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S U M M A R Y
We have developed a new geomagnetic data assimilation approach which uses the minimum
variance’ estimate for the analysis state, and which models both the forecast (or model output)
and observation errors using an empirical approach and parameter tuning. This system is
used in a series of assimilation experiments using Gauss coefficients (hereafter referred to as
observational data) from the GUFM1 and CM4 field models for the years 1590–1990. We show
that this assimilation system could be used to improve our knowledge of model parameters,
model errors and the dynamical consistency of observation errors, by comparing forecasts
of the magnetic field with the observations every 20 yr. Statistics of differences between
observation and forecast (O − F) are used to determine how forecast accuracy depends on the
Rayleigh number, forecast error correlation length scale and an observation error scale factor.
Experiments have been carried out which demonstrate that a Rayleigh number of 30 times the
critical Rayleigh number produces better geomagnetic forecasts than lower values, with an
Ekman number of E = 1.25 × 10−6, which produces a modified magnetic Reynolds number
within the parameter domain with an ‘Earth like’ geodynamo. The optimal forecast error
correlation length scale is found to be around 90 per cent of the thickness of the outer core,
indicating a significant bias in the forecasts. Geomagnetic forecasts are also found to be highly
sensitive to estimates of modelled observation errors: Errors that are too small do not lead to
the gradual reduction in forecast error with time that is generally expected in a data assimilation
system while observation errors that are too large lead to model divergence. Finally, we show
that assimilation of L ≤ 3 (or large scale) gauss coefficients can help to improve forecasts of
the L > 5 (smaller scale) coefficients, and that these improvements are the result of corrections
to the velocity field in the geodynamo model.
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1 I N T RO D U C T I O N

The Earth’s magnetic field was first noticed nearly 5000 yr ago
(Roberts 1992), and it has been regularly recorded for the past
400 yr (Jackson et al. 2000). Knowledge of the origin, that is via
convection in the outer core (geodynamo) has only existed for the
last 100 yr, and the capability to numerically reproduce ‘Earth-like’
time varying magnetic fields for about 20 yr (Glatzmaier & Roberts
1995; Kuang & Bloxham 1997).

It is only natural to compare this evolution of awareness and
knowledge to that of the weather patterns within the Earth’s at-
mosphere. Certainly mankind have been aware of the importance
of the weather since pre-historic times, and the need to forecast
changes in weather has existed since the invention of agriculture.
The science of weather prediction began in the nineteenth century

with the introduction of weather maps, and numerical weather pre-
diction (NWP) was proposed long before the advent of computers
made it feasible (Richardson 1922). But once early computers came
into being, research into NWP began in earnest. Charney (1949)
worked out some of the computational issues by introducing the use
of a quasi-geostrophic model, followed by the first successful 1-d
numerical forecast using a barotropic model (Charney et al. 1950).
The problem of how to initialize these forecasts was addressed by
Bergthorsson & Döös (1955) and Cressman (1959), who developed
the observation operator approach. This is a method that interpolates
the state of the system to the location of the observations, which
allows the difference between the observation and model output to
be calculated. This difference can then be interpolated back to the
computational grid in order to correct the model output and obtain
an improved estimate of the state to be used as the initial condition
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for the forecast computation, generally known as the analysis. De-
tailed accounts of the early years of NWP can be found in Kalnay
(2003).

The point of introducing NWP here is that in these early years
models were extremely primitive, lacking even a vertical dimen-
sion. It was many years before reliable forecasts could be extended
beyond 1 d. The 2-d forecast from the European Centre for Medium
Range Forecasts (ECMWF) in 1990 were roughly as good as the
1 d forecasts in 1966 (Houghton 1991). But the process that made
this slow but steady improvement take place was the continued con-
frontation of observations and models over this time. When fore-
casts are compared with observations on a regular basis, specific
problems with models can be identified and solved. Atmospheric
modelling has greatly benefited by the process of confronting fore-
casts with real data because we can directly determine whether a
change to a model produces an improved forecast.

Geodynamo modelling is most certainly more advanced than the
2-D atmospheric models used in the first weather forecasts. How-
ever, there is some disagreement as to whether they are yet good
enough to make any kind of geomagnetic forecasts. For example,
Glatzmaier (2002), points out a number of weaknesses in recent
models. These include the fact that the models are as yet unable to
operate anywhere near the physical parameter space of the Earth’s
core, due to the fact that these models are essentially direct nu-
merical simulation (DNS) of the governing equations with added
hyper-diffusivity. This is a major difference from atmospheric mod-
els, which make no attempt at DNS. Rather, they include substantial
modelling of subgrid physical processes, including the planetary
boundary layer (PBL) and cloud physics. He also points out that,
while different geodynamo models give somewhat similar qual-
itative looking geomagnetic fields at the core–mantle boundary
(CMB), the internal flow structures that produce these CMB fields
can be quite different (Kuang & Bloxham 1997). Dormy et al.
(2008), describe the relationship between the Rayleigh numbers
(Rth) and Ekman numbers (E) that can produce dynamo action,
even when they are both far form the correct values for the core. Al-
though recent scaling studies of numerical dynamo solutions, that is
Christensen et al. (2010), indicate possibilities of extracting ‘Earth-
like’ geodynamo solutions from current numerical simulations, the
question remains as to which set of computationally realizable pa-
rameters produce the most earth like dynamo solutions. We argue
that, like weather forecasting, geomagnetic forecasting can be used
as a means to obtain the best possible parameter combinations, and
help make further improvements to geodynamo models.

