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The conviction that relativistic simultaneity has a conventional nature is shared by many authors, but it 

will be shown that simultaneity exists in the physical reality and therefore cannot be conventional. If the 
coefficient - we call it 1e  - of the space variable x in the Lorentz, or other, transformation of time had a 

conventional nature it should be possible to modify it without touching the empirical predictions of the theory: 
this expectation can be called Reichenbach-Jammer conjecture (“RJ conjecture”). Given that Einstein’s principle 
of relativity leads necessarily to the Lorentz transformations, and thus also to a fixed nonzero value of 1e , the 

modification would imply a reformulation of the relativistic idea itself. With respect to the idealized 
expectation, based on the RJ conjecture, the concrete development of physics produces some exciting novelties. 
Several phenomena, in particular those taking place in accelerating frames (Sagnac effect, and all that), 
converge in a strong indication of 1 0e  . This implies absolute simultaneity and a new type of space and time 

transformations, which we call "inertial". We give eight proofs of absolute simultaneity, deduced from 
essentially independent normally accepted premises. 

 

1. From General to Equivalent Transformations 
In 1977 Mansouri and Sexl [1] stressed that the Lorentz 

transformations contain a conventional term, the coefficient of 
the coordinate x in the transformation of time. Starting in 1994 
the transformations of the space and time variables between 
inertial systems were reformulated [2] under very general 
assumptions. New transformations were obtained containing an 
indeterminate term, 1e , the coefficient of x in the transformation 

of time: see Eqs (3) below. 
Given the inertial frames oS  and S  one can set up Cartesian 

coordinates and make the following standard assumptions: 

i. Space is homogeneous and isotropic and time 
homogeneous, at least from the point of view of observers at 
rest in oS . 

ii. Relative to the isotropic system oS  the velocity of light is 

“ c ” in all directions, so that clocks can be synchronized in 

oS  with the Einstein method and one way velocities relative 

to oS  can be measured. 

iii. The origin of S , observed from oS , moves with velocity 

v c  parallel to the 0x  axis, that is according to the 

equation  0 0x v t . 

iv. The axes of S  and oS  coincide for 0 0t t  . 

The geometrical configuration is thus the usual one of the 
Lorentz transformations. Assumptions (i) and (ii) are not 
exposed to objections both from the point of view of the TSR and 
of any plausible theory based on a privileged system; for the TSR 
they hold in all inertial systems, in the second case they hold in 
the privileged system only. 

One can show that (i) - (iv) imply transformation from oS  to 

S of the form 
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where the factors 1 2 1 4,  ,  ,  f g e e  can depend on the velocity v of 

S measured in oS . 

In deducing (1) an extensive use is made of the space and 
time homogeneity conditions: see the paper by Lévy-Leblond [3]. 
This does not mean, however, that the Lorentz transformations 
satisfy “fully“ the homogeneity conditions. In fact they do not. 
Lévy-Leblond arrives at the transformations (in differential 
form): 

 
( ) ( )

( )  ( )
dx H a dx K a dt
dt L a dt M a dx

  
  

 

where the presence of the diagonal coefficients ( ),   ( )H a L a  is 

easy to justify physically: ( ) 0H a  , because two events seen 

from S  to have different position ( 0dx  ) at the same time 
( 0dt  ) must be seen also from S in different positions 

 0dx  ; ( ) 0L a  , because two events seen from S  in the same 

position  0dx   at different times ( 0)dt   in general must be 

seen also from S  at different times ( 0)dt  ; also the presence of 

( )K a  is no mystery. One has ( ) 0K a  , because two events seen 

from S  in the same position  0dx   at different times ( 0)dt   

must be seen from S in different positions x . This is like saying 
that a particle at rest in S  must be seen in motion relative to S . 

No justification of the same quality can be found for ( ) 0M a  . 

One can say, of course, that ( ) 0M a   makes it possible that two 

events seen from S  to have different position ( 0dx  ) at the 
same time ( 0dt  ) can be seen from S to be at different times 
( 0)dt  . It is a standard relativistic conclusion but one cannot 

see any direct physical justification.  For sure it violates the 
standard formulation of the homogeneity of space. 
Homogeneous means “equal in all parts.” How can one make 
time depend on a variable specifying in which part one is of a 
medium equal in all parts? Such a medium would not be 
homogeneous, because its different parts would have different 
effects on time. 

We add two assumptions based on solid empirical evidence: 
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v. The two way speed of light is the same in all directions and 
in all inertial frames: 

 2( )  c c   

vi. Clock retardation takes place with the factor R calculated 
with respect to oS : 

 2 2  1  /R v c   (2) 

It should be stressed that the TSR satisfies all these 
assumptions. The two famous postulates of the TSR (relativity 
principle and invariance of light velocity) are here replaced by 
the much weaker assumptions (v) and (vi). 

A seventh assumption, often implicit, is Einstein’s 
“acceleration hypothesis”. Taking the example of the rotating 
platform, in every point of it one can imagine a co-moving 
inertial frame. A statement correct in the latter frame must be 
correct also locally with respect to the co-moving rotating 
platform: this is the acceleration hypothesis. Thus we see that, 
according to the TSR and respecting the isotropy of space, in 
every point of the rim the velocity of light relative to the disc is c 
both clockwise and counterclockwise, independently of disk 
rotation. Therefore two light pulses moving in opposite 
directions need the same time to complete the tour and the 
Sagnac effect goes to zero, contrary to empirical evidence. 

