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Prologue

The present book derives from a study of the Principia, off and on for some years, that
became earnest only latterly. And the opportunity I had to give two series of ten lectures
each in Chicago (in 1990) and in Oxford (in 1991) strengthened the base of my
understanding.

The manner of my study of the Principia was to read the enunciations of the different
propositions, construct proofs for them independently ab initio, and then carefully follow
Newton’s own demonstrations. In the presentation of the propositions, the proofs that I
constructed (which cannot substantially differ from what any other serious student can
construct) often precede Newton’s proofs arranged in a linear sequence of equations and
arguments, avoiding the need to unravel the necessarily convoluted style that Newton had
to adopt in writing his geometrical relations and mathematical equations in connected
prose. With the‘ximpediments of language and of syntax thus eliminated, the physical insight
and mathematical craftsmanship that invariably illuminate Newton’s proofs come sharply
into focus. On occasions, I provide supplementary comments and explanations, sometimes
quoting from the masters of earlier centuries.

In the course of my study, I made no serious attempt to enlarge my knowledge derived
from the Principia by any significant collateral reading. The book must, therefore, be
assessed—for what it may be worth—as an undertaking by a practising scientist to read
and comprehend the intellectual achievement that the Principia is.

I should add that on account of diverse constraints, I have not been able to study the
entire Principia in the manner that I had adopted. I had to content myself, instead, to
only those parts of the Principia that seemed to me in the direct line leading to Newton’s
formulation of his universal law of gravitation. However, in the last four Chapters, I
consider a few additional matters that may give the reader a flavour of what the Principia
contains besides.






2 ®,
% 1 %

The beginnings and the writing
of the Principia

1. Introduction

ome acquaintance, with the antecedents of the less than two years—from the late
S autumn of 1684 to the early summer of 1686—in which Newton composed the entire
Principia, is essential to a proper appreciation of the range and variety of the topics that
are treated in it in depth and with rare perception. The literature on this ‘pre-Principia’
period is vast; but it is mostly not relevant to the purposes of this book as stated in the
Prologue. And consistent with those purposes, the account that follows is a bare record
of events that are not disputed.
In describing the origins of the Principia one distinguishes three epochs: the plague
years 1665-66, 1679, and 1684.

2. The plague years

There is sufficient interlocking evidence that Newton did attempt a test of the inverse-
square law of gravitational attraction during the plague years when he was mostly
sojourning in Woolsthorpe. References to the test occur in the following accounts by
Newton, Whiston, Pemberton, and Stukeley. (The underlining is by the author.)

Newton (in a memorandum in the Portsmouth collection, written in 17147?):

And the same year [1666] I began to think of gravity extending to the orb of
the Moon, and having found out how to estimate the force with which [a] globe
revolving within a sphere presses the surface of the sphere, from Kepler’s Rule
of the periodical times of the Planets being in a sesquialternate proportion of
their distances from the centers of their Orbs I deduced that the forces which
keep the Planets in their Orbs must [be] reciprocally as the squares of their
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distances from the centers about which they revolve: and thereby compared the
force requisite to keep the Moon in her Orb with the force of gravity at the
surface of the earth, and found them answer pretty nearly. All this was in the
two plague years of 1665 and 1666, for in those days I was in the prime of my
age for invention, and minded Mathematicks and Philosophy more than at any
time since.

(There is an alternative version in a letter Newton addressed to Pierre Des Maizeaux in
1718; but it is not substantially enough different from the foregoing to concern us here.)

W. Wiston (in his Memoirs published in 1749):

Upon Sir Isaac’s First Trial, when he took a Degree of a great Circle on the
Earth’s Surface, whence a Degree at the Distance of the Moon was to be
determined also, to be 60 measured Miles only, according to the gross Measures
then in Use. He was, in some Degree, disappointed, and the Power that
restrained the Moon in her Orbit, measured by the versed Sines of that Orbit,
appeared not to be quite the same that was to be expected, had it been the
Power of Gravity alone, by which the Moon was there influenc’d. Upon this
Disappointment, which made Sir Isaac suspect that this Power was partly that
of Gravity, and partly that of Cartesius’s Vortices, he threw aside the Paper of
his Calculation and went to other Studies.

H. Pemberton (in his preface to the third edition of the Principia):

Supposing therefore the power of gravity, when extended to the moon, to
decrease in the same manner, he computed whether that force would be sufficient
to keep the moon in her orbit. In this computation, being absent from books,
he took the common estimate in use among geographers and our seamen, before
Norwood had measured the earth, that 60 English miles were contained in one
degree of latitude on the surface of the earth. But as this is a very faulty
supposition, each degree containing about 69 of our miles, his computation did
not answer expectation; whence he concluded, that some other cause must at
least join with the action of the power of gravity on the moon. On this account
he laid aside for that time any farther thoughts upon this matter.

W. Stukeley (in his Memoirs of Sir Isaac Newton’s Life):

After dinner, [on 15th April 1726] the weather being warm, we went into the
garden and drank thea, under the shade of some appletrees, only he and myself.
Amidst other discourse, he told me, he was just in the same situation, as when
formerly, the notion of gravitation came into his mind. It was occasion’d by the
fall of an apple, as he sat in a contemplative mood. Why should that apple
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always descend perpendicularly to the ground, thought he to himself. Why
should it not go sideways or upwards, but constantly to the earths centre?
Assuredly, the reason is, that the earth draws it. There must be a drawing power
in the matter: and the sum of the drawing power in the matter of the earth must
be in the earths center, not in any side of the earth. Therefore dos this apple
fall perpendicularly, or towards the center. If matter thus draws matter, it must
be in proportion of its quantity. Therefore the apple draws the earth, as well as
the earth draws the apple. That there is a power, like that we here call gravity,
which extends its self thro’ the universe.

The apparent discrepancy between Newton’s ‘pretty nearly’ as opposed to Whiston’s
‘in some degree disappointed’ and Pemberton’s ‘his computations did not answer
expectations’ has been discussed at great length in the literature. But the discussion would
seem to have become moot in view of the identification of the manuscript described by
David Gregory in his account relating to his visit to Newton in Cambridge in 1694:

I saw a manuscript [written] before the year 1669 (the year when its author
Mr Newton was made Lucasian Professor of Mathematics) where all the
foundations of his philosophy are laid: namely the gravity of the Moon to the
Earth, and of the planets to the Sun. And in fact all these even then are subjected
to calculation. I also saw in that manuscript the principle of equal times of a
pendulum suspended between cycloids, before the publication of Huygens’s
Horologium Oscillatorium.

A translation of the manuscript in Gregory’s account (identified as M.S. Add 3958 (5)
folios, 87; 89 (left half)) has been provided by J. Herivel in his book The background of
Newton’s Principia (pp. 195-198). The analysis of this manuscript is presented below
without the encumbrances of style and language of the original.

B

D A
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Let DAED represent the assumed circular orbit of a radius R described by the Moon,
with a uniform velocity v about the centre of the Earth at C. And let A be the instantaneous
position of the Moon displaced by an infinitesimal amount from D and AB the direction
of its motion; and finally let B be the point, on the prolongation of CD that the Moon
would have arrived at after an interval of time dt if the radial attraction of the Earth
had not acted. If a., denotes the gravitational attraction to which the Moon is subjected,
then it follows from Galileo’s law,

$a.(dt)*> = BD. (1)
If T denotes the period of revolution,
L @
T 2nR
whence
la,. = (27;15)2 fDDZ 3)
But, by elementary geometry, AB> = BD . BE or, neglecting quantities of the second order,
AD? ~ BD.BE ~ BD.DE = BD .2R; @)
and it follows from (3):
,_(@mR)* 1 5)

a T A~ A
2%cc 2R T2
that is, ‘the required line (namely the third proportional of the circumference to the
diameter) through which its [the Moon’s] endeavour of receding from the centre would
impel the body in the time of a complete revolution when applied constantly in a straight
line’ as Newton stated the result. Rewriting equation (5) in the form,

47’R
“= T
and applying it to the Earth—Moon system, with R and T having their current values,
we find

a

; (6)

39-48 x 384 x 10'°
a4.(C) = ahale ~ 0:272. (7)
(27:32 x 24 x 3600)*
The acceleration of gravity, g, on the surface of the Earth is

g = 980 = 3602 x a,(C). (8)

Newton found for this ratio,

g
ae(C)

~ ‘4000 and more’. )
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It is this discrepancy between ~ 3600 and ~4000+ that ‘did not answer expectation’ and
‘disappointed” Newton. Pemberton and others have explained the discrepancy as a
consequence of Newton having assumed the value (‘absent from books’):

number of miles per degree of latitude on Earth = 60, (10)
instead of the true value,
number of miles per degree of latitude on Earth = 693, an

and Newton’s customary usage of 5000 ft (instead of 5280 ft) for a mile. With these two
assumptions Newton should have found

. 2
I~ 3600 x <M> ~ 4332, (12)
a,.(C) 60 x 5280
which he apparently ‘rounded’ to 4000 +.
It should be noted that writing
dt = A—D, (13)
v

instead of (2), Newton doubtless obtained for a.. the value,

BD v?

v?=—  [by (4)], (14)

ae. = 2 —
AD? R

a relation which, as he later explained in his Scholium to Proposition IV, could also be
derived by considering a sequence of ‘reflections from the circle at the several angular
points’ [of an inscribed polygon] and summing the ‘force with which at every reflection
it strikes the circle’. This method may have been his original derivation (as recorded in
the ‘Waste book’); but it is hardly to be doubted that Newton did not notice the simpler
alternative derivation (14) at the time he wrote the manuscript that is presently being
considered. In any event it is with the aid of the formula (14) that Newton deduced, as
he stated, ‘from Kepler’s rule of the periodical times of the planets being in sesquialternate
proportion of their distances from the centers of the Orbs that the forces which keep the
planets in their Orbs must [be] reciprocally as the squares of their distances from the
centers about which they revolve’. More explicitly, from the equation

= an’ (15)
v
and ‘Kepler’s rule’,
T o< R3?, (16)
we deduce
v? = 4n°R? oc —1—; (17)
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or, by equation (14),

a,,oc R™2. (18)

In concluding this section, we may address ourselves to the further question that has

often been asked and discussed in the literature: namely, why Newton did not pursue the

matter further since after his return to Cambridge from Woolsthorpe he must have become

aware of his erroneous assumption (10) and corrected for it. For my part, I accept the
view of J. C. Adams quoted by Rouse Ball:

On the other hand, the late Prof. Adams told me that he believed that Pemberton
and Whiston were mistaken as to the insufficiency of the verification. Newton
knew that the orbit was not actually circular, and that his numerical data were
only approximate; hence he could have expected only a rough verification of
the hypothesis, and as he asserted that he found his results agree or “answer
pretty nearly,” Prof. Adams considered that these calculations were sufficient
to convince Newton that it was gravity alone that retained the moon in its orbit,
and further he strongly suspected that Newton already believed that gravity
was due to the fact that every particle of matter attracts every other particle,
and that this attraction varied as the product of the masses and inversely as
the square of the distance between them. Any opinion that Prof. Adams
expressed on the subject must carry great weight, and the matter is one which
may be fairly left to the judgment of the reader. Fortunately, the question
whether Newton in 1666 came to the conclusion that gravity is only the chief
cause (as Pemberton and Whiston imply), or whether he then came to the
conclusion that it was the sole cause by which the moon is retained in its orbit,
is comparatively unimportant, because there is no doubt as to what his
conclusions ultimately were, and the question of the date when he convinced
himself that gravity was sufficient by itself, and that the Cartesian vortices did
not exist, is mainly a matter of antiquarian interest.

Besides, it is difficult for me to imagine that Newton with all his insight and perception
did not realize that the assumption,

a,(C) ( radius of the Earth )2
g radius of the Moon’s orbit/ ’

implies that the Earth attracts objects on its surface as if its entire mass is concentrated
at the centre—an assumption most emphatically against ‘common sense’ (unless one had
known of its truth already). Newton was to prove the theorem in question in 1685 which
he had not ‘suspected’ before the demonstration. It appears to me most likely that the
untenability of the basic assumption underlying equation (19)—so Newton must have
thought—discouraged him sufficiently to lay the entire matter aside. I shall return to this
question in §5.

(19)
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3. The year 1679

There appears to be little doubt that Newton did not pursue (after the plague years) the
subject of gravitational attraction and planetary motions until the year 1679 though his
interest was probably revived—albeit very briefly—in 1673 when he received his presenta-
tion copy of De Horologio Oscillatorio from Huygens and again in 1677, when, as Newton
wrote to Halley on 27 May 1686, he had ‘discoursed’ with Sir Christopher Wren and Dr.
Donne on ‘this problem of determining the planetary motions upon philosophical
principles’.

In 1679 Hooke initiated a correspondence with Newton and the two pairs of letters
they exchanged at the time and their aftermath have been the subject of a vast literature.
We shall desist from entering that thorny realm. It will suffice for our purposes to note
only that, as a result of the correspondence, Newton’s interest in dynamics was revived
sufficiently for him to realize for the first time the real meaning of Kepler’s law of areas.
And as he wrote, ‘I found now that whatsoever was the law of the force which kept the
Planets in their Orbs, the area described by a radius drawn from them to the Sun would
be proportional to the times in which they were described’; and he proved the two
propositions that

‘all bodies circulating about a centre sweep out areas proportional to the time’
and that

‘a body revolving in an ellipse ... the law of attraction directed to a focus of
the ellipse . .. is inversely as the square of the distance’,

as he was to state them in his De Motu Corporum in Gyrum written five years later (as
Proposition 1 and Problem 3, Proposition 3, respectively). That Newton proved these
propositions at this time is confirmed by his statement that he composed ‘in December
1679, the 1% and the 11'® Propositions’ of Book I of the Principia (see §5 below).

The resurrection of Kepler’s law of areas in 1679 was a triumphant breakthrough from
which the Principia was later to flow. But meantime, Newton’s interest lapsed again.

4. The year 1684

This was to be a fateful year. The salient facts are these: Halley visited Newton in
Cambridge in August 1684 (or May 1684 as Herivel believes) to inquire what locus a body
would describe under an inverse-square law of attraction. He was clearly unprepared for
Newton’s ready response that he had proved it to be an ellipse some years earlier. When
asked for his demonstration, Newton was unable to find it among his papers; and he
promised Halley to rework his proof and send it to him. Newton kept his promise and
in November he sent through Dr. Edward Paget his reworked proposition and some
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additional propositions. Halley seems to have been so struck with the novelty and the
originality of the propositions that he visited Newton once again in November and
succeeded in persuading him to publish his results. For, as recorded in the minutes of the
meeting of the Royal Society on 10 December 1684:

Mr. Halley gave an account that he had lately seen Mr. Newton at Cambridge
who had shewed him a curious treatise de Motu; which upon Mr. Halley’s desire,
was, he said, promised to be sent to the Society to be entered upon their
register. Mr. Halley was desired to put Mr. Newton in mind of his promise
for the securing of his invention to himself till such time as he could at leisure
publish it.

The same story is told in more dramatic terms by Abraham De Moivre recalling, as he
said, what Newton had related to him:

In 1684 D" Halley came to visit him at Cambridge, after they had been some
time together, the D" asked him what he thought the curve would be that would
be described by the planets supposing the force of attraction towards the sun
to be reciprocal to the square of their distance from it. S* Isaac replied
immediately that it would be an Ellipsis, the Doctor struck with joy &
amazement asked him how he knew it, why saith he I have calculated it,
whereupon D' Halley asked him for his calculation without any farther delay,
S* Isaac looked among his papers but could not find it, but he promised him
to renew it, & send it.

S* Isaac in order to make good his promise fell to work again but he could
not come to that conclusion w* he thought he had before examined with care,
however he attempted a new way which tho" longer than the first, brought him
again to his former conclusion, then he examined carefully what might be the
reason why the calculation he had undertaken before did not prove right, & . ..
he made both his calculations agree together.

The same story, in nearly identical terms, has been recorded by Conduit (see Plate 1 on
p. 15).

What seems to have happened, between the two visits of Halley, is that Newton’s
interest in dynamics was set afire—a description by no means exaggerated as will presently
appear—that he not only reworked the demonstrations of the two propositions that he
had proved in 1679 but wrote an entire tract De Motu Corporum in Gyrum (the motion
of revolving bodies) which went far beyond. There seems to be some doubt whether or
not De Motu represents the substance of the lectures he gave during the Michelmas term
of 1684. But there is considerable evidence that a slightly recast ‘Version II” of the De
Motu Corporum was what Paget took to London for transmission to Halley. (Translations
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of Version I and those parts of Versions II and III that differ from it are now available:
J. Herivel, The background of Newton’s Principia.)

Let us pause to look at the contents of De Motu Corporum in Gyrum. It consists of
eleven propositions prefaced by three definitions, four hypotheses, and two lemmas. The
eleven propositions are listed below; and the corresponding propositions in the Principia
to which they correspond are noted in parentheses

(i) Kepler’s law of areas (Book I, Proposition I).

(it) The basic relations governing circular orbits described uniformly about the centre
(Book I, Proposition IV; the relations in question are those given in equations (6)
and (14) in §2).

(iii) The centripetal attraction under which a given locus can be described (Book I,
Proposition VI).

(iv) Application to a body revolving in the circumference of a circle under attraction
from a point on the circumference (Book I, Proposition VII of the first edition; the
crucial Corollaries 1-3 appear for the first time in the second edition).

(v) An ellipse about its centre will be described under a centripetal attraction proportional
to the distance (Book I, Proposition X).

(vi) An ellipse about a focus will be described under a centripetal attraction inversely as
the square of the distance; and a Scholium on the application of the result to
planetary motions (Book I, Proposition XI).

(vii) Kepler’s third law and a Scholium on the application of the result of planetary
motions (Book I, Proposition XV).

(viii) Given that the centripetal force is inversely as the square of the distance and given
also its magnitude, to determine the ellipse which a body will describe when pro-
jected from a given point with a given velocity in an assigned direction (Book I,
Proposition XVII).

(ix) The motion of a body falling radially towards the centre under a law of attraction
inversely as the square of the distance (Book I, Proposition XXXII).

(x) The motion of a particle in a resisting medium, the resistance being proportional to
the velocity, under no external force (Book II, Proposition II).

(xi) Same as (x) above but under a constant centripetal force (Book II, Propositions I1I
and IV).

It is staggering—if not bewildering—to realize that all of the foregoing propositions
were worked out—almost in the forms that they were later to be included in the
Principia—in the interval between Halley’s first visit in August (or May) and Paget’s taking
the manuscript to London in November not allowing for the time it must have taken to
make the two versions in longhand. (Autograph photographic facsimile copies of these
manuscripts are now available: The preliminary manuscripts of Sir Isaac Newton’s 1687
Principia, 1684—1686: with an introduction by T. Whiteside, Cambridge, 1989.)
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No wonder that Halley scurried back to Cambridge on seeing what Paget had
brought him!

One additional comment: Newton seems to have corrected his 1666 ‘Moon test’ (§2)
before the summer of 1685 at the latest, for, as he writes in Version III of De Motu (see
Herivel, p. 302),

My calculations reveal that the centripetal force by which our Moon is held in
her monthly motion about the Earth is to the force of gravity at the surface of
the Earth very nearly as the reciprocal of the square of the distance [of the
Moon] from the centre of the Earth.

To summarize: after Halley’s first visit, Newton reconstructed the demonstrations of
the two propositions (that he had mislaid) and added several more. The result was Version I
of De Motu Corporum in Gyrum, composed in the ‘Autumn’ of 1684. Version II, a fair
copy of Version I, was sent to Halley, through Paget, in November. During his second
visit in November, Halley was able to persuade Newton to publish his discoveries; and
his report to the Royal Society at its meeting on 10 December followed. Finally, as
Newton’s letter of 23 February 1685 to Aston (one of the then Secretaries of the Royal
Society) attests, the Propositions de Motu was entered in the Register Book of the Royal
Society:

I thank you for entering in your Register my notions about motion. I designed
them for you before now, but the examining several things has taken a greater
part of my time than I expected, and a great deal of it to no purpose. And now
I am to go into Lincolnshire for a month or six weeks. Afterwards I intend to
finish it as soon as I can conveniently.

Newton was, at long last, earnestly embarked on writing his Principia.

5. The years 1685—-1686: the writing of the Principia

The end of the Michelmas term of 1684 found Newton in the grip of what was to become
his Philosophiae Naturalis Principia Mathematica.

Newton had originally thought of his projected book as no more than an expanded
version of De Motu Corporum in Gyrum. The extant autograph copy of De Motu Corporum
Liber Primus (deposited as his ‘Lucasian Lectures’ for the years beginning October 1684
and October 1685) suggests as much. But by early spring of 1685, the prospect had changed
radically. This is confirmed by what Newton wrote to Aston on February 1685 (see §4),
and also in his Preface to the first edition of the Principia:

But after I had begun to consider the inequalities of the lunar motions, and had
entered upon some other things relating to the laws and measures of gravity
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and other forces; and the figures that would be described by bodies attracted
according to given laws; and the motion of several bodies moving among
themselves; the motion of bodies in resisting mediums; the forces, densities, and
motions, of mediums; the orbits of the comets, and such like, I deferred that
publication till I had made a search into those matters, and could put forth the
whole together.

The book, however, was finished and ready for press in less than two years. As
stated by Brewster, quoting from a memorandum in ‘Sir Isaac Newton’s own hand-
writing’:

In the tenth proposition of the second book, there was a mistake in the first
edition, by drawing the tangent of the arch GH from the wrong end of the arch,
which caused an error in the conclusion; but in the second edition I rectified
the mistake. And there may have been some other mistakes occasioned by the
shortness of the time in which the book was written, and by its being copied
by an amanuensis [Humphrey Newton] who understood not what he copied;
besides the press faults, for I wrote it in seventeen or eighteen months, beginning
in the end of December 1684, and sending it to the Royal Society in May
1686, excepting that about ten or twelve of the propositions were composed
before, viz., the 1st and 11th in December 1679, the 6th, 7th, 8th, 9th, 10th,
12th, 13th, and 17th, Lib. L., and the 1st, 2d, 3d, and 4th, Lib. II., in June and
July 1684.

And this is in agreement with what Pemberton wrote in his Preface to the third edition
of the Principia:

This treatise full of such a variety of profound inventions, was composed by
him from scarce any other materials than the few propositions before mentioned,
in the space of one year and an half.

It will be noted that the propositions, listed in the memorandum quoted by Brewster
as having been composed in June and July 1684 are, with the exception of the relatively
minor Propositions VIII, IX, XII, and XIII, the same as those we have noted in §4 as
included in De Motu Corporum in Gyrum.,

The significant event in the early spring of 1685, whose impact J. C. Adams and
J. W. L. Glaisher fully recognized, is Newton’s determination of the attraction of a spherical
body (‘everywhere similar, at every given distance from the centre, on all sides round
about’, as he was to describe later in the Principia) on any external point. What Glaisher
said in his address on the occasion of the bicentenary of the publication of the Principia
is worth quoting:
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No sooner had Newton proved this superb theorem—and we know from his
own words that he had no expectation of so beautiful a result till it emerged
from his mathematical investigation—than all the mechanism of the universe
at once lay spread before him. When he discovered the theorems that form the
first three sections of the Book I., when he gave them in his lectures of 1684, he
was unaware that the sun and earth exerted their attractions as if they were but
points. How different must these propositions have seemed to Newton’s eyes
when he realised that these results, which he had believed to be only approxi-
mately true when applied to the solar system, were really exact! Hitherto they
had been true only in so far as he could regard the sun as a point compared to
the distance of the planets or the earth as a point compared to the distance of
the moon—a distance amounting to only about sixty times the earth’s radius—
but now they were mathematically true, excepting only for the slight deviation
from a perfectly spherical form of the sun, earth, and planets. We can imagine
the effect of this sudden transition from approximation to exactitude in
stimulating Newton’s mind to still greater efforts. It was now in his power to
apply mathematical analysis with absolute precision to the actual problem of
astronomy.

That Newton attached the greatest significance to the result that he had established is
evident from what he says in Book III, Proposition VIII:

After I had found that the force of gravity towards a whole planet did arise
from and was compounded of the forces of gravity towards all its parts, and
towards every one part was in the inverse proportion of the squares of the
distances from the part, I was yet in doubt whether that proportion inversely
as the square of the distance did accurately hold, or but nearly so, in the total
force compounded of so many partial ones; for it might be that the proportion
which accurately enough took place in greater distances should be wide of the
truth near the surface of the planet, where the distances of the particles are
unequal, and their situation dissimilar. But by the help of Prop. Lxxv and LxXVI,
Book 1, and their Corollaries, I was at last satisfied of the truth of the
Proposition, as it now lies before us.

Equally significant is what Newton wrote to Halley on 20 June 1686:

I never extended the duplicate proportion lower than to the superficies of the
earth, and before a certain demonstration I found last year, have suspected it
did not reach accurately enough down so low; and therefore in the doctrines
of projectiles never used it nor considered the motions of heavens.
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Contrary to what has been commonly asserted, I share a view attributed to Adams and
Glaisher that Newton’s reluctance (even after 1679) to pursue his dynamical investigations
arose from his dissatisfaction in not being able to prove or disprove—he probably did
not try hard enough—a proposition on which the exactitude of the entire theory rests. It
is scarcely to be thought of that a person of Newton’s intellectual perception and standards
did not realize the principal lacuna in his ‘Moon test’. It is equally likely, in my view,
that he was persuaded to write De Motu Corporum in Gyrum in 1684, after Halley’s visit,
by the furor that the questions were causing in London.

It is perhaps significant in this context that De Motu Corporum, Liber Primus (commonly
considered as an early draft of Book I of the Principia) ends abruptly after his
demonstration of Propositions XXXIX, XL, XLI, and XLIII (which are the key Prop-
ositions LXX, LXXI, LXXII, and LXIII of Book I). And equally significant, perhaps, is that
no work sheets of the Principia beyond this point have been found. Is it so implausible
that Newton destroyed them anticipating the cry of latter day historians, ‘Whatever
happened to the work sheets of the Principia?’

To resume the story: the manuscript of Book I went to press before 7 June 1686; for
in the records of the meetings of the Royal Society for 2 June and 7 June we read,
respectively:

. it was ordered, that Mr. Newton’s book be printed, and that Mr. Halley
undertake the business of looking after it, and printing it as his own charge;
which he engaged to do.

and

Ordered ... that the president be desired to license Mr. Newton’s book intitled
Philosophia Naturalis Mathematica and dedicated to the Society.

The rough manuscript of the second book was finished in the summer of 1685; but was,
apparently, not written as a final copy for the press before 20 June 1686.

The preparation of the third book required knowledge of basic astronomical data with
which Newton was not previously acquainted. He was fortunate that he could consult
John Flamsteed on these matters. The rough manuscript was finished by June 1686. Except
for the parts dealing with cometary motions, the manuscript for the third book was ready
for press in March 1687.

The Principia containing all three books was published in July 1687. As Halley wrote
to Newton on 5 July 1687,

I have at length brought your book to an end and hope that it will please you.

It is fitting that we conclude this historical introduction with Newton’s acknowledgment
to Halley in his Preface to the first edition of the Principia:
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In the publication of this work the most acute and universally learned Mr.
Edmund Halley not only assisted me in correcting the errors of the press and
preparing the geometrical figures, but it was through his solicitations that it
came to be published; for when he had obtained of me my demonstrations of
the figure of the celestial orbits, he continually pressed me to communicate the
same to the Royal Society.

To quote Conduit of Halley as
The Ulysses who produced this Achilles.



[P

%{f‘; (j; s ?M&M&W/f ‘f’%i L2 ’éf > Vé@ ,é/ /é;/mﬁz 4&1
53@%/;; uﬁj“w“ﬁi Aﬁwﬁﬁwﬁﬂ i”(ﬁffdawgg} gf,,.& ﬁ%ﬂ"%}ﬁ

ﬁﬁ/ L ark® K o Aar ca Lo iinin at

Jﬁk%&fﬁt@tﬁfﬁ)ﬁ ﬁfgag /%;xz&uw/ é‘;
zmw"‘
/’gﬁ‘ % o el x’f'{ aﬁf Z%&v Cfg ,;ﬁﬂfy ifﬁ;&'f‘j fl?

‘;k///g}iﬂg S addre ”’JM’/@M'{I f,«f;:} /é:w’f'/zwf et /4//
/s é;;/; ,e{,,f e &? "w?,#’ el % /{g“ f@fﬂﬁé:é’ ’
ﬂﬁv'?@: ix;g«:? e r — ?}—%{
! c%*(/é; /”’f{»& f&f;f ,dg AL /:?fw.a» P Y * W,,m
i*“’ et pe ol A mﬁﬁv’ﬁf R RS Wj e @fwg ,q
/,;j;w A Fort r-gw;f/ /4:‘%«1_{»?;3‘2' -1 /f,ﬁfz;:m
M@Mﬁﬁ e ,.ré I sepne Pt g@;%ﬁé’ {gfff&i}w
 Ber i fe fe 7_525 B oS TR ﬁt‘;} f‘;g, Cond i 2{% /{/ ,{:/';)
k.»zféﬁ??!&éﬁ //r;éwp ,,m&‘ ﬁ ,&u{}"}?//gwamu r@’;}p gjf; £ fé/w

M:a /,é}_/"“’ M;{@‘%““ .ﬁ?m s jﬁ%;ﬂwgw Mﬂ*

“”/””f{f? zy;c.w Prm AAQ//A/'::} ;ﬁ?mm x?f’{ ,&it;uaﬂczy
‘,?“ ,’5‘?{2 iﬁ%:ﬁ"é&s ,sﬂfﬁirﬁ »5‘7&@’3;’7 Sy oi')j’:fk’w«k
%:W}Qr/{;% ffz"ﬁ»f/tf‘/:} % PN Mf}?jf[,?m f’ﬁ»‘/.[;‘,wfé

fi‘

/“,;j{f M»fﬁc: ;L.:&ctf f{rfw j&wrfxﬁ&fﬂ"ﬁ ?Q{ wﬁ:j ‘;;

L, ,t:c ﬁ;:!fé‘ gfpdﬁﬁ«*ﬁzﬁdf A fé“ ".«-"5/ e S ’;;ftrf(¢

:%yfg& /’v{ﬂf yé ‘i}ﬁi/{ywrg’;ﬁ:} e“i:f ww'QL /{

,.vwww
& .

L

e

{‘ * i /‘::’.& ,g""l@r; MJ’ 20 G -f?f:?;ﬁ(: yﬁfeﬁi/ } ‘

MJ s /;,/ ‘ p/:;} et /) {
éﬂ f .s«':% = 4 ot A MM““ §
i)@ ‘“{gf ﬁ fﬁ /’r e e ;»;:"’ .

wfﬁ‘?ﬁwﬁ{ Aerzerre m«" ﬁ,’:@p;’é;: f e Z‘f }ff e {i»»ww,/
ggﬁfr 9‘”5‘*/( ﬁ:&,{/{: t»w»r; Wyfg ‘ﬁm o ﬁ

ANV // e ;Zfém;&f’; 5 .f"w’%gvo etz ﬁwﬁg
B PorneSn e

S § S L e et fm
\ | if% ;;* " : %ym«f' ATEs ﬁ”‘ﬁ"‘g}““}/

IR -"’?i‘i‘,st;‘/

&

Plate 1 Copy of the original De Moivre memorandum, in the Joseph Halle Schaffner
Collection of Scientific Manuscripts, Department of Special Collections of the University
of Chicago Library; and published here with the permission of the Library.
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Basic concepts:
Definitions and Axioms

6. Introduction

wo lessons on Definitions and Axioms (or Laws of Motion) precede the formal opening
of Book I: The motion of bodies of the Principia. In these two lessons, Newton
formulates and elaborates the basic concepts and laws that are the underpinnings of his
Natural Philosophy. The concepts are complex and are interrelated. And Newton’s Defini-
tions and Axioms should be read in their totality and in their context keeping in mind that
they ‘Shall be explained at large in the following treatise’ (for which end it was composed!).
We shall quote rather more extensively than may be considered necessary; but they
draw attention to issues that are commonly ignored; and Newton states his ideas with
such clarity that it is a joy to learn them anew.

7. Basic concepts: Definitions

Definition I

The quantity of matter is the measure of the same arising from its density and
bulk conjointly.

Thus air of a double density, in a double space, is quadruple in quantity; in
a triple space, sextuple in quantity. The same thing is to be understood of snow,
and fine dust or powders, that are condensed by compression or liquefaction,
and of all bodies that are by any causes whatever differently condensed. I have
no regard in this place to a medium, if any such there is, that freely pervades
the interstices between the parts of bodies. It is this quantity that I mean
hereafter everywhere under the name of body or mass. And the same is known
by the weight of each body, for it is proportional to the weight, as I have found
by experiments on pendulums, very accurately made, which shall be shown
hereafter.
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It will be noticed that while Newton is careful in defining the notion of mass (as a
quantitative measure of quantity of matter), he leaves the notion of weight unspecified
except to say that ‘by experiments on pendulums, very accurately made’, he has shown
that mass is proportional to weight. The reason for this partial explanation is that the
precise distinction between ‘mass’ and ‘weight’ cannot be made without reference to the
Second Law of Motion (yet to be formulated in terms of concepts yet to be introduced).
This fact is made clear in Newton’s account of ‘his experiments made with the greatest
accuracy’ in Proposition XXIV of Book II (with explicit reference to the Second Law of
Motion). We shall presently consider (out of context! in §10) this proposition to emphasize
that the Definitions and Laws must be read in their totality and not singly.*

Definition 11

The quantity of motion is the measure of the same, arising from the velocity and
quantity of matter conjointly.

The motion of the whole is the sum of the motions of all the parts; and
therefore in a body double in quantity, with equal velocity, the motion is double;
with twice the velocity, it is quadruple.

Quantity of motion (or motion for short) is momentum in our present terminology:
quantity of motion = mass x velocity. @)

(Quantities in bold face indicate that they are vectors.)

Definition 111

The vis insita, or innate force of matter, is a power of resisting, by which every
body, as much as in it lies, continues in its present state, whether it be of rest, or
of moving uniformly forwards in a right line.

This force is always proportional to the body whose force it is and differs
nothing from the inactivity of the mass, but in our manner of conceiving it.
A body, from the inert nature of matter, is not without difficulty put out of its
state of rest or motion. Upon which account, this vis insita may, by a most
significant name, be called inertia (vis inertiae) or force of inactivity. But a body
only exerts this force when another force, impressed upon it, endeavours to
change its condition; and the exercise of this force may be considered as both
resistance and impulse; it is resistance so far as the body, for maintaining its
present state, opposes the force impressed; it is impulse so far as the body, by
not easily giving way to the impressed force of another, endeavours to change the

* To avoid ambiguity it may be noted explicitly that the distinction that is made here is between inertial mass
(m;) and gravitational mass (m,). By mass Newton means the inertial mass m; and by weight he means g x m,
where m, denotes the gravitational mass and g the value of gravity at the location of the mass. For example,
at the surface of the Earth, we should write g = G x (mass of Earth)/(radius of Earth)?, where G denotes the
constant of gravitation, that is, Newton’s constant!
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state of that other. Resistance is usually ascribed to bodies at rest, and impulse
to those in motion; but motion and rest, as commonly conceived, are only
relatively distinguished; nor are those bodies always truly at rest, which
commonly are taken to be so.

There is hardly anything that one can usefully add to Newton’s careful explanation of
the concept of inertia. But note particularly the statements that are are underlined.

Definition IV

An impressed force is an action exerted upon a body, in order to change its state,
either of rest, or of uniform motion in a right line.

This force consists in the action only, and remains no longer in the body
when the action is over. For a body maintains every new state it acquires, by
its inertia only. But impressed forces are of different origins, as from percussion,
from pressure, from centripetal force.

Definition V
A centripetal force is that by which bodies are drawn or impelled, or any way tend,
towards a point as to a centre.

Of this sort is gravity, by which bodies tend to the centre of the Earth;
magnetism, by which iron tends to the loadstone; and that force, whatever it
is, by which the planets are continually drawn aside from the rectilinear motions,
which otherwise they would pursue, and made to revolve in curvilinear orbits.
A stone, whirled about in a sling, endeavours to recede from the hand that turns
it; and by that endeavour, distends the sling, and that with so much the greater
force, as it is revolved with the greater velocity, and as soon as it is let go, flies
away. That force which opposes itself to this endeavour, and by which the sling
continually draws back the stone towards the hand, and retains it in its orbit,
because it is directed to the hand as the centre of the orbit, I call the centripetal
force. And the same thing is to be understood of all bodies, revolved in any
orbits. They all endeavour to recede from the centres of their orbits; and were
it not for the opposition of a contrary force which restrains them to, and detains
them in their orbits, which I therefore call centripetal, would fly off in right
lines, with a uniform motion.

And after the same manner that a projectile, by the force of gravity, may be
made to revolve in an orbit, and go round the whole Earth, the Moon also,
either by the force of gravity, if it is endued with gravity, or by any other force,
that impels it towards the Earth, may be continually drawn aside towards the
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Earth, out of the rectilinear way which by its innate force it would pursue; and
would be made to revolve in the orbit which it now describes; nor could the
Moon without some such force be retained in its orbit. If this force was too
small, it would not sufficiently turn the Moon out of a rectilinear course; if it
was too great, it would turn it too much, and draw down the Moon from its
orbit towards the Earth. It is necessary that the force be of a just quantity, and
it belongs to the mathematicians to find the force that may serve exactly to
retain a body in a given orbit with a given velocity; and vice versa, to determine
the curvilinear way into which a body projected from a given place, with a given
velocity, may be made to deviate from its natural rectilinear way, by means of
a given force.

In the first of the two extracts quoted, Newton makes the distinction between his
definition of centripetal force and Huygens’s definition of centrifugal force (without so
explicitly stating).

The second extract recalls the raison d’étre of his 1666 Moon test. And the problem
formulated in the last sentence is solved in Proposition XVII of Book I (see §30).

Definition VI

The absolute quantity of a centripetal force is the measure of the same, proportional
to the efficacy of the cause that propagates it from the centre, through the spaces
round about.

Thus the magnetic force is greater in one loadstone and less in another,
according to their sizes and strength of intensity.

Definition VII

The accelerative quantity of a centripetal force is the measure of the same,
proportional to the velocity which it generates in a given time.

Thus the force of the same loadstone is greater at a less distance, and less at
a greater: also the force of gravity is greater in valleys, less on tops of exceeding
high mountains; and yet less (as shall hereafter be shown), at greater distances
from the body of the Earth; but at equal distances, it is the same everywhere;
because (taking away, or allowing for, the resistance of the air), it equally
accelerates all falling bodies, whether heavy or light, great or small.

Definition VIII

The motive quantity of a centripetal force is the measure of the same, proportional
to the motion which it generates in a given time.

Thus the weight is greater in a greater body, less in a less body; and, in the
same body, it is greater near to the Earth, and less at remoter distances. This
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sort of quantity is the centripetency, or propension of the whole body towards
the centre, or, as I may say, its weight; and it is always known by the quantity
of an equal and contrary force just sufficient to hinder the descent of the body.

These quantities of forces, we may, for the sake of brevity, call by the names
of motive, accelerative, and absolute forces; and, for the sake of distinction,
consider them with respect to the bodies that tend to the centre, to the places
of those bodies, and to the centre of force towards which they tend; that is to
say, I refer the motive force to the body as an endeavour and propensity of the
whole towards a centre, arising from the propensities of the several parts taken
together; the accelerative force to the place of the body, as a certain power
diffused from the centre to all places around to move the bodies that are in
them; and the absolute force to the centre, as endued with some cause, without
which those motive forces would not be propagated through the spaces round
about; whether that cause be some central body (such as is the magnet
in the centre of the magnetic force, or the Earth in the centre of the gravitating
force), or anything else that does not yet appear. For I here design only to give
a mathematical notion of those forces, without considering their physical causes
and seats.

Wherefore the accelerative force will stand in the same relation to the motive,
as celerity does to motion. For the quantity of motion arises from the celerity
multiplied by the quantity of matter; and the motive force arises from the
accelerative force multiplied by the same quantity of matter.* For the sum of
the actions of the accelerative force, upon the several particles of the body, is
the motive force of the whole. Hence it is, that near the surface of the Earth,
where the accelerative gravity, or force productive of gravity, in all bodies is the
same, the motive gravity or the weight is as the body; but if we should ascend
to higher regions, where the accelerative gravity is less, the weight would be
equally diminished, and would always be as the product of the body, by the
accelerative gravity. So in those regions, where the accelerative gravity is
diminished into one-half, the weight of a body two or three times less, will be
four or six times less.

I likewise call attractions and impulses, in the same sense, accelerative, and
motive; and use the words attraction, impulse, or propensity of any sort towards
a centre, promiscuously, and indifferently, one for another; considering those
forces not physically, but mathematically: wherefore the reader is not to imagine
that by those words I anywhere take upon me to define the kind, or the manner
of any action, the causes or the physical reason thereof, or that I attribute forces,

These sentences state in words that the ratios of acceleration to motive force and of velocity to motion are
the same, being the mass in each case.

21
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in a true and physical sense, to certain centres (which are only mathematical
points); when at any time I happen to speak of centres as attracting, or as
endued with attractive powers.

Newton’s comments on this Definition are quoted in extenso. The parts underlined state,
already at this early stage, his view of natural philosophy. His comments in particular: ‘I
here design only to give a mathematical notion of those forces, without considering their
physical causes and seats’ and ‘the reader is not to imagine that . .. I anywhere take upon
me to define the kind, or the manner of any action, the causes of the physical reason
thereof” are evocative of the climactic statement at the conclusion of the Principia ‘1 feign
no hypothesis’,

The long Scholium which concludes this lesson on ‘Definitions’ is perhaps the part of the
Principia most commented upon by historians and philosophers. But most of these
commentaries (if not all of them) do not heed Newton’s concluding statement that further
elucidation must be sought in the consistency of their usage in the ‘treatise’ that is to
follow.

Nevertheless concerning the notions of ‘absolute time’ and ‘absolute space’ on which
Newton bases his dynamics, it will suffice to say that, in current terminology, the space-time
manifold that is assumed is the Cartesian product,

t ® Euclidean 3-space, (2)

where t is Newton’s ‘equable time’.

8. Basic concepts: the Laws of Motion

After the introductory lesson on fundamental notions (§7), Newton proceeds to his second
lesson to formulate the basis for his entire dynamics in the form of three Laws of Motion
and five corollaries (which are an essential part of the Laws). Again, the Laws and their
corollaries must be considered in their totality and not singly. This need was, for example,
fully recognized by Maxwell who reformulated Newton’s first two Laws of Motion to
‘render more precise [their] ennunciation’ (see §10 below).

Law I

Every body continues in its state of rest, or of uniform motion in a right line, unless
it is compelled to change that state by forces impressed upon it.

Projectiles continue in their motions, so far as they are not retarded by the
resistance of the air, or impelled downwards by the force of gravity. A top,
whose parts by their cohesion are continually drawn aside from rectilinear
motions, does not cease its rotation, otherwise than as it is retarded by the air.
The greater bodies of the planets and comets, meeting with less resistance in
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freer spaces, preserve their motions both progressive and circular for a much
longer time.

The statement of this Law is not ‘precise’ (to quote Maxwell), since what we are to
understand by ‘body’ is not made clear. The statement as it stands is valid if a point
particle or a ‘rigid body’ is intended (as the qualification ‘cohesion’ in the second
illustrative example suggests). But the content of the Law is far wider, when considered
in the contexts of Laws II and III and Corollaries IV and V, as Maxwell’s reformulation
of these Laws makes it explicit (Maxwell’s version is given in §10).

It will be noticed that in the example with the top, the implied arguments are the same
as in Chapter 1, §2 (cf. equation (1)).

Law 11

The change of motion is proportional to the motive force impressed; and is made
in the direction of the right line in which that force is impressed.

The statement of the Law is self-explanatory. In current terminology it states:
‘ force = change in motion
= change in [mass x velocity]
= mass x change in velocity

= mass x acceleration. (1)

Law I11

To every action there is always opposed an equal reaction: or, the mutual actions
of two bodies upon each other are always equal, and directed to contrary parts.

Whatever draws or presses another is as much drawn or pressed by that other.
If you press a stone with your finger, the finger is also pressed by the stone.

If a body impinge upon another, and by its force change the motion of the
other, that body also (because of the equality of the mutual pressure) will
undergo an equal change, in its own motion, towards the contrary part. The
changes made by these actions are equal, not in the velocities but in the motions
of bodies; that is to say, if the bodies are not hindered by any other impediments.
For, because the motions are equaily changed, the changes of the velocities
made towards contrary parts are inversely proportional to the bodies. This Law
takes place also in attractions.

This Law is central to proving the important Corollaries IV and V; and its importance
is further emphasized in the Scholium (see §9 where Maxwell and Thomson and Tait are
quoted).
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Corollary 1

A body, acted on by two forces simultaneously, will describe the diagonal of a
parallelogram in the same time as it would describe the sides by those forces
separately.

If a body in a given time, by the force M impressed apart in the place A4,
should with a uniform motion be carried from A to B, and by the force N
impressed apart in the same place, should be carried from A4 to C, let the
parallelogram ABCD be completed, and, by both forces acting together, it will
in the same time be carried in the diagonal from A4 to D. But it will move in a
right line from A4 to D, by Law L.

From the manner in which this ‘parallelogram law of forces’ is proved, it is clear that the
law applies equally to velocities, motions, and accelerations; and Newton does use the law
in these other contexts.

Corollary 11

And hence is explained the composition of any one direct force AD, out of any
two oblique forces AC and CD, and, on the contrary, the resolution of any one
direct force AD into two oblique forces AC and CD: which composition and
resolution are abundantly confirmed from mechanics.

As if the unequal radii OM and ON drawn from the centre O of any wheel,
should sustain the weights 4 and P by the cords M4 and NP; and the forces
of those weights to move the wheel were required. Through the centre O draw
the right line KOL, meeting the cords perpendicularly in K and L; and from
the centre O, with OL the greater of the distances OK and OL, describe a circle,
meeting the cord MA in D; and drawing OD, make AC parallel and DC
perpendicular thereto. Now, it being indifferent whether the points K, L, D, of
the cords be fixed to the plane of the wheel or not, the weights will have the
same effect whether they are suspended from the points K and L, or from D
and L. Let the whole force of the weight 4 be represented by the line AD.

With the foregoing construction, it follows from Corollary I that the force,
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But 51’, bei_ng parallel to W)’, will be ineffective in turning the wheel. Ar& DC ‘drawing
the radius OD perpendicularly will have the same effect’ as P acting on OL. Hence
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which is the law of the lever. And Newton concludes:

the use of this Corollary spreads far and wide, and by that diffusive extent the
truth thereof is further confirmed. For on what has been said depends the whole
doctrine of mechanics variously demonstrated by different authors. For from
hence are easily deduced the forces of machines, which are compounded of
wheels, pulleys, levers, cords, and weights, ascending directly or obliquely, and
other mechanical powers; as also the force of the tendons to move the bones
of animals. - o -
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Corollary 111

The quantity of motion, which is obtained by taking the sum of the motions directed
towards the same parts, and the difference of those that are directed to contrary
parts, suffers no change from the action of bodies among themselves.

For action and its opposite reaction are equal, by Law III, and therefore, by
Law II, they produce in the motions equal changes towards opposite parts.
Therefore if the motions are directed towards the same parts, whatever is added
to the motion of the preceding body will be subtracted from the motion of that
which follows; so that the sum will be the same as before. If the bodies meet,
with contrary motions, there will be an equal deduction from the motions of
both; and therefore the difference of the motions directed towards opposite parts
will remain the same.

It is important to notice that the proof of this corollary (used in the demonstration of
Corollaries V and VI) depends explicitly on both Laws II and III.

Corollary IV

The common centre of gravity of two or more bodies does not alter its state of
motion or rest by the actions of the bodies among themselves; and therefore the
common centre of gravity of all bodies acting upon each other (excluding external
actions and impediments) is either at rest, or moves uniformly in a right line.

This and the following two corollaries are central to Newtonian dynamics (as we shall
further elaborate in §10).

In establishing Corollary IV, Newton first considers the case when the ‘bodies’ in
question are mass points, m; (i = 1,..., n) moving uniformly with velocities #;, that is,

fl:l;lt_'_di (izla"'7n)7 (6)

where 7; denotes the position vector of m;. The corollary states that the centre of mass of
the particles,
1

R=—=73 mf, where M = ) m;, (7)
M = i=1

moves uniformly in a straight line. This follows directly from equations (6) and (7); thus,
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It is instructive to follow Newton’s proof. He makes use of Lemma XXIII established
later in Book I:

Lemma XXIII
If two given right lines, as AC, BD, terminating in given points A, B, are in a given
ratio one to the other, and the right line CD, by which the indetermined points C,
D are joined is cut in K in a given ratio: I say, that the point K will be placed in
a given right line.

