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Preface to the Third Edition

The first edition of this text appeared in 1950, and it was so well received that
it went through a second printing the very next year. Throughout the next three
decades it maintained its position as the acknowledged standard text for the intro-
ductory Classical Mechanics course in graduate level physics curricula through-
out the United States, and in many other countries around the world. Some major
institutions also used it for senior level undergraduate Mechanics. Thirty years
later, in 1980, a second edition appeared which was “a through-going revision of
the first edition.” The preface to the second edition contains the following state-
ment: ‘I have tried to retain, as much as possible, the advantages of the Iirst edition
while taking into account the developments of the subject itself, its position in the
curriculum, and its applications to other fields.” This is the philosophy which has
guided the preparation of this third edition twenty more years later.

The second edition introduced one additional chapter on Perturbation Theory,
and changed the ordering of the chapter on Small Oscillations. In addition it added
a significant amount of new material which increased the number of pages by
about 68%. This third edition adds still one more new chapter on Nonlinear Dy-
namics or Chaos, but counterbalances this by reducing the amount of material in

several of the other chapters, by shortening the space allocated to appendices, by
considerably reducing the bibliography, and by omitting the long lists of symbols.
Thus the third edition is comparable in size to the second.

In the chapter on relativity we have abandoned the complex Minkowski space
in favor of the now standard real metric. Two of the authors prefer the complex
metric because of its pedagogical advantages (HG) and because it fits in well with
Clifford Algebra formulations of Physics (CPP), but the desire to prepare students
who can easily move forward into other areas of theory such as field theory and
general relativity dominated over personal preferences. Some modern notation
such as 1-forms, mapping and the wedge product is introduced in this chapter.

The chapter on Chaos is a necessary addition because of the current interest
in nonlinear dynamics which has begun to play a significant role in applications

of classical dynamics. The majority of classical mechanics problems and appli-
cations in the real world include nonlinearifies, and 1t 1s important for the student
to have a grasp of the complexities involved, and of the new properties that can
emerge. It is also important to realize the role of fractal dimensionality in chaos.
New sections have been added and others combined or eliminated here and
there throughout the book, with the omissions to a great extent motivated by the
desire not to extend the overall length beyond that of the second edition. A section

X



Preface to the Third Edition

was added on the Euler and Lagrange exact solutions to the three body problem.
In several places phase space plots and Lissajous figures were appended to illus-
trate solutions. The damped driven pendulum was discussed as an example that
explains the workings of Josephson junctions. The symplectic approach was clar-
ified by writing out some of the matrices. The harmonic oscillator was treated
with anisotropy, and also in polar coordinates. The last chapter on continua and
fields was formulated in the modern notation introduced in the relativity chap-
ter. The significances of the special unitary group in two dimensions SU(2) and
the special orthogonal group in three dimensions SO(3) were presented in more
up-to-date notation, and an appendix was added on groups and algebras. Special
tables were introduced to clarify properties of ellipses, vectors, vector fields and
1 -forms, canonical transformations, and the relationships between the spacetime
and svmplectic approaches.

Several of the new features and approaches in this third edition had been men-
tioned as possihilities in the preface to the second edition, such as properties of
group theory, tensors in non-Euclidean spaces, and “new mathematics™ of theoret-
ical physics such as manifolds. The reference to “One area omitted that deserves
special attention—nonlinear oscillation and associated stability questions™ now
constitutes the subject matter of our new Chapter 11 “Classical Chaos.” We de-
bated whether to place this new chapter after Perturbation theory where it fits
more logically. or before Perturbation theory where it is more likely to be covered
in class, and we chose the latter. The referees who reviewed our manuscript were
evenly divided on this question.

The mathematical level of the present edition is about the same as that of the
first two editions. Some of the mathematical physics, such as the discussions
of hermitean and unitary matrices, was omitted because it pertains much more
to quantum mechanics than it does to classical mechanics, and little used nota-
tions like dyadics were curtailed. Space devoted to power law potentials, Cayley-
Klein parameters, Routh’s procedure, time independent perturbation theory, and
the stress-energy tensor was reduced. In some cases reference was made to the
second edition for more details. The problems at the end of the chapters were
divided into “derivations” and “exercises,” and some new ones were added.

The authors are especially indebted to Michael A. Unseren and Forrest M.
Hoffinan of the Oak Ridge National laboratory for their 1993 compilation of
errata in the second edition that they made available on the Internet. It is hoped
that not too many new errors have slipped into this present revision. We wish to
thank the students who used this text in courses with us, and made a number of
useful suggestions that were incorporated into the manuscript. Professors Thomas
Sayetta and the late Mike Schuette made helpful comments on the Chaos chapter,
and Professors Joseph Johnson and James Knight helped to clarify our ideas
on Lie Algebras. The following professors reviewed the manuscript and made
many helpful suggestions for improvemeants: Yoram Alhassid, Yale University;
Dave Ellis, University of Toledo; John Gruber, San Jose State; Thomas Handler,
University of Tennessee; Daniel Hong, Lehigh University; Kara Keeter, Idaho
State University; Carolyn Lee; Yannick Meurice, University of Iowa; Daniel
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Marlow, Princeton University; Julian Noble, University of Virginia; Muhammad
Numan, Indiana University of Pennsylvania; Steve Ruden, University of Califor-
nia, Frvine: Jack Semura, Portland State University; Tammy Ann Smecker-Hane,
University of Califomia, Irvine; Daniel Stump, Michigan State University; Robert
Wald, University of Chicago; Doug Wells, Idaho State University.

It has indeed been an honor for two of us (CPP and JLS) to collaborate as
co-authors of this third edition of such a classic book fifty years after its first ap-
pearance. We have admired this text since we first studied Classical Mechanics
from the first edition in our graduate student days (CPP in 1953 and JLS in 1960),
and each of us used the first and second editions in our teaching throughout the
years. Professor Goldstein is to be commended for having written and later en-
hanced such an outstanding contribution to the classic Physics literature.

Above all we register our appreciation and acknolwedgement in the words of
Psalm 19,1:

01 ovpavor Sinyovvratl Sokav Ocod

Flushing, New York HERBERT GOLDSTEIN
Columbia, South Carolina CHARLES P. POOLE, JR.
Columbia, South Carolina JOHN L. SAFKO

July, 2000



CHAPTER

1.1 &

Survey of the
Elementary Principles

The motion of material bodies formed the subject of some of the earliest research
pursued by the pioneers of physics. From their efforts there has evolved a vast
field known as analytical mechanics or dynamics, or simply, mechanics. In the
present century the term “classical mechanics” has come into wide use to denote
this branch of physics in contradistinction to the newer physical theories, espe-
cially quantum mechanics. We shall follow this usage, interpreting the name to
include the type of mechanics arising out of the special theory of relativity. It is
the purpose of this book to develop the structure of classical mechanics and to
outline some of its applications of present-day interest in pure physics. Basic to
any presentation of mechanics are a number of fundamental physical concepts,
such as space, time, simultaneity, mass, and force. For the most part, however,
these concepts will not be analyzed critically here; rather, they will be assumed as
undefined terms whose meanings are famihar to the reader.

MECHANICS OF A PARTICLE

I.et r be the radius vector of a particle from some given ongin and v its vector
velocity:

dr
V= —.
al

(1.1)

The linear momentum p of the particle is defined as the product of the particle
mass and its velocity:

= Mmv. (1.2)

In consequence of interactions with external objects and fields, the particle may
experience forces of various types, e.g., gravitational or electrodynamic; the vec-
tor sum of these forces exerted on the particle is the total force F. The mechanics
of the particle is contained in Newton’s second law of motion, which states that
there exist frames of reference in which the motion of the particle is described by
the differential equation

1
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Oor

d

In most instances, the mass of the particle 1s constant and Eq. (1.4) reduces to

F=m-3—t=ma. (15)

where a Is the vector acceleration of the particle defined by

d®y
di?’

a= (1.6)
The equation of motion is thus a differential equation of second order, assuming
F does not depend on higher-order derivatives.

A reference frame in which Eq. (1.3) is valid is called an inertial or Galilean
system. Even within classical mechanics the notion of an inertial system is some-
thing of an idealization. In practice, however, it is usually feasible to set up a co-
ordinate system that comes as close to the desired properties as may be required.
For many purposes, a reference frame fixed in Earth (the “laboratory system”) is
a sufficient approximation to an inertial system, while for some astronomical pur-
poses it may be necessary to construct an inertial system by reference to distant
galaxies.