The first six assumptions determine the transformations of 
the space and time variables from oS  to S  to have the form of 

the “Equivalent  Transformations” [4] (ET) 
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Reichenbach [5] and Jammer [6] essentially believed that the 
parameter 1e is free and can be fixed conventionally by 

synchronizing clocks in S . We will see, however, that far from 
being free 1e  must be zero. The one way velocity of light 

deduced from the ET is given by [4]: 

 
1

1 1 cos
  

( )c c



 

  (4) 

where   is the angle between light propagation direction in 
S and absolute velocity of S . The parameter is given by: 

  1    
v

c e R
c

    (5) 

Of course in the TSR one must have the one way speed of 
light equal to c, which is the same as 0  , whence one gets the 
parameter 1e  in the relativistic version. 

The Eqs. (3) represent the set of theories “equivalent” to the 
TSR: if 1e is varied different theories are obtained.  According to 

the RJ conjecture they should be equivalent for the explanation of 
experimental results. 

2. The Sagnac Effect 

Almost a century after the 1913 discovery of the Sagnac effect 
[7] no satisfactory derivation of it exists based on special 
relativity and/or general relativity [8].  In the 1913 Sagnac 
experiment a platform rotated uniformly at a rate of 1-2 rot/sec. 

In an interferometer mounted on the platform, two interfering 
light beams, reflected by mirrors, propagated in opposite 
directions along a closed horizontal circuit. The rotating system 
included also the luminous source and a photographic plate 
recording the interference fringes. Sagnac observed a shift of the 
interference fringes every time rotation was modified. This shift 
depends on the relative time delay t , object of our calculations, 
with which the two localized light pulses reach the detector. 

Most textbooks deduce the Sagnac formula in the laboratory, 
but say nothing about an observer on the rotating platform. We 
will see that special relativity predicts a null effect on the 
platform, but a nonzero value if the platform rotation is studied 
from the laboratory. Many other theories predict similarly wrong 
results. Only the theory with 1 0 e  gives a consistent answer. 

Consider a clock, marking time t, fixed in a point of the 
moving inertial system S . Seen from oS  it satisfies the eq. of 

motion 0 0 0x vt x  , where 0x  gives the clock initial position. 

Substituting 0x  into (1) we get 0x x R , representing the fixed 

x of the clock in the frame S , and 0 1 0t Rt e x  . 

Consider two events at different times in the same point of S 
and write the previous equation twice, first with and1 01  t t , 

second with and2 02  t t . By subtracting side by side and defining 

2 1t t t    and 0 02 01t t t    we get 

 0     t R t  (6) 

Eq. (6) is predicted by all ET theories, including the TSR. Eq. 
(6) is taken to hold also for a clock on the rim of a disk rotating 
with velocity v  by virtue of the “acceleration hypothesis”. There 
is excellent experimental evidence that this assumption is correct, 
e.g. with the CERN muons [9]. 

We are interested in the application of (4) to the Sagnac 
situation. Consider a light source  , placed on the disk, emitting 
two pulses of light in opposite directions. The description given 
by the laboratory observers is the following:  two light flashes 
leave   at time 0 0t . The first one propagates on a 

circumference, in the sense discordant from the platform 
rotation, and comes back to   at time 01t  after circling around 

the platform. The second flash propagates on the same 
circumference, in the sense concordant with the platform 
rotation, and comes back to   at time 02t  after circling around 

the platform. The circular path can be obtained by forcing light to 
propagate tangentially to the internal surface of a cylindrical 
mirror. 

 For simplicity we assume that the laboratory is at rest in the 
privileged frame. Pulse propagating in the direction opposite to 
rotation: the disk circumference length 0L  closes with velocity 

  c v .  Then 

 0
01   

  
L

t
c v




 

Pulse propagating in the rotational direction: the disk 
circumference length 0L  closes with velocity   c v .  Then 

 0
02   

  
L

t
c v


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0 02 01 2 2

2
      

L v
t t t

c R
     (7) 
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This is essentially the Sagnac formula, in good agreement 
with the experiments. 

On the disk, for the ideal experiment we are considering, only 
cases of light parallel ( 0  ) and antiparallel (  ) to the local 
absolute velocity must be studied. Then, the velocity of light has 
to satisfy (4) and is respectively given by 

 
1 1

1 1  1 1  
    ;       

(0) ( )c c c c
   

   

These formulae represent a second application of the 
acceleration hypothesis: in all ET theories the velocity of light is 
given by (4) independently of the acceleration of the frame. If the 
circumference length measured on the disk is L we have 

 1 2
1 1

    ;     
(0) ( )
L L

t t
c c 

   

Therefore 2 1
2  

      
L

t t t
c


     (8) 

This result, unlike (6) and (7), depends on   and then on 1e . 

This is the reason why requiring the consistency of the equations 
(6) – (7) – (8) gives the right value of 1e . 

Now we require that 0t  and t  describe the same 

phenomenon. It is obvious that 0L  and L  are related by Lorentz 

contraction: 
 0   L LR  (9) 

In words: the circumference length of the rotating platform, 
measured in the laboratory, equals the (uncontracted) 
circumference length measured on the platform, times the 
Lorentz factor. 

In comparing 0t  and t  one must take into account the 

laboratory/disk connection established with (6). By taking the 
ratio (8)/(7) one gets 

 
2 2

0

2  
    

2
L c R

R
c L v


  (10) 

or, if (9) is applied 

 11                     0
c

e
v

     

This is the result we had anticipated: only absolute simultaneity 
allows one to understand the Sagnac effect. 

