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ABSTRACT 

The history of deformation of the earth's surface due to the removal of the Holocene 

and latest Pleistocene ice sheets is recorded in the global sea-level record. Recent 

advances in collection and dating of sea-level data, and computing technology have made 

possible high-resolution, high-precision numerical modelling of deglaciation events. 

Currently available mathematical formulations for the earth's response to surface loading 

are ill-suited to such high-resolution modelling however, suffering from numerical 

instability or excessive computational cost. In this thesis, the suitability of established 

techniques for modelling short wavelength surface load problems is closely examined. 

Achieving high resolution with the conventional spherical harmonic scheme has 

previously been shown to be prohibitively expensive computationally, the numerical 

instability or physical inappropriateness of associated harmonic analysis procedures is 

demonstrated here. The earth is then modelled as a flat, semi-infinite half-space and a 

new formalism developed that is exceptionally stable at depth, based on the wave 

propagation technique of seismology. This formalism is extended to include the effect of 

pre-stress and dilatation and their relative effects considered in detail. In the visco-elastic 

case, pre-stress advection is demonstrated to be critical in forcing deformation toward 

equilibrium with the load, and dilatation is shown to be largely negligible provided pre­

stress is included. The new formulation is then tested numerically to establish its stability 

as part of a large super-position problem. The stability of numerical inversion schemes 

for the Fourier and Laplace transforms is also established, and their impact on the 

implementation of the wave propagation technique found to be small provided sufficient 

care is taken in choosing the inversion procedure to be used and their various input 

parameters. 
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INTRODUCTION 

This thesis is concerned with theoretical aspects of the earth's response to surface 

loading on time scales of 103 yr to 105 yr . The motivation for this investigation is to 

provide a high accuracy formalism for modelling the Earth's response to cycles of glacial 

loading and unloading, from which the Earth's viscosity structure and response 

parameters may be inferred. A secondary motivation, not examined in this thesis , is the 

development of a high resolution inversion scheme to infer a detailed history of the 

deglaciation process from observations of the associated rebound. 

Our understanding of the physical properties of the earth is severely limited by the 

fact that direct measurements can only be made at or near the earth's surface. Careful 

observation in a diverse range of fields has however made it possible to infer constraints 

on many of the processes at work in the earth's interior and their various interactions, 

though there is still much that we do not know with any certainty. 

The earth's response to loading cycles of high frequency (less than a few years) is 

well established, the earth behaving essentially as an elastic body with parameters inferred 

from the analysis of seismic travel time data. At these frequencies the earth is shown to 

have a liquid core of radius 3 480 km with a semi-solid 1 250 km inner core, and to 

undergo a rapid change in elastic parameters from a depth of 410 km until a sharp 

discontinuity at 670 km marks the boundary between upper and lower mantle. 

Apart from seismological phenomena, the most significant body of available 

observational data comes from the interaction of the continental plates. Plate tectonics is 

the largest scale geophysical phenomenon whose effects are directly observable at the 

surface and is therefore fundamental to our understanding of the earth as a whole. Any 

theory concerning the physical processes at work in the earth's interior must be consistent 

with the observed behaviour and properties of the continental plates. 

On the time-scales of continental drift ( ~ 106 yr ) much of the earth may be treated as 

a fluid under an elastic or visco-elastic lithosphere, the motion of the continental plates 

being attributed to convection of the mantle material beneath. The nature of this mantle 

convection is of great importance to the field of earth science and is very strongly 

dependent on the viscosity of mantle material. If it were possible to determine the rate of 

mantle convection and whether it takes place throughout the entire mantle or occurs 

separately in the upper and lower mantle we would be able to place important constraints 

on the properties and behaviour of mantle material, such as the degree of mixing that 

occurs throughout the mantle, temperature distribution, the origin and composition of 

mantle plumes, the nature of hotspots, and the genesis of material from mid-ocean ridges. 

These properties themselves have far reaching consequences in a wide range of 
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geophysical and geochemical researches from the nature and behaviour of the earth's 

magnetic field through to the origin of the moon. 

Mantle viscosity is constrained by the response through time of the earth under a 

surface load. The deformation that results form this loading is a function of both the 

rheology of the earth and the nature of the load, so that if the loading history is well 

understood then the relaxation process provides important data on the properties of the 

earth over the time-scale of the load. The results of such studies may not be directly 

applicable to the problem of mantle convection which takes place over particularly long 

time-scales ( ~ 106 
- 10 7 

), but it may be possible to extrapolate such data to longer time­

scales. 

At intermediate frequencies the earth cannot be satisfactorily modelled as either an 

elastic or fluid body and a theoretical treatment is required that spans these two limiting 

cases. This thesis attempts to develop an appropriate mathematical formalism, addressing 

in particular, methods that have the potential for very high spatial resolution. These 

techniques may then be applied to glacial rebound data to constrain both the history of the 

deglaciation process and the visosity profile of the earth. 

A large body of high-quality rebound data is preserved in the sea-level record of the 

Holocene and Late Pleistocene. Geomorphological evidence indicates that over the last 2 

million years the earth has been undergoing periodic glaciation and de-glaciation. The 

glaciation process seems to take place over a period of approximately 90 000 years and is 

followed by a rapid deglaciation which is complete after about 15 000 years. There then 

ensues an interglacial period of around 15 000 years before the cycle is repeated. 

During the last glacial maximum, which occurred approximately 23 000 years ago, 

there were substantial glaciers over North America, Fennoscandia, Antarctica, Great 

Britain and the Barents Sea. These glaciers represented extremely large volumes of ice, 

the Laurenti de ice sheet for example was about 3 000 metres thick and covered a large 

portion of North America. The melting of the glaciers and concomitant addition of melt­

water to the oceans therefore resulted in substantial changes in the moment of inertia of 

the earth, and the shape of both the geoid and the earth's surface. 

When a large load is placed on the surface of the earth it will displace material in the 

mantle and so deform the earth's surface and gravitational field . If the distribution of the 

load is subsequently altered the displaced material will move towards equilibrium with the 

new load distribution, resulting again in a change in the shape of the earth's surface and 

the geoid. 

The relative position of the earth's surface and the shape of the geoid at times 

during and since the last period of deglaciation are preserved in the global sea level record 

and geoid observations. Direct geoid measurements are only available for a small fraction 
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of the period since the last glacial maximum so that the vast majority of detailed post­

glacial rebound data are obtained from observations of sea level. 

The change in sea level around the globe resulting from the melting of latest 

Pleistocene ice sheets is a function of both the change in load and the rheological 

properties of the earth. Sea-level is measured relative to the position of the shoreline so 

that the effect of all up-lift and subsidence events will be preserved in sea-level signals. 

For many sites it is possible to remove the contribution to sea-level change due to tectonic 

processes and other loading events however, and observations from such sites may then 

be used in conjunction with the theory developed for the problem of glacial rebound and 

sea-level change to constrain both the rheological properties of the earth and the melting 

history of the ice sheets. 

The theoretical development for the deformation of the earth under surface loading 

is quite involved but has been extensively developed by a number of different 

investigators (Haskell 1935, McConnell 1965, Peltier 1974, Cathles 1975, Farrell & 

Clark 1976). In the simplest case sea level is altered simply by the volume of meltwater 

that is added to the oceans, this so-called eustatic sea level change is quite a large effect 

contributing 105-140m to global sea level depending on the ice model used. Farrell & 

Clark (1976) demonstrated that even if the earth is assumed to be completely rigid, post­

glacial sea level change will be affected by changes in the gravitational attraction of the ice 

sheets and gravitational self-attraction of the water in the ocean basins. 

If we allow the earth to deform under surf ace loads then calculation of sea level 

change is further complicated by the earth's response to the change in distribution of the 

surface load as the ice sheets are removed and water is added to the ocean basins (Bloom 

1967). The change in geometry of the ocean basins due to the volume of meltwater added 

and loading effects result in the integral equation for sea level change being implicit. That 

is, sea level change at a particular point is dependent on the amount of sea level change at 

that point so that an iterative procedure is required to find a solution (Peltier & Andrews 

1976). Johnston (1993) showed that for realistic earth models the effect of the ice load 

on the geometry of the ocean basins is accurately determined after two iterations. 

A change in surface load results in a redistribution of mass within the earth to 

achieve equilibrium with the new load. The resulting change in the earth's gravitational 

field must be considered since both the mean shape of the surface of the ocean (which 

will be an equipotential function) and the deformation caused by a given surface load will 

vary if there is a change in the earth's gravitational field (Farrell & Clark 1976). 

Various models for the earth's rheology have been considered, their complexity 

increasing as data, computational resources, and theoretical development allowed. 

Haskell ( 1935) and others modelled the earth as being completely viscous while Love 

( 1911, 1927) and Longman ( 1962) developed the theoretical techniques necessary to 
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model the deformation of an elastic sphere. McConnell ( 1965) considered the 

deformation of a stratified, semi-infinite half-space with Maxwell rheology and Peltier 

( 197 4) developed the formalism for a radially symmetric spherical Maxwell body. 

Having developed the theory for the deformation of a self-gravitating visco-elastic 

sphere under a surface load past investigators have used the resulting forward modelling 

procedures to invert post-glacial rebound data and constrain both the rheology of the earth 

(e.g. Cathles 1975, Peltier 1976, Nakada & Lambeck 1987, Gasperini & Sabadini 1989, 

Mitro vi ca & Peltier 1991, Johnston 1993) and the melting history of the Holocene ice 

sheets (e.g. Lambeck 1993a,b, Quinlan & Beaumont 1982). 

Determining the melting history of the ice sheets since the _last glacial maximum is a 

difficult problem in its own right. The extent of the glaciers as a function of time can 

often be determined from various geomorphological indicators but the thickness of the ice 

sheets cannot usually be determined directly except at a few isolated points where 

nanatuks were formed. Isotopic records broadly indicate the total amount of water that 

was removed from the oceans to form the ice sheets while palaeoclimatic data give some 

indication as to when and where the climate was most favourable for the formation and 

thickening of glaciers, there are of course also mechanical constraints on the shape of the 

glaciers but still many details of the melting history of the holocene ice sheets are 

relatively poorly known. For example, the vast majority of the land on which the Barents 

sea ice sheet rested is now submerged, obliterating much of the geomorphological 

evidence of its extent and progress, this is also a problem in many other areas such as the 

Irish sea, the North sea, the gulf of Bothnia, and the coastal fringes of the Laurenti de and 

Antarctic ice sheets. Even where the geomorphological evidence is intact it is usually 

only possible to determine the direction and time of transit of the most recent ice sheet, all 

evidence of previous ice sheet transitions being overwritten. 

The rapid improvement of the distribution and quality of sea-level observations 

throughout the Holocene and latest Pleistocene has made detailed modelling of ice sheets 

possible for the first time (Lambeck 1993b, Lambeck et. al. 1996). The vast majority of 

the formalism developed for the problem of glacial rebound has however been devoted to 

forward modelling, so that attempted inversions of the sea-level record to constrain the 

deglatiation process have been largely restricted to an iterative procedure of forward 

modelling and adjustment of the ice model. The detail that may be achieved with such a 

scheme is limited by the resolution of the modelling procedure being used which in some 

cases has proven inadequate. 

Throughout the British Isles the sea-level record is generally of very high quality, 

particularly on the east coast of Scotland where past shorelines are preserved along the 

shores of firths and river valleys, in particular the Forth estuary, the valleys of the Tay 

and Earn Rivers, and the firths of Beauly, Cromarty, Inverness and Moray. In this 
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region the indicators of past sea-level mostly take the form of preserved shorelines 

extending substantial distances along inlets and estuaries, allowing very accurate 

determination of gradients. 

One feature of particular interest is the relationship between the Main Late-glacial, 

High Buried, Main Buried and Low Buried shorelines. Age constraints from pollen and 

carbon-dating place these shorelines at approximately 10 300, 10 100, 9600, and 8700 

years BP respectively (Haggart 1986, Firth & Haggart 1989) and their elevations indicate 

that sea-level in this region oscillated over that period. The nature of these oscillations is 

uncertain since available sea-level observations from other regions during this period are 

dominated by either addition of meltwater or post-glacial uplift, the sheer magnitude of 

these contributions is enough to completely mask any small amplitude features so that it is 

impossible to judge whether this is a global, regional, or local feature. 

One possibility is that the oscillations are due to rebound associated with the Loch 

Lomond stadia!, an extended climatic deterioration from 12 000 years BP onward during 

which a small ice sheet extended back into the upper valleys of the Forth and Tay rivers 

and down into the Clyde estuary (Sissons 1974, 1981). The readvance seems to have 

reached its maximum extent between about 11 000 and 10 500 years BP before retreating 

once again to vanish completely by 9 000 years BP. 

It is equally possible however that they are a feature of the global sea-level, and if 

this is the case, their nature and behaviour could be significant in understanding the 

climate of the late Pleistocene and the mechanism of sea-level change. To distinguish 

between these two possibilities requires a technique for accurately modelling the rebound 

due to the ice sheet over these time periods. The lateral extent of the ice sheet in this 

period is significantly smaller than for earlier phases of the deglaciation process and 

attempts to model its effect have so far been unsuccessful due to poor resolution of the 

global modelling procedure for surf ace features of this wavelength. 

The purpose of the current work is to investigate the various techniques by which 

rebound data may be used to inf er details of the surf ace load at very high resolutions, and 

particularly techniques appropriate to incorporation into a direct inversion scheme. 

The power and flexibility of the spherical harmonic scheme of Cathles (1975), and 

Farrell & Clark (1976) is such that it should not be completely discarded without first 

examining the possibility of extending it to the high-resolution case. Chapter 1 reviews 

the formalism of loading problems and particularly the analytical techniques developed for 

the case of a spherical body. The performance of this global spherical harmonic scheme 

is generally poor when applied to short wavelength loads however, since the power 

spectra for earth models are heavily biased toward harmonics of low degree, and high 

resolution features such as the Loch Lomond readvance require extremely high degree 

approximations to achieve even moderate definition. 
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Spherical harmonic analysis is a common tool in modelling the potential of the 

earth's magnetic field and several techniques (Haines 1985, De Santis 1991, 1992) have 

been developed to extend the global formalism to regional scale problems. The formalism 

of these techniques will be developed and their suitability to high resolution rebound 

problems closely examined. 

For short to medium wavelength features such as the Fennoscandian and British ice 

sheets the sphericity of the earth may be neglected and it may be modelled as a flat semi­

infinite body (Wolf 1984, 1985a, Amelung & Wolf 1994). Chapter 2 details the 

analytical development of three distinct techniques for modelling the deformation of a flat, 

stratified, elastic half-space in three-dimensional Cartesian coordinates. 

Theoretically, the results of these techniques are equally valid but in practice the 

formalism of propagator matrix procedures is very susceptible to numerical instability 

with depth. This is particularly undesirable if the technique is to be used to model a 

larger ice sheet through superposition since the larger ice sheet will stress the earth to far 

greater depths than the component loads. Chapter 2 closes with a discussion of the 

relative analytical and numerical properties of each of the flat earth procedures, and a 

comparison of each against the analytical results for a uniform half-space. 

Propagator matrix procedures rely implicitly on the use of Fourier transforms, and 

the extension to the visco-elastic regime is achieved with the use of the Laplace transform. 

The final results of flat earth modelling procedures are therefore obtained only after 

numerical inversions from the Fourier and Laplace transform domains. Numerical 

inversion of integral transforms carries significant risk of computational error and 

inversion routines and associated parameters must be chosen carefully to guarantee that 

the accuracy and stability of the propagator matrix procedures are not undermined by 

either of the inversions required. 

The Fourier transform is a powerful and widely used numerical tool that is 

generally well understood but requires particular attention when applied to propagator 

matrix procedures of this type. In contrast, inversion of the Laplace transform is a very 

complex issue, particularly for compressible earth models, and though the collocation 

technique of Schapery (1962) provides good results for a large variety of earth models, it 

is prone to introduce small amplitude oscillations over long time-scales and there has 

previously been no means of comparison for its results for rheologies where the normal 

analysis scheme fails (which includes a large class of plausible earth models). 

Chapter 3 examines the implementation of both Fourier and Laplace transform 

inversion schemes and possible sources of error for each, as well as providing several 

means of comparison for the collocation and normal mode techniques for compressible 

and incompressible earth models. 
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The analytical complexity of the propagator matrix techniques developed in chapter 

2 is initially reduced by neglecting pre-stress advection and dilatation. These terms are 

indispensable if the results of our modelling are to have any physical validity however, 

and are reintroduced into the f orrnalism for the propagator matrix procedures in Chapter 

4. The effect of each term singly and combined is considered in the visco-elastic regime, 

the analysis is also extended to the the incompressible case, and finally the procedure is 

tested for stability as part of a superposition scheme. 

Chapter 5 summarises the results of the previous chapters and discusses their 

consequences and potential applications. The chapter and thesis close by considering 

possible refinements that may be made in future implementations to the techniques 

developed here. 
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Chapter 1 

DEFORMATION OF A SPHERICAL BODY BY SURFACE LOADING 

1.0 Introduction 

Deformation of the earth's surface due to loading by the ice sheets and changes in 

loading of the ocean basins is an important factor in calculating the sea-level change 

associated with the exchange of ice and water volumes. Accordingly, an extensive 

formalism has been developed to deal with this problem. For loads of small lateral extent, 

however, this global modelling procedure may not be particularly appropriate or efficient 

and it may be necessary to either adapt the procedure or develop new ones to accurately 

model the high-resolution case. In this chapter, I will briefly review the relevant 

formalism of continuum mechanics and the global modelling procedure itself with 

particular attention to its applicability to small-scale problems, and introduce the Spherical 

Cap Harmonic Analysis (SCHA) procedure developed by Haines (1985) and the Adjusted 

Spherical Harmonic Analysis (ASHA) scheme of De Santis ( 1992). Although these 

procedures were initially developed to model the regional behaviour of the earth's 

magnetic potential they may both be adapted and used with the global f orrnalism to model 

local deformation. 

The first step in developing a mathematical formalism for the deformation of the 

earth is to infer some of the a priori physical properties of the earth at the time scales we 

will be considering. The most obvious of these properties is of course the earth's shape. 

Neglecting ellipticity, topography, and diurnal rotation we may consider the earth as a 

static, spherical body and model its response to surface loading accordingly once we have 

determined the nature of its rheology. 

Seismic travel time data indicate that the earth's elastic properties vary with depth 

and that there are layers within the earth throughout which these properties vary smoothly 

and some depths at which the physical properties change quite sharply (usually thought to 

correspond to chemical boundaries or mineralogical phase transitions). For mathematical 

convenience we will neglect lateral heterogeneities and assume that the various rheological 

parameters are a function only of depth. This allows us to model the earth as a stratified 

sphere whose rheological properties are prescribed throughout a series of layers. In some 

formulations the gradients of density and the elastic moduli are taken to be zero which is 

obviously not the case in the real earth although any function of depth may be closely 

approximated by a step-function if the layering is taken to be fine enough. Neglecting the 

local density gradient has a number of consequences for the validity of our modelling 

procedures and the interpretation of our results ( see for example Kaufmann 1991 , 
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Johnston 1993) but a detailed discussion of these considerations is beyond the scope of 

the current work. 

On seismic time scales the crust and mantle behave as elastic solids while the outer 

core acts as a liquid and the inner core as some sort of slurry. On longer time scales ( of 

about 106 yrs) the mantle seems to convect as a liquid. Rebound data indicate that for 

deformations over glacial time scales ( of 103 
- 105 years) there is an initial 'elastic' 

component of deformation fallowed by an extended period of viscous creep indicating 

some sort of viscoelastic rheology (Lambeck, Smither & Johnston 1997). In fact we will 

assume that the earth (with the exception of the fluid core) is a Maxwell viscoelastic body 

since for such a body the constitutive equations have the simplest possible form consistent 

with the properties discussed above. Petrological and laboratory evidence indicates that 

mantle material actually has a more complicated non-linear rheology (see for example 

Ranalli 1982) but model results obtained assuming the earth to be 'effectively' a Maxwell 

viscoelastic body have so far proven sufficiently accurate to obviate the need to consider 

more complicated models (see for example Lambeck 1993a,b, Peltier & Andrews 1976, 

Wu & Peltier 1983). 

Mindful of these assumptions, in this chapter we will review the theory for the 

deformation of a radially stratified, spherical, Maxwell viscoelastic body under surface 

loading from its foundations in continuum mechanics, paying particular attention to the 

Love number derivation (bearing in mind that the SCHA technique uses associated 

Legendre functions of non-integral degree). We will then discuss the global technique's 

applicability to short wavelength problems and perform a similar derivation and analysis 

of the SCHA and ASHA procedures. 

~ 
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1.1 The Field Equations 

For the moment we consider a general body subject to some surface or body force. 

We will assume that the resulting deformation is small and occurs slowly and steadily, 

ensuring the system is in equilibrium at all times. We will also assume that the system is 

closed to any other external thermodynamic contributions and that there are no chemical 

changes in the system itself. 

Under these assumptions the continuum form of Newton's second law (otherwise 

known as the inertia equation) is: 

V . t + p<O) f = p<O) ii (1.1.1) 

where the (0) superscript indicates the initial value of the relevant function (in this case 

density but this convention will be adopted throughout for other functions) prior to the 

application of the force under consideration. The double dot over the u term indicates 

second derivative with respect to time. 

Equation ( 1.1.1) is the Lagrangian form of the inertia equation, where t is the 

Piola-Kirchoff stress tensor, f is the body force per unit mass, p is the density, and u is 

the displacement. We will restrict our attention to the Lagrangian formulation rather than 

the Eulerian since it is most easily adapted to the modelling of glacial loading problems. 

These equations are valid for a reference frame that rotates with the earth. The body 

forces in this instance include gravitation, centrifugal force, and the Coriolis force. We 

will neglect the latter two effects since diurnal and annual contributions are unlikely to 

have a significant impact on deformation occurring on a glacial time frame (c. 103 - 105 

yrs), so that we are effectively considering a stationary sphere. 

The second of the field equations is the continuity equation which enforces 

conservation of mass within the earth: 

·v-(pu) = 0 ( 1.1.2) 

The last of the relevant field equations is that governing the earth's gravitational 

field. Gravitational acceleration is taken to be the gradient of the gravitational potential </J 

which satisfies the equation: 

V 2 ¢=-4nGp (1.1.3) 

where G is Newton's gravitational constant. 

~ 
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§1.1.1 The Initial State 

We assume that the body we are considering is initially in hydrostatic equilibrium. 

This is not entirely the case in the earth today as is demonstrated by the existence of 

gravity anomalies, but should be a reasonable assumption for the most part. If we also 

assume that initially the only force acting on our body is self-gravitation then the initial 

field satisfies the relations: 

lO) = - p(O) I 

V p (O) = p (O) V q/0) 

V 2 </Jco) = - 4rcGpC0) 

( 1.1.4a) 

(l.1.4b) 

(l.l.4c) 

where pis pressure and I is the Kronecker delta tensor (see Wolf 1991). 

§1.1.2 The Incremental Field Equations 

Rather than modelling the total response of the body to a force it is useful to 

consider only perturbations or increments from the initial state. The various properties of 

a body may be expressed as functions of either current position (the Eulerian formulation) 

or initial state (the Lagrangian formulation). It is easier to express boundary conditions 

using the Lagrangian framework but both are capable of expressing perturbations in the 

quantities we are interested in. 

We will adopt the incremental notation of Wolf ( 1991) given in table 1.1 below: 

Property Lagrangian Formulation Eulerian Formulation 

particle X 
x(l, t) 

position z(x,t) l 

displacement u(x, t) = l(x, t)-x u(x, t) u(x, t) = l -x(l, t) 

function f(x, t) F(l, t) 

initial value fc0\x) = f(x , 0) F c0)(z) = F(z, o) 

material increment fUi>(x) = f(x, t )- f c0)(x) p (o>(z) = F(l, t)- p(O)(x(l, t)) 

local increment f CL1)(x) = f(x, t )- fc0\z (x, t)) p(L1)(z) = F(z, t )- pc0)(z) 

Table 1.1: Notation for local and material increments in Eulerian and Lagrangian forms. 
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Given a function f the material increment f c8>( x) is the change in the function for 

the particle X while the local increment f c.1)(x) is the change in the function at the 

position currently occupied by X . Assuming infinitesimal perturbations the material and 

local increments may be related using a Taylor series expansion: 

f (O) = f (L1) + u . V f (O) 
( 1.1.5) 

which is accurate to first order. 

Substituting this expression into the inertial and gravitational equations ( 1.1 .1) and 

(1.1.3), and noting that for the problem of glacial rebound the acceleration term on the 

right hand side of the inertia equation may be neglected, yields the incremental forms of 

the equations: 

V. t(O) + V ( p (O) g (O) . u) + p (L1) g CO) + p<O) g<t1) = 0 (1 .1.6) 

V 2 </Jct.) = - 4nGp<t1) ( 1.1. 7) 

where g is the acceleration due to gravity and is given by: 

g=V<p ( 1.1.8) 

and is taken to point upwards. 

The local increment in density is given by the incremental form of the continuity 

equation (1.1.2): 

p <L1) = - V . (p<0) u) (1 .1.9) 

This term assumes a particular convenient form inside a region of uniform density where 

it becomes the product of the original density field and the divergence of the deformation 

(also called the dilatation). I will hereafter refer to the component of (1.1.6) containing 

p(t1) as the internal buoyancy term. 

The second term in equation ( 1.1.6) is the pre-stress advection term which 

represents the fact that before the current stress field was applied the body under 

consideration was already under stress due to its own weight as a result of its hydrostatic 

initial condition. The pre-existing stress field (the pre-stress) advects with the deformed 

material within the body and is super-imposed by the new stress field. 

The pre-stress and internal buoyancy terms are both crucially important in assuring 

the physical meaningfulness of our modelling, particularly for deformations of the scale 

that typically occur in analyses of glacial rebound. The nature and magnitude of their 
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effect will be discussed extensively when we come to model the deformation of a flat 

semi-infinite half-space in chapter 4. 

The incremental field equations take a simpler form inside a liquid since an inviscid 

material cannot support any shear stresses and there is no dilatation since a fluid can 

instantaneously move to dissipate any increase in pressure ( except in the case where the 

increase is hydrostatic). Since there is no dilatation there will be a local density gradient 

(radial in the case of a sphere, vertical in the case of a flat semi-infinite half-space). From 

(1.1.9) we see that for a spherical body the local change in density is given by: 

(
0 p(O)) 

P(L1) = - -- U = -p(O)' U dr r r (1.1.10) 

where we have used the prime(') to denote differentiation with respect tor. 

Using ( 1.1. 6), ( 1.1. 7) and ( 1.1.10), noting that there is no dilatation, and setting 

t <O'J = 0 yields the incremental field equations for an inviscid body such as the core: 

V-u =0 ( l.1.11) 

_ v( p (O) g <O) . U) + p (O)' Ur g <O) _ p (O) g CL1) = 0 
(l.l.12) 

V 2 q/..1) = 4,rGp(O)' Ur ( l.1.13 ) 



Deformation of a Spherical Body by Su,face Loading Page 14 

1.2 Boundary Conditions 

Throughout an elastic body the absence of cavitation, cracking and slip requires that 

the deformation, gravitational potential, and normal stress be everywhere continuous. At 

a layer boundary, the partition between two different rheological regimes, there may be a 

discontinuity in the density or elastic moduli of the material. Regardless of any such 

inhomogeneity, given the vector normal to the boundary, n, the quantities ui, q/'1) , and 

L, i n;° l tij"l , and n <0J - ( V ¢/M - 4 ;rGp<0lu) must be continuous across the boundary. The 

third of these boundary conditions is obtained by integrating the inertia equation ( equation 

(1.1.6)) and letting the thickness of the pillbox approach zero while the last is given by 

repeating this integration, applying the convergence theorem, using the form for the 

internal buoyancy term given in (1.1.9), and letting the thickness of the pillbox again 

approach zero ( see Cathles 197 5, p 17). Doing so yields: 

0 = i V · ( V ¢ (6.) - 4n-Gp<0lu )dv = l ( V ¢ (6.) - 4n-Gp<0lu) · da 

= dAn · [ V 9<"l -4n-Gp<0lu J: 
(1.2.1) 

Letting the height of the pillbox approach zero causes the area of the side of the cylinder to 

vanish and we get the boundary condition we require. Note that for a phase boundary the 

boundary conditions are different since ( 1.1.9) no longer applies the effect of this 

contribution has been considered for the spherical case by Johnston, Lambeck & Wolf 

( 1996) but is beyond the scope of the present work. 

We will assume that these boundary conditions hold at all internal boundaries except 

the core-mantle and free surface boundaries which we will discuss shortly. 

It should be noted that in the case of a stratified sphere, the normals to the layer 

boundaries are simply radial vectors so that the third of the boundary conditions given 

above corresponds simply to continuity of the radial components of shear stress, tre and 

trrp, and the radial stress itself, trr. Analogously, for a flat, stratified half-space the 

condition guarantees continuity of the vertical components of shear stress, txz and tyz , and 

the vertical component of stress tzz . 

At the core-mantle boundary the situation is complicated (Dahlen 1974, Dahlen and 

Fels 1978) by the presence of a thin boundary layer inside which the dilatation is non-zero 

and the radial and tangential components of deformation change rapidly. If this layer is 

neglected then the deformation appears to be discontinuous across the core-mantle 

boundary. The perturbation to the gravitational potential and its gradient are continuous 

and smooth through the boundary layer so that the potential is continuous across the 

boundary. Since the core-mantle boundary layer represents a chemical transition and is 

~ 
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therefore governed by (1.1.9), the effective discontinuity in the gravity perturbation is a 

function of the effective discontinuities in density and radial deformation. The 

mathematical implementation of these boundary conditions will be discussed in greater 

detail during the spherical harmonic formulation in section 1.5. 

For a flat semi-infinite half-space additional internal boundary conditions are given 

by a simple physical principle: all perturbations must tend to zero as distance from the 

source of deformation tends toward infinity. 

At the surface we will restrict our attention to the case of an external force applied 

normal to the surface of the body for which there is no traction, in particular a surface 

load whose initial force per unit mass would be gf) , the gravitational acceleration of the 

body at the surface (in both the spherical and the flat earth cases this value will be constant 

over the free surface). Outside the body we also have that p<!J.) = 0 and the local 

increment in gravitational potential satisfies Laplace's equation (V2 q}i1) = O ). Our other 

surface boundary conditions are given by observing that perturbations to gravity and 

potential must tend towards zero with increasing distance from the body. The 

mathematical formulation of the surf ace boundary conditions for a spherical body will be 

discussed in more detail in section 1.5 .3. 

,.. 
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1.3 Constitutive Equations 

§1.3.1 Constitutive Equation for an Elastic Body 

For deformations with sufficiently small gradients of displacement in a Cartesian 

coordinate system the various components of strain, Eu , are defined: 

1 (dui du1) 
Eu = 2 dx

1 
+<Ix; 

(1.3.1 ) 

where the ui represent the corresponding components of displacement (see for example 

Fung 1965). The material increment in stress , t ( o) , is related to the strain by the 

constitutive equation. For an elastic solid the constitutive equation has the form: 

i(0
) = .,1,(V · u )I+ 2µE 

( 1.3 .2) 

where .,l andµ are the Lame parameters of the body. Noting from (1.3.1 ) that 
3 

V · U = L £kk we may rewrite (l.3.2) in component form: 
k =l 

t~o) = A( ~ J s kk) + 2µ £ii 

3 

where we have adopted the Einstein summation convention £kk = L 
k = l 

Setting i = j in (1.3.3) and summing, we see that: 

tli) = (3A + 2µ) £kk 

which shows the effect of the bulk modulus of the body K = A+ 2µ/3 

§1.3.2 Constitutive Equation for a Maxwell Visco-elastic Body 

(1.3 .3) 

£kk . 

(1.3.4) 

We wish to model the deformation of the earth which initially has shear strength like 

an elastic body but under continuous stress loses its rigidity and behaves something like a 

Newtonian fluid. For such a material the constitutive equation has the form: 

µ ( 8- -tli)) ( · ) 2 · i ~o) + 7J t ~o) - 113 = A 8 iJ £kk + µsu 
(1.3.5) 

where T] is the viscosity of the fluid. 

Setting i = j in (1.3.6) and summing yields a system directly equivalent to (1.3.4): 

i~) = (31 + 2µ) Ekk (1.3.6) 

~ 
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§1.3.3 Integral transforms 

A useful tool in the solution of differential equations of the form of ( 1.3 .5) is the 

integral transform. Using integral transforms translates a differential equation into a 

corresponding algebraic equation which may be solved using standard techniques and the 

resulting expression inverted to yield the desired function. In the time domain for 

example, it is often more convenient to mathematically model the behaviour of the Laplace 

transform of a function in the frequency domain rather than the function itself and then 

invert to yield the desired result in the time domain, particularly to model the behaviour of 

a Maxwell fluid (see for example Biot 1965, Peltier 1974). Similarly, in the spatial 

domain Fourier and Hankel transforms are used to simplify the problem being 

considered, particularly when modelling the behaviour of an elastic solid (see for 

example, Sneddon 1951, McConnell 1968). 

The Fourier and Laplace transforms of a function f and their corresponding 

inverses are defined (see for example Spiegel 1968): 

:F(J(x)) = J( v) = r f(x)e- ;vxc1x .r-l (J( v)) = 2~ r J( vkvxdv = f(x) 
(1.3.7) 

L(i(t)) = ](s) = f f(t)e-"dt .l-
1(J( s )) = - 1 . liil!, r + ff 1( s) est ds = f( t) 

21tl T • Jc-iT 

where the constant c used in the bounds of the last integral is chosen to be larger than 

Re (sa for all the singular points, Si' of J(s) . 
These transforms have the very desirable property of transforming differentiation 

into an algebraic operation (again see for example Spiegel 1968): 

.r(t)=ivJ(v) L( dt) =s](s)- J(o) (1.3.8) 

where it should be noted that for any incremental quantity f , we have f( 0) = 0 . 

