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PREFACE.

THE subject selected by the Examiners for the Adams Prize for
1882 was '

“A general investigation of the action upon each other of two
closed vortices in a perfect incompressible fluid.”

In this essay, in addition to the set subject, I have discussed
some points which are intimately connected with it, and I have
endeavoured t6 apply some of the results to the vortex atom theory
of matter.

I have made some alterations in the notation and arrangement
since the essay was sent in to the Examiners, in so doing I have
received great assistance from Prof. G. H. Darwin, F.R.S. one of
the Examiners, who very kindly lent me the notes he had made
on the essay. Beyond these I have not made any alterations
in the first three parts of the essay: but to the fourth part, which
treats of a vortex atom theory of chemical action, I have made
some additions in the hope of making the theory more complete :
paragraph 60 and parts of paragraphs 58 and 59 have been added
since the essay was sent in to the Examiners.

I am very much indebted to Prof. Larmor of Queen’s College,

Galway, for a careful revision of the proofs and for many valuable
suggestions.

J. J. THOMSON.

TrINITY CoLLEGE, CAMBRIDGE.
October 1st, 1883.
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INTRODUCTION.

IN this Essay the motion of a fluid in which there are circular
vortex rings is discussed. It is divided into four parts, Part I.
contains a discussion of the vibrations which a single vortex
ring executes when it is slightly disturbed from its circular form.
Part II. is an investigation of the action upon each other of two
vortex rings which move so as never to approach closer than by a
large multiple of the diameter of either; at the end of this section
the effect of a sphere on a circular vortex ring passing near it is
found. Part III contains an investigation of the motion of two
circular vortex rings linked through each other; the conditions
necessary for the existence of such a system are discussed and the
time of vibration of the system investigated. It also contains an
investigation of the motion of three, four, five, or six vortices
arranged in the most symmetrical way, 7.e. so that any plane per-

_pendicular to their directions cuts their axes in points forming the
angular points of a regular polygon; and it is proved that if there
are more than six vortices arranged in this way the steady motion
is unstable. Part IV. contains some applications of the preceding
results to the vortex atom theory of gases, and a sketch of a vortex
atom theory of chemical action. .

When we have a mass of fluid under the action of no forces,
the conditions that must be satisfied are, firstly, that the ex-
pressions for the components of the velocity are such as to satisfy
the equation of continuity; secondly, that there should be no
discontinuity in the pressure; and, thirdly, that if F(z, y, 2, t)=0
be the equation to any surface which always consists of the same
fluid particles, such as the surface of a solid immersed in a tluid or
the surface of a vortex ring, then

dFF dF dF dF
Gttt

where the differential coefficients are partial, and u, v, w are the
velocity components of the fluid at the point «, y, z. As we use in
the following work the expressions given by Helmholtz for the
velocity components at any point of a mass of fluid in which there
is vortex motion; and as we have only to deal with vortex motion
which is distributed throughout a volume and not spread over a
surface, there will be no discontinuity in the velocity, and so no
discontinuity in the pressure; so that the third is the only con-
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dition we have explicitly to consider. Thus our method is very
simple. We substitute in the equation

dFF  dF dF dF
ﬂ+u-‘i—-w+vd—3/ +’w8—2=0

.the values of u, v, w given by the Helmholtz equations, and we
get differential equations sufficient to solve any of the above
problems.

We begin by proving some general expressions for the momen-
tum, moment of momentum, and kinetic energy of a mass of fluid
in which there is vortex motion. In equation (9) §7 we get the

. following expression for the kinetic energy of a mass of fluid in
which the vortex motion is distributed in circular vortex rings,

73 {237 (133 +9 L2 +h S0} + o e + o7+ ) pas,

where T is the kinetic energy; J the momentum of a single
vortex ring; B, &, R the components of this momentum along
the axes of 2, y, z respectively; ¥ the velocity of the vortex ring;
/> 9, & the coordinates of its centre; p the perpendicular from the
origin on the tangent plane to the surface containing the fluid ;
and p the density of the fluid. When the distance between the
rings is large compared with the diameters of the rings, we prove
in § 56 that the terms

dB  do  ,dR
3 (f at +g r +h E)
- for any two rings may be expressed in the following forms:
- 2mmpa’r Z—f ,
’ 9 /9
or M (3 cosf cos & — cos €),

where 7 is the distance between the centres of the rings; m and
m’ the strengths of the rings, and a and a' their radii; S the
velocity due to one vortex ring perpendicular to the plane of the
other; e is the angle between their directions of motion; and 6,
@ the angles their directions of motion make with the line joining
their centres.

