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Einstein’s perihelion advance formula can be given a geometric interpretation in terms of the

curvature of the ellipse. The formula can be obtained by splitting the constant term of an auxiliary

polar equation for an elliptical orbit into two parts that, when combined, lead to the expression of

this relativistic effect. Using this idea, we develop a general method for dealing with orbital

precession in the presence of central perturbing forces, and apply the method to the determination

of the total (relativistic plus Newtonian) secular perihelion advance of the planet Mercury. VC 2015

American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4903166]

I. INTRODUCTION

A classic calculation in the scientific literature is the deri-
vation of the formula by which Einstein explained an appa-
rent anomaly of the observed motion of the planet Mercury.1

A planet’s perihelion remains fixed under a pure inverse-
square gravitational force, so any shift indicates, as first
realized by Newton, either a different force law or the pres-
ence of perturbing forces. The perihelion of Mercury is
observed to precess—after correction for known planetary
perturbations—at the rate of about 43 s of arc per century,
and this residue is exactly predicted by the theory of general
relativity.

To approximately derive the relativistic contribution to
the precession (there are further corrections of negligible
relevance2), it is not necessary to completely solve the rela-
tivistic orbit equation. In his original derivation, Einstein
came upon an elliptic integral, which he managed to com-
pute approximately. Since then, a host of authors in this
journal3–14 have taken alternate approaches to illuminate
various aspects of this problem.

Our approach to the subject arises from the interplay of
two quite different methodological strategies, which we can
define as the local and the global. The first shows that the
perihelion precession produced by a perturbing force can be
traced back to a steady action along the entire orbit. The
second deals directly with this secular effect by splitting the
constant term of an auxiliary polar equation of an elliptical
orbit into two parts according to a specific criterion, without
needing to know what takes place during the motion. Our
method is applicable to a broad class of perturbing central
forces and provides the leading term of the secular perihelion
shift.

II. RELATIVISTIC EQUATION

The polar equation for the orbit of a planet, considered as
a test particle subject to a central force f(u), is given by the
well-known expression15

u00 þ u ¼ f uð Þ
l2u2

: (1)

Here, uðhÞ ¼ 1=r, with r the distance from the origin, while l
is the (constant) magnitude of the orbital angular momen-
tum, and a prime denotes differentiation with respect to the
independent variable, which in this case is the angle h.16

In general relativity, the spherically symmetric
Schwarzschild solution to Einstein’s field equation corre-
sponds, for a weak field, to a function f(u) consisting of two
attractive parts, the classical inverse-square force and a small
corrective term17

f ðuÞ ¼ lu2 þ 3al2u4: (2)

Here, l¼GM, with G the universal gravitational constant
and M the mass of the star, and a ¼ l=c2, with c the speed of
light. The parameter a has the dimension of a length and is
called the gravitational radius; for the Sun we have a �
1:477 km, a very small value compared to typical orbital
radii in our solar system. From Eqs. (1) and (2), we get the
relativistic orbit equation

u00 þ u ¼ l
l2
þ 3au2; (3)

which represents an oscillator with a weak quadratic nonli-
nearity. This equation cannot be solved exactly. Using meth-
ods of perturbation theory, a bounded periodic (planetary
case) approximate solution can be painstakingly assembled
to arbitrarily high order in the coupling constant a, allowing
a determination of the precession.2

Our plan here is to bypass the solution of Eq. (3) and,
more generally, to extract directly from a perturbed orbital
equation the leading precession term through a simple linea-
rization process that consists of replacing the nonlinear term
by a constant. This procedure will be discussed in detail
after we have dealt with some basic aspects of the elliptical
orbit.

III. ELLIPTICAL ORBIT

The unperturbed orbit equation is

u00 þ u ¼ l
l2
: (4)

The constant term l=l2 in this equation can be given a geo-
metric meaning by exploiting a result of Newton’s that dates
back to 1671.18 Newton found that a generic plane curve
uðhÞ satisfies the equation

u00 þ u ¼ 1

q sin3b
; (5)
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where q is the radius of curvature and b is the angle between
the radial and tangential directions at any point on the curve.
Setting b ¼ p=2, it follows that the orbit equation can be
written in the form

u00 þ u ¼ j; (6)

where j � 1=q ¼ l=l2 is the curvature at those particular
points. For a planetary orbit this identification occurs in two
circumstances: when the orbit is circular (in which case
j ¼ 1=r is always true) and at the extrema of an elliptical
orbit (perihelion and aphelion). In the latter case, the curva-
ture is maximal and can be simply expressed in terms of the
ellipse parameters (eccentricity e, semi-major axis a, and
semi-minor axis b).19

