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section of the plane of w and v with the plane normal 
to curl w. Dot multiplication by t annuls the right-hand 
side, so that we obtain the following not inelegant 
theorem : Let the curves e be everywhere tangent to the 
plane of w and v, and everywhere normal to curl w; then 
along these curves, which are determined by the instan
taneous velocity field only, in any flow of a viscous 
incompressible fluid of uniform viscosity if the vorticity be 
steady and the extraneous force be conservative Bernoulli's 
theorem in the classical form 

U+V+½v2+(p/p)=F(t) (7) 

is valid. Special cases when (7) holds for wider classes 
of curves or for special types of curves or for surfaces 
may be left to the reader; among these are the results 
of Sbrana and Castaldi. 6 

8 In the case of plane or rotationally-symmetric flow the curves 
e are the vortex-lines, as indeed is obvious from symmetry, and 

The foregoing theorem exhibits the non-uniformity of 
the limit µ-0 in a strikingly simple dynamical form: 
since the curves C, along which the pressure obeys the 
relation (7), are determined by the instantaneous ve
locity field, they remain fixed as µ-0, while at the limit 
µ= 0 of an inviscid fluid they spread out discontinuously 
into Lamb's Bernoullian surfaces. 

The results given here constitute an application of a 
general theorem of pure kinematics, to be published 
elsewhere. 7 

only if perchance the stream-lines and the curves of constant 
vorticity magnitude form an orthogonal net (Sbrana's case 
v•curl w=O) does (7) yield a non-trivial result, namely a theorem 
of type (B). 

7 C. Truesdell, "The kinematics of vorticity," Memorial des 
Sciences Mathematiques (to be published). I am obliged to 
Dr. P. Nemenyi for having suggested the problem of finding a 
kinematical generalization of Bernoulli's theorem valid in motions 
where Kelvin's circulation theorem does not hold, and for dis
cussion of the present paper. 
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The covariant S matrix formalism of Dyson has been applied to the calculation of the fourth-order radia
tive correction to the magnetic moment of the electron. Intermediate results for the covariant Ll.-functions 
which describe the interaction of virtual electrons and photons with the vacuum are given to order a. The 
addition to the magnetic moment to order a 1 is found to be finite after the charge of the electron is renor
malized consistently. This correction amounts to -2.97a'/r Bohr magneton so that the magnetic moment 
of the electron is µ.= 1.001147 Bohr magnetons. 

RECENT developments in the techniques of 
quantum electrodynamics, and in particular the 

general considerations of Dyson,1 have shown that the 
radiative corrections to the motion of the electron can 
be made finite in all orders by the consistent use of the 
ideas of charge and mass renormalization. The renor
malizations are, of course, infinite, so that one is forced 
to regard the present form of the theory as provisional. 
Still, the fact that one can give an unambiguous, con
sistent, and sensible prescription for dealing with this 
situation, and the excellent experimental verification 
accorded the second-Oider effects already computed, 
suggest that an investigation of a fourth-order effect 
might be of value: first, in order to make possible a 
sensitive test of the agreement of the theory in its 
present form with experiment and second, to demon
strate in a complete calculation of a particular example 
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f Now at Columbia University New York, New York. 
1 F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949), henceforth 

called I and II, respectively. 

the feasibility of Dyson's program. The magnetic 
moment of the electron was chosen for investigation 
because it promised to present the least difficulties of 
computation while it does contain those points of 
theoretical interest which are relevant to the difficulties 
of quantum electrodynamics. Furthermore, in view of 
the success already achieved in the measurement of the 
anomalous moment of the electron,2 it appears that the 
fourth-order effect may be accessible to experiment. 

METHOD OF CALCULATION 

We shall begin with a discussion of the fourth-order 
corrections to the elastic scattering of an electron by an 
an external electromagnetic field. The question of 
isolating that part of the scattering which may be 
attributed to an anomalous magnetic moment will be 
discussed in a later section. 

In evaluating the matrix element describing the 
scattering, the methods of Dyson have been followed 
quite closely. We, therefore, require the fourth-order 

1 P. Kush and H. M. Foley, Phys. Rev. 74, 250 (1948). 



QUANTUM ELECTRODYNAMICS 537 

part, u1<•>, of the transformation matrix U1 given by 
Dyson3 as 

whence 

The variables x, refer to particular space-time points 
and are thus to be understood to have four components; 
P[ ] is the chronological ordering operator of Dyson. 4 

In the above expression, H•(x0) describes the inter
action with the external electromagnetic field, whose 
vector potential is denoted by A,.-(xo), and is given by 

H•(xo) = - (1/ c)j ,..(xo)A,.e(xo) 

= -ieft(xoh,.1"(xo)A,.e(xo), (3) 

while H1(x,) describes the interaction with the photon 
field and is given by 

It is to be observed that the operator -iec{l(x,)-y,,if;(x,) 
is the usual unsymmetrized current density operator for 
the Dirac particle field. The term - 8mc2if/if; appearing 
in H1 (x,) implies that the interaction representation in 
which the theory was originally cast has been modified 
so that the mass appearing in the equation of motion of 
the electron states is the mass of the electron as cor
rected by its interaction with the radiation field (i.e., 
presumably the experimental mass) rather than the 
mass of a hypothetical uncharged electron. 