These equations are, I believe, new, and they have an important
application in the explanation of Boyle’s law (see § 56).

We then go on to consider the vibrations of a single vortex
ring disturbed slightly from its circular form ; this is necessary for
the succeeding investigations, and it possesses much intrinsic
interest. The method used is to calculate by the expressions given
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by Helmholtz the distribution of velocity due to a vortex ring whose
central line of vortex core is represented by the equations

p= a+2 (a.cosn\[l‘+/3a5inn‘l’)x
z2=3 +32 (v, cos nyr + 8, sin ny),

where p, z, and  are semi-polar coordinates, the normal to the
mean plane of the central line of the vortex ring through its
centre being-taken as the axis of z and where the quantities a,,
B,, 7., O, are small compared with a. The transverse section of
the vortex ring is small compared with its aperture. We make
use of the fact that the velocity produced by any distribution of
vortices is proportional to the magnetic force produced by electric
currents comnciding in position with the vortex lines, and such that
the strength of the current is proportional to the strength of the
vortex at every point. If currents of electricity flow round an
anchor ring, whose transverse section is small compared with
its aperture, the magnetic effects of the currents are the same as if
all the currents were collected into one flowing along the circular
axis of the anchor ring (Maxwell’s Electricity and Magnetism, 2nd
ed. vol. 1. §683). Hence the action of a vortex ring of this shape
will be the same as one of equal strength condensed at the central
* line of the vortex core. To calculate the values of the velocity
components by Helmholtz’s expressions we have to evaluate
™ cosnf.dd
» ¥(g—cos )’ ,
in the Planetary Theory in the expansion of the Disturbing
Function, and various expressions have been found for it; the
case, however, when ¢ is nearly unity is not important in that
theory, and no expressions have been given which converge quickly
_in this case. It was therefore necessary to investigate some
expressions for this integral which would converge quickly in this
case ; the result of this investigation is given in equation 25, viz.

1 2 cosnd.dd
w/, N (g—cosf)

- N_gp(%_n,%.g.n, 1, - }a) {log m_q(ﬁl___"'ll)_ 4(1 +§;+...-1_)}

when g is very nearly unity. This integral occurs

2n—1
+ 2R -+ EE-D - g
+E - =D 0 =) gt

+K, (-} @n-9 ... -1 (2m -1)") (7_"1?’;_:-'- },
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where K“=1+}+...2-m—1-_1, and g=1+x; F( ) denotes as

usual the hyper-geometrical series.

In equations 10—18 the expressions for the components of the
velocity due to the disturbed vortex at any point in the fluid are
given, the expressions going up to and including the squares of
the small quantities a,, B,, v,, 6,; from these equations, and the
condition that if F (z, y, 2, t) =0 be the equation to the surface of
a vortex ring, then

dF , dF  dF 6 dF -
7?+u3§+v7y+wa;=0,

we get,
6

dg"; =-13 '7_"‘%: n'{ log —3,‘5 —4f(n)- 1}. ..(equation 37),

where m is the strength of the vortex, e the radius of the transverse

section, and f(n)=1+}+ '"2n+1—1:

d3d _m 8a .
3 = oma ( log in 1 )...(equatlon 41),
this is the velocity of translation, and this value of it agrees very
approximately with the one found by Sir William Thomson :

- 64a .

%" =31 :%: (n*-1) {log o 4f (n) — 1} : (equation 42).

We see from this expression that the different parts of the
vortex ring move forward with slightly different velocities, and
that the velocity of any portion of it i1s Va/p, where V is the undis-
turbed velocity of the ring, and p the radius of curvature of the
central line of vortex core at the point under consideration; we
might have anticipated this result.