3. “Sagnac Correction” near the Earth Surface 

Two international committees (CCDS and CCIR) in 1980 
suggested rules - later universally adopted - for synchronizing 
clocks in different points of the globe. Two are the methods used. 
The first one is to transport a clock from one site to another and 
to regulate clocks at rest in the second site with the time reading 
of the transported clock. The second method is to send an 
electromagnetic signal informing the second site of the time 
reading in the first site. The rules of the committees establish that 
three corrections should be applied before comparing clock 
readings: 

1. the first correction (velocity effect) is proportional to 
2 2/ 2v c , where v  is the velocity of the airplane, and 

corresponds to a slower timing of the transported clock; 

2. the second correction (gravitational effect) is proportional 
to 2( ) /g h c  where g  is the total acceleration 

(gravitational and centrifugal) at sea level at latitude   
and h  is the height over sea level. It corresponds to a 
faster timing of the transported clock;  

3. the “Sagnac correction” is assumed proportional 
to 22 /EA c , where EA  is the equatorial projection of the 

area enclosed by the path of travel of the clock (or of the 
em signal) and the lines connecting the two clock sites to 
the centre of the Earth;   is the Earth angular velocity. 

There are no doubts about nature and need of the first two 
corrections, but the justification of the third one is unconvincing. 
Kelly’s opinion [10] is that the only possible reason to include the 
third correction is that the eastward velocity of light relative to 
the Earth is different from the westward. 

In fact one can deduce, for a real experiment, the “Sagnac 
correction” from Eq. (4) applied to a geostationary satellite, for 
which the satellite itself and the Earth surface can be thought to 
be at rest on the same rotating platform. 

Saburi et al. carried out an important experiment in 1976, 
before the CCDS and CCIR deliberations, and made clear that 
“corrections” to the theory were indeed necessary already in the 
title of their paper. [11] They had two atomic clocks, not quite 
synchronous, one in a first station W (near Washington, USA) the 
other one in a second station T (near Tokyo, Japan), practically on 
the same parallel of the two cities. The time difference between 
the two clocks on August 27, 1976 was measured with two 
different methods: 

1. by sending an airplane carrying a third clock (initially 
synchronous with the one in W) from W to T, via Hawaii 
(westward); 

2. by sending an electromagnetic signal, via a geostationary 
satellite, again westward. 

The uncorrected airplane clock found the T clock s9.42   fast 
with respect to the W clock. The velocity correction and the 
gravitational correction together were estimated to be about 

s0.080   (to be subtracted to the time shown by the transported 
clock). By applying such a correction the T-W time difference 
increased to s9.50  . 

The em signal carried with itself the time shown by the clock 
of the transmitting station. Assuming a signal velocity c, it was 
found that the T  clock was s9.11   fast with respect to the W 
clock: the discrepancy between the two measurements was 

s0.39  . 
Let WSL  and STL  be the Washington-satellite and Tokyo-

satellite distances, respectively (see Fig. 1). As most physicists in 
similar experiments, Saburi and coll. synchronized clocks by 
imposing that the velocity of light is c, that is in such a way that 

 /T W WS STt t L L c   , Wt  and Tt  being the times of signal 

departure from W  and arrival in T  as marked by the respective 
clocks. In order to ensure that this formula was correct for their 
clocks they had to apply the so called “Sagnac correction” to the 
clock of the receiving station. 

With their approach Saburi et al. made an error because, as 
we know, the correct velocity of light relative to the rotating 
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Earth is that given by the inertial transformations, which in the 
appropriate directions is 

      
1 cosWS

WS

c
c

 



 ,       

1 cosST
ST

c
c

 



 (11) 

where  /r c   (r = radius of the W-T parallel; w = Earth 
angular  velocity); WS = angle between line WS and local 

velocity (normal to radius OW ); ST  = angle between line TS 

and normal to radius OT  in Fig. 1. Therefore / 2WS W     

and / 2ST T     where W  and T  are the angles ˆOWS  and 

ˆOTS  of Fig. 1, respectively. 
Eq. (11) is not adopted in this experiment. Having imposed 

the impossible condition that the speed of light is c the authors 
had now to apply the mysterious “Sagnac correction” Tt on the 

time of arrival in T . Such a correction, from our point of view, 
can be calculated by replacing c with  and WS STc c  as follows 

         WS WS ST ST
T

WS ST

L L L Lt c cc c
      (12) 

which is positive, as   ,   WS STc c c . 

Using the definition  /r c   one has 

   
2  cos   cos /T WS WS ST STt r L L c       

but    Esin   sin   2 AWS W ST Tr L r L    

where AE is the area of the quadrangle OWSTO of Figure 1. We 
have thus provided a full physical justification of the Sagnac 
correction 22 /EA c . We see that the mystery of the “Sagnac 

correction” of Earth physics disappears with the inertial 
transformations. 

 
Fig. 1.  An electromagnetic signal travels between two 
points W and T on the Earth via a geostationary satellite S. 

4. The Rotating Platform (Again) 

It is well known that no perfectly inertial frame exists because 
of Earth rotation, of orbital motion around the Sun, of Galactic 
rotation. All knowledge about inertial systems has been obtained 
in frames having small but non zero acceleration a . For this 
reason the mathematical limit 0a   in the theory should be 
smooth and no discontinuities should arise between systems 
with small acceleration and inertial systems. This requirement is 
not satisfied by the existing relativistic theory 

Consider an inertial reference system 0S  and assume it is 

isotropic so that the one-way velocity of light relative to 0S  has 

the usual value c in all directions. In relativity the latter 
assumption is true in all inertial frames, while in other theories 
only one frame satisfying it exists. 

In a laboratory there is a circular platform (radius r and center 
constantly at rest in 0S , which rotates uniformly around its axis 

with angular velocity   and peripheral velocity v r . On its 

rim there is a single clock   (marking the time t). We assume it 
to be set as follows: When a clock of the laboratory momentarily 
very near   shows time 0t   then also   is set at time 0 0t  . 