Many of the important conclusions of mechanics can be expressed in the form
of conservation theorems. which indicate under what conditions various mechan-
ical quantities are constant in time. Equation (1.3) directly furnishes the first of
these, the

Conservation Theorem for the Linear Momentum of a Particle: If the total force,
F, is zero, then p = 0 and the linear momertum, p, is conserved.

The angular momentum of the particle about point O, denoted by L, is defined
as

L=rxp, (1.7)

where r is the radius vector from O to the particle. Notice that the order of the
factors is important. We now define the moment of force or torque about O as

N=rxF. (1.8)

The equation analogous to (1.3) for N is obtained by forming the cross product of
r with Eq. (1.4):

d
— N = — , 1.9
rxF=N rxdr(mv) (1.9)
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Equation (1.9) can be written in a different form by using the vector identity:

d

—(rxmv) =vxmv+r x —(mv), (1.10)
at dt

where the first term on the right obviously vanishes. In consequence of this iden-
tity, Eq. (1.9) takes the form

d dL .
N=—(rx = — = L. 1.11
7 TxXm =5 (1-11)
Note that both N and L depend on the point O, about which the moments are
taken.

As was the case for Eq. (1.3), the torque equation, (1.11), also yields an imme-
diate conservation theorem, this time the

Conservation Theorem for the Angular Momentum of a Farticle: If the total
torque, N, is zero then L. = 0, and the angular momentum L is conserved.

Next consider the work done by the external force F upon the particle in going
from point 1 to point 2. By definition, this work is

2
Wiy = [ F.ds. (1.12)
4]

For constant mass (as will be assumed from now on unless otherwise specified),
the integral in Eq. (1.12) reduces to

dv () d )
[} —— — d =_ ig— ,
fF ds =m 7 vdit 5 [dt(v ydt

and therefore
I
2

The scalar quantity mv*/2 is called the kinetic energy of the particle and is de-
noted by T, so that the work done is equal to the change 1n the kinetic energy:

Wiz = —(v5 — vi). (1.13)

Wia =15 — 1. (1.14)

If the force field is such that the work Wy, is the same for any physically
possible path between points 1 and 2, then the force (and the system) is said to be
conservative. An alternative description of a conservative system 1s obtained by
imagining the particle being taken from point 1 to point 2 by one possible path
and then being returned to point 1 by another path. The independence of Wj2 on
the particular path implies that the work done around such a closed circuit is zero,
.e.

§F1d5=0. (1.13)
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Physically it is clear that a system cannot be conservative if friction or other dis-
sipation forces are present, because F « ds due to friction is always positive and
the integral cannot vanish.

By a well-known theorem of vector analysis, a necessary and sufficient condi-
tion that the work, W),, be independent of the physical path taken by the particle
is that F be the gradient of some scalar function of position:

where V 1s called the potential, or potential energy. The existence of V can be
inferred mtuitively by a simple argument. If Wy, is independent of the path of
integration between the end points 1 and 2. it should be possible to express Wy,
as the change in a quantity that depends only upon the positions of the end points.
This quantity may be designated by —V, so that for a differential path length we
have the relation

Fe«ds =—-dV
Or
gV
Ff - ==,
as

which is equivalent to Eq. (1.16). Notc that in Eq. (1.16) we can add to V any
quantity constant in space, without affecting the results. Hence the zero level of V
is arbitrary.

For a conservative system, the work done by the forces is

Wi = Vi — Vo, (1.17
Combining Eq. (1.17) with Eq. (1.14), we have the result
T+ Vi=T1T4 Vs, (1.13)

which states in symbols the

Energy Conservation Theorem for a Particle: If the forces acting on a particle
are conservative, then the totul energy of the particle, T + V, is conserved.

The force applied to a particle may in some circumstances be given by the
gradient of a scalar function that depends explicitly on both the position of the

particle and the time. However, the work done on the particle when it travels a
distance ds,

F.ds= _B_V ds,
ds
Is then no longer the total change in —V during the displacement, since V also

changes explicitly with time as the particle moves. Hence, the work done as the
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particle goes from point 1 to point 2 is no longer the difference in the function V
betwezn those points. While a total energy T 4+ V may still be defined, 1t is not
conserved during the course of the particle’s motion.

MECHANICS OF A SYSTEM OF PARTICLES

In generalizing the ideas of the previous section to systems of many particles,
we must distinguish between the external forces acting on the particles due to

sources outside the system. and internal forces on, say, some particle ¢ due to all
other particles in the system. Thus, the equation of motion (Newton's second law)

for the 7th particle is written as

ZF«” -+ Ffe) = I.)n (1 19)
J

where Ffe] stands for an external force, and F,, is the Internal force on the ith
particle due to the jth particle (F,,, naturally, is zero). We shall assume that the

F,; (like the Ff")) obey Newton’s third law of motion in its original form: that the
forces two particles exert on each other are equal and opposite. This assumption
(which does not hold for all types of forces) is sometimes referred to as the weak
law of action and reaction

Summed over all particles, Eq. (1.19) takes the form
d” ©)
ﬁZm,l‘, =ZF' +Z:FJ; (1'20)
{

The first sum on the right is simply the total external force F¢), while the second
term vanishes, since the law of action and reaction states that each pair F;; +F ,
is zero. To reduce the left-hand side, we define a vector R as the average of the
radul vectors of the particles, weighted in propottion to their mass:

The vector R defines a point known as the center of mass, or more loosely as the
center of gravity, of the system (cf. Fig. 1.1). With this definition, (1.20) reduces
to

d’R ) _ pie)
M- = Y F¥ =F®), (1.22)

which states that the center of mass moves as 1f the total external force were
acting on the entire mass of the system concentrated at the center of mass. Purely
internal forces, if the obey Newton’s third law, therefore have no effect on the
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#,

FIGURE 1.1 The center of mass of a system of particles.

motion of the center of mass. An oft-quoted example 15 the motion ot an exploding
shell—the center of mass of the fragments traveling as if the shell were still in a
single piece (neglecting air resistance). The same principle is involved in jet and
rocket propulsion. In order that the motion of the center of mass be unaffected,
the ejection of the exhaust gases at high velocity must be counterbalanced by the
forward motion of the vehicle at a slower velocity.

By Eq. (1.21) the total hnear momentum of the system,

ar; dR
P=  — = M— 23
Z:m dt Mdt (1.23)

is the total mass of the system times the velocity of the center of mass. Conse-
quently, the equation of motion for the center of mass, (1.23), can be restated as

the

Consenation Theorem for the Linear Momentum of a System of Particles: If the
total external force is zero, the total linear momentum is conserved.

We cobtain the total angular momentum of the system by forming the cross
product r; x p, and summing over i. If this operation is performed in Eq. (1.19),
there results, with the aid of the identity, Eq. (1.10),

Z(r, X P,) = Z %(r, xp)=L= :Zr; x F'¢) 4 er xF,;. (1.24)
i)

The last term on the right in (1.24) can be considered a sum of the pairs of the
form

r:ij;‘l‘l'J XF;j——"I:I';— ;)XFJI: (1.25)
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FIGURE 1.2 The vector r;; between the ith and jth particles.

using the equality of action and reaction But r; — r; is identical with the vector
r,; from j toi (ct. Fig. 1.2), so that the rnght-hand side of Eq. (1.25) can be wnitten
as

r!J XFJ;-

If the internal forces between two particles, in addition to being equal and oppo-
site, also lie alung the line joining the particles—a condition known as the strong
law of action and reaction—then all of these cross products vanish. The sum over
pairs 1s zero under this assumption and Eq. (1.24) may be written 1n the form

— =N, (1.26)

The tume derivative of the total angular momentum is thus equal to the moment
of the external force about the given point. Corresponding to Eq. (1.26) 1s the

Conservation Theorem for Total Angular Momentum. L is constant in time if the
applied (external) torque is zero.

(It is perhaps worthwhile to emphasize that this i1s a vector theorem; i.e., L,

will be conserved if N is zero, even if N and N ;‘3} are not zero.)