Forecasting of the Earth’s geomagnetic field is as yet still in
it’s very early stages of development. For example, only the most
recent International Geomagnetic Reference Field (IGRF) included
a candidate secular variation (SV) model derived from a geodynamo
model that assimilates geomagnetic observations (Finlay et al. 2010;
Kuang et al 2010). This model predicts the SV Gauss coefficients
up to degree 8 for the period from 2009.5 to 2015.0, and is the
first opportunity to determine what contribution geomagnetic data
assimilation can make to improving geomagnetic forecasts.

The most appropriate approach for making geomagnetic forecasts
is a statistically based data assimilation system. Data assimilation
is the method currently used in NWP to produce initial conditions
for 5–10 d weather forecasts. It involves the collection of a large
number of observations of atmospheric variables and comparing
them to the forecast for the current state of the atmosphere. The
differences between observation and forecast (O − F) are then used
to make a correction to the forecast in order to produce a new, and
hopefully more accurate, estimate of the current state, called the

analysis. The analysis is then used as the initial condition for the
next forecast run. The statistical aspect of the assimilation comes
from the fact that neither the forecast or observations are perfect, and
some estimate of their errors must be included in the assimilation
process.

Data assimilation is generally categorized as sequential (Lorenc
1981; Lorenc 1986; Cohn 1997) or variational (Talagrand &
Courtier 1987). The former involves assimilating all available obser-
vations near each assimilation time in order to obtain a minimum
variance estimate of the analysis state. The latter assimilates all
available observations over a time window so as to produce the
minimum variance estimate over the entire time window.

Recently there have been research efforts towards applying data
assimilation to geodynamo models and surface geomagnetic ob-
servations. One of the major obstacles to geomagnetic data assim-
ilation is the limited observational record, in both and time and
space. Only the poloidal component of the geomagnetic field is
observable at the surface, and the observation record is only about
400 yr (not including archeo- and palaeomagnetic observations).
Thus, initial investigations have focused on how much impact the
surface observations can have on other state variables. Sun et al.
(2007) and Fournier et al. (2007) used 1-D models of a coupled
velocity and magnetic fields, and found that that limited magnetic
observations have the potential to improve estimates of the velocity
field when using an ensemble based sequential algorithm. The first
assimilation system using a full geodynamo model was developed
by Kuang et al. (2008). This system was used to carry out a se-
ries of Observing System Simulation Experiments (OSSEs), which
demonstrated that synthetically generated surface observations of
the poloidal magnetic field could be used to improve estimates of
the state of the outer core (Liu et al. 2007). The first assimilation
of real geomagnetic observations into a geodynamo model (Kuang
et al. 2009) showed that even a short (100 yr) experiment could re-
sult in improvements in the surface geomagnetic forecast and begin
to change the core flow near the CMB. Li et al. (2011), have also
developed a variational data assimilation system with the potential
to handle real geomagnetic observations. For a summary of some
of the earlier work (see Fournier et al. 2010).

But we can only know whether a model estimate of the core
flow has been improved by the assimilation using OSSEs, since the
entire ‘true’ state of the core is then known exactly. Fournier et al.
(2013) has conducted OSSE experiments using a perfect model
(identical twin experiments), where the synthetic observations were
created using the same model as the assimilation system. They used
an existing ensemble Kalman filter framework (Nerger & Hiller
2013) combined with a geodynamo model (Dormy et al. 1998) and
showed that this system can reproduce the core flow in a ‘moderate’
geodynamo after about 1000 yr of assimilation when there is no
model error. The success of this approach is due to the estimate
of the error correlation between the observed geomagnetic field
and the velocity field, which enables the assimilation system to
make corrections to the latter at each assimilation time. Ultimately,
the most important verification of the success of geomagnetic data
assimilation will come from improvements to forecasting of the
geomagnetic field using real geomagnetic observations.

In this paper, we address three types of geodynamo and geomag-
netic parameters: the Rayleigh number, the geomagnetic forecast
error correlation length scale and the observation error estimate.
These represent three very different aspects of geomagnetism. The
Rayleigh number is a model parameter that gives an indication of
the strength of heat generation within the core, the error correla-
tion length scale controls how deeply the assimilation with spread
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information from the geomagnetic observations into the core, and
the observation error controls how much weight we give to each
coefficient from the geomagnetic field model. Accurate knowledge
of each of these is essential to the success of the assimilation sys-
tem, and improved estimates of them will aid us in understanding
the dynamics of Earth’s core flows.

