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i. INTRODUCTION

N an earlier papert I have pointed out that

the null result of the Michelson-Morley and
Kennedy-Thorndyke experiments may be ex-
plained by the assumptions:

(1) Moving measuring rods are altered in
length when in uniform motion in the ratio

[(1_.02/62)%]7:“ -1
in the direction of motion;
=/ : 1

at right angles to the direction of motion, and
(2) Clocks are altered in frequency when in
uniform motion in the ratio

[(1—/cB)¥]—m o 4,

where v is the velocity of the rods or clocks
through the luminiferous ether, and ¢ is the
velocity of light.

No experiments, such as the Michelson-Morley
experiment, using to and fro transits of light
signals, are competent to establish the value of n
in the above expression.? In the present paper I
discuss the problem of light signals on moving
bodies, taking these alterations of length and
frequency as the basic physical phenomena, and
assuming the value =0 in the above expres-
sions. This corresponds to a contraction of
length in the direction of motion, of wvalue
(1—2*/¢%)% : 1; no alteration in length at right
angles to the direction of motion; and a reduc-
tion of clock frequency in the ratio (1 —#*/c®)? : 1.

1“Graphical Exposition of the Michelson-Morley Ex-
periment,” J. Op. Soc. Am. 27, 177 (1937).

2 This was recognized by Lorentz, who describes the cor-
responding factor in his expressions as ‘‘the origin of all
our difficulties” (Theory of Electrons, p. 219), and chooses
the value corresponding to our =0 by consideration of
the Kaufmann and Bucherer experiments. Birkhoff
(Relativity and Modern Physics, p. 34) concludes that ‘‘the
decision . . . must be made solely on the basis of facts
established by means of physical experiments’ and (p. 55)
‘It appears that no experimental data are available.” He
then discusses an experiment (the ‘‘transverse Doppler
effect”) which would be decisive.

This choice of value of » is that made by Fitz-
gerald, Lorentz, and Larmor, based on specula-
tions and experiments apart from the Michelson-
Morley experiment.3 Neither the contraction of
dimensions, nor the alteration of clock rate, has
been subjected to direct experimental test.

2. Tae FrRaAME oF REFERENCE AND TooOLS OF
MEASUREMENT

In this discussion we shall assume light signals
to be moving in a fixed ether, which we identify
as the seat of the pattern of radiant energy
received from the fixed stars. This pattern is
substantially constant in character, suffering as
a whole periodic variations with respect to the
earth, shown by the phenomenon of stellar
aberration. The argument for the necessity and
reality of this frame of reference will be ampli-
fied at the close of the paper.

Since we are to consider the effects of variations
in the properties of rods and clocks due to their
motion through the ether, we shall compare these
with rods and clocks which we shall postulate as
unaffected by transport. Whether such rods and
clocks can be realized in practice is broadly not
important for carrying out a general argument.
Using such rods and clocks, we define the velocity
of light as the ratio of the distance between two
points fixed in the ether, between which a light
signal travels, to the time taken by transit.
The velocity of light so defined we assume to be
a constant, which we designate by c.

We note at once that the velocity of light with
reference to bodies not fixed in the ether will
differ from ¢, and that the value as measured on
moving bodies with rods and clocks affected
by motion may in general be expected also to
be different from c. It is our problem to determine
how different, in the case of the specific behavior
of rods and clocks we have assumed.

3 Larmor, Aether and Maiter, 1900. The characterization
of the frequency change as a prediction of the theory of
relativity %1905) is chronologically unjustifiable.
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3. THE MEASURED DISTANCES AND DIFFERENCES
oF Crock ReapiNngs Berween Two
Points oN A UNIFORMLY MOVING
Bobpy

The most general method of measuring a
length, e.g., the distance between points ¢ and &
on a body, is to place a “‘standard” measuring
rod alongside the body, and read the positions
of the two points ¢ and b on divisions marked
on this rod. In carrying out this comparison we

ordinarily make the two readings at two different

times, which would be without objection if the
system were stationary. If the measuring rod is
moving past the body, which is the general
case, our observations must be made simui-
taneously. If our clocks at the two points of
observation were unaffected by their separation
this would present no complications. In our pres-
ent problem, however, two clocks set alike at a
differ when moved apart, and it becomes at
once necessary to find what is the absolute time
interval between measurements made ‘“‘simul-
taneously” as indicated by our clocks.

