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Although Einstein’s name is closely linked with the celebrated relation E ¼ mc2 between mass and

energy, a critical examination of the more than half dozen ‘‘proofs’’ of this relation that Einstein

produced over a span of forty years reveals that all these proofs suffer from mistakes. Einstein

introduced unjustified assumptions, committed fatal errors in logic, or adopted low-speed, restrictive

approximations. He never succeeded in producing a valid general proof applicable to a realistic system

with arbitrarily large internal speeds. The first such general proof was produced by Max Laue in 1911

(for ‘‘closed’’ systems with a time-independent energy–momentum tensor) and it was generalized by

Felix Klein in 1918 (for arbitrary time-dependent ‘‘closed’’ systems).

& 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Einstein’s 1905 derivation (Einstein, 1905) of the celebrated
relation between mass and energy is widely regarded as one of his
seminal contributions to modern physics. But he cannot be
awarded priority in proposing such a relation. Some years earlier,
J. J. Thomson, Abraham, Poincaré, and Lorentz had recognized that
the electrostatic energy of a charge distribution is endowed with
mass, and they had proposed that most or all of the mass of the
electron arises from its electric self-energy; and Hasenöhrl had
shown that electromagnetic radiation enclosed in a cavity
contributes to the inertia of the cavity (Jammer, 1961,
pp. 175–177; Rohrlich, 1965, chap. 2; Whittaker, 1960, Vol. I,
pp. 309, 310 and Vol. II, pp. 51, 521).
ll rights reserved.
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Although Einstein’s 1905 paper was not the first proposal of a
mass–energy relation, it was the first attempt at a general proof.
There are, however, troublesome questions about the validity of
the argument used in this paper. Planck (1908, p. 29, footnote)
objected that Einstein’s argument rested on an ‘‘assumption
permissible only as a first approximation,’’ and Laue (1911)
criticized Einstein’s use of the Newtonian limit for the dynamics
of extended bodies of nonspherical structure. Furthermore, in
1952 Ives gave a lengthy analysis of Einstein’s derivation from
which he concluded that Einstein’s argument was logically
circular—he claimed that in some step of the argument Einstein
had assumed what he was supposed to prove. In the final sentence
of his paper, Ives rendered his summary judgment: ‘‘The relation
E ¼ mc2 was not derived by Einstein’’ (Ives, 1952). This judgment
was strongly supported by Jammer (1961, pp. 177 et seq.) in his
well-known book Concepts of Mass in Classical and Modern Physics

and also by Arzeliès (1966, p. 75 et seq.) and Miller (1981, p. 377)
in their later books.

In 1982 Stachel and Torretti analyzed Ives’ analysis, and
concluded that Ives was wrong and Einstein was right: ‘‘y if we
are not willing to countenance some mind-boggling metalogical
innovation, we have to declare that Ives, Jammer, and Arzeliès—

not Einstein—are guilty of a logical error’’. They then go on to say
that Einstein’s ‘‘premises are certainly strong enough to derive the
mass–energy equivalence relation y’’ (Stachel & Torretti, 1982).

I will show that although Stachel–Torretti were right in their
criticism of Ives, Jammer, and Arzeliès, they were wrong in
accepting Einstein’s derivation. The mass–energy formula cannot
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be derived by Einstein’s 1905 argument, except as an approximate
relation valid in the limit of low, nonrelativistic velocities for the
internal motions of the system under consideration. The defect in
Einstein’s argument is not a petitio principii, but a non sequitur.
Einstein’s mistake lies in an unwarranted extrapolation: he
assumed that the rest-mass change he found when using a
nonrelativistic, Newtonian approximation for the internal motions
of an extended system would be equally valid for relativistic
motions. Indeed it is—but Einstein failed to prove that in 1905,
and he failed again in all his later attempts. To mend this mistake,
Einstein needed to prove that the kinetic energy of an extended
system has exactly the same dependence on velocity as the kinetic
energy of a particle. He never proved this, not in the 1905 paper,
nor in any subsequent paper. Only in one attempt in 1907, did
Einstein produce a valid derivation of the mass–energy relation,
but only for a highly idealized, unrealistic system consisting either
of electromagnetic radiation confined in a massless cavity or a
massless, electrically charged body.

All these early derivations, or attempted derivations, dealt only
with special cases, that is, they were really special instances rather
than general proofs. The first complete and general proof of
E ¼ mc2, valid for an arbitrary closed, static system, was
constructed in 1911 by Laue. A more general proof, valid for an
arbitrary closed, time-dependent system, was finally formulated
in 1918 by the mathematician Felix Klein (Laue, 1911; Klein,
1918a).
2. The controversy

In his 1905 paper, Einstein examined the change in the
translational kinetic energy of an extended body when it emits
a pair of light pulses in opposite directions.2 To determine the
implications of this emission process for the rest mass of the body,
he needed a definition of the kinetic energy of the body. In the
early days of relativity, it was known that the kinetic energy of a
particle is

K ¼ mc2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p � 1

 !
(1)

but it was not thought self-evident that the translational kinetic
energy of an extended body has the same velocity dependence as
that of a particle.

