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curves are only slightly less impressive, showing first
the trading off of axial vs lateral color alluded to above
and second a somewhat enlarged secondary spectrum
in the oblique spherical. Whether or not this is real
depends somewhat on the accuracy of the catalogue
values for the refractive index given by the glass
manufacturer. In any case, there appears no question
that the requirement for 0.1-sec resolution is attained
or that the image is actually or very nearly diffraction
limited.

There appears no trace of the chromatic coma'
referred to by Baker in the analogous Reflector-
Corrector system. However, it may be pointed out
that our system covers 1 at F:10, and this secondary

I J. G. Baker in Amateur Telescope Making (Book 3) (Scientific
American, Inc., New York, 1953), p. 8.
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aberration may be expected to show up at higher
relative apertures and larger field angles.

It is probable that at higher relative apertures, it
may prove advantageous to get a closer approximation
for the mirror by adding a sixth power term in which
case the surface will depart more or less from the
hyperboloidal form. In this regard one may designate
the 4th power term as the "Seidel" or third-order
approximation, and the 6th power and higher terms
as belonging to the usual "higher order" category.

However, there is no doubt that the three element
design discussed in this article may be extended over
a wide range of apertures, both physical and relative.

Appreciation is hereby expressed by the author for
the assistance given by Theodore Unti of the J. W.
Fecker Division of American Optical Company and by
Richard Walters of the Instrument Division in the
programming and calculations required.
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Curvature of Binocular Visual Space. An Experiment
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The sign of the curvature of any geometry is an intrinsic property independent of its coordinatization.
Accordingly, it is possible in principle to determine the sign of the curvature of binocular visual space without
employing knowledge of the particular relationship between the physical stimulus and the associated visual
geometry. A simple experiment for making this determination is described and the outcome for a number
of observers is presented. For most of the observers the indicated curvature is negative, in agreement with
the preponderance of earlier findings.

1. INTRODUCTION

IN the mathematical theory of binocular visual space
developed by Luneburg and the author, the one

feature which has evoked the greatest interest is the
interpretation of certain experiments as evidence for
the non-Euclidean character of visual space."2 In a
recent paper,' the author presented a theoretical analy-
sis of known experimental results in this field. The indi-
cation of this analysis is that the experimental data can
be given a mutually consistent interpretation only
under the hypothesis that for most observers the curva-
ture of visual space is negative as in the well-known
hyperbolic geometry of Lobachevski and Bolyai.

No single experiment is absolutely decisive in reaching
the conclusion of negative curvature. For the earlier
experiments the conclusion in each case depends upon
other experimentation either to determine the nature
of the transformation connecting visual and physical

1 R. K. Luneburg, Mathematical Analysis of Binocular Vision
(Princeton University Press, Princeton, New Jersey, 1947).

2 A. A. Blank, J. Opt. Soc. Am. 43, 717 (1953).
3 A. A. Blank, J. Opt. Soc. Am. 48, 911 (1958).

coordinate frames or to assign otherwise a theoretical
interpretation to the data. Since the sign of the curva-
ture is an intrinsic property of the geometry, and is
perfectly well defined independently of the coordinatiza-
tion, it is feasible to make the determination of sign
by a direct experiment independently of other considera-
tions. Such an independent determination has obvious
value if taken in relation to other experiments. None-
theless, it remains an important consideration that no
single experiment on any one observer can by itself be
taken as a sufficient characterization of that observer's
visual space. It is always possible that something en-
tirely outside the realm of the experiment may affect
the observer's performance and we shall see in Sec. 3
that this may conceivably occur on the part of at least
one observer.

We shall characterize negative curvature by a prop-
erty which not only is valid for Riemannian spaces but
is so fundamental that it may actually be used to define
negative curvature for a very broad class of metric
spaces, the G spaces of Busemann. 4 It will be recalled

I H. Busemann, The Geometry of Geodesics (Academic Press,
Inc., New York, 1955).
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that in Euclidean geometry the line joining the mid-
points of two sides of a triangle is equal in length to
half the third side. A G space will have negative curva-
ture if and only if every point is contained in a domain
within which each triangle has the property that the line
joining the midpoints of two of the sides is less in length
than half the third side. The problem of assigning a
definite numerical value to the curvature of a G space,
rather than a sign alone, has yet to be solved com-
pletely; however, recently Kann has demonstrated how
to obtain a numerical estimate of the absolute curvature
in the form of an upper bound. 5

We do not actually need all the generality of G spaces
since it appears that binocular visual space may be
described accurately enough as one of the Riemannian
spaces, and, in fact, as one of the three homogeneous
spaces, spherical, Euclidean, or hyperbolic. 6 It is de-
sirable, however, to involve no further assumptions in
determining the sign of the curvature of the space
than are absolutely necessary. An experiment based on
the definition of negative curvature given above will
have additional value because of the fact that the con-
clusions obtained will be largely independent of other
theoretical and experimental considerations.

