UKRAINE ISSN 1726-4499 Spacetime & Substance International Physical Journal Volume 3, No. 5 (15), 2002 c 2002 Research and Technological Institute of Transcription, Translation and Replication JSC UKRAINE SpaIncteerntaitmioneal P&hysSicualbJosutrnaanl ce ISSN 1726-4499 Certi cate of the series AB, No. 4858, issued by the State Committee for Information Policy, TV and Broadcasting of Ukraine (February 12, 2001). The Journal is published by Research and Technological Institute of Transcription, Translation and Replication, JSC(Kharkiv, Ukraine). It is a discussion journal on problems of theoretical and experimental physics in the eld of research of space, t||||imdtamehep,asepsctlutrhihibcepaesmtottiairaoointnenicscoeoacfflaosnmtmehdtobe-uodiinnpretiilsenessragaaifnmcsoptdreiaoddpcneehass,it.cltortTiishmpohetpeeir,hoeJgniacorlauaaizlvrnanbidttaai/aolsoteniprsou,onebfxwlapfihunsliahndcnedhosaa:tttmhoioueenrncsshtaiontlfhtppeehrrydaoscepitsceicarortlniipeestxs(ipoionenfrctilomuhfdeeainUnptgnshitayvhnseeidrcsaEetlhianrenesfatdoelriimtntyh'is;ccorSomRcionasgmndroesGs;uRlt)s;; | discussion of published materials, in particular, those questions, which still have not a correct explanation. sincTeh2e0v0o3l.uTmheeolfaonngeuiasgseueisisE4n8gpliashge.sT. hFeoremquaitviaslAen4t.vPeersriioondsic:itpya:p5erisasunedsepleecrtornoneiyce(a*r.dTuErXin,g*2.P00S0,{*2.0P0D2;Fm).onthly Editorial Board: N.A. Zhuck (Kharkiv, Ukraine) M.J.F.T. Cabbolet V.I. Noskov (Moscow, Russia) |V.VE.dKitorars-nino-hcohlioevfets (Kyv, Ukraine) P. Fl(iEni(nKdhraokvoewn,, HPoollalanndd)) JV..LQ.uRirvoagcahe(Pve(rKeihraa,rkCivo,loUmkbraiain) e) |M.MVi.cAebEddilidtionr (Almaty, Kazakhstan) JN..DG.ilK(oZlipelaoknoavG(Korhaa,rkPiovl,aUndk)raine) S.S. S(Kanhnairkkoivv,-PUrkorsakiunrej)akov L.Ya. Arifov (Simferopol, Ukraine) A. Loinger (Milan, Italy) V. Skalsky (Trnava, Slovakia) Yu.A. Bogdanov (Kharkiv, Ukraine) I.Yu. Miklyaev (Kharkiv, Ukraine) R. Triay (Marseilles, France) B.V. Bolotov (Kyv, Ukraine) V. Mioc (Bucharest, Romania) V.Ya. Vargashkin (Oryol, Russia) M. Bounias (Le Lac d'lssarles, France) Z.G. Murzakhanov (Kazan, Russia) Yu.S. Vladimirov (Moscow, Russia) P. Carlos (Rio de Janeiro, Brazil) Lj. Nesic (Nis, Yugoslavia) P.G. Niarxos (Athens, Greece) (The list is not nished) Executive Editor: V.V. Moroz; Technical Editor: A.M. Varaksin or $ST1uh0ebpspocrsritciaepgteoifoaonnndienhpfaoanrpdmelirnaugtniaoictnci:osrd$2in.0gliyn).UTkhraeinelee,c$tr2o.5niicnvNerIsSio*nstpartiecse, i$s1205.0%inofatlhl eotphaeprecrovuenrtsrioiens p(prilcues. $1, $1.5 Kirg*h)iNziIaS, (MNoelwdoIvnad,eRpeunssdiean,tTSatdajtieksiswtaitnh,oTuutrUkmkreaniniset)aanr,eUAzbzeerkbiastiajann., Armenia, Byelorussia, Georgia, Kazakhstan, Accounts: In US Dollars In UA Hryvnyas Correspondent: THE BANK OF NEW YORK Account No. 26009011415 Eastern Europe Division in KHAB ZEMELNY BANK, One WAll Street, New York, NY 10286 MFO 351652, ABecncoeu ncitalNryo.B8a9n0k-:02U6K0-R61S0IBBANK of Ukraine IASnWccfaIoFvuoTnut:rKNooHf.AZ1EB6M0U0E-A8L-N25K0Y17B4A-0N1-K00JSC BAecncoeu ncitarNyo:.N2T60I0T90T1R14J1S5C ACK(foOohrdaNrU2kT4ok4rvIa7,Ti3Un0Tek3Rr9sau,,ibnsecribers, aNtatthioenraaltBe aonfkt)he The corresponding confermation as to the paying should be sent to the Editorial Oce by E-mail. Tel.E: d+i3t8or(i0a5l7O2)19c-e5:5Z-7h7u,c(k04N4.)A2.,65R-T79I-T94T.RT,e3l./Kfaoxlo: m+e3n8sk(a0y5a72S)t.4,0K9-h2a9r8k,o4v0691-519646,,1U4k1r-a1i6n4e, 141-165 E-mail: zhuck@ttr.com.ua, spacetime@ukr.net, krasnoh@iop.kiev.ua. http://spacetime.narod.ru c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC & Vol. 3 (2002), No. 5 (15), pp. 193{206 Spacetime Substance, c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC EXPERIMENTAL EVIDENCE OF THE MICROWAVE BACKGROUND RADIATION FORMATION THROUGH THE THERMAL RADIATION OF METAGALAXY STARS V.S. Troitskij, V.I. Aleshin1 Radiophysical Research Institute, N.Novgorod, Russia Received Desember 2, 2002 The paper is devoted to the development of the theory of microwave background formation through the optical radiation of Metagalaxy stars which is transformed due to the redshift into the microwave and infrared star bnaoctklgersosutnhdanra4d0ia{t5i0ont.hoAunsaanpdplMicpatciosnhoowfsththeatthetohreysttoarthmeicmroowdaevl eofbaacsktgartoiounnadryisnnoontexsptrainctdliyngthUenbivlaecrkseboodfyaosnizee. Ibtys>abvr1aimgilhamtbnl,eesbmsutetaegmsruoprweemraseitgnuntrsie ucapanndttolsypopeinctitcrsaaullbwmdaeivnlleismilteynetgcetorh,risrn.efsrBpaeorsenidddeast,nodth2oe:7pv3taKicluaelinawnRadvaeydlereapignehng-edJsee.nacnTeshoirsfesgpmiroeandlli-ocsftpitoahnceeisbbaacccokkngg rrroomuunneddd uctuations on the angular resolution and the wavelength predicted by the theory is in a good agreement with the experimental data. Finally, the fact, mysterious from the background relic origin point of view, of equality of the volume background energy density and the optical star radiation energy has a very simple and natural explanation. An application of the theory to the closed model of the Universe in the big-bang cosmology shows that at wavelengths ex>cee1dmsm2.7tKhethsatatrcobmaceksgirnotuoncdonis incetgwligitihbltyhesmhyapllo(tnhoesmisoorfetthheebna0ck.1gKro)u, nbdutrealitcsourbigminillaimndettehrewidaevaesofitthsiegnbii gcbaanntlgy. It follows from the results obtained that the observable nonblackbody electromagnetic background is not a relic one and it has a star origin. For majority opinion to change on the correctness of the hot big-bang cosmology, it is clear that one or more of the arguments given above must be seen to fail ... . However, if a change does occur, it will probably come from one of three directions: ... b) A demonstration that there is an other plausible mechanism which could be responsible for the MBR, probably related to the idea that it does not have a perfect blackbody spectrum and/or that it could not have been coupled to the matter at an earlier epoch (Burbidge, 1989, p. 988) Introduction The idea to explain the microwave background radiatniootnybeyt sboeuerncewsoorfkdedi eoruetntinnaantuyrceoinscnroettenefowr,mb.ut it has the Ionbtsherivs epdapmeircrwoewainvveebstaicgkagtreoaunpdosbsyibtihlietythtoeremxapllariandetuviaridetieonannt dotfoetvuhoseeluMstoieomtnaegoacfloastxmhyeoslUtoagnriiscv.aelrFsmoe.rodthTelihss eopfuprtrphoobesleestmrituocis-f tdiONehasonervidtnichkocteonohvtsmi(rms1iebd9otuih6lrot4oeig)cdoytnihicmoaaonvlofebwdtaehepslreusiesbwscoltiaaafsrsrhtrhesiietdnidsutdeowoginuoerldtrayklberyDraearsModluirielocatrVsts.hiioFktontefiirveicsin(toc1hls9sctt6uaua2lndna)d---. tions for di erent models of the standard cosmology. 1e-mail: redshift0@narod.ru The methods of calculations were not given. It has bssetearevrnaitnsihtoeongwrnaol, in particular, that at a wavelength of obr>ad1imatmionthisemvoulcuhmleessentehragny tdheenbsiltayckobfotdhye raandaiatiromnawtiiotnh (tPhaeritjesmkipj earnadtuSreunTya=ev 11K97.3)Tthhearte\wthaes otebgsrearlvreaddriealtiiconraodfidatisiocrnetceansonuortcbese"eixnpsltaainneddarbdyctohsme ionl-- ogy models. To calculate the radiation of galaxies, as correctly noted by Zel'dovich and Novikov (1967), \is of prime importance in a hot model since it is the back- ground on which the relic radiation of the model itself is to be observed." This is a valuable but unused so far test of the background relic origin theory. Recently there have been some serious experimental demonstrations that the standard cosmology does not re ect any more a real state of matter and radiation in the Universe (lu- 194 V.S. Troitskij, V.I. Aleshin m(aSniedngoadsluite1y9t9oo2fe;gxTaislrtaoixnitigesska,iljtteh1r9eni9ar2t,id1vi9em9c4eon)s.smioIonnlsotgahincisadlcteohvneonoluercitetisoionint) bpofrfheecyqsotsuamiecrnaesclsiyrniembadspaiosnotndrastn,aotniwntgianptlogaarxettxioiecpsutlhaltarienra,nrtebshdfyoesrhtmmhifetiecdoropofiwtnittcahoaveletrrhbaaeyddriioaaatttdhiiiooeonnrof sItnarsthailsonfogrtmhuelaptaitohnttohaenporobbselervmer.requires justi ed palarhteyiosanibcsaaelnnpdtrtoihnceefdu ulrlrsemtseesoatfsimucaraelctsuioolanftsairop.nreTfsohernetitmesdesteohaluorltdiieoornf(cwTarhlociicuth-svmvekreeaairrjsslllee1yr9atia9sdhd4ieaao)t3tphilKtoaeenaddbs.sotahfcIboknsywgttaranhornsiutshnoipfardrdttehceisnareennamstibszotpeeraaeetopixtfcehptrnalhawoneinnetseehtgxdaaipvttbaieooynanfdtatidhnrheeygettaUUghielnenenriid---pioissfhotytnhhseieicnsaUmalnpjaiupvdsleeitreifsd oecrtaiontthicBoelunGrdeRoisnfucgltathtlshceuoecblsaatttlaaciionunndleaadftoridofrondroinmd eiee. rteeAhrnoetcndomtmwmohpdoiaecdrlhs-ebt(ahslbaseacoetkwvrgeitetrhvjhoueiueostnwtrhieds et.eiocosfaTbBtlshheamierrsvyosemstddhaeatelcyevhmm1aaoe9rnsag9ttco2tao,oeddBfrieutsqthtreuibescatispdtergtoeoefwse1tcinh9thht8eo9owtm)sho.eiercAktrr.hloelwiasslaaiovtidyre 1. Pbahcyksgicraolunbdasifsoromf asttaiornmicrowave To determine this radiation let us consider the Universe as the Euclidean space lled with matter in the form of galaxies being the clusters of stars of di erent spectral classes. We suppose that the spatial distribution of galaxies in the Metagalaxy space is uniform and isotropic and their mean parameters over a suciently large volume do not depend practically on the distance. We suggest as well the star thermal radiation as a blackbody one. At rst let us consider the solution of the problem in a simpli ed form taking the temperature of all stars equal in the whole galaxy. Let ntrLhaegdetaimuul=sse,MatTnapk,ncteuhbmieenmtbtoheereaaocnmfctoseetuamannrtpsvetoirnhlauattmthuerteehgdeoaeflnsattsxahitireeysisr,oinpfrhg,goatatlhlaoaexsxipiriehemsse,reamearsne., not practically projected to which other. Let us nd the spectral power density of the thermtTvhohaeleulamrfnautedleliena lnetumiaxonaefnpr toeurmRtxu2trf hreoedwmgRiatshlitasaxrreisecseapatttiromandeidtoriaifcgrerdqaiumstean nccyseteRr0adiinn. d = F (; T ) r2n m R2 dR d: (1) ownHreerfeerenicse the radiation frequency frame, F(; T) is the Polfasntka'rss fiunnctthieoinr for the spectral density of the star blackbody emissivi- ty W=cm2Hz sr. Along the path of propagation up to a telescope antenna this radiation at frequency  will have three types of attenuation and a frequency trans- formation due to the redshift. The rst type is the aatbtseonrupatitoionnininthRe2 ptrimopeasg,atthieonsemcoenddiutmypwe hisicthheweensehraglyl dtyepsceroibfeatbtyentuhaetifounnicstcioonnn e(cRte)d. wAitnhdthaet rleadstshtihfteotfhfirred- qTuoednectyermuinpettohiosbtsyeprveaotifoanttferenquuaetniocny th0er=e is=n(zo+ne1e)d. to use any hypothesis on the redshift nature except the fact of its existence. Let us consider the star radiation wrtfstrohpimeiwietqshceutssfaerprandeeslqcucpiutedeeresceutntnomcrsayit(tlhwzybdei0+aleF:lsnn5p1bds(e)ietc0dytsrTeauFe.)nnm(dAssichTntoic)fn(t+etzhtaered0ti+at:fsco5dr1tbeoii)nqoswenucnrrevweinwasaictsticyitehoohmnuinbnppiocneo(hunziaannsnd+atngataaeer1rddly)-l in the same times by weakening of the quantum ener- gspyecf=rt(orzumm+h1i)s etqouhal0t.o i.e. Thus, the energy the integral of F of the shifted ( T) in band F( T) =(z + 1) = F( T) 0; wwFmht(sizaoeh(om+ln.enlreToAaew1ct)e)tihxldalrtttoihihmpnme0aufceovatrr=srieeetocilacvnyeesnepoqrcewtynouri=iogemal(nnlynzpaabtppr+nauerorrdmoeoi1awndp)istato.wspbwrtTtphaipetinriohlhosoldniwasmtaicehndlrhroeet.ntsoirhuosaIiesclndhtphdicarraiea0oostepsp,medeordoi,aba.roecttortf.taiaincioidcaenlnrai.eeaaalswdTltdlsyiiiohdatiannoaees- reception band, overlapping all the spectrum of the ob- served radiation. To illustrate this point let us nd the tAostaalbeonveer,gwyerescuegigveesdt ftrhoemsotuhrecesoruardcieatwioitnhinreidtsshfirftamze. of reference have Planck spectrum. In this case each frequency at the observer of the whole spectrum ex- tending from  = 0 to  ! 