Let the observing platform be moving with the
velocity v. The velocity of light ¢, we shall assume
to be obtainable to any desired degree of ap-
proximation, by a procedure which will be
made clear in the sequel. Now assume our clock
moved from ¢ to b with the absolute velocity
v+W. The true time [time in our framework
with our unvarying clocks] T, which it takes to
move between ¢ and b is given by the relation

(0+W)T=L,(1—4*/c*)4T,

from which

T=L,(1-v*/)/W )

where L, is the distance a& when the body is
stationary, as measured by an unvarying meas-
uring rod. Now the time as indicated by the
clock on reaching b will be:

2}
62
L=/ W)y
B W Ll_ g ] @

Meanwhile the clock at ¢ will indicate, at the
same instant,
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1

v\} L,(1—v2/cDHi 72\ §
T.,=:r(1__ =_(#(1__) 3)
(] w c?

and there will be, after the clock, moved to
b, has come to rest and resumed its rate of
vo(1—22/¢®)?¥ (or a clock at b has been set at the
indication of the moved clock as it passes) a
difference of seiting of the clock at b with respect
to that at a

L(l—vz/cz) (v—l—W)2 :
S R

which is the interval between apparently simul-
taneous observations.

An observer at g, making an observation at a
predetermined indicated time actually makes
the observation earlier on his clock by this
difference of settings, and this amount earlier, to
be reduced to true time, is to be increased in the
ratio 1/(1—v?/c?)%, since his clock runs slow in
the ratio (1—12/c?)? : 1. The true time elapsed
between the apparently simultaneous observa-
tions at @ and & is therefore

AT =L /W1 ~w/c)— (1— @+ W)/, (5)

Let us now take a standard measuring rod,
longer than the distance @b, which has been
marked off in equal divisions, while stationary.
Let the rod be moved past ab at an absolute
velocity v+ Y. The length of rod intercepted by
ab is then

L;=L,(1—%/c)— VAT

or

Ls 1—22/c:i— (Y (1_2 ¥
/L s N

which since the moving rod is contracted in the
ratio (1 —(»+¥)2/c?)? : 1, will be read as

(R
(e
(-7

We next express the absolute velocities ¥ and W
of measuring rod and clock in terms of observable

()
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quantities, namely, their velocities as evaluated
by divisions on the rod passing an observer
on a clock per unit of time by the clock. In the
case of the rod we imagine an observer at a,
counting divisions against the ‘‘ticks” of his
clock, whose rate is slow on the proportion
(1—22/c%)* : 1. The rod being contracted in the
ratio (1—(v+Y)?/c®)? : 1, its observed wvelocity
Yo iS
Y

Yo = 1
(1 =~v/DH(1 — o+ T)?/c)!
Yo(l —22/c2)

Yo/c2+(1+ V/c?)t

®

9)

from which Y=

For the moving clock, whose velocity relative
to the body is W, we imagine an observer, on the
clock, noting the time necessary for the light
path ab, which he takes as his unit of length,
to be traversed.? He thus observes his velocity
increased over his true velocity, inversely as the

YVo(1—22/c%)
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length assumed by ab in motion, and inversely
as his own clock rate, or

w
W0= y
(1 =22/ — @+ W)*/ )}
W0(1 —? / Cz)
Wov/cz-{—(l—{—Wo’/cz)%-
We now have all the factors necessary to find
the observed traversed distances and times of
transit of light signals passing between the

points ¢ and b on a body moving with absolute
velocity v.