These equations lead to the equation

‘f;:‘.," +n* (n* — 1) L’a, = 0: (equation 44),

) _m 64a® -
where L—Ea—,{log—e;-—4f(n)—l}.
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Thus we see that the ring executes vibrations in the period '

Pl d .
Ly (' (n* -1)}’

thus the circular vortex ring, whose transverse section is small
compared with its aperture, is stable for all displacements of its
central line of vortex core. Sir William Thomson has proved that
it is stable for all small alterations in the shape of its transverse
section ; hence we conclude that it is stable for all small displace-
ments. A limiting case of the circular vortex ring is the straight
columnar vortex column; we find what our expressions for the
times of vibration reduce to in this limiting case, and find that they
agree very approximately with those found by Sir William Thomson,
who has investigated the vibrations of a straight columnar vortex.
We thus get a confirmation of the accuracy of the work. '

In Part II. we find the action upon each other of two vortex
rings which move so as never to approach closer than by a large
multiple of the diameter of either. The method used is as follows:
let the equations to one of the vortices be

p=a+3 (a, cos nyr + B, sin ny),

2=+ 2 (y, cosnyr + §, sinnyr) ;

then, if 3 be the velocity along the radius, w the velocity perpen-
dicular to the plane of the vortex, we have

B=3 (‘(ii—at"cosm]r+?§“ sinn\]r),

_d, s (W ds, . .
w=+ (ﬂ cos n"'-"?t sxnm[r),
and, equating coefficients of cos nyr in the expression for &, we

see that da,/dt equals the coefficients of cos nyr in that expression.
Hence we expand 8 and w in the form

A cos Y + Bsin yr + A’ cos 2y+ + B'sin 24 + ...

and express the coefficients 4, B, 4, B’ in terms of the time;
and thus get differential equations for a,, B,,¥,, 8,. The calcu-
lation of these coefficients is a laborious process and occupies
pp. 38—46. The following is the result of the investigation: If
two vortex rings (I.) and (IL) pass each other, the vortex (I.)
moving with the velocity p, the vortex (IL) with the velocity g,
their directions of motion making an angle e with each other ; and if
c is the shortest distance between the centres of the vortex rings,

g the shortest distance between the paths of the vortices, m and
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m' the strengths of the vortices (I.) and (II.) respectively, a, b
their radii, and k their relative velocity ; then if the equation to the
plane of the vortex ring (IL.), after the vortices have separated so
far that they cease to influence each other, be

z=3+9 cosy +8&siny+...,

where the axis of z is the normal to the undisturbed plane of
vortex (I1.), we have

)
¥ = 2';32.” sin’e. pg (¢ — pcose) v(c'— &) (1 - %) : (equation 69),
, 2ma’h @ sin® e 4q°
&=- pOA] q (1 - ;_)Téi)

and the radius of the ring is increased by

........................ (equation 71),

ma’d p’q

. . 4q° .
i sin® e/ (c* - @) (1 - _ci’) . (equation 74),

where 4/ (¢* — ) is positive or negative according as the vortex (II.)
does or does not intersect the shortest distance between the paths
of the centres of the vortices before the vortex (1.).

The effects of the collision may be divided in three parts:
firstly, the effect upon the radii of the vortex rings; secondly,
the deflection of their paths in a plane perpendicular to the plane
containing parallels to the original directions of motion of the
vortices ; and, thirdly, the deflection of their paths in the plane
parallel to the original directions of motion of both the vortex
rings.

gLet us first consider the effect upon the radii. Letgq=ccos¢,
thus ¢ is the angle which the line joining the centres of the vortex
rings when they are nearest together makes with the shortest
distance between the paths of the centres of the vortex rings; ¢ is
positive for the vortex ring which first intersects the shortest
distance between the paths negative for the other ring.

The radius of the vortex ring (IL) is diminished by
"—ncf:lk—? p’q sin® esin 3¢.

