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PREFACE 

The aim of this book is to demonstrate that using 

"Conventional Wisdom" and "Conventional Logic", classical 

physics can explain all the observed phenomena attributed to 

relativity. The arbitrary principles of Einstein's relativity are thus 

useless. 

It is very important to recognize the fundamental importance 

of the principle of mass-energy conservation. It took thousands of 

years of development for scientific thought to finally reject the 

magic of witchcraft. During the nineteenth century, scientists 

became convinced that matter cannot be created from nothing. 

Conversely, matter cannot be destroyed into nothing. It seems that 

even Einstein believed this, since he is the one who, at the 

beginning of the twentieth century, introduced the equation 

E = me implying mass-energy conservation. However, he later 

developed general relativity which is not compatible with that 

principle. Indeed, according to Straumann1, the: 

"general conservation law of energy and 

momentum does not exist in general 

relativity". 

Twentieth century science moved backward in accepting again 

the magical creation of matter or energy from nothing, even if this 

is hidden in complicated mathematics. 

Contrary to what Einstein did, all the demonstrations in this 

book are compatible with the principle of mass-energy and 

momentum conservation. Using classical mechanics, we 

demonstrate that length contraction is a real physical phenomenon. 

We examine how this leads to the Lorentz equations. Then, we 

show how classical principles are sufficient to explain the advance 

of the perihelion of Mercury and derive Einstein's equation. The 

fundamental reason for this advance is illustrated with a classical 

1 Straumann, N., General Relativity and Relativistic Astrophysics. Springer-Verlag, Berlin, 

1991, page 146. 



12 

apparatus. We also study the Lorentz transformations in three 

dimensions and the Doppler phenomenon. Then we see how the 

problems brought by the relativity of simultaneity and by the 

principle of equivalence can be explained using conventional logic. 

We also show how classical mechanisms produce perturbations in 

the internal structure of atoms and molecules. Finally, we show 

that the presence of intense gravitational potentials leads to 

degenerate matter corresponding to Schwarzschild's black holes. 

Einstein's relativity principles are not needed in these 

demonstrations. The only principles used are the ones already 

existing in classical mechanics. All the solutions are based on a 

physical model compatible with conventional logic. 

Einstein's theory of relativity is a mathematical model which 

is not compatible with the physical models described in classical 

mechanics since it is not compatible with the principle of mass- 

energy conservation. This is a well-known fact. It is claimed that 

the theory of relativity is so advanced that it is not possible to give 

a Newtonian physical description of it. It is also often argued that 

abandoning classical scientific concepts leads to a scientific 

revolution. It is erroneous to believe that a new scientific 

revolution must abandon the fundamental principles brought up by 

Newton's classical mechanics and logic which gave birth to all our 

knowledge in physics. 

As stated in several papers, Einstein's relativity implies "New 

Logic" which contradicts "Conventional Logic". Einstein's theory 

implies that because we can find some arbitrary mathematical 

relationships that fit some experiments, we must abandon 

conventional logic. History reports some rudimentary scientific 

models that also fitted experiments but which were based on 

nonsense. Those models were rejected. A new scientific 

revolution based on "New Non Conventional Logic" can lead to a 

scientific disaster or to a dead end. No scientific concept can be so 

advanced that it is no longer compatible with logic. 

Einstein's relativity assumes new mathematical hypotheses 

and ignores completely the concept of models to describe physical 

reality. Einstein supposed that time and space can be distorted and 

that simultaneity is relative but he did not give any serious 
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description of what this really means physically. In Newton's time, 

physical descriptions of phenomena were accompanied by 

mathematical equations giving quantitative predictions 

corresponding to those physical descriptions. Einstein's relativity 

claims that nature can be described with mathematical equations 

without any physical description. There is a complete abandon of 

all the physical models that made physics understandable in 

Newton's time. 

Our main argument here is not whether Einstein's hypotheses 

are true or not. We believe that if Einstein's hypotheses are correct, 

they must correspond to a real physical mechanism. Such a real 

mechanism is described in this book using classical mechanics and 

classical logic. 

With Einstein's new logic, contradictory results have 

appeared. For example, Gerald Feinberg developed the theory of 

tachyons which move faster than the speed of light. There are also 

mathematical models calculating wormholes, strings, 

multidimensional space, superluminal objects, time reversal and 

even time lines. Certainly, these claims do not make sense when 

we use conventional logic. 

An expert in Einstein's relativity is described as an expert in 

the mathematics of relativity. Since the conventional wisdom of 

classical physics is not used in relativity, an expert in relativity is 

not trained to deal with Newtonian logic. Consequently, this book 

on relativity will be much more easily understood by an expert in 

classical physics since he or she already knows the mathematics 

and understands the classical mechanisms involved. It might 

appear surprising to some readers that relativity can be explained 

with classical principles. However, they will never escape out of 

their preconceived notions and learn how this is done unless they 

carefully read this book. 

Acknowledgments. 
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Chapter One 
The Physical Reality of Length Contraction. 

1.1 - Introduction. 
In this first chapter, we will show that it is possible to establish 

links between quantum mechanics and mass-energy conservation. 

These links will help us calculate the interatomic distances in 

molecules and in crystals as a function of their gravitational 

potential. We will show that the natural interatomic distance 

calculated using quantum mechanics leads to the length 

contraction (or dilation) predicted by relativity. This result will be 

obtained here without using the hypothesis of the constancy of the 

velocity of light. It will appear instead as a consequence of 

quantum mechanics when mass-energy conservation is taken into 

account. 

Since length contraction appears as a consequence of quantum 

mechanical calculations, the physical reality of those predictions 

can be verified experimentally. We will show that the results of 

the most precise quantum mechanical experiments prove that the 

change of length is real. Two different experiments which have 

been found to give sufficient accuracy to verify this change of 

length will be described in detail. We will show that the 

dimensions of matter really change naturally depending on its 

location in a gravitational potential. 

1.2 - Mass-Energy Conservation at Macroscopic 
Scale. 

The most reliable principle in physics seems to be the principle 

of mass-energy conservation: mass can be transformed into energy 

and vice versa. Without this principle, one would be able to create 

mass or energy from nothing. We do not believe that absolute 

creation is possible. 

In order to understand the fundamental implications related to 

mass-energy conservation, let us consider the following example. 

Suppose momentarily that the Earth is not moving around the Sun, 

but has been pushed away with a powerful rocket and has reached 
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interstellar space at location P (see figure 1.1). It now has a 

negligible residual velocity with respect to the Sun and except for 

the fact that the Sun has faded away, everything appears the same. 

The Earth is still made of about 1050 atoms, its center contains 

iron, is surrounded by oceans, deserts, cities and the atmosphere is 

the same. The planet is still populated by about the same five 

billion people. 

Figure 1.1 

Let us assume that after a while, the planet starts falling slowly 

from P toward the Sun. Due to the solar attraction, the Earth 

accelerates until it reaches the distance of 150 million kilometers 

(from the Sun) corresponding to its normal orbit. At that moment, 

one can calculate that the Earth has reached a velocity of 42 km/s. 

This velocity is too large for the Earth to be in a stable orbit around 

the Sun as it is normally. It must be reduced to 30 km/s, the 

velocity for a stable orbit. The Earth must be slowed down. 

It is decided that the velocity of the Earth can be reduced with 

the help of a strong rope attached to a group of stars at the center 

of our galaxy. The force produced by the rope will generate 

energy at the center of the galaxy while the Earth is slowed down 

to the desired velocity for a stable orbit around the Sun. 

Knowing that the Earth has a mass of 5.97x10"4 kg, it is easy to 

calculate the amount of work transferred to the center of the 

galaxy. It corresponds to slowing down the Earth from 42 km/s to 

30 km/s. This represents an amount of work equal to 2.6x1033 

joules. Therefore the Earth must get rid of 2.6x1033 joules to go 

back to its normal orbit and the center of the galaxy must absorb 

that same amount of energy. The rope used to slow down the 

Earth could then run a generator located at the center of the galaxy 

to produce 2.6x1033 joules of energy. 
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However, due to the principle of mass-energy conservation, the 

energy carried out to the center of the galaxy to slow down the 

Earth can be transformed into mass. Using the relation E = me2, 

we find that the mass corresponding to 2.6x 1033 joules of energy is 

equal to 2.9x1016 kg. This means that 29 billions of millions of 

kilograms of mass have been transferred from the Earth to the 

center of the galaxy through the rope. This mass-energy is a very 

small fraction of the Earth’s mass but it must be coming from the 

Earth and received at the center of the galaxy. 

After the re-establishment of the Earth’s orbit at one 

astronomical unit from the Sun, the inhabitants of the Earth find 

nothing changed. Other than the neighboring Sun, no difference 

can be noticed compared with when the Earth, still made of its 

initial 1050 atoms, was away from the Sun. The question is: How 

can the Earth not lose one single atom or molecule while 29 

billions of millions of kilograms of mass have been lost and 

received at the center of the galaxy? There is only one logical 

answer. Since each atom on Earth was submitted to the force of 

the rope, each atom has lost mass in a proportion of approximately 

one part per one hundred million. 

Note that this situation is equivalent to the formation of a 

hydrogen atom. When a proton and an electron come together to 

form a hydrogen atom, energy is released in the form of light. This 

light corresponds to the work transferred to the center of the 

galaxy in our problem. 

1.3 - Mass-Energy Conservation at a Microscopic 

Scale. 
The experiment described above takes place at a macroscopic 

scale. Each individual atom loses mass because a force interacts 

on all atoms when the Earth decelerates in the Sun's gravitational 

potential. It is normally assumed that atoms have a constant mass. 

For example we learn that the mass of the hydrogen atom is m0 = 

1.6727406xl0"27 kg. Can we have hydrogen atoms with less or 

more mass? From the thought experiment of section 1.2, we see 

that the principle of mass-energy conservation requires a 

transformation of mass into energy on each atom forming the 
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Earth, since each of them has contributed to generate energy 

transmitted to the center of the galaxy. 

Let us study the following experiment. We first consider that an 

individual hydrogen atom is placed on a table on the first floor of a 

house in the gravitational field of the Earth, as shown on figure 

1.2. The hydrogen atom is then attached to a fine (weightless) 

thread so that the atom can be lowered down slowly to the 

basement of the house, while the experimenter remains on the first 

floor. When the atom is lowered down, its weight produces a force 

F in the thread. That force is measured by the experimenter on the 

first floor. It is given by: 

F = m0g. 1.1 

First floor m„ 

Ah 

Basement 

Figure 1.2 

The slow descent of the atom attached to the thread is stopped 

every time a measurement is made, which means that the kinetic 

energy is zero at the moment of the measurement. When the atom 

has traveled a vertical distance Ah, the observer on the first floor 

observes that the energy AE produced by the atom and transmitted 

through the thread to the first floor is: 

AE = FAh. 1.2 

The work extracted from the descent of the atom is positive 

when the final position of the atom is under the first floor (Ah is 

positive). Then, according to the principle of mass-energy 

conservation, the energy produced at the first floor by the descent 

of the atom in the basement can be transformed into mass 

according to the relationship: 
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c 2 b = me . 1.3 

The important point that must be retained about equation 1.3 is 

that the energy E is proportional to the mass, independently of the 

fact that it just happens that the numerical value of the constant of 

proportionality is equal to the square of the velocity of light. From 

equations 1.1, 1.2 and 1.3, the amount of mass Amf generated at 

the first floor by the descent is: 

Amf = 
mogAh 

1.4 

This amount of mass (or energy) carried by the thread is 

generated by the weight of the atom which slowly moves down to 

the basement. When the hydrogen atom lies on the table, its mass 

is m0. However, during its descent, it produces work 

(corresponding to the mass Amf generated at the first floor). The 

initial mass m0 of the particle is now transferred into the mass- 

energy Amf generated at the first floor by the falling particle, plus 

the remaining mass mb of the particle now in the basement. Using 

equation 1.4, we find: 

mb = m0 - Amf = m0 1.5 

According to the principle of mass-energy conservation, the 

mass of the hydrogen atom in the basement is now different from 

its initial mass m0 on the first floor. It is slightly smaller than mQ 

and is now equal to mb. Any variation of g with height is 

negligible and can be taken (with g) into account in equations 1.4 

and 1.5. 
lb 

Of course, the relative change of mass Am/m0 is extremely 

small. (It was equally small in the case of the Earth falling back to 

its normal orbit, as seen above in section 1.2.) The change of mass 

given by equation 1.5 is so small that it cannot be verified using a 

weighing scale. However, this reduction of mass must exist, 

otherwise, mass-energy would be created from nothing. We will 

see below that this change of mass has actually been measured. 

It was quite arbitrary for us to assume that the initial mass of 

hydrogen on the first floor is m0. Physical tables do not mention 

all the experimental conditions in which an atom is measured. 
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Furthermore, the accuracy of this value is quite insufficient now to 

detect Amf (equation 1.5). A change of altitude of one meter near 

the Earth’s surface gives a relative change of mass of the order of 

lO'16. Masses are not known with such an accuracy. 

At this point, we must recall that in the above reasoning, we 

have made a choice between the principle of mass-energy 

conservation and the concept of absolute identical mass in all 

frames. It is illogical to accept both principles simultaneously 

since they are not compatible. We have chosen to rely on the 

principle of mass-energy conservation which is equivalent to not 

believing in "absolute creation from nothing" as defined in section 

1.2. We must realize that without mass-energy conservation not 

much of physics remains. Physics becomes magic. 

1.4 - Mass Loss of the Electron. 
There is a way to measure experimentally the mass difference 

between a hydrogen atom in the basement and one on the first 

floor. In equation 1.5, we see that a mass Amf appears and 

increases when the atom moves down in the gravitational field. 

Due to mass-energy conservation, the mass mb of the atom moving 

down decreases by the same amount, that is: 

Amb = Amf 1.6 

Since the hydrogen atom has lost a part of its mass due to the 

change of gravitational potential energy, we must expect 

(according to equation 1.5) that the electron as well as the proton 

in the atom have individually lost the same relative mass. Let us 

calculate the relative change of mass of the electron fAmg/me) and 

of the proton inside the hydrogen atom due to its change of height. 

From equations 1.5 and 1.6, we have: 

Ame gAh 
-= — 1.7 
me c2 

where 

Ame = Am,,. 1.8 
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When Ah is a few meters, equation 1.7 gives a relative change of 

mass of the order of 10’16. Consequently, the first order term gives 

an excellent approximation. Let us use: 

Ame dmc 

The electron mass me (as well as the proton mass) is not 

constant and decreases continuously when the atom is moving 

down. Equation 1.7 shows that independently of the mass of the 

particle, the relative change of mass is the same. This means that 

for the same change of altitude, the relative change of mass of the 

electron is the same as for the proton. 

Due to the principle of mass-energy conservation, we must 

conclude that a hydrogen atom at rest has a less massive electron 

and a less massive proton at a lower altitude than at a higher 

altitude. The mass of an electron and of a proton can be tested 

very accurately in atomic physics. Quantum physics shows us how 

to calculate the exact structure of the hydrogen atom as a function 

of the electron and proton mass. From that, one can calculate the 

Bohr radius of an atom having a different mass. Fortunately, the 

Bohr radius can also be measured with extreme accuracy 

experimentally. 

1.5 - Change of the Radius of the Electron Orbit. 
It is shown in textbooks how quantum physics predicts the 

radius of the orbit of the electron in hydrogen for a given 

electronic state. This is given by the well known Bohr equation: 

n2h2 

n Zmeke2 
1.10 

where rn is the radius of the Bohr orbit of the electron with 

principal quantum number n, me is the mass of the electron 

(actually, me is the reduced mass, but it is approximately the same 

as the electron mass), h is the Planck constant (= 2ti/z), k is the 

Coulomb constant (l/47te0), e is the electronic charge and Z is the 

number of charges in the nucleus (Z = 1 corresponds to atomic 

hydrogen). Furthermore when we choose n = 1 and Z = 1, rn 

becomes a0, which is called the Bohr radius. The Bohr radius is 
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5.291772x10'" m at the Earth's surface (for the case of for 

which the nucleus is very massive). Equation 1.10 illustrates a 

simple principle. It illustrates the fact that the circumference of the 

electron orbit is exactly equal to (or any multiple of) the de Broglie 

wavelength of the electron orbiting the nucleus. 

Since, as we have seen above, the electron mass me changes 

with its position in a gravitational potential, let us calculate (using 

Bohr's equation) the change of radius rn caused by that change of 

electron mass. This is given by the partial derivative of rn with 

respect to me. From equation 1.10 we find: 

<K = __^e i n 
rn me 

Equation 1.11 shows that any relative decrease of electron mass 

is equal to the same relative increase of the radius of the electron 

orbit. According to the principle of mass-energy conservation, the 

electron mass decreases when brought to a lower gravitational 

potential. Consequently, quantum physics (Bohr's equation) shows 

that the radius of the electron orbit in hydrogen must increase 

when the atom is at a lower altitude. Using equation 1.10, 

quantum physics gives us the possibility to predict the size of the 

electron orbit rn in an atom for different values of electron mass. 

Let us study the change of size of the electron orbit as a function of 

the altitude where the particle is located in a gravitational field. 

1.6 - Change of Energy of Electronic States. 
Since it has been observed and accepted that the laws of 

quantum physics are invariant in any frame of reference, let us 

calculate the energy states of atoms having an electron (and a 

proton) with a different mass. The consequences of the change of 

proton mass are easily calculated since the energy levels depend 

only on the reduced mass of the electron-proton system. In the 

Bohr equation, we take me as the reduced mass. This does not 

produce any relevant difference in the problem here. 

The binding energy between the electron and the proton is a 

function of the electrostatic potential between the nucleus and the 

electron. Quantum physics teaches that the energy En of the nth 

state as a function of the electron mass is: 
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En = 
f k2e4 ^ 

2 + 2 2n /i 
m e‘ 1.12 

From equation 1.12, we can find the relationship between the 
change of electron mass and the change of energy: 

5m„ 

En me 

1.13 

The Bohr radius a0 is the average radius of the electron orbit for 
n = 1. According to quantum physics the energy of state n is: 

1.14 

where a0 is a function of the electron mass me, given by: 

= K1 f-Ll Ike2 J vmj 1.15 

We know that the energy of electronic states of atoms can be 

measured very accurately in spectroscopy from the light emitted 
during the transition between any two states En and En.. Extremely 

accurate results can also be obtained in some nuclear reactions 
with the help of Mossbauer spectroscopy. 

The frequency vn of the radiation emitted as a function of the 

energy En of level n is given by: 

En = hvn. 

By differentiation of equation 1.16, we find: 

dv„ 3En 

W En 

Differentiation of equation 1.14 gives: 

3Er da„ 

1.16 

1.17 

1.18 

Combining equations 1.11, 1.13, 1.17 and 1.18, we get: 

da, Svr 

mP 

<3En drn 
1.19 
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Since these quantities are extremely small but finite, we can 

write: 

A<x, Av„ Am, AEn Arn 

a0 vn me 

From equation 1.7, we have: 

Ame gAh 

me c‘ 

Equations 1.20 and 1.21 give: 

AEn Avn A a0 Ame Arn gAh 
2 • 

En vn a0 me rn c 

1.20 

1.21 

1.22 

Equation 1.22 shows that the relative change of size of the Bohr 

radius Aa0/a0 is equal to -gAh/c2. 

This shows that following the laws of quantum physics, a 

change of electron mass due to a change of gravitational potential 

(which results necessarily from the principle of mass-energy 

conservation) produces a physical change of the Bohr radius. 

We must notice here that using the relativistic correction given 

by Dirac's mathematics is irrelevant and does not solve this 

problem. Relativistic quantum mechanics introduces a relativistic 

correction due to the electron velocity with respect to the center of 

mass of the atom. The change in electron mass brought by the 

relativistic correction involved in this chapter is due to the 

gravitational potential originating from outside the proton-electron 

system. It is not due to any internal velocity within the atom. 

The use of the relativistic Dirac equation is not related to 

calculating how the Bohr radius changes between its value in the 

initial gravitational potential and its value in the final gravitational 

potential. 

1.7 - Experimental Measurements of Length Dilation 

in a Gravitational Potential. 
A measurement proving that there is a change of the Bohr radius 

due to the change of gravitational potential has already been made. 

The difference of energy for an atom corresponding to its change 
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of size is observed as a red shift of its spectroscopic lines. The 

change of mass can be applied quite generally to any particle or 

subatomic particle in physics placed in a gravitational potential. It 

can also be applied to astronomical bodies like planets and 

galaxies since it relies on the principle of mass-energy 

conservation which is always valid. 

1.7.1 - Pound and Rebka’s Experiment. 
A spectroscopic measurement of the highest precision has been 

reported by Pound and Rebka [1] in 1964 with an improved result 

by Pound and Snider in 1965. Since we have seen that the change 

of a0 corresponds to a change of energy of spectroscopic levels, let 

us examine Pound and Rebka's experiment. They used Mossbauer 

spectroscopy to measure the red shift of 14.4 keV gamma rays 

from Fe . The emitter and the absorber were placed at rest at the 

bottom and top of a tower of 22.5 meters at Harvard University. 

The consequence of the gravitational potential on the particles is 

such that their mass is lower at the bottom than at the top of the 

tower. Therefore an electron in an atom located at the base of the 

tower has a larger Bohr radius than an electron located 22.5 meters 

above, as given by equation 1.22. The same equation also shows 

that electrons orbiting with a larger radius have less energy and 

emit photons with longer wavelengths. 

Pound and Rebka reported that the measured red shift agrees 

within one percent with the equation: 

AE 

E 
:^ = 2.5x1 O'15. 1.23 

Not only is the change of energy predicted by relativity and 

verified experimentally by Pound and Rebka (equation 1.23) 

numerically compatible with the change of energy predicted by the 

conservation of mass-energy, but the predicted relativistic equation 

is mathematically identical to the one predicting the increase of 

Bohr's radius (equation 1.22). Since the red shift measured 

corresponds exactly to the change of the Bohr radius existing 

between the source and the detector, we see that it cannot be 

attributed to an absolute decrease of energy of the photon during 

its trip in the gravitational field. 
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This result is exactly the one that proves that matter at the base 

of the tower is dilated with respect to matter at the top. It is clear 

that the Bohr radius has actually changed as expected which means 

that the physical length has really changed. Therefore, this 

phenomenon is not space dilation. The real physical dilation of 

matter is observed because electrons (as well as all particles) have 

a lower mass at the bottom of the tower which gives them a longer 

de Broglie wavelength. Space dilation is not compatible with a 

rational interpretation of modem physics. A rational interpretation 

has already been presented [3]. 

The equilibrium distance between particles is now increased 

because the Bohr radius has increased. When atoms are brought to 

a different gravitational potential, the electron and proton must 

reach a new distance equilibrium as required by quantum physics 

in equation 1.12. Quantum physics and the principle of mass- 

energy conservation lead to a real physical contraction or dilation. 

This solution solves the mysterious description of space 

contraction in relativity without involving any new hypothesis or 

new logic. Length contraction or dilation is real and is 

demonstrated here as the result of actual experiments. Let us also 

note that this length dilation is done without producing any 

internal mechanical stress in solid material. Finally, if the source 

were above the detector, we would observe a blue shift proving 

that the Bohr radius in matter above the detector has decreased 

with respect to the Bohr radius in matter at lower altitude. One can 

conclude that Pound and Rebka's experiment has shown that 

matter is contracted or dilated when it is moved to a different 

gravitational potential. 

1.7.2 - The Solar Red Shift. 
Other experiments also show the reality of length contraction or 

dilation. For example, the atoms at the surface of the Sun have 

been measured to show exactly the gravitational dilation due to the 

decrease of mass of the electrons in the solar gravitational 

potential. The gravitational potential at the Sun's surface is well 

known. As shown above, it is a change of electron mass in the 

hydrogen atom due to the gravitational potential that produces a 

change of the Bohr radius. It is that change of Bohr's radius that 
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produces a change of energy between different atomic states. 

Brault [2] has reported such a change of energy between atomic 

states. It corresponds exactly to the change of Bohr's radius caused 

by the gravitational potential. The atoms on the Sun emit light at a 

different frequency because the electrons are lighter on the solar 

surface than on Earth, exactly as required by the principle of mass- 

energy conservation. The change of electron mass on the Sun 

produces displaced spectral lines toward longer wavelengths as 

given by equation 1.22. Since quantum physics is valid on the 

solar surface, we can understand that the electrons have less mass 

due to the solar gravitational potential. This leads to an increase of 

the Bohr radius for the atoms located on the solar surface which 

leads to atomic transitions having less energy, as observed 

experimentally. 

The Mossbauer experiment as well as the solar red shift 

experiment prove that atoms are really dilated physically. This 

means that the physical length of objects actually changes. We 

also find that not only do protons and electrons lose mass in a 

gravitational potential but so do nuclear particles in the nucleus of 

Fe57, as observed in the Mossbauer experiment of Pound and 

Rebka. 

1.8 - The Crucial Influence of the Electron Mass on 

the Fundamental Laws of Relativity. 
Macroscopic matter is formed by an arrangement of atoms. In 

molecular physics, we learn that quantum physics predicts that 

interatomic distances are proportional to the Bohr radius. Those 

distances are calculated as a function of the Bohr radius. 

According to quantum physics, a smaller Bohr radius will lead to a 

smaller interatomic distance between atoms in molecular 

hydrogen. The interatomic distance in molecules is known to be a 

function of the Bohr radius just as the interatomic distance in a 

crystalline structure is proportional to the Bohr radius. This means 

that since the Bohr radius changes with the intensity of the 

gravitational potential, the size of molecules and crystals also 

changes in the same proportion. This is true even in the case of 

large organic molecules. Therefore the size of all biological matter 
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is proportional to the Bohr radius. This point is explained in more 

details in appendix I. 

Because the size of macroscopic matter changes with the 

gravitational potential, the original length of the standard meter 

transferred to a location having a different gravitational potential 

will also change. To be more specific, mass-energy conservation 

requires that the standard meter made of platinum-iridium alloy 

becomes shorter if we move it to the top of a mountain. 

Furthermore, due to the increase of electron mass, an atomic clock 

will increase its frequency by the same ratio when it is moved to 

the top of the same mountain. However, since the velocity of light 

(or any other velocity) is the ratio between these two units, it will 

not change at the top of the mountain with respect to any frame of 

reference. This point will be discussed later. Because the relative 

changes of length and clock rate are equal, they will be 

undetectable when simply using proper values within a frame of 

reference. All matter, including human bodies, composed of atoms 

and molecules will change in the same proportion since the 

intermolecular distance depends on the Bohr radius and 

consequently on the electron mass which is reduced when located 

in a gravitational potential. 

It is important to notice that length dilation or contraction is 

predicted and explained here without using the relativistic Lorentz 

equations nor the constancy of the velocity of light. Consequently, 

we must consider now that we have demonstrated experimentally 

(using Pound and Rebka's results) the physical change of length of 

an object in a gravitational potential. More demonstrations will be 

given in the following chapters. 

The experiments reported here showing length dilation use 

atoms that are at rest. They are solely related to the potential 

energy. We will see that the problems of kinetic energy and 

velocities require new considerations in the next chapters. 
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1.10 - Symbols and Variables. 
AE energy produced by the atom and transmitted to the first 

floor 

Ah distance travelled by the atom 

Amb amount of mass lost by the atom 

Ame amount of mass lost by the electron 

Amf amount of mass generated on the first floor 

En energy of the hydrogen atom in state n 

F weight of the atom 

m0 mass of the atom on the table 

vn frequency of the radiation emitted corresponding to En 

rn radius of the orbit of the electron in hydrogen in state n 

Z number of charges in the nucleus 



Chapter Two 
Transformation of Excitation Energy between 

Frames. 

2.1 - Introduction. 
We consider now the kinetic energy given to masses when there 

is no gravitational potential. The principle of mass-energy 

conservation requires that masses increase when given kinetic 

energy. This is expressed by the relationship: 

mv[rest] = yms[rest] 2.1 

where: 

V|2 

vcy 
2.2 

The index [rest] means that the measurement is made using the 

units of the rest frame. The subscripts v and s refer to masses 

having respectively a velocity v and no velocity (stationary). 

These indices will be explained in detail in section 2.6. 

Since masses can be excited particles containing internal 

potential energy, we must study how to transform that potential 

energy between frames. The mass-equivalent of this internal 

potential energy has always been ignored in relativity. In order to 

be coherent, it must be taken into account. Let us show how this 

correction restores physical reality in relativity. To calculate the 

relationship between masses in different frames we use the 

principle of mass-energy conservation (equation 2.1). Let us find 

an equivalent relationship for the case of energy released by an 

excited atom. 

2.2 - Difference between Time and What Clocks 

Display. 
It has been suggested that time is what clocks measure. This 

definition is incomplete and misleading. We have seen in chapter 

one that due to mass-energy conservation, clocks in different 

gravitational potentials run at different rates. We must realize that 
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"time" is not elapsed more slowly because a clock functions at a 

slower rate or because the atoms and molecules in our body 

function at a slower rate. 

We have seen in equation 1.22 that in the case of a change of 

gravitational potential, the Bohr radius is larger when the electron 

mass is smaller. We also know that according to quantum 

mechanics, atomic clocks run more slowly when the electron mass 

is smaller. When we say that an atomic clock runs more slowly, we 

mean that for that atomic clock, it takes more "time" to complete 

one full cycle than for an atomic clock in the initial frame, where 

the electron has a larger mass. That slower rate can only be 

measured by comparing the duration of a cycle in the initial frame 

with the duration of a cycle in the new frame. It is the time rate 

measured in the initial frame at rest that is considered the 

"reference time rate". We will see that all observations are 

compatible with this unchanging "reference time rate". 

The change of clock rate is not unique to atomic clocks. We 

recall that quantum mechanics shows that the intermolecular 

distances in molecules and in crystals are proportional to the Bohr 

radius (see appendix I). Consequently, due to velocity, the length 

of a mechanical pendulum will change. Therefore it can be shown 

that the period of oscillation of all clocks (electronic or 

mechanical) will also change with velocity. 

We cannot say that "time" flows at the rate at which all clocks 

run because not all clocks run at the same rate. However, a 

coherent measure of time must always refer to the reference rate. 

That reference rate corresponds to the one given by a reference 

clock for which all conditions are fully described. It never 

changes. However, all matter around us (including our own body) 

is influenced by a change of electron mass (see appendix I) so that 

we are deeply tied to the rate of clocks running in our frame. Since 

our body and all experiments in our frame are closely synchronized 

with local clocks, it is much more convenient to describe the results 

of experiments as a function of the clock rate in our own frame. 

This is what we call the "apparent time". 

We generally refer to the clock rate of our organism believing 

that we are referring to the "real time". What appears as a "time 
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interval" for our organism is in fact the difference between two 

"clock displays" on a clock located in our own frame. "Difference 

of clock displays" (ACD) is a heavier phrase than "time interval" 

but it is necessary for an accurate description of nature. Of course, 

clocks are instruments measuring time but during the same time 

interval there is a difference by a factor of proportionality between 

the "differences of clock displays" of different frames. In order to 

avoid any misinterpretation, we must use the word "time" with 

great caution when we want to shorten the description. In that case, 

"time" is an apparent time interval corresponding to the difference 

of clock displays in a given frame when no correction has been 

made to compare it with the reference time. Since all our clocks 

and biological mechanisms depend on the electron's mass and 

energy, humans feel nothing unusual when going to a new frame. 

However, the time measured by the observer in that new frame is 

an apparent time and it must be corrected to be compared with a 

time interval on the fundamental reference frame. 

2.3 - Description of the Reference Time Rate. 
We do not know how to build a clock whose rate will not change 

when brought to a different gravitational potential or to a different 

velocity. However, using the mass-energy conservation principle, 

we have seen in equation 1.22 how to calculate the difference of 

clock rate between clocks without relative velocity and located in 

different gravitational potentials. This means that we can calculate 

the clock rate in one frame as a function of the clock rate in a 

different frame, as long as the gravitational potential and kinetic 

energies are fully described in both frames. 

An absolute "reference time rate" can be defined using a clock 

located in a frame in which the velocity and the gravitational 

potential are well described. For example this could be a clock at 

rest with respect to the Sun and far enough from it so that the 

residual gravitational potential would be negligible. We could then 

arbitrarily define the "reference time rate" as the rate at which that 

clock operates in these particular conditions. Everywhere in the 

universe we would refer to that rate as the "reference time rate". If 

such a reference clock were brought from outer space to a location 

near the Sun, we have found in chapter one that due to mass-energy 
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conservation, it would run more slowly because the electron would 

lose mass into energy that would escape away from its initial 
frame. 

Let us assume that an observer near the Sun wants to measure 

the period of variation of light coming from a remote variable star. 

He uses his clock and records a clock display every time the star is 

at its maximum of brightness. The difference between two maxima 

will give him the period of variation of the star, using his clock 

rate. Let us represent by ACDS (where s stands for Sun) the 

difference of clock displays for the clock near the Sun. In 

Einstein's relativity, since time is what clocks measure, ACDS is 

interpreted as a time interval. However, we know that a difference 

of clock displays simply gives a pure number without any 

information on what the absolute time is. The subscript of ACDS 

refers only to the location of the clock and not to an absolute time 

unit. We know however that another clock far away from the Sun 

(in a higher gravitational potential) will give a different difference 

of clock displays called ACD0 s (where o.s. stands for outer space) 

between each maxima because it runs at a different rate (that is 

equal to the "reference outer space clock rate"). Consequently, the 

ACDS recorded near the Sun will not be the same as the ACD0 s 

recorded in outer space. The observer near the Sun will have the 

illusion of a "time interval" (that he might call At) that is different 

from the one measured by the observer located in outer space 

simply because the clock rate at his location is different due to a 

different electron mass. One must understand that the real time 

interval for a star to complete a cycle does not vary because the 

observer has moved somewhere else or because his clock runs at a 

different rate. Consequently, when we refer to ACD, we must 

always specify (with a subscript) in which frame the clock is 

located. Then a correction needs to be made to that number if we 

want to calculate the corresponding ACD given by a reference 

clock in outer space. We must remember that the ACD given by a 

local clock is a pure number that must be multiplied by a unit of 

time to give a "real time" interval. Therefore, an absolute reference 

of "time unit" must be defined. Furthermore, the absolute standard 

of unit of time will appear different in different frames since we 
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have seen that local clocks run at different rates in different 

gravitational potentials. 

We see that there is no time dilation nor time contraction. There 

is no magic. In order to be able to make a comparison between 

systems, it is absolutely necessary to compare the differences of 

clock displays (which are not time but numbers of units of time) 

instead of the time intervals. 

This problem cannot be discussed properly using directly the 

parameter "time" because of the psychological impression on 

humans that time is the rate at which our own organism runs. This 

last rate depends on the electron mass in the frame in which we are 

located. Consequently, we must get familiar with the phrase 

"difference of clock displays" (ACDframe) remembering that it 

corresponds to the "time interval" believed to be felt by an observer 

in that particular frame. 

We have seen above that two clocks located in different 

gravitational potentials will not show the same difference of clock 

displays during the same real time interval. We will see now that 

quantum mechanics also predicts that clock rates are different when 

these clocks are carried in frames having different kinetic energy. 

We might assume that the relativistic correction could be made 

simply by taking into account the increase of electron mass due to 

the addition of kinetic energy, but this correction is too simple and 

incomplete (as we will see in sections 2.8 and 2.9) and disregards 

the need to consider the transfer of internal excitation energy 

between systems. In order to be able to calculate relative clock 

rates, we must first find the relationship between the excitation 

energy of atoms in frames having different velocities. 

2.4 - Description of the Reference Meter. 
The standard definition of length uses a unit called the "meter". 