We are required to find the locus of K, given the fixed points E, A, and B and varying
points C, D, and K satisfying the requirements

BD CK
— =0 an — = p, 10
AC KD 4 (19)
where o and f are assigned constants.
Let F be a point on ED such that
EF
— = 11
EC (11)
Draw KL parallel to DF; then
L
¢L = CK _ _ (12)
LF KD

Since the triangles ECL, ELF, and ECF remain similar to themselves as C, L, and F vary
in the manner prescribed (by equations (11) and (12)), EL will remain a constant straight
line as L varies along with C and F. In other words the locus of L is the constant straight
line EL prolonged.
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Now draw KH parallel to EL. Then

EH=LK=FD % (by the similarity of As CLK and CFD)

CL

—(ED—EF)———~
CL + LF

= (EB + BD — «EC) E% (by equations (11) and (12))

p

=[(EB + aAC — «(EA + AC)] ﬁ (by equation (10))
— (EB — B
= (EB — «EA) AR (13)

that is, EH is determined by the initially given quantities, and therefore, remains constant
as C, D, and K vary as prescribed. Hence the locus of K is the straight line HK prolonged
parallel to EL.

Newton’s proof (using Lemma XXIII) proceeds as follows:

For if two points proceed with a uniform motion in right lines, and their
distance be divided in a given ratio, the dividing point will be either at rest, or
proceed uniformly in a right line. This is demonstrated hereafter in Lem. XXIII
and Corollary, when the points are moved in the same plane; and by a like way
of arguing, it may be demonstrated when the points are not moved in the same
plane. Therefore if any number of bodies move uniformly in right lines, the
common centre of gravity of two of them is either at rest, or proceeds uniformly
in a right line; because the line which connects the centres of those two bodies
so moving is divided at that common centre in a given ratio. In like manner
the common centre of those two and that of a third body will be either at rest
or moving uniformly in a right line; because at that centre the distance between
the common centre of the two bodies, and the centre of this last, is divided in a
given ratio.

The proof is now completed by induction (a favourite device of Newton’s). The remaining
part of the proof, when ‘bodies’ more general than mass points are considered, is worth
quoting in extenso to see how Newton skirts ambiguities.

Moreover, in a system of two bodies acting upon each other, since the
distances between their centres and the common centre of gravity of both are
reciprocally as the bodies, the relative motions of those bodies, whether of
approaching to or of receding from that centre, will be equal among themselves.
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Therefore since the changes which happen to motions are equal and directed
to contrary parts, the common centre of those bodies, by their mutual action
between themselves, is neither accelerated nor retarded, nor suffers any change
as to its state of motion or rest. But in a system of several bodies, because the
common centre of gravity of any two acting upon each other suffers no change
in its state by that action; and much less the common centre of gravity of the
others with which that action does not intervene; but the distance between those
two centres is divided by the common centre of gravity of all the bodies into
parts inversely proportional to the total sums of those bodies whose centres
they are; and therefore while those two centres retain their state of motion or
rest, the common centre of all does also retain its state: it is manifest that the
common centre of all never suffers any change in the state of its motion or rest
from the actions of any two bodies between themselves. But in such a system
all the actions of the bodies among themselves either happen between two
bodies, or are composed of actions interchanged between some two bodies; and
therefore they do never produce any alteration in the common centre of all as
to its state of motion or rest. Wherefore since that centre, when the bodies do
not act one upon another, either is at rest or moves uniformly forwards in some
right line, it will, notwithstanding the mutual actions of the bodies among
themselves, always continue in its state, either of rest, or of proceeding uniformly
in a right line, unless it is forced out of this state by the action of some power
impressed from without upon the whole system. And therefore the same law
takes place in a system consisting of many bodies as in one single body, with
regard to their persevering in their state of motion or of rest. For the progressive
motion, whether of one single body, or of a whole system of bodies, is always
to be estimated from the motion of the centre of gravity.

I cannot desist from observing that the essential parts of the argument in the three
sentences (of ten, four, and six lines, respectively) with many semicolons and a colon is
reminiscent of the style of Henry James. (Newton’s style is in fact Jamesian throughout.)

Corollary V

The motions of bodies included in a given space are the same among themselves,
whether that space is at rest, or moves uniformly forwards in a right line without
any circular motion.

For the differences of the motions tending towards the same parts, and the
sums of those that tend towards contrary parts, are, at first (by supposition), in
both cases the same; and it is from those sums and differences that the collisions
and impulses do arise with which the bodies impinge one upon another.
Wherefore (by Law II), the effects of those collisions will be equal in both cases;
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and therefore the mutual motions of the bodies among themselves in the one
case will remain equal to the motions of the bodies among themselves in the
other. A clear proof of this we have from the experiment of a ship; where all
motions happen after the same manner, whether the ship is at rest, or is carried
uniformly forwards in a right line.

Newton returns to this corollary in Section XI of the Principia (see §59) where he repeats
the same argument more concisely in the context of the ‘motions of bodies tending to
each other with centripetal forces’.

This corollary is used later in Proposition LXV (case 2) of Book I in his preliminary
considerations towards the problem of many bodies under their mutual gravitational
attractions where the argument is repeated in almost identical terms (see §68).

Corollary VI

If bodies, moved in any manner among themselves, are urged in the direction of
parallel lines by equal accelerative forces, they will all continue to move among
themselves, after the same manner as if they had not been urged by those forces.

For these forces acting equally (with respect to the quantities of the bodies
to be moved), and in the direction of parallel lines, will (by Law II) move all
the bodies equally (as to velocity), and therefore will never produce any change
in the positions or motions of the bodies among themselves.

Notice that this corollary shows that Newton’s laws hold even in some accelerated frames.

The proofs of Corollaries V and VI are based on Law II (explicitly quoted) and on
Corollary III (which is based on Law III as well). It is important to emphasize the roles
of Laws II and III in the context of these corollaries.

9. The Scholium to the Laws of Motion

In a long Scholium (somewhat longer in fact than the Scholium for the first lesson), Newton
discusses a variety of matters, historical, analytical, and amplificatory.
The Scholium begins with some historical remarks relating to Galileo’s discoveries:

Scholium

Hitherto I have laid down such principles as have been received by mathe-
maticians, and are confirmed by abundance of experiments. By the first two
Laws and the first two Corollaries, Galileo discovered that the descent of bodies
varied as the square of the time (in duplicata ratione temporis) and that the
motion of projectiles was in the curve of a parabola; experience agreeing with
both, unless so far as these motions are a little retarded by the resistance of the
air. When a body is falling, the uniform force of its gravity acting equally,
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impresses, in equal intervals of time, equal forces upon that body, and therefore
generates equal velocities; and in the whole time impresses a whole force, and
generates a whole velocity proportional to the time. And the spaces described
in proportional times are as the product of the velocities and the times; that is,
as the squares of the times. And when a body is thrown upwards, its uniform
gravity impresses forces and reduces velocities proportional to the times; and
the times of ascending to the greatest heights are as the velocities to be taken
away, and those heights are as the product of the velocities and the times, or
as the squares of the velocities. And if a body be projected in any direction, the
motion arising from its projection is compounded with the motion arising from
its gravity. Thus, if the body 4 by its motion of projection alone could describe
in a given time the right line AB, and with its motion of falling alone could
describe in the same time the altitude AC; complete the parallelogram ABCD,
and the body by that compounded motion will at the end of the time be found
in the place D; and the curved line AED, which that body describes, will be a
parabola, to which the right line 4B will be a tangent at A; and whose ordinate
BD will be as the square of the line AB. On the same Laws and Corollaries
depend those things which have been demonstrated concerning the times of the
vibration of pendulums, and are confirmed by the daily experiments of
pendulum clocks.

E
/D
C
The following remarks by Herivel (The background to Newton’s Principia, pp. 35-37),
quoting the statement underlined, are apposite in this context:

It is equally certain that Galileo never enunciated the principle of inertia, and
indeed could not have done so correctly, since ‘horizontal’ motion was for him
always at the surface of the earth, equidistant from its centre, and therefore in
reality circular and not rectilinear.
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Nevertheless, although Galileo’s principle of inertia was thus restricted to a very
special terrestrial case, this restriction did not obtrude itself in his vivid physical
discussion of inertial motion on a horizontal plane, especially in his discussion
of the motion of a projectile. And Newton would have been powerfully im-
pressed and influenced by this discussion.

It is not at all clear how far, if at all, Galileo’s understanding of force had
progressed along the road leading to the second law of motion. Newton himself,
as we have seen, seems to imply that this law was known to Galileo

In certain respects this statement is entirely clear and unexceptionable. Galileo
did discover both the law of falling bodies and the parabolic path of a projectile,
basing his derivations of them on an inertial principle and a method of
compounding motions identical with that found in the first corollary to
Newton’s laws of motion. To what extent, however, did Galileo’s inertial
principle agree with Newton’s principle of inertia, and how far if at all did
Galileo either recognize or use the second law of motion?

We shall not pursue further Herivel’s discussion of Newton’s indebtedness (limited or
otherwise) to Galileo. But it is relevant to note that neither Herivel, nor anyone else, to
the extent I can judge, suggests Newton’s indebtedness to Galileo (or to anyone else) for
his formulation of the important Corollaries IV and V.

The experiment and theory that Newton refers to in the last underlined sentences in
the part of the Scholium quoted are considered in §10.

After a long discussion of how resistance by air affects his experiments in the pendulums,
he returns to a further elaboration of his Third Law of Motion.

And thus the third Law, so far as it regards percussions and reflections, is proved
by a theory exactly agreeing with experience.

In attractions, I briefly demonstrate the thing after this manner. Suppose an
obstacle is interposed to hinder the meeting of any two bodies 4, B, attracting
one the other: then if either body, as A, is more attracted towards the other
body B, than that other body B is towards the first body A, the obstacle will
be more strongly urged by the pressure of the body 4 than by the pressure of
the body B, and therefore will not remain in equilibrium: but the stronger
pressure will prevail, and will make the system of the two bodies, together with
the obstacle, to move directly towards the parts on which B lies; and in free
spaces, to go forwards in infinitum with a motion continually accelerated; which
is absurd and contrary to the first Law. For, by the first Law, the system ought
to continue in its state of rest, or of moving uniformly forwards in a right line;
and therefore the bodies must equally press the obstacle, and be equally attracted
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one by the other. I made the experiment on the loadstone and iron. If these,
placed apart in proper vessels, are made to float by one another in standing
water, neither of them will propel the other; but, by being equally attracted,
they will sustain each other’s pressure, and rest at last in an equilibrium.

So the gravitation between the Earth and its parts is mutual. Let the Earth
FI be cut by any plane EG into two parts EGF and EGI, and their weights one
towards the other will be mutually equal. For if by another plane HK, parallel
to the former EG, the greater part EGI is cut into two parts EGKH and HKI
whereof HKI is equal to the part EFG, first cut off, it is evident that the middle
part EGKH will have no propension by its proper weight towards either side,
but will hang as it were, and rest in an equilibrium between both. But the one
extreme part HKI will with its whole weight bear upon and press the middle
part towards the other extreme part EGF; and therefore the force with which
EGI, the sum of the parts HKI and EGKH, tends towards the third part EGF,
is equal to the weight of the part HKI, that is, to the weight of the
third part EGF. And therefore the weights of the two parts EGI and EGF, one
towards the other, are equal, as I was to prove. And indeed if those weights
were not equal, the whole Earth floating in the non-resisting ether would give
way to the greater weight, and, retiring from it, would be carried off in infinitum.

Newton’s concluding remarks, again bearing on the Third Law of Motion, are pregnant
with meaning as has been noticed by Maxwell and by Thomson and Tait:

The power and use of machines consist only in this, that by diminishing the
velocity we may augment the force, and the contrary; from whence, in all sorts
of proper machines, we have the solution of this problem: To move a given
weight with a given power, or with a given force to overcome any other given
resistance. For if machines are so contrived that the velocities of the agent and
resistant are inversely as their forces, the agent will just sustain the resistant,
but with a greater disparity of velocity will overcome it. So that if the disparity
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of velocities is so great as to overcome all that resistance which commonly arises
either from the friction of contiguous bodies as they slide by one another, or
from the cohesion of continuous bodies that are to be separated, or from the
weights of bodies to be raised, the excess of the force remaining, after all those
resistances are overcome, will produce an acceleration of motion proportional
thereto, as well in the parts of the machine as in the resisting body. But to treat
of mechanics is not my present business. I was aiming only to show by those
examples the great extent and certainty of the Third Law of Motion. For if we
estimate the action of the agent from the product of its force and velocity, and
likewise the reaction of the impediment from the product of the velocities of its
several parts, and the forces of resistance arising from the friction, cohesion,
weight, and acceleration of those parts, the action and reaction in the use of all
sorts of machines will be found always equal to one another.* And so far as the
action is propagated by the intervening instruments, and at last impressed upon
the resisting body, the ultimate action will be always contrary to the reaction.

Quoting the statement underlined in the foregoing extract, Maxwell writes in his Theory
of heat (Chapter IV, p. 91):

Newton, in a Scholium to his Third Law of Motion, has stated the relation
between work and kinetic energy in a manner so perfect that it cannot be
improved, but at the same time with so little apparent effort or desire to attract
attention that no one seems to have been struck with the great importance of
the passage till it was pointed out recently (1867) by Thomson and Tait.

and the relevant passage in Thomson and Tait’s Natural philosophy is:

In the scholium appended, he makes the following remarkable statement,
introducing another description of actions and reactions subject to his third
law, the full meaning of which seems to have escaped the notice of commentators.

we may read the above statement as follows:—

If the Activity of an agent be measured by its amount and its velocity conjointly;
and if, similarly, the Counter-activity of the resistance be measured by the velocities
of its several parts and their several amounts conjointly, whether these arise from
friction, cohesion, weight, or acceleration,—Activity and Counter-activity, in all
combinations of machines, will be equal and opposite.

* Or, in other words: the change in the kinetic energy is equal to the work done by the forces during the motion. This is
D’Alembert’s principle as Kelvin points out in the quotation that follows.
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Farther on we shall give an account of the splendid dynamical theory founded
by D’Alembert and Lagrange on this most important remark.

Newton, in the passage just quoted, points out that forces of resistance against
acceleration are to be reckoned as reactions equal and opposite to the actions
by which the acceleration is produced. Thus, if we consider any one material
point of a system, its reaction against acceleration must be equal and opposite
to the resultant of the forces which that point experiences, whether by the actions
of other parts of the system upon it, or by the influence of matter not
belonging to the system. In other words, it must be in equilibrium with these
forces. Hence Newton’s view amounts to this, that all the forces of the system,
with the reactions against acceleration of the material points composing it, form
groups of equilibrating systems for these points considered individually. Hence,
by the principle of superposition of forces in equilibrium, all the forces acting
on points of the system form, with the reactions against acceleration, an
equilibrating set of forces on the whole system. This is the celebrated principle
first explicitly stated, and very usefully applied, by D’Alembert in 1742,
and still known by his name. We have seen, however, that it is very distinctly
implied in Newton’s own interpretation of his third law of motion.

I have quoted from Maxwell and Thomson and Tait so extensively, since I have
found nowhere else comments on the Scholia with the same degree of perception and
understanding.

10. Additional amplifications

In this section we shall amplify the account of Newton’s Definitions and Axioms
given in §§7-9.

(a) The proportionality of mass and weight and the
experiments on the pendulums

As we have remarked in the context of Definition I in §7, the distinction between
mass and weight cannot be made without reference to the Second Law of Motion.
Newton makes this abundantly clear in Proposition XXIV of Book II. In view of the key
importance of this proposition for an understanding of the basic concepts, we shall here
give an account of it. The proposition in question is:

Proposition XX1V. Theorem XIX

The quantities of matter in pendulous bodies, whose centres of oscillation
are equally distant from the centre of suspension, are in a ratio compounded of the
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ratio of the weights and the squared ratio of the times of the oscillations in a
vacuum.

Newton’s proof (paraphrased) is along the following lines.
If a motive force acts on a Mass, M, for a time At, then by the Second Law of Motion,
the velocity v it will generate is given by

M x Av = motive force x At. (1)

On the other hand the force acting vertically downward on the pendulum of length I,
displaced by a distance a from the vertical, is given by

downward force = Wy 2

where W denotes the gravitational mass and g the value of gravity. The motive force
acting horizontally is therefore,

motive force = Wy(a/l). 3)
By considering two pendulums of equal length, [, displaced by the same amount, a, Newton
argues: ‘If two [such] bodies by oscillating describe equal arcs [e.g., A] and those arcs
[A] are divided into equal parts [Aa], the times [At] in which each of the corresponding
parts [Aa are described] are as the times of the oscillation [77]’; and he concludes

At:Av=T:a/T. 4

By equations (1) and (4),

motive force x T motive force x T2

M o 5
a/T a ©)

Combining equations (3) and (5) we obtain,
M oc WgT?/l, (6)

which is Newton’s result (Q.E.D.!)
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The seven corollaries which Newton appends to this result are a marvel of clarity:

Cor. 1. Therefore if the times are equal, the quantities of matter in each of the
bodies are as the weights.

Cor. 11. If the weights are equal, the quantities of matter will be as the squares
of the times.

Cor. 1. If the quantities of matter are equal, the weights will be inversely as
the squares of the times.

Cor. 1v. Since the squares of the times, other things being equal, are as the
lengths of the pendulums, therefore if both the times and the quantities of matter
are equal, the weights will be as the lengths of the pendulums.

Cor. v. And, in general, the quantity of matter in the pendulous body is
directly as the weight and the square of the time, and inversely as the length of
the pendulum.

Cor. vI. But in a non-resisting medium, the quantity of matter in the
pendulous body is directly as the comparative weight and the square of the
time, and inversely as the length of the pendulum. For the comparative weight
is the motive force of the body in any heavy medium, as was shown above; and
therefore does the same thing in such a non-resisting medium as the absolute
weight does in a vacuum.

Cor. vir. And hence appears a method both of comparing bodies one with
another, as to the quantity of matter in each; and of comparing the weights of
the same body in different places, to know the variation of its gravity. And by
experiments made with the greatest accuracy, I have always found the quantity
of matter in bodies to be proportional to their weight.

The experiments themselves are described in greater detail in the Scholium to Section VI,
Book II and more briefly in Proposition VI, Book III. This continued and repeated
reference to his experiments on the pendulums shows the importance that Newton (justly)
attached to them.

(b) Maxwell’s reformulation of Newton’s Laws of Motion

James Clerk Maxwell’s Matter and motion of some 120 pages, first published in
1877 (of which the Dover reprint of Larmor’s edition is still available), is a rarely sensitive
presentation of the basic concepts of Newtonian dynamics. In particular, Maxwell’s
reformulation of Newton’s Laws of Motion in Chapter IV is so completely in the spirit
of the Principia and illuminating by itself, that I reproduce the relevant sections (59—-65,
inclusive) of the chapter, in their entirety.
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ON THE PROPERTIES OF THE CENTRE OF MASS OF A MATERIAL SYSTEM
59. Definition of a mass-vector

We have seen that a vector represents the operation of carrying a tracing point
from a given origin to a given point.

Let us define a mass-vector as the operation of carrying a given mass from
the origin to the given point. The direction of the mass-vector is the same as
that of the vector of the mass, but its magnitude is the product of the mass into
the vector of the mass.

Thus if OA is the vector of the mass A, the mass-vector is OA . A.

60. Centre of mass of two particles

If A and B are two masses, and if a point C be taken in the straight line 4B,
so that BC is to CA as A to B, then the mass-vector of a mass 4 + B placed
at C is equal to the sum of the mass-vectors of A and B. For

OA.A+ OB.B=(0C + CA)A + (0C + CB)B
=0C(A+B)+CA.A+ CB.B.
Now the mass-vectors CA. A and CB. B are equal and opposite, and so destroy
each other, so that
OA.A+ OB.B=0C(A4+ B)

or, C is a point such that if the masses of A and B were concentrated at C, their
mass-vector from any origin O would be the same as when A and B are in their
actual positions. The point C is called the Centre of Mass of A and B.

0

61. Centre of mass of a system

If the system consists of any number of particles, we may begin by finding the
centre of mass of any two particles, and substituting for the two particles a
particle equal to the sum placed at their centre of mass. We may then find the
centre of mass of this particle, together with the third particle of the system,
and place the sum of the three particles at this point, and so on till we have
found the centre of mass of the whole system.
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The mass-vector drawn from any origin to a mass equal to that of the whole
system placed at the centre of mass of the system is equal to the sum of the
mass-vectors drawn from the same origin to all the particles of the system.

It follows, from the proof in Article 60, that the point found by the
construction here given satisfies this condition. It is plain from the condition
itself that only one point can satisfy it. Hence the construction must lead to the
same result, as to the position of the centre of mass, in whatever order we take
the particles of the system.

The centre of mass is therefore a definite point in the diagram of the
configuration of the system. By assigning to the different points in the diagrams
of displacement, velocity, total acceleration, and rate of acceleration, the masses
of the bodies to which they correspond, we may find in each of these diagrams
a point which corresponds to the centre of mass, and indicates the displacement,
velocity, total acceleration, or rate of acceleration of the centre of mass.

62. Momentum represented as the rate of change of a mass-vector

In the diagram of velocities, if the points o, a, b, ¢, correspond to the velocities
of the origin O and the bodies A4, B, C, and if p be the centre of mass of 4 and
B placed at a and b respectively, and if g is the centre of mass of A + B placed
at p and C at ¢, then g will be the centre of mass of the system of bodies A4, B,
C, at a, b, c, respectively.

The velocity of 4 with respect to O is indicated by the vector oa, and that of
B and C by ob and oc. op is the velocity of the centre of mass of 4 and B, and
oq that of the centre of mass of 4, B, and C, with respect to O.

The momentum of A with respect to O is the product of the velocity into the
mass, or oa. A, or what we have already called the mass-vector, drawn from o
to the mass A4 at a. Similarly the momentum of any other body is the mass-vector
drawn from o to the point on the diagram of velocities corresponding to that
body, and the momentum of the mass of the system concentrated at the centre
of mass is the mass-vector drawn from o to the whole mass at q.

Since, therefore, a mass-vector in the diagram of velocities is what we have
already defined as a momentum, we may state the property proved in Article

39
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61 in terms of momenta, thus: The momentum of a mass equal to that of the
whole system, moving with the velocity of the centre of mass of the system, is
equal in magnitude and parallel in direction to the sum of the momenta of all
the particles of the system.

63. Effect of external forces on the motion of the centre of mass

In the same way in the diagram of Total Acceleration the vectors wa, wp, etc.,
drawn from the origin, represent the change of velocity of the bodies A4, B, etc.,
during a certain interval of time. The corresponding mass-vectors, wa.. A, wf. B,
etc., represent the corresponding changes of momentum, or, by the second law
of motion, the impulses of the forces acting on these bodies during that interval
of time. If x is the centre of mass of the system, wx is the change of velocity
during the interval, and wx (4 + B + C) is the momentum generated in the
mass concentrated at the centre of gravity. Hence, by Article 61, the change of
momentum of the imaginary mass equal to that of the whole system concen-
trated at the centre of mass is equal to the sum of the changes of momentum
of all the different bodies of the system.

o B

L X0 Y

In virtue of the second law of motion we may put this result in the following
form:

The effect of the forces acting on the different bodies of the system in altering
the motion of the centre of mass of the system is the same as if all these forces
had been applied to a mass equal to the whole mass of the system, and coinciding
with its centre of mass.

64. The motion of the centre of mass of a system is not affected by the
mutual action of the parts of the system

For if there is an action between two parts of the system, say A and B, the
action of A and B is always by the third law of motion, equal and opposite to
the reaction of B on A. The momentum generated in B by the action of A during
any interval is therefore equal and opposite to that generated in A by the
reaction of B during the same interval, and the motion of the centre of mass of
A and B is therefore not affected by their mutual action.
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We may apply the result of the last article to this case and say, that since the
forces on A and on B arising from their mutual action are equal and opposite,
and since the effect of these forces on the motion of the centre of mass of the
system is the same as if they had been applied to a particle whose mass is equal
to the whole mass of the system, and since the effect of two forces equal and
opposite to each other is zero, the motion of the centre of mass will not be
affected.

65. First and second laws of motion

This is a very important result. It enables us to render more precise the
enunciation of the first and second laws of motion, by defining that by the
velocity of a body is meant the velocity of its centre of mass. The body may be
rotating, or it may consist of parts, and be capable of changes of configuration,
so that the motions of different parts may be different, but we can still assert
the laws of motion in the following form:

Law I.—The centre of mass of the system perseveres in its state of rest, or of
uniform motion in a straight line, except in so far as it is made to change that
state by forces acting on the system from without.

Law II.—The change of momentum of the system during any interval of time
is measured by the sum of the impulses of the external forces during that interval.

(¢) The Newtonian principle of relativity

By the First Law of Motion, the rectilinear way, which a ‘body’ may pursue, will, by
virtue of the innate force (or inertia) remain unaffected so long as there are no ‘external
actions or impediments’. Uniform rectilinear motion is thus distinguished in Newtonian
dynamics. But to the extent the direction and the magnitude of the rectilinear motion are
unspecified, to that extent we can refer the motion equally to another frame of reference
obtained by the transformation:

F=R.F+ot+d and t'=t+r, (7
where #, d, and t are constants and R is any orthogonal matrix with constant coefficients.
If O and O’ denote the unprimed and the primed coordinate systems, then for a stationary
observer in O’, the coordinate system O will appear as rotated by R and, moving with a
uniform velocity & displaced at t = 0 by d; and further, for the observer in 0’, the clock
in O will be running behind his own by the time 7. One can, on this account, say that
inertial frames are undistinguished: any one frame will serve as equally as any other. This
is the principle of relativity of Galileo and Newton as it is sometimes called (see for example
Weyl (1922) Space, time, and matter, p. 152; Methuen, London). In view of Herivel’s
comments quoted in §9, the coupling of Galileo’s name with Newton’s would not appear
to have an historical basis.
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The preceding formulation of the principle of relativity leaves open the question when
rectilinear motion naturally occurs. By Corollary IV (to quote it once again) ‘the common
centre of gravity of all bodies acting upon each other (excluding external actions and
impediments) is either at rest or moves uniformly in right lines’. In other words, the principle
of inertia together with the First Law of Motion in Maxwell’s reformulation provide the
real basis for the Newtonian principle of relativity.*

Another way of formulating the principle of relativity is illustrated by considering the
equations of motion governing n mass points m; (i = 1,...,n) attracting each other
according to the law:

. Lo =7
force of attraction between m; and m; = —m;m; f (|#; — #;|) lj—fl, )
I”j - Vi
where f is some function of the relative distance, | #; — 7;|, between m; and m;. The equations
are (anticipating the problems considered in Section XI of the Principia and in §59):
dz,:i j=1,....n Fo— 7,
i

=— 2 mf(fh-fh > — (=1L....n) 9)

de? i |75 —
It can readily be verified that equation (9) retains its form when the coordinate system in

which equation (9) is written is subject to the same transformation (7). From equation
(9) it also follows that

djfd/1 & \|_ _ v
i Gisme) -0 (m=gm) o

proving for this system the uniform rectilinear motion of the centre of mass.
The matter is entirely summed up in Newton’s concluding statement in his Definition
I11:

‘But motion and rest, as commonly conceived, are only relatively distinguished;
nor are those bodies always truly at rest, which commonly are taken to be so.’

* Cf. Eugene Wigner’s statement ‘It is fitting this principle was enunciated in full clarity, by Newton in his
Principia’ (Symmetries and Reflections: Scientific Essays of Eugene P. Wigner, (page 5) Indiana University
Press, Bloomington, London, 1967).
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On the notion of limits and the ratios
of evanescent quantities

11. Introduction

n Section I, Book I of the Principia, Newton describes the elementary notions of
differential calculus (without explicitly so stating) that are at the base of his entire
treatment. And, as he explains in the Scholium at the end of the section,

These Lemmas are premised to avoid the tediousness of deducing involved
demonstrations ad absurdum, according to the method of the ancient geometers.
For demonstrations are shorter by the method of indivisibles; but because the
hypothesis of indivisibles seems somewhat harsh, and therefore that method is
reckoned less geometrical, I chose rather to reduce the demonstrations of the
following Propositions to the first and last sums and ratios of nascent and
evanescent quantities, that is, to the limits of those sums and ratios, and so to
premise, as short as I could, the demonstrations of those limits

12.

Lemma I

Quantities, and the ratios of quantities, which in any finite time converge
continually to equality, and before the end of that time approach nearer to each
other than by any given difference, become ultimately equal.

More explicitly the lemma states: If two quantities X (¢) and Y(¢), depending continuously
on ‘time’ t, and neither of which vanishes in the range ¢, < t < oo, and are such that

. X(t)
Jim [m} e @
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for some assigned ¢ = t,, then

X(t,) = Y(ty). (2)

Newton’s proof of this lemma is to observe that if X(¢,) # Y(¢,) then we should have a
contradiction with the initial supposition (1).

An alternative version of the lemma which may satisfy the purist is to formally write
the equality (1) as

X(@) = Y@ for t = ¢, 3)
and observe that the basic theorems on limits allows us to conclude that
X(@) = Y(t) fort=t,< X(t) and Y(t) become equal for t = ¢;. ()]

This simple notational device (suggested by Tristan Needham) allows us ‘to draw on
the intuitive power of infinitesimal geometry while continuing to pay lip service to the
tyrannical legacy of Cauchy and Weierstrass’.

If X(¢) and Y(¢) tend to zero for t — ¢, (i.e. become ‘evanescent’) then greater care is
necessary. As Newton explains later in the Scholium,

....by the ultimate ratio of evanescent quantities is to be understood the
ratio of the quantities not before they vanish, nor afterwards, but with which
they vanish.

And more explicitly:

For those ultimate ratios with which quantities vanish are not truly the ratios
of ultimate quantities, but limits towards which the ratios of quantities
decreasing without limit do always converge; and to which they approach
nearer than by any given difference, but never go beyond, nor in effect attain
to, till the quantities are diminished in infinitum.

The underlined statement emphasizes that the limit (A4/B) is not always the same as
(lim A4)/(lim B).

13. Lemmas II, III, and IV

Lemma 11

If in any figure AacE, terminated by the right lines Aa, AE, and the curve acE,
there be inscribed any number of parallelograms Ab, Bc, Cd, etc., comprehended
under equal bases AB, BC, CD, etc., and the sides, Bb, Cc, Dd, etc., parallel to
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n

one side Aa of the figure; and the parallelograms aKbl, bLcm, cMdn, etc., are
completed: then if the breadth of those parallelograms be supposed to be diminished,
and their number to be augmented in infinitum, I say, that the ultimate ratios which
the inscribed figure AKbLcMdD, the circumscribed figure AalbmcndoE, and
curvilinear figure AabcdE, will have to one another, are ratios of equality.

Proof:
area of the circumscribed parallelograms Aalbmend . .. oE
— area of inscribed parallelograms AKbLcMd ... DE
= area AalB = Aa x AB;
or,
Aalbmed . . . oE 14 4B Aa .
AKbLcMd ... DE AKbLcMd ... DE

We conclude
Aalbmed ... oE = AKbLcMd ... DE (AB — 0);

that is, when the division becomes infinitely fine. Also since each of the parallelograms,
Kalb, Lbmc, Mcnd, and so on, are greater in area than the curvilinear figures Kab, Lbc,
Mecd, and so on, respectively, it equally follows that

Aalbmed ... 0E = AKbLcMd ... DE = Aabcd...E.

In other words, in the limit AB — 0 areas of the circumscribed and the inscribed
parallelograms become equal and coincide by definition with that of the curvilinear
figure.

Even for a modern reader, Newton’s proofs of Lemmas III and IV cannot be
improved upon.
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Lemma 111

The same ultimate ratios are also ratios of equality, when the breadths AB, BC,
DC, etc., of the parallelograms are unequal, and are all diminished in infinitum.

For suppose AF equal to the greatest breadth, and complete the parallelogram
F Aaf. This parallelogram will be greater than the difference of the inscribed and
circumscribed figures; but, because its breadth AF is diminshed in infinitum, it
will become less than any given rectangle. Q.E.D.

._-_'\
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Cor. 1. Hence the ultimate sum of those evanescent parallelograms will in
all parts coincide with the curvilinear figure.

Cor. 1. Much more will the rectilinear figure comprehended under the
chords of the evanescent arcs ab, bc, cd, etc., ultimately coincide with the
curvilinear figure.

Cor. 11. And also the circumscribed rectilinear figure comprehended under
the tangents of the same arcs.

Cor. 1v. And therefore these ultimate figures (as to their perimeters acE)
are not rectilinear, but curvilinear limits of rectilinear figures.

Lemma IV

If in two figures AacE, PprT, there are inscribed (as before) two series of
parallelograms, an equal number in each series, and, their breadths being
diminished in infinitum, if the ultimate ratios of the parallelograms in one figure
to those in the other, each to each respectively, are the same: I say, that those
two figures, AacE, PprT, are to each other in that same ratio.

For as the parallelograms in the one are severally to the parallelograms in
the other, so (by composition) is the sum of all in the one to the sum of all in
the other; and so is the one figure to the other; because (by Lem. 1) the
former figure to the former sum, and the latter figure to the latter sum, are
both in the ratio of equality. Q.E.D.
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a

The corollary to Lemma IV states effectively that: if we consider the increasingly

finer division of two right lines A, ..., 4, and B,,..., B,,
AO Al AZ A3 An
and
B, B, B, B, B,

such that, at each division, (4,,4; — 4,)/(Bp+1 — Bn) =a (m=0,...,n— 1) where « is
a constant, then in the limit n > o0 and A4,,., — A4,, > 0, the lengths of the two
right-lines are in the ratio a.

14. Lemmas V-VIII

Lemma V

All homologous sides of similar figures, whether curvilinear or rectilinear, are
proportional; and the areas are as the squares of the homologous sides.

Without any comments, Newton passes on to the next lemma.

Lemma VI

If any arc ACB, given in position, is subtended by its chord AB, and in any point
A, in the middle of the continued curvature, is touched by a right line AD, produced
both ways; then if the points A and B approach one another and meet, I say, the
angle BAD, contained between the chord and the tangent, will be diminished in
infinitum, and ultimately will vanish.
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Newton proves this lemma with the observation that if the angle of contact at A4 does not
vanish, then the assumption that the curve continues beyond A continuously will be
contradicted. Later in the Scholium he amplifies this brief comment by:

we have all along supposed the angle of contact to be neither infinitely greater
nor infinitely less than the angles of contact made by circles and their tangents;
that is, that the curvature at the point A is neither infinitely small nor infinitely
great, and that the interval AJ is of a finite magnitude.

Lemma VII

The same things being supposed, I say that the ultimate ratio of the arc, chord,
and tangent, any one to any other, is the ratio of equality.

Normally we should prove this lemma as follows. Let AD denote the tangent and AR the
normal at 4; and R be the centre of curvature. Extend the circle of contact at A4 to its
antipodal point A'. If B is a point on the curve sufficiently near to 4 and the angle
/L. ARB = 40, then by elementary geometry,

arc Aa = R0,
chord 4B = 2R sin 160, and
tangent AD = AB sec 340,
= 2R tan 360;
and it follows that
arc ACB: chord AB: tangent AD — 1:1:1 as 6 — 0.
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Corollaries I, 11, and II1

Also if from B we now draw BE inclined at an angle ¢ with EA and keep /. BEA constant
as B — A, then,
AE  sin(180° — @ — 366) _ sin(¢p + 360)
AB sin ¢ sin ¢
It follows, that in the limit AD, AE, AB, and arc Aa become mutually equal.
Newton proves the lemma differently.

-1 asédf— 0.
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Consider a point B on a smooth curve ACB approaching the point A. Let AD be the
tangent to the curve at A. Prolong the right lines AB and AD to ‘remote’ points b and
d. Draw the arc ;IEE similar to Aa, that is, if X is any point on ACB then AX intersects
Acb at x at a distance Ax such that AX: Ax = AB: Ab. As B approaches A, let the secant
BD remain parallel to itself and to the ‘remote’ secant bd. It i is clear that by this
construction, the ratios of the lengths of the chord AB, the arc ACB, and the tangent AD
will remain, mutually _among themselves, in the same constant ratios as the remote (and
finite) chord Ab, arc Ach and tangent Ad as B continues to approach A. It follows:

AB Ab
lim-— =1lm— =1,
ACB ¢
. AB Ab
lim—=1lim-—=1,
D Ad
lim 1—4—C£ = lim éﬁl—) = 1. Q.E.D.
AD Ad
Simple and elegant!
Lemma VIII

If the right lines AR, BR, with the arc ACB, the chord AB, and the tangent AD,
constitute three triangles RAB, RACB, RAD, and the points A and B approach
and meet: I say, that the ultimate form of these evanescent triangles is that of
similitude, and their ultimate ratio that of equality.

By the same construction as in Lemma VII, the As RAB and rAb, As RA/C-??, and r?lc?;,
and As RAD and rAd remain (respectively) similar as B approaches A and in the limit.
Q.ED.

15. Lemmas IX and X
Lemma 1X

If a right line AE, and a curved line ABC, both given by position, cut each other
in a given angle, A; and to that right line, in another given angle, BD, CE are
ordinately applied, meeting the curve in B, C; and the points B and C together
approach towards and meet in the point A: I say, that the areas of the [curvilinear]
triangles ABD, ACE, will ultimately be to each other as the squares of homologous
sides.
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V4

Let the curve AC be the trajectory described by a body; and let the equation of the curve
be f(t), t denoting the ‘time’ measured along AZ. Further let D and E denote varying
times along AZ maintaining a constant ratio between AD and AE. Then the space
described by B and C will be given by

— t t
AABD = J DB d:t = J f(t) dt,

0 0
and

AA’CTE:J ECdt=och(oct)dt.
0 0

We assume that

f@t) - f'(0)t ast— 0.

AABD — 1f(0)> and AAEC — 1f(0)a?t? ast — 0.
Therefore . .
AABD: ANAEC - a*> fort — 0. Q.ED.
Lemma X

The spaces which a body describes by any finite force urging it, whether that force
is determined and immutable, or is continually augmented or continually dimin-
ished, are in the very beginning of the motion to each other as the squares of the
times.

This is a restatement of Lemma IX explicitly when the trajectory is that described under
the action of a force.
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Corollaries I, II, and III are equivalent to the statement
t 1 t 1
x(t) = f dt v(t) = — J dt, f dt, F(t,) (m = the inertial mass).
0 mJjo 0
and that, if
F(t,;) > F, fort—0,
then,

t
F,
x(t) - 1 f dt, t,Fy = -2 12
m 2m

0

The most important are the Corollaries IV and V:

Cor. 1v. And therefore the forces are directly as the spaces described in the

very beginning of the motion, and inversely as the squares of the times.

Cor. v. And the squares of the times are directly as the spaces described, and

inversely as the forces.

16. Lemma XI

The evanescent subtense of the angle of contact, in all curves which at the point
of contact have a finite curvature, is ultimately as the square of the subtense of

the conterminous arc.

280 C D /tle
B 4 B
C)
360
56
R
360
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Newton’s proof is not different from what one might give currently. Notice, however, that
in Newton’s terminology:

subtense of the angle of contact at A = BD perpendicular to the tangent AD at A4,
and
versed sine of the arc (B/Zl;’) is AC’ bisecting the chord (B'B).

(Note that this figure is virtually the same as that accompanying Lemma VII.)

Case 1. As in Lemma VII
Arc AB = RS0, chord AB = 2R sin 366
and
AD = 2R tan360 (60 — 0).
We therefore have
BD = AB sin 360 = 2R sin” $60.
We conclude that
BD = % AB? + 0(30) (as B - A).
(Note that from the similarity of As AA'B and BAD,
AB BD
AA AB

the relation that Newton uses.)

or AB* = AA'-BD = 2R.BD,

Case 2. Given that BD’ is inclined at some (unspecified but fixed angle ¢) to AD, then
AD"  sin(180° — ¢ — 360) _ sin(e + 300) .

. . 1 (60 - 0)
AB sin @ sin @

independently of ¢. Hence,

1

BD - —
2R

1
AB* - — (AD")
2R

A number of corollaries follow.

Corollary 1
Since AB/AD — 1 as B — A, it follows that
BD 1

AD? 2R’
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Corollary 11
Versed sine AC = AB; therefore 2R.BD — (versed sine)?.

Corollary 111
If the arc AB is described uniformly with a velocity v (so that R66 = v dt) it follows that

1

2(dt)>.
2Rv( )

BD - L (4B =
2R

Corollary IV

1
area of AABD = 1AD.BD = iR (AD)>.

Corollary V

Letting BD = y and AD = x, the relation between y and x is, ultimately,

X2

2R’
that is, parabolic. Hence the curvilinear triangle

— x 3 3
AABD=J pdx =X _ADT
. 6R  6R

Therefore, by Corollary 1V,
AABD
AN ABD

Further, since the area of the segment 4B bounded by the arc AB = AABD — AA/EI\) =
AD?/12R

2
-3

area of segment
A ABD

In the Scholium Newton points out that the relation

BD oc AD? (as B — A)

[SIE

is a necessary and sufficient condition for the contact at A to be the same as for circles
and their tangents. He considers more generally the case

BD oc (AD)*
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and remarks that if o > 2, the angle of contact is infinitely less than when « =2 and
similarly, the angle of contact is infinitely greater than when o« = 2, if & < 2; and concludes
with the remark

Nor is Nature confined to any bounds.
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On the motion of particles under
centripetal attraction. an introduction
to Newton’s treatment

‘Since I was aware that there exists an infinite number of points on the orbit and
accordingly an infinite number of distances [from the Sun] the idea occurred to me that
the sum of these distances is contained in the area of the orbit. For I remembered that
in the same manner Archimedes too divided the area of a circle into an infinite number
of triangles.’

(Kepler on his discovery of the law of areas)

“Why should I mince my words? The truth of Nature, which I had rejected and chased
away, returned by stealth through the backdoor, disguising itself to be accepted . ... 1
thought and searched, until I went nearly mad, for a reason, why the planet preferred
an elliptical orbit ...

(Kepler on his discovery of the orbit of Mars as an ellipse)

17. Introduction

ewton’s treatment of Kepler’s laws of planetary motion is among the most celebrated
N parts of the Principia. To appreciate the novelty and the originality of Newton’s
treatment, one must have in mind, for comparison, a more conventional treatment to which
one is accustomed. Besides, it is important to have a treatment of elliptical motion
under the inverse-square law of attraction that is readily adapted to obtaining the
equations governing the perturbations of ellipitic motion based on the ‘variation of the
constants’. For as Tisserand* has stated, Newton undoubtedly had in his possession these
variational equations for this treatment of lunar perturbations. We shall consider these
matters in due course (Chapter 22); in the meantime, we shall give a brief account
of the dynamics of a particle under general centripetal attraction and in particular the

* F. Tisserand, Mecanique celeste, Chapter III, p. 27-44. On p. 33 he states, ‘I am inclined to think that he
[Newton] knew all of the formulae (a) [the variational equations (1)—(6) given in Chapter 13, pp. 233-4]; but
that instead of publishing them, he preferred deducing a large number of geometric propositions from them
which he obtained by considering in each case one of the components.’
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case of the inverse-square law of attraction. We shall follow in main the text of Harry
Pollard.*

18. The dynamics of a particle under a general law of
centripetal attraction

We shall assume that the force acting on a particle of inertial mass, m, at a distance, r,
from the centre of attraction is

F=-mf0)" =1 )

where #/r is a unit vector in the direction of increasing 7, and m, equal to the gravitational
mass, is set equal to the inertial mass m. The equation of motion governing the particle is

d3# i
—_— = — r) — s 2
i Q) ; (2
where we observe that m does not occur in this equation. Letting

dr

5 =, (3)

dt

we can rewrite equation (2) in the alternative form

do i
T=-I0 @

(a) The conservation of angular momentum
From equation (4) it follows:

d dr dé .
— (Fx0)=—x0+7Fx—=0, 5
dt(r 9) dt vt dt )

the two terms on the right-hand side vanishing by virtue of equations (3) and (4)
respectively. Letting

h=Fxd, (6)
we conclude from equation (5) that

h = a constant. N

This equation expresses the conservation of angular momentum.

* Harry Pollard (1966) ‘Mathematical introduction to celestial mechanics.” Prentice Hall, New Jersey.
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Since, by equation (6),
» hi=0 )
the motion of the particle is restricted to the plane orthogonal to h provided h # 0. If
h =0, ©)

S ALl (10)

It follows that if /1 = 0, the motion is radial.

(b) The law of areas

If i # 0, the orbital plane is normal to h. Choosing the z-axis along the direction of &, we
may write (see the illustration)

h=(0,0,h) and F = (r cos @, r sin ¢, 0). 1D

>y
¢
X

-
7

Accordingly
dr . de dr . do
b=|—cosp—rsing —,—singe+rcoso —,0}; 12
<dt ¢ gDdt dt ¢ (pdt > (12)
and we verify that
do 2
(F x ©) = r? €P 2 _ constant vector; (13)
dt |z|

or if A denotes the area swept by the radius vector in the orbital plane

a4y, do

@ g

Il

constant. (14)

This is Kepler’s law of areas.
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(¢) The conservation of energy
By equation (4)

o8I0 g 1O 8)
r

dt r dt

dr
= —f(r) i (15)

t

Therefore,
d d |7

1 2= dr. 16
2, " dtjf(r) r (16)

Assuming that f(r) < r~%, and letting
Vi) = J f(r)dr, 17)

we obtain, from equation (16),
W =V()+ E. (18)

where E is a constant. As defined, — V" denotes the potential energy and E the total energy.
Since

(FD)* + |F x B)* = r*v? (19)
we obtain the alternative form of the energy integral:

(F+5)% + h* = 2r2(V + E). (20)

(d) The equation governing r in the orbital plane
From r? = |#|?, we obtain
dr d7
r—=rf-
dt t

~v
I

~v
.

T

21)

Differentiating this equation once again with respect to ¢, we obtain,

d?r dr\? dd
N + N — e + 2; 22
e <dt> ' dt 0 22)

or, making use of the identity (19) on the right-hand side, we obtain

. d?r N <dr>2 L dp N h? N 1
de? dt de > r?

(G (23)
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Since, by equations (4) and (21),

> 2
f-% = —rf(r) and riz (F0)* = <%) (24)

equation (23) simplifies to give

d*r n?
2 S0 (25)

This equation, together with the equation

do
299 _ 26
. (26)

enables us to obtain the equation governing the trajectory in the orbital plane. Letting

r=u"1, (27)
we obtain, by familiar transformations,
d*u f)
—— tu= ) 28
de? h?u? @8)

19. The dynamics of a particle under the inverse-square law of attraction
When the inverse-square law of attraction obtains,

flr) = ﬁz (4, a positive constant). (1)
r

Specializing the equations of §18, we have:

o p
dt r3

7 and h =7 x & =a constant vector. )

We also have

230y V(r)=J Par=t, (3)
dt . T r

and

W =E + whr. 4)
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(a) The Lenz vector and the Lenz equation

An integral, peculiar to the inverse-square law, is the following. By making use of equation
(2) we can rewrite equation (10) of §18 in the manner

d 7 hxi (. db
—p— = — ={hx—| 5
i r i < dt) ©)
This equation integrates to give

oo, a R
o=@ xh) - pe (6)
where & is a constant vector. It is the Lenz vector. We rewrite equation (6) in the form

S W
,u(e-l——):vxh. @)

r

The scalar product of this equation with & gives:
éh=0. ®)

that is, the Lenz vector lies in the orbital plane.
Multiplying equation (7) scalarly by 7, we obtain the equation

éF+r=h*u )
If we now choose the origin of ¢ along &, equation (9) gives*
r(1 + e cos @) = h?/u, (10)
or,
2
r= % m , (11)
which is the equation of an ellipse with eccentricity e and semilatus rectum,
[ = h?/u. (12)
Since
[ =a(l—e?), (13)
where a denotes the semimajor axis of the ellipse,
az ! i (14)

1—¢ ul—e)

* If instead, the orbit is a hyperbola, equation (10) must be written in the form,
r(e cos @ — 1) = h?/u; (10)

and corresponding changes must be made in the subsequent equations: for example, (e? — 1) in place of (1 — e?) in
equations (13) and (14).
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The principal significance of the Lenz vector of length e in the orbital plane is that it
ensures the fixity in space (or, as Newton calls ‘the quiescence of the aphelion points’ in

Proposition 11, Book I111)* of the direction of the major axis of the elliptical orbits.