The singular points or poles of the transform function , J, are the points in the 

complex plane at which the function becomes undefined (that is, its magnitude becomes 

arbitrarily large as it approaches the pole). A pole si of J is said to be of order mi if mi 

is the smallest integer such that }LIT}; J(s)(s - si)m; is finite ; it is said to be an essential 

singularity of J if there is no finite value of mi for which this condition holds. The 

corresponding residue, ri , of J is then defined: 

~ 
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dm ·-1 ( ) 1 • I ~ mi 
r-= hm s s-s. 1 I ~ \ • s • s; dsm;- I f( ) ( 1) (1.3.9) 

Residues are particularly important in the calculation of the inverse Laplace 

transform since the most convenient technique for evaluating the inverse integral given in 

(1.3.7) is by closing a path to include all of the poles of the function (assuming that they 

are distributed through a bounded region), and then invoking the residue theorem (see for 

example Kreyszig 1983). The residue theorem states that the integral of a function around 

a closed curve is equal to the sums of the residues of the poles of the function that lie 

inside it (this assumes that they are distinct and that none of the singularities are essential). 

In the case of the inverse Laplace transform the function est has no poles so all of 

the poles of the integrand must be due to J(s). Using a Bromwich path (see for example 

Krylov and Skoblya 1977) to close the curve of integration means that the inverse integral 

is simply the sum of the residues of the integrand, which are themselves related to the 

residues of J(s) (the integral around the closure approaches zero for sufficiently large 

values of T by the Jordan Lemma). 

§1.3.4 Applying the Correspondence Principle to a Maxwell Fluid 

Laplace transforming ( 1.3 .5) and ( 1.3 .6) yields the alternative form for the 

constitutive equations for a Maxwell visco-elastic body: 

~(~)( )- £\t~(s) = 2µs (~-{ )- ~jt\is))= ~*( )(~-{ )- ~jt\ls)) 
t LJ S i S + µIn £11 S 3 2µ S £11 S 3 (1.3.10) 

r1f)( s) = ( 3 J + 2µ) t\l s) (1.3.11) 

wheres is the Laplace transform variable. 

Substituting (1.3.11) into (1.3.10) yields the transformed constitutive equation for a 

Maxwell fluid: 

t~8l(s) = l*(s)( ~jEkk(s)) + 2µ.(s)Eis) (1.3.12) 

which may be re-written: 

f(
8)(s) = l*(s)(V · ii(s))I + 2µ*(s)E(s) (1.3.13) 

This is directly analogous to (1.3.2) so that the constitutive equation for a Maxwell fluid 

may be transformed to a form identical to that of an elastic solid with Lame parameters 

dependent on sand related to the original values by the equations: 

... 
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~*( ) µs µ s = s + µ/ ry (1.3.14) 

i'(s)= AS+%(A+2hµ) (1.3.15) 

Comparing (1.3.6) with (1.3.4) we see that the bulk modulus of the material is 

unchanged and that the constitutive equation for a Maxwell viscoelastic fluid is equivalent 

to that of an elastic solid with s-dependent Lame parameters. 

Numerically inverting from the frequency domain back to the time domain is 

however not so straightforward in the case of the Laplace transf arm. From the form of the 

inverse transform given in (1.3.7) we see that a direct inversion is only possible if the 

transformed function is known to have a particular form for which an inverse has been 

calculated analytically or if all the singularities of the transformed function and its residues 

at the poles are known. 

From the farm of the Laplace transform in ( 1.3. 7) we see that if the function under 

consideration, f(t), is changed dramatically over some appropriately small region then the 

value of the transform function, ]( s) , will not be significantly affected. The value of the 

inverse transform at any point is therefore very strongly dependent on the exact nature of 

the transform function, small changes in the behaviour of J( s) may result in significant 

changes in f(t) (see for example Krylov & Skoblya 1977). This property of Laplace 

transforms makes the problem of numerically calculating the inverse transform 

particularly delicate and every effort must be made to ensure that any numerical error in 

the calculation of the transform function is as small as possible. 

Since the exact form of a function and the nature and position of all its singularities 

are both rather difficult to determine numerically the problem is often simplified by 

making a series of assumptions about the form of the transform function ( see for example 

Mitrovica & Peltier 1992). By calculating the value of the Laplace transformed 

deformation, ii( s) , of the body for a number of different values of s we can approximate 

the s-dependence of u(s) and invert to get the original time dependent function u(t). The 

problem of determining the deformation of a Maxwell visco-elastic body can therefore be 

simplified to that of determining the deformation of an elastic solid under a surface load 

for a range of different Lame parameters and inverting to the time domain. The numerical 

inversion of the Laplace transform will be discussed in greater detail in section 3 .2. 

... 
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1.4 Properties of Spherical Harmonic Functions 

Mathematically modelling the behaviour of a spherical body is most conveniently 

done in spherical polar coordinates (see for example Farrell & Clark 1976). One of the 

most natural tools for such an analysis are the spherical harmonic functions. We shall 

follow the development of Johnston (1993) 

§1.4.1 Spherical Harmonic Functions 

The normalised spherical surface harmonics are a set of orthogonal harmonic 

functions on the surface of sphere. They arise naturally in the mathematical analysis of 

gravitational and magnetic potentials or any conservative field. 

By separation of variables we see that Laplace's equation in spherical polar 

coordinates is 

2 1 a ( a!) 1 a ( . a f) 1 a2 f 
t.f(r, 0, IP)= V f = ,2 dr r2dr + sin 0 d0 sm 8 d0 + sin2 0 d<p2 (1.4.1) 

where r is radial distance from the origin, 0 is co-latitude, and cp is longitude. This 

equation has linearly independent solutions of the form: 

fnm(r, 0, <p) = ( anm r" + b nm r-(n + 1l)[Anm cos ( m<p) + Bnm sin ( m<p)] Pnm( cos 0) ( 1.4.2) 

where anm, bnm, Anm, and Bnm are arbitrary constants, and Pnm is the associated Legendre 

function of degree n and order m (see for example Abramowitz & Stegun 1972) which 

satisfies Legendre's associated differential equation: 

Jx((1 -x2
) :i) + (n(n + 1 )- 1 :~2 )y = 0 (1.4.3) 

The fnm given in (1.4.2) are finite, continuous and single-valued at all points inside 

a sphere only if all b nm are zero and both m and n are positive integers. In this instance 

the Pnm are in fact polynomials (see for example Spiegel 1968) and have the property that 

for \ m \ > n , Pnm( x) = 0 . Restricting our attention to the case b nm = 0 , m and n integers 

such that Im I < n we may define fully normalised spherical surface harmonics: 

ynm( e, 'P) = Knmpnm( cos 0) cos mcp 
sin lmlcp 

where the constant term Knm is defined 

n>m >O 

O>m>-n 
( 1.4.4) 

.... 
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I 

Knm= 
( 2n + 1) ( 2 - 8mo) r( n - I m I + 1) '

2 

r(n+lml+ 1) ( 1.4.5) 

By the theory of Sturm-Liouville boundary value problems (see for example Boyce 

& DiPrima 1977) these functions satisfy the relation: 

r d0 sin 0 f' d({J Yn,mi( 0, ({)) Yn,mi( 0, ({J) = 4n- 8n, n, 8m, m, ( 1.4.6) 

which makes them particularly convenient when trying to approximate a function over the 

surface of a sphere using least squares (see for example Kreyszig 1983). 

Another important property of Legendre polynomials (which correspond to the case 

m = 0 ) is their generating function (see for example Spiegel 1968). Given two scalar 

quantities, t and x, with x lying in the region [-1, 1] , the following equivalence holds 

1 00 

✓ 1 -2tx + t2 = n~O Pn(x)tn (1.4.7) 

From the theory of harmonic functions we have that any suitably well-behaved 

function (i.e. continuous, differentiable and non-singular almost everywhere) over a 

closed, regular region may be approximated to arbitrary accuracy in that region with an 

harmonic function (see, for example, Gilbarg & Trudinger 1983). So that over the 

surface of a sphere any such function may be written as an infinite sum of surface 

harmonics, i.e. there exist coefficients Fnm such that: 

)irp_ r d0 sin 0 f' d(f) (F~ 0, q,i)-F( 0, q,i)r = 0 ( 1.4.8) 

where the functions FN have the form: 

N n 

Ftv( e, cp) = n~O m~n Fnm ynm( e, cp) (1.4.9) 

In fact using the method of least squares to minimise ( 1.4.8) for each value of N and 

applying (1.4.6) we see that the Fnm are given by the relation: 

1 f Jr • f 21t 

Fnm= 4n Jo d0s1n 0 Jo dcp Ynm(e, <p)F(e, cp) (1.4.10) 

and are notable for being independent of N. 

111111 
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A spherical surface harmonic of degree n is defined as any function of the form: 

Yn( 0, cp) = mtn cnm Ynm( 0, cp) 

where the coefficients cnm satisfy the constraint: 

n 

""' c2 = 1 £..J nm m=-n 

The gradient of a spherical harmonic function may be written: 

0 ay 1p ayn 
VYn( 0, cp) = r ae + rsin 0 cfqi 

(1.4.11) 

( 1.4.12) 

(1.4.13) 

(see for example Spiegel 1968), where 0 and {p are the unit latitudinal and longitudinal 

vectors respectively and we have used the fact that surface spherical harmonic functions 

do not vary radially and so have no radial component to their gradient. 

From (l.4.2), (1.4.3) and (1.4.4) we have the following properties of surface 

spherical harmonic functions: 

v2(r' Yn( 0, <p)) = 0 (1.4.14) 

v2 Yn( 0, <p) = ~ si~ 0 l0(sin 0 t~) + 1_ ~2y~ 

- - n ( n + 1) Y n( 0, <p) 
(1.4.15) 

2(0 Yn) n(n + l) a Yn l (a Yn 02Yn) 
V o 0 = - r2 a 0 + sin 2 e o 0 + 2cot e o qi (l.4.16) 



Deformation of a Spherical Body by Surface Loading Page 23 

1.5 Calculating the Deformation of an Elastic Sphere 

In spherical polar coordinates the most general vector field ( and in particular the 

displacement field for a given surface loading over a spherical body) may be written: 

u(x) = f U(x) + VV(x) + f X W(x) (1.5.1) 

where f is the unit vector in the radial direction. The three components of the field are 

known respectively as the spheroidal, poloidal and toroidal modes. In the case of a radial 

load with no shear stress the toroidal component of the displacement field must be zero. 

§1.5.1 The Spherical Harmonic Formulation for an Elastic Solid 

Since any finite, differentiable scalar function may be written as a sum of 

components of the form of (1.4.2), using the notation of (1.4.9) we may substitute this 

result into (1.5.1) to show that the displacement field of a spherically symmetric body 

may be written as an infinite sum of the form: 

u (r, 0, <p) = .'tJ~r [r un(r) Yn( 0, <p) + rvn(r)VYn( 0, <p)] (1.5.2) 

where a is the radius of the sphere being considered, in our case the earth. The functions 

un(r) and vn(r) are, respectively, the radial and tangential spherical harmonic coefficients 

of deformation. 

Being a suitably well behaved scalar function, the local increment in potential may 

be written as an infinite sum of the form: 

qi~)(r, 0, <p) = nto ( ~ r </>n(r) Yn( 0, <p) (1.5.3) 

From (1.5.2) and the form for the divergence of a vector field in spherical polar 

coordinates (see for example Spiegel 1968) we see that the dilatation, L1 = V· u, may be 

written as the infinite sum: 

L1 = V • u = f (L)n y [ ' n + 2 n( n + 1) l 
- o a n Un + r U - ----'--~ V 

n - n r n 
(1.5.4) 

where, as in equation (1.1.10) we have used the prime (') to represent differentiation with 

respect to r . 

Similarly, we may substitute (1.5.2) into the spherical polar representations of the 

various components of strain (see for example Goodbody 1982) to show that they may 

also be expressed as infinite sums of the form: 
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Err= to (~r Yn(u~ + ~ un) (l.5.5a) 

= l ~ (L)n dYn (un , n - I ) 
Ere 2 n~O a de r + vn + r V n ( l.5.5b) 

1 
00 ar ( ) Er<p = L I.. n n Un , n - I 

2 Sin 0 n = O (a) ci7ji r + Vn + r V n ( 1.5 .Sc) 

00 

( )n I ( 0
2 

Yn) E00 = n~ ~ r Un y n + Vn O (J2 (l.5.5d) 

a2r 00 

) 1 a yn vn n 
C' - ""'"" (L n - u y + V cot 0 -:\ e + . 2 0 -:\ m -
c<p<p - ./-J a r n n n o Sill o 't' n=O 

(l.5.5e) 

_ ~ ( r)n vn ( a
2 

yn O yn) E0 - ./-J - -- -- - cot 0 
<p n=O a rsin 0 O(f)00 ci7ji ( 1.5 .Sf) 

The radial component of the strain tensor, f · £, contains no toroidal component and 

since the material comprising the body has a linear rheology, the radial component of the 

stress tensor must also have no toroidal component. The radial component of the material 

increment in stress may the ref ore also be written as an infinite sum of spherical harmonic . 

components: 

f-t(SJ = JJ~r ( Tm(r) Y n( 0, <fJ)f + rT 11n(r)V Y n( 0, <fJ)) (1.5.6) 

In practice we are interested only in the problem of calculating the deformation of a 

Maxwell visco-elastic body which, as we saw in the previous section, may be reduced to 

that of calculating the deformation of an elastic body for a range of Lame parameter values 

in the frequency domain and then inverting back to the time domain. From (1.5.5), 

(1.5.6), and the constitutive equation for an elastic body (1.3.2), we see that the spherical 

harmonic coefficients of stress must satisfy the relations: 

T = A(u' + n + 2 u - n(n + 
1
) v) + 2µ(u' +nu) 

m n r n r n n rn (l.5.7) 

T ( Un , n - I ) 
0n = µ r + vn + r vn (1.5.8) 

"111111 
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Substituting ( 1.5 .3) into the incremental gravitational equation ( 1.1. 7), using 

(1.1.9), and noting that in a stratified body the initial density field does not vary laterally 

(so that in the spherical case pC11
) = -pC0) V · u - p(0

)' ur ), yields the following second order 

differential equation governing the spherical harmonic coefficients of gravitational 

potential: 

2(n + 1) / p(o)' 2 n(n + 1) 
,+('+_______;_-~,+( =4nGp(0) u' +-u + n+ u ----v 
'f' n r 'f'n n p( O) n r n r n 

(1.5.9) 

This may be converted into two first order differential equations by introducing a 

new quantity, q (see for example Longman 1962, 1963, Peltier 1982 and Wu & Peltier 

1982), associated with the perturbation in gravitational acceleration. The form for this 

perturbation is given by the incremental form for the equation for gravitational acceleration 

( 1.1.8) and may be expressed in terms of spherical harmonic components: 

g C~) = f · V q/~) = nio (~r gn(r) Y n( 0, (p) (1.5.10) 

The form for the spherical harmonic components of the related quantity q are then: 

q = ¢n - g - 4 n G p(0) u = ,+( + n + l i+i - 4 n Gp( 0) u 
n r n n 'f'n r 'f' n n (1.5.11) 

which, when substituted back into (1.5.9) yields: 

q' = n(n + 1) (¢n -4nGp(o)v) + 4nGp(o) un - n + 1 q 
n r r n r r n (1.5.12) 

The form for this equation is different from that given by Longman (1962, 1963), and 

Wu & Peltier (1982) because a factor of (~r has been removed from all spherical 

harmonic coefficients. 

Applying the general form for the divergence of a tensor in spherical polar 

coordinates (see, for example, Goodbody 1982) to the material increment in stress given 

in (1.5.6), using the identities (1.5.7) and (1.5.8), and applying the properties of 

spherical harmonic functions given in (1.4.11-14), results in: 

f.(v ./8))= t (L)nY IT' +nT - n(n+l)T 4µ(n-l) 4µ , 2µn(n+l) 
n = o a n m r m r 0n + '? Un + -r U + -----=---___:_ V ..- n .,.2 n 

(1.5.13) 

..... 
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{J.(v./ 8))= t (L)ndYn T' +n+3T Tm 2µ(1-n) 2µ, 2µ(n
2
+n-I) 

n = o a d 8 en r 0n + r + ..,2. Un - r Un - .2 V n 

(1.5.14) 

These expressions may be substituted back into the incremental form of the inertial 

equation ( 1.1.6) to give: 

n (n + 1) 4 µ (n - 1) 4µ ( ( <Pi ) 
T' + ny -~--T +-~-u +-u' +p(0) q +4nGp 0)u _ __.!: 

rn r m r 0n -,2 n r n n n r 

+ p(o) un( f g(o) - g(o)') + n(n r+ I) vn( 2f - g(o) p(o)) = 0 

(1.5.15) 

, n + 3 Trn 2µ( l - n) 2µ , 2µ(n 2 + n - l) p(o) g(o) p(o) 
T 0n + r T 0n + r + r2 Un - r Un - r2 V n - r Un + -;::- <p n = 0 

(1.5.16) 

where we have used equation ( 1.5 .11) to substitute for the perturbation in gravitational 

acceleration, and g(o) is the initial value for the magnitude of the acceleration due to 

gravity which we may see from ( 1.1.8) is given by g(0
) = - <p(o)' for a radially symmetric 

earth. This may be substituted into the initial gravitational equation ( 1.1.4c) to show that: 

g(o)' = 4nG p(o) _ 2 g(o) (1.5.17) 

This expression may in turn be substituted back into ( 1.5 .15) and ( 1.5 .16) to produce a 

closed set of differential equations comprising (1.5.7), (1.5.8), (1.5.11) , (1.5.12), 

( 1. 5 .15), and ( 1. 5 .16). 

This form for the system of equations is almost identical to that given for the fully 

non-adiabatic case by Johnston (1993), whose derivation we have largely followed, and 

is analogous to that given by Longman (1962). 

The system of equations may be re-written in Runge-Kutta form by defining the 

vector: 

Yn = ( Un, vn, Tm' Ten, 1/>n, qn r (1.5.18) 

which satisfies the differential equation: 
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dyn = An(r)yn 
dr 

The entries of An may be calculated from the formulae given above: 

2A n An(n+ 1) 1 0 0 - /Jr - r /Jr /3 
1 1-n 0 1 0 r r µ 

4 r - 4p(D)g(o) n(n +I) (p(o)g(o) r-2r) - 4µ - n n(n +I) p(o) 

,2 r ,2 /Jr r r r 
A -j 

n - (o) (o) 2 ( ) p(o) 
Pg;- r ~ n(n+l)(r+µ)-2µ -fr _n~3 --r 

4nGp(0) 0 0 0 n+l - r 

4nGp(0) n(n + 1 )4nG p(0
) 

0 0 
n(n + 1) 

-r r r 

where f3 = K + 4 µ/3 and r= 3K µ/ f3. 
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(1.5 .19) 

0 

0 

-p(o) 

0 

1 

n+l --r 
J 

(1.5 .20) 

Applying the spherical harmonic coefficient notation to the incremental core 

equations (1.1.11), (1.1.12) and (1.1.13) yields the following system of differential 

equations for the spherical harmonic coefficients in the core: 

<tfn=qn-(nt I+ 4,rGp(o)) 
g(o) <Pn 

, = I n ( n + 1) _ l 4 nG p( 0) ]

2 

) -( ( n + l) 4 nG p( o)) 
qn ,2 g(o) <Pn r2 + g(O) qn 

T =0 m 

Ten= 0 

</Jn 
Un= g(o) 

v = r u' + n + 2 u 
n n(n+ 1) n n(n+ 1) n 

(1.5.21) 

(1.5.22) 

(1.5.23) 

(1.5.24) 

(1.5 .25) 

(1.5.26) 
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These equations do not apply if the increase in pressure is hydrostatic (i.e. for the 

case where n = 0 ) where the dilatation and material increment in the stress tensor are both 

non-zero. 

Equations (1.5.21) and (1.5.22) may be solved as a Runge-Kutta system with two 

independent solutions. One of these solutions produces a singularity at the origin when 

substituted into (1.5.25) and so may be neglected. Assuming that for small values of r 

the solutions take the form of a power series gives the following form for the bounded 

solution: 

</Jn = CI 
qn =Cr(~ -4:irG p(o)) 

g(o) (1.5.27) 

where C1 is a constant to be determined from the boundary conditions at the surf ace via 

the core-mantle boundary. Although the form for gn given in (1.5.27) is not bounded at 

the origin, the local increment of gravitational acceleration, which from ( 1.5 .10) has the 

form gn r'1, is well-defined for all values of r for n > I (again the case n = 0 must be 

considered separately). 

The behaviour of the solutions in the mantle and at the surface is insensitive to the 

properties of the inner core so that the simplifying assumption that the inner core is 

comprised of an inviscid fluid will have a negligible effect on the predicted deformation of 

the mantle and lithosphere. 

§1.5.3 Boundary Conditions 

Our assumption of radial symmetry means that the boundaries between layers with 

different rheological properties will be a series of concentric spheres centred for 

convenience on the origin. 

As was discussed in section 1.2 the boundary conditions within an elastic body 

consist of the requirement of continuity in the radial stress, gravitational potential, and 

displacement throughout the body, and the gravitational boundary condition given in 

equation ( 1.2.1). The first three conditions translate to continuity of the corresponding 

spherical harmonic coefficients defined in equations (1.5.2), (1.5.3) and (1.5.6). If we 

then consider the continuity of the spherical harmonic components of the quantity q 

defined in equation ( 1.5 .11) we see that: 

[qn(r)]: =[¢n(r)r- 1]:-[gn(r)J:-4nG[p(?)(r)un(r)]: (1.5.28) 

which is equal to zero from equation ( 1.2.1) 

"11111111 
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At the core-mantle boundary however the situation is slightly more complex. The 

fact that the core is incapable of supporting shear-stress leads to an apparent discontinuity 

in displacement and radial stress across the boundary. This apparent inconsistency 

between the governing equations in the core and mantle can be reconciled by inserting a 

thin boundary layer just below the core-mantle boundary in which the dilatation is non­

zero and both the radial and tangential components of deformation change rapidly. We 

still have smoothness and continuity of the gravitational potential, however, and the 

perturbation to gravitational acceleration is given by the discontinuity in density and the 

radial deformation as in equation (1.5.28) (see for example Dahlen 1974, Dahlen & Fels 

1982). 

Under the conditions given above for the boundary layer, the incremental form of 

the field equation ( 1.1.6) within this region will be dominated by the divergence of the 

stress tensor and the pre-stress advection term. Neglecting the other terms in the 

equation, integrating and using the fact that the stress perturbation below the boundary 

layer is zero gives the boundary condition for radial stress, giving us a complete system 

of core-mantle boundary conditions: 

( +) <Pn ( b-) 
Un b = g(O)( b) + C3 

vn(b+) = C2 

Tm(b+) = Tm(b-) + p(o)(b-)g(o)( b )[ un(b+)- un( b-)] = p(o)( b-)g(o)(b) CJ 

T0n(b+)=O 

</Jn ( b +) = </Jn ( b -) 

qn(b+) = qn(b-) 

(l.5.29a) 

(l.5.29b) 

(l.5.29c) 

( 1.5.29d) 

(l.5.29e) 

(l.5.29f) 

The constants C2 and C3 represent the apparent discontinuity in the radial and 

tangential components of displacement across the boundary layer. Their values and the 

value of C1 will be determined by the boundary conditions applied at the surface of the 

sphere. 

We will restrict our attention to the case of a unit load applied to the surface of the 

body, larger loads may be modeled by scaling the results of our analysis accordingly. 

Such a load will exert no horizontal traction at the free surface and we have continuity of 

radial stress, yielding the surface boundary conditions: 
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T0n(a)=O (1.5.30) 

Tm (a) = - g( 0) (a) (1.5.31) 

Outside the body p(~) = 0 so that the local increment in potential satisfies Laplace's 

equation. Substituting into (1.5.9), integrating, applying the condition that the increment 

in potential must approach zero as radial distance tends to infinity, and using the definition 

of gn yields the following equations outside the body (i.e. for r > a): 

,1/=_2n+l"" 
'rn r 'rn 

g =n+l,1\ 
n r 'rn 

(1.5.32) 

(1.5.33) 

To calculate the local increment in density at the Earth's surface under a load of 

magnitude Yn ( 0, (fJ) , we assume that the added mass of the load lies inside a layer of 

negligible thickness just above the earth's surface. We then calculate the change in 

density for a small pillbox of material of height Afi and volume ~ V = ~hM (where M 

is the area of the ends of the pillbox) that includes the added mass but lies mostly below 

the earth's surface. The mass of the load material is, to first order, Yn ( 0, (fJ) M . Letting 

the volume of the pillbox become arbitrarily small but keeping the mass added constant 

we may substitute back into (1.1.9) to show that the local increment in density is given: 

P~L!) = - y' · (p<O) Un) + Yn ( 0, tp) t (1.5.34) 

Substituting this into the gravitational equation, (1.1.7), allowing the dimensions of 

the pillbox to approach zero, integrating, and applying the divergence theorem gives: 

-4nGdA yn ( 0, q:,) = i V · ((v ¢ t -4nG p (O) Un )dv 

= dAn · [(v ¢).-4nGp(O) unI 
(1.5.35) 

We can use equations (1.5.11) and (1.5.32) to rewrite (1.5.35) entirely in terms of 

spherical harmonic coefficients. Doing so yields: 

gn(a-) + 4n-G p(o)(a-)un(a)- ; ¢n(a-) = qn(a-) = -4nG (1.5 .36) 

Equations (1.5.30), (1.5.31) and (1.5.36) comprise the surface boundary 

conditions for a load on the surface of a sphere and may be combined with the boundary 
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conditions at the core mantle boundary given in (1.5.27) and (1.5.29). There will be 

three linearly independent vector solutions and the solution we want will be a linear 

combination of these three. For example let Yi be the solution to the system for the case 

when C1 = ~J then our solution vector y may be written y = Ciyi . 

§1.5.4 Love Numbers 

Love numbers are a useful tool in modelling the response of a spherical body to 

loading by surface harmonic functions. They are a set of independent, dimensionless, 

depth-dependent quantities defined in terms of the gravitational potential of the surface 

load. If the gravitational potential of the load may be written as a sum of spherical 

harmonic components lf/n (r)( ~ r Yn ( 0, <p) then the Love numbers (see for example Love 

1927) satisfy the relations: 

u(r, e, ¢) = t ;)~ W}n(r) Yn( e, cp)f + ln(r) V Yn( e, cp)] 

tl(r, 0, ¢) = "t) 1 + kn(r))lfln(r)(n Y" ( 0, cp) 

(1.5 .37) 

(1.5.38) 

where the kn 1/fn Yn term represents the contribution of the perturbation in gravitational 

potential due to the load . 

The gravitational potential at a point (r, 0, <p) due to a distribution of mass with 

spherical harmonic components Yn ( 0', <p') over the surface of a sphere of radius a is: 

.to lfln(r)( ~r Yn( 0, cp) = Ga2 

0 

" r Yn( (f, cp')dcp' 
d(/ sin (f Jo J a2 + r2-2 rcos a (1.5.39) 

where a is the angle between the rays from the origin that pass through the points 

( a, 0', <p') and (r, 0, <p) . The form of the cosine of a may be deduced from the law of 

cosines for a spherical triangle (see for example Spiegel 1968) and is given in equation 

(1.5.44) below. 

Substituting (1.4.6) for the denominator in the integrand in equation (1.5 .39) and 

applying the orthogonality relation for spherical harmonic functions yields: 

...... 
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1//n(r)( ~r Y" ( 0, ¢)=Ga f d(f sin (f i'' dip' Y" ( (f, t/!').t ( ~r Pn.( cos a) 

= Ga(~)" r d(f sin (f i'' dip' Yn( (f , t/!')Pn(cos a) 

= 4 Jr a G (L)n y ( 0 m) 
2n+l a n ,"f-' 
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(1.5.40) 

By direct comparison with (1.5.2) and (1.5.3) we see that the Love numbers may 

be related to the spherical harmonic coefficients of deformation and gravitation by the 

equation: 

hn(r) 

ln (r) 
l +kn(r) 

§1.5.5 Loads of degree 1 or 0 

_ 2n + 1 
- 4naG 

g(0)(r)un(r) 

g(0)(r)vn(r) 

¢n(r) 
(1.5.41) 

Surface loads of degree 1 require separate treatment (Farrell 1972) since for such a 

load the earth's centre of mass is translated. The combined centre of mass of the earth and 

load remains stationary however, and surface deformation can only be measured relative 

to the earth's centre of mass. This is not a problem for loads of other order since the 

centre of mass of such loads coincides with the centre of mass of the earth. 

For the degree 1 problem the differential equations have a non-trivial solution to the 

homogeneous boundary value problem (the case where at the surface of the sphere 
. (-6.) ( (0) ) Tm= 0 and P = -V · P u , and at the core-mantle boundary the Ci are all taken to be 

zero). This solution, y f, has the form: 

T 

YH = \ ~ l_ 0 0 g(o)( r) 4n G P(O)(r) 2g(o)(r) 
I 7 ' T ' > , ---~~ + r ' .,,.. 

(1. 5.42) 

Given a solution to a particular non-homogeneous boundary value problem, yf, we 

may construct a new solution to the boundary value problem, y f = yf + c y f , where c is 

an arbitrary constant. We may use this extra degree of freedom to choose c such that the 

displacement of the centre of mass of the load-earth system is zero. For the degree 1 

boundary value problem any solution to the system of differential equations ( 1.5 .19) that 

satisfies any two of the boundary conditions (1. 5.30), (1. 5.31 ), and (1.5.36 ') will 

. automatically satisfy the third. 
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Given an arbitrary degree 1 surface harmonic defined: 

1 

Y1(0, <p)= ~ C1nYin(e, 'P) 
n --I 

(1.5.43) 

there is a point ( a, fl, <p*) on the surface of the sphere such that Yi( 0, <p) = 13 cos a 

where a here represents the same quantity as defined for equation (1.5.39). The form 

for the cosine may be deduced from the law of cosines for spherical triangles: 

cos a= cos 0cos fl + sin 0sin fl cos ( <p - ql) (1.5.44) 

which in turn allows us to express the coefficients of Y1 ( 0, cp) in the following form: 

c1 _1 = sin <p* sin 0* C1 o = COS fl c1 1 = cos cp* sin fl (1.5.45) 

So that the load and its associated deformation are symmetric about the radial position 

vector r* of the point ( a, fl, cp*) . 
The shift in the centre of mass of the earth must balance the shift in the centre of 

mass of the load which is given by (Farrell 1972): 

U com = ? Y
1 

( 0, <P) 1/11 (a) - </Ji (a) 
(1.5.46) 

A 

where r* is the unit vector in the direction of r *. 

To calculate the Love numbers relative to the centre of the earth rather than some 

generalised origin we must subtract the shift in the earth's centre of mass from the 

displacement coefficients. Doing so, and retaining the notation we introduced earlier, 

yields the expressions (again due to Farrell 1972): 

h 1 = h~ + k~ l1 = Zf + k~ k 1 = 0 (1.5.47) 

which define the displacement due to the degree 1 load. 

A degree O load corresponds to a force applied uniformly over the surface of the 

body. The resulting surface deformation will correspondingly be uniform and entirely due 

to hydrostatic compression of the material within the body. We are interested primarily in 

modelling surf ace loading of the earth by ice sheets and their associated waterloads, 

which, because of conservation of mass of the ice and water within the system, will never 

have a component degree O so that a detailed analysis of this case is unnecessary in this 

,particular instance. 
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1.6 Spherical Cap Harmonic Analysis 

As we discussed in sections 1.4 and 1.5, in a conventional spherical harmonic 

analysis we obtain solutions to Laplace's equation by translating into spherical polar 

coordinates, the solutions are sums of components of the form given in ( 1.4.2). These 

components are finite, continuous, and single-valued over the surface of a sphere centred 

on the origin only if the quantities n and m are both positive integers. 

In this section we will examine the theoretical foundations of this spherical 

harmonic analysis technique with slightly more rigour with a view to adapting the 

procedure to the high resolution problems we wish to consider. In particular we will 

employ surface harmonics of non-integral degree to model appropriately well-behaved 

scalar functions over a spherical cap close to the pole. The price of this technique is loss 

of orthogonality and increased computational cost per spherical harmonic coefficient. The 

benefit is a dramatic reduction in the number of coefficients required to achieve a given 

resolution. 

In our analysis of the deformation of a sphere under a load we represent the loading 

function, and response as a sum of surface harmonics , Ynm . From the theory of 

harmonic functions (see for example Gilbarg & Trudinger 1983) we see that we can 

accurately model any suitably well behaved scalar function by summing such terms to 

sufficiently high degree. Changing the region of interest from the entire surface of the 

sphere to a small spherical cap centred at the pole does not affect the validity of our 

mathematical formulation, simply the details of its implementation. 

§ 1. 6.1 Solving Laplace's Equation 

In solving Laplace's equation in spherical polar coordinates (equation 1.4.1) we 

employ separation of variables, that is we assume that the function in question, f , has the 

form f(r, 8, cp)=R(r)e(e)tt(cp) , where R is taken to be a function only of r , 

completely independent of 0 and cp , and (9 and 6 are taken to be dependent only on 0 

and cp respectively. Substituting this form for f back into Laplace's equation, (1.4.1), 

multiplying by r2 and then dividing through by f yields: 

( r2 R" + 2 r R') + _ 1 ( G" sin 0 + (9' cos 8) + _ \ ( it") = o 
R sin e e sin e it (1.6.1) 

where in this case the prime (') denotes differentiation by the corresponding variable. 