In order to be coherent, we must define the meter in a way that can 

be reproduced in any frame. It is generally believed in physics that 

one can transfer, without any change of length, a standard meter 

from the rest frame to the moving frame. This is wrong because 

this is not compatible with the principle of mass-energy 

conservation and with quantum mechanics. When kinetic energy 
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(or potential energy) is added to or removed from a rod, the 

electron mass and the Bohr radius change as required by the 

principle of mass-energy conservation. Consequently, the length of 

a rod will not be the same in frames having different velocities. 

The change of length of a standard rod which is one meter long in 

an initial frame can be calculated considering its kinetic and 

potential energies. 

Even the most fundamental definition of the meter (which is 

1/299 792 458 of the distance traveled by light in one second) 

suffers from the same error since it requires the use of the unit of 

time and since the "apparent second" in the moving frame 

(ACD(S)[mov]) is different from the "apparent second" in the rest 

frame (ACD(S)[rest]) due to the change of mass of the electrons in 

the atomic clock carried by the moving system. Consequently, to 

be able to compare lengths in different frames, we must complete 

the international definition of the reference meter and state its 

potential and kinetic energies. 

We define here that the length of the reference meter 

corresponds to 1/299 792 458 of the distance traveled by light 

during one second on a clock located at rest in outer space, far 

away from the Sun. 

2.5 - Definition of the Velocity of Light. 
We want to point out that none of the above definitions depends 

on the experimental measurement of the velocity of light. The 

value of the parameter c is defined in equation 1.3 from the 

fundamental concept requiring an absolute constant K of 

proportionality between mass and energy: 

E = Km. 2.3 

However, it has been observed experimentally that the value of 

K is equal to the square of what is interpreted to be the velocity of 

light. Whatever c is, for practical reasons, we define it as: 

c = VK. 2.4 

Everywhere in this book, the meaning of c is fundamentally 

bound to equation 2.4. We believe that the fact that the velocity of 

light is equal to the square root of the constant K in the mass- 
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energy relationship is not just a coincidence and results from a 

fundamental mechanism. However, it is very likely that the best 

method of measuring the mass-energy constant K is through the 

measurement of c. 

2.6 - Need of Parameters with a Double Index. 
From the above description, we realize that the observer's frame 

is submitted to several particular conditions like its gravitational 

potential and kinetic energies. However, an observer moving with 

his clock cannot measure the change of clock rate because all 

phenomena in the moving frame, including the clock rate, change 

in the same proportion. 

The same can be said of masses. When an observer and some 

masses move at an identical velocity, the values of the masses (as 

measured by the observer inside the moving system) are 

indistinguishable from the values obtained before the common 

change of velocity. After claiming that a mass increases with 

velocity with respect to an observer at rest, it would be incoherent 

to claim that the same mass does not increase when the observer 

moves with it. 

In order to make a clear and coherent description, one must use a 

suitable notation which gives a complete description of the units 

used. To do this, two independent indexes are necessary. The first 

index indicates the units used for the measurement. For example, 

we can measure the length of an object either with respect to a 

reference meter at rest or with respect to a moving meter. It must 

be realized that the reference meter at rest is a unit that has a 

different length than the same reference meter in motion. It is 

almost like using inches instead of centimeters. When we measure 

a length / and a mass m using the units of length and mass issued 

from the system at rest, the length is represented by /[rest] and the 

mass is represented by m[rest]. When we measure lengths and 

masses using the units of the system in motion, we represent the 

length by /[mov] and the mass by m[mov]. The indexes [rest] and 

[mov] do not tell us whether the mass is moving or not. They only 

tell us what units are used. 
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The second index indicates the state of motion of the system on 

which parameters (like length or mass) are measured. We describe 

the frame in which the particle is located using the subscript "v" 

when the particle is moving and the subscript "s" when the particle 

is stationary. For example, the mass of a stationary particle (using 

units of the rest frame) is represented by ms[rest] and the mass of a 

moving particle (using units of the rest frame), by mv[rest]. 

According to relativity, we must write: 

mv[rest] = yms[rest]. 2.5 

Similarly, the mass of a moving particle measured using moving 

units is represented by mv[mov] and the mass of a stationary 

particle measured using moving units is represented by ms[mov]. 

Consequently, the number of kilograms in ms[rest] is identical to 

the number in mv[mov] because they are both measured using 

proper parameters. However, the mass merest] is different from 

mv[rest] as seen in equation 2.5. 

The number "n" of meters of a rod does not change when the rod 

is moved to another frame as long as we measure proper values 

(number of proper meters). Then ns equals nv. However, the 

distance between the atoms changes. Since the interatomic 

distance a changes when a physical body is moved to another 

frame, the number of atoms Ns along a length of one meter[rest] in 

a stationary rod is different from the number of atoms Nv along the 

same length (one meter[rest]) when the rod is in motion at velocity 

v. Therefore when measuring the same absolute constant length in 

two frames we find: 

2.6 
meter[rest] meter[rest]' 

Of course, the indexes [rest] and [mov] are irrelevant with the 

numbers ns, nv, Ns and Nv because they are pure numbers. 

The fundamental importance of the necessity of using a double 

index must not be underestimated because relativity cannot be 

explained properly without it. This is a consequence of having 

different units of mass and length in different frames. These 

double indices are irrelevant in Newtonian mechanics. In 

principle, a third index could be added giving the information 
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about the gravitational potential energy. This third parameter will 

be considered separately. 

2.7 - Apparent Lack of Compatibility for Fast Moving 

Particles. 
When a body is accelerated, its mass increases according to the 

relationship given by equation 2.5. Therefore fast moving atoms 

possess more massive electrons. Using the Bohr equation, let us 

calculate the consequences of a heavier electron in the case of the 

hydrogen atom. 

When the electron mass is larger and no other parameter is taken 

into account, then according to the Bohr equation (equation 1.12), 

all the atomic energy levels should have more energy (equation 

1.13). Consequently, since E = hv, the atoms formed with those 

heavier electrons should emit electromagnetic radiation at a higher 

frequency v. This means that an atomic clock located in the 

moving frame should run at a higher rate. However, we know from 

experiments that fast moving particles disintegrate at a slower rate 

and atoms emit a lower frequency. This has been clearly observed 

in the muon's and spectroscopic experiments. We conclude that the 

increase of electron mass that causes atoms to disintegrate at a 

higher rate in a gravitational potential does not appear to be 

compatible with the slower rate of disintegration of fast moving 

muons. This apparent contradiction is a very serious problem that 

requires a more careful study. Using the principle of mass-energy 

conservation, we will solve that problem by showing that one 

important parameter has been ignored. 

In the next section, we will consider solely experiments in which 

the gravitational potential energy is always constant. This 

corresponds to the study of special relativity. Only the velocity 

(and therefore the kinetic energy) will change. The problem of 

combining gravitational potential energy with kinetic energy will 

be studied in chapters five and six. 
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2.8 - Demonstration of the Energy Relationship 

between Systems. 
Let us consider a stationary particle Mso where the index s stands 

for stationary and the index o means that the particle is in its 

ground state of internal excitation. That particle can be a single 

hydrogen atom. When accelerated to a velocity v, its mass 

becomes: 

Mvo[rest] - yMS0[rest] 2.7 

where the index v means that the particle has a velocity v. 

Let us consider that an internal energy of excitation Exs[rest] is 

given to that particle before its acceleration. The index x refers to 

internal excitation energy. The total mass Msxt[rest] of the 

stationary excited atom is then: 

E 
Msxt [rest] = Mso [rest]+ —^ [rest] 2.8 

where the index t refers to the total mass-energy which includes 

rest mass, internal and kinetic energies when relevant. From 

equation 2.8, we calculate that the internal excitation energy 

Exs[rest] alone has a mass-equivalent Mxs[rest] given by: 

E hv 
M xs [rest] = —f- [rest] = -f- [rest] 2.9 

c c 

where hvs[rest] is the energy Exs measured using the units of 

time and length of the rest frame. Equations 2.8 and 2.9 give: 

Msxt = MS0[rest]+Mxs[rest], 2.10 

The particle of mass Msxt can emit its energy of excitation 

according to equation 2.9. When that particle (Msxt) is accelerated 

to a velocity v, its mass becomes Mvxt which is y times its mass at 

rest as given by equation 2.5. This gives: 

Mvxt[rest] =yMsxt[rest]. 

Putting 2.10 in 2.11 gives: 

Mvxt[rest] = yMS0[rest]+yMxs[rest]. 2.12 
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If the particle does not possess any internal energy, then the 

second term of equation 2.12 vanishes and we get equation 2.7. 

Putting equation 2.7 in 2.12, we have: 

Mvxt[rest] = Mvo [rest]+7MXS [rest]. 2.13 

Equations 2.13 and 2.9 give: 

yhvQ 
Merest] = Mvo [rest] + [rest]. 2.14 

Equation 2.13 shows that the velocity of the excited particle 

leads to the mass component Mvo[rest], The second term yMxs[rest] 

gives the mass-energy equivalent of the excitation energy of the 

moving particle. This term is composed of the mass equivalent of 

the excitation energy of the particle (which is hvs/c [rest]) and of 

the energy required to accelerate it (given by y). From equations 

2.13 and 2.14, we see that the principle of mass-energy 

conservation requires that the total energy of excitation combined 

with the energy necessary to accelerate that energy of excitation (or 

its mass equivalent) give: 

En(Excit.-(-acceleration of excit.) = yMxsc"[rest] = yhvs[rest].2.15 

Equation 2.15 gives the total energy [rest] that the excited 

moving atom must lose (by emission of a photon) to go to its 

ground state. 

Elowever, when the observer moves with the excited atom and 

uses rest units, he will deduce from his measurements a frequency 

vv[rest] from which he will naturally decide that the energy of 

internal excitation is hvv[rest]. Therefore: 

En[rest](emitted) = hvjrest], 2.16 

The energy that was required to accelerate the mass-equivalent 

of that excitation energy may appear irrelevant to the moving 

observer. However, due to mass-energy conservation, that energy 

cannot disappear and be ignored. According to the principle of 

mass-energy conservation, since no other photon is emitted during 

the transition, the emitted photon must possess all the energy 

available which includes the energy of excitation plus the kinetic 

energy of the mass equivalent of that excitation energy. 
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Using the same units, it is clear that the total energy of equation 

2.15 (excitation plus the energy required to accelerate the mass- 

equivalent of the energy of excitation) is equal to the energy of the 

photon received during the de-excitation by the observer at rest 

(equation 2.16). This gives: 

yMxsc2[rest] = yhvs[rest] = hvv[rest]. 2.17 

In equation 2.17, we have the Planck parameter h that comes 

from the measurement of hvs in a stationary frame. We also have 

the Planck parameter h that comes from a measurement of hvv in 

the moving frame (always using the same common units [rest]). In 

order to be coherent and since the Planck parameter comes from 

measurements from different frames, we must individually label 

each Planck parameter. Equation 2.17 becomes: 

yhsvs[rest] = hvvv[rest]. 2.18 

Equation 2.18 is an important relationship that must be applied 

when the energy of excitation is given a new velocity. 

2.9 - Relative Frequencies between Systems. 
In order to solve equation 2.18, we need to find a relationship 

between vs[rest] and vv[rest]. Let us consider an electromagnetic 

wave of frequency vv[rest] emitted by an atom having a constant 

velocity v. That electromagnetic wave is measured by an observer 

in the rest frame. When the measurement of the frequency is made, 

he must consider two different phenomena that might change the 

frequency due to the velocity of the emitting atom. The first one is 

the change of clock rate of the emitter and the second is the 

classical Doppler effect due to the radial velocity between the 

stationary source of radiation and the moving observer. Let us 

study those two effects separately starting with the classical 

Doppler effect. 

Let us suppose that the source of radiation moving at a velocity v 

is emitting in a direction perpendicular to its velocity. The 

observer at rest receives the radiation at a frequency vs[rest]. This 

special direction allows us to take the classical Doppler effect into 

account very easily. We know that the Doppler correction is given 

by the relationship: 
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2.19 

where vr is the radial velocity between the moving frame and the 

frame at rest. In the case of a tangential velocity, when vr = 0, there 

is no Doppler correction. Consequently: 

2.20 1- — 

V c J 

Equation 2.20 in 2.19 shows that light received by the observer 

at rest from a moving source emitting radiation at 90° with respect 

to his velocity produces a Doppler effect equal to zero. At a 

different angle, when the Doppler effect is different from zero, we 

will see (chapter eight) that the change of frequency is completely 

due to the recoil produced by the emitting photon on the emitting 

particle. In that case, the recoil of the emitting particle gives to that 

emitting particle the energy lost or gained by the photon in 

agreement with mass-energy conservation. 

Let us consider now the mechanism which changes the clock rate 

when particles move from a rest frame to a moving frame. We 

expect the frequency of the clock to change when moved from a 

rest frame to a moving frame. However, that consideration is 

totally irrelevant. It is true that a clock will emit a different 

frequency when it is carried to a moving frame but this is not the 

problem considered here. The problem here refers to a comparison 

between a frequency that is measured to be vv[rest] in the moving 

frame using the rest frame units and a frequency measured by an 

observer at rest vs[rest] (using also rest frame units). Of course, 

since the units are the same and there is no Doppler correction we 
have: 

vv[rest] = vs[rest]. 2.21 

Equation 2.21 shows that using the units of the rest frame, the 

moving and the stationary observers will observe the same absolute 

frequency when a wave is traveling between systems which have 

no radial relative velocity. 

Combining equations 2.21 and 2.18 gives: 

hv[rest] = yhs[rest]. 2.22 
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Equation 2.22 means that when we use the Planck parameter h to 

determine the energy in a moving system we must make a 

correction (y) because of the kinetic energy of the equivalent mass 

ot the excitation energy hvvv[rest]. Keeping h identical between 

frames would be the same thing as claiming that masses do not 

change when they are accelerated. 

Equation 2.22 is the relationship we were looking for in section 

2.1. It is, for energy, the relationship equivalent to the mass-energy 

conservation principle: 

mv[rest] = yms[rest], 2.23 

Equation 2.22 is a relationship previously ignored. However this 

equation, which is required by the principle of mass-energy 

conservation, is absolutely necessary when treating problems 

dealing with a change of velocity of internal energy. We will see in 

chapter three how equation 2.22 allows us to solve the apparent 

contradiction described in section 2.7. 

2.10 - Cases of Relevance of the Relationship hv=yhs. 
We must notice that equation 2.22 (hv[rest] = yhs[rest]) results 

from the fact that the internal excitation energy of particles (that 

has a mass equivalent) acquires a velocity v that produces an 

increase of mass-energy equivalent. However, in the case of a 

change of gravitational potential energy, as seen in chapter one, the 

mass-equivalent of the internal excitation energy has no kinetic 

energy since it has no velocity. Therefore in the case of potential 

energy, the relationships hv[rest]=yhs[rest] and mv[rest] = yms[rest] 

are irrelevant since y = 1 when v = 0. In the case of gravitational 

potential, the changes of energy and length are given by equation 

1.22 in chapter one. 

Let us finally note that the relationship hv[rest] = yhs[rest] is 

absolutely necessary to satisfy the principle of invariance of 

physical laws in any frame of reference as will be seen in the rest of 

this book. 
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2.11 - Symbols and Variables. 
ACDframe difference of clock displays on a clock located in a 

frame 

ACD(S)[mov] ACD for the apparent second in the moving frame 

ACD(S)[rest] ACD corresponding to the apparent second in the 

rest frame 

energy of excitation given at rest in rest units 

Planck parameter on the rest frame in rest units 

Planck parameter on the frame in motion in rest 

units 

mass of an object at rest in rest units 

mass of a particle at rest in its ground state in rest 

units 

mass of the excitation energy of a particle at rest in 

rest units 

total mass of a particle at rest in its excited state in 

rest units 

mass of an object moving at velocity v in rest units 

mass of a particle in motion in its ground state in 

rest units 

total mass of a particle in motion in its excited state 

[rest units] 

frequency of light measured by an observer at rest in 

rest units 

frequency of light measured by a moving observer 

in rest units 

Exs[rest] 

hs[rest] 

hv[rest] 

ms[rest] 

MJrest] 

HJrest] 

Msxt[rest] 

mv[rest] 

Mvo[rest] 

Mvxt[rest] 

vs[rest] 

vv[rest] 



Chapter Three 

Demonstration of the Lorentz Equations 

without Einstein’s Relativity Principles. 

3.1 - Fundamental Physical Principle. 
In this chapter, we will show that the Lorentz equations can be 

demonstrated using the principle of mass-energy conservation and 

quantum mechanics. The equations obtained are mathematically 

identical to the usual Lorentz transformations. There is no need for 

Einstein's relativity principles or for the hypothesis of the 

constancy of the velocity of light. In fact, no new physical 

principle is required and the constancy of the velocity of light 

appears as a consequence to mass-energy conservation. 

We have seen in chapter one that the principle of mass-energy 

conservation implies that the mass of a particle changes with the 

gravitational potential. In this chapter, we will consider particles 

with kinetic energy. We will take into account that masses increase 

with kinetic energy, using Einstein's relativistic relationship 

mv[rest] = yms[rest]. This relationship shows that a moving particle 

has a larger mass than the same particle at rest (using rest mass 

units). However, as expected, when observed within the moving 

frame (using proper values), the mass does not appear to change. 

In order to demonstrate the Lorentz equations using physical 

considerations instead of a mathematical transformation of 

coordinates, we must define accurately the physical meaning of the 

quantities used. We have seen that Einstein considered that time is 

what clocks display. We know that clocks run more slowly when 

they are located in a gravitational potential. However, time does 

not flow more slowly because clocks run at a slower rate. 

Consequently, even if the equations that we will find are 

mathematically the same as the Lorentz equations, because of 

Einstein's interpretation, the parameter representing the time t in 

the equation will actually be a clock display CD. Therefore due to 

Einstein's confusion between clock display and time, the units 

(second) characterizing time t in Lorentz's equations should not 

exist because t is actually a clock display (which is a pure number). 
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When we compare Einstein's model of time dilation with the 

natural explanation in which the clock rate is simply slower, we are 

obliged to compare clock displays, which have no units, with real 

time, which needs to be expressed in seconds. In this chapter, since 

we wish to establish a comparison between Einstein's model and 

mass-energy conservation, it is impossible to avoid momentarily 

giving Einstein's units of time to quantities that represent only 

clock displays. Furthermore, we see that the relationship in which 

length / equals velocity times a time interval (/ = vAt), leads to an 

erroneous length because Einstein's definition of time is not time 

but a clock display. Therefore the length found is not a length but a 

pure number (of local meters). The length of a rod is a reality 

independent of the observer and does not depend on the rate at 

which a measuring clock is running. There is no change of length 

of a rod when the observer uses a clock running more slowly. 

Consequently, comparing our calculations with Einstein’s theory is 

very subtle because Einstein confused the slowing down of clocks 

with time dilation. 

3.2 - Change of Energy and Bohr Radius Due to 
Kinetic Energy. 

We have explained that the Bohr equation (equation 1.12) gives 

a relationship between the parameters that describe the rate at 

which an atomic clock runs. The energy levels in the Bohr atom 

for each of the n quantum levels are: 

En,o[rest] 
27i2k2e4 

n 2 l 2 mjrest] 
II n0 

3.1 

where the subscript o means that the atom is at rest. When the 

hydrogen atom is given a velocity, the energy of each of the n 

levels changes as seen by an observer remaining at rest and using 
rest units. 

We must notice that the frame in which the observer is actually 

located has no physical relevance. However, a description of the 

units (of mass, length and clock rate) used by the observer is 

necessary. Of course, one generally assumes that the observer uses 

the units that exist in his own frame. However, the description will 

be complete only when we specify the frame of origin of the units 
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instead of assuming every time that the observer uses the units of 
his own frame. 

The energy levels of the moving atom (using rest frame units) 

are given by putting equations 2.22 and 2.23 in equation 3.1. The 

Bohr equation becomes: 

1 27i2k2e4 
E [rest] =-2T2 m0[rest]. 

Y n h„ 
3.2 

Furthermore, since the Bohr radius an of an atom at rest is: 

a0[rest] = 
47t2m„e2k 

[rest] 3.3 

using equations 2.22, 2.23 and 3.3, the Bohr radius of a moving 

atom will be: 

av [rest] = y - - - [rest] = ya [rest]. 3.4 
47i m0e k 

This means that the Bohr radius a0 increases linearly with y. 

This will be discussed in section 3.4. From equation 3.2, we see 

that the energy between atomic transitions of a moving atom 

(which determines the clock rate) decreases linearly as y increases 

(using the units of the rest frame). We conclude that according to 

quantum mechanics, the rate of a moving clock slows down when 

its velocity increases. 

This is compatible with the slower clock rate of moving atoms as 

observed experimentally and interpreted erroneously as time 

dilation. The popular phrase "time dilation" should be interpreted 

as meaning that the rate of the moving clock has slowed down and 

not that time has dilated. Combining the Bohr equation (equation 

3.2) with solely the mass relationship (equation 2.23) and 

neglecting equation 2.22 would lead to a rate increase of the 

moving clock. This is contrary to observations and to mass-energy 

conservation, as seen in chapter two. The correction due to mass- 

energy must be applied to the Planck parameter h as given by 

equation 2.22. Consequently, the observed slowing down of the 

clock rate of moving clocks, which is implied by equation 3.2, is an 



48 CHAPTER THREE. THE LORENTZ EQUATIONS WITHOUT EINSTEIN’S RELATIVITY... 

experimental confirmation of equation 2.22. This also solves the 

apparent contradiction presented in section 2.7. 

3.3 - The Lorentz Equation for Time. 
From the relativistic Bohr equation presented above, let us 

calculate the energy of an atom located on a stationary frame. 
From equation 3.1 we see that the energy states of a stationary 

atom (using rest frame units) are: 

2rr2k2e4 
E0[rest] =-2T2— mo[restl = hovo[restl 3-5 

n h0 

where h0v0[rest] is the internal energy of excitation in the atom, 
using rest frame units. Due to its velocity, the atom located on the 

moving frame has a different internal energy. Equation 3.2 gives 

(using rest frame units): 

Ev[rest] = -■ 
Y 

1 271 ke 2i,2 4 

2u2 n h 
m0 [ rest] = h0vv[ rest] 3.6 

where h0vv[rest] is the internal energy of excitation of the 

moving atom (using rest frame units) that can possibly be received 
on a frame at rest in order to be compatible with mass-energy 

conservation. Consequently, the radiation emitted from such an 
atom has a lower absolute energy and frequency. This can be seen 

from equations 3.5 and 3.6: 

Ev[rest] 
E0[rest] 

y 
3.7 

From equation 3.7, we see that using rest units, there is less 
internal energy Ev[rest] in the moving atom (due to equation 2.22) 

than in the atom at rest (E0[rest]). 

The middle term of equation 3.6 represents the internal 

excitation energy of the moving atom in rest units while the right 
hand side term represents the same internal energy available that 

can be received by an observer at rest (also in rest units). Since the 
energy states of the moving atom have less energy (always in rest 
units), the observer at rest will detect a lower frequency (as 

measured using rest frame units) if that energy is emitted. We must 

notice that in both cases (equations 3.5 and 3.6), the constant h 
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refers to a measurement done in the stationary frame (meaning that 

the measurement is made from a frame having zero velocity and 

using rest units) so that the parameter h must have the subscript o. 

One must notice a fundamental physical mechanism implied in 

the decrease of internal energy in the hydrogen atom as given in 

equation 3.7 (using rest units). The internal potential energy in a 

hydrogen atom is given by equation 1.12. When the hydrogen 

atom is moving, equation 1.12 shows that due to the increase of 

velocity, the electron mass me and therefore the energy En increases 

by a factor y. However, at the same time, the Planck parameter 

which is squared and located at the denominator also increases. 

The overall effect is that the internal energy En in the atom 

decreases when the velocity increases. One must then realize that 

when the velocity increases, the electron mass becomes larger but 

the decrease of the Planck parameter corresponds to a decrease of 

the force between the electron and the proton. 

From equations 3.5, 3.6 and 3.7 we obtain that the ratio between 

the clock rates of the moving clock and the clock at rest is: 

Ev[rest] _ h0vv[rest] _ 1 _ vv[restj 3g 

E0[rest] h0v0[rest] y v0[rest]' 

The last term vv[rest]/v0[rest] of equation 3.8 gives the ratio 

between the frequencies (in rest units) of oscillation of two 

independent clocks having different velocities according to the 

Bohr equation. This relationship has nothing to do with the relative 

values of the frequencies of an electromagnetic wave as given in 

equation 2.21. In equation 3.8, there are two different frequencies 

emitted by two different clocks observed in a single frame. 

However, in the case of equation 2.21, we have a single clock 

emitting a single frequency observed by two independent observers 

located in different frames. 

Let us consider figure 3.1 on which a moving clock M travels in 

front of a station (at rest) from A to B. Let us measure the 

difference of clock displays ACD0 recorded on a clock located on 

the station at rest between the instants the moving clock M passes 

from A to B. We will also measure the difference of clock displays 

ACDV recorded on the moving clock while it passes from A to B. It 
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is clear that the absolute time (as defined in section 2.3) is the same 

for M to pass from A to be B in both observations. 

Station >'///////////7777? 
<--e-> 

Figure 3.1 

However the two clocks will not display the same difference 

because they do not run at the same rate. The ratio between those 

two differences of clock displays ACD0 and ACDV is proportional 

to the ratio of the clock rates vjrest] and vv[rest]. Therefore: 

ACDV vv[rest] 

acd0 3-9 

Combining equation 3.9 with equation 3.8 gives: 

ACDV 
ACP0 

y 
which is mathematically identical to: 

3.10 

ACDV =^yACD0. 

From the usual definition of y, equation 2.2: 

1 v2 
— = 1- — y c 

we find that, using equation 3.11: 

ACDV = y 

.23 

V c ) 
ACD0. 

3.11 

3.12 

3.13 

Einstein made the hypothesis that "time is what clocks are 

measuring". This means that the At in Einstein's relativity and in 

the Lorentz equations is only a difference of clock displays on a 

clock at rest to which the units of time were given: 

ACD0 = At. 3.14 
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In reality, since At is nothing more than a ACD, the units of 

ACD0 (which is a pure number) must be given to At. Let us give an 

example. It is believed that in Einstein's relativity and in the 

Lorentz equations, when an excited atomic state of a moving atom 

has not become de-excited after a classical time interval, it is 

because the time interval was shorter within the moving frame than 

in the rest frame. We have seen above that this explanation is 

incorrect and that the reason is that the principle of mass-energy 

conservation requires a change in the atom parameters and 

consequently, a slower internal motion inside atoms. This slower 

internal motion makes moving clocks function more slowly. 

Therefore, the At measured by Einstein's and Lorentz's clocks is not 

a time interval at all, but a difference of clock displays (ACD) of a 

clock running more slowly. The correct explanation is that when, 

in the Lorentz equation, we find that the At' is different from At 

during the same time interval, we are fooled by clocks running at 

different rates in different frames. It is an error of interpretation to 

give time units to At and At' in the Lorentz equations while they are 

no more than differences of clock displays as admitted by Einstein. 

Since the ACD is a pure number, the At in equation 3.14 is also a 

pure number. Similarly, the difference of clock displays ACDV is 

called At' in the Lorentz equations: 

3.15 ACDV = At'. 

A comparison with the Lorentz equations, as given with 

equations 3.14 and 3.15, is useful to examine some mathematical 

properties common to both interpretations. Equations 3.14 and 

3.15 in equation 3.13 give: 

3.16 

By definition, the number of units x representing the distance 

traveled during At (for Einstein corresponding to the time while a 

clock shows ACD0) is: 

x = vAt or x = vACD0. 3.17 
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Of course, x is not a real distance, as explained in section 3.1. 

Let us substitute At from equation 3.17 to the second term At of 

equation 3.16. We get: 

f vx ( vx^ 
At' = y At - —5- or ACDV = y ACD - -y 

k c ) k c J 

Equation 3.18 gives the relationship between At' (which is a 

difference of clock displays) displayed by a clock located at a 

distance x from the origin and moving at a velocity v and At 

displayed by a stationary clock. We observe that equation 3.18 is 

exactly the Lorentz equation for time and that it is compatible with 

Einstein's hypothesis that time is what clocks display. This 

equation is simply an exact mathematical description of mass- 

energy conservation in agreement with equations 2.22 and 2.23 and 

with the physical mechanism implied by equation 3.2 We notice 

finally that the Lorentz transformation for time has been 

demonstrated here without using the hypothesis of the constancy of 

the velocity of light nor any new hypothesis. We have used only 

the mass-energy relationship E — Km from equation 2.3. In fact, 

we have obtained the Lorentz equation for time without the use of 

any of Einstein's relativity principles. 

One must conclude that the Lorentz transformation derived 

above is in reality a transformation of relative clock displays 

between frames. Then At and At' (when related to this Lorentz 

equation) represent differences of clock displays ACD. 

3.4 - Length Dilation Due to Kinetic Energy. 
Length dilation and contraction have been demonstrated in 

chapter one for matter placed in a gravitational potential. Using 

equation 3.4, we will now show that the Bohr equation also gives a 

change of length when matter acquires a velocity v. This will be 

done without involving the constancy of the velocity of light. 

According to equation 3.4, we have: 

ho 
av [rest] = y —~2-5— [rest] = y«0 [rest]. 3.19 

4tc m0e k 

Therefore, the relative size of the Bohr radius as a function of 

velocity is: 
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tfjrest] 
-= y 

a0[rest] 
3.20 

Let us consider a reference meter made of ordinary classical 

atoms. We see from equation 3.20 that the size of atoms, which is 

proportional to the Bohr radius or to the interatomic distance (see 

Appendix I), increases as a function of velocity. This means that 

the size of all material matter increases with velocity. 

We know that the number of atoms Na making up the length of a 

rod does not change with velocity. Furthermore, it is well 

established in modem physics that the interatomic distance (p0 is 

proportional to the Bohr radius a0 so that (pv[rest] = y(p0[rest], The 

length l0 of a rod is: 

/0[rest] = (Na-1 )cp0[rest]. 3.21 

At velocity v, the length /v is: 

/v[rest] = (Na-l)(pv[rest] = (Na-l)y(p0[rest], 3.22 

We note that the number of atoms Na is much larger than unity. 

Therefore, using equations 3.21 and 3.22 we have: 

/v [rest] = y/0 [rest] = 
/0[rest] 

3.23 

Equation 3.23 shows that there is length dilation of matter when 

its velocity increases (in a constant gravitational potential). Length 

dilation is a real physical phenomenon involving no stress nor any 

pressure, similar to length dilation and length contraction in a 

gravitational field, as shown in chapter one. It is just the natural 

equilibrium of matter given by quantum mechanics that makes it 

dilate at relativistic velocities. Space dilation or space contraction 

is meaningless. 

The fact that we are led from our reasoning to length dilation 

instead of length contraction does not represent a problem since the 

assumed phenomenon of length contraction has never been 

observed experimentally in special relativity. On the contrary, we 

need length dilation to be compatible with the slowing down of 

clocks, which is also required by quantum mechanics and has been 
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observed experimentally. In order to be coherent with quantum 

mechanics and mass-energy conservation, one must understand that 

there exists no length (nor space) contraction in special relativity 

because y is always equal to or larger than one (equation 3.23). 

Only length dilation can be produced when there is an increase of 

velocity. 

3.5 - The Lorentz Transformation for Lengths. 
Let us consider two identical frames O-X at rest. The axis of 

those frames are constructed with many rods in series each having 

a length exactly equal to one reference meter (defined in section 

2.4). A mass M is located at a distance x[rest] from the origin 

0[rest]. For a stationary observer using the reference meters 

located on the frame at rest, the coordinate of the mass M is: 

x[rest] = n0meter[rest] 3.24 

where n0 is the number of times the meter rod, when defined at 

rest (meter[rest]) must be used to form the length x[rest]. The 

symbol n0 is a pure number measured in the stationary (subscript o) 

frame. We must recall that contrary to Newtonian physics, the 

simple use of the number n0 is not sufficient to represent a length. 

A length must necessarily be represented by a pure number 

multiplied by the length of the reference meter. 

Let us give the velocity V to one of the frames that we now call 

O'-X'. At time t = 0, the origin O' of the moving frame coincides 

with the origin O of the rest frame. The axis O'-X' is arbitrarily 

displaced on figure 3.2 in order to avoid confusion. Before the 

frame O'-X' acquired its velocity, the distance between the origin O 

and the mass M was identical in both systems. After the frame O'- 

X' has reached velocity V, we have seen that the Bohr radius and 

all physical material on the moving frame are dilated as given by 

equation 3.23. Therefore the reference meters used to form the axis 

are longer. The mass M' on the moving frame is fixed with respect 

to that frame and does not move with respect to the particular 

segment of meter where it is fixed. Therefore the number nv of 

those standard moving rods between M' and the origin O' is 

necessarily the same and n0 = nv. 
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O'fmov] 
M* 

-x'[mov] ■ -> X- 

Ofrest] _ 

<-x[rest] > X 

Figure 3.2 

However, the absolute distance x'[mov] between M' and O' will 

increase because the length of the standard meter has increased due 

to the increase of the Bohr radius. The distance x'[mov] between 

M'[mov] and the origin O' is given by: 

x'[mov] - nvmeter[mov] = n0meter[mov] 3.25 

with 

nv = n0. 3.26 

Using the notation x[rest] = /0[rest] and x'[rest] = /v[rest] 

equation 3.23 gives: 

x'[rest] = yxfrest] or Ax'[rest] = yAx[rest]. 3.27 

Equation 3.27 means that using rest frame units, the distance x' 

(which is O'-M') is y times longer than the distance x (which is O- 

M) also using rest frame units even if the numbers of local meters 

n0 and nv are the same. 

3.5.1 - Apparent and Absolute Time. 
In order to predict the consequences of the change of "clock" 

rate between systems, we must be able to compare predictions 

between different frames. Let us examine the relationship between 

the "apparent time" in different frames. In Einstein's relativity, the 

"time" is defined as what is perceived by each observer. It is equal 

to what a clock measures in its own frame. It is called t in the rest 

frame and t' in the moving frame. 
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Consequently, each frame has its own "time" but we know that it 

is only apparent. Real physical time does not flow faster because 

the local clock runs faster. For an observer at rest, Einstein's 

interpretation assumes that his "time" t is the one shown by his 

clock at rest. Similarly, the "time" f is the apparent time in the 

moving frame. Since the moving clock runs at a different rate than 

the clock at rest (see equation 3.8), the time on the moving frame 

"appears" (as seen by an observer at rest) to elapse at a different 

rate giving: 

t*f. 3.28 

We define the "absolute second" S0[rest] as the time interval t 

taken by the atomic clock at rest (located away from any 

gravitational potential) to record a constant number Ns of 

oscillations. Since that clock at rest runs at a frequency v0[rest], 

the apparent rest second (called absolute second) will be elapsed 

when S0 equals unity. This gives: 

S0[rest] 
Ns 

vjrest]' 
3.29 

On a moving frame, the "apparent second" Sv[mov] is equal to 

the time taken by the local clock moving at velocity V to record the 

same number of oscillations Ns. Therefore during one "apparent 

second" (Sv) on the moving frame (at velocity V), by definition, the 

clock must record the same number of oscillations as the clock on 

the rest frame does during one "absolute second" (S0). This means 

that during one "apparent second" inside any frame, the local ACD 

is always the same number. Then, since clocks have different rates, 

in different frames, the "absolute duration" of the "apparent 

second" varies with the velocity of the frame carrying the clock. 