It is not difficult to obtain the requisite inequalities
analytically for the spherical and hyperbolic geometries.
Let a, b, c denote simultaneously the sides of a triangle
and their lengths (Fig. 1). Let d be the line segment
joining the midpoints of a and b, and 0 the angle in-
cluded by a and b. From the law of cosines in the hyper-
bolic and spherical spaces we may calculate the relation
between c and d. In hyperbolic space we have

coshc= cosha coshb-sinha sinhb cosO (la)

coshd = cosh a cosh b-si nh a sinh b cos0; (lb)

in elliptic space,

cosc= cosa cosb+sina sinb cos0 (2a)

cosd=cos.a coslb+sin'a sinb cos0. (2b)

E. D. Kann, dissertation, New York University, New York,
1960.

I A. A. Blank, J. Opt. Soc. Am. 48, 328 (1958).

From (la) and (lb) it follows that

cosh 2d= coshc -2 sinhl2.a sinh"2-b sin"O. (3)

Since the hyperbolic cosine is a monotonically increasing
function it follows that for all triangles in hyperbolic
space

2d<c. (4)

Similarly, for spherical space we obtain

cos2d = cosc- 2 sin 2 -a sin22b cos6. (5)

From the fact that the cosine is a monotonically de-
creasing function in the interval from 0 to 7r it can be
shown that for all sufficiently small triangles (e.g., tri-
angles such that a, b, c, <r) in elliptic space,

2d>c. (6)

2. EXPERIMENT

Three starlike lights A, B, C determining the ex-
perimental triangle are presented to the observer in the
eye-level plane. In that plane a coordinate system is
chosen so that the x axis is directed sagittally forward
along the median line. The y axis is directed toward
the observer's left along a line joining the apexes of his
corneas. The coordinates of a point (y) will be given
in inches and decimal fractions of an inch. For conven-
ience in taking and presenting data the triangle is made
symmetric to the median with vertexes C= (108,0),
A (28,12), B= (28,- 12). This does not preclude the
use of asymmetric observers such as sufferers from
aniseikonia. For a strongly asymmetric observer the
data from the right and left sides cannot be pooled.
No such observers were found in this series.

The observer is first presented the three lights A, B,
C alone; these are kept fixed throughout the experiment.
A fourth light is introduced somewhere to the left of
the median and the observer is told to ask the experi-
menter to move the light in order to satisfy the in-
struction, "Place this light so that you see it as lying
on the left side of the triangle exactly equidistant from
the two endpoints. In executing this task be sure to
look squarely at each light and fix its position carefully
rather than superficially glide from light to light." The
fourth light is then turned off and a fifth light is intro-
duced at the right and the same task is performed on
the right side of the triangle. After this initial setting,
both lights are turned on and remain on simultaneously;
the observer is asked to repeat the bisection of the sides
of the triangle a variable number of times. Between the
observer's settings the lights are displaced at random
so that the observer makes a fresh beginning each time.
The experiment is repeated until evidence of any con-
tinuing trend is not apparent in the last five or more
settings. The medians of the x and y coordinates after
the termination of the trend are used as the most con-
venient representative data. We denote these median
data by (x,ya) and (xo,yo) for the left and right sides,
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TABLE I. Representative settings for seven observers in order
of declining indication of negative curvature as given by 7. The
entries n, k are, respectively, the total number of settings for the
bisection points a and , and the number of settings counted from
the terminus of the series for the determination of the various
averages.

Ob- 1,
server Age y x y* x* iz k

GAH 36 5.5840.34 28.4040.31 2.8940.26 91.004±0.59 20 5
RGB 15 4.32±40.31 28.43±0.40 3.43:±0.32 90.6940.52 15 5
PE 16 4.07±40.45 29.3640.47 3.93±0.54 73.04±1.19 14 5
RRC 35 3.40±0.40 28.7640.17 2.14±:0.48 94.9040.98 11 5
MD 15 1.68±i0.64 28.15±+:0.68 5.0040.57 71.46±1.39 14 14
JG 17 0.8040.28 28.7641.00 4.67±0.45 70.5040.68 11 5
WHF 14 -0.1040.74 28.3440.24 3.46±0.39 93.25±fi0.76 31 7

tx

a

A B A B

respectively. In the table we list the means on the right
and left of the representative data, namely,

X*=12 (X+X#), Y1= 2(Y-Y#)-

The tolerance indicated is the maximum of the root-
mean-square deviations from the median on each side.
In almost every case the distance of the medians on
the two sides from their mean is definitely less than the
maximum root-mean-square tolerance; in those few
cases where it is larger, we give this larger figure instead.
Also given are the number n of repetitions of the experi-
ment and the number k of settings from which the
median is taken.