1 will have a shift to zero frequency decreasing in (z + 1) times. This spectrum take the form d 0F (0) = 2h c2 03(z + 1)3  exp h0(z + kT 1)  1 1 d0; W=cm2sr; wehBr0oh'0slet(frrzzreome+mfear01ne)0nn==cklteoTow=f=r(1azmx+eaw.1ne)dIhinsuatsvetieghnregaantftrinhaeqngeuaocelohvngaecurynegaieonllfottffhrheeevqaouSrbetianesefbcarilvneess-- P = 2k4 h3c2(z T4 + 1) Z1 0 x3 ex 1 dx = T 4=(z + 1): Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars195 Thus, as it is expected all the energy received decreases in (z + 1) times. It should be noted that in the standard cosmology the attenuation of galaxy radiation caused by the redshift due to the Doppler e ect is taken to be equal in (z + 1)2 times, i.e. for the Planck radiation spectrum F( T) d the received signal has power F( T) d=(z + 1)2 = F( T) d0=(z + 1): Tcrheaisseatotfenthueatqiouna,ntausmsuegngeersgteyda,nisd dthueeirbontuhmtboerth(eordienat(ghzny+ios(t1qhw)ueaatryinmwttueohmsreddsaauptettphetrneoouafatrchethiqe)ou,ndeaennicscdryedtaehbsteeaennromdaf)git.naheieIndtqitsnuweae(inzmc+teus:1mt) hrtaesinmtteiiernnsdciloulunemsStiodoinettarhhteseinuod,ncehacftrraotenhmaesaetprheopcefreotcphaotecnihosbniatdonpedlrbaece(dceglvwarosoelsuuihcnmaadvleleeaesptlshep.merofeoanlctlho)w, iwneg dE = r2 n m (R) wraedioabttioanintetmhepreerqatuuirreed expression for the background  r2 nm 2hc203 Zzm 0 exp(z[h+01()z3+ (R1))=ddkRzTd] z 1 = = c2[exp(h2h0=03kTb) 1]: (5) dinimmTeenhtseeirodsn,ilmweseesnhfsoaiorvmne of (5)is equal to designating 0 = cW==0cm, w2Hhezrser.0 Iins  r2 nm Zzm 0 exp(zh+c(z1)+3 1()R=k) dTdRz0dz 1 = =  exp  hc k0Tb   1 1 : (6) Denoting the left part as x we have for the background temperature F [0 (z + 1); T ] d0 dR; W=cm2sr; (2) w1a)nh=tekernTen)aFa[p10e](rWztu+=rcem1f)r2;osTmr]H=azll.2thhTeh03ge(azflua+xlli1ei)lsl3ui=nmc2tih[neeaxtspioo(lhnidi0na(nztgh+lee of the radiotelescope antenna is Z1 E =  r2 nm d0 F [0(z + 1); T ] (R) dR: (3) Tb(0) = k0 hc ln[(x + 1)=x] : (7) Expression (6) is simpli ed if, rstly, in the upp1gta)re=okruinin0ngkdtTtethgeerma t0pri:oes1trnattelu0irm:rm2eitaoTnfwbdteh,hesche=eacxvo0penkodtTnlhbyee,ntacitoa0ntl:1hdfueitndi0coe:tns2iio.rnheAdce(sxbzpimatacink+s--, sion we obtain from (6) 0 0, tIhfe n(Rth)eisuspupcehrtlhimatitatosfotmhee Rint=egRraml awxi;ll b e(Rdem anxi)te= Tb = r2 nm T Zzm (z 0 + 1)2 (z) dR dz dz: (8) and equal to distance R iRtsmraaxd.iaAtisoint iastobfrveiqouuesn, acyt the  wgiivllencogmaleaxiny tiefhxepthrreeescsgeioapnltaiox(3ny) rbietadnissdhnifaetcteitsshsaezry.fretIoqnuuetsnhecityshwea0fuy=ntcotio=inn(ztael+grrea1lta)e-, tzfoi.ornT b(hzee)tnw,weseeunbosbRttiatuainntid nngadlloRyr, ultimately, between in (3) for dR = ddRz dz R and , (R) E = r2 nm d0 Afisutlf uNzllml oeldwl=efdfoo3rfr0o0irn00tea0gnr3datc2iTmn:5g=acimnt6di.st1nh0ee3cKesesscaothrnyed ornset acotnTdbition3Kis to know R(z) in tieRqnhsute=aatshbianRelrtis0se hprirvenszdattlhvae0eepxrppiin reoterzexidmrivmbeayn1al ttt0aih.olelnFyooztbrfhosetrehr5Hvizsau(tpSbiueobgnrlepa0slo:lo0s1af2ew9g9oao3nRlr,aeTxt=crihaeoensiRtaslu0ankswidzej 1994). Then, for calculation it is necessary to deter- mine the attenuation function (R). This can be done Zzm F [0(z 0 + 1); T] (z) dR dz dz; W=cm2sr: (4) In our case it is expedient to characterize the radiataisona Etembypetrhaetue reecotfivtehteemblpaecrkabtoudrey Trabdwiahtiicohniswditeh ntehde same spectral power. Comparing (4) with the radiation of a black cavity E = 2h03 d0=c2[exp(h0=kTb) 1]; W=cm2sr; on the basis of di erent physical grounds. At rst we suggest the simplest ones, namely, that beginning from srboeygmitoehnedsiscRteann>trcaeRlRmpmairsttshcoeomfrapgdlaeilataetxiloyiensscflrryoeiemnngesdooun(roctrehsaebopusoatrtfbhreodmo)f wave propagation. This takes place when projections of all central parts of galaxies lying in the sight cone ontofumlNenbg=etrhnoRfRg3ma la=ax3ri.eesTmihneercgtoionntgeala pnrduopjteactktoiiondngisataarreneaaceo fRRth2miesi.reqcTeuhnae-l tral parts of diameter 1 kPc is S = 0:25n R3l2. This 196 V.S. Troitskij, V.I. Aleshin area covers the part of the cross-section area of cone R2. Hence, only a part of radiation will pass through the cross-section (R) = 1 0:25Rnl2. The channel will fbt uh(enzencf)ut=il olyn(1Rcdl)oopes=eszdn=1zowmthd.eRenHp=ee Rrnemd=toh0oner,atihat.tetee.nwRuaatav=teRiloemnRng(0=tophrz1stc=hrw0ae:tee2nt5hainnaklgve2)es, place practically for the optical radiation forming the observed background. Let us take for the calculation l = 6 kPc; n = 2, then Rm ' 50000 MPc; zm ' 6 103. In the given estimation the galaxies and the stars inside the galaxies are regarded immovable relative the given spherical coordinate system with a centre at the observer. In reality there exist proper motions of the galaxies as well as the stars inside them. It is obvious that the account of these motions does not change the result obtained. Indeed, in a suciently large volume, say ' 103MPc, containing several thousand galaxies the directions of motions are distributed isotropically and the velocity values are distributed according to the normal law with the rms velocity  300km=s. So, the radiation of galaxies will have the frequency sthhiifstfancotttmheoroebstehravned rad=iat'ion vte=mc p'er1a0tur3e: fOrowminegactho galaxy well di er from the average one not more than hoTm=oTgeneity10wh3e.n Dadudeinsgmraalldnieastsioonf otfhea ela regcet naunmdbietsr of galaxies, the in uence of this chaotic velocities on the radiation frequency and temperature will be mutually compensated. The same can be said on the in uence of the velocity dispersion of the galaxy stars. Thus, the uniform and isotropic microwave background xes in a statistical sense the immovable coordinate system resting on all the galaxies of the visible part of the Universe. 2. JmtheiencerMroawelateavxgepablraaexscyskigornoufonrdsrtaadriation of In this section we give quite a general expression for the star background suitable for di erent models of the Universe. We suggest space lling with the galaxies be uniform and isotropic and their mean luminosity and dlterimimbueintsisotionongosifvbetehaeincvsatalarcriuaslnaottfiiondni ttieamrkeeinnatgnsdipnetscoptaracacelc.ocuTlanhstseeasp,crooi.bne--. with di erent photosphere temperatures and sizes. As it is known, more than 80 per cent of stars in galaxideestearrme itnheoscehoief tyhethmeaoinbsseerqvuedencsteaarnbdahckegnrcoeutnhde.y wFoilrl ttthhrairsloucslgtaahsrsst,htrehadesituraesrqaulunirmdedipnhpoosatirtoaysmpMheeter,erdsteertmerapmnedirnaitTnugraeir.tesLgsepitveeucnsuse the known formula for the relative stellar radius r=r lg r=r = 5000 T 0:2M 0:02; (9) waunshudearlMelyTgisivisietnsthpienhoptthaobogtlreoassppahhniecdrivcfaoltrueemt.hpeTehrsateaturresrleaotofifotnhtheMemTstaaiinrs sequence it is approximated with a sucient accuracy by the function T = 26 103 0:37 M + 2:4: (10) Substituting (10) into (9) we have r2 r 2 = 10 0:233M+1:05: (11) The luminosity distribution of the main sequence s1tfesrtaps9oabe7mrBcl4set)rA.fMa'olFr(TmcM=hlGae)isnKsle4hutsMamhtaseoi:rnibenMoeTetseeqihntr=uyevaaklf2ilnun0rtonMeewsctrphtvnieaoactnl(12tssiievnno'eevfe,(loayMMlfrvot)etorhsv(ieess-axp4ilganu,e-imcte1vets)eprg,naoel(elrf0icnvt,L+lhaaatel3snhuss)geee-, (iz+a4ti,o+n6)P , (+'(7M,+)9)=, (1+.10A,+s1a9)r.esWulet,htahvee fuusleldrandoiramtiaolnwill be  r 2 nm X 19 10 0;233M+1;05 '(M) 4 Zzm 0 expf(hzc+(z1+)3 1()z=)d0dRkz Tdgz 1= =  exp hc k0Tb  1 1 : (12) HmdoneeinnrtceehedeTRbacy(izcse)adp.cetcEe edpxntpenedrdaetsbustyihroeen(o1or(0fe1)tt2.ih)ceaFdlruoeonedsrcstnheioxoifntpt.edrdeIitRpmse=enndndazttaeuilxrspeddlemiepctiaetennlry--ietcfhxHeepstescr1lizoom=sn(eelzdnyt+atmhl1orm)oduoaegldnhedolfscoootfhnotechnre.esttUeannfdiuvanercrdtsieocnoRss(mzRo)(l=ozg)Ry. 0RFpo(zrz,)tfho=er 3. SrUatndairivaemtriosicenroinwaavestbataicckmgrooduenldof the WienstgeimcwoaintthseiddtehbreytghcaeolnasttxeaimetiscpiomsruoanrdyieflooorbfmstehravenaUdtiniosinvoset.rrosWep.iecSapinlasocsecsa ullgels-gsgceaaslatlexstyhteospmbaeecaei.nnvdIaitrmiaiesnntesisiosnenntsitmaianeldatlhnuadmt iintnhotisshitemywoinhdoetllheefoMsllaeomtwae-s Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars197 from observed mean (statistical) dependences of apparent luminosity m(z) and angular dimensions (z) of the galaxies and quasars which make possible to detRerm=in6e00tphez MreaplclyinextishteinrgeddsehpieftndinentecrevaRl (0z)eqzual to5 (RTr=oiRts0kpijz1,9w9h5e).re RTa0k=ing60i0nMtopcacwcoeuhnatvein (12), that A X 19 10 0:233M+1:05 '(M) 4 Zzm z 1=2(z + 1)3 (z)dz 0 expfhc(z + 1)=0kTg 1= =  exp hc k0Tb  1 1 : (13) HerPeaTraims getiverenAbym(a1y0),haAve=o12nlyr 2andmmisRsi0b.le limits of paosstsaibrlenuvmalbueers isninacecuabisctrMictpcm, eiasnunvkalnuoewonf. nAmcc,ori.de-. ing to the data on the population of the Local Group containing three large galaxies with the star number mbnAemr=lioe1sn01ei1-n0o11nt1he.1eaT0ni1hn2detneaarnavhdtaalaRlfb10oo0ru=dt1e62trw0s0olMeAtsespnocsnwa1ed0itmcha1in0stsh,tiebawklsheteiavcr1ah0lnu1mue0maoy-f be used in the background calculation. Then taking the mhaevaTenh se(izzce)al=ocfu1tlahteiopcneznr=terzsamullt,pswaorhtfetrohefegzbamalacxkige5rs0o0ul0n'd 6 Kpc we 7000. tempera- ture are given in Tables 1 and 2 in the waveband from 1cHliummulabitttbseoldeopflfaionrirttessathreoexflpalawaewrmiRmiRcer=no=tnRa.RlHT0gpzrhoezue, xntrtdrshiatnepgtsoaelwbcaloitetnehdhdianbosentbyheoeeefnonidrncttteahhrlee-- val 0  z  0:02. The comparison of two tables shows there is not any signi cant di erence in the background temperature dependence on wavelength. It can be seen from the tables that at waves  > 1mm the background ilmsetun(d0e:d50b:1y1cgm)acmlabxtyhyetshcberaeeccknugitnorgo uanotdf ztsmhpeecstt(ra5urmra7idn)itae1tn0iso3intyainnidstensity in the Wiens's spectrum region. As a result, 198 V.S. Troitskij, V.I. Aleshin tmhienbedacbkygrroauthnedrraadthiaintiloanyeinr othf egaWlaixeiness'rsardeigaitoinonissdinettehre- Rayleigh-Jeans's region of the spectrum. The reduction in number of galaxies responsible for the background at senti1aml imncriesaasne oimf psmoratlal-nstcafalectboarcwkghriochunldea duscttouaatnioenss- for shorter waves, that is con rmed by observations. When calculating the star background we studied how the background temperature is in uenced by an ilnencrgetahsseloonfgtehretshtaanr 1pchmot.oTspoheesrteimteamteptehraistuinre uaetnwceavwee- have the only example, the Sun. Its brightness temper- atiwanhtsau,emvrterehesetefleaocrtr0sai.olcnA0u2ltTa0stcu1i=mocmnhTnptm0oer+moamycp5eobderreue1ara0tteuph5irpasenr,ocowox0fni:hsm0cte1earaKrertnsee.lTdyAb,=etixitnlpasc0rhsre=teos(,asuzsaeled+sdsfbb1aaye)tr remembered that the background temperature is de- tawdbebeaartcosmekvrtgiemanrkmoeienduenenndbdatyisftoretnaomwnemdopienacvriaaatrliltecauuqulerulsvaeiatrsAielhoumoneauesannlodntdfdbttzhehamae2st..tl7rai3mitOcKtint.v0Tvtaih=hlsueiisbe3ibvcloaiamftlsyuiAsetzhoomiesff A is given in tables. It is clear, only those calculations were used above. where A did not exceed the limits mentioned 4. Aswtiatcrhobmtahpceakrgmirseooaunsnuodrferpmardeeidnatitcsitoinontsheoofrtyhe UbbaepecnktgocroanurornwieddetxhutepeonrtsyoivmefaabryaIacRkpgprceolaoursnetdotombeeoapasctuitcrusea.ml euTnpthsteohsaotvaperttp ihuocesacetlsduuwabeatxmivopeinlslals,iimsnoosfettnthraheeteuwcrobaamvallecypkbagatrhrnioesduo.onnbdBisseeisrnnivdoteetednst,ssoimttybhaeelalbt-sshocewuaonelreldylspwapasritcohaemmtairoyiecnsrctoooewrfnisaaoivudmeserbeseaaodnckfigangarrdolapuexthnyaedinlinoibnmcetleuleonndwsoiin.ntgy ooafunrtdsh.tehTeehqoeupsaetliicqtayuleorsfatidotihnaes- 4.1. The star background spectrum and observations Its obvious, that the comparison of the theory with observations is of interest rst of all in the submillimetre waveband. The background measurements in this wavelength region have already been in progress for a q urmarttehre obflaackcbenotduyryc.haTrahcetyerhoafvreabdeiaetniosntaarttetdhistowcaovnesfollowed from the Big Bang theory. rst investigations aptenwdaevnetlelnagbtohrsator0ietinv>e+1ofamnlod=gmx,Tihbne=rT(e6b)( ar)n;=d obxt=axin. n; m Tahxree=nxdwi=se- persions of corresponding values. The value r is a mean dofimsteanrssioinn,gsaolaxires', 0. as itTihsekndoiswpner,siisonpomf the . number accoTuontdethteermtoitnael ntuhme bdiesrpoefrsgiaolnaxoifesninitthies annetceenssnaarypatto- tern up to the Rtemnnadep eelnddionfg oe nectiavcecodridstianngcteooTf avbisleibIiIliIt.yInRteh(e)ansight equal to sterad there will be Npa1van=Nrp di=an0=b:ln3=ep3s0Nn:n3n=R300:Ra(3:n33()3d3RR) 3m(3e. ()3)D g Tau.lef=arTTxothimoee=sniwnwphdieet(nrphee=nnddi=snenpn=N)ecn2re=s+=0ioo:(3nf3rRNma3en=N=(Ndmo)m)== 2 Experimental Evidence of the Microwave Background Radiation Formation through the thermal radiation of Metagalaxy stars201 Ftioignuorfeo5b:serEvaxtpioernimofenwtaavledleenpgetnhdence of T=T as a func- Figure 6: [p(areTd=Tw)it2h thme Spatial dependence of the 1] on the wavelength (solid experimental data of TableIV (lvipanoleui)netass)Xcom=- and we have nally T T = p1m p1 + m=0:33 n R()3 : (15) The measurement results of background tempera- ture uctuations have been given in the review of Par- ijskij (1990). These results are shown in Fig. 4 in the ftmoerremvaasluorf0etmhnt2a1,lmdmmat=awho1fi0cP1h0aarasijnissdkisjeReaenn(dw)eBl=leral4gin0re. e1Ts0hw3uMitsh,ptcthheveaoelbxid-- served small-scale background anisotropy is explained by discreteness of the background radiation sources, the galaxy stars. Besides, the calculation presented pre- dicts according to (15) and Table III the dependence of thTe =sTizeoonf tthhee ogbaslearxvyatei oenctwivaevelatyherroutagkhintghepachrtaningethoef background formation. To reveal this dependence one should exclude the in uence of . For this purpose we have sampled the measurement from the data of Fig. 4 in a suciently narrow band 0:8  lg  1:2 and then have plotted the dependence T=T on . Fig. 5 presents this dependence which con rms the predictfdrieoopnme.nadTlelhntecheedeedsxaicrtleaud.diOdnengpeetnhcadeneinnoc