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This paper proposes a clear test of the relativistic assumption of the relativity of simultaneity. Special relativity
assumes that two relatively moving observers instantaneously collocated will both see light from a distant event
at the same place and time. This assumption is embedded in Einstein’s original train embankment thought
experiment. It is reconciling this assumption with the presumed constancy of the speed of light that led to
relativistic length contraction and time dilation for the moving observer. An uncomfortable by product is the
fact that these two observers can now no longer agree on where and when an event occurred. If they are viewing
two separated events, and one observer concludes the events occurred simultaneously, the other observer will
conclude that the two events were not simultaneous; thus the relativity of simultaneity. Two events that are
simultaneous in one reference frame are not simultaneous in a different reference frame.

Until recent years, a test of the relativity of simultaneity would not have been possible. A direct test has never
been attempted due to the great distances, high speeds and extremely small variances in time to be observed.
Even if these could all be overcome, the ability to perform one part of the experiment in the moving frame and
obtain results that do not require converting back to the stationary frame are extremely problematical.

But currently, we have many satellites at distances of 20K km and greater, routinely transmitting with carrier
signals in the GHz range. We are able to accurately model the ephemerides of these satellites, and even account
for atmospheric disturbances. We have very stable oscillators in the same range in lab environments, with
the ability to phase-lock their outputs to another signal, and phase detectors able to provide voltage outputs
proportional to the difference in phase of signals with wavelengths in the 20 cm and smaller range. Similarly,
clock and code signals can be compared in the same manner as phase shifts by combing signals. Phase detection
is a much simpler and preferred method for determining subtle differences in light travel times. The most
notable example in recent times is the LIGO gravitational wave detector, which uses an interferometer with
2.5-mile arms to detect an extremely subtle phase shift due to the varying gravitational field caused by rapidly
orbiting black holes. As will be shown, the proper use of phase measurements eliminates any reliance on clock
synchronization between the moving and stationary frames, or between either of these frames and the source
itself, and allows for a realistic test of relativistic simultaneity.
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1. A Brief Theoretical Introduction
Maxwell showed electromagnetic (EM) radiation trav-

els at a speed of c given by (1).

c =
1

√
ε0µ0

(1)

Maxwell’s equations give no reference frame against
which to measure c. All experimenters obtain the same
values for ε0 and µ0, so c is the same in any observer’s
own reference frame. Since the speed of the moving ob-
server can assume any value, the EM energy leaving
the source must have speed components in a continuous
range, including c as measured in any arbitrary frame.
This frame independent nature of Maxwell’s equations
does not prohibit a range of velocities, but rather dictates
this to be so, thus there are physically detectable com-
ponents of any EM energy that reach an observer faster
or slower than a component traveling at c measured by
that observer. This peculiar nature of light led to the de-
velopment of special relativity, but it is easily shown that

the Lorentz transformations are nothing more than an el-
egant manipulation of the Galilean transformations with
no physical basis of support. Historically it was an at-
tempt to develop a frame invariant form of Maxwell’s
equations that initially led Lorentz to propose length con-
traction, but Einstein, assuming a constant value of c
that itself was frame invariant developed the length con-
traction and time dilation inherent in the special theory.
Maxwell’s equations have been shown to be frame in-
variant in a Galilean framework as well (Renshaw [2]).

We will derive the relation between two inertial refer-
ence frames in the absence of special relativity, using an
example similar to the train embankment thought exper-
iment invoked by Einstein. We will then work our way
into the special relativistic Lorentz transforms, demon-
strating an inherent lack of underlying meaning behind
them.

Consider the case of the K and K′ frame (Bob and
Alice respectively at the origin of each frame), both
stationary in the lab frame, but not collocated. A flash
occurs a distance d from the origin of K and a distance
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d′ from the origin of K′. Clearly, the light will reach the
observer in frame K at time t = d/c, and will reach the
observer in K′ at time t ′ = d′/c. Both these observations
are independent of any motion of the source.