(10)

from which W= (11)

4. LicaT SIiGNALS ON A SINGLE MoviNG Bopy

Consider first the apparent distance traversed
by a light signal going from ¢ to b, on the body
moving with the uniform velocity ». This is the
distance L;’ above. Substituting in it our values
for W and Y in terms of the velocities as ob-
served, W, and Y,, we get

1

L W7/ )2]
(v " W/ (1 Wt /e |

Yoo/ (14 Yo?/c2)}
(1—v2/?)t— w/c¢+(1+Yo*/c*) (1—2?/c)i—31— :
Wo(l—22/c%) i 2 j
) W/ 41+ We2/cP)} ‘ 12
o Yol—w/ed)  \*]!
Y/t (14 Vot )}
1+

The solution of this equation! is

L!=L[(1+ Y/}
+(Yo/Wo)(1 — A+ Wt/ ] (13)

On inspecting this result we note at once the
significant fact that it is independent of v; the
read value of the distance traversed by the light
signal is a function of the stationary value L, of

4 If the observer is called upon to insure that the clock
is moving with uniform velocity with respect to the body
(which is moving uniformly by assumption) he must watch
the passage of uniformly spaced divisions past the clock.
These divisions can be those on our standard measuring
rod whose uniform velocity with respect to the body (which
might be zero) can be assured by independent observation,
with the clock held stationary on the body. This procedure
avoids any commitment as to the methods of length meas-
urement on the moving body.

c?

the distance ab, of the velocity of light ¢, and the
measured velocities of rods and clocks, obtained
in the manner described. Further, on expanding
(14-We/c?)t we get

Li{=L,[(14+ Y/ Y Wo/2¢¥], (14)
which for Y,=0 gives
L/=L,. (15)

Consider next the observed time of transit of the
light signal. The true time is
L1 —2?/c?)t

t—T
c—v

(16)

which will be read by any stationary clock on the
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body as
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¢
c—7v

=(L./c)(1+2/c). (17)

Now the clock at b is set back, due to its journey from a by the quantity given above (4). Sub-
stituting in this W,, the observed value of W, we get

La(l _7’2/62)a
Wo(l—2%/c®) . (

L v
Tl,='—<1 +“') -
¢ c
W/ (1+Wo/c?)?

The solution of this? is

¢ =

2 %

( Woll —22/c?) )
v+
WDU/62+ (1 + VV()Z/CQ)é

3
——) —\1- p (18)
L1+Wo/c—(1+Wo2/c?)?
T/ [ ] (19)
WQ/C

[4

Inspecting this we note once more that our value is independent of v as long as we keep the observed
velocities of rods and clocks constant. (The absolute values to meet these conditions of course vary
with every value of ».) Further, on expanding (1+W?/c?)}, we find, if W, is small

T/ =(L./)(1—Wy/2c),

(20)

so that for infinitesimal velocities of the clock, the read time approaches L,/c.
Next consider the velocity of light as measured by sending a light signal between two points on a
moving body such as the earth. The observed or measured value will be

Lf Ly LU+ Y/ Yo/ Wo(l— (L+ Wet/e)h)] @1
T! LJe 14+ Wo/c—(1+W/ )}
[ Wo/c ]
=c8/T=0Cn, (22)

using £ and 7 for the measured quantities in
brackets and ¢, for the velocity of light measured
with transported rods and clocks, which is
different from ¢, our fundamental constant,
Since £ and 7 are functions of ¢, it will be
possible to express ¢ entirely in time of measured
velocities of clocks, rods and light. From the
preceding work it follows that for Y,=0, the
volue c is approximated as the velocity of the rods
and clocks is indefinitely reduced.