The solution to Eq. (6), written so as to highlight this
geometrical aspect, is obtained by starting with the particular
solution u ¼ j and adding to it the periodic solution to the
homogeneous equation. The orbit can thus be written in the
form

uðhÞ ¼ jþ je cosðh� xÞ; (7)

where e and x are the two arbitrary constants that parame-
trize the family of solutions. This is the polar equation of an
ellipse when the eccentricity e lies in the open interval (0, 1);
the polar axis has been chosen so that u attains its maximum
value at h ¼ x, the phase that identifies the position of the
perihelion. The period of the solution is 2p, so that the peri-
helia are located at h ¼ xþ 2np, with n ¼ 0; 1;…. Now,
the particular solution u¼ j of Eq. (4) represents a circular
orbit of radius r¼q, and from Eq. (7) we find that
j ¼ uðxþ p=2Þ. Then, by comparison with the standard
polar equation for an ellipse, we deduce that the curvature is
given by j ¼ 1=q ¼ 1=½að1� e2Þ� ¼ a=b2 at perihelion.

IV. ANGULAR PERIOD OPERATOR

A definite integral provides global information about the
behavior of a function in the interval of integration. As a
limit of Riemann sums, it is the result of a pointwise accu-
mulation process, and this proves useful for the detection of
secular effects on the orbit. Unlike Einstein’s elliptic inte-
gral, which is quite complicated to handle, the integral we
shall use is elementary, because the integrand is the function
u(h), the sum of a constant and a cosine.

When plotted in rectangular coordinates (h, u), with h in
the range ½x;xþ 2p�, the function u ¼ jþ je cosðh� xÞ
traces out a sinusoid of amplitude je around the segment
u¼j of length 2p. The oscillation begins and terminates at
two successive perihelia, the points ðx; jþ jeÞ and
ðxþ 2p; jþ jeÞ, while in between we have one aphelion at
point ðxþ p; j� jeÞ. It follows that j is the average value
of the elliptical solution over the interval ½x;xþ 2p�

1

2p

ðxþ2p

x
u dh ¼ j; (8)

and so u¼j is the circular orbit of an imaginary planet asso-
ciated with the planet that follows the elliptical orbit (7),
with whom it shares the same period. The integralðxþ2p

x
u dh ¼ 2pj (9)

measures the area under the graph of u in the interval
½x;xþ 2p�, and is equal to the area of the rectangle of width
2p and height j. Although representing the area of a plane
figure, this result can also be interpreted as the circumference
of a circle of radius j. Therefore, a division by j will provide
the period of the orbit, i.e., the distance (from x) along the
h-axis after which the function u repeats itself.

In general, given a real number s, we can consider the
integration

P̂u shð Þ � 1

j

ðxþ2p=s

x
u shð Þ dh ¼ 2p

1

s

� �
(10)

as the action of an operator P̂ that, when acting on the func-
tion uðshÞ, results in the angular period (defined as the angle
separating two successive passages of the planet through the
perihelion). The value of the factor s for a perfectly elliptical
orbit is unity, but we are anticipating the possibility that the
function u undergoes the dilation (stretching or shrinking)
uðhÞ ! uðshÞ as a result of a perturbation.

With Eq. (10) we have carried out a measurement. The
operator P̂ is tuned on the circular orbit u¼ j of the imagi-
nary mean planet associated with the elliptical solution (7),
and any variation of the common angular period of these
planets—in the case of perturbed motion—will be detected.
The relative increment Dx of the angular position of the per-
ihelion over a complete orbit is obtained when we subtract
from P̂uðshÞ a full turn 2p

Dx � P̂u shð Þ � 2p ¼ 2p
1

s
� 1

� �
: (11)

Thus, the perihelion shift will be positive or negative accord-
ing to whether 1/s is greater than or less than one.

Now let us multiply Eq. (10) by a positive integer n. The
effect of nP̂ is equivalent to when the operation P̂ is carried
out n times successively, assuming, for 1 � i � n, that the
terminal condition of the (i – 1)st operation becomes the ini-
tial condition for the ith operation

nP̂u ¼ n

j

ðxþ2p=s

x
u dh ¼ 1

j

Xn

i¼1

ðxþ2ip=s

xþ2 i�1ð Þp=s

u dh

¼ 1

j

ðxþ2np=s

x
u dh � P̂

n
u ¼ 2p

n

s

� �
: (12)

Therefore, n can be embedded in the upper limit of the

integral, which we denote by the symbol P̂
n
, representing

the n-fold composition of P̂ with itself. Thus, the equality

P̂
n
u ¼ 2pðn=sÞ is a consequence of the fact that the succes-

sive perihelia are evenly spaced with separation 2pð1=sÞ.