It is arbitrarily decided that the rest second (in zero gravitational 

potential) is called the "absolute second of reference". Since the 

number of oscillations is the same for any local second, we have, 

for the case of apparent second Sv in a frame moving at velocity: 

ACD(S0)[rest] = ACD(Sv)[mov], 3.30 
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From the definition of apparent seconds in a frame moving at 

velocity V, with equations 3.29 and 3.30, we find that the duration 

of one moving second is: 

S v [rest] 
Ns 

vv[rest] 
3.31 

In order to be able to compare "apparent seconds" generated in 

different frames, we must be able to express the "apparent time" 

duration using common units. We have from equation 3.8: 

v0[rest] = yvv[rest], 3.32 

Equation 3.32 in equations 3.31 and 3.29 gives: 

S v [rest] = y = yS0 [rest]. 3.33 
v0[rest] 

Equation 3.33 shows that the unit of time Sv in the moving frame 

is y times longer than the unit of time S0 in the rest frame. 

Let us consider the "real time intervals" corresponding to the 

same numerical value of local apparent "x" seconds elapsed in both 

the rest frame and the moving frame. The ACD shown by either 

clock is the same in both frames. In Einstein's relativity, this was 

erroneously interpreted as the same time interval in both frames. In 

the rest frame, the real time t[rest] is equal to the number of 

seconds "x" times the duration of the apparent second S0 at rest. 

This gives: 

t[rest] = xS0[rest], 3.34 

In the moving frame, the real time (in rest units) is called t'[rest]. 

It is equal to the number "x" of seconds times the duration of the 

apparent moving second Sv: 

t'[rest] = xSv[rest], 3.35 

Combining equations 3.33, 3.34 and 3.35 gives: 

f [rest] = yt[rest] or At'[rest] = y At [rest], 3.36 

Equation 3.36 shows that when we consider the same number of 

local "apparent seconds" (i.e. the same difference of clock displays) 

in two different frames, the real absolute time spent on the moving 
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frame is y times longer that the absolute time spent on the rest 

frame. 

Equation 3.36 is equivalent to equation 3.18 when time is 

measured at the same location (x = 0). However, one must 

understand that the change of time between systems suggested by 

Einstein is only apparent because clocks in different frames run at 

different rates. This has erroneously been interpreted as time 

dilation in the past, but we see now that it is nothing else than 

clocks running at different rates in different frames. 

3.5.2 - Relationship between Velocities V and V'. 
On figure 3.2, the right hand side direction of the axes O-X and 

O'-X' is positive in both frames. When the moving frame O'-X' has 

a velocity toward the right hand side, the coordinate of the location 

M' increases (in time) with respect to the rest frame O-X. 

Therefore location M' has a positive velocity with respect to the 

rest frame O-X. However, figure 3.2 shows that when the moving 

frame (with origin O') travels to the right hand side, location M 

moves to the left hand side with respect to the frame O'-X'. The 

coordinate of location M is getting more and more negative (in 

time) with respect to the frame O'-X', while the coordinate of 

location M' is getting more positive in time with respect to the 

frame O-X. This means that the velocity V' of point M' (with 

respect to O-X) has the opposite sign of the velocity V of point M 

with respect to O'-X'. This result comes out of pure geometrical 

considerations illustrated on figure 3.2. Therefore: 

V V' 
— = -— 3 37 
i vi iv-r 

Equation 3.37 signifies that the velocities have opposite 

directions. We will show now that the velocities V and V' have the 

same magnitude. 

3.5.3 - Relative Velocities within Systems. 
Let us consider a rest frame and a moving frame. Both frames 

were identical before the moving frame started to move at velocity 

V[rest], Inside both frames, we consider rods that had the same 

length when they were initially in the same frame at rest. This can 
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be verified later if we count the same number of atoms in both 

frames for the length of either rods. The rod at rest extends from O 

to M and the moving rod extends from O' to M'. 

There are at least two different ways to compare velocities 

between frames. One way consists of measuring directly the 

velocity in each frame using proper values and comparing 

numbers. Another way, the one we will use here, is to use a 

definition of velocity in each frame and to compare the 

corresponding elements of the definitions. The velocity u of a 

moving object across O-M with respect to the rest frame is defined 

as: 

u[rest] - 
Ax[rest] 

Atfrest] 
3.38 

With equation 3.38, we start dealing with a series of equations 

related to velocities. These velocities can have any direction in 

space and might be described by vectors. However, such a 

description would lead to a very heavy notation that could be 

confusing and would require useless efforts. This is avoided by 

defining that in every equation between 3.38 and 3.46, we consider 

that u and u' represent the magnitudes |u| and |uj of these 

parameters. The appropriate mathematical sign of the velocities 

will be considered starting with equation 3.46. 

Inside the moving frame, a similar slowly moving object moves 

from O' to M' (distance Ax'). During the time At' the slow moving 

object crosses the distance Ax' from O' to M'. The velocity of the 

slow moving object with respect to the moving frame is defined as: 

u'[mov] - 
Ax'[mov] 

At'[mov] 
3.39 

We have seen that, before the moving rod (O'-M1) started to 

move, it was similar to the rod in the rest frame (O-M) and that 

both clock rates were similar. Consequently, we can use equations 

3.27 and 3.36. Let us put the transformation of coordinates given 

by equations 3.27 and 3.36 into the equation 3.38. We get: 

Ax[rest] yAx'[rest] _ Ax([rest] 

unrest] - ^tfrest] - yAt'[rest] ~ At'[rest]‘ 
3.40 
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Let us use equation 3.23 to calculate the ratio between the units 

of length. If the length l0 is a unit of length equal to one meter 

using rest units, we see that this unit of length becomes yl0 on the 

moving frame. Therefore the relationship between the units of 

length is: 

/0[mov] = y/0[rest] or meter[mov] = ymeterjrest], 3.41 

This means that when we move from the rest frame to the 

moving frame, the unit of length becomes y times longer. 

Therefore, in order to represent the same physical length using 

longer units of length, the number of units Ax'[mov] must be 

smaller. This gives: 

Ax' [mov] = 
Ax' [rest] 

y 
3.42 

In the case of time, a corresponding phenomenon takes place. 

Let us consider equation 3.36. We see that a time interval At0 equal 

to one unit of time in the rest frame becomes y times larger in the 

moving frame because it takes more time for the slower clock to 

show the same ACD. In that case, we see from equation 3.36 that 

the change of local units of time At0 between frames gives: 

At0[mov] = yAt0[rest] or sec[mov] = ysec[rest], 3.43 

This means that when we move from the rest frame to the 

moving frame, the local unit of time becomes y times larger. 

Therefore in order to represent the same absolute time interval 

using longer units of time, the number of units At'[mov] must be 

smaller. This gives: 

At'[mov] 
At'[rest] 

y 

Equations 3.39, 3.40, 3.42 and 3.44 give: 

3.44 

Axfrest] Ax'[rest] 

u[r6St] = At[rest] = At'[rest] = 

Ax'[mov] 

At'[mov] 
u'[mov], 3.45 

Equation 3.45 shows that the velocity u measured using the rest 

frame units is the same as the velocity u' using the moving frame 

units. 
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Among the values of velocities which can be given to u, we can 

choose the velocity V which is the velocity of the moving frame 

with respect to the rest frame (rest frame units). Symmetrically, let 

us call V' the velocity u' of the rest frame with respect to the 

moving frame (using moving frame units). Using equations 3.37 

and 3.45 gives: 

v = -v 3.46 

V0[rest] = -Vv[mov], 3.47 

Equation 3.46 shows that the proper value of the velocity of the 

moving frame with respect to the rest frame is the same (negative) 

as the proper value of the velocity of the rest frame with respect to 

the moving frame. 

Let us add that a velocity appears as a physical concept for a 

physicist. However, we have seen above that a comparison of 

velocities in two different frames having a relative velocity leads to 

the same numbers. We have seen that when we are in a moving 

frame, the ratio between the distance traveled and the time taken to 

travel it changes with respect to the rest frame. Both the numerator 

(the distance) and the denominator (time interval) change by the 

same ratio. Consequently, a constant velocity is nothing more that 

a constant ratio between two fundamental physical quantities. One 

can say that the constant velocity in different frames means the 

same thing as three oranges out of six is the same thing as four 

apples out of eight. Velocities are just ratios of physical quantities. 

3.5.4 - Lorentz’s Second Relationship. 
In order to find the dynamical relationship between the 

coordinates x' and x, let us now combine the quantities x, V and t 

calculated above. In classical mechanics inside the moving frame 

we have: 

x' = x0'+V'f 3.48 

where x0' is the coordinate x at t = 0 and V' is the velocity 

between frames. In order to be more specific, in complete notation, 

equation 3.48 should be: 
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xv[mov] = xov[mov]+Vv[mov]tv[mov]. 3.49 

Let us consider first in equation 3.49 the expression tjmov]. 

The term tv represents the number of units that is multiplied by the 

length of the unit [mov]. Let us calculate what would be the 

quantity tv[mov] using the [rest] units of length instead of the 

[mov] units of length. 

From equation 3.44, we have: 

tv[rest] = ytv[mov], 3.50 

In the case of the units of distance (xv or xov) we use again the 

same method. With the help of equation 3.42 we find: 

xv[rest] = yxv[mov] 3.51 

and 

Xovtrest] =yxov[mov]. 3.52 

From equation 3.49, transforming xv[mov] with 3.51, xOY[mov] 

with 3.52, and tjmov] with 3.50, we get after multiplying both 

sides by y: 

xv[rest] = xov[rest]+Vv[mov]tv[rest], 3.53 

From equation 3.53, transforming xov[rest] with 3.27, Vv[mov] 

with 3.47, and tv[rest] with 3.36, we get: 

xv[rest] — y(x00[rest]-V0[rest]t0[rest]). 3.54 

Using a more conventional notation this is: 

x' = y(x-Vt). 3.55 

Equation 3.55 gives the relationship between the coordinate x' on 

the moving frame and the coordinate x, the velocity V and the time 

t on the rest frame. This relationship results solely from mass- 

energy conservation and quantum mechanics without using any of 

Einstein's relativity principles. However, equation 3.55 is exactly 

identical to the Lorentz equation related to lengths. The 

demonstrations leading to equations 3.18 and 3 55 show the 

uselessness of Einstein's special relativity principles. Most 

importantly, this demonstration provides a way to give a logical 

interpretation to experiments without space or time contraction or 

dilation. 
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3.6 - Constant Velocity of Light within Any Frame of 
Reference. 

We must notice that c is also a velocity obtained from the 

quotient of a distance by time within any frame. Let us consider 

that the internal velocity u is the velocity of light c. In the moving 

frame, the velocity u' equals c'. Therefore when the velocities u 

and u' considered are applied to light, equation 3.45 gives: 

c = c\ 3.56 

When we use the complete notation, we get: 

cv [mov] = cjrest]. 3.57 

This means that following equations 3.45 and 3.56, one must 

conclude that the physical mechanism resulting from mass-energy 

conservation and quantum mechanics leads to the conclusion (not 

the hypothesis) that any velocity, including the velocity of light, is 

constant as measured within any frame (using proper values). 

Contrary to Einstein and Lorentz, we do not have to make the 

arbitrary hypothesis that the velocity of light is constant inside all 

frames. We have found that the constancy of the velocity of light 

is a necessary conclusion to mass-energy conservation and the 

quantum mechanical equations. 

From another point of view, the value of c, called the velocity of 

light, has been defined in section 2.4 as the square root of K (the 

quotient between energy and mass) which is the fundamental basis 

of mass-energy equivalence. Any theory or experiment not 

compatible with the constancy of the velocity of light (using proper 

values) is therefore necessarily not compatible with quantum 

mechanics and mass-energy conservation. However, since the 

velocity of light is given as the quotient of two quantities (length 

and ACD) that are different in different frames, the physical 

meaning of that constant ratio is subtle. 

3.7 - Non-Reality of Space Dilation, Contraction or 

Distortion. 
The distance Ax traveled in a time interval At is defined as: 
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Ax = vAt. 3.58 

Let us assume an observer traveling between the ends of a long 

stationary rod having a length Ax. That length Ax is calculated 

from the velocity v times the time interval At necessary to travel 

between the ends of the rod. We know that the velocity v is the 

same on any frame. However, the difference of clock displays 

ACD0 (which is interpreted as time At by Einstein) on the rest 

frame is different from ACDV (interpreted by Einstein as time 

interval At') on the moving frame. Consequently, according to 

Einstein's interpretation, the length Ax' measured by the moving 

observer is different from the length Ax of the same rod measured 

by the observer at rest. At the velocity of light, the ACDc decreases 

to zero so that the (apparent Einstein's) length Ax' becomes zero for 

the moving observer because his moving clock has stopped 

running. 

It is irrational to claim that the length of the stationary rod 

changes and even becomes zero just because the observer changes 

his velocity. How can the length of a rod logically change because 

a non interacting observer looks at it? The rod would become 

longer or shorter depending on the observer's own velocity. The 

length (and other properties) of the rod would not be a property that 

would belong to matter. It is the observer that would set the length 

of the rod and different observers would simultaneously find 

different lengths for the same rod depending on their observing 

conditions. Then, what would be the length of the rod if there were 

no observer? It is just like the statement that the moon is not there 

when nobody is looking at it. We believe that this is nonsense and 

that the length of matter is independent of the observer. This is the 

same irrationality that appears in quantum mechanics and which 

has already been discussed [1], 

We have not yet defined how to measure space. This is because 

space is not measurable unless we fill it up at least partially with 

matter. Then, it is that matter that we measure, not space. Whether 

space is empty or full of matter, we generally refer to it as "space". 

We know several methods of measuring lengths of objects but 

there does not exist any method of measuring space without using 

matter as a reference. In relativity, space is often referred to as 
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being contracted or dilated. How can it be contracted or dilated 

when there is no method of measuring it without assuming some 

matter in it? The properties of matter are then inadvertently 

attributed to or confused with space. The same comment applies to 

the belief of space distortion. How can there be space distortion 

when we cannot measure space directly in the absence of matter? 

The interpretation of space distortion is nothing more than a change 

of the Bohr radius in the measuring instrument or in the matter 

filling the space. 

This problem is easily solved logically when we consider that 

the internal atomic mechanism of the observer runs at a different 

rate since electrons in motion have a different mass. This has 

nothing to do with the illusion of space dilation or distortion. One 

must conclude that the expressions "space contraction" and "space 

distortion" are irrational. They bring confusion and must be 

eliminated. 

3.8 - Transformation of Units in Different Frames. 
There are many other consequences to the relativistic changes of 

lengths and masses. For example, in chapter one we have seen that 

the mass of particles decreases when located at rest in a lower 

gravitational potential. In chapter three we have seen that masses 

increase with velocity due to the absorption of kinetic energy. This 

means that if we take an object of one kilogram on Earth and move 

it to a location at rest on the solar surface, about one millionth of its 

mass will disappear and be carried away by the energy generated 

during the slowing down of the object falling into the Sun. Even if 

there is exactly the same number of atoms in one Earth kilogram 

after it is carried on the Sun's surface, we see that the solar 

kilogram has less mass than the Earth kilogram using any common 

frame of comparison of mass units. Consequently, there is more 

energy (in Earth joules) in one Earth kilogram than in one solar 

kilogram. This is required by the principle of mass-energy 

conservation. 

Similar considerations must be applied to most physical 

constants. Because of the principle of mass-energy conservation, 

the units must always be specified (kg[Earth], meter[Earth], 
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joule[Earth], second[Earth]). However, the electric charge appears 

to be constant in any frame. This means that the ratio of the 

electron charge divided by the electron mass (e/m) is different in 

different frames. For example, e/m is smaller on Earth (when using 

Earth units) than on the solar surface (using Earth units). In order 

to be able to compare those quantities with the ones calculated in 

different frames, we must take into account the difference of 

gravitational potential or the difference of kinetic energy. To 

define accurately the reference kilogram, the reference meter, etc., 

we must know the exact altitude on Earth at which these units have 

been defined. 

3.9 - Failure of the Reciprocity Principle. 
We have studied above some of the differences existing between 

a frame in motion and a frame at rest. In a moving frame, clocks 

run at a slower rate, the Bohr radius is larger and so are masses 

because of their kinetic energy. Let us consider a body on the rest 

frame having a mass m0[rest]. Its total energy is: 

E0[rest] = m0[rest]c2. 3.59 

When m0[rest] is accelerated to velocity v0[rest] with respect to 

the rest frame, its mass becomes mv[rest]. We get: 

v2 
mv [rest] = ym0 [rest] = m0[rest]+ m0 —^-[rest]+... 3.60 

2c 

Equation 3.60 shows that the moving mass mv[rest] is larger than 

the rest mass m0[rest]: 

mv[rest] > m0[rest], 3.61 

Let us consider now a train moving at velocity v0[rest] carrying 

an observer and the mass mentioned above. The mass of the train, 

of the observer and of the body described above becomes y times 

larger than when at rest. However, since the units in the moving 

train have been modified by the same ratio y, the changes of mass, 

clock rate and length are undetectable to the moving observer, even 

if they are real. Inside the moving train, an observer using 

Einstein's reciprocity principle will claim that the object of mass 

mv[rest] is at rest with respect to him. He will thus call it M0[rest], 
Therefore: 
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Mjrest] = mv[rest] = ym0[rest]. 3.62 

It is because we use Einstein's hypothesis of reciprocity that we 

write [rest] after M0 in equation 3.62, since Einstein's hypothesis 

assumes that the mass that has been transferred to the train is now 

at rest for the observer moving with the train. Furthermore, the 

symbol = used in equation 3.62 does not mean that we are defining 

a new quantity. The symbol = means that M0 is the same object in 

the same physical condition as mv[rest]. 

Now, the moving observer takes the object of mass M0[rest] (that 

is stationary with respect to him) and throws it at velocity vjrest] 

with respect to his moving train (considered at rest in his frame) in 

the direction opposite to the direction of motion of the train. 

According to Einstein's principle of reciprocity, the mass projected 

at velocity v0[rest] with respect to the moving frame acquires 

velocity and energy with respect to the moving frame (now 

considered at rest). Einstein's principle of reciprocity says that all 

frames are identical which means that mass M0[rest] increases 

when accelerated with respect to the train to become Mv[rest], In 

fact, the reciprocity principle implies that the passage of the object 

of mass M0[rest] from zero velocity Jrest] to vjrest] (with respect 

to the train) increases its mass by y times, independently of the 

direction of the velocity of the mass with respect to the train. This 

gives: 

MJrest] = yMJrest], 3.63 

As expected from the relativity principle, equation 3.63 shows 

that mass MJrest] is larger than MJrest] giving: 

MJrest] > MJrest]. 3.64 

A physical representation of these changes of velocity shows 

that the mass MJrest] now has zero velocity with respect to the rest 

frame. It is back at rest on the rest frame. Mass MJrest] is then 

physically undistinguishable from mass mjrest] since it is the very 

same object having the same zero velocity with respect to the same 

rest frame. Therefore physically, we must have: 

Mjrest] = mjrest]. 

Combining equations 3.62, 3.63 and 3.65 gives: 

3.65 
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2 
mjrest] = Mv[rest] = y mjrest], 3.66 

Obviously, equation 3.66 is correct only if y equals unity so that 

the velocity must always be zero. This shows that the principle of 

reciprocity cannot be valid when we apply the principle of mass- 

energy conservation. We must conclude that Einstein's reciprocity 

principle is not coherent. 

Contrary to Einstein's claim, the energy given to a mass 

accelerated with respect to the train must depend on the direction of 

its velocity with respect to the direction of the velocity of the train. 

When the directions are opposite, the two velocities (whose 

magnitudes are equal) cancel out and the mass of the body must 

come back to its original value in the rest frame. Otherwise we 

would discover that atoms of matter having traveled to another 

frame would have a different mass after their return to the initial 

frame. We must conclude that two frames cannot be equivalent 

when there exists a relative motion between them. 

3.10 - References. 
[1] P. Marmet, Absurdities in Modem Physics: A Solution. 

ISBN 0-921272-15-4, Les Editions du Nordir, c/o R. Yergeau, 165 

Waller, Ottawa, Ontario KIN 6N5, 144p. 1993. 

3.11 - Symbols and Variables. 
ajrest] Bohr radius at rest in rest units 

ajrest] Bohr radius in motion in rest units 

ACD0 difference of clock displays on a clock at rest 

ACD(S0)[frame] ACD corresponding to an apparent second in 

any frame 

ACDV difference of clock displays on a clock in 

motion 

En Jrest] = EJrest] energy of the Bohr atom at rest in state n in rest 

units 

En Jrest] = EJrest] energy of the Bohr atom in motion in state n in 

rest units 

hjrest] Planck parameter on the rest frame in rest units 

hjrest] Planck parameter on the frame in motion in rest 

units 



CHAPTER THREE. THE LORENTZ EQUATIONS WITHOUT EINSTEIN’S RELATIVITY... 69 

/0[rest] 

/v[rest] 

v0[rest] 

Ns 

vv[rest] 

(S0)[rest] 

(Sv)[rest] 

u[rest] 

u'[rest] 

V = V0[rest] 

V— Vv[mov] 

x[rest] 

x'[mov] 

length of a rod at rest in rest units 

length of a rod in motion in rest units 

clock rate of a clock at rest in rest units 

number of clock oscillations in an apparent 

second 

clock rate of a clock in motion in rest units 

definition of the absolute second in rest units 

duration of one moving second in rest units 

definition of the velocity in the rest frame in 

rest units 

definition of the velocity in the moving frame 

in rest units 

velocity of M with respect to the moving frame 

in rest units 

velocity of M' with respect to the rest frame in 

motion units 

distance between O and M in rest units 

distance between O' and M' in motion units 



Chapter Four 

Fundamental Nature of the Mechanism 
Responsible for the Advance of the Perihelion of 

Mercury. 

4.1 Definition of the Absolute Standard Units (o.s.J. 
In order to understand the mechanism responsible for the 

advance of the perihelion of Mercury, we need to explain the 

meaning of quantities such as an absolute standard of mass, time or 

length. The meaning of absolute standards is such that each of 

them must always represent the same and unique physical quantity 

in any frame. This condition is necessary since the absolute length 

of a rod does not change because it is measured from a different 

frame. This also applies to an absolute time interval and an 

absolute mass: they do not change when measured in different 

frames. However, an absolute length, time interval or mass can be 

described using different parameters (e.g. different units). One 

must conclude that lengths, time intervals and masses are absolute 

and exist independently of the observer. They never change as 

long as they remain within one constant frame. However, they 

appear to change with respect to an observer who moves to a 

different frame because they are then compared with new units 

located in a different frame. 

In relativity, we always read an expression with respect to a 

frame "of reference". The phrase "of reference" gives the illusion 

that masses, lengths and clock rates really change as a function of 

the "reference" used to measure them. That there could be a real 

physical change of mass, length and clock rate because the 

observer uses a different "reference" does not make sense. This 

apparent change of length, clock rate or mass is simply due to the 

observer using different units of comparison. In this book, we 

avoid the words "of reference" because they are clearly misleading. 

We have seen that when a rod changes frames, its absolute 

length changes. However, when an observer carrying his reference 

meter changes frames, the length of the rod that remains at rest 

corresponds to a different number of the observer's new reference 
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meter. When a rod changes frames, the change of its length is real 

as seen in chapters one and three. However, when the observer 

changes frames (with his reference meter) and the rod does not, 

there is only a change in the number of measured meters; the rod 

does not change. Consequently, the change of frame of the rod and 

the change of frame of the observer (carrying his reference meter) 

are not symmetrical. 

4.2 - The Absolute Reference Meter. 
The usual definition of the meter is 1/299 792 458 of the 

distance traveled by light during one second. The local clock is 

used to determine the second. We recall from section 2.4 that this 

definition is not absolute because it depends on the definition of the 

second which is a function of the local clock rate which changes 

from frame to frame. 

Unfortunately, there is no direct way to reproduce an absolute 

meter within a randomly chosen frame. We have seen that carrying 

a piece of solid matter from one frame to another one (in which the 

potential or kinetic energy is different) leads to a change of the 

Bohr radius and consequently to a change in the dimensions of the 

piece of matter. However, a local meter can apparently be 

reproduced in any other frame using a solid meter previously 

calibrated in outer space and brought to the local frame. Of course, 

the absolute length of that local meter in the new frame will not be 

equal to its absolute length when it was in outer space because the 

potential and kinetic energies may change from frame to frame. 

One can also reproduce a local meter in any frame by calculating 

1/299 792 458 of the distance traveled by light in one local second. 

However, the duration of the local second must be corrected with 

respect to the reference clock-rate existing in outer space (with v = 

0). It is illusionary to believe that absolute time and absolute 

length can be obtained in any frame just by carrying a reference 

atomic clock and a reference meter to the new frame. 

We define the absolute reference meter (meter0 s) as the distance 

traveled by light during 1/299 792 458 of a second given by a clock 

located at rest in outer space away from any mass. The subscript 

o.s. defines where the meter is located. This unit of length is equal 
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to a number B0 s times the length of the Bohr radius ao s in outer 

space. An absolute reference meter must have the same absolute 

physical length, independently of the frame where it is located (and 

of the frame where the observer is located). Consequently, an 

observer must make relevant corrections to his local meter to 

reproduce the absolute reference meter. The definition of the 

absolute reference meter is then: 

metero.s. = B0,a0„ 4-1 

The absolute meter can be reproduced in any frame but it is 

defined with respect to a length in outer space. The constant Bo s 

(the inverse of the Bohr radius) is about 1.8897263><1010. Since the 

Bohr radius a varies with the electron mass (which changes with 

potential and kinetic energies), the constant number B0 s times the 

outer space Bohr radius a is not an absolute standard when the 

meter is not located in outer space. The Earth meter (meterE) is 

different from the absolute reference meter (meteros) because the 

Bohr radius is longer on Earth. The length of the Earth meter is: 

meterE = B0 s aE. 4.2 

We see that the length of a meter at a Mercury distance from the 

Sun is also different from the length of a meter in outer space or on 

Earth. Let us study the example of Mercury since we wish to 

predict a phenomenon taking place at the distance from the Sun 

where Mercury is orbiting. The length of the Mercury meter 

(meterM) is: 

meterM = B0 s aM. 4.3 

In order to avoid useless lengthy repetitions, we will shorten 

some of the descriptions. Instead of repeating that we refer to a 

location at the Mercury distance from the Sun which has zero 

orbital velocity, we will simply say "Mercury location" and the 

context will provide the supplementary information. The velocity 

component of Mercury will be considered separately later. All 

other parameters will be taken into account only later because they 

are not relevant in this chapter and would bring confusion. An 

absolute standard of reference will sometimes be called in short 

"absolute meter", "absolute time rate" or "absolute mass" when it 

corresponds to the standard established in outer space. 
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In the problems considered in these first chapters, the relative 
changes of length, time rate and mass will always be extremely 
small. In the case of Mercury, which is the closest planet to the 
Sun, these changes will be as small as about one part per billion. 
Consequently we will regularly simplify the calculations by using 
only the first order. This will be an excellent approximation. The 

derivative of the function will then become equal to the finite 
difference as used in chapter one. This does not change the 
fundamental understanding of the phenomenon as we will see 
below. 

We have seen in equation 4.1 that the absolute reference meter is 

a constant number of times (Bo s) the Bohr radius in outer space 
(a0 s). However, the Bohr radius does not change solely with the 

gravitational potential. It also changes with velocity. We define 
the absolute outer space meter as being a meter in outer space with 
zero velocity. From equation 1.22, the relationship giving the Bohr 
radius a when there is no change of velocity is (using outer space 

units): 

which gives: 

A« ao.s. - aM §Ah 
a a,. 

^o.s. V c J 

4.4 

4.5 

where mgAh is the change of potential energy (Pot.) of a mass m 

in a gravitational field across height Ah. In the case of a central 

force, Newton's laws say that the gravitational potential (Pot.) of a 

body decreases when the distance (R) from the central body 
increases. The gravitational potential of a body of mass M(M) (in 
the case of Mercury) at a distance RM from the Sun of mass M(£) 

with respect to outer space is: 

pot = GM(M)M(I)=M{M)gAh[os] 

where G is the Cavendish gravitational constant and g is the 

gravitational acceleration where the mass is located (here in the 

solar gravitational field). 
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In previous chapters, we have used the brackets [rest] and [mov] 

to indicate the units. From now on, depending on whether we refer 

to the units of length, mass, clock rate, etc., located in outer space 

(free from a gravitational potential) or units in the gravitational 

potential of Mercury, we will use the indices [o.s.] or [M]. The 

units will always be "translated" in absolute units (e.g. Mercury 

second = 1.01 absolute seconds). Using equations 4.1, 4.3, 4.5 and 

4.6, we find that the length of the Mercury meter (meterM) 

compared with the absolute reference meter (meter0 s) is: 

meter0 s = meterM 1 + 
GM(S) 

c2R 
4.7 

m 7 

We recall that the length of the meter (meter0 s) in outer space is 

the absolute standard reference. However, we know that when an 

observer is located on a different frame to measure a given length, 

he finds a different answer because his unit of comparison (his 

local meter) is different. 

It is useless here to specify the units of GM(S)/c‘Rm. Logically, 

they should be coherent i.e. either [M] or [o.s.]. Physically, it 

makes no difference whether the units of G, M(£) or R are the 

same or not since the error brought in this way is of the order of 

1(F9 on GM(S)/c2Rm which is itself of the order of 10‘9 with respect 

to the meter. 

4.3 - The Absolute Reference Second. 
An equivalent transformation must be taken into account when 

time is defined. We can evaluate time on different frames using a 

local cesium clock. However, one must recall that the rate of such 

a clock (or of any other clock) changes with the electron mass and 

therefore with the potential and kinetic energies where the clock is 

located. Therefore a correction must be made if we want to know 

the absolute time. 

For the case of zero gravitational potential, we now define an 

absolute time interval called the absolute reference second just as 

in section 3.5.1 where the second was defined for the case of zero 

velocity. During one absolute second, a cesium clock makes N(S) 

(where the index (S) refers to the definition of a second) 
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oscillations that are counted from the number of cycles of 

electromagnetic radiation emitted. That cesium clock must be 

located outside the gravitational potential of the Sun and have zero 

velocity. By definition, that absolute time interval will be called 

the "outer space second". We have: 

absolute ref. second = N(S) Oscillations (cesium clocks s). 4.8 

During one absolute second, a cesium clock in outer space 

emitting N(S) cycles shows a difference of clock displays labeled 

ACDos(S). We must emphasize that ACDos(S) does not 

correspond to any value of ACD, it corresponds only to the number 

of counts on the outer space clock leading to the absolute second. 

This is shown by (S) following the ACD. Consequently, ACD0 s (S) 

representing the absolute reference second must not be confused 

with a simple value of ACDframe (without (S)) which can be any 

number of seconds. We have: 

1 abs. sec. = ACD0S (S) = N(S) Oscillations(cesium clocks ). 4.9 

When an observer on Mercury observes that his cesium clock 

has emitted the same number N(S) of cycles, the absolute time 

interval elapsed is not the absolute second since the Mercury clock 

is slower. That time interval is called the Mercury second. We 

have: 

1 Mercury sec. = ACDM(S) = N(S) Oscillations(cesium clockM).4.10 

Therefore we define one "local second" as the time elapsed when 

the numerical value shown on a local frame is equal to ACDframe(S). 

Of course, the Mercury second represented by ACDM(S) lasts 

longer than the outer space second represented by ACDos(S) 

because even if the differences of clock displays ACDo s (S) and 

ACDm(S) are equal, the Mercury clock is slower. Consequently, 

during one local second, we have for the outer space clock the 

same ACD than for the Mercury clock: 

1 local second = ACDframe(S). 4.11 

Since the principle of mass-energy conservation and Bohr 

equation teach us by how much the rates of two clocks located in 

outer space and on Mercury differ, an observer on Mercury can 

calculate the absolute time using his Mercury clock and making 
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suitable corrections due to the gravitational potential at Mercury 

location (we will consider the velocity of Mercury later). 

Let us consider that a clock in outer space records a difference of 

clock displays equal to the number ACD0S. The corresponding 

absolute time interval elapsed is called Axos [o.s.]. That absolute 

time interval can be measured on different locations like Mercury 

or outer space. For a phenomenon taking place in outer space, a 

time interval can be written: 

At0Jo.s.] = ACD0S (o.s.)ACDos(S) 4.12 

where Axo s [o.s.] is the absolute time interval, ACD0S (o.s.) is the 

number of seconds shown by the outer space clock and ACD0 s (S) 

is the absolute unit of time in outer space given by the o.s. clock. 

In equation 4.12, the symbol [o.s.] after Axo s is due to the units 

of time ACDos(S). The parentheses in ACDo s (o.s.) indicate the 

units used for the measurement. The subscript o.s. of Ax0 s [o.s.] 

and ACD0 s (o.s.) refers to the location where the phenomenon takes 

place (this is different from what we did in chapter three). When 

an outer space phenomenon is observed using a Mercury clock, the 

absolute time interval Ax0 s [M] measured on a clock on Mercury is 

given by the relationship: 

Ax0,.[M] = ACD0 s (M)ACDm(S) 4.13 

where ACD0S(M) is the number of Mercury seconds and 

ACDm(S) is the unit of time of the clock located on Mercury, as 

described in equation 4.10. 

Of course, a Mercury second is not equal to one real outer space 

second. The absolute second is defined in outer space. Therefore a 

Mercury second is not a real time interval. It corresponds to a 

difference of clock displays which can be described as an apparent 

time on Mercury. 

If a phenomenon taking place in outer space is measured using a 

clock located in outer space, its duration will be represented by the 

absolute time interval Axos [o.s.] (equation 4.12). If this same 

phenomenon is measured using the Mercury clock, the same 

absolute time interval will be represented by Ax0S [M] (equation 

4.13). Of course, one single phenomenon does not last a longer 
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absolute time because it is observed from a different location using 

a different clock. The real absolute duration is the same in any 

frame. This gives: 

At0.s.[o.s.] = Ax0S[M], 4.14 

Using equations 4.12 and 4.13 in 4.14, we find: 

ACD0S (o.s.)ACDos(S) - ACDo s (M)ACDm(S). 4.15 

4.3.1 - Example. 
In order to clarify this description, let us give a numerical 

example. Let us assume that an atomic clock located in outer space 

has emitted 20 times N(S) cycles of E-M radiation. After N(S) 

cycles, one more absolute second ACD0 s (S) has elapsed and this is 

repeated ACDos(o.s.) times (with ACD0s(o.s.) = 20). 

Consequently, the corresponding time interval Ax0 s [o.s.] elapsed is 

20 absolute (or outer space) seconds, as given in equation 4.12. 

That same clock is moved to a stationary location (for example 

Mercury) near a very massive star so that the relativistic electron 

mass decreases by 1.0% due to the change of gravitational 

potential. Quantum mechanics shows that the atomic clock will 

then run at a rate which is 1.0% slower (as explained in chapter 

one). Consequently, since the atomic clock on that planet is slower 

than when it was in outer space, it will take a longer absolute time 

to make the same number N(S) of oscillations. Since the Mercury 

second is defined (in equation 4.10) as the time required for the 

clock on Mercury to emit N(S) cycles, it is longer than the outer 

space second. This gives: 

1 Mercury second =1.01 Absolute second. 4.16 

Consequently, during the time interval in which the outer space 

clock will record an absolute time interval Ato s [o.s.] equal to 20 

outer space seconds (ACD0 S (o.s.)), the Mercury clock will record a 

smaller ACD0S(M) because it runs at a slower rate. The 

ACD0S(M) recorded on Mercury will be 1.0% smaller: 

ACD0S (M) 
ACP0S (o.s.) 