Figure 1. Two Stationary Frames

In figure 2 below, Alice, moving to the right at v,
and Bob stationary, each again see the flash from an
event some distance to the right. Each ascribes the same
velocity, c, to light from the flash, independent of the
source’s motion, and therefore each sees the light at t ′

and t respectively as in figure 1, where we have replaced
d with x to develop some equations later on.

Figure 2. Relatively Moving Frames

Light moves from source to Bob at c measured in his
frame, traveling ∆x in time ∆t = ∆x/c, and from source
to Alice at c measured in her frame, traveling ∆x′ in time
∆t ′ = ∆x′/c.

We establish things so that at t = t ′ = 0, the frames
coincide and x = x′ for any x. At any other time, the
Galilean relation (2) holds as in the figure.

x = x′+ vt ′ (2)

For t < 0, Alice is to Bob’s left (vt ′ is negative). For
t > 0, Alice is to Bob’s right. Relation (2) holds for any
value of x′ or t ′, but the specific case of the time it takes
light from an event to reach an observer is the important
observable.

Establish Alice momentarily next to Bob at the instant
she sees the flash, at time t ′ = t = 0 as established above.
Each carries a rod on which the flash leaves a mark
measuring the distance to the event as x′ for Alice and
x for Bob. Alice determines the flash occurred at t ′, given
by (3), where t ′ is negative since the flash occurred before
being seen by Alice at t ′ = 0. Inserting (3) into (2) gives
(4), the distance to the flash measured in Bob’s reference
frame.

t ′ =−x
c

(3)

x = x′+ vt ′ = x′
(

1− v
c

)
(4)

Unremarkably, (4) reflects the Galilean transforma-
tions for one reference frame moving at a constant ve-
locity with respect to another at a particular time t ′ and
given x′.

Recognizing the time it takes light to reach Bob in
his reference frame as t = −x/c, and that the times
of observation in the two frames are not simultaneous,
rearranging the terms in (4) provides interesting results
for x′ in terms of t and x produces (5), where γ is defined
in (7). Recalling that t = −x/c and dividing through by
−c in (5) provides t ′ in terms of t and x (6). Note that this
is still the Galilean transform of events seen by Alice and
Bob.

x′=
x(

1− v
c

) =

x
(

1+
v
c

)
(

1− v2

c2

) = γ
2x
(

1+
v
c

)
= γ

2(x−vt)

(5)

t ′ =−x′

c
= γ

2
(
−x
c

+
vt
c

)
= γ

2
(

t− vx
c2

)
(6)

γ ≡ 1√
1− v2

c2

(7)

Multiplying both sides of (5) and (6) by γ−1 doesn’t
change the validity of the equations, but allows the arbi-
trary definition a contracted length of Alice’s rod as x′,
and a dilated time in Alice’s frame as t ′ in equations (8)
and (9).

x′ ≡ x′

γ
= γ(x− vt) (8)

t ′ ≡ t ′

γ
= γ

(
t− tx

c2

)
(9)

Note that since we said nothing about motion with
respect to the source, we could as easily have assumed
that Bob was moving left at v and Alice was stationary,
or even invoked an arbitrary reference frame in which
both Alice and Bob are moving, but with relative velocity
of v, and we would obtain the same results. There is no
preferred reference frame in this derivation.

Beginning with the Galilean transform (2), the terms
have simply been rearranged to derive the special rela-
tivistic Lorentz transformations for motion along the x-
axis, (8) and (9). There is no physics here; this is simply
mathematical manipulation.
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The Lorentz transforms of special relativity are thus
simply a rearrangement of the observations of light prop-
agation in a strictly Galilean framework with no addi-
tional meaning, despite the convoluted way and assump-
tions under which they were initially derived. They are
a way to derive elapsed time and distance travelled from
emission to detection by one observer from elapsed time
and distance travelled from emission to detection by a
relatively moving observer. The simplest and most useful
form is seen in Maxwell’s light speed equation (1) com-
bined with the Galilean transform (2), but casting them
in the odd form of (8) and (9) provides insight into the
special theory of relativity.