The first term in the equation is a function only of r but each of the other grouped 

terms is independent of r, so that for them to sum to zero they must be constant. That is , 

there exists a constant Xi such that: 
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_1 (B"sin0+<9'cos0)+ 1 (tJ")= -(r-R" +2rR')=-x ( l 6 2) 
Slil 0 e sin 2 0 t} R 1 • . 

Using an analogous line of reasoning we see that there exists a second constant 

quantity, x
2

, such that: 

( t}") 13 =x2 ( 1.6.3) 

which may be substituted back into (1.6.2) to yield: 

e" sin ~ + EJ' cos 0 + ( X2 + X ) e = o 
sin 0 sin2 0 1 

( 1.6.4) 

By substituting 17 = cos 0 into this equation we obtain the governing differential equation 

for 17: 

f11 ((1 -112)~~)+( vr(vr + 1)- 1 ~172 
)e=O ( 1.6.5) 

where Xi = V1 ( v1 + 1) and X2 = - di . This is simply Legendre's associated differential 

equation which has as its solutions the associated Legendre functions of the first and 

second kind of degree V1 and order V2 , Pv
1
vi 11) and Qv

2 
vJ 11) respectively (see for 

example Abramowitz & Stegun 1972). Associated Legendre functions of the second 

kind, Qv
2 
vJ 17) , are undefined at the poles and are therefore neglected when modelling 

physical quantities. 

If the order V2 is imaginary or non-integral then the solution, tJ v
2 

, of equation 

( 1.6.3) is either aperiodic or has a period that is not an integral fraction of 2n , so that 

tJ v
2 

( <p) =t= tJ v
2 

( <p + 2n), which is clearly undesirable since it implies that tJ v
2 

is multi­

valued on the surface of a sphere. We therefore require that v2 be an integer ( due to the 

symmetry of the trigonometric functions we can without loss of generality assume v2 1s 

positive) so that equation (1.6.3) has solutions of the form: 

tJ v
2 

( <p) = A v
2 
cos V2 <p + B v

2 
sin v2 <p ( 1.6.6) 

where Av
2 

and Bv
2 

are arbitrary constants determined by boundary conditions. These 

functions are clearly mutually orthogonal over the interval [ 0, 2 n] . 
When the form for Xi used in (1.6.5) is substituted back into (1.6.2) we see that 

the equation has solutions: 

'11111111 
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R (r) = C rv1 + D r-Cv1 + n 
VJ VJ V1 

(1.6.7) 

The second term in this expression is undefined at the origin when Re( v1) >-1 while the 

first term is undefined for Re ( v1) < 0 so that for most of the quantities we model we 

require Re( v1) > 0 and Dv
1
= 0. With appropriately defined constants our solutions to 

equation ( 1.6.1) will therefore be sums of components of the form: 

!vi u, (r, 0, cp) = Cul r"1 
( Av, cos V2C)J + Bv, sin V2 cp )Pvl v,( cos e) 

= C rv1(A Y + B Y ) 
VJ V2 VJ V2 V2 VJ -V2 

(1.6.8) 

The usefulness of this formulation is largely dependent on the orthogonality of 

terms of this type over the region [ 0, .1r] x [ 0, 2n] . This orthogonality is a result of the 

orthogonality of both the trigonometric functions on [ 0, 2n] (this establishes mutual 

orthogonality for different values of v2 ) and the associated Legendre functions on [ O, .1r] 

(which establishes mutual orthogonality for different values of v1 ). 

The orthogonality of trigonometric functions whose periods are integral fractions of 

2n is an elementary identity of calculus and forms the basis of Fourier analysis (see for 

example Kreyszig 1983). The orthogonality of the associated Legendre functions is a 

similar though rather more complicated issue we will examine in slightly greater detail to 

utilise some of its more general properties. 

§1.6.2 Theory of Sturm-Liouville Boundary Value Problems 

A complete set of solutions to equation ( 1.6.5) is generated by solutions to the 

associated boundary value problems. Requiring that our solution be continuous and finite 

throughout the region [ 0, n] constrains v1 to be a positive integer. We also apply two 

boundary conditions, one at the pole, e = o : 

and at the equator, e = n12 : 

e V1 vi( 0) = 0 for V2 =I= 0 

aev10 
ae 

8= 0 

=0 

(1.6 .9) 
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evl v2(~) = 0 for V1 + V2 odd 
(1.6.10) 

a eV1 V2 

ae =0 for V 1 + v2 even 
e= 1rh 

Equation (1.6.4) can be recast into the form: 

/ 1)2 

( EJ' sin e) - C, ~ r, 

2 
L) e = - X1 e sin e (1.6.11) 

restricting our attention to the interval [ 0, 1r12], this is the traditional form for a Sturm­

Liouville problem with eigenvalue X1 (see for example Boyce & DiPrima 1977) with 

corresponding separated boundary conditions given by equations (1.6.9) and (1.6.10). 

For the purposes of this discussion we may take the order of the the Legendre 

functions as being fixed since orthogonality between surface harmonic functions of 

different order is inherited from the trigonometric terms. The order of the functions is 

therefore taken here to have a fixed positive integer value, v2 • 

We now define two sets of solutions to equation ( 1.6.11 ), for a given value of V2 , 

we will denote by 'Ev2 the set of functions for which ( 1.6.11) holds, with associated 

integers v1 such that v1 + v2 is even, the corresponding set of functions for which 

v1 + v2 is odd we will denote (j v2 • It should be noted that each of these sets has its own 

distinct set of boundary conditions that apply to their respective member functions. 

From the theory of Sturm-Liouville eigenvalue problems (see again Boyce & 

DiPrima 1977), given any two distinct eigenvalues of equation ( 1.6.11 ), Xi O * Xi 1 , then 

provided the corresponding eigenfunctions evl O V2 and eV1 1 V2 both lie in either 'Ev2 or 

Yv
2 

(i.e. as long as both functions satisfy the same set of boundary conditions) they are 

orthogonal on the interval [ 0, 1r12]. 

Orthogonality between the two sets of eigenfunctions, 'Ev2 and Yv2 , is not 

guaranteed by Sturm-Liouville since functions from one set do not have common 

boundary conditions with the members of the other. In this instance orthogonality results 

from the symmetry properties of the two sets. The element functions of 'Ev2 are either 

symmetric or anti-symmetric about 0 = 1r12, depending on the parity of v2 (see for 

example Abramowitz & Stegun 1972), if v2 is even then they will be symmetric, 

otherwise anti-symmetric. The members of {jv2 have a converse relation, they are anti­

symmetric about e = 1r12 when v2 is even and symmetric otherwise. That is: 
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ev1 v,(;- e) = (-1)"1 eVI v,(; + e) (1.6.12) 

so that the two sets of functions will have opposite symmetry relations. This in tum 

implies that the integral from Oto n of the product of two given eigenfunctions, one 

from 'Ev
2 

and the second from Yv
2

, will be identically zero. This is very similar to the 

relationship between the trigonometric functions over [ 0, 2n] though orthogonality in that 

case is more easily deduced from direct analytical computation of the integrals. 

Orthogonality of the associated Legendre polynomials over the region [o, n] for 

fixed values of v2 is therefore a consequence of their symmetry properties, and in tum 

grants the surf ace harmonics complete mutual orthogonality over the surface of a sphere, 

[ 0, Jr] X [ 0, 2n] . 

The most significant consequence of mutual orthogonality is that when we attempt 

to approximate a given function over the surf ace of a sphere with a sum of surface 

harmonics, the coefficient of each harmonic component is independent of the degree of 

the approximation and takes a quite convenient form given in equation ( 1.4.9). 

The formalism of Sturm-Liouville boundary problems is worth considering in some 

detail in this case since it illustrates very clearly the effects of altering the boundary 

conditions. In the case of spherical cap harmonic analysis we do this not by applying 

different conditions but by changing the boundaries themselves as will be discussed in 

section 1.6.4. 

§1.6.3 Resolution of Surface Features 

The resolution of a surface harmonic of degree n, Yn , is given by the distance 

between consecutive zeroes, so that if we want to model a feature of diameter £ on the 

surface of the sphere whose radius is a then we will need to sum to degree N given by: 

N= na 
£ 

(1.6.13) 

For this reason 2£ is often called the minimum representable wavelength of a surface 

harmonic of degree N . 

From the form of equation (1.4.7) we see that in order to calculate the coefficients 

of a spherical harmonic approximation FN we must perform ( N + l) ( N + 2) integrals of 

the form given in equation ( 1.4.8). If, for example, we wanted to model a feature of 

diameter 100km on the surface of the Earth (a = 6371km) we would have to sum to 

degree 200. If we use standard spherical harmonic procedures to achieve this accuracy 

we will need to calculate some 40601 coefficients (remembering that we need coefficients 
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for both the sine and cosine terms), which makes high resolution modelling using this 

technique quite expensive computationally. 

§1.6.4 Spherical Cap Harmonic Analysis 

The Spherical Cap Harmonic Analysis (SCHA) technique was first developed by 

Haines (1985) as a means of modelling variations in a regional geomagnetic field. In this 

procedure we restrict our attention to some small area, A, on the surface of the sphere, in 

particular a cap of angular radius ~ which we may without loss of generality assume to 

be centred on the pole e = O . 

We intend to use this technique to model deformation of the earth within a spherical 

cap due to an ice sheet centred around the pole. We will therefore (see for example 

Johnston 1993) require spherical harmonic expansions for the ice sheet, and the earth's 

rheology (in terms of Love numbers). These are all well behaved scalar functions and 

can be approximated to arbitrary accuracy using surface harmonics, but by changing the 

region of interest we also change the nature of the Sturm-Liouville problem for the 

associated Legendre functions. 

In our cap analysis it is natural to use boundary conditions analogous to those 

applied in the spherical case: 

evl v2(~) = 0 for V1 + V 2 odd 
(1.6.14) 

a eVl V2 

ae =0 for v1 + V2 even 
0= ~ 

In general however, these boundary conditions will require V1 to be non-integral. Since 

we are modelling functions that are everywhere finite we would normally avoid using 

Legendre functions of non-integral degree since they become indeterminate for various 

values of 0. We are only interested in the area inside the cap however, and the 

quantities we are modelling may be taken to be zero outside A , so that we can use 

Legendre functions of non-integral order provided their singularities are far enough 

removed from the centre of the cap (the pole of the sphere). 

If we let m be a fixed positive integer value for V2 , then from the theory of Sturm­

Liouville problems we have that the eigenvalues of the corresponding boundary value 

problem are real and form a countably infinite sequence. If we denote the k -th 

eigenvalue for which there exists an eigenfunction that satisfies equations (1.6.11 ), 

(1.6.9) and (1.6.14) by nk then our boundary conditions become: 
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lePn,m(cos e) I•·<= 0 fork+ m even 

(1.6.15) 

Pn~m(cos ~)= 0 fork+ m odd 

where we should note that in general the exact value of nk is dependent on the order m , 

and that in the standard spherical harmonic analysis scheme we have ~ = ~ and nk = k . 

The advantage of this type of analysis is that for small values of ~ the values of nk 

are quite widely spread as we see from the approximate relations (De Santis 1985): 

nk z 27r~ (k + 0.5)-0.5 

Jr 
nk+ I -nk::::; 2~ 

(1.6.16) 

So that the number of coefficients that need to be calculated in order to model a 

surface feature to a given resolution is greatly reduced. For example, as we have already 

seen, if we want to model a feature of radius 100 km we would have to expand to at least 

degree 200. If we were to use spherical cap analysis over a cap of angular radius ~ then 

we would need to expand our functions to degree nk where kmax is the smallest integer 
max 

such that: 

2~ 
kmax > 200.5 ,r - 0.5 z 128 ~ -0.5 (1.6.17) 

The latitudinal resolution of a given surface harmonic expansion is determined by 

the maximum degree of the expansion while the longitudinal resolution is a function of 

the maximum order of the expansion. In a conventional spherical harmonic analysis these 

two quantities are the same. But more generally, the order of expansion required to 

resolve a feature of diameter£ (as in equation (1.6.13)) at colatitude 0 is given by: 

mmax( e) ~ Jra ~in 0 (1.6.18) 

In general though the features being modelled will be closer to the centre of the cap than 

the edge, otherwise the assumption that deformation and stress due to the load are zero at 

the edge of the cap may not apply. This being the case it is normally adequate to set 

mmax = kmax , the maximum value taken by the index k . 

The number of coefficients that need to be calculated to achieve a given resolution is 

therefore substantially smaller than in the conventional spherical harmonic analysis for the 

same resolution. Modelling a 100 km diameter feature inside a cap of angular radius 10° 

11111111 
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gives kmax = 23 yielding a total of 601 coefficients, less than two percent of that required 

to achieve comparable resolution in the conventional analysis. 

The price of this reduction in the number of coefficients is two-fold. Firstly, the 

associated Legendre functions of non-integral degree are simply more expensive to 

calculate numerically than the associated Legendre polynomials of integral degree, 

requiring significant numerical effort even to determine appropriate values of nk . More 

importantly, moving to the Legendre functions of non-integral degree results in a loss of 

orthogonality between functions from f£v
2 

and Yv
2 

over the region [o, ;] x [o, 2n]. We 

still have orthogonality within each set, since this is still a Sturm-Liouville problem but 

the symmetry property that gave us a completely orthogonal system is no longer 

guaranteed, a result of the singularities outside the cap. As a result of this there is a 

significant increase in the computational cost of calculating the coefficients of the surface 

harmonics since many of the cross-multiplication terms in the least squares problem are 

non-zero. 

In this instance, the difference between our spherical harmonic approximation and 

the function being approximated is represented by the integral in equation (1.4.8): 

r d0 sin 0 f' dq, (FN( 0, q,)-F( 0, q, )r = ']JN (1.6.19) 

where the approximating function, FN, is given: 

N n 

FJ_ 0, <p) = n~ min F! Ynm( 0, <p) ( 1.6.20) 

The coefficients of the approximating series are chosen to minimise the quantity 'DN 1n 

equation ( 1.6.19), so that for each value of n and m the coefficients of our spherical 

harmonic expansion are given by the relation: 

a N l" 127t ) 'D: = 2 L d0 sin 0 d<p Ynm( 0, <p) Yim( 0, <p 
F 1 =0 o O nm 

(1.6.21) 

-2 r d0 sin 0 f' dq, Y,m( 0, q,)F( 0, q,) = 0 

In the case considered in equation ( 1.4.9) only one of the integrals in the 

summation in this expression is non-zero. Removing orthogonality between surface 

harmonics introduces the linear system above, making the coefficients dependent on the 

degree, N, of the approximation, and prone to numerical error due to the instability of the 

system of linear equations. 
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Figure 1.1: Results for the SCHA approximation of a square ice sheet of side 400 km and 400 m thick 

(indicated by the dashed line). Units on axes are degrees , contour spacing is 100 m. 

The formalism given earlier for calculating the Love numbers of a spherical elastic 

body does not depend on them being of integral degree so that it is valid to apply the 

formalism of the SCHA technique to the problem .of surface deformation. The increased 

analytical and computational complexity of the procedure raises the possibility of reduced 

numerical stability however and its suitability to very high resolution problems remains 

untested. 

Figure 1.1 illustrates the results of SCHA analysis used to model a 400 m thick 

square ice sheet of side 400 km. The cap used had an angular radius of 10° and the 

harmonic approximation was continued to order 20, maximum degree 185. Attempts to 

go to a higher order approximation failed as the least squares problem became subject to 

catastrophic numerical instability. 

The resulting computational saving with the change from the conventional to the 

SCHA technique was undeniably significant, but the fit of the resulting approximation 

was unsatisfactory, particularly at the centre of the load itself. The instability of the 

SCHA technique at high degrees severely reduces its usefulness for modelling very high 

resolution surface features, while the performance of the global spherical harmonic 

scheme when applied to regional scale rebound problems is more than adequate (Lambeck 
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1993a,b ). The SCHA procedure therefore offers no advantage over the global scheme 

for modelling rebound processes. 

A second adaptation of the spherical harmonic procedure to regional problems is the 

Translated Origin Spherical Cap Analysis (or TOSCA) scheme of De Santis (1991). 

Calculation of the Love numbers for an elastic body is however very dependent on the 

radial symmetry of the earth model, which is destroyed by moving the origin closer to the 

pole of the sphere, so that this analysis scheme is not valid for rebound problems on a 

stratified earth. 

A third alternative procedure that addresses many of the limitations of the SCHA 

technique is the Adjusted Spherical Harmonics Analysis ( or ASHA) scheme of De Santis 

(1992). In this approach, as with the SCHA procedure, we restrict our attention to a cap 

of angular radius ~ , centred on the pole of the sphere, latitude is then scaled so as to 

project the cap onto a sphere which may then be treated using orthodox spherical 

harmonic techniques to achieve an approximate solution. 

In his original treatment De Santis maps the cap onto a hemisphere since the 

boundary conditions for magnetic potential cannot be reduced to a point. While this 

transformation from cap to hemisphere allows DeSantis to use Legendre functions of 

integral degree, they must still be treated as two distinct sets of orthogonal functions 

satisfying different boundary conditions with no orthogonality holding between the sets. 

Determining the coefficients of the spherical harmonic expansion in this instance the ref ore 

still requires that a large least squares problem of the form given in equation (1.6.21) be 

solved. 

In the case of deformation due to a load of small lateral extent we may apply a 

simple zero boundary condition to the edge of the cap, so that in our application the 

boundary may be mapped onto the pole and the zero boundary condition applied there. 

This allows us to map the cap onto a sphere and apply the full mutual orthogonality of the 

Legendre polynomials of integral degree, making it ideal in principle for use in this class 

of application. 

The ASHA technique relies on the approximation 0 = sin 0 holding throughout the 

region of the cap, which is valid for caps of angular radius less than 14 ° degrees , and 

reasonably accurate for radii of up to 22 ° . Substituting this approximate relation back 

into equation (1.6.4) yields: 

d
2 

(9 l_ d (9 ( X 2 ) 
de2+0d0+ e2+X1 B=O (1.6.22) 

Introducing a new scaled variable for latitude, 0', defined such that, 0' = s0 = f 0 , then 

yields: 
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d
2 
e + J_ de + ( X2 + X1 ) e = 0 

d ff 2 0' d 0' 0'2 s2 
( 1.6.23) 

The solutions to this equation are finite and continuous over the surface of the sphere only 

when X1 = s2 k( k + 1) and X2 = -m2 for k, m positive integers. An approximate 

solution to equation (1.6.23) is then given by the associated Legendre polynomial 

Pt( cos ff). De Santis acknowledges that the new latitude 0' is no longer always small 

enough for the approximation ff= sin ff to hold so that equation (1.6.23) is not strictly 

equivalent to equation ( 1.6.4 ), but uses the associated Legendre polynomials as 

approximate solutions to achieve reasonable agreement with the SCHA technique. 

Mapping from a cap onto a sphere is a powerful analytical tool that would allow us to 

very conveniently perform calculations over small regions with great accuracy and speed 

but its validity needs to be closely examined. In the case of modelling the earth's 

geomagnetic potential the problem is largely a mathematical one of approximating a given 

function by surf ace harmonics with only a few constraints placed by the physical 

processes involved. The problem of calculating the deformation of a spherical body 

under a surface load is however rather different, the physics of the processes involved 

must be faithfully reproduced in the mathematical model for the results obtained to have 

any significance. 

Figure 1.2 illustrates the effect of magnifying the region of interest. The mapping 

from cap to hemisphere has two immediate and completely artificial consequences, it 

greatly exaggerates the effect of sphericity and alters the lateral scale of the problem. 

a) b) 

Figure 1.2: Illustration of the effect of the ASHA technique, the spherical cap (fig. a) is mapped onto the 

sphere (fig. b) with consequent lateral expansion of the load, exaggerated sphericity, and anisotropy. 

'11111111 
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The stresses due to a surf ace load are significant to depths comparable to the lateral 

extent of the load, translation from a cap onto a sphere greatly increases the apparent 

width of the load and therefore the depth to which it will stress the earth, so that the 

ASHA technique immediately produces unphysical behaviour when applied to the 

problem of surface deformation. The most significant effect of the mapping however, is 

that it renders the body in question anisotropic, severely complicating the form of the 

constitutive equation, and invalidating much of the formalism developed for the Love 

number calculations. 

As with the TOSCA scheme, the mathematical convenience of the ASHA procedure 

is undermined by the physical inappropriateness of its formulation. The price of the 

promised numerical convenience is that the procedure requires fundamental modifications 

to the mathematical formalism of the problem, modifications that render the system 

analytically intractable. 

-
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1. 7 Discussion 

The mathematical formalism for calculating the deformation of an elastic sphere 

under a surface load has been the subject of extensive development and now provides an 

extremely powerful tool for the calculation of glacial rebound and associated sea-level 

change. The nature of this procedure is such however, that modelling the contribution of 

high resolution surface features is computationally very expensive, so that incorporation 

into a direct inversion procedure is not entirely feasible. 

Surface harmonics are commonly applied whenever an approximation of a 

conservative field is required over the surface of a sphere, two particular examples being 

the modelling of the earth's geomagnetic and gravitational potentials. The failure of the 

conventional spherical harmonic technique at high resolution has prompted workers in 

these fields to develop several alternative variations for use in regional modelling such as 

the SCHA and ASHA techniques examined here. 

The SCHA scheme of Haines ( 1985) does not offer significant improvement over 

the global spherical harmonic procedure for high resolution or regional scale modelling 

and suffers from significant numerical instability at very high degrees. 

Fitting a series of surface harmonics to observational data is a predominantly 

mathematical problem, while numerical modelling of rebound processes relies heavily on 

the physical accuracy of the underlying theory. In the case of both the TOSCA and 

ASHA procedures of De Santis (1991, 1992), analytical tools that may validly be applied 

to the former class of problem undermine the theory developed for rebound problems on 

a spherical body. 

High resolution modelling of surface loading therefore remains inconvenient and 

expensive in the spherical case, despite the undoubted power and flexibility of the 

analytical techniques discussed in this chapter. One of the most natural adaptations of the 

techniques discussed here is to neglect the effect of sphericity entirely and model the earth 

as a flat, stratified, semi-infinite Maxwell body. For loads of small lateral extent the 

effect of sphericity will not be significant, this approach has been employed by many 

workers (see for example McConnell 1965, 1968, Jeffreys 1976, Wolf 1985a,b) and 

offers significant advantages over the spherical formulation for high resolution modelling. 

In the next chapter we will adapt the basic theory of loading problems to the case of 

a flat earth, and introduce three distinct techniques for modelling the deformation due to a 

surface load. Using the correspondence principle discussed in section 1.3, a Maxwell 

body may be modelled mathematically as elastic with frequency-dependent Lame 

parameters so that we may restrict our analysis in the first instance to the deformation of a 

stratified, elastic half-space. 

-
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Chapter 2 

DEFORMATION OF A STRATIFIED SEMI-INFINITE . 
ELASTIC BODY 

2.0 Introduction 

If we restrict our attention to an ice sheet whose radius is very small compared with 

that of the earth then we may take the earth to be a semi-infinite solid, the upper boundary 

of which is a flat plane. In such an analysis it is usually more convenient to approximate 

the complex geometry of an ice sheet by a set of superimposed loads of reasonably simple 

geometry (such as cylinders or rectangular prisms) , just as in our global analysis we 

approximate the load by superimposing surface harmonics. It is obviously more useful, 

though slightly more difficult, to consider rectangular loads since they may more 

conveniently be used to approximate complex load geometries. Previous workers have 

favoured the 2-dimensional case of cylindrical loads (Nakiboglu & Lambeck 1982, Wolf 

1985a,b ), though some attempts have been made to model ice sheets by superposition of 

prism loads over a square grid (Quinlan & Beaumont 1982). 

Our aim ultimately is to model the deformation of a visco-elastic body under a 

surface load but, as discussed in section 1.3, by invoking the correspondence principle 

we may use the theory for an elastic body to derive the deformation of a corresponding 

Maxwell visco-elastic half-space. This chapter is devoted to the development of a number 

of procedures for modelling the deformation of a stratified, semi-infinite elastic half­

space. 

In the case of a semi-infinite elastic half-space, the majority of the deformation 

caused by a given surface load occurs above a depth approximately equal to the lateral 

extent of the load. The smaller the load, the smaller the depth to which the load 

significantly deforms the elastic body. When we superimpose a set of small loads to 

model a much larger surf ace load we superimpose their deformation and stress 

contributions at depths much larger than the lateral extent of the individual loads. While 

individually these contributions may be negligible they will become significant upon 

summation and it is therefore important that the deformation and stress at depth due to 

these individual loads are calculated as accurately as possible. 

In this chapter I will examine three approaches to the problem of calculating the 

deformation of an elastic half-space by a surface load. All three techniques use Fourier 

transforms to translate the problem into one of solving a set of linear equations over a 

region of transform space and then inverting to the spatial domain. 
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The first and oldest of these techniques is an early approach developed by 

McConnell ( 1965) that relies on explicitly solving the equilibrium equations throughout 

the body, while the second is a slightly more conventional propagator matrix approach 

discussed by Cathles (1975) that uses McConnell's direct solution technique to apply the 

boundary condition in the bottom layer of the stratification but propagates the solution to 

the surface using a slightly more elegant and theoretically convenient technique from the 

theory of differential equations. The third is a variation of this traditional propagator 

matrix technique developed by Kennett ( 1981) originally designed to model elastic wave 

propagation through a stratified medium. 

I will adapt each of these techniques to three dimensional Cartesian coordinates ( the 

most convenient regime for examining the deformation due to a rectangular load), and 

examine their numerical stability and suitability to the problem we wish to discuss, with 

particular attention to the accuracy of the calculations at depth. The final section of the 

chapter will be devoted to a detailed discussion and comparison of the numerical 

performance of each of the techniques introduced and an analysis of their numerical 

stability. Our ultimate goal of course is to use the most appropriate numerical technique 

as part of a formal inverse procedure. 

We will start with a reformulation of the problem of the surface deformation of an 

elastic body using Cartesian coordinates. 

--
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2.1 Formulation of the Problem 

We will consider a homogeneous, semi-infinite, elastic body with boundary x3 = 0 , 

with x3 increasing in the downward direction (into the solid). We will denote the 

component of displacement in the direction of the axis ei by ui and the various 

components of material incremental stress by t&8'J . The form of the components of stress 

are given by the constitutive equation for an elastic body: 

(8) auk (dUi auj) t .. =A8-~+µ ~+~ 
11 11 oxk,, ox; ox, 

} I 
(2 .1.1 ) 

with repeated indices indicating summation as per the Einstein convention and ~ J 

representing the Kronecker delta function. 

As in chapter 1 (equation 1.5.4) we define the dilatation, L1 , to be the divergence of 

the deformation field: 

A auk aul au2 au3 
Ll - - + + - cfx; - dXi Tx; crx; (2.1.2) 

If we once again assume that the acceleration terms are small enough to be neglected ( as 

discussed in section 1. 1) and neglect the effect of pre-stress and internal buoyancy (to be 

reintroduced in chapter 4 ), then the equations of motion may be written ( e.g. Love 1927): 

(;., + µ) ~~- + µ V 2
u1 = - pJ; 

J 
(2.1.3 ) 

for all values of j, where V2 denotes the Laplacian operator, the Jj are the various 

components of the body force per unit mass, and /4 and µ are the Lame parameters of the 

elastic body. 

--
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2.2 Basic Propagator Matrix Analysis 

This analysis is based on obtaining direct analytical solutions to the governing 

system of differential equations throughout the body and applying the appropriate 

boundary conditions as discussed by McConnell (1965). We now follow his analysis and 

transform the problem into that of solving a set of 3 simultaneous first order differential 

equations using Fourier transforms . We Fourier transform all of the quantities in 

equations (2.1.2) and (2.1.3) with respect to x1 and Xi using transform variables v1 and 

v2 respectively. 

Let Xi be the Fourier transform of ui, let Ll denote the Fourier transform of Ll , 

and let r ij be the Fourier transform of tijo> . Then make the following definitions: 

Z1 =-iX1 • Z2 =-iX2 • Z3 =-X3 • P=(A+µ)~ 
' ' ' (2.2. 1) 

T13 = - i r 13 ; T23 = - i r 23 , T33 = - r 33 

where i in this case is defined by the relation i2 = -1 . We assume in this case that 

there is no body force acting inside the body we are considering (i.e. that the components 

of the body force, iJ in (2.1.3), are everywhere zero throughout the body). Then, upon 

transforming equations (2.1.2) and (2.1.3), substituting the quantities defined above into 

the resulting expressions and rearranging we see that within the body: 

[a33 -(v? +vi)]z1 = - v}I' 

[a33 -(v? +vi)]z2= - vf 

l 1 oP [ a 33 - ( vf + vf) Z3 = µ di; 

az3 P 
v1 z 1 + v 2z2 + a X3 = - A + µ 

a2 
where 033 represents the second order linear differential operator ~ . 

UX3 

(2.2 .2a) 

(2.2.2b) 

(2 .2.2c) 

(2.2. 3) 

_-4 
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§2.2.1 Solving the Equilibrium Equations 

We want to evaluate the stress and deformation terms throughout the body by 

solving this set of simultaneous differential equations and then inverting from the 

transform domain. We begin by defining the quantity k0 = 1 + ~, rearranging (2.2.3) 

and substituting into equations (2.2.2) to yield: 

[a33 -((ko + l)v~ +vi)lz,-kov,v2Z2 =kov1 !!: 

[ c)33 -(vf + (ko + 1 }v~}l Z 2 - k0 v, V2 Z, = ko V2 !!: 

[( ) ( 
2 2)] _ r d Z 1 d Z2] ko + 1 a 33 - V1 + V2 Z 3 - - ko Vi dX3 + V2 dx3 

(2.2.4a) 

(2.2.4b) 

(2.2.4c) 

where . Rearranging (2.2.4b ), substituting into (2.2.4c) and simplifying gives: 

v1 I a2 2
; - ( vf + vi) z,] = 1 {( vf + v}) [vf + ( k 0 + 1) v :] Z2 

dx3 ko V2 

(2.2.5) 

[( ) 
2 ( ) 2] a

2 
z2 ( ) 0

4 

z2 
- ko + 2 VI + 2 ko + 1 V 2 ax/ + ko + 1 ax/ 

Equations (2.2.4a) and (2.2.4b) may be combined to yield the following 

equivalence: 

I a
2 

z 1 ( 2 2) ] [ a

2 

z 2 ( 2 2) ] V2 2 - V1 + V2 Z 1 = V1 2 - V1 + V2 Z2 

a~ a~ (2.2.6) 

which may be incorporated back into (2.2.5). Collecting like terms, simplifying and 

removing unnecessary constant factors yields the biharmonic equation: 

a4 z 2 ( 2 2) a2 z 2 ( 2 2)2 -
--4 - 2 vi + v2 a 2 + vi + v2 z2 - o 

X3 X3 
(2.2.7) 

We may immediately see that equation (2.2.7) has solutions of the form: 

-A 
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Z - B eax3 + Cv X eax3 + £ e-ax3 + Fv X e-ax3 
2 - 2 3 2 3 (2.2.Sa) 

where B , C , E , and F are arbitrary constants to be determined by the boundary 

conditions, and a is defined such that: a2 = v? + v} . 

Using the definition of P, substituting (2.2.Sa) back into (2.2.4a) and (2.2.4c), 

and then solving the resulting differential equations, yields the additional results: 

Z1 =Aeax3 +Cv1X3eax3 +De-ax3 +FV1X3e-ax3 (2.2.Sb) 

z3 =-(v,A 1v2B)eax, +[(~ :~)- ax3]Ceax3 

(2.2.Sc) 

+ ( v,D; V2E) e-ax3 + [( ~: ~) +ax3] Fe-ax' 

p = - 2ax3 [ Ceax3 + Fe-ax3] (2.2.Sd) 

where A and D are also arbitrary constants. Substituting these expressions back into 

(2.1.1) and using (2.2.1) yields the forms for the components of stress: 

T13 

T23 

µ I (2 v2 + v2
) eax3 A + V V eax3 B + 2 av r ax -( µ )1 eax3 C a\ 1 2 1 2 1 3 A+µ 

(2.2.9a) 
\ 

- (2 v2 + v2
) e- ax3 D - V V e- ax3 E - 2 av [ ax + ( µ )] e- ax3 F 

1 2 1 2 I 3 A+µ 

µ J v v eax3 A + (v2 + 2 v2
) eax3 B + 2 av [ ax -( µ )] eax3 C a\ 1 2 1 2 2 3 A+µ 

(2.2.9b) 

- V V e- ax3 D - (v2 + 2 v2
) e- ax3 E - 2 av [ ax + ( µ )] e- ax3 F 

1 2 1 2 2 3 A+µ 

~ 
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T3 3 = - 2 µ < V1 eax3 A + v. eax3 B - a[(A + 2µ) - ax] eax3 C 
2 A+µ 3 

(2.2.9c) 

+ V e- ax3 D + V e- ax3 £ + J ax + ( µ )l e- ax3 F 
1 2 l 3 A+µ 

If we let w be the deformation and stress vector ( Z,, Z2, Z3, T13, T23, T33 r and let 

y be the vector ( A, B, C, D, E, Fr then we have My= w where the entries of M are 

given by equations (2.2.8) and (2.2.9) above and more explicitly in section A.1. If we 

set v2 = 0 in M the resulting matrix is equivalent to that given for the two dimensional 

case by McConnell ( 1965), as would be expected. 

§2.2.2 Application to a Stratified Body 

We will now assume that our elastic half space is stratified into N uniform layers as 

illustrated in Figure 2.1, where the Lame parameters for the n- th layer are An and µn , 

and the lower boundary is the plane x3 = hn . We will take the upper boundary of the first 

layer to be the surface of the body x3 = h0 = 0, while the bottom layer is taken to be semi­

infinite so that h N = 00 • 

x3 = h0 = 0 
/4i , µI 

X3 = h 1 

~'~ 
X3 = h2 

X3 = hN-1 

AN, µN 

Figure 2.1: Side on view of a layered elastic half-space. The bottom of the n-th layer has 

depth x3 = hn, the top of the first layer is the upper boundary of the half-space x3 = 0. 

