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Foreword

Since the dawn of the space age with the launch of Sputnik 1 and Ex-
plorer 1, orbital mechanics became a major discipline in space exploration.
This book reflects many years of research and teaching in this field by Michel
Capderou. It is a comprehensive and modern treatment of the theory of or-
bital mechanics, its application, and current day samples of how it is used in
the field. In that sense, it is not just a textbook for classroom-style lectures;
it is truly a handbook for practitioners.

It is full of fascinating historical information and references that intrigue
the readers to follow the anecdotes and details on how this particular disci-
pline evolved from the collective genius of giants in mathematics, physics and
astronomy such as Tycho Brahe, Kepler, Newton, Galileo, Lagrange, Laplace,
Gauss, Poincaré and Einstein. This story telling not only makes reading in-
teresting but also challenges the readers to understand the fundamentals used
by these giants before the advent of computers.

Most classroom-style textbook would skip intermediate steps in the deriva-
tion of equations or refer the readers to the original papers or textbooks. This
book provides sufficient intermediate steps so readers with basic freshman
mathematics can follow the logical steps. Its treatment of geodesy, geopoten-
tial and perturbation methods connects theory to physical measurements and
observables. The chapter on Orbit and Mission is unique in that it provides a
comprehensive survey of how theory is applied to real-life missions. It connects
this discipline to science and inspires the reader to appreciate how a satellite
orbit provides a special vantage point for conducting scientific measurements.
Orbital mechanics is not just about getting into space, but it is integral to
the measurement technique such as altimetry, radar topography, radio occul-
tation, interferometry and gravity field through radiometric observables. The
comprehensive treatment on designing an orbit for systematic ground track
control and target point visibility is unique. In the past, practitioners had to
conduct a literature search and examine multiple publications. Its treatment
on GPS begs the reader to further explore the world of precision orbit deter-
mination, timing and terrestrial reference frame. The book is sprinkled with
stories of much innovative use of “tricks” in orbital mechanics such as frozen
orbit, sun-synchronicity, aerobraking, libration point and Lissajous orbits, and
gravity assist that enables missions like Voyager Grand Tour, Galileo, Cassini-
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VI Foreword

Huygens and tours of their satellites. This book has superb illustrations and
graphics enhanced by colorful photographs.

Since the flight of Explorer 1, JPL prides itself in pioneering techniques
in orbital mechanics and its applications to carry out NASA’s mission in
space-borne observation of our Earth; in fly-by, orbiting and landing of plan-
etary bodies and their satellites; in astronomical telescopes that can observe
our galaxy and the early Universe. We continue to recruit the best and the
brightest graduates in this discipline from universities around the world, who
understand not only the physics and mathematics of orbital mechanics but
also its applications of real-life missions. The Handbook of Satellite Orbits:
From Kepler to GPS is exactly what is needed for all graduates of this disci-
pline.

Michel Capderou’s book is an essential treatise in orbital mechanics for all
students, lecturers and practitioners in this field, as well as other aerospace
systems engineers.

Charles Elachi
Director

NASA Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA, USA



Preface

Of all the fields of modern science and technology, space exploration is
the one that most clearly displays the following fundamental contrast: on the
one hand, its theoretical basis is underpinned by long-established, historically
tested and almost immutable, one might even say timeless, principles; on the
other, the whole field of space science is undergoing meteoric technological
evolution, with exponential growth, bringing with it a broad mix of commer-
cial, political and ideological considerations. And so we have come from Kepler
to GPS.

Regarding the “immutable foundations”, we know that the notion of
geopotential or the solution of Lagrange’s equations is no easy matter. We
just hope that, with teaching experience among the ingredients, we have suc-
ceeded in presenting these issues in a sufficiently clear and interesting way. To
illustrate unbridled technological progress, we supply a wealth of examples.

The book falls into six main parts:

• The first part, consisting of Chaps. 1–3, is devoted to geodesy. We begin
with the ellipse and its geometrical properties and work our way to the
Earth’s gravitational potential and the geoid.

• The second part, Chaps. 4–8, focuses on the motion of the satellite, working
from the ideal, Keplerian case to the real, perturbed case.

• The third part, Chaps. 9–11, takes us into the actual running and func-
tioning of satellites, discussing their missions and the ways that orbits are
designed to fulfil those missions. We consider some novel issues, such as the
constant of Sun-synchronicity kh and, for recurrent satellites, the constant
κ and the index Φ. Abundant illustrations are provided, always relating to
past, present or future space programmes.
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• The fourth part, Chaps. 12 and 13, considers the instruments carried aboard
the satellite from a geometrical point of view. We begin with the different
ways of observing the Earth from a satellite, then move on to sampling,
i.e. the conditions under which a given point on the Earth can view the
satellite, considering the viewing angle and frequency of visibility.

• We then devote the whole of Chap. 14 to GPS. This navigation system,
entirely satellite-based, appeals to almost all branches of modern physics.

• In the final part, Chaps. 15 and 16, we leave the confines of our own planet
to apply all these theories first to Mars, then to the other planets of the
Solar System, and even to the natural satellites of those planets, around
which artificial satellites may gravitate.

�

The orbit and sampling software Ixion forms the backbone of this book. We
first developed it as a teaching tool for an M.Sc. in climatology and space
observation, and also in the research context, as an aid to understanding
issues of orbital elements, satellite–pixel–Sun configuration, and so on, which
arise when processing the data transmitted to us by our satellites. But once
the accuracy of Ixion had been proven in the context of real data, by the
confrontation with pixels, one might say, we extended it to all types of orbit
and included some didactic features that would make it accessible and useful
to a broader audience.

The software Ixion has since been used for preliminary studies of orbital
strategy, as it is known, which serve to match orbital elements in the best
possible way to the physical phenomena we need to observe. Among the orbits
studied in this context, we cite the French–Indian satellite Megha-Tropiques
and the planned Mars missions Premier-07 and MEMO. Ixion is often used by
our colleagues for calibration and validation campaigns in the field, as for the
satellites Calipso, MetOp-A and -B, Megha-Tropiques, and others.

Ixion/Web is the part of Ixion that is now accessible online. Our mapping
software Atlas has been coupled with Ixion to produce graphical representa-
tions of orbits and their ground tracks. We hope the maps it produces will be
pleasant and useful to the reader. They should provide a refreshing change
to the deeply saddening lack of cartographic imagination and the striking
flatness of the projections generally used in this field.

We have selected many examples among experiments that are familiar to
us, such as the CERES and ScaRaB instruments and the Megha-Tropiques
satellite. They may appear to be over-represented in the book, but perhaps it
is better to stick to the things we know best!

Because this book focuses on space mechanics and the geometry of obser-
vation, with all its concomitants, such as spatiotemporal sampling, there is no
consideration at all of the satellite as a technological object. There is not one
word about the launch vehicles or the functioning of the onboard instruments,
apart from the geometric aspect of the swath in the latter case, since this is
directly relevant to our purpose.



Preface IX

By concentrating in this way on the orbits, we have made every effort
to prove or at least explain all the formulas used. This may look some-
what austere, so we have tried to brighten things up with plenty of examples
and illustrations. The examples will show the reader some rather unexpected
orbits, while the photographs will demonstrate the level of accuracy achieved
today in images acquired by satellite-borne instruments.

To liven up the whole discussion, we have also included many references
to historical aspects, even presenting several pages of the books that founded
celestial mechanics and discussing some of those early results which leave us
in admiration. And so we have come from Kepler to GPS.

With that, let me wish you a good trip into space . . . and into time.
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The figure from Greek mythology known as Ixion was not, if the truth be
told, a particularly savoury one. The King of the Lapiths, he behaved in a
decidedly reprehensible manner on the day of his wedding, causing his future
father-in-law to fall into a burning pit so that he would not have to pay the
dowry.

This act was considered the ultimate crime, for it broke all the rules of
hospitality, and indeed, it was reproved by all the gods but one. The only deity
who would agree to purify Ixion for the murder was Zeus, a connaisseur when it
came to perjury and other misdemeanours. Zeus even felt some compassion for
this strong-minded king, inviting him to Olympus and offering him hospitality.
As an exceptional sign of friendship, he bade him drink ambrosia, which made
him immortal.

Ixion admired Zeus’ antics and escapades and, encouraged by the atmo-
sphere of familiarity in the Olympian realm, began to covet Zeus’ own wife
Hera. But this was where he overstepped the mark! The king of the gods cried
out: “A little respect for one’s host!” As a punishment, he bound him to a
fiery wheel which whirled him forever through the skies.

As he had been made immortal, the poor fellow must still be spinning
around up there. One may thus consider Ixion as the first of all artificial
satellites, and this is therefore the name we have chosen for our software.

Ixion is the orbitography and sampling software that forms the basis for this
book. Since 2010, many of the features of this software have been put online
in collaboration with Karim Ramage at the Institut Pierre-Simon Laplace
(IPSL). This software Ixion/Web is perfectly operational. The orbital elements
of the satellites are updated daily (NORAD data) and the calculation of the
satellite trajectory is thus fully accurate. For past dates, the automatically
archived NORAD data are used.

The ground track of the satellite and instrumental swath are indicated on
Google Maps, providing much detail and easy consultation. Graphic repre-
sentations can also be obtained on standard maps, with a choice of over a
hundred cartographic projections using the software Atlas. Another option is
3D visualisation of the orbit with Google Earth.

At a given location, sampling tables indicate the times (day and time) of
satellite overpasses for the whole month, specifying conditions of viewing such
as sight angle and solar configuration. Statistical tables provide global data
for the whole Earth.
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Ixion/Web also gives orbits and sampling for the planet Mars. Satellite
ground tracks are represented on Google Map Mars or conventional maps.
Ground tracks of satellites orbiting other planets (Venus, Mercury, etc.) or
the Moon can also be represented.

Apart from being fully operational, Ixion/Web has a clear pedagogical
interest as an aid to understanding satellite motion in different frames, i.e.
Galilean or moving with the Earth. We give here four examples of graphical
representations: a 3D representation of the orbit of the satellite LAGEOS-1,
a close-up of the orbital ground track of Jason-2, an orbital ground track of
Molniya-3-50 and an orbital ground track of Terra with swath.

http://climserv.ipsl.polytechnique.fr/ixion.html
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Chapter 1

Geometry of the Ellipse

We will be concerned with ellipses in two different contexts:

• The orbit of a satellite around the Earth (or the orbit of a planet around
the Sun) is an ellipse.

• A cross-section of the planet Earth containing the polar axis is an ellipse.

Naturally, in both cases, this is just a first approximation. However, a prelim-
inary study of this geometric object will prove useful before going into greater
detail.

In the first case, the ellipse will be viewed as a geometrical object localised
by its focus and specified by its eccentricity e. In the second, it will arise
rather as a flattened circle, localised by its center and characterised by the
degree of flattening f .

Ellipses can be defined in many different ways, as we shall now see. It is
indeed a rich geometrical object.

1.1 Definition and Properties

1.1.1 Conic Sections

Consider a cone C, with apex S, and a plane P which does not pass through
S. Let P ′ be the plane parallel to P which does pass through S. There are
three possible cases:

• If P ′ lies outside the cone, the intersection of P and C is an ellipse.
• If P ′ is tangent to the cone, the intersection of P and C is a parabola.
• If P ′ lies within the cone, the intersection of P and C is a hyperbola.

In ancient times, these conic sections were viewed as a geometrical curiosity.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
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2 Chapter 1. Geometry of the Ellipse

When he wanted to explain the orbit of Mars around the Sun, Kepler was
the first to rediscover the notion of ellipse that had been so carefully enun-
ciated by the Greek geometers. Later on, with the help of Newton’s theory,
astronomers were able to show that the trajectory of a body subject to a grav-
itational force could be not only an ellipse, but also a parabola or a hyperbola.
Kepler’s ellipse was thus replaced by the whole family of conic sections.

We begin by describing the many different ways of understanding conic
sections.

Knowledge of this particular curve goes back at least to Ancient Greece.
Menaechmus1 and Apollonius of Perga2 defined the ellipse as one of the family
of conic sections.3

1.1.2 Definition and Properties of the Ellipse

In this book, we shall be interested almost exclusively in the ellipse, be-
cause of all the conic sections, only this one constitutes a periodic trajectory.

The ellipse has many properties. We may thus choose one as the definition
and deduce the others from it by means of rather straightforward demonstra-
tion. In general, the first of the following is usually taken as the definition,
while the others are considered as consequences.

Definition

[1] The ellipse is the locus of points M in the plane such that the sum of
the distances MF and MF ′ to two fixed points F and F ′, called the foci, is
constant.4

1Menaechmus (��������	, −375 to −325), was a Greek mathematician and member of
Plato’s Academy. He is credited by Eratosthenes with the discovery of the conic sections,
objects which arose in the so-called Delian problem, also known as doubling the cube (given
a cube of volume a3, construct another of volume 2a3). Menaechmus sought two numbers
x and y such that a/x = x/y = y/2a, which leads to x3 = 2a3, by finding the intersections
of a parabola (y = x2/a) and a hyperbola (y = 2a2/x).

2Apollonius of Perga, a city in Pamphylia in Anatolia (
�������	 � �������	, −262 to
−180) was a Greek geometer and astronomer and a student of Euclid. He wrote an eight
volume work entitled Conics, part of which has come down to us directly in the Greek
version, and part through the Arab translation. He studied the possible intersections of a
cone by an arbitrary plane, classifying them into the three types of conic section which still
carry the names he attributed to them.

3The word “conic” comes from the Greek kônikos, an adjective derived from kônos (�
��̃��	� ��), meaning “pine cone”, the fruit of certain conifers.

4A direct application of this definition can be used to draw an ellipse in what is sometimes
known as the gardener’s method. Two stakes are stuck in the ground, some distance d apart.
A non-stretch string of length � > d is attached with one end at each stake. If we then hold
a third stake against the string and move it in such a way that the string is always taut,
this stake will trace out an ellipse with focal points at the two fixed stakes. The major axis
is equal to � and the eccentricity is d/�.
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Main Properties

[2a] The ellipse is an affine transformation of a circle.
[2b] The projection of a circle on a plane is an ellipse.
[3] The ellipse is the locus of points M such that the ratio MF/d is a

constant q, q < 1, where F is a fixed point, the focus, and d is the distance
between M and a fixed straight line called the directrix.

[4] The ellipse is obtained from the intersection of a cone and a plane in
the case specified above.

Other Properties

Here are a few more properties that we shall not prove here.
[5] The ellipse is the locus of the centers of circles passing through a fixed

point F and tangent to a fixed circle, the director circle, with center F ′.
[6] A light ray passing through one focus will reflect on the ellipse and

pass through the second focus.5

[7] If the ends of a line segment of fixed length run along two perpendicular
straight lines, an arbitrary point on the segment will describe an ellipse and
the envelope of the segment is then an astroid.

1.1.3 Applications of the Definition

Ellipse as a Geometrical Object

From the definition [1], the ellipse has a center6 of symmetry O, which we
shall call the center of the ellipse. Taking O as the origin for an orthonormal
Cartesian frame of reference (see Fig. 1.1), the various points of interest have
the following coordinates:

OF =

(
c
0

)
, OF ′ =

(
−c
0

)
, OA =

(
a
0

)
, OB =

(
0
b

)
.

We use the standard terminology:

a = OA , semi-major axis of the ellipse ,

b = OB , semi-minor axis of the ellipse , b ≤ a ,

c = OF = OF ′ , focal distance .

5The term was introduced into scientific Latin (New Latin) by Kepler in 1603, from the
Latin word focus, i, which means “a place where fire is made”. A pencil of light rays passing
through one focus will converge at the other, and could start a fire there. This is indeed the
explanation for the name “focus” (see Fig. 1.11).

6The word “center” comes from Old French centre, which comes from the Latin centrum,
i, meaning “compass point”, “center of a circle”, or “midpoint of an ensemble”. The word
derives from the Greek kentron, �� �������� ��, a “goad”, from the verb ������, meaning
“to prick or sting”. This is a rather rare example of a technical country word which became
scientific and later assumed a very general meaning. The Latin word spread to all the Latin
languages and many non-Latin ones, too.
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e = 0.65

y Y

B

M
G

HOF� F

q
A

X
x

Fig. 1.1 : Ellipse and principal circle, showing the notation used for the Cartesian

coordinate system (axes Ox,Oy) and the polar coordinate system (r = FM , angle θ).

Since c is always strictly less than a, we can always define a number e such
that

c = ea , where 0 ≤ e < 1 . (1.1)

The real number e is the eccentricity of the ellipse.

Equation of the Ellipse in Cartesian Coordinates Centred on O

Consider an orthonormal Cartesian frame of reference (O;x, y), centered
on O. The axis Ox is the straight line F ′F , the focal axis. Let M(x, y) be a
point on the ellipse and set

r = FM , r′ = F ′M .

Definition [1] applied to M at A yields

r + r′ = 2a , (1.2)

and when M is at B, we obtain

b2 = a2 − c2 = a2(1− e2) . (1.3)
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The lengths r and r′ are expressed in Cartesian coordinates through their
squares:

r2 = (x− c)2 + y2 = (x− ea)2 + y2 , (1.4)

r′2 = (x + c)2 + y2 = (x+ ea)2 + y2 , (1.5)

and by the difference

r′2 − r2 = 4cx = 4eax . (1.6)

Using (1.2), we obtain

r′ − r =
r′2 − r2

r′ + r
= 2ex ,

and finally the following expressions for r and r′, whose sum and difference
are as given:

r = a− ex , (1.7)

r′ = a+ ex . (1.8)

Note that these expressions are very simple and do not involve any square
roots.

Using (1.4) and (1.7), we then have

r2 = (x− ea)2 + y2 = (a− ex)2 ,

x2 + e2a2 + y2 = a2 − e2x2 ,

x2(1− e2) + y2 = a2 − e2a2 ,

whence

x2

a2
+

y2

a2(1− e2)
= 1 , (1.9)

or again

x2

a2
+

y2

b2
= 1 , (1.10)

which clearly reveal the role played by the semi-minor and semi-major axes.
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Equation of the Ellipse in Polar Coordinates Centred on F

Consider first the orthonormal Cartesian frame (F ;X,Y ), centered on F ,
with axis FX identified with Ox and FY parallel to Oy. We then have the
following relation between the abscissæ:

X = x− ea .

For a point M(X,Y ) of the ellipse, (1.7) becomes

r = a(1 − e2)− eX .

We then define the quantity

p = a(1− e2) , (1.11)

known as the parameter or semi-latus rectum of the ellipse. It corresponds to
the distance between the focus F and the point of intersection of the ellipse
with the axis FY (which is the straight line with equation X = 0). In Fig. 1.1,
p = FG. Note that b is the geometric mean of a and p :

b2 = ap . (1.12)

The equation for the ellipse can once again be written very simply as

r = p− eX . (1.13)

Consider polar coordinates centered on F (see Fig. 1.1). The coordinates r
and θ of an arbitrary point M are defined by

r = ‖FM‖ = FM , (1.14)

θ = (FX ,FM) . (1.15)

The abscissa of M in Cartesian coordinates is then X = r cos θ and (1.13)
yields

r =
p

1 + e cos θ
. (1.16)

The equation for the ellipse in polar coordinates is thus

r(θ) =
a(1− e2)

1 + e cos θ
. (1.17)
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Note on Conic Sections

If we always define the parameter p to be the distance between the focus
F and the point G at which the conic section intersects the perpendicular to
the focal axis passing through F , the relation (1.16) can be used to define all
the conic sections,7 with the eccentricity discriminating between them:⎧⎨

⎩
0 � e < 1 , for the ellipse ,
e = 1 , for the parabola ,
e > 1 , for the hyperbola .

Note that, for e = 0, the ellipse is a circle, and if e ≥ 1, the conic section
extends to infinity.

1.1.4 Demonstrating the Main Properties

Here we deduce the main properties of the ellipse.

Definition [1] =⇒ Property [2a]

An affine transformation or affinity with axisΔ, direction δ, and coefficient
k (k �= 0) is the point transformation which maps any point P in the plane

7Appolonius used the following three terms to characterise conic sections, inspired by
the language of the Pythagoreans:

• Ellipse (� �����	� ��	) means “lacking” or “omitted”.
• Parabola (� ��������  ̃	) describes the action of throwing, and hence suggests a map-

ping, or comparison.
• Hyperbola (� !�������  ̃	) describes the action of throwing higher, hence invokes the

idea of an excess.

The first term comes from ��, meaning “in”, and the verb ������, meaning “to leave or ne-
glect”. The last two derive from the verb �"���, meaning “to throw”. The word “parabola”
should not be associated with the idea of throwing something in the sense of throwing a
projectile. This link between “parabola” and “throw” was described by Galileo, but was
unknown to the Ancient Greeks. It is interesting to note that, taken in this order, the three
terms “lacking”, “comparable”, and “in excess” associated with the conic sections corre-
spond to the values of the eccentricity as compared to unity. In fact, Apollonius introduced
the length p, the parameter of the ellipse, and calculated the areas of squares and rectangles
based on this length. With modern notation, taking the focal axis as the axis Ox, with Oy
perpendicular to it and the origin O at the apex of the conic section, we obtain the following
relation for the parabola:

y2 = 2px ,

which means that the area of a square of side y is equal to that of a rectangle of dimensions
2p× x. For the two other conic sections, we have:

• For the ellipse, y2 = 2px− (p/a)x2 .
• For the hyperbola, y2 = 2px+ (p/a)x2 .

In comparison with the parabola, it is thus the quantity (p/a)x2 which lacks for the ellipse
and which is in excess for the hyperbola. The name for the conic sections was introduced by
Kepler, Desargues, and Descartes, first in Latin, then in the modern European languages.
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to the point P ′ by the following construction: the straight line PP ′, parallel
to δ, intersects Δ at H , where

HP ′ = kHP .

Consider a circle of radius a, centered on O, and described by

x2

a2
+

y2

a2
= 1 . (1.18)

When applied to this circle, the affine transformation of axis Ox and direction
Oy (see Kepler’s drawing in Fig. 1.2 and also Fig. 1.3) transforms (1.18) to
(1.10), provided that the affine ratio is taken to be

k =
b

a
=
√
1− e2 . (1.19)

The circle of radius a defined by (1.18) is called the principal circle of the
ellipse of semi-major axis a, itself defined by (1.10).

The area A of the ellipse can be deduced from that of the circle:

A = πab . (1.20)

Property [2a] =⇒ Property [2b]

Property [2b] follows immediately from [2a]. Consider a circle of radius a
and center O, lying in the plane P1. Now project it onto the plane P2, which

Fig. 1.2 : At the end of his book Astronomia Nova, Kepler devoted his Chap. LIX

Elements of Geometry to the properties of the ellipse. On p. 286, he explains how

the circle can be transformed into an ellipse by an affinity.



1.1 Definition and Properties 9

y

P�

P

k = 0.661

f = 0.339 e = 0.750

O H
x

Fig. 1.3 :Ellipse and principal circle. The ellipse is obtained from the principal circle

by an affine transformation with axis Ox, direction Oy, and coefficient k.

makes a dihedral angle α with P1 and passes through O. Let Ox be the axis
of intersection of the two planes and Oy perpendicular to it and lying in the
plane P2. For the points of the circle in P1 which are projected into P2, the
x coordinates remain the same, while the y coordinates are modified by a
multiplicative coefficient equal to cosα. The equation of the image in P2 is
thus

x2

a2
+

y2

(a cosα)2
= 1 ,

which corresponds to an affine transformation with coefficient k = cosα. This
object is thus an ellipse.

Definition [1] =⇒ Property [3]

If we write r in (1.7) in the form

r = a− ex = e
(a
e
− x
)

, (1.21)

this brings in the quantity a/e− x, which is the distance from the point M ,
with abscissa x, to the straight line parallel to Oy and with abscissa a/e.
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D� F�

B�

A�

e = 0.750

O F

B

M J

A D
x

y

Fig. 1.4 :Ellipse and directrixes. The ellipse is the locus of points M such that the

distance FM to the focus and the distance to a straight line denoted by d = MJ

have constant ratio e.

Hence, with r = FM and a/e − x = MJ (see Fig. 1.4), it can be shown
that the points of the ellipse are such that the ratio FM/MJ is constant and
in fact equal to e :

FM

MJ
= e .

Note that, if D is the intersection of the directrix with Ox, we have

OF · OD = OA2 = a2 .

Definition [1] =⇒ Property [4]

The equivalence between the definition of a conic by focus and directrix
and its definition as the intersection of a plane and a cone was not shown
until the nineteenth century. Here we consider the ellipse and give the proof
of Dandelin’s theorem.8

Consider a cone with apex S and axis Sx. Consider also a plane P which
cuts the cone and such that the plane parallel to P passing through S lies

8This theorem, proven in 1822, is also called the Dandelin–Quételet theorem, after the
two Belgian mathematicians Germinal Dandelin (1794–1847) and Adolphe Quételet (1796–
1841).
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D�

F

A

D

O

S

O�

C�

C

A�

F�

x

Fig. 1.5 :Plane repre-

sentation, in the plane

T perpendicular to the

intersecting plane P, of

the cross-section of the

cone of axis Sx by the

plane P, represented

here by the straight line

AA′.

outside the cone. Let T be the plane perpendicular to P and containing Sx.
The intersection of this plane T (called the plane of the page) with the cone
comprises the two generators SA′ and SA, while its intersection with the
plane P is the straight line AA′.

Consider first the view in the plane T , as shown in Fig. 1.5. Among the
circles tangent to the three sides of the triangle SAA′, we consider the two
circles with centers lying on Sx. O is the center of the inscribed circle and the
points of contact between the circle and the triangle are F on AA′ and C and
D on SA′ and SA, respectively. Likewise, let O′ be the center of the escribed
circle, and let the points of contact of this circle with the triangle be F ′ on
AA′ and C′ and D′ on SA and SA′, respectively. Segments CD and C′D′ are
then parallel, each being perpendicular to the axis Sx.

We now rotate the figure about the axis Sx, but keeping the straight line
AA′ fixed: SA and SA′ generate the cone, while the circles centered at O and
O′ generate two spheres inscribed within the cone. By translation, the straight
line AA′ generates the plane P perpendicular to T (see Fig. 1.6). The spheres
O and O′ are tangent to the plane P at F and F ′, and they are tangent to
the cone at two parallel circles of diameter CD and C′D′, respectively.

Let M be a point on the conic section, i.e., the intersection of the given
cone and the plane P . SM cuts the circles CD and C′D′ at J and J ′, and
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A�

F�
M

F
A

O

DC

S

J

I� C�

J�

O�

D�

x

Fig. 1.6 :Three-dimen-

sional representation

of the cone of axis Sx

and the intersecting

plane P. The curve

of intersection goes

through the points A,

A′, and M .

at these points, the generator SM is tangent to the spheres centered at O
and O′. Since MF and MF ′ are tangent to the same spheres, respectively, we
have:

• For the sphere centered at O, MF = MJ .
• For the sphere centered at O′, MF ′ = MJ ′.

Now MJ +MJ ′ = JJ ′, which is constant and equal to both CC′ and DD′.
Hence,

MF +MF ′ = constant ,

and M describes an ellipse with foci F and F ′.
The plane P cuts the parallel planes containing the circles CD and C′D′

in straight lines perpendicular to the plane T , passing through I and I ′,
respectively. It can be shown that these two straight lines, perpendicular to
FF ′, are the directrixes of the ellipse.
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1.1.5 Eccentricity and Flattening

From (1.3), the eccentricity e can be expressed in the form

e2 =
a2 − b2

a2
. (1.22)

The relation between a and b can also be given in terms of the flattening f ,
which is defined by

f =
a− b

a
. (1.23)

Note that the affine ratio k defined by (1.19) is k = 1− f .
We immediately deduce the relationship between e and f :

b2

a2
= 1− e2 = (1− f)2 . (1.24)

This leads to the explicit relations

f = 1−
√
1− e2 , (1.25)

e =
√
f(2− f) . (1.26)

Figure 1.7 shows the transformation of an ellipse with fixed semi-major axis a
when e is increased in regular steps of 0.1. When instead we increase f in the
same steps, the behaviour of the ellipse is very different, as shown in Fig. 1.8.

Gauss introduced the angle of eccentricity ε, defined by

e = sin ε . (1.27)

We may then write

b = a cos ε , c = a sin ε , p = a cos2 ε .

Later we shall see how certain formulas can be made more elegant with the
help of this auxiliary variable.

Low Eccentricities

There are many situations in which an ellipse is very close to its principal
circle. In the case e � 1, (1.24) gives

e2 � 2f , (1.28)

whence the flattening varies approximately as the square of the eccentricity.
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Fig. 1.7 :Ellipses with

the same semi-major

axis but eccentricity

e varying from 0.0 to

0.9, in constant steps

of 0.1. The correspond-

ing eccentricity e is

indicated on one of the

two foci and on one

end of the semi-minor

axis. Note that the foci

are regularly spaced.
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Fig. 1.8 :Ellipses with

the same semi-major

axis but flattening f

varying from 0.0 to 0.9,

in constant steps of

0.1. The corresponding

flattening f is indicated

on one of the two foci

and on one end of the

semi-minor axis. Note

that the ends of the

semi-minor axes are

regularly spaced.
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Example 1.1 Eccentricity and flattening for the orbit of Mars and Kepler’s
doubts.

� The elliptic orbit of Mars is characterised by a = 1.52366a.u. (astronomical
units) and e = 0.093412. The orbit looks almost circular:

b/a =
√
1− e2 =

√
0.099564 = 0.99782 =⇒ f = 0.0022 ,

and the relative difference between a and b is 0.22%. However, the distance
between the center of the almost circular ellipse and the focus (the Sun) is
significant:

c = ea = 0.14233 a.u.

This means that the distance fromMars to the Sun varies between 1.38133a.u.
at perihelion and 1.66599a.u. at aphelion.

In 1600, Kepler thus formulated what was to be his first law (in 1609):
the orbit of Mars is circular and the Sun is not at its center. Kepler used the
notion of ellipse from 1603. He later wrote:

I originally assumed that the orbits of the planets were perfect circles. This mistake
cost me all the more time and effort in that it was supported by the authority of all
the philosophers and was indeed quite plausible from a metaphysical point of view.

Figure 1.9 is one of Kepler’s drawings, taken from Astronomia Nova, in which
he shows the orbits of Mercury, Venus, the Earth, and Mars (relative to the
Sun). They are almost circular.9 However, the orbit of Mars is quite clearly off
center, as is Mercury’s. See also the historical note on Kepler and the planet
Mars at the end of Chap. 15. �

Example 1.2 Calculating the lengths b and c for an ellipse specified by a and
e in the case of the almost circular orbit of the satellite MetOp-A.

� The ellipse representing the orbit of the satellite MetOp-A is specified by
its semi-major axis a = 7,195,606m and its eccentricity e = 0.0011655. With
this value of the eccentricity, we obtain

√
1− e2 =

√
1− 1.3584× 10−6 = 1− 0.6792× 10−6 ,

9To illustrate this property, V.I. Arnold suggests the following experiment in one of his
books: Drop a droplet of tea close to the center of the cup. The waves will come together
at the symmetric point. This is due to the definition of the foci of the ellipse, which implies
that waves coming from one focus of the ellipse will converge at the other.
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Fig. 1.9 :Positions of Mars in a heliocentric frame. The planet is observed at four

different dates separated by time intervals that are multiples of the sidereal period of

revolution (687 days). Mars is then in the same position relative to the stars. Kepler

calculated the positions of the Earth at these dates and deduced the eccentricity of the

Earth orbit. He was thus able to reconstruct the orbits of all the planets. The orbit

of Mars appears almost circular but significantly off center. The orbits of Mercury,

Venus, and the Earth (with the Moon) are also shown. They look circular, but the

Sun is not exactly at the center. It is interesting to note that the printers of the day

were averse to completely white regions in drawings, so the empty parts of illustra-

tions were systematically adorned with little flowers. J. Kepler: Astronomia Nova,

Chap. XXVII, p. 149.
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and hence a − b = fa = 4.9m. We thus obtain the following values for a, b,
and c :

a = 7,195,606m , b = 7,195,601m , c = ea = 8,386m .

In conclusion, the orbit is almost circular since the difference between a and
b is only 5m for a total of 7,200km. However, the value of c, which measures
the distance between the center of the ellipse and the focus is 8.4 km, which
would be significant in any calculation of the altitude of the satellite. �

1.2 Applications and Other Characteristics

1.2.1 Arc Length of an Ellipse

The affine transformation of the circle (O; a) (see Fig. 1.10) with axis Ox,
orthogonal direction, and ratio b/a gives the ellipse (O; a, b). The coordinates
of N on the circle and M on the ellipse can be expressed in terms of the polar
angle10 u, centered on O :

ON =

(
a cosu
a sinu

)
, OM =

(
a cosu
b sinu

)
. (1.29)

y

N

M

A
O

e = 0.75

u ψ

x

Fig. 1.10 :Ellipse and

principal circle, show-

ing the angles u and ψ

to the center and the

arc AM of the ellipse.

10This angular parameter u corresponds to the parametric (or reduced) latitude u in
geodesy or Kepler’s eccentric anomaly E in astronomy, as we shall see later on.
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Arc Length

To obtain the arc length of an ellipse, measured from an arbitrary origin,
we first calculate the element ds of the curvilinear abscissa in terms of dx
and dy :

ds2 = (a2 sin2 u+ b2 cos2 u) du2 = a2(1− e2 cos2 u) du2 .

The arc length of the ellipse between A (u = 0) and M (u = α) is then
obtained by integration:

s(α) = a

∫ α

0

√
1− e2 cos2 udu . (1.30)

The value of s(α) cannot be expressed in terms of simple analytic functions.
This integral11 is an incomplete elliptic integral of the second kind. It can be
obtained as the limit of an infinite series.

Perimeter of the Ellipse

The perimeter L of an ellipse is obtained as a complete elliptic integral of
the second kind:

L = 4a

∫ π/2

0

√
1− e2 cos2 udu , (1.31)

which has no simple analytic representation. Expanding in powers of the ec-
centricity, we obtain Lambert’s formula:

L = 2πa

[
1−
(
1

2

)2
e2

1
−
(
1× 3

2× 4

)2
e4

3
−
(
1× 3× 5

2× 4× 6

)2
e6

5
+ · · ·

]
. (1.32)

For this elliptic integral, there are several approximate formulas with varying
degrees of complexity and which become more accurate as the eccentricity e
decreases. The simplest approximate result is the one provided by Euler:

L � π
√
2(a2 + b2) , (1.33)

or again,

L � π

[
3

2
(a+ b)−

√
ab

]
. (1.34)

11Such integrals are classified into three kinds. Those of the second kind have the form

E(φ, k) =

∫ φ

0

√
1− k2 sin2 ϑ dϑ ,

with parameter k such that 0 < k2 < 1. These elliptic integrals are said to be incomplete
when φ is arbitrary. When φ = π/2, one speaks of complete elliptic integrals.
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For greater accuracy, we may use the formulas given by Ramanujan12:

L � π
[
3(a+ b)−

√
(a+ 3b)(3a+ b)

]
,

or again,

L � π(a+ b)

(
1 +

3h

10 +
√
4− 3h

)
, where h =

(
a− b

a+ b

)2

.

To first order in f , all these formulas are equivalent to

L � π(a+ b) = 2πa

(
1− f

2

)
� 2πa

(
1− e2

4

)
, (1.35)

which amounts to considering the ellipse as a circle with radius equal to the
arithmetic mean of the two semi-axes of the ellipse.13

1.2.2 Radius of an Ellipse

The radius of an ellipse is the distance from an arbitrary point M on the
ellipse to its center O. This radius is denoted Rψ, since it is not constant but
varies with ψ. The polar coordinates centered on O (see Fig. 1.10) are

Rψ = ‖OM‖ , ψ = (Ox,OM) .

The Cartesian coordinates of M , viz.,

OM =

(
x = Rψ cosψ
y = Rψ sinψ

)
, (1.36)

give, using (1.10),

R2
ψ

(
cos2 ψ

a2
+

sin2 ψ

b2

)
= 1 .

12Srinivâsa Aiyangâr Râmânujan (1887–1920) was a highly original Indian mathemati-
cian, considered as a genius in his field. He taught himself mathematics using a compendium
of 6,000 theorems, most of which were given without proof. From the age of 17, and in par-
ticular during his time in England between 1913 and 1919, he established hundreds of
formulas which he noted down without proof in his notebooks. His intuition and memory
were astonishing. He worked on number theory, elliptic integrals, Bernoulli numbers, and
so on. Ramanujan established the values of π and e using continued fractions, series, or
extremely concise formulas.

13In the words of Kepler: “Any elliptic circumference is very close to the arithmetic mean
between the circle of longest diameter and the circle of shortest diameter.” Astronomia
Nova, Chap. LIX, p. 287. He considered only the elliptic orbits of the known bodies.
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Then, in terms of the flattening f , the radius Rψ of the ellipse is

Rψ =
a√

cos2 ψ +
sin2 ψ

(1 − f)2

, (1.37)

and in terms of the eccentricity e,

Rψ =
a
√
1− e2√

1− e2 cos2 ψ
. (1.38)

For small flattening (f � 1), we have

Rψ � a
(
1− f sin2 ψ

)
, or Rψ � a

(
1− e2

2
sin2 ψ

)
. (1.39)

1.2.3 Radius of Curvature of an Ellipse

Any curve can be approximated near one of its points (provided it is not
a cusp), over an infinitesimal interval, by a circle known as the osculating
circle. Its radius ρ is the radius of curvature. The locus of the centers of these
osculating circles is called the evolute of the curve. Equivalently, we may define
the evolute of a plane curve as the envelope of all the normals to this curve
(see Fig. 1.11). It can be shown that, at a given point, the osculating circle is
unique.

Consider an ellipse specified by the angular parameter u. Let M be a point
on the ellipse and M ′ the corresponding point on the evolute. This means that
the circle of center M ′ and radius ρ = ‖M ′M‖ is tangent to the ellipse at
M . The vector M ′M is normal to the ellipse at M .

The normal at point M , with parameter u, is written in the following way
in terms of the coordinates X and Y :

aX

cosu
− bY

sinu
− c2 = 0 . (1.40)

The parametric equation of the evolute is obtained by determining the two
unknowns X and Y using two equations: the equation of the normal given
by (1.40) and the derivative of this equation with respect to u. These can be
written

aX sinu− bY cosu = c2 sinu cosu ,

aX cosu+ bY sinu = c2(cos2 u− sin2 u) ,
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M

F

f = 0.200 e = 0.600

M�
F�

Fig. 1.11 :Radius of curvature of an ellipse. M is an arbitrary point on an ellipse

with foci F and F ′. M ′ is the center of the osculating circle of the ellipse at M .

When M moves around the ellipse, M ′ describes the evolute of the ellipse. This

diagram illustrates another property of the ellipse: MM ′ bisects the angle FMF ′, so
any ray of light passing through F will pass through F ′ after reflection on the ellipse.

and we obtain

aX = c2 cos3 u , bY = c2 sin3 u .

In short, the coordinates of M and M ′ can be written in the form

OM =

(
a cosu
b sinu

)
, OM ′ =

⎛
⎜⎝

a2 − b2

a
cos3 u

a2 − b2

b
sin3 u

⎞
⎟⎠ . (1.41)

The evolute of the ellipse shown in Fig. 1.12 (upper) is the curve A′B′C′D′

with four cusps. It is the affine transformation with axis Ox, direction orthog-
onal, and ratio −b/a, of the astroid with equation(

A cos3 u
A sin3 u

)
, where A =

a2 − b2

a
=

c2

a
= ae2 .

The components of the vector MM ′ can be calculated from (1.41):

M ′M =

⎛
⎜⎜⎝

(
a sin2 u+

b2

a
cos2 u

)
cosu(

b cos2 u+
a2

b
sin2 u

)
sinu

⎞
⎟⎟⎠= (a2 sin2 u+ b2 cos2 u)

⎛
⎝
cosu

a
sinu

b

⎞
⎠ .

(1.42)
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Fig. 1.12 :Relationship

between an ellipse and

its evolute. Upper: The

straight line joining

A′ and B′, centers

of curvature for A

and B, respectively,

passes through I and

is perpendicular to

the diagonal JL of the

rectangle IJKL, a rect-

angle with sides 2a and

2b, center O, escribed

on the ellipse. Lower:

The same construction

for different values

of the eccentricity

between e= 0.10 and

e= 0.90, in steps of

0.20. The semi-major

axis remains constant.

We deduce the value of the radius of curvature ρ = ‖M ′M‖:

ρ =
(a2 sin2 u+ b2 cos2 u)3/2

ab
. (1.43)
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We note the particular values for the points A′ and B′ :

u = 0 =⇒ OA =

(
a
0

)
, OA′ =

⎛
⎝ a2 − b2

a
0

⎞
⎠ , A′A =

⎛
⎝ b2

a
0

⎞
⎠ ,

u =
π

2
=⇒ OB =

(
0
b

)
, OB′ =

⎛
⎝ 0

b2 − a2

b

⎞
⎠ , B′B =

⎛
⎝ 0

a2

b

⎞
⎠ .

The radius of curvature varies between two extreme values:

• maximal for B and D, with ρ = a2/b ,
• minimal for A and C, with ρ = b2/a .

Let IJKL be the rectangle with center O, sides 2a and 2b, in which the ellipse
is inscribed (see Fig. 1.12 upper). Using the coordinates of the various points
calculated above, we obtain the following relations:

BI

BB′ =
b

a
,

OA′

OB′ =
b

a
, JL =

(
+2a
−2b

)
,

which show that:

• The straight line A′B′ passes through I.
• The diagonal of the rectangle which does not pass through I is perpendic-

ular to A′B′.

Figure 1.12 (lower) shows this property for a range of eccentricities.



Chapter 2

Geodesy

2.1 Earth Ellipsoid

2.1.1 Different Definitions of Latitude

Spherical Coordinates

Consider an orthonormal Cartesian frame (O;x, y, z). A point M in space
can be identified by the three spherical coordinates r, ψ, λ, defined in the
following way. We select one axis Oz and project M to M ′ on the plane xOy
perpendicular to Oz passing through O. We then set

r = ‖OM‖ , ψ = (OM ′,OM) , λ = (Ox,OM ′) ,

where the ranges of the three coordinates are

r ∈ [0,∞) , ψ ∈
[
−π

2
,+

π

2

]
, λ ∈ [0, 2π) .

The Cartesian coordinates of the pointM can be expressed as follows in terms
of the spherical coordinates:

OM =

⎛
⎝x = r cosψ cosλ

y = r cosψ sinλ
z = r sinψ .

⎞
⎠ . (2.1)

Now consider a sphere of radius R, centered on O. If this sphere is a represen-
tation of the (spherical) Earth, the geometric quantities defined above have
geographic significance:

• Oz is the polar axis and xOy is the equatorial plane.
• The distance r = R+ h is often specified by the altitude h.
• ψ is the latitude and λ is the longitude.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 2,
© Springer International Publishing Switzerland 2014
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Fig. 2.1 :British stamp issued in June 1984 to com-

memorate the 100th anniversary of the adoption of the

Greenwich Meridian as Longitude Zero for the Earth.

Created by Sedley Place Design.

Latitude and longitude are quite generally defined here in spherical coordi-
nates. Circles passing through both poles are meridians (loci of points of
constant longitude). Circles parallel to the equatorial plane are called paral-
lels (loci of points at constant latitude), and the parallel in the equatorial
plane is the equator. The meridians are great circles, while all the parallels
apart from the equator are small circles.1

We apply the following conventions:

• The polar axis is oriented from the South Pole to the North Pole.
• The meridian plane xOz serving as origin is called the prime meridian,

zero meridian, or (see Fig. 2.1) Greenwich meridian.2

• Longitudes are measured in the right-handed trigonometric sense from 0◦

to 360◦ or from −180◦ to +180◦, which gives values [+E/−W], i.e., positive
for the east and negative for the west.

1If they intersect at all, a sphere and a plane intersect in a circle. If the plane passes
through the center of the sphere, the circle in question is a great circle, otherwise it is a
small circle.

2When it was officially chosen as prime meridian at the International Meridian Confer-
ence, held in Washington in 1884, the meridian passing through the Royal Observatory in
Greenwich was already being used in most shipping charts (the British delegate declared
at the time that, in terms of sheer tonnage, 72% of world shipping trade was using charts
based on Greenwich). On the other hand, when it came to land charts, there was a multitude
of different zero meridians. Naturally, France used the Paris meridian set down by Cassini,
which passed through the Paris Observatory. Italy referred to the meridian in Rome, Russia
to the one in Pulkovo, and so on. The meridian which passes through El Hierro Island (Isla
de el Hierro), the westernmost island of the Canaries, and hence the westernmost point
known to Europe before the discovery of the Americas, had the advantage that it gave only
positive longitudes at the time. It had often been used in Europe in the seventeenth and
eighteenth centuries. Even in the nineteenth century it was still to be found on several maps
from central Europe.
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Ellipsoid Year a (m) 1/f (dimensionless)

Delambre 1810 6, 375, 653 334
Airy 1830 6, 376, 542 299.3
Everest 1830 6, 377, 206.4 300.8017
Bessel 1840 6, 377, 397.16 299.1528
Clarke I 1866 6, 378, 206.4 294.9787
Clarke II 1880 6, 378, 249.2 293.4660
Hayford International 1924 6, 378, 388.2 297
Krassowsky 1942 6, 378, 245 293.3

AIG67 1967 6, 378, 160 298.2471
WGS72 1972 6, 378, 135 298.26
GRS80 1980 6, 378, 137 298.257222101
WGS84 1984 6, 378, 137 298.257223563

GEM-T2 1990 6, 378, 137 298.257
EGM96 1996 6, 378, 136.30 298.25765
GRIM5 2000 6, 378, 136.46 298.25765
EIGEN 2008 6, 378, 136.46 298.25765
EGM2008 2008 6, 378, 136.46 298.25765

Table 2.1 :Reference ellipsoids used in geodesy (with year of application). Changing

estimates of the values of the semi-major axis a and the flattening f . The ellipsoids

are divided into three chronological groups: (a) now historical ellipsoids, (b) ellipsoids

from the satellite era, and (c) ellipsoids relating to geopotential models.

• Latitudes are measured in the right-handed trigonometric sense from−90◦

to +90◦, which gives values [+N/−S], positive for the north and negative
for the south.

Coordinates on the Ellipsoid

Let us now model the Earth as an ellipsoid of revolution, with the polar
axis as the axis of revolution. Consider a pointM on the surface of the ellipsoid
(the notion of altitude relative to this ellipsoid will be considered later). The
intersection of an arbitrary meridian plane with the ellipsoid will be an ellipse
with center O. We set a = OA and b = OB (see Fig. 2.2), where A is a point
on the equator and B is the North Pole. The plane xOz is the meridian plane.

The semi-major axis a is the equatorial radius Re and the semi-minor axis
b is the polar radius Rp. This ellipse, and hence also the Earth ellipsoid, is
thus determined by two quantities. We choose a and the flattening f (see
Table 2.1).

From the symmetry of revolution, the point M can be identified by the
longitude specified on the sphere, but for the latitude, we must think again.
Indeed, the latitude was obtained historically by measuring angles between
the directions of carefully selected stars and the local horizontal plane (or
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N

M

x�

z�

e = 0.55

M�
I

A T xHO

u
ψ j

B

J

z

Latitude Symbol Reference direction Angle

Geocentric ψ Center of the Earth ψ = (OA,OM)
Geodetic ϕ Normal to the ellipsoid ϕ = (OA, IM)
Geographic ϕ′ Normal to the geoid ϕ′ = (OA, [plumb line at M ])
Parametric u Center of the Earth u = (OA,ON)

Fig. 2.2 :Different definitions of latitude at a point M .

the direction of a plumb line, which is perpendicular to it). In Fig. 2.2, the
latitude of the point M corresponds to the angle between the sightline to the
north (say, the pole star, sightline MN , parallel to the polar axis OB) and
the tangent to the ellipse at M . This angle is equal to ϕ = (OA, IM ), angle
between the normal to the ellipse and the equatorial radius, called the geodetic
latitude.3

The geographic latitude, also called the astronomical latitude, which is mea-
sured “in the field”, takes the plumb line as reference, rather than the normal
to any theoretical ellipsoid of reference. The plumb line hangs perpendicu-

3The word “geodesy” comes from the New Latin geodesia, as attested in the sixteenth
century. This in turn came from the Greek, and in particular from the prefix geo-, � � ̃�

� ̃	, meaning “the Earth” or “the country”, and -desy, � #�́�	� #����́	, meaning “share”, in
the sense of equal shares distributed at mealtimes.
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lar to the equipotential surface represented by the local geoid. The difference
between geodetic and geographical latitude, known as the deviation from the
vertical, is at most 3 s of arc in regions where the geoid is particularly “un-
even”. This difference must be taken into account for certain very accurate
measurements that will not be considered in this book.

The geocentric latitude ψ at the point M is defined relative to the center of
the Earth: ψ = (OA,OM). This angle is used in particular to specify satellite
positions. The various definitions of latitude are summarised in Fig. 2.2.

To find the relation between ψ and ϕ, we introduce yet another latitude
with a purely geometric role, namely the parametric latitude u (see Fig. 2.2).
Consider the principal circle of the ellipse. The parallel to Oz passing through
M cuts the principal circle atN , a point used to define the parametric latitude
by u = (OA,ON).

The point M is obtained from N by an affine transformation with axis
Ox, direction Oz, and ratio b/a. We thus have

tanψ =
b

a
tanu . (2.2)

The affine transformation conserves contact: it transforms the tangent to the
circle at N to the tangent to the ellipse at M . These tangents cut the axis Ox
at the same point T . The angle (TO,TM) is complementary to ϕ and the
angle (TO,TN ) is complementary to u. This gives

tanϕ =
a

b
tanu . (2.3)

We deduce the relation between the two latitudes from (2.2) and (2.3), using
f or e :

tanϕ =
tanψ

(1− f)2
=

tanψ

1− e2
. (2.4)

These three latitudes always have the same sign at any given location. Their
absolute values are ordered as follows:

|ϕ| � |u| � |ψ| ,
with equality only at the equator or the poles.

For small values of the flattening (f � 1), (2.4) yields

tanϕ � (1 + 2f) tanψ .

Setting δϕ = ϕ− ψ and expanding tan(ϕ− ψ), we obtain

tan(ϕ− ψ) =
tanϕ− tanψ

1 + tan2 ψ
� 2f tanψ cos2 ψ = f sin 2ψ .

With these small-angle approximations, the difference between the angles be-
comes

δϕ � f sin 2ϕ . (2.5)
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Its maximum value δϕ0, reached when ϕ = ±π/4, latitude 45◦ North or South,
is equal to

δϕ0 =

⎧⎨
⎩

f = 0.0035281 (in radians) ,
f × 180/π = 0.19210 (in degrees) ,
f × 3600× 180/π = 692 (in arc sec) .

(2.6)

Example 2.1 For the planet Earth, calculate the difference between the equa-
torial and polar radii, and the maximal difference of latitude δϕ0.

� Consider the values of the Earth ellipsoid WGS84 (World Geodetic System
1984, revised in 2004, and updated by EGM96) given in Table 2.1. The values
required here are Re = a, Rp = a(1− f), with f = 0.00335281:

Re = 6, 378, 137.000m , Rp = 6, 356, 752.314m .

The difference between the two radii is

δR = Re −Rp = fRe = 21.285 km .

For the maximal difference in the latitude values, we obtain

δϕ0 = f = 3.35 mrad = 0.19◦ = 11′ 32′′ = 692′′ ,

which represents a difference δ�0 in the field given by

δ�0 � Reδϕ0 � fRe = 21.3 km .

Note therefore that, as long as f is much smaller than unity, the values of δR
and δ�0 are the same, because they are equal to fRe. �

From (2.4), we obtain

tan(ϕ− ψ) =
fo sin 2ϕ

1 + fo cos 2ϕ
with fo =

e2

2− e2
. (2.7)

A more accurate expansion gives

ϕ− ψ = fo sin 2ϕ− f2
o

2
sin 4ϕ+

f3
o

3
sin 6ϕ+ ... , (2.8)

ϕ− ψ = fo sin 2ψ +
f2
o

2
sin 4ψ +

f3
o

3
sin 6ψ + ... . (2.9)

For the Earth (WGS84):

δϕ = 692.72622 sin2ϕ− 1.16324 sin4ϕ+ 0.00260 sin6ϕ− 0.00001 sin8ϕ ,
(2.10)

with δϕ = ϕ− ψ in arc sec.
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2.1.2 Cartesian Coordinates: Great Normal

In a Cartesian frame (O;x, z), it is straightforward to express the coordi-
nates of M in terms of the latitudes u or ψ, as in (1.29) or (1.36). But the
geodetic latitude ϕ has the greater practical value. We use (2.3) to express
the relation between u and ψ, while bringing in the eccentricity:

1

cos2 u
= 1 + tan2 u = 1 + (1 − e2) tan2 ϕ

=
1

cos2 ϕ
− e2 tan2 ϕ =

1

cos2 ϕ
(1 − e2 sin2 ϕ) ,

whence

a cosu = a cosϕ
(
1− e2 sin2 ϕ

)−1/2
.

Furthermore,

sinu = tanu cosu =
b

a
tanϕ cosϕ

(
1− e2 sin2 ϕ

)−1/2
,

whence, using the relation b2/a = a(1 − e2),

b sinu = a(1− e2) sinϕ
(
1− e2 sin2 ϕ

)−1/2
.

Equation (1.29) thus gives

OM =

⎛
⎜⎜⎜⎜⎝

x = a
cosϕ√

(1 − e2 sin2 ϕ)

z = a
(1− e2) sinϕ√
(1− e2 sin2 ϕ)

⎞
⎟⎟⎟⎟⎠ . (2.11)

The normal to the ellipse at M cuts the axis z′Oz at I. In geodesy, the length
IM is sometimes called the great normal (see Fig. 2.2). It is denoted by N .

Since x = IM cosϕ, we deduce the value of N from (2.11):

N =
a√

1− e2 sin2 ϕ
, (2.12)

and the plane Cartesian coordinates of M can be written in the form

OM =

(
x = N cosϕ

z = N (1− e2) sinϕ

)
. (2.13)

We can now obtain the coordinates of I, where OI = z −N sinϕ :

OI =

(
0

−N e2 sinϕ

)
. (2.14)



32 Chapter 2. Geodesy

The coordinates (geodetic latitude ϕ, longitude λ) of M on the ellipsoid are
therefore

OM =

⎛
⎝ x = N cosϕ cosλ

y = N cosϕ sinλ
z = N (1− e2) sinϕ

⎞
⎠ . (2.15)

2.1.3 Radius of Curvature

The center of the radius of curvature M ′ lies between I and M . We use
(1.43) to calculate ρ as a function of ϕ. To begin with,

a2 sin2 u+ b2 cos2 u = a2(1− e2 cos2 u) = a2
1− e2

1− e2 sin2 ϕ
,

whence we obtain ρ(ϕ) as

ρ = a
1− e2

(1− e2 sin2 ϕ)3/2
, (2.16)

which can also be written

ρ = N 1− e2

1− e2 sin2 ϕ
. (2.17)

For small values of the flattening, (2.16) becomes

ρ

a
� 1 +

(
3

2
sin2 ϕ− 1

)
e2 . (2.18)

In this case, the radius of curvature is equal to the equatorial radius, whatever
the value of e, for two values of the latitude, viz., ϕ = ± arcsin

√
2/3 :

ρ = a ⇐⇒ ϕ � 54.7◦N or 54.7◦S . (2.19)

2.1.4 Radius of the Ellipse

The “natural” variable to use for the radius of the ellipse, denoted Rψ, is
the geocentric latitude ψ, as we saw previously [see (1.38) on p. 20]. However,
if we wish to express this radius as a function of the geodetic latitude ϕ, the
resulting formula is more involved:

Rψ(ϕ) = a

√
(1− e2)

2
sin2 ϕ+ cos2 ϕ√

1− e2 sin2 ϕ
= N

√
(1− e2)

2
sin2 ϕ+ cos2 ϕ .

(2.20)

Note the relation obtained with the projection of OM on the axis Ox :

Rψ cosψ = N cosϕ . (2.21)
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Fig. 2.3 :Different radii relating to the Earth ellipsoid: radius of curvature ρ in the

meridian plane, the great normal N , and the radius of the ellipsoid Rψ.

2.1.5 Degrees of Latitude and Longitude

Distance Along a Meridian or a Parallel

Let us return to the Earth ellipsoid and evaluate the distance correspond-
ing to an infinitesimal increase in the latitude (or the longitude) along a
meridian (along a parallel). Along a meridian, a change dϕ in geodetic lati-
tude will correspond to an elliptical arc dLM, identified at this point with the
arc of the osculating circle, or radius ρM = M ′M [see Fig. 2.2 and (2.16) or
(2.17)]:

dLM = ρM dϕ , with ρM = ρ . (2.22)

Along a parallel, a change dλ in longitude will correspond to a circular arc
dLP in a plane perpendicular to the polar axis, of radius ρP = JM [see Fig. 2.2
and (2.12)]:

dLP = ρP dλ , with ρP = N cosϕ . (2.23)

Figure 2.3 shows the changes in the various radii as a function of the latitude,
whether it be a radius of curvature, like ρ (for ρM) or N (for ρP/ cosϕ), or the



34 Chapter 2. Geodesy

Latitude 1◦ latitude −→ 1◦ longitude Arc Historical

ϕ ΔLM ΔLP/ cosϕ ΔLP L(ϕ) Lh(ϕ)

0 110.574 111.319 111.319 0.000 0.000
5 110.583 111.322 110.899 552.885 553.074

10 110.608 111.331 109.639 1,105.855 1,106.223
15 110.649 111.344 107.550 1,658.990 1,659.520
20 110.704 111.363 104.647 2,212.366 2,213.032
25 110.773 111.386 100.950 2,766.054 2,766.823
30 110.852 111.413 96.486 3,320.114 3,320.946
35 110.941 111.442 91.288 3,874.593 3,875.444
40 111.035 111.474 85.394 4,429.529 4,430.349
45 111.132 111.506 78.847 4,984.944 4,985.683
50 111.229 111.539 71.696 5,540.847 5,541.451
55 111.324 111.570 63.994 6,097.230 6,097.648
60 111.412 111.600 55.800 6,654.073 6,654.255
65 111.493 111.627 47.176 7,211.339 7,211.241
70 111.562 111.650 38.187 7,768.981 7,768.561
75 111.618 111.669 28.902 8,326.938 8,326.162
80 111.660 111.683 19.393 8,885.140 8,883.982
85 111.685 111.691 9.735 9,443.509 9,441.951
90 111.694 111.694 0.000 10,001.966 10,000.000

Table 2.2 :One degree of latitude and longitude as a function of latitude ϕ. Reference

ellipsoid: WGS84. Length ΔLM in km on the meridian for Δϕ = 1 degree of latitude.

Length ΔLP in km on the parallel for Δλ = 1◦ of longitude. Length L of the meridian

arc in km, measured from the equator. A historical value of the arc length Lh is also

given, using the reference ellipsoid of Delambre and Méchain which served to define

the standard metre.

radius of the ellipse, like Rψ(ϕ). Note also the ranges of these variations for
the Earth, between the equator and the pole (all monotonic in [0, π/2]):

• ρ varies between b2/a and a2/b, i.e., between 6, 335.439 and 6, 399.594km.
• N varies between a and a2/b, i.e., between 6, 378.137 and 6, 399.594km.
• Rψ varies between a and b, i.e., between 6, 378.137 and 6, 356.752km.

Change of One Degree

It is perhaps more meaningful to replace the infinitesimal change of angle
by a change of one degree,4 which remains small compared with the whole
circumference. Table 2.2 gives the value ΔLM for the length along the meridian
of an arc of 1◦ around a central value ϕ of the geodetic latitude. Likewise, ΔLP

4In the navy, the nautical mile is defined as the distance equivalent to 1′ of arc of
latitude, with the relation 1 nautical mile = 40×106/(360×60) = 1 851.851m. The second
of arc is equivalent to 1′′ = 1 nm/60 = 30.864m. The speed is obtained directly in nautical
miles per hour by spacing knots every 15.432m (equivalent to 0.5′′ of arc) and measuring
the rate at which the knots go by for a period of 30 s (or 0.5min).
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is the length along the parallel ϕ of an arc of 1◦ longitude. It is interesting to
compare ΔLP/ cosϕ with ΔLM (Fig. 2.4).

2.1.6 Meridian Arc Length

Arc Length of an Ellipse

In the general case, the length of arc of the ellipse, which we denote by
L(ϕ), is calculated as an incomplete elliptic integral of the second kind, as
in (1.30). Such integrals are usually carried out with the help of expansions
using the Wallis integrals.

For a small value of the flattening, Levallois notes that direct integra-
tion gives results that are just as accurate and which converge more quickly.
Consider an element dLM of the meridian arc:

dLM = ρ dϕ = a(1− e2)(1 − e2 sin2 ϕ)−3/2 dϕ .

This can be expanded as follows:

dLM � a(1 − e2)

(
1 +

3

2
e2 sin2 ϕ+

15

8
e4 sin4 ϕ+

105

48
e6 sin6 ϕ+ · · ·

)
dϕ ,
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noting that terms in e8 and beyond, neglected here, contribute less than 1mm
in the arc length of the Earth meridian. The sine functions are linearised using
the Moivre formula:

2 sin2 ϕ = 1− cos 2ϕ , 8 sin4 ϕ = 3− 4 cos 2ϕ+ cos 4ϕ ,

32 sin6 ϕ = 10− 15 cos2ϕ+ 6 cos 4ϕ− cos 6ϕ .

We thus obtain an expression for dLM that can be integrated term by term
from 0 up to the latitude ϕ :

L(ϕ) =
∫ ϕ

0

dLM . (2.24)

The meridian arc length L(ϕ) is then

L(ϕ) � a(1− e2)A(ϕ) , (2.25)

where

A(ϕ) = A0ϕ− 3

8
A2e

2 sin 2ϕ+
15

256
A4e

4 sin 4ϕ− 35

3072
A6e

6 sin 6ϕ

and

A0 = 1+
3

4
e2 +

45

64
e4 +

175

256
e6 ,

A2 = 1 +
5

4
e2 +

175

128
e4 , A4 = 1 +

7

4
e2 , A6 = 1 .

A length of great historical importance was the quarter meridian, i.e., the arc
length of the meridian from the equator to the pole:

L
(π
2

)
=

π

2
a(1− e2)A0 . (2.26)

Expanding to second order in e, this yields

L
(π
2

)
� π

2
a

(
1− e2

4

)
� π

2
a

(
1− f

2

)
=

π

2

a+ b

2
, (2.27)

already given in (1.35). For the Earth,

e2 � 1/150 � 6.7× 10−3 , e4 � 1/22500 � 4.4× 10−5 .

Lengths of the Meridian and the Equator

The full length of the meridian LM going right around the globe (the
ellipsoid) and the full length of the equator LP/equator are

LM = 2πa(1− e2)A0 , LP/equator = 2πa .

Numerical values are given in Table 2.3.
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Ellipsoid Length of the Length of the
meridian (m) equator (m)

Delambre and Méchain 40, 000, 000 40, 059, 944
(creation of the metre)

WGS84 40, 007, 864 40, 075, 016
(and current ellipsoids)

Table 2.3 :Lengths of the meridian and the equator. Historical values (definition of

the metre) and current values, in metres.

2.2 Altitude Relative to the Ellipsoid

2.2.1 Definition of Geodetic Altitude and Nadir

Consider a point S above the ellipsoid at a distance r from the point O
at the center of the ellipsoid (see Fig. 2.5). Its longitude is λ. If S is identified
by the geocentric latitude ψ = (Ox,OS), its Cartesian coordinates are, as
obtained in (2.1),

OS =

⎛
⎝x = r cosψ cosλ

y = r cosψ sinλ
z = r sinψ

⎞
⎠ . (2.28)

The point T is the intersection of OS and the ellipsoid. If S is identified by
the geodetic latitude ϕ = (Ox, IS), its Cartesian coordinates are, adapting
(2.15) and denoting the great normal by N = IS,

OS =

⎛
⎝ x = (N + h) cosϕ cosλ

y = (N + h) cosϕ sinλ
z =
[
N (1 − e2) + h

]
sinϕ

⎞
⎠ , (2.29)

where h = SN is called the geodetic altitude or ellipsoidal height, that is, the
distance between the point S and the base N of the normal to the ellipsoid.

In the terminology of space mechanics, S represents a satellite, O the center
of attraction (the center of the Earth), T the ground track (or geocentric
ground track), and N the nadir5 (or geodetic ground track, or subsatellite
point).

2.2.2 Latitude Related to Geodetic Altitude

The angles used to determine these quantities are shown in Fig. 2.5. Note
that, although ψ and ϕ are both related to the point S, these angles do not
refer to the same point on the surface of the ellipsoid.

5The nadir is the direction given by the vertical, but in the downward direction. The
opposite direction is the zenith. The word “nadir” comes from the Arabic nād. ir, from the
root of the verb “to look towards”.
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Symbol Latitude Latitude Angle

ψ Geocentric, of T Geocentric, of S ψ = (Ox,OS)

ϕT Geodetic, of T – ϕT = (Ox, I′T )

ψN Geocentric, of N – ψN = (Ox,ON)

ϕ Geodetic, of N Geodetic, of S ϕ = (Ox, IS)

Fig. 2.5 :Representation of the geodetic latitude ϕ and the geocentric latitude ψ of the

point S. Shown are the ground track T and the nadir N , together with the geodetic

altitude or ellipsoidal height SN .

The point S is considered to be perfectly determined in space by its Carte-
sian coordinates (x, y, z), or equivalently by its geocentric spherical coordi-
nates (r, ψ, λ) [see (2.28)]. Regarding its geodetic coordinates (h, ϕ, λ), only
the longitude is easily obtained:

λ = arctan
y

x
, with sign(λ) = sign(y) , for [+E/−W] . (2.30)

It is more difficult to obtain h and ϕ, bearing in mind that they are related. Let
us begin by examining the relationship between the geocentric and geodetic
latitudes of S. Equations (2.28) and (2.29) give

r cosψ = (N + h) cosϕ , r sinψ =
[
N (1− e2) + h

]
sinϕ ,
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whence

tanψ

tanϕ
= 1− N

N + h
e2 , (2.31)

or again,

tanϕ =

(
1− e2

1 + h/N

)−1

tanψ . (2.32)

This immediately shows the limiting values of ϕ :

• For h = 0, tanϕ = (1− e2)−1 tanψ =⇒ ϕ = ϕT .
• For h → ∞, tanϕ = tanψ =⇒ ϕ = ψ .

The geodetic latitude of S lies between the geodetic latitude of the ground
track T and its geocentric latitude.

2.2.3 Determining the Geodetic Altitude and Nadir

The coordinates h and ϕ can be obtained iteratively, by approximation,
or directly. We consider each in turn.

Iterative Method

Let P be the projection of OS on the equatorial plane:

P =
√
x2 + y2 = (N + h) cosϕ , (2.33)

whence the geodetic altitude h is given by

h =
P

cosϕ
−N . (2.34)

The projection of OS on the polar axis Oz is z = P tanψ, and using (2.31),
we have

z

P
=

(
1− N

N + h
e2
)
tanϕ ,

and hence,

ϕ = arctan

[
z

P

(
1− e2

1 + h/N

)−1
]

. (2.35)

We then proceed as shown in Table 2.4. Convergence is very fast. In fact, two
or three iterations give the result to high accuracy.
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◦ 0 ◦ Ellipsoid: a = Re , e2 = f(2− f)

◦ 1 ◦ Data: x, y, z =⇒ P =
√

x2 + y2 , ψ = arctan(z/P )
◦ 2 ◦ Initialisation: ϕ1 = ψ
� 3 � Start loop i = 1, . . . , n

• 4 • Ni = a
(
1− e2 sin2 ϕi

)−1/2

• 5 • hi =
P

cosϕi
−Ni

• 6 • ϕi = arctan

[
z

P

(
1− e2

1 + hi/Ni

)−1
]

• 7 • Test ϕi �−→ � 3 � or � 8 �
� 8 � End loop
◦ 9 ◦ Results

Table 2.4 : Iterative method for obtaining the height h and latitude ϕ of the nadir

(subsatellite point).

Approximation Method

In the triangleONS shown in Fig. 2.5, the angle atO (equal to ψ−ψN) and
the angle at S (equal to ϕ−ψ) are both small, in fact, always less than 0.19◦

for the Earth ellipsoid. This justifies trigonometric approximations leading to
the following formulas:

ϕ = ψ +
f

η
sin 2ψ +

f2

η2

(
1− η

4

)
sin 4ψ , (2.36)

h

Re
= (η − 1) + f

1− cos 2ψ

2
+

f2

η

(
1− η

4

) 1− cos 4ψ

4
, (2.37)

using the reduced distance η defined by

η =
r

a
, (2.38)

where r is the distance OS and a the semi-major axis of the ellipsoid,6 here
a = Re.

Direct Method

The Borkowski algorithm can be used to obtain the values of ϕ and h
directly. It exploits the fact that this problem reduces to a fourth order poly-
nomial equation. This is rather difficult to solve, and indeed, much more in-
volved than the two preceding methods, while the gain in accuracy is almost
negligible. The three methods agree to within 10−4 degrees for the angles.

6Note that η = 1 only corresponds to h = 0 in the equatorial plane for ψ = 0. If we set
η = 1 with ψ = π/2 in (2.37), we obtain h/Re = f , or h = Re − Rp. At the poles, zero
altitude h = 0 corresponds to η = 1− f .
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Some Remarks Concerning Altitude and Latitude

For a given point S, we define the difference in latitude δϕ by

δϕ = δϕ(h, ψ) = ϕ− ψ . (2.39)

We define also the difference in altitude:

δh = δh(h, ψ) = h′ − h , (2.40)

where h′ = ST is the geocentric altitude. Since the tangent to the ellipse
lies outside the ellipse, h′ is always greater than h (h is the smallest distance
between S and the ellipsoid).

With r = OS = OT + TS = Rψ + h′, the relative distance η is equal to
(Rψ + h′)/Re. Using (1.39), we deduce that

h′

Re
= η − Rψ

Re
= (η − 1) + f

1− cos 2ψ

2
+ o(f2) . (2.41)

Comparing (2.39) and (2.36), then (2.41) and (2.37), we see that δϕ is a small
quantity, proportional to f , while δh is another small quantity, proportional to
f2. In the triangle SNT shown in Fig. 2.5, the arc NT is almost proportional
to the angle at S (equal to δϕ), hence proportional to f , whereas the difference
between the sides SN and ST depends, if we write down the distances, on
the square of f .

Figure 2.6 shows the dependence of the latitude difference δϕ = δϕ(h, ψ)
on the latitude (varying from 0◦ to 90◦) and the altitude (varying from 0 to
infinity).

Example 2.2 Calculating the differences δϕ and δh, as defined above, for two
satellites, one in low Earth orbit (LEO) and the other in medium Earth orbit
(MEO).

� For the low Earth orbit (LEO), we choose the satellite SPOT-5 (average
height at the equator 822.3km, inclination i = 98.670◦). Results are given
for latitudes in steps of 15◦, starting from 0◦, the extreme latitude being
|ψ| = 180◦ − i = 81.330◦. We give the three angles ψ (geocentric latitude
of the satellite S), ϕT (geodetic latitude of its ground track T ), ϕ (geodetic
latitude of the nadir N and hence of the satellite S), and also the difference
|δϕ|. In addition, h is the geodetic altitude and h′ the geocentric altitude. The
quantity δh is at most a few metres.

We give the corresponding results for a medium Earth orbit (MEO) satel-
lite, choosing one component of the Navstar/GPS constellation, namely, the
satellite Navstar-2RM-6 (average altitude at the equator 20, 182.3km, incli-
nation i = 55.284◦). The extreme latitude is in this case |ψ| = i = 55.284◦.

All the results are displayed in Table 2.5. Technical data on satellite or-
bits: calculations using Ixion with NORAD initialisation. SPOT-5, Revolution
34006, Date 2008-11-24. Navstar-2RM-6 [PRN 07], Revolution 510, Date 2008-
11-22. �



42 Chapter 2. Geodesy

0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Latitude (degree)

D
iff

er
en

ce
: G

eo
de

tic
 L

at
. -

 G
eo

ce
nt

ric
 L

at
.

(arcminute)

(n. mi.) (km)

Altitude (km)

0
400
800

1250

2500

5000

10000

20000

40000
80000

infinity

Fig. 2.6 :Latitudinal dependence of δϕ = ϕ − ψ, the difference between the geodetic

latitude ϕ and the geocentric latitude ψ, for a point S representing a satellite. Each

curve corresponds to a specific altitude of S, indicated on the right opposite the

highest point of the curve. The value of δϕ is given in arc minutes (ordinate on the

left) and in kilometres corresponding to the distance on the ground (right). Recall

that 1′ of latitude = 1 nautical mile of distance. The variable on the abscissa is

indicated as “latitude” because it is impossible to distinguish the two latitudes for

this coordinate. For each altitude, the maximum is attained at latitude 45◦.

2.3 A Little History

2.3.1 Before the Enlightenment

If humanity had applied the principle of Saint Thomas—seeing is
believing—we would have had to wait for Gagarin before we could say “the
Earth is round”. But fortunately for the human intellect, this fact has been
known for a long time now, and no satellites were involved in discovering or
checking it. However, as we shall see, it is mainly thanks to satellites that we
have been able to refine, to a very high level of accuracy, our knowledge of the
true shape of the Earth, and indeed, the shapes of other planets in the Solar
System.

The oldest description of the real world that has come down to us is to
be found in Homer’s Odyssey. The aoidos describes Ulysses’ return journey,
with his 10 years of wandering in the Mediterranean. The whole trip can be
reconstructed to establish a geographical map of the world as it was perceived
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S ψ ϕT ϕ |δϕ| h h′ δh
(degrees) (degrees) (degrees) (degrees) (km) (km) (km)

L 0.000 0.000 0.000 0.000 822.011 822.011 0.000
14.963 15.059 15.048 0.085 823.341 823.341 0.000
29.957 30.124 30.105 0.148 827.187 827.190 0.003
44.992 45.185 45.162 0.170 832.510 832.514 0.004
59.987 60.153 60.134 0.147 837.849 837.851 0.002
74.905 75.002 74.991 0.086 841.777 841.778 0.001
81.330 81.387 81.381 0.051 842.796 842.796 0.000
−0.022 −0.022 −0.022 0.000 822.631 822.631 0.000

−81.330 −81.387 −81.381 0.051 843.647 843.647 0.000

M 0.000 0.000 0.000 0.000 20,240.459 20,240.459 0.000
14.965 15.061 14.988 0.023 20,235.031 20,235.039 0.008
29.874 30.040 29.914 0.040 20,226.316 20,226.338 0.022
44.981 45.174 45.027 0.046 20,211.941 20,211.969 0.027
55.284 55.464 55.327 0.043 20,184.322 20,184.346 0.023
−0.027 −0.027 −0.027 0.000 20,124.195 20,124.195 0.000

−55.284 −55.464 −55.327 0.043 20,208.988 20,209.010 0.023

Table 2.5 :Geodetic latitude ϕ and geodetic altitude h for two satellites (S), one in an

LEO orbit (L), like SPOT-5, and the other in an MEO orbit (M), like Navstar/GPS.

Comparison with geocentric quantities ψ and h′. Refer to Fig. 2.5 for notation.

in ancient times: a flat disk, surrounded by the World Ocean, a great river
encircling the world.7

Later on, the first suggestion that the Earth might be round also emanated
from Greece. Philosophical theories, as put forward by Aristotle, had clearly
incorporated the fact that, when a boat disappears at the horizon—first the
hull, then the sail—it is because the sea surface is not flat but rounded, while
this was corroborated by scientific theories supported by measurement, as
presented by Eratosthenes with his comparative observation of the noonday
sun in Alexandria and Syene. As far as we know by juggling with the length
units of the day, the value found by this geometer–mathematician–astronomer
for the Earth’s circumference was rather accurate.

From a geographical point of view, the Middle Ages represent a dark pe-
riod. In fact, very dark. The Hereford mappa mundi shows that, by 1300, the
perception of the world had barely evolved since the time of Homer—except
for one significant change: Jerusalem had replaced Delphi as the center of the
world. The so-called T and O maps, from orbis terrarum, represent the land
mass as a T-shape, surrounded by an ocean O. These mappæ mundi reflect
above all the overwhelming obscurantism of the age, founded on and serving
the prevailing religion.

7At the exact center of this circular world was the Temple of Apollo in Delphi. The
name Delphi, �$ %�&�́�� �̃� in Greek, is closely related to the word � #�&�́	� �́�	, which
means “womb”.
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And then there was light. Or rather, the stage was lit again by the likes
of Copernicus, Kepler, and Galileo. The Earth became round again, but this
time it lost its place at the center of the Universe.

2.3.2 A French Affair

In its early stages, from 1666 (the foundation of the Académie des Sciences ,
by Colbert, under Louis XIV) up until around 1810, geodesy was a French
affair, brilliantly developed by the learned assembly and its appendage, the
Paris Observatory. There are really three stages in this fruitful development:

(a) measurement of the Earth’s radius,
(b) measurement of the flattening of the Earth,
(c) definition of the metre.

Picard’s Measurement of the Earth

Father Jean Picard8 carried out the first scientifically serious measurement
of 1◦ of latitude in order to establish the radius of the Earth, which he as-
sumed at the time to be spherical. With precision instruments, he used the
method of triangulation9 invented by the Dutch astronomer and mathemati-
cian Snellius. Picard measured (1669–1671) 1◦ on the meridian from Paris
to Amiens (the so-called Paris meridian). More precisely, he established 13
triangles between Malvoisine to the south and Sourdon to the north, covering
1◦22′, with Villejuif–Juvisy as baseline.10

8Jean–Félix Picard (1620–1683) was a French astronomer and geodesist. He invented the
sighting telescope with crosswires, which allowed him to carry out very accurate surveying,
and in particular, levelling. Having determined the Earth’s radius, as explained in the
main text (Mesure de la Terre, 1671), he immediately communicated his result to Newton,
who was thus able to check the relation between the accelerations and the squares of the
distances, and thereby obtained a clear confirmation of his universal theory of gravitation.
In another area, Picard was the first to carry out systematic measurements of the diameter
of the solar disk. He observed its variations and sought the connection with climate change
on Earth. His series of measurements between 1666 and 1682 was continued by La Hire
from 1683 to 1718.

9Given a straight line distance to be measured in the field, the idea is to consider a chain
of adjacent triangles along the straight line. The apices of the triangles are church towers
or other features that are clearly visible from afar. The angles of these triangles are then
measured, and if the length of one side is known, the lengths of the other two sides can
be deduced by trigonometry. This yields the required distance. The side that is actually
measured is called the baseline.

10In Picard’s own words: “The cobbled road from the mill in Ville–Juive to the pavillion
in Juvisy, a straight line with no significant unevenness, was considered ideal as baseline for
this undertaking.” Its length was very carefully measured in both directions by juxtaposition
of toises. Today, this 11 km section of the D7 (previously the N7), which goes under the
landing strips at Orly airport, is still very straight, apart from one or two recent urban
adjustments. Each end is commemorated by a pyramidal marker stone.
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Fig. 2.7 :Sighting and measurement instruments used for triangulation. Colour plate

(p. 16) taken from La Mesure de la Terre by J. Picard, Paris, 1671.

He found a value of 57,060 toises for 1◦ along the meridian, which corre-
sponds to 6,372km for the radius of the Earth. This is remarkably accurate,
within 0.1% of the exact value. This is certainly due in part to the quality
of the measurements (see Fig. 2.7), but also to the fact that the region mea-
sured is close to latitude 50◦, where the radius of curvature happens to be
practically equal to the radius of the Earth, as can be seen from (2.19).
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Fig. 2.8 :Map of France (by Maraldi and Cassini de Thury) 1744. Detail of fron-

tispiece. This map shows the rays observed in building up the primary triangulation

network. Cartographic projection: Cassini projection.

From Sphere to Ellipsoid

In 1672, the astronomer J. Richer was sent to French Guiana.11 He noticed
that the mechanical clock he had brought with him, and which had been

11As the radius of the Earth had been known since the previous year, the Academy sent
Jean Richer to Cayenne to observe the parallax of Mars (the angle subtended by the Earth’s
diameter as viewed from Mars) in a joint effort with Picard, who had remained in Paris.
By thus measuring the distance to Mars, Kepler’s third law allows one to deduce the sizes
of the planetary orbits. So the length scale of the whole Solar System was at this point
underpinned by the Villejuif–Juvisy baseline!
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scrupulously adjusted to “beat seconds” at the Paris Observatory, was losing
2min every day (the expression battre la seconde in French indicates that the
period is 2 s). He attributed this failing to a reduction in weight, and for him
this could have only one explanation: the equator was further from the center
of the Earth than Paris. He thus suggested that the Earth was flattened.

Shortly afterwards, Newton and Huygens independently showed, in 1687
and 1690, that if the Earth’s innards were more or less fluid, its daily rotation
ought to transform the sphere into an ellipsoid, flattened along the polar axis.
Newton obtained a value of f = 1/230 by considering a uniform distribution
of matter within the ellipsoid, while Huygens obtained f = 1/576 by assuming
that the mass of the Earth was concentrated in a central core.

In 1668, J.D. Cassini12 observed the flattening phenomenon on Jupiter,
which is indeed considerably flattened along the polar axis (f = 1/18), and
he measured it later for Saturn.

To measure the flattening effect on Earth, the French Academy of Sciences
decided in 1683 to extend the Picard meridian to the north as far as Dunkerque
and the south to Collioure, whence it would extend right across France. This

12The name Cassini will come up several times during this section. Indeed, there was a
genuine dynasty of outstanding astronomers, often numbered with Roman numerals like
the crowned heads of Europe:

• Gian Domenico Cassini (1625–1712), known to the French as Jean Dominique Cassini,
or Cassini I, was actually of Italian origin (from Nice). He soon became famous for his
work on geodesy, and especially on astronomy, with his very accurate observations of
the planets Mars and Jupiter. He set up tables of the Galilean moons of Jupiter, a
fundamental step in the determination of longitudes, because the eclipses of these satel-
lites constitute instantaneous signals for an Earth-based observer. So it was really the
“transfer of the century” when Louis XIV called Cassini to Paris in 1669 to entrust him
with the foundation and the running of the Paris Observatory. In 1679, the observatory
began to publish La Connaissance des Temps, a publication that is still alive today and
which lists the positions of the heavenly bodies to the greatest possible accuracy. Cassini
continued his observation of the moons of Jupiter, work which allowed Olaüs Römer
to show that the speed of light was not infinite. He also improved observations of the
Moon and Saturn. This was the Cassini who gave his name to the Cassini Division of
Saturn’s rings and also to the Cassini space probe, designed to explore Saturn and its
environment.

• Jacques Cassini (1677–1756), or Cassini II, was the son of Jean Dominique. He pursued
his father and Picard’s geodetic measurements, but the publication of De la grandeur
et de la figure de la Terre (1722), in which he made a mistake over the flattening of the
Earth, was later to reduce his scientific status. This was the Cassini who instigated the
scientific dispute between the Cassini dynasty and Newton.

• César François Cassini de Thury (1714–1784), or Cassini III, was the son of Jacques.
After assisting his father with his geodetic measurements, he devoted himself to car-
tography. See Fig. 2.8. In 1750, Louis XV asked him to map the whole of the kingdom.
This is the Cassini who is remembered for the Cassini projection and the Cassini map
of France.

• Jacques Dominique Cassini (1748–1845), or Cassini IV, was the son of César François.
He was to finally publish the map of France in 1790.

From 1669 to 1793, the Cassinis ran the Paris Observatory, either officially or unofficially,
each son succeeding his father.
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work was carried out from 1700 to 1718 under the supervision of J. Cassini,
Maraldi, and La Hire, see Fig. 2.8. Measurements implied a degree of latitude
that was longer in the south than in the north. This in turn suggested an
ellipsoid that was stretched along the polar axis, with f = −1/95 (f is negative
if b > a), the opposite of what is shown in Fig. 2.4.

This was the beginning of a 20 year feud between supporters of Newton
and those of the Cassinis: was the Earth shaped like an apple or a lemon?13

Between the north and the south of France, the change in latitude is not
significant enough to be able to obtain a reliable result. On the recommenda-
tion of the French Academy of Sciences, the Count of Maurepas, Secretary of
State for the Marine, sent two expeditions to the geodetic limits of the world,
one polar, the other equinoctial:

• P.L.M. de Maupertuis,14 A.C. Clairaut, and A. Celsius measured 1◦ in
Lapland, on the frontier between Sweden and Finland, in 1736 and 1737.

• L. Godin, C.M. de la Condamine, and L. Bouguer measured 1◦ in Peru (in
a region that has now become part of Ecuador), from 1736 to 1744, under
very difficult conditions.

At the same time, in 1739 and 1740, Cassini de Thury and Father La Caille
went back to Picard’s meridian, and then from 1750 to 1754, La Caille went
to the Cape of Good Hope and measured 1◦ in the southern hemisphere.

We can exploit these results to work out the flattening (see Table 2.6).
Using (2.16), the ratio of two radii of curvature, ρ1 at ϕ1 and ρ2 at ϕ2, yields

ρ1
ρ2

=

(
1− e2 sin2 ϕ2

1− e2 sin2 ϕ1

)3/2

.

Expanding to first order in e2, we obtain

ρ1
ρ2

= 1− 3

4
e2 (cos 2ϕ1 − cos 2ϕ2) .

Since the ratio of the radii of curvature is equivalent to the ratio of the mea-
surements ΔLM for 1◦, and since e2 is almost equal to 2f , this means that

f =
2

3

1−ΔLM1/ΔLM2

cos 2ϕ1 − cos 2ϕ2
. (2.42)

13Traditionally, the contrast is illustrated by: mandarin or lemon? There seems to be an
anachronism here, since the word “mandarin” did not appear in French until 1773.

14Pierre Louis Moreau de Maupertuis (1698–1759), a French physicist, led the expedition
to Lapland. In so doing, he earnt these two graceful lines from Voltaire:

Vous allâtes vérifier en ces lieux pleins d’ennui

Ce que Newton connut sans sortir de chez lui.

[In this soulless landscape you are sure to construe

What Newton in his college lodgings always knew.]

While there is probably no connection with this typical irony, Maupertuis subsequently
published, in 1744, his famous Principe de moindre action (Principle of least action).
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Name of degree Latitude ϕ ΔLM (toises) ΔLM (km)

Lapland +66◦ 20′ 57, 438 111.949
Paris +49◦ 29′ 57, 074 111.239
Peru −01◦ 30′ 56, 746 110.600
Cape −33◦ 18′ 57, 037 111.167

Table 2.6 :Results found for the degree of latitude ΔLM between 1736 and 1754, for

different values of the average latitude ϕ, in degrees [+N/−S]. The value of ΔLM is

given in toises, together with the modern equivalent in kilometres.

If we calculate the flattening from the measurements (ΔLM1, ϕ1) in Peru and
(ΔLM2, ϕ2) in Paris, we obtain

ΔLM1

ΔLM2
= 0.99425 , cos 2ϕ1 − cos 2ϕ2 = 1.15506 ,

=⇒ f =
2

3

5.4769× 10−3

1.15506
= 3.31696× 10−3 =

1

301
.

The measurement at the Cape of Good Hope was not retained. Its value was
overestimated because the vertical was affected by the presence of mountains
nearby.

The calculation of f using the Lapland degree gave results that differed too
much to be accepted by the scientific community (f = 1/123 and f = 1/207),
whereupon the Swedish Academy opted for a new expedition to Lapland in
1801, which would give ΔLM = 57, 196 toises, i.e., 0.42% less than the first
measurement.

The use of (2.42) to calculate f is extremely sensitive to the accuracy of
the measurements. If we assume that the latitudes ϕ1 and ϕ2 are known with
certainty and the degree in Paris ΔLM2 measured exactly, a relative error of
0.1% in the degree in Peru ΔLM1 (or an error of just 57 toises per degree)
would lead to an error of 17.3% in f . We find the following results:
for ΔLM1 = 56, 803 toises, 1/f = 364.6,
for ΔLM1 = 56, 689 toises, 1/f = 257.0.
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Fig. 2.9 :Commemorating the revolution: for all time,

for all peoples.

As a result of all this state-of-the-art geodesy, France was the first country
in the world to draw up a highly accurate map of its own territory, known as
the Cassini map.15

Definition of the Meter

A tous les temps, à tous les peuples (for all time, for all peoples, see
Fig. 2.9), in the universal spirit of the French Revolution which characterised
what was happening in France at the time, there was born the idea of offering
humanity a single consistent system of physical units.

Since the length of a pendulum which “beats the second” is not indepen-
dent of the latitude,16 the Assembly decided on 30 March 1791 that the unit
of length would be one ten-millionth part of the Earth meridian, based on
a proposal by a committee whose members were Borda, Lagrange, Laplace,
Monge, and Condorcet. The astronomers Delambre and Méchain were re-
quested to make accurate measurements of the meridian arc from Dunkerque
to Barcelona, towns separated by “9 and 2 thirds degrees” on the Paris merid-
ian, and both situated by the sea.

15This map, already mentioned earlier, used a scale of 1/86,400 (one line for 100 toises). It
comprised 182 sheets to cover the whole kingdom. Cassini de Thury used a novel projection,
now called the Cassini projection, in which he plotted lines perpendicular to the Paris
meridian. These lines are not parallels, i.e., they are not the loci of points at constant
latitude, but great circles (for a spherical Earth). The perpendicular line passing through
the Paris Observatory goes from Granville to Strasbourg. This projection is the transverse
aspect of the projection known in French as the plate-carrée (flat square) projection.

16In a field with acceleration due to gravity equal to g, the period T of a pendulum of
length l is given by T = 2π

√
l/g in SI units. With T = 2 s, this gives l = g/π2 numerically.

As g varies between the equator and the pole, l varies from 0.991 to 0.996m. We note that
the metre was chosen close to the length of this pendulum, whereas a doubled metre would
have been close to the toise.
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The process of triangulation was carried out17 from June 1792 to the end
of 1798,18 with 115 triangles and two baselines, the Melun baseline (from
Lieusaint to Melun) and the Perpignan baseline (from Salses to Vernet).

The result was proclaimed in June 1799. The quarter meridian, as calcu-
lated from these measurements, was

L
(π
2

)
= 5, 130, 740 toises ,

which was thus equal, by definition of the new unit of length, to

L
(π
2

)
= 10, 000, 000m .

The official conversion rate was thus fixed at

1 Châtelet toise = 1.9490363m .

The law instating the metre19 was signed on 10 December 1799 (19 frimaire
An VIII in the revolutionary dating system).

Using Delambre and Méchain’s ellipsoid (a = 6, 375.738m, 1/f = 334),
which gives this definitive value for L(π/2), the last column of Table 2.2
shows the values of the meridian arc as a function of latitude. These can then
be compared with current values. The relative error introduced by Delam-
bre et Méchain is a mere 0.02%, which attests to the high quality of these
measurements.20

2.3.3 Dynamical Geodesy

Modern geodesy begins with Clairaut. With his Théorie de la figure de
la Terre, tirée des principes de l’hydrostatique (Theory of the Earth’s shape,
based on the principles of hydrostatics, 1743), he laid the foundations of dy-
namical geodesy: measurements of the acceleration due to gravity should be
used, like the measurement of degrees of latitude, to determine the shape of
the ellipsoid. The shape of the Earth depends on its rate of rotation along the
polar axis and the distribution of mass within it.

17The angles were measured to an accuracy of 1′′ of arc using Borda’s repeating circle
method, with instruments made by his assistant Lenoir.

18It was not a good time to be carrying out this kind of expedition. In the thick of the
revolution, hauling strange-looking instruments to the tops of church towers or onto the
battlements of castles was unnecessarily intriguing for the local populations. There were
many unfortunate incidents, with material being sabotaged and surveyors arrested, among
other things.

19Given the delays in completing the measurements, a provisional metre had been adopted
on 1 August 1793. This metre would give L(π/2) = 5, 130, 430 toises.

20Once it had been determined relative to the Earth ellipsoid, the metre was then fixed
by the General Conference on Weights and Measures (Conférence Générale des Poids et
Mesures CGPM). In 1889 (the first CGPM), the metre was defined by the prototype de-
posited at the Archives de France. In 1960 (the 11th CGPM), it was defined in terms of
a particular wavelength of light emitted by krypton 86. Since 1983 (the 17th CGPM), the
metre has been defined relative to the speed of light (see Sect. 6.10).
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Fig. 2.10 :The Soviet Union remembers its conquest of

space.

Lagrange invented the notion of gravitational potential and was no longer
satisfied to define the Earth ellipsoid by its flattening. In 1810, he expanded the
gravitational potential of the Earth in spherical harmonics and the coefficients
of this expansion provide a much better representation for the imperfections
in the Earth’s shape when compared with a sphere. The notion of the Earth’s
shape was then replaced by the “geoid”. This is the equipotential surface
which best fits the mean level of the oceans.

On 4 October 1957, Sputnik-1 was put into orbit (see the commemorative
stamp in Fig. 2.10), and this marked the beginning of a new era of space
geodesy.



Chapter 3

Geopotential

3.1 Some Preliminaries

3.1.1 Reference Systems

Consider a reference frame centered on the Sun and with axes pointing
to distant (fixed) stars. This is a Copernican frame, which we denote by �0.
Any frame �1 in uniform translational motion relative to �0 is a Galilean
frame. In this kind of frame, experiment shows that Newton’s second law1 is
perfectly satisfied:

F =
d(mv)

dt
, (3.1)

where F is the force applied to a body of massm and dv/dt is the acceleration
of the body.

Consider a frame � with origin at the center of the Earth and axes parallel
to the axes of the frame �1. Strictly speaking, this is not a Galilean frame,
because the motion of the Earth around the Sun is neither linear nor uniform.

1Isaac Newton (1643–1727) was an English mathematician, physicist, and astronomer.
In 1687, he stated his three laws of motion in Philosophæ Naturalis Principia Mathematica:
(1) the principle of inertia, (2) his famous second law, which says that, in a Galilean frame,
the force is equal to mass times acceleration, and (3) the principle of action and reaction.
It can be shown that (1) is a special case of (2) and that (3) can be deduced from (2). The
fundamental second law (2) was not expressed in exactly this way by Newton. Combined
with Kepler’s law of elliptical orbits, the second law can be used to derive Newton’s universal
law of gravity [see (4.115)–(4.117)]. Newton’s work dominated the eighteenth century, in
mathematics (analysis, solution of equations) and in physics, especially in optics, with the
publication of Opticks. Regarding Newton’s date of birth, it is interesting to note that
25 December 1642 on the Julian calendar, which was still used in England at the time,
corresponds to 4 January 1643 on the Gregorian calendar.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 3,
© Springer International Publishing Switzerland 2014
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However, this motion is nevertheless slow, with one round trip per year, and
above all, it is perfectly well known, so there is no difficulty in calculating the
resulting apparent accelerations. In the following, this pseudo-Galilean frame
� will be treated as a Galilean frame moving with the Earth.

In this book, we shall use two frames with origin O at the center of the
Earth:

• The Galilean (pseudo-Galilean) frame � we have just defined, fixed relative
to the orthonormal triad (O;xG, yG, zG), where OzG is the polar axis and
OxG points in a fixed direction in space, i.e., toward a distant star. This
is called an Earth-centered inertial (ECI) frame, or Earth-centered space-
fixed (ECSF) frame.

• The terrestrial (non-Galilean) frame �T, which is needed to describe fixed
points on the Earth, fixed relative to the orthonormal triad (O;xT, yT, zT),
where OzT = OzG is the polar axis, while OxT rotates with the Earth,
remaining fixed in the prime meridian through Greenwich. This is called
the Earth-centered Earth-fixed (ECEF) frame.

Theory and Practice

The frames ECI and ECEF are used to set up all the equations in this
book from the standpoint of space mechanics. The definitions here are theo-
retical and didactic. In contrast, the practical and technical realisation of these
frames, denoted respectively by ICRF and ITRF, is the work of astronomers
and geodesists. They are explained briefly in an appendix to this chapter (see
Sect. 3.6).

3.1.2 Review of Work and Potential

Work, Force Field, Potential

The work done by a force F applied at a point M is the scalar quantity

dW = F ·dl ,
where dl is the displacement of the point of application of the force from M to
M ′. In an orthonormal frame, with F (X,Y, Z) and dl (dx, dy, dz), the scalar
product gives

dW = Xdx+ Y dy + Zdz .

The total work done when the point of application of the force moves from A
to B is

W =

∫ B

A

F ·dl .

A point M is said to be subjected to a force field if, throughout its domain
of application, a force F (X,Y, Z) can be associated with each position of the
point M(x, y, z).
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If there is a function V (x, y, z) such that the components of the force
F (X,Y, Z) can be expressed in the form

X =
∂V

∂x
, Y =

∂V

∂y
, Z =

∂V

∂z
,

throughout the region of definition, the field is said to derive from a potential .
In this case, the force field is said to be conservative. Using the vector operator
gradient, denoted by grad or ∇ and defined by dV = grad V ·dl, we can then
write

F = gradV ,

whence dW becomes

dW = grad V ·dl ,
which represents the exact differential dV :

dW = dV .

Integrating between points A and B,

∫ B

A

dW = WB
A = V (B)− V (A) .

This shows that the work done by the force in going from A to B, denoted by
WB

A , depends only on the values of the potential V at the points A and B,
and not on any of the intermediate values taken along the intervening path.
The function V is only defined up to an additive constant.

Equipotential Surface

An equipotential surface is a surface of the form

V (x, y, z) = constant .

This has the following properties:

• No work is done by displacement on a given equipotential surface, which
shows that the component of the force tangent to the surface is zero. An
equipotential surface is an equilibrium surface.

• For the same reason, i.e., the fact that F ·dl = 0, the force is normal to
each equipotential surface.

• Two equipotential surfaces cannot intersect, otherwise work could be done
without ever leaving one of the equipotential surfaces.
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Potential Energy

The potential energy U is defined in the following way in terms of the work
done by a conservative force field on a moving point:

∫ B

A

dW = WB
A = U(A)− U(B) .

Hence, U = −V and the relationship with F is

F = −grad U . (3.2)

This expression involving the potential energy can be used to define the me-
chanical energy E as the sum of the potential energy U and the kinetic energy
T . Indeed, we can write dW in two different ways:

dW = −d U ,

dW = F ·dl = m
dv

dt
·dl = d

(
1

2
mv2
)

= dT .

Hence, dU +dT = 0. For an isolated system subjected to a conservative force
field, we thus establish conservation of mechanical energy:

E = T + U = constant . (3.3)

We usually set U(∞) = 0.
When E is not constant, energy is dissipated and the force is said to be

dissipative.

3.2 Gravitational Potential and Field

3.2.1 Gravity

The law of gravity, or universal law of gravitational attraction, established
by Newton, states that two point bodies A and B, with masses M and m,
respectively, will each exert an attractive force on the other that is propor-
tional to their mass and inversely proportional to the square of the distance
between them:

fA→B = −fB→A = −G
Mm

r2
er , (3.4)

where fA→B is the force exerted by A on B and AB = r = rer. The grav-
itational constant G is not used as such in space mechanics. Instead, we use
the specific gravitational constant μ, which is the product of G and the mass
of the relevant attracting body:

μ = GM . (3.5)



3.2 Gravitational Potential and Field 57

The relation (3.4) is symmetric. In order to distinguish the role of one of
the two bodies, we may express the fact that body A, for example, creates a
gravitational field to which body B is subjected. This field g is such that

fA→B = F = mg ,

or in terms of μ,

g = − μ

r2
er . (3.6)

There is a function U such that

F = −grad U = −∂U
∂r

er ,

This can be obtained by integrating over r :

U = −
∫

F ·dr = −m
μ

r
, with U(∞) = 0 . (3.7)

We then introduce the quantity U = −U/m. To sum up, U is the potential
energy of the mass m in this force field, the gravitational field. U is then the
gravitational potential produced by the mass M at distance r :

U =
μ

r
. (3.8)

In astronomy and geodesy, the potential U is defined like this so that the
leading term in the potential, viz., μ/r, is positive [see (3.28)].

3.2.2 Gauss’ Theorem

In the last section, we obtained the field and gravitational potential pro-
duced by a point body of mass M located at A and acting on another point
body of mass m at a point B. For a continuous distribution of matter, we
must then carry out an integral to obtain the force exerted on B. For a given
configuration, Gauss’ theorem gives the result directly without the need for
such an integration.

Proof of Gauss’ Theorem

There are several ways to prove Gauss’ theorem.2 We shall use a method
based on the idea of solid angle. We consider a closed surface S, enclosing a

2Carl Fiedrich Gauß (1777–1855) was a German astronomer, mathematician, and physi-
cist. He was extremely precocious and interested in astronomy from an early age. He in-
vented a method for calculating the orbital elements of the planets (see the note about
Piazzi), then developed powerful methods for handling the problems of celestial mechan-
ics, such as the theory of least squares, in his work Theoria motus corporum coelestium
(1809). In mathematics, he invented congruences (modulo) and studied quadratic forms, er-



58 Chapter 3. Geopotential

volume τ . We can thus define an inside and an outside. We then consider
a surface element dS with unit normal n pointing outwards. The flux of an
arbitrary vector g through this surface element is defined as

dΦ = g·dS , with dS = n dS .

The total flux of g out through the surface S is then given by the integral
over the whole closed surface S, viz.,

Φ =

∮
S

g·dS .

We consider a surface S surrounding a distribution of masses: the different
points Ai are each attributed a mass Mi. The field created by each mass Mi

at a point B is then

gi = −GMi
AiB

AiB3
,

whereAiB is the vector from Ai to B and AiB its length. The flux leaving S is

Φ =

∮
S

g·dS

= G

∮
S

∑
i

Mi
AiP

AiP 3
·dS

= G
∑
i

Mi

∮
S

n · AiP

AiP 3
dS ,

where P is a point running over S. Now,

n · AiP

AiP 3
dS =

dS cosαi

AiP 2
=

dΣ

AiP 2
= dΩi ,

where αi is the angle between the normal and AiP and dΣ is the projection of
dS on the plane perpendicular to AiP . The quantity dΩi is then the element
of solid angle, represented by the infinitesimal cone with apex Ai and base
the surface element dS (or dΣ, which comes to the same thing).

The integration over dΩi is independent of the surface S. We thus take a
sphere of center Ai and radius R. This gives

ror analysis (bell-shaped curve, 1821), regular polygons, conformal representations, spherical
trigonometry, and the curvature of surfaces (1827). He revolutionised the field of geodesy
by introducing and developing novel methods, and he was not afraid to go out into the
field, e.g., setting up the cadastral survey of the Hanover region between 1817 and 1821.
In physics, he carried out fundamental work on magnetism (Allgemeine Theorie des Erd-
geomagnetismus, published in 1839), electricity (Gauss’ theorem), and optics (Gaussian
optics). His contemporaries called him the Prince of Mathematicians. So who was the king?
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Ωi =

∮
dΩi =

∮
dΣ

R2
=

1

R2

∮
dΣ =

4πR2

R2
= 4π .

On the other hand, an external mass, i.e., with Ai outside S, produces a field
whose flux through S is zero. Indeed, a cone with apexAi standing on a surface
element dS determines two opposing flux elements whose total contribution
cancels, since dΦ is a scalar whose sign depends on the scalar product.

Finally, letting Mint =
∑

int Mi, the sum of the masses contained within
the surface S, the flux out of S is

Φ = −4πG
∑
int

Mi ,

and Gauss’ theorem can be stated as follows:∮
S

g·dS = −4πGMint . (3.9)

For a continuous distribution of masses represented by the density ρ at each
point of space, Mint is given by

Mint =

∫∫∫
V

ρ(r)dτ ,

where the triple integral extends over the whole volume V .

Calculating the Field Using Gauss’ Theorem

If the density depends only on r (the magnitude of r), i.e., if the mass dis-
tribution is spherically symmetric, the field it produces will also have spherical
symmetry:

g(r) = ‖g(r)‖r
r
.

It is then straightforward to calculate the flux. For the surface S, we choose a
sphere of radius r containing all the mass Mint. From the symmetry, the field
g must be orthogonal to S at every point. Remembering that r is constant
over the whole surface S, we obtain

Φ =

∮
S

g·dS =

∮
S

‖g(r)‖r
r
·n dS = ‖g(r)‖

∮
S

dS = 4π‖g(r)‖r2 .

Applying Gauss’ theorem (3.9), we find that

4π‖g(r)‖r2 = −4πGMint ,

whence the gravitational field g is given by

g(r) = −GMint
r

r3
. (3.10)

We thus obtain the following very important result: the field produced by a
spherically symmetric mass distribution is the same as would be produced by a
point mass of the same value located at the center of the spherical distribution.
This property results from the fact that the forces are central and go as r−2.
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Gravitational Field of the Earth

If we treat the Earth as spherical and assume that its density only depends
on the distance from the center O, then at a point outside or on the surface
of the Earth, and at distance r from O, the field produced there is

g(r) = −μ
r

r3
= − μ

r2
er , withμ = GM , (3.11)

where M is the total mass of the Earth. In this case, μ is called the geocentric
gravitational constant.

3.2.3 Gravity and Weight

If we assume once again that the Earth is spherically symmetric and in
addition that it is not moving relative to a Galilean frame, the equipoten-
tial surfaces will be concentric spheres. But as Galileo pointed out, the Earth
is spinning on its axis, so a point subjected to the force of gravity will also
suffer an inertial force relative to a non-Galilean frame fixed relative to the
Earth. This is how the Earth’s shape was transformed and flattened during
its formation. Its outer envelope is an equipotential surface: its points are in
equilibrium. If we ignore tides, currents, and winds, the ocean surface provides
a faithful image of this equipotential surface,3 and it is generally taken as the
zero altitude. This geoid naturally extends beneath the continents. The sur-
face of a motionless lake4 also represents an equipotential surface, at another
altitude, and the plumb line, which defines the local vertical, will be exactly
perpendicular to this surface.

On such a surface, the potential U is constant. However, as mentioned
above, the gravitational field is not constant on this equilibrium surface. In-
deed, it is stronger at the poles than at the equator, since Rp < Re, while
the centrifugal acceleration is zero at the poles and maximal at the equator.
We shall calculate the gravitational potential produced by a flattened planet,
then the weight potential which takes into account the Earth’s rotation. By
integrating this potential, we will obtain the weight as a function of latitude.

Maupertuis was the first to make a clear terminological distinction be-
tween gravity and weight, a distinction that was subsequently taken up by
D’Alembert5 and Clairaut6:

3In 1742, MacLaurin showed that the ellipsoid of revolution spinning on its minor axis
was the only geometrical shape that could meet requirements. Later, Poincaré showed that,
for much faster rotation, there were other possibilities, but they are not relevant to the
planets.

4The water is in equilibrium so there is no reason why it should flow from left to right,
or from right to left!

5Jean le Rond d’Alembert (1717–1783) was a French mathematician, physicist, and
philosopher. He published Recherche sur la précession des équinoxes et sur la nutation de
l’axe de la Terre dans le système newtonien, in 1749. In 1743, he had stated the principle
that carries his name in his Traité de dynamique. With Diderot, he wrote the Encyclopédie.

6“I make here the same distinction as M. de Maupertuis (La Figure de la Terre
déterminée, etc.) between weight and gravity. By weight, I understand the natural force
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• Gravity is the sum of the attractive effects acting on a mass according to
the universal law of gravitation.

• Weight is the resultant of gravity and the action of the centrifugal acceler-
ation due to the Earth’s rotation.

In other words, gravity is the field measured in the frame �, while weight is
the field measured in the frame �T. Any body on the Earth is subjected to
weight, while a satellite in orbit around the Earth is subjected to gravity.

3.3 Calculating the Geopotential

3.3.1 Potential Element

The temporal variation in the terrestrial mass distribution (due to land
and ocean tides and phenomena linked to internal geophysical processes) and
the variation in the direction of the Earth’s axis of rotation (motion of the
poles) are not taken into account here. We only consider the averaged effect
of these phenomena over a given period and calculate the static geopotential
produced by a fixed mass distribution (see Fig. 3.1).

Let O be the center of the Earth and (O;x, y, z) a coordinate system
fixed relative to the Earth, like �T, where Oz is the polar axis and (xOy)
the equatorial plane. Let S be a point outside the Earth (the satellite). Its
position is specified by the three spherical coordinates r, λ, ψ [see (2.28)]. The
angles λ and ψ represent the longitude and geocentric latitude of the point S.
If T is a point inside the Earth, it can also be specified by its three spherical
coordinates ρ, α, β, where ρ is the magnitude of OT , α the longitude, and β
the geocentric latitude.

T

x

O

S

y

z

Fig. 3.1 :Obtaining the gravitational potential at a point S. The volume element of

mass dM contains the point T . In the integration, it runs over the whole volume

of the Earth. Each such element produces a gravitational potential dU at S. The

notations for the distances are r = OS, ρ = OT , and D = TS.

with which all bodies fall, and by gravity, the force with which the body would fall if the
Earth’s rotation were not to alter its effect and direction.” Clairaut, in his introduction to
Théorie de la Figure de la Terre.



62 Chapter 3. Geopotential

We now have the standard relations giving components in Cartesian coor-
dinates:

OS

r
=

⎛
⎝ cosψ cosλ

cosψ sinλ
sinψ

⎞
⎠ ,

OT

ρ
=

⎛
⎝ cosβ cosα

cosβ sinα
sinβ

⎞
⎠ . (3.12)

Let θ be the angle between the two radial vectors, viz.,

θ = (OS,OT ) ,

so that the distance D between the two points S and T is

D2 = ‖TS‖2 = r2 − 2rρ cos θ + ρ2 ,

and

D = D(T, S) = r

[
1− 2

ρ

r
cos θ +

(ρ
r

)2]1/2
.

The scalar product OS · OT yields

cos θ = sinψ sinβ + cosψ cosβ cos(λ − α) .

The potential element dU produced at S by the mass element dM located at
T , at a distance D from S, is given by (3.8) as

dU =
dμ

D
= G

dM

D
. (3.13)

3.3.2 Obtaining the Potential by Integration

The potential U we hope to calculate here is obtained by summing all
the potential elements produced by the mass elements making up the mass
distribution. The mass element dM is associated with the point T which
ranges over the whole of the Earth:

U = U(S) =

∫
Earth

dU = G
∫
T∈Earth

dM(T )

D(T, S)
. (3.14)

The expression for D arising in the calculation of the potential is given as a
function of θ by

1

D
=

1

r

1√
1− 2

ρ

r
cos θ +

(ρ
r

)2 . (3.15)

This expression can be expanded in terms of Legendre polynomials (see the
appendix at the end of the chapter). The expansion converges if ρ/r < 1.
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The calculation is thus valid if S remains strictly outside the sphere containing
all the mass elements. We may then write

1

D
=

1

r

∞∑
l=0

(ρ
r

)l
Pl(cos θ) , (3.16)

where Pl is the l th Legendre polynomial (or Legendre polynomial of degree l).
Replacing cos θ by its value in terms of spherical coordinates, the angles λ, ψ,
α, and β, or more precisely ψ, β, and λ−α, we now use the Legendre addition
formula:

Pl(cos θ) = Pl(sinψ) · Pl(sinβ)

+2

l∑
m=1

(l −m)!

(l +m)!
Plm(sinψ)Plm(sinβ) cosm(λ − α) ,

where Plm are the associated Legendre functions. We thus obtain 1/D in terms
of the six spherical coordinates. Substituting this expression into (3.16), then
into (3.14), and using R to denote the equatorial radius Re = a of the Earth,
we obtain:

U(r, λ, ψ) = G

∫
ρ

∫
α

∫
β

dM(ρ, α, β)

D(r, λ, ψ, ρ, α, β)

= G
1

r

∫ R

ρ=0

∫ 2π

α=0

∫ π/2

β=−π/2

∞∑
l=0

(ρ
r

)l [
Pl(sinψ)Pl(sinβ)

+2

l∑
m=1

(l −m)!

(l +m)!
Plm(sinψ) cosmλPlm(sinβ) cosmα

+2
l∑

m=1

(l −m)!

(l +m)!
Plm(sinψ) sinmλPlm(sinβ) sinmα

]
dM .

Finally, we obtain the expression for U in terms of the associated Legendre
functions Plm and the coefficients Clm and Slm :

U(r, λ, ψ) =
μ

r

∞∑
l=0

(
R

r

)l
[

l∑
m=0

(
Clm cosmλ+ Slm sinmλ

)
Plm(sinψ)

]
,

(3.17)

with μ = GM and M the mass of the Earth given by

M =

∫ R

ρ=0

∫ 2π

α=0

∫ π/2

β=−π/2

dM(ρ, α, β) ,

and Clm and Slm the harmonic coefficients of the geopotential of degree l and
order m.
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In the expression (3.17), the terms for m = 0 refer to the Legendre poly-
nomial Pl and the sum from m = 1 to m = l refers to the associated Legendre
functions Plm. The coefficients Clm and Slm are obtained by identifying the
two formulas for U . There are two cases, depending on whether m is zero or
not:

• Harmonic coefficients for m = 0, Cl0 and Sl0 :

Cl0 =
1

MRl

∫ R

ρ=0

∫ 2π

α=0

∫ π/2

β=−π/2

ρlPl(sinβ)dM(ρ, α, β) , (3.18)

Sl0 = 0 . (3.19)

The coefficients Sl0 are always zero.
• Harmonic coefficients for m �= 0, Clm and Slm :

Clm =
2

MRl

(l −m)!

(l +m)!

∫
ρ

∫
α

∫
β

ρlPlm(sinβ) cosmα dM (3.20)

Slm =
2

MRl

(l −m)!

(l +m)!

∫
ρ

∫
α

∫
β

ρlPlm(sinβ) sinmα dM (3.21)

The function U(r, λ, ψ) representing the gravitational potential of the Earth
is called the geopotential.

3.3.3 Spherical Harmonics

The potential U has been given as a linear combination of spherical func-
tions Flm and Glm defined by

Flm(λ, ψ) = Plm(sinψ) cosmλ ,

Glm(λ, ψ) = Plm(sinψ) sinmλ .

These can be considered as the real and imaginary parts of the functions Hlm,
called spherical harmonics :

Hlm(λ, ψ) = eimλPlm(sinψ) .

These functions have many mathematical properties (such as orthogonality)
and there exists an extensive literature. In the present context, they can be
used to give a graphical decomposition of the geopotential.

One can gain an idea of the way the spherical functions vary by plotting
the points on the sphere where they vanish. To do so, the spherical harmonics
are divided into three groups: the zonal harmonics, the sectorial harmonics,
and the tesseral harmonics:
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• Zonal harmonics. These are obtained when m = 0. In this case,

Fl0 = Pl0(sinψ) = Pl(sinψ) , Gl0 = 0 , Hl0 = Pl(sinψ) .

Hence, Hl0(λ, ψ) = Hl0(ψ) depends only on the latitude. Zonal harmonics
have axial symmetry about the axis through the poles. In particular, they
take into account the flattening of the Earth. They divide the Earth up
along the geographic parallels.

• Sectorial harmonics. These are obtained when m = l. In this case,

Plm(sinψ) = Pll(sinψ) =
(2l)!

2ll!
(cos2 ψ)l/2 .

This function of ψ is never zero, except at the poles. Hence, Hll is only
zero for certain values of λ. The sectorial harmonics only vanish on the
geographic meridians and one generally gives a picture of the sphere that
looks like an orange separated into segments that meet at the poles.

• Tesseral harmonics. These are obtained in all other cases. The zeros produce
a kind of spherical chessboard pattern, marked out by the meridians and
parallels.

Normalised Coefficients

Geopotential models are generally expressed in terms of normalised co-
efficients C∗

lm, while the coefficients Clm used above are referred to as non-
normalised. The relation between C∗

lm and Clm is

C∗
lm =

√
(l +m)!

(l −m)!(2l+ 1)(2− δ0m)
Clm , (3.22)

where δ0m is the Kronecker symbol, equal to 1 if m = 0 or 0 if m �= 0.

3.3.4 Second Degree Expansion of the Potential

To make use of these rather complex formulas, we begin by the simplest
case, namely when the Earth is treated as an ellipsoid of revolution. This
amounts to stopping the expansion at degree and order 2.

Theoretical Calculation of Coefficients

If we expand the potential U given by (3.17) up to second degree, we
obtain
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U(r, λ, ψ) =
μ

r

{
C00P0(sinψ)

+

(
R

r

)[
C10P1(sinψ) + (C11 cosλ+ S11 sinλ)P11(sinψ)

]

+

(
R

r

)2 [
C20P2(sinψ) + (C21 cosλ+ S21 sinλ)P21(sinψ)

+ (C22 cos 2λ+ S22 sin 2λ)P22(sinψ)
]}

. (3.23)

The values of the first few Legendre polynomials and functions for the argu-
ment sinβ are as follows:

P0(sinβ) = 1 , P1(sinβ) = sinβ , P2(sinβ) = (3 sin2 β − 1)/2 ,

P11(sinβ) = cosβ , P21(sinβ) = 3 sinβ cosβ , P22(sinβ) = 3 cos2 β .

We can now calculate the harmonic coefficients Clm and Slm using the four
relations (3.18)–(3.21), adopting the spherical coordinates of the interior point
T defined by (3.12). The coordinates of the center of gravity of the Earth are
(x0, y0, z0) and the components of the Earth’s inertia tensor7 are Ix, Ixy, and
so on. The results are displayed in Table 3.1.

Case of the Earth Ellipsoid

In the case of a solid Earth, the origin of the coordinate system for ex-
panding the geopotential is taken at the center of the Earth. We then have
x0 = y0 = z0 = 0, which implies that

C10 = 0 , C11 = 0 , S11 = 0 .

If the axis Oz passes through the center of inertia, we have Ixz = Iyz = 0,
which implies that

C21 = 0 , S21 = 0 .

The most significant inhomogeneity in the terrestrial mass distribution is due
to the flattening at the poles. The Earth is treated here as an ellipsoid of

7The moment of inertia Ix is defined by Ix =
∫∫∫

(y2 + z2)dM , while the product
of inertial Ixy is defined by Ixy =

∫∫∫
xy dM . In the literature, the moments of inertia

are often denoted by A = Ix, B = Iy, and C = Iz , whence (3.25) and (3.26) become
J2 = (C − A)/MR2.
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C00 =
1

M

∫
ρ

∫
α

∫
β

dM(ρ,α, β) = 1

C10 =
1

MR

∫
ρ

∫
α

∫
β

ρ sin β dM(ρ,α, β)

=
1

MR

∫∫∫
z dM =

z0
R

C11 =
1

MR

∫
ρ

∫
α

∫
β

ρ cosβ cosα dM(ρ,α, β)

=
1

MR

∫∫∫
x dM =

x0

R

S11 =
1

MR

∫
ρ

∫
α

∫
β

ρ cosβ sinα dM(ρ, α, β)

=
1

MR

∫∫∫
y dM =

y0
R

C20 =
1

MR2

∫
ρ

∫
α

∫
β

ρ2
3 sin2 β − 1

2
dM(ρ, α, β)

=
1

2MR2

∫∫∫ [
3z2 − (x2 + y2 + z2)

]
dM

=
1

2MR2

∫∫∫ [
(x2 + z2) + (y2 + z2)− 2(x2 + y2)

]
dM

=
1

2MR2
(Ix + Iy − 2Iz)

C21 =
1

3MR2

∫
ρ

∫
α

∫
β

3ρ2 sin β cosβ cosα dM(ρ,α, β)

=
1

MR2

∫∫∫
xz dM =

1

MR2
Ixz

S21 =
1

3MR2

∫
ρ

∫
α

∫
β

3ρ2 sin β cosβ sinα dM(ρ, α, β)

=
1

MR2

∫∫∫
yz dM =

1

MR2
Iyz

C22 =
1

12MR2

∫
ρ

∫
α

∫
β

3ρ2 cos2 β cos 2α dM(ρ, α, β)

=
1

4MR2

∫∫∫
(x2 − y2) dM =

1

4MR2
(Iy − Ix)

S22 =
1

12MR2

∫
ρ

∫
α

∫
β

3ρ2 cos2 β sin 2α dM(ρ,α, β)

=
1

2MR2

∫∫∫
xy dM =

1

2MR2
Ixy

Table 3.1 :Harmonic coefficients Clm and Slm of the geopotential of degree l and

order m, up to l = 2, m = 2.
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revolution with axis Oz. In this case, the axial symmetry implies that Ixy = 0
and Ix = Iy , which in turn implies that

C22 = 0 , S22 = 0 . (3.24)

The flattening at the poles is expressed by the fact that Iz > Ix. Hence,

C20 =
1

MR2
(Ix − Iz) , C20 < 0 . (3.25)

When we expand the geopotential to second order and with the above assump-
tions, the only nonzero term (apart from the leading term C00 = 1) is thus
the term C20 (which is negative). It is customary to introduce the coefficients
Jl defined by8

Jl = −Cl0 . (3.26)

The geopotential is then

U(r, λ, ψ) = U(r, ψ) =
μ

r

[
1−
(
R

r

)2

J2
3 sin2 ψ − 1

2

]
, (3.27)

with

J2 = 1.0826× 10−3 .

This term is dimensionless, like all the coefficients Clm and Slm. The value
of the coefficient J2 was known for a long time from geodetic considerations
(see Sect. 3.4.3), and then to very high accuracy by studying the trajectories
of the first artificial satellites.

3.3.5 Expanding the Potential to Higher Degrees

For degrees higher than 2 and using the notation introduced above, the
potential can be written

U(r, λ, ψ) =
μ

r

[
1−

∞∑
l=1

(
R

r

)l

JlPl(sinψ) (3.28)

+

∞∑
l=1

l∑
m=1

(
R

r

)l (
Clm cosmλ+ Slm sinmλ

)
Plm(sinψ)

]
.

8In 1958, one of the pioneers of space geodesy, Desmond King-Hele, decided to attribute
the letter J to this coefficient, in homage to the British geodesist Sir Harold Jeffreys (1891–
1989).
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Jn = −Cn0 Value [dimensionless]

C00 1
J1 0

J2 +1,082.62652305×10−6

J3 −2.53253531×10−6

J4 −1.61997147×10−6

J5 −0.22780140×10−6

J6 +0.54066755×10−6

J7 −0.36055772×10−6

J8 −0.20402823×10−6

J9 −0.12211470×10−6

J10 −0.24439275×10−6

Table 3.2 :Harmonic coefficients Jn for the geopotential, up to n = 10. Values taken

from the EIGEN-6C2 model.

In the part between square brackets, there are three groups of terms:

• The first comprises only the number 1, representing the central potential.
• The second, with Jl and Pl, constitutes the contribution of the zonal har-

monics [see (3.45)].
• The third, involving Clm, Slm, and Plm, gives the contribution of the sec-

torial and tesseral harmonics.

These terms Jl, Clm, and Slm can only be known (except possibly for J2) by
comparing the ellipsoid with the actual shape of the Earth, which is called the
geoid.9 To do this, weight measurements can be carried out in situ, but the
best approach today is to use precise observations of the motions of artificial
satellites. These points will be discussed below.

For the Earth as it really is (dropping the ellipsoid approximation), the
numerical values of Jl are given in Table 3.2 (but see also Table 3.3). These
coefficients are usually referred to in the literature as Jn terms. So for the
geoid, the coefficients C10 (or J1), C11, and S11 are zero, while the coefficients
C21 and S21 (∼ 10−9), C22, and S22 (∼ 10−6) are nonzero.

Regarding orders of magnitude, we see that the J2 term is about 103

times smaller than the leading term, but 103 times greater than the following
coefficients. To sum up, considering the expansion of the potential given by
(3.28), we observe that (see Fig. 3.2):

9When geodesists realised that the shape of the Earth was not exactly ellipsoidal, they
chose to call it the geoid (Listing in 1873), which is tautological: it is like saying that the
Earth is Earth-shaped! One sometimes sees the word telluroid, a disharmonious product of
Latin–Greek hybridisation that is just as tautological.
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Coefficient GEM-T2 JGM-3 GRIM5-C1 GRIM5-S1

C∗
20 −484.1652998 −484.165368 −484.16511551 −484.16511551

C∗
30 0.9570331 0.957171 0.95857491 0.95857492

C∗
40 0.5399078 0.539777 0.53978784 0.53978784

C∗
50 0.0686883 0.068659 0.06726760 0.06720440

C∗
60 −0.1496092 −0.149672 −0.14984936 −0.14985240

C∗
70 0.0900847 0.090723 0.09301877 0.09311367

C∗
80 0.0483835 0.049118 0.05039091 0.05046451

C∗
90 0.0284403 0.027385 0.02628356 0.02620763

C∗
100 0.0549673 0.054130 0.05101952 0.05076191

C∗
200 0.0199685 0.018790 0.02340848 0.02342817

C∗
990 −0.00128836 −0.00001554

Coefficient EGM96 EIGEN-CH03S EIGEN-6C2

C∗
20 −484.165371736 −484.165562843 −484.165299956

C∗
30 0.957254174 0.957477372 0.957208401

C∗
40 0.539873864 0.539923241 0.539990490

C∗
50 0.068532348 0.068584004 0.068684705

C∗
60 −0.149957995 −0.149991332 −0.149954200

C∗
70 0.090978937 0.090539419 0.090513612

C∗
80 0.049671167 0.049295631 0.049484115

C∗
90 0.027671430 0.028093014 0.028015031

C∗
100 0.052622249 0.053699211 0.053330869

C∗
110 −0.050961371 −0.050765723 −0.507685657

C∗
120 0.037725264 0.036209032 0.036437330

C∗
130 0.042298221 0.041543398 0.041729879

C∗
140 −0.024278650 −0.022288877 −0.022669657

C∗
150 0.001479101 0.002425544 0.002192288

C∗
200 0.022238461 0.021496270 0.021558749

C∗
990 0.001478118 −0.000779156 0.002263992

C∗
22 2.439143524 2.439311853 2.439355937

S∗
22 −1.400166837 −1.400342254 −1.400284583

C∗
31 2.029988822 2.030480649 2.030499314

S∗
31 0.248513159 0.248170920 0.248199233

C∗
33 0.721072657 0.721306788 0.721274250

S∗
33 1.414356270 1.414370341 1.414373139

Table 3.3 :Comparison between different models. Normalised zonal coefficients C∗
l 0

and other normalised coefficients C∗
lm and S∗

lm. All values should be multiplied

by 10−6.

• The term of degree 0 is the leading term, causing the Keplerian motion
(see below), in which the Earth is considered to be spherical and made up
of homogeneous layers.
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J0 J2 J3,4,...

Fig. 3.2 :Changing perception of the shape of the Earth in geodesy. Left: Sphere, with

C00 = −J0 = 1 and J1 = 0. Center: From the sphere to the ellipsoid of revolution,

with J2 term indicating flattening. Right: From the ellipsoid to the geoid, with Jn

terms n ≥ 3.

• The term of degree 1, which would correspond to a shift in the center of
mass of the Earth away from the geometrical center, is made to vanish by
choice of the coordinate origin.10

• The term of degree 2 corresponds to the flattening of the Earth when the
latter is considered as an ellipsoid of revolution.

• The terms of degree 3 and higher cater for deviations between the geoid
and the Earth ellipsoid.

3.4 Weight Field and Potential for the Ellipsoid

3.4.1 Calculating the Field and Potential

In order to investigate the weight field at the surface of the Earth, one
has to consider the gravitational force field in a frame �T moving with the
Earth, rather than in the Galilean frame �. To obtain the relations in �T, in
addition to the acceleration as calculated in �, one must take into account
the centrifugal acceleration ac due to the Earth’s rotation:

ac = −�2JM ,

where � is the angular speed of the Earth’s rotation11 and J is the projection
ofM on the polar axis, which is the point of geodetic latitude ϕ (and geocentric

10For the great majority of geopotential models, C00 = 1 and C∗
10 = 0. There are some

exceptions, however, such as EIGEN-CHAMP03-S, with C00 = 1 and C∗
10 = −0.83390966×

10−9 or GRIM5-C1, with C00 = 1− 1.14× 10−10 and C∗
10 = 0.

11We use the notation � only in this chapter. In subsequent chapters, we shall use the
notation Ω̇T for this quantity, and we shall explain why when the time comes. The angular
speed � is equal to one revolution per sideral day, or � = 7.292115 × 10−5 rad s−1.
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ψ ϕ
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z

Fig. 3.3 :For a point M at the Earth’s surface with geodetic latitude ϕ and geocentric

latitude ψ, we represent gravity, pointing toward O, and weight, pointing toward I,

normal to the ellipsoid at M .

latitude ψ) at the Earth’s surface (see Fig. 3.3). The center of the Earth is O
and we set r = OM . Therefore, JM = r cosψ. The unit vector in the direction
OM is denoted by er.

To simplify the notation, we set

g = g� (gravity) , γ = g�T (weight) .

The rule for composition of accelerations is then

absolute
acceleration

(g) =
relative

acceleration
(γ) +

centrifugal
acceleration

(ac) .

We obtain

γ = g +�2JM . (3.29)

The vector γ represents the weight. This is what defines the weight of a body
at a given location. The weight is the vector sum of the gravity and the



3.4 Weight Field and Potential for the Ellipsoid 73

centrifugal acceleration. The vector g lies along OM . The angle between the
vector γ and g is very small, equal to ϕ − ψ. Its value, given by (2.5), is at
most 0.19◦. We can thus write

g = −ger , γ = −γer .

Projecting the expression in (3.29) onto OM , we then have

−γer = (−g +�2r cos2 ψ)er . (3.30)

Expressing the fields g and γ in terms of the respective potentials U and UT

and integrating (3.30) with respect to r, we obtain

UT = U +
1

2
�2r2 cos2 ψ .

Cutting off the expansion of U at the second order as in (3.27), i.e., treating
the geoid as an ellipsoid, we obtain

UT(r, ψ) =
μ

r

[
1−
(
R

r

)2

J2
3 sin2 ψ − 1

2

]
+

�2

2
r2 cos2 ψ . (3.31)

The axial symmetry of the model appears through the absence of the variable
λ (longitude) in the expression for the potential UT.

3.4.2 Weight Field at the Earth’s Surface

The weight field γ is found by differentiating UT along the normal to
the ellipsoid. To the same order of approximation as when we identify the
directions of the vectors g and γ, we may consider the field to be given by
∂UT/∂r. Its magnitude γ is then

γ(ψ) =
μ

r2

[
1− 3

(a
r

)2
J2

3 sin2 ψ − 1

2

]
−�2r cos2 ψ . (3.32)

Replacing r by its value as a function of ψ, viz., r = Rψ(ψ) as given by (1.37),
we obtain an expression for the magnitude γ(ψ) of the weight field at the
surface of the ellipsoid as a function of the latitude alone.

The dependence of the weight field on the latitude is shown in Fig. 3.4.
The latitude dependence of the gravitational field is also shown. In SI units,
the gravity g varies from 9.814 at the equator to 9.832 at the pole, due to the
flattening of the Earth, but this quantity is not directly measurable, because
we cannot stop the Earth from rotating!
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Fig. 3.4 :Dependence of the weight (lower curve) on the latitude at the surface of

the ellipsoid. The upper curve shows the theoretical latitude dependence, not directly

measurable, of the gravitational field. The difference between these two curves gives

the value of the centrifugal acceleration.

The weight γ, measured experimentally,12 varies from 9.780 at the equator
to the same value 9.832 at the pole, because the variation caused by the Earth’s
rotation, which is zero at the pole, adds algebraically to the variation of g.13

12ESA’s presentation of the satellite GOCE provides an interesting illustration of the
levels of accuracy attained in weight measurements at a given location:
Weight = 9.8 Mass of spherical Earth

9.81 Flattening and rotation
9.812 Mountain and oceanic rifts
9.8123 Internal mass distribution
9.81234 Major river dams
9.812345 Sea and land tides
9.8123456 Large buildings in the neighbourhood

13Let us indulge in a little science fiction! Imagine a planet just like the Earth, but
rotating faster, with angular speed �′. Let us calculate the weight at the equator, assuming
that the planet is spherical with radius R. From (3.32), we find

γ =
μ

r2
−�′2R =

μ

R2

(
1− �2R3

μ

)
=

μ

R2
(1−ma) ,

where ma is defined below by (3.34). This term represents the contribution of the centrifugal
acceleration to the weight when gravity is taken as unity. For the Earth, ma = 1/288.
If ma = 1, the weight is zero, and all bodies at the equator on the surface find themselves
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This formula for the latitude dependence of the weight field is quite accu-
rate enough in many cases. However, if we require a more accurate formula
in terms of the geodetic latitude and without approximation, we can use
Somigliana’s formula discussed below.

3.4.3 Clairaut’s Formula

The J2 term in the expansion of the geopotential, which can be related
to the difference in moments of inertia of the Earth about the polar axis and
about an equatorial axis, as can be seen from (3.25) and (3.26), cannot be
measured directly. But without waiting for the advent of the artificial satellite,
it could be determined from geodetic considerations, exploiting the properties
of equipotential surfaces.

Relation Between J2 and Flattening

Clairaut14 made the assumption that the Earth was in hydrostatic equi-
librium in its rotation about its own axis. It follows that, for any point on the
Earth’s surface, taken as an ellipsoid, the potential is constant. Let us choose
a point at the pole (r = Rp = b) and a point at the equator (r = Re = a):

UT(r = a, ψ = 0) = UT(r = b, ψ = π/2) .

Equation (3.31) yields

μ

a

(
1 +

1

2
J2

)
+

�2

2
a2 =

μ

b

(
1− a2

b2
J2

)
.

The quantities f and J2 are much smaller than 1. Neglecting small quantities
to second order, the right-hand side becomes

μ

a
(1 + f)

[
1− J2(1 + 2f)

]
≈ μ

a
(1 + f − J2) ,

in weightless conditions. For such a fast-spinning version of Earth, we thus have (�′/�)2 =
288, or �′ ≈ 17�. With such an angular speed, the day lasts 17 times less than on the
real Earth, i.e., a mere 84.5min. Furthermore, this is equal to the period of rotation of a
terrestrial satellite at zero altitude, as we shall see in (5.9) of Chap. 5.

14Alexis Claude Clairaut (1713–1765) was a French astronomer and mathematician. He
entered the French Academy of Sciences at the age of eighteen, after astonishing the as-
sembly by his investigation of geometric curves. He soon turned his attention to geodesy
and celestial mechanics, publishing Théorie de la figure de la Terre tirée des principes de
l’hydrostatique in 1743. This explored the differences in the acceleration due to the weight
at the poles and the equator. He then studied the three-body problem and published his
Théorie de la Lune in 1752. He was also one of the first to investigate gravitational pertur-
bations (see the historical note on the return of Halley’s comet in Sect. 6.8.1).
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which gives Clairaut’s first equation:

J2 =
2

3
f − 1

3
ma , (3.33)

where the dimensionless quantity

ma =
�2a3

μ
(3.34)

is easily found to be ma = 3.461 × 10−3. If we consider the flattening to be
given by f = 1/298.3, we obtain the value of J2 to first order as

J2 = 1.0814× 10−3 .

This is very close15 to the value of J2 given in Table 3.2.

Relation Between J2 and Weight

Historically, it was the quantity f that scientists sought to calculate. That
is, they hoped to determine the flattening without having to measure the
Earth’s meridian. They thus had to find some way of expressing J2, and this
could be done by measuring γ, the acceleration due to the weight, at various
points on the Earth’s surface. Now using (3.32), we can calculate γ = γe at
the equator and γ = γp at the pole:

γe =
μ

a2

(
1 +

3

2
J2

)
−�2a ,

γp =
μ

b2

(
1− 3

a2

b2
J2

)
≈ μ

a2
(1 + 2f − 3J2) .

Neglecting small quantities to second order, the difference gives

γp − γe =
μ

a2

(
2f − 9

2
J2

)
+�2a .

Replacing γe by μ/a2 in the small terms, since g = μ/R2 to a first approxi-
mation, we obtain

γp − γe
γe

= 2f − 9

2
J2 +mg ,

15Carrying out the calculation to second order in the small quantities, we obtain

J2 =
2

3
f − 1

3
mb − 1

3
f2 +

2

21
fmb ,

where mb = �2a2b/μ = ma(1−f). The numerical result is J2 = 1.082634×10−3, implying
a relative error of 7× 10−6 compared with the value of J2 given in the text.
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where

mg =
�2a

γe
. (3.35)

The value of mg is equivalent under the given approximations to that of ma

in (3.34). We set

β =
γp − γe

γe
,

a dimensionless quantity which one might call the flattening of gravity. This
can be accurately obtained by measuring γ at the equator and the pole. We
thus have another relation for J2, known as Clairaut’s second equation:

J2 =
2

9
(2f +ma − β) . (3.36)

Clairaut’s Formula

Comparing the two equations (3.33) and (3.36) and eliminating J2, we
obtain Clairaut’s formula:

f =
5

2
ma − β . (3.37)

This formula can be used to determine f from two measurements of γ. Nu-
merical calculations give

γe = 9.7804 ms−2 , γp = 9.8322 ms−2 ,

β = 5.296× 10−3 ≈ 1/189 , ma = 3.467× 10−3 ≈ 1/288 ,

f = 3.373× 10−3 ≈ 1/297 .

Given the approximations made here, this result can be considered to be
highly satisfactory.

Clairaut’s formula16 shows that the flattening f can be determined from
weight measurements, since � and a are known. To obtain f , it is not neces-
sary to know anything about the composition of matter within the ellipsoid.

16Clairaut was pursuing an idea of Newton and Huygens that the Earth’s rotation, weight,
and flattening were all related. Indeed, he formulated this idea, but not in the way discussed
here. He did not use the concept of potential, invented later by Lagrange, and did not exploit
the coefficient J2 in this form.
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3.4.4 Somigliana’s Formula

Equation (3.32) giving the weight field, or Clairaut’s relations, are approx-
imate results, to first order in f . The Italian geodesists Pizetti (1894) and later
Somigliana (1922) were to take up the same problem in a global way. The main
idea was to define a body with the shape of an ellipsoid of revolution such that
the ellipsoid was itself an equipotential surface of its own field. Although the
final formula looks simple and elegant, the calculation leading to it is long and
arduous, and goes well beyond the scope of the present book. Somigliana’s for-
mula gives the normal weight field at the surface of the ellipsoid as a function
of the geodetic latitude ϕ :

γ(ϕ) =
aγe cos

2 ϕ+ bγp sin
2 ϕ√

a2 cos2 ϕ+ b2 sin2 ϕ
, (3.38)

where γe and γp are the values of the weight at the equator and the pole, as
discussed earlier. It can also be written in the form

γ(ϕ) = γe
1 + k sin2 ϕ√
1− e2 sin2 ϕ

, (3.39)

where

k =
b

a

γp
γe

− 1 (3.40)

is the Somigliana constant. This formula can also be given in numerical form.
The values of the various terms depend to some extent on the reference ellip-
soid (see Table 2.1):

• With GRS80, the values are:

a = 6, 378, 137 m , b = 6, 356, 752.3141 m ,

e2 = 0.00669438002290 , k = 0.001931851353 ,

γe = 9.7803267715 ms−2 , γp = 9.8321863685 ms−2 ,

γ(ϕ) = 9.780327
(
1 + 5.3024× 10−3 sin2 ϕ+ 5.8× 10−6 sin2 2ϕ

)
. (3.41)

• With WGS84, the values are:

γe = 9.7803253359 ms−2 , k = 0.001931853 .

Once above the ellipsoid, the weight γh(ϕ) at altitude h is given by a relation
involving γ(ϕ) and γe :

γh(ϕ) − γ(ϕ)

γe
= −2

h

a

[
1 + f +ma +

(
−3f +

5

2
ma

)
sin2 ϕ

]
+ 3

(
h

a

)2

.

(3.42)
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3.5 Geoid

3.5.1 Gravity Anomalies

A gravimeter can be used to measure the weight field at many points on
land, and with suitable precautions, at sea. Furthermore, as we shall see in
later chapters, the orbit of a satellite is sensitive to the distribution of mass in
the regions it overflies. When accurately measured, the discrepancy between
the theoretical position according to a given model and the actual position can
be used to deduce the spherical harmonic coefficients of the geopotential. In
addition to this method, used for over 40 years now, since the beginning of the
space age, with ever more refined models, one should also mention altimetry
measurements made by ocean satellites over the past 20 years or so.

Once the data has been processed and the transition made from weight to
geopotential, the result is a map of anomalies, i.e., the difference in altitude (or
equipotential surface) between the geoid and the ellipsoid. Such maps, each
associated with a geopotential model, reveal ripples not exceeding a 100m or
so. Figure 3.5 shows the map resulting from the American model EGM96. The
main negative anomalies are south of India (−105m), in Tibet (−65m), in
the Antarctic south of New Zealand (−55m), and in the Carribean (−50m).
The main positive anomalies are in New Guinea (+75m), in Iceland (+70m),
and halfway between Madagascar and the Antarctic (+60m).

It should be noted that these anomalies are not correlated with the relief of
the visible land mass. They are explained as manifestations of the non-uniform
density of matter in the Earth’s mantle.

Long-wavelength anomalies are identified by satellite, while smaller-scale
anomalies are found by ground-based measurements. These anomalies are
called gravity anomalies and they are measured in milliGal.17

3.5.2 Satellites and Geodesy

The first artificial satellite, Sputnik-1, was launched by the USSR on 4
October 1957 and only emitted a signal for three weeks.18 However, by study-
ing the trajectories of subsequent satellites,19 launched shortly afterwards,
the zonal coefficient J2 was determined by the Czechoslovakian geodesist E.

17The unit of acceleration in CGS units is the Gal in homage to Galileo. Hence, 1 Gal =
1 cm s−2. Geodesists use the milliGal, 1mGal = 10−5 ms−2.

18Orbital elements for the first few revolutions are: altitude at perigee hp = 228 km,
altitude at apogee ha = 947 km, inclination i = 65.128◦, period T = 96.17min (ΔT =
1.80 s/day), perigee on latitude 41◦ N. Last signal 26 October 1958. Reentry 4 January
1958.

19Sputnik-2 was launched on 4 November 1957. Orbital elements for the first few revo-
lutions are: hp = 225 km, ha = 1,671 km, i = 65.310◦, T = 103.75min (ΔT = 3.08 s/day),
perigee on latitude 40◦ N. Reentry 14 avril 1958. Sputnik-3 was launched on 15 May 1958.
Orbital elements for the first few revolutions: hp = 226 km, ha = 1,881 km, i = 65.188◦,
T = 105.95min (ΔT = 0.75 s/day), perigee at latitude 45◦ N. Reentry 6 April 1960.
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Fig. 3.5 :Anomalies of the geoid in the EGM96 model. This map, using the plate-

carrée projection, represents the anomalies of the geoid (in meters) relative to the

reference ellipsoid, as described by the US model EGM96. The maximal depression

(−105m) is south of India, while the highest point (+75m) is in New Guinea. Note

that the relief of land masses and anomalies are not correlated, except near the

Andes mountain range. Credit: The NASA GSFC and NIMA Joint Geopotential

Model. NASA, NIMA, Ohio State University.
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Buchar in 1958. The value was quite close to predictions calculated from
Earth-based measurements. The US satellite Vanguard-1, launched on 17
March 1958, was able to evaluate for the first time the discrepancy between
the ellipsoid and the geoid. This important harmonic of degree 3 corresponds
to a raising of the North Pole by 15m above the ellipsoid and a lowering of the
South Pole by the same amount.20 The J4 term and a few others were subse-
quently established after 1960. The methods used to determine the coefficients
Jn are discussed further in the historical note in Sect. 6.7.

In 1961,W. Kaula produced a complete model of degree 4, i.e., involving all
the coefficients Clm and Slm: a sectorial harmonic, coefficient of the associated
Legendre function P22, accounts for an elevation of the geoid around 165◦E
and 15◦W and a depression around 75◦E and 105◦W. These points mark out
four equal sectors on the equator,21 since we are dealing with the function
Plm in the case l = 2 and m = 2. This point is further discussed in Sect. 7.4
on geostationary satellites (see Fig. 7.12).

Our knowledge of the Earth’s gravitational potential has moved ahead
very quickly since this time. Geodesists have not only taken advantage of all
available satellites, but they have also sent up their own dedicated satellites.22

A considerable improvement came with the advent of satellite-borne radar
altimeters, which could describe the ocean surface (the geoid) relative to the
orbit. The first were the US military satellites GEOS-3, Seasat, and Geosat.

Since 1980, the geopotential has been better measured above the oceans
than above the continents. Subsequently, the European satellites ERS-1 and 2,
followed by the French–US satellites TOPEX/Poseidon and Jason-1 and 2
have refined the measurements. The latter measure the sea level (whose mean
represents the geoid) relative to the reference ellipsoid with an accuracy be-

20At the time, this was considered a scoop: the Earth was pear-shaped. Given the scale of
these discrepancies, just 15m compared with a radius of 6,400 km, this was perhaps slightly
exaggerated!

21D. King-Hele summed this up in a little refrain of his own invention:

When you cut a slice
Through the polar ice

The Earth is like a pear.
But sliced along the equator
She looks like a potato –

A giant pomme de terre.

22Among these, the US series GEOS (Geodetic Earth Orbiting Satellite), GEOS-1
(Explorer-29), GEOS-2 (Explorer-36), PAGEOS, LAGEOS, with passive ranging (PA) or
laser rangling (LA), which followed on from the satellites Echo-1 and Echo-2 (balloon-
borne), ANNA-1B (Army, Navy, Nasa, Air Force, the first satellite to emit flashes), ADE-A
(Atmospheric Density Explorer, Explorer-19), Beacon Explorer-1 (BE-B, Explorer-22, or
S-66a, the first satellite equipped with laser reflectors), and Beacon Explorer-2 (BE-C,
Explorer-27). After 1970, came the French satellites Starlette and Stella, launched in 1975
and 1993, the Japanese satellite EGP (Experimental Geodetic Payload), also called EGS-1
(Earth Geodetic Satellite or Ajisai , meaning “hydrangea” in Japanese), launched in 1986,
and the Russian satellite Fizeau (Meteor-2-21), launched in 1993.
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Fig. 3.6 :Artist’s

view of the satel-

lites GRACE-A and

B, showing their

microwave rang-

ing system. Credit:

University of Texas

Center for Space

Research.

tween 2 and 3 cm. This means that the altitude of the satellite is known to
even better accuracy. The quality of the altimeters used is important, but
the accuracy with which the satellite orbit is established is just as fundamen-
tal, and this is possible thanks to the potential models involving spherical
harmonics of a very high degree.

A radical change came about in the year 2000. Until then, satellites were
in relatively high orbits, e.g., 5,900km for LAGEOS, 800km for Starlette,23

to minimise any atmospheric friction. But from this date, drag compensation
systems have made it possible to maintain satellites in relatively low orbits
that are all the more sensitive to gravity anomalies.

The satellite CHAMP (Challenging Microsatellite Payload for geophysical
research and applications) can determine the geoid to an accuracy of 10 cm
(and 0.5mGal for gravity). This improvement by a factor of 10 over previous
missions is largely due to its low orbit (450 km), continuous GPS monitoring
of the orbit, and a highly sensitive onboard accelerometer.

The GRACE mission (Gravity Recovery And Climate Experiment) com-
prises two twin satellites GRACE-A and B, which follow one another around24

on the same orbit, separated by a distance of 200 km. The low orbit (480km)
and accurate measurement of the distance between GRACE-A and B, to
within a few micrometres, has led to even better results: the geoid is known to
within 1 cm on a spatial scale of 200 km (see Fig. 3.6). This is so accurate that
we can now produce monthly maps of the geoid and monitor the evolution of
large water masses, such as the major river basins.

23The pleasant name Starlette is a nice example of a contorted acronym: Satellite de
Taille Adaptée avec Réflecteurs Laser pour les Etudes de la Terre.

24Whence the nickname of Tom and Jerry given by the mission team.
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Fig. 3.7 :Artist’s view

of the satellite GOCE.

The shape is designed

to offer minimal resis-

tance to atmospheric

friction. The image

shows the ions ejected

by the drag compen-

sation system. Credit:

ESA.

The satellite25 GOCE (Gravity field and steady state Ocean Circulation
Experiment) has improved our knowledge of the geoid still further, with a
very low orbit (200km) and a gradiometer comprising six accelerometers with
an accuracy of 10−12ms−2. The satellite is equipped with an ion motor which
counteracts the forces of atmospheric friction in real time. Thanks to thrusts
of a few mN from its drag compensation system, the satellite is effectively in
permanent free fall (Fig. 3.7).

Slightly further head, the LICODY project (Laser Interferometry for Core
and Ocean Dynamics) plans to use laser ranging between satellites in a for-
mation.

We may say that space geodesy has finally become a “dialectic” science
in the sense that geopotential models are better known by localising satellites
and studying their trajectories, and the position of the satellites is better
determined by improved potential models.

3.5.3 Development of Geopotential Models

The Main Models

The first satellite data were integrated into existing models and, from 1970,
certain models were established exclusively on the basis of space data. The
SAO SE-1 model (Smithsonian Astrophysical Observatory-Standard Earth),
considered to be the first satellite-only model, presented a degree 8 expansion
of the geopotential in 1966. In 1973, the SE-3 model (degree 24) used the
first laser ranging measurements to establish the distances to satellites. The
NWL model (Naval Weapon Laboratory) was mainly based on satellites in the
Transit series. There followed many other models, among which we shall focus

25In the space community, GOCE is generally pronounced “go-chay”.
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on the US models GEM, JGM, OSU, EGM, and GGM, and the European
models GRIM and EIGEN.

The GEMmodel (Goddard Earth Model) was established by NASA’s God-
dard Space Flight Center (GSFC) in the United States as a reaction to the
classified US military models. The first model GEM-1 was published in 1972,
expanding the potential to degree 12. The GEM-T2 model, published in 1990,
exploited the data from 31 satellites. It gave a model with all coefficients up
to degree 36, and some up to degree 50, and it also provided a very high order
expansion for the tides.

The JGM model (Joint Gravity Model) was produced jointly by NASA
and the University of Texas. In 1994, JGM-2 (degree 70) amended GEM-
T3 (degree 50), itself successor to GEM-T2, with the first results from
TOPEX/Poseidon, and JGM-3 integrated the data from other satellites such
as LAGEOS-2.

The EGM model (Earth Gravity Model) is the result of a collabora-
tion between GSFC-NASA, NIMA (National Imagery and Mapping Agency),
and OSU (Ohio State University), which has established many models, from
OSU68 to OSU91. In 1996 came EGM96S of degree 70, with data provided
solely by satellites, and EGM96 of degree 360, adjoining geophysical data.
They used data from 40 satellites, including satellite to satellite measurements,
with the GPS constellations26 and TDRSS. The latest model EGM2008 was
based mainly on GRACE data to achieve an expansion up to degree 2190.

Since 2002, the GGM model (GRACE Gravity Model) has been developed
by the University of Texas using only data from GRACE: accelerometer, at-
titude, and distance between the two satellites (K-band range-rate).

In Europe, the GRGS (Groupe de Recherche en Géodésie Spatiale) in
France and the DGFI (Deutsches Geodätisches Forschungsinstitut) in Ger-
many have worked jointly to produce the GRIM model (GR for GRGS and
IM for the institute in Munich). The first model was GRIM1, published in 1975
(degree 10). In 2000, there followed the GRIM5-S1 and GRIM5-C1 models, the
first based solely on satellite data27 and the second using all data. The latter
models were superseded by the EIGEN model (European Improved Gravity
model of the Earth by New techniques),28 produced by the GFZ-Postdam
and the GRGS-Toulouse. In 2002, EIGEN-1S amended GRIM5-S1 with the
data from CHAMP, supplemented by LAGEOS-1 and 2, Starlette, and Stella.
Other models were to come, using data from the GRACE mission. In 2008,

26The satellites Navstar/GPS-35 and 36 (or USA-96, 100), launched in 1993 and 1994,
are equipped with laser reflectors.

27The satellites used were Starlette, EGP (Ajisai), LAGEOS-1 and 2, Geosat, SPOT-2
and 3, ERS-1 and 2, Stella, Westpac-1 (WPLTN-1, West Pacific Laser Tracking Network),
TOPEX/Poseidon, GFZ-1 (GeoForschungsZentrum), D1-C, D1-D, GEOS-3, Meteor-3-07,
Nova-3, Etalon-1 and 2 (Kosmos-1989 and 2024), and PEOLE.

28This is another acronym with subtle connotations, recalling the German word Eigenwert
introduced into mathematics by Hilbert and transformed to “eigenvalue” in English. The
English word corresponding to eigen is “own”, from the Old English āgen.
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there was the complete EIGEN-GL05C model of degree and order 360 (cor-
responding to a wavelength of 1◦, or λ/2 = 55 km). In 2011, the EIGEN-6
model incorporated data from GOCE and LAGEOS: EIGEN-6S model (de-
gree 240) and EIGEN-6C model (degree 1420) with gravity data and altimetry
data. In 2012, it was amended29 to produce EIGEN-6C2 (degree 1949). The
development of the European model is summarised in Table 3.4.

Naturally, current models take into account the tides and the atmosphere.
They also take into consideration the time variations of the first spherical
harmonic coefficients30 which are due to isostatic adjustment, in a process
called post-glacial rebound,31 and other factors relating to climate change.

Comparison of Geopotential Models

Geopotential models cannot be compared term by term beyond degree 5.
Two models can have rather different terms and yet still have a very close
final result: different weightings of the spherical harmonics can lead to very
close results. Beyond degree 16, even the signs of the coefficients can change
from one model to another, without there being any harmful effect on the
restitution of the geoid and satellite tracking. This highlights a problem when
truncating series: the coefficients of a model of degree 10 do not correspond
to the coefficients of the first 10◦ in a model of degree 20.

As an example, Table 3.3 gives the coefficients C∗
l 0 for seven models men-

tioned above, in fact, coefficients of order 0 and degree l from 2 to 10. We

29EIGEN-6C2 is a combined global gravity field of a maximum degree/order 1949 which
has been inferred from the combination of the following data:

1. Satellite data.
• 25 years of LAGEOS (SLR) data from the time span January 1985 till December

2010.
• 7.8 years of GRACE (GPS-SST and K-band range-rate) data from the time span

March 2003 till December 2010.
• 350 days of GOCE data (satellite gradiometry only) from the time span 1 Nov 2009

till 19 April 2011.
2. Surface data.

• Global gravity anomaly data set which was obtained from altimetry over the oceans.
• Geoid data over the oceans (from DTU).
• Geoid heights over the continents generated from EGM2008.
Document: GFZ-GRGS.

30As an example, here are the values from the EGM96 model. For the time variation:
dC∗

20/dt = +1.162755 × 10−11 year−1 , or dJ2/dt = J̇2 = −2.60× 10−11 year−1 ,
dC∗

21/dt = −0.337× 10−11 year−1 , and dS∗
21/dt = +1.606 × 10−11 year−1 .

This variation, particularly clear between 1985 (when measurements began) and 1995, is
considered to be the signature of post-glacial rebound. From 1995 to 2013, J2 ceased to
vary. Post-glacial rebound seems to have been compensated by the melting of ice and other
effects due to global warming. The contribution of the tides is 4.173× 10−9 for C∗

20.
31Since the melting of the polar ice caps, the ground level has been rising by several

centimetres per year for the past few thousand years, whether it be in Canada, Scandinavia,
or the Antarctic.
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Year Model Contribution L N

1975 GRIM1 10 120
1976 GRIM2 23 575
1981 GRIM3 36 1,368
1991 GRIM4-C1 50 2,600
1995 GRIM4-C4 72 5,328
2000 GRIM5-C2 120 14,640
2002 EIGEN-1 CHAMP 120 14,640
2003 EIGEN-2 CHAMP 140 19,880
2007 EIGEN-4 GRACE 160 25,920
2008 EIGEN-5 GOCE 360 130,320
2011 EIGEN-6 GOCE 1,440 2,076,480
2012 EIGEN-6C2 GOCE 1,949 3,802,499

Table 3.4 :Main stages in the establishment of the European models GRIM, then

EIGEN, developed by the GRGS and the GFZ. L maximal degree, N number of

unknowns processed to establish the model, N = L× (L+ 2).

Units Whole no. GEM JGM GRIM EGM EIGEN

μ km3 s−2 398,600 0.436 0.4415 0.4415 0.4415 0.4415
R km 6,378 0.137 0.13630 0.13646 0.13630 0.13646
1/f Dimensionless 298 0.257 0.25765 0.25765 0.25765 0.25765

Table 3.5 :Comparison between the different models: GEM-T2, JGM-3, GRIM5,

EGM96, EIGEN-CHAMP03S. Values of geocentric gravitational constant μ = GM ,

equatorial radius R, and flattening (1/f). The whole number part is the same for all

these models, i.e., only the decimal changes.

recall that, for l = 0, the coefficient is equal to unity, and for l = 1, it is zero.
All coefficients in the table are in units of 10−6.

In the case m = 0, the normalisation relation (3.22) becomes simply

Cl 0 =
√
2l + 1C∗

l 0 .

We then obtain the correspondence between Tables 3.3 and 3.2, e.g.,

J2 = −
√
5C∗

20 =
√
5× 484.16511 . . .× 10−6 = 1, 082.62622 . . .× 10−6 .

These coefficients Cl m are associated with values of μ, R, and f that are
specific to each model (see Table 3.5).
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Fig. 3.8 :Preparation

of LAGEOS-2. The

satellite, of diameter

60 cm, is equipped with

426 reflectors (diam-

eter 38.1mm, depth

27.8mm), made from

cube corners whose

90◦ angles are formed

to an accuracy of 0.5

arcsec. Credit: Agen-

zia Spaziale Italiana

(ASI).

3.5.4 Evaluation of the Geocentric Gravitational
Constant

The geocentric gravitational constant μ = GM plays a key role in space
mechanics. It can be obtained to very high accuracy, well above what can be
achieved for the universal constant of gravitation G.32 The first values for μ
were given by Kepler’s third law applied to the lunar orbit. More and more
precise values were obtained using the space probes Ranger, Mariner, and
Venera, then satellites, preferably with high altitude, since lower satellites are
subject to non-gravitational effects.

A breakthrough was made in the 1980s with the advent of the tech-
nique known as Lunar Laser Ranging (LLR), which consists in measuring
the distance from the Earth to the Moon using a laser. At the present time,

32Henry Cavendish (1731–1810), the British physicist and chemist, was the first to obtain
a precise value for G, which he published in 1798 in a famous paper entitled Experiments to
determine the density of the Earth. He used a subtle method: instead of taking advantage of
very large masses (like those who, at the time, sought to measure the deviation of a plumb
line by a mountain), he used a torsion balance with a very fine thread, suspending two
small metal weights (50 g). Bringing two large lead balls (30 kg) to a distance of 15 cm, he
measured the torsion of the thread, using a mirror to create a “light lever”, and deduced G
from the period of the motion (∼ 2 h). He thereby calculated the density of the Earth and
found d = 5.48 (current value 5.52). This density is greater than that of the rocks in the
Earth’s crust (∼ 2.7), and Cavendish thus demonstrated that the Earth contained a very
dense central part. The method was later refined by Charles Boys (1895) using a very fine
quartz thread (2 μm) and still smaller masses (2.7 g, 7.5 kg at 15 cm), over a short period
(3min). This type of experiment is still used to measure G, but the relative accuracy does
not exceed δG/G = 1.2 × 10−4. Other ways are now sought to improve accuracy. Current
recommendations (CODATA 2010) give the value

G = (6.67384 ± 0.00080) × 10−11 m3 kg−1 s−2 .
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Method Year μ (km3s−2) Error

Lunar orbit 1959 398,620. ±6.
Explorer-27 1965 398,602. ±4.
Ranger-6, 7, 8, 9 1966 398,601.0 ±0.7
Mariner-9 1971 398,601.2 ±2.5
Venera-8 1972 398,600.4 ±1.0
ATS-6 / GEOS-3 1979 398,600.40 ±0.1
Laser/Moon 1985 398,600.444 ±0.010
Laser/LAGEOS 1992 398,600.4415 ±0.0008
Laser/LAGEOS 2000 398,600.4415 ±0.0002

Table 3.6 :Measured geocentric gravitational constant μ = GM and estimated error.

Historical evolution indicating method used and year.

the most accurate measurements are obtained by laser ranging measurements
made on the LAGEOS satellites33 (see Fig. 3.8).

Table 3.6 shows the values obtained for μ, together with error estimates,
according to various methods (mentioning also the year). The relative accu-
racy in μ is currently 10−10, compatible with an accuracy of centimetre order
in the semi-major axis of the LAGEOS orbit.

3.6 Appendix: Terrestrial Reference Systems

3.6.1 Celestial Reference System

The International Celestial Reference System (ICRS) is an idealized bary-
centric coordinate system, with origin at the barycenter of the Solar System,
to which celestial positions are referred. It has fixed axes and its time scale34

33LAGEOS-1 (NASA), launched 4 May 1976, and LAGEOS-2 (NASA–ASI, Italy),
launched 22 October 1992, are almost identical satellites, of mass 410 kg and diameter
60 cm, each carrying 426 circular reflectors (422 fused silica glass and 4 germanium). They
are often referred to as LAGEOS and LAGEOS-II, respectively. Characteristics of similar
geodetic satellites: the Japanese satellite Ajisai, launched on 2 August 1986, mass 685 kg,
diameter 2.15m, 1,436 triangular fused silica reflectors; the Soviet satellites Etalon-1 and
2, launched on 10 January 1989 and on 31 May 1989, identical, mass 1,415 kg, diameter
1.29m, 2,146 hexagonal reflectors (2,140 fused silica, 6 germanium).

34The International Time Bureau (Bureau International de l’Heure, or BIH) was set up in
Paris at the beginning of the twentieth century (officially in 1912, but effectively in 1919) to
centralise time determinations made around the world and hence to define a universal time
scale. It is associated with the Paris Observatory. For these historical reasons, the official
acronyms of the various time scales used by astronomers and physicists maintain the order
of the words in the French name, e.g., TAI, TCB, etc., with the sole exception of UT.
In 1988, the BIH founded the IERS (International Earth Rotation and Reference Systems
Service) to monitor the parameters of the Earth’s rotation, while the organisation in charge
of International Atomic Time (Temps Atomique International TAI) was transferred to the
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is Barycentric Coordinated Time (Temps Coordonnée Barycentrique TCB),
which takes into account general relativistic effects.

The International Celestial Reference Frame (ICRF) is the realisation of
the ICRS. The frame is materialised by the positions of hundreds of extra-
galactic quasars (quasi-stellar radiosources), these being determined to very
high accuracy, in fact better than 1 milli arcsec, using the VLBI technique
explained below.

3.6.2 Terrestrial Reference System

In addition to the Earth’s rotation, very slightly slowed down by the effect
of the tides, two other motions need to be taken into account, due to the Sun–
Moon system. One is precession, the axis of rotation tracing out a cone with
semi-angle at the apex equal to the obliquity ε. This has a cycle of 25,800
years (see Fig. 6.7). The other is nutation, of amplitude 17′′, for which the
main cycle is 18.6 years.

All these motions are very well understood and modelled, as can be seen
from (8.49). But there is also an unpredictable movement of the polar axis (see
Fig. 7.6). To model this, one must adopt a reference system that represents
the Earth in its rotational movement. Since the Earth is a deformable solid,
the axes of the system can be fixed by convention with the help of materialised
points. Indeed, the surface is being continually deformed by the action of the
tectonic plates, to the extent of a few centimetres a year, but also by seismic
activity.

The International Terrestrial Reference System (ITRS) has its origin at
the Earth’s center of mass, including the oceans and the atmosphere. Its
orientation is specified by the IERS. It is conventional at the epoque 1984.0
but has since been guided by the condition of non-rotation of the Earth’s
crust: the relative angular momentum of the Earth’s surface, calculated with
positions and velocities expressed in the terrestrial system, is thus zero. The
time scale is Geocentric Coordinated Time (Temps Coordonnée Géocentrique
TCG).

The International Terrestrial Reference Frame (ITRF) is a realisation of
the ITRS. It is defined jointly by astronomers and geodesists. For this Carte-
sian orthonormal system (O;x, y, z):

• The origin O is chosen close to the Earth’s center of mass, the value ob-
tained by SLR and averaged over several years.

• The coordinates are scaled by VLBI and SLR.
• The orientation of the axes relative to the Earth’s crust is fixed by con-

vention. Its temporal variation is obtained by matching observed velocities

International Bureau of Weights and Measures (Bureau International des Poids et Mesures
BIPM).
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Method SLR VLBI DORIS GNSS

Celestial frame
ICRF ∗ ∗ ∗

Terrestrial frame
center of mass ∗ ∗ ∗ ∗ ∗
Tectonic motion ∗∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
Network density ∗ ∗ ∗∗ ∗ ∗ ∗

Earth’s rotation
Length of day, UT1 ∗ ∗ ∗ ∗ ∗
Polar motion ∗∗ ∗∗ ∗ ∗ ∗ ∗
Nutation ∗ ∗ ∗

Satellite orbitography
MEO–GNSS ∗ ∗ ∗ ∗
MEO–geodetic satellite ∗ ∗ ∗
LEO–environmental satellite ∗∗ ∗ ∗ ∗ ∗ ∗ ∗
LEO–geodetic satellite ∗ ∗ ∗ ∗

Table 3.7 :Reference systems and techniques used in space geodesy. The contribution

of the method is graded by asterisks: fairly important (∗), important (∗∗), very im-

portant or fundamental (∗ ∗ ∗). Abbreviations: for UT1, see Chap. 7; for MEO and

LEO, see Chap. 9. Table with courtesy of F. Deleflie, D. Gambis, X. Collilieux.

to those obtained using a geophysical model of the motion of the tectonic
plates which does not involve any overall rotation.

The frame is materialised by hundreds of stations (ITRF2008: 934 stations in
580 different sites). Their coordinates are determined by one or more of the
following techniques:

• Very Long Baseline Interferometry (VLBI), since 1980.
• Satellite Laser Ranging (SLR), since 1983.
• Doppler Orbitography and Radiopositioning Integrated by Satellite

(DORIS), since 1993.
• Static use of GPS, since 1994 (see Chap. 14).

We now outline each of these techniques, emphasising their relative impor-
tance in space geodesy (see also Table 3.7). Several stations bring together
two, three, or even four (at three stations) of these techniques, and thus con-
stitute genuine anchor points for the reference systems.

Satellite Laser Ranging (SLR)

From a ground station,35 laser pulses are emitted to a satellite equipped
with reflectors (Fig. 3.8). A very small part of the emitted beam returns to the

35At the present time, there are 43 stations, almost all in the northern hemisphere.
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detector at the ground station. The distance is then obtained to centimetre ac-
curacy by measuring the time taken for the signal to return. In the beginnings
of space geodesy, only dedicated satellites, such as LAGEOS-1, were equipped
with reflectors (cube-corner mirrors). However, it was not long before a wide
range of other satellites were equipped with suitable reflectors.36

The same technique37 works with five reflectors set up on the Moon by
the three US missions Apollo-11, 14, and 15 and the two unmanned Soviet
missions Luna-17 and 21, and also with the LRO in orbit around the Moon.

Very Long Baseline Interferometry (VLBI)

Very long baseline interferometry is an astronomical technique developed
since 1980, although the first experiments date to 1967. The idea is to use two
widely separated antennas to measure the time difference between the arrival
of the same signal (in the centimetre wavelength range) from a quasar. Today
there are around 40 VLBI stations on Earth. The resolution is proportional
to the length of the baseline, i.e., the distance between the two antennas, so
it is limited by the diameter of the Earth (of the order of a few thousand
kilometres). However, the baseline can be made longer by using satellites in
high orbits.

Earth-based VLBI gives highly accurate results, reaching the milli arcsec
(1 mas = 4.85× 10−9 rad), and a great many parameters can be fitted simul-
taneously. Given the positions of hundreds of extragalactic sources, one can
determine the Earth’s orientation in space, and hence also its rotation (UT1,
polar motion, precession, nutation) viewed as a transformation between the
celestial frame ICRF and the terrestrial frame ITRF.

Doppler Orbitography and Radiopositioning Integrated by
Satellite (DORIS)

The DORIS system was designed and developed by the French space
agency, the CNES, in collaboration with the GRGS (Groupe de Recherches
en Géodésie Spatiale) and the IGN (Institut Géographique National). Small
energy-autonomous beacons are distributed uniformly around the planet, on

36The main satellites are as follows. Satellites for geodesy: LAGEOS-1 and 2, LARES,
GFO, GFZ-1, Stella, Starlette, Wespac-1, Etalon-1 and 2, Ajisai, CHAMP, GRACE-A and
B, GOCE; the Japanese satellite H2A-LRE in geosynchronous transfer orbit (GTO). En-
vironmental and oceanographic satellites: TOPEX/Poseidon, Jason-1 and 2, ERS-1 and 2,
Envisat, TerraSAR-X and TanDEM-X, ICESat, CryoSat-2, Meteor-2-21 (Fizeau), HY-2A.
Navigation satellites: Navstar/GPS-35 and 36, the Japanese satellite QZS-1, practically
all the Russian GLONASS satellites, the European satellites GIOVE-A and B and opera-
tional Galileo satellites; from Compass-M1, the Chinese satellites in the Compass-M series,
Compass-I and Compass-G. Astronomical satellites: RadioAstron on a very high orbit.

37The ratio of the number of photons received to the number of photons emitted, called
the link budget, goes as r−4, where r is the distance. When the target is the Moon, this ratio
is very small indeed, in fact, just a few photons over the whole night! Only two stations
have taken data over a long period: the McDonald Observatory in Texas and the OCA in
Grasse, France.
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both continents and oceans. These emit a signal which is received by satellites
equipped for this purpose. The system is coordinated by a master beacon at
the CNES headquarters in Toulouse. The position of a satellite is determined
to within a centimetre thanks to the network of stations used as reference
points on the ground. Conversely, the system can be used to accurately relate
given points to the ITRF. A dozen or so satellites in low Earth orbit (LEO)
are equipped with the DORIS system.38

Global Positioning System (GPS)

The whole of Chap. 14 will be devoted to the satellite navigation system
(GNSS), commonly known as GPS. In the appendix on GPS and tectonic
plates (see Sect. 14.10), we explain how the positions of static GPS receiv-
ing stations can be ascertained with millimetre accuracy. These stations con-
tribute to maintaining the ITRF.

3.7 Appendix: Summary of Legendre Functions

Legendre Polynomials

The generating function for the Legendre39 polynomials is

1√
1− 2tx+ t2

=
∞∑
n=0

Pn(x)t
n . (3.43)

These polynomials, which are the coefficients in this power series in t, are
defined for any n ≥ 0 by

Pn(x) =
1

2nn!

dn
[
(x2 − 1)n

]
dxn

. (3.44)

38The system has been or is still carried by the French satellites SPOT-2, 3, 4, and 5,
Pléiades-1A and 1B, the French–Chinese HY-2, the French–US satellites TOPEX/Poseidon,
Jason-1 and 2, the French-Indian SARAL, and the European satellites Envisat and CryoSat-
2. It is also planned for the French–US Jason-3 and the European Sentinel-3-A.

39Adrien Marie Legendre (1752–1833) was a French mathematician. He introduced the
polynomials which are now named after him in his Recherches sur la figure des planètes
(1784). When put in charge of geodetic measurements (the distance between the Paris
and Greenwich meridians) by the revolutionary government known as the Convention, he
made significant contributions to spherical trigonometry. He obtained new results in number
theory, and also in the study of elliptic functions, the beta and gamma functions, and the
Euler integrals. His work Eléments de Géométrie was reprinted thirteen times between 1794
and 1827.
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The first few Legendre polynomials are:

P0(x) = 1 , P1(x) = x ,

P2(x) =
3x2 − 1

2
, P3(x) =

5x3 − 3x

2
,

P4(x) =
35x4 − 30x2 + 3

8
, P5(x) =

63x5 − 70x3 + 15x

8
,

P6(x) =
231x6 − 315x4 + 105x2 − 5

16
, etc.

Considering only the zonal harmonics up to degree 6, the geopotential is given
by (3.28) as

U(r, ψ) =
μ

r

[
1 +

J2
2

(
R

r

)2 (
1− 3 sin2 ψ

)
+

J3
2

(
R

r

)3 (
3− 5 sin2 ψ

)
sinψ

− J4
8

(
R

r

)4 (
3− 30 sin2 ψ + 35 sin4 ψ

)

− J5
8

(
R

r

)5 (
15− 70 sin2 ψ + 63 sin4 ψ

)
sinψ

+
J6
16

(
R

r

)6 (
5− 105 sin2 ψ + 315 sin4 ψ − 231 sin6 ψ

) ]
.

(3.45)

Legendre Functions

The associated Legendre functions are defined in terms of the Legendre
polynomials on the interval [−1,+1], for all l ≥ 0 and for all 0 ≤ m ≤ l, by

Plm(x) =
(
1− x2

)m/2 dmPl(x)

dxm
. (3.46)

We have the relations

Pl0(x) = Pl(x) , Pll(x) =
(2l)!

2ll!
(1− x2)l/2 ,

and the first few associated Legendre functions are

P11(x) =
√
1− x2 ,

P21(x) = 3x
√
1− x2 , P22(x) = 3(1− x2) ,

P31(x) =
3

2
(5x2 − 1)

√
1− x2 , P32(x) = 15x(1− x2) ,

P33(x) = 15(1− x2)3/2 .



Chapter 4

Keplerian Motion

4.1 Central Acceleration

4.1.1 General Acceleration

Velocity and Acceleration

We consider a material point S in space, referred to an origin O and three
fixed directions. The position vector, velocity, and acceleration of the point S
are denoted by

r = OS , ṙ =
dr

dt
, r̈ =

d2r

dt2
.

Consider the plane containing the position and velocity vectors. An orthonor-
mal frame (O; i, j) is defined in this plane, together with a polar coordinate
basis (er, eθ). Adjoining the unit vector along the Oz axis, we obtain the
right-handed system

k = i ∧ j = er ∧ eθ .

Let r be the length of the position vector, i.e., r = ‖r‖, and θ the angle
between the i axis and the position vector, i.e., θ = (i, r). The unit vectors
er and eθ are defined by er = r/r and (er, eθ) = π/2. The angular speed and
acceleration of the motion are denoted by θ̇ and θ̈.

In this plane coordinate system, the velocity and acceleration of the point
S are obtained by successive derivatives of the expression for OS. This gives

r = rer , (4.1)

ṙ = ṙer + rθ̇eθ , (4.2)

r̈ = (r̈ − rθ̇2)er +
1

r

d

dt
(r2θ̇)eθ , (4.3)

noting that r2θ̈ + 2rṙθ̇ = d(r2θ̇)/dt.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 4,
© Springer International Publishing Switzerland 2014
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Angular Momentum

The angular momentum per unit mass is defined by

C = r ∧ ṙ . (4.4)

Differentiating with respect to time, we obtain

dC

dt
= ṙ ∧ ṙ + r ∧ r̈ = r ∧ r̈ . (4.5)

Moreover, using the definition and the relations (4.1) and (4.2), we obtain the
expression

C = r2θ̇k . (4.6)

4.1.2 Properties of Central Acceleration

Consider a material point S in space. Its motion is said to undergo central
acceleration if there is some fixed point O such that, at each moment of time,
the vector OS and the acceleration vector are collinear. The motion of the
point has central acceleration if and only if

r ∧ r̈ = 0 . (4.7)

Inserting this defining relation in (4.5), we obtain

dC

dt
= 0 , (4.8)

which shows that, for this type of motion, the angular momentum is constant
in time:

C = r ∧ ṙ = constant . (4.9)

If this constant is zero, the motion is in a straight line, since r and ṙ are
collinear.

If the constant vector on the right-hand side of (4.9) is not zero, and this
is the general case that we shall consider hereafter, the motion of the point is
contained in the plane orthogonal to the constant vector. Let P denote this
plane.

The quantity C calculated from (4.6) is thus constant:

C = r2θ̇ , with C = Ck . (4.10)

Note that θ̇ cannot change sign during the motion.
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4.1.3 Motion with Central Acceleration

Expressing the Acceleration

Setting

r̈ = γer , with γ = f(r) , (4.11)

under the assumption that the acceleration is central, it follows that γ is the
signed magnitude of this acceleration. Using the value for r̈ calculated in (4.3),
we obtain the following two relations, one for each component:

r̈ − rθ̇2 = γ , (4.12)

1

r

d

dt
(r2θ̇) = 0 . (4.13)

The last relation shows once again that C is constant.

Areal Law

Let A be the (magnitude of the) area swept out by the vector r. The area
element is the area of the triangle with base rdθ and height r. Hence, we have
dA = (r/2)rdθ and the areal speed (area swept out per unit time) is thus

dA
dt

=
1

2
r2θ̇ =

1

2
C . (4.14)

This is the areal law. It tells us that the area swept out is proportional to
the time. Alternatively, equal areas are swept out in equal times (see Figs. 4.1
and 4.4).

Binet’s Equations

Binet’s equations give the velocity and acceleration as a function of the
angle θ and the auxiliary variable u defined by

u =
1

r
. (4.15)

To find these relations, we eliminate the time t using (4.10), whence

θ̇ =
C

r2
= Cu2 ,

noting further that

rθ̇ = Cu , rθ̇2 = C2u3 .
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Fig. 4.1 :Elliptical trajectory. Ellipse and principal circle, indicating the notation for

points and angles used to establish Kepler’s equation geometrically.

Using the chain rule, we now have

ṙ =
dr

du

du

dθ

dθ

dt
= − θ̇

u2

du

dθ
= −C

du

dθ
(4.16)

and

r̈ =
dṙ

dt
=

(
dṙ

dθ

)
θ̇ = θ̇

d

dθ

(
−C

du

dθ

)
= −C2u2 d

2u

dθ2
. (4.17)

Then from (4.2) and (4.3), we obtain the velocity and acceleration vectors
relative to the basis (er, eθ):

ṙ = C

(
−du

dθ
er + ueθ

)
, (4.18)

r̈ = −C2u2

(
d2u

dθ2
+ u

)
er . (4.19)

Setting

V = ‖ṙ‖ ,
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we obtain the two Binet equations from the last two equations. One refers to
the velocity via its magnitude V and the other refers to the acceleration via
the quantity γ :

V 2 = C2

[(
du

dθ

)2

+ u2

]
, (4.20)

γ = −C2u2

(
d2u

dθ2
+ u

)
. (4.21)

4.2 Newtonian Acceleration

4.2.1 Equation for the Trajectory

A Newtonian acceleration is a central acceleration proportional to r−2.
The corresponding force is attractive.1 The expression for the acceleration
given in (4.11) thus becomes

γ = − μ

r2
. (4.22)

With the auxiliary variable u, we then have

γ = −μu2 . (4.23)

This reveals the usefulness of the Binet equation for the acceleration (4.21)
in the case of a Newtonian acceleration: comparing with (4.23), a factor of u2

cancels out. This leads to the equation

d2u

dθ2
+ u =

μ

C2
. (4.24)

This is a second order linear differential equation with constant coefficients
and the right-hand side is constant. It is easy to solve. The general solution
is the sum of the general solution of the homogeneous equation, i.e., with the
right-hand side set to zero, which introduces two integration constants, and a
particular solution (just the right-hand side in this case):

u = A cos(θ − θ0) +
μ

C2
, (4.25)

where A and θ0 are the integration constants.

1The term “Coulombic” is usually reserved for electrostatic phenomena, where forces
may be attractive or repulsive, while the word “Newtonian” refers to gravitational phenom-
ena, where the forces are always attractive.
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The expression for r is

r =
p

1 + e cos(θ − θ0)
, (4.26)

where

p =
C2

μ
(4.27)

and

e = Ap . (4.28)

This is the equation for a conic section in polar coordinates with one focus at
the origin O, parameter p, and eccentricity e [see (1.16)]. The quantities e and
θ0 are determined by the initial conditions. In order to study the relationship
between these quantities and the initial conditions, that is, to investigate the
main features of the trajectory, we use the Binet equation for the speed (4.20).

4.2.2 Types of Trajectory

Eccentricity

Returning to the variable u, we now write

u =
1 + e cos(θ − θ0)

p
. (4.29)

Differentiating this relation,

du

dθ
= − e

p
sin(θ − θ0) . (4.30)

Substituting into (4.20), we have

e2 + 2e cos(θ − θ0) + 1 =
V 2

C2
p2 . (4.31)

Equation (4.29) implies e cos(θ− θ0) = up− 1, and since p = C2/μ, we obtain

e2 + 2

(
u
C2

μ
− 1

)
+ 1 =

V 2C2

μ2
.

Returning to the variable r, the eccentricity is therefore given by

e2 = 1 +
2C2

μ2

(
V 2

2
− μ

r

)
. (4.32)
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Since e, C, and μ are constants, this equation shows the constancy of the
quantity K defined by

K =
1

2
V 2 − μ

r
= constant . (4.33)

At the end of the chapter, using the relation (4.111), we shall see that this
quantity corresponds to the mechanical energy (per unit mass). For motion
under a Newtonian acceleration, r and V vary in such a way that the relation
(4.33) is always satisfied.

Different Cases

We shall now investigate the quantities r et e defined by (4.26) and (4.32)
(see Fig. 4.12). Depending on the value of K, the eccentricity e can be greater
than or less than unity. We see that the quantity

Ve =

√
2
μ

r
(4.34)

plays a specific role in this demarcation:

• If K > 0, i.e., V > Ve, then e > 1. We have a hyperbola with focus at the
origin O. This time we have the branch which is concave with respect to
the origin O, since the force is attractive.

• If K = 0, i.e., V = Ve, then e = 1. We have a parabola with focus at O.
• If K < 0, i.e., V < Ve, then e < 1. We now have an ellipse with one focus

at O. In this case, there is a condition for the Eq. (4.32): the right-hand
side cannot be negative. We must therefore have

V 2 − 2
μ

r
≥ − μ2

C2
=⇒ V 2 � 2

μ

r
− μ

p
,

whence the condition

V ≥ Vs ,

where

Vs =

√
2
μ

r
− μ

p
. (4.35)

The quantity Vs is the orbital insertion speed for putting a satellite into
orbit at the distance r. We shall return to this case shortly. We shall also
consider the special case of an ellipse with zero eccentricity, which is in fact
a circle with center at O.

It is easy to understand the significance of the speed Ve defined above. When
V ≥ Ve, the point S describing a parabola or a branch of a hyperbola can
go to infinity. On the other hand, when V < Ve, the point S remains forever
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within a finite distance of O and the motion is periodic. This speed, which
depends on r, is therefore known as the escape velocity at the distance r.

If the motion is to be periodic, the speed V must therefore satisfy the
conditions

Vs ≤ V < Ve . (4.36)

The speed V of the body must be greater than Vs for it to be in orbit, but
less than Ve for it to remain under the influence of the central gravitational
attraction.2

Note that the nature of the trajectory does not depend on the orientation
of the velocity vector, but only on its magnitude V at a point at distance r
from the origin.

4.3 Trajectory and Period for Keplerian Motion

4.3.1 Definition of Keplerian Motion

Keplerian motion is the motion of a point mass in a central force field
going as 1/r2, the center of the field being fixed. This field is a gravitational
field created by another mass, assumed motionless. We consider only these two
masses and make no attempt to include perturbations due to other bodies. In
the present chapter, we shall study the motion of this material point S and
it will suffice to consider that it is subject to a Newtonian acceleration, or,
in terms of forces, that it experiences a central force of the form 1/r2 in a
Galilean frame.

Since the aim here is to study satellite trajectories, we shall hereafter
consider only periodic trajectories, that is, elliptical trajectories with K < 0
or e < 1, unless otherwise specified.

4.3.2 Periodic Trajectories

Elliptical Trajectories

In the case of an elliptical trajectory, given the eccentricity in (4.32), we
can write

1− e2 = −2C2

μ2
K , with K < 0 .

2At the beginning of the space age, one finds the terms “first cosmic velocity”, “second
cosmic velocity”, and so on, particular in the Soviet scientific literature. The third cosmic
velocity is the one required to escape from the sphere of influence of the Solar System.
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We also know that an ellipse is defined by its semi-major axis a and its ec-
centricity e. The parameter p is defined by p = a(1 − e2). Hence, by (4.27),
we have

1− e2 =
p

a
=

C2

μa
. (4.37)

These relations imply

2K = V 2 − 2μ

r
= −μ

a
. (4.38)

We may now deduce the expression for the speed V as a function of r :

V 2 = μ

(
2

r
− 1

a

)
. (4.39)

We can check that the right-hand side is always positive since, in an ellipse,
r is always less than 2a.

To sum up, the equation for the elliptical trajectory can be written in
polar coordinates in the form

r = r(θ) =
C2

μ

1

1 + e cos(θ − θ0)
, (4.40)

where

e2 = 1− C2

μa
, (4.41)

or alternatively,

r = r(θ) =
a(1− e2)

1 + e cos(θ − θ0)
. (4.42)

During the periodic motion of the point S, the distance r goes through a
minimum and a maximum, denoted respectively by rp and ra

3:

rp = r(θ = θ0) = a(1− e) ,
ra = r(θ = θ0 + π) = a(1 + e) .

(4.43)

3The subscripts p and a stand for the perigee and the apogee, respectively, for motion
around the Earth (� � ̃�  ̃	), or perihelion and aphelion, for motion around the Sun (�
'��	� ��). More generally, when the gravitational source is not specified, we speak of the
periastron and apoastron, or pericenter and apocenter. The prefixes “peri” and “apo” come
from the adverbs ���� and (�) meaning “above” and “far away”, respectively. The names
perihelion and aphelion were invented by Kepler (1596) as an extension of the terms perigee
and apogee used by Ptolemy.
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The sum of these two lengths is obviously equal to the major axis of the
ellipse, i.e., rp + ra = 2a. The eccentricity can be expressed in the form

e =
ra − rp
ra + rp

=
ra
a

− 1 = 1− rp
a

. (4.44)

Referring to (4.39), we see that the speed V goes through a maximum Vp for
r = rp and a minimum Va for r = ra, with respective values

Vp =

√
μ

a

√
1 + e

1− e
=

√
μ

p
(1 + e) , (4.45)

Va =

√
μ

a

√
1− e

1 + e
=

√
μ

p
(1 − e) . (4.46)

We thus deduce the following relations between the speeds at the apsides4:

rpVp = raVa =

√
μ

p
a(1− e2) =

√
μp = C .

We retrieve the angular momentum C, since, for these two extremal points
on the ellipse, the velocity and the radial vector are orthogonal.

Note also that

Vp

Va
=

ra
rp

=
1 + e

1− e
. (4.47)

Using the eccentricity angle ε defined by (1.27), the apsidal velocities can be
written

Vp =

√
μ

a
tan
(π
4
+

ε

2

)
, Va =

√
μ

a
tan
(π
4
− ε

2

)
. (4.48)

The speed can be expressed in terms of the polar angle. From (4.31), we find

V 2 =
μ

p

[
1 + 2e cos(θ − θ0) + e2

]
=

μ

a

1 + 2e cos(θ − θ0) + e2

1− e2
. (4.49)

Example 4.1 Calculate the eccentricity of the orbit of an artificial Earth satel-
lite with altitude 500 km at perigee and 40,000 km at apogee (Molniya orbit).
Take R = 6,400 km.

4The apsidal line is the line joining the perigee and the apogee. This line segment is
the major axis of the ellipse. The perigee and apogee are the two apsides, also called the
inferior apsis and superior apsis, respectively. This word comes from the Greek � *��	� �̃#�	,
meaning “vault” or “celestial vault”, having lost the initial aspiration. The architectural
term “apse”, which refers to the semicircular recess covered with a hemispherical vault,
usually at the east end of a church, has the same origin.
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� If hp and ha are the altitudes at perigee and apogee, then using the distances
rp and ra defined by (4.43), we have

rp = R+ hp , ra = R+ ha , a = R+
ha + hp

2
.

With (4.44), we obtain the eccentricity

e =
ha − hp

2R+ ha + hp
. (4.50)

In the case of the Molniya orbit, we have

e =
39,500

12,800 + 40,500
≈ 0.75 .

Moreover, (4.47) gives

Va

Vp
=

1− e

1 + e
= 0.25/1.75 = 1/7 .

With this type of orbit, the satellite is moving seven times slower at apogee
than at perigee. �

Special Case of Circular Trajectory

A circle is an ellipse with eccentricity e = 0. Equation (4.41) gives

C2

μ
= a .

Substituting in (4.26), we obtain the expected relation for a circle, viz.,

r =
C2

μ
= a = p .

The speeds Ve and Vs defined by (4.34) and (4.35) become in this case

Ve =

√
2
μ

a
, Vs =

√
μ

a
=

Ve√
2
. (4.51)

Moreover, the relation involving the constant K gives

2K = V 2 − 2μ

a
= −μ

a
,

whence

V =

√
μ

a
=

C

a
. (4.52)
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This shows that the magnitude V of the velocity is constant and equal to Vs.
Circular motion is uniform.

Considering the value of γ given by (4.22), it can also be checked that
we do retrieve the usual value for the acceleration in the case of a uniform
circular motion:

γ = − μ

a2
= −V 2

a
.

4.3.3 Period and Mean Motion

Period

The period is the time T taken by the point S to describe the whole ellipse.
Integrating (4.14) over one period, we obtain

A =
1

2
CT .

In this case, A represents the area of the ellipse, i.e., A = πab, where b is the
semi-minor axis of the ellipse. Recall further that b2 = pa. Hence,

A = πa
√
pa = πC

√
a3

μ
.

The period is therefore

T = 2π

√
a3

μ
. (4.53)

This is called the period of revolution,5 orbital period, or Keplerian period
of the motion.6 Note that, for an attractive body μ, the Keplerian period
depends only on the semi-major axis a and not on the eccentricity e.

5The word “revolution” comes from low Latin revolutio, onis, meaning “unfolding” or
“return”, from the Latin verb volvere, meaning “roll”, with the prefix re-. Since the Middle
Ages, it has come to mean the periodic return of a heavenly body to its point of departure.
Copernicus used it in the title of his celebrated treatise. The transition to its present use,
to refer to a radical or significant change of political, economic, or cultural regime, as
exemplified by the French Revolution, came only much later. The scientific meaning thus
predates the everyday use of the term. So when we see references to the “Copernican
revolution”, e.g., Kant in 1787, we may say that we have come full circle.

6As we shall see later, when Keplerian motion is perturbed, we can define several periods
relating to the actual motion, such as the nodal (or draconitic) period and the anomalistic
period.



4.4 Time as a Function of Position: The Three Anomalies 107

Mean Motion

The corresponding angular speed n, called the mean motion, is defined as

n =
2π

T
=

√
μ

a3
. (4.54)

The mean motion is the angular speed (SI unit rad s−1, radian per second)
of a fictitious point in uniform circular motion at radius a and with the same
period as a point in Keplerian motion on an orbit with semi-major axis a. With
(4.53), the constant C in (4.14) can be expressed very simply as a function of
n and the dimensions of the ellipse:

C = nab . (4.55)

4.3.4 Relation Between Position and Time

The relations established above give us the trajectory in polar coordinates,
i.e., the relation between r and θ. They were obtained without reference to
the time, since we started out from Binet’s equations, which were themselves
established by eliminating the time. In order to find an expression for the time
t in terms of the polar coordinates, i.e., to determine the position of the point
S at any time, we must go back to the constant in the areal law for motion
with a central acceleration, as specified in (4.10). To obtain t, we integrate
this relation:

dt =
1

C
r2dθ . (4.56)

By this integration, we obtain the time t as a function of the position of the
point, as specified by r or θ.