Thus the radius of the ring is diminished or increased accord-
ing as sin 3¢ is positive or negative. Now ¢ is positive for one
vortex ring negative for the other, thus sin 3¢ is positive for one
vortex ring negative for the other, so that if the radius of one
vortex ring is increased by the collision the radius of the other
will be diminished. When ¢ is less than 60°the vortex ring which
first passes through the shortest distance between the paths of the
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centres of the rings diminishes in radius and the other one increases.
When ¢ is greater than 60° the vortex ring which first passes
through the shortest distance between the paths increases in radius
and the other one diminishes. When the paths of the centres of
the vortex rings intersect ¢ is 90° so that the vortex ring which
first passes through the shortest distance, which in this case is the
point of intersection of the paths, is the one which increases in
radius. When ¢ is zero or the vortex rings intersect the shortest
distance simultaneously there is no change in the radius of either
vortex ring, and this is also the case when ¢ is 60°.

Let us now consider the bending of the path of the centre of
one of the vortex rings perpendicular to the plane which passes
through the centre of the other ring and is parallel to the original
paths of both the vortex rings.

We see by equation (71) that the path of the centre of the
vortex ring (II.) is bent towards this plane through an angle

2
3 70)_:/% pg sin® e cos 3¢,

this does not change sign with ¢ and, whichever vortex first passes
through the shortest distance, the deflection is given by the rule
that the path of a vortex ring is bent towards or from the plane
through the centre of the other vortex and parallel to the original
directions of both vortices according as cos3¢ is positive or negative,
so that if ¢ is less than 30° the path of the vortex is bent towards,
and if ¢ be greater than 30° from this plane. It follows from this
expression that if we have a large quantity of vortex rings uniformly
distributed they will on the whole repel a vortex ring passing by
them.

Let us now consider the bending of the paths of the vortices
in the plane parallel to the original paths of both vortex rings.
Equation (69) shews that the path of the vortex ring (IL) is bent
in this plane through an angle

2
- g% sin® e sin 3¢p pg (¢ — pcos €)

towards the direction of motion of the other vortex. Thus the
direction of motion of one vortex is bent from or towards the
direction of motion of the other according as sin 3¢ (¢ — p cos ¢) is
positive or negative. Comparing this result with the result for
the change in the radius, we see that if the velocity of a vortex
ring (II.) be greater than the velocity of the other vortex (I.)
resolved along the direction of motion of (IL), then the path of
each vortex will be bent towards the direction of motion of the
other when its radius is increased and away from the direction of
motion of the other when its radius is diminished, while if the
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velocity of the vortex be less than the velocity of the other resolved
along its direction of motion, the direction of motion will be bent
from the direction of the other when its radius is increased and
vice versd. The rules for finding the alteration in the radius were
given before.

Equation (75) shews that the effect of the collison is the same
as if an impulse

_pg3.¥
wpe’k’

parallel to the resultant of velocities p —¢g cose, and g—pcose
along the paths of vortices (IL.) and (I.) respectively and an
impulse

sin® e sin 3¢,

_pg3.
3mwpc’k®

parallel to the shortest distance between the original paths of the
vortex rings, were given to one of the vortices and equal and
opposite impulses to the other ; here J and ' are the momenta of
the vortices. '

We then go on to investigate the other effects of the collision.
We find that the collision changes the shapes of the vortices as
well a8 their sizesand directions of motion. If the two vortices are
equal and their paths intersect, equations (78) and (79) shew that,
after collision, their central lines of vortex core are represented by
the equations

sin® € cos 3¢,

p=a-— marnat /2 e~/
. 4k° N3 (nc/k)*

., mmniat 2 e ™
T TR (nc/k)®

sin (2yr + nt + ¢),

cos (24 + nt + ¢€),

where 27/n is the free period of elliptic vibration of the circular
axis.. These are the equations to twisted ellipses, whose ellipticities
are continually changing ; thus the collision sets the vortex ring
vibrating about its circular form. ' T

We then go on to consider the changes in size, shape, and
direction of motion, which a circular vortex ring suffers when
placed in a mass of fluid in which there is a distribution of velocity

given by a velocity potential Q. We prove that if (—% denotes
differentiation along the direction of motion of the vortex ring,

1, m, n the direction cosines of this direction of motion, and a the
radius of the ring,
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da _ aQ

P T

d_,r0_ o

dt~ " di* " dzdh :
in_ @0 &0 }»(equatlon 80).
& =" dydh

dn_ dIQ  d'Q

dt =" dk* " dzdh

The first of these equations shews that the radius of a
vortex ring placed in a mass of fluid will increase or decrease
according as the velocity at the centre of the ring along the
straight axis decreases or increases as we travel along a stream
line through the centre. We apply these equations to the case of
a circular vortex ring moving past a fixed sphere, and find the
alteration in the radius and the deflection.