V. THE ROTATING ELLIPSE

An ellipse in polar form is specified by the elements a, e,
and x, which fix, respectively, the size, shape, and orienta-
tion of the ellipse in the plane. When a small perturbing
force acts on the system, a viable approach is to treat these
“constants” as variable. In our context, we should allow for
variations of j and x, the elements a and e being contained
in j (where they can vary independently).

In a specific application of this technique, the solution in
the form uðhÞ ¼ jþ je cosðh� xÞ is retained with x no
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longer constant, but treated as a slowly varying function
compared to cos h. The function is a solution to a first-order
differential equation solvable by successive approxima-
tions.20,21 For each value of xðhÞ we can define an orbit, the
osculating ellipse, with an orientation that varies according
to the specific form of the function. In general, this is such
that the perihelion is both oscillating and circulating, the lat-
ter eventuality being due to a part linear in h, which controls
the secular perihelion shift.

The linear part produces a variation of the orbital period by
a dilation of u(h). To see this, assume xðhÞ ¼ ð1� sÞhþ x,
where s is a real number (in actual applications jsj will be
very nearly equal to the unity), and x ¼ xð0Þ is the initial
position of the perihelion. Then,

jþ je cos½h�xðhÞ� ¼ jþ je cos fh� ½ð1� sÞhþx�g
¼ jþ je cosðsh�xÞ ¼ uðshÞ;

(13)

where u(sh) is solution to the equation

u00 þ s2u ¼ j: (14)

Equation (13) shows that the phase of the sinusoid u shifts in
h at a constant rate, so that in the plane ðh; uÞ the graph of u
can be imagined as a cosine wave traveling smoothly in the
positive or negative h-direction at the uniform rate 1� s.

With the available tools we can analyze some interesting
qualitative aspects of a rotating ellipse. For what follows, it
is better to visualize the orbit as represented in the polar
plane (r,h), where the perihelia lie on the circle of radius
r ¼ að1� eÞ. If we assume 1=s ¼ 1þ g for 0 < g� 1, then
after n orbital turns the relative shift of the perihelion from
its initial position will be

Dnx � P̂
n
uðshÞ � 2np ¼ 2npg: (15)

Thus, the operation Dnx maps the orbit u(sh) to its nth tan-
gency point with the circle of the perihelia. This point is
identified by the angle 2npg, reckoned from an initial posi-
tion x. We wish to consider Dnx as a dynamical system, and
study the behavior of its “orbits,” i.e., we want to understand
the behavior of the sequences Dnx, for n ¼ 1…1. Think of
n ¼ 1; 2;… (rotation number) as a sequence of times. Then
one can assimilate Dnx to a stroboscope that flashes briefly
at these times, showing the planet at its successive perihelia.
Two different situations can occur. If g is a rational number,
say p/q, then Dqx flashes 2pp times until the perihelion is
back to the start. This means that the orbital path closes; the
orbit is periodic and takes the form of a rosette. If g is an
irrational number, the orbital path never closes and in
the long run fills more and more densely the annulus
að1� eÞ � r � að1þ eÞ, in the sense that the trajectory of
the planet intersects every neighborhood on the annulus, no
matter as small. More specifically, the sequence of points
Dnx will densely cover the circle of the perihelia, but each
particular perihelion will never again be attained. It follows
that the map Dnx is quasi-periodic, as made explicit by the
following recurrence theorem: in the long run, a planet
comes, on the circle of the perihelia, an infinite number of
times arbitrarily close to any position already occupied. To
demonstrate this, we can use the continued fraction
approximations22

g ¼ 1

s1 þ
1

s2 þ � � �

: (16)

Truncating at each successive stage gives an infinite
sequence of rational approximates (the convergents)

g � 1

s1

;
s2

1þ s1s2

;… � p1

q1

;
p2

q2

; …
pn

qn
;…; (17)

where the integers pn and qn are coprime—their only com-
mon factor is 1—and qn > qn�1. The convergents pn=qn play
a role analogous to that of the partial sums of an infinite
series. It can be shown22 that for each n, the difference from
g is less that 1=q2

n,

g� pn

qn

����
���� < 1

q2
n

; (18)

and that these are the best rational approximations there are,
in the sense that no rational fraction with a denominator not
exceeding the denominator of the convergent does better.
Then, multiplying Eq. (18) by 2qnp, we get

j2qnpg� 2pnpj ¼ jDqnx� 2pnpj < 2p=qn: (19)

Now, for a given tolerance, however small, we can find a
positive integer n0 such that the middle term of Eq. (19) is
smaller for all values of n greater than or equal to n0. So we
get closer and closer to 2pnp. By imagining suitable rotations
of the circle of the perihelia (changes of origin), this reason-
ing extends to the generality of the perihelia.