From a purely practical point of view, we usually require the inverse func-
tional relation, i.e., the position as a function of the time t. There is no direct
analytic solution and we must apply a special treatment. This is Kepler’s
problem. Here we discuss these points as follows:

• Determination of the time as a function of position in Sect. 4.4.
• Determination of the position as a function of time in Sect. 4.5.

4.4 Time as a Function of Position: The Three

Anomalies

The time t is obtained using (4.56) and integrating r2dθ. We consider two
methods:
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• In the first method, we eliminate r, expressing it as a function of θ, i.e.,
r = f(θ). We then obtain t from

t =
1

C

∫ [
f(θ)
]2
dθ .

• In the second approach, we eliminate θ, first expressing dθ in the form
dθ = g(r)dr, and then obtaining t from

t =
1

C

∫
r2g(r)dr .

We shall also see how this last result can be obtained by a method based on
the geometric properties of the ellipse.

4.4.1 Expression for the Time and the Mean Anomaly M

In order to introduce the angles known as anomalies in a homogeneous
way in the following,7 we transform the time into an angle for any periodic
trajectory with mean motion n. The required angle M varies linearly with
time from M = 0 for t = tp, when the body is at perigee, to M = 2π for
t = tp + T , when the body next returns to perigee. The definition of this
angle, called the mean anomaly, is therefore

M = n(t− tp) . (4.57)

4.4.2 Expression t = t(θ) and the True Anomaly v

The starting point is (4.56), in which we replace r by its expression as a
function of θ, as given by (4.40):

dt =
1

C

p2[
1 + e cos(θ − θ0)

]2 dθ .

7Kepler invented the term for these angles, from anomalia, æ in Latin. It originally
comes from the Greek word � (������� �	, which means “irregularity” (privative prefix
(� and adjective ���)	, meaning “self-similar” or “regular”). The idea behind this was to
express the irregular behaviour of this angle in time (since the motion does not appear to be
circular or regular). Kepler first used the term to indicate the position of Mars with respect
to the Sun and he defined several anomalies. Among these were the three described in
this chapter: the true anomaly (anomalia coæquata vera), the eccentric anomaly (anomalia
eccentri), and the mean anomaly (anomalia media). In his work Astronomia Nova, apart
from the true anomaly, Kepler used the “artificial” anomaly (anomalia coæquata fictitia)
and four other anomalies (anomalia circularis & elliptica, anomalia distantaria, anomalia
scrupularia).
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The minimal value of r, namely r = rp, is obtained for θ = θ0 [see (4.43)], and
it is convenient to measure angles from this origin. We thus make the change
of variable

v = θ − θ0 . (4.58)

The angle v is called the true anomaly. We then calculate t = t(v) from

t =
p2

C

∫
dv

(1 + e cos v)2
.

This type of function integrates as follows:

I =

∫
dv

(1 + e cos v)
2 = − e sin v

(1− e2)(1 + e cos v)
+

1

(1− e2)

∫
dv

1 + e cos v
,

∫
dv

1 + e cos v
=

2√
1− e2

arctan

(√
1− e

1 + e
tan

v

2

)
.

Using (4.37), we have

p2

C
=

√
a3

μ
(1 − e2)3/2 =

(1− e2)3/2

n
,

with the expression for the mean motion n given by (4.54).
Taking the time origin as t = tp for r = rp and v = 0, we now obtain

t− tp =
(1− e2)3/2

n
I ,

which gives the time as a function of θ via

n(t− tp) = M = 2 arctan

(√
1− e

1 + e
tan

v

2

)
− e

√
1− e2 sin v

1 + e cos v
. (4.59)

We have thus expressed t as a function of the polar angle θ or, which comes
to the same, M as a function of v.

From this, we can write (4.42) in the form

r = r(v) =
a(1 − e2)

1 + e cos v
, (4.60)

which gives the distance r as a function of the true anomaly.
For the speed, the expression (4.49) becomes

V 2 =
μ

a

1 + 2e cos v + e2

1− e2
. (4.61)
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4.4.3 Expression t = t(r) and the Eccentric Anomaly E

Analytic Method for Obtaining Kepler’s Equation

Instead of expressing dθ directly as a function of r, we adopt a neighbouring
approach, starting from (4.32). This relates V and r to the parameters of the
ellipse and allows us to write

V 2 =
2μ

r
− μ2

C2
(1− e2) .

From the vector form (4.2) for the velocity, we have

V 2 = ṙ2 + r2θ̇2 = ṙ2 +
C2

r2
,

where θ has been eliminated using the areal law (4.14). This leads to

ṙ2 =

(
dr

dt

)2

= − μ2

C2
(1− e2) +

2μ

r
− C2

r2
,

and the differential equation

dt =
r dr√

−μ2(1− e2)r2/C2 + 2μr − C2
.

Replacing C2 by μa(1 − e2), we obtain the following simplifications:

− μ2

C2
(1 − e2)r2 + 2μr − C2 = −μ

a
r2 + 2μr − μa(1− e2)

=
μ

a
(−r2 + 2ar − a2 + a2e2)

=
μ

a

[
a2e2 − (r − a)2

]
,

whereupon

dt =

√
a

μ

r dr√
a2e2 − (r − a)2

. (4.62)

To integrate this equation, it is convenient to introduce the auxiliary angle
variable E such that a− r = ae cosE, which can also be defined by

cosE =
1

e

(
1− r

a

)
. (4.63)

This angle is called the eccentric anomaly.8 It is illustrated in Fig. 4.1. Below
we describe its geometric meaning in relation to the ellipse. Note that E = 0
for r = rp and E = π for r = ra [see (4.43)].

8Eccentric means off-center. The center in question is not the center of the circle or the
ellipse, but the focus of the ellipse, which is the center of attraction. In Chap. 1, this angle
appears in the relation (1.29).
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We now make the change of variable

r = a(1 − e cosE) , (4.64)

so that dr = ae sinE dE. As a function of E, (4.62) becomes

dt =

√
a

μ
a(1− e cosE) dE .

The integration is carried out taking the time origin at t = tp for r = rp and
E = 0:

t− tp =

√
a3

μ
(E − e sinE) .

Bringing in the mean motion n, we obtain

n(t− tp) = M = E − e sinE . (4.65)

This is known as Kepler’s equation. We have thus expressed t as a function
of r, or equivalently, M as a function of E.

Geometric Method for Obtaining Kepler’s Equation

We use the areal law and the fact that the ellipse is an affine transformation
of the principal circle with expansion

√
1− e2, axis Ox, and direction Oy.

Integrating the areal law (4.14) from tp to t, we obtain

t− tp =
2

C
A ,

where the quantity A is the area swept out between these two times, i.e., in
the notation of Fig. 4.1, the area of the curvilinear triangle OPS. Let A′ be
the area of the curvilinear triangle OPT , where T is the point giving S under
the affine transformation. We thus have

A =
√
1− e2A′ .

Replacing C by
√
μa(1− e2), we now have

t− tp =
2

√
μa

A′ .

The area A′ is calculated to be

A′ = sector CPT − triangle COT

= sector {angle E} − 1

2
CO ×HT

=
1

2
a2E − 1

2
(ae)× (a sinE) =

1

2
a2(E − e sinE) .

This geometrical method yields Kepler’s equation very quickly, with the ex-
pression for A′ and introducing the mean motion:

n(t− tp) = M = E − e sinE . (4.66)
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Expressions Involving the Anomaly E

The eccentric anomalyE has no counterpart in physical reality. It is merely
a mathematical tool that proves useful in calculations and often leads to simple
expressions. For example, a few manipulations yield

ṙ =

√
μa

r
e sinE , (4.67)

r·ṙ = rṙ =
√
μae sinE , (4.68)

and

V 2 =
μ

a

1 + e cosE

1− e cosE
. (4.69)

4.4.4 Relating the Anomalies

Relation Between the Anomalies v and E

To establish the relations between v and E (see Fig. 4.1), the ellipse is
equipped with a frame (Ox,Oy). Let O be the principal focus, the center of
the Newtonian field, and C the center of the ellipse. The major axis is AP ,
where P (perigee) is the point on the ellipse closest to O and A (apogee) the
point furthest away. We choose the Ox axis along OP and the Oy axis at 90◦

to it in the anticlockwise direction. Let R be the intersection of Oy with the
ellipse, and Q the intersection of the line parallel to Oy through C with the
ellipse. We then have the following correspondence:

a = CP , b = CQ , p = OR , ae = CO , rp = OP , ra = OA .

We also draw the circle with center C and radius CP which contains the
ellipse and is tangent to it at P and A. This is the principal circle. Let S be
an arbitrary point on the ellipse and H its projection onto Ox.

The true anomaly can be defined immediately as the polar angle

v = (Ox,OS) .

The eccentric anomaly is obtained geometrically from its definition as

E = (Cx,CT ) ,

where the point T is the intersection of the straight line HS with the principal
circle. Indeed, according to the relation (4.63), we have cosE = (a − r)/ae.
Transforming (a− r) in such a way as to bring in v, i.e.,

a− r = a(1− e2)− r + ae2 = r(1 + e cos v)− r + ae2 = e(r cos v + ae) ,
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we find

cosE =
r cos v + ae

a
=

CH

CT
,

using the notation from Fig. 4.1. The angle E is indeed the angle C of the
right-angled triangle HCT .

To obtain the relation between the angles v and E, we write down the
coordinates of the point S, viz.,

x = r cos v = a(cosE − e) , (4.70)

y = r sin v = a
√
1− e2 sinE , (4.71)

whence

√
x2 + y2 = r = a(1− e cosE) ,

and deduce the relations between the true and eccentric anomalies. Note that
v and E change sign together.

For v as a function of E,

cos v =
cosE − e

1− e cosE
, sin v =

√
1− e2 sinE

1− e cosE
,

We calculate the quantities (1 + cos v) and (1− cos v), viz.,

1 + cos v =
(1− e)(1 + cosE)

1− e cosE
=⇒ cos2

v

2
=

1− e

1− e cosE
cos2

E

2
,

1− cos v =
(1 + e)(1 − cosE)

1− e cosE
=⇒ sin2

v

2
=

1 + e

1− e cosE
sin2

E

2
,

to arrive at the relation

tan
v

2
=

√
1 + e

1− e
tan

E

2
. (4.72)

For E as a function of v,

cosE =
cos v + e

1 + e cos v
, sinE =

√
1− e2 sin v

1 + e cos v
,

tan
E

2
=

√
1− e

1 + e
tan

v

2
. (4.73)
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We can also express the difference (v − E) as a function of v or E :

tan
v − E

2
=

β sinE

1− β cosE
=

β sin v

1 + β cos v
, (4.74)

where

β =
e

1 +
√
1− e2

=
1−

√
1− e2

e
. (4.75)

With the eccentricity angle ε defined by (1.27), we have

β = tan
ε

2
, (4.76)

tan
v

2
= tan

(π
4
+

ε

2

)
tan

E

2
, tan

E

2
= tan

(π
4
− ε

2

)
tan

v

2
.

Differential Relations Between the Anomalies

From the definition of M , we have

dM

dt
= n . (4.77)

Equation (4.65) yields

n =
dM

dt
= (1− e cosE)

dE

dt
(4.78)

and

dE

dM
=

1

1− e cosE
. (4.79)

The relation between dM and dv is deduced from the areal law. Equa-
tion (4.14) gives

dθ

dt
=

C

r2
=

na2
√
1− e2

r2
,

and since dθ and dv are equivalent, we have

n =
dM

dt
=

r2

a2
√
1− e2

dv

dt
, (4.80)

and hence,

dv

dM
=

a2

r2

√
1− e2 . (4.81)

Using (4.64), (4.79), and (4.81), we have the following three useful relations:

dE

dM
=

a

r
,

dv

dM
=

ab

r2
,

dv

dE
=

b

r
. (4.82)
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4.5 Position as a Function of Time: Kepler’s

Problem

4.5.1 Methods for Solving Kepler’s Problem

We have just seen how to express the time in terms of the three anomalies
in an analytical way. The converse problem consists in expressing the true
anomaly in terms of time. This is called Kepler’s problem. It has no analytical
solution.

At a given time t, defining the value M = M(t) of the mean anomaly,
Kepler’s equation becomes

E − e sinE = M . (4.83)

We wish to obtain E as a function ofM , so that we may subsequently obtain v.
Since Kepler’s time, dozens of methods9 have been put forward to solve

this transcendental equation in E. We shall present the following:

• An iterative numerical method.
• An overview of methods using series expansions and an approximate for-

mula for small eccentricities.

We shall focus mainly on the first method, which is currently the most widely
used. It can yield any required accuracy, and with today’s computers these
otherwise tedious calculations now take only a fraction of a microsecond.

4.5.2 Solution by Numerical Iteration

Newton–Raphson Method

The idea of the Newton–Raphson method, used here to solve Kepler’s
problem, is to approximate a curve near a point by its tangent at that point
(first order Taylor expansion) and then to proceed by iteration. The equation
of the curve is first transformed into the form f(x) = 0. We check that there
is a solution and that it is unique.

We draw the tangent at a point An on the curve which has coordinates(
x = xn, y = f(xn)

)
(see Fig. 4.2). It cuts the x axis at a point Bn with

9In January 1900, the Bulletin Astronomique of the Paris Observatory provided a bib-
liography of 123 papers dealing with the solution of Kepler’s problem, either analytically
or graphically. Some of the great names of astronomy and mathematics appear on the list,
including Kepler (1609), Newton (1687), Cassini (1719), Simpson (1740), Euler (1747), La-
lande (Astronomie, 1764), Lagrange (Sur le problème de Kepler, 1769), Gauss (Theoria
motus, 1809), Littrow (Anomaliæ veræ per mediam determinatio, 1814), Delambre (1817),
Bessel (Über das Keplersche Problem, 1818), Laplace (Mémoire sur le développement de
l’anomalie vraie, 1823), Wallace (Two elementary solutions of Kepler’s problem, 1835),
Encke (Auflösung des Keplerschen Gleichung, 1850), Cauchy (1854), Lehmann (Ueber eine
definitive Lösung des Keplerschen Problems, 1855, followed by many other purportedly
definitive publications over several years), Le Verrier (1855), and Radau (1882).
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y

An

Bn

An+1

x

Fig. 4.2 :The Newton–Raphson iterative method.

coordinates (x = xn+1, y = 0). From Bn, we find the point on the curve with
the same abscissa as Bn, denoted by An+1 =

(
x = xn+1, y = f(xn+1)

)
, and

then repeat the process until we obtain convergence.
The gradient of the straight line joining the points An and Bn is

f ′(xn) =
yn − 0

xn − xn+1
,

whence

xn+1 = xn − f(xn)

f ′(xn)
. (4.84)

Iterative Solution

Consider Kepler’s equation, written in the form

f(E) = E − e sinE −M ,

with E playing the role of x. The solution will be such that f(E) = 0. The
derivative of f with respect to E is

f ′(E) = 1− e cosE .

Note that, if M is equal to 0 or π, the solution is E = M . We first check that
there is a solution and that it is unique. We thus consider E and M in the
open interval (0, π) and we see that f(0) = −M and f(π) = π − M . There
is therefore at least one solution, since for this continuous function, we have
f(0) < 0 and f(π) > 0. As the derivative is always positive, f ′(E) > 0 with
e < 1, the function is strictly increasing and the solution is thus unique. We
can apply the same argument in the interval (−π, 0).
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We therefore apply the iteration formula

En+1 = En − En − e sinEn −M

1− e cosEn
. (4.85)

We begin with an initial value E0, to be defined. When we consider that the
solution has been obtained to within the required accuracy, we set E = En+1.
With the resulting solution E, we obtain v by (4.72), i.e.,

v = 2 arctan

(√
1 + e

1− e
tan

E

2

)
. (4.86)

Convergence of the Iteration

The rate of convergence, i.e., the number N of iterations needed to obtain
the result, depends on e, M , and the chosen initial value E0. It also depends
on the required accuracy, which we denote by Qk, meaning that the selected
angle is known with an error of less than 10−k degrees, or put another way,
for E expressed in degrees, the first k decimal places are exact.

The number N can be expressed as a function, viz.,

N = N(e,M ;E0,Qk) .

The rate of convergence is no longer an issue today, due to the high speed of
computer calculations. But in homage to the astronomers who, over four cen-
turies, carried out calculations of this kind, we shall give here some indications
of what is involved.

Classically, we set

E0 = M ,

to start the iteration. In this case, convergence is rather fast, unless e > 0.9
when the values of the mean anomaly are small, i.e., |M | < 20◦. The rate of
convergence can be significantly increased by starting with

E0 =

{
M + e if M ≥ 0 ,

M − e if M ≤ 0 ,

which we may write as

E0 = M + e × σ(M) ,

where σ(M) represents the function signM , equal to +1 for M > 0 and −1
for M < 0. The angles E and M are given in radians and take values in the
interval (−π,+π).

Figure 4.3 illustrates these two cases, plotting

N = N(e,M ;E0 = M,Q6) , N = N(e,M ;E0 = M + e× σ(M),Q6) .
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Fig. 4.3 :Solving Kepler’s problem. For a given value of the mean anomaly M and

the eccentricity e, Kepler’s problem is solved by the Newton–Raphson method. When

the result is obtained to an accuracy of 10−6 degrees, we indicate the number of it-

erations that were required and represent it on the graph with a colour. The (dimen-

sionless) eccentricity e is indicated on the horizontal axis and the mean anomaly M

(in degrees) on the vertical axis. Upper: Initial value E0 = M . Lower: Initial value

E0 = M + eσ(M), where σ(M) is the sign of M .
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Example 4.2 Calculate the position in polar coordinates, at time steps of 1 h,
of an Earth-orbiting satellite with eccentricity e = 0.74 and period T = 12 h.

� This satellite has a Molniya orbit. For the mean anomaly, 1 h corresponds to
360/T = 360/12 = 30◦. We thus solve Kepler’s problem in detail for M = 30◦.
The angles are converted into radians in the interval (−π,+π). We use (4.85).
The iteration begins with E0 = M = π/6. We then calculate E1 :

E1 =
π

6
− π/6− 0.74 sin(π/6)− π/6

1− 0.74 cos(π/6)
= 1.55383 ,

and likewise E2, E3, and so on:

E2 = 1.55383− 1.55383− 0.74 sin(1.55383)− π/6

1− 0.74 cos(1.55383)
= 1.25980 ,

E3 = 1.25980− 1.25980− 0.74 sin(1.25980)− π/6

1− 0.74 cos(1.25980)
= 1.21882 ,

E4 = 1.21882− 1.21882− 0.74 sin(1.21882)− π/6

1− 0.74 cos(1.21882)
= 1.21803 ,

E5 = 1.21803− 1.21803− 0.74 sin(1.21803)− π/6

1− 0.74 cos(1.21803)
= 1.21803 .

We consider the result to be obtained after five iterations, given the desired
accuracy, which is Q4 here. Hence,

E = 1.21803 .

Altering the first estimate, we can start the iteration with

E0 = M + e = π/6 + 0.74 = 1.26360 .

We then calculate

E1 = 1.2180197 , E2 = 1.21803 , E3 = 1.21803 .

The convergence is faster.
Having determined the eccentric anomaly to have the value E = 1.21803

rad = 69.7880◦, we obtain v using (4.86):

v = 2 arctan

(√
1.74

0.26
tan

69.7880

2

)
= 122.0062◦ .
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Figure 4.4 (upper) shows the values of v in degrees as obtained by interaction
on E, for the required values of M . By the symmetry of the Kepler problem,
it is not necessary to calculate the angles M in the range from −180◦ to 0◦.
We merely replace M by −M and, in the results, replace E and v likewise by
−E and −v. To determine the distance r, we first calculate the semi-major
axis using (4.53), whence a = 26,609 km. We calculate r = r(v) using (4.60)
and the results are shown in Fig. 4.4 (upper). Clearly, r(−v) = r(v) (angles in
degrees).

Note also that, if we wish to know when the satellite has reached a given
value of the true anomaly, e.g., 90◦, we obtain the result directly, without
solving Kepler’s problem, by using (4.59) and setting v = π/2 rad:

M = 2 arctan

√
0.76

1.74
− 0.74

√
1− 0.742 = 0.73773− 0.49773 ,

which gives M = 0.23000 rad = 13.751◦ equivalent to 13.751/30 h = 28min.
The value of r at this time corresponds to the parameter p. In this case,

r = r(v = π/2) = a(1− e2) = p = 12,037 km .

Referring to Fig. 4.1, the satellite S takes 28min to go from the point P , the
perigee (v = 0◦), to the point R with true anomaly v = 90◦, and it takes 5 h
32min to go from R to the apogee A (v = 180◦).

Note. Here we have been considering a Molniya-type satellite, with a period
of half a mean solar day (720min). In reality, the period of such a satellite is
half a sidereal day (718min).

Figure 4.4 (lower) illustrates the results from this example. �

4.5.3 Other Methods of Solution

Here we outline the underlying idea of methods which transform the quan-
tity E − M in a different way. When E is obtained from M , we calculate
v = v(E).

Bessel Functions

The function E−M = e sinE is an odd periodic function ofM . We expand
it in a Fourier series, using the Bessel functions of the first kind Jk :

E −M = 2
∞∑
k=1

1

k
Jk(ke) sinkM . (4.87)
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t M E1 E2 E3 E4, E5 v r

0 0 00.000 00.000 00.000 00.000 00.000 6,918
1 30 89.028 72.181 69.833 69.788 122.006 19,806
2 60 118.283 102.775 101.550 101.542 144.969 30,548
3 90 132.399 125.001 124.811 124.811 157.156 37,850
4 120 146.802 144.587 144.576 144.576 165.924 42,655
5 150 162.920 162.646 162.646 162.646 173.248 45,403
6 180 180.000 180.000 180.000 180.000 180.000 46,299

MolniyaMolniya

Orbit and central body
in the orbital plane

a =26552.857 km Equiv. Altit. = 20174.7 km
e = 0.750000
CRITICAL Inclin. =  63.43 °
Arg. Perigee=  +270.00 °
Period =   717.72 min

Distances (km)
a =26552.857
b =17563.064
c =19914.643
R = 6378.136

Time interval
between two lines:
59.8 min

MC LMD

Projection
of the Earth Equator

in the satellite
orbital plane

AREAL LAW

Fig. 4.4 :Upper: Iterative solution of Kepler’s problem. Obtaining the true anomaly

with initial estimate E0 = M . The mean anomaly M is proportional to the time t,

measured from the perigee. The different values Ei obtained by iteration are indi-

cated, with convergence from E4 in this case. Finally, we obtain the true anomaly v

and the distance from the focus r. The time t is in hours, the angles M , E, and v

are in degrees, and the distance r is in km. Lower: Trajectory of a Molniya satellite

in elliptical orbit with eccentricity e = 0.74. The period is 718min (almost 12 h).

The position of the satellite at each hour is denoted by a straight line joining it to

the center of attraction, i.e., the center of the Earth, which is the focus of the ellipse.

This illustrates the areal law (Kepler’s second law).
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Expansion in Powers of the Eccentricity

Starting with E −M = e sinE, Lagrange wrote E −M in the form of a
power series in the eccentricity:

E −M =

∞∑
k=1

ek

k!

dk−1 sink M

dMk−1
. (4.88)

Laplace showed that the radius of convergence was e0 = 0.66274 . . . . This
method is therefore unsuitable for eccentricities greater than this value. For
small eccentricities, an expansion to order 3 in the eccentricity is given by
(4.94).

Approximate Result for Low Eccentricities

We express cosM and sinM using (4.83), going to first order in e. This
amounts to writing

cos(e sinE) ≈ 1 , sin(e sinE) ≈ e sinE .

We thus obtain

cosM = cos(E − e sinE) ≈ cosE + e sin2E = e+ (1− e cosE) cosE ,

sinM = sin(E − e sinE) ≈ (1− e cosE) sinE ,

which yields

tanE ≈ sinM

cosM − e
. (4.89)

4.6 Representation of Anomalies

4.6.1 Representation of Anomalies v(M) and E(M)

During a period, up to a factor of n, the mean anomaly M thus represents
the time elapsed since the passage at point P . We can plot graphs giving the
evolution of v and E as a function of time, i.e., the functions v(M) and E(M).
On the graphs shown here, M varies over one period, from M = −π (S at A)
to M = +π (S at A), passing through M = 0 (S at P ) (see Fig. 4.1).

Figure 4.5 (upper) shows the function v(M) for various values of the ec-
centricity between e = 0.0 and e = 0.9, at intervals of 0.1. The two angles are
equal when e = 0.0 (circular trajectory), while the deviation increases with e.
When S is close to the periastron P (M = 0, v = 0), ever bigger variations in v
correspond to small variations in M (i.e., the time) as e increases. In contrast,
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Fig. 4.5 :Upper: Dependence v(M) of the true anomaly v on the mean anomaly M

over a period, for 10 values of the eccentricity between e = 0.0 and e = 0.9, at

intervals of e = 0.1, together with the limiting value e = 1. Angles in radians.

Lower: Dependence E(M) of the eccentric anomaly E, as in the upper graph.
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when S is close to the apoastron A (|M | = π, |v| = π), large variations in
M correspond to small variations in v. This is of course an illustration of the
areal law.

Figure 4.5 (lower) shows the function E(M) for various values of the ec-
centricity between e = 0.0 and e = 0.9, at intervals of 0.1. As for the last
function, the two angles are equal for e = 0.0 and the deviation increases with
e, although in a less marked way than for v(M).

For all the figures in this Sect. 4.6, we consider the case e = 1.0. This is a
limiting case, as the eccentricity of the ellipse tends to unity from below.10

4.6.2 Equation of Center

In Keplerian motion, it is useful to compare the true and mean anoma-
lies. In astronomy, one defines the equation of center, denoted by EC, as the
difference between these two anomalies. This quantity11 is an angle:

EC = v −M . (4.90)

We shall need this when studying the apparent motion of the Sun around the
Earth or Mars.

The graph of the function (v−M)(M) is shown in Fig. 4.6 (upper), which
should be compared with Fig. 4.5 (upper). The values of v corresponding to
the maximum and minimum of (v − M) are symmetric with respect to the
origin (the periastron).

Example 4.3 Calculate the value and position of the extremum of the equation
of center EC.

� By symmetry, we consider EC = v−M for M taking values between 0 and
π. The maximum of EC is given by dv = dM . From (4.81), we obtain the
value rm for which EC is maximum, namely, rm =

√
ab. Using (4.60), which

gives r(a, e, v), we have

rm =
a(1− e2)

1 + e cos vm
= a
(
1− e2

)1/4
,

10For v(M), the graph is discontinuous: v(π) = π×σ(M) and v(0) = 0, denoting the sign
of M by σ(M). For E(M), the representative curve is the reflection of M(E) = E − sinE
in the first bisector.

11The term “equation” taken from algebra was defined in its modern sense by Descartes
in 1637. Prior to this, at least as early as 1250, the word was used in astronomy. It was
specified and used by Kepler (æquatio, nis, in Latin) as “that variable quantity, determined
by calculation, which must be added or subtracted from the mean motion to obtain the
true motion”. This is how one should understand the name “equation of center”, but also
“equation of time”.



4.6 Representation of Anomalies 125

0 30 60 90 120 150 180
0

30

60

90

120

150

180
Ec = (u −M )

M

e = 0.0

e = 1.0

e = 1.0

e = 0.0

+π

+π/2

−π/2

(u −M )

M

−π

0

−π/2 +π/2 +π0−π

Fig. 4.6 :Equation of center. Dependence (v −M)(M) of the difference between the

true anomaly v and the mean anomaly M on M over one period. Upper: For ten

values of the eccentricity, from e = 0.0 to e = 0.9, at intervals of e = 0.1, together

with the limiting value e = 1. Angles in radians. Lower: Magnification of upper

graph, for values of e from 0.00 to 1.00, in steps of 0.05. The locus of the maximum

of the function EC as a function of e is shown by a dash–dotted line. Angles in

degrees.
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e Mm (rad) vm (rad) ECm (rad) Mm(◦) vm(◦) ECm(◦)

0.0 1.5708 1.5708 0.0000 90.00 90.00 0.00
0.1 1.4457 1.6460 0.2002 82.83 94.31 11.47
0.2 1.3203 1.7221 0.4019 75.65 98.67 23.03
0.3 1.1940 1.8004 0.6065 68.41 103.16 34.75
0.4 1.0662 1.8822 0.8160 61.09 107.84 46.75
0.5 0.9364 1.9694 1.0330 53.65 112.84 59.19
0.6 0.8033 2.0647 1.2615 46.02 118.30 72.28
0.7 0.6650 2.1730 1.5080 38.10 124.50 86.40
0.8 0.5176 2.3037 1.7861 29.66 131.99 102.34
0.9 0.3503 2.4838 2.1335 20.07 142.31 122.24
1.0 0.0000 3.1416 3.1416 0.00 180.00 180.00

0.01671 1.5499 1.5833 0.0334 88.80 90.72 1.91
0.09341 1.4540 1.6410 0.1870 83.31 94.02 10.71

0.001144 1.5694 1.5717 0.0023 89.92 90.05 0.13
0.740000 0.6075 2.2217 1.6143 34.80 127.29 92.49

Table 4.1 :Position of the maximum of the equation of center ECm as a function

of the eccentricity. Also given are the corresponding values of the mean anomaly

Mm and the true anomaly vm. Angles in radians (rad) and in degrees (◦). (a) Ec-

centricities from 0.0 to 1.0, in steps of 0.1 (0.0 and 1.0 are limiting values). (b)

Eccentricities of the heliocentric orbit of the Earth and Mars. (c) Eccentricities of

SPOT-5 (e = 0.001144) and Molniya (e = 0.74).

where vm is the value of the true anomaly corresponding to the maximum of
EC, whereupon

vm = arccos

[
1

e
(1− e2)3/4 − 1

]
. (4.91)

The angle vm varies from π/2 (for e = 0) to π (for e = 1). Using (4.59), we
calculate M(vm), an angle varying from π/2 (for e = 0) to 0 (for e = 1). The
maximum of the equation of center ECm, viz.,

ECm = vm −M(vm) , (4.92)

varies from π/2 (for e = 0) to π (for e = 1) (see Fig. 4.6 lower and Table 4.1).
For low eccentricities, we have

cos vm ≈ −3

4
e =⇒ vm =

π

2
+

3

4
e ,

ECm = vm −Mm = 2e sinM ≈ 2e =⇒ Mm =
π

2
− 5

4
e .

The locus of the maxima is plotted in Fig. 4.6 (lower). �
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Low Eccentricities

From (4.72), we can expand v in the general case as a series in E, and
from (4.88), if e is not too large, we can expand E as a series in M . To order
3 in e, we obtain successively:

v = E +

(
e+

e3

4

)
sinE +

e2

4
sin 2E +

e3

12
sin 3E , (4.93)

E = M +

(
e− e3

8

)
sinM +

e2

2
sin 2M +

3e3

8
sin 3M , (4.94)

then v as a function of M , and finally the equation of center:

v −M = EC =

(
2e− e3

4

)
sinM +

5e2

4
sin 2M +

13e3

12
sin 3M . (4.95)

To order one in e, we can cut off the above expansions or obtain the result
directly using (4.74) for v−E, with β = e/2 from (4.75) and (4.65) for E−M .
Since the three angles (anomalies) are very close when e is small, we can write

v − E ≈ e sinE ≈ e sinM , (4.96)

E −M = e sinE ≈ e sinM , (4.97)

EC = v −M ≈ 2e sinM . (4.98)

In the same way, the expansions of r/a and a/r were calculated by Lagrange.
To order 3, we obtain

r

a
= 1 +

e2

2
−
(
e− 3e3

8

)
cosM − e2

2
cos 2M − 3e3

8
cos 3M , (4.99)

a

r
= 1−

(
e− e3

8

)
cosM + e2 cos 2M +

9e3

8
cos 3M . (4.100)

4.6.3 Summary of Anomalies

Let us sum up the results of the preceding sections. If we express the time
t, represented by M , as a function of polar coordinates θ and r, represented
by v and E, respectively, we obtain the analytical relations M(v) and M(E):

v �−→ M = M(v) , equation (4.59) ,

E �−→ M = M(E) equation (4.65) ,

v = v(E) ←→ E = E(v) equations (4.72) and (4.73) .
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If we express the polar angle θ, represented by v, as a function of time t,
itself represented by M , we must go through E, solving Kepler’s problem by
iteration:

M �−→ E = E(M) iteration (4.85) ,

E �−→ v = v[E(M)] = v(M) equation (4.86) .

When we study a particular trajectory, we generally consider a sequence of
times t with a given separation, and at each time ti, ti+1, . . . , we solve Kepler’s
problem to obtain the true anomaly.

The three anomalies v, E, and M do not play similar roles:

• v(t) can be used to identify the position of the body on its orbit and to
determine the radial vector r with the help of (4.26) or (4.60).

• M(t) is in effect another way to represent time.
• E(t) serves mainly to solve Kepler’s problem, but it also arises in the

Lagrange equations of the perturbed motion [see (6.34) and (6.35)].

Example 4.4 Calculate the true anomaly for the planet Mars when the mean
anomaly is M = 98.679 ◦. The eccentricity of the orbit of Mars around the
Sun is e = 0.09341.

� We do the calculations using the various methods discussed above, the itera-
tive method and the approximate methods, which are well suited to planetary
motions, up to a certain level of accuracy, since the eccentricity is low.

Iterative Method. Angles are given in degrees, but we convert them to
radians for the calculation, or change e to (180/π)e to keep the angles in
degrees. Setting E0 = M , we obtain in successive iterative steps using (4.85):

E0 = 98.679 , E1 = 103.896 , E2 = 103.875 , E3 = 103.875 .

Two iterations achieve the required accuracy. We find v using (4.86):

E = E3 = 103.875 =⇒ v = 109.020 .

Approximate Formula (4.89). We obtain tanE = −4.04648, which corre-
sponds to an angle of −76.119◦, whence

E = 180− 76.119 = 103.881 =⇒ v = 109.027 .

Series Expansion of E = E(M) Using (4.94). To first order,

E = 98.679 +
180

π
0.0934 sin(98.679) = 103.969 ,

whence v = 109.112. To second order, we find E = 103.895, whence v =
109.039, and to third order, E = 103.873 and v = 109.019.
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Method Reference E v v − v0

Iteration (4.85) 103.875 109.020 0
Approximate formula (4.89) 103.881 109.027 +0.007
First order expansion of E (4.94) 103.969 109.112 −0.008
Second order expansion of E (4.94) 103.895 109.039 +0.019
Third order expansion of E (4.94) 103.873 109.019 −0.001
First order expansion of v (4.95) – 109.259 +0.239
Second order expansion of v (4.95) – 109.073 +0.053
Third order expansion of v (4.95) – 109.016 −0.004

Table 4.2 :Kepler’s problem. Results using different methods. The exact value v0
is the one given by iteration. The angles E, v, and v − v0 are in degrees. Case

investigated here: eccentricity of orbit e = 0.09341 (planet Mars), M = 98.679◦.

Series Expansion of v = v(M) Using (4.95). In this case, we no longer
solve Kepler’s problem, since we obtain v directly from M . Naturally, this is
only possible because we have an approximate formula. To first order,

v = 98.679 + 2
180

π
0.0934 sin(98.679) = 109.259 .

To second order, we find v = 109.073 and to third order, v = 109.016.

All these results are recorded in Table 4.2. The exact value of v is v0, given
by the iterative method. The discrepancy v − v0 is given in degrees. �

Example 4.5 Calculate the average value of the radial vector r over one rev-
olution for different choices of the integration angle.

� When a point describes a full revolution around an ellipse, we can calculate
the average value r̄α of its distance r from the focus of the ellipse. This will
depend on the angle α used to describe the motion:

r̄α =
1

2π

∫ 2π

0

r(α)dα .

The angle α can be one of the three anomalies v, E, or M .

True Anomaly v. The radial vector r(v) is defined by (4.60). The primitive
of (1 + e cos v)−1 was calculated when we established (4.59). We thus find

r̄v =
a(1− e2)

2π

∫ 2π

0

dv

1 + e cos v
=

a
√
1− e2

π

[
arctan

(√
1− e

1 + e
tan

v

2

)]2π
0

.
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Using (4.73), we obtain

r̄v =
a
√
1− e2

π

[
E

2

]2π
0

= a
√
1− e2 = b .

Eccentric Anomaly E. With r defined by (4.64), we write

r̄E =
a

2π

∫ 2π

0

(1− e cosE)dE =
a

2π
[E]2π0 = a .

For e = 1, the limiting case, rE/a = 1− cosE = 2 sin2(E/2).

Mean Anomaly M . With r defined by (4.64), we use the relation (4.79)
between dE and dM to obtain

r̄M =
1

2π

∫ 2π

0

r dM =
a

2π

∫ 2π

0

(1− e cosE)
2
dE .

Expanding, the integral of the term with period 2π is zero and we find

∫ 2π

0

(1− e cosE)
2
dE =

∫ 2π

0

(
1 + e2 cos2E

)
dE =

(
1 +

e2

2

)∫ 2π

0

dE ,

whence

r̄M = a

(
1 +

e2

2

)
.

The time average of r over one period is not equal to the semi-major axis. We
recover the value of r̄M/a using (4.99).

Summary. With the reduced distance η = r/a, already defined above, we
denote the average values by η̄α :

η̄v =
√
1− e2 , η̄E = 1 , η̄M = 1 +

e2

2
.

The functions ηα = r(α)/a are shown for each anomaly in the upper parts of
Figs. 4.7, 4.8, and 4.9. Graphs represent only half a revolution, given that the
ellipse is symmetric in the apsidal axis. �

Example 4.6 Represent the speed V as a function of the relevant anomaly
(true, eccentric, or mean).

� We expressed the speed V (r) of a satellite in elliptical orbit, as given by
(4.39), relative to the speed Vc of a satellite in a circular orbit with the same
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Fig. 4.7 :Upper: Reduced distance η = r/a. Lower: Speed V/Vc. Quantities are given

as a function of the true anomaly v for various values of the eccentricity e from 0.0

to 1.0 in steps of 0.1. Angles in degrees.
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as a function of the mean anomaly M for various values of the eccentricity e from

0.0 to 1.0 in steps of 0.1. Angles in degrees.
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semi-major axis a, as given by (4.52). Using the reduced distance η defined
by (2.38), we have

V

Vc
=

√
2

η
− 1 , with Vc =

√
μ

a
. (4.101)

Expressing r as a function of v, then of E and M , we obtain successively
the dependence of the speed on the anomalies. The function V (v) is given
by (4.61) and V (E) by (4.69). In the limiting case e = 1, the speed V (E) is
given by

[
V (E)

Vc

]2
=

1 + e cosE

1− e cosE
= cot

E

2
.

The lower parts of Figs. 4.7, 4.8, and 4.9 show just half a revolution with the
origin at the perigee, the other half revolution being symmetric, of course. At
perigee (anomaly = 0◦, η = 1−e) and at apogee (anomaly = 180◦, η = 1+e),
the values of the speed (Vp and Va, respectively) are the same for each of the
three graphs:

Vp

Vc
=

√
1 + e

1− e
,

Va

Vc
=

√
1− e

1 + e
,

Vp

Va
=

1 + e

1− e
.

For example, for e = 0.6, (1 + e)/(1− e) = 4 and hence Vp/Vc = 2.0, Va/Vc =
0.5, and Va/Vp = 4. We note that, since VpVa = V 2

c , the quantity Vc is the
geometric mean of the two extremal speeds Vp and Va. �

Example 4.7 Represent the angle between the velocity vector V and the radial
vector as a function of the relevant anomaly (true, eccentric, or mean).

� Writing the velocity V in the form V = Vrer + Vθeθ, the angle α between
V and r is given by tanα = Vθ/Vr. Using (4.18) and (4.30), we obtain α as
a function of the polar angle θ, represented here by the true anomaly v :

α(v) = arctan
1 + e cos v

e sin v
,

dα

dv
= −e

e + cos v

1 + 2e cos v + e2
. (4.102)

Figure 4.10 (upper) shows the graph of α(v). Calculating the derivative dα/dv,
we find that the minimum of each curve occurs at v = arccos(−e). For a
circular trajectory (e = 0), α is obviously a right-angle. For an orbit infinitely
close to a parabola, e = 1, we have tanα = cot(v/2), and therefore α =
(π/2)− (v/2), dα/dv = −1/2.

The graph of α(E) shown in Fig. 4.11 has axial symmetry, a conse-
quence of the definition of E :

α(E) = arctan

√
1− e2

e sinE
,

dα

dE
= −e

√
1− e2 cosE

1− e2 cos2E
. (4.103)
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Fig. 4.10 :Angle α between the velocity and the radial vector as a function of the true

anomaly (upper) and the mean anomaly (lower). Graphs plotted for various values

of the eccentricity e between 0.0 and 1.0 in steps of 0.1. Angles in degrees.

Figure 4.10 (lower) shows the graph of α(M). There is no analytic formula
for α(M) (see Sect. 4.5). �
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Fig. 4.11 :Angle α between the velocity and the radial vector as a function of the

eccentric anomaly E. Graphs plotted for various values of the eccentricity e between

0.0 and 1.0 in steps of 0.1 and from 0.90 to 1.00 in steps of 0.01. Angles in degrees.

4.7 First Integrals of the Motion

4.7.1 Conservation Laws

Starting from the expression for the Newtonian acceleration, we have ob-
tained the equation of motion by two integrations, to go from r̈ to r. Following
this rather detailed solution, we shall now give a brief presentation of a more
synthetic method. The motivation for this is that it brings out the quantities
remaining constant throughout the motion. These values are obtained with
just one integration, to go from r̈ to ṙ. This is why they are referred to as
first integrals of the motion. Starting from the equation of motion in the case
of a Newtonian acceleration, viz.,

r̈ = − μ

r2
er , (4.104)

we obtain the conservation of energy, angular momentum, and Laplace vector
(which gives the equation of motion).

Conservation of Energy

We take the scalar product of both sides of (4.104) with the velocity
vector ṙ :
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r̈·ṙ =
1

2

d

dt

(
ṙ2
)
=

1

2

d

dt

(
ṙ2
)
,

− μ

r2
er·ṙ = − μ

r2
ṙ =

d

dt

(μ
r

)
.

Equation (4.104) thus gives

d

dt

(
1

2
ṙ2 − μ

r

)
= 0 , (4.105)

whence

K =
1

2
ṙ2 − μ

r
= constant . (4.106)

This expresses conservation of energy. We recover (4.33) by setting V 2 = ṙ2.

Conservation of Angular Momentum

We take the vector product of each side of (4.104) with the radial vector
r. This yields

r ∧ r̈ = − μ

r2
r ∧ er = 0 .

Using the derivative (4.5) of the definition (4.4), we obtain

C = r ∧ ṙ = constant , (4.107)

which expresses conservation of angular momentum. The motion is restricted
to a plane. We recover the relation (4.9).

Conservation of the Laplace Vector: Equation for the Trajectory

We consider the vector product of the acceleration and the angular mo-
mentum:

r̈ ∧C = − μ

r2
er ∧ r2θ̇k = μθ̇eθ = μ

der
dt

.

Now, since C is constant, we have

d

dt
(ṙ ∧C) = r̈ ∧C ,

whence

d

dt
(ṙ ∧C) =

d

dt
(μer) . (4.108)
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Considering this relation, we define the vector Λ, known as the Laplace vector
(or Laplace–Runge–Lenz vector), which has the property of being a constant
vector:

Λ =
ṙ ∧C

μ
− er = constant . (4.109)

This vectorΛ is perpendicular to C, since ṙ∧C and er are both perpendicular
to C. It thus lies in the plane of motion. In order to evaluate Λ, we calculate
ṙ ∧C :

ṙ ∧C =
(
ṙer + rθ̇eθ

)
∧ Ck = C

(
rθ̇er − ṙeθ

)
.

If we project Λ onto er and use the value of C given by (4.6), we have

Λ·er =

(
C

μ

r2θ̇

r
er − er

)
·er =

1

r

C2

μ
− 1 .

We thus obtain the expression for r :

r =
C2

μ

1

1 +Λ·er . (4.110)

Let v be the angle between the radial vector and the fixed vector Λ. Setting
Λ·er = ‖Λ‖ cos v and p = C2/μ, we find that the trajectory is an ellipse.
Comparing formulas, we see that ‖Λ‖ corresponds to the eccentricity. The
distance r goes through a minimum when the vectors Λ and er are collinear
(with v = 0): the vector Λ goes through the periastron and v therefore repre-
sents the true anomaly as defined earlier. Once the Laplace vector Λ is known,
we automatically have the eccentricity and the direction of the periastron.

Note. The conservation of these quantities is expressed by Noether’s
theorem.12

12Emmy Noether (1882–1935) was a German mathematician, considered as the founder
of modern algebra (inventor of rings and ideals). Noether’s theorem (1918) says that a
conservation law is a consequence of the invariance of a physical law under a continuous
transformation with one parameter. (This is proven using the Lagrangian formalism for the
equations of classical mechanics.) As far as we are concerned here:

• Conservation of momentum results from the invariance of the laws of physics under
translation, due to the homogeneity of space.

• Conservation of angular momentum results from the invariance of the laws of physics
under rotation, due to the isotropy of space.

• Conservation of energy results from the invariance of the laws of physics under time
translations, due to the uniformity of the flow of time.
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4.7.2 Note on Energy

When we study the Keplerian motion of a satellite, its mass never enters
our considerations.13 This is why we have always spoken of acceleration rather
than force. Everything we have said so far can be recast. For example, one
could speak of a Newtonian force applied to a material point S of mass m.
This would lead us to introduce the standard definition of energy. In the case
of a Newtonian attraction, the force is

F = −m
μ

r2
er .

This corresponds to a potential energy U (recalling that F = −grad U , with
the convention that U vanishes for infinite r),

U = −m
μ

r
.

The point S, moving at speed V has kinetic energy T given by

T =
1

2
mV 2 .

The mechanical energy E is thus

E = T + U = m

(
V 2

2
− μ

r

)
. (4.111)

The angular momentum L is by definition

L = r ∧mṙ . (4.112)

The quantities considered earlier are thus equivalent to those related to the
energy:

K =
E
m

, C =
L

m
.

Equation (4.33), which establishes that K is constant, is thus equivalent to

E = mK = constant , (4.113)

which expresses the conservation of mechanical energy E .
For periodic motion, (4.38) yields

E = −1

2
m
μ

a
, (4.114)

which is negative, due to the convention U(∞) = 0. We see that a is related
to E/m, which shows that the period depends only on the mechanical energy
per unit mass of the material point under consideration.

13In the study of perturbed motion, the mass of the body is relevant in certain specific
instances, such as the study of air resistance in the upper atmosphere or radiation pressure.
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Fig. 4.12 :Trajectories and energy. The distance from the focus to the periastron is

constant. The minimal energy −E0 corresponds to the orbital insertion speed, and the

trajectory is a circle. We then give the object an energy E = −E0(1− e), where e is

the eccentricity, given in steps of 0.1. As the energy increases, the elliptical trajectory

moves further and further off center, until it becomes a parabola for e = 1 (thick

black curve). Then for e > 1, the trajectory is one concave branch of a hyperbola.
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Example 4.8 Trajectories of various point objects in orbit around a pointlike
center of attraction, with different energies, but having the same distance at
periastron (perigee).

� We consider a point of mass m in a circular orbit of radius r0. It has energy

E = −E0 , with E0 =
1

2
m

μ

r0
.

If we increase the energy while fixing the distance at perigee (focus–perigee
distance rp = r0), the eccentricity increases:

rp = a(1− e) = r0 , a =
r0

1− e
, p = a(1− e2) = (1 + e)r0 ,

and the energy is

E = −1

2
m

μ

r0
(1− e) = −E0(1− e) .

The trajectories are shown in Fig. 4.12 when the eccentricity increases in steps
of 0.10. For e = 0, with negative energy E = −E0, the trajectory is a circle. It
becomes an ellipse, ever further off center, as the energy increases, provided
that e < 1. For e = 1, with energy E = 0, the trajectory is a parabola. For
e > 1, with energy E > 0, the trajectory is a hyperbola (concave branch).
When the trajectory is given in polar coordinates using (1.17) or (4.60), a
is positive for the ellipses, infinite for the parabola, and negative for the hy-
perbolas. Sign conventions can be avoided by using the parameter p in the
general equation for the conic sections, as in (1.16). �

4.8 Historical Note on Universal Attraction

4.8.1 Kepler’s Laws

Since ancient times, astronomy had been dominated by Ptolemy’s14 geo-
centric system, but by the fifteenth century, the inadequacies of this system
had become clear to several astronomers, for instance, in the universities of

14Claudius Ptolemaios (+��#��	 ������̃��	), who lived roughly from 90 to 168 AD,
was a Greek mathematician, astronomer, and geographer from Alexandria (Claudius is a
Roman first name, while Ptolemaios is a Greek name � ������̃��	� ��, meaning warlike).
He wrote a number of things, the best known being the Geography and the Almagest. In the
Geography (which means literally “drawing of the Earth”), he situates hundreds of places,
including towns, mountains, and others, with the correct latitude and somewhat overesti-
mated longitudes. In the Almagest (a title attributed to it later by Arab astronomers, from
Al, “the”, the definite article in Arabic, and megistos, the superlative of mega, in Greek,
meaning “very big”), he presents the geocentric planetary system, called the Ptolemaic sys-
tem. To obtain good agreement between observation and model, he has each planet (and
in particular Mars) describe a circle called an epicycle, whose center moves around another
circle, called the deferent, centered on the motionless Earth. He refined this model with the
eccentric (shifted deferent), the equant point, and other modifications. The work of Ptolemy,
the last astronomer of the ancient world, was transmitted to Europe by the Arabs, where
it formed the foundation of astronomy in the Middle Ages and the Renaissance.
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Fig. 4.13 :Kepler’s Astronomia Nova, edited in Prague in 1609—MDCIX. Left: Title

page. Right: First page.

Bologna or Padua. However, Copernicus15 was the first to reject the geocentric
system in favour of a heliocentric model.

15Nicolaj Kopernik (1473–1543), in Latin Nicolaus Copernicus Torinensis, was a Polish
astronomer. Following his studies in Italy, Copernicus returned to Poland and devised a
cosmological system which replaced the Earth by the Sun as the center of the Universe.
This was the heliocentric, or Copernican system, in which the orbit of each planet is a
sphere centered on the Sun. He completed his treatise De Revolutionibus orbium cœlestium
around 1530. However, fearing the reaction of both the Catholic hierarchy and the newly
born Lutheran movement, he held back the publication. The book was finally printed in
Nuremberg in 1543, the year of his death, thanks to the determination of his pupil Rheticus.
The editor Petreius demanded a preface, but we do not know whether the author gave
his agreement. Written by the theologian Osiander, it warned the reader that the system
there described was merely a way of looking at the problem that could help to carry out
calculations, and that it in no way put in doubt the Bible.

In those days, the authorities had radical ways of dealing with anyone foolish enough
to contest religious dogma or biblical truths. The doctor Michel Servet, of Spanish origin,
was the first to carry out a scientific investigation of the blood circulation. As a result, he
was arrested in 1553 in the Protestant republic of Geneva, condemned to death, and burnt
at the stake under the eye of Calvin himself.

As it turned out, it was not until 1616 that De Revolutionibus was finally listed on the
Index of the Holy Office. For decades, the book was unfavourably viewed by astronomers. Its
message was too radically different, and on top of that, it did not provide good predictions.
For the planet Mars, the positions given by Copernicus were less accurate than those given
by Ptolemy’s epicycles!
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Fig. 4.14 :Kepler’s Astronomia Nova. Page 132, showing the three systems: Coper-

nican (heliocentric), Ptolemaic (geocentric), and the hybrid system due to Tycho

Brahe.
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As can be seen from Figs. 4.13 and 4.14, Kepler favoured the new and
“revolutionary” system. Using observations made by Tycho Brahe,16 he ex-
plained the motion of the planets in the Solar System by the following three
propositions (Kepler’s laws)17:

1. Law of ellipses. The trajectory of each planet lies in a plane (a) and it is
an ellipse in which one focus is the Sun (b).

16Tyge Brahe, commonly known as Tycho Brahe, (1546–1601), was a Danish astronomer.
He spent 20 years in his observatory in Uraniborg (“City of the Sky”), in Denmark, making
very accurate astronomical measurements. He was the first to take into account the refrac-
tion of light. The accuracy of his observations was 1′ (1 arcmin, or 1/60 of a degree), while
his contemporaries were not doing better than 10′. He measured the motion of the planet
Mars, observing ten oppositions. His model of the Universe was a compromise between
Ptolemy’s geocentric model and the heliocentric model of Copernicus. In 1597, he left for
Bohemia where he worked with Kepler to set up the astronomical tables known as Tabulae
Rudolphinae.

17The German astronomer Johannes Kepler (1571–1630), in Latin Ioannes Keplerus,
published the first two laws in 1609, inAstronomia Nova ������������ seu Physica Cœlestis,
and the third in 1619, in Harmonices Mundi. However, it would be wrong to think that the
laws appear in a totally clear manner in these writings, as they would in today’s scientific
papers. The mathematical terminology was heavy and the explanations hard to follow.
There are even cases of one error of reasoning balancing out another.

The first of these two books is almost exclusively devoted to describing the orbit of
Mars (whence the subtitle Tradita comentariis de motibus stellæ Martis ex observationibus
G.V. Tychonis Brahe). The second law appears at the beginning of this work and the first
at the end. Naturally, they concern only the elliptical trajectory of the planet Mars. The
Greek word attached to the title Astronomia Nova is the substantive arising from the verb
�,�������, meaning “to seek causes”. But although these works seem difficult to follow
nowadays, they nevertheless attest to the extraordinary discoveries made by their author.
To demonstrate the eccentricity of the orbit of Mars or the Earth required a great level of
trust in Tycho Brahe’s observations, made with the naked eye, and a considerable degree
of mathematical ability. Many other moral qualities were also involved. Courage and self-
confidence were essential to take such a revolutionary theory to its logical conclusions in
the face of universal opposition, in a climate of family problems and widespread religious
hostility, as the wars of religion tore Europe apart. Perseverance was another quality we may
safely attribute: in Astronomia Nova, following fifteen pages of close calculations, Kepler
tells us that he had to repeat them seventy times in order to arrive at the result. In his own
words: “If this method seems possible and tedious, take pity on me, for I undertook these
calculations 70 times, and you should not be surprised to find that I have spent 5 years
on the theory of Mars. There will no doubt be several subtle geometers, like Viète, who
will say that the method is not geometric. But let them solve the problem themselves if
they are not satisfied.” This can help us to understand the astonishing clause in the title
of Astronomia Nova (see Fig. 4.14): Plurium annorum pertinaci studio elaborata Pragæ
(Written in Prague after several years of obstinate effort).

Kepler was deeply convinced that the cosmic and hence divine order had to be perfect,
and had great difficulty renouncing the perfection of the circular orbit in favour of the
ellipse, blemished as it was by the failings of the real world. Throughout his approach to
science, Kepler was guided by this search for divine harmony. In his last work, this led to
the musical harmony of the planets and the geometrical harmony of the regular polyhedra
(Platonic solids) he fitted around the planetary orbits. In this context, Kepler wrote: “There
are six planets because there are five regular polyhedra. I cannot begin to express my wonder
before this discovery.”
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2. Areal law. The areas swept out by the radial vector are proportional to the
time it takes to sweep them out.

3. Harmonic law. The square of the period of revolution is proportional to the
cube of the length of the major axis.

These correspond to our earlier equations in the following way:

Law (1a) ⇐⇒ equation (4.8) ,

Law (1b) ⇐⇒ equation (4.40) ,

Law (2) ⇐⇒ equation (4.14) ,

Law (3) ⇐⇒ equation (4.53) .

Note that laws (1a) and (2) apply in the case of central accelerations, and
laws (1b) and (3) in the case of central accelerations with 1/r2 dependence,
i.e., Newtonian accelerations.

At the end of Chap. 15, in the historical note on Kepler and the planet Mars
(see Sect. 15.11), we display certain passages from Astronomia Nova which
attest to the accuracy and originality of Kepler’s work. At the end of Chap. 16,
in the historical note on Kepler and the Solar System (see Sect. 16.10), we
include two tables of values from Harmonices Mundi which Kepler used to
establish his third law.

4.8.2 Newton and the Law of Universal Attraction

While Kepler was the founder of celestial mechanics, it was Galileo18 who
laid the foundations for terrestrial mechanics, at the same period. But it

18Galileo Galilei (1564–1642) was an Italian physicist and astronomer. Founder of dy-
namics and the first genuine experimenter, he studied the free fall of bodies and parabolic
motion. He propounded the principle of inertia, which corresponds to Newton’s first law.
Shortly after the invention of the refracting telescope, he began to use this instrument to
observe the sky. In 1610, he discovered four moons in orbit around Jupiter, and it was this
observation that persuaded him that the Earth and the other planets were in orbit around
the Sun. The discovery of the crescent of Venus (impossible in a geocentric system) con-
firmed this idea and he communicated it to Kepler. Galileo recorded all his astronomical
discoveries in Sidereus Nuncius (the Celestial Messenger).

An unfailing advocate of the Copernican system, Galileo was condemned for the first
time by the Inquisition on 16 February 1616, under the papacy of Paul V. In 1632, he
published Dialogo sopra i due massimi sistemi del mondo, Tolemaico et Copernicano. This
was not written in Latin, but in the local vernacular or volgare of Italy or Tuscany. That, too,
was revolutionary. In this work, he made his preferences perfectly clear and was condemned a
second time for heresy on 22 June 1633, under the papacy of Urban VIII, who proclaimed:
“The opinion that the Sun sits motionless at the center of the world is absurd, a false
philosophy, and formally heretical, because it explicitly contradicts the Holy Scriptures.”
Only by getting down on his knees and abjuring did he avoid being burnt at the stake. But
he was still imprisoned at the age of 70 and ended his days under house arrest.

At the end of the twentieth century, a Vatican commission was convened in 1981 under
John Paul II to reconsider what had been done to Galileo. Its conclusions were announced
on 31 October 1992: the Church recognised the errors of Galileo’s judges but was unable to
proclaim his vindication.
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Fig. 4.15 :Newton’s Principia, published in London in 1687—MDCLXXXVII. Left:

Title page. Right: Page 50, where Newton shows geometrically that, if the point P ,

subject to a force with center S, describes an ellipse with focus at S, then this force

is inversely proportional to the square of the distance SP .

required the genius of Newton to synthesise these two aspects of the same
phenomenon into a single idea: the universal law of attraction. Today, we
show that an attraction of type 1/r2 between the Sun and the planets leads
to an elliptical trajectory for the planets. But historically, Newton had to
piece together the rudiments of infinitesimal calculus (called the method of
fluxions) and, starting from the elliptical trajectories discovered by Kepler,
deduce that the forces at play had to have the 1/r2 dependence, whereupon
he could put forward his law of universal attraction (see Fig. 4.15).

Let us rewrite Newton’s demonstration using the notation of modern math-
ematics. We begin, as he did, with the principle that the forces were central.
We consider a material point, whose position is defined by a radial vector r
describing an ellipse. We can then write

u =
1

r
=

1 + e cos θ

a(1− e2)
, (4.115)

from which we deduce

du

dθ
= − e sin θ

a(1− e2)
,

d2u

dθ2
= − e cos θ

a(1− e2)
.

Substituting this into Binet’s equation (4.21), which we recall refers to central
forces, we obtain
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Fig. 4.16 :British stamp commemorating Newton’s

work.

r̈ = −C2u2

[
− e cos θ

a(1− e2)
+

1 + e cos θ

a(1− e2)

]
er

= −C2u2 1

a(1− e2)
er = − C2

a(1− e2)

1

r2
er .

Now C is given by πab = CT/2 (this is the areal law, which also refers to
central forces), i.e.,

C =
2π

T
a2
√
1− e2 .

We can therefore deduce that

r̈ = −4π2

T 2
a3

1

r2
er , (4.116)

whereby we obtain

r̈ = − μ

r2
er , with μ =

4π2

T 2
a3 .

Tycho Brahe’s observations as interpreted by Kepler showed that this quantity
μ remains constant for all planets gravitating around the Sun. Newton thus
deduced that it could be written in the form

μ = GMS ,

where MS is the mass of the Sun and G is a universal constant.
Finally, the attractive force exerted by a body of mass M on a body of

mass m (and conversely) could be written

F = mr̈ = −G
Mm

r2
er . (4.117)

This is indeed the law of universal attraction between two bodies of masses
M and m, where G is the gravitational constant (Fig. 4.16).



Chapter 5

Satellite in Keplerian Orbit

From now on, we shall be mainly concerned with the periodic motion of a
body, the artificial satellite,1 in the gravitational field of the Earth.

5.1 Two-Body Problem

We consider two bodies A1 and A2, with masses m1 and m2, respectively,
moving in a Galilean frame (O0;x, y, z). The system is isolated in the sense
that each body feels only the attractive force of the other. This is the statement
of the two-body problem. The aim is to determine the motion of the two
bodies.

1In latin, satelles, satellitis was a bodyguard, soldier, assistant, or accomplice. The
origins of the word are obscure. Some claim an Etruscan origin. The word satelite appears
in French around 1265 to denote an armed man who carries out the orders of a commander,
then in the form satellite, around 1500, to refer to a man depending in some way on
another, or accompanying another. It was Kepler, in 1611, who gave it the modern meaning
of “satellite” in the Latin term satelles, which he used to refer to the four satellites of
Jupiter, recently discovered by Galileo with his refracting telescope. He wrote: De quattuor
Jovis satellibus erronibus, that is, “Concerning the four wandering companions of Jupiter”.
The term “artificial satellite” appeared around 1950.

In many languages, “satellite” is expressed by a word coming directly from the Latin
term modernised by Kepler, as in the Latin and Anglo-Saxon languages. In others, it is the
word for “moon” which is used, as in Arabic, qamar s.anā’i, meaning “artificial moon”.

However, certain languages have kept to the first idea of satelles. In modern Greek, the
satellite is still a bodyguard, since it is called doryphoros, � #���&)��	� ��, “armed with
a spear”, built up from �� #)��� ���	, “spear”, and the suffix &��)	, “which carries”. In
Russian, sputnik is the travel companion (put, “way”). In Chinese, the satellite is called
wei xing, “guardian star”, a word written with the two ideograms wei, “guard”, and xing,
“star”. The same form is found in Japanese.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 5,
© Springer International Publishing Switzerland 2014
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Taking an arbitrary origin O, Newton’s second law takes the form

m1
d2OA1

dt2
= −Gm1m2

A1A2

‖A1A2‖3
,

m2
d2OA2

dt2
= −Gm1m2

A2A1

‖A2A1‖3
,

which yields the relation

m1
d2OA1

dt2
+m2

d2OA2

dt2
= 0 . (5.1)

The barycenter C of the two points A1 and A2 (also called the center of mass)
is defined by

m1OA1 +m2OA2 = (m1 +m2)OC .

We thus have

d2OC

dt2
= 0 =⇒ OC = v0t+ u0 ,

where the vectors v0 and u0 are constant.
Since C is in uniform motion with respect to (O0;x, y, z), this shows that

the frame (C;x, y, z) is Galilean. Using (5.1) and the expressions for the ac-
celerations, we obtain

d2A1A2

dt2
= −G(m1 +m2)

A1A2

‖A1A2‖3
. (5.2)

Taking the barycenter C of these two points as the origin, we thus have

r1 = CA1 , r2 = CA2 , r12 = r2 − r1 ,

and from the definition of the barycenter,

m1r1 +m2r2 = 0 .

Equation (5.2) gives the equation of motion:

r̈12 = −G(m1 +m2)
r12

‖r12‖3
, (5.3)

as observed with respect to a Galilean frame of reference.
The motion of the points A1 and A2 can then be deduced from the motion

of r12 via the relations

r1 = − m2

m1 +m2
r12 , r2 = +

m1

m1 +m2
r12 .
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As an example, for the motion of the Moon (A2) around the Earth (A1), we
have m1 = 81 m2: the motion is studied relative to the barycenter of the
Earth–Moon system.

For an artificial satellite (A2) around the Earth (A1), m2 is negligible in
comparison with m1 and we have

r1 = 0 , r2 = r12 .

In brief, the motion of an artificial satellite around the Earth will be treated
as follows:

• To begin with, it will be considered as a two-body problem in which one
body (the satellite) has negligible mass compared with the other. It will
therefore be in Keplerian motion and the orbit it follows will be called the
Keplerian orbit.

• In a second step, this motion will be considered to be perturbed. The real
orbit which results will be called the perturbed orbit.

5.2 Orbital Elements

5.2.1 Specifying the Satellite Orbit in Space

Frame of Reference

The fundamental principle of mechanics known as the Galilean principle
of relativity says that the properties of space and time are the same, and the
laws of mechanics are identical, in all inertial frames of reference.

We consider a satellite in periodic motion around the Earth. Let us define
the frame (O;x, y, z). The origin O is the center of the Earth, which is taken
to be a sphere Σ. The axis Oz is the axis joining the poles, oriented from
the south to the north. The plane xOy is the equatorial plane of the Earth,
denoted E , which cuts the terrestrial sphere at the equator. The axis Ox is
chosen arbitrarily to point towards a distant star or the vernal point. The
axis Oy is deduced from the other two axes in such a way as to obtain a
right-handed orthonormal frame. The frame associated with this coordinate
system is considered to be Galilean and will be denoted by � (see Fig. 5.1).

The motion of the satellite is Keplerian, i.e., in �, the trajectory is a conic
section, in this case an ellipse, with one focus at the center of attraction O,
and lying in a plane P . The trajectory of the satellite is called the orbit.2

The plane P is called the orbital plane. For Keplerian motion, one speaks of
a Keplerian or Kepler orbit.

2From the old French orbite, first attested in 1314. It derives from the Latin orbita, æ,
meaning “mark left by a wheel”, then “closed curve described by a heavenly body”. The
word made its appearance in astronomy in the seventeenth century, then in astronautics in
around 1950 for artificial satellites.
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Fig. 5.1 :Ground track of the orbit in the Galilean frame. Projection of points on the

ground track: S0 is the projection of the point S (satellite) and P0 is the projection of

the perigee P onto the ground track. N0 and N ′
0 are the projections of the ascending

node N and the descending node N ′ onto the ground track. The equatorial plane of

the Earth is (xOy, N0, N
′
0), normal to the polar axis Oz. The orbital plane is (O,

P0, S0, N0, N
′
0), normal to OZ. Four of the orbital elements are the right ascension

Ω of the ascending node, the inclination i, the argument of the perigee ω, and the

true anomaly v. The other two orbital elements specify the ellipse, viz., the semi-

major axis a and the eccentricity e, not shown in the figure. Upper image: Orbit

viewed in a Galilean frame.
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In this Galilean frame, the orbital plane P is fixed. Let OZ denote the
straight line perpendicular to P at O. The intersection of the planes P and E
is a straight line through O, called the line of nodes. The two nodes are the
points of intersection of the orbit and the terrestrial equatorial plane E , with
N the ascending node, where the satellite passes from the southern hemisphere
to the northern hemisphere, and N ′ the descending node, where the satellite
passes from the northern hemisphere to the southern hemisphere.

Specifying a Point on an Orbit

In order to specify a point in Keplerian motion in space, the first step is
to identify the orbit, and then the point on the orbit. We thus define succes-
sively:

• the location of the orbital plane in this frame,
• the position of the elliptical orbit in this plane,
• the characteristics of the ellipse,
• the position of the moving point, i.e., the satellite, on the orbit.

We shall find that six parameters are necessary and sufficient to determine
the position of the satellite in �. Let us now go through each of these points.

Locating the Orbital Plane in the Frame. Two angles, those of the
spherical coordinate system, fix P relative to E , given that P contains O.
These angles are an azimuthal angle and a height angle. The angle Ω of the
plane E , which specifies the line of nodes (in the direction of the ascending
node) relative to the zero axis, is called the right ascension of the ascending
node:

Ω = (Ox,ON) .

The angle i is the dihedral angle i = (E ,P) between the orbital and equatorial
planes. This is called the inclination. It can also be defined in terms of the
normals to the planes by

i = (Oz,OZ) .

All possible positions of P relative to E are obtained as Ω varies over the
interval [0, 2π) and i varies over [0, π).

Characterising the Ellipse. Since its focus is at O, the center of attraction,
the ellipse is characterised by two parameters, its semi-major axis a and its
eccentricity e.

Locating the Ellipse in the Orbital Plane. The ellipse is specified in
P by choosing the position of a point, traditionally the perigee P , and then
specifying the argument of the perigee ω, which is the angle between the
apsidal line and the line of nodes:

ω = (ON ,OP ) .
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Locating the Satellite in Its Orbit. A point S on the ellipse is perfectly
determined by its polar angle, centered on O. This is the true anomaly v,
already defined as

v = (OP ,OS) .

The mean anomaly M is general preferred over v. In Chap. 4, we considered
the bijective relation between these two variables [see (4.59)].

We can also use the angle α, called the position on orbit or the argument
of the latitude, or the nodal elongation, defined by

α = ω + v , (5.4)

which specifies the position of S relative to the ascending node.

5.2.2 Keplerian Elements

The parameters discussed above define the orbit and the position of the
satellite on the orbit. These parameters constitute the six orbital elements,
also known as the Keplerian elements. They are generally presented in the
following order:

a , e , i , Ω , ω , M .

The parameter a has dimensions of length, whilst the five others (e and the
four angles) are dimensionless.

Six parameters, including at least one length, are necessary and sufficient
to specify the motion of a point. The position of a point (3 position coordi-
nates) and its velocity (the 3 velocity components) at a given time can provide
the initial conditions required to integrate the equations of motion, thereby
determining the position of a point on its trajectory (3 + 3 = 6 parameters).

Other sets than the Kepler elements can be used. We may also use those
of Laplace, Delaunay, Hill, or others. Each is designed to meet different needs.
The six Keplerian elements play a clear didactic role in the study of perturbed
motion, because it is then easy to see which ones vary and which ones do not
(see Table 5.1). These angles can be expressed in terms of the Euler angles
(see the appendix to the chapter in Sect. 5.4).

In Chap. 8, and in particular in Sect. 8.4, we discuss the orbital elements
that are used in practice to locate satellites to high levels of accuracy. We
shall then establish the relation between these elements and the Keplerian
elements discussed above.

5.2.3 Adapted Orbital Elements

In certain cases, the Keplerian elements do not provide a precise enough
system of parameters. They are then combined in such a way as to provide
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Angle Angle Range Plane Euler angle

Ω R.A. of ascending node (Ox,ON0) 0–360 ∈ E Precession
i Inclination (Oz,OZ) 0–180 (E ,P) Nutation
ω Argument of the perigee (ON0, OP0) 0–360 ∈ P Proper rotation
v True anomaly (OP0, OS0) 0–360 ∈ P Proper rotation

Table 5.1 :Kepler elements (angles). The angles refer to Fig. 5.1. Ranges are given

in degrees. R.A. = right ascension.

better adapted parameters. We shall now list the combinations used to get
around the difficulties. No attempt has been made to give more than a simple
inventory. These methods are used for a highly refined description of satellite
motion (accurate positioning and station-keeping), which lie beyond the scope
of the present book.

Near-Circular Orbits

For eccentricities close to zero, the orbit is said to be near-circular. The
perigee is then poorly defined, in the sense that small fluctuations in e lead to
large variations in ω. Moreover, in this case, v andM are very close. To specify
the position of the satellite in its orbit, it is more convenient to take the origin
at the ascending node, with α̃ = ω + M , than at the perigee, with M . The
Keplerian elements are then replaced by the following adapted parameters:

a , ex = e cosω , ey = e sinω , i , Ω , α̃ = ω +M .

Near-Equatorial Orbits

If the orbit lies almost in the equatorial plane, the ascending node is ill-
defined. There may even be discontinuities in Ω when the plane of the orbit
crosses the equatorial plane: the ascending node becomes the descending node.
In this case, it is preferable to use the following parameters:

a , e , ω̃ = ω +Ω , hx = 2 sin
i

2
cosΩ , hy = 2 sin

i

2
sinΩ , M .

Near-Circular Near-Equatorial Orbits

If the conditions of the last two cases are brought together simultaneously
(as in the case of geostationary satellites), neither the line of nodes nor the
apsidal line are clearly defined. We then use the angles ω̃ = ω + Ω and λ̃ =
ω̃ +M = ω +Ω +M . Suitable adapted parameters are as follows:

a , e cos ω̃ , e sin ω̃ , 2 sin
i

2
cosΩ , 2 sin

i

2
sinΩ , λ̃ .
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5.3 Keplerian Period

Whatever the eccentricity of an elliptical orbit may be, the Keplerian pe-
riod is given by (4.53). We denote this by T0 to distinguish it from periods
defined for perturbed motion:

T0 = 2π

√
a3

μ
. (5.5)

It is convenient to define the period T0(h=0) of a fictitious satellite in circular
orbit at ground level on a spherical Earth of radius R :

T0(h=0) = 2π

√
R3

μ
. (5.6)

We also define the reduced (dimensionless) distance η = a/R of the satellite
from the center of the Earth, as already given in (2.38). We may then express
T0 in terms of a, η, or h :

T0(a)

T0(h=0)
=
( a
R

)3/2
, (5.7)

T0(η) = η3/2T0(h=0) . (5.8)

Numerical calculation of the period of the satellite orbiting at ground level
gives

T0(h=0) = 5,069.34 s = 84.4891 min . (5.9)

The maximal number of revolutions per day is therefore, for an Earth-orbiting
satellite,

ν0(h=0) = 17.044 . (5.10)

This notion of daily orbital frequency is further developed in Chap. 7.
Figure 5.2 can be used as a quick way to evaluate the period as a function

of altitude. Several satellite appellations appear on the figure (LEO, MEO,
GEO). These will be explained later.

For a near-circular orbit, we define the height h above a spherical Earth
by

h = a−R , R = Re = equatorial radius .

Equation (5.8) becomes

T0(h) =

(
1 +

h

R

)3/2

T0(h=0) .
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Fig. 5.2 :Keplerian period of a satellite as a function of the semi-major axis a (and

the altitude for a circular orbit). The abbreviations LEO, MEO, and GEO are ex-

plained below.

When h is much smaller than R (the case of low altitudes, i.e., LEO satellites),
we have

T0(h) ≈
(
1 +

3

2

h

R

)
T0(h=0) .

Circular Motion

The upper graph in Fig. 5.3 shows the trajectory of a satellite with circular
orbit (in its orbital plane) for various altitudes and over the same lapse of
time, chosen here to be equal to T0(h=0), i.e., 84.5min. The frame is the
Galilean frame �. The satellite is moving in a direct or prograde orbit. The
trajectory shown begins on the vertical axis, on which the values of η = a/R
are indicated, and ends at a black dot. For η = 1.0, the trajectory makes a
complete round trip, for η = 1.6, just half a revolution, and for η = 2.5, one
quarter of a revolution (since 1.6−3/2 ≈ 1/2 and 2.5−3/2 ≈ 1/4).

Consider now the lower graph of Fig. 5.3, representing the Earth’s equa-
torial plane. On this graph, which extends the last one, we have also marked
with a dot-dashed line the angle through which the Earth has rotated rela-
tive to � in 84.5min. For η < 6.6, the satellite moves around faster than the
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Earth, otherwise more slowly. For η = 6.6, an equatorial satellite revolves at
the same angular speed as the Earth in the frame �. In a terrestrial frame �T

fixed with respect to the Earth, this satellite will appear to be motionless. It
is said to be geostationary. We shall return to this case in Chap. 7.

5.4 Appendix: Rotation of a Solid—Euler

and Cardan Angles

The rotation of a rigid solid can be defined as the transformation from
one Cartesian frame to another. It can be shown that this transformation can
be decomposed into three elementary rotations, in a well defined order, about
the coordinate axes.

The three axes Ox, Oy, and Oz are labelled 1, 2, and 3. The rotation R
decomposes into three successive rotations through angles α1, α2, and α3 :

• Ri(α1): rotation through α1 about axis i, with i = 1, 2, or 3.
• Rj(α2): rotation through α2 about axis j, with j = 1, 2, or 3, and j �= i.
• Rk(α3): rotation through α3 about axis k, with k = 1, 2, or 3, k �= j.

Using ◦ to denote compositions of transformations, we thus have

R = Rk(α3) ◦ Rj(α2) ◦ Ri(α1) . (5.11)

There are therefore 3 × 2 × 2 = 12 ways to carry out this composition. In
practice, only two of these are actually used: the Euler3 system (Fig. 5.4) and
the Cardan4 system (see Table 5.2).

3Leonhard Euler (1707–1783) was a prolific Swiss mathematician whose work ranged
over all the mathematics of the day. He was the first to develop the idea of a function of a
variable, usually denoted f(x), applying it to exponential, logarithmic, and trigonometric
functions in his Introduction in analysis infinitorum (1748). He introduced the notation e,
π, and i, and obtained the celebrated result

eiπ + 1 = 0 .

He also invented graph theory, applying it to solve (negatively) the problem of the seven
bridges of Königsberg, and worked on convex polyhedra, showing that there are exactly five
Platonic solids.

In mechanics, and in particular in his Mechanica sive motus scientia analytica exposita
(1736), he analysed the motion of a material point using Euler angles and Euler variables.
His clear expositions revolutionised algebra, geometry, and number theory.

In astronomy, he studied the mutual perturbations of Saturn and Jupiter in Theoria
motuum planetarium et cometarum (1744), the precession of the equinoxes (1749), the
restricted three-body problem, and the motion of the Moon (1772).

4Gerolamo Cardano (1501–1576), known in English as Jerome Cardan, was an Italian
mathematician. He found a way of solving third order polynomial equations. He invented
a mechanical device, the Cardan suspension, that could make a compass insensitive to a
ship’s motion. The names of the Cardan angles, roll, pitch, and yaw, are borrowed from
naval vocabulary. Doctor, astrologer, and generally unusual character, Cardan is said to
have stopped eating so that he could die on the day he had predicted using his horoscope!
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Fig. 5.4 :Swiss stamp commemorating Leonhard Euler

(1707–1783).

System Axis i Axis j Axis k α1 α2 α3

Euler 3 : Oz 1 : Ox 3 : Oz Precession Nutation Proper rotation
Cardan 1 : Ox 2 : Oy 3 : Oz Roll Pitch Yaw

Table 5.2 :Axes of rotation and names of the angles used to decompose rotations in

the Euler system and the Cardan system (Euler angles and Cardan angles, respec-

tively).

Euler Angles

The sequence [3, 1, 3] characterises the Euler system. The decomposition
is illustrated in Fig. 5.1:

• The first rotation Ri(α1), with i = 3, is made around the Oz axis to
transform Ox to ON0. The angle α1 is the angle of precession, α1 = Ω.

• The second rotation Rj(α2), with j = 1, is made around the Ox axis, now
represented by ON0, to transform Oz to OZ. The angle α2 is the angle of
nutation, the angle i between the two planes.

• The third rotation Rk(α3), with k = 3, is made around the Oz axis, now
represented by OZ, to transform ON0 to OP0. The angle α3 is the angle
of proper rotation, α3 = ω.

For this system, the given rotation is uniquely defined by

0 ≤ α1 < 2π , 0 ≤ α2 ≤ π , 0 ≤ α3 < 2π .

Replacing P0 by S0 and hence α3 = ω by α3 = ω + v, we see that this
decomposition is well suited to studying the orbital motion of a satellite. The
rotation matrix corresponding to R is obtained as the product of three simple
matrices.

Cardan Angles

When the satellite is no longer treated as a point, but rather as a complex
technological object carrying emitting and receiving instruments, solar panels,
and so on, it is also important to control its attitude, i.e., its orientation in the
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space around its center of gravity. The Cardan system is then highly suited.
It corresponds to the sequence [1, 2, 3].

The three Cardan angles are called roll, pitch, and yaw. They depend on
the choice of axes relative to the line of sight from the Earth to the satellite.
We shall return to these angles in Chap. 12, which discusses what can be
viewed from the satellite.

Note on Other Naming Systems. In this book, we use the term Euler
angles to distinguish from the Cardan angles. In the literature, the Euler
angles are also known as the Tait–Bryan angles. In some references, the term
Euler angles may refer to any set of three angles (denoted here by α1, α2, α3)
used to decompose rotations.



Chapter 6

Satellite in Real (Perturbed)

Orbit
6.1 Perturbing Forces

6.1.1 From Ideal to Real Orbits

Up to now, we have been discussing the Keplerian motion of an Earth-
orbiting satellite: this satellite is pointlike and subject to the gravitational
attraction of a pointlike Earth. It has a fixed orbit in a fixed plane, and
this remains immutable relative to a Galilean frame. We have seen that the
Earth’s attraction reduces to the attraction due to a point mass, provided
that the Earth can be treated as spherical, with a spherically symmetric mass
distribution (conditions for applying Gauss’ theorem).

But when we observe the motion of a satellite with sufficient accuracy,
we find that it does not follow exactly this kind of Keplerian motion. The
difference is only very slight over one revolution, but increases steadily as
time goes by until it becomes easily discernible after a few days. One might
say that the Keplerian orbit is gradually distorted.

The difference between the true motion and the ideal Keplerian motion
results from two considerations, as we have already mentioned:

• The Earth is not exactly spherical and the mass distribution is not exactly
spherically symmetric.

• The satellite feels other forces apart from the Earth’s attraction, such as at-
tractive forces due to other heavenly bodies and forces that can be globally
categorised as frictional.

The effects of these perturbations will be the subject of this chapter.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 6,
© Springer International Publishing Switzerland 2014
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6.1.2 Order of Magnitude of Perturbing Forces

The forces felt by a satellite in geocentric orbit are examined below as
a function of the altitude of the satellite and summed up in Fig. 6.1. From
a physical standpoint, it is useful to divide these forces into two categories,
depending on whether or not they are conservative.

Conservative forces are ones that can be derived from a potential, e.g.,
gravitational forces such as the gravitational attraction of the Earth and at-
traction to other heavenly bodies. Non-conservative forces are forces that can-
not be derived from a potential, i.e., dissipative forces involving energy loss.
Apart from atmospheric drag, which falls off very rapidly with increasing al-
titude, the relevant forces here are due to radiation pressure.

It is important to assess the orders of magnitude of the various forces.
For example, for a satellite at an altitude of 800 km in a near-circular orbit,
taking the central attraction to be unity, the other attractive effects have the
following much lower values:

• 10−3 for the perturbation due to the flattening of the Earth,
• 10−6 for perturbations due to other irregularities of the geoid,
• 10−7 for the attraction of the Moon,
• 10−8 for the attraction of the Sun.

The other forces, conservative or otherwise, generally never exceed order 10−8.
These are orders of magnitude, to which we shall return later on. However,

we can already see that all these forces (except the main one) can be treated
as perturbations. They are not dealt with together in one global treatment,
but one by one, as quantities that remain small relative to the main force,
which is the central Newtonian attraction.

The set of forces mentioned above can be written in terms of the acceler-
ations:

γ = γCCC + γCCN +
∑
i

γCi +
∑
j

γDj , (6.1)

using the suffixes explained in Table 6.1. The leading term is γCCC, compared
with which all the others are very small. Naturally, we have the equivalence

γCCC = g(r) = − μ

r2
er , (6.2)

where the vector field g(r) represents the Newtonian gravitational field of the
Earth, previously defined in (3.11).

6.1.3 Potential

To begin with, let us consider only those terms due to conservative forces
so that we may use the idea of potential. We know that the potential U
associated with a vector field γ is given by
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γ = gradU ,

and using the linearity properties of the gradient operator grad, we have

U = UCCC + UCCN +
∑
i

UCi . (6.3)

The Earth’s gravitational potential is

UCC = UCCC + UCCN .

We calculated this in Chap. 3, obtaining the general form (3.28) and the trun-
cated form (3.27), cutting off after degree 2.

The leading order term UCCC, hereafter written U0, corresponds to the
“Keplerian” central attraction, viz.,

UCCC = U0 =
μ

r
=

GM

r
. (6.4)

6.1.4 Perturbations and Altitude of a Satellite

Let us now investigate the whole range of perturbative forces (accelera-
tions) affecting a satellite S at distance r from the center O of the Earth. We
may also express them in terms of h, the altitude of the satellite, given by
h = r − R, where R is the equatorial radius of the Earth. Figure 6.1 shows
the value of the acceleration γ as a function of the reduced distance η = r/R,
using a log–log scale:

• On the horizontal axis x = log η, with minimal value x = 0, i.e., r = R or
h = 0, corresponding to ground level.

• On the vertical axis, y = log γi, where γi is the acceleration under consid-
eration.

The figure shows typical altitudes of three types of satellite (we shall discuss
these types in more detail later):

• h = 1,000km for satellites in low orbit (LEO),
• h = 20,000 km for positioning satellites (MEO),
• h = 36,000 km for geostationary satellites (GEO).

The figure shows the sensitivity of the different types of satellite to the various
perturbing forces depending on their altitudes. The forces, divided into con-
servative and non-conservative (or dissipative), are summarised in Table 6.1.

Conservative Forces

The gravitational forces acting on the satellite come from the following
sources:
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as noted. The altitudes of the three types of satellite have also been indicated in the

order LEO, MEO, and GEO.
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Symbol Type of force

C Conservative forces

CC • Attraction of the Earth
CCC • ◦ Central term μ = GM
CCN • ◦ Other terms than CCC

CL • Attraction of the Moon
CS • Attraction of the Sun
CP • Attraction by other planets
CT • Tidal effects (land, oceans)
CR • Relativistic effects

D Dissipative forces

DF • Atmospheric drag
DP • Solar radiation pressure
DA • Albedo effect

Table 6.1 :List of forces that might affect a satellite.

(a) Attraction by the Earth. The central acceleration, denoted here by
γCCC, is given by (6.2), viz.,

γCCC(r) = g(r) =
μ

r2
. (6.5)

It is thus represented by a straight line of slope p = −2 in a graph using
a log–log scale, since we have y = log(μ/R2) − 2x. The value at the origin
(x = 0, i.e., r = R or h = 0) is

γCCC(R) = g(R) = g0 =
μ

R2
, (6.6)

with average numerical value

g0 = 9.80 m s−2 .

Concerning the J2 term, the potential UCCN.J2 given by (3.27) goes as r−3.
The corresponding acceleration γCCN.J2 thus goes as r−4, whence the slope
p = −4 of the straight line representing it on the log–log graph. As value at
the origin (h = 0), we have taken

γCCN.J2(R) = g0J2 ,

which is an average value over the latitudes frequented by the satellite.
The acceleration γCCN.JN for the terms Jn with n > 2 leads to an even

steeper slope. We shall see below that only those terms Jn with even n have
any long-term (secular) influence on the satellite. Equation (3.28) shows that
the potential goes as r−(n+1), and the acceleration therefore as r−(n+2). The
slope is p = −6 for J4, p = −8 for J6, and so on. At the origin, the numerical
values are
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g0J2 = 1.1× 10−2 ms−2 ,

g0J4 = 1.6× 10−5 ms−2 , g0J6 = 5.3× 10−6 ms−2 ,

where we have of course taken the absolute values of the terms Jn.

(b) Attraction by the Sun and Moon. We consider an attracting body
(the Sun or Moon) and calculate its action on the satellite. As the Earth also
feels an attraction from the same source, we must calculate the differential
attraction felt by the satellite in a coordinate system fixed relative to the
center of the Earth.

The differential attraction due to the Sun produces the acceleration γCS

(calculated in Sect. 6.11 at the end of the chapter). Equation (6.151) yields

γCS = 2
μS

a3S
r , (6.7)

where μS is the heliocentric gravitational constant and aS is the Earth–Sun
distance, i.e., the semi-major axis of the Earth’s orbit around the Sun.

For the differential attraction due to the Moon, the acceleration γCL can
be calculated to a first approximation by a similar argument:

γCL = 2
μL

a3L
r , (6.8)

where μL is the lunar gravitational constant and aL is the Earth–Moon dis-
tance, i.e., the semi-major axis of the geocentric lunar orbit.

For the range of values represented here, γCS and γCL are proportional
to r, so that their variation has slope p = +1. At the origin (h = 0), numerical
values are

γCS(R) = 2
μS

a3S
R = 0.5×10−6 ms−2 , γCL(R) = 2

μL

a3L
R = 1.1×10−6 ms−2 .

The effect of the Moon is more than twice that of the Sun.1

(c) Attraction by Other Planets. This differential attraction causes a very
small acceleration of the satellite, denoted γCP, also of slope p = +1. For each
planet, the order of magnitude is given by

γCP = 2
μP

a3P
r , (6.9)

1There is a trick for obtaining a relation between the two accelerations γCS(r) and
γCL(r). Their ratio is

γCL(r)

γCS(r)
=

μL

μS

(
aS

aL

)3

.
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where μP is the gravitational attraction of the planet and aP is the Earth–
planet distance. Depending on the configuration of the planets, the maximal
perturbative accelerations are

γCP ∼ 10−10 ms−2 due to Venus , γCP ∼ 10−11 ms−2 due to Jupiter .

(d) Tidal Effects. The ocean tides are caused by the perturbing effects of the
Sun and Moon. This idea was first put forward by Newton, then Bernoulli, and
the theory was completed by Laplace and Kelvin. The phenomenon is familiar
to us and easy to observe. It is less well known that this same perturbation
also affects the Earth’s crust: twice a day, the Earth’s solid envelope rises
and falls with an amplitude of around three decimeters (and six for the liquid
envelope, i.e., the oceans).

Both ocean and land tides involve friction, so this phenomenon is not
conservative. Indeed, this effect explains the gradual reduction of the Earth’s
rotation. However, the effect of the tides on a satellite can be found using the
fact that the relevant stresses derive from a potential. It can be shown that
the interaction potential goes as r−3, giving rise to an acceleration that goes
as r−4. For r = R, we have γCT ∼ 5 × 10−7 ms−2. The effect of the ocean
tides is roughly one tenth of the effect of the land tides.

(e) Relativistic Effects. The speed V of a satellite never exceeds a few
kilometers a second. This is very small compared with the speed of light
c and a relativistic treatment is generally unnecessary. However, since the
TOPEX/Poseidon mission, relativistic effects have been taken into account
for altimetry and positioning (GPS-type) satellites. It can be shown that the
correction amounts to considering a so-called relativistic acceleration, whose
leading term is γCR given by

γCR =
μ

r2
3V 2

c2
. (6.10)

Now we know from solar eclipses that the apparent diameters of the Sun and Earth are
equal as viewed from the Earth. We thus have the relation

RL

aL
=

RS

aS
,

where RL and RS are the respective radii. Expressing the masses through the densities ρL
and ρS, we obtain

μL

μS
=

ρL

ρS

(
RL

RS

)3

,

whence, inserting the numerical values, we determine the value of the ratio as

γCL(r)

γCS(r)
=

ρL

ρS
=

3.3437

1.4808
≈ 2.25 .
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For a circular orbit, with (4.52), we obtain

γCR =
3μ2

c2
1

r3
, (6.11)

giving a slope of p = −3.
At the origin (h = 0), we have

γCR(R) = g0
3μ

c2R
= 1.6× 10−8 ms−2 ,

The main consequence of this is a secular effect on the argument of the perigee,
namely that the perigee of the orbit moves around more quickly than classical
calculations would suggest. Indeed the effect is known as the advance of the
perigee or the precession of the perigee.2 For planets in orbit around the Sun,
we speak of the advance or the precession of the perihelion, a phenomenon
first explained by Albert Einstein (see the historical note in Sect. 6.8.3 at the
end of the chapter).

Calculations of this apsidal precession give a variation Δ1ω in the argu-
ment of the perigee ω for each revolution, where

Δ1ω =
6πμ

a(1− e2)c2
. (6.12)

The subscript 1 indicates that the value corresponds to one revolution, while a
subscript Y is used for the value obtained over 1 year. This value is very small
(a fraction of an arcmin per year), whether the satellite is in near-circular or
eccentric orbit:

• SPOT-5 (a = 7.20× 106m), Δ1ω = 1.16× 10−8 rad, ΔYω = 12′′.4.
• TOPEX/Poseidon (a = 7.71 × 106m), Δ1ω = 1.08 × 10−8 rad, ΔYω =

10′′.5.
• Navstar/GPS (a = 26.56× 106 m), Δ1ω = 3.15× 10−9 rad, ΔYω = 0′′.48.
• Molniya (a = 26.56 × 106m, e = 0.74), Δ1ω = 6.89 × 10−9 rad, ΔYω =

1′′.04.

The force bringing about the advance of the perigee should be considered as
conservative, since the same effect can be obtained by including a small time-
independent and hence conservative quadrupole moment going as r−3 in the
gravitational force.

2According to the general theory of relativity, the Earth’s gravitational field affects
spacetime in the vicinity of the satellite, whose trajectory thus differs slightly from the one
calculated using classical celestial mechanics. This action can be represented by a “relativis-
tic acceleration”. It can be shown that it decomposes into three terms: the Schwarzschild
term, the geodetic precession, and the Lense–Thirring precession. The first is the greater
of the three, providing the acceleration γCR discussed here. The other two are considered
when we discuss the satellite GP-B in Chap. 7.
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Non-Conservative Forces

Non-gravitational perturbing forces are independent of the satellite mass
Ms. The corresponding accelerations thus go as 1/Ms. Along with the forces
discussed below, one must include forces applied to the satellite (usually by
gas jets) when modifying its trajectory. These are the non-conservative forces
used to guide the satellite.

(a) Atmospheric Drag. For satellites in low orbit (h < 1,200km), fric-
tion with molecules of residual atmospheric gases can be quite significant.
This effect depends on the shape of the satellite, and in particular the shape
of its solar panels, but also on the state of the upper atmosphere, which is
difficult to model theoretically, because it involves several factors, including
solar activity. These effects are further discussed in an appendix at the end
of the chapter (see Sect. 6.6). Atmospheric effects become very weak above
h = 1,000km and fall off very quickly with altitude. Hence, they are very
slight for TOPEX/Poseidon at an altitude of 1,300km, and non-existent for
LAGEOS at 6,000km.

(b) Radiation Pressure. Solar radiation pressure goes as a−2
S , and so is

independent of r (since r � aS). The actual consequences of this radiation
pressure on the satellite depend on its shape, coating materials, and configura-
tion.3 These go to zero when the satellite passes into the Earth’s shadow with
respect to the Sun. The corresponding perturbative acceleration is evaluated
to be

γDP(r) = γDP = constant ∼ 10−7 ms−2 .

(c) Albedo Effect. The effects of scattered radiation, i.e., visible (short
wavelength) radiation scattered by the Earth, known as the albedo effect,
and infrared (long wavelength) radiation emitted by the Earth, depend on
the region overflown and the altitude. These effects can be considered to go
as r−2.

6.2 Perturbative Methods: Presentation

6.2.1 Orbit Propagation: Numerical and Analytical
Methods

In this chapter, we have been concerned so far with perturbations which
represent the difference between the Newtonian potential and the true poten-

3This perturbative effect was quite large for the first balloon satellites, such as Echo-1,
launched in 1960, Echo-2 in 1964, and PAGEOS in 1966. These very light satellites, com-
prising an aluminised mylar envelope just 13 μm thick, blown up after the launch, had a
diameter of 30–40m.
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tial. We shall now see how this difference of potential can lead to a deviation
in the satellite motion. The term “orbit determination” refers to any method
for establishing the trajectory of a satellite given its force field and initial
position.

Such methods are classified according to whether integration of the equa-
tion of motion is numerical or analytic. The first method provides series of
numbers. It is efficient but not particularly intuitive. The second expresses
modifications of the motion in a clear and pictorial way, e.g., one could say
whether the eccentricity increases, or the orbit begins to precess, and so on.

Another contrast is that the numerical method is long-winded but highly
accurate, while the analytic method is faster but does not always achieve the
same accuracy. When dealing with an orbital rendezvous, or trying to avoid
collisions between satellites, the first method prevails, while the analytical
method is quite adequate for standard orbitography. The Ixion software and
all the programs discussed in this book are based upon the analytical method.
We shall outline the basic principles underlying each method. However, we
shall only go into the details of the analytical method, using the Lagrangian
approach.

When the satellite is subjected to the sum of the Newtonian central ac-
celeration and a perturbative acceleration, since we take the perturbation to
be small, we may assume that the trajectory will remain rather close to the
conic section:

r̈ = gradU0 + γP , U0 =
μ

r
. (6.13)

Here γP is the perturbation term, assumed much smaller than the main term,
i.e.,

γP � μ

r2
.

We shall only consider perturbative accelerations deriving from a potential,
in which case we have

γP = gradR ,

with R the perturbing potential. The satellite is thus affected by the potential

U = U0 +R . (6.14)

Numerical Method

The relevant system of equations is:

{
r̈ = −μ

r

r3
+ γP ,

r(t = 0) = r0 , ṙ(t = 0) = ṙ0 .
(6.15)



6.2 Perturbative Methods: Presentation 173

These are integrated by successive construction of the orbital elements. The
so-called k-step method determines the elements at times t = tn+1 using the
k elements obtained previously. For example, when k = 1, the integration
between times t = t0 and t = tN is done in one step h = (tN − t0)/N . At time
tn+1, each Cartesian coordinate y is expressed in terms of the value of y at
time tn :

y(tn+1) = y(tn + h) = y(tn) + hΦ .

With the Euler method, Φ is the derivative y′(tn). Better suited and more
elaborate methods have been developed:

• Purely mathematical approaches, such as Runge–Kutta integration, intro-
duced at the end of the nineteenth century, where the function Φ, in its
most standard form, is just a fourth order Taylor expansion.

• Methods developed by astronomers to determine the motions of planets and
other heavenly bodies, e.g., Adams–Bashforth or Adams–Moulton, known
as multistep methods.

• Approaches designed specifically for artificial satellites since 1957, such as
the Cowell method.

Analytical Method

We showed previously that Keplerian motion of a satellite is specified by
six orbital elements, the Keplerian elements. It can be shown that there is
a bijective correspondence B between the six elements and the six Cartesian
components of the vectors r and ṙ in a Galilean frame � :{

x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)
} B�−→

{
a(t), e(t), i(t), Ω(t), ω(t),M(t)

}
.

In Keplerian motion, the five parameters (a, e, i, Ω, ω) fixing the position of
the orbit remain constant, while M varies linearly, i.e., M = n(t− tp), where
tp is the time of perigee passage. For perturbed motion, investigation of the
transformation B shows that (6.13) is equivalent to the 6 relations:{

ȧ = g1 , ė = g2 , i̇ = g3 ,

Ω̇ = g4 , ω̇ = g5 , Ṁ − n0 = g6 ,
(6.16)

where n0 =
√
μ/a30 and a0 is for the time being the value of a without per-

turbation. The terms gi are small.
A standard approach is to use an iterative method at this point. The

time-varying parameters are called osculating orbital elements. They are the
parameters of the Keplerian orbit that the satellite would follow if the per-
turbations were to suddenly vanish at the given instant. These osculating
elements4 provide a better way of describing the deformation of the orbit than

4The word “osculating” does not mean the same thing here as in geometry. In the purely
geometrical context, two curves are said to be osculating if their two centers of curvature
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the values of the position and velocity. As an example, this method allows one
to establish the critical inclination of the orbit, as we shall see later.

The perturbation method consists in solving the six equations above,
known as Lagrange’s equations (see Fig. 6.2).5

6.2.2 Basic Principles

The actual motion is obtained by calculating the small variations around
the first integrals of the unperturbed motion. For a perturbative acceleration
field deriving from a potential, (6.13) and (6.14) give the equation of motion as

r̈ = gradU , U = U0 +R . (6.17)

Transcribing this for each Cartesian component of r, we have

d2x

dt2
=

∂U

∂x
,

d2y

dt2
=

∂U

∂y
,

d2z

dt2
=

∂U

∂z
.

We now write down the results for x. The first of the above equations yields

ẋ =
dx

dt
, (6.18)

dẋ

dt
=

∂U

∂x
. (6.19)

Bringing in the 6 Keplerian orbital elements (or any 6 suitably chosen vari-
ables), we obtain ẋ as a sum of 6 terms, and hence ẍ as a sum of 36 terms.

coincide for some point of contact between them. In the present context, in the investigation
of trajectories in space, the osculating ellipse defined by the osculating orbital elements is
tangent to the actual trajectory, since the velocity vector is the same, but it does not have
exactly the same radius of curvature, since the accelerations are different. The term was
originally invented by geometers in 1752 and then slightly deflected from its geometrical
meaning by the needs of astronomy. The etymology of the word attests to this corruption.
Indeed, it comes from the Latin osculatio, the noun from the verb osculare, meaning “to
kiss”. This in turn derives from osculum, “little mouth”, a diminutive form of os, oris,
which is the standard term for “mouth”. The idea which therefore underpins this term is
therefore one of extended and continued contact.

5Joseph Louis de Lagrange (1736–1813) was a French mathematician. He applied his
analytical theories to the motion of the Moon and the periodic variation of the major axes
of the planets, published in Théorie de la libration de la Lune et autres phénomènes qui
dépendent de la figure non sphérique de cette planète (1763), and he also invented the notion
of gravitational potential in 1772. All these ideas were brought together in his magnum opus
Mécanique analytique (1788). He invented the theory of perturbations to study the motion
of the heavenly bodies, published in Sur la théorie des variations des éléments des planètes
(1808). He also continued Euler’s work, devising a final version of the method known as
variation of constants, published in Sur la théorie générale de la variation des constantes
arbitraires dans tous les problèmes de mécanique (1810). His name is still associated with
the equations and mathematical tools used in these theories.
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Fig. 6.2 :Mécanique analytique by J.L. Lagrange, published in Paris in 1788 (MDC-

CLXXXVIII). Left: Title page. Right: Warning to the reader. The author explains

his highly novel approach, in which mechanics becomes a branch of analysis. And

just to demonstrate the abstract nature of the treatise, he adds: “the reader will find

no figures in this work.”
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The perturbation method solves the differential equations by the method
known as variation of constants. The choice of certain variables, called canon-
ical variables, allows us to obtain Lagrange’s equations in a very simple form,
the canonical form, as the relations (6.60). Several sets of six variables offer
this possibility, such as the Delaunay variables, the Poincaré variables, or the
Whittaker (or Hill) variables.

More will be said about the Delaunay variables later, but for the moment,
let us not enter into the details of these powerful mathematical theories, de-
veloped principally to calculate planetary orbits, and to which we now attach
the names of Euler, Lagrange, Laplace, Gauss, and Poincaré.

6.2.3 Lagrange Brackets

We denote the Cartesian coordinates by ξi, with i = 1, 2, 3:

ξ1 = x , ξ2 = y , ξ3 = z .

The equation of motion (6.17) is

ξ̈i =
∂U

∂ξi
. (6.20)

The Keplerian orbital elements are denoted by Sj , with j = 1, 2, 3, 4, 5, 6:

S1 = a , S2 = e , S3 = i , S4 = Ω , S5 = ω , S6 = Θ .

The element S6 is the initial mean anomaly. It is introduced here instead of
M in order to have Ṁ − n appear directly in (6.16). We have the very simple
relation

Θ = M − nt = −ntp , (6.21)

where tp is the time of passage at perigee. Equations (6.18) and (6.19) then
become

6∑
j=1

∂ξi
∂Sj

dSj

dt
= ξ̇i , i = 1, 2, 3 , (6.22)

6∑
j=1

∂ξ̇i
∂Sj

dSj

dt
=

∂U

∂ξi
, i = 1, 2, 3 . (6.23)

Multiplying the three equations (6.22) by −∂ξ̇i/∂Sk and the three equa-
tions (6.23) by ∂ξi/∂Sk and adding, we obtain the system

3∑
i=1

6∑
j=1

(
− ∂ξ̇i
∂Sk

∂ξi
∂Sj

+
∂ξi
∂Sk

∂ξ̇i
∂Sj

)
dSj

dt
=

3∑
i=1

(
− ∂ξ̇i
∂Sk

ξ̇i +
∂ξi
∂Sk

∂U

∂ξi

)
,

(6.24)
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for k = 1, 2, 3, 4, 5, 6. This system is equivalent to (6.13), which represent the
problem we are trying to solve. Let us examine the two sides of the equality.

Regarding the left-hand side, we use the following notation. We set

[Sk;Sj] =

3∑
i=1

(
∂ξi
∂Sk

∂ξ̇i
∂Sj

− ∂ξ̇i
∂Sk

∂ξi
∂Sj

)
. (6.25)

The notation [Sk;Sj ] is the Lagrange bracket. We thus have 36 Lagrange
brackets.

The right-hand side comprises two terms. The first can be written

−
3∑

i=1

∂ξ̇i
∂Sk

ξ̇i = −1

2

3∑
i=1

∂ξ̇i
2

∂Sk
= −1

2

∂

∂Sk

3∑
i=1

ξ̇i
2
.

At this point, the quantity T appears, with the dimensions of a potential and
representing the kinetic energy per unit mass:

T =
1

2

3∑
i=1

ξ̇i
2
=

1

2
V 2 , (6.26)

where V is the magnitude of the velocity at the given point. The first term
can then be written in the form

− ∂T

∂Sk
. (6.27)

The second term transforms to

3∑
i=1

∂U

∂ξi

∂ξi
∂Sk

=
∂U

∂Sk
. (6.28)

If we set

F = U − T , (6.29)

the system (6.24), and hence also (6.13), is equivalent to

6∑
j=1

[Sk;Sj ]
dSj

dt
=

∂F

∂Sk
, k = 1, 2, 3, 4, 5, 6 . (6.30)

This quantity F has dimensions of energy per unit mass. It is sometimes called
the force function or the Hamiltonian function, since it is equal to minus the
Hamiltonian (see Sect. 4.7).6

6If we compare the Eqs. (4.111) and (6.29) giving the energy, we note that, with the
notation used here and m for the mass of the satellite, we have
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6.2.4 Properties of the Lagrange Bracket

Antisymmetry

From the definition (6.25), it is clear by inspection that

[Sk;Sk] = 0 , [Sk;Sj] = −[Sj ;Sk] .

We deduce that, of the 36 brackets, 6 are zero and among the 30 remaining
which may not be zero, only 15 need be calculated.

Constancy of Lagrange Bracket in Time

The Lagrange bracket is defined by (6.25) as the sum of three terms. To
calculate the time derivative of a Lagrange bracket, we begin with just one
element of the sum, the i th element. This gives

d

dt
([Sk;Sj ]i) =

d

dt

(
∂ξi
∂Sk

∂ξ̇i
∂Sj

− ∂ξ̇i
∂Sk

∂ξi
∂Sj

)

=
∂ξ̇i
∂Sk

∂ξ̇i
∂Sj

+
∂ξi
∂Sk

∂ξ̈i
∂Sj

− ∂ξ̈i
∂Sk

∂ξi
∂Sj

− ∂ξ̇i
∂Sk

∂ξ̇i
∂Sj

=
∂ξi
∂Sk

∂ξ̈i
∂Sj

− ∂ξ̈i
∂Sk

∂ξi
∂Sj

. (6.31)

To obtain a more symmetrical form that will allow some simplification later
on, it is useful to add and subtract the expression

ξ̇i
∂2ξ̇i

∂Sk∂Sj
+ ξ̈i

∂2ξi
∂Sk∂Sj

. (6.32)

We then obtain

d

dt
([Sk;Sj ]i) =

∂

∂Sk

(
ξ̇i
∂ξ̇i
∂Sj

− ξ̈i
∂ξi
∂Sj

)
− ∂

∂Sj

(
ξ̇i

∂ξ̇i
∂Sk

− ξ̈i
∂ξi
∂Sk

)

=
∂

∂Sk

(
ξ̇i
∂ξ̇i
∂Sj

− ∂U

∂ξi

∂ξi
∂Sj

)
− ∂

∂Sj

(
ξ̇i

∂ξ̇i
∂Sk

− ∂U

∂ξi

∂ξi
∂Sk

)
,

U = −mU , T = +mT , E = T + U = −m(U − T ) = −mF

=⇒ −E/m = F = U − T .

When studying orbits and space trajectories, it is preferable to use accelerations rather
than forces, and the potential U rather than the potential energy −U , since the mass of
the satellite is irrelevant to these calculations (except in the case of atmospheric drag and
radiation pressure effects). Moreover, we have seen that the energy E is negative for periodic
motion. The convention for F means that this quantity has positive values.
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where the last equality is obtained using the fundamental relation (6.20). We
now sum over the three values of i, taking the partial derivatives with respect
to Sj and Sk outside the sum and using the relations (6.26) for T , (6.28) for
the derivative of T , and (6.29) for F , to obtain

d

dt
[Sk;Sj] =

∂

∂Sk

[
3∑

i=1

(
ξ̇i
∂ξ̇i
∂Sj

− ∂U

∂ξi

∂ξi
∂Sj

)]

− ∂

∂Sj

[
3∑

i=1

(
ξ̇i

∂ξ̇i
∂Sk

− ∂U

∂ξi

∂ξi
∂Sk

)]

=
∂

∂Sk

(
∂T

∂Sj
− ∂U

∂Sj

)
− ∂

∂Sj

(
∂T

∂Sk
− ∂U

∂Sk

)

=
∂2F

∂Sk∂Sj
− ∂2F

∂Sj∂Sk

= 0 .

The equation

d

dt
[Sk;Sj ] = 0 (6.33)

shows finally that the expression [Sk;Sj] is constant in time. The value of the
bracket can of course change in time if one or more of the orbital parameters
are time dependent. However, during one revolution, we may consider the
parameters Si to be constant and [Sk;Sj ] thus remains constant too. This
means that, in order to obtain its value, we can do so at a single point on the
orbit.

6.3 Perturbative Method: Solution

6.3.1 Calculating the Coordinates

Coordinates in the Orbital Plane

To calculate the factors ∂ξ̇i/∂Sk and ∂ξi/∂Sj in the Lagrange brackets,
we express the Cartesian coordinates in terms of the parameters. To do so,
we write the position of the satellite in a right-handed orthonormal frame
(O;X,Y, Z) fixed relative to the plane P of the orbit, where O is the center
of attraction, i.e., the center of the Earth. The plane P contains OX and
OY , while OX passes through the perigee P and OZ is perpendicular to P
and lies in the direction of the angular momentum C of the satellite. In this
frame, we may write the components X,Y, Z, of the radial vector using (4.70)
and (4.71):
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X = r cos v = a(cosE − e) ,

Y = r sin v = a
√
1− e2 sinE ,

Z = 0 .

We recall that the eccentric anomaly E arising in these formulas is related to
the mean anomaly M , used as orbital element, by Kepler’s equation (4.65).
Differentiating with respect to time, we obtain

(1− e cosE)
de

dt
= n =

√
μ

a3
,

and the speeds are

Ẋ = −
√

μ

a

sinE

1− e cosE
,

Ẏ =

√
μ

a

√
1− e2

cosE

1− e cosE
,

Ż = 0 .

Coordinates in the Equatorial Plane

To transform from this frame to one identified with the frame �, viz., the
frame (O;x, y, z) fixed relative to the equatorial plane E , where Oz lies along
the polar axis, we must carry out three rotations, as specified by the Euler
angles α1 = Ω, α2 = i, α3 = ω discussed in Chap. 5 (see Fig. 5.1). The desired
coordinates x, y, z and ẋ, ẏ, ż are deduced from X,Y, Z and Ẋ, Ẏ , Ż by the
product of three transformation matrices. The detailed calculation of these
three matrices and their product is carried out later, when we calculate the
ground track of the satellite. The transformation matrix P is given by (8.8).

For the angles used here, we obtain the 3× 3 matrix

P =

⎛
⎜⎜⎜⎜⎜⎝

cosΩ cosω − cosΩ sinω sinΩ sin i
− sinΩ sinω cos i − sinΩ cosω cos i

sinΩ cosω − sinΩ sinω − cosΩ sin i
+cosΩ sinω cos i +cosΩ cosω cos i

sinω sin i cosω sin i cos i

⎞
⎟⎟⎟⎟⎟⎠

.

The quantities X,Y, Z, Ẋ, Ẏ , Ż depend only on the three orbital elements a,
e, and E (and E will subsequently be replaced by M). The entries of the
matrix P depend only on the three other elements Ω, i, and ω. The quantities
x, y, z, ẋ, ẏ, ż depend on the six orbital elements:⎛

⎝x
y
z

⎞
⎠ = P(Ω, i, ω)

⎛
⎝X(a, e, E)

Y (a, e, E)
0

⎞
⎠ , (6.34)
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⎛
⎝ ẋ

ẏ
ż

⎞
⎠ = P(Ω, i, ω)

⎛
⎝ Ẋ(a, e, E)

Ẏ (a, e, E)
0

⎞
⎠ . (6.35)

Denoting the coordinates x, y, z by ξi, as discussed above, and ẋ, ẏ, ż by ξ̇i,
we have

ξi = Pi1X + Pi2Y , ξ̇i = Pi1Ẋ + Pi2Ẏ , i = 1, 2, 3 ,

where Pij is the entry on row i and column j of the matrix P.

Calculating Derivatives with Respect to Orbital Elements

Differentiating the three values of ξi specified above with respect to the
orbital elements yields:

∂ξi
∂Sk

=
∂Pi1

∂Sk
X +

∂Pi2

∂Sk
Y if Sk = Ω, i, ω ,

∂ξi
∂Sk

= Pi1
∂X

∂Sk
+ Pi2

∂Y

∂Sk
if Sk = a, e, E ,

with analogous results for ξ̇i :

∂ξ̇i
∂Sk

=
∂Pi1

∂Sk
Ẋ +

∂Pi2

∂Sk
Ẏ if Sk = Ω, i, ω ,

∂ξ̇i
∂Sk

= Pi1
∂Ẋ

∂Sk
+ Pi2

∂Ẏ

∂Sk
if Sk = a, e, E .

• We calculate the derivatives of X,Y, Ẋ, Ẏ with respect to Sk, then take
their value at some arbitrary point on the orbit. Naturally, we choose the
perigee, where v = E = M = 0, since this point allows the greatest simpli-
fication. The relation between dE and dM , which follows from (4.79), has
already been noted above. Calculation of ∂X/∂Sk yields

∂X

∂a
= cosE − e ,

∂X

∂e
= −a ,

∂X

∂M
= −a sinE

1

1− cosE
,

and the values of these quantities at perigee are

∂X

∂a
= 1− e ,

∂X

∂e
= −a ,

∂X

∂M
= 0 .

Likewise for the other coordinates, differentiating and evaluating at perigee,
we obtain

∂Y

∂a
= 0 ,

∂Y

∂e
= 0 ,

∂Y

∂M
= a

√
1 + e

1− e
,



182 Chapter 6. Satellite in Real (Perturbed) Orbit

∂Ẋ

∂a
= 0 ,

∂Ẋ

∂e
= 0 ,

∂Ẋ

∂M
= − na

(1− e)2
,

∂Ẏ

∂a
= −n

2

√
1 + e

1− e
,

∂Ẏ

∂e
=

na

(1 − e)3/2
,

∂Ẏ

∂M
= 0 .

• The differentiation of Pij with respect to Sk is done in the standard manner,
with no possible simplification.

6.3.2 Calculating the Lagrange Brackets

Calculating [a;M ]

Here we calculate the Lagrange bracket [a;M ]. According to the defini-
tion (6.25), this is

[a;M ] =

3∑
i=1

(
−∂ξ̇i
∂a

∂ξi
∂M

+
∂ξi
∂a

∂ξ̇i
∂M

)
.

With the previous results, we have

∂ξi
∂a

= Pi1
∂X

∂a
+ Pi2

∂Y

∂a
= Pi1(1 − e) ,

∂ξ̇i
∂a

= Pi1
∂Ẋ

∂a
+ Pi2

∂Ẏ

∂a
= −Pi2

n

2

√
1 + e

1− e
,

∂ξi
∂M

= Pi1
∂X

∂M
+ Pi2

∂Y

∂M
= Pi2a

√
1 + e

1− e
,

∂ξ̇i
∂M

= Pi1
∂Ẋ

∂M
+ Pi2

∂Ẏ

∂M
= −Pi1

na

(1− e)2
,

and we obtain

[a;M ] =
na

1− e

3∑
i=1

(
−P 2

i1 +
1 + e

2
P 2
i2

)
.

The matrix P is such that, for all j, we have

3∑
i=1

P 2
ij = 1 ,

whence, finally,

[a;M ] =
na

1− e

(
−1 +

1 + e

2

)
= −na

2
.
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Values of the Lagrange Brackets

The other brackets are calculated in like manner. Of the 15 to be evaluated,
as noted earlier, calculation reveals that 9 of them are zero. The 6 nonzero
brackets are as follows:

[a;Ω] = − [Ω; a] = −na

2

√
1− e2 cos i , (6.36)

[a;ω] = − [ω; a] = −na

2

√
1− e2 , (6.37)

[a;M ] = − [M ; a] = −na

2
, (6.38)

[e;Ω] = − [Ω; e] = +na2
e√

1− e2
cos i , (6.39)

[e;ω] = − [ω; e] = +na2
e√

1− e2
, (6.40)

[i;Ω] = − [Ω; i] = +na2
√
1− e2 sin i . (6.41)

6.3.3 Lagrange Equations

Obtaining the Lagrange Equations

We can now rewrite (6.30), expressing the partial derivatives of F in terms
of the nonzero Lagrange brackets, whence the six quantities ∂F/∂Sk, with
k = 1, . . . , 6 are given by

∂F

∂a
= + [a;Ω] Ω̇ + [a;ω] ω̇ + [a;M ] Ṁ , (6.42)

∂F

∂e
= + [e;Ω] Ω̇ + [e;ω] ω̇ , (6.43)

∂F

∂i
= + [i;Ω] Ω̇ , (6.44)

∂F

∂Ω
= − [a;Ω] ȧ− [e;Ω] ė− [i;Ω] i̇ , (6.45)

∂F

∂ω
= − [a;ω] ȧ− [e;ω] ė , (6.46)

∂F

∂M
= − [a;M ] ȧ . (6.47)

Looking at the structure of the two sets of equations above, we understand
why it was worth treating the parameters in the given order a, e, i, Ω, ω, M .

We solve the linear system of six Eqs. (6.42)–(6.47) and insert the expres-
sions for the Lagrange brackets. This results in a matrix equation which yields
the time derivatives of the orbital elements in terms of the partial derivatives
of the function F with respect to the orbital elements:
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⎛
⎜⎜⎜⎜⎜⎜⎝

da/dt
de/dt
di/dt
dΩ/dt
dω/dt
dM/dt

⎞
⎟⎟⎟⎟⎟⎟⎠

= L0

⎛
⎜⎜⎜⎜⎜⎜⎝

∂F/∂a
∂F/∂e
∂F/∂i
∂F/∂Ω
∂F/∂ω
∂F/∂M

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6.48)

The matrix L0 is denoted by L in Table 6.2, and we shall see below that these
two matrices are one and the same.

We note two important properties of L0 :

• It is antisymmetric.
• It depends only on the three elements a, e, i, i.e., L0 = L0(a, e, i).

We obtain the following values for each of the orbital elements, with the
abbreviations σ, τ , and τ as defined in Table 6.2:

da

dt
=

1

na

(
2
∂F

∂M

)
, (6.49)

de

dt
=

1

na2
τ

(
−τ

∂F

∂ω
+

∂F

∂M

)
, (6.50)

di

dt
=

1

na2
στ

(
−∂F

∂Ω
+ cos i

∂F

∂ω

)
, (6.51)

dΩ

dt
=

1

na2
στ

(
∂F

∂i

)
, (6.52)

dω

dt
=

1

na2
τ

(
τ
∂F

∂e
− σ cos i

∂F

∂i

)
, (6.53)

dM

dt
=

1

na2

(
−2a

∂F

∂a
− τ

∂F

∂e

)
. (6.54)

This system of equations constitutes the full set of Lagrange equations ex-
pressed in terms of F .

Introducing the Perturbative Potential

Rather than use the function F , we bring in the perturbative potential R,
defined by (6.14). With the expressions for U and T , (6.29) becomes

F =
μ

r
+R− V 2

2
=

μ

2a
+R , (6.55)

because we can apply (4.38), obtained for a periodic orbit, to the osculating
elements of the orbit.

The perturbing potential R thus replaces F in the partial derivatives of
the above system with

∂F

∂Sj
=

∂R
∂Sj

, for Sj = e, i, Ω, ω,M ,
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da

dt
=

1

na

(
2
∂R
∂M

)

de

dt
=

1

na2

1− e2

e

(
− 1√

1− e2
∂R
∂ω

+
∂R
∂M

)

di

dt
=

1

na2
√
1− e2 sin i

(
−∂R
∂Ω

+ cos i
∂R
∂ω

)

dΩ

dt
=

1

na2
√
1− e2 sin i

(
∂R
∂i

)

dω

dt
=

1

na2
√
1− e2

(
1− e2

e

∂R
∂e

− cos i

sin i

∂R
∂i

)

dM

dt
− n =

1

na2

(
−2a

∂R
∂a

− 1− e2

e

∂R
∂e

)

In matrix form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

da/dt

de/dt

di/dt

dΩ/dt

dω/dt

dM/dt− n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂R/∂a

∂R/∂e

∂R/∂i

∂R/∂Ω

∂R/∂ω

∂R/∂M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L =
1

na2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 +2a
0 0 0 0 −ττ +τ
0 0 0 −στ +στ cos i 0
0 0 +στ 0 0 0
0 +ττ −στ cos i 0 0 0

−2a −τ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

σ =
1

sin i
, τ =

1− e2

e
, τ =

1√
1− e2

Table 6.2 :Lagrange equations for the six orbital elements as a function of the per-

turbing potential R.

and

∂F

∂a
= − μ

2a2
+

∂R
∂a

= −n2a

2
+

∂R
∂a

, for Sj = a .

In the above Lagrange system of equations, we can thus replace ∂F/∂Sj by
∂R/∂Sj in the first five equations. The last equation, viz., (6.54), becomes

dM

dt
= n− 2

na

∂R
∂a

− 1

na2
1− e2

e

∂R
∂e

.
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Lagrange Equations in Terms of the Perturbative Potential

We can now write the equations for the time dependence of the orbital
elements in terms of the perturbing potential R. The results are shown in
Table 6.2. This system of equations constitutes the full set of Lagrange’s equa-
tions, which correspond, by successive equivalences, to the original equation
given in (6.13), i.e., the equation of motion. This can be written in matrix
form using the matrix L, equivalent to L0 defined above by (6.48). It corre-
sponds to the initial system of equations (6.17) or (6.20), in which we have
substituted M for Θ :

M − nt = Θ ,
∂R
∂M

=
∂R
∂Θ

.

To conclude this section, we have shown that, when the perturbative accelera-
tion field derives from a potential, the satellite motion is defined by Lagrange’s
equations. We check that, if R = 0, we recover the solution of the two-body
problem, i.e., Kepler’s solution in which a, e, i, Ω, ω are constant and the mean
anomaly is given byM = n(t−tp), corresponding to Θ constant. In the general
iterative case, we treat R as expressed in terms of the new variables.

6.3.4 Metric and Angular Orbital Elements

The matrix L clearly brings out the separation of the orbital elements into
two groups: on the one hand a, e, i, and on the other, Ω,ω,M . Indeed we see
that, in Lagrange’s equations, the time derivatives of a, e, i involve only the
partial derivatives of R with respect to Ω,ω,M , and conversely. This can be
expressed in a global manner as follows:

{
da

dt
,
de

dt
,
di

dt

}
= f1

(
a, e, i;

∂R
∂Ω

,
∂R
∂ω

,
∂R
∂M

)
,

{
dΩ

dt
,
dω

dt
,
dM

dt

}
= f2

(
a, e, i;

∂R
∂a

,
∂R
∂e

,
∂R
∂i

)
,

where f1 and f2 are functions of a, e, i and the partial derivatives mentioned.
The parameters (a, e, i) are called metric orbital elements,7 or more briefly,

metric elements, while the parameters Ω,ω,M are called angular (or angle)
elements.

7This term serves to distinguish the two groups of orbital elements. However, the term
“metric” is open to discussion. If it refers to the notion of length, only the quantity a is
actually a length. If it is intended to contrast with the notion of angle, the inclination is
actually an angle. Here, when the word “metric” is attributed to e and i, it indicates that
these two elements behave mathematically like a. The Delaunay variables discussed later
avoid this ambiguity, since variables in the same group have the same physical dimensions.
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If pi denote the metric elements and qi the angular elements, the last two
relations can be written in the form

ṗi = f1

(
pi;

∂R
∂qi

)
, q̇i = f2

(
pi;

∂R
∂pi

)
. (6.56)

Note. The quantity na2
√
1− e2 arises three times in the denominator of the

expressions in the system of equations presented in Table 6.2. Returning to
the Keplerian orbit relations for the osculating elements, (4.27) becomes

C2 = μp = μa(1− e2) = n2a4(1− e2) ,

and we thus see that the quantity in question is the magnitude of the angular
momentum of the satellite, denoted by C :

C = na2
√
1− e2 = nab . (6.57)

6.3.5 Poorly Defined Parameters

There are two situations, already discussed in the context of orbital el-
ements in Chap. 5, which can raise difficulties for the definition of certain
parameters: the case e = 0 and the case i = 0:

• The eccentricity e occurs in the denominator of the expressions for ė, ω̇,
and Ṁ in Lagrange’s equations (see Table 6.2). If e is zero, these quantities
are not defined. This is to be expected since, as we have seen, the perigee
is not then defined, and this means that ω and M cannot be either.

• The inclination i occurs in the denominator of i̇, Ω̇, and ω̇. If i is zero,
these quantities are not defined. This is also to be expected since, as the
ascending node is not defined, Ω and ω cannot be either.

In these two cases, one solution is to drop the “standard” orbital elements and
replace them by others, obtained by suitably chosen combinations of those.
However, we shall see later that, when the perturbing potential is limited
to the J2n term of the geopotential, the function R is such as to remove
the indeterminacy when e = 0 or i = 0. For example, with regard to the
indeterminacy that arises in Ω̇, we shall see that R is a function of sin2 i. Its
derivative with respect to i yields a term in sin i cos i which cancels the term
in sin i in the denominator of Ω̇. In this case, the quantity Ω̇ is perfectly well
defined for i = 0.

With this type of perturbative potential, we shall find that all the angular
speeds Ω̇, ω̇, Ṁ are well defined for e = 0 or i = 0 (or e = 0 and i = 0), even
if the zero point of the angles is not.

6.3.6 Delaunay Elements

The form of the matrix L given in Table 6.2, together with the symme-
tries and similarities in the Lagrange brackets, suggest making a change of
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variables to obtain an even simpler formulation of the results and to group
the elements into two homogeneous sets. These elements are known as the
Delaunay elements.8 These variables are written as follows, clearly separating
the elements L, G, H , which have the dimensions of angular momentum per
unit mass (action variables) and the associated angular elements l, g, h, which
are dimensionless (angle variables):

{
L =

√
μa , G = L

√
1− e2 , H = G cos i ,

l = M , g = ω , h = Ω .
(6.58)

The Lagrange equations can now be written in a very simple form, called the
Delaunay equations:

⎧⎪⎪⎨
⎪⎪⎩

dL

dt
=

∂F

∂l
,

dG

dt
=

∂F

∂g
,

dH

dt
=

∂F

∂h
,

dl

dt
= −∂F

∂L
,

dg

dt
= −∂F

∂G
,

dh

dt
= − ∂F

∂H
,

(6.59)

where

F =
μ2

2L2
+R .

In canonical form, the equations are even simpler than in (6.56):

ṗi =
∂F

∂qi
, q̇i = −∂F

∂pi
, (6.60)

where the pi are the action variables and the qi the associated angle variables.
According to (6.57), G is the angular momentum C and H is its projection

onto the polar axis Oz :

H = C cos i = Cz . (6.61)

We shall not use the Delaunay variables in what follows (except for H a little
later). They are given here as an example of a homogeneous notation, in the

8Charles Delaunay (1816–1872) was a French astronomer and author of many works,
including a very detailed study of the motion of the Moon. He detected a slight disagreement
between his predictions and observational results. Le Verrier claimed that the error lay
in Delaunay’s formulas, but the latter replied that the disagreements were the result of
unknown causes. In 1865, Delaunay put forward the hypothesis that the discrepancy was
due to a very gradual slowing down of the Earth’s rotation, caused by friction due to the
tides. This is indeed the accepted theory today. Delaunay’s method is no longer used to
study the motion of the Moon, but it is still current practice for the moons of other planets.

It is worth making a few remarks about his magnum opus, Théorie du mouvement de
la Lune (1867). The perturbation function R is given in the form of an equation with 1967
terms, occupying 21 pages. As the author notes, it remains only to integrate R to obtain
the coordinates of the Moon as a function of time, using the Delaunay elements. That takes
up the following 860 pages. (One must see it to believe it!)
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sense of physical dimensions, leading to canonical equations. The Hamilto-
nian method due to Von Zeipel and Brouwer9 involves integrating Lagrange’s
equations using the Delaunay variables.

6.4 Perturbative Method: Results

for the Geopotential up to J2

In order to achieve what we set out to, that is, to find the time derivatives
of the six orbital elements, we must apply Lagrange’s equations. We must
therefore feed in the value of the perturbative potential R. We shall consider
here the perturbation due to the geopotential. We shall not tackle the other
gravitational potentials, such as the lunisolar attraction potential, treated here
as negligible.

As far as the geopotential is concerned, we shall proceed in stages, initially
considering the first zonal harmonic (see Sect. 6.4.1), corresponding to the
term in J2, then all the zonal harmonics up to the term in Jn (see Sect. 6.5.1),
and finally the general case, including all the zonal, sectorial, and tesseral
harmonics (see Sect. 6.5.2).

6.4.1 Expression for the Perturbative Potential up to J2

We expand the potential to second degree. Then using (3.27) and putting
U = U0 +R, we find the following value for R :

R = −μR2

r3
J2

3 sin2 ψ − 1

2
. (6.62)

To integrate this over a period, we first find r and ψ.

Expressions for r and ψ

The distance r can be expressed as a function of a, e, and v, as we have
seen. Equation (4.60) gives

r =
a(1− e2)

1 + e cos v
. (6.63)

The angle ψ is the geocentric latitude of the satellite. To find an expression for
ψ, we consider the following points, as shown in Fig. 6.3: the projection N of
the ascending node, the projection S0 of the satellite, and the point Q where
the meridian through S0 intersects the equator, i.e., the intersection of the
half-plane S0Oz with the equatorial circle. In the spherical triangle NS0Q,

9This method was developed by Von Zeipel in 1916 to study asteroids, and it was taken
up again by Brouwer in 1959 for application to artificial satellites.
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Fig. 6.3 : Subsatel-

lite point S0, specified

by the position on orbit

α, angle measured from

the ascending node.

which has a right-angle at Q, the angle N is the dihedral angle (E ,P), i.e.,
the inclination i. The known sides of the triangle (arcs of a great circle) are




QS0= ψ ,



NS0= α .

Along with (ST VIII), the sine rule (see Sect. 6.13) gives

1

sinα
=

sin i

sinψ
. (6.64)

Now, with α = ω + v (since α is the position on orbit), this leads to

sinψ = sin i sin(ω + v) . (6.65)

Expression for R
It thus turns out that R is a function of constant quantities (a, e, i, ω are

considered to be constant over one revolution) and v. It thus varies period-
ically, with the same period T = 2π/n as the Keplerian motion. We note
that R does not depend on Ω. This was to be expected insofar as the only
perturbation we are considering arises from the replacement of the sphere by
an ellipsoid of revolution. In this situation, the terrestrial longitude is irrele-
vant. The position of the ascending node, and hence the value of Ω, is of no
consequence, and we have

∂R
∂Ω

= 0 . (6.66)
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Integrating R over a Period

We calculate 〈R〉, the average value of R over one period T , by integrating
with respect to time, i.e., with respect to the mean anomaly M :

〈R〉 = 1

T

∫ T

0

Rdt =
1

2π

∫ 2π

0

RdM .

We first express dM as a function of dv. This relation is given by (4.81), which
we obtained by applying the areal law:

dM =
r2

a2
√
1− e2

dv .

Using the variables r, ψ, and v, and as the bounds of integration are the same
for v and M , we obtain

2π 〈R〉 = − μR2J2
2a2(1− e2)1/2

∫ 2π

0

3 sin2 ψ − 1

r
dv .

Using (6.63) and (6.65), this yields

2π 〈R〉 = − μR2J2
2a3(1 − e2)3/2

I ,

where

I =

∫ 2π

0

{
3 sin2 i

2

[
1− cos 2(v + ω)

]
− 1

}
(1 + e cos v)dv .

Expanding the terms in this expression, we see that integration of the terms
periodic in v over the interval [0, 2π] will give zero, e.g.,

∫ 2π

0

cos v cos 2(ω + v) dv =
1

6

∫ 2π

0

[
sin(3v + 2ω) + 3 sin(v + 2ω)

]
dv = 0 .

The only nonzero contribution comes from the constant terms, independent
of v, which yields

∫ 2π

0

(
3 sin2 i

2
− 1

)
dv = 2π

(
3 sin2 i

2
− 1

)
.

The average value of the potential is thus, up to degree 2,

〈R2〉 = 〈R〉 = −1

4

μR2

a3(1− e2)3/2
J2
(
3 sin2 i− 2

)
. (6.67)
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Periodic and Secular Variations

The integration of R over one period shows that we can decompose this
quantity into two parts:

R(v) = Rs +Rp(v) , (6.68)

where the constant Rs = 〈R〉 represents the average value and the periodic
partRp averages to zero over one period. The only part of the potential having
a long-term effect (over times longer than the period T ) is therefore Rs. These
variations, slow but proportional to the time, are called secular10 variations
(in contrast to Rp, which causes only periodic effects).

The secular variations of the elements are obtained by differentiating this
part Rs of the perturbative potential R. Equation (6.67) shows that Rs = 〈R〉
can be expressed entirely in terms of the metric elements:

Rs = Rs(a, e, i) .

6.4.2 Variation of the Orbital Elements

Calculating the Variation of the Orbital Elements

We can at last apply Lagrange’s equations. Referring to the six equations
in Table 6.2, we replace the perturbing potential R by its secular part Rs.
The time derivatives da/dt, de/dt, and di/dt of the metric elements obtained
by differentiating with respect to the angle elements are therefore all zero.
Consequently, the parameters a, e, i remain constant in time.

On the other hand, we see that the time derivatives of the angle elements
dΩ/dt, dω/dt, dM/dt, obtained by differentiating with respect to the metric
elements, are nonzero. The partial derivatives of Rs expressed in (6.67) yield

∂Rs

∂a
= −3

a
Rs ,

∂Rs

∂e
=

3e

1− e2
Rs ,

∂Rs

∂i
=

6 sin i cos i

3 sin2 i− 2
Rs . (6.69)

We replace μ by n2a3 to obtain the final result:

ȧ = 0 , (6.70)

ė = 0 , (6.71)

i̇ = 0 , (6.72)

Ω̇ = − 3

2(1− e2)2
nJ2

(
R

a

)2

cos i , (6.73)

10The word “secular” comes from the Latin sæculum, meaning “century”, “occurring
every hundred years”. In the sixteenth century, the term was taken up in astronomy to
indicate an effect that would take centuries to become noticeable.
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ω̇ =
3

4(1− e2)2
nJ2

(
R

a

)2 (
5 cos2 i − 1

)
, (6.74)

Ṁ − n = Δn =
3

4(1− e2)3/2
nJ2

(
R

a

)2 (
3 cos2 i− 1

)
. (6.75)

As a function of time t, and starting from the origin t = 0, the orbital elements
are thus

a(t) = a0 , e(t) = e0 , i(t) = i0 , (6.76)

Ω(t) = Ω0 + Ω̇t , ω(t) = ω0 + ω̇t , (6.77)

M(t) = M0 + nt+ (Δn)t . (6.78)

This system of equations represents the solution of the equation of mo-
tion (6.13) as a function of the orbital elements.

Remarks Concerning the Variation of the Orbital Elements

To sum up, if we compare the actual trajectory of the satellite (perturbed
by the action of the J2 term of the geopotential) with the Keplerian trajectory,
we observe the following points:

1. The semi-major axis a of the orbit remains constant.
2. The eccentricity e of the orbit remains constant.
3. The inclination i of the orbit with respect to the equatorial plane is con-

stant.
4. The orbital plane rotates uniformly about the polar axis with a constant

angular speed Ω̇. This motion is known as precession of the orbit or nodal
precession.11 When we speak of precession without further specification,
we are generally referring to this motion. According to (6.73), it can oc-
cur either in the prograde or the retrograde direction, depending on the
inclination of the satellite orbit:

prograde Ω̇ ≥ 0 ⇐⇒ cos i ≤ 0 ⇐⇒ i◦ �∈ D1 ,

retrograde Ω̇ ≤ 0 ⇐⇒ cos i ≥ 0 ⇐⇒ i◦ ∈ D1 ,

where D1 = [0.00, 90.00] in degrees of arc.

11The word “nodal” means that the motion concerns the line of nodes, i.e., the line
joining the ascending and descending nodes. This straight line is the intersection of the
equatorial plane with the orbital plane, as introduced in Chap. 5. The word “apsidal”, used
in a moment, means that the motion concerns the line of apsides, i.e., the line joining the
perigee and the apogee, as discussed in Chap. 4.
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5. The perigee, and hence the whole orbit, rotate uniformly in the plane of
the orbit with constant angular speed ω̇. This motion is called apsidal
precession. According to (6.74), it can occur in the prograde or retrograde
direction, depending on the inclination of the satellite orbit:

prograde ω̇ ≥ 0 ⇐⇒ sin2 i ≤ 4

5
⇐⇒ i◦ �∈ D2 ,

retrograde ω̇ ≤ 0 ⇐⇒ sin2 i ≥ 4

5
⇐⇒ i◦ ∈ D2 ,

where D2 = [63.43, 116.57] in degrees of arc. We define the critical inclina-
tion by

iC = arcsin

(
2√
5

)
. (6.79)

For the two values, the angle iC and its supplement, the rate of apsidal
precession ω̇ is zero:

ω̇ = 0 ⇐⇒
{
i = iC = 63.43◦ ,
i = 180◦ − iC = 116.57◦ . (6.80)

The value of the critical inclination is independent of a and e. It is im-
portant for certain satellites in highly elliptical orbit, because one seeks
to avoid apsidal precession: as we shall see, in the case of Molniya-type
communications satellites, the position of the apogee remains fixed on the
orbit.

When ω̇ is calculated using an expansion going beyond the J2 term, the
value obtained for iC depends very slightly on a and e. It differs by a few
hundredths of a degree from the value given by (6.79) (see Example 7.1).

6. The (true) mean motion of the satellite is not the same as it would have
been if there were no flattening. According to (6.75), it may be faster or
slower depending on the inclination of the satellite:

faster Δn ≥ 0 =⇒ sin2 i ≤ 2

3
=⇒ i◦ �∈ D3 ,

slower Δn ≤ 0 =⇒ sin2 i ≥ 2

3
=⇒ i◦ ∈ D3 ,

where D3 = [54.74, 125.26]. Below we define the various periods associated
with the motion.

Example calculations are given in the following chapters. Figures 7.1, 7.3,
and 7.4 show dependence of the quantities Ω̇, ω̇, and Δn, respectively, on the
inclination.

Note. The signs of the three quantities Ω̇, ω̇, and Ṁ −n relating to the angle
elements depend only on the inclination i.
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6.5 Perturbative Method: Results

for General Case

6.5.1 Geopotential up to Jn

Remark Concerning Zonal Harmonics

There is an interesting point when we assume that the Earth has an axial
symmetry, as we shall see below. In this case, the geopotential involves only
zonal harmonics (i.e., the expansion involves only the Jn terms and not the
sectorial or tesseral harmonics), whose contribution to the full potential is by
far the greatest, as we have seen. The perturbative acceleration γP defined
by (6.15) then lies in the plane containing the satellite and the polar axis. It
can thus be decomposed as

γP = γ1er + γ2ez , (6.81)

where the unit vector alongOS is denoted by er, and the unit vector along the
polar axisOz by ez. Using (4.5), the time derivative of the angular momentum
C is

dC

dt
= r ∧ r̈ = rer ∧

[(
− μ

r2
+ γ1

)
er + γ2ez

]
= rγ2 (er ∧ ez) ,

which is perpendicular to ez. If Cz is the projection of C onto the polar axis,
we thus have

dCz

dt
=

dC

dt
·ez = 0 .

We saw earlier, in (6.61), that Cz corresponds to the Delaunay variable H ,
which gives here

dH

dt
=

dCz

dt
= 0 .

We deduce the following property:

H =
√
μa(1− e2) cos i =

√
μp cos i = constant . (6.82)

This relation is a very general feature of orbits perturbed by zonal terms
with the same axis. We note the following formula, obtained by differentiat-
ing (6.82):

1

2a
da =

e

1− e2
de + tan i di . (6.83)
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As H is the metric element associated with the angle element h = Ω, it follows
from (6.59) that

dH

dt
=

∂F

∂Ω
= 0 , (6.84)

which shows that the function F does not depend on Ω. We may then recover
the result noted earlier: if the geopotential does not involve the longitude,
that is, if it only involves the zonal harmonics, then R (or F ) is independent
of Ω, as can be seen in the relation (6.66).

Calculating the Perturbative Potential R
We now consider the Earth as a body with axial symmetry. The potential

U involves only the terms Jn. The full formula (3.28) reduces to

U(r, ψ) =
μ

r

[
1−

∞∑
n=2

(
R

r

)n

JnPn(sinψ)

]
. (6.85)

The perturbative potential R is obtained as the difference between U and U0.
This then replaces the value given by (6.62).

(a) Third Degree Expansion. We begin our calculation of R by expanding
up to third degree, thereby bringing in the Legendre polynomials P2(sinψ)
and P3(sinψ). We obtain

R = −μ

r

[
J2

(
R

r

)2
3 sin2 ψ − 1

2
+ J3

(
R

r

)3
5 sin2 ψ − 3

2
sinψ

]
. (6.86)

Written in simplified form (with Rn for degree n),

R = R2 +R3 ,

where R2 corresponds to the sum Rs +Rp given in (6.68).
As before for R = R2, we calculate the average value 〈R3〉 of R3 over a

period:

2π 〈R3〉 =
∫ 2π

0

R3 dM = − μR3J3
2a2(1− e2)1/2

∫ 2π

0

5 sin2 ψ − 3

r2
sinψ dv ,

using (4.81). Further, with the help of (6.63) and (6.65), we obtain

2π 〈R3〉 = − μR3J3
2a4(1− e2)5/2

sin iJ ,

where

J =

∫ 2π

0

[
5 sin2 i sin2(ω + v)− 3

]
(1 + e cos v)2 sin(ω + v) dv .
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This integration is tedious to carry out “by hand”. With a clever decompo-
sition, one can use tables giving the values of definite integrals (from 0 to
2π). These tables, like those of F. Tisserand, avoid the need to recalculate
integrals. They have been established over the centuries by astronomers. The
simplest thing today is to use a suitable computer software. We thus obtain

J = 2π
3e

4

(
5 sin2 i− 4

)
sinω ,

whence the expression for 〈R3〉 is

〈R3〉 =
3

8

μR3e

a4(1 − e2)5/2
J3
(
−5 sin2 i+ 4

)
sin i sinω . (6.87)

This term R3(a, e, i, ω) will lead to long-period variations because it depends
on the angle element ω in addition to the metric elements. It can be written
in the form

〈R3〉 (a, e, i, ω) = 〈R′
3〉 (a, e, i) sinω .

However, it will not produce secular variations, because if we integrate its
value over a round trip of the perigee during its apsidal revolution, the result
will be zero:

2π 〈〈R3〉〉 =
∫ 2π

0

〈R3〉 (a, e, i, ω) dω

= 〈R′
3〉 (a, e, i)

∫ 2π

0

sinω dω = 0 . (6.88)

Looking at the successive integrations, we note that 〈〈R3〉〉 is equal to 0,
because sinψ is a factor in R3, and that in turn because x = sinψ is a factor
in the Legendre polynomial P3(x).

Referring to the appendix on Legendre functions in Sect. 3.7, we see that
the variable x is a factor in the expressions for all odd degree polynomials.
We deduce, therefore, that the terms Jn with odd n make no contribution to
the secular variation of the orbital elements:

〈〈Rn〉〉 = 0 for odd n ⇐⇒ no secular variation . (6.89)

(b) Fourth Degree Expansion. For degree 4, we use the Legendre polyno-
mial P4(sinψ) and proceed as before. This leads to

〈R4〉 =
1

64

μR4e

a5(1 − e2)7/2
J4
(
−105 sin4 i+ 120 sin2 i− 24

)
. (6.90)

Like R2, the term R4 will produce secular variations for the three angle ele-
ments Ω, ω, and M − nt. Here, these variations will be proportional to J4.



198 Chapter 6. Satellite in Real (Perturbed) Orbit

If we consider secular variations beyond degree 2, we can no longer neglect
the fact that the mean motion n, which enters into the expressions for Ω̇, ω̇,
and Ṁ − n, has a secular variation proportional to J2. There will thus be a
term in J2

2 in addition to the terms in J4, J6, etc. Note that, if J2 is of order
10−3, the terms J4, J6, etc., are of order 10

−6, as is J2
2 [see (7.15)–(7.17) and

Table 7.1].

Periodic and Secular Variations

From (6.85), we obtain R as a function of five orbital parameters (since Ω
does not occur):

R = R(a, e, i, ω,M) .

The potential R decomposes into a sum of termsRn, one for each term Jn. We
consider Lagrange’s equations as given in Table 6.2. It can be shown that:

• If a term Rn depends on neither M nor ω, it causes a variation in the
relevant orbital element which is proportional to the time, i.e., a secular
variation.

• If a term Rn depends on ω, but not on M , there will be a variation whose
period will be of the order of the apsidal precession, i.e., a long-period
periodic variation.

• If a term Rn depends on both ω and M , there will be a variation whose
period will be of the order of the Keplerian period, i.e., a short-period
periodic variation.

To sum up, periodic variations are divided into short-period variations, cor-
responding to the period of M , and long-period variations, occurring over
several tens of days (∼ 1,000T ), corresponding to the apsidal period of ω.
The latter are mainly due to the influence of the J3 term which affects espe-
cially e and the angle elements. There is no long-period perturbation of the
semi-major axis a. This result is known as the invariability of the major axis,
and it applies to many types of motion in astronomy (see Sect. 6.9).

Secular variations are variations proportional to time. Naturally, it is this
kind of variation that deviates the satellite from its Keplerian orbit. We have
seen that the J2 term causes secular deviations in the three angle elements,
while having no effect on the metric elements. The other zonal harmonics,
although only the even ones, i.e., J4, J6, . . . , J2p, . . . , also contribute to secular
deviations (see Table 7.1). Figure 6.4 shows in a schematic way all the periodic
and secular variations of the orbital elements.

Example 6.1 Calculate the effect of perturbations when the geopotential is
expanded up to the term in J3. Long-period variations.
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Metric Elements Angular Elements

e , i

time t

time t

Ω , ω

M−nt

α

Fig. 6.4 :Schematic view of the temporal variation of the orbital elements. Short-

period variations are shown with a continuous curve and long-period variations with

a dot-dashed curve. Secular variations are shown with a dashed line. The amplitudes

of the periodic variations have been greatly exaggerated for visibility.

� The potential R is given by (6.86). We have just seen that it can be written
in the form

R = (Rs +Rp) +R3 ,

if the expansion is cut off at degree 3. The term Rs(a, e, i) is given by (6.67).
The term Rp(a, e, i, ω,M) leads to short-period variations which we shall not
discuss here. The term R3 is given by (6.87). This term R3(a, e, i, ω) will
produce long-period variations which we shall now calculate.

Since ∂R3/∂M = 0 and ∂R3/∂Ω = 0, the equations for the metric ele-
ments, the first three Lagrange equations (see Table 6.2), become

da

dt
= 0 ,

de

dt
= − 1

na2

√
1− e2

e

∂R3

∂ω
,

di

dt
=

1

na2
1√

1− e2
cos i

sin i

∂R3

∂ω
.

This implies

de

di
= −1− e2

e
tan i , (6.91)

which is equivalent to (6.83) when a is constant (and this is almost always
the case for the kinds of motion occurring in astronomy). To calculate the
variation arising in i as a result of R3, we start with di/dt above, differentiate
R3 with respect to ω, and replace μ by n2a3. This gives

di

dt
=

3e

2(1− e2)3
nJ3

(
R

a

)3 (
1− 5

4
sin2 i

)
cos i cosω . (6.92)
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To find the long-period variation in i due to the zonal harmonic J3, we rewrite
di/dω, with the value for ω̇ calculated using (6.74):

di

dω
=

di

dt

dt

dω
=

1

ω̇

di

dt
=

1

2

e

1− e2
J3
J2

(
R

a

)
cos i cosω .

The required quantity is thus

ΔLP3
i =

1

2

e

1− e2
J3
J2

(
R

a

)
cos i sinω , (6.93)

where the subscript LP3 indicates that this is a long-period effect due to the
zonal harmonic J3. To obtain the corresponding variation in e, we use (6.91),
taking ΔLP3

e/ΔLP3
i for de/di :

ΔLP3e = −1

2

J3
J2

(
R

a

)
sin i sinω . (6.94)

Conversely, one can determine the value of J3 by measuring the values of
ΔLP3

i and ΔLP3
e (see the historical note in Sect. 6.7).

Important Note. For near-circular orbits (e ∼ 10−3), we find that, with (6.93)
and (6.93), or directly from (6.91), we have

ΔLP3
i ≈ − e

tan i
ΔLP3

e . (6.95)

Owing to the factor e, the variation ΔLP3
i of the inclination is negligible

compared with the variation of the eccentricity ΔLP3
e (except for equatorial

orbits). �

Example 6.2 Calculate the variation of the orbital elements over one
revolution.

� Recall that p is the semi-latus rectum of the ellipse, with p = a(1 − e2).
These variations carry the subscript 1 to indicate that they refer to the value
obtained over one revolution. The variations, be they secular or long-period,
are sufficiently slow to be able to avoid integrating over the time t. Indeed, it
suffices to multiply the derivative with respect to t of the relevant quantity
by T = 2π/n.

For the angle elements, the periodic variations are negligible compared
with secular variations. However, these periodic variations are “visible” for
the metric elements, where there are no secular variations.

For the angle variables, we write Δ1Ω = Ω̇T and Δ1ω = ω̇T , where the
angles are of course given in radians. To first order, we take for Ω̇ and ω̇ the
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values given by (6.73) and (6.74), respectively, as a function of J2 alone, when
expanding the geopotential:

Δ1Ω = −3πJ2

(
R

p

)2

cos i , (6.96)

Δ1ω = +3πJ2

(
R

p

)2

2

(
1− 5

4
sin2 i

)
. (6.97)

For the metric variables, the case for a can be dealt with immediately, since
we may consider that ȧ is zero (invariability of the major axis). Concerning
the expressions for ė and i̇, we use (6.92) and (6.91). We consider only the
first term (the J3 term) of the expansion. For the variations over one period,
we then obtain

Δ1a ≈ 0 , (6.98)

Δ1e = −3πJ3

(
R

p

)3

(1− e2)

(
1− 5

4
sin2 i

)
sin i cosω , (6.99)

Δ1i = +3πJ3

(
R

p

)3

e

(
1− 5

4
sin2 i

)
cos i cosω . (6.100)

The critical inclination plays an important role for Δ1ω, Δ1e, and Δ1i. �

6.5.2 Full Geopotential

When we consider the geopotential U(r, λ, ψ) given by (3.17), it is ex-
tremely difficult to calculate the effects of the perturbative potential R.
However, let us just mention the existence of orbital resonance phenomena:
the influence of certain tesseral coefficients Clm and Slm, defined by (3.20)
and (3.21), can, for one specific orbit, significantly exceed the effects of coef-
ficients with higher or lower order and degree. For these values, the periodic
perturbations have relatively large amplitude. W. Kaula has developed a for-
malism which predicts the resonances associated with these specific orbits.

This resonance phenomenon is particularly important for recurrent satel-
lites with a 1-day recurrence cycle, i.e., effecting a whole number ν of revo-
lutions per day. Tesseral harmonics with order a multiple of ν must be taken
into account in orbital extrapolations, i.e., precise determination of satellite
position at a given time from its osculating elements. Particularly important
are the following:
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Source of Secular variation Periodic variation

perturbation Large Small Indirect Moderate Small

Earth’s gravity Ω, ω – – e i, Ω, ω
Atmosphere a, e i Ω, ω – Ω, ω
Lunisolar gravity – – – – a, e, i, Ω, ω

Table 6.3 :Sources of perturbation and the effect (secular or periodic variation) in-

duced on the five orbital elements a, e, i, Ω, and ω, for a satellite in low-Earth orbit,

according to the King-Hele theory.

• For satellites of medium altitude which do two revolutions per day (whence
ν = 2), harmonics of order 2, 4, 6, . . . , whether the orbit is circular, as for
Navstar/GPS, or highly elliptic, as for Molniya.12

• For geosynchronous satellites,13 harmonics of order 1, 2, 3, . . . .

More generally, this phenomenon affects all recurrent satellites, where ν is a
rational number, i.e., after a certain number of days, the satellite ground track
is repeated (see the further discussion below). For example, for the satellites
SPOT-1 to -5, where ν = 14+5/26, there is a resonance for the tesseral terms
of orders 15 and 29.

6.5.3 Other Perturbative Forces Deriving
from a Potential

The non-terrestrial gravitational potential is due almost entirely to the
lunisolar potential. The elements a and e are not affected by secular variations.
The various orbital elements undergo slight variations with long period. For
certain orbits, we observe a very slight secular drift in Ω. These results are
summarised in Table 6.3, for a low-orbiting satellite.

6.5.4 Perturbative Forces not Derived from a Potential

Atmospheric drag has ever greater effect as the satellite orbit becomes
lower. It can be shown that e tends to decrease (drag is greater at the perigee
than at the apogee, and this has the effect of making the orbit more circular).
Furthermore, a decreases (one would expect friction to make the satellite fall
toward the Earth). The other elements are not significantly affected, at least

12For Molniya, the tesseral harmonic coefficients with the most effect are C22, C32, C52,
C44, C54, C64, C66, C76, C86, C98, and the corresponding Slm.

13For a geostationary satellite, resonance periods of 24 h and 48 h are associated with
tesseral harmonics of order 1 (C31, C41, and the corresponding Sl1), and resonance peri-
ods of 12, 24, 36, and 48 h are associated with those of order 2 (C22, C32, C42, and the
corresponding Sl2).
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not directly. However, the changes in a and e, which may be considered propor-
tional to the time t (secular variation), induce changes in the angle parameters
which rapidly dominate over periodic variations because they are proportional
to t2 (for variations going as t2, see also the drift in local time and Example
10.7 in Chap. 10). Forces induced by (solar and terrestrial) radiation pressure
also affect the variation of the orbital elements (see Table 6.3). The effect of
atmospheric drag on a is treated in the appendix in Sect. 6.6.

When the perturbing acceleration γP does not derive from a potential,
we use a coordinate system moving with the orbit and decompose the vector
relative to this. This gives a system of equations called Gauss’ equations. We
shall not discuss this method further.

6.5.5 Different Definitions of the Period

The three angles associated with Keplerian motion, the anomalies v, E,
and M , increase by 2π when the time increases by 2π/n, where n is the mean
motion. As can be seen from (4.65) and (4.57), the origin from which these
angles are measured is taken at the time t = tp when the satellite passes the
perigee. The time lapse between two successive passages at perigee is called
the anomalistic period.14 It is therefore the anomalistic period Ta which is
obtained with the mean motion n, and this differs from the period T0 obtained
with the Keplerian mean motion n0. We have the definition

nTa = n0T0 . (6.101)

With n = n0 +Δn, calculated using (6.75), we obtain

Ta =

(
1− Δn

n

)
T0 . (6.102)

We would also like to know the time interval between two passages at the
ascending node (or the descending node). This is the nodal period or dra-
conitic15 period Td. This differs from Ta because the perigee moves through
apsidal precession. It should be noted that this happens even in the case of a
circular orbit , since ω̇ does not vanish when e is zero. We have the relation

ndTd = nTa , (6.103)

14The adjective “anomalistic” derives from the word “anomaly”, since the three anomalies
are all zero (modulo 2π) at the perigee.

15The adjective “draconitic” was originally used for the draconitic period or month, which
refers to the passage of the Moon at its ascending node. The word comes from the Greek �

#�"���� ����	, meaning “dragon” (literally, “which stares”). Eclipses only occur when the
Moon passes through a node of its orbit. In ancient times, the Greeks thought that, during
an eclipse, the moon was swallowed up by a dragon, hiding near the nodes of the lunar
orbit.
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where nd is the mean motion when the ascending node is taken as origin.
Composing the two motions, we have

nd = n+ ω̇ , (6.104)

yielding one period in terms of the other:

Td =
1

1 + ω̇/n
Ta , (6.105)

Ta =

(
1 +

ω̇

n

)
Td . (6.106)

The draconitic period Td is given in terms of the Keplerian period T0 by

Td =
1−Δn/n

1 + ω̇/n
T0 , (6.107)

or, to a first approximation,

Td ≈
(
1− ω̇ +Δn

n

)
T0 (6.108)

With this approximation and for a circular orbit, i.e., e = 0 in (6.74)
and (6.75), we obtain

Td ≈
[
1− 3

2
J2

(
R

a

)2 (
4 cos2 i− 1

)]
T0 . (6.109)

For i = 60◦ and i = 120◦, we note that the draconitic period Td is equal to
the Keplerian period T0.

In brief, the period Ta is mainly used to calculate the semi-major axis of
the orbit. For everything relating to the motion of the satellite in a frame fixed
relative to the Earth, it is the draconitic period Td which comes into play. For
Keplerian motion, there is no need to make these distinctions between periods,
since they obviously coincide in this case.

6.6 Appendix: Atmospheric Drag

6.6.1 Description of the Earth’s Atmosphere

The Earth’s atmosphere can be divided up according to physical criteria
into zones determined by altitude and called spheres.

If we use the criterion of vertical temperature gradient, then starting at
ground level, we encounter the troposphere and the stratosphere in roughly
the first 50 km, the mesosphere up to 100 km, then the thermosphere and the
exosphere. The lower regions, below 200 km, are of no relevance to satellites
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except for questions of signal transmission, something we shall return to when
we discuss navigation satellites (GPS) in Chap. 14.

If the criterion is the relative proportions of the majority chemical con-
stituents, we distinguish the homosphere and the heterosphere, the transition
being located at around 100km altitude. In the homosphere, thanks to mix-
ing effects, the atmosphere remains homogeneous with regard to its chemical
components (at least those that are not subject to photochemical reactions),
and this whatever the pressure. The air we breathe on the coast or at the top
of a mountain is also composed of 78% nitrogen N2, 21% oxygen O2, and
1% argon Ar. But above 100 km altitude, owing to the rarefaction of the air
and the high temperature (a high level of molecular agitation with a large
mean free path for the particles), the relative proportions of the constituents
changes completely and becomes mass dependent. Between 160 and 600km,
the predominant gas is monatomic oxygen O, and beyond that, one finds a
predominance of the lighter atoms, i.e., helium He (dominant up to 2,000km)
and hydrogen H.

When we are interested in satellite motions, the crucial altitude range is
200–1,200km. It soon becomes catastrophic for a satellite to pass at altitudes
below 200km, and above 1,200km, the effects of atmospheric drag can be
neglected, even over long periods, although other dissipative phenomena then
become important, e.g., solar radiation pressure.

6.6.2 Density of the Atmosphere

When investigating atmospheric drag, the fundamental quantity we need
to know is the mass per unit volume of the air. Generally known as the
atmospheric density, it is denoted by ρ and expressed in units of kgm−3

(although strictly speaking the density is not a mass per unit volume).
It is easy to calculate the altitude dependence of the density if we assume

that the atmosphere is at rest and isothermal, using the laws of thermody-
namics. The result is an exponential function:

ρ(h) = ρ0e
−h/H , (6.110)

where ρ0 is the density at the reference altitude z0 and h = z − z0 represents
the difference in altitude. The quantity H , with units of length, is the scale
factor, given by standard calculation as

H =
RT

Mg
, (6.111)

with R = 8.31 (SI units) the perfect gas constant, T the temperature (K), M
the mean molar mass (kg) of the components, and g the acceleration due to
gravity (m s−2).
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At sea level, at a temperature of 15◦C and a pressure of 1,013hPa, we
have

T = 273 + 15 = 288 K , M =
4

5
× 28 +

1

5
× 32 ≈ 29 g .

The value of ρ is thus

ρ0 =
29

22.4
× 273

288
= 1.23 kgm−3 .

Calculating the scale factor, we find that

H =
8.31× 288

29× 10−3 × 9.81
= 8413 m , or H ≈ 8.4 km .

At an altitude of about 8 km, the density is divided by a factor of e, the
Euler number, as compared with its value at sea level, whence it is equal to
ρ = 0.44kgm−3.

Even though the actual atmosphere may differ to some extent from the
above idealisation and the conditions assumed in establishing (6.110), the
formula for ρ(h) is nevertheless applicable in most cases, as experience shows.

At a given altitude in the relevant altitude range for our present purposes,
viz., 200–1,200km, the atmospheric density depends sensitively on the level of
solar activity, whence its variations are driven by several cycles with different
periods:

• An 11 year cycle which has been known for a long time, as revealed by
observation of sunspots (since 1749). Rather than simply counting spots, a
more objective criterion has been used since 1947, with the measurement,
known as F10.7, of the Sun’s emission of the 10.7 cm radio wave. Over the
past 50 years, maxima have occurred in the years 1968, 1980, 1991, 2002,
and 2013.

• An annual cycle, related to seasonal effects.
• A 27 day cycle related to the synodic period of rotation of the Sun about

its own axis.
• A daily cycle, with a maximum for ρ at around 15 h local time (τLMT) and

a minimum 12h later.

In addition, the atmospheric density also depends on the latitude of the ob-
servation point.

6.6.3 Models of the Atmosphere

In the face of such complexity, it was only logical to set up models of
the atmosphere. The first date back to the 1960s and 1970s, developed by
Jacchia (J65, J71, etc.) in the USA, and Hedin and Barlier (DTM78) in Eu-
rope. Current models, such as JB2006, DTM2007, MSIS-90, NRLMSIS, and
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ρ (kgm−3) H (km)
Minimal Maximal Minimal Maximal

h (km) N D N D N D N D

100 9.8 9.8 10−9 9.8 9.8 10−9 6 6 6 6
200 1.8 2.1 10−10 3.2 3.7 10−10 33 38 43 49
300 0.5 1.1 10−11 2.6 4.7 10−11 45 53 57 68
400 0.5 1.6 10−12 5.0 12.0 10−12 53 61 70 80
500 0.4 2.0 10−13 8.5 31.0 10−13 60 67 75 89
600 1.0 3.9 10−14 20. 100. 10−14 76 76 82 96
700 0.4 1.0 10−14 5. 31. 10−14 134 96 93 105
800 2.4 4.3 10−15 17. 110. 10−15 213 139 114 116
900 1.6 2.4 10−15 7. 43. 10−15 325 215 153 134

1,000 9.6 17.0 10−16 42. 200. 10−16 418 309 217 165

Table 6.4 :Atmospheric density represented by the mass per unit volume ρ as a

function of the altitude h, for years of minimal and maximal solar activity, and

during the night (N) or the day (D). The scale factor H is also given. Values are

averaged over latitudes and seasons. Model MSIS-90.

others, direct descendants of the pioneers, naturally reflect the exponential
improvement in computer calculation capacity.

Without going into the details, we can now obtain the atmospheric density
as a function of altitude h, local time τLMT, the day of the year D, and the
latitude ψ :

ρi(h, τLMT, D, ψ) , i = 1, 2, . . . , n , (6.112)

where the index i indicates the level of solar activity (i = 1 for a year of
minimal activity, i = 2 maximal, i = 3 average, and so on). Table 6.4 gives
an idea of the kind of values one finds for ρ.

6.6.4 Calculation of Atmospheric Drag:
The Notion of ΔV

We consider a satellite in Earth orbit, denoting its speed in the Galilean
frame � by V and its speed relative to the atmosphere by Vα. If the atmosphere
is at rest and without wind, Vα is equal to V ′, the speed relative to the
terrestrial frame �T.

Let S be the cross-sectional area of the satellite in the direction normal to
its displacement. In a time dt, the mass dm of air of mass per unit volume ρ
encountered by the satellite is

dm = ρSVα dt . (6.113)
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The corresponding momentum dp is

dp = Vα dm = ρSV 2
α dt , (6.114)

and the force of friction F is therefore

F =
dp

dt
= ρSV 2

α .

To take into account the nature of the impacts of the air molecules on the
satellite surface, we multiply F by a coefficient16 Cd/2, whence

F =
1

2
CdρSV

2
α . (6.115)

The dimensionless friction coefficient Cd varies from 1.5 to 3.0, depending on
the shape of the satellite. It can be shown that it is equal to 2 for a sphere.

The friction force F , given vectorially by

F = −F
V α

Vα
, (6.116)

has the effect of slowing down the satellite of mass Ms. Applying the funda-
mental law of dynamics, we have

dV =
F

Ms
dt , dV = −1

2
Cd

S

Ms
ρV 2

α . (6.117)

We set

B = Cd
S

Ms
. (6.118)

The coefficient B, known as the ballistic coefficient, has units of m2kg−1. It
characterises the satellite with respect to drag.17 The larger the value of B,
the greater the drag effect will be. For example, for a “standard” satellite
with Ms = 500kg, S = 10m2, Cd = 2.3, we have B = 0.046m2 kg−1 and
1/B = 21.7kgm−2.

In the space technology community, it is standard practice to denote the
(magnitude of the) change in the velocity over a finite time T by ΔV (pro-
nounced Delta V):

ΔV =
1

2
B

∫ T

0

ρV 2
α dt . (6.119)

If ΔV is calculated over one revolution, this is written Δ1V .

16It is amusing to note that the factor of 1/2 in front of Cd has no better justification
than to make this formula (6.115) look like other formulas of this kind, such as the formula
for the kinetic energy, where the factor of 1/2 has a mathematical origin.

17To minimise these effects, the passive satellite Starlette (without its own energy supply)
is designed as a sphere coated with 60 laser reflectors. It has a uranium core of density
18.7. The mass of the satellite is 47 kg and its diameter 48 cm. With Cd = 2, we have
B = 7.70× 10−3 and 1/B = 130 kgm−2.
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Simplified Case

Let us calculate the value of ΔV and the change over one revolution of the
semi-major axis a and the period T for a satellite in circular orbit. We assume
that the atmospheric density is constant over one revolution and equal to ρ0.
We identify Vα with V and consider the Keplerian case, taking the Earth to
be spherical. Since 2πa = V T , we thus find

Δ1V = πBρ0aV . (6.120)

Differentiating V =
√
μ/a, we have da/a = −2πBρ0a, whereupon

Δ1a = −2πBρ0a
2 . (6.121)

Likewise for the period, with dT/T = (3/2)da/a, we have

Δ1T = −6π2Bρ0
a2

V
. (6.122)

Example 6.3 Calculate the daily drop in altitude for a SPOT-type satellite.

� For a SPOT-type satellite, with B = 0.046 and a = 7,200km, and which
makes about 14 revolutions per day, application of (6.121) yields

ΔDa = 14Δ1a = −2× 10−14ρ ,

where ΔD is the change in a over 1 day. We may thus estimate the drop in
altitude each day using the values for ρ at 800 km altitude:

Solar activity
Calm ρ = 3× 10−15 ΔDa = −0.6 m
Average ρ = 1× 10−14 ΔDa = −2.0 m
High ρ = 5× 10−14 ΔDa = −10 m
Very high ρ = 1.5× 10−13 ΔDa = −30 m

These results give an indication of the orders of magnitude involved here. �

Improvements in Atmospheric Models

The satellites CHAMP, GRACE-A and -B, and GOCE are equipped
with highly sensitive 3-axis accelerometers which measure the acceleration
ad and can be used to pilot drag compensation forces. According to (6.115)
and (6.116),

ad = −1

2
BρV 2

α

V α

Vα
. (6.123)
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The values of ad, B, and Vα are known, and we thus obtain the value of ρ at all
times along the trajectory. The sensitivity of the accelerometers is constantly
being improved as can be seen from the values 10−9 ms−2 for CHAMP, 10−10

for GRACE, and 10−12 for GOCE.

6.6.5 Effect of Drag on the Orbit

Analytical models of orbit propagation use similar methods to those pre-
sented here. With the software Ixion, assuming that the satellite characteristics
are well defined, we calculate the position of the satellite, its geodetic altitude,
and its velocity relative to the Earth at each instant of time, in adjustable
steps of a few seconds. If the atmospheric model provides the wind velocity,
we calculate the vector V α, otherwise V ′. With ρ given at the relevant al-
titude, place, and time, we calculate the frictional force F using (6.115) for
each integration step.

Going back to the equations of motion with this force F , we use the King-
Hele theory to calculate ȧ and ė, the time derivatives of the semi-major axis
a and the eccentricity e. Calculation of the other parameters is complex. The
change in i is very small, and the periodic variations in Ω and ω are swamped
by their secular variations. The software continuously tracks the modified
trajectory. Or if the satellite is being held to a given trajectory, we deduce
the quantity ΔV needed to do this.

6.6.6 Simplified Calculations for an Eccentric Orbit:
Air Braking

The quantity ΔV is very important in space engineering, and in particular
for mission control. While atmospheric drag leads to a certain value of ΔV ,
conversely, a certain amount of ΔV can be used to compensate for drag or to
carry out maneuvers to change the orbit. For those in charge of the technical
aspects, the cumulated value of ΔV over the whole mission can be directly
translated into an amount of fuel.

While ΔV is tedious to calculate either analytically or numerically, the
following method provides a simple way to estimate it over one period in
the case of elliptical orbits. The basic idea is that almost all the drag occurs
near the perigee, owing to the exponential decrease in ρ with altitude, as
attested by (6.110). During this relatively brief lapse of time, the speed V of
the satellite can be treated as constant, equal to Vp, the speed at perigee.18

18For example, for a Molniya satellite, hp = 200 km, e = 0.75, a = 26, 313 km, T =
708min, with a perigee passage at h = 200 km, η = 1.031, at time t = 0, the passage at
altitude h = 600 km, η = 1.091, occurs at time t = 346 s. The satellite has thus spent
2× 346 = 692 s = 11.5min in atmospheric layers between 200 and 600 km, which represents
11.5/708 = 0.016, or 1.6% of the time of one revolution. The relative difference in the speed
of the satellite between the two points is
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Here we take the planet to be spherical and neglect its rotational speed and
also the wind speed compared with the speed of the satellite near perigee.
With (4.45), we thus find

Vα = V = Vp =

√
μ

a

√
1 + e

1− e
.

We also make the highly reasonable assumption that a and e do not change
over one revolution.

We denote the altitude of the satellite by z and its altitude at perigee by
zp. We also denote the value of ρ at perigee by ρp and the scale factor at this
altitude by H . Over one period of length T , the value Δ1V of ΔV is then
given by

Δ1V =
1

2
B

∫ T

0

ρV 2 dt =
1

2
Bρp

μ

a

1 + e

1− e

∫ +T/2

−T/2

exp

(
−z − zp

H

)
dt . (6.124)

Using the eccentric anomaly E, we obtain the relations

r = a(1− e cosE) , rp = a(1− e) , z − zp = r − rp = ae(1− cosE) .

The lapse of time over which drag is effective is very short and centered on
the passage at perigee. In this case, the anomalies M and E are much smaller
than 1. We may thus write

1− cosE ≈ E2

2
, M = E − e sinE ≈ E(1− e) .

This gives E as a function of M and hence z − zp as a function of time:

E =
M

1− e
=

√
μ

a3
1

1− e
t , (6.125)

z − zp = ae
E2

2
=

1

2
μ

e

a2(1− e)2
t2 , (6.126)

z − zp
H

=
1

2

μe

Hr2p
t2 . (6.127)

First we note that the integral of a Gaussian is∫ +∞

−∞
exp
(
−αx2

)
dx =

√
π

α
.

During a revolution of period T occurring between t = −T/2 and t = +T/2,
drag is only really operative near t = 0. It is neither here nor there

−dV

V
= (2 − η)−1 dr

r
≈ (1 + e)−1 dh

r
= 0.033 ,

or 3.3%, and we thus justify treating the speed as constant. The ratio of the atmospheric
densities between 600 and 200 km altitude is 10−4.
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whether a friction-related quantity is integrated over one period, in the range
[−T/2,+T/2], or over the range (−∞,+∞). We thus have

∫ +T/2

−T/2

exp

(
−z − zp

H

)
dt =

∫ +∞

−∞
exp

(
−1

2

μe

Hr2p
t2
)
dt

=

√
2πH

μe
rp , (6.128)

and finally,

Δ1V =

√
π

2
Bρp

√
μ
1 + e√

e

√
H . (6.129)

This is a remarkably simple formula, because it only involves the geometry of
the ellipse (through e), the scale factor H , and the mass per unit volume ρp
of the atmosphere at perigee. The semi-major axis a, which enters indirectly
through the period T , and the altitude at perigee, which determines ρp, do
not appear explicitly.

The result can be applied as long as the effective drag time near the passage
at perigee is small compared with the whole period. This effective drag time
Δteff is defined by

ρpΔteff =

∫ +T/2

−T/2

ρ dt . (6.130)

With the assumptions made above, calculation leads to

Δteff
T

=

√
H

2πa

1− e√
e

. (6.131)

If we set the condition Δteff/T < 0.1, with H = 50km, a = 26,500km, we
obtain the constraint

e > 0.03 ⇐⇒ (6.129) is applicable .

This formula is particular useful for the study of atmospheric braking, a tech-
nique for circularising orbits, although more often used on Mars than on the
Earth.19 Indeed, it is with Mars missions in mind that we have set out the
above theory. We have compared the resulting values of Δ1V with those ob-
tained by stepwise numerical integrations using an atmospheric model (MCD-
LMD). The error never exceeds 5%.

19For Earth-orbiting satellites, this method is considered for transforming GTO orbits
into LEO orbits, in the case of passenger satellites (which thus have little fuel autonomy)
launched with a GEO mission.
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6.7 Historical Note: First Determinations

of the Harmonics Jn

It was by monitoring the first satellites (mainly visually, using dedicated
telescopes) that astronomers were able to calculate the first coefficients of the
zonal spherical harmonics, having first determined the exact orbits. Let us give
a brief account of these developments. US astronomers used the Baker–Nun
camera, named after its two inventors (see Fig. 6.5).

6.7.1 First Satellite Determination of J2

The “beep-beep” sound emitted by Sputnik-1 came as a surprise to the
world. Before the scientific community could react, 1957α (the name at-
tributed to the satellite with the classification of the day, abandoned since
1 January 1963) had already burnt up in the Earth’s atmosphere.

Measurements only began with Sputnik-2 (1957β). With 33 visual obser-
vations made in the skies of Czechoslovakia between 7 December 1957 and 21
March 1958, the astronomer E. Buchar succeeded in determining the motion
of the ascending node of the orbit:

Ω̇ = −2.9007± 0.0046 degrees per day .

The metric elements of the satellite were determined to be as follows:

a/R = 1.1127 , e = 0.0731 , i = 65.29◦ .

The period and mean motion are also known:

T = 99.2min , n = 1.0556× 10−3 rad s−1 .

Fig. 6.5 :Baker–Nunn satellite tracking cam-

era telescope. Installation at the Smithso-

nian Astrophysical Observatory (SAO) at the

Woomera base in Australia in January 1958.

Credit: NASA, Woomera Space Center.
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Using (6.73), we deduce the value of J2 to be

J2 = 2.9007/2675.0 = 1.0844× 10−3 .

The flattening f can be obtained from (3.33), the first of Clairaut’s equations:

f =
3J2 +ma

2
, (6.132)

where ma is defined by (3.34) and has known value. Buchar thus obtained

1

f
= 297.7± 0.3 .

Shortly afterwards, refining the results from Sputnik-2, D. King-Hele obtained

1

f
= 298.1± 0.1 .

Estimates of 1/f have barely changed since then, whereas they varied between
293 and 300 prior to 1958 (see Table 2.1).

6.7.2 First Satellite Determination of J3

While J2 is determined from the secular variation of Ω, the coefficient
J3 is related to the long-period variation of e. The first determination of
J3 was made by J.A. O’Keefe from observations of the orbit of Vanguard-1
(1958β2). The eccentricity e varied sinusoidally with a period of about 80
days, corresponding to the cycle of the apsidal line, with duration 2π/ω̇ and
amplitude Δe given by

Δe = (42± 3)× 10−5 .

At the beginning of the mission, the orbital characteristics were

hp = 654 km , ha = 3, 969 km , a = 8, 681 km , e = 0.1090 ,

i = 34.25◦ , T = 134.2min .

The motion of the perigee is found from ω̇ = 4.40◦ per day, implying a cycle
of 82 days.

The amplitude of the variation in e is |ΔLP3e| when we insert ω = 90◦

in (6.94). With ΔLP3
e = Δe = 42× 10−5, we obtain

J3 = −2J2

( a
R

) 1

sin i
ΔLP3

e = −4.8424J2ΔLP3
e ≈ −2.2× 10−6 .

This is close to J3 = −2.54× 10−6, the value given in Table 3.2.
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6.7.3 First Determinations of Jn up to J14

In 1963, Y. Kozai used observations of the nine US satellites20 launched
between 1959 and 1962 to determine the first 14 coefficients of the zonal har-
monics Jn. To do this, he neglected short-period variations and assumed that
all the long-period variations were modulated by the motion of the perigee,
i.e., that they varied as ω.

Regarding the metric elements, (6.76) implies

e = e0 +Ae sinω , i = i0 +Ai sinω , (6.133)

where Ae and Ai are coefficients depending solely on the metric elements a,
e, i and the zonal harmonics Jn, which may therefore be treated as constant
over several revolutions. Restricting to order 3, Ae sinω and Ai sinω are given
by (6.94) and (6.93), respectively.

Regarding the angle elements, starting from (6.77), he added the periodic
variation to the secular variation to obtain

Ω = Ω0 + Ω̇t+AΩ cosω , (6.134)

ω = ω0 + Ω̇t+Aω cosω . (6.135)

Given the theoretical dependence of the coefficients Ae, Ai, AΩ, and Aω on
the first 14 Jn, these observations provided dozens of equations that could be
solved numerically.

6.8 Historical Note: Success in Calculating

Perturbations

Two astronomers, Clairaut in the eighteenth century and Le Verrier in the
nineteenth, were particularly successful in calculating perturbations, while
Einstein solved the “mystery” of the advance of the perihelion of the planet
Mercury in the twentieth century.

6.8.1 The Delayed Return of Halley’s Comet

In 1705, in Cometographia, the astronomer Halley21 described the orbits
of 24 comets. Applying the new theory by Newton, he calculated their orbital

20These satellites had orbits with a wide range of inclinations, from 28◦ to 95◦. They
were, in chronological order: 1959α (Vanguard-2), 1959η (Vanguard-3), 1960ι2 (rocket which
launched Echo-1), 1961υ (Explorer-12), 1961o (Transit-4A), 1961αδ1 (Midas-4), 1962αε
(Discoverer-34), 1962βμ (ANNA-1B), 1962βυ (Relay-1). All these orbits were determined
by tracking them with Baker–Nunn cameras.

21Edmund Halley (1656–1742) was a British astronomer. Although he is remembered for
his discovery of the periodicity of a comet, Halley was an all-round scientist. He visited Saint
Helena to draw up the first map of the southern skies. During his travels on the ocean, he



216 Chapter 6. Satellite in Real (Perturbed) Orbit

elements and asserted that several comets with the same elements were in fact
one and the same comet, having a period of 76 years. After a passage in 1682,
he predicted a further passage in 1758, and the comet was later named after
him.

As the time of the predicted return drew close, the whole astronomi-
cal community was on tenterhooks. In 1757, the astronomer mathematician
Clairaut suggested that Jupiter might significantly perturb the comet. He
wanted to calculate the effects22 before the date announced, and hence ac-
quired the services of two young astronomers, Jérôme Lalande23 and Nicole-
Reine Lepaute, recognised for their calculational skills. After exhausting work
“against the clock”, they concluded that, as a result of Jupiter and Sat-
urn’s gravitational perturbations, the comet would not reach its perihelion
in November 1758, as the now deceased Halley had predicted, but rather in
April 1759 (with an error of 1 month). In the end, the comet returned to
perigee on 13 March 1759.

These calculations, which Clairaut presented in Théorie du mouvement des
comètes (1760), convincingly confirmed Newton’s theory. It should be noted
that Lagrange only published his theory of perturbations some 28 years later.

6.8.2 The Discovery of Neptune by Le Verrier

The most spectacular application of the theory of perturbations was the
discovery of a new planet, Neptune, by Le Verrier.24 The planet Uranus had
been discovered in 1781 by Herschel. In 1844, Le Verrier studied its orbit
(over an arc of 270◦: it had a period of 84 years, and had been discovered

produced a detailed chart of the magnetic declination, measured the period of a pendulum
at different latitudes, investigated ocean currents, and studied the distribution of winds to
produce a forerunner of the weather chart. Halley also translated several books of geometry
by Apollonius of Perga from Arabic, the original Greek versions having been lost.

22“Even if Clairaut had wished to follow Halley’s example in assuming that one might
neglect the effects of Jupiter on the comet during the years when these bodies were widely
removed from one another, it did not take him long to understand that such a position
was untenable. Indeed, the first calculations showed that, even when the comet is far from
Jupiter, its orbit is nevertheless disturbed, especially by the action of Jupiter on the Sun;
for by displacing the Sun by a small amount, Jupiter gives the orbit of the planet a different
focus. Clairaut determined all these effects with great elegance.” Pierre Brunet, La vie et
l’œuvre de Clairaut, 1952.

23Joseph Jérôme Lefrançais de Lalande, or Jérôme Lalande for short (1732–1807), was a
French astronomer. He was spotted very early on for the accuracy of his observations, e.g.,
his measurement of the parallax of the Moon (1751), and the parallax of the Sun during the
transit of Venus in 1761 and 1769. He also studied the rotation of the Sun and the shape of
the Earth. He was famous in his own time, perhaps even the first high profile astronomer,
noted for his skills as a teacher and populariser of science. And he was also an outspoken
atheist, declaring: “We know nothing. We believe in miracles and witchcraft, we are afraid
of thunder and spiders, and all we think to do is believe in God.”

24Urbain Le Verrier (1811–1877) was a French astronomer who remains famous for his
mathematical discovery of the planet Neptune. He subsequently devoted himself to the the-
ory of the Solar System and the calculation of ephemerides. See also the note on Delaunay.
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only 63 years earlier25) and detected a slight disagreement in the calculations.
He deduced that the perturbation due to a more distant and as yet unknown
planet must be added to the effects produced by the known planets.

He thus set out to do the perturbation calculations under the following
hypotheses concerning the “disturbing” planet:

• It moves in the plane of the ecliptic.
• The semi-major axis of its orbit is given by the so-called Titius–Bode law

(with n = 7, we have a = 38.8 a.u.).

The other orbital elements and the mass were treated as unknown quanti-
ties. Their values were obtained by solving a system of 33 equations, each
corresponding to one observation.

In August 1846, he announced that he had located the planet, specify-
ing a = 36.15 a.u., e = 0.108, and distance from the Sun = 33.06 a.u. (for
the Titius–Bode theory and the orbital elements of Neptune, see Chap. 16).
He provided accurate coordinates and, on 23 September 1846, the German
astronomer Galle claimed to have identified a new planet at precisely the
point indicated, using his telescope at the Berlin observatory.26 It was named
Neptune soon afterwards.

Le Verrier’s success27 drew astronomy, and science in general, into the
limelight. Arago recorded these events with the famous remark: “M. Le Ver-
rier found a new planet at the nib of his pen.” But even Le Verrier was unable
to explain the advance of the perihelion of Mercury with the theory of per-
turbations, as we shall see below.

6.8.3 Advance of the Perihelion of Mercury

In 1859, Le Verrier studied the effects of perturbations on the planet Mer-
cury using observations made since 1697 (mainly 397 meridian observations
made at the Paris observatory between 1801 and 1842). Mercury’s orbit is

On 14 November 1854, a hurricane destroyed part of the French and allied navies in
the Crimean war. Le Verrier realised that this storm had crossed Europe from west to east
and set up the first network of weather stations in 1855.

25In fact, Le Verrier also used observations made earlier, for astronomers had realised
that the planet Uranus had already been spotted in the sky as early as 1690, and taken
for a star. For his calculations, he used 7 observations made prior to 1781 and 26 made
afterwards.

26Tisserand devoted the whole of Chap. XXIII in Vol. 1 of his Mécanique céleste to the
discovery of Neptune by Le Verrier, ending with the declaration: “M. Galle observed the
planet at just 52′ from the assigned position.” Note that, on 2 July 2011, Neptune had
completed a full revolution, i.e., 60,182 days after 23 September 1846, whence the planet
was then located at precisely the position where Galle had first observed it.

27The astronomer J.C. Adams claimed to have obtained the same results simultaneously.
However, this was never clearly confirmed. The whole episode seems to be yet another story
of rivalry between British and French scientists.
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Planet Perturbation

Venus 277.8
Earth 90.0
Mars 2.5
Jupiter 153.6
Saturn 7.3
Other 0.2

Total 531.4

Category Perturbation

Planets 531.4
Equinoxes 5,025.6

Total 5,557.0
Observed 5,599.7

Difference 42.7

Table 6.5 :Causes of the precession of the perihelion of Mercury and values of the

perturbations in seconds of arc per century.

highly eccentric, with e = 0.2056. Newtonian mechanics can predict the mo-
tion of its perihelion (apsidal precession) due to the perturbing effects of the
other planets. By taking into account all these planetary perturbations, Le
Verrier arrived at a value of 531′′ per century. But measurements gave 574′′,
leaving a discrepancy of 43′′. The US astronomer Simon Newcomb obtained
the same results in 1882.

To fully appreciate the accuracy of the measurements at the time (see
Table 6.5), it is instructive to compare these 43′′ with the precession of the
equinoxes of the Earth, which is some 5,026′′ per tropical century (for the
value measured from Earth is the sum of all these effects).

In 1889, F. Tisserand ended his monumental work Traité de Mécanique
Céleste with the statement that the advance of the perihelion of Mercury was
the greatest enigma of the day. He refuted all other explanations that had
been put forward:

• Le Verrier had tried to explain the discrepancy by the presence of a hypo-
thetical planet between Mercury and the Sun. A name had already been
found for it: Vulcan.

• Newcomb thought the disagreement might be due to the non-sphericity of
the Sun.

• Hall had even called the laws of gravity into question, suggesting an at-
tractive force going rather as r−2.000000151.

One sees the extent to which this unexplained discrepancy was an enigma to
the most brilliant astronomers. F. Tisserand concludes with the words:

One might think that the attractions between celestial bodies could only be trans-
mitted over distance through the mediation of some kind of medium. But as yet we
know nothing of these modes of transmission.
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It was Einstein28 who, in 1916, came up with the explanation, applying his
new theory of general relativity. Expressing the equation of motion in this
context (the geodesic equation for planetary trajectories, as determined by
the Schwarzschild metric), the classical equation (4.24) is replaced by

d2u

dθ2
+ u =

μ

C2
+

3μ

c2
u2 , (6.136)

where C is the angular momentum per unit mass and c is the speed of light.
Equation (6.136) is a differential equation for the Binet variable u, but it has
no analytic solution. However, we know that the desired solution for u is very
close to u0, the solution of (4.24). We may thus replace u by u0 in the extra
term in (6.136). Considering small values for the eccentricity of the orbit, we
write

u =
μ

C2

[
1 + e cos(θ − θ0)

]
, u2 ≈ μ2

C4

[
1 + 2e cos(θ − θ0)

]
,

whence (6.136) becomes

d2u

dθ2
+ u =

μ

C2

{
1 + ε

[
1 + 2e cos(θ − θ0)

]}
, (6.137)

with the dimensionless number ε defined by

ε = 3
( μ

cC

)2
, ε � 1 . (6.138)

We seek u in the form

u =
μ

C2

{
1 + e cos

[
(1− ε)θ − θ0

]}
, (6.139)

and then check that it does indeed solve (6.137). The desired trajectory is
thus given by

r(θ) =
a(1− e2)

1 + e cos
[
(1 − ε)θ − θ0

] , (6.140)

where r = 1/u. This should be compared with (4.42).

28Albert Einstein (1879–1955) was a German (then Swiss, then American) physicist. He
entered upon the academic scene with brilliance in 1905, his annus mirabilis, with three fun-
damental, and indeed revolutionary, publications: Brownian motion (the size of molecules),
the photoelectric effect (the particle nature of light), and the special theory of relativ-
ity (modification of Newtonian mechanics and the equivalence of matter and energy). The
three papers appeared in Annalen der Physik, which was edited at the time by Max Planck.
From 1915, he developed his theory of gravity and the general theory of relativity. The field
equations are differential equations which describe the behaviour of the gravitational field,
represented by the spacetime metric, in terms of the distribution of matter and energy.
Euclidean space must be replaced by a Riemannian space that is “curved” by the masses
located within it. Einstein’s theories form the basis of modern physics.
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Two successive passages at perihelion determine the polar angles θ1 and
θ2. We thus have

Δθ = θ2 − θ1 =
2π

1− ε
≈ 2π(1 + ε) = 2πε [2π] .

With (4.27), we have ε = 3μ/c2p and hence,

Δθ =
6πμ

a(1− e2)c2
, (6.141)

which is denoted by Δ1ω in (6.12).
For Mercury,29 we obtain

Δ1ω = 5.0344× 10−7 rad .

Since Mercury completes 414.2 revolutions per century, we have finally

Δω = 414.2Δ1ω = 2.0853× 10−7 rad = 43′′ .

Current measurements give the discrepancy as

Δω = 42.980± 0.002 arcsec .

6.9 Astronomical Note: Perturbations

and the Solar System

6.9.1 Stability of the Solar System

Invariability of the Semi-Major Axes of the Planetary Orbits

Applying the newly established universal law of gravitation in 1687, New-
ton observed that each planet whose orbit was determined by the Sun’s attrac-
tion would necessarily attract every other planet, even though these attrac-
tions might be very weak. He noted that, with so many perturbations around,
irregularities will be “apt to increase, till this System wants a Reformation”.
He clearly felt that some divine intervention would be required from time to
time to put things straight once more.

With the help of observations made by the Chaldeans in the second century
bc and transmitted by Ptolemy, Halley calculated that Jupiter was moving
closer to the Sun, while Saturn was moving away. In 1752, Euler, and in 1774,

29The advance of the perihelion also occurs for other planets, but it is all the weaker
as the planet is more remote from the Sun (whence it moves less quickly in a Copernican
frame). For example, we observe 8′′.63 per century for Venus, 3′′.84 for the Earth, and 1′′.35
for Mars. For the Moon, in its motion relative to the Earth, it is 2′′ per century. All these
values can be calculated using (6.12).
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Lagrange also tackled this problem. Their results were contradictory, and in
fact both their calculations were erroneous, but they nevertheless marked the
beginnings of perturbative investigations.

Laplace30 returned to these calculations in 1776. He showed that the semi-
major axis of each orbit was constant: a has no secular term, at least not in the
first order expansion of the perturbations. He deduced that the Solar System
would be stable for a million years. He calculated that the quasi-resonance 5:2
between the mean motions of Jupiter and Saturn would cause an oscillation
of the longitude of Saturn by 46′50′′, with a period of 900 years, and thus
recovered the values given by Halley. For Laplace, this stability of the major
axes was a definitive confirmation of Newton’s laws (Fig. 6.6).

In 1890, Poisson showed that a does not have a second order secular term
either.

