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1. Introduction

In this note we give an overview of existing kinematical test theories designed to
describe in a consistent manner tests of the foundations of Special Relativity such
as the Michelson—Morley or the Kennedy—Thorndike experiment. Such an overview
appears to be useful because different test theories also use different parameters
in order to make quantitative statements about the validity of Special Relativity.
We compare the parameters which are used in the different test theories. These
considerations are stimulated by a renewed interest in this topic due to new the-
oretical and experimental developments. Recent success in the field of ultrastable
cavities already has led to an improvement of the Kennedy-Thorndike test [1] and,
in the near future, will enable more precise Michelson-Morley tests [2]. There are
also new proposals for space missions (SUMO [3] and OPTIS [4]) to perform new
tests of Special Relativity which are expected to give an increase in accuracy of
several orders of magnitude, see also [5]. The validity of Special Relativity may also
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be of importance for laser ranging missions like ASTROD. In fact, Lunar Laser
Ranging, LLR, has been used for a test of Special Relativity [7]. On the theoretical
side, loop gravity [8, 9] and string theory [10, 11, 12] predict modified Maxwell and
Dirac equations which violate Lorentz invariance. Violations of Lorentz invariance
also arise in extensions of the standard model [13] and in non—-commutative field
theories [14]. Improved tests of Lorentz invariance may be of great importance be-
cause even a hint of a tiny violation of Lorentz invariance will be a strong argument
in favour of a quantum gravity theory.

To describe tests of basic principles underlying a theory and to quantitatively
express the degree of agreement between experiment and these principles, a theory
which allows violations of these principles is required. In the case of Special Rela-
tivity such test theories are the Robertson [15] and the Mansouri-Sexl [16, 17, 18]
test theories. In these test theories a non—constant speed of light and a violation of
the Relativity Principle is possible, implying a violation of Special Relativity. They
lead to transformations which are more general than Lorentz transformations and
thus do not fit into the framework of Special Relativity.

In these test theories a violation of the principles of Special Relativity is rep-
resented by certain non—vanishing parameters or non—vanishing combinations of
parameters. Only if a certain set of parameters vanishes, does the correspond-
ing test theory reduce to the Theory of Special Relativity. The vanishing of these
parameters corresponds directly to a particular outcome of experiments. The dis-
tinguishing feature of these test theories is that the conditions for the validity of
Special Relativity are fulfilled if and only if a certain number of experiments give
particular results [15]. In the framework of the Robertson or Mansouri-Sexl test
theories these experiments are

(i) the Michelson-Morley experiment, testing the spatial isotropy of the veloc-
ity of light,
(ii) the Kennedy—Thorndike experiment, testing the independence of the ve-
locity of light from the velocity of the laboratory, and
(iii) the Ives—Stilwell experiment determining the amount of time dilation.

Therefore, a test theory provides us with criteria for a unique test of the validity
of theories (within the experimental accuracy, of course).

These remarks are true for the test theories of Robertson and Mansouri-SexI.
While the Robertson test theory is valid for all velocities, the Mansouri—Sexl test
theory is specialized for small velocities but relaxes the condition of Einstein syn-
chronization. Since physical results (for example, whether an atom absorbs a photon
or not) do not depend on the chosen synchronization, both test theories are phys-
ically equivalent for small velocities. For a thorough theoretical analysis of these
two test theories with respect to the synchronization, see [19, 20]. Here we do not
consider generalizations which include gravity effects into the Mansouri—Sexl test
theory [21].
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These kinematical test theories should be contrasted with dynamical test theo-
ries. While in the first class of theories the transformations between inertial frames
are generalized (they are no longer Lorentz transformations) the latter class sets
up dynamics for matter and for the electromagnetic field. One such kind of dynam-
ical test theory is the T'Heu formalism [22, 23] which reduces to the c¢? formalism
as far as Special Relativity is concerned [24]. The distinguishing feature in this
test theory is that the velocity of light is different from the maximum velocity of
matter. Therefore we have two different velocities. This clearly violates the rela-
tivity principle and thus Special Relativity. In this dynamical test theory there is
a single parameter which characterizes the various violations of Special Relativ-
ity. This means that within this test theory one experiment is enough in order to
“prove” (in an idealized sense) Special Relativity. Each test theory defines its own
set of experiments needed to verify Special Relativity. Furthermore, each test the-
ory defines its own set of experiments which may be used in order to verify SR:
For example, in the T'Heyu framework more experiments than within the Robert-
son or Mansouri-Sex] formalism may be used to constrain the Special Relativity
violating coefficients: in addition to the Michelson—Morley, Kennedy—Thornike and
Ives—Stilwell experiments, the much more precise Hughes—Drever experiments.

Recently, more dynamical test theories have been developed. One of these [25]
is based on modified Maxwell equations which are used to describe a modified
propagation of light violating the constancy of the speed of light. In addition, the
same Maxwell equations are used in order to describe the anomalous behaviour of
ionic crystals which are taken as a model for the interferomer arms or for the cavity.
One result is that, under certain non—exotic circumstances, which are, fortunately,
not realised in the experiments carried out so far, the anisotropic light propagation is
compensated by the anomalous behaviour of the crystal length. Another dynamical
test theory [26] starts from the anisotropic velocity of light within the Mansouri-
Sexl formalism and modifies the Maxwell equations in such a way that, in the eikonal
approximation, one recovers this Mansouri—Sexl velocity of light. Again, with the
same Maxwell equations the behaviour of solids and atoms is calculated which leads
to a modified description of tests of Special Relativity and gives improved estimates
on the validity of Special Relativity as contrasted to kinematical test theories. Both
test theories can specify different sets of experiments needed in order to verify
Special Relativity.

However, in this article we do not comment on these dynamical test theories.
The purpose of the present work is to collect all descriptions of the three classes of
classical tests defined by the kinematical test theories and to compare the various
sets of parameters connected with the different formulations of the test theories.
That means that we describe the three classes of tests mentioned above

(i) within the Robertson formalism,
(ii) within the Mansouri-Sexl formalism, and finally
(iii) within the linearized Robertson and Mansouri-Sex! formalisms, which is
the low—velocity approximation of the general formalism.
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In doing so, we describe the tests of the isotropy of the speed of light as well as the
tests of the independence of the speed of light from the velocity of the laboratory
using interferometers and cavities. In the conclusion we give an overview of the
current experimental status and present the estimates from the best experiments
in terms of the various parameters connected with the different test theories. Our
considerations are extended consistently to second—order parameters. The scope
of the present article does not extend to Doppler shift experiments which will be
covered elsewhere.

