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We describe a resonator-based optical gyroscope whose sensitivity for measuring absolute rotation is en-
hanced via use of the anomalous dispersion characteristic of superluminal light propagation. The enhancement
is given by the inverse of the group index, saturating to a bound determined by the group velocity dispersion.
We also show how the offsetting effect of the concomitant broadening of the resonator linewidth may be
circumvented by using an active cavity. For realistic conditions, the enhancement factor is as high as 106. We
also show how normal dispersion used for slow light can enhance relative rotation sensing in a specially
designed Sagnac interferometer, with the enhancement given by the slowing factor.
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I. INTRODUCTION

Recent experiments have demonstrated very slow as well
as superluminal group velocities of light using many differ-
ent processes �1–5�. Extreme dispersion in a slow-light me-
dium has recently been considered to boost the rotational
sensitivity of optical gyroscopes via the relativistic Sagnac
effect �6�. However, the mechanism by which strong material
dispersion affects the Sagnac effect has not been analyzed
extensively. It is commonly perceived that the Sagnac time
delay or phase shift in the presence of a dielectric medium is
independent of the refractive property of the medium �7,8�.
Although this is true for a comoving medium and absolute
inertial rotation, it is not true if the medium is moving with
respect to the inertial frame of rotation. Recently, Leonhardt
and Piwnicki �6� proposed a slow-light-enhanced gyroscope;
however, they did not point out that this enhancement cannot
be achieved when measuring absolute rotation. Later, Zim-
mer and Fleischhauer �9� refuted, incorrectly, the idea of any
slow-light-based sensitivity enhancement in rotation sensing,
and proposed an alternative hybrid light and matter-wave
interferometer, based on slow-light momentum transfer from
light to atoms.

Matsko et al. �10� proposed a model where they consider
the use of microresonators instead of atoms to provide the
positive dispersion. The analysis in this paper makes use of a
classical �nonrelativistic� model, which yields results that are
incorrect when a material medium of nonunity index is
present. The authors published an Erratum �11� in which they
point out this mistake �11�. However, the Erratum still claims
that the rotation sensitivity is enhanced by the group index.
This conclusion is correct, although potentially misleading.
When a single loop used in an interferometric Sagnac rota-
tion sensor is replaced by a cavity, the sensitivity is enhanced
by a factor equaling its finesse. This factor also equals the
ratio of the phase velocity to the group velocity in the cavity.
Therefore, it can be represented as an effective group index,
or, equivalently, a slowing factor. Physically, this enhance-
ment results from the fact that the counterpropagating beams
travel through the cavity a number—which equals the
finesse—of times before interfering with each other. Thus,
this result makes no statement about the effect of positive
dispersion in the propagation medium on the sensitivity of

Sagnac-effect-based rotation sensing �12�. Essentially the
same conclusion applies to the microresonator-based rotation
sensing architecture proposed by Scheuer et al. �13�.

In this paper, we first present a systematic but brief review
of the role of positive dispersion in the propagation medium
in measuring rotation via the Sagnac effect. This allows us to
put the various claims regarding potential enhancement of
the sensitivity of a Sagnac gyroscope using the slow-light
effect in clear perspective. Specifically, we establish that
there are no known configurations under which a positive
dispersion in the propagation medium can enhance the sen-
sitivity of measuring absolute rotation. We then identify an
explicit configuration where such a positive dispersion leads
to a strong enhancement �by a factor matching the group
index� in measuring relative rotation between the propaga-
tion medium and the rest of the gyroscope. This is a mani-
festation of the fact that, in an interferometric optical gyro-
scope that allows relative motion between the medium and
the interferometer, the dispersive drag coefficient �8,14� can
influence the Sagnac fringe shift.

For most practical applications such as inertial navigation
and fundamental studies in astrophysics �e.g., precision mea-
surement of the Lens-Thirring rotation� and geology, the
measurement of relative rotation is of no use. What is needed
for these applications is an ability to measure the absolute
rate of rotation of the whole gyroscope, including the propa-
gation medium. As the primary contribution of this paper, we
show here that dispersion in the propagation medium can
indeed be used to enhance the sensitivity of measuring ab-
solute rotation. Specifically, we show that the enhancement
occurs if the dispersion is anomalous, characteristic of super-
luminal light propagation, in a resonator-based gyroscope
where the Sagnac effect manifests itself in the form of the
frequency splitting of cavity modes. Unlike in an interferom-
eter, frequency splitting in a resonator gyroscope is governed
by optical path lengths that are always dependent on the
refractive property of the medium �14–16�. We discuss the
effect of dispersion on such a resonator-based gyroscope, and
show that the rotation sensitivity can be increased by as
much as 106 by using what we call critically anomalous dis-
persion �CAD�, corresponding to the group index approach-
ing a null value. Such a sensor can be implemented using
bifrequency-pumped Raman gain in an atomic medium �17�,
for example. We also show how the offsetting effect of the
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concomitant broadening of the resonator linewidth can be
circumvented by using an active cavity.