In nonrelativistic physics, it is straightforward to prove that the
translational kinetic energy of an extended body is like that of a
particle moving at the speed of the center of mass. To prove this,
we split the sum of the kinetic energies of the particles or mass
elements in the body into a translational kinetic energy of the
center of mass and a sum of kinetic energies relative to the center
of mass. The former is simply (1/2)Mv2, where M is the sum of the
masses and v the velocity of the center of mass. But this simple
split hinges on nonrelativistic kinematics and dynamics (the
Galilean addition law for velocity, the choice of the center of mass
as fiducial point, and Newton’s third law, which ensures that the
effects of the internal action and reaction forces cancel so as to
give the center of mass a particle-like equation of motion).

In relativistic physics, the derivation of a corresponding result
for the translational kinetic energy of an extended body is
considerably more difficult. In fact, a naı̈ve analysis of some
simple examples suggests that it might not be true (see the
example in Section 2.1), and a general result was not obtained
2 For an account of the historical and biographical circumstances surrounding

this and other attempts at proofs of E ¼ mc2, see Chapter 7 of my book, Einstein’s

mistakes (Ohanian, 2008).
until Laue’s work in 1911. To bypass this roadblock, Einstein
adopted an indirect definition of the kinetic energy in 1905 that,
at least ostensibly, did not seem to require any consideration of
the internal dynamics of the extended body. Einstein defined the
kinetic energy of an extended body moving with some speed v in
some given inertial reference frame as the difference between the
energy of the body in that reference frame and the energy of the
body in an inertial reference frame in which it is at rest.
Stachel–Torretti commended Einstein for this indirect but (ap-
parently) precise definition and said that Einstein ‘‘studiously
avoided using it [Eq. (1)] in the derivation of the mass–energy
equivalence y for he had as yet no grounds for assuming that the
dependence of the kinetic energy on the internal parameters can
be summed up in a rest mass term.’’

With his general definition of kinetic energy, Einstein showed
that when a body emits two pulses of light of energy E/2 in
opposite directions in its rest frame, the change of kinetic energy
in some other frame is (in modern notation)

K2 � K1 ¼ �E
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p � 1

 !
(2)

In the next and last step of his argument, Einstein resorted to a
low-speed approximation, with K1 ¼ (1/2)m1v2 and K1 ¼

(1/2)m2v2. Substituting these approximations into Eq. (2) and
comparing terms of order v2, he obtained his mass–energy
relation, m1�m2 ¼ E/c2.

Ives, Jammer, and Arzeliès overruled Einstein’s definition of the
kinetic energy. Blithely accepting the particle formula Eq. (1), they
concluded that the change of kinetic energy of the body must be

K2 � K1 ¼ ðm2 �m1Þc
2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p � 1

 !
(3)

and they claimed that since the right sides of Eqs. (2) and (3) differ
by a factor E/(m1�m2)c2, Einstein must have ‘‘unwittingly
assumed’’ (Jammer, 1961, p. 179) that E/(m1�m2)c2

¼ 1, which
would indeed imply his argument is logically circular. But, as
Stachel–Torretti quite correctly pointed out, Einstein’s deduction
of Eq. (2) is independent of Eq. (3), and therefore the comparison
of these equations does not establish a vicious circle. It merely
provides a short cut to the mass–energy relation: if both Eqs. (2)
and (3) are valid, then division of the first of these equations by
the second immediately yields E/(m1�m2)c2

¼ 1 as a mathema-
tical consequence [and there is then no need to go through the
next and last step of Einstein’s argument, which is designed to
avoid the particle formula Eq. (1)].

Thus, Stachel–Torretti were right in asserting that Ives,
Jammer, and Arzeliès are wrong. However, Stachel–Torretti were
wrong in asserting that Einstein is right. His argument contains
three mistakes, not in a vicious circle, but in the last step of his
argument and also in the definitions he adopted (or failed to
adopt). The three mistakes in Einstein’s argument are (i) failure to
examine the full dependence of Eq. (2) on the velocity v; (ii)
failure to examine the physical basis and the implicit assumptions
in the definition of the kinetic energy; and (iii) failure to provide a
definition of the velocity v of the body.