In the Galilean framework presented, relatively mov-
ing observers instantaneously collocated will not both
see the flash from a distant event at that time of col-
location. In developing SRT, Einstein assumed that in-
stantaneously collocated observers will both see the flash
from an event at that time if either sees the flash at that
time, concluding that events simultaneous in one refer-
ence frame are not simultaneous in another frame. SRT
takes the manipulated equations (8) and (9), and ascribes
real meaning to the relations established and the value
of γ derived. The values x′ and t ′ become the distance to
and time since the event seen by the moving observer as
measured in the lab frame. In the moving frame, lengths
are contracted by (8), and time is dilated by (9). In or-
der to force these manipulated values to take on physical
meaning, special relativity derives a non-linear velocity
transform in which the maximum attainable velocity for
anything (matter, energy or information) is c. Addition-
ally, Alice and Bob cannot agree on where and when the
event occurred from their momentarily collocated posi-
tion. Special relativity produces a mathematically equiv-
alent set of transforms between frames, but they lack any
underlying physical basis, and worse, destroy the notion
of simultaneous events, distance and time when taken to
the extreme.

This untested and unverified difference in interpreta-
tion of simultaneous events in Galilean and special rel-
ativistic frameworks forms the basis of this paper. If the
signals from the satellite and lab frame are received si-
multaneously in both frames, as predicted by special rel-
ativity, then this will represent the first conclusive con-
firmation of the relativity of simultaneity, and provide
support for the theory in a new and important area. If,
however, as expected, the signals are not received simul-
taneously in both frames, the most basic assumption of
special relativity will be invalidated, along with length
contraction and time dilation, and the existence of super-
luminal signals will also be verified.

2. Conceptual Basis
The basic form of the experiment is deceptively sim-

ple. This test will use signals from a satellite and from

across a lab. A phase detector in the lab frame confirms
a specific output from mixing the two signals. A similar
detector on the moving frame will compare the arrival of
the lab and space signals in the moving frame. The phase
shift between the two signals is proportional to the dif-
ference in arrival time (if any) due to motion. A velocity
on the order of 5 m/s will produce a measureable phase
shift between the two (depending on satellite angle and
other variable factors), and exceed the error bars of var-
ious systemic factors. Varying the speed of the moving
detector will change the phase shift proportionally.

If the relativistic assumption of relative simultaneity
is correct, there will be no phase shift in the moving
detector, and the output will match that seen in the lab
frame. But, should the two detectors record different
phase shifts proportional to velocity as expected, the as-
sumption of relativistic simultaneity will be invalidated.
A test that until recently was impossible is now achiev-
able.

Other experiments have used the phase shift from var-
ious GPS satellites as a "test" of special relativity (e.g.
Wolf and Petit [1]). However, all such tests to date in-
volve measurement in one frame only, though the source
signals are in various frames. Generally such tests take
the form of a test of the one-way speed of light, but only
as measured in a specific frame. As such, none of these
tests is an actual test of the relativity of simultaneity, and
confirm only that the speed of light in a given frame is
equal to the distance from the receiver at time of de-
tection to the source at time of emission divided by the
time of flight. This is ultimately not really a test of any-
thing, but is simply a confirmation of the definition of c
espoused by Maxwell.
3. Expected Results from Theory
3.1. Special Relativity Theory

The situation from the special-relativistic point of
view can easily be worked out mathematically as is done
below for the Galileo-Newtonian paradigm in the next
section, but it can be explained easier in just a few words
within the basic tenants of SRT. Due to the relativistic as-
sumption of the simultaneous arrival of light in both the
moving and lab frame at any given collocated point and
time, it is a simple matter to show that no phase differ-
ence will be expected in the moving frame if there is none
in the stationary frame. Imagine, as a visual thought ex-
periment, a single point at the peak of a wave of the satel-
lite emitted carrier signal, as in figure 3. That point will
travel at a speed of c and will remain at the peak of that
wave for the entire trip to the lab in any reference frame.
Thus a moving observer instantaneously collocated with
the lab-frame observer at the instant that point strikes the
lab detector will also detect that point at that time.