The rest of the paper is organized as follows. In Sec. II,
we present a brief summary of the role of medium dispersion
in the Sagnac effect, using the axioms of special relativity
�SR�. We establish that there are no known configurations
under which a positive medium dispersion can enhance the
sensitivity of measuring absolute rotation, and identify an
explicit configuration where such a positive medium disper-
sion leads to enhancement in measuring relative rotation.
The published claims regarding the use of such a dispersion
in enhancing the sensitivity of a gyroscope are then summa-
rized and critiqued in this context. In Sec. III, we present the
key idea of this paper, by describing how a resonator-based
Sagnac gyroscope with an intracavity negative dispersion
�i.e., fast-light� medium near the CAD condition leads to a
strong enhancement in the sensitivity of measuring absolute
rotation. In Sec. IV, we establish the effective equivalence
between rotation sensing and measurement of mirror dis-
placement in a ring resonator, and use this model to present a
simple and transparent interpretation of the fast-light-
enhanced rotation sensing. This model is also used to show
how this enhancement is naturally accompanied by the so-
called white light cavity �WLC� effect, whereby the line-
width of the cavity is broadened without affecting its storage
time. In Sec. V, we show how, in a passive ring resonator
gyroscope loaded with a negative dispersion medium near
the CAD condition, the enhancement in sensitivity to rota-
tion is counterbalanced by the concomitant linewidth broad-
ening �i.e., the WLC effect�, so that there is virtually no
improvement in the minimum measurable rotation rate. In
Sec. VI, we show how this offsetting effect of linewidth
broadening can be overcome by using a fast-light-enhanced
ring laser gyroscope. In Sec. VII, we outline an explicit
scheme for realizing fast-light-enhanced gyroscope, and
present numerical estimates for the prospect of measuring the
Lens-Thirring rotation using such a gyroscope. We also refer
briefly to recent experimental work we have done to estab-
lish key aspects of this gyroscope. Finally, we conclude with
a summary and acknowledgments in Sec. VIII.

II. ENHANCEMENT OF THE SAGNAC EFFECT
IN THE PRESENCE OF POSITIVE DISPERSION

IN THE PROPAGATION MEDIUM

Let us consider first waves in a Mach-Zehnder interfer-
ometer �MZI�, as shown in Fig. 1, that are constrained to
propagate in a circular path �for convenience in analysis�
with a radius R �the effect occurs for paths that are rectilinear
as well, as shown in the diagram�. In general, the wave could
be of any kind: optical, matter, or acoustic. For the clockwise
CW �+� and counterclockwise CCW �−� directions, the rela-
tivistic velocities VR

± of the phase fronts �PFs�, the time T±

taken by the PFs to travel between the two beam splitters
�BS1 and BS2�, and the effective distances L± from BS1 to
BS2 are related as follows:

VR
± =

VP ± v

1 ± VPv/C0
2 , L± = � R ± vT±, T± =

L±

VR
± , �1�

where VP is the velocity of each PF in the absence of rota-
tion, C0 is the velocity of light in vacuum, v=�R is the

tangential velocity of rotation, and � is the rotation rate.
Thus, the time delay between the propagating waves and

their relative phase shift at the detector are given by

�t0 = T+ − T− = �R� �VR
− − VR

+� + 2v

�VR
− + v��VR

+ − v�
�

=
2A�

C0
2�1 − �2�

�
2A�

C0
2 , ���

v
C0

� � 1,

��0 = ��t0 =
4�A�

�0C0
, �2�

where A=�R2 is the enclosed area, � is the angular fre-
quency, �0 is the vacuum wavelength of the wave, and �
�1 is the boost parameter. The form of the time delay in Eq.
�2� due to the Sagnac effect attests to the fact that the time
delay is simply a geometric effect, attributable to relativistic
time dilations, and does not depend at all on the velocity of
the wave. It involves only the free space velocity of light,
even if acoustic or matter waves are used. The familiar result
of the matter-wave Sagnac phase shift, ��=4�mA� /h, can
be obtained from Eq. �2� by inserting the Compton frequency
�= �mc0

2 /	�. Note that the Sagnac effect can be explained
fully within SR, without invoking general relativity, if the
degree of space-time curvature is insignificant, which is the
case for optical loops typically used in Sagnac interferom-
eters �8�.

For the case of optical waves in a Sagnac interferometer
consisting of a refractive medium, the phase shift ��0 in Eq.
�2� is independent of the refractive index n. This result is
somewhat counterintuitive, since it is expected that the light
beams experience index-dependent drag in the moving me-
dium. Thus, the travel time delay around the optical circuit
could be expected to depend on n. However, this is not true
for a corotating medium in the Sagnac interferometer. One
can explicitly show this by reexpressing the velocities VR

± of
the CW and CCW phase fronts in terms of the Fresnel drag:

Det

CCW

CW

Source
BS1

BS2

Ω

�
Ω

Det

CCW

CW

SourceSource
BS1

BS2

Ω

�
Ω

FIG. 1. Schematic illustration of a Mach-Zehnder-type Sagnac
interferometer with counterpropagating beams in a circular optical
path �the actual paths shown are rectilinear for simplicity�.
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VR
± =

C0

n
± v
F, 
F = �1 −

1

n2� , �3�

where C0 /n is the velocity VP of the phase fronts in the
absence of rotation, and the term 
F is the Fresnel drag co-
efficient. Using Eq. �2�, one can write the time delay and the
phase shift in a generalized form,

�t � �n2�1 − 
F���t0, �� = �n2�1 − 
F����0. �4�

Substituting 
F from Eq. �3� in Eq. �4�, one gets the same
results as in Eq. �2�. This is because the derivation using SR
already includes the effect of the medium motion on light
propagation. However, the magnitude of this effect is inde-
pendent of the Fresnel drag coefficient, as well as the refrac-
tive index, for a Sagnac interferometer that uses a common
frame of rotation for the light source, the interferometer, and
the medium. Such a system does not possess �to first order�
Doppler shift of any kind between the medium and the
source or the interferometer, since they are all corotating at
the same rate �.