Stability of the Solar System

In 1856, Le Verrier considered that, if Laplace’s results were to remain
valid over very long times, it would be necessary to consider higher order
expansions. However, Poincaré31 understood that the method suggested by
Le Verrier was not correct. In his thesis presented in 1879, he showed that
the terms of the series expansions used in the perturbative method do not

30Pierre Simon de Laplace (1749–1827) was a French mathematician, astronomer, and
physicist. Noting that all the observable bodies in the Solar System rotate in the same
direction (he included the 29 revolutions or rotations of planets and moons, and even the
rotation of the Sun itself), and taking the cue from Herschel’s observations of the nebulas,
he devised a first cosmogonic system in Exposition du système du Monde (first edition in
1796 and fifth in 1824). According to this view, the Solar System and all other objects
in the universe were produced by the condensation of a primordial nebula, the preferred
hypothesis even today. During cooling, the rotation of this nebula would have generated
a succession of rings in the same plane (the ecliptic), and these would have given birth to
the planets and their moons, with the central nucleus becoming the Sun. In his Mécanique
céleste (first edition in 1798 and sixth in 1825), he revisited all the theories elaborated since
Newton. Victor Hugo had this to say (V. Hugo, Choses vues, 1887):

M. Arago had a favourite anecdote. When Laplace published his Mécanique céleste,
he would say, the Emperor Napoleon summoned him. The emperor was furious.
— What, he cried when he saw Laplace, you make a whole system of the world, you
list the laws of all creation, and yet in your book you speak not once of the existence
of God!
— Sire, replied Laplace, I had no need of that hypothesis.

In the two centuries from Kepler to Laplace, the relationship between astronomers and
the divine order had changed considerably. Laplace also established fundamental results
in mathematics (harmonic functions, differential equations, probabilities) and in physics
(electromagnetism, thermodynamics).

31Henri Poincaré (1854–1912) was a French mathematician. He studied the changes of
variables that preserve the canonical form of the equations of mechanics (with the Jacobi
formulation). He thus arrived at quite novel results in Sur le problème à trois corps et les
équations de la dynamique (1889). He further developed this work in Les méthodes nouvelles
de la mécanique céleste (1899).
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Fig. 6.6 :Laplace’s two fundamental works on astronomy.

converge over the time lapse under consideration. For a dynamical system
involving three or more bodies, he showed that the solution depends strongly
on the initial conditions—in modern terms it is chaotic (chaos theory). Then
around 1960, the problem was investigated in the light of the Kolmogorov–
Arnold–Moser (KAM) theory.

Since 1990, J. Laskar at the Paris observatory has been using methods
adapted to the increasing performance of computer calculations. For his nu-
merical simulations, he considers initial conditions32 that differ very slightly
from one another. In his last report (2010), he showed that in 99% of cases the
Solar System will remain stable for 5 billion years (5Gyr), i.e., without colli-
sions. In 1% of cases, there is some form of instability: through its increased
eccentricity, Mercury collides with the Sun or Venus and thereby destabilises
the orbits of all the inner planets (as far out as Mars).

The Solar System had a major period of instability just after its formation,
during about the first billion years, no doubt due to the migrations of the
giant planets. Then, once the eight major planets were in place, it became
practically stable.

32Initial conditions refer to the positions of the bodies making up the Solar System at the
present time. J. Laskar has considered 2,500 very similar sets of conditions. He has shown
that the error in the position is multiplied by a factor of 10 every 10 million years (10Myr).
For example, an error of 15m becomes an uncertainty of 1,500 km after 50Myr and 1 a.u.
(astronomical unit) after 100Myr.
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6.9.2 Precession of the Equinoxes

A simplified model of the terrestrial ellipsoid is given by a sphere with an
equatorial bulge. The mass of this bulge, uniformly distributed around the
equator, is such that the moments of inertia Ix with respect to an equatorial
diameter and Iz with respect to the polar axis are the same as for the ellipsoid.
This is a standard method for calculating the precession of the equinoxes.

If the Earth were a sphere composed of homogeneous concentric layers, the
gravitational effect exerted by the bodies of the Solar System, and in particular
the Moon and Sun, would reduce to a force through its center. The Earth’s
motion would then be a uniform motion around a fixed axis. The equatorial
plane would be fixed relative to the plane of the ecliptic. The straight line at
the intersection of these two planes, the line of nodes (called here the line of
the equinoxes), would thus be fixed with respect to a Copernican frame.

Let us consider the bulging Earth model. As the precessional motion here is
very slow compared with the Moon’s revolutions, or the apparent revolutions
of the Sun around the Earth, we may replace the Moon and the Sun by an
equivalent mass distribution along their orbits, considered as circular, in the
plane of the ecliptic (which is an approximation for the Moon). This is Gauss’
method.33 It can be shown (using Lagrange and Poisson’s theory of motion
with the gyroscopic approximation) that the moment of the gravitational
forces exerted by the mass of the Sun and Moon on this equatorial bulge
causes a motion of the Earth’s axis of rotation, whilst the angle between the
equatorial and ecliptic planes remains fixed. This angle ε is the obliquity. The
line of nodes moves in the retrograde direction (opposite to the direction of
the Earth’s rotation). This motion, known as the precession of the equinoxes,
is very slow on the human time scale: one round trip every 25,800 year, or
50′′.29 per year, with the Moon contributing 34′′ and the Sun 16′′. The angular
momentum and hence the rate of precession is proportional to the difference
Ix − Iz between the moments of inertia, related to the J2 term. The rate of
precession is also proportional to cos ε.

The precession of the equinoxes has been known since ancient times, thanks
to Hipparchos.34

33In 1818, Gauss published a monograph on the secular perturbations of a planet’s motion
when it is affected by another planet. The method consists in replacing the perturbing body
by a torus, distributing the matter of the body along its trajectory.

34Hipparchos of Nicaea (second century bc), � -.������	� ��, was a Greek astronomer.
By his observations made in Rhodes, he was the first astronomer to make truly accurate
measurements of the positions of the stars, specifying their positions on the celestial sphere
using meridians and parallels. He introduced into Greece the Babylonian idea of dividing
the circle into degrees, minutes, and seconds. He may be considered as the inventor of
trigonometry. He invented the stereographic projection. He discovered the precession of
the equinoxes by comparing his measurements of stellar positions with those made by
Timocharis a century and a half earlier, and also with those made much earlier by the
Babylonians. The works of Hipparchos did not reach us directly, but were mentioned by the
geographer Strabo and the astronomer Ptolemy.
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Precession of the Line of Nodes of a Satellite

With the same type of argument, one can calculate approximately the
precessional motion of the circular orbit of a satellite. Consider a satellite in
circular orbit around the Earth with its equatorial bulge. We distribute the
mass of the satellite uniformly around its trajectory (the rate of precession
is roughly one ten thousandth of the orbital angular speed of the satellite)
and calculate the moment of the gravitational forces between these two rings.
We then show that the orbit undergoes a precessional motion in which the
angle between the orbital plane of the satellite and the equatorial plane of
the Earth (the inclination i of the satellite) remains constant. We calculate
the moment of the gravitational forces, then the rate of precession Ω̇, which
is proportional to Ix − Iz , hence to J2 and cos i.

6.9.3 The Earth as a Satellite

Orbital Elements of the Earth

One can use the analogy between an artificial satellite in orbit around the
Earth and the Earth viewed as a satellite of the Sun. But let us first note a
basic difference between the two problems:

• The artificial satellite is considered as a point with respect to the Earth and
its Keplerian motion is mainly perturbed by the flattening of the attracting
body (via the J2 term of the Earth).

• As a satellite of the Sun, the Earth cannot be treated as a point, but must
be considered as a rotating solid, whose polar axis of rotation defines the
equatorial plane, and whose non-spherical nature (the J2 term of the Earth)
induces perturbations. The Sun is spherical.35 To these perturbations, one
must add those due to the Moon.

The Keplerian orbital elements of the Earth are as follows:

• a is the semi-major axis of the Earth’s orbit, aS = 1 astronomical unit.
• e is the eccentricity of the orbit, e = 0.0167.
• i is represented here by the obliquity ε, the angle between the plane of the

ecliptic (orbital plane of the Earth) and the equatorial plane of the Earth.
• Ω is the angle between the line of nodes (the line of the equinoxes, direction

of the vernal point) and an arbitrary origin, fixed relative to the stars.
• ω is the angle between the direction of the vernal point and the perihelion

(at the present time, the Earth passes through the vernal point on 21 March
and the perihelion on 3 January, dates of the Gregorian calendar, accurate
to within 1 day).

• The effect on M − nt is not considered here.

35Current theories give the Sun’s J2 value at about 2× 10−7.
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Variations of the Orbital Elements

Perturbations affect these elements as shown schematically in Fig. 6.4.
Short-period variations are neglected:

Metric Elements. For these elements, there is no secular variation:

• Invariability of the semi-major axis a (stability of the major axes, studied
by Laplace, Poisson, Poincaré, as discussed above).

• Long-period variation for e and ε. e varies between 0.005 and 0.050, with
a period of 1,00,000 year and ε varies between 22◦ and 25◦, with a period
of 40,000 year.

Angle Elements. For these elements, there are secular variations for Ω and
ω. Ω has a retrograde cycle36 of 25,800 year, or Ω̇ = −50′′.29 per year,
called precession of the equinoxes. ω has a prograde cycle of 110,000 years, or
ω̇ = 11′′.06 per year.

These variations are shown schematically in Fig. 6.7 (upper) for each orbital
element, noting the value of the period or cycle as appropriate. Time is shown
on the horizontal axis in units of kiloyears (1 kyr = 103 year). The zero time
is chosen arbitrarily at the moment when each element has its average value.

Milankovitch Paleoclimatology Theory

The Milankovitch theory considers the combination of these periods (100
and 40 kyr) and cycles (26 and 110 kyr) in order to explain the succession of
hot and cold periods (ice ages) of the Earth’s past climate. Taken up in 1980
by A. Berger, this theory obtained a striking experimental confirmation with
the analysis of air bubbles trapped in the Greenland and Antarctic ice over a
period of 8,00,000 year in samples taken to a depth of 3,260m.

In the Milankovitch theory, the main variable is the climate parameter P
defined by

P = e sinω0 , (6.142)

where ω0 is the position of the perigee relative to the spring equinox (ascending
node or vernal point):

ω0 = ω −Ω . (6.143)

Note that the two angles ω and Ω are defined in different planes making an
angle i = ε (the obliquity) to one another. Their difference ω0, called the

36A cycle is the length of time at the end of which the relevant point on the orbit (the
vernal point or the perigee) returns to the same position relative to a Copernican frame.
The cycle relates to a secular variation. For long- or short-period variations, we speak of
the period.
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Fig. 6.7 :Milankovitch paleoclimatology theory. Upper: Highly simplified diagram

showing the variations of the Earth’s orbital elements over time t (in kiloyears):

a (no variation), e and i (periodic variation), Ω and ω (secular variation). P is

the climate parameter. Each element is taken to have its average value at time 0.

Lower: Values obtained by accurate astronomical calculations. Variations of the met-

ric elements e (eccentricity) and i (inclination), variation of P (climate parameter),

and combination of the three variations. Horizontal axis: Time before present (kyr).

Credit: T.J. Crowley and G.R. North.
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climatic precession, is the significant element when considering the behaviour
of the climate.

The rate of climatic precession ω̇0 is thus given by the algebraic difference
between the two rates of secular variation Ω̇ and ω̇ :

ω̇0 = ω̇ − Ω̇ = 11′′.06 + 50′′.29 = 1′1′′.35 per year , (6.144)

which corresponds to a cycle of 21 kyr. Figure 6.7 (lower) shows the accurately
calculated variations in e, i, and the parameter P .

6.10 Appendix: Astronomical Constants

6.10.1 Systems of Units

International System of Units (SI)

The international system of units, known as SI units, is built upon the
following base units for seven physical quantities: length (meter, m), mass
(kilogram, kg), time (second, s), electric current (ampere, A), thermodynamic
temperature (kelvin, K), quantity of matter (mole, mol), and luminous inten-
sity (candela, cd). Here we list the definition and year of application of the
unit for each of the first three quantities (the only ones relevant to celestial
mechanics):

• The unit of length, the meter, is the distance travelled by light in vacuum37

during a time lapse of 1/299,792,458s (1983).
• The unit of mass, the kilogram, is the mass of the International Prototype

Kilogram, made from a platinum–iridium alloy and stored at the Interna-
tional Bureau of Weights and Measures (Bureau International des Poids et
Mesures BIPM) in Paris (1889, 1901).

• The unit of time, the second, is defined as the duration of 9,192,631,770
periods of the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the caesium 133 atom (1967).

Astronomical System of Units

The base units of the astronomical system, as recommended by the Inter-
national Astronomical Union (IAU), are as follows:

• The unit of length is the astronomical unit (a.u.), a conventional unit of
length equal to exactly 149,597,870,700m. This value has been chosen to
be consistent with that in the IAU System of astronomical constants in use
since 2009. This definition has to be used with all time scales such as TCB,

37Time can now be measured much more accurately than length. For this reason, it was
decided to define the unit of length on the basis of a time measurement. The speed of light
is thus given now as a definite value, with zero error by definition.
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TDB, TCG, TT, etc. The unique symbol to be used for the astronomical
unit is a.u. (IAU 2012 resolution B2).38

• The unit of mass is the mass of the Sun MS.
• The unit of time is the day (d).

The correspondence between these and SI units is as follows:

1 a.u. = 1.495978707× 1011 m ,

1 MS = 1.9889× 1030 kg ,

1 d = 86,400 s .

Auxiliary time units are the Julian year, equal to 365.25 days, and the Julian
century, equal to 36,525 days. The length of the year or century is not related
to the Gregorian calendar. The length of the day is not related to the rotation
of the Earth, which is not strictly uniform.

6.10.2 Astronomical Constants

Table 6.6 lists the IAU 2009 constants, including changes to the astronom-
ical unit made in IAU 2012. We have only mentioned constants used in this
book.

Note. For some of these constants relating to geodesy, such as Re, J2, or μ,
there is a very slight difference between these values and the ones used in the
geopotential models.

6.10.3 Time Scales

Definitions of Time Scales

The following is taken from the Standards of Fundamental Astronomy
(SOFA) document on time scales, published by the IAU. Several time scales
play an important role in astronomy39:

• TAI (International Atomic Time): the official timekeeping standard.
• UTC (Coordinated Universal Time): the basis of civil time.
• UT1 (Universal Time): based on Earth rotation.
• TT (Terrestrial Time): used for Solar System ephemeris look-up.

38The old definition of the astronomical unit was that length for which the Gaussian
gravitational constant k takes the value of 0.017,202,098,95 when the units of measurements
are the astronomical unit of length, mass, and time. The dimensions of k2 are those of the
constant of gravitation G, i.e., L3M−1T−2. Equivalently, it is the radius of an unperturbed
circular Newtonian orbit about the Sun of a particle having infinitesimal mass, moving with
an angular frequency of 0.017,202,098,95 radians per day.

39For the notation and abbreviations, see the appendix in Sect. 3.6.
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Quantity Value Uncertainty Unit

Natural defining constants

Speed of light (c) 2.99792458 × 108 Defined ms−1

Auxiliary defining constants

Astronomical unit (a.u.) 149,597,870,700 Defined m

1− dTT/dTCG (LG) 6.969290134 × 10−10 Defined –
1− dTDB/dTCB (LB) 1.550519768 × 10−8 Defined –
ERA at J2000.0 (ϑ0) 0.7790572732640 Defined Rev
Rate of advance ERA 1.00273781191135448 Defined Revd−1

Natural measurable constants

Cst. of gravitation (G) 6.67428 × 10−11 6.7× 10−15 m3kg−1s−2

Body constants

Helioc. grav. cst. (GMS)

• [TCB-compatible] 1.32712442099 × 1020 1.0× 1010 m3s−2

• [TDB-compatible] 1.32712440041 × 1020 1.0× 1010 m3s−2

E. equator. radius (Re)
• [TT-compatible] 6,378,136.6 0.1 m

Dynamical form (J2) 1.0826359 × 10−3 1× 10−10 −
Geoc. grav. cst. (GM)

• [TT-compatible] 3.986004415 × 1014 8× 105 m3s−2

Potential of the geoid 6.26368560 × 107 5× 10−1 m2s−2

E. ang. velocity (�)
• [TT-compatible] 7.292115 × 10−5 − rad s−1

Initial values

Obliquity of the ecliptic 8.4381406 × 104 1× 10−3 ′′

at J2000.0 (εJ2000) = 23◦26′21′′.406 0.001′′ −

Table 6.6 : IAU 2009 system of astronomical constants. The table lists the name of

the quantity, the value in SI units (unless stated otherwise), and the uncertainty,

which is given in the same units as the value. Abbreviations: ERA: Earth rota-

tion angle; helioc., geoc. grav. cst.: heliocentric, geocentric gravitational constant;

�: nominal mean angular velocity of Earth. Note: for the rate of advance of ERA,

dϑ/dUT1, the unit is revolution per UT1-day.

• TCG (Geocentric Coordinate Time): used for calculations centered on the
Earth in space.

• TCB (Barycentric Coordinate Time): used for calculations beyond Earth
orbit.

• TDB (Barycentric Dynamical Time): a scaled form of TCB that keeps in
step with TT on average.
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Atomic Time: TAI. TAI is a laboratory time scale, independent of astro-
nomical phenomena. It is realized through a changing population of about 200
high-precision atomic clocks.

Solar Time: UT1 and UTC. UT1 is defined through its relationship with
the Earth rotation angle (the modern equivalent of mean solar time). Because
the Earth’s rotation rate is slightly irregular, for geophysical reasons, and is
gradually decreasing, the UT1 second is not precisely matched to the SI sec-
ond. In fundamental physics, the TAI second is used, but to point a telescope,
UT1 is used. UTC is a compromise between the demands of precise timekeep-
ing and the desire to maintain the current relationship between civil time and
daylight.

The origin of TAI is taken equal to UT1 on 1 January 1958. As a clock, the
Earth has got behind the accumulated atomic time by some 35 s (as of 2013).
When TAI was adopted, it was decided that the unit of time of the UTC
scale would be the TAI second, but that UTC should not be allowed to drift
away indefinitely from the time determined by the Earth’s rotation. It was
thus decided that, while running with the TAI second, UTC should be shifted
by 1 s whenever necessary, in such a way that its difference from UT1 should
never exceed 0.9 s:

TAI−UTC = n seconds , n integer , (6.145)

UT1−UTC ≤ 0.9 s .

Dynamical Time Scales: TT, TCG, TCB, and TDB. Terrestrial time
(TT) is the time scale used for geocentric ephemerides. Its unit of time is the
SI second on the geoid, and TT can thus be deduced from TAI by a simple
fixed time shift:

TT = TAI + 32.184 s . (6.146)

Relativity theory and today’s observational accuracy require a distinction to
be made between the dynamical time scales: coordinate time scale (of 4D
spacetime) and proper time scale.

Geocentric coordinate time (TCG), related to the center of the Earth,
differs from terrestrial time (TT) by a secular term:

TCG− TT = LG(J − 2443144.5)× 86,400 s , (6.147)

where J is the Julian day (JD). 1 January 1977, 0 h, corresponds to JD =
2, 443, 144.5. The coefficient LG is defined in Table 6.6. The value of this term,
which represents the influence of the geopotential and the daily rotation of
the Earth on the flow of time, is evaluated in Chap. 14 (see the appendix in
Sect. 14.11). This secular variation leads to a drift of 2.2 s per century.

The barycentric time scales TCB and TDB are not relevant to this book.
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Historical Note on Time Scales

Prior to 1960, the definition of the second was based on the Earth’s rota-
tion: one mean solar day was equal to 86,400 s. The time scale was Universal
Time (UT). Between 1960 and 1967, to get around the fact that there were
irregularities in the Earth’s rotation, the orbital motion of the Earth was cho-
sen to define the second, which thus became a fraction of the tropical year
1900. This time scale was Ephemeris Time (ET).

The year 1967 was historically important in this respect, because it was
at this point that the definition of time left the field of astronomy to be taken
over by the world of physics. The second was defined as the period of a certain
type of radiation emitted by the caesium 133 atom.

6.11 Appendix: Gravitational Sphere

of Influence

6.11.1 Attraction of the Sun and Earth

It is easy to understand why a low-orbiting satellite should feel only the
Earth’s attraction, since the Sun’s attraction is extremely weak. But one must
ask how far out one may continue to ignore the influence of this third body.
In the following, we shall define the radius of the sphere beyond which we
may consider that a satellite of the Earth escapes to become a satellite of the
Sun. The idea of the sphere of gravitational influence was developed by the
astronomer F. Tisserand.40

Consider three points A (Sun), B (Earth), C (satellite). The gravitational
constant is μS for the Sun and μ for the Earth. Consider the special case when
C lies between A and B, with the three bodies forming a straight line. We set

r = CB , satellite–Earth distance ,

aS = AB , Sun–Earth distance ,

aS − r = CA , satellite–Sun distance .

Consider now the reduced (dimensionless) variables k and x defined by

k =
μS

μ
, x =

r

aS
. (6.148)

Note that k � 1 and x � 1. For the values of the astronomical quantities,
see the appendix in Sect. 6.10 and Table 6.6.

40Félix François Tisserand (1845–1896) was a French astronomer. He continued Delau-
nay’s work on the motion of the Moon and contributed to the Catalogue photographique
de la carte du ciel. He then published his Traité de mécanique céleste, in four volumes
(1889–1896), in the spirit of Laplace’s work. See also the historical note on the advance of
the perihelion of Mercury.
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Satellite Close to Earth

The main acceleration here is the central acceleration γCCC, which we shall
write γT0 , due to the Earth (Keplerian motion):

γT0 =
μ

r2
. (6.149)

The perturbing acceleration for the satellite is the differential attraction γCS,
here denoted by γT1 , due to the Sun:

γT1 =
μS

(aS − r)2
− μS

a2S
. (6.150)

In the expression for γT1 , the first term refers to the satellite and the second
to the Earth (since the Sun acts on the satellite and on the Earth). Since r is
small compared with aS, we obtain

γT1 ≈ μS

a2S

[(
1 +

r

aS

)2

− 1

]
≈ 2

μS

a3S
r . (6.151)

The ratio of the accelerations is

QT =
γT1

γT0

= 2
μS

μ

(
r

aS

)3

= 2kx3 . (6.152)

Note. By bringing in the expression for the periods, we obtain

QT = 2
μS/a

3
S

μ/r3
= 2

(
T0

TS

)2

, (6.153)

where T0 is the Keplerian period of the satellite around the Earth and TS is
the period of revolution of the Earth around the Sun, i.e., TS = 1y.

Satellite Far from the Earth

If a satellite is very far from Earth, so that it is in fact a space probe, the
Earth’s attraction becomes very small compared with the Sun’s. The central
acceleration due to the Sun can be written

γS0 =
μS

(aS − r)2
≈ μS

a2S
, (6.154)

for even in this case, r is small compared with aS. The perturbing acceleration
for the satellite is the differential attraction due to the Earth, viz.,

γS1 =
μ

r2
− μ

a2S
≈ μ

r2
. (6.155)

The ratio of the accelerations is

QS =
γS1

γS0

=
μ

μS

(aS
r

)2
=

1

kx2
. (6.156)
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6.11.2 Determining the Sphere of Influence

Sphere of Influence as Defined by Tisserand

The Earth’s sphere of influence Σ is a sphere centered on the Earth with
radius ρΣ defined by the point on the straight line joining the Sun and Earth
such that QT = QS. This gives

2k2x5 = 1 , (6.157)

or41

ρΣ = 2−1/5

(
μ

μS

)2/5

aS . (6.158)

For the Earth, one finds

ρΣ = 5.4× 10−3aS = 0.81× 106 km ,
ρΣ
R

= 126 ,

using the numerical values of the astronomical quantities μS, the heliocentric
gravitational constant, and aS, the astronomical unit. It is thus possible to
treat r as small compared with aS.

At the end of the book, we will apply this notion to other planets or
celestial bodies than the Earth. For the planets of the Solar System, the
values of ρΣ are given in Table 16.2b.

Sphere of Influence: Simplified Definition

Another definition of the sphere of influence, denoted by Σ0, adopts the
condition QT = 1, which corresponds to

2kx3 = 1 . (6.159)

41This demonstration is schematic insofar as we are considering the case of three bodies
lying along a straight line. The full proof due to Tisserand shows that the surface we seek
here is given by

ρΣ = ρΣ(θ) =

[(
μ

μS

)2 1√
1 + 3 cos2 θ

]1/5
aS ,

where the polar axis is the straight line Earth–Sun with origin at the center of the Earth.
When θ = 0, we retrieve (6.158). This surface of revolution around the polar axis differs
only slightly from a sphere, since the polar radius varies by a factor of 1 to 0.87 (= 2−1/5).
Tisserand’s calculations were made to study the trajectories of comets in the vicinity of
Jupiter: “If we write down the condition for equality of the attractive ratios, we obtain
the equation of a surface for all the points of which it makes no difference whether we
consider the heliocentric motion disturbed by the action of Jupiter, or the jovicentric motion
disturbed by the action of the Sun.” (Traité de mécanique céleste, Vol. IV). The equality
of the ratios he is referring to is just QT = QS. The process had already been suggested by
D’Alembert, Laplace, and Le Verrier. Laplace used the term sphere of activity.
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We then have

ρΣ0 = 2−1/3

(
μ

μS

)1/3

aS , (6.160)

and for the Earth

ρΣ0 = 11.4× 10−3aS = 1.71× 106 km ,
ρΣ0

R
= 269 .

If we use (6.153), the condition QT = 1 imposes a limiting value for the period
T0 equal to

T0 = TS/
√
2 = 258 d .

If the period of the satellite exceeds 258 days, this satellite will escape from the
Earth’s attraction. Note that ρΣ0 is roughly twice ρΣ . For further discussion
of these two values, see the appendix on Lagrange points below.

6.12 Appendix: Lagrange Points

6.12.1 Restricted Three-Body Problem

The Lagrange points arise in the context of the restricted three-body prob-
lem, in which one of the bodies (here, the satellite) has negligible mass com-
pared with the two others. The two “massive” bodies A and B revolve around
their center of mass O (two-body problem) with constant angular speed θ̇. A
third, much lighter body C feels the gravitational attraction of A and B.

Lagrange showed that there are five special positions in space at which
the body C rotates about O with the same angular speed θ̇. In this situation,
the point C is stationary in a Sun–Earth frame. The five points, traditionally
denoted by L1 to L5, are known as the Lagrange points or libration points42

(see Fig. 6.8).

6.12.2 Simplified Study of Points L1 and L2

We shall now find in a schematic manner the position of the first two
Lagrange points when B has much smaller mass than A, as is usually the
case. These equilibrium points are unstable. We use the notation of Sect. 6.11.
The center of mass is at A, and the body B revolves around A in a circular

42The word “libration” comes from the Latin libratio, which itself comes from libra,
meaning “balance”. The Moon’s libration is a complex nodding motion around the central
position, composed of a physical and a geometric libration (in longitude and in latitude).
It is through this motion that we are able to see 59% of the Moon’s surface from Earth,
instead of just a half. This term, generally applied to the case of lunar libration (also studied
by Lagrange), is also used to refer to the five Lagrange points.
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L3 L1 L2

L4

L5

A B

Fig. 6.8 : Schematic

illustration of the five

Lagrange points. The

five points lie in the or-

bital plane of B around

A. The mass of B is

considered to be small

compared with the mass

of A.

orbit with constant angular speed θ̇. According to Kepler’s third law applied
to body B, we have

μS = θ̇2a3S . (6.161)

Consider a satellite C at Li, close to B, on the straight line AB. The point
L1 lies between A and B, with L2 outside. The distance from C to A is thus
aS + εr, with ε = −1 for L1 and ε = +1 for L2. For each point L1 and L2,
we express the fact that the resultant of the attractive accelerations is equal
to the radial acceleration. Note that the angular speed43 of L1 and L2 is θ̇.
Projecting onto the AB axis and using the notation ε, we obtain

μS

(aS + εr)2
+ ε

μ

r2
= (aS + εr)θ̇2 . (6.162)

Dividing the left- and right-hand sides of (6.162) and (6.161) and using the
reduced variables defined in (6.148), we find

1

(1 + εx)2
+ ε

1

kx2
= 1 + εx . (6.163)

43If the bodies placed at L1 and L2 were in Keplerian orbit, the angular speeds would
be different, since the two distances from the attractor A are different. They are not in this
type of orbit because this is not a two-body problem, but a (restricted) three-body problem.
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We can expand (1 + εx)2 to first order in x since x � 1, whereupon

3εx ≈ ε
1

kx2
.

Cancelling out ε, we find that x has the same value in both cases. In fact, it
solves

3kx3 = 1 . (6.164)

For the distances ρLi , we now have

BL1 = BL2 = ρLi =

(
1

3

μ

μS

)1/3

aS . (6.165)

Example 6.4 Calculate the positions of the Lagrange points L1 and L2 for
various astronomical systems.

� For the Sun–Earth system, where k = 3.329× 105, or 3k ≈ 106, we have

distance from center of Earth to L1,2 : ρLi = 10−2aS ≈ 1.5× 106 km .

For the Earth–Moon system, where k = 81.3, replacing aS by aL, the mean
radius of the lunar orbit, we find

distance from center of Moon to L1,2 : ρLi = (243.9)−1/3aL = 0.16aL

≈ 6.× 104 km .

For the system consisting of Mars and its moon Phobos, where k = 5.05×107

and aL = 9.38× 103 km, we obtain

distance from center of Phobos to L1,2 : ρLi = 1.88× 10−3aL ≈ 17.6 km .

As the subplanetary equatorial radius of Phobos is 13.4 km, the points L1 and
L2 are only 4.2 km from the surface of Phobos. �

6.12.3 Lagrange Points and Sphere of Influence

Let us compare the radii of the spheres of influence centered on the Earth
with the distance from the Earth to the Lagrange points L1 and L2. We use
the reduced distances x, denoted by x1 and x0 for the spheres of influence
(with either Tisserand’s definition or the simplified definition) and xL for the
Lagrange points. We recall the three relations:

2k2x51 = 1 , 2kx30 = 1 , 3kx3L = 1 .
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Writing x1 and x0 in terms of xL,

x0 = 1.14xL , x1 = 1.35x
6/5
L , for the Earth x1 = 0.54xL .

The Lagrange point cannot lie within the sphere of influence, i.e., the region
of space where the Earth’s attraction dominates. We may thus consider that
the simplified definition, giving ρΣ0 , is in fact a little too simple. Here is an
illustration.

In Fig. 6.1, we have plotted the various accelerations as a function of the
distance from the center of the Earth. When the straight lines representing the
central attraction, denoted by GM , and the differential attraction due to the
Sun, denoted by Sun, intersect one another (actually off the graph), we have
equality between the quantities given in (6.5) and (6.7), and this amounts to
writing down the relation (6.159). This point of intersection (for r/R = 269)
can be used to obtain the radius ρΣ0 . In fact, for these values of r/R, it is
no long possible to approximate γCS by a straight line. The true point of
intersection between the two curves corresponds to the value calculated for
ρΣ using Tisserand’s definition. We mentioned the simplified method here
because this is the one usually presented in the literature.

6.12.4 The Five Lagrange Points

A complete analysis to find the five points and the equilibrium conditions
is much more involved and goes beyond the scope of this book. The classic
method consists in writing the equations in a frame rotating about O. This
produces two equations: one involves the first three points, and the other the
last two. The position of the points is shown schematically in Fig. 6.8 (where
O coincides with A).

• Points L1, L2, and L3 lie on the straight line AB. Let α be the reduced
mass and X the reduced distance defined by

α =
μ

μ+ μS
=

1

1 + k
, X =

ALi

AB
. (6.166)

We obtain the three possible values of X . Taking α ≈ 1/k, the first two,
for L1 and L2, are as calculated above, viz., X = [1± (α/3)1/3]. The third,
for L3, is X = −[1+(5/12)α]. These three equilibrium points are unstable.

• Points L4 and L5 can be shown to lie in the orbital plane of B around A, in
such a way that triangles ABL4 and ABL5 are equilateral. The positions
of L4 and L5 do not depend on the masses of the bodies A and B. It can
also be shown that these positions are stable, provided that the mass of A
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Li L1 (unstable) L2 (unstable) L3 (unstable) L4 (stable) L5 (stable)

uX 1−
(α
3

)1/3
1 +
(α
3

)1/3
−
(
1 +

5

12
α

)
1

2

1

2

uY 0 0 0

√
3

2
−
√
3

2

Table 6.7 :Coordinates of the five Lagrange points of the A–B system in a frame

moving with the straight line AB and with origin at A : uX on the axis AB, uY

in the direction perpendicular in the right-hand sense. Reduced distances with unit

AB = 1. Reduced mass α with α � 1.

is big enough compared with the mass of B, i.e., at least 25 times greater.44

L4 and L5 are distinguished by the convention that L4 is the point that
precedes B in its revolution, while L5 is the point following it.

The coordinates of the five Lagrange points are summarised in Table 6.7, while
Table 6.8 indicates the positions of the Lagrange points for the Sun–Earth
and Earth–Moon systems. Note that, for the latter system, exact calculation
of x gives 0.15 and 0.17 for BLi, whereas the approximate calculation in
Example 6.4 gave 0.16 for both.

6.12.5 Lagrange Points in Astronomy

Lagrange’s theory was brilliantly confirmed in the field of planetary as-
tronomy with the discovery of asteroids at the stable points L4 and L5 of
the Sun–Jupiter system. The first, 588 Achilles, was discovered at L4 in 1906.
This was followed by 617 Patroclus at L5, and 624 Hector and 659 Nestor at
L4. Several hundred asteroids are now known at the two stable points45 of this
system, as illustrated in Fig. 6.9. The asteroids at L4 are called Greeks, while
those at L5 are the Trojans. The current trend is to use the term Trojans46

44The exact calculation gives

k > k0 , with k0 =
25

2

⎡
⎣1 +

√
1−
(

2

25

)2
⎤
⎦ = 24.96 .

The numerical value of k0 is called the Routh value. For the planets in the Solar System,
this condition always holds by a large margin as far as the Sun is concerned. For the Earth–
Moon system, it also holds, since k = 81 in this case. The only known exception in the
Solar System is provided by the Pluton–Charon system.

45The libration of these asteroids is 14◦ on average. It cannot exceed 30◦.
46The duality between Greeks and Trojans is intended to illustrate the unending pursuit,

immortalising the Iliad in the skies. However, there seems to have been some misunder-
standing of Homer’s tale, for we find Patroclus with the Trojans and Hektor with the Greeks,
enough to make Achilles writhe on his funeral pyre!
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A–B system L1 L2 L3 L4, L5

Sun–Earth
ALi X 0.990 1.010 0.999 1.000
BLi x 0.00997 0.010 1.999 1.000
ALi 106 km 148.10 151.10 149.4 149.6
BLi 106 km 1.49 1.50 299.0 149.6
BLi R 234 236

Earth–Moon
ALi X 0.85 1.17 0.99 1.00
BLi x 0.15 0.17 1.99 1.00
ALi 103 km 326.7 449.7 380.6 384.4
ALi R 51 71 60 60
BLi 103 km 57.7 65.3 765.0 384.4

Table 6.8 :Distances of bodies A and B from the Lagrange points Li (i = 1, . . . , 5).

Distances are given in reduced units X and x (dimensionless), in km, and in units

of R (Earth radius).

for the asteroids in both groups and to extend the term to other systems. The
Sun–Mars also provides examples of Trojan asteroids (discovered since 1990).

In 1980, several new moons of Saturn were discovered at the Lagrange
points of the Saturn–Dione and Saturn–Tethys systems. These are known as
the Lagrangian moons. They librate around the stable positions L4 and L5.

6.12.6 Artificial Satellites at Lagrange Points

Since 1978, several artificial satellites have been placed at the point L1

of the Sun–Earth system (see Table 6.9). When the satellite arrives in the
vicinity of the point L1, about 1.5 million kilometers from Earth, it is placed
in orbit around L1, since this is an unstable position. It then describes a halo
orbit, also denoted by L1LO, the L1 Lissajous orbit, since the trajectory looks
like a Lissajous curve.

The first satellite to be placed in a halo orbit about the L1 point was
ISEE-3 (Explorer-59), between 1978 and 1982. It was followed by Wind,
SOHO, ACE, and Genesis, all of which carried out astronomical missions.

The view of the Sun is of course exceptional from L1 (a property put to
good use by the satellite SOHO), and the solar wind can be collected well
upstream of the Earth (satellite Wind). But the point L1 has another ad-
vantage: if one observes the Earth from this point, one always sees daylight!
The satellite Triana was designed to exploit this in the guise of an unremit-
ting environmental watchdog, and has been reactivated under the name of
DSCOVR.

The L1LO orbit lies roughly in a plane tilted with respect to the ecliptic
and has elliptical shape. It measures several hundred thousand kilometres
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Fig. 6.9 :Representation of the 7,722 currently known asteroids (dots) and planets

(disks) by their projection onto the plane of the ecliptic on 1 January 2000. Moving

out from the Sun at the center: orbits of Mercury, Venus, Earth, Mars, and Jupiter.

The Main Belt lies between the orbits of Mars and Jupiter, but it is easy to make

out the accumulation of Trojan asteroids on the orbit of Jupiter, close to the points

L4 and L5 of the Sun–Jupiter system. Credit: SMCS, University of St Andrews.

across and the period of motion of the satellite around the Lagrange point
is very long: 211 days for Wind, 180 days for SOHO, 179 days for Genesis.
Since the Earth–satellite axis does not lie in the plane of the ecliptic, data
transmission is not too seriously perturbed by electromagnetic or particle
emissions from the Sun.

The point L2 of the Sun–Earth system was visited for the first time by
the probe WMAP, and joined in 2009 by Planck and Herschel. Many other
missions are destined for a halo orbit around this point (an L2LO orbit).
These include the successors of Hipparcos and Hubble, namely GAIA and
JWST, respectively, and longer term projects such as Eddington and Darwin.

For instruments cooled by liquid helium, for observation of the diffuse
cosmic background (WMAP, Planck) or infrared emissions (Herschel, JWST),
the position at the L2 point ensures observation in the direction away from
the Sun will never be polluted by the view of the Earth.
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Date L1 L2 Probe

1978 • ISEE-3
1994 • Wind
1995 • SOHO
1997 • ACE
2001 • WMAP
2001 • ◦ Genesis
2009 • Planck
2009 • Herschel

Moon’s Orbit Return Trajectory
to Earth

EarthTransfer
to Halo

Halo
Orbit

Sun
L1

L2

Table 6.9 :List of space vessels sent to Lagrange points, with launch date. Right:

Genesis probe: mission trajectory to L1 and return to Earth with an orbital detour

(loop-the-loop trajectory) to L2. Credit: Shane Ross, NASA, JPL.

The stable points were to be occupied by a US stereographic solar obser-
vation project, with satellites STEREO-Ahead and STEREO-Behind at L4

and L5, respectively. The names can be understood by referring to Fig. 6.8
and noting that the motion of the Earth around the Sun occurs in the anti-
clockwise direction in that view. However, this orbit had to be abandoned
and the two satellites, with the same names, have been placed in a heliocen-
tric orbit ahead of and behind the Earth’s position. The Japanese project
L5-Mission is planned for L5.

Concerning the L3 point of the Sun–Earth system, it is not obvious what
kind of project might be located there, except possibly a movie of the type
Planet X.

6.13 Appendix: Spherical Trigonometry

6.13.1 Gauss’ Relations

A spherical triangle is a triangle on a sphere of unit radius, whose sides
are arcs of great circles (or angles at the center). The angles of the triangle
are defined at each vertex in the tangent plane to the sphere (i.e., they are
dihedral angles). The angles are usually denoted by A, B, C and the opposite
sides by a, b, c, as shown in Fig. 6.10. It can be shown that a spherical triangle
is determined by specifying three elements. A fourth element can be calculated
from the three known elements. We then have (6× 5)/2 = 15 relations.

These trigonometric relations are easily obtained by considering the fol-
lowing change of frame. Consider three points A, B, C on a sphere, forming a
(non-flat) spherical triangle. We consider two orthonormal frames �1 and �′

1

such that

�1(O; i, j,k) , �′
1(O; i′, j′,k′) , i = OA , i′ = OB ,

and such that k and k′ coincide. We then have (i, i′) = c.
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O

B

A

C

Fig. 6.10 :Spherical tri-

angle ABC on a sphere

with center O and unit

radius. The angles A,

B, C are dihedral an-

gles. The corresponding

sides a, b, c are arcs

of great circles defined

by a = BC, b = CA,

c = AB.

The frame �′
1 is thus obtained from �1 by rotating through an angle c

about k. In each of the two frames �1 and �′
1, OC can be written in Cartesian

coordinates

OC =

⎛
⎝ cos b

sin b cosA
sin b sinA

⎞
⎠ , OC =

⎛
⎝ cos a

− sina cosB
sin a sinB

⎞
⎠ . (6.167)

Using the matrix for the rotation through angle c about k, we thus obtain

⎛
⎝ cos a

− sina cosB
sin a sinB

⎞
⎠ =

⎛
⎝ cos c sin c 0

− sin c cos c 0
0 0 1

⎞
⎠×

⎛
⎝ cos b

sin b cosA
sin b sinA

⎞
⎠ . (6.168)

We thus obtain the three relations known as Gauss’ relations:

cos a = cos b cos c+ sin b sin c cosA , (6.169)

sin a cosB = cos b sin c− sin b cos c cosA , (6.170)

sin a sinB = sin b sinA . (6.171)
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6.13.2 Fifteen Relations for the Spherical Triangle

These three equations lead us to the 15 required relations, which are
generally grouped as follows. The relations are numbered with Roman nu-
merals from I to XV and the annotation ST, which stands for “spherical
trigonometry”.

• Fundamental relations. These are deduced from (6.169) by cyclic permuta-
tions. They relate three sides and an angle:

cos a = cos b cos c+ sin b sin c cosA , (ST I)

cos b = cos c cos a+ sin c sina cosB , (ST II)

cos c = cos a cos b+ sin a sin b cosC . (ST III)

As a corollary, we obtain formulas relating three angles and one side:

cosA = − cosB cosC + sinB sinC cos a , (ST IV)

cosB = − cosC cosA+ sinC sinA cos b , (ST V)

cosC = − cosA cosB + sinA sinB cos c . (ST VI)

• Sine formulas. These are deduced from (6.171). These three formulas relate
two angles and the opposite sides:

(ST VII)

sina

sinA
=

sin b

sinB
=

sin c

sinC
. (ST VIII)

(ST IX)

• Cotangent formulas. These are deduced from (6.170), which involves five
elements, and the two other Gauss relations. These formulas relate four
consecutive elements of the triangle:

cota sin b = cos b cosC + sinC cotA , (ST X)

cot b sina = cos a cosC + sinC cotB . (ST XI)

The second of these follows from the first by fixing the angle C and per-
muting a and b, A and B. By cyclic permutation, we now obtain

cot b sin c = cos c cosA+ sinA cotB , (ST XII)

cot c sin b = cos b cosA+ sinA cotC , (ST XIII)

cot c sin a = cos a cosB + sinB cotC , (ST XIV)

cota sin c = cos c cosB + sinB cotA . (ST XV)

We thus obtain 6+3+6 = 15 relations. In the case of a right-angled spherical
triangle, where one of the three angles is a right-angle, the above formulas
reduce immediately to (5 × 4)/2 = 10 relations.
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Example 6.5 Calculate the distance D between two points M(λ, ϕ) and M ′(λ′,
ϕ′) on the Earth, specified by their longitude and latitude.

� To apply spherical trigonometry here, we treat the Earth as spherical. The
latitude ϕ thus represents just as well the geographical, geodetic, or geocen-
tric latitude. Consider the spherical triangle NMM ′, where N represents the
North Pole. If N corresponds to A, M to B, and M ′ to C, the angle A and
sides b and c can be written as follows in terms of the geographical data:

A = λ− λ′ , c =
π

2
− ϕ , b =

π

2
− ϕ′ .

The required distance is then a, the length of the arc of great circle MM ′.
The first Gauss relation (6.169) or (ST I) then gives

cos a = sinϕ sinϕ′ + cosϕ cosϕ′ cos(λ− λ′) . (6.172)

The required distance is D = Ra, if we consider the Earth as spherical with
radius R and express a in radians. Note that, in this situation, we can obtain
the result by writing the scalar product OM · OM ′.

Application: Calculate the distance from Paris to New York.

The geographical coordinates of Paris and New York are (48◦50′N; 2◦20′E)
and (40◦42′N; 74◦00′W), respectively, which gives, for the points M and M ′,

ϕ = +48.87 , λ = +2.33 , ϕ′ = +40.70 , λ′ = −74.00 .

The calculation yields

a = 0.91597 rad = 52.48◦ .

We thus obtain the distance directly in nautical miles (1 nautical mile is
equivalent to 1′ arcsec on the Earth’s surface), viz.,

D = 52.48× 60 = 3149 nautical miles ,

or in kilometers, if we introduce the Earth’s radius, viz.,

D = 0.91597×R = 5842 km .

The curve (arc of a great circle) joining two points on the surface of the Earth
is said to be orthodromic.

Note. When two points are very close, it is better to transform the relation
giving cos a, using the half-angles to bring in the differences between the
latitudes and the longitudes:

sin2
a

2
= sin2

ϕ− ϕ′

2
+ cosϕ cosϕ′ sin2

λ− λ′

2
. (6.173)

This formula is valid if a ∈ [0, π). �



Chapter 7

Motion of Orbit, Earth

and Sun
In the last chapter, we calculated the motion of the orbital plane of a

satellite with respect to a Galilean frame, via the rate of nodal precession,
and the motion of the orbit in this plane. At the beginning of this chapter, we
shall review the way the Earth moves with respect to a Galilean frame. By
composing the two motions, we will then be able to follow the motion of the
satellite relative to the Earth, which was indeed our original aim.

We shall then study the apparent motion of the Sun relative to the Earth,
so that we may subsequently study the cycles of the satellite in relation to the
Sun. The aim here will ultimately be to specify the geometry of the satellite, its
target, and the Sun: we consider a point on the Earth’s surface and determine
how this point is seen by the satellite and under what conditions of solar
illumination.

In the last two sections, we examine two types of satellite orbit for which
two of the quantities studied here play a key role. These quantities are the
mean motion n and the nodal precession rate Ω̇. We shall find that they
can take certain values of particular importance for the satellite. The first
quantity n determines the geosynchronous orbits, and the second Ω̇ the Sun-
synchronous orbits.

7.1 Motion of the Orbit

7.1.1 Secular Variations: Simplified Case

We reconsider here the equations giving the secular variations of the or-
bital elements for a circular orbit, in the context of a simplified geopotential
(expansion up to degree 2). We then treat the general case.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 7,
© Springer International Publishing Switzerland 2014
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Note that, for an orbit with eccentricity e, the formulas for the precession
rates Ω̇ and ω̇ contain a multiplicative factor of (1− e2)−2 as compared with
the expressions for the circular orbit. For low eccentricities, this factor is
approximately 1 + 2e2, which remains very close to 1.

Secular Variation of Orbital Elements

Keeping only the J2 term in the relative perturbation of the geopotential,
we showed in Chap. 6 that the metric elements remained constant, whilst the
angle elements underwent secular variations. Using (6.73) through (6.75), we
obtain the values of Ω̇, ω̇, and Ṁ as a function of the metric elements and
the mean motion n =

√
μ/a3 :

Ω̇

n
= −3

2
J2

(
R

a

)2

cos i , (7.1)

ω̇

n
=

3

4
J2

(
R

a

)2

(5 cos2 i− 1) , (7.2)

Ṁ − n

n
=

Δn

n
=

3

4
J2

(
R

a

)2

(3 cos2 i− 1) . (7.3)

The secular variation of the orbital element Ω will play a key role when we
come to study the trajectory of the satellite, as will the secular variations of
the elements ω and M when we calculate the period of the motion.

Concerning the parameter ω, the secular variation ω̇ is perfectly well de-
fined by (6.74) when e = 0. However, the position of the perigee, determined
by ω, is not defined for a perfectly circular orbit (with e = 0), and it is poorly
defined in the case of a near-circular orbit. Concerning the parameter M ,
whose secular variation Ṁ − n0 is perfectly well defined by (6.75) for e = 0,
we encounter the same problem in defining an origin, for both circular and
near-circular orbits. In these cases, we generally choose the ascending node as
origin (see Sect. 5.2.3 on adapted orbital elements).

Nodal Precession Rate

Using (7.1) and expressing the mean (Keplerian) motion, the nodal pre-
cession rate can be written

Ω̇ = −3

2
J2

√
μ

R3

(
R

a

)7/2

cos i , (7.4)

and this can in turn be set in the form

Ω̇(a, i) = −K0

(
R

a

)7/2

cos i , (7.5)
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or again, using the reduced distance η defined earlier,

Ω̇ = −K0η
−7/2 cos i , (7.6)

with

K0 =
3

2
J2

√
μ

R3
. (7.7)

We can also write K0 in the following form, using (5.5) and (5.6):

K0 =
3π

T0(h=0)
J2 , (7.8)

or again, using (3.5) and denoting the average mass of the planet per unit
volume by ρo,

K0 =
√
3πGJ2

√
ρo . (7.9)

Concerning the units of the angular velocity, apart from radians per second
(SI units), the units degrees per day and revolutions per year are also found
in the literature. With these three units, K0 is expressed as follows:

K0 = 2.012788× 10−6 rad s−1 , (7.10)

K0 = 9.964014◦d−1 , (7.11)

K0 = 10.10949 rev year−1 . (7.12)

The function Ω̇(a, i) has been plotted in two different ways in Fig. 7.1:

• The upper panel shows Ω̇ as a function of the semi-major axis a for different
values of the inclination i.

• The lower panel shows Ω̇ as a function of the inclination i for various values
of the ratio a/R.

The altitude thus varies from h = 0 for a/R = 1 to h = R = Re = 6,378km
for a/R = 2, in steps of 0.1R = 637.8km. Values of Ω̇ are given in degrees
per day.

These graphs are combined in the upper part of Fig. 7.2. We plot curves of
fixed nodal precession rate Ω̇ (nodal isoprecession curves) as a function of the
inclination i and the altitude h (or a/R). From these graphs, it is clear that,
when h increases for a given inclination, Ω̇ decreases. The further the satellite
moves from the center of the Earth, the less it is affected by irregularities in the
geopotential. We also see that, in the case of prograde orbits, Ω̇ is negative,
i.e., precession is retrograde, whereas in the case of retrograde orbits, Ω̇ is
positive. For a strictly polar orbit, Ω̇ is always zero, at all altitudes.

The maximal value of |Ω̇| is obtained for i = 0◦ or i = 180◦, with h = 0,
and it is equal to K0 = 9.96◦/day, or almost 10◦ per day. The value of Ω̇,
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Fig. 7.1 :Nodal precession rate Ω̇(a, i) (in degree/day) for a circular or near-circular

orbit. Upper: Dependence on the ratio η = a/R for various values of the inclination

between i = 0◦ and i = 180◦, in steps of 10◦. Lower: Dependence on the inclination

i for various values of the ratio η = a/R between η = 1.0 and η = 2.0, in steps

of 0.1.
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close to 1, and denoted by SSyn on the two graphs of Fig. 7.2, is relevant for
the so-called Sun-synchronous satellites, which we shall discuss at the end of
this chapter. (In this case, Ω̇ = 0.986◦/day.)

Figure 7.2 (lower) enlarges the part of the graph relevant to satellites
placed in low orbit, as we shall see shortly. For example, the satellite Meteor-3-
07 has h ≈ 1,200km and i ≈ 83◦, for which we find the value Ω̇ = −0.71◦/day
on the graph. For Lageos-1, with h ≈ 5,890 km and i ≈ 110◦, we find Ω̇ =
+0.34◦/day.

Apsidal Precession Rate

The apsidal precession rate defined by (7.2) can also be expressed in terms
of the constant K0 given by (7.7):

ω̇ =
1

2
K0

(
R

a

)7/2

(5 cos2 i− 1) . (7.13)

This is zero at the critical inclination defined in Chap. 6.
Figure 7.3 is a graph of ω̇(a, i) as a function of the inclination i for various

values of the ratio a/R. The value of ω̇ is given with the same units and
the same scale as Ω̇. The two values of the critical inclination appear quite
clearly on the graph at 63.4◦ and 116.6◦. Example 7.1 illustrates this question
further.

Variation of the Mean Motion

Like the precession rates, the variation of the mean motion defined by (7.3)
can be expressed in terms of K0 :

Δn =
1

2
K0

(
R

a

)7/2

(3 cos2 i− 1) . (7.14)

Figure 7.4 graphs the variation Δn of the mean motion as a function of the
inclination i for various values of the ratio η = a/R. We observe that, for i
between 57.7◦ and 125.3◦, the true motion is slower than the motion relative
to a spherical Earth.

7.1.2 Secular Variations up to Degree 4

If we consider an elliptical orbit and the expansion of the geopotential
to a high degree, the expressions for the variations of the orbital elements
become extremely complex. We shall not be concerned here with the periodic
variations, affecting all the orbital elements. The secular variations concern
only the angle elements and we have shown that only the even zonal harmonics
J2n are involved.

Table 7.1 gives expressions for these secular variations in terms of a, e,
and i, up to degree 4 in R/p. As well as the terms of degree 2 for J2, there
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are two terms of degree 4, one for J4 and one for J2
2 . These quantities are

expressed in terms of their quotient by n, the mean motion. In each case, one
thus obtains a ratio of angular speeds, which is a dimensionless quantity.

The expressions for Ω̇ and ω̇ in (7.15) and (7.16), respectively, were ob-
tained from J. Kovalevsky’s analytical theory of satellite motion in [5], while
the expression for Δn in (7.17) was derived using the theory of P.E. Koskela
et al. in [18]. These results are also presented in a slightly different way in
other books on space mechanics, such as [22, 28].

7.1.3 Secular Variations up to Degree n

In the literature, one can find analytic expressions for the secular variations
up to order (see, e.g., [5]). These are complex, as one would imagine. The
contribution of the terms in J2

2 , J4, and J6 for the variations Ω̇ and ω̇ are
shown in Fig. 7.5. Roughly speaking, they represent one or two hundredths of
the contributions due to J2.

7.1.4 Removing Precessional Motion

By a clever choice of orbital parameters, secular variations can be cancelled
out. In this way, precessional effects can be removed, which may be useful for
certain missions.

Cancelling Nodal Precession

Some satellites have an inclination of 90◦ to within a few tenths of a degree.
They are said to be strictly polar, or on a strictly polar orbit. Equation (7.15)
shows that the rate of nodal precession is then zero, since the term cos i is a
factor in all the Jn terms.

The orbit of the satellite thus remains fixed1 in �, making a constant angle
with a fixed direction in space (the direction of the vernal point γ). This orbit
is sometimes called an inertial orbit. Strictly polar orbits are generally used by
satellites studying remote regions of the Earth environment2 and by military
and geodetic satellites (the US Navy’s Transit system, which was the first
operational navigation system). The satellite CoRoT, designed for detection

1Over a few years, there is a slight precessional motion for these orbits, but less than a
degree per year. This is due to other perturbations, such as the attraction of the Moon or
Sun, radiation pressure, and so on.

2To study the magnetosphere, NASA launched two satellites on 3 August 1981 in a single
launch: Dynamics Explorer-1 and -2 (Explorer-62 and -64, also called DE-A and DE-B), the
first in a high-altitude orbit (hp = 468 km, ha = 23,322 km), the second in a low-altitude
orbit (hp = 304 km, ha = 1,002 km). To ensure that they can make joint observations of the
same phenomena, it was essential that they move in the same orbital plane, and this was
only possible by choosing a polar plane, i = 90◦, since otherwise nodal precession would
have between different for DE-A and DE-B.
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Ω̇

n
= J2

(
R

p

)2

cos i

(
−3

2

)

+J2
2

(
R

p

)4

cos i

[(
−45

8
+

3

4
e2 +

9

32
e4
)
+

(
57

8
− 69

32
e2 − 27

64
e4
)
s2
]

+J4

(
R

p

)4

cos i

(
15

4
− 105

16
s2
)(

1 +
3

2
e2
)

(7.15)

ω̇

n
= J2

(
R

p

)2 (
3− 15

4
s2
)

+J2
2

(
R

p

)4
[(

27

2
− 15

16
e2 − 9

16
e4
)

+

(
−507

16
+

171

32
e2 +

99

64
e4
)
s2

+

(
1185

64
− 675

128
e2 − 135

128
e4
)
s4
]

+J4

(
R

p

)4
[(

−3

8
+

15

8
s2 − 105

64
s4
)(

10 +
15

2
e2
)

+

(
−15

4
+

165

16
s2 − 105

16
s4
)(

1 +
3

2
e2
)]

(7.16)

Δn

n
=

Ṁ − n

n
= J2

(
R

p

)2

e′
3

4
(2− 3s2)

×
{
1 + J2

(
R

p

)2
1

8

[
10 + 5e2 + 8e′ −

(
65

6
− 25

12
e2 + 12e′

)
s2
]}

−J2
2

(
R

p

)4

e′
5

64
(2− e2)s2

−J4

(
R

p

)4

e′
45

128
e2(8− 40s2 + 35s4) (7.17)

Table 7.1 :Secular variations of the angle elements with expansion of the gravita-

tional potential up to order 4. The semi-latus rectum p and the mean motion n are

given by p = a(1 − e2) and n =
√

μ/a3. Abbreviations: s = sin i, e′ =
√
1− e2.

Referring to Table 6.2, we have s = 1/σ and e′ = 1/τ .
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Fig. 7.5 :Degree 6 expansion of the geopotential. Contributions of the terms in J2
2 ,

J4, and J6. Upper: Contributions to the nodal precession rate. Lower: Contributions

to the apsidal precession rate. For a circular or near-circular orbit as a function of

i for various values of the ratio η = a/R between η = 1.0 and η = 2.0, in steps of

0.1. Dotted lines: η = 1.05, 1.15, 1.25. Note the scale on the vertical axis.
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of exoplanets and asteroseismology, is in an inertial orbit3 with an inclination
of i = 89.92◦.

The Gravity Probe Relativity Mission is testing Einstein’s general theory
of relativity. To do this, the satellite Gravity Probe B (GP-B) must have a
polar inclination.4

Apart from the cases mentioned above, few space missions need to remove
nodal precession altogether. However, it is common practice to select some
specific nonzero value of Ω̇ in the case of Sun-synchronous satellites, as we
shall see later.

Cancelling Apsidal Precession

When the secular apsidal variation vanishes, the argument of the perigee
ω remains constant. The fixed position of the perigee on an orbit, especially
a highly eccentric orbit, may be a decisive factor. It is easy to solve

ω̇(a, e, i; Jn) = 0 , (7.18)

with ω̇ defined by (7.16), if we restrict to order 2. For an expansion of ω̇ cut
off at J2, (7.18) reduces to 5 cos2 i = 1 and the solution is given by (6.79). The
inclination is equal to the critical inclination. This value iC does not depend
on any orbital parameter, even those of the given planet.

To higher order, solution is more involved, but it is straightforward to
obtain results using numerical methods, given that the value of i is very close
to the one specified by (6.79). The solution i depends very slightly on a and
e, together with the coefficients Jn.

Note. In this book, when we mention a critical inclination in the various
representations of the satellite ground tracks, we shall always be referring to
the inclination calculated up to order 4 for ω̇.

Example 7.1 Calculate the critical inclination for Molniya-type satellites.

� The characteristics of Molniya-3-50 on 10 April 2013 were:

a = 26,556.863 km , e = 0.7059346 , i = 64.3690◦ , ω = 257.638◦ .

3This orbit, free of nodal precession, remains fixed in a Galilean frame and the satellite
views in a direction orthogonal to the orbital plane. In fact, it views the same region
continually for a period of 180 days, then turns round to view in the opposite direction,
thus avoiding the Sun. The two regions viewed are at the intersection of the galactic plane
and the celestial equator.

4The satellite is equipped with gyroscopes and the aim is to measure effects predicted by
general relativity: the geodesic effect (6,606milliarcsec per year, or 1.8× 10−3 degree/year)
and the Lense–Thirring effect, or frame dragging (39 mas/year, or 1.1×10−5 degree/year).
These two effects are maximally decoupled when the axis of rotation of the satellite on its
orbit is orthogonal to the axis of rotation of the Earth, i.e., i = 90◦.
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To order 2, the solution is given by (6.79), given that this satellite has a
prograde orbit (i < 90◦):

iC = 63.4349◦ = iC(J2) .

With (7.16) and expanding ω̇ up to J4, the elements a and e come in. We
obtain

iC = 63.4246◦ = iC(J4) .

This changes little if we expand beyond J4. Note that

iC(J2)− iC(J4) = 0.0103◦ ≈ 0.01◦ .

The inclination of this satellite, here i = 64.3690◦, is only 0.06◦ from the
critical inclination iC. This difference could be 1 or 2◦ without there being
significant consequences. �

Cancelling the Variation in the Mean Motion

Two values of the inclination, namely 54.7◦ and 125.3◦, lead to a zero
value for Δn, defined by (6.75), as discussed in Chap. 6. To our knowledge,
this constraint has never been imposed for a space mission. However, it should
be noted that the Navstar/GPS (Block II) satellites have an inclination of
i = 55◦ which leads to an almost zero value for Δn. The mean motion of
these satellites is the same as if the Earth were spherical.

7.1.5 Effective Calculation of Period and Altitude

We shall now give two examples of calculations involving the relation be-
tween the period of a satellite and its altitude. In the first, we calculate the pe-
riod of a satellite of known altitude, and in the second, the converse (and more
difficult) problem, that is, we determine the altitude of a satellite of known
period. Other examples of this type will be discussed in Chap. 11 (where the
period will be defined by the recurrence condition).

When we speak of the altitude of a satellite in this context, we are in fact
referring to the difference between the semi-major axis a of the orbit and the
equatorial radius of the Earth, i.e., h = a − R. The quantity h is usually
used to describe the satellite, but it is the quantity a that is used in orbital
calculations.

Example 7.2 Calculate the period of the satellite TRMM in near-circular or-
bit at an altitude of 402 km, and with inclination 35◦.

� For this satellite, on 10 April 2013, the orbital elements were as follows:

a = 6,780.345 km (or h = 402.2km) , i = 34.9580◦ , e = 5.5× 10−5 .



7.1 Motion of the Orbit 257

We may thus consider the orbit to be circular. We begin by calculating the
Keplerian mean motion for a, viz.,

n0 =

[
3.98600436× 1014

(6.780345× 106)3

]1/2
= 1.130813× 10−3 rad s−1 ,

which gives the Keplerian period as

T0 =
2π

n0
= 5,556.34 s = 92.606min .

Expressing the numerical factor, the relative Δn/n0 is then found to be

Δn

n
= 8.119701× 10−4η−2(3 cos2 i− 1) . (7.19)

In this case, we obtain

Δn

n0
= 8.1197× 10−4

(
6.378137× 106

6.780348× 106

)2 [
3(0.81950)2 − 1

]
= 7.291× 10−4 .

Using the more complex relation (7.17), we obtain 7.299× 10−4, which gives
the true mean motion as

n = n0 +Δn = 1.133562× 10−3 rad s−1 .

The actual motion is thus faster than the Keplerian motion (Δn > 0, since
we have i < 57.7◦). The anomalistic period Ta is obtained from (6.102) as

Ta =
92.606

1 + 7.299× 10−4
= 92.538min .

We now calculate the apsidal precession rate ω̇. Using (7.2) or (7.13), we have
ω̇/n = 1.694 × 10−4, and using the more complex relation (7.16), ω̇/n =
1.699× 10−4. The draconitic period Td is found from (6.107) or (6.108) to be

Td = 92.381min .

Note that the apsidal precession ω̇ is positive, since i < 63.4◦, and that it is
quite significant, with a value of ω̇ = 9.51◦ per day.

Finally, we have

Td < Ta < T0 ,

with a time difference in seconds of

Ta − Td = 9.44 s , Ta − T0 = −4.05 s , Td − T0 = −13.49 s .

The satellite TRMM (Tropical Rainfall Measurement Mission) is a Japanese
project in collaboration with NASA. It has a low inclination so as to cover
the intertropical region and flies at low altitude to improve the efficiency of its
radar instrumentation. From its launch in November 1997 until August 2001,
it flew at an altitude of 350km. Subsequently, in order to extend its lifetime
(by reducing atmospheric drag), it was raised to an altitude of 402 km. �
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Example 7.3 Calculate the altitude of satellite Meteor-3-07, in near-circular
orbit with draconitic period 109.421 min and inclination 82.56◦.

� It is more difficult to calculate the altitude from the period than vice versa,
as in Example 7.2. We proceed by iteration. Secular variations are calculated
using relations up to degree 4.

• We begin by calculating a0, the value of a corresponding to the Keplerian
motion with the given period. The value of Td is given by the satellite orbit
bulletin as Td = 109.421425min. In a first step, we thus set T0 = Td =
6,565.2856 s. The calculation gives

a30 =
μ

4π2
T0

2 =
3.98600436× 1014

4π2
(6.5652856)2 × 106 ,

whence

a0 = 7,578.129 km .

With this value for a0, the inclination i and n0 = 2π/T0, we can calculate
Δn and ω̇. We find

Δn

n0
= −5.469× 10−4 ,

ω̇

n0
= −5.267× 10−4 .

The true motion here is slower than the Keplerian motion (Δn < 0), so
that Ta > T0, and the perigee revolves in the retrograde direction (ω̇ < 0),
so that Ta < Td. We thus have

Td > Ta > T0 .

• Considering the approximate formula (6.108), we see that this value a0 for
the orbital radius corresponds to the Keplerian period T0 and a draconitic
period Td given by

Td =

(
1 +

ΔT

T0

)
T0 .

with

ΔT = Td − T0 ,
ΔT

T0
≈ − ω̇ +Δn

n0
.

Since the fractional differences are much smaller than unity, this yields

T0 ≈
(
1− ΔT

Td

)
Td .
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As the value of Td is known, we obtain T0 from T0 = Td−ΔT . Now for
this value of T0, there corresponds an orbit of radius a1, obtained from a0
by a1 = a0 +Δa. The differential relation between a and T is

dT

T
=

3

2

da

a
.

Going to finite increments, da corresponds to a1 − a0 = Δa and dT corre-
sponds to T0 − Td = −ΔT . We obtain

Δa =
2

3

ω̇ +Δn

n0
a0 = −2

3
1.0735× 10−3 × 7,578.129 = −5.423 km .

We thus find

a1 = 7,572.706 km .

• The iteration continues in this way, using (6.107), and the results converge
very rapidly to give

a = 7,572.704 km ,

which corresponds to an equivalent altitude h = a−R = 1,194.6km.

For the values of the periods, we obtain

Td = 109.421min , Ta = 109.364min , T0 = 109.304min .

This shows how important it is to distinguish the various periods. The dif-
ferences found here provide clear evidence for this: Td − Ta = 3.46 s and
Td − T0 = 7.04 s.

With the values obtained, we can calculate the nodal precession rate to
be

Ω̇ = −1.429× 10−7 rad s−1 = 0.71◦/day ,

but this is not needed in the calculation of the period. �

7.2 Motion of the Earth

The motions of the Earth relative to a Galilean frame � fixed relative to
the Sun can be broken down into three components:

• the revolution of the Earth axis about the Sun, with its yearly period.
• the rotation of the Earth about this axis, with daily period.
• the motion of the poles, which is a tiny movement of the Earth relative to

its axis of rotation.
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7.2.1 Motion of the Earth About the Sun

Earth Revolutions

The angular speed with which the Earth axis moves around the Sun is
denoted by Ω̇S. (This is used by analogy with the rate of precession Ω̇ of the
longitude of the ascending node, but we add a subscript S to indicate the
Sun.) It has the value

Ω̇S = 1.99099299× 10−7 rad s−1 , (7.20)

which corresponds to

Ω̇S = 0.9856◦/day . (7.21)

Definitions of the Year

The Earth takes 1 year to cover its elliptical orbit around the Sun. This is
the period of revolution. There are several definitions of the year:

• Sidereal Year. This is the duration of the Earth’s orbit about the Sun
referred to a fixed (Copernican frame). It is equal to 365 days 6 h 9min
9.76 s.

• Tropical Year. This is the duration of the Earth’s orbit about the Sun
referred to a moving average frame. In fact, it is the time elapsed between
two consecutive transits of the Sun through the vernal equinox (the spring
equinox). It is equal to 365 days 5 h 48min 45.25 s.

The tropical year determines the recurrence of the seasons.5 The tropical
year is 20min shorter than the sidereal year. This difference is due to the

5The civil year aims to be as close as possible to the tropical year. The Julian (civil)
year, introduced in 45 bc under the auspices of Julius Caesar, with one leap year every four
years, has an average duration of

Nciv(j) = 365 + 1/4 = 365.25 d .

It thus differs from the tropical year by 0.78 days per century. In 325 ad, the Council of
Nicaea specified how to calculate the date of Easter given the date of the spring equinox,
which was 21 March at this time (it had been 25 March at the time of Caesar). In 1582,
the discrepancy was therefore

0.78(1582 − 325)/100 = 9.8 ≈ 10 d ,

and the equinox occurred on 11 March (Easter being calculated from 21 March). To bring
the vernal equinox back to 21 March and keep it there, (a) 10 days had to be removed from
the calendar and (b) the average length of the civil year had to be slightly modified. This
is what was decreed by Pope Gregory XIII in the papal bull known as Inter gravissimas
(Inter gravissimas pastoralis officii nostri curas . . . , “among the most noble tasks of our
pastoral ministry . . . ”), which gave the Gregorian calendar: (a) the day following Thursday
4 October will be Friday 15 October 1582; (b) 3 days will be suppressed every 400 years
(years that are multiples of 100, but not 400, will not be leap years). The Gregorian (civil)
year thus has an average duration of
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retrograde motion of the vernal equinox, known as the precession of the
equinoxes (see Chap. 6).

• Anomalistic Year. This is the time elapsed between two transits at per-
ihelion. It is equal to 365 days 6 h 13 m 53 s. It is used in calculations
relating to the Keplerian motion of the Earth around the Sun.6

The durations of these years, denoted by Nsid, Ntro, and Nano, are given in
decimal days by:

Nsid = 365.256363004 d , (7.22)

Ntro = 365.242190402 d , (7.23)

Nano = 365.259641 d . (7.24)

7.2.2 Motion of the Earth About the Polar Axis

Earth Rotational Motion

Let Ω̇T be the angular speed of the Earth in its rotation about its own axis
(using Ω̇ because this is the angular speed of the longitude Ω of the ascending
node, and we affix the subscript T to indicate “terrestrial”). It has the value

Ω̇T = 7.29211467× 10−5 rad s−1 , (7.25)

which corresponds to

Ω̇T = 360.985559◦/day . (7.26)

Definitions of the Day

• Astronomical Day. As we saw earlier, the astronomical definition of the
day is

1 d = 86,400 s .

• Mean Day. The mean day DM is the time lapse, averaged over one year,
between two meridian transits in the direction of the Sun, i.e., between two
consecutive noons.7

Nciv(g) = 365 + 1/4− 1/100 + 1/400 = 365.2425 d .

It differs from the tropical year by only 0.3 days per millennium. The Julian year was
defined byNjul = Nciv(j) in Sect. 6.10.

6If we compare these definitions of the year with the definitions of the different periods of
a satellite discussed in Chap. 6, the anomalistic year corresponds to the anomalistic period
Ta, while the tropical year corresponds to the nodal or draconitic period Td. The draconitic
year is defined in terms of the lunar motion.

7The word “meridian” comes from the Latin adjective meridianus, meaning “relating
to noon”, derived from meridies, ei, or “noon”. This noun is constructed from the locative
form *mediei die, “in the middle of the day”. The remainder d - d transformed to r - d by
a well-known linguistic process known as dissimilation.
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In practice, we have DM = 1 d. The mean day DM was no longer used to
define the second when it was demonstrated that the Earth’s rotation was
slowing down, which has consequences for the difference TAI −UT1.

• Sidereal Day. The sidereal day Dsid is the interval of time between two
meridian transits in the direction of the vernal point8:

Dsid = DM − 3m 55.9 s . (7.27)

The rate of rotation of the Earth is

Ω̇T = 1.002737909350795 revolutions per sidereal day . (7.28)

This is the value used in the present book.
By taking into account the (very small) variations in the Earth’s rotation,

the ratio α between the universal and sidereal time intervals is given by

α = Ω̇T + 5.9006× 10−11Tu − 5.9× 10−15T 2
u , (7.29)

where Tu, the time elapsed in a Julian century, is obtained by Tu = du/36,525,
with du the number of days elapsed since 1 January 2000, at 12 h.

• Stellar Day. The stellar day is the time interval between two meridian
transits in the direction of a fixed star.

The rate of rotation per stellar day is the quantity denoted by “rate of advance
of ERA” in Table 6.6:

Ω̇T stell = 1.00273781191135448 revolutions per stellar day . (7.30)

Angular Frequencies of the Motions

The duration of the tropical year in seconds can be written

Ntro = N ′
yr ×DM , (7.31)

8The sidereal day is the time taken by the Earth, it is daily rotation, to return to a
given direction which is not exactly fixed, since it follows the precessional motion of the
equinoxes. The duration of the sidereal day is therefore

DM × Ntro

Ntro + 1
= 86,164.09053083288 s ,

or 23 h 56min 04.0905 s. The duration of the stellar day is

DM × Nsid

Nsid + 1
= 86,164.098903691 s ,

or 23 h 56min 04.0989 s. We thus see that the sidereal day is related to the tropical year
and the stellar day to the sidereal year.



7.2 Motion of the Earth 263

where N ′
yr is the number of days in the tropical year and DM is 86,400 s. The

angular frequencies can then be expressed in radians per second in terms of
the duration of the tropical year:

Ω̇S =
2π

DM
N ′

yr , Ω̇T =
2π

DM

N ′
yr + 1

N ′
yr

. (7.32)

This implies the following relation between the angular frequencies of these
two motions of the Earth:

Ω̇T − Ω̇S =
2π

DM
. (7.33)

In degrees per day, this becomes

Ω̇T − Ω̇S = 360◦/day .

7.2.3 Motion of the Poles

If we represent on a map the successive positions of the virtual point where
the Earth’s axis of rotation cuts the ground surface, we obtain the polhody.9

This indicates the instantaneous pole. It manifests the motion of the Earth’s
crust relative to the axis of rotation.

This motion was discovered through astronomical observations, mainly
those of very long baseline interferometry (VLBI). Specific satellites, such as
LAGEOS and those, like SPOT, equipped with the DORIS system, are now
contributing, as we have seen in the discussion of terrestrial reference systems
in Sect. 3.6.

Polar motion has two main components:

• A roughly circular oscillation with a cyclically varying diameter and a pe-
riod of 14 months (435 days), discovered by Chandler in 1885.

• A slow and unpredictable drift of the average position of the pole.

In Fig. 7.6, the first component is represented by a dashed spiral for the period
2001–2006. The erratic displacements of the average position of the pole, or
the mean pole, are represented by a continuous curve for the period 1900–
2000. The unit is the second of arc, which corresponds to 1852/60 ≈ 31m at
the surface of the Earth.

The diameter of the polhody on the Chandler cycle can reach 0.5′′, or
about 15m. With the advent of the GPS and the possibility of measuring

9The word polhodie was coined by the French mathematician L. Poinsot in 1851 from the
Greek � �)�	� ��, meaning “pivot” and � �#)	� ��, meaning “way”. In principle, a Greek
word like hodos only retains its initial aspiration (rough breathing) when it combines with
the previous letter to form an aspirated letter, e.g., in the words “anode” and “cathode”.
One should write “polode”.
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Fig. 7.6 :Displacement of the mean pole (continuous curve) between 1900 and 2000.

Detail of the polhody (dashed curve) between 2001 and 2006. Units: 1 arcsec (or

31m). Vertical axis: along the zero meridian, pointing down towards Greenwich.

Horizontal axis: along the meridian orthogonal to the zero meridian, pointing left

toward the point on the equator at 90◦ W. Credit: IERS Earth Orientation Centre.

positions to within a meter, it has naturally become essential to take the
polar motion into account. However, in the present book, we shall not look
further into this issue.

7.2.4 Motion of the Orbit and Earth

Later, we shall often need to compare the motion of a satellite, mainly
characterised by the two angular speeds n (mean motion) and Ω̇ (nodal pre-
cession rate), with the two motions of the Earth discussed above.

Daily Orbital Frequency ν

We denote the daily orbital frequency of the satellite by ν. Strictly speak-
ing, it is not a frequency, but rather a (dimensionless) number, representing as
it does the number of round trips per day, counted from the ascending node.
This quantity is related to the draconitic (nodal) period by

ν = νd =
DM

Td
. (7.34)

With (7.33) and the definition of nd in (6.103), we obtain

ν =
nd

Ω̇T − Ω̇S

. (7.35)
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We use the symbol P for the (dimensionless) number representing the nodal
precession in round trips per year.10 We have

Ω̇ =
2π

DM

P

N ′
yr

. (7.36)

We thus obtain the following relations in terms of P :

Ω̇T − Ω̇ =
2π

DM

(
1 +

1− P

N ′
yr

)
, (7.37)

Ω̇S − Ω̇ =
2π

DM

1− P

N ′
yr

. (7.38)

We shall also need to compare Ω̇T − Ω̇ with nd. We have

Ω̇T − Ω̇

nd
=

1

ν

(
1 +

1− P

N ′
yr

)
. (7.39)

The following two expressions for the quantity P are particularly useful:

P =
DM

2π
N ′

yrΩ̇ , (7.40)

P =
Ω̇

Ω̇S

. (7.41)

The last relation merely reformulates the definition of P .
We also define the frequency νa, which is the number of revolutions made

by the satellite every day, counted from the perigee. It is related to the anoma-
listic period by

νa =
DM

Ta
. (7.42)

This is the quantity published by space organisations like NORAD to calculate
the orbital elements.

Daily Recurrence Frequency κ

We use κ to denote the daily recurrence frequency. This dimensionless
quantity, which will be important in the study of recurrent orbits in Chap. 11,
is defined by

κ =
nd

Ω̇T − Ω̇
. (7.43)

It is related to the daily orbital frequency ν by

ν

κ
=

Ω̇T − Ω̇

Ω̇T − Ω̇S

= 1 +
1− P

N ′
yr

. (7.44)

10This quantity is perhaps more meaningful than Ω̇ expressed in radians per second. To
avoid any confusion over units, we have used P for this quantity, expressed in round trips
per year, whereas other quantities will be expressed in SI units, unless otherwise stated.
The quantities P and ν, like νa and κ a little later on in our discussion, are ratios of angular
frequencies, so they are indeed dimensionless numbers.
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7.3 Apparent Motion of the Sun

The aim in studying the apparent motion of the Sun around the Earth is
to represent the direction of the Sun and to understand different notions of
solar time, viz., apparent (or true) and mean solar time.

7.3.1 Celestial Sphere and Coordinates

On the celestial sphere,11 illustrated in Fig. 7.7, the equator and the ecliptic
(the Sun’s trajectory) intersect at two points. The point corresponding to the
direction of the Sun when its declination crosses zero from below is the vernal
point, traditionally denoted by γ. It corresponds to the spring equinox.12 The
dihedral angle between these two planes, known as the obliquity, is equal to
ε = 23◦26′21′′ = 23.44◦.

The direction of the Sun can be defined as follows, in two coordinate
systems with origin at the center of the Earth.

P

γ

O

S

S�

z
Fig. 7.7 : Celestial

sphere, with vernal

equinox (γ), the Sun

(S), the equatorial

plane OγS′, the ecliptic

OγS, the celestial

north pole P , and the

meridian PSS′. In the

spherical triangle γSS′,
the arc γS represents

the celestial longitude

l, the arc γS′ the right

ascension α, and the

arc SS′ the declination

δ. The angle at γ is

the obliquity ε and

the angle at S′ is a

right-angle.

11One commonly represents directions in space by means of points on a sphere with
arbitrary center and radius, called the celestial sphere. With any particular direction, one
associates the point of intersection of the celestial sphere and the straight line in that
direction with origin at the center of the sphere.

12The word “vernal” comes from the Latin vernalis, the adjective derived from ver, veris,
meaning “spring”.
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(a) Ecliptic Coordinates. The reference plane is the plane of the Sun’s
apparent trajectory during its annual revolution, known as the plane of the
ecliptic, or just the ecliptic. The origin of these coordinates is taken at the
vernal equinox. The angle of azimuth gives the Sun’s longitude l, also called
the celestial longitude or ecliptic longitude. The height angle gives the Sun’s
latitude b, called the celestial latitude or ecliptic latitude. By definition, b = 0
corresponds to the ecliptic itself.

(b) Celestial Coordinates. The plane of reference is the Earth’s equatorial
plane. The coordinate origin is taken at the vernal equinox. The angle of
azimuth is the right ascension α, the dihedral angle between the meridians in
the direction of the Sun and the direction of the vernal equinox. The height
angle is the declination δ, which is the angle between the direction of the
Sun and the reference plane. By definition, the right ascension is related to
the hour angle H and the apparent solar time defined below. Concerning the
declination, it varies during the year in an almost sinusoidal manner, between
the bounds δ = ε at the summer solstice and δ = −ε at the winter solstice.
The values δ = 0 are attained at the equinoxes. We shall return to this point
below (see Fig. 7.10).

7.3.2 Hour Angle

We consider an arbitrary point on the Earth (apart from the poles), defined
by its geocentric coordinates (λ, ψ) in �T. The meridian plane through this
location, denoted by M, is the half-plane containing the polar axis and this
point. At a given time, we define the meridian plane of the Sun’s direction,
denoted by S, as the half-plane containing the polar axis and this direction,
with longitude λS. The dihedral angle between these two half-planes is called
the hour angle, denoted by H :

H = dihedral angle (M,S) = λ− λS . (7.45)

The angle H is measured in the retrograde sense. This convention can be
explained as follows. The idea is that the variations in H and the time should
occur in the same sense during the day, so that H is negative in the morning,
zero at midday, and positive in the evening.

The hour angle (which is in fact an azimuthal angle) can be defined for
an arbitrary direction. When it is defined specifically for the direction of the
Sun, as here, it is also called the apparent (or true) solar time. The hour angle
and the apparent solar time are angles, generally given in degrees or hours,
where 1 h corresponds to 15◦, since 24 h corresponds to 360◦.

7.3.3 Equation of Time

The apparent solar time defined by the apparent motion of the Sun is a
“natural” idea. It is the time given by a sundial. But this motion does not
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have the regularity required to form the basis for a time scale. It would be
regular, or uniform, if the Earth’s orbit were circular and if its plane contained
the Earth’s equatorial plane.

Equation of Center

We consider the position of the Sun as defined by ecliptic coordinates. The
Sun’s trajectory relative to the Earth is not circular, but elliptical. The celes-
tial longitude l does not therefore vary in a uniform manner, but corresponds
to the true anomaly v, with a different origin. Indeed,

l = v − vγ , (7.46)

taking the origin of v at the perigee, which corresponds on average to 3 Jan-
uary, and the origin of l at the vernal equinox, which corresponds on average
to 21 March. The true anomaly13 of the vernal equinox is

vγ = 77◦ . (7.47)

The regular motion is characterised by the mean anomaly M , proportional
to the time elapsed since the passage at perigee. The difference, induced by
the nonzero eccentricity, between the elliptical and the uniform motions is
characterised by l −M or v −M , which are equal in value up to a constant.
We set

EC = v −M , (7.48)

a quantity known as the equation of center, already mentioned in Chap. 4,
where it was defined by (4.90) in the discussion of Keplerian motion.

When e is small, as happens for the Earth orbit (e = 0.0167), we have
seen that this quantity is given by (4.98), viz.,

EC ≈ 2e sinM . (7.49)

The function EC is sinusoidal, with period one year and maximum ECm given
by

ECm = 2e = 0.0334 rad .

Its graph is shown by the dashed curve in Fig. 7.8. It is zero twice a year, at
the perigee (3 January) and at the apogee (5 July). It reaches its maximum
on 3 April and its minimum on 5 October.

13Keplerian elements with respect to the mean ecliptic and equinox of J2000.0, for Earth–
Moon Barycentre [JPL-DE405]: Ω = 0, ω = 102.93768−180 = −77.06232, vγ = −ω ≈ 77◦.
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Reduction to the Equator

We now consider the Sun’s position as defined by celestial equatorial co-
ordinates. The equatorial plane makes an angle ε with the ecliptic, as defined
above. It follows that the right ascension α does not vary uniformly with the
longitude l.

The celestial sphere is represented in Fig. 7.7, where O is the center of the
Earth, P the celestial north pole, γ the vernal equinox, S the position of the
Sun, and S′ the intersection of the meridian half-plane of S with the celestial
equator. Concerning the spherical triangle γSS′, the angles and sides (arcs)
are:

angle γ = ε , angleS′ = π/2 ,




γS= l ,



γS′= α ,



SS′= δ .

We would like to express α as a function of ε and l. Using (ST XIII), we obtain

cot l sinα = cosα cos ε , hence sinα cos l = cosα sin l cos ε .

Expressing cos ε in terms of the tangent of the half-angle, this implies that

sinα cos l
(
1 + tan2

ε

2

)
= cosα sin l

(
1− tan2

ε

2

)
,

whence

sin(α− l) = − tan2
ε

2
sin(α+ l) . (7.50)

The proximity of α and l is thus expressed in terms of the obliquity ε, and we
may write

α ≈ l − tan2
ε

2
sin 2l . (7.51)

The reduction to the equator is defined as

ER = α− l . (7.52)

This characterises the discrepancy, introduced by the obliquity, between the
true motion and uniform motion.

In the argument of the sine function, we may put l ≈ M −vγ , which yields

ER ≈ − tan2
ε

2
sin 2(M − vγ) . (7.53)

This function ER is sinusoidal, with biannual period, and has a maximum
ERm given by

ERm = tan2
ε

2
= 0.0431 rad .

It goes to zero four times a year, at the two equinoxes (21 March and 23
September) and at the two solstices (21 June and 22 December). Its graph is
shown by the dash-dotted curve in Fig. 7.8.
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Equation of Time

Consider the apparent motion of the Sun relative to the Earth. Its position
is defined by the right ascension α. The position that it would have in a
uniform motion of the same period is defined by the mean anomalyM . Taking
the same origin, viz., the vernal equinox, we must therefore compare α, which
characterises the apparent solar time, with M − vγ , which characterises the
mean solar time. The difference between these two angles is called the equation
of time ET :

ET = α− (M − vγ) = α− l+ l −M + vγ = (α− l) + (v −M) .

This shows that the equation of time is the sum of the two quantities EC and
ER defined above:

ET = EC + ER . (7.54)

It thus has the value

ET = 2e sinM − tan2
ε

2
sin 2(M − vγ) . (7.55)

Recall that M = n(t − tp), with n = 2π/T , where T is equal to one year
(strictly speaking, one anomalistic year). The mean value of ET over the year
is zero by definition.

To the accuracy required here, it is convenient to consider the period equal
to one civil year of 365 days and to characterise M by the day D of the year,
taking the beginning of the year as zero point, i.e., D = 1 for 1 January,
D = 2 for 2 January, . . . , D = 365 for 31 December. Then, with the passage
at perigee for D = 3, and noting that 78 ≈ 77× 365/360, we have

M =
360

365
(D − 3) , vγ = 77 (7.56)

M − vγ =
360

365
(D − 3)− 77 =

360
[
(D − 3)− 78

]
365

=
360

365
(D − 81) . (7.57)

To express ET in time units, we convert radians to minutes of time. In one trip
round the orbit, the right ascension changes by 24 h, so 2π rad is equivalent to
1,440min. Finally, expressing the arguments of the sine function in degrees,
we obtain

ET(D)[min] = 7.64 sin

[
360

365
(D − 3)

]
− 9.87 sin

[
720

365
(D − 81)

]
. (7.58)

With this simplified formula, which is quite adequate for most situations,
we observe that the two effects decouple in ET. The eccentricity affects EC

and the obliquity affects ER. This is due to the fact that the quantities e
and tan2(ε/2) are much smaller than unity. Extremely detailed and precise
expressions for ET can be found in the astronomical literature.

Figure 7.8 shows a graph of ET calculated using (7.58), noting the maxima,
minima, and zeros. In particular, we see that the equation of time varies with
an amplitude of one quarter of an hour and goes to zero four times a year.
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Day D Day+month ET [min]

45 14 Feb +14.30
107 17 Apr 0
135 15 May −3.60
166 15 Jun 0
207 26 Jul +6.37
244 01 Sep 0
305 01 Nov −16.43
359 25 Dec 0

Fig. 7.8 :Graph of the equation of time as a function of the day of the year D. The

equation of time ET is the sum of the equation of center EC and the reduction to

the equator ER. All these quantities are expressed in minutes. The table shows the

maxima, minima, and zeros of ET with corresponding dates. These dates may vary

by one or two days on either side, depending on the year.

Note. The sign convention in the definition of ET sometimes changes, depend-
ing on the field of study, as does the convention for geographical longitudes.
One must therefore exercise some caution over the sign used for calculations.
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7.3.4 Solar Time

Universal Time and Mean Solar Time

Universal time UT, or more exactly UT1 (see Chap. 6), is related to the
Earth’s rotation. At an arbitrary location with longitude λ, we define the local
mean solar time LMT by

LMT = UT +
λ

15
(λ in degree, time in hour) , (7.59)

with the convention for the longitudes (−W/+E) already mentioned. UT is
thus the mean solar time at the Greenwich meridian,14 i.e., the zero meridian.

Mean Solar Time and Apparent Solar Time

With the above calculations,15 we see that the equation of time, the sum
of EC and ER, is the amount (see Fig. 7.9) by which the local mean solar time
(LMT) exceeds the local apparent solar time (LAT):

ET = LMT− LAT . (7.60)

The civil time at a given location is the mean solar time at this location
increased by 12h. Throughout the rest of this book, the solar times we refer
to will be civil times. Noting the value at noon, we have the relation

H = 0 ⇐⇒ LAT = 12 h , LMT = 12 h +ET .

In the following, t will denote the time in UT and τ the corresponding time
in LMT. At a place with longitude λ, we then have

τ(t, λ) = τ = t+
λ

15
. (7.61)

Time on the LMT scale is also called local time, while time on the LAT scale
is called solar time.

Example 7.4 The Russian satellite Resurs-O1-4 was launched on 10 July
1998, at 06:30 UT from the Baikonur base in Kazakhstan. Calculate the time
on the LMT and LAT time scales at this location and time.

� The geographical coordinates of the Baikonur space center are 68◦16′ E;
45◦38′ N. Hence, for the longitude λ = +68.27◦, and the local mean time is

LMT+ 68.27/15 = UT + 4.551 = 06h 30min + 4h 33min = 11h 03min .

14The old name of Greenwich Mean Time (GMT) is judged inappropriate by astronomers
and has been out of use for several decades. It should be avoided, even though it still turns
up in certain contexts.

15To these irregularities in the apparent solar time correspond variations in the length
of the apparent solar day, i.e., the time elapsed between two consecutive solar noons. This
varies between 23 h 59min 39 s and 24 h 00min 30 s.



7.3 Apparent Motion of the Sun 273

Fig. 7.9 :The equation of time specifies the difference between the time we read on a

sundial (LAT) and the time we read on our watch (effectively LMT). The author’s

own sundial in Angäıs (Pyrénées–Atlantiques, France). Photos: M. C.

The date enters the equation of time: ET(D = 191) = 5.2 min. We thus obtain
the apparent solar time as

LAT = LMT− ET = 11h 03 min− 0 h 05min = 10h 58min .

In conclusion, at Baikonur, the time 06:30 UT corresponds to 11:03 LMT and
10:58 LAT. �

7.3.5 Declination

The solar declination is very simply expressed as a function of the Sun’s
celestial longitude l and the obliquity ε. Considering the right-angled spherical
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triangle shown in Fig. 7.7 and using the values of the angles given in the figure
caption or the section describing the reduction to the equator, we may use
the sine rule (ST VIII) from spherical trigonometry to show that

sin δ = sin l sin ε . (7.62)

Clearly, we obtain the declination δ in terms of the date (via the mean
anomaly M). Using the equation of center, we have from (7.46), (7.47), and
(7.49),

l = v − vγ = M + 2e sinM − vγ = (M − vγ) + 2e sinM . (7.63)

We use the day of the year D (D = 1 to D = 365). With (7.56) and (7.57),
we have seen how M and M − vγ are related to D. For angles expressed in
degrees, as is usual, we must give the eccentricity e in degrees, multiplying it
by the coefficient of conversion from radians to degrees:

e = 0.0167× 180/π = 0.96◦ .

This gives

sin δ = sin ε sin

[
360

365
(D − 81) + 1.92 sin

360

365
(D − 3)

]
, (7.64)

or putting in the numerical value of the obliquity,

δ(D) = arcsin

{
0.39795 sin

[
360

365
(D − 81) + 1.92 sin

360

365
(D − 3)

]}
. (7.65)

We recall that the value from (7.49) is approximate (although a very good
approximation here). Equation (7.65) gives the declination to within 0.2◦,
which is quite adequate when studying solar angles, with dates defined in a
whole number of days. (The apparent diameter of the Sun is 0.5◦, and the
variation of δ is 0.4◦ a day near the equinoxes.)

The variation of the declination with date is shown in Fig. 7.10. The signif-
icant dates are indicated. Note that the lengths of the seasons, as defined by
90◦ intervals of solar longitude, are unequal. The passage at perigee (3 Jan-
uary) is, in our century, close to the winter solstice (22 December), and the
seasons close to these dates (autumn and winter) are shorter than the seasons
near the passage at apogee. This is just an example of Kepler’s second law,
the areal law.

7.3.6 Julian Day, Julian Date

In order to calculate the time difference between two given dates, or to
identify a particular date in history without ambiguity, we use the Julian
day. The days are counted one after the next, without bringing in reference
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54 23 Fev −10.00
80 21 Mar 0.00 δ = 0 Spring equinox

106 16 Apr +10.00 93
141 21 May +20.00
173 22 Jun +23.44 δ = +ε Summer solstice
205 24 Jul +20.00 93
240 28 Aug +10.00
266 23 Sep 0.00 δ = 0 Autumn equinox
293 20 Oct −10.00 90

326 22 Nov −20.00
356 22 Dec −23.44 δ = −ε Winter solstice

Fig. 7.10 :Solar declination δ as a function of the day D. The table shows key values

of δ with the corresponding value of D. The obliquity of the Earth is ε = 23.44◦.
Lengths of seasons are given in days.
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to month or year, and without discontinuity when a change is made in the
calendar. The zero point is taken in a sufficiently remote past to incorporate
historical events.16

The Julian date (JD) corresponds to the Julian day increased by the frac-
tion of the day as counted from 12h. On 1 January 2000, we then have the
following correspondence between the date of the Gregorian calendar and the
Julian date:

2000-01-01 12:00:00 ⇐⇒ JD = 2,451,545.0 . (7.66)

We shall use this notion of Julian date for the NORAD orbital elements in
Chap. 8, and for calculations relating to the orbit of Mars in Chap. 16.

One can also use the modified Julian date (MJD), obtained from the Julian
date as follows17:

MJD = JD− 2,400,000.5 . (7.67)

7.4 Geosynchronicity

7.4.1 Definition

We consider the Earth’s rotation and the rotation of a satellite S in the
Galilean frame �. The satellite is said to be geosynchronous if its motion

16Joseph Juste Scaliger (1540–1609), the French scholar, proposed a new chronology in
his De emendatione temporum (On the correction of time) in 1583. His idea was to produce
a continuous count of the years in such a way as to cover all the great civilisations. He called
this the Julian system, by analogy with the Julian calendar (introduced by Julius Caesar).
The Julian numbering system, quoted by Kepler, was used by astronomers from 1860. They
then added the idea of Julian day and Julian date. Scaliger considered the cycles involved in
calculating the date of Easter, which was a major concern for astronomers in the Christian
world:

• The solar cycle (or dominical cycle) of 28 years (7 times 4, with 7 being the number of
days in the week, and there being one leap year every 4 years).

• The lunar cycle (the golden number, or the Metonic cycle) of 19 years (235 lunations in
19 years).

• The cycle of indiction, of 15 years (a number of historical rather than astronomical
significance).

To each year there corresponds a set of three numbers, one for each cycle. Every 28×19×15 =
7,980 year, the years return to the same values for the three cycles (28, 19, and 15 being
coprime). Scaliger chose as origin the year when the numbers of the cycles were all equal
to 1. In an imaginary Gregorian calendar, this corresponds to the date Monday 1 January
−4712, 12 h. This year (4713 bc) is a leap year.

17A total of 2,400,000 days are removed from the Julian date, giving an origin on 17
November 1858, and the origin is taken at midnight rather than at midday.
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around the Earth and the rotation of the Earth about its axis have the same
angular frequency, i.e., if the mean motion n of the satellite is equal to Ω̇T, i.e.,

geosynchronous satellite ⇐⇒ n = Ω̇T . (7.68)

This condition can be met by a satellite whose orbital elements e and i are
nonzero. However, in practice, what one usually seeks in a geosynchronous mo-
tion is that the projection S0 of the satellite position on the Earth’s surface
should be immobile (in the frame �T). The satellite is then said to be geosta-
tionary and this point S0 is called the subsatellite point of the geostationary
satellite.

To achieve this, the vectors representing the Earth’s rotation and the satel-
lite’s rotation should be equal. Concerning their directions, they must there-
fore be collinear. As the Earth’s rotation vector lies along the polar axis Oz,
the same must also be true for the rotation vector of S. Since the orbit of S
is planar and this plane must contain the center of attraction O, the center of
the Earth, it must lie in the equatorial plane (whence i = 0). The magnitudes
of these vectors are equal since the satellite is geosynchronous. As the value of
Ω̇T is constant, the motion of S must be uniform, whereupon the subsatellite
point will be stationary. The orbit of S must therefore be circular, i.e., with
constant altitude:

geostationary satellite ⇐⇒

⎧⎨
⎩

n = Ω̇T ,
i = 0 ,
h = constant .

(7.69)

A geostationary satellite is thus geosynchronous.18 The converse is not always
true, e.g., Tundra-type orbit. Its position is determined by the longitude of the
subsatellite point, called the parking longitude of the geostationary satellite.

7.4.2 Calculating the Orbit

To calculate the radius of the circular orbit of S, we begin by considering
the value of the Keplerian mean motion. Setting n0 = Ω̇T, we obtain

a30 =
μ

Ω̇2
T

= 7.4960128× 1022 ,

a0 = 42,164.159 km , h0 = 35,786 km .

18In �, the satellite is synchronous, whilst in �T, it is stationary. The word geosyn-
chronous, meaning “synchronised with the Earth”, takes its origins from the Greek roots
and is more satisfying than the word “geostationary”, which is a Greek–Latin hybrid.
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Using the iterative method to obtain the altitude from the period, as illus-
trated in Example 7.3, we obtain

a1 = 42,164.199 km , h1 = 35,786 km .

At this altitude, as can be seen from Fig. 6.1, the main perturbation no longer
comes from the J2 term in the geopotential, but from the lunisolar potential.
Iterative calculations like those considered previously are no longer suited
to the problem. By studying the various perturbations (indeed, rather weak
compared with the leading term), one can extract the precise value of the
orbital radius, which we shall indicate here with a subscript GS to denote
geostationary:

aGS = 42,165.785 km , hGS = 35,788 km , (7.70)

or as a function of the Earth’s equatorial radius R :

aGS = 6.611R , hGS = 5.611R . (7.71)

In terms of the reduced distance η, we have

ηGS =
aGS

R
= 6.611 . (7.72)

7.4.3 Geostationary Satellites

It is easy to grasp the importance of the geostationary satellite. The point
is that it always “views” the same regions, and with the same geometry (as we
shall see in Chap. 14). For communications satellites and Earth-observation
satellites, these are crucial points. For example, such a position allows a
weather satellite to make a “film” in real time, with one image every 15min,
showing the development of cloud formations.

It is just as easy to see the drawbacks of this kind of orbit. A geostationary
satellite cannot view the whole of the Earth’s surface, either in longitude
(which explains why one must arrange several of them at different longitudes),
or in latitude (regions above 55◦ are difficult to attain in this way). Moreover,
one is forced to view from a great distance.

Historical Note on Geosynchronous Satellites

Geosynchronous orbits have been a target since the beginnings of the space
age, starting with the US satellite series called Syncom (Synchronous Com-
munications Satellite), experimental communications satellites19 (mass 39 kg).
The first, Syncom-1, i = 33.3◦, was lost at launch. The next, Syncom-2,

19Launch dates: Syncom-1 on 14 February 1961, Syncom-2 on 26 July 1963, and Syncom-3
on 19 August 1964.
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i = 32.8◦, was the first geosynchronous satellite. It provided the first tele-
phone link between the Bight of Benin and the United States, on 31 July
1963 (see the upper panel of Fig. 9.16). Syncom-3 can be considered as the
first geostationary satellite, since its inclination was i = 0.1◦. It is thanks to
this satellite that the Tokyo Olympic Games of 1964 could be followed live in
the United States.

Satellites in the subsequent ATS series (Applications Technology Satellite)
were already much bigger (mass 930 kg for ATS-6).20 The Intelsat series (In-
ternational Telecommunications Satellite Organisation) was the first family of
commercial communications satellites.21

The first images from geostationary satellites were those taken by ATS-1
and ATS-3, but the first meteorological satellites on this orbit belonged to
the SMS series (Synchronous Meteorological Satellite), launched in 1974 and
1975, SMS-1 with i = 15.5◦ and SMS-2 with i = 12.0◦. They were followed by
the GOES series, from GOES-1 (SMS-3 operational) at i = 12.4◦ to GOES-7
at i = 1.2◦. For the GOES-Next series, starting with GOES-8, orbits were
equatorial, with i ≈ 0.2◦.

The first Soviet geostationary satellite was placed in orbit much later,
such satellites being of little use to a country like Russia. This was Kosmos-
637, launched on 26 March 1974 with i = 14.5◦. Shortly afterwards, the
French–German communications satellite Symphonie-1 was launched, on 19
December 1974, with i = 14.9◦. The first satellite of the European organisation
ESA was METEOSAT-1, launched in 1977 with i = 11.9◦. Since 1990, these
meteorological satellites have been placed on near-equatorial (i < 1.5◦), near-
circular (e ∼ 2× 10−4) orbits.

On 1 January 2010, there were more than a 1,000 satellites on near-
geostationary geosynchronous orbits (in fact, 1,186 objects measuring more
than 1m across), including 381 in operation, and among them, 239 for com-
munications and 16 for meteorology.

Regarding the problem of solar eclipse faced by geostationary satellites,
see Chap. 10.

20Apart from two failures, for ATS-2 and -4, all the satellites were placed on slightly
inclined orbits. Launch dates: ATS-1 on 7 December 1966, i = 14.5◦, remained operational
for 18 years, until April 1985, ATS-3 on 5 November 1967, i = 14.5◦, ATS-5 on 12 August
1969, i = 14.5◦, and ATS-6 on 30 May 1974, i = 13.1◦.

21The first in the series was Intelsat-1 F-1, also known as Early Bird, launched on 6 April
1965, i = 14.7◦ (stationed over the Atlantic to establish “fixed” telephone links between
Europe and the United States). Since then the Intelsat satellites have been launched on a
regular basis and placed over the Atlantic, Indian, and Pacific oceans. An intergovernmental
consortium set up in 1964, Intelsat became a private company in 2001. After taking over
PanAmSat in 2006, Intelsat has 55 satellites in operation at the time of writing (2013).
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7.4.4 Drift of the Geostationary Orbit

The geostationary satellite undergoes the effects of various perturbations,
causing it to drift from its course as time goes by. In other words, the sub-
satellite point S0 is no longer exactly the assigned reference point. There are
two kinds of drift: longitudinal drift and latitudinal drift.

Longitudinal Drift

For meteorological satellites, the longitudinal drift of S0 can be compen-
sated, if it is not too great, by correcting the transmitted image. A very slight
variation in a causes this shift and the satellite is then no longer geosyn-
chronous. If a increases, the period also increases and the mean motion de-
creases. Hence, the satellite rotates less quickly than the Earth in �, whence
the subsatellite point S0 moves westward in �T. Likewise, if a decreases, S0

moves eastward. This phenomenon is shown schematically in Fig. 7.11 (see
also the lower panel of Fig. 5.3).

Geostationary
Orbit

Earth

t = t0

t = t1

Fig. 7.11 :Orbit of a geostationary satellite and two other satellites at higher and

lower altitudes than those required by geosychronicity. At time t = t0, the three

satellites have the same subsatellite point. At time t = t1, the subsatellite point of

the lowest satellite has slipped eastward, while that of the highest satellite has slipped

westward, relative to the subsatellite point of the geostationary satellite. The diagram

shows the Earth viewed from a point located high above the North Pole in the Galilean

frame 
.
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We shall calculate the displacement Δ1l of the subsatellite point over one
day for a variation Δa in the orbital radius (or altitude). In �, the subsatellite
point of a geostationary satellite moves a distance l between times t0 and t1,
where

l = RΩ̇T(t1 − t0) .

In �, the subsatellite point of a satellite with mean motion n moves through
a distance l′ in the same time, where

l′ = Rn(t1 − t0) .

The difference measures the deviation in �, or in �T, which is the drift we
seek here:

l′ − l = R(n− Ω̇T)(t1 − t0) .

If the second satellite is close to the geostationary orbit, with a = aGS +Δa
and n = Ω̇T +Δn, we have the relation

dn

n
= −3

2

da

a
=⇒ Δn

Ω̇T

≈ −3

2

Δa

aGS
,

and setting Δl = l′ − l, we have

Δl = RΔn(t1 − t0) = −3

2
Δa

R

aGS
Ω̇T(t1 − t0) .

The value ηGS = aGS/R is determined by (7.72) for a geostationary satellite.
If we consider a time interval of exactly one day, t1 − t0 = DM, we may

express Ω̇TDM using (7.32). This gives Δ1l (the subscript 1 indicates that we
are considering a time interval of 1 day), the displacement of the subsatellite
point over one day:

Δ1l = −3

2

1

6.611
2π

366.25

365.25
Δa = −1.4295Δa (per day) . (7.73)

The sign here is valid if we apply the usual conventions concerning the longi-
tudes for Δl, i.e., negative for west and positive for east (−W/+ E).

We now apply this to two examples. In the first, we calculate the drift of
a satellite that is not exactly at the required altitude, and in the second, we
show how one may take advantage of this drift to modify the position of the
satellite.

Example 7.5 Calculate the longitudinal drift over one week of the subsatellite
point of a geostationary satellite whose altitude has increased by 100m.

� With Δa = Δh = 100m, (7.73) gives Δl = −143m/day. The position of the
subsatellite point on the ground thus moves 1.0 km westward in one week. �
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Example 7.6 As part of the INDOEX project (Indian Ocean Experiment),
the European organisation of meteorological satellites EUMETSAT decided to
move the satellite METEOSAT-5 from its standby position (10 ◦W) to a new
position above the Indian ocean (63 ◦E). The method used consisted in shifting
the satellite to a lower orbit, whereupon it would drift eastward. Indeed, leaving
its initial geostationary position on 14 January 1998, it arrived at its new
geostationary position on 19 May 1998. Calculate how much the radius of the
orbit was adjusted to make this transfer.

� The departure and arrival dates were D = 14 and D = 139, respectively,
separated by 125 days. Since it takes 12 h to go from one orbit to the other,
we consider that the transfer took 124 days. The distance between the two
positions is 73◦. The satellite therefore had to move through 73/124 = 0.589◦

per day relative to the Earth, which corresponds to 65.53 km per day on the
ground track. Since the shift was eastward, we thus have Δl = 65.53km/day.
Applying (7.73), we find

Δa = − Δl

1.4295
= −45.84 km .

The satellite was therefore placed on an orbit 46 km lower. Note that only the
two maneuvers at the beginning and the end required energy input, while the
trip itself cost nothing.22 �

Latitudinal Drift

Latitudinal variations of S0 (in which S therefore moves slightly outside the
equatorial plane under the action of gravitational forces of the Moon and Sun)
show up through a distortion of the ground track. The orbit is slightly tilted
with respect to the equatorial plane (i �= 0). During the day, the subsatellite
point is not fixed but varies between latitudes ψ = +i and ψ = −i. If the orbit
remains circular, the intersection of the straight line OS (joining the center
of the Earth O to the satellite S) with the horizontal equatorial plane of the
node of the orbit traces out a figure of 8, as can be seen in Fig. 9.16 (upper).
This is not a Bernoulli lemniscate (see Example 8.4).

7.4.5 Stationkeeping

The art of maintaining geostationary satellites in position has been the
subject of considerable scientific effort. On the one hand, the problem requires

22The speed of the transfer does have an energy cost. The faster one needs to go, the
lower the transfer orbit should be. For each transfer maneuver of METEOSAT-5 in the
above example, which required two burns, one on the starting orbit and one on the final
orbit, EUMETSAT indicate that 300 g of fuel were burnt. The satellite was carrying 6 kg
of propellant before the move.
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specially adapted tools, for the geostationary orbit is highly specific, with
e = 0 and i = 0, whence the angles Ω and ω are undetermined. On the other
hand, the economic stakes are significant. The satellites on these orbits are
very costly and may represent huge profits, so there is no question of allowing
them to drift out of orbit.

Stationkeeping involves repositioning a satellite within its “window” after
a certain time. (A typical window would constitute about 1◦ in the east–west
direction, and −0.1◦ to +0.1◦ in the north–south direction.) Stationkeeping
operations require maneuvers in which fuel is burnt, and this necessarily puts
a limit on the lifetime of the satellite. North–south control represents the
greater part of the fuel consumption involved in stationkeeping.23

The orbit of a geosynchronous satellite evolves as time goes by:

• The semi-major axis a evolves under the effect of tesseral terms in the
geopotential.

• The eccentricity e (since the distorted orbit is no longer circular) changes
under the influence of solar radiation and the lunisolar attraction.

• The inclination i is affected mainly by the Sun and Moon, since the plane
of the ecliptic in which the Sun appears to move is tilted at 23◦ to the
plane of the satellite orbit (the Earth’s equatorial plane), and the plane of
the lunar orbit also lies in the plane of the ecliptic, to within 5◦.

We now give closer examination to the evolution of a.

Longitudinal Acceleration

If a geostationary satellite is left to evolve without further intervention, it
will tend to move toward points of specific longitude on the Earth’s equator,
depending on where it started out. This effect is largely a manifestation of
the tesseral harmonic P22. The terms C22 and S22 are nonzero, whereas they
are taken as zero in any model with cylindrical symmetry [see (3.24)]. We
shall calculate this drift by ascertaining its longitudinal acceleration, first by
expanding the geopotential to second order, then going to third order.

(a) Second Order Expansion of the Geopotential. We return to (3.23),
in which we set C11 = 0 and S11 = 0. (As we have seen, this comes from the
fact that the coordinate origin is chosen at the center of mass.) Introducing
the Legendre functions and polynomials, we obtain

23For the satellite TDF-1, north–south control represents 95% of its consumption.
Launched in 1988, this satellite was held in position throughout its period of use. It was
then placed in a graveyard orbit, where it was allowed to drift.
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U(r, λ, ψ) =
μ

r

{
1 +

(
R

r

)2
[
C20

3 sin2 ψ − 1

2
(7.74)

+ (C21 cosλ+ S21 sinλ) 3 sinψ cosψ

+ (C22 cos 2λ+ S22 sin 2λ) 3 cos
2 ψ

]}
.

For a satellite in equatorial orbit, i.e., with ψ = 0, and replacing −C20 by J2,
as we have seen in (3.26), the potential is

U(r, λ, 0) =
μ

r

{
1 +

(
R

r

)2 [
J2
2

+ 3(C22 cos 2λ+ S22 sin 2λ)

]}
, (7.75)

which can be written in the form

U(r, λ, 0) = U0 +R(r, λ, 0) . (7.76)

With U = U0 = μ/r, we obtain the radius r = a0 of the Keplerian geostation-
ary orbit.

Considering

U =
μ

r

[
1 +

(
R

r

)2
J2
2

]
,

we obtain the value a1 calculated previously, which we denote here by a. It is
thus the perturbing potential R′ given by

R′(a, λ) = 3
μ

a

(
R

a

)2

(C22 cos 2λ+ S22 sin 2λ) (7.77)

that causes the drift in longitude. We set

J22 =

√
C22

2 + S22
2 =

√
5

12

√
C∗

22
2 + S∗

22
2 , (7.78)

and introduce the quantity λ22 such that

C22 = J22 cos 2λ22 , S22 = J22 sin 2λ22 ,

whereupon the potential R′ can be written

R′(a, λ) = 3
μ

a

(
R

a

)2

J22 cos 2(λ− λ22) . (7.79)
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This longitude λ22 is thus simply obtained from C22 and S22, coefficients
which account for the fact that the equipotential line at the equator is not a
circle but an ellipse:

λ22 =
1

2
arctan

S22

C22
=

1

2
arctan

S∗
22

C∗
22

. (7.80)

For the Earth (the EGM2008 or EIGEN models give the same values), we
have

J22 = 1.8156× 10−6 , λ22 = −14.93◦ .

The Lagrange equations (see Table 6.2) give the time dependence of a under
the effects of the perturbation:

da

dt
=

1

na

(
2
∂R
∂M

)
. (7.81)

In a uniform circular motion (as is the case, to first order, for a geostationary
satellite), the mean anomalyM and the longitude λ are equal up to an additive
constant and we thus have

dλ

dt
=

dM

dt
= n , (7.82)

which is just the mean motion. With the values for R and R′ obtained above,
we can write

∂R
∂M

=
∂R
∂λ

=
∂R′

∂λ
= −6

μ

a

(
R

a

)2

J22 sin 2(λ− λ22) . (7.83)

With Kepler’s third law, we obtain

2
dn

n
= −3

da

a
,

and thus

dn

dt
= −3

2

n

a

da

dt
, (7.84)

whence we may calculate the longitudinal acceleration:

d2λ

dt2
= −3

2

n

a

da

dt
= − 3

a2
∂R′

∂λ
= 18

μ

a3

(
R

a

)2

J22 sin 2(λ− λ22) .

Therefore, with μ/a3 = n2 = Ω̇2
T and the reduced distance ηGS, we have

λ̈ = 18

(
Ω̇T

ηGS

)2

J22 sin 2(λ− λ22) . (7.85)
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The numerical values for the Earth give

λ̈ = A sin 2(λ− λ22) , (7.86)

with

Ω̇T

ηGS
=

7.292× 10−5

6.611
= 1.1030× 10−5 rad s−1 ,

A = 18

(
Ω̇T

ηGS

)2

J22 = 18× 1.2166× 10−10 × 1.8154× 10−6

= 3.9756× 10−15 rad s−2 , (7.87)

and

A = 3.9756× 10−15 × (180/π)× (86,400)2 = 1.701× 10−3 deg day−2 ,
(7.88)

for the coefficient A in (degrees/day) per day.

(b) Third Order Expansion of the Geopotential. If we write the po-
tential U(r, λ, ψ) to order 3, (3.17) tells us to include terms involving the
Legendre functions P3m. For ψ = 0,

P30 = 0 , P31 = −3

2
, P32 = 0 , P33 = 15 .

As before, we define

J31 =

√
C31

2 + S31
2 =

√
7

6

√
C∗

31
2 + S∗

31
2 , (7.89)

J33 =

√
C33

2 + S33
2 =

√
7

360

√
C∗

33
2 + S∗

33
2 , (7.90)

λ31 = arctan
S∗
31

C∗
31

, λ33 =
1

3
arctan

S∗
33

C∗
33

. (7.91)

For the Earth (the EGM2008 or EIGEN model), we have

J31 = 2.2095× 10−6 , λ31 = 6.97◦ ,

J33 = 0.2214× 10−6 , λ33 = 20.99◦ .
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With the calculation of ∂R′/∂λ and the same procedure as before, we
obtain

λ̈ = 3

(
Ω̇T

ηGS

)2{
6J22 sin 2(λ− λ22) (7.92)

+
1

ηGS

[
−3

2
J31 sin(λ− λ31) + 45J33 sin 3(λ− λ33)

]}
.

Bringing in the coefficient A defined above by (7.86), we have

λ̈ = A
{
sin 2(λ− λ22) (7.93)

+
1

4ηGSJ22

[
− J31 sin(λ− λ31) + 30J33 sin 3(λ− λ33)

]}
.

For the Earth, numerical calculation gives

λ̈ = A
[
sin 2(λ− λ22)− 0.0460 sin(λ− λ31) + 0.1383 sin3(λ− λ33)

]
. (7.94)

The graph of λ̈(λ) in Fig. 7.12 gives the dependence of the longitudinal accel-
eration λ̈ on the longitude λ. Since longitudes are counted positively toward
the east, we thus have

λ̈ > 0 =⇒ eastward displacement , λ̈ < 0 =⇒ westward displacement .

The solutions of λ̈ = 0 are four longitudes shown on the graph where λ̈(λ)
intersects the horizontal axis. The two stable points are on the decreasing
portions of the curves, and the unstable points on the increasing portions:

stable points: λ = 75.059◦ = 75◦04′E , λ = 255.089◦ = 104◦59′W ,

unstable points: λ = 162.098◦ = 162◦06′E , λ = 348.577◦ = 11◦25′W .

The values are indicated on Fig. 7.12.
Looking at the map of anomalies of the geoid in Fig. 3.5, we observe that

the stable point λ = 75◦E corresponds to the longitude of the potential trough
located south of India. The two unstable points correspond to the latitudes
of the peaks, one located in Papua New Guinea at λ = 162◦E, and the other
in Iceland at λ = 11◦W.

Equation (7.94) shows that it is the degree 2 harmonic that contributes
most. The four longitudes obtained solely from λ22, viz.,

λ = λ22 + k90◦ , k = 1, 2, 3, 4 ,
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that is, 75◦, 165◦, 255◦, and 345◦, are very close to the four longitudes obtained
using (7.94) and going to order 3. The contributions from the other terms
become negligible from order 4, since a further multiplicative factor of 1/ηGS,
or 0.15, comes in for each new order.

Example 7.7 Describe the longitudinal drift of a geostationary satellite lo-
cated over the Greenwich meridian.

� A satellite stationed at longitude λ = 0◦ is subject to an acceleration
λ̈(0◦) = 0.737 × 10−3 deg day−2. This positive value indicates an eastward
displacement, and λ̈ increases to λ̈(34◦) = 1.885× 10−3 deg day−2. The satel-
lite continues to drift eastward to λ = 75.082◦, a longitude at which λ̈ = 0.
From this time on, if it moves slightly eastward or westward, it will be brought
back to the stable equilibrium point. �

Example 7.8 Maintaining the Chinese geostationary positioning satellite
Beidou-1A in place.

� The Chinese positioning system uses two geostationary satellites, Beidou-
1A and -1B. Their positions must be very accurately known (see Chap. 14).
The effective stationing longitude λS of each satellite must remain very close
to the nominal longitude λS0, to within a very tight margin:

λS = λS0 ± 0.1◦ .

For the satellite Beidou-1A, the values of λS are noted in Fig. 7.13 as a func-
tion of time over a period of two and half years. For the reference value
λS0 = 139.95◦E, Fig. 7.12 indicates λ̈ = −1.5× 10−3 deg day−2. This negative
acceleration, i.e., d2λ/dt2 < 0, tells us that the satellite tends to move west-
ward toward the stable point 75◦E. When it approaches the longitude 139.85◦,
its engines are started so as to reduce the altitude of the satellite. This causes
it to slip eastward to 140.05◦ or 140.10◦. Such maneuvers are carried out every
month or so. The satellite is then brought westward with an acceleration λ̈,
giving the function λS(t) a parabolic shape. �

7.4.6 Geosynchronous Satellites with Highly
Eccentric Orbits

Countries like Russia and Canada, situated as they are at high latitudes,
have little use for geostationary satellites, which are equatorial. As we shall
see shortly, the choice of an orbit that is both inclined and elliptical (to take
advantage of the areal law), can be favourable for northerly regions. In order to
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Fig. 7.13 :Actual stationing longitude of the satellite Beidou-1A as a function of time

over a period of 33 months, from 1 October 2000 to 1 August 2003. Credit: China

Academy of Space and Technology (CAST).

reduce apsidal precession to a minimum, the critical inclination i = iC = 63.4◦

is essential. The period can be fixed at one (sidereal) day so as to obtain a
geosynchronous satellite.

The Tundra-type orbit was studied by both Russia and Canada and the
idea taken up again by the European Space Agency (ESA) for its Archimedes
project. Two different orbits are planned: Tundra (or Tundra 2) and Super-
tundra (or Tundra 1), with the value a = 42,163 km almost independent of
the eccentricity and very close to aGS as given by (7.70). Since the values of
the inclination and period are determined, we have:

• For Tundra, e = 0.2668, hp = 24,536km, ha = 47,034km.
• For Supertundra, e = 0.4230, hp = 17,950 km, ha = 53,620 km.

The visibility time, over which the satellite is visible under acceptable geomet-
rical conditions for the relevant regions (see Chap. 13), is 8 h for the first of
these orbits and 12 h for the second, once the position of the apogee has been
correctly established. This means that three and two satellites are needed,
respectively, to achieve permanent coverage. Under such conditions, we may
say that we have obtained the equivalent of one geostationary satellite but at
high latitude.

The Tundra orbit has been used successfully since 2000 by the SD-Radio
constellation of US communications satellites.24

24The three satellites Sirius-1, -2, and -3 (also called SD-Radio-1, -2, and -3), launched
from Kazakhstan on 30 June, 5 September, and 30 November 2000, are on a geosynchronous
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7.5 Sun-Synchronicity

7.5.1 Definition

The orbital plane P of the satellite rotates in �, about the polar axis, at a
rate Ω̇, which characterises the angular speed of the vector ON in the plane
E , where O is the center of the Earth and N the ascending node, as shown in
Fig. 5.1.

We seek a type of orbit in which the passage at the ascending node always
occurs at the same solar time. We thus require ON to make a constant angle
with the direction of the Sun, since the hour angle (and hence the local mean
time) is the dihedral angle between the meridian plane of the relevant point
(here N) and the plane containing the polar axis and the Sun. For this to
happen, the nodal precession rate Ω̇ must equal the angular speed of the
Earth’s motion around the Sun. Such a satellite is said to be Sun-synchronous
or heliosynchronous:

Sun-synchronous satellite ⇐⇒ Ω̇ = Ω̇S . (7.95)

A satellite with an elliptical orbit can be Sun-synchronous, in which case the
nodal precession rate is given in the form Ω̇ = Ω̇(a, e, i). We shall return to
this case below, with the example of the satellite Ellipso Borealis. However, in
most cases, and in particular for Earth-observation satellites,25 only circular
and near-circular orbits are used, so that Ω̇ = Ω̇(a, i).

The ground track of a Sun-synchronous satellite always crosses a given
latitude at the same time (local mean time), which is not the crossing time
of the ascending node, and which becomes ever further away from it as one
moves away from the equator.

If P is the nodal precession rate in round trips per year, the condition for
Sun-synchronicity can clearly be written

P = 1 . (7.96)

7.5.2 Constant of Sun-Synchronicity

The condition (7.95) and the values of K0 and Ω̇S defined by (7.5)
and (7.20) lead us to define a quantity kh by

orbit: e = 0.2700, hp = 24,400 km, ha = 47,170 km. They are operational for North America
between longitudes 60◦W and 140◦W, and broadcast paying music programmes for car
radios. Between 2001 and 2006, this music-loving private operator sent the four satellites
Rock and Roll, then Rythm and Blues, into geostationary orbit.

25Satellites devoted to magnetospheric studies are often placed in elliptical Sun-
synchronous orbits. Examples are MagSat, Ørsted, or the two German satellites Aeros-1
and -2. One should also mention those satellites whose orbits, originally intended to be
circular, have become elliptical owing to launch errors, e.g., Nimbus-1, mentioned below.
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kh =
K0

Ω̇S

, (7.97)

which yields

kh =

√
3

4π
J2

√
μ

R3
Tsid . (7.98)

This dimensionless constant kh, which we shall call the constant of Sun-
synchronicity, plays a very important role in the study of satellites. It depends
only on:

• Characteristics of the planet playing host to the satellite, such as the mass
(via μ), radius (R) (in fact the mass per unit volume ρo), and the flattening
(the ellipticity factor J2 of the potential).

• The motion of the planet around the Sun, determining the sidereal year
Tsid.

It can also be expressed in terms of the Keplerian period of the satellite at
altitude 0, where it clearly appears as a ratio of periods:

kh =
3

2

Tsid

T0(h=0)
J2 , (7.99)

or again, using the notation of (7.9),

kh =
3G
4π

J2
√
ρo Tsid . (7.100)

This constant arises when considering the conditions for Sun-synchronicity,
but also more generally, in all aspects of the motion of the satellite orbit
relative to its host planet and the Sun.

For the Earth, it has the value

kh = 10.10949 . (7.101)

This value of the constant, kh ≈ 10.11, means that, for a satellite of altitude
h = 0 and inclination i = 0, the nodal precession rate is 10.11 times greater
than the angular speed of the Earth’s axis in its motion around the Sun
(absolute value).

7.5.3 Calculating the Orbit: Circular Case

Sun-Synchronous Inclination

Equations (7.4)–(7.7), together with (7.95) and (7.97) give

Ω̇(a, i) = Ω̇S ⇐⇒ − 1

cos i

( a
R

)7/2
= kh . (7.102)
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Fig. 7.14 :Satellite altitude as a function of angle of inclination for Sun-synchronous

satellites with circular orbit. The whole range of possible values is shown.

Introducing the reduced distance η = a/R, we obtain a very simple expression
for the Sun-synchronicity condition:

η7/2 = −kh cos i . (7.103)

This gives η as a function of i :

η = (−kh cos i)
2/7 (7.104)

or i as a function of η :

i = arccos

(
−η7/2

kh

)
. (7.105)

We thus see that:

• The quantities i and a are related, so that, if we choose one, the other is
thereby fixed.

• The value of cos i must be negative for this equality to hold, which shows
that a Sun-synchronous orbit is necessarily retrograde.

Figure 7.14 shows the curve of η (or a, or h) as a function of i. In general,
the quantity a is chosen and the value of i is then deduced from (7.105), in
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which case it is called the inclination of the Sun-synchronous orbit, or more
elliptically, the Sun-synchronous inclination. In this case, we may attach26 the
subscript HS to i, writing iHS = iHS(a) = i(a).

Bounds on i and h for a Sun-Synchronous Satellite

The minimum value of iHS, written iHSmin or im, is obtained for h = 0,
i.e., for a fictitious satellite revolving at ground level. With η = 1, we have

iHSmin = im = arccos

(
− 1

kh

)
= arccos(−0.0989) = 95.7◦ . (7.106)

The maximum value of h, written hHSmax, is obtained for i = 180◦:

ηHSmax = (kh)
2/7 = 1.9367 , (7.107)

aHSmax = 12,331 km , hHSmax = 5,964 km . (7.108)

It is therefore impossible to have a Sun-synchronous satellite (in near-circular
orbit) at inclination lower than 96◦, or altitude above about 6,000km.

Calculations for a Standard Sun-Synchronous Satellite

Most Sun-synchronous satellites currently operating have altitude around
800km (between 700 and 900km for remote sensing, and lower for recon-
naissance missions). Figure 7.14 shows that, at these altitudes, the relation
between iHS and h is almost linear.

Let us now examine the variation of i near the central value for the range
of altitudes mentioned here, i.e., h1 = 800km. The inclination corresponding
to this altitude h1 is i1 = iHS1

= 98.60◦. Differentiating (7.103), we obtain

7

2

da

a
= − tan i di .

Taking i near iHS1
and a near R+ h1, we have the following relation between

finite increments ΔiHS (in degrees) and Δh or Δa (in kilometers):

ΔiHS = 4.17× 10−3Δh . (7.109)

Calculating the Orbit with Expansion up to Jn

Up to now, we have obtained results using (7.102), the basic relation for
Sun-synchronicity, with the value of Ω̇ limited to the J2 term. This therefore
corresponds to the relation

26Here we use HS as subscript for Sun-synchronous. It refers to the occasionally heard
“heliosynchronous”, a word made up only of Greek roots, hence more satisfying from a
linguistic standpoint.
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Ω̇ = Ω̇S , with
Ω̇

n
= J2A2 cos i and A2 =

(
R

p

)2(
−3

2

)
. (7.110)

When we use an expansion up to degree l for Ω̇, where l is even and we set
l = 2m, this becomes

Ω̇ = Ω̇S , with
Ω̇

n
=

⎡
⎣J2A2 + J2

2B2(i) +
m∑
j=2

J2jA2j(i)

⎤
⎦ cos i , (7.111)

where

A2j(i) =

(
R

p

)2j j−1∑
k=0

q
(j)
2k sin2k i , B2(i) =

(
R

p

)4

(q′0 + q′2 sin
2 i) ,

and the coefficients q
(j)
2k and q′2k involve numerical terms and the value of the

eccentricity e.
If we solve (7.111) for the inclination iHS, we obtain an equation of degree

l− 1 in cos i. This equation is in fact easy to solve because the terms J2
2 and

Jl do not exceed 10−3J2. We begin by calculating i in the case when only
J2 is considered, using (7.102) or (7.110). Inserting this value in (7.111), and
after several iterations, we obtain the required value. The correction is very
small. For h = 800km, we have iHS(J4) = 98.628◦ and iHS(J2) = 98.603◦, i.e.,
a difference of 0.025◦.

Note. The value of the Sun-synchronous inclination iHS is indicated in all
figures in this book showing the ground tracks of Sun-synchronous satellites.
Obtained using the expansion to order J4, they differ by a few hundredths of
a degree from the value obtained directly by (7.105).

Example 7.9 Calculate the inclination of the Landsat satellites.

� The US programme Landsat was the first civilian programme for ob-
servation of Earth resources (NASA). These satellites are in circular Sun-
synchronous orbit. The first three (Landsat-1 to -3) were at an altitude of
908km, but for the following, Landsat-4 to -8, the altitude was lowered to
700km:

• Landsat-3: a = 7,285.799km, η = a/R = 1.142308,

cos i = −η7/2/kh = −1.593095/10.10949 = −0.15758 ,

i = arccos(−0.15758) = 99.07◦ .

Expanding the geopotential to order 4, we obtain i = 99.09◦.
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• Landsat-8: a = 7,077.738km, η = a/R = 1.109687,

cos i = −η7/2/kh = −1.439469/10.10949 = −0.14245 ,

i = arccos(−0.14245) = 98.19◦ .

Expanding the geopotential to order 4, we obtain i = 98.21◦.

A difference of altitude Δh = 908 − 700 = 208km leads to a change in the
angle equal to ΔiHS = 99.09− 98.21 = 0.88◦. This value can also be obtained
using (7.109):

ΔiHS = 4.17× 10−3 × 208 = 0.88◦ . �

7.5.4 Calculating the Orbit: Elliptical Case

Sun-Synchronous Inclination

To examine the case of an orbit with eccentricity e, we use (6.73) or (7.15)
to order 2. This yields

η =

[
− kh
(1− e2)2

cos i

]2/7
. (7.112)

In general, a and e are chosen and we obtain the inclination i from

i = arccos

[
−η7/2

kh

(
1− e2

)2]
. (7.113)

It is important to note that not all values of e are possible.
Consider for instance a circular orbit of altitude h = 640km, or η = 1.1.

If we increase the eccentricity e of this orbit, while keeping the same semi-
major axis a, we obtain a maximal value ha = 1,280km for the altitude at
apogee, corresponding to hp = 0km for the altitude at perigee. It is easy to
see that one could not go below this value for hp! The eccentricity thus has
a maximal value e1, which depends on a (and the radius R of the planet). In
this example, e1 = 0.09.

Quite generally, putting hp = 0, we have

a1(1 − e1) = R ,

or

η1 =
1

1− e1
, whence e1 = 1− 1

η1
, (7.114)

where a1 and η1 = a1/R are the values corresponding to e1.
Figure 7.15 shows the relation between η and i for several values of e within

the range of possible values. Since Ω̇ varies for Sun-synchronous satellites in
the same direction as e, the angle i decreases when e increases, for a given
value of a.
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Fig. 7.15 :Reduced distance η = a/R as a function of the inclination i for Sun-

synchronous satellites with elliptical orbit for various values of the eccentricity e. The
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(see text).

Bounds on i, a, and e for a Sun-Synchronous Satellite

The inclination i varies between iHSmin = 95.7◦, obtained from (7.106),
to 180◦. For a given inclination, η varies between η0, given by (7.112) with
e = 0, and η1, given by this same equation when e takes the value e1. Since
e1 and η1 are related by (7.114), we obtain

− 1

kh
η3/2
(
2− 1

η

)2

= cos i , (7.115)

and η1 is the solution of this equation, provided that the term on the left is
less than or equal to 1.

For i = 180◦, η varies between η0 = 1.9367 for e = 0 to η1 = 2.4988 for
e1 = 0.5998 (see Fig. 7.15, where the latter value has been taken as 0.60).

Sun-Synchronous Satellites in Highly Eccentric Orbit

In the vast majority of cases, Sun-synchronous orbits are near-circular,
since they are used for Earth observation missions which require the altitude
to remain as close to constant as possible. However, there are some planned
elliptical orbits in the field of communications.
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For a highly eccentric orbit, the Sun-synchronicity condition also depends
on a further constraint. Indeed, to ensure that the perigee does not drift on the
orbit, the inclination must be chosen at its critical value, as given by (6.79).
It is essential that this value be greater than 90◦, or i = 116.6◦. The orbit of
Ellipso Borealis exemplifies this.

Example 7.10 Notes on the orbit of satellites in the Ellipso Borealis constel-
lation.

� The satellite Ellipso Borealis has inclination i = 116.6◦ in order to cancel
apsidal precession. As the inclination is fixed, we thus select a and e as a ap-
propriate for a Sun-synchronous orbit. The critical inclination iC is indicated
in Fig. 7.15. If we solve (7.112) for η0 and (7.115) for η1, we obtain

η0 = 1.5389 for e = 0 ,

η1 = 1.7169 for e = e1 = 1− 1/η1 = 0.4174 .

The semi-major axis thus lies between a0 = 9,815.4km and a1 = 10,951.1km.
For other reasons relating to the period and also the question of recurrence,
the semi-major axis is taken equal to a = 10,559.2km, which corresponds to
an eccentricity of e = 0.3463 (see Table 11.7). The altitudes at the perigee and
apogee are hp = 524 km and ha = 7,838km, respectively. This configuration
of critical inclination, Sun-synchronicity, and recurrence is rather novel and
particularly interesting from the point of view of orbitography. �

7.5.5 Sun-Synchronous Satellites

Sun-synchronicity makes judicious use of the nodal precession of the satel-
lite orbit. It is a fundamental advantage in space-based observation to be able
to guarantee the passage of a satellite at constant local time for a given lat-
itude, hence in lighting conditions such that the solar zenithal angle varies
annually over a well defined (and rather narrow) range.

Historical Note on Sun-Synchronous Satellites

The first recorded Sun-synchronous satellite was SAMOS-2 (Satellite and
Missile Observation System), a US military photographic reconnaissance satel-
lite, launched on 31 January 1961, with hp = 474km, ha = 557 km, and
i = 97.4◦.

The first civilian arena to be interested in Sun-synchronous orbits was
meteorology. The satellite Nimbus-1 was launched on 28 August 1964. As
the launch was not entirely successful, it ended up on an eccentric, although
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nevertheless Sun-synchronous orbit, with hp = 429km, ha = 937km. It was
followed by TIROS-9 and TIROS-10 (Television and Infra Red Observation
Satellite), launched in 1965 into an eccentric orbit for the former and a near-
circular orbit with h ≈ 760 km, i = 98.8◦, for the latter. All US meteorological
satellites were subsequently placed in Sun-synchronous orbits: Nimbus, ESSA,
and NOAA on the civilian side, and DMSP for the military.

In contrast, the Soviet Union sent up dozens of meteorological satellites,
at a rate of three or four per year, as part of the series Meteor-1, -2, and -3, for
which they opted for a prograde non-Sun-synchronous near-polar orbit. Only
the last four of the Meteor-1 series were Sun-synchronous, launched between
1977 and 1981, with h ≈ 600 km, i = 97.7◦. However, these satellites in the
Meteor-P series (Meteor-Priroda, where priroda means “nature” in Russian),
adaptations of the meteorological satellites, were more generally destined for
the study of the environment and remote sensing.

Indeed, remote-sensing applications have an even greater interest in Sun-
synchronous orbits than does meteorology. The first programme in this field
was American, with the Landsat programme, which began in 1972 and
launched all its satellites into Sun-synchronous orbit. Corresponding pro-
grammes, such as the French SPOT, the European ERS, the Indian IRS,
and the Russian Resurs-O, were all based on Sun-synchronous satellites, like
the environmental missions, e.g., EOS, Envisat, ADEOS, and the many pro-
grammes implemented since 2000, e.g., Ikonos, then GeoEye, QuickBird, then
WorldView, to provide images with resolution of the order of a meter or half
a meter on a commercial basis.

Military reconnaissance satellites are also to be found in the latter cat-
egory, and they are of course Sun-synchronous, like the French Hélios satel-
lites, if they are intended to operate over long periods. At the beginning of
the space age, military reconnaissance missions were very short, from a few
days to about a week, for most Soviet satellites and some US satellites. In this
case, the idea of a Sun-synchronous orbit would be meaningless. Indeed, any
orbit is Sun-synchronous as long as nodal precession has not had sufficient
time to become noticeable. Furthermore, near-polar orbits are not necessarily
convenient for overflying “sensitive” regions.

7.5.6 Orbit Maintenance

As for any satellite, the orbit of a Sun-synchronous satellite will tend to
drift as time goes by, leading to slight modifications in the orbital elements.
The two main perturbative effects are the lunisolar attraction and atmospheric
drag. The first of these causes a slight variation in the satellite inclination,
while the second causes braking and hence a reduction in altitude, as seen in
Example 6.3.

In the case of Sun-synchronous satellites, it is of particular importance to
achieve a constant crossing time at the ascending node (in local time or LMT).
If, like the SPOT, Landsat, ERS, and ADEOS satellites, the Sun-synchronous
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satellite is recurrent, in the sense that its ground track must repeat exactly
the same locus after a certain number of revolutions (see Chap. 11), it is even
more important to maintain the orbit.

Consider the example of the SPOT satellites, for which the passage at the
descending node is fixed at τDN = 10:30 ± 0:10. To respect the recurrence
condition, which requires the ground track to pass within 3 km of the equa-
tor, altitude corrections are necessary. These maneuvers take place every 2–8
weeks depending on the level of solar activity. Every 18 months or so, the
inclination is reset. Such frequent maneuvers mean that the crossing time at
the descending node is in fact τDN = 10:30± 0:02 (the maximal discrepancy
of 2min being well below the variation in the equation of time).

Certain Sun-synchronous satellites are no longer maintained in orbit (by
necessity or by choice), and the local crossing time at the ascending node drifts
in consequence (see Fig. 10.15). We shall return to this point in Chap. 10 when
we study the crossing times of Sun-synchronous satellites.



Chapter 8

Ground Track of a Satellite

8.1 Position of Satellite on Its Orbit

Let �(O;x, y, z) be the Galilean reference frame already defined. The satel-
lite S is in an elliptical orbit around the center of attraction O. The orbital
plane P makes a constant angle i with the equatorial plane E . However, al-
though the plane P is considered as fixed relative to � in the Keplerian motion,
in a real (perturbed) motion, it will in fact rotate about the polar axis. This is
precessional motion,1 occurring with angular speed Ω̇, as calculated in the last
two chapters. A schematic representation of this motion is given in Fig. 8.1.
We shall describe the position of S in � using the Euler angles.

8.1.1 Using Euler Angles to Describe Satellite Motion

The three Euler angles2 α1, α2, and α3, were introduced in Chap. 5 to
specify the orbit and its perigee in space (see in particular the appendix
in Sect. 5.4). In the present case, we wish to specify S. We have already
established the correspondence between the Euler angles and the orbital ele-
ments (see Fig. 5.1 and Table 5.1):

1The word “precession”, meaning “the action of preceding”, was coined by Copernicus
around 1530 (præcessio, nis in Latin) to speak about the precession of the equinoxes, i.e.,
the retrograde motion of the equinoctial points. This term was then taken up in mechanics
to describe the corresponding Euler angle. In the motion of the satellite orbital plane, the
word “precession” clearly refers to a motion that may actually be prograde, as well as
retrograde.

2The three Euler angles are traditionally denoted by ψ, θ, ϕ, or by ϕ, θ, ψ, in those
orders. To avoid confusion with the latitudes denoted by ψ and ϕ elsewhere in the book,
we have chosen to use the notation αi, i = 1, 2, 3.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 8,
© Springer International Publishing Switzerland 2014
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Fig. 8.1 :Precessional motion of the orbit in the frame 
. The orbital plane rotates

about the polar axis, maintaining a fixed inclination relative to the equatorial plane

(xOy). Its projection onto the equatorial plane can be used to measure Ω, the lon-

gitude of the ascending node, whose variation is given by Ω̇. If the satellite has a

prograde orbit (as here, where the ascending node has been indicated by a small black

circle, the descending node by a small white circle, and the latest ground track by a

dash-dotted curve), the precessional motion is retrograde, i.e., Ω̇ < 0.

α1 = Ω , (8.1)

α2 = i , (8.2)

α3 = ω + v . (8.3)

Although they are fixed for the Keplerian orbit, the angles Ω, ω, and M − nt
vary in time and the inclination i remains constant for a real orbit (if we
consider only secular variations).

The distance from S to the center of attraction O is given by (4.60),
expressed in terms of the true anomaly v :

r =
a(1− e2)

1 + e cos v
. (8.4)

Since this distance is specified, the position of S is determined by composing
the following three rotations, shown schematically in Fig. 8.2 and described
below. The ascending node is denoted by N .
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Fig. 8.2 :The three rotations taking a given point on a sphere to another arbitrary

point, using the three Euler angles. Black circles indicate the three axes of rotation:

Oz = Oz1 for [P1], Ox1 = Ox2 for [P2], Oz2 = OZ for [P3].

• Precessional motion in E , taking the straight line Ox onto the straight line
ON (= Ox1):

=⇒ P1 : rotation through angle (Ox,Ox1) = α1 about axis Oz .

• Rotation of E onto P about the line of nodes:

=⇒ P2 : rotation through angle (Oz1, Oz2) = α2 about axis Ox1 .

• Rotation in P which takes the straight line ON (= Ox1 = Ox2) onto the
straight line OS (or OX):

=⇒ P3 : rotation through angle (Ox2, OX) = α3 about Oz2 = OZ .

Note that, in the case of the Euler angles, this decomposition is one-to-one
with the following domains:

α1 ∈ [0, 2π) , α2 ∈ [0, π] , α3 ∈ [0, 2π) .

The axes and angles of rotation are summarised here:

(Ox,Oy,Oz)
P1�−→ (Ox1, Oy1, Oz1 = Oz) ,

(Ox1, Oy1, Oz1)
P2�−→ (Ox2 = Ox1, Oy2, Oz2) ,

(Ox2, Oy2, Oz2)
P3�−→ (OX,OY ,OZ = Oz2) .
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We then deduce the three rotation matrices:

P1 =

⎛
⎝ cosα1 − sinα1 0

sinα1 cosα1 0
0 0 1

⎞
⎠ , (8.5)

P2 =

⎛
⎝ 1 0 0

0 cosα2 − sinα2

0 sinα2 cosα2

⎞
⎠ , (8.6)

P3 =

⎛
⎝ cosα3 − sinα3 0

sinα3 cosα3 0
0 0 1

⎞
⎠ . (8.7)

The matrix product of these three matrices gives the matrix P, calculated
below.

8.1.2 Position of Satellite in Cartesian Coordinates

Without loss of generality, we consider that N is on the axis Ox at zero
time. Its coordinates are thus (r, 0, 0). The coordinates of S(X,Y, Z) are ob-
tained from those of N(x, y, z) by applying P :

⎛
⎝X

Y
Z

⎞
⎠ = P

⎛
⎝x

y
z

⎞
⎠ = P

⎛
⎝ r

0
0

⎞
⎠ .

We see that only the first column of the matrix P will be required for this
calculation. We thus calculate the matrix product P = P1P2P3, writing it in
the form

P =

⎛
⎝ cosα1 cosα3 − sinα1 sinα3 cosα2 P12 P13

sinα1 cosα3 + cosα1 sinα3 cosα2 P22 P23

sinα3 sinα2 P32 P33

⎞
⎠ , (8.8)

which gives
⎛
⎝X

Y
Z

⎞
⎠ = r

⎛
⎝ cosα1 cosα3 − sinα1 sinα3 cosα2

sinα1 cosα3 + cosα1 sinα3 cosα2

sinα3 sinα2

⎞
⎠ . (8.9)

Using the orbital elements given by (8.1) through (8.4), we obtain

⎛
⎝X

Y
Z

⎞
⎠ =

a(1− e2)

1 + e cos v

⎛
⎝ cosΩ cos(ω + v)− sinΩ sin(ω + v) cos i

sinΩ cos(ω + v) + cosΩ sin(ω + v) cos i
sin(ω + v) sin i

⎞
⎠ . (8.10)



8.2 Ground Track of Satellite 305

8.1.3 Position of Satellite in Spherical Coordinates

We consider a spherical coordinate system in the Galilean frame �. The
plane of reference is the equatorial plane xOy of the Earth, while Oz is the
polar axis and the position of Ox is fixed in space. The point S can be spec-
ified in � by its spherical coordinates, namely, the distance r = ‖OS‖, the
longitude λ, and the geocentric latitude ψ, measured with the usual conven-
tion following from the right-handed trigonometric system. The longitude of
Ox (position of N at zero time) is denoted by λ0. Hence,⎛

⎝X
Y
Z

⎞
⎠ = r

⎛
⎝ cosψ cos(λ− λ0)

cosψ sin(λ − λ0)
sinψ

⎞
⎠ . (8.11)

We thus obtain the position of S(λ, ψ) as a function of time and the other
orbital parameters:

ψ = arcsin
[
sin(ω + v) sin i

]
, (8.12)

λ = λ0 + arccos
cosΩ cos(ω + v)− sinΩ sin(ω + v) cos i

cosψ
, (8.13)

(λ − λ0) from the sign of
[
sinΩ cos(ω + v) + cosΩ sin(ω + v) cos i

]
,

(8.14)

with

λ− λ0 ∈ (−π ,+π) .

If |ψ| = π/2, then λ is not determined (and its determination would be point-
less).

These equations (8.12)–(8.14) can be written more concisely if the Carte-
sian coordinates X , Y , and Z have already been calculated:

ψ = arcsin
Z

r
, (8.15)

λ = λ0 + arccos
X

r cosψ
, λ− λ0 from the sign of Y . (8.16)

8.2 Ground Track of Satellite

8.2.1 Equation for Ground Track

In most practical cases, one needs to know the position of the satellite
relative to the Earth. One must therefore represent S in the frame �T, whose
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axes in the equatorial frame rotate with the Earth. The transformation from
this frame to the Galilean frame � is obtained by a simple rotation about the
polar axis Oz with angular speed −Ω̇T, since �T rotates in � with angular
speed Ω̇T. Bear in mind that these calculations are carried out in the Galilean
frame �, but the results may be expressed in any frame that suits us.

With the above definition of λ0, the equations giving the position of S are
the same in �T as in �, provided that we replace the value of α1 in (8.1) by

α1 = λ0 + (Ω̇ − Ω̇T)(t− tAN) , (8.17)

where the time origin, taken as the time of passage at the ascending node N ,
is denoted by t = tAN.

The ground track T of the satellite is defined as the intersection of
the straight line segment OS with the Earth’s surface, as we have seen in
Sect. 2.2.1, when discussing the geocentric ground track and the nadir. The
position of T is given in spherical coordinates: the longitude λ and the geo-
centric latitude ψ are the same as for S in �T, and the distance ‖OT ‖ is Rψ,
defined by (1.38). The geodetic (or geographic) ground track is obtained by
calculating the geodetic latitude ϕT from the geocentric latitude ψ using (2.4).

In order to obtain the successive positions of the nadir, one must calculate
the geodetic latitude of the nadir ϕ, which requires knowing the altitude of
the satellite and using one of the methods discussed in Sect. 2.2.1. It is the
geodetic projection of the nadir that corresponds strictly to the subsatellite
point.

For a given position of the satellite, the values ψ, ϕT, and ϕ differ very
slightly, as shown in Example 2.2. Depending on the accuracy required, charts
of the ground track are set up using ψ, the simplest solution, or using ϕ, to
get a rigorously accurate result. Ground tracks generated by Ixion are geodetic
ground tracks of the nadir.

8.2.2 Maximum Attained Latitude

The intersection of the orbital plane P , passing through the center of the
Earth, and the equatorial plane E , considered as a plane of symmetry of the
planet, defines a maximal geocentric latitude ψm symmetrically in both the
northern and the southern hemisphere. The range over which the ground track
can vary is

ψ ∈ [−ψm; +ψm] .

This angle ψm is equal to the inclination i, the dihedral angle between P and
E , when i is acute, and its supplement if i is obtuse. We thus have the relations

{
0◦ ≤ i ≤ 90◦ (prograde) =⇒ ψm = i ,
90◦ ≤ i ≤ 180◦ (retrograde) =⇒ ψm = 180◦ − i .

(8.18)
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Expressing Z with the help of (8.10) and (8.11), we find that, when sin(ω+v)
reaches an extremum, we have sinψm = ± sin i. Using ψm, we can calculate
the maximal geodesic latitude ϕm of the nadir, observing that ϕm is always
slightly greater than ψm.

Example 8.1 Calculate the maximal latitudes attained by Jason-2 and ICE-
Sat.

� The ocean topography satellite Jason-2 has a near-circular orbit at altitude
h = 1, 336km, with inclination i = 66.040◦. The maximal geocentric latitude
of the ground track is thus

ψm = i = 66.040◦ .

This latitude corresponds to the geodetic latitude 66.183◦. To calculate the
latitude of the nadir, we use (2.36) to order 1 in f :

δϕ = ϕ− ψ =
f

η
sin 2ψ ,

whence, with f = 1/298.3 and η = 1 + h/Re = 1.2095,

δϕ = (298.3× 1.2095)−1 sin(2ψm) = 2.0571 mrad = 0.118◦ ,

and

ϕm = 66.158◦ .

The iterative calculation using the algorithm in Table 2.4 gives the same result.
This difference δϕ between the two latitudes corresponds to 13.1 km on the
ground.

The altimetry satellite ICESat is equipped with a laser that points to the
nadir. It is in near-circular orbit at altitude h = 592km, and with inclination
i = 94.003◦. The maximal geocentric latitude of the ground track is thus

ψm = 180◦ − i = 85.997◦ .

This latitude corresponds to the geodetic latitude 86.024◦. Proceeding as be-
fore, with η = 1.0928, we obtain ϕm = 86.021◦, or a difference of δϕ = 0.024◦,
corresponding to 2.7 km on the ground. See also Example 2.2. �

8.3 Ground Track of Satellite in Circular Orbit

Circular or near-circular orbits are very common. We now discuss some
notions developed specifically for these orbits, such as the equatorial shift or
the apparent inclination.
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8.3.1 Equation for Satellite Ground Track

When the orbit is circular, the motion is uniform with angular frequency
n, the mean motion. Using the notation introduced above, the value of α3

in (8.3) can be replaced by

α3 = n(t− tAN) . (8.19)

We thus obtain the equation for the ground track as a function the time t.

Sun-Synchronous Satellites

For Sun-synchronous satellites, the angle α1 takes a specific value since we
have Ω̇ = Ω̇S. We have seen that the two angular frequencies characterising the
Earth’s (annual and daily) motion are related by (7.33). According to (8.17),
we thus have

dα1

dt
= α̇1 = Ω̇S − Ω̇T = − 2π

DM
. (8.20)

Using the daily orbital frequency as given by (7.35), we obtain, for Sun-
synchronous satellites, the very simple relation

α̇1 = −n

ν
. (8.21)

We shall see the very important consequences of this relation in the following
chapters, in particular when studying the crossing time of the satellite and
the question of recurrent orbits.

8.3.2 Equatorial Shift

The difference in longitude between two consecutive ascending nodes λ1

and λ2, separated by one revolution, is called the equatorial shift, denoted by
ΔλE :

ΔλE = λ2 − λ1 . (8.22)

Rough Calculation

It is sometimes sufficient to carry out a quick calculation of the equatorial
shift, which is then denoted by Δ0λE. Indeed, to a first approximation we may
say that, during one revolution of period T (and we may take the Keplerian
period here), the orbit of the satellite will not have moved relative to �, while
the Earth makes one complete turn every day, i.e., it rotates through 15◦ per
hour, or 1◦ every 4min relative to this same frame. In this context, we do
not bother with the precession of the orbit, or the Earth’s motion relative to
the Sun over the time taken for the satellite to complete one revolution. This
amounts to using the approximate relations α̇1 ≈ −Ω̇T and Ω̇T ≈ 2π/DM.
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We have the simplified relation

Δ0λE [deg] = −T [min]

4
, (8.23)

where the minus sign indicates a shift westwards.

Exact Calculation

During one revolution lasting T = Td, the orbital plane will have rotated
through an angle α1 with respect to �T. The exact value of the equatorial
shift, as given by (8.17) with t− tAN = T , is therefore

ΔλE = α̇1T = −(Ω̇T − Ω̇)T = −2π

κ
. (8.24)

We note the following points, which follow from (8.24):

• The equatorial shift is always negative, since Ω̇T is greater than Ω̇. The
shift is westward for a satellite below the geosynchronous orbit.

• For satellites in Sun-synchronous orbit, we obtained the specific value of
α̇1, according to (8.20). Over one nodal period T , we have

ΔλE = α̇1T = − 2π

DM
T = −2π

ν
. (8.25)

Writing the angles in degrees and the time in minutes, we obtain (8.23).
For a Sun-synchronous satellite, the approximate formula is identical to the
exact one. This is because the two approximations we made in the rough
calculation (neglecting precession and the annual motion of the Earth)
exactly balance for this type of satellite.

• For satellites in geosynchronous orbit, T = 2π/Ω̇T and Ω̇ is negligible. (In
any case, it is not the leading term in the perturbation treatment for this
type of satellite.) We thus have

ΔλE = −Ω̇TT = −2π = 0 [mod 2π] , (8.26)

where the notation [mod 2π] indicates that we calculate modulo 2π. There
is no equatorial shift for such a satellite. The projection of two consecutive
ascending nodes does not move on the Earth. (If the satellite is geostation-
ary, it is difficult even to speak of an ascending node.)

We use DE to denote the equatorial shift expressed in units of length (usually
km), whence

DE = RΔλE = −2πR

κ
, (8.27)

where R is the equatorial radius of the planet. The sign corresponds to the
west-to-east convention for longitudes.
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Example 8.2 Calculate the equatorial shift for the satellite Meteor-3-07.

� The characteristics of the orbit of this satellite are given in Example 7.3.
For the quick calculation, we use (8.23) with T = 109.4min. Then,

Δ0λE = −109.4/4 = −27.35◦ , DE = −3, 045 km .

For the exact calculation, with the values already given, viz.,

Ω̇T = 729.212× 10−7 rad s−1 ,

Ω̇ = −1.429× 10−7 rad s−1 ,

Ω̇T − Ω̇ = 730.641× 10−7 rad s−1 ,

and T = 6, 565.28 s, we obtain

ΔλE = −0.4797 rad = −27.48◦ , DE = −3, 059.51 km .

The equatorial shift of the satellite Meteor-3-07 is thus 3,059.5 km westward
(see Fig. 8.3). �

8.3.3 Apparent Inclination

Definition and Calculation of Apparent Inclination

The apparent inclination is the angle between the ground track and the
equator. This angle i′ differs from the angle i representing the inclination,
which is the inclination of the orbital plane of the satellite with respect to
the equatorial plane. This happens because i is measured in �, whereas i′ is
measured in �T.

To calculate i′, we consider in �T the tangent plane to the Earth at N0,
the point on the Earth’s surface corresponding to the ascending node, using
the orthogonal unit vectors eλ, tangent to the equator, and eψ, tangent to
the meridian through N0. In the Galilean frame �, let V a be the absolute
velocity (given by the angular velocity) of the satellite at the instant when it
crosses the equator and let V f be the frame velocity of the point N0. For V a,
one must take into account the rate of nodal precession of the orbital plane,
while V f is simply the rotational velocity of the Earth:

V a =

(
n cos i + Ω̇

n sin i

)
, V f =

(
Ω̇T

0

)
.

By the usual rule for composing velocities, we obtain the relative velocity V r

of the satellite in the terrestrial frame �T as

V r = V a − V f =

(
n cos i+ Ω̇ − Ω̇T

n sin i

)
.
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Meteor-3-0Meteor-3-07
Orbit - ref.: Earth

>>>>   Time span shown:   109.4 min =   0.08 day

Altitude = 1194.6 km a = 7572.702 km

Inclination  =  82.56 °

Period =   109.42 min    * rev/day =13.16

Equat. orbital shift  = 3059.5 km  (  27.5 °)

Asc. Node:   -133.95 ° [07:43 UTC]
Max. attained latit. = 82.6 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 12.0 ° N;  111.0 ° W
Aspect:  Oblique
{4.2} [ -90.0/ +78.0/-159.0] [-]    EIGEN6C2

Meteor-3-0Meteor-3-07

Orbit - Ground track

Recurrence = [13; +7; 71] 930

>>>>   Time span shown:   109.4 min =   0.08 day

Altitude = 1194.6 km a = 7572.702 km

LMDMC

LMDMC

Inclination  =  82.56 °

Period =   109.42 min    * rev/day =13.16

Equat. orbital shift  = 3059.5 km  (  27.5 °)

Asc. Node:   -133.95 ° [07:43 UTC]
App. inclin. =  86.93 °

Proj.:  Plate-carrée
Property:   none

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{ 4.2} [  +0.0/  +0.0/  +0.0] [-]    EIGEN6C2

Fig. 8.3 :Orbit and ground track of the satellite Meteor-3-07 over one revolution. The

distance between the two successive ascending nodes is the equatorial shift.
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The apparent inclination is then given by

tan i′ =
n sin i

n cos i− (Ω̇T − Ω̇)
. (8.28)

In terms of the daily recurrence frequency κ defined by (7.43), we may write

tan i′ =
sin i

cos i− 1/κ
. (8.29)

Expanding tan(i′ − i), we obtain

δi = i′ − i = arctan
sin i

κ− cos i
. (8.30)

Note that we always have i′ ≥ i.
For a Sun-synchronous satellite, we may replace κ by ν, since according

to (7.44), these two daily frequencies are equal.
For a satellite in a non-circular elliptical orbit, this calculation is of course

possible, but n must be replaced by the instantaneous angular velocity of
the satellite at N0. Since this depends on the position of the perigee and the
eccentricity, there is no simple general expression for i′.

Example 8.3 Calculate the apparent inclination for the LEO satellite Terra
and for an MEO Navstar satellite in the GPS constellation.

� The satellite Terra has a near-circular Sun-synchronous orbit with inclina-
tion i = 98.21◦ and nodal period Td = 98.884min. We calculate 1/ν from Td,
with the result

1/ν = Td/1440 = 0.06867 .

We can then apply (8.29) directly since, in the Sun-synchronous case, κ = ν,
so

tan i′ =
sin 98.21

cos 98.21− 0.06867
= −0.98975

0.21147
= −4.68030 ,

and hence,

i′ = 102.06◦ , i′ − i = 3.85◦ .

This inclination i′ can be measured on images taken by Terra, as can be seen
in Figs. 9.25 and 9.26.
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The characteristics of Navstar/GPS are a = 26, 560km and i = 55.00◦.
The period is Td = 717.978 (half a sidereal day). We find κ by calculating the
nodal precession rate:

Ω̇ = −0.03878 deg/day , ν = 2.0056 , κ = 2.0000 ,

tan i′ =
sin 55.00

cos 55.00− 0.5000
= −0.81915

0.07358
= 11.13335 ,

and hence,

i′ = 84.87◦ , i′ − i = 29.87◦ .

At the equator, the ground track of the satellite is very close to the meridian
of the ascending node (in fact, within 5◦), see Fig 14.6. �

Example 8.4 Calculate the apparent inclination for the ground track of a
geosynchronous satellite in circular orbit.

� For a geosynchronous satellite, we have Ω̇T/n = 1 and the term Ω̇ is neg-
ligible. Equation (8.28) becomes

tan i′ =
sin i

cos i− 1
= −cos(i/2)

sin(i/2)
= tan

(
π

2
+

i

2

)
,

whence

i′ = 90◦ +
i

2
, i′ − i = 90◦ − i

2
.

When i is very small, e.g., i = 1◦, we have i′ = 90.5◦: the ground track is not a
point but a small line segment almost perpendicular to the equator, between
latitudes 1◦N and 1◦S, which transforms into a figure of 8 (see Example 8.5)
when i increases, growing larger with i.

The first operational geosynchronous satellite, Syncom-2, had inclination
32.8◦. Its ground track made an angle of 106.4◦ with the equator, or an angle
of 16.4◦ with the nodal meridian, as can be seen from the upper part of
Fig. 9.16. �

Example 8.5 Calculate the coordinates of the ground track of a geosyn-
chronous satellite in circular orbit.

� For such a satellite, the ground track can be relatively simple expressed.
The orbital characteristics are

r = a = aGS , e = 0 , v = M = nt , n = Ω̇T , Ω̇ ≈ 0 .
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Furthermore, we choose λ0 = 0 and ω = 0. The Euler angles thus have the
values

α1 = Ω̇Tt = −nt , α2 = i , α3 = ω + v = M = nt .

With (8.8) and (8.10) and setting C = cos i, we obtain the coordinates of the
ground track:

⎛
⎝X

Y
Z

⎞
⎠ = R

⎛
⎝ (1− C) cos2 nt+ C

−(1− C) sinnt cosnt√
1− C2 sinnt

⎞
⎠ . (8.31)

We obtain the geocentric coordinates, i.e., the longitude λ and the latitude
ψ, using (8.15) and (8.16). Figure 8.4 (upper) shows the ground tracks for
various values of the inclination.

Note. It is often claimed in the literature that the figure of 8 trajectory of
inclined geostationary satellites is a Bernoulli lemniscate. Let us ignore the fact
that the lemniscate is a plane curve, unlike the trajectory or its ground track.
We can write down the projection of the trajectory on a plane perpendicular
to the Earth radius passing through the ascending node with longitude λ0.
For the Cartesian coordinates of the ground track, we use x1 for the (abscissa)
coordinate in the equatorial plane and y1 for the (ordinate) coordinate along
the polar axis. Setting θ = nt and R = 1 and using (8.31), we see that x1
corresponds to Y and y1 to Z. We then obtain

{
x1 = −(1− C) sin θ cos θ ,

y1 =
√
1− C2 sin θ .

(8.32)

After normalisation, the parametric equation for the lemniscate is

⎧⎪⎨
⎪⎩

x2 = −(1− C)
sin θ cos θ

1 + cos2 θ
,

y2 =
√
1− C2

sin θ

1 + cos2 θ
.

(8.33)

Equations (8.32) and (8.33) are different, but in both cases, the derivatives at
the origin (which give the apparent inclination) are in fact the same:

tan i′ =
dy

dx

∣∣∣∣
0

= −cos(i/2)

sin(i/2)
= tan

(
π

2
+

i

2

)
=⇒ i′ − i = 90◦ − i

2
.

As can be seen quite clearly in Fig. 8.4 (lower), the projection of the ground
track is not a lemniscate. The two curves differ, but the tangents at the origin
are the same. �



8.3 Ground Track of Satellite in Circular Orbit 315

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80
90

Longitude

La
tit

ud
e

80

70

60

50

40

30

20

10

20

30

40

50

60

70

80
90

10

-15 -10 -5 0 5 10 15

-50

-40

-30

-20

-10

0

10

20

30

40

50

Inclination   45

Equator

Lemniscate

Cartesian C.

Longit., Latit.

Fig. 8.4 :Ground track of a geosynchronous satellite in circular orbit. Upper: for

different inclinations in steps of 10◦ from 0◦ to 90◦. Lower: for an inclination of

45◦. Projection of the ground track in Cartesian coordinates, obtained from (8.32), in

geocentric coordinates (longitude, latitude), obtained from (8.31), and the normalised

lemniscate, obtained from (8.33).
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8.3.4 Angle Between Ground Track and a Meridian

We calculate the angle between the satellite ground track and a merid-
ian for an arbitrary point on the ground track. The calculation of the angle
between the ground track and a line of latitude gives a generalisation of the
apparent inclination. However, in practice, it is more useful to know the angle
between the ground track and the north–south direction.

In the frame �, the satellite orbit cuts the meridian at an angle j. Referring
to Fig. 10.15, P is the subsatellite point (with latitude ψ), N is the point on
the ground track corresponding to the ascending node (the dihedral angle at
N gives the inclination i), and PQ is the meridian through P , where Q is on
the equator. The dihedral angle at P , in the spherical triangle PQN , is the
angle j that we wish to determine. Using the relation (ST V), we obtain

sin j =
cos i

cosψ
. (8.34)

To calculate j′, we consider in �T the plane tangent to the sphere of radius R
at the relevant point, with latitude ψ, and orthogonal unit vectors eλ and eψ
as already defined. As in the calculation of the apparent inclination, we write

V a =

(
n sin j + Ω̇ cosψ

n cos j

)
, V f =

(
Ω̇T cosψ
0

)
,

V r = V a − V f =

(
n sin j − (Ω̇T − Ω̇) cosψ

n cos j

)
.

It follows that

tan j′ =
sin j − (1/κ) cosψ

cos j
, (8.35)

and expressing j with the help of (8.34),

tan j′ =
cos i− (1/κ) cos2 ψ√

cos2 ψ − cos2 i
. (8.36)

We obtain the adjustment angle δj as a function of i and ψ, viz.,

δj = j′ − j = arctan

√
cos2 ψ − cos2 i

κ− cos i
. (8.37)

This can be compared with (8.30) by setting ψ = 0. The adjustment angle δj
is maximal at the equator. When the maximal geocentric latitude is reached,
it can be checked that the ground track is normal to the meridian. For a
Sun-synchronous satellite, κ can be replaced by ν.

Example 12.7 gives a direct application and a concrete illustration of the
calculation of δj using (8.37).
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8.3.5 Velocity of a Satellite and Its Ground Track

The satellite velocity can be calculated very accurately with the equations
of motion discussed earlier. Here we calculate the velocity of the satellite and
its ground track to a good level of accuracy, treating circular Keplerian motion.
This section could therefore have appeared in Chap. 5, but we preferred to
discuss these issues here, after dealing with the Earth’s rotation, defining
the notion of ground track, and describing the various kinds of satellites,
especially, geosynchronous satellites.

Definitions of the Different Velocities

The velocities of the satellite S and its ground track S0 in � can be simply
expressed in terms of the mean motion n :

V =
dOS

dt
, V = an =

√
μ

a
, (8.38)

V 0 =
dOS0

dt
, V0 = Rn =

R

a
V =

R

a

√
μ

a
. (8.39)

In the terrestrial frame �T, we consider a point on the Earth’s surface, e.g.,
S0, and the right-handed triad of unit vectors associated with spherical coor-
dinates, viz., (er, eλ, eψ). In the plane (eλ, eψ) tangent to the Earth (the local
horizontal plane), the vector eλ lies along a line of latitude and the vector eψ
along a meridian. In this frame, the velocity w of the ground track is

w = V 0 −RΩ̇T cosψ eλ .

If eu is the unit vector along V 0, we obtain an expression for w, which can be
called the relative velocity of the ground track or the velocity of the ground
track relative to the ground:

w = R
(
n eu − Ω̇T cosψ eλ

)
. (8.40)

Velocity at the Equator

In order to compare the values obtained for different satellites, we consider
the relative velocity w at the ascending (or descending) node, i.e., at the
equator, where we shall denote it by wE :

wE

R
= neu − Ω̇Teλ .

This can be expressed in terms of the inclination i of the satellite:

wE

R
=
(
n cos i− Ω̇T

)
eλ + n sin i eψ . (8.41)
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If wE is the magnitude of wE taken in the direction of motion, we obtain the
following results for the three values i = 0◦, 90◦, and 180◦ of the inclination:

wE

R
=

⎧⎪⎨
⎪⎩

n− Ω̇T , i = 0◦ ,√
n2 + Ω̇2

T , i = 90◦ ,
n+ Ω̇T , i = 180◦ .

(8.42)

Table 8.1 shows, for various satellites, the velocities V and V0 of the satellite
and its ground track in �, and the relative velocity wE of the ground track
in �T for these three values of i. These results are shown for all altitudes
between 0 and 1,600km, in steps of 100 km, then for several altitudes typical
of certain kinds of mission.

The maximal velocity of the ground track relative to the ground is
8.4 km s−1, obtained for a retrograde satellite at ground level. More realis-
tically, the velocity of the ground track at the equator for an operational
Sun-synchronous satellite is 6.6 km s−1. For a geosynchronous satellite with
i = 0, hence geostationary, we find wE = wE(i = 0) = 0.00.

Regarding the last satellite in Table 8.1, it is not an artificial satellite, but
a simplified model of the Moon (circular Keplerian orbit), at a distance of
380,000km, and with a period of about 27 days. Note that, in �, the sidereal
period is 27.32 days. In �T, the period that takes into account the motion
of the Earth is 29.53 days, or one lunar month.3 This period, known as the
synodic period, is explained below.

Synodic Period

The idea of synodic period4 is often used to speak about both satellites and
planets. Consider two bodies in the same Galilean frame, moving uniformly
with angular speeds (mean motions) n and n1. The motion of the first relative
to the second is a (relative) motion of angular speed n′ given by

n′ = n− n1 . (8.43)

In terms of periods, this means that

1

T ′ =
1

T
− 1

T1
, (8.44)

3It is no accident that the word “month” is so similar to “Moon”, and the same is true of
these words in German and related languages. The Indo-European root ∗men, ∗mes refers
to the Moon, lunation (lunar month), and measurement or mensuration (of time). Many
languages in this family still use similar terms, but this is not the case in Greek or Latin.
These two languages called the Moon “the bright one” (� /��� �  	 ; luna, æ), which gives
the present French name “Lune”. See also the note on Chandrasekhar.

4The noun � /0��#�	� ��, “synod”, is made up of /0�, meaning “with” or “together”,
and � �#)	� ��, meaning “path” or “journey”. In Ancient Greek, it already had the double
meaning of “meeting” and “conjunction of heavenly bodies”, both of which illustrate the
idea of “things happening at the same time”.
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h a ν T0 V V0 wE wE wE T
(km) (km) (rev/d) d h m 0 90 180

0 6,378 17.04 1h24 7.91 7.91 7.44 7.92 8.37 g
100 6,478 16.65 1h26 7.84 7.72 7.26 7.74 8.19 R
200 6,578 16.27 1h28 7.78 7.55 7.08 7.56 8.01 R
300 6,678 15.91 1h31 7.73 7.38 6.91 7.39 7.84 S
400 6,778 15.56 1h33 7.67 7.22 6.75 7.23 7.68 S
500 6,878 15.22 1h35 7.61 7.06 6.60 7.07 7.52 O
600 6,978 14.89 1h37 7.56 6.91 6.44 6.92 7.37 O
700 7,078 14.58 1h39 7.50 6.76 6.30 6.78 7.23 O
800 7,178 14.28 1h41 7.45 6.62 6.16 6.64 7.09 O
900 7,278 13.98 1h43 7.40 6.49 6.02 6.50 6.95 O

1,000 7,378 13.70 1h45 7.35 6.35 5.89 6.37 6.82 O
1,100 7,478 13.42 1h47 7.30 6.23 5.76 6.24 6.69 O
1,200 7,578 13.16 1h49 7.25 6.10 5.64 6.12 6.57 O
1,300 7,678 12.90 1h52 7.21 5.99 5.52 6.00 6.45 O
1,400 7,778 12.66 1h54 7.16 5.87 5.41 5.89 6.33 O
1,500 7,878 12.42 1h56 7.11 5.76 5.29 5.78 6.22
1,600 7,978 12.18 1h58 7.07 5.65 5.19 5.67 6.11

2,000 8,378 11.32 2h07 6.90 5.25 4.79 5.27 5.71
3,000 9,378 9.56 2h31 6.52 4.43 3.97 4.46 4.90
4,000 10,378 8.21 2h55 6.20 3.81 3.34 3.84 4.27
5,000 11,378 7.15 3h21 5.92 3.32 2.85 3.35 3.78 G
6,000 12,378 6.30 3h48 5.67 2.92 2.46 2.96 3.39 G

10,390 16,768 4.00 6h00 4.88 1.85 1.39 1.91 I
20,183 26,561 2.01 11h58 3.87 0.93 0.47 1.04 P
35,786 42,164 1.00 23h56 3.07 0.47 0.00 C

110,000 116,378 0.22 4d13h45 1.85 0.10 −.36 0.47 V

376,805 383,183 0.04 27d07h43 1.02 0.02 M

Table 8.1 :Velocity of the satellite and its ground track and relative velocity for var-

ious satellites in circular (Keplerian) orbit. For each satellite, we give the altitude

h (in km) and the length of the semi-major axis a, or the distance from the center

of the Earth (in km), the daily frequency ν (in revolutions per day), the Keplerian

period T0 (in hours and minutes), and the velocities V , V0, wE defined in the text for

the three values 0◦, 90◦, and 180◦ of the angle i (in km s−1). Abbreviations indicate

the type T of the given satellite: g (ground level), R (intelligence, reconnaissance), S

(space shuttle, manned flights, and Earth observation), O (Earth observation, LEO),

G (geodesy), I (communications, ICO type orbit, between LEO and MEO), P (posi-

tioning by GPS, MEO), C (geostationary, GEO), V (Vela type), M (Moon). If there

is no symbol in this column, this indicates that the orbit is not used.
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where T ′ is the synodic period. A negative value of the period T ′ indicates
that the motion has period |T ′|, but in the opposite direction.

For the Moon in its motion about the Earth, which is itself revolving about
the Sun (T1 = Nsid), we have

1

T ′ =
1

27.32
− 1

365.25
=⇒ T ′ = 29.53 d .

For a geostationary satellite, for which T = T1 = 1 Dsid (sidereal day), the
synodic period is considered to be infinite. For a GPS satellite, T = 0.5 Dsid

and T1 = 1 Dsid, whence T ′ = 1 Dsid, which shows that the satellite only
crosses a given meridian once a day.

8.3.6 Eliminating Time from the Ground Track Equation

For a circular orbit, we can express the longitude λ as a function of the
geocentric latitude ψ, with the help of the inclination i and the frequency κ,
but without bringing in the time t (elimination of time). At the time tAN, the
geocentric ground track of the satellite crosses the equator at A, the point
on the surface corresponding to the ascending node, taken as origin. At time
t, the ground track is at S. In the Galilean frame � (defined by the Earth’s
equatorial plane and the polar axis Oz, keeping the axis OA fixed), the length
of the arc AS (arc of a great circle) represents the position on orbit α :

α =



AS= nd(t− tAN) , (8.45)

where nd is the mean motion relating to the nodal period Td.
The longitude λG of the satellite in this same frame � is given by the arc

AS′, where S′ is the intersection of the meridian PS with the equator (see
Fig. 8.5):

λG =



AS′ .

Relative to a terrestrial frame �T, the longitude λT is

λT = λG − (Ω̇T − Ω̇)(t− tAN) .

Using the recurrence frequency κ, we obtain

λT = λG − nd

κ
(t− tAN) ,

whence we may eliminate the time using (8.45), to give

λT = λG − α

κ
.
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Fig. 8.5 :Ground track of the orbit in a Galilean frame. Investigation of the relation

in spherical geometry between the latitude and longitude for a point S on the ground

track. The ascending node is at A. In the spherical triangle ASS′, the arc AS′

represents the longitude and the arc S′S the latitude. The angle A is the inclination

and the angle S′ is a right-angle. P is the pole.

In the spherical triangle ASS′, we know the following angles and sides (arcs):

angleA = i , angleS′ = π/2 ,

a =



SS′= ψ , s =



AS′= λG , s′ =



AS= α ,

(ST X) =⇒ sinλG =
tanψ

tan i
, (ST VIII) =⇒ sinα =

sinψ

sin i
.

We thus obtain an expression for the longitude:

λT = arcsin
tanψ

tan i
− 1

κ
arcsin

sinψ

sin i
. (8.46)

Taking the Greenwich meridian as zero longitude rather than A, we have

λT = λ− λAN ,

where λ and λAN are the longitudes of S and A, respectively.
Finally, we obtain the longitude λ of the satellite in circular orbit:

λ = λAN + arcsin
tanψ

tan i
− 1

κ
arcsin

sinψ

sin i
. (8.47)
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Angle Between the Ground Track and a Meridian

We can obtain an expression for tan j′ analytically. This gives the angle
between the ground track and the meridian, via (8.35). Using (8.47), which
gives the longitude λ in terms of the latitude ψ, we take the derivative

dλ

dψ
=

1√
tan2 i− tan2 ψ

1

cos2 ψ
− 1

κ

1√
sin2 i− sin2 ψ

cosψ

=
1

cosψ

cos i− (1/κ) cos2 ψ√
sin2 i− sin2 ψ

.

For an increment dY = Rdψ along the meridian, there corresponds an incre-
ment dX = R cosψ dλ along a parallel. Hence,

dX

dY
= cosψ

dλ

dψ
=

cos i− (1/κ) cos2 ψ√
cos2 ψ − cos2 i

, (8.48)

and this quantity corresponds to tan j′ = dX/dY as given by (8.36).

8.4 Appendix: NORAD Orbital Elements

8.4.1 NORAD: The Organisation

The North American Aerospace Defence Command (NORAD) is a joint
organisation between the US and Canada to monitor North American air
space. The headquarters are at the Peterson airforce base in Colorado, USA.
It was founded in 1957, during the Cold War. The United States was concerned
about the possibility of missiles launched from the USSR, which would have
arrived from the north.

NORAD operates dozens of radars, with which it can detect any object
measuring more than a meter across in space, and 10 cm up to an altitude
of 8,000km. All satellites are detected and identified by these radars. Their
motion is calculated using propagation models (orbitography software), then
adjusted by further radar measurements. The orbital elements are coded in
two-line elements (TLE), discussed below. For “unclassified” satellites, these
results, be they radar measurements or calculations, are broadcast several
times a day (one to three times).

American intelligence satellites, or more generally, any US satellite consid-
ered to have a “sensitive” mission, are excluded from the broadcasts, but the
French military satellites Hélios and Essaim were not. Hence, with the assis-
tance of an orbitography software like Ixion, it was easy to determine which of
these satellites were maintained on the correct orbit and which were drifting.
Dissatisfied with this attitude, the French Defence Ministry set up the system
known as GRAVES (Grand réseau adapté à la veille spatiale), which went
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into operation in 2005, and which can detect any satellite overflying France.
Almost thirty NORAD “classified” satellites were thereby brought to light.

Thanks to GRAVES, Paris was able to negotiate with Washington: “We
agree to show discretion with regard to certain of your satellites, provided that
you stop broadcasting data concerning our more ‘sensitive’ satellites.” The
move paid off in the end, since from 8 December 2009, just before the launch
of Hélios-2B, the satellites Hélios and Essaim were taken off the NORAD TLE
listing.

8.4.2 Two-Line Element (TLE) Set Format

NORAD detects objects in orbit and provides their orbital elements in the
form of two lines of 69 characters (numbers, letters, signs, and spaces). These
data comprise the NORAD two-line element set format, abbreviated to TLE
and accessible by Internet. For each satellite, the data appear in the following
form:

AAAAAAAAAAAAAAAAAAAAAAAA

1 NNNNNU NNNNNAAA NNNNN.NNNNNNNN +.NNNNNNNN +NNNNN-N +NNNNN-N N NNNNN

2 NNNNN NNN.NNNN NNN.NNNN NNNNNNN NNN.NNNN NNN.NNNN NN.NNNNNNNNNNNNNN

Line 0 names the orbiting object (satellite, or rocket element) in 24 characters.
The standard TLE comprises lines 1 and 2, in a format used by NORAD and
NASA. Line 1 gives the date and information concerning atmospheric drag.
The orbital elements are in line 2. The exact description of this format is
shown in Table 8.2.

8.4.3 Decoding the TLE

The correspondence between the six classic Keplerian elements discussed
in Chap. 5 and the six NORAD elements is immediate for the metric elements
i and e and the angle elements Ω, ω, andM . The semi-major axis a is obtained
from the mean motion n.

In order to use these orbital elements in a practical context, two of them
require preliminary calculations:

• As we have just seen, the semi-major axis a is not given directly by the
NORAD elements. The number of revolutions per day gives the anomalistic
period Ta (because the period, in this orbital study, is defined as the time
elapsed between two successive transits at perigee). We obtain the value of
a by an iterative method like the one used in Example 7.3.

• The angle Ω, the right ascension of the ascending node, is measured in a
Galilean frame from the direction of the vernal equinox. But in practice,
one needs to know λ0, the longitude of the ascending node of the orbit,
i.e., the angular elongation of this point in a terrestrial frame, measured
from the Greenwich meridian. With the usual notation, we can say that Ω
is measured in �, and λ0 in �T.



324 Chapter 8. Ground Track of a Satellite

Line Column Description
1 01 Line number of element data
1 03–07 Satellite number
1 08 Classification (U=unclassified)
1 10–11 International designator (last two digits of launch year)
1 12–14 International designator (launch number of the year)
1 15–17 International designator (piece of the launch)
1 19–20 Epoch year (last two digits of year)
1 21–32 Epoch (day of the year and fractional portion of the day)
1 34–43 First time derivative of mean motion
1 45–52 Second time derivative of mean motion (decimal point assumed)
1 54–61 Drag term (decimal point assumed), B* model
1 63 Ephemeris type
1 65–68 Element number
1 69 Checksum (modulo 10)
2 01 Line number of element data
2 03–07 Satellite number
2 09–16 i Inclination (degrees)
2 18–25 Ω Right ascension of the ascending node (degrees)
2 27–33 e Eccentricity (decimal point assumed)
2 35–42 ω Argument of perigee (degrees)
2 44–51 M Mean anomaly (degrees)
2 53–63 n Mean motion (revolutions per day)
2 64–68 Revolution number at epoch
2 69 Checksum (modulo 10)

Table 8.2 :Description of the NORAD two-line element. Credit: NORAD.

We first calculate the angle ΩG00 between the Greenwich meridian and the
vernal equinox at 0 h UT on the relevant day. This angle corresponds to the
mean sidereal time GMST (Greenwich Mean Sidereal Time) at 0 h, written
qG00 and measured in seconds. It is obtained from the relation5

qG00 = 24110.54841+ 8640184.812866Tu (8.49)

+9.3104× 10−2T 2
u − 6.2× 10−6T 3

u ,

5The expression for qG00 contains four terms:

• The first gives the position of the Greenwich meridian at the date taken as origin, viz.,
J2000.0.

• In the second, the coefficient of Tu is equal to the number of seconds in one day (86,400)
multiplied by the number of days in one Julian century (36,525), divided by the number
of days in the tropical year (Ntro = 365.2421897).

• The third is related to nutation.
• The fourth accounts for the precession of the equinoxes.
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where Tu, the time in Julian centuries, is defined by Tu = du/36525, with du
the number of days elapsed since 1 January 2000 at 12 h (chosen date origin,
called J2000.0, corresponding to the Julian date JD 2451545.0).

If ΔD is the fraction of the day elapsed since 0 h (given in line 1 of the
TLE), we can calculate the sidereal time (GMST) at the relevant time t (UT):

qGt = qG00 + 86400Ω̇TΔD [mod 86400] , (8.50)

where Ω̇T is the angular speed of rotation of the Earth in rev/day, as given
by (7.28). It is not really necessary to use (7.29). With the equivalence between
days and revolutions (1 day is 360◦), we can obtain ΩGt in degrees from qG
in seconds:

ΩGt =
qGt

240
, (8.51)

which is the angle between the Greenwich meridian and the vernal equinox at
the relevant UT time.

The positions of the ascending node and the Greenwich meridian, denoted
Ω and ΩGt, respectively, are measured from the same origin at the same time.
We thus obtain the longitude λ0 of the ascending node in a terrestrial frame:

λ0 = Ω −ΩGt . (8.52)

With ω and v (obtained from M and e), we can calculate the crossing time of
the satellite at the ascending node and its position λAN (taking into account
the precession of the orbit over this time interval). The longitude and the UT
time thus give the LMT crossing time at the ascending node.

Example 8.6 Calculate the orbital elements of the ICESat satellite from the
NORAD elements.

� During the first few months of its mission, the satellite ICESat followed a
so-called calibration orbit. Its ground track had to repeat every 8 days (we
return to the question of recurrence in Chap. 11). The NORAD elements for
the given day during this calibration phase, were as follows:

ICESAT

1 27642U 03002A 03175.25018279 .00000722 00000-0 75456-4 0 1631

2 27642 94.0031 263.4514 0002250 85.5696 274.5785 14.90462832 24163

We obtain the date from

03175.25018279: year = 03, day = 175, hour = 0.25018279 × 24.
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giving 24 June 2003 at 06:00:15.79 UTC. Just for information, this was revo-
lution number 2416, counting from the satellite’s first passage at perigee. The
following elements are obtained immediately:

n = 14.90462832 rev/day , e = 0.0002250 , i = 94.0031◦ ,

Ω = 263.4514◦ , ω = 85.5696◦ , M = 274.5785◦ .

With the mean anomalyM , we can calculate the eccentric and true anomalies,
very close to M since the eccentricity is extremely small: E = 274.566◦ and
v = 274.553◦. With n, we find the anomalistic period

Ta [min] = 1440/n , whence Ta = 96.61428min .

We can calculate the position on orbit α = ω + v :

α = 85.569 + 274.553 = 360.122 = 0.122 [mod 360] .

The position of the satellite at the initial time is not therefore the ascending
node, but rather a point located slightly above the equator, in the northern
hemisphere. We can calculate the difference between the initial time and the
ascending node crossing time, first in mean anomaly, then in time:

ΔM = M −M(v = −ω) = 274.579− 274.457 = 0.122 ,

Δt =
0.122

360
× Ta = 1.971 s .

To begin with, we set T0 = Ta, and with this Keplerian period, we obtain
the value of the semi-major axis of the Keplerian orbit: a0 = 6, 974.6km. We
calculate the secular variation related to the mean motion, Δn/n = −0.6695×
10−3, then recalculate a. After several iterations, this yields a = 6, 971.515 km
or an altitude of h = a − R = 593 km. With the values of a and i, we can
calculate the precession rates and periods. This yields:

nodal precession Ω̇ = +0.5079◦/day ,

apsidal precession ω̇ = −3.5508◦/day ,

anomalistic period Ta = 96.61428min (check) ,

draconitic period Td = 96.67818min .

To calculate the longitude of the orbital plane at the initial time, we determine
the Julian date of the relevant time, namely JD 2452814.75018279, which gives

du = JD− J2000.0 = 1269.75018279 , Tu = du/36525 .
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Using (8.49),

qG00 = 65217.588 [mod 86400] ,

and then with ΔD = 0.25018279, we obtain

qGt = qG00 + 86400× 1.00273790934× 0.25018279

= qG00 + 21674.993 = 86892.581 = 492.581 [mod 86400] .

If qGt is in seconds, then ΩGt is in degrees:

ΩGt = 492.581/240 = 2.052 .

With (8.52), we thus have

λ0 = 263.451− 2.052 = 261.399 .

We can calculate the displacement Δλ = λ0 − λAN of the orbital plane in the
terrestrial plane, taking into account nodal precession during the time Δt.
The quantity Δλ is very small here, viz., Δλ = −0.008. We thus obtain λAN,
the longitude of the transit at the ascending node:

λAN = λ0 −Δλ = 261.399 + 0.008 = 261.407 .

For a transit at the ascending node at longitude 261.407◦, i.e., 98.593◦ W, the
time 06:00:14 UT corresponds to 23:25:52 LMT.

These elements suffice to represent the ground track of the ICESat satellite
over 8 days. During this time, the satellite should pass through the vertical
at the calibration site in White Sands (Arizona, USA). Figure 8.6 shows that
this constraint was respected. �

8.4.4 Conditions of Use

In order to exploit NORAD data in the form of the TLE, one must use
an orbitography software to get from n to a. If we then insert the six orbital
elements for the given day D into the program, we can obtain very accurate
results concerning the position of the satellite (to within 100m) over a period
of 1 or 2 weeks before and after D.

For satellites that must be held on orbit over long periods (several months),
and if up-to-date NORAD data is not available, it is better to use the nom-
inal orbital elements rather than obsolete TLE data. Indeed, recurrent Sun-
synchronous satellites such as SPOT, or non-Sun-synchronous satellites like
those in the A-train, such as Jason, are repositioned on their reference orbit
several times a month. NORAD TLE data is not well suited to very high
precision operations, such as orbital docking maneuvers.
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Fig. 8.6 :Transit of the ICESat satellite through the vertical of the calibration site at

White Sands (Arizona, USA). Calibration phase.
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8.5 Appendix: Cartographic Projections

8.5.1 Definitions and Properties

A cartographic projection is a transformation mapping a point of the
sphere (or an ellipsoid), specified by its spherical coordinates λ, ϕ (longitude,
latitude), in a bijective manner onto its coordinates x, y on the map:

cartographic projection f = {f1, f2}
{
x = f1(λ, ϕ) ,
y = f2(λ, ϕ) .

There exist infinitely many such projections.
The main problem to be solved by a cartographic projection can be put

succinctly as follows: the sphere is not developable. This means that the sur-
face of a sphere cannot be mapped onto a plane without distorting or tearing
it.6 Theoretical study of this question was carried out contemporaneously by
Lambert7 in 1772, Euler in 1777, and Lagrange in 1779. It was definitively
solved by Gauss in (1822), who studied the conditions under which an arbi-
trary surface could be mapped onto another arbitrary surface.

A cartographic projection can have (exclusively) one or other of the fol-
lowing two properties:

• Angles are conserved, and the projection is said to be conformal.
• Areas are conserved, and the projection is said to be equal-area.

It may be that it has neither of these properties,8 but it can never have both.
In fact, the map can conserve the angles or the area of a figure, but it can
never conserve the perimeter. No map can conserve distances in all directions.
In other words, no projection can have constant scale over the whole field of
projection.

In a conformal projection, the parallels and the meridians on the map
intersect at right-angles, since the same is true on the sphere, where they form
two sets of orthogonal curves. In an equal-area projection, a country twice as

6Unlike the sphere, a cylinder is developable. If the body of a big cat could be assimilated
to a cylinder, one could understand how the tiger might change into a bedside rug without
deformation.

7Jean Henri Lambert (1728–1777) was a Swiss and German astronomer, mathematician,
and physicist, with French ancestry. In astronomy, he calculated the trajectories of comets
and understood that the Milky Way was just a modest galaxy in the Universe. In physics,
he discovered the fundamental law of photometry. In his many mathematical works, among
which he demonstrated the irrationality of π (1766), he attributed great importance to
problems of perspective and cartographic projections. He defined a great many projections,
several of which bear his name today. The best known is the conformal conical projection,
used in France for the map of France since 1922 and the cadastral survey since 1938.

8The older literature is full of different adjectives describing these properties, e.g., auto-
gonal and orthomorphic for conformal, and authalic, homolographic, equiareal, and equiv-
alent for equal-area, while an aphylactic projection is one that is neither equal-area nor
conformal. Such terms have now fallen into disuse.
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big as another is represented on the map by an area twice as big. When the
whole Earth is represented, it can be considered as spherical since projecting
the terrestrial sphere or ellipsoid onto a plane leads to quite imperceptible
differences in the resulting maps, whatever projection may be used. The same
is not true for accurate regional maps, however.