As a result, the moving observer will also detect the
peak of the wave at that time. As we can establish lab
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Figure 3. Carrier and a Point

frame observers at any point in the lab, then whichever
part of the incoming wave strikes them when the moving
observer is collocated with them will be the same part
of the wave that strikes the moving observer by simple
extension. We can also imagine a source in the lab emit-
ting a signal and a point as in figure 3. If there is no phase
shift in the lab frame between the lab signal and the satel-
lite signal, then, under special relativity, there will be no
phase shift between the lab signal and the satellite sig-
nal in the moving detector either (there is still a Doppler
shift due to the motion, and it is for this reason that ra-
dial Doppler arises in SRT, but the Doppler shift is the
same for both the lab and satellite generated signals, and
has no effect on the measured phase difference, which
is identical for the lab and satellite based signals in the
moving frame).

To be perfectly clear, it is the assumption that col-
located relatively moving observers will see light from
a distant source at the same place and time that sup-
ports this argument. Under special relativity, if two wave
peaks from two sources arrive in-phase for the station-
ary observer, they will also be in-phase for the moving
observer. The two observers will disagree on where and
when the peaks were transmitted, as reflected in the rel-
ativistic length contraction and time dilation as applied
to the "moving" observer, but that does not alter the nec-
essary requirement that the two peaks arrive in-phase for
both.
3.2. Galileo-Newtonian Relativity

In the Galilean-Newtonian view, as in the theoretical
introduction, in the frame of either observer, light travels
from the source to the observer in a time given by the
distance to the source at the time of emission in the frame
of that observer divided by c. Distance is measured the
same in the lab frame or the moving frame (arbitrarily
defined as moving with respect to the lab frame), as
length contraction is not invoked in either frame.

In the moving frame, both the lab and the satellite
signal experience the same Doppler shift, so, as in the
relativistic case, if the waves are in phase in the lab
frame, they will be in phase in the moving frame as
well, though at a different frequency. Considering the
instant when the lab detector and moving detector are
collocated, the time from the satellite to the lab frame
is given as dS/c, while in the moving frame it is d′S/c,
where

d′S = dS + vtS. (10)

The time from the lab generator to the detectors is dL/c
and d′L/c respectively. As this distance (dL is on the order
of meters), the time is on the order of 3E-9 sec, and the
time difference for moving and lab detectors is on the
order of 1E-17 sec, and may be safely ignored for this
discussion. So we are concerned only with the difference
in arrival time of the satellite signal at a given point. In
the moving frame, the time from satellite emission to
reception is:

t ′S =
d′S
c

=
(dS + vtS)

c
= tS

(
1+

v
c

)
(11)

Thus the time difference between the moving and lab
frames is given by:

t ′S− tS = tS

(
v
c

)
(12)

This time difference will manifest itself as a phase
shift in the moving frame between the received satellite
signal and the lab-based signal that has been locked to
the satellite signal in the lab frame. As we can imagine
virtual "lab-based" detectors all along the path, the phase
shift is clearly constant for any given speed of the moving
detector, and proportional to that speed.

If we consider a satellite in geosynchronous orbit
(36,000 km) for example, tS is roughly 0.12 sec. For a 1
m/s moving frame velocity, the time difference is roughly
4E-10 sec. In the case of a 1 GHz signal, this small time
difference will manifest itself as a phase shift of about
40% of a wavelength compared with the lab generated
signal. This phase shift will adjust linearly with veloc-
ity of the moving frame. (Simplifying assumptions for
discussion had the motion of the moving frame along
the line of sight to the satellite, which will generally not
strictly be the case in the actual realization). Different
carrier frequencies and different velocities will produce
different, predictable phase-shifts, allowing for elimina-
tion of error sources.
4. Technical Approach
4.1. Top Level Conceptual Approach