A further observation on the absolute velocity
of light, which we promised above would be
shown to be a determinable quantity. From the
foregoing discussion it follows that the value ¢
can be obtained to any desired degree of ap-
proximation, by sending a light signal to a
point on a moving body, whose distance is ob-
tained by the use of measuring rods, and deter-

& See Appendix. I am indebted to Mr. T. C. Fry for the
formal solutions,

mining its time of arrival by a clock carried to
that point, provided the rods and clocks used
are moved at negligible velocities with respect
to the moving body. The method used in all
practical determinations of the velocity of light
meets these requirements. The distance is
measured by laying rods end to end, each rod
being stationary on the body when the measure-
ment is recorded; the time is measured by a
clock stationary on the body, by virtue of the
invariable procedure of sending the light signal
to a mirror and back to the origin,

5. LIGHT SIGNALS ON SEVERAL MoviNG BoDIES

We now investigate the measured values of
time and distance for a light signal traversing
several moving bodies simultaneously. In Fig. 1,
let By, B;, B, etc. represent the several bodies in
motion, By being the luminiferous ether, By, B,
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b = — - me - — - - =~ - —»1
Boig B
e -1~ e il Siadadateas
+ v
B a; by !
<————V2t—-—>1<——-—d2————"
L -V
82 & 5 2
L} [l
' 1
' '
<— - = = Wt - = = = >te-dp -
8 } 3
n Qp bn n
Fic. 1.

etc., being considered for purposes of visualiza-
tion as moving bands all in immediate contact
with each other, and with the light source
positioned at a. Under these conditions, the
light signal when emitted can be instanteously
and simultaneously impressed, say upon a
photosensitive surface, upon each moving band;
and when received, as by a photoelectric cell at b,
its reception may be instantaneously and simul-
taneously recorded on each moving band.

Let the distance traversed by the light signal
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in the ether (B,) be designated as d, and let
di1, d,, etc., be the distances between the initial
and final traces of the light signals (b1—ay,
bs—a,s) on the several moving bands. Let the
time of transit of the light signal from o to b be

t=dfc. (23)

Then the exact physical statement of the event
on each band is

di=d(1—uv/c),
de=d(1—w/c), (24)
dn=d(1—v,/c).
Now the trace d(1—w:/c) on the band moving
with the wvelocity v would, if the band were
stopped, taking the value of the contraction as-
(1—v:2/c®)? in the direction of motion, assume
the value
a1 —n/d)

(1—v2/ct)d

Now this is merely the L, of our previous section.
Therefore, to get the measured values, using our
moved rods and clocks we have

(25)

d(1—v1/c)
dy =————— [ (A + Y/ D (Yo/Wo) {1 -1+ W /PP ],
(1—o.?/ct)}
d(1—2/c)
dy =——————[(1+Y&/®)i+(Yo/Wo) {1 - (1+We/cP)} ], (26)
(1—wg?/c?)?
d(1—v,/c)
dy) =————[ (14 Y/ (Yo/ Wo) {1 — (1 -+ W/} ]

T (—v/e)

These are different for each moving band.

Also from the previous section we have that the observed time of transitis L,/c- 7, so that we have

d (1—w/c) [1+Wo/c— 1+ W/

1

T —vr/)l

Wo/c ]

B t(1—vi/c) f1+Wo/c— (1+W02/62)j

C(—v/e)L

t(1—va/c) [1+Wo/c— (1 +We/*)iT

o/ - @27

tz - N
(1 —'2}22/62)f_

Wo/C .

n

T (—v2/e)il

These values are different for each band.

,_ KL=0/) [ L4 Wofe— (14 Wit /)1

WQ/C
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The observed velocity of light on each band, provided we have adhered to the same observed manipu-

lations of rods and clocks is

di' di di) [(A+Y?/ e (Yo/Wo) {1 —(1+We2/c)H] (28)
—=——= ==
TP S [1+Wo/c—(1+W02/62)*

W(}/C ]

which for zero rod velocity and small clock velocity, approximates c.
An observation which is obvious is that our Eqgs. (26), (27) for the case of infinitesimal velocities
of rods and clocks are (for the direction of motion, which has alone been presented) the well-known

Lorentz transformations,® for

which is expressed by Lorentz as

and

which is expressed by Lorentz as
t—uvx/c
fom e,
(1—v?/c)?

which he calls ““local time.” Since alt the clocks
(Fig. 1) are recording an event (arrival of the