_-A 
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Using the analysis outlined in section 2.2.1 we see that at any point inside the n-th 

layer (i.e. if hn- I < X3 < hn) w(x3) = Mn(x3)Yn , where Yn = ( An, Bn, c"' D"' En, Fn r and 

the entries of Mn(x3) are obtained by substituting x3 , An, and µn into A.1. It should be 

remembered that the entries of the matrices Mn are in fact functions of v1 and v2 and that 

we have temporarily suppressed this dependence for ease of notation. 

As discussed in section 1.3 the boundary conditions between layers are simply 

continuity of the various components of stress and displacement, this continuity is 

inherited by the Fourier transforms of these functions as a matter of course. 

Mathematically, this may be expressed 

Mn( hn)Yn =Mn+ 1( hn)Yn + I (2.2. l0a) 

and may be rewritten: 

Yn = [(Mn(hn)f Mn+1(hn)lYn+I (2.2. l0b) 

Applying (2.2.l0b) recursively we see that at the surface: 

w(o) = Mi(o)[D (Mn(hn}t Mn+1(hn)l YN 

= LyN (2.2.11) 

Once we have determined YN we can use (2.2.10) to evaluate the components of 

displacement and stress at any depth within the solid. The lateral variation of these 

quantities will be given when we invert from the transform domain. 

§2.2.3 Boundary Conditions 

Physically, we require that the various components of stress and deformation due to 

the surface load obey the regularity condition. That is, that they be finite and continuous 

inside the body and further, that they approach zero as distance from the load becomes 

arbitrarily large. In the bottom-most layer of the stratification, x3 > hN- i , depth may 

become arbitrarily large, we therefore require that the magnitude of the various 

components of stress and displacement decrease with depth within this layer (this need not 

necessarily be the case near the surface of the body but it is certainly true inside the 

~ 
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bottom-most layer of the stratification). Applied to our formulation this requirement 

means that AN, BN, and CN must all be equal to zero. 

At the surface the vertical stress, t~f , will be specified by the normal loading 

function, and the shearing stresses, t~f and t1f will both be zero. Hence equation 

(2.2.11) becomes: 

Z1 0 
Z2 0 
Z3 =L 0 
0 DN I (2.2.12) 
0 EN 

\ <I>( V1, V2) FN 

where </J is the Fourier transform of the loading function. We can rearrange (2.2.12) by 

collecting all of the unknowns into the one vector. This yields: 

0 
-1 0 0 l14 115 116 Z1 

0 0 - 1 0 l24 125 126 Z2 
0 0 0 - 1 /34 /35 /36 Z3 -
0 - DN 0 0 0 /44 /45 146 
0 0 0 0 /54 155 156 EN 

</>(vi, v2) 0 0 0 164 165 166 FN 

=KU (2.2.13) 

The problem has now been reduced to solving this set of simultaneous linear 

equations. In order to evaluate the entries of the vector u for particular values of 

v1 and v2 we need to first evaluate <p and the entries of K at this point, substitute these 

values into (2.2.13) and then solve. The resulting values of Dn, En, and Fn can then be 

used along with equations (2.2.10) and (2.2.11) to determine the components of stress 

and displacement at any depth within the body. 

For a uniform load of magnitude p applied over the rectangular area S defined to be 

the set of points (x1, X2, x3) such that - a< x1 < a ; - b <Xi< b ; x3 = 0 , the Fourier 

transform, <p , of the loading function may be found in any table of Fourier transforms 

(see for example Spiegel 1968) and is given by: 

</>(v1, v2) 

_ 4 p sin (av1) sin (bv2) 

V1 V2 
(2.2.14) 

~ 
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In practice it will be necessary to solve (2.2.13) over a grid of values of v1 and v2 and 

then invert the results using a numerical technique (see for example Press et. al. 1986) to 

give the desired function values over a corresponding grid in the space domain. This 

being the case it is more appropriate to use a numerically derived value for the Fourier 

transform of the loading function than the theoretical value given in (2.2.14). 

§2.2.4 Discussion 

The procedure outlined above has several distinct advantages. One of its most 

attractive features is that it is relatively uncomplicated theoretically, which makes it 

convenient to implement numerically. Also, the formulation of the problem is one that 

makes it relatively easy to calculate the stress and displacement at depth, a desirable 

property when interpreting the rheological implications of a given loading history. 

It also however has several shortcomings. One of the most significant of which is 

that the entries of the matrices Mn in equation (2.2.1 0a) include both exponentially 

growing and decaying terms making matrix manipulation numerically unstable at large 

depths. Also of some concern is the fact that the propagation procedure involves 

numerically calculating the inverses of a series of matrices ( or at least solving the 

associated linear systems at each layer boundary) which makes the technique 

computationally expensive and particularly prone to numerical instability given the large 

variation in the magnitude of the entries at depth. A detailed review of the numerical 

performance of this procedure and discussion of its limitations will be given in section 

2.5. 

~ 
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2.3 Conventional Propagator Matrix Analysis 

In the previous section we derived an explicit analytical form for the solution of the 

governing differential equations within each layer. The coefficients of the solutions were 

then chosen inside each layer so as to guarantee agreement with the boundary conditions 

of the system. 

In the conventional propagator matrix technique we apply exactly the same 

boundary condition in the bottom-most layer as we did in the last procedure . Having 

obtained an explicit form for the solution at this point, we propagate it using a technique 

from the theory of differential equations (see for example Braun 1983). In practice this 

technique requires significantly more analytical effort than the basic procedure outlined 

above but in return it avoids excessive matrix manipulations and provides increased 

numerical stability. We will discuss the theoretical foundations of this procedure in some 

detail as it also forms the basis for the wave propagation technique we derive in the next 

section. 

Applying Fourier transforms to the quantities in (2.1.1 ), and using the identities 

given in (2.2.1) we may immediately see that: 

az1 T13 crx; =v1Z3 +µ 
az2 crx; = V2 Z3 + T23 µ 

c1Z3 _ 1 ( ) crx; - A, + 2µ T33 -A{v1Z1 + v2z2) 

(2.3.1) 

Taking the derivative with respect to x3 of equations (2.3.1) and then substituting (2.2.4) 

into the resulting expressions yields: 

arl3 = - 1 I µZ{ 4(A + µ) vT + (A + 2µ) vi) + µv1V2Z2 (3/4 + 2µ) + /4v1T33 

ar23 = - 1 I µv1V2Z1 (3A + 2µ) + µ2{( A + 2µ) vf + 4( /4 +µ)vi) + Av2T33 

aT33 = -(v1T13 + V2T23) 
X3 

(2.3.2) 

..4 
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It should be noted here that we are once again assuming that there are no body 

forces acting within the body. Equations (2.3.1) and (2.3.2) constitute a system of 6 

simultaneous first order differential equations. The governing equation of this system 

may be written: 

aw 
~ = Aw 
ax3 

(2.3.3) 

where the entries of A may be found from (2.3.1) and (2.3.2) and w is correspondingly 

defined to be the vector whose entries are the modified transforms of the various 

components of stress and deformation (i.e. w = (z1, Z2, Z3, T13 , T23, T33 )T) . 

It should be noted that the coefficients in equations (2.3.1) and (2.3.2) (the entries 

of the matrix A ) are dependent only on A, µ, v1, and v2 , and not on x3 except insofar as )., 

and µ are depth dependent. 

Defining k1 so that k1 = (A+ 2µr I ' A may be written explicitly: 

0 0 V1 
1 0 0 µ 

0 0 V2 0 1 0 µ 

A = I -k1AV1 - k1AV2 0 0 0 k1 

µ( 4 k 1 ( A + µ) vf + vi) k1q3A + 2µ) V1V2 0 0 0 k1AV1 

k 1q31 +2µ)v1v2 µ(vf + 4 k 1(A + µ) v~) 0 0 0 k1AV2 

0 0 0 -VI -V2 0 

(2.3.4) 

From the general theory of differential equations (again see Braun 1983) we see that 

if we have a scalar function w that satisfies the equation: 

aw dx =f(x)w (2 .3.5) 

for some function f , then w has the form: 

w = w
0 
ef~ f (x) dx' 

(2.3.6) 
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where w0 = w(x0). Assuming we are in a region of the halfspace where the Lame 

parameters do not vary with depth (i.e. where the matrix A is constant with respect to x3 ) 

then using (2.3.6) we see that analogously, the solution to (2.3.3) is: 

w(xJ = exp(D A(x/)dx/) = eAfxi -x~Jw0 (2-.3. 7) 

§2.3.1 Calculating the Exponential of a Matrix 

We may extend the definition of the exponential of a scalar to the case of an arbitrary 

m x m matrix A using the Taylor series expansion of the exponential function: 

A oo An A2 
e =~-, =l+A+-2 + .... 

n=O n. (2.3.8) 

where I is once again the Kronecker identity matrix. This definition is valid for both 

scalar values of A ( corresponding to the case where m = I ) and the case where A is a 

square matrix. In the latter instance however, equation (2.3.8) is not a particularly 

convenient expression to evaluate directly for m > 2 . Instead it is usually more 

appropriate to apply a standard technique from linear algebra (see for example Strang 

1980). 

Consider an m x m matrix A with m linearly independent eigenvectors, 

h1, b2, .... bm, each with corresponding eigenvalues a 1, ¼, .... am. We then define the 

diagonalising matrix of A to be the matrix, D that satisfies the equation: 

v- 1AD =A (2.3.9) 

where A= diag ( a 1, ¼, .... am) is the matrix whose diagonal entries are the eigenvalues 

of A and whose non-diagonal entries are zero. 

Pre-multiplying both sides of equation (2.3.9) by D it is clear that the columns of 

D are the eigenvectors b 1, b2, .... b m • Post-multiplying both sides by v- 1 similarly 

shows that the rows of v- 1 are the left-eigenvectors of A , yT, yJ, .... y~ (the solutions to 

the equation yr A = ai yr ) . 
Rearranging equation (2.3.9) and substituting back into equation (2.3.8) gives: 

.... 
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A _ 1 (nAD- 1
) (vAD- 1

) (vAD- 1
) (vAD- 1

) (vAD- 1
) 

e = I + DAD + I"\ + ,. + .... 

_, DA(Dv-')AD- 1 DA(DD- 1)A(nD- 1)AD- 1 

= I + DAD + I"\ + ,. + .... 

=I +DAD-' DA2n-1 +--

= DeAD- 1 

DA3D-I 
+ 6 + .... 

(2.3.10) 

but eA = diag ( ea1, ea2, •••• eam) , so that once D is known we may easily calculate eA. 

In the case where A is an m x m matrix but has only k linearly independent 

eigenvectors, b 1, b2, •.•. bk , with corresponding eigenvalues, a 1, ai,, .... ak , and k < m , 

we may still evaluate eA using a generalisation of the diagonalisation technique outlined 

above. 

It may be shown (see for example Strang 1980) that for the matrix A there exists a 

matrix D such that: 

A1 0 0 ··· 0 
0 A2 0 ··· 0 

v- 1AD = A = I o o A 3 •·· o 
. . . . . . . . . . 

0 0 0 · ·· A 1 

(2.3.11) 

where A is a block diagonal matrix whose non-diagonal entries are all zero and whose 

diagonal entries, Ai , are block matrices of the form: 

a - 1 l 
0 ... 0 

0 a - l · · · 0 / 

A i =I 0 0 a -
. 

I (2.3.12) . 
l . 

1 

0 0 •·· O a -l 

..4 
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So that the diagonal entries of Ai are simply ai and the only other non-zero entries are 

1 's in the superior diagonal immediately adjacent to the main diagonal. A is called the 

Jordan form of A . 

In the case where A has m distinct eigenvectors the A i are simply scalar entries, 

A is identical to the diagonal matrix in (2.3.9), and D may be constructed from the 

eigenvectors of A . The current case however is slightly more complicated. 

From (2.3.9) we have that AD= DA, so that if A i is an ni x ni matrix then there 

will be a corresponding set of ni adjacent columns of D , d~, d~, .. .. d~. , such that: 
I 

Ad~= a1d~ 
(2.3.13) 

Ad~ = a1d~ + d~ _ 1 j = 2, 3, .... ni 

It can immediately be seen that d~ = b1 , the eigenvector corresponding to the eigenvalue 

ai, the other d; are called the generalised eigenvectors of A . This generalisation applies 

also to the left-eigenvectors, although because of the change in the direction of 

multiplication the ordering is reversed, so that (a~JT A= aid~i and (a;)T A= aid;+ a;+ 1 . 
Once we have constructed A and D we may calculate eA using (2.3 .10) which 

still applies, though evaluating eA is not as simple in this case. 

From substituting (2.3.11) back into (2.3.8) it is clear that the off-diagonal zero 

entries in A suppress any cross multiplication of the A i terms so that: 

eA1 0 0 · · · 0 
0 eA2 0 • • • 0 

eA = I 0 0 eA3 • • • 0 I (2.3 .14) . . . . . . . . . 
0 0 0 .. . eA1 

We now need to develop a technique for conveniently calculating the exponential of 

a non-diagonal matrix of the form of A i . 

Given an m x m matrix A with m distinct eigenvalues, a 1, ~ ' • • • • am ( and thus m 

linearly independent eigenvectors) there exists a matrix D such that (2.3.9) holds. Given 

an arbitrary function f then f(A) may be evaluated using a Taylor series expansion for 

J: 

-
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f(A) = f f,,A" = f fn(DAD-1)" =D(t fnAn)v-1 = Df(A'\n-1 
n=O n! n=O n! n=O n! JL' 

(2.3.15) 

where the fn are the Taylor series coefficients for f. Again applying the Taylor series 

formulation for f and noting that all of the off-diagonal entries of A are zero, it is clear 

that the i- th diagonal element of f( A) is f( ai) and that the off-diagonal elements are 

zero i.e. J( A) = diag (!( a1 )J( a,), .... J( am)} . 

We now define Mi to be the m x m matrix whose only non-zero entry is M~- = a. 
ll I 

and note that: 

Mi = ai fI (A - aJ) 
]= i ai - a . 
j::t; i J 

m 

A=LMi 
i = I 

(2.3.16) 

Substituting back into (2.3.15) and again using the fact the off-diagonal entries of A and 

Mi are zero yields: 

J(A) =D~,tM}r1 =D[,t1(M)]ir1 
= ~(vf(M;)v-1) 

=lt1v ai fI (A -ajl) 
J = I j::t;i ai - a . J 

-II = "(1, f(a-)D rrm (A -a.J) I~ I } 1...-,.-} 

j= i a j::t,i i - aj 

=,tf(a;) D(:-_ajl) 
J::t;i I aj 

(2.3.17) 

which is the standard form for this type of expression (see for example Gantmacher 

1960). The case where two of the eigenvalues are equal (i.e. ai = aj for some i and j) 

may be considered by letting aj = ai + c in (2.3.17) and letting c approach zero. Doing 

so yields: 

--
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f(A)= f 
n=I f(ai)(r- ~(a~a1))+ f'(ai) (D :--~:)+ ktJ(ak) 

I "i: I ,] I k "i: I ,] I k "i: I ,] 

fr (A-azl) 
l- I l;k ak- al 

(2.3.18) 

which is the same result as that given by Gantmacher (1960). 

We may obviously use (2.3 .18) to calculate eA directly except that taking the limit 

as £ approaches zero becomes prohibitively complicated when the matrix A has more 

than two identical eigenvalues. In the case of the matrix A given in (2.3.4) however, 

(2.3.18) may be used in conjunction with the Jordan form approach to give an explicit 

form for eA . In this case we are interested in calculating the exponential of a 2 x 2 matrix, 

Q , of the form: 

(
OJZ Z) 

Q = 0 OJZ (2.3.19) 

which may be substituted back into (2.3.18) to yield: 

en = ( ewz zewz) 
0 e(J)z (2.3.20) 

§2.3.2 Application to the Problem of an Elastic Medium 

The characteristic equation of the matrix A given in (2.3 .4) is: 

det ( A - a/) = ( af - a2 )3 = 0 (2.3.21) 

where a is as defined for equation (2.2.8). Equation (2.3.21) has two solutions, both of 

order 3, a 1,2,3 = a and a4,s,6 =-a. These eigenvalues each have two corresponding 

linearly independent eigenvectors of the form: 

--
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V2 
V1 

-Vi V2 

d1,4 = /31 I 0 
d2,s = /32 

-<Xi,s 

µv2a14 2µv1 lli,s I (2.3.22) 
, 

-µv1a14 2µv2£Xis , , 

0 -2µa2 

where /31 and /32 are constant scaling factors to guarantee orthonormality of the system. 

For· both i = l, 4 the equation (A - a/)x = di has no solution so that the 

generalised eigenvectors of A (as defined in equation (2.3.13)) are the solutions to this 

equation for i = 2, 5 and may be written: 

d3,6 = /32 

k2V1 

lX:3,6 
k2V2 

lX:3,6 
k2 

µvl 
µv2 

µ~ ,6 

where we have defined a new quantity k2 so that 

l+3µ 
k2 = 2(A+ µ) 

(2.3.23) 

(2.3.24) 

These vectors di form the columns of the matrix D that gives the Jordan form of 

the matrix A given in equation (2.3.4). Solving the equations for the left-eigenvectors of 

A gives corresponding solutions: 

µv2a14 , 2µvl lX:,,6 

-µv1a14 , 2µv2lX:,,6 

Y1,4 = 'fJ 1,4 I 0 
Y3,6 = /32 

2µa2 
I (2.3.25a) 

V2 V1 

-Vi 
V2 

0 
ll:3,6 

The generalised left-eigenvectors of A take the form: 

-
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Y2 ,s = /32 

µvl 
µv2 

-µai ,s 
k2V1 
¼ ,s 
k2V2 
¼,s 
-k2 

Page 65 

(2.3.25b) 

___ (<2 (A+2µ)~2 Setting /31 /3 1,4 = 2µ ci2 a 1,4 , and JJ2 = 4µ A+µ u- in the above expressions gives: 

Yi ·d j = 0 if i * j Y1 ·d1 =y4 ·d4 =2µci2a1,4/31'/J1,4= 1 
(2.3.26) 

(
A + 2µ) 2 

Y2 ·d2 = Y3 ·d3 = Ys ·ds = Y6 ·d6 = 4µ A + µ d2 /32 = l 

where it is usual to choose /31 = '/3 1 = - '/3 4 • With these relations holding it is clear that 

v- 1 is the matrix whose rows are YT 
When combined these results yield a convenient form for the matrices D and v- 1 

such that (2.3.11) holds for the matrix A given in (2.3.4). It remains only to calculate 

the matrix eAz where z = x3 - xf and A , the Jordan form of A , can be calculated from 

(2.3.11) and (2.3.12): 

a O O O O 0 
0 a 1 0 0 0 

A=I00a000I 
0 0 0 -a O O (2.3.27) 
O O O O -a 1 
0 0 0 0 0 -a 

Using (2.3.15) and (2.3.21) gives: 

eaz 0 0 0 0 0 

0 eaz zeaz 0 0 0 

eAz =I 0 0 eaz 0 0 0 

0 0 0 e-az 0 0 I (2.3.28) 

0 0 0 0 e-az ze-az 

I 0 0 0 0 0 e-az 

.... 
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Combining equations (2.3.22), (2.3.23), (2.3.25) (2.3.26), and (2.3.28) we have 

an explicit expression for eAz = D eAz v- 1 which we may substitute into (2.3.7). The 

entries of the matrix eAz are given explicitly in section A.2. If we set v2 equal to zero 

throughout A.2 and recall that z is negative then our expression for eAz corresponds to 

that given by Wolf (1985a). It should again be noted that A , D, A , and v- 1 are not 

dependent on x3 except insofar as A and µ are depth dependent. 

§2.3.3 Application to a Stratified Body 

Taking the same stratification as that given in section 2.2.2 we see that if x3 = d for 

some depth d such that hn _ 1 < d < hn then: 

aw I di; =Anw(d) 
X3 =d 

(2.3.29) 

where the entries of An are obtained by substituting An and µn into (2.3.4). Using 

(2.3.7) we see that (2.3.29) has solution: 

w(d) = eAn[d -do] w(do) (2.3.30) 

for some do such that hn - I <do< hn . In particular if we define Zn = hn- I - hn then: 

w( hn - I)= eAn[hn -1 - hn] w( hn) = eAnZn w( hn) (2.3.31) 

where eAnzn may be calculated by substituting Zn for z in the equations in appendix A. 

Continuity of the stress-displacement vector across the boundaries between layers 

may again be used recursively to yield: 

(0) _ A1 z 1 A2z2 AN- 1
2
N- I (h ) -[rrN Anzn] (h ) w -e e ··· e w N-I - e w N-I 

n = I 
(2.3.32) 

§2.3.4 Boundary Conditions 

Once again we apply the condition of continuity of the stress-displacement vector 

across the boundaries between layers, apply our load at the surface of the half-space 

where the horizontal components of stress are taken to be zero, and require that the 

various components of stress and displacement vanish as distance from the centre of the 

load increases. 
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This last boundary condition may be introduced by noting that from section 2.2.2 

we have: 

w(hN-1) =M~hN-1)YN (2.3.33) 

using the same definitions for Mn and Yn as were given in equation (2.2.1 Oa). 

Substituting back into (2.3.33) and applying the layer boundary conditions yields: 

which may be re-written: 

w(o) = [}] eA,,,]M,,(hN-1)YN 

X1 
X2 
X3 
0 
0 

¢( V1,V1) 

G 

0 
0 
0 

DN 
EN 
FN 

(2.3.34) 

(2.3.35) 

We may again collect all the unknowns onto the one side of the equation as we did 

in section 2.2.3 and so reduce the problem to solving the equation: 

-1 0 Q gl4 g15 g16 Z1 
0 

0 - 1 0 g 24 g 25 g 26 Z2 0 
0 0 - 1 g 34 g 35 g 36 Z3 I (2.3.36) 0 -

0 - 0 0 0 g44 g45 g46 DN 
0 0 0 0 g54 g55 g56 EN 

¢( V1, V1) 0 0 0 g64 g65 g66 FN 

=lu 

where </J is the loading function discussed in section 2.2.3, and the entries of J may be 

calculated from (2.3.34 ), A.1, and A.2. 

As in McConnell's analysis we calculate the matrix J and solve (2.3.36) over a grid 

of values for v1 and v2 , and then invert from the Fourier domain to get the solution in real 

space. 

~ 
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§2.3.5 Discussion 

Like the basic propagator matrix technique the advantages of this procedure are its 

relative theoretical simplicity (particularly when applied to the two dimensional problem) 

and the ease with which it may be adapted to calculate the stress-deformation vector at 

depth. The slightly more complex theoretical development has however eliminated the 

need to calculate the inverse matrices used by the basic technique which should make this 

procedure somewhat more robust numerically. 

Directly solving the equations of motion in the bottom-most layer however retains 

the problem of significant variation in the magnitude of the matrix entries at large depths. 

Also of some concern is the fact that the entries of the matrices eAnzn consist largely of 

cosh and sinh functions. At large depths a computer with finite accuracy will be unable to 

distinguish between these functions which will render the system prone to numerical error 

in the solving routines. These issues will be discussed in greater detail in section 2.5. 

....... 
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2.4 Wave Propagation Analysis 

This technique was originally developed to model the propagation of waves through 

an elastic half-space. It is designed to achieve increased numerical stability by completely 

analytically decoupling exponentially increasing and decreasing components of 

deformation and stress (the up-going and down-going components of the stress­

displacement field). It does so in such a fashion that only exponentially decreasing 

components need be considered during the computational phase, greatly enhancing 

stability but at the cost of significantly increased analytical complexity. 

We start by introducing some new notation, for convenience the more important 

quantities introduced in this section and the last will be presented in the table below. 

Much of the new notation is devoted to the projection of standard quantities (the stress­

displacement vector, propagator matrix, etc.) into the eigenspace of A. This change of 

basis plays an important part_ in the mathematical development of the technique. 

Quantity 

A 

D 

w(x3) 

B(x3) 
P(x3, xf) 

v(x3) 
Q(x3, xf) 

F(x3, xf) 
R,T 

EE' 
' 

n,m 

%,D 
g 

tp 

X 

s 

Description 

Governing matrix of the stress-displacement system 

Matrix that gives the Jordan form of A 

Stress-displacement vector at depth x3 
Fundamental matrix solution of 2.3.4 

Propagator matrix for w from depth xf to x3 

Field vector - projection of w ( x3) into eigenspace of A 

Field propagator - propagates v from depth xf to x3 

Transform propagator - propagates from v ( xf) to w ( x3) 
Reflection and Transmission matrices 

Sub-partitions of Q for a uniform layer 

Sub-partitions of D1 

Up- and down-going components of v 

Stress-displacement vector for the source of deformation 

Discontinuity in w due to g 

Discontinuity in v due to g 

Surface vector - projection of P to the surface 

Table 2.1: List of important mathematical quantities in the development of 

the wave propagator technique 

Equation 

2.3.4 

2.3.11 

2.3.7 

2.4.32 

2.4.1 

2.4.2 

2.4.3 

2.4.46 

2.4.8 

2.4.5 

2.4.49 

2.4.6 

2.4.31 

2.4.38 

2.4.58 

2.4.39 

--
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The original formulation of this procedure (Kennett 1981) was intended to model 

the propagation of waves through an elastic body. In his derivation Kennett keeps the 

acceleration term in equation ( 1.1.1), and introduces frequency explicitly into the form for 

his governing matrix. The development we will give will therefore correspond to the zero 

frequency case of Kennett. This does not affect the validity of the formalism which is still 

applicable to the case of static deformations. 

We know from the analysis of the previous section that the solution to (2.3.3), the 

stress-displacement vector, w(x3), satisfies the relation w(x3) = P(x3, x~) w(x~), where 

from the general form of (2.3.6) we see that the propagator matrix P(x3, x~) is given: 

P(x3, xJ) = exp (E' A(x'Jftx'3) (2.4.1) 

where exp is the exponential function. From this definition it immediately follows that 

P(~, x~) = P(xj, x]) P(xL x~). 

Now if we choose a matrix D and a corresponding field vector v so that they 

satisfy the relation, w(x3) = D(x3) v(x3), then from (2.3.3) and (2.3.7) we have that: 

d(Dv) =A(Dv) 
X3 

(2.4.2) 

and 

v(xJ) = [n(xJr 1P(xJ, X3)D(x3)] v(x3) = Q(xJ, X3) v(x3) (2.4.3) 

which may be taken as a definition of the field propagator matrix, Q . From this 

definition and the properties of the original propagator matrix, P , we have that: 

Q(xj, x~) = Q(xj, xn Q(xL x~) (2.4.4) 

Given the form of Q in (2.4.3) it is usually convenient to choose D to be the matrix that 

gives the Jordan form of A . 

It is important to note that this change of basis into the eigenspace of A is purely a 

mathem~tical formalism and does not correspond to a physical process. Performing this 

transformation does however make the mathematical representation of some physical 

effects more intuitive, as we shall see later in this section. 

111111 
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We follow Kennett by defining two classes of contribution to the stress­

displacement vector and the field vector, the up-going and down-going components. We 

define an up-going vector quantity to be any vector function whose magnitude increases 

as depth increases and a down-going vector quantity to be any vector function whose 

magnitude decreases as depth increases. These definitions coming from the fact that 

physically, waves decay as they travel further from from their source. 

Letting z = x3 - x~ and defining matrices E( z) and E'( z) so that: 

eaz O 0 

E(z) = 0 eaz zeaz 

0 0 eaz 

eaz 0 0 

E'(z) = I O eaz - zeaz 

0 0 eaz 
(2.4.5) 

then from (2.4.3) and (2.3.28) it is clear that in a region of the halfspace with uniform 

elastic properties we may choose D to be the matrix defined in (2.3.22), (2.3.23), and 

(2.3.24) that gives the Jordan form of A. Then substituting the Jordan form from 

equation (2.3 .11) into the definition of the field propagator matrix yields: 

eaz 0 0 0 0 0 

0 eaz zeaz 0 0 0 

v(x3) = ( ~) = 
0 0 eaz 0 0 0 I v(x~) 
0 0 0 e-az 0 0 

0 0 0 0 e-az ze-az 

0 0 0 0 0 e-az 

E(z) O j v(xf) 
- , 0 E'(-z) 

= Q(x3, x~) v(x~) (2.4.6) 

Thus at any point inside a stratified halfspace the field vector v has both an up-going 

component, represented by the vector </Ju , and a down-going component, represented by 

the vector </Jo . 

--
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§2.4.1 Reflection and Transmission of Deformation Fields 

The notation and terminology of this procedure were developed for a dynamic case 

and it is not immediately obvious that the same concepts extend meaningfully to the static 

case (though the mathematical formalism is certainly still valid). The concepts of up- and 

down-going fields and their behaviour might be best illustrated by an example. 

Consider a flat semi-infinite, elastic half-space with constant Lame parameters 

Ao and ~ throughout. If we place a source of deformation at some depth xf within the 

body then there will be a resulting stress-displacement field throughout the body 

represented by the vertical displacement u~(x3) which will take its maximum value at ~, 

as illustrated schematically in Figure 2.2a. 

In contrast, consider the case where we have a semi-infinite elastic body with 

constant Lame parameters Ao and~ in the region x3 < x~ (with x~ > ~) and constant 

Lame parameters Ai and µ 1 in the region x3 > x~ (we will assume for this example that 

the bottom layer is significantly weaker than the upper, with half the rigidity and bulk 

modulus). Given the same source of deformation, this second body will have a different 

distribution of vertical displacement Uj ( x3) . 
Inserting a layer below the level of the source of displacement will have an effect on 

the displacement field in the upper layer. In the case of an elastic wave this effect would 

i--- - - - - - - ------ - ~ 
Ao,~ 

A0 , µo .x!; I ., ........... , .. ,, ............... ,,...... .. .. .. .,, .. ... . ..... I X:, 

u3 (~ ) 

Figure 2.2a: Schematic comparison of the difference in displacement fields produced by insertion of a 

layer boundary . The source of deformation is the same for both bodies, the two displacement curves are 

compared in the graph on the right-hand side of the figure. 

~ 
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0.6 
L -· - :_ 

- - -0 -

0.55 ~ 
- - 0 -

,-.._ -o _ 
a - - 0- -'-" 0.5 i::: - -0- -0 ·-.... c:d 0.45 a 

c.8 
(1) 0.4 Q -c:d 
(.) 0.35 ·-t:: 
(1) 

0.3 [ 
0 > X u 3 

- - 0 - - U1 

0.25 L 
3 

0 10 20 30 40 50 

Depth (km) 

Figure 2.2b: The displacement curves u~ (4 ) and Uj (.x:,) due to a surface load at the origin (~ = 0 ), 

plotted against depth, .x:, . uH4 ) was calculated for a uniform elastic body of rigidity 3.6x 1010 Pa, and 

bulk modulus 6.5x 1010 Pa. Uj (x3) was calculated for an half-space identical to that used for uH4 ) 

except for a layer boundary at 50 km below which the rigidity and bulk modulus were both halved. 

2 

1.98 
,-.._ 

a 1.96 '-" 
~ 

.g 
(1) 1.94 (.) 

C 
(1) .... 
~ ·- 1.92 
a 

1.9 

1.88 
0 10 20 30 40 50 

Depth (km) 

Figure 2.2c: Difference between displacement fields , Li u3 (4 )= ul (.x:,)- u~ (4 ), plotted against depth. 
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-

-

-

50 

Figure 2.-2d: Up-going components of the difference in displacement fields ~u3 (.x:,) = u1(.x:,)- u~ (.x:,) . The 

residual down-going component is of the order of 1 o-3 m and is not shown in the figure . 

include internal reflections and reverberations between the surface and the layer boundary. 

Analogously, we would therefore expect the difference between the two distributions in 

the static case to include both an up-going component ( corresponding to reflection off the 

layer boundary) and a significantly smaller down-going component (corresponding to the 

up-going component in tum being reflected off the surface layer). 

The numerical results obtained for the two displacement curves, u~ and ul , are 

shown in figure 2.2b. u~ was calculated for a uniform elastic body of bulk modulus 

6.5 x 1010 Pa and rigidity 3.6 x 1010 Pa , while ul was calculated for a half-space identical 

to the first except for a layer boundary at depth 50 km, below which both bulk modulus 

and rigidity were halved. Both deformation fields are due to a square surface load of side 

100 km corresponding to an ice sheet of uniform thickness, 400 m, centred on the origin. 

The difference between the two deformation fields , ~ u3 ( x3) = ul ( x3) - u~ ( x3) , is 

given in figure 2.2c, which shows that the contribution due to the inserted layer boundary 

throughout the uppermost layer is dominated by two separate up-going components , 

illustrated explicitly in figure 2.2d. The down-going component of the difference between 

the two fields, not shown in the figure, was of the order of 1 o-3 m. 

In the dynamic case reflection off a layer boundary may be defined as the effect of 

that boundary on the stress-displacement vector in the region above it. This example 

demonstrates that a completely analogous effect occurs even in the static case. It is 

--
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therefore mathematically and conceptually appropriate to retain both the notation and 

terminology of wave-propagation in the zero frequency case. 

We now consider a region of a halfspace, x~ < x3 < xi , sandwiched between two 

uniform layers, inside which the elastic parameters of the body are allowed to vary with 

depth. If we consider a stress-displacement field (represented by the field vector) being 

propagated from x~ - to xi+ then from the definition of the field propagator matrix in 

equation (2.4.3), we have that v(xf-) = Q(x~ -, xi+) v(xi +). This may be re-written: 

v(x~) = ( :o ) = [ Q 
11 

Q 
12

] ( :U2 ) 
DO Q21 Q22 D2 

(2.4.7) 

where the Qij are 3 x 3 matrices whose entries are taken from the corresponding parts of 

the matrix Q, and the tlJu,Dk are 3 x 1 vectors representing the corresponding up-going 

and down-going entries of the field vector v(~). We know from (2.4.6) that v(x~ -) and 

v( xi +) may be written in this form inside a uniform region of the half space and from 

continuity must therefore also have this form at the upper and lower boundaries of the 

region we are considering. We may now define the transmission and reflection matrices 

for the up and down-going components of the field vector. 