8.5.2 Classifying Projections by Type or Aspect

Projections can be classified by type or by aspect. The type tells us how
the sphere appears when projected onto the map, i.e., cylindrical, conical,
azimuthal, and so on. We use the word “appears” because a cartographic
projection is not usually (and the exceptions are very rare) a projection in
the sense of an intersection between a straight line and a plane. For example,
the Mercator projection is said to be cylindrical, but it is not the “projection”
of this sphere from its center onto a cylinder that is tangent to it at the equator
(as one often reads).

The aspect of a projection can be direct (or normal), transverse, or oblique.
For example, for a stereographic projection (of azimuthal type) with direct
aspect (also called polar in this case), the point of contact of the plane of
projection with the sphere occurs at the pole, while it occurs on the equator
for a transverse projection (also called equatorial in this case). For an arbitrary
point of contact, the projection is said to be oblique.

The computer software Atlas which we have devised is coupled with the
orbitography part of our program Ixion. Any satellite ground track can thus
be mapped out with the chosen projection. In each representation, every ef-
fort is made to apply the most suitable cartographic projection. On all the
maps presented here, plotted using Atlas, we indicate the main features of the
projection: name, properties, type, and aspect. Also given in the key are the
coordinates (longitude and latitude) of the center of the map, together with
the three Euler angles which define the rotation of the globe for the projection
from the standard initial position.

The projections used in the present book can be grouped as follows:

• Conformal Projections. Angles are conserved here. In particular, the an-
gle between the ground track (of the satellite or its swath) and the given
meridian is conserved. The main projections here are:

– The Mercator projection.
– The stereographic projection.
– The projections due to Guyou, Adams, and Peirce, based on elliptic

integrals of the first kind.

• Equal-Area Projections. These projections are used when it is important to
respect surface areas. The main projections used in this book are:

– The Behrmann projection (dilated Lambert equal-area cylindrical pro-
jection) and the Lorgna projection.
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– The Mollweide and Sanson projections.
– The Craster parabolic, Boggs eumorphic, or Goode homolosine projec-

tions, often in interrupted form.
– The Hammer–Aitoff and Hammer–Wagner projections.

• Perspective Projections. Although they have no special properties, these
projections are rather visual, representing the planet as if it were seen from
space, viewed from various distances. The main projections used are:

– The perspective view projection, where the viewing point is at a finite
distance (expressed as a number of planetary radii).

– The orthographic projection, where the viewing point is at infinity. This
is the projection used to represent, not the ground track, but the orbit
of the satellite in 3D, in such a way as to make the altitude apparent.

– The Armadillo projection, due to Raisz, which represents the sphere in
a rather picturesque manner, projected on a torus.

• Specific Projections. In 1977, the American cartographer John P. Snyder
(1926–1997) invented a specific projection to represent satellite ground
tracks for the satellite ERTS-1 (Landsat-1) and the following satellites in
the Landsat programme. This satellite-tracking projection keeps the merid-
ians regularly spaced and modifies the spacing of the parallels in such a
way that the satellite ground track is a straight line. We have adapted this
to any type of satellite. We shall return to this in more detail below.

• Archaic Projection. The so-called plate-carrée projection is very frequently
(if not exclusively) used in books and documents concerned with satellite
ground tracks. It represents longitudes and latitudes linearly along the
abscissa and ordinate, respectively. This projection is somewhat simple-
minded (amounting to x = λ, y = ϕ), even primitive (it was fashionable
. . . in the Middle Ages). It has no particular properties, being neither
conformal nor equal-area, and its only mathematical value is its simplicity.
This is no longer an argument with the advent of computer programming.
It has not been used here, except for the first map (see Fig. 8.3) at the
beginning of the chapter (not wishing to upset habits too early on).

8.5.3 Description of Three Projections

Here we give brief descriptions of two of the best known conformal pro-
jections, the stereographic projection and the Mercator projection. We also
present the Snyder projection, which is specific to satellites. In all three cases,
the Earth is treated as spherical with radius R = 1, and the latitude ψ is the
geocentric latitude.
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Mercator Projection

In its direct aspect, a cylindrical projection can be written in the form

{
x = λ ,
y = f(ψ) .

(8.53)

Meridians are represented by equidistant lines, perpendicular to the equator.
Parallels are straight lines parallel with the equator, hence perpendicular to
the meridians, and whose positions on the map depend only on the latitude.

For such a projection to be conformal, the function f(ψ) has to be suitably
chosen. For a cylindrical projection, this function is unique. It is traditionally
denoted by L(ψ). The spacing between parallels is greater as one moves away
from the equator. If two meridians are separated by Δλ in longitude, their
separation on the globe is RΔλ cosψ at latitude ψ, going from RΔλ at the
equator to 0 at the poles.

Since the cylindrical projection maintains constant separations between
the meridians on the map, the parallels must be separated by an amount
proportional to the integral of 1/ cosψ. The reciprocal of cosψ is sometimes
denoted by secψ, abbreviation for the trigonometric function secant. The
function L(ψ) is obtained from

L(ψ) =
∫ ψ

0

du

cosu
. (8.54)

This integral defines the unique conformal cylindrical projection, known as
the Mercator projection:

⎧⎨
⎩

x = λ ,

y = ln tan

(
π

4
+

ψ

2

)
,

(8.55)

which brings in the natural or Napierian logarithm of the tangent.
In its direct equatorial form, this projection is rarely used beyond 60◦. The

poles are pushed to infinity.9 In its transverse form, the Mercator projection
is called the Gauss projection, or the Universal Transverse Mercator (UTM).

9Certain cylindrical projections, such as the Arden–Close or Miller projections, are in-
tended to “improve” Mercator, representing the poles by means of mathematical tricks.
However, they thereby stray from the basic motivation for the Mercator projection, namely,
the property of being conformal.
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The first direct conformal cylindrical map of the world was established in
1569 by Mercator10 for the purposes of navigation (ad usum navigantium). It
proved extremely useful to mariners.11

Mercator never explained his method. We now know that he carried out
the integration of the secant by hand, as it were, taking steps of the order
of one degree. He did not know about logarithms, a theory established only
in 1614 by John Napier (or Neper), whence the name Napierian logarithm.
The Mercator projection was formulated mathematically in 1599 by Edward
Wright.

Fig. 8.7 :Frontispiece of the 1595 edition of the

Mercator Atlas.

10Gerardus Mercator (1512–1594) was a Flemish mathematician and geographer. (At this
time, university members commonly Latinised their names. In this case, Gerhard Kremer
changed his name to Gerardus Mercator, since mercator means “merchant” in Latin, just as
kremer does in Flemish.) He made globes, maps, and astronomical instruments for Charles
Quint. Realising that accurate maps were not only useful for navigation but had strategic
and commercial importance, he established the first conformal cylindrical projection and
thereby founded modern mathematical cartography. His main work was the Atlas sive cos-
mographicæ meditationes de fabrica mundi et fabricati figura, a huge collection of maps,
not all of which use the Mercator projection. The Atlas was expanded and re-edited many
times. After his death, his son Rumold, then the geographer Jocodus Hondius, continued
this work of cartography and edition. For his first collection of maps in 1583, Mercator chose
the name “Atlas” and illustrated the frontispiece of the work with the picture in Fig. 8.7 of
the Greek god Atlas, who holds up the sky and observes the Earth from above. Later, the
word “atlas” would become the standard name for this type of geographical work.

11One first determines the shortest path between two points (orthodromy). This is then
plotted on the Mercator map and approximated by a succession of straight-line segments
(loxodromy). The Mercator map indicates the course to follow and hold, since the projection
is conformal.
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By the end of the twentieth century, several commentators (not cartogra-
phers) had asserted that the Mercator projection was politically incorrect.12

So here is an unexpected property of the logarithm!

Snyder Projection

The Snyder projection is a projection of cylindrical type, with longitudes
regularly spaced on the map. In order to represent the ground tracks by
straight-line segments, the latitude and longitude must be linearly related
over a given revolution. Using the relation (8.47), we obtain

{
x = λ− λAN ,

y = arcsin
tanψ

tan i
− 1

κ
arcsin

sinψ

sin i
,

(8.56)

where x and y are Cartesian coordinates on the map and λAN is the longitude
of the initial ascending node. The latitudes are thus “dilated” as one moves
away from the equator. The projection is shown in Figs. 8.8 and 8.9, with
different dilations for the latitudes.

This projection only applies to circular orbits and necessarily uses geocen-
tric latitudes.

Stereographic Projection

The stereographic projection13 has been the subject of considerable cov-
erage in the literature, in proportion with the extent and variety of its ge-
ometrical properties. Here we shall explain how it works with a very simple
example drawn from the field of cartography.

12We exemplify with two extracts to this effect:

Any projection inevitably distorts, none is completely innocent. The classic projection
in our old school atlas is the Mercator projection, based on a factitious graticule
which plots not only the “parallels” but also the meridians as parallel straight lines.
The polar regions are stretched out of all proportion, while the “temperate” (=
white) regions occupy a much greater space than their actual area would justify. The
equator is pushed right down to the bottom of the map, which gives a completely
false impression of the ratio of land to sea.

Jean Chesneaux, L’état du Monde 1982. Annuaire économique et géopolitique mondial,
François Maspero éd., Paris 1982.

The distortions of Mercator’s map did not seem strange to Europeans in the six-
teenth century, an era of expanding colonial empires. Yet today, although European
colonialism belongs largely to the past, Mercator’s sixteenth-century map still retains
much of its grip.

United Nations Development Programme. Maps and Map-Makers, UNESCO Courier, June
1991.

13This adjective comes from the Greek /����)	, meaning solid, and ��"&���, meaning
to engrave or write. Ptolemy reports that the stereographic projection was established by
Hipparchos of Nicaea.
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Landsat-8Landsat-8

Orbit - Ground track

Recurrence = [15; -7; 16] 233

>>>>   Time span shown:  5760.0 min =   4.00 days

Altitude =  699.6 km a = 7077.736 km

Inclin./SUN-SYNCHRON.=  98.21 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

Asc. Node:    103.02 ° [22:15 LMT]
App. inclin. = 102.06 °

Proj.:  Snyder-Satel.Track/55°
Property:   none [Geoc.L]

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{4.2} [  +0.0/  +0.0/  +0.0] [-]    EIGEN6C2

Jason-2 / Jason-2 / OSTMOSTM

Orbit - Ground track

Recurrence = [13; -3; 10] 127

>>>>   Time span shown:  4320.0 min =   3.00 days

Altitude = 1336.3 km a = 7714.433 km

MC LMD

MC LMD

Inclination  =  66.04 °

Period =   112.43 min    * rev/day =12.81

Equat. orbital shift  = 3155.5 km  (  28.3 °)

Asc. Node:     99.92 ° [00:00 LMT]
App. inclin. =  70.29 °

Proj.:  Snyder-Satel.Track/35°
Property:   none [Geoc.L]

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{4.2} [  +0.0/  +0.0/  +0.0] [-]    EIGEN6C2

Fig. 8.8 :Ground tracks of two satellite orbits. Upper: Landsat-8 (Sun-synchronous

orbit). Lower: Jason-2 (prograde orbit). Snyder projection with different standard

parallels. Upper: 55◦. Lower: 35◦.
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TRMM [1]TRMM [1]

Orbit - Ground track

>>>>   Time span shown:  2880.0 min =   2.00 days

Altitude =  350.1 km a = 6728.216 km

Inclination  =  34.99 °

Period =    91.31 min    * rev/day =15.77

Equat. orbital shift  = 2596.2 km  (  23.3 °)

Asc. Node:      0.00 °
App. inclin. =  37.24 °

Proj.:  Snyder-Satel.Track/ 5°
Property:   none [Geoc.L]

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{4.2} [  +0.0/  +0.0/  +0.0] [-]    EIGEN6C2

Megha-TropMegha-Tropiquesiques

Orbit - Ground track

Recurrence = [14; -1;  7]  97

>>>>   Time span shown:  5760.0 min =   4.00 days

Altitude =  865.5 km a = 7243.677 km

MC LMD

MC LMD

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

Asc. Node:    114.02 ° [08:22 LMT]
App. inclin. =  21.52 °

Proj.:  Snyder-Satel.Track/ 0°
Property:   none [Geoc.L]

T.:Cylindrical - Graticule:  5°

PC:  0.0 °  ;  0.0 °  /ZC:  8.0 ° N; 45.0 ° E
Aspect:  Direct > zoom :  > zoom : 3.003.00
{5.3} [ +90.0/  +0.0/ -90.0] [-]   EIGEN6C2

Fig. 8.9 :Ground tracks of two satellites in prograde orbits. Upper: TRMM. Lower:

Megha-Tropiques, with zoom. Snyder projection with different standard parallels.

Upper: 5◦. Lower: 0◦.
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Consider a sphere (the Earth) with center O, equatorial plane, and two
poles. Choose a particular point A, called the pole of projection, the South
Pole in this application. Draw the straight line joining a point P of the sphere
to the pole A. The intersection of the straight line with the equatorial plane
defines a point M which is the image of P in the stereographic projection
with pole A.

This transformation projects the whole sphere, excepting the point A, onto
the equatorial plane. The whole northern hemisphere lies within the equatorial
circle, while the whole southern hemisphere lies outside it. In cartography, two
projections are preferred, with each map being bounded by the equator, and
changing the pole when we change hemisphere. Clearly, any other point on
the sphere could be chosen as the pole. By taking the pole of projection on the
equator, one obtains maps with an equatorial aspect (see Fig. 8.10). It can be
shown that this projection is conformal. A circle on the sphere is mapped to
a circle on the plane (unless the circle passes through the pole of projection,
when one obtains a straight line).

A point P on the sphere is specified by its longitude λ and its geocentric
latitude ψ. In the case discussed above, with the point A at the South Pole,
the angle at the center (AO,OP ) represents the colatitude of the point P ,
and it is twice the inscribed angle (AO,AP ):

(AO,OP ) =
π

2
− ψ , (AO,AP ) =

π

4
− ψ

2
.

On the equatorial plane, the point P projects to M with the same azimuthal
angle λ. The polar coordinates (r, θ) of M are

⎧⎨
⎩

θ = λ ,

r = tan

(
π

4
− ψ

2

)
.

Projecting on the (x, y) axes, we obtain the equation for the azimuthal stere-
ographic projection:

{
x = r cosλ ,
y = r sinλ .

(8.57)
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Landsat-8Landsat-8

Orbit - Ground track

Recurrence = [15; -7; 16] 233

>>>>   Time span shown:   720.0 min =   0.50 day

Altitude =  699.6 km

e = 0.000179

MC LMD

a = 7077.736 km

Incl. / SUN-S.= 98.21 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

Asc. Node:    -20.58 ° [22:15 LMT]Projection:  Stereographic
Property:  Conformal

T.:Azimuthal - Graticule: 10°

Pr. centre (r.):  0.0 °  ;   69.9 °E
Aspect:  Equatorial
{4.2} [ -90.0/ +90.0/ +20.1] [-]    EIGEN6C2

Fig. 8.10 :Stereographic projection. Upper: map of the world taken from the Mercator

Atlas, 1587. Lower: ground track of the orbit of Landsat-8, over half a day.



Chapter 9

Orbit and Mission

9.1 Classifying Orbit Types

Satellite orbits can be classified according to various criteria: the inclina-
tion, the altitude, the eccentricity, or various properties.

Classification by Inclination

We have seen that the angle of inclination i of the orbit (angle of nutation
α2 for the Euler angles) is defined to lie between 0◦ and 180◦. If i is less than
90◦, the orbit is prograde, whereas if i is greater than 90◦, it is retrograde.
When i = 90◦, the orbit is polar. One may say strictly polar, because when
i lies between 80◦ and 100◦, one often describes it as a polar orbit, whereas
near-polar would be more appropriate.

If i = 0◦ (or i = 180◦, although this has never happened), the orbit is
equatorial, and for i less than 10◦, it is near-equatorial.

Classification by Altitude

Satellites in near-circular orbit are classified according to their mean al-
titude. We speak of a low Earth orbit (LEO) when the satellite flies at an
altitude below 1,500km, a medium Earth orbit (MEO) for GPS satellites at
an altitude of around 20,000km, and a geostationary Earth orbit (GEO) (also
sometimes called the Clarke orbit) for geostationary satellites at an altitude
of 36,000 km. We shall often use these abbreviations, which are concise and

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 9,
© Springer International Publishing Switzerland 2014
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consistent.1 Almost all satellites in orbits with low eccentricity fall into one
of these three categories. (For example, it is very rare to find a satellite at an
altitude of 8,000km.)

For highly elliptical orbits,2 such as the Molniya or Tundra orbits, we use
the abbreviation HEO (highly eccentric orbit). The name GTO (geostationary
transfer orbit) is usually a temporary one, because the satellite has been placed
on this highly eccentric orbit for transfer towards a GEO orbit. Some satellites
can be found in such orbits, some deliberately placed there, others because the
apogee thrust used to make the orbit circular has been unsuccessful. Finally,
if a satellite has not been correctly placed in orbit, it is sometimes given the
title FTO (failed transfer orbit)!

The orbits L1LO and L2LO refer to halo orbits around the Lagrange
points, which were discussed in Sect. 6.12.

Orbit and Revolution

Since all scientific enterprise is based on a precise use of language, one
must mention a very common error which consists in saying “orbit” instead
of “revolution” or “round trip”, an error which occurs in English, French, and
very likely other languages too. For example, we may read: the satellite Terra
during orbit 7778. . . . This confusion is unjustified, and indeed, it is never
encountered in astronomy: one never says that the Moon makes one orbit
around the Earth every month.

9.2 Classifying Satellites by Mission

Our classification of satellites according to mission, which is of course
rather arbitrary, aims to illustrate the various types of orbit. We begin with
satellites designed for geophysics and Earth observation, then for navigation
and communications, astronomy, technological development, and others that
elude straightforward classification. We shall touch briefly upon military satel-
lites and their specific missions, and satellites carrying humans.

The mission of a satellite often covers a range of different areas, e.g., an
oceanographic satellite may also take part in a geodesy mission or a mission
to develop altimetric techniques, and there has always been a large dose of
ideology in satellite missions, especially at the beginning of the space age.
More will be said about this below.

1When we are referring to the satellite as LEO rather than the orbit, we understand
of course that we mean a low-Earth orbiting satellite. One does occasionally find the term
GEO meaning geosynchronous Earth orbit, as opposed to GSO for geostationary orbit. In
addition, and somewhat unnecessarily, one finds the term IGSO meaning inclined geosyn-
chronous orbit for geosynchronous orbits that are tilted and therefore not geostationary.

2For Molniya-type orbits, the term THEO (12 h eccentric orbit) is sometimes used. For
very high orbits, like the orbit of Geotail, we use the term VHO (very high orbit).
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With regard to military (or partly military) satellites, the nomenclature is
often somewhat vague (even confused). From 1984, the United States called
some of its satellites USA followed by a number specifying order of launch.
Previously, these satellites had been called OPS followed by a four-figure num-
ber, without chronological ordering. Between 1964 and 1984, more than 400
OPS satellites were launched.3 The USSR, then Russia, also created confu-
sion with its Kosmos satellites: this name (from the Russian word kocmoc,
originating itself from the Greek word ὁ κόσμος, ου, meaning “order” or “well-
ordered”, hence “universe”) groups a whole multitude4 of satellites (not al-
ways military), on every kind of orbit and for every available type of mission.
The People’s Republic of China did likewise with the appellation DFH (Dong
Fang Hong, where dong fang means “Orient” and hong means “red”), which
covers the great majority of Chinese satellites. Without doing anything to
simplify the situation, these satellites are also recorded by Western organisa-
tions under the appellation PRC (People’s Republic of China), with a different
numbering system.

In the Japanese tradition, every satellite gets two names, the first, in En-
glish (a name or acronym), and the second in Japanese, provided that the
launch is successful, e.g., the satellite GOSat became Ibuki. This tradition
(or should one say superstition?) is also to be found with the US organisation
NOAA: it attributes a letter to the satellite, and this letter becomes a number
after the launch. The satellite NOAA-N became NOAA-18, while NOAA-B,
the second in the series, does not appear in the numbering system, because it
was not inserted into the correct orbit.5

Satellites placed in orbit by the US Space Shuttle are indicated as follows:
launched by STS-(number). An unspecified member of a satellite series is
denoted by -n, e.g., Molniya-n.

Launch dates are noted up to 1 July 2013.

9.2.1 The First Satellites

Convinced of their supremacy in space, the United States spent the 1950s
engaged in fierce internal competition over who would be first to put an arti-

3In fact, 418 satellites were launched, from OPS/3367 on 19 January 1964 to OPS/8424
on 17 April 1984.

4The launch dates were as follows: Kosmos-1 (or Sputnik-11) on 16 March 1962, Kosmos-
1001 on 4 April 1978, and Kosmos-2001 on 14 February 1989. The launch rate then
subsided somewhat. We give here the last Kosmos launched in the given year: Kosmos-
2054 (1989), Kosmos-2120 (1990), Kosmos-2174 (1991), Kosmos-2229 (1992), Kosmos-
2267 (1993), Kosmos-2305 (1994), Kosmos-2325 (1995), Kosmos-2336 (1996), Kosmos-
2348 (1997), Kosmos-2364 (1998), Kosmos-2368 (1999), Kosmos-2376 (2000), Kosmos-
2386 (2001), Kosmos-2396 (2002), Kosmos-2404 (2003), Kosmos-2412 (2004), Kosmos-
2417 (2005), Kosmos-2424 (2006), Kosmos-2436 (2007), Kosmos-2448 (2008), Kosmos-2458
(2009), Kosmos-2469 (2010), Kosmos-2478 (2011), Kosmos-2481 (2012). Since 2000, the
Glonass satellites half made up half of the Kosmos series.

5Note that, of the first 20 NOAA launches, 19 have been successful.
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Fig. 9.1 :Stamps celebrating Soviet supremacy in space.

Fig. 9.2 :Technician preparing the satellite

Sputnik-1. The satellite comprised a metallic

sphere with four antennas. The sphere (diame-

ter 58 cm) contained an emitter and a battery.

Total mass 84 kg. Credit: Academy of Sciences

of the Union of Soviet Socialist Republics.

ficial satellite into orbit. The two parties were the US Navy with its Vanguard
project and the US Army with the Orbiter project. But from 1955, the for-
mer, with its powerful and effective Naval Research Laboratory (NRL), was
sole leader in the “race into space”, as they prepared to launch the tiny device
nicknamed the grapefruit satellite (1.5 kg). Then on 4 October 1957, the USSR
shook the world with Sputnik-1, a satellite weighing in at 84 kg (see Figs. 9.1
and 9.2).

The US government, which was to take a second uppercut on 3 November
with the successful appearance of Sputnik-2 on the scene, this time weighing
in at 508kg (including a dog), was quick to react. The US army launched
the Explorer programme in collaboration with the Jet Propulsion Labora-
tory/California Institute of Technology (JPL/Caltech). On 31 January 1958,
Explorer-1 (14 kg) was successfully launched (see Fig. 9.3). After several failed
launches, Vanguard-1 was placed in orbit on 17 March 1958. The US govern-
ment put a stop to this dual development by founding the National Aeronau-
tics and Space Administration (NASA) on 1 October 1958.

For any country, the act of placing its first satellite in orbit with its own
rocket system carries a significant ideological connotation. There is no need to
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Fig. 9.3 :The three mission

leaders for Explorer-1:

W.H. Pickering (director

of JPL/satellite), J. Van

Allen (instrument), and W.

von Braun (rocket) (left to

right), lifting a scale model

of the satellite following

its successful launch on 31

January 1958. The satellite,

weighing 14 kg, became the

first US satellite in orbit.

Thanks to its on-board

equipment, it discovered the

radiation belts surrounding

the Earth, known today as

the Van Allen belts. Credit:

NASA.

ask more of one’s inaugural satellite than a distant “bip bip”, even if, thanks
to Explorer-1, Van Allen managed to identify the radiation belts around the
Earth that now carry his name. The symbolic message was also military during
the Cold War: if we can launch a satellite, we can also launch a nuclear
warhead!

After the two superpowers, as they were considered at the time, de Gaulle’s
France launched its own satellite A-1 (known as Astérix) on 26 November
1965. Then followed the two main Asian nations, Japan with Ohsumi and
China with DFH-1. In 1971, the United Kingdom, with X-3 (known as Pros-
pero) also showed that it had the knowhow. Other firsts occurred on a more
strained geopolitical stage. One could mention India with Rohini (or RS-1)
and Israel with Ofeq-1 in 1980, and when Iran launched Omid-1 (meaning
“hope” in Farsi) in 2009, using an Iranian rocket, the ideological aim was
clearly stated in a presidential announcement.6

In 2012, NORAD confirmed that North Korea had placed the satellite
Kwangmyongsong-3-2 (“star of hope”) in orbit using a local launch system.

6In the dramatic words of President Mahmoud Ahmadinejad: “Iran’s presence in space,
with the aim of expanding monotheism, peace, and justice, has now been officially recorded
in history.” Islamic Republic News Agency (IRNA), Tehran, 3 February 2009.
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9.2.2 Satellites for Geodesy

We have already mentioned these satellites in Chap. 3, where we gave a
complete list of the satellites used for the geopotential models JGM, EGM,
GRIM, and EIGEN.

The satellite Sputnik-2 can be considered as a geodesy satellite. In the be-
ginnings of space-based geodesy, many satellites were placed above the LEO al-
titude in order to reduce atmospheric drag. Examples are PAGEOS, launched
in 1966, between 3,000 and 5,200km, with i = 84.4◦, and the two LAGEOS
(Laser Geodynamics Satellite), in high circular orbits with h = 5,900km and
inclinations i = 109.8◦ for LAGEOS-1 and i = 52.6◦ for LAGEOS-2. The
ground tracks of LAGEOS-1 and LAGEOS-2 are shown in Fig. 9.4.

The satellites SECOR-7, -8, and -9 at 3,700km altitude and the Soviet
satellites Etalon-1 and -2 (Kosmos-1989 and -2024), launched in 1989 with
Glonass, are in a circular MEO orbit with h = 19,130km and i = 64.8◦.
Others are at altitudes between 1,000 and 1,500km: the fifteen Soviet Geo-
1K satellites, such as Kosmos-2226, the French Starlette satellite, and the US
pioneer ANNA-1B, launched in 1962, h = 1,120 km, i = 50.1◦. Also in this
category is the Japanese satellite EGP (Ajisai), whose ground track is shown
in Fig. 9.5 (lower). The Japanese satellite LRE (Laser Ranging Experiment),
launched into an eccentric orbit in 2001, with hp = 271km, ha = 36,214km,
i = 28◦, is equipped with 126 laser reflectors.

There are some Sun-synchronous satellites between 800 and 1,000km,
such as TOPO-1 and those launched after 1993, Stella and Westpac-1 (Sun-
synchronous because they are microsatellites that were themselves launched
with Sun-synchronous satellites). Since then, geodesy satellites have been
placed in lower orbits. An example is GFZ-1 (Geo Forschungs Zentrum),
launched in 1995, with h = 380 km and i = 51.6◦.

Our knowledge of the geopotential has become so precise that a whole
new generation of geodesy satellites7 has been put in operation since 2000.
They carry ultra-sensitive accelerometers. Their altitudes must be as low as
possible for better detection of gravitational anomalies, while a continuous
thrust compensates for the higher level of atmospheric drag.8 as we have
seen in Chap. 3 for the satellites CHAMP, GRACE, and GOCE (see Figs. 3.6
and 3.7).

The Italian satellite LARES (Laser Relativity Satellite, also known as
LAGEOS-3, see Fig. 9.5 upper),9 with h = 1,442 km and i = 69.49◦, works

7Launch dates: CHAMP on 15 June 2000, GRACE-A and -B on 17 March 2002, and
GOCE on 17 March 2009.

8At this altitude, and for GOCE with mass 800 kg, the acceleration due to atmospheric
friction is 1.5 × 10−5 ms−2, whereas the acceleration due to radiation pressure is a mere
6.1 × 10−8 ms−2. This can be compared with 6.0 × 10−8 and 3.7 × 10−8 for μSCOPE, a
120 kg satellite planned for circular orbit at an altitude of 700 km.

9Launch dates: LAGEOS-1 on 4 May 1976, LAGEOS-2 on 23 October 1992 (by STS-52),
LARES on 13 February 2012.
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LAGEOS-1
Orbit - Ground track

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude = 5891.9 km a =12270.012 km

Inclination  = 109.81 °

Period =   225.49 min    * rev/day = 6.39

Equat. orbital shift  = 6286.6 km  (  56.5 °)

Asc. Node:      0.00 °
App. inclin. = 117.79 °

Projection:  Arden-Close
Property:   none

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct

[  +0.0/  +0.0/  +0.0] [-]    EGM2008

LAGEOS-2
Orbit - Ground track

Recurrence = [ 6;+65;146] 941

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude = 5783.9 km a =12162.067 km

MC LMD

MC LMD

Inclination  =  52.64 °

Period =   222.42 min    * rev/day = 6.47

Equat. orbital shift  = 6217.8 km  (  55.9 °)

Asc. Node:      0.00 °
App. inclin. =  60.40 °

Projection:  Arden-Close
Property:   none

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct

[  +0.0/  +0.0/  +0.0] [-]    EGM2008

Fig. 9.4 :LAGEOS geodesy satellites. Ground tracks of the orbits over 1 day. Upper:

Retrograde for LAGEOS-1. Lower: Prograde for LAGEOS-2. The satellites have the

same altitude.
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LARES
Orbit - Ground track

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude = 1442.2 km a = 7820.301 km

Inclination  =  69.49 °

Period =   114.77 min    * rev/day =12.55

Equat. orbital shift  = 3218.0 km  (  28.9 °)

Asc. Node:      0.00 °
App. inclin. =  73.91 °

Projection:  Arden-Close
Property:   none

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct

[  +0.0/  +0.0/  +0.0] [-]    EGM2008

EGP - Ajisai
Orbit - Ground track

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude = 1488.5 km a = 7866.608 km

MC LMD

MC LMD

Inclination  =  50.01 °

Period =   115.65 min    * rev/day =12.45

Equat. orbital shift  = 3254.8 km  (  29.2 °)

Asc. Node:      0.00 °
App. inclin. =  53.77 °

Projection:  Arden-Close
Property:   none

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct

[  +0.0/  +0.0/  +0.0] [-]    EGM2008

Fig. 9.5 :Geodesy satellites. Upper: LARES (LAGEOS-3). Lower: EGP (Ajisai).

Ground tracks of orbits over 1 day.
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in collaboration with the two LAGEOS and the two GRACE satellites to
improve gravitational models and our understanding of the effects predicted
by general relativity, such as the Lense–Thirring effect.

Example 9.1 Calculate the relative positions of the two geodesy satellites
GRACE-A and -B.

� We use the NORAD data for two neighbouring transits on 31 December
2004, around 17:09 UT:

GRACE-A

1 27391U 02012A 04366.71456748 .00002198 00000-0 71465-4 0 8703

2 27391 89.0239 219.2934 0015306 313.4780 46.5231 15.31315612155826

GRACE-B

1 27392U 02012B 04366.71492843 .00002319 00000-0 75411-4 0 8597

2 27392 89.0243 219.2966 0016587 315.5508 44.4470 15.31314968155825

We can calculate the semi-major axis a for each orbit. The metric orbital
elements are:

• GRACE-A: a = 6,846.810km, or h = 468.7km, e = 0.0015306, i =
89.0239◦.

• GRACE-B: a = 6,846.811km, or h = 468.7km, e = 0.0016587, i =
89.0243◦.

The NORAD times t0A and t0B deduced from the TLE are:

• t0A = 17:08:58.630 UT for GRACE-A.
• t0B = 17:09:29.816 UT for GRACE-B.

With ω and v (deduced from M and e), we calculate the ascending node
crossing times tA and tB of the satellites (see Example 8.6):

• tA = 17:08:56.620 UT for GRACE-A.
• tB = 17:09:27.767 UT for GRACE-B.

In the Galilean frame, the difference between the longitudes of the ascending
node is obtained directly from the TLE (the nodal precession over 2 s, the
time elapsed between t0A and tA, is negligible):

• ΔΩ = ΩB −ΩA = 219.2966◦ − 219.2934◦ = 0.0032◦.

The two orbits are practically identical (Δa = 1m) and lie in the same plane
(ΔΩ = 11 arcsec). The two satellites thus follow one another around this
common orbit. The time difference is

• Δt = tB − tA = 31.147 s.
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However, in the terrestrial frame, the ground tracks are distinct and “parallel”.
For the longitude of the ascending node, calculation gives

• λA = 221.5933◦ for GRACE-A and λB = 221.4663◦ for GRACE-B.

The difference in longitude is therefore

• Δλ = λB − λA = −0.1270◦.

This corresponds to 14 km on the equator. It also corresponds to the following
interval of time for the Earth’s rotation in the Galilean frame:

• Δtλ = −Δλ/Ω̇T = 30.381 s .

If we transform the angular increment ΔΩ into time using

ΔtΩ = −ΔΩ/Ω̇T = 0.766 s ,

we obtain finally,

• Δtλ +ΔtΩ = 30.381 + 0.766 = 31.147 s.

This is the value found above for Δt.
In order to establish the local crossing time at the ascending node, we

calculate the time in LMT:

• τA = 7.92195 and τB = 7.92214.

This is almost the same time for the two satellites:

• τA = 07:55:19 and τB = 07:55:20.

The difference is just ΔtΩ . At the equator, the speed of the two satellites is
7.630km/s and the speed of the ground track is 7.108km/s. The difference
between the two GRACE satellites is thus 237.9 km in space and 221.7 km for
the ground tracks.

Figure 9.7 illustrates the above calculations. �

9.2.3 Earth Environment Satellites

Terrestrial Magnetic Field and Its Manifestations

To study the Earth’s magnetic field, two satellites are in Sun-synchronous
LEO, but elliptical orbit, namely the American MagSat (Magnetic field Satel-
lite, AEM-3, Explorer-61), launched in 1979, with hp = 352km, ha = 561km,
and i = 96.8◦, and the Danish Ørsted, launched in 1999, with hp = 450km,
ha = 850km, and i = 96.5◦.

To study the radiation belts, the Chinese satellite SJ-5 (Shi Jian-5, DFH-
47, where shi jian means “achievement”), launched in 1999 at the same time
as FY-1C (DFH-46), is in a circular Sun-synchronous orbit with h = 855km.
The military aspects of this study have been entrusted to the six satellites
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GP-B
Orbit - ref.: Earth

>>>>   Time span shown:  2880.0 min =   2.00 days

Altitude =  650.0 km a = 7028.136 km

Inclination  =  90.00 °

Period =    97.86 min    * rev/day =14.72

Equat. orbital shift  = 2730.9 km  (  24.5 °)

Asc. Node:      0.00 °Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 60.0 ° N;   50.0 ° W
Aspect:  Oblique

[ -90.0/ +30.0/+140.0] [-]    EGM2008

GP-B
Orbit - Ground track

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  650.0 km a = 7028.136 km

MC LMD

MC LMD

Inclination  =  90.00 °

Period =    97.86 min    * rev/day =14.72

Equat. orbital shift  = 2730.9 km  (  24.5 °)

Asc. Node:      0.00 °
App. inclin. =  93.90 °

Projection:  Stereographic
Property:  Conformal

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 90.0 ° N;    0.0 °
Aspect:  Direct

[  +0.0/  +0.0/  +0.0] [-]    EGM2008

Fig. 9.6 :Satellite GP-B with polar inclination. Upper: Orbit over 2 days. Lower:

Ground track over 1 day.
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GRACE-A
Orbit - Ground track

Recurrence ~ [15;+38;149]2273

2004 12 31 17:08:57 UTC  >>>   1440.0 min =   1.00 day

Altitude =  468.7 km

e = 0.001531

a = 6846.809 km

Inclination  =  89.02 °

Period =    94.10 min    * rev/day =15.30

Equat. orbital shift  = 2627.0 km  (  23.6 °)

Asc. Node:   -138.41 ° [07:55 LMT]
[NORAD] Revolution:  15582
[NORAD] 2004 12 31 17:08:57 UTC

Projection:  Mercator
Property:  Conformal

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct

[  +0.0/  +0.0/  +0.0] [-]    EGM96

GRACE-B
Orbit - Ground track

Recurrence = [15;+38;149]2273

2004 12 31 17:09:28 UTC  >>>    720.0 min =   0.50 day

Altitude =  468.7 km

e = 0.001659

MC LMD

MC LMD

a = 6846.811 km

Inclination  =  89.02 °

Period =    94.10 min    * rev/day =15.30

Equat. orbital shift  = 2627.0 km  (  23.6 °)

Asc. Node:   -138.53 ° [07:55 LMT]
[NORAD] Revolution:  15582
[NORAD] 2004 12 31 17:09:28 UTC

Proj.:  UTM / Zone 32
Property:  Conformal

T.:Cylindrical - Graticule:  5°

PC:  0.0 °  ;  9.0 °E /ZC: 46.0 ° N;  6.0 ° E  
Aspect:  Direct > zoom : 15.00

[  +0.0/ -90.0/  -9.0] [ +90] EGM96

Fig. 9.7 :GRACE satellites. Upper: Orbital ground track of GRACE-A over 1 day.

Lower: Orbital ground track of GRACE-B (zoom) for one passage, superposing the

ground track of GRACE-A, slightly to the east (Δλ = λB − λA = −0.1271◦).
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Shi Jian-6, launched in pairs every 2 years (SJ-6A and -6B in 2004, SJ-6C
and -6D in 2006, and SJ-6E and -6F in 2008, also called DFH-60 and -61, -70
and -71, and -80 and -81, in the same order). On a Sun-synchronous orbit at
h = 600 km, they follow each other at an interval of 1min.

In near-polar LEO orbit, between 800 and 1,000km, are the even-numbered
OGO satellites (Orbiting Geophysical Observatory), OGO-2, -4, and -6,
known as POGO (Polar OGO), launched between 1965 and 1969, the Swedish
satellites Astrid-1 and -2, launched in 1995 and 1998, and the strictly polar
satellite Polar BEAR (Beacon Experiments and Auroral Research).

Magnetosphere and Heliosphere

To study the magnetosphere, that is, the zone of interaction between par-
ticles excited by the solar wind and the Earth’s magnetic field, satellite orbits
have to be very high and highly elliptical. The first US satellite to be placed
in orbit, Explorer-1, with hp = 347 km, ha = 1,859km, and i = 33.2◦, already
had some of these features. As we have seen, it discovered two radiation belts
around the Earth, since referred to as the Van Allen belts. This radiation
was studied by the Soviet Elektron programme, for which four satellites were
launched in two pairs in 1964: Elektron-1 with -2 and Elektron-3 with -4. They
all followed eccentric orbits, with inclination i ≈ 61◦, and with ha ∼ 6,500km
for the odd numbers, ha ∼ 65,000km for the even numbers.

Magnetospheric studies continued with a great many satellites launched
between 1964 and 1968, such as the odd-numbered OGO satellites, OGO-1, -3,
and -5, referred to as EOGO (Eccentric OGO), Explorer-34 (IMP-F or IMP-
5, Interplanetary Monitoring Platform), launched in 1967 with hp = 242km,
ha = 214,400 km, i = 67.1◦, or Explorer-50 (IMP-J or IMP-8), launched into
a very high orbit in 1973 with variable inclination between 32◦ and 55◦ (and
after 30 years, this satellite is still operational). The justification for the polar
orbits of Dynamics Explorer-1 and -2 was explained in Chap. 7.

For the experiment ISEE (International Sun–Earth Explorer), the two
satellites ISEE-1 and -2 were launched in 1977 into highly eccentric orbits,
with hp ≈ 400km, ha ≈ 138,000 km, i = 12.7◦ and 13.5◦. Then in 1978,
ISEE-3 was the first satellite to be placed in a halo orbit10 around the La-
grange point L1, an orbit known as L1LO (see the appendix on the Lagrange
points in Sect. 6.12). The satellite Wind, launched in 1994, was also placed in
an L1LO orbit around the point L1, where it remained from May 1997 until
April 1998. From this location, it was able to observe the solar wind before it
became perturbed by the Earth’s magnetosphere. It was subsequently placed

10When it had accomplished its mission, the satellite was withdrawn from the point L1 in
June 1982. Using a lunar flyby as a gravity-assist maneuver, it was removed from the Earth’s
gravitational attraction and sent into heliocentric orbit for the ICE mission (International
Cometary Explorer), in an encounter with a comet (perihelion 0.93 a.u., aphelion 1.03 a.u.,
inclination 0.1◦, period 355 day).
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Van Allen Pr.-A (RBSP-A)
Orbit - ref.: Earth

Recurrence = [ 3;-54;161] 429

2012 09 27 10:44:36 UTC  >>>    10.00 days

Equiv. altit.  =  15559.4 km

e = 0.682033

a =21937.541 km

Inclination  =   9.95 °

Period =   538.26 min    * rev/day = 2.68

h_a =  30522 km;  h_p =  597 km;  arg. perigee:   +24.96 °

[NORAD] 2012 09 27 10:44:36 UTC//R=    75

Asc. Node:    101.29 ° [17:30 LMT]

Apogee   :     12.05 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 65.0 ° N;   65.0 ° W

Aspect:  Oblique

[ -90.0/ +25.0/+155.0] [-]    EGM2008

Van Allen Pr.-B (RBSP-B)
Orbit - ref.: Earth

2012 10 01 00:00:00 UTC  >>>    15.00 days

Equiv. altit.  =  15639.0 km

e = 0.682736

MC LMD

MC LMD

a =22017.152 km

Inclination  =   9.94 °

Period =   541.20 min    * rev/day = 2.66

h_a =  30671 km;  h_p =  607 km;  arg. perigee:   +24.91 °

[NORAD] 2012 09 27 14:12:03 UTC//R=    75

Asc. Node:     49.37 ° [17:30 LMT]

Apogee   :    -39.55 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 90.0 ° N;   90.0 ° W

Aspect:  Direct

[ -90.0/  +0.0/-180.0] [-]    EGM2008

Fig. 9.8 : In a terrestrial frame, orbits of Van Allen Probe-A and -B, investigating

the Van Allen radiation belts. Upper: Probe-A over 10 days. Lower: Probe-B over

15 days.
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STRV-1B
Orbit - ref.:Earth

Recurrence = [ 3;-12;161] 471

2010 05 26 06:29:17 UTC  >>>     5.00 days

Equiv. altit. = 14233.5 km

e = 0.679397

a =20611.604 km

Inclination  =   7.15 °

Period =  490.12 min   * Revol./d.= 2.94

h_a =  28237 km ; h_p =  230 km ; arg. perigee:  +55.73 °

[NORAD] 2010 05 26 06:29:17 UTC / R:15170

Asc. Node:  -138.69 ° [21:15 LMT]

Apogee    :   155.21 °

Projection : Orthographic

Property: (none)

T.:Azimutal - Graticule:  10°

Centre Project.: 35.0 ° N ;  10.0 °E

Aspect : Oblique

[ -90.0/ +55.0/ +80.0] [-]    EGM96

STRV-1C
Orbit - ref.: Earth

Recurrence    = [ 2; +2; 69] 140

2010 02 15 08:33:45 UTC  >>>     5.00 days

Equiv. altit. = 19934.7 km

e = 0.734470

MC LMD

MC LMD

a =26312.871 km

Inclination  =   6.02 °

Period =  707.12 min   * Revol./d.= 2.04

h_a =  39261 km ; h_p =  609 km ; arg. perigee : +226.14 °

[NORAD] 2010 02 15 08:33:45 UTC / R: 6877

Asc. Node:   -70.41 ° [03:52 TSM]

Apogee    :    88.21 °

Projection : Orthographic

Property : (none)

T.:Azimutal - Graticule:  10°

Centre Project.: 35.0 ° N ;  10.0 ° W

Aspect : Oblique

[ -90.0/ +55.0/+100.0] [-]    EGM96

Fig. 9.9 : In a terrestrial frame, GTO orbits of the experimental satellites STRV over

5 days. Upper: STRV-1B, about three revolutions per day. Lower: STRV-1C, about

two revolutions per day.
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on a highly complex orbit known as a petal orbit11 from November 1998 to
April 1999. The satellite ACE (Advanced Composition Explorer, Explorer-
71), launched in 1997, is also in an L1LO orbit.

We should also mention the highly eccentric orbits of the following satel-
lites: Interkosmos-24, a Soviet satellite launched in 1989, hp = 511km,
ha = 2,950km, i = 82.6◦, with Magion-2 (see Fig. 9.11); Geotail (or GTL,
Geomagnetic Tail Laboratory), a Japanese satellite launched in 1992, hp =
41,360km, ha = 508,500 km, i = 22.4◦; Polar, launched in 1996, on an or-
bit with variable parameters,12 a ∼ 60,000 km, e ≈ 0.7, i ∼ 80◦; FAST
(Fast Auroral Snapshot Explorer, SMEX-2, Explorer-70), launched in 1996,
hp = 353 km, ha = 4,163 km, i = 83.0◦, (see Fig. 9.10 upper); Equator-S,
launched in 1997, hp = 496 km, ha = 67,230km, i = 7.0◦ (orbit obtained
by transfer via a GTO orbit); IMAGE (Imager for Magnetopause-to-Aurora
Global Exploration, MIDEX-1, Explorer-78), launched in 2000, on a polar
orbit with hp ≈ 1,000 km and ha of the order of seven Earth radii.

To study the Van Allen radiation belts, NASA placed the two satellites
RBSP-A and -B (Radiation Belt Storm Probe) on a GTO orbit in 2012. They
were later renamed the Van Allen Probes (see Fig. 9.8). With hp ≈ 550km
and ha ≈ 31,100 km (a = 21,980km, e = 0.682), these twin satellites have
a period of T = 540min, or 9 h, and make frequent crossings of the belt
under investigation (see also the STRV satellites discussed under technological
satellites and shown in Fig. 9.9).

The Russian Interball experiment is based on Interball Tail (or Interball-
S2-X, Interbol-1, Prognoz-11), launched in 1995 on a highly elliptical orbit
with period T = 91h, and Interball Aurora (or Interball-S2-A, Interbol-2,
Prognoz-12), launched in 1996 on a Molniya orbit. In each case, the Czech
satellites Magion (Magnetosphere–Ionosphere),Magion-4 then Magion-5, were
launched jointly with an Interball satellite. The orbit of the forthcoming
Interbol-3 is planned for ha = 400,000km. We also mention the Chinese satel-
lite KF1-SJ-4 (Shi Jian-4, DFH-38), launched in 1994 on a GTO orbit with
i = 28.6◦.

To study the magnetosphere and phenomena related to the aurora bo-
realis, between 1978 and 1989, Japan sent four satellites EXOS (Exospheric
Observations) into alternately low and high eccentric orbits, with i = 69◦ for

11The satellite left the point L1 in the Earthward direction, roughly in the plane of the
lunar orbit, before moving into the petal orbit. In this configuration, the satellite moves
alternately behind the Earth and the Moon. In this plane and in a frame moving with the
Earth, the trajectory sketches out a daisy with the Earth at the center. The tips of the
petals represent the different positions of the Moon in its rotation about the Earth. It has
period 17.5 day and the radius of the ellipse is rp ≈ 6R to 10R, ra ≈ 80R (where the
Earth–Moon distance is approximately 60R).

12This satellite, the Polar Plasma Laboratory, is part of the GGS mission (Global
Geospace Science) with Wind and Geotail, and this is itself just one component of the
ISTP programme (International Solar Terrestrial Physics), which includes the European
missions SOHO and Cluster and the Russian mission Interball.



9.2 Classifying Satellites by Mission 355

FAST
Orbit - ref.: Earth

Recurrence = [11;+11; 71] 792

2004 11 17 22:35:40 UTC  >>>   4320.0 min =   3.00 days

Equiv. altit.  =   2054.5 km

e = 0.202505

a = 8432.587 km

Inclination  =  82.97  °

Period =   128.56 min    * rev/day =11.20

h_a =   3783 km;  h_p =  368 km;  arg. perigee:   +95.00  °

[NORAD] 2004 11 17 22:35:40 UTC//R= 33065

Asc. Node:    139.63 ° [07:54 LMT]

Apogee   :    -85.12  °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 28.0 ° N;   85.0 ° W

Aspect:  Oblique

[ -90.0/ +62.0/+175.0] [-]    EGM2008

Akebono (EXOS-D)
Orbit - ref.: Earth

Recurrence = [10; -5;131]1305

2009 11 05 01:11:11 UTC  >>>   5760.0 min =   4.00 days

Equiv. altit.  =   2710.5 km

e = 0.269151

MC LMD

MC LMD

a = 9088.656 km

Inclination  =  75.07 °

Period =   143.81 min    * rev/day =10.01

h_a =   5162 km;  h_p =  270 km;  arg. perigee:  +149.24 °

[NORAD] 2009 11 05 01:11:11 UTC//R= 60955

Asc. Node:     98.28 ° [07:44 LMT]

Apogee   :    -85.46 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre:  5.0 ° N;   95.0 °E

Aspect:  Oblique

[ -90.0/ +85.0/  -5.0] [-]    EGM2008

Fig. 9.10 :Ground tracks of elliptical orbits over 3 days. Upper: FAST. Lower: Ake-

bono (EXOS-D).
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EXOS-A (Kyokko, meaning “aurora”), i = 31◦ for EXOS-B (Jikiken, mean-
ing “magnetosphere”), and i = 75◦ for EXOS-C (Ohzora, meaning “sky”) and
EXOS-D (Akebono, meaning “dawn”) (see Fig. 9.10 lower).

The European experiment Cluster-2 comprises four satellites in forma-
tion.13 They have a very high orbit, with hp = 17,200km, ha = 120,600km,
i = 65◦, T = 57h. The Double Star programme comprises two Chinese
satellites carrying European instruments similar to those designed for Clus-
ter, in eccentric orbits,14 with perigee at 600km altitude. The first, DSP-1,
ha = 79,000km, is in an equatorial orbit, and the second, DSP-2, ha =
39,000km, is in a polar orbit.

The satellite IBEX (Interstellar Boundary Explorer, SMEX-10, Explorer-
91) is on a very high near-equatorial orbit with a period of 7.6 days.15

China is pursuing its efforts in this field with the Kua Fu mission: they have
placed one satellite, Kua Fu-A, at the Lagrange point L1, and two satellites,
Kua Fu-B1 and -B2, in polar LEO orbit.

The five satellites of the US mission THEMIS (Time History of Events
and Macroscale Interactions during Substorms, MIDEX-5)16 were launched
together on 17 February 2007. The aim is to unambiguously determine17 the
regions where magnetic substorms are triggered and study the reconnection
modes of the magnetic tail. There are five phases to the mission. (a)—First
Phase. The five satellites are on the same orbit: hp = 470km, ha = 87,333km
(or 15.4R, where R is the Earth radius), i = 16.0◦. (b)—Dawn Phase. The
apogee ha of each satellite is modified: 30R for THEMIS-1, 20R for THEMIS-
2, 12R for THEMIS-3 and -4, 10R for THEMIS-5. At the apogee, the satellites
are situated above places where it is dawn on Earth. (c)—Tail Phase. The
orbits remain unchanged, but owing to the motion of the Earth about the Sun,
the satellites reach apogee at midnight. (d)—Dusk Phase. The satellites reach
apogee at dusk. (e)—Final Phase. The apogee lies Sunward, with passage at
noon.

13These satellites, Rumba, Salsa, Samba, and Tango, fly a few hundred kilometers apart.
They were launched in two stages, on 16 June and 19 August 2000, to avoid repetition of
the disaster when Cluster was launched together on 4 June 1996.

14DSP-1 (also called Tan Ce-1, meaning Explorer-1 in Chinese, or TC-1), a = 46,148.1 km,
e = 0.8494, i = 28.5◦, launched on 29 December 2003. DSP-2 (Tan Ce-2 or TC-2), a =
26,228.1 km, e = 0.7301, i = 90◦, launched on 26 July 2004.

15Launch date 19 October 2008 and orbital characteristics hp = 1.5R, ha = 47.8R,
a = 163,000 km, e = 0.9025, i = 10.993◦, T = 183 h.

16This is one of the Explorer missions. The satellites are also called Explorer-85, -86, -87,
-88, and -89. In the MIDEX-5 framework, they are referred to as MIDEX-5A to -5E.

17It was the idea of a clear and objective determination that led to the name of this
mission, THEMIS, from the Greek goddess of justice � 1���	� ���	, or Themis. She sits
at the deliberations of gods and men and in each instance preserves the equity of their
decisions.
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For such satellites, precessional motions are very slow18 and each orbit
thus remains practically fixed relative to a Galilean frame. At the end of 1
year, the mission was extended. The values hp = 470km and i = 16.0◦ were
maintained throughout the whole mission.

The US project MMS (Magnetospheric Multiscale) plans to operate four
satellites in formation, at the vertices of a tetrahedron. The inclination of the
orbit is i = 28.5◦ and the perigee remains constant at rp = 1.2R. Concerning
the apogee, ra = 12.83R (T = 1.09 day) in phase 1, then goes to ra = 25.0R
(T = 2.78 day) in phase 2. The European project Cross-Scale will use a flotilla
of seven satellites on an orbit with rp = 10R, ra = 25R, i = 14◦, and ω = 205◦,
giving a period of T = 4.3 day.

Ionosphere

To study the ionosphere,19 there are the US satellites UARS (Upper
Atmosphere Research Satellite), h = 570 km, i = 56.9◦, and TIMED
(Thermo-Iono-Mesosphere Energetics and Dynamics), h = 625km, i = 74.0◦.
In addition, there is the Taiwanese satellite Rocsat-1 (Republic of China Satel-
lite), with a slightly inclined orbit, h = 630km, i = 35◦ (for an oceanographic
mission) and many Interkosmos, such as Interkosmos-12, several Kosmos, such
as Kosmos-196, and the Chinese satellites Atmosphere-1 and -2 (DFH-31 and
-32), which are Sun-synchronous with h = 800 km and h = 610 km. The
satellite SAMPEX (Solar Anomalous and Magnetospheric Particle Explorer,
SMEX-1, Explorer-68) is near-polar, with hp = 506 km, ha = 670km, and
i = 81.7◦ (Fig. 9.11).

9.2.4 Satellites for Meteorology and Climate Study

Meteorology and the Study of the Atmosphere

The possibility of observation from space aroused the interest of meteo-
rologists from an early stage. It was their dream to know the global state of
the atmosphere in a single glance! In order to do so, the orbits used have
always been Sun-synchronous LEO orbits (see Fig. 9.12) or GEO orbits (see
Fig. 9.13), apart from the first satellites and the Meteor satellites.

LEO Meteorological Satellites

In the case of NASA’s NIMBUS programme,20 the seven satellites were
Sun-synchronous, from Nimbus-1 to Nimbus-6, on a fairly high LEO orbit

18For the satellites in Phase 1, the nodal precession rate is Ω̇ = 0.10 round/year, the
apsidal precession rate is ω̇ = 0.20 round/year.

19Launch dates: UARS on 12 September 1991 (STS-48); TIMED on 7 December 2001
(with Jason-1 but in a different orbit); Rocsat-1 on 27 January 1999; Interkosmos-12 on
30 October 1974; Atmosphere-1 and -2 (DFH-31 and -32) on 3 September 1990; SAMPEX
on 3 July 1992.

20Launch dates: Nimbus-1 on 28 August 1964; Nimbus-2 on 15 May 1966, Nimbus-3 on
14 April 1969; Nimbus-4 on 8 April 1970; Nimbus-5 on 11 December 1972; Nimbus-6 on 12
June 1975; Nimbus-7 on 24 October 1978.
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InterKosmos-24
Elliptical orbit - Gr. track

>>>>   Time span shown:   6.00 days

Equiv. altit.  =   1447.3 km

e = 0.121592

a = 7825.471 km

Inclination  =  82.59 °

Period =   114.94 min    * rev/day =12.53

h_a =   2399 km;  h_p =  496 km;  arg. perigee:  +156.46 °

Longitude / Initialisation:
MC LMDAsc. Node:   -180.00 ° [00:00 LMT]

Apogee   :     -0.85 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.):  0.0 °  ;   45.0 °E
Aspect:  Equatorial

[ -90.0/ +90.0/ +45.0] [-] EGM2008

Fig. 9.11 :Orbit and ground track of the satellite Interkosmos-24 over 6 days. The

representation clearly indicates the position of the perigee, whereas the representation

of the ground track does not.
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Feng Yun-3A
Orbit - Ground track

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  823.9 km a = 7202.009 km

Inclin./SUN-SYNCHRON.=  98.73 °

Period =   101.49 min    * rev/day =14.19

Equat. orbital shift  = 2824.6 km  (  25.4 °)

Asc. Node:     74.94 ° [22:10 LMT]
MC LMD

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 18.0 ° N;  114.0 °E
Aspect:  Oblique

[ -90.0/ +72.0/ -24.0] [-]    EGM2008

Fig. 9.12 :Orbit and ground track of the Sun-synchronous satellite FY-3A over 1 day.
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with h = 1,100km and i = 99.9◦, while Nimbus-7 followed a slightly lower
orbit with h = 950km and i = 99.1◦.

The programme run by what is known today as the National Oceanic
and Atmospheric Administration (NOAA), the American meteorological of-
fice, can be divided into five series: TIROS (Television and Infra Red Obser-
vation Satellite), TOS (TIROS Operational System), ITOS (Improved TOS),
TIROS-N and ATN (Advanced TIROS-N). The first comprises 12 satellites
and began on 1 April 1960 with the launch of the first meteorological satel-
lite,21 TIROS-1. Up to TIROS-8, launched in 1963, the orbits were similar,
with h ≈ 680 km and i between 48◦ and 58◦. Subsequently, all further satel-
lites were Sun-synchronous: TIROS-9 and -10, launched in 1964, and ESSA-1
and 2 (Environmental Science Service Administration), launched in 1966. The
TOS series comprised seven satellites, from ESSA-3 to ESSA-9, launched from
1966 to 1969, on the orbit h = 1,450km, i = 102◦. The ITOS series used ex-
actly the same orbit for six satellites, ITOS-1, NOAA-1, -2, -3, -4, -5, launched
from 1970 to 1976. The last two series22 adopted a lower orbit: h = 800km,
i = iHS = 98.8◦ for TIROS-N, with the satellites TIROS-N and NOAA-6 and
-7; and h from 820 to 860km, i = iHS for ATN, with the satellites NOAA-8
to -18.

The POES programme (Polar-orbiting Operational Environmental Satel-
lites) concerns the two last series. Its planned successor was the NPOESS pro-
gramme (National POES System), a joint project by several US institutions,
namely the NOAA, NASA, and the Department of Defense (DoD, which runs
the DMSP series), known as “Three Agencies, One Mission”, coordinated by
the satellite NPP (NPOESS Preparatory Project)23 at altitude h = 824km.
The six NPOESS satellites, from NPOESS-1 to -6, were planned to follow
almost the same orbit as NPP, at h = 828km.

In February 2010, the US government reconsidered the various contribu-
tions of the NOAA, NASA, and the DoD and replaced NPOESS by JPSS
(Joint Polar Satellite System). This new programme was based on a close
collaboration with the European organisation EUMETSAT and its MetOp

21The three US satellites launched in 1959 had provided useful meteorological data. These
were Vanguard-2, Explorer-6 (first photograph of the Earth), and Explorer-7 (first data
concerning the Earth radiation budget). However, the first satellite devoted entirely to
meteorology was TIROS-1.

22Launch dates: TIROS-N on 13 October 1978; NOAA-6 on 27 June 1979; NOAA-7 on
23 June 1981; NOAA-8 on 28 March 1983; NOAA-9 on 12 December 1984; NOAA-10 on 17
December 1986; NOAA-11 on 24 September 1988; NOAA-12 on 14 May 1991; NOAA-13 on
9 August 1993, only operated for a few days; NOAA-14 on 30 December 1994; NOAA-15
on 13 May 1998; NOAA-16 on 21 September 2000; NOAA-17 on 24 June 2002; NOAA-18
on 20 May 2005; NOAA-19 on 6 February 2009.

23Launch date: NPP on 28 October 2011. The National Polar-orbiting Operational En-
vironmental Satellite System Preparatory Project (NPP) was renamed National Polar-
orbiting Partnership (NPP), and then, in January 2012, Suomi-NPP, after the American
engineer Verner E. Suomi, considered to be the father of satellite meteorology (he built the
first radiometer, aboard Explorer-7).
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90°E

120°E
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180° 
150°W

120°W

90°W

60°W

30°W

Location Operator Satellite Satellite Type
λS (series) in orbit

0.0◦− EUMETSAT METEOSAT METEOSAT-10 MO
3.6◦E EUMETSAT METEOSAT METEOSAT-8 SO
9.5◦E EUMETSAT METEOSAT METEOSAT-9 SB

55.0◦E India METSAT INSAT-3E MO
57.3◦E EUMETSAT METEOSAT METEOSAT-7 SO
74.0◦E India METSAT Kalpana-1 SO
76.0◦E Russia GOMS Elektro-1 MO
86.5◦E China Feng Yun-2 FY-2D SO
93.5◦E India INSAT INSAT-3A MO

105.0◦E China Feng Yun-2 FY-2E MO
112.0◦E China Feng Yun-2 FY-2F SB
128.2◦E South Korea COMS COMS-1 MO
140.0◦E Japan MTSAT MTSAT-1R SO
145.0◦E Japan MTSAT MTSAT-2 MO
135.0◦W US/NOAA GOES-W GOES-15 MO
105.0◦W US/NOAA GOES GOES-14 B
75.0◦W US/NOAA GOES-E GOES-13 MO
60.0◦W US/NOAA GOES GOES-12 MO

Fig. 9.13 :Meteorological geostationary satellites, with parking positions, as of 1 July

2013. Status of satellite: MO (main operational), SO (secondary operational), B

(back-up), SB (on standby). The geostationary orbit and the Earth are drawn on the

same scale. Orbits of Sun-synchronous satellites at altitude 800 km are also plotted

on the same scale. The viewpoint is located very high up on the polar axis, above the

North Pole.



362 Chapter 9. Orbit and Mission

satellite. However, in 2011, the DoD decided to carry out its own programme,
DWSS (Defense Weather Satellite System). To be continued (see the appendix
in Sect. 9.3).

The military satellites DMSP (Defense Meteorological Satellite Program)
supply some data to the civilian sector. They are all Sun-synchronous, often
following slightly elliptical orbits, with h between 750 and 850 km, i = iHS

from 98.6◦ to 99.2◦. There were thirteen satellites launched from 1965 to 1969
for the first block (Block 4), from DMSP-4A F-1 (OPS/6026) to DMSP-4A
F-13 (also called DMSP-4B F-3, or OPS/1127). The second block (Block 5)
began in 1970 with DMSP-5A F-1 (OPS/0054) and is still running,24 with
the extension Block 5D3.

Soviet then Russian meteorological satellites25 were not Sun-synchronous
until 2001. They fall into three Meteor series, with near-polar LEO orbits. The
first two series involved 48 satellites: Meteor-1, from Meteor-1-01 in 1969 to
Meteor-1-27 in 1977, with h = 870km, i = 81.2◦; Meteor-2, from Meteor-2-01
in 1975 to Meteor-2-21 in 1993, with h = 940 km, i = 82.5◦. The third series
involved six satellites in slightly higher orbits, with h = 1,200km, i = 82.6◦.
The new generation, known as Meteor-M, are Sun-synchronous. The first of
the series is Meteor-M-1, h = 816 km, i = iHS = 98.8◦, τAN = 21:30.

The Chinese satellites26 in the FY-odd series (FY-1 and FY-3, where
FY stands for Feng Yun, and feng yun means “wind and cloud”) are Sun-
synchronous with h = 858 km for FY-1 and h = 808km for FY-3.

The European MetOp satellites27 (Meteorological Operational satellites)
are of course Sun-synchronous, at an average altitude of h = 830km.

The Rocsat-3/COSMIC mission (Constellation Observing System for Me-
teorology, Ionosphere and Climate), renamed28 FormoSat, is a collaboration
between Taiwan and the USA. It comprises a constellation of microsatellites

24Launch dates: DMSP-5D2 F-8 (also called USA-26) on 20 June 1987; DMSP-5D2 F-9
(USA-29) on 3 February 1988; DMSP-5D2 F-10 (USA-68) on 1 December 1990; DMSP-
5D2 F-11 (USA-73) on 28 November 1991; DMSP-5D2 F-12 (USA-106) on 29 August 1994;
DMSP-5D2 F-13 (USA-109) on 24 March 1995; DMSP-5D2 F-14 (USA-131) on 4 April
1997; DMSP-5D3 F-15 (USA-147) on 12 December 1999; DMSP-5D3 F-16 (USA-172) on
18 October 2003; DMSP-5D3 F-17 (USA-191) on 4 November 2006; DMSP-5D3 F-18 (USA-
210) on 18 October 2009. The DMSP series should contain two more satellites, F-19 (for
2014) and F-20 (for 2020). This should be followed by the first satellites of DWSS, viz., F-1
and F-2.

25Launch dates: Meteor-3-01 on 24 October 1985; Meteor-3-03 on 26 July 1988; Meteor-
3-04 on 25 October 1989; Meteor-3-05 on 24 April 1991; Meteor-3-06 on 15 August 1991;
Meteor-3-07 on 25 January 1994; Meteor-M-1 on 17 September 2009.

26Launch dates: FY-1A (DFH-24) on 6 September 1988; FY-1B (DFH-30) on 3 September
1990; FY-1C (DFH-46) on 10 May 1999; FY-1D (DFH-53) on 15 May 2002; FY-3A on 27
May 2008; FY-3B on 4 November 2010.

27Launch dates: MetOp-A on 19 October 2006; MetOp-B on 17 September 2012. MetOp-
C is planned for 2017. After 2020, the following series is planned: EPS-SG (European Polar
Satellite—Second Generation), with the satellites EPS-SG-A and -B.

28The Rocsat satellites (Republic of China Satellites) changed name in 2005 to become
FormoSat, recalling the old name for the island of Taiwan, viz., Formosa or Ilha Formosa
in Portugues.



9.2 Classifying Satellites by Mission 363

flying at h = 800 km with inclination i = 72◦, there being three planes contain-
ing two satellites each. Launched in 2006, the six satellites, from FormoSat-3A
to FormoSat-3F, monitor the water vapour and other components of the at-
mosphere by radio-occultation of the GPS signal.

GEO Meteorological Satellites

The geostationary programme has been very widely developed for the pur-
poses of operational meteorology. In order to avoid large distortions due to the
viewing angle, the various meteorological institutions have sought to distribute
their satellites as harmoniously as possible around the geostationary orbit, un-
der the coordination of the World Meteorological Organisation (WMO), see
Fig. 9.14.

In the United States, these satellites are placed alternately on the longi-
tudes of the east and west coasts. This approach was already in use for the
SMS satellites (SMS-1 with λS = 75◦W; SMS-2 with λS = 115◦W) and was
continued with the GOES series29 (Geostationary Operational Environmen-
tal Satellite) and GOES-Next, the satellites begin designated GOES-East or
GOES-West in the obvious way. The satellite GIFTS (Geosynchronous Imag-
ing Fourier Transform Spectrometer, or EO-3 NMP, a joint project of NASA,
the NOAA, and the US Navy) will be placed over the Indian ocean.

For Europe, the geostationary programme is run by EUMETSAT with
the METEOSAT satellites. The various operational METEOSAT satellites30

have all been placed at longitude λS = 0◦. Some of them can be reserved, or
loaned (like METEOSAT-3 to replace GOES-E from February 1993 to May
1995), or sent on missions (like METEOSAT-5 for the INDOEX experiment,
Example 7.6).

29Launch dates: SMS-1 on 17 May 1974; SMS-2 on 6 February 1975; GOES-1 (SMS-3)
on 16 October 1975; GOES-2 on 16 June 1977; GOES-3 on 16 June 1978; GOES-4 on
9 September 1980; GOES-5 on 22 May 1981; GOES-6 on 28 April 1983; GOES-7 on 26
February 1987; GOES-8 on 13 April 1994; GOES-9 on 23 May 1995; GOES-10 on 25 April
1997; GOES-11 on 3 May 2000; GOES-12 on 23 July 2001; GOES-13 on 24 May 2006;
GOES-14 on 27 June 2009; GOES-15 on 4 March 2010.

30Launch dates: METEOSAT-1 on 23 November 1977; METEOSAT-2 on 19 June 1981;
METEOSAT-3 on 15 June 1988; METEOSAT-4 on 6 March 1989; METEOSAT-5 on 2
March 1991; METEOSAT-6 on 20 November 1993; METEOSAT-7 on 2 September 1997;
METEOSAT-8 (MGS-1) on 28 August 2002; METEOSAT-9 (MGS-2) on 21 December
2005; METEOSAT-10 (MGS-3) on 5 July 2012. The MSG satellites (METEOSAT Second
Generation) are renamed METEOSAT when they become operational. The satellite MSG-
4 is planned for 2014. The new series known as MTG (METEOSAT Third Generation)
is the third generation of the METEOSAT programme, planned to run for 20 years from
2018. It differs significantly from the first two generations, since the satellites will no longer
spin permanently about their axis at 100 rev/min, but will have three-axis stabilisation.
This allows the possibility of atmospheric sounding. The MTG programme comprises six
satellites weighing 3 tonnes each: four MTG-I (imagers) and two MTG-S (sounders).
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Although Russia generally prefers Molniya orbits to equatorial orbits, it
nevertheless launched the GOMS programme (Geostationary Operational Me-
teorological Satellite) of geostationary satellites.31

For India, the INSAT series (Indian Satellite) contains satellites for the
purposes of meteorology32 and communications.

China has launched satellites33 in the FY-even series (Feng Yun-2 and,
from 2014, Feng Yun-4, not to be confused with the FY-odd series of LEO
satellites already mentioned, viz., FY-1 and FY-3) since 1997.

Since 1977, Japan has been launching its geostationary GMS satellites34

(GeostationaryMeteorological Satellite), followed by MTSAT (Multi-functional
Transport Satellite). This programme is also called Himawari (himawari
means “sunflower”).

South Korea also takes part in the WMO programme with COMS-1 (Com-
munication, Ocean, Meteorological Satellite).35

Figure 9.13 shows the (official) positions of the operational satellites as of
1 July 2013. In this distribution, one observes a large “hole” above the Pacific,
and very closely spaced satellites at Asian longitudes. China and India prefer
to control their own data.

Satellites for Atmospheric Studies

Satellites devoted to atmospheric research fly in low orbits,36 like the two
AEM satellites (Application Explorer Mission), HCMM (Heat Capacity Map-
ping Mission, or AEM-1) with h = 600km, i = iHS, and SAGE (Stratospheric
Aerosols and Gas Experiment, or AEM-2) with h = 600 km, i = 55◦, or AIM
(Aeronomy of Ice in the Mesosphere) with h = 580km, i = iHS = 97.8◦, or

31Launch date: GOMS-1 on 31 October 1994. This series is also called Elektro and the
satellite thus carries the names Elektro-1 or GOMS-Elektro-1 as well as GOMS-1.

32Launch dates: INSAT-1A on 10 April 1982; INSAT-1B on 30 August 1983 (launched
by STS-8); INSAT-1C on 21 July 1988; INSAT-1D on 12 June 1990; INSAT-2A on 10 July
1992; INSAT-2B on 23 July 1993; INSAT-2E on 3 April 1999; METSAT-1 (Kalpana-1) on
12 September 2002; INSAT-3A on 9 April 2003; INSAT-3E on 27 September 2003. The
METSAT satellites are called Kalpana in homage to Kalpana Chawla, the Indian astronaut
lost in the explosion of Columbia, STS-107, on 1 February 2003. The word kalpana means
“imagination” in Sanskrit and is a female first name.

33Launch dates: FY-2A (DFH-45) on 10 June 1997; FY-2B (DFH-49) on 25 June 2000;
FY-2C on 19 October 2004; FY-2D on 8 December 2006; FY-2E on 23 December 2008.

34Launch dates: GMS-1 on 14 July 1977; GMS-2 on 10 August 1981; GMS-3 on 2 August
1984; GMS-4 on 5 September 1989; GMS-5 on 18 March 1995; MTSAT-1R (Himawari-6)
on 26 February 2005 (to replace MTSAT-1, destroyed at launch on 15 November 1999);
MTSAT-2 (Himawari-7) on 18 February 2006.

35Launch date: COMS-1 on 27 June 2010. COMS-1 is also called Chollian (from the
Korean Chun-Li-An), which means “seen from a thousand li”, where the li is the Chinese
and Korean unit of distance.

36Launch dates: HCMM (AEM-1, Explorer-58) on 26 April 1978; TOMS-EP on 2 July
1996; Odin on 20 February 2001; QuikTOMS on 21 September 2001, failed; SAGE (AEM-2,
Explorer-60) on 18 February 1979; SciSat-1 on 13 August 2003; AIM (SMEX-9, Explorer-90)
on 25 April 2007.
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Fig. 9.14 :Coverage of the Earth by three geostationary satellites.
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the Swedish atmospheric and astrophysics satellite Odin with h = 622km,
i = iHS, and the Canadian satellite SciSat-1 with h = 650 km, i = 73.9◦.

Satellites for ozone studies are Sun-synchronous: TOMS-EP (Total Ozone
Mapping Spectrometer and Earth Probe), h = 750km, was Sun-synchronous
and its successor37 QuikTOMS should have been. Satellites studying the
composition of the atmosphere, like ACE-A and ACE-B (Aerosol–Cloud–
Ecosystem) and GACM (Global Atmospheric Composition Mission) will also
be Sun-synchronous.

Satellites for Climate and Climate-Change Studies

Climate change is very difficult to assess from in situ measurements, which
are necessarily incomplete and sometimes inaccurate or biased. Only numer-
ical models can teach us about the evolution of the climate over periods in
excess of 10 years.

In order to run general circulation models for the atmosphere and ocean
which simulate the climate, a whole range of climate parameters must be as-
certained as accurately as possible. Among these, one could mention the type
of cloud and the amount of water or ice it contains, the distribution of aerosols
(dust and fine particles suspended in the air), the energy budget (incident ra-
diation reflected and emitted, from the ultraviolet to the far infrared), wind
speed and ocean currents, the roughness of the ground and development of
vegetation, the thickness of the ice sheets, amounts of greenhouse gases, and
the temperature of the ground and the sea surface. Only satellites38 can deter-
mine such parameters, which can then be integrated into computer programs
to “constrain” the model. These “space sentinels” thus play a fundamental
and determining role in the business of climate study. Here we review the
various aspects that come under investigation.

At the very beginning of the space age, several satellites were equipped
with instruments for studying the Earth’s radiation budget. However, the first
satellite dedicated entirely to this mission was ERBS (Earth Radiation Budget
Satellite), launched by the Space Shuttle, with h = 600km, i = 57◦. In this
field, important progress should be made with the ESA-JAXA mission known
as EarthCARE (Earth Clouds, Aerosols and Radiation Explorer), with a low
Sun-synchronous orbit, h = 394 km, i = iHS = 97.0◦.

Likewise, regarding rain measurements, several dedicated instruments have
flown aboard various satellites, such as the DMSP, but the first mission en-
tirely devoted to this issue was the US–Japanese satellite TRMM (Tropical
Rainfall Measurement Mission). Its low altitude, h = 350km, is essential since
it carries a radar designed to detect water droplets. Its inclination of i = 35◦

means that it obtains effective coverage of tropical regions (and Japan) (see
Fig. 9.15 lower). Figure 9.19 shows a TRMM image of Hurricane Katrina.

37Depending how fast one writes it! The NASA satellites QuikTOMS and QuikScat are
spelt like this, whereas those of DigitalGlobe are written QuickBird.

38Launch dates: ERBS on 5 October 1984 by STS-13 (STS-41-G); TRMM on 28 Novem-
ber 1997, see Example 7.2; SMOS on 2 November 2009; GOSat (Ibuki) on 23 January 2009;
Megha-Tropiques on 12 October 2011.
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Terra
Orbit - Ground track

Recurrence = [15; -7; 16] 233

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  699.6 km a = 7077.736 km

Inclin./SUN-SYNCHRON.=  98.21 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

Asc. Node:    103.02 ° [22:30 LMT]Proj.:  Perspect.V. h=5.61 R 

Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.):  0.0 °  ;  105.0 °E

Aspect:  Equatoria l

[ -90.0/ +90.0/ -15.0] [-]    EGM96

TRMM [1]
Orbit - Ground track

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  350.1 km a = 6728.216 km

MC LMD

MC LMD

Inclination  =  34.99 °

Period =    91.31 min    * rev/day =15.77

Equat. orbital shift  = 2596.2 km  (  23.3 °)

Asc. Node:      0.00 °Proj.:  Perspect.V. h=5.61 R

Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.):  0.0 °  ;  105.0 °E

Aspect:  Equatoria l

[ -90.0/ +90.0/ -15.0] [-]    EGM96

Fig. 9.15 :Orbital ground tracks of Terra and TRMM over 1 day. Blue: View from a

geostationary satellite with parking longitude 75◦W (left) and 105◦E (right).
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Syncom-2
Orbit - Ground track

Recurrence = [ 1; +0;  1]   1

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =35787.6 km a =42165.785 km

Inclination  =  32.80 °

Period =  1436.05 min    * rev/day = 1.00

Equat. orbital shift  =40075.8 km

Asc. Node:    -50.00 ° [00:00 LMT]

App. inclin. = 106.40 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;   50.0 ° W

Aspect:  Direct

[ +90.0/  +0.0/ -40.0] [-]    EGM2008

GTO / Ariane
Elliptical orbit - Gr. track

>>>>   Time span shown:  1250.0 min =   0.87 day

Equiv. altit.  =  17993.5 km

e = 0.730700

MC LMD

MC LMD

a =24371.637 km

Inclination  =   7.00 °

Period =   630.23 min    * rev/day = 2.28

h_a =  35802 km;  h_p =  185 km;  arg. perigee:  +180.00 °

Longitude / Initialisation:

Asc. Node:   -110.00 °

Apogee   :     70.00 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;   50.0 ° W

Aspect:  Direct

[ +90.0/  +0.0/ -40.0] [-]    GRIM5-C1

Fig. 9.16 :Orbital ground tracks. Upper: The geosynchronous satellite Syncom-2.

Lower: Transfer orbit with the Ariane launch vehicle launched from Kourou.
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Ofeq-5
Orbit - Ground track

Recurrence ~ [16;-58;125]1942

2005 11 27 21:37:55 UTC  >>>    720.0 min =   0.50 day

Equiv. altit.  =    482.9 km

e = 0.000788

a = 6861.084 km

Inclination  = 143.45 °

Period =    94.06 min    * rev/day =15.31

h_a =    494 km;  h_p =  483 km;  arg. perigee:   +58.01 °

Asc. Node:   -152.90 ° [11:26 LMT]

[NORAD] Revolution:  19574

[NORAD] 2005 11 27 21:37:55 UTC

Projection:  Mercator

Property:  Conformal

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °

Aspect:  Direct

[  +0.0/  +0.0/  +0.0] [-]    EGM2008

Ofeq-7
Orbit - Ground track

Recurrence = [15; +7; 16] 247

2009 12 11 01:53:27 UTC  >>>   5760.0 min =   4.00 days

Equiv. altit.  =    508.4 km

e = 0.006889

MC LMD

MC LMD

a = 6886.555 km

Inclination  = 141.75 °

Period =    94.60 min    * rev/day =15.22

h_a =    560 km;  h_p =  465 km;  arg. perigee:  +135.66 °

Asc. Node:    -25.80 ° [00:10 LMT]

[NORAD] Revolution:  13934

[NORAD] 2009 12 11 01:53:27 UTC

Projection:  Mercator

Property:  Conformal

T.:Cylindrical - Graticule:  5°

PC:  0.0 °  ;  0.0 °  /ZC: 30.0 ° N; 50.0 ° E
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Fig. 9.17 :Orbital ground tracks of Ofeq satellites, with retrograde orbits. Upper:

Ofeq-5 over half a day. Lower: Ofeq-7 over 4 days, with zoom of the Middle East.
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Fig. 9.18 :Orbit of the satellite Megha-Tropiques over 7 days.
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Fig. 9.19 : Image of Hurricane Katrina on 28 August 2005 at 5:33 PM EDT (21:33

UTC) as seen by the TRMM satellite’s PR (Precipitation Radar), VIRS (Visible

Infrared Scanner), TMI (Tropical Microwave Imager), and the GOES-12 spacecraft.

TRMM looks beneath the storm clouds to reveal the underlying rain structure. h is

the precipitation per hour. Blue represents areas with h < 6mm, green areas with

h < 12mm, yellow areas with h < 25mm, and red areas with h < 50mm. Credit:

NASA/JAXA.
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Fig. 9.20 :EarthCARE (Earth Clouds, Aerosols and Radiation Explorer) is being im-

plemented in cooperation with the Japanese Aerospace Exploration Agency (JAXA).

The mission addresses the need for a better understanding of the interactions be-

tween cloud and radiative and aerosol processes that play a role in climate regulation.

Credit: ESA–AOES Medialab.

Fig. 9.21 :SMOS satel-

lite. This satellite

comprises three arms

which were deployed

in space. They are

inscribed in a circle of

diameter 8m. Artist’s

view. Credit: CNES.

To study the water cycle in tropical regions, the French–Indian satellite
Megha-Tropiques has gone into a slightly inclined orbit over the equator, with
h = 866 km and i = 20◦ (see Fig. 9.18).

The joint project GPM (Global Precipitation Measurement) between the
USA, Japan, and Europe continues and extends these rainfall missions. It com-
prises one primary satellite known as GPM-core, with h = 407km, i = 65◦, a
satellite with lower inclination known as GPM-LIO (GPM Low Inclination Or-
bit), with h = 637 km, i = 40◦, and a constellation of 6 to 8 Sun-synchronous
satellites.
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Fig. 9.22 :A-Train: a group of satellites following the same orbit. The crossing time

at the equator is noted for each satellite (see Chap. 10). The launch of OCO failed.

Credit: NASA.

The European satellite SMOS (Soil Moisture and Ocean Salinity) is map-
ping ocean salinity and ground humidity over the whole planet from its Sun-
synchronous orbit with h = 757km, i = iHS = 98.4◦. This multi-instrument
satellite has three arms carrying a total of 69 small antennas. Using interferom-
etry technology, the instrument picks up the very weak microwave signal emit-
ted by the surface. This method of observation was developed for radioastron-
omy and it imposes the unusual configuration of the satellite (see Fig. 9.21),
with three arms inscribed in a circle of diameter 8m. The US–Argentinian
satellite Aquarius/SAC-D (ESSP-6), with h = 651km and i = iHS, is also
measuring the salinity of the oceans.

Several of the satellites in the so-called A-Train (discussed further below)
study aerosols and clouds (Parasol, Calispo, CloudSat), the chemistry of the
atmosphere (Aura), and so on (see Fig. 9.22).

The Japanese satellite GOSat (Greenhouse Gases Observing Satellite, re-
named Ibuki, which means “breath” in Japanese), with h = 666km, i = iHS,
is the first to detect the concentration of CO2 (carbon dioxide) in the at-
mosphere. The US satellite OCO-2 (Orbiting Carbon Observatory) will pur-
sue a similar mission in the A-Train. The French–German project MERLIN
(Methane Remote Sensing Lidar Mission), on a lower orbit, with h = 506km,
i = iHS, should measure the amount of methane present in the atmosphere
(since methane is a major contributor to the greenhouse effect).

Earth Resources, Remote-Sensing, and Environment

This category contains satellites carrying instruments whose resolution at
ground level is between 50 and 5m. These satellites are all LEO and, apart
from those in the Resurs-F series and a few special cases, they are all Sun-
synchronous. Recurrent and frozen orbits are required for these satellites.
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The first programme, Landsat, dates from 1972, and its first three satellites
had the same orbit characteristics, namely, h = 910km and i = iHS = 99.1◦.
From Landsat-4, the altitude was reduced to h = 700km, i = iHS = 98.2◦,
and this orbit has since been used, not only for all the Landsat satellites,39

but also by other NASA satellites, such as EO-1 (Earth Observing) and the
satellites of the EOS programme (Earth Observation Satellite).

These satellites are divided into EOS Morning (EOS-AM, where AM
stands for ante meridiem) and EOS Afternoon (EOS-PM, where PM stands
for post meridiem), named according to their crossing time at the equator. In
the first group is the satellite Terra (EOS-AM-1) [see Fig. 9.15 (upper) for the
ground track of the orbit and Figs. 9.24, 9.25, and 9.26 for images taken by its
onboard instruments MODIS and MISR], and in the second are all the satel-
lites of the A-Train (or Afternoon Train, see Fig. 9.22). This train of satellites
provides a novel synergy for atmospheric studies, since the same scene can be
observed simultaneously at a few minutes’ interval by very different instru-
ments, e.g., spectrometer, radar, or lidar. Although launched at widely spaced
dates, up to five satellites have flown in formation on this same orbit: Aqua
(EOS-PM-1), CloudSat and Calipso,40 Parasol41 and Aura (EOS-Chem-1).
The satellite OCO (Orbiting Carbon Observatory, ESSP-5) failed to reach its
orbit, as did Glory, which was supposed to take its place between Parasol and
Aura, 2 years later. The time intervals are indicated in Fig. 9.22.

The satellite EO-1 (see Fig. 9.27) follows Landsat-7 at an interval of just
1min (of time). In the following, we shall call this orbit, first used by Landsat-
4, the Terra orbit. It can be defined to great accuracy by its recurrence (see
Fig. 9.15 upper).

The satellite MTI (Multispectral Thermal Imager, or P97-3) is on a lower
Sun-synchronous orbit, at h = 585km, for day and night observation, like

39Launch dates: ERTS-1 (Earth Resources Technology Satellite) on 23 July 1972, renamed
Landsat-1 on 13 January 1975; Landsat-2 on 22 January 1975; Landsat-3 on 5 March 1978;
Landsat-4 on 16 July 1982; Landsat-5 on 1 March 1985; Landsat-6 on 5 October 1993,
launch failed; Landsat-7 on 15 April 1999; Terra (EOS-AM-1) on 18 December 1999; MTI
on 12 March 2000; EO-1 and SAC-C on 21 November 2000; Aqua (EOS-PM-1) on 4 May
2002; CloudSat and Calipso on 28 April 2006; OCO on 24 February 2009, launch failed;
Glory on 4 February 2011, launch failed; Landsat-8 on 11 February 2013.

40These two satellites, also called ESSP-4 and ESSP-3, respectively, are part of NASA’s
ESSP programme (Earth System Science Pathfinder), which also includes the two satellites,
-A and -B, of the GRACE mission (ESSP-2), for geodesy, and VCL (Vegetation Canopy
Lidar, ESSP-1, replaced by Glory), for environmental study. The satellites ESSP-5, -6, and
-7 are also mentioned in this chapter. The US satellite ESSP-3 with French collaboration
was originally called Picasso-Cena (Pathfinder Instruments for Cloud and Aerosol Space-
borne Observations—Climatologie étendue des nuages et des aérosols). However, the artist’s
family refused to allow free use of the name and it was renamed Calipso (Cloud Aerosol
Lidar Infrared Pathfinder Satellite Observation), and not Calypso, doubtless to avoid legal
proceedings with Homer’s descendants.

41The French microsatellite Parasol (Polarization and Anisotropy of Reflectances for At-
mospheric Science coupled with Observations from a Lidar) was launched as a passenger of
Hélios-2A on 18 December 2004.
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Fig. 9.23 :The German Aerospace Center (Deutsches Zentrum für Luft- und Raum-

fahrt DLR) and the space company Astrium have recently taken an important step

forward in their mission to create a three-dimensional map of the world. On 14

October 2010, the radar satellite TanDEM-X transitioned to close formation flight

with its “twin” TerraSAR-X. The two satellites are now flying together side-by-side,

350m apart. Credit: DLR.

the two satellites planned for the NEMO project (Navy Earth Map Observa-
tion) at h = 606 km, which will observe in hyperspectral mode, and SMAP
(Soil Moisture Active Passive) at h = 670km, which will take the place of
HYDROS (Hydrosphere State Mission, ESSP-7). The next 10 years should
see many US environmental missions come into being on Sun-synchronous
orbits, such as HypsIRI (Hyperspectral InfraRed Imager) at h = 624km,
monitoring vegetation, ASCENDS (Active Sensing of CO2 Emissions Over
Nights, Days and Seasons) at h = 450km, observing carbon dioxide levels,
and 3D-Winds (Three-Dimensional Tropospheric Winds) observing wind pat-
terns using Doppler lidar and flying at h = 400 km. The three CLARREO
satellites (Climate Absolute Radiance and Refractivity Observatory) will be
in a strictly polar orbit, i.e., with i = 90.0◦, at h = 750 km, unless the project
falls foul to budgetary restrictions.

The French programme of commercial remote-sensing has been carried
out by the SPOT family of satellites42 (Satellites Pour l’Observation de la

42Launch dates: SPOT-1 on 22 February 1986; SPOT-2 on 11 January 1990; SPOT-3 on
26 September 1993; SPOT-4 on 24 March 1998; SPOT-5 on 4 May 2002. These satellites,
designed for 3 years’ operation, actually did much better than that. For instance, SPOT-2
was still working when taken out of orbit after more than 19 years of service. SPOT-6
was launched on 9 September 2012; Pléiades-1A on 17 December 2011; Pléiades-1B on 2
December 2012.
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Fig. 9.24 : Image of vortices obtained by MODIS (Moderate Resolution Imaging Spec-

troradiometer) aboard the satellite Terra, in January 2013. These vortices (turbu-

lence wake) form when clouds over the ocean are perturbed by a low altitude wind

passing over an obstacle. The Juan Fernandez Islands are located roughly 800 km

off the Chilean coast: Isla Alejandro Selkirk (left) and Isla Robinson Crusoe are

volcanic islands situated along an east–west-trending submarine ridge. Each island

boasts a tall summit: Isla Alejandro Selkirk reaches an altitude of 1,650m above sea

level, while Isla Robinson Crusoe reaches an altitude of 922m. Credit (image and

caption): NASA, Jeff Schmaltz, LANCE MODIS Rapid Response.
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Fig. 9.25 :Brittany, Cornwall, the English Channel, and the Iroise sea. Image taken

by the MISR instrument (Multi-angle Imaging SpectroRadiometer) aboard Terra.

Revolution 7,778, 4 June 2001. The turquoise areas off the coast of Brittany reveal

the intense efflorescence of phytoplankton (coccolithophores), whose shields made of

tiny platelets (of the order of μm) scatter solar light. At the top of the picture,

the band of cirrus clouds is striped with aircraft trails. Credit (image and caption):

NASA, GSFC, LaRC, JPL, MISR Team.

Terre), all precisely on the same orbit at h = 822km, from SPOT-1 to -5.
One can therefore speak of the SPOT orbit. The military also use images
obtained by these satellites.43 Indeed, the French army have their own SPOT-
type satellites going under the name Hélios. The spatial resolution of SPOT
satellites (5m for SPOT-4, 2.5m for SPOT-5) has been further improved

43In 1991, during the Gulf War (the operation known as Desert Storm), the US army used
SPOT images, which were more practical with their 5m resolution and 60 km panoramas
than the much more detailed images procured by US intelligence satellites.
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Fig. 9.26 :Nile valley, Egypt. Image taken by the MISR instrument aboard Terra.

Revolution 5,956, 30 January 2001. The Nile crosses the Egyptian desert, accompa-

nied by its strip of cultivated land. In the middle of the image, on the left bank, one

can make out the Faiyum oasis. To the north beyond Cairo begins the delta. Between

the Mediterannean and the Red Sea the Suez canal is visible, and on the other side

of the Red Sea, the Sinai desert. Credit (image and caption): NASA, GSFC, LaRC,

JPL, MISR Team.

(1m) in the next generation of Pléiades-HR (Pléiades-1A and 1B), at a lower
altitude, viz., h = 695 km, an orbit that is also used by SPOT-6.

In relation with Pléiades-HR, Italy is running the COSMO-SkyMed project
(Constellation of Small Satellites for Mediterranean Basin Observation), a
constellation44 of four satellites equipped with radars and flying at h =
620km. The same orbit is planned for HypSEO (HyperSpectral Earth Ob-
server). For extremely accurate and continually updated coverage of the Earth,

44Launch dates: COSMO-SkyMed-1 on 8 June 2007; COSMO-SkyMed-2 on 9 December
2007; COSMO-SkyMed-3 on 25 October 2008; COSMO-SkyMed-4 on 5 November 2010.
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Fig. 9.27 :Oman, Arabic Peninsula. The mountains of north-eastern Oman are

rugged, dry, and as much as 2,500m above sea level. Yet millions of years ago, parts

of these mountains were at the bottom of the sea. The Advanced Land Imager (ALI)

on NASA’s Earth Observing-1 (EO-1) satellite captured this natural-colour image

of a portion of the Semail ophiolite on 6 March 2012. The image centers on Wadi

Fizz, the site of some chromite deposits of interest to miners and manufacturers.

Credit (image and caption): NASA, EO-1 team.
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consideration is now being given to a constellation containing a very large
number of satellites, like the e-Corce project (e-Constellation d’observation
récurrente cellulaire).

The planned French–Israelian satellite VENμS (Vegetation and Environ-
ment monitoring a New Micro-Satellite) will be Sun-synchronous, at altitude
h = 720 km.

The German programme RapidEye45 comprises a constellation of five
satellites, RapidEye-1 to -5, with h = 600km, i = iHS, and a resolution
of 6.5m. The ESA–German TerraSAR mission46 comprises two satellites
equipped with synthetic aperture radar (SAR). These are TerraSAR-X (in
the X band), h = 505 km, and Terra-SAR-L (in the L band), h = 620km. The
satellite TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement)
is on the same orbit as TerraSAR-X (see Fig. 9.23), in order to take images of
the Earth in tandem.

Argentina is developing its SAOCOM programme (Satélite Argentino de
Observación con Microondas), with the satellites SAOCOM-1A and -1B,
rather similar to COSMO-SkyMed.

The Soviet then Russian programme began in 1979 with the series Resurs-
F1 then -F2, using 6 tonne satellites in very low near-polar orbits, which
operated for 14 days, then 30 days for the later version. Literally dozens were
launched47 in near-polar orbit, i = 82.3◦, with altitude h = 275km for Resurs-
F1 and h = 240km for Resurs-F2. The satellites in the Resurs-O series48

(resurs means “resource” in Russian) look more like other remote-sensing
satellites: they are in Sun-synchronous orbit with h = 600 km and i = 97.9◦

for Resurs-O1-1 to -O1-3, and h = 820km and i = 98.8◦ for Resurs-O1-4.
The Resurs programme follows on from the Meteor-Priroda programme. The

45Joint launch of RapidEye-1, -2, -3, -4, and -5 on 29 August 2008. The satellites
RapidEye-1 to -5 were subsequently attributed the Greek names Tachys (fast), Mati (eye),
Choma (soil, terracing), Choros (space), and Trochia (orbit), respectively. Apart from mati,
which is only a modern Greek word, the other names are both ancient and modern. For the
evolving meaning of trochia, from “wheel rut” to “orbit”, see the earlier note on the word
orbita.

46Launch dates: TerraSAR-X on 15 June 2007; TanDEM-X on 21 June 2010. The fre-
quency bands for radar emission are traditionally denoted by letters: L (1– 2GHz), S (2–
4GHz), C (4–8GHz), X (8–12 GHz), Ku (12–18GHz), K (18–26.6GHz), Ka (26.5–40 GHz).
The wavelengths λ = c/ν (ν = frequency) corresponding to the centers of these bands
are λ = 20 cm for band L and λ = 3 cm for band X. The choice of band depends on the
phenomenon to be observed, and in particular the effect of the atmosphere on the emitted
wave.

47The first 39 are recorded as Kosmos, from Kosmos-1127 in 1979 to Kosmos-1990 in
1989. There were 20 more under the name of Resurs-F, from Resurs-F-1 (type F1) in 1989
to Resurs-F-20 (type F2) in 1995, followed by the modified version, Resurs-F1M-1 in 1997
and Resurs-F1M-2 in 1999 (type F1M).

48Launch dates: Resurs-O1-1 (Kosmos-1689) on 3 October 1985; Resurs-O1-2 (Kosmos-
1939) on 20 November 1988; Resurs-O1-3 on 4 November 1994; Resurs-O1-4 on 10 July
1998; Monitor-E on 26 August 2005; Resurs-DK-1 on 15 June 2006. The letters attached to
the name Resurs are F for film, O for operational, and DK for Dmitry Kozlov, the father
of the Yantar satellites.
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new generation of satellites is represented by Monitor-E (E for experimental),
h = 550 km, resolution 8m, and Resurs-DK-1, hp = 356km, ha = 585km,
i = 69.9◦, resolution 1m, modelled on the military satellites Yantar.

Satellites for general environmental monitoring are large, equipped with
radar, flying at an altitude of h ≈ 780km: for Canada, Radarsat-1 and -2; for
Europe, ERS-1, -2 (European Remote Sensing Satellite) and Envisat (Envi-
ronmental Satellite).49

The European Space Agency has many projects50 in this area. The current
trend is no longer to build very large satellites like Envisat (8.3 tonnes, 10
instruments), but to favour lighter missions.

In February 2008, the ESA and the European Union signed an agreement
to officialise the Sentinel programme, spaceborne component of the GMES
initiative (Global Monitoring for Environment and Security). The satellites
are grouped into four families51 each involving several satellites.

Large remote-sensing and environmental satellites weighing several tonnes
require powerful launch vehicles which may be able to offer several piggy-
back positions for very light passenger satellites. Such satellites, with various
missions (although usually technological) also follow Sun-synchronous orbits
very close to the orbit of the main satellite. These grouped launches52 can

49Launch dates: Radarsat-1 on 4 November 1995; Radarsat-2 on 14 December 2007; ERS-
1 on 17 July 1991; ERS-2 on 21 April 1995; Envisat on 1 March 2002.

50The satellite ADM (Atmospheric Dynamics Mission), renamed ADM-Aeolus, carries a
lidar for wind study. In a more distant future, the ESA has selected three missions: the
Sun-synchronous satellites ACE+ (Atmosphere and Climate Explorer), to study climate
change, EGPM (European contribution to the Global Precipitation Monitoring mission),
designed to study rainfall, and the constellation of three SWARM satellites for dynamical
measurement of the magnetic field and its interaction with atmospheric processes (circular
orbit, i = 86.8◦ for all three, but at different altitudes, viz., h = 450 km for SWARM-A and
-B, and h = 530 km for SWARM-C).

51The Sentinel families are classified as follows:

• Sentinel-1, to develop a family of radar satellites to monitor the oceans and land masses,
with Sentinel-1A, -1B, -1C.

• Sentinel-2, equipped with high-resolution optics in multispectral mode, with Sentinel-2A,
-2B, -2C.

• Sentinel-3, equipped with medium resolution visible and IR optics and an altimetric
radar, with Sentinel-3A, -3B, -3C. This mission is a direct descendant of the ERS, En-
visat, T/P, and Jason missions.

• Sentinel-4 and -5, designed for atmospheric analysis, in GEO orbit for -4, with Sentinel-
4A and -4B, and in LEO orbit for -5.

52Here are some examples of grouped launches where the main satellite is a large Sun-
synchronous remote-sensing satellite. For the first three ERS-1, SPOT-3, and Hélios-2A,
launched by Ariane, the passenger satellites were called ASAP (Ariane Structure for Auxil-
iary Payload). With ERS-1 (Europe): UoSAT-5 (or OSCAR-22) (GB), Orbcomm-X (USA),
Tubsat-A (Germany), SARA (France). With SPOT-3 (France): Kitsat-2 (South Korea),
PoSAT-1 (Portugal), Stella (France), HealthSat-2 (GB), ItamSat (Italy), EyeSat-1 (USA).
With Hélios-2A (France): Parasol (France), Nanosat (Spain) and four French military satel-
lites for electronic intelligence, Essaim-1 to 4. With Resurs-O1-4 (Russia): FaSat-1 (Chile),
TMSat (Thailand), TechSat-1B (Israel), Westpac-1 (Australia), Safir-2 (Germany). With
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provide an opportunity for countries with little experience in space to get
their own satellite into orbit.

Countries occupying a very large territory use Sun-synchronous remote-
sensing LEO satellites. For India, in its IRS programme53 (Indian Remote
Sensing), the first satellites, IRS-1A and -1B, are on a rather high orbit, h =
910km, while the rest, IRS-P2, -P3, -P6 (Resourcesat-1) and Resourcesat-2,
are on a lower orbit, h = 817 km. The 2.5m resolution of the satellite Cartosat-
1 (IRS-P5), h = 617 km, has been improved to 1m for the satellites Cartosat-2,
-2A, and -2B, h = 630 km. The next generation Cartosat-3 will have “military”
resolution. The experimental satellite TES (Technology Experiment Satellite)
was launched into a still lower orbit, with h = 565 km. India is also developing
a radar (SAR) satellite programme with RISat-1 (Radar Imaging Satellite)
and RISat-2, with h = 608km and h = 550km, respectively.

China is developing several environmental programmes,54 using exclu-
sively Sun-synchronous satellites. Some of these are small, like Tan Suo-1,
-2, and -3 (tan suo means “experimental” in Chinese), h = 608 km, 703km,
and 581km, respectively, Huan Jing-1A and -1B (huan jing means “envi-
ronment”), h = 648km, and Chuang Xin-1-02 (“innovation”), h = 793km.
Others are large satellites equipped with radar, for military as well as environ-
mental purposes, in the Yao Gan series (RSS, Remote Sensing Satellite, yao
gan wei xing means “remote-sensing satellite”, from yao meaning “far” and
gan meaning “detection”). Regarding these satellites, Yao Gan-1, -2, -3, and
-4 are around h = 640km, while Yao Gan-5 and -6 are at the lower altitude
h = 480 km, and Yao Gan-7 and -8 go back up to h = 660 km, along with Yao
Gan-10 and -11. The three satellites Yao Gan-9A, -9B, and -9C are in a non-
Sun-synchronous orbit with h = 1,100 km, i = 63.7◦ for electronic intelligence

Meteor-3M-1 (Russia): Badr-B (Pakistan), Maroc-Tubsat (Morocco–Germany), Kompass
and Reflektor (Russia). With Megha-Tropiques (India and France): VesselSat-1 (Luxem-
bourg) and two Indian university satellites, SRMSAT and Jugnu.

53Launch dates: IRS-1A on 17 March 1988; IRS-1B on 29 August 1991; IRS-1C on 28
December 1995; IRS-1D on 4 June 1997; IRS-1E on 20 September 1993 (before IRS-1C),
failed; IRS-P2 on 15 October 1994; IRS-P3 on 21 March 1996; TES on 22 October 2001;
Resourcesat-1 (IRS-P6) on 17 October 2003; Cartosat-1 (IRS-P5) on 5 May 2005; Cartosat-
2 (IRS-P7) on 10 January 2007; Cartosat-2A on 28 April 2008; Cartosat-2B on 12 July 2010;
RISat-2 on 20 April 2009; Resourcesat-2 on 20 April 2011; RISat-1 on 26 April 2012 (after
RISat-2).

54Launch dates: Tan Suo-1 (TS-1 or ExperimentalSat-1) on 18 April 2004; Tan Suo-2
(TS-2 or ExperimentalSat-2) on 18 November 2004; Tan Suo-3 (TS-3 ou ExperimentalSat-
3) on 5 November 2008; Huan Jing-1A and -1B (HJ-1A and -1B, also called DFH-78 and
-79) on 6 September 2008; Chuang Xin-1-02 (CX-1-02 or Innovation-1) on 5 November
2008; Yao Gan-1 (RSS-1 or JB5-1) on 26 April 2006; Yao Gan-2 (RSS-2 or JB6-1) on 25
May 2007; Yao Gan-3 (RSS-3 or JB5-2) on 11 November 2007; Yao Gan-4 (RSS-4 or JB6-2)
on 1 December 2008; Yao Gan-5 (JB5-7) on 15 December 2008; Yao Gan-6 (JB8) on 22
April 2009; Yao Gan-7 (JB6-3) on 9 December 2009; Yao Gan-8 on 15 December 2009; Yao
Gan-9A, -9B and -9C on 5 March 2010; Yao Gan-10 (JB5-3) on 9 August 2010; Yao Gan-11
(JB6-4) on 22 September 2010; Tian Hui-1 (TH-1, DFH-90) on 24 August 2010.
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(ELINT). The Sun-synchronous satellite Tian Hui-1 at h = 500km takes
stereographic images with 5m resolution.

China and Brazil are working together on the CBERS programme55

(China–Brazil Earth Resources Satellite), also known as Zi Yuan (“resources”
in Chinese), with the satellites CBERS-1 and -2, h = 774 km, and the follow-
ing (ZY-1 series). China has also launched two satellites ZY-2 and -2B (ZY-2
series) in lower orbits, at h = 495km and h = 476km.

Taiwan has launched Rocsat-2, renamed FormoSat-2, in a novel Sun-
synchronous orbit, about which we shall say more later on (see Chap. 11).

Australia is planning to launch its satellite ARIES-1 (Australian Resource
Information and Environment Satellite).

The US private company Resource21 (21 indicates the twenty-first cen-
tury) should launch five satellites, RS21-1 to RS21-5, at h = 700km, with a
resolution of 10m, as a follow-on to the Landsat heritage. This project seems
to be on hold since 2003.

Japan has always attributed great importance to the environment in its
space projects,56 beginning with JERS-1 (Japan Earth Resource Satellite, or
Fuyo-1, where fuyo means “purple rose” in Japanese), h = 568 km, then the
three large satellites ADEOS-1 and -2 (Advanced Earth Observing Satellite,
also called Midori and Midori-2, where midori means “green”), h = 797km
and h = 803 km, and ALOS (Advanced Land Observation Satellite, or Daichi,
“Earth”) h = 692km, all weighing around 4 tonnes. This programme was
followed by the GCOM programme (Global Change Observing Mission),
which has two parts, GCOM-W (Water) with two satellites, h = 700km,
and GCOM-C (Carbon cycle) with two satellites, h = 798 km. The Japanese
satellite GCOM-W1 (Shizuku, “dewdrop”) has been inserted in the A-Train,
between Aqua and OCO-2 (see Fig. 9.22).

Satellite-based environmental studies are now very varied. Among these
we may mention the detection of forest fires, where onboard instruments have
a ground resolution of about 100m, as in the case of the Sun-synchronous
German satellite BIRD (Bi-spectral InfraRed Detection), h = 575 km. The
projected Spanish satellite FuegoSat, h = 700km, i = 47.5◦, will be the pre-
cursor of a constellation of 12 satellites, FuegoFOC (Fire Observation Con-
stellation). For surveillance of the Amazonian forest, Brazil is developing a
project for two satellites, SSR-1 and -2 (Satélite de Sensoriamento Remoto),
in strictly equatorial orbit with h = 900km, i = 0◦.

To study the polar ice caps and make precise measurements of variations
in their thickness, a novel orbit (near-polar non-Sun-synchronous LEO) has

55Launch dates: CBERS-1 (ZY-1A, Zi Yuan-1A) on 14 October 1999; CBERS-2 (ZY-
1B, Zi Yuan-1B) on 21 October 2003; CBERS-2B on 18 September 2007; ZY-2 (Zi Yuan-2,
DFH-50, Jian Bing-3, JB-3) on 1 September 2000; ZY-2B (Zi Yuan-2B, DFH-55, Jian Bing-
3B, JB-3B) on 27 October 2002; ZY-2C (Zi Yuan-2C, Jian Bing-3C, JB-3C) on 6 November
2004. The satellites ZY-2 use a CBERS platform (recorded as ZY-1 by China).

56Launch dates: JERS-1 on 11 February 1992; ADEOS-1 on 27 August 1996; ADEOS-2
on 14 December 2002; ALOS on 24 January 2006; GCOM-W1 on 18 May 2012.
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been chosen for two missions,57 one American and the other European: ICESat
(Ice, Clouds, and Land Elevation, previously EOS-LAM), h = 600km, i = 94◦,
and CryoSat (Cryosphere Satellite), h = 720 km, i = 92◦. At these altitudes,
the Sun-synchronous inclinations would be 97.8◦ and 98.3◦. The US has an
ambitious programme in this pressing field of investigation, with ICESat-2
on a similar orbit to ICESat and two other missions on Sun-synchronous
orbits, DESDynI (Deformation, Ecosystem Structure and Dynamics of Ice)
and SCLP (Snow and Cold Land Processes).

The British project DMC (Disaster Monitoring Constellation), with inter-
national cooperation, is currently underway.58 It comprises a constellation of
Sun-synchronous microsatellites with h = 686km.

We end this category of Earth-observation satellites with Triana,59 a US
mission with an unusual orbit for this kind of mission. After a 3.5 month
journey, the satellite will be placed in a halo orbit around the Lagrange point
L1 of the Earth–Sun system (orbit type L1LO, period 6 months). Its instru-
ments will thus have a view of the Earth which is permanently illuminated,
but from a very great distance (234 Earth radii, equivalent to four times the
distance from the Earth to the Moon). The projected pixel size (resolution) is
8 km (1 arcsec). Due to the large dimensions of the halo orbit, it will be pos-
sible to observe alternately the North and South Poles of the Earth, focusing
specifically on the stratospheric ozone. The project, dating to 1999, was first
abandoned, then resumed60 but without success under the name DSCO (Deep
Space Climate Observatory) or DSCOVR. However, in 2012, it was taken up
again and launch is planned for 2014.

9.2.5 Satellites for Remote-Sensing and Surveillance

Commercial Remote-Sensing

Satellites in this category have a resolution of the order of 1m in the visible
frequency range (and a few meters if they carry out infrared observations),
which was a level reserved for military satellites until 1994.

Set up in 1992, two US companies61 share the main part of the market:

57Launch dates: ICESat on 13 January 2003; CryoSat on 8 October 2005, failed; CryoSat-
2 on 8 April 2010.

58Launch dates: AlSat-1 (Algeria) on 28 November 2002; BilSat-1 (Turkey), NigeriaSat-
1 (Nigeria) and BNSCSat (or UK-DMC) (GB) launched together on 27 September 2003;
Beijing-1 (China) on 25 October 2005; UK-DMC2 (GB) and Deimos-1 (Spain) on 25 July
2009; AlSat-2A (Algeria) on 12 July 2010 (launched with Cartosat-2B).

59Rodrigo Triana was the first person among the sailors aboard Christopher Columbus’
caravels to see the New World, in 1492.

60The project was supported by Al Gore while he was Vice President to Bill Clinton.
However, when George W. Bush arrived on the scene, it was promptly shelved. And the
attribution of the Nobel Peace Prize jointly to Al Gore and GIEC in 2007 was unable to
give further impetus to this satellite project, sometimes referred to as GoreSat.

61They share several common features. Their trade marks are constructed by sticking
two words together without a space, and they often change name. These successive changes
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• GeoEye Inc., with a succession of satellites called OrbView (Orbimage),
Ikonos, and GeoEye.

• DigitalGlobe, with a succession of satellites called EarlyBird/EarthWatch,
QuickBird, and WorldView.

These satellites62 are Sun-synchronous, crossing the ascending node at 10:30.
The resolution63 of their images is improving all the time. The first customers
of these companies are the American agencies NASA and NIMA, or indeed
Google for Google Maps.

We list the main satellites in chronological order, giving their resolution
and altitude:

• Ikonos64 (resolution 0.8m/3m), h = 680km.
• OrbView-3 (1m/4m), h = 451 km.
• QuickBird-2 (0.6m/2.5m), h = 443km.
• WorldView-1 and -2 (0.5m/2m), h = 494km and h = 765km.
• GeoEye-1 (0.4m/1.6m), h = 679km.

Other countries are developing this field of accurate spaceborne cartogra-
phy,65 including France with Pléiades-HR (HR standing for high resolution),
and Israel with EROS-A1 (resolution 1.9m/5m) and EROS-B (0.7m/2.8m),
both at altitude h = 508 km. With resolutions of the order of 2m, countries
new to the field of space technology are coming into their own, e.g., Thai-
land with THEOS (Thai Earth Observing System) (resolution 2m/5m), on a
SPOT orbit at h = 822km, and the United Arab Emirates with DubaiSat-1
(2.5m/5m), h = 686km. With RazakSat (2.5m/5m),66 Malaysia is making
use of a near-equatorial orbit that is rarely exploited, with h = 685km, i = 9◦,
sometimes referred to as NEO (near-equatorial orbit).

show up in the names of their satellites. The new European company set up jointly by
EADS and private capital has followed this fashion, since it is called InfoTerra.

62Launch dates: OrbView-1 (Microlab-1) on 3 April 1995 (launched with Orbcomm-FM-1
and -2, non-Sun-synchronous); EarlyBird/EarthWatch-1 on 24 December 1997; Ikonos-1 on
27 April 1999, failed; Ikonos-2 on 24 September 1999; OrbView-4 (before OrbView-3) on
21 September 2001, failed; QuickBird-1 on 20 November 2000, failed; QuickBird-2 on 18
October 2001; OrbView-3 on 26 June 2003; WorldView-1 on 18 September 2007; GeoEye-1
on 6 September 2008; WorldView-2 on 8 October 2009.

63The resolution in panchromatic mode corresponds to black and white images, and in
multispectral mode, to colour images, generally composed of blue, green, red, and near-
infrared. The resolutions are indicated in the text by two lengths in meters: B&W resolu-
tion/colour resolution.

64The satellite Ikonos-1, lost at launch, was soon replaced by Ikonos-2, launched only 5
months later and renamed Ikonos to exorcise the failure of the first launch. The Greek noun
� �,����)��	 means “image”. But why did they choose the genitive ikonos?

65Launch dates: EROS-A1 on 5 December 2000; EROS-B on 25 April 2006; THEOS on
1 October 2008; DubaiSat-1 on 29 July 2009.

66The satellite MACSat (Medium-sized Aperture Camera Satellite), launched on 4 July
2009, has been renamed Razaksat, after the Malaysian Prime Minister Abdul Razak, Bapa
Pembangunam Malaysia, “the father of Malaysian development”.



386 Chapter 9. Orbit and Mission

Military Remote-Sensing and Surveillance

For military applications, the main category of US surveillance satellites
(or spy satellites, depending on one’s point of view) carry the suggestive name
Key Hole (KH). They fall into several series,67 from KH-1 in 1959 to KH-13,
currently operating. For the first few series up to KH-9 in 1986, the basic
principle was always the same: a camera took photos, the film was placed in a
capsule, and as astonishing as it may seem, the capsule was then thrown back
to Earth. A parachute opened at an altitude of 20 km and, all being well, an
aircraft equipped with a net intercepted the prize in flight (although it could
also be picked up by ship in the ocean). Now that the first few series have been
declassified, as they say in military circles, we may observe that the success
rate was actually very low, with only two successful missions, Discoverer-14
and Discoverer-18, for the 27 satellites of the series KH-1 and -2 (satellites
Discoverer-1 to -27). The subsequent series met with more success.

Concerning series KH-11 and -12, results are transmitted via SDS mili-
tary satellites. It is claimed that images taken by the latest satellites have a
resolution of 15 cm. However, this raises several questions regarding the influ-
ence of atmospheric turbulence, the problem of data accumulation, and so on.
Satellites in the series KH-13 are KH-12 satellites made undetectable to radar
and IR sensors, the so-called stealthy satellites, and those in the series 8X will
apparently be gigantic telescope satellites called Monstersats, with centimeter
resolution,68 but in fact little is known for certain about these satellites.

Missions were very short for the first KH series, lasting only a few days,
but then grew longer, to reach 19 days for KH-4B and 50 days with two
capsules for KH-8. Orbits were generally low, with h between 200 and 400km,
near-polar (e.g., Discoverer-35, h = 260km, i = 82◦) up to KH-3, then with
lower inclination (e.g., KH-4A-14, or Orbis, OPS/3360, hp = 117 km, ha =
329km, i = 70◦) up to KH-6, and subsequently Sun-synchronous or very
high inclination (e.g., KH-7-27, hp = 139km, ha = 375 km, i = 117◦) up to
KH-11, where missions became much longer (which can justify the use of a
Sun-synchronous orbit, as we have seen). The first eleven series involved a
total of 262 satellites.

For KH-12, the satellites, at 20 tonnes, were sent up for long periods on
Sun-synchronous elliptical orbits with hp ≈ 150km, ha ≈ 950km, i = iHS ≈
98◦. Launches were regularly spaced: KH-12-1 (USA-86 in 1992), KH-12-2
(USA-116 in 1995), KH-12-3 (USA-129, NROL-2 in 1996), KH-12-4 (USA-

67These series have more or less officially certified code names, which become known after
a certain time delay: Corona (KH-1 to -4), Argon (KH-5), Lanyard (KH-6), Gambit (KH-7,
-8), Hexagon and Big Bird (KH-9), Dorian (KH-10, annul), Crystal Kennan (KH-11), Ikon
and Improved Crystal (KH-12, also known as KH-11B). The name for the current series
KH-13 is apparently Misty.

68Resolutions given by the US Air Force, which runs the programme: Series KH-1 (begun
in 1959) 12m; KH-2 (1960) 9m; KH-3 (1961) 7.6m; KH-4A (1963) 2.7m; KH-6 (1963) 1.8m;
KH-8 (1966) 0.5m. For KH-11 (1976) and KH-12 (1992) 0.15m with a similar telescope to
Hubble. For KH-13 0.10m, 8X 0.05m.
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161, NROL-14 in 2001), KH-12-5 (USA-186, NROL-20 in 2005), KH-12-6
(USA-224, NROL-49 in 2011).

For KH-13, the series known as Misty, it seems that there have been two
satellites on a near-circular orbit with h ∼ 1,000–3,000 km, i ≈ 63◦: Misty-1
(USA-53 or AFP-731 launched by STS-36 in 1990) and Misty-2 (USA-144 or
EIS-1 in 1999).

“All weather” military observation is carried out by the Lacrosse radar
satellites, each with a mass of 20 tonnes. They have circular orbits with
medium inclination: Lacrosse-1 (USA-34 or Onyx-1 launched by STS-27 in
1988), h = 440 km, i = 57◦; the four others, Lacrosse-2 (USA-69 or Onyx-2
in 1991), Lacrosse-3 (USA-133 or Onyx-3 in 1997), Lacrosse-4 (USA-152 or
Onyx-4 in 2000), Lacrosse-5 (USA-182 or Onyx-5 in 2005), h ≈ 680 km with
inclinations alternating between i = 68◦ and i = 57◦.

The French programme69 is based on the Hélios satellites70 on Sun-
synchronous orbits at h = 680km, and the German programme on the five
SAR-Lupe radar satellites,71 with h = 487km, i = iHS (SAR stands for syn-
thetic aperture radar and lupe means “magnifying glass” in German).

Soviet military surveillance was carried out by a multitude of Kosmos
satellites. The first, in the Zenit series, had very low altitude, h ∼ 150km,
and characteristic inclinations of i = 63◦, 73◦, 82◦. Missions lasted a few days
and the film was recovered with the satellite. The technique of recovering
the capsule in flight appeared with satellites in the Yantar series (meaning
“amber” in Russian) in 1975. The Arkon series is the equivalent of KH-12.
Radar observation is carried out by the Almaz series (almaz meaning “dia-
mond” in Russian, derived from the Arabic al mās, with the same meaning),
19 tonne satellites in low circular orbits, h = 300km, i = 72◦, with Kosmos-
1870 (Almaz-T-2 or Resurs-R-2 launched in 1987) and Almaz-1 (Almaz-T-3
or Resurs-R-3 in 1991) and the Oblik series, the equivalent of Lacrosse.

Chinese military surveillance and remote-sensing satellites belong to the
FSW-2 series (Fanhui Shi Weixing), such as FSW-2-3, launched in 1996, h =
125km, i = 63◦. They return to Earth after 2 weeks (as their name suggests:
fan hui shi means “return” and wei xing means “satellite”). One should also
mention the satellites Yao Gan-5 and -6 discussed above.

69Helios, � -2��	� ��, is the Sun, a (non-Olympian) god of Greek mythology. He journeys
across the sky during the day on a chariot drawn by four horses. Thanks to his dominating
position and his perceptive gaze, as piercing as a ray of light, he sees everything that
happens on Earth. It was by reference to these features, and with little modesty, that the
French military named their reconnaissance programme. While it was very important in
archaic times, the cult of the Sun lost its influence in classical times, and Helios was often
assimilated with Apollo.

70Launch dates: Hélios-1A : 7 July 1995; Hélios-1B : 3 December 1999; Hélios-2A : 18
December 2004; Hélios-2B : 18 December 2009.

71Launch dates: SAR-Lupe-1 on 19 December 2006; SAR-Lupe-2 on 2 July 2007; SAR-
Lupe-3 on 1 November 2007; SAR-Lupe-4 on 27 March 2008; SAR-Lupe-5 on 22 July 2008.
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Japan operates its optical or radar IGS satellites72 (Intelligence Gathering
Satellite) on low Sun-synchronous orbits, with h = 479km, mainly to provide
early warning of attack by North Korea.

In parallel with the EROS programme, Israel has developed its military
programme Ofeq (“horizon” in Hebrew), with satellites73 on highly inclined
elliptical orbits (see Fig. 9.17): Ofeq-5 (hp = 370km, ha = 750km, i = 143.5◦),
Ofeq-7 (hp = 339km, ha = 575km, i = 141.8◦), Ofeq-9 (hp = 343 km, ha =
588km, i = 141.8◦).

With such inclinations, these satellites can cover latitudes below 40◦. Al-
though there is no precise information available about this programme, we
may imagine two possible motivations for this kind of retrograde orbit. To be-
gin with, a retrograde orbit increases the synodic frequency ν′ of the satellite
(with a daily frequency of ν ≈ 15, we have ν′ ≈ 16 rather than ν′ ≈ 14 for
a prograde orbit) and hence the viewing frequency. In addition, a westward
launch from Israel, if it failed, would end up in the Mediterranean rather than
in one of the neighbouring countries, a useful precaution in such a region.

A roughly equivalent orbit is used by TecSAR (also called Polaris), a radar
satellite of the Israeli military programme with hp = 405km, ha = 580km,
i = 41.03◦. This satellite, in a prograde orbit, was launched from India.

9.2.6 Oceanographic Satellites

The first oceanographic satellites had highly inclined orbits: GEOS-3 (Geo-
dynamics Experimental Ocean Satellite), h = 847km, i = 115.0◦, and SeaSat,
h = 780 km, i = 108.1◦. The latter orbit was then used to within a few
kilometers by Geosat and GFO-1 (Geosat Follow On).

The orbit of TOPEX/Poseidon is rather high, viz., h = 1,330km, to avoid
atmospheric drag as far as possible, and has a rather high inclination, viz.,
i = 66◦, in order to overfly almost the whole expanse of the oceans.74 To avoid
any bias due to the influence of the Sun on the tides, it was essential that the
orbit should not be Sun-synchronous. The satellites Jason-1, then Jason-2
(or OSTM, Ocean Surface Topography Mission), were placed on exactly the

72Launch dates: IGS-1A (IGS-Optical-1) and IGS-1B (IGS-Radar-1) on 28 March 2003;
IGS-3A (IGS-Optical-2) on 11 September 2006; IGS-4V (IGS-E-Optical-3) and IGS-4B
(IGS-Radar-2) on 24 February 2007; IGS-5A (IGS-Optical-3) on 28 November 2009; IGS-
6A (IGS-Optical-4) on 22 September 2011; IGS-7A (IGS-Radar-3) on 12 December 2011;
IGS-8A (IGS-Radar-4) and IGS-8B (IGS-Optical-5V) on 27 January 2013.

73Launch dates: Ofeq-1 on 19 September 1988; Ofeq-2 on 3 April 1990; Ofeq-3 on 5 April
1995; Ofeq-5 on 28 May 2002; Ofeq-7 on 10 June 2007; Ofeq-9 on 22 June 2010; TecSAR
on 21 January 2008.

74Launch dates: GEOS-3 on 9 April 1975; Seasat on 28 June 1978; Geosat on 13 March
1985 (Geosat[GM] Geodetic Mission: April-Sept. 1986; Geosat [ERM] Exact Repeat Miss.:
Nov. 1986–Jan. 1990); GFO-1 on 10 February 1998; TOPEX/Poseidon on 10 August 1992;
Jason-1 on 7 December 2001; Jason-2 on 20 June 2008; SARAL on 25 February 2013.
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same orbit75 as TOPEX/Poseidon to ensure the continuity of the French–
US mission, which will then be extended by Jason-3. The future US satellite
SWOT (Surface Water and Ocean Topography), which is picking up from the
WatER-HM project (Water Elevation Recovery and Hydrosphere Mapping),
will be in a lower orbit, with h = 971 km and a slightly different inclination
i = 78◦, because it will also investigate water on the continental surfaces.

These altimetry satellites, together with the two Sun-synchronous Euro-
pean ERS satellites, have carried out accurate measurements of sea levels and
their evolution, with very good results.76 The orbit of the Indian–French satel-
lite SARAL (Satellite with Argos and Altika) has the same characteristics as
that of Envisat (but with different crossing times).

The satellites77 in the Okean series, originally Soviet, then Russian–
Ukrainian, then Russian (Ukraine having opted for the Sich series), are ded-
icated to study of the polar regions and oceans. The first satellites, Okean-
O1-1 to -3, together with Sich-1, have altitude h ≈ 650km and inclination
i = 82.5◦, typical of many Meteor and hundreds of Kosmos satellites. The
next in the series, Okean-O1-4 and Okean-O-1, have the same altitude, but
on a Sun-synchronous orbit.

When their main mission is not altimetry, oceanographic satellites78 are
Sun-synchronous: the Japanese satellites MOS-1 and MOS-1B (Marine Ob-
servation Satellite, also called Momo and Momo-1B, where momo means
“peach flower”), h = 908km; the Chinese Hai Yang satellites (hai yang means
“ocean”) HY-1A and HY-1B, h = 798km, HY-2A, h = 960 km; the Indian
satellites Oceansat-1 (IRS-P4) and Oceansat-2, h = 720km; the US SeaStar
(OrbView-2), h = 700 km; the South Korean satellites Arirang-1, -2, and -3 (or
KOMPSat-1, -2, and -3, Korea Multi-purpose Satellite)79 to study the oceans
and land masses, h = 690 km. The Argentinian satellite SAC-D (Satélite de

75In September 2002, Topex/Poseidon was placed on a new orbit, half-way between its
former paths (which had become those of Jason-1). “This tandem phase illustrates the
scientific potential of an optimised constellation of altimetry satellites” (Aviso, CLS/CNES).
The mission officially ended in January 2006. After the launch of Jason-2, Jason-1 was
transferred to the former path of T/P, while Jason-2 took the place of Jason-1.

76Estimated measurement accuracy (averaged over a month): GEOS-3 25 cm; Seasat 5 cm;
Geosat 4 cm; ERS-1 and -2 3 cm; TOPEX/Poseidon 2 cm; Jason-1 1 cm; Jason-2 1 cm.

77Launch dates: Okean-O1-1 on 5 July 1988; Okean-O1-2 on 28 February 1990; Okean-
O1-3 (usually called Okean-3) on 4 June 1991; Okean-O1-4 on 11 October 1994; Sich-1 on
31 August 1995; Okean-O-1 (usually called Okean-O) on 17 July 1999.

78Launch dates: MOS-1 on 19 February 1987; MOS-1B on 7 February 1990; SeaStar on
1 August 1997; Oceansat-1 on 26 May 1999; HY-1A (Ocean-1 or DFH-54) on 12 May 2002
(with FY-1D); HY-1B on 11 April 2007; HY-2A on 15 August 2011; Oceansat-1 on 26 May
1999; Oceansat-2 on 23 September 2009; Arirang-1 (with ACRIMSAT) on 21 December
1999; Arirang-2 on 28 July 2006; Arirang-3 on 18 May 2012; QuikScat on 20 June 1999;
Coriolis on 6 January 2003; SAC-D on 10 June 2011.

79The Koreans chose the name for their satellites in a most unusual way: Arirang is a
popular Korean folk song which has become the unofficial national anthem.
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Aplicaciones Cientificas), h = 651 km, carries the American Aquarius instru-
ment.80

Satellites equipped with a scatterometer to study the winds over the sea
are also Sun-synchronous, e.g., QuikScat (Quick Scaterrometer), h = 805km,
and Coriolis81 (also called WindSat or P98-2), h = 830km. The Chinese–
French satellite CFOSAT (Chinese–French Oceanic Satellite) plans to use a
lower orbit, with h = 514km.

9.2.7 Navigation Satellites

The first US navigation system was provided by the Transit satellites in
strictly polar LEO orbit. They played a very important role at the incep-
tion of space geodesy.82 Several of these satellites were equipped with nuclear
generators.83

A comparable Soviet then Russian system was constructed using the Parus
(military), Tsikada, and Nadezhda constellations of satellites in polar orbit,
with h ≈ 1,000 km and i = 83◦.

Results of astonishing accuracy (positioning to within a few meters) are
currently obtained with MEO satellite constellations. A whole chapter of this
book is devoted to global satellite navigation systems, or positioning systems,
commonly referred to as GPS (see Chap. 14).

80Aquarius was designed to fly aboard the US satellite of that name, but following a
cooperation agreement with Argentina, the satellite became Aquarius/SAC-D, then SAC-
D/Aquarius.

81Gustave Gaspard Coriolis (1792–1843) was a French mathematician and engineer. In
his first work, Du calcul de l’effet des machines (1829), he introduce the ideas of work
done by a force (force times displacement) and kinetic energy. In his paper Sur le principe
des forces vives dans le mouvement relatif des machines (1831), he examined the various
accelerations: absolute, relative, frame, and complementary. The latter subsequently became
known as the Coriolis acceleration. This is today a basic feature in the study of geophysical
fluids in motion, such as marine and atmospheric currents on the surface of the globe.

82In the geodesy literature, the satellites Transit-5B-1 and -5B-2 are referred to with the
simplified notation VBN-1 and VBN-2.

83In 1961, Transit-4A was the first satellite equipped with a nuclear generator for its
electricity supply, the so-called SNAP (System for Nuclear Auxiliary Power). These gen-
erators are now referred to by the acronym RTG (radioisotope thermoelectric generator).
Other satellites in this series were equipped with RTG: Transit-4B in 1961, Transit-5B-1,
-5B-2, and -5B-3 in 1963, and Triad-1 in 1972. The fuel was polonium-210 for the Transit-4
satellites, and plutonium-238 for the Transit-5 series. In the other US series, satellites with
RTG (plutonium-238) were OPS/4682 (or Snapshot, a pun on SNAP), Nimbus-B (failed
at launch), Nimbus-3 in an LEO orbit, and the two satellites LES-8 and -9 in GEO orbits.
Concerning Soviet satellites equipped with RTG, it is known that there were accidents with
Kosmos-954 and Kosmos-1402. Probes travelling far out into the Solar System are also
equipped with nuclear generators. (Cassini is carrying 35 kg of plutonium-238, producing a
power output of 750 W).
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9.2.8 Communications Satellites

The principle of communication by relay is to send a signal, e.g., telephone,
television, telecommunications, from a given point on the Earth to another
by relaying it through a satellite which detects, amplifies, and retransmits it.
A GEO satellite can of course do this, provided it is visible from the two points
and in suitable conditions. For high latitudes, a group of HEO satellites can
guarantee the link. With LEO satellites, the time for which the satellite is
visible is rather short and a constellation is required. The reader is referred
to Chap. 12 for further discussion of this point.

GEO Telecommunications

Almost 300 satellites are currently operating in the necessarily one-
dimensional geostationary orbit, and most of these are for communications.84

These satellites have an average lifespan of about 12 years. Generally speak-
ing, a country or group of countries sets up its satellite at the longitude of
one of its meridians.85

A country like Indonesia can use a geostationary satellite to set up a
telecommunications network between the hundreds of islands composing it,
much more easily than using a network at ground level. Moreover, for many

84There are also around 15 weather satellites, some of which are dual purpose weather and
communications, not forgetting the Chinese Beidou positioning satellites (see Chap. 14).

85As an example, we mention several operational satellites with their parking position
in 2013. At the beginning of the twenty-first century, most European countries have aban-
doned their national satellites to join a European organisation. For instance, the Telecom
satellites for France or DFS-Kopernikus for Germany have been absorbed into Eutelsat.
Only Scandinavian countries like Norway and Sweden (owing to their remote position rel-
ative to geostationary coverage) and Spain (which also targets Latin America) have held
onto their national satellites.

The first commercial satellite in this category, Anik-1 (Canada), was launched in
1972. We give one satellite per country or organisation, going round the geostationary
orbit in the positive direction: Rascom-QAF-14 (African org.) 2.8◦E; Sirius-4 [SES-Sirius-
4] (Sweden) 4.8◦E; Eutelsat-7A (Eutelsat org.) 7.0◦E; Astra-1M (Astra org.) 19.2◦E;
Badr-6 (Arabsat org.) 26.0◦E; PakSat-1 (Pakistan) 38.0◦E; HellasSat-2 (Greece) 39.0◦E;
Türksat-3A (Turkey) 41.8◦E; NigComSat-1R (Nigeria) 42.5◦E; Azerspace-1 (Azerbaidjan)
46.0◦E; Yamal-202 (Russia) 49.0◦E; YahSat-1B (United Arab Emirates) 52.5◦E; INSAT-
3E (India) 55.0◦E; Intelsat-906 (Org. Intelsat) 64.1◦E; Thaicom-5 (Thailand) 78.5◦E;
Esafi-1 (Tonga) 79.0◦E; ChinaStar-1 (Macao/Chine) 87.5◦E; SupremeSat-1 (Sri Lanka)
87.5◦E; ST-3 (Singapore–Taiwan) 88.0◦E; MeaSat-3 (Malaysia) 91.0◦E; ChinaSat-9 (China)
[Zhong Xing-9 or ZX-9] 99.2◦E; AsiaSat-5 (Hong Kong/China) 100.5◦E; KazSat-1 (Kaza-
khstan) 103.0◦E; KoreaSat-5 [Mugunghwa-5] (South Korea) 113.0◦E; Garuda-1 (Indonesia)
123.0◦E; JCSat-12 [JCSat-RA] (Japan) 128.0◦E; Vinasat-2 (Vietnam) 132.0◦E; Agila-2
[Mabuhay-1] (Philippines) 146.0◦E; Optus-D3 (Australia) 156.0◦E; Galaxy-15 (PanAm-
Sat org.) 133.0◦W; DirectTV-8 (DirectTV org.) 100.8◦W; BrazilSat-B4 (Brazil) 92.0◦W;
Nimiq-4 (Canada) 82.0◦W; Venesat-1 [Simon-Bolivar-1] (Venezuela) 78.0◦W; QuetzSat-1
(Mexico) 77.0◦W; Nahuel-1 (Argentina) 71.8◦W; Hispasat-1D (Spain) 30.0◦W; Nilesat-201
(Egypt) 7.0◦W; Amos-3 (Israel) 4.0◦W; Thor-6 (Norway) 0.8◦W.
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countries, a geostationary communications satellite has an important symbolic
value.86

The GEO communications satellites, which are becoming increasingly
common, bigger, and more expensive,87 currently represent the largest part
of the commercial market for space activities.

GEO satellites for broadband Internet made their appearance in 2011 with
Ka-Sat (parked at 9◦E) and Via-Sat-1 (at 115◦W).

GEO satellites are also widely used for military communications by satel-
lites in the US series88 LES, DSCS then WGS, the TDRS system, and the
Milstar and AEHF series. Naturally, the same can be said of satellites in the

86The names chosen for these satellites serve to demonstrate this. The multiethnic country
Indonesia, sometimes torn by internal conflict, chose the name Palapa, which means “unity”
in Bahasa Indonesian, the official language. Developed countries in the New World seek the
names of their satellites in the Amerindian languages, perhaps as a way of finding their
roots. Canada named its satellites Anik and Nimiq, which means “brother” (for a sister)
and “union” (or “bond that unites”) in Inuktitut (the Inuit or Eskimo language). Argentina
uses the Araucanian word “Nahuel” (Araucan, Mapuche language), meaning “tiger”.

87The two satellites Westar-6 (Western Union Communications Satellite, US) and Palapa-
B2 (Indonesia) were launched by STS-10 (STS-41-B) on 3 February 1984, but they never
reached the geostationary orbit. The insurers, the new owners, paid for recovery and return
of the satellites by the shuttle flight STS-14 (STS-51-A) on 16 November 1984. China bought
Westar-6, and turned it into AsiaSat-1, launching the satellite itself on 7 April 1990. The
other satellite became Palapa-B2R and was launched on 13 April 1990.

The adventures of AsiaSat did not end there. The satellite AsiaSat-3, launched by a
Russian rocket on 24 December 1997, was placed on the wrong orbit, too highly inclined (a
GTO orbit with i = 56◦). After purchasing it, the new owner (Hughes) attempted a novel
maneuver: the satellite was sent on two revolutions around the Moon (ra = 488,000 km,
T = 15 day, see the Luna-3 satellite). It then returned to a geostationary orbit and became
HGS-1 (Hughes Global Services), before being renamed PAS-22. The replacement, AsiaSat-
3S, was inserted into the wrong orbit on 21 March 1999: hp ≈ 10,000 km, ha = hGS, i = 13◦.
Using its thrust motors, it was then moved into GEO orbit.

Another example of successful recovery, although less spectacular since it was carried
out remotely while the satellite remained in GEO orbit, concerns the satellite Palapa-C1.
Launched in 1996, it broke down in 1998. The manufacturer bought it back, repaired it
under the name of HGS-3, then resold it to Turkey under the name of Anatolia-1, having
displaced it in longitude. In 2002, Turkey sold it on to Pakistan, whence it became PakSat-1,
but without changing place.

88US military GEO satellites are:

• LES (Lincoln Experimental Satellite in GEO orbit from LES-5 (launched in 1967) to
LES-9 (in 1976).

• DSCS (Defense Satellite Communications System) and WGS (Wideband Global Sat-
com). Launched since 1971, their parking longitudes are over the Americas. In 2003,
launch of DSCS-3A3 (USA-167) and DSCS-3B6 (USA-170); in 2007, WGS-1 (USA-195);
in 2009, WGS-2 (USA-204) and WGS-3 (USA-211); in 2012, WGS-4 (USA-233).

• The TDRS satellites (Tracking and Data Relay Satellite) of the TDRSS series (TDRS
System) are launched at intervals of 2–5 years. The first were launched by the US space
shuttle, like TDRS-1 in 1983 (STS-6), or TDRS-2, lost in the explosion of Challenger in
1986, up to TDRS-7 in 1995 (STS-70). TDRS-8 was launched directly in 2000, as were
TDRS-9 and -10 in 2002.

• The Milstar satellites (Military Strategic and Tactical Relay System), since 1994,
then the AEHF satellites (Advanced Extreme High Frequency Satellite), like AEHF-
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Soviet series Luch (with Kosmos-2054 and Luch-1, where luch means “light
beam” in Russian) and Raduga (up to Raduga-32, where raduga means “rain-
bow”), and the Chinese satellites is the series STTW (with China-26).

The first high-speed data transmission by laser was carried out in Novem-
ber 2001 between the European GEO satellite Artemis, launched just be-
fore for this purpose, and the French LEO satellite SPOT-4. This prefigured
transmissions between LEO satellites via a GEO satellite as intermediary. In
December 2005, the first two-way link was made between Artemis and the
Japanese satellite OICETS (Optical Inter-orbit Communications Engineering
Test Satellite, renamed Kirari, meaning “glint, sparkle”), launched in August
2005 on an LEO orbit at h = 605km (see Fig. 9.36).

HEO Telecommunications

The most commonly used HEO orbit is the one adopted by Soviet then
Russian satellites, namely, the Molniya orbit,89 since Kosmos-41 in 1964. The
number of satellites launched in these orbits is staggering: 91 for Molniya-1,
from Molniya-1-01 in 1965 to Molniya-1-91 en 1998, 17 for Molniya-2, from
Molniya-2-01 in 1971 to Molniya-2-17 in 1977, and 53 for the current series
Molniya-3, from Molniya-3-01 in 1974 to Molniya-3-53 in 2003.

The satellites in these three series have the same orbit, to within a few tens
of kilometers90: hp ≈ 500 km, ha ≈ 40,000km, i = 63◦ (critical inclination).
The period is 12 h (half a sidereal day): T = 717.7min, a = 26,553km, e
between 0.72 and 0.75. The argument of the perigee is ω = −90◦, which means
that the perigee is located in the southern hemisphere, region of the Earth
that the satellite overflies very quickly. On the other hand, at the apogee, the
satellite is almost stationary for 9 h, when it is above Russia.

1 (USA-214) launched in 2010, are specialised in data transmission at ever higher rates.
They are known to be in geostationary orbit, but apart from that, little else is known.

89Molniya means “lightning” in Russian. This refers to the fact that the satellite moves
“as fast as lightning” at the perigee of its orbit. However, the main feature sought of this
kind of satellite is to be slow at the apogee, when it overflies Russia! Now how do we say
“snail” in Russian?

90As an example, here are the characteristics of several Molniya orbits with the launch
date of the satellite, using the notation [hp/ha/i] (altitudes in kilometer, angles in de-
grees): Molniya-1-01 (23 April 1965) [538/39300/65.5]; Molniya-2-01 (25 November 1971)
[516/39553/65.0]; Molniya-3-01 (21 March 1974) [250/40095/64.1]; Molniya-3-50 (8 July
1999) [464/39889/62.8]; Molniya-3-51 (20 July 2001) [407/40831/62.9]; Molniya-3-52 (25
October 2001) [615/40658/62.9]; Molniya-3-53 (19 June 2003) [637/39709/62.8].
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Fig. 9.28 :Ground track of the elliptical orbit of a Molniya satellite over 1 day. Time

given in hours from 00 to 24, where 00 corresponds to the first ascending node, here

at longitude 50◦E. Times are given from 00 to 11 in the first revolution and from 12

to 23 in the second. Note that 24 appears slightly after 00. Indeed, the ground track

is represented over 24 h, and the satellite, with period half a sidereal day, has then

moved through slightly more than two revolutions in one mean day. The satellite is

effective for Russian communications between the times denoted 01 and 10, i.e., for

a period of 9 h.
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This fundamental property is illustrated in Figs. 9.28 and 4.4 and Exam-
ples 4.1 and 4.2. The Molniya orbit and its ground track are shown in Figs. 9.29
and 9.30.

This orbit is at the critical inclination, which fixes the position of the
perigee (and the apogee). Furthermore, the orbit is recurrent with a cycle
of 1 day: the ground track passes through the same point every day. With
three regularly spaced satellites on the same orbit, one almost achieves the
equivalent of a geostationary satellite for the regions close to the ground track
at apogee, each satellite being operational for 8 h. This is a judicious method
for solving the problem of geosynchronicity at high latitudes.

The choice of a half-day period implies that one revolution in two is unus-
able for communications (since the apogee is once over Russia and once over
Canada during the day). This allows a lower apogee than if the period were
diurnal (as for Tundra or Supertundra).

The Russian communications satellites Meridian91 (with a strong military
component) are a modernised version of Molniya-3, also on the Molniya orbit.
The US military satellites SDS (Space Defense System), from SDS-1 in 1976
to SDS-7 (USA-21) in 1987, follow Molniya orbits.

The Tundra and Supertundra orbits, shown in Fig. 9.31 and discussed
in Chap. 7, are much less widely used. The constellation SD-Radio, which
provides radio transmissions for American road users, is in a Tundra orbit.
With its three satellites Sirius-1, -2, and -3, it constitutes the only operational
examples of satellites in non-Molniya HEO orbit. The perigee of these two
orbits is high, well above the Van Allen radiation belts. This is not so for
the Molniya orbits, where satellites cross this belt on every revolution, an
ordeal for electronic equipment. The planned orbit for the Sycomores satellites
(Système de Communications avec des Mobiles Reliés par Satellites) is also a
geosynchronous orbit, with a = 42,163.9km, e = 0.346 (or hp = 21,205km
and ha = 50,366 km).

The following list of orbits concerns only those projects with some chance
of realisation. Orbital and recurrence characteristics are given in Chap. 11.

The Loopus orbit, a = 30,000km, e = 0.6 (see Fig. 9.33), lies outside the
radiation belts. The period of the satellite is 3/5 of a day (T = 861.526min).

The US project VIRGO (or VirtualGeo, Virtual Geostationary) uses HEO
orbits with a period of 8 h (exactly one third of a sidereal day), with a =
20,261km, e = 0.6458, i = 63.4◦ (see Fig. 9.32). As for Molniya, a VIRGO
constellation effectively plays the role of a geostationary satellite.

91Launch dates: Meridian-1 on 24 December 2006; Meridian-2 on 20 May 2009, launch
failed; Meridian-3 on 11 February 2010; Meridian-4 on 4 May 2011; Meridian-5 on 23
December 2011, failed to reach orbit; Meridian-6 on 14 November 2012.
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Fig. 9.29 :Representation of the HEO orbit of a Molniya satellite over 1 day. Upper:

In a Galilean frame. Lower: In a terrestrial frame.
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Fig. 9.30 :Ground track of the HEO orbit of a Molniya satellite over 1 day, for two

different positions of the perigee.
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Fig. 9.31 :Ground track of a satellite in a Tundra or Supertundra (HEO) orbit, over

1 day.
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Fig. 9.32 :HEO orbit and ground track of a satellite in the VIRGO constellation,

over 1 day.
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Fig. 9.33 :HEO orbit and ground track of a satellite in the Loopus constellation, over

3 days.
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The COBRA project (Communications Orbiting Broadband Repeating
Arrays), with the same orbital characteristics as VIRGO, makes judicious use
of the argument of the perigee, which is not taken equal to 270◦. With two
orbits separated by 40◦ and the argument of the perigee ω = 270◦ ± 38◦, we
obtain a “teardrop” ground track (see Fig. 9.34).

The constellation project FLOWER uses a similar orbit to the last, with
a = 22,883.8km, e = 0.65583.

The Ellipso Borealis orbit is highly original, as we have already seen: it is
both Sun-synchronous and at the critical inclination. The relevant parameters
are hp = 633km, ha = 7,605km, i = 116.6◦, ω = −90◦, and it has a period
of 3 h (T = Dsid/8) (see Fig. 10.7). The Ellipso project includes an HEO
constellation, Borealis, containing ten satellites in two planes, together with
a constellation, Concordia, of four (or perhaps 7) satellites in equatorial orbit
with h = 8,050 km and i = 0.0◦ (T = Jsid/5). The project has been shelved
since 2003.

The project FLOWER CfTM (Constellation for Telemedecine) is in the
same spirit as Ellipso Borealis, with parameters hp = 3,094km, ha = 9,709km,
i = 116.6◦, and a period of 4 h.

MEO Telecommunications

The JOCOS orbit (Juggler Orbit Constellation, since it gives the impres-
sion of juggling with the satellites), also known as the WEST orbit, is circular
with h = 13,900 km, i = 75◦, and period 8 h (one third of a sidereal day).
The constellation project WEST (Wideband European Satellite Telecommu-
nication) involves nine satellites on this MEO orbit, together with two GEO
satellites (see Fig. 9.35).

Odyssey and ICO were to operate in a rarely occupied range of altitudes
between MEO and LEO. The Odyssey project, abandoned in 2000, was a
constellation containing three planes of four satellites, h = 10,354km, i = 50◦.
The ICO constellation (Intermediate Circular Orbit), planned to have two
planes of five satellites with h = 10,390 km and i = 45◦, was replaced by a
geostationary, ICO-G1, and a ground network.

LEO Telecommunications

Communications using LEO satellites always require a constellation. For
telephone communications, the advantage of LEO constellations is the very
short response time: the journey time of the signal transiting via a GEO
satellite is about 250ms, and this quarter of a second is sometimes considered
to be a nuisance. However, this is not a big enough advantage to ensure the
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e = 0.645900

a =20260.852 km

CRITICAL Inclin. =  63.43 °

Period =   478.39 min    * rev/day = 3.01

h_a =  26969 km;  h_p =  796 km;  arg. per.: +232.0 °/ +308.0 °

Longitude / Initialisation:
Asc. Node: 0.0 ° / 40.0 °
Apogee: 166.6 ° / 133.4 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 15.0 ° N;   88.0 ° W
Aspect:  Oblique
{4.2} [ -90.0/ +75.0/+178.0] [-]    EGM2008

COBRA
Two elliptical orbits - Gr. track

Recurrence = [ 3; +0;  1]   3

>>>>   Time span shown:  1440.0 min =   1.00 day

Equiv. altit.  =  13882.7 km

e = 0.645900

MC LMD

MC LMD

a =20260.855 km

CRITICAL Inclin. =  63.42 °

Period =   478.39 min    * rev/day = 3.01

h_a =  26969 km;  h_p =  796 km;  arg. per.: +232.0 ° / +308.0 °

Longitude / Initialisation:
Asc. Node: 0.0 ° / 40.0 °
Apogee: 166.6 ° / 133.4 °

Projection:  Mercator
Property:  Conformal

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{4.2} [  +0.0/  +0.0/  +0.0] [-]    EGM2008

Fig. 9.34 :HEO orbits and ground tracks of two satellites in the COBRA constella-

tion, over 1 day. Normal (red) curve for the first satellite, bold (blue) curve for the

second.
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WEST-JOCOS
Orbit - ref.: Earth

Recurrence = [ 3; +0;  1]   3

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =13889.0 km a =20267.139 km

Inclination  =  75.00 °

Period =   478.63 min    * rev/day = 3.01

Equat. orbital shift  =13358.3 km  ( 120.0 °)

Asc. Node:      0.00 °Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 20.0 ° N;   15.0 ° W
Aspect:  Oblique
{4.2} [ -90.0/ +70.0/+105.0] [ -12] GRIM5-S1

WEST-JOCOS

Orbit - Ground track

Recurrence = [ 3; +0;  1]   3

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =13889.0 km a =20267.139 km

MC LMD

MC LMD

Inclination  =  75.00 °

Period =   478.63 min    * rev/day = 3.01

Equat. orbital shift  =13358.3 km  ( 120.0 °)

Asc. Node:      0.00 °
App. inclin. =  94.41 °

Projection:  Behrmann
Property:  Equal area

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{4.2} [  +0.0/  +0.0/  +0.0] [-]    GRIM5-S1

Fig. 9.35 :MEO orbit and ground track of a satellite in the JOCOS-WEST constel-

lation, over 1 day.
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Fig. 9.36 :Artist’s

view of the laser link

between the Japanese

satellite OICETS and

the European satel-

lite Artemis. Credit:

JAXA.

success of a commercial venture. The difficulties encountered by Iridium92 and
GlobalStar clearly demonstrate this. The following satellite constellations are
currently operating (or have failed):

• Orbcomm, 35 satellites (3 planes of 8), h = 810km, i = 45.0◦.
• Iridium, 88 satellites (6 planes of 11), h = 780km, i = 86.4◦.
• GlobalStar, 52 satellites (8 planes of 6), h = 1,410km, i = 52.0◦.
• GlobalStar NG, 52 satellites (8 planes of 6), h = 1,410km, i = 52.0◦.

92Iridium, set up by Motorola, is a telephone and data transfer system for regions not
covered by mobile phone networks. Faced with commercial failure, the first reaction in 2000
was to remove all the satellites from orbit. However, in the end, the system was taken over
by the US Department of Defense. It is presently run by a private organisation supplying
military and institutional customers for the main part. Originally, the constellation was
to include 77 satellites, whence the name Iridium, which is the chemical element Ir with
atomic number 77.



9.2 Classifying Satellites by Mission 405

Vela-4
Orbit - ref.: Earth

>>>>   Time span shown:  30.00 days

Equiv. altit.  =   103052 km

e = 0.100000

a = 109430.0 km

Inclination  =  40.80 ° 

Period =  6004.28 min    * rev/day = 0.24

h_a = 113995 km;  h_p =92109 km;  arg. perigee:  +255.00 °

Longitude / Initialisation:

Asc. Node:      0.00 °

Apogee   :   -110.19 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule:360°

Project. centre: 25.0 ° N;   90.0 ° W 

Aspect:  Oblique

{4.2} [ -90.0/ +65.0/-180.0] [-]    EGM2008

Chandra (CXO)
Orbit - ref.: Earth

Recurrence = [ 0;+23; 61]  23

2009 09 05 00:00:00 UTC  >>>    23.00 days

Equiv. altit.  =  74409.4 km

e = 0.767080

MC LMD

MC LMD

a =80787.492 km

Inclination  =  65.79 °

Period =  3808.75 min    * rev/day = 0.38

h_a = 136397 km;  h_p =12457 km;  arg. perigee:  +275.57 °

[NORAD] 2009 09 05 13:20:31 UTC//R=  531

Asc. Node:   -118.70 ° [05:26 LMT]

Apogee   :   -105.29 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule:360°

Project. centre: 48.0 ° N;   95.0 ° W

Aspect:  Oblique

{4.2} [ -90.0/ +42.0/-175.0] [-]    EGM2008

Fig. 9.37 :Representation of orbits over long periods of time. Upper: Vela-4 satellite

over 30 days. Lower: Chandra over 23 days.
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Integral
Orbit (Celestial ref.) [Galilean]

2004 06 23 12:00:00 UTC  >>>   4320.0 min =   3.00 days

Equiv. altit.  =  81326.1 km

e = 0.795766

a =87704.242 km

Inclination  =  67.68 °

Period =  4308.23 min    * rev/day = 0.33

h_a = 151131 km;  h_p =11547 km;  arg. perigee:  +302.88 °

[NORAD] 2004 06 23 14:56:03 UTC//R= 90

Asc. Node:    -62.72 ° [10:45 LMT]

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule:360°

Project. centre: 15.0 ° N;   30.0 ° W

Aspect:  Oblique

{4.2} [ -90.0/ +75.0/+120.0] [-]    GRIM5-C1

Integral
Orbit - ref.: Earth

Recurrence = [ 0; +1;  3]   1

2004 06 23 12:00:00 UTC  >>>   4320.0 min =   3.00 days

Equiv. altit.  =  81326.1 km

e = 0.795766

a =87704.242 km

Inclination  =  67.68 °

Period =  4308.23 min    * rev/day = 0.33

h_a = 151131 km;  h_p =11547 km;  arg. perigee:  +302.88 °

[NORAD] 2004 06 23 14:56:03 UTC//R= 90

Asc. Node:    -62.72 ° [10:45 LMT]

Apogee   :    -79.33 °

MC LMD

MC LMD

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule:360°

Project. centre: 15.0 ° N;   30.0 ° W

Aspect:  Oblique

{4.2} [ -90.0/ +75.0/+120.0] [-]    GRIM5-C1

Fig. 9.38 :Elliptical orbit of the satellite Integral, over 3 days (one revolution).

Upper: In a Galilean frame. Lower: In a terrestrial frame.
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Back-up satellites are included in the total number of satellites belonging
to each constellation.93 The Teledesic and SkyBridge projects have been
shelved.94

The Russian system Gonets-D1 (gonets meaning “messenger”) is the com-
mercial version of the military system Strela-3 (strela meaning “arrow”). It
comprises95 48 satellites in 6 planes of 8, with h = 1,400km, i = 82.5◦.

Passive Communication

We end this section with a quick glance at the “prehistory” of telecommu-
nications, with the first attempts at transmission in passive mode. As their
name would suggest, the satellites Echo-1 and -2 were launched as passive
telecommunications relays. As one might imagine, the results were not very
convincing and this experimental system was dropped. However, these two
satellites were originally intended for space geodesy.

We should also mention another attempt to create a passive space com-
munications system. The idea was to place a ring in orbit around the Earth to
reflect radio waves. This was the US military experiment called Westford Nee-
dles.96 The idea was to insert a package into orbit which, once opened, would

93Launch dates of the first and last satellites of each constellation:
(a) Orbcomm constellation (Machine to Machine Communications): Orbcomm-FM-1 and
-FM-2 on 3 April 1995, launched with Microlab-1, h = 740 km, i = 69.9◦; Orbcomm-FM-3
and -FM-4 on 10 February 1998, launched with GFO-1, h = 830 km, i = 108.0◦; the other
Orbcomm satellites were launched with i = 45.0◦ in clusters of 8, starting with Orbcomm-
FM-5 to -FM-12 on 23 December 1997 and ending with Orbcomm-FM-30 to -FM-36 on 4
December 1999, and supplemented by Orbcomm-FM-37 to -FM-41 on 19 June 2008.
(b) Iridium constellation: (beginning) Iridium-4 to -8 on 5 May 1997; (end of initial pro-
gramme) Iridium-83 to -86 on 6 November 1998; (restart) Iridium-90 to -96 on 11 February
2002; Iridium-97 and -98 on 20 June 2002. The Iridium-Next constellation is planned for
the same orbit.
(c) GlobalStar constellation: (beginning) GlobalStar-M001 to -M004 on 14 February 1998;
(end) GlobalStar-M060 to -M064 on 8 February 2000; (supplement) GlobalStar-M065 to
-M072 on 29 May and 20 October 2007, with h = 666 km, i = 48.45◦.
(d) GlobalStar NG constellation (New Generation) or GlobalStar-2: (beginning) GlobalStar-
M073 to -M078 on 19 October 2010; (current) GlobalStar-M093 to -M097 on 6 February
2013.
(e) Teledesic constellation: (demonstration satellite) Teledesic-1 on 26 February 1998.

94For Teledesic, the initial project, imagined by Microsoft in 1994, involved 840 active
satellites (21 planes of 40), with altitude h = 700 km. In 1997, the project was reduced to
288 satellites (12 planes of 24), with Sun-synchronous orbits at altitude h = 1,400 km, then
postponed indefinitely in 2002. Alcatel’s SkyBridge project for 80 satellites is no longer
under consideration.

95To begin with, between 1992 and 2001, 12 satellites were sent up (6 planes of 2),
Gonets-D1-1 to -12; then a further 36 satellites, but so far only one has been launched,
namely Gonets-M-1, in 2005.

96First launched was the Westford-1 experiment on 21 October 1961, using the satellite
Midas-4. This failed because the needles were not actually dispersed. The second experiment
to be launched was Westford-2 on 9 May 1963, using the satellite Midas-7. This time the
needles were coated with naphthalene and were regularly dispersed. These two satellites
were in near-polar circular orbits at h = 3,600 km.
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distribute 480 million small copper needles (0.1mm in diameter and 18mm
long, corresponding to half a wavelength at the frequency of 8GHz used for
transmission) along its trajectory. The experiment was severely criticised by
astronomers who saw in this a source of optical and radio pollution. In the
end, the needles constituted neither a reflector nor a pollutant.

9.2.9 Satellites for Astronomy and Astrophysics

Astronomy and Astrometry

In most cases, astronomical missions are one-off experiments and the satel-
lites are not systematically placed on the same orbits, as they might be for
remote-sensing, for example. We shall discuss here several satellites for each
region of the electromagnetic spectrum used in astronomy. Most of them are
American and the remainder are mainly European.

NASA launched a programme of large orbiting observatories (Great Ob-
servatories Program), each in a specific region of the electromagnetic spec-
trum:

• For gamma rays (γ rays), the Gamma Ray Observer (GRO), renamed
Compton.97

• For X rays, the Advanced X-ray Astrophysics Facility (AXAF), renamed
Chandra.98

• In the visible part of the spectrum, the Hubble Space Telescope (HST),
often simply called Hubble.99

• In the infrared region, the Space InfraRed Telescope Facility (SIRTF), re-
named100 the Spitzer Space Telescope (SST) or simply Spitzer, after its
launch.

97Arthur Holly Compton (1892–1962) was an American physicist. His work on X rays led
him to discover in 1923 the effect which now carries his name (interaction between matter
and X rays). He also studied cosmic rays.

98Subrahmanyan Chandrasekhar (1910–1995) was an American astrophysicist of Indian
birth. He carried out a great many theoretical studies on the internal structure of stars,
publishing books that are often considered to be definitive on the subjects he treated,
e.g., stellar evolution and white dwarfs, radiative transfer in stellar atmospheres (Radiative
Transfer, 1950), hydrodynamics, black holes (The Mathematical Theory of Black Holes,
1983). The root “chand” means “Moon” or “bright” in Sanskrit.

99Edwin Powell Hubble (1889–1953) was an American astronomer. He produced a clas-
sification of extragalactic nebulas and, in 1928, established the law of spectral shifts, now
known as the Hubble law, which says that the spectral shift of a galaxy (redshift) is pro-
portional to its distance, thus confirming the hypothesis that the Universe is expanding.
The constant of proportionality H0, called the Hubble constant, is not precisely known and
may even vary in time. It is measured in km s−1 per megaparsec. Its reciprocal, which has
units of time, gives the age of the Universe to within an order of magnitude: 1/H0 ∼ 10
billion years.
100In honour of Lyman Spitzer Jr (1914–1957), the American astrophysicist who first

suggested placing a large telescope in space.



9.2 Classifying Satellites by Mission 409

These four missions were a considerable technological success. Each led to
major scientific progress in its specific domain, see Figs. 9.39 and 9.40.

Concerning more modest missions, NASA’s Explorer programme is well
underway with three formats, depending on the budget: Medium Explorer
(MIDEX), Small Explorer (SMEX), and University-class Explorer (UNEX).

In the following we outline this diversity of astronomical missions.

Cosmic Rays and Gamma Rays

Gamma-ray astronomy began in 1961 with Explorer-11 (also called S-15),
hp = 480km, ha = 1,460km, i = 29◦, which provided the first detection of
gamma rays from space. This was followed by OSO-3 and OSO-7, both on the
orbit h = 550km, i = 33◦, then Explorer-48 (SAS-2), h = 526km, i = 1◦, not
forgetting the Vela satellites discussed further below.

In this field of investigation, orbits are generally low and not highly in-
clined, as for the HEAO satellites (High Energy Astrophysical Observatory),
HEAO -1, -2 (renamed Einstein), and -3, h ≈ 500 km, i = 23◦, 23◦, and 44◦,
or the satellite HETE-2 (High Energy Transient Experiment, Explorer-79),
h = 615 km, i = 2◦.

The Compton satellite (CGRO), launched on 5 April 1991 by STS-37
with h = 450km, i = 28.5◦, had a mass of 15 tonnes, including 7 tonnes
of instruments. Great precautions were taken when it was deliberately de-
orbited on 3 June 2000. The US Swift satellites,101 h = 595 km, i = 20.6◦

and Fermi,102 h = 552km, i = 25.6◦, and also the Italian satellite Agile,
h = 538 km, i = 2.5◦, have very similar orbits.

The European satellite Integral (International Gamma-Ray Astrophysics
Laboratory), launched on 17 October 2002, is on an HEO orbit with a =
87,699km, e = 0.8204 (or hp = 9,400 km, ha = 153,300km), i = 57◦ to 67◦,
and a period T = 71.8 h = 3Dsid. Figure 9.38 shows how the representation
of the orbit changes from a classic ellipse in � to an elegant closed curve in
the form of a lasso in �T.

X Rays

Certain orbits are like those seen above, i.e., low, with h ≈ 550km, and
with low inclination: i = 53◦ for ROSAT; i = 4◦ for BeppoSAX (Satellite per
Astronomia a raggi X ); i = 23◦ for XTE (X-ray Timing Explorer, Rossi, or
RXTE, Explorer-69); i = 38◦ for HESSI (High-Energy Solar Spectroscopic Im-
ager, SMEX-6, or Explorer-81), renamed RHESSI (Reuven Ramaty HESSI);

101Launch dates: Swift (MIDEX-3 or Explorer-84), for detection of gamma-ray bursts
(GRB), on 20 November 2004; GLAST (Gamma-ray Large Area Space Telescope), renamed
Fermi or FGRST (Fermi Gamma-Ray Space Telescope) after the launch on 11 June 2008;
Agile (Astro-rivelatore Gamma a Immagini Leggero) on 23 April 2007.
102Enrico Fermi (1901–1954) was an Italian physicist. At the beginning of his career, he

developed the theory of quantum statistical mechanics, which explains the properties of
electrons in metals (Fermi–Dirac statistics). In nuclear physics, he devised a theory of the
weak interaction (�-decay and neutrinos). In 1939, he emigrated to the USA, where he built
the first atomic pile and contributed to the development of the first atomic bomb. He also
studied galaxies with Chandrasekhar.
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Fig. 9.39 :View made up from two images, one from Chandra and the other from

Spitzer. The large format black and white photograph was obtained by the Spitzer

space telescope in the infrared. It is completed in the center by a false colour pho-

tograph from the Chandra space telescope, which observes X-ray emissions. At the

center is the Westerlund 2 cluster, surrounded by dust clouds forming a stellar nurs-

ery, with the name RCW49 (20,000 light-years away in the constellation of Centau-

rus, southern hemisphere). Westerlund 2 is only 2 million years old and contains

very bright and massive stars. The infrared signatures of protoplanetary disks can be

identified in this star-forming region. Owing to the obscuring dust clouds, these stars

cannot be observed by optical telescopes. The sides of the square Chandra image have

length 50 light-years. Credit (images and caption): University of Liège, CXC, NASA

(for Chandra) et University of Wisconsin, JPL, Caltech, NASA (for Spitzer).



9.2 Classifying Satellites by Mission 411

Fig. 9.40 :The Sombrero galaxy (M104) lies in the Virgo cluster, 28 million light-

years from the Earth. It has a diameter of 50,000 light-years. The left-hand image is

composed from the three images on the right: Chandra X-ray image showing a hot gas

cloud resulting from supernova explosions at the center of the disk (in blue); Hubble

visible image showing a spiral galaxy viewed edge on, with a dusty rim that blocks

the light (in green); Spitzer image of this same rim, bright in the infrared (in red).

Technical indications: Image size 8.4 arcmin. Coordinates (J2000.0) right ascension

12 h 39min 59.4 s, declination −11◦ 37′ 23′′. Constellation Virgo. Observation on

31 May 2001. Credit (images and caption): (X ray) NASA, UMass., Q.D. Wang

et al., (visible) NASA, STScI, AURA, Hubble Heritage, (IR) NASA, JPL, Caltech.

i = 31.4◦ for Suzaku (“vermillion bird” in Japanese, Astro-E2 before launch);
i = 6◦ for NuSTAR (Nuclear Spectroscopic Telescope Array, SMEX-11), see
Fig. 9.41, and i = 28.5◦ for the future GEMS (Gravity and Extreme Mag-
netism SMEX, SMEX-13).

The rest are very high and highly eccentric, as in the case of the Soviet
satellites Astron and Granat, or the European satellite Exosat, launched in
1983, with a = 102,487km, e = 0.9344, i = 72.5◦. In 1999, two large satellites,
one American and the other European, used this type of orbit: Chandra (also
called CXO, Chandra X-ray Observatory), launched on 23 July by STS-93 (see
Fig. 9.37 lower), with hp = 10,157 km, ha = 138,672 km, i = 29.0◦, T = 63.5h,
and XMM (ESA’s X-ray Multi-Mirror Space Observatory, renamed XMM–
Newton), launched on 10 December, with hp = 7,417 km, ha = 113,678km,
i = 38.8◦, T = 47.9 h.
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Fig. 9.41 :The NuS-

TAR satellite, in

low equatorial orbit

(h = 627 km, i = 6◦).
A 10m deployable

mast links the optics

to the detectors in

the focal plane (next

to the solar panels).

Artist’s view. Credit:

NASA.

Ultraviolet (UV)

These satellites use slightly inclined LEO orbits. The satellites OAO-1, -2,
-3 (Orbiting Astronomical Observatory), launched between 1966 and 1972,
followed orbits with h = 750km, i = 35◦; OAO-3 was renamed Copernicus
for the five hundredth anniversary of the birth of the famous astronomer.

Launched in 1978, IUE (International Ultraviolet Explorer, Explorer-57)
operated for 18 years, instead of the planned 3 years, with a geosynchronous
orbit (a = 42,166km, e = 0.2397) inclined at i = 28.6◦. The US satellites
EUVE (Extreme UV Explorer, Explorer-67), h = 515km, i = 28.4◦; FUSE
(Far UV Spectroscopic Explorer, MIDEX-0, Explorer-77), h = 760km, i =
25.0◦; GALEX (Galaxy Evolution Experiment, SMEX-7, Explorer-83), h =
690km, i = 28.0◦ were launched in 1992, 1999, and 2003, respectively. The
orbit of the Spanish satellite Minisat-01, launched in 1997, h = 570km, is
also inclined at about 30◦ to the equator, since i = 151◦ (which is the highest
value yet put to use, to our knowledge).

Visible

In the visible region of the electromagnetic spectrum, the two largest mis-
sions have been the European Hipparcos and the American Hubble (with ESA
participation). Both have provided excellent results, despite a difficult start.

The Hipparcos satellite (High Precision Parallax Collecting Satellite), was
devoted to astrometry, i.e., accurate measurement of stellar positions, and
thus named in homage to the Greek astronomer (see the note on Hippar-
chos).103 Launched on 8 August 1989, the satellite did not reach the planned

103The satellite determined the position, luminosity, and distance of 118,218 stars. The
accuracy of the measurements (2milliarcsec) was 100 times better than ground-based mea-
surements of the day.
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geostationary orbit but instead remained in the highly eccentric transfer or-
bit (GTO): hp = 542 km, ha = 35,840km, i = 6.7◦. Rewriting the computer
programs and redistributing the ground receiving stations, the mission was
nevertheless carried successfully to completion.

The Hubble observatory was correctly launched by STS-31 on 24 April
1990. The problems began as soon as the first image came through, clearly
showing that the telescope was shortsighted due to an inexcusable mirror
defect.104 The intention had always been to carry out maintenance via the
Shuttle and this possibility was put to use primarily to correct the optics. The
results did indeed come up to expectations and astronomy was revolutionised
in the process.

In contrast, Hubble’s successor must be beyond reproach from the mo-
ment of launch: NGST (New Generation Space Telescope), renamed105 JWST
(James Webb Space Telescope), should be placed at the Lagrange point L2 of
the Sun–Earth system (see Sect. 6.12 on the Lagrange points), and it will be
quite impossible to go out there and repair it! In addition to the visible region,
JWST will also observe in the infrared and for this reason will be equipped
with cryogenic systems.

The successor to Hipparcos, named GAIA (Global Astrometric Interfer-
ometer for Astrophysics, with reference to ἡ Γα̃ια, ας, Gæe or Gaia, the per-
sonification of the Earth according to the Ancient Greeks) will also be placed
there.106 The main advantage of the halo orbit (L2LO) around the point L2

for stellar observation is that the Sun, the Earth, and the Moon are all located
behind the line of sight of the telescope. The whole of the celestial sphere can
then be observed as the year goes by, without blind spots. This region is also
very stable as regards the thermal and particle environment.

The American planned astrometry mission is SIM Lite (formerly SIM,
Space Interferometry Mission), on a heliocentric orbit that gradually moves
away from the Earth, reaching a distance of some 95 million kilometers in 5
years.

104The main mirror of the Hubble Space Telescope was manufactured by the company
Perkin-Elmer. It was only after launch that it was realised that the work had not been
carried out correctly and that the telescope optics produced fuzzy images. The problem
came from a faulty lens alignment, and the error was one millimeter, whereas the standard
imposed for this project was a fraction of the visible wavelength, i.e., a hundred or so
nanometers. Today, Perkin-Elmer has a highly diversified multinational activity but it has
closed its department of astronomical optics.
105In honour of James E. Webb (1906–1992), NASA’s second administrator, who directed

the Apollo programme and was one of the instigators of the first interplanetary exploration.
106GAIA’s mission is to observe and record a billion stars with an accuracy of 10μarcsec.

For stars within 500 light-years, the distance will be known to within a few light-days.
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Infrared (IR)

The detection of IR radiation involves cooling the optical system and asso-
ciated instrumentation in the satellites. The satellite ceases to function once
its reserves of cryogenic fluid have been exhausted.

Many of these satellites have used Sun-synchronous orbits, such as IRAS
(IR All-sky Survey), h = 890 km, helium-cooled, launched in 1983, WIRE
(Wide field IR Explorer, SMEX-5, Explorer-75), h = 560km, optics cooled by
3 kg of solid hydrogen, launched in 1999, Akari (Astro-F), h = 630km, with
170L of liquid hydrogen for optics at 6K, launched in 2006, WISE (Wide field
IR Survey Explorer, Explorer-92, MIDEX-6, formerly NGSS), h = 525km,
with a solid hydrogen supply that should last 10 months, launched in 2009.

The European satellite, ISO (Infrared Space Observatory), with American
and Japanese participation, was equipped with a cryostat filled with super-
fluid helium. It operated between November 1995 and May 1998, on a highly
eccentric orbit with a period of revolution of 1 day.107 Its successor Herschel108

(or HSO, Herschel Space Observatory), taking over from the FIRST project
(Far IR and Submillimeter Telescope), launched on 14 May 2009 (jointly with
Planck), was placed in orbit around the Lagrange point L2 for a period of 3
years.

The US satellite Spitzer, launched on 25 August 2003 under the name of
SIRTF, is on a different orbit. It follows the Earth at a distance of 0.1 a.u. or
15 million kilometers. This heliocentric orbit, known as ETHO (Earth-trailing
heliocentric orbit), maintains the satellite in an extremely cold environment,
propitious for technological innovation.109

Microwave

The US satellite COBE (Cosmic Background Explorer, Explorer-66) was
launched in 1989 on a Sun-synchronous orbit at h = 880km, i = 99.0◦,

107Orbital characteristics: hp = 1,110 km, ha = 70,504 km, i = 5.1◦; a = 42,185 km, e =
0.822, Td = 1,436min = 1 sidereal day. Cryostat: 2,200 L of superfluid helium. Temperatures
of the various components: detector 2K, optics 3–4K, instruments 8K.
108William Herschel (1738–1822) was a British astronomer of German origins. His life

attests to an unusual intellectual development, revealing an exceptionally curious nature.
He was led to mathematics by music, and from there moved on to astronomy. He made
his own telescopes and they were the best of his day. He discovered Uranus in 1781, and
then later, two of its moons, followed by two of the moons of Saturn. He demonstrated
the displacement of the Solar System through the Galaxy and gave the coordinates of the
apparent convergence point (the so-called apex) in 1783. In 1801, he discovered infrared
radiation.
109In contrast to IRAS and ISO, however, Spitzer was designed with an innovative “warm-

launch” cryogenic architecture. The observatory was launched at ambient temperature and
radiatively (or passively) cooled in the deep recesses of space. Only the focal plane in-
struments and the liquid helium cryostat are enclosed in a vacuum shell containing liquid
helium. This innovative launch architecture, combined with 360L of liquid helium, yields
an estimated mission lifetime of about 5 years. For the sake of comparison, IRAS used 520L
of cryogen during its 10 month mission (52 L per month as compared with 6).
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and explored the millimeter radiation in space in order to study tempera-
ture fluctuations in the diffuse cosmological background via extremely precise
measurements. (The temperature varies from 2.7249 to 2.7251K, depending
on the observed region.) This informs us about fluctuations in the matter
density of the early universe.

Its successor WMAP (Wilkinson Microwave Anisotropy Probe, MIDEX-2,
Explorer-80), with angular resolution 0.2◦ compared with 7◦ for COBE, is
placed110 in an L2LO orbit.

The European satellite Planck,111 launched with Herschel, is also placed
at the point L2. The Planck mission112 is designed to study the origins of the
Universe. Its instruments should map the anisotropy of the cosmic microwave
background, equivalent to the radiation of a black body at 2.725K, covering
the whole celestial sphere with an angular resolution of the order of 5 arcsec
(to be compared with 7◦ for COBE) and a temperature sensitivity of the order
of 2× 10−6.

For the study of galactic molecular clouds, SWAS (Submillimeter Wave
Astronomy Satellite, SMEX-3, Explorer-74), launched in 1998, is now on a
low prograde orbit with h = 640km, i = 69.9◦.

Radio

The first satellites to study radio sources were RAE-A and -B (Radio
Astronomy Explorer, Explorer-38 and -49), launched in 1968 and 1973 on a
highly inclined circular orbit with h = 5,850km and i = 120.9◦.

The observation of sources emitting in the radio region, i.e., wavelengths
of the order of one meter or more, is not seriously affected by the Earth
atmosphere, and sending instruments into orbit brings little improvement on
this front. However, the point about putting satellites into orbit to study this
frequency range is to construct as long a baseline as possible for the technique
commonly known as VLBI (see Chap. 3).

110Launched on 30 June 2001, the MAP probe made four revolutions around the Earth on
ever more eccentric orbits, reaching the vicinity of the Moon a month later. Using a lunar
swing-by, it took another 2 months to arrive at the point L2 of the Sun–Earth system on 1
October 2001 and go into the halo orbit. MAP was renamed WMAP (or Wilkinson MAP)
in February 2003, in honour of David T. Wilkinson of Princeton University, a world-famous
cosmologist and MAP team member, who died in September 2002.
111Max Planck (1858–1947) was a German physicist. He studied blackbody radiation

and found an expression for the blackbody spectrum as a function of temperature and
frequency. This problem had stumped many physicists before him. Planck solved it in 1900
by introducing the idea of the energy quantum. The theory of these quanta then became
the basis for much of modern physics.
112Two rather similar projects were originally proposed to the European Space Agency:

COBRAS (Cosmic Background Radiation Anisotropy Satellite) and SAMBA (Satellite for
Measurement of Background Anisotropies). They were combined into one under the title
COBRAS/SAMBA. However, this pleasantly exotic but heavy and supremely redundant
appellation was abandoned in favour of the short but enlightening name of Planck.
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The Japanese are very active in this field. The satellite113 Halca was
the first in this category. It follows an HEO orbit with hp = 569km,
ha = 21,415km, and i = 31.4◦ (see Fig. 9.42 upper). Its successor will be
Astro-G (or VSOP-2), hp = 1,000 km, ha = 25,000 km, i = 31◦ (see Fig. 9.42
lower). The satellite comprises a dish 9m in diameter to observe in the three
frequency bands 8, 22, and 43GHz. The last two of these, corresponding to
wavelengths of 14mm and 7mm, require cryogenics.

The Russian satellite114 Spektr-R (or RadioAstron) provides an even
longer baseline, with hp = 33,500km, ha = 302,000 km, and i = 72.4◦

(a = 174,250 km, e = 0.771, T = 201h, or more than 8 days).

Solar Astrophysics

Solar radiation is studied across the whole range of wavelengths. The Sun
has been the subject of investigation since the very beginning of the Space
Age, from 1962 to 1976, with LEO satellites at altitudes between 500 and
600km, such as the eight observatories OSO-1 to -8 (Orbiting Solar Obser-
vatory), i = 33◦, and the three Explorers, IQSY (International Quiet Sun
Year, Explorer-30), Solrad-9 and -10 (Solar Radiation,115 Explorer-37 and -
44), i ∼ 55◦, or with slightly inclined HEO orbits, like the EPE programme
(Energetic Particle Explorer), with EPE-A, -B, -C, and -D (Explorer-12, -14,
-15, -26). The German satellites Helios-1 and -2 are in heliocentric orbits with
perihelion 0.309 a.u., aphelion 0.985 a.u., i = 0◦, in the plane of the ecliptic,
and T = 190 day.

Launched in 1980, the US satellite SMM (Solar Maximum Mission) was
the first satellite to be repaired in flight by the Shuttle STS-11 (STS-41-C),
in 1984. It operated until 1989 on the orbit h = 405km, i = 26.5◦.

Recent LEO satellites116 are in Sun-synchronous orbits, like the US satel-
lites TRACE (Transition Region and Coronal Explorer, SMEX-4, Explorer-
73), with altitude h = 620km, ACRIMSAT (Active Cavity Radiometer Irra-
diance Monitor Satellite), h = 700km, or the IRIS project (Interface Region
Imaging Spectrograph, SMEX-12), h = 636km, like the Japanese satellites
Hinode (“sunrise”, Solar-B), hp = 318 km, ha = 675 km, i = iHS = 98.3◦, and

113Launch date: Halca on 12 February 1997. Halca (Highly Advanced Laboratory for
Communication and Astronomy), also called Muses-B or VSOP (VLBI Space Observatory
Programme) was renamed Haruka (haruka means “remote”) after launch, in accordance
with the Japanese tradition.
114Launched on 18 July 2011, it replaces the overambitious Russian project KRT-25 (with

European participation), a 25m radiotelescope, planned to follow a variable orbit. Over its
7 year lifespan, this orbit was to become more and more eccentric: hp ≈ 5,000 km, ha from
20,000 to 150,000 km, i = 63◦.
115It later transpired that the first Solrad missions, from Solrad-1 to -7B, between 1960

and 1965, were primarily spy satellites (ELINT). To give the Solrad programme a more
scientific countenance, it was also referred to as GREB (Galactic Radiation Experimental
Background) or GRAB (Galactic Radiation And Background).
116Launch dates: TRACE on 1 April 1998; ACRIMSAT on 21 December 1999; Hinode on

20 September 2006; Picard on 15 June 2010.
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Astro-G
Orbit - ref.: Earth
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Fig. 9.42 :Elliptical orbit of the two Japanese satellites for spaceborne VLBI, repre-

sented in a terrestrial frame. Upper: Halca (Haruka), Lower: Astro-G.
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the French Picard (see the note on Picard), h = 725km. The Russian satel-
lites are in prograde near-polar orbits with h = 520km, i = 82.5◦, with117

Koronas-I, Koronas-F (AUOS-SM-KI and -KF), and Koronas-Foton.
With a different inclination, we find the Japanese satellite Solar-A (or

Yohkoh, “Sun”), launched in 1991, hp = 526km, ha = 795km, i = 31.3◦, and
the US satellite SORCE (Solar Radiation and Climate Experiment), launched
in 2003 on the orbit h = 641km, i = 40.0◦.

Two large projects have inspired a collaboration between the ESA and
NASA in this area: Ulysses and SOHO. The Ulysses probe, launched on 6
October 1990 by STS-41, set off first in the direction of Jupiter, to use it for
a gravity-assist maneuver and thereby leave the plane of the ecliptic. On 1
November 1994, it overflew the south pole of the Sun, and on 1 October 1995,
the north pole. The satellite SOHO (Solar and Heliospheric Observatory),
launched on 2 December 1995, went to Lagrange point L1 to acquire a halo
orbit. As well as its considerable contribution to our understanding of the
Sun, it also discovered a great many comets.

Several missions should use the stable Lagrange points. Japan is planning
its L5-Mission, which should monitor the Sun in order to provide a sort of
space weather forecast, the aim being to improve the safety of space activities.
The US mission called STEREO (Solar–Terrestrial Relation Observatory) in-
tended to place its two satellites at the Lagrange points L4 and L5, with
STEREO-Ahead at L4 and STEREO-Behind at L5, in order to carry out
a kind of 3D observation of the Sun. Finally, this option was dropped and
replaced by a heliocentric orbit with periods of 365 ± 20 days. Launched on
26 October 2006, STEREO-A precedes the Earth (Ahead) with a period of
345 day, while STEREO-B follows (Behind) with a period of 385 day.

The US satellite SDO (Solar Dynamics Observatory), launched in 2010,
follows a geosynchronous orbit with an inclination of i = 28.5◦ and with
ground track crossover at longitude λS = 110◦E.

Two further solar missions in the pipeline, Solar Orbiter for the ESA and
Solar Probe Plus for NASA, should be in heliocentric orbits like Ulysses.
Solar Orbiter will have variable apsides, with rp varying from 0.23 to 0.29 a.u.
(astronomical units) and ra varying from 0.75 to 1.20 a.u., and with inclination
(relative to the ecliptic) i = 25◦ going to i = 34◦ at the end of the mission,
following several Venus flybys. Solar Probe Plus (also written Solar Probe +),
following 7 Venus flybys between 2015 and 2021, will come very close to the

117Launch dates: Koronas-I on 2 March 1994; Koronas-F on 13 July 2001; Koronas-Foton
on 30 January 2009. The letters I and F stand for Izmiran and Firas, the names of those who
first conceived of these projects. Koronas-Foton is also called CORONAS-Photon (Complex
Orbital Observations Near-Earth of Activity of the Sun), with the obvious allusion to the
solar corona.
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Sun, with rp varying from 0.16 a.u. or 35RS (solar radii) to 0.04 a.u. or 9.5RS.
At this point, it will be moving at 200km/s (or 725,000km/h) and its surface
temperature will be 2000◦C.

Stellar Seismology and the Search for Exoplanets

Two satellites,118 each carrying a small telescope, have been designed to
study the seismology of stars. The Canadian satellite MOST (Microvariability
and Oscillations of Stars, jokingly nicknamed the Humble Space Telescope by
its developers), is in a Sun-synchronous orbit with h = 625 km, iHS = 98.7◦.
The French satellite CoRoT (Convection, Rotation et Transits planétaires) is
looking for planets in orbit around stars other than the Sun by detecting the
transit (when the planet passes in front of its star and thereby diminishes its
luminosity), as well as studying stellar seismology. It has a circular, strictly
polar orbit with h = 897 km (see Chap. 7).

The European project Eddington,119 which would study the internal struc-
ture of stars and seek to detect extra-solar planets, should have been placed
at the Lagrange point L2 on an L2LO orbit. However, in November 2003,
the ESA postponed the mission indefinitely. Another project, a forerunner of
Eddington and since abandoned, would have sent the satellite STARS to the
Lagrange point L5 of the Earth–Moon system.

The ESA has two concurrent projects with satellites at the point L2 :
PLATO (Planetary Transits and Oscillations of stars), which is an improved
CoRoT, and EChO (Exoplanet Characterisation Observatory), which would
analyse the atmospheres of transiting planets by spectroscopy (already known
planets).

The European mission Darwin120 will be devoted to astrobiology (also
known as exobiology, to remove all possible confusion with “astrology”), but

118Launch dates: MOST on 30 June 2003; CoRoT on 27 December 2006.
119Arthur Stanley Eddington (1882–1944) was a British astronomer and physicist. He did

much to promote the theory of relativity (see the note on Einstein), through the publication
of his book Space, Time and Gravitation first published in 1920 but still being reprinted. He
also laid the foundations for a new discipline, stellar dynamics, with The Internal Consti-
tution of the Stars (1926), in which he shows that a star is subject to two opposing effects:
it tends to contract under the effect of gravity, while the release of energy tends to push it
apart.
120Charles Darwin (1809–1882) was an English naturalist. From 1831 to 1836, he took

part in an expedition to South America (and in particular to the Galapagos islands) and
Oceanica aboard the HMS Beagle. As a geologist and botanist, he elaborated his theory of
evolution on the basis of notes taken and collections brought back from this expedition. He
concluded that the variability of the species is due to the effects of their environment and to
sudden variations. These variations are only favoured by natural selection if they give the
individual organism an advantage in its struggle for survival (subsistence and reproduction).
His famous book The Origin of Species was published in 1859. Darwin’s theory, supported
and developed by a great many intellectuals, was attacked without scientific argument by
the conservative-minded and religious classes. Here was another problem of divine order!
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Fig. 9.43 :Kepler: NASA’s first mission capable of finding Earth-size and smaller

planets around other stars, by the transit method of detecting extrasolar planets.

The Kepler instrument is a specially designed 0.95-meter diameter telescope (pho-

tometer). It has a very large field of view for an astronomical telescope (105 square

degrees). Artist’s view. Credit (image and caption): NASA.

it is a long-term project. The Darwin “flotilla”121 will also be in an L2LO
orbit.

The US satellite Kepler, launched on 7 March 2009, is in a heliocentric
orbit with a = 1.01319 a.u., e = 0.03188 and a period of T = 372.5 day. In
January 2013, the mission had located 2,740 candidate planets among which
around 60 have now been confirmed as exoplanets (see Figs. 9.43 and 16.45).

For an even finer search for exoplanets, the mission TPF (Terrestrial Planet
Finder), comprising a flotilla of satellites, is under study. Four telescopes in
orbit, grouped at a distance of about a kilometer from a central satellite,
thereby constitute a gigantic interferometer.

Space Exploration

Probes sent out to observe other planets in the Solar System or their moons
will be studied in Chaps. 15 and 16, together with comets and satellites in orbit
around these celestial bodies.

121The Darwin flotilla comprises six satellites in formation. They lie strictly in the same
plane and each is equipped with a telescope in such a way as to form an infrared interferom-
eter. One master satellite, a short distance from the others, oversees the satellite positions
and provides the link with the Earth. The aim is to detect planets orbiting other stars and
to spy out possible signatures of life beyond our own Solar System.
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9.2.10 Satellites for Fundamental Physics

The satellite Gravity Probe-B (GP-B), launched122 on 19 April 2004, has a
strictly polar LEO orbit, already mentioned in this chapter (see Fig. 9.6). The
aim of the mission is to measure, using gyroscopes, the extent to which space
and time are distorted by the presence of the Earth, within the framework of
the general theory of relativity.

The mission STE-QUEST (Space-Time Explorer and Quantum Equiva-
lence Principle Space Test), an ESA project, would investigate gravitational
redshift predictions of general relativity, including the gravitational redshifts
of the Earth and Sun, and carry out tests of the weak equivalence principle
and the universal propagation of matter waves. Ultra-precise clocks would by
carried on an elliptical orbit by the satellite (variation of the gravitational
field for altitudes varying between 1,000 and 50,000km). The orbit would be
recurrent, overflying dedicated ground stations (Boulder, Torino and Tokyo).
These novel orbits are shown in Figs. 9.44 and 9.45.

Two missions are being planned to provide experimental corroboration of
the equivalence principle.123 The French project μSCOPE (Micro-Satellite à
Compensation de trâınée pour l’Observation du Principe d’Equivalence), or
Microscope, is designed to check the universality of free fall. The satellite will
have a circular, Sun-synchronous LEO orbit at h ∼ 700km. Drag effects on the
satellite will be compensated by electric thrusters to ensure that the two test
masses carried aboard undergo perfect free-fall conditions over thousands of
kilometers (rather than just a few tens of meters, and without compensation
for air resistance, if one drops the objects from the leaning tower of Pisa).
The US satellite STEP (Satellite Test of the Equivalence Principle) will be

122The inception of this mission dates back to the beginnings of the space age. In 1959,
physicists at Stanford university suggested this experiment and it was accepted by NASA
in 1961. However, checking general relativity was not such an urgent matter as the race
to the Moon, and it was put on hold. Then there came other priorities in the form of the
planetary missions and the Space Shuttle.

The preliminary experiment GP-A took place in June 1976. It consisted in sending
a clock (a hydrogen maser) into space in a suborbital flight at an altitude of 10,000 km.
It succeeded in measuring a clock difference that bore out the predictions of Einstein’s
theory. During this time, dozens of theses were written at Stanford on this subject, but
GP-B was still being put off! Finally, in 1995, the mission was rescheduled with a more
definite timetable. Launched in 2004, the first certified results arrived in 2007, confirming
the theory.
123The equivalence principle postulated by Einstein is based on the observation that all

bodies, independently of their mass, have the same acceleration in a gravitational field for
identical initial conditions. This is the universal principle of free fall: the passive gravita-
tional mass of a body (m = mg in the expression for the gravitational force, involving G)
is equal to the inertial mass (m = mi in Newton’s second law):

F = GMmg/r
2 , F = mia .
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Fig. 9.44 :Elliptical orbit of STE-QUEST. Upper: Galilean frame. Lower: Terrestrial

frame. Perigee above Torino (T).
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Fig. 9.45 :Representation of the elliptical orbit of the satellite STE-QUEST in a ter-

restrial frame, showing the three receiving stations. Upper: Ground track. Lower:

Ground track of the orbit at an altitude below 5,000 km.
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much bigger, with cooled instruments to increase measurement accuracy.124

It will also follow a circular, Sun-synchronous LEO orbit, at h = 550km.
The European project GAUGE (General relativity and Unification of Gravity
Explorer) is planned for the same type of orbit.