An identity which follows from the Lenz equation (7) is worth noticing. The square of

this equation gives

,u2<e2 + 2 e + 1) = v2h?,
r

(15)

Making use of equation (9) and the energy integral (4), we obtain, on further simplification,

p?(e* — 1) = 2h%E;

or since
W= a(l — e,
we have
a= —3uE.
(b) Kepler’s third law
Since
the area of the elliptical orbit = nab = na®,/(1 — €?)

and

the constant of areas = 4, = 3h,

it follows that the period P of the orbit is given by
2
P= % a’\/(1 — e?);

or since (cf. equation (14))

h=lua(l - e*)],

we find

This is Kepler’s third law.

(16)

(17)

(18)

(19)

(20)

1)

(22)

(23)

* Or, more explicitly, ‘The aphelions are immovable; and so are the planes of the orbit’ as in Proposition XIV

of Book III, (Chapter (9)).
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(¢) An alternative derivation of the elliptical orbit
Inserting for f its present value given in equation (1), equation (28) of §18 becomes

d?u U
— tu=_—. 24
FPe % (24)
The solution of this equation is
1
_=u=%(1+ecosq0), (25)
’

in agreement with the solution (11) obtained earlier with the Lenz equation.

20. The accelerations and velocities along a curved orbit

We conclude this chapter by a summary of what we know about the velocities and the
accelerations along a curved orbit.

S: imovable centre of force;

r: radius vector directed outward from S;
s: arc length measured along trajectory;
C: centre of curvature;

do

dp = (rcosg)dt

Tangent
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. infinitesimal element of arc;
: angle between the directions of r and tangent at P;

p: perpendicular distance from S on instantaneous tangent: p = r sin €;

: angle subtended by ds at C: ds = p dr;

: radius of curvature;

: velocity along the trajectory: v = ds/dr;

: acceleration along the tangential direction: a, = v dv/ds;
. acceleration along the inward normal: a, = v?/p;

. acceleration along the radius vector towards S:

a, = centripetal force = v? cosec €/p.
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The law of areas and some relations
which follow

Since the equable description of areas indicates that there is a centre to which tends
that force by which the body is most affected, and by which it is drawn back from its
rectilinear motion, and retained in its orbit, why may we not be allowed, in the following
discourse, to use the equable description of areas as an indication of a centre, about
which all circular [circulatory]* motion is performed in free spaces?

Newton in the Scholium to Propositions I, II, and III

21. Introduction

n this chapter we consider the propositions and lemmas in Section II, Book I of the

Principia. These propositions and lemmas (as those of Section III) are, in the main,
included in De Motu Corporum in Gyrum written in the summer of 1684 (cf. Chapter 1,
§4) but not with the completeness or incisiveness as in the Principia.

22. The area theorem
Proposition I. Theorem I

The areas which revolving bodies describe by radii drawn to an immovable centre
of force do lie in the same immovable planes, and are proportional to the times in
which they are described.

Let S be the centre of attraction. Consider the orbit as described under a centripetal force
of attraction, acting intermittently, as impulses, at equal intervals of time 6t apart; and
let B, C, D, E, F, etc., be the positions of the particle at times dt, 20t, 3dt, 40t, etc. (We
shall eventually let 6t — 0.)

The particle, initially at A and moving with a velocity &, will, by the operation of inertia
(by Law 1), travel a distance vét, in the direction of AB and in the plane containing SA
and ¥, and arrive at B. At B the particle will be subject to the centripetal force in the
direction BS (acting impulsively, as stated) and be displaced to V (say). In the absence

* In the context, ‘circulatory’ is more appropriate than ‘circular’; and Newton must have meant circulatory: for Propositions
I, 11, and III are entirely general and are not in any way restricted to circular orbits. Circular orbits are considered in
Proposition IV that follows.
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of the impulse it received at B, the particle, by inertia, will continue to move on in the
direction AB and arrive at c after having travelled the same distance vdt = AB (as in the
first interval); and in the same plane. By the composition of the displacements BV and
Be, the particle at the end of the second interval 26t, will find itself (by Corollary I of the
Laws (p. 24)) at C where ¢C is equal and parallel to BV. By these constructions, the
areas of the As SAB and SBc will be equal (having equal bases AB and Bc); and the areas
of As SBc and SBC will, likewise, be equal (because ¢C and BS are parallel).
Therefore, the

area of ASAB = area of ASBC.

In other words, the areas described in two successive intervals of time, Jt, apart, are equal;
while the particle continues to move in the same plane SAB.

By similar arguments, at the end of the third interval 3¢, the particle will find itself at
D, in the same plane as SAB, and the

area of ASBC = area of ASCD.

Therefore the particle describes the same area during the third interval 6t as during each
of the first two intervals. By induction, equal areas are described in all intervals of time,
ot apart. It further follows that the areas described in two sequences of intervals will be
proportional to the durations of the two sequences. And as Newton continues:

Now let the number of those triangles be augmented, and their breadth
diminished in infinitum; and (by Cor. 1v, Lem. 111) their ultimate perimeter ADF
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will be a curved line: and therefore the centripetal force, by which the body is
continually drawn back from the tangent of this curve, will act continually; and
any described areas SADS, SAFS, which are always proportional to the times
of description, will, in this case also, be proportional to those times. Q.E.D.

Corollary 1
We have shown that
AB =v,0t, BC = vyt, CD = vcot, etc.;
and since the areas of As SAB, SCB, SCD, etc. are equal,
p4AB = pgBC = p-CD = etc,

where p,, pg, Pc, €tc., are the lengths of the perpendiculars from S to AB, BC, CD, etc.
By combining the foregoing relations, we obtain

VyP4 = UgPp = UcPc = etc.
Therefore,

The velocity of a body attracted towards an immovable centre, in spaces void
of resistance, is inversely as the perpendicular let fall from that centre on the
right line that touches the orbit.

or, in modern terminology: the angular momentum is conserved.

Corollary 11
The diagonal BV of the parallelogram ABCV in the limit 6t = 0, passes through S.

Corollaries IIl and 1V

The displacements BV and EZ, which tend to the versed sines of the arcs AC and DF
as ot — 0, are caused by the impulses acting intermittently at B and D. In the limit 6z — 0,
when the centripetal force acts continuously,

The forces by which bodies, in spaces void of resistance, are drawn back from
rectilinear motions, and turned into curvilinear orbits, are to each other as the
versed sines of arcs described in equal times.

Corollary V

The preceding corollaries apply directly to the parabolic arcs described by projectiles in
uniform gravity acting vertically.
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Corollary VI

The foregoing proposition and corollaries all hold good (by Corollary V of the Laws,
Chapter 2, p. 29) if S, together with the plane of motion, instead of being at rest, move
uniformly in a straight line.

Proposition 11. Theorem 11

Every body that moves in any curved line described in a plane, and by a radius
drawn to a point either immouvable, or moving forwards with a uniform rectilinear
motion, describes about that point areas proportional to the times, is urged by a
centripetal force directed to that point.

In other words, given that in a planar orbit equal areas are described in equal times, to
show that the orbit is described under the action of a centripetal force. Or, in the manner
of considering the problem as in Proposition I, we are given that the areas of As SAB,
SBC, SCD, SDE, etc., are equal; and we are to deduce the centripetal character of the force.

If we extend AB by an equal length to ¢, then by the action of inertia alone the particle
would have arrived at this same point c; and the areas of the As SAB and SBC are equal.
The areas of As SBc and SBC are therefore equal; and by Proposition XL, Book I,
Elements of Euclid, cC must be parallel to SB, that is, the impulse ¢C that draws the
particle from Bc to BC acts in the radial direction in the limit C — B. Similarly, the
impulse, dD, that draws the particle from Cd to CD acts in the radial direction
CS. (Q.E.DY)

The same arguments apply if S, the centre of the system, instead of being at rest, moves
uniformly in a straight line.

Corollaries I and 11

If under the same assumptions, as in the Proposition, in equal times unequal areas are
described, we must conclude that the particle must be acted on by forces in addition to
a pure centripetal attraction. If the areas described in equal times continually increase (or
decrease), then the additional force acting on the particle must accelerate (or decelerate)
it in the direction of the motion. And the same is true even if the orbit should be described
in a resisting medium.

In stating the two foregoing corollaries, Newton has already in mind the effect of
perturbations on the motions of the Moon and of the planets considered later in
Proposition LXVI (see Chapter 14).

In the Scholium that follows Propositions I and II, Newton points out that the motion
in the orbital plane will be unaffected by any force that acts normally to the plane.
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Proposition I11. Theorem 111

A* body, that by a radius drawn to the centre of another body, howsoever moved,
describes areas about that centre proportional to the times, is urged by a force
compounded of the centripetal force tending to that other body, and of all the
accelerative force by which that other body is impelled.

Given that L describes, about T, equal areas in equal times in a planar orbit, while T
is subject to extraneous forces, then L must be subject to the combined action of a
centripetal attraction towards 7 and all the other forces that may be acting on T.

To show this, we subject L and 7, simultaneously, to parallel forces in directions opposite
to that acting on 7. Then T will be reduced to rest, while by Corollary VI of the Laws
(Chapter 2, p. 30) the motion of L relative to 7 will remain unaffected; and it will therefore
continue to describe about 7" equal areas in equal times in a planar orbit. By Proposition
II the force acting on L must be a centripetal attraction towards 7. Therefore the difference
of the forces acting on L and T is a centripetal attraction of L towards 7.

Corollary 1

If under the circumstances of the Proposition, we subject L and T simultaneously, in
parallel directions, to forces equal and opposite to that acting on L, then 7" will be subject
to a centripetal attraction towards L.

Corollaries II and 111

If unequal areas are described by L, relative to 7, in equal times then the difference of
the forces acting on L and 7 cannot be a pure centripetal attraction of one towards the
other.

* ‘Every’ in Motte’s and in Cajori’s translations is clearly erroneous: in the French translation (Principes mathematiques
de la philosopie naturelle, Par feue Madame la Marquise du Chastellet, Tome premier, 1756, Paris, p. 53) it is ‘Si’.
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Corollary IV

If T moves in a straight line while L moves about it in a planar orbit describing equal
areas in equal times, then 7 must be subject to ‘very powerful actions of other forces’;
and the same ‘powerful actions’ must also act on L.

The Scholium which concludes these three propositions is quoted as the motto for this
chapter.

Proposition IV. Theorem IV

The centripetal forces of bodies, which by equable motions describe different circles,
tend to the centres of the same circles; and are to each other as the squares of the
arcs described in equal times divided respectively by the radii of the circles.

Given two circles of radii r; and r, described uniformly with velocities v, and v, and that
the arcs 4B, (=r.00,) and A,B, (=r,00,) are described in times Jt, and o, (all,
respectively!), we have

arc A,B; =r,00, = v,0t, and arc A, B, =r,00, = v,0t,. (1)
Also, by elementary geometry,*
A;S; x A,D, = (4,B,)? and A,S, x A,D, = (4,B,)% )
By Lemma I, it follows thatf

- (71501)2 - (7'2502)2

AlDl and A2D2 (3)T
2ry 2r,
2 2
* Note: A,D, = (’1591)2_<ﬁ§1> N (ry96,) .
2 A1B1 2ry

+ The symbol = is explained in §12, equations (3) and (4).
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Since A,D, and A, D, are the versed sines of twice the arcs 4,B; and A4, B,, they are the
distances travelled in times Jt; and Jt, by the centripetal forces, (C.F.); and (C.F.),,
attracting the two particles towards the respective centres. (Here and elsewhere, the inertial
mass is set equal to 1.) Accordingly,

AD, _ 1 (r,66,)
(0t,)* 2ry (0t,)°

2 “4)
1 _ 4D, 1 (ry00,)
2(CF), = == = —
(01,) 2ry (0t3)
and the result stated follows. Also, if 6t; = ot,, then
(CF), _ (r100,)? } (r,00,)* @)
(C.F), ry r,
Corollary 1
By using equation (1), equations (4) give
(C.F),:(CF.), = vi/r :v3/r,. (5
Corollary 11
If the periodic times in which the circular orbits are described are T; and 75, then,
T,:T, =r/vy:1,/0, or viv, =1,/ :r,/ T, (6)
and from (5) it follows that
Corollary IIT
If T, = T, then by (7)
and conversely.
Corollary 1V
If
then
(CF):(CF),=1:1 (10)

and conversely.



74 Newton’s Principia for the common reader

Corollary V

If
T,:T, =r,:1,.
then
27;,:1 = 27;;2 U1 =70,
and by (4')

(CFE):(CF),=r{'r; %
and conversely.

Corollary VI
If
T,:T, =r}*:r3?
then by (7)
(CF):(CF),=r{%:1r) %
and conversely.

Corollary VII
More generally, if
T,:T, =ry:r,
then
(CF),:(CF), =r @D ps0n=1,
and conversely.

Corollary VIII

(11)

(12)

(13)

(14)

(15)

(16)

This corollary is best stated in Newton’s own words since it represents a sweeping

generalization of all the preceding.

The same things hold concerning the times, the velocities, and the forces by
which bodies describe the similar parts of any similar figures that have their
centres in a similar position with those figures; as appears by applying the
demonstration of the preceding cases to those. And the application is easy, by
only substituting the equable description of areas in the place of equable motion,
and using the distances of the bodies from the centres instead of the radii.
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Corollary I1X

The relations (1) and (4) are clearly valid in finite forms. Therefore,

arc = r0 = vt and CF.=v*)r (17)
where 0 is the angle described in a time t. Therefore
(arc)? = (C.F.)rt? = 2rs, (18)

where s is the linear distance travelled by a particle under a force equal to the centripetal
force under which the circular orbit is described.
Alternatively,

arc = /(2rs). (19)
(Note that the mean proportional of two quantities a and b is \/(ab), i.e. the geometric mean.)
Notice the exceptional completeness with which Newton states all the relations relevant
for his Moon test of 1662 (see also his renewed applications of these relations in
Proposition IV, Book III (Chapter 19)).
We have already considered in Chapter II the Scholium that concludes these four
propositions.

Proposition V. Problem I

There being given, in any places, the velocity with which a body describes a given
figure, by means of forces directed to some common centre: to find that centre.

Let PT, TQV, and VR be the directions of the velocities at three points, P, Q, and R along
the orbit so that these are also the directions of the tangents to the orbit at these points.

We are required to find the location of the centre of the centripetal attraction, S, under
which the orbit is described.

Let PA, OB, and RC be normal to the tangents at P, Q, and R and of lengths inversely
proportional to the velocities vp, vy, and vg at these points; that is,

PA:QB:RC =vp " :vg'ivg "
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If S should be the (yet unspecified) centre of attraction, drop the perpendiculars SP" and
ST to the tangents at P and Q. And draw (as illustrated) CE, EBD, and DA parallel to
the tangents at R, Q, and P and intersecting at the points E and D. Now drop the
perpendiculars DP” and DT” to the tangents at P and Q. Then by the constructions and
Corollary I, Proposition I,

SP' v, AP _DP’
ST v, BQ DT”

or

SpP ST

DP” DT//'

Therefore, S, D, and T are collinear. Similarly, S, E, and V are collinear. Hence S is at the
intersection of the lines 7D and VE. (Q.E.D!)

23. Newton’s relations for determining the law of centripetal
attraction from the orbit

In this section we shall present Newton’s geometrical relations which are central to his
derivation of the law of centripetal attraction when the orbit that is described is given.

Proposition VI. Theorem V

In a space void of resistance, if a body revolves in any orbit about an immovable
centre, and in the least time describes any arc just then nascent; and the versed
sine of that arc is supposed to be drawn bisecting the chord, and produced passing
through the centre of force: the centripetal force in the middle of the arc will be
directly as the versed sine and inversely as the square of the time.
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Let APQ be the orbit described by a particle about the centre of attraction S; P and Q
neighbouring positions of the particle at an interval ¢ apart; YPZ the tangent at P
specifying the direction of the motion; and QR the continuation of SQ (and is the versed
sine of twice the arc PQ). (Note that QR may also be considered as drawn parallel to SP
since the difference between them vanishes, to the second order, in the limit 6t —» 0—a
limit we always consider). Finally let SY be the perpendicular to the tangent at P. (The
figure on the right is an enlargement of the area around PTQR.)

In the absence of centripetal attraction the particle initially at P will by inertia proceed
in the direction of the tangent at P and in a time ¢ will arrive at R (say). By the centripetal
force acting for a time dt, the particle is drawn to Q. Hence by Galileo’s theorem, as stated
by Newton (cf. Chapter 2, §9 in the Scholium),

OR = L (centripetal force) x (6t)* = $(C.F.)(6t)?, 6))

where, for brevity, we shall write C.F. for centripetal force, (where in accordance with the
convention we have adopted, the inertial mass has been set equal to 1).

Corollary 1
By Proposition I,
The area of the triangle SPQ = iSP.QT = (dA4/dt)ét, )

where dA/dt, the constant rate at which the area is described, is the constant of areas.
Eliminating ot between equations (1) and (2), we obtain the basic relation,

_ [(dA\* o©OR
CF. = 8<a—> sPoTE 3)

Corollary 11
OR
SY?Qp?*’
where ‘oc =’ has (here and elsewhere) the meaning that the quantity on the left-hand side

is proportional to the limit of the quantity on the right-hand side when Q — P.

This relation follows directly from the limiting similarity of As SYP and QTP as Q — P;
thus,

CF.oc = 4)

SY _ QT SY.QP _

_ = —

or —
SP ~ QP SP.QT

©)

Corollary 111

It is convenient to redraw the diagrams of this proposition to emphasize that at P the
centre of the circle C, passing through P and Q and touching YP at P is on PC
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perpendicular to YP; and that in the limit Q — P, the circle becomes the circle of contact

Relations that follow directly from the diagram are:

QP? = PC.PT
and

(=2pPT', where p is the radius of curvature at P) (6)

PT" = QR sin €.
Hence

(7
oR— 2P _ @)
" PCsine

8
2% ®)
where ds denotes the arc length measured along the orbit. Substituting for QR in (4) from
equation (8) and noting that

COSEC €,

PV = PCsine,

©

-
~

\ .
S
RS
IR
N ~
N N
N N
N N
N
-~
~

A
/
]
] 1 I*é61
Y 1 Y
I
AN ! /
H \ ! /
' \ / /
| \ [
\ \ 17
\ \ 17
' \ 1 /
\ \\ h) //
\
\‘ \\ e ,’Q/
\\ \/ﬁL}(lé
T
. .l
AN
N
C el
we obtain
1
CF

(10)
where it will be noticed that we have dropped the symbol

= since the right-hand side is
locally defined and does not depend on the limiting process, Q — P, implied.
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Corollary IV
Since the velocity, v, along the orbit is the reciprocal of SY (by Corollary I, Proposition I),

2

v
CF.oc—, 11
3% (1)
or
2
CF. —. (12)
2psing

Corollary V

Collecting the various relations obtained in Corollaries I-1V, we have

2 2 2
(CF) ' SY?’PV oc =< SPPOT” SY'op :
OR OR

(13)

Proposition VII. Problem 11

If a body revolves in the circumference of a circle, it is proposed to find the law of
centripetal force directed to any given point.

The diagram is the same as the one for Corollary 111, Proposition VI, except that what
was the circle of contact is now the entire orbit. Also QR is now drawn parallel to SP
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instead of continuing SQ to intersect the tangent at P, since the difference is of the second
order as Q — P and can be ignored.
It is clear from the diagram that the As VPA, ZTP, and ZQR are similar; and it follows
that:
AV PZ RZ PZ—-RZ RP
PV ZT 2Q ZT—-2Q OT

Accordingly,
PV? py?
T? = RP? = (LR.R .
Hence
2 2 2 2 2 3
SpP*QT =LRSP PV _ SP°PV

K

OR AVE T AV?
since LR — PV when Q — P. Since AV, the diameter of the given circle, is a constant, we
conclude from Corollary V of Proposition VI, that

CFo—r— .
SP*pV?

The same otherwise
Since the right-angled As SYP and VPA are similar (the £ s VAP and SPY being equal)
SP.PV

SY = .
AV

Therefore, by Corollary V, Proposition VI,
SP*py?

= SY?’PV CF) L
AV? < (CF)

Corollary 1
If the orbit passes through the centre of attraction SP = PV and remembering that AV
is a constant, it follows that

C.F. < (SP)™3;
that is, the inverse fifth-power law. The significance of the inverse fifth-power law in this
context will be considered in Chapter 6.

Corollary 11

Given, that a body revolves in the same circular orbit, with the same period of revolution,
under the centripetal attraction from two different centres, to find the ratio of the
centripetal attractions towards the two centres.
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Let R and S be the two centres of attraction and let the circular orbit that the body
describes under the centripetal attraction from R or S, be PTP'V A (where P’ is the antipode
of P); and further, let GPQ be the tangent at P. Continue PR and PS to intersect the
circle at 7 and V; and draw SG parallel to RP.

By the proposition just established,

(CF)y RP?2.PT3 < PT \? .
= = SP.RP? . i
(CF) SP2.PV3 SP.PV ®

Since / PSG = L TPV and L SGP[=/RPQ = [ TP'P]= [ TVP, the As SPG and
PTV are similar; and therefore,

SP PT 1 PT

o pus or P : (i)

SG PV SG SP.PV

Inserting this last relation in (i) we obtain the required ratio:
CF. SP.RP? ..
( )S - (ill)

(CF)x (SG)®

The reader may perhaps wish that an explanation be given for the requirement of the
equality of the orbital periods in the statement of the corollary. The reason is that in
deriving the basic relation (4) in Proposition VI, Corollary I (p. 77) the constant
proportionality factor 8(dA/dt)* was omitted. The same factor is also omitted in the other
relations (13) collected in Corollary V. The omission of this factor is of no consequence
so long as one’s consideration is restricted to the motion described under a given law of
centripetal attraction. But when the same relation is used in a comparison of the motions
under two different laws, as in the present instance, equality of the constant of areas in
the two cases is implied. And when the orbits are circular the equality of the orbital periods
follows from the equality of the constant of areas. All this must, of course, have been
obvious to Newton!
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Corollary 111

Since the relation (iii), established in the preceding Corollary II, is purely local, in that it
involves no quantity that is not uniquely defined by the point P, it will suffice to require

only that the same orbit (not necessarily circular) is described under the centripetal
attraction of two different laws provided the constant of areas is the same. We can state
this more general result as follows.

Given that an orbit is described under a known law of centripetal attraction, then the
same orbit, with the same constant of areas, will be described under a new law of centripetal
attraction related to the old by

SG?

CF)rinew = (CF)s0d ———— -
( )R,new ( )S,old SPRP2

(iv)

The depth of the corollaries of this proposition has not been recognized until recently.
It is therefore of some interest to note that these corollaries are not included in the first 1687
edition of the Principia; they appear for the first time in the second 1713 edition. We shall
return to this matter in some detail in the Supplement to Chapter 6.

Proposition VIII. Problem 111

If a body moves in the semicircumference PQA; it is proposed to find the law of
the centripetal force tending to a point S, so remote, that all the lines PS, RS
drawn thereto, may be taken for parallels.

By the similarity of the As CPM, PZT and RZQ we have the relations:
CP PZ RZ PZ—-RZ RP

Therefore,

CP> RP?> RQ(RN +QN) _ 2PM.QR.
PM? QT? QT? or* '’
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P
R
2 Y |y
0
N C
4 M
N S

and we obtain
SP?QT* _ 2SP*PM?
QR cp*
Since SP?/CP? is a given quantity, we conclude from relation (3) of Proposition VI,
Corollary II, that

C.F.oc (PM)™2.
This result can also be derived directly from Proposition VII by drawing the diameter of
the circle (on page 79) normal to PV and RL and intersecting them at M and N,
respectively; and by making the correspondences that exist between the diagrams of
Propositions VII (p. 79) and VIII (p. 83).
The significance of the ‘inverse-cube’ law which emerges here will become apparent in
the context of Proposition XLV, Example III (Chap. 10, p. 197).

24. Two simple illustrations of the basic relation
As a preliminary to the solution of the Kepler problem in Section III, Newton first
considers two simple cases for illustrating the application of the geometric relation of
Proposition VI, Corollary L.

Proposition IX. Problem IV

If a body revolves in a spiral PQS, cutting all the radii SP, SQ, &c., in a given
angle; it is proposed to find the law of the centripetal force tending to the centre
of that spiral.

The requirement that the radius vector, drawn from a fixed point to any point on the
curve, makes a constant angle to the tangent at that point, defines an equiangular spiral.
The defining equation, therefore, is (see the figure),

cote=—£:ﬂ w=r"1. 0]
rde ude
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The solution of this equation is

u = exp(o cot €), (i1)

where a constant of integration has been absorbed in u.
Before presenting Newton’s solution of the problem, we shall find it useful to obtain it
(as one currently would) with the aid of the general equation,
d?
C.F. = P(u) = h*u? (u + —Z) (iii)
de
derived in Chapter 4, Section 18 (equation (28)). Inserting for u its present solution (ii),
we obtain
hz

CF. = (h?cosec’ e)u’ = ———.
r3sin? e

(iv)

In other words, a particle that describes an equiangular spiral, under a centripetal
attraction, can do so only under an inverse-cube law of attraction.

In his method of solution, Newton starts with his basic relation (Proposition VI,
Corollary I, equation (3)),

R
F. = Q— (v)
QT*SP?
By equation (8) of Proposition VI, Corollary III,
P? .
orR— 2% (vi)
2psin e
where p is the radius of curvature at P; and an alternative form of equation (v) is
1 P?
CF o = < ! (vii)

2p sine QT* SP?’
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or, since QP/QT = cosec e,

CF. « 1 (cosec® €)SP~2. (viii)
2p
But by equation (9) of Proposition VI, Corollary III (see the figure)
PV = 2psine. (ix)
Hence, finally
CF. sP (cosec? €)SP 3. (x)
PV

Equation (x) is entirely general: it applies to any orbit described under centripetal
attraction.

The arguments leading to equation (x) are essentially Newton’s, except that he prefers
to argue in terms of the similarity of the figures QTPR and Q'T'P'R’ constructed at any
two points P and P’ with equal ~s PSR and P'SR’ (see the figure)—he does not, for
example, make use (explicitly) of the relation QP/QT = cosec €. Having reached the stage
of equation (x), Newton states, as self evident (see below), that the ratio SP/PV is
independent of P; and he deduces his result:

C.F.oc(SP) 3. (xi)

The same otherwise

In his alternative derivation of the result (xi), Newton starts with the relation (10) of
Proposition VI, Corollary III,

1
CFoc——. xil
SY?PV (xii)
Since SY = SP sin €, we obtain,
2 SP
CF.« Cosil = cosec? € — (SP) 3.
SP“PV PV

the same as equation (x). With the statement, ‘the chord of the circle concentrically cutting
the spiral [at V in the figure] is in a given ratio to the height SP’, Newton completes the
proof.

An analytical verification of the invariance of SP/PV along an equiangular spiral is of
some interest in enabling us to infer what Newton must have known at the time.

We start with equation (viii),

1
C.F. oc — (cosec? €)u?, (xiii)
2p
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an alternative form of equation (x). By a known formula, the radius of curvature along a
curve, (@) (given in plane polar coordinates) is

2 2
1 _ut d*u/de (xiv)
p [1+ (dufude)®]*?
or by equation (i)
2
I_ <u + d—i)sirﬁ’ €. (xv)
p de
For an equiangular spiral this equation gives
. 1 28pP .
— =sine or —=—=1, (xvi)
pu pusine PV

confirming Newton’s statement. However, greater interest attaches to the result obtained
by combining equations (xiii) and (xv), namely

d? ..
C.F. oc 1u? (u + —Z), (xvii)
do
or, returning to equation (v) from which we started, we have the identity:
d?
ﬂi = ocu2<u + —u>, (xviii)
QT?SP de?

thus coming full circle. From the fact that in his demonstration of Proposition X Newton
had explicitly arrived at equation (x) (which is the same as equation (viii)) it is hard to
imagine that he was not fully aware of the identity (xviii).

Finally we may note that in Proposition XLI, Corollary III, Newton presents the
complete solution to the problem of motion in an inverse-cube law of centripetal attraction.

Lemma X11

All parallelograms circumscribed about any conjugate diameters of a given ellipse
or hyperbola are equal among themselves.
This is demonstrated by the writers on the conic sections.

Proposition X. Problem V

If a body revolves in an ellipse; it is proposed to find the law of the centripetal
force tending to the centre of the ellipse.

Considering two infinitely close points P and Q on the ellipse (with centre C and
semiaxes CA and CB), we draw the lines QT and QR perpendicular and parallel,
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respectively to CP. Let DCK be the diameter conjugate to PCG and parallel to PR, the
tangent at P. Finally, draw PF perpendicular to DCK and Qu parallel to RP (and DCK).
By a known property of the ellipse,

Pv.vG CP* .
o T op? g
while by the similarity of the As QuT and PCF,
Qv* CP* .
o " PFE (i)
also
% =1, (iii)

since QRPv is, by construction, a parallelogram. Now multiplying these three equations,
we obtain,

QR.vG _ CP*

0T  PF2.CD?’ )
But by Lemma XII
PF?.CD?* = CA*.CB?; v)
and equation (iv) gives,
R.vG P4
QR.0G_ € (vi)

QT> CA>.CB*
But
vG = 2CP. (vii)
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Hence
R 1
9 = CP.
QT?.CP? 2CA*.CB?
Therefore by the basic relation of Proposition VI, Corollary I,
C.F. o CP. (ix)

In other words, a particle will describe an ellipse about its centre under a centripetal
attraction proportional to the distance. (Q.E.D!)

The directness, the absence of superfluity, and the entirely elementary character of the
proof are sparkling; but they are obscured by Newton’s (Jamesian) style in writing
mathematical derivations in continuous prose.

(viii)

The same otherwise

Newton’s alternative proof is admittedly more involved than his first; but it exhibits his
extraordinary virtuosity in devising geometrical constructions that exactly serve the
purpose.

The surprising elements in Newton’s present construction are first to associate v with
a point u on the left, equidistant from 7 so that

Tv = Tu; (x)
and second to define another point V' by the condition
uV = (Qu)*/Pv, (xi)

or, by equation (i),
uV._ (Qv)>  CD?

vG  Pv.vG CP?

A surprising identity follows from these definitions.
By equation (xi) we have,

(Qv)* + Pu.Pv = Pv(Pu + uV) = Pv.PV; (xiii)
while by an alternative reduction making use of equation (x), we have
(Qv)? + Pu.Pv = (Qu)> + (PT + Tu)(PT — Tv)

(xii)

= (Qu)* + PT* — Tv*. (xiv)
The As QPT and QTV being right angled,
PT? = PQ? — QT? = PQ? — (Qv* — Tv?). (xv)

By combining equations (xiii), (xiv), and (xv), we obtain the identity,
Pu.PV = PQ>. (xvi)
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It follows from this identity that the circle of contact at P passing through Q intersects PG
at V. (How did Newton know this beforehand?)
By Proposition VI, Corollary III, it now follows that,

1
CF.oc——— PF =°SY’), Xvii
PEIPY ( ) (xvii)
or, by equation (v)
2
F.oc —CD— (xviii)
(CA.CB)?*PV

But, according to equation (xii),

cD*> uV PV
= = e 2 or cD*=1PV.PC (xix)
CP?> vG  2PC

Hence finally,

1

Foc——PC, (xx)
2(CA.CB)?

which is the required result.

Cor. 1. And therefore the force is as the distance of the body from the centre
of the ellipse; and, vice versa, if the force is as the distance, the body will move
in an ellipse whose centre coincides with the centre of force, or perhaps in a
circle into which the ellipse may degenerate.

Newton does not provide an explicit demonstration of the ‘vice versa’ part of the
corollary. But, by his familiarity with the theory of the simple pendulum (see Chapter 2,
§10) he must undoubtedly have considered it as obvious (needing no explanation) that
the solution of the pair of equations,

d*x ) d?y

T = —w?x and i —w?y (w = a constant),

namely,
x = acos(wt — ;) and y = b sin(wt — J,)

(where a, b, d;, and 9, are constants), represents motions in an elliptic orbit; and vice
versa!

Besides, in Proposition XLII (see Chapter 9) Newton formulates and solves the
initial-value problem for motion under the action of an entirely general centripetal
attraction.
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Cor 11. And the periodic times of the revolutions made in all ellipses whatsoever
about the same centre will be equal.

It is clear that it will suffice to consider the two cases: a pair of similar ellipses and a pair
of ellipses with equal major (or minor) axes. The general case will follow from combining
the results for the two cases.

(a) The case of two similar ellipses is illustrated in the adjoining figure. With the same
notation as in the earlier sections, the following sequence of steps is self-explanatory.

2
(1) CF. = v COosec €.
0

(i) (C.F),:(CF), =ry:ry = (v7/p1):(3/p,) (. €is the same).
(ii) v}:v3 =r,p,:r,p, = ri:7r3 (by the similarity of the ellipses).
(iv) vyivy, =71 01,.

W) T,:T, = (area of ellipse);  (area of ellipse),

'772 7 (constant of areas), ~(constant of areas),

b b .
=801 _ D%y proposition I, Corollary 1)
PiU1 D2l
_ a;b, _ ab,
Piry P2y
=1:1 (by similarity of the ellipses).

(by (iv))

(b) The case of two ellipses with semiaxes, (a, b,;) and (a, b, # b,) is illustrated in
the adjoining diagram. The sequence of steps is now the following.

() (CF)p, = (CF)p, = by :by, = vi/p,:03/p,.
(i) p;:p, = (a*/by):(a*/b,) (by a known formula for the radius of curvature).
(i) vi:v3 = pibyipyby =1:1 (by (i)
@iv) vy = v,.
(v) T,: T, = ab/bv, :ab,/byv, = 1: 1.



The law of areas and some relations which follow 91

Since the corollary is true for the two cases, it is true generally.
The foregoing is no more than a transcription of what Newton writes in explanation:

For those times in similar ellipses will be equal (by Cor. m1 and v, PrRop. 1v);
but in ellipses that have their greater axis common, they are to each other as
the whole areas of the ellipses directly, and the parts of the areas described in
the same time inversely; that is, as the lesser axes directly, and the velocities
of the bodies in their principal vertices inversely; that is, as those lesser axes
directly, and the ordinates to the same point of the common axes inversely; and
therefore (because of the equality of the direct and inverse ratios) in the ratio
of equality, 1:1.

Finally, in the concluding Scholium, Newton considers the parabolic limit of the ellipse,

2 2
elot
a*  b?
One obtains by first transferring the origin to the vertex (—a, 0) and then letting
a— and 1—e) -0,

keeping the distance from the vertex to the nearby focus,

a(l — e) = constant = « (say).

The resulting parabola,
y? = dox,
defines the orbit described under the action of a constant attractive force in the direction
x. Newton identifies this inference as ‘Galileo’s” theorem!
Newton also considers the hyperbolic orbits described when the centripetal attraction
is replaced by centrifugal repulsion.






The motion of bodies along
conic sections

25. Introduction

he propositions of Section IIT and most particularly Proposition XI (in which the
T inverse-square law of attraction is deduced for bodies revolving in ellipses under the
action of a ‘a centripetal force tending to the focus of the ellipse’) are commonly regarded
as the apex of the Principia. This view, in my judgement, greatly diminishes the Principia.
Newton himself did not accord Proposition XI any special significance when he came to
formulating his universal law of gravitation in Book III: his main references are to
Propositions I-IV and especially Proposition IV and its seven ccrollaries (see Chapter
19). Besides, the deepest theoretical insights are revealed in the ‘same otherwise’
demonstrations of Propositions XI and XII and the emphasis given to Proposition VII,
Corollary III in the concluding Scholium—all of which appear for the first time in the
second 1713 edition of the Principia. (These matters are considered in detail in the
Supplement (§§ 31-33) for this chapter.)

26.

Proposition X1. Problem VI

If a body revolves in an ellipse; it is required to find the law of the centripetal
force tending to the focus of the ellipse.

Description of figure

S and H are the foci and C is the centre of the ellipse;

CA and CB are the semimajor and semiminor axes of lengths a and b;
P and Q are neighbouring points (Q — P, eventually);

RPZ is the tangent at P;
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DCK is the diameter, conjugate to PCG and parallel to RPZ;
PF is perpendicular to DCK, and CZ is parallel to SP;

OR and QT are parallel and perpendicular, respectively, to SP;
Qv and IH are parallel to RPZ (and DCK);

vis on PC and x is on PS.

Some properties of the ellipse needed in the solution

(i) SP + PH = 2a.
(i) The latus rectum L = 2b?*/a = 2BC?/CA = twice the semilatus rectum, L.

(i) / IPR = ; HPZ implying / PIH = , PHI and PI = PH.
(iv) Pv.vG/(Quv)*> = CP?/CD? (Proposition X, equation (i), Chapter 5).
(v) PF?.CD?* = CB*.CA? (Proposition X, equation (v), Chapter 5).

A simple consequence of the relations (i)—(v)
Since SC = CH and EC is parallel to [H,

(vi) SE = EI
By (i), (iii), and (vi),
2a = PS + PH = PE + SE + PI = PE + EI + PI = 2PE.

Therefore
(vil) PE(=CZ) = a = AC (‘Newton’s theorem”’).
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With these preliminaries out of the way, Newton’s solution to the problem is simple, direct,
and straightforward. The steps are:

OR _Px

Ty " Py (*." ORPx is a parallelogram)
v v
PE o
=C (by the similarity of the As Pxv and PEC),
or by (vii)
@ QR _AC
Py PC
By (iv)
®) Pv. _ CP?
(Qv)*? CD?.vG’
Multiplication of (a) and (b), gives
© QR _AC.PC
Qv  vG.CD?
But
2 2 2
(g;)z = ((5;))2 = ?iz (by similarity of As Qx7T and PEF)
AC? ..
=R (by vii),
or, by (v)
@ (Qv)? - CD?
oT? CB?*
Now by multiplying (c) and (d),
QR _ AC.PC.
©) <
orT vG.CB
or by (ii)
QR _ _PC _
) —— = 2— =1
or vG
Hence
(& L.QR = QT%
and finally:

SP2.QT* _

2~
(h  L.SP? = oR

oc(C.F)™t (by Proposition VI, Corollary I)
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or
1 CF.ocSP™2,
that is, an inverse-square law of attraction (Q.E.I)

A fact of some relevance that follows from (Newton’s) equation (g) is worth noting.
From the equation (Proposition VI, equation (2))

SP.QT = 2 (;—A ot = hot (h = the constant angular momentum)
t

and equation (h), above, it follows that
1 - I OR - L.QR - 1y (C.F.)ot?
Sp? SP2QT> h2o12 R
the last step following from Galileo’s theorem. We thus obtain:
0 % PO)
where P(r) = C.F. as defined in Chapter 5, Proposition IX, equation (v).

The same otherwise

By an application of Proposition VII, Corollary III (for which it was apparently intended)
Newton shows that the inverse-square law of attraction tending to S follows from the linear
law of attraction (ocr) tending to C (proved in Proposition X); and conversely.

Thus with the identifications

R - S, S - C, and G- Z,
equation (iv) of Proposition VII, Corollary III gives
cz3 AC3
— =(CF)e——,
pe.spr - CFepe sp2
since CZ = PE = AC. From this relation it follows that
if (CF)coc PC then (C.F.)goc SP™2

(C.F)s = (C.F.)¢

and, conversely,
if (CF)socSP™? then (CF.)coc PC. Q.E.L

As I have already remarked, neither this ‘same otherwise’ solution of the celebrated
problem nor Proposition VII, Corollary III appear in the first 1687 edition of the Principia;
but they are included in the second 1713 edition. Further comments are made in the
Supplement to this chapter.
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27. Proposition XII

Newton prefaces this proposition with the following remark that is a reflection of his
joyous attitude at the time of his writing.

With the same brevity with which we reduced the fifth Problem to the parabola,
and hyperbola, we might do the like here; but because of the dignity of the
Problem and its use in what follows, I shall confirm the other cases by particular
demonstrations.

Proposition XII. Problem VII

Suppose a body to move in a hyperbola; it is required to find the law of the
centripetal force tending to the focus of that figure.

L
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With Newton’s careful lettering of the above figure in which the geometrical correspon-
dences that exist between the ellipse (illustrated in Proposition XI, §26) and the hyperbola
(illustrated above) are scrupulously observed, all that has been written in the context of
the solution of Problem VI literally applies without any alteration, to the solution of the
present Problem VII with the sole exception of equation (i), PH + SP = 2a, which must
be altered to read PH — SP = 2a. In other words, all the equations (ii)—(vii) and (a)—(i)
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of §26 are valid as they stand when read in the context of the present figure. The solution
to Problem VII (as the solution to Problem VI) is

C.F.oc SP™2 (Q.E.L)

The “dignity’ of the present problem consists then of the identity of the two problems
if they are viewed correctly!

The same otherwise

The alternative solution is the present analogue of the solution presented in §26 in the
context of Proposition XI. The laconic style in which Newton expresses the solution gives
us some measure of the depth of his insights.

Find out the force tending from the centre C of the hyperbola. This will be

proportional to the distance CP. But from thence (by Cor. 111, Prop. vii) the
3

force tending to the focus S will be as %, that is, because PE is given

reciprocally as SP2.  Q.E.L
And the same way may it be demonstrated, that the body having its centripetal
changed into a centrifugal force, will move in the conjugate hyperbola.

The foregoing terse statements of Newton are explicitly verified in §31 (B and C).

28. Proposition XIII: the motion of a body along a parabola

First some preliminary lemmas relating to the geometry of the parabola.

Lemma X111

The latus rectum of a parabola belonging to any vertex is four times the distance
of that vertex from the focus of the figure.

Lemma X1V

The perpendicular, let fall from the focus of a parabola on its tangent, is a mean
proportional between the distances of the focus from the point of contact, and from
the principal vertex of the figure.

Description of figure

S is the focus and A is the vertex of the parabola,

(i) y? = dax;
with the origin of the coordinate system at A; and
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=Y

(i) AS = a.
DX is the directrix; P is a point on the parabola, and PD is perpendicular to DX. Then
(by definition)

(iii) SP =PD = 0X.
PM is the tangent at P; and SN is perpendicular to PM.
LS = SX = 2a = semilatus rectum: L(in figure) = (a, 1L).
@iv) L=4a (which is Lemma XIII)
The parametric representation of the parabola is:

x = ap? and y = 2au.

If

(v) P = (A0, OP) = (ay?, 2au), then,

(vi) SO = A0 — AS = a(p* — 1).

The equation of the tangent at P = (au?, 2au) is:

(vii) y = Xy ay; when y = 0, x = —au?.
u

Therefore,

(viii) AM = |x|y=o = au® = A0 (by (v)),

SP? = SO? + OP? = [a(y* — 1)]? + 4a*u? (by (v) and (vi))
= [a(y® + D%
Hence,
(ix) SP=a(y* +1)=AM + AS = SM (by (ii) and (viii)).
By virtue of this last relation,
MN = NP (since SN is perpendicular to MP);
and since A0 = M A (by (viii)).
(x) AN is parallel to PO and .". perpendicular to OM
(Newton’s Cor. III of Lemma (XIV)).
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Also since the right-angled As SAN and SNP are similar,
SN SP
SA SN
that is, SN is the ‘mean proportional’ of the distances SP and SA as required by
Lemma XIV. It further follows from equation (xi),

(xii) SN?/SP=SA=a

and

(xi) or SN? = SP.SA = aSP.

SP> _SN> SP

SPP_SNP_SP
SNZ saz _gq  bvd

(xiii)
and these are, respectively, Newton’s Corollaries II and III of Lemma XIV.

It is of interest to recall that Newton was apparently persuaded by Halley to include
Lemmas XII, XIII, and XIV for the benefit of the readers of the time (and one might be
inclined to add, of the present time, as well!)

Proposition X1I1. Problem VIII

If a body moves in the perimeter of a parabola; it is required to find the law of
the centripetal force tending to the focus of that figure.

M A s
Description of the figure
The lettering of the present figure agrees with that of the preceding figure of the lemmas

where they are the same and for the rest of the geometrical correspondence with the figures
of Propositions XI and XII is maintained.

S is the focus and A is the vertex of the parabola;
P and Q are neighbouring points on the parabola;
RPZ is the tangent at P;

SN is perpendicular to MRP;
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RQ and QT are, respectively, parallel and perpendicular to SP;
PG is parallel to MS.

(xiv) L. GPZ(= [ Pvx)= L SPM(= L Pxv)=w (say),
(by a property of the parabola). The angle @ defined in (xiv) is related to the
parameter u in equation (vii) for the tangent at P, by
(xv) cotw = p. (by (vii)).
The equation of the parabola with respect to the oblique axes PG (the x-axis) and
PM (the y-axis) is given by (since x = Pv and y = Quv):
y? = 4(a cosec” w)x = 4a(l + uH)x  (by (xv))
or by equation (ix)
(xvi) y? = 4SPx.

With these matters of definition out of the way, Newton’s solution to the problem follows
easily and directly.
In the chosen oblique system of coordinates

P =(0,0) and Q = (Pv, Qu).
Accordingly by equation (xvi)
(xvii) (Qv)?> = 4SP.Pv = 4SP.QR,
because Pv = Px (the A Pxv being isosceles by (xiv)) and Px = QR (RQPx being a
parallelogram). Therefore, since Qv = Qx,
(xviii) (0x)* = 4SP.QR.
On the other hand, by the similarity of the right-angled triangles Qx7T and SPN,

2 2
o onimsa (b i)
4PS.QR (0x)?
T 4SA.QR  4S4.0R

(by (xviii)).

Hence
(xix) QT? = 44S.Q0R = L.QR,
where L = 4AS is the latus rectum of the parabola (by (iv)). We observe that equation

(xix) is formally the same as equation (g) of Proposition XI (and also Proposition XII);
and the solution to the problem follows as before:

OR 1 .
= oc C.F. by Proposition VI, Corollary 1. .E.L
SP?QT? sp? Y P Y Q
With the inverse-square law of attraction established for the motion along ellipses,
hyperbolae, and parabolae, Newton recapitulates the principal results of his major

Propositions XI, XII, and XIII in the form of two corollaries.
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Cor. 1. From the three last Propositions it follows, that if any body P goes
from the place P with any velocity in the direction of any right line PR, and at
the same time is urged by the action of a centripetal force that is inversely
proportional to the square of the distance of the places from the centre, the
body will move in one of the conic sections, having its focus in the centre of
force; and conversely. For the focus, the point of contact, and the position of
the tangent, being given, a conic section may be described, which at that point
shall have a given curvature. But the curvature is given from the centripetal
force and velocity of the body being given; and two orbits touching one the
other, cannot be described by the same centripetal force and the same velocity.

Newton’s arguments in this corollary can be paraphrased as follows.

Let S be the centre of attraction with a force k/r?, where k is some given constant; P
the position of a particle at a distance r from S and PR, inclined at an angle € to SP, its
instantaneous direction of motion with a velocity v. At an instant of time Jt later, by
inertia alone, the particle will find itself at R (say) at a distance vdt from P. But because
of the centripetal attraction, k/r?, towards S, the particle will find itself at Q along SR
where (by Galileo’s theorem),

_ K o2
OR = (31)”

Now draw the circle of contact passing through P and Q; and let p be the radius of
curvature. Then the normal acceleration towards the centre of curvature is v?/p; and this
must equal (x/r?) sin €. Therefore,
v’r?
p = — COSecC e,
K

determining p in terms of given quantities. And Newton asserts: ‘the focus, the point of
contact, and the position of the tangent, being given, a conic section may be described,
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which at that point shall have a given curvature.” But how it ‘may be described’ is
postponed to Proposition XVII to follow.

With respect to the uniqueness of the solution found, Newton states: ‘two orbits,
touching one the another, cannot be described by the same centripetal force and the same
velocity.’

Corollary 11

In the diagram for Corollary I, QT (as usual!) is drawn normal to SP. Then, as established
in Propositions XI, XII, and XIII,

2
L = or ,
OR
where L is the latus rectum of the ellipse, the hyperbola, or the parabola, as the case may
be. This is a relation that is central to Newton’s further developments.

29. Kepler’s third law: Propositions XIV and XV

After having established the inverse-square law of attraction for motions of bodies along
conic sections, Newton turns to proving Kepler’s third law (though Newton never
associates Kepler’s name (as one commonly does today) to the first two of the three laws
of planetary motion).