2 A S S I M I L AT I O N S Y S T E M

We describe briefly the mathematics and common notation of se-
quential data assimilation algorithms (we refer the reader to Cohn
1997, for the details). Let x be the state vector of the physical system
in consideration, xf the forecast (model output), xt the (unknown)
true state. Observations, y, are related to the true state by

y = Hxt + zo, (1)

where H is the observation operator, which projects the state vector
onto the observation space. zo is the observation error, and is gener-
ally treated as a zero mean Gaussian noise process. The observation
error covariance is defined as

R = 〈zzT 〉. (2)

At a given time ta when the observation y is made, the analysis
xa is determined from

xa(ta) = x f (ta) + K
[
y − Hx f (ta)

]
, (3)

where K is the gain matrix, and xf is the model output at ta. In
general, both K and H are time dependent. The analysis xa is then
used as the initial state for the forward model starting from ta and
onward until the next observation time ta + δta. The assimilation
process (3) is repeated at the new observation time.

The goal of this approach is that through the sequential assim-
ilation of observations, the analysis xa is expected to be a better
estimate of the true state, which in turn is a better initial state for the
next model run, producing and improved forecast. The observation
operator H is defined by the location of the observed quantities
and their relationship to the state variables (see Liu et al. 2007, for
details). The gain matrix K is determined through the minimiza-
tion of the estimated analysis error variance. Given estimates of the
forecast error covariance, Pf, and the observation error covariance,
R, the minimum variance analysis estimate can be obtained as

K = P f HT
[
HP f HT + R

]−1
(4)

the forecast error covariance can be obtained from an ensemble of
numerical model runs with Gaussian distributed perturbations to the
initial states (Sun et al. 2007; Fournier et al. 2013). This approach
is substantially more computationally expensive than modelled er-
rors and gain matrix, as is used in optimal interpolation (OI). That
is, OI is simply the assimilation algorithm described above with
error covariances that are fixed in time (see Lorenc 1981, for a de-
tailed description). The OI scheme employed in this paper has the
advantage of reduced computational costs, and while it is not in
fact ‘optimal’ (due to the imperfect knowledge of error statistics),
it does allow us to focus on the response of the numerical dynamo
model using different model and error parameters. This tuning helps
to increase our knowledge of model errors and their sensitivity to
changes different model parameters.

In order to derive the particular form of the gain matrix for ge-
omagnetic data assimilation, we need to first understand the struc-
ture of the state vector from the forecast xf and the observations
zo. Because both of these are computed in spectral space, it is most
convenient to compute (4) in spectral space as well.

The numerical model used in the geomagnetic data assimilation
is the MoSST core dynamics model. We discuss here in detail only
the magnetic field part of the model, so for complete details (such
as the boundary conditions, etc.) see Kuang & Bloxham (1999).
In this model, the state variables include fluid velocity field v, the
magnetic field B and the density perturbation �. v and B can each
be described by poloidal and toroidal scalars, making five scalars
for the physical state in the core. For example,

B = ∇ × (Tb r̂) + ∇ × ∇ × (Pb r̂) ≡ BT + BP , (5)

where r̂ is the radial unit vector, Tb and Pb are the toroidal and
poloidal scalars of the magnetic field, respectively. BT and BP in (5)
are often called the toroidal field and the poloidal field, respectively.
In the model, all scalar fields are expanded in spherical harmonic
series, given radial position r. For example,[

Pb

Tb

]
=

M∑
m=0

L∑
l=m

[
bm

l (r, t)
jm
l (r, t)

]
Y m

l (θ, φ) + C.C. , (6)

where {Y m
l } are fully normalized spherical harmonic functions,

C.C. denotes the complex conjugate part, and (r, θ , φ) define the
spherical coordinate fixed to the solid mantle. The spectral coef-
ficients {bm

l , jm
l } are defined on discrete radial grid points {ri|i =

0, 1, . . . N} in the model.
To simplify the description, we denote by xb the vector of all

coefficients of the magnetic field

xb ≡ [
bm

l (ri ), jm
l (ri )

]T
; (7)

and similarly, xv and xρ for those of the velocity field v and the
density perturbation �, respectively. Therefore,

x ≡ [
xb, xv, xρ

]T
. (8)

In the MoSST core dynamics model, the solid mantle is divided
into two parts: a weakly conducting D′′ layer in

1 ≤ r ≤ rdo

with the magnetic diffusivity ηdo (scaled by that of the fluid outer
core), and an electrically insulating upper mantle

rdo ≤ r ≤ reo.

rdo and reo are the mean radii of the top of the D′′-layer and of the
Earth’s surface scaled by the mean radius of the CMB, respectively.
In the insulating mantle and at the Earth’s surface, the magnetic
field is a potential field

BT = 0, BP = −∇ψ, (9)

where ψ is the potential scalar and satisfies the Laplace equation

∇2ψ = 0 . (10)

By (5)–(9) and that the spectral coefficients are finite at infinity, we
have

ψ =
∑
l,m

cm
l

r l+1
Y m

l + C.C., (11)

where cm
l are constants. By the definitions (5), (6), (9) and (11), we

can find that

bm
l (r ) = cm

l

lr l
=

(reo

r

)l
bm

l (reo) (12)
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in the solid mantle. In addition,

∂

∂r
bm

l ≡ b′m
l = − l

r
bm

l . (13)

Eq. (9) implies that, only the poloidal field coefficients bm
l (reo) at

the Earth’s surface can be observed. They can then be continued
downward to the top of the D′′ layer via (12).