beuteawniancseedaoesfitl eyr,mfrnioanmmede(l1ay5s)wtehlel X " = T 2 T 1 m # = 0:33 m n R3() : Hdaetrae froTm=TFiagn. d4. Faigr.e 6thgeivceosrrtehsepoexnpdeinrigmeexnptearlimdeepnetna-l donene.ceTohf eXfaocnt of itnhceoirmppraorpiseorncwoiinthcidthenecteh itsheaorsetrtoicnagl aforrgmumateinont.in favor of the theory of the star background 5. Sstthtaaenradmlatreidcrrnocaowtsiavmveeotlbhoagecoykrmgiersooduenldanindtihne For general formula (12) will do to calculate the background in this case. A speci c point for the standard cosmology models is a restriction of the integration limittimine o(1f2th)eugpaltaoxizems. e Resetcim, tahteiorenfso,rpeeirnfotrhmeewdofrokr the ether turbulent stream. Let's consider the method operating principle. In the Fig. 1 the part of a cylindrical round metallic tube wdriitfhTt)ht,heiesesltehhnoegwrtnhstrlpea, mwhiischshisowinn the in ether stream the gure as (ether slant- ing thin lines with arrows, that indicate the direction of its movement. The tube longitudinal axis is locat- ed horizontally and along with the ether drift velocity vector is in a vertical plain, which represents the gure plain. The tube walls have major ether-dynamic resis- tance and the ether stream acting from the tube sur- face side area, the ether inside a tube does not move. The ether velocity stream stipulated by the horizontal vetehloecritsytrceoammpionnaenttuobfe,thweheicthhegrodersifwtitWhht,hecrmeaetaesn tvhee- ltohceitryouwtpinag. It can be spoken, that the metallic system for the ether stream. Let's tube turn is a tube in a horizontal plain in such a way, that its lon- gitudinal axis will take up a position perpendicular to tdhiceuplalraitnootfhethveelFocigit.y 1veocrt,orthoaftthise seitmheilradrr|ift.pIenrptehnis- position both opened ends of a tube will be in identical conditions regarding to the ether stream, the pressure detih eerresnttrieaalm vpeldooceitsyniontaoctcuubreainsdeqaucaclortdoinagzetroo(5p)oitnhte. Apotstithieonm. oTmheenthot0rizwoentsahlacllomtuprnonaenttuboef into the initial the ether drift veneldosc,ituyndWerh owpielrlactrieoanteofawphreicshsutrheedertohper sptroeanmthweitlul bbee developed in a tube. In the work [28] the problem about sinetatinroguinndtocmylointidornicoaflvtiusbcoeuusnidnecromopperreasstiibnlgeo futidhebseuindg- dLeent'lsyraepdpuceendtehde cfoornmstualnatopf rtehsesuvreelodcritoypdisptriibsustoiolvnedof. uid stream in a tube  wp (r; t) = wpmax 1 r2 a2p 8 X 1 k=1 J0 k3 k J1 r(apk 1 )  exp a2pk2t# ; (10) w0o;rhdeJerr0es;.tJTi1shteahr eertsBitmetsews;eol'sskumfiusmntchatenioednqssuianotfsioqtnuhaerroezoetbrsoraJca0kn(edtsk )erxs=t- pcorerrsesspstoenaddyth(eatmten!tio1ne)d laminar stream of uid and above \Puazeyl's parabola" (8). So at a turbulent uid stream, according to (9), the velocity distribution on a tube section is almost uni- form, we shall consider, that the uid stream velocity iosf ethquearlouwnpda tuonbethate awthuorlbeutluenbte sueicdtisotnre(atmheshvaoluuled b pe uwsaeldl laatyetrh.eIvnaltuheisccaalcsueltahteioenxpwrpeas)sieoxnc(e1p0t)tahte thin nearr = 0 will be like " wp (t)  wpa 1 8 X 1 k 3J1 1 ( k) k=1 exp  k2ap 2t : (11) The expression (11) describes the process of a uid stream de ning in a round tube. It follows from (11), tohf attheatextp!res1sionth(e11v)alsuheouisldwbpe(td)iv!idewdpain. toBoththe parts value oInf ctohnisstcaanste tuhied tsitmreeamvarviealtoiocintyofin auidroustnrdeatmubdeimwepna-. sinioanlFesisg.ve2l.ocity wp (t)/wpa will be like, that is shown In the gure the values of dimensionless velocity wofpt(itm)/ewaprae agrievegnivoenn tohne aanbsocirsdsianaatxeiss.axAiss,itthies svhaoluwens above, the requirement (2) is performed and the ether stream can be described by the laws of thick liquid mo- tions, then we shall speak about the ether stream fur- ther, instead of uid. In the Fig. 2 we'll allocate the 212 Yu.M. Galaev Ftuibgeure 2: Variation in time of uid movement velocity in a ivsnhetlaeolrlcvictayallolinftthaiemtueetbthe0e:rc:hs:attnrdeg,aedmsufrrrionemggimw0heuicophnttothhe0i.se9t5thiemwrepsatir.netWaemreval as the dynamic one. We shall call the ether stream regiLmeet'astsktip>atdliagshtthbeeasmteaadlyonsgtrtehaemturebgeimaxe.is. It can be written down, that the phase of a light wave on a cut with the length lp will vary on value j, which is equal. ' = 2 f lp V 1; (12) wthheerlieghft viseltohceityeleinctraomtuabgen. eAticccworadviengfretoqutehnecyo;rigVinaisl hypothesis the ether is a medium, responsible for electromagnetic waves propagation. This implies, that if in avetluobcietywoitfhwthhicehlecnhgatnhgelps itnhteirme eis, stohetheethpehrassteroeafma l,igthhet wave measured on the tube output, should change in time according to variation in time of the ether stream velocity wp (t). Then the expression (12) will be like ' (t) = 2 f lp [c wp (t)] 1 ; (13) where c is the light velocity in a xed ether, in vacuum. In the expression (13) the sign "+" is used, when the direction of the light propagation coincides with the eutsheedr, wsthreenamthdesieredctiiroenctiionnsaatrueboep,paonsditet.he sign "-" is In the work the optical interferometer is applied for measuring value ' (t). Rozhdestvensky's interferome- ter schema is taken [29] as the basis, which is supple- mented in such a way, that the light beam drove along the empty metallic tube axis in one of the shoulders. The interferometer schema and its basic clusters are shown in the Fig. 3. 1 | illuminator; 2 | a metallic tube part; 3 | ettrhyaeenfrssacphgaemrmeenant.tlTawmhiteihnbaaesa;smcMalc1eo;,uPMrs1e2, P|2 m|irr oartspaareraslhleolwsnemoinis shown with thick lines and arrows. The light beam in a tube pass along the axis and is indicated with a broken line in the gure. The tube length is lp  P1M1. The clusters P1, M1 Figure 3: The schema of an optical interferometer aMTttPishhn1nhee2dM'emtma2Pa.rcine2orTgrn,mohllseMprieosd.pui2enliInra1ntetaie,denarrd,esvic2aoltmMalhpsasoep1srauioe,cRrnsaeMittotlehzeP2cdeha1edastMaaweenncsd1hiogtfvl=ttoebehhstynheeMsbetekbewr2tyetPhoo'wase2nmerp=eiaadsnnrrtdslaie1nmfrlrto,lofeaeiprMlnrlmlploy i1,amaunPnlegMse2gntolcte1=enoer,. operating is reduced to the following. The light beam wwarihetihcphathraaeftllewerlarvwee itelhecntaigotpnhhfarsoemisdidM iev1riedanencdde PM[2192]inatnodtpwaossbineagmPs2,  = 4 l1 1 (cos i1 cos i2) : (14) eterTahdejuasntgmleesnti1s,oit2haatretheestianbtleirsfheerdenacte tphaettinertnersfehrooumld- be observed. (The adjustment clusters are not shown on the schema symbolically). In a tuned interferometer the value is  = const. In the right part of the Fig. 3 tehtheeframdriilfyt ohforairzroonwtsalmcoeamnpsotnheensttvreealomcitdyi.reTcthiiosnstorfetahme veteelor cciltuystiseresqounalatohoWrizho.ntIaf ltrootaartreadngbeatchkegrionutnerdf,ersoumch- instrument can be turned in the ether stream. The ro- tation axis is perpendicular to the gure plains and is indiIcnattehde aisntAerif.erometer (Fig. 3) the band position of an interference pattern regarding to the eyefragment scale 3 is de ned by the phase di erence of the light bPtoe1waMma1rsdP,s2wt.hheiIcnlhigathhrteepdFriositpgr.aibg3auttiteohdneodneitrthehceetriposanttrahelasomnPg1iMtshd2ePibr2eecaatmnedds Pw1rMite2,doMw1nPe2x.pIrnestshioisncfaosre,thaeccpohrdaisnegdtio e(r1e3n)c,ewe s'h(atl)l between the beams P1M2P2 and P1M1P2. ' (t) = 2 f  c P1M2 wp (t) + M2P2 c   P1 M1 c + M1P2 c Wh  + ; (15) wthheereexpresissioconn(s1t4a)n.t,Lteht'es vsaimlupeliofyf wthheicehxpisredssei onne(d15b)y. The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band 213 For this purpose we shall introduce the identi cations accepted earlier. Allowing, that the beam phase dif- fteerrefenrcoemMet2ePr 2oraienndtaPti1oMn 1regdaoredsinngottodetpheenedthoenr the instream direction and is equal to zero point, the expression for the value ' (t) will be like  ' (t) = 2 f lp c 1 wp (t) c 1 Wh  + : (16) The rst member of the expression (16) describes tsiepshttrrheeteeshabsremieoeabxnmvteeeianplrmoihocsarqiptsusyehtaarviresnaeearmaibavrtataviurcoeibknaloeettcPiosiw1tnyMtpo(MW2ta)d1h.Pce.opT2Lmehnedmetde'piussneenrcgneaoddolnuinddncetgenmhoteoehmnemetihtbnehexaeerr-- tor fc a1n=d,all1owwiengsh, tahllartecce2ive Wh wp (t) cwp (t) cWh , ' (t)  2 lp   wp (t) c Wh  + : (17) It follows from the expression (17), that the di erePssttn1rrcMeeeLaa1mmeinPt'2svtWheiclehsoo.cnppishtriyaodspeienor rattih'oteun(bati)nlettbeworepfteaw(rteod)emin aenebtrdeeerantmhtoieapsleePrtoah1ftMeirtnh2geePx2tienetarhinioetdrrs steady regime, at t ! 1. According to the expression (e1d1,)thaantdoFwiign.g 2towthpe(ts)mt!a1ll v!aluwepoaf itthecaenthbere dsuynspaemcticvstiescaodsyitsytr(ecaemlesvtieallocbiotydiiensamtouvbeeinregtharedeinthgetro) tthhee semthaelrl length will not di er essentially from the ether exterior stream velocity and it is possible to write down, that wpops(itt)iot!n1in=thwe pwaorkWishd.et(eTrhmeinceodrreecxtpneersismoefnttahlilsysaunpdshown below.) In this case in the expression (17) the fraction numerator in square brackets is equal to zero point, and this expression will be ' (t)t!1  : (18) Hence, in the steady regime the interferometer op- erating with a metallic tube does not di er from the Rozhdestvensky's interferometer operating. In both in- terferometers the bands position of an interference pat- tTehrne iwnitlelrbfeerodme enteerd, wbyiththae moreigtainllaicl ptuhbaes,eidni thereesntceeady. operating regime is not sensitive to the ether drift ve- locity and can not detect the availability or absence of the ether drift. inteLrfeetr'osmcoetnesri.deLreta'sduynnraomll itcheopinetreartfienrgomreegteimr (eseoefFtihge. 3) in the horizontal plain at 180. As the direction of the light propagation has varied in relation to the ether drift stream to the opposite one, the expression (17) will be like ' (t)  2 lp   Wh wp c (t)  + : (19) iten0tee:rq:Au:wctadclioit.thrydHiawnegnpmc(teeto),tatuelaictp"d, td  0:53a2h 1: (36) From the expression (36) it follows, that, having the measured kinematic vvailsuceossittdy, viat liusepossible to determine the ether   0:53a2htd 1: (37) The kinematic viscosity value, determined in such a way, we shall call as the ether kinematic viscosity masehce,a=swu0er:e0sd3h6av7lallmureecaevnicvd.eLtheet'ms seuabssutrietdutveailnuteot(d37=) t(h10e :v:a:l1u3es) e  (5:5 : : :7:1) 10 5 m2sec 1: (38) The kinematic viscosity asescthiseefquunacltitoon mean value vm=eafn(vtda)luwe ivtheain, calculated (10 : : :13) ea = 6:24 10 5 m2sec 1: (39) Comparing (30), (38) and (39) we shall mark, that on the value order the ether kinematic viscosity values, calcTulhaeteodppaonrdtumneitaysuorfedth,ecopirnocbidleemvcsoluvtieon avbeaou. t the ether viscosity measuring is of particular interest, as the experimental data about the ether viscosity and the ether viscosity measuring methods miss in literature till nowadays. 218 Yu.M. Galaev Figure 7: bands o set V(caarlicautiloantioinn) time of the interference pattern Let's write down the expression for the value D (t). For this purpose we shall substitute the expressions (11) ainngdly(3a4n)di,na(l3lo2w) finorgtthheevparloupesorwtipo(nts) (a3n1d),W(3c5()t,)waeccsohradl-l receive D (t)  8lpWh X 1 c k=1 k 3J1 1 ( k) exp  k2ap 2t exp  k2ah 2t : (40) In the Fig. 7 in a normalized view the dependence c(4a0lc)uilsatgioivnerne.suAltt Dca(ltc)u,lapteirofnosrmthede wteirtmh sthneuemxbpererssoifona svva6ea:ip5rslicu=eFoes1rsso0ik0tomy:f0=7t1iths0m4he5,e.vitncmhFteei=;grc.faae7hlrc7ou=ml1iat0et0tefe:od50rlm3lvdo6a2ew7lssuisegem,cnot;fp1htalaphartaen=omdenteh0ttth:ee4irrem8skefaiomnrleeel;xomupwsaieirtnda=igc-: ttitTc0ihoheonoepifantetmntrheatreitcfieinbpr0geea:gn8trice2enedgnsidpiemncuag,etr,twatettihrhimnoiecneh(bvooaiaffsnlttuddhheisegeDioitin nit)zsteeeesrdtrhffeofemrruroooalmmdmxiebemttteheeareroldbmvdysayonelnrmuavaemeemndoictf.oexpperreastsiniognr(e4g0im) feormsaptetceirfsyintdgthe10o:b3sesrevce.dLveatl'useuesxeptehreitmuteentinal(ly40t)mthe1mseeacs.uFreodr tvhailsuepuorfptohsee ewtheesrhaklilnseumbasttiicvtcmoisnctorsaid0ty:i9c,t3vteshaeec=.exH6p:e2enr4iceen,1c0tehre5esmcua2lltcsseu,clawt1iho,incwhereassruhelatslslhordewocnenivoinet the Fig. 6. The interferometer test results analysis, the ether kinematic viscosity values, calculated and measured, give the basis to consider, that the ether stream properties are close to the stream properties of known gases at their interaction with solids | to pass aside obstacles asonldidgso(dinieldeicrtercitcisn,gmseytsatlesmest.c.I)t actaninbteerasuctsipoenctwedit,hththaet ether stream render major ether-dynamic resistance. It clari es the interferometer test results, that the tube made of dielectric can execute the same directing system role for the ether, as the tube made of metal. The ether stream property, i.e. to pass aside obstacles, could cause unsuccessful attempts to detect the ether drift with the devices placed in metallic chambers [17-20, 23-26]. For value de nition of the ether drift horizontal coo mseptomneenatsuvreeldocvitayluWe ohf iatnisinptoersfseibrelencteo puastetetrhne abtanthdes mexopmreesnsitonof(t4i0m)ewtemsh, awllhreenceDive(tm) = max. From the Wh  D (tm) c (8lpX 1 k 3J1 1 ( k) k=1 exp  k2ap 2tm exp  k2ah 2tm 1: (41) Let's substitute in (41) the measured values of the etohtfhetehrveakluiinneteemtrmfaetrio=cmve1itsecrsoescait,nydthvceeaaldc=eusliag6tn:i2o4npapr1aa0rma5emtmeerts2esrevca(tlhu1ee, tmcear;smelpsthn=eumm0b:e4ea8rsuomfre;adsevra=ileuse)6::5oafpt1h=0e07e:0tmh1e0;r5kdmr=i;fta4hh.