' d(l-—vl/c) _ d—ﬂl(d/C) _ d—'[))f 29
Lm0/t (1—0/) (1—v/) (29)
, x—ub
T >
t(l—vi/c)  t—(v1/c)t t—v.d/c?
1= = = ) (31)
(I—v?/c)t (1—v?/c?) (1—v2/3)
o
dy d(l—’uz/c)l.l—vl?/c2
(32)
from which
(va—w1)
gy =y | — LD (34)

light signal) at the same place, at the same time,
each giving a different value, the term “local
time'’ is somewhat of a misnomer for the array
of indications possible. ‘‘Clock readings” is a
more accurately descriptive term.

We now develop an interesting consequence of
the contractions we have assumed as the basis
of our discussion, namely, that all the phenomena
of measurement of light paths and times of
transit may be expressed entirely in terms of the
measured velocities of the bodies and of light.

Let us take any pair of read distances, such as
d,’ and d.’ and solve for one in terms of the other.

¢ In the procedure used to obtain the Lorentz transfor-
mations by starting with the postulate that the velocity of
light is always ¢, is the concealed restriction that all clocks
and rods are to be manipulated at infinitesimal speeds. The
final results are subject to this same restriction, which when
recognized leads to such dicta as ‘‘clocks must be excluded
from time measurement,” and that the times recorded by
a clock are “‘incorrect.” In view of the role played in both
macroscopic and atomic physics (e.g., spectroscopy) by

rods and clocks, no system which throttles them can be
physically satisfactory.

with similar expressions for the measured times.

We note that this equation is similar in form
to the expressions from which it is derived, the
quantity (ve—v,)/(1—vv:/c?) taking the place of
v; and v,. Now v,—w; is an absolute difference of
velocities, which suggests that we investigate the
corresponding term for observed or measured
differences of velocity.

Consider a point on a uniformly moving body
of absolute velocity wv,, which is passing our
observation platform moving at the velocity vy,
with the difference of velocity va—w;. Now the
absolute distance between two marks g, b, on
our body is L,(1—92/c*)? so that the true time
for the transit of the moving point from ¢ to b is

La(l _vz/cz)%/(v2—vl)1 ) (35)
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which will be read by a clock on the body moving at velocity v;, as

L(1—2/c%) /(va~11).

(36)

Now from this is to be subtracted the change in clock setting due to the transport of the clock

from a to b, giving

L{(1—22/c%) L,(1—2*/c*)} 22\ } v+ W)\ }
p O (-2)- (-2 -
Vo—7; 5% c? Vo
Substituting W, from (11) and solving we get
L,(1—vws/c®) L. W\ }
T'= AL [1—(1+-—°—) ] (38)
Va— 01 CW()L c2
from which, putting v, for the observed velocity difference,
= L (39)
Vg === , 39
= T 1—vw/c2 1 r ' W\
]
Vo—U1 cWol_ c?
.« V2 —71 Va_1
giving (40)

If now we substitute this value for (v,—v1)/
(1—2w,/c?) in the relation beween 4’ and 4,
and also substitute for ¢ its value in terms of ¢,
we finally have the relation beween the meas-
ured values d,' and d, entirely in terms of the
observed velocities of rods, clocks, and Iight. There-
fore, as long as we perform our measurements on
the distances and times of transit of light signals,
with rods and clocks which we move at the same
measured velocities, we can give a complete
description without reference to our absolute
framework.
Returning to the expression

(7)2—‘111)/(1 ""01‘1)2/62),
note that for W, =0 this becomes simply

Ve — V1

(41)

— = V2.1.
1—0w/¢*

Inserting this in the expression for dy’ in terms of
d\ we get
dll(l - 112_1/6)

C T (U= (nar/e)

Since ¢ is also the measured value of the velocity
of light for Wy =0, Y,=0, we see that we have
for this case an expression exactly similar in form
to the original expressions (26)

(42

1 —v1v2/62= 1~ v a[1 = (L+Wet/eD)t]

B d(1—v/c)
C -/

in terms of absolute velocities and with rods and
clocks moved infinitely slowly. It is probable
that the expressions for d»’ in terms of d, for
finite values of W, and ¥, would take similar
forms after the performance of the proper
transformations.