The joint ESA–NASA project LISA (Laser Interferometer Space Antenna)
will attempt to detect gravitational waves using three satellites in formation
on a heliocentric orbit.125

9.2.11 Technological Satellites

This is the category of satellites whose mission it is to assist in various
kinds of technological development. The very first satellites fit well in this
class. Technological satellites are used to test instruments, orbital maneuvers,
communication techniques, and reentry methods. They are also used to test
the design of electric or ion propulsion motors.

The satellite DODGE (Department Of Defense Gravity Experiment), h =
33,400km, i = 12◦, was sent into space in 1967 to further the development of
geostationary satellites, although the first of these had already been launched
some years previously. A camera aboard this satellite took the very first colour
pictures of the Earth’s disk.

The military satellite ARGOS (Advanced Research Global Observation
Satellite, or P91-1) was launched into a Sun-synchronous LEO orbit in 1999
to test electric propulsion systems and detect X rays.

To study the effect of radiation on various types of equipment, several small
technological satellites have been placed in highly elliptical orbits. These are
in fact the geostationary transfer orbits (GTO) of the main satellites with
which they were launched (see Fig. 9.16 lower). Such GTO orbits expose the
satellites to an extremely testing environment, since they cross the Van Allen
radiation belts on each revolution. With this mission, we find the British
microsatellites STRV (Space Technology Research Vehicle), STRV-1A and -
1B, launched in 1994 as passengers with Intelsat-702, and STRV-1C and -1D
in 2000, passengers with PAS-1R (PanAmSat-1R), whose orbital elements,
initially those of the GTO orbit, viz., hp = 300 km, ha = 36,000km, i = 7◦,
subsequently evolved (see Fig. 9.9).

This category also covers calibration satellites, such as Radcal, with h ≈
800km, i = 89.5◦, for radar calibrations, Reflektor, launched with Meteor-
3M-1, for laser calibrations, and the twelve nanosatellites (a few kilogram)

124The relation mg/mi = 1 has been checked on Earth to an accuracy of 10−12. The
�SCOPE experiment aims to achieve 10−14 and STEP 10−17. Research on the STEP
accelerometers began at Stanford university as early as 1971.
125The three satellites will be placed at the corners of an equilateral triangle with side

5 million kilometers. The center of the triangle will lie in the plane of the ecliptic, on the
same heliocentric orbit as the Earth, but 20 days behind, i.e., 50 million kilometers away.
The plane of the triangle will be slightly inclined to the plane of the ecliptic. The three
satellites, linked by laser, will constitute a gigantic Michelson interferometer.
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launched by STS-60 and -63, Oderacs-A to -F, and Oderacs-2A to -2F (Orbital
Debris Radar Calibration Sphere), to calibrate spacecraft debris.

One type of experiment, called a tether experiment, involves connecting
the satellite to a secondary body once it is already in orbit, using cables of
different lengths. These cables may or may not be conducting. The first tests
were carried out on the manned flights Gemini-11 and -12 (with a cable of
30m). Also worth mentioning, launched into LEO orbit between 1993 and
1996, are the satellites SEDS-1 then -2 (Small Expendable Deployer System),
with a cable 20 km long, and TiPS (Tether Physics and Survivability), with
a 4 km cable. The orbit of the TiPS central satellite had the characteristics
h = 1,022km, i = 63.4◦, e = 0.000.

In the United States, the universities carry out missions with small tech-
nological satellites, such as SNOE (Student Nitric Oxide Explorer, STEDI-1,
Explorer-72) or TERRIERS (STEDI-2, Explorer-76). In Europe, this policy
is mainly applied in the United Kingdom, with UoSAT (University of Sur-
rey Satellites), and in Germany, with Tubsat (Technische Universität Berlin
Satellites). These satellites, which can generally be subsumed under the head-
ing of technological satellites, are almost always placed in Sun-synchronous
orbits as passengers. The Russian remote-sensing satellites Kanopus-V-1 and
-2 are modelled on UoSAT.

In this category, we may also include satellites with biology missions. The
satellite Sputnik-2 carried a female dog by the name of Laika into space. Ani-
mals were sent in the Russian Bion satellites to study the effects of radiation.
For example, in 1996, two monkeys flew in Bion-11, h = 300 km, i = 63◦,
and in 2013, Bion-M1, the Zoo-spacecraft, carried a host of mice and newts,
h = 575 km, i = 64.9◦. We may also mention the US LEO satellite OFO-1
(Orbital Frog Otolith), launched in 1970, occupied by two toads. The aim was
to study their inner ear, seat of the vestibular organ (balance system). The
Chinese satellite Shi Jian-8 (SJ-8, DFH-68), launched in 2006, hp = 178km,
ha = 428km, i = 63.0◦, was subsequently recovered with its payload of plants
and toadstools.

9.2.12 Satellites with Specific Military Missions

Many programmes have been developed by the military and civilian sec-
tors, either jointly or in parallel, with similar areas of interest, such as remote-
sensing, surveillance, and communications. However, certain programmes are
specifically military, such as the detection of nuclear explosions. Here is a brief
review.

Early Warning

These satellites are designed to detect enemy missiles as soon as possible
during or after their launch. In the United States, the first programme was
Midas (Missile Defense Alarm System), with near-polar LEO satellites, h ∼
3,000km, from Midas-3 in 1962 to Midas-12 in 1966. Satellites in the following
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programme, IMEWS (Integrated Missile Early Warning Satellites), extended
by DSP (Defense Support Program), have been geostationary, i ≈ 0◦, from
IMEWS-2 in 1971 to the current DSP missions. We know only that these
are extremely heavy satellites carrying a multitude of sensors, mainly in the
infrared. The last few launched were DSP-F-21 (USA-159) in 2001, DSP-F-22
(USA-176) in 2004, and DSP-F-23 (USA-197) in 2007.

The frequently modified NMD project (National Missile Defense) is based
in the SBIRS satellites (Space Based IR System). As soon as a missile is fired,
it is detected by SBIRS-High (a system126 of four GEO satellites and two
HEO satellites). The missile is then tracked by SBIRS-Low (a constellation
of 24 satellites in six orbital planes). The first two SBIRS-Low satellites were
launched together on a circular orbit with h = 1,350 km and i = 58◦ on
25 September 2009, under the names of STSS-1 and -2 (Space Tracking and
Surveillance System, USA-208 and -209). The satellite NFIRE (Near Field
Infrared Experiment), launched in 2007, is on a low, slightly inclined orbit,
with hp = 255 km, ha = 464 km, i = 48.2◦.

The Soviet programme SPRN is equivalent to IMEWS, with a fleet of
GEO satellites127 from the Oko series (“eye”), either on a GEO orbit for
Oko-US-KMO, or on an HEO orbit of Molniya type for Oko-US-K.

Nuclear Surveillance

In August 1963, leaders from the USSR, the USA, and Great Britain met
in Moscow to sign a treaty forbidding nuclear testing in the atmosphere. To
enforce this resolution, the different world powers launched satellites that
could detect explosions of this kind through the gamma-ray emissions they
generate.

The US satellites Vela had novel circular orbits, at very high altitudes
h ≈ 110,000km, and inclinations varying between 34◦ and 61◦ (see Fig. 9.37
upper). They were launched in pairs, in diametrically opposed directions with
respect to the center of the Earth, from Vela-1 and -2 in 1963 to Vela-11 and
-12 in 1970, and remained operational until 1984. (“Vela” means “lookout”
in Spanish. These satellites were also called Watchdogs or Vela Hotel.) They
fulfilled a scientific mission that had not been planned at all at the outset: be-
tween 1969 and 1979, the satellites Vela-9 and -10 (OPS/6909 and OPS/6911)
and Vela-11 and -12 (OPS/7033 and OPS/7044) mapped gamma-ray sources
in space. Following the initial surprise and consternation (who was attack-
ing whom?), it transpired that they had discovered what have since become
known as gamma-ray bursts (GRB).

126SBIRS-GEO: SBIRS-GEO-1 (USA-230) launched on 7 May 2011; SBIRS-GEO-2 (USA-
241) launched on 19 March 2013. SBIRS-HEO: see below, Trumpet-FO satellites.
127GEO orbit: 11 satellites from Oko-US-KMO-1 (Kosmos-1960) in 1988 to Oko-US-KMO-

11 (Kosmos-2440) in 2008. HEO (Molniya) orbit: 83 satellites (86 launched, 3 failures) from
Oko-US-K-1 (Kosmos-520) in 1972 to Oko-US-K-85 (Kosmos-2446) in 2008 and Oko-US-
K-86 (Kosmos-2469) in 2010.
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Destruction of Satellites: Star Wars

It is of little interest in such a book as this to dwell upon satellite destruc-
tion programmes, like ASAT (Air-Launched Anti-Satellite Missile), FOBS
(Fractional Orbital Bombardment System), or what is popularly referred to
as “star wars”, i.e., the US programme SDI (Space Defense Initiative), since
abandoned.

Most space nations have protested about (successful) satellite destruction
tests, owing to the vast amount of debris they have generated.128

Intelligence

Satellite interception of all kinds of electronic signal is considered to be
of great importance by the military. This is SIGINT (signal intelligence),
covering ELINT (electronic intelligence), the surveillance of communications,
and IMINT (image intelligence), photographic surveillance. The US–British
(and Commonwealth) project Echelon uses many ground stations and orbiting
satellites.

The US SIGINT missions began with the GREB (or GRAB) and Ferret
series129 (starting in 1962 with Ferret-2), on LEO orbits. The whole range of
orbit types was subsequently put to use for these activities. Each programme
lasted for roughly a decade. At the present time, many of these satellites
are launched on behalf of the NRO (United States National Reconnaissance
Office).

We note the following programmes, from the second generation in the
1970s to the fifth in the 2000s:

• LEO: SSF (Subsatellite Ferrets), NOSS (Navy Ocean Surveillance Satel-
lite), also known as White Cloud, and NOSS-Sub-sats (satellites in forma-
tion); satellites of the SBSS programme (Space-Based Space Surveillance),
in Sun-synchronous orbits at h = 630km, current series130 and satellites131

of the NRO.

128On 11 January 2007, China carried out a test by launching a missile from the Xichang
space center in the province of Sichuan. The target was the defunct weather satellite FY-1C,
at an altitude of 853 km. Thousands of pieces of debris were thereby created and continued
in orbit for months or years, depending on their dimensions. On 21 February 2008, the
United States announced that their satellite USA-193 had been successfully intercepted
at an altitude of 310 km by a missile launched by USS Lake Erie, anchored near Hawaii.
Given the low altitude of this satellite, all the debris is considered to have burnt up in the
atmosphere within 90 days.
129The word “ferret” comes from the French “furet”, which itself comes from Latin as a

diminutive of fur, furis, meaning “thief”. The word “furtive” belongs to the group of words
with this root, so it is perhaps well suited to a spy satellite.
130First launch: SBSS-1 (USA-216) on 21 September 2010. The motto of the SBSS mission,

namely, vidi, scio, patrocinor (to see, to know, to protect), is clear enough. Its objective is
to detect any object measuring more than one meter in orbit.
131Launch dates: NROL-66 (USA-225), also called RPP (Rapid Pathfinder Program) on

6 February 2011; NROL-34 (USA-229) on 15 April 2011. NROL means NRO launch.
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• HEO: Jumpseat (from 1971 to 1983), Trumpet132 (from 1994 to 1997),
Prowler133 (or Trumpet FO, currently operating).

• GEO: Canyon (from 1968 to 1977), Rhyolite/Aquacade (from 1970 to
1978), Chalet/Vortex (from 1978 to 1981), Magnum/Orion (from 1985 to
1989); Mercury134 (from 1994 to 1998), Mentor or Advanced Orion (from
1995 to 2003), and Intruder135 (currently operating).

Among the GEO satellites, one should distinguish those in a true geosta-
tionary orbit from those like Canyon and Chalet/Vortex that are in geosyn-
chronous orbits,136 but elliptical and inclined at about 8◦, which makes it
easier to locate the radars by triangulation.

There have been similar Soviet then Russian programmes, beginning in
1970 with Kosmos-389. The Tselina programme, in LEO orbit, is the equiv-
alent of NOSS, with i = 82.6◦ for the Tselina-D series and i = 71.0◦ for the
more recent Tselina-2 series.

9.2.13 Manned Satellites

We give here a few dates marking out the history of manned spaceflight,
i.e., satellites in orbit with humans aboard: Vostok-1 (“Orient” in Russian),
launched on 12 April 1961, for the first man in orbit (one revolution) and
Apollo-11, launched on 16 July 1969, for the first steps on the Moon.

The idea of an orbital space station was first put into practice with the
Soviet Salyut (“salvation”), from 1971 to 1986, followed by Mir (mir means
both “world” and “peace” in Russian), from 1986 to 2000, on a near-circular
orbit with h ∼ 300 km, i = 51.6◦. The USA used Skylab in 1973, on an
equivalent orbit, h ∼ 400km, i = 50.0◦. They then began to develop the

132The three satellites of the series Trumpet-1 (USA-103), Trumpet-2 (USA-112), and
Trumpet-3 (USA-136) are in Molniya orbit with apogee over Russia. Their antennas have
diameters of several tens of meters, and apparently between 100 and 150m, for Trumpet-3.
The data are gathered by the SDS satellites, also in Molniya orbit.
133Launch dates for the series Trumpet Follow-On: Trumpet-FO-1 (USA-184, NROL-22,

SBIRS-HEO-1) on 28 June 2006; Trumpet-FO-2 (USA-200, NROL-28, SBIRS-HEO-2) on
13 March 2008.
134Mercury-1 (USA-105 or Jeroboam) and Mercury-2 (USA-118). This programme is some-

times called Mercury Advanced Vortex to distinguish it from the Mercury programme of
manned flights.
135The three first satellites launched were Mentor-1 (USA-110) in 1995, Mentor-2 (USA-

139, NROL-6) in 1998, and Mentor-3 (USA-171, NROL-19 or Homer) in 2003. These were
followed by Mentor-4 (USA-202, NROL-26), the first of the Intruder series, also called IOSA
(Integrated Overhead SIGINT Architecture, or Intruder-1), launched on 17 January 2009.
According to Aviation Week, this is the largest, the most secret, and the most expensive
US military satellite. Including the launch, it is said to have cost over two billion dollars.
However, this record was soon beaten by the following, Mentor-5 (USA-223, NROL-32),
launched on 11 November 2010.
136Geosynchronous orbit hp = 30,500 km, ha = 41,000 km, i = 7–9◦, for the seven Canyon

satellites, from Canyon-1 (OPS/2222) in 1968 to Canyon-7 (OPS/9751) in 1977, and the six
Vortex satellites, from Vortex-1 (OPS/9454 or Chalet-1) to Vortex-6 (USA-37 or Chalet-6).
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ISS (International Space Station), from 1998, in collaboration with Russia
and other nations. The orbit is circular, with h between 355 and 400 km and
i = 51.6◦.

The space shuttle idea is based on the possibility of a reusable spacecraft,
a satellite that becomes an aircraft in the landing stage. The five American
Space Shuttles were Columbia (1981–2003), Challenger (1983–1986), Discov-
ery (from 1984), Atlantis (from 1985), and Endeavour (from 1992). These
flights are denoted by137 STS (Space Transportation System). The STS pro-
gramme ended138 in 2011. All in all there were 135 shuttle flights, including
133 successes and 2 failures with Challenger STS-25 (STS-51-L) and Columbia
STS-107.

The shuttle had two configurations: a payload of 24.4 tonnes for a low
orbit, h = 204km, i = 28.5◦, and a payload of 12.5 tonnes for a higher orbit,
h = 407km, i = 51.6◦. It was the latter configuration that was used for
rendezvous with the ISS. For maintenance of Hubble, the shuttle went into
a higher orbit. A great many satellites were placed in orbit by the shuttle.
Once in orbit, the satellite left the cargo bay of the shuttle and moved to
its destination under its own power (a nearby orbit, either geostationary or
heliocentric).

9.2.14 Non-Scientific Satellites

The American organisation Celestrak, which records and classifies satel-
lites into different categories, created a section entitled Other under the head-
ing Miscellaneous Satellites. It is interesting to cast an eye over these unclas-
sifiable objets.

For example, the sole aim of the Celestis satellites is to send the ashes
of certain Earthlings into orbit.139 Another remarkable oddity is the only

137From the first Columbia flight on 12 April 1981, STS-1, up to the end of 1983, with STS-
9, flights were numbered sequentially, but from 1984, their number included the fiscal year,
the point of launch, and a letter indicating the order for that year: STS-10 thus becomes
STS-41-B. Following the Challenger disaster, STS-51-L, which was the 25th shuttle flight
(STS-25), NASA decided to return to the system of numbering by scheduling order (which
is not necessarily the same as launch order).
138Last flights in 2011 were Discovery (STS-133), Endeavour (STS-134), and Atlantis

(STS-135).
139Other organisations classify these as burial satellites. Without wishing to carry out

unnecessary advertising for the Celestis company, we may quote the following sales in-
formation: “Celestis offers to launch a symbolic portion of the cremated remains of the
individuals into space”. Business is clearly booming: several satellites have been placed in
orbit since 1997, not to mention a lunar impact with Lunar-01 (in fact, a capsule carried
by Lunar Prospector) in 1998, following the same idea. There is a project to send such
spacecraft into deep space and out of the Solar System. The first three satellites, Celestis-1
to -3, had very different orbits, because they were launched as passengers with much bigger
missions. Of the following, Celestis-4 and Celestis-7, burnt up in space due to launch failure
(grouped with OrbView-4 and QuikTOMS for the first, and Trailblazer for the second).
So these were certainly the first examples of satellites in which the payload was in no way
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Turkmen satellite TMC, which attests to the greatness of Turkmenistan and
its president for life by its entirely passive presence.140

Other equally fascinating initiatives abound, but private financing is gen-
erally hesitant. Let us mention two projects that have not yet been completely
finalised: KEO, which will remain in orbit for thousands of years (because at
an altitude of 1,800km or indeed in a GTO orbit) and will carry some items
with which to remember mankind (blood, DNA, maps of the world, various
messages and sundry other paraphernalia); and CiS (Cross in Space), a cap-
sule containing a cross and the bible on microfilm.

9.3 Appendix: Delays in Scheduling Space

Missions

There is an important issue that cannot be ignored when one considers
space missions, namely, rescheduling and delayed launch. Such delays gener-
ally have no other consequence than shifting the mission back in time.141 In
some cases, however, it can lead to a change in the orbit, as we shall see with
EarthCARE in Chap. 11. The reasons for delays are various (launch vehicles,
instruments, etc.) and justifiable, but the consequences are there: missions
never correspond to their original schedule! Space missions provide an ex-
cellent illustration of Hofstadter’s law.142 Space agencies maintain a certain
artful vagueness when it comes to their schedules.

When a mission involves several satellites over a long period, governmental
organisations have been known to make drastic changes. This is what hap-
pened in May 2010, when the US Congress decided to modify the NPOESS
programme by transforming it into JPSS. Congress based its decision on a
report by the United States Government Accountability Office (GAO), which
shows the evolution of the cost forecast from 7.00 in August 2002 to 14.95 in
June 2009, where the units are of course billions of dollars. This report clearly
describes the planned launch date as a function of the date at which the fore-
cast was made. The data is plotted in Fig. 9.46 for the three first satellites of
the programme: NPP, C1, and C2 (the names of the satellites NPOESS-1 and

deteriorated by the explosion! Note that, between 2000 and 2007, these satellites were also
given the names EarthView-01, -02, -03, and -04, respectively, which might cause some
surprise in a remote-sensing bibliography.
140Launched with OICETS by a Russian rocket, TMC (Turkmenistan Memorial Capsule)

encloses the country’s flag and a book with the title Rukhnama, a historical and philosoph-
ical work written by Saparmurat Niyazov, president of Turkmenistan for life.
141For missions to other planets, Kepler’s laws impose strict windows for launch dates.

No delay was possible for Voyager-1 and -2, . . . , Cassini, and New Horizons. In the case of
Rosetta, a delay of several months forced the ESA to change the target comet.
142The author of Gödel, Escher, Bach: An Eternal Golden Braid pronounced the following

law which carries his name: “It always takes longer than you expect, even when you take
into account Hofstadter’s Law”.
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Fig. 9.46 :Planned launch

date against date decision

was taken for the three

first satellites of the new

American meteorological

programme JPSS (a joint

project of NASA, the NOAA,

and the DoD): NPP, JPSS-1

(denoted by C1), and JPSS-2

(denoted by C2). From a

document published by the

Government Accountability

Office of the US Congress.

-2 became JPSS-1 and -2, respectively, and are denoted by C1 and C2 in the
report). It is extremely rare to be able to establish such a precise time chart
on the basis of official documents.

Since the GAO report, things have become still more complicated! The
military have decided to go it alone, leaving the JPSS to set up the DWSS.
To be continued.



Chapter 10

Orbit Relative to the Sun:

Crossing Times and Eclipse

We begin by studying the position of the orbital plane of an arbitrary
satellite relative to the direction of the Sun, focusing on the notion of cross-
ing time. We then turn more specifically to Sun-synchronous satellites for
which this relative position provides the very definition of their orbit. We end
the chapter with a more theoretical question, calculating the angle between
the direction of the Sun and the plane of the orbit, and this will lead us to
the study of solar eclipses, when the satellite is in the Earth’s shadow.

10.1 Cycle with Respect to the Sun

10.1.1 Crossing Time

At a given time, it is useful to know the local time on the ground track,
i.e., the local mean time (LMT), deduced in a straightforward manner from
the UT once the longitude of the place is given, using (7.59). The LMT on
the ground track at this given time is called the crossing time or local crossing
time. To obtain the local apparent time (LAT), one must know the day of the
year to specify the equation of time ET. In all matters involving the position
of the Sun (elevation and azimuth) relative to a local frame, this is the time
that should be used. The ground track of the satellite can be represented by
giving the crossing time. We have chosen to represent the LMT in colour with
the Ixion software.

For Sun-synchronous satellites like Suomi-NPP or SPOT-6, Figs. 10.2
and 10.4 show that the crossing time depends only on the latitude. For
the HEO orbit of the satellite Ellipso Borealis, the stability of the crossing

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 10,
© Springer International Publishing Switzerland 2014
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Fig. 10.1 :Position of the line of nodes in the geocentric frame 
 (O; x, y, z) at two

times t0 and t1, where C is the center of the Sun, O is the center of the Earth, and

Oxy lies in the equatorial plane. The ascending node is denoted by N .

time also shows up very clearly in Figs. 10.6 (lower) and 10.7. For non-Sun-
synchronous satellites like Meteor-3-07 or Jason-2, the time difference shows
up through a shift in the time from one revolution to the next, as can be
seen from Figs. 10.3 and 10.5. For a low-inclination satellite such as Megha-
Tropiques, we note certain specific configurations, illustrated by Figs. 10.10
and 10.11. If the ascending node crossing occurs at 06:00, the northern hemi-
sphere will be viewed during the day, and the southern hemisphere during the
night. After a few days, the crossing time at the equator will have changed.
An example is given in Fig. 10.6 (upper) for the satellite Loopus in a highly
eccentric orbit.

10.1.2 Calculating the Cycle CS

We consider the orbit of the Earth around the Sun, treating it as cir-
cular, since in this calculation of the cycle, we identify LAT and LMT. In
Fig. 10.1, the center of the Sun, and of the Earth’s orbit, is denoted by C,
while the center of the Earth is O. The ascending node of a satellite in orbit
around the Earth is denoted by N . The dihedral angle between the meridian
plane of the Earth containing N and the plane containing C gives H , the
hour angle of the ascending node. This angle is represented in Fig. 10.1 by
H = (OC,ON ).

At time t = t0, the hour angle of N is H(t0) = H0. At another time t = t1,
the plane of the satellite orbit will have changed due to the phenomenon of
nodal precession by an angle Ω relative to the frame �. The hour angle N is
then given by

H(t1) = H1 = H0 +Ω − α ,
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where α is the angle through which the Sun–Earth direction has changed as
the Earth moves on its orbit around the Sun, viz.,

α = [CO(t0),CO(t1)] .

This angle α is equal to the difference in ecliptic longitude l of the Sun at the
two given times. Hence,

ΔH = H1 −H0 = Ω − α ,

which represents the motion of the direction of the line of nodes with the
direction of the Sun.

Setting Δt = t1 − t0 for the time interval, the angles can be expressed in
terms of the angular speeds:

Ω = Ω̇Δt , α = Ω̇SΔt ,

whence

ΔH = (Ω̇ − Ω̇S)Δt . (10.1)

The time interval ΔtS needed for the hour angle of the ascending node to vary
by 24 h, or one round trip, is called the cycle relative to the Sun. Hence,

H(t+ΔtS) = H(t) [mod 2π] ,

which implies that

ΔtS =
2π

Ω̇ − Ω̇S

.

Bringing in the nodal precession rate P in round trips per year as defined by
(7.40) and (7.38), ΔtS becomes

ΔtS = −DM

N ′
yr

1− P
.

The cycle relative to the Sun is usually given in days and we shall denote it
by CS (C for cycle and S for Sun). Since ΔtS is expressed in SI units, i.e., in
seconds, we obtain CS from the very simple expression

CS =
Ntro

P − 1
. (10.2)

The symbols N ′
yr and Ntro are explained in Chap. 7.

The quantity P can be expressed in terms of the constant kh defined
by (7.98). This rate P is given by

P = −kh

(
R

a

)7/2

cos i . (10.3)
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One can check that, for a Sun-synchronous satellite, one does indeed have
P = 1.

In this way we obtain the cycle relative to the Sun as a function of the
orbital characteristics, taking care to note the signs:

CS = CS(a, i) = − Ntro

kh(R/a)7/2 cos i + 1
, (10.4)

or with approximate numerical values (CS in days),

CS = − 365.25

10.11(R/a)7/2 cos i+ 1
. (10.5)

The cycle relative to the Sun CS = CS(a, i), is a very important characteristic
of any satellite (Figs. 10.2, 10.3, 10.4, 10.5, 10.6, and 10.7).

10.1.3 Cycle CS and Orbital Characteristics

Cycle CS as a Function of Altitude and Inclination

The cycle CS is a function of a and i. Figure 10.8 shows the variation
CS(i) for a fixed value of the altitude, viz., h = 700km. The cycle CS(i) is
given in days, with the sign indicating the direction of rotation. We have also
plotted the nodal precession rate P (i) in rev/yr, which is a sinusoidal curve,
and P −1 which determines the vertical asymptote of CS(i) by its intersection
with the horizontal axis through the origin. This value of i corresponds to the
inclination of the Sun-synchronous circular orbit for this altitude.

For the altitude represented here, typical of LEO satellites, we see that
the cycle remains in the vicinity of 2 months (CS ∼ −60 day) for inclinations
below 45◦. When i increases, the length of the cycle also increases. Above
the Sun-synchronous inclination, the cycle decreases (but there are very few
satellites in this configuration).

Specific Cases of the Cycle CS

We note here certain specific values of the cycle CS for different orbits:

• Polar Satellites. We see immediately from (10.4) or (10.5) that, if the
satellite is strictly polar, CS = −365.25 day. The cycle is thus annual. One
year goes by before we return to the same orbital configuration relative to
the Sun, since the plane of the orbit does not rotate with respect to �. The
negative value of CS shows that the line of nodes moves in the retrograde
direction relative to �T.

• Sun-Synchronous Satellites. Equation (10.2) shows that, if Ω̇ = Ω̇S,
the cycle is infinite. This happens for Sun-synchronous satellites and we
may indeed treat CS as infinite, since after a very great number of days,
the angleH will not have changed. For Sun-synchronous satellites, the hour
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angle of the ascending node, and hence the crossing time1 of the satellite
at the ascending node, is constant. For a given altitude, the cycle CS is
negative provided that i is less than the Sun-synchronous inclination given
by (7.105). Beyond this value, CS is positive.

• Shortest Cycle. The smallest value for the cycle is given by the minimum
of |CS(a, i)|. According to (10.5), it is obtained for i = 0 and a = R, and
the value is

|CS|min =
Ntro

kh + 1
=

365.25

11.11
= 32.9 day . (10.6)

The cycle relative to the Sun CS can therefore never be less than 33 days.

Nodal Precession and Cycle CS

In order to visualise the nodal precession and bring out the significance
of the cycle CS, let us return to the graph in Fig. 10.1 and apply it to a few
satellites in Example 10.2.

Example 10.1 Calculate the cycle relative to the Sun for the satellites Meteor-
3-07, Jason-2, ICESat, ERBS and UARS, and TRMM and Megha-Tropiques.

� These satellites have near-circular orbits. For Meteor-3-07, we have h =
1,194km and i = 82.56◦. Using (10.5), we obtain

CS = − 365.25

10.11 (6378/7572)
7/2

cos(82.56) + 1
= − 365.25

10.11× 0.5477× 0.1295 + 1

= − 365.25

0.7169 + 1
= −365.25

1.7169
= −212.73 ,

which gives a cycle of 213 days (advance of crossing time).
For TOPEX/Poseidon, Jason-1 and -2, with h = 1,336 km and i = 66.04◦,

we obtain P = −2.107, which gives a cycle CS = −117.47, or 117 days (ad-
vance of crossing time).

The satellite ICESat flies at low altitude, h = 592 km, with inclination i =
94◦ between the polar inclination, for which the cycle is 1 year (CS = −365.25),
and the Sun-synchronous inclination iHS = 97.8◦ at this altitude, for which
the cycle is infinite. The calculation gives P = 0.515, whence CS = −752.7,
which corresponds to a very long cycle, more than 2 years.

1The time related to the hour angle is LAT. A Sun-synchronous satellite crosses the
ascending node at the same LMT. If there is no difference between LAT and LMT here, it
is because we have used a simplified scenario for the Earth orbit. However, for the calculation
of the cycle CS, this could not be otherwise: we only want to know how many days it will
be before the next crossing (to within a few minutes), whatever time of year it is. To treat
an elliptical Earth orbit, we would have to specify the day we choose to begin the cycle.
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Fig. 10.2 :Ground track and crossing time for the Sun-synchronous satellite Suomi-

NPP, over 5 days (12 consecutive hours per day).
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Fig. 10.3 :Ground track and crossing time for the non-Sun-synchronous satellite

Meteor-3-07, over 9 days (12 consecutive hours per day).
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Fig. 10.4 :Ground track and crossing time for the Sun-synchronous satellite SPOT-6,

over 7 days (12 consecutive hours per day).
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Fig. 10.5 :Ground track and crossing time for the non-Sun-synchronous satellite

Jason-2, over 10 days (12 consecutive hours per day).
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LoopusLoopus
Elliptical orbit - Gr. track

Recurrence = [ 2; -1;  3]   5

>>>>   Time span shown:  4320.0 min =   3.00 days
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24LMT (local) hours

Equiv. altit.  =  23613.3 km

e = 0.600000

a =29991.445 km

CRITICAL Inclin. =  63.43 °

Period =   861.53 min    * rev/day = 1.67

h_a =  41608 km;  h_p = 5618 km;  arg. perigee:  +270.00 °

Longitude / Initialisation:

Asc. Node:      2.61 ° [12:00 LMT]

Apogee   :      0.00 °

Projection:  Mercator

Property:  Conformal

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;   72.0 ° W

Aspect:  Direct

{4.2} [ +90.0/  +0.0/ -18.0] [-]    EIGEN-C3

Ellipso Borealis
Orbit - ref.: Earth

>>>>   Time span shown:  5760.0 min =   4.00 days

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24LMT (local) hours

Equiv. altit.  =   4094.1 km

e = 0.326603

a =10472.196 km

Incl/SUN-S.&CRIT.= 116.58 °

Period =   177.78 min    * rev/day = 8.10

h_a =   7514 km;  h_p =  674 km;  arg. perigee:  +270.00 °

Longitude / Initialisation:

Asc. Node:   -180.00 ° [12:00 LMT]

Apogee   :     74.31 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 26.0 ° N;   33.0 ° W

Aspect:  Oblique

{4.2} [ -90.0/ +64.0/+123.0] [ -10] EGM2008

MC LMD

MC LMD

Fig. 10.6 :Orbits and crossing times for two satellites in eccentric orbits with criti-

cal inclination. Upper: Loopus satellite project. Prograde and non-Sun-synchronous,

over 3 days. Lower: Ellipso Borealis satellite project. Retrograde and Sun-

synchronous, with τAN =12:00.
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Fig. 10.7 :Orbit and crossing time for the Sun-synchronous satellite Ellipso Borealis,

over 4 days. Same caption as for Fig. 10.6 (lower) except that the ascending node

crossing time is τAN = 18:00 LMT.

The satellites ERBS and UARS, both launched by the Space Shuttle, have
the same inclination and the same altitude to within a few kilometers. The
calculation gives P = −3.986, whence CS = −73.2, for ERBS, and P =
−4.090, whence CS = −72.0, for UARS. One often reads for these satellites
that their cycle relative to the Sun is 36 days. There is thus confusion here
between cycle and half-cycle. If on a given day the ascending node crossing
occurs at noon, then 36 days later it is the descending node crossing that will
occur at noon.

For low-inclination satellites on the equator, like TRMM and Megha-
Tropiques, the cycle is short because the factor cos i is close to unity. For
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Fig. 10.8 :Variation of the cycle CS relative to the Sun as a function of the inclination

for a satellite at altitude h = 700 km. The cycle CS is given in days on the left

ordinate, and the nodal precession rate P is given in rev/yr on the right ordinate.

TRMM, P = −6.894, CS = −46.3 when h = 350km, P = −6.710,CS = −47.4
when h = 402km. For Megha-Tropiques, P = −6.115, CS = −51.3. For these
satellites, the ascending node crossing moves forward half an hour every day. �

Example 10.2 Visualising the cycle CS for various satellites in prograde, po-
lar, retrograde, and Sun-synchronous orbits.

� Figure 10.9 shows the position of the Earth on its orbit around the Sun
and the position of the nodes (ascending in black, descending in white) of the
satellite orbit. LMT and LAT are not distinguished on the graph.

For the two Sun-synchronous satellites, Radarsat-2 and Terra, it is clear
that the shift of the orbital plane compensates the Earth’s annual motion. For
Radarsat-2, the normal to the orbit lies in the meridian plane passing through
the Sun.

For a strictly polar satellite, the orbital plane is fixed in �. For the satellite
CoRoT, which has this inertial orbit, stars are observed perpendicularly to
the orbit, 6 months in one direction, and 6 months in the opposite direction,
in such a way as to avoid viewing the Sun.

We may also consider several retrograde (negative) cycles, one very short
for TRMM with its prograde orbit and one very long for LAGEOS-1 with its
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Time interval:
24 days

Radarsat-2

Cs: infinitySun-synchronous Satellite

Time interval:
16 days

Terra

Cs: infinitySun-synchronous Satellite

Time interval:
15 days

CoRoT

Cs = -365.2

Time interval:
15 days

TRMM

Cs =  -47.4

Time interval:
15 days

LAGEOS-1

Cs = -560.1

Time interval:
18 days

Ofeq-5

Cs =  +72.0

Fig. 10.9 :Cycle relative to the Sun for various satellites. The time given is the cross-

ing time at the first ascending node.
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Megha-Tropiques
Orbit - Ground track

Recurrence = [14; -1;  7]  97

>>>>   Time span shown:  4320.0 min =   3.00 days
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24LMT (local) hours

Altitude =  865.5 km a = 7243.677 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

Asc. Node:   -105.00 ° [00:00 LMT]

App. inclin. =  21.52 °

Projection:  Raisz Armadillo

Property:   none

T.:(various) - Graticule: 10°

P.C.:   0.0 °  ; 75.0 °E / 28.1 ° N; 75.0 °E

Aspect:  Direct

{4.2} [ +90.0/  +0.0/-165.0] [-]    EIGEN6C2

Megha-Tropiques
Orbit - Ground track

Recurrence = [14; -1;  7]  97

>>>>   Time span shown:  4320.0 min =   3.00 days
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24LMT (local) hours

Altitude =  865.5 km a = 7243.677 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

Asc. Node:   -105.00 ° [06:00 LMT]

App. inclin. =  21.52 °

Projection:  Raisz Armadillo

Property:   none

T.:(various) - Graticule: 10°

P.C.:   0.0 °  ; 75.0 °E / 28.1 ° N; 75.0 °E

Aspect:  Direct

{4.2} [ +90.0/  +0.0/-165.0] [-]    EIGEN6C2

MC LMD

MC LMD

Fig. 10.10 :Ground track and crossing time for the non-Sun-synchronous satellite

Megha-Tropiques, over 3 days. Ascending node crossing time 00:00 and 06:00 LMT.
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Megha-Tropiques
Orbit - Ground track

Recurrence = [14; -1;  7]  97

>>>>   Time span shown:  4320.0 min =   3.00 days
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24LMT (local) hours

Altitude =  865.5 km a = 7243.677 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

Asc. Node:   -105.00 ° [12:00 LMT]

App. inclin. =  21.52 °

Projection:  Raisz Armadillo

Property:   none

T.:(various) - Graticule: 10°

P.C.:   0.0 °  ; 75.0 °E / 28.1 ° N; 75.0 °E

Aspect:  Direct

{4.2} [ +90.0/  +0.0/-165.0] [-]    EIGEN6C2

Megha-Tropiques
Orbit - Ground track

Recurrence = [14; -1;  7]  97

>>>>   Time span shown:  4320.0 min =   3.00 days
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24LMT (local) hours

Altitude =  865.5 km a = 7243.677 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

Asc. Node:   -105.00 ° [18:00 LMT]

App. inclin. =  21.52 °

Projection:  Raisz Armadillo

Property:   none

T.:(various) - Graticule: 10°

P.C.:   0.0 °  ; 75.0 °E / 28.1 ° N; 75.0 °E

Aspect:  Direct

{4.2} [ +90.0/  +0.0/-165.0] [-]    EIGEN6C2

MC LMD

MC LMD

Fig. 10.11 :Ground track and crossing time for the non-Sun-synchronous satellite

Megha-Tropiques, over 3 days. Ascending node crossing time 12:00 and 18:00 LMT.
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retrograde orbit (i = 110◦, h = 5,892 km). The satellite Ofeq-5 with retrograde
elliptical LEO orbit (i = 143.5◦) provides one of the rare examples of prograde
precession. �

10.1.4 Cycle and Ascending Node Crossing Time

Knowing the initial conditions, it is a simple matter to obtain the crossing
times at the ascending node at an arbitrary date, provided that we also know
the cycle CS relative to the Sun. Indeed, since the crossing time increases or
decreases by 24 h every CS days, it is easy to calculate the increase or decrease
per day. Here is an example of this calculation (Figs. 10.10 and 10.11).

Example 10.3 Calculate the dates during the year 1999 for which the LMT of
the ascending node crossing is the same for the satellites TRMM and Resurs-
O1-4.

� In order to study the Earth’s radiation budget, TRMM and Resurs-O1-
4 were equipped with the CERES and ScaRaB instruments, respectively. A
joint measurement campaign was organised in January and February 1999.
The aim was to compare the measurements obtained for the same region
viewed by the two instruments at roughly the same times (with a leeway of
±15min). The Sun-synchronous satellite Resurs-O1-4 crosses the ascending
node at 22:20 LMT. The initial conditions for TRMM are given by an ascend-
ing node crossing. For tAN given in a notation indicating month day hr min
s, we have

tAN = 1999 01 21 20:43:47 (UT), λ = +5.157◦ .

We calculate the value of τAN, the LMT crossing time, as

τAN = tAN +
λ

15
= 20:43:47 + 00:20:38 = 21:04:25 .

In Example 10.1, we found P = −6.894, which gives the cycle

CS = −365.25

7.894
= −46.29 day .

We thus obtain the daily drift as

1440

CS
= − 1440

46.42
= −31.02 min .

The difference between τAN = 21:04 on 21 January 1999 (D = 21) and the
chosen time of 22:20 is 76min. The passage of TRMM at the chosen time
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thus occurs with a shift of −76/31 = −2.45 days, or 2 days earlier, i.e., on 19
January 1999 (D = 19). The ascending node crossing time around 22:20 thus
occurs on the days Dk given by

Dk = 19 + k|CS| .

With D0 = 19 and k = 0, 1, 2, . . . , 7, we obtain all the dates required for the
year 1999. If we need to know the dates of passage of TRMM at 22:20 at the
descending node, we merely add a half-cycle to the values of Dk, which gives
dates shifted by 23 days with respect to the first series. �

10.2 Crossing Time for a Sun-Synchronous

Satellite

This section discusses Sun-synchronous Earth observation satellites in the
broad sense. They are all in near-circular orbits.

10.2.1 Passage at a Given Latitude

The time in LMT at which a Sun-synchronous satellite crosses the ascend-
ing node is constant in time (provided that the orbit is suitably maintained, of
course), because in the frame �, the nodal precession balances the motion of
the Earth’s axis about the Sun. This is the defining feature of Sun-synchronous
orbits, as we shall see more clearly in the next example.

Example 10.4 Calculate the crossing time at two consecutive ascending nodes
for a Sun-synchronous satellite.

� Consider the first crossing at the ascending node at longitude λ1 and time
t = t0 in UT. Let τ1 be the corresponding LMT, so that, according to (7.61),

τ1 = t0 +
λ1

15
,

with time in hours and longitudes in degrees.
The next passage (nodal period T ) will occur at longitude λ2 and at time

t = t0 + T . The corresponding LMT at the second crossing, denoted by τ2, is
therefore

τ2 = t0 + T +
λ2

15
.
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The longitude λ2 is obtained simply by considering the equatorial shift given
by (8.25):

λ2 = λ1 +ΔλE = λ1 − 15T .

We thus have

τ2 = t0 + T +
λ1 − 15T

15
= t0 +

λ1

15
= τ1 ,

which shows that the LMT remains constant.
Since the mean motion is constant, the time taken to reach a given latitude

from the equator will be the same for each revolution. We may thus say that,
for a Sun-synchronous satellite:

• The LMT crossing time at a given latitude is constant.
• The LMT crossing time at a given meridian depends only on the latitude.

�

Establishing the Relation Between ψ and Δτ

The relation between τ (the LMT crossing time at the meridian) and ψ
(the geocentric latitude) is found using the equations for the ground track and
calculating the longitude corresponding to each latitude, whereupon the time
can be found in LMT. However, there is a simpler way to obtain this relation
from geometric considerations.

Consider the Earth in the geocentric pseudo-Galilean frame �, as shown
in Fig. 10.12. At a given time, let A be the intersection of the meridian plane
of the direction of the Sun with the Earth’s equator. We consider the orbital
plane of a Sun-synchronous satellite. Its ground track cuts the equator at N ,
the projection of the ascending node on the Earth’s surface. This plane makes
an angle i = iHS with the equatorial plane. (This is indeed i, rather than the
apparent inclination, since we are working in �.)

The angle HAN = (OA,ON) remains constant by the Sun-synchronicity
condition, since HAN measures the hour angle, and hence the time in LMT of
the ascending node.

Consider a meridian defined by a point Q on the equator. The ground
track of the orbit cuts this meridian at a point P of latitude ψ. The hour
angle of P and of Q is H = (OA,OQ). We define

ΔH = H −HAN = (ON ,OQ) .

This angle thus measures the difference in hour angle betweenN and P (orQ).
In the spherical triangle PQN , with a right-angle at Q, we know the side

PQ, (OQ,OP ) = ψ and the angle N , representing the inclination of the or-
bital plane. We obtain ΔH from the standard relation of spherical trigonom-
etry, corresponding to the relation (ST XII), identifying PQN with CAB :



10.2 Crossing Time for a Sun-Synchronous Satellite 451

z

P

A

Q

ψ
O

N

i
ΔH

Fig. 10.12 : Intersect-

ion of the ground track

of a Sun-synchronous

satellite orbit (ascend-

ing node N) with a

given meridian plane,

defined by the point Q

on the equator.

sinΔH =
tanψ

tan iHS
. (10.7)

Naturally, this formula is valid whether the satellite orbit is prograde or retro-
grade. In the prograde case, tanN and sinΔH are positive. In the retrograde
case, as here, tanN = tan(π − iHS) and ΔH are negative.

Let τAN and τ be the local crossing times at the ascending node and P ,
respectively. Then,

Δτ = τ − τAN =
1

K
ΔH , (10.8)

where K is a constant depending on the units, so that if time is in hours and
angles are in degrees, then K = 15 (since 1 h corresponds to 15 degrees).

We thus have the following relations between the latitude ψ and the dif-
ference in crossing times Δτ :

Δτ =
1

K
arcsin

(
tanψ

tan iHS

)
, (10.9)

or

ψ = arctan
(
tan iHS sinKΔτ

)
. (10.10)

This function ψ(Δt) is shown in Fig. 10.13.
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Crossing Time at an Arbitrary Latitude

Let τAN and τDN be the crossing times at the ascending and descending
nodes, respectively. Then,

τAN = 12 + τDN [mod 24] .

For Δτ , we take the value defined by (10.9), i.e., between −6 and +6h. We
thereby obtain the two daily crossing times τ(A) and τ(D) in the ascending and
descending parts of the ground track, respectively:

{
τ(A) = τAN +Δτ ,
τ(D) = τDN −Δτ = τAN + 12−Δτ .

(10.11)

At a given latitude, the time difference δ(ψ) between two crossings, one in the
ascending part and the other in the descending part, is given by

δ(ψ) = τ(A) − τ(D) = 12 + 2Δτ . (10.12)

We now give some examples of this calculation.

Example 10.5 Calculate the LMT crossing time at latitude 15 ◦N for a Sun-
synchronous satellite at altitude h = 800 km, when the crossing time at the
ascending node is 00:00 LMT.

� We have seen that the inclination of the satellite is i = 98.6◦ for this
altitude. Equation (10.9) yields

Δτ =
1

K
arcsin

(
tan 15

tan 98.6

)
=

1

15
arcsin(−0.04052) =

−2.32

15
hr = −9.3 min .

We thus take Δτ = −9min, and inserting τAN = 00:00 in (10.11), we obtain

τ(A) = τAN +Δτ = 24 h 0 min − 9 min = 23:51 ,

τ(D) = τAN + 12−Δτ = 12 h 0 min + 9 min = 12:09 .

The two passages at this latitude thus occur at 23:51 LMT and 12:09 LMT,
as can be checked on the upper part of Fig. 10.13. �

Example 10.6 Calculate the LMT crossing time at latitude 50 ◦ for the Sun-
synchronous satellite SPOT-5, which crosses the ascending node at 22:30
LMT.

� For this satellite and latitude 50◦, (10.9) gives Δτ = −42min. With (10.11)
and τAN = 22:30, we will thus have
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ψ = 50◦N =⇒ 21:48 and 11:12 ,

ψ = 50◦S =⇒ 23:12 and 09:48 .

In the northern hemisphere, the daytime crossing will occur well after 10:30, in
fact close to noon, with good solar lighting conditions. In the southern hemi-
sphere, on the other hand, the crossing occurs rather early in the morning and
the lighting conditions are not so good. The choice of node, e.g., descending
at 10:30 rather than ascending, favours observation of the high latitudes of
one hemisphere at the expense of the other. We shall return to this point. �

10.2.2 Choice of Local Time at the Ascending Node

Restrictions on the Choice of Crossing Time

The local crossing time at the ascending node is determined by the aims of
the mission. It is chosen as a compromise between various constraints which
we shall number here from C1 to C5 (where C stands for constraint):

(C1) To obtain the best solar lighting conditions for the regions observed.
(C2) To take local meteorological factors into account, e.g., a certain region

may be under cloud cover every morning.
(C3) To reduce the risks of specular reflection (this effect known as glint or

Sun glint due to the reflection of sunlight from water surfaces can dazzle
the satellite’s instruments).

(C4) To limit periods of solar eclipse.
(C5) To take into account the crossing time of another Sun-synchronous

satellite carrying out the same type of mission.

We shall now discuss the various times chosen according to the type of mission.
Figure 10.16 schematises the relationship between constraints and missions.

Different Choices Depending on Constraints

Remote-Sensing Satellites for Earth Resources

As already noted, this kind of satellite is always Sun-synchronous.2 The
constraints listed above as (C1) and (C3) are given priority. The local crossing
time at the node must be close to noon for (C1), but not too close because of
(C3). Moreover, considering the curve ψ(Δτ), a shift away from noon yields
good solar lighting conditions for high latitudes. Mission designers generally

2A satellite may carry instruments pertaining to different types of mission. For example,
the Russian satellite Resurs-O1-4 carries the Russian imaging device MSU for remote-
sensing and the French instrument ScaRaB to study the Earth radiation budget (which can
be classified as meteorological). But it is the remote-sensing aspect that determined the
choice of crossing time.
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consider that the optimal time slot for viewing (in local time) lasts for 1 h
centered on 11:00 or on 13:00, although this is only a rough guide.

One can thus envisage the following cases, calculated for a satellite at
altitude h = 800 km:

• Equatorial crossing at the lower time limit. If the ascending node is at 10:30
(τAN = 10:30), the latitudes viewed between 10:30 and 11:30 are obtained
using (10.10). With K = 15, the calculation for Δτ = 1 gives

ψ = arctan
[
(tan 98.6)(tan 15)

]
= −61◦ ,

which corresponds to latitudes lying between 0◦ and 61◦S. If the descending
node occurs at 10:30 (τAN = 22:30), latitudes viewed during this time
interval lie between 0◦ and 61◦N.

• Equatorial crossing at the upper time limit. If the ascending node occurs
at 13:30, latitudes viewed between 12:30 and 13:30 then lie between 0◦

and 61◦N. If the descending node is at 13:30, latitudes viewed in this time
interval lie between 0◦ and 61◦S.

• Choice of time. Since the noon crossing time at the node is not chosen, to
avoid specular reflection, the choice of equatorial crossing time at 10:30 or
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13:30 is guided by the choice between northern and southern hemispheres.
Naturally, the northern hemisphere is generally favoured, since it encom-
passes more visible land mass than the other hemisphere, but also because
it comprises more nations financing satellite launches.

For satellites observing Earth resources, the choice is thus between the two
equatorial crossing times:

τAN = 22:30 =⇒ descending node 10:30 ,

τAN = 13:30 =⇒ ascending node 13:30 .

The first is called the morning crossing, and the second the afternoon crossing.
The graphs in Fig. 10.14 explain these choices for the NASA Earth ob-

servation satellites originally called EOS-AM-1 and EOS-PM-1. They are in
complementary orbits, one with the morning crossing (AM), the other with
the afternoon crossing (PM). They have since been renamed Terra and Aqua,
respectively. Between local times 10:30 and 13:30 (LMT), the most favourable
period for viewing, these two satellites overfly the northern hemisphere, never
the southern hemisphere.

The choice between the two possibilities τAN = 22:30 or τAN = 13:30 is
generally made in response to the constraint (C2). In this way, one avoids the
rather systematic formation of cloud cover at particular times of the day and in
certain well-defined regions. The descending node has been chosen at the end
of the morning for most Earth observation satellites. The following list shows
the extent to which the choice of 22:30 for the descending node dominates for
this kind of satellite. But if Australia were to send up a satellite to study Earth
resources, one could be fairly certain that they would choose the ascending
node at 10:30!

• Ascending node at 22:30: US satellites Landsat, from -1 to -8, and the fol-
lowing, EO-1 and Terra; the French satellites SPOT, from -1 to -5, SPOT-6
(22:00), Pléiades-1A and -1B; the European satellites ERS-1 and -2, En-
visat; the Japanese satellites MOS-1 and -1B, JERS-1, ADEOS-1 and -2,
ALOS; all the Indian satellites IRS (except for the oceanographic ones),
IRS-1A, -1B, -1C, -1D, -P2, -P3, Resourcesat-1 and -2, Cartosat-1, -2, and
-2A, IMS-1 (21:30) and TES; the Russian satellite Resurs-O1-4, the China–
Brazil satellites CBERS, -1, -2, and -2B; the Thai satellite THEOS; the
Turkish satellite RASAT; the Vietnamese satellite VNRED; the Taiwanese
satellite FormoSat-2 (21:30); the Chinese satellites HJ-1A and -1B; the Ar-
gentinian satellite SAC-C; the Belgian–European satellite PROBA; and the
Israeli satellite EROS-A1. To this list, one should add all the US commer-
cial mapping satellites, Ikonos-2 (22:31), QuickBird-2 (22:27), WorldView-2
(22:50), and GeoEye-1 (22:27) for which the time drifts slightly. The Ger-
man commercial satellite constellation RapidEye, from -1 to -5, crosses at
a slightly different time (23:15).
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• Ascending node at 13:30: Aqua and the other satellites of the A-Train (see
Fig. 9.22), CloudSat, Calipso, Parasol, Aura, GCOM-W1 (Shizuku); the
satellites Suomi-NPP, WorldView-1, Arirang-3; and the 4 French military
satellites Hélios-1A, -1B, -2A, and -2B (13:15).

• Ascending node at 10:30: the Korean satellites Arirang-1 and -2; and the
British satellites UK-DMC and UK-DMC2.

• Ascending node at 01:30: the Israeli satellite EROS-B; and the Japanese
satellite Ibuki (00:50).

Although we have grouped these satellites according to equatorial crossing
times, there is a certain dispersion within each group. For example, GeoEye-1
does not cross at 22:30, but rather at 22:27, and Aura does not cross at 13:30,
but rather at 13:46. However, as long as the satellite is maintained on orbit,
and in particular if it is recurrent, it always crosses at the nominal time, i.e.,
22:27 for GeoEye-1 and 13:46 for Aura, to within 1 or 2min.

Meteorological Satellites

For these satellites which observe meteorological phenomena, the crossing
time is not critical, and it can indeed vary significantly from one satellite to the
next. Moreover, in most cases, these satellites are not kept at their station, the
crossing time being allowed to drift. This drift is quadratic in time, as shown
by (10.21) discussed below. For the NOAA satellites, the drift, which can
become quite significant, is shown in Fig. 10.15. The DMSP satellites drift in
the same way. For the NOAA satellites from TIROS-N and NOAA-6 onwards,
the constraint (C5) has been taken into account: for a given region, and with
solar illumination, one satellite overflies in the morning and the other in the
afternoon.

The organisations NOAA and EUMETSAT set up the IJPS programme
(Initial Joint Polar System) to share instruments and coordinate satellites.
The programme began with NOAA-18, NOAA-19, and MetOp-A, and will
continue with the following NOAA and MetOp-B, then -C. The European
satellite operates in the middle of the morning, around 10 h (τAN = 21:30),
the US satellites at the beginning of the morning, around 8 h (τAN = 19:30)
and at the beginning of the afternoon, around 14 h (τAN = 14:30).

Oceanographic Satellites

When they are not specialised in altimetry, oceanographic satellites are
Sun-synchronous. If they do not carry scatterometers, the equatorial crossing
is often chosen around noon and midnight, to satisfy constraint (C1): for
example, τAN = 00:00 for Oceansat-1 and -2, τAN = 00:20 for SeaStar.

Satellites with High Energy Requirements

It is important to avoid long breaks in the power supply when satellites
carry a radar or other instrument with high energy requirements. The solar
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Fig. 10.15 :Drift of ascending node crossing times τAN from 1978 to 2011 for Sun-

synchronous meteorological satellites in the POES programme (TIROS-N, NOAA-6

to -19) and MetOp-A (in the IJPS framework). Orbits of satellites in the POES

programme are not maintained and hence tend to drift. The time τAN is given for

the operating period of each satellite (according to NOAA data). For NOAA-15,

-16, and -17, τAN is given by a dotted line when the satellite is a backup. The

satellite MetOp-A is maintained in orbit, with τAN = 21:30, to within 2min (see

Example 10.8).

panels must be almost continuously illuminated. To achieve this, the best-
suited orbit has normal in the meridian plane, because eclipses are then at
their shortest (see later in the chapter). This Sun-synchronous satellite is such
that τAN = 06:00 or 18:00, and it is called the dawn–dusk orbit. With this orbit
there is a clear difference between the two hemispheres: with τAN = 06:00, the
northern hemisphere is viewed at night and the southern hemisphere is viewed
during the day (between 06:00 and 18:00); with τAN = 18:00, it is exactly the
opposite.

Radarsat-1 and -2 are examples, with τAN = 18:00, as shown in Fig. 10.9.
The constraint (C4) is given precedence. For the four Italian satellites COSMO-
SkyMed-1, -2, -3, and -4, which form a constellation, the crossing times are
strictly equal, with τAN = 06:03, while for the German satellite TerraSAR-X,
τAN = 18:00, and for the Indian satellite RISat-2, τAN = 06:00.

The same is true for oceanographic satellites using a scatterometer, an
instrument measuring the wind speed over the sea. Examples are QuikScat



10.2 Crossing Time for a Sun-Synchronous Satellite 459

C1
Best solar lighting

conditions

(a) REMOTE S.

(b) METEOR.

(c) OCEANOGR.

(d) RADAR.

(e) SOLAR OBS. 06 / 18

06 / 18

00 / 12

am & pm

22:30 13:30

06 / 18(f) FUNDAM.PHYS.

>>>

>>>

>>>

>>>

>>>

>>>

Local meteorological
factors

To reduce
Sun glint

To limit
solar eclipse

Crossing time
of another SS sat.

C2

C3

C4

C5

Fig. 10.16 :Choice of ascending node crossing time for Sun-synchronous satellites

(equatorial crossing). Schematic view of constraints leading to this choice for various

types of mission.

(τAN = 17:55), Coriolis (18:00), HY-2A (18:00), and the future CFOSAT
(19:00).

The dawn–dusk orbit is planned for the European projects ADM-Aeolus
(Atmospheric Dynamics Mission) and WALES, at low altitude (h ≈ 400km).

Satellites with Orbits Requiring a Specific Configuration Relative to the Sun

Solar observing satellites, if placed near the Earth, must gain maximum
advantage from their view of the day star. By satisfying constraint (C4), only
the dawn–dusk orbit can allow such continuous observation. The satellites
TRACE (τAN = 6:00) and Picard (τAN = 6:00) are on this type of orbit.

Satellites Subject to a Requirement of Limited Temperature Variation

It is of the utmost importance for satellites carrying out fundamental
physics experiments on the equivalence principle that temperature variations
should be kept to a minimum. The dawn–dusk orbit satisfies constraint (C4),
and this will be the orbit for the satellites μSCOPE and STEP.

The satellite GOCE is in a very low orbit (h ∼ 250km) and should be
subject to as little temperature variation as possible. It is thus in a dawn–
dusk orbit with τAN = 18:00.

Choices for Other Types of Mission

The crossing time of the satellite can be determined by the physical nature
of the phenomena to be observed. The satellite SMOS (see Fig. 9.21) measures
ground humidity. This very delicate measurement is always best when the
temperature gradient of the soil is at its minimum, which is the case at 6 h in
the morning. If one also requires a roughly constant illumination of the solar
panels, it is clearly the dawn–dusk orbit that must be chosen, as in the case
of SMOS (τAN = 6:00). It is also the planned orbit for its US counterpart
SMAP.
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The dawn–dusk orbit has been chosen for MagSat (Explorer-61, study of
the magnetosphere) because the perturbations produced by the Sun on the
Earth’s magnetic field, which vary from 1 h to the next, are thereby minimised
and rendered constant (Fig. 10.16).

10.2.3 Calculating the Drift in Local Crossing Time

The drift in the local crossing time is due mainly to the drift in the in-
clination i of the orbital plane. The Lagrange equations show that di/dt = 0
under the effect of the geopotential. However, other gravitational perturba-
tions due to the Sun and Moon, or non-gravitational effects, will cause this
slight variation in i, which is very small at the beginning (a few hundredths
of a degree per year), but eventually becomes significant.

The local crossing time τAN at the ascending node is directly related to
the right ascension Ω of the ascending node:

τAN = 12 +
Ω −ΩS

K
= 12 +

ΩH

K
, (10.13)

where ΩS is the longitude of the direction of the Sun, τAN is in hours, and Ω
and ΩS are in degrees (K = 15), with ΩH = Ω − ΩS. The drift in the time
τAN is then given by

dτAN

dt
=

1

K
Ω̇H . (10.14)

For a strictly maintained Sun-synchronous satellite, Ω̇H = 0 and τAN is there-
fore constant.

Whenever Ω̇H = Ω̇(a, i)− Ω̇S is not zero, this is due to the variation of the
orbital elements a and i relative to the Sun-synchronicity constraints. Recall
the expression (7.5) for Ω̇(a, i) and the Sun-synchronicity condition (7.102):

Ω̇(a, i) = −K0

( a
R

)−7/2

cos i ,

Ω̇S = −K0

( a
R

)−7/2

cos iHS .

Calculating the differential of Ω̇(a, i) and assuming that a and i remain close
to their Sun-synchronous values, we obtain

dΩ̇ = −Ω̇S

(
7

2

da

a
+ tan iHS di

)
. (10.15)
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In Example 10.8, it is shown that, over a given interval of time, da/a is
negligible compared with di. The last relation thus gives

dΩ̇

dt
= −Ω̇S tan iHS

di

dt
. (10.16)

As long as the orbit remains close to the Sun-synchronous position, whence
τAN will remain close to the nominal time τ0, the variation di/dt is constant.
We shall write

Dτ =
di

dt

∣∣∣∣
τ0

. (10.17)

The sign of this quantity may be positive or negative.
Noting that tan iHS is always negative, (10.16) yields

dΩ̇ = +Ω̇S| tan iHS|Dτ dt . (10.18)

Integrating dΩ̇ with respect to time with Ω̇(t = 0) = 0, we then have

Ω̇ = +Ω̇S| tan iHS|Dτ t , (10.19)

and with a second integration,

Ω = Ω0 +
1

2
Ω̇S| tan iHS|Dτ t

2 , (10.20)

whence the local crossing time is given by

τAN(t) = τ0 + τ̈ t2 . (10.21)

The quantity τ̈ is generally given in min yr−2 and it has the same sign as Dτ :

τ̈ =
Ω̇S

2K
| tan iHS|Dτ . (10.22)

We thus find that τAN has quadratic time dependence:

i increasing: Dτ > 0 =⇒ τ̈ > 0

=⇒ τAN(t) parabola concave upwards ,

i decreasing: Dτ < 0 =⇒ τ̈ < 0

=⇒ τAN(t) parabola concave downwards .

For ADEOS-1, τ̈ = −2.4 min yr−2, for Aqua, τ̈ = +2.4 min yr−2 (see Example
10.7), and for MetOp-A, τ̈ = −3.9 min yr−2 (see Example 10.8).

Example 10.7 Drift in local crossing time for the satellites ADEOS-1 and
Aqua.
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� For these two Sun-synchronous satellites, we make use of data provided by
the relevant space agencies:

• ADEOS-1. The Japanese space agency NASDA (which has since become
JAXA) provides the descending node crossing time τDN, fixed at τDN =
10:30± 0:15, and also its predicted drift as time goes by, viz.,

τDN = τ0 + aδ + bδ2 = 10.6872+ 4.4329× 10−6δ − 5.8434× 10−10δ2 ,

where τDN is given in decimal hours and δ represents the time elapsed in
hours since the time 00:00 on the launch date. As can be seen in Fig. 10.17
(upper curve), the maximum of this quadratic function occurs when

δ = a/2b = 3.793× 103 h ≈ 158 day .

The satellite was launched on 27 August 1996, with τDN = 10:41. This
goes through a maximum τDN = 10:42 after 5 months, then returns to
τDN = 10:41 after 10 months. Note the subsequent values: τDN = 10:40 for
12 months, τDN = 10:35 for 24 months, and τDN = 10:24 for 36 months.
We reach τDN = 10:15 after 42 months. At this point the orbit must be
modified, because τDN is beginning to change too quickly (but the satellite
actually only operated for 10 months). This mission was followed up by
ADEOS-2 with the same choice for the local crossing time.

• Aqua. NASA provides the crossing time at the ascending node in decimal
hours as τAN = 13.525h (with the nominal inclination) and τAN = 13.565h
after 365 days. Figure 10.17 (lower curve) reconstructs the time depen-
dence. In practice, the orbit of Aqua, which belongs to the A-Train, is very
strictly maintained.

�

Example 10.8 Drift in local crossing time for the MetOp-A satellites.

� Figure 10.18 shows the time dependence of the ascending node crossing time
τAN, correlated with the corresponding time dependence of the inclination i.
For each change in i, there is a sudden change in the gradient of τAN.

We consider two dates between which the changes in i and a are close to
linear:

19 October 2010 D = 292 , h = a−R = 817.518 km , i = 98.7262◦ ,
25 May 2011 D = 145 , h = a−R = 817.439 km , i = 98.6980◦ ,
Variation ΔD = 218 , h = a−R = −0.079 km , i = −0.0282◦ .
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For the quantities in (10.15) and with iHS = 98.702◦, this gives

da

a
= − 0.079

6378.1+ 817.5
= −1.0979× 10−5 =⇒ 7

2

da

a
= −3.843× 10−5 ,

di = −0.0282
π

180
= −4.9218× 10−4 =⇒ tan iHSdi = +321.568× 10−5 .

We see that the influence of a is 100 times less than the influence of i, which
justifies using (10.16).

We can calculate τ̈ with the usual units of min yr−2, using (10.22) and
expressing Ω̇S/K in min yr−1 and Dτ in yr−1, whereupon

Ω̇S = 1 revolution per year =⇒ Ω̇S/K = 1440 min yr−1 ,

Dτ =
−0.0282

218

π

180
= −2.2577× 10−6 radday−1 = −8.2463× 10−4 rad yr−1 .

Equation (10.22) gives

τ̈ = 720× | tan iHS|Dτ = −720× 6.5335× 8.2463× 10−4 = −3.879 min yr−2 .

For the satellite MetOp-A, with τ̈ = −3.9 min yr−2, the parabola representing
τAN(t) is concave downwards. As can be seen from Fig. 10.18, the satellite is
repositioned about once every 6 months, and τAN(t) always remains between
21:28 and 21:32, i.e., 21:30 to within 2min. �
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Fig. 10.18 :Sun-synchronous satellite MetOp-A. Time dependence of the local cross-

ing time at the ascending node τAN (blue curve) and the inclination i (black curve),

over six and half years. For decreasing i, the quadratic variation of τAN is concave

downwards.

10.3 Angle Between Orbital Plane and Solar

Direction

The angle between the direction of the Sun and the orbital plane of the
satellite plays an important role in astronautics, e.g., for the positioning of
solar panels. In the specialised literature, this is called the solar angle and
it is denoted by β. It varies over the interval [−90◦,+90◦], taking a positive
value when the illuminated side is the one containing the normal to the orbital
plane. The latter is in turn defined by the satellite motion, in the right-handed
trigonometric sense.

10.3.1 Position of the Normal to the Orbital Plane

The center of the Earth is denoted by O, the center of the Sun by C,
the orbital plane by P , and the Earth’s equatorial plane by E . We begin by
calculating β′, the angle between the normal n to P and the direction OC,
which ranges over the interval [0◦, 180◦], like i.

A satellite crosses the equator at its ascending node at time t = t0, corre-
sponding to local time τAN(t0) = τ0. We consider this in the frame � centered
on O (see Fig. 10.1). The axis Oz is the polar axis, xOy is in E , and y′Oy is
identified with the line of nodes (oriented from the descending node to the
ascending node). Recall that the hour angle in degrees is obtained from the
local crossing time in hours by the relation
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H0 = 15(τ0 − 12) . (10.23)

For a rigorous calculation, the local crossing time should be expressed in LAT,
rather than LMT, thereby bringing in the equation of time ET.

At another time t = t1, with Δt = t1 − t0, the center of the Earth O has
revolved around C with angular speed Ω̇S and the line of nodes has rotated
relative to the axes of the frame � at the rate Ω̇. The direction of the normal
n to P is specified by:

• the zenith angle ζn = i, which remains constant, equal to the inclination
of the orbit,

• the azimuthal angle αn = Ω̇Δt, since the origin of the azimuth is taken on
Ox at t = t0.

The direction OC of the Sun is specified by:

• the zenith angle ζs = 90◦ − δ, where δ is the declination at the given time,
• the azimuthal angle αs = 90◦ −H0 + Ω̇SΔt, since H0 corresponds to the

hour angle at t = t0.

The Cartesian components of the unit normal vector n and the unit vector s
in the direction OC of the Sun are thus given by:

n =

⎛
⎝x = cos(Ω̇Δt) sin i

y = sin(Ω̇Δt) sin i
z = cos i

⎞
⎠ , (10.24)

s =

⎛
⎝x = sin(H0 − Ω̇SΔt) cos δ

y = cos(H0 − Ω̇SΔt) cos δ
z = sin δ

⎞
⎠ . (10.25)

The angle β′ is thus determined within its range of possible values.

10.3.2 Angle β

The angle β = β′ − 90◦ is obtained from the scalar product n · s by

sinβ = sin i cos δ sin
[
H0 + (Ω̇ − Ω̇S)Δt

]
+ cos i sin δ , (10.26)

which gives the value of β within its range of definition. For Sun-synchronous
satellites, we have Ω̇ = Ω̇S and (10.26) simplifies to

sinβ = sin i cos δ sinH0 + cos i sin δ . (10.27)

For non-Sun-synchronous satellites, the hour angleH0 takes all possible values
and sinH0 varies between −1 and +1. The extremal values of sinβ are thus

sinβ = ± sin i cos δ + cos i sin δ = sin(δ ± i) . (10.28)
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The declination δ varies over the interval [−ε,+ε], with obliquity ε = 23.4◦.
The angle β thus varies over the interval

β ∈ [−(i+ ε),+(i+ ε)] , (10.29)

limited, of course, to the interval of definition of β.
Hence, for Megha-Tropiques, i = 20.0◦, β ∈ [−43.4◦,+43.4◦]; for ISS, i =

51.6◦, β ∈ [−75.0◦,+75.0◦]; and for Jason-2, i = 66.0◦, β ∈ [−89.4◦,+89.4◦].

Example 10.9 Time dependence of the solar angle β over 2 years for the Sun-
synchronous satellite Calipso and the non-Sun-synchronous satellite Megha-
Tropiques.

� For each of these satellites, we plot the variation of each angle determining
the direction of the normal to the orbital plane and the direction of the Sun.
These variations are shown graphically in Figs. 10.19 and 10.20:

• Direction of the Sun. The elevation δ = 90◦ − ζs corresponds to the decli-
nation. The azimuth αs has a cycle of 1 year, and it does not vary exactly
linearly with time (the difference being the equation of time ET).

• Direction of the normal to the orbital plane. The zenith angle ζn remains
constant, since the inclination is constant. The main difference between the
Sun-synchronous and non-Sun-synchronous satellites is manifested through
the variation of the azimuthal angle αn. For the Sun-synchronous satellite,
αn goes round once in 1 year as viewed from �, whereas for the non-Sun-
synchronous satellite with fast nodal precession, the cycle is much shorter
(and retrograde).

• The angle β between the direction of the Sun and the orbital plane. For
Calipso, β varies from 20◦ to 35◦. The general shape of the graph of β
as a function of time is heavily influenced by the equation of time. For
Megha-Tropiques, the amplitude is much greater, with the angle varying
from −45◦ to +45◦. In this case, it is occasionally necessary to turn the
satellite round so that its solar panels are more effectively illuminated.

�

10.4 Solar Eclipse for Circular Orbits

The satellite undergoes solar eclipse when the Sun is hidden from it by
the Earth. During an eclipse,3 the satellite cools down and its solar panels

3The name derives from the late Latin eclipsis, which itself comes from the Greek �

������	� ��	, meaning “defection.” The word contains the prefix ��, meaning “outside of”
and the verb ������, meaning “to leave.” See the etymological note on the ellipse. The
word “ecliptic,” referring to the orbital plane of the Earth around the Sun, is a more recent
construction. If an eclipse is to occur, the Moon must cross this plane (a necessary but not
sufficient condition).
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no longer produce electricity. It is useful to know the duration of the eclipse,
to know for how long during one revolution the satellite will be deprived of
solar light. This problem is particularly important for LEO satellites in near-
circular orbits and for geostationary satellites.

10.4.1 Duration of Solar Eclipse

If at a given time the direction of the Sun lies in the orbital plane P of
the satellite, i.e., if β = 0 (for the ascending node, τAN = 00:00 or 12:00), it is
easy to calculate the proportion of the orbit that lies in shadow. Figure 10.21
(left) shows the circular Earth with center O and radius R, and the orbit of
the satellite, with radius r and in the plane P . We obtain the angle α0 (the
angle α when β = 0) from

sinα0 =
OA

OB
=

R

r
=

1

η
,

whence we can find the fraction of the orbit in shadow as α/π.
If the direction of the Sun does not lie in the orbital plane, i.e., if β �= 0, we

define an orthonormal frame (O;X,Y, Z), centered on O, and where OY lies
in the antisolar direction. The Earth’s shadow defines a cylinder with axis OY
and radius R. The set of all possible orbits similar to the circular orbit under
consideration constitutes a sphere of radius r centered on O. The intersection
of the sphere and the cylinder gives a circle of radius R, perpendicular to OY
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(see Fig. 10.21). When the satellite crosses this circle it enters and leaves the
eclipse.

The angle α measuring the length of the arc in shadow is given by

cosα =
OB′

OB
, cosβ =

OQ

OB′ ,

whence

cosα =
cosα0

cosβ
. (10.30)

If T is the period and the angles are in radians, we obtain the expression for
the duration of the eclipse, denoted by Δte, by calculating the quantity U,
viz.,

U =

√
1− 1/η2

cosβ
=⇒

{
Δte =

T

π
arccosU , if U < 1 ,

Δte = 0 , if U ≥ 1 .
(10.31)

Given the value of β from (10.26), we can thus obtain Δte for any circular
orbit. We give two examples in Fig. 10.22 for two non-Sun-synchronous LEO
satellites.

Below we examine the case of Sun-synchronous satellites in more detail.

10.4.2 Sun-Synchronous LEO Orbit

For a Sun-synchronous satellite in low circular orbit (i ∼ 100◦), the value
of sinβ, in (10.27), and hence of Δte, depends essentially on H0, representing
the fixed ascending node crossing time τAN (LMT). Figures 10.23 and 10.24
give the length of the eclipse during each revolution, as the year goes by,
for a “standard” Sun-synchronous orbit with h = 700 km. For this orbit, all
possible values of τAN from 00:00 to 24:00 are shown, in steps of a quarter of
an hour.

For τAN = 06:00 (dawn–dusk orbit), we have Δte = 0 right through the
year, except for mid-November to the end of January, with Δte going through
a maximum of 19min at the winter solstice. For τAN = 18:00 (dawn–dusk
orbit), eclipse occurs around the summer solstice (see Fig. 10.28).

For τAN = 00:00 or 12:00 (noon–midnight orbit), Δte is constant during
the year with Δte = 35min. When τAN is more than 3 h away from the
dawn–dusk orbit, eclipse occurs daily, and always lasts more than 28min (see
Fig. 10.29 upper).

There is a certain disymmetry in the graphs here.4 It can be put down to
the equation of time ET, which gives the difference between times in LMT and
LAT. The ascending node crossing times are in LMT on the graphs, whereas
the eclipse configuration depends on LAT.

4As an example, consider the most striking case. On 11 February or 1 November, the
declination is the same, but the equation of time is very different, not being far from its
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10.4.3 Dawn–Dusk Sun-Synchronous LEO Orbit

Eclipse Conditions

For Sun-synchronous dawn–dusk orbits, eclipses are critical events. Using
the condition (10.31), applied to the dawn–dusk orbit, let us look for the
case where eclipse is avoided, for whatever day of the year. The strongest
constraint is obtained at one of the two solstices, with |δ| = ε = 23.44◦.
Under these conditions, when η is varied between 1 and 1.9367, the maximal
value for a Sun-synchronous satellite, given by (7.107), the condition on η and
β is satisfied when η lies between 1.2181 and 1.5221. Using the altitude, we
obtain

absence of eclipse ⇐⇒ 1 391 km < h < 3 330 km .

If the altitude of the satellite is less than 1,391km, there will be eclipse,
because the satellite is not high enough to leave the Earth’s shadow (at least
at the solstice). If the altitude is greater than 3,330km, the orbit is close
enough to the equatorial plane (i tends to 180◦) and the ecliptic to mean
that, despite its high altitude, the satellite nevertheless passes through the
shadow.

These observations are rather theoretical. In practice, most satellites in
dawn–dusk orbit are equipped with radar—with the constraint (C4) consid-
ered earlier—and an altitude less than 800 km is then the norm. The eclipse
phenomenon is thus inevitable at some point during the year for an LEO
satellite.

Dates of Eclipse

When there is eclipse, we calculate how long it will last as a function of
the date. The results are given in Fig. 10.25 for altitudes between 200 and
1,200km. The eclipse lasts longer for lower altitudes and reaches its maximal
length Δte at the solstice (northern winter solstice if τAN = 06:00, northern

extremal values:

δ = −14.3◦
{
11 February ET = +14 min ,
1 November ET = −16 min .

Consider Fig. 10.24 (upper). On 11 February, the 16:00 curve indicates an eclipse lasting
Δte = 21min, which corresponds to

LAT = LMT −ET = 16:00 − 0:14 = 15:46 .

On 1 November, this same value of Δte = 21min is obtained with the 15:30 curve, which
corresponds to

LAT = LMT −ET = 15:30 + 0:16 = 15:46 .

At LMT times differing by 30min, but at the same LAT times, the two dates yield the
same length of eclipse.
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summer solstice if τAN = 18:00). For altitudes below 285km, there is a second,
but shorter, period of eclipse at the other solstice (see Example 10.10).

The graphs shown previously for Sun-synchronous satellites are perfectly
rigorous. In order to obtain simple and general analytic relations for Sun-
synchronous LEO satellites, we establish the following relations by neglecting
the equation of time ET. So identifying LMT and LAT, we may write

06:00 LMT =⇒ sinH0 = −1 , 18:00 LMT =⇒ sinH0 = +1 .

In (10.27), we then write sinH0 = σ with σ = ±1, depending on which of the
two LMT times we are referring to. This gives

sinβ = sin(δ + σi) .

Since the satellite is Sun-synchronous (iHS > 90◦), it is more convenient with
regard to the domain of variation of the angles to consider j = iHS − 90◦,
rather than iHS. The last relation then becomes

sinβ = cos(δ + σj) .

The condition for no eclipse arising from (10.31), viz.,

√
1− 1

η2
> cosβ ,

then becomes

1

η
< cos(δ + σj) . (10.32)

We thus obtain

absence of eclipse ⇐⇒ |δ + σj| < arccos
1

η
. (10.33)

The following is an example of this type of calculation.

Example 10.10 Calculate the eclipse dates for SMOS and GOCE.

� The two European satellites SMOS and GOCE are in Sun-synchronous
dawn–dusk orbits:

• SMOS. The orbital characteristics of SMOS are a = 7 133.875km (whence
h = 756km), iHS = 98.44◦, Td = 100.06min, τAN = 06:00. We thus obtain
j = 8.44◦, σ = −1, 1/η = 0.8942, and arccos(1/η) = 26.63◦. We apply
the eclipse condition |δ + σj| > arccos(1/η), for two cases, depending on
whether the declination is positive or negative:
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if δ > 0, δ − 8.44 > 26.63, which is never possible ,

if δ < 0, |δ|+ 8.44 > 26.63, or |δ| > 18.19◦ .

These negative values of the declination correspond to the eclipse interval
[15 November to 28 January]. The maximal length of eclipse occurs at the
winter solstice, for δ = −ε :

cosα =
sin(26.63)

sin(31.88)
= 0.8487 , whence α = 31.93◦ .

The length of the eclipse per revolution is

Δte = Td
31.93

180
= 17.75 ≈ 18 min ,

which can be checked from Fig. 10.23 with h = 700km rather than h =
756km.

• GOCE. The orbital characteristics of this satellite are a = 6 632.488km
(whence h = 254km), iHS = 96.54◦, Td = 89.72min, τAN = 18:00. We thus
obtain j = 6.54◦, σ = +1, 1/η = 0.9617 and arccos(1/η) = 15.92◦. For
positive and negative declinations, we now have:

if δ > 0, δ + 6.54 > 15.92, or δ > 9.38◦,
implying the date interval [15 April to 29 August] ,

if δ < 0, |δ| − 6.54 > 15.92, or |δ| > 22.46◦,
implying the date interval [6 December to 7 January] .

Wemay say that there are two eclipse seasons, a long one in the summer and
a short one in the winter, as can be clearly seen from Fig. 10.25, h = 250km
(and h = 254km for GOCE). The maximal length of the summer eclipse
occurs at the solstice:

cosα =
sin(15.92)

sin(23.44 + 6.54)
, whence α = 56.7◦ , Δte = 28.26 ≈ 28 min .

The maximal length of the winter eclipse also occurs at the solstice:

cosα =
sin(15.92)

sin(23.44− 6.54)
, whence α = 19.3◦ , Δte = 9.66 ≈ 10 min .

We can calculate the minimal altitude for which the short eclipse season
can be avoided. With j = 6.54◦ and with the value iHS for GOCE, the
condition at the solstice is

arccos
1

η
= 23.44− 6.54 = 16.90◦ , whence η = 1.045 14 , h = 288 km .
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Now calculating the value of iHS for this altitude using (7.105), we obtain
the value i = 96.63◦ and hence

arccos
1

η
= 23.44− 6.63 = 16.81◦ , whence η = 1.044 64 , h = 285 km .

A further iteration leads to the same result. If the altitude of the orbit is
greater than 285 km, there will be only one eclipse season.

�

10.4.4 MEO Orbit

MEO satellites have a long cycle CS, close to 1 year, since they have very
small precession rates, e.g., 351 days for Navstar/GPS, 353 days for Glonass,
356 days for Galileo, and 354 days for BeiDou NS. Twice during the cycle
(once in the ascending part of the orbit and once in the descending part), the
satellite finds itself in an eclipse situation. Eclipses occur for about a month,
with a maximal duration of around 60min.

The date of the eclipse depends on the ascending node crossing time taken
as reference. Figure 10.26 (upper) shows the length of the eclipse Δte as
a function of the date for the Galileo constellation. The figure shows four
ascending node crossing times on 1 January, with 6 h spacing, viz., τAN =
00:00, 06:00, 12:00, and 18:00.

10.4.5 GEO Orbit

The situation for GEO satellites can be treated quite generally. We set
i = 0 in (10.26) and obtain β = δ, which is the very definition of the declination
δ. We then apply the condition (10.31) with η = ηGS defined by (7.72).

We may also look at things more specifically. For a geostationary satellite,
no shadow is cast by the Earth on the circular orbit as long as the direction
of the Sun has an inclination (declination δ) with respect to the equatorial
plane greater than the angle with which the satellite views the Earth. Let f0
be this angle, which is the half-angle at the apex of the observation cone with
which the satellite views the Earth and to which we shall return in Chap. 12
[see in particular (12.33)]. The relation sin f0 = 1/ηGS gives f0 = 8.7◦.

There is therefore an eclipse if |δ| < f0. This happens twice a year, around
the equinoxes:

eclipse for GEO ⇐⇒
{
[27 February to 12 April]

[1 September to 16 October]

During these two periods of 45 days (from D = 58 to D = 102 and from
D = 244 to D = 289, although dates may vary by 1 day depending on the
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year), the longest eclipse occurs at the equinoxes. On that day, it lasts for a
time

Δte =
f0
π
T0 =

8.7

180
Dsid = 69.5 min ≈ 1 h 10 min . (10.34)

The value of Δte as a function of the day of the year is shown in Fig. 10.26
(lower).

10.5 General Conditions for Solar Eclipse

So far we have calculated the dates and lengths of eclipse and provided
analytic formulas in the case of circular orbits. In the general case, for orbits
with arbitrary eccentricity, such simple formulas are no longer possible, be-
cause too many orbital elements need to be taken into account. However, there
is a general method for determining the period of eclipse for any satellite.

10.5.1 Establishing General Eclipse Conditions

To calculate the angle β, we chose an arbitrary origin for the axes of the
frame �. In order to obtain general eclipse conditions, it is simpler and more
logical to choose the direction of the vernal equinox as origin, given that this
kind of practical calculation is done using the NORAD elements (where Ω is
measured from this point γ).

We thus consider a geocentric pseudo-Galilean frame �, where z′Oz is the
polar axis, Oxy lies in the Earth’s equatorial plane E , and Ox points to the
vernal equinox.

Position of the Sun

The plane E makes an angle ε, the obliquity, with the plane of the ecliptic
(see Fig. 7.7). Indicating the position of the Sun by the ecliptic longitude l
as defined in (7.46), we obtain the components of the unit vector s in the
direction of the Sun:

s =

⎛
⎝ x = cos l

y = sin l cos ε
z = sin l sin ε = sin δ

⎞
⎠ . (10.35)

With (7.62), we obtain the same value z as in (10.25). For these eclipse cal-
culations, an accuracy of 0.1◦ in the angles is sufficient, since the apparent
diameter of the Sun is 0.5◦. We thus take ε = 23.4◦. For the solar longitude,
the relation (7.64), viz.,

l =
360

365
(D − 81) + 1.9 sin

360

365
(D − 3) , (10.36)

is adequate, where D is the day of the year, i.e., D = 1, . . . , 365.
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Fig. 10.26 :Length of solar eclipse in minutes as a function of the day of the year.

Upper: MEO satellite with four values of the ascending node crossing time (LMT),

the initial reference day. Lower: GEO satellite, for any value of the parking longitude.
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Fig. 10.27 :Geometry of eclipse conditions. The Earth creates a cylinder of shadow

with axis in the direction OQ of the Sun. When the orbit of the satellite S passes

inside the cylinder, in this case between Sa and Sb, the satellite undergoes solar

eclipse.

Position of the Satellite

For the position of the satellite S, we go back to the specification of its
motion in terms of Euler angles, as discussed in Chap. 8, measuring Ω, the
right ascension of the ascending node, from the vernal equinox. For the unit
vector er in the direction of r = OS, we thus obtain the components given
in (8.10):

er =

⎛
⎝x = cosΩ cos(ω + v)− sinΩ sin(ω + v) cos i

y = sinΩ cos(ω + v) + cosΩ sin(ω + v) cos i
z = sin(ω + v) sin i

⎞
⎠ . (10.37)

Recall that

r = rer , r =
a(1− e2)

1 + e cos v
.

Let χ be the angle between the direction of the satellite and the direction
opposite to the Sun, with unit vector −s. It is determined by the scalar
product

cosχ = −er·s . (10.38)
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Cylinder of Shadow

We treat the Earth as a sphere and the Sun as a point. The planet then
produces a cylinder of shadow with axis −s and radius R (equatorial radius).
The orbit of the satellite can cut the cylinder of shadow, in which case there
will be an eclipse. In Fig. 10.27, the satellite undergoes an eclipse between the
positions Sa and Sb.

Let Q be the foot of the perpendicular drawn from Sa (or Sb) to the cylin-
der axis. In this case, the angle χ, then denoted by χ0, represents the angle
between the plane of the orbit and the direction of the Sun. This is the solar
angle β. The value of χ0 is obtained from the relation

sinχ0 =
SaQ

OSa
=

R

r
=

1

η
. (10.39)

In this case, we thus have sinβ = 1/η when the satellite enters and leaves
eclipse.

10.5.2 Criterion for Eclipse

If there is eclipse (S between Sa and Sb), the angle χ is less than χ0.
Otherwise there is no eclipse. As the satellite position is given by the true
anomaly v, calculated as a function of time, the method here is to calculate
the vectors s and er and the distance r at each instant of time, then compare
χ and χ0 :{

χ = arccos(−er·s) ,
χ0 = arcsin(1/η) ,

=⇒
{
χ < χ0 ⇐⇒ eclipse ,
χ > χ0 ⇐⇒ no eclipse .

(10.40)

This method requires the use of a propagation software such as Ixion. Note
that we do not have to calculate β explicitly. Figures 10.28, 10.29, and 10.30
were obtained using this method.
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TerraSAR-X
Orbit - Ground track

Recurrence = [15; +2; 11] 167

2012 06 22 00:00:00 UTC  >>>    720.0 min =   0.50 day

night ECLIPSE night 0 15 30 45 60 75 90Eclipse and Sun elev. 22 JUN22 JUN

Altitude =  505.4 km

e = 0.000175

a = 6883.518 km

Incl. / SUN-S.= 97.45 °

Period =    94.85 min    * rev/day =15.18

Equat. orbital shift  = 2639.7 km  (  23.7 °)

Asc. Node:     85.01 ° [18:00 LMT]

[NORAD] Revolution:  27831

[NORAD] 2012 06 21 12:20:20 UTC

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 28.0 ° S;   30.0 °E

Aspect:  Oblique

{4.2} [ -90.0/+118.0/ +60.0] [-]    EIGEN6C2

TerraSAR-X
Orbit - Ground track

Recurrence = [15; +2; 11] 167

2012 12 22 00:00:00 UTC  >>>    720.0 min =   0.50 day

night ECLIPSE night 0 15 30 45 60 75 90Eclipse and Sun elev. 22 DEC22 DEC

Altitude =  505.4 km

e = 0.000150

a = 6883.505 km

Incl. / SUN-S.= 97.44 °

Period =    94.85 min    * rev/day =15.18

Equat. orbital shift  = 2639.7 km  (  23.7 °)

Asc. Node:    -27.07 ° [18:00 LMT]

[NORAD] Revolution:  30614

[NORAD] 2012 12 21 19:48:43 UTC

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 28.0 ° S;   30.0 °E

Aspect:  Oblique

{4.2} [ -90.0/+118.0/ +60.0] [-]    EIGEN6C2

MC LMD

MC LMD

Fig. 10.28 :Ground track of the Sun-synchronous satellite TerraSAR-X, in dawn–

dusk orbit, indicating periods of eclipse. Upper: Summer solstice (eclipse over the

Antarctic). Lower: Winter solstice (eclipse free).
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MetOp-B
Orbit - ref.: Earth

Recurrence = [14; +6; 29] 412

2013 06 01 00:00:00 UTC  >>>    480.0 min =   0.33 day

night ECLIPSE night 0 15 30 45 60 75 90Eclipse and Sun elev. 01 JUN01 JUN

Altitude =  817.5 km

e = 0.000170

a = 7195.616 km

Incl. / SUN-S.= 98.70 °

Period =   101.36 min    * rev/day =14.21

Equat. orbital shift  = 2820.8 km  (  25.3 °)

Asc. Node:    -86.61 ° [21:32 LMT]

[NORAD] Revolution:   3586

[NORAD] 2013 05 28 03:18:11 UTC

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 15.0 ° N;   12.0 °E

Aspect:  Oblique

{4.2} [ -90.0/ +75.0/ +78.0] [-]    EIGEN6C2

Akebono (EXOS-D)
Orbit - ref.: Earth

Recurrence ~ [11;-23; 57] 604

2013 06 01 00:00:00 UTC  >>>    480.0 min =   0.33 day

night ECLIPSE night 0 15 30 45 60 75 90Eclipse and Sun elev. 01 JUN01 JUN

Equiv. altit.  =   2342.0 km

e = 0.238666

a = 8720.158 km

Inclination  =  75.07 °

Period =   135.16 min    * rev/day =10.65

h_a =   4440 km;  h_p =  277 km;  arg. perigee:   +64.81 °

[NORAD] 2013 05 28 09:21:42 UTC//R= 74306

Asc. Node:     40.87 ° [12:05 LMT]

Apogee   :    -97.43 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 23.0 ° N;   11.0 °E

Aspect:  Oblique

{4.2} [ -90.0/ +67.0/ +79.0] [-]    EIGEN6C2

MC LMD

MC LMD

Fig. 10.29 :Orbits indicating periods of eclipse. Upper: Sun-synchronous satellite

MetOp-B (with τAN = 21:32). Lower: Non-Sun-synchronous satellite Akebono in

elliptical orbit.
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Molniya-3-51
Elliptical orbit - Gr. track

Recurrence = [ 2; +0;  1]   2

2013 06 01 00:00:00 UTC  >>>   1440.0 min =   1.00 day

night ECLIPSE night 0 15 30 45 60 75 90Eclipse and Sun elev. 01 JUN01 JUN

Equiv. altit.  =  20166.8 km

e = 0.751163

a =26544.934 km

CRITICAL Inclin. =  63.48 °

Period =   717.40 min    * rev/day = 2.01

h_a =  40122 km;  h_p =  243 km;  arg. perigee:  +254.45 °

[NORAD] 2013 05 21 15:51:08 UTC//R=  8674

Asc. Node:   -103.33 ° [08:58 LMT]

Apogee   :     54.07 °

Projection:  Miller

Property:   none

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;   50.0 °E

Aspect:  Direct

{4.2} [ +90.0/  +0.0/-140.0] [-]    PZ-90
MC LMD

Fig. 10.30 :Orbital ground track of the satellite Molniya-3-51, indicating periods of

eclipse.



Chapter 11

Orbit Relative to the Earth:

Recurrence and Altitude
In this chapter, we discuss the position of the satellite orbit relative to

the Earth. There are two distinct parts. The first concerns the position of the
satellite ground track relative to the Earth, and the second the altitude of the
satellite measured from the terrestrial ellipsoid.

11.1 Recurrence Constraint

11.1.1 Definition of Recurrence

In observation missions using LEO satellites, one often requires repeated
coverage of the Earth, in the sense that the satellite must periodically overfly
the same points of the Earth’s surface. This means that, for a given point,
one is sure to recover geometrically identical observing conditions with this
periodicity. Such a recurrence constraint on the mission imposes specific char-
acteristics on the orbital elements.

The recurrence period after which the satellite ground track repeats itself
exactly on the Earth’s surface is called the recurrence cycle, but also the repeat
cycle. This corresponds to the cycle relative to the Earth and we denote its
value by CT, where the subscript T stands for “terrestrial”, just as we denoted
the cycle relative to the Sun by CS in the last chapter.

When recurrence has been achieved, the ground track of the satellite forms
a fixed grid with respect to the Earth, which covers the globe between the
highest attained latitudes. One point on the grid (the ascending node is gener-
ally chosen) fixes the whole thing. We shall study this recurrence grid below.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 11,
© Springer International Publishing Switzerland 2014
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The calculational methods developed here to analyse recurrence remain
valid even if the satellite has an eccentric orbit. However, in practice, all
recurrent LEO satellites are in near-circular orbits. On the other hand, recur-
rence is not restricted to LEO satellites, but is used for MEO satellites and
HEO communications satellites.

Daily Recurrence Frequency

The precession angle, i.e., the Euler angle α1 in our notation, plays a key
role in the study of recurrence. Using (7.37) and (8.17), we obtain

α̇1 = −(Ω̇T − Ω̇) = − 2π

DM

(
1 +

1− P

N ′
yr

)
, (11.1)

α̇1 = −nd

κ
, (11.2)

where N ′
yr, DM, P , and κ are as defined in Chap. 7.

The daily recurrence frequency defined by (7.43), viz.,

κ =
ν

1 +
1− P

N ′
yr

, (11.3)

allows one to compare the Earth’s rotation, the satellite motion, and its nodal
precession via the angular speeds. It is close to ν, the daily orbital frequency,
but it is not the same, except for Sun-synchronous satellites. Indeed only in
the latter case do we have κ = ν, since P = 1.

11.1.2 Calculating the Recurrence Cycle CT

The intersection of the ascending ground track of the satellite with the
equator defines an ascending node of longitude λ0. If the satellite is recurrent,
its ground track will pass precisely through this point λ0 on the equator, CT

days later. The satellite will have made a whole number of round trips between
these two crossings. The number of round trips is denoted by NTo , whereas
CT is an arbitrary real number, unlikely to be an integer. Throughout the rest
of this chapter, we shall attach the subscript “o” to whole numbers (integers)
entering our calculations.

From the above discussion, we obtain the following relation which gives the
length L of the time interval between the two crossings at the same ascending
node λ0 :

L = CTDM = NToTd . (11.4)

During this time L, the orbital plane makes a whole number of round trips,
denoted by ko, relative to the frame �T, since the ground track returns exactly
to an earlier position. This yields
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L(Ω̇T − Ω̇) = 2πko . (11.5)

Equations (11.4) and (7.43) now imply

NToTd
nd

κ
= 2πko ,

which gives (since Td = 2π/nd)

κ =
NTo

ko
.

This relation shows that, for a recurrent satellite, the parameter κ which we
have called the daily recurrence frequency is a rational number:

recurrent satellite ⇐⇒ κ rational . (11.6)

In terms of the daily orbital frequency ν, we have

CTDM = NTo

DM

ν
,

which implies that the cycle relative to the Earth is

CT =
NTo

ν
. (11.7)

The whole number ko defined above, which represents a whole number of days,
will be denoted by CTo . Hence,

CTo =
NTo

κ
. (11.8)

In the general case, we distinguish the recurrence cycle CT from the integer
recurrence cycle CTo . In the special case of Sun-synchronous satellites (and it
should be noted that this type of satellite covers most cases of recurrence), CT

and CTo coincide, since in this case κ = ν. This means that, for a recurrent
satellite:

• If it is Sun-synchronous, its ground track always returns to the same point
at the same time, i.e., at the end of a whole number of days, and CT is an
integer.

• If it is not Sun-synchronous, its ground track returns to a given point at
different times, and CT is not an integer.

Relationship with Cycle Relative to the Sun

The cycle CS relative to the Sun and the cycle CT relative to the Earth
both depend on the orbital characteristics, but not in a one-to-one manner.
The orbital parameters of a satellite can be varied in such a way that, for
example, CS remains constant while CT takes any value we wish.
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However, a useful relation can be brought out concerning the difference
CT − CTo and the cycle CS. From the definitions of CS, CT, CTo , P , and κ,
we may write

ν

κ
= 1− 1

CS
, (11.9)

CT − CTo

CT
= 1− CTo

CT
= 1− ν

κ
=

1

CS
.

We thus obtain CT, given CTo and CS :

CT =
CTo

1− 1/CS
. (11.10)

For a Sun-synchronous satellite, CT = CTo , since CS is infinite.

11.1.3 Recurrence Triple

The rational number κ, the daily recurrence frequency, can thus be ex-
pressed in the form

κ =
NTo

CTo

. (11.11)

It can be written as the sum of an integer and a positive or negative fractional
part with modulus less than 1/2:

κ = νo +
DTo

CTo

. (11.12)

In this expression, νo is the whole number closest to κ and DTo is the unique
integer such

DTo = NTo − νoCTo . (11.13)

Hence,

⎧⎨
⎩

|DTo | <
1

2
CTo ,

|DTo | and CTo coprime .

We shall call the triple of numbers νo, DTo , and CTo the recurrence triple of
the satellite, written

[νo , DTo , CTo ] .

The recurrence of a satellite orbit can thus be defined equivalently via the
recurrence triple or the pair of whole numbers NTo and CTo .
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The value of κ obtained in this way from (11.11) or from (11.12) thus
yields ν via (11.3), and hence the period or mean motion, after an iterative
calculation on P . The period in minutes is given as a function of NTo , CTo ,
and P by

Td (min) = 1440
CTo

NTo

(
1 +

1− P

N ′
yr

)
. (11.14)

This iterative calculation involves making a first estimate of T , which gives
a, and using a with i to obtain P . This in turn gives a new value of T . The
iteration converges rapidly to give a final value for the period.

We provide example calculations below. Naturally, all these calculations
are much simpler for a Sun-synchronous satellite, since P = 1. It is for this
reason that we separate the following discussion into two parts, depending on
whether the satellite is Sun-synchronous or not.

11.2 Recurrence of Sun-Synchronous LEO

Satellites

11.2.1 Method for Obtaining Recurrence

We have seen that the altitude of a Sun-synchronous satellite in near-
circular orbit lies between the theoretical bounds h = 0 and h = 5,964km,
which corresponds to values of the daily orbital frequency of ν = 17.03 and
ν = 6.34 respectively. In current practice, when h is situated between 400 and
1,000km, ν varies between 15.5 and 13.8 round trips per day.

For a Sun-synchronous satellite, it is a simple matter to obtain recurrence
conditions since ν = κ. The daily orbital frequency ν = ν(a), which only
depends on a here, since i and a are related, is a rational number which can
be written in the form

ν = νo +
DTo

CTo

. (11.15)

The satellite ground track repeats every CTo days, after NTo = νCTo

revolutions.

11.2.2 Recurrence Module

Presentation

We begin with a simple example, considering satellites with frequency ν
between 14 and 15:

• If the satellite recurrence cycle is 1 day, we have ν = 14 or 15.
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• If it is 2 days, then during this 2 day cycle, it makes NTo = 28, 29, or 30
round trips. But if NTo = 28 or 30, recurrence has already been taken into
account by CTo = 1 day. There thus remains the recurrence NTo = 29,
represented by the triple [14 , 1 , 2].

• If it is 3 days, then during this 3 day cycle, it makes NTo = 42, 43, 44, or
45 revolutions. There remain the recurrences NTo = 43 or 44, represented
by the triples [14 , +1 , 3] and [15 , −1 , 3].

And so on and so forth.

Establishing the Recurrence Module

The recurrence module represents the possible recurrences for an interval
[νo, νo + 1]. For each value of CTo , represented on the horizontal axis, we
indicate the possible recurrences opposite the corresponding value of ν on
the vertical axis. If CTo is a prime number, all possible values of DTo are
represented. Otherwise, the only values ofDTo represented are those such that
the numbers CTo and |DTo | are coprime, i.e., they have no common factors.
In its relationship with the prime numbers, this diagram is reminiscent of the
sieve of Eratosthenes.1 Figure 11.1 exemplifies2 for CTo < 38.

If we stack up all these modules for different successive values of νo, we
obtain the recurrence diagram. We replace the scale linear in ν by a scale
linear in altitude.3

11.2.3 Recurrence Diagram

The recurrence diagram is designed as an aid to visualising the altitudes
leading to different recurrence situations. It is basically a graph in which the
altitudes, from lowest to highest, are marked on the ordinate axis and the
recurrence cycles (in days) on the abscissa.

1Eratosthenes of Cyrene (284–192 bc), � 
3����/4�� 	� ��	, was a Greek astronomer,
mathematician, and geographer. He discovered a systematic method for obtaining the se-
quence of prime numbers up to any desired value. One writes down the sequence of positive
integers, then crosses out the multiples of 2, of 3, of 5, and so on. This method, which sifts
the positive integers, keeping only the primes, is known as the sieve of Eratosthenes. His
abilities as an astronomer and geographer are revealed by a scientific and relatively accurate
measurement of the Earth’s radius, in which he measured the shadow cast by a column in
Alexandria at noon on a day when he knew that the Sun’s rays reached the bottom of the
wells in ancient Syene (Assouan), the day of the summer solstice at Syene, under the Tropic
of Cancer. He determined the obliquity of the ecliptic and estimated at 47◦42′ the arc of
the meridian between the two tropics.

2Such a graph can also be interpreted by identifying the values of DTo . Taking for
example DTo = ±7, this value appears for all values of CTo greater than 2× |DTo | = 14,
except for CTo = 21, 28, 35, etc., that is, multiples of 7.

3It is only when we change from ν to a or h that the type of orbit (inclination, Sun-
synchronous or otherwise) becomes relevant. The recurrence module is established without
referring to any particular type of satellite and is even independent of the notion of satellite!
The only condition is that the phenomenon under consideration should occur uniformly in
time.
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Fig. 11.1 :Recurrence module. Vertical axis: daily frequency (rev/day), lying between

two integer values νo and νo + 1. Horizontal axis: recurrence cycle (day).

For each value of νo, and for each cycle CTo , the quantity DTo is varied
over its range of possible values and ν is obtained from (11.15). This in turn
gives the mean motion n and draconitic period T = Td. We thus obtain the
altitude and inclination, calculating a and i by an iterative method, as in
Example 7.3, or Examples 11.1 and 11.2 below.

The value obtained is then marked on the diagram. In Fig. 11.2, these
values are marked by small squares. When the value of DTo is absent, replaced
by a dot, this means that there is strictly speaking no recurrence. In Figs. 11.3,
11.4, and 11.5, the value of DTo has been noted explicitly in each case.

The diagram gives an overview of the possibilities for recurrence. For short
cycles, we see that these possibilities are limited to a handful of values. Be-
tween 450 and 1,000km, there is only one possible altitude for a 2 day re-
currence cycle (h = 720 km for Oceansat-2) and only three possible altitudes
for a 3 day cycle. On the other hand, for long cycles, there are more oppor-
tunities, especially if CTo is a prime number. For CTo = 31, there are about
120 possibilities between 0 and 1,200km, or roughly one available altitude for
recurrence every 10 km.
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Fig. 11.2 :Recurrence diagram for Sun-synchronous satellites. For altitudes between

0 and 1,250 km, small squares indicate those values of the altitude h (km) and the

semi-major axis a (km) for which recurrence is possible. Horizontal axis: recurrence

cycle (days). Vertical axis: daily frequency ν (rev/day).
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Fig. 11.3 :Recurrence diagram for Sun-synchronous satellites. For altitudes between

320 and 540 km, possible recurrences are indicated by specifying DTo . Boxed val-

ues correspond to satellites appearing in Tables 11.1 and 11.3. For example, for

TerraSAR-X, we have the triple [15, +2, 11], whence νo = 15 (the integer closest to

ν, as ordinate), DTo = +2 (indicated on the diagram), and CTo = 11 (abscissa), 11

day cycle.
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Fig. 11.4 :Recurrence diagram for Sun-synchronous satellites. For altitudes between

540 and 760 km, possible recurrences are indicated by specifying DTo . Boxed values

correspond to satellites appearing in Tables 11.1 and 11.3. For example, for Terra,

we have the triple [15, −7, 16], whence νo = 15 (the integer closest to ν, as ordinate),

DTo = −7 (indicated on the diagram), and CTo = 16 (abscissa), 16 day cycle.



11.2 Recurrence of Sun-Synchronous LEO Satellites 497

1 2 3 4 5 6 7 8 10 12 14 16 18 20 22 24 26 28 30 32

14.25

14.00

13.75

760

780

800

820

840

860

880

900

920

940

960

980

7160

7210

7260

7310

7360

   0

 + 1

 + 1

 + 1

 + 1

 + 1

 + 2

 + 1

 + 1

 + 2

 + 1

 + 3

 + 1

 + 2

 + 3

 + 4

 + 1
 + 1

 + 2

 + 3

 + 4

 + 1

 + 3

 + 5

 + 1

 + 2

 + 4

 + 1

 + 3

 + 5

 + 1

 + 2

 + 3

 + 4

 + 5

 + 6

 + 1

 + 5

 + 1

 + 2

 + 3

 + 4

 + 5

 + 6

 + 7

 + 1

 + 3

 + 7

 + 1

 + 2

 + 4

 + 5

 + 1

 + 3

 + 5

 + 7

 + 1

 + 2

 + 3

 + 4

 + 5

 + 6

 + 7

 + 8

 + 1

 + 5

 + 7

 + 1

 + 2

 + 3

 + 4

 + 6

 + 7

 + 8

 + 9

 + 1

 + 3

 + 5

 + 7

 + 9

 + 1

 + 2

 + 4

 + 5

 + 7

 + 8

 +10

 + 1

 + 3

 + 5

 + 9

 + 1

 + 2

 + 3

 + 4

 + 5

 + 6

 + 7

 + 8

 + 9

 +10

 + 1

 + 7

 +11

 + 1

 + 2

 + 3

 + 4

 + 5

 + 6

 + 7

 + 8

 + 9

 +10

 +11

   0

 - 1

 - 1

 - 1

 - 

 - 1

 - 1

 - 2

 - 1
 - 1

 - 3

 - 2

 - 1
 - 1

 - 3

 - 2

 - 1

 - 3

 - 1

 - 4

 - 2

 - 1

 - 3

 - 1

 - 4

 - 3

 - 2

 - 1

 - 5

 - 1

 - 5

 - 4

 - 3

 - 2

 - 1

 - 3

 - 1

 - 5

 - 4

 - 2

 - 1

 - 5

 - 3

 - 1

 - 6

 - 5

 - 4

 - 3

 - 2

 - 1

 - 5

 - 1

 - 7

 - 6

 - 4

 - 3

 - 2

 - 1

 - 7

 - 5

 - 3

 - 1

 - 7

 - 5

 - 4

 - 2

 - 1

 - 5

 - 3

 - 1

 - 8

 - 7

 - 6

 - 5

 - 4

 - 3

 - 2

 - 1

 - 7

 - 1

 - 8

 - 7

 - 6

 - 5

 - 4

 - 3

 - 2

 - 1

Landsat-3

JPSS

SPOT
MetOp[0]

MOS-1B

IRS-1B

ResurS-2

Radarsat

CBERS
ERS-1[2]

Coriolis

ADEOS-2

FormoSat-2

NPP

MetOp

HY-1

HY-2[1]

Sent-2

Sent-3

IRS-1D

Recurrence / Sun-synchronous satellites
Repeat cycle (days)(km) (km)(rev/d)

ha

Fig. 11.5 :Recurrence diagram for Sun-synchronous satellites. For altitudes between

760 and 980 km, possible recurrences are indicated by specifying DTo . Boxed values

correspond to satellites appearing in Tables 11.1 and 11.3. For example, for MetOp-

A and -B, we have the triple [14, +6, 29], whence νo = 14 (the integer closest to ν,

as ordinate), DTo = +6 (indicated on the diagram), and CTo = 29 (abscissa), 29

day cycle.
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11.2.4 Recurrence Defined by the Recurrence Triple

Recurrent Sun-synchronous satellites are defined by the recurrence triple.
All Sun-synchronous satellites with the same recurrence triple have the same
period, and hence the same values of a and i. (They even share the same value
of e, because the orbit is frozen, as we shall see at the end of the chapter.)
The recurrence triple thus defines the orbit. We may speak of the SPOT orbit
for all satellites having the same recurrence triple as SPOT-1.

Table 11.1 provides an exhaustive list of the recurrence triples of all recur-
rent Sun-synchronous satellites to our knowledge:

• satellites whose mission has now ended, like Landsat-3,
• satellites still in activity, like Terra,
• satellite projects, like the Sentinel missions,
• satellites belonging to projects that have now been abandoned, like ERM.

Numbers in square brackets, e.g., [1], [2], indicate that the recurrence changes
during the mission, while [0] indicates that recurrence was planned but aban-
doned before launch. For EarthCARE, in Table 11.3 we give all the planned
recurrence cycles, which changed over time as the launch date was pushed
back.4

Figures 11.3, 11.4, and 11.5 show the recurrence diagram over a limited
range of altitudes (h between 320 and 990km) and cycles (CTo from 1 to 31
days). Recurrence possibilities are indicated in each case with DTo , CTo , and
νo, deduced from ν. Values in use by satellites in Tables 11.1, 11.2, and 11.3
are boxed.

Note that the draconitic period is given in minutes by

Td (min) = 1440
CTo

NTo

, (11.16)

which is the adaptation of (11.14) to Sun-synchronous satellites. When the
orbit of a Sun-synchronous satellite is defined by its recurrence cycle CTo and
its approximate altitude, one must determine the recurrence triple, then return
to the previous case. The altitude can be used to obtain ν, which gives νo.
Once the cycle CTo is known, one can deduce NTo using an iterative method,
then obtain DTo .

Example 11.1 Calculate the characteristics of the SPOT orbit.

4The European mission ERM (Earth Radiation Mission) was supposed to come into
operation around 2006, during a minimum of solar activity, thus allowing a very low altitude
orbit. Following an agreement between the ESA and JAXA, ERM was merged with the
Japanese project ATMOS-B1 to give EarthCARE. The launch date was postponed and the
altitude increased, following the heightened solar activity which reached the culmination of
its 11 year cycle in 2012. When the launch date was planned after the solar maximum, a
lower altitude was chosen.
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Sun-syn sat. νo DTo CTo NTo Td a h iHS

Landsat-3 14 −1 18 251 103.27 7,285.799 908 99.09
Terra 15 −7 16 233 98.88 7,077.738 700 98.21
OrbView-3 15 +5 16 245 94.04 6,844.207 466 97.30
Ikonos-2 15 −5 14 205 98.34 7,051.765 674 98.11
QuickBird-2 15 +7 18 277 93.57 6,821.490 443 97.21
Coriolis 14 +1 8 113 101.89 7,223.450 845 98.82
AIM 15 −2 23 343 96.56 6,966.149 588 97.76
Aquarius [0] 15 −1 8 119 96.81 6,978.050 600 97.81
Aquar./SAC-D 15 −2 7 103 97.86 7,028.876 651 98.01
NEMO 15 −1 7 104 96.92 6,983.652 606 97.83
Suomi-NPP 14 +3 16 227 101.50 7,202.173 824 98.73
JPSS-1 14 +3 17 241 101.57 7,205.917 828 98.75
HypsIRI 15 −1 5 74 97.30 7,001.653 624 97.90
SCLP [1] 15 +1 6 91 94.95 6,888.104 510 97.46
SCLP [2] 15 +2 15 227 95.09 6,898.237 520 97.50
SMAP 15 −3 8 117 98.46 7,057.515 679 98.13

SPOT-5 14 +5 26 369 101.46 7,200.546 822 98.72
Hélios-2B 15 −10 27 395 98.43 7,056.025 678 98.12
Pléiades-1B 15 −11 26 379 98.79 7,073.059 695 98.19
Merlin 15 +5 28 425 94.87 6,884.494 506 97.45
e-Corce 15 −11 104 1,549 96.68 6,972.027 594 97.79
Envisat 14 +11 35 501 100.60 7,159.496 781 98.55
ERS-1 [2] 14 +1 3 43 100.46 7,153.138 775 98.52
ERS-1 [3] 14 +59 168 2,411 100.34 7,147.192 769 98.50
MetOp-B 14 +6 29 412 101.36 7,195.606 817 98.70
MetOp [0] 14 +1 5 71 101.41 7,197.940 820 98.71
TerraSAR-X 15 +2 11 167 94.85 6,883.512 505 97.45
COSMO-SkyM 15 −3 16 237 97.22 6,997.705 620 97.89
ADM-Aeolus 16 −3 7 109 92.48 6,767.956 390 97.02
EnMAP 15 −6 23 339 97.70 7,020.958 643 97.98
Sentinel-1 15 −5 12 175 98.74 7,070.980 693 98.18
Sentinel-2 14 +3 10 143 100.70 7,164.272 786 98.57
Sentinel-3 14 +7 27 385 100.99 7,177.940 800 98.63
HypXIM 15 −6 19 279 98.06 7,038.490 660 98.05
Z-Earth 15 +39 274 4,149 95.10 6,895.497 517 97.49

MOS-1B 14 −1 17 237 103.29 7,286.941 909 99.10
JERS-1 15 −1 44 659 96.15 6,946.179 568 97.69
ADEOS-1 14 +11 41 585 100.92 7,174.906 797 98.61
ADEOS-2 14 +1 4 57 101.05 7,181.058 803 98.64
ALOS 15 −19 46 671 98.66 7,069.809 692 98.18
ALOS-2 15 −3 14 207 97.39 7,006.172 628 97.92
Ibuki (GOSat) 15 −1 3 44 98.18 7,044.114 666 98.07
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Sun-syn sat. νo DTo CTo NTo Td a h iHS

IRS-1B 14 −1 22 307 103.19 7,282.277 904 99.08
IRS-1D 14 +8 25 358 100.56 7,157.585 779 98.54
Resourcesat-2 14 +5 24 341 101.35 7,195.119 817 98.70
Oceansat-2 14 +1 2 29 99.31 7,098.105 720 98.29
RISat-1 [1] 15 −1 12 179 96.54 6,965.021 587 97.76
RISat-1 [2] 15 −18 119 1,767 96.98 6,986.291 608 97.84
Cartosat-1 15 −21 116 1,719 97.17 6,995.667 618 97.88
Cartosat-2 [1] 15 −1 4 59 97.63 7,017.502 639 97.97
Cartosat-2 [2] 15 −69 310 4,581 97.45 7,008.799 631 97.93

CBERS-2B 14 +9 26 373 100.38 7,148.868 771 98.50
HY-1 14 +2 7 100 100.80 7,169.058 790 98.59
HY-2 [1] 14 −3 14 193 104.46 7,341.734 964 99.34
HY-2 [2] 14 −37 168 2,315 104.50 7,343.852 966 99.35
HJ-1A 15 −9 31 456 97.89 7,030.346 652 98.02
HJ-1B 15 −1 4 59 97.63 7,017.501 639 97.96
CFOSAT 15 +2 13 197 95.03 6,891.997 514 97.48

Resurs-O1-3 15 −8 21 307 98.50 7,059.437 681 98.14
Kanopus-V-1 15 +3 17 258 94.88 6,885.131 507 97.45
Radarsat-2 14 +7 24 343 100.76 7,167.064 789 98.58
SAC-C 15 −4 9 131 98.93 7,079.991 702 98.22
SAOCOM-1A 15 −4 17 251 97.53 7,012.831 635 97.95
Arirang-1 15 −11 28 409 98.58 7,063.280 685 98.15
EROS-A1 15 +2 7 107 94.21 6,852.218 474 97.33
FormoSat-2 14 0 1 14 102.74 7,266.473 888 99.00
AlSat-2A 15 −10 29 425 98.26 7,047.805 670 98.09

Table 11.1 :Orbital characteristics of Sun-synchronous satellites obtained from the

recurrence triple [νo, DTo , CTo ], where νo is the whole number closest to the number

of revolutions per day, DTo is the whole number equal to NTo − νoCTo , CTo is the

recurrence cycle (whole number of days), and NTo is the number of revolutions per

cycle. The numbers in the triple give the draconitic period Td (min) and hence the

orbital characteristics: the semi-major axis a (km), the altitude h (km) obtained from

h = a−R, and the Sun-synchronous inclination iHS (deg). The satellites are grouped

by nationality in the following order: USA, France and Europe, Japan, India, China,

then other. Within each category, they are classified in chronological order.

� Concerning the orbit of the SPOT satellites, the recurrence triple is [14,
5, 26]. We observe that 5 and 26 are coprime and that 5 is less than 13. For
strict recurrence, the draconitic period is held at its exact value given by

Td = 1440
26

369
= 101.463min .
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Type Satellite on same type of orbit

Landsat-3 Landsat-1, -2
Terra Landsat-4, -5, -7, -8, EO-1
(Terra →) A-Train Aqua, Aura, CloudSat, Calipso, Parasol
(Terra →) A-Train GCOM-W1 (Shizuku), OCO-2
SPOT-5 SPOT-1, -2, -3, -4, THEOS
Pléiades-1B Pléiades-1A, SPOT-6
Hélios-2B Hélios-1A, -1B, -2A
Envisat ERS-1 [1], ERS-2
MetOp-B MetOp-A
COSMO-SkyMed HCMM, TerraSAR-L, HypSEO
ADEOS-2 QuikScat
GOSat EGPM
IRS-1B IRS-1A
Resourcesat-2 IRS-1C, -P2, -P3, -P6 (Resourcesat-1)
Oceansat-2 Oceansat-1, VEN�S
CBERS-2B CBERS-1, -2

Table 11.2 :Satellites on the same type of orbit as a satellite in Table 11.1.

Sun-syn sat. νo DTo CTo NTo Td a h iHS

ERM 16 −1 3 47 91.91 6,740.439 362 96.92
EarthCARE [1a] 16 −4 9 140 92.57 6,772.570 394 97.03
EarthCARE [1b] 15 +1 2 31 92.90 6,788.779 411 97.09
EarthCARE [1c] 15 +3 7 108 92.90 6,809.760 432 97.17
EarthCARE [2a] 15 +4 11 169 93.73 6,828.978 451 97.24
EarthCARE [2b] 15 +11 31 476 93.78 6,831.592 453 97.25
EarthCARE [3a] 16 −4 9 140 92.57 6,772.570 394 97.03
EarthCARE [3b] 16 −11 25 389 92.54 6,771.276 393 97.03

Table 11.3 :As for Table 11.1, but for the project ERM, which became EarthCARE.

The altitude increases, then decreases again, depending on the planned launch date

(pushed back several times). Possible altitudes depend on the 11 year solar cycle (see

Example 11.14).

To begin with, following the same lines as in Example 7.3, we set T0 = Td,
which gives the corresponding Keplerian values:

a0 = 7,206.1 km , i0 = iHS = 98.7◦ .

Using a0 and i0, we then calculate the relative values of the secular variations:

Δn

n0
= −0.593× 10−3 ,

ω̇

n0
= −0.564× 10−3 ,
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which yields a new value a1 for the semi-major axis:

Δa

a0
= −2

3
1.157× 10−3 , Δa = −5.6 km ,

a1 = a0 +Δa = 7,200.5 km .

The iterative calculation (one step is actually enough) delivers the semi-major
axis and the inclination as

a = 7,200.546 km , i = iHS = 98.723◦ .

Values given in the CNES documentation concerning SPOT are

a = 7,200.547 km , i = iHS = 98.723◦ ,

implying an altitude h = a−R = 822 km.
If the secular variations are calculated with the expansion cut off at the

term in J2, this yields the following values after iteration:

a′ = 7,200.537 km , i = iHS = 98.70◦ .

Comparing the various values found for the semi-major axis, we thus observe
that:

• The term a0 = 7,206.1km is obtained from the central term of the Newto-
nian acceleration (degree 0 of the potential).

• The difference |a′ − a0| = 5.6 km arises from the term of degree 2 (the J2
term) in the geopotential.

• The difference |a−a′| = 10m arises from the terms of degree 4 (the J2
2 and

J4 terms) and higher order in the geopotential.

Concerning the relative orders of magnitude of the values found for the semi-
major axis, viz.,

|a− a0| ∼ 10−3a0 , |a− a′| ∼ 10−3|a− a0| ,

we obtain the same values as in Chap. 6 when comparing orders of magnitude
of J2 and 1, then J4 and J2.

These theoretical values can also be compared with the actual values as
obtained from the NORAD elements. We select three dates, the first and
second, in 2003, being separated by 26 days, and the third being 7 years later,
in 2010:

SPOT 5

1 27421U 02021A 03040.18015505 .00000155 00000-0 93359-4 0 9661

2 27421 98.7244 116.8304 0000554 58.9354 301.1883 14.20029420 39902

SPOT 5

1 27421U 02021A 03066.18009415 .00000138 00000-0 85210-4 0 469

2 27421 98.7212 142.4627 0000619 93.4275 266.6981 14.20038040 43590
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SPOT 5

1 27421U 02021A 10005.18145090 .00000277 00000-0 15077-3 0 7284

2 27421 98.7528 81.1934 0001110 114.9171 272.2592 14.20012166397832

The orbital elements thereby obtained are as follows:

• Date (1): 9 February 2003, revolution 3,990: a = 7,200.542km, e = 5.54×
10−5, i = 98.7244◦, ω = 58.9354◦, λAN = 273.1277◦, τAN = 22:31:54.

• Date (2): 7 March 2003, revolution 4,359: a = 7,200.513km, e = 6.19×10−5,
i = 98.7212◦, ω = 93.4275◦, λAN = 273.1552◦, τAN = 22:31:55.

• Date (3): 5 January 2010, revolution 39,783: a = 7,200.603km, e = 11.10×
10−5, i = 98.7528◦, ω = 114.9171◦, λAN = 273.1249◦, τAN = 22:26:08.

Date (1). With 3,990 revolutions, the satellite completed 10 cycles of 26
days. It had been launched 281 days previously. The orbital parameters are
“nominal”.

Dates (1) and (2). These dates are separated by a cycle of 369 revolutions,
or 26 days. We note a discrepancy for λAN of 0.0275◦, or 3.0 km, less than
the tolerance of 5 km for recurrence. The elements a and i remain very close
to the theoretical values. However, e is much lower than the value needed to
freeze the orbit (see the end of the chapter). Consequently, there is a large
variation in ω around 90◦. The crossing time τAN is assured to within 2min,
which is well below the variations in solar time due to the equation of time.

Dates (2) and (3). Between these two dates, there were 39783 − 4359 =
35424 = 96× 369 revolutions, exactly 96 cycles of 26 days, or 2,496 days. �

Example 11.2 Calculate the orbital characteristics of the Terra orbit.

� For the orbit of satellites in the Terra family (see Table 11.2), the recurrence
triple is [15, −7, 16]. The draconitic period is maintained at

Td = 1440
16

233
= 98.884 (min) .

As before, we obtain

a0 = 7,083.4 km , i = iHS = 98.2◦ .

We then calculate the relative values of the secular variations:

Δn

n0
= −0.619× 10−3 ,

ω̇

n0
= −0.591× 10−3 ,

which gives the new value of the semi-major axis as a1 = 7,077.7km. By
iteration,
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a = 7,077.738 km , i = iHS = 98.211◦ .

We have seen that, although the value of a can be accurately determined,
the same cannot be said of the altitude, which varies due to the ellipticity
of the orbit and the Earth. (We return to this question at the end of the
chapter.) If we define the altitude h as the difference between a and the
equatorial radius R, the value of h is well determined. In the case of Terra, we
obtain h = 700km. The NASA documentation gives the value h = 705km for
all satellites in the Terra orbit, the altitude having been determined slightly
differently. �

Example 11.3 Calculate the orbital characteristics of the satellite ERS-1,
which has had three different recurrence cycles: 35 days, 3 days, and 168
days.

� The ESA satellite ERS-1 was launched on 17 July 1991. It flies at an altitude
of about 780km and its orbit is Sun-synchronous. It initially had a recurrence
cycle of 35 days. From 20 December 1993, a slight change of orbit brought the
cycle to 3 days, better suited to the study of ice flows during the arctic winter,
according to the mission controllers. A further maneuver brought the cycle to
168 days so that it could carry out geodetic observations. The satellite ERS-2,
launched on 21 April 1995, carried out a mission in tandem with ERS-1 until
10 March 2000.

We now calculate the triples for each recurrence cycle:

• Recurrence cycle 1. 35 day cycle over 501 revolutions:

ν1 =
501

35
= 14 +

11

35
=⇒ recurrence triple [14, 11, 35] .

• Recurrence cycle 2. 3 day cycle over 43 revolutions:

ν2 =
43

3
= 14 +

1

3
=⇒ recurrence triple [14, 1, 3] .

• Recurrence cycle 3. 168 day cycle over 2,411 revolutions:

ν3 =
2411

168
= 14 +

59

168
=⇒ recurrence triple [14, 59, 168] .

From Td, we calculate a and i by the above method. The results are given in
Table 11.1: ERS-1 recurrence cycle 1 as Envisat, ERS-1 recurrence cycles 2
and 3 as ERS-1 [2] and [3].

Cycle changes were brought about by going from ν1 to ν2 (obtained by
reducing the altitude by 6.358km), then from ν2 to ν3 (reducing the altitude
by 5.948km). Very small variations in altitude lead to totally different recur-
rence cycles, as can be seen very clearly from Fig. 11.2. These variations in
altitude are small enough to make them easy to calculate (without carrying



11.2 Recurrence of Sun-Synchronous LEO Satellites 505

out the above type of iteration), applying the relation for finite increments
already used:

Δν

ν
= −3

2

Δa

a
.

Setting

arec 1 = 7,159.496 km ,

we obtain

Δν = ν2 − ν1 =
1

3
− 11

35
,

Δν

ν1
=

2

3× 501
,

Δarec 1→rec 2 = −6.358 km .

Δν = ν3 − ν2 =
59

168
− 1

3
,

Δν

ν2
=

3

56× 43
,

Δarec 2→rec 3 = −5.946 km .

Note that a recurrence condition based on such a long time scale as CTo = 168
days is quite exceptional. Values of CTo do not generally exceed 45 days.

These three recurrence cycles are reconsidered in Example 11.16 to illus-
trate the notion of recurrence index. �

Example 11.4 Analysis of two images obtained by the satellite Envisat in
terms of its recurrence cycle.

� The first is the colour image of the Hawaiian islands shown in Fig. 11.6,
a combination of radar images acquired by the ASRA instrument on three
different dates:

Day 27 March 2006 ↔ 16 April 2007 ↔ 21 January 2008
MJD 53, 821 ↔ 54, 206 ↔ 54, 486
Time elapsed 385 280
Equal to 11× 35 8× 35

The ground track of the satellite crosses exactly the same place. The time
elapsed between these images is a multiple of 35 days, corresponding to En-
visages’s recurrence cycle CT. This is easier to check by converting to modified
Julian days (MJD) [see (7.67)].

The second is the image of the Yukon delta shown in Fig. 11.7, obtained
by combining images in the visible taken by the MODIS instrument at three
different dates separated by 4× 35 = 140 days and 35 days. �
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Fig. 11.6 :Radar image of Hawaii taken by Envisat. This image, looking north, shows

six of the eight main volcanic islands of Hawaii. On the large island, Mauna Kea

is visible, the highest point (4,205m), and further south, Mauna Loa (4,170m),

an active volcano under surveillance. Orbiting radars, like the Advanced Synthetic

Aperture Radar instrument (ASAR) on board Envisat, can monitor small changes

in land movements. Radar interferometry combines different radar images mathe-

matically. Such images are acquired as close as possible to the same point in space

but at different times, in order to build numerical models of land levels. Kilauea is

another of the most active volcanoes on Earth, situated in the south of the island

in the regions appearing in red and pink. This image was made by combining three

shots of the same region acquired by Envisat’s ASAR radar on 27 March 2006, 16

April 2007, and 21 January 2008, then associating a different colour code with each.

The colours appearing on the combined image result from the changes occurring be-

tween the shots. The time elapsed between these shots is a multiple of 35 days, the

recurrence cycle of the satellite, as explained in Example 11.4. Credit (image and

caption): ESA.

11.2.5 One-Day Recurrence Cycle

For LEO satellites (at least, for those which observe the Earth), 1-day
recurrence cycles are avoided. Indeed, if such a satellite views exactly the same
regions every day, many other places must necessarily be missed out, unless
the instruments have a very wide field of view. Those altitudes between 0 and
1,250km giving a 1-day recurrence cycle appear in the recurrence diagram of
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Fig. 11.7 : Image of the Yukon delta taken by Envisat (MERIS instrument). This

Envisat image features the Yukon delta in Alaska, where the Yukon River fans out

into a labyrinth of distributaries, before emptying into the Bering Sea. This image

was created by combining three Envisat images (19 November 2009, 8 April 2010, and

13 May 2010) over the same area. The time elapsed between these shots is a multiple

of 35 days, the recurrence cycle of the satellite, as explained in Example 11.4. The

Medium Resolution Imaging Spectrometer (MERIS) is a programmable, medium-

spectral resolution, imaging spectrometer operating in the solar reflective spectral

range. VIS-NIR: 15 bands selectable across range 390–1,040 nm. Spatial resolution:

ocean 1,040 × 1,200m, land and coast 260 × 300m. Credit (image and caption):

ESA.

Fig. 11.2 and are also indicated in Table 11.6. The corresponding recurrence
triples are of the form [νo, 0,1].

The only case of a Sun-synchronous LEO satellite with 1-day recurrence
cycle is Taiwan’s FormoSat-2 (launched under the name of Rocsat-2, Republic
of China Satellite). The triple [14, 0, 1] induces a recurrence grid that has been
put to very judicious use in connection with the geographic position of Taiwan.
We shall return to this point regarding recurrence grids later.



508 Chapter 11. Orbit Relative to the Earth: Recurrence and Altitude

Non-Sun-sync νo DTo CT NTo Td a h i

Seasat 14 +8 25.07 358 100.85 7,173.367 795 108.00
Geosat [GM] 14 +1 3.01 43 100.76 7,169.140 791 108.10
� Geosat 14 +6 17.05 244 100.62 7,162.520 784 108.00
� T/P 13 −3 9.92 127 112.42 7,714.433 1,336 66.04

W-HM 14 −8 20.87 286 105.08 7,371.535 993 78.00
SWOT[1a] 14 −1 2.98 41 104.71 7,354.239 976 78.00
SWOT[1b] 14 −7 21.86 301 104.60 7,348.756 971 78.00
SWOT[2a] 14 +3 21.86 311 101.21 7,188.822 811 78.00
SWOT[2b] 14 +1 21.86 309 101.87 7,220.125 842 78.00
SWOT[2c] 14 −1 21.86 307 102.54 7,251.763 873 78.00
SWOT[2d] 14 −3 21.86 305 103.21 7,283.745 906 78.00
SWOT[2e] 14 −5 21.86 303 103.90 7,316.073 938 78.00

ICESat[c] 15 −1 7.99 119 96.68 6,971.522 593 94.00
ICESat 15 −22 182.75 2,723 96.65 6,970.030 592 94.00
ICESat-2 15 −12 90.88 1,353 96.72 6,973.663 596 94.00
CryoS[c] 14 +1 1.99 29 99.10 7,087.810 710 92.00
CryoSat-2 14 178 368.24 5,344 99.25 7,094.553 716 92.00

UoSAT-12 15 −3 6.92 102 97.73 7,026.467 648 64.50
CoRoT 14 −1 15.96 223 103.04 7,274.323 896 90.00
Megha-Trop. 14 −1 6.87 97 101.93 7,243.679 866 20.00
TRAQ 14 +1 2.96 43 99.17 7,098.043 720 57.00

Table 11.4 :Recurrence triple [νo, DTo , CTo ] and number of revolutions NTo per cycle

for various non-Sun-synchronous satellites, giving the draconitic period Td (min) and

orbital characteristics: semi-major axis a, altitude h (km), and inclination i (deg).

The cycle in days is CT and CTo is obtained from (11.13) (it is usually the whole

number closest to CT). � T/P is the common orbit of TOPEX/Poseidon, Jason-

1, and Jason-2. � Geosat is the common orbit of Geosat [ERM] and GFO. W-HM:

Water-HM. The recurrence cycle for the calibration orbit preceding the main mission

is denoted by [c]. Satellites are grouped according to type of mission: oceanographic–

altimetric, ice studies, other. Within each category, classification is by chronological

order.

11.3 Recurrence for Non-Sun-Synchronous LEO

Satellites

11.3.1 Obtaining the Recurrence Triple

For a non-Sun-synchronous satellite, recurrence is defined by the recur-
rence cycle CTo , in a whole number of days, differing here from the cycle CT.
To determine the recurrence triple, the altitude and inclination must also be
known, with a certain interval of possible variation.
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Fig. 11.8 : In Indian culture, the word megha is pregnant with meaning, being as-

sociated with a famous poem called Meghaduta, “the cloud messenger”. Its author

Kalidasa lived in the north of India in the fifth century and is one of the most fa-

mous classical authors of Sanskrit literature. The hero of the poem is exiled for 1

year in the center of India. After 8 months of clear skies, he finally spots a cloud

and asks it to carry a message to his wife, who remains at home in the foothills of

the Himalayas. He tells the cloud of all the splendid sights awaiting it on the journey

to the north. Already highly charged symbolically with the connotations of the word

“cloud”, this particular cloud, the messenger, will announce the monsoon.

The daily recurrence frequency is given by (11.3), where ν = ν(a, i) and
P = P (a, i). We calculate the product κCTo , allowing a and i to vary until
we obtain a whole number, which then represents NTo . With this value, we
obtain νo, the integer closest to κ, and by NTo = νoCTo+DTo , we obtain DTo .
This gives the recurrence triple [νo, DTo , CTo ] and the value of CT. Recall that
CT and CTo are given by (11.7) and (11.8).

Table 11.4 gives the main recurrent, non-Sun-synchronous satellites. These
are mostly oceanographic satellites (altimetry) or projects to monitor ice cover
in the polar regions. In the latter category, there are some very long recurrence
cycles, e.g., 183 days for ICESat. This satellite carries just one instrument,
a laser altimeter. The cycle guarantees that the satellite will not repeat its
ground track before half a year has gone by.

The table also shows future satellites, such as SWOT, or abandoned
projects like WatER-HM or TRAQ.

Example 11.5 Choice of orbit for Megha-Tropiques.

� In 1994, in order to study meteorological phenomena in the intertropi-
cal region, a group of researchers mainly associated with the Laboratoire de
météorologie dynamique (LMD) of the French national research organisation
(CNRS) had the idea of a satellite to be called Tropiques that would follow
a circular orbit at a rather high altitude (h ∼ 1,000km) and low inclination
(i ≈ 15◦). For economic and political reasons, a collaboration with India trans-
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a P ν κ κCTo

7,700.000 −2.1207 12.84404 12.73522 127.3522
7,710.000 −2.1111 12.81908 12.71080 127.1080
7,720.000 −2.1016 12.79419 12.68646 126.8646

7,714.433 −2.1069 12.80803 12.70000 127.0000

Table 11.5 :Recurrence triple of TOPEX/Poseidon. Determination of the semi-

major axis a, in km, in terms of the recurrence parameters P , ν, κ, and CTo

(dimensionless).

κ i = 20 i = 65 i = 110 i = iHS

h h h h iHS

16 176.4 214.9 294.6 268.1 96.6
15 478.6 511.6 583.1 561.0 97.7
14 814.4 842.5 906.1 888.3 99.0
13 1,191.1 1,214.5 1,270.6 1,257.1 100.7

Table 11.6 :Orbital and recurrence characteristics for satellites with a 1-day recur-

rence cycle. Non-Sun-synchronous satellites with three different inclinations and re-

sult for Sun-synchronous satellites. Altitudes h are in km and angles i in degrees.

The orbital frequency κ (equal to νo here) is in rev/day.

formed this French project into a joint Indian–French venture (ISRO-CNES),
and it was renamed Megha-Tropiques, the Sanskrit word megha meaning
“cloud” (see Fig. 11.8). The inclination of the orbit was changed to 20◦ so
that the Himalayas would be correctly viewed, and the altitude was reduced
for technical reasons related to the new instruments it would carry. This choice
of altitude, fixed at 817 km, put the satellite at less than 3 km from the alti-
tude for a 1-day recurrence satellite (see Table 11.6). To avoid this situation,
which would be unsuitable even for a meteorological satellite, it was decided
to impose a 7 day recurrence cycle, to take it away from the altitude range to
be avoided. Figure 11.9 (lower) clearly shows the situation here. There were
two possibilities:

• the triple [14, +1, 7], NTo = 99, with h = 764km,
• the triple [14, −1, 7], NTo = 97, with h = 866km.

After weighing up the options, the higher altitude was chosen to obtain better
sampling. With the triple [14, −1, 7], calculation gives a = 7,243.700km and
CT = 6.87 days (see Table 11.4). �

Example 11.6 Calculate the recurrence triple and exact altitude for the satel-
lite TOPEX/Poseidon, which has a 10 day cycle and inclination i = 66.04◦.
Its altitude is around 1,335 km.
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� The French–US satellite TOPEX/Poseidon comprises the US platform
TOPEX (Topography Experiment for Ocean Circulation) and the French alti-
metric instrument Poseidon, equipped with the DORIS system (Détermination
d’Orbite et Radiopositionnement Intégrés par Satellite). Poseidon is used
to calculate the orbit to within a radial accuracy of 2 cm, whence the
mean altitude of the oceans can be measured to the same accuracy. The
TOPEX/Poseidon experiment is being continued by Jason-1 then Jason-2,
which use exactly the same orbit (the shift in the ground track is discussed
below).

To obtain the recurrence characteristics, treating the inclination as fixed at
i = i0 = 66.040◦, we vary a between 7,700 and 7,720km (see Table 11.5). By
interpolation, we seek the value of a leading to the integer value κCTo = 127.
With a further iteration, we obtain the result

a = 7,714.433 km , i = 66.040◦ .

We calculate the period from these elements:

T = 1440
10

127

(
1 +

1− P

Nyr

)
= 1440

10

127

(
1 +

3.1069

365.25

)
= 112.4295min ,

Td = 112.4295min , Ta = 112.4184min .

The recurrence triple is

κ =
127

10
= 13 +

−3

10
=⇒ [13, −3, 10] .

The reference values communicated by TOPEX/Poseidon are

a = 7,714.429 km , i = 66.040◦ .

Every 127 revolutions, the satellite repeats its ground track precisely. However,
the time elapsed between two passages is not exactly 10 days, but 9.92 days.
Indeed,

CT =
127

ν
=

127

12.8080
= 9.9156 d = 9 d 21h 58m 27 s .

In 10 days, the satellite thus gains 2 h 01m 33 s = 2.043h on its local crossing
time. After 117.45 days, it has gained 117.45× 0.2043 = 24.00, or one whole
day, as we have seen in Example 10.1, where CS = −117.45 corresponds to the
cycle relative to the Sun. The relation between CTo and CT can be obtained
directly from (11.10).

Let us now compare these theoretical values with those obtained using
NORAD data:

TOPEX/Poseidon

1 22076U 92052A 93190.75462958 0.00000008 00000+0 00000-4 0 2807

2 22076 66.0427 282.2676 0008056 266.3864 93.6223 12.80931157 42638
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JASON-1

1 26997U 01055A 03288.89652066 -.00000061 00000-0 00000-0 0 1739

2 26997 66.0429 52.6556 0007659 261.4013 98.6134 12.80929092 86743

JASON-2 (OSTM)

1 33105U 08032A 13157.85878517 -.00000037 00000-0 10349-3 0 6348

2 33105 66.0430 297.7584 0007941 272.1685 245.4026 12.80929165232145

The corresponding values of the semi-major axis are:

• a = 7,714.422km, for T/P, on 9 July 1993 at 18:06:38 UT.
• a = 7,714.430km, for Jason-1, on 15 October 2003 at 21:30:57 UT.
• a = 7,714.430km, for Jason-2, on 6 June 2013 at 19:47:25 UT.

These results show the very high degree of accuracy with which the satellites
of this mission are kept at their station. �

11.3.2 Recurrence, Altitude, and Inclination

For a non-Sun-synchronous satellite, a given recurrence condition leaves a
certain freedom to vary the altitude and inclination. For concreteness, consider
a polar satellite, with i = 90◦ and recurrence triple [14, −1, 17]. Calculations
then give its altitude as h = 894.9km. With i = 80◦, the satellite must
be brought down to an altitude h = 880.9km in order to obtain the same
recurrence triple, whereas with i = 100◦, it must be moved up to an altitude
h = 910.2km. We see that, in the neighbourhood of 90◦, a change of one
degree in the inclination implies a change of 1.5 km in the altitude, in order
to maintain the same recurrence conditions.

For each triple, we can calculate the value of h as a function of i, while
the inclination varies from 0◦ to 180◦. The graphs h(i) are shown in Fig. 11.9
(upper), for all triples [14, ±1, CTo ], where CTo varies between 5 and 17, and
also for the triple [14, 0, 1]. A more restricted range of variations is also shown
in the lower part of Fig. 11.9 (lower).

Let us now consider a three-dimensional space with the angle of inclination
i along the Ox axis, the recurrence cycle CTo along the Oy axis, and the
altitude h along the Oz axis. We then plot the locus of points for which
recurrence occurs. This produces a graph like the one sketched in Fig. 11.10.
Examination of the space in the diagram shows that:

• The projection of the curves onto the plane xOz gives Fig. 11.9 (upper).
• The intersection of the curves with the plane yOz, for the Sun-synchronous

inclination, gives Fig. 11.2 (or Figs. 11.3 or 11.4).

As for Sun-synchronous satellites, 1-day recurrence cycles are not gener-
ally favoured for non-Sun-synchronous satellites. The “avoided” altitudes are
noted in Table 11.6 for various inclinations.
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Fig. 11.9 :Altitude as a function of inclination for a satellite holding the same re-

currence. Upper: recurrence triples [14, ±1, CTo ], for CTo varying from 5 to 17 (in

steps of 2) and [14, 0, 1]. Values corresponding to DTo = −1 are above the me-

dian, representing [14, 0, 1], while those corresponding to DTo = +1 are below it.

The dashed line denotes the Sun-synchronous inclination as a function of altitude.

Lower: detail from the upper diagram for a restricted range of inclinations, with CTo

varying from 4 to 17.
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11.4 Recurrence for MEO and HEO Satellites

The possible problems of 1-day recurrence cycles arising for LEO satel-
lites are quite irrelevant for MEO and HEO satellites, for which this type of
recurrence is often desirable.

GPS navigation satellites have recurrence properties, as we shall see in
Chap. 14. For the US Navstar/GPS system, the recurrence is based on 1 day
(2 revolutions per day). For the satellites in the WEST constellation, it is also
based on 1 day (3 revolutions per day) (see Table 11.8).

It is also extremely useful for HEO communications satellites to have 1-day
recurrence cycles, so that they overfly ground stations (for transmission and
reception) once or twice a day with the same viewing geometry, as exemplified
by Molniya or Sirius (Tundra orbit). For these orbits, the apogee is fixed
following the choice of the critical inclination. Table 11.7 gives the orbital and
recurrence characteristics of these HEO satellites.

We have also included planned satellites in the list with existing satellites,
and even abandoned projects when the orbit seems interesting and novel. The
orbit of Glonass R. E. (Regional Extension) is planned, as the name suggests,
for the regional extension of the Glonass system (see Chap. 14).

Although associated with a quite different type of mission, it is interesting
to note the recurrence conditions of the satellite Integral, with i ∼ 63◦, which
makes one revolution in 3 days. This gives the unusual recurrence triple [0, 1,
3], NTo = 1.
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HEO satellite a e i T Triple NTo

Supertundra 42,163.2 0.4230 ic 1,436.03 [1, 0, 1] 1
Tundra 42,163.4 0.2668 ic 1,436.04 [1, 0, 1] 1
Sycomores 42,163.9 0.3458 ic 1,436.07 [1, 0, 1] 1
Glonass R. E. 42,163.3 0.3700 ic 1,436.04 [1, 0, 1] 1

Molniya 26,552.9 0.7500 ic 717.72 [2, 0, 1] 2
Molniya 26,553.6 0.7360 ic 717.75 [2, 0, 1] 2
Molniya 26,554.3 0.7222 ic 717.77 [2, 0, 1] 2

Loopus 29,991.4 0.6000 ic 861.53 [2, −1, 3] 5
FLOWER 22,883.8 0.6558 ic 574.22 [1, +1, 2] 5
VirtualGeo 20,260.2 0.6609 ic 478.36 [3, 0, 1] 3
COBRA 20,260.9 0.6459 ic 478.39 [3, 0, 1] 3
FLOWER CfTM 12,779.4 0.2588 iHS 239.64 [6, 0, 1] 6
Ellipso Borealis 10,559.3 0.3463 iHS 180.00 [8, 0, 1] 8
Ellipso Borealis 10,472.2 0.3266 iHS 177.78 [8, +1, 10] 81
Ellipso Borealis 10,496.9 0.3321 iHS 178.41 [8, +1, 14] 113
Ellipso Borealis 10,556.8 0.2357 iHS 179.94 [8, 0, 1] 8

EGE 25,556.1 0.6700 ic 717.84 [2, 0, 1] 2
STE-QUEST 32,170.2 0.7802 ∼ ic 957.11 [2, −1, 2 ] 3

Integral 87,704.2 0.7958 ∼ ic 4,308.23 [0, +1, 3 ] 1

Table 11.7 :Orbital and recurrence characteristics for (HEO) Molniya and Tundra

satellites, and for other planned satellites. Orbital elements: semi-major axis a in km,

eccentricity e, and inclination i. All these satellites are at the critical inclination,

either prograde, ic = 63.4◦, or Sun-synchronous, iHS = 116.6◦. Period T in minutes.

MEO satellite a h i T Triple NTo

Navstar/GPS 26,560.904 20,183 55.0 717.98 [2, 0, 1] 2
WEST 20,267.139 13,889 75.0 478.63 [3, 0, 1] 3

Table 11.8 :Orbital and recurrence characteristics for the (MEO) navigation satel-

lites Navstar/GPS and those of the WEST constellation on the JOCOS orbit. Dis-

tances a and h in km, angle i in degrees, and period T in minutes. For other navi-

gation satellites, see Table 14.1 in Chap. 14.



516 Chapter 11. Orbit Relative to the Earth: Recurrence and Altitude

11.5 Recurrence Grid

11.5.1 Constructing the Recurrence Grid

Equatorial Shift

As we saw in Chap. 8, the equatorial shift ΔλE represents the distance
between two successive ground tracks (of the same kind, ascending or de-
scending) at the equator. In the following, we consider near-circular satellites
in low orbit (LEO), the only ones for which the recurrence grid is relevant.
For the quantities already discussed, we have

ΔλE = −(Ω̇T − Ω̇)Td = −nd

κ
Td = −2π

κ
. (11.17)

The equatorial shift is thus very simply related to the daily recurrence fre-
quency κ.

Consider a ground track defining one ascending node as origin, with longi-
tude λ0. If λ1 is the longitude of the following ascending node, we thus have,
by definition of the equatorial shift,

λ1 − λ0 = ΔλE = −2π
CTo

NTo

. (11.18)

After νo revolutions (about 1 day), the ground track cuts the equator at the
ascending node with longitude λνo such that

λνo − λ0 = νoΔλE = −2π
νoCTo

NTo

.

According to (11.12), this can be written in the form

λνo − λ0 = −2π

(
1− DTo

NTo

)
= −2π + 2π

DTo

NTo

.

Since the longitudes are defined to within 2π, we thus have

λνo − λ0 = 2π
DTo

NTo

. (11.19)

If DTo is positive, i.e., if νo < κ, we have λνo − λ0 > 0, whence λνo lies to the
east of λ0. Indeed, if after νo revolutions a whole day has not gone by since
the crossing at λ0, the ground track λνo is indeed to the east of λ0.

In the opposite situation, if DTo is negative, i.e., if νo > κ, a little more
than 1 day has gone by and the ground track λνo is situated west of λ0, as is
clearly shown by the relation λνo − λ0 < 0.
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11.5.2 Grid Interval

In the rest of this calculation, we shall denote the day of crossing by a
superscript and the number of the crossing in this day by a subscript on the
longitude of the ascending node, viz.,

λday
crossing .

The origin is denoted by λ0
0. We consider the case where DTo is positive for

concreteness. The other case would require us to use νo + 1 rather than νo
and change some of the signs. We thus have, with this notation,

λ0
1 − λ0

0 = ΔλE .

The last ascending node on day 0 is λ0
νo , and the next, which is the first on

day 1, is written λ1
1. Hence,

λ0
νo − λ0

0 = νoΔλE [mod 2π] ,

λ1
1 − λ0

0 = (νo + 1)ΔλE [mod 2π] .

where [mod 2π] indicates congruence modulo 2π.
We now consider the interval [λ0

1, λ
0
0], which we shall call the base interval,

or intertrack interval, counting positively toward the east. We take λ0
1 as origin

and set

δR = λ0
0 − λ0

1 , δD = λ1
1 − λ0

1 ,

where δR is the interval between ascending nodes for two consecutive revolu-
tions, so that δR = −ΔλE, and δD is the interval between ascending nodes for
2 consecutive days. The interval δR is shown in Fig. 11.11a, b, and the interval
δD in Fig. 11.11b, c.

Calling δ the grid interval at the equator, defined by

δ =
2π

NTo

, (11.20)

we have the relations

δR = CToδ , δD = DToδ .

The grid interval5 δ, related in this way to δR and δD, is indicated in
Fig. 11.11d.

5For a quick evaluation, δ can be obtained from an approximate relation for recurrent
satellites of altitude h = 900 ± 300 km. For these satellites, the daily orbital frequency ν
lies between 13 and 15. We may thus take ν to be equal to 14 and NTo equal to 14CTo .
Expressing δ in degrees, we then find that

δ ≈ 360

14CTo

, i.e., CToδ ≈ 25 .

We thus see that the product of the grid interval (in degrees) and the recurrence cycle (in
days) is roughly equal to 25.
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Fig. 11.11 :Constructing the recurrence grid. (a) Two consecutive ground tracks from

day 0 determine the base interval ΔλE, denoted here by δR. These ground tracks are

plotted in bold type. (b) One ground track of day 1 passes through the base interval.

(c) The ground tracks for the following days 2, 3, . . . , D pass through the base

interval. (d) All ground tracks up to day CTo − 1 define the grid interval. Note that,

by “ground track”, we understand the ground track at the ascending node.

In the base interval, we have for the different days:

for day 1 λ1
1 − λ0

1 = δD ,

for day 2 λ2
1 − λ0

1 = 2δD ,

for day D λD
1 − λ0

1 = DδD .

For day D, this relation holds if the point λD
1 lies in the base interval. Oth-

erwise, we subtract a whole number of multiples of δR, expressing this by
congruence relations:

λD
1 − λ0

1 = DδD [mod δR] ,

λD
1 − λ0

1 = DDToδ [mod CToδ] ,

λD
1 − λ0

1

δ
= DDTo [mod CTo ] .

We note that the quantity (λD
1 − λ0

1)/δ is indeed a whole number. So for
a given day, we obtain the position of the ascending node λD

1 in the base
interval, hence also in the recurrence grid.
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If u(D) denotes the position of the ground track on day D in the base
interval, in units of δ, i.e.,

u(D) =
λD
1 − λ0

1

δ
, (11.21)

we have the fundamental relation for the recurrence grid:

u(D) = DDTo [mod CTo ] . (11.22)

The whole number u(D) can take CTo values between 0 and CTo − 1.
When we do not wish to favour one bound of the interval rather than the

other, we will consider the number u∗(D) defined by

u∗(D) = min
{
u(D), CTo − u(D)

}
, (11.23)

which is an integer taking values between 0 and CTo/2.

Using the Recurrence Grid

We now give several examples to show how the recurrence grid is deter-
mined and used.

Example 11.7 Calculate the crossing order in the base interval for the satel-
lites TOPEX/Poseidon and Jason-1 and -2.

� The recurrence triple of these satellites is [13, −3, 10], which immediately
gives NTo = 127. We thus have

δ =
2π

127
= 0.049474 rad = 2.8346◦ = 315.551 km ,

and equatorial shift δR = 10δ, or δR = 28.35◦. Applying (11.22), we obtain
the values of u(D) for each day of the cycle. We deduce the grid values in the
base interval, from u = 0 to u = 10, noting the value of D for each u :

from u = 0 to u = 10 �−→ 0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 10 = 0 .

Note that u∗ = 1 for J = 3 and J = 7. It is easy to obtain these values
graphically, as illustrated in Fig. 11.12. �

Example 11.8 Calculate the crossing order in the base interval for the satel-
lites Landsat-3 and ADEOS-2.

� All recurrent satellites with DTo = ±1 have sequential recurrence grids,
i.e., in the base interval, consecutive ground tracks occur in the order of the
days. Indeed, in this case, (11.22) implies the simple relation

DTo = +1 =⇒ u(D) = D , DTo = −1 =⇒ u(D) = CTo −D .
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Cycle

Day 4

Day 3

Day 2

Day 1

Day 0
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Fig. 11.12 :Construction of the recurrence grid for TOPEX/Poseidon (and subse-

quently Jason-1 and -2). For each day of the cycle (D = 0, 1, 2, 3, 4, . . . ), the

ground track at the equator is marked in the base interval.

There are many satellites like this, as can be seen in Table 11.1. Later on,
we shall discover the important consequences of this fact for the ground track
during the recurrence cycle. For Landsat-3, with DTo = −1 for an 18 day
cycle, the various ground tracks u = 0, 1, 2, 3, . . . , 17, 18, occur on days
D = 18 (= 0), 17, 16, 15, . . . , 1, 0. For ADEOS-2, with DTo = +1 for a 4 day
cycle, the various ground tracks u = 0, 1, 2, 3, 4 occur on days D = 0, 1, 2,
3, 4. �

11.5.3 Recurrence Subcycle

Definition of the Subcycle

Consider a day origin D = 0. A subcycle ETo is then the number of days
required for the ground track to pass at a grid interval δ from the ascending
node origin. This can be formulated as follows:

u(ETo) = ±1 [mod CTo ] , (11.24)

or by

EToDTo = ±1 [mod CTo ] , (11.25)

or again, bringing in the distance u∗, by

u∗(ETo ) = 1 . (11.26)
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This gives two values for ETo . If E
∗
To

is the smallest of the two, we have

ETo = E∗
To

, ETo = CTo − E∗
To

.

We give several values for the subcycles of satellites discussed earlier.

Important Note. Care must be taken not to confuse the two quantities DTo

and E∗
To

. For the SPOT satellites, often described in the literature, it happens
that DTo = 5 and E∗

To
= 5. However, it should not be concluded that DTo

represents a subcycle, contrary to what is often claimed. It is quite clear in
Example 11.9 that, for ADEOS-1, these two quantities are different, since we
have DTo = 11 and E∗

To
= 15.

Example 11.9 Recurrence subcycles for various satellites with environmental
missions.

� Here we calculate E∗
To

for several satellites:

• For SPOT-5, as for the SPOT-1 to -4 satellites, we obtain E∗
To

= 5:

E∗
To
DTo = 5× 5 = 25 = −1 [mod 26] .

This means that, 5 days before (D = −5 [mod 26] = 21) or 5 days after
(D = 5) the day origin, the ground track passes at the grid interval from
the ground track origin.

• For Terra, as for all the satellites belonging to the A-Train, we obtain
E∗

To
= 7:

E∗
To
DTo = −7× 7 = −49 = −1 [mod 16] .

At days D = 7 and D = 16 − 7 = 9, the satellite is at one grid interval
from the ground track origin.

• For ADEOS-1, we have E∗
To

= 15:

E∗
To
DTo = 15× 11 = 165 = +1 [mod 41] .

At days D = 15 and D = 41− 15 = 26, the satellite is at one grid interval
from the ground track origin.

• For TOPEX/Poseidon, E∗
To

= 3, whence ETo = 3 and 7 (see Fig. 11.12).
• For ICESat, ETo = 25:

E∗
To
DTo = 25× (−22) = −550 = −1 [mod 183] .

The cycle is very long in order to obtain a very short grid interval, viz.,
δ = 14.7 km.

�
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IRS-1AIRS-1A

Orbit - Ground track

Recurrence = [14; -1; 22] 307

>>>>   Time span shown:   5.00 days

Altitude =  904.1 km a = 7282.275 km

Inclin./SUN-SYNCHRON.=  99.08 °

Period =   103.19 min    * rev/day =13.95

Equat. orbital shift  = 2871.8 km  (  25.8 °)

Asc. Node:      0.00 °
App. inclin. = 103.08 °

Projection:  Behrmann
Property:  Equal area

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;   75.0 ° E
Aspect:  Direct
{4.2} [ +90.0/  +0.0/-165.0] [-]    EGM2008

IRS-P6IRS-P6

Orbit - Ground track

Recurrence = [14; +5; 24] 341

>>>>   Time span shown:   5.00 days

Altitude =  817.0 km a = 7195.118 km

MC LMD

MC LMD

Inclin./SUN-SYNCHRON.=  98.70 °

Period =   101.35 min    * rev/day =14.21

Equat. orbital shift  = 2820.5 km  (  25.3 °)

Asc. Node:      0.00 °
App. inclin. = 102.64 °

Projection:  Behrmann
Property:  Equal area

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;   75.0 ° E
Aspect:  Direct
{4.2} [ +90.0/  +0.0/-165.0] [-]    EGM2008

Fig. 11.13 :Ground tracks of IRS-1A and IRS-P2 over 5 days, showing how long it

takes to cover the base interval.
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Fig. 11.14 :Recurrence index for two IRS satellites, showing the change of subcycle.

Time Required to Cover the Base Interval

The main reason for introducing the subcycle is to show how long it takes
to cover the base interval. For SPOT-5, the value of the subcycle E∗

To
= 5

indicates that almost the whole of the base interval has been scanned in 5
days. However, for a satellite with E∗

To
= 1, we see that the ground track

remains almost at the same place in the base interval after 1 day and that we
need the whole cycle CTo (which can be of the order of a month) to cover the
whole interval. This situation is generally considered as a drawback, as can
be seen from the evolution of certain programmes.

The first Landsat satellites (-1, -2, and -3) had the subcycle E∗
To

= 1. Then,
from Landsat-4, the orbit was changed to obtain E∗

To
= 5. The same happened

with the Indian satellites in the IRS programme: the first IRS (IRS-1A and -
1B) were replaced from IRS-P2, with a change of subcycle (but keeping almost
the same cycle). This change is very clearly shown in Fig. 11.13, where we have
plotted the ground tracks of two IRS satellites over 5 days. For IRS-1A, over
this time span, a fraction 5/22 or less than one quarter of the interval has been
covered. For IRS-P2, the whole interval has been covered. On the ground track
of IRS-P2, in the vicinity of the origin (λ = 0, ϕ = 0), we see the end of the
ground track for the fifth day, since in 5 days, this satellite has accomplished
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Satellites Grid NTo δ (deg) δ (km) λ origin (deg)

Landsat-1 to -3 WRS-1 251 1.4343 159.7 294.5200
Landsat-4 to -8, Terra WRS-2 233 1.5451 182.0 295.4000
SPOT-1 to -5 GRS 369 0.9756 108.6 330.4000
ERS-1, 2, Envisat ERS 501 0.7186 80.0 0.1335
MOS-1, -1B MWRS 235 1.5190 169.1 326.7500
Oceansat-1, -2 IRSP4G 29 12.4138 1381.9 328.1900

T/P, Jason-1, -2 TPG 127 2.8346 315.5 99.9242

Table 11.9 :Characteristics of reference grids for various satellites. NTo is the num-

ber of revolutions per recurrence cycle, δ the grid interval, and λ the longitude ori-

gin. Abbreviations: WRS is the Worldwide Reference System, GRS is the Grille de

Référence SPOT, ERS is the ERS-SAR Reference System, MWRS is the MOS-1

World Reference System, IRSP4G is the National Remote Sensing Agency (India)

IRS-P4 Grid, and TPG is the T/P Grid.

5 × 14.208 = 71.04 round trips. The distance between this ground track and
one going through the origin is equal to the interval δ, since E∗

To
= 5 for this

satellite (Fig. 11.14).
The notion of subcycle is often used for recurrent satellites, since it is

rather informative. It tells us that, after a certain number of days representing
the subcycle, the ground track passes through almost the same place, where
“almost” means within the grid interval δ. However, it is just a special case
of the notion of recurrence index to be discussed shortly.

11.5.4 Reference Grids

For a recurrent satellite, a single point on the ground track completely fixes
its ground track on the globe. Earth-observation satellites are maintained on
their nominal orbits in order to guarantee the position of their ground tracks
to within a few kilometers (generally ±5 km, but ±1 km for TOPEX/Poseidon
and Jason, ±0.8km for ICESat). The SPOT satellites (SPOT-1 to -5), for ex-
ample, use the same grid, which is fixed by giving an ascending node longitude.
Table 11.9 describes the main grids and their characteristics.

Example 11.10 Fitting a grid to geographic circumstances: the case of
FormoSat-2.

� FormoSat-2, launched on 20 May 2004 under the name of Rocsat-2, is de-
voted to the study of Earth resources and meteorology, and in particular,
typhoon warnings. Its recurrence triple is [14, 0, 1]. This means that each
day, after 14 round trips, it exactly repeats its ground track (see Fig. 11.15
upper). If we examine this grid, we find that the ascending and descending
ground tracks cross at latitude 26.550◦ (see Sect. 11.5.5 on grid points). Now
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Recurrence = [14; +0;  1]  14

>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  888.3 km a = 7266.471 km

MC LMD
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Inclin./SUN-SYNCHRON.=  99.01 °

Period =   102.86 min    * rev/day =14.00
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Asc. Node:    127.63 ° [21:30 LMT]Projection:  Orthogr. / FishEye
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Aspect:  Oblique  > zoom :  > zoom : 1.751.75

{5.3} [ -90.0/ +66.5/ -31.2] [ +10] EGM2008

Taipeh

Fig. 11.15 :Ground track of the Taiwanese satellite FormoSat-2, with 1-day recur-

rence cycle. Upper: recurrence grid. Lower: magnified view centered on the island of

Taiwan, explaining this choice of grid.
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the island of Taiwan, formerly Formosa, lies between latitudes 22◦N and 25◦N.
The grid can thus be fixed in such a way that the island is crossed twice a
day by the (ascending and descending) ground track. The equatorial shift is
δR = |ΔλE| = 360/14 = 25.71◦. By symmetry considerations, we understand
that the longitude of the ground track intersection and the longitude of the
ascending node must be separated by a distance equal to one quarter of the
equatorial shift. The central longitude of Taiwan is λC = 121.20◦E, which
implies that the ascending node must have longitude λ0 such that

λ0 = λC + δR/4 = 121.20 + 6.43 = 127.63◦E .

Figure 11.15 illustrates this situation, unique for an LEO satellite. �

11.5.5 Grid Points for Recurrent Satellites

When a satellite is recurrent, its ground track forms a grid fixed on the
Earth (the reference grid discussed above). A grid point is any place where
two ground tracks intersect, one in the ascending part and the other in the
descending part. For satellites with a broad swath, these points are of little
interest. However, if the swath happens to be very narrow, or in the case of
nadir laser sighting, it is generally extremely useful to know their positions.

At a given latitude, these points are regularly arranged in longitude. As one
moves away from the equator, they become more and more closely spaced. We
calculate the positions of the grid points using a cartographic method. We saw
in Chap. 8, and in particular in Sect. 8.5 on cartographic projections, that the
satellite ground track can be represented linearly using a Snyder projection.

Consider therefore the cartographic projection defined by (8.56), with
Cartesian coordinates x as abscissa and y as ordinate. For clarity, and without
loss of generality, we only consider here the quarter (x ≥ 0, y ≥ 0) of the map.
The rest can be deduced by symmetry relative to the equator for y ≤ 0 and
relative to the zero meridian for x ≤ 0. Moreover, we set λAN = 0. Then,

{
x = λ ,
y = F(ψ) ,

(11.27)

with

F(ψ) =

∣∣∣∣arcsin tanψ

tan i
− 1

κ
arcsin

sinψ

sin i

∣∣∣∣ . (11.28)

With this cartographic projection, the ground track of the satellite is made
up of straight line segments. The recurrence grid looks like a series of identical
diamonds lying between the northernmost (geocentric) latitude +ψm and the
southernmost (geocentric) latitude −ψm.
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We can calculate the maximal value ym of y, when ψ = ψm :

• If i < 90◦, ψm = i =⇒ ym = 90(1− 1/κ) .
• If i > 90◦, ψm = 180◦ − i =⇒ ym = 90(1 + 1/κ) .

This can be summarised by

ym = 90
(
1− σ

κ

)
, (11.29)

where σ = sign(cos i).

Note. This method cannot be applied if sign(cos i) and sign(cos i′) are not
equal, where i′ is the apparent inclination. However, this situation never arises
with existing recurrent LEO satellites.

Examples: for Jason-2, ym = 82.9134, and for Oceansat-2, ym = 96.2069.
During one cycle of NTo revolutions in CTo days, the satellite crosses a

given meridian M times:

• For a direct orbit, i < 90◦, the satellite and the Earth rotate in the same
direction and therefore M = NTo − CTo .

• For a retrograde orbit, i > 90◦, the satellite and the Earth rotate in opposite
directions, whence M = NTo + CTo .

The numberM of intersections between the ground track and the given merid-
ian can be summarised by the formula

M = NTo − σ CTo . (11.30)

For example, for Jason-2, M = 127 − 10 = 117, and for Oceansat-2, M =
29 + 2 = 31.

The length Ly of the “vertical” diagonal, along the y axis, of an elementary
diamond is expressed as

Ly = 4u ,

where u is our measurement unit. TheM intersections produceM/2 diamonds
(M even or odd), which appear clearly in Fig. 11.16 (upper). Along the y axis,
the diamonds cover a total length L given by

L =
M

2
Ly = 2uM .

This distance L corresponds to the interval [−ym,+ym], of length 2ym. We
thus deduce that u is equal to

u =
ym
M

.
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Considering the expressions for M and ym given above, together with the
definition of κ, we obtain

u =

90− σ
CTo

NTo

NTo − σCTo

,

whence the value of the unit u is

u =
90

NTo

. (11.31)

We now consider the intersections of the ground track with the equator. In
one cycle of NTo revolutions, there will be 2NTo intersections. Since these
are regularly distributed, there will thus be NTo diamond shapes along the x
axis. So if Lx is the “horizontal” length, along the x axis, of an elementary
diamond, and if we set Lx = 4v, we obtain

v =
90

NTo

.

Then since

u = v ,

we conclude that the units of length along the x and y axes are the same.
This is a direct consequence of the choice of projection.

Having defined u in this way, the ordinates of the grid points are as follows:

{
M even =⇒ y/u = 0, 2, 4, 6, . . . ,M ,
M odd =⇒ y/u = 1, 3, 5, 7, . . . ,M .

(11.32)

Starting from the equator, we number the latitudes of the grid points:

grid point j ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

ordinate yj ←→ latitude ψj ,

yj =
j

M
ym ,

0 ≤ j ≤ M , j has the parity of M .

Since yj = F(ψj), we obtain the geocentric latitude ψj by inverting the func-
tion F :

ψj = F−1(yj) . (11.33)

The function F is analytic, and F−1 can be found numerically.
For each grid point j, we thus obtain the geocentric latitude ψj , hereafter

denoted by ψ. It corresponds to the geocentric latitude of the satellite or its
geocentric ground track T . From each value of ψ, we calculate the geodetic
latitude ϕ of the nadir using the method described in Chap. 2 (see Fig. 2.5 and
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j Latitude ϕ Latitude ψ Latitude ϕT

1 26.5500 26.4153 26.5690
3 58.6947 58.5449 58.7160
5 70.8187 70.7139 70.8336
7 76.0404 75.9614 76.0517
9 78.6800 78.6149 78.6892

11 80.1032 80.0460 80.1113
13 80.8230 80.7699 80.8306
15 81.0443 80.9924 81.0517
M Maximal latitude ψ = 80.9924 ≪
– 180− inclination = 80.9924 ≪

Table 11.10 :Latitude ϕ of the grid points for the Sun-synchronous satellite

FormoSat-2, iHS = 99.0076◦ , CTo = 1 day, NTo = 14, M = 14 + 1 = 15. Grid

points are calculated from the geocentric latitude ψ of the ground track T , whose

geodetic latitude is denoted by ϕT. ϕ is the geodetic latitude of the nadir, which

depends on the altitude. The relation between these latitudes is ψ < ϕ < ϕT.

j Latitude ϕ Latitude ψ Latitude ϕT

1 14.2803 14.1979 14.2897
3 38.5481 38.3799 38.5673
5 54.4799 54.3166 54.4987
7 63.9408 63.8044 63.9565
9 69.6657 69.5530 69.6787

11 73.3289 73.2338 73.3398
13 75.8021 75.7198 75.8116
15 77.5435 77.4707 77.5519
17 78.8068 78.7410 78.8144
19 79.7402 79.6796 79.7472
21 80.4344 80.3777 80.4409
23 80.9471 80.8934 80.9533
25 81.3157 81.2640 81.3216
27 81.5642 81.5140 81.5700
29 81.7078 81.6585 81.7135
31 81.7548 81.7057 81.7605
M Maximal latitude ψ = 81.7057 ≪
– 180− inclination = 81.7057 ≪

Table 11.11 :Latitude ϕ of grid points for Sun-synchronous satellites Oceansat-1 and

-2, iHS = 98.2943◦, CTo = 2 day, NTo = 29, M = 29 + 2 = 31. For ϕ, ψ, and ϕT,

see Table 11.10.
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Table 2.4). We have seen that ϕ depends on the altitude. These values ψ and
ϕ, and the geodetic latitude ϕT of the ground track are given for each value
of j for two satellites with very short recurrence cycles, namely, FormoSat-2
in Table 11.10 and Oceansat-2 in Table 11.11.

Example 11.11 Calculate the position of a specific grid point for the ground
track of the altimetric satellites TOPEX/Poseidon and Jason-1 and -2.

� From 1960, the USSR began to develop intensive cotton production in
Uzbekistan and Kazakhstan. To sustain this, enormous amounts of water were
extracted from the two rivers flowing into the Aral Sea, the Syr Darya in the
north and the Amu Darya in the south. Water levels in this closed sea began
to drop and its area was significantly reduced until, in 1989, it divided into
two basins, the Greater Sea, or Big Aral Sea, and the Lesser Sea, or Little
Aral Sea (see Fig. 11.17 lower). But draining continued and the Greater Sea
itself soon split into two.

Measuring the water levels in the Aral Sea is an interesting application for
an altimetric satellite like TOPEX/Poseidon and its successors Jason-1 and
-2. Here we calculate the position of a grid point located in the middle of the
Aral Sea and denoted by A in Fig. 11.17 (upper):

• Latitude. The original “historical” sea lies between latitudes 43.5◦N and
47◦N. For T/P, CTo = 10 day, NTo = 127, i = 66.0390◦, so M = 127−10 =
117. Solving (11.33), we obtain for j = 31 the value ψ = ψj = 44.5197◦. We
then calculate the geodetic latitude of the nadir, which gives ϕ = 44.6785◦.

• Longitude. The region under consideration lies between longitudes 58◦E
and 62◦E. The ascending node fixing the grid is λ0 = 99.9242◦. The unit
of length of the diamond is v = 90/127 = 0.7087. Since M is odd, the grid
points have longitudes of the form

λk = λ0 + kv with k odd, between 0 and 4NTo ,

whence

λk = 99.9242 +
90

127
k with k odd, between 1 and 507 .

With k = 451, we obtain

λ = 99.9242+ 319.6063 = 59.5305 [mod 360] .

The coordinates of the grid point at the center of the Aral sea, denoted by
A on the map in Fig. 11.17 (upper), are therefore 44.6785◦N and 59.5305◦E.

�
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Fig. 11.17 :Upper: a grid point A, corresponding to j = 31, lies in the middle of

the Aral Sea. Lower: satellite ground track. Outline of the sea in 1960 and in 2008.

Credit: Aviso, CLS, CNES.
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11.6 Maintaining a Recurrent Satellite on Orbit

In order to keep to its recurrence cycle, the orbit of a recurrent satellite
must be accurately maintained. One speaks of orbital maintenance: the orbital
elements must be repositioned at the required values whenever necessary. The
inclination i and the eccentricity e vary little, compared with the semi-major
axis a, which must be watched over very carefully. Here we shall only consider
the variation of a.

The altitude of the satellite tends to drop, mainly due to atmospheric drag
and solar radiation pressure. The differential form of Kepler’s third law gives

dT =
3

2

T

a
da .

Let Δa be the deviation of the semi-major axis from its nominal value (with
Δa � a). The period of the satellite varies by ΔT . After one revolution, with
period T +ΔT , the Earth’s rotation leads to a shift Δ� in the ground track
of the satellite at the equator as compared with its nominal ground track. We
denote this shift by Δ�1 for one revolution, and by Δ�D for 1 day. Using (8.17)
and taking into account nodal precession, we obtain

Δ�1 = −R(Ω̇T − Ω̇)ΔT = −3

2
R(Ω̇T − Ω̇)Td

Δa

a
, (11.34)

where R is the equatorial radius. Using (11.17), we then have

Δ�1 = −3πR
1

κ

Δa

a
. (11.35)

Note that Δ�1 and Δa have opposite signs:

• If h ↑, then Δa > 0 =⇒ Δ�1 < 0, leading to a westward shift.
• If h ↓, then Δa < 0 =⇒ Δ�1 > 0, leading to an eastward shift.

In 1 day, the shift will be

Δ�D = νΔ�1 , (11.36)

and with (11.9),

Δ�D = −3πR
ν

κ

Δa

a
= −3πR

Δa

a

(
1− 1

CS

)
. (11.37)

The daily shift Δ�D can be written in the following simplified form, using the
reduced distance η and neglecting the term in 1/CS compared with 1:

Δ�D = −QΔa , where Q =
3π

η
. (11.38)

The factor Q, which we may call the drift coefficient, is thus a dimensionless
number by which one must multiply the change in altitude to obtain the daily
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shift of the ground track away from its nominal position at the equator. For
typical Sun-synchronous LEO satellites with η ≈ 1.11, one has

Q = 8.5 .

For example, if a maneuver raises the satellite by 10m, the ground track will
shift by 85m every day, provided that a remains the same after the maneuver.

Example 11.12 Orbital maintenance for the altimetric satellite TOPEX-
Poseidon.

� We compare the actual and theoretical positions of the ground track for the
satellites TOPEX/Poseidon and Jason-1 and -2.

Orbital Maintenance Maneuvers. To ensure that the deviation from the
nominal ground track is never greater than 1 km at the equator, the satellite is
subjected to orbital maintenance maneuvers (OMM) 2 or 3 times a year. The
altitude is thereby raised slightly, by 5–10m above the nominal altitude, by
activating the satellite thrusters for 3–4 s. Figure 11.18 shows the changes Δ�
as time goes by, relating them to changes Δa, over the 7 years of operation of
TOPEX/Poseidon. The ground track shifts westward relative to the nominal
ground track when the semi-major axis a decreases.

To calculate the drift of the ground track, we take the example of the
third maneuver OMM3 on 30 March 1993. By this maneuver, a changed from
7,714.426 to 7,714.435km, thereby increasing by 9m. Subsequently, for 26
days, a decreased steadily to 7,714.430, i.e., 4m above its value at the begin-
ning of the maneuver. We may thus consider an average value of Δa = 6.5m
during this period. The numerical data for T/P are η = 1.2095, κ = 12.70,
ν = 12.81, which we use in (11.37) to obtain

Δ�D = −7.86Δa = 51.1m .

Over 26 days, Δ� = 1.33km, as can be read off the graph.

Reference Grid. In Example 11.6, we calculated λAN at a given revolution
for each of the 3 satellites. We see also from Table 11.9 that the zero longi-
tude of the TPG grid is λ0 = 99.9242◦. The difference between the nominal
longitude λ0

AN of the ascending node and λ0 is equal to a whole number of
grid intervals δ :

λ0
AN − λ0 = k

360

127
, k integer .
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Fig. 11.18 :(continued)
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The difference between the actual value λAN and the nominal value λ0
AN gives

the shift in the ground track, and we have Δ� = R(λAN − λ0
AN) :

T/P Revolution 4263 1993 07 09 18:07 UT ,
λAN − λ0

AN = 82.9247− 82.9163 = 0.0084 , Δ� = 0.933km .
Jason-1 Revolution 8676 2003 10 15 21:31 UT ,

λAN − λ0
AN = 65.9144− 65.9085 = 0.0059 , Δ� = 0.659km .

Jason-2 Revolution 23551 2013 07 03 03:16 UT ,
λAN − λ0

AN = 272.8408− 272.8376 = 0.0032 , Δ� = 0.357km .

Tandem Mission.As noted in Chap. 9, when two satellites follow orbits with
identical characteristics, this can be used for a tandem mission. When Jason-1
came into operation on 15 August 2002, T/P became a secondary satellite.
By shifting T/P to a longitude at the equator exactly equal to δ/2, a tandem
mission was set up which amounted to working with a recurrence grid that
was twice as fine. When Jason-2 become operational on 20 February 2009, it
was Jason-1 that became the secondary satellite for the tandem mission, on
20 February 2009, and T/P was withdrawn from service. �

11.7 Recurrence Index

11.7.1 Definition of Recurrence Index

Consider a day origin D = 0 and its base interval, representing the inter-
track distance, defined by λ0

1 and λ0
0, which are separated by the equatorial

shift δR. The ascending node crossing in this interval on a given day D deter-
mines an ascending node of longitude λD

1 , as discussed above. The distance
between λD

1 and the bounds λ0
1 and λ0

0 will be representative of the recur-
rence conditions. If the distance to one of the two bounds is zero, this means
that the ground track passes once again through a certain point, and we have
recurrence with a cycle of D days, or else D is a multiple of the cycle. If the
distance is small compared with the length of the interval, we may be in a
situation with a subcycle.

�
Fig. 11.18 :Deviations Δ� from the nominal ground track resulting from deviations

Δa from the nominal semi-major axis over the 7 year period of operation of

TOPEX/Poseidon (1993–1999). Orbital maintenance maneuvers are denoted by

OMM-n at the time of application. At each OMM, the semi-major axis increases

suddenly by about 10m. Credit: Lee-Lueng Fu (JPL/NASA), Anny Cazenave (LE-

GOS/CNES). Left: Artist’s view of T/P. Credit: JPL/NASA.
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We set

v(D) =
λD
1 − λ0

0

δR
. (11.39)

From (11.21), we then have

v(D) =
u(D)

CTo

. (11.40)

These two equivalent definitions shown that v(D) is a real number between 0
and 1, representing a relative distance.

Just as we defined u∗(D) by (11.23), we now define v∗(D) as the smallest
of the two relative distances v(D) from the ground track to one or other of
the bounds, viz.,

v∗(D) = min

{
λ0
1 − λD

1

λ0
1 − λ0

0

,
λD
1 − λ0

0

λ0
1 − λ0

0

}
, (11.41)

or

v∗(D) = min
{
v(D) , 1− v(D)

}
=

u∗(D)

CTo

, (11.42)

whence

v∗(D) = D
δ

δR
= D

|DTo |
CTo

. (11.43)

We shall call this the relative recurrence distance. It lies between 0 and 0.5.
We thus have:

• v∗(D) = 0, for a recurrence cycle of D days,
• v∗(D) = 1/CTo , for a recurrence subcycle,
• v∗(D) = 2/CTo , for a ground track passing at 2δ from a bound,

and so on.
To obtain a function of D which increases as we approach recurrence con-

ditions, we define the function Φ(D) which is simply the reciprocal of v∗(D),
i.e.,

Φ(D) =
1

v∗(D)
. (11.44)

We shall call this function the recurrence index. It is a dimensionless quantity.
We now have

• Φ(D) = ∞ =⇒ recurrence cycle of D days ,
• Φ(D) = CTo =⇒ recurrence subcycle for D ,
• Φ(D) = CTo/2 =⇒ ground track passing 2δ from a bound ,



538 Chapter 11. Orbit Relative to the Earth: Recurrence and Altitude

• Φ(D) = CTo/3 =⇒ ground track passing 3δ from a bound ,
• other cases,
• Φ(D) > 2 in every case.

This index provides a useful way of specifying cycles, subcycles, and other
quantities related to recurrence for any satellite, whether it is intentionally
recurrent or not.

11.7.2 Perfect or Imperfect Recurrence

The methods discussed above concern satellites with known recurrence ele-
ments. They allow one to find the orbital characteristics from these elements.
However, we may encounter another type of problem: given the orbit of a
satellite, we may wish to find its recurrence cycle. For this satellite, h and i
are known, so P and ν are determined, and hence also κ.

The day D corresponding to the recurrence cycle CTo will be such that the
product κD is closest to a whole number. It will therefore be the day giving
the highest value of the recurrence index Φ(D), which we shall write Φm.

Indeed, considering the expression (11.12) for κ as a function of the recur-
rence triple, the product κD is

κD = Dνo +D
DTo

CTo

,

and since Dνo is an integer, we have

fractional part of |κD| = v(D) ,

which implies that

distance between |κD| and the nearest integer = v∗(D) .

If Φm is infinite, the satellite is recurrent, i.e., perfectly recurrent (and hence
probably deliberately recurrent). If Φm is not infinite, the recurrence is said
to be imperfect.

When we seek the recurrence characteristics from the orbital elements, the
recurrence may turn out to be imperfect, and in this case, the quantities u(D)
and u∗(D) are not whole numbers.

11.7.3 Applications of the Recurrence Index

We shall now give several example applications to show how the recurrence
index is used, where Φ(D) is recorded over a period of several months. The keys
to the graphs carry the orbital characteristics of the satellite, the values of the
cycle, with the maximal recurrence index, which shows whether recurrence is
perfect or not, and the two basic quantities in this analysis, namely, the daily
orbital frequency ν and the daily recurrence frequency κ.
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The graphs clearly show the cycles and the subcycles which stand out to
varying degrees. It is also very easy to distinguish those satellites that are
deliberately recurrent from those with a certain level of recurrence but which
have not been intentionally attributed any recurrent behaviour.

Example 11.13 Examples of the recurrence index for Sun-synchronous and
non-Sun-synchronous satellites.

� Unless otherwise mentioned, the satellites are Sun-synchronous and recur-
rence is intended.

• Change of subcycle leading to more rapid coverage of the base interval. We
indicated earlier how, for the Landsat and IRS satellites, a modification
of the subcycle DTo radically changed the way in which the base interval
was covered. For IRS-1A and IRS-P2, shown in Fig. 11.13, the graph of
the recurrence index in Fig. 11.14 illustrates this change. For IRS-1A, the
ground track moves steadily across the base interval in 22 days. For IRS-
P2, the ground track approaches the initial ground track on four occasions
during the 24 day cycle, on days D = 5, 10, 14, and 19, or roughly every
5 days.

• Recurrence index for satellites in the SPOT and Terra families. These two
families of remote-sensing satellites include a great many satellites, whose
recurrence index is shown in Fig. 11.19. For SPOT, the index has 4 peaks
in the 26 day cycle, on days D = 5, 10, 16, and 21, indicating a passage
very close to the initial ground track roughly every 5 days. For Terra, there
are two main peaks in the 16 day cycle, for days D = 7 and 9.

• Recurrence index for a satellite with very long cycle. The satellite ADEOS-1
has a relatively long recurrence cycle, with CTo = 41 days. The recurrence
index is shown in Fig. 11.20 (upper). Referring to Example 11.9, we see
that the two main intermediate peaks, for D = 15 and 26, correspond to
u∗ = 1, the next two, for D = 11 and 30, correspond to u∗ = 2, and so on.

• Recurrence index for a non-Sun-synchronous satellite. The non-Sun-
synchronous satellite TOPEX/Poseidon has the short recurrence cycle
CTo = 10 days, with two peaks for D = 3 and 7 days (see Fig. 11.20 center).
We note that κ and ν have different values: the cycle takes CT = 9.916 days.
For ICESat, below the subcycle D = 25, there are two peaks at D = 8 and
D = 15. The base interval is almost swept out in 8 days.

• Recurrence index for a satellite with very long recurrence cycle. Like all
satellites engaged in systematically mapping a planet, the recurrence cycle
will be very long because the swath of the main instrument will be very nar-
row. The satellite Z-Earth has a cycle of 274 days, with 4,149 revolutions.
It has a subcycle of 7 days over 106 revolutions, which clearly shows on
the graph of the recurrence index in Fig. 11.20 (lower). The horizontal axis
goes up to 180 days and the maximum at 274 days is not therefore visi-
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Fig. 11.19 :Recurrence index for satellites in the SPOT and Terra families.

ble. However, the symmetry relative to the abscissa CT/2 = 137 days is
perfectly visible.

�

11.7.4 Recurrence Index and Orbital Characteristics

Recurrence is highly sensitive to changes in inclination and especially alti-
tude. The recurrence index reveals this very clearly. The following three exam-
ples show how a change in altitude of a few hundred meters can completely
change the recurrence characteristics after a few weeks. Precisely recurrent
satellites are moved back onto the nominal orbit as soon as the altitude varies
by a fraction of a kilometer. This maneuver is required between one and four
times a month.

Example 11.14 Recurrence index for the Sun-synchronous satellite Earth-
CARE.
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� The satellite EarthCARE will first be launched into the orbit denoted by
EarthCARE [3a] in Table 11.3, which is the calibration orbit EarthCARE
[cal]. Its altitude will subsequently be reduced by 1.294km to join the mission
orbit EarthCARE, denoted by EarthCARE [3b] in the table.
Figure 11.21 shows how the recurrence cycle goes from 9 days (blue) to 25
days (red) as a result of this change in altitude. �

Example 11.15 Recurrence index and altitude variations for SPOT-5.

� Consider a Sun-synchronous satellite of the SPOT-5 type, with recurrence
triple [14, 5, 26]. The recurrence index is plotted for various altitudes in
Fig. 11.22 (upper) which graphs the function Φ(D,Δh). For Δh = 0, i.e.,
for the value of the altitude giving the required recurrence, we see that the
main peaks occur for values of D that are multiples of CTo = 26 days. The sec-
ondary peaks are clearly visible 5 days before and after the main peak. They
become the main peaks for neighbouring altitudes. The recurrence triple [14,
5, 26], for Δh = 0, becomes [14, 4, 21] for Δh = +0.6 km and [14, 3, 16]
for Δh = +1.6 km. Reducing the altitude, this initial recurrence behaviour
becomes [14, 6, 31] for Δh = −0.4 km, [14, 7, 36] for Δh = −0.7km, [14, 8,
41] for Δh = −1.0 km, and so on. �

Example 11.16 Recurrence index and altitude variations for ERS-1.

� We return to the Sun-synchronous satellite ERS-1, which has had three
different recurrence cycles, as discussed in Example 11.3. The reference alti-
tude will be taken to be the one for Recurrence Cycle 2, the 3 day cycle. This
cycle appears for Δh = 0 in Fig. 11.22 (lower). If we increase the altitude,
with Δh = +6.358km, we obtain Recurrence Cycle 1, the 35 day cycle. If we
reduce the altitude, with Δh = −5.936km, we obtain Recurrence Cycle 3, the
168 day cycle. �

11.8 Altitude Variations

The following analysis of altitude and frozen orbits is valid for any type of
orbit, but only proves useful for near-circular LEO orbits. If the orbit is not
close to circular, the altitude variations of the satellite during its revolutions
are due to the eccentricity of the orbit, compared with which the flattening
of the Earth is negligible. For MEO satellites, the altitude is not the relevant
quantity. The same is true for GEO satellites, where the altitude is constant
in time, since the satellite is stationary.
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Fig. 11.21 :Recurrence index for EarthCare, with altitude changing from the calibra-

tion orbit to the mission orbit.

11.8.1 Altitude and Orbital Parameters

As we have seen, the altitude does not constitute a precise way of defining
the position of the satellite, and indeed it is not one of the six orbital elements.
The so-called near-circular, or even circular, orbit is never strictly circular and
the Earth is not exactly spherical.

In previous chapters, devoted to the satellite ground track, the altitude
has not been the main subject of discussion. However, it will be important
in the following chapters, when we study the way in which the instruments
aboard the satellite observe the Earth, i.e., how they “see” it from a certain
height.

The altitude of the satellite is found from the difference between the ra-
dius vector r(a, e, v) defining the position of the satellite, as given by (4.40)
and (4.58), and the Earth radius RT(ψ) for the corresponding geocentric lati-
tude ψ, treating the Earth as an ellipsoid of revolution with flattening f . This
value RT(ψ) is given by (1.37), in which Rψ represents RT(ψ) and where the
semi-major axis a of the ellipse is taken equal to the equatorial radius R. We
note that, with this definition, the altitude does not take into account the
relief of the Earth’s surface.

When we work with quantities relating to both the position of the satellite
and the terrestrial latitude, calculations are carried out with the geocentric
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latitude ψ, and the results expressed in terms of the geodetic latitude ϕ, us-
ing (2.4). The altitude studied here is the one we defined as the geocentric
altitude in Chap. 2. For LEO satellites, the difference with the geodetic alti-
tude at the nadir is negligible, being just 1 or 2m [see (2.37)].

We thus write the altitude h of the satellite in the form

h = r(a, e, v)−RT(ψ) . (11.45)

The latitude ψ is related to (i, ω, v) by (6.65) and we obtain h in the form

h = h(a, e, i, ω, v) . (11.46)

The altitude is thus written as a function of five orbital elements. The element
Ω is not involved, since the terrestrial longitude is irrelevant here. This is the
case already discussed in relation to (6.66).

The variation of the altitude is shown schematically in Fig. 11.23. In this
figure, the axis Ox lies in the equatorial plane of the Earth, and the axis Oz
is the polar axis. The difference between the two semi-axes of the ellipse rep-
resenting the Earth is 21.3 km (see Example 2.1). The trajectory represented
is that of a satellite in low, strictly polar orbit, with perigee over the North
Pole (ω = 90◦). For an eccentricity of the order of 10−3, the distance FC
between the focus F of the ellipse (center of attraction, center of the Earth)
and the center C of the ellipse, equal to ae, is of the order of 8 km. The orbit
is near-circular.

For a given revolution, we consider in (11.46) the mean values of the orbital
elements a, e, i, and ω. Instead of v, we have chosen α to determine the
position of the satellite on its orbit. We have already seen in (5.4) that this
angle α = ω + v specifies the position of the satellite as measured from the
ascending node.