In Part III. we consider vortex rings which are linked through
each other. We shew that if the vortex rings are of equal strengths
and approximately circular they must both lie on the surface of an
anchor ring whose transverse section is small compared with its
aperture, the manner of linking being such that there are always
portions of the two vortex rings at opposite extremities of a diameter
of the transverse section. The two vortex rings rotate with an
angular velocity 2m/md® round the circular axis of the anchor ring,
whilst this circular axis moves forward with the comparatively slow

...oom 64a’ . .
velocity e log — o where m is the strength and e the radius of

the transverse section of the vortex ring, @ is the radius of the
circular axis of the anchor ring and d the diameter of its trans-
verse section.

We begin by considering the effect which the proximity of the
two vortex rings has upon the shapes of their cross sections; since
the distance between the rings is large compared with the radii of
their transverse sections and the two rings are always nearly
parallel, the problem is very approximately the same as that of two
parallel straight columnar vortices, and as the mathematical work
18 more simple for this case, this is the one we consider. By means
of a Lemma (§ 33) which enables us to transfer cylindrical har-
monics from one origin to another, we find that the centres of the
transverse sections of the vortex columns describe circles with the
centre of gravity of the two cross sections of the vortex columns as
centre, and that the shapes of their transverse sections keep
changing, being always approximately elliptical and oscillating about
the circular shape, the ellipticity and time of vibration is given by
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equation (89). We then go on to discuss the transverse vibrations
of the central lines of vortex core of two equal vortex rings linked
together. We find that for each mode of deformation there are
two periods of vibration, a quick one and a slow one.

If the equations to the central line of one of the vortex rings be

p=a+a,cosny + B, sin ny,
z=3 +1v,cosny + 3, sinny,
and the equations to the circular axis of the other be of the same
form with a., B, v, 8,’, written for a,, B,, v,, 8,, we prove
a,=A cos (vt +¢€) — Beos(ut+¢€)
a, = A cos (vt +¢€) + Bcos (ut + €')

2
.= (nT—l) A sin (vt +¢) + Bsin (ut +¢) } (equation 96),

’ —
9, = ﬂz_n_l) A sin (vt + €) — Bsin (ut+¢€')
' m 64a’
where v=g 4 Vin® ('~ 1)} 108"% ,
_m(2 (2n’—1)l d}
F=r & i Cef-

Thus, if the conditions allow of the vortices being arranged in
_this way the motion is stable. In § 41 we discuss the condition
necessary for the existence of such an arrangement of vortex rings;
the result is, that if I be the momentum, I" the resultant moment
of momentum, 7 the number of times the vortices are linked through
each other, and p the density of the fluid, then 7, T' are constants
determining the size of the system, and the conditions are that

I =4mmpa’®,
I'= mmprad®.
These equations determine @ and d; from these equations we get
d' _ 4T (4mmp)
AT Y
Now d*/a’ ‘must be small, hence the condition that the rings
“should be approximately circular and the motion steady and stable,
isthat I' (4mmp)}/rI? should be small. We then go on to consider the
case of two unequal vortex rings, and in § (43) we arrive at results.
similar in character to those we have been describing; the chief
difference is that the system cannot exist unless the moment of

momentum has a certain value which is given in equation (105),
and which only depends on the strengths and volumes of the



INTRODUCTION. Xix

vortices, and the number of times they are linked through each
other.

In the latter half of Part III. we consider the case when n
vortices are twisted round each other in such a way that they all
lie on the surface of an anchor ring and their central lines
of vortex core cut the plane of any transverse section of the
anchor ring at the angular point of a regular polygon inscribed in
this cross section. We find the times of vibration when n equals
8,4, 5, or 6, and prove that the motion is unstable for seven or
more vortices, so that not more than six vortices can be arranged
in this way.

Part IV. contains the application of these results to the vortex
atom theory of gases, and to the theory of chemical combination.






ON THE MOTION OF VORTEX RINGS.