2. The Robertson test theory
2.1. Generalities

In the Robertson frame for the description of tests of Special Relativity [15] one
starts with a preferred frame ¥ with coordinates (T, X) and with the line element
ds? = dT? — dX?. Light propagation is given by ds® = 0, that is, we have an
isotropic speed of light in this frame. In another frame S with coordinates (t,z)
moving with a velocity v with respect to the preferred frame the line element is
given by (v = [[v]] = vo?)

(z-v)? 2,2

ds? = g3()e*1? — g}(0) Z 2L g2 e
= g)dt? — (gf(v)da® + g% (v)(dy* + d=?)) (1)
where
), =x— m—v;—)'u (2)

is the part of the spatial coordinate which is orthogonal to v. In the right hand side
of this equation, the velocity is chosen to be in z—direction. The propagation of light
is given by the condition ds? = 0. In Special Relativity go(v) = g;(v) = g1 (v) = 1.
Comparison with the line element in the preferred frame gives lim,_,0 go(v) =
limv_.,o g“ (’U) = limu._m gL (’U) =1

Here we would like to include two general statements about the role of the
preferred frame in these kinematical test theories.

(1) The only preferred frame one may think of is of course the cosmological frame
in which the microwave background radiation is isotropic [27]. Though it is not
very probable, this may change as our knowledge of the creation of the uni-
verse improves. As a hypothesis, one may think of a gravitational background
radiation which may single out a frame different from the frame defined by the
microwave background. Since all estimates on the validity of Special Relativity
are based on the relative velocity of the laboratory with respect to the preferred
frame, our characterization of the validity of Special Relativity depends on our
knowledge of the universe. If the preferred frame changes, the estimates will



Kinematical Test Theories 1113

change. Therefore, kinematical test theories provide no intrinsic means to char-
acterize the validity of Specal Relativity. Only dynamical test theories make it
possible to characterize the validity of Special Relativity without a need to refer
to external physical knowledge which is not provided by the theory itself.

(2) The particular form of the line element in the preferred frame has nothing to
do with the relative velocity of the laboratory to the preferred frame. This line
element fixes the zeroth order terms in a Taylor expansion of the coefficients
90(v), gj(v) and g, (v). Furthermore, if in the preferred frame the line element
is different from that of Special Relativity (like a line element of Finslerian
type, for example), we will no longer have a test theory for Special Relativity
but rather for a new theory with the other line element.

If light propagates a distance dl in a direction which encloses the angle 4 with
the v—direction, dl - v = vdl cos®, then it needs the time

ge(v)cidt? = (gﬁ (v) cos? ¥ + g2 (v) sin? 9)dI>. (3)

The corresponding speed of light is given by

_dl_ go(v)
T dt cg”(v)

L (4)

c(9,v) (14 6g(v) sin® )

2 v)— 2 v
where we introduced dg(v) = %
I

prpagation. The speed of light depends on the velocity v and on the orientation
¥; this clearly violates the postulates of Special Relativity. Since any anisotropy is
very small, we can expand the square root and get

which vanishes in the case of isotropic light

go(v) 1 .2
¥, v)y=c 1 — 14g(v)sin®9) . (5)
(9,0) = 20 (1= 3dg(0)sin”9)
For a change of the direction of propagation the relative variation of the velocity of
light is given by
Age  c(d,v) —¢(0,v)

= = (L g sin9)”

[+

-1

~ —10g(v) sin?4. (6)

If one considers variations of the velocity one cannot take as reference the pre-
ferred frame with v = 0 because under usual laboratory conditions we are not in
the position to be at rest in the preferred frame. The only feasible variation of the
velocity is a change acoording to v — v + §v. This yields as relative variation of
the speed of light (with §'v = ||v + dv|| — ||v||)

Ayc  c(9,v+0'v) —c(¥d,v)

c e(d,v)

__ 9 (v)  go(v+d'v) 1+ 6g(v)sin? 9 1 ™)
g)(v+dv)  go(v) 1+0g(v+ 6v)sin?9
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Note that this quantity depends on three parameters, namely 9, v, and dv. If light
propagates isotropically, ¢(¥,v) = ¢(v), then this variation reduces to
Aye  c(P,v+dv)—c(W,v) g (v)  go(v+8)
v c(9,v) - gy(v+3dv)  go(v)
We can replace two of the three parameter functions go, g, g1 by the velocity
of light ¢j in direction of the velocity v and the velocity of light ¢, orthogonal to
v, compare [19]:

~1. 8)

¢)(v) = e(® = 0,v) = cg:g; L ei(v) = (@ =7/2,v) = c% )
Then we have
v)2 1
ds? = g2(v)c? <t2 - cﬁ?’u) (wqﬂ S _ 2 @) mﬁ_) (10)
and
9,v) = civ)es (v) 11
) c\/cﬁ(v) sin? 9 + ¢2 (v) cos? ¥ (0
and
Age 1 2 (v) .
— ~"3 (1 - c%l—(v) sin? 19) (12)
Ay _ ¢ (v + dv) B
c ) (13)

However, the best way to analyze the experiments using these expressions is to
expand the functions g;(v) for ¢ = 0, L, || with respect to velocity. If we assume that
9:(v) = 1+ dg;(v), then we have dg;(v) <« 1 which certainly is satisfied because up
to now all experiments are in agreement with Special Relativity. Since dg;(0) = 0,
the lowest order contributions are dg;(v) = g99% + gio* + O(v®), that is,

gi(v) =1+ glv° + gjv* + O(2°). (14)

where we introduced ¥ := v/c. The first term is due to matching the line element
for the preferred frame. Then we get from (4)

e(9,) = e [L+ (g8 — 9)8° + (gf — 93)% sin? &
+(af (o) - 98) + 98 — o) *
—% ((298 +93 - 59,?) (gf’L - gﬁ) +2 (96 —‘gﬁ)) ?*sin’ ¥
+g (42 - gﬁ)za‘* sin? 9 + (9(66)} . (15)

Now we have two ordering parameters, 7 and §7. Usually, 67 < 7 < 1 so that
for combinations (only even orders of velocities occur) 92 > 760 > 0% > %60 >
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92(89)2. In the following we neglect terms of order (62) and (69)3%. The general
result for the relative variation of the speed of light for a combined variation of
orientation and velocity turns out to be

c(?,v + dv) — (9, v)
c(9,v)

= [9](]) - gf’!_] % sin? 9

+[2 (o8 - o) + (of — 9%) (1 - cos(20))] - 65

+ [98 - g + (f — 92) sin? ] (59)?