The altitude h is thus expressed in terms of the position on orbit (argument
of the latitude) α by

h(α) = r(α) −RT(α) , (11.47)

r(α) = r[a, e, v(ω, α)] =
a(1− e2)

1 + e cos v
, (11.48)

RT(α) = RT[R, f, ψ(i, α)] =
R√

cos2 ψ +
sin2 ψ

(1 − f)2

, (11.49)

with

v = v(ω, α) = α− ω , ψ = ψ(i, α) = arcsin(sin i sinα) .



546 Chapter 11. Orbit Relative to the Earth: Recurrence and Altitude

z

S

x
F

F�

C

O
ψ

Fig. 11.23 :Schematic representation of the Earth ellipsoid, with center O, and the

elliptical trajectory (polar orbit) of the satellite S, with center C and focus F iden-

tified with O. The principal circles of the ellipses are indicated. The eccentricities

used in the figure have been greatly exaggerated compared with the true eccentricities.

11.8.2 Altitude During One Revolution

Defining the function h(α) in this way, we note certain specific values of
the altitude: h(0) at the equator (ascending node), h(ω) at the perigee, h(π)
at the equator (descending node), and h(ω + π) at the apogee. The function
r(α) has period 2π and amplitude ae. The function RT(α) has period π and
its amplitude varies between 21.3 km for polar satellites (value of the product
Rf) and 0 for equatorial satellites, since in this case, RT(α) = R for all α.

When we give the height of a satellite as a function of the position on orbit,
we must specify the revolution, or at least the day, because of the displacement
of the perigee.

For the satellites in near-circular orbits that we are concerned with here,
the difference between the anomalies v and M is very small (see Figs. 4.5
(upper) and 4.6), and we will be able to replace α by the time t, using the
relation α = 2πt/T .

Example 11.17 Altitude during one revolution of four Earth-observation
satellites:WorldView-2, RazakSat, RapidEye-5, and Yao Gan-7.
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� The metric orbit elements are practically constant over several days. How-
ever, the argument of the perigee ω can change quickly (apsidal precession).
This is why the day and number of the revolution must be specified. We have
used the NORAD data for 6 April 2010. The values of the orbital elements
are indicated in the corresponding figure. For each satellite, the graphs are
divided into two parts:

• On the lower part, the dashed curve gives

r(α) − r(0) ,

and the continuous curve gives

RT(α)−RT(0) .

• On the upper part, we have plotted the altitude relative to the altitude at
the equator, i.e.,

h(α)− h(0) ,

which is the difference between the two previous curves.

The altitude at the equator is obtained from

h(0) =
a(1− e2)

1 + e cosω
−R .

For easier comparison of these variations, all graphs are plotted on the same
scale.

WorldView-2. This is shown in Fig. 11.24 (upper). This Sun-synchronous
satellite has a particularly low eccentricity. The dashed curve representing
variations in r(α) − r(0) is almost flat. Altitude variations arise mainly from
variations in the radius of the Earth ellipsoid.

RazakSat. This is shown in Fig. 11.24 (lower). For this near-equatorial satel-
lite, the variation in the radius of the Earth ellipsoid is almost zero. In this
case, the altitude is only affected by the variation r(α) − r(0) due to the
eccentricity.

RapidEye-5. This is shown in Fig. 11.25 (upper). For this Sun-synchronous
satellite, the variations in r(α) and RT(α) are of the same order, around
20 km. Consequently, h(α) varies by about 40 km.

Yao Gan-7. This is shown in Fig. 11.25 (lower). This Sun-synchronous satel-
lite has similar curves to the last, with a different position of the perigee. �
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On the right, the scale indicates altitudes measured from the reference ellipsoid.

11.8.3 Variation of the Altitude over a Long Period

If we consider the altitude over a period of several months, the elements a
and i remain almost constant. The eccentricity e fluctuates around a central
value and the argument of the perigee ω undergoes a secular variation to
which one must add secondary periodic variations. The form of the altitude
variation h(α) over one revolution depends mainly on the value of ω and to a
lesser extent on the value of e, as we shall show in the following example.

Example 11.18 Altitude as a function of the position on orbit h(α) for the
satellite Okean-3, on various days of the year 1998.

� The satellite Okean-O1-3, generally called Okean-3, was launched on 4 June
1991. Figure 11.26 shows the altitude h(α) for 4 days during the year 1998,
at intervals of 30 days: D = 200 (19 July), D = 230 (18 August), D = 260
(17 September), D = 290 (17 October). During this 90 day period, a did not
change significantly from a = 7,014.051km, while i varied between 82.521◦

and 82.523◦. The eccentricity fluctuated between 2.07×10−3 and 2.47×10−3.
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For its part, the argument of the perigee varied by −90.68◦, −103.06◦, and
−105.46◦ in each of the three 30 day intervals. A small, long-period variation
(of the order of a few months) is superposed on the secular variation (pro-
portional to the time) in ω. Calculating the mean apsidal precession rate, we
find

ω̇ = −360 + 67.73− 128.53

90
= −299.20

90
= −3.32 deg/day .

This agrees with the value found with (7.16), which would give ω̇ = −3.26
deg/day. We see how, for ω, the periodic variations are superposed on the
secular variation. The values of e(D) and ω(D) are indicated in Fig. 11.26.
The graphs of h(α) have been plotted for the 4 days chosen. The left-hand
scale takes as origin the altitude at the equatorial crossing for day D = 200.
The right-hand scale indicates the altitude relative to the reference ellipsoid. �

11.9 Frozen Orbits

11.9.1 Definition of a Frozen Orbit

In the expression for h given by (11.46), we see that the altitude of the
satellite relative to its given subsatellite point varies in time, very slightly
from one revolution to the next, but quite significantly over a time span of
several days, as we saw in Example 11.18. When we require a satellite to be
recurrent, with cycle CT, the aim is to obtain identical viewing conditions
every CT days. However, when we arrange for recurrence, it is the ground
track which is fixed, not necessarily the altitude.

This may be a drawback for Earth-observation satellites, for which one
generally requires the altitude to be constant for a given subsatellite point,
from one crossing to the next, in order to compare the images obtained at
different dates. We would thus like to arrange for the altitude to depend
only on the latitude of the subsatellite point, without variation in time. If
such conditions are satisfied, the orbit is said to be frozen.6 Note that the
freezing of an orbit is independent of its recurrence characteristics, but that,
in practice, only recurrent satellites (whether Sun-synchronous or otherwise)
have frozen orbits.

11.9.2 Determining the Frozen Parameters

Consider now the relation (11.46) giving the altitude h of the satellite
above an arbitrary point specified by the position on orbit α. This altitude,

6The first publications treating the subject of frozen orbits date back to 1965. They
concerned satellites in low orbit around the Moon. The term “frozen orbit” was first used
to describe Seasat in 1976.
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for this point of geocentric latitude ψ, will be denoted by hα(t). With (11.46),
we see that it varies in time through the osculating, i.e., instantaneous, orbital
elements:

hα(t) = h
[
a(t), e(t), i(t), ω(t)

]
. (11.50)

We only take into account long period or secular variations here. Short period
variations are averaged over one orbital revolution. Under such conditions,
as discussed in Chap. 6 and shown schematically in Fig. 6.4, the semi-major
axis a does not change. Equation (6.95) shows that, as long as the inclination
is nonzero, the variation in i is negligible compared with the variation in e,
which is illustrated in Example 6.1.

Equation (11.50), which came from (11.46), thus simplifies to

hα(t) = h
[
e(t), ω(t)

]
. (11.51)

Consequently, the two parameters that concern us here, e and ω, undergo a
long period variation due to the odd zonal terms, mainly J3, while ω also
undergoes a secular variation due to the even zonal terms, mainly J2. Writing
down the equations representing e and ω, whose values result from a complete
treatment of the Lagrange equations, we must solve

{
ė = 0 ,
ω̇ = 0 ,

whence ė = de/dt and ω̇ = dω/dt are functions of the unknowns e and ω, and
to a lesser extent the other orbital elements.

It is a very complex exercise to establish the conditions for a frozen orbit
in the general case. Here we shall find them for an expansion up to degree
3. Using the perturbing potential R = R2 +R3 calculated in Chap. 6 in the
Lagrange equations, we obtain

ė

n
=

3

2(1− e2)2
J3

(
R

a

)3(
1− 5

4
sin2 i

)
sin i cosω , (11.52)

ω̇

n
=

3

(1− e2)2
J2

(
R

a

)2(
1− 5

4
sin2 i

)[
1 +

1

2e(1− e2)

J3
J2

(
R

a

)
sin i sinω

]
.

(11.53)

If we neglect J3 in (11.52) and (11.53), we find ė = 0 and the relation (6.74),
respectively.

Inclination Close to the Critical Inclination

By the very definition of the critical inclination given in (6.79), the term
[1 − (5/4) sin2 i] is zero. We thus have ω̇ = 0 and ė = 0. The orbit is frozen,
whether the eccentricity is low or high.
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For inclinations close to the critical inclination, large oscillations in ω are
due to the J4 term (and following) since the contribution from J2 and J3 is
very small. The expressions (11.52) and (11.53) must be expanded to higher
degrees. It can then be shown that, for i between about 53◦ and 74◦ (or
between 106◦ and 127◦), the eccentricity for a frozen orbit varies between 0
and 30× 10−3.

Inclination Far from the Critical Inclination

For inclinations differing significantly from the critical value, i.e., the
ranges i < 53◦, 74◦ < i < 106◦, i > 127◦, as is usually the case for Sun-
synchronous satellites, (11.52) shows that

ω = ±90◦ =⇒ ė = 0 . (11.54)

Substituting this value of ω, denoted by ωF, into (11.53), we obtain ω̇ = 0 by
setting the expression between square brackets equal to zero, i.e., setting

eF = e(ωF) = −1

2

J3
J2

R

a
sin i sinωF . (11.55)

Values for the frozen orbit carry the subscript F. Since this calculation refers
to near-circular orbits, we have neglected e2 compared with 1 in (11.53). We
could also use (6.94).

The sign of sinωF depends on the sign of J3 in such a way that the ex-
pression for e comes out positive. For the Earth, with J3 negative, we take

ωF = +90◦ , (11.56)

eF = − J3
2J2

R

a
sin i . (11.57)

When the orbit is frozen, the perigee of Sun-synchronous LEO satellites is
thus practically over the North Pole.

Frozen Eccentricity

For the SPOT satellites, (11.57) implies that eF = 1.03× 10−3. The exact
value of the frozen eccentricity is eF = 1.14× 10−3. For LEO satellites, eF is
always small, of the order of 10−3, and the orbit is thus near-circular.

Many recurrent satellites, Sun-synchronous or otherwise, have a frozen
orbit. For some satellites, it is essential that the parameters e and ω be main-
tained7 at the reference values8 eF and ωF.

7For example, for the satellite TOPEX/Poseidon, between 1992 and 2002, we may note
the following exceedingly narrow ranges of variation for the orbital elements: eF from 0.73×
10−3 to 0.83× 10−3, ωF from 264◦ to 270◦, i from 66.037◦ to 66.046◦, a from 7,714.422 to
7,714.436 km.

8The true values as obtained from the NORAD elements often differ somewhat from the
nominal values. In Example 11.1, we note that the true values of the eccentricity of SPOT-5
are well below the nominal values.
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Fig. 11.27 :Variation of the argument of the perigee ω of the satellite Terra at dif-

ferent dates. Transition from a revolving to frozen perigee (ω = 90◦ ± 20◦).

We should also note that some satellites require a non-frozen orbit. To
ensure that the perigee does not remain permanently in the vicinity of the
North Pole and that the gravitational field is sampled at different altitudes,
the geodetic satellite GOCE has variable eccentricity, ranging between 0 and
4.5× 10−3. Hence, the altitude varies between 236 and 282km.

Example 11.19 Variation in the position of the perigee for the satellite Terra
and transition to a frozen orbit.

� For the Sun-synchronous satellite Terra, launched on 18 December 1999,
the argument of the perigee ω had a secular variation between 0◦ and 360◦,
occurring at the approximately constant rate of ω̇ ≈ −3.3◦ per day. How-
ever, from 5 February 2001, by varying the eccentricity, the perigee no longer
revolves, but sits at the value ω = 90◦, to within 20◦ (see Fig. 11.27). �

11.9.3 Altitude of a Satellite on a Frozen Orbit

In the case of a frozen orbit, where the ellipse representing the satellite
trajectory is fixed in the orbital plane, we may calculate the altitude of the
satellite as a function of a single variable, e.g., α, over a period T . The altitude
variation will then repeat itself identically with period T . We give here an
example calculation of an altitude and altitude variation as a function of
position on orbit.
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Fig. 11.28 :Altitude of MetOp-A in a frozen orbit. The altitude is given as a func-

tion of the position on orbit (argument of latitude) α, given in degrees. Lower: the
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the two curves in the lower part of the figure. Left: scale for the differences. Right:

scale for the altitudes relative to the reference ellipsoid.

Example 11.20 Calculate the altitude as a function of the position on orbit
for the satellite MetOp-A, which has a recurrent and frozen Sun-synchronous
orbit.

� The orbital characteristics of MetOp-A as provided by the ESA are as
follows:

• Sun-synchronous inclination.
• Recurrence with 412 revolutions in 29 days.
• Frozen orbit with eccentricity e = eF = 0.0011655 and ω = ωF = 90.0◦.

The satellite MetOp-B is on the same orbit, and the future MetOp-C should
also be.

Using the method presented in Example 11.1, we may calculate the orbital
elements from the recurrence triple [14, 6, 29], whence we obtain:

• semi-major axis a = 7,195.606km,
• Sun-synchronous inclination i = iHS = 98.702◦.
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The geocentric latitude of the satellite ψ (Geoc. L) and the geodetic latitude of the

nadir ϕ (Geod. L) are given for each specified value of α. Close-up of Fig. 11.28.

Given a and e, we can calculate b and c :

c = ae = 8.386 km , b = a
√
1− e2 = 7,195.601 km , a− b = 0.005 km .

We have already noted that the orbit of a satellite of this kind is a circle
shifted by 8 km relative to the center of the Earth (see Example 1.2). The
distance c is proportional to e, whereas the difference between the semi-axes
is a function of e2 : a and b are thus equal to within 5m.

In Fig. 11.28, distances are expressed as a function of the position on or-
bit α. The graph of r(α)−r(0) shows a difference of 2ae = 16.772km between
the radius at apogee ra = r(ωF + π) and the radius at perigee rp = r(ωF).
Concerning the Earth ellipsoid, the maximum latitude attained, for α = ωF,
is ψ = ±ψm, with ψm = 180− i = 81.298◦, which gives at the perigee

RT[ψ(ωF)] = RT(ψm) = Rm = 6,357.240 km , R−Rm = 20.897 km .
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Fig. 11.30 :Altitude of the International Space Station (ISS) at different dates over

a little longer than 10 years, from 1998 to 2009. The space station, which is at a

relatively low altitude, must be rather frequently raised. Credit: NASA.

We now calculate the values of the altitude for particular points on the orbit
(equator, ascending and descending nodes, perigee, and apogee):

Ascending node h(0) = a(1− e2)−R = 7195.596− 6378.137 = 817.459 .

Perigee h(π/2) = a(1− e)−Rm = 7187.223− 6357.240 = 829.983 .

Descending node h(π) = a(1− e2)−R = 7195.596− 6378.137 = 817.459 .

Apogee h(3π/2) = a(1 + e)−Rm = 7203.989− 6357.240

= 846.749 .

h(π) = h(0) , h(3π/2) = h(π/2) + 2ae .

The minimum altitude is 816.623km, reached when α = 11.5◦ and α = 168.5◦,
which corresponds to a latitude of 11.4◦ (ψ = 11.37◦, ϕ = 11.43◦). The
maximum altitude is reached at the apogee.

Since the position of the perigee is symmetric with respect to the two
nodes for this satellite, the altitude depends only on the latitude ϕ and we
do not have to specify the crossing direction (ascending or descending) of the
orbit. In Fig. 11.29, we have indicated the geocentric latitude on the horizontal
axis, between its two extreme values −ψm and +ψm, and also the geodetic
latitude of the nadir (which takes into account the altitude of the satellite, as
explained in Chap. 2). �
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11.10 Altitude and Atmospheric Drag

As we have seen in Chap. 6 when considering non-conservative perturba-
tions, atmospheric drag causes the satellite to drop in altitude. In the examples
in this chapter where we have discussed satellite altitude, the effects of drag
were not mentioned, either because they were negligible, or because they were
frequently compensated, which made them practically imperceptible.

Here we give two examples where the drop in altitude due to drag is
significant. In Example 11.21, we show how the orbit of the International Space
Station (ISS) is frequently “boosted”, and in Example 11.22, how atmospheric
drag can play a fatal role for a spacecraft.

Example 11.21 Altitude of the International Space Station (ISS) over the
past 11 years.

� The satellite ISS is in a relatively low LEO orbit and requires frequent
energy boosts to remain at a suitable altitude, as can be see from Fig. 11.30.
In this graph supplied by NASA, consider the continuous part of the curve
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Fig. 11.31 :Altitude of the satellite in Example 11.22 as a function of time. The

altitude drops more and more quickly and the satellite ends by burning up in the

lower levels of the atmosphere. Altitude in km, time in days.
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at the beginning of 1999. This linear part indicates that the altitude changed
from h = 400.0km (day D = 1) to h = 389.9km (day D = 150), implying a
steady drop by 16.1 km over 149 days, or 108m per day. With T = 93min,
and hence ν = 15.5, the drop in altitude per revolution Δ1a is given by

Δ1a =
108

15.5
= 7.0m .

From the general appearance of the graph, we see that this value is represen-
tative of the general trend. We use (6.121) with a = 6,770km to obtain

Bρ =
1.11

a2
= 2.42× 10−14 .

Using (6.118), we can find the ballistic coefficient B, taking Cd = 2.3, S =
600m2, Ms = 250 tonnes (in 1999, while the mass of the space station went
up to 417 tonnes in 2011):

Cd =
2.3× 600

2.50× 105
= 5.5× 10−3 ,

ρ =
2.42× 10−14

5.5× 10−3
= 4.4× 10−12 .

We thus obtain an average value for the atmospheric density at this altitude
(see Table 6.4). �

Example 11.22 Fall of a low-orbiting satellite (h = 350 km) during a period
of maximal solar activity.

� We consider a satellite in LEO orbit with h = 350 km, i = 60◦, and with
ballistic coefficient B = 0.0160 (as for SPOT-4). We choose the scenario of
maximal solar activity in the atmospheric model MSIS-90 (see Table 6.4).
Under these conditions, the software Ixion calculates the change in the or-
bit in a step by step manner. The drop in altitude h = a − R is shown in
Fig. 11.31. Initially proportional to the time (between D = 0 and 25), the
decrease gets faster from D = 30, and when D = 45, the satellite reaches an
altitude of 250km. At this point, the craft is doomed to almost immediate
disintegration. �



Chapter 12

View from the Satellite

In the preceding chapters, we have discussed the satellite orbit, position, and
ground track. All this can be deduced from the position S of the satellite as
viewed from the center of attraction O, which is the center of the Earth. The
time has come to look at things from a different standpoint: we shall now
be concerned with the view from an instrument carried aboard the satellite
(see Fig. 12.2). The main difference is that we are now looking at things from
the point of view of the satellite S. As a consequence, this chapter is principally
concerned with observation satellites.

12.1 Swath of an Instrument

12.1.1 Local Orbital Frame

Up to now the satellite has been treated as a point, or at least, we have
considered only the motion of its center of gravity. But as a vehicle, the
satellite can also move about its center of inertia. Although this kind of motion
is largely irrelevant for the purposes of calculating its trajectory, it is of course
crucial when we come to ask what the instruments aboard will be able to view.
If we want to produce an image of the Earth, we must not aim at the sky,
and conversely!

Manipulation of the angular orientation of the satellite is called attitude
control. The attitude of the satellite tends to vary under the action of couples,
which may be external, due to radiation pressure or atmospheric drag on
solar panels, or internal, due to mechanical motion of the instrument motors.
A stabilisation system is thus required to maintain the satellite in the right
position relative to the local orbital frame.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 12,
© Springer International Publishing Switzerland 2014
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For any point S on the orbit, this frame is defined by the following three
axes, illustrated in Fig. 12.1:

• yaw axis SZc, directed towards the center of the Earth, also called the
nadir axis,

• pitch axis SY c, directed normally to the orbital plane,
• roll axis SXc, lying in the orbital plane and completing a right-handed

orthogonal system of axes. This axis lies along the velocity vector of the
satellite when the eccentricity is zero.

We shall refer to the axes of the local orbital frame as the Cardan axes, with
the appropriate subscript.1 The angles obtained by rotation relative to these
axes are the Cardan angles, defined in Sect. 5.4.

12.1.2 Scanning Modes

There are various ways for an instrument to look at the Earth. The sensor
can be equipped with a fixed objective relative to the satellite, but in most
cases, the sensor is mobile (either itself or through the action of a mirror)
along some axis of rotation.

1The axes are sometimes taken in a different order, with a different orientation, e.g.,
SZc pointing in the opposite direction to the nadir. However, in every case, the triad is
right-handed and orthogonal and the direction of the nadir corresponds to one of the axes.
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Fig. 12.2 :Oblique view from the satellite Aqua. Late November 2011 offered mostly

cloud-free skies and a compelling view of the entire length of Baja California and the

Pacific coast of Mexico. In the midst of the clarity, strong northeasterly winds stirred

up dust storms on the mainland and the peninsula. The natural-color images required

to make this oblique view were acquired on 27 November 2011, by MODIS (Moderate

Resolution Imaging Spectroradiometer) on NASA’s Aqua satellite. The Ocean Color

Team at NASA Goddard processes images like this to help assess the presence of

sediment and plankton in the sea. Dust storms interfere with that processing, as the

sandy aerosols block much of the incoming sunlight and the outgoing, reflected light.

Credit (image and caption): Norman Kuring, Mike Carlowicz, NASA, Ocean Color

Team (NASA Goddard), University of Wisconsin.

To begin with, we may define three basic scanning modes, when the
instrument rotates relative to one of the three Cardan axes. In the first two
cases, the instrument axis and the axis of rotation are the same, whereas in
the third the instrument axis makes a constant angle with the axis of rotation.
These three scanning modes are as follows:

• With rotation about SXc, the instrument scans perpendicularly to its
displacement. This is orthogonal or cross-track scanning.

• With rotation about SY c, the instrument scans along the ground track.
This is along-track scanning.

• With rotation about SZc, the instrument scans in conical mode, defined
by the half-angle at the apex of the cone, which is the angle between the
instrument axis and the axis of rotation.
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During observation, the smallest detected element is called a pixel.2 The set
of all such elements viewed on the ground in a single scan is called the swath.

The technical features of the various optical instruments and sensors are
not the concern of this book. We shall consider only the geometrical aspects
of scanning.

Scanning Mode for LEO Satellites

An instrument aboard an LEO satellite can use one of the three elementary
scanning modes listed above. It can also alternate between the first two, or
scan obliquely by a rotation of the instrument about an axis in the plane
SXcYc.

In orthogonal scanning, some instruments sweep from side to side across
the swath,3 pixel by pixel as it were. Other instruments simultaneously record
all the pixels in one row, and some can even record over several rows at once.4

Scanning Mode for GEO Satellites

Concerning the way images are acquired, for one cannot really say that
there is a swath in this case, geostationary satellites fall into two main cate-
gories.

For satellites with three-axis stabilisation, such as GOES (from GOES-8)
or GOMS, one axis is parallel to the polar axis, one axis points to the center
of the Earth, and one axis lies along the satellite’s velocity vector. The sensor
scans the disk presented by the Earth.

For rotating satellites, such as the METEOSAT, GMS, or FY-2 se-
ries, the axis of rotation is parallel to the polar axis. In the case of ME-
TEOSAT (first and second generation), the satellite rotates exactly 100 times
a minute. Amirror is used to sweep across the Earth’s disk. For the satellites
METEOSAT-1 to -7 (first generation), this east–west scanning is carried out
from south to north at a rate of 2,500 rows in 25min. From METEOSAT-8
(MSG-1, second generation), 3,712 rows are scanned in 15min. We note that,
with this method, although it gives excellent results, the Earth is only viewed
over 17.4◦ per revolution, i.e., the sensor views the Earth for 4.8% of the time,
spending the other 95.2% of the time looking into the darkness of space.

2The word “pixel” was coined in 1969, by contracting picture and element.
3To get some idea, on those satellites which carry it, the instrument known as ScaRaB

investigates the radiation budget by scanning every 6 s. The effective part of the scan lasts
for 3.18 s. For the remaining 2.82 s, the instrument does a calibration sighting and repositions
itself.

4Charge-coupled devices (CCD) can acquire a row of pixels (1D-CCD, one dimension) or
several rows (2D-CCD, two dimensions). Aboard SPOT-4, the HRVIR instrument uses the
so-called push-broom mode with a 1D-CCD. The optical instrument is based on a telescope
whose field of view is covered instantaneously by a row of 1,728 detectors, each corresponding
to one pixel. In the case of the POLDER instrument, carried aboard ADEOS-1 and -2 and
Parasol, the use of 2D-CCDs makes it possible to acquire a set of rows simultaneously,
rather than just one.
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Whatever method is used, the “swath” of a geostationary satellite will be
treated like the cross-track swath of a low-orbiting satellite: for a point P
viewed on Earth, we consider the plane SS0P (see Fig. 12.3) and define the
angles of sight as for an LEO cross-track swath. We thus define the angle
S0SP which plays the role of the half-swath angle f discussed below.

12.2 Swath Viewing Geometry

12.2.1 Definition of Angles

For the following general relations concerning instrumental swath, we shall
treat the Earth as spherical. For more accurate calculations, we use the
ellipsoid.

Figure 12.3 shows all angles relevant to the satellite view and swath. The
satellite S is in orbit around the Earth, at distance OS = d from the center
O. The subsatellite point is denoted by S0. Thus OS0 = R is the Earth radius
and SS0 = h the altitude of the satellite. We use the reduced distance

η =
d

R
= 1 +

h

R
, (12.1)

i.e., the distance SO expressed in Earth radii and denoted by η, as already
defined in (2.38). For a circular orbit of radius a, we have d = a.
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At a given instant of time, the angle between the line of sight from the
satellite and the nadir5 is

f = (SS0,SP ) , (12.2)

where P is the point the instrument is viewing. This angle is called the swath
angle or scan angle.

For the point P , we define the viewing zenith angle6 by

ζ = (OP ,PS) . (12.3)

This is the angle at which the satellite is seen from the surface, measured from
the local vertical. The angle of elevation, or site angle, is the complementary
angle of ζ, i.e., 90◦ − ζ.

We also use the angle α, which is the angle at the center of the Earth
defined by

α = (OS,OP ) . (12.4)

These three angles are related by

f + α = ζ , (12.5)

by considering the triangle OSP . The maximum value of f is obtained when
the target point P is on the Earth’s limb. We denote this point by P0 and the
corresponding angles are given the subscript zero. Considering the triangle
OSP0, we obtain the relations

sin f0 =
R

d
=

R

R+ h
, α0 =

π

2
− f0 , ζ0 =

π

2
,

or using the reduced distance η,

sin f0 = cosα0 =
1

η
. (12.6)

Note on Terminology. The angle f defined above was called the half-swath
angle. When we speak of the swath of an instrument, we generally mean the
angle moved through by the instrument at the apex, i.e., 2fM, where the angle
fM is the maximal value reached by f when the instrument arrives at the limit
of its orthogonal scan. The angle at the apex is called the field of view. If fM
is greater than f0, we must obviously take fM = f0. To avoid confusion, we
will therefore speak of the maximum possible half-swath to describe f0 and
the maximum instrument half-swath to speak of fM.

5The nadir is the direction given by the vertical, looking downwards, i.e., toward the
center of the Earth. The opposite direction is the zenith. The word “nadir” comes from the
Arabic nād. ir, from the root of the verb “to look straight at.”

6In Arabic, semt er-rās means “the path of the head.” This gives the word “zenith,”
the point on the sky just above the head. The word “azimuth” comes from as-semt, “the
path,” with assimilation of the article.
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12.2.2 Relations Between Angles

Let us now establish relations giving one of the angles f , ζ, α as a function
of one of the other two and the altitude via η. We thus obtain six relations.

Relations Between f and ζ. In the triangle OSP , we have the relation

sin f

R
=

sin ζ

d
,

which yields

f = f(ζ, η) , sin f =
1

η
sin ζ = sin f0 sin ζ , (12.7)

ζ = ζ(f, η) , sin ζ = η sin f =
sin f

sin f0
. (12.8)

f and ζ as Functions of α. To obtain f as a function of α, consider the
triangle OSP and express the segment PA′ in two different ways (where A′

is the projection of P on OS) to deduce that

(d−R cosα) tan f = R sinα .

To obtain ζ as a function of α, consider the triangle OPA, where A is the
intersection of OS with the line through P perpendicular to OP . This yields

f = f(α, η) , tan f =
sinα

η − cosα
=

cosα0 sinα

1− cosα0 cosα
, (12.9)

ζ = ζ(α, η) , tan ζ =
sinα

cosα− 1/η
=

sinα

cosα− cosα0
. (12.10)

Expressions for α. We immediately obtain the values of α with (12.5) and
the above relations:

α = α(f, η) , α = −f + arcsin (η sin f) , (12.11)

α = α(ζ, η) , α = ζ − arcsin

(
1

η
sin ζ

)
. (12.12)

12.2.3 Ground Swath

The ground half-swath is the distance F on the Earth’s surface between
the subsatellite point and the target point at angle f . The ground swath is
then 2F . The maximum ground half-swath is denoted by F0. These lengths
are given by
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h 0 350 700 1,050 1,400 2,800

f0 90.0 71.4 64.3 59.2 55.1 44.0
f 45.0 45.0 45.0 45.0 45.0 44.0
ζ 45.0 48.2 51.7 55.4 59.6 90.0
α 0.0 3.2 6.7 10.4 14.6 46.0

F0 0 2,066 2,861 3,433 3,887 5,118
F 0 360 745 1,162 1,623 5,118
2F 0 720 1,491 2,324 3,245 10,236

Table 12.1 :Sight angles for a half-swath f = 45◦ for an instrument aboard a satellite

at various altitudes h. Cross-track swath. The angles f , ζ, α, and f0, defined in this

chapter are in degrees. The altitude h and the distances F and F0 are in kilometers.

F = Rα , (12.13)

F0 = Rα0 = R arccos
1

η
. (12.14)

In Fig. 12.3, F corresponds to the arc S0P and F0 to the arc S0P0.

Example 12.1 Calculate the ground swath for an instrument viewing with
angle f = 45 ◦, aboard satellites with different altitudes: h = 350, 700,
1,050 km, etc.

� With 350/R = 5.487 × 10−2, we calculate η and the angles by the above
formulas. The results are given in Table 12.1. We can then compare the swaths
of satellites like TRMM (h = 350 km) or Terra (h = 700km). For satellites
with altitude less than 1,000km, the roundness of the Earth does not account
for more than 10% of the value of the ground swath.

The limb is viewed with f = 45◦ when h = 2,642 km. Indeed, according to
(12.6), we have

√
2 = η = (R + h)/R, and hence h = R(

√
2− 1) = 2,642km.

We can check from Table 12.1 that, for h = 2,800km, the swath f = f0 is less
than 45◦. �

12.2.4 Latitudes Viewed and Latitude Overlap

Viewed Latitude Range

For a satellite of inclination i, we defined the maximum attained latitude
ψm by (8.18). The ground track of the orbit lies within the latitude range

[
− ψm,+ψm

]
.
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Consider the plane perpendicular to the orbit passing through the polar axis,
as shown in Fig. 12.4. This is a meridian plane. With cross-track scanning,
it is when the satellite crosses this plane that it sees points on the Earth at
the extreme latitudes. For an instrument with maximum half-swath fM, the
swath track lies in the interval

[
− ψv,+ψv

]
,

where the angle ψv is the maximum latitude viewed, as defined by

ψv =

{
ψm + αM , if ψm + αM < 90◦ ,
90◦ , if ψm + αM ≥ 90◦ , (12.15)

with αM = αM(fM, η) calculated using (12.11).

Latitude Overlap

When ψm + αM is greater than 90◦, we say that there is latitude overlap.
This overlap concerns latitudes in the ranges:

{[
+ 90◦, 180◦ − (ψm + αM)

]
in the northern hemisphere ,[

− 90◦, (ψm + αM)− 180◦
]

in the southern hemisphere .
(12.16)
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For a satellite with near-circular orbit, if a pole is viewed during a cross-track
scan, the two poles are viewed during each revolution.

The geodetic latitude ϕm is then obtained from ψm by the usual rela-
tion (2.4).

Example 12.2 Calculate the maximum viewed latitude and, in the relevant
situations, the range of latitudes covered by the ScaRaB (fM = 48.91 ◦) carried
by Meteor-3-07, Resurs-O1-4, and Megha-Tropiques.

� For Meteor-3-07, i = 82.56◦, ψm = i, η = 1.187, we obtain

ψm + α = 82.56 + 14.55 = 97.11◦ .

All latitudes are viewed. Moreover, for each hemisphere, there is overlap
between the pole and geocentric latitude |ψ| = 180 − 97.11 = 82.79◦, or
|ϕ| = 82.84◦.

For Resurs-O1-4, i = 99.69◦, ψm = 180 − i = 81.31◦, η = 1.129, and we
obtain

ψm + α = 81.31 + 9.40 = 90.71◦ .

All latitudes are viewed. The overlap is very slight, between the pole and
latitude |ψ| = 89.29◦, or |ϕ| = 89.30◦, for each hemisphere.

For Megha-Tropiques, i = 20.00◦, ψm = i, η = 1.136, and we obtain

ψm + α = 20.00 + 9.98 = 29.98◦ , or ϕ = 30.15◦ .

The latitudes viewed lie in the band [30.2◦S, 30.2◦N], which corresponds to
the region between the tropics (whence the name of the satellite). �

12.3 Pixel Distortion

12.3.1 Calculating the Distortion Index

We consider an instrument which observes the Earth with cross-track
scanning. The axis of rotation of the instrument is perpendicular to the plane
defined in Fig. 12.3. While the image is being acquired during the swath, the
pixel is distorted in the direction of the swath and normal to it, for purely
geometrical reasons. Here we discuss both kinds of distortion.

Index K and Relative Distortion of the Pixel
in the Swath Direction

Each angular interval δf of the half-swath angle corresponds to a half-
swath interval δF on the ground. It is clear that, for a given constant interval,
say 1◦, the value of δF is smaller at the nadir (for f = 0) than when viewing
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the limb (for f = f0): the satellite–target distance increases and, furthermore,
the roundness of the Earth is relevant here.

The pixel, which depends on the value of the elementary interval δf of the
instrument, has size δF in the scanning direction. To find the pixel distortion,
we calculate the variation of the ratio δF/δf as a function of the position of
the target point, which amounts to finding the variation of the ratio δα/δf
as a function of α.

Differentiating (12.9), we obtain

(1 + tan2 f)df =
η cosα− 1

(η − cosα)2
dα ,

which yields, replacing tan f by its value as a function of α,

dα

df
=

η2 − 2η cosα+ 1

η cosα− 1
. (12.17)

Considering increments δf and δα small enough to identify them with df and
dα, we obtain the desired function

k(α, η) =
δα
δf

.

To measure the pixel distortion K(α, η), we set

K(α, η) =
k(α, η)

k(0, η)
,

thereby expressing k(α, η) relative to its value at the nadir. This value is
k(0, η) = η − 1, which can be checked by calculating δF at the nadir in two
different ways (using small angles), from the standpoint of S or O, whence
δF = hδf = Rδα.

This pixel distortion index is thus

K(α, η) =
1

η − 1

η2 − 2η cosα+ 1

η cosα− 1
. (12.18)

It thus measures a one-dimensional distortion along the swath for fixed inc-
rement δf . (We are not concerned here with scanning in which δf varies
with f .)

Index L and Relative Distortion of the Pixel Width

The pixel is determined by the intersection of the viewing cone, which is
extremely fine, and the sphere of the Earth. The distortion in the width, that
is, in the plane defined by Fig. 12.3, depends solely on the length SP . The
index L representing the corresponding relative distortion is therefore

L =
SP

SPnadir
=

SP

SH
.
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Using the reduced variable η, we obtain

L(α, η) =
1

η − 1

√
η2 − 2η cosα+ 1 . (12.19)

Index S and Relative Distortion of the Pixel Area

This relative distortion does not depend on the shape of the pixel (dia-
mond, ellipse, etc.). The index S is the product of the two indices K and L,
considered in two orthogonal directions:

S(α, η) = K(α, η)L(α, η) =
1

(η − 1)2
(η2 − 2η cosα+ 1)3/2

η cosα− 1
. (12.20)

The maximum value of the angle α is obtained when viewing the limb and is
given by α0 = arccos(1/η). When α tends to α0, the index K, and hence also
S, tends to infinity. For the index L, the value is finite, viz.,

L(α0, η) =

√
η + 1

η − 1
.

12.3.2 Pixel Distortion for LEO Satellites

The indices K, L, and S are calculated as functions of α, but the results
are generally expressed in terms of the variables ζ or f . The distortion index
K(f) is plotted in Fig. 12.5 (upper) for LEO satellites in near-circular orbit
and for altitudes between 200 and 1,400km, in steps of 200km. This index
becomes large (K > 2) when f reaches roughly two thirds of its maximum
value f0.

Example 12.3 Calculate the pixel size and distortion index for the ScaRaB
instrument aboard Meteor-3-07 and Resurs-O1-4.

� Two identical ScaRaB instruments are carried aboard the Russian satel-
lites Meteor-3-07 and Resurs-O1-4. Scanning is across the ground track. The
maximum instrumental half-scan angle, beyond which the instrument cannot
view, is fM = 48.91◦, implying a field of view of 97.82◦. The complete scan
comprises 51 pixels, corresponding to 50 increments, which gives a pixel size of

δf =
2fM
50

= 1.956◦ = 33.146milliradians .

Note that this is in fact the effective pixel, while the true pixel is larger to
give overlap. At the nadir, this pixel size corresponds to
δF = 40.8 km for ScaRaB aboard Meteor-3-07 ,
δF = 27.8 km for ScaRaB aboard Resurs-O1-4 .
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Fig. 12.5 :Relative pixel distortion as represented by the index K, which measures

length distortion. Upper: For LEO satellites with altitude h = 200–1,400 km, in

steps of 200 km, as a function of the half-swath angle f . Lower: For any geostationary

satellite, as a function of the angle α, representing the latitude or longitude from the

subsatellite point.
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At the limiting value of the scan, the pixel length is
K(fM) = 4.0 =⇒ δF = 161 km for ScaRaB aboard Meteor-3-07 ,
K(fM) = 3.2 =⇒ δF = 86 km for ScaRaB aboard Resurs-O1-4 .
The ground swath is 2FM = 3,254km for Meteor-3-07, which exceeds the
equatorial shift ΔλE = 3,059km. However, for Resurs-O1-4, the ground swath
2FM = 2,078km is considerably less than the equatorial shift ΔλE = 2,819km.
The ScaRaB instrument was originally designed for satellites of type Meteor-3,
at an altitude of 1,200km, the aim being to scan the whole planet in 1 day.
To obtain this result aboard satellites like Resurs-O1 at an altitude of 800km,
the instrument would have had to scan up to angles fM = 55◦, and this would
have given a pixel distortion of K = 5.3 (see Fig. 12.8). �

Example 12.4 Pixel distortion for the ScaRaB instrument aboard Megha-
Tropiques.

� The ScaRaB instrument described in Example 12.3 is also carried aboard
the French–Indian satellite Megha-Tropiques. Once again, the swath is cross-
track. At the nadir, with an angle of 33.146mrad, the effective size of the
pixel (and also the separation between two pixels) is 865.6km. The true pixel,
which must overlap neighbouring pixels, is naturally larger. At the nadir, it
is diamond shaped with side 41.60 km. The diagonals of this diamond have
length 58.82 km. One of these, called the width, lies along the velocity vector
of the satellite, while the other, called the length, is perpendicular, lying along
the scan direction.

The pixel is gradually distorted with increasing angle f . At the limit of
the scan, with fM = 48.91◦, the diagonals have lengths 99.43 and 192.29km.
The results are given in Fig. 12.6. Figure 12.14 provides a representation of
the pixels in situ. �

12.3.3 Pixel Distortion for GEO Satellites

Although a geostationary satellite sees almost half the Earth’s surface,
around the edge of the observed disk, the pixel distortion is considerable. The
graph of K(α) in Fig. 12.5 (lower) shows that, for a geostationary satellite, the
distortion index exceeds 2 beyond 50◦. The angle α can be replaced by |λ−λS|,
the longitude along the equator, measured from the subsatellite point, or by
|ψ|, the latitude measured along the meridian λS. These graphs are clearly
going to be the same for all geostationary satellites.
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f ζ α K L S Length Width Area

0.0 0.0 0.0 1.000 1.000 1.000 58.82 58.82 1,729.9
5.0 5.7 0.7 1.009 1.004 1.014 59.37 59.08 1,753.6

10.0 11.4 1.4 1.038 1.018 1.056 61.05 59.85 1,827.1
15.0 17.1 2.1 1.088 1.040 1.132 64.02 61.19 1,958.9
20.0 22.9 2.9 1.165 1.074 1.252 68.55 63.17 2,165.1
25.0 28.7 3.7 1.277 1.120 1.430 75.10 65.89 2,474.3
30.0 34.6 4.6 1.436 1.182 1.698 84.47 69.53 2,936.8
35.0 40.6 5.6 1.667 1.264 2.107 98.03 74.37 3,645.3
40.0 46.9 6.9 2.012 1.375 2.766 118.33 80.87 4,784.4
45.0 53.4 8.4 2.562 1.527 3.911 150.69 89.80 6,765.9
50.0 60.5 10.5 3.542 1.746 6.184 208.32 102.71 10,698.2
55.0 68.5 13.5 5.719 2.098 11.996 336.40 123.38 20,752.6
60.0 79.6 19.6 15.795 2.853 45.070 929.09 167.83 77,965.9

48.9 58.9 10.0 3.269 1.690 2.763 192.29 99.43 9,559.4
61.7 90.0 28.3 ∞ 3.967 ∞ ∞ 233.35 ∞

Fig. 12.6 :Pixel distortion indices for the ScaRaB instrument aboard Megha-

tropiques. The three pixel distortion indices are K, L, S (dimensionless). The angles

f , ζ, and α are in degrees. The length and width dimensions of the ScaRaB pixel

are given in km and the area of the diamond-shaped pixel is given in km2. The max-

imal scan angle is f = 48.91◦. The maximal possible angle (viewing the limb) is

f0 = 61.70◦. See also Fig. 12.14.
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12.4 Swath Track for an LEO Satellite

For LEO observation satellites, the two main scanning modes are cross-
track and conical. They concern two completely different kinds of instrument.
In the case of cross-track scanning instruments, one exploits (although on rare
occasions) the possibility of orienting the device differently so that it can view
along the track or along some other direction. Here we shall examine these
different scanning modes.

12.4.1 Cross-track Swath

In order to calculate the coordinates of the points viewed and thus plot
the ground track of the cross-track scan, we return to the Euler angles first
discussed when determining the subsatellite point on the ground track.

We consider that the scan with instantaneous angle f from the satellite S
is equivalent to a scan with instantaneous angle α from the center O of the
Earth. Scanning is in the plane perpendicular to the orbit, passing through S
and O. Viewed from O, it is thus a scan with angle α and axis OY (parallel
to SX in the orbital plane), where the orthogonal axes OXY Z were defined
previously as in Fig. 8.2.
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This rotation has matrix P4 given by

P4 =

⎛
⎝ cosα 0 − sinα

0 1 0
sinα 0 cosα

⎞
⎠ . (12.21)

If (X ′, Y ′, Z ′) are the Cartesian coordinates of the target point on the Earth
relative to the frame �(Oxyz), we obtain these new coordinates from

⎛
⎝X ′

Y ′

Z ′

⎞
⎠ = P4

⎛
⎝X

Y
Z

⎞
⎠ ,

where the coordinates (X,Y, Z) of the subsatellite point were obtained using
the product of the three rotations defined by (8.8). Figure 12.7 completes
Fig. 8.2 with the fourth rotation. Using (8.12) to (8.14), the Cartesian
coordinates (X ′, Y ′, Z ′) can be used to calculate the polar coordinates λ′ and
ψ′ of the target point.

Scanning and Ground Track of the Cross-track Swath

When an instrument scans, the scan moves extremely quickly across the
ground. For example, the instrument ScaRaB aboard Meteor-3-07 completes
one scan in 3.18 s, so that the average speed of the scan on the ground is
3254/3.18 = 1,024km s−1. Compared with the displacement of the subsatellite
point along the satellite ground track, which is 6 km s−1, each swath track can
be treated as instantaneous. For HRVIR aboard SPOT-4, the scan is effectively
instantaneous.

The ground track of the orthogonal swath, perpendicular to the orbital
plane, thus makes an angle of 90◦ − i with the equator. However, as we saw
previously, the ground track makes an angle i′ with the equator. This is the
apparent inclination. In diagrams showing the ground tracks, the normal to
the ground track of the swath thus makes an angle i − i′ with the satellite
ground track at the equator, given by (8.30). In other words, the ground track
of the cross-track swath is not exactly perpendicular to the satellite ground
track.

Note on Cartography. This angular difference only shows up true to scale
on maps plotted with a conformal projection. On the two maps of Fig. 12.8,
plotted with the Mercator projection, one can evaluate the angle between
the scan and the ground track at the equator and check that this is not a
right-angle.

Equatorial Overlap

Consider the full swath of an instrument to its viewing limit. Its width on
the ground is 2FM. Let LE be the portion of the equator covered by the swath
during one crossing by the satellite. To a first approximation,
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Meteor-3-07 / ScaRaBMeteor-3-07 / ScaRaB
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>>>>   Time span shown:   250.0 min =   0.17 day
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Equat. orbital shift  = 3059.5 km  (  27.5 °)
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Latit. overlap:82.9° <--> 90.0°

Projection:  Mercator
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Aspect:  Direct
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Resurs-O1-4 / ScaRaBResurs-O1-4 / ScaRaB
Orbit - Ground track
>>>>   Time span shown:   250.0 min =   0.17 day

Across track swath (XT mode)

Altitude =  814.2 km a = 7192.379 km

Inclin./SUN-SYNCHRON.=  98.70 °
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**   Half-swath:  48.9°  =>  1034 km [ 1.00 min]

Asc. Node:      0.00 °

Latit. overlap:89.4° <--> 90.0°

Projection:  Mercator

Property:  Conformal

T.:Cylindrical - Graticule: 10°
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Aspect:  Direct
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Fig. 12.8 :Ground track of the cross-track scan by ScaRaB carried at different alti-

tudes by the two LEO satellites Meteor-3-07 and Resurs-O1-4.
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LE ≈ 2FM

sin i
. (12.22)

In fact, the ground track is related to the apparent inclination i′ and the
swath to the inclination i, and the exact relation for the orbit and swath
ground tracks at the equator is

LE =
2FM

sin i+ cos i tan(i− i′)
=

2FM

sin i

1

1 +
tan δi
tan i

. (12.23)

Using the value of δi = i′ − i given by (8.30), we find

LE =
2FM

sin i

(
1− cos i

κ

)
. (12.24)

Fractional Equatorial Overlap

It is interesting to compare this distance LE with the equatorial shift DE,
as given by (8.27). Both lengths are measured along the equator and their
ratio QE thus indicates the fraction of the equator seen by the satellite in 1
day, during the ascending node crossing:

QE =
LE

DE
=

FM

πR

κ− cos i

sin i
. (12.25)

Introducing the angle at the center αM in radians, corresponding to FM, we
then obtain

QE =
αM

π

κ− cos i

sin i
. (12.26)

If QE is greater than 1, certain points on the equator are viewed more than
once during the ascending node crossing (and likewise, of course, for the
descending node crossing).

The average number N(ϕ, f) of daily crossings, which depends on the
latitude ϕ and the half-swath f , is

N(0, fM) = 2QE . (12.27)

We may also calculate the half-swath fQ that will yield a predetermined frac-
tion QE of equatorial overlap. We first calculate the corresponding angle αQ

at the center of the Earth, viz.,

αQ = π
sin i

κ− cos i
QE . (12.28)

The value of fQ is deduced from αQ using (12.9).

Example 12.5 Ground track of the swath for the same instrument, ScaRaB,
carried aboard three different satellites: Meteor-3-07, Resurs-O1-4, and Megha-
Tropiques.
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� ScaraB was originally designed to fly aboard Meteor-3-07. Two instruments
with identical geometrical characteristics were then flown aboard Resurs-O1-4
and Megha-Tropiques.

Meteor-3-07. This instrument was designed to provide full daily equatorial
overlap. To see how to achieve this, we apply (12.28) with QE = 1. For this
satellite, i = 82.56◦, η = 1.1873, and κ = 13.0986. We thus calculate α1 in
degrees:

α1 = 180
sin 82.56

13.0986− cos 82.56
= 13.76◦ ,

tan f1 =
sin 13.76

1.1873− cos 13.76
= 1.1013 .

The half-swath angle is therefore f1 = arctan(1.1013) = 47.76◦. The scanning
aperture is always chosen very slightly bigger, in this case fM = 48.91◦. The
corresponding value of FM = RαM is obtained by

αM = −fM + arcsin(η sin fM) = −48.910 + 63.488 = 14.578◦ = 0.2544 rad ,

FM = 1,622 km .

Figure 12.8 (upper) shows the swath ground track. For clarity, swaths have
been plotted every 60 s, whereas in fact ScaRaB scans every 6 s.

Resurs-O4-1. The satellite Resurs-O4-1 is Sun-synchronous and follows a
lower orbit: η = 1.1277, i = 98.69◦, κ = ν = 14.2165. With half-swath
fM = 48.91◦, the ground swath is

αM = 48.910− 58.203 = 9.293◦ = 0.1622 rad , FM = 1,034 km .

The fractional equatorial overlap QE is then

QE =
0.1622

π

14.2165− cos 98.69

sin 98.69
= 0.750 .

We thus find that QE is less than unity, as can be clearly seen in Fig. 12.8
(lower). For a point on the equator, the daily average number of crossings
given by (12.27) is N = 1.50.

Megha-Tropiques. The satellite Megha-Tropiques is in a very slightly in-
clined orbit: η = 1.1357, i = 20.00◦, κ = 97/7 = 13.8571. With fM = 48.91◦,
we obtain

αM = 9.956◦ , FM = 1,108 km .

We thus calculate QE = 2.08, which indicates that the daily average number
of crossings at the equator is N = 4.16. See Fig. 12.15. �
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Swath and Mission Constraints

The swath of the main instrument on a satellite and the orbital character-
istics of that satellite are related. This is exemplified in Fig. 12.9, which shows
that the swath of the VIIRS instrument is such that the Earth is completely
scanned every day. This constraint is particularly important if the satellite is
recurrent. We shall give here several examples for the very different cases of
wide, narrow, and very narrow swaths.

Example 12.6 Fulfilling mission requirements with regard to swath and
recurrence for Oceansat-1, SPOT-1, and ICESat.

� These three satellites are in near-polar orbits.

Oceansat-1. The Indian satellite Oceansat-1 (IRS-P4) is Sun-synchronous
(equatorial crossing at noon and midnight), and recurrent with triple [14, 1, 2],
corresponding to a cycle of 29 revolutions over 2 days. The equatorial shift is
then

ΔλE = − 360

14.5
= −24.83◦ , DE = 2,763.8 km .

The aim of the mission is to view the equator by day every 2 days. To a first
approximation (the cross-track swath is practically parallel to the equator),
the ground swath 2FM must be at least equal to half of the equatorial shift,
i.e.,

αM =
180

29
= 6.21◦ , FM =

1

4
DE = 691 km .

Equation (12.9) implies that fM = 42.3◦. The precise calculation using (12.28)
with QE = 0.5 and i = 98.29◦, η = 1.1129, and κ = 29/2 = 14.50 yields

αM = 90
sin 98.29

14.50− cos 98.29
= 6.0816◦ ,

and then fM = 41.79◦. The instrument OCM aboard this satellite has a total
swath of 1,420km, or FM = 710km, which is a few kilometers more than the
strict minimum swath required. The calculation gives

FM = 710 km =⇒ fM = 43.0◦ , QE = 0.52 .

The fractional equatorial overlap is thus slightly above 1/2.

SPOT-1. When the SPOT project was under development, the planned
altitude was somewhere between 800 and 850km, low enough to have good
resolution, but high enough to avoid atmospheric drag. The instrument HRV
carried by SPOT-1 was designed with a field of view of 8.4◦, or fM = 4.2◦.
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The aim was that the grid interval δ defined by (11.20) should be slightly less
than the ground swath.

We can calculate the interval δ ≈ 2h tan fM ≈ 1.06◦, which implies that the
number of round trips during the recurrence cycle is NTo = 360/1.06 ≈ 340.
Then ν lies between 14.26 for h = 800 km and 14.11 pour h = 850km. For
the cycle CTo = NTo/ν, the limiting value is thus CTo = 24. During the
development stage of the mission, it was also decided that the cycle should be
less than 1 month, and this implies that

24 ≤ CTo ≤ 30 .

The recurrence triple will thus have the form [14, DTo , CTo ] with 340 ≤
NTo ≤ 427. Considerations regarding subcycles then determined the choice
of triple [14, +5, 26], 369 revolutions.

ICESat. The satellite ICESat carries a laser for altimetry. This instrument,
known as GLAS, aims at the nadir with an almost “pointlike” field of view,
since the pixel measures only 66m on the ground. Recurrence with the very
long cycle of 2,723 round trips in 183 days, implying a grid interval of
δ = 15km, guarantees that, during the whole cycle, the satellite will never
recross its ground track. �

12.4.2 Variable-Yaw Swath

Cross-track scanning, or XT mode in the terminology used by NASA,
corresponds to a yaw angle of 0◦. The yaw angle is measured in a plane
perpendicular to the yaw axis, or nadir axis, joining the satellite to the center
of the Earth. There are scanning modes along the track, called along-track
swath or AT mode, corresponding to a yaw angle of 90◦. In this case, the
swath does not exactly cover the ground track, for the same reasons that
the cross-track swath is not exactly perpendicular to the ground track (see
Chap. 8 for the contrast between inclination and apparent inclination, i.e.,
the angles i and i′, or j and j′). By adjusting the yaw angle as a function of
the latitude overflown, the ground track can be covered by the swath [see in
particular (8.37)]. An application is described in Example 12.7.

Another scanning mode varies the yaw angle continuously, and this is
illustrated in Example 12.8.

Example 12.7 Difference between along-track (AT-mode) scanning and true
along-track (TAT-mode) scanning.

� To study the Earth radiation budget, NASA developed the instrument
CERES (Clouds and the Earth’s Radiant Energy System), which has been
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Suomi NPP
Orbit - Ground track
Recurrence = [14; +3; 16] 227

2011 11 24 11:31:00 UTC  >>>     51.0 min =   0.04 day

Across track swath (XT mode)

Altitude =  824.0 km

e = 0.000009

a = 7202.102 km

Incl. / SUN-S.= 98.69 °

Period =   101.50 min    * rev/day =14.19

Equat. orbital shift  = 2824.7 km  (  25.4 °)

**   Half-swath:  56.1°  =>  1500 km [ 0.50 min]

Asc. Node:    -58.41 ° [13:25 LMT]

[NORAD] Revolution:    374

[NORAD] 2011 11 23 17:18:55 UTC

Projection:  Mollweide

Property:  Equal area

T.:Pseudocyl. - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °

Aspect:  Direct

[  +0.0/  +0.0/  +0.0] [-]    EGM2008

Fig. 12.9 :Upper: This image from 24 November 2011 is the first complete global

image from VIIRS (Visible Infrared Imager Radiometer Suite). This instrument gets

a complete view of the Earth every day (375m/pixel). Note the polar night at high

northern latitudes. Credit: NASA, NPP/LPETE. Lower: Ground track of VIIRS

aboard Suomi-NPP over a half-revolution, from the South Pole to the North Pole.
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Terra / CERES
Orbit - Ground track
Recurrence = [15; -7; 16] 233

2004 08 20 02:50:40 UTC  >>>   1440.0 min =   1.00 day

Along track swath (AT mode)

Altitude =  699.5 km

e = 0.000114

a = 7077.675 km

Incl. / SUN-S.= 98.19 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

**   Half-swath:  61.8°  =>  1801 km [ 3.00 min]

Asc. Node:    -65.37 ° [22:29 LMT]

[NORAD] Revolution:  24855

[NORAD] 2004 08 20 02:50:40 UTC

Projection:  Mercator

Property:  Conformal

T.:Cylindrical - Graticule:  5°

PC:  0.0 °  ;  0.0 °  /ZC: 25.0 ° N; 35.0 ° E

Aspect:  Direct > zoom :  > zoom : 2.50

{4.2} [ +90.0/  +0.0/ -90.0] [-]    EGM2008

Terra / CERES

Terra / CERES

Terra / CERES
Orbit - Ground track
Recurrence = [15; -7; 16] 233

2004 08 19 07:04:05 UTC  >>>   1440.0 min =   1.00 day

Along track swath - adjusted (AT/PAP mode)

Altitude =  699.5 km

e = 0.000112

a = 7077.677 km

Incl. / SUN-S.= 98.19 °

Period =    98.88 min    * rev/day =14.56

Equat. orbital shift  = 2751.9 km  (  24.7 °)

**   Half-swath:  61.8°  =>  1801 km [ 3.00 min]

Asc. Node:   -128.72 ° [22:29 LMT]

[NORAD] Revolution:  24843

[NORAD] 2004 08 19 07:04:05 UTC

Projection:  Mercator

Property:  Conformal

T.:Cylindrical - Graticule:  5°

PC:  0.0 °  ;  0.0 °  /ZC: 25.0 ° N; 35.0 ° E

Aspect:  Direct > zoom :  > zoom : 2.50

{4.2} [ +90.0/  +0.0/ -90.0] [-]    EGM2008

MC LMD

MC LMD

Fig. 12.10 :Ground swath of the CERES instrument carried by Terra, with two

scanning modes. Upper: Along-track (AT-mode) scanning without yaw adjustment.

Lower: Variable-yaw (TAT-mode or AT/PAP-mode) scanning.
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carried aboard several satellites.7 In preliminary studies for the radiometer
BBR carried by the satellite EarthCARE, calibration/validation sessions took
place in August 2004 at the Valencia Anchor Station (VAS), near Valencia
in Spain. The radiometer used was the CERES instrument carried by Terra.
Once every cycle of 16 days, the (ascending and descending) ground tracks of
the satellite cross on the same day very close to the VAS. Indeed, a grid point
can be seen on Fig. 12.10 (lower), very close to the VAS.

In AT mode, the ground swath makes an angle of a few degrees with
the satellite ground track. The two tracks do not overlap, as can be seen in
Fig. 12.10 (upper). We asked NASA to vary the yaw angle of CERES on 19
August 2004, using the programmable azimuth plane (PAP) scanning mode.
In this mode, the yaw angle is determined by (8.37) as a function of the
latitude overflown. This gives the value of δj. The result of this modification
is clearly apparent in Fig. 12.10 (lower). The ground swath for AT/PAP-mode
scanning, also called true along-track (TAT-mode) scanning, exactly covers
the ground track of the satellite orbit. �

Example 12.8 Ground swath of the CERES radiometer carried by the satellite
Terra, in cross-track (XT) mode and variable-yaw (RAP) mode.

� We represent the ground track of the CERES instrument aboard Terra,
when the satellite passes over North America, considering two different
scanning modes: cross-track (XT-mode) scanning, shown in Fig. 12.11, and
variable-yaw (RAP-mode) scanning, shown in Fig. 12.12. The scanning mode
known as rotating azimuth plane (RAP) mode consists in making a half-turn
in 6min, then a half-turn back. The swath shown here, every 6 s, corresponds
to f = 56.1◦. �

12.4.3 Conical Swath

Conical swaths are used by microwave radiometers, in particular. In this
case, for physical reasons connected with the phenomenon, the target points
must be viewed at a constant angle. The maximum half-swath fM must there-
fore be adapted to the altitude of the satellite and also to the angle ζM.

A conical swath is specified by two angles (see Fig. 12.13), which are in
orthogonal planes:

• the half-swath angle fM (or viewing zenith angle ζM), in a vertical plane,
• the half aperture ξM, in the horizontal plane tangent to the Earth’s sphere.

7There are in fact six versions of this instrument: PFM (Proto Flight Model) aboard
TRMM, FM1 and FM2 aboard Terra, FM3 and FM4 aboard Aqua, and FM5 aboard NPP.
These instruments FM can operate in cross-track or variable-yaw mode as required.
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Fig. 12.11 :Ground swath of the CERES instrument in XT mode.
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Fig. 12.12 :Ground swath of the CERES instrument in rotating azimuth plane (RAP)

mode.
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S

B

f

C

A

P

SO x

Fig. 12.13 :Schematic view

of a conical swath from

the satellite S, with nadir

S0, half-swath angle f , and

half-aperture ξ.

Fig. 12.14 :Cross-track swath

(ScaRaB) and conical swath

(MADRAS) for two in-

struments aboard Megha-

Tropiques, the satellite being

located vertically about the

point of longitude 0◦ and

latitude 0◦. Each pixel is

shown life size with its over-

lap ratio. Credit: Nicolas Gif,

LMD/CNRS. Orbital data

Ixion.
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The conical swath is generally covered in the forward direction, with ξM of the
order of 60◦. With ξM = 90◦, the conical swath sketches out a half-circle, and
with ξM = 180◦, a circle. The positions of the points making up the ground
track of the conical swath are calculated using a matrix product, with the
same kind of calculation as was discussed above for the cross-track swath.

The conical swath is characterised by the radius of the swath circle and
by the effective or useful ground swath. The swath circle, centered on S0, at
the nadir of S, is generated by the point P which moves between A and B,
as shown in Fig. 12.13. Its radius ρswath is thus

ρswath = RαM , (12.29)

where αM is obtained from fM or ζM using (12.11) or (12.12), respectively.
The effective ground swath is the width of the ground swath. If F ′

M is the
half-width of the ground track, then 2F ′

M is represented by the distance AB,
with midpoint C. (Note that the point C is not on the ground track of the
swath.) The distance F ′

M is given by the length of the arc CB, i.e., F ′
M = Rα′,

where α′ is the corresponding angle at the center of the Earth (Fig. 12.14).
We obtain α′ from the spherical triangle S0BC :

Ĉ =
π

2
, Ŝ0 = ξM ,




S0B= αM ,



BC= α′ .

The sine rule (ST VIII) then gives

sinα′ = sinαM sin ξM , (12.30)

whence the effective half-width of the conical swath is

F ′ = R arcsin(sinαM sin ξM) . (12.31)

In this result, if ξM > 90◦, we take ξM = 90◦, since the maximal effective
swath is attained for ξ = 90◦.

Example 12.9 Swaths of various instruments aboard the satellite Megha-
Tropiques.

� The satellite Megha-Tropiques, flying at altitude h = 866 km, carries three
scanning instruments (see Fig. 12.15 upper).

The radiometer ScaRaB scans across track. Its maximal half-swath is fM =
48.91◦, which corresponds to a maximal zenith angle of ζM = 58.78◦. The
ground track, which has width 2FM = 2,216km, is shown in Fig. 12.15 (lower).
For clarity, not all swaths are shown.

The humidity sounder SAPHIR also scans across track: fM = 42.96◦,
ζM = 50.71◦, 2FM = 1,724km (see Fig. 12.16 upper).

The microwave imager MADRAS scans conically, in such a way that points
are viewed at an angle ζ = 53.50◦. The viewing aperture ξM = 65◦ on either
side of the ground track. This determines a swath of effective width 1,702km,
shown in Fig. 12.16 (lower), every 12 s (the actual frequency is higher).
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Megha-Tropiques / ScaRaB
Orbit - ref.: Earth
Recurrence = [14; -1;  7]  97

>>>>   Time span shown:    60.0 min =   0.04 day

Across track swath (XT mode)

Altitude =  865.5 km a = 7243.677 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

**   Half-swath:  48.9°  =>  1108 km [ 0.75 min]

Asc. Node:     12.00 ° [12:00 LMT]

Max. attained latit. = 30.0 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

PC: 50.0 ° N; 50.0 °E /ZC: 35.0 ° N; 45.0 ° E

Aspect:  Oblique

[ -90.0/ +40.0/ +40.0] [ +16] EIGEN-C3

Fig. 12.15 :Upper: Satellite Megha-Tropiques, with its three instruments MADRAS,

Saphir, and ScaRaB. The main innovation of Megha-Tropiques is to associate three

radiometric instruments able to observe three interrelated components of the dynamic

atmospheric system at the same time: water vapour, condensed water (clouds and

precipitations), and radiative fluxes. Artist’s view. Credit: CNES (Labo Photon—M.

Régy). Lower: Cross-track swath of the instrument ScaRaB carried by Megha-

Tropiques.
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Megha-Tropiques / SaphirMegha-Tropiques / Saphir
Orbit - Ground track
Recurrence = [14; -1;  7]  97

>>>>   Time span shown:   100.0 min =   0.07 day

Across track swath (XT mode)

Altitude =  865.5 km a = 7243.677 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

**   Half-swath:  43.0°  =>   862 km [ 0.20 min]

Asc. Node:    -10.00 ° [00:00 LMT]

Max. attained latit. = 27.8 °

Projection:  Raisz Armadillo

Property:   none

T.:(various) - Graticule:  5°

PC:  0.0 °  ; 75.0 °E /ZC: 16.0 ° N; 69.0 ° E

Aspect:  Direct > zoom : 4.00

{5.3} [ +90.0/  +0.0/-165.0] [-]    EIGEN6C2

Megha-Tropiques / MADRASMegha-Tropiques / MADRAS
Orbit - Ground track
Recurrence = [14; -1;  7]  97

>>>>   Time span shown:   100.0 min =   0.07 day

Ground track - Conical swath / VZA=53.5°

Altitude =  865.5 km a = 7243.677 km

Inclination  =  20.00 °

Period =   101.93 min    * rev/day =14.13

Equat. orbital shift  = 2892.0 km  (  26.0 °)

** Half-aperture:   65.0° - Radius/grnd  940 km [  0.20 min]
** Effect. h-ap.:   42.6 ° =>  851 km - Effect. swath: 1703 km

Asc. Node:    -10.00 ° [00:00 LMT]

Max. attained latit. = 27.6 °

Projection:  Raisz Armadillo

Property:   none

T.:(various) - Graticule:  5°

PC:  0.0 °  ; 75.0 °E /ZC: 16.0 ° N; 69.0 ° E

Aspect:  Direct > zoom : 4.00

{5.3} [ +90.0/  +0.0/-165.0] [-]    EIGEN6C2

MC LMD

MC LMD

Fig. 12.16 :Ground swath of two instruments aboard Megha-Tropiques. Upper: Cross-

track swath of Saphir. Lower: Conical swath of MADRAS.



592 Chapter 12. View from the Satellite

Figure 12.14 indicates the actual ground tracks of the ScaRaB (cross-track)
swath and the MADRAS (conical) swath, showing the effective pixels. �

Example 12.10 Conical ground swath of the radiometer SSM/I aboard the
satellite DMSP-5D3 F-18.

� The instrument SSM/I (Special Sensor Microwave/Imager) is a passive rad-
iometer. Its axis makes a constant angle fM with the axis of rotation, the nadir
axis SZ, in such a way that the viewing zenith angle is constant at ζM = 53.1◦.
For this satellite at altitude h = 848 km, calculation gives

fM = 44.9◦ , ρswath = RαM = 913 km .

Scanning is not through a complete circle of radius ρswath, but over an arc of
angle 2ξM = 102.4◦ on either side of the axis SX along the velocity vector.
For this satellite, scanning is in the forward direction. The effective swath is
given by (12.31) as

F ′
M = 1,417 km .

Figure 12.17 shows the ground track in steps of 1min for improved visibility,
while the radiometer actually rotates at 31.6 rev/min. During one revolution
of the instrument, i.e., 1.9 s, the subsatellite point moves through 12.5 km.
Looking at the ground track over 1 day, we see that a large fraction of the
Earth’s surface is viewed every day. �

12.4.4 Ground Track Superposition

There are several reasons why one might wish to superpose the ground
tracks of two satellites, for example, for a comparative study of the target–
satellite geometry, or for calibration of similar instruments carried aboard two
different satellites. Apart from the geometrical superposition of the tracks on
the ground, there will also be a temporal constraint: the lapse of time between
the crossings of the two satellites at a given point should not exceed 5min, or
15min, for example.

Example 12.11 Superposition of the ground tracks of the Sun-synchronous
satellites MetOp-A and Aqua, during calibration of the instrument IASI.

� Shortly after the launch of the European satellite MetOp-A, it was decided
to compare the results obtained by its instrument IASI with those of a similar
instrument aboard the American satellite Aqua. Now it happens that these
two Sun-synchronous satellites have very different ascending node crossing
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times, viz., τAN = 21:30 for MetOp-A and τAN = 13:30 for Aqua. The dihedral
angle between the two orbital planes is found by observing that

τAN(Aqua)− τDN(MetOp-A) = 13:30− 09:30 = 04:00 ,

which implies an angle of 4 × 15◦ = 60◦. Figure 10.14 adapted to these two
satellites shows that the intersection of the ground tracks at a given time (at
the same LMT time at a given place, hence at the same UT time) can only
occur at very high latitudes, in the vicinity of 80◦N and 80◦S.

Figure 12.18 gives the result for a time span of 2 days, and tolerance
±15min. For each common ground swath, we note only the central point for
greater visibility. With this time tolerance, the superpositions cannot occur
for latitudes between 60◦N and 60◦S. �

Example 12.12 Superposition of the ground tracks of Megha-Tropiques and
Terra during calibration of the ScaRaB instrument.

� ScaRaB and CERES are radiometers yielding measurements of radiative
flux. ScaRaB, aboard Megha-Tropiques, has a fixed cross-track (XT mode)
scan, while CERES, aboard Terra, can vary its yaw angle and scan in RAP
mode, in such a way that the ground swaths of these two instruments coincide
and are parallel. For a 51 day validation exercise (this being the length of the
cycle CS relative to the Sun for Megha-Tropiques), in April and May 2012, we
provided NASA with predictions for superpositions (times, places, and yaw
angles). Figure 12.19 shows these intersections for the first day, 17 April 2012.
�

12.5 View from a GEO Satellite

In this section, we begin by discussing how the Earth is viewed from a
geostationary satellite, taking the Earth to be a sphere. We then examine
in more detail the correspondence between the geographic coordinates of the
point observed and the associated pixel. In this discussion, the Earth will be
treated as an ellipsoid of revolution.

12.5.1 Simplified Geometric Conditions

To understand the geometrical conditions under which a GEO satellite
views the Earth, it is generally sufficient to treat the planet as spherical,
identifying the latitudes ϕ and ψ. When the satellite views the Earth, the
maximum swath in the sense that we have defined f0 is

f0 = arcsin
1

ηGS
, (12.32)
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DMSP F-13 / SSM/I
Orbit - Ground track
>>>>   Time span shown:   720.0 min =   0.50 day

Ground track - Conical swath / VZA=53.1°

Altitude =  848.0 km a = 7226.136 km

Inclin./SUN-SYNCHRON.=  98.83 °

Period =   102.00 min    * rev/day =14.12

Equat. orbital shift  = 2838.8 km  (  25.5 °)

** Half-aperture:   51.0° - Radius/grnd  913 km [  0.50 min]
** Effect. h-ap.:   38.6 ° =>  709 km - Effect. swath: 1417 km

Asc. Node:     -4.00 ° 

Max. attained latit. = 87.5 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 28.0 ° N;   82.0 ° W

Aspect:  Oblique

[ -90.0/ +62.0/+172.0] [-]  GEM-T2

Fig. 12.17 :Meteorological satellite DMSP F-13. Upper: Ground track of the satellite

and conical swath of the instrument SSM/I over half a day. Lower: Swath of SSM/I

above the Gulf of Mexico. The instrument measures the brightness temperature and

can thus distinguish hot and cold clouds. Credit: GSFC NASA.
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where the reduced distance ηGS is here defined by (7.72). With ηGS = 6.611,
this gives the numerical value

f0 = 8.700◦ = 0.1518 rad . (12.33)

The corresponding angle at the center of the Earth is

α0 = arccos
1

ηGS
= 90◦ − 8.7◦ = 81.3◦ =⇒ 2F0 = 18,100 km . (12.34)

The part of the Earth viewed by a geostationary satellite is called the Earth’s
disk, or the slot (see Figs. 12.20 and 12.26).

Let λS be the longitude of the satellite S (the parking longitude or longi-
tude of the subsatellite point). Then the longitudes viewed on the equator by
S lie in the interval

[λS − 81.3◦, λS + 81.3◦] .

Along the meridian λS, the latitudes viewed occupy the same interval of 81.3◦

on either side of the equator.
For an arbitrary point P on the Earth, with geographic coordinates λ and

ϕ, we write the distance D to the subsatellite point S0 (we mean, of course,
the distance on the sphere, measured along a great circle, viz., D = Rα) using
the spherical triangle S0PP ′, where P ′ is the intersection of the meridian of
P with the equator:

cos



S0P= cos



S0P
′ cos




PP ′ ,

cosα = cos(λ − λS) cosϕ . (12.35)

This corresponds to (ST I).
The locus of points P viewed at distance D from the subsatellite point is

thus defined by

D = R
π

180
arccos

[
cos(λ− λS) cosϕ

]
, (12.36)

where the angles are in degrees. This is the locus of points viewed at the same
angle from the satellite, and hence viewed with the same pixel distortion.

The condition for the point P to be viewed at all is given by (12.6) and
(12.35) as

ηGS cosϕ cos(λ − λS) ≥ 1 . (12.37)

The area s of the Earth which is viewed, for a given value of the angle α, is

s(α) = 2πR2(1− cosα) .

The maximal area viewed is thus s(α0), which represents the fraction

s(α0)

4πR2
=

1

2

(
1− 1

ηGS

)
= 0.424 , (12.38)

or about 42% of the total area.
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Fig. 12.18 :Locus of ground track superpositions for MetOp-A and Aqua over 2 days.

Calibration of the instrument IASI.
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Fig. 12.19 :Locus of ground track superpositions for Megha-Tropiques and Terra over

1 day, on 17 April 2012. Calibration of the ScaRaB instrument. Only daylight su-

perpositions (red or orange) are retained for calibration.
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MTSAT-1R

Satellite

Geostationary

Altitude =35787.6 km

Parking Longit.=140.0 ° E

a_GS = 42165.785 km

Inclination  =   0.00 °

Period =  1435.91 min    * rev/day = 1.00

Equat. orbital shift  =40072.1 km

GeostationaryProj.:  Perspect.V. h=5.61 R

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre:  0.0 °  ;  140.0 °E

Aspect:  Equatorial

{4.2} [ -90.0/ +90.0/ -50.0] [-]    EGM2008

Fig. 12.20 :Upper: View of the Earth from MTSAT-1R (Himawari-6), 22 July 2009,

01:30 UT. Total eclipse of the Sun, centered at this precise moment on Taiwan (09:30

local time). Credit: Institute of Industrial Science & Earthquake Research Institute

(IISERI), University of Tokyo, Japan. Lower: Reconstitution of the eclipse as seen

by MTSAT-1R.
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Example 12.13 Represent the locus of points on the Earth that are equidistant
from the subsatellite point of a GEO satellite.

� The distance D between a point on the Earth seen by the geostationary
satellite and the subsatellite point of the same satellite is defined by (12.36).
The locus of points on the Earth at the same distance D has been represented
with steps of 500km in the value of D, and 250km in the enlarged maps. We
denote these loci by L(D).

METEOSAT. In their operational phase, the European satellites
METEOSAT are stationed at longitude λS = 0◦. Figure 12.21 (upper) shows
the Earth as it is viewed by the satellite (the Earth’s disk or slot). For given
D, the curves L(D) are circles, represented by circles on this map, which has
a non-conformal but axisymmetric projection, called the perspective projec-
tion. The Guyou projection, based on elliptic functions, presents the globe as
a rectangle, whilst preserving angles, i.e., it is a conformal projection. The
curves L(D) are represented in the direct aspect in Fig. 12.21 (lower).

Feng Yun-2. The Chinese satellites FY-2A then FY-2B are stationed at
longitude λS = 105◦E. Figure 12.22 (upper) shows the locus of points L(D)
viewed from the same angle in an orthographic representation centered on
Peking (on the right).

GOES. The US satellite GOES-East is stationed at longitude λS = 75◦W.
This position was previously occupied by the succession of satellites SMS-
1, SMS-2, GOES-5, GOES-7, and GOES-8 (partial or total occupation dur-
ing their operating lifetimes). The Argentinian meteorological office (Servicio
Meteorológico Nacional) represents data in a stereographic projection cen-
tered on the point (34.8◦S, 68.6◦W), which is located in the middle of the
country. We have used this projection in Fig. 12.22 (lower) to represent the
locus of points viewed at the same angle. This locus L(D) is thus repre-
sented by circles here, a property of the stereographic projection. We note
that GOES-East and Feng Yun-2 are diametrically opposite one another with
respect to the center of the Earth.

Elektro-1. The Russian satellite Elektro-1 (GOMS-1) is stationed at longi-
tude λS = 76◦E. We have represented L(D) in a transverse Guyou projection
centered on Moscow in Fig. 12.23. It is clear why geostationary satellites are
not of much interest to Russia.

Anik-F2. The Canadian telecommunications satellite Anik-F2 is stationed
at longitude λS = 111.1◦W. We have represented L(D) in a transverse Guyou
projection centered onWinnipeg, MB (Canada), in Fig. 12.24. Once again, it is
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METEOSATMETEOSAT

Locus of points

equidistant

from the subsatellite point

Altitude =35787.6 km

Parking Longit.=  0.0 °

a_GS = 42165.785 km

Inclination  =   0.00 °

Period =  1435.91 min    * rev/day = 1.00

Equat. orbital shift  =40072.1 km

**   Half-swath:   8.7° - On ground 9050.2 km  [  500.0 km]

Geostationary
Max. attained latit. = 81.3 °

Proj.:  Perspect.V. h=5.61 R
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Equatorial
{4.2} [ -90.0/ +90.0/ +90.0] [-]    EGM2008

METEOSATMETEOSAT

Locus of points

equidistant

from the subsatellite point

Altitude =35787.6 km

Parking Longit.=  0.0 °

a_GS = 42165.785 km

Inclination  =   0.00 °

Period =  1435.91 min    * rev/day = 1.00

Equat. orbital shift  =40072.1 km

**   Half-swath:   8.7° - On ground 9050.2 km  [  500.0 km]

Geostationary
Max. attained latit. = 81.3 °

Projection:  Guyou
Property:  Conformal

T.:[Ellipt. Int.] - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{4.2} [ +90.0/  +0.0/ -90.0] [-]    EGM2008

MC LMD

MC LMD

Fig. 12.21 :Locus of points equidistant from the subsatellite point for the geostation-

ary satellite METEOSAT.
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Feng Yun-2Feng Yun-2

Locus of points

equidistant

from the subsatellite point

Altitude =35787.6 km

Parking Longit.=105.0 ° E

a_GS = 42165.785 km

Inclination  =   0.00 °

Period =  1435.91 min    * rev/day = 1.00

Equat. orbital shift  =40072.1 km

**   Half-swath:   8.7° - On ground 9050.2 km  [  500.0 km]

Geostationary
Max. attained latit. = 81.3 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 40.0 ° N;  116.0 °E
Aspect:  Oblique
{4.2} [ -90.0/ +50.0/ -26.0] [-]    EGM2008

GOES-EGOES-E

Locus of points

equidistant

from the subsatellite point

Altitude =35787.6 km

Parking Longit.= 75.0 ° W

a_GS = 42165.785 km

Inclination  =   0.00 °

Period =  1435.91 min    * rev/day = 1.00

Equat. orbital shift  =40072.1 km

**   Half-swath:   8.7° - On ground 9050.2 km  [  500.0 km]

Geostationary
Max. attained latit. = 81.3 °

Projection:  Stereographic
Property:  Conformal

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 34.8 ° S;   68.6 ° W
Aspect:  Oblique
{4.2} [ -90.0/+124.8/+158.6] [-]    EGM2008

MC LMD

MC LMD

Fig. 12.22 :Locus of points equidistant from the subsatellite point for the three satel-

lites GEO, FY-2, and GOES-E.
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Fig. 12.23 :Locus of points equidistant from the subsatellite point for the Russian

GEO satellite Elektro-1. Map centered on Moscow (Russia).



12.5 View from a GEO Satellite 603

A
ni

k-
F

2
A

ni
k-

F
2

Lo
cu

s 
of

 p
oi

nt
s

eq
ui

di
st

an
t

fr
om

 th
e 

su
bs

at
el

lit
e 

po
in

t

A
lti

tu
de

 =
35

78
7.

6 
km

P
ar

ki
ng

 L
on

gi
t.=

11
1.

1 
° 

W

a_
G

S
 =

 4
21

65
.7

85
 k

m

In
cl

in
at

io
n 

 =
   

0.
00

 °

P
er

io
d 

=
  1

43
5.

91
 m

in
   

 *
 r

ev
/d

ay
 =

 1
.0

0

E
qu

at
. o

rb
ita

l s
hi

ft 
 =

40
07

2.
1 

km

**
   

H
al

f-
sw

at
h:

   
8.

7°
 -

 O
n 

gr
ou

nd
 9

05
0.

2 
km

  [
  2

50
.0

 k
m

]

G
eo

st
at

io
na

ry

M
ax

. a
tta

in
ed

 la
tit

. =
 8

1.
3 

°

P
ro

je
ct

io
n:

  G
uy

ou
P

ro
pe

rt
y:

  C
on

fo
rm

al

T
.:[

E
lli

pt
. I

nt
.] 

- 
G

ra
tic

ul
e:

 1
0°

P
ro

je
ct

. c
en

tr
e:

 4
9.

9 
° 

N
;  

 9
7.

2 
° 

W
A

sp
ec

t: 
 T

ra
ns

ve
rs

e
 >

 z
oo

m
 : 

1.
60

 >
 z

oo
m

 : 
1.

60

{5
.3

} 
[ -

49
.9

/ -
90

.0
/ +

97
.2

] [
-]

   
 E

G
M

20
08

M
C

LM
D

Fig. 12.24 :Locus of points equidistant from the subsatellite point for the Canadian

GEO satellite Anik-F2. Map centered on Winnipeg, MB (Canada).
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clear that the position of the geostationary orbit is not particularly favourable
for Canada. �

12.5.2 Precise Correspondence Between Pixels
and Geographic Coordinates

Let O be the center of the Earth and R its equatorial radius. We consider
the following geocentric orthonormal frame: Oz is the polar axis, xOy is the
equatorial plane, and Ox passes through S, the position of the GEO satellite.
The parking longitude of the satellite is λS. A point P on the Earth’s surface is
specified by its geographical coordinates, i.e., the longitude λ and the geodetic
latitude ϕ.

The Cartesian coordinates of the points S and P are thus

OS =

⎛
⎝ r = ηGSR

0
0

⎞
⎠ , OP =

⎛
⎝x = N cosϕ cos(λ− λS)

y = N cosϕ sin(λ− λS)
z = N (1− e2) sinϕ

⎞
⎠ , (12.39)

where N is the great normal given by

N =
R√

(1− e2 sin2 ϕ)
,

as discussed in Chap. 2 [see (2.15) and (2.12)]. Note in passing that the ecc-
entricity e appearing here in these expressions relating to geodesy is the
eccentricity of the Earth ellipsoid. When we use N and ϕ, the equations
are simpler with the eccentricity e than with the flattening f .

We consider the plane parallel to yOz which passes through P . This plane
P contains the points P , P ′, and P ′′ (see Fig. 12.25), where P ′ is the projection
of P onto the equatorial plane xOy and P ′′ is the projection of P ′ onto the
axis Ox.

The image of the Earth as viewed from S is formed in a plane I called
the image plane, parallel to P and located at an arbitrary distance from S.
In I, we define a plane coordinate frame with center Oi at the intersection of
OS with I. The axes are Oiyi, the intersection of the equatorial plane with
I, and Oizi, the intersection of the meridian plane xOz through S with I.
Then Oiyi is parallel to Oy and Oizi is parallel to Oz. A pixel Q is the image
of the point P on the Earth: it sits at the intersection of SP with the image
plane I. The point Q is specified in I by its coordinates C and L :

• The coordinate C (column) is measured along Oiyi .
• The coordinate L (row) is measured along Oizi .

In Fig. 12.25, Q′′ is at Oi, C is obtained from Q′′Q′, and L is obtained
from Q′Q. The coordinates C and L have the units of angles.
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Pixel Coordinates as a Function of Geographical Coordinates

The problem here is to establish the mapping (λ, ϕ) �−→ (C,L). In fact,
it is straightforward to calculate the values of C and L in terms of λ and ϕ
by referring everything to x, y, and z. Consider the triangle SP ′′P ′ in the
equatorial plane. This is right-angled at P ′′ and we have

tanC =
Q′′Q′

Q′′S
=

P ′′P ′

P ′′S
.

Further, the triangle SP ′P is perpendicular to the equatorial plane and
right-angled at P ′, and we have

tanL =
Q′Q
Q′S

=
P ′P
P ′S

.

We thus obtain

tanC =
y

r − x
, tanL =

z√
(r − x)2 + y2

. (12.40)

Visibility Conditions

Let ζ be the angle between the normal to the Earth at P , the local ver-
tical Pn, and the direction PS. The scalar product A specifies the visibility
conditions:

A = PS · Pn = ‖PS‖‖Pn‖ cos ζ . (12.41)

If A ≥ 0, the viewing zenith angle ζ lies between 0◦ and 90◦ and the point P
is seen by the satellite S. Otherwise, it is not visible.

By definition, Pn lies along the great normal N . We can thus deduce its
components, and also the components of PS:

Pn = N

⎛
⎝ cosϕ cos(λ− λS)

cosϕ sin(λ− λS)
sinϕ

⎞
⎠ ,

PS = N

⎛
⎝ ηGSR/N − cosϕ cos(λ− λS)

− cosϕ sin(λ− λS)
−(1− e2) sinϕ

⎞
⎠ .

Taking the scalar product, the condition A ≥ 0 can be written

ηGS

√
1− e2 sin2 ϕ cosϕ cos(λ− λS) + e2 sin2 ϕ ≥ 1 . (12.42)

In this case,

0◦ ≤ ζ ≤ 90◦ ⇐⇒ P visible to S .

Imposing the spherical Earth assumption, i.e., setting e = 0 in (12.42), we
obtain (12.37).
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Fig. 12.25 :View of the Earth from a geostationary satellite. Correspondence between

pixels and geographical coordinates. The center of the Earth is O and the satellite is

at S. The observed point (pixel) is denoted by P . The polar axis is Oz, the equatorial

plane xOy, and the axis Ox passes through S. The points Q, Q′, and Q′′ lie in

the image plane I, parallel to the plane P, which contains P , P ′, and P ′′ and is

perpendicular to the equatorial plane.
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Geographical Coordinates as a Function of Pixel Coordinates

The problem here is to establish the mapping (C,L) �−→ (λ, ϕ). We con-
sider the image plane I at an arbitrary distance l0 from S. Let ul0 and vl0
be the coordinates of the point Q in the plane I, with axes Oiyi and Oizi
specified above:

Q′′Q′ = ul0 , Q′Q = vl0 .

In a frame centered on S, obtained by translating the frame centered on O
along the axis Ox, the coordinates of Q are

SQ = l0

⎛
⎝−1

u
v

⎞
⎠ ,

where u and v are dimensionless quantities.
Considering the triangles discussed previously, we obtain C and L as a

function of u and v :

tanC =
Q′′Q
Q′′S

=
u

1
, tanL =

Q′Q
Q′S

=
v√

1 + u2
.

Given L and C, we can thus find u and v from

u = tanC , v = tanL
√
1 + tan2 C . (12.43)

We can slide the plane I parallel to itself so that it coincides with the plane
P , with the axes Oiyi and Oizi parallel to the axes Oy and Oz. To do this, we
multiply the vector SQ by a positive scalar k such that kSQ = SP . Setting
K = kl0, this amounts to finding the distance K such that

K

⎛
⎝−1

u
v

⎞
⎠ =

⎛
⎝x− r

y
z

⎞
⎠ =⇒

⎛
⎝x = r −K

y = uK
z = vK

⎞
⎠ .

To do this, we express the fact that the point Q coincides with P , hence lies
on the Earth ellipsoid:

x2 + y2 +
z2

1− e2
= R2 .

Substituting the values of the Cartesian coordinates, we obtain a quadratic
equation for K :

wK2 − 2rK + (r2 −R2) = 0 , (12.44)

where

w = 1 + u2 +
v2

1− e2
. (12.45)



608 Chapter 12. View from the Satellite

For geostationary satellites, we can define the dimensionless auxiliary quantity
 by

 = 1− 1

η2GS

= 0.977119 . (12.46)

The visibility condition stipulates a positive value for the discriminant of the
quadratic in (12.44):

w < 1 . (12.47)

The locus of points such that w = 1 corresponds to the boundary of the
Earth’s disk as seen from the satellite (zero discriminant).

If the point P is seen by S, (12.44) gives two solutions: the smallest, the
one we keep here, corresponds to the point P on the viewed face of the Earth,
while the other solution corresponds to a point P that would be visible on the
other face if the Earth were transparent.

The required value of K is therefore the distance

K =
1−

√
1− w 

w
r . (12.48)

We thus obtain x = r−K, y = uK et z = vK, and referring to the definition
(12.39) of the vector OP in terms of geodetic coordinates, this gives

tan(λ− λS) =
y

x
, tanϕ =

z

(1− e2)
√
x2 + y2

.

Finally then, the pixel coordinates L and C (row and column) can be used
to calculate u and v, then w, and hence obtain K. With K, we can calculate
x, y, z and obtain the geodetic coordinates λ and ϕ.

Example 12.14 Conversion between pixel and geographic coordinates for the
METEOSAT satellites.

� Here we consider the METEOSAT satellites in operating position, stationed
on the Greenwich meridian (λS = 0◦). Their image is characterised by N , the
number of rows and columns, and Φ, the field of view (FOV). We distinguish
first generation satellites, viz., METEOSAT-1 to -7, from second, viz., MSG-1,
-2, -3, and -4, corresponding to METEOSAT-8 and following (see Figs. 12.26
and 12.27).

With the pixel coordinates L and C in degrees, we obtain the correspond-
ing row number PR and column number PC. Columns are numbered from
right to left, rows from bottom to top. As the satellite is parked at longitude
0◦, Europe is visible at the top of the image. Rows are acquired from bottom
to top, i.e., from south to north, so that Europe benefits from the most recent
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Fig. 12.26 : Image obtained by composite processing using several channels of the im-

ager SEVIRI, on 29 June 2011 at 12:00 UT. METEOSAT-9 (MSG-2), stationed at

longitude 0.0◦. Credit: SATMOS, Icare (Lille).

observational data (the full scan for an image is 25min for first generation
METEOSAT and 15min for MSG).

We now establish the mapping (C,L) �−→ (PR, PC). We obtain the pixel
numbers using the function int which transforms a real number to its integer
part, viz.,

if C ≥ 0 : PC =
N

2
−int

(
C
N

Φ

)
, if C < 0 : PC =

N

2
−int

(
C
N

Φ

)
+1 ,

if L ≥ 0 : PR =
N

2
+int

(
L
N

Φ

)
+1 , if L < 0 : PR =

N

2
+int

(
L
N

Φ

)
.
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Satellite Rows and columns N Field of view Φ

METEOSAT-1 to -7 2,500 18.00◦

MSG 3,712 18.00◦

3651
3652

62
61

62
61

3651
3652

1
1

18563712

1857

3712

Fig. 12.27 :Schematic view of the Earth from a geostationary MSG satellite. The

whole frame represents the field of view and the disk represents the visible disk of the

Earth. Columns are numbered from 1 to 3,712, from right to left. Rows are numbered

from 1 to 3,712, from bottom to top.

Concerning the mapping (PC, PR) �−→ (C,L), once we know PC and PR, we
can obtain C and L, and this allows us to obtain the geographic coordinates
of the point P :

C = −
(
PC − N + 1

2

)
Φ

N
, L = −

(
PR − N + 1

2

)
Φ

N
.

Application. Satellite METEOSAT-9 (MSG-2), with N = 3,712, Φ = 18.00◦.

(λ, ϕ) �−→ (PC, PR):

• Place: ϕ = 30◦, λ = 30◦ �−→ PC = 984, PR = 2,854, ζ = 47.83◦.
• Niamey: ϕ = 13.53◦, λ = 2.08◦ �−→ PC = 1,783, PR = 2,343, ζ = 16.07◦.
• Paris: ϕ = 48.87◦, λ = 2.33◦ �−→ PC = 1,803, PR = 3,337, ζ = 56.09◦.
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• Moscow: ϕ = 55.70◦, λ = 37.55◦ �−→ PC = 1,197, PR = 3,422, ζ = 71.69◦.
• Oslo: ϕ = 59.93◦, λ = 10.75◦ �−→ PC = 1,676, PR = 3,510, ζ = 68.58◦.

(PC, PR) �−→ (λ, ϕ):

• PC = 1,000, PR = 1,000 �−→ ϕ = −25.19◦, λ = 27.77◦, ζ = 42.67◦.
• PC = 1,000, PR = 2,000 �−→ ϕ = 4.01◦, λ = 24.53◦, ζ = 29.05◦.
• PC = 2,000, PR = 1,000 �−→ ϕ = −24.63◦, λ = −4.37◦, ζ = 29.20◦.
• PC = 2,000, PR = 2,000 �−→ ϕ = 3.94◦, λ = −3.92◦, ζ = 6.54◦.
• PC = 3,000, PR = 3,000 �−→ ϕ = 36.48◦, λ = −46.97◦, ζ = 64.55◦.

�



Chapter 13

Spatiotemporal and Angular

Sampling

Once again, we shall change our point of view! From an arbitrary point
P on the Earth, we now note the time and angular conditions of our view
of the satellite S. This is the opposite problem to determining the ground
track of the swath: we must now establish the satellite sampling for a given
instrument. We shall also determine, for this point P , the direction of the Sun
at the instant of time when P is viewed by the satellite.

Basic Principles of Sampling

To obtain the sampling, our method consists in noting all the intersections
of the ground swath with a given meridian, called the reference meridian. This
method, which underlies the sampling function of the Ixion software, can then
be used to make various comparisons and produce statistics depending on the
latitude of the target point.

For each point viewed, called the target and denoted by P , we determine, in
terms of the satellite position S, the time at which it is seen and the direction
PS, which is called the line of sight. This straight line is defined by the angles
of the spherical coordinate system: the zenith angle, also called the viewing
zenith angle (VZA), and the azimuth angle, or viewing azimuth angle:

• For cross-track scanning, the zenith angle varies between 0◦ and a maxi-
mum value ζM.

• For conical scanning, the zenith angle has a fixed value, e.g., ζ = 53◦.

We call this the overpass of the satellite S at the point P . We can then refer
to the overpass time, and the overpass zenith and azimuth angles.

Temporal sampling is achieved when we know the overpass times in the
sense mentioned above for any point, for a given satellite and instrument, over

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 13,
© Springer International Publishing Switzerland 2014
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a certain period of time, e.g., 1 month. Insofar as this temporal sampling is
carried out for every point on Earth, we often speak of spatiotemporal sam-
pling. When we speak of angular sampling, we mean a record of the viewing
angles for each overpass. When the word “sampling” is used without further
specification, we are generally referring to both sets of data. Sampling data
is supplemented by stating the conditions of solar illumination, i.e., angles
determining the position of the Sun for each target point P .

13.1 Satellite–Target Direction

When calculating viewing angles, the Earth is only treated as an ellipsoid
in one case, namely when establishing the correspondence between pixel and
geographic coordinates, as we did in the last chapter, where we require an
accuracy to within one pixel. But for the present kind of angle calculation,
where we rarely require greater accuracy than one degree, we may consider
the Earth as spherical and identify the latitudes ϕ and ψ. When calculating
the viewing zenith angle, for example, this amounts to defining this angle by
ζ = (OP ,PS) as in Eq. (12.3) (see Fig. 12.3), whereas the strict definition is
ζ = (Pn,PS) as in (12.41), where Pn is the normal to the ellipsoid at P ,
i.e., the local vertical.

13.1.1 Line-of-Sight Direction of the Satellite

Calculating Angles

Figure 13.1 shows the subsatellite point S0, which is the intersection of OS
with the Earth (center O). The swath plane F is the plane OS0SP , orthogonal
to the direction of displacement of the satellite S. The velocity vector defines
a right-handed orientation in F .

At each time, we know the position S of the satellite. The position P of
the target is given by the characteristics of the swath. For example, in the case
of a cross-track swath, f gives α and we may then use (12.21) to obtain the
rotation matrix P4. The geocentric coordinates of S or S0 are denoted by the
longitude λS and the latitude ψS, and the geocentric coordinates of the pixel
P by λ and ψ. The two angles specifying the direction PS are the zenith and
azimuth angles, which belong to the spherical coordinate system centered on
P , with the local horizontal plane H. This plane, perpendicular to OP , is the
tangent plane to the sphere at P .

Zenith Angle. The viewing zenith angle ζ is defined by

ζ = (OP ,PS) , (13.1)

measured in the positive sense for the orientation defined by the satellite, with
the straight line OP (the local vertical) as origin, as discussed in relation to
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N S

O

S o

P

Fig. 13.1 :Directions relating to the swath of an instrument aboard a satellite (XT

mode). The Earth is shown with center O, as is the North Pole N and the equator.

The satellite S, with subsatellite point S0, views the point P in a swath S0P (doubled

curve). This swath lies in the plane OS0SP , called the swath plane F, orthogonal to

the direction of displacement of the satellite S. Figure 12.3 shows the angles in the

plane F.

Fig. 12.3. The angle α is obtained by spherical trigonometry, using (6.169)
[see (6.172) in Example 6.5], or simply from the scalar product OP · OS :

cosα = sinψ sinψS + cosψ cosψS cos(λ− λS) . (13.2)

The zenith angle ζ can be calculated1 immediately from the angle α us-
ing (12.10). One can also calculate ζ directly using the scalar product
OP · PS, or more accurately, using the scalar product Pn · PS, as explained
above.

Azimuth Angle. The azimuth angle χ is defined in the local horizontal
plane H. The local vertical confers an orientation on H. The angle χ is then
measured in the positive sense for this orientation, taking the north as origin.

1As the swath plane F is oriented, ζ can take positive or negative values. Indeed, ζ
varies in the interval [−π/2,+π/2]. Insofar as the azimuth angle χ is well defined (see
below) throughout the whole plane, it would suffice to define ζ in the interval [0,+π/2].
However, this redundancy allows one to say whether the satellite is in the ascending or
descending stretch of the orbit. One then assigns the sign of ζ to f and α.
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It is the dihedral angle between the swath plane F (OPSS0) and the meridian
plane OPN of P , denoted by M :

χ = dihedral angle
{
M,F

}
, (13.3)

that is, the angle in H between the ground swath and the meridian at P . The
angle χ is called the viewing or line-of-sight azimuth.

To calculate the angle χ, we consider the spherical triangle NPS0, shown
in Fig. 13.1. The three known elements of the triangle are two sides (two arcs)
and an angle, the dihedral angle between the two meridian planes through P
and S0 :




NS0=
π

2
− ψS ,




NP=
π

2
− ψ , N̂ = λ− λS .

We seek the angle χ, which is the angle of the spherical triangle at P . Us-
ing (ST X), we obtain

cot



NS0 sin



NP= cos



NP cosN + sinN cotP ,

or in the present case,

tanψS cosψ = sinψ cos(λ− λS) +
sin(λ− λS)

tanχ
,

and finally,

tanχ =
sin(λ− λS) cosψS

cosψ sinψS − sinψ cosψS cos(λ− λS)
. (13.4)

By definition, the image under arctan is an angle in the interval [−π/2,+π/2].
To obtain the angle χ between PS0 and the north in the interval (−π,+π],
we note that χ has the same sign as λ− λS. We thus deduce that:

• If tanχ has the same sign as λ− λS, we have χ = arctan(tanχ).
• Otherwise, χ = arctan(tanχ) + π [mod 2π].

Note. The altitude of the satellite does not appear in the relation giving
the azimuth angle χ, whereas it obviously must in the determination of the
viewing zenith angle ζ.

Example 13.1 Calculate the azimuth angle when the target point and the
satellite lie on the same geographic parallel.

� When ψS = ψ, Eq. (13.4) becomes

cotχ = sinψ tan
λ− λS

2
.
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We take the following points: P (45◦N, 10◦W) and S0 (45◦N, 20◦E). With the
above relation, we obtain tanχ = −5.278, whence arctan(−5.278) = −79.3◦.
With λ− λS < 0, we have χ = −79.3◦.

We observe that the direction PS0 is not at right-angles to the north. This
direction is taken on the arc of the great circle passing through P and S0. As
the chosen parallel is situated in the northern hemisphere, this arc is north
of the parallel, making an angle of 10.7◦ with the parallel at P . The angle is
negative (S0 is east of P ). If we swap P and S0, the angle χ is positive.

If we choose points in the southern hemisphere, such as P (45◦S, 10◦W)
and S0 (45◦S, 20◦E), we obtain tanχ = +5.278, whence arctan(+5.278) =
+79.3◦ and χ = 79.3◦ − 180◦ = −100.7◦. The north is still taken as the
origin. �

Polar Viewing Conditions

For a circular orbit, if the pole is attained by the swath, it always sees
the satellite with the same zenith angle. A prograde satellite, oriented in the
direction of its displacement, always sees the North Pole to its left and the
South Pole to its right. Conversely, a retrograde satellite (hence any Sun-
synchronous satellite) always sees the South Pole to its left and the North
Pole to its right. With the sign conventions mentioned above, ζ is positive in
the case when a prograde satellite is viewed from the North Pole.

When viewing from the pole, the angles α and i are complementary
(i.e., the sum of the angles is a right-angle), as can be seen from Fig. 12.4.
Equations (12.9) and (12.10) thus become

tan f(NP) =
cos i

η − sin i
, tan ζ(NP) =

cos i

sin i− 1/η
, (13.5)

where the subscript (NP) indicates that the point under consideration is the
North Pole. The signs of ζ(NP) and f(NP) are given by the sign of cos i.

For the South Pole, with subscript (SP), we find the negatives of these
values, viz.,

f(SP) = −f(NP) , ζ(SP) = −ζ(NP) . (13.6)

If a satellite in circular orbit is to observe the pole during a revolution,
and hence see both poles in each revolution, the half-swath f of its instrument
must be greater than the threshold value fP :

pole viewed ⇐⇒ |f | ≥ |fP| with fP = arctan

(
cos i

η − sin i

)
. (13.7)
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13.1.2 Geostationary Satellites

Although the scanning mode is different, geostationary satellites can be
treated using the general relations with the substitutions η = ηGS = 6.611,
ψS = 0, taking λS to be the parking longitude. As we have already seen, for
the level of accuracy required in determining viewing angles, the Earth can
be treated as spherical, whence we may identify ϕ and ψ.

For the zenith angle, we first calculate α using (12.35). We then obtain ζ
from (12.10), which becomes here

tan ζ =
sinα

cosα− 1/ηGS
. (13.8)

For the angle χ, (13.4) yields

tanχ = − tan(λ− λS)

sinψ
. (13.9)

The two graphs in Fig. 13.2 give the viewing angles ζ and |χ| as a function
of the latitude |ψ| and the longitude difference |λ − λS|. Figure 13.2 (upper)
representing the values of ζ should be compared with Fig. 12.21, which shows
the values of α (locus of points equidistant from the subsatellite point for
the geostationary satellite) as a function of the latitude and the longitude
difference.

Example 13.2 Calculate the viewing (or line-of-sight) directions of the satel-
lite METEOSAT-9 from Paris and of FY-2C from Sydney.

� METEOSAT-9 (λS = 0◦). Viewing from Paris (48◦52′N, 2◦20′E), with
λS = 0◦, λ = +2.33◦, ϕ = +48.87◦, we obtain

α = 48.91◦ , ζ = 56.1◦ , arctan(tanχ) = −3.1◦ , χ = 176.9 .

The line of sight thus has zenith angle 56◦ (or elevation angle 34◦) and azimuth
angle 177◦ with the north (or 3◦ with the south, directed slightly westward).

FY-2C (λS = 105◦E).Viewing from Sydney (33◦55′S, 151◦10′E), with λS =
+105◦, λ = +151.17◦, ϕ = −33.92◦, we obtain

α = 54.92◦ , ζ = 62.6◦ , arctan(tanχ) = 61.8◦ , χ = 61.8 .

The line of sight thus has zenith angle 63◦ (or elevation angle 27◦) and azimuth
angle 62◦ with the north. With |ϕ| = 34◦ and |λ − λS| = 46◦, we recover the
calculated values of ζ and χ in Fig. 13.2. �
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Fig. 13.2 :Viewing angles for the target–satellite direction when the satellite is geo-

stationary, as a function of the latitude |ψ| and the longitude difference |λ−λS|. All
angles are in degrees. Upper: |ζ|. Lower: |χ|.
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13.1.3 Local View and Sky Plots

Local view diagrams, also known as sky plots, show the position of the
satellite and its motion over time as seen in the sky at the given location. By
“sky”, we understand here the celestial half-sphere centered on the observer
at this location. In the terrestrial frame �T centered on the center of the
Earth O, the position of the satellite S is specified by the vector OS. Its
Cartesian components are given as a function of time by (8.10), but in which
Ω is replaced, as explained in Chap. 8, by the Euler angle α1 defined by (8.17).

In this same frame, the point P considered as the observation point is
defined by the vector OP . The geographic coordinates of P , the geodetic
latitude ϕ, the longitude λ, and the altitude above the reference ellipsoid, can
be used to obtain the Cartesian coordinates using (2.29).

The local view thus consists in representing the vector PS. To obtain a
representation on a half-sphere, we express the direction of PS in terms of the
two viewing angles, i.e., the viewing zenith angle ζ and the viewing azimuth
angle χ, as calculated above.

Sky plots indicate the trajectories on a grid of polar coordinates. This grid
represents the projection of the celestial half-sphere onto the local horizon-
tal plane. There are several ways of doing this projection (orthogonal, linear,
stereographic, perspective, and so on). For the stereographic projection pre-
sented here, the grid looks like a set of concentric circles and radii.

Each point on the diagram corresponds to a specific direction. The azimuth
taken from the north is represented as-is. The zenith angle determines the
position in this direction: at the center for ζ = 0◦, on the edge of the diagram
for ζ = 90◦, and in-between for intermediate values of ζ, in accordance with
the rules of the stereographic projection.

The zenith angle ζ is sometimes replaced by its complement hv = 90◦ −
ζ, called the elevation angle or viewing elevation. When there is no risk of
confusion with other symbols used elsewhere, it can be denoted by h and just
called the elevation. The outer circle of the diagram corresponds to the circle
of visibility: h = 0◦ (or ζ = 90◦) if the horizon is perfectly clear, h = 5◦ or
10◦, or 20◦, etc., if specific reception conditions must be ensured. Obstacles
such as buildings, trees, etc., which block direct viewing of the satellite at the
given location, can also be outlined on the diagram with a suitable projection.

Example 13.3 Sky plot for the Bangalore ground station of the Oceansat-2
satellite in India.

� The Indian oceanographic satellites Oceansat-1 and -2 are Sun-synchronous
and recurrent with a very short cycle CTo = 2 days. If the sky plot is estab-
lished over 2 days, it will remain valid both for the ground track and the time
until the end of the satellite’s active life. Figure 13.3 (upper) shows the ground
track of the satellite over 2 days, noting the circle of visibility (h = 5◦) for the
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Fig. 13.3 :Ground track of Oceansat-2 over 2 days (its recurrence cycle). Upper: Map

showing the ground track and circle of visibility centered on Bangalore. Lower: Sky

plot for Bangalore, KT, India.
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D n R Beginning Middle End Duration ζm χm dm

1 1 3 06:07:25 06:12:30 06:17:35 00:10:10 66 −100 1,215
1 2 4 07:45:38 07:50:22 07:55:08 00:09:30 71 75 1,410
1 3 11 18:38:04 18:43:55 18:49:47 00:11:43 4 106 44
2 4 18 06:55:40 07:01:31 07:07:22 00:11:42 9 82 105
2 5 25 17:50:03 17:55:02 18:00:02 00:09:59 67 −75 1,264
2 6 26 19:28:06 19:32:56 19:37:49 00:09:43 70 100 1,364
3 7 32 06:07:25 06:12:30 06:17:35 00:10:10 66 −100 1,215

Table 13.1 :Overpasses of the satellite Oceansat-2 for the Bangalore ground station:

beginning, middle, end, and duration of overpass in UTC (hh:mm:ss). Minimal view-

ing elevation: h = 5◦. Day D, number of overpass n during the revolution R. Closest

overpass of the satellite to the station during a revolution: the angles ζm and χm are

in degrees and the distance dm between station and ground track in kilometers. Ban-

galore (Karnataka), India: ϕ = 13.034◦N (ψ = 12.950◦), λ = 77.511◦E.

Bangalore receiving station in India. Each curve within this circle indicates
that the satellite overflies with viewing elevation greater than 5◦ in the skies
of Bangalore. Six overpasses are noted over 2 days.

The sky plot in Fig. 13.3 (lower) does indeed show these six overpasses.
Two of them, numbered 3 and 4, are very close to the local vertical at the
ground station. The beginning, middle, and end of each overpass is noted in
Table 13.1. After a cycle of 29 revolutions over 2 days, the satellite exactly
repeats its original ground track, and at the same time: the conditions of
the overpass during revolution 32 (day 3) are strictly identical to those of
revolution 3 (day 1). �

Example 13.4 Sky plots for HEO communications satellites.

� Figure 13.4 shows sky plots for two communications satellites, Meridian-6
and Sirius-3, with periods of revolution of a half and one sidereal day, respec-
tively. They follow HEO orbits, the first being Molniya and the second Tundra.
They are both recurrent, implying that the diagrams remain unchanged over
time, provided that the satellite orbits are maintained. Only the visibility
time moves forward by 3min 56 s every day, corresponding to the difference
between the mean and sidereal days discussed in connection with (7.27) in
Chap. 7. �

13.1.4 Visibility Window for LEO Satellites

The time interval over which a satellite S is visible from a given point
P on the Earth is called the duration of visibility or visibility window of
S by P . This notion is important for data reception and also when dealing
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Period =   717.76 min    * rev/day = 2.01

h_a =  39346 km;  h_p = 1034 km;  arg. perigee:  +295.03 °
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Asc. Node:   -114.44 ° [06:13 LMT]
Apogee   :    -64.36 °

0 30 60

30

60
1 h=48

h=37

h=88
09:53:25
03:55:401

01:52:51
12:17:38
14:41:44
21:33:222

9090

120

MC LMD

MC LMD

150

30

60

90

120

150

Begin -- End
UTC time

h max h > 12

Circle:  Viewing Zenith Angle [0° , +90°]
Radius:  Azimut - Origin: North

Projection (Mode):  stereographic

Latitude

Longitude

55.8 N

37.7 E

SATELLITE VISIBILITY
Increasing Part
Decreasing Part

SKY PLOT
for the station:

Moscow

Sirius-3Sirius-3

Elliptical orbit - Gr. track

Recurrence = [ 1; +0;  1]   1

2013 06 15 06:00:00 UTC  >>>   1440.0 min =   1.00 day

Equiv. altit.  =  35787.3 km

e = 0.267035

a =42165.453 km

CRITICAL Inclin. =  64.42 °

Period =  1436.15 min    * rev/day = 1.00

h_a =  47064 km;  h_p =24545 km;  arg. perigee:  +269.84 °

[NORAD] 2013 06 13 11:09:29 UTC//R=  4592
Asc. Node:    -66.01 ° [06:45 LMT]
Apogee   :     83.53 °

0
1

30 60

30

60

9090

120

150

30

60

90

120

150

Begin -- End
UTC time

h max h > 12

Circle:  Viewing Zenith Angle [0° , +90°]
Radius:  Azimut - Origin: North

Projection (Mode):  stereographic

Latitude

Longitude

42.0 N

91.7 W

SATELLITE VISIBILITY
Increasing Part
Decreasing Part

SKY PLOT
for the station:

Cedar Rapids, IA

Fig. 13.4 :Sky plots for two HEO communications satellites over 1 day. Upper:

Meridian-6 in Molniya orbit, for Moscow, Russia. Lower: Sirius-3 in Tundra or-

bit for Cedar Rapids, IA, USA.
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OA¢ P

B1
S1

O P A
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S1

S¢2
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Fig. 13.5 :Schematic view of the Earth and satellite trajectories. The Earth and the

orbits represented are on the same scale. Upper: Circular orbit. Examples: LEO,

h = 800, 1,400, and 2,000 km, and orbit h = R, with indication of the points used

in the text. Lower: HEO orbit, period T ≈ 24 h, e = 0.75, indicating the points used.

with satellite constellations. With an orbitographic software, the duration of
visibility is obtained directly from sky plots, as we have just seen. Below we
shall show how this kind of tool can be used to calculate the visibility window
from geometric considerations, provided that one makes certain simplifying
approximations.

For LEO satellites in circular orbits, the duration of visibility is of the order
of quarter of an hour and one can therefore identify the frames � and �T.

Satellite Passes Vertically over Observation Point

We consider the situation where the satellite S passes vertically over P , the
observation point on the Earth’s surface. The orbit of S, whose plane contains
P , is shown schematically in Fig. 13.5 (upper). The satellite S is visible from P
as long as it remains above the local horizon of P , represented by the straight
line S1PS2, hence on the circular arc S1AS2. The angle α = (OP ,OS1) can
be found immediately from

cosα =
R

R+ h
=

R

a
=

1

η
, (13.10)
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where η is the reduced distance. The period of the satellite is taken to be the
Keplerian period T0. The duration of visibility Θ is therefore

Θ =
α

π
T0 . (13.11)

In order to take observing conditions into account, let us fix a maximal viewing
zenith angle. The angle α at the center of the Earth is given as a function of
ζ and the reduced distance η [see (12.12)], which we denote here by α(ζ):

α(ζ) = ζ − arcsin

(
1

η
sin ζ

)
. (13.12)

It can be checked that α(π/2) = arccos(1/η).
Denoting the limiting angle by ζl, visibility therefore lasts for a time

Θ =
α(ζl)

π
T0 . (13.13)

Satellite Does Not Pass Vertically over Observation Point

When S crosses the sky at P , the viewing zenith angle goes through a
minimum ζv, which was zero in the situation just discussed. On the horizontal
plane tangent at P to the terrestrial sphere of radius R, the distance between
P and the closest point of the ground track is

dv = R tanα(ζv) .

Taking into account ζl, the radius of the circle of visibility is given by

dl = R tanα(ζl) .

Visibility thus lasts for a time proportional to the lengths of the ground tracks
within the circle of visibility, since the satellite speed is uniform, treating the
ground tracks as straight over this interval.

Let Θ(ζl, ζv) be the duration Θ expressed as a function of the two variables
ζl and ζv via αl = α(ζl) and αv = α(ζv). With the angles (ζl, ζv) taken in this
order, we obtain

Θ(ζl, ζv)

Θ(ζl, 0)
=

√
d2l − d2v
dl

=

√
1− tan2 α(ζv)

tan2 α(ζl)
.

Clearly, the condition ζv < ζl must be respected. The visibility window for
circular LEO satellites is thus given quite generally by

Θ(ζl, ζv) =

√
1− tan2 α(ζv)

tan2 α(ζl)

α(ζl)

π
T0 . (13.14)

Example 13.5 Calculate the duration of visibility for three LEO satellite fam-
ilies: the Transit constellation and the SPOT and Oceansat satellites.
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� In each example, we consider a different limiting visibility angle.

Transit. All the satellites in the Transit constellation (the first global satellite
positioning system) follow a strictly polar circular orbit at an altitude of
around h = 1,100 km, whence η = 1.1725, T0 = 107.4min. By fixing a viewing
elevation above 10◦, or ζl = 80◦, (13.12) then (13.13) imply

α(ζl) = α(80) = 80− arcsin
0.9848

1.1725
= 80− 57.13 = 22.87◦ ,

Θ = Θ(80, 0) =
22.87

180
107.4 = 13.6min .

SPOT. For SPOT-5 and all the SPOT satellites, we have h = 822km, η =
1.1289, T0 = 101.4min. It follows that, for viewing all the way to the horizon,
ζl = 90◦:

α = arccos(1/1.1289) = 27.6◦ , Θ = Θ(90, 0) =
27.6

180
101.4 = 15.6min .

Oceansat. For Oceansat-1 and -2, we have h = 720 km, η = 1.1129, and
T0 = 99.3min. It follows that, for viewing all the way to the horizon,

α = arccos(1/1.1129) = 26.03◦ , Θ(90, 0) =
26.03

180
99.3 = 14.36min .

With the Oceansat satellites, the conditions are as in the diagram of Fig. 13.3
and Table 13.1. The limit of the viewing zenith angle is ζl = 85◦ (h > 5◦ on
the diagram). Hence,

α(ζl) = 85.00− 63.53 = 21.47◦ , Θ(85, 0) =
21.47

180
99.3 = 11.84min .

Consider the ground tracks numbered 3 and 6 on the diagram:

• Track 3: h = 86◦ or ζv = 4◦. The satellite is almost vertically above the
observation point and

α(ζl) = 0.406◦ .

Applying (13.14) with this value:

Θ(85, 4) =
√
1− 0.0182Θ(85, 0) = 0.9998Θ(85, 0)

≈ Θ(85, 0) = 11.84min ,

which corresponds to 11:50, to be compared with the exact value of 11:43.
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• Track 6: h = 20◦ or ζv = 70◦. The satellite is rather low on the horizon,
with

α(ζl) = 12.396◦ ,

Θ(85, 70) =
√
1− 0.55892Θ(85, 0) = 0.8293Θ(85, 0)

= 0.8293× 11.84 = 9.83min ,

which corresponds to 9:49, to be compared with the exact value of 9:43.

We may conclude that the approximate formula (13.14) gives perfectly ade-
quate results. �

13.1.5 Visibility Window for HEO Satellites

In order to study a highly eccentric elliptical orbit, of HEO type and with
eccentricity e, we consider the most favourable situation, where the point P
is the subsatellite point when the satellite overflies the apogee A, as shown
schematically in Fig. 13.5 (lower). The satellite S is visible from P as long as
it is on the elliptical arc S1AS2. Given the approximations we have made, the
local horizon S1PS2 can be replaced by the parallel B1OB2 passing through
the center of the Earth O. We then evaluate the duration of visibility as the
time taken by the satellite S to cover the elliptical arc B1AB2.

At a given time, the position of S is specified relative to the perigee A′ by
the true anomaly v = (OA′, OS). The mean anomaly M of the point B1 is
calculated from (4.59) with v = π/2, whence

M(B1) = 2 arctan

√
1− e

1 + e
− e
√
1− e2 . (13.15)

We thus obtain the visibility duration as a function of the period, viz.,

Θ =

[
1− M(B1)

π

]
T0 . (13.16)

Example 13.6 Calculate the visibility window for the Molniya, Tundra, and
Supertundra orbits.

� We examine here the three main types of HEO orbit.

Molniya. For a Molniya type HEO satellite, we have e = 0.736 and T0 =
718min. From (13.15) and (13.16), we obtain

M(B1) = 0.7437− 0.4983 = 0.2454 rad = 14.1◦ , 1− 14.1

180
= 0.92 .
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MolniyaMolniya
Elliptical orbit - Gr. track

Recurrence = [ 2; +0;  1]  2

>>>>   Time span shown:  1440.0 min =   1.00 day

TIME MARKER

Equiv. altit.  =  20174.7 km

e = 0.750000

a =26552.863 km

CRITICAL Inclin. =  63.42 °

Period =   717.72 min    * rev/day = 2.01

h_a =  40089 km;  h_p =  260 km;  arg. perigee:  +270.00 °

Time marker: one point every  60.0 minutes

Longitude / Initialisation:
Asc. Node:     73.47 °
Apogee   :     80.00 °

Projection:  Breusing Harmonic
Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 90.0 ° N;    0.0 °
Aspect:  Polar
{4.2} [  +0.0/  +0.0/ +10.0] [-]    EGM2008

SupertundrSupertundra
Elliptical orbit - Gr. track

Recurrence = [ 1; +0;  1]  1

>>>>   Time span shown:  1440.0 min =   1.00 day

TIME MARKER

Equiv. altit.  =  35785.1 km

e = 0.423000

a =42163.199 km

CRITICAL Inclin. =  63.43 °

Period =  1436.03 min    * rev/day = 1.00

h_a =  53620 km;  h_p =17950 km;  arg. perigee:  +270.00 °

Time marker: one point every  60.0 minutes

Longitude / Initialisation:
Asc. Node:    -53.02 °
Apogee   :   -100.00 °

MC LMD

MC LMD

Projection:  Breusing Harmonic
Property:   none

T.:Azimuthal - Graticule: 10 °

Pr. centre (r.): 90.0 ° N;    0.0 °
Aspect:  Polar
{4.2} [  +0.0/  +0.0/ +10.0] [-]    EGM2008

Fig. 13.6 :Ground tracks for two HEO communications satellites HEO over 1 day.

The position of the satellite is indicated every hour. Upper: Satellite in a Molniya

orbit (2 rev/day). Lower: Satellite in a Tundra orbit (1 rev/day).
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During one revolution, the satellite thus spends 92% of the time in going from
B1 to B2 via A (and hence 8% of the time in going from B2 to B1 via A′).
This corresponds to Θ = 11h for a period of 12 h. If we impose a minimum
viewing zenith angle ζ ∼ 70◦ and if P is not exactly the subsatellite point of
A, we find that visibility lasts for about 8 h. This property is illustrated here
in Fig. 13.6 (upper) and in Chap. 9 by Fig. 9.28.

Supertundra. For a Supertundra type HEO satellite, we have e = 0.423 and
T0 = 1,436min, whence

M(B1) = 1.1340− 0.3832 = 0.7508 rad = 43.0◦ , 1− 43.0

180
= 0.76 .

This represents a visibility window of 18 h over a period of 24 h. Imposing the
restrictions considered above, one nevertheless exceeds a duration of 12 h (see
Fig. 13.6 lower).

Tundra. For a Tundra type HEO satellite HEO like Sirius-1 to -3, we have
e = 0.268 and, as for Supertundra, T0 = 1,436min, whence

M(B1) = 1.2995− 0.2582 = 1.0413 rad = 59.7◦ , 1− 59.7

180
= 0.67 .

This represents a visibility window of 16 h over a period of 24 h. �

13.2 Target–Sun Direction

13.2.1 Solar Line of Sight

For an arbitrary point P on the Earth’s surface, with coordinates λ and ψ,
we have already defined the local horizontal planeH. In this section, quantities
carrying the subscript s refer to the direction of the Sun. We now calculate
the spherical coordinates χs and ζs of the direction PSs, Ss representing the
position of the Sun.

To do this, we consider the celestial sphere with center O, relative to the
point considered, as shown in Fig. 13.7. The direction of the zenith is OZ,
normal to the horizontal plane H represented by the horizon circle at that
location. The direction of the celestial north pole is ON , normal to the equa-
torial plane E represented by the celestial equator. The half-great circle passing
through N and Z is the geographic meridian M at the place in question. This
is the plane of Fig. 13.7. The angle between the two straight lines OZ and
ON , or the dihedral angle (H, E), is equal to the colatitude of the place, i.e.,
the complementary angle of the latitude ψ :

(OZ,ON ) =
π

2
− ψ . (13.17)
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N
Z

M

O

Fig. 13.7 :Celestial sphere relative to a given point on Earth. The axis OZ is the local

vertical, normal to the local horizontal plane H. The axis ON is the celestial polar

axis, normal to the celestial equatorial plane E . The straight line OM represents an

arbitrary direction from the point in question.

Consider now an arbitrary direction OM . The half-great circle through Z
and M is the vertical of M . The half-great circle through N and M is the
celestial meridian ofM . When describing the direction of the Sun, we consider
M at the intersection of OSs with the celestial sphere. This direction OM can
be specified relative to E using celestial equatorial coordinates, i.e., the right
ascension α (or the hour angle H) and the declination δ. Relative to H, in
local horizontal coordinates, it is specified by the azimuth χs and the zenith
angle ζs.

We shall express the horizontal coordinates as a function of the time (via
H), the date (via δ), and the geographical position of the point P (via ψ). In
the spherical triangle NZM , the sides are given by




NZ=
π

2
− ψ ,




ZM= ζs ,



NM=
π

2
− δ ,

and the angles are

N̂ = H , Ẑ = π − χs , M̂ ,

noting that the angle M , the angle at the body, is not used here. Concerning
the azimuth angles, the origin is taken when the point M lies in the merid-
ian plane M. The azimuth χs, like χ, is measured relative to the northerly
direction.
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The horizontal coordinates are expressed in terms of the equatorial coor-
dinates and the latitude in the form (χs, ζs) = f(H, δ, ψ) by the relations

cos ζs = sinψ sin δ + cosψ cos δ cosH , (13.18)

sin ζs sinχs = cos δ sinH , (13.19)

sin ζs cosχs = − cosψ sin δ + sinψ cos δ cosH . (13.20)

The reader is referred to Sect. 6.13 on spherical trigonometry, where the tri-
angle ABC corresponds here to the triangle NZM . The above three relations
are the fundamental relations of spherical trigonometry, sometimes known as
Gauss’ relations.

Equation (13.18) gives ζs, an angle in the interval [0, π/2]. Substituting its
value into (13.19) or (13.20) yields the azimuth χs in [0, π]. The value of χs,
which lies in (−π, π] is then given by comparing with the sign of H : χs and H
have the same sign (negative in the morning, positive in the afternoon, with
H = 0 at noon).

Equation (13.19) or (13.20) yield ζs in the full interval [−π/2,+π/2]. We
can thus determine whether it is daytime (the Sun above the local horizon,
with ζs ≥ 0) or nighttime (the Sun is below the local horizon, with ζs ≤ 0). In
some cases, it is preferable to use the solar elevation hs rather than ζs. These
two angles are complementary.

Example 13.7 Calculate the position of the Sun on 10 July 1998, at 06:30
UT, at the Baikonur space base in Kazakhstan.

� In Example 7.4, we calculated that the instant of time 06:30 UT corre-
sponded on this date with 10:58 LAT. Naturally, one must use the local ap-
parent time in this situation. We thus have for the hour angle

H = 10h 58m − 12 h 00min = − 1 h 02m ,

whence H = −62/4 = −15.5◦. Regarding the other quantities,

δ(D = 10 July) = 22.3◦ , ϕ = 45◦38′N ,

whence ψ = 45.5◦. Equation (13.18) gives cos ζs = 0.8947, whereupon ζs =
26.5◦, implying a solar elevation hs = 63.5◦. Regarding the azimuth, (13.20)
implies that cosχs = 0.8329, and since H is negative, χs = −33.6◦. The
straight line PSs thus points eastward (this is before apparent noon, i.e.,
12:00 LAT). �
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13.2.2 Sunrise, Sunset, and Apparent Noon

Sunrise and Sunset

The obliquity ε is used to define circles on the Earth’s surface (small
circles called parallels) at certain significant latitudes: the polar circles, which
are the Arctic Circle at ψ = 90◦ − ε = 66◦34′N and the Antarctic Circle at
ψ = 66◦34′S, and the tropics, which are the Tropic of Cancer at ψ = ε =
23◦26′N, and the Tropic of Capricorn at ψ = 23◦26′S.

Between the tropics, the Sun passes through the zenith at noon on those
2 days of the year when the declination is equal to the latitude. With δ = ψ
and H = 0, (13.18) then gives cos ζs = 1, whence ζs = 0 or hs = 90◦. Beyond
the polar circles, there are days when the Sun never rises, and others when it
never sets.

To study the sunrise and sunset in the general case, we write (13.18) in
the form

cos ζs = sinhs = cos δ cosψ(cosH − T ) , (13.21)

with

T = − tan δ tanψ .

The case of the poles can be treated immediately. Equation (13.18) shows
that, for any H , we have hs = δ. Having dealt with this case, we see that
solution of sinhs = 0 is equivalent to solution of cosH = T . We consider two
cases, depending on whether |T | is greater than or less than 1.

The Case |T | > 1. If |T | > 1, i.e., |ψ|+ |δ| > 90◦, the quantity sinhs cannot
be zero for any H . In this case, there is no sunset or sunrise:

• If T is negative, T < −1, i.e., |ψ + δ| > 90◦, and

sinhs > 0 ⇐⇒ hs > 0 .

The Sun spends the whole day above the horizon. This is the polar day.
• If T is positive, T > +1, i.e., |ψ − δ| < 90◦, and

sinhs < 0 ⇐⇒ hs < 0 .

The Sun spends the whole day below the horizon. This is the polar night.

The Case |T | ≤ 1. If |T | � 1, i.e., |ψ|+ |δ| < 90◦, (13.21) has two roots:

sinhs = 0 ⇐⇒ cosH = T ,

determining two opposite values of H , denoted by Hrise and Hset :{
Hset = arccos(− tan δ tanψ) ,

Hrise = −Hset .
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With ζs = 90◦ in (13.20), we obtain the corresponding azimuth values:

⎧⎨
⎩

χsset = arccos

(
− sin δ

cosψ

)
,

χsrise = −χsset .

We note the following special cases:

• At the equator (ψ = 0), we have, for the whole year,

Hset = 90◦ , χsset = 90◦ − δ .

• At the equinoxes (δ = 0), we have, for the whole Earth,

Hset = 90◦ , χsset = 90◦ .

Recall that Hset = 90◦ corresponds to sunrise at 06:00 LAT and sunset at
18:00 LAT.

Note. In these calculations, we have not taken into account atmospheric
refraction. For medium latitudes (|ψ| < 55◦), and on average over the year,
refraction brings the sunrise forward by about 3min and delays the sunset by
the same amount.

Apparent Noon

Apparent noon, or 12:00 LAT, corresponds to H = 0. In all the monthly
tables showing overpass time at the end of the chapter, where LMT is shown
on the abscissa, we thus have

noon LMT = noon LAT + ET ,

where ET is the equation of time discussed in Chap. 7 [see (7.58) and (7.60)].
In these monthly tables, i.e., Figs. 13.12 and 13.13, and also 13.16, 13.17,

13.18, and 13.19, the dashed curve shows the times (LMT) of the sunrise,
sunset, and apparent solar noon, for the relevant location and during the
whole month.

13.3 Sun–Target–Satellite Configuration

Scattering Angle

13.3.1 Angles Describing the Sun–Target–Satellite
Configuration

For any point P , the directions of the Sun and satellite at a given time are
defined by the four angles χ, ζ, χs, and ζs. When studying certain physical
phenomena, such as radiation phenomena or those related to questions of
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SUN

SATELLITE

ZENITH

Target

Principal Plane

Fig. 13.8 :Angles used to describe the geometric configuration of the Sun, target, and

satellite.

remote sensing, it is useful to know that three angles are in fact sufficient to
characterise the geometry of the Sun–target–satellite configuration. These are
the two zenith angles and the relative azimuth. Using the standard relations
here, we set ⎧⎨

⎩
θ0 = ζs ,
θ = |ζ| ,
φA = χs − χ+ π [mod 2π] .

Defined in this way, the relative azimuth is zero when the directions are op-
posite and it is equal to π when the Sun and the satellite are on the same
side with respect to the target point (see Fig. 13.8). Most of the phenomena
studied are symmetrical with respect to the principal plane, which is the plane
spanned by the direction of the Sun and the vertical at the target point. We
then consider the relative azimuth in the interval [0, π]. For reasons of clarity,
we use φA to denote the relative azimuth defined in [0, 2π] and φB to denote
the one defined in [0, π], with

φB = φA if φA ≤ π , φB = 2π − φA if φA > π .

In radiation studies, when we speak of the relative azimuth without further
specification, we are referring to φB, written φ.

The scattering angle is the angle between the two directions denoted here
by PS and PSs. This angle γ takes values in the interval [0, π]. Its value is
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found as for α with (13.2). Using the above notation,

cos γ = cos θ0 cos θ − sin θ0 sin θ cosφ . (13.22)

13.3.2 Specular Reflection (Sun Glint)

We speak of specular2 reflection when rays of sunlight, after reflecting on
a surface, end up in the satellite’s onboard detector. This specular reflection,
often called Sun glint, can cause irreversible damage to instrumentation, but
even if it does not, radiometric measurements can suffer seriously by not taking
this phenomenon into account.

Sun glint occurs when the reflecting surface is a liquid surface, like the sea,
or even a lake or wetland. The glare from Sun glint gives an idea of the state
of the surface, from calm sea (narrow region of glare with intense reflection) to
rough waters (broad region with more diffuse reflection). One can thus detect
regions polluted by oil slicks, as can be seen from Figs. 13.9 and 13.10.

Conditions for Specular Reflection

Strictly speaking, reflection occurs when:

• the directions PS and PSs lie in the same plane, on either side of the
normal at P :

χ− χs = π [mod 2π] , i.e., φ = 0 ,

• the angles of incidence are equal:

|ζ| = ζs , i.e., θ = θ0 .

We call PS′
s the reflected solar ray. Its direction is given by the zenith angle

ζs and azimuth angle χs + π. If γ′ is the angle between PS′
s and PS, we

obtain its value by a similar calculation to the one leading to γ, whereupon

cos γ′ = cos θ0 cos θ + sin θ0 sin θ cosφ . (13.23)

We fix some angle γ′
0 which specifies the limit of the effect. We then have the

condition

γ′ < γ′
0 ⇐⇒ specular reflection possible .

The two rays PS and PS′
s then lie inside a cone of half-aperture γ′

0/2. To
give an order of magnitude, the angle γ′

0 generally takes values between 12◦

and 20◦, depending on the situation.

2This adjective, borrowed fromMiddle French, comes from the Latin specularis, adjective
derived from speculum, meaning “mirror”. This word is itself derived from the verb specere,
meaning “to look” (spectacle), which is associated with the Indo-European root *spek, “to
observe”. The word spy also derives from this root.
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Fig. 13.9 :Specular reflection. Upper: Image by MODIS carried aboard the satellite

Aqua on 12 July 2010. Gulf of Mexico. Specular reflection of sunlight is modified

by the presence of oil slicks. Credit: NASA/GSFC, MODIS RR. Lower: Ground

track of the satellite Aqua, simulating specular reflection for MODIS. Ixion software

initialised by updated NORAD elements. See also Fig. 13.10.
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Fig. 13.10 :Specular reflection in the Gulf of Mexico as seen by the satellite Aqua on

12 July 2010. Image obtained by superposing Fig. 13.9 upper and lower.
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Example 13.8 Specular reflection detected by the instrument MODIS aboard
the satellite Aqua.

� The Moderate Resolution Imaging Spectroradiometer (MODIS) is a multi-
spectral imager with a pixel of the order of 500m at the nadir. Its swath is
broad enough (fM = 55.2◦, i.e., 2FM = 2,330 km on the ground) to observe
all points on the Earth every day or every 2 days (QE = 0.847). NASA uses
it aboard the EOS satellites Terra and Aqua for environmental surveillance.
On 20 April 2010, the explosion of the Deepwater Horizon oil platform in the
Gulf of Mexico led to an oil spill lasting several months which turned out to
be the biggest such disaster ever seen in the USA.

Figure 13.9 (upper) is an image of this region taken on 12 July 2010 by
Aqua/MODIS. At the top of the image, one can make out the Mississippi
delta, and in the center, Mobile Bay, and on the right, the coast of Florida.
This provides a perfect example of sun glint. Moreover, the oil slick renders
the water surface smoother and intensifies specular reflection.

Figure 13.9 (lower) represents the ground track of Aqua, centering on
this region, for the same day. Regions of potential specular reflection are
indicated (it can only occur on the sea). This shows that the phenomenon
is very significant in the Gulf of Mexico. Figure 13.10 has been obtained by
superposing the two last images.

Let us consider the geometric aspects of this phenomenon. Table 13.2 gives
all the angles relevant to the Sun–target–satellite configuration on 10–12 July
2010. The target is located at the center of the sun glint, in the pixel with
coordinates 30◦N and 90◦W, which corresponds to New Orleans, at the mouth
of the Mississippi. Since the table was established for the CERES instrument,
we will not take into account the swaths f > 55.2◦ for MODIS.

On 12 July, for overpass n = 37, at 13:08 LMT, the zenith angles are
practically equal (ζ = 19◦ and ζs = 16◦), while the relative azimuth is small
(φA = 14◦). Equation (13.23) gives γ′ = 5◦, which implies that there will be
specular reflection, since the angular bound is γ′ < 16◦ here (cone of half-
aperture 8◦).

A little further on, Fig. 13.12 indicates all the cases of specular reflection
during the month of July 2010, for New Orleans, with Aqua/MODIS, viz.,
3, 12, 19, and 28 July, shortly after 13:00 LMT. With Terra/MODIS, for the
same location, see Fig. 13.13: the same phenomenon occurs likewise on 2, 9,
18, and 25 July, at around 11:00 LMT. �

Example 13.9 Specular reflection detected by the instrument MADRAS aboard
the satellite Megha-tropiques.

� For the conical swath of the MADRAS instrument aboardMegha-Tropiques,
and for each observed pixel, we calculate the geometric conditions for specular
reflection to occur. If there is no specular reflection, the viewed pixel is indi-
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n D LMT f ζ χ ζs χs φA γ γ′

29 10 00:42 −61.6 −77 −90 – – – – –
30 10 02:21 +39.2 +45 +77 – – – – –
31 10 13:20 −6.7 −8 +99 19 110 191 11 26
32 11 01:26 −44.8 −51 −96 – – – – –
33 11 03:03 +60.3 +75 +72 – – – – –
34 11 12:25 +56.0 +67 −74 9 148 42 74 60
35 11 14:03 −54.3 −64 +94 28 99 185 37 92
36 12 02:08 +23.4 +26 +79 – – – – –
37 12 13:08 +17.3 +19 −79 16 115 14 35 5

86 28 02:08 +23.4 +26 +79 – – – – –
87 28 13:08 +17.3 +19 −79 18 124 23 36 7

Table 13.2 :Angles used to describe the geometry of the satellite–target–Sun configu-

ration in the case of an across-track swath. Location: New Orleans, 30.0◦N, 90.0◦W.

Satellite: Aqua. Instrument: CERES fM = 61.8◦, ζM = 78.0◦. Initialisation: Date

2010 07 12 20:38:35 UT. Table for July 2010. Number of the overpass in the month

is n, on day D of the month. Overpass time LMT. Angles f , ζ, χ, ζs, χs, φA, γ,

γ′, as defined in the text, given in degrees. Sun glint condition γ′ <16◦ (fulfilled on

D = 12 and D = 28 in this table). Missing values, denoted by a dash, indicate night-

time overpass. The values in the table can also be found in Fig. 13.12. Total number

of overpasses during the month: 97. Comparing data for 12 and 28 July reveals the

16 day recurrence cycle.

cated on the map by a small black dot. Otherwise, the pixel is represented by
a coloured point (depending on the time in LMT) whose size is proportional
to the intensity of the Sun glint effect (which increases when the angle γ′

tends to 0). If the observed surface is a rather calm sea, and if the geomet-
ric conditions for specular reflection are fulfilled, there will be Sun glint (see
Fig. 13.11). �

13.4 Monthly Sampling Tables

For an arbitrary point on the Earth, the monthly sampling tables allow
one to visualise all the overpasses of a given satellite, carrying an instrument
with well-specified swath. These tables are extremely useful, as much for the
preparation of missions as for the exploitation of data transmitted by the
satellite. We now give a series of examples.

Example 13.10 Monthly sampling tables for a wide swath instrument aboard
the Sun-synchronous satellites Terra and Aqua, for a point with latitude 30◦N.
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� The CERES instrument scans across track. It has a half-swath fM = 61.8◦

so that ζM = 78.0◦. The overlap fraction is QE = 1.35 when the instrument
is aboard a satellite on a Terra-type orbit.

Aqua/CERES. For the satellite Aqua, we consider the following initial con-
ditions (provided by NORAD):

2010 07 12 20:38:35.423 UT, λAN = 254.4722◦ (τAN = 13:36 LMT) .

We calculate the sampling for the point P with coordinates 30.0◦N and
90.0◦W (New Orleans), in order to establish Sun glint conditions as discussed
above. The monthly table is drawn up for July, from D = 1 (corresponding to
the date 2010 07 01) to D = 31. For each overpass, we calculate the overpass
time (UT then LMT) and the angles specifying the satellite–target–Sun con-
figuration. The results for several consecutive overpasses are shown in Table
13.2. The values for the whole month (31 days, whatever the month) are rep-
resented in the monthly sampling table in Fig. 13.12. In this table, the LMT
times are given from 0 to 24 on the abscissa axis and the days from 1 to 31 on
the ordinate axis. Each point (triangle with apex at the top or the bottom)
corresponds to an overpass, dashes (long or short) refer to the target–satellite
direction, and small circles (white or black) refer to the target–Sun direction.
Dot-dashed lines indicate the times of sunrise and sunset, as well as the local
apparent noon, while the slight difference between LAT noon and LMT noon
illustrates the equation of time [see (7.58) and (7.60)].

Note that, for this latitude, on almost every day, there are almost three
overpasses per day (97 overpasses in 31 days), of which one or two occur
during the day (between 12:00 and 14:00 LMT) and two or one during the
night (between 1 and 3 o’clock), alternately.

The recurrence cycle CTo = 16 days is clearly visible. On days D and
D + 16, we find the same values of ζ and χ. Moreover, since the satellite is
Sun-synchronous, we also find the same values of the LMT time.

Specular reflection (γ′ < 16◦) occurs on 3 and 19 (= 3+16) and also on 12
and 28 (= 12 + 16). The Sun glint of 12 July was discussed in Example 13.8
and illustrated in Figs. 13.9 and 13.10.

Terra/CERES. For the satellite Terra, on the same orbit as Aqua, we have
used contemporaneous NORAD initial data. We calculate the sampling with
an identical CERES instrument to the one aboard Aqua (cross-track scan-
ning). The monthly table in Fig. 13.13 for this same point P , with coordinates
30.0◦N and 90.0◦W, shows a sampling that can be described as “symmetrical”
with respect to the one for Aqua. We find three overpasses per day, during
the day (between 10 and 12 o’clock LMT) and the night (between 21:00 and
23:00), alternately.

Average Number of Overpasses per Day. For a given meridian, Fig. 13.14
shows the average number N(ψ, fM) of overpasses per day as a function of the
latitude ψ, from the North Pole to the South Pole, for the CERES instrument
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aboard Aqua (or Terra). For the maximum half-swath fM = 61.8◦ of this
instrument (continuous curve), the graph of N(ψ, fM) shows an almost flat
minimum around the equator, then increases towards the poles. Beyond ψ =
82◦, each point is viewed on each revolution of the satellite. In the same figure,
we have plotted the graphs of N(ψ, f) with dotted, dashed, and dot-dashed
curves for f = 3fM/4, f = fM/2, and f = fM/4. Using (12.27), we may check
that N(0, fM) = 2QE = 2.71. �

Example 13.11 Asymmetry between the northern and southern hemispheres
regarding the overpass time of a Sun-synchronous satellite.

� The instrument known as Végétation, or Vegetation Monitoring Instrument
(VMI), is an imager with cross-track swath, fM = 50.5◦, carried aboard the re-
current (CTo = 26 day) and Sun-synchronous (τAN = 22:30) satellite SPOT-4.
Figure 13.15 is a monthly table with the days of the month on the horizon-
tal axis and latitudes on the vertical axis. We consider a given time slot and
note overpass times with triangles and angles ζ with line segments. The time
slot was of 2.5 h on either side of noon. This is the most favourable period
for image acquisition. It is easy to see why the northern hemisphere has the
advantage over the southern, through the choice of τAN (in this respect, see
Fig. 10.14 and explanations concerning preferences for τAN). The recurrence
cycle of 26 is clearly visible, as is the 5 day subcycle. �

Example 13.12 Monthly sampling tables for an instrument with medium
swath aboard a near-polar satellite (MetOp-A), for locations at various lat-
itudes.

� The IASI (Interféromètre atmosphérique de sondage infrarouge) is a Michel-
son interferometer measuring the spectral distribution of atmospheric radia-
tion. Its cross-track swath can be described as medium amplitude (between
broad and narrow), with fM = 48.3◦, whence ζM = 57.4◦ and QE = 0.73. It
is currently operating aboard MetOp-A and MetOp-B and is also planned for
MetOp-C.

The satellite MetOp-A is recurrent (CTo = 29 day) and Sun-synchronous
(τAN = 21:30). We consider the NORAD initial data λAN = 266.3619◦ =
93.64◦W at 03:43:01.457 UT (whence τAN = 21:28 LMT), on 1 April 2013,
and establish the monthly sampling tables for the meridian λAN:

• On the equator (see Fig. 13.16), there is roughly one overpass and a half
every day for this instrument (45 overpasses in 31 days):

N(0, fM) = 2QE = 1.46 .

The satellite passes through the zenith for D = 1 (initial data) and again
for D = 30, showing that the cycle is indeed 29 days. The 5 day recurrence
subcycle is also clearly visible.
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Fig. 13.12 :Monthly table for July. Satellite Aqua, Instrument CERES. Overpass

times with indication of Sun glint, for New Orleans, LA.
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Fig. 13.15 :Monthly table for SPOT-4. Overpasses in time slot, with viewing angle.
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• For high latitudes, such as ψ = 70◦ (see Fig. 13.17), there are slightly fewer
than six daily overpasses (162 overpasses in 31 days), occurring in two
batches of three consecutive overpasses.

�

Example 13.13 Monthly sampling tables for an instrument with medium
swath aboard a low-inclination satellite (Megha-Tropiques) over two consecu-
tive months.

� The satellite Megha-Tropiques has inclination 20◦. We consider the NO-
RAD initial data: τAN = 11:18 (LMT) on the date 2013 06 01 and τAN = 21:05
(LMT) on the date 2013 07 01. The ScaRaB instrument has a swath of medium
amplitude, with fM = 48.9◦, whence ζM = 58.9◦ and QE = 2.09. We consider
overpasses for the point P with geographic coordinates λ = 75◦, ψ = 12◦N.
For such a latitude, with this satellite/instrument configuration, there are
more than six overpasses per day during consecutive revolutions:

• Looking at the monthly tables for June and July in Figs. 13.18 and 13.19,
we see the influence of nodal precession on the overpass times (D = 31
for June corresponds to D = 1 for July). The value of Ω̇ calculated above
induces a cycle relative to the Sun equal to CS = −51.3 days. This means
that the overpass time moves forward by 28min on average from 1 day to
the next, or by 14 h a month. After 51 days, we return to the same overpass
times.

• Figure 13.20 shows the average number N(ψ, fM) of overpasses per day
as a function of the latitude ψ and the half-swath fM. We have replaced
the ScaRaB instrument aboard Megha-Tropiques by an instrument viewing
from limb to limb and called here FOV max (maximal field of view). For
the maximal half-swath fM = f0 = 61.7◦ (continuous curve), the graph
N(ψ, f0) has a flat maximum around the equator. We are then in a situation
that may prove useful (and novel): between 8◦N and 8◦S, every point is
viewed during each revolution, i.e., 13.1 times a day. On the same figure, we
have plotted the graphs ofN(ψ, f) (dotted, dashed, and dot-dashed curves)
for f = 3fM/4 (a value that corresponds roughly to that of ScaRaB),
f = fM/2, and f = fM/4. The slightly shaky aspect of the graphs comes
from the fact that the recurrence cycle is short, being just 7 days.

Note. As the nodal period Td is equal to 101.93min, the number of round
trips per day is ν = 14.1. Since the satellite orbits in the prograde sense, i.e.,
the same sense as the Earth, it only crosses a meridian ν − 1 times a day.
The average daily frequency of intersection of the meridian is thus equal to
13.1 here (if the satellite had inclination i = 160◦, it would cross the meridian
15.1 times a day). The period T ′ obtained from this frequency represents the
synodic period of the satellite and the Earth. �
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Fig. 13.16 :Monthly table for April. Satellite MetOp-A Instrument IASI. Overpass

times and angular geometry for Equator.
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Fig. 13.18 :Monthly table for June. Satellite MT, Instrument ScaRaB. Overpass

times and angular geometry for 12◦ N latitude.
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Fig. 13.19 :Monthly table for July. Satellite MT, Instrument ScaRaB. Overpass times

and angular geometry for 12◦ N latitude.
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Fig. 13.20 :Monthly table for Megha-Tropiques. Overpass statistics.



Chapter 14

Global Positioning Systems

(GPS)

14.1 Basic Principle of GPS

Positioning by GPS is based on a very simple principle. However, a very
high level of technological knowhow is required to make it work. In fact, almost
every field of modern physics is involved in some way. This satellite-based
system requires:

• very accurate knowledge of satellite positions,
• very accurate clocks aboard each satellite.

The satellites send an electromagnetic signal and the user has a receiver
equipped with a clock. (We shall see that this clock does not need to be par-
ticularly accurate.) Recall that an electromagnetic signal travels in vacuum
at the speed of light c, and thus travels 30 cm in 1 ns (or 10−9 s):

0.3m ←→ 1 ns .

14.1.1 Positioning in the Ideal Case

The position of the satellites Si is known at each instant of time. The
position P of the receiver is unknown. We begin by considering the ideal
case:

1. The satellite S1 sends a signal at time t1 and it is received at P at time
t′1. The receiver P , using its clock which measures t′1 and the message sent

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 14,
© Springer International Publishing Switzerland 2014

653
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by S1 at time t1, obtains the time Δt1 = t′1 − t1, which corresponds to the
distance r1 = ‖S1P ‖ :

cΔt1 = ‖S1P ‖ . (14.1)

The point P is thus located on the sphere Σ1 of radius r1 centered on S1.
2. Likewise, the satellite S2 sends a signal, and by measuring the time interval

Δt2, this tells us that P lies on the sphere Σ2 of radius r2 centered on S2.
The point P is thus on the intersection of the spheres Σ1 and Σ2, which is
a circle.

3. With the satellite S3, we obtain a third sphere Σ3, whose intersection with
(Σ1 ∩ Σ2) gives just two points P ′ and P ′′. One of these two points is
therefore P . The ambiguity between P ′ and P ′′ is easily removed, because
one of these two points will be situated in a quite impossible location to
be identified with P , e.g., at an altitude of 35,000 km.

In this ideal case, three satellites therefore suffice to locate P . However, to
achieve this, the clock at P would have to have the same quality as those
carried aboard the satellites, and this would be impossible because such clocks
are cumbersome and very expensive. A fourth satellite is thus needed to make
up for the inaccuracy of this clock.

14.1.2 Positioning in Real Situations

There are two main differences with the ideal case just considered:

• The clock at P is not perfect and there is a synchronisation error.
• To reach P , the wave emitted by the satellite must cross the Earth’s atmo-

sphere, and this slows the signal down.

Let us just reconsider the logic here. The Cartesian coordinates of P denoted
by x, y, and z, are unknown. The coordinates xi, yi, and zi, of the satellite
Si are known, and the index i takes values from 1 to n, since we consider
n satellites. We denote the unit vector in the direction SiP by ei and set
ri = ‖SiP ‖. Then

SiP =

⎛
⎝x− xi

y − yi
z − zi

⎞
⎠ , ei =

⎛
⎝ai1 = (x− xi)/ri

ai2 = (y − yi)/ri
ai3 = (z − zi)/ri

⎞
⎠ . (14.2)

Equation (14.1) for the ideal case becomes

cΔti = ‖SiP ‖+ cδt+ c

3∑
k=1

δk,it (14.3)
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in the real case, where we make the following explanatory remarks:

• The synchronisation error δt of the receiver’s clock, which may be positive
or negative, is independent of the given satellite and leads to an error in
the distance called the clock bias. This is given by

b = cδt . (14.4)

• The time delays δk,i depend on the satellite Si and the index k distinguishes
three different effects:

– δ1,it in crossing the ionosphere,
– δ2,it in crossing the troposphere,
– δ3,it due to effects of special and general relativity.

We shall see below how it is possible to measure δ1,i, evaluate δ2,i, and cal-
culate δ3,i, the weak point of the correction being δ2,i. But for the moment,
we shall take these quantities as being determined.

Finally, we rewrite (14.3) with known values on the left and unknowns on
the right:

cΔti − c

3∑
k=1

δk,it = ri + b . (14.5)

The term on the left, a sum of known (measured or evaluated) quantities, is
called the pseudo-distance or pseudo-range and it is denoted by ρi. The prefix
“pseudo” is justified by the fact that ρi is not equal to the actual distance ri,
whose value is required, but rather to ri plus the (positive or negative) clock
bias. For the satellite Si, we thus have

ρi = ri + b =
√
(x− xi)2 + (y − yi)2 + (z − zi)2 + b . (14.6)

With four satellites, we obtain four equations, sufficient to solve for the four
unknowns x, y, z, and b.

Solution for Four Satellites

A standard method for solving four equations in four unknowns is to lin-
earise the equations. To do this, one must know an approximate position for
P , denoted here by P̄ , with coordinates x̄, ȳ, and z̄, and also an approximate
value for the bias b̄. Then,

x = x̄+ dx , y = ȳ + dy , z = z̄ + dz , b = b̄+ db ,

which yields ρi = ρ̄i + dρi. We obtain dρi by differentiating ρi :

dρi = dri + db .
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For the distance,

dri =
∂ri
∂x

dx+
∂ri
∂y

dy +
∂ri
∂z

dz .

Applied to the point P̄ , this gives

dri =
(x̄− xi)dx+ (ȳ − yi)dy + (z̄ − zi)dz√

(x̄− xi)2 + (ȳ − yi)2 + (z̄ − zi)2
,

which can also be written

dri = ai1dx+ ai2dy + ai3dz ,

where the coefficients aij , j = 1, 2, 3 are the direction cosines of the given
direction, i.e., from the satellite Si to the point P̄ [see (14.2)].

We consider the corresponding finite increments: the four pseudo-ranges
δρi represent the measured quantities, while δx, δy, δz, and δb are now the
four unknowns. The system of four linear equations in four unknowns is then,
for i=1–4,

δρi = ai1δx+ ai2δy + ai3δz + δb .

In matrix form, this becomes⎛
⎜⎜⎝

δρ1
δρ2
δρ3
δρ4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a11 a12 a13 1
a21 a22 a23 1
a31 a32 a33 1
a41 a42 a43 1

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

δx
δy
δz
δb

⎞
⎟⎟⎠ , (14.7)

where the direction cosines are written as follows:

ai1 =
x̄− xi

ρ̄i − b̄
, ai2 =

ȳ − yi

ρ̄i − b̄
, ai3 =

z̄ − zi

ρ̄i − b̄
.

This can be written in an equivalent compact notation:

• The vector δR contains the elements δρi.
• The vector δX contains the unknowns δx, δy, δz, and δb.
• The 4× 4 matrix A contains the elements aij .

With this, we have simply

δR = AδX . (14.8)

We then calculate the inverse of the matrix A and use it to obtain the required
result:

δX = A−1δR . (14.9)

In practice, P̄ is taken to be the previous value of P . To initialise, we choose an
approximate value of P and refine the result by successive iteration, varying
x̄, ȳ, z̄, and b̄ so as to minimise ‖δX‖.
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Solution for n Satellites

The satellites have orbits such that, apart from certain special cases, any
point P can see about ten GPS satellites at any given time. We then have a
system of n equations (with n > 4) available to determine the four unknowns
of the vector δR. The matrix equation (14.7) thus becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δρ1
δρ2
...

δρj
...

δρn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 1
a21 a22 a23 1
...

...
...

...
aj1 aj2 aj3 1
...

...
...

...
an1 an2 an3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎝

δx
δy
δz
δb

⎞
⎟⎟⎠ . (14.10)

With the previous notation, this can be written

δR = AδX .

However, in this case, we cannot obtain δX directly, because the matrix A
is not square. In fact the system is overdetermined, because there are more
equations than unknowns.

We use the transpose TA of A to obtain the result

δX =
[
TAA

]−1 TAδR . (14.11)

The solution obtained is the best approximation in the sense of least squares
to the solution of (14.10). Using this approach, we consider all the equations
to be equivalent. A more refined method, better suited to the problem, is to
weight each equation, giving greater weight to satellites viewed with maximal
elevation. (The weight is roughly proportional to the cosine of the viewing
zenith angle.) But the best suited approach for this kind of problem uses
algorithms like Kalman filters.

GPS Time Base

Solution of (14.10) by (14.11) yields the desired coordinates of the point P ,
but also δb, whence we may determine the clock bias and reset the receiver’s
clock relative to the atomic clocks carried by the satellite constellation. The
user thus has access to a highly accurate clock and we thereby obtain an
excellent time base, common to the whole planet.

Phase Measurement

On the wave carrying the signal, with wavelength of the order of 20 cm, the
phase of the signal received by the receiver is compared with the phase of the
signal emitted by the satellite. We shall not enter into further details on this
technique, which considerably improves positioning accuracy (see Table 14.3).



658 Chapter 14. Global Positioning Systems (GPS)

14.1.3 Determining User Velocity

Since the position of P is known at each instant of time (the GPS signal
is sent every millisecond), it would be possible to calculate the instantaneous
velocity from the definition Δl/Δt, but this is not the method actually used,
because uncertainties in the position would generate too much error in the
velocity. It is better to use the Doppler effect, which can provide much more
accurate results. Since the velocity of the satellite is known, the modification
of the received signal can be used to obtain the receiver velocity to high
accuracy. However, the position of P must first be determined before carrying
out the velocity calculation.

The velocity of the point P (the user) is denoted by U and that of the
satellite Si by V i, whence

U =

⎛
⎝ ẋ

ẏ
ż

⎞
⎠ , V i =

⎛
⎝ ẋi

ẏi
żi

⎞
⎠ . (14.12)

The satellite Si emits a signal at frequency f0i which is received by P at
frequency fRi. The relative change in frequency due to the Doppler effect is
equal to the ratio of the relative velocity projected onto the line of propagation
of the signal to the velocity of propagation of the signal, which is of course c,
the velocity of light:

f0i − fRi

f0i
=

V rel
i ·ei
c

, (14.13)

where V rel
i = V i −U is the relative velocity and ei is the unit vector defined

by (14.2).
The clock of the receiver P generally undergoes an unknown drift, leading

to a corresponding drift in the received frequency fRi. We have

fRi = fi

(
1 +

ḃ

c

)
, (14.14)

where fi is the frequency measured by the receiver and ḃ/c is dimensionless,
being the ratio of two velocities. We thus have

c
f0i − fi(1 + ḃ/c)

f0i
= V i·ei −U · ei .

This is rewritten in such a way that:

• the known quantities fi (measured), and f0i and V i (communicated by the
satellite Si) appear on the left,

• the four unknowns ḃ and the three components of U appear on the right.
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Setting Φi = fi/f0i, we obtain

c(Φi − 1) + V i·ei = U · ei − Φiḃ . (14.15)

To simplify the notation, we introduce the term wi which may be considered
as a pseudo-velocity:

wi = ai1ẋi + ai2ẏi + ai3żi + c(Φi − 1) , (14.16)

and then write (14.15) in the form

wi = ai1ẋ+ ai2ẏ + ai3ż − Φiḃ . (14.17)

The term Φi is very close1 to unity. In the definition (14.16) of wi, the term
c(Φi − 1) is the hallmark of the Doppler effect, but in (14.17), Φiḃ can be
replaced by ḃ and this equation becomes

wi = ai1ẋ+ ai2ẏ + ai3ż − ḃ . (14.18)

To begin with we assume that there are four satellites, the minimum for
determining velocities. We then obtain the matrix equation⎛

⎜⎜⎝
w1

w2

w3

w4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
a11 a12 a13 1
a21 a22 a23 1
a31 a32 a33 1
a41 a42 a43 1

⎞
⎟⎟⎠×

⎛
⎜⎜⎝

ẋ
ẏ
ż

−ḃ

⎞
⎟⎟⎠ . (14.19)

The 4 × 4 matrix is the same as the matrix A in (14.7). Indeed, (14.19)
is obtained by differentiating (14.7) with respect to time while fixing the
direction cosines.

In view of a more compact notation, we define:

• the vector W whose components are the pseudo-velocities wi,
• the vector Ẋ whose components are the unknowns ẋ, ẏ, ż, and ḃ, and which

can be considered to correspond to d(δX)/dt,
• the 4× 4 matrix A.

Then we may write

W = AẊ . (14.20)

Since the inverse of A has already been found in the position determination,
we obtain

Ẋ = A−1W . (14.21)

With more than four satellites, as for the position calculation, we use TA or
the Kalman filter method.

1The velocity of a Navstar/GPS satellite is 3.9 km/s in a Galilean frame. In a terrestrial
frame, the relative velocity ‖V rel

i ‖ is of this order, whence we find V rel
i /c ∼ 10−5.
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14.1.4 Perturbation of Signal and Measurement

Effects Due to the Ionosphere

The ionosphere is a region of the atmosphere located roughly between
altitudes 60 and 800km. Gases there are highly ionised under the effects of
solar radiation. The pressure varies between 2 and 10−6Pa depending on the
altitude. The ionosphere is a dispersive medium, meaning that the speed of
propagation of an electromagnetic wave will depend on its frequency. To mea-
sure the perturbation on the signal due to the ionosphere, Si transmits a dual
frequency wave, i.e., at two different frequencies f ′ and f ′′. The time differ-
ence for the two frequencies to arrive can be used to calculate the ionospheric
contribution δ1,it to the signal delay.2

Effects Due to the Troposphere

The troposphere is the region of the atmosphere directly enveloping the
Earth’s surface, in which weather phenomena take place, e.g., wind, cloud,
rain, and so on. It contains about 80% of the mass of the atmosphere and its
upper bound is the tropopause, at which the temperature variation reverses.
The altitude of the tropopause is about 8 km at the poles and 16 km at the
equator, and varies with the season.

This is a non-dispersive medium. The signal is delayed by crossing the
troposphere, and of course the distance travelled depends on the viewing con-

2Let ρ′i and ρ′′i be the pseudo-ranges measured for the frequencies f ′ and f ′′, respectively,
and let ri be the geometric distance between the satellite Si and the receiver P :

ρ′i = ri + δr′i +Δri , ρ′′i = ri + δr′′i +Δri ,

where Δri is the sum of the delays due to causes other than the ionosphere and where
δr′i and δr′′i are the delays due to crossing the ionosphere, which depend on the frequency.
(These are generally between 1 and 40m, depending on the time, the day, the location, and
the viewing configurations.) It can be shown that these discrepancies δri are proportional
to f−2. Therefore,

δr′i =
Ai

f ′2 , δr′′i =
Ai

f ′′2 ,

whence

δr′′i =

(
f ′

f ′′

)2

δr′i .

By measuring ρ′i and ρ′′i , and using the known ratio of the frequencies, δr′i can be determined
from

ρ′i − ρ′′i = δr′i − δr′′i = δr′i

[
1−
(

f ′

f ′′

)2
]

, δr′i =
ρ′i − ρ′′i

1− (f ′/f ′′)2
,

so that, with our notation, δr′i = cδ1,it.
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figuration, i.e., whether the satellite is low or high above the horizon. The time
difference that we have denoted by δ2,it is divided into two parts, one for the
dry atmosphere and the other for water vapour. The contribution of the dry
atmosphere can be quite well modelled, but the wet atmosphere is another
matter, proving very complex to evaluate, since it depends on local meteoro-
logical phenomena. We shall see later that it is the differential GPS that best
deals with this source of error.

Relativistic Effects

In an appendix at the end of the chapter (see Sect. 14.11), we explain
how relativistic effects can be taken into account. Even though the theoretical
concepts may be complex, they are perfectly understood and the inherent
corrections can be made with great accuracy. There is almost no error in the
term δ3,it.

14.1.5 Geometric Considerations and Measurement
Accuracy

The fundamental situations involved in satellite positioning can be under-
stood from elementary considerations of geometry, the subject of this section.

Clock Correction

As we saw earlier, the user’s clock is of average quality. This leads to what
we called clock bias in (14.4), which is fully determined by the system of
equations in (14.7) or (14.10). Here we discuss a simple and clever illustration
of how clock bias can be reduced. We consider a simplified situation where the
receiver P is on a spherical Earth. Three satellites Si are visible to P . Each
sphere of center Si intersects the Earth’s sphere in a circle.

Figure 14.1 shows three possible situations regarding clock synchronisation:

• If the receiver clock is perfectly synchronised with the satellite clock, the
three circles intersect exactly at P .

• If the receiver clock is slow, the receiver underestimates the distances ri
and the circles form a concave triangle containing P .

• If the receiver clock is fast, the receiver overestimates the distances ri and
the circles form a convex triangle containing P .

Given that the three circles should meet at P , the clock discrepancy is cor-
rected in such a way as to minimise the error triangle.

Viewing Geometry and Accuracy

The basic principle of GPS exploits the intersection of spheres. A simplified
geometrical study can give an insight into the accuracy of horizontal and
vertical positioning.

We consider two spheres centered on S1 and S2, represented here by two
circles whose intersection determines P (see Fig. 14.2). Each circle is shown
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Fig. 14.1 :Localisation of the receiver P by intersecting circles in various cases. Up-

per: Clock at P is slow relative to the satellite clock. Center: Clocks are perfectly

synchronised. Lower: Clock at P is fast relative to satellite clock.
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S1

S1

S2

S2

Fig. 14.2 :Determining the point P

by the intersection of two circles.

Left: With a high level of accuracy.

Right: With a low level of accuracy.

with its margin of error. In the situation on the left, where the intersection
is obtained by two arcs that are almost orthogonal, the margin of error is
quite small. However, in the situation on the right, where the intersection is
obtained by two arcs that are almost parallel, the margin of error is rather
large.

When we determine a point on the Earth’s surface, in the local horizontal
plane, we generally find ourselves in the first of these two situations (Fig. 14.2
left), where S1, S2, and the spheres are represented projected onto the local
horizontal plane. But to determine the altitude of a point, we are generally
in the second situation (Fig. 14.2 right), where the elements of the figure are
projected in a local vertical plane. For this reason, altitude determinations
tend to be less accurate than horizontal position determinations.

14.1.6 Position on Earth and Geographic Coordinates

Solving (14.10) yields the position of the point P in Cartesian coordinates.
To transform to geographic coordinates, i.e., longitude, latitude, and altitude,
the main difficulty comes from the fact that the Earth is a geoid. Here we
consider the case where the Earth is treated as an ellipsoid and calculate the
geodetic coordinates.

The point P is at altitude h above the reference ellipsoid. The geodetic
latitude of P is given by the direction PH (angle of PH with the equatorial
plane), where H is the foot of the normal to the ellipsoid at P . With the
notation in Fig. 14.3, the geodetic height (or geodetic altitude) of P is h = HP .
It is obtained from the intersection of the ellipsoid with the grand normal
N = PI, rather than with PO.
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Fig. 14.3 :Geodetic altitude (or height) h = HP of the point P above the reference

ellipsoid. The length IH is the great normal N , z′z the polar axis, and xOy the

equatorial plane.

The method for obtaining h and the latitude ϕ, iterative or otherwise, was
discussed in detail in Chap. 2 (see Fig. 2.5 and Table 2.4). Since the longitude
can be obtained directly from (2.30), the point P is thereafter determined by
its local geodetic coordinates (λ, ϕ, h).

14.1.7 Differential GPS (DGPS)

Differential GPS (DGPS) makes use of base stations. Figure 14.4 illustrates
the main idea. Consider a base station at point A whose geographic position
X0 is known to great accuracy by conventional geodesy. A GPS receiver is
placed atA, whence the position of its antenna is known to within a millimeter.
The position of A is then measured by GPS and the result denoted by XGPS.
The difference of position is then

δ0X = XGPS −X0 . (14.22)
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Fig. 14.4 :Differential GPS.

The base station A and the

receiver P receive the GPS

signal of the satellites Si.

The position correction is

sent from A to P . In the case

of the so-called augmentation

systems, it is sent to the

geostationary satellite G.

It will not generally be zero, because there is a certain error in the GPS
position estimate. From what was said above, the only cause of this error
δ0X will be inaccurate modelling of the signal as it crosses the troposphere.3

Weather conditions are considered to be roughly the same over a radius of
about a 100 km. The base station A sends the correction δ0X by radio to the
receivers P which take it into account to refine their position. The maximal
distance AP is of the order of a few hundred kilometers. This method, called
DGPS, can significantly improve accuracy.

When DGPS had just begun, the base stations were installed in coastal
lighthouses. Later they were set up in airports and generalised to other sites.4

A further development of DGPS are the so-called augmentation systems: cor-
rections are transmitted to a geostationary satellite which retransmits them
over wide areas. We shall discuss these WAAS systems when we have described
the various GPS satellite constellations.

3When the “civilian” GPS signal was downgraded to deliberately limit positioning ac-
curacy, DGPS provided a way to get around this jamming. Accuracy could be improved
from 100 to 22m.

4In the USA, the NDGPS (Nationwide DGPS) uses a 100 or so base stations and covers
almost the whole territory. The following system HA-NDGPS (High Accuracy NDGPS)
should provide submeter positioning accuracy, i.e., of the order of a few decimeters. The
system known as RTK (Real Time Kinetic) requires a costly base station to be set up close
to the operating center, but provides accuracies of the order of 10 cm.
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14.2 Navstar/GPS

The system known as Navigation Satellite Time and Ranging/Global
Positioning System (Navstar/GPS) was set up by the US government under
the direction of the Department of Defense (DoD). The original idea was to re-
build a global positioning system on the basis of new principles, going beyond
the system provided by Transit, which had reached its limits.5 Positioning by
Doppler effect was abandoned in favour of triangulation, as exposed above.
Such a radical improvement was made possible by the enormous progress in
construction of ultra-precise clocks.

14.2.1 Setting up the System

Main Dates

The first studies date back to the 1960s, and the system was finally devel-
oped in the 1970s with launch of the first experimental satellites6 when the
DoD took over the US Navy’s Timation system.

From 1978, the GPS system7 gradually began to take shape with the
satellites of Block I, which were research and development satellites. The
Block II satellites were functional and operational on the characteristic orbit
of the Navstar/GPS satellites from 1989.

5Navstar is run by the US Air Force, while Transit was managed by the US Navy.
6The two experimental Time Navigation (Timation) satellites were part of a trial by

the US Navy to find an alternative to Transit. These satellites followed a very specific
orbit, with h = 900 km, i = 70.0◦: Timation-1, launched on 31 May 1967, Timation-2,
on 30 September 1969. The two Navstar Technology Satellites (NTS) of the US Air Force
followed MEO orbits which prefigured the Navstar orbit: NTS-1 (or Timation-3, OPS/7518,
P73-3), launched on 14 July 1974, h = 13,610 km, i = 125.2◦, NTS-2 (P76-4), launched on
23 June 1977 on a neighbouring orbit to the one adopted for the first GPS missions, with
h = 20,186 km, i = 63.9◦. NTS-2 is discussed further in the appendix of Sect. 14.11.

7List of Navstar/GPS satellites:

• The 11 satellites of Block I, on the circular orbit h = 20,020 km, i = 63.0◦, from Navstar-
1 (GPS-1, OPS/5111), launched on 22 February 1978, to Navstar-11 (GPS-11, USA-10)
on 9 October 1985.

• The 28 satellites of Block II and II-A, h=20,020 km, i=55.0◦, from Navstar-2-1 (GPS-
14, USA-35), launched on 14 February 1989, to Navstar-2A-19 (GPS-38, USA-135) on 6
November 1997.

• The 21 satellites of Block II-R and II-RM, on the same orbit, from Navstar-2R-2 (GPS-
43, USA-132), launched on 23 July 1997, to Navstar-2R-21 (GPS-50, USA-206, Navstar-
2RM-8) on 17 August 2009.

• The 12 satellites of Block II-F, from Navstar-2F-1 (GPS-62, USA-213), launched on 28
May 2010, to Navstar-2F-12, for after 2015.

• The eight satellites of Block III-A, still on the same orbit, from Navstar-3A-1 to Navstar-
3A-8, from 2014.

Block II: A (advanced), R (replenishment), RM (R modernized), F (follow-on).
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On 17 July 1995, the constellation of 24 satellites (only Block II) was com-
plete and the system declared operational (full operational capability FOC).
It had been 21 years since the launch of NTS-1 and it had taken more than
30 years of research and ingenuity to go from the idea of a global positioning
system to a fully operational satellite implementation.

Another important date was 2 May 2000. It was on this day that US Pres-
ident Bill Clinton decided to suppress the deliberate strategic downgrading of
the signal. Standard accuracy went from 100 to 22m.

Position determinations by GPS are continually being refined thanks to
technological improvements, such as more powerful signals and better cor-
rections for atmospheric perturbations, but also due to progress in signal
processing.

Segments of the System

The positioning system has three segments:

• the space segment, comprising the satellite constellation,
• the control segment, consisting of control and monitor stations,
• the user segment, representing all military and civilian users.

14.2.2 Space Segment

The Navstar/GPS constellation is made up of 24 satellites, in 6 planes of
4 satellites each. Any point on the Earth is able to view 4 to 8 satellites at
the same time, and up to 11 in some cases, with a minimal viewing elevation
of 15◦.

Each satellite in Block II carries atomic clocks8 (relative accuracy 10−13 to
10−14) and of course computers, transmitter–receivers, and all the necessary
equipment. The nominal lifetime of the satellite is 10 years.

With a fundamental frequency f0 equal to

f0 = 10.23MHz , (14.23)

the emitter generates two waves in the L band, denoted by L1 and L2, with
frequencies:

L1 = 154f0 = 1,575.42MHz (wavelength 19.03 cm) ,

L2 = 120f0 = 1,227.60MHz (wavelength 24.42 cm) .

8The satellites of Block II and IIA are equipped with two cesium and two rubidium
clocks, and the satellites of Block IIR with three rubidium clocks.
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For the satellites in Block IIF and following, a third frequency is emitted:

L5 = 115f0 = 1,176.45MHz (wavelength 25.48 cm) .

The transmitted message, in addition to the time, provides the ephemeris of
the satellite, i.e., the Keplerian elements of the satellite and their derivatives
as a function of time, together with auxiliary data.

Several pseudo-random codes known as PRN (pseudo-random noise) are
transmitted. The two main codes are the coarse acquisition (C/A) code and
the precision (P) code. The C/A code is accessible to the general public,
while the P code was originally reserved for authorised, i.e., military users,
but became available to all as of May 2000.

The Navstar/GPS satellites carry an order number n in the form GPS-n.
However, the satellite is identified in the constellation by the PRN numbering
(from 1 to 32 for Block II).

Orbit

All the Navstar/GPS (Block II) satellites follow a near-circular MEO orbit,
inclined at 55.0◦ (see Fig. 14.5). The satellites are recurrent with 1-day cycle
and make exactly two revolutions in each sidereal day (see Table 14.1 and
14.2, and Fig. 14.7). The altitude is 20,183km. We also have

a = 26,560.906 km , η = 4.16437 , n = 1.4585× 10−4 rad s−1 .

For this kind of orbit the ratio of the perturbation due to J2 and the central
acceleration is very small, because the altitude is high (see Fig. 6.1). In fact it
is less than 10−4 (to be compared with 10−3 for an LEO orbit). The precession
rates are, in degrees per day:

• Nodal precession rate Ω̇ = −0.039.
• Apsidal precession rate ω̇ = +0.022, since i is close to iC.
• Variation of the mean motion Δn = −4.4 × 10−4, since i is very close to

54.7◦, the inclination for which Δn is zero [see (6.75)].

The cycle relative to the Sun is CS = −351.4 days for this orbit. Recall that,
if Ω̇ is zero, the cycle is equal to 1 year (CS = −365.2 days). Twice a year, the
satellite suffers an eclipse (see Chap. 10 and in particular Fig. 10.26 upper).

Constellation

The six planes of satellites, denoted by capital letters A, B, C, D, E, and
F , are regularly spaced in a geocentric pseudo-Galilean frame, separated by
60◦ of longitude to within a few degrees (see Fig. 14.6 lower and Example 14.1).
In any given plane, the four satellites are not regularly spaced (see Fig. 14.8).

Example 14.1 Ground track of the orbits of two Navstar/GPS satellites fol-
lowing one another in the same orbital plane.
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Navstar/GPS [PRN 05]
Orbit (Celestial ref.) [Galilean]

2011 02 01 14:25:42 UTC  >>>   1440.0 min =   1.00 day

Altitude =20181.5 km

e = 0.002246

a =26559.604 km

Inclination  =  54.74 °

Period =   717.92 min    * rev/day = 2.01   * Week =  1621

Asc. Node:    -93.96 ° [08:10 LMT]

[NORAD] Revolution:   1075

[NORAD] 2011 02 01 14:25:42 UTC

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 25.0 ° N;  124.0 ° W

Aspect:  Oblique

[ -90.0/ +65.0/-146.0] [ +15] EGM2008

Navstar/GPS [PRN 05]
Orbit - ref.: Earth

Recurrence = [ 2; +0;  1]  2

2011 02 01 14:25:42 UTC  >>>   1440.0 min =   1.00 day

Altitude =20181.5 km

e = 0.002246

a =26559.604 km

Inclination  =  54.74 °

Period =   717.92 min    * rev/day = 2.01   * Week =  1621

Equat. orbital shift  =20036.6 km  ( 180.0 °)

Asc. Node:    -93.96 ° [08:10 LMT]

[NORAD] Revolution:   1075

[NORAD] 2011 02 01 14:25:42 UTC

MC LMD

MC LMD

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 25.0 ° N;   10.0 °E

Aspect:  Oblique

{4.2} [ -90.0/ +65.0/ +80.0] [ +15] EGM2008

Fig. 14.5 :Orbit of a Navstar/GPS satellite. Navstar-2RM-8 [PRN 05] (Navstar-2R-

21, GPS-50, USA-206), on 1 February 2011. Upper: Pseudo-Galilean frame fixed

relative to the stars. Lower: Terrestrial frame.
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MEO satellite a h i Td Phase triple NTo

Navstar 26,560.906 20,183 55.0 717.98 [2, 0, 1] 2
Glonass 25,507.602 19,130 64.8 675.73 [2, +1, 8] 17
Galileo 29,600.268 23,222 56.0 844.69 [2, −3, 10] 17
BeiDou NS 27,905.750 21,528 56.3 773.20 [2, −1, 7] 13

Navstar (I) 26,559.969 20,182 63.0 717.97 [2, 0, 1] 2
Galileo [0] 29,993.691 23,616 56.0 861.58 [2, −1, 3] 5

Table 14.1 :Orbit and recurrence characteristics for MEO navigation satellites. Dis-

tances a and h in km, angle i in degrees, draconitic period Td in minutes.

� We consider the first two satellites in plane A of the GPS constellation, i.e.,
Navstar-2A-21 [PRN 09] in Slot (1) and Navstar-2RM-2 [PRN 31] in Slot (2).
Their NORAD elements are:

GPS BIIA-21 [PRN 09]

1 22700U 93042A 11032.82501832 -.00000085 00000-0 10000-3 0 1300

2 22700 56.3096 12.7579 0167604 89.2355 272.6858 2.00562849128903

GPS BIIRM-2 [PRN 31]

1 29486U 06042A 11030.97501051 -.00000076 00000-0 10000-3 0 1422

2 29486 56.0928 14.5537 0080766 301.2847 57.9187 2.00575401 31902

The elements 12.7579 and 14.5537, giving Ω (in the pseudo-Galilean frame
with origin at the vernal equinox) for [PRN 09] and [PRN 31], respectively,
show that these two satellites are almost in the same orbital plane (with a
difference of only 1.8◦). Note that the GPS controllers do not attempt to
maintain the satellites strictly in one of the six specified orbital planes. What
matters is that the position of each satellite should be determined to very
high accuracy.

Calculating the ascending nodes of each satellite, we find:
[PRN 09] UT time: 2011 02 01 19:48:01 , λAN = 55.9◦W ,
[PRN 31] UT time: 2011 02 01 23:20:06 , λAN = 106.3◦W .

The satellite [PRN 31] follows about 3 h 30min behind [PRN 09] and this
shifts the ground track by about 50◦ westward (see Fig. 14.6 upper). �

14.2.3 Control Segment

The nerve center of GPS is near Colorado Springs, CO, USA, in the
Schriever Air Force Base. This is the master control station (MCS). The con-
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Fig. 14.6 :Upper: Ground track of the satellite Navstar-2A-21 [PRN 09] (bold red

curve) superposed on the ground track of Navstar-2RM-2 [PRN 31] (normal blue

curve), over 1 day, 1 February 2011. Lower: Position of the ascending node of each

Navstar/GPS satellite on 1 February 2011 in a pseudo-Galilean frame fixed relative

to the stars and centered on the Earth, with longitude origin at the vernal equinox.

The 32 satellites of Block II are identified by the PRN number, from 01 to 32. Planes

are indicated by the letters A to F and the position, or slot, by numbers from (1) to

(6). The two satellites whose ground tracks are shown in the upper part of the figure

are in positions 1 and 2 of plane A.
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Fig. 14.7 :Recurrence diagram for the four constellations of navigation satellites.

Possible recurrence cycles are denoted by DTo . Boxed values correspond to existing

satellites appearing in Table 14.1. For example, for Glonass, we have the recurrence

triple [2, +1, 8], or νo = 2 (integer closest to κ, ordinate), DTo = +1 (indicated

on the diagram), and CTo = 8 (8 day cycle, abscissa). The orbits of the four types

of satellite have slightly different inclinations so the diagram has been drawn for an

average inclination.

trol segment comprises five ground-based monitor stations9: Colorado Springs
(MCS), Hawaii (HAW), and three stations located on the tiny islands of Ascen-

9Colorado Springs has a monitor station as well as the master station. The other four
monitor stations are on islands, distributed more or less equidistantly along the equator.
Three of these stations, the ground antennas, are not on US territory and the American
government has negotiated unassailable agreements to maintain their control of these highly
strategic installations:

• Ascension, a small volcanic island in the middle of the Atlantic, is a British Overseas
Territory (Saint Helena, Ascension, Tristan da Cunha). The USA set up an airport and
a large military base.

• Diego Garcia, an atoll in the Chagos Archipelago, is another British territory, belonging
to the British Indian Ocean Territory (BIOT). The US army leased the island in 1966
on an extendible 50 year lease, the condition being that the island be cleared of all its
inhabitants at the outset. The British government duly deported 1,600 Chagossians to
Mauritius and the Seychelles.



14.2 Navstar/GPS 673

-120

-180 -180 EQ

-120 -120

-60 -60

EQ

60

0

60

0

120 120

180 180 EQ

-180

-120

-60

0

60

120

180

Longitude of Ascending Node
(ECI Frame)

A
rg

um
en

t o
f L

at
itu

de

Navstar/GPS h = 20183 km
i = 55.0°

D E F A B C

-180 -180 EQ

-120 -120

-60 -60

EQ

60

0

60

0

120 120

180 180 EQ

-180
-60

60
180

Longitude of Ascending Node
(ECI Frame)

A
rg

um
en

t o
f L

at
itu

de

Glonass h = 19130 km
i = 64.8°

Satellite "slot"

Plane I Plane II Plane III
5

4

3

2

1

8

7

6

13

12

11

10

9

16

15

14

21

20

19

18

17

24

23

22

-180 -180 EQ

-120 -120

-60 -60

EQ

60

0

60

0

120 120

180 180 EQ

-180 -60

0

60

120

180

Longitude of Ascending Node
(ECI Frame)

A
rg

um
en

t o
f L

at
itu

de

Galileo h = 23222 km
i = 56.0°

-180 -180 EQ

-120 -120

-60 -60

00 EQ

60 60

120 120

180 180 EQ

-180

-120

-60

0

60

120

180

Longitude of Ascending Node
(ECI Frame)

A
rg

um
en

t o
f L

at
itu

de

BeiDou-M h = 21528 km
i = 56.3 

Fig. 14.8 :Satellite constellation showing orbital planes. In each plane, the satellite

has been indicated with the angle of its position on orbit (circular arc from the

ascending node to the satellite). EQ equator. For Glonass, the official number of

each satellite, from 1 to 24, has been indicated, together with the numbers of the

orbital planes.

sion (ASC), Diego Garcia (DIG), and Kwajalein (KWJ), outside US territory
(see Fig. 14.9). Each station can monitor up to 11 satellites at the same time.
These stations receive the GPS signals and transmit the data to the MCS.

• Kwajalein is an atoll which, like Bikini with its explosive reputation, belongs to the
Republic of the Marshall Islands (RMI). This tiny country, formally independent since
1986, has a “free alliance” with the USA, which guarantees security and defence.

• Hawaii is the only station on American territory, since this group of islands became the
fiftieth state of the United States in 1959.
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System Navstar/GPS Glonass Galileo BeiDou NS

N 6 3 3 3
M 4 8 9 8
Separation Irregular 360/8 = 45◦ 360/9 = 40◦ 360/8 = 45◦

R 6 3 3 3
Total 30 27 30 27
Td [sidereal day] 1/2 8/17 10/17 7/13
Td [decimal hour] 11.9663 11.2622 14.0781 12.8867
Td [h m s] 11 57 59 11 15 44 14 04 41 12 53 12
|CS| [d] 351 353 356 354

Geodetic system WGS84 PZ-90.02 GTRF CGS-2000
a [m] 6,378,137 6,378,136 6,378,137 6,378,137
1/f = 298.257 . . . . . . 223,563 . . . 839,303 . . . 222,101 . . . 222,101

Table 14.2 :The four satellite navigation constellations. N number of planes. M

number of satellites per plane. The separation between satellites in the same plane is

given in degrees. R number of backup satellites. The total refers to the total number

of satellites, i.e., N × M + R. The draconitic period Td is given in sidereal days,

decimal hours, and hours, minutes, and seconds [h m s]. |CS| is the cycle relative to

the Sun. a is the semi-major axis of the reference Earth ellipsoid in meters and 1/f

is the reciprocal flattening of the ellipsoid .

At the master control station, the satellite ephemerides and clock param-
eters are calculated and sent to the three ground antennas, transmission sta-
tions in Ascension, Diego Garcia, and Kwajalein, which send the data on to
the Navstar satellites.

14.2.4 User Segment

This term covers the full range of users. Receivers can be highly sophis-
ticated, but in general they are cheap devices available to the general public
at ever decreasing prices. GPS can be used dynamically (while in motion) or
statically (for a topographic network).

In geophysics, two GPS receiving stations are placed at two points on
the Earth a few thousand kilometers apart. With professional equipment,
reception continues for months, and high performance statistical methods of
signal processing allow one to measure movements of the tectonic plates of the
order of just a few millimeters a year (see the appendix in Sect. 14.10 at the
end of this chapter). In this case, a precise ephemeris product is used: satellite
orbits are given to an accuracy of 5 cm and 0.1 ns. This data is supplied with
a 2 week delay.
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Type Restriction Measurement Duration Accuracy

GPS: instantaneous None ρi Second 10–100m
GPS: averaged None 〈ρi〉 Hour 2–20m

DGPS: instantaneous Base < 500 km ρi Second 1–5m
DGPS: averaged + PO None 〈ρi〉, phase Day 1mm to 1 cm

Table 14.3 :Positioning accuracy for different methods. Instantaneous pseudo-range

measurements are denoted by ρi, and averages by 〈ρi〉. PO precise orbits.

Accuracy

Table 14.3 summarises the accuracies that can be achieved for various uses
of the GPS system.

14.2.5 Local View

The sky plots discussed in Chap. 13 inform as to the satellite overpasses
at a given location. In the next example, we consider the overpasses of the
Navstar/GPS satellites for Paris at a given time.

Example 14.2 Local view of all Navstar/GPS satellites visible above 10 ◦ from
Paris on 1 February 2011, at noon UT (12:00 UT).

� Figure 14.10 (upper) shows all GPS satellites visible at 12:00 UT, together
with their ground tracks over 2 h. There are eight satellites visible: two of
them, PRN 14 and 19, disappear very quickly, but six of them, PRN 11, 17,
20, 23, 24, and 32, remain visible for at least the two following hours. The
little table included in the figure indicates the presence of the satellites every
half-hour.

Figure 14.10 (lower) shows the circle of visibility h = 10◦ for Paris (which
is boat-shaped with the Mercator projection used here), together with the
orbital ground track of the satellite Navstar-2R-4 [PRN 20] over 2 h. This
satellite passes roughly overhead for this location. We have also superposed
the ground tracks of Navstar-2RM-1 [PRN 17] to the west and Navstar-2RM-
11 [PRN 19] at the southernmost point of visibility (leaving just after 12:00). �

14.2.6 Navstar/GPS and Other Systems

It would be misleading to present the four systems—Navstar/GPS, Glonass,
Galileo, BeiDou NS—on an equal footing. We should be quite clear that the
GPS system was conceived, developed, realised, and improved at the initiative
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and under the control of the US Department of Defense. The other systems,
either planned or under development merely reproduce the same idea.

A complete positioning system involving dozens of satellites represents a
huge investment and requires a technologically advanced industrial base. After
the USA, Russia set up its system Glonass. Europe and China, with Galileo
and Compass, respectively, will have their own independent systems, even
though several of these four systems will be perfectly compatible. We shall
see that other systems under way or planned, such as Japan’s QZSS, will sup-
plement the existing GPS system locally and cannot therefore be considered
as global systems in their own right. China’s Beidou-1 is a somewhat special
case, to which we shall return later on.

This profusion of systems, most still under development, has led to a prolif-
eration of terminology. Rather than GPS, the generic term Global Navigation
Satellite System (GNSS) is now preferred to refer to these positioning sys-
tems. However, as long as the American Navstar/GPS system is the only one
to be widely used, we shall continue to speak of GPS rather than GNSS in
this context.

14.3 Glonass

Glonass, also written GLONASS or GloNaSS, is a Russian acronym
for Global’naya Navigatsionnaya Sputnikovaya Sistema, meaning “planetary
system—global—for satellite-assisted navigation”. It was first developed by
the USSR from 1976, for military purposes. The first Uragan satellites were
launched in 1982 and the system was declared operational on 24 September
1993.

After the collapse of the Soviet Union, the positioning system was not
initially Russia’s main concern, and Glonass no longer functioned correctly
due to a lack of satellites, with only six to eight satellites still working in
the constellation. But from 2003, the Russian government made Glonass a
priority and several new generation satellites were placed in orbit, making it
once again operational.

14.3.1 The Three Segments

The space segment10 is a constellation of 24 satellites (3 planes of 8 reg-
ularly spaced satellites). Each satellite is equipped with cesium clocks (sta-
bility 10−13) and emits a signal with two frequencies which differ slightly

10List of Glonass satellites:

• The first 50 experimental then first generation satellites, from Uragan-1 (Kosmos-1413),
launched on 12 October 1982, to Uragan-50 (Kosmos-2206), on 30 July 1992.

• The 37 satellites of the Glonass series, from Glonass-773 (Uragan-51, Kosmos-2234),
launched on 17 February 1993, to Glonass-798 (Uragan-87, Kosmos-2417), on 25 De-
cember 2005.
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from one satellite to the next, centered around G1 = 1,609MHz and G2 =
1,252MHz. The new generation Glonass-K satellites emit a third frequency,
G3 = 1,205MHz.

The Glonass orbit is rather similar to that of Navstar/GPS (see Ta-
ble 14.1). It is a bit lower, at h = 19,130km, but with the higher inclination
i = 64.8◦ giving better coverage of high latitudes. The recurrence is 17 revo-
lutions in 8 days (compared with 16 revolutions in 8 days for Navstar), giving
a period of 11 h 16min (see Fig. 14.11).