Consider a source of deformation at depth xf < xf that produces only a down-going 

component of deformation and assume that there are no other sources of deformation 

within the body. Then the down-going component of the field vector at xi+ will be the 

portion of the down-going deformation at xf- that has been transmitted from xf- to 

xI + . We are not yet considering the effect of any layer boundaries below x3 = xi so that 

there will be no up-going component of deformation at this level due to the source at xf , 
and the up-going component of the stress-displacement field at x~ - will be the reflected 

portion of the initial down-going displacement field. Defining reflection and transmission 

matrices RZ2 and I'°o2 for down-going field components such that: 

<PD2 = T)}<PDO <I>uo = RZ2 
<I>vo (2.4.8) 

then substituting into (2.4.7) yields: 

( :uo ) = l QI I Q 12 l ( ; ? ) 

DO Q2I Q22 D_ 

(2.4.9) 

11111 
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from which it is clear that: 

,.,....02 -Q-1 
ln - 22 02 ( )- l RD = Q12 Q22 

- -
Page 76 

(2.4.10) 

Similarly, if we consider a source of deformation at depth ~ > xI that produces 

only an up-going component of deformation and assume that there are no other sources of 

deformation within the body, then the up-going component of the field vector at x~ - will 

be the portion of the up-going deformation at xI + that has been transmitted from xI + to 

x~ - . We are not yet considering the effect of any layer boundaries above depth x3 = x~ 

so that there will be no down-going component of deformation due to the source at xI , 
and the down-going component of the stress-displacement field at ~ + will be the 

reflected portion of the initial up-going displacement field. If we define reflection and 

transmission matrices Ri2 and T// for up-going field components such that: 

t.Puo = T// t.Pu2 t.Pn2 = Ri
2 

<Pu2 (2.4.11) 

then substituting back into (2.4.7) yields: 

( ";r) = [ ~:: ~:: l ( =~:) (2.4.12) 

from which it is clear that: 

rc/ = QI 1 - Q12(Q22r 1 Q21 02 ( )- l Ru = Q22 Q21 (2.4.13) 

We may use the forms for the reflection and transmission matrices given in 

equations (2.4.10) and (2.4.13) to rewrite the field propagator matrix Q . Doing so yields 

one of the fundamental relations in the formalism of the wave propagation procedure, the 

partition equation: 

Q(
xo- 2 ) - I rz2 - RZ2(rz2)- I R02 Ro2(rr-02)- l 

3 , x
3
+ _ U D ln 

-{~2r1Ri2 (~2rl 
(2.4.14) 

which relates the reflection and transmission matrices to the field propagator matrix. 

1111111 
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§2.4.2 Composite Reflection and Transmission matrices 

Consider the case of two adjacent regions of the halfspace wedged between two 

uniform layers as illustrated in Figure 2.3 below. 

Uniform Layer l 

X3 = X~ 

Region l 

X3 = xl 
Region 2 

x3 =Xj 

Uniform Layer 2 

Figure 2.3: Side on view of two adjacent regions of the half-space 

wedged between two uniform layers. 

Each region having its own elastic properties which may vary with depth, and 

corresponding transmission and reflection matrices. We would like to calculate the overall 

transmission and reflection matrices for the two regions considered as a whole. 

The chain rule for the field propagator matrix Q is given in equation (2.4.4 ), 

substituting the general form of the partition equation ( equation (2.4.14)) back into this 

expression yields: 

Q(x~, xi) -
~/ - Rz2(n} r I R~2 Rz2( ~ 2 r I 

-(~2r1R~2 (~2rl 

r?,1 _ ROl(~1)- 1Ro1 ROI(r:_1)- 1 
U D D U D D 

7,12 _ R12(7,12)- 1R12 R12(7,12)- I 
U D D U D D 

X 

-( rolr I Ril (~Ir ! -(r}}r 1
R!} ( T~2r I 

= Q(xt xnQ(xl, xf) (2.4 .18) 

By identifying the corresponding matrix entries we may immediately see that: 

....61 
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( rg2r I = (TZlr 1(1 - Ri1R2)( T~2r I 

RZ2(ro2r =(rv1 -Rg1(rvr Ri1)R!i(Tb2r +Rg1(11iT1(rb2r 
~ -Rg2 (I1;2f1R?; =(rv1 -Rg1(11iT1Ri1)(rb2 -R2(Tb2tRb2

) 

(2.4.19) 

- Rz1 ( rolr l(T~2r I R~2 

(ro2r IRi2 (11iT1Ri1(rt2 -R2(Tb2tRb2
) + (11iT1(rb2T1R2 

from which we may obtain explicit forms for the combined reflection and transmission 

matrices: 

R02 - ROI + r!,l R 12 (1 - ROI R 12)- I T'!..,l 
D- D U D U D D 

T'!..,2 - Tl2 (1 - ROI R 12)- 1 T'!..,l 
D - D U D D 

(2.4.20) 
Ro2 _ R12 + T12 Ro1(l -R12 Ro1)- 1T12 u- U DU DU U 

,y-,()2 - r,,I (1 - Rl2 ROI)- I Tl2 1 u - U D U U 

Kennett discusses the physical interpretation and validity of these expressions when 

applied to elastic waves, they include the effect of all internal reverberations as well as 

direct transmission and reflection. 

It should be noted that if there is a discontinuity in elastic parameters at any of the 

regional boundaries, x3 = x~, x3 = xL or x3 = xl then instead of propagating our solution 

from x~ to xl via xl , we propagate our solution from x~ - to ~ + via xl + . It is not 

important which side of xi we choose to put the discontinuity as long as we are consistent 

throughout. In effect, rather than using the normal propagator matrices, Q(x~, xl} and 

Q(xL xn 'throughout our analysis we use Q(x~ -, Xj +) and Q(xl +, Xj +) instead. 

~ 
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§2.4.3 Application to a Stratified Body 

If we consider the case of a stratified body as discussed in section 2.2.2 then we 

may use the forms for the composite reflection and transmission matrices given in 

equation (2.4.20) to construct reflection and transmission matrices for the halfspace as a 

whole. 

In the case where both x3 and x~ lie inside the n-th layer of the halfspace we may 

choose Dn to be the matrix that yields the Jordan form of An (i.e. the matrix that satisfies 

equation (2.3.11)). From section 2.3.3 we see that if An and µn do not vary with depth 

then neither do the entries of Dn. Upon substituting Dn for D, equations (2.4.2) and 

(2.4.3) become: 

tx; = [(vnr'Afln] v = [(Dnr'(DnAn(Dnr?} = Anv (2.4.21) 

v(x~) = [(vnr eAn[_,g -x,]vn]V (x3) = [(vnr 1(vn e-A,,z (vnr )vn]v(x3) = e-An'v(x3) (2.4.22) 

The form for the eigenvalues in this case is completely independent of depth (from 

equation (2.3.21)), so the entries of the matrix An are independent of the layer number, 

n . This is not the case once pre-stress advection or internal buoyancy are included 

however, as we shall see in chapter 4, so it is useful to retain this notation. 

Within each layer of the halfspace the forms for the field propagator matrix given in 

equations (2.4.6) and (2.4.22) hold. Noting that 

v(x~) = Q(x~, x3) v(x3) = Q(xf, x3) Q(x3, x~) v(xf) (2.4.23) 

gives the relation: 

Q(x3, x~) = [Q(xi, x3JT1 (2.4.24) 

Applying this result to the field propagator matrix of a uniform layer (given in equation 

(2.4.6)) yields: 

Q(xt X3) = I E(zr I 
0 

0 

E'(-zr I 

E(-z) 0 

0 E'(z) 
(2.4.25) 

11111 
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Which may also be obtained by substituting -z for z in (2.4.6). This result may be 

compared with the the partition equation, (2.4.14), to give explicit forms for the reflection 

and transmission matrices of a uniform layer of thickness Zn , lying between 

X3 = hn-l andx3 = hn: 

T~ = E'(zn) r; = E(zn) R~ =0 R; =0 (2.4.26) 

using the same definition for Zn as was given in section 2.3.3 (i.e. Zn= hn- I - hn ) . 

The situation at the boundary between two layers at depth x3 = hn is illustrated in 

Figure 2.4 below. 

X3 = h 

Layern: ~~ =Anw =[DnA(Dnr]w 

n 

Layer n +1: ~~ = An+ ,w = [vn+ ,A(Dn+ 1f'] w 

Figure 2.4: Side-on view of the boundary between two layers and the equations that hold 

either side of the boundary. 

From continuity of the stress-displacement vector across the boundaries between 

layers we have: 

v(hn -) = [(Dn-1r v}(hn +) = Q(hn -, hn +) v(hn +) (2.4.27) 

We may then apply the partition equation, (2.4.14 ), to this result to obtain the 

reflection and transmission matrices for the boundary. We may also use equation 

(2.4.26) to obtain the reflection and transmission matrices for a uniform layer. Once both 

sets of matrices have been determined they may be combined by applying the form for 

composite reflection and transmission matrices given in equation (2.4.20). Repeated 

applications of these results allows us to evaluate the field propagator matrix, Q , 

throughout the entire half-space, starting from the bottom-most layer and working 

upwards to the surface. 

To illustrate our recursive procedure consider Figure 2.5 below. Starting from hN+ 

we may apply equation (2.4.27) to calculate the reflection and transmission matrices for 

the boundary x3 = hN. Then at any boundary layer hn we assume we have been able to 

~ 
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calculate the reflection and transmission matrices for the region [ hn + 1 -, h N+] ( using 

equation (2.4.27) will yield the reflection and transmission matrices for the bottom-most 

layer boundary [ hN-, hN+] so that our procedure has a starting point). 

Substituting the forms for the transmission and reflection matrices given in 

equations (2.4.26) and (2.4.27) into the recursion relation (2.4.20) allows us to calculate 

the reflection and transmission matrices for the region [ hn -, hn + 1 -] • Applying the 

recursion relation (2.4.20) again then allows us to combine our results for both regions 

and obtain reflection and transmission matrices for the region [ hn-, hN+]. We may then 

move on to the next layer in the body. 

X3 =h n 

h-n 

hn+ 

X3 = hn+ 1 

X3 = hN-1 

Uniform Layer 

Figure 2.4 Application of recursive procedure upwards from the bottom layer. 

We may derive explicit expressions for the transmission and reflection matrices 

during each step in our recursive procedure. For ease of notation we make the following 

definitions: 

Ru,D( X3) = Ru,D(x3, h N +) 

ru,D(x3) = Ru,D(x3 -, X3 +) 

Tu,D(x3) = Tu,D(x3, hN +) 

fu ,D(x3) = Tu,D(x3 -, X3 +) 
(2.4.28) 

Using these definitions, the recursion relation (2.4.20), and the form for the transmission 

and reflection matrices of a uniform layer (given in equation (2.4.26)) yields the identities 

given in equation (2.4.29) below. 

111111111 
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RD(hn +) = T~hn +, hn+l -) RD(hn+l -) TD(hn +, hn+l -) 

= E(zn+1) RD(hn+l -) E'(zn+1) 

TD(hn +) = TD(hn+ 1 -) TD(hn +, hn+l -) = TD(hn+ 1 -) E'(zn+ 1) 

T ~ h n +) = T ~ h n +, hn + 1 -) Tu( h n + 1 -) = E( Zn+ 1) Tu( h n + 1 -) 

Ru(hn +) = R u(hn+1 -) 

Page 82 

(2.4.29) 

Now using the recursion relation, (2.4.20), to combine this result with the reflection and 

transmission matrices of a boundary (given by equation (2.4.27)) yields: 

Rihn-)= rD(hn) + tu(hn) RD(hn +) [1-ru(hn)RD(hn +f tD(hn) 

Ru(hn -) = Ru( hn +) + TD(hn +) ru( hn)[l -RD( hn +) r )hnf Tu( hn +) 

TAhn -) = TD(hn +) [1-ru(hn)RD(hn +f tD(hn) 

Tu(hn -) = tu(hn) [1- RD(hn +)ru(hnf Tu(hn +) 

(2.4.30) 

It is worth noting again that we are effectively considering the zero frequency case 

and our waves are not actually travelling through the body but are static deformations. So 

there is in fact no transmission or reflection due to the internal layer boundaries in the 

normal sense, but as discussed earlier there is behaviour analogous to transmission and 

reflection. The transmission and reflection matrix notation also provides a convenient 

formalism for analysing the zero frequency problem and the similarity in the governing 

equations of the static and dynamic regimes means that the same relations hold in both 

settings. 

_....61111 
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§2.4.4 Introducing the Source of Deformation 

We wish to consider the case of a body that has been deformed from its equilibrium 

state by some force applied within it, in particular the case where this force takes the form 

of a vertical stress applied at the surf ace of the body. It is standard in this procedure to 

consider such a surface load as the limiting case of an internal source of deformation 

restricted to a small region that is allowed to approach the surface. We start the ref ore, by 

considering a general stress applied somewhere within the body, and developing a 

technique for calculating the value of the stress-displacement vector due to this stress at 

any other point within the body below the level of the source, and then allow first the 

source of deformation and then the receiver to approach the surface. 

We consider then a stratified half-space as discussed in section 2.2.2 with a zero 

stress condition applying at the surface and some source of deformation, represented by 

the stress-displacement vector r, applied within the body. In each layer of the half space 

we define a fundamental solution matrix Bn whose columns are linearly independent 

solutions of the governing equation, (2.3.3), (where we have substituted An for A), so 

that for some constant coefficient vector c n , we have that w( x3) = Bn( x3) c n • The existence 

of such a set of solutions is guaranteed by the theory of differential equations (see for 

example Braun 1983). We also define a corresponding field matrix Vn such that at any 

depth within the body Bn(x3) = Dn vn(x3) (analogous to the field vector v defined earlier). 

From (2.1.3) we see that the forcing term r must be introduced into the field 

equations. Restricting our attention to the n -th layer of a stratified halfspace equation 

(2.3.3) becomes: 

ox3w(x3) = An w(x3) + ,{x3) (2.4.31) 

where a represents the linear differential operator 4 . 
½ 0~ 

We once again follow the analysis of Kennett ( 1981) and note from the definitions 

of the propagator matrix, P , defined in equation (2.4.1 ), and the fundamental solution 

matrix, Bn, defined above, that since the columns of Bn are solutions of (2.3.3), 

Bn(x3) = P(x3, x~) Bn(x~), so that where both x3 and x~ lie inside the n -th layer of the 

stratification we have: 

P(x3, x~) = Bn(x3)(Bn(x~))- I (2.4.32) 

A. 
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which may be combined with the governing equation, (2.3.3), to show that: 

dx,[P(x3, xf r'] = dx,[ Bn(xf )Bn(xJ 1] = Bn(xf )dx,[ Bn(x3f1] 

= -Bn(xJ)Bn(xJ 1 dx,[Bn(x3)]Bn(x3r 1
_ 

= -[Bn(xf)Bn(x3f1]AnBn(x3)Bn(x3f = -P(x3, xgr An 

where we have used the general identity O = ox(B B- 1
) = B(oxB- 1

) + (oxB)B- 1 
• 

Premultiplying (2.4.31) by P(x3, x~r 1 
and rearranging yields: 

P(x3, x~r l ,{x3) = P(x~, X3) ,{x3) = P(x3, x~ r l [ ax3w(x3)]-P(x3, x~r I An w(x3) 

= dx,[P(x3, xf r 1w(x3)] 

which may be integrated and then rearranged to yield: 

w(x3) = P(x3, x~)w(x~) + ( x
3 

P(x3 ~) ,{ s) d( Jx~ 

Page 84 

(2.4.33) 

(2.4.34) 

(2.4.35) 

We wish to consider the case where our source of deformation is confined to the 

plane x3 = xf , so that r has the form: 

,{x3) = Yi ~X3 - xf) + 11 o(x3 -xf) (2.4.36) 

where 8 in this case is the Dirac delta function and 8 its derivative with respect to x3 • 

We will assume that the source lies within the n-th layer of the stratification 

( i.e. hn _ 1 < .xf < hn) . The form of equation (2.4.36) covers a large class of sources of 

deformation, and in particular the case of a force applied only across the boundary x3 = 0 . 

Substituting this term back into equation (2.4.35) gives the integral the form: 

("' P(x3, S) 1{ S) d( = H(x3 - xff) P(x3, xf)[ Yi + riAn] Jx~ 

= H(x3 - xn P(x3, xI) P 
(2.4.37) 

.... 
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where H is the Heaviside step function. Equation (2.4.37) therefore defines a 

discontinuity in the stress-displacement vector w : 

w(xf +)-w(xf-) = lJF (2.4.38) 

From equation (2.4.36) we see that for this class of body forces the governing 

equation (2.4.31) has the same form as equation (2.3.3) for all x3 =t= .xf. All of the 

relations we have derived so far are therefore still valid in these regions, we need simply 

to include the effect of the stress-displacement discontinuity lJF at x3 = xf . 

§2.4.5 Boundary Conditions for a Buried Source of Deformation 

At the surface, we can see immediately from the definition of the propagator matrix 

P that the surface vector, S , due to the stress-displacement discontinuity P at depth 
s . . b 

X3 = X3 IS given y: 

S = ( ~;) = P( 0, xf) 'I' (2.4.39) 

where Sw is the 3 x 1 vector whose entries are the various components of displacement 

and ST is the 3 x 1 vector whose entries are the various components of stress. That S 

may be written in this form is a direct consequence of the definition of the stress­

displacement vector w . 

The total stress displacement vector at the surf ace must satisfy the zero stress 

boundary condition and may therefore be written: 

w(o) = (~o) (2.4.40) 

The stress-displacement vector at a depth just below the source of deformation may 

be related to the stress-displacement field in the bottom-most layer using the propagator 

matrix P: 

w(~ +) = P(~, hN-1)w(hN-1) (2.4.41) 

We may then use (2.4.38) to calculate the stress-displacement vector at a depth just above 

the source of deformation: 

~ 
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w(zj-) =P(zj, hN-1)w(hN-1) - P 

which may in tum be propagated to the surface using the propagator matrix P: 

w(O)=P(o,x;)w(~-)=P(o, hN_1)w(hN_ 1) -P(o,x;) P 

=P(o, hN-1)w(hN-1) -S 
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(2.4.42) 

(2.4.43) 

We now consider the boundary condition in the bottom-most layer where we 

require that displacement must be a down-going quantity (i.e. that it must decrease as 

depth increases). From the form of the field propagator matrix for a uniform layer given 

in equation (2.4.6), it is clear that within any such layer the solution of the governing 

equation (2.3.3) may be written as a linear combination of three down-going and three up­

going vector functions, we may therefore take these up-going and down-going vectors to 

be the basis functions for our solution space. In the bottom-most layer of the stratification 

we may take the fundamental solution matrix, Bn, to be the matrix whose columns are the 

up-going and down-going basis vectors of our solution space. Without loss of generality 

we may take the first three columns of Bn to be the up-going basis vectors and the last 

three columns to be the down-going basis vectors. Our solution vector will then be a 

linear combination of the last three columns of Bn and may be written: 

w(hN-1)=BN(hN-1)( ~N) (2.4.44) 

Where Cn is a 3 x 1 constant vector whose entries will be determined by the boundary 

conditions applied at the surface of the body. 

We are still free however to specify the initial values for our solution space basis 

vectors (i.e. we are free to choose a value for the field matrix vn( x~) at some point, x~ , 
within the layer). In this case we choose vn(hn _1) =I, which, from the definition of Vn, 
yields: 

BN(hN-1 +) = DN(hN-1 +) (2.4.45) 

Substituting this result into the form for the solution vector in the bottom-most layer 

given in equation (2.4.44), and the resulting expression into equation (2.4.43) yields a 

form for the stress-displacement vector at the surface: 

_.....,,. 
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w(o) = [P(o, hN_ ,) vN]( iN )-s = F(O, hN-1 + )( iN) ~ s (2.4.46) 

which may be taken as a definition of the transform propagator matrix, F . 

From the definition of the field propagator matrix Q (equation (2.4.3)) we have: 

Q( a +, h N _ I +) = n( a + r 1 
P( o, h N _ I) n( h N _ I +) (2.4.47) 

which may be combined with the definition of the transform propagator matrix to give: 

F(o, hN-1 +)=n(o+)Q(o+, hN-1 +)=D1Q(o+, hN-1 +) (2.4.48) 

If we partition the matrix D1 into 3 x 3 sub-matrices: 

D1 =(mu mD) 
nu nD 

(2.4.49) 

and adopt the following notation for the reflection and transmission matrices of the half­

space as a whole: 

Ri~ D = Ru, D( 0 +, h N - 1 +) ru~D = Tu,D( 0 +, hN-1 +) (2.4.50) 

then upon substituting the partition equation and these last two results into equation 

(2.4.48) we may re-write the transform propagator in terms of the sub-partitions of D1 

and the reflection and transmission matrices of the half-space as a whole: 

(
F; 1 F12) 

F( 0, h N - I +) = F2, F22 

(2.4.51) 

=(mu mo) 
nu no 

T/;N _ RiN( ~Nr I R~N RiN( ~Nr l 

-{~NrIRtN (~Nrl 

where the F . are 3 x 3 sub-matrices of F. 
I) 

~ 
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Now substituting this result, the definition of the surface vector, (2.4.39), and the 

surface boundary condition, (2.4.40), into the form given in equation (2.4.46) for the 

stress-displacement vector at the surface yields: 

(wo) = (F11 F12) ( 0 ) -(Sw) 
0 F21 F22 CN ST 

(2.4.52) 

from which we immediately see that: 

CN = F22-I ST (2.4.53) 

which may in tum be used to show that: 

Wo = (F12F22- 1
) ST- Sw (2.4.54) 

We may then use (2.4.51) to derive explicit formulae for the matrices F12 and F;2 : 

F12 = (mD + muR~)( r:r 1 

F22 = (nD + nuR~)( T~tr 1 

(2.4.55) 

which may be substituted into (2.4.54) to yield: 

Wo=(mD +muR~)(nD +nuR~rI ST-SW 

(2.4.56) 

( ON) ( ~ ON)- I ( )- I = mD +muRD I -RRD nD ST-Sw 

h ~ -1 w ere R = - nD nu . 

We may use this expression to calculate the surf ace displacement in the case we are 

considering (where we may take Sw = 0 and the only non-zero entry in the vector ST is 

the vertical component of stress which is given by the loading function </J ). But we will 

first develop a technique for calculating the stress-displacement vector at any point within 

the body. 

~ 
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§2.4.6 Buried Sources and Receivers 

At any depth x3 within the body we may write the field vector v(x3) in terms of its 

up-going and down-going components: 

v(x3) = I vu(x3) 
vD(x3) (2.4.57) 

Now at the level of the source there is a discontinuity in the field vector v , 

corresponding to the discontinuity in the stress-displacement vector w . From the 

definition of the field vector we see that this discontinuity, I, is given by: 

[v(xl)]: = ~xl) = ( ~) = D(zjr 1 
'P (2.4.58) 

then from this result and the definition of the field vector in equation (2.4.3) we see that: 

v(xf-) = v(xf +)- ~xf) = Q(xf +, hN-1)v(hN-1 +)-~xi) (2.4.59) 

For notational convenience we define: 

Rf;= RD(xf +, hN-1 +) Ris = RJo, x;-) (2.4.60) 

with similar notation for the other transmission and reflection matrices for these regions. 

We take the receiver (the point at which we wish to calculate the stress-displacement 

vector) to be at depth xf inside the body. 

Consider the case where the receiver lies below the the source of deformation (i.e. 

where xf < xf < hN- I) then since there are no sources below the receiver the up-going 

component of the field vector at this point is simply the total reflected portion of the down­

going component. This may be written: 

vu(xf) = RD(xf, hN- 1)v D(xf) (2 .4.61) 

Similarly, if our receiver lies above the source of deformation we have that: 

vD(xf) = R~ 0, x:)v u(xf) (2.4.62) 

....... 

__,,_ 
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From the regularity condition in the bottom-most layer we know that there is no up­

going component of the field vector in this region ( i.e. vu( h N- 1 +) = 0 ) . Using the 

notation of (2.4.60) we may apply this last expression, equation (2.4.61), and the 

partition equation, (2.4.14) to equation (2.4.59) to yield: 

vu(xf -) 
R~5vu(xf-) 

TisN _ RsN (risN)- 1 RsN RsN (TsN)- 1 

U D D U D D 

-(TiNrIRf: (T;NrI ( vD( h :_ 1 +) )-( ~) 

We may eliminate v D( h N _ 1 +) from this expression to show that: 

vu(xf-) = RiN[RZ5 vu(~ -) + Eo]- Eu 

(2.4.63) 

(2.4.64) 

So that from (2.4.62) and (2.4.64) we may derive expressions for both components of 

the field vector just above the source of deformation: 

( 
S ) [ SN OS]- l ( SN rS ~ ) VuX3 -=l-RDRu R0 LD-Lu 

(2.4.65) 

vD(xf-) = Rfsvu(xf-) 

Using (2.4.58), (2.4.59), (2.4.61), (2.4.65), and the fact that for any two square 

matrices A and B for which the relevant inverses exist we have the relations 

A(I-Ar
1 =(l-Ar 1 

-I and A(I-BAr 1 =(l-ABr 1A we may similarly derive 

expressions for the up-going and down-going components of the field vector just below 

the source of deformation. Doing so yields: 

( s ) [ OS SN]- l ( r,5 OS .....,S) v0 x3 + = I - Ru RD L0 - Ru LD 
(2.4.66) 

v~xf +) = R;t vD(Xj +) 

Given that we are only interested in displacements due to surface loads we need 

only consider the case where the receiver lies below the source of deformation . 

In this case we may use the definition of the field propagator matrix and its inverse 

in equations (2.4.3) and (2.4.24) to show that: 

~ 
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v(x:) = Q(x:, x; + )v(xf +) = Q(xf +, xf r l v(xf +) 

From (2.4.14) we then see that: 

(Q(xf +, xf}f - (T:rl 

RtR( TtRr I 

( SR)- I SR - Tu RD 

ySR - RSR(TSR)- I RSR 
D U U D 

which may be substituted back into (2.4.67) to yield: 

vD(x:) = [ Ti;R - RtR(TtRr (Ri;R - R:)]vhf +) 

vu( xf) = - ( TZR r l ( R;R - R;N) V D(xf +) 
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(2.4.67) 

(2.4.68) 

(2.4.69) 

Using the recursion relation in equation (2.4.20) we may write RiN in terms of 

TSR ySR RSR RSR d RRN s b . . h 1 . . + h fl . . u , D , D , u an D . u stitut1ng t e resu tmg expression 1or t e re ect1on matnx 

into (2.4.69) and applying the matrix identities we used to derive (2.4.66) yields: 

vo(x:) = [1 -RtR R:r Ti;RvD(xf +) (2 .4.70) 

We may then extend (2.4.49) to D(xf), and use equation (2.4.70), the definition of 

the field vector, v , and the relations between its up- and down-going components given 

in equations (2.4.61) and (2.4.66) to derive the displacement vector at xf: 

R R RN SR RN SR OS SN OS [ l [ ]-1 [ i- 1 ( ) wR=mD+muRD I-Ru RD TD 1-Ru RD ~-Ru Eu (2.4.71) 

which allows us to calculate the deformation at any point inside the body. 

~ 
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§2.4. 7 Su,face Loads and Receivers 

If we consider a point x3 that lies above the source then from the general form of the 

surface stress-displacement vector given in equation (2.4.46), and the surface boundary 

condition given in equation (2.4.52) we have that: 

( :o) = F( O, x3)v(x3) = 
F11(x3) F12(x3) 

F21(x3) F22(x3) 

We may now use (2.4.65) and (2.4.72) to show: 

v~x3) 

vo(x3) 

v0(x3) = Ru(O, x3)vu(x3) = (F22(x3)t F21(x3)v~x3) 

(2.4.72) 

(2.4.73) 

Now as x3 approaches zero and we enter the upper-most layer of the stratification, we 

have that F(o, x3) = D(x3) = D1 , which may be combined with the partitioning of D1 

(equation (2.4.49)), the form for the stress-displacement vector at the surface given in 

equation (2.4.56), and the above result, to show that: 

Rjo, 0 +) = (F22(0 +}f F2i( 0 +) = -no- 1 llu = R 
(2.4.74) 

We may immediately apply this result to find the displacement vector just below the 

surface. Using (2.4. 7 4) and noting that there are no layer boundaries and negligible 

attenuation of the stress-displacement vector between the source and the receiver since 

xf-~ = 0 (so that RtR = 0 and riR = I ) we have that Ri5 = R. This in tum yields: 

Wo+ = [mD +muR~N][1 -RR~Nr(~-REu) 
(2.4.75) 

= [m0 + muR~] [n 0 + nuR~r 1(n 0 ~ + nuru) 

Noting that P(o) =(Sw sr)T =D1.E(o) we see that Sr= (no~+nurv) so that 

(2.4.75) may be rewritten: 

Wo+ = [mo +muR~Nl [no +nuR~rlsT (2.4.76) 

which we could have obtained from (2.4.56) by setting Sw = 0 

.... 
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This total surf ace deformation is all we are in fact interested in, the case we are 

considering does not require us to allow non-zero values of the discontinuity in 

displacement, Sw , in our form for the source of deformation. We instead specify the 

vertical stress at the surf ace through the stress vector ST and calculate the total resulting 

surf ace deformation. 

Although we could have used (2.4.56) to yield the form for the surface 

deformation, the formalism of sections 2.4.6 and 2.4.7 is necessary if we want to 

calculate deformation or stress throughout the body. While we could propagate from a 

surface vector into the body, doing so without the proper methodology re-introduces 

exponentially growing terms and undermines the central strength of the procedure. 

Maintaining complete decoupling of exponentially increasing and decreasing terms is 

strictly necessary. 

As in the previous two procedures we use this technique to obtain the deformation 

over a grid of values in the transform domain and then numerically transform to get the 

stress-displacement field in the spatial domain. 

§2.4.8 Discussion 

This procedure is significantly more theoretically complicated than either of the 

procedures discussed previously. Despite this it is still reasonably simple to implement 

numerically though it is less conveniently adapted to determining the stress-displacement 

vector at depth. 

The principle advantage of this technique is that the reflection matrix R~N 1s 

calculated recursively using (2.4.27), (2.4.29), and (2.4.30) which contain no 

exponentially growing terms (E' and E containing positive exponentials of Zn which are 

defined to be negative), as compared with the propagator matrix techniques developed in 

sections 2.2 and 2.3. This substantially reduces the variation in magnitude of the matrix 

entries, making the procedure correspondingly more robust numerically. 

The inverse matrices we are required to calculate are all of the form [ A + Br I 
where B may be a matrix with exponentially decaying entries but A has no depth-

dependence at all (A is usually either a sub-matrix of some Dn or the identity matrix as in 

(2.4.75) or (2.4.71)) so that the sum of the matrices approaches A as the entries of B get 

smaller. This has the effect of keeping variation in the magnitude of the matrix entries to 

an acceptable level, so that they are not particularly prone to computational inaccuracies 

during numerical matrix manipulation. A second consequence of this property is that the 

inverted matrices do not contain any exponentially increasing terms. 

~ 
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2.5 Numerical Stability of Propagator Matrix Techniques 

§2.5.1 Su,face Deformation due to a Square Load: Analytical Techniques 

Page 94 

While any two numerical techniques may be consistent, absolute accuracy can only 

be determined by direct comparison with analytical results. In small-scale engineering 

problems it is standard (see for example Timoshenko & Goodier 1970, Love 1927) to 

neglect internal buoyancy and pre-stress advection. This simplification often makes 

analytical solutions possible and in the particular case of a unit load over a square of side 

a on the surface of a uniform elastic half-space, the deformation at the centre of the load 

is given by (Timoshenko & Goodier 1970): 

u3(0)= ~ ln(l +12)a (A+lµ) z0.56a (A+lµ) 
µ(A+µ) µ(A+µ 

(2.5.1) 

where A and µ are the Lame parameters of the body. A similar form may also be 

obtained for the average deformation over the area of the load: 

ur"" 0.475 a (A+ 2µ) 
µ(A+µ) 

(2.5.2) 

Both forms agree very well with the analysis by Love (1929) in which he derives the 

form for the deformation due to a rectangular surface load on a flat semi-infinite half­

space. It is worth considering Love's formulation in a little detail as it illustrates some of 

the difficulties of the engineering approximation. 

Given an arbitrary point in the body x = ( x1, ~' x3 )T and a point on the surface of 

the body x' = (xi, -½, 0 )T , we define the distance function between the two: 

( )

1/z 

r(x, x') = (x1 ·- xi)2 + (~ - -½)2 + xi (2.5.3) 

We then define the logarithmic and Newtonian potentials: 

r(x) = f i In (x3 + r(x,x'))dx; dx; (2.5.4) 

V(x)= fl r(x,x't1 dx;dx; (2.5.5) 

-.... 
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where S is the region over which the load is applied. Both integrands become singular at 

points inside the region S which raises the issue of analyticity. In his analysis Love 

constructs a region, L , of radius £ around each singularity and allows £ to approach 

zero. An explicit analytical form is found by changing to polar coordinates inside L and 

considering the limit. Failure to carefully consider the issue of analytical behaviour can 

lead to analytical expressions with hidden singularities (see for example Sneddon 1951). 