VI. A SMALL CHANGE OF CURVATURE

Suppose now that the constant j, this structural compo-
nent of the polar equation, is altered somewhat by adding—
in an algebraic sense—a small piece dj, thus affecting the
maximal curvature of the orbital ellipse. This means that, for
a given eccentricity, we have changed the semi-major axis of
the elliptical orbit and the orbital radius of the mean planet.
Then the solution u will become

u ¼ ðjþ djÞ þ ðjþ djÞe cosðh� xÞ; (20)

and, acting on it with P̂, we obtain

P̂u ¼ 2p 1þ dj
j

� �
: (21)

The shift 2pdj=j will be an increase or a decrease, depend-
ing on the algebraic sign of dj.

We wonder whether it is possible to build a suitable incre-
ment dj that encapsulates the presence of a central perturb-
ing force. In this way we would obtain a phenomenological
derivation of the perihelion precession.

Notice that, while Eq. (13) is a two-way relationship
between x(h) and u(sh), an analogous, direct link between
x(h) and dj=j does not exist. Because Eqs. (10) and (21)
both express a perihelion shift, we can establish indirectly a
relationship between xðhÞ and dj=j via the dilation factor s,
by identifying the right-hand sides of Eqs. (10) and (21); in
this way we get
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2p 1=sð Þ ¼ 2p 1þ dj
j

� �
: (22)

Now multiply both sides by j. Then the area under the graph
of u(sh) in the interval ½0; 2p=s� is made equal to that of the
rectangle of width 2p and of height jþ dj. We assume that
this area is an invariant of the perturbed system, in the sense
that if we imagine bringing the height of the rectangle to the
value j, which reflects the geometry of the actual system, its
width will vary by a factor 1/s� 1. This indicates that, for
the dynamic system, the addition of a dj should be under-
stood as a virtual producer of a dilation of the function u.

As long as jdjj � j, from Eq. (22) we get, to first order in
dj=j,

s ¼ 1� dj
j
; (23)

and, by Eq. (15) with n¼ 1, we have the identification
dj=j ¼ g. So either s or dj can be used for the determina-
tion of the perihelion shift, and if we can connect one of
them to the physics of the problem, we will have also deter-
mined the other, and vice versa. Further, we have

x hð Þ ¼ 1� sð Þhþ x ¼ dj
j

� �
hþ x; (24)

which expresses the secular shift of the perihelion in terms
of the virtual relative increment of curvature of the elliptical
orbit at its extrema in the presence of the perturbation.

VII. RELATIVISTIC PRECESSION

In dealing with the nonlinear Eq. (3), we can imagine that
the orbital equation that contains all information on the peri-
helic precession of a planet, say Mercury, takes the linear
form

u00m þ um ¼ jm; jm ¼ const: (25)

In light of the results of Sec. VI, we need an interpretation of
the symbol jm. We must assume that jm is not exactly equal
to the constant l=l2, which applies only to the inverse-square
force. So we split up jm into two unequal parts: a dominant
part j ¼ l=l2, and a much smaller secondary part
dj � jm � j, which encodes information about the function
3au2. With this interpretation, Eq. (25) should be considered
as an auxiliary linear equation whose particular integral is
what interests us. Then Mercury will have the incremental
orbital shift

Dx ¼ 2p
dj
j
: (26)

To implement this result, we rewrite the relativistic orbit
equation as

u00 þ u ¼ jþ 3au2|ffl{zffl}
dj

; (27)

where we still do not know from where dj can come about.
We only know that the dimensionality of dj must be the
inverse of a length, so that dj=j is dimensionless. We tenta-
tively guess dj � 3aj2, obtained by substituting j for u in

the last term of Eq. (27), and then we attempt a perturbative
approach in which we take as the first approximate solution
just the circular orbit that we have associated with the ellipti-
cal orbit. This procedure works, because from

u00 þ u ¼ jþ 3aj2; (28)

and from Eq. (26), we get the Einstein formula

Dx ¼ 6paj ¼ 6pa

a 1� e2ð Þ ; (29)

which shows that the relativistic precession is proportional to
the maximum curvature j ¼ a=b2 of the elliptical orbit.