Note that the conservation of linear momentum in the absence of applied forces
assumes that the weak law of action and reaction is valid for the internal forces.
The conservation of the total angular momentum of the system in the absence of
applied torques requires the validity of the strong law of action and reaction—that
the Internal forces in addition be central. Many of the familiar physical forces,
such as that of gravity, satisfy the strong form of the law. But it is possible to
find forces for which action and reaction are equal even though the forces are not
central (see below). In a system involving moving charges, the forces between
the charges predicted by the Biot-Savart law may indeed violate both forms of
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the action and reaction law.* Equations (1.23) and (1.26), and their corresponding
conservation theorems, are not applicable in such cases, at least in the form given
here. Usually it is then possible to find some generalization of P or L thar is
conserved. Thus, 1n an isolated system of moving charges it is the sum of the
mechanical angular momentum and the electromagnetic “angular momentum’ of
the field that is conserved.

Equation (1.23) states that the total linear momentum of the system is the same
as 1f the entire mass were concentrated at the center of mass and moving with it.
The analogous theorem for angular momentum is more complicated. With the
origin O as reference point, the total angular momentum of the system is

L=Zr, X P;.
i

Let R be the radius vector from O to the center of mass, and let I’ be the radius
vector from the center of mass (o the ¢th particle. Then we have (cf. Fig. 1.3)

r,=r +R (1.27)
and
Vv, =V, +v
where
dR
V= —
dat

Center
of mass

FIGURE 1.3 The vectors involved in the shift of reference point for the angular momen-
tum.

*If two charges are moving uniformly with parallel velocity vectols that are not perpendicular to the
line joining the charges, then tae net mutual forces are equal and opposite but do not lie along the
vector between the charges. Consider, further, two charges moving (instantaneously) so as to “cross
the T,” 1.¢., onc charge moving directly at the other, which in turn 1s moving at right angles to the first
Then the second charge exerts a nonvanishing magnetic force on the first, without cxperiencing any
magnetic reaction force at that mstant.
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is the velocity of the center of mass relative to O, and

dr’
V= —1L
Y dl

1s the velocity of the ith particle relative to the center of mass of the system. Using
Eq. (1.27), the total angular momentum takes on the form

L=X;:R X m,v-l—'Zr: X m,v, + (Zm,rﬁ) xV+ R x %Zm,rﬁ.

The last two terms in this expression vanish, for both contain the factor }  m,r!,
which, it will be recognized, defines the radius vector of the center of mass in the
very coordinate system whose origin is the center of mass and is therefore a null
vector. Rewriting the remaining terms, the total angular momentum about O is

L=RxMv+) 1 xp, (1.28)
{

In words, Eq. (1.28) says that the total angular momentum about a point O is
the angular momentum of motion concentrated at the center of mass, plus the
angular momentum of motion about the center of mass. The form of Eq. (1.28)
emphasizes that in general L depends on the origin O, through the vector R. Only
il the center of mass 15 at rest with respect to O will the angular momentum be
independent of the point of reference. In this case, the first term in (1.28) vanishes,
and L, always reduces to the angular momentum taken about the center of mass.

Finally, let us consider the energy equation. As in the case of a single particle,
we calculate the work done by all forces in moving the system from an initial
configuration 1, to a final configuration 2:

2 2 2
w12=2f1 F,-ds,:Zfl 1?5""”-«1«3.&2]1 F, -ds,. (1.29)
i ! 7
1% ]

Again, the equations of motion can be used to reduce the integrals to

2 2 2
21:/1 F,«ciSzZ[1 m,ir,-v,dz,‘:Zfl d(%m,—v?).

Hence, the work done can still be written as the difference of the final and initial
kinetic energies:

where T, the total Kinetic energy of the system, is

1 2
T=EZm,u,. (1.30)
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Making use of the transformations to center-of-mass coordinates, given in Eq.
(1.27), we may also write T as

T =%Zr:m,(v+\f:) -(Y-I—Vf)

1 2, ] 2.y 4
EZm;U +*2'Zmzli TV 17 (!Zm!r:)’

and by the reasoning already employed in calculating the angular momentum, the
last term vanishes, leaving

1 1
T=5Mv2+-2-2m,v:2 (1.31)
i

The kinetic energy, like the angular momentum, thus also consists of two parts:
the kKinetic energy obtalned if all the mass were concentrated at the center of mass,
plus the kinetic energy of motion about the center of mass.

Consider now the right-hand side of Eq. (1.29). In the special case that the
external forces are derivable in terms of the gradient of a potential, the first term
can be written as

2

ZIIZFE‘?).(ZSI =—Z‘/I‘2VIVI-dS;=—ZV; :
{ i i

1

where the subscript i on the del operator indicates that the derivatives are with
respect to the components of r,. If the internal forces are also conservative, then

the mutual forces between the ith and jth particles, F;, and F,,, can be obtained
from a potential function V;,. To satisfy the strong law of action and reaction, V;,

can be a function only of the distance between the particles;
Vi = Vi, (L, — 1, D). (1.32)
The two forces are then automatically equal and opposite,
F,, =-V,V}, =+V,V,, = -F,;, (1.33)
and lie along the line joining the two particles,

VVlr—r,)=0; —1,)f, (1.34)

where j is some scalar function. If V,, were also a function of the difference of
some other pair of vectors associated with the particles, such as their velocities
or (to step into the domain of modern physics) their intrinsic “spin™ angular mo-
menta, then the forces would still be equal and opposite, but would not necessarily
lie along the direction between the particles.
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When the forces are all conservative, the second term n Eq. (1.29) can be
rewritten as a suin over pairs of particles, the terms for each pair being of the
form

2
_ﬁ (V. Vi - ds, + V, Vi -de).

If the difference vector r. —r; is denoted by r,;, and if V;; stands for the gradient
with respect to r,,, then

and
dS, —dSJ =dr3 "'dr] — dri’jt

so that the term for the i, pair has the form

—'fv;}“!” ‘dr;}-

The total work arising from internal forces then reduces to

1 2 1
L Vavan =3 T,
>4

I
17

(1 35)

2
1

The factor % appears In Eq. (1.35) because in summing over both { and j each
member of a given pair 's included twice, first in the i summation and then in the

J summation.
From these considerations, it is clear that if the external and mternal forces are

both derivable from potentials it is possible to define a totai potential energy, V,
of the system,

V=ZV,;+%ZVU. (1.36)
| i

such that the total energy T 4 V is conserved, the analog of the conservation
theorem (1.18) for a single particle.

The second term on the right in Eq. (1.36) will be called the internal potential
energy of the system. In general, it need not be zero and, more important, it may
vary as the system changes with time. Only for the particular class of systems
known as rigid bodies will the internal potential always be constant. Formally,
a rigid body can be defined as a system of particles in which the distances r;,
are fixed and cannot vary with time. In such case, the vectors dr;; can only be
perpendicular to the corresponding r;;, and therefore to the F;;. Therefore, mn a
rigid body the internal forces do no work, and the internal potential must remain
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constant. Since the total potential is in any case uncertain to within an additive
constant, an unvarying internal potential can be completely disregarded in dis-
cussing the motion of the system.

CONSTRAINTS

From the previous sections one might obtain the impression that all problems in
mechanics have been reduced to solving the set of differential equations (1.19):

m;F; — FZ(E) - ZF*’”-
J

One merely substitutes the various forces acting upon the particles of the system,
turns the mathematical crank, and grinds out the answers! Even from a purely
physical standpoint, however, this view is oversimplified. For example, it may be
necessary to take into account the constraints that limit the motion of the system.
We have already met one type of system involving constraints, namely rigid bod-
ies, where the constraints on the motions of the particles keep the distances r,,
unchanged. Other examples of constrained systems can easily be furnished. The
beads of an abacus are constrained to one-dimensional motion by the supporting
wires. Gas molecules within a container are constrained by the walls of the ves-
sel to move only inside the container. A particle placed on the surface of a solid
sphere 1s subject to the constraint that it can move only on the surface or in the
region exterior to the sphere.

Constraints may be classified in various ways, and we shall use the following
system. If the conditions of constraint can be expressed as equations connecting
the coordinates of the particles (and possibly the time) having the form

Fry,r2,13,...,1) =0, (1.37)

then the constraints are said to be holonomic. Perhaps the simplest example of
holonomic constraints is the rigid body, where the constraints are expressed by
equations of the form
2 2 _
(X, — 1)) —¢;, = 0.
A particle constrained to move along any curve or on a given surface is another

obvious example of a holonomic constraint, with the equations defining the curve
or surface acting as the equations of a consiraint.

Constraints nut expressible in this fashion are called nonholonomic. The walls
of a gas container constitute a nonholonomic constraint. The constraint involved
in the example of a particle placed on the surface of a sphere is also nonholo-
nomic, for it can be expressed as an inequality

r*—a* >0
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(where a is the radius of the sphere), which is not in the form of (1.37). Thus, in
a gravitational field a particle placed on the top of the sphere will slide down the
surface part of the way but will eventually fall off.