Item (i) means that Einstein’s derivation is logically incom-
plete, because, although the lowest-order approximation for the
kinetic energy, K ¼ (1/2)mv2, leads to the Einstein’s mass–energy
relation, it is not self-evident that this approximation remains
valid when the internal motions of the body are relativistic. A
proof is required to establish this approximation for the kinetic
energy, and that is far from trivial. Items (ii) and (iii) are not
mistakes in logic, physics, or mathematics, but rather deficiencies
in exposition (or in propaedeutics). These deficiencies indicate



ARTICLE IN PRESS

H.C. Ohanian / Studies in History and Philosophy of Modern Physics 40 (2009) 167–173 169
that in 1905 Einstein had misconceptions about the physical
rationale for these definitions, and he had an incomplete grasp of
the complications inherent in the relativistic dynamics of an
extended system. As was often the case in his work, he was
navigating through a fog, and he was relying on his superb
physical intuition to bring him to a safe port.
2.1. Velocity dependence of the kinetic energy

To exhibit the mistake in Einstein’s attempt to bypass an
explicit examination of the velocity dependence of the kinetic
energies in Eq. (2), consider the following simple Ansatz for the
kinetic energies: K1 ¼ m1F1(v) and K2 ¼ m2F2(v), where the
functions F1 and F2 are assumed to depend on the internal
properties of the body before and after the emission of the light,
that is, these functions are not universal functions of the velocity.3

With this Ansatz, Eq. (2) becomes

m2F2ðvÞ �m1F1ðvÞ ¼ �E
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p � 1

 !
(4)

If the translational velocity v and also the internal velocities of
the particles within the body are low (nonrelativistic), then
Newtonian physics is approximately valid, and then the functions
F1 and F2 must be approximately the same as for the translational
motion of a particle, F1 ¼ F2 ¼ (1/2)v2+ y. Substituting these
approximations into Eq. (4) and comparing the terms of order v2,
we obtain, of course, Einstein’s result m1�m2 ¼ E/c2. We can go a
step beyond that if we then substitute this result into Eq. (4), so
we obtain

m2F2ðvÞ �m1F1ðvÞ ¼ c2ðm2 �m1Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p � 1

 !
(5)

In this equation we can regard m1 and m2 as independent
parameters, and we can therefore conclude that the functions F1

and F2 must necessarily be of the form F1 ¼ F2 ¼

c2ð1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
� 1Þ, that is, we can conclude that these func-

tions are universal, and that they are exactly the same as for a
particle. This is an interesting corollary of Einstein’s 1905 result,
which Einstein somehow overlooked. In essence this says that for
a body with low internal velocities, the particle-like behavior of
the translational motion persists even when the translational
velocity becomes large.4

Whether this corollary is judged as supporting or undermining
Einstein’s proof depends on the context in which it is viewed. If we
take for granted the consistency of relativistic mechanics, then
this (indirect) derivation of the expression for the kinetic energy
of an extended body is a bonus. But in the early days of relativity,
the consistency of the relativistic mechanics of extended bodies
was in contention, and most physicists would have wished for a
direct derivation of the expression for the translational
kinetic energy (by introduction of some kind of center of mass
velocity, more or less in the manner familiar from Newtonian
mechanics), so as to demonstrate explicitly the consistency with
3 Such a non-universal behavior of the kinetic-energy functions of extended

bodies was considered possible in 1905; and Ehrenfest even considered it possible

that the kinetic energy might depend on the orientation of the body relative to its

direction of motion. If it had been known that the kinetic-energy functions are

universal, then Einstein could have concluded that they must necessarily be of the

form of Eq. (1), and then his argument would have been logically complete,

although still affected by errors (ii) and (iii).
4 Oddly, in the 1905 paper Einstein calls attention to the fact that, by Eq. (2),

the change in the kinetic energy has the same dependence on v as the kinetic

energy of a particle, but he fails to see the implications of this comment.
the expression extracted from Eq. (5).5 In the absence of such a
demonstration of consistency, Einstein’s proof of the mass–energy
relation might be judged as incomplete or premature.

Thus, the significance of the corollary for Einstein’s proof is
somewhat murky. But one thing is clear: Einstein’s proof suffers
from a fundamental limitation in that it is not valid if the internal
velocities of the particles within the body are large (relativistic).
The trouble is that for large internal velocities, Newtonian physics
is not applicable to the internal mechanics of the body, and the
Newtonian approximation (1/2)mv2 for the translational kinetic
energy of the body is then not self-evident, even if the
translational velocity v is low.