The precession rates are very small, for the same reasons as for Navstar.
In degrees per day, they are

Ω̇ = −0.034 , ω̇ = −0.004 , Δn = −0.018 .

The geodetic reference system is the Russian one11 PZ-90.02 (Parametri
Zemli, also written PE-90, Parameter of Earth).

The control segment comprises around ten stations. The master station,
Krasnoznamensk, is in the western suburbs of Moscow. At the present time,
there are about ten monitor states located throughout the territory of ex-
USSR, but mostly Russia. However, the Russian government is hoping to set
up similar stations in Cuba, South America, and Australia. The accuracies
obtained by Glonass alone are less good than those obtained by Navstar,
but the Russian authorities have promised to improve the system. The two
systems are compatible.

14.3.2 Local View and Visibility Table

We select an arbitrary point P on the Earth and specify the visibility
conditions for the satellites. A viewing elevation of at least 10◦ or 15◦ is
generally imposed. For a given day, we record in a table all the time windows
during which P is seen by a given satellite. The calculation is repeated for
each satellite in the constellation to obtain the visibility table.

Example 14.3 Visibility table for all satellites in the Glonass constellation as
viewed from Moscow on 1 March 2013. Likewise when viewing from the North
Pole and the Equator.

• The satellites of the Glonass-M series, from Glonass-711 (Uragan-M1, Kosmos-2382),
launched on 1 December 2001, then Glonass-736 to -738 (Uragan-M27 to -M29, Kosmos-
2644 to -2466), launched on 2 September 2010.

• The satellites of the new Glonass-K series, beginning with Glonass-K1-11 (Uragan-K1-1,
Kosmos-2471).

11The Russian word zemli means “the Earth”. It comes from the Indo-European root
*ghyōm, *ghemō(n), of the same meaning, which also gives the Latin word humus, i, mean-
ing “earth” or “soil”. The Latin homō, hominis comes from the same root. For example,
the French word “homme” literally means “born of the earth”.
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� For Moscow (56◦N and 38◦E), the visibility table is established for the
whole Glonass constellation on 1 March 2013, from 0 to 24h UT (see Fig. 14.12
upper). The minimum viewing elevation is fixed at 15◦.

The satellites are numbered from 1 to 24 (see Fig 14.8). Since they are
regularly distributed in each plane, the overpasses are also perfectly regular,
with a time lapse of about 2 h from one satellite to the next. In the case shown
here, the point P is continually visible to five to seven satellites. Figure 14.12
(lower) shows the ground track of a Glonass satellite over a recurrence cycle,
with visibility circle centered on the point P .

Visibility tables are also established for h > 15◦ at a point at the North
Pole (see Fig. 14.13 upper) and at a point on the equator (see Fig. 14.13
lower). �

14.4 Galileo

14.4.1 A European Project

In contrast to the American, Russian, and Chinese systems, the European
navigation system remains entirely civilian. Galileo was finally chosen in 1999,
after much hesitation. Germany and Italy were much in favour, while the
United Kingdom considered it an unnecessary expense, since the American
GPS was already doing the same job, and it was free! At the time it was
hoped that the system would be up and running by 2008.

The project is financed by the European Union (EU) and the European
Space Agency (ESA), itself financed by the member countries of the EU. The
programme soon got behind schedule, in particular thanks to disagreements
between Germany and Italy. Without going into the details, which would be
more appropriate in a book about political economy than a work on orbitog-
raphy, let us say that the only clear consensus was for the name: Galileo. It
stands as a fine tribute to a visionary and courageous thinker.

After launching two test satellites,12 the Galileo system is gradually coming
into being, with four IOV (in-orbit validation) satellites13 in 2013, to begin
the constellation.

12Launch dates: GIOVE-A on 28 December 2005 and GIOVE-B on 27 April 2008. These
satellites, placed on the Galileo orbit, serve to test the clocks and emitted signal, as well
as occupying the frequency bands from an administrative point of view in the eyes of the
relevant international organisations. Originally named GSTB-v2A and -v2B (Galileo System
Test Bed Version 2), they were renamed GIOVE (Galileo In-Orbit Validation Element).
Jupiter is Giove in Italian, and this is therefore an affectionate allusion to Galileo, who
discovered the four largest moons of this planet.

13Launch dates: Galileo-IOV-1 and -2 on 21 October 2011, Galileo-IOV-3 and -4 on 12
October 2012.
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Fig. 14.8. Lower: Ground track of a Glonass satellite over 8 days, with visibility

circle (h > 15◦) centered on Moscow.
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Fig. 14.13 :Visibility tables (h > 15◦) for the 24 Glonass satellites on 1 March 2013.

Upper: For a point at the North Pole. Lower: For a point on the equator (longitude

0◦). For the satellite numbers, from 1 to 24, see Fig. 14.8.
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14.4.2 The Three Segments

The space segment comprises a constellation of 27 satellites (3 planes of 9
regularly spaced). Each satellite is equipped with a rubidium clock (drift 5×
10−13 s over 100 s), backed up by a hydrogen maser (drift 10−14 s over 3 h). The
signal comprises three frequencies: E1 = 1,575.420MHz, E6 = 1,278.750MHz,
and E5 = 1,191.795MHz.

The Galileo orbit14 is 3,000km above the Navstar orbit, at h = 23,222km,
with almost the same inclination, at i = 56◦ (see Table 14.1). The recurrence
is 17 revolutions in 10 days (20 revolutions in 10 days for Navstar), giving a
period of 14 h 05min (see Fig. 14.14).

The precession rates are very low. In degrees per day,

Ω̇ = −0.026 , ω̇ = +0.013 , Δn = −0.001 .

The geodetic reference system is the Galileo Terrestrial Reference Frame
(GTRF), very close to WGS84, since the two systems are adjusted to the
International TRF (ITRF).

The control segment comprises many stations around the globe, and this is
where the French presence in La Réunion, Nouméa (New Caledonia), Papeete
(French Polynesia), and Kourou (French Guiana) has proved extremely useful.
The two master stations are in Oberpfaffenhofen (in Bavaria, 20 km west of
Munich) and Fucino (in the Abruzzi region of Italy, 130 km east of Rome).

Regarding the user segment, two different regimes are planned. One is free,
like the GPS today, and the other paying. The accuracy promised for the free
service is quite outstanding, and one wonders what advantage there will be in
the paying service!

14.5 BeiDou NS

Like the three other navigation systems already discussed, the Chinese sys-
tem15 BeiDou NS turns around a constellation of MEO satellites. They were

14Originally, a recurrence cycle of five revolutions in 3 days was adopted. This corresponds
to the orbit denoted by Galileo [0] in Table 14.1. But this orbit was abandoned because the
5:3 recurrence creates resonance effects with the Earth’s gravitational field. In addition, the
effects of the Sun and Moon create major instabilities in the Galileo constellation.

15Bei Dou is the Chinese name for the constellation Ursa Major, the Great Bear. In fact,
in Chinese astronomy, there are 28 constellations, and they do not correspond exactly to
the constellations of Western astronomy, which features many more than this. Bei means
“north” and Dou is an instrument for measuring grain that looks like a large scoop, just as
this constellation is sometimes referred to as the Saucepan or the Big Dipper, owing to its
shape. Note that the Beidou satellites were also called Big Dipper at the beginning. The
word “compass” comes from the Old French (fourteenth century) compas, from the verb
compasser, meaning “to measure out in strides”. This in turn derives from the Latin verb
composed of cum, “with”, and passus, “stride”. The English noun took its present meaning
in the fifteenth century. A single idea brings together the Great Bear, which provides an
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Fig. 14.14 :Ground track of a Galileo satellite over one recurrence cycle (17 revolu-

tions in 10 days).



686 Chapter 14. Global Positioning Systems (GPS)

BeiDou NS
Orbit - Ground track

Recurrence = [ 2; -1;  7]  13

>>>>   Time span shown:   7.00 days

Altitude =21527.6 km a =27905.750 km

Inclination  =  56.30 °

Period =   773.20 min    * rev/day = 1.86

Equat. orbital shift  =21578.9 km

Asc. Node:      0.00 °
App. inclin. =  88.87 °

Projection:  Stereographic
Property:  Conformal

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 90.0 ° N;   90.0 °E
Aspect:  Direct

[ -90.0/  +0.0/  +0.0] [-] EIGEN6C2

BeiDou NS
Orbit - Ground track

Recurrence = [ 2; -1;  7]  13

>>>>   Time span shown:   7.00 days

Altitude =21527.6 km a =27905.750 km

Inclination  =  56.30 °

Period =   773.20 min    * rev/day = 1.86

Equat. orbital shift  =21578.9 km

Asc. Node:      0.00 °
App. inclin. =  88.87 °

Projection:  Mercator
Property:  Conformal

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct

[  +0.0/  +0.0/  +0.0] [-] EIGEN6C2

Fig. 14.15 :Ground track of a BeiDou NS satellite over one recurrence cycle (13

revolutions in 7 days).
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originally called Beidou-2, testimony to the technological inheritance from
Beidou-1, a first shot at a positioning system based upon two geostationary
satellites. We shall return to that later. It then changed its name to Compass
or Compass Navigation Satellite System (CNSS). In December 2012, it be-
came officially known as BeiDou NS or BeiDou Navigation Satellite System
(BDNS; Fig. 14.15).

14.5.1 The Three Segments

The MEO part of the space segment, BeiDou-M (with M for MEO),
comprises a constellation16 of 24 MEO satellites (3 planes of 8 regularly
spaced satellites). Each satellite is equipped with a rubidium clock. The sig-
nal is emitted at three frequencies: E2= 1,561.07MHz, E6=1,268.52MHz,
and E5B=1,207.14MHz.

The orbit is very similar to that of Navstar/GPS, with altitude h =
21,528km and inclination i = 56.3◦. The recurrence cycle is 13 revolutions
in 7 days (14 revolutions in 7 days for Navstar), whence a period of 12 h
58min (see Fig. 14.16 upper). Precession rates are very small, for the same
reason as for Navstar. The values are, in degrees per day,

Ω̇ = −0.031 , ω̇ = +0.015 , Δn = −0.002 .

The MEO constellation is supplemented by two further systems17 (see Fig.
14.16 lower):

• BeiDou-G: five GEO satellites parked at longitudes 58.75◦E, 80.0◦, 110.5◦,
140.0◦, and 160.0◦.

• BeiDou-I: three satellites on an inclined geosynchronous satellite orbit
(IGSO). This is circular with inclination i = 55◦. They are regularly spaced
on the same orbit with ascending node at longitude 118◦E.

The geodetic reference system is CGS-2000 (China Geodetic System), almost
identical to ITRF. The control segment comprises one central station and
three monitoring stations. For the user, the accuracy is claimed to be on a
par with Navstar.

easy way to identify the Pole Star in Ursa Minor (the Little Bear), and the compass, an
instrument used for orientation. That was before the advent of GPS, of course!

16Launch dates: Beidou-2-M1 (Compass-M1) on 13 April 2007, Beidou-2-M3 and -M4 on
29 April 2012, Beidou-2-M2 and -M5 on 18 September 2012.

17Launch dates for BeiDou-G (Compass-G): Beidou-2-G1 on 16 January 2010, Beidou-
2-G2 on 14 April 2009, Beidou-2-G3 on 2 June 2010, Beidou-2-G4 on 31 October 2010,
Beidou-2-G5 on 24 February 2012, Beidou-2-G6 on 25 October 2012. Launch dates for
BeiDou-I (Compass-I): Beidou-2-I1 on 31 July 2010, Beidou-2-I2 on 17 December 2010,
Beidou-2-I3 on 9 April 2011, Beidou-2-I4 on 26 July 2011, Beidou-2-I5 on 1 December
2011. These satellites Beidou-2-In are also denoted by Beidou-2-IGSO-n.
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14.5.2 Beidou-1 Experimental System

The Beidou-1 positioning system, sometimes called the Beidou Navigation
Test System (BNTS), is an experimental system. Also known as the Double
Star Positioning System (DSPS), it uses two geostationary satellites and re-
quires the user to possess a transmitter–receiver. It has been running since
2003.

It works in the following way. The control station emits a signal with a time
signature to the user P via two satellites S1 and S2, as shown schematically in
Fig. 14.17. When the user receives the first signal, from S1 say, he transmits
it to C via the two satellites.

The control station can thus measure the two time intervals Δt1 and Δt2
corresponding to the two paths:

C → S1 → P → S1 → C =⇒ cΔt1 = 2d1 + 2r1 ,

C → S1 → P → S2 → C =⇒ cΔt2 = d1 + r1 + d2 + r2 ,

where ri = ‖SiP ‖ and di = ‖SiC‖, i = 1, 2. The two distances di are
known, as is the transponder response time, which we ignore in this simplified
discussion. The required values are r1 and r2 :

⎧⎪⎨
⎪⎩

r1 =
c

2
Δt1 − d1 ,

r2 =
c

2
(2Δt2 −Δt1)− d2 .

The required point is at the intersection of the two spheres Σi, centered on
the equatorial plane, with centers Si and radii ri. This intersection takes the
form of a circle lying in a plane perpendicular to the equator. Then the in-
tersection of Σ1 ∩ Σ2 with the Earth ellipsoid gives two points, one in the
northern hemisphere and one in the southern hemisphere. The one in the
northern hemisphere corresponds to the position of the Chinese user. A fur-
ther constraint is thus that the altitude of the point P must be known:

• If P is on the ground, the control station C knows the altitude of P because
it has a very accurate numerical terrain model (NTM) at its disposal for
the Chinese territory, with a graticule of one arcsec.

• If P is in the air, the user must determine his altitude using a barometer,
for example, and send this information to C.

Once the position of P has been determined, the station C transmits the result
to P . To the four journeys between the Earth and a geostationary satellite to
determine the position, one must therefore add two others for the transmission
of the result, making a total of 6, which takes 0.8 s in all.
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Fig. 14.16 :Compass system. Upper: BeiDou-M. Ground track of the orbit over 7

days, viewed from the northernmost point of the BeiDou-I orbit. Lower: BeiDou-I

and BeiDou-G. Ground track of the IGSO (geosynchronous) orbit of the three

BeiDou-I satellites and positions of the five GEO (geostationary) satellites.
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S2

C

S1

P

Fig. 14.17 :The Beidou-1 sys-

tem. A user P picks up a

signal emitted by the control

station C and transmits it to

C via the two geostationary

satellites S1 and S2. The sig-

nals are analysed by C, the

position of P is calculated,

and the result is sent on to P .

The geodetic reference system18 for Beidou-1 is Beijing-1954. The space
segment19 consists of two geostationary satellites, Beidou-1A and -1B, parked
at 80.0◦E and 140.0◦E. A backup satellite is parked at 110.5◦E. The control
segment comprises the central station and three monitor stations, all in China.

The user segment consists of a somewhat bulky transmitter–receiver. Cov-
erage is rather limited:

latitude � 55◦N
5◦N , longitude

70◦E 140◦E
←→

Accuracy is around 100m. Using the third satellite in a differential method,
one could hope to achieve 20m. This accuracy is immediately lost when the
receiver is in movement. As soon as the speed exceeds a few meters per second,
the system becomes inaccurate, even unusable. The system also has limited
capacity: 540,000 users per hour, with a maximum of 150 users at any given
time.

The Beidou-1 positioning system has some advantages over Navstar/GPS:

• It uses two satellites rather than a constellation of at least 24.
• The clocks do not need to be ultra-precise. They need only be stable, since

they measure a time difference.

18It is surprising to find that Beidou-1 uses such an antiquated reference system. And it
is older than its name would suggest, since it is in fact a carbon copy of the Soviet model
Krasovsky-1940.

19Launch dates: Beidou-1A (BNTS-1A, DFH-51) on 30 October 2000, Beidou-1B (BNTS-
1B, DFH-52) on 20 December 2000, Beidou-1C (BNTS-1C, DFH-56) on 24 May 2003.
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It is thus a relatively cheap system that can be set up quite quickly. It also
has many disadvantages:

• It only gives regional coverage, although this may be considered adequate
by Chinese users.

• Accuracy is rather limited, being only around 100m in standard mode.
• The user terminal is bulky and expensive.
• The number of users is limited.

For the Chinese authorities, the disadvantages outweigh the advantages since,
even though they seemed to be satisfied with the Beidou-1 experimental
system, they nevertheless decided to set up Beidou-2 (which become Compass,
then BDNS) along the lines of the Navstar system, i.e., using a constellation
of MEO satellites.

14.6 Augmentation Systems

As discussed above, differential GPS (DGPS) exploits the transmission to
users of the correction detected by the control station. Rather than sending
the information by terrestrial radio relay, it is transmitted directly to a geosta-
tionary satellite which broadcasts it back to Earth. The extra satellite thus
introduced then provides an augmentation system. These systems, referred
to as satellite-based augmentation systems (SBAS), can lead to significant
improvements:

• To begin with, by broadcasting corrections, they extend DGPS quality to
many more users.

• Furthermore, they are equipped with GPS clocks and emit a type L1 signal
specified by its PRN code, which adds pseudo-range measurements to those
obtained by the MEO satellites of the GPS constellation itself.

• Finally, by analysing a whole set of data, these systems provide what is
known as an integrity service. Integrity is the guarantee that the signals can
be trusted, a necessary condition for GPS use by civil aviation authorities.

The regions covered by the various augmentation systems are shown in
Fig. 14.18 (upper) and a list of contributing satellites is given in Table 14.4:

• The Wide Area Augmentation System (WAAS) was developed by the avi-
ation authorities in the USA. It is based upon three or four GEO satellites.
Coverage extends over the whole of North America, since the absorption
of the Canadian CWAAS, and also Hawaii.

• The American Wide Area GPS Enhancement (WAGE) system run by the
US Army (DoD) is only accessible to the military.
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Fig. 14.18 :Regional augmentation systems. Upper: Different areas: WAAS (North
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SDCM (Russia). Lower: European region EGNOS and representation of distances

from the subsatellite point to the geostationary satellite Artemis.
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System Satellite/SBAS PRN Longitude

WAAS Inmarsat/AMR 133 97.7◦W Parking
– Intelsat/CRW 135 133.0◦W Parking
– Telesat/CRE 138 107.3◦W Parking
EGNOS Inmarsat/AOR-E 120 15.5◦W Parking
– Artemis 124 21.4◦E Parking
– Inmarsat/IOR-W 126 24.7◦E Parking
GAGAN GSAT-8 127 55.1◦E Parking
– GSAT-10 128 83.0◦E Parking
SDCM Luch-5A 140 94.8◦E Parking
– Luch-5B 125 15.8◦W Parking
MSAS MTSAT-1R 129 140.0◦E Parking
– MTSAT-2 137 145.0◦E Parking
– QZS-1 183 140.0◦E Apogee

Table 14.4 :Satellites used for the augmentation systems, with PRN number and

parking longitude for the GEO or apogee for QZSS, as of July 2013. AOR Atlantic

Ocean Region, IOR Indian Ocean Region.

• The company John Deere, world leader in agricultural machinery, has devel-
oped a private system for its customers by the name of StarFire (accuracy
10 cm), using an Inmarsat satellite.

• The European Geostationary Navigation Overlay Service (EGNOS) uses
three GEO satellites and covers Europe, the Atlantic from Iceland to the
Azores and the Canary Islands, and also the northern part of North Africa,
as shown in Fig. 14.18 (lower).

• The Indian GPS Aided GEO Augmented Navigation System (GAGAN)20

uses two GEO satellites and covers continental India and its two archi-
pelagos.

• The Japanese Multi-functional Satellite Augmentation System (MSAS) is
run by the Japanese meteorological office and ministry of transport. It uses
two tso satellites and the QZSS system (see below). The system is limited
to Japan.

• The Russian System for Differential Correction and Monitoring (SDCM)
is based on three Luch satellites.

• The planned Chinese system will be called Satellite Navigation Augmen-
tation System (SNAS).

20This is an acronym with a particularly successful double meaning, since gagan means
“sky” in Sanskrit.
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14.7 Regional Systems

Here we discuss two regional systems that are not equivalent: the Indian
IRNSS is an autonomous system, while the Japanese QZSS serves only to
improve Navstar/GPS positioning in the major Japanese cities.

14.7.1 IRNSS

India will develop a navigation system based on GEO and GSO satel-
lites, i.e., geostationary and geosynchronous with inclination. It will thus be
regional, since there is no hope of global coverage without MEO satellites.
The India Regional Navigation Satellite System (IRNSS) is thus based on
seven satellites, three of which are GEO and four GSO, all equipped with
rubidium clocks emitting a signal at two frequencies: L5 = 1,176.45MHz and
S = 2,492.08MHz. It will use the geodetic reference system WGS84.

The three GEO satellites are placed at separations of around 50◦ in lon-
gitude, in fact, at parking longitudes 34.0◦E, 83.0◦E, and 131.5◦E. The four
GSO satellites are placed on two circular geosynchronous orbits with incli-
nation i = 29◦. The longitude of the ascending node is 55.0◦E for one and
111.0◦E for the other (see Fig. 14.19 upper).

The expected accuracy is 20m over a main region lying between latitudes
40◦N and 40◦S and longitudes 40◦E and 140◦E.

14.7.2 QZSS

The Japanese space agency JAXA has come up with an interesting orbit,
reminiscent of the Tundra orbit but less eccentric, and with a lower inclination
than the critical one.21 It is a geosynchronous orbit, with i = 40◦ and apogee
over Tokyo. So not only does the satellite remain for longer over Japan, but
it is almost vertically above the large Japanese cities, i.e., at the zenith (see
Fig. 14.20), whence the name Quasi-Zenith Satellite System (QZSS).

This constellation should contain three regularly spaced satellites QZS-1,
-2, and -3. The first,22 QZS-1, is already operational. Its ground track is
shown in Fig. 14.19 (lower). Each satellite remains visible for about 11 h a
day, under the difficult visibility conditions imposed by h > 60◦. Figure 14.21
gives a good idea as to why the Navstar/GPS constellation is not particularly
effective under such conditions, since there are rarely more than two or three
of these satellites in view. The satellites of the QZSS constellation will supply
the fourth, or even the fifth satellite required for adequate positioning.

21The apsidal precession rate is nevertheless very low, viz., ω̇ = −0.01025◦/day, or less
than 4◦ per year, which is easy to compensate.

22Launch date: QZS-1 on 11 September 2010. QZS-1 also has the Japanese name
Michibiki, meaning “guide”.
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Fig. 14.19 :Upper: IRNSS. Ground track of two GSO (geosynchronous) orbits of

the IRNSS-GSO satellites and positions of the three GEO (geostationary) satellites

GEO. Lower: Ground track of the geosynchronous orbits of three QZSS satellites.
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Fig. 14.20 : In the “urban canyons”, to use the beauti-

ful term employed by urban planners, when one finds

oneself stuck between two Tokyo skyscrapers, it is not

so easy to pick up the GPS signal. Either it does not

get there at all, or worse, it does get there but via sev-

eral routes between the walls of the buildings, and the

position calculation is subsequently thrown out. Credit:

JAXA.

The reference geodetic system is the Japan Geodetic System (JGS), very
close to ITRF. The ground segment consists of the master control station
(MCS) at Tsukuba, 60 km north of Tokyo, and nine monitor stations in Japan
and overseas, the furthest being in Bangalore to the west, Hawaii to the east,
and Canberra to the south.

14.8 Non-positioning Uses of GPS

14.8.1 Radio Occultation

The occultation of radio waves by the atmosphere was tested on the at-
mosphere of Mars in 1965 by the Jet Propulsion Laboratory (JPL) using the
US probe Mariner-4, and subsequently on the atmosphere of Venus in 1967
using Mariner-5. Then in 1994, the GPS signal was used to sound the Earth’s
own atmosphere, by placing a receiver on low-orbiting satellites.

The signal is emitted by the navigation satellite S and received by the
LEO satellite L. The path SL (see Fig. 14.22) is a straight line when outside
the atmosphere, but is deflected when it crosses it. This deflection through
an angle α (several tenths of a degree) depends on the refractive index of the
air, which is mainly a function of the local values of temperature, pressure,
density, and water vapour content. In this way, one measures an integrated
value over the whole path SL of length ab. Using an inversion technique such
as Abel inversion, one can then deduce temperature profiles to an accuracy of
0.1–0.5K, as well as profiles of pressure and other atmospheric parameters.

Situations known as opposition, when the Earth passes between an LEO
satellite (ν1 ∼ 14) and a GPS satellite (ν2 = 2) occur roughly ν1 − ν2 = 12
times a day, and one can therefore expect 24 occultations. With 24 Navs-
tar/GPS satellites, this means around 500 occultations per day, implying
15,000 per month and per LEO satellite.

The first suitably equipped LEO satellites were the three geodesy satellites
CHAMP and GRACE-A and -B, then Ørsted, SAC-C, and MetOp-A and
-B. The constellation COSMIC, comprising six satellites FormoSat-3, from
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Fig. 14.21 :Visibility table of the 32 Navstar/GPS satellites and the satellite QZS-1,

for Tokyo on 1 March 2011. Visibility elevation: h > 60◦. With such a constraint on

visibility, corresponding to the situation in the center of the large Japanese conur-

bations, the Navstar/GPS constellation does not provide sufficient coverage. From

the table, we see that most of the time only two or three Navstar/GPS satellites are

visible, below the minimal threshold of four. The QZSS satellites (for the time being,

only QZS-1) will make a significant contribution here.

-3A to -3F, is the first mission entirely dedicated to radio occultation (see
Fig. 14.23 upper). The planned European mission ACE+ (which takes up from
the WATS and ACE missions) is of the same type, with four LEO satellites,
i ∼ 90◦, equipped with GPS receivers. All these satellites are in near-polar
orbits. For better sampling of the tropical region, a receiver called Radio
Occultation Sounder for the Atmosphere (ROSA) is carried aboard Megha-
Tropiques (see Figs. 14.23 lower and 14.24).
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S

a

(atm.)

b

LO

Fig. 14.22 :Schematic view of

signal emitted by a GPS satel-

lite S. The signal received by

the LEO satellite L is de-

flected as it crosses the atmo-

sphere from a to b. The angle

of deflection α is defined by

α = (Sa,bL).

14.8.2 Studying the Troposphere via the Base Stations

A permanent base station of the DGPS system sends a position correction,
denoted by δ0X in (14.22), then just throws it away! But meteorological offices
recover these binned corrections, because they contain information about the
integrated water vapour content in the region of the troposphere traversed
by the signal above the station at a given instant of time. This information
is supplied continually and almost in real time, and can be assimilated with
other physical data to set up weather forecasting models.

14.8.3 Other Applications

The applications of GPS now extend beyond just positioning to some quite
unexpected areas. Here is an example from the world of finance. At the present
time, many transactions on the stock exchange are decided by computers.
Among the latest services are the so-called flash orders, which allow certain
clients (or rather, their computers) to consult orders on certain stocks a frac-
tion of a second before their competitors. This microsecond insider trading
can be exposed by attaching a GPS “time marker” during the transaction.

14.9 Historical Note: The First Systems

14.9.1 Transit

The Transit navigation programme began with a discovery by American
researchers at Johns Hopkins university (JHU/APL) in 1957: the orbit of
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Fig. 14.23 :Locus of radio occultation between an LEO satellite and a Navstar/GPS

satellite [PRN 16] over a time lapse of 7 days. Upper: Sun-synchronous satellite

FormoSat-3/COSMIC, atmosphere crossed between 0 and 75 km. Lower: Low incli-

nation satellite Megha-Tropiques, atmosphere crossed between 0 and 150 km.
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Fig. 14.24 :Locus of radio occultation between Megha-Tropiques and a Navstar/GPS

satellite [PRN 16] over 14 days. Atmosphere crossed between 0 and 150 km. For the

full caption, see Fig. 14.23 (lower).

the satellite Sputnik-1 could be very accurately determined by measuring
the Doppler effect on radio frequencies. They then based their navigation
principle on the opposite problem, i.e., if one knows the satellite position
very accurately, one can use the Doppler effect to deduce the position of the
receiver.

The US Navy, which was currently setting up the Polaris submarine missile
launcher programme, took up this idea and developed the first global position-
ing system under the name of US Navy Navigation Satellite System (NNSS)
or Transit. After sending up several experimental satellites in the 1960s, the
system became operational in 1964 with the so-called NSS 30 constellation.
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This comprised23 satellites in circular polar orbit at altitude 1,000km. The
position of the receiver was calculated from successive measurements of the
Doppler–Fizeau effect on the signal sent by the Transit satellite. This was only
possible while the satellite was visible, i.e., at most 15min per revolution (see
Example 13.5). With six satellites, the user could see a satellite every 100min
at the equator, but every 35min at high latitudes.

The user had to know his altitude, not precisely determined by this
method, and it was important that he should not be moving too quickly.
Under these conditions, position accuracy was 20m. For a stationary observer
with measurements over several days, accuracy could be brought down to 5m.

The Transit system began in 1964 for military use, but was opened to the
general public from 1967. Receivers cost around 1,000 US dollars and there
were up to 80,000 users, mainly involved in maritime activities. It was officially
closed down on 31 December 1996, after 32 years of service.

14.9.2 The Soviet System

The USSR was a long way behind the USA in the field of positioning
systems. It was not until 1974 that they developed a system24 called Parus
that closely resembled Transit, then a civilian system called Tsikada, and

23The Transit satellites fall into five categories:

• The five experimental satellites, from Transit-1B, launched on 13 April 1960, to Transit-
4A, launched on 29 June 1961, on similar orbits, with i = 66.7◦, hp = 625 km, ha =
1,080 km.

• The ten prototype satellites in strictly polar orbit, from Transit-5A-1 on 18 December
1962 to Transit-5C-1 (OPS/4412) on 4 June 1964, with i = 90.0◦, h = 1,100 km. Transit-
5B-1, launched on 28 September 1963, was the first satellite actually used by the US
Navy.

• The 24 operational satellites in the Oscar series (O for “operational”), from Transit-O-1
(or NSS-30010, OPS/5798) on 6 October 1964 to Transit-O-25 (NSS-30250, NIMS-25,
SOOS-4A) and Transit-O-31 (NSS-30310, NIMS-31, SOOS-4B), launched on 25 August
1988. The satellite Transit-O-13 (NSS-30130,OPS/7218) operated from September 1967
to January 1989.

• The three Triad satellites of the Transit Improvement Program (TIP): Triad-1 (or TIP-
1), launched on 2 September 1972, Triad-2 (TIP-2), on 11 October 1975, and Triad-3
(TIP-3), on 1 September 1976, still on strictly polar orbits. These demonstrated the
feasibility of the drag-free technique.

• The three Nova satellites, launched in this order: Nova-1 (NSS-30480) on 15 May 1981,
Nova-3 (NSS-30500) on 12 October 1984, and Nova-2 (NSS-30490) on 16 June 1988, all
on strictly polar orbits, with i = 90.0◦, h = 1,180 km.

Even after the end of the Transit programme, certain satellites of the Navy Ionospheric
Monitoring System (NIMS) continued to operate, providing data on signal transmission
through the ionosphere which could be used by the Navstar/GPS system.

24The Soviet system can be divided into three families of satellites:

• The 99 military satellites Parus (parus means “sail”), or Tsikada-M (M for “military”),
from Parus-1 (Kosmos-700), launched on 26 December 1974, to Parus-99 (Kosmos 2463),
on 27 April 2010.
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Fig. 14.25 :GPS bea-

con belonging to the

network of the Corinth

Rift Laboratory, near

Galaxidi, Fokida,

Greece, September

2012. Studying the

region of high seismic

activity in the Gulf of

Corinth. Photo M.C.

finally Nadezhda. This system was widely used from 1990 by the Russian
merchant navy. It could localise boats to within 100m. Russia closed down
this operation in May 2007.

14.10 Appendix: GPS and Tectonic Plates

Inside the Earth, the radioactivity of certain rocks produces heat by nu-
clear decay. The upper regions of the mantle come up to the surface in a
convective phenomenon to form the Earth’s crust. As it cools, this magma
becomes brittle and forms plates of thickness 10–100km. The surface of the
globe is thus made up of a set of these very large plates. For example, the
MORVEL model (2011) is based on a set of 25 plates.

The plates move relative to one another. This is known as plate tectonic
motion.25 When these plates rub up against each other, it produces continental
drift, which leads to earthquakes and volcanic activity.

• Around 40 Tsikada satellites (this is the insect, the cicada), from Kosmos-883, launched
on 15 December 1976, to Kosmos-2315, on 5 July 1995, on slightly elliptical near-polar
orbits, i = 83◦, hp = 960 km, ha = 1,020 km.

• The 8 Nadezhda satellites (the word means “hope”), from Kosmos-1383 on 29 June 1982,
then Nadezhda-1 on 4 July 1989 to Nadezhda-7 (Nadezhda-M-1) on 26 September 2002.

25The word “tectonic” was coined in Germany in 1850 from the Greek tekton, � �������

���	, meaning “carpenter”. This Indo-European root *tek, “to produce”, appears in the
Greek technê, � ���� �  	, “handicraft” (giving “technical”) and the Latin textor, oris,
“weaver”, textus, us, “tissue”, then “text”. This root is also found textually in the scientific
formatting software TEX , created by D. Knuth, and its successor LATEX.
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4 cm/yr

Fig. 14.26 :Velocity field of horizontal displacements of the tectonic plates as pub-

lished in the ITRF2008 definition document. Upper: Plane representation. The scale

is indicated on the map. Lower: Orthographic representation centered on the Atlantic.

These values were obtained mainly from fixed GPS beacons. Document provided by

the authors: Zuheir Altamimi (LAREG/IGN), Xavier Collilieux (LAREG/IGN),

Laurent Métivier (IPGP), Paris.

In 1915, the German geophysicist Alfred Wegener had already developed
his idea of continental drift on the basis of geographic, geological, and palaeon-
tological considerations. Then from the 1970s, it became possible to corrobo-
rate the theory of tectonic plates with the help of geophysical measurements
exhibiting changes in the orientation of the Earth’s magnetic field in the ocean
floor. It even became possible to estimate displacement rates.

But since 1992, these plate displacements have been measured directly
using GPS. The technique of very long baseline interferometry (VLBI) and
other techniques mentioned in Chap. 3 in the context of the ITRF, can be used
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to obtain displacement rates to the same accuracy, but it is much simpler to
set up a GPS beacon than a VLBI antenna.

At the present time, there are hundreds of GPS beacons distributed around
the globe (many of them in California, for detailed surveillance of the San
Andreas fault, and in Japan). On 1 January 2011, there were 6,000 beacons
(see Fig. 14.25). Their absolute position is measured in the most accurate GPS
mode. The displacement of each beacon can then be ascertained in latitude
and longitude, and in the vertical by suitable statistical processing. The result
is a map showing the displacements of the tectonic plates, as exemplified in
Fig. 14.26.

Satellites over 20,000km away can thus measure absolute displacements
of a few millimeters per year at the surface of the Earth. This is surely one of
the most extraordinary scientific achievements of GPS.
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14.11 Appendix: GPS and Relativity

14.11.1 Presentation

Written in collaboration with Florent Deleflie.

The relevance of the relativity theories to GPS was exhaustively and au-
thoritatively investigated by Ashby right from the beginning, when this nav-
igation system was first conceived. In this appendix,26 we will not be adding
anything fundamentally new to Ashby’s work. Our aim is to make a didactic
presentation of these relativistic corrections, to highlight the different orders
of magnitude, and to demonstrate the effects or lack of effect of the latitude
on certain corrections. For the latter point, we shall refer to Chaps. 2, 3, and 6.

These relativistic corrections are determined by understanding the be-
haviour of the clocks held by the emitter and the receiver, since they con-
stitute the very basis of this navigation system. The setting here is thus the
spacetime of Einstein’s theories of relativity.

14.11.2 Proper Time Difference

A clock is a device for counting the periods of some repetitive phenomenon.
The time scale associated with the clock is a measure of the extent to which
the repetitive phenomenon has progressed (one tick of the clock corresponds
to each instant on the time scale), allowing one to define a unit of time such as
the second. A proper time interval is measured by counting a certain number
of periods in the frame in which the clock is at rest. In a frame in which the
clock is moving, this same number of periods defines a time interval called
improper time.

One part of the proper time difference results from the difference of speeds
of the satellite and the receiver, and the other part comes from the difference in
gravitational potential between the satellite and the receiver. The first effect,
due to the speed difference, thus relates to the special theory of relativity (SR),
while the second, due to the geopotential, is a term specifically predicted by
the general theory of relativity (GR). The latitude of the receiver is relevant
to both, due to the fact that the Earth is rotating and the fact that it is not
spherical. We shall show that, when the two effects are added together, the
latitude is no longer relevant.

Special Relativity and Time Dilation

In the context of special relativity, Einstein’s theory (Fig. 14.27) stipulates
that the speed of light c is the same in every frame. This implies that two
frames with relative speed V have time scales related by the Lorentz factor:

26We wish to thank Pierre Sagnou, Stephen Lyle, and Richard Kerner for helpful
discussions.
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Fig. 14.27 :Albert Einstein.

Δtimproper =
1√

1− (V/c)2
Δtproper . (14.24)

Let Δt′ be the interval of time of 1 s for a body moving with velocity V
relative to an Earth-centered inertial (ECI) frame �, as defined in Chap. 3,
i.e., the time interval between two ticks of the moving clock. The time interval
of 1 s for the stationary body in � is denoted by Δt, i.e., the time interval
between two ticks of the stationary clock. The Lorentz factor relates these two
quantities. Expanding to first order the expression in (14.24), we have

Δt′ ≈
(
1 +

V 2

2c2

)
Δt . (14.25)

Note that Δt′ > Δt, implying that a moving clock always runs more slowly
than a clock at rest.

The relative time variation ΘSR
i for a body i, moving at speed Vi, is given

in special relativity by

ΘSR
i =

Δt′ −Δt

Δt
=

V 2
i

2c2
. (14.26)

(1) Satellite (SR). Consider a satellite moving at velocity V relative to
an inertial frame �. Insofar as its orbital motion around the Earth can be
treated as uniform (GPS satellite orbits are near-circular), the magnitude of
its velocity will be constant and (14.24), which involves V 2, can be applied.
We first consider the case where the orbit with semi-major axis is circular. In
this case, (4.52) implies

ΘSR
sat =

μ

c2
1

2a
. (14.27)

(2) Earth (SR). The receiver clock is carried along by the Earth’s rotation
and is also in motion relative to �. We consider a clock at arbitrary geocentric
latitude ψ, stationary relative to the Earth. As in Chap. 3, � denotes the
angular speed of the Earth’s rotation. For an Earth treated as an ellipsoid of
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revolution, with equatorial radius R, the dependence of the Earth radius Rψ

on ψ is given by (1.37). With the approximation given by (1.39), the speed
V⊕(ψ) of a point of latitude ψ at the Earth’s surface can be written

V⊕(ψ) = Rψ� cosψ ≈ R�(1− f sin2 ψ) cosψ ,

and the relative variation due to the Earth’s rotation with respect to � is thus

ΘSR
⊕ =

V 2⊕
2c2

≈ μ

2Rc2
ma cos

2 ψ(1 − 2f sin2 ψ) ,

using the dimensionless quantity ma defined by (3.34). Since the quantities
ma and f are very small, the product maf can be neglected in a first order
calculation, and the last formula simplifies to

ΘSR
⊕ ≈ μ

2Rc2
ma cos

2 ψ . (14.28)

(3) Satellite/Earth (SR). To compare the clock aboard the satellite with
the clock “aboard” the Earth, we write down the relative difference ΘSR, viz.,

ΘSR =
Δt′sat −Δt′⊕

Δt

∣∣∣
SR

=
Δt′ −Δt

Δt

∣∣∣SR
sat

− Δt′ −Δt

Δt

∣∣∣SR
⊕

.

The total effect due to time dilation is therefore the difference between the
two values found previously:

ΘSR = ΘSR
sat −ΘSR

⊕ , (14.29)

which gives in the present case

ΘSR =
μ

2R c2

(
R

a
−ma cos

2 ψ

)
. (14.30)

This correction is always positive: the second for the satellite is always longer
than the second for the receiver. This is a classic example of time dilation.

General Relativity and Gravitational Blueshift

We now consider the effects due to the gravitational potential as predicted
by Einstein’s general theory of relativity. The relation between proper and
improper time is given by the Schwarzschild metric:

Δtimproper =
1√

1− (2U/c2)
Δtproper , (14.31)

where U is the gravitational potential. Expanding (14.31) to first order, we
obtain

Δt′ ≈
(
1 +

U

c2

)
Δt . (14.32)
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Note that Δt′ > Δt, implying that a clock runs all the more slowly as the
gravitational potential increases.

The relative time variation ΘGR
i for a body i, subject to a gravitational

potential Ui, is given in general relativity by

ΘGR
i =

Δt′ −Δt

Δt
=

Ui

c2
. (14.33)

(1) Satellite (GR). For the satellite in circular orbit of radius a, the
potential is

U =
μ

a
,

whence ΘGR
sat is given by

ΘGR
sat =

μ

c2
1

a
. (14.34)

(2) Earth (GR). For a point at the geocentric latitude ψ on the Earth’s
surface, assumed ellipsoidal again, the potential is given by (3.27) as

U⊕(ψ) =
μ

Rψ

[
1− J2

(
R

Rψ

)2
3 sin2 ψ − 1

2

]
.

Note that, in an inertial frame �, the surface of the ellipsoid (or geoid) is not
an equipotential surface since the potential U⊕(ψ) depends on ψ.

Expressing Rψ and neglecting terms in J2f , we deduce that

U⊕(ψ) =
μ

R

[
1 +

1

2
J2
(
1− 3 sin2 ψ

)
+ f sin2 ψ

]
,

and we thus obtain

ΘGR
⊕ =

μ

Rc2

[
1 +

1

2
J2 + sin2 ψ

(
f − 3

2
J2

)]
. (14.35)

(3) Satellite/Earth (GR). The relative time difference between the satellite
and the Earth is therefore given by an expression analogous to (14.29) as

ΘGR = ΘGR
sat −ΘGR

⊕

=
μ

Rc2

[
R

a
− 1− 1

2
J2 − sin2 ψ

(
f − 3

2
J2

)]
. (14.36)

This is known as the Einstein effect or gravitational blueshift.27

27One also speaks of gravitational redshift, which simply reflects a change of perspective,
swapping the emitter and the receiver.
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Sum of the Two Effects: Net Secular Effect

We now add together the two contributions, denoting the total by Θ1 :

Θ1 = ΘSR +ΘGR ,

whereupon we obtain

Θ1 =
μ

Rc2

[
3

2

R

a
− 1

2
ma cos

2 ψ − 1− 1

2
J2 − sin2 ψ

(
f − 3

2
J2

)]

=
μ

Rc2

[
3

2

R

a
− 1− ma + J2

2
− sin2 ψ

(
f − 3J2 +ma

2

)]
. (14.37)

We now apply Clairaut’s first relation (3.33), viz.,

J2 =
2

3
f − 1

3
ma ,

whence it transpires that the term in sin2 ψ in (14.37) cancels out. This means
that the sum of the two relativistic corrections is in fact independent of the
latitude of the receiver. Equation (14.37) can then be written

Θ1 =
μ

Rc2

(
3

2

R

a
− 1− J2 +ma

2

)
. (14.38)

This quantity is referred to in the literature as the net secular effect.
It is interesting to express Θ1 in two parts: Θsat concerning the satellite

and Θ⊕ concerning the Earth. Equation (14.38) becomes

Θ1 = Θsat −Θ⊕ , (14.39)

with

Θsat = ΘSR
sat +ΘGR

sat =
3

2

μ

ac2
, (14.40)

Θ⊕ = ΘSR
⊕ +ΘGR

⊕ =
μ

Rc2

(
1 +

J2 +ma

2

)
. (14.41)

In order to go further, expanding the potential to a higher degree, the calcu-
lations would become much more complex because other coefficients charac-
terising the topography would have to be included to take into account the
fact that the shape of the Earth is no longer treated as an ellipsoid of revo-
lution, and this would make the expression for the centrifugal potential much
more complex. This would nevertheless lead to a similar form for the results,
although of course incorporating further coefficients such as J4, Jn, and so on,
given that the surface of the rotating Earth remains an equipotential surface.
We conclude that, on the geoid, the total relativistic correction is independent
of the latitude.
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Numerical Application

(1) Satellite: Calculation of Θsat. The dimensionless quantity Θsat given
by (14.40) is calculated for each satellite, depending on the value of a, and
indicated in Table 14.6. For a Navstar/GPS satellite,

Θsat = 2.50464× 10−10 . (14.42)

(2) Earth: Calculation of Θ⊕. The dimensionless quantity Θ⊕ given by
(14.41) breaks down into three terms:

μ

Rc2
= 6.953485651× 10−10 ,

μ

Rc2
J2
2

= 3.764014052× 10−13 ,

μ

Rc2
ma

2
=

�2R2

2c2
= 1.203436640× 10−12 ,

with total

Θ⊕(J2) = 6.969284031× 10−10 . (14.43)

If we add the contribution from geopotential terms28 up to J10 (the contribu-
tion from J4 to J10 is 6.391× 10−16), it has the value

Θ⊕(J10) = 6.969289401× 10−10 , (14.44)

and up to J24,

Θ⊕(J24) = 6.969290044× 10−10 . (14.45)

This should be compared with

LG = 6.969290134× 10−10 , (14.46)

which is the value recommended by the International Astronomical Union
(IAU) when calculating the terrestrial time (TT) scale,29 as explained in

28Setting ψ = 0 in the expansion of the geopotential [see (3.45)], we obtain

U⊕ =
μ

R

[
1−
(
−1

2
J2 +

3

8
J4 − 5

16
J6 +

35

128
J8 − 63

256
J10

)]
.

29The coordinated time in the geocentric spacetime system (TCG,Temps coordonnée
géocentrique) differs from terrestrial time (TT) by a secular term:

TCG− TT = Θ⊕ ×ΔD × 86,400 s ,

where ΔD is the number of days elapsed since the date chosen as origin [see (6.147)].
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Sect. 6.10 on astronomical constants, where LG is the quantity denoted here
by Θ⊕.

(3) Satellite/Earth: Calculation of Proper Time Differences. Apply-
ing (14.39), we obtain the factor Θ1 which characterises the relative time
difference, with the numerical values given by (14.42) and (14.45) or (14.46):

Θ1 = +2.5046× 10−10 − 6.9693× 10−10 = −4.4647× 10−10 . (14.47)

Over 1 day, the net secular effect is found to be

δt1 = (Δt′ −Δt)
∣∣
1 day

= −4.4647× 10−10 × 86,400 = −38.574 μs . (14.48)

This difference of 38.574 μs per day in the propagation time of the signal
corresponds to a distance of

δ� = c× δt1 = 11.6 km per day . (14.49)

Clearly, if these relativistic corrections were not taken into account,30 there
would be errors of several hundred meters every hour. Table 14.6 summarises
these numerical results for the four types of navigation satellites (GNSS).

(4) Note on Satellite Altitudes. The quantity Θ1 given by (14.38), which
represents the sum total of all these effects, vanishes for a certain value a1 of
the orbital radius equal to roughly 3R/2. More precisely,

a1 =
3

2

(
1 +

J2 +ma

2

)−1

R ≈ 3

2

(
1− J2 +ma

2

)
R ,

or an altitude h1 given by

h1 = a1 − R =

[
1− 3(J2 +ma)

2

]
R

2
= 0.4966R = 3,167 km . (14.50)

30Neil Ashby tells the following story:

At the time of launch of the NTS-2 GPS-precursor satellite (23 June 1977), which
contained the first cesium atomic clock to be placed in orbit, there were some who
doubted that relativistic effects were real effects that had to be accounted for. A fre-
quency synthesizer was built into the satellite clock system so that after launch, if
in fact the rate of a clock in its final orbit were predicted by general relativity, then
the synthesizer could be turned on, bringing the clock to the coordinate rate neces-
sary for operation. After one of the cesium atomic clocks was turned on in NTS-2,
it was operated for about 20 days to measure its clock rate before turning on the
synthesizer. The frequency measured during that period was +442.4 parts in 1012

compared to the ground, while relativity theory predicted +446.47 parts in 1012. The
discrepancy was only about four parts in 1012, well within the accuracy capabilities
of the orbiting clock.

The orbit of NTS-2 was described in section “Main Dates”.
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u = μ/Rc2 Special relativity General relativity Total

Satellite (R/a)/2 = 0.120066 R/a = 0.240133 0.360199

Earth [E] ma/2 = 0.001731 1 + J2/2 = 1.000541 1.002272
Earth [P] 0 = 0.000000 1− f + J2 = 1.002272 1.002272

Satellite/Earth [E] 0.118335 −0.760408 −0.642073
Satellite/Earth [P] 0.120066 −0.762139 −0.642073

Table 14.5 :Values arising when calculating the relativistic corrections for the satel-

lite Navstar/GPS. Abbreviations: [E] = equator, [P] = pole. Units used here are

u = μ/Rc2. To obtain the value of Θj
i , the values in the table should be multiplied

by μ/Rc2 = 6.95348565 × 10−9.

Note that:

• If h < h1, the special relativistic effect dominates and Θ1 > 0.
• If h > h1, and this goes for the GPS satellites, the general relativistic effects

dominate and Θ1 < 0.

Summary of Corrections

Table 14.5 summarises the values of the quantities Θj
i :

Satellite in � =⇒ ΘSR
sat +ΘGR

sat = Θsat

Earth in � =⇒ ΘSR
⊕ +ΘGR

⊕ = Θ⊕

Satellite relative to the Earth =⇒ ΘSR +ΘGR = Θsat −Θ⊕ = Θ1 .

Taking out the factor μ/Rc2 used as unit in Table 14.5 and for the re-
marks below makes it easier to interpret the results and leads to the following
conclusions:

• The main term is ΘGR
⊕ ≈ 1, general relativistic term for the Earth.

• The terms concerning the satellite, ΘSR
sat ≈ 0.1 and ΘGR

sat ≈ 0.2, give a sum
equal to around one third of the main term ΘGR⊕ .

• The term ΘSR
⊕ is negligible in a first approximation.

We find the value calculated in (14.38) with

Θ1 = −0.642073
μ

Rc2
= −0.642073× 6.95348565× 10−9

= −4.4647× 10−10 . (14.51)

Corrections for GPS

The overall relativistic effect referred to as the net secular effect corre-
sponds to a relative clock variation whose value, given by (14.38), is calculated
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using (14.47) or (14.51) for Navstar/GPS. The Navstar/GPS documentation
indicates a correction

ΘGPS
1 = −4.464733× 10−10 .

This correction is made directly by the satellite, by modifying the nominal
frequency emitted by its clock. While the basic frequency of the GPS signal
is given as [see (14.23)]

f0 = 10.23MHz ,

the frequency f em
0 actually emitted is

f em
0 = 10.23× (1 +ΘGPS

1 )

= 10.23× (1− 4.464733× 10−10)

= 10.2299999954326MHz . (14.52)

With this value, the signal received on Earth by the receiver has the same
frequency as if the satellite clock were situated on the geoid.

14.11.3 Effect Due to Orbital Eccentricity

The main idea here is to study the effects of variations in speed induced by
the eccentricity e of the orbit, which is typically of the order of 10−3 for GNSS
satellites. This implies a change in the speed and the potential in the previous
equations, replacing a by r. We thus consider the value of Θ1 as given by
(14.38), depending on whether e is zero (denoted by Θ2c for a circular orbit,
and corresponding exactly to Θ1) or not (denoted by Θ2e for an eccentric
orbit). The difference between Θ2e and Θ2c then measures the effect on the
relative time difference due to e. With (4.39), we obtain

Θ2 =
Δt′ −Δt

Δt

∣∣∣∣
ecc

= Θ2e −Θ2c =
2μ

c2

(
1

r
− 1

a

)
. (14.53)

We see that Θ2 varies over an orbital period from a minimal value at the
apogee to a maximal value at the perigee, depending on the value of r.

Using the eccentric anomaly E defined in (4.64), we find that (14.53)
becomes

Θ2 = 2
μ

c2
1

a

e cosE

1− e cosE
. (14.54)

This relative difference will show up during one revolution as a gain or loss
of time, with extrema at the apogee and perigee. Appealing to (4.79), which
relatesE andM , we integrate (14.54) with respect to time to obtain a quantity
with units of time:
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Δtecc(t) =
2μ

c2a

∫
e cosE

1− e cosE
(1 − e cosE)

√
a3

μ
dE

= 2

√
μa

c2
e sinE . (14.55)

The integration constant is set to zero (it can be included in the clock offsets,
which disappear after applying the Kalman filter). During one revolution,
the time difference will therefore vary between the extreme values of Δtecc,
denoted by −δtmax

2 and +δtmax
2 , where

δtmax
2 = 2

√
μa

c2
e . (14.56)

With (4.68), we note that (14.55) can be written in the form

Δtecc(t) =
2rṙ

c2
. (14.57)

Numerical Application

For Navstar/GPS, we obtain

δtmax
2 = 2.2897× 10−6e . (14.58)

If we take 10−3 as a realistic value for the eccentricity,31 for a GNSS satellite,
we find

δtmax
2 = 2.29 ns .

This is very small compared with the previous effects. It corresponds to a
maximal positioning error broadcast by the satellite of the order of a few
meters (depending on the exact value of e) (see Table 14.6).

Corrections for GPS

This second effect, due to the geometry of the ellipse (residual periodic
effect) is of the order of a few nanoseconds, but varies during a revolution
in a way that depends on the orbital elements a, e, E of the satellite. The
correction is transmitted by each satellite (e differing from one satellite to
another). The correction is applied by the receiver.

31Ever since N. Ashby took e = 0.02 as an example, which gives Δt = 46ns, all documents
treating this question have reproduced this result of 46 ns. We note that the eccentricity e
never reaches such a value for navigation satellites placed in orbit since the historic period
of the first Navstar/GPS satellite launches.
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Units Navstar/GPS Glonass Galileo BeiDou NS

a km 26,560.9 25,507.6 29,600.3 27,905.8
e – ≈ 0.0060 ≈ 0.0005 ≈ 0.0005 ≈ 0.0005
V km/s 3.873891 3.953066 3.669620 3.779393
T min 717.978 675.735 844.685 773.200
R/a – 0.2401326 0.2500485 0.2154754 0.2285595

Θsat 10−10 2.50464 2.60806 2.24746 2.38393
Θ⊕ 10−10 6.96929 6.96929 6.96929 6.96929
Θ1 10−10 −4.46465 −4.36123 −4.72183 −4.58536
δ� km 11.6 11.3 12.3 11.9
δt1 ns −38,574.6 −37,681.0 −40,796.6 −39,617.4
δtmax

2 ns 13.7 1.1 1.2 1.2
δtmax

3 ns 133.4 127.8 149.6 140.6

Table 14.6 :Comparison of relativistic effects for the four types of navigation satellite

(GNSS). a semi-major axis of the orbit, e eccentricity, V average speed of satellite,

T nodal (draconitic) period, R equatorial radius. Θi relative value of the difference

between the proper time (in the ECI frame 
) and improper time. Θsat is the value

of Θi for the satellite (relative to 
), defined by (14.40), and Θ⊕ is the value of

Θi for the Earth (relative to 
), the same for all satellites, defined by (14.41) and

calculated using (14.45), defined by the IAU by (14.46) or (6.147). Θ1 = Θsat −Θ⊕,
defined by (14.38) and calculated using (14.47). δ� maximal daily error, distance de-

fined by (14.49). δt1 daily proper–improper time difference, defined by (14.48). δtmax
2

maximal proper–improper time difference, defined by (14.56) for each revolution of

the satellite, relating to the orbital geometry and calculated here for the eccentric-

ity indicated in the row for e. δtmax
3 absolute value of the maximal proper–improper

time difference for each revolution of the satellite, due to the Sagnac effect and de-

fined by (14.64). Units are given in the first column. A dash indicates dimensionless

quantities.

14.11.4 Sagnac Effect

The Sagnac effect arises from the non-inertial nature of the frame in which
the receiver is at rest. Consider a receiver located at a point A of the Earth
at time t1, the instant of emission of the signal by the satellite S. The signal
reaches the receiver at some time t2, when it is located at a different point
A′ of the inertial frame � (A �= A′), as shown in Fig. 14.28. During the time
lapse t2 − t1, the receiver has been displaced through AA′.

A geometric approach can be used to calculate the time difference due to
the Sagnac effect:

Δt
∣∣Sagnac = SA· (�ez ∧OA)

c2
, (14.59)
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O

S

AA�

Fig. 14.28 :Earth/satellite ge-

ometry involved in the Sagnac

effect. Satellite S, center of

the Earth O. The point A has

moved to A′ in an inertial

frame during the time taken

for the signal to be transmit-

ted from S to A.

where �ez is the angular velocity of the Earth’s rotation. We note that the
Sagnac effect is zero if the satellite is in the meridian of the point A, with AA′

pointing to the east. Its sign depends on the relative direction of the satellite
as viewed from the receiver. It is positive before entering the meridian plane
containing the satellite (hence to the west), then negative.

Equation (14.59) is then written in the form

Δt
∣∣Sagnac = 2

�

c2
ez·T , (14.60)

where

T =
1

2
OA ∧ SA ,

with T the directional area of the triangle SOA.
For the Earth, we define the quantity S⊕ by

S⊕ = 2
�

c2
= 1.62271× 10−21 sm−2 = 1.62271× 10−6 ns km−2 , (14.61)

and then

Δt
∣∣Sagnac = S⊕ez·T . (14.62)

The Sagnac effect is given by the scalar product of the vector S⊕ez along the
polar axis and the vector T normal to the surface (directional area), which
delivers the projected area of this triangle in the equatorial plane multiplied
by the coefficient S⊕.
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The maximal value δtmax
3 of the Sagnac effect can be evaluated. It corre-

sponds to the maximal possible area of the projection of the triangle SOA.
This situation arises when S lies in the equatorial plane of the Earth and A
appears at the limb for S. The triangle SOA is than right-angled at A, with
a = OS and R = OA, whence

Tmax = ‖T‖max =
1

2
R
√
a2 −R2 ,

and

δtmax
3 = S⊕ × Tmax . (14.63)

Numerical Application

For a Navstar/GPS satellite, Tmax = 8.221 × 107 km2, which gives the
maximal value of the Sagnac effect as

δtmax
3 = 1.62271× 10−6 × 8.221× 107 = 133.4 ns . (14.64)

See Table 14.6.

Corrections for GPS

This third effect is due to the geometry of the Earth–satellite configuration.
The correction is therefore necessarily applied by the receiver.

14.11.5 Conclusion

Relativistic effects can be classified into three categories:

• Time Dilation. A transported clock, in this case on the satellite, runs
more slowly than one at rest on the Earth, in this case, the receiver clock.
This effect is solely a function of the satellite velocity.

• Blueshift Effect. The transported clock runs faster than the one on the
Earth. This effect is solely a function of the satellite altitude.

• Sagnac Effect. The transported clock runs more slowly or faster than
the one on the Earth. This effect depends on the relative position of the
satellite and the terrestrial meridian of the receiver.

Several other effects are mentioned in the literature as relevant in the orbits
of artificial satellites, including geodesic precession, the Lense–Thirring effect,
and the Schwarzschild correction. The Shapiro effect is another phenomenon
affecting the transmission of the signal. Taken together, all these effects modify
the propagation time by a few picoseconds per day.



Chapter 15

Satellites of Mars

15.1 Presenting the Planet Mars

15.1.1 Mars and Space Exploration

If we compare the Earth with its two neighbours, it has something in
common with Venus on the next orbit in toward the Sun, and that is its size.
However, it is with the next planet out, moving away from the Sun, that the
Earth has most affinity, because two fundamental parameters, namely, the
length of day and the obliquity, have very similar values for these two planets.

Like the Earth, Mars exhibits climatic phenomena, with winter and sum-
mer, sandstorms, and permanent ice at the poles. These seasonal phenomena
have long been observed by astronomers, as can be seen from the drawings by
Huygens in 1672. The atmosphere of Mars (to which we shall return shortly)
is in fact rather transparent in the visible, while this is not at all the case for
Venus.1 The fact that Mars is further away from the Sun, about 1.5 astro-
nomical units further away than the Earth, means that it is much colder (the
greenhouse effect due to the atmosphere is much less pronounced), and the
year is almost twice as long.

The planet has been observed since ancient times. It doubtless owes its
association with the god of war to its red colour: Ares for the Greeks2

(ὁ ῎Αρης, εως, giving the prefix areo- for attributes pertaining to this planet),
and Mars for the Romans. Later, telescopic observation revealed some detail
on its surface and it was suggested that Martians had been digging canals.

1On Venus, with a very dense atmosphere and extreme greenhouse effect, temperatures
are always very high, both day and night, whatever the season or the latitude. The atmo-
sphere is moving, always in the same direction, following the rotation of the planet in a
motion known as super-rotation. The winds are very strong at high altitudes, but much less
so near the surface.

2Ares literally means “warrior, male”, from the Indo-European root ∗ar, meaning “to
take, destroy, cause something to perish”.

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 15,
© Springer International Publishing Switzerland 2014
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In the twentieth century, more precise telescopic observations were improved
still further by data from probes at the beginning of the space age.

Space Exploration: The USSR and Russia

In October 1960, the USSR attempted to send two probes (sometimes
called Marsnik-1 and -2), just 3 years after the first Sputnik, to overfly Mars.
However, they exploded at launch. (In fact it is not clear whether there were
one or two probes.) All 14 subsequent probes failed, either at launch or later
by loss of contact: Sputnik-29, Mars-1 (which was the first probe to approach
Mars, but silent) and Sputnik-31 in 1962, Zond-2 and -3 in 1965, two probes
without clearly attributed names (Mars-1969-A and -B) in 1969, Kosmos-419,
Mars-2 and -3 in 1971, Mars-4, -5, -6, and -7 in 1973. Note that Mars-2 crashed,
but it was the first manmade object to touch Mars, while Mars-3 and Mars-6
seem to have soft-landed, but contact was lost after a few seconds. Attempts
resumed 15 years later, with Phobos-1 and -2, launched in July 1988. The
mission was to observe the moon Phobos from an orbit around Mars. The
probe Phobos-2 came very close to Phobos, then stopped transmitting. The
USSR clocked up 17.5 failures out of 18 attempts!

Mars was a forbidden planet for the Soviets and it remained so for the
Russians. The mission Mars-96 ended in the Pacific on 16 November 1996,
the day of its launch. The same happened in 2011 with the very ambitious
mission Phobos-Grunt. The probe was supposed to go into a near-circular
equatorial orbit around Mars, thereby approaching Phobos on its orbit, land
on it (hence the mission name grunt, which means “ground” in Russian),
make observations, take samples, and finally return to Earth! The departure
was planned for November 2011, with the return to Earth in 2014. But un-
fortunately, launched on 8 November 2011, the probe remained blocked in
Earth orbit and ended up like its predecessor in the Pacific. So Russia’s Mars
exploration has seen two failures in two attempts!

Space Exploration: The USA

The United States launched Mariner-3 and -4 in November 1964. The
first probe was lost, but Mariner-4 overflew Mars and sent back the first
photographs (21 in all) on 14 July 1965. Launched in February and March
1969, the probes Mariner-6 and -7 overflew the Red Planet and provided a
great many photographs. And launched in May 1971 (like Mariner-8, lost at
launch), the probe Mariner-9 was the first to go into orbit around the planet
(hp = 1,650km, ha = 17,100km, T ≈ 12 h) on 14 November 1971. Up until
27 October 1972, it sent back 7,329 photographs which completely changed
our understanding of Mars.

The two probes Viking-1 and -2, launched in August and September 1975,
also successfully accomplished their missions (see Fig. 15.1 upper left). For
each probe, there was an orbiter and a lander. The landers transmitted data
concerning the Martian atmosphere and surface over several Martian years.
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The next probe, 17 years after Viking, was the first not to be sent in
tandem. This was Mars Observer, launched on 25 September 1992, lost as it
was being placed in orbit around Mars.

The probe known as Mars Global Surveyor (MGS), launched on 7 Novem-
ber 1996, took with it many of the instruments designed for the previous
mission. It went into orbit around Mars after a 10 month journey to reach its
destination at 14 light-minutes from the Earth (Mars orbit insertion MOI).
The orbit of MGS was made circular by aerobraking (or air braking).3 It was
also the first Sun-synchronous Martian orbit. The instrument MOLA provided
a very accurate topographical study of Mars whose results will be used here.
The camera MOC took photographs with a resolution of a few meters on the
ground (see Fig. 15.1 lower left).

Launched on 4 December 1996, the probe Mars Pathfinder made an op-
portune soft-landing on 4 July 1997 and released the microrover Sojourner,
which subsequently investigated the immediate vicinity of the landing site.

The orbiter and lander of the Mars Surveyor-98 programme both failed.
Concerning the orbiter, the probe Mars Climate Orbiter, launched on 11 De-
cember 1998, was lost due to an erroneous correction to its trajectory on 23
September 1999, as it approached Mars. As for the lander, Mars Polar Lander
(MPL), launched on 3 January 1999, it went silent on 3 December 1999, just
as it arrived on Mars. Contact was lost with the probe and the two Deep
Space-2 penetrators.

The probe Mars Odyssey was launched on 7 April 2001 and reached Mars
on 24 October. The orbit was made circular by aerobraking and became Sun-
synchronous and operational on 30 January 2002. Mars Odyssey (2001, a space
odyssey to Mars!) mapped the distribution of chemical elements and minerals
on the Martian surface. It revealed the presence of large amounts of water ice
just a few centimeters beneath the surface in regions of high latitude (above
55◦N and 55◦S, see Figs. 15.14 and 15.16).

The two American probes known as Mars Exploration Rovers, MER-A
and -B, which left on 10 June and 8 July 2003, arrived on 4 and 25 Jan-
uary 2004, dropping the two rovers Spirit and Opportunity, each weighing in

3The probe, whose motion is mainly governed by the planetary attraction, goes into a
highly eccentric orbit with one focus at the center of the planet. To obtain a circular orbit,
one uses the drag of the planetary atmosphere on the spacecraft. The satellite loses energy,
mainly at the periastron, since this is where it moves most quickly and there is the most
atmosphere. The apoastron is thus reduced upon each revolution. This maneuver is known
as aerobraking. It has the disadvantage of being very slow. In fact it takes several months.
However, it is very economical in terms of energy. Since it does not require use of retro
rockets, there is no need to carry propellant. And it is well known that it costs a great deal
of propellant to take on extra propellant.

This technique was used for the three US missions in Sun-synchronous orbit: MGS
over 850 revolutions (and hence as many periastron passages), Mars Odyssey over 300
revolutions, and MRO over 425 revolutions. The first experiments with aerobraking were
made by Magellan around Venus, at the end of its mission in 1993, with a view to testing
the technique (see Chap. 16).



722 Chapter 15. Satellites of Mars



15.1 Presenting the Planet Mars 723

Fig. 15.1 :The images on these two pages show the improving accuracy of pictures

of Mars. Upper left: The volcano Olympus Mons. Image reconstructed numerically

from images obtained by the Viking orbiter. Altitudes are multiplied by a factor of

10. Credit: JPL/NASA. Lower left: Crater of diameter 2.3 km in the Schiaparelli

Basin. With the light coming from the left, the central layer seems to lie above

the others. The crater may have been filled with water in the remote Martian past.

However, another hypothesis is that these layers may have formed from deposits of

sand carried by the wind, as in a stratified dune. Image taken on 3 June 2003 by the

camera MOC aboard the MGS. Credit: Malin Space Science Systems (MOC), MGS,

JPL/NASA. Upper right: Sand cascades. These are not rows of poplar trees planted

in the Sahara! In the spring, near the Martian North Pole, the Sun’s rays sublime

a thin layer of carbon dioxide snow (CO2) which covers the dunes. These rays pass

through the transparent ice and heat it from the base. The carbon dioxide ice then

sublimes, producing geysers which drag up the underlying black sand. When it falls

back onto the surrounding ice, the relatively hot sand grains on the carbon dioxide

ice are as though in levitation in a phenomenon known as calefaction. They tumble

down the slightest slope in a cascade, leaving parallel dark tracks behind them. This

image was photographed using the HiRISE camera aboard MRO (25 cm/pixel, field

covered 1 km) in April 2008. Credit: HiRISE, MRO, LPL (University of Arizona),

NASA.
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at around 180kg. Designed to operate for a few months, both vehicles sig-
nificantly exceeded expectations, exploring plains, craters, and hills. Spirit
ceased to function on 30 March 2008 after having travelled 7 km, while Op-
portunity, successfully avoiding damaging intake of sand from the dunes and
other pitfalls, has gone on to cover a distance of 37 km in 9 years. In 2013,
Opportunity is exploring the flanks of the great crater Endeavour with its
diameter of 22 km, and will continue its route southward.

The probe Mars Reconnaissance Orbiter (MRO) was launched on 12 Au-
gust 2005 and arrived on 11 March 2006. Its orbit was circularised by aero-
braking and took its definitive Sun-synchronous, near-circular form with h ∼
300km. The camera HiRISE took extremely accurate photos [see Figs. 15.1
(upper right) and 15.33]. The mission brought much to our understanding of
the role played by water in Mars’ past, not to mention the climate in general.

In 2007, the mission known as Phoenix saw part of the MPL and MSP’01
missions rise from the ashes. Launched on 4 August 2007, the probe landed in
the high northern latitudes of the planet, on 25 May 2008, placing a lander at
a latitude of 68◦N. Phoenix arrived at the end of spring (solar longitude LS =
76◦, explained below) and operated until 2 November 2008 (LS = 151◦), before
the end of the northern Martian summer. Phoenix confirmed the presence of
water ice in the Martian ground at this location, using its mechanical arm
equipped with a spade to uncover the ice beneath a few centimeters of sand.
In 2010, the probe MRO formed an image of the Phoenix site. It was observed
that the station, which had spent several months under the carbon dioxide
ice, had lost a solar panel and was covered with dust.

The mission known as Mars Science Laboratory (MSL) includes a rover,
devoted to geology and climatology. Launched on 26 November 2011, the
probe arrived on Mars on 6 August 2012 and deployed4 the rover with great
accuracy (2 km error in distance and 1 s in time) at the chosen site.5 This six-
wheeled exploration vehicle called Curiosity has the size of a small car and a
mass of 890kg. It runs on a radioisotope thermoelectric generator (4.8 kg of
plutonium dioxide, PuO2, enriched with plutonium 238) which should ensure
a lifetime of at least one Martian year, and probably much longer.6 After a
year of operation, the scientific results have already been spectacular.

4The method selected for the final descent through the atmosphere and release of the
rover was new and highly technical (some said, very acrobatic and risky), using a retro
rocket and parachute for the last part of the maneuver.

5Of 30 sites proposed in 2006, only 4 were shortlisted. Then in July 2011, Gale Crater
was finally selected, at an altitude of −4.5 km. The images provided by MRO were used to
specify the exact landing site.

6The solar energy available on Mars was judged inadequate for this experiment. In
fact, the solar constant on Earth is CEarth

0 = 1,367Wm−2 (outside the atmosphere). If
aS = 1.524 a.u. is the semi-major axis of the Mars orbit, we find that the solar constant on
Mars (outside the atmosphere) is

CMars
0 = CEarth

0 a−2
S = 592Wm−2 .
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The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is dedi-
cated to the study of the upper Martian atmosphere and its interaction with
the solar wind, to understand how Mars may have lost most of its primordial
atmosphere. Launch is expected between 18 November and 7 December 2013,
with orbit insertion on 16 September 2014. The final orbit, inclined at 75◦

and elliptical with e = 0.46, will have a low periastron at hp = 150 km, with
five deep-dip overpasses planned at 125km.

Space Exploration: Europe and Other Nations

Europe has had only one mission, but it has been an enormous success.
The ESA probe Mars Express, launched on 2 June 2003, went into orbit on 25
December.7 The seven instruments aboard have perfectly fulfilled their many
missions of accurate photography and studies of minerals, the atmosphere,
and the interaction of the solar wind with the planet (see Fig. 15.20). Ten
years on, Mars Express is still sending back data.

Concerning the ExoMars-TGO programme, the ESA and NASA had
planned to join forces. In fact, ExoMars had been envisaged by the ESA
and the Trace Gas Orbiter (TGO) by NASA. However, NASA withdrew from
the project after committing itself to the programme. At the present time,
the ESA project is being carried out in collaboration with the Russian space
agency Roskosmos. In 2016, the TGO probe will drop a 600kg lander before
going into orbit, and in 2018, the ESA rover Exomars should be soft-landed
using a system that has been largely developed by the Russian team.

For the TGO, launch is planned for January 2016, with orbital insertion
on 19 October 2016. The orbit will be circularised by aerobraking, with h =
400km, i = 74◦. The choice of inclination results from a compromise: high
enough to be able to view the poles, but low enough to allow rapid local time
sampling,8 thanks to a high nodal precession rate (see Example 15.2).

Japan hoped to place its probe Nozomi (hope) in orbit, but failed.9 In
November 2013, India will launch the probe Mangalyaan (Mangala is the name
for the planet Mars in Sanskrit, and yaan means “vessel”). This should go
into a highly eccentric orbit around Mars, with hp = 372 km, ha = 80,000km.

Taking into account the eccentricity e = 0.0934 of the orbit, the Martian value of the

constant lies between a minimum at aphelion of CMars
0

[
aS(1 + e)

]−2
and a maximum at

perihelion of CMars
0

[
aS(1− e)

]−2
, implying a variation between 495 and 720Wm−2.

7Unfortunately, the lander Beagle-2 remained silent. The name Beagle given to this
ground laboratory can be understood from the note on Darwin.

8This increases the occurrences of sunrise and sunset, and by observing these, the at-
mospheric composition can be sounded in some detail.

9Launched on 3 July 1998, the Planet-B probe (Nozomi) was supposed to reach Mars on
11 October 1999, with the help of a Moon–Earth–Moon gravity assist maneuver. However,
this maneuver was not perfectly successful and the probe went into a heliocentric orbit.
There was still a chance that it could reach Mars in January 2004, 4 years behind schedule,
but this too was a failure.
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Launch Dates

These missions are launched at intervals of slightly more than 2 years
(26 months). Naturally, the trip from Earth to Mars is undertaken when the
conditions required for the journey are as short as possible, and the most eco-
nomical in terms of fuel. This happens when the two planets are in opposition,
i.e., when the Sun, Earth, and Mars are aligned, in that order. The time inter-
val between oppositions corresponds to the synodic period. With the values of
the periods given in Table 15.1, T = 1 for the Earth and T1 = 1.88 for Mars
(unit: Earth sidereal year), the synodic period T ′ is obtained from (8.44):

1

T ′ =
1

1
− 1

1.88
=

0.88

1.88
=⇒ T ′ =

1.88

0.88
= 2.135 ,

and hence,

T ′ = 2.135 yr = 780 d ≈ 2 yr 2 m . (15.1)

An approximate value is sufficient here, since the orbits of Earth and Mars are
not exactly concentric. We calculate more precisely that the interval between
two oppositions varies from 764 days (oppositions close to the aphelion of
Mars) to 810 days (oppositions close to the perihelion of Mars) owing to the
eccentricity of the orbit.

15.1.2 Geography of Mars

Topography

When discussing the Earth, we have shown maps of our beautiful planet
without specific indications. However, the geographical features of Mars are
much less familiar to the great majority of Earthlings. And what might those
features be in any case? On Mars, there is no division into land and sea, but
different regions do appear with differing degrees of lightness and darkness
through the telescope, depending on the albedo of the given terrain. The maps
presented here are topographical charts bearing no relation to the albedo. The
outlines are thus contours of constant altitude, plotted from data obtained by
the MOLA instrument aboard MGS, and processed by the MOLA/NASA
Science Team.

As on Earth, the zero meridian is chosen arbitrarily. It passes through the
small crater10 Airy-0, in homage to the “creator” of the Greenwich meridian.11

10In his 1877 map of Mars, the Italian astronomer Schiaparelli measured longitudes from a
meridian passing through a region which he considered characteristic and easily identifiable,
called Sinus Meridiani by Camille Flammarion. When Mariner-9 mapped Mars in 1972,
with a resolution of 1 km, a more precisely defined point had to be chosen in this region.
The choice of this small impact crater was made by the Mariner-9 Team. It is 500m across
and located in the crater Airy. The coordinates of Airy-0 are 5.2◦S, 0.0◦E.

11George Biddell Airy (1801–1892) was a British astronomer who studied diffraction rings
from the standpoint of astronomy, physics, and mathematics. As the seventh director of the
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Quantity Symbol Unit Mars Earth

Gravitational constant μ = GM m3 s−2 4.2828369 3.9860044
1013 1014

Equatorial radius R km 3,397.000 6,378.137
Flattening 1/f – 154.40915 298.25766
Equatorial circumference LP/equat km 21,343.980 40,075.012
Meridian circumference LM km 21,274.922 40,007.860
Acceleration (equatorial) g ms−2 3.7052 9.7803
Acceleration (45◦) g ms−2 3.7214 9.8061
Acceleration (pole) g ms−2 3.7376 9.8321
Gravitational potential J2 × 106 – 1,955.4513 1,082.6267
Gravitational potential J3 × 106 – +31.4559 −2.5327
Gravitational potential J4 × 106 – −15.3694 −1.6196
Ratio (frozen orbit) J3/J2 × 103 – +16.0863 −2.3394

Semi-major axis a a.u. 1.52366 1.00000
Period of revolution

sidereal Nsid day 686.9800 365.2564
tropical Ntro day 686.9725 365.2422
anomalistic Nano day 686.9951 365.2496

Angular speed Ω̇T × 105 rad s−1 7.088218 7.292115

Ω̇T
◦d−1 350.891983 360.985559

Period of rotation
sidereal Dsid h 24.622962 23.934471

s 88,642.663 86,164.090
mean solar day DM h 24.6598 24.0000

s 88,775.245 86,400.000

Inclination/ecliptic i deg 1.8496 –
Obliquity ε deg 25.19 23.44
Eccentricity e – 0.0930 0.01671

Table 15.1 :Geodetic and astronomical data for Mars and the Earth. For the units,

a dash means dimensionless.

The zero level of altitude was chosen in an even more arbitrary manner than
on Earth. Today, it is defined as the gravitational equipotential surface whose
mean value at the equator is equal to the mean radius determined by MOLA,
which implies an elevation of 2 km above the old zero level.

Royal Observatory at Greenwich, from 1835 to 1881, he considerably increased the impor-
tance of the institution when he established the meridian by means of a transit telescope
in 1850 and persuaded the whole country to adopt the local mean solar time at Greenwich
(GMT). In 1884, the Greenwich meridian was recognised internationally.
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The topographic map in Figs. 15.2 and 15.3 shows a very clear difference
of altitude between the northern and southern hemispheres. The huge impact
basin Hellas12 in the southern hemisphere is the site of the lowest point on
Mars, some 7,825m below the zero level. Near the equator, Olympus Mons
(21,183m) is the highest mountain in the Solar System13 (see Fig. 15.1 upper
left). To the south-east of Olympus Mons is the Tharsis region, known as the
Tharsis Bulge, with its alignment of three volcanoes (14–18km high), and a
little further east is the great scar of Valles Marineris.14 The poles are covered
by the ice caps.15

Geologically, the southern hemisphere, above the mean land level, is cov-
ered with large craters and composed of ancient landscapes, while the north-
ern hemisphere, several kilometers below the mean land level, features wide
plains under a layer of lava. In the equatorial region, the Tharsis Bulge is a
vast plateau at high altitude.

The caption to Fig. 15.2 indicates the locations of successful Mars missions.
They are situated in low-altitude regions which provide sufficient atmospheric
thickness to allow for aerobraking with parachutes.

Note on Latitudes

Here on Earth, the historical determination of the latitude using the local
vertical led us to distinguish geographical and geocentric latitude. On Mars,
the precise determination of the latitude dates back only to the space age, and
in principle we consider only the latitude determined by satellites, which is the
geocentric, or perhaps we should say planetocentric or areocentric latitude.

12At the end of the nineteenth century, names were attributed on the basis of an Earthly
design. Certain dark areas seemed to evoke the shape of the Mediterranean, whereupon
Greece or the Gulf of Syrtis were placed there. Naturally, north and south were swapped,
an artefact of telescopic vision! The astronomer Giovanni Schiaparelli may be considered as
the father of the current Martian nomenclature, thanks to intensive observations he carried
out from 1877. He borrowed names from ancient history and classical mythology. The
International Astronomical Union (IAU) unified the various appellations. They comprise
two Latin nouns, a generic noun such as mons for “mount”, and a proper noun such as
Olympus. This gives names like Olympus Mons, Mare Tyrrhenum, and Hellas Planitia.
Valles Marineris is the valley discovered by Mariner-9.

13This volcano has a circular base with diameter 650 km. It has a very distinct caldera,
40 km wide and 4 km deep. There is a difference of height of 23 km, since its base is at an
altitude of about −2,000m. It is now inactive, like all Martian volcanoes, but the small
number of impacts on its surface indicate that it was active in the geologically recent past.
The volume of Olympus Mons is about a hundred times greater than the biggest terrestrial
volcano. Eruptions of fluid lava have created an enormous volcanic shield over very long
geological periods. This volcano, like the three others of the Tharsis region, has remained
in the same position with respect to the source of the magma. This great stability tends to
prove that tectonic activity is low or non-existent on Mars.

14The Mariner valleys constitute a system of several parallel canyons, about 5,000 km
long. The greatest of them is 6 km deep over a width of about 200 km.

15The two poles are covered by a polar deposit of radius several hundred kilometers. These
are undoubtedly made up of sediments and water ice. The whole thing is then covered over
with a permanent cap of water ice in the case of the North Pole and frozen carbon dioxide
(CO2) at the South Pole. On top of this, a carbon dioxide ice layer condenses seasonally,
in the Martian winter, to sublime in summer.
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Fig. 15.2 :Topographical chart of the planet Mars, compiled from data gathered by the

MOLA instrument aboard MGS (processed by the MOLA/NASA Science Team).

Contours: steps of 2.5 km. Altitude 0 in bold, negative altitudes dashed. MOLA

data is used here in a downgraded mode, with grid 2◦ for greater clarity. Geodetic

grid: graticule 10◦ in latitude and longitude. Upper: Polar stereographic projection

(North Pole on the right and South Pole on the left). Lower: Equatorial Mercator

projection. The highest point is Olympus Mons (18◦N, 225◦E). To the south-east is

the Tharsis Bulge, a high region encompassing a line of three volcanoes: Ascraeus

Mons (12◦N, 254◦E), Pavonis Mons (0◦, 247◦E), and Arsia Mons (9◦S, 239◦E).
It is bordered by Valles Marineris, stretching from 5◦S, 265◦E to 15◦S, 310◦E. To
the north of this region is Alba Patera (42◦N, 252◦E). The main impact basins are

Hellas (45◦S, 70◦E), Argyre (50◦S, 320◦E), Isidis (12◦N, 88◦E), and Utopia (45◦N,

110◦E). Locations of successful missions: Viking-1 (22.48◦N, 312.06◦E), Viking-

2 (47.97◦N, 134.29◦E), Pathfinder (19.17◦N, 326.79◦E), MER-A/Spirit (14.57◦S,
175.47◦E), MER-B/Opportunity (1.95◦S, 354.47◦E), Phoenix (68.21◦N, 234.25◦E),
and MSL/Curiosity (4.59◦S, 137.44◦E).
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Fig. 15.3 :Using MOLA data through October of 2000, the Science Team produced

this very high resolution topographic shaded relief map of Mars. The map has a

resolution 0.125◦ and is shown as a Mercator projection to latitude 70◦ north and

south. The polar regions are shown in stereographic projection with the North Pole

on the right and the South Pole on the left. Credit: MOLA/NASA Science Team.

However, in the (magnificent) maps of Mars drawn up by the US Geolog-
ical Survey (USGS), there is a choice between two different grids, depending
on whether one is using areocentric (planetocentric) latitudes or areographic
(planetographic) latitudes. The difference between the two is maximal for
45◦ N or S, where it is equal to δϕ = 0.337◦, which corresponds to 20.0 km on
the ground [see (2.4) and (2.5)]. In this chapter, we shall use only areocentric
latitudes for Mars.

Martian Atmosphere

The space missions brought us our first real insight into the atmosphere of
Mars, first with the radio occultations of Mariner-4 and Mariner-9, then with
the landers Viking-1 and -2.

The main components of the atmosphere are, in mole fractions: car-
bon dioxide CO2 (0.95), dinitrogen N2 (0.03), argon A (0.02), water H2O
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(< 0.0005). The average pressure at the surface is 6 hPa. Due to the con-
densation of carbon dioxide gas at the polar caps, the atmospheric pressure
varies by up to 30% with the seasons. There are thus seasons on Mars, and
an atmospheric circulation similar to the circulation on Earth (generally with
one large Hadley cell). There are also depressions and anticyclones, hurricanes
and tornadoes, and the atmosphere is full of dust. Storms are frequent and in
some cases global, enveloping the whole planet in an orange veil.

The Mars missions have greatly refined our scientific understanding and
have been used to develop general circulation models (MGCM for NASA,
GCM for the LMD in Europe). Conversely, by improving these models, future
missions can be better prepared, especially those making use of aerobraking.

15.2 Geodetic and Astronomical Quantities

15.2.1 Geodetic Data

To study the true (perturbed) motion of a satellite, geodetic characteristics
of the planet must be brought into consideration, in particular, higher terms in
the expansion of the attractive potential. To characterise specific orbits, e.g.,
stationary or Sun-synchronous, and study instrument sampling, astronomical
features such as the periods of planetary motions, eccentricity, and obliquity
are required.

Table 15.1 provides geodetic16 and astronomical data for Mars, comparing
them with the same data for the Earth. Table 15.2 shows how the evaluation
of the gravitational constant μ has evolved, from the first estimated values
obtained following the discovery of Phobos and Deimos to the Goddard Mar-
tian Model (GMM) which makes use of MGS observations. The latest models
are GMM-3, also called MGM1025 (degree 80 and order 80), see Table 15.3,
and JGM85F01, also called MGS85F (degree 85 and order 85).17

16When Mars replaces the Earth as attractive center, we sometimes use the prefix “areo”
instead of “geo”, but certain terms such as “geophysics”, “geodesy”, and “geography” are
generally retained for all planets. There are exceptions, however.

17The Mars Global Surveyor Gravity Science Team at JPL under the direction of William
L. Sjogren provides details which give a good idea of the methods used to set up geopotential
models. MGS85F is a 85 × 85 spherical harmonic model derived from radio tracking of:
Mariner 9 (1971-11-14 to 1972-04-14), Viking Orbiter 1 (1976-06-21 to 1978-11-18), Viking
Orbiter 2 (1977-03-02 to 1978-07-25), MGS Science Phasing Orbit 1 and 2 (SPO1 and SPO2)
(1998-03-28 to 1998-09-23), MGS Gravity Calibration Orbit (GCO) (1999-02-02 to 1999-
03-29), MGS Mapping (MAP) (1999-03-29 to 2001-08-14). The radio tracking data blocks
consist of: Mariner 9 with 47,597 observations; Viking Orbiter 1 with 67,545 observations;
Viking Orbiter 2 with 70,677 observations; SPO1 and SPO2 at 177 km periapsis with 134,072
observations; GCO at 370 km periapsis with 145,777 observations; MAP at 370 km periapsis
with 2,102,977 observations.
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Method Year μ (km3 s−2) Error

Phobos, Deimos (Hall) 1878 42,900 ±70

Mariner-4 1969 42,828.32 ±0.13
Mariner-6 1970 42,828.22 ±1.83
Mariner-9 1973 42,828.35 ±0.55
MGS/GMM-1 1993 42,828.3580 ±0.0512
MGS/GMM-2B 2000 42,828.371901 ±0.000074
MGS/GMM-3 [MGM1025] 2001 42,828.369774 ±0.000060
MGS+/JGM85F01 2002 42,828.376383 –

Table 15.2 :Measured areocentric gravitational constant μ = GM and estimated er-

ror. Historical evolution with method used and year.

Zonal coefficient Other coefficients (C) Other coefficients (S)

C∗
20 −874.504415509 C∗

22 −84.585751018 S∗
22 48.905551076

C∗
30 −11.889205542 C∗

31 3.800729164 S∗
31 25.155150744

C∗
40 5.123138995 C∗

32 −15.933741664 S∗
32 8.353919240

C∗
50 −1.724618348 C∗

33 35.023491712 S∗
33 25.551471727

C∗
60 1.344241356

Table 15.3 :The model GMM-3 (known as MGM1025). Normalised zonal coefficients

C∗
l0 and other normalised coefficients C∗

lm and S∗
lm. All values should be multiplied

by 10−6. Note also that C∗
00 = 1 and the coefficients S∗

00, C
∗
10, S

∗
10, C

∗
11, and S∗

11 are

zero.

Different Radii of the Ellipsoid

Figure 15.4 shows the radii of the ellipsoid at different latitudes, as we did
for the Earth ellipsoid in Chap. 2 (see Fig. 2.3). Note the ranges of variation
from the equator to the pole (all monotonic in [0, π/2]):

• The radius of curvature ρ varies between 3,353.143 and 3,419.143km.
• The great normal N varies between 3,397.000 and 3,419.143km.
• The radius of the ellipse Rψ varies between 3,397.000 and 3,375.000km.

15.2.2 Astronomical Data

To carry out this study for Mars, we repeat the calculations made for the
Earth, without change of notation. For example, the angular speed of Mars
in its orbit around the Sun and in its rotation about the polar axis will be
denoted by Ω̇S and Ω̇T, respectively. In place of (7.21) and (7.26), we obtain

Ω̇S = 0.5240384◦d−1 , (15.2)

Ω̇T = 350.89198266◦d−1 . (15.3)
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Fig. 15.4 :Different radii of the Mars ellipsoid: radius of curvature ρ in the meridian

plane, the great normal N , and the radius of the ellipsoid Rψ.

The word “day” refers to the unit of time equal to 86,400 s. As the mean day
on Earth lasts 1 day, it is better to find another name for the Martian day.
The mean solar day on Mars is traditionally called a sol. We then have

DM = 1 sol = 1.02749127 day

= 24h 37m 22.663 s . (15.4)

It is useful to express the tropical year in sols, since it concerns the recurrence
of the seasons and also the sidereal year:

Ntro = 668.5921 sol , Nsid = 668.5991 sol . (15.5)

15.2.3 Areocentric Longitude and Martian Day

True Anomaly and Mean Anomaly

To determine a given day on Mars, i.e., specify the position of the planet
on its heliocentric orbit, we do not use the day of the month, and even less
so a saint on the calendar, as on Earth. We consider the ecliptic longitude l,
defined in ecliptic coordinates in Chap. 7. It only differs from the true anomaly
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Fig. 15.5 :Relation between period and altitude.

v by choice of origin. The origin for l is the vernal equinox18 and for Mars it
is traditional to denote this angle l by LS. It is called the areocentric solar
longitude, or areocentric longitude for short.

Hence, on Mars, the “date” LS is specified by the true anomaly with the
spring equinox as origin, whereas on Earth, it is specified by the mean anomaly
with 1 January as origin. The true anomaly v has its origin at the perihelion
(periastron). The solar longitude of the perihelion LSp is

LSp = 251.0◦ . (15.6)

The mean anomalyM also has its origin at the perihelion, and we shall denote
it by MS when the origin is at the vernal equinox. Its value at the perihelion

18The orbit of Mars is itself subject to a precession of the equinoxes. This motion is
slower than it is for the Earth, being 7′′.51 per Earth year, or one round trip in 173 kyr
(kilo year). For Mars, only the Sun contributes to this precession, whereas on Earth, not
only is the Sun’s effect greater, but one must add the even more significant contribution due
to the Moon, as we have already seen. The perihelion is also subject to apsidal precessional
motion in a prograde direction. The combination of the two motions specifies the climatic
precession, which has a cycle of about 55 kyr. There is a fundamental difference between the
theory of paleoclimates on the Earth and on Mars. In the case of the Earth, the inclination
remains in a narrow range (obliquity between 22◦ and 25◦), while it varies significantly and
chaotically on Mars, between 0◦ and 60◦ (between 15◦ and 45◦ over the last 10 million
years).
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is then denoted by MSp. We have the relations

v = LS − LSp , (15.7)

M = MS −MSp . (15.8)

Recall that the mean anomaly M is obtained from the true anomaly v
analytically, but that the converse problem of obtaining the true anomaly
v from the mean anomaly M requires us to solve the Kepler problem:

v �−→ M : M = M(v) by (4.59) ,

M �−→ v : v = v(E) , E = E(M) by iteration (4.85) .

To calculate MSp, we first determine the true anomaly vγ at the vernal
equinox, noting that this is not of course the same point γ as for the spring
equinox on Earth:

vγ = LSγ − LSp = 0− LSp = 360− 251.0 = 109.0 [mod 360] , (15.9)

where LSγ is the areocentric longitude of the vernal equinox, which is zero by
definition of LS.

From (4.59), we obtain the mean anomaly Mγ of the vernal equinox ana-
lytically:

Mγ = M(vγ) = M(109.00) = 98.66 [mod 360] . (15.10)

Then, changing origin, we determine MSp from

MSp = MSγ −M(vγ) = 0−M(vγ) = 360− 98.66 = 261.34 [mod 360] ,
(15.11)

whereMSγ is the value ofMS at the vernal equinox, which is zero by definition
of MS.

Conversely, starting with MSp = 98.66◦, we obtain v = 109.00◦ by solving
the Kepler problem (see Example 4.4).

To be more precise, note that the perihelion has a slow precessional mo-
tion relative to the vernal equinox. This is called climatic precession [see in
particular (6.142)], with a cycle of around 55 kyr (where 1 kyr = 1,000 year).
The longitude LS of the perihelion thus varies slightly over time. If A is the
year number in the Gregorian calendar, then LSp is given in degrees by

LSp = 250.999 + 0.00645(A− 2000) . (15.12)

Calculating MSp, we find

MSp = 261.342 + 0.00677(A− 2000) . (15.13)

For example, for the year 2014, LSp = 251.09◦ and MSp = 261.44◦.
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Relation Between Longitude and Day

Day Obtained from the Areocentric Longitude. The day D (zero at
the vernal equinox) is obtained from the mean anomaly by

D =
Ntro

360
MS . (15.14)

We obtain the day in days (Dd) or in sols (Ds) depending on whether Ntro is
expressed in days or in sols. In the following, we will give the Martian days
in sols. Using the relations between angles discussed above and the relation
(4.59), we obtain Ds from LS by

Ds = Dsp +
Ntro

360

[
2 arctan

(√
1− e

1 + e
tan

LS − LSp

2

)

− 180

π

e
√
1− e2 sin(LS − LSp)

1 + e cos(LS − LSp)

]
[mod Ntro] ,

(15.15)

where

Ntro

360
= 1.85720 , Dsp =

Ntro

360
Msp = 485.36 . (15.16)

The values of the angles and days19 are given in Table 15.4 and Fig. 15.6.
The table also shows the reduced distance r/a, the distance to the Sun

divided by the semi-major axis of the orbit, and the eccentric anomaly E,
which are related by (4.64), together with the quantity

ECS = LS −MS , (15.17)

comparable with the equation of center EC = v − M , defined in Chap. 4 by
(4.90). The two angular differences ECS and EC only differ by a constant: ECS

vanishes at the vernal equinox and EC at the perihelion.
The extreme values of ECS are:

• maximum ECS = +0.35◦ for LS = 94.01 + LSp = 344.99◦,
• minimum ECS = −21.05◦ for LS = 259.99 + LSp − 360 = 156.97◦.

The amplitude of the variation is (21.05 + 0.35)/2 = 10.70◦. According to
(4.98), this value, expressed in radians as (π/180)10.70 = 0.1868, corresponds
to twice the eccentricity e = 0.0934 of the orbit of Mars.

Areocentric Longitude Obtained from the Day. Knowing the day Ds,
we can calculate the difference with the day of passage at perigee. This differ-
ence Ds −Dsp gives the difference in mean anomaly MS −MSp. By iteration

19Concerning the calculation of Ds using (15.15), the object in square brackets must be
expressed in degrees, since it multiplies Ntro/360. Note also that, since LS = 0 implies
Ds = 0, the value of Dsp can be found from (15.15) without using (15.16).



LS MS ECS Dd Ds v E M r/a

(deg) (deg) (deg) (day) (sol) (deg) (deg) (deg)

0.0 0.0 0.0 0.0 0.0 109.0 103.9 98.7 1.0224
10.0 10.7 −0.7 20.4 19.8 119.0 114.2 109.3 1.0383
20.0 21.7 −1.7 41.3 40.2 129.0 124.7 120.3 1.0532
30.0 32.9 −2.9 62.9 61.2 139.0 135.4 131.6 1.0665
40.0 44.5 −4.5 84.9 82.6 149.0 146.1 143.2 1.0776
50.0 56.2 −6.2 107.3 104.5 159.0 157.0 154.9 1.0860
60.0 68.2 −8.2 130.1 126.6 169.0 167.9 166.8 1.0913
70.0 80.1 −10.1 152.9 148.8 179.0 178.9 178.8 1.0934
80.0 92.1 −12.1 175.8 171.1 189.0 189.9 190.8 1.0920

90.0 104.1 −14.1 198.6 193.3 199.0 200.8 202.8 1.0873
100.0 115.9 −15.9 221.1 215.2 209.0 211.7 214.5 1.0794
110.0 127.5 −17.5 243.2 236.7 219.0 222.5 226.1 1.0688
120.0 138.8 −18.8 264.9 257.8 229.0 233.2 237.5 1.0560
130.0 149.8 −19.8 285.9 278.3 239.0 243.7 248.5 1.0413
140.0 160.6 −20.6 306.4 298.2 249.0 254.1 259.3 1.0256
150.0 171.0 −21.0 326.3 317.5 259.0 264.3 269.7 1.0092
160.0 181.0 −21.0 345.5 336.2 269.0 274.4 279.7 0.9929
170.0 190.8 −20.8 364.1 354.3 279.0 284.3 289.5 0.9770

180.0 200.2 −20.2 382.1 371.8 289.0 294.0 298.9 0.9620
190.0 209.4 −19.4 399.6 388.9 299.0 303.6 308.1 0.9483
200.0 218.3 −18.3 416.6 405.4 309.0 313.1 317.0 0.9362
210.0 227.0 −17.0 433.2 421.6 319.0 322.4 325.7 0.9260
220.0 235.5 −15.5 449.5 437.4 329.0 331.7 334.2 0.9178
230.0 243.9 −13.9 465.5 453.0 339.0 340.9 342.6 0.9118
240.0 252.2 −12.2 481.4 468.5 349.0 350.0 350.9 0.9080
250.0 260.5 −10.5 497.1 483.8 359.0 359.1 359.2 0.9066
260.0 268.8 −8.8 512.9 499.2 9.0 8.2 7.5 0.9076

270.0 277.1 −7.1 528.7 514.6 19.0 17.3 15.8 0.9108
280.0 285.5 −5.5 544.7 530.1 29.0 26.5 24.1 0.9164
290.0 294.0 −4.0 560.9 545.9 39.0 35.8 32.6 0.9242
300.0 302.6 −2.6 577.5 562.0 49.0 45.1 41.3 0.9341
310.0 311.5 −1.5 594.4 578.5 59.0 54.5 50.2 0.9458
320.0 320.6 −0.6 611.8 595.4 69.0 64.1 59.3 0.9592
330.0 330.0 0.0 629.7 612.9 79.0 73.8 68.7 0.9740
340.0 339.7 0.3 648.2 630.8 89.0 83.7 78.3 0.9897
350.0 349.7 0.3 667.3 649.4 99.0 93.7 88.3 1.0060

360.0 360.0 0.0 687.0 668.6 109.0 103.9 98.7 1.0224

Table 15.4 :Correspondence between areocentric longitude LS and the day (expressed

in days or in sols). The passage at periastron occurs for LS = LSp = 251.0◦, and
at apoastron for LS = LSa = LSp − 180 = 71.0◦ (minimum and maximum of the

reduced distance r/a, respectively). The areocentric longitude LS, the mean anomaly

MS, and hence the days D, have their origin at the vernal equinox. The anomalies

v, E, and M have their origin at the perihelion passage. The difference LS −MS is

the equation of center ECS.
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109°

SpE

SuS

AuE

WiS

PERAPO

LS v M Ds

SpE 0 109.0 98.7 0
SuS 90 199.0 202.8 193.3
AuE 180 289.0 298.9 371.8
WiS 270 19.0 15.8 514.6

PER 251.0 0.0 0.0 485.3
APO 71.0 180.0 180.0 151.0

Fig. 15.6 :Orbit of Mars around the

Sun (to scale). Relative position

of the perihelion PER and the

northern spring equinox SpE. The

straight lines SpE–AuE between

the spring and autumn equinoxes

and SuS–WiS between the summer

and winter solstices are orthogonal.

Abbreviations LS, v,M,Ds are ex-

plained in the text.

(Kepler’s problem), we obtain the true anomaly v, and this in turn gives the
areocentric longitude LS = v + LSp.

Note. Relation with the Date on Earth. To find the longitude LS from
the date expressed in the form D = (year month day hour), it is convenient to
begin by transforming the date D into a Julian date denoted by JD. We cal-
culate the difference with a date JD0, known as the time of passage of Mars
at the vernal equinox. We can take

D = 31 July 2013 �−→ JD0 = 2,456,505.1 =⇒ LS = 0 .

This differences gives

Dd = JD − JD0 [mod Ntro] .

All these quantities are in Earth days.
We can go from Dd to Ds (in sol) using the coefficient given by (15.4) and

we obtain LS as indicated above.

Example 15.1 Calculate the solar areocentric longitude for the date 20
December 2012 at 20:12.

� The date D = 2012 12 20 20:12 gives JD = 2, 456, 282.3. Taking the zero
value JD0 discussed above, we obtain

Dd = JD− JD0 = −222.1 [mod 686.97] = 464.2 .

We obtain MS from (15.14):
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MS = 360× Dd

Ntro(d)
= 360× 464.2

686.97
= 243.3 .

whence

M = MS −MSp = 243.3− 261.4 = 341.8 [mod 360] .

Then M gives v by solving the Kepler problem. We find v = 338.1. We
subsequently obtain the solar longitude LS from

LS = v + LSp = 338.1 + 251.1 = 229.2 [mod 360] ,

as required. �

Definition of the Seasons

A season is the length of time corresponding to an interval of solar longi-
tude equal to 90◦, starting from the vernal equinox. The seasons are named
as on Earth, e.g., the northern spring or southern autumn corresponds to LS

between 0◦ and 90◦, etc. On Mars, the lengths of the seasons are not the
same as on Earth, but the differences in their lengths are greater than on
Earth: 193 sols for the spring, 143 sols for the autumn. The precise length of
the seasons is given in the table associated with Fig. 15.7.

It is sometimes useful to define the month in the same way, by an interval
of 30◦ in the solar longitude, starting from the vernal equinox. (No name is
attributed to these months, apart from the bounding values of LS.) Table 15.4
can be used to calculate the length of these months. The shortest (LS: 240–
270◦) lasts 46.1 sols, while the longest (LS: 60–90

◦) lasts 66.7 sols, i.e., 45%
longer. These correspond to the passages at perihelion and aphelion, respec-
tively, illustrating Kepler’s second law. The passage at perihelion occurs at
the end of the northern autumn.

The exact equivalent on Earth of this division into 12 months is the par-
titioning of the year into 12 signs of the zodiac.20 This note should in no way
be interpreted as an advertisement for astrology!

15.2.4 Declination

When considering the Sun and the Earth in Chap. 7 [see Fig. 7.10 and
(7.62)], we have already calculated the declination, expressing it as a function
of the solar longitude. With the notation used there, we can write

sin δ = sinLS sin ε . (15.18)

20For the Earth, the shortest of these signs (l : 270–300◦) is the one containing the passage
at perihelion (l = 282◦), which lasts 29.45 days. The longest (l : 90–120◦) lasts 31.45 days,
i.e., 7% longer.
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Fig. 15.7 :Graph of the declination δ as a function of the areocentric solar longitude

LS. Table: Particular values of δ, with corresponding values of LS in degrees and

the date D in sol. The obliquity of Mars is ε = 25.19◦. Note the unequal lengths of

the seasons (in sols). The seasons indicated are those in the northern hemisphere.
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The declination is thus very simply obtained as a function of LS :

δ = arcsin(0.42562 sinLS) . (15.19)

The graph of the function is plotted in Fig. 15.7, which also shows key values
of the declination.

Calculations to find the sunrise and sunset are strictly identical to those
for the Earth, provided, that we continue to ignore atmospheric refraction. We
also define specific parallels on Mars: polar circles (64◦49′N and S) and tropics
(25◦11′N and S), at slightly different values to their terrestrial counterparts.

15.2.5 Equation of Time

In Chap. 7, we discussed the definition of the equation of time ET, the
sum of the equation of center EC and the reduction to the equator ER. To
express the equation of center EC = v−M , let us return to (4.96) and (4.97).
Stopping at the first order, we can replace E by v in the argument of the sine
to obtain {

v − E ≈ e sin v ,
E −M ≈ e sin v ,

(15.20)

which gives

v −M ≈ 2e sinv , (15.21)

whence (15.7) implies that

EC ≈ 2e sin(LS − LSp) . (15.22)

The expression for the reduction to the equator ER = α− l defined by (7.52)
is obtained directly from (7.51). Using the areocentric solar longitude, this
gives

ER ≈ − tan2
ε

2
sin 2LS . (15.23)

The equation of time is then

ET = 2e sin(LS − LSp)− tan2
ε

2
sin 2LS . (15.24)

To express ET in minutes, we convert radians into minutes of time: 2π rad is
equivalent to 1 sol, or 1,479.6min. Expressing LS in degrees, we end up with

ET [min] = 43.92 sin(LS − 251)− 11.74 sin2LS . (15.25)
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The graph of the function ET is plotted in Fig. 15.8, with the graphs for EC

and ER. Significant values of the equation of time are given in the associated
tables.

Of course, as on the Earth, EC has an annual period and ER a period
of half the length. However, on Mars, the amplitude of EC is four times the
amplitude of ER, and ET reaches large values (with a maximum of 53min).
Recall here that ET = LMT− LAT.

Expressions for the Declination and the Equation of Time.To end this
section, note that the expressions for the declination and the equation of time
are simpler for Mars than they are for the Earth. This happens because, for
Mars, we use LS as the variable, which amounts to using the true anomaly,
specifying the position of the Sun directly. For the Earth, we use the day,
related to the mean anomaly, which is only indirectly related to the position
of the Sun.

15.3 Satellite in Real Orbit

15.3.1 Satellite in Keplerian Orbit

It is no simple matter to put a satellite in orbit around Mars. However,
when the probe, launched from Earth, is captured by the Martian gravitational
attraction, and if it is captured without simply crashing into the surface of
the planet, in other words, once Mars has become the attractive center of the
satellite’s orbit, its motion can be determined in exactly the same way as all
the motions we have been discussing up to now with the Earth as the central
attracting body. In order to study the Keplerian motion of a given satellite,
with semi-major axis a, we need only replace the geocentric gravitational
constant μ = GMEarth by the areocentric gravitational constant μ = GMMars,
as given in Table 15.1.

Given the radius of the planet, we use (5.5) and (5.6) to define the periods
T0 and T0(h=0). This yields

T0(h=0) = 100.15min , (15.26)

and T0 is obtained as a function of η = a/R or h = a − R using (5.8). We
have indicated certain orbits (LMO and SMO) on the graph of this function
in Fig. 15.5. Their significance will be discussed below. This figure could be
compared with Fig. 5.2.

15.3.2 Perturbative Accelerations

The only difference in the calculation of the Keplerian orbit for the Earth
and for Mars is the value of μ, as noted above. For the true orbit, perturbing
terms must be taken into account, and these are of the same kind for Mars
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Fig. 15.8 :Graph of the equation of time ET, sum of the equation of center EC and

the reduction to the equator ER, as a function of the areocentric solar longitude LS.

Table: Particular values of ET, with corresponding values of LS in degrees, and of

the date D in sols. Minutes (min) used for ET, EC, and ER are minutes of 60 s

(1 sol = 1,479.6min).
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as for Earth. Figure 15.9 shows the various accelerations affecting the motion
as a function of the distance r from the satellite to the center of the planet.
This corresponds to Fig. 6.1 for the Earth. The notation for the accelerations
is the same as in Table 6.1.

Conservative Forces

The central acceleration γCCC has slope p = −2 on a log–log scale. Like-
wise, the acceleration due to the term in J2 and those due to the following
terms J4, J6, and so on, follow the same pattern as their counterparts for the
Earth, i.e., p = −4 for γCCN.J2, p = −6 for γCCN.J4, etc. At the origin h = 0,
numerical values are

γCCC(R) = g(R) = g0 = 3.73ms−2 ,

γCCN.J2(R) = 7.4× 10−3ms−2 , γCCN.J4(R) = 1.2× 10−4ms−2 .

The lunisolar attraction on a terrestrial satellite is simply replaced here by the
solar attraction, which is weaker than on Earth. As for the Earth, its value is
obtained from (6.151). The slope of the curve is p = +1 and its value at the
origin is

γCS(R) = 2
μS

a3S
R = 8× 10−8ms−2 ,

where aS is the semi-major axis of the heliocentric orbit of Mars.
Tidal effects on the satellite are due to land tides caused by the Sun, which

are much less marked than on Earth. The relativistic effect γCR, with slope
p = −3, is calculated in the same way as for the Earth.

Dissipative Forces

Solar radiation pressure is only half the value on Mars as compared with
the Earth (term going as a−2

S ). The albedo effect depends on the region over-
flown. The albedo of Mars is rather low (mean value 0.22). The effect of drag
due to the Martian atmosphere is less than on Earth for the same reduced
altitude, because the atmosphere on Mars is less dense and the thermosphere
is cooler.

Note on Atmospheric Drag

Atmospheric models have been made for Mars, such as the Mars Climate
Database (MCD) made by the Laboratoire de Météorologie Dynamique (LMD,
Paris), which gives the atmospheric density in the form discussed in Chap. 6,
with the relation (6.112):

ρi(h, τLMT, D, ψ) , i = 1, 2, . . . , n , (15.27)

where the subscript i runs over a multitude of different scenarios, such as
typical year, global storm, etc.
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The drag force, modifications of the orbital elements, or ΔV are calcu-
lated in the same way as for the Earth. The simplified relation (6.129) giving
ΔV for eccentric orbits is particularly relevant for Mars, where aerobraking
has been used for several missions and will no doubt be used again in the fu-
ture. It applies whenever the eccentricity is greater than some limiting value,
calculating using (6.131).

If we set the condition Δteff/T < 0.1, with H = 8km, a = 4,000 km, we
obtain the constant

e > 0.03 ⇐⇒ equation (6.129) is applicable .

15.3.3 Secular Variation of Orbital Elements

We use the theory of perturbations to determine the evolution of the six
orbital elements of the satellite. We showed in Chap. 6 that the three met-
ric elements a, e, and i remained constant, ignoring short- and long-period
periodic variations. The secular variation of the angular elements is given by
(7.1) or (7.4) for Ω̇, (7.2) or (7.13) for ω̇, and (7.3) for Ṁ , as a function of
the inclination i and the semi-major axis a of the orbit.

The periodic variations can be expressed with the help of the coefficient
K0 defined by (7.7). For Mars, this coefficient can be expressed as follows,
depending on the units used:

K0 = 3.07484× 10−6 rad s−1 , (15.28)

K0 = 15.222◦day−1 , (15.29)

K0 = 15.640◦sol−1 , (15.30)

K0 = 29.047 rev(Martian yr)−1 . (15.31)

For given values of i and a, the precession rates are higher on Mars than on
Earth because of the value of the J2 term, which is twice as great.

The unit for calculations is rad/s, but in graphs showing these quantities
as a function of the inclination, we have used units of deg/sol. The nodal
precession rate Ω̇ shown in Fig. 15.10 (upper) has a maximum of 15.6◦sol−1 for
a = R and i = 0◦ or 180◦. Under the same conditions, the apsidal precession
rate ω̇ shown in Fig. 15.10 (lower) has a maximal value of 31.2◦sol−1. The
value of the critical inclination is independent of the attracting planet.

Example 15.2 Calculate the nodal precession rate for the satellite ExoMars-
TGO.

� The satellite ExoMars-TGO has a circular orbit with h = 400km and
inclination i = 74◦ (see Fig. 15.21 lower). We find a = 3,788 km, η = a/R =
1.11512. Applying (7.4), we obtain
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Ω̇ = −5.6951× 10−7 rad s−1 .

Converting units, this means that Ω̇ = −2.90◦sol−1. We can also obtain the
result from Fig. 15.10 (upper), where we read off the value directly. Apply-
ing (10.2), we obtain CS = −104.8 for the cycle relative to the Sun, which
means that, every 105 sols, we find the same local overpass time. The 24 local
hours are thus sampled more than six times every Martian year. Recurrence
characteristics, Table 15.8. �

Example 15.3 Calculate the nodal and apsidal precession rates for the satel-
lite MAVEN.

� The orbital characteristics of MAVEN are as follows:

a = 6, 578 km , e = 0.4608 , i = 75◦ .

This satellite is thus in an elliptical orbit with rather low periastron given
by hp = 150km (see Fig. 15.21 upper). The nodal precession will thus
sweep through all local times. Precession rates are calculated using the
general formulas (7.15) and (7.16). For the nodal precession rate, we find
Ω̇ = −0.825◦/sol, which gives a (retrograde) cycle relative to the Sun of
306 sols. For the apsidal precession rate, we find ω̇ = −0.639◦/sol, so the peri-
astron makes one round trip (in the retrograde sense) in 436 sols, or 1.5 round
trips per Martian year. �

15.4 Different Orbits

The classification criteria are the same as for terrestrial satellites. The
orbit can be prograde or retrograde. It can be Sun-synchronous, recurrent,
or frozen, or none of these. In terms of altitude, we speak of high orbits for
areostationary satellites, or stationary Mars orbit (SMO), while a low orbit is
one flying below 800km, a low Mars orbit (LMO). Here we shall be interested
in the two types of orbit discussed in Chap. 7, i.e., planetosynchronous and
Sun-synchronous.

15.4.1 Areosynchronous Satellite

Areostationary Satellite

We define an areosynchronous satellite by n = Ω̇T, and an areostationary
satellite by adjoining the condition i = 0. Considering the mean Keplerian
motion, we obtain

a30 =
μ

Ω̇2
T

= 8.524274× 1021 ,

a0 = 20,427.694 km , h0 = 17,031 km .
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Bringing the J2 term into the calculation of the period, we obtain the value
a1, which is slightly bigger than a0. In the case of a stationary satellite for
Mars, the perturbing acceleration due to the term in J2 is 13 times greater
than that due to the Sun, as can be seen from Fig. 15.9. Recall that this is
not so for a terrestrial stationary satellite, where the lunisolar perturbation is
greater than that due to J2. We shall take this value a1 to be the one for an
areostationary satellite, denoting it by aGS :

aGS = 20,428.500 km , hGS = 17,031.5 km , (15.32)

ηGS =
aGS

R
= 6.014 . (15.33)

The value of ηGS for the Earth given by (7.72) is close to the value found
for Mars, because the same is true of the diurnal rotation periods and mean
densities of these two planets.

The possibility of placing satellites in areostationary orbits is currently
under study, e.g., the satellite MARSat (Mars Areostationary Relay Satellite).

Stationkeeping

The orbit of the geostationary satellite changes as time goes by:

• The semi-major axis a is modified by the effects of tesseral terms in the
geopotential, which are much greater than for the Earth.

• The eccentricity e is modified by the effects of solar radiation pressure,
much less significant than for the Earth.

• The inclination i is modified mainly by the action of the Sun, since the
plane of the ecliptic in which the apparent Sun moves is tilted at 25◦ to
the plane of the (Martian equatorial) orbit.

The two moons of Mars, also in the equatorial plane, are too small to perturb
the motion of such a satellite.

Longitudinal Acceleration

Here we consider the evolution of a in more detail. As we saw in Chap. 7,
this phenomenon is caused mainly by the tesseral harmonic P22. Indeed, we
calculated this drift (through its longitudinal acceleration), first by expanding
the geopotential up to second order, then continuing up to third order. The
values of the tesseral coefficients C22, S22, C3l, and S3l, much greater than
for the Earth, indicate that the shape of the Martian equator is not circular,
and that the planet has a certain triaxiality, i.e., the ellipsoid of revolution is
somewhat extended along an axis perpendicular to the axis of rotation (see
Table 15.3).

Expansion of the Geopotential to Order Two. The longitudinal accel-
eration is given by (7.85). Using the Mars model MGM1025, we obtain
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J22 = 63.0691× 10−6 , λ22 = −15.02◦ ,

and

λ̈ = A sin 2(λ− λ22) , (15.34)

with

Ω̇T

ηGS
=

7.088× 10−5

6.014
= 1.1786× 10−5 rad s−1 ,

A = 18

(
Ω̇T

ηGS

)2

J22 = 18× 1.3891× 10−10 × 63.0691× 10−6

= 157.6965× 10−15 rad s−2 . (15.35)
For the coefficient A in degrees per sol per sol,

A = 157.6965× 10−15 × 180

π
× (88642.7)2 = 70.992× 10−3 deg sol−2 .

(15.36)

Expansion of the Geopotential to Order Three. The required values are
J31 = 27.4791×10−6, J33 = 6.0455×10−6, and for the longitudes, λ31 = 81.41◦

and λ33 = 12.04◦.
The acceleration is given by (7.92). Putting in the numbers gives

λ̈ = A
[
sin 2(λ− λ22)− 0.0180 sin(λ− λ31) + 0.1190 sin3(λ− λ33)

]
.

(15.37)

The graph of λ̈(λ) in Fig. 15.11 gives the longitudinal acceleration λ̈ as a
function of the longitude λ. Since longitudes are measured positively toward
the east, we thus have

λ̈ > 0 =⇒ eastward displacement , λ̈ < 0 =⇒ westward displacement .

The solutions of λ̈ = 0 are the four longitudes on the graph where λ̈(λ)
intersects the horizontal axis. The two stable points are on the downward
sloping parts of the curves, and the unstable points on the upward sloping
parts. The values are indicated in Fig. 15.11.

The four equilibrium longitudes obtained for Mars are unbelievably close
to the terrestrial values. This is purely accidental, since the zero meridian for
these two planets is in each case entirely arbitrary and is in no way related to
the details of the geopotential.

Equation (15.37) shows that it is the degree 2 harmonic which carries most
weight. The four longitudes obtained solely from λ22, namely,

λ = λ22 + k 90◦ , k = 1, 2, 3, 4 ,
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Fig. 15.11 :Longitudinal acceleration for an areostationary satellite as a function of

the longitude. Zero values of the acceleration determine equilibrium points: λ =

74.587◦ = 74◦35′E and λ = 255.557◦ = 104◦27′W for the stable equilibrium points,

indicated by a circle, and λ = 162.065◦ = 162◦39′E and λ = 347.741◦ = 12◦15′W for

the unstable equilibrium points. The satellite is subject only to orbital perturbations

due to the geopotential (model MGM1025). Upper: Map indicating positions of stable

and unstable points.
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or 75◦, 165◦, 255◦, and 345◦ are very close to the four longitudes obtained
from (15.37) by going up to order 3, namely, 75◦, 162◦, 256◦, and 348◦. The
contribution from the other terms becomes negligible from order 4 onwards,
since a further multiplicative coefficient 1/ηGS, or 0.17, is brought in for each
new order.

15.4.2 Sun-Synchronous Satellite

Sun-Synchronicity Constant

For Sun-synchronous satellites, we have seen that the condition Ω̇(a, i) =
Ω̇S must be satisfied. We begin by calculating the constant of Sun-synchronicity
using (7.98). For Mars, this gives

kh = 29.0403 . (15.38)

This is three times the value for the Earth, because J2 is greater for Mars,
and in addition, the planet moves more slowly around the Sun.

Sun-Synchronous Satellite: Circular Orbit

From (7.104) or (7.105), we thus obtain the relation between the inclination
and the altitude.21 Figure 15.12 (upper) shows the altitude as a function of
the inclination for a Sun-synchronous satellite, which is necessarily retrograde.

The minimal value of iHS, denoted by iHSmin (or im), is obtained for a
(fictitious) satellite revolving at ground level (η = 1 or h = 0):

iHSmin = im = arccos

(
− 1

kh

)
= arccos(−0.0344) = 92.0◦ .

The maximal value of h is obtained for i = 180◦ :

ηHSmax =
a

R
= k

2/7
h = 2.6182 ,

aHSmax = 8,892 km , hHSmax = 5,496 km .

It is not therefore possible to place a Sun-synchronous satellite in circular orbit
at an altitude greater than 5,500km (roughly the same bounding altitude as
on Earth).

The US satellites MGS, Mars Odyssey, and MRO are on Sun-synchronous
orbits.

21As for the Earth, there is a slight difference in the value of iHS depending on the degree
to which the planetary potential is expanded. For h = 400 km, iHS(J4) = 92.991◦ and
iHS(J2) = 92.914◦, i.e., a difference of 0.077◦.
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Sun-Synchronous Satellite: Elliptical Case

Calculations for an elliptical Sun-synchronous orbit are done in exactly the
same way as for the Earth, using the fundamental relation (7.112), within a
limiting eccentricity e1 for each value of η1 [see (7.114)]. On Mars, the possible
range of eccentricities is greater than for the Earth (see Fig. 15.12 lower). For
i = 180◦, the reduced distance a/R ranges from η = 2.6182 for e = 0 to
η = η1 = 4.4032 for e = e1 = 0.7729.

When the orbit is eccentric, one must add to the Sun-synchronicity con-
dition the constraint that the periastron should not drift on the orbit. One
must therefore choose the critical inclination given by (6.79), which neces-
sarily implies the value i = 116.6◦. For this inclination, the reduced distance
varies between η = 2.069 for e = 0 and η = 2.847 for the maximal eccentricity
e1 = 0.649 (see Example 15.9).

�

Throughout the remainder of this chapter, we shall adopt precisely the same
presentation for Martian satellites as we did for terrestrial ones. Each Martian
section will be a carbon copy of the terrestrial one.

�

15.5 Ground Track of a Satellite

� Chapter 8. The representation of the ground track gives fundamentally
similar results for terrestrial and Martian satellites. Even the Snyder projec-
tion (where the ground track appears as a straight line) can be applied directly
using the frequency κ. The only difference with the Earth is that we do not
yet have any equivalent of the NORAD TLE for Mars!

15.5.1 Representing the Ground Track

The ground track of an LMO satellite has the same general appearance as
the ground track of an LEO satellite. Example 15.4 brings out this similarity.
For satellites in circular orbit, the equation of the ground track takes the form
(8.47) when the time is eliminated, using a suitable value of κ. For operational
Sun-synchronous satellites (see Table 15.6) for which κ = ν, we have

κ = 13− 233/550 = 6717/550 = 12.212727 , for MGS ,

κ = 12 + 15/32 = 399/32 = 12.468750 , for ODY (Mars Odyssey) ,

κ = 13 + 65/349 = 4602/349 = 13.186246 , for MRO .
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"Equivalent" MGS
Orbit - Ground track
>>>>   Time span shown:   720.0 min =   0.50 day

Altitude =  711.6 km a = 7089.752 km

MC LMD

MC LMD

Inclin./SUN-SYNCHRON.=  98.26 °

Period =    99.14 min    * rev/day =14.53

Equat. orbital shift  = 2758.9 km  (  24.8 °)

Asc. Node:      0.00 °
App. inclin. = 102.12 °

Proj.:  Plate-carrée
Property:   none

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{-} [  +0.0/  +0.0/  +0.0] [-]    EGM96

[MARS]   Mars Global Surveyor
Orbit - Ground track
Recurrence = [13;-233;550]6917

>>>>   Time span shown:   739.8 min =   0.50 sol

Altitude =  378.1 km a = 3775.088 km

Inclin./SUN-SYNCHRON.=  92.90 °

Period =   117.64 min   * rev/sol = 12.58

Equat. orbital shift  = 1697.1 km  (  28.6 °)

Asc. Node:      0.00 °

App. inclin. =  97.42 °
Proj.:  Plate-carrée
Property:   none

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{3.5} [  +0.0/  +0.0/  +0.0] [-]    MGM1025 MOLA Topogr. / h / 2.5km /

Fig. 15.13 :Upper: Ground track of the Sun-synchronous satellite MGS over half a

sol. Lower: Ground track of the fictitious Sun-synchronous satellite equivalent to

MGS but with Earth as the attracting body.
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Example 15.4 Comparison between the ground track of Mars Global Surveyor
(MGS), in a near-circular Sun-synchronous orbit around Mars at an altitude
of 379 km, with the ground track of a fictitious terrestrial satellite at the same
reduced altitude, also on a Sun-synchronous orbit.

� The reduced distance η is the same for both satellites.

MGS.During its topographical phase, MGS followed a Sun-synchronous orbit
with h = 379km. We calculate the reduced distance as

η =
a

R
=

3775.1

3196.2
= 1.1116 .

We obtain the inclination of the Sun-synchronous satellite MGS using (7.105):

iHS = arccos

(
−1.11162/7

29.0403

)
= 92.03◦ .

Expanding beyond the J2 term for the nodal precession rate, we obtain

iHS = 92.93◦ .

The ground track of the satellite thus lies between the geocentric latitudes
87.07◦N and 87.07◦S. It is shown in Fig. 15.13 (upper) over half a Martian
day (half a sol). With 12.6 round trips per sol, the equatorial shift is 29◦.

Equivalent MGS. To compare the orbits and ground tracks on Mars and
on Earth, we calculate the characteristics of a terrestrial satellite at the same
reduced altitude, i.e., the same reduced distance from the attractive center of
the planet, and hence the same value for η. We call this fictitious satellite the
equivalent MGS for the Earth. With η = 1.1116, we obtain a = η × 6378 =
7,090km, or h = 712km.

We deduce the inclination to be

iHS = 98.26◦ .

The ground track of the satellite lies between 81.74◦N and 81.74◦S. It is shown
in Fig. 15.13 (lower). With 14.5 round trips per day, the equatorial shift is 25◦.
We note here the main difference:

• The inclination of the Sun-synchronous Martian satellite is more polar, i.e.,
kh is greater for Mars than for the Earth.

• The equatorial shift is a little greater for the Martian satellite, because
its period is longer, since Mars has a lower mean density than Earth [see
(16.3)].

�

Example 15.5 Orbit and ground track of Mars Express over a cycle of 4 sols.
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Fig. 15.14 : Infrared image of the Martian South Pole, taken using THEMIS aboard

Mars Odyssey on 31 October 2001. The satellite’s orbit has not yet been circularised

and the image coincides with the ninth revolution, at an altitude of 22,000 km. It is

late austral spring in the Martian southern hemisphere (LS = 263◦). The extremely

cold circular feature shown in blue is the Martian south polar carbon dioxide ice cap

at a temperature of about −120 ◦C. The cap is more than 900 km in diameter at this

time and will continue to shrink as austral summer progresses. The cold region in

the lower right portion of the image shows the nighttime temperatures of Mars. The

warmest regions occur near local noontime. The thin blue crescent along the upper

limb of the planet is the Martian atmosphere. This image covers a length of over

6,500 km spanning the planet from limb to limb, with a resolution of approximately

5.5 km per pixel. Odyssey’s infrared camera is planned to have a resolution of 100m

per pixel from its mapping orbit. Credit (image and caption): NASA, JPL, Arizona

State University.
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[MARS]   Mars Odyssey[MARS] 
Orbit - Ground track
Recurrence = [12;+15; 32] 399

>>>>   Time span shown:  4438.6 min =   3.00 sols

Altitude =  399.8 km a = 3796.847 km

MC

MC LMD

LMD

Inclin./SUN-SYNCHRON.=  92.96 °

Period =   118.66 min   * rev/sol = 12.47

Equat. orbital shift  = 1711.7 km  (  28.9 °)

Asc. Node:     35.00 ° [04:00 LMT]
App. inclin. =  97.52 °

Proj.:  Snyder-Satel.Track/30°
Property:   none [Geoc.L]

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{3.5} [  +0.0/  +0.0/  +0.0] [-] MGM1025

[MARS]   Mars Odyssey[MARS] 
Orbit - Ground track
Recurrence = [12;+15; 32] 399

>>>>   Time span shown:  2959.1 min =   2.00 sols

Altitude =  399.8 km a = 3796.847 km

Inclin./SUN-SYNCHRON.=  92.96 °

Period =   118.66 min   * rev/sol = 12.47

Equat. orbital shift  = 1711.7 km  (  28.9 °)

Asc. Node:     35.00 ° [04:00 LMT]Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Pr. centre (r.): 25.0 ° S;   75.0 °E
Aspect:  Oblique

{3.5} [ -90.0/+115.0/ +15.0] [-] MGM1025

MOLA Topogr. / h / 2.5km /

MOLA Topogr. / h / 2.5km /

Fig. 15.15 :Orbital ground track of the Sun-synchronous satellite Mars Odyssey. Up-

per: Over 2 sols. Lower: Over 3 sols (to show the 2-sol subcycle).
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Fig. 15.16 :Geological fracture inside a crater. The circular form of the crater is

visible. Image acquired by VIS/THEMIS aboard the satellite Mars Odyssey at time

D = 2004 12 13 05:20. Revolution 13300. Center of image: Latitude = 7.3388,

longitude = 161.372. Resolution = 0.018258 km/pixel (pixel size 18× 18m). Width

of swath 25 km. See Example 15.14. Credit: NASA, JPL, ASU.
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[MARS]   Mars Express [G3-u][MARS] 
Orbit - ref.: Mars
Recurrence = [ 3; +1;  4]  13

>>>>   Time span shown:  5918.1 min =   4.00 sols

Equiv. altit.  =   5906.7 km

e = 0.606911

a = 9303.744 km

Inclination  =  86.35 °

Period =   454.49 min   * rev/sol =  3.26

h_a =  11553 km;  h_p =  260 km;  arg.periapsis: +345.08 °

Asc. Node:   -127.07 °
Apoapsis :     -2.52 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 25.0 ° N;   80.0 °E
Aspect:  Oblique
{3.5} [ -90.0/ +65.0/ +10.0] [-] MGM1025

[MARS]   Mars Express [G3-u][MARS] 
Gr.tr. ( H < 4000 km)

Recurrence = [ 3; +1;  4]  13

>>>>   Time span shown:  5918.1 min =   4.00 sols

Equiv. altit.  =   5906.7 km

e = 0.606911

MC LMD

MC LMD

a = 9303.744 km

Inclination  =  86.35 °

Period =   454.49 min   * rev/sol =  3.26

h_a =  11553 km;  h_p =  260 km;  arg.periapsis: +345.08 °

Asc. Node:   -127.07 °
Apoapsis :     -2.52 °

Projection:  Behrmann
Property:  Equal area

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{3.5} [  +0.0/  +0.0/  +0.0] [-] MGM1025

[ H : geodetic altitude ]

MOLA Topogr. / h / 2.5km /

MOLA Topogr. / h / 2.5km /

Fig. 15.17 :Upper: Orbit of the satellite Mars Express (orbit G3-u) over 4 sols, from

9 January 2004 (LS = 330◦). Lower: Ground track of this orbit, shown only when

the altitude of the satellite is lower than 4,000 km.
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Fig. 15.18 :Orbit of the satellite

Mars Express when it has altitude

below 4,000 km, over a cycle of

4 sols, from 9 January 2004 (LS =

330◦). Type of orbit: 3G-u. This is

a synthesis of Fig. 15.17.

� Mars Express has a highly eccentric orbit. Its near-polar inclination is a
long way from the critical inclination. This leads to an apsidal precession
rate of ω̇ = −0.557◦ per sol, corresponding to exactly one round trip of the
pericenter in one Martian year. The representations given here concern the
orbit type known as 3G-u (see Table 15.7). The period represented begins
on 9 January 2004 (LS = 330◦) and lasts for one cycle of 4 sols. The orbit
shown in Fig. 15.17 (upper) is plotted in a frame moving with the planet.
Its ground track, shown in Fig. 15.17 (lower) is only plotted if the altitude
of the satellite is less than 4,000km. Above this altitude, observation of the
planet is not accurate enough. Figure 15.18 shows the representation limited
to h < 4,000 km for the orbit itself, in a synthesis of the two parts of Fig. 15.17.
See also Fig. 15.19. �

15.5.2 Apparent Inclination

The apparent inclination is calculated using (8.29) or (8.30).

Example 15.6 Calculate the apparent inclination for the operational Sun-
synchronous satellites.
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h a ν T0 T0 V V0 wE wE T
(km) (km) (rev/s) (min) (sol) 0 90

0 3,396 14.77 100.15 0.068 3.55 3.55 3.31 3.56 g
100 3,496 14.14 104.61 0.071 3.50 3.40 3.16 3.41 O
200 3,596 13.56 109.13 0.074 3.45 3.26 3.02 3.27 O
300 3,696 13.01 113.71 0.077 3.40 3.13 2.89 3.14 O
400 3,796 12.50 118.36 0.080 3.36 3.00 2.76 3.01 O
500 3,896 12.02 123.06 0.083 3.32 2.89 2.65 2.90 O
600 3,996 11.57 127.83 0.086 3.27 2.78 2.54 2.79 O
700 4,096 11.15 132.66 0.090 3.23 2.68 2.44 2.69 O

4,450 7,846 4.21 351.68 0.238 2.34 1.01 0.77 1.04 C
5,983 9,379 3.22 459.63 0.311 2.14 0.77 0.53 Φ

17,031 20,427 1.00 1,477.38 0.999 1.45 0.24 0.00 S
20,063 23,459 0.81 1,818.16 1.229 1.35 0.20 −0.04 Δ

Table 15.5 :Velocity of the satellite and its ground track, and relative velocity of the

ground track for various satellites in circular (Keplerian) orbit. For each satellite,

the table gives the altitude h (in km) and the length of the semi-major axis a, or

the distance to the center of Mars (in km), the daily frequency ν (in revs per sol),

the Keplerian period T0 (in minutes and in sols), the velocities V , V0, wE (for two

values of the angle i, 0◦, 90◦), already defined. Satellite type T : g (ground level),

O (for observation), C (for communications), S (areostationary, or SMO). Natural

satellites: Φ (Phobos), Δ (Deimos).

� Having determined the Sun-synchronous inclination, we use the values of κ
given earlier to calculate δi using (8.30):

• For MGS, iHS = 92.90◦, δi = 4.52◦ =⇒ i′ = 97.42◦ .
• For ODY, iHS = 92.96◦, δi = 4.56◦ =⇒ i′ = 97.52◦ .
• For MRO, iHS = 92.60◦, δi = 4.32◦ =⇒ i′ = 96.92◦ .

The difference of inclination δi is roughly 4◦, of the same order as for terrestrial
satellites. �

15.5.3 Velocity of Satellite and Ground Track
in Circular Orbit

For a circular orbit, we calculate the velocity of the satellite and its
ground track using (8.38)–(8.42). Recall that the velocities V (satellite) and
V0 (ground track) are defined in the Galilean frame �, and the velocities wE in
the Martian frame �T. The velocities wE are said to be relative because they
represent the velocity of the ground track relative to the planet. The results
are given in Table 15.5. If we compare a terrestrial satellite with a Martian
one at the same relative altitude, we find that the periods are roughly the
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Fig. 15.19 :Oblique view of Coprates Chasma, the eastern part of Valles Marineris.

The canyon is 8 km deep. Image acquired by the High Resolution Stereo Camera

(HRSC) aboard Mars Express, on 28 May 2005. Credit: ESA, DLR, FU Berlin (G.

Neukum).

same, but the velocities of the Martian satellites are only half the value, as is
obvious from the equations. For the areostationary satellite, it can be checked
that the relative velocity wE(0) is zero. Note also that T0 = Dsid, which is
slightly different from DM = 1 sol.

The two moons of Mars are also recorded in Table 15.5, with Φ for Phobos
and Δ for Deimos. These will be discussed further below.

15.6 Orbit Relative to the Sun: Crossing Times

and Eclipse

� Chapter 10. To study the ground track in relation to the Sun, and in par-
ticular, local crossing times, we apply the methods discussed for the terrestrial
satellite to the Martian case. We need only make the following remarks:

• The length of the mean day on Mars is the sol.
• The second is still the unit of time, wherever we are located, and the minute

is equal to 60 s.
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Fig. 15.20 : Image of a crater in the Vastitas Borealis plains (center 70◦12′N,

103◦25′E), observed simultaneously by the HRSC (the whole crater) and the OMEGA

instrument ( three coloured bands), both aboard Mars Express, during revolution

1343. The HRSC image was obtained with a resolution of 15m per pixel. The crater

has diameter 35 km and depth 2 km. Chromatic analysis (blue, green, and red chan-

nels) confirms that the colour of the center of the crater is indeed bluish. It contains a

deposit of water ice that is both surprising and aesthetic. This has a strong signature

in the blue owing to the scattering properties of water ice. Credit: ESA, DLR, FU

Berlin (G. Neukum). Credit: caption and document for chromatic analysis courtesy

of Aymeric Spiga, LMD/CNRS.



15.6 Orbit Relative to the Sun: Crossing Times and Eclipse 765

[MARS]  MAVEN[MARS]  
Orbit - ref.: Mars
Recurrence = [13;+65;349] 4602

>>>>   Time span shown:   7.00 sols

Equiv. altit.  =   3181.0 km

e = 0.460778

a = 6578.000 km

Inclination  =  75.00 °

Period =   270.20 min   * rev/sol =  5.48

h_a =   6212 km;  h_p =  150 km;  arg.periapsis: +270.00 °

Asc. Node:      0.00 °
Apoapsis :     64.24 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 35.0 ° N;   71.0 ° W
Aspect:  Oblique
{3.5} [ -90.0/ +55.0/+161.0] [ +22] MGM1025

[MARS]  ExoMars/TGO[MARS]  
Orbit - Ground track
Recurrence = [12;+92;227] 2816

>>>>   Time span shown:  5918.1 min =   4.00 sols
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24LMT (local) 1 hr = 1 sol/24

Altitude =  391.1 km a = 3788.060 km

MC LMD

MC LMD

Inclination  =  74.04 °

Period =   118.17 min   * rev/sol = 12.52

Equat. orbital shift  = 1720.9 km  (  29.0 °)

Asc. Node:      0.00 ° [12:00 LMT]
App. inclin. =  78.57 °

Projection:  Arden-Close
Property:   none

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct
{3.5} [  +0.0/  +0.0/  +0.0] [-] MGM1025

MOLA Topogr. / h / 2.5km /

MOLA Topogr. / h / 2.5km /

Fig. 15.21 :Upper: Orbit of the satellite MAVEN over 7 sols. Lower: Orbital ground

track of ExoMars-TGO over 4 sols.
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• But for hours, a word of warning is in order. It is usual to indicate the
LMT overpass time as for the Earth, e.g., 22:30 LMT. In this case, the
overpass occurs 22.5 h after midnight, where the hour is here the fraction
1/24 of a sol. To avoid confusion, we shall avoid using the word “hour”
when speaking of Mars, but use instead “sol/24”.

The quantity P , in round trips per (Martian) year, is used to calculate the
cycle CS, in sols, from (10.2) to (10.4).

15.6.1 Overpass Time for a Sun-Synchronous Satellite

For Sun-synchronous satellites, the overpass time is obtained as a function
of the latitude using (10.9). The value of the coefficient to adjust for units is
the same as on Earth: if times are in sol/24 and angles in degrees, K = 15,
since 1 sol corresponds to 360◦.

The graph of the curve giving the latitude ψ as a function of Δτ = τ−τAN

is shown in Fig. 15.22. Comparing with Fig. 10.13 (lower), the equivalent for
the Earth, we see that on Mars there is no significant change with altitude
for a satellite in low orbit: this is due to the high value of the constant of
Sun-synchronicity kh.
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Overpass times are chosen for Sun-synchronous satellites on Mars22 on the
basis of roughly the same considerations as on Earth. To obtain useful lighting
conditions, one requires the satellite to cross the equator about 2 h before or
after midday. In order to benefit from a maximal illumination of the solar
panels, a dawn–dusk orbit is favoured. See Figs. 15.23 and 15.24.

15.6.2 Eclipse Conditions

The angle between the orbital plane and the direction of the Sun, called
the β angle, is calculated in exactly the same way as for the Earth. It can be
used to obtain the period and length of eclipse.

Solar eclipse is a highly critical phenomenon for a Martian satellite. One
reason is that the solar constant is only half the value on Earth. Another is
that electrical energy storage requires accumulators that considerably increase
the mass of the probe to be placed in orbit.

Dawn–Dusk LMO Orbit

We consider a Sun-synchronous dawn–dusk low-orbiting satellite, with
τAN = 06:00 or 18:00. Equation (7.103) is satisfied when η lies between 1.1354
and 2.2930, which gives, in terms of the altitude,

no eclipse ⇐⇒ 460 km < h < 4,391 km .

The altitude range without eclipse is much broader than on Earth. This is
explained by the fact that the Martian Sun-synchronous orbit is more polar
than the equivalent terrestrial orbit for the same relative altitude (and this in
turn is due to the higher value of kh).

The satellite InterMarsNet, in a Sun-synchronous dawn–dusk orbit with
h = 612 km, would have escaped eclipse. The communications satellite Mars
Telecomm Orbiter (MTO), at altitude h = 4,450km, Sun-synchronous with
iHS = 130.2◦, would have suffered very little eclipse in a dawn–dusk orbit23

06:00 or 18:00. With h = 4,391km, iHS = 128.9◦, there is no eclipse for this
type of orbit.

Figure 15.25 shows the length of solar eclipse over one revolution for var-
ious low altitudes as a function of the declination, and Fig. 15.26 (upper) the
same as a function of the areocentric solar longitude, which can be related to
the date.

22At the beginning of a mission, a dawn–dusk orbit is generally used. Indeed, the transfer
of a space probe from Earth to Mars is made along a trajectory which is tangential to
the orbit of Mars, as viewed in the heliocentric frame, at the time of insertion, when the
probe becomes a satellite of Mars. The satellite orbit is then perpendicular to the Sun–Mars
direction, and is therefore a dawn–dusk orbit. The same reasoning would apply to a satellite
of Venus.

23With the planned configuration, eclipse would occur on 395 sols per Martian year, with
a daily maximum of 47min.
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Fig. 15.23 :Shaded topographic map of Mars based on MOLA data. Credit: MOLA

Team, NASA, JPL.
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Fig. 15.24 :Mars Reconnaissance Orbiter (MRO) has a Sun-synchronous orbit: the

ascending node crossing time (here τAN =15:30 LMT) depends only on the latitude.

Its ground track is shown over 3 sols. The oblique orthographic projection used here

is the same as for the Martian topography in Fig. 15.23.
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SMO Orbit

For an areostationary satellite, using the value of f0 obtained below using
(15.40), there is an eclipse if |δ| < f0. This happens twice a year, when the
areocentric solar longitude is close to that of the equinoxes, with a longitude
difference24 less than ΔLS = 23◦ :

eclipse for SMO ⇐⇒ [LS: 337 − 23] , [LS: 157 − 203]

The maximum eclipse is calculated using (10.34). This gives

24The value of this bounding difference ΔLS is straightforwardly calculated. Equation
(15.18) relates δ and LS. The condition δ = f0 yields

sinΔLS =
sin f0

sin ε
.

Expressing f0 in terms of the reduced distance, we obtain

ΔLS = arcsin
1

ηGS sin ε
= arcsin

1

2.560
= 22.99◦ ,

which leads to ΔLS = 23◦.
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Sun-sync. sat. νo DTo CTo NTo Td a h iHS

MGS 13 −233 550 6,917 117.64 3,775.088 379 92.90
Mars Odyssey 12 +15 32 399 118.66 3,796.847 401 92.96
MRO 13 +65 349 4,602 112.20 3,657.386 260 92.60

Mars Observer 13 −1 3 38 116.80 3,757.095 361 92.89
Mars Observer 13 −3 7 88 117.69 3,776.107 380 92.94
InterMarsNet 12 −1 2 23 128.65 4,007.867 612 93.61

Table 15.6 :Orbital and recurrence characteristics for Sun-synchronous satellites ob-

tained from the phase triple [νo, DTo , CTo ]. For the full caption, see Table 11.1.

Orbits of operational satellites MGS, Mars Odyssey, and MRO and planned orbits

for Mars Observer (recurrence over 3 and 7 sols), which failed insertion, and Inter-

MarsNet, which was abandoned.

Δte0 =
9.6

180
Dsid = 78.8min . (15.39)

Figure 15.26 (lower) graphs the length of solar eclipse over 1 sol.

15.7 Orbit Relative to Mars: Recurrence

and Altitude

� Chapter 11. When we consider the question of recurrence on Mars, we
encounter the same advantages and constraints as we have already seen on
Earth. Everything discussed in Chap. 11 applies equally to Mars, provided of
course that we use sols instead of days.

15.7.1 Recurrence

Recurrence for Sun-Synchronous Satellites

We have just seen that the altitude of a Martian Sun-synchronous satellite
lies between the theoretical bounds h = 0 and h = 5,496km, which corre-
sponds to the values ν = 14.73 and ν = 3.49 of the daily orbital frequency,
respectively. The altitudes chosen for Sun-synchronous satellites in missions
under development or already carried out are generally less than 600km.

The recurrence diagram in Fig. 15.27 allows one to visualise the altitudes
leading to different recurrence configurations on Mars. This diagram is the
counterpart of Fig. 11.2 for the Earth. Recurrent satellites on Mars are shown
in Table 15.6 and Fig. 15.28. Given the recurrence triple (which is in prin-
ciple maintained throughout the mission), one can accurately determine the
characteristics of the orbit.

Example 15.7 Calculate the orbital characteristics of the satellites Mars
Global Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter.
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Fig. 15.28 :Recurrence diagram for Sun-synchronous satellites. For altitudes between

250 and 530 km, the possible recurrence cycles are indicated by the value of DTo .

Boxed values correspond to the exact recurrence cycles appearing in Table 15.6, or

to approximate, but shorter cycles determined in Example 15.7. For example, for

Mars Odyssey (ODY), we have the triple [12, +1, 2], or νo = 12 (the integer closest

to ν, as ordinate), DTo = +1 (indicated on the diagram), and CTo = 2 (as abscissa).
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� All three satellites are Sun-synchronous.

Mars Global Surveyor (MGS). The probe Mars Global Surveyor (MGS)
left its heliocentric cruise on 12 September 1997 for a highly eccentric areo-
centric orbit with hp = 258 km, ha = 54,021km, e = 0.88, T = 45h, known as
Mars orbit insertion (MOI). The aerobraking maneuver lasted for 16 months,
during which many scientific measurements were carried out, in particular
on the magnetic field. The solar panels did not deploy correctly, extending
the time required for aerobraking. In February 1999, the final orbit was near-
circular, Sun-synchronous, recurrent, and frozen. The satellite MGS then en-
tered its mapping phase. The Mars Orbiter Laser Altimeter (MOLA) then
began to make very precise topographic measurements of the planet.

With recurrence maintained at 6,917 revolutions in 550 sols, the draconitic
period is given by

Td =
550

6917
sol = 117.64min .

To begin with, we set T0 = Td, and thereby deduce the inclination and radius
a0 = 3,781 km of the Keplerian orbit. We calculate the rate of secular variation
of the angle elements. We deduce the anomalistic period Ta = 117.5090min,
then the values of the semi-major axis and the inclination, viz.,

a = 3,775.088 km , i = iHS = 92.90◦ .

Mars Odyssey. The probe Mars Odyssey reached Mars on 24 October 2001
and went into a high and highly eccentric Martian orbit (T ≈ 18.6 h). Aer-
obraking eventually led on 30 January 2002 to a Sun-synchronous (τAN =
04:30) circular orbit close to 400km (T ≈ 2 h), with the satellite ground track
repeating every 2 days. The recurrence diagram in Fig. 15.27 shows that, at
this altitude, a recurrence cycle over 2 sols corresponds to the triple [12, 1, 2],
ν = 12.5, with 25 revolutions per cycle. The draconitic period is therefore

Td =
2

25
sol = 118.36min ,

and the various intervals discussed in Chap. 11 are δ = 360/25 = 14.4◦,
δD = δ, δR = 2δ. By iterative calculation, we obtain the semi-major axis
a = 3,790.496km and the inclination i = iHS = 92.95◦. In fact, during the
science part of the mission, for each 2-sol repeat cycle, the ground track shifts
a small amount (53 km) at the equator (see Fig. 15.15). This shift by 0.9◦, de-
noted here by δ′, can be considered as the grid interval of a longer cycle. After
δ′/δ = 0.9/14.4 = 16 cycles of 2 sols, the ground track has thus shifted by an
interval δ, which means that, after 16 cycles of 25 revolutions, the satellite,
with this new recurrence characteristic, has made one revolution less, i.e., 399
revolutions in 32 sols. The recurrence triple is then [12, 15, 32]. The draconitic
period is
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Td =
32

399
sol = 118.66min ,

and we recover the grid interval δ = 360/399 = 0.9◦. We then obtain

a = 3,796.847 km , i = iHS = 92.96◦ .

It should be noted that the satellite Mars Odyssey is not strictly Sun-
synchronous, since its LMT crossing time varied continuously from 03:23 to
05:20 during the 917 (Earth) days of the science mission, then from 05:20 to
06:50 during the 800 following days.

Mars Reconnaissance Orbiter (MRO). The probe Mars Reconnaissance
Orbiter (MRO) came under the control of the Martian gravitational field
on 11 March 2006, entering a highly elliptic polar orbit with hp = 426km,
ha = 44,500km, ω = 270◦, and period T = 35h. After 5 months of aerobraking
(over 445 revolutions), the orbit of the MRO was near-circular. NASA gave
the following indications: hp = 255 km, ha = 320km, frozen Sun-synchronous
orbit with recurrence over 349 sols, with 4,602 revolutions.

To obtain the latitude of the apsides and calculate the radius Rψ of the
planet at this location, using (1.37) or (1.39), we carry out an approximate
calculation of iHS. With i = 93◦, we may take Rψ = Rp = 3,630km (polar
radius). We deduce that

rp = Rp + 255 = 3,630 km , ra = Rp + 320 = 3,695 km =⇒ a = 3,662.5 km .

We obtain e = 8.87 × 10−3, which corresponds to the frozen eccentricity eF.
Equation (11.55), with ωF = −90◦ and iHS = 92.7◦, yields eF = 7.7 × 10−3.
The draconitic period is

Td =
349

4602
sol = 120.20min ,

which implies that κ = ν = 13.1862. The orbital elements can be found from
the values of eF and κ, with the result

a = 3,657.4 km , e = 0.00887 , i = iHS = 92.60◦ , ω = ωF = 270◦.

Mission control indicates a recurrence cycle of 16 sols. With this subcycle, a
small shift of 30.6 km is observed at the equator over 211 revolutions, between
the tracks at 16 sol intervals. �

Example 15.8 Calculate the orbital characteristics of InterMarsNet.

� The InterMarsNet mission was a European project in collaboration with
the United States. This project, planned for 2003, was abandoned in 1996
and more or less replaced by Mars Express, for launch in 2003. We have
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included it here as an example because of its interesting orbit, which is Sun-
synchronous, dawn–dusk, with 2-sol recurrence, frozen and eclipse-free. With
a recurrence of 23 revolutions in 2 sols, we obtain

Td =
2

23
sol = 128.66min .

Calculation yields a = 4,007.867km and inclination iHS = 93.61◦. �

Example 15.9 Calculate the characteristics of a Sun-synchronous satellite
with 1-sol recurrence and critical inclination.

� Preliminary orbital studies for the Russian satellite Mars-96 considered an
orbit that would have been Sun-synchronous and also have had the critical
inclination. We re-examine this idea here, but adding the further constraint
that the satellite should be 1-day recurrent, an interesting configuration for
links with ground bases. We have calculated the following orbital characteris-
tics, with three different recurrence cycles, considering eccentricities e = 0.30,
e = 0.45, and e = 0.60:
e = 0.30 , a = 6,993.892 km , i = 116.6 , phase triple [5, 0, 1] ,

hp = 1,499 km , ha = 5,695 km , T = 296.01min (5 rev/day) ,
e = 0.45 , a = 8,113.554 km , i = 116.6 , phase triple [4, 0, 1] ,

hp = 1,065 km , ha = 8,368 km , T = 369.86min (4 rev/day) ,
e = 0.60 , a = 9,827.020 km , i = 116.6 , phase triple [3, 0, 1] ,

hp = 533 km , ha = 12,326 km , T = 493.01min (3 rev/day) .
The satellite Ellipso Borealis has this type of orbit around the Earth. �

Recurrence for a Non-Sun-Synchronous Satellite

Mars Express is in a recurrent non-Sun-synchronous elliptical orbit, with
several recurrence cycles during the mission.

Example 15.10 Characteristics of the various orbits of Mars Express, de-
pending on its recurrence.

� The European satellite Mars Express, launched from Baikonur on 2 June
2003, arrived on Mars on 25 December and went into a highly eccentric near-
polar insertion orbit (known as MOI), with i = 86.35◦. This was quickly
transformed into a recurrent elliptical orbit characterised by 13 revolutions
in 4 sols (the so-called 3G-u orbit), then by 11 revolutions in 3 sol (the 3G-b
orbit). It remained in 3G-u from the beginning of January to 2 May 2004
(revolutions 1–372), then went into 3G-b, where it remained from 6 May up
until the end of the main mission, on 11 November 2007 (revolutions 386–
4,955).
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MEx a e T Triple, NTo hp ha

13:4 [G3-u] 9,318.9 0.60691 455.24 [3, +1, 4] 13 266 11,578
11:3 [G3-b] 8,597.5 0.56973 403.51 [4, −1, 3] 11 302 10,099
18:5 8,703.2 0.56974 410.98 [4, −2, 5] 18 347 10,266
25:7 8,750.2 0.57041 414.27 [4, −3, 7] 25 362 10,344

Table 15.7 :Orbital and recurrence characteristics for Mars Express. Semi-major

axis a, altitudes hp and ha in km at periastron and apastron, and period T in min-

utes. For these orbits, with eccentricity e, the inclination is i = 86.35◦. NTo is the

number of revolutions in the cycle.

ExoMars-TGO a e T Triple, NTo i

3,788.060 0.0068 118.17 [12, +92, 227] 2816 74.04

Table 15.8 :Orbital and recurrence characteristics for ExoMars-TGO. For more de-

tails, see the caption to Table 15.7.

Subsequently, with a slight increase in the semi-major axis a, MEx moved
to a recurrence of 18 revolutions in 5 sols (the 18:5 orbit), from 16 December
2007 to 11 January 2009 (revolution 5,082–6,458), then to a recurrence of 25
revolutions in 7 sols (the 25:7 orbit). The thinking behind these changes was
to optimise scientific observations and maintain the periastron on the daylight
side for as long as possible, since high resolution observations are made there.

The characteristics of the orbits are given in Table 15.7. As for Mars
Odyssey, the orbits are not strictly recurrent. For G3-u, with δ = 360/13 =
27.70◦, δR = 4δ = 110.77◦, the ground track shifts by δ′ = 1.09◦ after each
cycle of 4 sols. �

Satellites with 1-Day Recurrence

As on Earth, low-orbiting (LMO) satellites aroundMars should in principle
avoid 1-day recurrence cycles. For example, a Sun-synchronous satellite at
altitude h = 500km would find itself in this situation, as is clear from the
recurrence diagram. Every day it would pass over the same ground track,
unable to observe other regions. Table 15.9 lists altitudes leading to such
recurrence, for Sun-synchronous and non-Sun-synchronous satellites.
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κ i = 20 i = 65 i = 110 i = iHS

h h h h iHS

14 48.6 81.2 146.0 117.6 92.3
13 237.0 263.8 321.0 296.2 92.7
12 449.0 470.6 520.6 499.2 93.3
11 690.5 707.4 750.7 732.6 94.0

Table 15.9 :Orbital and recurrence characteristics for satellites with 1-sol recurrence

cycles. Non-Sun-synchronous satellites with three different inclinations and compar-

ison with Sun-synchronous satellites. Altitudes h in km, angles i in degrees. Daily

orbital frequency κ, equal here to ν0 in round trips per sol.

Grid Points for Recurrent Satellites

The latitudes of grid points are calculated from the function F(ψ) defined
by (11.28). There is no difference with a terrestrial satellite, except that, for
Sun-synchronous satellites, the inclination iHS depends on the planet.25

Recurrence Index

The recurrence index indicates cycles and subcycles. For satellites with
very long recurrence cycle, such as MGS or MRO, the index carries much
information.

Example 15.11 Recurrence index for the very long cycle Sun-synchronous
satellites MGS and MRO.

� These two satellites have near-circular Sun-synchronous orbits.

MGS. The recurrence cycle is very long, viz., CTo = 550 sol over 6917 revo-
lutions (see Fig. 15.29 upper). The graph in the figure has a secondary peak
for 7 sol (over 88 revolutions), and significant peaks for 26 sol (over 327 rev-
olutions), . . . , and 144 sol (over 1,811 revolutions). The MGS/JPL nomen-
clature distinguishes three cycles: the repeat cycle (7 sol), the mapping cycle
(26 sol), and the super cycle (550 sol). The instrument MOLA aboard MGS is
a laser,26 which of course has an extremely narrow beam. The very long cycle
thus leads to a very small ground track interval,27 ensuring complete coverage

25For the satellite Mars Odyssey, with a 2-sol recurrence cycle and using the notation of
Chap. 11, we obtain the following results. For d = 1, 3, 5, 7, . . . ,MTo = 27, the geocentric
latitudes are ψ = 26.6, 62.9, 76.0, 80.9, . . . , ψm = 87.1 = 180− iHS (see Fig. 15.15 lower).

26On Earth, where cycles CTo rarely exceed 40 days, altimetric satellites like ICESat
equipped with lasers also have a very long cycle.

27The beam angle of the MOLA laser is 2f = 0.85mrad (or 3 arcsec), which gives a
spot on the ground of width Δ = 2fh = 320m. With NTo = 6,917, the ground track
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of the planet, apart from a small disk centered on the poles, which has been
dealt with by changing the orientation of the satellite.

MRO. The recurrence cycle is slightly shorter than the one for MGS, with
CTo = 349 sol over 4,602 revolutions (see Fig. 15.29 lower). The graph in the
figure has a significant peak for 102 sol (over 1,345 revolutions) and secondary
peaks for 5 sol (over 66 revolutions), 11 sol (over 145 revolutions), and 16 sol
(over 211 revolutions). This last subcycle corresponds to the recurrence triple
[13, +3, 16] 211 (see Fig. 15.28). �

15.7.2 Altitude

Recall that we define the altitude of a satellite as a function of the angle
α giving the position on orbit (see Chap. 11). This altitude h(α), expressed in
(11.47), is obtained as the difference between the distance r(α) to the center
of the planet (the center of attraction) and the radius RT(α) of the reference
ellipsoid (the distance of the subsatellite point on the ellipsoid from the center
of the planet). Here we consider the geocentric altitude (height).

Frozen orbits are less circular than on Earth, for two reasons:

• The flattening of Mars is more pronounced.
• The frozen eccentricity eF given by (11.57) is greater, because the ratio

|J3/J2| is equal to 18.363× 10−3 for Mars, whereas it is 2.339 × 10−3 for
the Earth.

We also note that, since J3 and sinωF must have opposite signs, the position
of the frozen periastron is given by ωF = 270◦ for recurrent Sun-synchronous
satellites. The periastron of the frozen Sun-synchronous orbit is practically
over the South Pole.

Example 15.12 Altitude of the satellite MGS during the topographic phase
and the satellite MRO during the first scientific phase.

� These two satellites have frozen orbits.

MGS. The variation in altitude of the satellite MGS is shown in Fig. 15.30
(upper) over one period as a function of the position on orbit α. The values
of the orbital elements provided by NASA are those for a given revolution
(indicated in the figure) during its topographical phase. As the orbit is main-
tained and frozen, we may consider that the variation h(α) does not change

interval δ (expressed as a length) is δ = 2πR/6917 = 3.085 km. At the equator, we thus
have Δ/δ ≈ 1/10.
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from one revolution to another. We note that the position ωF of the frozen
periastron is at 7◦ from the ideal position. If we calculate the frozen eccen-
tricity using (11.57) with the orbital elements provided in Table 15.6, we find
eF = 8.25×10−3. This result is close to the true value for the revolution under
consideration, viz., eF = 8.87× 10−3.

MRO. The variation in altitude of the satellite MRO is shown in Fig. 15.30
(lower) over one period as a function of the position on orbit α, during the
first Martian year after it was placed in orbit (the primary science phase). The
altitude depends only on the latitude, regardless of whether the orbit is in its
ascending or descending part. In the caption to Fig. 15.34 and Example 15.16,
we indicate the altitude communicated by JPL/NASA, viz., h = 297.5km.
Using (6.64) with ψ = 42.2◦ and i = 92.6◦, we obtain

sinα =
sin 42.2

sin 92.6
, α = 44.3◦ .

This is indeed the value given by the graph.

For MRO and MGS, the altitude profiles are very similar, with practically
identical values of eF and ωF. �

15.8 View from the Satellite

� Chapter 12. All the concepts discussed in Chap. 12 apply equally to a
Martian satellite. Adaptation to the present case will be particularly simple
since we used the variable η, which is the reduced distance a/R.

15.8.1 Viewing Configuration and Pixel Distortion

For an LMO satellite in circular orbit, the pixel distortion indexK is shown
in Fig. 15.31 for various altitudes. For an SMO satellite, in high stationary
orbit, the curve K(α) is almost the same as the one for a GEO satellite on
Earth, shown in Fig. 12.5 (lower). We obtain K = 2 for α = 49◦, K = 3 for
α = 59◦, instead of α = 50◦ and α = 61◦, respectively, for the terrestrial
satellite. This similarity between the curves K(α) is due to the very similar
values of ηGS.

15.8.2 Swath Track for an LMO Satellite

Possible scanning modes are the same for instruments aboard terrestrial
and Martian satellites. Here we consider the ground track of an across-track
swath.

Example 15.13 Swath track of the Mambo instrument aboard Premier.
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� The Mars Atmosphere Microwave Brightness Observer (Mambo) instru-
ment proposed for the satellite Premier MO-07 views the limit of its cross-
track scan, alternately left and right, each minute. In the representation of
the track shown in Fig. 15.32 (upper), black dots mark the place viewed at
the limiting point, while small circles indicate the nadir of the satellite (the
subsatellite point).

The French mission Premier (Programme de Retour d’Échantillons Mar-
tiens et Installation d’Expériences en Réseau) was cancelled in 2003. This was
to prepare the very ambitious French–American mission Mars Sample Return
(MSR), which is still on the cards, but postponed indefinitely. �

15.8.3 Image Acquisition and Apparent Inclination

Image acquisition by an instrument with narrow cross-track swath aboard
an LMO satellite provides a good illustration of the difference between incli-
nation and apparent inclination.

Example 15.14 Remarks concerning the orientation of images acquired by
VIS aboard Mars Odyssey and HiRISE aboard MRO.

� Among the many instruments carried by Mars satellites, there is always a
high-definition camera in the visible range of the spectrum: MOC for MGS,
THEMIS/VIS for Mars Odyssey, HiRISE for MRO, and HRSC for Mars Ex-
press. These ever higher performance cameras can distinguish decimetric de-
tails that can transform our understanding of the geomorphology and geology
of the Red Planet. Here we shall examine image acquisition from an orbito-
graphic standpoint. We have chosen two images. In each case, north is at the
top of the image.

Mars Odyssey. Figure 15.16 was acquired by THEMIS/VIS aboard Mars
Odyssey, with τAN = 04:00. The Mars Odyssey Thermal Emission Imaging
System (THEMIS) comprises several instruments, including a visible wave-
length camera THEMIS/VIS. The image was taken during daytime on the
descending part of the orbit (retrograde since Sun-synchronous). The image
is acquired in blocks constituting a sawtooth pattern on the image. Each
block is acquired instantaneously, hence perpendicularly to the orbital plane.
The edge of each block has inclination i. The general line of the edge follows
the satellite ground track. It thus has inclination i′, the apparent inclination.
Measuring these angles on the image, we find

i = 93.0◦ , i′ = 97.5◦ ,

which agrees with the values calculated in Example 15.6.
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Fig. 15.33 :“Tattoos” on Mars. This image, acquired by HiRISE aboard MRO, should

be compared with Fig. 15.1. These dark stains on the bright sand are produced by

swirls of dust called dust devils, of the kind that can be encountered on Earth in

most arid regions, such as Arizona. These whirlwinds lift the dust lying in a thin red

layer on the dunes. The dark sand beneath has larger grains and is not lifted up. On

Mars, such dust devils can be as much as 8 km high. Credit: HiRISE, MRO, LPL,

University of Arizona, NASA.
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Mars Reconnaissance Orbiter. Figure 15.34 was acquired by HiRISE
aboard MRO, with τAN = 15:30. The High Resolution Imaging Science Exper-
iment (HiRISE) is a high-resolution camera. The image was acquired during
daytime, at 15:21 LMT, in the ascending part of the orbit (retrograde since
Sun-synchronous). Images are built up continuously, row by row, and the
edges of the image follow the satellite ground track. They thus make an angle
i′ with the edge of the frame. We measure

i′ = 97.5◦ .

This can be compared with the value calculated in Example 15.6. �

15.8.4 View from an SMO Satellite

When an areostationary (SMO) satellite views Mars, the maximal swath
in the sense that we have defined f0 is given by (12.32). With the value of
ηGS defined by (15.33), we obtain

f0 = arcsin
1

6.016
= 9.569◦ = 0.1670 rad . (15.40)

The corresponding angle at the center of Mars is

α0 = 90◦ − 9.6◦ = 80.4◦ =⇒ 2F0 = 9,535 km . (15.41)

If λS is the longitude of the satellite S (parking longitude or longitude of
the subsatellite point), the longitudes viewed by S on the equator lie in the
interval [

λS − 80.4◦ , λS + 80.4◦
]
,

and depending on the meridian λS, latitudes are viewed over the same interval
of 80.4◦ on either side of the equator.

The fraction of the planetary surface viewed by the areostationary satellite,
calculated using (12.38), is in this case 0.417 (or about 42%, as for the Earth).

Example 15.15 Locus of points on Mars at an equal distance from the sub-
satellite point for an areostationary satellite.

� As in Example 12.13, we plot the locus L(D). The distance D defined by
(12.36) represents here the great circle distance between a point on Mars
viewed by the areostationary satellite and the subsatellite point of this same
satellite (see Fig. 15.32 lower). D varies in steps of 250km. The subsatellite
point chosen in this example corresponds to the position originally proposed
for the equatorial NetLander of the Premier mission. �
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Fig. 15.34 :Gully formation. Image acquired by HiRISE aboard MRO on 12 November

2006. Center of image 42.2◦N, 312.0◦E (= 48.0◦W). North is at the top. Local time

15:21 LMT, solar elevation 41◦ (θ0 = 49◦). Solar areocentric longitude LS = 134.4◦

(northern summer). See Fig. 15.35 and Example 15.16. Pixel size 29.8 cm. Altitude

of satellite h = 297.5 km. See Example 15.14. Credit: JPL, University of Arizona,

NASA.
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15.9 Spatiotemporal and Angular Sampling

� Chapter 13. All the concepts discussed in Chap. 13 can be adapted to a
satellite of Mars. However, we should note one point that will not be discussed
here. When setting up a Mars mission, one must take into account the Sun–
target–satellite–Earth configuration. Indeed, while the eyes of the satellite
may be turned toward Mars, its ears must be oriented toward the Earth, from
whence come its instructions, and so must its mouth, in order to transmit
back data.

15.9.1 Examples of Sampling

Here we describe an example of temporal and angular sampling in the
context of our discussion of the Sun–target–satellite configuration.

Example 15.16 Sampling table and statistical table for the wide-field instru-
ment MARCI aboard MRO.

� We consider the central point of the image shown in Fig. 15.34, which has
coordinates 42.2◦N and 312.0◦E. The image was acquired by HiRISE aboard
MRO on 12 November 2006, at 15:21 LMT. The altitude of the satellite is
h = 297.5km. The ascending node has characteristics λAN = −42.436◦, τAN =
15:30. The solar areocentric longitude for this date (D = 2006 11 12) was
LS = 134.4◦, which corresponds to sol 287. On Mars, this is in the middle of
the northern summer.

31-Sol or “Monthly” Table. Carried aboard MRO, the Mars Color Imager
(MARCI) is a wide swath instrument with a field of view of 180◦, correspond-
ing to an effective field of 136.5◦ on the ground. It monitors the Martian
weather, including storms, clouds, and evolution of the ice caps.

In the table shown in Fig. 15.35, we have indicated:

• On the horizontal axis, LMT “hours”, which are in fact 1/24 of a sol, as
discussed earlier.

• On the vertical axis, sols from D = 1 for sol 287 (LS = 134◦) to D = 31
for sol 318 (LS = 150◦).

With regard to dates on Earth, this time interval corresponds to the period
from 12 November to 14 December 2006. Sunrise, sunset, and apparent (LAT)
noon are shown by dash-dotted lines. Note the significant difference between
noon LMT and noon LAT, representing the equation of time.28 Each overpass

28For LS between 134◦ and 150◦, we can read off the equation of time in Fig. 15.8, with
the result ET ≈ −30min, which we may write −0:30. Then, recalling that LMT = LAT +
ET, we have for apparent solar noon, LMT = 12:00 − 0:30 = 11:30. In the sampling table,
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Fig. 15.35 :Thirty-one-sol table of overpass times.
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of the satellite under the required viewing conditions is indicated by a triangle
(see explanations in Example 13.11). We observe that half of the overpasses
occur during the day (in the afternoon) and the other half at night (or very
early in the morning).

The overpass at the relevant point occurs on sol D = 1, at 15:21. The
vertical line shows that the satellite passes exactly vertically above the relevant
point. Almost the same configuration is repeated for D = 17, after a subcycle
of 16 sols (see Example 15.11).

Statistics over 31 sols. We consider points of different latitudes on the
meridian passing through the chosen point. This is the meridian λ = 312.0◦,
or λ = 48◦W. Figure 15.36 is established with:

• On the horizontal axis, the solar zenith angle from 0◦ (zenith) to 90◦ (sun-
rise or sunset).

• On the vertical axis, latitudes from +90◦ (North Pole) to −90◦ (South
Pole).

We calculate the overpasses at these different latitudes for the points along the
selected meridian. These overpasses are indicated by dots of various colours
depending on the value of the viewing zenith angle. The places overflown
are never viewed with the Sun at the zenith (ζs is always greater than 32◦)
because the overpass time of this Sun-synchronous satellite is in the middle
of the afternoon.

Note. For the dates considered here, the declination varies from +17◦ to
+12◦. The many daytime overpasses marked on this graph for latitudes close
to the North Pole are due to the polar day being particularly long. Conversely,
for places situated beyond latitude 88◦S, it is the polar night. �

15.9.2 Sun Glint

But is there really cause to consider Sun glint on Mars? The reader may
find that we are going a bit too far in our parallel between Mars and the Earth.
For where are the lakes and oceans that might cause specular reflection?

Certainly, the phenomenon is much less common than on Earth, but it does
happen sometimes. The image in Fig. 15.37 provides an example, acquired by
MGS. In mid-February 1998, while MGS was in its aerobraking phase, it
found itself in a configuration where the Sun, the satellite, and the center of

the line indicating noon LAT does indeed pass through 11:30 LMT. (More precisely, from
12:00 − 0:28 = 11:32 LMT for D = 1 to 12:00 − 0:33 = 11:27 LMT for D = 31.)
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Fig. 15.36 :Thirty-one-sol table. Solar angles as a function of latitude, indicating the

viewing zenith angle, for all places on a given meridian.
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Fig. 15.37 :Specular reflection, or Sun glint, on Mars. The Sun, the satellite MGS,

and the center of Mars are aligned. Image obtained on 18 February 1998 by the MOC

camera in low resolution mode, carried aboard MGS (revolution 136). The point P is

the center of the image, viz., 21.0◦S, 4.1◦W, and D = 1998 02 18 ⇒ LS = 277◦ ⇒
declination δ = −24◦. The latitude of P is ψ = −21◦. The dark region above the

center of the image is Sinus Meridiani. The image was acquired with a wide field of

view over half a revolution, from pole to pole. It was then reprojected depending on

the latitude and longitude of each observed point, which explains the oval appearance

of the object. Credit: MSSS (MOC), MGS, JPL/NASA.

Mars were aligned at one specific instant of time during each revolution. This
geometric configuration corresponds to a situation where specular reflection
can occur. Setting θ0 ≈ 0, θ ≈ 0, and an arbitrary value of φ in (13.23), we
do indeed obtain γ′ = 0.

On Mars, the possibility of Sun glint depends on the physical properties
of the surface, e.g., stone, sand, dust, and also on the physical properties of
the atmosphere, which may contain aerosols.
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15.10 Natural Satellites

15.10.1 Phobos and Deimos

Mars has two natural satellites, discovered in August 1877 by A. Hall.29

They have circular, equatorial orbits (i is about 1◦). Their small size, of the
order of 10 km, and their lumpy shape make them look like large rocks. Like
the Moon or other natural satellites, they always turn the same face towards
their planet.

The largest, Phobos (a = 9,379 km, i = 1.07◦, T = 0.3189 day), with
η = 2.76, is well below the areostationary orbit.30 The second moon, Deimos
(a = 23,459km, i = 1.79◦, T = 1.2624 day), with η = 6.91, is slightly higher.

One consequence of tidal effects is that the distance between the planet
and its moon varies slightly in time. If the satellite is beyond the synchronous
orbit, it moves away. If it is within, it moves closer until it breaks under tidal
forces when it reaches the so-called Roche limit, to be discussed in the next
chapter [see (16.14)].

The Lagrange points L1 and L2 of the Mars–Phobos system have been
calculated in Example 6.4.

15.10.2 Space Exploration

The Soviet probe Phobos-2 made a novel attempt to approach the moon
Phobos. In an equatorial orbit for 2 months from 29 January 1989, the probe
gradually moved towards Phobos. When it was only 50m from the surface of
Phobos, on 27 March, it ceased to transmit, just as it was about to launch its
landing modules.

29Hall named them after the two male offspring of Ares and Aphrodite. They had the same
weak points as their father: Phobos, � 5)��	� ��, “fear”, Deimos, � %�̃���	� ��, “dread”.
Hall’s source was two lines from the Iliad, Book XV:

6	 &"��� ��� 7 8 9����	 ����� %�̃��)� �� 5)��� ��
:����0���� �;��	 # 8 ���� 8 <#0/��� ���&��)����=

	
����� 	������� 
 ���������

In the translation by Ian Johnston:

Then he [Ares] told Terror and Flight to harness his horses,
while he dressed himself in his glittering armour.

30Phobos is one of the rare known examples of a natural satellite whose orbital angular
speed is greater than the angular speed of the planet about its own axis: it is thus below
the planetostationary orbit. Until certain discoveries made by Voyager-1 and 2, it was the
only natural satellite known to have this property. For a Martian observer, Phobos rises
in the west and sets in the east. Seen from Phobos, Mars covers roughly half of the sky.
Indeed, the planet is viewed from the apex of a cone with angle 2f0 = 2arcsin(1/η) = 42◦.
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The mission Phobos-Grunt, already mentioned at the beginning of this
chapter, was lost due to a failure just after launch.31 Mars Express flew close
by Phobos on several occasions as it followed its elliptical, near-polar orbit,
and was able to produce images and help in selecting a landing site (see
Fig. 15.38).

15.10.3 View and Sampling

Phobos can only be viewed from those points on Mars with latitude less
than |ψ| = ψv = 69.8◦. Indeed, according to (12.15),

ψv = i+ arccos
1

η
= 1.07 + 68.77 = 69.84◦ .

The “sampling” of a natural satellite is represented by its synodic period. This
period T ′ is obtained using (8.44):

1

T ′ =
1

1.027
− 1

0.319
= −2.161 day−1 ,

which gives T ′ = −0.463 day or −0.451 sol. The negative sign of the synodic
period indicates that the relative motion occurs in the retrograde direction.

Concerning Deimos, which is rather close to the areostationary orbit, only
those points close to the poles cannot view it. Indeed, we now have

ψv = i+ arccos
1

η
= 1.79 + 81.68 = 83.47◦ .

The synodic period is calculated from

1

T ′ =
1

1.027
− 1

1.262
= +0.1811 day−1 ,

which gives T ′ = +5.52 day or +5.37 sol.

31It is worth mentioning the very interesting strategy chosen here. In the first stage, the
probe was to enter Martian orbit in September 2012, then circularise with hp = 5,800 km
and ha = 6,000 km. From this “phobosynchronous” orbit, the satellite would have softlanded
on Phobos in April 2013, staying until August. In the final stage, it was to return to Earth
with a piece of Phobos, in fact a sample of around 200 g.
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Fig. 15.38 :Phobos. Upper: Image acquired on 3 March 2010 by the High Resolution

Stereo Camera (HRSC) aboard Mars Express during a flyby at 67 km from Phobos. N

is the North Pole. Credit: ESA, DLR, FU Berlin (G. Neukum). Lower: Photographic

map of Phobos, using a plate-carrée projection, obtained from Mars Express images,

supplemented by images from other missions. Credit: ESA.
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15.11 Historical Note: Kepler and the Planet

Mars

15.11.1 Calculating the Period of Revolution

As we saw in Chap. 4 (see Fig. 4.13), the subtitle of Astronomia Nova was
On the motions of Mars, according to the observations of Tycho Brahe (see
Fig. 15.39). The quality of the measurements made by Tycho Brahe is well
known, and all the more astonishing in that they were made with the naked
eye. However, the astuteness of Kepler’s interpretation was equally impressive.
Page 131 of Astronomia Nova, reproduced in Fig. 15.40, illustrates this.

Kepler would chose a position of Mars on its orbit and note the time of
observation. Then, for each revolution, he noted the time of passage at this
same point, ad idem fixarum punctum (line 13 of p. 131), to deduce the length
of the Martian year. The first passage noted32 is (lines 10 and 11 of p. 131)

anno mdxc D. v Martii vesperi H. vii M. x ,

which is the year 1590, or day (D. = die) 5 of the month of March (Martii), in
the evening (vesperi), at hour (H. = hora) 7, and at minute (M. = minuta) 10.

Three other passages are then noted. The dates have been transcribed into
the modern notation in Table 15.10. Transforming these times33 into Julian
dates (JD), it is easy to calculate the lapse of time between them and thus
obtain the period of revolution, which represents the length of the Martian
sidereal year.34

For this method of calculation, based on four observations at intervals of
one Martian sidereal year, the reader is also referred to Fig. 1.9. The average
of the three values serves to make the comparison:

32The attentive reader will note that we have corrected a typing error by Kepler. Instead
of mdxcx, which means nothing as a Roman numeral, one should read mdxc for 1590.

33We assume that these are the LMT times at Uraniborg, where Tycho Brahe had his
observatory. It is located at 55◦55′N and 12◦45′E on the island of Ven, which now belongs
to Sweden. We deduce that UT = LMT (Ven) − 51min. Another issue is whether Kepler
used the Gregorian or the Julian calendar. Defined in 1582, the Gregorian calendar was
applied from 1583 by the German Catholic states, but not until 1700 in Denmark and
the German Protestant states. The answer can be found from Kepler himself. In just one
instance, he specifies an observation date with the day of the week, namely, Saturday 8
November 1597. In the “new” calendar, this day is a Saturday, while in the “old” one it
is a Wednesday. Kepler was thus using the Gregorian calendar. Note that these issues of
local time and calendar are of no importance when calculating the period, which is based
on differences between dates. They are only relevant to the calculation of LS.

34On a drawing with the note Copernici on p. 131 of Astronomia Nova, Kepler plotted
with a continuous curve the circle δγ with center α, representing the circular trajectory of
the Earth as defined by Copernicus. He then plotted with a dotted curve the trajectory of
the Earth as he had calculated it. The Sun β is not exactly at the center, indicating the
eccentricity of the Earth orbit. The position of the Earth indicated by θ corresponds to the
1590 observation, while η corresponds to 1592, ε to 1593, and ζ to 1594. On the orbit of
Mars, the position χ of the planet is fixed for these four dates.
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Fig. 15.39 :Extracts from Astronomia Nova. Upper: Page 4. Trajectory of Mars in a

geocentric frame, showing the retrograde motion of the orbit. Observations by Tycho

Brahe between 1580 and 1596. The beginning and end of the observations are indi-

cated. Lower: Page 309. Example of a measurement table and calculations carried

out by Kepler.
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Fig. 15.40 :Astronomia Nova, p. 131. Determining the period of revolution of Mars,

i.e., the Martian year.
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Date Time Julian date (JD) ⇒ difference (d) LS (deg)

1590 5 March 19:10 2,301,859.26319 – 316.252
1592 21 January 18:41 2,302,546.24306 686.97987 316.359
1593 8 December 18:12 2,303,233.22292 686.97986 316.357
1595 26 October 17:44 2,303,920.20347 686.98055 316.364

Table 15.10 :Transcription of p. 131 of Astronomia Nova, with calculations using

the data. Solar longitude LS.

Quantity Formula Earth Mars

Aphelion a(1 + e) 101,796 166,510
Perihelion a(1− e) 98,204 138,173
Total 2a 200,000 304,683
Difference 2ae 3,592 28,337
Semi-major axis a 100,000 152,342
Focal length ae 1,796 14,169
Eccentricity e 0.01796 0.09301

Table 15.11 :Results of Kepler’s calculations. The unit of distance chosen by Kepler

was 100,000 for the semi-major axis a of the Earth orbit.

Planet Quantity Kepler Current value Relative error (%)

Mars Inclination/ecliptic (deg) 1.8420 1.8496 0.4
Mars Semi-major axis (a.u.) 1.52342 1.52366 0.016
Mars Eccentricity 0.09301 0.09341 0.4
Terre Eccentricity 0.01796 0.01671 7.5

Table 15.12 :Results of Kepler’s calculations. Comparison with current values and

relative error in percent.

Kepler’s calculations 686.9801 or 686 d 23h 31m 20 s ,

Sidereal year 686.9800 or 686 d 23h 31m 12 s .

The “fixed point” on the Mars orbit is determined with remarkable accuracy:

LS = 316.358± 0.006◦ .

Kepler’s error in the length of the sidereal year is just 8 s over 687 days, i.e.,
a relative error of 10−7. In any case, Kepler could not have done better, since
his minimal time measurement was the minute. Mechanical clocks date back
to the fourteenth century, but truly accurate time measurement began with
Huygens in 1673. As far as observation with optical instruments is concerned,
this did not get underway until Galileo arrived on the scene in 1610.



802 Chapter 15. Satellites of Mars

15.11.2 Other Calculations for the Earth and Mars

The way Kepler used Tycho Brahe’s measurements was crucial in valorising
them. To begin with, he placed them in a Copernican context, but in addition
to this, he brought a wealth of mathematical knowhow. He even improved
their accuracy by rigorously accounting for the precession of the equinoxes
(Astronomia Nova, p. 131) and atmospheric refraction (Astronomia Nova,
p. 73).

We end this historical note with a few other remarkable results due to
Kepler, published in Astronomia Nova.

Inclination. For the inclination of Mars relative to the ecliptic plane (As-
tronomia Nova, p. 79), Kepler noted that the details of the calculation were
very delicate. He obtained the value

i = 1◦ 50
1

2
min

in his notation, or i = 1.842◦ in decimal degrees.

Eccentricity and Semi-major Axis. Kepler calculated the eccentricity of
the Earth (Astronomia Nova, p. 136) and Mars (Astronomia Nova, p. 265),
as well as the semi-major axis of the Mars orbit. He attributed 100,000 to the
semi-major axis of the Earth orbit (these are thus arbitrary units). The results
are shown in Table 15.11 and compared with current values in Table 15.12.



Chapter 16

Satellites of Other Celestial

Bodies
The princes leave first. Locks are checked.

Chains are fastened. The clamour of men is
silent now. Doors once open wide are closed.
The gods and goddesses of the land have re-
tired to the skies. They no longer pronounce
sentence, judge no more.

The night adorns its veil.
The palace is still, the wheat fields hushed.

The traveller invokes a god; he who awaits
trial seeks sleep in vain. That most equitable
of judges, Shamash [the Sun], has entered
his apartments. Bright stars, divinities of the
great night, be present at my side.

Hymn to the Night.
Babylon, circa 2000 bc

Clay tablet, Louvre Museum AO 6769
From the original translation by
Antoine Cavaigneaux.

In the country of clear skies, the cradle of the written word, Mesopotamia
and Egypt, the nights were kind to stargazers. Most of the stars were fixed
to constellations, while others moved around the zodiac. There was Sirius,
and there was Venus. All these mysteries were recorded on clay or papyrus,
in the vain hope of divination, works of astrology, bound together with super-
stition and religion. Far removed from any scientific goal, but nevertheless a
beginning. For science begins with observation!

M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS,
DOI 10.1007/978-3-319-03416-4 16,
© Springer International Publishing Switzerland 2014
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Several centuries later, the astronomers of Greece were influenced by the
Babylonians. The sky was still clear, and in their own writing, they were the
first to make the formal distinction between stars and planets.1

�

In the present chapter, we shall examine the motion of a satellite around
another celestial body, but more concisely than we have done for the Earth
and Mars. The chapter is divided into two parts, each following practically
the same plan. There is a clear separation between Part A, which concerns
the satellites of planets, and Part B, which deals with satellites of natural
satellites. In the second part, to avoid confusion, a natural satellite or moon
of a planet will be referred to by the term “natural satellite,” and the term
“satellite” will be reserved for an artificial or technological satellite.

A – Satellite of a Planet

16.1 Planets of the Solar System

16.1.1 Presenting the Planets

The planets of the Solar System gravitate around its central star, the Sun.
They fall into two categories: the telluric planets and the giant planets.2 The
telluric planets3 are the four planets closest to the Sun: Mercury, Venus, Earth,
and Mars. They are rather similar to one another in size and composition
(iron and siliceous rocks). The giant planets are more remote: Jupiter, Saturn,

1The word “planet” comes from the Latin planeta, itself taken from the Greek �"� ��	,
plural of � �"� 	�  ��	, which means “traveller” or “wanderer.” This word derives from
the root meaning “ to wander, to stray from the path.” Indeed, the Greek astronomers
distinguished moving bodies (the planets, �"� ��	 (/����	) from fixed bodies (the stars,
(/����	). The Indo-European root ∗ster, “star,” reappears in the Greek � (/���� ����	 and
in several branches: Germanic (with star, Stern, ster, stjerne, stärna, stjerners, stjrnu),
Celtic, and Indo-Aryan (with sitara in Hindi, sétaré in Persian). The variant ∗stel gave
rise to stella in Latin, and from there to the words we find in the Latin languages (stella,
estrella, estrela, stea, étoile)

2One also finds the terms “terrestrial” and “Jovian,” the latter being a reference to
Jupiter, from the Latin Jupiter, Jovis. Up until the Middle Ages, in the days of the geo-
centric astronomy in which the roles of the Sun and Earth were swapped over, the planets
between the Earth and the Sun (the Moon, Mercury, Venus) were known as the inferior
planets, while those considered to lie beyond the Sun (Mars, Jupiter, and Saturn) were
referred to as the superior planets.

3In Latin, Terra, æ (f.) means “the Earth,” but Tellus, uris (f.) is a poetic name for the
Earth goddess, or Mother Earth, “the fertility goddess of crop and cattle” (Horace).
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Uranus, and Neptune. They are much bigger than the telluric planets and have
totally different compositions (mainly hydrogen and helium). The radius of
the giant planets is determined as being the radius of an isobaric surface (at
1 bar). It is not possible to define a ground level or obtain any geographic
representation of these planets.

The asteroid belt gravitates between these two groups. The first asteroid,
Ceres, was discovered by G. Piazzi4 at the beginning of the nineteenth century.
The asteroid belt is composed of thousands of rocky bodies, sometimes with
quite strange shapes.5 Beyond the giant planets lie a small planet, Pluto, and
the asteroids of the Kuiper Belt.6 Still further out lies the Oort cloud,7 a
mysterious world of comets.8 Since 2006, Pluto has been classified9 with the
Kuiper planetoids in the category of trans-Neptunian objects.

4Father Giuseppe Piazzi (1746–1826) was an Italian astronomer. He produced a very
accurate catalogue of more than seven thousand stars. It was on 1 January 1801, while he
was compiling his catalogue, that he discovered the first asteroid, which he called Ceres,
the patron saint of Sicily. Having identified the position of this new planet, he had to take
a break from his observations at his observatory in Palermo due to bad weather. But when
he went back to them later, his Ceres had disappeared. It was the young Gauss who, using
methods he had just developed himself, succeeded in tracking it down using the information
provided by Piazzi. Within 7 years, three other asteroids had been located by H. Olbers. It
was Gauss who showed that they all belonged to the same belt by determining the orbital
elements.

5Most of these asteroids belong to the Main Belt, between Mars and Jupiter, but some
actually lie on the orbit of Jupiter (the Trojan asteroids mentioned in Sect. 6.12), while oth-
ers cross the trajectory of Mars and even the Earth orbit (near-Earth asteroids). Asteroids
are numbered according to the order of their discovery, starting with 1-Ceres, which is also
the largest. On 1 January 2000, there were 7,722 (see Fig. 6.9). Since then, an automatic
system called Lincoln Near Earth Asteroid Research (Linear) set up by the Lincoln Lab-
oratory at MIT has been in operation. Thousands of asteroids are discovered every year,
including some 320,000 in 2012, although there has been a certain decline over the past few
years.

6Gerard Kuiper (1905–1973) was an American astronomer of Dutch extraction. He dis-
covered the atmosphere of Titan (1945) and showed that it was made up of methane. He
also showed that the atmosphere of Mars was mainly composed of carbon dioxide (1947).
He hypothesised that the Solar System was encircled by an asteroid belt, of which Pluto
was a representative. Since 1992, hundreds of trans-Neptunian objects have been discov-
ered, some with a diameter of several hundred kilometers. They form what is now called
the Kuiper Belt or Kuiper–Edgeworth Belt.

7Jan Hendrik Oort (1900–1992) was a Dutch astronomer. From his studies of a great
many very long-period comets with orbits well outside the plane of the ecliptic, he deduced
in 1950 that one should find, beyond the orbit of Neptune and the Kuiper Belt (which
lie largely within the ecliptic), a ball-shaped rather than ring-shaped “cloud,” made up
of small celestial bodies, which could be considered as a kind of cometary reservoir. The
diameter of this so-called Oort cloud would be some 105 astronomical units, or one light-
year. Gravitational perturbations, even very weak effects, would cause these comets to move
either towards the center of the Solar System, or out towards other stars.

8The word “comet” comes from Latin, borrowed directly from the Greek cométès,
����� 	, where it means “long-haired,” from the Greek � �)� �  	, “hair.”

9Many planets of the size of Pluto have been found in the Kuiper Belt since the 1990s.
It thus became urgent to react in some way. Keeping Pluto as a planet meant accept-
ing hundreds of others. On 24 August 2006, in its 26th General Assembly in Prague, the
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The two telluric planets furthest from the Sun both have their own nat-
ural satellites: the Earth has one, the impressive Moon, while Mars has two
minuscule followers. The giant planets each have a whole series of moons,
some of which are larger than Mercury or Pluto.

Mercury, Venus, Mars, Jupiter, and Saturn have been known since ancient
times10 (the Earth itself has not been considered a planet for such a long
time), and have inherited in English and most European languages the names
of the main divinities in the Roman pantheon.11 The same custom applied
to planets discovered later: Uranus by W. Herschel in 1781, Neptune by J.G.
Galle on 23 September 1846, using the celebrated calculations by Le Verrier
(see Chap. 6), and Pluto by C.W. Tombaugh on 18 February 1930.