1.01 
4.17 

giving the numerical value: 
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ACD0S(M) = —= 19.80198. 4.18 

Therefore, in agreement with equation 4.14, since the Mercury 

second lasts longer, as seen in equation 4.16, the total absolute time 

elapsed on Mercury (Ato s [M]) is the same as the total absolute 

time in outer space. We find in equation 4.12: 

At0 s [o.s.] = 20x 1 absolute second = 20 absolute seconds. 4.19 

From equations 4.13, 4.16 and 4.18 we have: 

At0S[M] = 19.80198x(1.01 abs. seconds) = 20 abs. seconds. 4.20 

Therefore, At is a real absolute time interval in all frames. 

4.3.2 - Relative Clock Displays between Frames. 
We have seen that the clock used in each frame simply counts 

the number of cycles emitted by the local atomic clock. In all 

frames, the local second is equal to the count of N(S) cycles on the 

local clock. During one absolute time interval, the number of 

cycles is then proportional to the absolute clock rate which is its 

absolute frequency as given by equation 1.22 (when v = 0). 

Therefore, during one absolute time interval, the ratio of the 

differences of clock displays between frames is directly 

proportional to the ratio of the natural frequency of each clock. 

This gives: 

ACP0S (o.s.) _ vos 

ACD0S (M) vM ' 

Equation 4.21 gives the relative frequencies of clocks located in 

different frames. Obviously, it does not matter whether the 

phenomenon measured is in outer space or on Mercury, as long as 

both clocks measure the same phenomenon. This means that the 

subscripts of the left hand side of 4.21 could both be M instead of 

o.s.. If there is a difference of kinetic energy between the frames, 

equation 3.9 must be applied. Any difference of clock rate is 

caused by the difference of gravitational potential and/or kinetic 

energy between an outer space location and the orbit of Mercury. 

In the case of pure potential energy, using equations 1.22 and 4.6, 

the relative clock rate is given by the relationship: 
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Av _ vo.s. - vM _ gAh ^ M(S)G 

v vos c2 “ c2Rm 

which gives: 

V,., Jx GM(S)V 

VM V C R-M ' 

4.22 

4.23 

Using equation 4.21 with equation 4.23, we see that during the 

same absolute time interval, the relative difference of clock 

displays is: 

ACDm(o.s.) _ ACD0S (o.s.) _ vos 

ACDm(M) ACDos(M) vM 

Let us note that these equations do not take into account a 

second order that might exist when the particle moves down in the 

gravitational potential. Since that second order effect is quite 

negligible in the first chapters of this book, we will consider it only 

if it becomes significant. 

GM(S) 
. 4.24 

4.4 - The Absolute Reference Kilogram. 
The absolute unit of mass is also defined in outer space. We 

have seen in chapter one that one absolute kilogram (kg0 s) in outer 

space contains a different amount of mass after it is carried to 

Mercury. When we carry a mass of one kilogram (kgos) from 

outer space to Mercury location (at rest), the amount of mass 

decreases (because it gives up energy during the transfer). 

However, the observer on Mercury will still call it one Mercury 

kilogram (kgM) since the number of atoms has not changed. In 

fact, nothing appears to change for an observer moving with the 

kilogram and observing a physical phenomenon on Mercury. The 

relationship between two kilograms located in different potentials 

is given in equation 1.5. Using equations 1.5 and 4.6, we find: 

kgM = kgo.s. 

f 

1- 

V 

GM(S)N 

c R-m 2 
4.25 

Equation 4.25 gives the mass of the outer space kilogram with 

respect to the Mercury kilogram. 
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4.5 - Space and Time Corollaries within the Action- 

Reaction Principle. 
Let us discuss what happens inside a frame located at the 

position where Mercury interacts with the Sun's gravitational field. 

What is the behavior of Newton's laws at that location? 

We believe in the principle of causality. The cause is the reason 

for the action. Newton applied this principle and stated that an 

action is always accompanied by a reaction. However, even if this 

has not been stated specifically, it becomes obvious that there are 

two corollaries to that principle. The first corollary is that both the 

action and the reaction take place at exactly the same location 

where the interaction takes place. The second corollary is that both 

the action and the reaction take place at exactly the same time the 

interaction takes place. The principle of causality implies that it is 

illogical and indefensible to believe that the cause of a 

phenomenon does not take place at the same location and at the 

same time that the effect does. 

Let us apply those corollaries to relativity. When a mass moves 

in a gravitational field, its trajectory is modified by the action of 

the gravitational field. The interaction between a mass and a 

gravitational field takes place at the location of the mass and at the 

moment the mass is interacting with the field. Consequently, the 

relevant parameters during the interaction are the amount of mass 

and the intensity of the gravitational field at the location of the 

interaction. It would be absurd to calculate an interaction using 

quantities that exist somewhere else than where the interaction 

takes place. When we study the behavior of Mercury interacting 

with the solar gravitational potential, we must logically use the 

physical quantities existing where Mercury is located. This means 

that when we calculate the behavior of planet Mercury, we must 

use the units of length, clock rate and mass existing at Mercury 

location. This is the only logical way to be compatible with the 

principle of causality and with its natural corollaries leading to the 

principle of action-reaction. It would not make sense for the mass 

of Mercury involved in the interaction with the solar gravitational 

field to be the mass it has in outer space rather than its real mass 

where it is located at the moment it is interacting near the Sun. 
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Therefore the amount of mass, length and clock rate that must be 

used in the equations are the ones that appear at Mercury location, 

since they are the only relevant parameters logically compatible 

with the physics taking place on Mercury. At Mercury location, 

there is no other physics than the one using the local mass, length 

and clock rate. Logically, it must be so everywhere within any 

frame in the universe. This point is extremely important and is 

fundamental in the calculations below because it is the basic 

phenomenon that explains the advance of the Mercury perihelion 

around the Sun. 

4.6 - Fundamental Mechanism Taking Place in 
Planetary Orbits. 

In classical mechanics, it is demonstrated that planets revolve 

around the Sun in a circular or elliptical orbit. The complete period 

of an orbit can be defined as the time taken to complete a full 

translation of 2n radians around the Sun or as the time interval 

taken by the planet to complete its ellipse between the passages of 

a pair of perihelions. It is usually considered that these two 

definitions of a period of an orbit are identical. However, if the 

ellipse is precessing, the angle spanned between the two passages 

of a pair of perihelion is larger than for a non precessing ellipse i.e. 

larger than 2n radians. This means that the full translation of 2n 

radians is completed before the ellipse reaches the next perihelion. 

Therefore we expect the period of that precessing ellipse to be 

larger. 

One of the fundamental phenomena implied in such an orbital 

motion is the gravitational potential decreasing as the inverse of the 

distance from the Sun where the planet is orbiting. When the orbit 

is circular, it is difficult to determine at what instant one full orbit 

is completed other than measuring a translation of 2n radians with 

respect to masses seen in outer space. However, in an elliptical 

orbit (as in the case of Mercury around the Sun), the direction of 

the major axis can be easily located in space from the instant 

Mercury is at its perihelion, i.e. its closest distance from the Sun. 
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4.6.1 - Significance of Units in an Equation. 
In Galilean mechanics, when the units are identical in all frames, 

the pure number that multiplies the unit is undistinguishable from 

the quantity that includes the unit. For example, when someone 

reports that a rod is ten meters long, we can assume that either he 

has in mind that the rod is ten times the length of the standard 

meter (in which ten is a pure number separated from the unit of 

length), or he means a single global quantity with unit, 

corresponding to one single quantity ten times longer than the unit 

meter. Of course, the difference brings no consequence at all when 

we always use the same standard meter. However, the correct 

interpretation must be understood and specified here because the 

size of the reference meter (and all other units) changes from frame 

to frame. 

If "a" represents the semi-major axis of the elliptical orbit of 

Mercury, we have to find whether "a" represents a pure number (to 

which a unit is added and considered separately) or a single global 

quantity (with units included). This can be answered if we study 

the fundamental role of a mathematical equation. In mathematics, 

we learn that an equation is a fundamental relationship between 

numerical quantities. The same mathematical equation can relate 

numbers (or concepts) having different units. This can be 

illustrated in the following way. 

If an apple costs 50 cents, how many apples (N) will we buy 

with $10.00? We use the following equation: 

4.26 

With a — $10.00, and b = $0.50 each, we find 

N = 20 apples. 4.27 

Now, if we also find that an orange costs 50 cents, how many 

oranges will we have for $10.00? Using again equation 4.26 with a 

= $10.00 and b = $0.50 each, we find: 

N = 20 oranges. 4.28 
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We also want to buy peas. They cost 1 cent each. How many 

peas do we get for $10.00? Using again equation 4.26, we find that 

the number of peas is: 

N= 1000 peas. 4.29 

Equations 4.27, 4.28 and 4.29 illustrate that the mathematical 

parameter N does not represent apples, oranges or peas. It 

represents only the numerical value of the unit. The unit must be 

specified separately. One must know that the units also follow a 

separate mathematical relationships. This is called a dimensional 

analysis which requires an analysis separate from the numerical 

analysis. 

Therefore, "a" represents the number of units of length. The 

same remark must be applied to all physical quantities that are pure 

numbers obtained from a previous definition of other standard 

units. Furthermore, in order to be compatible with the principle of 

causality given above, the units of length, mass and clock rate must 

necessarily be the ones existing on Mercury where the phenomenon 

takes place. We will see below how this description leads to a 

perfect coherence. 

In the solar system, the orbit of Mercury is very elongated and is 

an excellent example to study Kepler's laws. However, since there 

are several other planets moving around the Sun, there are other 

classical corrections due to the interactions between these other 

planets that need to be taken into account. Extensive classical 

calculations show that the interaction of the other planets of the 

solar system also produces an important advance of the perihelion 

of Mercury. After accurate calculations, data show that the 

advance of the perihelion of Mercury is larger than the value 

predicted by classical mechanics. The advance of the perihelion is 

observed to be 43 arcsec per century larger than expected from all 

classical interactions by all planets. 

In order to solve this problem, we have to examine in more detail 

the conditions in which the equations must be applied. As we will 

see in chapter five, the number of seconds giving the period P is a 

function of the parameters a, G, M(S) and M(M). However, due to 

mass-energy conservation we have seen that the units of length, 
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time and mass are different at Mercury distance from the Sun than 

in outer space. In section 4.5, we have also seen that the action of 

the gravitational potential on Mercury must be calculated using the 

number of units of mass (and all other parameters) that Mercury 

has at that location. 

4.7 - Transformations of Units. 

4.7.1 - aM(o.s.) versus aM(M). 
When we measure the number of meters that constitute a given 

length, we find that this number depends on the length of the unit 

used in conjunction with it. We call aM(o.s.), the number of outer 

space meters that represents the length of the semi-major axis of 

the orbit of Mercury when we use outer space meters. The absolute 

physical length LM[o.s.] being measured using outer space meters 

is then: 

Lm[o.s.] = aM(o.s.)meter0 s. 4.30 

The value of the absolute length LM[o.s.] of the semi-major axis 

of the orbit of Mercury corresponds to measuring the number 

aM(o.s.) of meters in the orbit times the outer space meter 

(meteros). We now have to determine the number aM(M) of 

Mercury meters (meterM) found in conjunction with Mercury units. 

aM(M) represents the corresponding number of Mercury meters to 

measure the same length when we use Mercury meters. We find 

that the absolute physical length Lm[M] of the semi-major axis, is 

given by: 

Lm[M] = aM(M)meterM. 4.31 

Since a physical length does not change because we use a 

different reference meter to measure it, we must understand that the 

absolute physical length of the semi-major axis is the same whether 

it is measured using outer space or Mercury units. Therefore, the 

absolute length LM[frame] of the semi-major axis of the orbit of 

Mercury is the same independently of the units used to measure it. 

Therefore, equations 4.30 and 4.31 are identical: 

Lm[M] = Lm[o.s.] = aM(o.s.)meteros = aM(M)meterM. 4.32 
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Equation 4.32 gives us the relationship between the number 

aM(o.s.) of outer space meters and the number aM(M) of Mercury 

meters to measure the same length. This gives: 

aM(o.s.) = aM(M) 
meter, M 

meter„ 

Combining equations 4.7 and 4.33 gives: 

aM (o.s.) = aM (M) 1 + 
GM(S) 

c Rm ) 

4.33 

4.34 

Equation 4.34 shows that the number aM(M) of Mercury meters 

required to equal the semi-major axis of Mercury is smaller than 

the number aM(o.s.) of outer space meters since the outer space 

meter is shorter. Therefore the outer space observer will record a 

larger number aM(o.s.) of meters than the Mercury observer even if 

both observers are measuring the very same semi-major axis. 

4.7.2 - M(£)(o.s.) and M(M)m(°-s>) versus M(S)(M) 

and M(M)m(M). 
The symbols (&) and (M) represent respectively the Sun and 

Mercury. M(£)(o.s.) and M(M)m(°-s-) represent the numbers of 

absolute outer space kilograms (kgos) for the Sun and Mercury 

respectively. The subscript M of M(M)m(°-s-) indicates that the 

planet is at Mercury location. The numbers of Mercury units that 

give the same masses are represented by M(£)(M) and M(M)m(M). 

The absolute solar mass p(£)[o.s.] using outer space units is: 

p(S)[o.s.] = M(S)(o.s.)kg04.35 

Using Mercury units, the same absolute solar mass is given by: 

p(£)[M] = M(S)(M)kgM. 4.36 

Since the solar mass does not change because we measure it 

using Mercury units instead of outer space units, we have: 

p(S)[o.s.] = p(£)[M]. 4.37 

Similarly, the mass of Mercury measured with outer space units 

is: 

p(M)M[°-s-j = M(M)M(o.s.)kg0.s.. 4.38 
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When the measurement is done with Mercury units, the same 

mass is given by: 

|.i(M)m[M] = M(M)M(M)kgM. 4.39 

Since it is the same absolute mass of Mercury described using 

different units, we have: 

|t(M)m[o.s.] = 4.40 

Due to mass-energy conservation, the amount of mass contained 

in one local Mercury kilogram is different from the one in one 

outer space kilogram. From equations 4.35, 4.36 and 4.37 we have: 

M(S)(o.s.) = kgM 441 

M(S)(M) kg0,' 

The left hand side of equation 4.41 gives the ratio between the 

number of outer space kilograms and the number of Mercury 

kilograms needed to measure the same solar mass. From equation 

4.25, we get: 

kgo.s. 

kg M 

GM(S) 
Vl 

c2R 
4.42 

m 7 

Combining equations 4.41 and 4.42 gives: 

M(S)(o.s.) = M(S)(M) 
GM(S) 

c Rm J 
4.43 

Equation 4.43 shows that the number of kilograms M(£)(o.s.) 

found in the measurement of the solar mass is smaller when 

measured in conjunction with the outer space kilogram than when 

measured in conjunction with the Mercury kilogram. Combining 

equations 4.38, 4.39 and 4.40 with 4.42, we get for the case of the 

mass of Mercury: 

M(M)m(o.s.)=M(M)m(M) 
GM(S)" 

c2Rm > 
4.44 

Consequently, the number M(M)m of kilograms giving the mass 

of Mercury is smaller using outer space kilograms than using 

Mercury kilograms. 
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4.7.3 - PM(o.s.) versus Pm(M). 
In equations 4.12 and 4.13, we have calculated absolute time 

intervals At as measured from outer space location (Axo s [o.s.]) and 

Mercury location (Axo s [M]). Let us consider now that the time 

interval Ax is the period of translation of Mercury to complete an 

ellipse around the Sun. The number of seconds PM(o.s.) giving the 

period of Mercury when measured with an outer space clock is 

given by the relationship: 

Atm[o.s.] = PM(o.s.) ACDo s (S) 4.45 

and the period Pm(M) measured on Mercury using a Mercury 

clock (with Mercury units) refers to the relationship: 

Atm[M] = Pm(M)ACDm(S). 4.46 

The time intervals Atm[o.s.] and Atm[M] in equations 4.45 and 

4.46 represent the absolute time interval for the period P of 

translation of Mercury around the Sun. An absolute time interval is 

not different because it is measured with a Mercury clock instead 

of an outer space clock: 

Axm[o.s.] = Atm[M] = Pm(M) ACDm(S) = PM(o.s.) ACDos(S).4.47 

We have seen in equation 4.24 the ratio of the numbers 

ACDm(o.s.) and ACDm(M) between two frames in different 

gravitational potentials. We see that the numbers PM(o.s.) and 

Pm(M) displayed by the clocks correspond to ACDM(o.s.) and 

ACDm(M) during one period of translation. Therefore, 

ACDm(o.s.) PM(o-s.) 

ACDm(M) Pm(M) ' 

Combining equation 4.48 with 4.24 gives: 

4.48 

PM(o.s.) ACDm(o.s.) 

Pm(M) ACDm(M) 
1- 

GM(S) 

c2Rm ) 
4.49 

Equation 4.49 shows that even if the absolute time interval Ax 

for the period is the same in both frames, the differences of clock 

displays are different because the clocks run at different rates. 
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4.7.4 - G(o.s.) versus G(M). 
Since lengths, clock rates and masses are not the same in 

different frames, we see now that the gravitational constant G is 

different when measured using Mercury units. The number of 

outer space units of the gravitational constant is called G(o.s.) and 

the number of Mercury units of the same gravitational constant is 

called G(M). The fundamental units corresponding to the 

gravitational constant G are called respectively Uos and UM. The 

total gravitational constant G is called J[o.s.] when measured from 

outer space and J[M] when measured from Mercury orbit. 

Therefore we have: 

J[o.s.] = G(o.s.)U0 s 4.50 

and 

J[M]=G(M)Um. 4.51 

Since the absolute gravitational constant does not change 

because we measure it from a different location, we have: 

J[o.s.]=J[M]. 4.52 

The relative number of units between G(o.s.) and G(M) is found 

using a dimensional analysis. The units of G can be obtained from 

Newton's well known gravitational law: 

GMm 
4.53 

where the force F is in newtons, M and m are in kilograms and 

the radius R is in meters. From equation 4.53 and recalling that the 

units of G(o.s.) are called Uos, we find: 

From the relationship 

newtonosmeter0z& 
4.54 

F = mot 4.55 

where a is the acceleration, we find that the units of F are: 

newton0.. 
kgo.s.meter0s 

SeCo.s. 

Combining 4.54 with 4.56 we get: 

4.56 
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u o.s. 

kgasmeter03s 

kgo.s. seCo.s. ' 

From the definition of velocity, the units of v are: 

4.57 

meter. 

secn 

Equation 4.58 in 4.57 gives: 

meter0 &Vq s. 
' r\ c 

kgo.S 

4.58 

4.59 

We have seen in sections 3.5.3 and 3.6 that a velocity is 

represented by the same number within any frame. This means that 

the number representing a velocity is the same within any frame 

when it is measured using any coherent system of local units. 

Since a velocity is the quotient between a length and a time 

interval, this quotient stays constant even when switching between 

frames because the same correction is made on both lengths and 

clock displays. Consequently, we have: 

v0.s. = vM. 4.60 

Equations 4.7, 4.42 and 4.60 in equation 4.59 give: 

meter, M 1 + 

Uo.s. = 

GM(S) 

c2Rm ) 

vi 

'M 

kg M 1- 
GM(S) 

c2Rm ) 

\-i 

The first order expansion of equation 4.61 gives: 

U„, = 
meterMv^ 

kg M 

GM(S) 

c2Rm ) 
By analogy with 4.59 for UM, we have: 

4.61 

4.62 

UM = 
meterMv MVM 

kg M 

Equation 4.63 in 4.62 gives: 

Ur u M 

GM(S) 

c2R 

A2 

M 7 

4.63 

4.64 
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Equations 4.50, 4.51, 4.52 and 4.64 give the relationship 

between the number of units of G: 

G(o.a) = G(M) 1- 
GM(S)V2 

c2Rm > 
4.65 

Equation 4.65 shows that the gravitational constant G is 

represented by different numbers when measured with the units 

existing on Mercury and in outer space. 

4.7.5 - F(o.s.) versus F(M). 
From equation 4.56 we have: 

kgo.s.metero.s. 
newton = 

sec. 

Using equations 4.7, 4.15, 4.24 and 4.25, we find: 

kg >M 

neWt0no.s. = 

c Rm ) V 
meter, 

M 

\ GM(S)A 

V c R ■M 7 

sec M 

\2 

1- 
GM(S) 

l c Rm J 
To the first order, this is equal to: 

newtono.s. = 

kgM meter. 
\2 

GM(S) 

secM ^ c Rm ) 

1 + 

and: 

newtom 0 = newton M 

\2 

1 + 
GM(S) 

c Rm ) 

4.66 

4.67 

4.68 

4.69 

Consequently, the relationship between the number of Mercury 

newtons and the number of outer space newtons is given by: 

_ / GM(S)V2 
F(o. s.)= F(M)| 1+ 2 

\ cR 
4.70 

M 7 

4.8 - Symbols and Variables. 

aframe[°-s-] length of the local Bohr radius in absolute units 
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&m(M) 

aM(o.s.) 

ACDm(M) 

ACDm(o.s.) 

ACDm(S) 

ACDos (M) 

ACD0S(o.s.) 

ACD0,.(S) 

Atm[M] 

Atm[o.s.] 

At0,.[M] 

At0.s.[o.s.] 

G(M) 

G(o.s.) 

J[M] 

J[o.s.] 

frame 

Lm[M] 

Lm[o.s.] 

meterframe 

M(M)m(M) 

H(M)m[M] 

M(M)m(o-s.) 

|t(M)m[o-s.] 

M(S)(M) 

M(S)(o.s.) 

number of Mercury meters for the semi-major axis of 

Mercury 

number of outer space meters for the semi-major axis 

of Mercury 

ACD for the period of Mercury measured by a 

Mercury clock 

ACD for the period of Mercury measured by an outer 

space clock 

apparent second on Mercury 

ACD in outer space measured by a Mercury clock 

ACD in outer space measured by an outer space clock 

absolute second in outer space 

period of Mercury in Mercury units 

period of Mercury in outer space units 

time interval in outer space in Mercury units 

time interval in outer space in outer space units 

number of Mercury units for the gravitational 

constant 

number of outer space units for the gravitational 

constant 

gravitational constant in Mercury units 

gravitational constant in outer space units 

mass of the local kilogram in absolute units 

length of the semi-major axis of the orbit of Mercury 

in Mercury units 

length of the semi-major axis of the orbit of Mercury 

in outer space units 

length of the local meter in absolute units 

number of Mercury units for the mass of Mercury at 

Mercury location 

mass of Mercury in Mercury units at Mercury 

location 

number of outer space units for the mass of Mercury 

at Mercury location 

mass of Mercury in outer space units at Mercury 

location 

number of Mercury units for the mass of the Sun 

number of outer space units for the mass of the Sun 
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|a(S)[M] 

p(£)[o.s.] 

N(S) 

Pm(M) 

Pm(o.s.) 

M 

frame 

mass of the Sun in Mercury units 

mass of the Sun in outer space units 

number of oscillations of an atomic clock for one 

local second 

ACD for the period of Mercury measured by a 

Mercury clock 

ACD for the period of Mercury measured by an outer 

space clock 

distance between Mercury and the Sun 

unit of the gravitational constant in the local frame 



Chapter Five 
Calculation of the Advance 

of the Perihelion of Mercury. 

5.1 - Mathematical Transformation of Units between 

Frames. 
In this chapter we will deal with two kinds of transformations. 

The first kind is a mathematical transformation of units which 

brings no physical change to the quantities being described. In 

such a transformation, there is no physics, just mathematics. For 

example, let us suppose that we measure a rod on Mercury and find 

that it is 100 times longer than the local Mercury meter. Then we 

say that the length of the rod is 100 Mercury meters. However, if 

we know that on Mercury, the local meter is 1% longer than the 

local reference meter in outer space, we know that the same rod is 

actually equal to 101 times the outer space reference meter. These 

two descriptions by units of different frames are perfectly identical. 

The rod has not changed. 

The observer on Mercury can also use his clock to measure a 

time interval. If the Mercury observer measures 100 units on his 

clock (i.e. 100 Mercury seconds), knowing that clocks on Mercury 

run at a rate which is 1% slower than clocks in outer space, we can 

calculate that during that absolute time interval the difference of 

clock displays on a clock in outer space will be 101 outer space 

units. No physics is involved in that transformation, only 

mathematics. The same physical phenomenon is described using 

different units. 

Other units must also be transformed. For example, the absolute 

mass of the Sun does not change because we observe it from 

Mercury location near the Sun. However, measuring the same 

solar mass using the smaller Mercury unit of mass will lead to a 

larger number of Mercury units. Similarly, the physical amplitude 

of the absolute gravitational constant G does not change because 

the phenomenon takes place near the Sun. We have seen in chapter 

four that the absolute constant G is represented by different 
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numbers of Mercury and outer space units. Again, no physics is 

involved. 

5.1.1 - Consequence of a Simple Change of Units. 
Let us suppose that using Newton's relationships, we want to 

calculate the period of Mercury using Mercury units. We must 

then compare this answer with the one obtained with the same 

relationships using outer space units. If we do so, we find that the 

numbers of units found for the period are different. However, 

when we take into account that the Mercury clock runs at a slower 

rate, we see that the absolute times obtained from either frame are 

the same. 

In the next section we will see that in order to be compatible 

with the principle of mass-energy conservation, one must add 

another kind of transformations which are physical 

transformations. Contrary to the identical consequences resulting 

from the mathematical transformation explained above, different 

absolute results are found when Newton's laws are applied with the 

proper values belonging to different frames. 

5.2 - Physical Transformations Due to Mass-Energy 
Conservation. 

The second kind of transformations consists of real physical 

changes. We have seen in chapters one and three that when an 

object in outer space is moved to Mercury location, its absolute 

mass changes because of the change of gravitational potential and 

kinetic energies. (In the case of gravitational energy, the difference 

of mass is transformed into work). The object that remains at 

Mercury location is physically different from the object that existed 

in outer space because the dimensions of its atoms, their mass and 

clock rate have changed. This physical change of mass is quite 

different from the mathematical change of units mentioned above. 

Here is an example. An observer on Mercury measures that a 

mass on his frame is 100 times larger that the unit of mass on 

Mercury. Another observer in outer space measures the mass of 

the same object after it has been carried out to outer space. In that 

new frame, the outer space observer finds the same number (100) 
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of new units of mass. Both observers measure 100 local kilograms. 

However, the absolute mass of this object has changed when 

moved from Mercury location to outer space. The Mercury 

kilogram is not equal to the outer space kilogram. To realize this, 

we need to know the mass at Mercury location using outer space 

units. Applying the principle of mass-energy conservation, we find 

that using the same outer space units, the mass of the object is 

reduced to only 99 outer space kilograms when brought to Mercury 

location (since the Mercury kilogram is 1% lighter than the outer 

space kilogram). This is a real physical change. It is not a simple 

mathematical transformation of units like the one explained in 

section 5.1. 

We will see in section 5.3 that these physical changes lead to 

results that are physically different when calculated using proper 

values in different frames. Using Newton's classical mechanics, we 

will find that the results obtained using the proper parameters in 

one frame are not coherent with the results obtained using 

parameters proper to another frame. 

In order to clarify this description, in this chapter we will use the 

expression transformation of units to designate only a pure 

mathematical transformation of units. When a physical change is 

involved as a consequence of mass-energy conservation, we will 

speak of a transformation of parameters. 

We consider that the interactions between physical elements 

(like fields, masses, lengths and clock rates) existing on Mercury, 

using Mercury parameters, must be the same as the ones that we 

calculate in outer space using outer space parameters. This means 

that the mathematical relationships so well-known in physics are 

the only ones that are valid but it is required that on Mercury we 

use the physical quantities (mass, length and clock rate) existing on 

Mercury while in outer space, we use the physical quantities 

(which are different) existing in outer space. In other words, we 

must always use proper values. It is totally illogical to use outer 

space physical parameters at Mercury location. On Mercury, we 

must necessarily use physical parameters that exist on Mercury. 
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5.3 - Incoherence between Outer Space and Mercury 

Predictions Using Newton's Physics. 
In this book, we use Newton's equations which are always 

perfectly valid in all frames. However, there is a difference 

between Newton's equations and Newton's physics. Newton's 

physics is different from the physics described in this book because 

it is not compatible with the principle of mass-energy conservation. 

In Newton's physics, there is no place for changes of mass, length 

and clock rate. According to that physics, the mass of an object in 

outer space does not change if it is transported to Mercury location 

or to anywhere in the universe. 

Let us suppose a Newtonian observer wants to measure the 

period of Mercury. He wishes to know its mass. To do this, he 

imagines the following thought experiment. He takes Mercury out 

of its orbit to outer space and puts the planet on a balance to 

measure its mass. Then he puts Mercury back on its orbit. Being a 

Newtonian observer using Newton's physics, the mass he will use 

in his calculations of Mercury's period will be the mass he just 

measured in outer space. However, we know this mass is wrong 

because of mass-energy conservation. We also know that other 

parameters (like length and clock rate) at Mercury location are 

modified due to the change of mass. Therefore this observer's 

Newtonian calculation of the orbit of Mercury will be wrong even 

when he uses the correct equations. 

We will see that when the orbit of a planet moving around the 

Sun is calculated, using outer space physical parameters, we find a 

perfect ellipse. However, when we use the proper parameters 

existing on Mercury, we find a different orbit which is a precessing 

ellipse. This explains the advance of the perihelion of Mercury. 

When neglecting the changes of mass, length and clock rate on 

Mercury with respect to outer space, we find an erroneous 

prediction because we use outer space physical parameters instead 
of proper parameters. 
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5.4 - Incoherence of the Gravitational Force Using 

Newton's Physics. 
Let us give an example that shows that the calculated force of 

gravity is different depending on what the physical parameters are 

used (outer space or Mercury). For the Newtonian observer, the 

gravitational force is: 

Fg (o.s.) = G(o.s.)M(S)(o.s.) 
M(M)0S (o.s.) 

Rm(oS-) 
5.1 

For that observer, whether the subscript of M(M) is o.s. or M 

makes no difference. We write o.s. because this observer uses 

Newton’s physics which always assumes a constant mass. The 

relevant physical parameters at Mercury location are: 

Fg (M) = G(M)M(S)(M) 
M(M)m(M) 

Rm(M) 
5.2 

All physical parameters in equation 5.2 must be Mercury 

physical parameters because that is where the interaction takes 

place. We will now compare these two equations. We know that 

the number of Mercury units to measure the mass of Mercury at 

Mercury location is the same as the number of outer space units to 

measure the mass of Mercury in outer space. This gives: 

M(M)m(M) = M(M)0,.(o.s.). 5.3 

The relationship between the number of units of mass of the Sun 

in outer space and Mercury units is given by equation 4.43: 

M(S)(o.s.) = M(S)(M) 1- 

GM(S) 

c2Rm ) 
5.4 

The relationship between the numbers of meters to measure the 

distance of Mercury from the Sun in outer space and Mercury units 

can be deduced from equation 4.34: 

Rm(o.s.) = Rm(M) 1 + 
GM(S)" 

c2Rm , 
5.5 

Finally, the corresponding relationship for the gravitational 

constant G is given by equation 4.65: 
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f 

G(o.s.) = G(M) 1 + 
V 

gm(S)Y 

c2Rm v 
5.6 

Equations 5.3, 5.4, 5.5 and 5.6 in 5.2 give: 

Fg (M) = G(o.s.)M(S)(o.s.) 
\ | GM(S)|M(M)0,(o.s.) 57 

c-Rm ) Rm(o.s.) 

In order to compare the gravitational force calculated using 
Mercury units, with the force calculated using outer space units, let 

us transform the number of units of force FG(M) into the 
corresponding number of outer space units. From equation 4.70, 
we have: 

Fg(M) = Fg(o.s.) 1 + 
gm(S)Y 

C2Rm > 

Equation 5.7 with 5.8 gives: 

5.8 

Fg (o.s.) = G(o.s.)M(S)(o.s.) 1 + 
GM(S) 

c2Rm 7 

M(M)os.(0-S-) 

Rm (o.s.) 

We must notice that equation 5.9 does not corresponds to a 
simple transformation of units. The physical parameters existing 
on Mercury at Mercury location have been taken into account. 

Using the physical parameters existing on Mercury and outer 

space units, equation 5.9 shows that the absolute gravitational force 
on Mercury is different from the one calculated using the physical 

parameters existing in outer space and given in equation 5.1. The 
two results are not compatible. They predict different orbits. As 
explained above, the logical choice requires that we choose the 
equation obtained using the proper physical parameters existing at 
the location where the interaction of Mercury takes place with the 
gravitational held. We must reject the calculation obtained using 

outer space parameters when the experiment is taking place on 
Mercury. Finally, we now realize that equations 5.1 is the limit of 
equations 5.9 when RM-»oo. 

There is another direct consequence of mass-energy 
conservation. Contrary to equation 5.1, we see in equation 5.9 that 
using the physical parameters existing on Mercury, the decrease of 
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the gravitational force is no longer perfectly quadratic. We will 

see in chapter six that in classical mechanics the orbits of an object 

submitted to a non quadratic gravitational force must have a 

precession. 

5.5 - Relevant Physical Parameters. 
Let us assume that an object on Mercury has a length of 100 

Mercury meters. This means that independently of the units used 

to describe it, this is the relevant physical length. If we find that 

the meter on Mercury is 1% longer that the outer space meter, that 

length will be represented by 101 outer space meters. However, a 

Newtonian observer in outer space would predict 100 outer space 

meters from his own (incorrect) calculation. 

In the case of time, if the Mercury observer measures that a 

phenomenon lasts 100 Mercury seconds, this means that the outer 

space observer measuring the same time interval on his clock (that 

runs 1% faster) will measure 101 outer space seconds. For the 

outer space observer, this means that the physics taking place on 

Mercury is such that the phenomenon takes place more slowly. We 

must remember that this is not a simple transformation of 

mathematical units. The difference is due to the slowing down of 

the processes on Mercury in order to maintain the internal 

coherence within the Mercury frame. One must recall that if the 

phenomenon takes place in outer space, the outer space observer 

will also measure 100 of his seconds which are different from 100 

Mercury seconds. However, since the phenomenon is taking place 

on Mercury, it takes one extra outer space second before being 

completed. 

If one could observe a physical phenomenon from outer space 

taking place in a very deep gravitational potential, one would see 

that objects are bigger and react more slowly. Furthermore if the 

outer space observer calculates quite independently the phenomena 

taking place on Mercury using outer space parameters, he would 

find that the observations reveal that everything functions at an 

unexpected slower rate with respect to his frame since the physics 

at Mercury location must be compatible with Newton's laws when 

using proper physical parameters. 
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5.6 - Fundamental Phenomena Responsible for the 

Advance of the Perihelion of Mercury. 
This section is very important to understand the phenomena 

responsible for the advance of the perihelion of Mercury. Let us 

consider that the orbit calculated by the Mercury observer has a 

length equal to 1000 kilometers as determined with Newton's 

equations using proper parameters on Mercury. Of course, an 

observer located in outer space, also using Newton's equations and 

proper values existing in outer space will calculate that the length 

of the orbit is 1000 outer space kilometers. 

Using mass-energy conservation, let us assume that due to a 

different gravitational potential, the unit meter on Mercury is 1% 

longer than the unit meter in outer space. Consequently, in order to 

be coherent, we calculate that clocks in outer space will run at a 

rate which is 1% faster than the rate on Mercury. 

From the above information, let us calculate the clock display 

measured on the outer space clock ACD(o.s.) while Mercury travels 

the distance of 1000 kmM. Since the distance traveled is 1000 

kmM, equation 4.34 shows that due to the longer Mercury meter, 

the outer space observer will measure 1010 kmos. The 

circumference of the orbit is: 

Circ[M] = 1000 kmM = 1010 kmos. 5.10 

This first correction on lengths ignores that while Mercury 

travels 1010 kmos the clock in outer space runs 1% faster that the 

clock on Mercury. Since we must refer to the parameters existing 

on Mercury where the phenomenon takes place, the ACD on the 

outer space clock must be increased by one per cent with respect to 

the Mercury clock because of the faster rate of that outer space 

clock. Consequently, there is an increase of 1% of length to be 

traveled because the real length is 1010 kmo s plus another increase 

of 1% on the outer space clock because of its faster rate. 