+ ot - ot -2 (o - 08) (39§ +9%) - 2 (9 o) cos(w)] 4 sin? 9

- :2 (gé - gﬁ) —(90) + (gf))* - ((98 +99—49)) (91 — g})) +2(91 — 9ﬁ)) sin’9

+3(gf — 91)?sin* 9] (205 - 66 +9%(50)?)

+2 [2 (gé —gj —90g] + (gﬁ)2) - ((298 + 91— 597)(91 — i) +2(g1— gﬁ)) sind
2
+3 (g,(; - gg) sin 19] (@ - 69)2. (16)

We discuss three special cases which are of interest for applications: (i) the case
of pure rotation, év = 0, (ii) a change of the relative velocity of light for the case
where there is no orientation dependent change of the velocity of light, and (iii) the
relative change of the velocity of light if the direction of the change of the velcity
dv is correlated with the direction of the light ray.

(i) Pure rotation. The relative change of the velocity of light is

A@C P, 1
—= [(gﬁ - g‘i) 0% + (gﬁ -9i -3 (gﬁ - gﬂ) (g‘i +3gﬁ)) ot
2
—g (gﬁ - gj’_) Ok cos(219)] sin? ¥ + O(°)
0
= -A—f—‘f sin? ¥ + O(®%) 17)

If we observe no change then we conclude from the first order terms that,
gﬁ = ¢9. Using the second order terms, we futhermore get gﬁ =gi.
(ii) If we use the results gﬁ =g¢Y and glll = g} in (16), then we get

c(8,v + dv) — c(6,v)
c(60,v)

=2 (98 - gﬁ) v v+ (98 - gﬁ) (69)°
+ (2(g8 — g) = (@9)% + (gf)?) (20% - 65 + *(60)?)

+2 (2(g3 - g} - 989f + (o)) (@ - 69)? (18)
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which no longer depends on the orientation 6. Here, the velocity of light depends .
on v, év and the angle between v and dv.

(iii) In the case that the velocity dv is in direction of the speed of light, then we
have v - dv = vév cos¥. In this case the relative change of the velocity of light
gives

c(9,v + 6v) — c(¥,v)
c(¥,v)

= [gﬁ - g(j_] 72 sin? ¥

(6v)?

+ [2(98 - g+ (gﬁ - gﬁ) (1- cos(219))] V6T cos
|

+ 98— gf + (of — o) sin?0] =5
+ [gﬁ —g1 - % (90— 2) (30 + g) - -2 (o - 91)2 C05(219‘)} 0% sin”

— (g8 + 98 — 49792 — o) +2(g1 — g})) sin®9
+3(g](|) - ¢9)?sin* 19] (20%6v cos ¥ + 92(69)?)
+2[2(g8 - g} — gb9f + (9))?)
—2 ((298 +91 - 5g)(93 — ) + (g1 — g|1|)) sin®y
+3 <g|(|) - g‘i)zysin4 19} 2(07)2 cos® 9. (19)
For a circular motion we have ¥ = wt.

The expression (16) becomes very simple if we consider the first nontrivial effects
only. Then we get from (6) and (7)

Agc ~2
_.g- = (gﬁ —gﬂ’_) 92 sin® 9 + O(0%)
0
_ -Affsinzwom (20)
Ayc 0 0 0\ in2.9) 585 74
- :2(90—9“ - (gL——g”)sm 19)1)511+O(v )

0 _ gh)) 52 — (gg_ - gI(IJ) 72 sin® 19) ci)_'v + O(@*)
0

0
- -—;’f sin® ﬁ) 5”—” +O@EY, (21)
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where we introduced the amplitude for an orientation dependence and for a velocity
dependence of the relative variation of the speed of light
Afe Ade

S (g -gt), == (g -af) e (22)

It is obvious that, besides experimental factors, the accuracy of estimates of |g) — gﬁ|
is less than that of estimates of gl(l) — g9 by a factor 26v/v.

Note that the parameters g? and g} do not depend on the velocity v. This means
that any experimental values for these parameters give an absolute estimate of the
validity of Special Relativity.

We infer from (21) that a change in the velocity of the source will lead to a
change in the velocity of the light which is emitted by this source according to

c(W,v + 6v) = e(V,v) + k(V,v)dv with w(¥,v) = 2(98 - gh) — (g% - gﬁ) sin? 19)172.
(23)

This simplified version of a test theory has been taken as an ansatz for the analysis
of astrophysical observations which can be used for searches of a variation of the
speed of light due to a change of the velocity of the light emitting stars [28].

We use the above results in order to derive the phase shift and frequency shift in
interferometric and cavity experiments desinged to search for violations of Special
Relativity. If no deviation from the isotropy of the velocity of light is found, then
we get g1 (v) = gj(v). If no dependence of the velocity of light on the velocity of
the laboratory is found, then g (v) = go(v). Finally, the function go(v) can be fixed
by means of Doppler experiments and gives go(v) = 1. This means that, within the
present accuracy of experiments, in all moving frames the line element underlying
the propagation of light rays has the Special Relativistic form ds? = c?dt? — dz?.