In the second part of the experiment, two lights are
fixed at a= (x*,y*) and A= (x*,-y*) (Fig. 2). The ob-
server is asked whether these lights satisfy the criterion
of the instructions. In no case was the answer negative.
Next he is instructed to set a light on the base AB of
the triangle first so that (1) the distance from A to the
new light equals that from a to ,3 and then so that (2)
the distance from B to the new light is equal to the
distance from a to B. Five settings are made alternately
under each of these instructions. The medians of the
coordinates of the set points are used to determine
points

'= (x',y'), .-"I= (x",y")

which serve as representative data. The sensory relation
assumed to hold for the interpretation of the experi-
ment is

a= Ay'= y"B.
The means

X=2(x'+x") and g= (y'-y")

and their tolerances (computed as for a and j3) are
given in Table I.

The interpretation of this experiment is that the
curvature of visual space is positive if the segments
Ay' and y"B lap over, and negative if they do not.
In the table, positive curvature is indicated by a nega-
tive value of g, and negative curvature by a positive y.
Thus it is seen that six observers set hyperbolically and
that one observer does not exhibit significant curvature.
In none of the hyperbolic observers did any of the five
settings for A'y' lap over any setting for y"B. We shall

L I R L I R
(a) (bI

FIG. 2. Schematic representation of possible experimental
settings. (a) Hyperbolic. (b) Spherical.

say that an observer is the more strongly hyperbolic
the larger y. The tabulation is in order of decreasing
strength.

3. DISCUSSION OF THE EXPERIMENTAL RESULTS

The most curious fact about the data of the table
is that there is no evidence that the manner of bisecting
the sides is in any way directly related to the magnitude
of y*. This conflicts with intuitive feelings about the
phenomenon of binocular "size constancy." The more
distally a and d are set, the shorter the segment af and
hence, presumably, the shorter A-y' and the greater the
likelihood and the degree of hyperbolic settings. The
evidence does not sustain any such presupposition in
relating the performances of different individuals. In-
this connection, it should be noted that none of the
observers had ever taken part in an experiment of this
type before. As demonstrated by a marked initial trend
in the data of GAH, RGB, RRC, and WHF, the ob-
server's initial performance in the darkroom may not
be the same as his eventual performance when he be-
comes accustomed to the conditions. This is typical of
the novice observer and similar trends have been re-
ported in other experiments.7 For this reason, caution
must be exerted in accepting the result of a single ex-
periment on a single observer at face value. There is,
moreover, a genuine possibility that some observers
could not act independently of auditory clues from the
experimenter's voice or the motion of the light stand-
ards. It would be desirable to use an apparatus in which
no such secondary clues to the position of the lights
are available.

The performance of the Euclidean observer WHF is
distinctive enough to report in detail. As with a number
of other observers, his settings exhibited a marked initial
trend (Fig. 3). The only specially remarkable feature
about this trend is its length. The first 18 settings were
taken in one session and the conclusion of the experi-
ment was put off to a later day when 13 more settings

7 L. Hardy, G. Rand, and M. Rittler, A.M.A. Arch. Opthalmol.
45, 53 (1951).
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were taken. Of these,
the medians and F.
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FIG. 3. Performance of
Euclidean observer WHF
exhibiting a marked initial
trend in the settings for the
visual midpoints of the
sides. There is no clear dis-
tinction between the set-
tings for -y' and -y". (a)
Settings for a and . (b)
Settings for ' and y".

the last seven were used to obtain

4. FURTHER MATHEMATICAL ANALYSIS

This experiment may also be used to determine the
polar coordinates of the points of visual space in the
manner indicated in the references.2 3 In this way we
are able to make a quantitative interpretation of the
results of the experiment in the hyperbolic metric. So,
for example, in evaluating the performances of our
observers above, we utilized, rather loosely, the magni-
tude of g as a measure of the degree of curvature. The
magnitude of the visual radial coordinate of point C in
the units of the metric distance formula (la) is a more
precise measure. Finally a quantitative interpretation
of the experiment permits the comparison of the results
of this experiment with others for the same observer
and enables us to check some of the predictions deriving
from other aspects of the theory.