Here is a simple example of how and why the translational
kinetic energy of an extended body might not mimic that of a
particle and might not be consistent with the Newtonian
approximation: Suppose that the extended body consists of some
particles confined in a cylindrical massless box within which they
bounce back and forth elastically, moving at a constant, high
velocity u parallel to the axis of the box, such that at each instant
equal numbers of particles are moving forward and backward
(a one-dimensional gas). By means of the relativistic addition
rules for velocity, it is easy to show that when this system has
a translational velocity v in a direction perpendicular to its axis,
the sum of particle energies in this system is proportional
to 1/(1�v2/c2)1/2, which displays the expected particle-like
dependence on the translational velocity. However, when this
system has a translational velocity in a direction parallel to its axis,
then the sum of particle energies includes not only the expected
term proportional to 1/(1�v2/c2)1/2, but also an unexpected extra
term proportional to (u2v2/c4)/(1�v2/c2)1/2, which means that the
velocity dependence of the total energy (and thus also the kinetic
energy) is not particle-like. Taken at face value, the extra term
implies that, even at low velocity v, the kinetic energy is
anisotropic, that is, the kinetic energy for parallel motion deviates
from the kinetic energy (1/2)mv2 for perpendicular motion by an
extra amount of approximately mu2v2/c2, in contradiction to
Newtonian mechanics. (Einstein (1907a, pp. 373–377) later
discovered that the mechanical stress in a moving system
contributes to the energy. The stress in walls of the box generated
by the particle impacts on its ends makes a negative contribution
to the total energy when the box has a parallel translational
velocity, and this extra contribution exactly cancels the
‘‘unexpected’’ term, so the total energy of the complete, closed
system of particles and box actually has the expected particle-like
form. Another instructive example illustrating this, involving the
electric energy in a capacitor, was recently discussed by Medina
(2006).)

Einstein’s attempt to bypass the construction of an explicit
formula for the translational kinetic energy of an extended body
was a mistake. This explicit formula is a necessary part of the
proof of the mass–energy relation. Without such an explicit
formula, the proof is incomplete; at best, it shows that the
mass–energy relation is valid in an approximate sense for a body
with low, nonrelativistic internal velocities. That is, the energy E is
approximately subsumed in the mass m1 of the body when the
internal motion is nonrelativistic, but the energy E might be
distinguishable from ‘‘true’’ mass if the internal motions are
relativistic (or if we measure the mass with high precision so as to
reveal even small relativistic effects).

Thus, Einstein’s premises are not strong enough for a general
derivation of the mass–energy relation. The later work of Laue and
5 It should be kept in mind that, in 1905, not even the relativistic mechanics of

particles was thought to be well established, neither theoretically nor experimen-

tally.
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Klein has made it clear that Einstein needed two extra ingredients
to complete the derivation: the conservation law for the
energy–momentum tensor and a precise definition of the velocity
v (see below).
7 Planck does not explain his remark, and we can therefore not be sure exactly

what motivated it. Maybe he was concerned with the problem of time-dependent

forces, but Stachel–Coretti contend that Planck’s remark was motivated by the

inconsistencies that he had identified in the kinetic energy of a moving volume of

blackbody radiation. However, it is likely that Planck was aware that these

inconsistencies are also present in other systems, such as a volume of ideal,

relativistic gas. It is also possible that Planck meant to say that the simple

construction of the translational kinetic that can be performed in nonrelativistic

physics (by introducing the velocity of the center mass) cannot be transcribed into

relativistic physics.
8 The centroid of the energy distribution is frame-dependent, that is, it is not a

four vector. Centroids calculated in different inertial reference frames differ by a
2.2. Definition of the kinetic energy

Although, at first sight, Einstein’s indirect definition of the
kinetic energy seems incontrovertible, it suffers from two subtle
problems, overlooked by Einstein and also by Stachel–Torretti. To
calculate the energy, we must integrate the energy density over
the volume of the body or system. In the first reference frame, this
integration runs over, say, the hypersurface t ¼ 0, whereas in the
second reference frame, it runs over the hypersurface t0 ¼ 0. These
3-D hypersurfaces slice across the 4-D worldtube of the system at
different angles, that is, they capture contributions from different
times, when the internal evolution of the system has perhaps
brought it into a different state, so it has effectively become a
‘‘different’’ system. Before we blindly accept Einstein’s definition,
we need to establish that it makes sense to interpret the energy
difference between such effectively ‘‘different’’ systems as kinetic
energy.

It is immediately obvious that when an extended system is
under the action of time-dependent external forces, this inter-
pretation does not make sense. For instance, if a force is applied at
some remote point of the system, it may happen that in one
reference frame this force is acting at time t ¼ 0, whereas in the
other reference frame it is not yet acting at time t0 ¼ 0, and it is
then nonsensical to pretend that the energies in the two reference
frames differ only because of their relative motion, as demanded
by Einstein’s definition. Thus, when an extended system is under
the action of forces, it is impossible to define a kinetic energy. In
any inertial reference frame, we can define the total energy at any
instant of time (by integration of the energy density), but we
cannot separate out a kinetic energy.6