Proposition X1V. Theorem VI

If several bodies revolve about one common centre, and the centripetal force is
inversely as the square of the distance of places from the centre: I say, that the
principal latera recta of their orbits are as the squares of the areas, which the
bodies by radii drawn to the centre describe in the same time.

This proposition is a recapitulation of the principal relations established in the earlier
propositions. We have (in the notation, now standard),

(61)
25P*
SP.QT =24 ,0t (Proposition VI, Corollary I, equation (2)),
where x is a constant of proportionality and
L.QR = QT (Proposition XIII, Corollary II).

OR = HC.F.)(60)? =

(Galileo’s theorem),

Therefore

_ QT* 2SP*QT* 842

" OR B K(t)? Tk

The corollary for this proposition is a partial statement of Proposition XV.

L

(Q.E.D.)
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Proposition XV. Theorem VII
The same things being supposed, I say, that the periodic times in ellipses are as

the 3/2th power (in ratione sesquiplicata) of their greater axes.
By definition, the latus rectum,
L=2b*/a or b=./(aL)2).
Therefore,
the area of the ellipse = nab = na®?,/(L/2).

The periodic time, 7, of revolution is the area divided by the rate at which the area is
described, namely A , that is,

mad¥PJ(L)2)
A

T

But by Proposition XIV,
A =3/ (L)2).
Therefore,
T = 2na’. (Q.E.D)

By comparison of this last result with Proposition IV, Corollary VI, it follows:

Cor. 1. Therefore the periodic times in ellipses are the same as in circles whose
diameters are equal to the greater axes of the ellipses.

30. Amplifications: Proposition XVI

Proposition XVI with its nine corollaries summarizes and amplifies the principal results
of the major propositions that have been established.

Proposition XVI. Theorem VIII
The same things being supposed, and right lines being drawn to the bodies that
shall touch the orbits, and perpendiculars being let fall on those tangents from
the common focus: I say, that the velocities of the bodies vary inversely as the
perpendiculars and directly as the square roots of the principal latera recta.

By the similarity of the right-angled As PQT and PSY in the limit Q — P,
PQ _ PS

QT SY
or

PQ = SP.QT/SY.
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But by Proposition XIV,
SP.QT = kdét\/(L)2).
where « is a constant of proportionality. Therefore,

N

PO =
¢ SY

Now,
PQ = RP = vét.

Combining these last two results we obtain,

(0) v = K/(L/2)/SY.

A series of corollaries making use of this relation follows:

Corollary 1

An alternative form of the relation established is

® 1L = (WS Y/x)>

Corollary 11

105

(QED)

At A and B, ‘SY’ (the perpendicular distance from S to the tangent at the point considered)

is, respectively, SA and BC. Therefore

(i) vy = kJ(L/2)/SA  and vy = K\/(L/2)/BC.
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Corollary 111

The velocity v, (R) in a circular orbit of radius R and latus rectum 2R is, by (0),

(iii,): vo = kR™2
Therefore, by (ii),
(ii1y,): V4/v5(SA) = \/GL/SA) and vp/v(BC) = \/(GL/BC).

Corollary 1V
The ‘mean distance’ from either focus is defined by
BS = /(BC? + SC?) = /(b* + a’¢*) = a.
Therefore,
Vo (BS) = ka~'?;
while according to (o)

v(ellipse; B) = g — =Ka

Hence,
(@iv) vg(ellipse; B) = v, (BS) = ka™ /2.

Corvollary V
Along any given ellipse
) v, o (SY) 7Y
and this relation obtains also when we compare different ellipses with the same latera recta.
It is possible that when Newton wrote down this corollary, he might have had in mind

the earlier common interpretation (by Hooke and by Wren?) of the area-law as implying
v, oc (SP)™".

Corollary VI
Along a parabola, L = 4a and ‘SY’ = SN (see the figure for Lemmas XIII and XIV)
v = Kk\/(2a)/SN.
But by equation (xi) of Lemmas XIII and XIV,
SN = /(aSP).
Hence,
(vi) v,(parabola) = k,/(2/SP),
that is, the velocity is inversely proportional to the square root of the distance from the
focus.
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Corollary VII
By (iii,) and (vi)

(vii,) v(parabola; SP): v, (SP) = \/2:1,
and
(viiy) v(parabola; SP): v, (3SP) =1:1.

(Notice the independence of these ratios on P.)

Corvollary VIII
By relations already established,

(viii) v(ellipse; SP): v, (zL) = 3L/SY.

Corollary IX
Quite generally:

(ix,) v(ellipse; SP): v (SP) = \/(3L.SP): SY,
and
(ixp) . U@(R1)5 U@(Rz) = \/(Rz/R1)-

The listing of all the foregoing special cases is characteristic of Newton’s scientific
attitude: to explore all matters with thoroughness.

Proposition X VII. Problem I1X

Supposing the centripetal force to be inversely proportional to the squares of the
distances of places from the centre, and that the absolute value of that force is
known; it is required to determine the line which a body will describe that is let
go from a given place with a given velocity in the direction of a given right line.

The problem to be solved is this: given that a body P, under the action from S of an
inverse-square law of centripetal attraction, k/SP? (where k is a known constant of
proportionality)* is projected in the direction ZPR with a velocity v, to determine the
conic section that it will describe.

* Newton replaces the information of knowing x by the knowledge of the ratio, A/(V.Sr)? (see the equation
below).
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For convenience of reference we draw an ellipse assuming (for the present) that the
orbit will be found to be an ellipse. The focus about which the conic section will be
described is S. The line XPX' on which the other focus H will be found can be readily
drawn: we have only to make the angle XPZ equal to the angle SPR. Draw SK and SR
perpendicular to XPX' and ZPR, respectively.

The latus rectum L of the conic section to be determined is given in terms of v and SP by

L = 2(wSR/x)* (by Proposition XVI, Corollary I).

But this formula was derived by Newton on the assumption that the law of attraction is
(SP)™2,ignoring an allowed constant of proportionality k. Newton allows for this factor by
considering an arbitrary conic section described under the same law of attraction
(including the factor k) and about the same focus S. Let pg be an element of arc of this

X’

chosen orbit; and let the velocity at p in the direction zpr be V. If Sr is perpendicular to
zpr, then by Proposition XVI, Corollary I,

A = 2(V.Sr/x)?

where A is the latus rectum of the chosen conic section. By combining the two foregoing
relations, we obtain
_ A (v.SR)Z’

(V.Sr)?

a relation which determines L.
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With the focus S, the line X'PX on which the second focus lies, and the latus rectum
L known, it remains to determine the location of H on X'PX and the semiaxes a and b.
Newton proceeds on the assumption (to be discarded if need be) that the orbit to be
determined will be found to be an ellipse.

SP? + PH? — 2PH.PK — SH? — 4CH? = 4(BH? — BC?)
= 4a* — 2a(2b?*/a) (since BH = BS = a),
_ (SP + PH)> — (SP + PH)L  (since SP + PH = 2a),
= SP? + PH?> + 2SP.PH — (SP + PH)L.

Hence

(a) L(SP + PH) = 2PH(SP + PK);
for, alternatively

(b) L(1 + SP/PH) = 2(SP + PK).

Since SP, PK, and L are given quantities, it is apparent from equation (b) that we have
to distinguish three cases:

1. L < 2(SP + PK). In this case, equation (b) can be solved for PH, determining the
location of the second focus, H, on PX. The orbit to be determined is an ellipse; and the
semimajor axis of the ellipse follows from the relation,

SP 4+ PH = 2a,
while the semiminor axis follows from the definition of L:
L=2b*a or b=./(La/2).

2. L =2(SP + PK). Then PH is infinite and the orbit will be a parabola, with its axis
SH parallel to PK. Since L for a parabola is 4a where a is the distance of the vertex from
S, the relation (b) gives

a =3P + PK).
3. L > 2(SP + PK). Clearly in this case the orbit is a hyperbola; the conjugate focus

H will be found in the opposite direction along PX "’ (see figure) and equation (a) will take
the form

L(PH' — SP) = 2PH'(SP + PK)
and
L(1 — SP/PH") = 2(SP + PK).
The solution can be completed as in case 1 remembering that in this case
PH' — SP = 2a

Newton concludes:
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For if the body, in these cases, revolves in a conic section so found, it is
demonstrated in Prop. X1, x11, and X111, that the centripetal force will be inversely
as the square of the distance of the body from the centre of force S; and therefore
we have rightly determined the line PQ, which a body let go from a given place
P with a given velocity, and in the direction of the right line PR given by position,
would describe with such a force. Q.E.F.

The following observation with respect to this proposition may be made.

In Proposition XIII, Corollary I, Newton asserts, as we have noted: ‘the focus, the point
of contact, and the position of the tangent being given, a conic section may be described
which at that point shall have a given curvature’. And as we remarked in the context,
how ‘the conic section may be described’ is considered only in this proposition. But in
this proposition, it is the latus rectum L, not the radius of curvature p, that is given. The
two are, however, very simply related. Equation (viii) of Proposition IX (§24, Chapter 5)
for an inverse-square law gives

p oc cosec? € (€ is the inclination of SP to RP).

The constant of proportionality follows from equation (xv) of the same section. With the
known polar equation of the elliptical orbit, namely
1

Uu—=-—=
r

(1 + ecos o) (e = the eccentricity),

e

equation (xv) of §24 gives
p = 3L cosec? e.

That Newton must have known this relation requires no argument!

Corollary 1
Newton establishes the identity,

4DS.DH
" DS+ DH’
in the notation of the figure. It follows from the known relations
DS + DH = 2a, DH = a(1 —¢) and DS =a(1 + e).
By virtue of these relations,
ADS.DH _ 4a*(1 — &?) _ 2b_2 _
DS + DH 2a a
as required. An alternative form of the identity is
DS:DH = (4DS — L): L,

L
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while a comparison with equation (a) shows that

2DS.DH = PH(PS + PK).

Corollary 11

The particular simplicity of the case, when the velocity at the principal vertex D is given,
is noted. By Proposition XVI, Corollary III (equation (iii)),

3L _ |:v(ellipse; SD)]2
DS vo(SD) |’

a relation which immediately determines DS; and DH (locating the second focus) follows
from the relation

DS 4DS—L
DH L
And finally the Corollaries IIT and I'V show how far into the future Newton sees already
at this stage of writing the Principia.

Cor. 11. Hence also if a body moves in any conic section, and is forced out
of its orbit by any impulse, you may discover the orbit in which it will afterwards
pursue its course. For by compounding the proper motion of the body with
that motion, which the impulse alone would generate, you will have the motion
with which the body will go off from a given place of impulse in the direction
of a right line given in position.

Cor. 1v. And if that body is continually disturbed by the action of some
foreign force, we may nearly know its course, by collecting the changes which
that force introduces in some points, and estimating the continual changes it
will undergo in the intermediate places, from the analogy that appears in the
progress of the series.

It may be useful to summarize the essential content of this proposition.
Newton, in effect, solves the problem of the motion of bodies governed by the
equation,
d* kP
de? re’

and finds solutions that satisfy given initial conditions and shows how, depending on
initial conditions, the orbit described can be an ellipse, a parabola, or a hyperbola. And
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as Newton explains in Corollary I of Proposition XIII, ‘Given the focus, the point of
contact and the position of the tangent, a conic section may be described’ having a given
latus rectum or, equivalently, having at the point of contact, a given curvature; and as he
states further, in Corollary I of Proposition XIII, ‘two orbits, touching one the other,
cannot be described by the same centripetal force and the same velocity’. Besides, Newton
establishes the uniqueness of the solution of the initial-value problem quite generally in
Proposition XLI.

Nevertheless the adequacy of Newton’s treatment was questioned by Bernoulli (and by
others since). The following comments by the distinguished mathematician V. I. Arnold
(in ‘Huygens and Barrow; Newton and Hooke’, Birkhduser Verlag, Basel, 1990, pp. 30-31),
should, in my judgement, dispose of these criticisms once and for all.

Modern mathematicians actually distinguish existence theorems and uniqueness
theorems for differential equations and even give examples of equations for
which the existence theorem is satisfied but the uniqueness theorem is not. So
various troubles can arise, and if Newton’s equation were troublesome, it would
actually be impossible to make any deductions. A mistaken point of view arises
because of the unwarranted extension of the class of functions under considera-
tion. The fact is that in modern mathematics the concepts of function, vector
field, differential equation have acquired a different meaning in comparison with
classical mathematics. Speaking of a function, we can have in mind a rather
nasty object—something differentiable once or even not at all—and we must
think about the function class containing it, and so on. But at the time of
Newton the word function meant only very good things. Sometimes they were
polynomials, sometimes rational functions, but in any case they were all analytic
in their domain of definition and could be expanded in Taylor series. In this
case the uniqueness theorem is no problem, and at that time nobody gave it a
thought.
But in reality Newton proved everything, to a higher standard.

Scholium

As if to draw attention to Corollaries II and III of Proposition VII and to ‘the same
otherwise’—demonstrations of Propositions XI and XII, newly added to the second 1713
edition of the Principia—Newton in the concluding Scholium restates Corollary III of
Proposition VII, for the special case when the orbit is an ellipse described about its centre
C by a centripetal attraction towards an arbitrary point R in the interior. Identifying
S with C in equation (iv) of Proposition VII, Corollary III (Chapter 5, p. 82) we
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have

CG?
CP.RP?
But, by Proposition X, Corollary III, we know that an ellipse described about the
centre C requires a law of centripetal attraction proportional to the distance CP.
Consequently

(C.F)g = (C.F)c. (GC = EP).

CG?
C.F. s
( )R oc RP2

This brings us to the end of a remarkable chapter of the Principia.

A personal reflection

To repeat once again, what I have remarked on more than one occasion: the Corollaries
I, I1, and III of Proposition VII and ‘the same otherwise’—demonstrations of Propositions
XI and XII and the concluding Scholium—were all new additions to the second 1713
edition of the Principia, that is, long after the first 1687 edition, during Newton’s London
years. As will be apparent from the Supplement to this chapter the Corollaries IT and III
of Proposition VII are of profound theoretical significance and display Newton’s deep
insight. And it is intriguing to speculate on how Newton might have come to make this
discovery.

It is known that during his London years Newton was wont to spend time turning the
pages of his personal interleaved copy of the Principia—mostly, it appears, for detecting
minor errors and misprints that might have been overlooked. Perhaps on one such
occasion he noticed (as he must have on numerous previous occasions) that a body
describes the same ellipse under two different centres. But on this occasion the thought
occurred to him ‘Clearly one must be deducible from the other’. No sooner had the thought
occurred, Newton apparently had no difficulty in devising the proof (as in the Scholium).
Perhaps, during those lonely years in London, with the Principia in front of him, Newton
continued to voyage

‘through strange seas of thought alone’.



Supplement: on dual laws of
centripetal attraction

31. A recapitulation

As we have remarked on several occasions, Newton in his Corollary III of Proposition
VII formulates the problem of a body (with a given angular momentum) describing the
same orbit under two different centres. The questions suggested by the formulation of this
problem and the illustrations Newton provided are of considerable depth. One can, for
example, ask the question: given a power law of centripetal attraction, is there a dual law
for which a body with the same constant of areas will describe the same orbit? Only recently
has this question been raised and answered by V. I. Arnold and T. Needham. We shall
present these solutions; but first we shall recapitulate Newton’s results on this problem.

N

Circle of contact

We shall base our recapitulation on the formula
1 1

2p sin® € SP?’
derived in Chapter 5 (Proposition IX, equation (viii)), where p is the radius of curvature
at a point P and € is the inclination of the direction of motion at P to the line joining it
to the centre of attraction at S.

That bodies describe a conic section under an inverse-square law of attraction emanating
from the focus, follows directly from equation (1), since for any conic section the radius
of curvature p is related to the latus rectum L by (cf. Proposition XVII, p. 110)

psin®e=13L; )

CF. « (1)

and equation (1) gives
CF. o 1 (SP)~2. 3)
L
(Q.E.D})
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A digression

Both relations (1) and (2) are included in the Principia, albeit implicitly. Newton must
have known them: relation (1) follows very directly from several of the relations included
in Sections II and III (already of the first 1687 edition); and relation (2) cannot have
escaped the Master Geometer of the conic sections. Why then, one may ask, did Newton
not include in the Principia so simple and direct a derivation of Propositions XI, XII, and
XIII that results from combining the two relations (1) and (2)? The answer to this question
must be that these simple relations must have escaped him during the two years when he
was under the extreme pressure of writing the Principia; and that they became transparent
to him during his ‘lonely voyages’, in the leisure of his London years. Be it noted in this
connection that the italicized part of Corollary I of Proposition XIII, quoted on page 102,
and the concluding sentence of Proposition XVII, quoted on page 107, do not appear in
the first 1687 edition of the Principia; they are included for the first time in the second
(1713) and the third (1726) editions, respectively. Was Newton, in these later years,
‘stooping’ a little, contrary to what perhaps was his earlier motto:

Learn to understand and you shall hear it. But in other terms—no. If you would
not rise to us, we cannot stoop to you.

John Ruskin; in Sesame and Lilies, 1865

But to the purpose!

If the same orbit is described with respect to two centres S and C, then it follows from
equation (1), since p is the same for the two orbits,

(C.F.)g " <sin ec>3 CcP?
(CF)e \sineg/ SP?’

4)

A. The orbit described is an ellipse

Let the orbit be described under the centripetal attraction derived from an arbitrary point
S in the interior. Then

€= [ RPS = / PEC,

and
€c= [ RPC=7n— [ ECP. &)

Hence
sine. sin L ECP EP
sin €g - sin /. PEC N PC

(6)
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and it follows from equation (4) that

CE (erycr: .
(C.F.)c CcpP) SP?
We know by Proposition X, the centripetal force towards C is
(C.F)c o< CP. (®)
Therefore,
EP?
(CF)goc P )

which is the result stated by Newton in his concluding Scholium.
If S is identified with the focus it follows that EP = a (the semimajor axis) is a constant;
and we recover Newton’s ‘the same otherwise’ demonstration of Proposition XI.

B. The orbit described is a hyperbola

On the right half of the figure the lettering is the same as on the figure for Proposition XII;
on the left half the lettering is that appropriate for a body P’ orbiting the conjugate
hyperbola.
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We first compare the forces acting on P centred at S or C. It is clear that

€c=LCPZ=n+ [ CPR=n+ [ PCE (10)
while
€= (SPZ=n~— [ EPZ=mn— [ PEC. (11)
Therefore
sinec:_sin LPCEZ_P_E. (12)
sin €g sin £ PEC CcpP
From equation (4) it now follows:
(C.F.)g EP3 a’ (13)

o — = — .
(CF.)¢ CP.SP? CP.SP?

But we know that the attraction towards S is proportional to SP~2. Hence

(CF)cxc —CP; (14)

in other words: a particle will orbit the same hyperbola under a repulsive force proportional
to the distance from the centre C. This conclusion is in accord with Newton’s statement,
following the ‘same otherwise’ demonstration of Proposition XII, and quoted on p. 98.

C. A body orbiting the conjugate hyperbola with the centre of
attraction at S

It is clear that
/. SP'R"= / SPR, (15)
while the radii of curvature at P’ and P are of opposite signs. Hence

(CF. acting on P); B (SP')* (16)
(C.F. acting on P’)g (SP)*’

in other words: under an inverse-square law of repulsion centred at S, a body will describe
the conjugate hyperbola, confirming Newton’s statement quoted on p. 98.

By similar considerations (or, more directly by symmetry) it follows that under the
action of a repulsive force proportional to the distance from the centre C, a particle can
describe either branch of the hyperbola. In this sense a linear repulsive law of force is
self-dual.

D. The self-duality of the inverse-fifth power law of attraction

We finally turn to Corollary I of Proposition VIL
Consider a circular orbit described under centripetal attraction emanating from two
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R

different points S; and S, on the circumference of the circle. Then, by relation (4),
(C.F.)s, o~ <sin LSZPR>3 <sz p)z ~ <cos LS, P0>3 <52 P>2
(C.F.s, sin £ S, PR S, P cos LS, PO S,P
3 2
_ (SZP/P0> <SZP> an
S,P/PO) \S,P

(CE)s, | (S2P)°
(CE)s, (8:P)°

or

(18)

in other words, the same inverse-fifth power law. One may say, on this account, that the
inverse-fifth power law of attraction is self-dual for motion in a circle.

To summarize: during the course of proving the various propositions and corollaries
of Section III, Newton establishes the following laws of centripetal force as dual:

attractive, r~ % and attractive, r (elliptical orbits);
attractive, r~* and repulsive, r (hyperbolic orbits);

repulsive, r and repulsive, r (the conjugate branches of a hyperbola);

2

repulsive, r~? and attractive r~ (hyperbolic orbits with the centre of force at the

focus of the conjugate hyperbola);

5

attractive, r > and attractive, r~> (a circle with the centre of attraction on any point

of the circumference).

(The last two are self-dual.)
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32. The mapping of orbits described in the complex plane

Consider the motion of a body described in the complex z-plane under a linear law of
attraction. The equation governing such motion is

d*z
Tt g 1
i (1
and a general enough (!) solution of this equation is:
z=x+iy=pe* 4 ge ¥, ()

where p and g ( < p) are constants, which, without loss of generality, may be considered
as real. The motion represented by the solution (2) is a superposition of the uniform,
circular motions described in opposite senses and as such describes an elliptical orbit.
Thus, rewriting the solution in the form

z=(p+qg)cost+i(p—q)sint. 3)
and separating the real and the imaginary parts, we have
x=(p+gq) cost and y=(p—¢q)sint @)

which is the parametric representation of an ellipse with semiaxes a = (p + q) and
b = (p — q). The eccentricity of the ellipse is given by

(r +@e=Jl(p+9>—(p—9°1=2J(pg9). ()
The foci of the ellipse are, therefore, at
[+2./(pq), O] (6)

Also we may note that the radial distance from the centre is given by
r=./(p*+ q* + 2pq cos 2t) (7
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Consider now the mapping

Z'\'V‘)ZZ =p26+2it+q26—2it+ zpq

= (p* + ¢*) cos 2t + i(p* — ¢*) sin 2t + 2pq. ®)
Separating the real and the imaginary parts, we now have
£—2pqg=(p*+q*cos2t and = (p®>—q*)sin2t, )
which represents an ellipse of semiaxes, & = p> + ¢*> and b = (p*> — ¢?) centred at
X = 2pq, (10)
that is, at the left-hand focus; for its eccentricity & we have
(p* + ¢»e=JLP* + ¢*)? — (p* — ¢*)°1 = 2pq. (11)
The polar equation of this mapped ellipse is (cf. equation (7)),
i - 12

P>+ q* + 2pgcos ¢

We have shown that by the mapping z~» z?, the ellipse described under a linear law of
attraction is mapped on to another ellipse having the left-hand focus at the centre of the
original ellipse. In §33, we shall verify that the mapping does provide a solution for the
ellipse described under an inverse-square law of centripetal attraction. Meantime, we shall
consider the hyperbola described under a linear law of repulsion governed by the equation

2
% = +z (13)
Writing the solution of this equation in the form
z=Jle" 4+ e *=(+ A)cosht+ (A — A)sinht (14)
and separating the real and the imaginary parts, we obtain,
x=(A+A)cosht and y=—i(A— J)sinht. (15)

The solution represents a hyperbola with semiaxes,
a=Ai+A and ib=A-—1; (16)
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and eccentricity e(> 1) given by
A+ De= [+ 1) — (A — 4] =24
The foci of the two branches of the hyperbola are at
[£2]4], 0].
Now consider, as before, the mapping
Fowz? = )2eT2 4 P2 4 2|02
= (A2 4 %) cosh 2t + (A2 — A?)sinh 2t + 2|A|?,
which represents the one branch of the hyperbola
(X —2[A?) =2+ A*)cosh2r and  y= —i(4* — 1% sinh 21,
with semiaxes,
A2+ and |22 — 22
centred at (X = 2|4|%, § = 0) with eccentricity
(A + 22)& = J[(A? + A% + |22 = 221F] = 2|4~
We observe that both branches of the hyperbola

x2 y2

_ 1
A+ 21> A=A

121

(17)

(18)

(19)

(20)

21)

(22)

(23)

are mapped on to the one branch of the hyperbola represented by equation (19). (The
case b? > a*, when the energy E is positive, is illustrated for reasons explained in §33, B
and C.) This fact requires elucidation. It derives from the fact that the same branch of the
hyperbola describes the motion of a particle under an inverse-square law repulsion from
the conjugate focus H. The equivalent statement, that a particle under an inverse-square
law of repulsion from S describes the conjugate hyperbola with its focus at H was
established in §31, C. It was further established in §31, B, that under a repulsive force

proportional to the distance from the centre, hyperbolic orbits are described.

~_{—~

(+2)?




122 Newton’s Principia for the common reader

And finally we may note that the linear trajectory,
z = a + ibt, (24)

in the complex plane (described in the absence of any external force), by the same mapping,
z~» 2%, becomes the parabola,

7? = 4a*(a* — %), (25a)
where

X =(a® — b*t?) and  J = 2abt. (25b)

33. The dual laws of centripetal forces

In §32, we showed that an elliptical (or a hyperbolic) orbit, in the complex z-plane,
described about its centre, C, under the action of an attractive (or a repulsive) force
proportional to the distance from C, is, by the mapping z~» z?, transformed into a conic
section with its focus at C. Is this fact a mere geometrical curiosity, or has it a deeper
physical base? It has: for, we shall show that the trajectory one obtains by the mapping
z~» 22, is, in fact, in accord with the motion of a body under the action of an inverse-square
law of attraction (or repulsion, in case the centre of force is at the conjugate focus of the
hyperbola that is described).

The basic theorem in the subject is due to K. Bohlin (Bulletin Astronomique, Paris,
Vol. 28, p. §, 1911); see also V. I. Arnold in Huygens and Barrow, Newton and Hooke
(Birkhduser Verlag, 1990, pp. 95-100, whose exposition we shall, in effect, follow).

Consider, then, the equation of motion,

d*w

P (D
in the complex w-plane, where the upper and the lower signs (here and in the sequel)
distinguish the attractive and the repulsive cases, respectively. Equation (1) admits of two
integrals: the angular momentum integral,

d4 d
— w27

— = —— = constant; 2
dt t @
and the energy integral
2
E= 1( do + |co|2> = constant. 3)
2\| dt

We now determine the equation of motion governing

Z=w? 4)
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with respect to a time 7 determined by the constraint,

dA d dA d

Lo 1zp =" =P, (5)
dz d dt de

ensuring the equality of the constants of area for the w- and the Z-orbits (cf., the remarks
following equation (iii) of Proposition VII, Chapter 5, p. 81). An alternative form of
equation (5) is

& IZP At wodi ©
With these definitions, we find
>z 1.d < 1 da)z)_ 2 d(ldw)
di* oo dt\wo dt oo dt \@ dt
2 1 |do* _o
~ 0o <‘ o de| 5)
== 2 (1ol £ loP), 0
Or, making use of the energy integral (3), we have
d*z Z
i —4E |§|_3 (8)
The two principal cases to be distinguished are:
E>0 and E <O. )
If the orbit of w is an ellipse (as is the case if the centripetal force is attractive)
E > 0. (10)

On the other hand, if the orbit of w is a hyperbola (as is the case when the centripetal
force is repulsive) both cases, E > 0 and E < 0, can arise depending on whether

a* < b? or a* > b?, (11)

where a and b are the semiaxes of the hyperbola,
— —==1, (12)
representing the orbit.

I. E > 0. In this case, equation (8) is that appropriate for an inverse-square law of
attraction.

II. E <0. In this case, equation (8) is that appropriate for an inverse-square law of
repulsion.
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The foregoing results which follow from our present considerations are in complete
accord with Newton’s discoveries summarized in §31.
Finally, we consider the case

E=0 and b* = a?, (13)

when o describes straight lines and no external force is operative; and as we have seen
in §32, the mapping z~»z? produces the ‘androgynous’ parabola (to borrow a felicitous
description by T. Needham).

We shall now proceed to the more general case when the centripetal force is
proportional to the ath power of the distance:

CF.oc F|Z° (a an integer). (14)

In this case the equation of motion in the complex z-plane is

d*w L
- = _Q) [6)] a= . 15
2 = Tolol (15)
with the two integrals,
dd _ |w|? do _ constant, (16)
dt t
and
1 2
E=—|: oy + 2 |w|"“]=constant. (17)
21 | dt a+1

We shall now show (following V. 1. Arnold) that

Z =% (18)
where
a=%a+3) or a+1=20a-1), (19)
satisfies an equation of motion (with respect to a time 7 determined by the requirement
d d
Ar=|2|2i”=A,=|w|zi’> (20)
' dz ’ dt
appropriate to a centripetal force proportional to
VA o3y
where
2 4
A—1="(1 -2 or A+3=-= . (22)
o o a+3
Making use of the relation,
d Z
—T=‘— = 0"t = ol 23)
dt )
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we find successively,
d*z 1 d[ 1 dz
de> |w|a+la_|w|a+1 E:l
¢« d| o* ! dow
=|w|a+1a_|w|a+1 Et_:|

o d[ 1 do _
- ||+ dt | @tz E} (by equations (19))
dw

o I: 1 d*w 1 2}
dt

1
sz gz 2@t D s
2
B J; (24)

or by virtue of the energy integral (17) and the relations (22) among the coefficients a and
o, we obtain,

= |w|a+1

o — l)a)“|: +2

w|a+l+
lo**72 |la+1 |

2
4’z = —2Eau(a — 1)Z|Z|471, (25)
dz?
establishing that Z satisfies the required equation.

In summary, we have shown that two bodies with equal angular momenta, revolving
under the action of centripetal forces proportional to the ath and the Ath powers of
the distance, describe the same orbit with two different centres of action provided (cf.
equation (22))

(a+3)(A4+3)=4, (26)

and further that the orbits, in the complex plane, belonging to @ can be mapped on to
the orbits belonging to Z by the map (cf. equation (18)),

2
x wh =3a+3)=—"—_. 27
ZZ ere o = 5( ) 143 27
The following table lists the dual pairs (a, A) for integral a’s together with the required

mapping in the complex plane.

a A map
+1 -2 Z w72
—1 —1 Z >z
—4 —7  zwzT2
-5 -5 zwwz 1

The case (—1, —1) is generally excluded on physical grounds; of the remaining cases, only
the pair (—4, —7) is not included in the Principia (cf. the summary at the end of §31).






Kepler’s equation and its solution

Analyzing Kepler’s law in two dimensions, Newton discovered an astonishingly modern
topological proof of the transcendence of Abelian integrals. Newton’s theorem was not
really understood by mathematicians at that time, since it was based on the topology
of Riemann surfaces. Thus, it was incomprehensible both for Newton’s contemporaries
and for 20th century mathematicians who were bred on set theory and the theory of
functions of a real variable, and who were afraid of multivalued functions.

V. I. Arnold and V. A. Vasil’ev (Notices of the American Mathematical Society,
Vol. 38, 1148, 1989)

34. Introduction

presentation of Section III of the Principia was completed in Chapter 6. Sections IV
and V which follow are of the nature of an intermezzo: in them we are led into the
realm of the conic sections that forms the background against which the rest of the play
is to be enacted. There is much of interest in these sections. But we shall pass them by
since they are not essential to the subsequent developments; and besides there is an
excellent account of them by J. J. Milne that is already available (Isaac Newton,
1642-1727, a memorial volume, W. J. Greenstreet, London 1927, pp. 96—114).
We turn then to Section VI which is addressed to the question:

How the motions are to be found in given orbits.

The problem that is considered is the following. We know that a body describes a conic
section under the action of an inverse-square law of centripetal attraction towards the
focus, in a plane normal to the constant angular momentum. The question is: how is it
described ir; time? We already have a built-in clock in the law of areas,

d
r*(¢) d—(’: = h = constant (1)

where (@) is the radial distance of the revolving body from the centre of attraction (the
focus) in a direction making an angle ¢ with a fixed direction in the orbital plane. We
have only to paint the numerals on the face of the clock by integrating the law of areas:

ht = jw r*(¢p) de.

For elliptic orbits we are led to Kepler’s equation. And Section VI is in the main devoted
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to the solution of this equation. To appreciate Newton’s depth of understanding of this

problem and the manner of his solution, we shall begin by providing a conventional
treatment (by the standards of today) of the same problem.

35. Kepler’s equation

X
\"U

Directrix

1
a

A \ Sl‘ (focus)

We shall first consider the simpler case of motion along a parabolic orbit. The polar

equation of the parabola is

2a _ 1+ cos ¢ = 2 cos? ¢/2, 6))
r

where a, the distance between the vertex A and the focus S, is one-half the semilatus rectum
I = 2a. The equation to be integrated is

ht = a? r’ sect % de = 2a* Jtanwz (1 + tan? ¢/2) d(tan @/2), #))
0 0
or
ht = 2a*(tan /2 + 1 tan® ¢/2). (3)
Since
r=a(l + tan® ¢/2), 4)

the explicit form of equation (3) is

_ 1/2 _
ht — 2a2<r “) <1 Llr “>. (5)
a 3 a

Relations essentially equivalent to (3) and (4) are stated by Newton in Lemmas X and
X1 of Book III of the Principia in the context of his consideration of cometary motions.
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We consider next the motion along an elliptic orbit. Let APB be an ellipse of eccentricity
e, and semiaxes a and b. And let P be a point on the ellipse whose image on the auxiliary
circle AQB is Q. By the definitions customary in this subject,

L. ASP = ¢ = the true anomaly, and

/. AOQ = u = the eccentric anomaly. ©
Then,
0X =asinu, PX = b sin u, and OX = —a cos u. (7
By a known property of the ellipse,
SP=r=a+ e0X = a(l — e cos u), 8)
while the polar equation of the ellipse gives
I/r =1+ e cos g, %)
where
[ = the semilatus rectum = a(1 — e?). (10)
Combining équations (8) and (9), we have
1—e*=(1+ecos @)l —ecosu)
= (1 — e+ 2e cos® ¢/2)(1 + e — 2e cos? u/2). (11)
On simplifying equation (11), we find
(1 + e) cos? @/2 — (1 — e) cos® u/2 = 2e cos? ¢/2 cos? u/2, (12)

or
(1 + e) sec? u/2 — (1 — e) sec? /2 = 2e. (13)
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An alternative form of equation (13), as may be readily verified, is

1+e\'?
tan /2 = <1——> tan u/2, (14)
an equation which relates the true and the eccentric anomalies.

Turning next to the equation which relates the eccentric anomaly with the time, we first
observe,

ﬁ = gﬁ =n (by definition) or h = nab. (15)
ab T
Since the constant of areas,
A, =%h, (16)
it follows that
= }% x area of the elliptic sector APS, (17

or, since PX = (b/a)QX independently of the position of P on the ellipse,

2
t=—— <b area of the sector AQS)
nab \a

2
= — (area of the circular sector AQO — area of ASQO)
na

2 .
= — (3a’u — Jae.a sin u). (18)
na
We thus, finally, obtain

nt=u—esinu, (19)

which is Kepler’s equation*—an equation which must be solved to determine the
eccentricity e from observations on the image of P (i.e., Q) on the director circle.

36.
Proposition XX X. Problem X XII

To find at any assigned time the place of a body moving in a given parabola.
Let A be the vertex, and S the focus of the parabola
y? = 4ax = 4A4S.x; (1)

* While this equation is commonly ascribed to Kepler, its correct derivation, with its underpinnings in the law
of areas, is due to Newton; the derivation we have given, in fact, follows his (see §38, below).
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Y P
1
1
1

A G S 0
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and let the instantaneous position of a body describing the parabola be P. From the
mid-point G of AS, draw the perpendicular, GY, to the x-axis AO. Let the normal to SP,
from its mid-point, intersect GY at H. With these constructions (which passes under-

standing) Newton proves:

As the point P moves along the parabola, under the action of an inverse-square
law of attraction centred at S, the point H moves along GY with a uniform velocity
equal to 3/8th of the velocity of P at the vertex.

Proof:
AG? + GH? = GS? + GH? = HS? = HP2.

But
HP? = HH? + H'P? = (A0 — AG)* + (PO — GH)?
= A0? —240.4G + PO? — 2PO.GH + AG? + GH?;

and we conclude that

2GH.PO = AO0* + PO* — 240 . AG.

2

€)

4)

Since AO and PO are the x- and the y-coordinates of P, by equation (1) of the parabola

2
_Po and 24G.A0 = ax = 1P0O>.
448
Inserting these results in equation (4), we obtain,
26H = 40 FO 4 3po.
448
Alternatively,
$GH.AS = tPO(AO + 3AS) = tPO[440 — 3(40 — AS)]
= tPO(440 — 308)
or, finally,

$GHa = %(xy)p — area of ASOP.

©)

(6)

(7

(8)
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On the other hand,

X X
j y dx = 2a'/? J x!? dx = %a'?x31? = %x(4ax)'/?
0 0

= %(xy)p = area of segment ASOP. )
Equation (8) can, therefore, be rewritten in the form
%aGH = area of the parabolic segment ASP (10)
or, by the law of areas,
$GHa = 3ht, (11)
where ¢t is measured from perihelion passage at A. We have thus shown that
GH = % t or % (GH) = % = constant. (12)

Since the velocity of P at the vertex A is
vy = hja, (13)
it follows that

d
& (GH) = 3v, (Corollary II). Q.E.D.

Still another form of equation (9) is obtained by noting that (cf. equation (9))

area of segment ASS' = %a.2a = %a?; (14)
and that, therefore,

GH _ area of segment ASP

(Corollary I).
a area of segment ASS’

And Newton concludes:

Cor. 1. Hence, also, on the other hand, the time may be found in which the
body has described any assigned arc AP. Join SP, and on its middle point erect
a perpendicular meeting the right line GH in H.

A closing remark: since Newton most certainly knew the polar equation of the parabola,
it is hard to imagine that he had not deduced for himself the solution to the problem
given by equations (3) and (4) of §35: they are, in fact, in essence, stated in Lemmas X
and XI of Book III. Newton clearly preferred the present demonstration since it provides
for the motion along a parabola a geometrical construction similar to the one he devises
for the motion along an ellipse in Proposition XXXI to follow.
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37.
Lemma XXVIII

There is no oval figure whose area, cut off by right lines at pleasure, can be

universally found by means of equations of any number of finite terms and
dimensions.

This lemma is a striking manifestation of Newton’s mathematical insight which enabled

him, as in this instance, to surpass the level of scientific understanding of his time by two

hundred years; and it behooves us to reproduce the lemma in its entirety. But the brevity

of Newton’s exposition, in which he takes for granted many facts that were obvious to

him, makes it difficult to follow even for a modern reader. But once the ideas are explained

(as we shall attempt, following V. I. Arnold), Newton’s reasoning becomes transparent.
First, some definitions:

1. A plane curve is said to be algebraic (or, as Newton calls ‘geometrically rational’) if
it satisfies an equation of the form P(x, y) = 0 where P is some non-zero polynomial.
Algebraic curves can be smooth,* like the conic sections,

2 2 2 x? 2
x*+y* =1, y* = 4ax, and —

+==1;

®‘|"<
o

a
or singular as the lemniscates,
ym — x(n—l)m(az _ x2)’
which are singular (non-differentiable) at x = y = 0. The special case
yz — x2(a2 _ x2)

when m = n = 2, is the lemniscate of Huygens.

An example of a non-algebraic (or ‘geometrically irrational’) curve is the cycloid:
x = a(t — sin t) and y = a(l — cos t).
2. An owval (or, a closed convex plane curve) is algebraically integrable, if the area

of the segment S, cut off by the right line ax + by = c, is of the form P(S; a, b, ¢) = 0,
where P is a non-zero polynomial.

A curve is smooth if its tangent exists everywhere, is unique, and varies continuously along the curve.
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From these definitions, it follows that the area of the triangular sector OPA is an
algebraic function of the lines 04 and OP bounding the sector since it is the intersection
of the segments cut off by the lines 04 and OB (extended to cut the oval).

The main theorem that the lemma establishes is:

Every algebraically integrable oval has singular points: all smooth ovals are
algebraically non-integrable

Proof:

Let the radius vector SP, joining a fixed point S inside the oval, to a point P on the
perimeter, rotate (in the positive sense, say). If the oval is algebraically integrable, then
the area swept out by SP must be an algebraic function of the tangent, ¢, of the angle of
inclination of SP and the x-axis. If SP is allowed to rotate about S for indefinitely many
revolutions, the area swept out by SP increases by the area of the oval once every
revolution. Consequently, the area swept out, regarded as a multivalued function of ¢ has
infinitely many different values for the same position of P. But an algebraic function cannot
be multivalued since the number of roots of a non-zero polynomial cannot exceed its
degree. Therefore, the area swept out is not an algebraic function and the oval is not
algebraically integrable. Q.E.D.
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Newton’s proof of his theorem is slightly different though in essence equivalent. He
considers the radius vector as continually rotating about S with a constant angular velocity
Q while R continually increases at the rate

drR d4

— = or R = A(®),

de  dt
where A(t) denotes the area swept out by S in a time ¢. Thus R increases by the area of
the oval after each revolution. Note that when P orbits about S under centripetal
attraction,

A, = constant = 3h,
and
R=73ht  while 9 =Qt or R = constant x ¢.

In any event, a body describing an oval will occupy the same position P for a given
direction of the ray (0 < ¢ < 2n) for an infinity of times at intervals of the orbital period;
and all these infinity of times cannot be obtained as roots of an algebraic equation of a
finite degree. The argument is now completed as before.

And in a concluding paragraph Newton adds that by the same arguments the length of
an arc of the ‘oval is not algebraic.

With the foregoing explanation, if one now reads the parts underlined in the text
reproduced below, one finds to one’s surprise how transparent Newton’s reasoning is!

Suppose that within the oval any point is
given, about which as a pole a right line
is perpetually revolving with a uniform
motion, while in that right line a moveable
point going out from the pole moves always
forward with a velocity proportional to the
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square of that right line within the oval.
By this motion that point will describe a
spiral with infinite circumgyrations. Now if
a portion of the area of the oval cut out by
that right line could be found by a finite
equation, the distance of the point from the
pole, which is proportional to this area,
might be found by the same equation, and
therefore all the points of the spiral might
be found by a finite equation also; and
therefore the intersection of a right line
given in position with the spiral might also
be found by a finite equation. But every
right line infinitely produced cuts a spiral in
an infinite number of points; and the equa-
tion by which any intersection of two lines
is found at the same time exhibits all their
intersections by as many roots, and there-
fore rises to as many dimensions as there
are intersections. Because two circles
mutually cut one another in two points, one
of these intersections is not to be found but
by an equation of two dimensions, by which
the other intersection may also be found.
Because there may be four intersections of
two conic sections, any one of them is not
to be found universally, but by an equation
of four dimensions, by which they are all
found together. For if these intersections
are severally sought, because the law and
condition of all is the same, the calculus will
be the same in every case, and therefore the
conclusion always the same, which must
therefore comprehend all those intersections
at once within itself, and exhibit them all
indifferently. Hence it is that the inter-
sections of the conic sections with the curves
of the third order, because they may amount
to six, come out together by equations of
six dimensions; and the intersections of two
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Two algebraic curves of degrees m and n
intersect in at most mn points (Bezout’s
theorem)
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curves of the third order, because they
may amount to nine, come out together by
equations of nine dimensions. If this did not
necessarily happen, we might reduce all
solid to plane problems, and those higher
than solid to solid problems. But here I
speak of curves irreducible in power. For if
the equation by which a curve is defined
may be reduced to a lower power, the curve
will not be one single curve, but composed
of two, or more, whose intersections may
be severally found by different calculusses.
After the same manner the two intersections
of right lines with the conic sections come
out always by equations of two dimensions;
the three intersections of right lines with the
irreducible curves of the third order by
equations of three dimensions; the four
intersections of right lines with the irre-
ducible curves of the fourth order, by equa-
tions of four dimensions, and so on in
infinitum. Wherefore the innumerable inter-
sections of a right line with a spiral, since
this is but one simple curve, and not re-
ducible to more curves, require equations
infinite in number of dimensions and roots,
by which they may all be exhibited together.
For the law and calculus of all is the same.
For if a perpendicular is let fall from the
pole upon that intersecting right line, and
that perpendicular together with the inter-
secting line revolves about the pole, the
intersections of the spiral will mutually pass
the one into the other; and that which was
first or nearest, after one revolution, will be
the second; after two, the third; and so on:
nor will the equation in the mean time be
changed but as the magnitudes of those
quantities are changed, by which the posi-
tion of the intersecting line is determined.
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The notion of reducibility of curves leads to
the concepts of local algebraicity and local
algebraic integrability.

Theorems that are implied are:

1. No analytic oval is algebraically integ-
grable even locally.

2. Any locally algebraically integrable oval
is algebraic.

3. The total area bounded by a self-
intersecting closed locally algebraically
integrable curve (taking into account
signs) is zero.
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Wherefore since those quantities after every
revolution return to their first magnitudes,
the equation will return to its first form; and
consequently one and the same equation
will exhibit all the intersections, and will
therefore have an infinite number of roots,
by which they may all be exhibited. And
therefore the intersection of a right line
with a spiral cannot be universally found by
any finite equation; and of consequence
there is no oval figure whose area, cut off
by right lines at pleasure, can be universally
exhibited by any such equation.

By the same argument, if the interval of
the pole and point by which the spiral is
described is taken proportional to that part
of the perimeter of the oval which is cut off,
it may be proved that the length of the
perimeter cannot be universally exhibited
by any finite equation. But here I speak of
ovals that are not touched by conjugate
figures running out in infinitum.

Corollary. Hence the area of an ellipsis,
described by a radius drawn from the focus
to the moving body, is not to be found from
the time given by a finite equation; and
therefore cannot be determined by the de-
scription of curves geometrically rational.
Those curves I call geometrically rational,
all the points whereof may be determined
by lengths that are definable by equations;
that is, by the complicated ratios of lengths.
Other curves (such as spirals, quadratrixes,
and cycloids) I call geometrically irrational.
For the lengths which are or are not
as number to number (according to the
tenth Book of Elements) are arithmetically
rational or irrational. And therefore I cut off
an area of an ellipsis proportional to the
time in which it is described by a curve
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geometrically irrational, in the following
manner.

The remaining (non-underlined) parts of the text generalize the basic concepts. We have
indicated on the margins what these concepts are and the theorems (as stated by Arnold)
that are implied. For a fuller account of these matters, the reader is referred to V. I. Arnold
in Huygens and Barrow, Newton and Hooke (Birkhduser Verlag, Basel 1990) Chapter 5,
pp. 83-94, and Appendix 2, pp. 101-105.

We close (as we began) with a quotation from Arnold:

Comparing today the texts of Newton with the comments of his successors, it
is striking how Newton’s original presentation is more modern, more under-
standable and richer in ideas than the translation due to commentators of his
geometrical ideas into the formal language of the calculus of Leibniz.

38.
Proposition XX X1. Problem X X111

To find the place of a body moving in a given ellipse at any assigned time.

Newton’s instructions to find ‘the place of the body’ are given in the imperial style that
on occasion he adopts:

Suppose A4 to be the principal vertex, S the focus, and O the centre of the ellipse
APB; and let P be the place of the body to be found. Produce 0A4 to G so that
0G:0A = OA: OS. Erect the perpendicular GH; and about the centre O, with
the radius OG, describe the circle GEF; and on the ruler GH, as a base, suppose
the wheel GEF to move forwards, revolving about its axis, and in the meantime
by its point A describing the cycloid ALI. This done, take GK to the perimeter
GEFG of the wheel, in the ratio of the time in which the body proceeding from
A described the arc AP, to the time of a whole revolution in the ellipse. Erect
the perpendicular KL meeting the cycloid in L; then LP drawn parallel to KG
will meet the ellipse in P, the required place of the body.

The proof of the construction he dictates consists of two parts: first the derivation of
what has come to be called Kepler’s equation; and second its geometric parametrization
from which the construction follows.
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|
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The accompanying diagram is the same as the one in §35 (p. 129) except for the shaded
parts and the additional circle GEF, concentric to the auxiliary circle AQB, of radius OG,
which according to instruction is a/e: for,

OG:a=a:0S=a:ae or 0G = ale.