2.2. Test of the isotropy of light propagation with interferometers

In a Michelson-Morley interference experiment (compare Fig.1) we measure the
phase difference A¢(v,¥) = w(ta — t1) where ¢; (t2) is the time light needs to
propagate back and forth along the first (second) interferometer arm. Since t; =
li/e(Bi,v) we get

ll ll Zg ll
Ap(v,¥) = - B
¢(v,9) = w <c(’t9, ) + (P +mv) e(d+ %,’U) e(d + %ﬂ'a"))>

9 (T ) o

This is the exact phase. Since any angular dependence is small, this can be expanded
to give

L wgp(v) 1 .
AP(9,v) =2 P (ll —la+ 559(1}) (11 8in® ¥ — I3 cos® 19)) . (25)
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mirror 2

= oeelee———

mirror

detector

Fig. 1. The Michelson—-Morley interferometer with unequal arm lengths I3 # l2. In order to test
the isotropy of the speed of light, one has to turn the interferometer, and in order to test the
constancy of the speed of light, one has to vary the velocity of the apparatus.

For Michelson-Morley experiments it is most convenient to choose I; = Iy = L.
Then the exact phase shift is given by

Ap(d,v) = uj;')'ﬁ v) (\/1+6g sin? ¥ — /1 + dg(v) cos? ) (26)

If the experiments show no effects from rotation for all velocities v, then one can
easily infer that |dg(v)| = 0 must hold. For a small angular dependence we get

Ap(d,v) = — ZZ)?IEU; g(v) cos(29) . (27)

If the phase can be measured with an accuracy dA¢, then, for a null experiment,
we get the estimate

v JAN
go(v) wl

Since all experiments until now are compatible with Special Relativity, we know
that 48 1, so that we have the more explicit estimate

go(@) ~
e(629)
- (29)

16g(v)] <
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Since the left hand side can be written as dg(v) = -«5—‘;2 ((:)) -1 =
i
(—lgﬁ((:)’) - 1) (ggi((:)) + 1) and since, as far as we know, iﬁ(;’)) ~ 1, we get the final
estimate
9. (v) _ 1’ < c(6A¢) ] (30)
g” (’U) 2wl

With the expansion (14) we get to the fifth order

A, v) = 2%“’ ((af - 2) 5+ (o (92 — of) + g} — 9 ) 9*) cos(29) + O(%)..

(31)
In terms of AYc/c this reads, to the third order,
0
Ap = 2%‘"% cos(20) + O@?) . (32)

The measured phase difference has the structure A¢ = A (a0? + b0*). The phase
shift A¢ can be measured with a certain accuracy dA¢. In order to determine a
and b one has to perform the experiment for two different velocities. However,
if we assume that no effect has shown up and that there occurs no unfortunate
cancellation of terms of different orders, then we can conclude that a < 5‘—%‘25—2 and
b < é%é s—; Since 72 < 1, the estimate of a is better than the estimate of b. If now b
depends linearly on a, as it happens in our case, then, in the second order estimate,
this a can be safely neglected. Therefore, if we apply this line of reasoning to our

case (31), we can conclude that
cdAg 2 cIAP c*
2w v? 2w v’

That is, the estimate for the second order term is just given by the estimate for the
first order term multiplied with ¢2/v2.

(gﬁ - 93‘ < and (gﬁ - gi' < (33)

2.3. Test of isotropy of light propagation with cavities

For a cavity (compare Fig.2) the wave vector for an electromagnetic wave is given by
k = nr/l, where [ is the length of the cavity and n the mode number of the standing
wave in the cavity. The measured frequency is given by 27v(v, ) = c(v,¥)k where
we now again assume a direction— and velocity—dependent speed of light. (Here we
would like to mention that the dispersion relation is not always of this form. There
are dynamical test theories such as the theory with a hypothetical scalar photon
mass, see, e.g., [29], or vectorial photon mass [25], where the dispersion relation
contains a mass term so that the relation between frequency and wave vector is
no longer linear. However, we use the simpler form given here because this still
covers a wide class of theories, see, e.g., [30, 31], and is very well supported by
many experiments on the photon mass.)
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measurement of
frequency v

turn table _/
9

Fig. 2. Setup for a cavity experiment testing Special Relativity. If Special Relativity is violated,
then the measured frequency depends on 9 and v.

With the general result (16) for the speed of light, we get for the relative vari-
ation of the frequency
Agvy  v(v,9) —v(v,0)
v v(v,0)
e(d,v) — e(0,v)
¢(0,v)

- [(gﬁ —gi) 5%+ (gﬁ —-91 + i (gg _gﬁ) (93+39ﬁ)>ﬁ4

2
—i— (gﬁ - gﬂ_) v* cos(219)] sin? ¥ + O(v°)

0
= % sin2 9 + O®%) (34)

so that the same combination of parameters is tested by turning the cavity as by
turning the interferometer.

Along the same line of reasoning as for the interferometer result, we have that
for an accuracy & in the measurement of the relative frequency, the first and second
order estimate turn out to be given by

c? ct
}gﬁ - gﬁ] <K= and |gﬁ - gii <k (35)
We get a similar result as for the interferometer. The difference lies in the overall
accuracy € which in actual experiments is much better than the corresponding
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accuracy for measuring phase shifts in interferometers because of the much longer
optical path length in a cavity compared to an interferometer.

2.4. Test of the velocity independence of the speed of light with
wnterferometers

Since variations of the velocity of the laboratory are usually small, the results of
Michelson—Morley experiments are much better than those of Kennedy—Thorndike
experiments. Therefore, in order to describe Kennedy—Thorndike experiments, we
assume isotropy of light propagation, that is, g)(v) = g1(v). In this case, we get
from the exact result (24)

w gy (v)
A =2— li—1y). 36
o) = 2230580~ 1) (36)
Therefore, for a variation of the velocity v a change in the phase is expected if
91 (v)|/go(v) is different from its Special Relativistic value of 1. If in a certain ex-
periment the accuracy for the determination of the phase shift is given by dAg,
then we get the estimate

cdAP
- 2w(ll — lg) )

gy(v+dv)  gyv)

00+ 50)  90(0) 57)

In the usual approximation (14) we get

w ~

Ag(v) = 2— (1 + (gﬁ - 98) 0%+ (g,ll -9 +9 (98 — g?)) 174) (i — o) + O@°).