However, because of crustal magnetization, only a subset (with
the degree l ≤ Lobs) can be extracted from the surface (or near
surface) observations. At best, satellite observations can resolve up
to Lobs = 14 for the geomagnetic field (Langel & Estes 1982), and
Lobs is smaller for pre-satellite eras because of the lower quality and
sparse ground observation sites. Therefore, at the top of the D′′ layer
rdo, the observations are

bm(o)
l (rdo) ≡

(
reo

rdo

)l

bm(o)
l (reo) for l ≤ Lobs , (14)

where the superscript ‘(o)’ indicates the coefficients from observa-
tions.

In our system, both model and observation errors are included.
Because of the large differences between the physical parameters
obtainable in the geodynamo model and those appropriate for the
Earth’s core, large forecast error growth is expected between as-
similation times. Thus, for the 20 yr analysis intervals used in this
study, we expect that the forecast errors would remain much larger
than the observation errors.

Estimates of uncertainty in geomagnetic observations have tradi-
tionally been limited (see Licht et al. 2013, for recent advances), so
we use a simple observation error model that in which the errors are
a fixed percentage of the spectral coefficient magnitudes. Thus the
observation error covariance, R, is modelled as a diagonal matrix
in spectral space with elements:

{R(lm),(l ′m′)} = (σ o
lm)2δll ′δmm′ . (15)

The observation error standard deviation is then modelled as:

σ o
lm = αo‖bm(o)

l ‖, (16)

where αo, the observation error factor, is a real scalar coefficient
between 0 and 1. Obviously this model does not reflect the improve-
ments to measurement accuracy in past years, and the decrease in
accuracy with the spherical harmonic degrees. We can, however,
learn the sensitivity of the assimilation to the observation errors.
This can help us to understand how future improvements to error

estimates will help to improve geomagnetic forecasting and data as-
similation. This observation model is less than ideal in other ways as
well. For example, if the magnitude of a spectral coefficent becomes
zero, the resulting error estimate would be zero. This is certainly
incorrect, but our purpose is to show the impact of changes to ob-
servation errors on forecast accuracy. This should eventually lead to
more reasonable error estimates for field model coefficients used in
the assimilation, particularly when we start to use errors provided
with geomagnetic field models.

The forecast error covariance (Pf) is diagonal in the spectral
space

P f
(lm),(l ′m′) = P f (lm)δll ′δmm′ . (17)

For a given l and m, its matrix elements are defined as:

{P f (lm)
i j } = ρi jσ

f
iσ

f
j , (18)

where i, j are the grid point locations in the radial direction), σ
f

i is
the forecast error standard deviation at radial location ri and ρ ij is
the forecast error correlation between the locations ri and rj.

The forecast error covariance is modelled by noting that the fore-
cast errors will most likely be smallest near the CMB (where the
impact of the observations is largest). Deeper in the core, the impact
of the observations will be less (due to a decrease in error correla-
tion), and we expect the forecast error to increase. The forecast also
needs to satisfy the boundary condition at the top of the D′′ layer

∂bm
l

∂r
= − l

rdp
bm

l , (19)

which results from the potential field structure of the magnetic field
within the mantle (9).

One possible error covariance model which satisfies 19 has a
radial error correlation of

ρ(r ) = e−(rdp−r )2/�2
c , (20)

and a forecast error standard deviation distribution,

σ f (r ) = ‖bl
m

(
rdp

) ‖ [
rdp + (rdp − r )

]
, (21)

where r and �c (the error correlation length scale) are normalized
with the mean CMB radius, and bl

m(rdp) is the poloidal magnetic
coefficient field at the top of the D′′-layer. The resulting radial
error covariance for an observation at the CMB is shown in Fig. 1,
normalized by the forecast error variance at the CMB and for the
case with �c set to 70 per cent of the outer core. The peak covariance

Figure 1. Radial dependence of the forecast error covariance between the CMB and points within the core, normalized by the error variance at the CMB
(P f /σ 2

cmb).
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occurs about 300 km below the CMB, which is a result of the
increasing error variance with depth. This is where the impact of
the observations is largest for this value of �c.

While �c is not explicitly known, it can be used as a tuning pa-
rameter by running the assimilation system with different values.
Comparisons of the forecast error for each value of �c are a good
indication of the optimal error correlation length scale. In the next
section, we describe a series of experiments using this system in
order to gain a better understanding of how the model and assimi-
lation system responds to changes in both model and assimilation
parameters. In particular, we will focus on the Rayleigh number, the
radial error correlation length scale and the observation errors.

3 R E S U LT S

We have used the geomagnetic data assimilation system described
in the last section to carry out a number of experiments with the
goal of understanding the sensitivity of the forecast accuracy. The
initial state (forecast) used for the assimilation is obtained from well
developed dynamo solutions of the simulation with the same model
parameters that are used in the assimilation. The assimilation in
each experiment starts in the year 1590 and continues to to 1990.
The observations used are from the field models GUFM1 (Jackson
et al. 2000) for the period 1590–1960, and CM4 (Sabaka et al.
2004) for 1960–1990.