One can relax this constraint and allow several modifica-
tions of the Sagnac interferometer where relative motion be-
tween the frame and the medium introduces a Doppler shift.
As we will show, under this condition, light drag resulting
from dispersion affects the final fringe shift. Such a system,
however, can only be used in relative rotation sensing. Figure
2�a� shows another MZI considered for Sagnac interferom-
etry, allowing relative motion of the medium with respect to
the interferometer. Note first that in this model the connec-
tion with the first BS is established using a flexible fiber, thus
making it possible to make the MZI rotate without rotating
the source. If the source is stationary while the frame and the
medium corotate, a Doppler shift is produced at the first BS.
However, this shift does not affect the phase shift, since the
BS effectively serves as the source for both arms. Therefore,
the fringe shift described in Eq. �2� still holds. Next, consider
the case where the medium inside the MZI paths is allowed
to move at a velocity VM with respect to the MZI frame �i.e.,
the mirrors and beam splitters�. As seen by the medium, the
CW �+� and CCW �−� beams are now Doppler shifted by
equal and opposite amounts, given by ��±= ±�VM /C0. Ex-
pressions for relativistic velocities can be given by including
first-order dispersion in n��� as

VR
± =

C0

n0
�1 −

��±

n0

�n

��
� � v
F

=
C0

n0
�

VM

n0
2 �

�n

��
� v
F =

C0

n0
� VM

�ng − n0�
n0

2 � v
F,

�5�

where n0 is the phase index at the input frequency of �,

F= �1−1/n0

2� is the Fresnel drag coefficient, and ng�=n0

+� �n /��� is the group index, defined as the ratio of the
free space velocity of light to the group velocity at �. As a
specific example, consider a situation where the medium is
noncomoving, as illustrated in Figs. 2�b� and 2�c�, giving rise
to VM 	�−v�. The relativistic velocities in this case are given
by

VR
± �

C0

n0
± v
L, 
L = �1 −

1

n0
2 +

�ng − n0�
n0

2 � �6�

where 
L is the so-called Laub drag coefficient �18�. The
expressions for time delay and phase shift are obtained as
�t��n2�1−
L���t0 ,����n2�1−
L����0.

Unlike the Doppler-shift-free situation, the coefficients of
time delay and phase shift now depend on the refractive
property of the medium. Of course, in the absence of disper-
sion �i.e., ng=n0�, one recovers the same results as in Eq. �2�.
In the presence of a highly dispersive medium with ng�n0
�i.e., �n /���n0 /��, characteristic of extreme normal disper-
sion in a medium that produces slow light, the time delay
and the phase shift are given by �t�ng�t0 ,���ng��0.

Thus, the rotation sensitivity of a slow-light-based gyro-
scope scales directly with the group index ng. Experimental
observation of slow light reported in atomic and solid media
using electromagnetically induced transparency �EIT� �1,2�
have shown the group index ng to be as large as 108. Thus,
one can conceivably design an ultraprecise rotation sensor
for sensing relative rotation of a local system using a uni-
formly spinning slow-light medium in the interferometric
beam path. Finally, we note that the experiment outlined here
for detecting the relative rotation between a dispersive me-
dium and the rest of the gyroscope is fundamentally equiva-
lent to the Fizeau experiment �19�.
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FIG. 2. Interferometric setup for rotation sensing using Doppler effect. �a� Generalized case corresponding to uniform medium transla-
tion, �b� stationary source and frame, rotating medium, and �c� corotating source and frame, stationary medium.
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We now summarize briefly some of the ideas that have
been presented in the literature regarding the use of slow
light for enhancement of rotation sensing. First, note that the
result we presented above for using slow light to enhance the
sensitivity of measuring relative rotation is essentially
equivalent to what was presented in Ref. �6�. However, as we
noted earlier, Ref. �6� does not point out that this enhance-
ment cannot be achieved when measuring absolute rotation.
This result also shows the claim by Zimmer and Fleischhauer
�9� that slow light cannot enhance the sensitivity of rotation
sensing to be inaccurate. Finally, as discussed in the Intro-
duction, the results presented by Matsko et al. �10� do not
deal with any potential enhancement of rotation sensing via
the use of positive dispersion in the propagation medium.
Rather, it is essentially a restatement of the well-established
fact that, when a single loop used in an interferometric Sag-
nac rotation sensor is replaced by a cavity, the sensitivity is
enhanced by a factor equaling its finesse. Essentially, the
same conclusion applies to the microresonator-based rotation
sensing architecture proposed by Scheuer and Yanv �13�.

III. ENHANCEMENT OF THE SAGNAC EFFECT
IN A RING RESONATOR IN THE PRESENCE

OF NEGATIVE DISPERSION

As mentioned earlier, one of the drawbacks of the slow-
light-enhanced interferometric configuration above is that it
cannot be employed in sensing absolute rotation. This con-
straint can be overcome by considering the Sagnac effect in a
ring cavity or resonator. Unlike the interferometer where the
frequency of light remains unchanged by rotation, the reso-
nant frequencies of the cavity modes in a resonator get modi-
fied as a result of rotation. Figure 3 shows the schematic of a
passive ring cavity �PRC� along with the necessary detection
mode and servo mechanism to be used in a gyroscope. For
analytic convenience, we assume the light path in the reso-
nator to be circular with a radius R and an enclosed area A

�the effect occurs even when the paths are rectilinear, as
shown in the diagram�. In the absence of rotation, the light in
the cavity resonates in both directions with a frequency �0
given by �0= �C0 /n0��2�N / P�, where N is an integer and
P=2�R is the perimeter. In the presence of rotation, the
resonance frequencies are different for the CW �+� and CCW
�−� directions, and are given by

�± 	 VE
± 2�N

P
, VE

± = VR
± � v ,


�0���− − �+� =
�0

C0n0
�2�R� =

�0

C0n0

4�A

P
, �7�

where VR
± are the relativistic velocities given in Eq. �3�, VE

±

are the effective velocities, and A=�R2 is the area enclosed
by the resonator. The frequency difference ��0, which is
proportional to the rotation rate �, can be experimentally
measured from the heterodyne beat note of transmitted sig-
nals by adjusting the frequency of acousto-optical modula-
tion 1 �2� to maximize the cavity transmission in the CCW
�CW� direction. It is important to emphasize that the appear-
ance of 1/n0 in the expression for 
�0 in Eq. �7� results from
the combination of the facts that �1−
F�=1/n0

2 and that, in
the absence of rotation, the effective velocity of light in the
medium is C0 /n0.