6. SUMMARY OF RESULTS

The postulates used in this discussion may be
arranged and listed as follows:

A postulate covering the velocity of light and
its measurement

1. The velocity of light in the luminiferous
ether, when measured by light signals between
two points at rest in the ether, by clocks and
rods unaffected by transport, is a constant c.

A postulate covering the behavior of material
rods and clocks

1I. The lengths of material rods (in the direc-
tion of motion) and the frequencies of material
clocks, are reduced by the factor (1—u?/c?)},
where v is the velocity of the rod or clock, and
¢ the velocity of light, measured as in L.
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By the use of these postulates we conclude
that

II1. Measurements of light signals made on
single moving bodies yield results which can be
expressed entirely in terms of the measured
velocities of rods, clocks, and light, and are
identical whatever the velocities of the moving
bodies, so long as the same measured velocities
of rods and clocks are adhered to.

Using IIT in conjunction with I and II we
find expressions for light signals traversing
several moving bodies.” Principal conclusions are:

(1) Measured distances and times of transit
of identical light signals are different for each
moving body.

(2) The velocity of light measures the same
on each body, the actual value being a function
of the observed velocities of the measuring rods
and clocks used, which approximates ¢ as those
velocities become small compared to the velocity
of light,

(3) The expressions found approximate to the
Lorentz transformations as the velocities of rods
and clocks become small compared to the
velocity of light.

7. ARGUMENTS FOR THE FRAMEWORK AND
MEASURING METHODS

In the treatment of light signals on moving
bodies here presented we have assumed the
existence of a luminiferous ether, and have used
throughout the conception of true or absolute
time, such as could be established if clocks could
be moved from place to place through the ether
without being affected by their transport. Both
these are conceptions which it has become
common to deny as necessary, in view of the
possible elimination of all terms representing
these quantities in the final equations which we
have been able to derive, in which occur only
quantities determined by measurements in-
volving the moving bodies. I give now some
considerations which I think, support these

7 It is possible, by assuming I and 111, to derive II, by
imagining light signals, sent over a to and fro path, to take
an invariant measured time, and by requiring that the
measured distance and time at the far point shall be in-
variant whatever the velocities of the rods and clocks used
in measurement, Both this line of attack (assumption of
invariance), and that followed in the paper (assumption
as to behavior of material rods and clocks) requires I,
which is thus characterized as the fundamental assumption
in the treatment of light signals.
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conceptions in spite of the common argument
against their necessity.

In the case of the time factor the objection is
commonly stated in terms of the idea of simul-
taneity at separated points. If this cannot be
determined, it is argued that it has ‘“no mean-
ing.” Now the distinction which must be made
here is between nonexistence and indeterminacy.
It is now well recognized in other departments of
physics that phenomena which are altered by
the process of measurement become as a con-
sequence indeterminate. In the case of simul-
taneity we have seen that the transport of a
clock to a distant point is such a function of the
velocity that it prevents the velocity being
known. This in turn prevents the correlation of
the clock indications at the two points. The
existence of true simultaneity is however easily
established by the following observation :

Consider three clocks 4, B and B’, all having
the same rates when together, and let B and B’
be moved to a distant point on the common
moving platform. Send a series of equidistant
pulses from B to 4, and let A be set to be syn-
chronous with the pulses it receives. Then let the
pulses sent from 4 be used to set B’. We will
then have B and B’ going at the same rate, but
with a difference of phase. Let us now set up a
number of other clocks at B, B’ all of the same
rate, but at phases between B and B’. Now by
taking a sufficiency of these clocks, one will be
beating simultaneously with A, irrespective of
the fact that we cannot determine which it is,
within the limits set by B and B’, which give a
measure of the indeterminacy.