Constraints are further classified according to whether the equations of con-
straint contain the time as an explicit variable (rheonomous) or are not explicitly
dependent on time (scleronomous). A bead sliding on a rigid curved wire fixed
in space is obviously subject to a scleronomous constraint; if the wire is moving
in some prescribed fashion, the constraint 1s theonomous. Note that if the wire
moves, say, as a reaction to the bead’s motion, then the tune dependence of the
constraint enters in the equation of the constraint only through the coordinates
of the curved wire (which are now part of the system coordinates). The overall
constraint is then scleronomous.

Constraints introduce two types of difficulties in the solution of mechanical
problems. First, the coordinates r, are no longer all independent, since they are
connected by the equations of constraint; hence the equations of motion (1.19)
are not all independent. Second, the forces of constraint, e.g., the force that the
wire exerts on the bead (or the wall on the gas particle), i1s not furnished a pri-
ori. They are among the unknowns of the problem and must be obtained from the
solution we seek. Indeed, imposing constraints on the system 1s simply another
method of stating that there are forces present in the problem that cannot be spec-
ified directly but are known rather in terms of their effect on the motion of the
system.

In the case ot holonomic constraints, the first difficulty is solved by the intro-
duction of generalized coordinates. So far we have been thinking implicitly in
terms of Cartesian coordinates. A system of N particles. free from constraints,
has 3N independent coordinates or degrees of freedom. If there exist holonomic
constraints, expressed in & equations in the form (1.37), then we may use these
equations to eliminate k of the 3N coordinates, and we are left with 3N — & inde-
pendent coordinates, and the system 1s said to have 3N — & degrees of freedom.

This elimmation of the dependent coordinates can be expressed in another way,
by the introduction of new, 3N — k, independent variables g1, g2, ..., 938—% 1D
terms ot which the old coordinates ry, I3, ..., ry are expressed by equations of
the form

r=ri(q1,92 ..., 93Nk )

(1.38)
' = I'N(Qh q2, .. - s Q3N -k t)

containing the constraints in them implicitly. These are frransformation equations
from the set of (r;) variables to the (g;) set, or alternatively Egs. (1.38) can be con-
sidered as parametric representations of the (r;) variables. It is always assumed
that we can also transform back fiom the (g;) to the (r;) set, i.e., that Egs. (1.38)
combined with the k& equations of constraint can be inverted to obtain any g, as a
function of the (r;) variable and time.
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Usually the generalized coordinates, ¢g;, unlike the Cartesian coordinates, will
not divide into convenient groups of three that can be associated together to form
vectors. Thus, in the case of a particle constrained to move on the surface of a
sphere, the two angles expressing position on the sphere, say latitude and longi-
tude, are obvious possible generalized coordinates. Or, in the example of a double
pendulum moving in a plane (two particles connected by an inextensible Light
rod and suspended by a similar rod fastened to one of the particles), satisfactory
generalized coordinates are the two angles 8, 6. (Cf. Fig. 1.4.) Generalized co-
ordinates, in the sense of coordinates other than Cartesian, are often useful in
systems without constraints. Thus, in the problem of a particle moving in an ex-
ternal central force field (V = V(r)), there is no constraint involved, but 1t is
clearly more convenient to use spherical polar coordinates than Cartesian coordi-
nates. Do not, however, think of generalized coordinates in terms of conventional
orthogonal position coordinates. All sorts of quantities may be impressed to serve
as generalized coordinates. Thus, the amplitudes in a Fourier expansion of r, may
be used as generalized coordinates, or we may find it convenient to employ quan-
tities with the dimensions of energy or angular momentum.

If the constraint is nonholonomic, the equations expressing the constraint can-
not be used to eliminate the dependent coordinates. An oft-quoted example of
a nonholonomic constraint is that of an object rolling on a rough surface with-
out slipping. The coordinates used to describe the system will generally involve
angular coordinates to specify the orientation of the body, plus a set of coordi-
nates describing the location of the point of contact on the surface. The constraint
of “rolling” connects these two sets of coordinates; they are not independent. A
change in the position of the point of contact inevitably means a change in its
orientation. Yet we cannot reduce the number of coordinates, for the “rolling”
condition is not expressible as a equation between the coordinates, in the manner
of (1.37). Rather, it is a condition on the velncities (i e , the point of contact is
stationary), a differential condition that can be given in an integrated form only
after the problem is solved.

FIGURE 1.4 Double pendulum.
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FIGURE 1.5 Vertical disk rolling on a horizontal plane.

A simple case will illustrate the point. Consider a disk rolling on the horizontal
xy plane constrained to move so that the plane of the disk is always vertical.
The coordinates used to describe the motion might be the x. y coordinates of the
center of the disk, an angle of rotation ¢ zbout the axis of the disk, and an angle
¢ between the axis of the disk and say, the x axis (cf. Fig 1.5). As a result of the
constraint the velocity of the center of the disk, v, has a magnitude proportional

t0 ¢,
V= cz(f;,

where «a 1s the radius of the disk, and its direction is perpendicular to the axis of
the disk:

X =vSsing

y = —vcosf.
Combining these conditions, we have two differential equations of constraint:

dx —asmédg =0,

(1.39)

dy +acosbde =0.
Neither of Egs. (1.39) can be integrated without in fact solving the problem,; i.e.,
we cannot find an itegrating factor f(x, y, €, @) that will turn either of the equa-
tions into perfect differentials (ct. Derivation 4).* Hence, the constraints cannot

be reduced to the form of Eq. (1.37) and are therefore nonholonomic. Physically
we can see that there can be no direct functional relation between ¢ and the other

coordinates x, y, and @ by noting that at any point on its path the disk can be

*In principle, an integrating factor can always be found for a first-order diferential equation of con-
straint in systems involving only two coordinates and such constraints are therefore holonomic. A
famliar example 1s the two-dimensional motion of a circle rolling on an inclined plane.
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made to roll around in a circle tangent to the path and of arbitrary radius. At the
end of the process, x, y, and @ have been returned to their original values, but ¢
has changed by an amoant depending on the radius of the circle.

Nonintegrable differential constraints of the form of Eqs. (1.39) are of course
not the only type of nonholonomic constraints. The constraint conditions may

involve higher-order derivatives, or may appear in the form of inequalities, as we
have seen.

Partly because the dependent coordinates can be eliminated, problems involv-
ing holonomic constraints are always amenable to a formal solution. But there is
no general way to attack nonholonomic examples. True, if the constraint i$ nonin-
tegrable, the differential equations of constraint can be introduced mto the prob-
lem along with the differential equations of motion, and the dependent equations
eliminated, in effect, by the method of Lagrange multiphers.

We shall return to this method at a later point. However, the more vicious cases
of nonholonomic constraint must be tackled individually, and consequently n the
development of the more formal aspects of classical mechanics, it 1s almost 1nvari-
ably assumed that any constraint, if present, is holonomic. This restriction does
not greatly limit the applicability of the theory, despite the fact that many of the
constraints encountered in everyday life are nonholonomic. The reason 1s that the
entire concept of constraints imposed m the system through the medium of wires
or surfaces or walls 18 particularly appropriate only in macroscopic or large-scale
problems. But today physicists are more interested 1n atomic and nuclear prob-
lems. On this scale all objects, both in and out of the system, consist alike of
molecules, atoms, or smaller particles, exerting definite forces, and the notion of
constraint becomes artificial and rarely appears. Constraints are then used only
as mathematical idealizations to the actual physical case or as classical approxi-
mations to a quantum-mechanical property, e.g., rigid body rotations for “spin.”
Such constraints are always holonomic and fit smoothly into the framework of the
theory.

To surmount the second difficulty, namely, that the forces of constraint are
unknown a priorl, we should like to so formulate the mechanics that the forces
of constraint disappear. We need then deal only with the known applied forces. A
hint as to the procedure to be followed is provided by the fact that in a particular
system with constraints i e arigid body, the work done by internal forces (which
are here the forces ot constraint) vanishes. We shall follow up this clue i the
ensuing sections and generalize the ideas contained 1n it.