A top-level block diagram of the experiment is shown
in figure 4. The blocks labeled K and K′ represent phase
detectors in the lab frame and moving frame respectively.
The K′ detector is able to move at a controlled and mea-
sured speed on a track. This speed is on the order of 1 to
20 m/s. The detector blocks consist of S band antennas
and carrier detectors, low noise amplifiers, band pass fil-
ters and other components required to detect and isolate
the L1 signal from one or more GPS satellites, as well as
the locally generated generate signal from the lab. This
signal is shown as being created from a phase-locked-
loop (PLL) feedback from the lab-based phase detectors,
but, as discussed above, it is not required that the lab-
generated signal be locked to the received satellite signal.
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The advantage of a phase-locked signal is to minimize
variances and drift between the lab-based and satellite
signals that arise due to satellite and earth motions, atmo-
spheric effects, etc. However, these differences will also
be detected and measured by the K frame phase detector.

Figure 4. Top Level Block Diagram

The output of the K and K′ phase detectors is a voltage
proportional to the phase shift (figure 5) between the
satellite and lab-generated signals. This output will be
recorded over time and stored for data reduction and
analysis. The GPS L1 carrier is optimum for this test due
to the timing signals embedded in the signal that can be
used for phase identification, as will be described later.
The phase shift will be proportional to the velocity of
the moving detector. Using a variety of speeds for the
moving frame will confirm the proportionality to velocity
and allow any fixed offsets due to experimental error or
systemic errors to be factored out.

Figure 5. Phase Shift

The absence of an offset in phase between the moving
and stationary detectors will confirm for the first time
Einstein’s assumption of the relativity of simultaneity.
4.2. Detailed Approach

In a practical implementation of this experiment, one
cannot actually use the L1 carrier as the phase reference,
as it is spread away from the center frequency with a
combination of codes and a 50 Hz clock. However, the
presence of the C/A code provides the same information
required to perform the test.

Any transition in the C/A code is equivalent to the
point above the carrier identified in figure 3. Thus, if such
a transition arrives at a specific point and time in the lab
frame, according to special relativity it will arrive at the
same point and time in the moving frame. The C/A code
can be readily extracted from any incoming GPS signal,
either by a lab-frame or moving receiver. For our choice
of the lab based signal we are not restricted to a replica
of the GPS carrier, and are free to choose any signal,
as long as we can identify arrival of a specific point on
the signal in both the lab and moving frames. A simple

choice is a 1000 MHz or greater carrier modulated with
a 1.023 MHz reference pseudo random square wave, to
allow identification of specific pulses.

Instead of comparing the phase of two carrier signals,
we XOR the recovered C/A code with the reference code
and record the output. The width and arrangement of the
outputs pulses provides extremely accurate information
about the arrival time of the transitions in the C/A code
compared with the locally generated code. For the mov-
ing frame, the overall length of each code will be factored
by the Doppler (decreased for motion toward, increased
for motion away), but under special relativity, the phase
of the two signals will not change, and the modulo 2 out-
put transitions will match those from the lab frame but
for the appropriate Doppler scaling.

In the Galilean framework, as discussed, the moving
frame signals will not be received simultaneously with
collocated lab frames. For motion toward the satellite,
at any given lab frame point, the moving frame will re-
ceive the signal at a later time given roughly by (12).
The locally generated signal, however, will essentially
arrive at the moving observer’s frame at the same time
as a collocated lab frame observer, due to the relatively
short (compared to GPS orbit) distance travelled. This
difference in arrival times of the GPS and lab based sig-
nals as compared with a lab based detector will appear as
a phase difference between the C/A code and the refer-
ence random code. This difference will be manifested in
the modulo 2 output of the two signals, and can then be
measured and compared to the lab signal after all data are
recorded. An exaggerated example is provided in Figure
6.