Einstein offers as a substitute for this inde-
terminacy the proposal to define simultaneity as
given by half the time taken for a to and fro
light signal. This of course will agree with the
simultaneity above discussed only if the system
is stationary in the light transmitting medium.
It corresponds to “local time” when clocks and
rods are moved infinitely slowly. As already
pointed out this involves us in the predicament
that parallel light signals traversing several
bodies are, when their arrival at a terminal
point is recorded on each moving body, reported
as arriving at a different time on each body,
although constituting a single event at o single
place,—simultaneity by the most rigid criterion.



LIGHT SIGNALS ON MOVING BODIES

The definition of simultaneity proposed by
Einstein is violated immediately clocks moving
at finite velocities on the bodies are used to
establish ‘“local” times. The time of arrival of a
light signal at a distant point is then a function
of the clock speed, given by (27) which is no
longer half the interval recorded by a clock at
the origin for a to and fro signal. These various
differing measures of the time of arrival of a
light signal at a distant point are simply mani-
festations of the dependence of our results on the
characteristics of the tools of measurement
used. They none of them give us the simultaneity
above discussed, which could be found only with
clocks and rods unaffected by motion, which
have been here taken as the basis for discussing
material clocks and rods which are affected.

We are saved from any praciical difficulties in
connection with distant synchronization by the
extremely low speeds at which clocks and rods
can be moved.

Turning next to the question of the ether, we
admit at once its elusiveness by any measure-
ments of the sort we have been considering
(based on the value #==0 in the contraction
expressions), for the result of the length and
clock rate contractions is to make these measure-
ments invariant with v, the velocity of the system
with respect to the ether. Referring however to a
preceding paper,! it was there stressed that an
uncompensated difference in the character of the
light signal for different velocities of the system
remained, namely the direction of the pulse or
wave front, which enters or leaves the inter-
ferometer at the aberration angle. This is a
different characteristic of the light from the
measurements of distances and times of transit
to which we have directed attention here, and it
is in this directional factor that we have the
strongest evidence for the existence of the
luminiferous ether.

This evidence we get from the aberration of
light from the stars. The earth swims in a sea of
radiant energy, resolvable into a pattern of wave
fronts maintaining over long periods substantial
constancy of relation in direction to each other,
In the course of a year this pattern of radiant
energy experiences, as o whole, a to and fro
oscillation of direction. The interpretation of
Bradley, that it is the earth which is moving in
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an orbit, through the substantially unchanging
pattern of light waves, is as compelling today as
ever. The alternative, that this entire energy
pattern, together with the stellar universe with
which it is associated (either immovably or with
a steady state of drift, which alternative being
indeterminate) oscillates back and forth yearly,
is improbable in the ratio of the number of stars
to the number of the observing platforms, namely
one. The evidence is thus not metric, but by
sheer weight of enormous probability. It is the
same evidence that leads us to accept the
Copernican as against the Ptolemaic system.®

It must not be forgotten in the discussion of
this subject that the Michelson-Morley experi-
ment, which is the original and crucial problem,
only demands invariance of light signals with
the velocity of the moving platform of measure-
ment on the premise that the earth is moving,~-
there is no other motion involved in the experi-
ment. If this is not agreed to then the null result
proves nothing with regard to invariance, and
the whole discussion is futile. Now the annual
motion of the earth (which is the motion it is
sought to detect in the Michelson-Morley experi-
ment) we deduce from the energy pattern
reaching us from outer space, in other words we
observe that the earth moves with respect to this
energy pattern. The Michelson-Morley experi-
ment is performed on the assumption that a light
signal initiated in the apparatus becomes a part
of this energy pattern with respect to which the
earth moves. The alternative would be that the
signal partakes of the velocity of the source,
which again would nullify the whole discussion.
Calling upon the Michelson-Morley experiment
as proof of the invariance of light signal phe-
nomena therefore carries with it the acceptance
of the luminiferous ether here assumed.