§ 1. THE theory that the properties of bodies may be
explained by supposing matter to be collections of vortex lines in
a perfect fluid filling the universe has made the subject of vortex
motion at present the most interesting and important branch
of Hydrodynamics. This theory, which was first started by Sir
. William Thomson, as a consequence of the results obtained by
Helmholtz in his epoch-making paper “ Ueber Integrale der hydro-
dynamischen Gleichungen welche den Wirbelbewegungen ent-
sprechen ” has d priort very strong recommendations in its favour.
For the vortex ring obviously possesses many of the qualities
essential to a molecule that has to be the basis of a dynamical
theory of gases. It is indestructible and indivisible ; the strength
of the vortex ring and the volume of liquid composing it remain
for ever unaltered; and if any vortex ring be knotted, or if two
vortex rings be linked together in any way, they will retain for
ever the same kind of be-knottedness or linking. These properties
seem to furnish us with good materials for explaining the per-
manent properties of the molecule. Again, the vortex ring, when
free from the influence of other vortices, moves rapidly forward
in a straight line; it can possess, in virtue of its motion
of translation, kinetic energy; it can also vibrate about its circular
form, and in this way possess internal energy, and thus it affords
us promising materials for explaining the phenomena of heat and
radiation.

This theory cannot be said to explain what matter is, since
it postulates the existence of a fluid possessing inertia; but it
proposes to explain by means of the laws of Hydrodynamics all the
properties of bodies as consequences of the motion of this fluid.
It 1s thus evidently of a very much more fundamental character
than any theory hitherto started ; it does not, for example, like the
ordinary kinetic theory of gases, assume that the atoms attract
each other with a force whic% varies as that power of the distance
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2 ON THE MOTION OF VORTEX RINGS.

which 18 most convenient, nor can it hope to explain any property
of bodies by giving the same property to the atom. Since this
theory is the only one that attempts to give any account of the
mechanism of the intermolecular forces, it enables us to form much
the clearest mental representation of what goes on when one atom
influences another. Though the theory 1s not sufficiently de-
veloped for us to say whether or not it succeeds in explaining
all the properties of bodies, yet, since it gives to the subject of
vortex motlon the greater part of the interest it possesses, I shall
not scruple to examine the consequences according to this theory
of any results I may obtain.

The present essay is divided into four parts: the first part,
which is a necessary preliminary to the others, treats of some
general propositions in vortex motion and considers at some length
the theory of the single vortex ring; the second part treats of the
mutual action of two vortex rings which never approach closer
than a large multiple of the diameter of either, it also treats of the
effect of a solid body immersed in the fluid on a vortex ring
passing near it; the third part treats of knotted and linked
vortices; and the fourth part contains a sketch of a vortex theory
of chemical combination, and the application of the results
obtaining in the preceding parts to the vortex ring theory of
gases.

It will be seen that the work is almost entirely kinematical ;
we start with the fact that the vortex ring always consists of the
same particles of fluid (the proof of which, however, requires
dynamical considerations), and we find that the rest of the work is
kinematical. This is further evidence that the vortex theory
of matter is of a much more fundamental character than the
ordinary solid particle theory, since the mutual action of two
vortex rings can be found by kinematical principles, whilst the
“clash of atoms” in the ordinary theory introduces us to forces

which themselves demand a theory to explain them,
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PART I

Some General Propositions in Vortex Motion.

§2. WE shall, for convenience of reference, begin by quoting
the formulae we shall require. We shall always denote the com-
gonents of the velocity at the point (z, y, 2) of the incompressible

uid by the letters, u, v, w ; the components of the angular velocity
of molecular rotation will be denoted by &, 9, &

Velocity.

§3. The elements of velocity arising from rotations &, 7', {
in the element of fluid dz'dy’dz’ are given by

du = 5;7., ' (z-2)-¢ (:y —y)} de'dyds |

B0 =gy (£ (@=2) £ (e—2)) dw'dy'dz'J (D)

]' 7 ’ 7 / ’ !
dw=o—s (' (y—y)—n @@=} de'dy ds

where 7 is the distance between the points (2, y, 2) and (2, ¥, 7).

Momentum.

§4. The value of the momentum may be 