=orIi0zn:o0nt3ht6ai7sl component velocity, will be de ned as follows Wh  525D (tm) : (42) Let's calculate the minimal value of the ether drift vuefalocctiutryedWihnmteinrf,erwohmicehtecra,ni.be.e measured we shall with the mandetermine the instrument sensitiveness. In the part \the interferom- ewtherichtescta"n ibs emdairgkietidz,edthwatiththethme isneilmecutemd veayleuferaDgmmeinnt, awnedsLhsecatal'lslerdeDectemeivrimne i=Wneh0m:t0hi5ne. Then with the expression (42) =eth2e6r:2s5trmea/msecr.egime in the in- twvrcRctseahtoaairerdesnltefmuihieatueeibrymtntsoeohhmvfaeetwerupteahertr=dxi8ebe=trrp8utiR03reflt6t:een4eu0:sny2.bv1stdn4ie0eoorolsA5onewl1dgccamni0(cisttm4,o,in)eWr5teiudsnhwmihimasnWewtbg=2phssheohReirtWcscaoeshRlimhlbt1te2mhiclhmn6eaieme:nil2onc>er.o5nuetvlflhqFyeoRamueosrtir.eir/enrtcswehLtt.etmheheichtiteHeetsh'tunshmiepbttnnerhutieecn(eerece3wprite,mv)fhoiieivtaesrasiheertt--l ometer tubes. The optical interferometer tests and tests results analysis give the basis to consider, that the hydrody- namic description of the interferometer operating prin- ciple, reviewed above, is adequate to the imaginations about viscous ether stream in tubes, and the manu- factured interferometer is suitable for the ether drift velocity and the ether kinematic viscosity measuring. The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band 219 wasTdhisepmoseedasiunrethme ecnotumnterythsoetdtsle.mTehnet inattertfheerohmeiegthert ( 190 m above sea level), in 13 km from Kharkov northern suburb. The proximate height ( 200 m above sea level) is located westward apart 1.7 km. Two points were arranged for measurements. The distance between them was about 15 m. On the point No 1 the interferometer was at the height 1.6 m above the ground surface. On the point No 2 it was at the height 4.75 m. Two points available, which are located at dif- ferent heights and are practically at the same point of tfeecrtr.a"inT, hiteims reeaqsuuirreemdefnotrsoobnsetrhveatpioonintosf Nthoe1\haenidghNtoef2- were performed in the open air. On the point No 1 the interferometer was in surrounding trees shadow and was not exposed to direct solar radiation a ecting within a light day. On the point No 2 the interferometer was mounted in an umbrella shadow. In winter time the interferometer was transferred to Kharkov. The point No 3 ( 30 m above the ground surface or  130 m above sea level) was arranged in the upper level facility of a bricky house. On the point No 1 the measurements were carried out in August 2001, on the point No 2 in August, September, October and November 2001, on the point No 3 in December 2001 and in January 2002. The measurements were carried out cyclically. One measuring cycle lasted 25-26 hours. 2-4 cycles were performed within one month. Each cycle contained the following parameters. The interferometer was mounted on a selected point, so that its rotating plain was hor- izontal. After installation the interferometer was kept in new heating environment within one hour (the in- strument was stored in the facility). The measurements were carried out at each whole hour of stellar time. One readout of the measured value was performed under the following schema. The interferometer longitudinal axis wtoarswmasoutnutrendedaltoongthae mnoerrtihd.ianT,hseofuthrtahteritspriollcuemduinreas- did not di er from the interferometer operating pro- cedures, which were applied at the nal stage of the interferometer test. After the interferometer dynamic regime termination the observer registered the maximal bbaannddss ore lseeatsevatliumeeDto(ttmhe)i,raosritghienaml epaossuirteiodnvwalause.reTghise- tered and metered. The interferometer returned to the steady operating regime. The instrument turned to the initial position. As a rule, 5-7 readouts were done dur- imngeaonnvealmueeawsuasriancgcetpimteed(for 1th0emmienaustuerse).d where S is the measuring stellar time. The readout value D (S), redestuThlhetsef.opllTroowhceinemgsspeianrosgucremedmuerteehnsto: drvesasluoulfetssthcpaerlocmcuelesasatiisnougnrseinomcfleutnhdet- ectohuerrsedorfiftthheoertizhoenrtdarlifctovmeploocniteyntwvitehloincitsyepWarhat;eastdeallialyr day and the ether drift velocity daily course averaged during the year epoch Wh (S); a daily course of the emtitohenaeTrsWuhdrehreimmfftreeonvametslusoiercterisimteymsenaeWvatenhrreav(sSgauel)uldt,esmfowerWaetnrh.e-esqiwnutharrooeldevutacilemudee doef tehceas the medeawsiutrhedthvealeuxeptraebsslieosnD(4(S2)) .wTerhee bvraoluugeshtWtho,tchaelcsualmate- table for each hour of stellar day. Such numbers con- sequence obtained for separate stellar day, describes a dailTyhceoumrseeanWvhal(uSe)s.of the ether drift velocity and the vdaalyuewsithWthwe efroellocwalicnuglaktneodwfnoreexapcrheshsioounrs of the [30] stellar Wh (S) =  1 X  Whj (S); j=1 8 W (S) = ><  >: 1 X  j=1 Whj (S) (43) Wh (S) 2 9=1=2 ;(44) ; wwhheorlee m eiasstuhreemvaelnutessearmieos.unTthWe hco,no bdtaeninceedindtuerrivnaglsthoef the measured values were calculated with the known methods explained, for example, in the work [30]. The calculations were performed with the estimation reliability equal to 0.95. The measurement results. The measurement series results, held since August 2001 till January 2002 are presented in the work. 2322 readouts of the measured values have been performed during this series. The distsrhiobwuntioinn othferetaadboleut1s amount per months of the year is According to the research problems, we shall consider this work results along with the experiment results [1-3], [7-9], [10]. These four experiments have bdie eenrepnetrfmoremaesudraintgvamrieotuhsodpso:inatsnoofpatigclaolbienwteirtfhertohmreeeter of the rst order (Europe, Ukraine, 2001{2002 [this work]); a radio interferometer of the rst order, (Europe, Ukraine, 1998{1999 [1-3]); optical interferometers of the second order (Northern America, USA, 1925{ 1w9h2i6ch[7a-r9e],a1p9p2li9ed[1i0n])t.heTahbeomvee-amsuernitniognmedetehxopdesriamcetinotns,, based on wave propagation regularities in moving medium, responsible for these waves propagation, that allows to treat the experiment results in the terms of the ether drift velocity within the original hypothesis. The development regularities of viscous medium streams ( uids or gases) in directing systems are used in the work measuring method. The measured value is proportional to a velocity di erential of the ether viscous streams in two tubes of di erent section within the original hypothesis. This di erential value is proportional to the ether drift velocity (the rst order method). In the experiment measuring method [1-3] the regularities of viscous medium streams near the surface 220 Yu.M. Galaev Month of theTyaebaler 1: DAis2ut0gr0iub1suttionSeop2ft0er0mea1bdeorutsOamc2t0oo0ub1nert peNr om2v0eom0n1tbhesrof tDhee2ce0ym0ea1brer Ja2n0u0a2ry Amount of readouts 792 462 288 312 240 228 FAiugguurset 8ep: oVchariation of ether drift velocity within a day in ptoarativtieornticaarle vuesleodc.ityThgeramdieeansturinedthvealeutehiesr pdrroipftosrttrioeanmal near the Earth's surface within the original hypothesis. This gradient value is proportional to the ether drift velocity (the rst order method). In the experiments [7-9] and [10] Michelson's cruciform interferometers were applied. The measured value is proportional to a velocity di erential of wave propagation in orthogonal related directions in the ether drift stream within the original hypothesis. This di erential value is proportional to the ether drift velocity (the second order method). In the Fig. 8 the experiment results referring to August are presented. On fragments of this gure are shown accordingly: in the Fig. 8a | this work results; in the Fig. 8b | the experiment results [1-3] (the gure is published for the rst time); in the Fig. 8c | the experiment results [7-9]. ing Tohneoertdhienratderiaftxevse.locTithieesstWelhlarintikmme/sSec.inarheopuersndis- pending on abscissa axes. Each of the Fig. 8 fragments illustrate the variation of the ether drift velocity wariethpinresaenstteedllaorndlyaybyWthh(eSa)u.thTohrse oefxpweorrimk e[1n0t]raessualtsscertaining of the velocity maximal value, measured by thFthhaieegsm.mn,8oeitnaasasruletlrloheawemtiedoednnattitloyodsatdhtheoaepwemanvtodehvreiaesnmgceiexnenpgWterrhWeims(uSel)tns.t6wrIkneemsrute/hltsepsercFie,nsitgehtn.hat8e-t ed with the thick lines, which are obtained in each of the experiments during August epoch (mean results). The separate observations (measurement results during a separate day) are shown with thin lines. The dates of separate observations are speci ed on fragments. The separate observations on fragments of the Fig. 8a, Fig. 8b are selected from the performings, which had the date, proximate to the date of separate observation of the Fig. 8c fragment and which during the day had no skips during the measuring. The date discrepancy is stipulated also by the fact that the systematic measurements in the work began on August 14, 2001, and in the experiment [1-3] | on August 11, 1998. The positive measurement results, given in the Fig. 8eibmmt,yheienletnlrthutdess[t1rr[oi-7af3pt-t]9teri]tec,thqahe[ule1i0oirdne]petdptvehoerefel soeiernpacogmntm.isereoIantntdterirtooohfprewyaowntaeaivo steroieksotcrntapo,nrpwodiynapiseant gdhteahiectseticoeoe|xnvxpepwetrerhearides-applied. The similar nature of the ether drift velocity variation within a day in August epoch unite all three fragments of the Fig. 8. The rst minimums in dependreesnuclitess. IWnhth(Se)waorrek e(Fxpigr.es8saed) acnledairnlythine aexllptehrrimeeemnte[a1n3] (Fig. 8b) temporary position of minimums is S  3 hours. In the experiment [7-9] (Fig. 8c) the temporary pdiosscirteiopnanocfytihnet hrestpomsiitnioimnuomf tihsesSe min0i:m8 uhmousri.s a(Sbuocuht 2.2 hour, an explanation has not found yet.) The ether drift velocity magni cation is observed during consequent 2-3 hours. Further the plateau sites with rather small variations of the ether drift velocity in time are noticed on all fragments. The greatest duration of the plateau site was observed in the experiment [1-3] (Fig. 8b), that can be explained by arranging peculiarities of a radio-frequency spectral line on terrain. In this expfreormimaenmt etrhiediraandoion-fr4e5quetnocynosrpthecetarsatl. lTinheeisvadreiacltiinoends The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band 221 oimf tuhteh)eothcecrurdsryifmt ampeetxriacazilmlyuttoha(amsewriedlilaanslainneywstitahrinaza- stellar day. If to take account (according to the apex Miller:  coo6r5di,naate v1a7l:u5ehs into [9]), the ether drift azimuth in this part of a stellar day ac- cepts the values, which lay in the northeast direction, i.e. in the direction close to the direction of a radio- frequency spectral line. In this case the angle between the ether drift azimuth and radio frequency spectral line direction has minimum values. Accordingly at the interval of 12-16 hours the ether drift radial compo- nliennet) vkeeleopcsitryat(hdeirrehctigedh vaaloluneg,adersapdiitoe-forfeqthueenacpyexspheecitgrhatl magni cation (astronomical coordinate). Such arrang- ing peculiarities of the radio interferometer on terrain cthane ienxtperlavianl tohfe12re-1la6tihvoeudrsepinencdoemnpceariinscorneawsiethWthhe(Ssa)maet dependencies shown on two other fragments. In the work (Fig.8a), according to the accepted measurement methods, the optical interferometer was located along a meridian. As the variations of the ether drift azimuth within a stellar day occur symmetrically to the merid- ian line, in this case the plateau site duration should be less, than in the experiment [1-3] and less than in the experiment [7-9] in which the ether drift azimuth variation was considered by the corresponding rotation of the interferometer. It can be seen in the Fig. 8a (the mean result of the work), that the sites with rather small values of the ether drift velocity, extended in time, take place within a day. Noticeable bands o set of an interference pattern was not observed per a separate day on such sites. In these cases the ether drift velocity was lower tmh/asnect)h,ethianttewrfaesroumseedtefrorsetnhseitiinvteenrefsesro(mi.eet.erWtehsts<, th26e