A second problem arises if the system is held in equilibrium by
opposite external forces, for instance, a volume of gas or of
blackbody radiation held in equilibrium by the constant external
pressure exerted by the container (which we do not regard as part
of the system). Such external forces perform no net work, but they
contribute to the energy of the moving system by their stress [as
in the example in Section 2.1)]. Planck investigated this problem
in detail in an analysis of the total energy of a moving volume of
blackbody radiation (Planck, 1908), and he concluded that for this
system it was not possible to separate the total energy into kinetic
energy and rest energy. For a volume of blackbody radiation [and
also for a volume of relativistic gas, as in the example in Section
2.1)] that has a low overall translational velocity v but contains
individual waves or particles of high velocities, the translational
kinetic energy fails to take the expected form (1/2)Mv2, where M

is defined as the ratio of the translational momentum and the
velocity, as required by the presumptive validity of Newtonian
mechanics at low translational velocity. Therefore the kinetic
energy cannot be separated from the total energy, that is,
Einstein’s definition of the kinetic energy fails because of an
inconsistency with the definition of momentum.

To eliminate this inconsistency, it is necessary to take into
account the relativistic contributions that the stresses in the walls
of the container make to the total kinetic energy and momentum,
that is, we need to restrict Einstein’s definition of kinetic energy to
closed systems that include the sources of all the ‘‘external’’
6 If the changes generated by the forces in a light-crossing time are small, then

it is possible to define the kinetic energy approximately, that is, the extended

system can then be treated approximately as a particle.
forces, even if these forces perform no net work. Hence Planck
was perfectly correct in his objection that ‘‘only in the first
[nonrelativistic] approximation’’ is it possible to assume that ‘‘the
total energy of a body is an additive combination of its kinetic
energy and the energy in the rest frame’’ (Planck, 1908).7

For a system with no external forces (that is, an isolated
system, or a ‘‘closed’’ system), it might make sense to interpret the
energy difference between the two reference frames as kinetic
energy, because energy conservation in the (inertial) rest frame of
the system ensures that the work done by internal forces does not
contribute to the energy difference. However, to examine this in
detail, it is necessary to take into account the relativistic
relationships among the energy density, momentum density,
and stress. These are all related by the Lorentz-transformation
equations and by the conservation law for the components of the
energy–momentum tensor. Keeping track of all these relation-
ships is not a trivial matter, and to prove that Einstein’s
subtraction prescription makes sense requires some skill in tensor
analysis and 4-D integration (Gauss’s theorem in 4-D). In 1905
Einstein did not have available the mathematical tools to handle
these complications. He did not mention of any of these issues,
and he seems to have been completely unaware of the problems
associated with his definition of the kinetic energy.

2.3. Definition of the velocity

The final deficiency in Einstein’s argument is the absence of
any definition of the velocity v of the system. In 1905 Einstein
apparently believed that the meaning of v was self-evident.
Maybe he had in mind a nonrotating rigid body, whose velocity
can be defined by marking a fiducial point on the body. But if we
are dealing with a system with internal motions, we have to be
more careful. If the internal motions in the system are non-
relativistic, then the appropriate choice of fiducial point is
obvious: it is the center of mass. However, if the internal motions
are relativistic or if the system contains a substantial amount of
field energy (including potential energy), then a modification of
the naı̈ve Newtonian definition of the center of mass is required:
instead of the centroid of the (rest) mass distribution, we must
use the centroid of the energy distribution.8 Einstein did not say
anything about this until his next paper on the mass–energy
relation, in 1906.
3. Who proved E ¼mc2?

Einstein returned to the mass–energy problem in six other
papers: one in 1906, two in 1907, an unpublished paper in 1912,
and, much later, two more papers in 1935 and 1946 (Einstein,
1906, 1907a, 1907b, 1912, 1935, 1946). These reprises are in
time-independent displacement proportional to the spin angular momentum of

the body. It can be shown that for an isolated system, the translational velocity of

all these centroids of energy coincides with the velocity of the ‘‘center-of-

momentum’’ frame, that is, the reference frame in which the momentum of the

system is zero; see Møller (1952), Section 64.
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themselves an indication that Einstein had some suspicions that
his proofs were unsatisfactory—didn’t Feynman say that one good
proof is sufficient?

In the 1906 paper Einstein analyzes the motion of the center of
mass of a system containing several small bodies and electric
fields. In that paper, Einstein includes electric field energy in his
definition of the center of mass, treating the field energy as a mass
distribution, in accord with E ¼ mc2, but he still treats the
contribution from the moving bodies as nonrelativistic and
considers only what their rest masses contribute to the center-
of-mass calculation. This is inconsistent, because if the field
energies and the potential energies in a system are large, then so
will be the kinetic energies of the charged bodies moving in these
fields (in fact, for periodic motions, the virial theorem demands

that the potential and kinetic energies be of the same order of
magnitude). Why does Einstein focus on the contribution of the
field energy to the position of the center of mass, but ignores the
contribution of the kinetic energies? The answer might be that
he tried to include the latter but could not find his way around the
obstacles described in (ii).