Consider, for example, the actual figures for the orbit
of Mercury. From a ¼ 0:3871 AU (one Astronomical Unit
is exactly 149,597,811 km) and e¼ 0.2056, we obtain

j ¼ 1=½að1� e2Þ� � 2:6973; in addition, from M �
1:989	 1030 kg we get 3a ¼ 3GM=c2 � 4:4309 km, which

corresponds approximately to 2:96187	 10�8 AU. Then

dj ¼ 3aj2 � 2:1549	 10�7, so that Eq. (28) takes the
numerical form

u00 þ u ¼ 2:6973þ 2:1549	 10�7; (30)

where obviously the two addends must be kept separate.
Then we get

Dx ¼ 2p
2:1549	 10�7

2:6973
� 5:0197	 10�7 rad; (31)

corresponding to 0.1035 arc sec per revolution. Mercury
revolves about the Sun 415.2 times in a century, so we have
Dx sec ¼ 0:1035ð415:2Þ ¼ 42:97 arc sec.

Astronomical data23 show that the total dynamic secular
perihelion shift of Mercury is about 574.09 6 0.41 arc sec
per century, of which 531.50 6 0.85 arc sec is accounted for
by the disturbances of the other planets. This corresponds, in
Eq. (30), to an additional numerical constant—evidently of
order 10�6—that we shall calculate below to a precision
within the relative standard observational uncertainty.

VIII. CENTRAL PERTURBING FORCES

Our approach to the relativistic precession, supported by a
chain of heuristic arguments, can be made systematic and
general. Let’s consider a polar orbital equation with a nonlin-
ear term �g(u), where � is a parameter small enough to justify
a perturbative approach. To this we associate a linear equa-
tion with a constant term dj, having the dimension of inverse
length

u00 þ u ¼ jþ �gðuÞ|ffl{zffl}
dj

: (32)

For the relativistic equation, where �gðuÞ ¼ 3au2, we have
verified that the association �gðjÞ ! dj works. But it turns
out that such a simple recipe applies only to this case.
Thus, we need a procedure that assigns to each specific
function �g(u) its dj, while preserving the relativistic
result.

To find this procedure, because of the dual role of s and
dj, we shall determine first the dilation factor s by means of

327 Am. J. Phys., Vol. 83, No. 4, April 2015 Maurizio M. D’Eliseo 327

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

131.156.157.31 On: Wed, 25 Mar 2015 16:20:35



a variational technique. We will assume, in the presence of a
perturbation, a small variation of the solution u from the cir-
cular value u¼ j and then see what happens. The variation
equation can be formally obtained by applying the operator d
such that

dðu00Þ ¼ ðuþ duÞ00 � u00 ¼ du00; (33)

where the combination du should be viewed as a single
entity. Now consider Eq. (32), in which g(u) is a function
that is continuously differentiable in the closed interval
½umin; umax�. We apply d to both sides of this equation, and
this yields

du00 þ du ¼ �g0ðuÞ du: (34)

Assuming as reference motion the circular orbit u¼ j, we
evaluate the derivative on the right-hand side at point j. In
this way we obtain the homogeneous equation

du00 þ ½1� �g0ðjÞ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
s2

du ¼ 0; (35)

which implies s � 1� � g0ðjÞ=2, and so the lowest-order so-
lution uþ du to Eq. (32) can be written in the form of the
function u(sh) of Eq. (13), with s¼ 1� g and g ¼ � g0ðjÞ=2.

It is interesting to note that, according to Eq. (35), it is
possible to replace in Eq. (1) the actual perturbing force
�gðuÞl2u2 with the inverse-cube force �g0ðjÞl2u3, in agree-
ment with Newton’s theorem on revolving orbits.13 In con-
clusion, from Eqs. (23) and (35) we get

dj ¼ 1

2
�jg0 jð Þ; (36)

which establishes the correct relationship between dj and
the function �g(u) in the orbital equation. The resulting dis-
placement of the perihelion per revolution will be given by

Dx ¼ 2p
dj
j
¼ p�g0 jð Þ: (37)

This formula shows the key role played by the maximum
curvature of the ellipse in the phenomenon of planetary
precession. We realize also why the substitution u! j
in gðuÞ ¼ u2 works only for the relativistic orbital equa-
tion. The reason is that if we assemble the initial-value
problem

1

2
jg0 jð Þ ¼ g jð Þ; g 1ð Þ ¼ 1; (38)

we find that it has the unique solution gðjÞ ¼ j2, and this
explains why the relativistic perturbing force is the only one
for which both approaches give the same result.