D’ALEMBERT’S PRINCIPLE AND LAGRANGE’S EQUATIONS

A virtual (infinitesimali displacement of a system refers to a change in the con-
figuration of the system as the result of any arbitrary infinitesimal change of the
coordinates or,, consistent with the forces and constraints imposed on the system
al the given instant . The displacement 1s called virtual to distinguish it from an
actual displacement of the system occurring in a time interval d¢, during which
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the forces and constraints may be changing. Suppose the system is in equilibrium;
i.e., the total force on each particle vanishes, F; = 0. Then clearly the dot product
F, . dr,, which is the virtual work of the force F, n the displacement dr,, also

vanishes. The sum ot these vanishing products over all particles must likewise be
ZEero:.

ZF, .81, = 0. (1.40)

As yet nothing has been said that has any new physical content. Decompose F,
into the apphed force, Ff“), and the force of constraint, f,

F, = F“ 41 (1.41)

so that Eq. (1.40) becomes

EFf“) Ar+ Y Foodr =0 (1 42)
I

{

We now restrict ourselves to systems for which the net virtual work of the
forces of constraint is zero. We have seen that this condition holds true for rigid
bodies and i1t 1s valid for a large number of other constraints. Thus, 1f a particle is
constrained to move on a surface, the force of constraint 15 perpendicular to the
surface, while the virtual displacement must be tangent to it, and hence the virtual
work vanishes. This 1s no longer true if sliding friction forces are present, and
we must exclude such systems from our formulation. The restriction 1s not un-
duly hampering, since the friction is essentially a macroscopic phenomenon. On
the other hand, the forces of rolling friction do not violate this condition, since the
forces act on a point that is momentarily atrest and can do no work 1n an 1nfinites-
imal displacement consistent with the rolling constraint. Note that if a particle is

constrained to a surface that is itself moving 1n time, the force of constraint is
instantaneously perpendicular to the surface and the work durnng a virtual dis-
placement is still zero even though the work during an actual displacement in the
time d¢ does not necessarily vanish.

We therefore have as the condition for equilibrium of a system that the virtual
work of the applied forces vanishes:

Y F®.or, =0 (1.43)

I

Equation (1.43) 1s often called the principle of virtual work. Note that the coef-

ficients of dr; can no longer be set equal to zero; i.e., in general Ffa) 4 0, since
the dr; are not completely independent but are connected by the constraints. In
order to equate the coefficients to zero, we must transform the principle into a
form involving the virtual displacements of the g,, which are independent. Equa-
tion (1.43) satisfies our needs in that it does not contain the f;, but 1t deals only
with statics; we want a condition involving the general motion of the system.
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To obtain such a principle, we use a device first thought of by James Bernoulli
and developed by D’ Alembert. The equation of motion,

F: — f’z:
can be written as
F: —]-)r — 01

which states that the particles in the system will be in equilibrium under a force
equal to the actual force plus a “reversed effective force” —p;. Instead of (1.40),

we can immediately write

Z(Fr —Pp1) o1 =0, (1.44)

and, making the same resolution 1nto applied torces and torces of constraint, there
results

Y FY —p) o+ Y f - 8r; =0.
1 [

We again restrict oursclves to systems for which the virtual work of the forces of
constraint vanishes and therefore obtain

D F" —pp)-or, =0, (1.45)

which 1s often called D’'Alembert’s principle. We have achieved our aim, in that
the forces of constraint no longer appear. and the superscript > can now e
dropped without ambiguity. It is still not in a useful form to furnish equations
of motion for the system. We must now transform the principle into an expression
involving virtual displacements of the generalized coordinates, which are then in-
dependent of each other (for holonomic constraints), so that the coefficients of the
Aq, can be set separately equal to zero.

The translation fromr, to g, language starts from the transformation equations
(1.38),

I =ri(q1,92 -+ qn, t) (1.45")

(assuming n independent coordinates), and is carried out by means of the usual
“chain rules” of the calculus of partial differentiation. Thus, v; is expressed in
terms of the g; by the formula

V==Y —g (1.46)
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Similarly, the arbitrary virtual displacement ér, can be connected with the virtual
displacements dg, by

)
s, =Y =L ag, (1 47)

Note that no variation of time, §t, 1s involved here, since a virtual displacement
by definition considers only displacements of the coordinates. (Only then 1s the
virtual displacement perpendicular to the force of constraint if the constraint itselt
1S changing in time.)

In terms of the generalized coordinates, the virtual work of the K, becomes

=Y 0,8q,. (1.48)
where the Q; are called the components of the generalized jorce, defined as
or,
Q, =) F.—. (1.49)
,- 94,

Note that just as the ¢’s need not have the dimensions of length, so the Q’s do
not necessarily have the dimensions of force, but Q,8g, must always have the
dimensions of work. For example, @, might be a torque N, and dg; a differential
angle d6,, which makes N, 46, a differential of work.

We turn now to the nther other term mvolved m Eq. (1.45), which may be
written as

Zi); . 3]‘; = mef'f ¢ OT; .

I

Expressing dr; by (1.47}, this becomes
. Or
Z m, I', * a_l qu .
] 9;
Consider now the relation

. ( l‘; d ] 31'; . d (81‘,‘ )- o
E ¢ — = E — s« —— )V —m,r, s — | — . 1.50
I m, r, an , [d! (mzr: aq}) m, I, 77 an ( )

-

In the last term of Eq. (1.50) we can interchange the differentiation with respect
to ¢ and ¢,, for, in analogy to (1.46).
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d (Br, ) Y Z 3°r, ; 621‘,
dt \ 0a; 09, 6q}6qk 3%31“
av;
— B_c;:’
by Eq. (1.46). Further, we also see from Eq. (1.46) that

dv;  dr
g, 9q;
Substitution of these changes in (1.50) leads to the result that

me..ﬂ_z[i(m .ﬁ!’_r_)_m.v 21]
: i1 an I dt S | aé} I ¥ aq} £

and the second term on the left-hand side of Eq. (1.45) can be expanded into

Sléf3 i) pi-ofo

Identifying » . %m ;v> with the system kinetic energy 7, D’Alembert’s principle
(cf. Eq. (1.45)) becomes

d (8T T ]
)3 I ke (—) ] QJ} 8q, =0. (1.52)

3‘?} 39’1

(1.51)

Note that 1n a system of Cartesian coordinates the partial derivative of 7 with

respect to g, vamshes. Thus, speaking in the language of differential geomeury,
this term arises from the curvature of the coordinates g,. In polar coordinates,

e.g., itis in the partial derivative of 7 with respect to an angle coordinate that the
centripetal acceleration term appears.

Thus far, no restriction has been made on the nature of the constraints other
than that they be workless in a virtual displacement. The variables g, can be any
set of coordinates used to describe the motion of the system. If, however, the con-
stramts are holonomic, then it is possible to find sets of independent coordinates
g, that contain the constraint conditions implicitly in the transformation equations
(1.38). Any virtual displacement 8¢, 1s then independent of dgx, and therefore the
only way for (1.52) to hold is for the individual coefficients to vanish:

d (0T ol
— _ - — » 1-53
dt (34?1 ) 0q, < )

There are n such equations in all.
When the forces are derivable from a scalar potential function V,

F. =-V,V.
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Then the generalized forces can be written as
Q — F * T = = V.,V . —,
j Z;: - dg, Z:: - 9g)

which is exactly the same expression for the partial derivative of a function
—V(r),rz, ..., Iy, t) with respect to g;:

oV

= —- (1.54)
1= "5
Equations (1.53) can then be rewritten as
a ﬂ) A Clinl AR (1.55)
dt \ 04 0g;

The equations of motion in the form (1.53) are not necessarily restricted to conser-
vative systems, only if V' is not an explicit function of timc is the system conserva-
tive (cf. p. 4). As here defined, the potential V does not depend on the generalized
velocities. Hence, we can include a term m V in the partial derivative with respect

to g,:

d (B(T—V))_ (T — V) ~0
dt \ g, 8q,
Or, defining a new function, the Lagrangian L, as
L=T-YV, (1.56)
the Eqs. (1.53) become
4 (E) _oL (1.57)
dt \ 94, 09q,

expressions referred to as “Lagrange’s equations.”