(38)
A variation in the velocity v — v + dv gives finally
_o¥ 0_ o), dv 0 _ 0)(57)2
Ag = 2'0' [(9” - 90) 2_62_ + (g” - 90) (60)

+4 (gﬁ -9 +9 (98 - gﬁ)) %0 - 60
+2 (g — b+ 98 (98— 97)) (20°(60)% + (@ - 69)°) | (1 — lo) + O@°)

Alc §v

c v

= 2%(11 — 1) +0@Y), (39)

where we approximated to second order of dv. In the case that we observe a null
result and that no unfortunate cancellations occur, we can again conclude from this
result the estimates

cdAp cSAp 2 c?

0_ 0l _72% = gl < ——2 .~
Ig“ gol ~ w(ly — l) vév and ‘g” go‘ = w(ly — lg) v2 vév (40)

It is obvious that a large change in the velocity dv will lead to better estimates.
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2.5. Test of the velocity independence of the speed of light with
cavities

For this kind of experiments, we again assume that light propagates isotropically,
that is, that g|(v) = g1 (v). Then we get from the dispersion relation 27v = kc
with k = ZF,

n go(v)
v(v) = 41
© =z ‘o) )
From this, we get as the relative frequency variation, by a variation of the velocity
of the laboratory,

v(v + ov) — v(v) _ c(P,v + dv) — ¢(V,v)
v(v) c(d,v)

=2 (gS - gﬁ) v-6v+ (gg - gﬁ) (60)°
+ (2008 - g) — (98)* + (4f)?) (20% - 68 +2(55)?)
+2 (2008 - g} - 989§ + (9}))) (@ - 69)* + O(°)
Alcw- 6'u

+0®@Y), (42)

so that, to lowest order, this expenment is sensitive to the same quantity gl(l) - g8
as the Kennedy-Thorndike experiment. Again, a large dv is good for improved
estimates of the quantity gﬁ -

Also, in this case, we get that the second-order estimates scale with a factor
c? /v with respect to the first order estimates. If in a null result the accuracy of
measuring the relative frequency is given by «, then

4

2
d ‘ 1_ 1(< <. 3
( g“l_ 206v an 9o — 9 ”K2U3(5v (43)

3. Mansouri—Sexl] test theory

As in the Robertson frame we start with a preferred frame ¥ with coordinates
(T, X). In this reference frame the propagation of light is isotropic

ds* = 2dT? — dX?. (44)

The most general transformation to another frame S’ with coordinates (', ), which
can be described by means of a relative velocity v, is given by

= a(w)T + 22 (”) X (45)

'v('v X)

x = d(v)X + b(v) + f(v)T. (46)

This is the most general linear transformatlon which can be described by means of
a polar vector v. The linearity of our ansatz can be based on the requirement that
a force—free motion (straight line) in ¥ should be a force—free motion in S, too.
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Since the velocity between the origins of S’ and ¥ is v we have the additional
condition

b)) f)
A (d@) + 6@)  dw) 47)

Using this in the inverse transformation, we have [16, 32]

Tza%(t'—e((:—g)v-ao (48)
X = ﬁjw - (d—(lq-)7 - b—(lv—)) ”(‘;2' %) 4o (49)

There is a freedom to choose another synchronization in S’ by t = t'+ 1€’ -x [16]
which defines the frame S with coordinates (¢, z). If we combine the transformations
¥ — 8" — S, then we have

T=i<t—le-az> (50)

a(v) c
_ 1t (Lt _ 1\vwwmx 1 . 1
x=g5o (a0~ 5) S e D g O
where we introduced
e:=e(v)o+¢€. (52)

with ¥ = v/c. This parameter € describes the chosen synchronization in S. Since
for v = 0 we stay in the preferred frame, we have lim,_,¢ a(v) = 1, lim,_,¢ b(v) =1,
lim, 0 d(v) = 1, and lim,_,0 e(v) = 0. In Special Relativity we have, with Einstein—
synchronization, a(v) = v/1 — 92, b(v) = 1/v/1 — 72, d(v) =1 and € = —0.

With these transformations, the line element in a general frame is given by

1-—792? 1— 72 1 z2
22 2 __ 2,2
AT? - X? = = ct —2(—52——ce+(—1—bv>-a:t~a-2—
1— 72 1 1

2 (v-z)?
ol e af 4 2620+ (- 55)

v2

(83)

The velocity of light propagating in a direction with angle ¥ with respect to v and
angle 9 with respect to € can be calculated as

c(v,€,9,9)
bd(1 — 92)

c .
bde(1 — 92) cos Y + advcosV — ay/b2(1 — 02) + (d? — b?(1 — v2)) cos? ¥
(54)

It is obvious that the velocity of light travelling in the opposite direction, c(v, €,d +
m,9') is different. It is also clear that the expression under the square root is always
greater than zero.
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The two—way velocity of light in direction 9 is defined through
2 1 1

et T) "~ et ) T dad i) (5%)
and can be calculated as
)
c2)(v, €, 9, ¥) = c)(,v) =c bd(1 — V") (56)

ay/b2(1 —02) + (d? — b2(1 — 02)) cos? ¥ '

This velocity no longer depends on the synchronization e.
A general interference experiment with orthogonal interferometer arms with
lengths I; and Iy yields the phase shift

Ag(9,v) = 2%561(7“_—62—) (12\/52(1 — %) + (& — B2(1 — 92)) sin? 9

~L/B( =) + (@ — (- 59) cos?F) , (57)

which is calculated in the same way as (24). It should be emphasized that the
synchronization parameter € completely dropped out. Of course, this is as expected
because only two—way velocities of light are involved.

Two of the parameters a, b, and d can again be replaced by the two—way—velocity
of light in direction of the velocity v and in orthogonal direction [19]:

b(1 —72)

a
dWI=22
.

We replace now the function b and d by ¢ and ¢, and get for the transformations
(50,51)

T=_1_<t_l€.m) (60)
X:m(iw*<i_im)”(”‘m)_ Lo (t-tee)).