8 The relativity treatments of stellar aberration all start
with a “‘wave front” from a star, thus of necessity recog-
nizing the pattern of radiant energy here considered as a
manifestation of the ether. The common relativity treat-
ment of aberration concerns itself with a broad section of
a wave front, and shows that, due to the ‘‘local” time
difference at points along the receiving surface the wave
front will always be interpreted as being normal to the
direction of propagation of the wave front section as a
whole, with respect to the earth. This does not touch the
question of the cause of the direction taken by the wave
section or ray, and is incidentally not the case of a star
image formed by a telescope. The second-order term in the
““relativity”’ expression for aberration follows at once along
the lines here followed, from the contraction of the measur-
ing plane in the moving telescope.
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8. CONCLUSION
In conclusion I wish to emphasize the three
factors of this treatment which I believe to be
most important. First, is the exact specification
of the framework, and the characteristics of the
tools of measurement and their use. Second, is
the choice of the length and frequency contrac-
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tions as the basic phenomena in the behavior of
moving bodies. Third, is the admission of
velocities of the measuring instruments other
than infinitesimal, with the consequent recogni-
tion that the measured velocity of light is a
function of the measuring conditions, and can
have other values than the constant c.

APPENDIX

Solutions of equations involving W, W, ¥ and ¥,

(1) Wand Y in terms of Wy and Y.

Let v/e=x, W/c=2 Wic=ec.

z
a= ’
(=)l — (x+2)3)?
#/at=(1—x?)(1—[x+2]%)
=(1=a?) (1 —x2—2xz—2%),

(10) is then

[ 1+a2(1 —x2) ]+ 2zxa2(l —a?) — a2(1 —a2)2 =0,
_ —xc(1 —2%) = [P (1 — 272+ a?(1 — )1 +a2(1 ~2H) ]}

1a2(l—x7)
a{l =) —xat(1+a*)t]

T (14t —xa) (1 +a)i+aa)’

: e a(l—a%)
taking the positive sign = et (et
_T/I_{_ Wo/c(1 —22/c%)

¢ Wa/a+(1+Wa/ah

or

The same method of solution gives a similar expression for ¥ in terms of Y.

(2) Solution of L

_ LA —o¥/e)i— (F/ WA =2/ — (1 — (v+ W)*/)¥])

(1= (- Y)?/e)}

adding the symbols y for ¥/c and 8 for Yo/c we have

Ly

Now (1 =)

_ Ll —x— (y/a) {1~ — (1 — (x+2))H} ]
A= (xt+y)h?
_atx(l+a?)t

xtz=x+
(1 —am)}

xo+t (1+a?)t
(1—-x2)}

xB+ (1469}

from which

(1= (xt2))i=

and

(= (+y)=

xat+(1+a)t xat+(1+a?)i’

s Ll =) —y/2{(1 —a)}— (1 — 28}/ (wat (I +eD)}) ]

so that L;

[ B(1—x)

3
I AN (ED)

(1 =228/ (x8+) 1 +6%)1)

a(l—x?%)

L g+ (1 +a2)}

l: —xa+(1+a’)5]

(xB8+(1+81Y)

=LA+ + B/a) (1~ (142D ]
or Ly’ =LL(1+ ¥ /)i (Yo/ Wo) {1 — (1 + W/} 1.

(3) Solution of

Ty = Lo/c(1 +v/c)— L/ W(1 =02/ [(1 —22/e)— (1 — (x+ W)2/e)].
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Making the substitutions indicated in (1) and (2)

7y =221 )~ EL L = (= e8]

L, L 1—2)—(1—a®)i(1— 2)}
Ly gy tr Qo) =A== b))
¢ c z
— )}
putting (1— (x+z)2)%=~—(—1-—f—)—— as above found, and substituting for z its value in terms of «
xot-(14-a)?

PP

2)4

To =B sy — L,y | 22T

¢ a(l—x?)
wa+ (1 +a?)t

=é[a+1—(1+a2)9]
c a

_ g_,[Wo/c+1 - <1+Wo2/cz)*] _
T Wo/c