The matrix U has the property that when it is applied 
to the state vector of the system at - oo, it produces 
the state vector at + ao. U1 is the part of U corre
sponding to a first Born approximation and is the 
limiting form of U for a weak external field, while U/4> 

is that part of U 1 which describes processes involving 
four interactions between particles and photons and one 
interaction between a particle and the external poten
tial. As such it describes a great many processes in 
addition to those in which we are interested. In par
ticular, we shall be concerned with the "one electron" 
part of U1<•>, i.e., that part of u1<4> connecting states 
consisting of a single electron and no photons. A simple 
and elegant method of extracting from U any portion 
in which one is interested has been given by Feynman 

1 See reference 1, II, Eqs. (6) and (7). 
'See reference 1, I, Section V. 

and Dyson. 5 The matrix element in question is given by 
a sum of terms each of which may be described by a 
graphically represented transition scheme. The dia
grams for our process appear in Fig. 1 and will be dis
cussed in the next paragraphs. To each diagram there 
corresponds an integral over the variables xo, x1 • • • , x,; 
the integrand can be written down by inspection and 
gives the contribution of the associated transition 
scheme to the matrix element. In these integrals the 
effect of the ordering operator P[ ] has been absorbed 
into the SF(x) and DF(x) functions, so that this operator 
no longer appears explicitly. These functions do of 
course contain an implicit dependence upon P[ ] in 
view of the relations 

½SF,.i3(X1-X2)= (P[if/p(x1), 1Ya(X2)])0E(X1, X2), (5) 

(lic/2)DF,,,(x1-x2)= (P[A,,(xi), A,(x2)])0 

= (lic/2)8,,.DF(Xi -x2), (6) 

where { )o denotes the vacuum expectation value. 
To complete this summary of the method of calcu

lation, it will be convenient to specialize the discussion 
to the problem at hand. For this reason we turn now to 
a discussion of the diagrams in Fig. 1 and the cor
responding integrals. 

' 

A 
x, d x, 

0 
--oA 

~~ ~ 
~ --<Y--o-

YL . , A. A 
~ 

F1G. 1. Feynman diagrams for the fourth-order radiative cor
rections to the scattering of an electron by an electromagnetic 
field. 

1 See reference 1, II, Section II. 
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Fm. 2. Feynman diagrams for the second-order radiative cor
rections to the scattering of an electron by an electromagnetic 
field. 

The diagram I gives rise to the integral 

This diagram is irreducible since it cannot be repre
sented as a lower order process corrected by modified 
interaction functions. It contains a logarithmically 
divergent charge renormalization plus finite physical 
effects, of which the magnetic moment, to be extracted 
later, is one. 

Integrals analogous to M1 can be written down for 
the diagrams grouped under II. For example, we might 
observe 

ea2,r2 f 
Mll•=-- d4xod4x1d4x2d4xsd4x4 

4hc 

XTr[ 'YASF(xs-X4),,,Sp(X4-xa)] 

XA/J,•(xo)ift(x1h.SF(xo-x1hµ. 

XSF(X2-xohAi/;(x2)DF(X2-X4)DF(xs-x1), (8) 

where Tr[ J indicates the trace of the bracketed ex
pression. These diagrams are all reducible, however 
to the second-order diagram 2 in Fig. 2. Since the 
second-order diagram 2 is given by 

all higher order corrections as well as (9) itself are 

Fro. 3. Feynman diagram for the second-order terms of D/(x). 

Xd4x2d4x2' d4x/' A/' (xo)DF' (x2-x1) 

Xif'(xi')r,(xi-xi', xi''-x1)S/(xo'-x1") 

X r µ.{xo-xo', xo" -xo)S F1 (x2' -xo") 

Xr,(x2-X2', X2"-x2)y;'(x2"), (10) 

where the primed functions and the current operator 
r ,(x, x') are as defined by Dyson. 8 The presence of nine 
rather than five variables of integration is associated 
with the fact that (10) contains terms of all orders in a 
except the zeroth. The primed functions and r µ. are to 
be obtained as expansions in a, and inserted in Eq. (10). 
The terms of order a 2 will then include all of the dia
grams in class II. When this is done, integration over 
four of the variables will be trivial, as these variables 
will appear only in the arguments of Ii-functions. 

We should like to emphasize that for the evaluation 
of the diagrams of class II, the use of the reduction Eq. 
(10), rather than expressions like Eq. (8), is of great 
assistance in the unambiguous elimination of the effects 
of charge renormalization. In any order, radiative cor
rections to scattering processes must be expected to 
include terms which merely renormalize the electronic 
charge occurring in lower order corrections. Thus, for 
example, a strightforward evaluation of MII from ex
pressions like Eq. (8) would yield infinite corrections to 
the magnetic moment for just this reason.7 Were the 
charge renormalizations finite, this would cause no 
difficulty as these terms could then be readily subtracted 
out. They are, however, infinite and one would therefore 
have to exercise the greatest care to guarantee that no 
finite remains of charge renormalizations had been 
included in the true higher order correction. On the 
other hand, in using the reduced diagram method one 
explicitly separates out all renormalization effects, 
infinite and finite, at each order, so that the isolation 
and removal of the entire contribution of renormaliza
tion to the moment is simple and unambiguous. For 
the purpose of illustration the renormalization terms 
will be retained throughout so as to exhibit at the con
clusion the renormalized second-order moment. This, 
of course, is not really necessary since the under• 
standing that all effects be given in terms of the experi
mental charge allows one to drop renormalization terms 
as they appear. 

6 See reference 1, II, Sections III and IV. 
7 One can avoid the use of the reduction Eq. (10) if one is 

willing to introduce Pauli regulators in such a way as to make all 
charge renormalizations finit i. The application of regulators to 
higher order processes is discussed by J. Steinberger, Phys. Rev. 
76, 1180 (1949). The true fourth-order correction obtained after 
the now finite contributions from charge renormalization are 
recognized and removed is the same as obtained by our procedure. 
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~ 
X+X , / X 

I --- I 

Fm. 4. Feynman diagram for the second-order terms of Sp'(x). 