In the absence of external forces, solutions to equation (2.1.3) can be written in 

terms of the the logarithmic and Newtonian potentials (Love 1929). The vertical 

component of surface deformation, for example, is given by 

1 (1+2µar av) 
u3 = 4nµ 1+ µ ox3 -x3 ox3 (2.5.6) 

Defining the quantity A(x) to be 0.25, 0.5, or 1, depending on whether x lies on a 

comer, an edge, or wholly within S, the form for the derivatives in this expression is: 

~~ = Jl_/(x,xJ1dx;d-½+A(x)n:E (2.5.7) 

~~ = - J L, X3 r(x,xJ3 dx; d½ -A(x)n: (2.5.8) 

which guarantees that our analytical solution is well behaved throughout the body, in 

particular directly under the load, and makes an ideal comparison for our numerical 

results. 

§2.5.2 Numerical Stability of the Propagator Matrix Techniques 

Figure 2.6 illustrates a comparison of the numerical procedures developed in the 

previous sections and the analytical technique developed by Love. The results shown are 

for a 400 m thick ice sheet with a side of 100 km and centred on the origin. The body 

was taken to be uniform with a bulk modulus of 6.5 x 1010 Pa and a rigidity of 

3.6x 1010 Pa, and the calculation was performed over a grid of 1024 x 1024 data points, 

uniformly spaced at a distance of 2 km . The cross-section shown in the figure 

....d1 
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Figure 2.6: Comparison of results for the basic, conventional and wave propagator matrix techniques of 

McConnell (1965), Wolf (1985a) and Kennett (1981) against the analytical procedure of Love (1929) 

was taken along the x1 -axis though the fit is uniformly good over the surface of the half­

space, all of the techniques considered giving agreement to the analytical solution within 

2.5 percent and according very well with the expressions given by Timoshenko in 

equations (2.5.1) and (2.5.2). 

Having determined that our numerical solutions agree with the analytical solutions 

we can compare the numerical stability of the three techniques with depth. 

One simple test is to determine the surface deformation of a two layer elastic body, 

and in a series of increments move the internal boundary deeper and deeper into the body. 

Then as the depth of the layer boundary increases, the deformation at the surface should 

asymptotically approach that expected for a uniform half-space with the physical 

properties of the upper layer. 

To maximise numerical stability, a scaling factor was introduced into the 

conventional propagator matrix technique. The entries of the propagator matrix being 

uniformly scaled by a factor of e- ahN-1 which was removed in the final stages of the 

calculation. The results of a series of tests are given in figure 2. 7. 

The results shown in the figure were calculated for a 400 m thick ice sheet of side 

100 km for a body in which the bottom layer has half the rigidity and bulk modulus of 

.-llil! 
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Figure 2.7: Results for surface deformation under the centre of a square load of side 100 km over a two­

layered half-space. Results are plotted against the depth of the layer boundary which is moved steadily 

deeper into the body. 

the upper-most (in the upper layer the bulk modulus and rigidity take values of 

6.5x 1010 Pa and 3.6x 1010 Pa respectively). We see from the figure that, as predicted, 

as the depth of the layer boundary increases the surface deformation under the centre of 

the load approaches that expected for a uniform half space, calculations for a stratified 

half-space were only performed to a depth of 5 000 km and compared with the result for a 

uniform body. We can also see that the basic propagator matrix suffers catastrophic 

numerical errors when the layer depth is between 70 and 80 km and the conventional 

technique breaks down between 150 and 160 km. 

Scaling the entries of the various component matrices increases the robustness of 

the conventional technique without at all affecting the stability of the basic propagator 

matrix procedure. In both techniques the source of the numerical instability is the 

opposing signs of the exponential terms. Taking the conventional technique as an 

example, as depth increases there quickly ceases to be any significant difference between 

the cosh and sinh terms in the propagator matrix and it becomes degenerate, scaling 

removes any problems with the absolute magnitude of the matrix entries themselves but 

cannot combat the degeneracy of the matrix at depth. This effect is magnified in the basic 

~ 
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propagator matrix technique where the matrix entries are often simple positive or negative 

exponentials, resulting in vast differences in magnitude in the entries of the propagator 

matrix and catastrophic numerical instability. 

In stark contrast, the wave propagation method remains absolutely stable as depth 

increases because of its analytical sophistication. Each of the terms in the recurrence 

relations given in equations (2.4.27), (2.4.29) and (2.4.30), and the surface boundary 

conditions (2.4.76) is carefully manipulated to avoid the appearance of any numerically 

unstable elements, ensuring accuracy to depths well beyond the scope of other flat-earth 

techniques (the procedure was tested and performed exceptionally well to a depth of 

5000km, fifty times the length of the load). 

These depths are not absolute limits however. Employing a more sophisticated 

numerical implementation may further increase the numerical stability of the conventional 

propagation procedure. The need to develop such an implementation is, however, 

obviated by the wave propagation technique, whose analytical form guarantees numerical 

stability. 
A more important issue understanding the failure of the basic and conventional 

propagator matrix procedures is the nature of the numerical implementation. There are 

several factors influencing the numerical accuracy of our calculation. One such factor is 

the resolution of the load, a load defined by only a few grid points can only be modelled 

with limited accuracy. Another, as we shall see next chapter, is the size of the grid over 

which the stress-displacement vector is calculated. We are forced to assume that the 

displacement due to the load is zero at the edge of the grid, if the grid is not large enough 

for this approximation to be valid, inaccuracies will result. 

The effect of these two factors is significant. Given a square load of side 2 a , the 

symmetry of the problem allows us to restrict our attention to the first quadrant. Our 

results will be given over a grid of Nx x Nx points, uniformly spaced 8x units apart, 

where we are free to choose Nx and 8x . These quantities must be chosen so the 

resolution of the load (represented in this case by Na= o/ox ) is sufficiently high, and the 

distance, Nx 8x , from the centre of the load to the edge of the grid is large enough that 

the zero condition at the edge is valid. 

In the implementation itself we may consider integer wave numbers by re-scaling 

the units of distance so the interval [ 0, Nx 8x] becomes [ O, n] . Working in these units 

and using the form given in equation (2.3.21) for the eigenvectors of the governing 

matrix in equation (2.3.4), we see that a takes a maximum value of (2N;)½ = 12 Nx (in 
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these dimensions the component wave numbers take integer values between O and Nx). 
This gives us the following result for the maximum value of the exponential term, eaz, in 

the units of our numerical formulation: 

(12 nNxz) (12 nz) max ( ea') = exp N, 8x = exp 8x (2.5.9) 

The form for equation (2.5.9) shows that it is not the actual depth that limits the 

numerical stability of the conventional technique but rather the dimensionless depth, 

normalised in terms of grid-spacing. Having restricted our attention to relatively small 

loads we need a fine grid spacing to keep the resolution of the load high, which limits the 

depth to which the basic and conventional techniques remain stable. 

Equation (2.5.9) demonstrates that any increase in 8x will proportionately increase 

the depth to which the standard propagator matrix procedures are valid. The results for 

figure 2. 7 were obtained for a grid spacing of 1 km and may therefore be viewed as 

illustrating behaviour with dimensionless depth. 
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2.6 Discussion 

The basic and conventional flat earth propagator matrix techniques developed in this 

chapter have been shown to suffer significant numerical limitations. These limitations do 

not affect their suitability to the problems to which they have so far been applied. The 

scales in these problems have been large enough that the exponential terms in the 

propagator matrices do not get small enough to cause rounding errors to be significant. 

The implementation of either a direct inverse procedure or forward modelling 

application that relies on superposition of the deformation due to small unit loads requires 

a numerical technique that provides stability at depths significantly larger than the width 

of the load. For such an application the wave propagation technique is ideal, its analytical 

complexity is more than justified by its stability and flexibility. The three dimensional 

Cartesian formulation given here allows loads of any geometry to be modelled accurately 

at any depth. 

The major limitation of the wave propagator technique to this point is the failure to 

include either pre-stress advection or internal buoyancy. The deformation due to seismic 

sources is not large enough that either of these terms is significant but pre-stress cannot 

be neglected when modelling rebound problems. The formulation given here forms the 

basis of a flexible and powerful flat earth technique for modelling rebound problems, 

however, the effects of both pre-stress and internal buoyancy must be considered before 

it may be meaningfully applied to a physical rebound problem. The inclusion of these 

terms does not require significant modification of the procedure itself and will be 

discussed in chapter 4, while the extension to a Maxwell visco-elastic body and the 

details of the numerical implementation will be developed in greater detail in the next 

chapter. 
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Chapter 3 

NUMERICAL IMPLEMENTATION OF INTEGRAL TRANSFORM 

TECHNIQUES 

3.0 Introduction 

Glacial rebound data preserved in the sea level record and changes in the geoid can 

be used to constrain both the constitutive behaviour of the earth to changes in surface 

loading on this time scaje ( c. 10 000-20 0000 years for the Holocene and latest Pleistocene 

ice sheets) and the melting history of the ice sheets involved. An accurately detailed 

spatial and temporal model of the deglaciation event in turn provides important 

climatological constraints for the epoch being considered and also helps us to more 

accurately determine the earth's response parameters. 

Direct inverse procedures rely on the fact that forward modelling ( direct 

computation of the data that needs to be fitted to the observations, in this case the 

deformation due to an ice sheet) is not particularly expensive numerically. This is not the 

case for the spherical harmonic techniques discussed in chapter 1, especially if we want to 

develop a high resolution model. As we discussed in chapter 2, one alternative is to 

restrict our attention to ice sheets whose lateral extent is such that the curvature of the 

earth may be neglected and it may be treated as a flat semi-infinite half-space. 

The techniques developed in the previous chapter rely implicitly on the use of the 

Fourier transform, while their extension to the visco-elastic case via the correspondence 

principle is based on the the Laplace transform, as discussed in section 1.3. Despite their 

undeniable analytical usefulness, the use of integral transform techniques poses serious 

computational challenges that must be considered carefully if the accuracy of our flat earth 

procedures is to be maintained. 

Use of the Fourier transform in the classical and wave propagator matrix procedures 

is complicated by degeneracy at the origin in the Fourier domain, the governing matrix of 

equation (2.3.3) develops a degenerate set of six identical eigenvalues, all equal to zero, 

rendering the analysis of sections 2.3 and 2.4 invalid. This indeterminacy results in a 

uniform shifting of the resulting function values, which must be compensated for. The 

need for high spatial resolution also places some rather rigorous demands on our 

numerical implementation since our grid cannot be too coarse in comparison with the 

lateral extent of the load. When combined these two constraints place serious limitations 

on any numerical implementation of flat earth techniques. We will open this chapter by 

considering the requirements and consequences of the Fast Fourier Transform (FFT) 

technique and sources of error common to its use, particularly origin shift, definition of 

the load and the phenomenon of function aliasing. We will discuss in detail how to 
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minimise these errors when applying the technique to the propagator matrix procedures of 

Chapter 2. 

The Laplace transform is particularly unwieldy to invert numerically (see for 

example Krylov & Skoblya 1977, Davies & Martin 1979) and the conditions under which 

any given numerical inversion scheme might give inaccurate results need to be carefully 

considered. The second section of this chapter will be devoted to the development of 

several numerical techniques for the inverse Laplace transform and the results for each 

technique will be compared for Love number calculations for an incompressible and 

compressible body using the methodology of chapter 1. 

The purpose of this discussion is simply understanding and minimising possible 

sources of numerical error and selection of a suitably convenient and accurate inversion 

procedure. Detailed theoretical discussion of the physical validity of these techniques and 

the stability of the Love number problem for a Maxwell Earth is not within the scope of 

the current work (see for example Fang & Hager 1994, Vermeersen, Sabadini, & Spada 

1996b for a more detailed discussion) 
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3.1 The Fast Fourier Transform 

The Fourier transform and its inverse defined in section 1.3.3 take a slightly simpler 

form in the case of a symmetric function such as the vertical displacement of an elastic 

half-space by a symmetric load. If we let uf (x) be the vertical displacement of an elastic 

half-space due to a surface load distribution p (x) that is symmetric about x = 0 then 

uf (x) will also be symmetric about the origin and the Fourier transform takes the form: 

_r{ uf (x)) = Uf( v) = L uf (x)e-;vx dx = L uf (x)( cos( vx)- i sin( vx))dx 

= r uf (x)cos( vx)dx + r uf (x)cos( vx)dx 
( 

- ii r uf(x)sin( vx)dx + r uf (x)sin( vx)dx 

= r uf (x)cos( vx)dx + r uf (-x)cos(- vx)dx 
( 

- !I r uf (x)sin( vx)dx + r uf (-x)sin(-vx)dx 

= 2 r uf(x) cos( vx)dx (3.1.1) 

similarly, the inverse integral takes the form: 

_'.f-
1 

( af( v)) = Ar af( v)cos ( vx)dv = uf (x) (3.1.2) 

The horizontal components of displacement are anti-symmetric (i.e. they satisfy the 

relation uf (-x) = -uf(x) rather than uf (-x) = uf(x) ), so that when substituted into the 

above definitions the results are Fourier sine transforms rather than cosine transforms. 

the analytical and numerical properties of both are very similar however and without loss 

of generality we will restrict our attention to the particular case of cosine transforms. 

Both the transform and the inverse transform involve infinite integrals. This is 

something of a problem when evaluating them numerically, unless the function being 

transformed only has finite support (i.e. there is only a finite region in which the function 

is non-zero) or asymptotically approaches zero as x becomes large, and does so quickly 

enough to allow the integral to converge (which is true of the particular case of the 

deformation of an elastic halfspace under a finite surface load). In either case we can 

• 
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approximate the actual transform by considering larger and larger finite regions of 

integration, using the identity: 

Jim f uj(x)cos ( vx)dx = 0 (3.1.3) 

so that for sufficiently large values of a we have: 

f uj(x)cos ( vx)dx = an v) (3.1.4) 

The equality would be exact if [ 0, a] included the entire support of u~ (x) . 
Numerically, we are faced with the problem of approximating the Fourier transform 

of a function from its value at a set of discrete points. The calculation required to perform 

the inverse transform is almost identical and need not be considered as a separate case. 

The most efficient technique for calculating the necessary integral is the Fast Fourier 

Transform or FFT (see for example Press et. al. 1986). This technique implicitly 

assumes the function being transformed has finite support, normally taken to lie within 

[ 0, n] , though by scaling appropriately it may be applied over any region. In its normal 

numerical implementation, it also assumes that the function values are evenly spaced 

throughout this region and that the total number of points at which the function is being 

sampled is a power of 2 (for optimal computational efficiency). 

This last property allows no other technique for increasing the number of sampling 

points than doubling them, which effects the cost of actually performing the transform 

(which is an O (Nlog 2 N) operation where N is the number of data points for which the 

transform is being calculated), and can be a severe limitation in cases where obtaining the 

function values requires a great deal of computational effort (such as for example an 

application of the wave propagation technique). 

Still letting u~ ( x) be the deformation at the point x due to a point load at the origin, 

then the deformation due to a load distribution p (x) has the form: 

uj(x) = r uf(x-x0 )p(x0 )dx0 (3.1.5) 

Applying Fourier transforms and invoking the Convolution Theorem (see for example 

Spiegel 1968) yields: 

uf ( V) = at ( V) p ( V) (3.1.6) 

I 

J 



Numerical Implementation of Integral Transform Techniques Page 105 

This allows us to restrict our attention to the deformation due to a point load at the origin, 

where we have ft( v) = l . Once we have calculated the response of a given half-space to 

a point load in the transform domain we multiply it by the transform of the loading 

function and invert to get the deformation in the spatial domain. 

If we perform our analysis for a function in the region [ 0, N 8x] for a fixed integer 

N, then the sample spacing, 8x , between consecutive data points limits the accuracy with 

which we can model features in the spatial domain. If our data points are widely spaced 

then we will lose much of our power to resolve high frequency features. The Nyquist 

critical frequency ( vc = ½ sx) is the largest frequency for which we can numerically 

calculate the Fourier transform, any power in the transform function at higher frequencies 

will be aliased back into the interval [ 0, vc] . 
In this particular application we start our analysis in the frequency domain, our data 

spacing there will be Ysx and we will lose any contributions from frequencies smaller than 

this or larger than the Nyquist critical frequency. Our accuracy at these shorter and longer 

wavelengths is therefore adversely affected by aliasing. Figure 3 .1 shows the effect of 

sample-spacing on evaluation of the sine function in the Fourier transform domain, the 

larger the spacing between data points compared with the frequency of sine curve, the 

poorer the fit of the transform function until the high frequency features of the original 

function are lost. Care should be taken to ensure that the sample spacing and the number 

of data points are chosen so that the correct range of frequencies are considered in our 

numerical scheme and the behaviour of the deformation function is modelled with 

adequate resolution. 
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Figure 3.1: Plot of sine function in the transform domain for different sample-spacings. 
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A more significant risk of numerical error is posed by the analytical properties of 

propagator matrix procedures however. Examining the governing matrix of equation 

(2.3.4) we see that our flat earth techniques break down at the origin in the frequency 

domain ( v1 = 0 , v2 = 0 ), where the eigensystems become completely degenerate. The 

origin corresponds to a load of infinite lateral extent so that after applying the inverse 

transform, this indeterminacy results in a constant off set in the resulting function values 

from their true values as the transform routine is unable to correctly locate the origin. 

However, since we know that the function we are modelling, uf ( x) , approaches zero as 

x becomes large, we can assume that the value our inverse transform yields at the far 

comer of the grid from the origin in the space domain is in fact zero and translate all the 

other values accordingly. The accuracy of this approximation is dependent on the lateral 

extent of our grid and the rate at which the deformation approaches zero. 

Figure 3 .2 illustrates the effect of this assumption. The results were obtained for a 

uniform elastic body with a bulk modulus of 6.5 x 1010 Pa and a rigidity of 3 .6 x 1010 Pa . 

Test runs were performed over a series of grids, ranging in size from 64 x 64 to 

1024 x 1024 data points with constant data spacing of 2 km. The results were compared 

with those for the analytical technique of Love ( 1929) for an ice sheet 400 m thick and 

side 100 km centred on the origin, the cross-sections shown were taken along the x1 -axis 

though the resulting trends were consistent across the surface of the half-space. 

The qualitative behaviour of the numerical models was good for all grid sizes 

though agreement with the analytical solution was unsatisfactory until the lateral extent of 
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Figure 3.2: Comparison of results of numerical models for different grid sizes for deformation due to a 

square load of side 100 km centre on the origin. Cross-sections are taken along the x1 -axis. 
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the grid was approximately ten times that of the load, when the difference fell below 5 

, percent. The error fell to less the 2.5 percent when the grid was 20 times the size of the 

load (that is, for a grid of 512x512 data points since we only have to model the 

deformation throughout the first quadrant where the load has a side of 50 km, results for 

the rest of the body may be obtained by symmetry relations), and less than one percent for 

the maximum grid size considered. The results for small grid sizes provide accurate 

results for spatial gradients and trends, but the larger grids are well within the capacity of 

available computing technology and should be used where possible. 

A second series of runs were performed in which the grid size was kept constant at 

I 024 x I 024 data points and the grid spacing was varied from 1 km up to 5 km or 

between two and ten percent of the width of the load. Within this range the choice of 

spacing was found not to have a significant effect on the accuracy of the modelling 

procedure with accuracy improving slightly as the grid became coarser (in other words, as 

the grid became larger with respect to the load being modelled). One significant feature of 

the Fourier transform approximation for a square load is that in order to achieve best fit, 

the value of the data points at the edge of the load should be halved so as to avoid 

oscillations. 

Using Fourier transforms as part of any numerical implementation requires that care 

be taken when choosing both grid size and spacing so as to guarantee adequate 

representation of the data and to minimise errors due to data aliasing and translation of the 

origin. For elastic rebound problems on a flat half-space, the lateral extent of the grid 

over which the calculations are to be performed should be at least ten times as large as the 

feature being modelled, and preferably between twenty and forty times the width of the 

load. A grid-spacing of ten percent the width of the load was generally found to be 

adequate, provided due care was taken at the edge of the load to avoid introducing 

oscillatory behaviour. 
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3.2 The Laplace Transform: Numerical Evaluation of the Mellin Integral 

As defined in section 1.3.3, and as with the Fourier transform above, the Laplace 

transform and its inverse both involve integrals over regions of infinite extent, but in any 

numerical formulation we will only be able to evaluate the function over a discrete set of 

points. The inversion of the Laplace transform therefore also involves calculating an 

infinite integral from function values given for a finite number of data points. The 

problem in this case is significantly more difficult however, as we shall discuss below. 

From the form for the inverse Laplace transform ( otherwise known as the Mellin 

integral) given in equation (1.3.7) and the Residue Theorem (see for example Kreyszig 

1983) we see that the inverse transform of an almost everywhere regular function may be 

calculated by summing the residues of the transform function throughout the entire 

complex plane. Numerically locating the transform function's poles and evaluating their 

residues is computationally very expensive unless there is some way of limiting the search 

to a particular region in the complex plane. Even if the nature and distribution of the poles 

is somehow restricted it is still very difficult to guarantee that all the poles of the function 

will be found unless there is some further constraint on the number of poles the transform 

function will have. The chance of missing a pole can however be minimised by using a 

rigorous enough search over the region of interest but only at commensurate increase in 

the numerical cost, and for the problem of Love number calculations the complexity of the 

functions involved is often prohibitive. 

For an impulse function in the time domain, (\t) , the visco-elastic deformation at a 

given point through time will, assuming regularity, consist of the elastic deformation at 

time zero (the elastic deformation, assumed to be instantaneous) followed by a gradual 

relaxation to the undeformed state. This may be expressed mathematically: 

N 

u3 (t) = uf 8(t) + k~ rke-skt (3.2.1) 

where the rk are the residues and the -sk the poles of the Laplace transform of the 

deformation. The transform of the deformation function then takes the form: 

N -I 

u3(s)- uf = k~ rk (s + sk) (3.2.2) 

The deformation for loads with a more complex dependence on time is again a simple 

implementation of the Convolution Theorem. In practice the deformation is in fact broken 

up into components that are easier to calculate numerically (Love numbers for a spherical 

model or functions of wave numbers in the case of a flat earth) but each of these 
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components has the form of (3 .2.1) so that on re-combining, the total deformation 

inherits the same form. 

As discussed above, determining the location of all of the poles of a given complex 

function is a very difficult numerical exercise, especially if the number and location of the 

poles is not constrained in some way. This approach however forms the basis of the 

normal mode technique developed by Wu (1978) and Peltier (1985). We may consider as 

an illustrative example the expression for surface deformation given in equation 2.4.76: 

Wo+ = [mn + muR;N] [nn + nuR~r 1

sT (3 .2.3) 

Considering this quantity as a function of the transform variable s we see that the poles of 

Wo+(s) will be those values of s for which the secular determinant of nn + nuR~ is zero. 

This is because the general form for the inverse of a matrix A is given by 

A - l =A* ( det Ar I where A* denotes the ad jugate matrix of the system, its elements 

being the corresponding cofactors of the matrix A (see for example Strang 1980). If the 

elements of A are all finite then the elements of the ad jugate matrix must also be finite, so 

that the only possibility for the expression to become singular is for the determinant to 

approach zero. An inversion of (3.2.3) may therefore be performed by searching for a 

complete set of zeroes of the determinant of n n + nu R°t , and calculating the residues of 

the entries of the adjugate matrix at each of the poles. 

This approach is particularly numerically intensive, requiring an iterative routine to 

determine the location of the zeroes of the determinant, each iteration requiring 

recalculation of the matrix to be inverted and its determinant, and the procedure ending 

with a calculation of the residues of the cofactors. 

Algebraic and physical considerations may be used to constrain the total number of 

poles the system has (see, for example, Wu & Ni 1996, Vermeersen, Sabadini, & Spada 

1996a). Numerical instability may however become a serious concern if the iteration 

procedure is not confined to an appropriate region of the complex plane. 

In the calculation of glacial rebound, a less numerically intensive inversion 

technique is often employed. Of these perhaps the most notable is the pure collocation 

technique proposed by Schapery (1962) (see also Mitrovica & Peltier 1992) where a set 

of exact poles is replaced by a set of hopefully similar values of the transform variable 

chosen a priori. 

In the collocation approach we approximate the deformation given in equation 

(3 .2.1) by the function: 

N 

u*(t) = uE 8(t) +LR e-sZr 
3 3 k=I k (3.2.4) 
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where the s; are chosen a priori to coincide as closely as possible with the values that 

might reasonably be expected for the exact modes of relaxation. The coefficients Rk are 

then chosen to give the best fit of a; to the transform function, u3 , so that they satisfy the 

equation: 

N N 

u3 (s;)- uf = L (s; + s;)- 1 
Rk = L SjkRk 

k=l k=l 
(3.2.5) 

This technique is however prone to a number of numerical instabilities. If the 

number of collocation points, N, is too large, or the spacing between them is too small 

instability in the pivot points of the matrix ( Sjk) may result ( see for example Mitrovica & 

Peltier 1992). Numerical instability in the calculation of the quantity u3 (sJ may also 

occur if the sample points chosen are inappropriately small. Johnston ( 1993) suggests 

that pivot stability may be addressed by considering instead the associated problem: 

N R N 
~ ( *) E _ ~ * ( * *)- l k _ ~ ,Y" * u3 sj - u3 - ~ sk sj + sk -* - kJ SjkRk 

k=I Sk k=l 
(3.2.6) 

which significantly reduces the condition number of the matrix ( sij). This adjustment is 

doubly attractive when considering Heaviside and stepwise linear loading functions where 

the quantity R; = R1/sk is a more useful quantity to calculate. The form for these terms 

illustrates an important source of numerical error for the collocation technique. Love 

number calculations are often inaccurate for very small values of the transform variable s 

(Johnston, personal communication). Even very small errors in this case are magnified 

by the division by sand can have a significant effect on the final form of the function as 

we shall see later. 

The accuracy of the collocation technique depends also on how closely the 

parameters s; approximate the body's actual modes of relaxation. The lack of a formal 

system for selecting these various parameters to give optimal accuracy and the technique's 

susceptibility to numerical instability makes it rather suspect and the development of a 

more robust and numerically convenient procedure for inverting from the transform 

domain is one of the most significant outstanding theoretical problems in the field of 

visco-elastic loading problems. 

Wu & Peltier (1982) employ a mixed collocation technique in which the poles of the 

transform function are found as for the normal mode analysis scheme and the residues 

found by solving an equation analogous to (3.2.6) rather than determine them directly 

though this represents only a marginal numerical saving and is prone to the same 

limitations as the normal mode technique in the compressible case where the regularity of 

the transform function is prone to failure. 
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The collocation procedures are in fact a special case of a larger class of numerical 

techniques for inverting from the transform domain that centre on approximating the 

function as a sum of powers of exponentials. 

A more direct implementation of this class of technique was first proposed by 

Erdelyi (1943), (see also Papoulis 1956, Lanczos 1957, Davies & Martin 1979), this 

method relies on the expansion of U3 (t) in terms of Legendre polynomials of even order: 

00 

U3 (t) = n~O anP2n ( e-rt) (3.2.7) 

Applying the Laplace transform to (3 .2. 7), letting s = ( 2k + 1) r, using the change of 

variable x = e-rr, consulting standard tables of integrals (see for example Gradshteyn & 

Ryzhik 1980), and simplifying the resulting expression gives: 

ru3((2k + 1 H = r r U3(t)e-(2
k+l)rt dt 

where we define (Jt : 

= t ra 1= p (e-r') e-(2k+ I)rt dt 
0 

n 2n 
n= 0 

= f a l I P? (x) x2
k dx 

0 
n _n 

n= 0 

00 1rr2- (2k+ 1) ( 2k) ! 
=L------ak 

n=O (k-n)!r(k+n+ 3h) 

k (k- n + l) 
= L n a 

n=O 2(k + 1/2) n 
n+l 

(J) =) l for n = 0 
n n-I g (J + m) aliter 

(3.2.8) 

(3.2.9) 

The system of equations (3.2.9) may be solved recursively to get the coefficients of the 

Legendre polynomials, an, in (3.2.7) to whatever degree of accuracy is required. 

In the techniques so far discussed we have chosen an expansion for the 

deformation, u3 (t), and determined the values of the coefficients of expansion by 

collocation. It is however often more appropriate to expand for the transform function, 

although rather than expand in powers of s or e- rs , we use instead inverse powers of 
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s represented by a new variable z based on a bilinear transform: z = (s+aY(s+c). The 

quantities a and c are constants chosen such that c > a , the transform mapping the 

region [_(a+ c)/2 , oo] onto [-1, 1]. 

Of the various forms of this technique many require evaluation of the transform 

function at points away from the real axis. In the case of either Love number or 

propagator matrix calculations we see from ( 1.3 .13) and ( 1.3 .14) that complex values of 

s result in complex values for the Lame parameters which makes computation possible 

but cumbersome. A bilinear procedure requiring evaluation of the transform function 

only along the real axis would ideally suit our needs. 

Piessens (1972) proposes a class of such techniques in which he approximates the 

transform function with a series of Jacobi polynomials of z. He focuses particularly on 

the special case of Chebyshev polynomials and we will follow his example. In this 

approach we write the transform function in the form: 

U3 ( S) = S- (a+ 1
) nto an Tn ( 1 - bs- 1

) (3.2.10) 

where a is a constant chosen so that for the transform function under consideration the 

following relation holds for large values of s : 

U3 ( S) ~ s- ( a + I) (3.2.11) 

From (3.2.2) and the Convolution Theorem we see that for the particular case of the 

deformation of an elastic body under a Heaviside or stepwise linear load, a= 0 and may 

be neglected in our treatment. 

Inverting (3.2.10) term by term we write: 

U3(t) = nto an 'Pn( ~) (3.2.12) 

where the functions Pn can be evaluated in a number of ways. For small values of n the 

inversion can be done term by term: 

P0 (x) = 1 

P1(x)=l-2x 

P2 (x)= l -8x+4x
2 

(3.2.13) 
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Then these terms can be used to start one of two recursion schemes. The first uses the 

recursion relation for Chebyshev polynomials (see for example Spiegel 1968): 

Tn ( Z) = 2 Z Tn _ 1 ( Z) - T n _ 2 ( Z) (3.2.14) 

Substituting for x and inverting yields: 

'l'n(x) = 2 'f'. _ 1 (x)- 'l'n-2 (x)-4 f 'l'n- 1 (x')dx' (3.2.15) 

This approach has the advantage of analytical simplicity but makes numerical evaluation 

rather expensive as the polynomials have to be considered as power series. An alternative 

formulation is to view the Pn as generalised hypergeometric functions and apply Sister 

Celine's technique (Rainville 1960) which yields the recursion relation in the form: 

- tp n ( X) = ( A + Bx) pn _ 1 (x) + ( C + DX) tp n _ 2 ( X) + E tpn _ 3 ( X) 

for n > 2 . The coefficients in this relation are found to be: 

AJn-IY(2n-3) 
n(n-2) -2n 

B = 4n- 1 

D= 4(n-1) 
n(n -2) 

E=-(n-_1)_(3-_n) 

n(n-2) 

C=-(l+A+E) 

(3.2.16) 

(3.2.17) 

The coefficients from (3.2.10) are given by a least squares analysis (see for 

example Spiegel 1968): 

an= 
2 

-,/on L <P(z)( 1 -z2(12 Tn(z)dz 

= 
2- 8on L <P(z)(l -z2r½cos(ncos-I z)dz 

2 8, lTC = -_ 0 
n 

O 

<P ( COS cp) COS ( n cp) d cp 
(3.2.18) 

which can be approximated numerically: 

N 

an~ ( 2 - 00 n) k~ <P( COS 'Pk) COS ( n 'Pk) (3.2.19) 
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where we define: 

(
2k+ l)n 

(f)k = N + l 2 <P(z)=b(I -zf' d(b(I-zr) (3.2.22) 

It is standard to choose N in (3 .2.19) to be the degree of approximation of the 

transform function, so that (3 .2.10) and (3 .2.12) become finite sums to N. 

§3.2.1 Comparison of Numerical Techniques for Evaluating the Mellin Integral 

Since its development by Schapery ( 1962) the pure collocation technique has been 

widely used by investigators of glacial rebound (Peltier 1974, 1976, Nakada & Lambeck 

1987) and one of the more popular techniques used in this field for inverting the Laplace 

transform. It suffers from a number of significant limitations however which have not so 

far been satisfactorily resolved and have led some workers to avoid it wherever possible. 

In this section we will compare the performance of the pure collocation technique with the 

alternative procedures presented above and attempt to develop some criteria for 

determining the applicability of each. 

Inversion of the Laplace transform is most frequently required during Love number 

calculations, making this problem the most suitable for comparison of the techniques so 

far discussed. Figure 3.3 shows the results of Love number calculations performed using 

normal mode analysis, collocation, bilinear transformation, and Legendre polynomial 

approximation. The results given are for an incompressible body with rigidity and density 

calculated numerically from the PREM model of Dziewonski & Anderson (1981) and 

averaged over each region in the body, the lithosphere, low viscosity channel, upper 

mantle, lower mantle, and core. The lithosphere in this model is taken to be elastic and 70 

km thick, the low viscosity channel extends from the base of the lithosphere to the 400 km 

discontinuity and has a viscosity of 3 x 1020 Pa s , and the remainder of the upper mantle 

is given a viscosity of 1021 Pas . From the 670 km discontinuity to the core mantle 

boundary, the viscosity is taken to be 1022 Pa s while the core itself is treated as being 

liquid. 

The agreement between the normal mode and bilinear results is initially exact to 

within machine accuracy but rapidly deteriorates until the bilinear transform is no longer 

producing reasonable results by approximately 8 x 103 yr years. Increasing the scaling 

factor b in equation (3 .1.16) to try and expand this region of agreement adversely affects 

the accuracy of the integral in equation (3.1.25). The results given in the figure are 

typical for values of b ranging between 0.03 and 0.1, with N between 60 and 90. 
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Comparison of results for numerical inversion of the Laplace transform for the Love numbers of an 

incompressible body using normal mode, pure collocation, bilinear, and Legendre approximations. 