Newton’s derivation starts as in §35:

Ght) == g area of elliptic sector APS

a
b
= area of circular sector AQS
= 1(04 arc AQ) — area of ASOQ
=1(0A4 arc AQ — 0A.SR)
= 2a(arc AQ — SR).
Multiplying this equation by OG/a(=a/OS) and remembering that h = nab (by equation
(15) of §35), we obtain,
G
Int(0Ga) = §a<9— arc AQ —a S—R>
a (0N
= ja(arc GF — a sin u);
or, finally,
nt(0G) = O0G.u — a sin u[ =0G(u — e sin u)].
We now recall that the curve traced by a fixed point on the radius of a circle, which
rolls along the x-axis, is described parametrically by the equations,

x=0Gu—asinu and y=0G — a cos u,

where OG is the radius of the rolling circle and a is the distance of the fixed point from
the centre. Accordingly, if we identify Q as the fixed point on radius OF, then Q will trace
the cycloid described. To relate the cycloidal motion of Q with the orbital motion of P,
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the circle must roll along the x-axis with a uniform constant velocity equal to nOG; and
Q is the image on the director circle of the position P that is sought. Q.E.D.

Scholium

This Scholium is particularly difficult to read since Newton describes in connected prose
an analytic method of solving Kepler’s equation by an approximative iterative procedure;
and it remained un-understood for 200 years until it was rescued by J. C. Adams (Monthly
Notices of the Royal Astronomical Society, Vol. 53, p. 43, 1882) who presented a very
readable account. We shall follow Adams’s presentation.
The problem is to solve the equation,
(u) = u — e sin u,

where t(u) is the known mean anomaly, e the eccentricity, and u the eccentric anomaly.
Suppose that by any construction (or even by conjecture) we know an approximate value
uy. Let

To = Uy — e Sin U and T — 74 18 small.
We obtain an improved approximation by writing
u = uy + oug,
and determining Ju, by the iterative procedure:
T =uy + Oug — e(sin ugy + dugy cos uy) + 0(duy)?
= 74 + Oug(l — e cos uy) + 0(duy)?
which gives

T— 1, 07y

5u0= = .
1 —ecosu, 1—ecosu,

We can improve this approximation by including terms of the second order in the
expansion of sin u about u,; thus:

T =uy + duy — e[sin ug + dugy cos ug — 3(ug)? sin u,]

= ug + gy — e[sin uy + dug cos(uy + 30ug)] (to the same order);
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and we obtain:
0ty = dug[1 — e cos(uy + 3ug)],
or
07,

5”0 =
1 — e cos(ug + 30uy)

and the iteration can be continued.
An alternative procedure if e « 1 is to set
Uy =1 and U= Uy + Oug,
and obtain, as before, in the second approximation,
T = Uy + Sug — e[sin uy + duy cos uy — 3(dug)* sin ug]
= uy + Sug — e[sin uy + duy cos(uy + 30u0)],
or
e sin u, e sin u,

5“0 = 1 ~ 1 N .
1 — e cos(ug + 30uy) 1 — e cos(ug + ze sin ug)

As Adams concludes:
We need not be surpised that Newton should have employed this method of
solving the transcendental equation
X —csinx =z,
since the method is identical in principle with his well-known method of
approximation to the roots of algebraic equations.
The Scholium also includes a brief discussion of the hyperbolic case when the
appropriate form of Kepler’s equation is
t —tyoc e sinh u — u.
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The rectilinear ascent and descent

of bodies

39. Introduction

I n the concluding sentence of Section VI, Newton introduces Section VII on rectilinear
motion thus:

And so far concerning the motion of bodies in curved lines. But it may also
come to pass that a moving body shall ascend or descend in a right line; and
I shall now go on to explain what belongs to such kind of motions.

This is an inversion of the common procedure: rectilinear motion in a central field of force
is generally (if not always) considered as a special (and a simpler) case that requires a
separate treatment since the angular momentum of such motions is zero and there is no
constant of areas as a (non-trivial) constraint. Instead, Newton considers rectilinear motion
as a limiting case of motion along conic sections and shows how it becomes determinate
by an ‘invariant’ form of the law of areas which applies to orbits independently of their
eccentricity. In fact, he reduces the solution for rectilinear motion to a simplified version
of Kepler’s equation. Besides, he relates rectilinear motion to circular motion reminiscent
of his geometrical constructions to describe parabolic and elliptic motion in Propositions
XXX and XXXI (see §§36 and 38). And, finally, in the last Proposition XXXIX of this
section, he formulates and solves the ‘initial-value problem’ for rectilinear motion as a
model for the solution to the general problem in Proposition XLI and XLII in Section VIII.

We shall begin with a present-day treatment of rectilinear motion that will allow a
direct comparison with Newton’s treatment.

40. An ab initio treatment of rectilinear motion

With the centre of attraction at the origin, the equation of motion governing rectilinear
motion along the (vertical) z-direction is
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dz
— =,

de? z
where u is a constant. (In the Principia, the constant y is normally suppressed; but Newton
restores it when occasion demands.) Equation (1) admits of the integral

(1

1/dz\? 1

> <a> - ﬂ(g + Q) — 7 (say) @)
where Q is a constant of integration. The three cases,

0 <0, 0 >0, and 0=0, 3)

must be distinguished: they correspond, respectively, to motions along elliptic, hyperbolic,
and parabolic orbits in the non-rectilinear case.

(a) The elliptic case, Q < 0

1/dz\? 1 1
5(5) ”(75)' @

At z = 2a, the velocity vanishes and the motion is one of descent.

In the accompanying diagram, the origin is at B, and A4 is at z = 2a where the velocity
vanishes. With the mid-point O of AB as centre draw a semicircle of radius 04 = OB = a.
The points on the z-axis are imaged on points on the semicircle at the same height. Thus,
the coordinates of z are:

z = BC = a(l + cos 0) and x = CD = asin 0. (5)

With these definitions,
2
<dz —#tan2?, (6)
dt a 2

In this case, we shall write
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or
d 1/2 0
o (H tan —, (7)
dt a 2
where we have chosen the negative sign appropriate for descending motions. Together
with the equation

dz= —asin0do = —2asin§cos§d0, ®)
equation (7) gives
1/2 1/2
dr = 2a<3> cos? Vdo = a<f) (1 + cos ) do. )
Jz 2 ©

Integrating this equation, we obtain

a 1/2
t = <_) a(@ + sin 6), (10)
u

where t = 0 when the body starts its descent at z = 2a. It will be observed that equation
(10) is a version of Kepler’s equation (cf. Chapter 7, §35, equation (19)): the emergence of
Kepler’s equation in this context will become transparent from Newton’s treatment of this
same problem in Proposition XXXII (§41).

As in the case of Kepler’s equation, we can rewrite equation (10) in the form

f= <f)m(arc AD + CD) (11)
U

or, alternatively,

t= W (area of sector OAD + area of AOBD)

= ——— (area of segment (BDEAB)). (12)
(na)'’?
This is Newton’s result (see §41).

(b) The hyperbolic case, Q > 0

In this case, we shall write
1/dz\? 1 1
) =2+ ). 13
2 <dt> 'u<z 2a> (13

The body now has a finite velocity (= (u/a)!/?) at infinity; and we shall consider the case
of descent starting at infinity in the remote past.
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In the accompanying diagram BED is the right half of the rectangular hyperbola,
(0C)* — (CD)?* = a? (14)

where a is its semiaxis with the origin of z at the vertex B. The points on the z-axis are
imaged on points, at the same height, on the rectangular hyperbola.

Parametrizing the rectangular hyperbola in the manner,

OC = acosh 6 and CD = asinh 6 (15)

we have

., 0 ., 0 0
z = BC = a(cosh 0 — 1) = 2a sinh? 5 dz = 2a sinh 3 cosh 3 do, (16)
and
1/2
g—j - <“> coth g (17)
a

where we have chosen the negative sign appropriate for descent from infinity. From
equations (16) and (17), we find,

1/2 1/2
dt = — (9> tanh 0 dz — —a<f> (cosh 0 — 1) db; (18)
U 2 U
or, after integration,
a 1/2
t = —<_> a(sinh 6 — 0), (19)
U

where ¢t = 0 is the time of arrival at B. Equation (19) is now a versior: of Kepler’s equation
for hyperbolic orbits (cf. the last equation of Chapter 7, p. 142).
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We readily verify that

the area of the segment BEDB = a’(sinh 6 — 0);

and therefore,

2
[t| = —t = W area of segment BEDB,
ua

which is formally the same as equation (12) for the elliptic case.

(¢) The parabolic case, Q = 0

In this case, the relevant equations are:

de? z

1<d2)2 K
2\ dt z’

appropriate for a body having zero velocity at infinity.

d?z u
)

and

B

In the accompanying diagram, BED is the parabola,

x? = 4az,

with its vertex at B. For a body starting its ascent from z =0 at ¢t =0,

dt = ﬁzl/z dZ’
u

t = l<g>1/223/2.
3\p

Since (as we may readily verify; cf. equation (9), p. 132)

and

1/223/2’

area of segment BEDB = 1a

147

(20)

1)

(22)

(23)

(24)

(25)

(26)

27)
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we, once again, have

1/2
t= <2> (area of segment BEDB) (28)
ua

The velocity of the body at C

The velocity of the body at C at time ¢, follows directly from equations (7), (17), and (23).
Thus, considering equation (7), for the elliptic case, we have

1/2 0
[o(C)] = <g) tan . (29)
while the velocity v, (BC) in a circular orbit of radius BC, is
1/2 1/2 1 1/2 0
vo(BC) = ,u‘z = <E> —_—— = <ﬂ> sec —. (30)
(BC)YY a) J(d+cosb) \2a 2
Therefore
6 C 1/2 AC 1/2
LG 2'28in — = /(1 — cos ) = <A—> = <*> : (31)
v5(BC) 2 a AO

It is manifest that the same relation also obtains in the hyperbolic case. And for the
parabolic case, we similarly find from equation (23) that

[v(CO)I

1o (BC) -

41.

Proposition XX XII. Problem XXIV

Supposing that the centripetal force is inversely proportional to the square of
the distance of the places from the centre; it is required to define the spaces
which a body, falling directly, describes in given times.

Newton first considers the case of a body, initially at rest at A, descending directly towards
the centre of attraction at B. The problem is to determine the times at which the body
will find itself at various heights. Towards this end, Newton considers a sequence of
elliptical orbits of different eccentricities but with the same major axis AB. Let ARPB be
one of these ellipses with the centre of attraction at its focus S (not at B) and P a point
on it at some fixed height. We know that a body at A4 (the aphelion point) will traverse
the arc AP in a time proportional to the area of the sector SPRA which in turn is
proportional to the area of the sector SDEA (cf. equations (7) of §35) where D
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A

|

s/

B

is the image of P on the auxiliary semicircle BDEA. This latter proportionality holds
independently of the eccentricity of the ellipse. Therefore, passing to the limit when the

ellipse collapses on to the right line AB and P coincides with C and S with B, we conclude
that the time of descent from A to C is proportional to the area of the segment BDEAB.

QEL

AL

Turning next to the case of a body ascending from B towards infinity, Newton considers
a sequence of hyperbolae of different eccentricities but the same major axis AB. Let Bf PR
be one of these hyperbolae with the centre of attraction at S (not at B) and P a point on
it at some fixed height. We know that a body starting at B (the perihelion point) will
traverse the arc PfB in a time proportional to the area of the segment Bf PS which in
turn is proportional to the area of the segment BEDS where D is the image of P on the
auxiliary rectangular hyperbola BED.* This latter proportionality holds independently of

* The role of the auxiliary circle in the geometry of the ellipse is well described in standard books on conic
sections. But I can find no reference to the similar role of the ‘auxiliary’ rectangular hyperbolae for the
geometry of the hyperbola; for example, it is manifest that CP: CD = ratio of the semiaxes, b:a.
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the eccentricity of the hyperbola. Therefore, passing to the limit when the hyperbola
collapses on to the z-axis and P coincides with C and S with B, we conclude that the time
of ascent from B to C is proportional to the area of the segment BEDB.

QEL

B

Finally, turning to the parabolic case, Newton considers a sequence of parabolae with
different latera recta with their vertices at the same point B; and, in addition, an arbitrary
but fixed parabola BED with its vertex also at B. If P is a point, at some fixed height on
one of these parabolae, Bf PR, then from the proportionality of the distances CP and CD
(where D is a point at the same height on the fixed parabola BED), the proportionality
of the areas of the segments SBf P and SBED follows. And as before, passing to the limit
when the parabola Bf PR collapses on to the axis, we conclude that the time of travel from
C to B is proportional to the area of the parabolic segment BEDB.

QEL

In contrast to the pedestrian derivation of Newton’s results in §40, the elegance and the
simplicity of Newton’s demonstrations are startling.

42.

Proposition XXXIII. Theorem I1X

The things above found being supposed, I say, that the velocity of a falling body
in any place C is to the velocity of a body, describing a circle about the centre B
at the distance BC, as the square root of the ratio of AC, the distance of the body
from the remoter vertex A of the circle or rectangular hyperbola, to 3AB, the
principal semidiameter of the figure.

To prove his assertion, Newton continues with the limiting procedure described in
Proposition XXXII. And he is able to treat the elliptic and the hyperbolic cases
simultaneously by his scrupulous lettering of the diagrams that retains the geometrical
correspondences between the ellipse and the hyperbola in conformity with the ‘dignity of
the problem’.
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The accompanying diagrams are virtually the same as the ones that accompany the

demonstrations of Proposition XXXII. The only additions are the tangent TP at P, the

perpendicular SY to the tangent, and BQ parallel to CPD intersecting the tangent at Q.
The proof consists of three steps:

(a) By Corollary IX of Proposition XVI, the ratio of the velocity, v(P), in the elliptic (or
hyperbolic) orbit to the velocity v, (SP) in a circular orbit of radius SP is given by

B
(b) The formula,

P
i M)
v (SP) SY?
where L is the latus rectum of the conic section.
AO .CP?
=2 )
AC.CB
follows from the known relation in the geometry of conic sections:
AC.CB _a*  2a
CcP?

A0
S i)
b 2b%a

L

€)
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(c) A relation that follows, again, from the known formula is:
CO.0T = OB* = 04% = d*.
From this formula, we obtain:

CO _BO BO+CO _BC

We also have:
BC
AC_ 0C_y 0C_, BC i)
A0 AO OB BT
B —
_BT=BC_TC  orollary ),
BT BT

or, since As CPT and BQT are similar,

By combining the relations (1), (2), and (7), we have

[ v(P) ]2_ SP _ SP AO0.CP?
vo(SP)|

L —
SY? SY? AC.CB
T SY2AC.CB  A0>  SY? BC AO’

[

SP A0 BQ?.AC* BQ® SP AC.

)

©)

(6)

()

®)

and passing to the limit when the ellipse or the hyperbola, BPR, collapses on to the z-axis,

P coincides with C and S with B, we obtain

U(C) —<£>1/2
ve(BC) \40/

It follows from equation (9) that
v(0) = v, (BO).

©)
Q.ED.

(10)

At O the particle ascending the right line BA has still to ascend to 4 before it comes

to rest, or as Newton states:

Cor. 1. A body revolving in any circle at a given distance from the centre,
by its motion converted upwards, will ascend to double its distance from the

centre.
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A personal reflection
Newton’s derivation of equation (9) is admittedly less direct than the one given in §40

based on the integral
1 <dz>2 U
—| =] =—+ constant.
2\ dt z

Not that Newton was not aware of this integral: indeed, it occurs explicitly in Proposition
XXXIX for more general laws of centripetal attraction and under even more general
conditions in Propositions XL—-XLII in Section VIII to follow (see Chapter 9). Newton
clearly preferred his present demonstration as a sequel to Proposition XXXII. One may
surmise that the reason for this preference is to demonstrate that all aspects of rectilinear
motion are in reality limiting cases of curvilinear motion; and to preserve the architectural
unity of the subject—a motivation one can discern throughout the Principia.

Proposition XX XIV. Theorem X

If the figure BED is a parabola, I say, that the velocity of a falling body in any
place C is equal to the velocity by which a body may uniformly describe a circle
about the centre B at half the interval BC.

The elliptic and the hyperbolic cases have been dealt with in Proposition XXXIII. The
parabolic case is taken up in this proposition. The derivation of the result (equation (32)
of §40) by the limiting procedure restores to it its full effulgence. The precision of Newton’s
natural style, not obscured by the need to explain details of mathematical reasoning,
becomes transparent, as in this instance:

For (by Cor. vi, Prop, xv1) the velocity of a body describing a parabola RPB
about the centre S, in any place P, is equal to the velocity of a body uniformly
describing a circle about the same centre S at half the interval SP. Let the
breadth CP of the parabola be diminished in infinitum, so that the parabolic arc
PfB may come to coincide with the right line CB, the centre S with the vertex
B, and the interval SP with the interval BC, and the Proposition will be manifest.

L)

o]

o]
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43. The reduction of the problem of rectilinear motion to one
in circular motion

Newton’s reduction of the solution of the problem of rectilinear motion, in the elliptic
case, to the form,

toc a(f + sin 0),

in Proposition XXXII (p. 149)—Newton must have been fully aware that the area of ABD
is a(0 + sin 0)l—suggests, at once, cycloidal motion of a fixed point on the radius of a
uniformly rolling circle with the parametrization,

x = a(t + sin 1) and y = a(l — cos 7).

This is the real meaning of Proposition XXXV. The geometric construction suggested
is no different from the geometric construction described in Proposition XXXI (see
Chapter 7) for the solution of Kepler’s equation in terms of the cycloidal motion of a fixed
interior point of a uniformly rolling circle. Newton’s apparent reluctance to draw attention
to his earlier construction can perhaps be related to the fact that his present simultaneous
reduction to cycloidal motion for the hyperbolic and the parabolic cases requires a different
approach. Besides, in these cases, it is not meaningful (both physically and mathematically)
to consider the cycloid for more than the two half-periods, (0, 7) and (=, 0). One can
understand Newton’s impatience to stop and explain: there is nothing to be gained and
time will be lost—and there is no time to lose!

Proposition XXX V. Theorem X1

The same things supposed, I say, that the area of the figure DES, described by
the indefinite radius SD, is equal to the area which a body with a radius equal to
half the latus rectum of the figure DES describes in the same time, by uniformly
revolving about the centre S.

The main features of the accompanying diagrams are the same as in those in §40.
Rectilinear motion along the z-axis is considered:

C is the position of the ascending or the descending body at some instant of time, ¢;
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T

\
'

\\
o)

QS o0
a

D is the image of C, at the same height, on SEDA (a semicircle, a rectangular hyperbola
with semiaxis 40 = OS, or a fixed parabola in the three respective cases);

¢ and d the positions of C and its image D at an infinitesimal time ot later;
OKH is a circle of radius equal to the semilatus rectum of SEDA,;

K is the position at time t of a body orbiting the circle OKH with the uniform circular
velocity v (SO = SK) oc (SK)™"/?; and k is its position at a time dt later;

TD is the tangent at D to SEDA; and SY is perpendicular to the tangent.

Case 1. Newton considers the elliptic and the hyperbolic cases simultaneously. In both
these cases the semilatus rectum of SEDA = $4S = SO = SK.
The proof consists of three elementary steps:

(a) We note that

TC Cc .
— = (by construction),
TD Dd
and
O CD C e
— = (by the similarity of As TDC and TSY).
s SY
By multiplying the last two equations, we obtain:
TC Cc.CD
TS SY.Dd
But by equation (7) of Proposition XXXIII (p. 152)
TC AC AC

TS 40 SK’
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Hence:
AC  Cc.CD
SK SY.Dd’
(b) By Proposition XXXIII (equation (9))

[ v(C) T _AC _AC,

vo(CS)| A0 SK’
and since
05 (CS) |* SK
| vo(SK)| ¢S’
we have
[ wC) | AcC
|0 (SK)| ¢S
(c) By using the known relation,
AC.CS = CD?,
in the geometry of conic sections, we obtain
vu(C)  AC
vo(SK)  CD’

But

Cc =v(C)ot and Kk = v4(SK)ot
Hence, by (3)

g=%{ or AC.Kk = CD.Cec.
Substituting this last result in (1), we obtain
AC AC.Kk
SK  SY.Dd’

or, finally,
SK.Kk=SY.Dd.
Equation (5) implies that

area of sector SKk = area of segment SDd;

(M

@

©)

)

)

(6)

and both areas are described in the same interval of time 6. And as Newton concludes,

Therefore, if the magnitude of the equal areas SKk and SDk generated in an
interval of time ot is diminished, and their number increased in infinitum, obtain
the ratio of equality, and consequently (by Cor., Lem. 1v) the whole areas

together generated are always equal. Q.E.D.

Case 2. Turning to the parabolic case, we first observe that equation (1) of case 1,
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namely,
TC Cc.CD
TS SY.Dd’
is equally applicable. But, by a well-known geometrical property of the parabola
CS =ST=3TC.
Therefore,
SY.Dd = 3iCD.Cec. (7)
Next, by Proposition XXXIV (or by equation (32) of §40)
v(C) = v5(3SC). (8)
And therefore,
0o (35C) _ <SK>1/2 _ ( 4SK*> )1/2 _ 25K o)
vo(SK)  \3SC 2SK .SC cD’

since, by the equation of the parabola,
CD? = 4aSC = 28K .SC (4a = latus rectum).

By equations (8) and (9)
28K o(C)  Cc
CD v, (SK) Kk

(by equation (4)),

or

SK.Kk=SY.Dd (by equation (7)).
We have thus established that the same equality (6) applies in this case as well; and the
argument can be completed as before. Q.E.D.

Proposition XX XVI. Problem XXV
To determine the times of the descent of a body falling from a given place A.

In Proposition XXXII it was shown that the time of descent, from rest at 4 to C, is
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proportional to the area of the segment SAD; and as was shown in Proposition XXXIII,

this is the same time in which a body uniformly revolving about S in a circular orbit of

radius SO(=1A45) describes the arc OK bounding a sector OSK of the same area as SAD.
Newton’s demonstration is:

Upon the diameter A4S, the distance of the body from the centre at the beginning,
describe the semicircle ADS, as likewise the semicircle OK H equal thereto, about
the centre S. From any place C of the body erect the ordinate CD. Join SD,
and make the sector OSK equal to the area ASD. It is evident (by Prop. xxxv)
that the body in falling will describe the space AC in the same time in which
another body, uniformly revolving about the centre S, may describe the arc OK.

Q.EF.

Proposition XXX VII. Problem XXVI

To define the times of the ascent or descent of a body projected upwards or
downwards from a given place.

In Proposition XXXV, it was shown that the problem of rectilinear motion allows
solutions that are limiting forms of the solutions for curvilinear motions along elliptic,
hyperbolic, or parabolic orbits. It remains to prescribe a criterion by which one may
decide which of the three classes of solution is appropriate for given initial conditions
of height and velocity; and then to define the times of ascent or descent to another given
height.

The first question is: given that a body is ‘projected upwards or downwards’ from a
given height G with an assigned velocity v(G), to which of the three classes of solutions
does its subsequent motion belong? The answer to this question will depend on whether
the body so projected will be or has been in a state of rest at some determinate height A;
in which case the solution will belong to the elliptic class. If the solution does belong to
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the elliptic class, then by Proposition XXXIII, (equation (9))
2 _
[U(G)} _AG _AS SG=2_25G (10)
v5(SG)

145 148 AS’
where v, (SG) is the velocity of uniform motion in a circle of radius SG (where S is the
known centre of attraction). Equation (10) rewritten in the form,

2
§=2—[”(G)}, (11)
AS 15(SG)
makes it manifest that a finite positive solution for AS exists if, and only if,
2
[ u(G) ] <2 (12)
U6 (8G)

This then is the necessary and sufficient condition that the motion, subsequent to the
initial state—velocity v(G) at height SG—will belong to the elliptic class.
By equation (11), A4 is ‘infinitely remote’ if

[ uG) T -2, (13)
b5 (SG)

which then is the condition for the solution to belong to the parabolic class and the body
comes to rest at infinity. It is now clear that the subsequent motion will belong to the
hyperbolic class if,

2
[ u(G) } >2; (14)
v5(8G)
for, in this case, in place of equation (11), we now have
2
2§:[ u(G) } _ (15)
AS 15 (8G)

where A4 is the remote vertex of the rectangular hyperbola SED; and equation (15) will
determine the location of 4 whenever condition (14) is satisfied. (Newton’s discussion of
the criterion expressed in terms of the discriminant, [v(G)/vo(SG)]?, is so brief that the
important condition (14) for ‘escape’ is not explicitly mentioned—though, of course, it is
implicit and obvious.)

With the class of solutions to which the subsequent motion of a body, initially with a
velocity v(G) at height G, will belong ascertained and the location of A4 in the elliptic and
the hyperbolic cases determined, we are required to ‘define’ the time of ascent or descent
to another specified height C.

By Proposition XXXVI the required time is equal to the time in which a body revolving
in a circular orbit with a radius SH(=3A4S in the elliptic and the hyperbolic cases and
the semilatus rectum of the parabola SEI in the parabolic case) will describe the arc Kk
which bounds an area SKk which is equal to the shaded area SDI (which is the difference
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of the areas of the segments SDA and SIA in the elliptic case and of the areas SEDS and
SEIS in the hyperbolic and the parabolic cases). Q.EF.

It is important to draw attention to the significance of this proposition in the larger
context of physics: it is the very first instance of the formulation of an initial-value problem
in physics. Increasing generalizations of the underlying problem are considered in
Propositions XXXIX, XLI, and XLII. (For further comments, see §45 below.)

44. A pause

All the propositions in this section so far have been concerned with the inverse-square
law of attraction. As a prelude to the consideration of general laws of centripetal attraction
in Proposition XXXIX, Newton considers in this proposition the law of attraction
proportional to the distance which he deduced in Proposition X and showed that
under this law of attraction a body will describe an elliptical orbit about its centre.

Proposition XX XVIII. Theorem XII

Supposing that the centripetal force is proportional to the altitude or distance of
places from the centre, I say, that the times and velocities of falling bodies, and
the spaces which they describe, are respectively proportional to the arcs, and the
sines and versed sines of the arcs.

This proposition is proved by the same limiting process described in the context of
Proposition XXXII. Towards the solution of the problem of a body, initially at rest at A,
descending directly towards the centre of attraction at S, Newton considers a sequence of
ellipses of different eccentricities and with the same semimajor axis SA (=a). Let APB be
the first quadrant of one of these ellipses and P a point on it at some fixed height. We
know (by Proposition X) that a body at A4 will describe the arc AP in a time proportional
to the area of the sector SPA which in turn is proportional to the area of the sector SDA.
This latter proportionality holds independently of the eccentricity of the ellipse. Therefore,
passing to the limit when the ellipse collapses on to the right line AS and P coincides with
C, we conclude that the time of descent from A to C is proportional to the area of the

A
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sector SDA, that is, afl. And since, further, the velocity v along the elliptical orbit is
proportional to CD, again, independently of the eccentricity of the ellipse, it follows that
the velocity acquired by the body during its descent from A to C is also proportional to
CD that is, a sin 6.

The following corollaries follow in similar fashion:

Cor. 1. Hence the times are equal in which one body falling from the place
A arrives at the centre S, and another body revolving describes the quadrantal
arc ADE.

Cor. 1. Therefore all the times are equal in which bodies falling from
whatsoever places arrive at the centre. For all the periodic times of revolving
bodies are equal (by Cor. 11, Prop. 1v).

45. The initial-value problem

One of the principal tenets of physics is that any valid physical theory must allow an
initial-value formulation. In general terms what this requirement implies is that given a
well-defined initial state of a physical system, one should be able to predict uniquely its
future development. To make precise what meaning is to be attached to a ‘well-defined
state of a physical system’ or to its ‘future development’ are not simple matters; but they
are beyond our scope. There is however no ambiguity in the present context: for the initial
state of a body under the action of a known centripetal force is no more than its location
relative to the centre of force and its velocity at a given instant of time; and we are required
to show that its subsequent motion is uniquely predictable. Proposition XXXVII was
devoted precisely to this end for rectilinear motion under an inverse-square law of
attraction. In Proposition XXXIX, this same problem of rectilinear motion under a general
law of centripetal attraction is considered. In Propositions XLI and XLII (in Chapter 9)
the general planar problem of curvilinear motion is considered. Newton was the first to
recognize that these problems require formulation and solution.

Proposition XX XI1X. Problem XXVII

Supposing a centripetal force of any kind, and granting the quadratures of
curvilinear figures; it is required to find the velocity of a body, ascending or
descending in a right line, in the several places through which it passes, as also
the time in which it will arrive at any place; and conversely.

Newton’s manner of proving this proposition is astonishing in contrast with earlier
propositions: they were proved by a rare combination of physical and geometric insights
grafted on to original ideas fashioned for the occasion. In this proposition, Newton simply
states, at the outset, the required solutions as indefinite integrals (written out as areas)
‘granting quadratures’; and then verifying them by differentiation! And the ‘moral of that
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is’ (as the Duchess would say): Newton was second to none when it came to using the
integral and differential calculus; but he becomes solicitous (and sometimes secretive)
when he does use them. We shall encounter this characteristic on several future occasions.
The problem that requires solution is: given the equation
d?*z

Frein —f(2), (1

where f(z) is a positive function of the argument, to find the velocity, dz/dt, and the time,
t, when the body is at a given location z. The common manner of solving this problem
is to note first that the velocity follows from the integral

v? = [%:r =2 j f(z) dz, 2
dt .

where the constant of integration is subsumed in expressing the solution (2) as an indefinite
integral. And the solution for t now follows by a further integration:

or,

t = constant +

z dz
f 2. 7(s) dsT @

Newton expresses this same solution in the context of the accompanying diagram. The
diagram more fully lettered and annotated is self-explanatory.

B T . .
A 'y AEC is the z-axis;
7 ;
f/ 0o | EG=[f(atE;
F % he 1 f :
o0 i % BFG, the locus of G, represents f(z)
77—\ A
77—\ [v(E)]* = 2 area of ABGE =2 j f(zydz: (5)
D L F IR E
NN
E M H\C S Q.EL
t \\ﬂz) A —=1/2
. Y EM oc [area of ABGE]™ /% = ]:J 1@ dz} ;
m g E
1 VLM is the locus of M;
V1A dz t oc area of ABTVME
A A -1/2
= f ]:f f(2) dz:l dP. (6)
E P
Q.EL
c

(And it is done: Quod erat inveniendum).
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The proof now consists of verifying the solutions by differentiation.
Proof of equation (1): Letting DE be a ‘particle’ of displacement, we have

area of DFGE = f(E)DE = f(E)BAItEAt

= f(E)v(E)At.
But by the second Law (‘acceleration = force”’)
A[v(E)] = f(E)At.
Hence
area of DFGE = v(E)A[v(E)] = 3A[v(E)]%
Q.E.D.

Corollary 1

If a body is subject to a force g(z) different from f(z), then the velocity acquired during
descent, from rest at P, to D, is given by

P

[v,(D; P)]* =2 f g(2) dz.

D

And if this should equal [v,(D; 4)]? the condition is
P 4
f g(z)dz = f f(z)dz.

D D

In the particular case, g = constant = PQ (say), then

PQ.PD = JAf(z) dz,
D

or

area of rectangle PQRD = area of ABFD.

Corollary 11

If the body should be projected from a height D with a velocity V, the velocity at some
other point P is given by

[v(P)]? = V2 +2 rf(z) dz.
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Corollary 111

‘The same things being supposed’, the time required for descent to a different point e is

toc JD I:V2 + fo(z) dzJ_l/2 dP.

Proposition XXXIX together with Corollaries II and III complete the solution of the
initial-value problem for rectilinear motion under centripetal attraction.

given by
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The conservation of energy and the
initial-value problem

The surprising discovery of Newton’s is just this, the clear separation of laws of nature
on the one hand and initial conditions on the other.

Eugene P. Wigner

46. Introduction

ection VIII, including three Propositions XL, XLI, and XLII, represents a watershed
S in the development of the Principia: it completes the treatment of ‘the motion of bodies
in immovable orbits’. But it is very much more than that: in deriving the energy
integral (and implicitly the notion of potential energy) and in formulating and solving the
initial-value problem in the framework of his dynamics, Newton established for the first
time two of the basic tenets of physics. Newton must have been fully aware of the
significance of these propositions. But his presentation of them manifests a strange
impatience—of this later! Meantime, it will suffice to remark that superficially, Propositions
XLI and XLII are presented as straightforward generalizations of Proposition XXXIX
and its corollary. And there are, of course, examples of his insight and his craftsmanship.

47. The energy integral

The standard derivation of the energy integral will be found in Chapter 4 (§18(c), equation
(18)). Newton’s route is different:

Proposition X L. Theorem XII1

If a body, acted upon by any centripetal force, is moved in any manner, and another
body ascends or descends in a right line, and their velocities be equal in any one
case of equal altitudes, their velocities will be also equal at all equal altitudes.

Newton compares the kinetic energies of two bodies, arriving at the same distance from
the centre of attraction, C, from a common point V" with the same velocity, one of them,
D, directly toward C, along a radial trajectory, ADC, and the other, I, along a curvilinear
orbit VIK. By Chapter 4 (§18, equation (25)) and Chapter 8 (§45, equation (1)),
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1)
and
d?z
— = —f(2). 2
a2 f(2) 2
From these equations, it follows that,
1 5 h2 J*r
|+ =)= r)dr 3
5 <r r2> f@) 3)
and
32 = —J f(z)dz “)
Ifv, and vy(= rqlﬁ) denote the radial and the transverse velocities, along the orbit V1, at I,
v} + vy =i + h?fr? (5)
and
v? = 2% (6)

Then, by equations (3) and (4),
kinetic energy at I, along the curvilinear orbit,

=rf(r)dr=rf(z)dz

= kinetic energy at D, along the rectilinear orbit, (7)

since by assumption CI = CD.
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Newton’s manner of proof is, however, different. He argues as follows: at I and D, the
two bodies, being at the same distance from the centre of attraction at C, are subjected
to the same centripetal attraction. They must, therefore, suffer equal increments in their
velocity in equal times. When they arrive at E and K (from D and I, respectively) both
still equidistant from C but by the infinitesimal distances, DE = IN, closer, the increments
in their velocities will be given by the accelerations they are subjected to in the directions
VDE and ITK and the times during which they act. The particle at D experiences, along
the radial trajectory VDE, the increment in velocity

Avgp = vy — vp = acceleration at D x time during which it acts

. DE
= acceleration at D x —. (8)
Up

On the other hand, since the component of the acceleration along TN, normal to IK, is
ineffective in changing the velocity in the direction of motion,

K
Avig = vg — v = [(acceleration at I) x I—TJ X L, %)
IN Uy
or
. IN
Av,x = (acceleration at I) x — = Avgp, (10)
Uy
since
IT.IK = IN?
e } (11
DE = IN, and vp = Uy,

by assumption.
As Newton concludes:

and therefore the accelerations generated in the passage of the bodies from D
and I to E and K are equal. Therefore the velocities of the bodies in E and K
are also. equal: and by the same reasoning they will always be found equal in
any subsequent equal distances. Q.E.D.

By the same reasoning, bodies of equal velocities and equal distances from
the centre will be equally retarded in their ascent to equal distances. Q.E.D.

Newton’s demonstration has the clear advantage since it establishes that the change in
velocity in either body is effected solely by the change in the distance from the centre of
attraction, thus separating the contributions of the potential energy and the kinetic energy
to the total energy: the notion of potential energy is implicit in the statement. Corollary
I, as Newton states it, follows directly from this separation of the two forms of energy.
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Cor. 1. Therefore if a body either oscillates by hanging to a string, or by any
polished and perfectly smooth impediment is forced to move in a curved line;
and another body ascends or descends in a right line, and their velocities be
equal at any one equal altitude, their velocities will be also equal at all other
equal altitudes. For by the string of the pendulous body, or by the impediment
of a vessel perfectly smooth, the same thing will be effected as by the transverse
force NT. The body is neither accelerated nor retarded by it, but only is obliged
to leave its rectilinear course.

Corollary II is an explicit statement of the proposition for the case,

fey= =
In this case,
A

363 — vB) = —j

P

mtdr = L am)
n

where P is a fixed point, distant P from the centre and A4 is a variable point, distant 4,
the path of the orbit from P to A4 being irrelevant.

48.
Proposition X LI. Problem XXVIII

Supposing a centripetal force of any kind, and granting the quadratures of
curvilinear figures; it is required to find as well the curves in which bodies will
move, as the times of their motions in the curves found.

The generalization of Proposition XXXIX, which this proposition represents, is emphasized
by the identity of their phrasing. And the demonstration, following parallel lines, is also
not different from what one might give today. We should naturally start with the radial
equation,

d?r h?
a2 —f(”)‘i‘ﬁ, 1)
and the angular equation,
d¢ h
E = r_2 > (2)

representing the law of areas. As we have seen in §47, equation (1) allows the energy
integral:
2

r‘2=—2frf(r)dr—h—2 (3)
r
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where we have left the lower bound of the integral unspecified for later choice in
Proposition XLII. Equation (3) rewritten in the form,

dr r hZ 1/2

E=i|:—2f f(r)dr—r—z} , )
together with equation (2), provides the additional equation,

9 £ ©)

dr PP[=2[ f(r)dr — R3]
In their integrated forms,

r dr
t=+ 6
_J [=2[ f(r)dr — 1?/r*]'? ©

and

r hdr
¢= ij rP[=2 [ f(r)dr — B?/r?]"?’ @

we have the required solution to the problem ‘granting quadratures’.
The following annotated version of Newton’s demonstrations shows that it is the same
as the one given above.

Let any centripetal force tend to the Newton’s notation
centre C, and let it be required to find h=0; r—A;
the curve VIKk. Let there be given the circle
V'R, described from the centre C with any ﬁ= Q_ Z.
radius CV; and from the same centre de- r A
scribe any other circles 1D, KE, cutting the . BLFG: —2f(r);
curve in I and K, and the right line CV in IN = dr: / XCY = d¢,

KN =rd¢o.

a area:
2

D
ABFD — 7? = —2J rrydr ="
A

7'2
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D and E. Then draw the right line CNIX cutting the circles KE, VR in N and
X, and the right line CK'Y meeting the circle V'R in Y. Let the points I and K
be indefinitely near; and let the body go on from V through I and K to k; and
let the point A be the place from which another body is to fall, so as in the
place D to acquire a velocity equal to the velocity of the first body in I.
And things remaining as in Prop. xxx1x, the short line IK, described in the least
given time, will be as the velocity, and therefore as the right line whose square
is equal to the area ABFD, and the triangle ICK proportional to the time will
be given, and therefore KN will be inversely as the altitude IC; that is (if there
be given any quantity Q, and the altitude IC be called 4), as Q/A4. This quantity
Q/A call Z, and suppose the magnitude of Q to be such that in some
one case

R JABFD (v} +v3) vs _IK

h/r ro vy IN

\/ABFD:Z = IK:KN,

and then in all cases

JABFD:Z = IK: KN,

and
ABFD:Z* = IK?:KN?, 7]
and by subtraction, N ABFD — h*/r? — ﬁ = IN*
ABFD — ZZ:ZZ = IN*: KN?, hjr? vy KN?
and therefore )
JABFD —ZZ):Z or %: IN: KN,
and S dg =+ hdr
0.IN [—2 [ f()dr — B2 /r*]'7
A.KN =
J(ABFD — 2Z)’ = hdt
Since .
YX.XC:A.KN = CX?: AA, - YX.XC/(r* d¢p) = CX*/r?
it follows that
Q.IN.CX?

YX.XC=

_ 2
AAJ(ABFD — 72)’ - YX.XC=CX?d¢

CX?hdr
=4

r’[=2 [ f () dr — B*/r*]'?
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Therefore in the perpendicular DF let there
be taken continually Db, Dc equal to

0
2/(ABFD — ZZ)’

(1)

0.CX?
24AJ(ABFD — ZZ7)

(if)

respectively, and let the curved lines ab, ac,
the loci of the points b and ¢, be described;
and from the point V let the perpendicular
Va be erected to the line AC, cutting off the
curvilinear areas VDba, VDca, and let the
ordinates Ez, Ex, be erected also. Then
because the rectangle Db.IN or DbzE is
equal to half the rectangle A. KN, or to the
triangle ICK; and the rectangle Dc.IN or
DcxE is equal to half the rectangle YX . X C,
or to the triangle X CY; that is, because the
nascent particles DbzE, ICK of the areas
VDba, VIC are always equal; and the nascent
particles DcxE, XCY of the areas VDca,
VCX are always equal: therefore the gen-
erated area VDba will be equal to the
generated area VIC, and therefore propor-
tional to the time; and the generated area
VDca is equal to the generated sector VCX.
If, therefore, any time be given during which
the body has been moving from ¥V, there will
be also given the area proportional to it
VDba; and thence will be given the altitude
of the body CD or CI; and the area VDca,
and the sector VCX equal thereto, together
with its angle V'CI. But the angle VCI, and
the altitude CI being given, there is also
given the place I, in which the body will be
found at the end of that time. Q.E.L

h

dt

()

2
(i1): hCx

1
=3h—

A2 () dr— 2T T 2 e

(i): — area VDba = iht;

(i): — area VDca = he.

2r2 [ =2 " f(r) dr — B*/r*]'?

=3CX?
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d¢
dr’
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Corollaries I and 11
The line of the apsides is determined by the vanishing of # = 0, that is, by

2 ‘[’f(r) dr + W?/r* =0,
or, in Newton’s notation,
ABFD — Z* = 0.
Equivalent forms of the same condition are:

IN=20 and cos /. KIN = 0.

49. The mystery of the missing corollary

While general laws of centripetal force are considered when the occasion demanded (as
in Proposition XXXIX and in the propositions of this section) the prime focus in the
Principia has always been the inverse-square law of attraction. One is therefore puzzled
why in this important instance, Newton passed over the inverse-square law of attraction
and chose the inverse-cube law for illustrating the proposition. It can hardly be doubted
that he did consider the case of the inverse-square law of attraction—it cannot have been
more than ‘child’s play for Newton’ (to quote J.E. Littlewood in another context). Why
then did he abstain from including it in the Principia? In my view the reason is not far
to seek. But, first, it is useful to write out the few lines in which Newton would have solved
this problem though he might have cloaked his demonstration in the manner of
Proposition XLI (described in §48).

Newton would naturally have started with the energy integral (ABFD — Z? in his
notation)

2
i = 2 h—2 + C, (1)
roor

appropriate for the inverse-square law, f(r) oc r~2, where C is a constant of integration.
By Corollaries I and II of this proposition XLI, the apsides will occur when

Cr*+2r—h*=0 and F#=0. )
Considering the case when the quadratic equation (2) allows two real roots,
ry=a(l —e) and r, =a(l + e) 3)
where a and e are unspecified constants, we find from equation (2) that
2
o2 a1 and c= -l 0

ry+r, a
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Inserting these values in equation (1), we find

— — 1
fz_—_zw:_ —r2+2ar—a21_—2. 5
r2(ry +15) ar? [ (1= ©)
With this expression for 7%, the solutions (6) and (7) given in the preceding section take
the forms
dr
+t=a'l? d , 6
- J[—r2 + 2ar — a*(1 — e*)]'? ©)
and
dr
+ ¢ = ha'l? ) 7
¢ Jr[——r2 + 2ar — a?*(1 — e*)]'? @
Evaluating these integrals (‘child’s play’ for Newton!), we find that
t= a”{a(% 7 — sin " * E) + [a(1 + e) — r]*?*[r — a(1 — e)]l/z}. (8)
ae
and
_ 52
¢=%n+sin“1—r ad e), Q)
re
with the initial conditions,
t=0 and ¢=0 at r=a(l — e). (10)
The alternative form of equation (9),
1 — 2
=€) _ 14 ecos, (11)
r

makes it manifest that we have indeed recovered the orbit, that is, the converse of
Proposition XI.

With the solution to this problem so readily obtained from what had gone before, why
did Newton abstain from including it as ‘Corollary III’ to Proposition XLI? The clue
resides in the integrals (6) and (7). Not that these integrals were in any way obstacles:
Corollary IIT of Proposition XCI includes in fact the explicit evaluation of an exactly
similar integral:

ydy
F=2b—/(1 —¢&?
\/( ‘ )J\R#b \/[_32y2+2Ry_(R2—b2)]

which expresses the gravitational attraction at an external point on the minor axes of an
oblate spheroid. But the solution is given as a ‘conundrum’ which baffled Newton’s
contemporaries (including Roger Cotes). To understand Newton’s apparent reluctance
in dealing with the integrals (6) and (7) in similar fashion, one must bear in mind
two facts: First, in 1685 Newton was unable to refer to any printed equivalent to
his 1671 ‘table of areas of curves’ later published in his Tractatus de Quadrature Curvarum

R+b

(12)
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(London, 1700); and second, Corollary III of Proposition XCI was added out of sequence
in the Principia in August 1686 at which time he was involved in his theory of the oblateness
of the terrestrial planets in Book III, Proposition XIX. (All these matters are discussed in
greater detail in Chapter 20.)

One may still ask, why did Newton overcome his reluctance in August 1686 and not
some months earlier when he was writing Proposition XLI. The answer, in my view, is
clearly that in the former instance he absolutely needed the explicit evaluation of the
integral (12) to make quantitative his theory of the oblateness of terrestrial planets. In the
latter instance, it was all so obvious (to him!) that he did not bother. And later, when
criticisms of Bernoulli and others were drawn to his attention, he mostly ignored them
with perhaps the attitude:

Small have continual plodders ever won,
Save base authority from others’ books.

50. Motion under an inverse-cube law of centripetal attraction

In this corollary, Newton illustrates Proposition XLI by considering the inverse-cube law
of attraction. Newton gives scant details. Besides, there are apparent misprints (or words
like ‘body’ not having their standard meanings) and alterations of figures from the first
and second to the third edition of the Principia that add to the obscurity. But enough
details are given that it is not difficult to reconstruct Newton’s analysis. The following
treatment of the problem is what Newton would have given had he the time or the patience;
for, as he confesses at the end:

All these things follow from the foregoing Proposition, by the quadrature of a
certain curve, the invention of which, as being easy enough, for brevity’s sake
I omit.

We start with the energy integral:

h? d 1
P+ = -2 J'F: =3 + constant. 1)
In its integrated form we have
1
r'Z:(l—hZ)~2+C )
r
where C is a constant of integration. We also have
dp h
o 3
dt 2 )

Following Newton, we shall consider solutions of equations (2) and (3) with the initial
conditions,
F=0 and t=20 “)
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for some finite
r=pf>0. %)

(The case when 7 = 0 at infinity must be considered separately.)
From equation (2) it is clear that two cases must be distinguished:

h <1 and h? > 1. (6)
Case 1, h* < 1. For this case, we shall write equation (2) in the form,
. 1 1
P =(1— h2)<r—2 - P) (r<p) (7)

consistently with the requirement (5); and it is also convenient to require (without loss
of generality):

F<0 and ¢>0 forr<§. (8)
From equations (7) and (3) we readily find:
dt r
P ’ 2 2 _ 2 ©)
dr JA = h?) (B —=r?)
and
do hp 1
= ) 10
dr JA =h) r (B> —r?) (10)
The required solutions of these equations are:
2 11
and
h B+ (B —1?) 1B
= lo h=tZ. 12
P= Ja =) o8 r TJA—m (12)
Rewriting equation (11) in the form
7'2 t2 ,82
P‘i‘&i:l, Wherea_——m, (13)

we conclude that in the (¢, r)-plane, the orbit is an ellipse. In the accompanying diagrams,
the solution curves in the (¢, r)-, (¢, r)-, and the (r, ¢)-planes are illustrated. It is clear,
quite generally, that when h? < 1, the body descends to the centre in a spiral curve.
In addition, Newton derives the following remarkable identity.
Letting
tan 0 = t/r, (14)
we have,
do 1

t dr
6029—=———— 15
° dt r r2dt’ (15)
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S

h=0.93
B=2.00
while by equation (13),
dr B>t
e o2
Eliminating dr/dt from equation (15), we find
ﬁ 3

S+t do="—do¢.
r h
If

d4 = 3(r* + t?) do,

denotes the element of area in the (¢, r)-plane, then

EdA zlﬁ_sdqs;
r 2 h
or in its integrated form
r~dA=1ﬁ—3 (¢ =0 for r = p).
s T 2 h

* Newton states this result differently:

f "CT.d4 = 1B*e/h,

B

where CT = B?/r is the distance from the centre C to the intersection 7, of the tangent at r (on the ellipse)

with the principal axis. (See illustrations on p. 177).

(16)

(17)

(18)

(19)

(20)*
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Alternatively, we also have
2
21)

152 (¢ 1B
= f rd¢ = - — x arc length along the orbit of the particle.

2 h )y
Equations (20) and (21) are equivalent to two of Newton’s statements in this corollary.