In essence, he is again repeating the mistake of the 1905 paper,
by failing to examine the contribution that the detailed velocity
dependence of the kinetic energy makes to his calculation. However,
he now recognizes that his result is only approximate, saying: ‘‘If we
ascribe to any energy E the inertial mass E/V2 [that is, E/c2 in modern
notation], then the principle of conservation of the motion of the
center mass is valid, at least to first approximation.’’

In the two 1907 papers Einstein deals with very special kinds
of extended systems, subject to various restrictive assumptions.
Both of these papers contain a variant of the mistake of the 1905
paper. The first paper deals with an extended system consisting of
electric fields and electric charges held in static equilibrium by a
rigid mechanical framework. In his analysis of this system,
Einstein displays sharp insight into the implications of the
mechanical stress that holds the charges in equilibrium, and he
performs a pretty calculation to establish that the presence
of this stress increases the kinetic energy of the system. Modern
tensor techniques make it trivial to establish this result by
examination of the Lorentz-transformation properties of the
energy–momentum tensor; but, with remarkable virtuosity,
Einstein extracts this result from a direct calculation of the work
performed during the switch-on of the stress. He finds that the
difference between the kinetic energies of systems with charges
and without charges is given by an expression of the form of Eq. (2)
with a positive sign on the right side, where E now represents the
electrostatic energy in the rest-frame of the charged system.

This is an impressive result, but, without knowledge of the
mathematical form of the kinetic energy, it does not permit a
derivation of the mass–energy relation. Einstein now disregards
this roadblock—he cavalierly assumes that the kinetic energy of
the extended system has the simple particle-like form Eq. (1), and
from this he obtains the desired mass–energy relation. This is a
surprising about-face from his more cautious approach in earlier
years, when he had avoided such an assumption about the kinetic
energy of an extended system.

The same is true of the second 1907 paper, which is a
modification of the 1905 paper. Instead of changing the energy
of the system by emission of light pulses, he changes it by the
action of an external electric field arranged in such a way that it
removes (or adds) energy, but not momentum. This again gives
him, in essence, Eq. (2). He again assumes that the kinetic energy
of the system has the simple particle-like form Eq. (1), making the
same mistake as in the earlier paper of that year. Thus, all of these
attempts to prove the mass–energy equivalence came to grief on
his failure to demonstrate that the kinetic energy of an extended
system has the same form as that of a particle.
However, there are two exceptional cases, briefly mentioned in
the second 1907 paper (Einstein, 1907b, Section 14), for which
Einstein’s arguments are valid: a system consisting of electro-
magnetic radiation confined in a massless container and a system
consisting of massless electric charges placed on a massless rigid
framework (the container or the framework provides the forces
needed to hold the system in equilibrium). In these cases, it is
possible to pretend that the initial energy is zero, and that the
final energy is entirely attributable to the electromagnetic
radiation or the electric fields generated by the action of external
electric forces on massless, or nearly massless, electric charges in
the walls of the container or on the framework. The initial kinetic
energy is then zero, and the final kinetic energy is completely
determined by the right side of Eq. (2) (again, with an opposite
sign), which establishes that the system behaves like a particle of
mass E/c2. This derivation was the first complete and valid proof of
the mass–energy equivalence, albeit restricted to quite artificial,
totally unrealistic systems.

In the 1906 and 1907 papers Einstein displays much virtuosity
in the handling of electromagnetic fields, but also a surprising
(for him) lack of insight into the deeper aspects of the problem.
He never recognized that the real key to the mass–energy
relation was the conservation law for the energy–momentum
tensor and that all the electrodynamic details he developed
so lovingly were distractions—he failed to see the forest for the
trees.

The general proof of E ¼ mc2 remained elusive until 1911, when
Laue finally derived the mass–energy relation for an arbitrary
closed ‘‘static’’ system, that is, a system with a time-independent
energy–momentum tensor containing any electric, mechanical,
elastic, chemical, thermal, etc. energies and stresses whatsoever
(Laue, 1911). His proof exploited Minkowski’s tensor formalism; it
was concise and elegant, and avoided the tedious dynamical
details that had frustrated Einstein. Laue integrated the T0m

components of the energy–momentum tensor over the volume
of the system to obtain the total energy and momentum; he also
showed that for a closed static system the conservation law
qkTkm