The agreement between the normal mode technique and the Legendre polynomial 

approximation is very good except for very short time-scales (less than approximately 

2 x 103 yr) on which the Legendre polynomial procedure is not entirely stable. The 

results in the figure are typical for values of the scaling factor r in equation (3 .2. 7) 

ranging between 0.03 and 0.1, with the Legendre polynomial series truncated between 

degree 10 and 15. Solving the recursive linear system in equation (3.2.8) is prone to 

numerical error if the maximum degree in the summation is too large. The exact limit 
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depends on both the earth model and the degree of the Love number being calculated, for 

the model considered here the cut off was at degree 18. 

The agreement between the collocation technique and the normal mode procedure is 

excellent on all time scales. The results from the figure are typical for a wide range of 

input variables from 25 to 44 collocation points spaced uniformly between 2 to 3 points 

per decad in log 10 s -space and starting from a lower bound of 1 o- 13 s- 1 
( corresponding to 

time scales of the order of 3 x 105 yr ) . 

Considering only an incompressible body allows us to apply the normal mode 

technique for comparison, moving to a compressible body, however, renders the normal 

mode technique rather difficult to implement numerically for earth models with either a 

thin lithosphere or a low viscosity upper mantle. The increased complexity of the 

rheological model in tum complicates the behaviour of the secular determinant of the 

governing matrix to an almost impossible degree ( see for example Johnston 1993, figure 

2.3). This lack of a direct comparison for short timescales has left the validity of the 

collocation technique untested for many classes of earth model and prompted some 

workers to restrict their attention to incompressible bodies. Figure 3.4 shows the results 

obtained using the Legendre approximation and the collocation technique for a 

compressible body whose rheological parameters are calculated from the PREM model of 

Dziewonski & Anderson ( 1981) with the same viscosity profile as for the incompressible 

body considered above. 

Once again the agreement between the two techniques is reasonably good except 

over very short and very long time scales, so that both inversion schemes seem to be 

representing the behaviour of the Love numbers with reasonable accuracy, though for the 

higher order Love numbers both techniques produce oscillations on long time scales. The 

Legendre approximation procedure also produces substantial short and mid-term 

oscillations for the degree 2 Love number and its performance is generally less 

satisfactory despite being substantially cheaper numerically. 

The Legendre polynomial technique is far more prone to numerical instability in the 

compressible case, the maximum degree of summation falling to 10 for low degree Love 

numbers and 6 for the higher degree calculations. The results in the figure are for a 

scaling factor of 0.08 and an approximation summed to 10 terms for the degree 2 and 5 

Love numbers and 5 terms otherwise. The collocation results are for 25 collocation 

points uniformly spaced at 3 points per decad in log10 s -space and starting from a lower 

bound of 1 o- 13 s- 1 • 

One of the most striking deficiencies of the collocation technique when applied to a 

compressible body is its tendency to introduce oscillatory behaviour on long time scales. 

That the same feature is found in the results of an independent inversion scheme raises the 
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Comparison of results for collocation and Legendre approximation procedures for a compressible body. 

possibility that they are independent of the inversion scheme used. The nature and effect 

of these oscillations has only been peripherally investigated by previous workers. 

Mitrovica & Peltier (1992) showed that oscillatory behaviour occurs in Love number 

calculations if the region from which the collocation points are chosen is insufficiently 

broad, they do not consider results for Love numbers of large degree however or beyond 

about 2 x 105 yr after the application of the load and are able to remove the effect 

completely with an appropriate choice of parameters. 
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The behaviour of Love numbers on longer time scales will have an effect on efforts 

to include previous loading cycles and some effort should be made to understand the 

limitations of the collocation method when applied to this class of problem. 

The long wavelength oscillations observed in figure 3.4 have two sources, the first 

is instability in the routine that evaluates the Laplace transform function of the Love 

numbers. For very small values of sk the routine is unstable for large degree Love 

numbers, and any errors that do occur are magnified by dividing the residue, Rk, by sk as 

in (3 .2.6). Constrained to restrict the contribution of these long wavelength modes, the 

inversion routine attempts to have them cancel each other out. The cancellation is 

imperfect however, and long wavelength oscillations are superposed onto the deformation 

curve. 

As indicated by Mitrovica & Peltier (1992) these oscillations are a result of the 

collocation points being taken from an inappropriate range of log 10s -space. For a given 

earth model, values of sk that are suitable for the low degree Love numbers are not 

necessarily appropriate for higher degree Love numbers, which might be expected 

intuitively since the timescales for the two classes of functions will differ dramatically. 

The second source of oscillation is the nature of the collocation technique itself. 

Since the collocation points chosen are not the actual modes of relaxation, the residues at 

these points need to be adjusted to more closely mimic the behaviour of the real residues. 

This results in naturally oscillatory behaviour in the values of the collocation residues as 

deficiencies in the approximation of the dominant residue are compensated for by 

adjustments to the residues at the surrounding collocation points. 

Both phenomena are illustrated in figure 3 .5 below in which the residues for the 

incompressible earth model considered above are plotted against the corresponding 

collocation points. The two sets of calculations were performed under identical 

conditions, 25 collocation points uniformly spaced at 3 points per decad in log 10 s -space 

except that the lower bound of the region from which the collocation points were taken 

was allowed to vary from -3 in the first set of calculations to -6 in the second (where our 

basic unit of time is thousands of years, 103 yr). The results show that although there is 

no significant change for the case of Love numbers of degree 50, there is a dramatic 

change in the size and position of the dominant modes for the degree 100 calculations. 

The massive oscillations for very small values of frequency, s , are caused by numerical 

instability of the Love number calculation routine in this region. The oscillations around 

the dominant mode are a result of the approximate nature of the inversion scheme itself. 

The larger oscillations may be removed by shifting the lower bound of the region 

from which the collocation points, sk, are taken. For Love numbers from degree 50 to 
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Figure 3.5: Residues of Love numbers of degree 50 and 100 for the incompressible case. Results for 

figures (a) and (b) were calculated by sampling over the region [-3, 2] in log10 s -space, while the results 

for figures (c) and (d) were obtained by sampling over the region [-6, 2] in log10 s -space. 

128 it was found to be more appropriate to start sampling at 10- 4 ye 1 for the earth 

models considered. This feature of the collocation technique may become a serious 

source of error if results are being modelled for Love numbers of extremely high degree, 

and due care should be taken to ensure that the degree of approximation is not so 

excessive as to detrimentally affect behaviour through time. 

We see from this result that some degree of oscillatory behaviour is intrinsic to the 

collocation technique, particularly at higher degrees, and the magnitude and nature of this 

effect should be examined since it will restrict the applicability of the procedure as part of 

a numerical modelling scheme. Figure 3. 6 below shows the total sea level change 

through time due to an axially symmetric parabolic ice sheet of radius 10° with a 

Heaviside melting history. The load is taken to be applied to a radially symmetric earth 

model with the same incompressible rheology as was used for figures 3.3 and 3.5, and 

the resulting sea-level change was calculated using the code developed by Johnston 

(1993). 

The figures compare the results for the collocation and normal mode procedure at 

the centre of the ice sheet, and two points in the near field ( at angular distances 15° and 
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Comparison of sea-level results for collocation and normal mode procedures for an incompressible axially 

symmetric spherical body. 

30° respectively from the pole of the sphere). The agreement between the two techniques 

is very good for all times though oscillatory behaviour is apparent in the results for both 

procedures for large time-scales. The difference between the two curves for these times 

is, however, significantly smaller than any observational uncertainty we might reasonably 

expect. 

This result suggests that the collocation technique is very well suited to the problem 

of calculating sea-level change and modelling glacial loading problems despite its 

simplistic formulation. Certainly it produces significantly better results for a wider range 

of earth models than any of the alternative inversion techniques considered here, without 

undue numerical complexity or cost. As Mitrovica & Peltier (1992) suggest however, 

care must be taken with its application and where possible comparisons made with 

analytical solutions such as the inviscid limit or numerical schemes of established 

reliability. 
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3.3 Discussion 

In the previous chapter we developed a new analytical formalism for modelling the 

deformation of a flat, stratified, elastic half-space under a surface load. The numerical 

accuracy of the wave propagator procedure was then compared with a completely 

analytical technique for a uniform half-space and its numerical stability at depth 

established. 

The propagator matrix schemes described rely implicitly on the use of Fourier 

transforms to render the system amenable to powerful algebraic techniques. Numerical 

modelling is then performed in the transform domain using these techniques and the 

results inverted numerically to the spatial domain. 

In practice we wish to model the earth's visco-elastic rather than elastic response 

and the precision of any given elastic technique is meaningless if it is significantly 

deteriorated by the extension to a visco-elastic regime, which involves the use of Laplace 

transforms and a second numerical inversion from the frequency domain is require to give 

results through time. 

Both inverse transformations carry significant risk of numerical error unless care is 

taken throughout the implementation to ensure that the inversion procedures used and the 

associated parameters are appropriate to the problem being modelled. 

The FFT technique is widely used in numerical modelling applications and its 

behaviour is generally well understood. The most significant source of error when used 

with the wave propagator technique is translation of the origin and consequent constant 

off set of the results. This off set is a product of the degeneracy of the governing matrix of 

equation (2.3 .4) at the origin of the Fourier transform domain and may be removed by 

imposing a zero boundary condition at the corners of the grid. This zero edge condition is 

only valid for appropriately large grids however and the spacing and extent of the grid 

should be chosen so that this assumption is valid. 

Resolution of the surface load, as represented by the ratio between grid-spacing and 

the width of the load, should not be completely neglected but is a less significant issue 

than the extent of the grid. It is however important to appropriately scale the points at the 

edge and comers of the load, particularly for component loads of a superposition scheme. 

Calculating the Mellin integral numerically is a more complicated issue for which a 

large number of computational techniques have been developed. In this chapter we 

considered the Legendre polynomial approximation proposed by Erdelyi (1943), the 

bilinear transform procedure due to Piessens ( 1972), the collocation technique of 

Schapery (1962), and the normal mode scheme employed by Peltier (1985). Despite its 

analytical sophistication the bilinear transform technique was found to suffer from severe 

numerical instability after approximately 8 x 103 yr , though its performance immediately 

after the application of the load was exceptionally good. 
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The normal mode technique performed well on all time scales for an incompressible 

body but relies on numerically locating the zeroes of the secular determinant of the 

propagator matrix for the Love number calculations. The complex behaviour of this 

quantity in the compressible case, particularly for earth models with either a thin 

lithosphere or a low upper mantle viscosity, suggests some caution when applying the 

normal mode procedure to this class of problem. Previously this failure of the normal 

mode technique made comparisons impossible, so that the accuracy of the collocation 

technique was untested for earth models where normal mode analysis was impractical. 

The Legendre approximation technique exhibits some numerical inaccuracy over 

very short time scales (before about 2 x 103 yr ), but generally performs extremely well 

when applied to an incompressible body, as does the collocation procedure. Both 

schemes may be extended to the compressible regime and the agreement between the two 

is strong enough to suggest the results for both procedures are reasonably accurate. The 

Legendre technique was subject to oscillatory behaviour in most cases however and 

exhibited significant numerical instability at some high degrees. Its overall performance 

in the compressible case was less than satisfactory, especially when compared with the 

collocation scheme. 

The collocation technique was found to be stable over all time scales for both 

compressible and incompressible earth models, and to agree well with the results for the 

Legendre approximation and normal mode schemes. As with the normal mode 

procedure, the results of sea-level calculations on an incompressible earth for the 

collocation technique are subject to small amplitude oscillations over very long time-scales 

( ~ 105 yr ) . The magnitude of these oscillations was smaller for the collocation technique 

but in both cases was much less than observational uncertainty. Some degree of 

oscillatory behaviour at large time-scales is intrinsic to the collocation scheme, but its 

effect on the accuracy of dependent calculations will be negligible, provided care is taken 

to avoid inappropriately small values of the Laplace transform variable. 

Using the collocation technique to extend the propagator matrix procedures of 

chapter 2 to the visco-elastic case offers the twin advantages of numerical convenience 

and stability, the risk of introducing significant numerical error being substantially 

reduced compared with the other inversion procedures considered here. The error 

introduced by the numerical inversion of the Fourier transform is also small provided the 

extent of the grid over which the calculations are performed is sufficiently large. 

Calculations in the visco-elastic regime rely crucially on inclusion of the pre-stress 

term however, the next chapter completes the extension of the elastic techniques 

developed in chapter 2 to the visco-elastic case by incorporating the pre-stress advection 

and dilatation terms. 
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Chapter 4 

THE EFFECT OF PRE-STRESS ADVECTION AND INTERNAL 

BUOYANCY 

4.0 Introduction 

Modelling the surf ace deformation due to a large load by superposing the 

contributions of a number of smaller loads involves accurately calculating deformations at 

depths much greater than the width of these component loads. We saw in chapter 2 that 

this requirement can pose significant numerical problems for propagator matrix 

procedures unless we are careful to analytically decouple exponentially growing and 

decaying terms. 

The theoretical development of the propagator matrix techniques given in chapter 2 

was simplified by neglect of the gravitational perturbation, pre-stress advection, and 

internal buoyancy terms in the equations of motion given in (1.1.6). Neglecting 

sphericity is inherent to flat earth procedures and Amelung & Wolf (1994) have shown 

that this is partially offset by neglecting the effect of gravitational perturbation. Pre-stress 

advection however, must be included in the visco-elastic case if the calculated deformation 

is to have any physical meaning. The internal buoyancy term is often neglected when 

modelling the flat earth (Wolf 1985a,b) despite the fact that it is no more analytically 

complicated to include than pre-stress advection. The validity of neglecting internal 

buoyancy has yet to be firmly established however and the algebraic complexity of its 

inclusion has so far prohibited any direct comparison of its effect in the flat earth case. 

The conventional propagator matrix and wave propagation techniques rely on 

deriving an analytical form for the various terms in the Jordan form of the governing 

matrix in equation (2.3.4), the eigenvalues, diagonalising matrix and its inverse. Both 

techniques lose a lot of their potency and stability if we are forced to evaluate these 

quantitities numerically rather than rely on the analytical form. Numerical calculation of 

these terms in each layer, at each point in the Fourier domain, for each point in the 

Laplace domain is prohibitively expensive computationally and a source of serious 

numerical error. The basic propagator matrix technique does not suffer from this 

limitation but, as we showed in chapter 2, is the first of the flat earth propagator matrix 

procedures to break down as depth increases. 

In this chapter we will consider the effect of incorporating pre-stress and internal 

buoyancy into the wave propagator matrix procedure developed in chapter 2. Both terms 

remove the need to consider a Jordan form, but significantly complicate the analysis 

required to diagonalise the governing matrix. Their inclusion also dramatically increases 

the numerical complexity of the eigensystem of the governing matrix by introducing pairs 
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of near-degenerate eigenvectors, making a thorough analytical treatment essential to any 

numerical implementation. 

We will give the analytical results for each case and consider the effect of each term 

on numerical calculations of deformation for a visco-elastic half-space. An additional 

complication arises in the case where pre-stress advection and internal buoyancy are both 

included, the scale of the problem having a dramatic impact on the analytical properties of 

the technique. In this instance the grid-size and spacing for our numerical implementation 

must be carefully chosen to avoid imaginary eigenvalues. 

The numerical stability of the wave propagator matrix technique will then be further 

examined for a visco-elastic body to test its suitability for large superposition problems of 

the type required in inversion and forward modelling schemes in the field of glacial 

rebound. 

The numerical instability and analytical complexity of the eigensystems produced by 

including pre-stress advection and internal buoyancy have prompted some workers CW' olf 

1985b, Wu 1992) to circumvent the problem entirely by considering instead an 

incompressible body, dramatically simplifying the behaviour of the governing matrix and 

completely removing the need to consider internal buoyancy. We will close the chapter 

by modifying the propagator matrix procedures for the compressible case to accommodate 

an incompressible regime for both the case where pre-stress is neglected and where it is 

included. 
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4.1 Including Pre-stress & Internal Buoyancy in a Flat-Earth Formulation 

The governing equation (2.1.3) neglects pre-stress advection, internal buoyancy 

and the effect of perturbations of the geoid. Pre-stress advection is normally neglected in 

the engineering literature (see for example Timoshenko & Goodier 1970 and Sneddon 

1951) and though comparison of results that disregard this term provide a useful check of 

the accuracy of our implementation they do not provide physically meaningful results for 

modelling glacial rebound. We will demonstrate the need to include pre-stress advection 

in section 4.1.2. Internal buoyancy has been neglected by several authors in the case of a 

flat earth (Wolf 1985a,b, McConnell 1965) since inclusion of the pre-stress advection 

term is already enough to significantly complicate the mathematical development of 

propagator matrix techniques. It is also standard to neglect the effect of perturbations to 

the earth's gravitational field though this has been demonstrated (Amelung & Wolf 1994) 

to partially counter the effect of neglecting sphericity. 

To begin this section we will examine the effect of the inclusion of each of these 

terms on the governing equation of our propagator matrix techniques. In effect each term 

changes the form of the governing matrix A in (2.3 .4) with corresponding changes to its 

eigenvectors and their eigenvalues. 

§4.1.1 Incorporation into the Propagator Matrix Technique 

From examination of (l.1.6) we see that the pre-stress advection term takes the 

form - V (Pco) gco) · u). In our flat-earth model the gravity field is taken to be uniform and 

acts directly into the body, while density varies only as a function of depth so that this 

n ( co) ) hi h . . b . expression becomes - g v p u3 , w c m vector notation can e wntten: 

(0) d U 3 

p~ 

-g 
(0) d U 3 pd½ (4.1.1 ) 

d~3 (/oJ u3) 

Wu & Peltier (1982) and Wolf (1985b) both proposed simplifying the algebra of 

the system for an incompressible body by considering the local increment of stress, t~) , 

related to the material increment of elastic stress perturbation, t~~ , by the equality: 

t(~) = rf ~) + p (O) g U 3 _)_) 3_, (4.1 .2) 

In our standard formulation, density is assumed to be constant within each layer but 

is allowed to vary between layers so that for discontinuous density profiles the continuity 
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of t~) is not guaranteed across layer boundaries, modifying one of our fundamental 

boundary conditions. Modelling the local increment of stress provides a very useful 

comparison for testing more sophisticated implementations in the case of bodies with 

uniform density profiles however. The same convention could be adopted to include pre­

stress in the compressible case but would not simplify the algebra of the eigensystem and 

would complicate the layer boundary conditions. 

Examining the form for the internal buoyancy term given in equation (1.1.9) and 

noting that g co) = ge3 (where again e3 is the unit vector parallel to the x3 axis) we see that 

this quantity may be written in the form g v-(l0
) U )e3 = ge3 (P(O) L1 + U3 ax,P(O)) . The 

assumption that density is uniform inside each layer allows us to neglect the dx
3
p<0) term, 

which will only be non-zero at the layer boundaries where it becomes indeterminate. We 

accommodate similar discontinuities in other rheological parameters at these boundaries 

and continuity of stress and displacement across them is still a valid boundary condition. 

Neglecting acceleration and the gravitational perturbation term we may cast the 

inertia equation ( 1.1.1) in the form: 

V -t<O) + V ( p<O) g<O) . u) 81 + p<tJ) g CO) 82 = 0 (4.1.3) 

where 81 and 5i are parameters alternating between O and 1 that allow us to control the 

inclusion or exclusion of the pre-stress advection and internal buoyancy terms 

respectively. 

Incorporating the forms derived for the internal buoyancy and pre-stress advection 

terms into the governing matrix for this case gives it the form: 

0 0 V1 
1 0 0 µ 

0 0 V2 0 1 0 µ 

A=I 
- k1AV1 -k1AV2 0 0 0 kl 

µ(4k 1(A+ µ)vf + vi) k 1µ(3l+ 2µ)v1v2 p gvl 81 0 0 k1AV1 I (4.1.4) 

k 1µ(3l+ 2µ)v1v2 µ ( vf + 4 k 1 ( A + µ)vi) pg V2 81 0 0 k1AV2 

p gv1 ( 82 - k 2l) pgv2 ( 82 -k2i) 0 -VI -V2 pgk2 

where k1 is as defined for equation (2.3.4), k2 = k1 ( 82 - 81) . 

If either 81 or 8i are non-zero then the governing matrix A will have a complete 

set of left and right eigenvectors and the need to perform a Jordan form analysis is 
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obviated. The form for the columns of the diagonalising matrix and the rows of its 

inverse are very nearly identical through all possible non-zero cases. The eigenvectors 

may be written: 

V1 
V2 

-Vi 
V2 

d1,4 = /31 I 0 d; = /33; 
d3; 

µv1 ( a;-d3 ;) I ( 4.1.5) 
µv2a1 ,4 

-µv1a1,4 µv2 ( a;-d3 ;) 
0 

k3;d3i+Aa2 

where a is as defined for equation (2.2.8), k3; = a;k~ 1 and i = 2, 3, 5, 6. The form of 

the quantity d3 ; is dependent on the values of 81 and 82 and will be given below for 

each case. 

The left eigenvectors, Y; , provide the rows for the inverse of the diagonalising 

matrix D and may be written: 

µv1 (a;+ Y;6) 

µv2a1,4 µv2( a;+ Y;6) 
-µv1a1 ,4 

Y1,4 = /3 1,4 

0 ( k3 ;+ k4)Yi6 -A a2 
Y; = f3 3; 

V2 
I ( 4.1.6) 

V1 

V1 
0 

I I V2 

I I 

Yi6 

where k4 = ( 81 - 82)pg and, as for equation (4.1.5), the quantity y; 6 is dependent on the 

values of 81 and 82 and will be given below for each case. 

As in chapter 2 we choose the scaling factors f3 and /3 'to ensure orthonormality, 

/31 and /3 1,4 remain unchanged from equation (2.3.26) while /331 and /3 31 are again 

dependent on the values of 81 and 82 • 

We first consider the case 81 = 1 and 82 = 0 , so that the effect of pre-stress 

advection is included but not internal buoyancy. Under these conditions the characteristic 

equation of the governing matrix is: 

det (A· - a,I) = ( a;' - a1 J2( a;' + pg k I a; - a1) = 0 (4.1.7) 
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Equation ( 4.1. 7) has two double roots and two single roots: 

a12 = a 
' 

a4,5 =-a ~ .6 =-k3 + J ci2 + k; (4.1.8) 

where k 5 = P ~ k 1 
• These results correspond to those of Wolf (19 85 a) for the two 

dimensional case though he simplifies the form of ~.6 for mathematical convenience. 

The form of the quantities d 3 i, Yi 6 , /33 i and '/3 3 i in this instance is given below: 

-(1+ µ)ci2 
d3 2.5 = pg + ( A + µ) a Y2.56 =+a 

d3 3,6 = - a3,6 
pg + ~.6 

Y3,66 = (1 + µ) 

pg + ( A + µ) ¼ .5 ( 4 .1. 9) 
/33 2,5/33 2.5 = pg 2 µ ci2 ¼ ,5 

1+µ (4.1.10) 
fJ 3 3,6 /333.6 = pgµ ( a&.6 + (i2) 

where we take '/3 3 2.5 = /33 2,5 and '/3 3 3•6 = -/33 3•6 to ensure the correct signs. 

One notable feature of the inner products of corresponding pairs of left and right 

eigenvectors is that they are very small in comparison with the vector entries, pgl(,t+µ) 

being very small in comparison to the wave numbers, as discussed by Cathles (1975). 

To guarantee orthonormality the scaling terms /33 i and '/3 3 i must be correspondingly 

large, as can be seen from their form given above. This reflects the fact that d2 and d3 

are very nearly identical but are orthonormal to a corresponding pair of nearly identical left 

eigenvectors y2 and y3 , the same holding for other vector pairs in the system. This 

property of near-degeneracy is common to all cases where either 81 or 82 are non-zero 

and makes the linear algebra associated with these cases very sensitive to numerical error 

so that analytical forms should be used wherever possible. Using the Jordan form 

procedure given in chapter 2 increases the numerical robustness of the technique (at the 

cost of the physical meaningfulness of our results). 

Substituting the expressions given in equations ( 4.1.9) and ( 4.1.10) above back 

into equations (4.1.5) and ( 4.1.6) allows the diagonalising matrix and its inverse for the 

governing matrix A to be calculated analytically, and employed in the wave propagation 

technique developed in chapter 2 to model the case of a compressible body subject to pre­

stress but not internal buoyancy. 

Turning our attention to the case where 81 = 0 and 82 = 1 , so that the effect of pre­

stress advection is neglected but internal buoyancy is included, the characteristic equation 

for the governing matrix A becomes: 
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det (A· - aJ) = ( af - a2 )2( af - pg k, a; - a2) = 0 (4.1.11) 

and again has two double roots, +a, and two single roots: 

lX:3,6 = ks + ✓ a2 
- k; (4.1.12) 

where k5 is as defined for equation ( 4.1.8). 

In this case the quantities d3 i , Yi 6 , /33 i and '/3 3 i take the form: 

d3 2,s = - £Xi,s 
(A+µ)a2 

Y2,s6 = +(A+ µ)a-pg 
pg - ( A. + µ) CX,,5 ( 4 .1.13) 

fJ32.sf332,s = pg2µa2exi.s 

pg - ~,6 
d3,s 6 = ( A + µ) Y3,6 6 = lX:3,6 fi3 3,6 /33 3,6 = A+µ 

pgµ ( ~.6 + tr) (4.1.14) 

where we take '/3 3 2,5 = -/33 2,s and fi3 3,6 = /33 3,6 -

Once again we have obtained completely analytical forms for the eigenvalues of the 

governing matrix A and its diagonalising system in this instance, allowing the wave 

propagation technique to be applied to the case of a flat semi-infinite half-space in which 

internal buoyancy is to be included but pre-stress is not. 

Including both internal buoyancy and pre-stress (i.e. setting 81 = 82 = 1 ), the form 

of the characteristic equation then becomes: 

det ( A - aJ) = ( af - a2) ( ( af - a2 r -(pg )2 ~ a2) = 0 (4.1.15) 

and A thus has six distinct eigenvalues: 

a14 = +a , ( )
½ 

£Xi,3,s,6 = + a2 + Pg a J kifµ (4.1.16) 

where, for convenience a 1,2,3 , are taken to be positive and a4,5,6 take the corresponding 

negative values. It should be noted that the form of these eigenvalues is such that they 

become a degenerate system if pre-stress and internal buoyancy are both neglected or the 

body is incompressible. In this instance d3 i , Yi 6 , /33 i and '/3 3 i may be written: 

(pg-(A.+ µ)a)tr 
d3 ·=-----

1 (A+ 2µ)~ -µa2 

(pg+ (A+ µ)a}x2 
Y.6= 1 

(A+ 2µ) af - µ a 2 

(4.1.17) 
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~ ( A + 2µ) a; - µ a2 

/3 3 ;/J3
; = 4µ( A+ 2µ) a2 a;( a,2- a2) 

where we take '/1 3 2,5 = /33 2,5 and '/1 3 3,6 = -/33 3,6 , corresponding to ai,5 - a2 > 0 and 

l4,6- a2 < 0. 

The case where both internal buoyancy and pre-stress is included may therefore also 

be considered analytically using the wave propagation procedure in chapter 2. The 

equations for the forms of the vectors and their components given in equations ( 4.1.5), 

( 4.1.6), ( 4.1.16) and ( 4.1.17) above allow the diagonalising system and eigenvalues of 

the governing matrix to be expressed in forms that are extremely convenient for numerical 

implementation though they are not without limitations as we shall see in section 4.1.3. 

These analytical forms were obtained after significant algebraic effort, the instability 

of the eigensystem frustrated attempts at numerically calculating any of the terms required, 

including the normalisation factors, for realistic earth parameters. The algebraic 

complexity of the system can be reduced by considering instead the two-dimensional 

case. Moving from a two-dimensional to a three-dimensional formulation has the effect 

that two new eigenvalues, +a, are added to the system for the two-dimensional case, 

with corresponding linearly independent left and right eigenvectors, d 1,4 and J1,4 • This 

result was not expected a priori however and the algebraic treatment for the three 

dimensional case was repeated in each instance. 

§4.1.2 The importance of Pre-Stress Advection in the Elastic Case 

As discussed in chapter 2 it is standard for both internal buoyancy and pre-stress 

advection to be neglected in most engineering applications (see for example Sneddon 

1951, Timoshenko & Woinowsky-Krieger 1959, and Timoshenko and Goodier 1970), 

this is understandable to some extent given the comparative size of these terms. If we 

only wish to calculate an approximate value for surface deformation it may seem 

reasonable to neglect these effects entirely since they are orders of magnitude smaller than 

the other terms in the governing equation, and their inclusion may therefore give rise to 

numerical instability as the ratio between pivots becomes unacceptably large. 

As an example of such an approximation let us consider the surface loading of a 

uniform semi-infinite half-space by a unit load applied over an infinitely long strip. This 

problem is analogous to that of a uniform half-space under a cylindrical surface load 

except that instead of Hankel transforms (integral transforms using Bessel functions of 

the first kind) we use Fourier transforms. Applying the algebraic solution of Sneddon 

(1951) for the case where pre-stress is neglected we obtain an analytical solution for the 

vertical displacement in the form: 
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A+ 2µ ( ) - 1 f 00 • 

2( A,+ µt3 X1,X3 - 2;r µ Jo cos( Vi xi) sm( Vi a) e- vi,, v;-2 [ X + Vi X3 ]dv, (4.1.18) 

where X = [ 2k1 (A,+ µ)r with k1 as defined for (2.3.4), and a is the half-width of the 

load which is assumed to be uniform and symmetric about the .xi -axis, along which it is 

taken to be of infinite extent. 

Performing the same calculation numerically gives rather unexpected results. 

Figure 4.1 below shows the results taken along the x1 -axis for vertical displacement 

under a 100km wide strip over a uniform body of rigidity 3. 6 x 1010 Pa and bulk modulus 

6.5 x 1010 Pa , for a grid-spacing of 2 km. The load was taken to be a 400 m thick sheet 

of ice and for a grid size of 128 x 128 data points, deformation at its centre was found to 
' 

be roughly 5.0 m. Doubling the size of the grid significantly increased the deformation at 

the centre of the load to 6.6 m. An increase of this magnitude seems to indicate that the 

grid used for the calculation is not yet large enough for the zero edge condition discussed 

in section 3 .1 to be valid. Redoubling the grid size to 512 x 512 data points resulted in a 

further increase to the deformation at the centre of the load, which had reached 8 .2 m, and 

by this stage the edge of the grid is some 20 times the width of the load. At that distance 

the deformation due to the load will certainly be at least diminished and this nearly 

constant contribution prompts us to reconsider the problem. 
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Figure 4.1: Deformation of a flat, uniform elastic half-space under an infinite, uniform strip load along 

the -½ -axis for different grid-sizes. Calculations were performed for grids of 128 x 128 , 256 x 256 , and 

512 x 512 points with the deformation taken to be zero at the corner of the grid farthest from the origin .. 
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Substituting X1 = X3 = 0 into equation ( 4.1.18) yields the analytical form for the 

deformation at the centre of the load: 

U3 ( 0' 0) = ? X re,, sin ( V 1 a) ~ 2 d VI ,nµJo 

which may be expended as a Taylor series to yield: 

( r+2 
U3(0,o) =? X I r- i dv1 + ! (-a ) r- Vin-I dv1 

, 1T II JO 1 n = I 2n + 1 ! J 0 

(4.1.19) 

( 4.1.20) 

This expression will be dominated by the first of the integrals which yields [a log ( v1)]: 

consistent with a linear increase in deformation in response to a geometric increase in the 

size of grid and indicating that equation ( 4.1.19) is an algebraic solution but singular at 

the surf ace of the body. 

Consulting a table of standard integrals (see for example Gradshteyn & Ryzhik 

1980) we see that one of the general forms for the integral in equation ( 4.1.19) is: 

f xry- 1 sin( ax )cos(bx)dx = l sinG) r( 1/) [(a+ b r + I a-b 1-ry sign ( a-b )] (4.1.21) 

This expression becomes singular for 7J = -1 however, and is unaffected by setting 

b = 0 so that the algebraic form given in equation (4.1.18) for the vertical displacement is 

not analytic under the centre of the load, or indeed over the surface of the half-space. 

For any elastic problem the relation between vertical displacement due to a surface 

load and the load itself, represented by vertical stress 4~) , is linear and takes the form, 

u3 =Kt~~) where K is some fixed linear operator and we have assumed zero shear-stress. 

Substituting the relation between material and local increments of stress given in equation 

( 4.1.2) into this expression yields, u3 = K(t~1) - pg u3) , which may be rearranged to give 

the final form for the vertical displacement: 

u3 = ( I + pg Kr 1 
K t~1) (4.1.22) 

If we view K as a scalar multiple then in the limit where K is large we see that pre-stress 

acts so that the vertical displacement is finite. Conversely, in the limit where K is small 

in comparison with unity, pre-stress has little or no effect on the vertical displacement. 

J 
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Singularities are not entirely uncommon in analytical solutions derived in 

engineering formulations, Timoshenko & Goodier ( 1970) for example derive an 

expression for the vertical deformation of a uniform, semi-infinite elastic half-space under 

a unit point load: 

U3 (x) = 1 ( 4n-(A+ µ) xf +zj+xir½ (4.1.23) 

and in order to avoid a singularity are forced to invoke a vanishingly small region around 

the point at which the load is applied in which the bulk modulus is infinite but which 

deforms plastically with the surrounding material (pp. 404 ). They are also forced to 

appeal to the same behaviour to avoid singularities in their treatment of a semi-infinite 

plate (pp 99, 103). This sort of approach is typical in the mathematical formalism of 

Boussinesq problems in general where the analytical solution is not taken to be valid until 

some small distance from the point at which the load is applied (see for example Saada 

1974) though Love (1929) is able to remove the singularities in his formalism by isolating 

the singularities due to the logarithmic potential and noting that the contribution due to the 

Newtonian potential is zero over the surface of the body. 