We have called them Newton’s identities.
In the accompanying illustration (with o = 0-65, § = 0-70, and h = 0-66) the dotted curve

represents f/r for various points on the ellipse.
Case 2, h* > 1. In this case, equations (9) and (10) are replaced by

e, B r
dr JW = 1) J0? - B>

(22)

and
do hp 1 (23)

& TJE D e = By
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-108 +108
A )
B=1.50
h=1.50 F
where we have required
F=0 and qb = 0. (24)
The required solutions of equations (22) and (23) along which ¢ =0 when r = f, are:

2 t? h

P—;zl and Qb:mcos_l;[(x:ﬁz/\/(hz_l)]. (25)
In the (¢, r)-plane the orbit is a hyperbola; and along the asymptote, r/t = /o,

1 nh

- 26
2/ —1) (26)
the curve therefore ascends indefinitely while ¢ tends to a finite limiting value.

We readily verify that the Newtonian identities (20) and (21) are valid as they stand.

In the accompanying diagrams* the solution curves in the (t,7)-, (¢,7)-, in the
(r, ¢)-plane are illustrated.

We have yet to consider the case when the body comes to rest at infinity.

Case 3, 7 = 0 at r = co. In this case the energy integral gives

s 10

2= (h? > 1 is not allowed). (27)
"

¢ = o=

* These diagrams for Case 2 as well as those for Case 1 were kindly prepared for me (for this book) by Drs.
Valeria Ferrari and Andrea Malagoli.
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We also have the equation
é = h/r?. (28)
The solutions of these equations are
_ \/(1 — hz) _ 2\71/2
r=expl T (¢ — do) | = [2(t — to)y/(1 — K*)]M2. (29)

In the (r, ¢)-plane the solution represents an equiangular spiral, a case that Newton has
already considered in Proposition IX.

Some observations
In the opening paragraph of this section, I stated that misprints (that have survived all
three editions of the Principia to the present day) add to the difficulty of deciphering this
corollary. Consider, for example, the following quotation from the text:

therefore if the conic section VRS be a hyperbola, the body will descend to the
centre; but if it be an ellipse, it will ascend continually, and go farther and farther
off in infinitum. And, on the contrary,
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On the face of it, one would conclude that the words ‘hyperbola’ and ‘ellipse’ (underlined)
have been interchanged by a simple oversight. Certainly, an orbit which is a hyperbola
in the (r, t)-plane ascends to infinity while ¢ tends to a finite limit, while an orbit which
is an ellipse on the (r, t)-plane descends to the centre in a spiral orbit. How does it happen
that this oversight escaped the ‘critical eyes’ of Roger Cotes? What is more puzzling is that
the accompanying illustrations, which are the same in the first and the second editions of
the Principia, were ‘tampered’ with (by Pemberton(?)) who apparently sensed that
something was amiss): not only in interchanging the order of the illustrations but
substantively in details as well (which appear to derive from a misunderstanding of the
character of the solution).

I do not, however, have any doubts that Newton himself had a complete grasp of the
solution. How else can one explain the remarkable identities (equations (20) and (21))
that he discovered and which bear the stamp of the ‘lion’s paw’!

®

(a) Theillustrations as they appeared in the first and the second editions of the Principia;
(b) as they appeared in the third edition.

51.
Proposition XLII. Problem X XIX

The law of centripetal force being given, it is required to find the motion of a body
setting out from a given place, with a given velocity, in the direction of a given
right line.

This is Newton’s formulation of the initial-value problem. Stated differently, the problem
is: at a given instant of time, a body is projected from a point P, at a distance r, from
the centre S of a known centripetal force of attraction, with a prescribed velocity V in
some specified direction; and we are required to find the motion that will ensue. Newton
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V¢y¢\\ ) 1Vr

S

constructs the solution to this problem analogously to his solution of the simpler problem
of ascending and descending bodies in Corollaries II and 111 of Proposition XXXIX. The
following is a paraphrase of Newton’s solution.

The solution to the problem requires only the specification of the lower bound of the
integral in equation (3) of §48:

i = —ZJ f(r)dr — h*/r?, (1)

consistently with the stated initial conditions. The conditions are clearly satisfied by writing
1 h2 r

5<r'2 - —2> - - f f@) dr + 302 + V), @
r ro

where V, and ¥} are the radial and the transverse components of V. On the other hand,
since the constant of areas h during the subsequent motion of the body must retain the
value it had at the beginning,
h = 7'0 I/¢ (3)
With this value for h, equation (2) gives
r 2

f2=—2f f(r)dr—%)Vé+V2. 4)
The solution for the initial-value problem follows from inserting this expression (4) in
place of (1)'in equations (6) and (7) of §48. Thus,

t=+ J dr ©)
T (=2, fr)ydr + V? = r§ V]2
and
r dr
"= if PL=2, [0) dr + V2 — V3T ©

QELL






K2 2
¢ 1 O 4

On revolving orbits

52. Introduction

N ewton introduces the subject of this Section IX at the conclusion of Section VIII
thus:

I have hitherto considered the motions of bodies in immovable orbits. It remains
now to add something concerning their motions in orbits which revolve round
the centres of force.

The problem he considers is the following. We know that under a centripetal law of
attractive force a body is constrained to move in a fixed plane; and that it describes in
this plane equal areas in equal times. Let r = f(¢p) be such an orbit described under a
centripetal force P(r). Consider the locus r = f(x¢) where o is some prescribed constant.
The revolving orbit so constructed will again describe equal areas in equal times (as Newton
shows in Proposition XLIII); and, therefore, by Proposition II, is described under the
action of a centripetal force; and the problem is: how is this centripetal force related
to the centripetal force acting on the original ‘immovable’ orbit? The relation that
Newton derives in Proposition XLIV is called ‘Newton’s theorem of revolving orbits’.
(Strangely, I have not been able to discover a treatment of this theorem in any current
book on dynamics or celestial mechanics with the exception of E. T. Whittaker’s
Analytical Dynamics, Cambridge University Press, p. 83; and it is not generally known
either.)

Newton’s interest in this theorem was that it enabled him to investigate the apsidal
motion of nearly circular orbits (which is the major concern of Proposition XLV with its
three examples and two corollaries). And we are introduced at the same time to what was
to be his life-long concern with the lunar theory.
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53. The theorem of revolving orbits

As an introduction to Propositions XLIII-XLV we shall present a treatment of Newton’s
theorem by the methods of today. Analytically, the problem that was formulated in §52
is the following.

Given that r(¢) is the polar equation of an orbit described under the action of a
centripetal force P(r) with a constant of areas h, what is the centripetal force P’(r) under
which the orbit r(a¢) with a constant of areas ah would be described where o is some
assigned constant?

We recall that the equation governing u(¢) = 1/r(¢) is (Chapter 5, §24, equation (ii))

d*u P(r)
d_qE +u= %L 1)
or
d?u
P(r) = h*u® + h*u* —.. 2
(r) = h%u “ g2 2
We now require the centripetal force P'(r) under which the orbit
r(ag) = r(¢), say, 3)
will be described. The constant of areas associated with this ‘revolving orbit’ is
h = ah. 4)
Applying equation (3), for the orbit u(x¢) = u(¢’), we have,
) . d?u 1 d%u
P'(r) = hW*u? <u + dqb’2> = o*h?u? <u + 2 d752>
d?u
— 2h2u3+h2 2_____; 5
a 07 ®)
or again using equation (2), now with respect to the orbit u(¢), we find:
P'(r) = a*h*u® — h*u® + P(r). (6)
Hence
W (* —1
Po) - Py =" 0, ™
QEL

We now turn to Newton’s demonstrations. As usual they provide far greater insights.

54.
Proposition XLIII. Problem XXX

It is required to make a body move in a curve that revolves about the centre of
Jorce in the same manner as another body in the same curve at rest.
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We shall first paraphrase Newton.

Let VPQR ... K be the fixed orbit described by a body under an attractive force centred
at C and P, Q, R, etc., the positions occupied by the body at certain arbitrarily chosen
instants of time. The ‘revolving orbit’ is obtained by imaging the points, P, Q, R, etc. on
to the fixed orbit at the same chosen instants of time by the transformation,

Cp=CP and L VCp=0a/VCP;
Cq=CQ and LVCqg=0lLVCQ, etc, (1)
where o is a constant. By this transformation,
area of sector VCp = 4(Cp)*> x /. VCP = 3a(CP)* x L VCP
= a x area of sector VCP; 2)*
and since both the sectors are described in the same time,
area of sector V'Cp area of sector V'CP

1
3 . N . =0 . . N = _O(h, 3)
time in which the area is swept time in which the area is swept 2 (

where 4 is the constant of areas along the fixed orbit. Since relation (3) obtains for all the
chosen sectors, it follows that along the revolving orbit, as imaged, equal areas are swept

The validity of equation (2) becomes clear by observing that for any two infinitesimally close pair of points
(P, Q) and (p, 9),
area of sector QCP = 4(CP)* d¢
and
area of sector gCp = 1a(Cp)? d¢;
and because CP = Cp (by construction)
area of sector QCP:area of sector gCp = a.

Since this constant ratio obtains for every infinitesimally close pair of points, it obtains generally. This is
effectively Newton’s argument.
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in equal times; and the constant of areas is oh. And therefore, by Proposition II, the
revolving orbit is described under the action of a centripetal force.
We may note the following relations which are implied by the transformation described:

L VCp=oa/VCP; L VCq=0a/lVCQ; (),
L PCp= [ VCu; /. QCq = / VCu; (i),
[ PCp=/VCp— LVCP = (00— I)LVCP;} (i)
LQCq= /VCq— LVCQ = (ax— 1), VCQ; ’
and
1 1
[ PCQ=/,VCQ— L VCP=—-[LVCq— LVCp]=- LpCq,
o o
or,

L pCq =0/ PCQ. (iv). 4

We now give Newton’s version in his meticulously phrased language:

In the fixed orbit VPK, let the body P revolve, proceeding from V' towards
K. From the centre C let there be continually drawn Cp, equal to CP, making
the angle V'Cp proportional to the angle V'CP; and the area which the line Cp
describes will be to the area VCP, which the line CP describes at the same time,
as the velocity of the describing line Cp to the velocity of the describing line
CP; that is, as the angle VCp to the angle VCP, therefore in a given ratio, and
therefore proportional to the time. Since, then, the area described by the line
Cp in a fixed plane is proportional to the time, it is manifest that a body, being
acted upon by a suitable centripetal force, may revolve with the point p in the
curved line which the same point p, by the method just now explained, may be
made to describe in a fixed plane. Make the angle ¥'Cu equal to the angle PCp,
and the line Cu equal to CV, and the figure uCp equal to the figure V'CP, and
the body being always in the point p, will move in the perimeter of the revolving
figure uCp, and will describe its (revolving) arc up in the same time that the

Vv
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other body P describes the similar and equal arc VP in the fixed figure VPK.
Find, then, by Cor. v, Prop. vi, the centripetal force by which the body may be
made to revolve in the curved line which the point p describes in a fixed plane,
and the Problem will be solved. Q.E.F.

55.
Proposition XLIV. Theorem XIV

The difference of the forces, by which two bodies may be made to move equally,
one in a fixed, the other in the same orbit revolving, varies inversely as the cube
of their common altitudes.

The accompanying diagram, similar to the ones included in Proposition XLIII, is in the
same context: VPK is the fixed orbit; the vertex V" and the position P in it being imaged
on u and p in the congruent revolving orbit upk. By equations (1) and (4, ii) of the preceding
section,

Cu=CV, Cp=CP, and L. VCu= [ PCp. (1)
Let K be a neighbouring point, infinitely close to P; and if n is its image
Cn = CK; ‘ 2)

and by equation (4, iv) of §54,
L. pCn=ua/ PCK. (3)
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Let k be the intersection of the circle of radius CK(= Cn) with the orbit passing through
u and p congruent to VPK. By this construction, the sectors CPK and Cpk are congruent:

QCPK = Cpk. 4)
Draw kr perpendicular to Cp and extend it to intersect the circle CKkn at s; then
kr =rs. (5)

On the fixed orbit, P arrives at K (after an interval of time At, say). In the direction
normal to the orbit at P, it will have traversed a distance equal to the perpendicular
distance of K from PC, that is, equal to kr (to the first order) by the congruence of the
figures CPK and Cpk. The imaged point, p, on the ‘revolving orbit’ will arrive at m, the
continuation of kr, where by equation (3)

rm = ark. (6)
If mn be now continued to intersect the circle Kkn at ¢, then by elementary geometry
ms.mk = mn.mt, (7
or
mn = msn;:nk. 3)

Clearly, mn is the distance which p travels during At by the difference in the centripetal
forces acting on p and P. It remains to relate this distance to other known quantities.
By the area theorem,

ApCk = APCK = irk.PC = ShAt, )
where A is the constant of areas along the fixed orbit; and by equation (6),
ApCm = 3rm.PC = lark.PC = }ohAt. (10)
Now by equations (5), (6), (9), and (10)

1
ms=rm+rs=rm+rk:(oc+l)rk-——h(oHr )At, (11)
PC
mk:rm—rs:rm—rk:(a—1)rk:h(°‘_1)m. (12)
PC
Hence,
(o — 1)
mk = —— "2 (At)?, 13
ms.m pC? (A1) (13)
or, since

mt ~ 2PC, (14)
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it follows from equation (8)
1 h?(? — 1)
n=_ —
2 PC?

We conclude from the meaning of mn already given,

(At)2. (15)

the difference in the centripetal forces acting on p and P, at the same distance
from C, is h*(«* — 1)/PC? (16)

Q.E.D.

Cor. 1. The difference of the forces, with which the body P revolves in a fixed
orbit, and the body p in a movable orbit, will be to the centripetal force, with
which another body by a radius drawn to the centre can uniformly describe that sector
in the same time as the area VPC is described, as GG — FF to FF.

Abbreviating centripetal force to C.F., consider

(C.F. at p in revolving orbit — C.F. at P in fixed orbit) x (At)?
(C.F. in circular orbit of radius PC = pc)(At)?

2mn 2mn )
= = (By the meaning of mn)
(v*/PC) x (At)>  (kr)*/PC
mk.ms (kr)? .
= By equation (8) and mt ~ 2PC
pC PC (By eq (8) and m )
=mk.ms: (kr)* = o*> — 1 (By equations (11) and (12)). (17)
Letting
G W
_—=— = a’ 18
F h (18)

where h' and h denote the constant of areas in the revolving and in the fixed orbits,
respectively, we conclude:

CF. at p in revolving orbit — C.F. at P in fixed orbit G?> — F?

C.F. in circular orbit of radius pc(= PC) - F2

(19)

Corollary 11

What is sought in this corollary is the explicit expression for the centripetal force acting
on a body describing the revolving orbit when the fixed orbit is an ellipse.

By equation (16) of this proposition,
C.F. at a distance pC(=PC = A4, say) in the revolving orbit

=C.F. at a distance PC(=pC = A) along the fixed elliptic orbit + (G* — F?)/43, (20)
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where (as in Corollary I) G = hoo = i’ and F = h. But by Proposition XI, equation (h)
C.F. at P along the fixed elliptic orbit = h?/I4* = F?/RA*? 21

since in our present notation / = R = semilatus rectum and h = F. Hence,

C.F. at a distance 4 from the centre 1 [F > R(G*—F 2):|

of attraction along the revolving orbit R | 42

e o (22)

This is Newton’s result. (Newton seems to have absorbed the factor 1/R in the constant
of proportionality.)

Corollary II includes a special case of equation (22) derived directly from equation (19)
of Corollary I.

Quite generally,

Force acting at a point P in the direction of the inward normal = v?/p, (23)

where v is the velocity in the tangential direction and p is the radius of curvature of the
orbit at P. Applying this result at V" where the inward normal is directed towards the centre,

C.F. at V along a circular orbit of radius CV
C.F. at V along the fixed elliptic orbit

radius of curvature of an ellipse at the vertex V'

~ radius of curvature of circular orbit of radius CV
= R/CV, (24)

for equal velocities, v, along both orbits. Equation (19) now gives

C.F. at V' along the revolving orbit

R G* - F?
= C.F. at V along fixed elliptic orbit x | 1 + — —
a along nxea clip oro1 Xl: cv F2 :|

F? R G?>—F?
=— |14+ ——— by equation (21

1[ F R . .
R [(c e T crp @ )}' =

Newton derives equation (22) by generalizing this last result by noting that ‘this difference
at any other altitude 4 is to itself at the altitude CV as 473 to (CV)~¥.

Corvollary 111

In this corollary, the explicit form of equation (16) is sought when the fixed orbit is an
ellipse described about its centre in accordance with Proposition X.
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By equation (viii) of Proposition X (p. 88)
OR PC

OT*>.PC?  2a°h’ (26)
But,
OR =1CF. (At)? an
QT.PC =24 ,At = hAt.
Hence,
h2
C.F. acting at P in fixed orbit = 2 PC. (28)
Since
R = semilatus rectum = b?/a, (29)
and h = F in our present notation,
. . . 1 b? 2
C.F. acting at P in fixed orbit = h?| — b7\ PC _ I—:LC (30)
R a /) a*h* Rad®
Equation (20) now gives
. . . . . 2 G* —F?
C.F. acting at the same distance in a revolving orbit = Fpc +
Ra® PC?
1| F*PC G? — F?
=— + R ; (31
R |: a’ PC? :| 1)
or, in Newton’s notation,
PC=A4 and a=T, (32)
we have
. . . . 2 2 —F?
C.F. at altitude A in the revolving orbit = 14 + R G . (33)
R T A3

Note that by definition the fixed and the revolving orbits both describe a complete
revolution in the same time.

Corollary 1V
Consider ‘universally’ equation (16). By equation (viii) of Proposition IX,
1 F?

C.F. at P in fixed orbit = — —.
p sin® € A?

(34)

We thus obtain,
C.F. at the same distance from C in the revolving orbit

1 F? . G* - F?
= b sinTe [F + (p sin® €) T} (35)
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where it may be recalled that p denotes the radius of curvature at P and € is the inclination
of PC to the direction of motion at P. Since, along an elliptic orbit p sin®*e = R (by
equation (2) of §31), equation (35) reduces to equation (22) in this case.

There is some confusion in terminology in the statement of this corollary in the Principia;
it seems to have escaped the scrutiny of Roger Cotes!

Cor. v. Therefore the motion of a body in a fixed orbit being given, its angular
motion round the centre of the forces may be increased or diminished in a given
ratio; and thence new fixed orbits may be found in which bodies may revolve
with new centripetal forces.

This corollary establishes for the first time the notion of centrifugal potential.

Corollary VI

Let VX be perpendicular to CV; and consider a point P moving along VX with a uniform
velocity, v (say). Since P moves by inertia only, it is not subject to any other force acting
on it. Hence the image point p in the revolving orbit (at a distance Cp = CP) will describe
this orbit under a centripetal force inversely proportional to (pC)3:

C.F. acting on p at a distance pC = h*(a* — 1)/(pC)>, (36)
where the constant of areas along the linear trajectory is
h=uVC. (37)
Hence,
C.F. acting on p at a distance r is= vV C)*(a® — 1)/r>. (38)

Proposition XLV. Problem XXXI
To find the motion of the apsides in orbits approaching very near to circles.

The problem that Newton considers in this proposition—which was probably the
underlying motivation for this entire Section IX at this early stage—is to relate nearly
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circular orbits described under arbitrary centripetal forces to nearly circular elliptical orbits
described under inverse-square force; and to determine the precession of the line of apsides
under the circumstances. As it will appear, fairly delicate considerations are involved in
the solution of this problem; and it is not an easy exercise to follow Newton’s account
written in connected prose. For this reason, we shall paraphrase Newton. But we shall
quote him when his explanations in their lucidity add to our insight.

By Proposition XLIV (cf. equations (7), §52 and (16), §55)

P'(ry=P(r) + " r_3 h . (1)

For an elliptical orbit described under an inverse-square law of attraction (cf. equation
(21), §55)

2

P(r)=—, 2
(r) R 2

where R, the semilatus rectum of an ellipse of eccentricity e and semiaxes a and b, is
R = b%*/a = a(1 — &?). 3)

Equation (1) now gives
1[h* RMHW?* - hz)} 1 |:R(h’2 — h?) + rhj

Pry==|—+——+—""|== . 4
® R |:r2 r3 R r3 @

For a nearly circular orbit, we may write,
F=Tmx — X =T — X (say),
where &)
Fmax = @(1 + ) =T (=CV of the diagrams in §54 and §55)
We therefore have

RP'(r) = :3 [R(W? — h?) + (T — X)h?]. (6)

Let the centripetal force, under the action of which the revolving orbit is described, be
RP'(r)=C(r)r 3= C(T— X)r 3, (7)
where C(r) is at our disposal. Since we are interested in nearly circular orbits, we may

expand C(T — X) in a Taylor series and retain only the zero and the first-order terms.
We thus obtain

RP'(r)=[C(T) — XC'(T)]r 3, [C'(T)=dC/dT]. (8)
Equation (6) now gives,
R(W? — h®) + (T — X)h* = C(T) — XC'(T), 9

or alternatively,

1 P XK XC(D)
ﬁ[R(h h?) + Th*] C(T)—l o

(10)
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The first terms on both sides of this equation are of zero order while the second terms
are of the first order. We may therefore equate them separately. We thus obtain,

1
——[R(W?* — h*) + Th*] =1 and h? = C(T). 11
o [R( ) ] (T) (11)
Since R and T to zero-order are both equal to the semimajor axis a, we find,
12
h = and h* = C'(T). (12)
(1)
We thus obtain
12
r.oun (13
W*  TC(T)
where on the right-hand there is no loss of generality in evaluating it for 7= 1; thus
12
h =0a’= [—C(T) } . (14)
h? IC(T)dr-q

This is Newton’s basic relation; as he explains:

And this comes to pass by reason of the likeness of this orbit which a body
acted upon by [a uniform centripetal force C(r) describes] and of that orbit
which a body performing its circuits in a revolving ellipse will describe in a fixed
plane. By this collation of the terms, these orbits are made similar; not
universally, indeed, but then only when they approach very near to a circular
figure.

It may be recalled that « is the constant ratio of the angles V'Cp and VCP in the
illustrations in §§54 and 55 and p is the image on the revolving orbit of the point P on a
fixed orbit at the same distance.

Newton considers several special cases of equation (14).

Example 1

A revolving orbit described under a uniform centripetal force corresponds to (cf.
equation (7))

C(T)=T°. (15)
By equation (14)

2

1
=1 or L VCp= % L VCP. (16)
To continue with Newton’s explanation:

Therefore since the body, in a fixed ellipse, in descending from the upper to the
lower apse, describes an angle, if I may so speak, of 180° the other body in a
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movable ellipse, and therefore in the fixed plane we are treating of, will in its
descent from the upper to the lower apse, describe an angle V'Cp of 1800/\/ 3.
...... A body, therefore, revolving with a uniform centripetal force in an orbit
nearly circular, will always describe an angle of 180°/,/3, or 103° 55’ 23" at the
centre; moving from the upper apse to the lower apse when it has once described
that angle, and thence returning to the upper apse when it has described that
angle again; and so on in infinitum.

LVCr = [ aCW =180°//3

Example 2
More generally, if we consider a law of force proportional to "~ 3, which corresponds to
C(T)=T1" (17)
we obtain from equation (14),
o? = ! and /[ VCp = b /L. VCP. (18)
n Jn

And Newton explains this result in an almost identical phrasing.

Therefore since the angle VCP, described in the descent of the body from the
upper apse to the lower apse in an ellipse, is of 180°, the angle V'Cp, described
in the descent of the body from the upper apse to the lower apse in an orbit
nearly circular which a body describes with a centripetal force proportional to
the power A"~ 3, will be equal to an angle of 180°/\/n, and this angle being
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repeated, the body will return from the lower to the upper apse; and so on in
infinitum. :

In particular:

n Law of force 180°/y/n

0 r3 0

P 360°

1 r2 180°

2 ot 127° 16' 45"
3 constant 103° 55" 23"
4 r 90°

Newton picks out for special comment the cases n =2 and n =% The origin of the
‘singularity’ for the inverse-cube law is considered in Corollary I below.

Example 3

The case,
C(T)=bT™ + cT", (19)

considered in this example plays a crucial role in Newton’s later considerations in
formulating his universal law of gravitation (see Proposition 111, Book III).
For the chosen form of C(T), equation (14) gives

062_[C(T)] _[bT"’icT"] b+t (20)
TC(T)ly= mbT™ + ncT" |p—; mb+nc

And therefore, since the angle V'CP between the upper and the lower apse, in
a fixed ellipse, is 180°, the angle V'Cp between the same apsides in an orbit
which a body describes with a centripetal force, that is, as (bA™ + cA™)/A3, will
be equal to an angle of 180°/,/(b £ ¢)/(mb + nc).

And Newton concludes:
After the same manner the Problem is solved in more difficult cases.

Cor. 1. Hence if the centripetal force be as any power of the altitude, that
power may be found from the motion of the apsides; and conversely.

If a body describing the revolving orbit returns to the same apse m times when the fixed
orbit completes n complete revolutions, then

oAy

yvep="",vcP  or a=1
n n
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By equations (17) and (18),

C(4) = 4™, (22)
and the centripetal force follows the power law,
CF.oc A®m)=3, (23)
Conversely, if
C.F. oc 49, (24)
then
m 1
n \J(g+3) 23)
We conclude that
q> —3. (26)

Hence it is plain that the force in its recess from the centre cannot decrease in
a greater than a cubed ratio of the altitude.

Newton explains this limit on the inverse power of the law of centripetal attraction with
utmost clarity:

A body revolving with such a force, and parting from the apse, if it once begins
to descend, can never arrive at the lower apse or least altitude, but will descend
to the centre, describing the curved line treated of in Cor. 11, Prop. xL1. But if
it should, at its parting from the lower apse, begin to ascend ever so little, it
will ascend in infinitum, and never come to the upper apse; but will describe the
curved line spoken of in the same Cor., and Cor. vi, Prop. XLIv. So that where
the force in its recess from the centre decreases in a greater than a cubed ratio
of the altitude, the body at its parting from the apse, will either descend to the
centre, or ascend in infinitum, according as it descends or ascends at the
beginning of its motion. But if the force in its recess from the centre either
decreases in a less than a cubed ratio of the altitude, or increases in any ratio
of the altitude whatsoever, the body will never descend to the centre, but will
at some time arrive at the lower apse; and, on the contrary, if the body
alternatively ascending and descending from one apse to another never comes
to the centre, then either the force increases in the recess from the centre, or it
decreases in a less than a cubed ratio of the altitude; and the sooner the body
returns from one apse to another, the farther is the ratio of the forces from the
cubed ratio.

It will be noted that Newton here refers to both Proposition XLI, Corollary III (in
which he gives a full account of motion under an inverse-cube law of force) and Proposition
XLIV, Corollary VI. And it will also be recalled that the inverse-cube law is the first one
that Newton considers in Proposition IX even before the inverse-square law in the
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more celebrated Proposition XI. It looks very much as if Newton was aware from the
outset of the crucial role that the inverse-cube law was to play in future considerations!
Examples of such prescience abound throughout the Principia. A further example follows
immediately.

The last example that is considered in this corollary relates to his constant concern with
the lunar theory (as we shall presently see).

Consider a revolving body that describes 363° in returning to the same apse while the
body in the fixed orbit completes one revolution so that

o=m:n=363°:360° = 121:120. 27
The index of the corresponding power law is
q=m/m)* —3=—-29523:14641 ~ —25%5. (28)

Newton quotes this result in Proposition 111, Book III (Chapter 19, p. 356):

... from the very slow motion of the Moon’s apogee; which in every single
revolution amounting but to 3° 3’ forwards, . .. it appears, that, if the distance
of the Moon from the Earth’s centre is to the semidiameter of the Earth as D
to 1, the force, from which such a motion will result, is inversely as D?*®/243),
i.e., inversely as the power of D, whose exponent is 2555; that is to say, in the
proportion of the distance somewhat greater than the inverse square, but which
comes 592 times nearer to the proportion according to the square than to the
cube.

Cor. 1. Hence also if a body, urged by a centripetal force which is inversely
as the square of the altitude, revolves in an ellipse whose focus is in the centre
of the forces; and a new and foreign force should be added to or subtracted
from this centripetal force, the motion of the apsides arising from that foreign
force may (by the third Example) be known; and conversely.

In other words, the law of centripetal force considered is:

1
CF. = —cn, (29)

r

where ¢ is some assigned constant. By the table of values listed in Example 2, the law (29)
corresponds to

C(T)=T-—cT* (30)
This is a special case of equation (19) for
b=1, m=1, and n=4. (31)

Therefore, by equation (20),
o = (1 = ¢)/(1 — 4o); (32)
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and we conclude that the angle of revolution between the apsides is

1—c¢
180° . 33
\/1 —4c (33)

The application of this result Newton considers is:

Suppose that foreign force to be 357-45 times less than the other force with
which the body revolves in the ellipse; that is, ¢ to be 53395, 4 or T being
equal to 1; and then 180°//(1 — ¢)/(1 — 4c) will be 180° + /33543 or 18077623,
that is, 180° 45" 44”. Therefore the body, parting from the upper apse, will arrive
at the lower apse with an angular motion of 180° 45 44", and this angular
motion being repeated, will return to the upper apse; and therefore the
upper apse in each revolution will go forward 1° 31’ 28”. The apse of the Moon
is about twice as swift.

It will be noticed that the rotation of the line of apsides of 3° assumed in the example
considered in Corollary I (equation (26)) is ‘twice as swift” as the value, 1° 31" 28", derived
in this example!

As always, Newton looks to the future in concluding this Section IX:

So much for the motion of bodies in orbits whose planes pass through the
centre of force. It now remains to determine those motions in eccentric planes.
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A pause

57. Introduction

y the end of Section IX, we again reach a watershed in the development of the

Principia; and again, as at the end of Section III, we have a pause; but this time a
shorter one addressed to ‘... “oscillating pendulous motions of bodies™’. There is
much of great interest in this section particularly in those parts dealing with cycloidal
pendulums. But we shall pass them by as they are not in the mainstream of the
development. But Propositions XLVI and XLVII are exceptions: Proposition XLVI
provides an important generalization of Proposition XLII on the initial-value problem;
and Proposition XLVII is a beautiful theorem which is at the base of another beautiful
Proposition LXIV established in Section XI (see Chapter 12).

58.
Proposition XLVI. Problem XX XII
Any kind of centripetal force being supposed, and the centre of force, and any plane
whatsoever in which the body revolves, being given, and the quadratures of
curvilinear figures being allowed it is required to determine the motion of a body
going off from a given place with a given velocity, in the direction of a given right
line in that plane.

In contrast to Propositions XLII and XLIII, the centre of attraction S is out of the plane
(X, Y) in which the motion of P is to take place.
Draw SC perpendicular to the plane (X, Y). The centripetal force at a point Q,

—f)F/r (say),

acts in the direction @S') and depends only on the distance QS (=r). Resolve this force
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along @ in the plane (X, Y) and in the direction CS normal to the plane (X, Y). The
latter force, of magnitude

—f(r) sin ¢,

will clearli_glot affect any motion confined to the plane (X, Ii)_;)only the force in the
direction CQ will affect the motion. This force in the direction CQ is

@ W
JESC + o) o’
where @ denotes the radial distance, CQ, in the plane (X, Y) and @/w is a unit vector in
the radial direction in the same plane. And since SC is a constant, the force

1) cos g = f(J(SC* + v?)

w
J(EC* + @?)’
is a function only of the radial distance in the plane (X Y). The conclusion as Newton
states is

—f(J(SC* + @)

But the action of the other force CQ, coinciding with the position of the plane
itself, attracts the body directly towards the given point C in that plane; and
therefore causes the body to move in the plane in the same manner as if the
force SQ were taken away, and the body were to revolve in free space about
the centre C by means of the force CQ alone.

Therefore, Proposition XLII applies to the determination of the motion of P in the plane
(X, Y) given its initial position and velocity in that plane. Q.E.L



A pause 203

Proposition XLVII. Theorem XV

Supposing the centripetal force to be proportional to the distance of the body from
the centre; all bodies revolving in any planes whatsoever will describe ellipses, and
complete their revolutions in equal times; and those which move in right lines,
running backwards and forwards alternately, will complete their several periods of
going and returning in the same times.

If the force acting towards S is

ki —krf L) = k],

where k is a constant, the component of this force directed towards C in the plane (X, Y)
normal to CS is

>

w w N
—_— — = —ko
JEC*+ o) @
and this is a centripetal force proportional to the distance in the same plane.

—fJ(SC* + ©%)

Therefore the forces with which bodies found in the plane (X, Y) are attracted
towards the point C, are in proportion to the distances equal to the forces with
which the same bodies are attracted every way towards the centre S; and
therefore the bodies will move in the same times, and in the same figures, in
any plane (X, Y) about the point C, as they would do in free spaces about the
centre S; and therefore (by Cor. 1, Prop. X, and Cor. 11, Prop. xxxviu) they
will in equal times either describe ellipses in that plane about the centre C, or
move to and fro in right lines passing through the centre C in that plane;
completing the same periods of time in all cases. Q.E.D.
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The two-body problem

59. Introduction

ﬁ s we have stated in the introduction to the last chapter (§57), a watershed was reached
in the development of the Principia at the end of Section IX. In resuming the main
development, after a brief pause in Section X, Newton writes:

I have hitherto been treating of the attractions of bodies towards an immovable
centre; though very probably there is no such thing existent in nature. For
attractions are made towards bodies, and the actions of the bodies attracted
and attracting are always reciprocal and equal, by Law 11; so that if there are
two bodies, neither the attracted nor the attracting body is truly at rest, but
both (by Cor. 1v of the Laws of Motion), being as it were mutually attracted,
revolve about a common centre of gravity. And if there be more bodies, which
either are attracted by one body, which is attracted by them again, or which
all attract each other mutually, these bodies will be so moved among themselves,
that their common centre of gravity will either be at rest, or move uniformly
forwards in a right line. I shall therefore at present go on to treat of the motion
of bodies attracting each other; considering the centripetal forces as attractions;
though perhaps in a physical strictness they may more truly be called impulses.
But these propositions are to be considered as purely mathematical; and
therefore, laying aside all physical considerations, I make use of a familiar way
of speaking, to make myself the more easily understood by a mathematical
reader.

(The parts that reflect Newton’s lofty approach to science are underlined.)

The first seven Propositions, LVII-LXIII of Section XI, are devoted to the formulation
and solution of the two-body problem. Proposition LXIV gives the exact solution for the
general problem of n bodies mutually attracting each other with a force proportional
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to their distances from one another. The remaining Propositions, LXV-LXIX, deal with
the problem of the perturbation of the relative Keplerian motion of two bodies by the
gravitational effect of a third body. Most noteworthy, however, is Proposition LXVI with
its 22 corollaries occupying 15 pages and more than one-half of the entire section: in effect
a condensed first monograph on planetary perturbation. Of these Propositions LXV-
LXIX, F. Tisserand (Traité de Mécanique Céleste, Tome 111, Chapitre 3, p. 33) has written:

I am inclined to think that he [Newton] knew all the formulae (a) [the equations
generally known as Lagrange’s planetary equations] but that, instead of publish-
ing them, he preferred deducing a large number of geometric propositions from
them which he obtained by considering in each case the effect of just one
component [element].

Tisserand devotes an entire chapter in his Traité de Mécanique Céleste (Chapitre III,
pp.- 27-43) under the heading ‘Theorie de la lune de Newton’ and gives an excellent
account of Propositions LXVI-LXIX. And Laplace, who also devotes a chapter to ‘Sur
la theorie lunaire de Newton’ in his Mécanique Céleste (Livre XVI, Chapitre II,
pp. 409-23) considers:

The method [Newton’s development of the method of the variation of the
elements] appears to me as one of the most remarkable things in the Principia.

On account of the closely knit character of Newton’s exposition of the 22 corollaries
of Proposition LXVI, concealing all details of his treatment of the variation of the elements,
we shall postpone to Chapters 13 and 14 Propositions LXV-LXIX. The present chapter
will be restricted to Propositions LVII-LXIV.

60. The two-body problem: the general theorems

Of the seven Propositions, LVII-LXIII, devoted to the two-body problem, the first three
treat the general case with no restriction on the law of attraction between the two bodies.

Proposition LVII. Theorem X X*

Two bodies attracting each other mutually describe similar figures about their
common centre of gravity, and about each other mutually.

In Cajori’s translation of this proposition, ‘aequali motu angulari circum’ in the original Latin of the first
and the second editions (and ‘equable angular motion’ and ‘equal angular motion’ in Motte’s translation)
is incorrectly interpreted in two places as ‘uniform angular motion™—Keplerian motion along an ellipse is
clearly not one of ‘uniform angular motion’.
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First, a modern (common?) version of the proof:
If M, and M, denote the inertial masses of the two bodies, the attractive force, directed
from one to the other, must be of the form

S(My, My;1y5) (f >0,

where f is symmetrical in M; and M, and r,, (=|#; — #,]|) is the distance between them.
The symmetry of f in M, and M, is required by the third Law of motion. The equations
governing the motions of M; and M, are:

d%# P—7
M, 721 = —f(My, My; 1) = 2 1)
dt 12
and
d37 FL—7
Mz—;: +f(My, My ry5) = : (2)
dt 12
From these equations the uniform motion in a straight line of the centre of gravity,
C = LF 4 27, 3)
M, + M, M, + M,
follows directly from the sum of equations (1) and (2):
d% d*#
M, —L 4 — 2=, 4
1 dt2 2 dt2 ( )
or
(M, + M,)C = M7, + M7, = (M, + M,)Vt + A4, ()

where V7 and A are constant vectors.
The motion of the two bodies ‘round one another’ (to adopt Newton’s manner of
speaking) is determined by the equation

daz . . M, +M F,—7
F(’H_”z): _]\14—]\42f(M1’ M,;ri,) lr = (6)
1Vl 12

And the motion of the two bodies relative to their centre of gravity is obtained by
considering

1 M
(M1’71 + Mz”z) =+ 2

E =F - 2
D M+ M, M, + M,

(71 —75) ()

and

> . 1 . . M
Cr =Ty — ———— (M7, + My7,) = — !

(R — ). 8
M, + M, M1+M2(1 2 ®
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Therefore,
M, + M,

M, 51 = T Ty 52 = (f1 - fz)- (9)

From this proportionality of the vectors &,, &,, and (7, — #,) the stated proposition follows.

Newton’s proof, couched in words, is essentially the same:

The centre of gravity moves uniformly in a straight line (by Corollary IV of the Laws
of Motion). Therefore, the two bodies will always find themselves, in opposite directions,
along the straight line at opposite ends and dividing the line (7, — #,), joining them in the
constant ratio M, : M,. Hence &,, &,, and (7, — #,) are collinear; and moreover,

Bl = 1z (10)
And Newton concludes

But right lines that are in a given ratio to each other, and are carried round
their extremities with an equal angular motion, describe upon planes, which
either rest together with them, or are moved with any motion not angular,
figures entirely similar round those extremities. Therefore the figures described
by the revolution of these distances are similar. Q.E.D.

Proposition LVIII. Theorem X X1

If two bodies attract each other with forces of any kind, and revolve about the
common centre of gravity. I say, that, by the same forces, there may be described
round either body unmoved a figure similar and equal to the figures which the
bodies so moving describe round each other.

Consider two bodies P (planet) and S (Sun) of masses M, and M, revolving about their
common centre of gravity C. Then in accordance with equation (6) the equation governing
the motion of M; round M, is given by

d2 > Ml + Mz fl - fz

— (Fy —Fy) = — M, M, r
dt2(1 2) M, S My, My; i) i

M,

(11)
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On the other hand, the motion of p (of mass M,), under the (centripetal) attraction of S
(of mass M,) assumed to be immovable, is governed by

d’s = M, M,; |S 12

1F—_f( 1 2>||)|§|5 ( )

where S denotes the radius vector joining s and p. A comparison of equations (11) and

(12) shows that the orbit of P round S, under their mutual attraction, may be formally

considered as described under a law of centripetal attraction towards S which is the same

as when S is immovable, but with a force enhanced by the factor (M; + M,)/M, =
(S + P)/S.

It follows that the orbits, similar and congruent for the two cases, exist. Q.E.D.

—»

Newton’s proof, again couched in words, is essentially the same; and is based on the
observation (deduced by an examination of the diagram) that the acceleration of P towards
S, in the revolving orbit, is the same as the acceleration of p towards the immovable S
enhanced by the factor (S + P)/S.

Three corollaries follow which require a knowledge of the acceleration experienced by
P (or S) towards the centre of gravity C in the revolving orbit (which Newton takes for
granted, as apparently obvious!).

From equations (6), (7), and (9) it follows:

d251 MM, d° < M1 + M, > &
= — (Fy, —F) = —f| M;, M,; > 13
142 M1+M2dt2(1 2) S\ My, M, 2 1€, . (13)
Now writing
2 > M, + M,\'?
&= 7M2 and T = t<1 * 2) (14)
M, + M, M,
in equation (13), we obtain
d2X X
Mlay= —f(M,, M,; |X]) X (15)
which is identical in form with equation (12). We conclude:
~ - M, +M, . M
S(0) = X(v) = 1 §1<t 2 > (16)
M, M, + M,

Hence, the orbit described by M, under the centripetal attraction of M,, considered
immovable, is similar to the orbit described by M,, about the common centre of gravity
C under their mutual attraction.

Cor 1. Hence two bodies attracting each other with forces proportional to their
distance, describe (by Prop. X), both round their common centre of gravity, and
round each other, concentric ellipses; and, conversely, if such figures are
described, the forces are proportional to the distances.
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Cor 1. And two bodies, whose forces are inversely proportional to the square
of their distance, describe (by Prop. X1, xi1, xim), both round their common
centre of gravity, and round each other, conic sections having their focus in the
centre about which the figures are described. And, conversely, if such figures
are described, the centripetal forces are inversely proportional to the square of
the distance.

CPI = al(l + e),

CP, = a,(1 + e),
CPi=a,(1—e),

CP) = a,(1 —e);

P,P, = (a, + a,)(1 + e),
PP, = (a, + a,)(1 —e),

CP,:CP, = M,: M,,

PP, = 2(a, + a,).
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Cor. 1m. Any two bodies revolving round their common centre of gravity
describe areas proportional to the times, by radii drawn both to that centre and
to each other.

Proposition LIX. Theorem X X1

The periodic time of two bodies S and P revolving round their common centre of
gravity C, is to the periodic time of one of the bodies P revolving round the other
S remaining fixed, and describing a figure similar and equal to those which the
bodies describe about each other, as \/S is to \/(S + P).

By writing
M 1/2 N
t = <42> t and R=7¢ —# (17)
M, + M,
equation (6) becomes
d?R _ R
M, — = —f(M;, M,; |R]) =, 18
12 S (My, My | |)|R| (18)
which is identical in form with equation (12),
d2s —
—_— = M 5 M ; S = 19
L g S (My, My | |)|S| (19)

governing the motion of M, about an immovable mass M,. Therefore, by comparing
equations (6) and (18), we conclude:

[periodic time of M, revolving round M, under their mutual attraction]

[periodic time of M, about an immovable M, in a congruent orbit]

_ % = JIMy/(M, + M;)] = \/S: /(S + P). QED.

Proposition LX. Theorem X XI1II

If two bodies S and P, attracting each other with forces inversely proportional to
the square of their distance, revolve about their common centre of gravity: I say,
that the principal axis of the ellipse which either of the bodies, as P describes by
this motion about the other S, will be to the principal axis of the ellipse, which
the same body P may describe in the same periodic time about the other body S
fixed, as the sum of the two bodies S + P to the first of two mean proportionals*
between that sum and the other body S.

* x and y are said to be the mean proportionals between a and b if
a x
XY o x?=ay and y*=bx.
x y b
Alternatively,

x3b=y%a or x:y=al?:p!3
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For a law of attraction inversely proportional to the square of the distance
M1M2

12

S(My, My;1y5) = (20)
where, as hitherto, the factor G has been suppressed. For f of the foregoing form, equations
(11) and (12) become

-

d2R R
Et?= —(M1+M2)Wa (21)
and
ds S
@ = — My |-S—~|‘3 (22)

By Proposition XV, the periodic times for elliptical orbits, of semiaxes, agz and ag,
respectively, are given by

Tp =2 ail’ A T—m 5 23
=L —————— an = LT ———=
. (M, + M) T My )
Hence,

if Ty =T, < ax >“2 <as>“2 IM, + My):IM,  (24)

1 =T, | ———-+) = or ag:as= + ;

RO A\M, + M, M, ReTS P g
while
lf aR = as, TR: TS - \/Mz :\/(Ml + Mz). (25)

Proposition LX1. Theorem XXIV
If two bodies attracting each other with any kind of forces, and not otherwise
agitated or obstructed, are moved in any manner whatsoever, those motions will
be the same as if they did not at all attract each other, but were both attracted
with the same forces by a third body placed in their common centre of gravity;
and the law of the attracting forces will be the same in respect of the distance of

the bodies from the common centre, as in respect of the distance between the two
bodies.

The first part of the proposition is a direct consequence of equations

d? M, + M é
Ml 51 = _f<M17 MZ’ ! 2 |€ |> z (263)
dt 2 Ii l
and
d?¢, < M, + M, > &
—=—fM, My,; ———= 26b
2 dz? f 1 2 M, |52| |52| ( )

The second part of the proposition follows from the foregoing equations, equation (12)
(or (18)), and the further fact that the law of attraction, f(M,, M,; r,,), between M, and
M,, is unrestricted except for the requirement of symmetry in M; and M,. Q.E.D.
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We may parenthetically note that if the law of attraction is inversely proportional to
the square of the distance, equations (26) become

dz’ 2 %
S M2< M, ) S (27)
de? M, +M,) &P

In other words, the motion of M, around the centre of gravity C, is formally the same
as if at C there was an immovable mass,

M 2
M2<—2> . (28)
M, + M,
and M, was absent.
Moreover, by writing,
. M, . .
&, =——= ¢ in equation (26a 29
VA vl q (262) (29)
and
&, = My in equation (26b) (30)
2T M, M, d

both equations take the form,

d?i M, + M, 7
— === (M, M,; |7}]) —. 31
a2 M, M, f(My, M, |’7|)|ﬁ| (31)
It follows that M; and M, describe similar orbits and
1&1:1&,] = My M, (32)

All the foregoing remarks are implicit in Newton’s comments.

61. Initial-value problems
Proposition LXII. Problem XXXVIII

To determine the motions of two bodies which attract each other with forces
inversely proportional to the squares of the distance between them, and are let fall
from given places.

In Proposition XXXVI (Problem XXYV), the solution to the problem of rectilinear
descent of a body (initially at rest), under the attraction of an immovable centre with a force
inversely proportional to the square of their distance, was given. In this proposition, it is
shown how that solution can be adapted to the motion of two bodies, initially at rest,
attracting each other with the same inverse-square law of force. Newton presents this
adaptation of the solution with clarity and precision.

The bodies, by the last theorem, will be moved in the same manner as if they
were attracted by a third placed in the common centre of their gravity; and by
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the hypothesis that centre will be fixed at the beginning of their motion, and
therefore (by Cor. 1v of the Laws of Motion) will be always fixed. The motions
of the bodies are therefore to be determined (by Prob. xxv) in the same manner
as if they were impelled by forces tending to that centre; and then we shall have
the motions of the bodies attracting each other. Q.E.L

The reference to Corollary IV of the Laws of Motion is to remind the reader that ‘the
common centre of gravity of two or more bodies does not alter its state of motion or rest
by the actions of the bodies among themsleves’.

Proposition LXIII1. Problem XXXIX

To determine the motions of two bodies attracting each other with forces inversely
proportional to the squares of their distance, and going off from given places in
given directions with given velocities.

In Proposition XVII (p. 107), it was shown how the motion of a body, under the
attraction of an immovable centre with a force inversely proportional to the square of
their distance, that ensues an initially assigned position and velocity can be determined.
In this proposition, it is shown how the same manner of determination can be adapted
to the analogous initial-value problem for two mutually attracting bodies. Again, Newton’s
explanation is a model of compression and clarity.