Diagrams of class III are all reducible to the second
order diagram 1 of Fig. 2. Therefore, methods similar 
to those described in the last paragraph are to be used 
in their evaluation. These diagrams include corrections 
to the polarization of the vacuum by an external field 
and charge renormalizations applied to lower order 
vacuum polarizations. As such, the observable effects 
which they represent are modifications of the external 
potential and not of the properties of the electron. This 
implies that they cannot contribute to the magnetic 
moment, so they will not be considered in any further 
detail. 

The diagrams of class IV can all be regarded as 
reducible to the second-order diagram 3 of Fig. 2, 
without including any modifications of the external 
potential at the vertex xo. They can therefore contribute 
nothing but a charge renormalization of the zeroth
order scattering. They are of interest only if one wishes 
to investigate the actual form of the fourth-order renor
malization. 

Our discussion of the diagrams may be concluded 
with the remark that by the Furry8 theorem diagram 
Va and Vb exactly cancel.9 

The remainder of the paper will be concerned with 
the evaluation to order a of S /, DF', and r,.. and the 
extraction of the magnetic moment correction from the 
relevant integrals M1 and MII. No error has been in
curred by the neglect of the supplementary condition.90 

SECOND-ORDER FUNCTIONS 

The function DF'(x), which describes the properties 
of a virtual photon as modified by its interaction with 
the electron-positron field, must be obtained to second 
order in e. The leading term, of course, is 

The corrections to this function arise from the ability 
of the virtual photon to create pairs. The first term is 
simply due to the creation and annihilation of one pair, 
as described by the Feynman diagram Fig. 3, or by the 

8 Wendell H. Furry, Phys. Rev. 51, 125 (1937). 
9 No reference has been made to diagrams and associated 

matrix elements arising from the term -6mc2,f,(x),f,(x) in H 1. As 
described by Dyson, diagrams containing these interactions are to 
be placed in one-to-one correspondence with the diagrams con
taining self-energy parts. Their effect is taken into account in the 
evaluation of the SF', ,f,'(x), and ,t,'(x) functions. 

11a F. J. Dyson, "Longitudinal Photons in Quantum Electro
dynamics," Phys. Rev. (to be published). 

integral 

DF11) 2>(x)= (-l)(-i/lic) 2J d4x2d4x3 

Here 

X (P[A,.(x1), A1,.(x2)])0 

X (P[(l/c)j1,.(x2), (1/c)j.(xa)])o 

Xo.,.Dp(Xa-x1+x) 

= -(a1r/2) J d4x2d4xaDF(X1-x2) 

XTr[ 'Y.SF(X2-xah,.SF(Xa-x2)] 

XDF(xa-x1+x) 
(11) 

The integration over k must be carried out carefully, 
because the integral is divergent. This has been effec
tively carried out by Schwinger and yields10 

after the requirements of gauge invariance have been 
imposed. Since the electromagnetic potentials obey the 

10 Julian Schwinger, Phys. Rev. 76, 790 (1949), Afpendix; 
Schwinger's result has been multiplied by 2n because o slightly 
different definitions of the singular functions. 
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Lorentz condition, the term (p"p.) may be dropped. 
Then 

and 

= _-3!_ fe-;P,,d4p{~(1+~A) 
(2,r )4 p2 211" 

a f 1 2v2(1-½v2) } +- d•----
2,r o 4K2+p2(1-v2) 

= ( 1+ 2: A )DF(x)+.DF<2l(x), (13) 

where 
4( Po+P ] A=-- limln---1 . 
3 P➔r,, K 

This infinite constant, however, has no observable 
consequences because the term in which it occurs is 
indistinguishable from the original DF(x) function. It 
merely means that the matrix element in which DF(x) 
occurs is multiplied by a factor [l+(a/2,r)A] and that 
the quantity which measures the intensity of the 
dynamical interaction described by the matrix element 
must be renormalized. 

By a very similar calculation, the function A •'(x), the 
external electromagnetic field modified by second-order 
interaction with the pair field, may be calculated. Thus, 

A,,e'(x)= f eipxd4pA,,e(p){ ( 1+ 2: A) 

ap2 ft 2v2(1-½v2) } +- d.71------

211' o 4,c2+p2(1-v2) 

= ( 1 +~A )A,,e(x)+~A,,e<2>(x). (14) 
21T' 21T' 

The function SF'(x) describes the behavior of a virtual 
electron as modified by its interaction with the electro
magnetic field. The relevant diagrams, in this case, are 
in Fig. 4, while the appropriate integral is11 

SF<2l(x) = (-i/hc)2(-ie) 2 J (P[f(x1), if(x2)])o'Y" 

X (P[f(x2), 1f(xa)])o'Yv(P[Aµ{x2), Aha)])o 

XS F(x1+ x- xa)d4x~4xa 

-(-i/hc) J d4x2(P[f(x1), if(x2)])0 

X omc2S F(x1+ x- X2) 

=e2/8hc f SF(X2-x1h~F(Xa-x2) 

X 'Y.SF(x1+x-xa)o""DF(xa-x2)d4x~4x3 

+i/2hc f d4x2S F(x2-x1)omc2SF(x1+x-x2) 

f i'YP-K 
= (a/21T'3)(21T')-4 d4pe-iP"-

pz+ic2 

{f i'Y(p-k)-,c 1 
X d4k'Y,.----~,.--

(p-k)2+"2 k2+~2 

}
i'YP-K 

-(4i1T'3/a)(omc2/hc) --. (15) 
p2+"2 

Here again, the integral over k diverges and therefore 
must be evaluated carefully; furthermore, charge renor
malization must be exhibited explicitly. This identi
fication can only be done simply, however, after the 
integrand has been rearranged considerably so as to 
write it as a function of i'YP+ "· Thus,12 

f 1 f i) i'Yk -2 du d4kp"u--------------. (16) 
o ak" [k2+K2u2+(p2+K2)u{1-u)+~2{1-u)]2 

11 The DF(x) function here is replaced by a .dF(x) function with mass A>./c to avoid an anticipated infra-red catastrophe in the 
physically significant part of the S:r'(x) function. sFm(x) does not diverge in the infra-red. 

a The Lorentz invariance of I assures that it is a function of (i-,p), hence of (hP+K). 