¢)(v) = ¢2)(0,v) = ¢ (58)

e1(v) = cay(m/2,0) =c (59)

a(v) el cL ¢ v2 1-— c
(61)
and for the line element (53)
1 -2 2
AT? - X? = ———21 <c2t2 —2¢ <e+ —'li) cxt— %—-:vz
a €l ¢l

()~ (55) )

In terms of ¢ and c; we also get
a)es(d | -
\/cﬁ (v) sin? 9 + ¢2 (v) cos? ¥

co)(¥,v) =
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From this it is clear that the parameter function a(v) has nothing to do with
the isotropy of the 2—way—velocity of light. This parameter is responsible for the
relativistic time delay.

For an isotropic velocity of light, that is, for ¢y = c1, ¢(2)(¥,v) becomes con-
stant, and the line element takes the usual form if we choose for the synchronization
parameter € = —-=. For arbitrary synchronization parameter we have Special Rel-
ativity with arbltrary synchronization [33, 34, 35, 36, 37, 19].

Now we describe special cases of the general treatment.

3.1. Test of isotropy of light propagation with interferometers

In the case of a Michelson—Morley experiment, we choose Iy = ls = [ and get a
phase shift of

A9, v) = 2 (\/b2(1— )+ (d2 — b2(1 — 32)) sin2 0

VB —2) + (@2 — b2(1 — 97)) cos? qs) . (64)

If no phase shift during variation of ¥ is detected, that is, if Ag(d,v) — A@(0,v) =0
for all 9, then we can conclude from the independence of this expression from
that

bd(l

d? =0 (1 -7%). (65)
In principle, this has to be experimentally tested for all velocities v. If in an actual
experiment the accuracy for measuring the phase shift is dA¢, then we get the
estimate
200 _ B2 2
a(’u)d (v) = *(v)(1 —v?) < céAqS‘
b2(v)d(v)(1 — 12)3/2 2w

For increasing accuracy this means d?(v) — b?(v)(1 — 92) — 0.

(66)

3.2. Test of isotropy of light propagation with cavities

Again we use the usual dispersion relation 27v = kc with k = nn/l. The frequency
then is
b(v)d(v)(1 — 7?)

2l a(v) /B2 (v)(1 = 2) + (P (v) — B2(v)(1 — %)) cos?F -
It is clear that, by turning the cavity, the frequency changes if d?(v) — b%(v)(1 — 9?%)
is nonvanishing. If no orientation dependence of the frequency is detected, then the
relation (65) for interferometer experiments is obtained here, too.

The relative variation of the frequency turns out to be

v(d,v) —v(3,v) _ 1

s - v)—b2(v)(1-7
v(%5,v) \/1 + —2—(———1‘12(17) (:)2((12612)A2 cos?

v(d,v) = (67)
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where, for simplictiy, the orientation /2 as reference has been chosen. If in an
experiment nothing is found with a given accuracy x of the relative frequency
ratio, then

1

@2 (v)—b2(v)(1—0%) Sk (69)
\/1+ i cos 0

for all ¥. This means
d?(v) — b?(v)(1 — 9%) < 1
b2(v)(1 —v2) T l-xk

-1l=k. (70)

3.3. Test of the velocity independence of the speed of light with
interferometers

In the case of isotropic light propagation, we get the general phase shift

(Io = I))w a(v)
Agp(v) =2 - OISR (71)
A search for a velocity dependence of the phase shift requires a change of the
velocity: v — v + dv where, due to physical reasons, v < v. The measured phase
shift then is A¢(v + dv) — Ag(v). If this difference does not depend on the velocity
of the laboratory, then the right hand side of (71) is not allowed to depend on wv.
That means

a(v)

=K(1- 72
S = K-, (72)
where K is a constant. If, again, in an actual experiment, the phase shift is de-
termined to an accuracy §A¢, then we get from §A¢ > A¢(v + dv) — A¢p(v) the
estimate

a(v + 6v) B a(v) < c6AP
b(v+6v)(1 — (D+60)2) bv)(1—22) ~ 2w(la—1l) "

Since 92 as well as (¥ + 60)? are of the order 107% we can safely approximate
1—92 =~ 1 so that

(73)

a(v+6v) a(v) < cdA¢

b(v +6v) b)) ~ 2w(ly —11) " (74)

3.4. Test of the velocity independence of the speed of light with
cavities

Here we again assume that light propagates isotropically. Then we get as measured
frequency

en b(v)(1 —92)
2L a(v) '
If v does not depend on the velocity of the cavity, then we again arrive at the
condition (72).

v(v) = (75)
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The relative frequency change is

v(v + 6v) — v{v) _ b(v + dv)a(v)(1 — (T + §0)?)
v(v) b(v)a(v + dv)(1 — v?)
b(v+dv) s b(v
~ a((v i 5'0) / aEU; ’ (76)

-1

where we again neglected 92 and (7 + §9)2. If the experiment leads to a null result
and if the accuracy in measuring the relative frequency change is given by &, then
we have the estimate

b(v+6v) b(v) .
a(v +6v)/a(v) ’ Sk (77)

4. The linearized Mansouri—Sexl] test theory

In the limit for small velocities v the Mansouri-Sex! test theory described above
reduces to the linearized theory of Mansouri and Sexl. We expand the parameters
of our general theory with respect to v:

1\ . 1 ~
a(q}):l—{-(a—5)02+(ag—§>UA4+...=1+05MS112+C¥3/ISUA4+--- (78)

b(u)_1+(ﬂ+ ) (ﬂ2+3> +.oo=14 M52 4 gMSHt . (79)

d(v) = 1+ 002 + 620 +... (80)
e:(e—l)fc’-(1+ezaz+...), (81)

where oS and BMS are the original Mansouri-Sex] parameters. Our definition of
the parameters, which we adopted from Will [32], is characterized by the fact that
a, B and & vanish in the case of the validity of Special Relativity. For Einstein
synchronization, € also vanishes.