The motions of the bodies at the beginning being given, there is given also the
uniform motion of the common centre of gravity, and the motion of the space
which moves along with this centre uniformly in a right line, and also the very
first, or beginning motions of the bodies in respect of this space. Then (by Cor. v
of the Laws, and the last theorem) the subsequent motions will be performed
in the same manner in that space, as if that space together with the common
centre of gravity were at rest, and as if the bodies did not attract each other,
but were attracted by a third body placed in that centre. The motion therefore
in this movable space of each body going off from a given place, in a given
direction, with a given velocity, and acted upon by a centripetal force tending
to that centre, is to be determined by Prob. 1x and xxvI, and at the same time
will be obtained the motion of the other round the same centre. With this motion
compound the uniform progressive motion of the entire system of the space and
the bodies revolving in it, and there will be obtained the absolute motion of the
bodies in immovable space. Q.E.L

It may be useful to quote ‘Cor. v of the Laws’:

The motions of bodies included in a given space are the same among themselves,
whether that space is at rest, or moves uniformly forwards in a right line without
any circular motion.



The two-body problem 215
Two observations may be relevant:

(1) the statements of Corollaries IV and V of the Laws are exactly right in the
context; and
(2) Newton’s extraordinary insistence on the importance of initial-value problems.

62. The solution of a many-body problem

It is characteristic of Newton’s style that before proceeding directly to the perturbation
of the Kepler motions of two bodies about one another by a third body, he should consider
the only case of the n-body problem that admits of an exact solution: the case of n bodies
attracting each other by a force proportional to their mutual distances.

Proposition LXIV. Problem XL

Supposing forces with which bodies attract each other to increase in a simple ratio
of their distances from the centres; it is required to find the motions of several
bodies among themselves.

Consider then, N mass points, M;, M,, ..., My, the mass M, being attracted by the
mass M; with a force

— k> M; M, — 7)) i #J), (1)

where k is some positive constant. (Newton prefers to write instead
—kiki(F; —7) G F#)), (1)

though he later reverts to the form (1) by identifying k; with kM;.)

The relevant equations of motion are:

d2, y
i dt? = _k2 Z MiMj(Fi —fj) (i = 1,. ,N) (2)
i

These equations admit the integral,

M = (My + M, +--- + My)Vt + 4, (3)

M=

i=1

where ¥ and A are constant vectors. In a frame of reference in which the centre of gravity
is at rest at the origin,

N -
Y Mi#i=0 (¥=0and 4=0). “4)
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The equations of motion in this frame are

dzrt. N N

dr? j#Ei J#i
N
= —k2< ; Mj>fi — k*M;7, (by equation (4)). (5)
J#i
Hence
d?#, il
i g2 M |7, 6
dt? < ,-;1 ’> ©)
It follows:
7, = A, e (A4; = constant vector), (7
where

o=k \/ |: i Mj] = k,/(mass of the system). (8)

The foregoing mechanical solution will not be confused as Newton’s! Newton proceeds
differently: the following is a paraphrase of his method of solution.

Consider first two bodies 7" and L of masses M; and M, attracting each other in
accordance with the same basic postulate (1). The equations governing their motions are:

22 24
d*#, d*7,

i 2 = - I ) > 2
Ei_ - _k Mz(rl - r2) and dtz —_ k Ml(rz 7’1). (9)
In the frame of reference in which the centre of gravity, D, of the two masses is at rest,
D = M,#, + M,#, = 0. (10)
In this frame, the equations are:
dzfl P dzfl 2 -
atT = _kZ(Ml + Mz)rl and F = _k (Ml + Mz)rz. (11)

The masses M; and M,, therefore, describe elliptical orbits with the same period about
D as centre.
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Now let a third body S of mass M; be introduced which attracts 7 and L and in turn
is attracted by them in accordance with the same postulate (1). By including the attraction
by S, the motions of 7" and L (still in the same frame), will be governed by

d?#

?r; = —kK2(M, + My)F, — K*M,(F, — 73) = —k*>(M, + M, + M3)F, + k*>M,#,

o (12)
2 = KM, o+ M), — KMy = ) = —k(M, + My + M)y + KMy,

Therefore M, and M,, besides executing elliptic orbits about D more ‘swiftly’ than in the
absence of Mj, are transported parallelly in the direction 7 with the same acceleration
k*M,#,. By Corollary VI of the Laws of Motion, 7 and L

urged in the direction of parallel lines by equal accelerative forces, they will all
continue to move among themselves, after the same manner as if they had not been
urged by those forces.

By considering next the motion of S, the equation governing it is:

Ry
a2 = —k*M,(F3 — Fy) — K*M,(F3 — 75)
= _kz(Ml + Mz)F:; + kZ(lel + szz), (13)
or, by equation (10),
d*
71% — KM, + M)y = —k3(M, + M, + M3)is + k>MsFs. (14)

Now by changing the frame of reference from the one in which the centre of gravity of
M, and M, is at rest to the one in which the centre of gravity of M, M,, and M; is at
rest, when
M, + M7, + M373 =0 (15)

that is, to a frame which is accelerated with respect to the frame (10) by —k*M, 75, the
equations governing the motions of M;, M,, and M, take the common form,

d#;

de?
The solution is now completed by induction to obtain the general result (6). As Newton
states:

= —k*(M, + M, + My)F; i=1273). (16)

it will easily be concluded that all the bodies will describe different ellipses, with
equal periodic times about their common centre of gravity B, in an immovable
plane. Q.E.L

The superiority of Newton’s solution over the one given earlier is that it exhibits the
physical basis for the unfolding of the solution. And one is left marvelling at Newton’s
ability to explain precisely in words involved analytical arguments.
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The method of the variation of the
elements of a Kepler orbit and
Newton’s lunar theory:

An introduction to Propositions
LXV-LXIX

63. Introduction

s we have stated in the introduction to Chapter 12, Tisserand was of the opinion that
Newton had derived for himself the equations expressing the variations with time of
the elements of the Kepler orbit under the action of an external force F—elements that
would otherwise have been constants; and that Proposition LXVI and its 22 corollaries
provide the principal basis for this inference (see Chapter 14). To make Propositions
LXV-LXIX more readily understandable, we shall give in this chapter, in the spirit of the
Principia, an elementary self-contained account of the method of the variation of the
elements and its application to the perturbations of the Moon.
The present chapter is in effect a continuation of Chapter 4 whose notations we shall
follow.

64. The basic equations, definitions, and the coordinate system adopted

Suppose that at some point P, where the position # and the velocity & = d#/dt are known,
the perturbing force suddenly ceases. The body will then move in an ellipse defined by
the initial values. This is the osculating ellipse at P: it is a Kepler orbit having at that
point the same position and velocity as the true orbit. The orbital elements of the osculating
ellipse will not remain constant but vary with time. The method we shall describe for
determining the resulting variation with time is the method of the variation of the elements.
But first, a few preliminaries setting up the framework of the problem.
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Equations (3) of §18 and (2) of §19 in Chapter 4, generalized to include the action of
the external force F are:

d#
4 6
and
do U -
—=——=F+F. 2
dt e @
We define the vectors i and & (no longer constants) by the equations:
h=7%x1® (3)
Fo, . L. |
,u<—+e>:v><h and év=——7-0. (@)
r r
From the foregoing definitions and equations (1) and (2) it follows:
di hx7
R 5
dtr r3 ©®)
and
dh P .
—=Fx|—u—~+F|=FxF. 6
i~ (e F)= ®

Similarly, from equations (4) and (5), we find:

hx# d&\ do . . dh
u + — =—><h+v><a

r3 dt) dt
=<_M%+F>xfz+5x(FxI7), Q]
r
or
de - - o
ua=Fxh+vx(er). (8)

The coordinate system adopted
We choose the right-handed system of coordinates defined by the unit vectors (see
adjoining figure)
i,, 1,, and 1, )
along the directions of
h, #, and & (10)
of magnitudes,
|hil=h, |fl=r and |@| = hr (11)



An introduction to Propositions LXV-LXI1X 221

Along these vectors, we have the relations

Fxdg=rh Gxh=h* and d-7F=0 (12)
and, we shall resolve F along the unit vectors (9) with the components,
F,, FE, and F,. (13)

Other vectors and angles defined in the figure are:

k : unit vectors along the axes of a rectangular system of coordinates defined with

iLj k :
respect to the ecliptic plane;
i : direction of the vernal equinox;
v : direction of the ascending node;
h : angular momentum vector;
é : Lenz vector;
Q= /(1)
w=/L{8é;w+ =y
¢ = L(F8);
g=(hx);

1= / (h, k) = inclination of the orbital plane to the ecliptic.

Let the velocity © resolved along the directions of # and & be

& = AF + Ba, (14)
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where 4 and B are to be determined. By this definition,
h=7#x = B(@ x &) = Br?h, (15)
and therefore,
B=r"2 (16)

From the disposition of the vectors in the figure, it further follows:

é-d = encos(90° + @) = —easin ¢ = —ehrsin ¢ [by equation (11)]
and

é-7 = ercos o; 17
and therefore,

7= —Ar  (by equation (4)); (18)

or, with B having the value (16),
Ar? = — Aer* cos ¢ + ehsin ¢. (19)

In view of our dealing with an osculating ellipse we can write (cf. Chapter 4, §19,
equation (11))

h2
r=———. (20)
u(l + ecos o)
We thus obtain:
4 =" sin . 1)
rh
The solution for 7 in the chosen coordinate system is therefore
) 1
5="rsing + —a 22)
rh r?

Finally, for future reference, we spell out in the accompanying table the relative
orientations of the two coordinate systems, (h/h, #/r, d/a) and (i, j, k) that we have
introduced.

i j k
h/h sin ¢ sin Q —sin 1 cos Q cos I
Flr cos Q cos v — sin Q sin v cos 1 sin Q cos v + cos Q sin v cos ¢ sin v sin
/o —cos Qsin v — sin Q cos v cos 1 —sin Q sin v 4+ cos Q cos v cos ¢ coS v sin 1

vV=0+9)
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65. The variation of the elements

The elements of the Kepler orbit whose variations we have to find are:

(a) h: the angular momentum vector;

(b) 1 the inclination of the orbital plane to the elliptic;

(c) Q: the angle of the ascending node in the equatorial plane;
(d) é: the Lenz vector;

(e) w: the inclination of é to the direction of 7;

(f) a: the semimajor axis; and n = 2n/period.

223

A related problem is the effect of F on the equation of time, that is, on Kepler’s

equation.

As we have stated we shall resolve F along the directions of A, 7, and & (cf. equation

(13) of §64):

>

. h P g
F=F-+E 4+p%
h r

o

(a) Variation of h
By equation (6), of §64,

d’ N 7 >
i F="p _%F,
dt h h
Therefore,
frd—h = rhF, or dn =rF,.
dt dt

(b) Variation of 1
Since (see the table on p. 222)
hk=hcosu,

[aN
oyl

dh

. de
— cos1— hsini—
dt

g9t
dt dt

d .
=rF,cos 1 — hsin zd—; (by equation (3)).

Also, by equation (2),
dh 7 i

dt h

h %\ - .
—k = <—rF —%Fh>-k =rF,cos1—rsinzcos(w + @) F,.

(1)

)

©)

4)

)

(6)
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Combining equations (5) and (6), we obtain
d:

" = %cos(co + @)E,.

(¢) Variation of Q
Multiplying equation (2) scalarly by j, we have
. dh

jr— = —rE,;sin1cos Q + r[sin(w + ¢) sin Q — cos(w + ¢) cos Q cos 1] F,

dt

dh . d : .
= —asmzcosQ—hcochoszd—ZJrthsm(qurqo)st.

On the other hand,
jeh= —hsinicos Q;
and since j is a constant vector,
. dh
i
dt dt dt

Combining equations (8) and (10), we obtain:

h sin lcil—? = rF, sin(w + @).

(d) Variation of é
By equation (8) of §64,
y$= Fx h—@F-8)F + (F- o).

— = —gﬁsinzcosQ—hcoszcong+hsinzsinQi—?.

(7

)

©)

(10)

(11)

(12)

Resolving F into its components and substituting for ¢ from equations (14) and (16)

of §64, we obtain, successively,
dé Fxh G xh
—=F,——+F,
s dt r hr

Arth -

S S

= - F+ hE - * ArF, + " hE,
r r h r

; .
- ——ArZF,,+2tha—<1E+ArFa>oz.
h r r h

h 3 3 h
- Ar2< F,+ F+2F)+ <ArF, + —Fa>f
h r hr r

(13)
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Multiplying this equation scalarly by é and remembering that é is orthogonal to /
and inclined to the direction of # by the angle ¢ (by definition) we find:

,ugg-é=2heFacosq> + (lF,—l- AzFa>ehrsin(p
dt r h

2
— heF,sin @ + r %e <2 " cos ¢ + e sin? qo)f; (equation (21) of §64)
i

= heF, sin ¢ + L (e + 2 cos @ + e cos” @)F,, (equation (20) of §64)

1+ ecos ¢
(14)
or, alternatively,
E%zFrSinw+Fae+2cosqo+ecosz(p
h dt 1 +ecose
=F,sin<p+Fa%(e+2cos¢+ecosz(p). (15)
(e) Variation of ® = [ (v, é
Since (cf. figure on p. 221)
(k- &) = e sin 1 sin o, (16)
we have
> de . de . d: . dw
k+— =sinisinw— + ecosisinw — + esini1cos ®w —
dt dt dt dt
L h . ru )
= (sin 7 sin w) — | F, sin ¢ +ﬁ(e+ 2 cos ¢ + ecos” @)F,
U
re . . dw
+ m [cos 1 sin w cos(w + @)]F, + esinicos w TR (17)

where we have substituted from equations (7) and (15). Alternatively, substituting
for dé/dt from the last line of equation (13), we have,
E-%zk-[—ﬁArth+ 2tha— <1F,+A£Fa>o’c]
dt u h r r h

Ar? 2h _ . .
- _ar (cos ) F, + — [sin(w + ¢)sin 1] F,
u u

A
1 (l F + ar Fa)hr sin z cos(w + @). (18)
p\r h
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Combining equations (17) and (18), and substituting for A from equation (21) of §64, we

obtain

d %

el o <ﬁ cos qo)F, — [E cot 1 sin(w + qo):|F,, + < e sin cp)Fa. (19)
dt U h hu

Before finding the variations of a and n it is useful to assemble some basic relations
that obtain along the osculating ellipse. They are:

l h? 1

P=— = (20)
l14+ecosp pl+ecoso
where
| = semilatus rectum = h%/u = a(1 — ¢?). (21)
And if u denotes the eccentric anomaly (cf. Chapter 7, §35, equation (8)),
r=a(l — ecosu), (22)
or equivalently;
2
ecosu=1—1=1— 1—e¢ :ee+cosgo; (23)
a 1+ ecosq 1+ecosep
and we deduce,
r 1/2
sinu = E(—) sin ¢ and ale — cos u) = —r cos Q. (24)
a
Also, by equations (22) of §64 and (24),
Fei = %" rsin @ = (ua)''? e sin . (25)

And finally, by Kepler’s third law of motion (Chapter 4, §19, equation (23)),
1/2
ne 2T <_“§> : (26)
period a

(f) Variation of a and n
From equation (21), it follows that

i& _a, 2ee, _a, 2uaee,

; 27

or, alternatively,

a a
th=t=h,+ u—ee’,
a h

=rF, + ae{F, sin ¢ + F, % [e(1 + cos? @) + 2 cos qo]}
(by equations (3) and (15)) (28)
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where the coeflicients of E, combine to give

A
1-

h*a

5 [e(1 + cos? @) + 2 cos q)]} —
T

Hence,
. h*
ih Ge_ (ae sin @)F, + na E;
a ru
while by equation (26),
n, 3a,

n 2a

(g) Variation of Kepler’s equation
First, the variation of the defining equation (22) gives
r,=(1—ecosu)a, + (aesinu)u, — (acos u)e,.

But, by equation (25)

_ /(ua)
r

e sin u.

Hence,

J(ua)
r

. r .
esinu =—a, + (aesinu)u, — (acosu)e,.
a
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(29)

(30)

(1)

(32)

(33)

(34)

Next, by Kepler’s equation (Chapter 7, §35, equation (19)), the time (¢t — T)), elapsed after

passing the vernal equinox at time T, is given by
nit—T)=u—esinu.
The variation of this equation gives
n(t—T)+n(1—T,)=(1—ecosu)u, — (sinu)e,,
or, by making use of equations (26) and (31),

N [3 e 1) 4 T,t] _m T U+ (sinu)e,.
a

a3? 732

Now, eliminating u, from equations (34) and (37) we obtain,

a 2a
or, after some further simplifications making use of equations (23) and (24),

3 2
<E> |:2at(t— T)+ T}esmu—; a,— (rcos @)e,.

a

213a . r .
<,u> |: “tEt—-T)+ T,,}e sinu=— a, + (aesin® u —r cos u)e,;
a

35)

(36)

(37)

(38)

(39)
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Making use, once again, of equation (24), we find

(e sin )T, = [rh — 3ue(t — T)sin ¢] G _ (ah cos p)e,. (40)
a
Summary
Collecting the various variational equations, we have:
dh
— =rFE, i) )
i ()
di r .
i = liﬁ cos(w + qo)} E,, (i1)
dQ
sin la = [% sin(w + qo):| F,, (iii)
h . .
de _ <— sin qo)F, + o (e + 2 cos ¢ + e cos? p)*F,, (iv)
dt U h
ed—w = — <ﬁ cos <p>F, — lir_e cot rsin(w + qo)}Fh
dt U h
2 t ~(41)
+ [(h + 7’#) sin cp}Fa, v)
hu
2 .
1%=<£SIHQD>FP+@ a=__2_@, (Vl)
a dt h ru 3n dt
. dT . 1d d .
(ue sin @) - [rh — 3pe(t — T) sin @] ad—j — (ah cos @) a?, (vii)
d 2 T
d__w =—(0+Q)=— <£ cos q))F, + [l <h + r,u> sin go]Fa
dt dt ue e hu
+ [f sin(w + @) tan i} F,. (viii)
h 2 J

66. Application of the method of the variation of the elements
to lunar motion

The part of the problem of lunar motion to which Newton gave his principal attention
was to find the solution of the three-body problem presented by the system of the Earth,

* An alternative simpler form of the coefficient of F, is (as can be directly verified),

h(cos @ + cos u)/u.

1 h h
—(h2+ru)=—<1+ﬁ>=—<1+f>.
hu u h?) u l

ki And similarly,
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the Moon, and the Sun. Newton’s attitude was that the Kepler motion of the Moon about
the Earth was disturbed mainly by the tidal action of the Sun. Newton’s principal task
was then to find the components of the disturbing force; and this problem he solved
completely.

(a) The disturbing function

We start then with the equations of motion of three bodies of masses m,, m,, and my
under their mutual gravitational attraction. The equations are:

d*, Gmm, ., . Gmmy .

my—— =———"(F —F)+ ——5—(F3 — Fy),
dt ris ris
d2’:2 sz ml - - sz m3 > >

My~ =3 (Fy —F3) (F3 — 72), > (1)
dt 31 33
d*;  Gmym, . Gmym, .

3y =5 (P —F) + 55— (F, — 73).

dt 31 3,

S (my,ry)

E
- -
(ml’rl) r=r2_ 1 (m27r2)

Letting (see the figure)

—
>

R=f3_‘r1, f=f2—7'1, |f[:r, r,, = i:i_é’l, al'ld p:|f3_f2 :7'23, (2)

we combine equations (1) to give

d%F 7 R—7#
dtj = —Gm; — + Gmy — (3)
and
d2# 7 R
?2‘: +Gm2;§+Gm3F. 4)



230 Newton’s Principia for the common reader

Subtracting equation (4) from equation (3), we obtain

d27 g R-# R

We now identify m;, m,, and m, with the masses of the Earth, the Moon, and the
Sun, respectively. Then 7 denotes the vector joining the Moon and the Earth. The
equation governing the motion of the Moon (in which, of course, we are primarily

interested), is
d? 7 A | 1

where we have written M, in place of m; (to conform with the conventional symbol for
the mass of the Sun) and

1 = G(mass of Earth + mass of Moon). @)

The disturbing function, F, is accordingly given by
o A | 1
F =GM [—+R<——*)]. (8)
© p3 p3 R3

(b) The components of F(=F,, F,, F,)
The adjoining figure, which is essentially the same as the one on p. 221, includes some

additional information relative to the direction, R, of the Sun (on the ecliptic plane) relative
to the Earth. In particular,

[v=[(wo+@)= LGP, Ly=LRF and LU=L(ER7V. 9
From the diagram, it follows that
R = R[icos(U + Q) +j sin(U + Q)] (10)
or, substituting for i and j from the table on p. 222, we have
R = R[icos(U + Q) + j sin(U + Q)]
= R[cos(U + Q){(sin 1 sin Q)1, + [cos Q cos v — sin Q sin v cos 1]1,
— [cos Qsin v + sin Q cos v cos 7]1,}
+ sin(U + Q){ —(sin z cos Q)1,, + [sin Q cos v + cos Q sin v cos 1]1,
— [sin Qsin v — cos Q cos v cos 1]1,}]
= R[—(sin U sin 1)i, + (cos U cos v + sin U sin v cos 1)1,

+ (—cos U sin v + sin U cos v cos )1, ]. (11)
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1

Inserting the foregoing expression for R in equation (8) we can read off the components,
(E,., E,, F,) of F. We find:

F,.=GM,| — % + R(+cos U cos v + sin U sin v cos z)(i3 — i>:|, (12)
L »p p® R
[ : : 11
F,=GM, + R(—cos U sinv + sin U cos v cos 1) S| (13)
L p
i (11 .
F,,,zGMO_ — Rsin U sin: /?_F . (14)
Since (see equation (9))
cos Yy =cos U cos v + sin U sin v cos 1 = cos /. (ﬁ, 7), (15)
we can rewrite the expression (12) for F, in the form,
r 1 1
E = GMO[—;-FR(;;——F)COS WJ. (16)

Now we proceed to make approximations appropriate to the problem on hand. First,
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we observe that since

r radlus of the Moon’s orbit
R radius of the Earth’s orbit

we can neglect quantities of O(r/R). From the equation

~2:6 x 1073, (17)

p?> =R*+r*—2rRcos y, (18)
we deduce,
p =R —rcosy + O(@?*R)
and (19)
Ll 5T s+ 067RY),
,03 R3 R4

Inserting these approximations in equation (16), we find

F,=GM®{ |:Rl +3R—cos¢+O<R2>J+3R—cos xp+0<;:)}

M, 2
_ GR |:r( 1+ 3cos? ) + 0<R4>} (20)
Hence,
M
F ~ % GR;D r(1 + 3 cos 29), (1)

where terms of O (r*/R*) have been omitted. A further approximation that is permissible
is to retain the inclination 1 only to the first order and set (cf. equations (15) and (19))

cosi=1 when cos Y ~ cos(v — U)
22
and J——i:3lcos(v—U). @2)
,03 R3 R4

Inserting these approximations in equations (12)—(14) we finally obtain, to the order of
accuracy needed,

E =+- 1 GM,, O ¢[1 4 3cos 2(v — U)], (23)
2 R
F, = 3 GM@ rsin 2(v — U), (24)
M . .
F,=-3 GR3® rsin zsin U cos(v — U), (25)

where by Kepler’s third law (cf. equation (26) of §65)
GM,/R®> = N?, (26)

where N(=2n/period of the Earth about the Sun) is the mean motion of the Sun (relative
to the Earth).
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(¢) Application of the variational equations
By equations (21) and (26) of §65 applied to the Earth—-Moon system we have
n=(uja*)'? and  h = [au(l — e*)]'? = na(1 — )2 (27)
We further define
m = N/n. (28)
With these definitions and with the expressions for the components of F given in equations

(23)—(25), we readily find, from equations (41) of §65 the following variational equations
as applied to the motion of the Moon.

1dh r

— = _[—3N?%*sin2(v—-U
T h[ 2 ( )]
r2
= 3Nt " sin2(w-—U), (i)
na*./1 — é*
or,
1dh 32 r? .
—— = —3m 2v—=U 1
oS Sl 0 i)
di r o .
— = -cosv |[—3N?*rsinsin U cos(v — U)]
dt h
r2
= —3N? —— cosvsinzsin U cos(v — U),
na*,/1 — e*
or,
di_ — r” cos vsin 7 sin U cos(v — U) (i1)
de "1 - ) '
@ = —3m*n——— sm v sin U cos(v — U). (iii)
dt 2\/( —
Zi = h [E, sin ¢ + (cos u + cos @) F,]
2\/(1 e?) {4 2 _ 372 _
IN?r[1 + 3 cos 2(v — U)] sin ¢ — 3N?rsin 2(v — U)(cos u + cos @)}
=3N?n w {[1 + 3 cos2(v— U)]sin ¢ — 3(cos u + cos @) sin 2(v — U)},
or,
d—f = im?n r\/(l {[1 + 3 cos 2(v — U)] sin ¢ — 3(cos u + cos ¢) sin 2(v — U)}. (iv)

¢4 h{—cosqo.F,—i—(l +r>sin (pFa} v)
dt u l
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or,

2 )
Eig: na—M{—cos o.F + <1 +r>sin @.Fa}.
dt ue [

The quantity in braces is
Sl = —IN?[1 + 3cos2(v — U)] cos @ + [ 1+~ ) sin o[ —3N?r sin 2(v — U)]
@ ] @
Therefore,

2 )
do iN?n L\M rl:cos o[1 + 3cos2(v—U)] + 3 sin ¢ sin 2(v — U)<1 + Z>:|

dr ue l

or

d 2

di: = —im’n M r {cos e[1+3cos2(v—U)]+ 3 sin ¢ sin 2(v — U)<1 + ?)} (vi)
e a

Ignoring the first term in F, (with the factor e) in the equation for da/dt in (41) of §65,
and ignoring the factor (1 — e*)'/? in equation (27), we have
da 2a’h 2a

a = T sz;
dt ru m
or, substituting for F, from equation (24), we obtain,
da_ N2 9%in 20 — U), (vii)
dt n
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The three-body problem:
the foundations of Newton’s
lunar theory

67. Introduction

n Propositions LXV-LXIX, Newton took the first steps in the study of the motions of
Ithree bodies under their mutual attractions. His main considerations are devoted to
the changes in elements of a Kepler orbit effected by an external perturbation, in
particular that of a distant third body. The considerations are clearly intended as a
prelude to his lunar theory to be elaborated further, in Book III (Propositions XXV-
XXXIII; Chapter 22).

Newton’s arguments in the 22 Corollaries of Proposition LXVI are of ‘grande finesse’
(to quote Tisserand) and often difficult to follow because of the concise prose in which
they are couched. However, with the introduction provided in Chapter 13, it is not
difficult to give an account which reveals the subtlety and the depth of Newton’s
considerations.

68.
Proposition LXV. Theorem XXV

Bodies, whose forces decrease as the square of their distances from their centres,
may move among themselves in ellipses; and by radii drawn to the foci may describe
areas very nearly proportional to the times.

Newton considers two illustrations of this proposition as sufficiently illustrative.

e
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Case 1. Consider a ‘great body’ M, about which several ‘lesser bodies’ m,, m,, ms,
etc., are revolving. The centre of gravity of all these masses should either be at rest
or move uniformly forward in a right line. If the masses, m,, m,, ms, etc., are sufficiently
tiny (compared to M) then the centre of gravity will not be sensibly different from the
location of M, which may, then, be considered to be at rest or moving uniformly forward
in a right line; and about which the lesser bodies will revolve. If further, the mutual
attractions between m,, m,, ms, etc., are sufficiently feeble compared to the attractive force
of M, then the lesser bodies will each revolve about M in ellipses describing equal areas
in time.

In considering this example, Newton has the solar system clearly in mind.

Case II. Consider the same system as in case I, except that now the attractive force

G.
N
M

between m; and m, (say, to restrict ourselves to two ‘lesser bodies’) is sufficiently
strong that they describe elliptic orbits about their common centre of gravity G. If the
great mass M is now sufficiently far that the distance between m; and m, is small compared
to the distance MG, then M will attract m, and m, along (nearly) parallel lines and subject
them to equal parallel accelerations. Since equal and parallel accelerations will not
affect their relative motions (by Corollary VI of the Laws of Motion, applied earlier in
Proposition LXIV) it follows that M will act on m; and m, as if the two together
‘were one body’. Accordingly the centre of gravity of m, and m, will describe about M a
parabola or a hyperbola when ‘the attraction is but languid and an ellipse when it is more
vigorous’ (!).

It is clear that the foregoing arguments are readily generalized to a system of several
lesser bodies, m,, m,, my, etc., provided no three of them are close together.

It should be pointed out that Newton is very careful in emphasizing the limitations of
the assumptions that are at the base of the foregoing deductions. In Corollaries I and II
he is even more explicit. He concludes with the remarkable corollary:

Cor. 1. Hence if the parts of this system move in ellipses or circles without any
remarkable perturbation, it is manifest that, if they are at all impelled by
accelerative forces tending to any other bodies, the impulse is very weak, or else
is impressed very near equally and in parallel directions upon all of them.
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69.
Proposition LXVI. Theorem XX VI

If three bodies, whose forces decrease as the square of the distances, attract each
other; and the accelerative attractions of any two towards the third be between
themselves inversely as the squares of the distances; and the two least revolve
about the greatest: I say, that the interior of the two revolving bodies will, by radii
drawn to the innermost and greatest, describe round that body areas more
proportional to the times, and a figure more approaching to that of an ellipse
having its focus in the point of intersection of the radii, if that great body be
agitated by those attractions, than it would do if that great body were not attracted
at all by the lesser, but remained at rest; or than it would do if that great body
were very much more or very much less attracted, or very much more or very much
less agitated, by the attractions.

It is characteristic (?) of Newton that he should have begun his magisterial enunciation
of the 22 corollaries of this proposition (which Laplace has described as one of the most
remarkable chapters in the Principia) in this low key:

This appears plainly enough from the demonstration of the second Corollary
of the foregoing Proposition; but it may be imade out after this manner by a
way of reasoning more distinct and more universally convincing.

Case 1. Newton begins with a clear formulation of the context in which the problem of
the motion of three bodies (7, P, and S), under their mutual gravitational attractions, is
considered in this proposition: it is the perturbation of the elliptic orbit, described by a
‘lesser body’ P about the ‘greatest body’ 7 by another ‘lesser body’ S. To avoid
misunderstanding, it may be well to clarify (as Newton in fact does in Corollary VI) that
Sis a ‘lesser body’, only in the sense that its influence on the motion of P may be considered
as a small perturbation of the (unperturbed) orbit that P describes about T. It is thus not
contrary to Newton’s assumptions to identify S with the Sun, 7 with the Earth (Terram),
and P with the Moon (Lunam). Indeed, Laplace, Lagrange, and Tisserand describe the
contents of this proposition as addressed to lunar theory.

Also, contrary to the impression created by Newton’s choice of the same illustration
(six times in this proposition and once in Proposition XXV, Book I1I), his considerations
are not limited to the perturbation of circular orbits (described by P). This is explicitly
not the case in the earlier corollaries of this proposition. (For this reason, we have chosen
a slightly modified illustration that is more applicable.)

Newton first considers the case when the orbits described by P, S, and T are coplanar.

In the illustration below, P, when undisturbed, will describe an elliptic orbit about T
as its focus (in accordance with Proposition LVII, Corollaries II and III). This orbit will
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E B

be disturbed by the gravitational attraction of S—it is permissible to; add the qualification
‘at a far distance’. Let the length TS be a measure of the force |7S| exerted by S on T
per unit mass. Then

2
LS =TS % (1)

will be a measure of force |ES')| (per unit mass) exerted by S on P. Now resolve ﬁ along
—

LM vparallel to PT, and MS. Then

—_— e —_—

LS =LM + MS. 2)

—_ . H . .

Of these two forces, LM being parallel to PT can be ‘super added’ to the gravitational
force (oc PT~?) of T already acting in this direction; and the contiﬂ)ling central character
of the force acting on P will preserve the law of areas. But since | LM | is not proportional
to the inverse square of the distance PT, its action _W)lll make the orbit of P depart from
an ellipse. But the force MS no longer parallel to PT, will affect the law of areas besides
making the orbit of P depart even further from an ellipse. However, since equal
accelerations imparted to 7 and P will not affect their relative motion, it follows from

— — — — e
TS — LS =TL =TM — LM (3)
that only the part TM of TS will affect the relative motion of P and T. Therefore, of the

R —— — —_—
two forces LM and TM that affect the orbit of P about T, LM does not affect the law
of areas, while both of them contribute to the departure of the orbit from an ellipse.

Case II. Newton considers next how the non-coplanarity of the orbits of P and 7 will
affect the conclusions arrived at under case I. Newton simply states, as intuitively obvious,
what directly follows from the expression for the force F,, in the direction of the angular
momentum and normal to the orbital plane, given in Chapter 13, Section 66 equation (14):

F, oc sin 1 sin U cos ¥, (4)

where 1 denotes t_}ﬁ angle of inclination, U the angle between the line of the nodes and
the direction of 7S, and y is the angle between the direction TS and TP. (See the
accompanying figure.) Equation (4) is correct only to the first order in the inclination.
Under these same circumstances,

_—> b . .
T™M -1, = F,oc —sin 1 sin U cos y; (4a)
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P—
(or, as Newton expresses, F, is ‘as the generating force 7M > and that it is non-vanishing
only when ST is ‘without the nodes’, that is, when U # 0). Since,

—

TM -1, = TM —-1, = —TM (sin 1 sin U); (4b)

x|y

it follows that
TM oc cos . (4¢)

70. Proposition LXVI (continued): Corollaries I-VI

Following Laplace (Mecanique Céleste, Vol. V, Book 6) and Tisserand (7raite de
Mecanique Celeste, Tome 111, Chapitre 3, p. 33) we shall first paraphrase Newton’s results
in more formal language.

In these corollaries, Newton’s considerations are mostly restricted to the case when the
unperturbed orbit is circular and coplanar with the orbit of 7, and further that S is far
away and PK/ST « 1 (see the illustration below). (Some of the results are, however,
valid under less restrictive conditions.)

(a) The perturbing function

The above figure is the same as that on p. 238 except that the orbit described by P is
circular and an additional line 7K is drawn perpendicular to SL. Also under the present
assumption, ST > PK,

ST ~ SK. (1)

As in §69 the disturbing attractive force on P, in the unit S7 measuring the gravitational
attraction of 7T by S, is

— — —_
LS — TS =1LT. (2)
Resolve L7 into its orthogonal components,

—

—_— =
LT = LE + ET, (3)
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respectively, perpendicular and parallel to TP. By equation (1),
ST ~ SP + PK and SL =SP + PL; (4)
and by construction (by §69, equation (1))
LS = ST*/SP?. Q)
Therefore,
3SP?.PK + 3SP.PK? 4+ PK?® = (SP + PK)® — SP3 ~ ST® — SP?
= LS.SP*> — SP* = SP*(LS — SP)

= SP?.PL; (6)
or, dividing by SP?,
3PK<1 + PR + ! P—K2> ~ PL. (7
SP 3 SP?
Since PK « SP, we may write,
3PK = PL + O(PT/ST). (8)

The triangle EPL being right-angled,

d LE = PL sin / EPL ~ 3PK sin /. TPK ©)
an
TE + TP = PL cos /. TPK ~3PK cos /. TPK;

or, alternatively,

TK PK TK .
LE =3PK —— =3TP —— L ~ 37TP sin(v' — v) cos(v' — v)
TP TP TP
and (10)

K 2
7E = 3Pk P8 _rp | 5(EKY 4 ~ TP[3 cos*(v — v) — 1].
P TP

Since the forces are measured in the unit ST (standing for gravitational attraction of T
by S), the forces, F, and F,, in absolute units, perpendicular and parallel to the radius
vector TP, are obtained by multiplying LE and TE by

GMg 1,

st st N an
where N = 2n/period of the Earth about the Sun. Hence
F,=3N?TP sin 2(v' —v) = — 3N?TP sin 2y, (12)
and
F, = N?TP[3 cos*(v' — v) — 1] = $N2TP(1 + 3 cos 2, (13)
where

LYy =/L(=V)=LOb-U)=0—-—m)Lv, (14)
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in the notation of Chapter 13 (equations (9) and (22) of §66). We observe that these
expressions for F, and F, are in agreement with those derived in Chapter 13, equations (23)
and (24) of §66—but by how different routes!

It may be noted parenthetically that at conjunction and opposition (or syzygies) and
at quadratures, we have respectively (see the accompanying figure)

=0 and = and Y =mn/2 or 3m/2. (15)
C
P
y=v'-v
S € A T B
D

(b) The centripetal attraction

Turning to the centripetal attraction, we have for the unperturbed circular orbit,

M _
h = n?PT = k = Constant, (16)
PT?

where n (analogous to N) denotes the mean lunar motion. The centripetal attraction along
the perturbed orbit can therefore be written as

k—F =k[1—4im?(1 + 3 cos 2¥)],
since (17)

F, = im2n?r(1 + 3 cos 2y) = imk P;T (1 + 3 cos 2) ~ Ykm?(1 + 3 cos 2y),
where (as in Chapter 13)

m =

(18)

==z

U
=

(Note that F, is subtracted since, by definition, it acts in the direction of increasing r.)
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Measuring r in units of the unperturbed radius of the circular orbit of P, let its values
at syzygies and at quadratures (distinguished by subscripts 1 and 0), respectively, be

rn=1—x and =1+ x. (19)
The centripetal forces, F; and F,, at syzygies and at quadratures are, by equation (17),

k
FIZ—(I_sz) and F0= k
1+ x)?

TRr (1 + m?). (20)

(¢) The perturbed orbit

Newton assumes that the orbit is a prolate ellipse centred at 7; and that its minor
and major axes, in the directions of the syzygies (¥ = 0 and ¥ = ) and quadratures
(n/2 and 37/2), are given by (19). Commenting on this assumption, Laplace writes ‘it is
correct but it requires proof’; but goes on to say ‘this hypothesis in calculation, based
on insight which is very likely, is permissible to inventors in researches as difficult
as these’.

If the orbit is indeed a prolate ellipse, then one readily verifies that in our present
approximation,

r=1-—xcos 2y =1 — x cos[2(1 — m)v]. (21)

We shall presently need the radius of the curvature of the orbit (21). The formula given
in Chapter 5 (§24, equation (xiv)), rewritten in terms of r (rather than in terms of its
reciprocal u) is

L e

- ~ . 22
P 2 dr/dy) — r APr/dy? r — dPr/dy? (22)
For r given by equation (21)
1 —2x cos[2(1 — m)v
p ~ E ( V] . (23)
1 —[1+ 41 — m)®]x cos[2(1 — m)v]
In particular, '
po 14 2x 1 —x[1+4(1 —m)*] 04
pr 1 —2x14x[1+401 —m)?*]’
or
PO~ 1 — 2x[4(1 — m)> — 1] (25)

P1
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(d) The variation of the ‘constant of areas’

To determine the variation of the constant of areas, Newton effectively uses the formula
derived in Chapter 13, § 65, equation (i);

% =rF, = — 3N?r? sin[2(1 — m)v], (26)
or, by equation (18),
dh = — 3m2(nr?) sin[2(1 — mv](n do). 27)

For an underlying circular orbit,

n dt = dv; (28)
and we have
dh = —3m?*(nr?) sin[2(1 — m)v] dv. (29)

On integrating this equation, we obtain

2

h~ constant + > " (n(r®>..) cos[2(1 — mv]. (30)
41 —m
Since (cf. equation (16))
h=r (Ell—: and (b, = n(r*),,, (31)

when averaged over a synodic month, we can clearly write

2

dv 3 m
h=r*—=<{h),s1+"
T <>{ 1

41 —m

cos[2(1 — m)v]}. (32)

(e) The determination of x
We start with the formula,

dr\? dv\? dv\?
2= (& o) () 33
<dt> +r<dt> r<dt> 33)

for the square of the velocity, V, along the orbit. By equation (32)

R { 3w B }
Ve = 2 1+ i1 —m cos[2(1 — m)v]
~ <hifv [1 NS Y 0(m4)], (34)
r 21—m



244 Newton’s Principia for the common reader

it being assumed that m is much less than 1; actually, in the context m ~ 0-075; see equation
(42) below. In particular at conjunction (¥ = 0) and at quadrature ( = 7/2)

2 2 2 2
V2~ ha (1 L3om > and V2~ O (1 3 m ) (35)
(1 —x)? 21—m (1 + x)?
On the other hand the centripetal force F in the direction of the inward normal is given by
F=7V?p, (36)

where p denotes the radius of curvature. At syzygies and at quadratures, the inward
normals are along the principal axes; and therefore, by equation (36)

2 2 2
5=V1p02<1+x><1+ 3m >@’ (37)
Fo  Vip 1 —x 1—m/ py
where, by equation (20),
2
R <1 + x) (1 = 3m), (38)
Combining equations (37) and (38) we obtain,
Po .4 —3m2<1 +—1—>. (39)
P1 1 —m
Now making use of the expression (25) for p,/p, we have,
- 3m2<1 ; 1.1_> — 1 2x[4(L — m) — 13; (40)
—m
or, solving for x, we have
1
3 bt 1 19
2 —m 2 3
xX=-m"————=m1+-—m)+ O(m°). 41
2 41 -m? -1 < 6 > ) 4D
a result known to be correct to O(m?). For the Earth-Moon system
1—x 69
m = 0-074803, x = 0007202, and = 098571 ~ —; (42)
+ X 70

and this is Newton’s result (explicitly given in Proposition XXVIII, Book III; see
Chapter 22).

Now to Newton’s own manner of enunciating the results derived more expansively in
§§ (a)—(e) above:

Cor. I. Hence it may be easily inferred, that if several less bodies P, S, R, etc.,
revolve about a very great body 7, the motion of the innermost revolving body
P will be least disturbed by the attractions of the others.
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This corollary follows from the fact that the disturbing forces, F, and F,, acting on each
of the bodies, is directly proportional to the radius of its orbit about 7. (It may be noted,
parenthetically, that a derivation of the expressions (12) and (13) for F, and F,, explicitly
along the same lines, will be found in Proposition XXVI, Book II1.)

Cor. 11. In a system of three bodies 7, P, S, if the accelerative attractions of any
two of them towards a third be to each other inversely as the squares of the
distances, the body P, by the radius PT, will describe its area about the body
T swifter near the conjunction A and the opposition B than it will near the
quadratures C and D.

This follows from equation (32) according to which ‘the constant of areas’ h, at syzygies
and at quadratures, are, respectively,

3 m? 3 m?
hy=<> (147 d  hy=<(,\1 -2 . 43
1 <>av< +41_m> an 0 <>av< 41_m> ( )

Cor. ul. And from the same reasoning it appears that the body P, other things
remaining the same, moves more swiftly in the conjunction and opposition than
in the quadratures.

This is a statement of the result that follows from equation (35), namely that
Vi>To. (44)

Cor. 1v. The orbit of the body P, other things remaining the same, is more
curved at the quadratures than at the conjunction and opposition.

Again, this is a statement of the result,

pot > pit (45)
that follows from equation (39). Its origin in equation (36) is recalled by Newton:

Cor. v. Hence the body P, other things remaining the same, goes farther from
the body T at the quadratures than at the conjunction and opposition.

This was initially an assumption (cf. equation (19)) but justified later by deriving equation
(41) from the premise. Laplace’s statement quoted in § (c) above is precisely in this context.

Cor. vi. The periodical time would be increased and diminished in a ratio
compounded of the 3th power of the ratio of the radius, and of the square root
of that ratio in which the centripetal force of the central body 7" was diminished
or increased, by the increase or decrease of the action of the distant body S.

This corollary is remarkable for the insight that Newton brings to bear on its solution.
In order better to appreciate his reasoning, we shall first consider (as hitherto) the problem
directly from the relevant variational equations.
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By Chapter 13, § 66(c), equation (vii),

da _2a p 3Nz %gin 2y = —3mPnay sin[2(1 — m)v], (46)
dt n

where a is replaced by a ‘mean value’ a,; or, after integration.

a—ay=+ § m
21—m
This expression for a — a,, which one obtains from the first-order variational equation,
is qualitatively incorrect: it predicts an oblate ellipse for the perturbed orbit contrary to
what Newton has already shown to be a prolate ellipse (see equation (42)).
Newton obtains for the period a formula correct to O(m?) by an ingenious argument.
First, he notes what is implied in Corollary II (equation (43)) and more explicitly in
Corollary VII, §71, equations (15) and (17), below, namely,

ag €os 2. 47

(CF), 12 . .,
(CEh_@u 3Im2r3), (48)

where the subscripts s and q refer to syzygies and to quadratures. (It will be noted that
we have not distinguished between r, and r, when r occurs with the small factor m?). Next,
referring to Corollary VI, Proposition IV (p. 74), he notices that

@F%_E(&Y “9)
(CF), 1, \R/)’

q S

where P, and P, denote the periods at the quadratures and at the syzygies. Combining
equations (48) and (49), he obtains

3/2
'5=<5> (= 3m?), (50)
B 5
More generally, we may write, in accordance with equation (32),
Pocr3?[1 + Im*r3(1 + 3 cos 2¢¥)]. Q.E.D. (51)
An equivalent formula for n is
L 1/2
n= <—3> [1 — 2m?r3(1 + 3 cos 2¢)]. (52)
a
An equation for the variation of a follows from inverting equation (52). Thus,
1/3
a=<%> [1— im2r3(1 + 3 cos 29)], (53)
n
or, replacing r by 1,
a= aellipse(l - %mz - %mZ Cos 2l/j)= (54)

where a.y;,.. stands for the semimajor axis of the unperturbed orbit. Alternatively, we
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can write

4 = Qentipse _ _(%mZ + %mz cos 2y), (53)
a

ellipse

which differs from Newton’s earlier result (41) by including the uniform contraction term
—im? and the replacement of

m*(1 +¥m) by  3m* (56)

It may be noted here that for m = 0-07480 the second-order formula replaces 1-5m* by
1-237m?.

In concluding an account of Corollaries I-VI, we may note that their ordering is not

the same as that in which they are derived in §§(a)—(e) above. But it is abundantly clear
that they all follow directly the variational equation

dh
= = rE,; 57
dt M (57)

and Newton must have known it.

71. Proposition LXVI (continued): Corollaries VII and VIII—the
rotation of the line of apsides

In Corollaries VII and VIII, Newton returns to the problem of the rotation of the line of
apsides he had considered earlier in Proposition XLV; and makes use in fact of the result
obtained in Corollary II of the proposition.

Cor. vi. It also follows, from what was before laid down, that the axis of the
ellipse described by the body P, or the line of the apsides, does as to its angular
motion go forwards and backwards by turns, but more forwards than back-
wards, and by the excess of its direct motion is on the whole carried forwards.

But first we shall consider the problem by way of the variational equation for
m=w+Q=/0)+ L3, 1), (1
When the inclination 1 is zero (as presently assumed)
@ = L(& 1) )

Since i is a fixed vector, dw/dt describes the rotation of the Lenz vector with respect to a
fixed direction and therefore of the rotation of the line of apsides. By the last of the three
equations listed in equation (41) of §65 in Chapter 13 for 1 = 0,

e d_w = ﬁ [—Fr cos ¢ + Fa<1 + r)sin q)]. (3)
dt  u l
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Making use of the zero-order relation,

h na®J(1—¢*) J(1—é?)
u u na
and substituting for F, and F, from equations (22)—(24) of §66 in Chapter 13, we obtain

e %? S R Ja = ez){(l + 3 cos 2) cos ¢ + 3<1 + I;)sin 2y sin (P}- )
a

We may note here for future reference that at quadratures ( = n/2 and 37/2) and
syzygies ( = 0 and =), respectively,

d r
e<£> = +m’n - (1 — e*)? cos o,
dt /o a ©)
d
e<—w> —omn ” (1 — e*)? cos ¢.
dt /, a
Returning to equation (5), we observe that on the average the contributions from the

terms with the factors cos 2y and sin 2y will vanish. Therefore, to determine a secular
term (if there is one) it will suffice to consider

eldmy = —im? /(1 — e2)<<f cos (p)n dt>. 7
a
Using the equations defined in the context of Kepler’s equation, we have (cf. Chapter 13,
§65, equations (24) and (35))
(e dmw) = —Im>: /(1 — e*){(cos u — e)(1 — e cos u)) du, (8)

where u denotes the eccentric anomaly. Since

)

(cos u —e)(1 — e cos u) = (1 + e*) cos u — e(1 + cos? u)

= —3e+ (1 + e*)cos u — e cos 2u, 9)
we conclude from equation (8) that
(dw) = im* /(1 — €*) du (sec™ 1), (10)
or
(m)y = 3m*J(1 — e*)u (sec™ ). (11)

In other words, the line of apsides will rotate forward (in the direction of rotation) with
a mean amplitude

am*J(1 — ). (12)

We shall find that this is in agreement with what Newton had found earlier in Proposition
XLV.