Consequently, in order to respect the physical laws existing on 

Mercury where the interaction with the gravitational potential takes 

place, we see that we must take into account two phenomena 

slowing down the completion of the ellipse in the frame where 
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Mercury interacts with the gravitational potential. One is due to 

the increase of length of the Mercury meter and the second is due 

to the slowing down of the physical mechanisms on Mercury. We 

will calculate these two quantities in detail in the next sections of 

this chapter. 

Let us note that in the above description, we have seen that the 

exact distance 1000 kmM (or 1010 kmos) originally planned has 

been traveled as expected. However, we might calculate that the 

ACD(M) expected from calculations is different from the one 

measured. This is because not only Mercury, but also the clock has 

changed location (at a certain velocity) between the first and the 

last readings. This leads to a drift in the synchronization of the 

moving clock as explained clearly in sections 9.4, 9.5 and 9.6. The 

reading of chapter nine is necessary to complete the explanation on 

the loss of clock synchronization of moving clocks. 

5.7 - Change of Length from Outer Space to Mercury 

Location. 
We have seen that the relevant parameters responsible for the 

physical interaction with the solar gravitational field are the ones at 

Mercury location even though the final results are observed by the 

outer space observer. Let us calculate the physical length observed 

in outer space corresponding to the length calculated using 

Mercury parameters where the interaction takes place. There are 

two physical phenomena that make the Mercury meter longer than 

the outer space meter. The first one is due to the gravitational 

potential as explained in chapter one. The second phenomena is 

due to the velocity of Mercury on its orbit as calculated in chapter 

three. 

Let aM(o.s.) and aM(M) be the numbers representing the semi¬ 

major axis of Mercury. Using equation 4.34, we get the 

relationship: 

aM(o.s.) GM(S) 

aw(M) c2Rm ' 
5.11 
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Let us call /M(o.s.) the number of outer space meters for the 

length of Mercury's elliptical orbit and /m(M) the number of 

Mercury meters for the length of the same elliptical orbit. For a 

small eccentricity, /M(o.s.) is about 27taM(o.s.) and /m(M) is about 

27taM(M). The eccentricity will be taken into account in section 

5.10. We have from equation 5.11: 

/M(o.s.) aM(o. s.) GM(S) 

/m(M) - aM(M) c2Rm ' 

We see in equation 5.12 that the number of meters measured by 

the observer in outer space for the length of the elliptical orbit is 

larger than the number of meters measured by the Mercury 

observer because the outer space meter is shorter. 

Mercury is not only located in a gravitational potential, it also 

has a velocity. Because of this velocity v, there is a difference 

between the length of the moving meter and the length of the meter 

at rest, both at Mercury distance from the Sun (see equation 3.23). 

The moving Mercury meter is also the one that is relevant here 

since it is the one involved in the physics taking place on Mercury. 

The rest meter being shorter, the number of rest meters needed to 

describe the length of the orbit will be larger than the number of 

moving Mercury meters. 

Let us call Nv the number of moving meters and N0 the number 

of rest meters to measure the Mercury orbit. Similarly to equations 

4.30, 4.31 and 4.32, the absolute length Lfrest] of the Mercury orbit 
is: 

L[rest] = N0 meter[rest] = Nv meter[mov] 5.13 

where meter[rest] and meter[mov] represent respectively the 

length of a meter at rest and the length of a meter in motion. In 

equation 5.13, the absolute physical length L[rest] of the Mercury 

orbit does not change because we measure it with smaller meters at 

rest. Using equations 5.13 and 3.41 we have: 

No _ meter[mov] 

Nv - meter[rest] ^ ^ 

which is: 
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N V 5.15 

Using the first term of a series expansion gives: 

Nv 

N0 \cJ 
5.16 

In order to calculate the velocity of Mercury on its orbit, let us 

use a well-known relationship in classical mechanics. The 

centrifugal force (C.F.) on a moving mass M(M) (Mercury) at a 

distance RM from the center of translation is equal to: 

C.F.= 
M(M)v2 

R 
5.17 

M 

In the case of a stable orbit around the Sun, the gravitational 

force F(grav) is equal to the centrifugal force. This gives: 

F(grav)= 
GM(M)M(S) M(M)v2 

R2 M 
R 

5.18 
M 

and 

, GM(S) 

V ~ Rm ' 

Putting equation 5.19 in 5.16 gives: 

N GM(S) 

Nv 1 2c2Rm 

5.19 

5.20 

Equation 5.20 shows that the number of rest meters is larger than 

the number of moving meters. 

Equation 5.12 gives the relative increase of the number of outer 

space meters with respect to the number of Mercury meters due to 

mass-energy conservation in the static gravitational potential of the 

Sun. Equation 5.20 gives another relative increase of the number 

of meters at rest with respect to the number of moving meters as 

explained in chapter three. From these two causes, the total 

relative number /0 s >0 of outer space meters at rest with respect to 

the moving Mercury meters is given by the product of equations 

5.12 and 5.20. This gives: 
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/o,..o [ GM(S) GM(S)) 

^m,v V c~Rm ^c-R^y 
5.21 

The first term of a series expansion gives: 

4,.,o 3GM(S) 
7 ~ * ~ 

4l,v 2c'Rm 
5.22 

which gives the total increase of distance in outer space units 

following the calculation of the length of the orbit using Mercury 

parameters, located in a gravitational potential at velocity v. 

5.8 - Change of Clock Rate from Outer Space to 

Mercury Location. 
There are two independent phenomena that slow down the 

clocks on Mercury's orbit. One is due to its gravitational potential, 

the other is due to its velocity. On the Mercury clock, during the 

period required to complete one full revolution, the difference of 

clock displays called ACDm(M) is smaller than the difference of 

clock displays ACDM(o.s.) in outer space since the physical 

mechanisms and clocks in outer space run at a faster rate. Let us 

calculate ACDM(o.s.) with respect to ACDm(M) during the same 

absolute time interval. From equation 4.49 we have: 

ACDm(o.s.) ( GM(S)V‘ 

ACDm(M) c2Rm J 5.23 

Let us now study the effect of velocity on clock rates. We have 

seen that due to mass-energy conservation, moving clocks are 

slower than clocks at rest. Using equation 3.10, we find: 

ACDV = - ACD0 5.24 

where: 

5.25 

ACDV is the difference of clock displays on a clock having a 

velocity v and ACD0 is the corresponding difference of clock 
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displays on a clock at rest (both clocks at the same distance from 

the Sun). Equations 5.24 and 5.25 give: 

ACDV 1 I v2 

ACD 0~y~r c2' 526 
Since v/c is very small with respect to unity, we consider the first 

term of a series expansion of equation 5.26. We get: 

ACD l[v| 

ACD0 2 lev 

or again, 

ACP0 

ACDV 
f-T 
vcy 

Equation 5.19 in 5.28 gives: 

ACD0 GM(S) 

ACD, “1+2c2Rm- 

5.27 

5.28 

5.29 

The clock moving with Mercury is the one submitted to the 

interaction between the planet and the solar gravitational field. 

From equation 5.29, we see that the moving clock on Mercury runs 

more slowly than the clock at rest (at a constant distance from the 

Sun). Consequently, as explained above, the physical mechanism 

taking place at Mercury location is slower. 

We have seen in equation 5.23 that clocks (and therefore the 

absolute physical mechanisms) slow down on Mercury as a 

consequence of the gravitational potential at that location. 

Equation 5.29 also shows a slowing down of the clocks due to the 

velocity of Mercury on its orbit. Let us calculate the total slowing 

down of clocks on Mercury due to both the gravitational potential 

and the velocity of Mercury on its orbit. The total difference of 

clock displays ACDM v on moving Mercury with respect to the 

difference of clock displays ACD0S 0 in outer space (at rest) is 

obtained using equations 5.23 and 5.29. We get: 

ACP0,„0 

acdm v 

GM(S)V Y + GM(S)" 
c2Rm J v 2c RM J 5.30 

The first order gives: 
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ACP0,,0 3GM(S) 

ACDm,, + 2c2Rm 

5.9 - Total Interaction Due to the Physical Changes of 

Length and Clock Rate. 
We have seen in sections 5.7 and 5.8 how the changes of length 

and clock rate modify the period of translation of Mercury around 

the Sun. The first phenomenon given by equation 5.22 gives the 

relative length of the orbit as measured in outer space when the 

phenomenon is calculated using the parameters existing on 

Mercury where the interaction with the gravitational field of the 

Sun takes place. The circumference of the orbit /Mv using Mercury 

parameters corresponds to a longer length of the orbit as measured 

using outer space parameters. Therefore, the outer space observer 

will measure more than a full circumference using his own outer 

space units. Furthermore, we have seen in equation 5.31 that in 

order to be compatible with mass-energy conservation, clock rates 

and physical mechanisms taking place on Mercury must be slower 

than the ones measured in outer space. Consequently, it will take a 

larger number of seconds on the outer space clock to complete the 

circumference than on the Mercury clock. 

Each phenomenon makes an independent contribution to modify 

lengths and clock rates on moving Mercury with respect to the ones 

at rest in outer space. Consequently both phenomena will 

contribute to the larger number of units for the period of Mercury 

as measured by an outer space observer. 

Let us call P/>ACD the period of the orbit of Mercury taking into 

account the combined effects of the change of length and the 

change ot clock rate. In P/ACD(M,mov), "M,mov" is in round 

parentheses since P/ACD is a pure number without units. Then 

P/,acd(M,itiov) is the number of Mercury units for completing the 

ellipse measured with a clock moving at velocity v at Mercury 

location and P/ ACD(o.s.,rest) is the number of outer space units to 

complete the period of the ellipse measured with a clock in outer 

space having zero velocity. For clarity, we have dropped the 

subscript M indicating the location of the planet since we consider 

Mercury at its normal position in the Sun's gravitational field. 
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Let us add the contribution of the two phenomena described 

above. The correction on the period will be the product of the 

contributions given by equations 5.22 and 5.31. This gives: 

p/,ACD(°-S.,rest) 
P/,ACD(M,mov) = (equation 5.22)(equation 531) 5.32 

p/,acd(°-s-,rest) loso ACP0 

p/,ACD(M,mov) ~ /M.v ACDv 

P/.acd(o-surest) ( 3GM(S)Y 3GM(S)" 

P/,acd(M,itiov) ~{l+ 2c2Rm A1 + 2c2RM , 

The first order gives: 

5.33 

5.34 

P/,ACD(°-S-Test) 3GM(S) 

P,acD(M,mov)-1+ c^rm • 535 

Equation 5.35 shows that the number of units for the total period 

of Mercury is larger when measured using outer space units. Let us 

transform this result to calculate the relative increase of the period 

of Mercury as recorded by an observer using an outer space clock 

and an outer space meter. We find that the relative increase is 

given by the derivative of equation 5.35. This gives: 

AP/,AcD(o-S-,rest) 3GM(S) 

P,ACD(M,mov) - c2Rm • 

Equation 5.36 shows that when Mercury has completed its full 

elliptical orbit, the observer using an outer space clock will monitor 

a period of translation larger by 3GM(£)/c RM times P/ACD 

(M,mov). 

Before completing this section, we must notice that following 

Newton's law, the advance of the perihelion of Mercury given by 

equation 5.36 can be written in a more simple form. Let us 

consider the gravitational potential "Pot" as a function of the 

distance RM from the Sun. Contrary to the definition of potential in 

electricity, in mechanics the potential is defined as the energy. Let 

us consider the energy per unit of mass. Using Newton's law of 

gravitation, we see that this ratio (which corresponds to the concept 

of potential in electricity) is independent of the mass of Mercury. 
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Writing differently Newton's law we find that the gravitational 

potential is: 

Pot GM(S) 

M(M) ~ Rm 

Combining 5.36 with 5.37, we get: 

AP/,ACD(o-s->rest) r Pot ^ f 31 
p/,acd (M, mov) Im(M)J vc2/ 

Equation 5.38 shows that the total advance of the perihelion of 

Mercury depends only on the constant 3/c times the change of 

gravitational energy per unit of mass. Equation 5.38 takes into 

account both the gravitational potential and the velocity of 

Mercury. 

5.10 - Correction for an Elliptical Orbit. 
There is one more term that needs to be taken into account to get 

a better accuracy. We know that Mercury travels on an elliptical 

orbit. However, in our calculation we have always considered the 

distance of Mercury from the Sun (RM) as a constant. In an 

elliptical motion, the distance from the Sun is not constant but 

varies according to a relationship characteristic of an ellipse. From 

geometrical considerations, it is demonstrated [1] that the distance 

Rm of the orbiting body (Mercury) from the occupied focus (where 

the Sun is located) of an ellipse is given by the relationship: 

_ a(l-e2) 

M l + ecos9 
5.39 

where a is the length of the semi-major axis, e is the eccentricity 

ot the ellipse and 0 is the angle between the value of the perihelion 

minus the argument of the perihelion. From equation 5.39, we see 

that when the eccentricity e is equal to zero, the distance of the 

orbiting planet to its center of translation is equal to a constant "a". 

Theretore equation 5.36 is valid when the eccentricity of the orbit 

ot the planet is zero (or negligible). This is not the case for 

Mercury for which the eccentricity is e = 0.2056. 

The orbiting body is sometimes at a closer distance from the Sun 

where the gravitational potential is larger. At those times, the 

velocity ot the planet is larger. Of course, there are other parts of 
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the orbit where the planet moves more slowly in a shallower 

gravitational potential. However, we can see that the smaller 

gravitational potential does not compensate completely for the 

larger one. The eccentricity must be taken into account. The clock 

rate and the unit of length must be taken into account at every point 

of the elliptical orbit. We have calculated above that the change of 

gravitational potential and of velocity produce an average effect 

represented mathematically by an "effective potential" Pot/M(M) in 

equation 5.38. Combining equations 5.39 and 5.37 we find: 

Pot 

M(M) 
= GM(S) 

1 + ecosG 

a(l - e2) 
5.40 

Equation 5.40 shows that the potential per unit of mass is not 

constant during an elliptical orbit (contrary to a circular orbit). 

Therefore the advance of the perihelion of Mercury after a full 

translation depends on the integral of that potential (Pot/M(M)) 

over a full translation of Mercury around the Sun. This integral 

gives the average equivalent gravitational potential during a full 

elliptical orbit. It is equal to 1/2tc of the integral of the angle 9 over 

271. Using equation 5.40, we get: 

Pot 

M(M) 
= -1-GM(S) 

2tc 

H 
l + ecos9 

a(l-e2) 
-d9. 5.41 

This gives: 

^ = GM(S)^eT 542 
The average gravitational potential obtained when the 

eccentricity eM for Mercury is: 

Pot 

M(M) 
(e = eM)=GM(S) 

1 

a0 ~ eM ) 

5.43 

The average of Pot/M(M) gives the correction to Mercury's 

elliptical orbit with respect to a circular orbit. In order to apply that 

correction, let us substitute the equivalent potential ot Mercury by 

the average potential given by equation 5.43. Equation 5.43 into 

5.38 gives: 
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AP/.ACD(0-S^reSt) 

P/iACD(M,mov) 
(all effects) = 

3GM(S) 

c2a(l - e^) 
5.44 

Equation 5.44 shows that an outer space clock takes an extra 

fraction of a circumference to complete the ellipse when 

corrections include ellipticity. This extra fraction of a 

circumference A(circ) per unit circumference is: 

A(circ) 
3GM(S) 

c2a(l - e2)’ 
5.45 

Equation 5.45 is usually presented in radians instead of a 

fraction of a circumference. If the advance of the perihelion is 

represented by the angle A(j>, equation 5.45 becomes 2n times larger 

and gives: 

A4> = 
6tiGM(S) 

c2a(l - e2)' 
5.46 

Equation 5.46 is the final equation for the advance of the 

perihelion of Mercury in radians per translation of Mercury as 

calculated using classical mechanics and mass-energy 

conservation. 

5.11 - Mathematical Identity with Einstein's 
Equation. 

Einstein presented a mathematical relationship for the advance 

ot the perihelion of Mercury. Many books report that result. 

Straumann's [2] equations 3.1.11 and 3.3.7 give: 

A4> = 
6ttGM(S) 

c2a(l-e2)' 
5.47 

I his equation is perfectly identical to our equation 5.46. 

Consequently, all the physical principles that have been used to 

find equation 5.46 are sufficient since we get a prediction identical 

to the experimental observations and Einstein's equation. We add 

that the experimental value tor the advance ot the perihelion of 

Mercury has been well-known for more than a century. Le 

Verrier’s calculations of the observational data found such an 

advance as early as 1859 [3], Roseveare published a very 
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interesting historical account of reliable observations and 

calculations of Mercury's perihelion [4], 
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5.13 - Symbols and Variables 

hm(V1) number of Mercury meters for the semi-major 

axis 

aM(o-s.) number of outer space meters for the semi-major 

axis 

ACDm(M) ACD for the period of Mercury measured by a 

Mercury clock 

ACDm(o.s.) ACD for the period of Mercury measured by an 

outer space clock 

ACDm v ACD for the period of Mercury measured by a 

moving Mercury clock 

ACDo.,,0 ACD for the period of Mercury measured by an 

outer space clock at rest 

ACD0 ACD for the period of Mercury on a clock at rest 

ACDV ACD for the period of Mercury on a clock in 

motion 

AP/,ACD(°-s->rest) relative increase of the number of absolute 

seconds for the period of Mercury 

A(j> advance of the perihelion of Mercury in radians 

FC(M) number of Mercury newtons for the gravitational 

force on Mercury 

Fc(o-s-) number of outer space newtons for the 

gravitational force on Mercury 
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G(M) number of Mercury units for the gravitational 

constant 

G(o.s.) number of outer space units for the gravitational 

constant 

frame 

/m(M) 

length of the local kilometer in a frame 

number of Mercury meters for the orbit of 

Mercury 

/M(o.s.) number of outer space meters for the orbit of 

Mercury 

Av1,v number of Mercury moving meters for the orbit 

of Mercury 

^o.s.,o number of outer space rest meters for the orbit of 

Mercury 

L[rest] 

meter[frame] 

M(M)m(M) 

length of the orbit of Mercury in rest units 

length of the local meter in a frame 

number of Mercury kilograms for Mercury at 

Mercury location 

M(M)o.s.(o.s.) number of outer space kilograms for Mercury in 

outer space 

M(S)(M) 

M(S)(o.s.) 
number of Mercury units for the mass of the Sun 

number of outer space units for the mass of the 
Sun 

N0 

Nv 
number of rest meters for the orbit of Mercury 

number of moving meters for the orbit of 
Mercury 

p/,ACD(°-S-,rest) number of outer space (rest) seconds for the 

period of Mercury taking into account the 

gravitational potential and the velocity of 
Mercury 

p/,ACD(M,mov) number of Mercury (motion) seconds for the 

period of Mercury taking into account the 

gravitational potential and the velocity of 
Mercury 

Rm(M) distance of Mercury from the Sun in Mercury 
units 

Rm(o.s.) distance of Mercury from the Sun in outer space 
units 



Chapter Six 
Geometrical Illustration of the Advance 

of the Perihelion of Mercury. 

6.1 - Conditions Controlling the Geometrical Shape of 

an Orbit. 
The advance of the perihelion of Mercury given in equation 5.46 

was calculated using perturbations of individual parameters. This 

advance can also be illustrated using geometrical considerations. 

Newton stated the universal law of gravitation which predicts an 

exact quadratic gravitational field around a mass. Newton has 

shown that in the gravitational field around a central body, all 

masses move in elliptical orbits independently of the mass of the 

orbiting body. According to classical mechanics, the necessary 

condition to get an exact elliptical orbit is for the mass to move in a 

gravitational field whose intensity decreases exactly as the inverse 

of the square of the distance R from the central mass: 

Field oc^y. 6.1 

There are several measurements showing that this quadratic 

decrease of the gravitational field is followed quite accurately in 

nature. At a distance RM(o.s.) from M(£)(o.s.), the field is given by: 

Field - 
G(o. s.)M(S)(o. s.) 

Rm(o-S-) 
6.2 

where G(o.s.) is the number of outer space units of the 

gravitational constant and M(£)(o.s.) is the number of outer space 

units of the solar mass. Equation 6.2 implies that the Sun generates 

an exact quadratic gravitational field (in outer space units) in which 

Mercury is submerged. 

Although the inverse quadratic law is generally accepted, a very 

slight deviation of that law was first suggested by Aseph Hall in 

1894 [1]. Since we have seen that the mass of a body changes when 

it is moved into a gravitational potential, we can show that such a 

slight change of mass leads to an effect equivalent to the slight 

change of the quadratic function suggested by Hall. 
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Classical mechanics shows that a massive body travels in an 

elliptical orbit when the force F rather than the field between the 

central mass and the orbiting mass decreases as the square of the 

distance. Let us consider Newton's equation (written in a correct 

way, contrary to equation 5.1): 

Fm(o.s.) 
G(o. s. )M(S)(o. s. )M(M) M (o. s.) 

Rm(°s) 
6.3 

Since the mass of Mercury changes with its distance from the 

Sun, it is incorrect to believe that the force between the Sun and 

Mercury still follows an inverse quadratic function of that distance. 

Even if the gravitational field around a central mass decreases 

exactly as the square of the distance, the total force between 

Mercury and the Sun does not decrease at the same rate as the field. 

The trajectory of a planet whose mass decreases when it gets 

deeper in a gravitational field corresponds exactly to the problem 

of a non quadratic force around a central mass. Using classical 

mechanics we can calculate the new geometrical shape of the orbit 

when the force (not the field) between the Sun and Mercury is non 

quadratic. 

However, when we consider the proper parameters of the 

observer moving to different distances from the Sun, the 

gravitational field (defined as the force divided by the proper mass) 

calculated from equation 5.9 is not quadratic for the observer 

traveling between different locations trom the Sun. Consequently, 

using the parameters existing where Mercury interacts with the 

gravitational field leads to an apparent non quadratic field (since 

the proper mass of Mercury is constant for a Mercury observer). 

Using either the non quadratic force as seen by an outer space 

observer that takes into account the change of mass of Mercury or 

the apparent non quadratic force given by equation 5.9 (with 

constant proper mass) leads to a similar advance of the perihelion 

of Mercury. However, these calculations are incomplete because 

other fundamental phenomena, like the change of mass as a 

function of the velocity of Mercury on its orbit, are not taken into 

account. Changes of length and clock rate due to Mercury's 

velocity and gravitational potential should also be taken into 
account. 
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Since we have already calculated the total precession in equation 

5.46, we will limit our demonstration here to the change of one 

parameter using only the change of mass of Mercury as a function 

of its distance from the Sun. We will use only the perturbation of 

this parameter and show that it is one of the contributions to the 

geometrical precession of the ellipse which can be illustrated in a 

classical experiment that can be done in a laboratory using a simple 

apparatus. 

6.2 - The Change of Mass of Mercury. 
Let us consider the change of force on Mercury due to its change 

of mass as a function of its distance from the Sun. Equation 4.25 

shows how the absolute mass of a kilogram decreases when getting 

closer to the Sun. Consequently, the total mass of Mercury 

decreases by the same ratio. From equations 4.39, 4.40 and 4.41, 

the mass of Mercury (in outer space units) follows the relationship: 

E(M)m[o-S.] kg M 

h(M)0.s.[O-S-] kgo.s. ’ 

Equations 6.4 and 4.25 give: 

G(o.s. )M(S)(o.s.) 
E(M)m[°-S-]= E(M)0.s.[°-s-] 1 

c2Rm(o.s.) ) 

6.4 

6.5 

or: 

M(M)m(o.s.) = M(M)0,.(o-S.) 
^_G(o.s.)M(S)(o.s.)A 

v c2Rm(°.s.) ) 
6.6 

Using equation 6.6 in 6.3 gives a force equal to: 

G(o. s. )M(S)(o. s. )M(M)os(o. s.) 1- 

Fm(o-s.): 

G(o.s.)M(S)(o.s.) 

c2Rm(o.s.) 
6.7 

Rm(o.s.) 

which is equal to: 

Fm(qs.) = G(qs.)M(SXqs.)MM)0S(qs.) 
G(o.s.)M(SXqs.) 

VRm(qr) c2R^(qs) ) 
.6.8 

Let us define: 
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, _ G(o.s.)M(S)(o.s.) 

Equation 6.8 becomes: 

Fm (as.) = G(o.s. )M(S)(o. s. )M(M)0 s (o. s.) 
1 

lRM(o.s.) Rm(o.s. )J 
6.10 

Equation 6.10 shows that the gravitational force is the difference 

between a quadratic and a cubic function. It is known that in a 

quadratic field, an elliptical orbit with a small eccentricity (first 

order expansion) follows the equation r = a(l+ecos0) (a is the 

semi-major axis and e is the eccentricity). This equation implies 

two components: a tangential component of constant radius a and a 

radial component of amplitude aecosG. Since Kepler's third law 

predicts the same period (first order) for orbits having the same 

average radius with or without eccentricity, both the tangential and 

the radial components lead to the same period in a quadratic field. 

However, in the case of a non quadratic field (cubic term in 

equation 6.10), the period of oscillation of the radial component 

becomes longer than the period of the circular tangential 

component. Of course, a circular component does not 'feel' the 

field gradient. Because the cubic radial component of oscillation 

has a longer period, there is a continual shift of phase between the 

periods ot the tangential and of the radial components. 

Consequently, the cubic term in equation 6.10 which does not 

follow Kepler's quadratic gradient of torce, is responsible for the 

precession ol the ellipse because the radial component, having a 

longer period, becomes out of phase with the circular component. 

It is the difference ot period between the tangential and the radial 

components ol motion that produces the precession of the ellipse. 

We also notice that it is the radial component of oscillation which 

is most affected by the change of parameters resulting from mass- 
energy conservation. 

Let us examine the bracket on the right hand side of equation 

6.10. Using a series expansion, we can show that it is 

mathematically equivalent to a simple exponential form given by: 
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1 k, 1 
6.11 

R2 R3 R2+e 

in which the exact value of s is: 

6.12 

A very good approximation to the first order (with n = 1) gives: 

6.13 

Combining equations 6.10 and 6.11 gives: 

Fm (o. s. ) = G(o. s. )M(S)(o. s. )M(M)0.s. (o. s. )Rm(2+E) (o. s.) 6.14 

where e is always positive. Equation 6.14 shows that, because of 

the decrease of mass due to mass-energy conservation, the force F 

between Mercury and the Sun no longer decreases exactly as the 

square of the distance. The change of mass of Mercury as a 

function of its distance from the Sun is responsible for the change 

of power of RM from 2 to 2+8. Therefore even if the gravitational 

field affecting Mercury decreases exactly as the inverse of the 

square of the distance as written in equation 6.2 (as in a perfect 

Newtonian field), the gravitational force is not Newtonian as 

shown in equation 6.14. Let us reconsider now the trajectory of 

bodies submitted to a force decreasing with a function which is 

slightly different from 1/R2. 

6.3 - Orbital Shapes and Gravitational Force 

Gradients. 
We have calculated in equation 6.10 the force on Mercury as a 

function of the distance RM. The corresponding gravitational 

potential VM(o.s.) is obtained by the integral of equation 6.10. This 

gives: 

The orbit followed by a mass submitted to the potential 

described by equation 6.15 has already been calculated [2, 3]. 
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Using temporarily Goldstein's notation [2], the solution of equation 

6.15 is a precessing ellipse with a velocity of precession equal to: 

27imh ^ ^ 
Q(sec) = —;— 6.16 

lx 

where Q(sec) is in radians per second of time. Transforming 

Goldstein's notation into ours, we have m = M(M)0.s.(p.s.) and h 

= (G(o.s.)M(S)(o.s.)M(M)o.s.(°-S.)ki)/2. x is the period of translation 

of Mercury around the Sun. The angular momentum / in equation 

6.16 is: 

/ = M(M)0S (o.s. )R^(o.s.)— = 
dt 

d0 _ 2tcM(M)0S (o.s. )R^(o.s.) 
6.17 

where d9/dt is the angular velocity. Therefore, from equation 

6.9 and the definitions above, we have: 

h = 
G2(o.s.)M(S)2(o.s.)M(M)os (o.s.) 

2c2 

From equations 6.16, 6.17 and 6.18, we have: 

G2(o.s.)M(S)2(o.s.)t 
Q(sec) = 

c2Rm(o.s.)4tt 

6.18 

6.19 

Let us transform the precession Q(sec) given in radians per 

second for radians per circumference Q(circ). We obtain: 

Q(sec)= 
G2(o.s.)M(S)2(o.s.)t2 

c2R^(o.s.)47t 

By definition, the period x equals: 

6.20 

 2ttRm(o.s.) 

v 

Equation 6.21 in 6.20 gives: 

6.21 

Q(circ) 
7tG2(o.s.)M(S)2(o. s.) 

c2R2m(o.s.)v2 
6.22 

Newton's law shows that the force of gravity FG is equal to the 

centrifugal force FG in a circular orbit (the eccentricity has not yet 

been taken into account). We have the fundamental equations: 
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_M(M)m(o.s.)v2 G(o.s.)M(S)(o.s.)M(M)m(o.s.) 

Rm(o.s.) ~ °“ R2m(o.s.) 

Equation 6.23 gives: 

2 G(o. s.)M(S)(o.s.) 

V " Rm(o.s.) 

Equations 6.24 and 6.22 give: 

n(circ) = ,lG(aS-)M(g)(°-S'). 
c2Rm(o.s.) 

6.23 

6.24 

6.25 

Equation 6.25 gives the velocity of precession of an ellipse for 

the case of a perfect quadratic field in which the orbiting mass 

changes with its position in the gravitational potential, due to mass- 

energy conservation. 

6.4 - Identity of Mathematical Forms. 
We find that the advance of the perihelion of Mercury obtained 

with the perturbation method used by Einstein and by us in 

equation 5.46, has the same mathematical form as equation 6.25 

which clearly corresponds to the precession of an elliptical orbit. 

There are two obvious differences. Since we have not taken into 

account the eccentricity of the orbit, the term l-e^ is naturally 

missing in equation 6.25 as explained in section 5.10. Other 

similar parameters are ignored here since we do not take into 

account the perturbations explained in section 6.1. If we take into 

account these perturbations, other similar terms will be added and 

the full precession will be found as obtained in chapter five. The 

aim of the present demonstration is only to illustrate the reality of 

the classical precession of the ellipse in the case of a non quadratic 

force. 

6.5 - Illustration of Trajectories in Potential Wells. 
When the force on a planet moving around the Sun decreases as 

the square of its distance from the Sun, it travels on a perfect 

ellipse. However, due to mass-energy conservation, the exact 

intensity of the force does not decrease as the square of the 

distance. As seen in equation 6.14 the force follows the 

relationship: 
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Fm(o-s.) = G(o.s.)M(S)(o.s.)M(M)os (o.s.)RjJ2te)(o.s.). 6.26 

The trajectory of a particle submitted to equation 6.26 is an 

ellipse as illustrated on figures 6.1 and 6.2. In figure 6.1, a smooth 

conic surface is built (in the Earth gravitational field) in such a way 

that the height above the ground increases as the negative of the 

inverse of the square of the distance from the central axis. This 

corresponds to s = 0 in equation 6.26. In this case, the potential 

energy of a ball sliding (without friction) on the surface increases 

according to the inverse quadratic function from the center. If we 

throw a ball on the surface, we can get a circular orbit at various 

distances from the center. Using a different initial angular 

momentum, one can observe a stationary elliptical orbit as drawn 

on figure 6.1. 

Figure 6.1 
Demonstration of a mass moving in an elliptical orbit 

IN A QUADRATIC POTENTIAL WELL CHANGING AS 1/R2. 

However, if the shape of the cone is different (see figure 6.2) so 

that the potential increases more rapidly than the inverse square of 

the distance (corresponding to equation 6.26 with e * 0), after 

throwing a ball, we see that the axis of the elliptical orbit precesses 

just as observed for Mercury in its orbit around the Sun. The cause 

of that classical precession on that apparatus is (in part) the same as 

the cause of the precession of 43 arcsec per century of Mercury. Of 
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course, this demonstration assumes that the friction and the rotation 

of the ball are negligible. 

Demonstration of the precessing orbit of a mass moving in a potential well 

changing as 1/r<2+1!). 

This shows that the advance of the perihelion of Mercury is not 

caused by space or time distortion. It is simply a beautiful 

demonstration of classical mechanics that predicts precessing orbits 

giving the shape of a rosette. 

6.6 - Validity of the Classical Model. 
We have found above that there is a perfect mathematical 

agreement between the result calculated in equation 5.46 and the 

result predicted using Einstein's mathematics. Moreover, those 

results are in perfect agreement with the observations of the 

advance of the perihelion of Mercury. 

In order to arrive to his equation, Einstein, needed several new 

hypotheses called Einstein's relativity principles. Let us compare 

the hypotheses used by Einstein with the ones used in this book to 

find the Lorentz transformations and the equation for the advance 

of the perihelion of Mercury. This comparison is important if we 

wish to apply Occam's razor which gives a preference to the theory 
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that requires the minimum number of hypotheses. Einstein's theory 

requires many new hypotheses, for example: 

1) the reciprocity principle which is not compatible with mass- 

energy conservation as showed in section 3.9; 

2) the hypothesis that the acceleration produced by a change of 

velocity is undistinguishable from the acceleration due to gravity 

(see chapter ten); 

3) the non conservation of mass-energy in general relativity. 

Einstein then arrived at the consequences that space and time can 

be distorted, contracted and dilated. In fact, Einstein's model not 

only requires new physical hypotheses, it also requires "new logic" 

which is not compatible with the natural understanding of nature. 

Classical logic can no longer be applied in relativity. In this book, 

we use the Bohr model of the atom which is so familiar everywhere 

in physics. We also find that using proper values, the physical 

relationships are valid in all frames as in Einstein's relativity. At 

the same time, a rational explanation is given. No time nor space 

distortion is required and the new interpretation is compatible with 

classical logic. There is certainly an extremely strong preference in 

favor of this new model when we apply Occam's razor. 

6.7 - References. 
[1] A. flail, A Suggestion in the Theory of Mercury. Astr. J. 14, 

49-51, 1894. 

[2] H. Goldstein, Classical Physics. Addison-Wesley, Reading, 

Mass., second Edition, p. 123, 1980. 

[3] E. T. Whittaker, A Treatise on the Analytical Dynamics of 

Particles and Rigid Bodies , Cambridge University Press, Fourth 

Edition, Chapter 4, 1937. (also Dover, New York, 1944). 

6.8 - Symbols and Variables. 
FM(o.s.) number of outer space newtons for the gravitational 

force on Mercury 

G(o.s.) number of outer space units for the gravitational 

constant 

kgframe mass of the local kilogram in absolute units 
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M(M)m(o.s.) 

M(M)0,.(o.s.) 

H(M)m[o.s.] 

|i(M)0.s.[o.s.] 

M(S)(o.s.) 

Rm(O-S-) 

VM(o.s.) 

number of outer space kilograms for Mercury at 
Mercury location 

number of outer space kilograms for Mercury in 
outer space 

mass of Mercury in outer space units at Mercury 
location 

mass of Mercury in outer space units in outer space 
number of outer space units for the mass of the Sun 

number of outer space units for the distance of 
Mercury from the Sun 
number of outer space units for the gravitational 

potential on Mercury 



Chapter Seven 
The Lorentz Transformations in Three 

Dimensions. 