¼ 0 implies that the volume integrals of the stresses Tkl are
zero in the rest frame (the rest frame is defined by the condition of
zero total momentum). From the Lorentz-transformation proper-
ties of the components of the energy–momentum tensor he was
then able to prove that the volume integrals of the T0m

components of the energy–momentum tensor transform as a four
vector, that is, the total energy and the total momentum of the
system transform as a four vector. This implies that the energy
and the momentum are necessarily E ¼ E0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
and

p ¼ ðE0=c2Þv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
, where, in Laue’s notation, E0 is the

energy in the rest frame. Thus, the energy, kinetic energy, and
momentum of an extended system have exactly the same form as
those of a particle, with a mass equal to the rest energy divided by
c2. In Laue’s own words: ‘‘y a closed static system in uniform
motion behaves like a point mass of rest-mass m0

¼ E0/c2.’’
Laue’s paper contained a misstep—not a mistake, but a missed

opportunity. Laue failed to notice that his proof remained valid
under somewhat less restrictive assumptions than those he
imposed on his system. At the start of his argument, he assumed
that in the rest frame all parts of the system are at rest (no
internal motion and zero momentum density throughout), and he
assumed that the time-independence of the energy–momentum
tensor in the rest frame was a consequence of this absence of
motion (no internal motion implies constant strain tensor, which
implies constant stress tensor).9 Mathematically, the absence of
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13 The 1912 manuscript also presents another, alternative proof of the
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internal motion is not required for Laue’s proof, and his proof is
equally valid with a time-independent energy–momentum tensor
as starting point, and no other restrictions on the internal motion.
Thus, Laue’s proof is also applicable to systems with arbitrarily
fast, time-independent (steady) internal motions, e.g., systems
with uniformly spinning parts.10

In 1918, as a by-product of an investigation of energy and
momentum in general relativity, Klein achieved a generalization
of Laue’s proof (Klein, 1918a). He avoided Laue’s requirement of
time-independence of the energy–momentum tensor in the rest
frame; he merely assumed that the system is closed, with a
conserved energy–momentum tensor. He integrated the general
conservation law qmTma ¼ 0 over the worldtube of the system and
cleverly exploited Gauss’ theorem in 4-D to show that Laue’s
result remains valid for a time-dependent energy–momentum
tensor.11

Einstein produced a variant of Laue’s proof in an unpublished
manuscript (Einstein, 1996) on the theory of relativity, written in
1912 and presumably sent to the publisher of the Handbuch der

Radiologie at that time. There were long delays in the publication,
and the Handbuch volume was finally printed in 1924 without
Einstein’s contribution, because he refused permission for his
name to be attached to a revision of his manuscript prepared by
his assistant Jacob Grommer. Einstein included this proof in his
1914–1915 Berlin lectures (Einstein, 1987–2009, Vol. 6, Doc. 7)
and in his 1921 Princeton lectures, which were published in The

Meaning of Relativity in the same year (Einstein, 1921); and he
incorporated versions of this proof in two papers on general
relativity in 1914 that tangentially touched on the mass–energy
equivalence (Einstein, 1914a, b). In none of these writings did
Einstein give any reference to Laue, but in view of the time line
and the similarity of Einstein’s mathematical arguments to those
of Laue in their focus on the four-vector character of the
energy–momentum integrals, there can be little doubt that
Einstein’s proofs were inspired by Laue’s.

Einstein’s variant of Laue’s proof contains a flagrant and fatal
mistake, recognized by Klein in a letter to Einstein in 1918 (Klein
to Einstein, 1 June 1918, Einstein 1987–2009, Vol. 8B, Doc. 554).12

Instead of taking as starting point the conservation law qmTma ¼ 0
in the absence of external forces, Einstein starts with the rate of
change of the energy–momentum tensor in the presence of an
external four-vector force density, qmTma ¼ fa. He assumes that the
force density fa is nonzero over some limited time interval, and he
shows, quite correctly, that the change in the energy–momentum
of the system is then necessarily a four vector. He then asserts
‘‘Since the quantities themselves may be presumed to transform
in the same way as their increments, we infer that the aggregate
of the four quantities Ix, Iy, Iz, iE [energy–momentum] has itself
vector character y’’ (Einstein, 1921, p. 44). But this assertion is
obviously false. Einstein is not entitled to presume what he wants
to presume. That the ‘‘quantities themselves y transform in the
same way as their increments’’ needs to be proved. All that
(footnote continued)

explicit assumption, Laue made an outright mistake (Janssen, 1995, Section 2.1.4). I

think that this is unlikely, because it would mean that Laue did not understand

that his own assumption of zero momentum density implies an absence of motion

and a time-independent strain and stress; and that he did not understand the

obvious role of the relativity of simultaneity in the selection of different

hypersurfaces for the integration of energy and momentum densities in different

reference frames.
10 Norton suggests that maybe Laue was aware that his proof remains valid for

systems with steady internal motions (Norton, 1992, p. 34).
11 Full details are given in Møller, 1952, Section 63. For a concise treatment, see

Ohanian & Ruffini, 1994, pp. 87–90.
12 This letter led to an exchange of further letters between Klein and Einstein

with various erroneous attempts at proofs, until Klein finally produced the correct

proof given in Klein, 1918a.
Einstein proves by his argument is that the action of the force does
not alter the four-vector character of the total energy–momentum
of the system—he proves that the energy–momentum will be a
four vector after the force acts if and only if it is a four vector
before, and this tells us nothing whatsoever about whether the
energy–momentum is a four vector or not.