Figure 6. Sample Phase Shift Result for Lab and Moving
Frames

The phase difference is directly proportional to the
velocity of the moving frame. Figure 7 illustrates and
tabulates the difference in phase of the C/A and reference
random codes in seconds for velocities ranging from 2
to 16 m/s, for a satellite at zenith and on the horizon.
A satellite on the horizon is a better acquisition target
for several reasons. Being further away, the time offset
is up to 20% greater. Also, the moving frame velocity
can be along the ground, while for a satellite at zenith it
would need to be vertical. Even so, a satellite at zenith
is useful for comparing the moving and lab stationary
equipment and verifying the absence of a shift due to
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equipment concerns. The absence of a shift for a satellite
at zenith under otherwise identical conditions as for the
satellite on the horizon will indicate that the equipment is
performing as planned in both frames. By acquiring two
satellites on each run, one near the horizon and one near
zenith (especially two in the same orbit), the integrity of
the equipment can be checked against results during the
run, and the information used to further reduce error bars.

Figure 7. GPS Timing Shift with Velocity for Satellites at
Zenith and Horizon

The expected phase offsets are quite small for the
velocities indicated. Increasing the velocity raises its own
concerns, however, so a moving frame in the 8 - 20
m/s range is preferable. At these speeds, the expected
induced code phase shift is on the order of many sources
of error within the GPS system. It is shown that most
of these sources of error are identical in both frames,
and need not be considered. Clock jitter (on the order of
10−9) is of particular concern, and must be minimized.
Use of the P code in place of the C/A code would cut the
clock jitter error by as much as a factor of ten, placing it
well below the expected results.

While most error sources (especially clock jitter) are
RMS type effects, the phase offsets proportional to ve-
locity are decidedly one sided. Multiple runs in multiple
directions at multiple velocities will aid in the accuracy
of the results. Additionally, as the lab-based frame can be
defined arbitrarily, the entire "lab" setup can be placed in
motion in a direction opposite the "moving" frame, ef-
fectively doubling the expected timing shifts. It is also
possible to arrange to sample more than one satellite on
each run, with different results expected for each due to
orientation and direction differences.

The experimental block diagram is shown in figure 8.
The GPS Satellite sends out a 1.023 MHz C/A code on
the L1 1.575 GHz carrier. The Reference Code Gener-
ator is in the lab frame but some distance (on the order

of 1,000 m or less) from the receive antennas. The Ref-
erence Code Generator modulates a 1.023 MHz pseudo
random reference code onto a 1000 MHz carrier.

The setup in the K (Lab Frame) and K′ (Moving
Frame) equipment is the same. A GPS receiver detects
the signal from the satellite, and provides the C/A code
as an output. The Reference Code Processor receives the
1000 MHz modulated carrier and extracts the reference
code. The C/A code and reference code are XOR’d to-
gether to produce a sum code. The sum code can be used
to accurately determine any time (phase) shift in the re-
ceived C/A and reference codes. The C/A code, refer-
ence code and sum code are fed to a processor. The re-
ceiver also provides satellite time and range data to the
processor for future data reduction. All signals and data
are stored in RAM for retrieval and data reduction. The
equipment can also be used to process multiple GPS sig-
nals for improved error reduction and calibration, and
comparison between motion along the line of sight to a
satellite or perpendicular to it.

Figure 8. Block Diagram of Experiment

4.3. Final Implementation
The setup in the detailed approach section uses a lab

based pseudo C/A carrier generated locally to eliminate
the time delay in reception between the moving and
lab frames to something on the order of 10−17 seconds,
several orders of magnitude below the 10−9 test results.
However, we can accomplish the same sensitivity using
two GPS satellites in the same orbit, with one near the
horizon and one near zenith. The satellite on the horizon
will be the C/A test signal, and the C/A code from the
satellite at zenith will be the reference signal. The reason
this works is illustrated in figure 9.