Note that for a particular set of equations of motion there 1s no unique choice
of Lagrangian such that Eqs (1 57) lead to the equations of motion in the given
generalized coordinates. Thus, in Derivations 8 and 10 itis shown thatif L{q, g, t)
is an approximate Lagrangian and F(g,?) is any differentiable function of the
generalized coordinates and time, then

: dF
L'g.4.0)=Lg-¢. D+ — (1.57)
is a Lagrangian also resulting in the same equations of motion. It is also often
possible to find alternative Lagrangians beside those constructed by this prescrip-
tion (see Exercise 20). While Eq. (1.56) 1s always a suitable way to construct a
Lagrangian for a conservative system, it does not provide the only Lagrangian

suitable for the given system.
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VELOCITY-DEPENDENT POTENTIALS AND
THE DISSIPATION FUNCTION

Lagrange’s equations can be put in the form (1.57) even if there is no potential
function, V, in the usual sense, providing the generalized forces are obtained from
a function U(g,, ¢,) by the prescription

oU d /73U
= —— 4 = — ), 1.58
2 dg, T dat (3‘?}) (2:59)

In such case, Eqgs. (1.57) still follow from Egs. (1.53) with the Lagrangian given
by

L=T-U. (1.59)

Here U may be called a “generalized potential,” or “velocity-dependent poten-
tial.” The possibility of using such a “potential” is not academic; it applies to one
very important type of force field, namely. the electromagnetic forces on moving
charges. Considering its importance, a digression on this subject is well worth-
while.

Consider an electric charge, g, of mass m moving at a velocity. v, in an other-
wise charge-free region containing both an electric field, E, and a magnetic field.
B, which may depend upon time and position. The charge experiences a force,

called the Lorentz force, given by
F =g[E + (v x B)]. (1.60)

Both E(z, x, y, 2) and B(z, x, vy, 7) are continuous functions of time and position
derivable from a scalar potential ¢ (¢, x, y, ) and a vector potential A(z, x, y, 2)

by

E=-V¢~— (1.612)

and
B=V xA. (1.61b)

The force on the charge can be derived from the following velocity-dependent
potential energy

U=qg¢p —gA-v, (1.62)
so the Lagrangian, L =T — U, is

L= %mvz—qu+qA-v. (1.63)
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Considering just the x-component of Lagrange’s equations gives

. dA¢ dA, dA, (pr dAx)
— - ~ 1 . 1'
mx q(ux — oyt 8):) a| -+ (1.64)

The total time derivative of A, is related to the particle time derivative through

dA, O0A

X
— e V
dt ar TV Ax
= . . 1.65
Equation (1.61b) gives
dA, dA 0A dA
B), = v, { — — —= : "i).
(v x B)s U}(ax 8y)+vz(3x 0z

Combining these expressions gives the equation of motion in the x-direction

On a component-by-component comparison, Egs. (1.66) and (1.60) are 1dentical,
showing that the Lorentz force equation is derivable from Eqs. (1.61) and (1.62).

Note that if not all the forces acting on the system are derivable from a poten-
tial, then Lagrange’s equations can always be written in the form

d {dL dL

. A — Q IE

dt \ 9q; dq,
where L contains the potential of the conservative forces as before, and Q, rep-
resents the forces not arising from a potential. Such a situation often occurs when

frictional forces are present. It frequently happens that the frictional force 1s pro-
portional to the velocity of the particle, so that its x-component has the form

Ff;,, — _k_xvt.

Frictional forces of this type may be denved in terms of a function 7, known as
Rayleigh’s dissipation function, and defined as

1 2 2 2
F=2Y (v, + g0, + oo ). (1.67)

4

whers the summation is over the particles of the system. From this definition 1t 18
clear that

dF

v,

Fg = —

X
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or, symbolically,
Fr=-V,F. (1.68)

We can also give a physical interpretation to the dissipation function. The work
done by the system against friction is

dWs = —Fs-dr=—Fy-vdt = (kxvﬁ +k3’v§ —kzvg) dt.

Hence, 2F is the rate of energy dissipation due to friction. The component of the
genceralized force resulting from the force of friction is then given by

Q}=2Fﬂ.&=—.2vv}‘.ir_"
J

(1.69)

An example 1s Stokes’ law, whereby a sphere of radius 2 moving at a speed
v, in a medium of viscosity n experiences the frictional drag force F ¢ = 6 nav.
The Lagrange equations with dissipation become

d (8L 9L 8F
| — - =4 = =0 1.70
7 (ac;,) + — : (1.70)

so that two scalar functions, L and F, must be specified to obtain the equations
of motion.

SIMPLE APPLICATIONS OF THE LAGRANGIAN FORMULATION

The previous sections show that for systems where we can define a Lagrangian,
1.€., holonomic systems with applied forces derivable from an ordinary or gen-
eralized potential and workless constraints, we have a very convenient way of
setting up the equations of motion. We were led to the Lagrangian formulation
by the desire to eliminate the forces of constraint from the equations of motion,
and 1n achieving this goal we have obtained many other benefits. In setting up the
original form of the equations of motion, Egs. (1.19), it is necessary to work with
many vector forces and accelerations. With the Lagrangian method we only deal
with two scalar functions, T and V', which greatly simplifies the problem.

A straightforward routine procedure can now be established for all problems
of mechanics to which the Lagrangian formulation is applicable. We have only to
write T and V in generahized coordinates, form L from them, and substitute in
(1.57) to obtain the equations of motion. The needed transformation of 7 and V

from Cartesian coordinates to generalized coordinates is obtained by applying the
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transformation equations (1.38) and (1.45"). Thus, 7 is given in general by

2
1 1 ar, . or
T=Z§m'”‘2=25m'( Iq’ a;) |
{ ! 7

It is clear that on carrying out the expansion, the expression for T in generalized
coordinates will have the form

] )
T=Mo+) Myg;+5 ) Mikde. (L.71)
J Ik

where Mo, M,, M are definite functions of the r’s and 7 and hence of the g's
and ¢. In fact, a comparison shows that

1 or, 2
MO—E_mt(at) :

Br, Br,
M; : 1.72
Z S Bq} (1.72)

and

M, = m, — :
I Z | 3% 3‘3-’:

Thus, the kinetic energy of a system can always be written as the sum of three
homogeneous functions of the generalized velocities,

'=Ty+TH +1, (1.73)

where Tj is independent of the generalized velocities, T} is linear in the velocities,
and 73 is quadratic in the velocities. If the transformation equations do not contain
the time explicitly, as may occur when the constraints are independent of time

(scleronomous), then only the last term in Eq. (1.71) is nonvanishing, and 7 is
always a homogeneous quadratic form in the generalized velocities.
Let us now consider simple examples of this procedure:

1. Single particle in space
(a) Cartesian coordinates
(b) Plane polar coordinates

2. Atwood’s machine
3. Time-dependent constraint—bead sliding on rotating wire

1. (a) Motion of one particle: using Cartesian coordinates. The generalized
forces needed in Eq. (1.33) are obviously Fy, Fy, and F;. Then
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of _doT o 0
dx dy Pz
aT - oT e oT
ox 0 ay T T
and the equations of motion are
d d d .
— — . —_— —_— F,, S— — F . .
S mx)=Fy,  —my)=Fy, —(mz)=F (1.74)

We are thus led back to the original Newton’s equations of motion.

(b) Motion of one particle: using plane polar coordinates. Here we must ex-
press T in terms of 5 and 8. The equations of transformation, i.e., Egs. (1.38), in
this case are simply

X =rcost
y=rsing.
By analogy to (1.46), the velocities are given by

X =rcosé -~ r@sind,

y = Fsinf +rb cosb.

The kinetic energy T = %m(i'2 + y%) then reduces formally to
T =im|i?+(r6)’]. (1.75)

Analternative derivation of Eq. (1.75) is obtained by recognizing that the plane
polar components of the velocity are » along r, and @ along the direction per-

pendicular to 7, denoted by the unit vector n. Hence, the square of the velocity
expressed in polar coordinates is simply 7+ (r8)*. With the aid of the expression

dr = tdr +r0de +kdz

for the differential position vector, dr, in cylindrical coordinates, where r and

@ are unit vectors in the r and @-directions, respectively, the components of the
generalized [oree can be obtained from the definition, Eq. (1.49),

QS

r

=
ar

" 96

| ) F.r=F,,

Qr

F

Op =F-ré=7‘F9,
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FIGURE 1.6 Denvative of r with respect to 5.

since the derivative of r with respect to 6 is, by the definition of a denvative, a
vector in the direction of @ (cf. Fig. 1.6). There are two generalized coordinates,
and therefore two Lagrange equations. The derivatives occurring in the r equation
arc

oT _ 52 T _ . d (BT)—m;:
ar 0 e dt\aF )

and the equation itself i«
mi — mr* = F,,

the second term being the centripetal acceleration term. For the @ equation, we
have the derivatives

37 31 : d . . ,

9L = 0, -d—- = mr*8, — (mrzﬁ) = mr‘8 + 2mrré,

06 ¢0 dt

s0 that the equation becomes

d : b .