When the platform is not rotating,   constantly shows the same 
time as the nearby laboratory clocks. When it rotates, however, 
motion modifies the pace of   and the relationship between the 
times 0 and t t  is taken to have the general form 

  0    ,  ...t t F v  (13) 

where F is a function of velocity and eventually acceleration and 
higher derivatives of position (not shown). Eq. (13) is a 
consequence of the isotropy of 0S . There are strong experimental 

indications that  ,  ... 1 /F v R , with R  given by (2). This is 

however irrelevant for our present needs as the results obtained 
below hold for all possible F . 

We assume that the clock   acts also as source and as 
detector of light. Two light flashes leave   at time 1t  and are 

forced to move on a circumference, by “sliding” on the internal 
surface of a cylindrical mirror placed at rest on the platform, all 
around it and very near its border. Mirror apart, the light flashes 
propagate in the vacuum. The mirror behaves like a source 
(“virtual”) and a source motion never changes the velocity of the 
emitted light signals. Therefore the motion of the mirror cannot 
modify the velocity of light. Thus, relative to the laboratory, the 
light flashes propagate with the usual velocity c . 

The description of light propagation given by the laboratory 
observers is the following: two light flashes leave   at time 01t . 

The first one propagates on a circumference, in the sense 
discordant from the platform rotation, and meets again at   at 
time 02t  after a full circle around the platform. The second flash 

propagates on the same circumference, in the sense concordant 
with the platform rotation, and meets again at   at time 03t  after 

a full circle around the platform. These laboratory times, all 
relative to events taking place in a fixed point of the platform 
very near  , are related to the corresponding platform times via 

  0    ,  ...i it t F v     ( 1,2,3)i   (14) 

The circumference length is assumed to be 0  and  L L , 

measured in the laboratory 0S  and on the platform, respectively. 

If    0  and c c    are the light velocities, relative to the disk, for 

the flash propagating in the direction of the disk rotation and in 
the opposite direction, respectively, one can show with a few 
elementary steps using the very definition of velocity and (14): 
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From (15) it follows, with   /v c  :  
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Notice that the functions 0, ,F L L  have disappeared in the 

ratio (16). Clearly, Eq. (16) gives us not only the ratio of the two 
global light velocities for full trips around the platform, but the 
ratio of the instantaneous velocities as well. In fact the isotropy of 
the system 0S  ensures, by symmetry, that the instantaneous 

velocities of light are the same in all points of the rim of the 
rotating circular disk whose center is at rest in 0S . There is no 

reason why the light instantaneous velocities relative to the disk 
should not be equal to one another in the different points of the 
rim [12] With reference to Fig. 2 we can therefore write  

 
1 2 1 2
(0)  (0)  ;  ( )  ( )c c c c          

where 1  and 2  are arbitrary values of the angle  . 

Therefore the light instantaneous velocities relative to the 
disk will also coincide with the average velocities 
   0  and c c   , and Eq. (16) will apply also to the ratio of the 

instantaneous velocities [thus we do not need a different symbol 
for the instantaneous velocities]. 

B
A

O

r


 

Fig. 2. By symmetry, the velocity of light relative to the disk 

between two nearby points A and B does not depend on the angle 
  fixing the position of the segment AB on the rim of the disk. 

A small part AB  of the rim of a platform, having peripheral 
velocity v, for a short time is completely equivalent to a small 
part of a "co-moving" inertial reference frame (endowed with the 
same velocity). For all practical purposes the segment AB  will 
belong to that inertial reference frame. But the velocities of light 
in the two directions AB  and BA  have to satisfy (16). It follows 
that the one way velocity of light relative to the co-moving 
inertial frame cannot be c and must instead satisfy 

 
  1

  1

( ) 1
  

(0) 1
c
c

 






 (17) 

The ET (of which the IT are a particular case) predict the 
inverse one way velocity of light relative to the co-moving 
system S : 

    1
1

1 1
    cos

( )
e R

c c c
 


     

 (18) 

where   is the angle between the light propagation direction 
and the absolute velocity v of . Eq. (18) applied to the cases 0   
and    easily gives 

 
 

 

 1 1
 1 1

( ) 1   
  

(0) 1   
c c e R
c c e R

 


 


 
 (19) 

Clearly, Eq. (19) is compatible with (17) only if 1 0e  . We can 

see that also our result (17) is consistent with the physics of the 
inertial systems only if absolute simultaneity is adopted. For a 
better understanding of the reasons why the TSR does not work 
consider again the ratio 

 
( )

  
(0)

c
c


 



 (20) 

which, owing to (16), is larger than unity. Therefore the light 
velocities parallel and anti-parallel to the disk peripheral velocity 
are different! [13]. Thus the TSR predicts for   a discontinuity at 
zero acceleration. While all experiments are made in the real 
physical world [where 0a  , (1 ) /(1 )     ], the theory has 

gone out of the world [ 0,   1a   ]! 

5. The Experiment by R. Wang et al. 

A very interesting modified Sagnac experiment has been 
carried out by Ruyong Wang and collaborators [14]. The 
instrument was designed to decide whether the travel time 
difference of the Sagnac effect only appears in rotational motion, 
or if it also appears in rectilinear uniform motion: Results 
unequivocally in favor of the latter possibility. The Sagnac effect 
shows that two light pulses, sent clockwise and counterclockwise 
around a closed path on a rotating disk, take different times to 
travel the path. The time difference is often written as 

24 /t A c  , where A  is the area enclosed by the path and   
is the angular velocity of the disk rotation. For a circular path of 

radius R one can also write 22 /t vL c   where Lv   is the 

speed of the circular motion, L is the circumference length. 
Usually the two expressions of t  are considered equivalent, but 
the Wang experiment leads to the conclusion that only the 
second has general validity. 