purpose of which is given in the above mentioned part "the interferometer test". Systematic character of experimental investigations of this work and the works [1-3], [7-9] has shown, that dependencies measured in one and the same epoch of tehtheeryedarriftWvehlo(Sci)ty, vhaarviaetitohnewsiitmhiinlaar dchaya.raActtetrheofsatmhee time dependencies epochs of the year vdiie werWfrhom(S)ea, cmheoatshuerre,dtihnatdic aenrebnet noticed, for example, by the experiment published re- snuolttsb[e7e-n9]d. eT hneedreyaesto.nIstocfasnucbhe sseuasspoencatledva, rtihaatitomnsahganvee- tosphere, at its considerable sizes and peculiar shape, ionosphere, the known variations of their state can be responsible for such dependence variations It can be seen in the Fig. 8, the ether Wdrhift(Sv)e.loc- ities, measured in each of the experiments, di er, that can be stipulated by the arranging height di erences of measuring systems above the Earth's surface: 1.6 m; 42 m; 1830 m (Fig. 8a, Fig. 8b, Fig. 8c accordingly). The collection of such data illustrates the height e ect development. In the work the ether drift velocity mea- Figure 9: Dependence of the ether drift velocity on the hi[m1e0ieg]nhtt[a1b-3o]v;e2thies Ethaertehx'psesruimrfaecnet, [7-9i]s; thisiswtohrekeaxnpdereixmpeenrt- s4du.e7rn5icnegmdhi(aspcvooesviebtrieoye.nnINnpoetr.hfoe1rmtaanebddleaN2tott.hhee2)mhfeeoiargnhhtvesaigl1uh.6etsdmoefpatenhndeether drift maximal velocity are given, which are measured in the work and in the experiments [1-3], [7-8], [10]. In these four experiments the measurements are performed at ve di erent heights: 1.6m and 4.75 m in the work; 42 m in the experiment [1-3]; 265 m and 1830 m in the experiment [7-9] (Clevelend and the observat[1o0ry] tohfeMmoeuansutrWemilesnotns awcecroerdcianrgrileyd).oIunt tahlseoeoxnpetrhime oenbtservatory of Mount Wilson. However, in contrast with twhoeodexepnehriomuesne,t t[7h-e9]e,xwpheriicmh ewnats[1c0a]rriisedpeorufotrimnead liinghat fsuernvdaatmoreyn.taIltbcuainldibnegsoufpapnoosepdt,ictahlawtotrhkesheotpheorf tshtreeoabmbraking by the house walls was the reason of the ether drift velocity smaller value, measured in the experiment [10] in comparison with the experiment result [7-9]. The table 2 gives the imagination about the ether drift velocity variation in height band above the Earth's surface from 1.6 m up to 1830 m. In the gure 9 this deptheendaebnscceisvsaiewanids porredsiennatteeds ianxtehsethloegalorgitahrmithicmscicalvea.luOens owtahfnhedreavr1teai:lomusWeasWcWci/osWrtdhaiennagdenltyZdh. eZr a/drZreifctownveserildoeecpriteeydndaeitqnutgahlaecthcooe1irgdmhint/gsZleyc;, 222 Yu.M. Galaev Table 2: Dependence of the ether driftTvheeloectithyerondrtihftevheeloigchittya(bmov/esetch)e Earth's surface theHEe(aimgrhtehtt'easrbsso)uvreface T20hO0i1sp-tw2ic0os0rk2 TRhaede1ixo9p9we8ra-iv1me9se9n9bta[n1d3] The e1x9Op2ep5r-ti1imc9se2n6t [79] The exOp1ep9rti2mi9csent [10] 1830 { { 10000 6000 24625 {{ 14{14 30{00 {{ 4.75 435 { { { 1.6 205 { { { ibmaneIndttcfrraoensmublet1s.s6eaermne fnurepoamrtotohn1e8e3Fs0itgrma. i9gt,hhttehlaeintthedeiar neddrreinifntt vehexelpiogechrit-tsnayunersdifsna,acctrtehem.aaostTescsphahewneirbtbehoeuinttnhhtdeeeraahrccyeotingiloshaenytq.eugrerTonhhwcaeestsheocfoadnbtahsotievadeeedrttahohbeernleEosttatrhrcetioachnmk's-tvFsreiraseocndmo,icuttsthhtaeehttehtteahirmbelaeaengtd2ihn,eiartFtsiidogsrn.tirfste8oavafmetlaohnnceediatmyrthotiesdheerFlaiEt[g4ha.-er6rt9]hs'amsibtsaoculualrtnfnatecbhaeeer. trveshoedanelursveEieetsaliu3ovrl0cettihnskt"'eymss.sos/fuIswnremafcassawcunoecay,bhsvtehtiexoaaxpuktpeesecrlnyriaminampseoeentxonthprtae.sllaeWtwitnhhoeiterthkrhmesd,terrhtieienefatrseiwoanxnnhgptirocidechfesisp\vtizaiohcetnee-(2am10re)e0t-iih4tno0acd0apsnpmslbie/cnesaesbcictal,eilvtchfeuonelraemstmseedetta,hostouhtdrhaseetmoeafetttnhhttehesr,esdaeersctiohfitnnedrvtehdolirorsidcftcietaryvsaeeillsomsculooictswhyt imne6thoorddse.rs (!) than the sensitiveness of the rst order The ether kinematic viscosity has been measured in the work. The measurement results are explained above in the part \Result analysis of the interferometer tests," that is stipulated by the peculiarities of the experiment implementation. The measured values of the ether kinematic viscosity are in the limits vevqeaauluael ov(re5da:e5=r:c:6o::i72n:41ci)d1e01s0w5i5tmhm2tsh2esceece1th,1et.rhakTtihnaeecmcmoaretdaicinnvgvisatcloousetihtiyes value calculated above vc  7:06 10 5 m2sec 1 . Hence, the di erences between the dependencies Wavhai(lSab)leacnadn tbheeexetphlaeirneddribfty vtheleocmiteyasmureeamsuernetdmveatlhuoeds di erences of the work and the experiments [1-3], [7-9], [10] and di erences between arranging heights of measuring systems. The results of four experiments do not contradict each other, that illustrate the reproduced measurement nature of the ether drift e ects in various experiments performed in di erent geographic conditions with di erent measurement methods applying. Figure 10: The mean daily course of the ether drift velocity The measuring of ether-drift velocity and kinematic ether viscosity within optical waves band 223 vvaellouAceictwcyoitrhhdoitnrhigzeotnpotetarhiloecdoormpiegprinoonanleenhtystpeWollthahressdhiaso,yut(lhdtehceehtshapenargcedereiitfftsfect). For revealing the ether drift velocity component with such period, the results of systematic measurements were subjected to statistical processing in stellar time scale. The results of such processing are shown in the Fig. 10. On the fragments of the Fig. 10 the stellar time S in hours is suspended on the abscissa asuxseps,entdheedeothnerthderioftrdvinelaotceitayxevsa.lueThWe hveirntickaml /hsaetcchisethseinmdeicaantedatihlye ccoounr sdeenofcethienteetrhvearlsd. riIfnt vtehleocFitiyg.wi1t0hacinalcauslatetelldaracdcaoyrdWinhg(tSo)thise gmiveeansu. reTmheisntdreepseunltdsenocfethies work, which were performed during ve months of the year, since September 2001 till January 2002. During ve months the numerical value of stellar time shifts regarding to the solar time in 10 hours. Since September till November the measurements were performed on the point No2. In December and January | on the point No3. The mean values are calculated with the expression (43). For comparison, in the Fig. 10b the mean result is given, which was obtained in the experiment [1-3] during year's ve months of the same name, since September 1998 till January 1999 (Here, as contrasted to the similar gure, given in the works [1-3], the measured value is expressed in the ether drift velocity values.) In the works [7-9], [10] such data miss, owing to smaller on coverage of year's epochs of the measurement statistics in these experiments. Both fragments of the Fig. 10 as a whole have sim- ilar nature of the ether drift velocity variation within a day. The di erences in the curve shapes can be ex- ptelrarianiendrbelyiefvieslceomuesnetst,hewrhsicthreainmthinesteerdaci tieornenwt ietxhpetrhie- ments had the distinguished performances and features of radio-frequency spectral line arranging on terrain in the experiment [1-3]. On the fragment of the Fig. 10a (this work), as contrasted to the result of the exper- ismmeanllter[1v-3a]lu(eFsi,g.th1a0tbc)a,nthbeeetehxeprladinriefdt vbeylocthiteieshehiagvhet distinction of measuring points in these experiments. The dependencies ly changed values Wwihth(St)hheapveertihoedsfoerqmusaol ftpoeariosdteicllaalr- day, that can be explained by a space (galactic) origin of the ether drift. In the work, the observed bands o - set direction of an interference pattern corresponded to the ether drift northern direction at measurement im- plementation. Hence, the results of the work do not contradict the experiment results [1-3], [7-9], [10] and imaginations of the works [4-6] about the northern posi- tion of the ether drift apex, that demonstrate the repro- duced result nature of the ether drift e ects measure- ment in di erent experiments, performed with di erent measuring methods application. p[1a-r3iI]sn,o[nt7h-9oe]f,wt[o1hr0ek].wwFoeorrskhcaroelnlsdubuletcsctiownngi tonhfedqthuteaoneqtxiuptaaeltriiitvmaeteicnvoetmcdpoaamtra-aatthotpieevsxpe ercascontiofayrtldiymaisnniesatwaietnevarieaslylduntieeectscaeeolrsnmsvatiirehnyweedtcooeiflnestsphttehieaceilefetsyxhppehtrheererdiemre,itwfehtnhetvrice[hd7lor-fc9iofi]rt-, tptsyitroroendpaeommpseeesndtfhdooeirnndmctioehnfegotnhnweetoahtrreekrtshrhae[e1iing-Eh3ra]te,rlattihbeof'osevinlseau btruhfoeaerncaecEt,eeatroottnhhde'tsehctseeaurlemcrtfuhailnceaeerpiatohnrnoedobrsgaepaobhseleeosrneion,tu htthuistaehnteexcisipfntregharimemosfeuentbohtfjeertcehEtseuoalfrwttssohe,rptkmahrpeaargetonexbepiltneeovmrsiepmssh.teiegnDrateut[ie1ao-nnt3dos] atdinio dneT,rthehtnhuetose,uexixgnphpeterhiriteimsmweuenosntretkfs[u,7lit-nsh9e]qesuashriytaeeptgootitvbhheveenisoriewsusseiu.txlhtpoecurotimmapnenyatracisolorvnreeroci--f aaTlgchaamettieieoodsnnitu,iammibnao, tturihetosentphoooepnftesititcbhhaleelerwefeotaxhrvieseertleebcnkaticnrneodemimnhaaangtsaintcbeuetvrieeicns,cwiop.aesev.irtefymos rpavmtareoleurpdie--. hfcmooofaressvtitthihbysoecedmoeenuateshcapteslieruioqrrndfuionriiridgsfmtbhoevaardess.legodbacTesiotehnynsettarphne readormspdtteohsvsoeeeirndledotephatrhmneerdoepkndrtiteiniracreealemcilgztueiamndltagi.ecrtiTshvtyioihessdes-todveabrmiltfuatsei.nroeeTfqduhthiserteeasdtiegitsneht iei creacckaltlsinyn.themmaTsaehatbeisecuedrvneeivmsscehoeloonspwittmynr.eeosnnuTtltthoshefehmtavhvaeeelauseebutehroeeerndrdodEtifeioarrnroethcphctathi'isoscacnansolugiarnewnfscaadiicvdteeies.ndvpcTawrrelohiuapteeshaevwgisetailstwtohiccoiatinatlhcypudhoeleearfpiitgoeoenhpddtdtvpiscgaearlroulonoewwn.ttaehThvesehateerpbalvroldaoevilrpeaoadtctgiaiohtayyne-. The|deotepcttiecdalew eacvtes pcraonpbageaetxiopnlaimneeddibuymthaevafiollalbowleinreg-: giptaoyrs,de|idi.ne.ogopftttsohieceptahalfeerwaaEatteuvaerrpetpahprr'ostripocmpalegeosrav;tetimoonemnmta;etderiuiaml mhaesdituhme vsicscooms-has|Tghoetthaweosmprkaecdreeius(umglatlssatrccetoaimcm)poaorrfiigsoiopnnt.itcoalthweaveexpperroipmaegnattiroens aptuhscalearttitshsei,ooethnneexetrarehecbedsuorurtuileifttndts tneehh aaaeetrvulceeitrexerism,shithnoeeawanosscnurebdrteeeohemrfenoesunrfpetcetpshrhrfeioomnrdhmauvytcaepeerdrodi.iotahuTlnesamhstieesuexdrcpveoieeumrromii--fmwietnhTtshdeip ewerrofeornrktmrmeedseuailsntusrdecima neernbetnemtcgeotenhosogiddreasrpeahdpipcalirsceaeqtxuipoirener.mimeenntstitnarolnmhayatpgunoreet,htieics.eiws.acvmoensa tperrrmoiapalatimgoanetdiaoiubnmo. u,trethspeoentshiberleefxoirsteelnecce- 224 Yu.M. Galaev References [1] Yoicnus,.ra2Md0i.0o0Gw,aValavoeelv.p.5r,\oEpNatohg.a1ert,-ipodnpri..f"t1R1e9a {de1cio3tsp2.hiny(sintichsUeakenrxadpineerleei)mc.teronnts- [2] Yosifaur).a.Mdio. Gwaavlaee.v".Z\hEutkhoevrs-kdyr:iftP.eEtixt,p2e0ri0m0,en4t4 ipnp.th(ienbRaunsd- [3] YmShtuuitlb.plsi:mt/Ma/enwt.crewicG,wa2.rls0aap0eda1vico,.ewtiVa\mvEoeelt.s.hnea2rpr,aorlodNp.rwaoug.i/na0td50i(o11n0i0n.-)"p,defSpx.zpppia.pecr.ei2et1in1mc{ee225o&,f [4] W. Azjukowski. akten Wissens., S\tDuyttngaamrtik, 1d9e7s4,ANthue.r2s.,"s.Id4e8e{n58d.es ex- [5] Vics.A. M. Aodtseulkimovasgkiyn.a\tTiohnes ionftmroadtuecrtiaiolnanindt oeeldthsetrrduycntuarmesod(inenpt.Rh, ue1s9bs8iaa0s),i.sDoefpg.ains lVikIeNeItThIer1.2".0M6o.8s0koNwo,.M27O6I0P-80phDyEsiPcs. [6] V.A. Atsukovsky. \General ether-dynamics. Simulation otMhf oetshicdoeewam,s 1aa9tbt9oe0ru, t2s8ttrh0uepctgpua.rs(e-ilsnikaeRnuedstshi eaer).l."dsEonnergtohaetobmaiszisdaot,f [7] Dso.lCar. 408. Mobislleerrv.a\tEortyh.e"rPdhriyfts.eRxpever.,im19e2n2ts, VatolM. 1o9u,ntppW. i4ls0o7n{ [8] D.C. Miller. \Ether drift experiment at Mount Wils3o1n4.." Proc. Nat. Acad. Amer., 1925, Vol. 11, pp. 306{ [9] Dm68.e,CnN.tsoM.of1il6l1e39r52.,5\paSpti.gM4n3io 3uc{an4nt4c3We. ilosfont.h"eSectihenerc-ed.,ri1ft92e6x,pVeoril-. [10] A.A. Michelson, F.G. Pease, F. Pearson. \Repetition of the Michelson-Morley experiment." Journal of the OstprutimcaelnStso.c,i1et9y29o,f VAoml.er1i8c,aNaon.d3R, epvpi.ew18o1f{S18c2ie.nti c In- [11] E.T. Whittaker. \A History of the Theories of Aether ad\nAydnHaEmislitecocsrt,yri2co0ift0y1t.h,"e5I1Tz2hheepvopsr.kie:(sinRofRICAusesRtihaee)gr.ualEan.rTd a.EnWldechtrirtaitncadiktoyem.r". Thomas Nelson and Sons Ltd, Edinburgh, 1953. [12] A.A. Michelson. \The relative motion of the Earth and tehneceL.,u1m8i8n1if,eIrIoIusseertiehse,r.V"oTl.h2e2A, Nmoe.ri1c2a8n, Jpopu.1rn20a{l 1o2f9S.ci- [13] GtT2e0h.r2G.e{".2SIP0no3evtti(hreiaetnsbheR,onuoScsky.sGci\al.oP)Rp.heaydusiitaci,aanlM.en\ocMsykcioclwhope,las1eo9dn6i'c2s,vInoVtcoealrb.fue2rl,aormpyp.e"-. [14] A.A. Michelson, E.W. Morley. \The relative motion of tJ34h36oe33u{.rE3na4ar5lt;hoPfahnSidlcoisteohnpechelui.cmTalihnjioirfuderrnoSauelsr.i,ea1se8.t,8h7e1,r8.V8"7oT,l.hV2e4oA,l.pm3pe4.r,4i4cpa9pn{. [15] WNa.uI.kFar,aMnkofsukrotw, A, 1.M97.2F,r2a1n2k.p\pO. p(itnicRs oufssmiao)v.ing media." [16] S.I. Vavilov. \New searchs of \the ether c(ienssResusosfiap).hysical sciences, 1926, Vol. 6, dprpif.t"2.4"2{S2u5c4- [17] R.J. Kennedy. \A re nement of the Michelson-Morley e1x2p, eprpim. 