Newton derives the result differently. He first observes that the force transverse to the

radial direction (i.e., F,) will have no effect on the average, while the total centripetal force



The three-body problem: the foundations of Newton’s lunar theory 249

(per unit mass of the Moon) which will have a direct effect, is given by (cf. Chapter 13,
§66, equations (6), (16), (22), and (23))

GM; GM,
CF.= = =14 = r(l + 3 cos 20) (13)
Or, by making use of the standard definitions,
2 (PT)3 1a72
CF.=—n 5— + 2N r(1 + 3 cos 2y), (14)
r

or, measuring r in units of the average (circular) radius of the Moon (PT), we have
1
CF. = —k[—z — ImPr(1 + 3 cos 2¢)} (15)
r

where (cf. §70, equation (16))

k = n*PT. (16)
From equation (15) it follows that at quadratures and at syzygies,
1 1

(CF)y = —k<—2 + m2r> and (CF), = —k<—2 — 2m2r>. (17)
r r

Therefore, as Newton states, the centripetal force ‘decreases less than’ and ‘more than the
square of the ratio of the distance P7” at quadratures and at syzygies, respectively.
In Proposition XLV, the rotation of the line apsides under a centripetal force, (writing

r in place of A)
—k<l2 — cr), (18)
r

was considered; and it was shown that the angle of revolution between the apsides is
given by

1800\/1 ¢~ 180°(1 + 30). (19)
1—4¢

Therefore, for the laws of force, prevailing at quadratures and at syzygies, the angle of
revolution is given

180°(1 — 3m?)  and 180°(1 + 3m?),  respectively, (20)
that is at the quadratures ‘the upper apse will go backwards’, while at syzygies ‘the line

of apsides will go forwards’. And therefore since the advance ‘in the syzygies is almost
twice as great—as the regression in the quadratures—the line of apsides will go forward’.

Q.E.D.()

Newton also notices that ‘in places between the syzygies and the quadratures’ the effect
is one of ‘going forward’. For example at the octants ( = n/4), the centrifugal force is

_k<12 - %m), Q1)

r
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which will, by equation (19), predict an angle of revolution by the apsides,
180°(1 + 3m?), (22)
which is the average of the predictions (20).
Newton had clearly before him the results (20) and (22); but he does not repeat his

earlier statement in Proposition XLV that in comparison with observation it is ‘half as
swift’.

Corollary VIII

This corollary states that ‘it is plain that, when the apsides are in syzygies’, the line of
apsides will ‘go forwards swiftly, and in the quadratures... go backwards more slowly’.
These are direct consequences of equations (6) at the upper apse where cos ¢ = —1.

72. Proposition LXVI (continued): Corollaries IX—XVII

In Corollaries IX-XI, Newton considers in turn the variation in the eccentricity,
inclination, and the direction of the ascending node. In the following Corollaries,
XIIT-XVII, he considers various related matters: some elaborations and some general-
izations.

(a) Corollary IX: the variation of eccentricity
First we shall consider the problem directly from the variational equations derived in
Chapter 13, §65, equations (41)(iv), namely,

de h
ge_1n [E, sin ¢ + (cos ¢ + cos u)FE,]. @))
dt u
Substituting for F, and F, from Chapter 13, §66, equations (23) and (24) and making use

of the relations,

h 1—e¢?
h=na* /(1 — €%); —=M, )
U na
we obtain (cf. Chapter 13, §66(c), equation (iv));
d
d_‘; = Im?nJ(1 — ¢?) " {(1 + 3 cos 29) sin ¢ — 3(cos u + cos @)sin 2y}, (3)
a
To zero order in e, the foregoing equation becomes,
d
€€ — Lmn[(1 + 3 cos 2) sin @ — 6 sin 24 cos @]; 4)

dt
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or, after some elementary trigonometry,
d . . .
é:@#@um¢—3mm¢+@—9mmw—@1 (5)

To bring out the dependence on v explicitly we make use of the definitions (cf. the
illustration on p. 231)

p=v—-—o; Y=0-—my,
whence (6)
2y + ¢ =3 —2my — w; 2y —p =1 —2my + .
With these substitutions, equation (5) becomes
de = jm*{2 sin(v — w) — 3 sin[(3 — 2m)y — w] — 9 sin[(1 — 2m)v + w]}n dt.  (7)
Since in our present approximation n dt = dv, equation (7) can be integrated directly to
give

3
e — ey = jmz{—z cos(v — w) + ———— cos[(3 — 2m)v — w]
3—2m

+ cos[(1 — 2m)v + co]}. ®)
1 —2m
Ignoring the m’s in the denominators and reverting to the variables ¢ and ¥, we have:
e —eq = 1m*{—2 cos @ + cosQQy + @) + 9 cos(2y — @)} 9)
To bring out the dependence on y explicitly, we substitute for ¢ (see the illustration on
p. 231):
o=y -7, (10)
where y = / (R, &), may be considered to be a constant during a synodic month; and
we find

e — ey = sm*[—2 cos(¥ — ) + cos(3y — y) + 9 cos(y + 7)1, (11)
or, after some elementary trigonometry,
(e — eq) = m*[(1 + cos® ) cos Y cos y — (2 + sin? ) sin y sin y]. (12)
In particular,
at quadratures ( = n/2): e —ey, = —3m? sin y,
and (13)
at syzygies (y = 0): e — ey = +2m?* cos y.

Now to Newton’s presentation. Though he must have derived for himself the relations
(13) (see below) he chose to argue qualitatively (and secretively). His principal argument
relates to the variation of the centripetal force according to the formula (§71, equation (15))

. 1
centripetal force: —k[—z —im?r(1 + 3 cos 2&&)]; (14)
r
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and the ‘accession of the new forces’

—km?r at the quadratures
and (15)
+ 2km?r at the syzygies,

to the prevailing — k/r*. He repeats essentially the arguments of Corollary VII which led
to the ‘direct motion of the line of the apsides, as was just now said’. He considers also
the dependence of the increments (15) on the radial distances at the upper and the lower
apse in case the orbit is an ellipse of finite eccentricity. Since he concentrates primarily
on the forces acting at the syzygies and at the quadratures, he does not have to mention
the effect of the transverse force F, because it vanishes at these points. With these brief
qualitative remarks he concludes (correctly!)

COR. IX. ...... Therefore the ratio of the whole increase and decrease [of the
centripetal force] in the passage between the apsides is least at the quadratures
and greatest at the syzygies; and therefore in the passage of the apsides from
the quadratures to the syzygies it [the eccentricity] is continually augmented,
and increases the eccentricity of the ellipse; and in the passage from the syzygies
to the quadratures it is continually decreasing, and diminishes the eccentricity.

The first part of this statement reiterates the facts (15), while the second part is in accord
with equations (13). It will be noted that in the derivation of equations (13) both the forces
F, and F, play an equal part; and it is hard to believe that Newton did not derive the
equations for himself in essentially the manner we have.

(b) Corollary X: the variation of the inclination

The inclination, therefore, is the greatest of all when the nodes are in the syzygies.
In their passage from the syzygies to the quadratures the inclination is
diminished at each appulse of the body to the nodes; and becomes least of all
when the nodes are in the quadratures, and the body in the syzygies; then it
increases by the same degrees by which it decreased before; and, when the nodes
come to the next syzygies, returns to its former magnitude.

Since Newton shows complete awareness of the variational equation for the inclination
we shall start with the equation (Chapter 13, §65, equation (41)(ii))

di r r
&ZEFhCOSV=thCOS v, (16)
or, substituting for F,, we have (Chapter (13), §66(c), equation (ii))
d 2
G P sin 1 cos v sin U cos . 17)

r
de "2y - e
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To zero order in the eccentricity, the equation becomes

d . .
d—; = —3m?n sin 1 cos v sin U cos ¥; (18)
or, after some elementary trigonometry,
dr = —3m? sin i{sin 2v + sin(2mv) — sin[2(1 — m)v]}n dt. (19)
On integrating this equation, we obtain:
. 1
1 — 15 = 3m? sin z<cos 2v + — cos 2U — cos 2t,b>. (20)
m 1—m
Clearly, the dominant term is (cos 2U)/m. Hence
1 — 1o ~ 3m sin 1 cos 2U. (21)

The variation in the inclination is therefore periodic with a period of one-half a nodal
year with an amplitude (3m/8) radians (=1-6°).

Newton’s description of the results derived from the posited variational equation (18)
is a tour de force leaving no doubt of his awareness of the equation.

The dependence of di/dt on sin 1 is implied in his remarks that there will be no change
in the inclination if initially : were to vanish identically; and that a change can occur only
by the operation of the force (F,) normal to the orbital plane. And the periodic dependence
of the variation on —sin U is an obvious inference from the statements that the effect
vanishes when the nodes are in syzygies (when U = 0) and that it is a maximum at
quadratures (when U = 7/2); and more fully in the following passage:

But when the nodes are in the quadratures, it disturbs them very much, and,
attracting the body P continually out of the plane of its orbit, it diminishes the
inclination of the plane in the passage of the body from the quadratures to the
syzygies, and again increases the same in the passage from the syzygies to the
quadratures.

Without any further explanation, he slips in (‘hence it comes to pass’) the results of
the integration of equation (19):

Hence it comes to pass that when the body is in the syzygies, the inclination is
then least of all, and returns to the first magnitude nearly, when the body arrives
at the next node. But if the nodes are situated at the octants after the
quadratures, that is, between C and A, D and B, it will appear, from what was
just now shown, that in the passage of the body P from either node to the
ninetieth degree from thence, the inclination of the plane is continually
diminished; then, in the passage through the next 45 degrees to the next
quadrature, the inclination is increased; and afterwards, again, in its passage
through another 45 degrees to the next node, it is diminished.
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The statement says (in accordance with equation (21)) that (1 — 1,) diminishes in the
interval, n/4 < U < 3n/4, and increases in the following period. The conclusion is repeated
in the concluding sentences quoted at the beginning.

3n/4

V(4
4 /
0 \/ U

72

(¢) Corollary XI: the variation of the direction of the ascending node (QQ)
As in our presentations of Corollaries IX and X we shall start with the variational
equations for Q (Chapter 13, §65 equation (41)(iii)):

sin ¢ %? = % E, sin v. (22)

Substituting for F, and retaining only terms of zero order in e, we find as in §(b) (see
equations (16) and (18));

C:;: = —3m?n sin v sin U cos i; (23)
or, after some elementary trigonometry,
dQ
v —3m?n(1 4 cos 2y — cos 2v — cos 2U). (24)
Rewriting this equation in the form,
dQ = —3m?[1 + cos[2(1 — m)v] — cos 2v — cos(2mv)]n dt, (25)
we can integrate it directly to give
. . 1 .
Q= —3m’nt — %mz[ 1 sin 2y — sin 2v — — sin 2U]. (26)
1—m m

Of the periodic terms, (sin 2U)/m is clearly the dominant one and we have
Q ~ —3m?nt + 3m sin 2U. (27)
Thus, there is a regression of the nodes of 2n(3m?/4) per nodal month besides a periodic
variation of amplitude (3m/8) radians (=1-6°) (or, 19-2° per year),* with a period of
one-half nodal year.
Newton’s explanation of the regression of the nodes is based on the observation that

* This is the value that Newton explicitly derives in Book III, Proposition XXXII.
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the variation of the inclination is exactly out of phase with the variation of Q as follows
from equations (18) and (23):

di . . .
&oc cos v sin U cos y = —% sin 2y + 3 cos y sin(v + U),

while (28)
Q : : 1 2 1
Eocsmvsm U cos Yy = +5 cos® ¥y — 5 cos Y cos(v + U).

The fact that
(A1),, =0, while by equation (27), <(AQ),, = —am?  per synodic month, (29)

are immediate consequences. Newton does not spell out the equations but concludes that
‘by like reasoning’(!)

the nodes will continue to recede in their passage from this node to the next.
The nodes, therefore, when situated in the quadratures, recede continually; and
at the syzygies, where no perturbation can be produced in the motion as
to latitude, are quiescent; in the intermediate places they partake of both
conditions, and recede more slowly; and, therefore, being always either retro-
grade or stationary, they will be carried backwards, or made to recede in each
revolution.

(d)
Cor. x11. All the errors described in these corollaries are a little greater at the

conjunction of the bodies P, S than at their opposition; because the generating
forces NM and ML are greater.

This is the shortest of the 22 corollaries. Its special importance is the insight it gives on
what Newton was contemplating already at this stage: after having investigated the
consequences, in their entirety, of the variational equations and having also realized their
inadequacy for accounting for all effects (e.g. the advance of the line apsides in Corollary
VII), Corollary XII reveals, in no doubtful terms, that Newton had already started to
assess the second-order effects; and in particular on the centripetal force.

It can be shown that correct to O(r?/R*), F. is given by

_ GMg 2 1y 457 (5 cos? ¥ —
E = e |:r(3 cos” Y 1)+2R(5 cos” ¥ — 3) cos 1//]. (30)

This expression follows from differentiating with respect to r the expression for the
potential given in E. W. Brown, An introductory treatise on the lunar theory (Cambridge
University Press, 1896) equation (1) on p. 79. This expression can also be derived directly
by the method used in Chapter 13.
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An alternative form of equation (30), comparable to our earlier expression for F,, is
F = %Nzr[(l + 3 cos 2y) + 3 % (5 cos? i — 3) cos xp}. (31)

It follows that at conjunction ( = 0) we have an increment in F, of amount 3N*r?/R
while at opposition ( = n) we have an equal decrement. There is evidence that Newton
might have derived this result in his efforts to refine his lunar theory (see Chapter 22);
but the essential point of the corollary is to point out that the second-order corrections,
relative to the first-order corrections, are odd and that at conjunction and at opposition
they will have opposite signs.

A comment (contrary to the traditional view)* that I should like to make at this point
is that Newton, after the concentrated mental effort required of him to complete his
investigation of the first-order variational equations, must have fully realized the much
greater effort that would be needed to evaluate all second-order effects—not that the
problem itself, in any measure, was beyond his capacity; and it is not surprising that the
very thought of embarking on the project ‘made his head ache and kept him awake so
often that he would think of it no more’. Besides, the evaluation of all the second-order
terms would require ‘more muscle than brains’ (to quote Henry Norris Russell in another
context).

(e) Further elaborations: Corollaries XIII-XVII

In Corollaries XIII-XVII, Newton fills in certain gaps in his presentation of Corollaries
I-XI: in particular the factor GM ,/R? in the expressions for F,, F,, and F, and the factor
m” in the variational equations w /n, e /n, 1,/n, and Q /n.

Corollary XIII. In the expression for F,, F,, and F, derived in Chapter 13, §66 (equations
(23)—(25)) the factor GM o /R> was replaced by N? in equation (26), as representing the
‘Mean motion of the Sun (relative to the Earth)’ Strictly, the noted equivalence is valid
only if T describes its orbit relative to an ‘immovable’ Sun. But if N? is to represent the
true anomalistic mean motion of S around 7 under their mutual attractions, then by

Proposition LIX (the concluding remark)

N?*(S fixed) = N?(under the mutual attractions of S and T) x L. (32)
My + Mg
Consequently, if N? in the variational equations means the ‘true’ mean square motion of
S then the additional factor [(My + M)/M ] must be included. It appears that it is to
this enhancement, that the ‘consequent increase in the centripetal force’ refers (though
Newton is not explicit).

* Chapter 22, Page 449)
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Corollary XIV. In this corollary Newton states explicitly for the first time (in this
proposition) that the factor that occurs in the expressions for the disturbing functions is
GM/R>. In Newton’s words, the disturbance

will be very nearly in a ratio compounded of the direct ratio of the absolute
force of the body S, and the cubed inverse ratio of the distance S7... and their
effects, will be (by Cor. 1. and vi, Prop. 1v) inversely as the square of the
periodical time.

Corollary XV. In this corollary Newton infers the proportionality of the disturbing
function to the radius r of the orbit of P around 7 by an argument of similarity:

the force of the body S, which causes the body P to deviate from that orbit will
act always in the same manner, and in the same proportion.

And he concludes:

that is, that all the linear errors will be as the diameters of the orbits, the angular
errors the same as before; and the times of similar linear errors, or equal angular
errors, are as the periodical times of the orbits.

(It may be noted that here and elsewhere Newton means by ‘errors’ what we call the
disturbing function.)

Corollary XVI. In Corollaries VII and XI it was shown that the terms in the mean
motion of the line of the apsides and the mean regression of the line of ascending nodes
are (apart from sign) the same. By §71 equations (12) and (27)

(@)ay = +am’nt = +3(N?/n)t,
and (33)
Q)4 = —jm?nt = —4(N?/n)t.

By arguments essentially the same as in Cor. VII and Cor. XI, Newton now concludes:

And therefore the mean motion of the line of the apsides will be in a given ratio
to the mean motion of the nodes; and both those motions will be directly as
the periodical time of the body P, and inversely as the square of the periodical
time of the body 7. The increase or diminution of the eccentricity and inclination
of the orbit PAB makes no sensible variation in the motions of the apsides and
nodes, unless that increase or diminution be very great indeed.

Cor. XVII. The mean force SN or ST, by which the body T is retained in the
orbit it describes about S, is to the force with which the body P is retained in
its orbit about 7 in a ratio compounded of the ratio of the radius ST to the
radius PT, and the squared ratio of the periodical time of the body P about T
to the periodical time of the body 7 about S.
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The mean force with which ‘7 is retained in its orbit about S’ is

GM/R?, (34)
while ‘the mean force with which the body P is retained in its orbit’ is
GM,/r*. (35)
Therefore, their ratio is
GM_\, (GMy\ N?ST
R: F=——, 36
<R3> <r3> n*> PT (36)

where ST and PT have the meanings they have in §70. (Q.E.D.)

A personal reflection

By Corollary XVII, the analysis of the perturbations of a Kepler orbit by a distant
gravitating body has been completed. And the corollaries that follow are devoted to
peripheral matters; such as the theory of tides (to be expanded in Proposition XXIV of
Book III) and why gravitating bodies tend to be spherical in the absence of external
perturbations. It is an appropriate time to pause and reflect.

Two thoughts are uppermost in my mind. First, Newton’s astonishing grasp of the entire
problem of planetary perturbations and the power of his insight. No surprise that Laplace
thought that these corollaries are amongst the most remarkable in the Principia. A second
thought concerns the paucity of any real explanation and an apparent attempt to conceal
details by recourse, too often, to phrases like ‘hence it comes to pass’, ‘by like reasoning’,
and ‘it is manifest that’ at crucial points of the argument. This ‘secretive style’ is nowhere
present, to this same extent, in the Principia.

It is possible that Newton developed the entire theory in his mind by an unsurpassed
concentration® suspected by Lord Keynes in his memorable address at the Newton
Tercentenary Celebrations at the Royal Society in 1946.

* Apropos of the quotation from Lord Keynes to follow, I have often thought of Newton’s ability for

unsurpassed concentration with that of Prince Arjuna of whom the following tale is told:

Drona assembled them all to test their knowledge of weaponry. He had craftsmen
fashion an artificial bird and attach it to a treetop where it was hardly visible, and
proceeded to point out the target to the princes.

And he said:

Quickly take your bows, put your arrow to the string, and take your position aiming at this
bird. As soon as I give the word, shoot off its head. I shall order you one after the other, and
you do it boys!

He first turned to Yudhisthira [the eldest of the princes]: ‘Lay on the arrow, invincible prince’,
he said, ‘and as soon as I have ceased talking, let go of it!” Yudhisthira then first took his
loud-sounding bow and at his guru’s command stood aiming at the bird. Drona said to him
after a while, ‘Do you see the bird in the treetop, prince?’ ‘I see it’, Yudhisthira replied to his
teacher. After a while Drona again said to him, ‘Now can you see the tree or me, or your
brothers?” ‘Yes’, he said to each question, ‘I see the tree, and yourself, and my brothers, as well
as the bird’. Then Drona, dissatisfied, scolded him: ‘You won’t be able to hit that target’. Then
the famous teacher questioned Duryodhana and the other sons of Dhrtarastra one after the
other in the same way, to put them to the test; and also the other pupils and the foreign kings.
They all said that they could see everything, and were scolded.
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I believe that the clue to his mind is to be found in his unusual powers of
continuous concentrated introspection.... His peculiar gift was the power
of holding continuously in his mind a purely mental problem until he had
seen straight through it. I fancy his pre-eminence is due to his muscles of
intuition being the strongest and most enduring with which a man has ever
been gifted. ...

I believe that Newton could hold a problem in his mind for hours and days
and weeks until it surrendered to him its secret. Then being a supreme
mathematical technician he could dress it up, how you will, for purposes of
exposition, but it was his intuition which was pre-eminently extraordinary—*‘so
happy in his conjectures’, said de Morgan, ‘as to seem to know more than he
could possibly have any means of proving’. The proofs, for what they are worth,
were, as I have said, dressed up afterwards—they were not the instrument of
discovery.

And, if indeed the entire content of Proposition LXVI (inclusive of the Corollaries [-XVII)
was developed by Newton in his mind and the presentation was ‘dressed up afterwards’,
then his reluctance to work out the second-order corrections is even more understandable
(see the comments at end of Corollary XII).

73. Proposition LXVI (continued): Corollaries X VIII-XXII

In the last five corollaries of this proposition (better described as a ‘monograph’) Newton
turns his attention to the relevance of the results established in the context of the
perturbations of a Kepler orbit to the theory of tides—a topic that he considers much
later in Book III, Proposition XIV in its ‘proper place’. It is significant that already at
this stage (even before’ he had established his ‘superb’ theorems on the gravitational
attraction of spherical and non-spherical bodies in Section XII) Newton was thinking of
accounting for the ‘motions... of our sea’ (as he was to state at the conclusion of the
penultimate paragraph of the Principia).

Thereupon Drona spoke smilingly to Arjuna, ‘Now you must shoot at the target’. ‘Listen’.
‘As soon as I give the word you must shoot the arrow’. ‘Now first stand there for a little while,
son, and keep the bow taut’. The left-handed archer stretched the bow until it stood in a circle
and kept aiming at the target as his guru had ordered. After a while Drona said to him in the
same way, ‘Do you see the bird sitting there? And the tree? And me?’ ‘I see the bird’, Arjuna
replied; ‘but I don’t see the tree or you’. And Drona again asked, ‘if you see the bird, describe
it to me’. ‘I see its head, not its body’.

(From J. A. B. van Buitenen’s translation of the Mahabharata
Vol. I, pp. 272-3; University of Chicago Press, 1974)

+ As 1 have stated earlier in Chapter 1 (p. 11), Newton proved his ‘superb theorem’ in the spring of 1685.
And he had started on writing the Principia only in December 1684. When, then, had he written the first 17
corollaries of Proposition LXVI?
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Newton’s statement of the corollary is reproduced in extenso for two reasons. First, for
the clarity with which he formulates the enlargement of the basis of his considerations to
a continuous ring of particles, each of which revolves, like P, about 7 in accordance with
the same laws. And second, for Newton’s recalling (and thus summarizing) the corollaries
in the enlarged context, in a sequence that is perhaps indicative of his priorities. The
sequence, distinguished by superior numerals in the text, are correlated below with the
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Cor. xvir. By the same laws by which the body P revolves about the body 7,
let us suppose many fluid bodies to move round 7 at equal distances from it;
and to be so numerous, that they may all become contiguous to each other, so
as to form a fluid annulus, or ring, of a round figure, and concentric
to the body T; and the several parts of this ring, performing their motions by
the same law as the body P, will draw nearer to the body 7,' and move swifter?
in the conjunction and opposition of themselves and the body S, than in the
quadratures. And the nodes of this ring or its intersections with the plane of
the orbit of the body S or 7, will rest at the syzygies; but out of the syzygies
they will be carried backwards, or in a retrograde direction, with the greatest
swiftness in the quadratures, and more slowly in other places.® The inclination
of this ring also will vary, and its axis will oscillate in each revolution, and when
the revolution is completed will return to its former situation, except only that
it will be carried round a little by the precession of the nodes.*

~Ne

corollaries.

1:

Cor. Vi TA =r(1 —x) < TC =r(1 + x), (§70, equation (19));

2: Cor. ut: Vi(y = 0) > Vo(y = n/2), (§70, equation (35));
3:
4: Cor. x: §72, equation (21); §65, equation (7).

Cor. x1: §72, equations (24) and (27); {Q),, = —3m?nt;

Cor. x1x. Suppose now the spherical body 7, consisting of some matter not
fluid, to be enlarged, and to extend itself on every side as far as that ring, and
that a channel were cut all round its circumference containing water; and that
this sphere revolves uniformly about its own axis in the same periodical time.
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This water being accelerated and retarded by turns (as in the last Corollary),
will be swifter at the syzygies, and slower at the quadratures, than the surface
of the globe, and so will ebb and flow in its channel after the manner of the sea.

The foregoing assertions are of course valid. But Newton could have made their truth
more obvious if he could have stated at this point that replacing the point mass at 7 by
a uniform ‘spherical globe* consisting of some matter’ is entirely permissible. But the
underlying justifying propositions are proved only in Section XII to follow. Or, did Newton
know of the justification already? (This question renews interest in the chronological
sequence of the great discoveries of Sections XI and XII.)

In the second part of the corollary, Newton, recalling Corollaries V and VI of the Laws
of Motion (Chapter 2, §8), reminds us that all the conclusions reached up to this point
will in no way be affected if all three bodies, S, 7, and P partake of the same uniform
rectilinear motion.

In the final part of the corollary Newton notes that the principal forces that act on the
water in the channel are the perturbations in the centripetal force and the force in the
direction towards the Sun. These forces are:

1 G6GM GM
- R3® r(1 +3 cos2y) and +2 R3® r cos . (1)
The first of these forces attains the values,
M GM .
- GR 2 r at quadratures  and +2 R3® r at syzygies, )

and ‘will attract the water downwards at the quadratures, and depress it as far
as the syzygies’; while the second of the forces in the direction PS is

GM,,

R3

+2 r at syzygies; and vanishes at quadratures, (3)

* Or, more generally, any spherically symmetric distribution of matter having the same mass as the spherical globe.
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and ‘will attract it upward in the syzygies, and withhold its descent and make it rise as
far as the quadratures’.

It is implied that the ring of fluid bodies of Corollary XVIII is coplanar with the orbital
plane of P about 7T; and similarly that the channel of Corollary XIX lies nearly in the
equator.

Corollary XX. In this corollary, Newton effectively considers the application of
Corollary XI on the regression of the nodes and Corollary X on the variation of the
inclination to the problem considered in Corollary XIX.

By Corollary XI, equation (27),

Q ~ —3m?nt + 3m sin 2U. 4
Newton formulates the content of this equation for the circumstances of Corollary XIX
as follows:

Let the globe have the same axis with the ring, and perform its revolutions in
the same times, and at its surface touch the ring within, and adhere to it; then
the globe partaking of the motion of the ring, this whole body will oscillate,
and the nodes will go backwards.

He next considers the correlated variations of the node and of the inclination as exemplified
by equations (18) and (23) of §72

d .
d—i: —3m?n sin 1 cos v cos ¥ sin U,
and )
do = —3m?n sin v cos ¥ sin U;
dt
and the solution (§72, equation (21))

1 — 1y = am sin 1 cos 2U. (6)
According to these equations
is a maximum at syzygies (U = 0),
1 — 14 18 @ minimum at quadratures (U = 7r/2), (7
and vanishes at octants (U = n/4 and 37n/4).
Further, when the nodes are at quadratures (U = 7/2),
dQ

both and are at maximum, (8)

while at octants (U = 0 and 3n/4),
1—15=0. 9
Newton’s principal object in this corollary is to apply the foregoing conclusions to a
globe that is ‘a little higher or a little denser in the equatorial than in the polar regions’;
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and he concludes:

yet the phenomena of this and the preceding Corollary would scarce be altered;
except that the places of the greatest and least height of the water will be
different; for the water is now no longer sustained and kept in its orbit by its
centrifugal force, but by the channel in which it flows.

Newton then reiterates the conclusions arrived at, at the end of Corollary XIX.
Finally in Corollary XXI, Newton further elaborates on the same theme.

Cor. xx1. For the same reason that redundant matter in the equatorial regions
of a globe causes the nodes to go backwards, and therefore by the increase of
that matter that retrograde motion is increased, by the diminution is diminished,
and by the removal quite ceases; it follows, that, if more than that redundant
matter be taken away, that is, if the globe be either more depressed, or of a
rarer consistence near the equator than near the poles, there will arise a direct
motion of the nodes.

While one is astonished at Newton’s consideration of the theory of tides in such detail
at this early stage, it is important to point out that he does not seem to have
realized that the pressure at the bottom of the channel balances the vertical component
E. of the gravitational force and that the only tide-generating force is the tangential
component F,. This fact vitiates some of the conclusions of Corollary XX. Laplace was
to correct them a century later in his definitive equilibrium theory of tides. Nevertheless,
the results of Corollary XIX are entirely correct providing the depth of water be less than
about thirteen miles. We shall return to these matters when considering Newton’s theory
of the tides as set out in Book III, Propositions XXIV, XXXVI, and XXXVIII.

The last Corollary XXII of this Proposition LXVI is a remarkable restatement
of the ideas outlined in Corollaries XVIII-XXI and of the directions in which one may
think beyond. We shall not therefore attempt to paraphrase the original text.

Cor. xx11. And thence from the motion of the nodes is known the constitution
of the globe. That is, if the globe retains unalterably the same poles, and the
motion (of the nodes) is retrograde, there is a redundance of the matter near
the equator; but if that motion is direct, a deficiency. Suppose a uniform and
exactly spherical globe to be first at rest in a free space; then by some impulse
made obliquely upon its surface to be driven from its place, and to receive a
motion partly circular and partly straight forward. Since this globe is perfectly
indifferent to all the axes that pass through its centre, nor has a greater
propensity to one axis or to one situation of the axis than to any other, it is
manifest that by its own force it will never change its axis, or the inclination of
its axis. Let now this globe be impelled obliquely by a new impulse in the same
part of its surface as before; and since the effect of an impulse is not at all
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The underlined statements are remarkable for the use that Newton makes of the
geometrical symmetry of the sphere to reflection and to rotation about its centre to draw
physical conclusions. They are reminiscent of the arguments that L. Lictenstein (1918;
Sitzungsber. Pruess Akad. Wiss. Phys. Math. K1, p. 1120) was to use some two centuries
later to prove that a fluid mass in equilibrium under its own gravitation must necessarily
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changed by its coming sooner or later, it is manifest that these two impulses,
successively impressed, will produce the same motion, as if they had been
impressed at the same time; that is, the same motion, as if the globe had been
impelled by a simple force compounded of them both (by Cor. 1t of the Laws),
that is, a simple motion about an axis of a given inclination. And the case is
the same if the second impulse were made upon any other place of the equator
of the first motion; and also if the first impulse were made upon any place in
the equator of the motion which would be generated by the second impulse
alone; and therefore, also, when both impulses are made in any places
whatsoever; for these impulses will generate the same circular motion as if they
were impressed together, and at once, in the place of the intersections of the
equators of those motions, which would be generated by each of them separately.
Therefore, a homogeneous and perfect globe will not retain several motions
distinct, but will unite all those that are impressed on it, and reduce them into
one; revolving, as far as in it lies, always with a simple and uniform motion
about one single given axis, with an inclination always invariable. And the
inclination of the axis, or the velocity of the rotation, will not be changed by
centripetal force. For if the globe be supposed to be divided into two
hemispheres, by any plane whatsoever passing through its own centre, and the
centre to which the force is directed, that force will always urge each hemisphere
equally; and therefore will not incline the globe to any side with respect to its
motion round its own axis. But let there be added anywhere between the pole
and the equator a heap of new matter like a mountain, and this, by its continual
endeavor to recede from the centre of its motion, will disturb the motion of the
globe, and cause its poles to wander about its surface describing circles about
themselves and the points opposite to them. Neither can this enormous deviation
of the poles be corrected otherwise than by placing that mountain either in one
of the poles, in which case, by Cor. xx1, the nodes of the equator will go
forwards; or in the equatorial regions, in which case, by Cor. XX, the nodes will
go backwards; or, lastly, by adding on the other side of the axis a new quantity
of matter, by which the mountain may be balanced in its motion; and then the
nodes will either go forwards or backwards, as the mountain and this newly
added matter happen to be nearer to the pole or to the equator.

be spherically symmetric.
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74. Propositions LXVII-LXIX

In Propositions LXVII, LXVIII, and its corollaries, Newton is concerned with the most
appropriate choice for the coordinate frame for considering the perturbations of a
three-body problem such as of S, 7, and P. His choice is:

Therefore the perturbation is least when the common centre of the three bodies
is at rest; that is, when the innermost and greatest body T is attracted according
to the same law as the rest are; and is always greatest when the common centre
of the three, by the diminution of the motion of the body 7, begins to be moved,
and is more and more agitated.

This is precisely the coordinate frame in which the variational equations of Chapter 13,
§66 were derived.

In the more general context of the many-body problem (with perhaps the configuration
of Jupiter and its satellites in mind) Newton’s recommendation is:

Cor. And hence if several smaller bodies revolve about the great one, it may
easily be inferred that the orbits described will approach nearer to ellipses; and
the descriptions of areas will be more nearly uniform, if all the bodies attract
and agitate each other with accelerative forces that are directly as their absolute
forces, and inversely as the squares of the distances, and if the focus of each
orbit be placed in the common centre of gravity of all the interior bodies (that
is, if the focus of the first and innermost orbit be placed in the centre of gravity
of the greatest and innermost body; the focus of the second orbit in the common
centre of gravity of the two innermost bodies; the focus of the third orbit in the
common centre of gravity of the three innermost; and so on), than if the
innermost body were at rest, and was made the common focus of all the
oribits.

These coordinates have recently been resurrected under the name ‘Jacobi coordinates’ (1)
(cf. D. Brouwer and G. Clemence, Celestial mechanics, Academic Press, New York,
p. 588).

Proposition LXIX. Theorem X XI1X

In a system of several bodies A, B, C, D, etc., if any one of those bodies, as A,
attract all the rest, B, C, D, etc., with accelerative forces that are inversely as the
squares of the distances from the attracting body; and another body, as B, attracts
also the rest, A, C, D, etc., with forces that are inversely as the squares of the
distances from the attracting body; the absolute forces of the attracting bodies A
and B will be to each other as those very bodies A and B to which those forces
belong.
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Cor. 1. Therefore if each of the bodies of the system A, B, C, D, etc., does
singly attract all the rest with accelerative forces that are inversely as the squares
of the distances from the attracting body, the absolute forces of all those bodies
will be to each other as the bodies themselves.

Cor. 11. By a like reasoning, if each of the bodies of the system A, B, C, D,
etc., does singly attract all the rest with accelerative forces, which are either
inversely or directly in the ratio of any power whatever of the distances from
the attracting body; or which are defined by the distances from each of the
attracting bodies according to any common law; it is plain that the absolute
forces of those bodies are as the bodies themselves.

The problem that Newton considers in this proposition and its corollaries is the
following:

We are given a set of bodies, 4, B, C, D, etc.,, each of which ‘attracts all the rest with
accelerative force... which are defined by the distances from each of the attracting bodies
according to any common law’. If P and Q are two of these bodies, the assumption is
that between the two,

2
T = Tl — FF(IFg — ) (1
where F is a ‘universal’ function of the absolute distance, |y — 7|, between P and Q and
I1, is a positive numerical factor dependent only on a scalar property of the body Q.
Consider equation (1) for two of the bodies X and Y (# X). Then,

d?7y L. . .
di2 = +1y(Fy — F)F(IFy — 7x)),
d?#y @
i + 1y (Fx — FY)F(IFx — Fyl).
From these equations it follows that,
A2y | | d%F
?ZX : ?ZY =TI, :Ty. (3)
But by the third Law of Motion,
d*7 d*#
?ZX : —at—zy = my: My, 4

where my and my denote the inertial masses of the two bodies. Since equation (4) applies
to all pairs, X and Y, we conclude that

Iy = Gmy 5)

where G is a universal constant, that is, it is the same for all of the bodies.
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Corollary I is stated explicitly for the case ‘When bodies whose forces decrease as the
square of the distance’, that is, when

[l —myl) oc [Fx — 7y 72 (6)

The constant G in this case is of course Newton’s constant of gravitation.
Newton adds this further corollary.

Cor. 1. In a system of bodies whose forces decrease as the square of the
distances, if the lesser revolve about one very great one in ellipses, having their
common focus in the centre of that great body, and of a figure exceedingly
accurate; and moreover by radii drawn to that great body describe areas
proportional to the times exactly; the absolute forces of those bodies to each
other will be either accurately or very nearly in the ratio of the bodies. And so
conversely. This appears from Cor. of Prop. xLvin, compared with the first
Corollary of this Proposition.

The addition of this corollary at this point, similarly phrased as Cor. III. of Proposition
LXV and with an apparent emphasis, may appear strange. But he must have had in mind
a question that will occur when he comes to formulating his universal law of gravitation
in Book III (see Proposition VI). This is a further example of Newton’s prescience to
which we have already referred in Chapter 10 (p. 198).

Again, we have reached a watershed after a long and arduous journey. And as his wont,
Newton speaks of what the next destination has to be on his view of Natural Philosophy.

Scholium

These Propositions naturally lead us to the analogy there is between centripetal
forces and the central bodies to which those forces are usually directed; for it
is reasonable to suppose that forces which are directed to bodies should depend
upon the nature and quantity of those bodies, as we see they do in magnetical
experiments. And when such cases occur, we are to compute the attractions of
the bodies by assigning to each of their particles its proper force, and then
finding the sum of them all. I here use the word attraction in general for any
endeavor whatever, made by bodies to approach to each other, whether that
endeavor arise from the action of the bodies themselves, as tending to each
other or agitating each other by spirits emitted; or whether it arises from the
action of the ether or of the air, or of any medium whatever, whether corporeal
or incorporeal, in any manner impelling bodies placed therein towards each
other. In the same general sense I use the word impulse, not defining in this
treatise the species or physical qualities of forces, but investigating the quantities
and mathematical proportions of them; as I observed before in the Definitions.
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In mathematics we are to investigate the quantities of forces with their
proportions consequent upon any conditions supposed; then, when we enter
upon physics, we compare those proportions with the phenomena of Nature,
that we may know what conditions of those forces answer to the serveral kinds
of attractive bodies. And this preparation being made, we argue more safely
concerning the physical species, causes, and proportions of the forces. Let us
see, then, with what forces spherical bodies consisting of particles endued with
attractive powers in the manner above spoken of must act upon one another;
and what kind of motions will follow from them.
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‘The superb theorems’

75. Introduction

n Chapter 1, we have already described the antecedents of Newton’s discovery of the
Itheorem that was later to be described as ‘superb’ by J. W. L. Glaisher. Therefore,
on this occasion, we shall, as the saying goes ‘cut the cackle and come to the hosses’.

We shall begin with an explanation which Newton provides later:

Scholium

By the surfaces of which I here imagine the solids composed, I do not mean
surfaces purely mathematical, but orbs so extremely thin, that their thickness is
as nothing; that is, the evanescent orbs of which the sphere will at last consist,
when the number of the orbs is increased, and their thickness diminished without
end. In like manner, by the points of which lines, surfaces, and solids are said
to be composed, are to be understood equal particles, whose magnitude is
perfectly inconsiderable.

76. Propositions LXX-LXXII
Proposition LXX. Theorem XXX

If to every point of a spherical surface there tend equal centripetal forces decreasing
as the square of the distances from those points, I say, that a corpuscle placed
within that surface will not be attracted by those forces any way.

The proof is Newton’s: it is the same as one finds in any modern textbook.

‘Let HIKL be that spherical surface, and P a corpuscle placed within.” With P as vertex,
construct a cone of small solid angle dw intersecting the surface in the elements KL and
HI. The attractions per unit mass at P of these elements of surface area dS and dS’ are
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mdS mdsS’

and _
PK? PH?

where m is the mass per unit area of the surface; and these attractions are in opposite
directions. We have
dw dw
dS = PK? — and dS'=PH* ——.
cos OKP cos OHP

Since /. OKP = / OHP, it follows that the attraction of the two elements are equal and
opposite. Since, further, the entire spherical surface can be divided into such similar pairs
of elements, the resultant attraction is zero. Q.E.D.

Proposition LXX1. Theorem X X X1

The same things supposed as above, I say, that a corpuscle placed without the
spherical surface is attracted towards the centre of the sphere with a force inversely
proportional to the square of its distance from that centre.

J. E. Littlewood has conjectured (though I do not share in the conjecture—see below)
that Newton had perhaps first constructed a proof based on calculus which ‘we can infer
with some possibility what the proof was.” And here is his conjectured proof.
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Let LKHRR'H'B be the same spherical surface that was considered in Proposition LXX
with the corpuscle P now ‘placed without the spherical surface’ at a distance r(= PS) from
the centre S. We shall divide the spherical surface of radius a into infinitesimal circular
caps like HRR'H, with their axes along PS.

The direction of attraction is along HP. Only the component along PS will additively
contribute to the net attraction: that in the direction normal to PS will cancel by symmetry.
We now evaluate the contribution, dF, to the force by the spherical cap HRR'H. The
successive steps in the evaluation (following Littlewood) are:

2

r* dF =1;—§2003 Y.2rnad0.1Q (=asin )

PS? . Y
=P sin(0 + ¢).2na* d6.sin 6; 1
2 - 2 i
T dF = <M> Sin(0 + ¢) sin 0 d0 = cos? ¢ PO+ 9) 44 )
2na* sin 0 sin 6

But
Q=E=sin(%n—9—¢):cos(0+d)). 3)
r PS sindn + ¢) cos ¢
By differentiating this last expression we obtain,
[cos(8 + ¢) sin ¢ — sin(6 + ¢) cos ¢ d¢p = cos ¢ sin(0 + ¢) d6,
and 4)
asin ¢ d¢ = rsin(0 + ¢)(dO + do).

Hence,
do sin 6
& . . )
do cos ¢ sin(8 + ¢)
By combining equations (2) and (5), we have
r* dF
— = —Cos ¢. 6
2na* do ¢ ©)
Integrating this last equation over ¢, we obtain
r2 /2
2F:J cos pdop =2, @)
2na a2
or, s
4ra
F=— (8)

r

Now, to Newton’s proof. He considers the situation described in the previous illustration
together with the illustration of the companion situation in which the corpuscle, now
designated, p, is at a different distance ps from the centre s of the spherical surface lkhrab.
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Newton compares the attraction of the two spherical surfaces at the points P and p.
The wonder of the proof is the initial geometrical construction: The right lines PHK and
phk cut off equal chords HK and hk; and similarly the infinitesimally neighbouring lines
PIL and pil cut off equal chords IL and il. As Littlewood has remarked, this construction
‘must have left its readers in helpless wonder’. By this construction

HK =hk, IL =il . SD=sd and se= SE; 9)
and, therefore, *
DF = SD — SE = sd — se = df. (10)
The successive (elementary!) steps are:

OF, _ PI* (PS)(pf) hi iq (11)
6F, pi* (PF)(ps) HI IQ

pf PI _df_E_E_HI (By the similarity of As

pf PI_df RI_RI_HI (12)
pi PF ri DF ri hi RHI and rhi)
and
PI ps IQ se IQ (By the similarity of As (13)
PS pi SE ig g’ PIQ (pig) and PSE (pse))
By multiplication of equations (12) and (13), we obtain,
P (pf)ps) _HI 1Q (14
pi> (PF)PS) hi ig
Now by combining equations (11) and (14), we find
2
OF, _PS’. 5
O0F,  ps?
Q.E.D.

Notice the entire absence of any superfluous steps; and how well-knit the proof is!

* These relations have to be understood in the sense of ‘last ratios ... when ,s DPE and dpe vanish
together.’
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A personal reflection

I stated earlier that I did not share Littlewood’s conjecture. Littlewood stated his
conjecture as follows.

To the Newton of 1685 the problem was bound to yield in reasonable time: it
is possible (though this is quite conjectural) that he tried the approach via a
shell of radius r, to be followed by an integration with respect to r; this would
of course instantly succeed.

Littlewood was, of course, repeating a legend that has often been told, namely, that Newton
first constructed proofs of most (if not all) of his propositions by calculus and then
transliterated them into ‘his’ geometrical language. I do not believe in this legend. First,
there are enough propositions that are proved directly by integral calculus, for example,
Propositions XXXIX and XLI: and in Proposition LXXI he simply preferred not to
give the proofs by calculus. Second, his physical and geometrical insights were so
penetrating that the proofs emerged whole in his mind: ‘he was happy in his thoughts’
(qualifying de Morgan). Besides, where was the time to dissimulate? For my part, [ am
not surprised that ‘to the Newton of 1685’ the geometrical construction ‘that must have
left its readers in helpless wonder’ came quite naturally (see the comments at the end of
the next proposition).

Proposition LX X1I. Theorem X X XI1I

If to the several points of a sphere there tend equal centripetal forces decreasing
as the square of the distances from those points; and there be given both the
density of the sphere and the ratio of the diameter of the sphere to the distance
of the corpuscle from its centre: I say, that the force with which the corpuscle is
attracted is proportional to the semidiameter of the sphere.

Consider two homogeneous spheres of equal density and of radii R; and R,; and two
‘corpuscles’ P, and P, of equal masses at distances C, P, and C, P, which are in the ratio
of their radii:

C,P;: C,P, =R, :R,. (16)

And, let p, and p, be two ‘equal’ corpuscles (ie. of equal infinitesimal volumes) in the
two spheres at distances from P; and P, that are in the same ratio of the radii R; and R,,
that is,

p1Piip2 Py = RiiR;. a7
The attractions, f; and f,, exerted by p, and p, on P, and P, are in the ratio,
fiifo = (p:P) " 2:(p2Py) ™% = R{2:R; % (by equation (17)) (18)

This ratio obtains for every pair of similarly situated particles in the two spheres. Therefore,
the entire attractions, F; and F, of the whole spheres will be ‘directly’ as the number of
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corpuscles, N; and N, in the two spheres: and since, by assumption, all the corpuscles in
the two spheres are of equal infinitesimal volumes,

N;:N, = R}:R3. (19)

Hence, for the total forces,
Fi:F, = Ny fi:N, f, = R{:R,. (20)
Q.ED.

Contrast the foregoing presentation (in the manner of our times) with Newton’s
concision in his inimitable style:

Then the attractions of one corpuscle towards the several particles of one sphere
will be to the attractions of the other towards as many analogous particles of
the other sphere in a ratio compounded of the ratio of the particles directly,
and the square of the distances inversely. But the particles are as the spheres,
that is, as the cubes of the diameters, and the distances are as the diameters;
and the first ratio directly with the last ratio taken twice inversely, becomes the
ratio of diameter to diameter. Q.E.D.

The equally ‘baffling’ nature of Newton’s demonstration of this proposition does not
seem to have been noted: it is not based (as one might have expected) on dividing the
sphere into infinitesimal shells and then summing over the result of Proposition LXXI
(this comes later in Proposition LXXVI as a ‘Lebesgue’ integral); it is based, instead, on
more general grounds of similarity. In this last respect, it is no different from the proof of
Proposition LXXI which is also based on similarity arguments as exemplified by the
number of appeals to the similarity of the triangles in the geometrical construction. Indeed
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it is possible that Newton first ‘saw’ the proof of this simpler(!) Proposition LXXII; and
soon after, the proof of Proposition LXXI.

From the fact that the centripetal forces acting on P; and P, are directly as the distances
from the centre, it follows immediately from Corollary VII, Proposition IV (equations (15)
and (16) on p. 74) that the periodic times of circular orbits about the sphere at distances
proportional to R, and R, are equal; and vice versa. This is the content of Corollaries I
and II.

The real power of the similarity arguments used in the proof of this proposition emerges
in Corollary III.

Cor. 1L If to the several points of any two solids whatever, of like figure and
equal density, there tend equal centripetal forces decreasing as the square of the
distances from those points, the forces, with which corpuscles placed in a like
situation to those two solids will be attracted by them, will be to each other as
the diameters of the solids.

1

P

This corollary is used in Proposition XCI, Corollary III (p. 316).

77. Propositions LXXIII-LXXYV

Propositions LXX, LXXI, and LXXII proved in §76 are mutually independent and provide
the corner stones for the final Proposition LXXVI. Meantime, the three Propositions
LXXXIII-LXXV provide intermediate steps.

Proposition LXXIII. Theorem X X XIII

If to the several points of a given sphere there tend equal centripetal forces
decreasing as the square of the distances from the points, I say, that a corpuscle
placed within the sphere is attract<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>