QUANTUM ELECTRODYNAMICS 541 

Here the second integral represents a surface term that must be added to take into account the effect of the 
displacement k"-k"+p,.u at large values of k2, where the integrand does not tend to zero rapidly enough. It should 
be emphasized that all integrations are undertood to be symmetrical with respect to the origin of the variable of 
integration; i.e., the angular integrations are to be carried out first, and are followed by the integration over I k j .13 

With these points in mind, the operator becomes 

where 

and 

Using the facts that14 

and that 

one obtains 

f 1 { J (hP+K)(1-u)+K(l+u) i1r2 i1r2 

I(i-yp+K)=-2 du d42----------+-u(i-yp+K)--K----u 
o (k2+Ao2) 2 2 2 

(18a) 

(18b) 

(19) 

+i1r2[(hP+K)(1-u)+K(1+u)](hP+K)(i,yp-K)u(1-u)f 
1 

dz 1 }· (21) 
o Ao2+(p2+K2)u(1-u)z 

Only the still remaining integral over momentum space is divergent here, and it will become apparent that it 
consists of renormalization terms only. After a slight rearrangement of the finite parts, the operator assumes the 
form 

I(i-yp+K)=-2f 1 du{[Jd4k (l+u)K (i1r2/4)K]+(i-yp+K)(1-u)[fd4k 1 2i1r "2u(l+u) i1r2
] 

o (k2+ Ao2) 2 (k2+ Ao2) 2 Ao2 2 

[f 
1 K(l+u)+ (i-yp-K)(l-u){ 1-[2K2u(l+u)z]/[u2K2+X2(1-u)]} ]} 

+i1r2(i-yp+K) 2u(l-u) dz-------------------- . (22) 
o K2u2+X2(1-u)+(p2+,c2)u(1-u)z 

The first term in this expression is equal to ( 4i1r3 /a) ( limc2 /lie) and is therefore canceled by the mass renormalization 
term, Eq. (15). The rest of the integral can now be inserted into the expression for S/(x), 

S/(x) =SF(x)+sF<2>(x) 

= -2i/(21r)'fe-•'P"'d'p{i,yp-"(1-~B)+(a/21r)f 1 duu(l-u) 
p2+,.2 21r 0 

f 1 K(l+u)+(i-yp-K)(l-u) { 1-[2K2u(1+u)z]/[K2u2+X2(1-u)]J 
X ~:---------------------

0 K2u2+X2(1-u)+(p2+K2)u(l-u)z 

= [1-(a/21r)B]SF(x)+ (a/21r)SF<2>(x), (23) 

13 This implies J k"J(k2)d4k=O, J k"kd(k2)d4k= J ¼8",k2J(k2)d4k, etc. 
14 R. P. Feynman, Phys. Rev. 76, 769 (1949). 
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The fact that Bis infinite, however, is not a source of 
difficulty since it can be interpreted as a charge re
normalization just as the constant A in the treatment 
of the D/(x) function. 

It must now be observed that the physically sig
nificant term of sFc2>(x) diverges logarithmically as 
:>.-0. Since this divergence is associated with the 
vanishing mass of a photon, it is an infra-red catas
trophe. It is introduced by the separation of real and 
renormalization effects in SF<2>(x). One must hope, of 
course, that the logarithmic dependence on A will cancel 
when all contributions to a certain scattering process 
are added together. The work of Bloch and Nordsieck16 

indicates such a cancellation will actually occur. 
We shall merely note now that the modification of 

the electron wave function brought about by virtual 
interaction with the electromagnetic field is obtained 
from the same diagram as the SF'(x) function, if one of 
the electron lines is taken to be an external line. Then, 
since the wave function obeys the Dirac equation,17' 

,t,'(x)=[1-(a/4'll')B]iJ,(x) (25a) 
and 

f,'(x) = [1- (a/4'll')B]j(x). (25b) 

As pointed out by Dyson, the effect is merely one of 
renormalization so as to preserve the unitarity of the 
matrix U. 

Some explanation is required for the necessity of replacing the 
renormalization factor Z2 in Eq. (23) by Z2l=Z2/Z2I in Eq. (25), 
a substitution which is equivalent to dividing by Z2" the matrix 
element of U between states containing n electrons; for as long 
as the scattering matrix U is defined between two specific surfaces 
.,-1 and .,-2 in the remote past and distant future, its unitarity is 
guaranteed. Thus, it should not be necessary to apply an explicit 
renormalization. Furthermore, the use of the eigenstates of non
interacting fields to specify conditions at a-1 and a-2 must be jus
tified, since experimental conditions would lead one to assume 

16 By the use of 

J.1 f (1-2u)k2 

0 du d4k (k2+ Aa2)3 

Fm. 5. Feynman diagram 
for the second-order terms 
of r ,.(x, x'). 