Note that, even though we have calculated the difference
between the resonant frequencies in each direction, we could
also simply calculate the frequency offset in each direction
independently. Let us define ��0

−= ��−−�0� and ��0
+= ��+

−�0�, so that 
�0= ���−−��+�. Using the expressions for
�± from Eq. �7�, we can show that

��0
− =

�0

C0n0

2�A

P
, ��0

+ = −
�0

C0n0

2�A

P
. �8�

Therefore, for the passive ring cavity gyroscope �PRCG�,
one can measure the rotation rate by monitoring the shift in
the resonance frequency for one direction �CW or CCW�
alone. Experimentally, both directions are measured in order
primarily to eliminate common-mode effects. The same is
true for the ring laser gyroscope �RLG� as well.

Thus, in measuring absolute rotation, the PRCG �as well
as the RLG� differ fundamentally from the MZI-based gyro-
scope �MZIG�. For the MZIG, one must have beams propa-
gating in both directions, and the Sagnac effect is manifested
only as the difference between the phase shifts due to a ro-
tation. In contrast, for the PRCG �and the RLG�, the Sagnac
effect is manifested through the actual phase shift in either
direction �CW or CCW�. This is partly the reason that, for
the MZIG case, the measurement signal is independent of the
index, while for the PRCG �and the RLG� it depends explic-
itly on the index.

In this derivation, we have implicitly assumed the refrac-
tive index to be independent of frequency �i.e., no disper-
sion�. When the effect of dispersion is taken into account, the
result changes significantly. Without any loss of generality,
one can write
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FIG. 3. Schematic of a passive resonator gyroscope showing
detection mode for beat frequency measurement and active closed-
loop control for compensating random drift.
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�± = �0 ± 
�/2 = VE
±�2�N/P� , �9�

where 
� is a parameter whose amplitude is to be deter-
mined. The effective velocities VE

± can be written as

VE
± = VR

± � v =
C0

n��±�
�1 ±

v
C0n��±�

� . �10�

Expanding the value of n��� around n0, we get

VE
± =

C0

n0
�1 ±

v
C0n0

� n�

�

2
�, n� � ��n/���/n0. �11�

Substituting Eq. �11� in Eq. �9�, one gets a self-consistent
expression involving 
� that yields �20� ��−

=���0
− , ��+=���0

+ , �=1/ng , 
�=��−−��+=
�0�,
where we define an enhancement factor ��1/ng. For a me-
dium that exhibits slow light, ng�1, the result in Eq. �11�
implies a reduction in rotational sensitivity. On the other
hand, it is equally possible to achieve a condition where 0
�ng�1, characteristic of the anomalous dispersion ��n /��
�0� that leads to superluminal pulse propagation in the me-
dium �of course, without violating SR� �4�.

One way this process can be understood physically is in
terms of an effective positive feedback �later on, we discuss
another physical way to interpret this effect�. Consider, for
example, the frequency shift in the CCW direction, ��−,
given by 
�0/2 in the absence of dispersion. Imagine that the
anomalous dispersion is now turned on. As the frequency of
the CCW beam is moved to find the new resonance condi-
tion, it will experience an index that is smaller than n0. This
leads to an increase in the value of ��− needed for finding
the resonance. As ��− is increased further, the CCW beam
experiences an even smaller value of the index. This positive
feedback type process can be represented by an equation of
the form ��−=
�0 /2+G��−, where a simple analysis
shows that the effective “feedback loop gain” G is given by
−��0 /n0���n /���= �1−ng /n0�, which is positive for anoma-
lous dispersion. The steady-state solution of this system is
��−= �
�0 /2��1/ �1−G��. Exactly the same process leads to
an increase in the frequency shift of the CW beam, so that
the net frequency difference is 
�0�1/ �1−G��. The CAD
condition �ng=0, which implies n�=−1/�0� corresponds to
the feedback gain approaching unity �G→1�.

However, the enhancement factor � diverges as we ap-
proach this limit. This is because we have neglected higher-
order effects. In order to take the higher-order effects into
account, it is necessary to consider an explicit model of a
medium that can be used to realize the requisite negative
dispersion. We now consider the negative dispersion associ-
ated with an absorptive resonance in a material medium that
can be described in simple mathematical form for our analy-
sis. Here, one should keep in mind that it is not feasible to
use this kind of medium with undesirable intracavity absorp-
tion in actual experiments. Instead, one can consider using
bifrequency Raman gain in a real experiment to produce a
similar dispersion effect without absorption �4�. However,
the conclusions drawn from our discussion using an absorp-
tive resonance model remain equally valid for the Raman

gain. The expression for the dispersive index n��� associated
with an absorptive resonance in a two-level system can be
modeled as

n��� = 1 − �A���� − �0�/��2 + �� − �0�2� �12�

where 2� corresponds to the linewidth �full width at half
maximum �FWHM�� of the absorptive resonance. The mag-
nitude of A corresponds to the peak value of the imaginary
part of the susceptibility i.e., A= ��I��=�0

. Thus, the value of
the parameter A depends on medium properties such as the
density and the strength of the resonant excitation. For our
analysis, we can assume the above form of n��� and express
it as a Taylor expansion around �=�0, containing higher-
order terms only up to ����3:

n��� = 1 + n1�� + n3����3, n1 = 
 dn

d�



��=�0�
,

n3 = 
1

6

dn

d�



��=�0�
. �13�

Note that in this model n0=1 and n2=0, since n��� in Eq.
�12� is antisymmetric around �=�0. The dispersion coeffi-
cients n1 and n3 can be calculated by evaluating the deriva-
tive of n��� at �=�0, and are given by n1=−A /� and n3=
−n1 /�2. Substituting the series form of n��� given by Eq.
�13� in Eq. �10�, and solving Eq. �9�, we again obtain a
self-consistent solution for the enhanced frequency splitting,
for the case of ng=0 or n1=−1/�0, to be given by

��− = ���0
−, ��− = ���0

+, 
� = ��− − ��− = �
�0,

� = �4�/
�0�2/3. �14�

The enhancement factor � is nonlinear. It does not diverge
for finite values of 
�0, and saturates to a value close to
unity as 
�0 approaches the extrema of the dispersion �21�.