GPS S1 is on the horizon, while GPS S2 is essentially
overhead. Recalling (10), (11) and (12) for d′s, t ′s and
t ′s− ts, we will apply these formulas to the situation in
figure 9 for each satellite. We take the liberty of using
an equal sign for any value that is within 10E-14 of
the actual value, 5 orders of magnitude smaller than
the result we are testing. We first need an estimate of
(vts1)

2/d2
s2

. The satellite distance is roughly 2E7 meters.
The time from the satellite is on the order of d/c or 6E-2
seconds. The velocity of the moving frame is 10 m/s or
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Figure 9. Two Satellite Configuration

less. Thus, (vts1)
2/d2

s2
is on the order of 9E-16, and may

be safely ignored where it appears in the equality.

d′S1
= dS1 + vtS1 . (13)

d′S2
=
√

d2
S2
+ vt2

S1
= dS2

√(
1+

vt2
S1

ds2

)
= ds2 . (14)

t ′S1
=

d′S1

c
=

(dS1 + vtS1)

c
= tS1

(
1+

v
c

)
(15)

t ′S2
=

d′S2

c
=

dS2

c
= ts2 (16)

Thus the time difference between the moving and lab
frames is given by:

t ′S1
− tS1 = tS1

(
v
c

)
(17)

t ′S2
− tS2 = 0 (18)

Equations (17) and (18) show that an overhead satellite
can be used in place of the lab generated signal. It serves
the same function of providing a reference code for
comparison purposes that arrives essentially in phase at
the moving K′ and stationary K frames.

With this enhancement, the reference code generator
can be replaced with a second GPS satellite, we elimi-
nate the psuedo code, and the reference processors can
be replaced with GPS processors identical to the ones al-
ready being used. The final block diagram is in figure
10, where the test signal is from GPSHor on the horizon,
while the reference signal is from GPSZen near zenith.
Satellite ephemeris data is also passed to the proces-
sor for inclusion in data reduction calculations from the
satellites not being actually horizontal and vertical from
the test lab.
4.4. Technical Risk Areas

The statistic of interest is primarily a fixed timing
phase offset between the two GPS C/A codes in the mov-
ing K′ system compared with any seen in the lab-frame

Figure 10. Final Experiment Block Diagram

K system. This allows for elimination of many sources
of error as described below. In the end, best-fit phase vs.
velocity plots with error bars will verify the presence or
absence of a Galilean simultaneity phase shift. Capture
and isolation of error sources will allow for better mod-
eling and data reduction, reducing the uncertainty in the
final results. Accurate control and disposition of such er-
rors will ensure a valid determination of the presence or
absence of the Galilean simultaneity phase shift for vari-
ous speeds and satellites.

Clock synchronization. The use of a local phase de-
tector will determine the phase between the two GPS
C/A signals in each system (K and K′) with no clock
synchronization between the two required. Since we are
interested only in the difference of arrival times of the
codes in the lab and moving frames as measured by the
equipment in those frames, no synchronization between
the frames is required.

Relativistic time dilation. For the velocity of the
moving frame, relativistic time dilation effects are on
the order of 10−15, well below the expected phase shifts
of 10−9. As such, relativistic time dilation and length
contraction cannot be invoked to explain away any time
shifts as great as those expected in a Galilean framework.
In fact, it is the relativistic time dilation and length con-
traction in the first place that allows special relativity to
assert that the moving and stationary frames each "sees"
a distant event at the same time, causing the resultant
disagreement as to the simultaneity of the events them-
selves.

Doppler due to moving frame. The speed of the
moving frame should be known with respect to the lab
as precisely as possible to allow a determination of the
predicted Galilean simultaneity phase shift. In the first
experimental configuration, since the signal from the
lab-based generator experiences the same Doppler as
does the GPS received signal, errors due to less precise
velocity measurements of the moving frame are not of
concern in phase measurements. There will be an overall
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change in the size of the recorded modulo 2 output string
proportional to the Doppler, but this will have no effect
on the shape and structure of that output. In the two GPS
signal approach, Doppler must be taken into account in
the moving system since only the GPSHor signal will
experience the shift.