In this approximation, the line element reads

= [1 —20%” + (—a + 30® — 2a0) 7] *t
2 [e+ (a — B - 2ae — €3 + €€2)D°] v - @t
— [1 = 269% + (362 — 262)70*] #°
+ [ +2(8-0) — (B+2(52 — ) +3(6* - 6°)
—2€(a — B — €2) + 26*(a — €2)) D] (B - ). (82)
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The velocity of light in this approximation is

—C@ =1-¢ebcostd — [0 —a+ (B — 6+ ) cos® 9] ¥°
+[B—a+e —e2(0+a)+e)—e?28-25+ €?) cos? 9] 2% cos ¥
+% [—2as + a(—1 + 20 — 26) + 20
+cos® 9 (—38% + 202 — 262 — B (1 + 20 — 66 + 4e)
+2a (8 + (2 — 3€)e) — 36 (6 — 2€%) + 4(—1 + €)een
+ (3(8—6)* +6(8 — 6)e® + 2¢*) cos® 9)] *. (83)
where again 9 is the angle between the light ray and the velocity v. The two—way
velocity of light as defined in (55) turns out to be

9
C(2>(c V) 1 4 [5— at (8- 6)cos? 7] B

+% la(=1 + 20 — 26) + 2(52 — )
—(B(1 + 2a+ 38) — 262 — 2(a + 38)3 + 362 + 28,) cos® ¥
+3(8 — 6)% cos* 9] B*. (84)

Again, any reference to the synchronization has dropped out. The relative change ‘
of the 2—way velocity of light is

c@)(9,v) = ¢2)(0,v) _ ~2 . 2 1. . 2
c(2)(0,v) = (0 — B)v°sin® ¥ + i [36% — B2 + 482 — 2B(1 + 6)

—483 + 3(B — 6)* cos(20)] 9* sin® ¥ (85)

With the result (83) for the velocity of light we can calculate the general phase
shift for an interference experiment

Ap(¥,v) = % (201 — 1) + [ = B—8) (11 — ls) + (6 — B)(ln + I2) cos(20)] 2

+ [(a(l = 20) + 2 (ag + 82 = &)) (1 — la) (86)
+ (8 — 282 + 265 — 208 + 38% + 206
—2868 — 6% — (B — 6)? cos® ¥) I, cos® ¥
— (B — 2B + 26, — 208 + 358% + 206
—286 — 6% — (B — 6)*sin? V) lo sin® 9] 9*}

As in the exact result, all synchronization parameters have dropped out.

Since we expanded the expression to the fifth order, we now have six parameters
which need to be determined. Consequently, six experiments would be needed to
fix these six parameters.
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4.1. Test of isotropy of light propagation with interferometers
For a Michelson-Morley experiment we again choose I3 = I = [ and get from our
general result

Ap(Y,v) = 2Z—ZJ— [(6 — B)D? cos(20)

+ (38 + (6 — B) + B2 + s — o — 6%) Tt cos(20)] . (87)
To lowest order, the phase shift is sensitive to the parameter combination § — 8 =
GMS __gMS % In the next order, it is sensitive to (38+a(6—B)+ %+, — P2 — 6% =
% (aMS + 5MS _ 2[3MS) +aMS (5MS _ ,BMS) + (ﬂMS)2 _ ((5MS)2 +6é\/IS _ﬂ%\/IS 4 g If
no signal is detected, then we can infer

§=p and 09 = By — —21—5. (88)
In the case of a null result we get the estimates
c(6Ag) c? 1 c(6A¢) c*
_ < - — =06 < —.
60 < U2 h- gt e < LODE . (s9)

4.2. Test of isotropy of light propagation with cavities

We use again the dispersion relation w = ck and insert the 2-way—velocity of light.
The result is

v(d,v) = %{1—{— [6 — a+ (B —5)cos® 9] ¥°

+% (=1 + 2a — 26) + 2(62 — a3)
—(B(1 + 2a + 38) — 20> — 2(a + 36)8 + 362 + 285) cos® ¥
+3(8 — 6) cos* 9] 0* } (90)

From the null result of the experiment by Miiller et al [38] we get that all coefficients
connected with orientation dependent terms should vanish:

B—-6=0  and 52=ﬂ2—-;—ﬂ, (91)

which are exactly the same conditions as derived for the interferometer experiment.
For the relative frequency variation we get

v(d,v) — v(0,v)

2(0.0) = (6 — B)v*sin? 9

+ (%ﬂ‘f‘ _;82 — P2 — 486 + ;(52 + 52) 7tsin? 9

(8~ 6 (cos" 9 — 1), (92)
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In the case of null experiments and of an accuracy « of determining the relative
frequency shift, we get the estimates

s < c? d 1 ct
—,5_”»1—)5 an -2'[3—,324'525/’»;;- (93)

4.3. Test of the velocity independence of the speed of light with
tnterferometers

In the case of isotropic light propagation we get from the general phase shift in the
Mansouri-Sex! approximation

Ag(v) =2Q1—1;2—)i"- <1+(a—ﬂ)62+ (a,2+a (% —6) +%ﬂ+[32—ﬂ2) v”‘) :
(94)

To lowest order, this kind of experiment is sensitive to the parameter combinations
a—B=aM —pgMS 11 and ag+a—LFs. (95)

In the case of a null result and an accuracy of the phase shift of A¢ we get the

estimates

AP c?

2wAl v2 (96)

4
and |a2+o¢—ﬂ2|<mc

48 < =,
o= Bl < = 2wAl v4

4.4. Test of the velocity independence of the speed of light with
cavities

Here again we use the measured frequency (90) together with the conditions derived
from the isotropy

o) = g {1+ - el + [ata- 8-+ - go-e| 9t} @)

The conditions for a velocity independence of the frequency as tested in the exper-
iment by Braxmaier et al [1] are

0 =a, a=pf— oz, (98)

which are again the same conditions as for the interferometric experiment. For the
relative variation of the frequency we get

v(v) — v(0) =2 1 1 ~4
—_— =B - —-B—5 ——a-— 99
I/(O) [/8 OL] vT + CE(OZ ﬂ 2) + (162 D) 2] a2) v ( )
and thus the following estimates in the case of a null experiment

2 A
B—al < K3 and oo — Ba + | < kg (100)
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MANSOURI-SEXL test theory

Parameter functions a(v), b(v), d(v), €(v)
transformation (50,51)
line element (53)
velocity of light (54)

EINSTEIN— small
synchronization velocities
ROBERTSON test theory linearized MANSOURI-SEXL test theory
Parameter functions go(v), g;(v), 91 (v) Parameters a, 3, 9, €
line element (1) line element (82)
velocity of light (4) velocity of light (15, 83)
small - EINSTEIN-
velocities synchronization

linearized ROBERTSON-MANSOURI-SEXL test
theory

Parameters a, 3, ¢
line element (82)
velocity of light (84)

Fig. 3. The relation between the different kinetic test theories. The Mansouri-Sexl test theory
and the Robertson test theory are physically equivalent because the latter is the Mansouri—Sexl
test theory in the Einstein synchronization. Analogously, the linearized Mansouri—Sex!l and the
linearized Robertson—Mansouri—Sex! test theories are physically equivalent.