The singularity in the form of ( 4.1.8) is not so easy to account for however. In this 

instance, the infinite extent of the load along the ~ -axis produces an effectively zero 

wave number which in turn results in an instability in the Fourier expansion of the 

solution (Jeffreys 1976). This singularity is not a result of a faulty mathematical 

formulation but is still clearly not physically plausible since we do not observe large 

deformations under long railway tracks or roads. In this case the singular behaviour of 

the solution is a result of neglecting pre-stress. The linear operator relating vertical stress 

and displacement in equation ( 4.1.22) is particularly useful in guaranteeing analyticity, 

and though the effect of pre-stress advection is not significant in the elastic case for small 

loads it becomes significant if the wavelength in either direction becomes large. 

As has long been maintained by many workers (Peltier 1974, Wu & Peltier 1982, 

N akiboglu & Lambeck 1982, Wolf 1985c,d, 1994) inclusion of pre-stress is critical in 

visco-elastic rebound problems. The analytical similarity of the results obtained for the 

internal buoyancy term in section 4.1.1 might seem to indicate that it is of equal 

significance and in this section we will examine the effect of each term in tum. 

If we consider the formalism for propagator matrix procedures developed in chapter 

2, neglecting pre-stress advection and internal buoyancy completely removes the density 

of the body from the mathematical formulation. The mathematical analysis therefore has 

no way of representing buoyancy forces within the body in the visco-elastic case. 

The results of attempts to extend the elastic formalism of chapter 2 directly to a 

visco-elastic regime are given in figure 4.2. The earth model for these calculations 
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Figure 4.2: Deformation through time at the centre of the load for a Maxwell body with neither pre-stress 

advection or internal buoyancy included. 

consisted of an 80 km lithosphere of viscosity 1029 Pas with a uniform layer of viscosity 

1021 Pas beneath, both rigidity and bulk modulus were taken to be constant throughout 

the half-space at 3.6 x 1010 Pa and 6.5 x 1010 Pa respectively. 

In the absence of any buoyancy term in the mathematical formulation, the load sinks 

deeper and deeper into the body through time, the calculated deformation passing isostatic 

equilibrium at approximately 4 x 104 yr and continuing indefinitely in agreement with the 

singular behaviour observed by Peltier (1974). This is obviously inconsistent with our 

intuitive expectation and neglecting both pre-stress advection and internal buoyancy 

renders our analytical model physically meaningless. 

Both terms have a similar form and the same magnitude relative to the other entries 

of the governing matrix of the system, their relative importance and effect is not 

immediately obvious however. Figures 4.3, 4.4 and 4.5 give the results obtained for a 

semi-infinite visco-elastic half-space under a square ice sheet of side 1 000 km and 400 m 

thickness. The earth model used for these calculations consisted of an 80 km elastic 

lithosphere, an upper mantle viscosity of 1020 Pas and a lower mantle viscosity of 

1021 Pas. The rigidity, bulk modulus, and density of the body were calculated from the 

PREM model of Dziewonski & Anderson ( 1981) averaged over four regions, the 

lithosphere, the upper-most mantle between depths of 80 km and 400 km, the transition 
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Figure 4.3: Comparison of elastic results for the formulation where pre-stress advection is included and 

internal buoyancy is neglected (solid line) as compared with the results for the case where the internal 

buoyancy term is included and pre-stress is neglected ( dashed line) 

zone, extending from 400 km to 670 km, and the lower mantle from 670 km down (in this 

case the lower mantle is an infinite layer, its physical properties averaged from PREM 

values for the lower mantle from the 670 km discontinuity to the core mantle boundary). 

The figures compare the results for the case where pre-stress advection is included and 

internal buoyancy is neglected as against the case where internal buoyancy is included and 

pre-stress is neglected. Figure 4.3 shows the results for both cases immediately after the 

application of the load, comparing the vertical displacement as function of x1 • 

Qualitatively the two curves are very similar, with the internal buoyancy term 

producing a slightly larger vertical displacement over the surface of the body, the 

difference between the two curves decreasing steadily as the edge of the grid is 

approached. At this point the behaviour of both models is quite reasonable. 

Figure 4.4 compares results through time for the origin and points at distances of 

250 km, 500 km, 600 km, 800 km, and 1 000 km from the centre of the load along the x1 -

axis, while figure 4.5 shows the corresponding cross-sections of deformation taken along 

the x1 -axis at 2 x 103 yr, 5 x 103 yr, and 104 yr after the application of the load, the infinite 

limit is also given for the case with pre-stress. 

The results for the case where internal buoyancy is included without pre-stress 

advection are quite dramatic. In this instance a given parcel of material inside the body 
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Figure 4.4: Comparison of deformation curves through time for the case where internal buoyancy (figures 

(a) and (b)), and pre-stress advection (figures (c) and (d)) are included in visco-elastic calculations. Curves 

for figures (a) and (c) are taken at the origin and distances of 250 km, and 500 km along the x1 -axis. For 

figures (b) and (d) the curves were taken at distances 600 km, 800 km, and 1 000 km along the x1 -axis. 
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Figure 4.5: Cross-sections of deformation for the case where a) internal buoyancy and b) pre-stress 

advection are included in visco-elastic calculations. Curves taken at 2 x 103 yr, 5 x 103 yr, and 104 yr , with 

the infinite limit included in fig. (b ). 
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a) b) 

Figure 4.6: Schematic illustration of density increase within the body due to application of a surface load. 

The shading in fig. b indicates regions of increased density due to the stress of the load, the perturbation to 

the original density profile rendering the layer gravitationally unstable. 

will be compressed by the stress due to the surface load and its density will increase 

accordingly as in figure 4.6. Since the initial density profile is assumed to be constant 

within each layer the compressed material will be denser than the material below it that has 

not been as heavily stressed and will start to sink. The resulting gravitational instability 

leads to disproportionately large surface displacements. 

The deformation curves through time for this case show the cascade-sty le effect of 

the internal buoyancy term, initially the body deforms very similarly to the case where 

pre-stress is included. At about 2 x 103 yr after the application of the load however, the 

density of the material at the bottom of the uppermost layer has increased to the point 

where it is as dense as the material below the layer boundary and deformation starts 

rapidly increasing as the material of the upper mantle quickly compresses. The body 

starts to stabilise toward 8 x 103 yr as the upper mantle compresses to accommodate the 

stress field due to the load. The material at the bottom of this second layer then becomes 

denser than the material below the layer boundary, and a second rapid compression event 

occurs, the effect cascading until it reaches the lower-most boundary where it continues 

indefinitely. 

From figures 4.4a and 4.5a we see that between 2 x 103 yr and 4 x 103 yr the 

surface of the half-space subsides as the material beneath compresses and then sinks. 

This subsidence induces significant horizontal flow in the compressed upper mantle to 

accommodate the new stress-field, which acts to reduce vertical deformation by allowing 

the material of the layer to move laterally from the neighbourhood of the load to regions of 

lower stress, in the process of which it expands and vertical displacement is reduced. The 

upper mantle moves rapidly toward a gravitationally stable configuration from 4 x 103 yr 
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onward, until the material just above the transition zone becomes sufficiently dense to 

overcome the density contrast at the layer boundary, at around 7 x 103 yr after the 

application of the load. The resulting subsidence of the surface layer dominates the 
displacement curve. 

The case where pre-stress advection is included without internal buoyancy produces 
an orthodox relaxation curve with deformation rapidly approaching the isostatic limit from 
below and a peripheral bulge forming outside the load. Adjustment to the new surface 

load is largely complete by about 5 x 103 yr , the upper mantle having been chosen with a 

relatively low value for viscosity. 

Including both pre-stress advection and internal buoyancy introduces a subtle 
numerical problem. From the form of ( 4.1.16) we see that the eigenvalues of the 

( )

-lh 
governing matrix are real for pg µ (A+ 2µ) < a . For very small values of the Laplace 

transform variable, s, we see from (1.3.14) that µ*(s):::::: 7]s, and l*(s):::::: .,l + 2hµ . For 

parameter values typical when dealing with realistic earth models we have 17s « µ and 

imaginary eigenvalues result. These eigenvalues are purely imaginary and their 

exponentials consequently do not decay or increase with depth, attacking the formalism of 

the reflection-transmission analysis that underpins the wave propagation procedure. This 

may be avoided by keeping the effective wave number, a, sufficiently large, which in 
turn requires that the grid-size be kept correspondingly small. 

Figures 4.7 and 4.8 compare the results of calculations for a body in which pre­
stress advection is included and the effect of internal buoyancy is alternately included and 
neglected. For these models we used the the same grid size as in the previous case, 

512 x 512 data points, with a grid-spacing of 0.5 km rather than 25 km so that the zero 

edge condition will not be valid for anything but extremely small loads. The qualitative 
behaviour of the results should be largely unaffected however and they provide a useful 
comparison of the nature, effect, and relative importance of each of the terms in the inertia 
equation. The results shown were calculated for an ice load 400 m thick of side 100 km 
for an earth model similar to that considered above except that the depth of the layer 
boundaries were uniformly decreased by a factor of ten to allow viscous effects to become 
significant. For this scale of load, an 80 km lithosphere would result in deformation 
curves dominated by the elastic component, which we saw in the comparison of pre­
stress and internal buoyancy above, is not sufficient to distinguish between two rival 
techniques. To allow the effect of each term in the visco-elastic regime to be assessed we 
have moved to a rheological model with an 8 km thick elastic lithosphere, a transition zone 
at a depth of 40 km, and a 67 km discontinuity. The rheological parameters throughout 
each region were taken equal to those in the corresponding region of the previous earth 
model. 
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Figure 4.7: Comparison of deformation curves through time for visco-elastic models with pre-stress only 

(dashed lines) and both pre-stress and internal buoyancy (solid lines). Curves in fig. (a) are given for the 

origin, and at distances 25 km and 50 km along the -axis. The curves in fig. (b) are given for points at 

distances 75 km and 100 km along the x1 -axis. 
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Figure 4.8: Comparison of cross-sections of deformation for earth models with pre-stress advection only 

(dashed lines), and both pre-stress advection and internal buoyancy (solid lines). Fig. (a) shows the 

comparison for the elastic case, and Fig. (b) the visco-elastic case. The curves for fig. (b) were taken at 

times 4 x 103 yr, 8 x 103 yr, 1.2 x 104 yr and 2 x 104 yr after the application of the load. 

The agreement between the two sets of results is almost exact for short time scales 

and is nowhere larger than a few percent. The amount of vertical deformation that occurs 

at a fixed point inside the body will be a function of the total vertical stress at that point, 

which will include the stress due to the surface load and the weight of the overlying 

material. The amount of mantle material above a certain point is itself determined by the 

amount of vertical displacement that has occurred, the greater the deformation, the less 

overlying material, and the lower the resulting stress. Large vertical stresses are therefore 

compensated to some extent by the deformations they produce and vice versa so that the 

relationship between stress and displacement is damped by negative feedback in the form 

of the pre-stress advection term. Neglecting pre-stress advection removes the damping 

term from the system, with catastrophic results in the visco-elastic case. 
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Figure 4.9: Comparison of deformation curves through time calculated from the combined contribution of 

25 sub-unit loads of radius 200 km (dashed lines) and a single load of side 1 000 km (solid lines). Curves 

in fig. (a) are given for the origin, and at distances 250 km and 500 km along the -axis. The curves in fig. 

(b) are given for points at distances 750 km and 1000 km along the x1 -axis. 

a) 

12 

,,....._ 10 
E 

--x-- Single 
- - ~- - -Combined ._, 

c 
(1.) 8 
E 
8 ro 
0. 6 
V, 

i5 
cci 4 u .t ' (1.) 

> 2 

0 
0 200 400 600 800 1000 

Distance (km) 

b) 

E ,._., 
C: 
(1.) 

E 
8 ro 
0. 
V, 

i5 
cci u .t 

(1.) 

> 

125 

75 

t=4 

t = 2 

t= I 

t = 0.5 ~ 

25 I- t = 0.1 - - ~ ~ 

-25 
0 250 500 

Distance (km) 

--x-- Single 

- - O - - Combined 

750 1000 

Figure 4.10: Comparison of cross-sections of deformation calculated from the combined contribution of 

25 sub-unit loads of width 200 km (dashed lines) and a single load of side 1 000 km (solid lines). Fig. (a) 

shows the comparison for the elastic case, and Fig. (b) the visco-elastic case, with curves taken at times 

102 yr, 5 x 102 yr, 103 yr, 2 x 103 yr and 4 x 1034 yr after the application of the load. 

Neglecting internal buoyancy removes the effect of compression of the body, for 

small deformations this will not be a significant contribution, several hundred metres of 

deformation spread through the top few hundred kilometres of the mantle represents only 

a fractional increase in density. In an unstable or nearly unstable system however, this 

term provides positive feedback, large vertical displacements produce significantly 

increased densities , which in tum produce increased vertical stresses as the compressed 

material sinks. In the absence of pre-stress, the effects of the internal buoyancy term 

yield spectacular but clearly unrealistic results for the visco-elastic case, as the instability 

introduced by neglecting pre-stress is magnified. 
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The numerical accuracy of the wave propagation scheme has been established in the 

visco-elastic regime provided pre-stress advection is included, it remains however, to 

demonstrate that the technique is suitable for incorporation into a superposition problem. 

Theoretically, its numerical robustness at depth makes the wave propagation procedure 

ideal for representing stress and deformation at depths much larger than the lateral extent 

of the load. That these contributions at depth are accurately retained throughout the 

numerical implementation has yet to be established. 

Figures 4.9 and 4.10 compare numerical results for a single square ice load of 

thickness 400 m and side 1 000 km against the combined results for twenty five sub-unit 

loads of thickness 400 m and side 200 km. The results given are for the same earth model 

as used for figures 4.4 and 4.5 with the pre-stress term included, both sets of calculations 

were performed over a grid of 512 x 512 data points with a grid-spacing of 25 km for the 

single load and 5 km for the combined loads. Figure 4.9 shows relaxation curves through 

time for fixed points on the x1 -axis, while figure 4.10 compares cross-sections of vertical 

displacement taken along the x1 -axis for fixed times after the application of the load. 

The agreement between the two sets of results is everywhere excellent, the only 

noticeable difference taking the form of a small offset that is nearly constant for each time 

step. This offset takes a maximum value of three percent in the elastic case and 

diminishes rapidly as time increases. It is an artefact of the different extents of the grids 

over which the calculations are performed, the zero condition at the edge of the grid 

holding less rigourously in the case of the smaller grid and the subsequent error causing a 

constant offset of the results. This error is still very small but may be further reduced by 

increasing grid-size. As discussed in the previous chapter however, care must be taken 

not to increase grid-spacing to the point of losing resolution of the load. 
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4.2 The Case of an Incompressible Half-space 

One popular simplification of glacial rebound problems is the assumption that the 

earth is an incompressible body. In the case of spherical modelling this approximation 

allows the time-dependent Love numbers to be calculated analytically using the normal 

mode analysis of Peltier (1985) while in the flat-earth procedures it considerably 

simplifies the algebra involved. 

The usefulness of this class of model for comparison with analytical solutions is 

indisputable and in this section the theory of the two more sophisticated propagator matrix 

procedures will be adapted to the incompressible case. 

In an incompressible body dilatation, L1, defined in (1.5.4) is taken to be zero, 

A • 00 , and the quantity (A+ µ)L1 is taken to be finite in limit (which makes sense of 

(2.1.3) and all subsequently dependent equations). 

This obviously effects the governing matrix A given in ( 4.1.4) which in this case 

takes the f orrn: 

I 

0 0 V1 
1 0 0 µ 

0 0 V2 0 1 0 µ 
A = I -Vi -V2 0 0 0 0 

µ(4 vl + vf) 3µ V1 V2 p gvl 61 0 0 V1 I (4.2.1) 

3µ V1 V2 µ(v~ + 4 v;) p gv2 81 0 0 Vz 

pgvl 61 pgv2 81 0 -vi -Vz 0 

The non-zero entries in a 61 and a62 result from substitution of the entries from the third 

row of the matrix for the pg d3 term at a63 • 

Cast in this form A has the characteristic equation: 

det ( A - ai I) = ( af - a2 )3 (4.2.2) 

regardless of the value of 81 , and has a degenerate system of eigenvalues ( as was pointed 

out for the two-dimensional case by Wolf 1985b), so that it becomes necessary to employ 

the Jordan form technique outlined in chapter 2. 

Using standard techniques we deduce that the diagonalising matrix for A 1s: 



The Effect of Pre-Stress Advection and Internal Buoyancy Page 143 

V2/J1 V1 /32 vi fh/2a V2/J1 V1 /32 - vJ fh/2a 
-Vi /31 V2/J2 v2fh/2a -Vi /31 V2/J2 _ v2fh/2a 

D = I 
0 -a/32 fh/2 0 af32 fh/2 

µv2f31a 2µv1 /32a µ V1 /32 -µv2f31 a -2µv1 {32a µ V1 /32 
-µv1f31a 2µv2/32a µv2f32 µv1f31a -2µv2{32a µv2f32 

0 2af32( x:-µa) ( K-µa)/32 0 -2af32( K+ µa) ( K+ µa)/32 

(4.2.3) 
I 

! i I Where K= p~o1 and /31 and /32 are again chosen to make the system orthonormal. 

The inverse of the diagonalising matrix then takes the form: 

µv2f31 -µv1f31 0 V2/J1 -Vi /31 0 

1111 
µ Vi /32 µv2f32 -(µ a+ x:)/32 vi fh/2a v2 fh/2a - /32/2 

! 2µv1 /32a 2µv2/32a 2af32(1<:+µa) v1/32 V2/J2 -a/32 v-1 = 
µv2f31 -µVI /31 0 -v2/31 V1 /31 0 I ( 4.2.5) 

µ V1 /32 µv2f32 (µ a- K)/32 - VJ f32/2a - v2 f32/2a - /32/2 

-2µv1/32a -2µv2/32a 2af32(µa- x:) v1/32 V2/J2 af32 

In this case the vector coefficients are defined so that: 

/Ji2 = 2µa3 ~
2 = 4µrr (4.2.6) 

and are also independent of 81 • 
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4.3 Discussion 

Neglecting pre-stress advection significantly simplifies the analytical treatment of 

elastic deformation, and has become standard in many engineering applications. Even in 

the elastic regime however, this neglect can lead to singularities in the algebraic solutions 

obtained. The similar form of the internal buoyancy term raises the possibility that it too 

may have a significant effect on the physical meaningfulness of model results. 

The analytical complexity of including both terms has prompted many workers to 

simplify the formalism of the problem by neglecting internal buoyancy and adopting a 

simplified form for the contribution of the pre-stress term ( as in N akiboglu & Lambeck 

1982). The validity of neglecting internal buoyancy had yet to be established however, 

and in this chapter the formalism of the conventional and wave propagator matrix 

procedures was extended to include both pre-stress advection and internal buoyancy, 

allowing their individual contributions to be examined. 

The pre-stress advection term was found to provide negative feedback between 

stress and displacement, and to be critically important in the visco-elastic case, forcing the 

deformation to equilibrium over long time-scales, in accordance with previous treatments 

of the issue (Peltier 1974, Wolf 1985c,d, 1994). In contrast, internal buoyancy produces 

positive feedback between stress and deformation, and when included without pre-stress 

further reduces the stability of the system to produce strikingly non-physical results. 

The results obtained for the case where both terms are included in our formulation 

demonstrate that, despite its strong analytical similarity, the effect of internal buoyancy is 

not significant over any time-scale in the flat-earth case, provided pre-stress is included. 

The numerical and physical accuracy of the wave propagator matrix procedure is 

guaranteed by incorporating pre-stress, and largely unaffected by neglecting the internal 

buoyancy term, allowing us to circumvent the numerical limitations of the technique when 

pre-stress and internal buoyancy are both incorporated. This accuracy is reflected in the 

technique's excellent stability and performance in superposition problems, the error 

introduced into the results for the composite load quickly becoming negligibly small, and 

never becoming significant compared with observational uncertainty. 
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Chapter 5 

CONCLUSION 

5.0 Discussion 

Recent advances in dating techniques, data collection, and computer technology 

have made possible super-high resolution modelling of the earth's response to the melting 

of Holocene and latest Pleistocene ice sheets and the concomitant change in sea-level. 

Detailed modelling of these ice sheets can place strong constraints on both the evolution of 

the ice sheets and the earth's response to loading problems of this scale. The progress of 

deglaciation is in itself an important palaeo-climatic indicator and in regions such as the 

Barents Sea, North Sea and the Irish Sea where rising sea-levels have obliterated much of 

the geomorpholigical evidence of glacial advance and retreat, numerical inversion of the 

rebound data can provide valuable constraints on the history of the deglaciation process. 

In the current work I have examined the suitability of available modelling procedure to 

these high resolution problems and discussed the limitations and advantages of each, 

particularly their suitability for use as part of a numerical inversion scheme. 

In chapter 1 I reviewed the formalism for the global spherical harmonic technique 

and demonstrated the excessive nun1erical cost of achieving high resolution using this 

procedure. The Spherical Cap Harmonic Analysis (SCHA) and Adjusted Spherical 

Harmonic Analysis (ASHA) schemes were also modified to a form appropriate for 

modelling deformation rather than the geomagnetic field for which they were first 

developed. The SCHA technique was demonstrated to be subject to significant numerical 

instability due to the size and complexity of the least squares problem required to calculate 

the coefficients of the spherical harmonic expansion, though the complexity of the 

technique could be greatly reduced by an appropriate choice of angular radius of the cap. 

The ASHA procedure offers an apparently simpler formulation but at the cost of physical 

meaningfulness. Scaling the angular radius of the load requires in tum that the physical 

response parameters of the earth be altered in a consistent fashion to avoid exaggerating 

the effect of sphericity or the width of the load. The consequence of this is that the 

rheology of the translated sphere will not be isotropic, attacking one of the central 

assumptions of the the procedure by which the Love numbers are calculated. The 

spherical harmonic formulations have the ref ore not been further developed in this work. 

In view of the limitations of these spherical methods when applied to high­

resolution problems, attention was next given to flat earth models in which the earth is 

taken to be a flat, semi-infinite half-space. In chapter 2 the mathematical formalism for the 

basic, conventional, and wave propagator matrix procedures for a flat semi-infinite half­

space were developed in three-dimensional Cartesian coordinates. This change of 

coordinate systems significantly complicated the analytical development of each procedure 
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and for simplicity pre-stress advection, internal buoyancy, and gravitational perturbation 

terms were initially neglected. The added complexity of the Cartesian formulation is 

rewarded by the greater power, resolution, and flexibility of the new coordinate system, 

which may more readily be adapted to accommodate arbitrary load geometries than the 

two-dimensional cylindrical polar coordinate systems used in previous treatments. The 

stability of these flat-earth techniques at depth was shown to depend on the ratio between 

the depth of the bottom-most layer boundary and the spacing of the grid over which the 

calculations are performed. The basic technique was shown to fail when this 

dimensionless depth reached 70, while the conventional procedure was stable down to a 

depth of 150. The greater analytic sophistication of the wave propagator matrix technique 

guarantees complete and stable decoupling of increasing and decreasing exponential terms 

in the problem; for a 1 km grid spacing the scheme did not fail for any value of 

dimensionless depth up to 5 000, comparable with the radius of the earth. 

A further advantage of the wave propagation technique is that transmission of the 

surface stress-displacement field into the body is stable with depth, the same is not true 

for the basic and classical procedures where the propagator matrices include exponentially 

growing terms. Though each of the flat-earth techniques agreed well with the analytical 

results for a uniform half-space, only the wave propagator was sufficiently well behaved 

with depth to be used as part of a scheme relying on superposition of individual loads. 

Numerical inversion of the Fourier and Laplace transforms is an integral part of 

calculations for a visco-elastic half-space and can introduce significant numerical error 

unless the inversion routines and their associated parameters are chosen appropriately. In 

order to maintain the accuracy of the wave propagator technique, the Fourier transform 

requires a fine enough grid spacing that the load is well defined, and a large enough grid 

that the assumption of zero deformation at its edge is valid. The latter requirement was 

demonstrated to be the more significant, the numerical results for a square load becoming 

accurate to within a fraction of a percent for a grid of lateral extent 20 times that of the 

load, and to within three percent for a grid half that size. Grid spacings up to 20 percent 

of the width of the load produced good agreement with the analytical results, provided 

points at the edge and comer of the load were scaled appropriately. 

Inversion of the Laplace transform is complicated by numerical instability at very 

small frequencies, a feature common to calculations for both the spherical and flat earth 

cases. The inversion schemes investigated in chapter 3 were all adversely affected by the 

sensitivity of these calculations. The secular determinant required for the normal mode 

method exhibits elaborately intricate variations for compressible earth models with either a 

thin lithosphere or a low upper mantle viscosity, rendering the technique unreliable for 

this class of rheology. Despite the greater mathematical rigour of its derivation, and its 

accuracy over short time scales, the normal mode procedure exhibited oscillatory 
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behaviour of substantially larger amplitude on long time scales than the collocation scheme 

for a simplistic four layer incompressible model. 

The bilinear transform technique produced excellent results for time-scales less than 

8 x 103 yr years in the incompressible case but broke down very rapidly thereafter. The 

magnitude of the scaling parameter was found to impact on the accuracy of the integrals 

used to calculate the coefficients in the Chebyshev series, and the technique could not be 

extended to longer time-scales. 

The results for the Legendre approximation gave initial errors of up to ten percent 

but rapidly converged with the results for the other techniques by about 2 x 103 yr to give 

good agreement for the incompressible case. The maximum degree of the approximation 

was limited by the stability of the linear system used to calculate the coefficients of the 

approximating series. This maximum degree was substantially reduced in the 

compressible case where the scheme began to exhibit suspect numerical stability. Despite 

this, the results for the Legendre approximation provided a useful comparison for the 

collocation procedure in the compressible case. The agreement between the two was good 

though the collocation technique exhibited no signs of numerical instability apart from 

small amplitude oscillations over very long time-scales ( 5 x 104 yr to 105 yr ) . The effect 

of these oscillations on sea-level calculations was demonstrated for an axially symmetric 

incompressible earth by comparison with results for the normal mode scheme and shown 

to be significantly smaller than observational uncertainty. 

In chapter 4 the formalism of the conventional and wave propagator matrix 

techniques was modified to include both the pre-stress advection and internal buoyancy 

terms. Pre-stress advection was shown to be crucially important in the visco-elastic case 

where it damps the system and forces deformation toward isostatic equilibrium on long 

time-scales. Its effect in the elastic case was also considered in response to the poor 

analytical behaviour of algebraic solutions to Boussinesq's problem. The internal 

buoyancy term was demonstrated to further reduce numerical stability in the absence of 

pre-stress advection, and did not significantly affect the results for earth models that 

already included the pre-stress term, justifying its neglect in the flat earth case. 

Previous treatments of a flat visco-elastic half-space have been restricted to two 

dimensional stress systems, allowing only strip or cylindrical loads to be considered. 

Failure to decouple the growing and decaying exponential terms has further limited the 

results of these studies by introducing significant numerical instability at depths greater 

than the width of the load being modelled. Neither limitation affects the validity of the flat 

earth formulation for large-scale problems but has precluded the possibility of high 

resolution modelling or incorporation into a superposition scheme, since the contribution 

at depth will be lost. 
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The development of a numerically robust flat earth scheme capable of representing 

arbitrary load geometries greatly facilitates the development of a direct inversion scheme 

for rebound data, and dramatically simplifies high resolution forward modelling, 

particularly at depth. 
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Appendix A 

PROPAGATOR MATRIX ENTRIES 

A.0 Introduction 

For the purposes of comparison the entries of the basic and conventional 

propagator matrices are given here for a 3-dimensional Cartesian coordinate system with 

neither pre-stress nor dilatation included. The effect of these terms may be incorporated 

for the convemtional technique using the f orrnalism of chapter 4 however. 

For ease of notation we suppress the quantity n, the number of the body-layer in 

which the propagator matrix is being calculated, layer-dependence instead being indicated 

simply by the Lame parameters A and µ. We will also retain the definition for a given 

in chapter 2, so that a2 = vf + v~ where V1 and v2 are the wavenumbers for the 

problem. 

As discussed in section 2.5, in a practical implementation of the conventional 

technique a scaling factor of e-ahN-1 may be introduced to increase the procedure's 

numerical stability. This factor is not included here but may be be trivially incorporated 

into any numerical scheme based on these entries. Similar attempts at scaling the classical 

propagator technique are not productive since they do not prevent the immense variation 

in magnitude of the matrix entries themselves. 
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A.1 Basic Propagator Matrix Entries 

Defining constants: 

/4+3µ 
Ko= A+µ 

µ 
K1 =)., + µ 

A+2µ 
K2 = /4 + µ 

page 156 

the entries of the matrix M(z) = (mu) defined by (2.2.8) and (2.2.9) are given: 

m11 = eaz 

m12 = 0 

m13 = V1 zeaz 

m14 = e-az 

mi5 = 0 

m16 = V1ze-az 

m21 = 0 

m22 = eaz 

m23 = V2zeaz 

m24 = 0 

m25 = e-az 

m26 = V2Z e- az 

V1 eaz 
m31 =- a 

V2eaz 
m32=- a 

m33 = [ Ko - a z]eaz 

Vie- az 
m34= a 

V2 e- az 
m35= a 

m36 = [Ko+ a z]e-az 

m41 = ~(2 Vi + Vi)eaz 

_µV V az m42 - a i 2 e 

m43=2µvi[az - Ki]eaz 

m44 = - ~ ( 2 Vi + Vi) e- az 

m - µ V V -az 
45 - - a 1 2 e 

m46 = -2µ V1 [ az + K1]e-az 

m51 = ~ V1 V2eaz 

m - µ (v2 + 2 2) az 52 - a 1 v2 e 

m53 = 2 µ V1 [ az - K1] eaz 

- µ V V -az m54 - - a 1 2 e 

_ µ ( V2 + 2 2) -az m55 - - a i V2 e 

m56 = -2µ V2[ az + K1]e-az 

m6i = -2µ Vi eaz 

m - 2µv eaz 62 - - 2 

m63 = -2µa[ az - K2]eaz 

m64 = -2µ V1 e-az 

m65 = -2µ V2 e-az 

m66 = -2µa[ az + K2]e-az 
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A.2 Conventional Propagator Matrix Entries 

If we define constants: 

1 
K3 =A+ 2µ K4 = ( /4 + µ) K3 K5 = ( A + 3 µ) K3 

and quantities: 

sh= sinh ( ax) ch= cosh ( ax) 

page 157 

1(6 = µ K3 

where sinh and cosh are the standard hyperbolic trigonometric functions (see for 

example Spiegel, 1968) and x is some scalar quantity, then using the techniques of 

section 2.3.1 the entries of the matrix eAx = N(x) = (nij) for the matrix A defined in 

(2.3.4) can be shown to be: 

h 2 sh 
n1 I = C + K4 V1 X a 

n13 = v1 [ K4 xch + K6 s!)_] 

K4 Vi V2 [ h sh] n -----xc --1s - ,-, .. ,,,2 a 

sh 
n21 = K4 V1 V2X a 

n23 = v2 [ K4 xch + K6 s!)_] 

_ sh 
n12 - K4 Vi V2X a 

n14 = 2) a2 r K4 X vf ch + ( 2 v~ + K5 v? f !;, l 
n16 = 

h 2 sh 
n22 = C + K4 V2X a 

K4 Vi V2 [ sh] 
n24 = 2µd2 xch - a 

_ 1 r 2 h (2 2 2) sh l n25 - ,-, .. ,...,2 K4XV2C + V1 + Ks V2 a 
K4 V2X h - - ..... __ ~· s n26 - ,.., µa 

n31 = -V1 [ K4 xch - K6 s!)_] 

n33 = ch - K4 axsh 

K4 V2X sh 
n3s = - ,.., µa 

n32 = - v2 [ K4 xch - K6 s!)_] 

K4 V1 x sh 
n34 = - ,.., µa 

n36 = - ,, }, ~[ K4 axch - K5 sh] 
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n., = µr 2 l(.xvf ch + ( vi + 21(4 vI) st] n42 = µ V1 V2[ 2 K4XCh + A K3 st l 
n 43 = 2 µx V1 K4 ash n 44 = ch + x K4 vf s~ 

sh _ [ h sh] n45 = K4 V1 V2X a n46 - V1 K4XC - 1(6 a 

ns, = µ v, V2[2 K4XCh + A K3 st l n52 = µr 2 K4X v~ch + ( vf + 2 K4 v~ft] 

n53 = 2µx V2 K4 ash n 54 = K4 v1 v2 x s~ 

_ h 2 sh = v [ v- h _ sh] nss - c + x "K4 v z a ns6 2 n.4 x c 1(6 a 

n61 = -2µK4 v1 axsh n62 = -2µK4 v2 axsh 

n63 = -2µK4 a[ axch-sh] n64 = -v, [ K4xch + K6 3/J] 

n65 = -v2 [ K4xch + K6 s&] n66 = ch - K4 axsh 
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A.3 Comparison 

Neglecting all terms including V2 in either of the previous sections yields 2 x 2 

matrices that correspond to those given by Wolf (1984) and McConnell (1965). 

Following McConnell's derivation, using the variables defined in (2.2.1) renders the two 

dimensional Cartesian case exactly analogous to the cylindrical polar formulation under 

the assumption of axial symmetry which is the case that Wolf considers. 

Comparing the form of the two matrices we see that the propagator matrix in the 

case of the basic technique has very large variations in the magnitude of its entries, 

rendering it numerically degenerate once depth becomes large. This is particularly 

serious given the matrix manipulations required in equation (2.2.11). The propagator 

matrix in the conventional technique is not prone to this problem directly but for large 

values of x the sinh and cosh terms become indistinguishable and degeneracy ensues. 
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