There is an error introduced due to the motion of
the GPS satellite, and its elevation angle with respect
to the lab not being 0 degrees. However, this phase
error is measured independently by the lab-based system,
and we are interested in the differences between the
moving frame system and the lab-based system. The
phase errors due to satellite motion and elevation are the
same for both systems, and can be accurately modeled
and filtered out of the results to leave only the Galilean
simultaneity phase shift. In the two GPS signal approach,
the ephemeris data will be used in the calculation of
elevation and motion effects for both satellites.

Position measurement of moving system. The loca-
tion of the moving system with time needs to be known
as accurately as possible for reducing systemic errors.
However, as has been shown, the moving system can be
compared at any time to a "hypothetical" lab-based sys-
tem that is instantaneously collocated with the moving
system. The phase error in each of the hypothetical lab-
based systems will be identical to the actual lab-based
system, except for minor variations due to elevation an-
gle and relative satellite speed along the path, which have
been shown to be on the order of 10−19. For an entire ex-
perimental footprint of hundreds of meters, these effects
are negligible, especially for satellites near the horizon.
The more precisely the location with time is known, the
smaller these errors become. However, these errors are
substantially below the Galilean simultaneity phase shift
expected, and the use of multiple satellites again allows
these errors to be factored out.

Internal delays of receiver systems (antenna, coax,
LNA, etc.). These delays can all be calculated explicitly
by having both the moving frame and lab frame systems
stationary in the lab frame. The delays can be accurately
measured and removed initially in software or later dur-
ing data reduction. Systemic or theoretical delays intro-
duced by placing the moving frame in motion will be
experienced on both the GPSHor and GPSVer signals to
equal degree, and these are also on the order of 10−15.
The main concern is the difference in "path length" or
phase between the GPS receiver short antenna-coax and
the lab signal receiver short antenna coax. But once mod-
eled and accounted for, there is no additional variation
or concern. Absence of unmodeled internal delays can
be verified by reversing the roles of the moving and lab
frame equipment.

Acquisition of L1 carrier. Both the K and K′ systems
can lock onto the appropriate signal prior to placing
the K′ system in motion. The problem is then one of

tracking an already acquired signal (GPS and lab-based)
as the motion begins. This is an on-going process that the
electronics manage on their own, and eliminates the need
for a (relatively) long acquisition cycle for a platform
moving at 2 - 16 m/s in the lab.

Low SNR. Acquiring and tracking the GPS L1 carrier
in a low SNR environment, while difficult, has been over-
come in all modern GPS receiver systems. The use of a
higher-gain antenna and LNA in close proximity reduces
this source of error. In an experimental setup such as this,
where size and weight is not of paramount importance, a
higher gain antenna is easily accommodated.

Ionospheric and other disturbances to the carrier
phase. These types of effects are modeled as noise, and
do not represent a fixed offset in either the K or K′

system. Any such effects will be nearly identical in the K
and K′ frame, allowing for elimination of consideration
of phase variations due to such disturbances.

Ephemeris Errors. Since the GPS signal is not
being used to provide actual precise location or range
data, ephemeris errors are relatively unimportant.
Ephemerides are accurate to within meters. Additionally,
any ephemeris-induced anomalies will be experienced
equally by the lab-based and moving platforms. Rela-
tivistic variances on interpretation of the ephemeris data
in the moving system are on the order of 10−15.

Clock Jitter. There is no concern of clock jitter on
the space segment, as we are not actually using the GPS
signal to recover precise location information. Whatever
variance exists in the transmitted signal will be received
equally by the moving and lab frames. It is therefore im-
portant to extract the C/A random codes as precisely as
possible on the receive side. This will be a particularly
important design consideration on the receive side, as
any variance from the actual signal time must be below
10−9. Several approaches already exist in various imple-
mentations to get below this value (Ward [3]). Even if
the uncertainty remains on the order of 10−9, data accu-
mulation over many runs, directions and orientations will
allow an actual phase shift in the signals to rise above the
noise.
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