6e2n1t.{"62P9r.oc. Nat. Acad. Sci. of USA., 1926, Vol. [18] K.K. Illingworth. \A repetition of the Michelson- Morley experiment ical Review., 1927, Vusoiln.g30K,epnpn.ed6y92's{r6e9 6n.ement." Phys- [19] EFBr.8e,iSbNtaaulhl.oen1l.0.",\S\D.Da9ise35MN{ai9ct3hu6er.lwsoinss-eEnxspcheraifmteenn,t", Haeufstg4e1fu, r1t92im6, [20] Joos G. Die Jenaer. \Widerholung des Mihelsonversuchs." Ann. Phys., 1930, B7, S. 385{407. [21] \Ether-drift," Digest by Dr. in Sc. V.A. Atsukovsky. Energoatomizdat, Moskow, 1993, 289 pp. (in Russia). [22] D.C. Miller. \The ether-drift experiment and the de- termination of the absolute motion Modern. Phys., 1933, Vol. 5, No. 3, opfpt.h2e0E3{a2rt4h2.." Rev. [23] L19.5E5,ssVeonl.. 1\7A5,npepw. 7e9t3h{e7r94d.rift experiment." Nature., [24] J.P. Cedarholm, G.F. Bland, B.L. Havens, C.H. Townes. \New experimental test of special relativity." Phys. Rev. Letters., 1958, Vol. 1, No. 9. pp. 342{349. [25] D.C. Cyampney, G.P. Isaac, M. Khan. \An ether drift experiment ters., 1963, based on the Mssbauer Vol. 7, pp. 241{243. e ect." Phys., Let- [26] T.S. Jaseja, A. Javan, J. Murbeam, C.H. Townes. \Test omfasspeercsi.a"lPrehlyast.ivRiteyv.o,r1s9p6a4c.eViosol.tr1o3p3ya,bpypu.s1e2o2f1{in1f2r2a5re.d [27] LM.Gos.kLowoy,t1sy9a7n3,sk8y4.8\Mppe.ch(iannRicsusosfia )u.id and gas." Nauka, [28] Nid..A" .GSolesztekcinh.iz\dDaty,nMamosicksowof, v1i9s5c5o,us52in0cpopm.p(rinessRibulsesi au).- [29] S.G. Rautian. \Rozhdestvensky's Interferometer." In tvshiiaee)t.beonockyc\loPpheydsiiac,alMeonsckyocwlo,p1a9e6d2ic, Vvoolc.a2b.upla.r2y0.3" (TinheRSuos-- [30] LpRe.uZrsi.msiRae)un.mt srhesisukltys.."\MNaatuhkeam, aMtiocsaklopwr,oc1e9s7s1in,g19o2f tphpe. e(xin- & Vol. 3 (2002), No. 5 (15), pp. 225{233 Spacetime Substance, c 2002 Research and Technological Institute of Transcription, Translation and Replication, JSC ON THE BASIS FOR GENERAL RELATIVITY THEORY S.N. Arteha1 Space Research Institute, Profsoyuznaya 84/32, Moscow 117997, Russia Received December 23, 2002 The basic concepts of the general relativity theory (GRT), such as space, time, the relativity of simultaneity, are scyosnttermadaitcitcoarlylypaoninatlsyzoefdt.hisTthheeolorgyicaanldinitcsocnosrisotlelanrciieess aorfe bcoansiscidGerRedTinnodteiotnasil.are indicated. Many disputable and 1. Introduction A series of logical paradoxes has been analyzed in detgta\ahrsgioeeltuohiGnmnedRep[l1tTerr-si3inszc]nca,oietnpasitnlsoeandoio.nf"tfshSeIeRsqfoTucimtoi'vmwseabaplreaslanestditchseeeemwerexexoirppnneerstetrterirsrmauseetseedet,nditntv.hagieaUl iGatndnhleRideakTseil,docSegsoRauiucTcloahdf,l hristetarcviutseicontaneodcttloatinhitmehaecodasnist ease,ttriatecthnuNetsemgowrfaatoavnninht'eaysrtp.liaoownthtoehsfiegsorraaybvoimtuauttsisotonmb.eeScicnoocnre-bliposaugstdiiTacesbamhnlleeooinntbpcisaoootsnirnniascsttissoeptdffuernGrohpcmReyorTseoet.;hf oiestfpTtaitheschxeecitsobpanownlatodoaukristnskiibem[dil4see-i6tnne]hroeraStoireocrecsrntidsitaoiiicsnnnpidsl2Gma.dyRieoAsTd-f sMgtievapecnhbtyporsidtneocpuip.blteTfuhalreectoairmlosloelasdryiisnecscuhfsrrsooemndi,zGaatnRidoTn.thiSseescuatetistoenannt3idocnothniestains the conclusions. 2. Criticism of GRT Fundamentals MctiiopanlneytooGftcRhoeTrrceiansspceoownnsdiiteshtnoecnuectiigessrvaaivorieltaawtteeidolln-(ktcnhaoenwlninmo:ti1tei)xntighstetrwparintisnhi--otcheuleterciaontntirsooenrdsvuacctoiinnotgnraltadhwiecstasarrttehi eacbeiasxelpneetrx;itm3e)rentnhatelalrcfeoalnacdttisivt(iiortyontsoa)ft;ian2cg)ls4cfiooo)qrinudtsshisiad,devsweisrnuhiengnedgdriuetteaoslras\bsrnupesonaoincinlveu-aertpocrisopotaannliltdscicainehtbgxiaolierosnantisc.nethse(saUri-mv"tsehuibletaaehlgrslepyicn,hasshaeserntaisopyc,aecbtlohuosnetfhsoatGerrlpyluRiecpT)its-; fbaengtLianesttwiucitsphcicotthnuesriedmse,yrstuthhche\oganesntbehlreaaclckocvlhaaoirmlieassn, coBef.i"tghBeTaGhneRg,uTne.tacWm.)e-. 1e-mail: sergey.arteha@mtu-net.ru bmit higcienauyetodiauo,rsneesxooncfloeutpthttiesoptnihenceoiitf fioaeardlnm,ayntohddfei/ ntohe,rreeibnneotquituahnaledteaigoqreynun,acetaorilaonslndoictibasiyosedns,esp.tteehcrIe--f ccibnhoovauaannrgpdiiahannyrgcyseitcchaeoelintcnhdhoeitarnirosadenconsteseeasr.rneoIoffst,pthhedecoeitw seoeerldvmue,tirint,ohenteh,naecnwayinntithitheiivnaseglun,abonrsertds,i/tuuoaltrttrfesoiepqomruenmcaaiota iinfteoitdntohosnte,srb.waseonFhlisuodifcrtoehinraomtwnnitysiailtelwsisoboelineuno,tibaniiftonvawnyainreicitaaptihnsrseoteppfwioodeirsretslanhyinbtriiylteneistcepteosore,rccrwihetncahvttnieocgnthrsetaowttnmhhisleee-l initial and/or boundary conditions. GHoRwTTe;hveefora,rntahexleoasgmuiebpsslpew,aictahe crsaounlblnesdpoatc beaestcaosrhneesoeidtfteerinseducsoseenpdsaidirnaertteehdlye. fsfrohoremectotnihnveteonsipeanaccceye,liainnsdtaeortwhthheoecleyr.elisneFdaorrriccheaexlracmouospruldaei,lnlyiantterroasylnlsistnfeegmrsa,. H reuoaewlneschveeorar,ttetsahtlilsdtmihsteaatrnheceaeml. tahtriceae-ldmimanenipsuiolnatailosnpdaoceesannodttihne- The simplicity of postulates and their minimum qstsroiheuocloauntuntsltiudioisntnybaa:medd,eibovoiengncnuuoootltntuhespsetrhislopalobrnlgoludeuotm,iafosr.nouaTf,ntheaceqenieeudnnitu,vthameofloenbcrneocrtorehrobeeftocapftoirnntGeehirnsReesgrqTuoahifssacoitntolhuedres--, imeatmratsiaht itocciuaciaslldlmpcpooerstmoshevopsidlsdiescesaowtifitiossdoneoluowptfoniomsnslaaibwatihnsleid)tm.iceToasmthfiocepraaGlcrphRisroTooonc,sei(andtlghuoenrmegmsa,wathhtitahehs-i Sa nntittnttdriecondeadgruttephocaeesrdunar,beemcjaieenelsctst efaarertsclyo"dt,d(oatfenrnhtoedeemrwammdmiitednhteiarttirtuicoiissconiannaal,glrtetenahnuuesmsnomrkrbenasecoulrolwlmtoanfpmiso\ionnhsuieimGndntdtRpseolT)nyf. really various experimental data. Whereas in SRT though an attempt was made to 226 S.N. Arteha con rm the constancy of light speed experimentally and to prove the equality of intervals theoretically, in GRT eGcvaResenT, stsuhicnehcienattiettegmcraaplntRsdabhedaplveenisdnnooottnbmetehenaenupinnadgtehfurtloaifkneitnnht.eeSggrienancteieoriannl, all integral quantities and integral-involving derivations can have no sense. abclliagcsuAosoivcualaosrl,tiaetonqhfcueenaqtuowiefoshnetasiqo,tunwacsothiucoicalndhussbaeierseuitsnhndeotiotslipgmmeeninutsesiaenrba.gllleItyfraactnnhodsveiatugironieannanemttro?-Wewnheharatgtyisisamnthdeaeintsstendinseenthsoiiftsygcriasasvneiotbatytditoeh nenwgerdaoviuenps,GvifReltTohc?eitSnyiomotfiiollaingrlhoytf, (and by the niteness of a signal transmission rate)? on tThheemgeentheroadlitoyf othf eciorndseerrvivaatitoionnla(weisthdeoresbnyomt deaepnesnodf ttadrrniai denessrtofehofnerttmhureseaesttuihooletfnossirniyfntr)eo.tgmhTreahttcheiaoeosnepbhotoavyfiesnmricinoathtglielooanfswuionsrftfoaetrhgcfereraosclumaqrnufsaalycenmeatdim(tfioteeosresvcoixeautnatsioitmoeenxnrpsp)looe.eff,rmiiTemtnaheecsenrsagetnasysb,,adswmneephdnoeicmhcnehadevihnneoatnu\vGwmetRobh,Treeakenenoodgrfu"cdotlefahnrore rormcflmaeolnweimmtdsueirbotniyifetnsuncg,mouctnmarasuaeennsrrde--stGeinRriuToiut,yshadonowduebvetelsrig,iinbhiaGlsitRynTootf(fytohellteowbpurinoilggtrteuhspse opafrirsnecpciieupntlcaeet)oio.fncTofhnoeritoaethvfsseeetcnhlapfemrricinUneoncraeeiinpvxdyaepotrlehlusryeibinmtaugnniendtnvietGlsalroiRln mTboaewab:slfr,eeoa.,ertxhbtTcheyerhepeedstxaofpgmuolelboreltobismfwauylielsintns egtttimsctf,ianc(eclagvtansoicdmluaunoustdnisooeelnnysr oevinrfegct\ythionicrssa.ucnHlaassoreow",mebtveyuetptirme,n)oeonsstolbypmeoleilnianseritamroronicdleoausor,ciretfdydoirnoweafixttteahhsmesuphsnloioenu.tglidToKnhbieelolfiuanusegenx'd--s ittislthhcisaaeelrseeypnssoosm(enntnat-hlactoiehnsceeaoimoslfuizatasahtbinebcioaalsinrlate-mymfcaoeeocnafepsndehesrny\vcespaaricntegairyonplnoeqattuneuvadiunenm nttihutieeymnn.poctAehbo,nseilsodeiUf"b, )cni loiincvtuaayerulrslssoeyee,f, utvhesleotopcoirnnegcfueapspetpiofrrnooam\cfhrGeosmR. TNzecorowom,"wpleoertsehtlyoalalunspedassesoitmfhreeormottohgeernrevedrisaee-l comments to more speci c issues. GRTThies qfuulelsytiaobnerornantth.e Tchhaeng eniotfensepsasceofgtehoemeratrtye ionf tbtdrhuraaatnwtsnimtnohtgiesismnsitotarontahiiongef mhntinailtttiyeinc,reaaelcvdtleoainowensasst.nlcoiWagtnhhetxceshtipshateen,ergdoe,snhwloaynilllllbyrweecpeqahuuayissrseseiecirainttls-,, Tasnhiweteemltl.iamtOhene?em(oaTfthGiceaRslTasmedneesmeisootnfrsudterearftoiviroantthsive\eopsnlactanhneeaninnodetvscipthaaabcniegl)ie.- ticsyonaotsfrtafhocletliocowhna:onifgnleetnohfgetgheroso,tmathteitenrygraictniooothrodefitnnhoaente-leinsnyegrsttthieamolfs,yadscutieermctl"oe tnootitosndlyiamtheetetrruwe,illbbute elovwenert,htehaonbser.veInd fgaecotm, heotrwyevweirl,l norotchcahnagnegea:s wwheemthoevre?thSeumppaotsheemata tircsatl, ltihnaetwthilel cmirocvlee will move radially. Let we have three concentric circles of almost the same radius. We place the observers on these circles and number them in the order from the center: 1, 2, 3. Let the second observer be motionless, wOlahrecvrloeelacokscw itiryss.et aaTnnhddentc,hoiuornwdtieonrng-ecsltooacrktehweriosdetai atietnrgtehnaecreosauinmnderecaleanntgtivueervelocities and contraction of lengths, the observers will interchange their places. However, when they happen tpoicbtueraest.thInedseaemd,e tphoein1t-sotf ospbasecrev,etrhewyilwl islelesetehedif oellroewnting position from the center: 3, 2, 1, whereas the 2-nd observer will see the di erent order: 1, 3, 2, and only the 3-rd observer will see the original picture: 1, 2, 3. So, we have a contradiction. Suppose now, that the geometry of a rotating plane has changed. However, what will be more preferable in such a case: the top or the bottom? The problem is symmetric, in fact; to wmhaakte stihdee ltahset spulapnpeoshitaisonc,urtvheadt itnhesurcahdiuaschasaes?cuIrfvwede (taems t)h,ethaepnpathreenstecmoontdioonbcsehravnegrews iilnl steheeintoans-ninoenr-tciuarlvseyds-, whereas the rst and third observers will consider it as \curved" to di erent sides. Thus, three observers will see di erent pictures at the same point for the same sopbajeccet;ivtheefraecfto.re, the curvature of the radius is not an The rotating circle proves the contradictive nature of SRT and GRT ideas. Really, according to the textbooks, the radius, which is perpendicular to the motion, dthoeeisr npolatccehsainrrgees.peTcthievreefoofret,hethme octiirocnle.sLweitllursemseaatinthaet oeabcsherovtehrseronanadmprootidouncleesas cpiorcinlet-alitkeeq uaaslhdfirsotamnctehsefcroenmtoleenmr mo,ftohavecinisrgtcrloceik,recisnlewos.rildlOearwlstiohnegboetboesqeturhviedeirsssytatmonmtd.reAatrwtystuohfbesasetqpruoreoknbetspmearriokdpica ssaesshebsyeahcimh oabtsetrhveer waislhl cionns tarmnt,,tthhaattaisst,rothkee lengths of segments of motionless and rotating circles are equal. When the circles stop, the marks will remain at their places. The number of equidistant marks will not change. Therefore, the lengths of segments will be etiqounaloifnletnhgetmhsoatinodnlechssacnagseeoafsgweeolml.eTtrhyust,oonko cpolancteraactall. Now we consider again the space geometry problem. This problem is entirely confused still since the times of Gauss, who wanted to determine the geometry with the help of light beams. The limited nature of any experi- On the Basis for General Relativity Theory 227 A L B g C Figure 1: \Geometry of a triangle" ment can not in uence the ideal mathematical notions, does it? Note, that in GRT the light even moves not awlilgRhohendtrgleint=gh seu0 cs,hhiswoamretceehastastrevic?peatiTetnhnh:sGeoirnRn.eTscWtee[sah4sd]ia:ttyodfooRFfee(csr1hmd=apinasttggi'i0nsn0gg)pudrtilishnh=ecitpgh0elee-, ometry is often \substantiated" in textbooks as follows: in order the light to \draw" a closed triangle in the gravitational eld, the mirrors should be turned around at some angle; as a result, the sum of angles of a triangle wanildl tdhi reeer rfer omector.s iHnotwheev ere,ldfoorf agnrayvpitoyin(ts-eleikFeigb.od2y) the sum of \angles" can be written as: ! ! X i =  + 4 arctan gL 2v02 2 arctan gL v02 : Idvcctlsithiha0egtneap.oyhnectsaSoncgaalufiidmsnnsrosccgsehw,eobatvnetethnahlhltergca.heihitagneaIabetgncnnholoegmgetsnehlupgeddeecaeti,hrtro gaiywmoe\meonbwpemesetlhitarttoaeewyuhftvrsiersotenieyhbfn aelwosenoetp"iadhxmeonepepsadesrenlmioriibLdmiommiifrltisiprrtehtoesonyoemr.rtfstos:NaaatfAoihnmonanettreefatLpon,nisroe pdtcaichatnenihacBastdeet-sl are not emphasized. First, both in the experiment with material points, and in the experiment with the light the geometry is \drawn" sequentially during some time, rather than instantaneously. Second, for accelerated systems the particles (and the light) move in vacuum rectilinearly, according to the law of inertia, and, actually, the motion of the boundaries of this accelerated system is imposed on this motion additively. All angtolescoorfreisnpcoidnedninceg (ainngtlehseolfabreo