J.l d f d•~ -2uAa2+2~2(2-u) 
o u ' (k•+ Ao2) 3 

-J.1 j' 4 -2(1-u)Ao2+2~2(2-u) 
- o du d k (k'+Ao•)a 

which is the result of an integration by parts. 
15 F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937). 
17 See reference 1, II, Eq. (99). Z2= 1-(a/21r)B+ • • •. 

(24) 

that the one-particle eigenstates (i.e., essentially the Bloch
Nordsieck states) of the interacting electron and photon fields 
(or combinations thereof for several particle problems) ought to 
be used. The replacement of a-1 and a-2 by - 00 and + 00, however, 
together with Dyson's computation rules imply a certain averaging 
of the matrix elements over Jong sequences of surfaces in the past 
and future. One can readily show that the averaged matrix 
element is just equal to the matrix element between Bloch
Nordsieck states, multiplied by a constant which depends only 
upon the number of real particles in the initial and final states. 

For simplicity, we confine our attention to the one-electron 
part of the scattering potential and restrict a-1 and a-2 to be surfaces 
of constant time, t1 and t,. The requirements that the state vector 
cf>1(t) corresponds at time 11 to an uncoupled or "bare" electron of 
momentum k1 and that cf>2(t) corresponds at 12 to a bare electron 
of momentum k2 are contained in the relations, 

y,,, +(x,.)<1>1('1) =ak1,, + exp[ik1,.x,.]<1>1(t1), 
y,,, +(xµ)<l>2(t2) =ak,.,. + exp[ik2µx,.]<l>2(t2), 

where the a+•s are annihilation operators, together with the 
annihilation of cf>1(t1) and cf>2(t2) on application of if,-(x,.) and 
A,. +(x,.). The possibility that <1>1(t1) and cf>2(t2) have 11 or t2 de
pendent phase factors is eliminated by the requirement 

(<1>2(/2), ak/ak/<1>1(t1)) = 1 

for all 11 and t,. To interpret the procedure of calculation used it 
is convenient to expand <1>1, and cf>2 in the exact eigenstates, '11,.(t), 
of the coupled electron and radiation fields thus, 

<l>1(t1) =2: A ,.(t1)'11,.(t1), 
<l>2(t2) =2: B,.(t2)'11,.(t,). 

We might observe that these relations serve to determine the 
behavior in time of the states <1>, for zero external field. That is, 

cf>1(t) = Uo(t, l1)<l>1(t1) =2:,. A,.(t1)'11,.(t), 
<l>2(t) = Ua(t, t2)<l>1(t2) =2:,. B,.(t2)'11,.(t). 

The important point is the fact that the t1 and t2 dependence of 
the A's and B's as determined by the boundary condition is 
given by 

A,.(ti)=a,. exp[(i/h)(E,.-E1)t1], 
B,.(t2)=b,. exp[(i/h)(E,.-E2)t2], 

Thus the matrix elements of U(t2, ti) between <1>1('1) and <1>2(/2) 
are related to matrix elements between eigenstates of the coupled 
system by 
(<1>2, U(t2, t1)<l>1=l: b,.a.. exp[-(i/h)(E,.-E,)t,] 

Xexp[(i/h)(Em-E1)t1]('11,.(t2), U(t,, t1)'11,,.(ti)). 

Since the matrix elements between the exact eigenstates wiJI 
not depend upon t1 and t, if these occur respectively before and 
after the application of the external field, we can average over 
these times explicity, thus obtaining 

{(<1>2, U(t2, t1)cf>1))Av=b,.2*a..1('1',.,(t2), U(t2, t1)'1' .. 1(l1)), 

where Em1=E1, E.2=E2, From 
((cf>:, U(t,, l1)cf>1))Av=a .. 1*a..1('1'm1, Uo(t,, t1)'1'.,1) =a,,.1*a.., 

where k1" is taken equal to k2p, one finds a,,.1*a,,.1=Z2 and simi
larly b.,1*b .. 1=Z2. 

If there are n widely separated electrons in the initial and final 
states, the appropriate factor is clearly Z,", because the state 
vectors <1>1 and <1>2 can be factored into states corresponding to the 
presence of a single electron, and for each of these the above 
analysis can be carried through. 
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The vertex operator r ix', x") describes the scattering of a virtual electron by a potential. The second-order 
contribution to it is given by the diagram, Fig. 5, or by 

A,.<2l(x', x") = (-i/Ac)2(-ie)2[ ·n. (P[1Y(x0-x'), ~(xo)])o-y,.(P[1Y(Xo), ~(xo+x")])o 

X-y,(P[A:>.(Xo-x'), A,(xo+x")])J 

(26) 

where 

(27) 

Thus one obtains the operator L,.(p', p").18 This must now be rearranged so as to display explicitly renormalization 
terms. First the denominators of the three ~-functions are combined, 

f l fl I 'Y,[i-y(p'-k)-K]-y,.[i-y(p"-h)-K]'Y, 
L (p' p")=(ia/41r3) 2udu dv d4k,------------

,. ' o o {[k-u(p'v+p"(1-v))J2+A'2 } 3 

= (ia/21r3)f
1 

udu f 1 dv f d4k{'Y.[i-y(p'(1-uv)-p"v(1-u)-k)-K]-y14 

0 0 

X [i-y(p"(l-u+uv)-p'uv-k)-K]'Y,} /(k2+ A2) 3, (28) 
where 

A'2=u2[K2+ (p' -p")2v(1-v)]+X2(1-u)+u(1-u)[(p'2+K2)v+(p"2+K2)(1-v)]; 

a change of variables, k,.-k,.+u[p,.'v+p/'(1-v)] has been made. 
On extensive rearrangement, the numerator of the integrand can be brought into the form19 

where 

K,.(p', p"; u, v) = (1-u)(i-yp'+ K)-y,.(i-yp" +K)- (i-yp'+K)[K(1-u2h,.+i(1-u)(1-uv)(p'+ p"),. 