The presence of the normalization factor 1=j in the struc-
ture of the operator P̂ suggests the formal simplification

P̂u ¼ 1

j

þ
u dh ¼

þ
u

j
dh �

þ
v dh � Q̂v; (39)

allowing us to write the orbital equations in dimensionless
form, for which the circular mean orbit is v¼ 1. This device
sometimes simplifies the mathematics, and is often used for
theoretical analysis.2 The dimensionality can be restored at

any stage by opportunely reintroducing the factor j. The
dimensionless form of Eq. (32) is obtained via the substitu-
tion u! v, j! 1, and then dropping the j from dj

v00 þ v ¼ 1þ d; d � 1

2
�g0 1ð Þ; (40)

so that now, employing the operator Q̂, we have Dx ¼ 2pd.
To illustrate the use of this form in a simple application,

we derive the perihelion shift that arises by supposing26 that
the exponent in Newton’s law lv2 is changed to a value
slightly different from 2. This was one of the many pre-
relativistic attempts to modify the law of gravitation in order
to explain the motion of Mercury.27 Let us put f ðvÞ ¼
lv2þ� ¼ lv2v� in the dimensionless form of Eq. (1). If � is
small enough, we can limit ourselves to the first-order
approximation

v� � 1þ �lnðvÞ: (41)

To the resulting orbit equation

v00 þ v ¼ 1þ �lnðvÞ; (42)

by Eq. (40), with gðvÞ ¼ lnðvÞ, we associate the equation

v00 þ v ¼ 1þ �
2
; (43)

and so we get Dx ¼ p�. Here, we do not have to make any
dimensional adjustment, because � is a pure number whose
choice is made to fit the motion of Mercury. To this lowest
degree of approximation, the shift is the same for all
planets.24,25

IX. NEWTONIAN PRECESSION

A. The model

Now consider the perihelion precession caused by the
gravitational pull of the other planets on Mercury. Strictly
speaking, its exact determination involves the treatment of a
three-dimensional many-body problem, while our perturba-
tion approach is effective only for plane motions and central
forces.

This difficulty can be overcome if we exploit the actual
features of the planetary orbits—they are nearly coplanar
and nearly circular—leading to rather realistic first approxi-
mations. Thus, on one hand we can assume a common orbital
plane. On the other hand we will show that the cumulative
effect of the forces exerted by each planet along its orbit on
Mercury can be equated to that of a force of central type. It
follows that we can use our tools with some minor, but
clever, adaptations. Thus, we shall compute the precession
of Mercury using an oversimplified, but surprisingly effec-
tive Copernican model, in which we assume the orbits of the
other seven planets (from Venus to Neptune) to be circular
and suitably spaced. In these circumstances the average per-
turbing forces, those that interest us, are of central type and
directed outward—conditions we know how to handle.
Under this assumption, we can write Mercury’s orbit equa-
tion in the form

u00 þ u ¼ jþ
X7

n¼0

�ngnðuÞ; (44)
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where in the sum the index n¼ 0 applies to the relativistic
term, while the remaining n values apply to the effects of the
other seven planets. We defer to the Appendix the calcula-
tions required for the determination of the function �ngnðuÞ
for a generic planet n. The conclusion is that Eq. (44) takes
the explicit nonlinear form

u00 þ u ¼ jþ 3au2 �
X7

n¼1

mn
j

2rnu r2
nu2 � 1

� � ; (45)

where rn is the (constant) orbital radius of the planet n, and
mn is the ratio of the planet’s mass to the Sun’s mass.
Thus, the small coupling constants of Eq. (44) are �0 ¼ 3a
and �n ¼ mn for n ¼ 1; 2…7. Because of the nonlinearity of
Eq. (45), we can resort to the principle of superposition of
small disturbances, which is valid in the first-order mathe-
matical treatment of the solar system. In our case, it can be
stated by saying that the secular effect on the perihelion
produced by the perturbing terms present in Eq. (45) is the
algebraic sum of those produced by each term taken singu-
larly. The residue left out by this approximation is negligi-
ble.28 Therefore, our problem is to find the numerical form
of the linear equation

u00 þ u ¼ jþ
X7

n¼0

djn: (46)

To do this for the planetary part, we first compute

mng0n uð Þ ¼ mn
j 3r2

nu2 � 1
� �

2rnu2 r2
nu2 � 1

� �2
: (47)

We must now specify the circular reference orbits to be
included in the derivative.

B. Effective orbital radii

There is a sensible advantage in taking for Mercury not
the orbit u¼ j, the average with respect to the polar angle
(which we used in the relativistic term), but the time aver-
age, which is �u ¼ 1=a.29,30 On the other hand the average
distance, with respect to the angular variable h, of the
planet n from the Sun, is given by hrni ¼ an, the semi-
major axis of its elliptical orbit. This follows from the
definition of the ellipse, rn þ dn ¼ 2an, where rn and dn are
the distances from the Sun and from the empty focus,
respectively. The expression is symmetric in the two distan-
ces, so that their average values over an orbit are both
equal to an. We shall use instead the time average
�rn ¼ anð1þ e2

n=2Þ.29,30

This choice captures a dynamical aspect of the situa-
tion which would be otherwise excluded in a purely geo-
metric treatment. As a consequence of the law of equal
areas, the planet spends more time near the aphelion than
near the perihelion. In an averaging process, the sample
positions of the planet, per equal time intervals, are
unevenly scattered over the elliptical orbit: they are
grouped near the aphelion to a greater extent than near
the perihelion, and therefore the average distance an must
be appropriately increased. It follows that if we want to
approximate an elliptical orbit by a circle, we must use
this effective radius.