These field models do not provide error estimates associated with
the Gauss coefficients. However, it is expected that the errors be-
come larger further back in time. The significant early events that
had an impact on the accuracy of the data include the substantial
increase in the density of global ship data between 1590 and 1750,
the widespread use of the Harrison chronometer in the 1780s and
the measurement of absolute intensity after 1832. Permanent ob-
servatory data became available in the 19th century with increasing
density up until the satellite era, which began in 1965 with Polar Or-
biting Geophysical Observatories (POGO), Magnetic Field Satellite
(MAGSAT) in 1980, Ørsted in 1999 and Challenging Minisatellite
Payload (CHAMP) in 2000. Each increase of measurement data has
resulted in improvements in field models since 18th century. But
we still lack quantitative measures of how their accuracy changes in
time. Therefore, one objective of our study is to use data assimila-
tion approach to learn how different observation accuracies impact
the assimilation.

Much of the analysis done in this paper relies on comparisons be-
tween the geodynamo model forecasts and the field models (which
are used as observations in this work), and lack of knowledge of
field model errors makes the task of assessing the success of the
assimilation system more difficult. The observed minus forecast (O
− F) fields are generally used as an indication of the accuracy of
the forecast, but this assumes that there is some consistent accuracy
of the observations, which is not the case here since observation
uncertainty varies with degree and time. The variance of the (O −
F) for a single coefficient at the CMB is defined as:

(σ 2
om f )l

m =
〈∣∣(bl

m)o − (bl
m) f

∣∣2
〉
. (22)

If we assume that the forecast and observation errors are uncorre-
lated (this is often a good approximation in assimilation systems),
then we can decompose the variance of the (O − F) in terms of the
forecast and observation errors:

(σ 2
om f )l

m =
〈∣∣(bl

m)o − (bl
m)t + (bl

m)t − (bl
m) f

∣∣2
〉

= (σ 2
o )l

m + (σ 2
f )l

m, (23)

where (bl
m)t are the unknown true poloidal field coefficients at the

CMB. Thus the variance of the (O − Fs) are a combination of obser-
vation and forecast error. It is not desirable to draw the model output
too close to the observations, since this would result in including
observation errors in the analysis.

3.1 Forecast error correlation length scale, �c

The first set of experiments involves different values for �c, which
controls how deep within the core the forecast errors are correlated.
For these experiments we used model parameters of Rth = 7.5Rc,
E = 5 × 10−6; and observation error parameter of αo = 0.001 (so
that the observation error estimate is much smaller than the forecast
error). Runs were done for �c varying from 0.1 to 0.9 in increments
of 0.1, and we calculate the rms of the (O − F):

rms(O − F) =
[

8∑
l=1

l∑
m=0

l2(l + 1)2[(bm
l )o − (bm

l ) f ]2

]1/2

. (24)

It is also useful to show the rms of the cumulative (O − F), which
at any given time is the sum of the (O − F) since the beginning of
the assimilation run. This gives an indication of the bias between the
observation and forecast, since random difference should average
out over a long time. It can be calculated from

(O − F)cumulative = 1

n

n∑
i=1

[
bm

l )o − (bm
l ) f

]
i
, (25)

where n is the number of forecast times from the start of the assimi-
lation to the current time. The cumulative (O − F) can then be used
to calculate and rms as a function of time using (24). The cumulative
(O − F) was initially used by Dee & da Silva (1998) as a method
to estimate model error. Aubert & Fournier (2011) demonstrated its
use in geomagnetic data assimilation in a series of twin experiments
in which synthetic observations are generated by the same model as
is used in the assimilation. In this perfect model scenario, the rms
of the cumulative (O − Fs) where shown to decay in time. In this
work, we expect significant model errors due to the limitations on
the dynamo parameters. But the differences in cumulative (O − Fs)
give a clear indication of what set of model parameters results in the
smallest model error. We present all of the results in terms of scaled
(i.e. non-dimensional) variables since we wish to focus on relative
differences. This gives a clearer picture of the relative success of
the assimilation experiments.

Fig. 2 shows the rms (O − F) (a) and the rms cumulative (O − F)
(b) for just the two extremes of these assimilation runs (�c = 0.1
and 0.9) for the period 1590–1990, which allows the differences
to be seen more clearly. We plot here (and in all subsequent (O
− F) plots) just the 20-yr forecasts right before the assimilation is
done, so that what is shown is the maximum error for each 20-yr
assimilation cycle. The �c = 0.9 case is seen to result in rms (O −
F) differences that are about 10 per cent less than the �c = 0.1 case,
indicating that for the model parameters described above, there is
significant forecast error correlation throughout the outer core. This
is the result of large bias or model error, which tend to result in long
correlation distances. Panel b shows this more clearly, where the
rms of the cumulative (O − F) is about 1/3 less for the �c = 0.9
case.

Decreases in the model error through model improvements (e.g.
higher resolution or improvements to model parameters) should
therefore result in lower error correlation length scales. This will
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Figure 2. Rms (O − F) versus time (a) and rms of cumulative (O − F) versus time (b) for assimilation runs with Rth = 7.5Rc, E = 5 × 10−6, αo = 0.001 and
�c = 0.1, 0.9.

provide an additional means to test for reductions in model error in
the assimilation system.