-i(l-u+ 2uv)(1-uv)(p' -p"),.]-[K(1-u2h,.+ i(l-u+uv)(l-u)(p'+ p"),. 

+i(l-u+uv) (1 +u- 2uv) (p' - p") ,.](i-yp" + K)+ (1-uh,.[ (p'2+ K2) (1-uv) 

+ (p"2+K2)(1-u+uv)]-iK(P' -p"),.u(l +u)(l- 2v) 

(29) 

(30) 

+-y,.(p' -p")2[1-u+u2v(1-v)]+ Ku,.,(p' -p"),u(l-u). (31) 
Thus, with 

Ao2 = K2u2+ X2(1-u), (18b') 

l I { 
L,.(p', p")= (ia/21r3) J udu f dv f d4k 

0 0 

-y,.[k2 -4K2(1-u-½u2)] 2K,. 

[k2+ Ao2]a [k2+ 4'2Ja 

(32) 

where B is defined by Eq. (24). 

18 See reference 1, II, Eq. (26). 
19 This expression may be compared with Julian Schwinger, Phys. Rev. 76, 790 (1949), Eq. (1.94). The expressions differ only in the 

definition of v and in the fact that certain terms, zero for a real electron, are included here. 
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Finally, therefore, 

rix', x")=-y,.6(x')6(x")+A,.<2>(x', x") 

=-y,.6(x')6(x")[1+(a/21r)B]-(a/21r)(1/(21r)8) f d4p'd4p" exp[ -ix'p'-ix"p"] 

Here again the separation of the renormalization term B has made the physically significant correction divergent 
in the limit X-0. 

CALCULATION 

Now that the singular functions have been calculated to second order, it is possible to proceed with the evaluation 
of the matrix elements written down earlier. 

Thus, 

MII = - (ea1r /2hc) f d4xad4xo' d4xo'' d4x1d4x1' d4xi'' d4x2d4x2' d4x2" A/' (xa)DF' (xo-x1)if;(xi') 

xr.(x1-xi', X1"-x1)SF(xo'-xi'')r ,.(xo-xo', Xo"-xo)SF(x2'-xo'')r.(x2-X21, X2"-x2)i/l'(x2"). (34) 

On substitution of the last part of Eqs. (13), (14), (23), (25a), and (33) one obtains, to order a2, 

where 
MII = M IIo+ Ji?IIa+ Mm+ Ji? II d+ Ji?m+ Ji?llf, 20 (35) 

MII0= -(1+~A)ea1r f d4xod4x1d4x2A,.•(xo)DF(X2-x1)ifi(x1h,SF(xo-x1h,.SF(x2-xoh,i/l(x2) 
1r 2/ic 

= - :, ( 1+;A) f d4xod4x1d4x~,."(xo)ifi(x1)A,.<2>(xo-x1, x2-xo)i/l(x2), (36a) 

Finally, 

(36b) 

(36c) 

(36d) 

(36e) 

(36£) 

XSF(Xo-x2h,.SF(xa-xoh.SF(X4-X3)-y.,,,if,,(x4). (37) 
IO The bar on R 11•, etc. indicates that the renormalization terms have been removed. These are incorporated in MII0• Since M 11b 

contains only renormalization, £rtn is zero. 



QUANTUM ELECTRODYNAMICS 545 

It is convenient to continue the calculation in momentum space. The momentum Pi will be used to denote the 
momentum. of the final state and P2 the momentum of the initial state: 

(38a) 

and 

(38b) 

Then 

e a2 f f i-y(Pi-k)-K i-y(pi-k-k')-K 
MI=- -(21r )4 d4Pid4p2A/(P1 -P2) d4kd4k' (1/k2)(1/k12)y;(p1h,-----'V1.-----

lic l61r6 (Pi-k) 2+K2 (Pi-k-k1) 2+K2 

i-y(p2-k-k1)-K i-y(p2-k')-K 
X-y,,------v,.---~1.t/t(P2), (39) 

(P2- k- kI)2+ K2 (P2-k')2+ K2 

MllO= ( l+;A )( + 2::J(21r)4f d4pid4p2A/(Pi-P2) £1 
udu £1 

dv 

_ {u,.,(p1-P2),u(l-u)+ (pi-P2)2-y,.(l-u+u2v(l-v)) 
Xi/;(Pi) ---------------- B-y,.+-y,.(pi-P2)2u2v(l-v) 

K2u2+ X2(1-u)+ (p1-p2) 2u2v(1-v) 

x[£1 

K2u2+x2(l-u)+ ;;i-h)2u2v(1-v)z 

_ i-y(p1-k)-K{K,.(p1-k, P2-k; u, v) [J. 1 dz 
X ,/;(Pih,,---- --------+--y,,(A'2- Ao2) 

(P1-k)2+K2 A12(Pi-k, P2-k; u, v) o Ao2+(A'2-Ao2)z 

2K2(1-u-½u2)] }i-y(p2-k)- 11. 
----- -----v,if;(P2), 

A'2Ao2 (P2-k)2+K2 

_ iea2 f I 1 f 1 f. 1 _ i-y(p1-k)-K i-y(p2-k)-K 
AfII0 =--(21r)4 d4p1d4p2A,,•(p1-P2) d4k-- udu dvt/t(Pih,.----'V,.----

41r4kc k2+x2 o o (P1-k)2+K2 (P2-k)2+K2 

{
K.(p2-k, p2; u, v) [J. 1 dz 2K2(1-u-½u2)]} 

X -------+--y,(A'2- Ao2) ----- ----- if;(P2), 
A'2(p2-k, P2; u, v) o Ao2+(A'2-Ao2)z A12Ao2 