We shall assume that visual azimuth angle so is a
known function of physical coordinates. From the data
of the experiment it is possible to calculate the values
of the visual radial coordinate for points of the stimulus,
using the known values of sensory visual angle. We
ascribe visual polar coordinates to each point of the
stimulus (Fig. 5) as follows: C= (rovo), a= (i, v"),
B= (rj,-v), A(r 2,P2) B (r2 ,- (02)) '= (Ry' ),

o"= (R. - p).
For the purposes of exposition we introduce auxiliary

points, D the midpoint of a, and E the midpoint of

Upon hearing instruction 2 WHF asked,
"Isn't there a theorem here?" (meaning the Euclidean

theorem, of course) and was told
"Forget the theorem and go by what you feel

directly."
"I can't forget the theorem."
In Fig. 4 we present another performance, that of

PE, as typical of an observer without a well-marked
trend.

From the kind of trend exhibited by observer WHF
and others it can be seen why early data are discarded
in Table I. General experience in the domain of pure
binocular observation has demonstrated the need for
practice on the part of the observer before he accustoms
himself to a situation in which he operates on minimally
sufficient clues. Sometimes the effect of practice on a
given observer is exhibited by an increasing consistency
in the settings, sometimes by an initial trend which
leads eventually to stable settings. The effects of initially
variable behavior can, of course, be reduced by taking
averages of sufficiently many observations. Such a
course proves to be prohibitively expensive, both in
terms of time and the patience of the observer. For that
reason, data are taken until it becomes definite that
the observer's settings are random deviations from some
statistical average. All earlier settings are discarded.
Perhaps it is significant that the observer is generally
not conscious of the change in character of his settings.
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FIG. 4. Performiance of hyperbolic observer PE exhibiting a
slight, probably not significant, trend. The settings for ' and
T // are plainly distinguished. (a) Settings for a and P3. (b) Settings
for y and y".
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FIG. 5. Schematic representation of the configuration in visual
space exhibiting the significant polar coordinates and visual
distances.

AB. The visual lengths a, s, 1, PI, P2 are defined by

a/2=aA =aC=/C=3B
s= aD=3D
t=AE=BE

pi=OD, P2=OE.

The analysis we give applies to the hyperbolic case;
a very similar development may be obtained for the
spherical case. The system of equations presented is not
designed for elimination, but for the use of an iteration
scheme in its solution. In any case, an attempt at a
direct solution by elimination of variables seems to lead
to a polynomial equation of high degree.

Given ro we may determine the value of r2 by applying
the law of sines to the angles OaA and OaCC= r-OaA:

sinhr 2 = sinhro sin(pi,/sin(S 2 - 01)- (7)

From r2 we may then calculate P2 and t using

tanhp 2= tanhr 2 cos p2 (8)
and

sinhi = sinhr2 sin (P2-

Having I and P2, we determine s by

tanh (1- 2s) = sinhp2 tang,

and from s, we obtain r1 from

sinhr, = sinhs/sin (PI.

From r we obtain P1:

tanhpl= tanhr1 cost,.

We need one more equation to complete
in the seven unknowns ro, r, r2, P, P2, s,
equation is obtained by applying the law

aA 0= 4ICAO:

sinhro sinp02 sinhri sin(s02 - 1)

sinha sinh a

Together with Eq. (11) and

cosha= coshs cosh(ro-pi)

we obtain from (13a) the relation

cosh (ro-p1)

(12)

the system
t. The last
of sines to

(13a)

(13b)

= sinhro sin(P2 sin(pi/sinh2s sin((P2 - (P1). (13)

In principle we have given above a chain of eliminations
which ends in an equation for r alone. Rather than at-
tempt to carry out the eliminations, we give an itera-
tion scheme for the solution of the system (7)-(13).

Let 4j be a first numerical approximation to the in-
tended solution r. Go through the sequence of equa-
tions (7)-(12) determining the values of the other
variables when r is replaced by 01. Use Eq. (13), how-
ever, to determine a second numerical approximation
42 by

cosh (%2-pI)
=sinhi 1 sino 2 sin(oP/sinh2s sin((0 2 - °l). (14)

By iterating this scheme, putting 42 in place of r, etc.,
we obtain a sequence of approximations t,, ~2, 6, * -

which converges to r. Note that the other conceivable
iteration scheme,

sinht 2 = cosh(t-p 1 ) sinh2ss
sinP 2 sinP1

is unstable and its associated sequence {(k} tends either
to the useless solution r2 = 0 or diverges to infinity. The
determination of a solution is greatly facilitated by the
choice of a good first approximation to r. As a guide
we have computed the values of r for the strongest
hyperbolic observer GAH and the weakest JG, based
on the premise that visual angle (P may be equated to
bipolar azimuth X, where 0 is the mean version of the
two eyes.8 For GAH we obtain r=3.19 and for JG,
ro=0.93.
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