reacttoiroyn,syasntdemth)ear\egeeoqmuae-l try of angles" does not change at all. Simply, the gure is obtained unclosed because of motion of the boundaries. Third, the role of the boundaries is not uncovered at all in determining the relations between the lengths oathfreernesautlbhbjeeocdmtieutsot.utFahloerreee lxaeatcimtonpolfeb,ieditefwnaetleilcnpaloleiannctgcstehloesfraaatnrinedaglafbnogorcldeeys, (lrty\eioattnhlhecewhgiabetnohogumetnhesdteaoryrfbi"ebo)suorndaedirmeeasar'siiuesnisbsz.jeuecInttnachktaeaonnpyaglceaccdcae.elseeIorfan,ttlhhyieoonawE,teutvicnhelteried,nreoaaancln--l shtinwtorsoratiaizsgloilhmntatiallpailnrosetilsnroatnc-iagglinhkrtoebdlesisnu.depArpiantowrttnthh..ee FAgmrosairdvaeditxlraeaetsmoiuofplnttlaheol,ef t eobrledsdntrwdarieowndtgatwhkoeeef ailbneevsrnteodaldlio,lnftgtwthwooefoptulhopoeiwwnsaete-rrclediodk-nceedosnnurdvopsedpxo,oftrlihttnsheeefdoi orsrwtsghnteewnroesaerdracd.ot-eAncdods.narvoTerdxehsaeluintnlttewhoieesf groednseNrdoawetteedwr.meTisnhheaesllmthtiuedrdsnltertaoliignthehteblenintewex.eteinmtphoersteantwt oGbRoTndneodtsspiyyrossonttpee-emmrtt,hyne:tohenaeq-lliungmirevaraotvlvieiaitnnlaicgtteiyoo.onbfIajntelhc tcesoegnlddrtear vapeisotctsatstteiiosonsnaeianstlyts oonewmlodaner-tdiounanesriosqtmiiunaee-l gimmdleeioravcrleoepnrpstaa,errrata.hlllleIeefnllwmtieonirgreteoahnrcesehraianonttedehrtetdirwairlofeocslrytigsithnthet emnbmiettaephmleyersspleobennebtgdewaitcemiuemnlsaerwt.wtiAlool sndciooimcnnuti-llriaaanrrreyrst,tioitiauntlahtstheyioesdntgeirmrweaci,vltliiitfotatnathkioeoenfmpaalliacr crceoeellrdesartwaartaieitcohconers.liieemrnAaitltneaiddor,noporeiinrnepnttethhnaee-tesvtiuaaaotrclnuiehodeonoofatdfhlmuel ririiger.nlrhdgoAtr(nstsrphdatee,htehiedofe,blrsisotgtehmhhretvaeanebetxei tioahsenmtcee,tnsntwcowhenieiln-lollif,nhbneaoerpawgtmpiiianenelngilttyoyttot)oahcbpeaapengrgmroraaaeelvcasaihot-bnictaoeanttfiobroeuentnaatdlain.kfoetrOnhcebeinsmvtitoouhutceusorlaenyl,secitxdohineser tagctauuilorsrnaovt,atitsohuinnerceooeft,ohmfaelimrorrnfioorgrrrsowc.erissTt,hshwhegohrduaiicvlsdh-tbctoiiobenonsncfecotarliuulvonasn idtoeiolonfdfonroaftnwoismreptahshekoeeimrsgpircewoaasvrilsnoiitsnebayrgittmliiiiotanmynl atesohtlyfre syetegexlfdemcrnsoluemaddrsauinplwrgilcenaalngtls.haete.rThhgoerneaweGvhciRotaalTne- The equivalence principle of the gravitational eld albplyynle,eadfiom.oearf.mctdcihuteeel liaeseirtncuaeetdtniriortoaeninala,sllocfa(aofinnrotdrelbexgaeaardsarmeeevpdlpiaatlttaeroeat)di.taneTtgfobahmlooesdeaneyserqseousscpniuavallnayttlibfe(aoineltrcpriteisohgipueonrrntlioirngouechnasit---l fsnaoplolrat(cGpbeh-uRtytiTmsfi,ocerasmlialnnyacdleplyraGolmlcRebaTeotdhdieitnemovs)oaa.ltnviyBceasenlcloiaynnut-oserneredllyoae)ftp.itevhAnisidlstle,icnrGectleRhaetTooivfrdiystothaeiecst lotionnlenya,ornsitlnirnaceenasrrfeoparrmlobapoteidrotinieesss c(oaefvnetnhbeeassrperaleacfteee.rdeTntchoeeenpm,oppinhttyesn)soplmeaacede- 228 S.N. Arteha nstauddiie derfeonrctehsewsiatmh echpaoningtin(ginretfheeresnpcaecesyasntdemtismme)u.stBbuet how can two di erent observers be placed at one point? Therefore, the relativistic approach can possess the ap- proximate model character only (without globality). It is not any surprising thing, that the same physical value - a mass - can participate in di erent phenomena: as a measure of inertia (for any acting forces, includ- ing the gravitational one) and as a graviting mass (for emxaagmnpetleic, aemldso)v.inTghcehqaurgesetipornodounctehsebroigthoroeulescterqicuaalintdy of inertial and gravitating massess is entirely arti cial, since this equality depends on the choice of a numeri- cal value of expressions the gravitational (laws) retain the csoanmsteanfotrm . For example, in the case of psttoraosnpetoarwrtciihollnabanelyitdyme mynsgteid=csa asmn di0nt=,obc ur2te att.heeIptgirciastvunirtoeatstinoofencaceulsrscvaoernyd- space. The substitution of the same value (for the in- ertial and gravitating mass) is made not only for GRT, but for the Newton's theory of gravitation as well. It is nothing more than an experimental fact. When one comes to the dependence of a form of equations on space-time properties [7], there exists stohmatewspeeccuanlatcihonanfgoer tthhiiss isdpeaac.eT-thime eimtporecshseiockn itshgeivdeen- pendence claimed. In fact, the Universe is only one (unique). GRT tries to add a complexity of the Uni- verse to any local phenomena, which is not positive for science. The choice of local coordinates is a di er- ent matter (a phenomenon symmetry can simplify the description) and globality is not the case again. The use of non-inertial systems in GRT is contra- dictory intrinsically. Really, in a rotating system rather distant objects will move at velocity greater than light speed; but SRT and GTR assert, that the apparent velocities should be lower, than c. However, the ex- perimental fact is as follows: the photograph of the sky, taken from the rotating Earth, indicates, that the visible solid-state rotation is observed. The use of a ro- tating system does not contradict the classical physics at any distance from the center, whereas in GRT the vinaaludemoisfsigb0l0e component in GRT). becomes negative (but this is The notion of time in GRT is confused beyond the limit as well. What does it mean by the clock syn- chronization, if it is possible only along the unclosed lines? The change of time reference point in moving around a closed path is an obvious contradiction of GRT, since at a great synchronization rate many simi- lar passes-around can be made, and arbitrary aging or rejuvenation can be obtained. For example, considering the vacuum (emptiness) to be rotating (if we ourselves shall move around a circle), we can get various results depending on a mental idea. Using the modi ed paradox of twins [1], the inde- pendence of time on acceleration can easily be proven. Lfreotmtweaocahstortohnear.utOsn- tahseigtnwailnsof-tahreebaetaacognr,easittudaistteadncaet the middle, these astronauts begin to y toward a beacon at the same acceleration. Since in GRT the time depends on the acceleration and the acceleration has relative character, each of the astronauts will believe, that his twin brother is younger than he is. At meeting near the beacon they can exchange photos. However, owing to the problem symmetry, the result is obvious: the time in an accelerated system ows at the same rate, as in non-accelerated one. If we suppose the gravitatiniogntaol GeRldTt)o, tbheeneqwueivoabletnatint,otthhaet athcceetleimraetiionnte(ravcaclosrddonot depend on the gravitational eld presence. Now we make some remarks concerning the method of synchronization of times by means of a remote periodic source disposed perpendicular to the motion of a body [1]. We begin with inertial systems. The possibility of time synchronization on restricted segments makes it possible to synchronize the time throughout the line of motion. Indeed, if for each segment there exists an arbitrarily remote periodic source sending the foofllpoawsisnegd isnefcoornmdasti(otnh:eittsimneumrebfeerrenNcje, pthoeinqtuiasnntiotty cnojordinated with other sources), then the observers at junctions of segments can compare the time reference point for a source on the left and for a source on the right. Transmitting this information sequentially from the rst observer to the last one, it is possible to establish a single time reference point (the time itself, as it was shown in [1], has absolute sense). Apparently, the observed rate of transmission of synchronization signals has no e ect on the determination of duration of times: the pulses (for example, light sspechoenredss,owr ipllaretqiucliedsi)s,tawnhtilcyh mllatrhke twhheonluemspbaecreo, fapnadsstehde number of spheres emitted by a source will be equal to the number of spheres, which intersect the receiving observer. (We are not the gods, you see, to be able to introduce the \beginning of times": the time takes aiflrweaedcyonitssidneorrmthael acopuprasreenatndsigenlaaplspesroupnaigfoartmiolny.r)aEtevetno be c = c(r), then, irrespective of the path of light, the number of spheres reached the receiving observer (having a zero velocity component in the source direction) wsoiullrcbee (tshiemspalmy,etahse tshpehneruems bcearnobfespshpearteisalelmy itthtiecdkebnyeda or rare ed somewhere). Thus, the full synchronization is possible in the presence of spatial inhomogeneities (of the gravitational eld) as well. In physics it is not accepted to take into account the same e ect twice. It is clear, that the acceleration and gravitation express some force, that in uences various processes. But this will be the general result of the e ect of namely the forces. For example, not any load can be withstood by a man, the pendulum clock will not operate under zero gravity, but this does On the Basis for General Relativity Theory 229 not mean, that the time stopped. Therefore, the rough Hafele-Keating's experiment states the trivial fact, that the gravitation and acceleration somehow in uence the processes in a cesium atomic watch, and the high rela- tive accuracy of this watch is fully groundless for a xed sdiitcet.s Btheseid\eesx,pilnatnearptiroenta"tioofntohfetPhiosuenxdp-Rereimbkean'ts ceoxnpterrai-- ment with supposition about independence of frequen- cy of emission in \the units of intrinsic atom time" [5] on gravitational eld. Besides, a further uncertainty in GRT must be taken into consideration: there can ex- ist immeasurable rapid eld uctuations (with a rate greater than inertness of measuring instruments) even itnwpnyooiltstelshxdibeibeselatpesbentnsfoooednnrizncaoevennreoyongftve,t-avhdtlehueinroeemucwotgefiiahtognhnt:h, itca.h=anSellueyt0c ,i.hmeacetpWthirivenehecueGitspnhRecoeeTwtrreatndiattsociinehaist-l, which can be worn by anybody? Probably, a rotating ywheel with a mark (in the absence of friction - on a superconducting suspension), whose axis is directed along the gravitational eld gradient (or along the resultant force) could read out the correct time. At least, no obvious reasons and mechanisms of changing the ro- tation rate are seen in this case. Certainly, for weak gravitation elds such a watch will be less accurate at the modern stage, than cesium one. We hypothesize, that atom decay is anisotropic, and this anisotropy can be interrelated with a direction of the atomic magnetic moment. In this case we can regulate atomic moments and freeze the system. Then, the \frozen clock" will register di erent time depending on its orientation in the gravitational eld. Now we return to synchronizing signals (for simul- taneous measurement of lengths, for example). For a rectilinearly moving, accelerated system it is possible to use the signals from a remote source being perpen- dicular to the line of motion, and for the segment of a circle the source can be at its center. These cases actually cover all non-inertial motions without gravi- tation. (Besides, for the arbitrary planar motion it is possible to make use of a remote periodic source being orenalagpraevrpiteantdioicnualla retldo othfespphlearniceaolfbmodoiteisonin.)arFboirtrathrye motion along the equipotential surfaces it is possible to use periodic signals issuing from the gravitational eld center. Note, that to prove the inconsistency of SRT and GRT conclusions on the change of lengths and time intervals it is sucient, that the accuracy of ideal mea- surement of these values could principally exceed the vaamlupeleo, ffotrheaes oeucrtceprbeediincgtedatbtyheSRmTidadnled pGeRrpTe.nFdoicruelaxr- to the irsa,diuts line of can be motion we have: decreased not only byt c=hool2s=in(8gRtch)e;gtrheaatt of a light sphere, but also by choosing a small section of motion l. From the SRT formulas on time c thonenittiernaeRcqtuioaannlidtwysepheacvi ee:d stpe=edl(1v wpe c1hoovs2e=scu2)c=hv . l ,Ifthfoart l=(8Rc) < (1 p1 v2=c2)=v; (1) be met, then the conclusions of relativistic theories occur to be invalid. For the system arbitrarily moving along the radius (drawn from the gravitational eld center) it is possible toonuthsee fpoerrpsyenncdhicrounlaizrattoiotnhealfirneeeoffalmlinotgiopne.riIonditchissoucarcsee Ractsuhaolulyldchbaencgheos(ednueoftosuecqhuvipaoluteen, ttihaaltstphheer eelrdoucnandinnogt) apthtoeitnhGti,sRtdToiscwtoahnniccclheu,staihonendspcceoarprnreebnsedpiorcenufdluaitnregdislindfrrtaohwmisnc.