C. Perihelion shifts

When we insert the time average �u ¼ 1=a for Mercury
and �rn for the planet n, Eq. (47) becomes

mng0n uð Þju¼1=a ¼ mn
ja4 3�r2

n � a2
� �

2�rn a2 � �r2
n

� �2
: (48)

Now we can make explicit the planetary portion of the last
term of Eq. (46) by using Eqs. (36) (with j ¼ 1=a) and (48)
to get

X7

n¼1

djn ¼
X7

n¼1

mn
ja3 3�r2

n � a2
� �

4�rn a2 � �r2
n

� �2
; (49)

a rather tricky expression that summarizes a mess of mutual
planetary positions.

We have carried out the calculation outlined in Eq. (49) for
each perturbing planet, and the results are presented in Table
I. We have also displayed the constants associated with each
planet,31 so its contribution can be verified. From the compar-
ison with the results of more refined calculations23—pre-
sented in the column labeled as “theory”—it is seen that our
results are individually rather close to the correct ones.

The discrepancies in Table I should be mainly attributed
to the fact that Eq. (49) fails to take into account the non-
central components of the perturbing forces. However, the
differences are such that their algebraic sum is almost negli-
gible: less than half a second of arc per century. We therefore
make virtually no error if we use our total dj in writing the
numerical form of the relativistic þ Newtonian auxiliary
equation (46) of the planet Mercury as

u00 þ u ¼ 2:6973þ 2:8841	 10�6: (50)

Thus, from one perihelion to the next, we have

Dx ¼ 2p
j

X7

n¼0

djn ¼ 2p
2:8841	 10�6

2:6973

¼ 6:7183	 10�6 rad; (51)

corresponding to 1.3857 arc sec and to a centennial perihe-
lion shift of 575.34 arc sec. Our derivation yields an excel-
lent fit to the observational data. Moreover, comparing the
two numbers on the right-hand side of Eq. (50) tells us the
relative strength of the perturbing forces in comparison to
the sun’s inverse-square force: on the order of 10�6.

Table I. Mercury’s secular perihelion shifts caused by the seven planets.

The values of mn and djn are in units of 10�6.

Planet �rn mn djn Dxn Theory Diff.

Venus 0.7233 2.4478 1.3484003 268.72 277.85 –9.13

Earth 1.0000 3.0404 0.4687968 93.44 90.04 3.40

Mars 1.5303 0.3227 0.0119692 2.35 2.53 –0.18

Jupiter 5.2095 954.7786 0.7998580 159.44 153.58 5.86

Saturn 9.5511 285.8370 0.0386107 7.69 7.30 0.39

Uranus 19.2126 43.6624 0.0007229 0.14 0.14 0.00

Neptune 30.0701 51.8000 0.0002240 0.04 0.04 0.00

Total 2.6685819 531.82 531.48 0.34
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D. A proper perspective

In order to put our result into the proper perspective, it is
worthwhile to analyze the effectiveness of our planetary
model with circular orbits and time averages. A more realistic
theory (still neglecting out-of-plane effects) could be done
starting from the expansion in a Fourier series of the force
(A5) where the tip of rn traces a Kepler ellipse. The coeffi-
cients of such a series, as is well known, are particular aver-
ages of the function to be expanded. If we confine ourselves
to the secular effect on x for the general case of a perturber
moving in an elliptical orbit of eccentricity en, then in the
first-order approximation we obtain an equation of the type32

x0 hð Þ ¼ Aþ B
en

e
cos x� xnð Þ; (52)

with two constant terms on the right side: a term that repre-
sents the average contribution of a nominal circular orbit, plus
a correction term arising from the non-central part of the
force, which takes into account the mutual orientations of the
orbits of Mercury and planet n. The constants A and B depend
on the semi-major axes of the two orbits, while x and xn are
the positions of the perihelia at a pre-fixed epoch. In the sec-
ond term, a critical factor is the ratio of the eccentricities of
the two planets. Because the eccentricity of Mercury is an
order of magnitude greater than any other, one realizes that
the contribution of the second term on the right-hand side of
Eq. (52) is small, which accounts for the minor corrective
terms we found. Further, when considering the combined
action of all planets, a random distribution of the perihelia
attaches to each of these terms positive or negative signs,
since the cosine runs through all its values from –1 toþ 1 as
x� xn varies from 0 to 2p. Under opportune conditions these
terms nearly compensate when they are summed, as in the
actual epoch. Because the planetary perihelia are all slowly
moving, in another epoch the sum of the non-central terms of
Eq. (52) could produce a significant result of positive or nega-
tive sign, and our Copernican model would be less successful.