7.1 - Basic Principles of a Transformation. 
The Lorentz transformations are usually considered as nothing 

more than a transformation of coordinates between a rest frame and 

a moving frame. They appear as geometrical transformations of 

coordinates. Let us consider the fundamental meaning of such 

transformations. Let us first have a look at the geometrical 

transformation of Cartesian coordinates into spherical coordinates. 

We find that the equation of a sphere in spherical coordinates is: 

p = constant. 7.1 

In Cartesian coordinates, the same sphere is represented by: 
2 2 2 2 

x +y +z = r . 7.2 

Equations 7.1 and 7.2 represent the same physical or geometrical 

object. Such a transformation does not change anything to the 

physical system described. Absolutely no physics is involved in 

such a change ot coordinates because these transformations are 

purely mathematical. However, one system of coordinates (the 

spherical coordinates) can be more suitable mathematically to 

study rotational motion or a particular orientation in space. 

Geometrical transformations used to transform coordinates 

between a moving frame (at velocity ux) and an initial frame 

supposedly at rest are called Galilean. When the velocity of an 

object is given by Vx, Vy and Vz with respect to a frame at rest, the 

velocity components Vx', Vy'and Vzof the same object with respect to 
the moving frame are: 

Vx'= Vx-ux 7.3 

v;=vy 7.4 

YI=VZ. 7.5 

The description given by the parameters Vx( Vy' and VI is quite 

identical to the description given by Vx, Vy and Vz knowing that 

the moving frame has velocity ux. Therefore these transformations 
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of coordinates involve no physics at all. They represent the same 

physical object using a different system of coordinates. They are 

just mathematical transformations. 

However, in some other cases, physical phenomena necessarily 

accompany a change of coordinates meaning that some physical 

changes are related to a change of frame of reference. Let us 

consider an example of transformation of coordinates in which 

there is a physical phenomenon taking place at the same time as a 

change of coordinates. This is the case of a boat sinking at sea. 

Inside the boat, there are five spherical balloons inflated with air, 

glued to each other along a vertical line (Y axis). At the surface of 

the sea, the diameter "y0" of each balloon is one meter. Therefore 

the row of balloons is five meters long. As the boat sinks to great 

depths, due to the increase of pressure the gas inside the balloons is 

compressed and the diameters get smaller as a function of depth. 

Consequently, the length of the row gets more and more contracted 

with depth. We know that the relationship between the volume of a 

gas and its pressure at a constant temperature is given by: 

7.6 PV = constant. 

We also know that the volume of a constant amount of air as a 

function of pressure (and therefore depth D) is given by: 

7.7 

where D is the depth in meters from the surface, V0 is the 

volume of the balloon at atmospheric pressure when located at the 

surface of the sea and V is the volume of the gas at different 

depths. At normal atmospheric pressure, the value of A equals 9.8. 

The relationship between the diameter y and the volume V is: 

7.8 

From equations 7.7 and 7.8, we get: 

7.9 
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Equation 7.9 gives the relationship between the diameter y of 

each balloon as a function of the depth D. 

Let us consider a moving frame of reference y' going down with 

the sinking ship and having its origin at one end of the row of 

balloons. Since the initial length (at Do=0) of the row of balloons 

is Y0 = 5 meters, the length Y' of the axis at depth D is given by: 

7.10 

The important point to notice is that when the balloons sink into 

the sea, there is not only a change of coordinates of the balloons 

with respect to the original frame, there is also a change in the 

length of the row of five balloons due to the compression of the gas 

which is a function of the distance of the balloons from the surface. 

This is an example where the relationship giving a transformation 

of coordinates is necessarily related to a physical phenomenon. 

Let us now complete these considerations for the other axes. We 

need again to consider the physical phenomenon involved to show 

that the X and Z diameters of the balloons decrease simultaneously 

when the pressure contracts the gas. This gives: 

7.11 

7.12 

where Xo and Z0 are equal to one meter. Equations 7.11 and 

7.12 can be written only because we know the exact physical 

phenomenon taking place (a compressed balloon contracts equally 

on all three axes). A mathematical transformation of coordinates 

alone cannot describe whether the other axes X and Z will also be 

contracted. Physics is needed to give information about what 

happens in the X and Z directions. Equations 7.11 and 7.12 are 

quite conclusive because we know the physical phenomenon that 

accompanies the mathematical transformation. 
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7.2 - The Lorentz Transformations. 
Let us now consider the case of the Lorentz transformations. We 

have seen that they are not pure geometrical transformations since 

there are physical conditions involved with the transformations. 

There is a change of mass of the electron due to the kinetic energy 

of the particle. Of course, the experiment with the balloons is 

quite different from the change of size of atoms when they acquire 

kinetic energy. However, both experiments have in common that 

the size of the objects depends on a well identified physical 

phenomenon and not on a simple change of coordinates. For the 

balloons, the pressure changes their size by compressing the gas in 

them. For atoms, the change of kinetic energy changes their size 

and the inter atomic distance in molecules. 

Quantum mechanics predicts that the distribution of the wave 

function of an electron around the nucleus does not get flattened 

when the electron mass increases. The increase of the electron 

mass changes the size of the wave function equally in all 

directions. 

The hypothesis of Lorentz and Einstein that the other axes do not 

change and that the transformations are purely geometrical is not 

compatible with the physics implied in the calculations of quantum 

mechanics. It is quite clear that the change of the electron mass 

changes the distribution along all three directions. Nobody in 

quantum mechanics has ever suggested flatter wave functions (and 

flatter atoms and molecules) when the electron mass is larger. 

Consequently, when an atom is accelerated in one direction, the 

size of the atom or the length of the intermolecular distance 

changes in all three directions. Therefore the assumption in 

relativity that there is no change of size of the coordinates Y and Z 

while the coordinate X is changing is an error that must be 

corrected. 

7.3 - The Equations. 
We have seen that in the direction of the velocity (the X 

direction) there is a physical mechanism leading to the Lorentz 

equation for the X axis given in equation 3.55: 

x' = y(x-uxt). 7.13 
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Since this result comes from quantum mechanics which predicts 

a symmetry in all three directions when the electron mass (which is 

a scalar) changes, we must conclude that the phenomenon of length 

dilation is just as valid in the transverse directions than in the 

longitudinal direction. Using Lorentz and Einstein's choice of 

coordinates x, y and z, let us write the transformation of 

coordinates for the transverse directions y and z due to the change 

of the Bohr radius as given by quantum mechanics. From equation 

7.13 with uy = 0 and uz - 0, we find: 

and 

y' = yy 7.14 

z' = yz. 7.15 

We conclude that the previous description given by Lorentz and 

Einstein which assumes a transformation in only one dimension 

(which has never been observed in any experiment) is erroneous 

because it is not compatible with quantum mechanics and with the 

principle of mass-energy conservation. 

7.4 - Symbols and Variables. 
D depth of the balloon 

V volume of the balloon 

V0 volume of the balloon at sea level 

y diameter of the balloon 

y0 diameter of the balloon at sea level 



Chapter Eight 

The Doppler Effect. 

8.1 - Fundamental Principles of the Doppler Effect. 
In chapter two, we considered the special case of zero Doppler 

effect. This means that the source was moving in a direction 

perpendicular to the direction of propagation of light. The change 

of frequency due to the Doppler effect was zero because the radial 

velocity between the source and the detector was equal to zero. 

When there is a relative radial velocity between the source and the 

detector, the Doppler effect must be taken into account. 

Unfortunately, this phenomenon does not seem to be completely 

well understood in physics. 

There have been many discussions about the question of the 

conservation of energy in the Doppler effect. For example, Weiss 

and Baez wrote an article [1] entitled: "Is Energy Conserved in 

General Relativity?" 

They consider the case of the cosmic radiation that has been 

redshifted over billions of years. "Each photon gets redder and 

redder. What happens to this energy?" They report that:"... the 

energy is simply lost". 

Such an answer is not acceptable since we believe in mass- 

energy conservation. We do not believe that any kind of energy 

can ever be lost whatever the circumstances are. If this were 

possible, energy would be created from nothing when an emitter 

moves toward an observer because of the Doppler effect. 

Of course, an increasing radial velocity necessarily produces a 

reddening but one sees that a reddening is not a proof of a Doppler 

effect since it can be produced by other ways. It has been shown 

[2] that the reddening of the cosmic radiation can be better 

explained by a different phenomenon in which mass-energy is 

conserved. The reddening results from the energy lost following 

numerous interactions of photons on interstellar gases during 

billions of years. In that case, the residual energy is scattered 

elsewhere so that there is no difficulty to be compatible with the 

principle of mass-energy conservation. 
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8.2 - Mass-Energy Conservation in the Context of the 

Doppler Effect. 
Doppler reddening is a real phenomenon which can occur in 

some cases and which is always compatible with mass-energy 

conservation. For example, let us consider the case of a hydrogen 

atom excited to 10.2 eV (the Lyman state) moving away from a 

stationary source. If the hydrogen atom moves at half the velocity 

of light, the theory of the Doppler effect (using the wave property 

of light) teaches us that we will receive only half of the frequency 

of the excited state. This means that the photon received from the 

moving particle will have only half the energy of excitation. The 

question is: Where does the difference of energy (5.1 eV) go? It has 

been claimed in several papers that the energy is missing. 

The demonstration using the change of frequency of a wave due 

to the relative velocity does not take into account all the energy 

available in the experiment. Let us calculate the Doppler effect 

without using waves but using only the principle of mass-energy 

conservation. 

8.3 - The Doppler Effect without Using Waves. 
Let us consider a mass m0 (at rest) moving away at velocity V 

with respect to an observer at rest. Let us assume that the mass is a 

hydrogen atom. This moving atom has a total energy of: 

c 2 2 1 ..2 3 mnV4 
Ev = ym0c = m0c +-m0V +-^— + — 8.1 

2 8 c~ 

Let us consider the case when that hydrogen atom is excited at 

the Lyman a atomic state with an energy hv0 of 10.2 eV. The total 

energy (potential plus kinetic) of that excited atom (neglecting the 

higher order terms) is: 

E* = m0c2 +^m0V2 +hv0. 8.2 

Let us use the moving frame of the particle from which the 

photon is emitted. To be detected in the rest frame, the photon 

must be emitted backward (-x axis) from the moving atom, in the 

direction ot the rest frame where the observer is located. When the 
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photon is emitted, the atom gets a recoil in the forward (+x axis) 

direction giving it an increase of velocity Av. Of course, the total 

change of momentum AP of the moving system (photon plus atom) 

is zero. At the moment of emission, considering the photon's 

momentum, we have: 

-hvn 
AP =-+ m„Av = 0 8.3 

or 

Av = 
hv„ 

cmr 
8.4 

With respect to the rest frame, the velocity of the hydrogen atom 

was V before the emission of the photon. After the emission of the 

photon, the final velocity Vf of the atom with respect to the rest 

frame becomes: 

Vf= V + Av. 8.5 

Equation 8.4 in 8.5 gives: 

Vf=V + —. 8.6 
f cm0 

The total (mass plus kinetic) energy of the de-excited hydrogen 

atom after the emission of the photon is (neglecting the higher 

order terms): 

Ev = m0c2 + 2 m°Vf2 • 

Using equation 8.6 gives: 

1 
Ev=moc2 + 2m»lV + Cm0y 

hv. 
\2 

8.7 

8.8 

The change of kinetic energy of the hydrogen atom due to the 

recoil of the photon is: 

A(K.E.) = Ev -Ev. 8.9 

From equations 8.8 and 8.1, neglecting the second order, we 

have: 
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8.11 

Equation 8.11 gives the increase of kinetic energy of the atom 

due to its recoil. According to the mass-energy conservation 

principle, the increase of kinetic energy of the atom must come 

from the photon energy. Since the excitation energy initially 

available was hv0, and since equation 8.11 gives the energy 

transferred to the atom (as kinetic energy), the residual photon 

energy hvf is: 

hvf = hv0 - hv0 — 8.12 

which is: 

8.13 

Equation 8.13 is exactly identical to the Doppler equation. 

We have demonstrated the Doppler equation using no wave 

model but only mass-energy conservation. The energy apparently 

lost in the Doppler phenomenon is simply transferred as kinetic 

energy to the emitting atom whose velocity has increased due to the 

recoil momentum. It is also important to notice that the amount of 

kinetic energy lost in equation 8.11 is independent of the mass of 

the particle. 

The above demonstration solves the problem discussed by Weiss 

and Baez and others. We conclude that the energy redshifted by 

the Doppler mechanism is not lost. It is simply transmitted as 

kinetic energy to the emitting atom due to recoil at the moment of 

emission. We must notice that this explanation has nothing to do 
with relativity. 

8.4 - References. 

[ 1 ] http://www-hpcc.astro.washington.edu/mirrors/ 

physicsfaq/energy_gr.html 
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[2] P. Marmet, A New Non-Doppler Redshift. Physics Essays, 1, 

1, P. 24-32, 1988. 

8.5 - Symbols and Variables. 
energy of a mass m0 moving at velocity V 

energy of a mass m0 moving at velocity V and excited to 

10.2 eV 

E'v energy of a mass m0 moving at velocity V after losing its 

energy of excitation 

v0 frequency corresponding to the excitation energy 

vf frequency emitted by the atom 



Chapter Nine 

Simultaneity and Absolute Velocity of Light. 

9.1 - Simultaneity versus Identical Clock Displays. 
The problem of simultaneity has been much studied in relativity. 

According to Einstein, simultaneous events in one frame cannot be 

simultaneous in another. This is known as Einstein's principle of 

relativity of simultaneity. 

When two events take place at the same time, we say that they 

are simultaneous. We know that Einstein always considered that 

time is what clocks show. Therefore when he writes that two 

events are simultaneous in two different frames, he means that they 

occur at the moment when the clocks of observers in both frames 

show the same display. Since we understand that time does not 

flow more slowly because clocks run more slowly, Einstein's 

statement brings much confusion. Instead of saying that two 

events simultaneous in one frame are not simultaneous in another, 

he should have said that there is no identity of clock displays 

between clocks in different frames. Two clocks moving 

independently at different velocities do not maintain identical clock 

displays after a time interval. This means that even if both 

observers see the events at the same absolute time they will record 

different clock displays. Einstein's relativity of simultaneity 

becomes understandable only if he means that the clocks can show 
different displays at one given time. 

9.2 - Thought Experiment on Clocks Synchronization. 
In order to study this problem in more detail, let us consider 

figure 9.1 illustrating Einstein's thought experiment. 

Train 
x[rest]=0 

Station 

CD =0 

YZZZZZZZZZZZZZZM 
CDa=0 cdb=o 

<-/„-» 
Figure 9.1 

V 
-> 
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Identical clocks labeled A and B are located at rest at each end of 

a station A-B having a length /0[rest], There is no gradient of 

gravitational potential in this experiment. In front of the station A- 

B, a moving train a-P has a length such that when in motion, the 

clock labeled a located at one end of the train passes in front of 

clock A at the same time as clock P, located at the other end of the 

train, passes in front of clock B. Clocks a, P, A and B were built 

identically on the station. Clocks a and p were later put in motion. 

The synchronization of the clocks is described below. 

9.3 - Synchronization of Clocks A and B. 

9.3.1 - Method #1. 
Clocks A and B on the station are synchronized in the following 

way. A pulse of light is emitted from A and reflected on a mirror at 

B toward A. The observer in A records on his clock a difference of 

clock displays ACDa for the return trip of the light. 

When the traveling clock a passes near A, we arbitrarily 

synchronize clocks a and A together at zero. At that moment, the 

absolute time x[rest] on the frames is defined as zero: 

x[rest] = 0 and CDA = CDa = 0. 9.1 

In the second part of the experiment, a pulse of light emitted by 

A is received at B. At that moment, the observer at B synchronizes 

his clock at: 

cdb = 
ACDa 

2 
9.2 

Of course the absolute time is the same everywhere. This 

synchronization method gives a clock display on clock B equal to 

zero when time x[rest] equals zero: 

x[rest] - 0 when CDB = 0. 9.3 

The synchronization of clock p at time x[rest] = 0 will be 

determined in section 9.5. 

9.3.2 - Method #2. 
Nobody ever proved experimentally that the velocity of light is 

the same when moving from A to B than when moving from B to 
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A. Michelson's experiment has shown that the time taken for light 

to make a return trip between two points oriented in a different 

direction in space is the same. However, his experiment has 

nothing to do with the measurement of any difference of transit 

time during each half of the trip. Some researchers wishing to 

investigate more deeply this problem have realized that the method 

of synchronization described in section 9.3.1 is not appropriate if 

the velocity of light is not identical in both directions. 

Consequently, other methods of synchronization have been 

suggested in hopes of taking into account the possibility of a non 

constant velocity of light in different directions. A very original 

method [1] consists in using a new reference clock labeled p, 

which carries the display shown by A at a very small velocity s (of 

the order of 10'9 of the velocity of light) on the station from A to B 

and later from B to A. In this way, the stationary clocks A and B 

can be synchronized independently in each direction with the 

traveling clock p. This method of synchronization is quite 

interesting since, as we will now show, any shift of display on 

clock p due to its passage from A to B (or B to A) is negligible at 
very low velocity. 

The time taken by clock p to move from A to B is: 

X(A to B)[rest] = ACDA [rest] = — [rest]. 9.4 
8 

Let us compare the difference of clock displays ACDft recorded 

on clock p during its travel time from A to B with the difference of 

clock displays ACDa recorded on the stationary clock A during the 

same time interval. Using equation 3.10, we have: 

Ti 
- ACDa Jlr. 

c2 

The tirst two terms ot a series expansion give: 

„2 A 

acd4 = ACDa 
\ 2c 2J 

From equations 9.4 and 9.6, we have: 

9.5 

9.6 

ACDa_^ = ACDa - ACD^ l0 e 
2c2 ' 

9.7 



CHAPTER NINE. SIMULTANEITY AND ABSOLUTE VELOCITY OF LIGHT. 137 

Since 8 is very small compared with c («10' ), we can 

approximate e/c to zero. This gives: 

ACDa.^ = ACDa-ACD^ = 0. 9.8 

Consequently, clocks A and B can effectively be synchronized 

using a third clock p carrying the display of clock A at very low 

velocity from A to B. Similarly, we find that the difference of 

displays between clocks p and B is not significant when clock p 

moves from B to A. This is the result obtained when clock p 

moves with respect to a rest frame. In the case of clock p moving 

on a moving frame, the calculations will be done in section 9.7. 

9.4 - Loss of Synchronization of Clock a on the 

Moving Frame. 
Let us calculate the difference of clock displays on clock a 

moving across distance /Jrest] from A to B as shown on figure 9.2. 

<r » 

Train a 

Station yzzzzzzzzzzzzzzh 

Figure 9.2 

Since the train moves at velocity v[rest] and the distance traveled 

by a is /0[rest], the time interval At,[rest] for clock a to reach B 

will be : 

At , [rest] = — [rest], 9.9 

Therefore clock a will be in front of B when: 

T[rest](a at B) = t , [rest] = ^ [rest] and CDA = CDB = ^ 9.10 

where t, is the absolute time (after the initial synchronization) 

when a arrives at B. 
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However, the moving clock a runs at a slower rate than clock A. 

From equation 3.10 we find that after the time interval At][rest] 

taken by clock a to reach point B, the display on clock a is: 

^ , CDa l0 
CDa (a at B) =-- = — 9.11 

Yv Yvv 

where yv is the value of y corresponding to velocity v. From 

equation 9.11, we see that even if clock a is initially synchronized 

with clock A (and with clock B), the synchronization is lost when a 
travels the distance /0[rest] (or any distance). The display of clock 

a becomes late with respect to clocks A and B at rest, as shown by 

equations 9.10 and 9.11. Let us calculate the difference of clock 

displays between clocks a and B when a is at B (see figure 9.2). 

CDb — CDa = ACDB_a 
/ / r 

Y Vv 

1 A 

1- 
V YvY 

9.12 

The first two terms of a series expansion give: 

ACDb_„=^. 9.13 

Equation 9.13 shows that in order to be compatible with the 

different clock rates of a and A and with the synchronization of a 

and A, the moving clock a must show a clock display which is 

different from CDB when clock a is just besides B. 

9.5 - Synchronization between Moving Clocks a and (3 
(Method #1). 

In section 9.3.1, we described the synchronization of clock B 

with clock A. It consists in setting clock B when light is received 

at B, to one half of the interval ACDa taken by light to go from A 

to B then back to A. We now calculate the consequences of 

applying the same synchronization method inside a moving frame. 

Let us consider a pulse of light emitted from x on figure 9.3 at time 
x[rest] = 0. At that moment, we have: 

x[rest] = 0, CDa = CDA = CDB = 0. 9.14 

Let us calculate at what absolute time t2[rest] light emitted from 

a reaches clock p as illustrated on figure 9.3. 
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t2+t3 

Station 7ZZZZZZZZZZZZZZZ* 

I* 
IN 

Figure 9.3 

We see that light approaches clock (3 at a relative velocity of c-v. 

For the observer in the moving frame, the distance to be traveled is 

/0[rest], The absolute time interval Ai2[rest] to reach clock p is: 

Ax2[rest](Ato (3) = ^^[rest] with CDA(light at p) = • 9.15 

When light arrives at clock P, the display on clock a is: 

CDa (light at p) 
CPA (light at p) 

Tv 

L 
Yv(c-v) 

9.16 

After being reflected on clock P at time x2[rest], the light goes 

back to clock a. Since clock a and light now travel in opposite 

directions, light approaches clock a at a relative velocity of c+v. 

The absolute time interval Ax3[rest](P to a) for light to pass from P 

to a is: 

Ax3[rest](p to a) =[rest], 9.17 

Therefore the total time interval for light to travel from A to P 

and back to a is: 

Ax[rest](A -> p -> a) = Ax2[rest](A to p)+Ax3[rest](P to a). 9.18 

Using equations 9.15 and 9.17, we find: 

x[rest](A -> p -N a) = ^ [rest][rest] = ^=^_[rest]. 9.19 

2 2 
Neglecting v compared to c gives: 
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x[rest](A —» P —> a) = —-[rest]. 9.20 
0 

Since clocks a and P are moving, their clock rate is yv times 

slower than the clock rate of clocks A and B. Consequently, from 

equation 9.20, after the return trip of light (A —> P —» a) the display 

on clock a is: 

CDa(A -> p -» a) = ~~9.21 
I 

Let us now synchronize clock P with clock a using method #1. 

Since light is emitted from a at CDa = 0, using equation 9.21, at 

the moment light arrives at p, clock P must be synchronized to: 

CDp(light at P) = ^CDa(A —> P —> cl) - 9.22 

However, we have seen in equation 9.16 that at the same 

moment, clock a shows a different display. Therefore this method 

of synchronization gives different clock displays at the same 

instant on clocks a and p. This difference is given by equations 
9.16 and 9.22: 

CDr CDp = 
c - v 

4V 
Yvc 2 • 

9.23 

Therefore at x[rest] = 0 (when CDa = 0) clock p must not be 

synchronized to the same display as clock a. Using equation 9.23, 

synchronization method #1 shows that at i[rest] = 0 we must have: 

i[rest] = 0, CDa = 0, CDp = --^y. 9.24 
Yvc 

The phenomenon calculated in equation 9.24 is required for a 

complete explanation of the mechanism of the advance of the 

perihelion of Mercury as mentioned in section 5.6. 

9.6 - Asymmetric Relative Velocity of Light. 
We have seen that the time interval Ax2[rest] (equation 9.15) for 

light to go from a to p is larger that the time interval Ax3[rest] 

(equation 9.17) for the return from P to cl. However, the locations 

a and p between which light moves, are always separated by the 
constant distance /0[rest], 
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Because we used the synchronization method #1 on clocks a and 

(3, the differences of clock displays recorded on those local clocks 

when light travels from a to (3 and from [3 to a are identical. 

Consequently, Einstein's synchronization method leads to a 

difference of synchronization between clocks a and (3 such that it 

prevents the moving observer from being able to detect that the 

absolute time for light to move from a to p is different from the 

time to move from p to a. It is this difference of synchronization 

between clocks a and p that prevents the observers in a and P to 

realize that the light that approaches them has a relative velocity 

different from c. The expression "velocity of light" is too vague. It 

is much more significant to describe the velocity at which light 

approaches an observer or recedes from him. Using that 

description, the velocity of light with respect to an observer can be 

different from c. 

We see that this constant number representing the absolute 

velocity of light in any frame (in [frame] units) is just a 

mathematical illusion. We have shown that it is due to the different 

clock rate on the moving frame and to the clock synchronization of 

the moving observer. In fact, the velocity of light is an absolute 

constant in an absolute frame at rest but due to the different clock 

rate on the moving frame and to the synchronization, it appears 

constant in any frame. 

One must conclude that inside a moving frame, a difference of 

clock displays always exists at one given instant between two 

clocks (a and p) located on that frame. Consequently, 

synchronization method #1 inside a moving frame satisfies the 

condition of an apparent constant velocity of light inside that frame 

but leads to a different setting of clocks a and P at one instant. In 

fact everything appears the same in the moving frame as 

everywhere else because the local parameters change in the exact 

same way to make it appear so. We will show that this apparent 

absoluteness of parameters within individual frames also appears 

when other synchronization methods are used. One can say that 

the observer is fooled whatever technique he uses to detect his 

motion. 
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9.7 - Synchronization of Clocks a and P (Method #2). 
We have seen in sections 9.5 and 9.6 that inside the moving 

frame, synchronization method #1 does not lead (at a given time 

x[rest]) to the same clock display on clocks a and P, even if they 

are attached to the same frame. A moving observer might believe 

that he could detect this difference of clock displays using 

synchronization method #2 which consists in moving a third clock 

p at low velocity from a to p. We have seen in section 9.3.2 that 

there is no drift of clock display on clock p when it moves slowly 

across a frame at rest from A to B. Let us study now what happens 

when we move clock p within the moving frame a-p. 

Figure 9.4 

Figure 9.4 illustrates a train moving at velocity v with respect to 

the station. Its length is /0[rest]. Clock p inside the train moves at 

a very small velocity with respect to the train (using rest units). 

The observer on the station measures the velocity of clock p to be 

e[rest] larger than the velocity v[rest] of the train. The total 

velocity u[rest] of clock p with respect to the station is then: 

ujrest] = v[rest]+s[rest], 9.25 

Let us calculate the time interval Ax[rest] for clock p to move 

from a to p. Inside the train, clock p must travel the moving 

distance /0[rest] at a relative velocity ot s[rest]. The time interval 

Ax4[rest] tor clock p to travel across the moving distance /0[rest] is: 

At4 [rest] = ~ [rest], 9.26 

1 he distance /2[rest] traveled by the train during that time 
interval Ax4[rest] is: 
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/2 [rest] = vAT4[rest] = v^[rest]. 9.27 

The total distance /3[rest] traveled by clock |u is then: 

/3[rest] = /2[rest] + /0[rest], 9.28 

The difference of clock displays on clock a traveling distance 

/2[rest] is: 

acd„ = = A. 
Yv Yve 

9.29 

where ACDa(/2) is the difference of clock displays on clock A 

(or B) corresponding to Armrest], The difference of clock displays 

on clock p travelling /0[rest] aboard the train is: 

ACD, = 
ACDa(/2) /0 

Yu£ 
9.30 

where y, is the value of y corresponding to the velocity v+e of 

clock p. The difference of clock displays between clock a (or (3) 

and clock p is, using equations 9.29 and 9.30: 

ACDr 
In 

( 

ACD = — 
4 8 fy 

1 

Y J 9.31 

Using the first two terms of series expansions we find: 

Yv 1 2c2 

and 

9.32 

1 i (v + e)2 v2 +2v£ + e2 

~ 2?~ 

Equations 9.32 and 9.33 give, to the first order: 

1 1 _ V8 

Yv Yu _ c2' 

Therefore, the difference between the ACD, on the moving clock 

inside the train and ACDa on the clock moving with the train is: 

/ V£ / V 
AACDa_, = ACDa - ACD, = = ~%T- 9.35 

9.33 

9.34 
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We see that the difference of clock displays AACDa.^ given by 

equation 9.35 is directly proportional (first order) to the velocity v 

of the train independently of the velocity s of clock p. 

Consequently, a slow moving clock p inside a moving train is 

submitted to a slowdown of its clock rate so that when reaching 

clock p, its display is no longer the same as clock a as shown in 

equation 9.35. Let us compare this shift of display (due to velocity 

s) with the difference of clock displays between clocks a and P 

given in equation 9.23 due to the synchronization of a with p. We 

have seen in equation 9.23, that the difference of clock displays (to 

the first order) between clocks a and p at one given instant is: 

CDa - CDp 
4v ,2 h 

V 2c2 
9.36 

Equation 9.36 (or 9.23) is identical to equation 9.35. 

Consequently, the drift of clock display on clock p when moving 

from a to P is identical to the initial difference of synchronization 

between clocks a and p. When clock p arrives at p from a, 

supposedly carrying the display from a, its display will be identical 

to the display on clock p. 

To study the case when clock p moves in the opposite direction, 

we just have to substitute v+e in equation 9.33 by v-e and replace 

ACDa in equation 9.31 by ACDp. This is correct because equation 

9.29 gives not a clock display but a difference of clock displays. 

Equation 9.34 stays the same except for a negative sign and we get 
for 9.35: 

AACDp.„=-^. 9.37 

We see then that when clock p moves slowly in the opposite 

direction from P to a, it will run at a faster rate so that when it 

arrives besides clock a, its display will be the same as the one 

already existing on clock a. We see that clock p shows the display 

of clock a when located near a and the display of clock p when 

located near p. One must conclude that synchronization method #2 

is totally unable to reveal the difference of clock displays between 

ct and P inside a moving frame generated by synchronization 
method # 1. 
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All the above explanations show that the velocity of light is 

absolute in a frame at rest. Furthermore, we have also shown that, 

due to the change of clock rate, of the unit of length and of clocks 

synchronization in a moving frame, the velocity of light always 

appears constant in any frame (using proper values). 

Consequently, the experiments described everywhere in the book 

show that in order to be compatible with the principle of mass- 

energy conservation, we must conclude that there exists an absolute 

frame of reference at rest. Inside a moving frame, the absolute 

velocity of the frame can be determined experimentally. For 

example, using figure 9.4, the clock p will show a different rate 

with respect to the moving frame, depending on the direction of the 

velocities +e or -8. Also, a rod moving with clock p will have a 

different length with respect to the moving train at velocity v, 

depending on the direction of the velocities +e or -s. Only when 

the absolute velocity of the frame v equals zero, the clock rate and 

the length of that rod will give symmetric results independently of 

the directions of the velocities +8 or -8. 

9.8 - References. 
[1] This method is often used by F. Selleri, Universita di Bari, 

Dipartimento di Fisica, Sezione, INFN, Via Amendola, 173,170126 

Bari, Italy. 

9.9 - Symbols and Variables. 
CDa clock display on clock A 

CDa clock display on clock a 

CDb clock display on clock B 

CDp clock display on clock P 

/0[rest] length of the station and the moving train in rest units 

x[rest] absolute time (in rest units) 



Chapter Ten 

The Principle of Equivalence. 

10.1 - Introduction. 
Among numerous postulates, Einstein proposed the equivalence 

principle which states that no experiment can distinguish the 

acceleration due to gravity from the inertial acceleration due to a 

change of velocity. To illustrate that principle, Einstein used 

thought experiments involving elevators. Ele compared different 

phenomena related to accelerations observed inside an elevator. 

He purposely limited the range of observations to the frame of the 

elevator, excluding other predictable consequences that should 

logically take place inside other frames. The principle of 

equivalence being a postulate, the reasons for which Einstein did 

not take into account the motion of his own frame were not 

explained. 

In physics as in logic, a principle is valid only when it is 

coherent with all the facts. An exception always disproves the rule. 

It is surprising to read how the equivalence principle has been 

generally accepted while it is so easy to prove that it is not coherent 

with the behavior of bodies located in other frames, as we will see 
below. 

10.2 - Deflection of Light in an Elevator Moving at 

Constant Velocity. 
Experiments describing a constant relative transverse velocity 

between a source and an elevator are generally ignored. Let us 

consider a horizontal parallel beam of light (or particles, as on 

figure 10.1) projected on an elevator (of negligible mass) moving 

upward at a constant velocity v with respect to the source. The 

experiment takes place in outer space far away from any 

gravitational field. 

Because momentum must be conserved, the beam of light must 

move in a straight line. On figure 10.1, the dotted line inside the 

elevator shows where the photons can be detected with respect to 

the moving elevator at different times. The relative location of the 
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photons with respect to the elevator moving at a constant velocity v 
is: 

tanG = 10.1 

This problem of constant velocity is simple but rarely 

considered. Obviously, the beam will not appear to move 

horizontally for the observer inside the elevator. However, as seen 

on the external frame, the beam of particles travels horizontally. 

This shows that the relative transverse velocity between the source 

and the elevator is measurable. 

Light 
Source 
-> 
-> 
-> 

T=0 T=1 T=2 T=3 T=4 

v 

Figure 10.1 

10.3 - Inertial versus Gravitational Acceleration of 

Masses. 
Before considering the problem of photons moving with respect 

to an accelerated frame, let us study a mass p. moving horizontally. 

The mass enters an elevator which has an upward acceleration a in 

outer space at the moment its vertical velocity with respect to the 

source of the mass is zero. The elevator is accelerated by a rocket 

placed under it to produce a force F (shown by upward arrows on 

figure 10.2A). Due to that force F, the elevator (and the observer) 

accelerates following Newton's law: 

F = Ma 10.2 
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where M is the mass of the elevator (including the observer's 

mass) and a is its acceleration given by: 

After a time interval At, the mass will hit the opposite wall. It 

will have traveled a vertical distance AhA relative to the moving 
elevator. Obviously, the mass will have traveled an absolute 

vertical distance of zero since there is no gravitational field. 

n -* • • . / k n -*■ ..... 

AhA 
*• 

Observer A 
> 

Observer B 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 
^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

F, a g 

Earth 

Figure 10.2A Figure 10.2B 

Let us consider a similar elevator located at rest on Earth as 
illustrated on figure 10.2B. The Earth's gravitational field 

accelerates the mass p toward the Earth's center. After a time 

interval At, when the mass hits the opposite wall of the elevator, it 
will have traveled an absolute vertical distance AhB. 

In the experiment described on figure 10.2A, the mass p is 
completely free of any field and any force and therefore cannot 
gain any absolute energy when the floor of the elevator approaches 
it. An atomic clock bound to that free mass p will maintain a 

constant rate since no acceleration (therefore no energy) is given to 
the electrons or particles of the atomic clock. However, the 

elevator with the observer will gain kinetic energy (and therefore 

mass) due to the momentum transferred by the rocket. The 
observer's clock located on the floor of the elevator will slow down 

(absolute time) due to its increase of velocity in free space as given 
in equation 3.9. Consequently, the observer using the moving 
clock will observe a relative blue shift on light emitted from mass 



CHAPTER TEN. The Principle of Equivalence. 149 

ft- Let us note that the Doppler effect is considered separately and 

has not been taken into account. 

In the experiment described on figure 10.2B, the elevator and the 

observer cannot gain any energy as a function of time since no 

work is produced on them. Neither the potential of the observer 

nor its velocity change. Therefore, the atomic clock of the 

stationary observer will keep giving a constant rate as a function of 

time. However, the clock on the falling mass will slow down for 

two reasons (independent of the Doppler effect): First, because of 

its increase of velocity (equation 3.10) and second, because of its 

decrease of potential energy (equation 1.22). Consequently, the 

observer standing in the elevator will observe a red shift on light 

emitted by the falling mass ft. 

The Doppler contribution to the shift of frequency is identical in 

figures 10.2A and 10.2B (if a = g). Its amplitude is much more 

important than the one due to the change of internal mass. 

However it can be subtracted out to show the difference explained 

above. 