IV. EFFECTIVE EQUIVALENCE BETWEEN ROTATION
SENSING AND MEASUREMENT OF MIRROR

DISPLACEMENT USING A RING RESONATOR

The derivation of these results so far has been perhaps
less than transparent, especially given the presence of rela-
tivistic addition of velocities, and the apparent complexity of
the Sagnac effect. As such, the physical interpretation of
these results may not be obvious. Therefore, we now con-
sider an analogous system where physical intuitions should
be more easily applicable. Specifically, we establish here a
simple analogy between the rotational frequency shift in a
PRCG to the frequency shift in cavity resonance caused by
the mirror displacement in a cavity. The latter process can be
considered to be a device where the frequency shift is used to
measure the mirror displacement caused by a perturbation.
For simplicity, let us also assume, as we have done above,
that the cavity is entirely filled with a dispersive medium.
The resonance condition for the cavity with a free-space
length L is given as
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L = m� = 2�mc0/�n��0��0� �15�

where �0 is the cavity resonance frequency, n��� character-
izes the dispersion due to the medium, and m is a large
integer number. In the absence of intracavity dispersion, one
can easily calculate the shift in the cavity resonance fre-
quency for a small change �L in length for an empty cavity,
which is given by ��ec=−�L�0 /L. It is instructive to com-
pare this expression with the first expression in Eq. �9�, for
example, which can be rewritten as

��0
− = ��0/�C0n0���2�A/P� = − ��0/Leff�
Leff, Leff � P ,

− 
Leff � P�R/�n0C0� = Leffv/�n0C0� . �16�

Thus, within a proportionality constant, the effect of rotation
can be equated to an effective change in the length of the
cavity. Therefore, it is possible to interpret the mechanism
behind the enhancement in a simpler fashion by considering
the actual change of length in a PRC, as modeled by Eq. �15�
above.

In the presence of a change in the cavity length, �L, and
assuming that the index is dispersive, we can write the gen-
eralized form of Eq. �15� as

L + �L = m� = 2�mc0/�n��0 + �����0 + ���� , �17�

where �=�0+�� is the new cavity resonance frequency due
to the change �L in the cavity length. If the index is assumed
to be of the form n��0+���=1+n1��, corresponding to
linear dispersion, one can easily find a solution to the above
equation to determine the frequency shift ��dis in terms of
the empty cavity frequency shift ��ec as

��dis = ��ec/ng, ng = 1 + n1�0, �18�

where ng corresponds to the value of the group index at �
=�0. Note that here we have assumed the mean refractive
index n��0� of the medium to be unity. Equation �18� sug-
gests that at extremely small values of ng, for example, ng
=0.001, ��dis can be 103 times larger than ��ec.

This is essentially �22� the same result as derived above
for the PRCG, if we set n0=1. In the current case, however,
the explanation for the enhancement is very simple. Due to
the linear dispersion in the cavity, the wavelength � inside
the medium is changing very slowly with the frequency �.
Thus, for a given change in cavity length, �L, one has to
change the frequency � by a significantly larger amount
�compared to the empty cavity case� in order to ensure that
the new length matches an integer number of wavelengths,
thus establishing resonance. Therefore, ��dis has to be much
larger than ��ec. If this argument is extended to the case
when ng=0, which occurs when the dispersion slope n1=
−1/�0, the wavelength inside the cavity becomes completely
insensitive to any change in �. This implies that ��dis has to
be “infinitely large” in order to compensate for any cavity
length change �L. In other words, the cavity cannot compen-
sate for the length change by any finite change in the field
frequency. This, obviously, corresponds to an unphysical
situation since the linear dispersion model cannot exist over
an infinite bandwidth for a true material medium. In reality,
for any real physical medium, one has to consider linear

dispersion over a small �or restricted� frequency range and
therefore include the higher-order dispersion effects in order
to predict what exactly happens for ng=0. Using the explicit
model summarized in Eqs. �12� and �13�, we obtain
��dis�1+n1�0�+n3�0���dis�3=��ec. The solution to the
above equation for the case ng=0 or n1=−1/�0 yields

��dis = ���ec = �2�/��ec�2/3��ec. �19�

This suggests that at ng=0 the shift in cavity resonance
��dis for the change �L is finite and enhanced by a factor �
with respect to the empty cavity shift ��ec. This result is
essentially �23� the same as what is presented for the PRCG
in Eq. �14�. A large enhancement factor can be observed
under the condition ����ec, which can be satisfied experi-
mentally for extremely small values of ��ec �or �L� caused
by length change �or inertial rotation for the PRCG or the
RLG�. As mentioned after Eq. �18�, note that � has a non-
linear dependence on ��ec. Specifically, � decreases with
increasing ��ec, approaching a value of the order of unity as
the frequency shift becomes comparable to the width of the
dispersion profile.