5. Summary and comparison with experiment

The relations between the various test theories discussed in this paper are depicted
in Fig.3. The overall assumptions are that the transformation between frames (i) are
linear, (ii) depend on the relative velocity only and (ii) that there exists a preferred
frame with isotropic propagation of light. While the first assumption can be based
on the physical requirement that a linear uniform motion (forceless motion) in one
observer system is a uniform linear motion in any other observer system and that
the transformations are reversible, the second requirement has no direct physical
meaning. It is easy to think of examples where the second requirement does not
hold. This is the case e.g. in Finsler-like structures.

In all expressions above, v =~ 380 km/s is the velocity of the laboratory or
the apparatus with respect to the preferred frame which is identified with the
cosmological reference system [27]. The variation of the velocity dv may be due to
the rotation of the Earth around its own axis, §vmax =~ 0.3 km/s (in planned space
experiments, the variation dv is the velocity of the satellite which is about a factor
10 larger), or due to the rotation of the earth around the sun, év ~ 30 km/s.

The estimates in table 1 are calculated using the various formulas derived above.
We also have to know the absolute error in determining a phase shift. This is given
by A¢ < 1073.
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Table 1. Summary of the estimates in the discussed test theories. The estimates are the same for the exact results. In the estimates for the coefficients
introduced in the Taylor expansion with respect to the velocity, the first—order coefficients (e.g., ] nw. - mm_, |B+5— .w. ) are scaled with c2/v2, the second-order

coefficients (e.g., [g} — .Qm_u |62 — B2 + .w. Bl) with c*/v*, and so on. The larger the order of the coefficient, the worse the estimate.

Experiment Method A/c Robertson (at v = 370 km/s) |Mansouri-Sexl (at v = 370 km/s)| linearized Robertson and Mans.~Sexl

d2(v)—b2 (v)(1—v2)

R . 0 10-11
isotropy of ve-|interferometry[42]{|Ayc/c < 1.5-10 22 (0)ae) (1 w2372

<10~ lgl —gfl =18—8] <3-10°
locity of light

9 (v)

g1 (v) H_ <3.10-11

lgj —gil=162— B2+ 181 < 2

d2(v)—b2(v)(1—v2
52 (v)d(v)(1—v2)3/2

resonator([38] Afc/c< 210718

<2-1071° 9 —g)l=1B—6<2-107°

m.r?vl .lam
) H_ <2-10

lgj —gil =182~ B2+ 1B/ <3-1073

9| (v+6v) g (»)
90(v+8v) ~ go(v)

constancy of ve-|interferometry[43][| A%¢/c < 1071°

< 10710 |se0g -2 | <1071 19 — gl = la — B| < 2- 1072
locity of light

> B(vF3v) — B(v)

lgj — 95l = loe— B2 + 2| < 2-10%

9| (v+38v) 9 (v)
90(v+8v) ~ go(v)

resonator([1] Adc/fc<2-10718 <2.1071

b S b — —
B /5% <2070 g -l = ja—pi < 20107

l9j — g3l =l —Ba+az| <2
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Fig. 4. Photograph of the two cryogenic optical sapphire resonators used in the Michelson—
Morley experiment of 38. The resonators operate inside a 4 K cryostat, whereas the lasers providing
the interrogating light beams and the laser stabilization electronics are located outside at room
temperature. Mounting the cavities inside a holder made from copper of high thermal conductivity
reduces sensitivity to temperature changes. The excellent long-term stability of cryogenic sapphire
resonators allows to utilize Earth’s rotation.

In comparison to interferometers, cavity experiments are of significantly higher
sensitivity: whereas the arms of a classical interferometer are transversed by the
interrogating light a few times only, in a modern high—finesse cavity this number
can be up to 1...5- 103, Thus, for the same level of phase-shift sensitivity, the
mechanical length of an interferometer would have to be > 10° times longer than a
cavity. The compact cavities, only a few cm in length, can be shielded from external
influences significantly better, and can be operated at cryogenic temperatures < 4K
to obtain low dimensional relaxation processes of the material, and extremely low
thermal expansion [39, 40].

The precision of determination of relative variations of frequencies depends on
the stability of the cavities. The present stability of the best cryogenic cavities at
4K (made from sapphire crystals) is of the order Av/v ~ 310715 for 10...1000
s, and ~ 11071 for 10...20h. Over 190days, < 6 - 10~12 has been achieved [40].
This leads to much better results than what can be obtained by interferometers. Up
to now, the best results for tests of the isotropy of the speed of light were by Brillet
and Hall [41], who used room temperature cavities. Compared to cryogenic cavities,
these perform very well at short time scales of a few seconds, however over longer
time scales are plagued by a relatively strong drift due to relaxation processes in the
non—crystalline materials used. Preliminary results [38, 2] with cryogenic cavities
indicate a threefold improvement of the test of the isotropy of light propagation
where the rotation of the Earth has been used. These experiments aim for a total
improvement of > 10 (see Fig. 4).
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Further improvement should be possible by active rotation or by space-born
operation, where systematic effects (e.g. gravitational bending of the cavities, tem-
perature and air pressure changes) can be reduced or eliminated. For Kennedy—
Thorndike tests, the best results where obtained recently by Braxmaier and cowork-
ers [1]. This test may be also improved by space experiments [3, 4]. The performance
of both Michelson-Morley and Kennedy—Thorndike tests can thus be expected to
improve by a factor of 10 in the near future. Table 1 shows a complete comparison
of the best estimates in the frame of the test theories discussed in this paper.
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