We see that the principle of mass-energy conservation implies 

that there is a fundamental difference between an inertial 

acceleration and an acceleration due to gravity since the 

consequences of each acceleration are just opposite. In the case of 

inertial acceleration (figure 10.2A) the clock located on the 

apparently falling mass will run faster than the observer's clock 

because of the slowing down of the observer's clock. On the 

contrary, in the case of gravitational acceleration (figure 10.2B), 

the falling clock will run more slowly than the observer's clock. 

One must conclude that the physical properties of the gravitational 

acceleration are different from the ones of inertial acceleration 

which means that the gravitational acceleration is not equivalent to 

the inertial acceleration. 

10.4 - Bremsstrahlung Due to Inertial and 

Gravitational Accelerations. 
To illustrate the difference between inertial and gravitational 

accelerations, let us consider another thought experiment in which 

electric charges are placed in a gravitational field. One or more 
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electrons are deposited on a stationary insulator in the Earth's 

normal gravitational field. This is static electricity. It is well 

known that Maxwell's equations predict that any accelerated 

electric charge must emit radiation called bremsstrahlung. 

According to Einstein's principle of equivalence, charges at rest in 

the Earth's gravitational field should emit bremsstrahlung because 

of the gravitational acceleration. However, no experiment has ever 

detected the emission of bremsstrahlung due to the gravitational 

acceleration of static electricity. The emission of radiation due to 

gravitational acceleration has been overlooked. 

There is a way to prove that charges submitted to a gravitational 

acceleration do not emit bremsstrahlung. The principle of mass- 

energy conservation requires that energy must be given to an 

electric charge in order to compensate for the electromagnetic 

energy emitted during its acceleration. Let us try to identify the 

origin of the energy responsible for the bremsstrahlung predicted 

by Maxwell's equations and Einstein's principle of equivalence. 

If bremsstrahlung is emitted when electric charges are submitted 

to gravity, there must be an energetic mechanism available to 

compensate for the energy lost by radiation. That continuous 

emission of radiation due to gravitational acceleration must 

necessarily extract energy from a source. Therefore, after a long 

period of time, the accumulated loss of energy in the source will be 

more easily detectable than the weak bremsstrahlung emitted. In 

the case of individual electrons stationary in a gravitational field, 

the only source of energy available is their mass. Consequently, 

the electron mass should decrease as a function of time to 

compensate for the electromagnetic energy bound to be emitted. If 

the electron mass decreases when standing in a gravitational field, 

one should eventually find electrons with different masses 

depending on the time they have been submitted to the Earth's 

gravitational acceleration. 

However, it is observed that electrons maintain their full 

integrity and do not lose any mass while standing in a gravitational 

field. All electrons have the same mass. Due to the principle of 

mass-energy conservation, the absence of any source of energy 

shows that no bremsstrahlung can be emitted from gravitationally 
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accelerated electrically charged particles. However, in the case of 

inertial acceleration, the mechanical energy required is well 

identified and compensates for the electromagnetic energy emitted 

as bremsstrahlung. 

These considerations show again that gravitational acceleration 

is different from inertial acceleration. Bremsstrahlung is emitted 

only when submitted to inertial acceleration. Since Einstein's 

general relativity is based on Maxwell's equations and the principle 

of equivalence, we must reexamine Einstein's predictions. 

10.5 - Behavior of Light. 

10.5.1 - Light Path in an Accelerated Elevator. 
Let us now consider the experiment described in section 10.3 but 

using light instead of masses (figure 10.3A). Due to the 

conservation of momentum, light keeps moving in a straight line 

(as on figure 10.1) and takes a time interval At to go across the 

elevator. Because of the elevator's increasing upward velocity, 

during the time interval At, light seems to travel a vertical distance 

Ah: 

Ah = 2 aAt 2 10.4 

Therefore, as illustrated on figure 10.3A, for the accelerated 

observer, the beam of light will appear to follow a curve and will 

hit the opposite wall at a distance Ah below the entrance height. 

Observer A 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Figure 10.3 A 

hv0-» 

Observer B 

A 

Ah 

v 

g 

Earth 

Figure 10.3B 
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Let us assume that the acceleration due to the rocket produces a 

change of velocity dv/dt equal to g = 9.8 m/s which is the 

gravitational acceleration on Earth. Observer A will feel that the 

upward force of the floor produces the same downward path on the 

photon as for a massive particle accelerated in the Earth's 

gravitational field (figures 10.2A and 10.2B). 

However, the accelerated observer A gains velocity and energy 

due to his increase of velocity. Therefore, his clock will slow down 

between the time light enters the elevator and the time light reaches 

the opposite wall of the elevator. Consequently, even if we do not 

take into account the Doppler blue shift due to the increase of 

relative velocity of the observer with respect to light, the observer 

detecting the apparently deflected light will measure an apparent 

increase of its frequency (blue shift) because of the absolute 

slowing down of his clock. 

10.5.2 - Light Path in a Gravitational Field. 
Let us assume momentarily that the equivalence principle is 

valid. Therefore, with respect to observer B on figure 10.3B, light 

entering the room horizontally would be deflected as illustrated. 

This hypothesis implies that light is attracted by gravity. However, 

to be valid, we must verify that such an hypothesis is compatible 

with mass-energy conservation. If light is deflected, let us 

calculate the energy relationship caused by that deflection. 

Let us call F the hypothetical gravitational force on a photon in 

the direction of the gravitational acceleration. During its passage 

across the elevator, we assume that the photon is deflected on a 

distance Ah in the direction of the force F, as shown on figure 

10.3B. Mass-energy conservation requires that a displacement Ah 

in the same direction of a force F gives an increase of energy AW 
equal to: 

AW = FAh. 10.5 

The photon affected by the gravitational force F will then reach 

the opposite wall with an energy increase of AW at a distance Ah 

below its initial height. We have seen that the absolute photon 

energy is proportional to its absolute frequency. Therefore the 
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photon should gain absolute energy and frequency (blue shift) and 

this should be seen by observer B. 

However we have seen in chapter one that the absolute energy of 

a photon moving downward does not increase. The Mossbauer 

experiment shows that there are local changes of clock rate at 

different altitudes but the absolute energy of the photon does not 

change. An absolute change of photon energy in a gravitational 

field is contrary to mass-energy conservation. Consequently: 

AW = 0. 10.6 

From equation 10.5, since F and Ah have to be in the same 

direction, the only way to produce a deflection (Ah * 0) with AW = 

0 is to have Ah different from zero when F = 0. This means a 

deflection of photons when there is no force acting on them. This 

is contrary to Newton's second law on inertia. 

Consequently, to be compatible with mass-energy conservation, 

there is either no deflection or no force (which leads to no 

deflection anyway). The curved trajectory on figure 10.3B is 

erroneous, light must move in a straight line in a gravitational field. 

We have then: 

AW = 0, F = 0 and Ah = 0. 10.7 

An observer located straight in front of the entrance aperture on 

figure 10.3B will observe the beam reaching him at that location 

without any change of frequency. We conclude that light is 

apparently deflected with respect to an accelerated observer with an 

inertial acceleration as illustrated in figure 10.3A. However, as 

given in equation 10.7, light cannot be deflected by gravity because 

of mass-energy and momentum conservation. We must conclude 

again that Einstein's equivalence principle is erroneous which 

means that the behavior of light is perceived differently by 

observers subjected to gravitational acceleration and inertial 

acceleration. 

It has been claimed in the past that such a deflection (by a 

gravitational field) has been measured experimentally during solar 

eclipses. The reliability of such results are generally claimed only 

by those who have never read seriously the original articles 

describing those experiments. The report given in appendix_JI 
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gives a shocking proof of the weakness of the experiment. A small 

deflection of starlight by a gravitational field has been predicted by 

Einstein. However, it has never been seriously proved 

experimentally. 

10.5.3 - The Equivalence Principle and Light 

Deflection. 
It has been well recognized that the deflection of light rays is 

closely related to the equivalence principle discussed above. 

According to the paper "The Equivalence Principle with Light 

Rays"[l]: 

"This [the equivalence principle] led Einstein 

to predict that light is bent by a gravitational field 

around the Sun" 

Since the equivalence between inertial and gravitational 

acceleration assumed by Einstein is erroneous as shown above in 

several independent ways, it is not surprising that its consequence 

(light deflection) is also erroneous. 

It is well known that Einstein predicted in 1911 that light should 

be deflected due to the solar gravitational field. In fact, this 

prediction is almost identical to the one given by Soldner in 1801 

using Newton's law. This demonstration can be understood easily. 

In classical mechanics, the amount of deviation of any massive 

object passing near the Sun at velocity v is totally independent of 

the mass of the object. Also, it was assumed that the velocity of 

light c could be treated as any velocity v. The principle of 

equivalence implies the equivalence between the inertially 

accelerated elevator (figure 10.3A) and the gravitationally 

accelerated photon on figure 10.3B. Due to the force on the 

elevator and on observer A, the photon hits the opposite wall of the 

elevator after the elevator has moved up the distance Ah. This 

apparent deviation, which corresponds to 0.87" near the solar limb 

(see Figure 10.3 A) is clearly the one required in the case of inertial 

acceleration of the elevator. Assuming the principle of 

equivalence, the same value should be found in general relativity. 

However, Einstein's general relativity predicts a deviation of 1.74". 

That is twice as much as drawn on figure 10.3A). 
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The reliability of the apparent deviation illustrated on figure 

10.3A is so great that one cannot believe that this amount of 

deflection could be doubled to satisfy Einstein's predictions of 

general relativity and the principle of equivalence. Einstein's claim 

is astonishing. If the opposite wall of that elevator on figure 10.3 A 

is open, that double amount of deflection means that there would 

be an absolute deflection in a rest frame, even in the absence of any 

gravitational field. There is no logical way to explain that the 

amplitude of the deviation in the elevator submitted to inertial 

acceleration could be twice as much as the one illustrated on figure 

10.3A, since the crossing light is subjected to no interaction in a 

space having zero field and the observer A has certainly moved 

only through the distance Ah. One cannot claim that light is 

deflected just because there exists an observer. If that doubled 

amount of deviation cannot exist in the case of inertial acceleration, 

it cannot exist either in a gravitational field without contradicting 

the equivalence principle on which is based the theory leading to 

the deviation of light in a gravitational field (1.74"). 

Consequently, Einstein's prediction giving a deviation of 1.74" is 

self contradictory and cannot be compatible with the principle of 

equivalence. 

10.6 - Gravitational Lenses. 
There are several consequences to the fact that light is not 

deviated in a gravitational field. The deviation of light by a 

gravitational field gave birth to the claim that rings in space are 

caused by the focusing of light coming from remote sources by the 

gravitational mass of intervening galaxies. This explanation is 

certainly erroneous since light is not deviated by a gravitational 

field. 

These rings can be explained more logically by the presence of 

large quantities of ions moving in the magnetic field of a galaxy. It 

is well known that ions spread naturally into rings in a magnetic 

field. This is a rational interpretation of a phenomenon that has 

been erroneously interpreted as Einstein's rings. 
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10.7 - Attracting Force between Parallel Beams of 

Charged Particles. 
We have seen in section 10.4 that electrical phenomena can be 

used to demonstrate that gravitational acceleration is different from 

inertial acceleration. To end this chapter, we will give an example 

using electricity disproving the principle of reciprocity (for another 

proof, see section 3.9). 

In elementary physics, Ampere's law teaches how to calculate 

the force between two parallel straight conductors carrying currents 

in the same direction. We learn that a force F between parallel 

conductors spaced by a distance Ax is induced because the current 

i' in the second conductor passes in the magnetic field generated by 

the current i in the first conductor. The force F by unit of length (in 

MKS units) is: 

P0i'i 
2 n Ax' 

10.8 

That force is so well recognized in physics that it was used "as 

the basis of the definition of the ampere in the MKS system" [2], 

The force between these conductors is attractive when the currents 

are in the same direction and repulsive when the currents are in 

opposite directions. 

With the modem development of accelerators and intense beams 

of charged particles, the electric conductor is no longer necessary 

to observe this phenomenon and the interaction of independent 

electric charges in the magnetic field generated by comoving 

electric charges has been observed directly. In fact, the magnetic 

field produced by comoving electric charges produces a focusing 

that reduces the dispersion of the beam of particles. One can 

clearly observe particles all having the same velocity in a parallel 

beam attracting each other due to the magnetic field produced by 

the velocity of the neighboring charges. 

Let us now consider an observer moving with that beam of 

particles. In his frame of reference, the particles appear stationary 

with respect to him. Then, no magnetic field is produced. Using 

Einstein's principle of reciprocity within that moving frame, the 

charged particles should repel each other according to the 
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electrostatic repulsion of charges having the same polarity. 

However, they attract each other as calculated above and observed 

experimentally. This is clearly not acceptable. Other experiments 

involving Maxwell's equations exist which are not compatible with 

the reciprocity principle. However, the ones described above 

suffice to disprove this principle. 

10.8 - References. 
[ 1 ] http://altair.syr.edu:2024/lightcone/equivalence.html 

[2] F. W. Sears, Principles of Physics. Addison-Wesley, p. 267, 

1946 



Chapter Eleven 

Internal Phenomena inside Atoms. 

11.1 - Introduction. 
In this chapter, we will give a physical description of the 

absolute changes that happen inside an hydrogen atom when it is 

accelerated to a high velocity. We have seen that an increase in the 

electron mass and in the Bohr radius results from this acceleration. 

We also notice from chapter three that the principle of mass-energy 

conservation is respected inside the hydrogen atom without having 

to involve any change of electric charge when the hydrogen atom is 

brought to high velocity. We will now show how the absolute 

parameters of the hydrogen atom change when it acquires kinetic 

energy. We will present some considerations to the problem of 

enormous internal potentials inside the nucleus of atoms. Finally, 

we will see how the nature of the interactions taking place inside 

nuclei can be predicted using these considerations. 

11.2 - Transformations inside Fast Moving Atoms. 
We have seen in equation 3.4 that when the velocity of the 

hydrogen atom increases, the absolute value of the Bohr radius a 

increases according to: 

av[rest] = ya0[rest] 11.1 

where <70[rest] is the Bohr radius at rest in rest units and av[rest] 

is the Bohr radius at velocity v also in rest units. The units in this 

chapter will always be rest units so that we will drop the index 

[rest). Let us use a numerical example to illustrate some of the 

absolute changes taking place inside atoms accelerated to a high 

velocity. When an hydrogen atom moves at v = 0.866c, then y = 2. 

We will consider the hydrogen atom in its ground state but one can 

see that the transformations can be applied in a similar way for any 

excited state. From equation 11.1, when v = 0.866c, we have: 

«v = 2a0. 11.2 

We know from equation 2.23 that the electron mass increases 
when it moves: 
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mv = ym0. 11.3 

Therefore the absolute electron mass of a hydrogen atom moving 
at velocity v = 0.866c becomes: 

mv = 2m0. 11.4 

Figure 11.1, illustrates the simultaneous increase of the Bohr 

radius and of the electron mass when y = 2. Let us examine how 

these results are compatible with the Bohr model, the de Broglie 

wavelength of particles and quantum mechanics. 

11.3 - Electric Potentials. 
Let us examine first the compatibility of the description given 

above with the laws regulating the electron and the proton in the 

hydrogen atom. We recall that when an atom is accelerated to a 

high velocity, the electric charges and the absolute electric field 

around those charges do not have to change in order to remain 

compatible with the principle of mass-energy conservation. The 

electric energy E0 of the electron in the electric field of the proton 

is: 

E 
O 

11.5 

where k is the Coulomb constant, e+ and e~ are the electric 

charges of the proton and the electron and a0 is the average 

distance between the electron and the proton which corresponds to 
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the Bohr radius. Putting equation 11.2 in 11.5, we find that the 

internal electric energy Ev inside the moving hydrogen atom is: 

ke+e ke+e 
11.6 

Since the compatibility between observations and mass-energy 

conservation has been obtained without modifying the electric 

charge when a particle is accelerated, we can write: 

e~[rest] = e~ [rest], 11.7 

When an electron is carried into the gravitational potential of the 

Sun, where Mercury is located, from a location in outer space, its 

charge does not change. This can be written: 

eM[o.s.] = e0 s [o.s.]. 11.8 

We recall that in order to be able to establish comparisons, all 

parameters are calculated using rest units. According to the Bohr 

model of the atom, when the electron of the hydrogen atom moves 

in an electric field (i.e. the field of the proton), one must have an 

equilibrium between the attracting electric force and the centrifugal 

force. This is compatible with quantum mechanics. The following 

condition is required: 

F(electric) = 
ke e 
-2— = F( centrifugal) = 

a 

meVe 

a 
11.9 

or 

, ke+e 
mev; =-. 11.10 

a 

For the hydrogen atom at rest, the distance a is equal to the Bohr 

radius a0. We have: 

2 ke+e- 
moVo =-. 11.11 

ao 

For the hydrogen atom at velocity v, a = av and we have: 

2 ke+e“ 
mvvv =- 

a 
11.12 
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We recall that the parameters v0 and vv here are the electron 

velocities with respect to the proton. The velocity of the hydrogen 

atom is expressed using y (and v without a subscript). Using 

equations 11.2 and 11.4 in equations 11.11 and 11.12 gives (for y = 

2): 

v v 11.13 

where v0 is the electron velocity with respect to the proton when 

the hydrogen atom is at rest and vv is the electron velocity with 

respect to the proton when the hydrogen atom has the velocity v = 

0.866c. From equation 11.13, the electron velocity (with respect to 

the nucleus) is reduced by half when the hydrogen atom is 

accelerated to a velocity v = 0.866c. 

In order to be compatible with the Bohr equation and quantum 

mechanics, the length of the circumference of the orbit of an 

electron around a proton must be equal to an integer number of the 

wavelength of the electron. In the case of the hydrogen ground 

state, the electron wavelength must be equal to the length of one 

circular orbit. The de Broglie wavelength X is given by: 

Putting equations 2.22, 2.23 and 11.13 in 11.14, the wavelength 

A,v in the moving frame is : 

U, = 
h. 2h„ 

mvvv 
2m, 

2X0. 

K2J 

11.15 

Equation 11.15 shows that the electron wavelength of the 

moving atom is twice as long as the electron wavelength of the 

atom at rest. This satisfies the wave condition of the constructive 

interference of the electron wave after each translation since the 

radius of the orbit (therefore its circumference) of the moving atom 

is twice as large as the radius for the atom at rest as illustrated on 

figure 11.1. 

Furthermore, when all these fundamental conditions are 

perfectly satisfied, the frequency of emission of light between 
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electronic transitions is reduced by two since the energy between 

the states is reduced by two when the atom is moving, exactly as 

observed experimentally from the red shift of spectral lines and 

from the slowdown of moving atomic clocks. It is that absolute 

reduction of frequency of a moving clock located in a moving 

frame that has been erroneously interpreted by Einstein as time 

dilation. 

We must then conclude that the predicted absolute change of 

parameters inside a moving frame resulting from mass-energy 

conservation is coherent inside moving atoms. We must also note 

that all the transformations given above are in perfect agreement 

with constant absolute electric charges in all frames (see equations 

11.7 and 11.8). We recall that this absolute electric field is similar 

to the absolute gravitational field shown in chapters four and five. 

This agreement proves the invariability of the electric forces as 

well as the quadratic decrease of the electric field around charges in 

all frames. This result agrees perfectly with the well observed 

experiment showing that electric charges moving at high velocity 

in a magnetic field travel along a larger radius of curvature 

corresponding to a different value of e/m. This smaller ratio of 

electric charge over electron mass is due to an increase of mass 

(due to the velocity) while there is no change of electric charge of a 

particle in a moving frame. 

11.4- Sommerfeld Fine Structure. 
The prediction of the advance of the perihelion of Mercury seen 

in chapter five is not the sole example of the success of the 

principle of mass-energy conservation and classical mechanics. 

There is also a well documented example in atomic and molecular 

physics in which it is clearly observed that the principle of mass- 

energy conservation influences the electronic structure inside 

atoms. There are many similarities between Mercury moving 

inside the gravitational field ot the Sun and the electrons of atoms 

orbiting inside the electric potential of the proton. However, an 

important difference is that the electron mass is not concentrated 

into a relatively small location with respect to the size of the atom 

contrary to the case of Mercury and the Sun. 
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Since electrons exist as waves, the electric potential between the 

electron cloud and the proton can be calculated using the wave 

distribution given by quantum mechanics. This leads to the same 

average energy and distance a0 that we would find if all the 

electron was concentrated at a distance equal to the Bohr radius 

from the proton. Consequently, one can calculate the potential of 

that electron cloud using quantum mechanics as if it were located at 

a distance from the proton equal to the Bohr radius. That electron 

cloud can either oscillate through the proton if the angular 

momentum is zero or around it if the angular momentum is not 

zero. 

When the electron cloud is trapped into the electric field of a 

proton, an hydrogen atom is formed. During its formation, energy 

is given up as emitted radiation. This is similar to the energy that 

Mercury must release when it is trapped into the Sun's gravitational 

potential. The electron cloud can be distributed according to many 

configurations having different energies corresponding to different 

quantum states. Consequently, during the formation of each of 

those states, the electron loses mass the same way Mercury does 

when it is trapped in the Sun's gravitational potential. 

Let us use the Bohr model in which an electron moves on an 

orbit around the nucleus. We know that the Rydberg states of 

hydrogen correspond to electrons traveling on an orbit whose 

circumference is exactly equal to an integer number of the 

wavelength of the electron. Then, there is a constructive 

interference of the electron wave when moving to the next orbit 

around the nucleus. The number of wavelengths forming the orbit 

is equal to the principal quantum number. This model is 

compatible with the energies calculated by quantum mechanics. 

Experimentally, after the Rydberg states were measured, it was 

noticed that the transitions between these states are not as simple as 

originally expected. It was discovered that the transitions between 

each pair of states are generally made of several very close spectral 

lines. Sommerfeld carried out calculations using general relativity 

and he discovered that instead of simple transitions between 

quantum states, there should be multiple transitions due to the fine 

structure. 
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Due to the change of electron mass as a function of its distance 

from the proton, the wavelength of the electron changes. 

Consequently, the radius of the orbit changes because it is 

necessary to have an integer number of wavelengths in a 

circumference. Due to that change of the distance from the proton, 

the electrostatic potential changes so that the electron energy 

becomes different. Consequently, the force between the electron 

and the proton does not follow exactly a quadratic function. 

Therefore the electron orbit around the proton precesses as in the 

case of Mercury around the Sun as given in equation 5.52. Due to 

this precession, the transitions between different quantum states 

have slightly different energies depending on the relative direction 

of the velocity of the electron around the nucleus involved in the 
quantum transition. 

Experimentally, the fine structure is well known. The 

Sommerfeld fine structure constant is equal to: 

a = 
2ne2 

ch 
7.297 x 1 O'3 

where h is the Planck parameter. 

1 

137 
11.16 

This fine structure term is observed between all quantum states 

as long as transitions are allowed by the selection rules. 

Sommerfeld's fine structure is explained in many textbooks [1], It 

is often illustrated by precessing ellipses forming rosettes identical 

to the path of Mercury on figure 6.2. 

The Sommerfeld tine structure constant can be explained more 

accurately using the principle of mass-energy conservation as done 

in the case of the orbit of Mercury. However, this is beyond the 

scope of this book. We will limit our explanations to this 

qualitative description. We understand now that the fine structure 

inside atoms is due to the principle of mass-energy conservation. 

Of course, Sommerfeld's calculations do not lead to a complete 

agreement in the case of an electron, because one must consider the 

electron spin. However, this last correction is irrelevant in the case 
of Mercury. 
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11.5 - Atomic Structure inside Free Falling Atoms. 
Let us study a hydrogen atom falling freely in a gravitational 

field. We can assume that the atom was initially located in outer 

space before it slowly started to drift and accelerate gradually 

toward the Sun. After a while, the hydrogen atom acquires a high 

velocity. An observer accompanying the falling mass would not 

feel any internal acceleration. We will now calculate the absolute 

rate of the falling clock. 

Let us examine this problem separating mathematically the two 

components of energy acting on the falling mass. With respect to a 

rest frame in outer space, the speeding hydrogen atom is now at a 

location where there exists a gravitational potential. We have seen 

that to calculate the exact mass of the particle, this potential must 

be taken into account. Furthermore, the falling hydrogen has 

acquired a velocity which must also be taken into account. 

We have seen in equation 1.22 that the gravitational potential 

where the atom is now located is such that the mass of the particle 

has decreased and is now different from its mass in outer space. 

We also know that the kinetic energy increases the mass of the 

particle by an amount which we expect to be equal to the mass lost 

due to the potential energy. 

This can be easily calculated and we see that the decrease of 

mass due to the gravitational potential cancels out exactly the 

increase of mass due to kinetic energy. Consequently, the absolute 

mass of the particle (proton and electron) does not change while it 

is falling. However the relevant Planck parameter for the falling 

mass increases (see equation 2.22) so that the Bohr radius in the 

falling clock becomes larger. Consequently, when a body travels 

freely in a deeper gravitational field, its resultant absolute mass 

does not change, the Bohr radius increases and the falling clock 

runs more slowly. More particularly, the absolute clock rate inside 

the elliptical orbit of a comet around the Sun is slower when it is 

located nearer to the Sun. We recall that this perturbation of clock 

rate is one of the terms involved to calculate the advance of the 

perihelion of Mercury. 
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11.6 - High Potentials and Higher Order Terms. 
Contrary to Einstein, in this book we have not arbitrarily 

postulated that physical quantities are invariant in all frames. We 

have used only the principle of mass-energy conservation. 

However, we have found that when we consider the zero and first 

orders of v/c (or of the gravitational potential), the physical laws 

appear (almost) invariant in all frames as arbitrarily assumed by 

Einstein. In that particular case, the physical consequences are 

almost all identical to what Einstein found with his arbitrary 

postulate. However, our results are obtained using solely the 

principle of mass-energy conservation. The physical laws derived 

from the use of the first order of v/c are not perfectly invariant 

since there are higher order terms in (v/c)“ and other higher terms 

(however small) that have been neglected. 

One could repeat all the above calculations without neglecting 

the higher order terms. Then, one could have an exact answer to 

the problem of extreme energies. We can foresee that if we dealt 

with physical phenomena in which the higher terms were not 

negligible (correction due to velocity), the physical laws observed 

would be different. Within those physical limiting conditions, at 

high energy, the behavior of matter would not correspond to the 

description we are used to see in a rest frame and in a frame in 

which the ratio v/c is not too high. 

We have to realize that the experimental conditions that 

correspond to such high energies are quite common in physics. It 

is clear that when the nucleus of an atom emits particles having 

energies of millions of electron volts, the second and third order 

terms of the potential involved are not negligible. Consequently, 

we expect that the internal phenomena taking place in the nucleus 

of atoms at such high potential taking into account the higher order 

terms lead to physics we are not accustomed to see. It is for that 

reason that nuclear forces are not familiar to us and to classical 

mechanics. We believe that the principle of mass-energy 

conservation is one of the ultimate principles in physics that 

possesses the wonderful power of informing us, in a logical way, 

on the coriect physical nature of the forces involved in nuclear and 

particle physics. Mass-energy conservation is relevant everywhere 
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in physics and can be applied everywhere in nature especially when 

enormous potentials are involved as in the nucleus of atoms and at 

the center of the stars. 

A general study of physics in which the principle of mass-energy 

conservation is fully applied is beyond the scope of this book. 

However, we are convinced that a physical and realistic description 

of our physical world can be logically achieved without having to 

involve the non realistic, the non conservation of mass-energy and 

the contradictory hypotheses used in modem physics [2], 

11.7 - References. 
[1] H. Semat. Introduction to Atomic and Nuclear Physics. Holt, 

Rinehart and Winston, Forth edition, P. 245, 1962. 

[2] P. Marmet, Absurdities in Modern Physics: A Solution. Les 

Editions du Nordir, c/o R. Yergeau, 165 Waller Street, Simard Hall, 

Ottawa, On. Canada KIN 6N5, 144p. 1993. 

11.8 - Symbols and Variables. 
The units used in this chapter were all rest units, therefore the 

index[rest] has been omitted. 

a0 Bohr radius of the atom at rest 

<2V Bohr radius of the moving atom 

E0 Electric energy of the atom at rest 

Ev Electric energy of the moving atom 

X0 de Broglie wavelength of the atom at rest 

de Broglie wavelength of the moving atom 

m0 mass of the atom at rest 

mv mass of the moving atom 

v0 velocity of the electron relative to the proton of the atom at 

rest 

vv velocity of the electron relative to the proton of the moving 

atom 



Chapter Twelve 

On the Formation of Pseudo Black Holes. 

12.1 - Formation of a Protostar. 
In this chapter, we will consider what happens to a large volume 

of gas when taking into account the gravitational field of each 

individual atom. As an example, we use a nebula containing N 

atoms of hydrogen. Due to Newton's universal law of gravitation, 

all these individual electrically neutral particles attract each other. 

Consequently, each atom slowly drifts toward the center of the 

system. The gas becomes more and more compact as a function of 

time and the nebula occupies a gradually smaller volume of space. 

During the collapse of the nebula, the velocity of the particles 

increases due to the increasing gravitational potential created by 

the increasing concentration of matter. The density and the 

velocity of individual atoms augment so that the temperature 

increases while the radius of the volume of gas decreases. 

Consequently, the gas becomes very hot. These high temperature 

and density produce a high pressure that reduces the collapsing 
rate. 

Due to Planck's law of radiation, the gas emits its thermal energy 

as electromagnetic radiation to outer space. This phenomenon 

causes a reduction of the internal temperature and pressure so that 

the star can progress with further shrinking. These two processes 

go on simultaneously as long as the star has enough mass to 

produce a gravitational force sufficiently large to produce further 

shrinking. The shrinking rate of the star depends on the rate of 

emission of energy of the star through radiation. An equilibrium 

exists between the atomic, molecular or nuclear forces which 

provoke emission ot radiation at high temperature and the 
gravitational forces. 

In the above qualitative description, we consider that the number 

N ot hydrogen atoms does not change during the contraction of the 

nebula into a star. However, a large amount of energy has to be 

emitted from the star through radiation in order to get rid of the 

thermal energy. One must take into account the principle of mass- 
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energy conservation requiring the mass of the star to decrease 

because of the radiation emitted due to Planck's law of radiation. 

12.2 - Mass-Energy Conservation in Clusters of 

Atoms. 
In order to satisfy the principle of mass-energy conservation, let 

us calculate quantitatively the amount of energy that must be 

emitted from the protostar when it is transformed from a nebula to 

a high density star. Let us start with an initial very large diffuse 

nebula. We will calculate the change of gravitational energy when 

the nebula takes the shape of a hollow sphere of radius R. 

Let us calculate the gravitational energy when N hydrogen atoms 

coming from the nebula have all reached the distance R from the 

center of mass. When the first atoms reach that distance, the sphere 

is infinitely thin. The potential energy met by each new individual 

atom increases with the number of atoms (mass) that has already 

reached the distance R. This process goes on until all atoms have 

formed a sphere of radius R. We have then a spherical protostar. 

In order to calculate the total internal gravitational potential of 

such a star, let us use the building up principle and accumulate 

individual hydrogen atoms, one by one. In the case of the Sun, the 

number of hydrogen atoms needed is about 1.2><1057. Each 

individual atom is systematically brought from a large distance in 

outer space to the location at a distance R from the center of the 

stellar mass being formed. We consider the approximation of a 

hollow sphere because we want to keep the potential constant 

inside the star. 

The very first step in the formation of the star is to bring two 

hydrogen atoms together at a distance R. At that distance, the 

atoms have acquired gravitational energy E {1} due to the 

gravitational potential between them. This gravitational energy is 

given by: 

E{ 1} = 
Gm„mH 

R 
12.1 

where mH is the mass of the hydrogen atom. The two particles 

remain trapped at a distance R in this gravitational potential if the 
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amount of electromagnetic energy emitted is equal to E{1}. The 

equivalent loss of mass to stabilize this interaction is equal to: 

AM{1} = 12.2 

Therefore, after stabilization by the emission of radiation, using 

equations 12.1 and 12.2, we find that the remaining mass M{1} of 

the pair of hydrogen atoms (at distance R) is: 

M{ 1} = 2mH -—12.3 

After the formation of the first pair of hydrogen atoms, let a new 

hydrogen atom fall (at a distance R) into the gravitational field 

produced by the new pair. The new hydrogen atom of mass mH 

interacts at a distance R from the pair of mass M{ 1} previously 

formed and described in equation 12.3. Using Newton's law, the 

gravitational energy between the pair of hydrogen atoms with mass 

M{ 1} and the individual hydrogen mH atom is: 

E{2} 
GmHM{l} 

R 
12.4 

We might want to explain how the new hydrogen atom can be at 

an ettective distance R from the previous pair of atoms. The 

distance R mentioned here means that the new atom is located at a 

distance R from the previously formed pair so that the gravitational 

potential between the new atom and the pair is equivalent to the 

potential that would exist if the previously formed pair of atoms 

were close together and the new atom were at a distance R from the 

pair. 1 his description is supported mathematically by a theorem 

(used in electrostatics) which shows that the potential created at the 

surface of a spherical distribution of charges is the same as if all the 

charges were located at the center of the sphere. We will apply this 

same theorem here for the case of the gravitational potential of 

particles approaching the spherical distribution of matter forming 
the star. 

In equation 12.4, the mass AM{2} lost after emitting thermal 
energy is: 
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AM{2} = 
E{2} 

12.5 

The total mass M{2} of the three hydrogen atoms is then: 

M{2} = M{ 1} + mH - AM{2} 

r i ( i GmHM{l} 
M{2} = M{l} +mH  -L^ 

c'R 

Equations 12.7, 12.3 and 12.4 give: 

M{2} = 3mH - 
3Gm„ G2 m^j 

c2R 
■ + ■ 

c4R2 

12.6 

12.7 

12.8 

Of course, when a star is formed, the energy does not have to be 

emitted immediately after the addition of each individual atom. 

When particles are brought together, they form a hot gas in their 

gravitational potential which cools down later by the emission of 

radiation. There is no difference of energy if the radiation is 

emitted immediately or later. 

Repeating the operation and adding a fourth hydrogen atom to 

the set of three atoms gives: 

. . . . GmHM{2} 
M{3} = M{2} +mH - H 

Equations 12.8 and 12.9 give: 

c2R 
12.9 

M{3} = 4mH - y—+ 
c R 

6Gm2 4G2m„ G3m4 

c4R2 c6R4 
12.10 

Adding another hydrogen atom to the growing mass gives: 

, , . , GmHM{3} 
M{4} = M{3} + mH---. 12.11 

c R 

Equations 12.10 and 12.11 give: 

M{4!=5mH_i£M + iOG^.^ + ^i 12.12 
c2R c4R2 c6R4 c8R6 

Let us define: 
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Then: 

M{4}=5mH- 10mH2 Z+10mH3 Z2 - 5mH4 Z3 + mH5 Z4. 12.14 

Adding another hydrogen atom gives: 

M{5} =6mH- 15mH2 Z + 20mH3 Z2- 15m,4 Z3 + 6mH5 Z4-m[|6 Z5. 12.15 

The seventh hydrogen atom gives: 

M{6} =7mH-21mH2 Z+35n^3 Z2-35mH4 Z3+21mH5 /-7ny,6 Z5+n^7 Z6.12.16 

Going on with more individual atoms but limiting our 

calculations to the fourth power of mH gives: 

M{7} = 8mH - 28m2Z + 56m3Z2 - 70m4Z3 12.17 

M{8} = 9mH - 36m2Z + 84m3Z2 - 126m4Z3 12.18 

M{9} = 10mH-45m2Z+ 120m3Z2 - 210m4Z3 12.19 

M{ 10} = llmH-55m2Z+ 165m3Z2 - 330m4Z3 12.20 

M{ 11} = 12mH-66m2Z + 220m3Z2 - 495m4Z3. 12.21 

The coefficients of the equations above can be generalized to 
give: 

M{N} = (N + l)mH ~^^1)N mHZ + 
(N + 1)N(N - 1) 

3 m„Z 

(N + 1)N(N — 1)(N — 2) 4_, 
-^-mHZ +... 12.22 

For a star like the Sun, the value of N is about 1057. Then for 
N»1 equation 12.22 gives: 

2 2 

M{N| = Nm,| -17inHz + N'm3H , N4mJH^, 

6 24 Z +- 

which is identical to: 

M{N} = NmH - N m'' 

M{N} = Nm, 1- 

2! 3! ~ 4! 