A major feature of the dispersion condition ng=0 is that
the enhanced shift is also accompanied by an almost equally
large broadening of the cavity resonance linewidth. Before
we consider the effect of this broadening on the ability to
measure very small length change �or, equivalently, the abil-
ity of the PRCG or the RLG to measure very small rota-
tions�, it is instructive first to discuss the mechanism behind
this broadening. To this end, let us consider first the situation
when �L=0. The linewidth of the cavity can be calculated
by considering the dephasing � experienced by the light
beam for a single pass through the resonator, under the con-
dition where ���0. It is easy to show that this is given by
�=n����L /c0−�0L /c0. It is also easy to show that if �
represents the linewidth �FWHM� of a cavity, the half-width
frequency ��0+� /2� will correspond to a value of �=� /F,
where F is the finesse of the cavity. Using this fact and as-
suming again a simpler linear dispersion model, i.e., n���
=1+n1��, one can obtain the linewidth of the dispersive
cavity as �dis=�ec /ng, where �ec=2�c0 / �LF� is the empty
cavity linewidth in the absence of dispersion. This shows
that, just like the frequency shift needed to compensate for a
change in the cavity length, the linewidth of the cavity also
depends inversely on ng. Again, for a small value of ng
=0.001, for example, �dis will be a thousand times broader
than �ec. This can be understood by the same physical argu-
ment as earlier, in terms of the insensitivity of the wave-
length as a function of frequency under this particular dis-
persion condition. Therefore, it suggests that the cavity can
be nearly resonant over a large range of frequencies. For an
ideal linear dispersion medium exactly at ng=0, the cavity
will resonate at all frequencies, since the medium wave-
length is now completely independent of the frequency. Of
course, this will imply an unphysical, infinitely large line-
width for the cavity. One can extend the analysis for a real-
istic situation by considering a medium with a limited range
of linear dispersion. Choosing again the explicit model sum-
marized in Eqs. �17� and �18�, we find �dis=�ec /
�ng+n3�0��dis�2�. When ng=0, the broadened cavity line-
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width is given by �dis= ��2�ec�1/3. This condition is also re-
ferred to as the white-light cavity. Note, however, that while
the cavity linewidth is broadened due to the negative disper-
sion, the cavity decay rate �and, therefore the quality factor
and the buildup factor� remain unchanged �24–26�. One can
similarly estimate the linewidth for the case of �L�0 to be
�dis=�ec /ng��=�0+��ec

��� /3��ec, where � is defined in Eq.
�19�. This equation shows that, for �L�0, the shifted,
dispersion-enhanced cavity linewidth is inversely propor-
tional to the local value of the group index, ng��=�0+��ec

, and
therefore will get narrower as the shifted resonance moves
further away from �=�0 for increasing �L.

The analysis presented here involves minor approxima-
tions. In order to confirm the validity of these approxima-
tions, we have also simulated the behavior of the resonator in
the presence of a dispersive medium. Figure 4 shows the
enhancement factor � as a function of the empty-cavity fre-
quency shifts needed to compensate for a real or effective
�rotation induced� change in the cavity length. As can be
seen, the simulation agrees well with the analytical estimate.
Figure 5 shows explicitly a representative case where the
frequency shift in the absence of the dispersive medium is
only 300 kHz, while the enhanced shift is about 9.5 MHz.

Note that in real experiments it may be necessary to fill
only a part of the cavity with the dispersive medium. For this

scenario, one can carry out a similar analysis, considering the
medium length � to be smaller than the cavity length L. In
this case, we find all our conclusions reached here to remain
valid, except that the dispersion condition ng=0 for linewidth
broadening and sensitivity enhancement gets modified to a
value of group index corresponding to ng=1−L /�.

V. COUNTERBALANCING EFFECTS OF ENHANCEMENT
IN SENSITIVITY AND LINEWIDTH BROADENING
IN A FAST-LIGHT-ENHANCED RING RESONATOR

Consider now the situation where our goal would be to
measure the change in the cavity length �L caused by any
physical process or due effectively to a rotation. We now
explicitly show how the cavity linewidth broadening in the
case of a dispersive cavity affects our ability to measure �L
with a higher sensitivity �, predicted earlier at ng=0. The
change �L is indirectly determined by measuring the shift in
the cavity resonance frequency ��. For the case of no dis-
persion, the minimum measurable change in length ��L�min

is related to the minimum measurable ����min as

��Lec�min = ����min�L/�0� , �20�

where ����min for an empty cavity is given by

����min = �ec/S �21�

where S is the signal-to-noise ratio. Our previous discussion
also suggests that the minimum measurable change in length
for the dispersive cavity is

��Ldis�min = ����dis�min/���L/�0� . �22�

For the dispersive cavity with a broadened linewidth
���dis�min is given by

���dis�min = �dis��=�0+��ec
/S = ��/3���ec/S� . �23�

Substituting Eq. �23� in Eq. �22� and Eq. �21� in Eq. �20�,
one finds, assuming S to be the same in each case, that
��Ldis�min= ��Lec�min/3. Therefore, the minimum measurable
��L�min remains nearly unchanged for a dispersive cavity
due to cavity linewidth broadening. The factor of 3 improve-
ment is perhaps not significant enough to warrant the addi-
tional complications and sources of drifts and noise that may
come into play when the dispersive element is introduced.