AfIId= - iea2 (21r)4f d4pid4p2A,,2(p1-P2)f d4k_l_ f.1 u(l-u)duf i dzy;(Pih,i-y(P1-k)-K " 
41r4lic k2+x2 0 0 (P1-k)2+K2 

(41) 

(42) 

(i-y(p1-k)- K)(l-u)(l-[2K2u(l + u)z]/[K2u2+ X2(1-u)])+ K(l +u) 
x--------------------'V,i/l(P2), (43) 

K2u2+ X2(1-u)+[(P2-k)2+ K2]u(l-u)z 

AfII•= ---(21r) 4 d4P1d4p2A/(P1-P2) d4k d 3 iea2 f f f 1 2v2(1-1v2) 1 

81r4kc O 1-v2 k2+(4K2/l-v2) 

_ i-y(pi-k)-K i-y(p2-k)-K 
X i/l(Pih,----'V,.------v,if;(P2), (44) 

<Pi-k)2+"2 (P2-k)2-K2 
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(45) 

Now, the interaction energy density of an anomalous magnetic moment µek/2mc with the electromagnetic field is 

H(xo) = - µ(ek/2mc)!F ,,.(xo)f;(xo)rr,,,y;(xo). (46) 

Since the calculation is being carried out in momentum space, it is convenient to have the Fourier transform of 
this expression. Its contribution to the scattering of an electron is 

(47) 

In calculating the correction to the magnetic moment of the electron, therefore, one must seek to bring the matrix 
elements into this form by rearranging the Dirac matrices occuring in them and by using the Dirac equation to 
simplify the momentum dependence of the integrand. This, of course, can only be done after the integration over 
the directions of the virtual momenta has been made trivial, so that these variables no longer conceal a dependence 
on the initial and final momenta. In this process, any terms that contain a factor (p1-P2)2 may be dropped from 
further consideration, because they represent derivatives of the quasi-constant electromagnetic fields. Hence, 
MIIJ does not contribute to the magnetic moment. Further, MII 0 gives (}-2=0) 

The second-order part of this expression clearly is due to the well-known anomalous magnetic moment 

(a/21r)(eli/2mc).21 (49) 

This quantity, however, depends on the "bare" charge e of the electron. The measured charge of the electron is 
e1=[1+(a/41r)A]e to second order. Furthermore, the external potential Ai,•, whose source is a current, must also 
be renormalized, (Ai,•)1=[1+(a/41r)A]Ai,•• Equation (48) may therefore be rewritten, to order a2, 

(SO) 

and is due to a magnetic moment 
(51) 

which depends on the renormalized charge. 
Aflle can be evaluated quickly by observing that the integration over d4k and subsequent rearrangement of the 

matrix element is idential with that in Li,(pi, p
2
), provided one sets X2 =4K2 /(1-v2

). Hence, 

_ e a 2 f 1 f 1 2v2(1-½v2) u(l-u) 
M11•-- udu d•------------(21r)4 

2licK 21r2 0 0 1-v2 u2+4/(1-u)/(1-v2) 

X J d4P1d4P2A/(P1-P2)f(P1)rr,.,(p1-P2),,/;(p2). (52) 

The magnetic moment responsible for this scattering is 

at f i 11 u2(1-u)v2(1-½v2) a2(119 7r2) a2 
µII•=- du d•>-------=- --- ""0.016-. 

7r2 o o u2(1-v2)+4(1-u) 7r2 36 3 7r2 
(53) 

11 Julian Schwinger, Phys. Rev. 73, 415 (1948). 
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The expression for Mm will be examined next. The first task now is to simplify the integration over k. The 
situation here again is very similar to that encountered in the evaluation of L,,(p', p"); simplifications can be made, 
however, because of the equations satisfied by P1 and P2 and because (P1-P2)2 may be neglected. The scattering 
becomes 

1 
X -y, { i-y[p1(l-vw)- P2v(l-w)-k]- K )-y,,--

u(l-u)z 

{ i-y[P2(l-v+vw)-p1vw-k]- KI (1-u)(1-[2u(1 +u)z]/[u2+ (X2/ K2)(1-u)])+ K(l +u) 
X-------------------------'V,v,,(p2). (54) 

{ k2+v2K2+ X2(1-v)+v(1-w)[K2u2+ X2(1-u)J/[u(1-u)z]} 3 

Here, obviously, the kx vectors in the numerator contribute no magnetic moment, because the linear term vanishes 
and the quadratic one is independent of P1 and P2, 

It is useful at this point to discuss the extraction of magnetic-moment terms from these more complicated mo
mentum-dependent spinor matrices. Thus, with the neglect of charge renormalization terms (independent of P1 
and p2) and terms representing higher derivatives than the first of A,,•(x0), 

i(P1) ,,{I (P1)f (P2) = i(P2) ,,f;(p1)v,,(p2) = -½f;(P1)u ,,,(P1 - P2),,f,,(P2) = -½m,,, 

/t(Pih ,,i-yp1f(P2) = f;(Pi)i-YP2'Y ,.f(P2) = - m,,, 

if;(P1h.i'YP1'Y ,.-y.,f,,(P2) = {,(Pih.i'YP2'Y ,.-y.,f,,(P2) = - 2m,,, 

if;(P1h,'Y ,hP1'Y,Y1(P2) = if;(P1h,'Y ,.i-yP2'YvV1(P2) = - 2m,,, 

if;(P1h.i'YP1'Y ,,i-ypn,v,,(P2) = f(P1h,i-YP2'Y ,.i-YP2'Y,V1(P2) = - 2Km,,, 

if;(P1h.i'YP1'Y ,,i'YP2'YvV1(P2) = -4Km,., 

f;(p1h,i-YP2-Y,,hP1-Y,f(P2) = o. 
The magnetic moment contribution to AfIId is due to a moment 