The Sagnac effect has been studied in fiber optic gyroscopes 
(FOG’s). In a FOG, when a single mode fiber is wound to a coil 

with N turns the effect increases to 22 /t vL c  , where L is now 
the total fiber length. A FOG, shown in Fig. 3, contains two 
semicircular sections with linear fiber connecting the end 
sections. The fiber moves when the wheels at the two ends rotate. 
R. Wang calls this new device a fiber optic conveyor (FOC). 

 

Fig. 3.   A FOC including source and detector rotating with the fiber 

The conclusion was that the time delay due to uniform 
translation of a fiber segment with a speed of v  and a length L  

contributes   
22 /t v L c    exactly like a segment of circularly 

moving fiber. This is in agreement with our approach, which 
attributes in all cases the same local velocity of light relative to an 
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accelerated reference frame and to the locally co-moving inertial 
frame. Both in the examined experiment and in our theory the 
physical difference between linear and curvilinear uniform 
motions vanishes. A FOC of the form shown in Fig. 3, but with 
longer rectilinear parts of the fiber, can give additional evidence 
in favor of the IT. Prof. R. Wang informed that such an 
experiment has already been performed with a ratio (length of 
rectilinear parts)/(diameter of circular parts) of 40. Clearly, the 
circular part of the fiber represents a perturbation. Therefore the 
experiment provides direct evidence that the velocity of light in 
inertial systems is not c, but has the values predicted by the IT. 

6. The Block Universe 

In considering the nature of time let us adopt the relativistic 
description, with a Minkowski diagram having space in abscissa 
and time in ordinates. At time 0t   an observer 0U  located in 

the origin of an inertial system S must regard as being objectively 
real down to the smallest detail all events in space. In this 
diagram space is represented as x  axis, whose equation is 0t  , 
and which therefore contains all the events simultaneous with 
the instantaneous presence of 0U  in the origin at 0t  . 

If we consider a different inertial reference frame S , its axes 
x  and t  are represented in the Minkowski diagram as straight 
lines in the plane ( ,  )ct x  because of the linearity of the Lorentz 

transformations. The observer 0U  at rest in S  has the right to 

attribute reality to all events happening at his present time 0t  . 
The set of these events is of course different from the set of events 
constituting the reality of 0U . According to the relativity 

principle it does not make any sense to ask which one of the two 
observers 0U  and 0U  is correct. Given the complete symmetry 

between inertial systems, they are both correct. So all the events 
on the x  axis, whose equation is 0t   and whose inclination 
depends on the velocity of S  relative to S , can be considered 
just as real as the events on the x -axis. The Lorentz 
transformation of time from ( ,  )ct x  to ( ,  )ct x   reads 

 
2 2

  /
  

1 /

ct xv c
ct

v c

 


 (21) 

where v  is the relative velocity of the S and S  frames. Setting 
0ct   we get  

       ct v c x  (22) 

This is a straight line with a slope   1v c  . Therefore, the 

reality line of the observer 0U  has an inclination in time with 

respect to that of 0U . 

Clearly 0U  will attribute reality to events in 0U ’s future, 

which are not part of 0U ’s present reality. In the previous 

example, however, these future events are elsewhere and do not 
belong to the personal future of 0U , who is assumed at rest in 

the origin 0x  . 
Reality has so far been attributed to a single instant of the 

future only, but the argument can easily be generalized. Indeed 
infinitely many reality lines pass through every point of the 
diagram  ( ,  )c t x , each such line representing the (relativistic) 

reality of some legitimate inertial observer. The only restriction 

regards the inclination of these lines in a diagram ( ,  )ct x : it can 

never exceed 4 , if  all velocities are subluminal.  

Thus relativity leads to a strange conception of the universe, 
in which a single reality fills uniformly past, present, and future: 
at this present time other observers no less legitimate than I 
consider my personal future as given in all detail. According to 
them there is not the slightest freedom that I can use in order to 
influence the course of events. The impression I have of a reality 
evolving sometimes in a casual (non deterministic) way, would 
therefore be entirely subjective. Relativity leads one to accept a 
hyper-deterministic universe in which the whole future is 
completely pre-established in the minutest details and in which 
all sensations of individual freedom (even those limited to very 
simple events) are pure illusions. [15] 

The argument about the block universe can be extended from 
the TSR to the ET. The transformation of time replacing (21) is 

   0 1 0 0    (  )t R t e x v t    (23) 

Obviously, 0ct   implies 

 1
0 0

1
  

  
e

t x
R e v





 (24) 

At time 0t   an observer 0U  located in the origin of 0S  

regards as objectively real down to the smallest detail all events 
in space. In this diagram space is the x axis (equation 0t  ), and 
contains all events simultaneous with the presence of 0U  in the 

origin at 0t  . The reality line of the observer 0U  has an 

inclination in time with respect to that of 0U  and also passes 

through the origin of a Minkowski-type diagram. Clearly, the 
reality-of-the-future argument of the TSR can be repeated for (24) 
without any difficulty, and the result is again the block universe.  

We can easily see that there is an exception for 1 0e   giving 

the inertial transformations. If we start from the transformation 
of time of the IT we write 

 ’  t Rt  (25) 

Setting ’ 0ct   we get immediately 0ct  . The meaning is 

obvious: if we select an arbitrary point of the reality line of S  we 
select at the same time  a point on the reality line of any other 
inertial frame (given the arbitrariness of S ). 