3.2 Rayleigh number, Rth

Data assimilation is a particularly valuable tool for model parameter
estimation. By varying a parameter in different assimilation runs,
changes in the forecast accuracy can be used to determine an opti-
mal set of parameters. For example, scaling rules (e.g. Christensen
& Aubert 2006; Christensen et al. 2010) have been developed that
identify ratios between Rayleigh and Rossby numbers that result
in the most ‘Earth like’ magnetic fields. This is done using a set
of structural and spectral properties of the geomagnetic field at the
CMB and comparing them with those derived from various geo-
magnetic field models, for example CALS7K2 (Korte & Constable
2005), gufm1 (Jackson et al. 2000) and IGRF11 (Finlay et al. 2010).
For the Ekman numbers E ≥ 10−6, Christensen et al. (2010) iden-
tified the wedge of the magnetic Reynolds number Rm (=UL/η,
where U and L are typical velocity and length scales of the core
flow) in which the dynamo generated field has an acceptable mor-
phology. The Ekman number used in this study is approximately
equivalent to E = 2 × 10−5 in Christensen et al. (2010). And the
lower and the upper bound for acceptable field morphology is 200
≤ Rm ≤ 1000.

An assimilation system can add additional quantitative informa-
tion about the model parameters, and we would like to determine
whether changing model parameters has any significant impact on
the forecast. We have have run assimilation experiments with three
different Rayleigh numbers Rth = 7.5Rc, 15Rc and 30Rc, which re-
sult in Rm ≈ 170, 230 and 320, respectively. The first experiment is
therefore below the lower boundary, the second is approximately on
the lower boundary, and the third is within the compliant region. In
all cases the forecast and observation error standard deviations used
αo = 0.01, which means that the analyses give most of the weight
to the observations. The forecast error covariance used an error cor-
relation length scale of �c = 0.7. We are interested in determining
which of these Rayleigh numbers produces the best 20-yr geomag-

netic forecasts when run from 1590 to 1990, starting each from a
long model run using their respective parameter values (E and Rth).
We have estimated dynamo timescales for each of these parameter
combinations by calculating averages of the poloidal field divided
by the poloidal secular variation:

τ = mean

(
bm

l

ḃm
l

)

for a long model run, which allows us to separate out dipole and
non-dipole timescales. For Rth ≈ 7.5Rc, we find τ dp ≈ 30 000 yr and
τ ndp ≈ 3000 yr; for Rth = 15Rc, τ dp = 3000 yr and τ ndp = 250 yr;
for Rth = 30Rcτ dp = 1000 yr and τ ndp = 100 yr. Here τ dp is the
dipole timescale and τ ndp is the non-dipole timescale. Thus for some
of these parameter combinations, the timescales for the non-dipole
field is on the same order as the data record that we are assimilating.

Fig. 3 shows the rms of the (O − F) (a) and the cumulative (O − F)
(b) of the poloidal geomagnetic field at the CMB from 1590 to 1990.
The first thing that stands out is that the rms of the (O − F) (panel
a) at the initial state is largest for Rth = 30Rc, and that it decreases
with Rth. This may well be the result of the larger variability of the
poloidal field at the CMB at larger Rayleigh numbers, which are
initially unconstrained by observations. The rms (O − F) decreases
rapidly in each case, in part due to the small observation errors
used in these experiments. The smallest rms difference at the end
of the assimilation occurs for the Rth = 30Rc case. The cumulative
(O − F) (which does not include the initial time of 1590 since the
observations have not yet been assimilated) shows more dramatic
differences between the three experiments, with the Rth = 30Rc

resulting in the lowest rms values at the end of the assimilation.
The Rth = 7.5Rc is not only about four times larger, but there is an
overall rise in the rms difference. This indicates subtantially higher
model bias for this set of parameters.

These results are dependent on both the observation and forecast
error models as well as the assimilation algorithm itself. Further pa-
rameter studies will investigate how all of these parameters interact
and impact the accuracy of geomagnetic forecasts.
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Figure 3. Rms (O − F) versus time (a) and the cumulative rms (O − F) versus time (b) for assimilation runs with E = 5 × 10−6, αo = 1.0, αo = 0.001 and
�c = 0.7. The Rayleigh numbers Rth = 7.5Rc, 15Rc and 30Rc.

3.3 Observation error factor αo

In the experiments described above we have assumed that the ob-
servation errors, while not zero, are much smaller than the forecast
errors for the poloidal magnetic field at the CMB. This may not be
an optimal assumption. But it opens the door for developing some
techniques to evaluate different error estimates for the geomagnetic
observations being assimilated.

Finite observation error also points to a need for some care in
using (O − Fs) to evaluate the relative success of the assimilation.
If the observation error is not accurately known, then it is difficult
to use observations to determine forecast accuracy.

However, we do know that geomagnetic field models have be-
come much more accurate in recent decades, and that lower spher-
ical harmonic degrees are more accurate than higher degrees. It
should be pointed out here that observation errors may be uniform
across the spherical harmonic spectrum. But, considering that the
magnitude of the Gauss coefficients decreases as the degree l in-
creases, the errors relative to the Gauss coefficients (αo) increases
with l.

So the question remains: Is it always better with smaller (O − F)
values? The answer really depends upon how accurate the observa-
tions are. If the observation error is relatively large, it is probably
better not to draw the model too close to the observations. In the
meantime, sensitivity of forecasts can be also used to assess the
significance of observation errors. We can demonstrate these by
considering three experiments in which we vary the observation
error factor αo.