µ.IId= (- ,,,_·a_\)f i u(l-u)duf i dzf i vdvf i dw·i-·1r_2 __ 1 __ 
1r4 o O o o 2 u(l-u)z 

2K[2(1-v)(1-u)(1-[2u(1 +u)z]/[u2+ (1-u)A2/ K2])-(1 +u)(l-v)J 
-2K(1-v)(2-v)(1-u)(1-[2u(1 +u)z]/[u2+ (1-u)X2/ K2]) 

x------------------------------------

(55) 

(56) 

As was already mentioned earlier, this expression may diverge logarithmically as X-0. It is easy to verify that 
this catastrophe occurs only in the term which has two denominators, and that is associated with the integration 
over u. After integration over z, only one simple term is left which is afflicted with this difficulty. The photon mass 
may then be set equal to zero in all others, and the integration can be easily completed to yield 

a 2 (11 1r2 1 x2) ( 1 x2)a2 
µ.IItl=- ---+- ln- '.::::'. -0.090+- ln- -. 

11'2 24 18 2 K2 2 K2 1r2 
(57) 

The expressions for µII", µ.110, µ.1 become successively more complicated and very much more tedious to evaluate 
and cannot be given in detail here. The contributions from group II are all treated in a manner similar to L,.<2>. The 
presence of two virtual momenta in M1, however, and the symmetry of the integrand suggest that this quantity 
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be evaluated by noting that 

d4kd4k' /k 2k' 2 } 
xf------------------ (58) 

[(p-k)2+µJ[(p' - k-k')2+µ'J[(p" -k-k')2+µ''][(p"' -k') 2+µ"'] pf, :i:,;a!j,, 

and evaluating the integrals over k and k' before carrying out the other indicated operations.22 The result will 
clearly involve five variables of the type of u, v, w, Eq. (54), to be integrated from zero to one. The other two 
remaining terms also involve five variables, but in these the variables tend to separate into two groups, because 
they were introduced in connection with two independent momentum integrations. The magnetic moments may 
now be deduced as before. They are integrals of rational functions of the auxiliary variables.23 

After one trivial integration, µIla involves the same type of functions as µ.IId. It is found, however, that the 
infra-red catastrophe introduced into the X"<2> operator is compensated by one that arises in the integration over k, 
Eq. (41). In other words, the terms depending on the photon mass all go to zero as this quantity is made to vanish. 
Thus 

a2(11 11"2) a2 
µ.11a=- -+- "'0.778-

71"2 48 18 r 2 
(59) 

and no longer involves X. 
After a term -(a2/2r2) ln(}.2/,c2) is separated from µ.II•, this quantity is finite in the limit x-o, so that the 

integrand may be accordingly simplified. A typical term, which happens to involve only four variables, is 

f i duf i dvf i dtf i dwf I dz 2wt(1-t)(1-uv) . 

o o o o o {vw[1-uv+ut(1-v)]2+ut(1-uv) }2 
(60) 

If the first three integrations are carried out in the order indicated, each can be done analytically by virtue of 
simplifications that occur when the limits are inserted in the preceding integration. The order of the last two 
integrations must be determined by inspection for each term; with two exceptions they can be carried out with 
the help of well-known formulas. The value of µII• is therefore given in terms of two integrals, L1 and L2: 

(61) 

Here 

i i oo 1 
Li= [ln(1-x)]2dx/x=3 L -=2.4041138· • • 

0 -1~ 

(62a) 

and 

0.3005655 .... 24 (62b) 

A typical term of µ 1 is 

f 1 du f 1 
dv J. 1 

dt f I dwwt2u4v2 

0 0 0 0 
1 

x---------------------, (63) 
[1-wt(l-uv+u2v2) J { u2t-w[ (1-t+tuv)2-u2t2(1-uv )-2tu2v(l-t+tuv) J) 2 

u The integration over the virtual momenta is accomplished by combining the six denominators in the manner of Eq. (16). There 
are many equivalent ways of introducing the auxiliary variables; some of these, however, are much more convenient than others for 
carrying out the subsequent integrations. 

13 The details of two independent calculations which were performed so as to provide some check of the final result are available 
from the authors. The work is made lengthy by the large number of integrals over auxiliary variables. 

24 Note ad4ed in proof: Using the results of H. F. Sandham, J. Lon. Math. Soc. 24, 83 (1949), one can show that L2= ¼L1. 
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where a trivial integration over one variable has been carried out. After two integrations, which again can be carried 
out analytically by virtue of some remarkable simplifications, the functions of u and v obtained are very similar 
to those encountered in the calculation of µ.m. The final result, in terms of the integrals Eq. (62) is 

SUMMARY OF RESULTS 

The five contributions to the fourth-order radiative 
correction to the electron's magnetic moment are, Eqs. 
(53), (57), (59), (61), and (64), 

a 2[13 13 5 5 5 l a 2 

µ.1 =- -+-1r2--1r2 ln2+-L2+-L1 = -0.499-, 
11'2 96 36 6 3 12 1r2 

(64) 

here L1 and L2 are the integrals of Eq. (62a) and (62b), 
respectively. Hence, the total radiative correction to 
the magnetic moment of the electron, to fourth order 
in e, is 

a1 a12 

~--2.973 ~0.001147 in units (ed't/2mc). 
21r 11'2 
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