7. Two Identical Spaceships 

Two identical spaceships A  and B  are initially at rest on the 

0x  axis of the (privileged) inertial system 0S  at a distance 0d  

from one another [16]. Their clocks are synchronous with those of 

0S . At time 0 0t   they start accelerating in the 0x  direction, 

and they do so in the same identical way, in such a way as to 
have the same velocity 0( )v t  at every time 0t  of 0S , until, at a 

time 0 0t t  of  0S , they reach a given velocity  0v t  parallel to 

0x ; for all 0 0t t  the spaceships remain at rest in a new inertial 

system S, which they concretely constitute. One can easily show 
that the motion of A  and B  does not modify the distance 0d  

between the spaceships as seen from 0S . The same distance seen 

from S  (call it d) instead increases during acceleration, as the 
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unit-rod measuring it undergoes a progressive contraction. One 
has: 

 0
2 2

  
1 /

d
d

v c



 (26) 

The transformation relating 0S  and S is necessarily the 

inertial one, if no final clock re-synchronization is applied 
correcting what was generated during the acceleration. Since A  
and B  accelerate exactly in the same way, their clocks 
accumulate exactly the same delay with respect to those at rest in 

0S . Motion is the same for A  and B ; all effects of motion will 

necessarily coincide, in particular time delay. Therefore two 
events simultaneous in 0S  will be such also in S, even if they take 

place in different points of space. Clearly we have a case of 
absolute simultaneity and the condition 1 0e   must hold.  

In order to make the point as clear as possible we checked 
that the velocity in S  of a light pulse traveling from A  to B  
when the two spaceships are at rest in S  (while, of course, they 
move with velocity v with respect to 0S ) coincides with the 

inertial velocity of light formula (4) with 1 0e  . In fact we found 

that the velocity of light in S  satisfies (24) with 0  . This is 
what one expects from the inertial transformations since the 
straight line connecting the spaceships A  and B  has been 
assumed parallel to their velocity. 

Not only the absolute simultaneity is concretely realized in 
the moving frame of the two spaceships, but one can find other 
convincing arguments showing  that it gives the most natural 
description of the physical reality. We will suppose that our 
spaceships have passengers AP  and BP , who are homozygous 

twins. Of course in principle nothing can stop them from re-
synchronizing their clocks once they have finished accelerating 
and the two spaceships are at rest in S . If they do so, however, 
they find in general to have different biological ages at the same 
(re-synchronized) S time, even if they started the space trip at 
exactly the same 0S  time and with the same velocity, as 

stipulated above. Everything is regular, instead, if they do not 
operate any asymmetrical modification of the time shown by 
their clocks [17]. 

In fact we already concluded that clocks in A  and B  are 
retarded in the same way, and that the transformations 0S S  

must be the inertial ones. Also the ageing of the twins must have 
been the same, since at every time before, during and after the 
acceleration they were in identical physical conditions. Therefore 
the twins have the same age when the times shown by their 
clocks are the same if they have been synchronized in 0S  before 

departure and never modified after. Naturally, AP  and BP  can 

inform one another of their biological ages (e.g., via telefax) by 
exchanging pictures in which the times they were taken is 
marked: the twin receiving a picture can check in his archives 
that at the time shown on his brother’s picture he had exactly the 
same look, and therefore the same age. 

The same experiment is repeated after the acceleration has 
ended and the spaceships are at rest in the different inertial 
system S . Now, if the invariance of the velocity of light were a 
law of nature one should find the same result in S  and in 0S , 

given that the retardation of AC  and BC  (these are the clocks 

inside A  and B  respectively) during the accelerated motion is 
exactly the same. Instead, as we saw, the velocity of light in S  
from A  to B , turns out to be given by (4). Notice that the equal 
retardation of AC  and BC  is expressed by the equality of the 

proper times of AC  and BC  and is therefore an objective 

property on which all observers agree. Therefore everything 
seems to go as if we measured the velocity of light with two 
clocks, then set backwards their hands by the same amount, then 
measured again the velocity of light and found a different result. 
It is a surprise, but the conclusion that 1 0e   is inescapable. 

8. Ron Hatch’s Argument 

Very interesting results have been obtained by Ron Hatch of 
NavCom Technology (California). This research on the physics of 
space and time is carried out by reasoning from the point of view 
of observers placed in different points of the solar system, an 
exciting game between the different approaches to relativistic 
phenomena is being plaid anew outside the terrestrial 
atmosphere [18]. From the GPS there is irrefutable evidence that 
clocks run faster when the gravitational potential is increased 
[19]. But a clock on the earth at noon is closer to the sun than a 
clock on the earth at midnight. Therefore the clock at noon has a 
lower gravitational potential from the sun. Experimentally it has 
been found, however, that there is no apparent clock rate 
difference between noon and midnight. This is called "the 
noon/midnight problem." 

Different explanations have been attempted, but they all 
failed to resolve  the contradiction. For example, there had been 
the idea that the earth, the satellites, the clocks are all freely 
falling in the gravitational field of the sun and cannot therefore 
feel the action of that field. Not correct, because when a satellite 
passes from a first position at noon to a second position at 
midnight it covers a large distance and certainly it must feel the 
variation of the gravitational potential of the sun, which is to a 
very good approximation linear in the space separation between 
the two positions. 

The key for resolving the problem came from a simple fact: 
when data are taken from clocks which are external to the solar 
system (millisecond pulsars), it is found that earth-based clocks 
actually do run at different rates at midnight and at noon! 