VI. TRUE REDUCTION IN THE SMALLEST
MEASURABLE ROTATION RATE USING A

FAST-LIGHT-ENHANCED RING
LASER GYROSCOPE

The conclusion reached at the end of the previous section
is drastically altered if we consider a situation where, instead
of the cavity being fed by an external laser, the dispersive
cavity itself contains an active gain medium. Let us also
assume that the gain spectrum associated with the gain me-
dium is very broad compared to the cavity resonance, so that
the effect of the dispersion due to the gain medium itself on
the cavity response can be ignored. In the context of rotation
measurement, such a cavity already exists in the RLG. Of
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course, the RLG can also be used to measure an actual
change in the length of the cavity. In simple terms, as the
cavity resonance frequency shifts due to �L �actual, or ef-
fective due to rotation�, the lasing process inside the cavity
will move to the new cavity resonance frequency. As a result,
one can directly measure the frequency shift �� correspond-
ing to the �L by simply beating the laser beam outside the
cavity with a reference laser beam. In the case of a RLG, the
beat between the CW and the CCW beams outside the cavity
gives a direct measure of the frequency shift, which is pro-
portional to the rotation rate. The minimum measurable �L,
i.e., ��L�min, for the RLG is decided by the measured line-
width of the laser beam �16,27�. The fundamental quantum-
noise-limited linewidth of the laser in such a case is given by
�27� ����laser= �1/�c� /
Pout�m /	� �27�, where �c is the de-
cay time of the photon �or field� inside the cavity, which is
the inverse of the empty cavity linewidth,�ec=1/�c, and we
have assumed a unity quantum efficiency for the detector.
Here, Pout is the output power and �m is the measurement
time. The quantity 
Pout�m /	� in the denominator simply
corresponds to the square root of the number of photons
observed during the measurement time �m. For a laser in a
coherent state, this is therefore the uncertainty �n in the
number of photons measured. Note further that ���c repre-
sents the uncertainty �� in the phase of the laser field, ac-
cumulated over its lifetime inside the cavity. As such, this
expression for the laser linewidth can simply be interpreted
as a manifestation of the number-phase uncertainty relation
���n=1. Other derivations of the laser linewidth also re-
duce to this expression when the measurement time is taken
into account �28–32�. Given this expression for the laser
linewidth, one finds ��L�min to be

��Lec
RLG�min = ����minL/�0 = ����laserL/�0

= ��1/�c�/
Pout�m/	��L/�0. �24�

For comparison, consider a situation where one uses a
PRCG instead of a RLG, with the output power of the cavity
being the same as the output power of the RLG. It can be
easily shown that ��L�min for an active cavity shown here is
the same �16,27� as the one for a passive cavity:
��Lec

passive�min= ���ec�minL /�0= ��ec /
N�L /�0= ��Lec
RLG�min,

where N is the number of photons observed during the mea-
surement time in each case, with unity quantum efficiency.

In the case of a cavity loaded with a negative dispersive
medium, although �dis at ng=0 is much broader than �ec, it is
important to note that the decay time of the field inside the
dispersive cavity remains unchanged and is determined
purely by the external properties of the cavity such as losses
and mirror reflections, etc. Therefore, if one constructs a
RLG loaded with an additional negative dispersive medium,
as described above, the quantum-noise-limited laser line-
width ����laser will remain unchanged. In this case, the mini-
mum measurable �L is found to be ��Ldis

RLG�min

= ��Lec
RLG�min/�= ��Lec

passive�min/�. This represents a real im-
provement in sensitivity of measurement by a factor �.
Therefore, equivalently, the minimum measurable rotation is

given by ���dis
RLG�min= ���ec

RLG�min/�= ���ec
passive�min/�.

Thus, the sensitivity in rotation measurement can be im-
proved by using an active gain medium inside the dispersive
cavity. For proper choice of parameters, the enhancement in
sensitivity �= �2� /��ec�2/3 can be made very large.

VII. EXPERIMENTAL CONSIDERATIONS, NUMERICAL
ESTIMATES, AND THE PROSPECT OF MEASURING

THE LENS-THIRRING ROTATION

Experimentally, a fast-light-enhanced ring laser gyroscope
may be realized as follows. Consider a ring cavity incorpo-
rating a broadband gain medium such as a Ti:sapphire crystal
pumped by an argon laser. We also assume that it incorpo-
rates mode-selective elements such as a birefringent filter
and an etalon, so that the laser operates in only two degen-
erate, counterpropagating longitudinal modes. Such a device
would work as a ring laser gyroscope, in the presence of
rotation perpendicular to the cavity plane. We assume that
the operating frequency is tuned close to the D2 transition in
85Rb. We now place a vapor cell containing 85Rb inside this
cavity, with antireflection-coated windows. The vapor is op-
tically pumped to produce a population inversion between
the F=2 and 3 hyperfine ground states. A dual-frequency
Raman pump, detuned from the P manifold, is the applied.
In the presence of this pump, a probe beam will experience
two gain peaks, each corresponding to the condition where
the probe is two-photon resonant with one of the pump fre-
quencies. This is precisely the scheme that was employed in
demonstrating loss-free generation of fast light �4�. The op-
tical pumping beam as well as the dual-frequency pump
beams will be inserted into the cavity using a polarizing
beam splitter �PBS�, and extracted from the cavity using an-
other PBS. The lasing modes inside the cavity will play the
role of the probe beam, with its frequency chosen to be at the
center of the two gain peaks, so that it experiences the steep-
est negative dispersion.

Recently, in an experiment the details of which are being
reported elsewhere �33�, we demonstrated the key aspects of
such a device. In particular, we inserted a Rb vapor cell in a
passive ring cavity �without the Ti:sapphire gain medium�,
and generated negative dispersion using the dual-pumped
Raman gain outlined above. An external probe was made to
resonate in the cavity, and its behavior was studied with and
without activating the Raman gain doublet-induced negative
dispersion. As expected from the discussions presented
above, the cavity displayed the white-light behavior: the
resonance linewidth of the probe became broadened in the
presence of the dispersion.

In this experiment, it was difficult to demonstrate the en-
hanced sensitivity directly for the following reason. The en-
hancement factor is nonlinear: it decreases with increasing
values of the empty-cavity frequency shift ��0 �correspond-
ing to �L, or equivalently a rotation rate�. Furthermore, in
order for the enhancement to be evident, the value of the
loaded-cavity frequency shift ��0� �i.e., the enhanced shift�
must be less than the dispersion bandwidth. Thus, for the
limited dispersion bandwidth realized in this experiment, one
must use a very small value of �L in order to observe an
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enhancement. This in turn requires the use of a resonator that
has a much higher finesse than the one used in Ref. �19�, and
a more precise voltage supply for the piezoelectric trans-
ducer. The required modifications are nontrivial, and efforts
are underway in our laboratory to implement these changes
to the apparatus.

