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The Relativistic Theory of the Fresnel 
Drag Coefficient 

IN this communication I give a somewhat more 
general discussion of the Fresnel drag coefficient than 
is usual, with the view of clarifying the relation 
between two expressions for it, which occur in the 
literature of special relativity. Theso expressions are 
normally derived separately and their relationship has 
recently been discussed by Synge1 • I take a further 
step here, by showing how both results can be 
obtained from a single argument. This procedure 
directs appropriate attention to step (6) (see below), 
which is the crucial point in both cases. The neces­
sary background may be outlined as follows : 

Suppose a medium has velocity v parallel to the 
x-axis of a reference system S. If light passes through 
the medium parallel to this direction, let its phase 
velocity be um relative to S. Assume that um = 
c/n(vm), where n(vm) is the refractive index of light 
of frequency Vm in the medium, provided the medium 
is at rest in S (that is , v = 0). Then in the general 
case (v ¥, 0) : 

Um = c/n(vm) + kv (1) 

Here k is a coefficient which was once supposed to 
measure the extent to which the ::ether is dragged 
along by the medium (Fresnel, 1818). The special 
relativity theory also leads to (1). Fork, it yields the 
result: 

k = 1 __ l _ + ~ -~ {dn(v)} (2) 
n(v 0 )

2 v n(v 0)r dv v = v, 

Here r = 1 in the case of water fl.owing at velocity v 
in a tube fixed in S, and r = 2 for a block of glass 
moving with velocity v. These are the two cases 
usually described . 

Consider now a uniform transparent medium in 
uniform motion with velocity v parallel to the x-axis 
of an inertial system S. The medium is contained in 
a transparent vessel the walls of which can unfold 
during the motion of the medium, so that the rear face 
of the container (which is perpendicular to the x-axis) 
moves with a velocity w ~ v. The optieal properties 
of the medium in the container are, however, kept 
homogeneous and constant in time by feeding 
additional material through a tube leading to the 
rear of the container. This means that we assume 
the following idealized situation : At any time t, 
contact between the rear surface of the container 
and the medium is about to break due to the differ­
ence in velocity. But the gap (v - w)dt, which one 
would expect to develop in time dt, is filled in by 
additional material having already v as its x-com­
ponent of velocity. Contact between the rear surface 
and the medium is assumed to be maintained in this 
way ; different layers of material are involved in the 
contact at different instants. This situation cannot 
be realized exactly, but my main interest is in the two 
limiting cases, which can be realized. 

Let the reference system in which the medium is 
at rest be S' ; that in which the rear face is at rest, 
be S" ; the velocity of S" as observed in S' be w' ; 
the frequency of the light when moving in vacuum 
and observed in S" be v O" and the frequency when 
moving in the medium and observed in S" be vm"· 
I shall adopt this type of notation also for the 
frames S and S' and for the phase velocity of the 
light, which is denoted by u 0 for vacuum and by um 
for the medium. 

By the relativistic velocity addition : 

Um = Um' + v = c/n(vm') + v (3) 
1 + um' v/c• 1 + v/cn(vm') 

It has been assumed that um' = c/n(vm'), where 
n(vm ') is the refractive index of the medium for waves 
of frequency vm'· Suppose now that if g is a function 
of order v/c, we have, to first order in v/c : 

It then follows t,hat : 

1 1 1 { d [ 1 ]} 
n(vm') = n(v 0-v 0g) = n(v 0)-gvo dv n(v) v "·" v .. 

= _l_ + ~ {dn(v)} 
n(v 0 ) n(vo) 2 dv v = v, 

Substituting in \3), one finds, to first order : 

C 
Um=-(-)+ kv n v0 

where k = I - _l_ + ~ ~ g {dn(v)} 
- n(v 0 ) 2 v n(v 0 )

2 dv ~ = •• 

(4) 

(5) 

Here k has the form of a Fresnel drag coefficient. It 
remains to calculate g. 

From the expressions for the radial Doppler effect : 

Vm" y(l-(w']2/c 2 ) vo" _ y'(l-w2/c2
) 

Vm' = I + w'/u,,." ' v"; - 1 + w/uo" 

Now the rear wall of the container is at rest in S" so 
that the light entering it is unchanged in frequency 
for an observer at rest in S": 

(6) 

Hence to first order in v/c : 

vm' _ vo"/vo = 1 +~-~ 
Vo - Vm"/vm' Um" Uo" 

The last two terms are correction terms and need be 
evaluated only to zero order, so that: 

w' '="' w-v, uin" = c/n(v 0" ) '="' c/n(vo) 

Noting that uu'' = c, one finds that equation (4) is 
valid, provided : 

w + (v- w)n(v 0) g = ____ c __ _ (7) 

Combination ef (5) and (7) yields an expression for 
the drag coefficient. One notes that w = 0 corre­
sponds to the case of water fl.owing thr_ough a tube, 
while w = v corresponds to the movmg block of 
glass in accordance with (2). One can say qualita­
tively : The effect of dispersion on the drag coefficient 
goes up with the disparit)'.' between the velocity _of 
the medium and the velocity of the rear face of its 
container. 

I am indebted to Prof. J . L. Synge for helpfnl 
correspondence. 

P. T. LANDSBERG 

Department of Applied Mathematics, 
University College, 

Cardiff. 
• Synge, J. L., &latiintv: TM Speciar Theory, 142 (North-Holland: 

Amsterdam, 1956). 


	The Relativistic Theory of the Fresnel Drag Coefficient