= (mrzﬁ) — mr20 4+ 2mri@ = rFp.

Note that the left side of the equation is just the time derivative of the angular
momentum, and the right side is exactly the applied torque, so that we have simply

rederived the torque equation (1.26), where L = mr20 and N = rFg.

2. Atwood’s machine—(See Fig. 1.7) an example of a conservative system
with holonomic. scleronomous constraint (thc pullcy is assumed frictionless and
massless). Clearly there is only one independent coordinate x, the position of
the other weight being determined by the constraint that the length of the rope
between them is /. The potential energy 1s

V = —Mgx — Mag(l — x),
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FIGURE 1,7 Atwood’s machine.

while the kinetic energy is
T =3 (M + Mp) i*.
Combining the two, the Lagrangian has the form
L=T-V =g (M +M)i*+ Mgx+ Mgl — x).

There is only one equation of motion, involving the derivatives

6L
X

oL :
0x

so that we have
My + M) x =My — M) g,

or

. M —M
¥ = ————g
My + Mo

which 1s the familiar result obtained by more elementary means. This trivial prob-
lem emphasizes that the forces of constraint—here the tension in the rope—
appear nowhere in the Lagrangian formulation. By the same token, neither can
the tension in the rope be found directly by the Lagrangian method.

3. A bead (or ring) shding on a uniformly rotating wire in a force-free space.
The wire 1s straight, and is rotated uniformly about some fixed axis perpendicular
to the wire. This example has been chosen as a simple illustration of a constraint
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being time dependent, with the rotation axis along z and the wire in the xy plane.
The transformation equations explicitly contain the time.

X = r COS wi. (w = angular velocity of rotaticn)

y = rsin @t. (r = distance along wire from rotation axis)

While we could then find T (here the same as L) by the same procedure used to
obtain (1.71), it. is simpler to take over (1.75) directly, expressing the constraint
by the relation 8 = w:

T=-%-m(;'"2+r2 2)..

Note that T is not a homogeneous quadratic function of the generalized velocities,
since there is now an additional term not involving 7. The equation of motion is
then

. )
mr =mrw” =0

or

F = ro?,
which 1s the familiar simple harmonic oscillator equation with a change of sign.
The solution r = ¢ shows that the bead moves exponentially outward because
of the centripetal acceleration. Again, the method cannot furnish the force of con-
straint that keeps the bead on the wire. Equation (1.26) with the angular momen-

tum, L = mriw?e®. provides the force F = N/r, which produces the constraint
force, F = mrw*e®”, acting perpendicular to the wire and the axis of rotation.

DERIVATIONS

1. Show that for 2 single particle with constant mass the equation of motion implies the
following differential equation for the kinetic energy:

ar _
dr

while if the mass varies with time the corresponding equation i3

F-.v

d(mT)

F.p
it P

2. Prove that the magnitude R of the position vector for the center of mass from an
arbitrary origin is given by the equation

1
M*R* =M}y mr; - Y mym,r].
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3.

Suppose a system of two particles is known to obey the equations of motion, Egs.
(1.22) and (1.26). From the equations of the motion of the individual particles show
that the internal forces between particles satisfy both the weak and the strong laws

of action and reaction The argument may be generalized to a system with arbitrary
number of particles, thus proving the converse of the arguments leading to Egs. (1.22)

and (1.26).

. The equations of constraint for the rolling disk, Egs. (1.39), are special cases of gen-

erzl linear differential equations of constraint of the form

n
ZSI (x1,-..,xp)dx, = 0.
1=1

A constraint condition of this type is holonomic only if an integrating function
f(x1,..., xp) can be found that turns it into an exact differential. Clearly the func-
tion must be such that

d(fg) _ _a_(fgj)
dax, 0X,

forall i % j. Show that no such integraung factor can be found for either of Egs.
(1.39).

Two wheels of radius ¢ are mounted on the ends of a common axle of length b such

that the wheels rotate independently. The whole combination rolls without slipping on
a plane, Show that therz are two nonholonomic equations of constraint,

cos@dx 4+ sinfdy =0
sinfdx — cosfBdv = %a (d¢ +do’),

(Where 6, ¢, and ¢’ have meanings similar to those in the problem of a single vertical
disk, and (x, y) are the coordinates of a point on the axle midway between the two

wheels) and one holonomic equation of constraint,
Q
0=C— };(¢'-¢’)~

where C is a constant,

A particle moves in the xy plane under the constraint that its velocity vector is al-
ways directed towards a point on the x axis whose abscissa is some given function of
time f (). Show that for f(t) differentiable, but otherwise arb.trary, the constraint is
norholonomic.

Show that Lagrange’s equations in the form of Egs. (1.53) can also be written as

These are sometimes known as the Nielsen form of the Lagrange equations.

If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s equa-
tions, show by direct substitution that
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9.

10.

dF({_?l, ...,q;;,t)
dt

also satisfies Lagrange’s equations where F is any arbitrary, but differentiable, func-
tlon of its arguments.

L'=L+

The electromagnetic field is invariant under a gauge transformation of the scalar and
vector potential given by

A—> A+Vi(r, 1),

where i 1s arbitrary (but differentiable). What effect does this gauge transformation
have on the Lagrangian of a particle movingin the electromagnetic field? Is the motion
affected?

Let gy,....qn be a set of independent generalized coordinates for a system of »
degrees of freedom, wi:h a Lagrangian L(g, ¢, ¢). Suppose we transform to another
set of independent coordinates sy, .. . , §, by means of transformation equations

G =@ (5154 8n, 1), 1=1,...,n.

(Such a transformation is called a point transformation.) Show that if the Lagrangian
function is expressed as a function of 5,, §,, and ¢ through the equations of transfoi-
mation, then L satisfies Lagrange’s equations with respect to the s coordinates:

d (BL) oL ~0

dt \ds5,) as,
In other words, the form of Lagrange’s equations is invariant under a point transfor-
mation.

EXERCISES

11.

12.

13.

Consider a uniform thin disk that rolls without slipping on a horizontal plane. A hori-
zontal force is applied to the center of the disk and in a direction parallel to the plane
of the disk.

(a) Denve Lagrange’s equations and find the generalized force.
(b) Discuss the motion if the force is not applied parallel to the plane of the disk.

The escape velocity of a particle on Earth is the minimum velocity required at Earth’s
surace in order that the particle can escape from Earth’s gravitational field. Neglecting

the resistance of the atmosphere, the system is conservative. From the conservation
theoremn for potenual plus kinetic energy show that the escape vclocity for Earth,

ignoring the presence of the Moon, is 11.2 km/s.

Rockets are propelled by the momentum reaction of the exhaust gases expelled from
the tail. Since these gases arise from the reaction of the fuels carried in the rocket, the
mass of the rocket is not constant, but decreases as the fuel is expended. Show that the
equation of motion for a rocket projected vertically upward in a uniform gravitational
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14,

15.

16.

17.

18.

field, neglecting atmospheric friction, 1s

dv  ,dm
o T Ve T e
where m 15 the mass of the rocket and v’ is the velocity of the escaping gases relative to
the rocket. Integrate this equation to obtain v as a function of m, assuming a cons-ant
time rate of loss of mass. Show, for a rocket starting imtially from rest, with v/ equal
to 2.1 m/s and a mass loss pet second equal to 1/60th of the initial mass, that in order
to reach the escape velocity the ratio of the weight of the fuel (o the weight of the

empty rocket must be almost 300!

Two points of mass m are joined by a ngid weightless rod of length I, the center of
which 18 constrained to move on a circle of radius a. Express the kinetic energy n
generalized coordinates.

A point particle moves in space under the influence of a force derivable from a gener-
alized potential of the form

UQ,v)=V()+o-L.

where r is the radwus vector from a fixed point, L 1s the angular momentum about that
point, and ¢ 1s a fixed vector in space.

(a) Find the components of the force on the particle in both Cartesian and sphencal
polar coordinates, on the basis of Eq. 11.58).

(b) Show that the components 1n the two coordinate systems zre related to each other
as 1n Eq. (1.49).

(¢} Obtain the equations of motion in spherncal polar coordinates.