This is an astonishing mistake, all the more so because Einstein
was aware of it, but refused to recognize it for what it was. In a
footnote in the 1912 manuscript, he highlighted this mistake: ‘‘To
be sure, this is not rigorous, because additive constants might be
present that do not have the character of a vector; but this seems
so artificial that we will not dwell on this possibility at all.’’
(Einstein, 1996, p. 158). Despite this admission, he persisted in this
mistake in all the revisions and republications of this argument,
over a span of more than forty years (he first wrote down this
argument in the 1912 manuscript, included it in several papers on
general relativity and in his 1921 book The Meaning of Relativity,
and revised this book in four subsequent editions, with the last of
these in 1955—and he never corrected his mistake.)13

In the two last papers on E ¼ mc2 in 1935 and 1946, Einstein
reverted to the mistakes of his earliest papers. In the 1935
paper—which is the published version of the Josiah Willard Gibbs
lecture he delivered in Philadelphia in 1934—he again assumed,
without any justification, that the energy and momentum of a
system have a particle-like dependence on velocity.14

And in the 1946 paper he repeated exactly the same mistake as
in 1905, that is, he again dealt only with a low-speed approxima-
tion, but he now performed the calculation with the momentum
change produced by the emission of two light pulses, rather than
with the energy change, as in 1905.

In view of all these mistakes, Einstein does not have a solid
claim on the mass–energy relation, neither in terms of priority nor
in terms of proof. Einstein himself thought otherwise. In 1907 he
sent an irate letter to Stark complaining ‘‘I find it rather strange
that you do not recognize my priority in the relationship of
inertial mass and energy y’’(Einstein to Stark, 17 February 1907,
Einstein 1987–2009, Vol. 5, Doc. 85). Stark had credited Planck
with this result, being apparently unaware of Einstein’s 1905
paper; he replied to Einstein’s complaint in a conciliatory manner.

The mistakes Einstein made in his many repeated attempts at
proofs of E ¼ mc2 were the price he paid for being ahead of his
time. Planck offered a fitting apology for Einstein’s mistakes when
recommending him for membership in the Prussian Academy of
Sciences: ‘‘One should not count it too heavily against him that in
his speculations he occasionally might have missed the mark, as
e.g., in his hypothesis of light quanta; because without taking a
risk, it is not possible to introduce any real innovation even in the
mass–energy relation (Einstein, 1912, p. 108), which relies on an examination of

the process of emission of two light pulses by a system, as in the 1905 paper. In

contrast to 1905, Einstein now assumes explicitly that the system can be regarded

as particle-like and that its energy is E ¼ Mc2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
. This is a genuine error

of circular reasoning, because if this formula for the energy is assumed known,

then there is nothing left to prove—with v ¼ 0, the formula yields the energy

E ¼ Mc2, QED. However, since Einstein never published this ‘‘proof,’’ it would be

unfair to hold it against him.
14 He tries to camouflage this mistake by a semantic quibble, calling the

systems under consideration ‘‘particles.’’ However, these so-called particles are

assumed to be capable of absorbing and storing energy, which means they cannot

be structureless, pointlike entities—they are necessarily physical systems with

internal structures of some finite extent. At best, we might assume that these

systems are very small, and therefore approximately pointlike. However, no matter

how small, a system will reveal its non-pointlike features if the force field acting on

it varies in space on a scale smaller than the size of the system or in time on a scale

shorter than the light-crossing time.
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most exact of the natural sciences’’ (Planck, 1913).15 Einstein’s
attempts, though defective, led to various valuable and original
results, such as the recognition that the position of the ‘‘center of
mass’’ must be calculated from the energy density rather than the
mass density, and the surprising contribution of the stress to the
kinetic energy of a system. Einstein’s insights into the relation
between stress and energy helped to guide Laue and Klein in their
work on E ¼ mc2 and also played a central role in the early efforts
to construct relativistic theories of gravitation (Norton, 1992).

Today this work of Laue and Klein is rarely remembered, and in
popular lore E ¼ mc2 is regarded as a quintessential Einstein
invention. As Mehra remarked in a letter to Wigner in a different
context,16 such a misattribution can be blamed on ‘‘the sociology
of science, the question of the cat and the cream. Einstein was the
big cat of relativity, and the whole saucer of its cream belonged to
him by right and by legend, or so most people assume!’’ (Mehra,
1974, p. 86).
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