Ni^+(NmliZ)2 (NmHZ)3 

2! 3! 4! 
+... 

12.23 

12.24 

12.25 
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Let us define: 

Y = NmH. 

Equation 12.25 becomes: 

( 
M{N} = Y 1 

v 

YZ Y2Z2 

2! + 3! 

Y3Z3 

4! +"'j 

12.26 

12.27 

This can be written (N is so large that it can be approximated to 
oo): 

n=l 

YnZn 

n! 
- e -YZ 

)• 12.28 

We recall that Y = NmH is the total mass of the nebula that 
formed the star. This would be the mass of the star if there were no 

energy (mass) lost through radiation during the formation. M{N} 
is the final mass of the star made of N hydrogen atoms after taking 
into account the thermal energy emitted as explained above. 

12.3 - Mass of a Star versus the Amount of Matter 
Used for Its Formation. 

Equation 12.28 gives the mass of the star as a function of the 
amount of matter Y used to form it. Of course, when a larger 
amount of matter falls into the gravitational potential, thermal 
energy is emitted and the amount of mass lost into radiation 
increases. In these calculations, the value of Z (from equation 
12.13) is kept constant when we study a star having a fixed radius 
R. Figure 12.1 shows the final mass of the star (after temperature 
stabilization) as a function of the total mass falling on it, using Z = 

1 in equation 12.28. 

We see on figure 12.1 and from equation 12.28, that for a very 
small amount of hydrogen atoms, the total mass of the star is 

almost the same as the mass of the atoms used before the 
formation. However, when the number of atoms accumulated in 

the star becomes larger, the gravitational potential acting on each 
newly added hydrogen atom becomes increasingly important. 
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—1—*—J 
10 20 30 

the star 
(arbitrary units) 

Figure 12.1 

More energy is lost in thermal radiation after each new hydrogen 

atom is added. Consequently, an increasing fraction of the new 

mass is lost when the star becomes more massive. 

Here is a numerical example obtained from equation 12.28. 

When the total input of mass from the nebula is 0.01 (YZ = 0.01), 

independently of the value of Z, about 99.5% of that mass remains 

in the star. For one unit (YZ = 1.0) of input mass, the final mass is 

63 /o of the initial matter. When the input mass is ten units 

(YZ = 10.0), only 0.005% of the new mass is added to the star. 

Finally, when the amount ot matter given by the nebula to form the 

star becomes much larger, the new mass added to the star becomes 

almost completely transformed into energy due to the gigantic 

gravitational potential. Therefore the mass of the star no longer 

increases when the value of YZ gets very large (as shown on figure 

12.4 - Mass of a Star versus its Radius. 

Within the limits explained above, let us now consider a 

different way to build a star. Instead of increasing the amount of 

matter irom outer space while forming the star at a constant radius, 

we use a constant number of hydrogen atoms from the nebula but 

all matter is contracted into a star of radius R. 

Total mass falling on 
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When the star is initially very big, the gravitational potential at 

its surface is negligible. A very large star appears almost like a 

concentrated nebula without an intense gravitational potential. 

However, when the radius gets smaller, the high density star 

generates a much higher gravitational potential so the increase of 

temperature generates radiation which causes a loss of mass-energy 

of the shrinking star. Using equation 12.28, we can calculate the 

radius of the star formed from a contracting nebula containing a 

constant number of atoms of matter. During the decrease of the 

radius, the star is maintained at a relatively low temperature (of a 

few tens of thousand degrees), due to Planck's emission of 

radiation. 

Radius of the star 

(arbitrary units) 

Figure 12.2 

When the total number of particles N (= Y/mH) coming from the 

nebula is kept constant, Z(R) becomes the variable (see equation 

12.13). For Y = 1, let us calculate the residual mass of the star as a 

function of its radius R. After temperature stabilization, the 

relative mass of the star (with respect to the mass ot the initial 

nebula) as a function of the radius R is given by equations 12.13 

and 12.28. This is illustrated on figure 12.2. 

We see that when the radius of the nebula (or the star) decreases, 

the star loses mass as electromagnetic radiation more and more 

rapidly. 
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12.5 - Maximum Mass of a Star versus Its Radius. 
Let us assume now that the mass available Y is so large that the 

product YZ is always larger than 10. In that case, the value of the 

bracket in equation 12.28 reaches a maximum of 1.0. Let us 

substitute equation 12.13 inequation 12.28. This gives: 

M(N} = ^(1-e_YZ). 12.29 

Since the maximum value of the bracket in equation 12.29 is 1.0, 

the maximum value of M{N} as a function of R is: 

c2r 

M{N} = ——. 12.30 
Cj 

Equation 12.30 shows that the maximum mass of a star increases 

linearly with its radius R. Above this limit, any mass falling freely 

on the star reaches a kinetic energy equal to its mass so that the 

same amount of radiation energy is freed and there is no net 

increase of mass of the star. The incoming particle is totally 

transformed into radiation which totally escapes from the star. 

12.6 - Complete Transformation of Mass into Energy. 
There is another way to find the maximum mass of a star of 

radius R. We have seen that the gravitational energy E(Pot) of a 

particle of mass m at a distance R Irom the surface is given by: 

r/r, ^ GMm 
E(Pot) = —. 12.31 

We know that independently of their masses, all particles reach 

the same velocity when they fall from outer space to the surface of 

the same star. During their fall, particles acquire kinetic energy. 

The kinetic component ol energy of a particle moving at velocity v 
is given by (y-l)m in the equation: 

mv = Ym 12.32 

where 

Y = 
1 

12.33 
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During the fall of a particle in the gravitational potential of a 

star, no energy is coming from outside the system. Consequently, 

the total energy of the falling particle remains constant during an 

unperturbed fall. 

This result is different from the inertial acceleration of a mass 

absorbing energy given by an external independent source. Due to 

that external source of energy, the total energy of the particle 

increases as given by equation 12.32. However, when falling 

freely in a gravitational field, the kinetic energy increases at the 

expense of the gravitational energy of the particle. 

Let us consider a particle reaching the surface of a star (of 

maximum mass). The velocity corresponds to y = 2 (v = 0.866c). 

Then the kinetic energy Ek is equal to the initial mass at rest: 

Ek = me2. 12.34 

When the particle hits the surface of the star, the kinetic energy 

is released and emitted toward outer space (either immediately as 

gamma rays or later as thermal energy). When this happens, the 

loss of mass Am is equal to the mass of the particle m. At the 

surface of the star, the kinetic energy of the particle is equal to the 

gravitational energy it has lost. We have: 

Ek 
GMm 

R 
= me2. 12.35 

Therefore, in that limit case, the mass Mlim of the star is: 

M ijm 
R-limC2 

G 

Am 
when- 

m 
= 1. 12.36 

Consequently, any mass falling from outer space to the distance 

Rlim from the star of mass Mlim will be totally annihilated into 

radiation. As expected, this result is identical to equation 12.30. 

Consequently, when the surface of the star is at such a deep 

gravitational potential, there is no possibility of increasing the mass 

of the star any further. Finally, if a particle has an initial velocity 

toward the star when entering the outer limits of the gravitational 

field, more energy will be removed from the star through radiation 

than the amount added by the particle. The mass of the star then 

decreases since more mass escapes by radiation than the amount ot 

mass added by the particle. 
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Of course, near the surface of a star (which has a maximum 

mass), the gravitational potential is enormous so that clocks run at 

a very slow rate. Matter located in this extreme gravitational field 

will interact according to the proper parameters existing at that 

location. Consequently, the spectrum of the Planck radiation 

emitted from this deep potential will be emitted according to the 

local clock which runs very slowly. The spectrum will be 

displaced toward longer wavelengths with respect to outer space 

where clocks run more rapidly as explained in chapter one. 

However, after its emission from the location in the deep 

gravitational potential, light will not be redshifted again while 

traveling against the gravitational field as explained in chapters one 

and ten. 

If we consider a particle reaching the ultimate potential at a 

distance R,im from the center of the star, there is no possibility for it 

to move deeper inside that radius because there is nothing left of 

the particle. It would be absurd to discuss the behavior of particles 

at or inside that extreme radius since they no longer exist and all 

their energy and mass have been transformed completely into 
radiation. 

Comparison. 
This relationship for the maximum mass of a star can be 

compared with the Schwarzschild radius. Let us note that the 

Schwarzschild radius Rs has an incomprehensible meaning in our 

context. Just as tor general relativity, it is not compatible with the 

principle of mass-energy conservation. It is given by the 
relationship: 

M = 
Rsc2 

2G 12.37 

12.7 - Proper Values in Extreme Gravitational 
Potentials. 

Let us consider that an observer in outer space measures the 

distances between the center of a star (having the maximum mass 

MHm) and difterent bodies stationary at different distances. Using 

his proper units, the outer space observer can measure the distances 
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between the center of the star and the closest body existing around 

it (which is near Rnm) up to the more distant masses. However, the 

observers located on each of those bodies will use their proper 

units to make their measurements of their own distance from the 

center of the star. They must use these proper values in order to 

apply correctly the well-known physical relationships. We have 

seen that the absolute length of the meter is longer for an observer 

located closer to the star. Consequently, when measuring the same 

absolute radius, the number of proper meters will be smaller for the 

observer close to the star than for the outer space observer. 

Using the equations given in chapter four, we see that when the 

distance from the star is large (in the Newtonian limit), the number 

of proper meters measured by an outer space observer is almost 

identical to the number obtained by an observer not too close to the 

star. However, when the observer is close to the extreme minimum 

radius R|im, the use of the extremely dilated proper meter will give 

a number of proper meters approaching zero (and not R|im(o.s.)). 

For this reason, physical phenomena taking place near location RHm 

(using internal proper values) appear very strange to an outer space 

observer. 

Near that location (Ri;m), the Bohr and nuclear radii get very 

large and the corresponding energy inside particles becomes 

extremely small with respect to the external mechanical forces. In 

outer space, we are used to see internal (atomic and nuclear) forces 

of matter being much larger than the mechanical and gravitational 

forces. Near a degenerate star, nuclear forces are much weaker. 

This phenomenon favors reactions between particles. 

Let us also recall that in the first chapters of this book, we were 

calculating very small relativistic interactions (i.e. Mercury 

precessing around the Sun). It was then enough to consider the 

first order of a series expansion. However, when we consider 

bodies with kinetic energy in a very deep gravitational potential, 

these approximations are no longer accurate. 

12.8 - Beyond the Extreme Gravitational Potential. 
Let us consider a star having a maximum mass and therefore 

surrounded by an extreme potential. We have seen that when an 
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hydrogen atom gets closer to the surface of the star, its mass 

decreases when brought to rest and its clock slows down in the 

same proportion. We have seen that the same maximum 

gravitational potential can exist at the surface of stars having 

different radii. When the nucleus of this star approaches that 

extreme limit of gravitational potential, the number of particles 

forming that star approaches infinity while the mass of each atom 

approaches zero. The product of these two parameters approaches 

a constant (for a given radius) as shown in equation 12.30. 

Finally, extrapolating (to a smaller radius) beyond this extreme 

potential, the mass of the falling hydrogen atom disappears at the 

same time as the clock becomes infinitely slow and finally stops 

running at Rlim. In fact, one can say indifferently that the clock has 

stopped running or that the clock has disappeared and no longer 

exists. Therefore clocks become infinitely slow at the same time as 

they disappear completely out of existence. In physics, it is absurd 

to study matter inside the critical radius Rlim. 

12.9 - Formation of Matter in a Deep Gravitational 

Potential versus the Formation of Matter and Anti- 
Matter. 

We have seen above that mass can be transformed into radiation 

in a deep gravitational potential without requiring a reaction 

between matter and anti-matter. In physics, there is another well- 

known mechanism transforming mass into radiation: the 

annihilation of a particle with its anti-particle. For example, we 

know that an electron and a positron can be annihilated into 

radiation. As expected, the corresponding inverse mechanism is 

also known from the interaction of photons creating a pair of matter 

and anti-matter. It is important to notice that the reaction of 

annihilation of matter with anti-matter is extremely rapid so that 

matter formed at the same time (and at the same location) can 

survive only during an extremely short time before being 

annihilated. Particles and anti-particles destroy each other at a very 

high rate. This system is quite unstable. Furthermore, since matter 

and anti-matter are formed simultaneously at the same location, it 

is ultimately improbable that they could separate out to form 
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independent galaxies. Consequently, another mechanism of 

formation of matter without involving anti-matter is required to 

explain our universe if we want to avoid ad hoc hypotheses. 

12.9.1 - Inverse Gravitational Mechanism. 
We have seen in this chapter how matter falling in a deep 

gravitational potential is finally transformed into radiation. This 

mechanism cannot be maintained forever in the universe because 

all matter would be transformed into radiation. We have explained 

above how the formation of matter through the mechanism of 

matter and anti-matter cannot lead to the formation of huge clusters 

of galaxies of matter in the universe as we observe them. There 

must be an equilibrium between the formation and the annihilation 

of matter in the universe. Mass-energy conservation is not 

compatible with the creationist theory that claims that the universe 

was formed from nothing ten or fifteen billion years ago. 

It is well known in physics that for every mechanism, an inverse 

mechanism exists. The simple absorption of radiation by matter is 

to some extent an intermediate mechanism of transformation of 

energy into mass without involving anti-matter. However, in that 

case, atoms become more massive but no new atoms are formed. 

A simplistic description of the inverse mechanism corresponding 

to the annihilation of matter in a gravitational field is the following. 

Since radiation is emitted when atoms hit a surface located in a 

deep gravitational potential, we can foresee that energetic radiation 

hitting the surface of the same star could generate particles with 

sufficient kinetic energy so that they could reach the escape 

velocity vesc ( = 0.866c) of a star with extreme mass and be freed in 

outer space. Of course, other mechanisms involving gravity can be 

suggested but are beyond the discussion of the present book. 

When matter falls into an extreme gravitational potential, it is 

transformed into energy without involving a reaction between 

matter and anti-matter. Consequently, the inverse reaction must 

equally correspond to the formation of matter without the creation 

of anti-matter. We have seen that a reaction generating matter plus 

anti-matter is not acceptable to explain the origin of matter in the 

universe, because of the extremely fast inverse reaction returning 
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matter into radiation. We see now that a mechanism using gravity 

can explain the transformation of matter in the universe. 

The transformation of matter into radiation (and its inverse 

reaction) is an extremely slow process since the time for a star to 

emit the thermal energy during its formation depends on its size but 

generally takes at least a few hundred million years. One can 

expect that the inverse reaction transforming radiation into neutral 

particles can take a few billion years before forming nebulae which 

later evolve into stars and later into other bodies with a very deep 

gravitational potential. Such mechanisms would finally form a 

complete cycle transforming matter into radiation and vice versa. 

On the average this cycle would repeat itself every ten or fifteen 

billion years. In such a case, after a full cycle, the information 

about the exact previous structure of the universe would be lost. 

From this mechanism, matter of the universe could be recycled 

periodically. During that cycle, since there would be large 

variations in the time taken by concentrations of masses to evolve, 

the universe would always look more or less the same through 

time. 1 he possibility of such a mechanism becomes highly 

probable when taking into account the red shift mechanism taking 

place in our universe as demonstrated [1] in previous papers. 
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Appendix I 
The Dependence of the Size of Matter on 

Electron Mass. 

INTRODUCTION - As seen in chapter one, the size of the 

hydrogen atom depends directly on the Bohr radius, which itself 

varies with the mass of the electron. Is that the case for all atoms? 

And what about molecules and crystals? Before we answer these 

questions rigorously, let us try to answer them intuitively. 

Consider for example the hydrogen molecule, H2. It is made of 

two hydrogen atoms sharing their electrons. Since the size of the 

two hydrogen atoms taken separately varies with the Bohr radius, it 

would be reasonable to expect the size of the hydrogen molecule to 

do the same. If the radius of all atoms depended on the Bohr 

radius, we could apply the same reasoning to all molecules and 

crystals. Intuitively, we would arrive to the conclusion that the 

dimensions of matter depend on the Bohr radius. If this were to be 

the case, then according to chapter one, the size of any object 

would be different depending on its location in a gravitational 

potential. In this appendix, we will see how the dimensions of 

matter are predicted to vary theoretically. We will first look at all 

atoms. We will then study molecules which will be followed by 
crystals and metals. 

THE BOHR RADIUS - Before we start our study of the 

dimensions ot matter, a comment needs to be made about the Bohr 

radius and its use. Until now, a0 has always been considered a 

constant because h, e and me have been supposed constants. 

With this in mind, most experimentalists present their results in 

units of bohrs using 1 bohr = a0 = 5.29177x 1 O'11 m [ 1 ] (page 349). 

For an experimentalist, by detmition, that numerical value is equal 

to one bohr unit whether the electron orbit in hydrogen is constant 
or not. 

Foi theoretical results, this is ditterent. Theoreticians could 

decide to give the results of their calculations in function of a0 (i.e. 

in units ot a0) to be able to compare them to the experimentalists' 

results. For the theoreticians, a0 is detmed as a combination of 
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parameters. Therefore a0 is constant only if all the parameters are 

constant. One then has to be careful in reading theoretical results 

and look at the method used to see if there really is a dependence of 

aQ or if it is just a unit. Let us make sure that the physics is not lost 

in those calculations. 

Most authors do their calculations in atomic units. In those 

units, me = e = h = 1. This means that the unit of mass is the 

electron mass. When the Schrodinger equation (or the Dirac 

equation) is expressed in those units, we end up with an equation 

that seems independent of me. The authors then go on with 

numerical calculations to solve the equations. But if the mass of 

the electron is not a constant, then it is not necessarily equal to one 

in atomic units (with respect to the initial frame of reference). 

This changes the Schrodinger (or Dirac) equation which changes its 

solution which changes the value of the parameter we are looking 

for (e.g. the bond length or the radius of an atom in the initial frame 

of reference). All the results in this appendix being theoretical, we 

made sure that their dependence in a0 was real. 

ATOMS - It is easy to derive the radius of all hydrogenlike 

atoms by supposing that they are just like a hydrogen atom with an 

electron orbiting a nucleus of charge Z. According to Levine [1] 

(page 525): 

"The average radius of a hydrogenlike atom is 

proportional to the Bohr radius a0, and a0 is inversely 

proportional to the electron mass". 

The radius of all other atoms has been well investigated [2, 3] 

and the results given are proportional to the Bohr radius. The 

method used in [2] was the Hartree-Fock method [4] and in [3], the 

Dirac-Fock method which is just the Hartree-Fock method with 

relativistic corrections due to the mass of the electron with respect 

to the nucleus frame of reference. The Dirac-Fock method gives no 

relativistic correction of the electron mass with respect to an 

external gravitational potential. 

THE HYDROGEN MOLECULE ION - The hydrogen molecule 

is composed of two hydrogen atoms, each made of one electron and 

one proton. Its positive ion, H2 , made of two protons and one 

electron, is a system that can easily be solved [1, 5, 6]. Upon 
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finding its wave function and the potential of the nucleus (in the 

Bom-Oppenheimer approximation), it is possible to calculate the 

distance between the two protons. This gives 2.00a0. (The 

variational method is used to solve this problem [5]. It uses wave 

functions of the hydrogen atom which depend on the Bohr radius.) 

The internuclear distance of a molecule is in direct relationship 

with the size of that molecule. We see then that the size of the 

hydrogen molecule ion is proportional to a0 . 

This means that when we change the mass of the particle 

moving about the nucleus, the size of the hydrogen molecule ion 

also changes. This has already been realized by Levine [1] (page 

355): 

"The negative muon (symbol g”) is a short-lived (half- 
life 2xl0'6 s) elementary particle whose charge is the 

same as that of an electron but whose mass is 207 

times me. When a beam of negative muons (produced 

when ions accelerated to high speed collide with 

ordinary matter) enters H2 gas, a series of processes 

leads to the formation of muomolecular ions that 

consist of two protons and one muon. This species, 

symbolized by (ppp)+, is an H2+ ion in which the 

electron has been replaced by a muon. Its [the 

distance between the two protons] is 2.00/? ^(m^e2) = 
2.00/?2/(207mee2) = (2.00/207) bohr = 0.0051 A." 

It is about one hundred times smaller than the Bohr radius. If 

one day we are able to produce a molecule with a proton and an 

anti-proton, the intemucleus distance of that molecule will be 

amazingly small. It is obvious from this result that the size of the 

hydrogen molecule ion depends on the electron mass. 

OTHER MOLECULES - A lot of calculations have been done 

to find the size ot molecules (i.e. the length of the bonds in the 

molecule) [7, 8, 9], Some of the molecules studied include F2, Cl2, 

LiCl, Ni , HF and HC1. For heavier molecules, the calculations 

were done using internal relativistic corrections [10, 11, 12] 

because ol the higher mass ot the electron. Relativistic corrections 

due to an external gravitational potential were never taken into 

account. Some of the molecules studied in this way are N2, N2, 

Au2> AuH, AuCl, Cl2, F2, Xe2, Xe2, T1H and Bi2. The table 
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published by Pyykko [10] is extensive and covers more than one 

hundred molecules. Ah the results cited in the references are in 

units of a0 or in units that are related to a0 and are proportional to 

Go- 

crystals AND METALS - According to Zhdanov [13] 

(page 201), the equilibrium distance between particles in a crystal 

is proportional to the equilibrium spacing in a diatomic molecule 

having the same parameters for the potential energy. (The constant 

of proportionality depends only on the structure of the crystal.) 

This means that the size of crystals is proportional to the Bohr 

radius since we have seen in the previous section that the size of all 

molecules (and thus the distance between the nuclei in diatomic 

molecules) is proportional to the Bohr radius. Furthermore, the 

same author [13] (pages 208-209) develops an ionic model for 

metals. According to this model, the atomic radius in a metallic 

crystal (which is defined as half the shortest interatomic distance) 

can be expressed as: 

h2 1 

0 8Ame2 zl/3 

where h is Planck's constant, A is Madelung's constant, m is the 

electron mass, e is the charge of the electron and z is the valency of 

the atom. We see then that the size of metals is proportional to the 

Bohr radius as defined in chapter one. 

CONCLUSION - It is obvious that the size of all matter is 

strongly dependent on the Bohr radius and therefore the mass of the 

electron. Even if relativistic corrections are applied internally 

using Dirac's calculations, this correction does not take into 

account the relativistic effect caused by an external gravitational 

potential. This means that, since every object we know is made of 

either atoms, molecules, crystals or metals, the results of chapter 

one concerning the dilation and contraction ol the Bohr radius in 

the hydrogen atom apply to all matter including humans. Finally, 

we conclude that this dilation or contraction is real. 
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Appendix II 

The Deflection of Light by the Sun's 

Gravitational Field: 

An Analysis of the 1919 Solar Eclipse 

Expeditions. 

INTRODUCTION - According to Einstein's general theory of 

relativity published in 1916, light coming from a star far away from 

the Earth and passing near the Sun will be deviated by the Sun’s 

gravitational field by an amount that is inversely proportional to 

the star’s radial distance from the Sun (1.745" at the Sun's limb). 

This amount (dubbed the full deflection) is twice the one predicted 

by Einstein in 1911, using Newton's gravitational law (half 

deflection). In order to test which theory is right (if any), an 

expedition led by Eddington was sent to Sobral and Principe for the 

eclipse of May 29, 1919 [1], The purpose was to determine 

whether or not there is a deflection of light by the Sun's 

gravitational field and if there is, which of the two theories 

mentioned above it follows. 

The expedition was claimed to be successful in proving 

Einstein's full deflection [1,2], This test was crucial to the general 

approval that Einstein's general theory of relativity enjoys 

nowadays. 

However, this experimental result is obviously not in accordance 

with the result found in chapter ten. This is not a problem, as we 

will show that the deflection was certainly not measurable. We 

will see that the effect of the atmospheric turbulence was larger 

than the full deflection, just like the Airy disk. We will also see 

how the instruments could not give such a precise measurement 

and how the stars distribution was not good enough for such a 

measurement to be convincing. Finally, we will discuss how 

Eddington's influence worked for Einstein's full displacement and 

against any other possible result. 

ABOUT THE EXPERIMENTAL RESULTS - Atmospheric 

turbulence is a phenomenon due to the atmosphere which causes 
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images of stars as seen by an observer on Earth to jump, quiver, 

wobble or simply be fuzzy. This is a well-known phenomenon to 

any astronomer, amateur or professional. In fact [3] (page 40), 

Rare is the night (at most sites) when any telescope, no 

matter how large its aperture or perfect its optics, can 

resolve details finer than 1 arc second. More typical at 

ordinary locations is 2- or 3-arc-second seeing, or 

worse. 

The problem becomes even worse during the afternoon due to 

the heat of the ground. Tentative solutions to this seeing problem 

have only recently been experimented [4], 

For anyone unacquainted with atmospheric turbulence, an easy 

way to observe a similar phenomenon is by looking over a hot 

barbecue. In this case, the distortion of the images (of the order of 

10') is due to the heat coming from the barbecue. 

Eddington, an astronomer, was certainly aware of this problem. 

If it was difficult in 1995 [3], to see details finer that 1", how much 

more difficult was it in the jungle in 1919? The supposed effect 

(full and half deflection) decreases with the distance of the star 

from the Sun. During the 1919 eclipse, the stars closest to the 

Sun's limb were drowned in the corona and could not be observed 

[1]. Of the stars that were not drowned in the corona, Einstein’s 

theory predicts that k" Tauri should have the largest displacement, 

with 0.88". In Sobral, the displacement for that star was reported to 

be 1.00" [2], How could Eddington and Dyson claim to observe 

that if at best, their precision due to atmospheric turbulence in 

daytime heat was several seconds? And they were not at best, near 

noon at Sobral and 2 p.m. at Principe, when the seeing is the worst, 

with small telescopes that were less than ideal. 

The error caused by the atmospheric turbulence is large enough 

to refute any measurement of the so-called Einstein effect. 
However, there are other reasons. 

Two object glasses were used during the expedition at Sobral, a 

4-inch object glass and an astrographic object glass. Assuming a 

perfect optical shape, which means perfect correction for sphericity 

and chromaticity, for the 4-inch telescope, the size of the central 
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spot (which is surrounded by the ring system of the diffraction 

pattern) can never be smaller than 1.25". This central spot is called 

the Airy disk. Since some of the results were presented with a 

claimed accuracy of the order of 0.01" [2] (page 391), that 

relatively big diffraction ring pattern (125 times the claimed 

accuracy) should have been easily seen. Since no mention is made 

of it, we must understand that it was not observable because 

various aberrations (chromatic of spheric) were larger than 1.25" 

and/or because, as expected, the atmospheric turbulence was larger 

than 1.25", which is the theoretical limit of resolution of that 

telescope when there is no aberration and no turbulence. 

The focus of the telescopes was determined and fixed many days 

before the eclipse [1] (page 141). But the elements of a telescope 

are very sensitive to temperature [1] (page 153): 

"when the [astrographic] object glass is mounted in a 

steel tube, the change of scale over a range of 

temperature of 10° F. should be insignificant, and the 

definition should be very good". 

During the team’s stay at Sobral, the temperature ranged from 

75°F during the night to 97°F in the afternoon. This change in 

temperature must have affected the astrograph, but what about the 

the mirrors and the 4-inch telescope? 

The photographs of the eclipse taken with the astrograph were 

very disappointing [1] (page 153). It appears that the focus had 

changed from the night of May 27 to the moment of the eclipse. 

After the eclipse, the team left Sobral and came back in July to take 

comparison plates. They discovered that the astrograph had 

returned to focus! They blamed this change of focus on the effect 

of the Sun’s heat on the mirror, but they could not say whether this 

effect caused a change of scale or if it only blurred the images. 

What about the 4-inch telescope? The Sun’s heat could have 

affected its scale without blurring the images. We know that there 

is a zone around the focal length where the image will look as it it 

were in focus but where the scale will be changed. To the best of 

our knowledge, nothing has ever been said about that possible 

problem. 
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If we plot the value of Einstein's deflection against the angular 

distance of the star from the Sun (as done in [5] page 50), we see 

that the part of the hyperbola where the slope changes the most lies 

under a distance of two solar radii from the Sun's center. That part 

is thus crucial to a good interpretation of the results. Looking at 

page 60 of the same article, we see that only two of the stars used 

by the teams at Principe and Sobral are in this area. It is thus very 

difficult to fit a hyperbola when only two of the stars are in that 

zone. These observations (and most of the others studied in von 

Kliiber's article which reviews all observations done before 1960) 

could easily be fitted by a straight line instead of Einstein's 

deflection equation. Therefore they do not prove any of Einstein's 

deflections (full or half). 

In one of the meetings of the Royal Astronomical Society [6] 

(page 41), Ludwik Silberstein pointed out that the displacements 

found were not radial, as Einstein's theory states, but sometimes 

deviated from the radial direction by as much as 35°! Nothing was 

said about that in Dyson's article. According to Silberstein: 

"If we had not the prejudice of Einstein’s theory we 

should not say that the figures strongly indicated a 
radial law of displacement." 

This brings us to our next point, which is to what degree social 

circumstances influenced the acceptation of Einstein's theory. 

ABOUT EDDINGTON’S INFLUENCE - The results from the 

1919 expedition were quickly accepted by the scientific 

community. When preliminary results were announced, Joseph 

Thomson (from the Chair) said [2] (page 394): 

"It is difficult for the audience to weigh fully the 

meaning ot the figures that have been put before us, but 

the Astronomer Royal [Dyson] and Prof. Eddington 

have studied the material carefully, and they regard the 

evidence as decisively in favor of the larger value for 
the displacement." 

Thomson makes it look like only Eddington and Dyson are able 

to understand the results. It seems that they have such a reputation 

that the general and the scientific public should blindly believe 
them. 
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It is Dyson who presented the results of the Sobral expedition at 

a meeting of the Royal Astronomical Society [2] (page 391). Some 

of the displacements presented were very small, sometimes of the 

order of 0.01". In another meeting [6] (page 40), Oliver Lodge 

asked if it were possible to measure a deviation of 1/60" 

(approximately 0.02") to which Dyson responded: 

"I do not think that it would be possible to measure so 

small a quantity." 

We clearly see that Dyson contradicted himself. 

Furthermore, Eddington said himself he was in favour of the full 

deflection before doing the experiment. Writing about the results 

of the expedition, he said [7] (page 116): 

"Although the material was very meager compared with 

what had been hoped for, the writer (who it must be 

admitted was not altogether unbiased) believed it 

convincing." 

Moreover, according to Chandrasekhar [8] (page 25), 

"had he been left to himself, he would not have 

planned the expeditions since he was fully convinced of 

the truth of the general theory of relativity!" 

Eddington was a Quaker and like other Quakers, he did not want 

to go to war (WWI). In England, Quakers were sent to camps 

during the war, but because of Dyson's intervention [8] (page 25), 

"Eddington was deferred with the express stipulation 

that if the war should end by May 1919, then Eddington 

should undertake to lead an expedition for the purpose 

of verifying Einstein’s predictions! " 

The circumstances of the war forced Eddington to do an 

experiment that he would have never done had he had a choice 

because he was so convinced of its outcome. 

Why was the theory so quickly, widely and easily accepted? 

After all, it was radically changing the common view of the 

universe, curving space and dilating time. Furthermore, the British 

were accepting a theory from a German man, right after a bitter war 

with Germany. 
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It seems that the theory was widely accepted only after the 

eclipse expedition [9] (page 50). According to Earman and 

Glymour, Dyson and Eddington played a great influential role in 

the acceptation of the general theory of relativity by the British. In 

fact, it is Eddington who, convinced of the truth of the theory, 

convinced Dyson. In the few years before 1919, they made the 

measurement of the "Einstein effect" a challenge and after the 

expeditions of May 1919, they helped give the impression that the 

data had confirmed Einstein’s theory. 

Aside from the fact that Eddington was convinced that the theory 

was right, another reason pushed him to advocate it [9] (page 85). 

He hoped that a British verification of a German theory might 

reopen the lines of communication and collaboration between the 

scientists of both countries, lines that had been closed during 

World War One. 

Finally, before 1919, no one had claimed to have observed shifts 

of the size required by Einstein's theory. Probably because the 

theory was thought to be proved by the 1919 eclipse observations, 

a lot of scientists, maybe throwing out some of their data, reported 

finding the right shift [9] (page 85). 

After 1919, other expeditions were undertaken to measure the 

deflection of light by the Sun. Most of them obtained results a bit 

higher than Einstein's prediction, but it did not matter anymore 

since the reputation of the theory had already been established. 

Jamal Munshi in reference to his "Weird but True" reports on 
the internet at: 

http://munshi.sonoma.edu/jamal/physicsmath.html: 
Dr. F. Schmeidler of the Munich University 

Observatory has published a paper [49] titled "The 

Einstein Shift An Unsettled Problem," and a plot of 

shifts for 92 stars for the 1922 eclipse shows shifts 

going in all directions, many of them going the wrong 

way by as large a deflection as those shifted in the 

predicted direction! Further examination of the 1919 

and 1922 data originally interpreted as confirming 

relativity, tended to favor a larger shift, the results 

depended very strongly on the manner for reducing the 
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measurements and the effect of omitting individual 
stars. 

So now we find that the legend of Albert Einstein as the 

world's greatest scientist was based on the 

Mathematical Magic of Trimming and Cooking of the 

eclipse data to present the illusion that Einstein's 

general relativity theory was correct in order to prevent 

Cambridge University from being disgraced because 

one of its distinguished members was close to being 

declared a "conscientious objector"! 

CONCLUSION - Much of the popularity of Einstein's general 

theory of relativity relies on the observations done at Sobral and 

Principe. We see now that these results were overemphasized and 

did certainly not consecrate Einstein's theory. It is interesting to 

think of what would have happened if the results had been deemed 

not good enough or if they had clearly showed that there is no 

deviation of light by the Sun. Einstein’s theory might not have 

enjoyed the popularity it now does and a new more realistic theory 

might have been found years ago. 
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Appendix III 

Physical Constants. 

Bohr Radius 

Coulomb constant 

Eccentricity of Mercury’s orbit 

Electronic charge 

Electron mass 

Gravitational acceleration on Earth 

Gravitational constant 

Mass of the Earth 

Mass of the hydrogen atom 

Mass of Mercury 

Mass of the Sun 

Muon mass 

Planck constant 

Semi-major axis of Mercury 

Sommerfeld fine structure constant 

Velocity of light 

a0 = 5.29x10"" m 

k =l/47T80=8.988x 109 N-m2/C 

e = 0.2056 

e =1.602x1 O’19 C 

me = 9.109x1 O’31 kg 

g = 9.8 m/s2 

G = 6.6726x10'" N-m2/kg2 

M(E) = 5.9742x1024 kg 

m0= 1.6727406x1 O'27 kg 

M(M) = 0.33022xl024 kg 

M(S)= 1.9834x103° kg 

m^ = 207me= 1.886x10'28 kg 

h = 2nh =6.626x1 O'34 J-s 

a = 5.791xl010m 

a = 7.297xl0:3 = 1/137 

c = 2.99792458x10s m/s 
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