X. CONCLUSION

The method described here is essentially based on an aver-
aging procedure, with all the advantages and limitations of
an approach of this kind. It exploits the particular integral of
a specific form of the orbital equation, to which is assigned a
crucial role. By opportunely replacing the nonlinear term of
the perturbed orbital equation with a constant, we build a vir-
tual model of a fictitious planet on a circular orbit. The ra-
dius of this orbit differs very little—in a manner controlled
by the perturbation—from the one in its absence. If we imag-
ine traveling along the circular orbit of the unperturbed mean
planet a distance equal to the circumference of the orbit of
the fictitious mean planet, we will arrive slightly ahead of or
behind the starting point. The operation Dx extracts the
angle, positive or negative, subtended by the small circular
arc between the start and finish. The three worked examples
have shown the validity of the method.

APPENDIX: AVERAGE FORCE EXERTED BY A

PLANET ON MERCURY

To avoid certain considerations about center of mass,
which do not affect the final result, we will reduce the
problem to the essentials. In the Sun-centered reference

system, if Mercury is located at r, the direct force
per unit mass f n exerted on it by planet n, located at
rn, is

f n¼ln

rn� r

jrn� rj3
; rn� jrnj> jrj � r; rn¼ const:; (A1)

where ln is the gravitational parameter of planet n.
Because we work in a plane environment, we can write

the vectors in polar form via the complex exponentials

rn ¼ rneihn ; r ¼ reih; i ¼
ffiffiffiffiffiffiffi
�1
p

; (A2)

and treat them as complex numbers. If we put

cn ¼
r

rn
< 1; /n ¼ hn � h; (A3)

Dn ¼ 1þ c2
n � 2cn cos /n; d/n ¼ dhn; (A4)

then Eq. (A1) can be written in the form

f n ¼ ln

rneihn � r

jrneihn � rj3
¼ ln

ei/n eih

r2
n

� r

r3
n

 !
1

D3=2
n

: (A5)

The motions of the other planets and that of Mercury are
rationally independent, in the sense that there is no simple
numerical relationship between the periods. This means that
the reciprocal positions on the respective orbits at any time
are not related. It follows that we can consider the planet
Mercury, at a generic position r, to be affected by a secular
force obtained by an averaging procedure.

At this point it is useful to employ the factorization
D�3=2

n ¼ D�1
n D�1=2

n . In fact, averaging with respect to /n, the
secular force at point r will be

hf ni ¼
1

2p

ð2p

0

f n d/n ¼
ln

2p

ð2p

0

d/n

Dn

r

r

ei/n

r2
n

� r

r3
n

 !
1

D1=2
n

¼ ln

2pr2
n

r

r

ð2p

0

d/n

Dn
ei/n � cn

� � 1

D1=2
n

: (A6)

We now expand the function D�1=2
n in powers of cn, and keep

only the linear term

Dn cnð Þ�1=2 � 1þ cn

2
ei/n þ e�i/nð Þ þ � � � : (A7)

Then, after some algebra, Eq. (A6) becomes

hf ni ¼
ln

2pr2
n

r

r

ð2p

0

ei/n � cn=2

Dn
d/n: (A8)

Using the standard trigonometric integralð2p

0

ei/n

Dn
d/n ¼

2pcn

1� c2
n

; cn < 1; (A9)

we finally get the average force exerted by the planet n on
Mercury,

hf ni ¼
ln

r2
n

cn

2 1� c2
n

� � r

r
; (A10)

which is central and repulsive.
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This function must be converted to a form fn(u) suitable
for insertion in the orbital equation (1). To do this, we omit
the unit vector r/r, then substitute 1/(rnu) for cn and change
the sign, obtaining

fn uð Þ ¼ � lnu

2rn r2
nu2 � 1

� � : (A11)

It follows that the function to be inserted in the perturbation
portion of Eq. (1) is

fn uð Þ
l2u2

� �gn uð Þ ¼ �mn
j

2rnu r2
nu2 � 1

� � ; (A12)

where we have used l2 ¼ l=j, and so mn � ln=l is the
planet/Sun mass ratio.
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