As soon as astronomers had switched to a heliocentric view of the Solar
System, they were struck by the regularity or harmony (to use the term em-
ployed by Kepler) of this system. The orbits12 of the first eight planets all lie,

International Astronomical Union (IAU) decided to establish a strict definition of what
might constitute a planet. The following three criteria were thus laid down:

• It must be in orbit around the Sun.
• It must have almost spherical shape (implying that the body’s own gravity has dominated

over internal cohesive forces, and one has hydrostatic equilibrium).
• It must have cleared out its own orbit (implying the elimination of any body that might

move in the neighbourhood of its orbit).

The Sun is then left with eight planets. Bodies that only satisfy the first two criteria are
called dwarf planets. These include Pluto and Ceres.

10Including the Moon and Sun in this list, we obtain the seven “planets” giving the days
of the week in Roman times: Saturnus, Sol, Luna, Mars, Mercurius, Jupiter, and Venus.
In the early days of Christianity, the religious authorities were intent on wiping out any
reference to Roman or Olympian gods. They thus imposed the sabbat on Saturn, while the
Lord (Dominus) took the place of the Sun, in the Romance languages. But for the other
days, they only succeeded in Portuguese and Greek (where Monday is the second day, and
so on). In the Germanic languages, the original Roman system remains intact, sometimes
fully visible, as in Sunday or Monday, sometimes less obvious, e.g., Friday refers to Fregga,
which has the same root as friend and, like Venus, was the goddess of love.

11The planet with the shortest period is associated with Mercury (Hermes in Greek):
always in motion, appearing and disappearing in quick leaps and bounds during the seasons,
it is indeed well represented by the messenger of the gods. The next, the brightest and
most beautiful, is Venus (Aphrodite), goddess of love. Then, red as blood, her belligerent
companion Mars (Ares), god of war, followed by Jupiter (Zeus), the master of Olympus,
plenitude incarnated by a planet, benevolence in person. Beyond him, with his characteristic
slow gait and pale countenance, Saturn, father of Jupiter. The old man recalls the idea of
time through a Greek play on words between his name (Kronos, � +�)��	� ��, from the verb
������, “to accomplish, to achieve,” with Indo-European root ∗kra, like the Latin creare,
“to create,” from whence came Ceres, the Roman goddess of growth and the word “cereal,”
etc.) and the word for time (chronos, � ��)��	� ��).

12As an example of the kind of regularity they sought, one should mention Bode’s law,
also called the Titius–Bode law. This was an empirical relation, discovered in 1766 by the
German astronomer J.D. Tietz (whose name is Latinised to Titius), then formulated and
established as a law by his colleague Bode in 1778. It can be formulated as follows. Let aS
be the semi-major axis of the planet’s orbit, expressed in astronomical units. The relation
gives aS for the six planets known at the time:

aS = 0.4 + 0.3× 2n ,
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to within a few degrees, in the same plane, known as the ecliptic. The motion,
along almost circular orbits, is always in the same direction, i.e., anticlockwise
as viewed from above the north pole of the Sun. In most cases, the planets
also rotate in this direction about their own axes, and their natural satellites
orbit them in this direction too. Moreover, the fact that this direction is also
the direction of rotation of the Sun itself has long suggested that there is a
connection with the formation of the Solar System, as proposed in Laplace’s
theory in Exposition du système du monde, in 1796.

Atmosphere of the Telluric Bodies

Apart from the Earth, two of the telluric planets have an atmosphere:

• Venus with its gases heated to high temperatures by the greenhouse effect
[average pressure and temperature at ground level: 90 bar, 750K; compo-
sition: carbon dioxide gas CO2 (96%), nitrogen N2 (3%)].

• Mars with its rarefied gases [average pressure and temperature at ground
level: less than 10−2 bar, about 250K; composition: carbon dioxide gas CO2

(95%), nitrogen N2 (3%)].

Two natural satellites of other planets also carry an atmosphere:

• Titan, the largest natural satellite of Saturn [average pressure and tem-
perature at ground level: 1.5 bar, 90K; composition: nitrogen N2 (98%),
methane CH4 (2%)].

• Triton, the largest natural satellite of Neptune [average pressure and tem-
perature at ground level: around 10−5 bar (1.5 Pa), 40K; composition: ni-
trogen N2 (99%)].

An atmosphere was detected around Pluto by stellar occultation in 1985 [av-
erage pressure and temperature at ground level: a few μbar (≈0.5Pa), 43K;
composition: nitrogen N2 (99%)].

where n = −∞ for Mercury, n = 0 for Venus, n = 1 for the Earth, n = 2 for Mars,
n = 4 for Jupiter, and n = 5 for Saturn. These values can be compared with the values of
aS in Table 16.2. It appears that the result is not so bad. However, we do not have here
the accuracy of measurement that forms the basis for astronomy! This law, which is not
strictly a law in the scientific sense of the term, has raised much controversy. Is it purely
fortuitous? Does it reflect the action of physical forces during the formation of the Solar
System? Does it reveal the action of some gravitational phenomenon after the formation of
the planets? Today, astronomers have a preference for the first of these three hypotheses,
but one cannot deny at least one point in favour of this “law”: it has played an important
role in the historical development of astronomy. It was while looking for the planet n = 6,
shortly after the formulation by Bode, that Herschel found Uranus. Then, assuming that
the body perturbing Uranus was in the orbit n = 7, Le Verrier was able to calculate the
position of Neptune. His own account shows this beyond doubt, and Adams had used the
same arguments. The most surprising thing is that the least good agreement between the
“law” and measurement is precisely for the case of Neptune! Many astronomers had sought
to fill the space at n = 3, until Piazzi discovered a first asteroid in the space between Mars
and Jupiter.
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16.1.2 Space Exploration of the Planets

One of the main motivations for space exploration today is the desire to
find traces of life, something usually associated with the presence of water
in the liquid state. This explains in part projects to investigate Mars, or
indeed, Europa, a Galilean moon of Jupiter, discussed further below. Another
motivation is sometimes the study of the atmosphere in the case of both
telluric and giant planets.

At the beginning of space exploration beyond the confines of the Earth,
the aims were different: there was thirst for knowledge about the various
bodies making up the Solar System, driven by the quest for technological
and ideological ascension by the two superpowers of the day, as will be seen
from the brief chronology below. The main dates for this exploration are
summarised in Table 16.1. We indicate the year marking the beginning of the
various types of mission.

The Moon and Nearby Planets

In 1959, the probe Luna-1 achieved the first lunar flyby in January, Luna-2
landed on the Moon in September, and Luna-3 sent the first photos of the dark
side of the Moon back to the USSR from its October flyby (see Fig. 16.31).
In 1966, Luna-9 made the first soft landing in January, and Luna-10 was the
first lunar satellite in March. The United States had their revenge with the
astronauts of Apollo 11 on 20 July 1969 (see Fig. 16.32).

After the Moon, the next target was Venus: for the United States, success-
ful flybys were operated by Mariner-2 in December 1962, Mariner-5 in Novem-
ber 1967, and the two probes Pioneer Venus-1 (or Pioneer Venus Orbiter, or
Pioneer-12) and Pioneer Venus-2 (or Pioneer Venus Probe Bus, or Pioneer-13)
in December 1978; for the USSR, missions were carried out successfully by
Venera-4 in October 1967, and Venera-5 and -6 in May 1969 with atmospheric
capsules, while the first soft landing was made by Venera-7 on 15 December
1970, followed by other successful missions Venera-8 to -16, in perfect contrast
to their Mars programme! Finally, the Soviets produced Vega-1 and -2 in June
1985, releasing balloons and a landing module. As the atmosphere of Venus
is very opaque, it was mapped by radar, from 1990 to 1994, by the American
probe Magellan, launched on 4 May 1989 by the shuttle Atlantis (STS-30)
and placed in orbit around the planet on 10 August 1990. Before it, three
probes had carried out measurements in orbit: Pioneer Venus-1 from 1979 to
1992 and Venera-15 and -16 from 1983 to 1986.

The probe Mariner-10 accomplished the first mission to two planets:
launched on 3 November 1973, it flew by Venus on 5 February 1974, then pro-
ceeded to three encounters with Mercury,13 on 29 March 1974, 21 September

13The overpasses were separated by 176 days. The probe had been placed in an eccentric
heliocentric orbit with exactly twice the period T1 of Mercury (T = 88 day). In this case,
the synodic period is T ′ = 2T = T1 = 176 day (see Sect. 16.4.1).
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Object Observation Flyby Landing Orbit Sample n

Moon A 1959 1959 1966 1969 64

Mercury A 1974 2011 2
Venus A 1962 1966 1975 24
Earth – 1957 1961 1957 – N
Mars A 1965 1971 1971 (202x) 32
Jupiter A 1973 1995 7
Saturn A 1973 2004 4
Uranus 1781 1986 1
Neptune 1842 1989 1

Asteroids 1801 1991 2000 2000 2010 9

Pluto 1930 2015 1

Comets A 1985 (2014) (2014) 2006 14

Table 16.1 :Exploration of the Solar System. Dates (Gregorian year or A, since an-

cient times) marking the beginning of the following events: observation from Earth,

flyby of celestial body, landing on object, orbit around object, and sample return.

Dates in brackets refer to the year when projects should be achieved, with x rep-

resenting a number between 0 and 9. The number n is the number of missions,

successful or otherwise, launched prior to 2012. Note that a mission may fly by sev-

eral bodies, e.g., Galileo counts for Jupiter, asteroid, and comet. For the Earth, N

represents thousands of missions.

1974, and 16 March 1975. The Venus flyby was the first use of a gravity-assist
maneuver.14

14To model the trajectory of a probe from the Earth to Venus, for example, we use the
idea of patched conics. As long as the probe is in the sphere of influence of the Earth or
of Venus, its motion is described by a conic section with the relevant planet at the focus
(in motion relative to the Sun). Between the two, the motion is heliocentric, described by
a conic section whose focus (the Sun) is fixed. The three conics are then patched together.
However, to go from the Earth to a non-neighbouring planet (other than Venus or Mars),
one can fly close by some intermediate planet. To model the trajectory from the Earth
to Mercury under these conditions, one must patch together five conic sections. The third
corresponds to a flight close by Venus (generally a branch of a hyperbola). The velocity
relative to Venus has the same magnitude when it enters and when it leaves the sphere of
influence, but the direction is significantly changed. This is called gravitational deflection.
In this way the vectorial velocity relative to the Sun can be greatly modified without energy
expenditure. To reach Mercury, the speed must be reduced. To reach Jupiter or the more
remote planets, the speed is increased. This kind of maneuver is called a gravitational sling-
shot. It is used quite systematically for long-distance journeys. The probe Ulysses, launched
on 6 October 1990 to study the Sun, thereby reached a speed of 125 km/s (or 450,000 km/h).
Using a Jupiter swing-by, it left the plane of the ecliptic to overfly the south pole of the
Sun in 1994, then the north pole in 1995. Further examples are given below for the Galileo
and Cassini probes.
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Asteroid Belt

After Mars, discussed in the last chapter, we come to the asteroid belt.
On its way to Jupiter, the Galileo probe made the first flybys as it crossed
the Main Belt: 951-Gaspra and 243-Ida (measuring R ∼ 20 km). A natural
satellite of 243-Ida was even found, and given the name Dactyl. It is almost
spherical, with R ≈ 0.7 km. The Near Earth Asteroid Rendezvous (NEAR)
mission, launched on 17 February 1996, observed 253-Mathilde on 27 June
1997, before flirting with Eros on St Valentine’s day 2000. We shall investigate
its orbit shortly. Likewise, we shall return to the various orbits of Dawn, a
NASA probe launched in 2007 to visit 4-Vesta and 1-Ceres, the brightest and
the biggest of the asteroids, respectively, from 2011.

The Japanese probe15 Muses-C, renamed Hayabusa (“falcon”), launched
in 2003 in the direction of 25143-Itokawa, succeeded in returning some dust
samples from the asteroid to Earth,16 overcoming a string of incidents on the
way.

Giant Planets

Jupiter. Jupiter was first overflown on 1 December 1973 by Pioneer-10,
launched on 3 March 1972, then on 1 December 1974 by Pioneer-11, launched
on 6 April 1973. The latter went on to visit Saturn, flying past on 1 September
1979.

It was the Voyager probes, making full use of the gravity-assist technique,
that finally revolutionised our knowledge of the outer planets. NASA took ad-
vantage of an exceptional alignment of the planets from Jupiter to Neptune at
the beginning of the 1980s to accomplish with these two probes what became
known as the Grand Tour. Such a favourable configuration only occurs about
once every 180 years.

Voyager-1, launched on 5 September 1977, flew past Jupiter on 5 March
1979 and Saturn on 12 November 1980, before making a closer investigation
of Titan. Voyager-2 was the subject of a remarkable round of gravitational
billiards: launched on 20 August 1977, it overflew Jupiter on 9 July 1979,
Saturn on 26 August 1981, Uranus on 24 January 1986, and Neptune on 24
August 1989, sending back many photos of great quality. These four probes,
Pioneer-10 and -11, Voyager-1 and 2, are currently on their way out of the
Solar System.

15Launched on 9 May 2003, the probe arrived in the vicinity of Itokawa on 12 September
2005 and flew close to the asteroid for some 2 years, coming near enough to take samples.
On 18 October 2007, it left for the Earth, arriving on 13 June 2010. Before burning up in
the atmosphere, the probe released a capsule which was recovered in the Australian desert.
On 16 November 2010, the Japanese space agency JAXA announced that the samples they
obtained were of extra-terrestrial origin.

16Itokawa is an asteroid belonging to the Apollo family, which crosses the orbit of Mars. It
was discovered by Linear on 26 September 1998. It looks like a bent cylinder with diameter
200m and length 500m.
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The probe Galileo, launched17 in 1989, was placed in orbit around Jupiter
in December 1995 to study the giant planet and its four large Galilean
moons.18 Although originally programmed to last 2 years, the mission of the
Galileo orbiter actually went on for 8 years. The mission discovered the winds
and storms on Jupiter, volcanic activity on Io, possible oceans under the sur-
faces of Europa and Callisto, and the magnetic field of Ganymede. When the
fuel reserves (hydrazine) had almost run out, the probe was sent into Jupiter
to remove all risk of collision with Europa, which might have contaminated it
with elements of terrestrial life. On the way from the Earth to Jupiter, Galileo
photographed several asteroids. And on the way from the Earth to Pluto, the
probe New Horizons, discussed below, tested its instruments by photograph-
ing Jupiter and its moons (see Fig. 16.1).

Saturn. The US probe Cassini19 was launched on 15 October 1997 to study
the Saturn system. Using four gravity-assist maneuvers,20 it went into orbit
around Saturn on 1 July 2004. On 25 December 2004, the European module
Huygens21 separated from Cassini, and 3 weeks later, on 14 January 2005,
made a spectacular descent on Titan with the help of a parachute. Originally,

17The VEEGA trajectory is a Venus–Earth–Earth gravity assist. We give the date (year
month day) for each planet overflown: launch 1989 10 18, by the Atlantis shuttle STS-34.
Venus flyby: 1990 02 10. Earth flyby 1: 1990 12 08. Earth flyby 2: 1992 12 08. Jupiter Orbit
Insertion (JOI): 1995 12 07.

18These four natural satellites were discovered in 1610 by Galileo, an event which had
important scientific and philosophical consequences. He first gave them the Latin name
Medicea sidera, which can be translated as “Medician stars,” in homage to the Medici family,
the Grand Dukes of Tuscany. Already a leader in many fields, Galileo was also skilled in the
exercise of getting himself sponsorship! However, the appellation was eventually dropped.
The four moons were named later by other astronomers, after the four beautiful conquests
of Zeus, Io, Europa, Ganymede, and Callisto. But spot the boy! Note: solution below.

19It was named after Giovanni Domenico Cassini (see the note on Cassini I), who discov-
ered the four natural satellites of Saturn between 1671 and 1684, and the separation between
rings A and B, which is known as the Cassini division. Concerning the rings, Galileo had ob-
served in 1610 that Saturn appeared to have two “ears,” which he considered to be moons.
However, a few years later, they were no longer visible to him. Huygens realised that they
were looking at a ring, which was visible at various inclinations. But it was Cassini who first
saw two concentric rings A and B. Other rings were subsequently discovered, and they are
currently labelled with letters up to G. Cassini put forward the hypothesis, since confirmed,
that the rings were made up of a multitude of small bodies gravitating on very close orbits.

20The VVEJGA trajectory is a Venus–Venus–Earth–Jupiter gravity assist. For each
planet overflown, we give the date (year month day) and the speeds in km/s in the form
[before, after]. Speeds are given in a heliocentric frame: Launch: 1997 10 15. Venus flyby:
1998 04 26 [37.2, 40.9]. Venus flyby: 1999 06 24 [39.2, 42.3]. Earth flyby: 1999 08 18 [35.0,
39.1]. Jupiter flyby: 2000 12 30 [11.6, 13.7]. Saturn orbit insertion (SOI): 2004 07 01.

21Christiaan Huygens (1629–1695) was a Dutch physicist, mathematician, and as-
tronomer. In addition to his great treatises on probability, dynamics (definition of the
centrifugal force), mechanics, e.g., Horologium oscillatorium (1673), optics, e.g., Treatise
on Light (1690), he also wrote fundamental works on astronomy. By eliminating chro-
matic aberration, he improved the refracting telescope (Huygen’s eyepiece), and with this
enhancement, made fundamental discoveries in astronomy. For example, he discovered Sat-
urn’s moon Titan and the rings, as well as the rotation of Mars.
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Cassini’s mission was to consist in 74 revolutions around Saturn over 4 years,
with 52 close encounters with the various moons of Saturn and 45 Titan flybys
(see Fig. 16.2). Given the success of this mission, NASA has extended it until
2017. See the mission programme in Fig. 16.25 (upper).

Trans-Neptunian Objects and Comets

The US probe New Horizons was launched in January 2006 to explore
Pluto and the Kuiper Belt,22 aiming to fly past Pluto in July 2015.

Halley’s comet, the most famous of all comets, was approached by six
probes in March 1986: ISEE-3 renamed ICE for this mission, Vega-1 and -2
(Soviet probes, Ve for Venera, Ga for Galleia, “Venus” and “Halley” in Rus-
sian), Giotto (a European probe23 which flew by at just 600km from the
cometary nucleus), and Sakigake and Suisei (Japanese probes, whose names
mean “scout” and “comet” in Japanese) (Fig. 16.3).

The Comet Nucleus Tour (CONTOUR) probe, launched on 3 July 2002,
ceased to function shortly afterwards. It was to investigate short-period comets
like P/Encke, whose orbit never goes beyond the orbit of Jupiter.

Rosetta24 is an ESA Cornerstone Mission. The probe was launched on 2
March 2004 and must follow a complex route,25 going into orbit around the
comet26 67P/Churyumov–Gerasimenko in May 2014. In November 2014, the
Philae module should softland on the cometary nucleus and travel with it
until it reaches its perihelion in December 2015.

Invited to France by Colbert in 1665, he was one of the founders of the French Academy
of Sciences. However, after 20 years in Paris, he returned to the Hague, sickened by the
intolerance shown by Catholics toward Protestants. He himself had a “mechanistic” view
of the Universe, rejecting the existence of gods and the supposed immortality of the soul:
“I believe that two plus two makes four.”

22So as not to spend too long over its tremendous journey, the probe was given a very fast
send-off. Just 9 h after launch on 19 January 2006, it was already in orbit around the Moon.
It flew past Jupiter on 28 February 2007, only a little more than a year after its departure.
This was a Jovian gravity-assist (JGA) trajectory. It should encounter Pluto on 14 July
2015, at 11:47 UT, flying at an altitude of 13,695 km, and with a speed of 13.78 km/s, then
Charon at 12:01 UT. Subsequently, New Horizons will explore at least one planetoid in the
Kuiper Belt. This mission replaces the Pluto–Kuiper Express, abandoned in 2000.

23In his painting The Adoration of the Magi, of 1304, the Italian artist Giotto represented
a huge comet. This might well be Halley’s comet, which went by in 1301.

24The Rosetta stone carries an inscription in three languages, used by Champollion to
decipher the hieroglyphs of ancient Egypt in 1822. Rosetta is the English name of a village
in the Nile Delta with the Arab name Rachid. This was where the stone was found. The
ESA chose this name for its Cornerstone Mission because it hopes the results of this mission
will enlighten us about the formation of the Solar System.

25There have been several gravity-assist maneuvers: Earth (March 2005), Mars (March
2007), Earth (November 2007), and Earth (November 2009).

26The launch was initially planned for January 2003, so that Rosetta could meet up with
comet 46P/Wirtanen 10 years later.
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Fig. 16.1 : Images acquired by the probe New Horizons on the way to Pluto. Upper:

Europa appears just above Jupiter. The image is centered on the point of Europa with

geographic coordinates 5◦S, 6◦W and has been turned upside-down so that south is at

the top. Instrument LORRI. Image taken at a distance of 3 million km from Europa

and 2.3 million km from Jupiter, on 28 February 2007, 11:48 UT, at the time of

closest approach to Jupiter. Lower: Jupiter’s Great Red Spot is visible, discovered by

Galileo. The moon next to the giant planet is Io. Image taken at a distance of 81

million km on 8 January 2007. Credit: NASA, Johns Hopkins University/Applied

Physics Laboratory, Southwest Research Institute.
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Fig. 16.2 : Images acquired by the Cassini probe. Upper: The probe is in the equatorial

plane of Saturn. Titan sits in the middle of the image. The rings have a thickness

of around 1 km and their shadow is projected with differing degrees of darkness on

Saturn’s globe. On the right, just below the rings, one can make out a small point.

This is Enceladus. January 2011. Lower: View of Saturn’s rings A and F, together

with the moon Epimetheus. In the background, Titan is shrouded in its atmosphere.

Approximate distance 667,000 km from Epimetheus (4 km/pixel), 1,800,000 km from

Titan (11 km/pixel). 28 April 2006. Credit: Cassini Imaging Team, SSI, JPL, ESA,

NASA.



16.1 Planets of the Solar System 815

Fig. 16.3 :These density waves are caused by the presence of small moons close to the

rings. Image taken at the end of June 2004 by the Cassini probe. The whole scene

pictured is about 220 km across. Left: The shepherd moon Daphnis in the Keeler

division (ring A) creates waves that were clearly visible in light at grazing incidence

in December 2010. Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA.
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NASA’s Stardust and Genesis missions were in situ explorations with sam-
ple return.27

NASA’s Deep Impact mission was launched toward comet 9P/Tempel on
12 January 2005, arriving on 4 July 2005. The probe released an impactor
to produce a crater on the comet, causing it to throw out some of its in-
ner material. The impact was observed by the probe itself and by ground-
based observatories. Renamed Epoxi, the probe was then redirected to comet
103P/Hartley 2, flying past on 4 November 2010.

16.2 Geodetic and Astronomical Quantities

for Planets

16.2.1 Geodetic and Astronomical Data

Table 16.2a gives the two basic quantities associated with each planet, its
constant of central attraction μ and its equatorial radius R, which allow one
to calculate the following quantities:

• The acceleration due to gravity g0 on the surface of the planet, from (6.6).
• The escape velocity Ve, from (4.34).
• The period T0(h=0) of a satellite in circular Keplerian orbit at zero altitude,

from (5.6), to which we shall return shortly.
• The density d, that is, the mass per unit volume of the body relative to

that of water (ρwater = 103 kgm−3, density dwater = 1).

Table 16.2b gives basic astronomical quantities concerning the orbit of the
planet around the Sun, including the semi-major axis aS and the sidereal
period Nsid.

Ignoring perturbations, Kepler’s third law takes the very simple form

[
Nsid (yr)

]2
=
[
aS (a.u.)

]3
, (16.1)

with the chosen units.

27Stardust was launched on 7 February 1999 and collected interstellar dust in 2002, then
particles from comet Wild-2 on 2 January 2004, before returning a capsule to the Utah
desert on 15 January 2006. Its heliocentric orbit took it out beyond the orbit of Mars.
Genesis collected particles from the solar wind. This probe was launched on 8 August 2001,
with Lissajous orbit insertion (LOI) on 16 November 2001, remaining for more than 2 years
at the Lagrange point L1 (halo orbit). From 3 December 2001 to 1 April 2004, it exposed
its collectors to the solar wind to pick up particles from the Sun. It then started back to
Earth by means of an astonishing loop-the-loop orbit, arriving as planned above the Utah
desert on 10 September 2004. Everything worked exactly as planned until a few seconds
before landing: the parachutes were installed upside-down and the capsule crashed into the
sand. However, part of its sample was recovered without contamination. Its highly original
orbit is described in Chap. 6 in the discussion of Lagrange points (see Table 6.9).
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We have also calculated the radius ρΣ of the sphere of influence and in-
dicated the characteristics of the planetary orbit, i.e., e, i, and ε, quantities
which are not directly necessary in this study, but which allow one to compare
the orbits of different planets. For example, we see that the orbit of Pluto is
highly eccentric and that the rotation of Venus is retrograde (ε > 90◦), etc.

To study the true motion and characterise special orbits, we use the geode-
tic and astronomical quantities given in Table 16.2c and d. The masses of the
planets are usually expressed by the ratio of the mass of the Sun to the mass
of the planet (see Table 16.3).

Different Radii of the Ellipsoid for the Giant Planets

For each giant planet, the ranges of variation from the equator to the pole,
for the different radii of the ellipsoid, are given in Table 16.4. Figure 16.4 shows
the radii of the ellipsoid at different latitudes, for Jupiter and Saturn, as we
did for the Earth ellipsoid in Chap. 2 (see Fig. 2.3) and the Mars ellipsoid in
Chap. 15 (see Fig. 15.4).

16.2.2 Satellite in Keplerian Orbit

As already discussed, when a satellite is in orbit (semi-major axis a) around
a planet, the period T0 of its Keplerian motion is given by (5.5). We can also
calculate the period T0(h=0) of a fictitious satellite at zero altitude. Considering
the mean mass per unit volume ρ of the planet, we have μ = ρoV G, where V
is the volume of the planet, assumed spherical. Using (5.6), we then obtain

T0(h=0) =

√
3π

G

1
√
ρo

= 3.7584× 105ρ−1/2
o . (16.2)

This shows that the Keplerian period T0(h=0) can be expressed solely in terms
of the mean density of the attractive body. As the Earth is the densest planet
in the Solar System, the period T0(h=0) is the shortest. Conversely, the longest
period is for a satellite orbiting around Saturn.

Using the mean density d relative to water and expressing the period in
minutes, we obtain

T0(h=0) (min) ≈ 198d−1/2 . (16.3)

The Keplerian period for a semi-major axis a can then be written

T0(η) (min) ≈ 198

√
η3

d
, (16.4)

for reduced distance η = a/R. Figure 16.5 graphs the dependence of T0/T0(h=0)

on η = a/R.
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(a)

Planet μ = GM R g0 Ve xT0(h=0) d
(m3 s−2) (km) (m s−2) (km s−1) (min)

Mercury 2.203208 × 1013 2,439.7 3.70 4.25 85 .02 5.44
Venus 3.248586 × 1014 6,051.8 8.87 10.36 86 .50 5.27
Earth 3.986004 × 1014 6,378.1 9.80 11.18 84 .49 5.52
Mars 4.282837 × 1013 3,397.0 3.71 5.02 100 .15 3.94
Jupiter 1.266865 × 1017 71,492.0 24.79 59.53 177 .85 1.34
Saturn 3.794063 × 1016 60,268.0 10.45 35.48 251 .54 0.69
Uranus 5.794549 × 1015 25,559.0 8.87 21.29 177 .76 1.29
Neptune 6.836540 × 1015 24,764.0 11.15 23.50 156 .08 1.64
Pluto 8.261000 × 1011 1,195.0 0.58 1.18 150 .51 1.73

(b)

Planet aS Nsid e i ε ρΣ/R
(a.u.) (yr) n.d. (deg) (deg) n.d.

Mercury 0.38709831 0.241 0.20563 7.00 2.0 40
Venus 0.72332982 0.615 0.00677 3.39 177.4 89
Earth 1.00000102 1.000 0.01671 0.00 23.4 126
Mars 1.52367934 1.881 0.09341 1.85 25.2 148
Jupiter 5.20260321 11.862 0.04839 1.31 3.1 587
Saturn 9.55490919 29.456 0.05415 2.49 26.7 788
Uranus 19.21844606 84.019 0.04717 0.77 97.9 1,763
Neptune 30.11038687 164.767 0.00859 1.78 28.8 3,045
Pluto 39.54470589 247.689 0.24881 17.14 122.0 2,244

(c)

Planet Dsid ηGS aGS hGS Planeto-
(h) n.d. (km) (km) synchronous

Mercury 1,407.509400 99.555 242,885 240,446 Impossible
Venus 5,832.443616 253.900 1,536,551 1,530,499 Impossible
Earth 23.934471 6.611 42,164 35,786 Achieved
Mars 24.622962 6.015 20,428 17,031 Planned
Jupiter 9.924912 2.238 160,009 88,517 Possible
Saturn 10.656222 1.863 112,271 52,003 Possible
Uranus 17.240 3.235 82,689 57,130 Possible
Neptune 16.110 3.372 83,514 58,750 Possible
Pluto 153.293352 15.515 18,540 17,345 –
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(d)

Planet Nsid J2 J3 J4 kh ηm Sun-
(day) (10−6) (10−6) (10−6) n.d. n.d. synchronous

Mercury 87.969 60 0 0 0.13 <1 Impossible
Venus 224.701 6 1 0 0.03 <1 Impossible
Earth 365.256 1,083 −3 −2 10.11 1.94 Achieved
Mars 686.980 1,955 31 −15 29.04 2.62 Achieved
Jupiter 4,332.59 14,736 1 −587 775.46 6.69 Polar
Saturn 10,759.2 16,298 0 −915 1,505.78 8.09 Polar
Uranus 30,688.5 3,339 0 −32 1,245.12 7.66 Polar
Neptune 60,182.3 3,410 0 −35 2,840.11 9.70 Polar
Pluto 90,469.7 0 – – 0.00 – –

Table 16.2 :The eight planets of the Solar System. The dwarf planet Pluto has been

included for comparison. (a) Geodetic characteristics. Geodetic data: planetocentric

gravitational attraction μ, equatorial radius R of planet. Derived quantities: central

acceleration g0 at ground level, escape velocity Ve, period T0(h=0) of a satellite in

Keplerian orbit at ground level, mean density d. (b) Astronomical characteristics.

Data relating to planetary orbit: semi-major axis aS, sidereal period of revolution

Nsid, eccentricity e, inclination i with respect to the ecliptic. Data relating to ro-

tation of the planet: obliquity ε. Sphere of influence ρΣ/R. (c) Planetosynchronic-

ity. Astronomical data: period of rotation Dsid. Derived quantities: reduced distance

ηGS for the orbit of a stationary satellite (whence aGS and hGS). The distance ηGS

should be compared with ρΣ/R. (d) Sun-synchronicity. Astronomical data: period of

revolution Nsid. Geodetic data: terms J2, J3, and J4 in the expansion of the gravi-

tational potential (values to be multiplied by 10−6). Derived quantities: constant of

Sun-synchronicity kh, maximal value of the reduced distance ηHSmax, denoted here

by ηm, for a Sun-synchronous satellite.

Mercury 6,023,600.
Venus 408,523.71
Earth + Moon 328,900.561400
Mars 3,098,708.
Jupiter 1,047.3486
Saturn 3,497.898
Uranus 22,902.98
Neptune 19,412.24
Pluto 135,200,000.

Table 16.3 :Planetary mass values, expressed in reciprocal solar masses. JPL Devel-

opment Ephemeris DE 405 (recommended for IERS standards).
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Fig. 16.4 :Different radii of the ellipsoid: radius of curvature ρ in the meridian plane,

the great normal N , and the radius of the ellipsoid Rψ.Upper: Jupiter. Lower: Sat-

urn.
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Quantity Jupiter Saturn Uranus Neptune

Flattening f 0.06487 0.09796 0.02293 0.01708

Rad. curvature ρ(Equ.) 62,517 49,038 24,400 23,925
− ρ(Pole) 76,452 66,813 26,159 25,194
Great normal N (Equ.) 71,492 60,268 25,559 24,764
− N (Pole) 76,452 66,813 26,159 25,194
Rad. ellipsoid Rψ(Equ.) 71,492 60,268 25,559 24,764
− Rψ(Pole) 66,854 54,364 24,973 24,341

Table 16.4 :Ranges of variation from the equator to the pole for the radii of the

ellipsoid, for the giant planets. Radius of curvature ρ in the meridian plane, great

normal N , and radius of the ellipsoid Rψ. Distances in km.
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Fig. 16.5 :Keplerian period as a function of altitude. In this graph, the abscissa is the

reduced period, i.e., the ratio of the period of the satellite to the period of a satellite

at zero altitude, and the ordinate is the reduced distance η = a/R, i.e., the ratio of

the semi-major axis of the orbit to the radius of the planet.

16.2.3 Geographical Maps

Only the telluric planets can be mapped in the sense that we can produce
a geographical map of the surface. The mappable area, calculated on the
ellipsoid and expressed in millions of km2, has the following value for each
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planet: 75 for Mercury, 460 for Venus, 510 for the Earth (140 for the land
masses and 370 for the sea floor), and 143 for Mars. For these four planets,
this makes a total of 1,188. We also have 18 for Pluto and 2.6 for the largest
of the asteroids (and 0.001125 for 433-Eros). We shall discuss maps of natural
satellites shortly.

The geography of Mars (volcanoes, impact basins, etc.) was outlined in
the last chapter. We shall not dwell further here on the geography of Venus
or the other telluric planets.

In this chapter, we shall use the following maps as background for repre-
senting ground tracks or orbits:

• For Venus, the topographical map built up from synthetic aperture radar
(SAR) data gathered by Magellan.

• For Eros, the topographical map made from altimetry data gathered by
NEAR.

In both cases, contours are plotted at 2 km intervals, with the zero altitude
contour in bold face. Those at positive altitudes are represented by continuous
curves and those at negative altitudes by dashed curves. For the planets, the
zero meridian is chosen arbitrarily (see note on Airy for the Earth and Mars).

16.3 Satellite of Planet in Real Orbit

16.3.1 Perturbative Accelerations

The sphere of influence discussed in Sect. 6.11 informs us of the distance
beyond which one can no longer neglect perturbations due to the Sun. Equa-
tion (6.158) gives the values of the radius ρΣ for all the planets. The results
are displayed in Table 16.2b, where they can usefully be compared with the
values in Table 16.2c.

The altitude dependence of the central acceleration and perturbative ac-
celerations has already been plotted for the Earth in Fig. 6.1 and for Mars in
Fig. 15.9. To complete the list of telluric planets, we have plotted the same
graphs for Mercury and Venus in Fig. 16.6, using the same notation as in
Table 6.1 (in which, of course, we replace the terrestrial acceleration by the
acceleration due to the relevant planet).

For these two planets, there is no perturbing acceleration due to the terms
Jn, n ≥ 3, since these terms are almost all zero. The very weak acceleration
γCCN.J2 due to the term in J2 is soon supplanted (for h ∼ R) by the perturbing
acceleration γCS due to the solar attraction. For Mercury, the perturbing
acceleration γDP due to solar radiation pressure is still poorly known. For
Venus, atmospheric drag causes an acceleration γDF which can be very large,
and depends on the altitude and shape of the satellite. The solar radiation
pressure, which leads to the perturbing acceleration denoted by γDP, impinges
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on the satellite both directly and indirectly, by the albedo effect, the mean
albedo of Venus being very high (0.76).

16.3.2 Classification of Satellites

Rotational Motion of the Planets

The values given in Table 16.2a to d show that the two planets closest to
the Sun have very long periods of rotation: Dsid = 58.646 day for Mercury28

(exactly 2/3 of the sidereal period of revolution) and Dsid = 243.018 day for
Venus.29 For these two planets, the day is longer than the year. This is due
to the proximity of the Sun.

Moving further out to the Earth and Mars, this period Dsid is about 1
day, while for the giant planets from Jupiter to Neptune, it is of the order of
10 h.

Planetosynchronous Satellite

For satellites that are stationary with respect to the planet, we have used
(7.69) to calculate the reduced altitude ηGS for a Keplerian orbit in terms of
Dsid. (For the Earth and Mars, the values were calculated for the Keplerian
and then the true orbit, in Chaps. 7 and 15.) They are displayed in Table 16.2c.

The results prompt the following remarks:

• For Mercury and Venus, the values of ηGS are so large that this orbit cannot
be obtained. The solar perturbative attraction becomes too great for these
altitudes, and such an orbit would pass way beyond the sphere of influence
of the planet.

• For the Earth and Mars, ηGS is about 6.
• For the giant planets, ηGS is about 2 or 3.

28According to astronomers, the proximity of the Sun should have led to a 1:1 resonance
phenomenon for Mercury, so that it would always present the same face towards the Sun,
like the natural satellites and their planets. This was indeed what was thought up until 1965,
when radar measurements from the Earth showed that it had a shorter rotation period, of
only 59 days. The Italian astrophysicist Guiseppe Colombo showed that this was a very rare
case of a 3:2 resonance, i.e., three rotations in two revolutions, due to the high eccentricity
of Mercury’s orbit.

29Venus is the brightest celestial body as seen from Earth, apart from the Sun and the
Moon. This is partly because it is surrounded by a very thick layer of cloud. The speed of
rotation was only measured in 1962, with the advent of the radar. The clouds have a much
faster rotational motion, known as super-rotation. At an altitude of 70 km, the atmosphere
makes one round trip in 4 days, corresponding to winds at 100m/s, in the direction of
rotation of the planet.
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• For Pluto,30 the position of the stationary satellite is more complex, but
fortunately there is no urgency to carry out such a calculation!

Sun-Synchronous Satellite

To satisfy the condition (7.95) for a Sun-synchronous orbit, one must have
a large J2 term if the planet is close to the Sun, since its sidereal period of
revolution is short. Conversely, a weak J2 term is required if the planet is
remote from the Sun. Now as we have already seen, if the planet is close to
the Sun, e.g., Mercury, Venus, its rotation about its own axis is blocked and
planetary flattening is very low. This in turn implies that J2 will be low, or
almost zero. We conclude that Sun-synchronicity is impossible.

If a planet is far from the Sun, as in the case of the giant planets, its
rapid rotation creates a significant flattening effect and J2 is consequently
large. To counterbalance this effect, the orbit must have a very low value of
cos i, indeed, practically zero. The orbit is therefore polar, to within a few
hundredths of a degree. But we should ask what Sun-synchronicity means for
a satellite in orbit around Jupiter, a planet which takes 12 years to go round
the Sun, or around Neptune, which takes 165 years!

For the two intermediate planets, the Earth and Mars, this condition can
be satisfied. The results for kh, the constant of Sun-synchronicity, calculated
using (7.98), are given in Table 16.2d, where we have also displayed ηm, the
value of the maximal reduced distance ηHSmax, obtained for i = 180◦.

Frozen Orbit

In Chap. 11, we saw that a satellite orbit could be frozen by taking ad-
vantage of balancing effects between the various variations in the position of
the periastron, i.e., secular and long-period variations. The ratio J3/J2 arises
when we calculate the frozen eccentricity. For a frozen orbit to be useful, the
frozen eccentricity eF, which is of the order of (1/2)J3/J2, must be less than
0.01, for beyond this, differences in altitude become too great.

The J3 term is a zonal term (axial symmetry) expressing the effects of
asymmetry between the northern and southern hemispheres. For Mercury and
Venus, which are practically spherical, J3 is zero or very low. For the giant
planets, J3 is zero because the plasticity of these planets only generates even
zonal coefficients J2n (symmetry relative to the equatorial plane, or north–
south symmetry).

It follows that the only two planets that can have a satellite in frozen orbit
are the Earth and Mars. As regards Sun-synchronous frozen orbits, recall that

30Pluto is accompanied by Charon, discovered on 2 July 1978 by J.W. Christy. This
satellite has such a large relative mass (1/6 of the mass of Pluto) that the Pluto–Charon
ensemble can be considered rather as a double planet. The semi-major axis of Charon’s
circular orbit is aP = 19,460 km, and it is interesting to note that this value is very close to
the value for the planetostationary orbit. We have in fact aP/aGS = 1.05.
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Fig. 16.7 :Map of Mercury obtained by Messenger after 1 day in orbit. On Mercury,

a solar day (length of time from noon to noon), or Hermean day, is about 176 Earth

days long. And during its first Mercury solar day in orbit, the Messenger space-

craft imaged nearly the entire surface of the planet to generate a global monochrome

map at 250m/pixel resolution and a 1 km/pixel resolution color map. Map centered

along the planet’s 75◦ east longitude meridian. Credit (image and caption): NASA,

APL/JHU (Johns Hopkins University Applied Physics Laboratory), CIW (Carnegie

Institution of Washington).

the argument of the periastron, related to the sign of J3, is ωF = 90◦ for the
Earth and ωF = 270◦ for Mars.

16.4 Ground Track for a Satellite of a Planet

The ground track of a satellite over several revolutions is characterised by
the equatorial shift, which depends for the main part on the angular speed
of rotation of the planet. For the Earth or Mars, the equatorial shift is of
the order of 25◦ for a low-orbiting satellite. For the giant planets, it is two
to three times greater. But for Mercury and Venus, which rotate very slowly
about their axes, the equatorial shift is very slight.

We shall now discuss in a little more detail the ground tracks of satellites
in orbit around Mercury, Venus, and the asteroids Eros, Vesta, and Ceres
(Fig. 16.7).
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16.4.1 Satellites of Mercury

Mercury has only been visited by two probes, Mariner-10 and Messenger.
There is also a project called BepiColombo. The abbreviated name of the US
Mercury Surface, Space Environment, Geochemistry and Ranging probe, or
Messenger, makes reference to the main function of the mythological character
Mercury, or Hermes. It was launched in 2004 with no fewer than six gravity-
assist maneuvers,31 and went into a highly eccentric near-polar orbit in 2011.
In phase 1, with a = 10,136km, i = 82.5◦, the periastron was positioned at
a latitude of 60◦N, in order to focus attention on the Caloris impact basis.
The period was 12 h (see Fig. 16.8 upper). The northernmost point ψ = 82.5◦

was overflown at an altitude between 244 and 640 km. The mission lasted
12 months, i.e., two Mercurian solar days. In phase 2, with a = 7,736km,
i = 82.5◦, the period was reduced to 8 h, and the northernmost point was
overflown at an altitude between 311 and 442 km (see Fig. 16.9).

Note that, for a point on Mercury, the day, i.e., the time elapsed between
two noontime passages of the Sun, lasts 176 Earth days. This means that 88
days of night will follow 88 days of daylight. This 176 days corresponds to two
revolutions around the Sun. So one Hermean (or Mercurian) day is equal to
two Hermean years. This is a consequence of the 3:2 resonance, which means
that Mercury does three rotations (relative to an ECI frame, corresponding
to 3 Hermean sidereal days) during two revolutions (or 2 Hermean years).
Applying (8.44), we obtain the synodic period, which is the Hermean day.

In December 2012, the Messenger team built up the first complete map of
Mercury, with a definition of 250m/pixel. This map, shown in Fig. 16.7, was
obtained after one (Hermean) day in orbit.

BepiColombo is a joint mission32 between Europe and Japan, and should
be launched in August 2014 to arrive at its destination in December 2020,
after five gravity-assist maneuvers (Earth, Venus twice, and Mercury twice).
The probe comprises two orbiters: the Mercury Planetary Orbiter (MPO) run
by the ESA and the Mercury Magnetospheric Orbiter (MMO) run by JAXA,
both planned to follow highly eccentric polar orbits (i = 90◦), with perigee
at altitude hp = 400 km. The altitude of the apogee will be ha = 1,500km
for MPO and ha = 12,000km for MMO, so that the period of the latter, viz.,
T = 560min, will be a multiple of the period of the former, viz., T = 140min
(see Fig. 16.8 lower).

31Launched 2004 07 30, Earth flyby (altitude 2,295 km) 2005 07 29, Venus flyby 1 (altitude
3,000 km) 2006 10 23, Venus flyby 2 (altitude 300 km) 2006 10 23, Mercury flyby 1 (altitude
200 km) 2008 01 14, Mercury flyby 2 (altitude 200 km) 2008 10 06, Mercury flyby 3 (altitude
200 km) 2009 09 29, Mercury orbit insertion 2011 03 18.

32There were originally two separate projects: the Japanese probe Mercury Orbiter and
the European probe BepiColombo Mercury Orbiter, named after the Italian mathematician
Guiseppe “Bepi” Colombo (1920–1984), mentioned earlier. The European project included
a lander, but this was subsequently deemed too expensive.
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[MERCURY] Messenger [Ph. 1]
Orbit - ref.: Mercury
>>>>   Time span shown:  4320.0 min =   3.00 days

Equiv. altit.  =   7696.5 km

e = 0.729711

a =10136.200 km

Inclination  =  82.50 °

Period =   719.98 min    * rev/day = 2.00

h_a =  15093 km;  h_p =  300 km;  arg.periapsis:  +60.87 °

Longitude / Initialisation:
N.a.: 165.35 ° - Apo.:   0.00 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 15.0 ° N;   90.0 °E
Aspect:  Oblique
{-} [ -90.0/ +75.0/  +0.0] [-]    IAU91

[MERCURY]   MMO BepiColombo
Orbit - ref.: Mercury
>>>>   Time span shown:  4320.0 min =   3.00 days

Equiv. altit.  =   6200.3 km

e = 0.671320

MC LMD

MC LMD

a = 8640.000 km

Inclination  =  90.00 °

Period =   566.61 min    * rev/day = 2.54

h_a =  12001 km;  h_p =  400 km;  arg.periapsis:   +0.00 °

Longitude / Initialisation:
N.a.:  90.00 ° - Apo.: -91.21 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 15.0 ° N;    6.0 °E
Aspect:  Oblique
{-} [ -90.0/ +75.0/ +84.0] [-]    IAU91

Fig. 16.8 :Orbit of satellite over 3 days, in a frame moving with the planet Mercury.

Upper: Messenger [Phase 1]. Lower: BepiColombo MMO.
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[MERCURY]   Messenger [Ph. 2]
Orbit - ref.: Mercury
>>>>   Time span shown:   360.0 min =   0.25 day

Equiv. altit.  =   5295.9 km

e = 0.635490

a = 7735.601 km

Inclination  =  82.50 °

Period =   480.01 min    * rev/day = 3.00

h_a =  10212 km;  h_p =  380 km;  arg.periapsis:  +83.37 °

Longitude / Initialisation:
N.a.:  96.00 °- Apo.: -34.79 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

PC: 15.0 ° N;102.0 °E /ZC: 88.0 ° N; 90.0 ° E
Aspect:  Oblique

[ -90.0/ +75.0/ -12.0] [-]    IAU91

Fig. 16.9 :Orbit of Messenger (phase 2) in a frame moving with the planet Mercury.

Close-up when flying over Mercury’s north pole. Upper: Reconstruction of orbital

elements using Ixion. Lower: Schematic of Messenger’s orbit illustrating some of the

challenges to acquiring observations of Mercury’s north polar region. Since April

2012, Messenger has been in an 8-h orbit (shown here), and it has been at an altitude

between 311 and 442 km at the northernmost point in its trajectory. Credit (image

and caption for lower image): NASA, JHU/APL, CIW.
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Fig. 16.10 :Part of Venus (Imdr region) viewed by Magellan’s radar during three con-

secutive cycles (March 1991, November 1991, July 1992). Size: 400 km by 100 km,

centered on 47.5◦S, 226.0◦E. This set of three Magellan images shows a small vol-

cano. Data quality during portions of cycle 3 was adversely affected by a faulty

transmitter aboard the spacecraft, leading to the missing strips in the bottom image.

Credit (image and caption): JPL, NASA.

16.4.2 Satellites of Venus

The probe Magellan, named after the sixteenth century Portuguese ex-
plorer, was in orbit around Venus from 1990 to 1994. During this time it
perfectly accomplished all its missions, the main task being to map the planet
(achieved to 98%).

This radar mapping mission consisted of three cycles, each lasting 243
days, during which the Magellan satellite followed an eccentric polar orbit,
shown in Fig. 16.14 (upper) with characteristics:

hp = 289.57 km , ha = 8,458.5 km , i = 85.5◦ , ω = 170◦ ,
a = 10,425.8 km , e = 0.39176 , Ta = 195.59min = 3.26 h .

The ground track of this orbit has been shown over one revolution in
Figs. 16.12 and 16.14. The radar mapping only proceeded for 37.2min during
each revolution, from slightly before to slightly after the passage at perigee.

The length of the cycle of 243 days corresponds to Dsid, one Venusian
sidereal day, the time the planet takes in a Galilean frame to make a complete
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round trip relative to the orbit of the satellite, which remains fixed in this
frame. Indeed, Venus is almost perfectly spherical (J2 = 4.4098×10−6, a very
low value) and the orbit of the satellite is near-polar, so precessional motions
are almost non-existent. For the orbit defined above, we obtain

Ω̇ = −6× 10−4 deg/day , ω̇ = −4× 10−3 deg/day .

The three images of the same region shown in Fig. 16.10 were acquired at
8 month intervals, corresponding to the length of the cycle (one Venusian
sidereal day), in March 1991, November 1991, and July 1992.

Following the mapping cycles, the satellite was placed in a circular orbit
by aerobraking, with h = 250km, to carry out geodetic studies. It was then
sacrificed in a final experiment, known as the windmill experiment. For one
and a half months, the solar panels were deployed to transform the satellite
into a sort of windmill, transmitting back the parameters of the atmosphere
which finally consumed it.

Magellan produced a very accurate map of the planet (see Figs. 16.13
and 16.11). The gravitational potential model of degree and order 21, known as
the JPL Venus Gravity Model (JPL-VGM1B), obtained using Doppler radio
tracking data from Pioneer Venus Orbiter, has evolved to degree and order 90
thanks to data gathered by Magellan, to give the model MGNP90 (Magellan
+ PVO, 90th degree and order) (Figs. 16.12, 16.13, and 16.14).33

The European probe Venus Express, carrying the same type of instruments
as Mars Express, was launched on 9 November 2005. After a 153 day direct
trip, it arrived on 11 April 2006 and went into its operational orbit on 18
May of the same year. Venus Express is in a highly eccentric polar orbit, with
a = 39,176km, e = 0.839 (hp = 250km, ha = 66,000km, T = 1,425min), and
periastron at latitude 70◦N (see Fig. 16.15 upper). This orbit, almost fixed
relative to the planet (as happens for all Venusian satellites), will study the
atmosphere, which for its part makes a round trip of the planet every 4 days.

The Japanese probe Planet-C (Venus Climate Orbiter or VCO), renamed
Akatsuki (“dawn”), was launched on 21 May 2010. An engine problem as it
approached Venus on 7 December 2010 prevented it from entering the correct
orbit. The Japanese space agency JAXA hold out a slim hope of correcting
the error. The planned orbit was highly eccentric and almost equatorial:

a = 45,500 km , e = 0.8604 , i = 172◦ ,

whence hp = 300km and ha = 78,600 km (see Fig. 16.15 lower).

33Planetocentric gravitational constant μ, in km3 s−2:
μ = 324,858.60 ± 0.05 for JPL-VGM1B (1990) ,
μ = 324,858.601 ± 0.014 for MGNP90 (1997) .
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Fig. 16.11 : Topographic map of Venus with colour code: from purple and blue (very

low and low altitude) to red and white (high and very high altitude). Equatorial

orthographic projection, centered on longitudes of 0◦ (top) and 180◦ (bottom). One

can make out Maxwell Montes in the Ishtar Terra region, centered on 64◦N, 4◦E.
Credit: Magellan Team, NASA, JPL, MIT, USGS.
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Fig. 16.12 :Ground track of the satellite Magellan over 1 day. Passage over the Imdr

region (see Fig. 16.10). Equatorial orthographic projection, as for the topographic

map of Venus in Fig. 16.11.
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Fig. 16.13 :Perspective view of Venus, generated by computer from Magellan data

and color-coded with emissivity. This image shows the boundary between the lowland

plains and characteristic Venusian highland terrain in Ovda Regio. Image resolution:

225m. Size of region shown: 1,125 km E–W and 1,125 km N–S. Vertical exaggeration:

20. Azimuth of viewpoint: 150◦. Elevation of viewpoint: 1,200 km. Credit (image and

caption): JPL, NASA, USGS.

Example 16.1 Orbital track of the satellite Magellan.

� The ground track of the orbit over one Earth day in Fig. 16.12 exhibits
no obvious asymmetry, as is often the case for eccentric terrestrial orbits.
This is due to the fact that the planet is almost motionless (compared with
the satellite motion, even at apoastron) in a Galilean frame. The very slow
rotation of the planet about its axis gives a very small equatorial shift of
about 0.20◦, i.e., about 21 km between two consecutive ground tracks, as can
be seen from Fig. 16.14 (lower), for a time lapse of 5 days. In the latter, the
Mercator projection used for the map is centered on Maxwell Montes. This
great mountain range in Ishtar Terra, the highest in Venus, is 11 km above
the mean level of the planet. �

16.4.3 Satellites of the Asteroid Eros

The asteroid 433-Eros, made of siliceous rock, has a rather cylindrical
shape.34 From 14 February 2000, the probe NEAR, since renamed NEAR-
Shoemaker, went into orbit to become a satellite of Eros. On an initially
eccentric orbit (ellipse with semi-major axis a = 365km and semi-minor axis
b = 204km, i = 36◦), the satellite gradually approached Eros by means of

34Mean equatorial radius 9.236 km, maximal equatorial radius = 17.452 km, minimum
equatorial radius = 3.501 km, North Pole radius 5.338 km, South Pole radius 5.993 km. The
radius R indicated in Table 16.5 is the mean radius.
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[VENUS]   Magellan
Orbit - ref.: Venus
>>>>   Time span shown:  1440.0 min =   1.00 day

Equiv. altit.  =   4374.0 km

e = 0.391764

a =10425.835 km

Inclination  =  85.70 °

Period =   195.59 min    * rev/day = 7.36

h_a =   8458 km;  h_p =  290 km;  arg.periapsis: +170.47 °

Longitude / Initialisation:
N.a.: -90.00 ° - Apo.:  89.27 °

Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 15.0 ° N;    4.0 ° W
Aspect:  Oblique
{3.9} [ -90.0/ +75.0/ +94.0] [-]  MGNP60

[VENUS]  Magellan
Elliptical orbit - Gr. track
>>>>   Time span shown:   5.00 days

Equiv. altit.  =   4374.0 km

e = 0.391764

MC LMD

MC LMD

a =10425.835 km

Inclination  =  85.70 °

Period =   195.59 min    * rev/day = 7.36

h_a =   8458 km;  h_p =  290 km;  arg.periapsis: +170.47 °

Longitude / Initialisation:
N.a.: -90.00 ° - Apo.:  89.27 °

Projection:  Mercator
Property:  Conformal

T.:Cylindrical - Graticule: 10°

PC: 64.0 ° N;  4.0 °E /ZC: 70.0 ° N;  8.0 ° E
Aspect:  Oblique > zoom : 1.95
{3.9}[ +90.0/ +64.0/ -94.0] [-]    MGNP60 

Magellan Topogr. / h / 2km /

Magellan Topogr. / h / 2km /

Fig. 16.14 :Magellan. Upper: Orbit in a frame moving with Venus, over 1 day. Lower:

Ground track of orbit over 5 days. The (oblique Mercator) cartographic projection is

centered on Maxwell Montes.
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[VENUS]  Venus Express
Orbit - ref.: Venus
>>>>   Time span shown:  1440.0 min =   1.00 day

Equiv. altit.  =  33125.0 km

e = 0.839145

a =39176.801 km

Inclination  =  90.00 °

Period =  1424.71 min    * rev/day = 1.01

h_a =  66000 km;  h_p =  250 km;  arg.periapsis:  +70.00 °

Longitude / Initialisation:

N.a.:-179.28 ° - Apo.:   0.00 °

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 15.0 °N;   90.0 °E

Aspect:  Oblique

{3.9} [ -90.0/ +75.0/  +0.0] [ -12] MGNP60

[VENUS] VCO 
Orbit - ref.: Venus
>>>>   Time span shown:  2880.0 min =   2.00 days

Equiv. altit.  =  39450.2 km

e = 0.860406

MC LMD

MC LMDMC LMD

a =45502.000 km

Inclination  = 172.00   °

Period =  1783.30 min    * rev/day = 0.81

h_a =  78600 km;  h_p =  300 km;  arg.periapsis:  +90.00 °

Longitude / Initialisation:
N.a.:   0.00 ° - Apo.:  89.11 °

Projection:  Orthographic  
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 25.0 ° N;    4.0 ° W
Aspect:  Oblique
{3.9} [ -90.0/ +65.0/ +94.0] [-] MGNP60

Magellan Topogr. / h / 2km /

Magellan Topogr. / h / 2km /

Fig. 16.15 :Upper: Orbit of Venus Express over 1 day. Lower: Orbit of Venus Climate

Orbiter (VCO) over 2 days. Both orbits are shown in a frame moving with the planet.
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Quantity Units Value Quantity Units Value

μ = GM m3 s−2 4.463× 105 aS a.u. 1.458
R km 7.311 Nsid yr 1.76
D1 km 34.4 Nsid day 643
D2, D3 km 11.2, 11.2 e – 0.233
g0 mms−2 2.1 ↔ 5.5 i deg 10.8
Ve ms−1 3.1 ↔ 17.2 Dsid h 5.27025
T0(h=0) min 121.18 ηGS – 1.895
d – 2.67 J2 10−3 116.5
ρΣ km 308 J3 10−3 4.8
ρΣ/R – 37 J4 10−3 −37.5

Table 16.5 :Geodetic and astronomical characteristics of the asteroid 433-Eros (re-

sults of the NEAR mission). For the meaning of the quantities, see Table 16.2.

Dimensions of the asteroid are denoted by Di. Note the unusual units used here for

g0 and Ve and the very high values of the Jn terms.

maneuvers which alternated elliptical and circular orbits. The near-circular
(a = 200 km) near-polar orbit eventually became rather low (a = 100km)
and near-equatorial. On 28 January 2001, the satellite left its approach orbit
(a = 35km, i = 180◦), and landed on the asteroid, transmitting images up
until the final impact.

The characteristics of the asteroid are displayed in Table 16.5 (see also
Figs. 16.16 and 16.17). The geodetic data come from the NLR190 (NEAR
Laser Rangefinder) model, based on a spherical harmonic expansion to degree
and order 24 and 5 million radius measurements collected on day 190 of the
year 2000. The J2, J3, and J4 terms are indicated to allow comparison with
other planets.35

Example 16.2 Orbital ground track of the satellite NEAR.

� We have represented the orbital ground track of the NEAR probe, which
became a satellite of 433-Eros. We have considered two types of orbit, known
as OCM-2 and OCM-6. (Successive orbits of NEAR are numbered OCM-n,
Orbital Correction Maneuver). In the first case, shown in Fig. 16.18 (upper),
the satellite is very high relative to the asteroid, since it takes 10 days to

35The normalised coefficients are:

C∗
20 = −0.05210 , C∗

22 = 0.04890 , S∗
22 = 0.13170 , C∗

30 = −0.00180 .

The coefficients Jn are introduced using (3.22). The NRL190 model uses spherical harmon-
ics. However, when the body under investigation is so far from spherical, the gravitational
potential can be expanded in terms of ellipsoidal harmonics, where the Legendre functions
are replaced by the Lamé functions.
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Fig. 16.16 :North polar region of

Eros. Image acquired by the probe

NEAR-Shoemaker on 31 March

2000, at an altitude of 207 km. The

image has been overlain with lines of

latitude and longitude, with a gratic-

ule of 30◦. Latitude is measured in

degrees from the equator, and lon-

gitude is measured in degrees west

of a prime meridian. Credit: NASA,

JHU/APL.

Fig. 16.17 :Different views of Eros. Graticule 6◦. Credit: NASA, Johns Hopkins Uni-

versity/Applied Physics Laboratory.

make one round trip. The ground track thus takes 2.5 days to move from
the equator to the maximum latitude. In the second case, shown in Fig. 16.18
(lower), the satellite is on a much lower orbit, although it remains above the
planetosynchronous orbit. In this second figure, we have used the cartographic
projection chosen by the NEAR science team to represent orbital tracks, i.e.,
the Hammer–Aitoff projection. �

16.4.4 Satellites of the Asteroids Vesta and Ceres

NASA’s Dawn mission aims to work toward a better understanding of
the “dawn” of the Solar System by exploring the two largest asteroids. The
geodetic and astronomical characteristics of 1-Ceres and 4-Vesta are given in
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[433-EROS]  NEAR/OCM-2
Orbit - Ground track
>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  196.1 km a =  204.500 km

Inclination  =  37.00°

Period = 14488.19 min    * rev/day = 0.10

Asc. Node:      0.00 °
App. inclin. = 179.23 °

Projection:  Mercator
Property:  Conformal

T.:Cylindrical - Graticule: 10°

Project. centre:  0.0 °  ;  100.0 ° W
Aspect:  Direct
{3.6} [ +90.0/  +0.0/ +10.0] [-]    NLR190

[433-EROS]  NEAR/OCM-6
Orbit - Ground track
>>>>   Time span shown:   7.00 days

Altitude =   41.6 km a =   50.000 km

MC LMD

MC LMD

Inclination  =  90.00 °

Period =  1761.09 min    * rev/day = 0.82

Asc. Node:   -126.00  °
App. inclin. = 169.82  °

Projection:  Hammer-Aitoff
Property:  Equal area

T.:Modif. Azim. - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct

{3.6} [  +0.0/  +0.0/  +0.0] [-]    NLR190

NEAR Altim. / h / 2km /

NEAR Altim. /h/2km/

Fig. 16.18 :Orbital ground track of the satellite NEAR: Upper: Over one (Earth)

day. Lower: Over 7 days.
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Asteroid μ = GM R g0 Di To d

(m3 s−2) (km) (m s−2) (km) (m) –

Ceres 6.326004 × 1010 480/454 0.26/0.29 960/960/908 138 2.08
Vesta 1.781691 × 1010 276/227 0.23/0.23 560/544/454 114 3.42

Asteroid aS Nsid e i ε Dsid ηGS ρΣ/R
(a.u.) (yr) (deg) (deg) (h)

Ceres 2.76636 4.603 0.07934 10.586 ∼4 9.075 2.491 2.744
Vesta 2.36158 3.630 0.08890 7.134 ∼29 5.342 1.995 2.454

Table 16.6 :Geodetic and astronomical characteristics of the two asteroids 1-Ceres

and 4-Vesta. For explanations of the quantities, see Tables 16.2 and 16.5. For R and

g0, values at the equator and the pole. Period To = T0(h=0).

Orbit h (km) a (km) i (deg) Td (h) Rev/day Rev/Dsid

Vesta SO 2,450 2,726 90 58.92 0.408 0.09
Vesta HAMO 591 867 90 10.68 2.259 0.50
Vesta LAMO 180 456 90 4.20 5.714 1.27

Ceres SO 5,900 6,380 90 111.83 0.215 0.08
Ceres H 1,300 1,780 90 16.50 1.455 0.55
Ceres L 700 1,180 90 8.93 2.693 1.02

Table 16.7 :Successive circular orbits adopted by the Dawn mission. Orbital charac-

teristics: h, a, i, and Td. We have also indicated the number of revolutions per mean

day (=24 h) and per sidereal day of the asteroid.

Table 16.6. Dawn was launched on 27 September 2007 and flew past Mars
on 17 February 2009 to arrive at Vesta on 21 July 2011. For a year until 25
July 2012, Dawn exploited three successive orbits around Vesta: a survey orbit
(SO), a high altitude mapping orbit (HAMO), and a low altitude mapping or-
bit (LAMO). Increasing its altitude to prepare for departure, Dawn remained
for a certain time in the HAMO2 orbit, very close to HAMO. In September
2012, the probe left to pursue its mission to Ceres, which it should finally
reach on 1 February 2015. It will follow three orbits: SO, High, and Low, until
the end of its mission in July 2015. The orbital characteristics are indicated
in Table 16.7.

The first part of the mission, i.e., exploration of Vesta, was extremely
successful. The asteroid was studied and mapped with great accuracy (see
Fig. 16.19).

Example 16.3 Orbits of Dawn around Vesta.
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Fig. 16.19 :The asteroid Vesta, viewed by Dawn. Upper: Overview of Vesta, built

up from a mosaic of images. Lower: Images taken by Dawn’s framing camera. The

far-left image uses near-infrared filters ( red 750 nm, green 920 nm, blue 980 nm).

The image on the right is an image with colors assigned by scientists, representing

different rock or mineral types on Vesta. Credit (image and caption): NASA, JPL,

Caltech, UCLA, MPS, DLR (Germany), ASI (Italy).
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[4-VESTA]   Dawn / HAMO
Orbit - ref.: 4-Vesta
>>>>   Time span shown:  1440.0 min =   1.00 day

Altitude =  591.3 km a =  867.287 km

Inclination  =  90.00 °

Period =   641.04 min    * rev/day = 2.25

Asc. Node:     90.00 °
MC LMD

Projection:  Orthographic

Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 50.0 ° N;    0.0 °

Aspect:  Oblique

{-} [ -90.0/ +40.0/ +90.0] [-]    IAU91

Fig. 16.20 :High altitude mapping (HAMO) orbit of the satellite Dawn around Vesta.

� The orbits considered are circular. When Dawn went in the HAMO orbit
with a = 867.287km, i.e., a − Re = 591km, the nodal period was Td =
641.04min, which corresponds to exactly twice Vesta’s sidereal day Dsid =
320.52min. Taking Vesta’s sidereal day as time unit, the recurrence triple
becomes [1, 0, 2] 1, with the usual notation. This resonance gives an orbit
with a strikingly original graphical representation (see Fig. 16.20). Note that,
for satellites in orbit around a body as far from spherical as Vesta, with such
a large J2 term, the apsidal precession rate is very high. For Dawn/HAMO,
ω̇ = −4.7◦ per day and the difference between Td and Ta = 637.36min is
considerable.

By increasing the altitude from 591 to 680km, the period is multiplied by
a factor of 1.15 and the satellite thus takes 2.30 sidereal days to make one
round trip, whence the shift in the ground tracks (see Fig. 16.21). �

Example 16.4 Orbits of Dawn around Ceres.

� The H orbit of Dawn around Ceres is similar to the HAMO orbit for Vesta.
The probe takes less than 2 sidereal days to make one revolution (see Fig. 16.22
upper). At the end of the mission, Dawn goes into a polar orbit called the
L orbit at an altitude of 700 km. The period Td = 8.928h is slightly shorter
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[4-VESTA][4-VESTA]   Dawn / HAMO +
Orbit - Ground track
>>>>   Time span shown:   6.50 days

Altitude =  680.0 km a =  956.000 km

Inclination  =  98.00 °

Period =   739.80 min    * rev/day = 1.95

Asc. Node:      0.00 °Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 42.0 ° S;    0.0 °
Aspect:  Oblique

[ -90.0/+132.0/ +90.0] [-]    IAU91

Fig. 16.21 :Ground track of the satellite Dawn. Upper: Reconstruction of the orbital

elements by Ixion. The orbit denoted here by HAMO+ is at a slightly higher al-

titude than the one denoted by HAMO. Lower: The visible and infrared mapping

spectrometer aboard NASA’s Dawn spacecraft acquired this set of images during the

high-altitude mapping orbit phase. Credit (image and caption) for the lower panel:

NASA, JPL, Caltech, UCLA, ASI.
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[1-CERES][1-CERES]   Dawn / L
Orbit - Ground track
>>>>   Time span shown:   5.00 days

Altitude =  700.0 km a = 1180.000 km

MC LMD

Inclination  =  90.00 °

Period =   535.68 min    * rev/day = 2.69

Equat. orbital shift  = 2967.1 km

Asc. Node:      0.00 °

MC LMDApp. inclin. = 134.53 °
Projection:  Aitoff
Property:   none

T.:Modif. Azim. - Graticule: 10°

Project. centre:  0.0 °  ;    0.0 °
Aspect:  Direct

[ +90.0/  +0.0/ -90.0] [-]    IAU91

[1-CERES]   Dawn / H[1-CERES]   Dawn / H
Orbit - ref.: 1-CeresOrbit - ref.: 1-Ceres
>>>>   Time span shown:   5.00 days

Altitude = 1300.0 km a = 1780.000 km

Inclination  =  90.00 °

Period =   990.39 min    * rev/day = 1.45

Asc. Node:   -180.00 °Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 48.0 ° N;    0.0 °
Aspect:  Oblique

[ -90.0/ +42.0/ +90.0] [-]    IAU91

Fig. 16.22 :Satellite Dawn around Ceres, over 13.2 sidereal days of Ceres. Upper:

H orbit over 7.3 revolutions. Lower: Ground track of L orbit over 13.4 revolutions.

The orbit is very close to the synchronous orbit.
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than the length of the sidereal day of Ceres, viz., 9.075h. The ground track of
Dawn thus exhibits a slight shift from one revolution to the next (see Fig. 16.22
lower). �

16.4.5 Satellites of Giant Planets

The probes in orbit around Jupiter and Saturn cannot really be classified
as orbiters. Whereas a satellite around the Earth, Mars, or another telluric
planet will revolve for months on end on a virtually unchanging orbit, a probe
around Jupiter or Saturn changes orbit upon each revolution. To fly past a
given moon, the probe may go from a highly eccentric orbit to a circular one,
making frequent use of its thrusters.

Jupiter

After 8 years of mission, Galileo had made 34 orbits around Jupiter, each
with a period of several weeks.36 The Juno mission37 is designed to study the
origin and evolution of Jupiter. Once in orbit,38 the probe should make 32
revolutions over 1 year. Later we shall mention the JUICE mission to Jupiter
when discussing exploration of natural satellites.

Saturn

The Cassini mission consisted of three main parts. The first, or Prime
Mission, from 17 May 2004 to 1 June 2008, made 74 revolutions. Arriving
from the Earth, the probe flew past Phoebe on 11 June, before orbit insertion
(SOI) on 1 July. It then made 3 Titan flybys, dropping the Huygens module
on 14 January 2005. The mission was subsequently devoted primarily to the
dynamics of Saturn’s atmosphere, occultation by the rings, and the icy moons.

The Extended Mission, up until 11 October 2010, revolution 139, and
the Extended Extended Mission up until 18 September 2017, revolution 292,
continued to fly past Titan and all the other moons. The dates of these two
missions were determined by Saturn’s declination. The Extended Mission,
renamed Equinox Mission, was centered around the equinox of 11 August
2009, with δ = 0◦, while the Extended Extended Mission, renamed Solstice
Mission, ended shortly after the solstice of 25 May 2017, with δ = 26.7◦ (see

36Here are some examples with their denomination: G1, flying past Ganymede, 1996 06
27, then G2, past Ganymede again, 1996 09 06, then C3, past Callisto, 1996 11 04, then
E4, past Europa, 1996 12 19. Following this, with I for Io and J for Jupiter: J5, E6, G7,
G8, C9, C10, E11–19, C20–23, I24–25, G28–29, C30, I31–33, J34.

37In Latin and in English, Juno was the wife of Jupiter. The mission is well named, for
Juno was interested only in Jupiter and did not even glance at the sublime Io, the regal
Europa, the beautiful Callisto, or the young shepherd Ganymede.

38Launch 2011 08 05, Earth gravity-assist 2013 10 09, Jupiter orbit insertion (JOI) 2016
08 03.
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Fig. 16.23 :Shadow of Mimas on Saturn’s rings. The main rings of Saturn are tradi-

tionally referred to as C, B, and A, in this order as one moves away from the planet.

The natural satellite Mimas is close to the edge of ring A. Upper: The shadow of

Mimas appears on the rings, astride the Cassini division. This scene is only possible

for a few months before and after the equinox, which only occurs once every 15 years.

The date at which the image was taken, viz., 8 April 2009, was close to the equinox

of 19 August 2009. The image was acquired by the Cassini Wide-Angle Camera from

a distance of 1.1 million km, with a resolution of 64 km/pixel. Lower: The natural

satellite Mimas does not move exactly in the plane of the rings (i = 1.6◦), and this is

why one sees its shadow on them. The image acquired by the Cassini Narrow-Angle

Camera also reproduces the natural colours. It was taken from a distance of 3.151

million km with a resolution of 19 km/pixel. Credit (images and captions): NASA,

JPL, Space Science Institute.
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Fig. 16.24 :Upper: Official programme of the Cassini–Huygens mission. Credit:

NASA. Lower: Diagram by Huygens, explaining the changing view of Saturn’s rings

when viewed from the Earth. The solstices occur at A and C, the equinoxes at

B and D. Page 60 of Systema Saturnium, sive de causis mirandorum Saturni

phaenomenon, Christian Huygens, 1659.
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Fig. 16.25 :Cassini mission. Logos of the Equinox and Solstice missions. Credit:

NASA.

Figs. 16.23, 16.24, and 16.25). The shadow thrown by the rings on the planet
during the northern summer solstice is shown in Fig. 16.26.

As soon as it arrived near Saturn, Cassini detected a vertical motion of
the rings, as though they were being shaken by waves, shown in Fig. 16.3.
Soon afterwards, other shots revealed small, hitherto unknown moons39 in
the rings, which produce these so-called density waves.

The Cassini mission made countless discoveries40 some of which we present
here with the help of the illustrations in Figs. 16.27 and 16.28:

• The honeycomb structure of Hyperion, with a roughly cylindrical shape,
about 370 km long and 220km across.

• The strange bulge of Iapetus (radius R = 747km), which is in fact a moun-
tain range running strictly along the equator.41

• The oversized crater on the surface of Mimas (R = 199km).
• The tiger stripes of Enceladus (R = 252km), with their water vapour

geysers.42

We shall say more about Titan below.

39The small natural satellite Daphnis, discovered by this probe in May 2005, has a diam-
eter of just 7 km. It revolves in the Keeler division, 42 km wide, inside ring A. The resulting
waves, either in the plane or perpendicular to them, can be made out in the small photo on
the left of Fig. 16.3. The motion in the vertical direction is particularly visible in the light
at grazing incidence, at a date close to the Saturn equinox.

40The moons mentioned here had been discovered long before: Hyperion (also called
Saturn VII, or S VII) by C. and G. Bond and W. Lassel in 1848, Iapetus (S VIII) by
J.D. Cassini in 1671, and Mimas (S I) and Enceladus (S II) by W. Herschel in 1789. The
contribution of the Cassini probe was to provide precise images of each of these moons and
to show how very different they are.

41This mountain has a triangular cross-section with base 200 km and height 18 km.
42After imaging these geysers, Cassini was programmed to make more frequent flybys

of Enceladus. It was discovered that the water from the geysers was mixed with particles
of ice and organic compounds. The temperature at the surface of Enceladus is only about
75K, but higher in the crevices.
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[SATURN][SATURN]   Cassini Apr.2017
Orbit - ref.: Saturn
>>>>   Time span shown:   150.0 min =   0.10 day

Equiv. altit.  =   582478 km

e = 0.900823

a = 642808.0 km

CRITICAL Inclin. =  64.00 °

Period =  8769.94 min    * rev/day = 0.16

h_a =1161534 km;  h_p = 3422 km;  arg.periapsis:   +0.00 °

A.N.:  62.00 °Projection:  Orthographic
Property:   none

T.:Azimuthal - Graticule: 10°

Project. centre: 22.0 ° S;   20.0 ° W
Aspect:  Oblique

[ -90.0/+112.0/+110.0] [ +15] IAU91

Fig. 16.26 :Cassini’s trajectory at the end of its mission in April 2017, at the summer

solstice. The rings C, B, and A have been represented to scale (in that order as one

moves away from Saturn), together with the shadow projected on the planet. The

Cassini division is clearly visible.

To accomplish all these flybys, the Cassini probe has a different orbit in
each revolution.43 The eccentricity changes from one orbit to the next, and
the inclination varies from i = 0◦ to i = 75◦. The periods of the probe around
Saturn are of the order of 1–3 weeks.

The next mission to Saturn, TSSM, will be dedicated specifically to the
natural satellites of the planet, as we shall see below in the discussion of Titan.

43Here are some examples of orbits adopted by Cassini. The apoastron and periastron
are given as reduced distances, viz., ηa = ra/R and ηp = rp/R, where R is the radius of
Saturn:
Rev 5: i = 0.2◦, ηa = 44.390, ηp = 3.498, T = 20.5 day, Titan 2005 03 31
Rev 6: i = 7.4◦, ηa = 37.956, ηp = 2.594, T = 16.0 day, Titan 2005 14 16
Rev 49: i = 0.5◦, ηa = 69.031, ηp = 5.351, T = 39.7 day, Titan 2007 08 31

and Iapetus 2007 09 10
Rev 80: i = 74.4◦, ηa = 20.302, ηp = 3.941, T = 7.4 day, Enceladus 2008 08 11
Rev 248: i = 57.8◦, ηa = 23.230, ηp = 5.578, T = 9.6 day, Titan 2016 11 14
Rev 292: i = 61.6◦, ηa = 21.165, ηp = 10.28, T = 6.5 day, Titan 2017 09 11
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Fig. 16.27 :Two of Saturn’s most surprising moons, photographed by Cassini. Upper:

Hyperion, with its honeycomb structure and very low density. Its rotation is chaotic,

not being blocked in 1:1 resonance with Saturn. Lower: Iapetus, with one very dark

region and one very light, has a mountain range 18 km high on its equator. Credit:

Cassini Imaging Team, SSI, JPL, ESA, NASA.
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Fig. 16.28 :Two of Saturn’s satellites photographed by Cassini. Upper: Mimas. The

surface is completely covered by meteorite impact craters. The largest has diameter

130 km (to be compared with the radius of Mimas, just 200 km), and a depth of

10 km, with a central peak rising to 6 km. Lower: Enceladus. Part of the surface

is covered with craters, while the other is coated with very clean ice, undoubtedly

renewed by regular cryovolcanic activity. The latter is crossed by crevices like tiger

stripes, sometimes the scene of water vapour geysers. Enceladus has an albedo close

to 1. Credit: Cassini Imaging Team, SSI, JPL, ESA, NASA.
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B – Satellite of a Natural Satellite

16.5 Natural Satellites in the Solar System

16.5.1 Presentation of the Natural Satellites

In previous chapters, we have discussed the natural satellites of the telluric
planets. As far as the giant planets are concerned, the number of known
natural satellites literally exploded after 1980, with the contributions of the
Voyager missions and the progress made with adaptive optics on Earth-based
telescopes. Before this date, we knew of 13 moons for Jupiter, 11 for Saturn,
5 for Uranus, and 2 for Neptune.

Today, the numbers have swollen considerably. Natural satellites are clas-
sified into regular and irregular. A moon is regular if it moves in the same
direction as the rotation of the planet on a near-circular orbit in the equatorial
plane of the planet. Otherwise it is irregular.44 In 2013, we know of 67 moons
(8 regular) for Jupiter, 62 (21 regular) for Saturn, 27 (18 regular) for Uranus,
and 13 (6 regular) for Neptune. Concerning Pluto, it gravitates in a binary
system with Charon, which has 1/6 of its mass.

Clearly, all the newly discovered moons are much smaller. Some measure
only a few tens of kilometers across. As a rule, if a satellite has diameter
greater than 400km, it is rather spherical. If not, it becomes less and less
spherical as the size diminishes.

For all natural satellites, the inclination is specified relative to the equa-
torial plane of the planet. There is one exception, and an important one: our
own natural satellite. For the Moon does not gravitate in the equatorial plane
of the Earth.45 In this sense, it should be classified with the irregular natural
satellites.

The natural satellites have one very important characteristic: they all ex-
hibit synchronous rotation, or 1:1 resonance, i.e., one rotation during one
revolution around the planet.46 They are practically fixed relative to an axis

44It is thought that the regular satellites were formed at the same time as their host
planet. The irregulars would then have a quite different history. A satellite like Nereid
with its highly eccentric orbit around Neptune (e = 0.75, i = 7◦) suggests that some
irregular moons are probably former asteroids, or trans-Neptunian objects, captured by the
gravitational attraction of the host planet.

45The Moon has a very complex motion since it is part of a three-body system, comprising
the Moon, the Earth, and the Sun (μ/μN = 81.30059). The Moon’s eccentric orbit makes
an angle of 5.2◦ with the ecliptic. The inclination of the lunar orbit with respect to the
Earth equatorial plane thus varies between 18.3◦ and 28.6◦ (see the note on Delaunay).

46The only exceptions are two satellites of Saturn, beyond Titan. The most distant,
Phoebe, has a retrograde orbit and non-synchronous rotation. The other, Hyperion, trapped
between the orbits of Titan and Iapetus, exhibits chaotic rotation.
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passing through their center of gravity and the center of the host planet.
Like the Moon for the Earth, they always turn the same face towards their
planet. This is due to the tidal effect.47

16.5.2 Space Exploration of Natural Satellites

If we exclude the lunar conquest, discussed at the beginning of the chapter
in the more general context of space exploration, there was no specific mission
to any of the natural satellites at the beginning of the space age. If a visit was
organised, it was always part of a trip to the associated planet.

This situation has changed since the Galileo mission, which made funda-
mental discoveries about the Galilean moons of Jupiter. And the Cassini–
Huygens mission has spent more time observing the moons of Saturn than
the host planet itself. Future missions will reinforce this trend, whether to
Jupiter, with JUICE, or to Saturn, with TSSM.

16.6 Geodetic and Astronomical Quantities

for Natural Satellites

16.6.1 Geodetic and Astronomical Data

Here we examine several natural satellites in more detail:

• The Moon, because it is our own moon, and has been visited so many
times.

• Europa, because it seems there may be liquid water there, and the three
other Galilean moons of Jupiter.

• Titan, with its atmosphere, and another satellite of Saturn, Enceladus.
• Triton, satellite of Neptune, which has a thin atmosphere and enigmatic

geysers.

Table 16.8 gives the geodetic and astronomical data for these bodies, together
with derived quantities.

Even though it does not date from the time of their formation, the blockage
of natural satellites so that they always turn the same face toward the host
planet is certainly very ancient. It leads to distortion of the moon, to varying
degrees. From an ellipsoid of revolution, it is transformed to a triaxial ellipsoid,
for which one can define an equatorial radiusRx along the axis toward the host

47The planet exerts a tidal force on the natural satellite, much stronger than that exerted
by the natural satellite on the planet. Viscous friction inside the natural satellite with its
associated dissipation of energy ends up by slowing down the rotation of the natural satellite.
When the rotation becomes synchronous, the natural satellite has been derformed into a
shape extended in the direction of the planet. This deformation of the Moon in the direction
of the Earth is very slight, while that of Phobos towards Mars is enormous, relative to the
size of this moon. As soon as the natural satellite finds itself in this 1:1 resonance, it remains
trapped in that situation by the restoring couple exerted by the planet.
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Satellite μN = GMN R g0 Ve T0(h=0) d
(m3 s−2) (km) (m s−2) (km s−1) (min)

Moon 4.9028 × 1012 1,737.4 1.62 2.38 108.31 3.34
Io 5.9599 × 1012 1,821.6 1.80 2.56 105.46 3.53
Europa 3.2027 × 1012 1,565.0 1.31 2.02 114.23 2.99
Ganymede 9.8878 × 1012 2,631.2 1.43 2.74 142.14 1.94
Callisto 7.1793 × 1012 2,410.3 1.24 2.44 146.25 1.83
Enceladus 7.2095 × 109 252.1 0.11 0.24 159.75 1.61
Titan 8.9782 × 1012 2,575.0 1.35 2.64 144.41 1.88
Triton 1.4279 × 1012 1,352.6 0.78 1.45 137.86 2.06

Satellite (Satellite) aP μ/μN ρΣ ρΣ/R
Planet/number (km) (km)

Moon Earth I 383,398 81.3 57,433 33.1
Io Jupiter I 421,671 2.1256 × 104 6,820 3.7
Europa Jupiter II 670,090 3.9556 × 104 8,466 5.4
Ganymede Jupiter III 1,070,339 1.2812 × 104 21,196 8.1
Callisto Jupiter IV 1,882,580 1.7646 × 104 32,801 3.6
Enceladus Saturn II 238,040 5.2626 × 106 424 1.7
Titan Saturn VI 1,221,803 0.4226 × 104 37,709 14.6
Triton Neptune I 354,759 0.4788 × 104 10,415 7.7

Satellite Nsid = Dsid e i J2 C22 Area
(d) (deg) 10−6 10−6 (106 km2)

Moon 27.321661 0.0555 5.16 ECL 203 22 37.9
Io 1.769138 0.0410 0.04 EQU 1,860 559 41.7
Europa 3.551810 0.0090 0.47 EQU 436 132 30.8
Ganymede 7.154553 0.0015 0.20 EQU 128 38 87.0
Callisto 16.689018 0.0070 0.28 EQU 33 10 73.0
Enceladus 1.370218 0.0045 0.02 EQU 2,500 2,500 0.8
Titan 15.945446 0.0291 0.30 EQU 32 11 83.3
Triton −5.878850 0.0000 156.83 EQU ? ? 23.0

Table 16.8 :Natural satellites of planets in the Solar System. Geodetic and astro-

nomical quantities. Data and derived quantities are the same as those appearing

in Table 16.2. Quantities specific to this table: gravitational constant of the natu-

ral satellite μN, semi-major axis aP (planet–natural satellite). The inclination i is

taken relative to the plane of the ecliptic (ECL) or the equatorial plane of the planet

(EQU). The rotation of the natural satellite is synchronous: Dsid = Nsid. For Triton,

the orbit is retrograde (minus sign).
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planet, anotherRy orthogonal to it, and a polar radiusRz, each measured from
its center. To quantify this distortion of the volume and the mass distribution,
we use the harmonic coefficients C20 and C22, which involve the moments of
inertia Ix, Iy , and Iz, as discussed in Chap. 3. Recall from Table 3.1:

C20 =
1

2MR2
(Ix + Iy − 2Iz) , C22 =

1

4MR2
(Iy − Ix) , (16.5)

where M is the total mass and R = Rx.
For a planet, we have seen that C20 (with the notation J2 = −C20) de-

scribes the flattening and C22 is zero, or almost zero. For a natural satellite,
C22 is less than C20 but of the same order of magnitude. For a body in hydro-
static equilibrium, i.e., gravitational and pressure forces are balanced, it can
be shown that ∣∣∣∣C20

C22

∣∣∣∣ = 10

3
. (16.6)

Changes in the trajectory and velocity of probes during flyby can be used to
determine these coefficients.

16.6.2 Satellite in Keplerian Orbit

Provided its altitude is not too great, in a sense to be defined later, every-
thing happens for the satellite in orbit (semi-major axis a) around a natural
satellite as if it feels only the attraction of this body. Let μN be the grav-
itational constant of this natural satellite, and keep μ for the gravitational
constant of the corresponding planet. All the formulas derived for the Keple-
rian orbit can be applied, replacing μ by μN, as in (5.5).

The period of the satellite at altitude 0 is given by (5.6) or (16.3). For
example, for the Moon, with d = 3.34, we obtain for this period

T0(h=0) =
198√
3.34

= 108min .

The values of T0(h=0) are given in Table 16.8 for various natural satellites.
Figure 16.5 graphs T0/T0(h=0) against a/R, where R is of course the radius
of the natural satellite.

16.6.3 Geographical Maps

Natural satellites of planets can be mapped. The mappable area in millions
of km2 is indicated in Table 16.8. The total area of the natural satellites is 425,
including 232 for Jupiter’s four Galilean moons. In this chapter, we shall use
the following maps as background to represent the ground track or orbit:

• For the Moon, the topographical map based on laser altimeter data gath-
ered by Clementine. Contours are plotted in 2 km steps, with the same
convention for the curves as we used for planetary maps.
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• For Europa, we shall not use a map, which would be difficult to read, but
several images compiled by Galileo, showing the rather unusual structure
of the surface.

We shall not dwell upon the geography of these celestial bodies. Since the first
observations of mountains by Galileo, the geography and geology of the Moon
have been the subject of extremely detailed studies.

In the case of the natural satellites, the prime meridian is not chosen
arbitrarily. The origin for longitudes is taken to be the meridian exactly at
the center of the face turned toward the planet.

16.7 Satellite of a Natural Satellite

in Real Orbit

16.7.1 Perturbative Accelerations

For a satellite in orbit around a natural satellite, the sphere of influence
identifies the region in which the acceleration due to the mother planet is
negligible compared to the central acceleration. To evaluate this, we go back
to the formulas in Sect. 6.11, replacing μS by μ and μ by μN, since for the
satellite, the planet/Sun system is now replaced by the natural satellite/planet
system. Table 16.8 shows the ratios μ/μN and the results of the calculation
of ρΣ. We note that, for Europa, ρΣ is very small because its mass is 40,000
less than the mass of Jupiter.

The dependence of the central accelerations and perturbative accelerations
on the altitude of the satellite is shown in Fig. 16.29 (upper) for a satellite
around the Moon, and in Fig. 16.29 (lower) for a satellite around Europa. The
notation for the accelerations is adapted from Table 6.1.

For the central acceleration, (6.6) gives γCCC(R) = g(R) = g0, which
implies a value of 1.62m s−2 for the Moon and 1.31m s−2 for Europa. The main
difference between the cases examined up to now, of satellites around planets,
is clearly the presence (and magnitude) of the term γCC1, the perturbing
acceleration due to the central planet.

For a satellite of the Moon close to ground level, γCCN.J2 is greater than
γCC1 :

γCCN.J2(R) = 32.8× 10−5ms−2 , γCC1(R) = 2.5× 10−5ms−2 .

However, above h ∼ 1,000km, γCC1 soon exceeds γCCN.J2. For a satellite of
Europa, γCC1 is always greater than γCCN.J2 :

γCCN.J2(R) = 0.8× 10−3ms−2 , γCC1(R) = 1.3× 10−3ms−2 .

Moreover, this term γCC1 increases with altitude (with slope p = 1 on a log–
log scale), and when the satellite is at an altitude of about 10,000km, this



16.7 Satellite of a Natural Satellite in Real Orbit 857

acceleration due to Jupiter is greater than the central acceleration γCCC due
to Europa. In this case, γCC1 can no longer be treated as a perturbation, just
as the satellite is no longer a satellite of Europa!

Figure 16.29 shows the central and perturbative accelerations for two other
Galilean satellites of Jupiter, namely Ganymede and Callisto.

16.7.2 Classification of Satellites

Motion of Natural Satellites

The natural satellites studied here, like the others, all have synchronous
rotation, i.e.,

Dsid = Nsid ,

where the first term is the sidereal period of rotation of the natural satellite
about its own axis and the second is the sidereal period of revolution of the
natural satellite about the central planet. For the natural satellites considered
here, this period ranges from 27 days for the Moon to less than 4 days for Eu-
ropa, and slightly more than a day for Enceladus. It should be noted that the
revolution and hence the rotation of Triton occur in the retrograde direction
around Neptune (Fig. 16.30).

Stationary Satellite

In the example below, we show that it is impossible to place a satellite in
stationary orbit around a natural satellite.

Example 16.5 Investigate the possibility of placing a satellite in a synchronous
orbit, and more specifically, in a stationary orbit, around a natural satellite.

� A satellite S is in circular orbit with semi-major axis a around a natural
satellite N (with gravitational constant μN), which is itself in orbit with semi-
major axis aP around a planet P (with gravitational constant μ). If the orbit
of S is synchronous with N, itself rotating in 1:1 resonance with P, Kepler’s
third law gives the relation between the mean motions as

μ

a3P
=

μN

a3
.

This in turn implies that

aGS = a =

(
μN

μ

)1/3

aP , (16.7)

where aGS is the semi-major axis of the stationary orbit.
We now compare this value with ρΣ , the radius of the sphere of influence.

Adapting (6.158) to the present situation, we obtain



858 Chapter 16. Satellites of Other Celestial Bodies

Altitude h (km)

Distance r (1000 km)

r/R

A
cc

el
er

at
io

n 
(m

.s
-2

)

10

10-1

10-3

10-5

10-7

10-9

10-11

2 3 4 5 6 7 8 9 10 20 30 40 50

1 2 3 4 5 6 7 8 12 16 20 24 28

0 200 1000 5000

slope

10

10-1

10-3

10-5

10-7

10-9

10-11

Altitude h (km)

Distance r (1000 km)

r/R

A
cc

el
er

at
io

n 
(m

.s
-2

)

2 3 4 5 6 7 8 9 10 20 30 40 50

1 2 3 4 5 6 7 8 12 16 20 24 28

0 200 1000 5000

slope

Fig. 16.29 :Accelerations as a function of the distance r of the satellite from the

center of the natural satellite. Log–log scale. Upper: Moon. Lower: Europa.
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Fig. 16.30 :Accelerations as a function of the distance r of the satellite from the

center of the natural satellite. Log–log scale. Upper: Ganymede. Lower: Callisto.
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ρΣ = 2−1/5

(
μN

μ

)2/5

aP . (16.8)

The satellite must stay within the sphere of influence, i.e., it must satisfy the
inequality

aGS < ρΣ . (16.9)

Hence, with the values obtained from (16.7) and (16.8),

(
μN

μ

)5/3

<
1

2

(
μN

μ

)2

.

Finally,

μN > 8μ . (16.10)

But this condition is obviously absurd. A natural satellite cannot have greater
mass than the central planet. It is thus impossible to obtain a stationary orbit
for a satellite of a natural satellite.48 �

Sun-Synchronous Satellite

We now study the case of a satellite in Sun-synchronous orbit around
a natural satellite. We can calculate the constant of Syn-synchronicity using
(7.98). We can also find a relation between khN and khP, the Sun-synchronicity
constants for satellites in orbit around a natural satellite N and around the
central planet P, respectively. With the corresponding subscripts, we can write

khN =
3

2

Tsid

T0(h=0)N
J2N , khP =

3

2

Tsid

T0(h=0)P
J2P .

It is important to note that the sidereal period of revolution Tsid is the same
in both cases: the natural satellite N takes the same time as the planet P to
accomplish one revolution around the Sun. We obtain

khN
khP

=
J2N
J2P

T0(h=0)P

T0(h=0)N
. (16.11)

48In a certain sense, the Lagrange points provide one way of having a stationary position.
If a satellite is stationary with respect to a natural satellite, it is also stationary with
respect to the planet, because of the synchronous rotation of the natural satellite. This
happens when it occupies one of the five Lagrange points. It then remains fixed relative
to the natural satellite–planet system. Only the positions L4 and L5 are stable. When
the satellite is located at L4 or L5, it forms an equilateral triangle with the planet and
the natural satellite. In the case of the Moon and Earth, the satellite is thus located some
380,000 km from the natural satellite. Needless to say, this is not much use for an observation
satellite. The mission STARS, since abandoned in this form, was envisaged for the L5 point
of the Earth–Moon system, but the aim was not to observe the Moon.
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Using (16.2) or (16.3) with the mean densities, we then have

khN
khP

=

√
dN
dP

J2N
J2P

. (16.12)

We now return to the natural satellites investigated here. For the Moon
and Europa, the reader is referred to Fig. 16.29, which indicates the different
accelerations. For the Moon, the calculation of the Syn-synchronicity constant
kh = khN using (16.12) yields

kh = 1.4725 .

This in turn implies a minimal inclination of

iHSmin = 133◦ .

For a satellite in low orbit around the Moon (LLO, Lunar Low Orbiting), the
perturbing acceleration γCC1 due to the Earth is less than the perturbing ac-
celeration γCCN.J2 due to flattening. If the LLO satellite is in Sun-synchronous
orbit, the effect of the Earth, which is one tenth the effect due to the J2 term
of the Moon, would soon remove the satellite from this Sun-synchronous orbit,
in a matter of a few days.

For Europa, the situation is more radical. The term γCC1 is always greater
than γCCN.J2, even at zero altitude. The perturbation due to Jupiter’s gravity
is greater than the one due to the flattening of Europa, whatever the altitude
of the satellite. There is therefore no hope of obtaining a Sun-synchronous
orbit for a satellite around Europa.

Frozen Orbit

Owing to a lack of accurate data concerning the natural satellites, we can
only investigate frozen orbits for satellites around the Moon. In the case of our
own natural satellite, the spherical harmonic coefficients of the gravitational
potential are well documented (see Table 16.9).

For a satellite in low near-polar orbit (with frozen perigee ωF = 270◦

since J3 > 0), the frozen eccentricity eF can be approximately calculated
using (11.57), which gives eF ≈ 0.02. This is relatively high for a frozen
eccentricity. For other inclinations, eF can take values between 0.01 and 0.001.
These calculations are complicated by the presence of the J7 term, whose value
is rather large here.

16.8 Ground Track of a Satellite

of a Natural Satellite

16.8.1 Satellites of the Moon

After the conquest of the Moon (1959–1972), discussed at the beginning
of the chapter in the more general context of space exploration, followed by
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J2 = 203.236626 J5 = 0.715409 J8 = −9.674866
J3 = 8.475906 J6 = −13.577715 J9 = 15.496033
J4 = −9.591929 J7 = −21.774733 J10 = 4.267023

Table 16.9 :Values of the coefficients (Jn × 106) of the gravitational potential of the

Moon in the LPLGM model.

the three Soviet Luna probes (1974–1976), no more probes and orbiters were
sent to the Moon for almost two decades (Fig. 16.31 and 16.32).

The Deep Space Probe Science Experiment (DSPSE), known as Clemen-
tine, launched on 25 January 1994, went into lunar orbit for 70 days and drew
up a very accurate topographic map of the Moon. It had a highly eccentric
orbit with hp = 412km for the pericenter, or periselene, and ha = 2,940km
for the apocenter or aposelene. It then failed in its encounter with the asteroid
1620-Geographos. The probe Lunar Prospector, launched on 7 January 1998,
went into a near-circular near-polar orbit with h = 100km, then h = 40 and
h = 30km. It then deliberately impacted the Moon near the South Pole in a
controlled crash to look for evidence of water ice, but none was found.

Lunar gravitational potential models first used laser ranging measurements
(LLR, Lunar Laser Ranging) carried out by means of reflectors set up on
the Moon, then the satellites Lunar Orbiter-1 to -5, Apollo-15 and -16, and
Clementine for the models GLGM-1 and 2 (Goddard Lunar Gravity Model).
The model known as LPLGM (Lunar Prospector Lunar Gravity Model) also
used Lunar Prospector (see Table 16.10).

The European probe SMART-1, launched on 27 September 2003, remained
for more than a year, until 2 November 2004, in orbit around the Earth. Then,
from 15 November 2004, it revolved around the Moon until it was deliberately
crashed on 3 September 2006. The main aim was not so much to study the
Moon as to test the newly developed ion drive technology.

In 2007 and 2008, three Asian countries carried out successful missions
to the Moon. The Japanese mission Selenological and Engineering Explorer
(Selene), renamed Kaguya after the launch on 14 September 2007, comprises
a main satellite (h = 100km) and two auxiliary satellites, Okina (Rstar or
Relay Sat, hp = 100km, ha = 2,400km) and Ouna (Vstar or V RAD Sat,
hp = 100km, ha = 800km). The main satellite was then put in a very low
orbit with hp = 20km, ha = 50km, and subsequently projected onto the lunar
surface on 10 June 2009. All these orbits are polar, i.e., i = 90◦. Japan had
already launched the satellite Hiten (Muses-A) in 1990.

The main aim of the Chinese missions Chang’E (the name of a Chinese
Moon god) was to map the Moon and prepare manned missions. Chang’E-1,
launched on 14 October 2007, went into a circular polar orbit with h = 200km,
crashing into the surface on 1 March 2009, and Chang’E-2, launched on 1
October 2010, went into a circular polar orbit with h = 100km, then an
elliptical orbit with hp = 15km, ha = 100km.
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Fig. 16.31 : Images of the hidden face of the Moon. Upper left: Historic photograph

taken by Luna-3 on 7 October 1959, during a flyby at altitude 66,000 km. Credit:

USSR Academy of Sciences. Upper right: Ixion/Atlas reconstitution of the Moon seen

by Luna-3 when the image was taken. The meridian (continuous curve) demarcates

the visible face (to the west, on the left) of the hidden face (to the east, on the right).

Lower left: View corresponding to the historic photograph, but built up from images

obtained by American missions. Credit: NASA.

The Indian satellite Chandrayaan-1 (from chandra, meaning “Moon” and
yaan, meaning “ship”), launched on 22 October 2008, went into circular polar
orbit with h = 100km on 12 November 2008.
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Projection:  Orthographic
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Fig. 16.32 :Landing sites of the 6 Apollo missions. It is no surprise to find that they

are all on the visible face of the Moon.

Method used Year μ (km3 s−2) Error

Laser, LO-4 1980 4,902.799 ±0.003
GLGM-1 1993 4,902.8026 ±0.0001
GLGM-2 1997 4,902.8029 ±0.0002
LPLGM 1999 4,902.80106 ±0.00008

Table 16.10 :Measured values of the selenocentric gravitational constant μ = GM

with the estimated error. Historical evolution, mentioning the method used and the

year.

American interest in the Moon has been rekindled in the form of their
Constellation programme.49 One part of this vast framework was the Lunar
Precursor Robotic (LPR), which led to the launch of the dual mission LRO-
LCROSS on 18 June 2009. On 23 June, the Lunar Reconnaissance Orbiter
(LRO) went into circular polar orbit with h = 50km. The aims were mapping
and improving the geodetic model (see Figs. 16.33 and 16.36). It carried seven
instruments, including the Diviner Lunar Radiometer Experiment (DLRE) to

49This programme, launched in 2004 under G.W. Bush, was as ambitious as the Apollo
programme at the time of J.F. Kennedy. The aim was to go to the Moon, and from there
to Mars. However, this was revised under the Obama presidency. The lunar stage could be
dropped and replaced by a manned visit to an asteroid. To be continued.
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measure the surface temperature. It identified certain places, such as craters,
at the South Pole, that would not have seen sunlight for billions of years, just
the kind of places where water ice might be trapped. The surface temperature
map of the south polar region shown in Fig. 16.37 (upper) is witness to LRO’s
near-polar orbit. The data were acquired from September to October 2009,
when the temperatures in this region would have been at their maximum. The
crater chosen to receive the impact of the Lunar Crater Observation and Sens-
ing Satellite (LCROSS) is indicated with a white circle in the figure. It is one
of the coldest points on the Moon (about 40K, or −230 ◦C). The 3D map of
the South Pole in Fig. 16.37 (lower), indicating temperatures, locates the point
of impact of LCROSS,50 which occurred on 9 October 2009. Analysis of the
particles thrown up by the impact did indeed reveal the presence of water ice.

The Gravity Recovery and Interior Laboratory (GRAIL) mission is the
equivalent for the Moon of GRACE for the Earth, with two satellites, one
following the other. Their orbit is circular polar and the distance between
GRAIL-A and -B is 175–225km depending on the different phases of the mis-
sion.51 The altitude h = 53km at the beginning of the mission went to 23, then
11.5 km. GRAIL enormously improved our understanding of the geopotential
and the internal structure of the Moon.

In the following examples, we consider several revolutions of the ground
track of Clementine. But in recognition of the great era of lunar exploration,
we begin with a thought for Luna-3 and Apollo-15. In all maps of the Moon,
we have marked the meridians 90◦E and 90◦W which symbolically divide the
visible and hidden faces.

Example 16.6 Discovery of the hidden face of the Moon.

The Soviet probe Luna-3 was launched on 4 October

1959 and overflew the hidden face of the Moon on 7

October. Unlike its successors, in heliocentric orbit,

Luna-3 was in fact a satellite of the Earth, on a highly

eccentric orbit, with radius at apogee ra = 469,000 km

and period 16.2 days. (However, it also appears under

the entry “space probe” in the index.) Indeed, it burnt

up in the Earth atmosphere in April 1960.

50The satellite LCROSS, which remained attached to the last stage of the Centaur rocket,
went into a highly eccentric geocentric orbit, overflying the Moon (T = 36 day). After
three revolutions, the rocket was detached and crashed into the Moon. The impact was
photographed and analysed by LCROSS, which was following it, and which itself ended up
crashing into the surface close to the South Pole just 5min later.

51The two satellites GRAIL-A and -B (also named Ebb and Flow, respectively) were
launched together on 10 September 2011, then placed separately in lunar orbit on 31 De-
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Fig. 16.33 : Image of the hidden face of the Moon, obtained by assembling 1,300 im-

ages acquired by the Wide Angle Camera (WAC) aboard the LRO over 2 weeks in

mid-December 2010. Left: Detail obtained with the same camera. Chasm of diam-

eter 80m and depth 100m (estimated by examining the shadow), located in Mare

Tranquillitatis. Credit: NASA, GSFC, Arizona State University.
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� The historic photograph of the hidden face is shown in Fig. 16.31. Next to
it is a representation of the Moon viewed under the same conditions from a
distance of 38 lunar radii. On the left of the photograph and the map is a
part of the visible face featuring the dark region of Mare Crisium (centered
on 17.0◦N, 59.1◦E).

The hidden face, incompletely photographed by Luna-3, was soon to be
better revealed by Zond-3, then fully mapped by the US orbiters (Orbiter-3,
-4, Explorer-35, Orbiter-5), as they prepared in 1967 the landing areas for
the Apollo programme. It was thus discovered the two faces looked rather
different, as can be clearly seen from the map shown in Fig. 16.34 (lower).
This difference arises because the lunar crust is thicker on the hidden face
than on the visible face, surely a consequence of the tidal effect. The wide
basins on the hidden face are not filled with basalts from ancient lava flows,
as they are on the visible face. These features have been known as “seas” since
ancient times. �

Example 16.7 Ground track of the Apollo-15 lunar orbiter during its geo-
chemical mapping mission.

� For the manned Apollo missions to the lunar surface, the capsule remained
in lunar orbit with an astronaut aboard (see Fig. 16.34 upper). The other two
astronauts in the lunar module (LM) left the capsule to soft land on the Moon.
After 1 or 2 days (and six for Apollo-16), they returned to the capsule, which
then left its lunar orbit to return to Earth.

During the Apollo-15 mission, the orbiting command module carried out
a geochemical mapping experiment, in fact measuring the gamma radiation
from the surface, resulting from natural radioactivity of the crust. The ground
track of the orbit is shown during this experiment, over 4 days from 1 to 4
August 1971 (see Fig. 16.34 lower). The landing site for this mission was at
26.10◦N, 3.65◦E, on the boundary of the maximal attained latitude. The circle
of visibility of this point for the satellite is indicated in the figure. As soon
as the ground track of the satellite enters this circle, it can be seen from the
landing site. The astronauts on the surface did not have long in which to
communicate with the orbiter! We see here how little of the surface is scanned
in the case of a lunar orbit.

Note on the Cartography. The Moon has been shown in Fig. 16.34 (lower)
using an interrupted Mollweide projection, in which the central disk represents
the visible face. Altitudes are lower than on the hidden face. �

cember 2011 and the following day. The mission ended on 17 December 2012, with a double
impact on the Moon.
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Fig. 16.34 :Upper: Orbit of the lunar satellite Apollo-15 (Orbiter), over 1 day. Lower:

Ground track of the orbit over 4 days (geochemical mapping mission), showing the

viewing circle for the ground module A15.
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Fig. 16.35 :Clementine. Upper: Orbit over 7 days (a quarter of a month). Lower:

Ground track for altitudes below 640 km (where the laser altimeter functions cor-

rectly).
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Fig. 16.36 : Image of the central peak of the Tycho crater taken at sunrise on 10 June

2011 by the LRO with a resolution of 1.5m/pixel. The Tycho crater in the southern

hemisphere with its radiating ejecta is one of the most prominent features of the

Moon. The crater has a diameter of 85 km, and the central peak a width of 15 km

and a height of 2 km above the floor of the crater. Credit: NASA, GSFC, Arizona

State University, LRO Team.

Example 16.8 Ground track of the satellite Clementine.

� In its lunar mapping mission, the probe Clementine followed the highly
eccentric polar orbit shown in Fig. 16.35 (upper), with pericenter (periselene)
at a latitude of 28◦S during the first month and 29◦N during the second.
Indeed, each measurement cycle lasted 1 month, the time required by the
satellite to observe the whole of the Moon, since this is in fact the time it
required to rotate about its own axis in the Galilean frame. The ground track
of the orbit is shown in the two parts of Fig. 16.35 (lower), over 2 days, i.e., 9.5
revolutions (T = 5h). These are revolutions 103 to 112, on 13 and 14 March
1994 (cycle 1).

Among its instruments, Clementine carried a LIDAR-type laser altimeter
(Clementine Laser Image Detection And Ranging) which could only function
for altitudes below 640km. The ground track of the LIDAR is shown over 7
days in Fig. 16.35 (lower). �
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Fig. 16.37 :Upper: Temperature map of the south polar region of the Moon produced

by the LRO. Lower: Three-dimensional map of the South Pole, indicating the tem-

perature and location of the LCROSS impact. Credit: NASA, JPL, UCLA.
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16.8.2 Satellites of Europa and Ganymede

After Juno, mainly dedicated to Jupiter, the next mission to the giant
planet will be JUICE, which will turn its attention to the four Galilean moons.
These four large natural satellites of Jupiter each have between half and twice
the mass of the Moon. As one moves away from Jupiter, they are Io, Europa,
Ganymede, and Callisto. Their motions are related by several resonances.52

Images of Voyager-1 and -2, refined by those of Galileo, have given us a quite
detailed understanding of these satellites (Fig. 16.36).

There are more than 400 frequently erupting volcanoes scattered across
Io. This volcanic activity cannot be put down to plate tectonics, but is rather
due to the release of heat resulting from the enormous tidal forces produced
by Jupiter (Fig. 16.37).

Europa is covered with water ice at temperatures of 110K at the equator
and 50K at the poles (see Fig. 16.38). Since it appears to have an internal
source of heat, undoubtedly due to tidal effects, this suggests that there may
be an ocean of liquid water beneath the frozen surface. Hence the enthusiasm
of planetary scientists for further exploration!

Ganymede is the largest natural satellite in the Solar System. It has two
clearly differentiated types of surface: one is a dark, heavily cratered terrain,
the other an icy crust, scarred with grooves. This moon has a magnetosphere.
It is thought that there may be a vast ocean of liquid salt water some 150km
below the surface.

Callisto has a rather regular surface, without mountains, and is rather
evenly scattered with craters. This moon may also conceal an ocean below
the surface.

At the present time, Europa and Ganymede have inspired the most inter-
est for space missions. For example, EJSM-Laplace was a joint NASA–ESA
project (EJSM stands for the Europa–Jupiter System Mission, while the men-
tion of Laplace is a homage to the French astronomer), built up from US53 and
European missions that had been planned separately. This mission54 involved
two satellites, the Jupiter Ganymede Orbiter (JGO), developed by the ESA,
and the Jupiter Europa Orbiter (JEO), developed by NASA (see Fig. 16.39).

52There are relations between the mean motions ni of the first three Galilean satellites
(i = 1–3). This is in fact the Laplace resonance:

n1 − 2n2 = n2 − 2n3 = 0.739 6 deg/day .

53NASA had gone a long way with the preparatory studies for the Jupiter Icy Moons
Orbiter (JIMO), which would have sent an orbiter to circle Europa for 2 months, Ganymede
for 4 months, and Callisto for 4 more months. The project was abandoned in 2005.

54The journey, following the VEEGA pattern, would have lasted 6 years. After Jovian
orbit insertion (JOI), each probe was to fly several times past each of the four Galilean moons
before going into orbit around Europa (EOI) in the case of JEO and around Ganymede
(GOI) in the case of JGO.
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Fig. 16.38 :Two views of the trailing hemisphere of Europa. The left image shows the

approximate natural color appearance of Europa. The image on the right is a false-

color composite version combining violet, green, and infrared images to enhance

color differences in the predominantly water-ice crust of Europa. Dark brown areas

represent rocky material. Bright plains in the polar areas are shown in tones of blue.

Long, dark lines are fractures in the crust, some of which are more than 3,000 km

long. Image taken on 7 September 1996, at a range of 677,000 km, by the camera on

board the Galileo spacecraft during its second orbit around Jupiter. Image processed

by DLR, Berlin. Credit (image and caption): NASA, JPL, DLR.

When NASA withdrew in April 2011, the ESA transformed EJSM-Laplace/
JGO into the Jupiter Icy Moon Explorer (JUICE). After an 8 year journey
following the EVEEGA pattern, JUICE will fly by all the Galilean moons
except Io, then go into near-polar orbit at h = 200 km around Ganymede (see
Fig. 16.40 upper).

16.8.3 Satellites of Titan

The natural satellite Titan is in equatorial orbit, with a rather high eccen-
tricity, around Saturn. It was discovered by Huygens in 1655 and he gave it
the name Luna Saturni. In terms of its size and mass, it is the second natural
satellite of the Solar System, just after Ganymede. The atmosphere of Titan
is 4.5 denser than the atmosphere of the Earth (at ground level, 1.5 bar with
absolute temperature only one third of that on Earth). Photochemical reac-
tions abound due to solar UV radiation, leading to the synthesis of an aerosol
layer which masks the surface in the visible. Images taken by Voyager-1 do
not show the ground, only the cloud cover. The Cassini–Huygens mission has
given us a much more detailed view.

The Huygens module was released by the Cassini probe on 14 Jan-
uary 2005, and dropped through the Titan atmosphere, protected by its
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Fig. 16.39 :JEO, a satellite of Europa in the EJSM-Laplace project. Upper: Ground

track over 1 day. Lower: Ground track over half a day, with ground track of the

cross-track swath.
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Fig. 16.40 :Ground track of the orbit over 1 day. Upper: JGO, a satellite of

Ganymede in the JUICE mission. Lower: Satellite of Triton.
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Fig. 16.41 :Mosaic of three images ac-

quired by the DISR instrument during the

descent of the Huygens module on Titan

on 14 January 2005, at an altitude of

about 30 km: “Images show a complex net-

work of narrow drainage channels running

from brighter highlands to lower, flatter,

dark regions. These channels merge into

river systems running into lakebeds featur-

ing offshore ‘islands’ and ‘shoals’ remark-

ably similar to those on Earth.” ESA com-

munication of 21 January 2005. Credit:

NASA, JPL, ESA, University of Arizona.

thermal shield. The landing was gentle thanks to its two parachutes, which
both deployed correctly. During the 2 h descent, very high quality data and
images were sent back, as exemplified in Fig. 16.41, obtained by the Descent
Imager Spectral Radiometer (DISR).

The “geography” of Titan, i.e., erosion, river systems, dried-up lakes,
coastal scenery, evidence of precipitation, etc., is similar to what we see on
Earth, except that water has been replaced by methane (CH4). This can exist
in both liquid or gaseous form on the surface of Titan. When it rains there,
what falls is methane, mixed with traces of hydrocarbons. As mentioned at
the beginning of this chapter, the Titan atmosphere is mainly composed of
nitrogen, but contains 2% methane.

Radar images obtained by the Cassini probe during its many flybys have
detected very large lakes of methane or ethane, such as Ontario Lacus, 72◦S,
183◦W, of length 235km (temperature 85K, composition CH4 and C2H6, light
hydrocarbons, and liquid nitrogen N2). We have already shown examples of
specular reflection or Sun glint on the Earth, and even on Mars. Figure 16.42
shows the same effect on Titan, in an image acquired by Cassini, demonstrat-
ing the presence of a liquid surface on Titan.

The Cassini–Huygens mission opened the way to further studies of Titan,
to the extent that both Europe and the US began to plan their own missions:
for the ESA, TandEM (Titan and Enceladus Mission), a Saturn orbiter that
would fly past Enceladus, then go into orbit around Titan and release a hot-
air balloon into the Titan atmosphere; and for NASA, Titan Explorer, whose
orbiter would go into orbit using aerobraking.

In 2009, the two space agencies decided to merge their missions into the
Titan Saturn System Mission (TSSM). The orbiter will revolve around Saturn
for 2 years, flying past Titan and Enceladus several times, before going into
orbit around Titan. The orbiter will then send out two modules: a hot-air
balloon that should remain at an altitude of 10 km for 6 months, to study the
atmosphere and take accurate photographs of the surface; and a lander that
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Fig. 16.42 :First image of specular reflection or Sun glint

on Titan, confirming the presence of a liquid surface. Im-

age taken by the VIMS camera of the Cassini probe on 8

July 2009 during its 59th flyby of Titan, at a distance of

about 200,000 km. Resolution 100 km/pixel. Credit: Uni-

versity of Arizona, Tucson.

would soft land in a methane lake. The data collected by the two modules will
be transmitted back to Earth via the orbiter. However, at the present time,
TSSM would not appear to be a priority.

16.8.4 Satellites of Triton

The natural satellite Triton is in a circular equatorial orbit around Nep-
tune, with eccentricity e = 1.57 × 10−5. It was discovered by W. Lassel on
10 October 1846, just 2 weeks after the discovery of Neptune. As already
mentioned, the rotation of Triton is synchronous with its revolution, which is
retrograde. It is the only large natural satellite to revolve in this direction.

Most of what is known about Triton comes from images transmitted by
Voyager-2. As far as it has been observed, these images show a cracked surface,
rather like the skin of a melon, and referred to as a cantaloupe terrain (see
Fig. 16.43). One can make out geysers of liquid nitrogen with solid nitrogen
aerosols, whose plumes rise up to 8 km, attesting to cryovolcanism. Triton’s
very tenuous atmosphere has been identified using the method of stellar oc-
cultation. The inclination of its orbit with respect to the ecliptic creates a
sequence of seasons, as on the Earth and Mars.

A mission to Triton would be a difficult undertaking, as it is a long way to
Neptune, and it will be some time before we see a satellite in orbit around this
icy body. However, Fig. 16.40 (lower) shows the ground track of a hypothetical
Triton orbiter! The novelty here is that the shift occurs towards the east.
Before bringing this book to a close, we had to find an example of a celestial
body in the Solar System which goes round the “wrong” way!

16.9 Appendix: The Three Planetocentric

Spheres

Three different spheres can be associated with any celestial body, such as
a planet P, for example. The first two have already been discussed. Here we
outline the third.
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Fig. 16.43 :Triton was photographed on 25 August 1989 by Voyager-2, just after the

probe had left Neptune. This image of the southern hemisphere is a mosaic of 12

views acquired from a distance of 530,000 km (pixel 10 km by 10 km). It is night in

the northern region. The surface of Triton is extremely cold (37K in the daytime)

and very bright, being mainly composed of nitrogen ice. Credit: JPL, NASA.

16.9.1 Presenting the Three Spheres

Sphere of Influence

The gravitational sphere of influence is defined to be the approximately
spherical region centered on the planet P, within which any body is mainly
subject to the gravitational attraction of P. It has radius ρΣ given by (6.158).

Sphere of the Planetosynchronous Orbit

This is the sphere generated by all the circular orbits for which the re-
volving body has period equal to the rotational period of P. It has radius aGS

given by (7.69).

Roche Limit

When a natural satellite N of a planet, characterised by its gravitational
constant μN, its radius RN, and its average density dN, comes too close to the
host planet P, characterised likewise by μ, R, and dP, it will be torn apart by
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the action of tidal forces. Indeed, at such distances, these tidal forces will be
stronger than the cohesive gravitational forces of the satellite, considered to
be in hydrostatic equilibrium.

This limit DR corresponds to the region where the differential acceleration
defined by (6.151) is equal to the gravitational field of the satellite defined by
(6.149):

μN

R2
N

= 2RN
μ

D3
R

. (16.13)

We obtain DR from this relation by bringing in the masses through μ and μN.
A more careful calculation taking into account distortions of the hydrostatic
equilibrium leads to a different numerical coefficient. The value generally ac-
cepted for this distance, which is known as the Roche limit,55 is

DR = 2.46

(
dP
dN

)1/3

R . (16.14)

16.9.2 The Case of the Four Giant Planets

For these planets, the values of μ, R, ρΣ, and aGS, together with the
average density dP denoted here by d, can be found in Table 16.2. Figure 16.44
shows the planetosynchronous sphere and the Roche limit for the four giant
planets of the Solar System. The gravitational sphere of influence has a much
greater radius and is not relevant to this discussion, so has been omitted.
To facilitate comparison, the radius R of each planet has been taken equal
to unity. The figure also shows the nearby satellites and main (most visible)
rings.

The synchronous orbit provides a theoretical separation of the natural
satellites into two categories: those closer tend to move toward the planet,
while those beyond tend to move away. This very slow displacement is due to
tidal forces.56

To calculate the Roche limit, we have taken an average of the densities dN
over all the satellites of the host planet, although strictly speaking, there is a
Roche limit for each natural satellite. We obtain:

• For Jupiter, DR/R = 1.92, with dN ≈ 2.8.
• For Saturn, DR/R = 2.18, with dN ≈ 1.0.
• For Uranus, DR/R = 2.34, with dN ≈ 1.5.
• For Neptune, DR/R = 2.73, with dN ≈ 1.2.

55Edouard Roche (1820–1883) was a French astronomer who devised a cosmogonic theory
of the Solar System and studied the internal structure of the Earth. It was his combined
understanding of astronomy and geophysics that led him in 1849 to establish an expression
for the tidal forces exerted by a host body on its natural satellite.

56For example, in the case of the Earth and Moon, the latter is at a distance of 60R from
the Earth and aGS/R = 6.61. The Moon thus moves away from the Earth by about 2 cm
per year, as confirmed by laser ranging measurements of the Earth–Moon separation.
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Fig. 16.44 :Positions of the natural satellites of the giant planets in relation to the

synchronous sphere and the Roche limit. The radius of each planet is taken as unity.

Here we consider the most visible planetary rings and the closest natural
satellites:

• Jupiter. Metis revolves slightly within the Roche limit. The internal cohe-
sive forces of this moon are strong enough to prevent it from breaking up.
In July 1994, the comet P/Shoemaker-Levy-9 went past Jupiter within the
Roche limit and was broken up into about 20 fragments which subsequently
crashed into the planet.

• Saturn. The rings A, B, and C are inside the Roche limit, which lies just
on the outer rim of ring A. It was this observation that encouraged Roche
in his calculations. The rings either result from the break-up of natural
satellites, or they exist because tidal forces prevented particles at these
distances from accreting.

• Uranus and Neptune. A few very small satellites, and ring arcs for
Neptune, lie within the Roche limit.

Note that the notion of Roche limit is irrelevant to artificial satellites since
their structural cohesion is not based on self-gravitation!
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16.10 Historical Note: Kepler and the Solar

System

Even though he may have been preoccupied and inspired by the harmony
of the spheres, the music of the planets, and the geometrical beauty of a
world contrived by some eminent creator, Kepler, in his Harmonices Mundi,
remains one of the great minds of astronomy, unbending in the rigour of his
calculations.

In Book V, Chap. IV, entitled In what features relating to the motions
of the planets the simple harmonies have been expressed, and that all those
which occur in melody are found in heaven, and in particular, on pp. 192–196,
Kepler gives two tables of numerical data. In the first, on p. 193, he gives the
“periodic times of the planets” in days and sixtieths of a day. Converted into
decimal days, the result is worth comparing with the column for Nsid [d] of
Table 16.2, also given here. The error is less than one hundredth of a day, or
quarter of an hour, except for Jupiter, where it is 43min, not such a large
discrepancy in a period of 12 years (Table 16.11).

In the second table, on p. 195, he gives the perihelion and aphelion of
each planet, taking 1,000 units for the semi-major axis of the Earth’s orbit.
In Table 16.12, we have also included aS in a.u. and e. Once again, it is worth
comparing with the columns for aS and e of Table 16.2, repeated here for
convenience. There can be no doubt that Kepler was indeed the creator of
modern celestial mechanics.

Kepler ends the chapter with these words:

These intervals were sought through the very careful observations of Tycho Brahe,
using the method described in Astronomia Nova – Comments on Mars, after a
painstaking study lasting seventeen years.

The comparison between these two tables led Kepler to his third law.

Planet Period (d sx) Period (decimal day) Period (decimal day)
Kepler Kepler Current value

Mercury 87 d 58 sx 87.97 87.97
Venus 224 d 42 sx 224.70 224.70
Earth 365 d 15 sx 365.25 365.26
Mars 686 d 59 sx 686.98 686.98
Jupiter 4,332 d 37 sx 4,332.62 4,332.59
Saturn 10,759 d 12 sx 10,759.20 10,759.20

Table 16.11 :Period of revolution of the planets of the Solar System known to Kepler,

in days and sixtieths of a day (d sx), transcribed into decimal days. Values published

in Harmonices Mundi, p. 193. Comparison with currently accepted values.
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Planet Perihelion Aphelion aS (a.u.) e aS (a.u.) e
Kepler Kepler Kepler Kepler Current Current

Mercury 307 470 0.388 0.2098 0.387 0.2056
Venus 719 729 0.724 0.0069 0.723 0.0068
Earth 982 1,018 1.000 0.0180 1.000 0.0167
Mars 1,382 1,665 1.524 0.0929 1.524 0.0934
Jupiter 4,949 5,451 5.200 0.0483 5.201 0.0484
Saturn 8,968 10,052 9.510 0.0570 9.538 0.0542

Table 16.12 :Distance from the Sun of the perihelion and aphelion in the units used

by Kepler, corresponding to one thousandth of an astronomical unit, together with the

length of the semi-major axis a and eccentricity e. Values published in Harmonices

Mundi, p. 195. Comparison with currently accepted values.

Fig. 16.45 :Kepler: NASA’s first mission ca-

pable of finding Earth-size and smaller plan-

ets around other stars. Logo of the mission.

Credit: NASA.
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Martinet, Paris, 1863

83. A. Germain. Traité des projections des cartes géographiques, Arthus Bertrand
Editeur, Paris, 1865
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Trojans, 239, 805

astroid, 3, 21

astronomical constants, 228, 229

astronomical unit, 227, 229, 233

atlas, 333

atmosphere

density, 205

models of, 206

of Mars, 730

of the Earth, 204–212

of Titan, 805, 814, 873

of Triton, 877

of Venus, 824

planetary, 807

scale factor, 205

atmospheric drag, 83, 171, 202–212, 344,

745, 824

aerobraking, 210

ballistic coefficient, 208, 558

compensation, 344

decreasing altitude, 558

Delta V, 208, 745

atmospheric refraction, 633

attitude, 161, 561

control, 561

attraction

by Earth, 167

central, 167

differential, 168

heliocentric, 232

lunisolar, 168

planetary, 168

planetocentric, 854

augmentation systems, 691

CWAAS, 691

EGNOS, 692, 693

GAGAN, 693

MSAS, 693

SDCM, 693

SNAS, 693

StarFire, 693

WAAS, 691, 693

WAGE, 691

azimuth, 566

line-of-sight, 616

relative, 634

solar, 630

viewing, 615

Baker–Nunn camera, 213

ballistic coefficient, 208, 558

barycenter, 150

base interval, 517

base station for DGPS, 664
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Bernoulli lemniscate, 314

BIH, 89

Binet’s equations, 97

BIPM, 89

Bode’s law, 806

calendar

Gregorian, 798

Julian, 798

canonical variables, 176

Cardan angles, 160, 161

pitch, 160, 161, 562

roll, 160, 161, 562

yaw, 160, 161, 562

Cardan axes, 562

cartographic projection, 329–337

Adams, 330

Aitoff, 844

Arden–Close, 332, 345, 346

Armadillo, 331

aspect, 330

Behrmann, 330

Boggs eumorphic, 331

interrupted, 440, 441

Cassini, 46

conformal, 329

Craster parabolic, 331

equal-area, 329

fish eye, 525

Gauss, 332

Goode homolosine, 331

Guyou, 328, 330, 586, 587, 600, 602,

603

Hammer–Aitoff, 331, 839

Hammer–Wagner, 331

interrupted, 331, 440, 441, 699

loxodromy, 333

McBryde–Thomas, 699

Mercator, 330, 332–334, 350, 368,

676

transverse, 332

Miller, 332, 485

Mollweide, 330, 438, 439, 583

interrupted, 868

orthodromy, 333

orthographic, 331, 355, 358, 359, 443,

596, 601

perspective view, 331, 367, 600

plate-carrée, 331

Raisz Armadillo, 331, 446, 447, 597

Snyder, 331, 334–336, 758

stereographic, 330, 334–338, 349, 601

type, 330

UTM, 332, 350

celestial coordinates, 267

celestial equatorial coordinates, 266

celestial latitude, 267

celestial longitude, 267

celestial sphere, 266, 629, 630

center

centrum, i, 3

of curvature, 20

ellipse, 3

of attraction, 110

of mass, 150

osculating circle, 20

central attraction, 202

century, Julian, 325

Ceres

astronomical data, 840

geodetic data, 840

space exploration, 840

chaos theory, 222

circle of visibility, 620

civil time, 272

civil year, 260, 270

Clairaut’s formula, 77, 214, 709

climate parameter, 225

clock bias (GPS), 655

code PRN (GPS), 668

colatitude, geographic, 629

colonialism, 334

comet, 418, 805, 812

Churyumov–Gerasimenko, 812

Halley, 215, 812

Wirtanen, 812

conic, see ellipse

conic section, 1, 100

and energy, 140

eccentricity, 7

history of, 2, 7

parameter, 100

patched, 809

conservation laws, 136

constellation of satellites

ACE (ESA), 697

ACE+, 381, 697

BeiDou NS, 684

orbital planes, 673, 675

Beidou-2, 684

BeiDou-M, 687

Big Dipper, 684

CLARREO, 375

COBRA, 401

Compass, 684

COSMO-SkyMed, 378

DMC, 384

Ellipso Borealis, 298, 401, 515

Ellipso Concordia, 401

FLOWER, 401

FLOWER CfTM, 401

FormoSat-3/COSMIC, 363, 697
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FuegoFOC, 383

Galileo, 681

eclipse, 478

orbital planes, 673, 675

GlobalStar, 407

GlobalStar-2, 407

Glonass, 678

eclipse, 478

orbital planes, 673, 675

Gonets-D1, 407

GPM, 372

ICO, 401

Iridium, 407

Iridium-Next, 407

Loopus, 395

Mercury, 428

Molniya, 393

Nadezhda, 390

Navstar/GPS, 84, 666

eclipse, 478

orbital planes, 671, 673, 675

NOSS, 428

NSS 30, 701

Odyssey, 401

Orbcomm, 407

Parus, 390, 702

QZSS, 694

RapidEye, 380

Rocsat-3/COSMIC, 363

SB-WASS, 428

SBIRS-GEO, 426

SBIRS-HEO, 426

SBIRS-High, 426

SBIRS-Low, 426

SD-Radio, 290

SkyBridge, 407

Strela-3, 407

SWARM, 381

Teledesic, 407

Transit, 390, 701

Trumpet, 428

Tselina, 428

Tsikada, 390, 702

VIRGO, 395

WATS, 697

WEST, 401

cosmic velocity, 102

critical inclination, see inclination

crossing time, 433

afternoon, 455, 456

choice of, 454

drift, 460

morning, 455, 456

cryostat, 414

cryovolcanism, 851, 877

cycle

recurrence, 487

relative to Earth, 487–514, 646, 648

relative to planet

Mars, 773–779

Vesta, 842

relative to Sun, 433–449, 746

half-cycle, 437

repeat, 487

daily frequency κ, 265

daily frequency ν, 264

daily orbital frequency, 264, 309, 488, 490,

538

meridian intersection, 647

synodic, 388

daily recurrence frequency, 265, 312, 316,

488, 490, 516, 538

date, Julian, 325, 738

day

apparent solar, 272

astronomical definition, 261

Julian, 274, 325

Martian, 733

mean, 262, 394, 622

mean (sol), 733

sidereal, 262, 394, 622

stellar, 262

declination, 267, 273, 465, 466, 479, 739

Delaunay elements, 188

Delaunay equations, 188

Delta V, 208, 745

descending node, 153

DGPS, see GPS

differential attraction, 232

divine order, 144, 220, 221, 419

DORIS, 91

draconitic period, 203, 488

draconitic year, 261

drag compensation, 82, 83, 344, 421

drift coefficient, 534

drift, local crossing time, 457, 458, 460

Earth

Tellus, uris, 804

Terra, æ, 804

astronomical data, 229, 260, 727, 818

atmosphere, 558–559

attraction, 167, 809

degree of latitude, 34, 49

deviation from the vertical, 29

disk, 595

ellipsoid, 27, 190, 545, 546

equatorial radius, 27, 229, 545

flattening, 27, 49, 551

geodetic data, 69, 229, 727, 818
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geoid, 545

length of equator, 37

length of meridian, 37

limb, 566

meridian arc length, 34

motion about polar axis, 261

motion about Sun, 260

motion of poles, 89, 263

natural satellite, see Moon

period of revolution, 260

period of rotation, 261

perturbative accelerations, 164–166

polar radius, 30

radius, 565

equatorial, 86, 543

function of latitude, 543, 545

reference ellipsoid, 25–41

Earth’s disk, 608

eccentricity, 100, 153, 818, 840, 854

angle of, 13

conic section, 7

ellipse, 4

frozen, 553

eclipse, solar, 464, 466–482, 767

ecliptic, 267, 466, 807

coordinates, 266, 267

latitude, 267

longitude, 267

elevation, viewing, 620

ellipse

affine ratio, 13

affine transformation, 8

affinity, 9

angle of eccentricity, 13, 104,

114

apsis, 104

arc length, 17

center, 3

conic section, 1

Dandelin’s theorem, 12

definition, 2

directrix, 3, 10, 12

eccentricity, 3, 13, 14

elliptic integral, 18

evolute, 20, 22

flattening, 13, 14

focal distance, 3

focus, 3, 21, 545

great normal, 31–37

history of, 1, 7

osculating circle, 20

parameter, 6

perimeter, 18

principal circle, 112

properties of, 3

radius, 19

radius of curvature, 20, 33, 733, 820

reflection, 21

semi-latus rectum, 6, 200

semi-major axis, 3

semi-minor axis, 3

trajectory, 140

ellipsoid

Earth, 25–41, 66, 71

historical reference, 27

reference EGM2008, 27

reference EGM96, 27

reference EIGEN, 27

reference GEM-T2, 27

reference GRIM5, 27

reference GRS80, 27

reference WGS72, 27

reference WGS84, 27

Jupiter, 817, 820, 821

Mars, 732

Neptune, 817, 821

Saturn, 817, 820, 821

Uranus, 817, 821

elliptic integral, 18

energy conservation, 136

energy consumption, 282

equation of center, 124, 268, 271, 274, 736,

741

extremum, 124

equation of time, 267, 270, 300, 433, 465,

466, 470, 633, 741, 790

equation, æquatio, nis, 124

equator, 26

celestial, 629

equatorial bulge, 223

equatorial celestial coordinates, 630

equatorial overlap, 577

fractional, 579

equatorial plane, 152, 153

equatorial shift, 308, 516, 526, 577

equinox, 267, 275, 478

Mars, 734, 740

Saturn, 846, 848

equipotential surface, 55

Eros

astronomical data, 837

geodetic data, 837

space exploration, 837

escape velocity, 102

ET, 231

Euler angle, 155, 159, 160, 302, 330, 576

nutation, 155, 160, 302

precession, 155, 160, 302, 488

proper rotation, 155, 160, 302

evolute of a curve, 20

exoplanet, search for, 420

expansion of the Universe, 408
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fictitious satellite

equivalent MGS, 755, 756

Triton Orbiter, 875, 877

zero altitude, 156, 292, 817, 854

field of view, 566

finance and GPS, 698

first integrals, 136

flattening

Earth, 66, 86

Giant Planets, 821

Mars, 727

of gravity, 77

planetary, 825

force

conservative, 55

dissipative, 56

field, 54

frame

Copernican, 53

ECEF (EC Earth-fixed), 54

ECI (Earth-centered inertial),

54

ECSF, 54

Galilean, 53

ICRF, 54, 89

ITRF, 54, 90

local orbital, 561

planetary, 762

pseudo-Galilean, 54

terrestrial, 54

free fall, 421

frozen orbit, see orbit, 781

fundamental principle of dynamics,

146

Galilean principle of relativity, 151

Galilean reference frame, 305, 831

gamma-ray burst, 426

Gauss’ equations, 203

Gauss’ relations, 242, 631

Gauss’ theorem, 59

Gaussian gravitational constant, 228

general relativity, see relativity

geocentric gravitational constant, 229

geodetic system

Beijing-1954, 690

CGS-2000, 675

GRS-80, 78

GTRF, 675, 684

ITRF, 684

JGS, 696

Krasovsky-1940, 690

PE-90, 675, 679

PZ-90.02, 679

WGS84, 78, 675, 684

geoid, 69, 71, 86, 190, 545

geopotential, 61–71, 73

term in J2, 166, 200

historical note, 213

term in J3, 198–200

historical note, 214

term in Jn, 166

historical note, 215

term in J2n, 198

geopotential model

EGM, 70, 84, 86

EGM96, 80

EIGEN, 69–71, 86

GEM, 70, 84, 86, 88

GGM, 84

GRIM, 70, 71, 84, 86

JGM, 70, 84, 86

NWL, 83

OSU, 84

SAO-SE, 83

geostationary satellite, 277, 278

east–west drift, 280, 281, 283

longitudinal acceleration, 283

Mars, see areostationary satellite

north–south drift, 282, 283

parking longitude, 277, 288

stable and unstable points, 288,

751

stationkeeping, 283

geosynchronicity, 276–290

GMT, 272

GNSS, see GPS

GPS

base station, 664

basic principle, 653

clock

correction, 661

receiver, 657, 705, 711

satellite, 653, 667, 705, 710

code PRN, 668

control station, 673

differential (DGPS), 664–665, 676

augmentation system, 665

HA-NDGPS, 665

RTK, 665

financial applications, 698

non-positioning uses, 696

perturbation of signal, 660

phase of signal, 657

positioning, 92

relativistic corrections, 661, 705–717

segment

control, 670

space, 667

user, 675

tectonic plates, 702

time base, 657
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user

position, 656

velocity, 659

GRAVES, 322

gravitation

constant of, 56

universal law of, 220

gravitational constant, 56, 87, 147

geocentric, 60, 87, 88, 742

heliocentric, 233

planetocentric, 817, 818, 854

433-Eros, 837

Ceres, 840

giant planets, 819

Mars, 731, 732, 742

Mercure, 819

Moon, 862, 864

Pluto, 819

Venus, 819, 831

Vesta, 840

specific, 56

gravitational deflection, 809

gravitational potential, 57

term in Clm, 69

term in J2, 68, 69, 75, 76, 81, 166,

224, 229, 246, 552, 744, 818,

824, 825, 854, 861

variation dJ2/dt, 85

term in J3, 79, 552, 553, 781, 818,

825, 861

term in J4, 69, 79, 250–253

term in J6, 69

term in Jn, 69, 79, 166, 252, 552, 744,

818

term in J22, 283, 285, 749, 750

term in J2n, 250, 825

term in J31, 286, 750

term in J33, 286, 750

term in Slm, 69

gravitational sling-shot, 809

gravity, 60, 72

and weight, 60, 74

of Earth, 73, 74, 77

gravity anomalies, 79, 80, 82

gravity-assist maneuver, 351, 809, 811

great circle, 26, 241

Gregorian calendar, 228, 260

grid interval, 517

grid points, 524, 526–531

ground track, 37, 306, 315, 321

adjustment angle, 316, 585

angle with meridian, 316

apparent inclination, 310

equation for, 306

geocentric, 37, 306

geodetic, 37, 306

geosynchronous, 313, 314

nadir, 37, 38, 40, 306

of orbit, 315, 321, 754

relative velocity, 317, 762

velocity, 762

subsatellite point, 37, 38, 40, 306

superposition, 592

velocity, 317

gyroscopic approximation, 223

half-swath

ground, 567

of instrument, 566

halo orbit, 239

Hamiltonian, 177

harmonic coefficients, 63

degree, 63

order, 63

tesseral, 201

zonal, 64, 86

non-normalised, 65

normalised, 65, 86

height, ellipsoidal, 37, 664

heliocentric gravitational constant, 229

heresy, 145

horizontal coordinates, 630

hour angle, 267

Hubble constant, 408

hyperbola

conic section, 1

history of, 7

trajectory, 140

IERS, 89

inclination, 153, 155, 310, 339

apparent, 310–314, 785

critical, 194, 250, 255, 298, 395, 515,

552

strictly polar, 252

Sun-synchronous, 294, 297, 298, 515,

752

circular orbit, 753

eccentric orbit, 753

Sun-synchronous and critical, 401,

754, 777

inertial mass, 421

instantaneous pole, 263

instrument

field of view, 566

maximum half-swath, 566

swath, 564

interferometry, see VLBI

intertrack interval, 517

invariability of major axis, 198, 201, 220,

221

ionosphere, 655
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Julian century, 228

Julian date, 276

modified, 276

Julian day, 274

Julian year, 228, 261

Jupiter

astronomical data, 818, 819

ellipsoid, 817, 820, 821

geodetic data, 818

Great Red Spot, 813

natural satellites, 852

space exploration, 810, 811

KAM theory, 222

Kaula’s method, 201

Kepler’s equation, 110, 111

Kepler’s laws, 141, 146, 818, 882

Kepler’s problem, 107, 115, 118

Keplerian elements, 154

Keplerian motion, 102, 151, 203, 742, 817

Keplerian orbit, 151

Keplerian period, 156–159

kinetic energy, 139

King-Hele method, 202

Koskela’s theory, 252

Kovalevsky’s theory, 252

Kuiper Belt, 805

Lagrange bracket, 177

Lagrange points, 234–241, 418, 419,

860

Lagrange’s equations, 174

lander

Curiosity, 724, 729

Huygens, 873

LM/Apollo-15, 867, 868

Mars Pathfinder, 721

MER-A and -B, 724

MSL, 724

NEAR, 837

Opportunity, 724, 729

Pathfinder, 729

Philae, 812

Phobos-Grunt, 720

Phoenix, 724, 729

Spirit, 724, 729

TandEM, 876

TSSM, 877

Viking-1 and -2, 720, 729

Laplace resonance, 872

Laplace vector, 138

laser ranging, see SLR

Moon, 87, 88

satellite, 81, 83, 87, 88

laser reflector, 81, 87

LAT, 272, 433, 470, 790

latitude

areocentric, 728

areographic, 728

astronomical, 28

celestial, 267

ecliptic, 267

geocentric, 28, 29, 38, 40, 42, 43, 61,

72, 728

geodetic, 28, 33–35, 38, 40, 42, 43, 72,

728

geographic, 28, 244, 595, 629, 728,

788

Mars, 728

maximal attained, 306–307, 556, 569

maximum viewed, 569

of satellite, 61, 189

overlap, 569

parametric, 28, 29

planetocentric, 728

planetographic, 728

spherical, 26

latitudinal drift, 282, 283

law of ellipses, 144

laws of motion, 53

Legendre functions, 93

degree, 63

order, 63

Legendre polynomial, 62, 92

lemniscate, 282

libration, 234, 239

libration points, 234

line of nodes, 153

line of sight, 613

angle, 566

to nadir, 566

Linear, 805, 810

Lissajous curve, 239

LLR, 91

LMT, 272, 299, 433, 470, 790

local apparent time, see LAT, 790

local mean time, see LMT, 299, 790

local orbital frame, 561

local time, 272, 299

local view

definition, 620

sky plot, 620–622

logarithm

Mercator projection, 332

Napierian, 333

politically incorrect, 334

longitude

areocentric, 734, 737

celestial, 267, 734

ecliptic, 267, 434

geographic, 190, 244, 595, 788

of ascending node, 153
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parking, 277, 595, 608, 788

stable, 751

unstable, 751

satellite, 595, 608, 788

solar, 273

spherical, 26

subsatellite point, 595, 608, 788

longitudinal drift, 281–283

lunisolar attraction, 168, 202

Mars

astronomical data, 727, 818, 819

historical, 801, 882

atmosphere, 719, 730, 807

eccentricity of orbit, 15, 16

ellipsoid, 732

geodetic data, 727, 818

geography, 726

insertion in orbit, 721

latitude, 728

map, 768

natural satellites, 236, 795

perihelion, 737

and vernal equinox, 738

perturbative accelerations, 742, 744

sample return, 720, 785

solar angle β, 767

solar constant, 724

solar longitude, 734

space exploration, 720

launch dates, 726

topography, 726

zero altitude, 726

zero meridian, 726

mean anomaly, 154

mean day, 262

mean motion, 107

correction to, 194

Keplerian, 107

relative variation, 250, 253

resonance, 872

true, 194

variation, 256

mean pole, 263

mean solar time, see LMT

mechanical energy, 139

Mercator projection, 332

Wright, 333

Mercury

astronomical data, 818, 819

geodetic data, 818

perihelion, 170, 217

perturbative accelerations, 823, 824

space exploration, 809, 827

meridian, 26, 261

meridies, ei, 261

angle with ground track, 316

celestial, 630

El Hierro Island, 26

geographic, 629

great circle, 26

Greenwich, 26, 323

local, 615

prime, 856

reference, 613

zero, 726, 822

meteorological programme

DWSS, 360

IJPS, 457, 458

JPSS, 360

NPOESS, 360

POES, 360, 458

meter, definition, 50–51, 227

Milankovitch theory, 225, 226

Milky Way, 329

Molniya orbit, 104

momentum conservation, 137

monotheism, 343

month

definition, 739

length, 739

Moon, 88, 203, 236, 354

luna, æ, 318

astronomical data, 854

geodetic data, 854

Lagrange points, 239

libration, 234

month, 318

perturbative accelerations, 858

resonance (1:1), 852

seas, 867

space exploration, 808

Sun-synchronicity, 861

velocity, 318

nadir, 37, 38, 40, 306, 566

natural satellite, 852–856

satelles, itis, 149

Callisto, 854, 872

astronomical data, 854

geodetic data, 854

perturbative accelerations, 859

Charon, 812, 825, 852

Deimos, 795

Dione, 239

Enceladus, 814, 815, 848, 849, 851,

854, 873

astronomical data, 854

geodetic data, 854

Epimetheus, 814

Europa, 813, 854, 861, 872

astronomical data, 854
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geodetic data, 854

perturbative accelerations, 858

Galilean, 811, 872

Ganymede, 854, 872

astronomical data, 854

geodetic data, 854

perturbative accelerations, 859

Hyperion, 848, 850, 852

Iapetus, 848–850, 852

Io, 813, 854, 872

astronomical data, 854

geodetic data, 854

irregular, 852

Metis, 880

Mimas, 846, 848, 851

Moon, see Moon

Nereid, 852

Phobos, 236, 795

Phoebe, 852

regular, 852

satellite of, 856–881

Tethys, 239

Titan, 807, 814, 815, 849, 854, 861,

873

astronomical data, 854

atmosphere, 876

geodetic data, 854

Triton, 807, 854, 861, 877, 878

astronomical data, 854

atmosphere, 877

geodetic data, 854

nautical mile, 34, 244

navigation system

augmentation, see augm. systems

BeiDou NS, 684

Beidou-1, 688

Beidou-2, 684

Compass, 684

Galileo, 681

Glonass, 678

IRNSS, 694

Nadezhda, 701

Navstar/GPS, 666

NNSS, 698

QZSS, 694

regional, 694

Transit, 698

Tsikada, 701

Neptune

astronomical data, 818, 819

discovery, 216

ellipsoid, 817, 821

geodetic data, 818

natural satellites, 807, 852

space exploration, 810

Newton’s laws, 53, 146

second law, 421

Newton–Raphson method, 115

nodal elongation, 154

nodal period, 203, 488

nodal precession, 203

nodal precession rate, 245–250, 252–254,

301

node, 193

ascending, 153

descending, 153

Noether’s theorem, 138

NORAD, 322–327

nuclear generator, 390

nutation (angle), 155, 160

obliquity, 223, 266, 273, 275, 466, 479, 632,

818, 840

Oort cloud, 805

opposition, 726

orbit

orbita, æ, 151

areocentric, 773

areostationary, 748, 819

calibration, 542

circular, 245, 317, 624

Clarke, 339

dawn–dusk, 458, 460, 470, 474, 767

equatorial, 279, 339

for revolution, 340

frozen, 551–557, 781, 825, 861

GEO, 339

geostationary, 159, 202, 277, 819

geosynchronous, 202, 276

graveyard, 283

halo, 239, 351, 354, 384, 413

heliocentric, 351, 773

highly eccentric, 627

inertial, 252

L1LO, 239, 241

L2LO, 240, 241

LEO, 339

loop-the-loop, 816

maintenance, 300

MEO, 339

near-circular, 155, 245, 339

near-circular near-equatorial, 155

near-equatorial, 155, 279, 339

near-polar, 339

nodes, 153

non-frozen, 554

parking, 283

petal, 354

planetostationary, 819, 824

planetosynchronous, 819, 824

polar, 252, 436



Index 901

prograde, 339

retrograde, 293, 339, 388, 752

strictly polar, 252, 339

Sun-synchronous, 291, 293, 297, 748,

752, 819, 825

transfer, 340, 368

type

COBRA, 401, 402

Ellipso Borealis, 401, 515

FLOWER, 401, 515

FLOWER CfTM, 401, 515

GPS, 515, 670, 672

JOCOS, 401, 403, 515

Loopus, 395, 400, 515

Molniya, 119–121, 126, 202, 393,

396, 515, 622, 623, 627, 628

QZS, 694

SPOT, 202, 375, 625

Supertundra, 290, 395, 515, 627

Sycomores, 395, 515

Terra, 374, 503

Tundra, 290, 395, 515, 622, 623,

627, 628

VIRGO, 399

VirtualGeo, 395, 399, 515

WEST, 401, 403

xpO (planets)

LMO, 748

SMO, 748, 786

xsO (natural satellite)

LLO, 861

xyO

ETHO, 414

FTO, 340

GEO, 340

GSO, 340, 694

GTO, 340

HEO, 340, 393–401, 515, 627

IGSO, 340, 687

L1LO, 340, 351, 354, 384

L2LO, 340, 413, 415

LEO, 340

MEO, 340, 666

NEO, 385

THEO, 340

VHO, 340

yOI (insertion)

EOI, 872

GOI, 872

JOI, 811, 845, 872

LOI, 816

MOI, 720, 721, 724, 725, 773, 777

SOI, 811, 845

orbit determination

analytical method, 171

numerical method, 171

orbit extrapolation, 201

orbital elements, 154, 173, 193, 545

adapted, 154

angular, 186, 199

Delaunay, 188

Keplerian, 173

long-period variation, 198–201, 552

metric, 186, 199

NORAD, 154, 265, 322–327, 479, 502

osculating, 173, 201, 552

periodic variation, 202

secular variation, 192, 196–202, 246,

250–253, 552, 746

short-period variation, 198, 199

TLE, see NORAD

orbital insertion speed, 101

orbital maintenance, 533

maneuver, 534

orbital period, 203

orbital plane, 96, 152, 153

β angle, 464

Mars, 767

orbital resonance, 201

orthodromic curve, 244

overpass, 613

function of latitude, 645, 652

in time slot, 646

sampling, 645, 646, 652

statistics, 645, 652

paleoclimate

Earth, 225

Mars, 734

paleoclimatology, 226

parabola

conic section, 1

history of, 7

trajectory, 140

parallel, 26

small circle, 26

parallel (geographic)

local, 616

polar circle, 632, 741

tropics, 632, 741

parking longitude, 277

passive gravitational mass, 421

periastron, 103, 735

frozen, 781

pericenter, 103

perigee, 103, 268, 553

advance of, 170

argument of, 153

frozen, 553

perihelion, 103, 268, 735, 739, 882

of Mercury, 170, 217

precession of, 170
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period, 106, 203

draconitic, 203, 488

Keplerian, 106, 742

nodal, 203, 488

of halo orbit, 239

of revolution, 106

natural satellite, 857

planet, 818

of rotation

natural satellite, 857

planet, 819

orbital, 106

synodic, 318, 320, 647, 796, 808

Earth, 726

periselene, 862

perturbations (Lagrangian method), 171

perturbative method

presentation, 171–179

solution (Lagrange), 179–187

pitch, 562

angle, 160

pixel, 564

CCD, 564

coordinates, 605, 607

distortion, 570

area, 572

index, 570

length, 571

width, 571

geostationary, 604, 605, 607, 608, 610

resolution, 373–386

planet

planeta, æ, 804

attraction, 809

dwarf, 806

giant, 804, 852

telluric, 804, 852

planetary frame, 831

planetocentric sphere, 880

Platonic solids, 144, 159

Pluto

astronomical data, 818, 819

atmosphere, 807

geodetic data, 818

natural satellite, 812, 825, 852

space exploration, 812

polar, 339

circle, 632, 741

day, 632

motion, 263

night, 632

viewing geometry, 617

polhody, 263, 264

polyhedron, 159

regular, 144

position on orbit (angle), 154, 190, 545,

781

constellation GPS, 673, 675

position vector, 95

positioning by satellite, see GPS

positioning system

DORIS, 91

GPS, 92

LLR, 91

SLR, 90

VLBI, 91

positioning technique, 89

post-glacial rebound, 85

potential, 54, 55

weight, 72

potential energy, 139

potential model

433-Eros

NLR190, 837

Earth

model, see geopotential model

Mars

GMM-1, 732

GMM-2, 732

GMM-3, 732

JGM85F01, 731

MGM1025, 731, 732

Moon

GLGM, 864

GLGM-1, 862

GLGM-2, 862

LPLGM, 862, 864

Venus

JPL-VGM1B, 831

MGNP90, 831

precession, 160

præcessio, nis, 301

angle, 155, 301

apsidal, 170, 194, 214, 250–251,

253–255, 550

climatic, 225

cycle, 435

nodal, 193, 213, 245–250, 252, 254,

291, 301

of equinoxes, 223, 225, 261, 301, 734

rate, 301

PRN (code), 668

GPS, 668, 671

SBAS, 693

proper rotation (angle), 155, 160

radar

emission band, 380

missions, 378–388, 506

radial vector, 128–136

average, 129
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radiation pressure, 171, 203, 745

radio occultation, 363, 696, 698–700, 730

radius of ellipse, 19

geodetic latitude, 32

receiving station

Galileo, 684

Glonass, 679

Navstar/GPS, 670, 674

recovery

of capsule (film), 386, 387

of satellite, 392, 416

recurrence, 202, 487–542, 581, 773–779

and swath, 581

avoided, 507, 512, 778

cycle, 487–514, 646

deliberate, 538

diagram, 492

Earth, 492–498

Mars, 773

frequency, 488

grid points, 779

imperfect, 538

index, 536–542, 779

module, 491, 493

one-day cycle, 201, 507, 512, 514

one-sol cycle, 778

orbital maintenance, 533–536

perfect, 538

prime numbers, 492

relative distance, 537

subcycle, 520, 646

triple, 490

recurrence grid, 487, 516–531

interval at equator, 517

reference, 524

ERS, 524

GRS, 524

IRSP4G, 524

MWRS, 524

TPG, 524

WRS, 524

recurrent satellite, 201, 202, 487–542

redshift, 408

reduced distance, 40, 156, 565

dependence on anomaly, 129, 131–133

reduction to equator, 269, 741

reference ellipsoid

GRS-80, 78

WGS84, 78

reference frame

Galilean, 305

terrestrial, 306

reference system

celestial

ICRF, 89

ICRS, 88

terrestrial

ITRF, 90

ITRS, 89

relativistic effects, 169, 170, 347, 745

relativity, 745

Einstein’s theory, 421–424, 705

tests, 421

Galilean principle of, 151

general, 170, 219, 255, 707

Lense–Thirring effect, 170, 347,

717

Schwarzschild metric, 707

Sagnac effect, 715

special, 705

Lorentz factor, 705

resolution, 373–386

resonance, 824, 827, 853, 872

1:1, 853

Laplace, 872

revolution, 106

right ascension, 267

of ascending node, 153, 155

Roche limit, 795, 878–880

roll, 562

angle, 160

rotation

blocked, 825

chaotic, 852

synchronous, 852, 857

Routh value, 238

sampling, 613, 790

angular, 614

monthly tables, 639–647, 790

temporal, 613

satellite

satelles, itis, 149

areostationary, 748, 786

longitudinal acceleration, 749

pixel distortion, 782

stationkeeping, 749

viewed disk, 788

areosynchronous, 748

burial, 429

fictitious, 156, 292, 755, 756, 817,

854, 875, 877

geostationary, 159, 202, 277–290, 318,

391–393, 618

Earth’s disk, 593–611

eclipse, 478–479

pixel distortion, 573, 574

scanning mode, 564

visibility, 605

geosynchronous, 202, 276–290, 313

LEO scanning mode, 564

one-day recurrence, 507
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passenger, 381

polar, 252, 436

recovered, 392

recurrent, 201, 202, 487–542, 773–779

one-day cycle, 510, 512

one-sol cycle, 779

stealthy, 386

strictly polar, 252

Sun-synchronous, 291–300, 449–460,

491–507, 752–754, 773–777

eclipse, 470–478, 767

tandem mission, 375, 389

undetectable, 386

velocity, 317

visibility, 605, 622–629

windmill experiment, 831

satellite

(name of satellite)-n, 341

1957α, 213

1957β, 213

1958β2 , 214

1959α, 215

1959η, 215

1960ι2 , 215

1961αδ1 , 215

1961υ, 215

1961o, 215

1962αε, 215

1962βμ, 215

1962βυ, 215

A-1, 343

ACE, 239, 241, 354

ACE+, 381

ACE+-n, 697

ACE-A, 366

ACE-B, 366

ACRIMSAT, 389, 416

ADE-A, 81

ADEOS-1, 383, 456, 462, 499, 521,

539, 541, 564

ADEOS-2, 383, 456, 497–499, 519,

564

ADM, 381

ADM-Aeolus, 381, 459, 495, 499

AEHF-1, 393

AEM-1 and -2, 366

AEM-3, 348

Aeros-1 and -2, 291

AFP-731, 387

Agila-2, 391

Agile, 409

AIM, 366, 496, 499

Ajisai, 81, 84, 88, 91, 346

Akari, 414

Akebono, 355, 356, 484

Almaz-1, 387

Almaz-T-2 and -T-3, 387

ALOS, 383, 456, 499

ALOS-2, 499

AlSat-1, 384

AlSat-2A, 496, 500

Amos-3, 391

Anatolia-1, 392

Anik-1, 391

Anik-F2, 599, 603

ANNA-1B, 81, 215, 344

Apollo-11, 91, 428

Apollo-14, 91

Apollo-15, 91

Aqua, 373, 374, 455, 457, 461, 498,

563, 592, 596, 636, 637, 639–643,

645

Aquarius, 496

Aquarius/SAC-D, 373, 389

ARGOS, 424

ARIES-1, 383

Arirang-1, 389, 457, 500

Arirang-2, 389, 457

Arirang-3, 389, 457

Arirang-n, 496

Artemis, 393, 692, 693

ASCENDS, 375

AsiaSat-1, 392

AsiaSat-3 and -3S, 392

AsiaSat-5, 391

Astérix, 343

Astra-1M, 391

Astrid-1 and -2, 351

Astro-E2, 411

Astro-F, 414

Astro-G, 416, 417

Astron, 411

Atlantis, 429, 808, 811

Atmosphere-1 and -2, 357

ATS-1 to 5, 279

ATS-6, 88, 279

AUOS-SM-KF, 418

AUOS-SM-KI, 418

Aura, 373, 374, 457, 498

AXAF, 408

Azerspace-1, 391

Badr-6, 391

Badr-B, 382

BE-B and C, 81

Beacon Explorer-1 and 2, 81

BeiDou NS-n, 670, 672

Beidou-1A, 289, 290, 690

Beidou-1B and -1C, 690

Beidou-2-G1 to -2-G4, 687

Beidou-2-I1 to -2-I5, 687

Beidou-2-M1, 687

Beidou-2-M2 to -M5, 687
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BeiDou-G-n, 689

BeiDou-G1 to -G4, 687

BeiDou-I-n, 689

BeiDou-I1 to -I5, 687

BeiDou-M-n, 689

Beijing-1, 384

BeppoSAX, 411

BilSat-1, 384

Bion-11, 425

Bion-M1, 425

BIRD, 383

BNSCSat, 384

BNTS-1A to -1C, 690

BrazilSat-B4, 391

C1 (JPSS), 431

C2 (JPSS), 431

Calipso, 373, 374, 457, 466, 467, 498

Canyon-1 to -7, 428

Cartosat-1, 382, 456, 500

Cartosat-2, 382, 456, 496, 500

Cartosat-2A, 382, 456

Cartosat-2B, 382, 384

Cartosat-3, 382

CBERS-1, 383, 456, 498

CBERS-2, 383, 456, 498

CBERS-2B, 383, 456, 498, 500

CBERS-n, 497

Celestis-1 to -4, 429

Celestis-7, 429

CFOSAT, 390, 459, 495, 500

CGRO, 409

Chalet-1 to -6, 428

Challenger, 429

CHAMP, 82, 84, 86, 91, 210, 344, 696

Chandra, 405, 408, 410, 411

China-26, 393

ChinaSat-9, 391

ChinaStar-1, 391

Chollian, 364

Choma, 380

Choros, 380

Chuang Xin-1-02, 383

CiS, 430

CLARREO, 375

CloudSat, 373, 374, 457, 498

Cluster, 356

Cluster-2, 356

COBE, 415

COBRA-n, 401, 402, 515

COBRAS/SAMBA, 415

Columbia, 429

Compass-G-n, 91

Compass-G1 to -G4, 687

Compass-I-n, 91

Compass-I1 to -I5, 687

Compass-M-n, 91

Compass-M1, 91, 687

Compton, 408, 409

COMS-1, 361, 364

COMS-n, 365

Copernicus, 412

Coriolis, 390, 459, 497, 499

CORONAS-Photon, 418

CoRoT, 255, 419, 444, 508

COSMIC-FormoSat-3-n, 363

COSMO-SkyMed-1 to -4, 378, 458,

496, 498, 499

Cross-Scale, 357

CryoSat, 384

CryoSat-2, 91, 92, 384, 508

CX-1-02, 383

CXO, 411

D1-C, 84

D1-D, 84

Daichi, 383

Darwin, 240, 419

DE-A and -B, 252

Deimos-1, 384

DESDynI, 384

DFH-1, 343

DFH-24, 362

DFH-30, 362

DFH-31 and -32, 357

DFH-38, 354

DFH-46, 348, 362

DFH-47, 348

DFH-50, 383

DFH-51 and -52, 690

DFH-53, 362

DFH-54, 389

DFH-55, 383

DFH-56, 690

DFH-60 and -61, 351

DFH-68, 425

DFH-70 and -71, 351

DFH-78 and -79, 383

DFH-80 and -81, 351

DFH-90, 383

DirectTV-8, 391

Discoverer-1, 386

Discoverer-14, 386

Discoverer-18, 386

Discoverer-27, 386

Discoverer-34, 215

Discoverer-35, 386

Discovery, 429

DMSP-4A F-1, 362

DMSP-4A F-13, 362

DMSP-4B F-3, 362

DMSP-5A F-1, 362

DMSP-5D2 F-8 to F-17, 362

DMSP-5D3 F-18, 362, 592, 594
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DMSP-5D3 F-19 and F-20, 362

DMSP-n, 457

DODGE, 424

DSCO, 384

DSCOVR, 239, 384

DSCS-3A3, 393

DSCS-3B6, 393

DSP-1 and -2, 356

DSP-F-21 to -F-23, 426

DubaiSat-1, 385

DWSS F-1 and DWSS F-2, 362

Dynamics Explorer-1 and -2, 252, 351

Early Bird (Intelsat-1), 279

EarlyBird-1, 385

EarthCARE, 366, 372, 495, 498, 501,

540, 543, 582

EarthView-01 to -04, 429

EarthWatch-1, 385

EChO, 419

Echo-1, 81, 171, 215, 407

Echo-2, 81, 171, 407

e-Corce, 380, 499

Eddington, 240, 419

EGE, 515

EGP, 81, 84, 346

EGPM, 381, 498

EGS-1, 81

Einstein, 409

EIS-1, 387

Elektro-1, 361, 364, 599, 602

Elektron-1 to -4, 351

Ellipso Borealis, 298, 442, 443

Ellipso Borealis-n, 291, 401, 515, 777

Ellipso Concordia-n, 401

Endeavour, 429

EnMAP, 496, 499

Envisat, 91, 92, 381, 456, 498, 499,

505–507, 524

EO-1, 374, 379, 456, 498

EO-3, 363

EOS-AM-1, 374, 455

EOS-Aqua, 638

EOS-Chem-1, 374

EOS-LAM, 384

EOS-PM-1, 374, 455

EOS-Terra, 638

EPE-A to -D, 416

EPS-SG-A and -B, 362

Equator-S, 354

ERBS, 366, 437

ERM, 495, 498, 501

EROS-A1, 385, 456, 495, 500

EROS-B, 385, 457

ERS-1, 81, 84, 91, 381, 382, 389, 456,

497–499, 504, 524, 542, 544

ERS-2, 81, 84, 91, 381, 389, 456, 498,

524

ERTS-1, 331, 374

Esafi-1, 391

ESSA-1 to -3, 360

ESSA-9, 360

Essaim-1 to 4, 382

ESSP-1 to -5, 374

ESSP-6, 373

ESSP-7, 375

Etalon-1, 84, 88, 91, 344

Etalon-2, 84, 88, 91, 344

Eutelsat-7A, 391

EUVE, 412

EXOS-A -B and -C, 356

EXOS-D, 355, 356

Exosat, 411

ExperimentalSat-1 to -3, 383

Explorer-1, 342, 343, 351

Explorer-6, 360

Explorer-7, 360

Explorer-11, 409

Explorer-12, 215, 416

Explorer-14, 416

Explorer-15, 416

Explorer-19, 81

Explorer-22, 81

Explorer-26, 416

Explorer-27, 81, 88

Explorer-29, 81

Explorer-30, 416

Explorer-34, 351

Explorer-36, 81

Explorer-37, 416

Explorer-38, 415

Explorer-44, 416

Explorer-48, 409

Explorer-49, 415

Explorer-50, 351

Explorer-57, 412

Explorer-58, 366

Explorer-59, 239

Explorer-60, 366

Explorer-61, 348, 460

Explorer-62 and -63, 252

Explorer-66, 415

Explorer-67, 412

Explorer-68, 357

Explorer-69, 411

Explorer-70, 354

Explorer-71, 354

Explorer-72, 425

Explorer-73, 416

Explorer-74, 415

Explorer-75, 414

Explorer-76, 425
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Explorer-77, 412

Explorer-78, 354

Explorer-79, 409

Explorer-80, 415

Explorer-81, 411

Explorer-83, 412

Explorer-84, 409

Explorer-85 to -89, 357

Explorer-90, 366

Explorer-91, 356

Explorer-92, 414

EyeSat-1, 382

FaSat-1, 382

FAST, 354, 355

Fermi, 409

Ferret-2, 428

FGRST, 409

FIRST, 414

Fizeau, 81, 91

FLOWER CfTM-n, 401, 515

FLOWER-n, 401, 515

FormoSat-2, 383, 456, 497, 500, 507,

524, 525, 530

FormoSat-3A, 363, 697

FormoSat-3F, 363, 697, 699

FSW-2-3, 387

FuegoSat, 383

FUSE, 412

Fuyo-1, 383

FY-1A and -1B, 362

FY-1C, 348, 362

FY-1D, 362, 389

FY-2-n, 601

FY-2A, 364, 599

FY-2B, 364, 599

FY-2C, 364, 618

FY-2D, 361, 364

FY-2E, 361, 364

FY-3A, 359, 362

FY-3B, 362

GACM, 366

GAIA, 240, 413

Galaxy-15, 391

GALEX, 412

Galileo-n, 91, 670, 672, 685, 686

Garuda-1, 391

GAUGE, 424

GCOM-W1, 383, 457, 498

GEMS, 411

Genesis, 239–241, 816

GeoEye-1, 385, 456

GEOS-1 and -2, 81

GEOS-3, 81, 84, 88, 389

Geosat, 81, 84, 389, 508

Geotail, 354

GFO, 91, 508

GFO-1, 389, 407

GFZ-1, 84, 91, 344

GIFTS, 363

GIOVE-A and -B, 91, 681

GLAST, 409

GlobalStar-M0-n, 407

GlobalStar-M001, 407

GlobalStar-M097, 407

Glonass Regional Extension, 515

Glonass-711, 678

Glonass-736 to 738, 678

Glonass-773, 678

Glonass-798, 678

Glonass-n, 91, 515, 670, 672, 680,

682, 683

Glonass-K1-11, 678

Glory, 373, 374

GMS-1 to -5, 364

GOCE, 83, 85, 86, 210, 344, 459, 476,

554

GOES-1, 279, 363

GOES-2, 363

GOES-3, 363

GOES-4, 363

GOES-5, 363, 599

GOES-6, 363

GOES-7, 279, 363, 599

GOES-8, 279, 363, 564, 599

GOES-9, 363

GOES-10, 363

GOES-11, 363

GOES-12, 361, 363, 371

GOES-13, 361, 363

GOES-14, 361, 363

GOES-15, 361, 363

GOES-n, 599, 601

GOES-E, 361

GOES-W, 361, 365

GOMS-1, 364, 599, 602

Gonets-D1-1 to -D1-12, 407

Gonets-M-1, 407

GoreSat, 384

GOSat, 373, 498, 499

GP-A, 421

GP-B, 255, 349, 421

GPS-n, see Navstar/GPS-n

GRACE-n, 86

GRACE-A, 82, 84, 85, 91, 210, 344,

347, 350, 374, 696

GRACE-B, 82, 84, 85, 91, 210, 344,

347, 350, 374, 696

Granat, 411

Gravity Probe B, 255

GRO, 408

GSAT-8 and -10, 693

GSTB-v2A and -v2B, 681
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GTL, 354

H2A-LRE, 91

Halca, 416, 417

Haruka, 416, 417

Hay Yang-2A, 389

HCMM, 366, 498

HealthSat-2, 382

HEAO-1 to -3, 409

Helios-1 and -2 (heliocentric), 416

Hélios-1A, 387, 457, 498

Hélios-1B, 387, 457, 498

Hélios-2A, 374, 382, 387, 457, 498

Hélios-2B, 323, 387, 457, 498, 499

Hélios-n, 322, 497

HellasSat-2, 391

Herschel, 240, 241, 414

HESSI, 411

HETE-2, 409

HGS-1, 392

HGS-3, 392

Himawari-6, 364, 598

Himawari-7, 364

Hinode, 418

Hipparcos, 240, 412

Hispasat-1D, 391

HJ-1A, 383, 456, 500

HJ-1B, 383, 456, 500

Homer, 428

HSO, 414

HST, 408

Huan Jing-1A and -1B, 383

Hubble, 240, 386, 408, 411, 412, 429

HY-1, 497, 500

HY-1A and -1B, 389

HY-2, 92, 500

HY-2A, 91, 389, 459

HYDROS, 375

HypSEO, 378, 498

HypsIRI, 375, 496, 499

HypXIM, 499

IBEX, 356

Ibuki, 366, 373, 457, 496, 499

ICE, 812

ICESat, 91, 307, 325, 328, 384, 437,

508, 521, 524, 539, 582, 779

ICESat-2, 384, 508

ICO-G1, 401

IGS-1A to 8A, 388

IGS-1B to 8B, 388

IGS-Optical-1 to -5, 388

IGS-Radar-1 to -4, 388

Ikonos-1, 385

Ikonos-2, 385, 456, 496, 499

IMAGE, 354

IMEWS-2, 426

IMP-5, 351

IMP-8, 351

IMP-F, 351

IMP-J, 351

IMS-1, 456

Inmarsat-n, 693

Innovation-1, 383

INSAT-1A to -1D, 364

INSAT-2A and -2B, 364

INSAT-2E, 364

INSAT-3A, 361, 364

INSAT-3E, 361, 364, 391
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USA-68, 362

USA-69, 387

USA-73, 362

USA-86, 387

USA-94, 84

USA-100, 84

USA-103, 428

USA-105, 428

USA-106, 362

USA-109, 362

USA-110, 428

USA-112, 428

USA-116, 387

USA-118, 428

USA-129, 387

USA-131, 362

USA-132, 666

USA-133, 387

USA-135, 666

USA-136, 428

USA-139, 428

USA-144, 387

USA-147, 362

USA-152, 387

USA-159, 426

USA-161, 387

USA-166, 674

USA-167, 393

USA-170, 393

USA-171, 428

USA-172, 362

USA-176, 426

USA-182, 387

USA-184, 428

USA-186, 387

USA-191, 362

USA-195, 393

USA-197, 426

USA-200, 428

USA-202, 428

USA-204, 393

USA-206, 666, 669

USA-208 and -209, 426

USA-210, 362

USA-211, 393

USA-213, 666

USA-214, 393

USA-216, 428

USA-223, 428

USA-224, 387

USA-225, 428

USA-229, 428

USA-230, 426

USA-233, 393

USA-241, 426

Van Allen Probe-A and -B, 352, 354

Vanguard-1, 81, 214, 342
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Vanguard-2, 215, 360

Vanguard-3, 215

VBN-1 and -2, 390

VCL, 374

Vela-1 and -2, 426

Vela-4, 405

Vela-9 and -10, 426

Vela-11 and -12, 426

Venesat-1, 391

VENμS, 380, 498
VesselSat-1, 382

Via-Sat-1, 392

Vinasat-2, 391

VIRGO-n, 395, 399, 515

VNRED, 456

Vortex-1 to -6, 428

Vostok-1, 428

VSOP, 416

VSOP-2, 416

WALES, 459

WatER-HM, 389, 508

Wespac-1, 91

WEST-n, 401, 403, 514, 515

Westar-6, 392

Westford-1, 408

Westford-2, 408

Westpac-1, 84, 344, 382

WGS-1 to -4, 393

Wilkinson, 415

Wind, 239–241, 354

WindSat, 390

WIRE, 414

WISE, 414

WMAP, 240, 241, 415

WorldView-1, 385, 457

WorldView-2, 385, 456, 547, 548

WPLTN-1, 84

X-3, 343

XMM, 411

XTE, 411

YahSat-1B, 391

Yamal-202, 391

Yao Gan-1 to -4, 383

Yao Gan-5 and -6, 383, 387

Yao Gan-7, 383, 547, 549

Yao Gan-8, 383

Yao Gan-9A to -9C, 383

Yao Gan-10 to -11, 383

Yohkoh, 418

Z-Earth, 499, 539, 541

Zhong Xing-9, 391

Zi Yuan-1A and -1B, 383

Zi Yuan-2, 383

Zi Yuan-2B, 383

Zi Yuan-2C, 383

ZX-9, 391

ZY-1A and -1B, 383

ZY-2, 383

ZY-2B, 383

ZY-2C, 383

satellite of natural satellite

Callisto

JIMO, 872

Europa

JEO, 872, 874

JIMO, 872

Ganymede

JGO, 872, 875

JIMO, 872

JUICE, 873

Moon

Apollo-11, 808

Apollo-15, 862, 867, 868

Apollo-16, 862, 867

Apollo-n, 864

Chandrayaan-1, 863

Chang’E-1, 862

Chang’E-2, 862

Clementine, 856, 862, 869, 870

DSPSE, 862

Ebb, 865

Explorer-35, 867

Flow, 865

GRAIL-A and -B, 865

Hiten, 862

Kaguya, 862

LCROSS, 865, 871

LRO, 91, 865, 866, 870, 871

Luna-10, 808

Lunar Orbiter-1, 862

Lunar Orbiter-4, 864

Lunar Orbiter-5, 862

Lunar Prospector, 862

Muses-A, 862

Okina, 862

Orbiter-3 to -5, 867

Ouna, 862

Rstar, 862

Selene, 862

SMART-1, 862

Vstar, 862

Zond-3, 867

Titan

TandEM, 876

Titan Explorer, 876

TSSM, 877

satellite of planet

asteroid 1-Ceres

Dawn, 810, 840, 845

asteroid 4-Vesta

Dawn, 810, 840–844
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asteroid 433-Eros

NEAR, 822, 837, 839

NEAR-Shoemaker, 837

Jupiter

Galileo, 811, 845, 856, 873

JIMO, 872

Juno, 845

Mars

ExoMars, 725

ExoMars-TGO, 725, 746, 765, 778

InterMarsNet, 767, 773, 774, 776

Mariner-9, 720, 726, 728, 732

Mars Express, 725, 756, 760, 763,

764, 777, 778

Mars Global Surveyor, see MGS

Mars Observer, 773, 774

Mars Odyssey, 721, 752, 757, 758,

761, 773–775, 785

Mars Reconnaissance Orbiter, see

MRO

Mars-96, 777

MARSat, 749

MAVEN, 725, 748, 765

MGS, 721, 726, 729, 732, 752,

754–756, 761, 768, 773–775,

779–781, 783, 792, 794

MRO, 721, 724, 752, 754, 761, 769,

773, 774, 776, 779–781, 783, 785,

787, 790, 791, 793

MTO, 767

ODY, see Mars Odyssey

Phobos-2, 795

Phobos-Grunt, 720

Premier, 782, 785, 786

Trace Gas Orbiter, 725

Viking-1 and -2, 720, 730

Mercury

BepiColombo, 827

Mercury Orbiter, 827

Messenger, 827–829

MMO, 827, 828

MPO, 827

Saturn

Cassini, 811, 814, 815, 846, 848–851

JUICE, 873

Venus

Akatsuki, 831

Magellan, 721, 808, 822, 830–835

Pioneer Venus Orbiter, 808, 831

Planet-C, 831

VCO, 831, 836

Venera-15, 808

Venera-16, 808

Venus Climate Orbiter, 831

Venus Express, 831, 836

satellite (programme)

8X, 386

ACE (ESA), 697

ACE+, 697

ADEOS, 299, 383

Advanced Orion, 428

Advanced Vortex, 428

AEHF, 393

AEM, 366

Almaz, 387

Apollo, 867

Aquacade, 428

Archimedes, 290

Argon, 386

Arkon, 387

AsiaSat, 392

ATN, 360

ATS, 279

BeiDou

BeiDou-G, 687

BeiDou-I, 687

BeiDou-M, 687

BeiDou NS, 684

Beidou-1, 688

Beidou-2, 684

Big Bird, 386

Bion, 425

BNTS, 688

Canyon, 428

CBERS, 383

Celestis, 429

Chalet, 428

Cluster, 356

CNSS, 684

COBRA, 401

Compass, 684

Compass-G, 91, 687

Compass-I, 91, 687

Compass-M, 91, 687

COMS, 364

Constellation, 864

Corona, 386

COSMIC, 363, 697

COSMO-SkyMed, 378

Crystal Kennan, 386

DFH, 341

DigitalGlobe, 385

Discoverer, 386

DMC, 384

DMSP, 362

Dong Fang Hong, 341

Dorian, 386

Double Star, 688

DSCS, 393

DSP, 426

DSP (Tan Ce), 356
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DSPS, 688

DWSS, 431

EarthView, 429

EarthWatch, 385

Echelon, 427

Echo, 407

Elektro, 364

Elektron, 351

Ellipso, 401, 515

Envisat, 299

EOGO, 351

EOS, 299, 374

EPE, 416

EPS-SG, 362

EROS, 385

ERS, 299, 381

ESSA, 360

Essaim, 322

ESSP, 374

EXOS, 356

Explorer, 342, 351, 357, 409

Feng Yun, 362

Ferret, 428

FLOWER, 401

FLOWER CfTM, 401

FSW, 387

FuegoFOC, 383

FY-1 & -3, 362

FY-2 & -4, 364

Galileo, 681

Gambit, 386

GCOM, 383

Geo-1K, 344

GeoEye, 299, 385

GEOS, 81

GGS, 354

GlobalStar, 407

GlobalStar-2, 407

Glonass, 678

GMS, 364

GOES, 363

GOMS, 364

Gonets-D1, 407

GPM, 372

GRAB, 416

GRACE, 347

Gravity Probe, 255

Great Observatories, 408

GREB, 416

Hai Yang, 389

HEAO, 409

Helios (heliocentric), 416

Hélios, 299, 322, 387

Hexagon, 386

Himawari, 364

HY, 389

IGS, 388

Ikon, 386

Ikonos, 299, 385

IMEWS, 426

Improved Crystal, 386

INSAT, 364

Intelsat, 279

Interball, 354

Intruder, 428

IOSA, 428

Iridium, 407

Iridium-Next, 407

IRS, 299, 382

ISEE, 351

ISTP, 354

ITOS, 360

Jason, 389

JPSS, 431

Jumpseat, 428

Kanopus-V, 425

KH (Key Hole), 386

Koronas, 418

Kosmos, 341

Kua Fu, 356

Lacrosse, 387

Landsat, 299, 374

Lanyard, 386

LES, 393

Luch, 393

Magion, 354

Magnum, 428

Mentor, 428

Mercury, 428

Meteor, 362

METEOSAT, 363, 608

MetOp, 362

Midas, 426

MIDEX, 409

Milstar, 393

Misty, 386

Molniya, 393

MOS, 389

MSG, 363, 608

MTG, 363

MTSAT, 364

Nadezhda, 390, 702

Navstar/GPS, 666

Block I, 666

Block II, 256, 666

Block III, 666

Nimbus, 360

NIMS, 701

NOAA, 360

NOSS, 428

Nova, 701

NPOESS, 360, 431
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NSS 30, 701

NTS, 666

Oblik, 387

Oderacs, 425

Ofeq, 388

OGO, 351

Okean, 389

Oko, 426

Onyx, 387

OPS, 341

Orbcomm, 407

Orbimage, 385

Orbiter, 342

OrbView, 385

Orion, 428

Oscar (Transit), 701

OSO, 416

Palapa, 392

PanAmSat, 279

Parus, 390, 702

Pléiades-HR, 378, 385

POES, 360

POGO, 351

PRC, 341

Priroda, 299

Prognoz, 354

Prowler, 428

QuickBird, 299, 385

QZSS, 694

Raduga, 393

RapidEye, 380

RBSP, 354

Resource21, 383

Resurs, 299

Resurs-F, 380

Resurs-O, 380

Rhyolite, 428

SAMOS, 298

SAR-Lupe, 387

SBIRS, 426

SBSS, 428

SD-Radio, 290

SDS, 395

Sentinel, 381

Sich, 389

SkyBridge, 407

SMEX, 409

SMS, 279

Solrad, 416

Space Shuttle, 429

SPOT, 299, 375

SPRN, 426

Sputnik, 342

SSF, 428

SSR, 383

STEREO, 418

Strela-3, 407

STRV, 424

STTW, 393

Syncom, 278

Tan Ce, 356

TDRSS, 393

Teledesic, 407

TerraSAR, 380

THEMIS, 357

Timation, 666

TIROS, 360

TIROS-N, 360

TOS, 360

Transit, 83, 252, 701

Triad, 701

Trumpet, 428

Tselina, 428

Tsikada, 390, 702

Tsikada-M, 702

Tubsat, 425

UNEX, 409

UoSAT, 425

US-K, 426

US-KMO, 426

USA, 341

Van Allen Probes, 354

Vanguard, 342

Vela, 426

Vela Hotel, 426

VIRGO, 395

Vortex, 428

Watchdog, 426

WATS, 697

WEST, 401

Westford Needles, 408

WGS, 393

White Cloud, 428

WorldView, 299, 385

Yantar, 387

Zenit, 387

Zi Yuan, 383

Saturn

astronomical data, 818, 819

diagram by Huygens, 847

ellipsoid, 817, 820, 821

equinox, 846, 848

geodetic data, 818

Lagrangian moons, 239

natural satellites, 239, 807, 852

rings, 811, 814, 846, 847, 849

density waves, 815, 848

shepherd moon, 815, 848

solstice, 848

space exploration, 810, 811, 849
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SBAS, see augmentation systems

scanning

along-track, 563

by GEO satellites, 564

by LEO satellites, 564

conical, 563

cross-track, 563

Earth’s disk, 564

mode, 563

AT, 582, 584

PAP, 582, 584, 585

RAP, 582, 585, 587

TAT, 582, 584, 585

XT, 576, 578, 582, 586, 588, 590,

591, 594

orthogonal, 563

pixel, 570

variable yaw, 582

scattering angle, 633

seasons, 274, 741

beginning, 275

definition, 739

length, 274, 275, 739, 741

semi-major axis, 103, 153

ellipse, 3

SI units, 227

sidereal

day, 262

year, 260

sight to limb, 566, 571

sky plot, 620–622

slot, 595

SLR, 90

small circle, 26

software

Atlas, VIII, 330, 863

Ixion, VIII, 41, 172, 210, 306, 322,

330, 433, 482, 559, 588, 613,

636, 829, 843, 863

�����, XI

Ixion/Web, XII

solar angle α, 434

solar angle β, 464

solar eclipse, 454, 464, 466–482, 598

eclipsis, 466

areostationary orbit, 770

dawn–dusk orbit, 470

geostationary orbit, 478

solar elevation, 631

Solar System, 804–807, 852

historical data, 882

stability, 220–222

solar time, 272

solstice, 275, 474

Mars, 740

Saturn, 848

Somigliana constant, 78

Somigliana’s formula, 78

space probe

Akatsuki, 831

Apollo-11, 91, 808

Apollo-14, 91

Apollo-15, 91

BepiColombo, 827

Cassini, 390

Cassini–Huygens, 811, 873

Clementine, 870

CONTOUR, 812

Dawn, 810, 840

Deep Impact, 816

EJSM-Laplace, 872

Epoxi, 816

ExoMars-TGO, 725

Galileo, 810, 811, 834, 872

Genesis, 241, 816

Giotto, 812

Hayabusa, 810

ICE, 351

JEO, 872

JGO, 872

JIMO, 872

JUICE, 873

Juno, 845

Kepler, 420, 882

Kosmos-419, 720

Luna-1 and -2, 808

Luna-3, 808, 863, 865

Luna-9 and -10, 808

Luna-17, 91

Luna-21, 91

Magellan, 808, 830

Mariner-2, 808

Mariner-3, 720

Mariner-4, 720, 730, 732

Mariner-5, 808

Mariner-6, 720, 732

Mariner-7, 720

Mariner-8, 720

Mariner-9, 88, 720, 730, 732

Mariner-10, 809, 827

Mars Climate Orbiter, 721

Mars Exploration Rovers, 724

Mars Express, 725

Mars Global Surveyor, 721, 775

Mars Observer, 721

Mars Odyssey, 721, 775

Mars Pathfinder, 721

Mars Polar Lander, 721

Mars Reconnaissance Orbiter, 724,

776

Mars Sample Return, 785

Mars Science Laboratory, 724
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Mars Surveyor-1998, 721

Mars Surveyor-2001, 721

Mars-1 to -7, 720

Mars-96, 720

MAVEN, 725

Mercury Orbiter, 827

Messenger, 827

MSL, 724

MSR, 785

Muses-C, 810

NEAR, 810, 834

New Horizons, 812, 813

Nozomi, 725

Phobos-1, 720

Phobos-2, 720, 795

Phobos-Grunt, 720

Pioneer Venus Orbiter, 808

Pioneer Venus Probe Bus, 808

Pioneer Venus-1 and -2, 808

Pioneer-10 and -11, 810

Pioneer-12 and -13, 808

Planet-B, 725

Planet-C, 831

Pluto–Kuiper Express, 812

Premier, 785

Ranger-6 to 9, 88

Rosetta, 430, 812

Sakigake, 812

Solar Orbiter, 419

Solar Probe Plus, 419

Sputnik-29, 720

Sputnik-31, 720

Stardust, 816

Suisei, 812

TandEM, 876

Titan Explorer, 876

TPF, 420

TSSM, 877

Ulysses, 418, 809

Vega-1, 808, 812

Vega-2, 808, 812

Venera-4 to -7, 808

Venera-8, 88, 808

Venera-16, 808

Venus Express, 831

Viking-1 and -2, 720

Voyager-1, 795, 810, 872, 873

Voyager-2, 795, 810, 872, 877

Zond-2 and -3, 720

space shuttle, 429

space station, 428

special relativity, see relativity

specular reflection, 454, 635–637,

640

Mars, 792, 794

Titan, 876, 877

speed

at apsides, 104

circular motion, 105

dependence on anomaly, 109, 130–136

dependence on polar angle, 104

dependence on radial vector, 103

speed of light, 227

sphere

development, 329

great circle, 26

small circle, 26

sphere of activity, 233

sphere of influence, 231–234, 237, 809, 818,

822, 854, 856

spherical harmonics, 64

sectorial, 65

tesseral, 65, 201

zonal, 65, 195–201

spherical trigonometry, 241–244

sponsoring, 811

stationkeeping, 282, 289, 290, 749

drift coefficient, 534

stellar day, 262

subsatellite point, 37, 277, 306, 551, 565,

599, 788

Sun

apparent motion, 266–276

attraction, 809

gravitational constant, 229, 233

Lagrange points, 239

latitude, 267

longitude, 267

term in J2, 224

Sun glint, 454, 635–637, 640

Mars, 792, 794

Titan, 876, 877

Sun-synchronicity, 291–300, 752

circular orbit, 294

constant, 291, 752, 825, 860

sundial, 273

sunrise, 632

sunset, 632

superposition of ground tracks, 592

swath, 526, 539, 564

along-track, 563, 582

and recurrence, 581

angle, 565, 566

conical, 585, 588, 591, 592, 594, 640

effective, 592

cross-track, 563, 572, 574, 576, 578,

586, 588, 590, 591, 594, 637

ground, 567

maximal, 566

of instrument, 566

of instrument, 565

variable-yaw, 584, 585, 587
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synod, 318

synodic daily frequency, 320

synodic period, 318, 320, 647, 796, 808

Earth, 726

system of units

astronomical, 227

international (SI), 227

TAI, 228, 230

Tait–Bryan angles, 161

tandem mission, 536

target, 613

TCB, 229, 230

TCG, 229, 230, 711

TDB, 229, 230

tectonic plates, 702

three-body problem

restricted, 234

tidal effect, 795, 853, 879

land, 169

ocean, 169

time

abbreviations, 89, 229, 272

ET, 231

GMT, 272, 726

LAT, 272, 433, 465, 470

LMT, 272, 433, 465, 470

TAI, 228

TCB, 89, 229, 230

TCG, 89, 229, 230, 711

TDB, 229, 230

terrestrial, 711

TT, 228, 230, 711

UT, 231, 272

UT1, 90, 91, 228

UTC, 228

time base, 657

time scale, 89, 228

Titius–Bode law, 806

TLE, see NORAD

train of satellites, see A-Train

trans-Neptunian objects, 805

transit, 419

tropical year, 260

tropics, 632, 741

tropopause, 660

troposphere, 655, 660

true anomaly, 154

true solar time, see LAT

TT, 228, 230, 711

two-body problem, 149

Uranus

astronomical data, 818, 819

ellipsoid, 817, 821

geodetic data, 818

natural satellites, 852

space exploration, 810

UT, 231, 272

UT1, 228, 230

UTC, 228, 230

Van Allen belts, 343, 351, 352

velocity

Binet’s equation, 98

of ground track, 762

of satellite, 762

Venus

astronomical data, 818, 819

atmosphere, 807, 831

super-rotation, 824

geodetic data, 818

map, 832, 833

perturbative accelerations, 823, 824

space exploration, 808, 830

vernal equinox, 267, 479

Mars, 734, 739

vertical

celestial coordinates, 630

local, 614

Vesta

astronomical data, 840

geodetic data, 840

space exploration, 840

viewing from pole, 617

visibility of geostationary satellite, 605

VLBI, 91, 415

WAAS, see augmentation system

weight, 60, 72, 74

and gravity, 60, 74

anomalies, 79, 82

on Earth, 72, 80

at equator, 77

at pole, 77

work, 54

yaw, 562

angle, 160

year

anomalistic, 261, 270, 727

civil, 260, 270

draconitic, 261

Gregorian, 260

Julian, 261

sidereal, 260, 727

tropical, 260, 727

zenith, 566, 629

passage of Sun, 632

zodiac, 739
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