable bodies 149, 157

mass 148
position 9
primitive experiences 141, 142

index164



principle of relativity 15–17 21, 22,
61

processes of nature 44
propagation of light 20, 21, 22, 34,

91, 121
in liquid 42
in gravitational fields 75,

129–32
protons 50
psychological origin of concept of

time 142
idea of space 140

Pythagorean theorem 155

quantum theory 158
quasi-Euclidean universe 116
quasi-spherical universe 116

radiation 48
radioactive substances 50, 52
recollection 142
red shift (spectral) 103, 132, 135,

137
reference-body 7, 8, 10–12, 20, 24,

27, 28, 38, 62
rotating 79

mollusc 99–101
systems of 146

relative position 4
velocity 119

relativistic field theory 158
rest 16
Riemann 86, 110, 112, 156
Riemann condition 156
rigid bodies 145
rotation 81, 125

Schwarzschild 134
seconds-clock 38
Seeliger 107, 108
sense experience 143
sequence of experiences 143

simultaneity 24, 26–8, 80, 150,
151

relativity of 28
Sirius, dense companion of 135
size-relations 90
solar eclipse 76, 129, 130
solid body 145
space 9, 53, 56, 107, 139 et seq.

conception of 21, 137 et seq.
space co-ordinates 56, 81, 99, 146
space-interval 32, 57, 155
space-like concepts 144 et seq.
space, objectivity of 141

point 99
radius of 136
structure of 137

space-time 156
space, two-dimensional 110

three-dimensional 125, 142, 145
four-dimensional 158

spatial separation 154
special theory of relativity 1–58, 22,

150, 156
spectral lines, displacement of 103,

132, 135, 137
spherical surface 110

space 113, 114
St. John 134
stellar universe 107

photographs 130
straight line 1–5, 11, 12, 82, 88, 100,

139
subjective concept of time 142
surface 140
system of co-ordinates 7, 12, 13

temperature 147
temperature changes 146
temperature field 148
temporal arrangement of events 144

experiences 144
terrestrial space 17

index 165



theory 126
truth of 127

three-dimensional 56, 141
time, conception of 21, 54, 107,

142 et seq.
time co-ordinate 56, 99, 146

in physics 23, 98, 125
time of an event 26, 28
time-interval 32, 56
topological space 157
trajectory 11
“Truth” 4

unbounded space 142
uniform translation 13, 61
universe (world), structure of 110,

115
circumference of 113
elliptical 114, 116

Euclidean 111, 113
space expanse (radius) of 115, 136
spherical 112, 116

value of π 83, 111
vector 147
velocity of light 11, 20, 21, 77, 121,

150, 152
Venus 129

wave structure 158
weight (heaviness) 67
world 56, 57, 111, 125
world-point 125

-radius 113, 137
-sphere 111, 112

world, real external 143

Zeeman 43

index166


	Book Cover
	Title
	Contents
	PREFACE
	Physical Meaning of Geometrical Propositions
	The System of Co-ordinates
	Space and Time in Classical Mechanics
	The Galileian System of Co-ordinates
	The Principle of Relativity (in the Restricted Sense)
	The Theorem of the Addition of Velocities Employed in Classical Mechanics
	The Apparent Incompatibility of the Law of Propagation of Light with the Principle of Relativity
	On the Idea of Time in Physics
	The Relativity of Simultaneity
	On the Relativity of the Conception of Distance
	The Lorentz Transformation
	The Behaviour of Measuring-Rods and Clocks in Motion
	Theorem of the Addition of Velocities. The Experiment of Fizeau
	The Heuristic Value of the Theory of Relativity
	General Results of the Theory
	Experience and the Special Theory of Relativity
	Minkowski's Four-dimensional Space
	Special and General Principle of Relativity
	The Gravitational Field
	The Equality of Inertial and Gravitational Mass as an Argument for the General Postulate of Relativity
	In what Respects are the Foundations of Classical Mechanics and of the Special Theory of Relativity Unsatisfactory?
	A Few Inferences from the General Principle of Relativity
	Behaviour of Clocks and Measuring-Rods on a Rotating Body of Reference
	Euclidean and non-Euclidean Continuum
	Gaussian Co-ordinates
	The Space-Time Continuum of the Special Theory of Relativity Considered as a Euclidean Continuum
	The Space-Time Continuum of the General Theory of Relativity is not a Euclidean Continuum
	Exact Formulation of the General Principle of Relativity
	The Solution of the Problem of Gravitation on the Basis of the General Principle of Relativity
	Cosmological Difficulties of Newton's Theory
	The Possibility of a ~Finite~ and yet ~Unbounded~ Universe
	The Structure of Space according to the General Theory of Relativity
	Simple Derivation of the Lorentz Transformation [Supplementary to Section 11]
	Minkowski's Four-dimensional Space (~World~) [Supplementary to Section 17]
	The Experimental Confirmation of the General Theory of Relativity
	Motion of the Perihelion of Mercury
	Deflection of Light by a Gravitational Field
	Displacement of Spectral Lines towards the Red
	The Structure of Space according to the General Theory of Relativity [Supplementary to Section 32]
	Relativity and the Problem of Space
	Bibliography
	Index