According to Hatch the data collected both by VLBI (Very 
Long Baseline Interferometry) and GPS (Global Positioning 
System) indicate that earth-based clocks are biased as function of 
their position in the direction of the orbital velocity of our planet. 
The existence of these biases is confirmed by comparison of 
earth-based clocks with millisecond pulsars. These clock biases 
are precisely such as to cause the speed of light to appear having 
the isotropic value "c" in any earth centered inertial frame. This 
shows that the speed of light in reality is not isotropic in the earth 
centered inertial frames and that the Lorentz transformations are 
only an artificial structure built up by "Selleri’s inertial 
transformations combined with clock biases." Thus Hatch 
attributes to the inertial transformations a fundamental role, in 
agreement with what we are preaching in this paper. 

Distant pulsars, which have pulse rates of hundreds of pulses 
per second, in practice are extremely stable clocks with a slow 
but very precise change in frequency as they loose energy. These 
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are clocks external to the solar system, but their stability equals 
that of the very best clocks on the earth. Therefore they can be 
compared to clocks of all types on the earth. This comparison 
easily allows one to detect local biases. 

In fact, if the comparison of terrestrial clocks with pulsar 
emissions shows oscillating differences correlated with the earth 
motion it is unreasonable to assume that they are due to the 
pulsar that is far away in space. Moreover, there are several 
pulsars in different parts of the sky that can be used for 
reciprocal stability tests. The outcome of these considerations is 
that the pulsars have a very high degree of stability. The pulsar 
data reveal a diurnal variation in terrestrial clock rate as the earth 
spins around its axis. More exactly the noon second is about 300 
ps shorter than the midnight second. Hatch found the following 
result: the bias of the clock proper time   as a function of 
position in the earth-based frame can be written 

 2  /v x c   
 

 (27) 

The meaning of (27) is that a set of inertial transformation 
applied to a moving frame in an absolute ether can be converted 
into apparent Lorentz transformations simply by biasing the 
clock settings. Thus, assuming an ether the TSR can be made to 
appear as valid simply by biasing the clocks by the appropriate 
amount as a function of position . We thus see that the clock 
synchronization data on the Earth surface was hiding an 
important piece of information concerning the physics of space 
and time. Thanks to Hatch this hidden information is now 
openly visible, and it is equivalent to a proof of validity of the IT. 
It is the seventh proof of this paper. 

9. Aberration 

The phenomenon of aberration of the starlight is very 
important in relativistic physics, to the point that Einstein 
discussed it in his first article on the theory of special relativity.  

From the angular deviation of the light of a star, observed 
during a year, it is possible to deduce the velocity of light. But 
starlight follows a one way path towards the Earth, a fact which 
might lead people to believe that aberration allows one to 
measure the one way velocity of light. Actually it is not so, as all 
the equivalent transformations predict exactly the same 
aberration angle, even though the one way velocity is different 
for different equivalent transformations. 

Consider the propagation of a localized light pulse P  from 
the point of view of the privileged reference system 0S  of the 

equivalent theories, relative to which the velocity of light is the 
same in all directions. If 0  is the inclination with respect to the 

0x  axis of the trajectory of P  and   is the inclination of the 

same trajectory as judged in S , one can prove [20] an aberration 
formula mathematically identical to the one of relativity, namely: 

 
  0

0

sin
tan   

cos   
c R

c v






 (28) 

where v  is the velocity of  S  measured in 0S  and 

2 2  1  /R v c  .  The quantity c  in (28) is the one way speed 

of light relative to, and, at the same time, the two way speed of 
light relative to all inertial reference systems. 

Therefore, all the quantities entering in the right hand side of 
(28) are relative to the isotropic system 0S  for which all 

equivalent theories accept the same value of the velocity of light, 
and thus the same synchronization of clocks. Clearly, all the 
equivalent transformations (among which there are Lorentz’s) 
agree on the numerical values of 0  and v . Therefore, thanks to 

(28), for any given reference system S  they predict the same 
value of the aberration angle  . 

Although we are presently unable to identify the privileged 
inertial system 0S  the previous conclusion is obviously enough 

for saying that once given (28), we have obtained a complete 
explanation of aberration from the point of view of the 
equivalent transformations, based on the existence of a 
privileged system: if the absolute aberration angle of a star is the 
same for all S , also the relative aberration angle observed 
between two moving systems S  and S  has to be the same! 

Aberration explained in terms of absolute motion, as 
presented above, provides the resolution of a longstanding 
problem of the relativistic approach. Einstein deduced the 
aberration formula (28) from the idea that v is the “velocity of the 
observer relatively to an infinitely distant source of light.” [21] 
This idea was repeated by many authors, clearly because the use 
of the relative velocity is the most natural thing to do in a theory, 
such as the TSR, based on relativism. 

If, however, we imagine the stars as molecules of a gas in 
random motion, we have to admit that the velocity relative to the 
Earth varies from star to star. This conclusion contradicts the fact 
that the observed angle of aberration is the same for all stars. In 
1950 Ives stressed that “The idea sometimes met with that 
aberration ... may be described in terms of the relative motions of 
the bodies concerned, is immediately refuted by the existence of 
spectroscopic binaries with velocities comparable with that of the 
earth in its orbit. These exhibit aberrations no different from 
other stars.” [22] 

The components of such binary systems at some times can 
have velocities relative to the Earth very different from one 
another; nevertheless it is well known that these components 
exhibit always the same aberration angle, by the way not 
different from that of single stars. The argument was developed 
by Eisner in 1967: A distant observer O  looks at two stars 1S , 

2S  rotating about the center of mass C of the pair. Let C  be at 

rest relative to O  (for simplicity), let the orbits of the stars be 
circular, and let O  lie on the normal through C  to the plane of 
the orbits. Then Eisner shows that the stars must appear to 
describe circular orbits of angular radii 1 , 2 , which he 

calculates explicitly. For a very distant observer he finds: 