Fig. 4 shows the rms of the (O − Fs) (a) and cumulative (O −
Fs) (b) from assimilation runs with αo set to 0.001, 0.1 and 0.2.
When αo = 0.001 (green), the analyses essentially set the poloidal
magnetic field equal to the observed values at the CMB. Thus,
the first 20-yr forecast in 1610 results in an rms difference that is
about 10 times smaller than the initial difference. But at the next
forecast time (1630) the error has increased nearly back to the initial
value. Eventually these oscillations settle into a more stable set of

forecasts starting in 1670, but the rms difference actually grows
very gradually from this time forward until the final forecast in
1990. Thus the rms (O − F) is actually larger in 1990 than it is
in 1610, in spite of the fact that we believe that the field model is
much more accurate in 1990. A likely scenario is that by giving too
much weight to the observations in early years, observation errors
are inserted into the analyses and are then propagated forward by
the model. When αo = 0.1 (blue), the response is quite different.
Now there is a gradual reduction in the rms difference between
forecast and observation which reaches a minimum near the end of
the assimilation. In fact the rms (O − F) is almost identical to the
αo = 0.001 case by 1970, and the larger differences early in the
assimilation insure that observation errors are not being added into
the analyses. The cumulative (O − Fs) in panel (b) show that while
the bias in the αo = 0.001 case is substantially lower than when
αo = 0.1, the rms in the latter case is still declining significantly
by the end of the assimilation run. A longer assimilation run could
possibly show that the difference in bias in the 2 experiments is
relatively insignificant.

Generally we would expect that a properly optimized assimilation
system should show a gradual reduction in (O − F) statistics as the
model absorbs new observational information over time. The fact
that the αo = 0.001 case shows an immediate drop in (O − F) is
because the assimilated data and the observations for comparing
with the forecasts are from the same source, and because the 20-
yr forecast period is a relatively short time to build up errors in
a geodynamo model. A more objective comparison would be the
difference with an outside observation that is not assimilated. For
example, in atmospheric data assimilation, satellite observations are
assimilated into a general circulation model (GCM) and statistical
comparisons are made with in situ surface or aircraft data (e.g.
Tangborn et al. 2013). If the assimilation is helping to improve
the model output, then the differences between forecasts and the
independent observations should be reduced, even if they are made
far from the locations of the assimilated observations.
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Figure 4. Rms (O − F) versus time (a) and the cumulative rms (O − F) versus time (b) for the assimilation runs with Rth = 7.5Rc, E = 5 × 10−6, �c = 0.7
and αo = 0.001, 0.1 and 0.2.

Figure 5. Rms (O − F) (a) and rms cumulative (O − F) (b) for l ≥ 6, as a function of time for assimilation runs with Rth = 15Rc, E = 5 × 10−6, �c = 0.7.
The observation error factor for l > 3 is αo = 1.0, while the errors for l ≤ 3 are either αo = 0.1 (green) or ∞ (red).

In geomagnetic data assimilation, one might be able to create
similar scenario by assimilating, for example, observatory data, and
then comparing forecasts with, for example satellite data. But in
many (but not all) of the field models, both types of data are utilized
to obtain the Gauss coefficients.

In this work, we take an alternative approach: creating an outside
data set by assimilating only a subset of the spectral coefficients.
Then, the (O − F) rms statistics should be calculated from only
those coefficients that are not assimilated. For example, we can as-
similate only the low degree coefficients (l ≤ 3), and then calculate
the rms (O − F) for the unassimilated higher degree terms (l > 3).
Improvements in the rms will then only occur if the model converts

lower resolution data into higher resolution improvements in the
forecast geomagnetic field. This is a more difficult improvement to
make than moving information from one data source to the location
of another measurement because the information needs to trans-
fer through the non-linear terms in the momentum equation rather
than material transport. We expect therefore that the impact of the
assimilation will be much smaller.

We have conducted a number of experiments to determine
whether this approach could be used to study the impact of assimi-
lating either the low or high degrees of a geomagnetic field model.
For the short (400 yr) assimilation runs in this study, we have found
that high degree observation have little impact on low degrees (not
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Figure 6. Difference in mid-core magnetic field with and without l < 4 observations assimilated (same experiment as Fig. 5), shown every 100 yr from 1595
to 1990.

shown). This may be due to the relatively low energy content of the
higher degrees, or to the lower accuracy of the small scales. Assim-
ilating large scale (low degree) coefficients, on the other hand, does
have a positive impact on the accuracy of the small scale part of
the forecast. For example, Fig. 5, shows the rms of the (O − F) for

higher degrees (L > 5) only for two experiments with (red curve,
αo = 0.1) and without (green curve, αo = ∞) the lower degrees
(l ≤ 3) assimilated. In both cases the higher degrees are assimilated
with a relatively large error estimate (αo = 1.0) so that they are only
slightly constrained. Including the large scales in the assimilation
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Figure 7. Difference in mid-core velocity field with and without l < 4 observations assimilated shown every 100 yr from 1595 to 1990.

is seen to have postive impact on the small scales, and the rms of
the cumulative (O − F) (Fig. 5b) shows that there is a systematic
difference between the observations and forecast. This result is ex-
pected because the small scales are relatively unconstrained by the
observations.