Given this constraint, we modified the experimental con-
figuration in order to demonstrate the enhancement effect
indirectly �34�. As can be seen from the theory presented
above, the modification factor of the sensitivity depends on
the inverse of the group index, independent of its value. For
negative dispersion corresponding to a nearly null value of
the group index, the factor is greater than unity, and corre-
sponds to enhancement of sensitivity. For positive disper-
sion, the factor is less than unity, corresponding to reduction
in sensitivity. While the former is hard to observe using our
current apparatus, the latter is much easier to demonstrate.
This is for two reasons. First, the modification factor can be
tuned to be close to unity by controlling the slope of the
positive dispersion. Second, since the loaded-cavity fre-
quency shift is less than the empty-cavity frequency shift, it
is easy to keep its value within the dispersion bandwidth. We
demonstrated this reduction in sensitivity by using two alter-
native modification of the scheme for exciting the vapor cell.
In one version, we simply replaced the dual-frequency Ra-
man pump with a single-frequency pump, and tuned the
probe to be at the center of the corresponding Raman gain. In
another version, we turned off the optical pumping beam,
thus eliminating Raman gain, and tuned both the �single-
frequency� pump and the probe to resonance with the P
manifold, while maintaining the two-photon resonance con-
dition. This produced an electromagnetically induced trans-
parency for the probe. In either case, the probe experiences
positive dispersion corresponding to slow light. As expected,
we observed reduction in sensitivity proportional to the in-
verse of the group index, which was measured indepen-
dently. This experiment confirmed that the sensitivity modi-
fication varies in a manner that agrees with our theory, thus
establishing confidence in the claim that negative dispersion
near the CAD condition will yield enhancement.

In most experiments involving EIT in a vapor cell, it is
impossible to achieve a very high degree of transparency,
primarily because of uncontrolled optical pumping into Zee-
man sublevels. As such, there is always some absorption
present, and experiments purporting to make use of the EIT
process suffer from deleterious effects of this absorption. The
situation for the doubly pumped Raman gain system is quite
different. With proper choice of parameters, as evidenced in
Refs. �4,33�, the probe experiences true gain. Furthermore,
since the probe is positioned between the two gain peaks, the
gain seen by it can be tuned very close to zero if desired, or
adjusted to compensate for residual losses from the vapor
cell windows and the PBSs. Thus, the role of the intracavity
medium can be tailored to produce purely dispersion, with-
out any deleterious effect of any residual loss or gain.

One may also think that, since the cavity becomes very
sensitive to rotation near the CAD condition, any noise in the
system is also likely to be amplified, thus offsetting any real
advantage. However, this is not the case. To see why, note
first that, in designing any apparatus for ultimate perfor-

mance, stabilization schemes have to be in place in order to
reduce the systematic noise sources to such a level that one is
limited only by quantum noise. For the fast-light-enhanced
gyroscope, the same rule would apply. The enhanced sensi-
tivity to systematic sources of noise in this case simply
means that the stabilization schemes have to be more robust.
Since the fundamental quantum noise, which affects the line-
width of the ring laser, is not affected by the fast-light en-
hancement of sensitivity, as discussed earlier, it is possible to
achieve true enhancement in the capability for measuring
very small rotations.

As a numerical example, let us consider a table-top size
RLG, with a value of P /A=2 m−1 �for an equivalent circular
shape, the radius is 1 m�. Let us assume that the operating
mean frequency is about 5�1014 Hz, the cavity finesse is
about 103, and the output power is 1 mW. A quick estimate
then shows that, in the absence of fast-light enhancement, the
minimum measurable rotation rate for an observation time of
1 s is about 1.5�10−5 ��, where �� is the Earth’s rotation
rate. Suppose now we insert a negative dispersion medium in
the cavity, filling only a part � of the path. As shown in detail
in Ref. �26�, this can still yield the same degree of enhance-
ment as formulated above, as long as the value of ng is cho-
sen to equal �1− P / � �. For a realistic dispersion linewidth of
�=2��106 s−1, the enhancement factor corresponding to
the minimum measurable frequency shift �without the disper-
sion enhancement� is about 1.8�106, and the minimum
measurable rotation rate then becomes about 10−11 ��, for
an observation time of 1 s. Of course, this number can be
improved further by increasing the observation time, or by
increasing the area of the RLG. Note that this number is
already smaller than the Lens-Thirring rotation rate of 5.6
�10−10 �� expected on an earth-bound experiment, accord-
ing to Einstein’s theory of gravity. This resolution should
also therefore be high enough to distinguish between the
predictions made by different theories of gravity �Einsteins’
theory, the Brans-Dicke-Jordan theory, and the Ni theory� for
the magnitude of the Lens-Thirring effect �15,35,36�.

VIII. CONCLUSION

To summarize, we have described a ring-resonator-based
optical gyroscope whose sensitivity for measuring absolute
rotation is enhanced via the presence of an intracavity dis-
persive medium. Specifically, we show that the enhancement
occurs if the dispersion is anomalous, characteristic of super-
luminal light propagation. Under an idealized model where
the index varies linearly over all frequencies, the enhance-
ment factor is given by the inverse of the group index, and is
maximum when the group index is null, corresponding to the
so-called critically anomalous dispersion condition �i.e.,
where the group velocity becomes infinite�. For a realistic
medium, the anomalous dispersion has a limited bandwidth.
When this constraint is taken into account, the divergence at
the CAD condition is eliminated, while still yielding a very
large enhancement. For realistic conditions, the enhancement
factor is as high as 106. We also show how the offsetting
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effect of the concomitant broadening of the resonator line-
width can be circumvented by using an active cavity. In ad-
dition to this fast-light-based effect, we have shown how
normal dispersion used for slow light can enhance relative
rotation sensing in a specially designed Sagnac interferom-
eter. In this case, the enhancement is given by the slowing
factor.
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