1 1v c  ,  2 2v c  , where 1v and 2v  are the velocities of the 

two stars at the moment of observation and c is the speed of 
light. The ratio v c  is typically of order 10-4 (about 20” of arc) 

and about one star in three is a multiple system; so that “the skies 
should be filled with binary stars of apparent separation of order 
forty seconds.” [23] 

A further support for Ives' conclusion came from Hayden 
(1993), who remarked that some astronomical tables list five 
pages of binaries that can be seen in the Sagittarius alone with a 
small telescope. A spectroscopic binary, Mizar A, has well known 
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orbital parameters, from which Hayden calculates an observable 
angular separation of 1’ 10” .5 if aberration were due to relative 
velocity. The empirical value is less than 0.01”, clearly 
incompatible with the relativistic prediction [24]. 

10. Beyond Relativistic Paradoxes 

In the previous sections we saw that several paradoxes of 
relativity melt away rather easily if one adopts an optimistic 
philosophy about the possibility to understand nature correctly. 
Furthermore, this "optimistic" philosophy is not anymore a free 
choice, but should have become an open scientific possibility as a 
consequence of the independent proofs of absolute simultaneity. 
We will now shortly present the solutions of other well known 
relativistic paradoxes. 

1. The (relativistic) idea that the simultaneity of spatially separated 
events does not exist in nature and must therefore be established 
with a human choice was accepted by Mansouri and Sexl, 
who fully believed in the conventionality of clock 
synchronization. In spite of the broad diffusion of this 
expectation, it has been established that a rational description 
of physical phenomena (Sagnac effect, linearly accelerating 
systems, objective reality of inertial observers, superluminal 
propagations) can be obtained only if absolute simultaneity is 
adopted: 1 0e  . 

In this way one solves also the riddle of the relativity of 
reality, given that it is identified by the relativity of 
simultaneity. The riddle was overcome when it was shown 
that assuming 1 0e   all inertial observers have the same 

reality, where reality is defined by the set of events 
simultaneous with a given event (e.g., the "here-now" event 
establishing the local present). 

2. The velocity of a light signal, considered equal for observers at 
rest and observers chasing it with velocities as near as 
possible to c . The answer of a theory based on the ITs is as 
follows. After having established that 1 0e  , the velocity of 

light relative to a moving reference frame is given by Eq. (4). 
Therefore, the speed of the light signal (absolute velocity c ) 
relative to an inertial frame which is running after it (then, 

0  ) with absolute velocity almost equal to that of light 
( v c ) has a denominator 1 1 2    and the limit velocity is 

2c . This is a 50% reduction with respect to the relativistic 

prediction that remains the old dear c . 
3. Retardation of moving clocks, phenomenon for which the theory 

of relativity does not provide a description in terms of 
objectivity. The objectivity is restored with the inertial 
transformations in terms of action of the ether on all the 
periodic phenomena which can be used to measure time. All 
this is very much in the realistic line of thought of Hendrik 
Lorentz. 

4. Contraction of moving objects, phenomenon for which, once 
more, the theory does not provide a causal description. The 
objectivity is restored with the inertial transformations in 
terms of action of the ether on every atom, with reduction of 
the atomic length in the direction of motion. Also this follows 
the realistic line of thought of Lorentz. 

5. The hyperdeterministic block universe of relativity, fixing in the 
least detail the future of every observer, is now out, having 

been overcome thanks to the conclusion 1 0e  , meaning that 

the reality line is unique for all observers, independently of 
their state of motion. 

6. The conflict between the reciprocal transformability of mass and 
energy and the ideology of relativism. The TSR declares all 
inertial observers perfectly equivalent so depriving energy of 
its full reality. The retrieval of the objectivity of energy and of 
the other physical quantities should rather aim at the 
inequivalence of the different reference frames knowing that 
there is one at rest in the ether, which has a more 
fundamental role. The idea can be developed, and the 
objectivity of energy is fully recovered by working with the 
IT. 

7. The TSR predicts a discontinuity between the inertial systems and 
systems endowed with a very small acceleration. The discontinuity 
is in the variable  , ratio of the velocities of light along two 
opposite directions. It turns out to be a serious problem for all 

1 0e  . If one takes 1 0e  , however, the discontinuity does 

not exist anymore and the relative difficulty is completely 
overcome. 

8. The propagations from the future towards the past, generated in 
the TSR by the eventual existence of superluminal signals. 
The essence of the causal paradox lies in the impossible 
requirement that a superluminal propagation may overtake a 
set of clocks marking a progressively decreasing physical 
(then, not conventional) time. The particular choice 1 0e   is 

selected by several phenomena in which the acceleration has 
a role, remains by far the best one also in the present context, 
being the only one not leading to the causal paradox. The 
same choice avoids the complications of the TSR describing 
all the propagations as forward in time for all observers. 

9. The asymmetrical ageing of the twins in relative motion in a theory 
waving the flag of relativism. The differential retardation effect 
between separating and reuniting clocks (“clock paradox”) 
can be studied by using a variational method.  Both in the 
TSR and in more general theories with arbitrary 1e  among all 

possible trajectories of a clock connecting two given points at 
two given times the rectilinear uniform motion requires the 
longest proper time. A complete resolution of the clock 
paradox is so obtained by giving an exhaustive unified 
description of all possible situations. Relativism does not 
apply and must be considered obsolete. Velocity (and nothing 
else) is seen to be responsible for the differential retardation 
effect. Of course it must be an absolute velocity! 
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