A particle moves in a plane under the influence of a force, acting loward a center of
force, whose magnituce 18
| 72— ¥y
F=3\1——=)
?I '(:_

where r 15 the distance of the particle to the center of force. Find the generalized
potential that will result 1n such a force, and from that the Lagrangian for the motion
n a plane. (The expression for F represents the force between Lwo charges in Weber’s
electrodynamics.)

A nucleus. originally at rest, decays radiozctively by emutting an electron of momen-
tum 1.73 MeV/c, and at right angles to the direction of the electron a neutrino with
momentum 1.00 MeV/c. (The MeV, million electron volt, is a unit of energy used
in modern physics, equal to 1.60 x 10713 J. Correspondingly, MeV/c 15 a unit of
Linzar momentum equal to 5.34 x 10742 kg-m/s.) In what direction does the nu-

cleus recoil? What is .ts momentum 1n MeV/c? If the mass of the residual nucleus
is 3.90 x 10727 kg what is its kinctic cnergy. in electron volts?

A Lagrangian for a particular physical sysiem can be wntten as
m . .. .2y K
L' = 5 (ax2 + 2bxy + cy2 ) — 5 (ax2 + 2bxv 4+ (‘}’2) :
ot /

where a, b, and ¢ are arbitrary constants but subject to the condition that 5% — ac # 0.
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19.

20.

21.

22,

23,

What are the equations of motion? Examne particularly the two cases a = 0 = ¢
and » = 0, c = —a. What is the physical system described by the above Lagrangian?
Show that the usual Lagrangian for this system as defined by Eq. (1.57) is related

to L’ by a point transformation (cf. Derivation 10). What is the significance of the
conchtion on the value of b° — ac?

Obtain the Lagrange equations of motion for a sphencal pendulum, i.e., a mass point
suspended by a ngid weightless rod.

A particle of mass m moves in one dimension such that 1t has the Lagrangian

2.4
L = ml;- +- erV(x) — V5 (x),

where V is some differsntiable function of x. Find the equation of motion for x(¢) and
describe the physical nature of the system on the basis of this equation

Two mass points of mass m1 and m, are connected by a string passing through a
hole in a smooth table so that m1 rests on the table surface and m, hangs suspended.
Assnming mo moves only in a vertical line, what are the generalized coordinates lor
the system? Write the Lagrange equations for the system and, if possible, discuss
the physical significance any of them might have. Reduce the problem to a single
second-order differential equation and obtain a first integral of the equation. What is
its physical significance? (Consider the motion only until m; reaches the hole.)

Obtain the Lagrangian and equations of motion for the double endulum illustratec in
Fig 1.4, where the lengths of the pendula are /1 and I; with comresponding masses 714
and m,.

Obtain the equation of motion for a particle falling vertically under the influence of
: . : .« e . 1.2

gravity when frictional forces obtainable from a dissipation function skv* are present.

Integrate the equation to obtain the velocity as a function of ume and show that the

maximum possible velocity for a fall fromrestis v = mg/k.

. A spring of rest length L, (no tension) is connccted to a support at one end and has

a mass M attached at the other. Neglect the mass of the spring, the dimension of the
mass M, and assume that the motion 1s confined to a vertical plane. Also, assume that
the spring only stretches without bending but it can swing in the plane.

(a) Using the angular displacement of the mass from the vertical and the length that
the string has stretched from its rest length (hanging with the mass m), find La-
arange’s equations.

(b} Solve these equations for small stretching and angular displacements.

(¢} Solve the equations in part (a) to the next order in both stretching and angular
displacement. This part is amenable to hand calculations. Using some reasonable
assumplions about the spring constant, the mass, and the rest length, discuss the
motion. Is a resonance likely under the assumptions statec in the problem?

(d) (For analytic computer programs.) Consider the spring to have a total mass
m <« M. Neglecting the bending of the spring, set up Lagrange’s equations
correctly to first order in m and the angular and linear displacements.

(e) (For numernical computer analysis.) Make sets of reasonable assumptions of the
constants 1n part (a) and make a single plot of the two coordinates as functions of

time.
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Variational Principles and
Lagrange’s Equations

2.1 B HAMILTON’S PRINCIPLE

34

The dervation of Lagrange’s equations presented in Chapter | started from a
consideration of the instantaneous state of the system and small virtual displace-
ments about the instantaneous state, i.e., from a “differential principle” such as
D’ Alembett’s principle. It is also possible to obtain T.agrange’s equations from a
principle that considers the entire motion of the system between times #} and f7,
and small virtual vanations of this motion from the actual motion. A principle of
this nature is known as an “integral principle.”

Before presenting the integral principle, the meaning attached to the phrase
“motion of the system between times #) and #,” must first be stated in more pre-
cise language The instantaneous configuration of a system is described by the
values of the n generalized coordinates ¢y, .. -, g», and corresponds to a particu-
lar point in a Cartesian hyperspace where the ¢’s form the n coordinate axes. This
n-dimensional space is therefore known as configuration space. As time goes on,
the state of the system changes and the system point moves in configuration space

tracing out a curve, described as “the path of motion of the system.” The “motion
of the system,” as used above, then refers to the motion of the system point along

this path 1n configuration space. Time can be considered formally as a parame-
ter of the curve; to each point on the path there is associated one or more values
of the time. Note that configuration space has no necessary connection with the
physical three-dimensional space, just as the generalized coordinates are not nec-
essarily position coordinates. The path of motion in configuration space has no
resemblance to the path in space of any actual particle; each point on the path
represents the entire system configuration at soime given instant of time.

The integral Hamilton’s principle describes the motion of those mechanical
systems for which all forces (except the forces of constraint) are derivable from a
generalized scalar potential that may be a function of the coordinates, velocities,
and ttme. Such systems will be denoted as monogenic. Where the potential is an
explicit function of position coordinates only, then a monogenic system is also
conservative (cf. Section 1.2).

For monogenic systems, Hamilton’s principle can be stated as

The motion of the system from time i1 to time 1) is such that the line
integral (called the action or the action integral),
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I3
I=/ L dt, (2.1)
3|

where L = T — V, has a stationary value for the actual path of the
motion.

That is, out of all possible paths by which the system point could travel from
its position at time f; to its position at time £z, it will actually travel along that
path for which the value of the integral (2.1) is stationary. By the term “station-
ary value” for a line integral, we mean that the integral along the given path has
the same value to within first-order infinitcsimals as that along all neighboring
paths (t.e., those that differ from it by infinitesimal displacements). (Cf. Fig. 2.1.)
The notion of a stationary value for a line integral thus corresponds in ordinary
function theory to the vanishing of the first derivative.

We can summarize Hamilton’s principle by saying that the motion is such that
the variation of the line integral 7 for fixed t; and £, 1s zero:

33
3!=3f LGy, ooy GnsQls...sqGn,t)dt =0. (2.2)
M

Where the system constraints are holonomic, Hamilton’s principle, Eq. (2.2),
is both a necessary and sufficient condition for Lagrange’s equations, Egs. (1.57).
Thus, it can be shown that Hamilton’s principle follows directly from Lagrange’s
equations. Instead, however, we shall prove the converse, namely, that Lagrange’s
equations follow from Hamilton’s principle, as being the more important theorem.
That Hamilton’s principle is a sufficient condition for deriving the equations of
motion. enables us to construct the mechanics of monogenic systems from Hamil-
ton’s principle as the basic postulate rather than Newton’s laws of motion. Such
a formulation has advantages; e g, since the infegral 7 is obviously invariant to
the system of generalized coordinates used to express L, the equations of motion
must always have the Lagrangian form no matter how the generalized coordinates

FIGURE 2.1 Path of the system point in configuration space.
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are transformed. More important, the formulation in terms of a variational prin-
ciple 1s the route that is generally followed when we try to describe apparently

nonmechanical systems in the mathematical clothes of classical mechanics, as in
the theory of fields.

SOME TECHNIQUES OF THE CALCULUS OF VARIATIONS

Before demonstrating that Lagrange’s equations do follow from (2.2), we must
first examine the methods of the calculus of variations, for a chief problem of this
calculus is to find the curve for which some given line integral has a stationary
value.

Consider first the problem in an essentially one-dimensional form: We have a
function f(y.y, x) defined on a path y = y(x) between two values x; and x3,
where y is the derivative of y with respect to x. We wish to find a particular path
y(x) such that the line integral J of the function f between x| and x3,

&

Y= dx
X2

J =[ f(y, y,x)dx, (2.3)
X1

has a stationary value relative to paths differing infinitesimally from the correct
function y(x). The variable x here plays the role<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>