If we look at the core field differences (magnetic or velocity)
between different assimilation runs, we can gain some insight on
how low degree observational information is spread to the higher
degrees. Fig. 6 shows the difference in the mid outer core mag-
netic field with and without the low degree coefficients assimilated
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starting in 1595 (the initial differences in 1590 are zero) and end-
ing in 1990. In 1595, the difference is global and is entirely at the
largest scales because the only difference between the experiments
is the weight given to the low degree observations. But by 1690
the differences begin to emphasize smaller scales, and this trend
continues until the final time in 1990. Plots of the differences in the
velocity field for the same two experiments (Fig. 7) demonstrate
that the assimilation begins to effect the smaller scales within 5 yr,
thus preceding the small scale differences in the magnetic field.
This transfer from large scales to small scales can only happen
through the core flow, since the momentum equation is the only
fully non-linear term in the Navier–Stokes equation.

Figs 6 and 7 also show how the assimilation gradually alters the
dynamo state through the interaction of the assimilation and model.
Observations at the CMB are ingested into the system every 20 yr
and directly affect only the poloidal magnetic field, primarily near
the CMB. After each assimilation, the model is run forward in time,
and the correction made to the poloidal field near the CMB is spread
to other variables and other regions of the outer core through the
interaction of the momentum, induction and energy equations. Thus
we see only very small changes at the mid-outer core in 1595, but
gradually much larger changes over the 400 yr of the numerical
experiment. The changes in the magnetic field occur more rapidly,
since this it is a directly observed variable. The velocity field changes
more slowly, but continues to show significant changes through the
experiment as information is passed by the model from the magnetic
field to the velocity field.

4 C O N C LU S I O N S

This paper has presented a number of geomagnetic assimilation
experiments for the period 1590–1990 in order to show how assimi-
lation can be used to better understand several important model and
observation parameters, including the Rayleigh number, forecast
error correlation length scale and the observation uncertainty. This
is done by comparing 20-yr forecasts with the observations from the
geomagnetic field model and computing the rms difference. While
we have not made an effort to determine the optimal values for any
of these parameters, we have shown how assimilation can help to
gain some insight on searching for better estimates.

The forecast error correlation length, �c, is not a model parameter
but rather an estimate of how much an observation at the CMB will
affect the poloidal magnetic field deep within the core. We have done
a series of experiments with varying �c only for the lowest of the
Rayleigh numbers used in this work (Rth = 7.5Rc), and found that the
most accurate forecasts were obtained when the errors at the CMB
were essentially correlated with the errors at the inner core boundary
(ICB). This result is dependent on other model parameters, but it
provides a starting point for future assimilation experiments.

We also show that there is significant sensitivity to the magnetic
Reynolds number (via the Rayleigh number in this study), with the
most accurate forecasts achieved with a Rm = 340 (i.e. Rth = 30Rc).
This agrees well with the scaling rules of Christensen et al. (2010)
because these parameters are within the compliant region that they
have identified. This is only a first step in what is expected to be a
computationally expensive study of parameter regimes in geomag-
netism. A complete study of the impact of model parameters on
geomagnetic forecast accuracy will involve variations in both E and
Rth, and significant changes to either will also require substantially
higher model resolution and therefore a large increase in compu-

tational resources. But these requirements are rapidly becoming
available for earth sciences research.

Finally, we have begun to examine how one might use data assim-
ilation to gain further knowledge of the accuracy of geomagnetic
observations. A comprehensive error analysis probably cannot be
completed using data assimilation alone. There are too many coef-
ficients, and the errors for each are changing in time. And simply
drawing the geomagnetic forecast closer to an observation that we
don’t have an error estimate for is difficult to interpret. The fact that
the measured core field is only a small fraction of that generated
by the geodynamo, and that core flow is not directly observable,
indicates both the complexities of and the need for these efforts.
Our study here is to demonstrate that assimilation results (and thus
forecast accuracies) are very sensitive to observation errors. This
sensitivity could and should be exploited to gain further insight on
error estimates.

If we set the observation error to be very small, the (O − Fs) tend
to quickly drop below the initial difference, but then show very little
further decline. But since we know that the observations are more
accurate later in time, it would be more realistic to see a more gradual
decline in the (O − Fs). The fact that we are using using geomagnetic
field models (GFMs) as the geomagnetic observations complicates
this aspect of the study. Because GFMs generally use all of the
available measurements, we don’t have an independent data set to
compare with. We have shown that one possible solution to this issue
is to assimilate only part of the GFM output (e.g. large scales only),
and make the GFM comparisons with the unassimilated coefficients
(small scales only). By varying the estimated observation errors, we
see an impact on the unassimilated scales, which is an indication that
should be possible to find optimal values. It would be particularly
beneficial to combine this approach with some of the recent work on
field models that include error estimates (Korte et al. 2011; Gillet
et al. 2013; Licht et al. 2013). One could then start with the errors
provided with these models, and make relatively small changes to
verify or even refine the error estimates. This is an area of future
research focus.
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