(1aT)sehneaersaerwfoterhlele,. For the most important special cases the \universal" SRT and GRT conclusions on the contraction of distances as a property of the space itself are invalid. In the most general case it seems intuitively quite obvious, tthhaatt stuhcehsaignpaolsittoioncoomf ea ppeerrpioednidcicsuoluarrcetocatnhebemfootuinodn,, afuntde tthheatGsRuTchreRsulatns.dTlhefrroemis (n1o) nteoceesxsiistty, awthailclhinrea\apstlapinirngeeacddl"obcyfkrr:aemaalnefyoofrcchreeasfn;ergiteeniscoefalarwenaadlysilnepnoagsntshiabsrlbeshittorouairlndiltyrbooedpueecxre-a system of mutually motionless bodies and the universal time. Thus, the space and time must be Newtonian and independent on the motion of a system. Now we pass to mathematical methods of GRT and ttoimceorporlolapreiretsieosfrtehsiusltthineotrhye. fTachte, tghaamteins wGiRthTtthheesappapclei-cthaetioqnuaonftvitaireisataioren nmoetthaodddsitoivcec,urtshetoLboereqnutzesttiroannasbfolre-: mdeapteinodnsoanrethneopna-tchomofminutteagtrivaet,iotnh.eEivnetnegirtailsqnuoatnctlietaiers, how the terminal points can be considered as xed, if tehneced. istances are di erent in di erent frames of refer- Because of nonlocalizableness (non-shieldness) of gravitation eld, conditions on in nity (because of the mass absence on in nity, it is euclideanness) are principally important for the existence of the conservation laws [7] (for systems of the insular type only). The classical approach is more successive and useful (theorberecetttwliyceaetnlloytawanocdotnrpastrnaasncitttii,ocansilnlpyco)e:inttehsneehrlaogsycaalispehdnyeetrsegicryamldimni eeedarencnioncreg(therefore, conditions on in nity is groundless). Highly doubtful is the procedure of linearization in tthenedginengertaol sfiomrmpl,icsiitnyceisitdeccalnarbede,obnulyt ienvdeinvidtwuaol.tiTmhees are introduced - coordinate and intrinsic ones. The tting to the well-known or intuitive (classically) result is often made. So, for motion of Mercury's perihelion [5] the du=d' derivative can have two signs. Which 230 S.N. Arteha otthhf eitshfaqecmuta,nstthhiotayutldtchabenedbicevhiodzseinernog.?byCTaodlucs=uadyla'tailnirsgepatdehryefonrpometrheidhin,eglbiouontf displacement in GRT (from the rigorous solution for a single attractive point), the impression is given that we know astronomical masses exactly. If we use GRT as a correction to Newton's theory, the situation is in fact opposite: there exists a problem knowing visible planet motions to reestablish the exact planet masses (to substitute the latters and to check GRT thereafter). Imagine the circular planet orbit. It is obvious in this cbaeseta, ktehnatwtithhe rNegeawrtdontoiaannriontvaitsiiobnlepperreicoedsswioinll, ai.ler.eatdhye period will be renormalized. Therefore, renormalized masses are already included in Newton's gravitation theory. Since the GRT-corrections are much less than the perturbation planet actions and the in uence of a non-sphericity, the reestablishment of exact masses can essentially change the description of a picture of the motion for this complex many-body problem (see other objections [2]). No such detailed analysis was carried out. The complexity of spatial-temporal links is stated, but eventually one passes for a very long time to customary mathematical coordinates; otherwise there is nothing to compare the results with. For what was there a scrambling? The prototype of the \black hole" in Laplac's solution, where the light, moving parallel to the surface, begins to move over a circle like the arti cial satellite of the Earth, di ers from the GRT ideas. Nothing prohibits the light with a rather high energy to escape the body in the direction perpendicular to its surface. There is no doubt, that such beams will exist (both by internal and external reasons): for example, the beams falling from outside will be able to accumulate energy, in accordance with the energy conservation l\aTwh,eabnldactko hleoalvese"suinchGaRT\bilsacak rheoalle"mayfstteicrisrme .ecItfinwge. take a long rod, then at motion its mass will increase and the size will decrease (according to SRT). What will happen? Is \the black hole" generated? All the sky will become lled with \black holes," if we shall mbeovirerervaeprisdilbylee.nough. And, you see, this process would The presence of singularities or multiple connection of the solution implies, that, as a minimum, the solution is inapplicable in these regions. Such a situation takes place with the change of the space - time signature for the \black hole" in the Schwarzschild solution, and it is not necessary to search any arti cial philosophical sense in this situation. The singuliarity in the Schwarzschild smoalutthieomnaftoircarl m=anrigpuclaantinoonts:betheeliamdidniatitoend obfy tphuereinly nity with the other sign at this point is the arti cial game with the in nities, but such a procedure requires the physical basis. (You see, the singularity at zero is not eliminated by arti cial addition of exp ( r)=r, where  is a large quantity). Even from GRT follows the impossibility of observa- tmioantioofn\wbillalcbkehionl ens"it:etfhoer tuismaesorfem\tohteebolbascekrvheorlse."Afonrdsince the collapse cannot be completed, the solutions, which consider all things as though they have already hbnyaoptipn\e annneidtee,xtthrieammveeefneoxoraismnetnpeslreen.aolf Tathnhede reseexlpateatrirvnaiattilyoonobfsotefhrveeevtreisnmtises course," but the elementary manifestation of the inconsistency of Schwarzschild's solution. The same fact follows from \the incompleteness" of systems of solutions. It is not clear, what will happen with the charge conservation law, if a greater quantity of charges of the same sign will enter \the black hole"? The mystical d\tehsceribpltaicokn hoof l\em" eitsriicnavlatliidd,alsifnocrceesit" w[6o]ualtdampperaona,chthinagt tohfeagbraovdiyt,atbiount faolrlcGe RgrTadiideenatsisargerebaatswedithoinntthhee olipmpiot-s site assumptions. The Kerr metric in the presence of rGoRtaTti:oint gailvsoescilneaarlystdriecmt omnastthraetmesattihcealinmcaonnnsiesrtesnecvyeroafl physically unreal solutions (the same operations, as for Schwarzschild's metric, do not save the situation). GRT contains a lot of doubtful prerequisites and results. List some of them. For example, the requirement of gravitational eld weakness for low velocities is doubtful: if the spacecraft is landed on a massive planet, whether it can not stand or slowly move? Whether some molecules with low velocities cannot be found in sopf iateceonfttreamllypesryamtumreet riucc tueladtiionnsG?RTThheasconnostidpehryastiicoanl sneontseonalsywreoltl:atsiionncse,tbhuetveelvoecnityrecaalntebme poenrlaytruardeiaclh,atrhaecntaerciasvtiictsy cisannontootbetaxiinsted(i.ien. a Tsin=gle0mKa)n.neTr,hebu te,ldsiminply, two various constants are postulated in order to avoid singularities. The emission of gravitation waves finortahepainra bnoitliec lmosostioofne(nweirtghyeaccnedntarnicgiutylare m=o1m) ernestuulmts, which obviously contradicts the experimental data. In fraoctta,tiGonRsT, ci.aen. bienatphpeliseadmoenlryefgoiornw,eaaks theledsNaenwdtowneiaank ttwheeoernymoofvgirnagvicthaatriognes. dRi eecrasllfrtohmat tthhee sitnatteircacCtoiounlobmeblaanw.lawThoefregfroarve,itaptriioonr,toit amppulsytinbge tvheeri steadticforNemwotvoinnigbodies, but this is a prerogative of the experiment. The theories of evolution of the Universe will remain the hypotheses for ever, because none of assumptions (even on the isotropy and homogeneity) can be veri beedc:at\cahemd ouvpinognltyraaitn,thwehoitchherdepplaacrteeadndlonagt tahgeoo, tchaenr time." GRT assigns to itself the resolution of a series of paradoxes (gravitational, photometric, etc.). However, the classical physics has also described the possibilities of resolution of similar paradoxes (for example, by On the Basis for General Relativity Theory 231 means of Charlier's structures, etc.). Apparently, the direction, points of application etc.). \The reference Universe is not a spread medium, and we do not know points" are actually speci ed, with respect to which at all its structure as a whole to assert the possibility the subsequent changes of quantities (position, veloc- of realization of conditions for similar paradoxes (more ity, acceleration etc.) are investigated. The principal probably, the opposite situation is true). For example, relativity of all quantities in GRT contradicts the ex- the Olbers paradox can easily be understood on the ba- periments. The subsequent arti cial attempt to derive sis of the analogy with the ocean: the light is absorbed, accelerations (or rotations) with respect to the local scattered and re ected by portions, and the light sim- geodesic inertial Lorentzian system - this is simply the ply ceases to penetrate to a particular depth. Certainly, tting to only workable and experimentally veri ed co- such \a depth" is huge for the rare ed Universe. How- ordinates of the absolute space (GRT does not contain ever, the ashing stars represent rather compact objects any similar things organically [7]). sopnalycead antigterenautmdibsetranocfesstfarrosmmeaakcehaotchoenrt.riAbustaiornesiunltto, andTahbesoMluatcehnaptruinreciopflethoef ascticpeulelraattioionnodfuaentointehret imn auss- the light intensity of the night sky. The expanding of the Universe gives a red shift ac- etrnicnesiocfpfarorpsetartrisesisoaflosonedobuobdtyfuvli,astinhceepirtoepxeprtlaieisnsofthoethiner- cording to the Doppler e ect irrespective of GRT. Be- bodies. Of course, the idea is elegant in itself. If ev- sides, it should be taken into consideration, that even erything in the world is supposed to be interdependent the elementary scattering will make contribution in- and some ideal complete equation of state is believed to to the red shift and lling of the so-called relic radi- exist, then any property of bodies should be determined abt0eie>onn:w0re.elclTaplhlreetdhshiacittfettdhofeelvCineonemsbipnytotmnheeec ghreaacnvtiisgttaiivtceiosmnwaoladv eelessldfwrhoitamhs betovyebtrh,eeiinninds iuvuciehdnucaaelco.afsTtehhaeisnwywhapoyaleritsriecfmlaeualsitnhyionufgoldrUsbncieiveencrocsene,s.iwdHehoriwecdh- the general energy considerations. progresses from smaller knowledge to greater, since \it Now we pass to the following principal issue. Whether is impossible to grasp the immense." Actually, if we pofostihtievemisattthere fcaacntn,otthabtethspeecdii sterdibaurtbioitnraarnildy?moAtinodn t(ainkecoinmtopaacctcooubnjetctths)e annodn-duin ieforermnt dviaslturiebsuotfioanttorfacmtiaosns whether is it correct? Generally, this implies the incon- forces from close and far objects, then the complete sistency of the theory, because there exist other forces, \tugging" would be obtained instead of uniform rota- except gravitational ones, which are also capable to tion or uniform inertial motion of an object. ttrhaisnsmpoesaenst,hethmatatwteer.shForuoldm stpheecipfyraactllicadlistvriiebwuptiooinnts bothThreemMovaaclhopf railnlcbipoldeiecsafnrnoomt tbhee vUenrii veerdseinanedssteenncde-: in \the correct-for-GRT" manner even at the initial ing of the gravitation constant to zero are the abstrac- ttiom\etihnesttainmt.e Ionf scurcehataiocna,"se dwide swheo?uldArnefderwth0aitnsptrainnt- tions having nothing in common with the reality. However, it is possible to estimate the in uence of \far ciples should be unambiguously determinate for such stars" experimentally by considering the mass of the aexpcheocticeed? froTmhisGrReTqu.irOespemn otroe qkuneoswtiloendgoe,cctuhrasntoitbies UThneiveforsreceaosf matatirnalcyticoonnocefnatrsattaerdhianvicnogmapamcatsosbojfectthse. the possibility of point-like description and the theory of disturbances, because the resulting values cannot odrisdtearnocfetohfe1Sluignh'stmyeaasrs ((M91201150m30),kgis),ebqueiinvgalaenttthtoe bkopfneoosmaswirabnbciilrteiortq-yauraaoyntfidaoasnrmbwoiitecfrlrslao.tr-aylTteev hetielmtsijnpbogilyniseilsn(infgaokrraotigfe exacaiaamcnlodpmcloerpme,l etpethlecielctysatteutimohnne-- ttothhifmeetheadecifstodtiraoonnuthcboeetffoaUuflnl1oBiavmidegrehsBteeaarvtn.iongWgbteheaesmeohqraauylslasalmnotfadokosenhluaysl2lem,co01fon0r1s0iad2we5yrehgatirhlaeset., perature dependence is rejected). The possibility of Even if the stars y away with light speed, we would adding the cosmological constant into Einstein's equa- have the size of the Universe equal to  2 1010 light teiqounastiiosnasnaninddiorfecptosrseicbolgenoituiotrnagoef. amIfbeivgeuriytythoinfgGcRaTn bspeescpifeycii neadrbtoitrsaurcyhmaannancecrutrhaecyi,nitthiaenl dwishtryibcuatninonotawnde years. We have deliberately increased all quantities; for example, the mass of the Universe and its density   1033=1054  10 21 g=cm3. We take into account now, that, as the bodies move away from each other the motion of a matter? at the two-fold distance, the force decreases four-fold, Let us discuss one more principal point concerning etc. Even if we suppose the mean distance between the relativity of all quantities in GRT. The laws, written the stars to be 1 light year, then at the distance of 1 ssiemlvpesly. aTshtehseoeluqtuiaotnioonfs,andyetperrmobilneemnsottihllinrgeqbuyiretshetmheknowledge of speci c things, such as the characteristics meter it is necessary to place the mass 2251021=06)