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Preface

The electron is the first elementary particle, from both the physical and the his-
torical point of view. It is the door to the microworld, to the physics of elemen-
tary particles and phenomena. This book is about electron models.

The year 1997 marked the centenary of the discovery of the electron as a
particle by J.J. Thomson. We have already passed the centenary of Planck’s
great discovery and the beginning of quantum physics; 2001 marked the 75"
anniversary of Schrédinger’s equation and the beginning of quantum mechan-
ics, while the year 2003 was the 75" anniversary of the Dirac equation and
Dirac’s model of the electron.

Today the most widely used theoretical approaches to the physics of the
electron and atom are quantum mechanical and field theoretical models based
on the non-relativistic Schrodinger and the relativistic Dirac equations and their
probabilistic interpretation. This is the basis of modern quantum field theory.
More than 75 years is a long time for a physical theory! This theory is the basis
for all contemporary calculations of physical phenomena.

After 75 years most physical theories tend to be supplanted by new theo-
ries, or to be modified. The theory’s successes, as well as its difficulties, are
now evident to specialists. There is no proof of the uniqueness of the quantum
field theory approach to the model of the electron and atom. Are other ap-
proaches possible? Quantum field theory may be sufficient to describe the elec-
tron, but is it necessary? This theory and its mathematics are very complicated;
can we now propose a simpler construction? Is the electron an extended struc-
ture, a compound object made up of sub-particles, or is it a point-like elemen-
tary particle, which does not consist of any sub-particles? What is the limit of
application of modern classical physics (based either on the corpuscular or
wave model) in the description of the electron? These and many other ques-
tions remain without definitive answers, while experiments on quantum entan-
glement have given rise to new discussion and debate. New high-precision ex-
perimental data, e.g., on the electric and magnetic dipole moments of the elec-
tron, may prove decisive.

This book, What is the electron?, brings together papers by a number of
authors. The main purpose of the book is to present original papers containing
new ideas about the electron. What is the electron? presents different points of
view on the electron, both within the framework of quantum theory and from
competing approaches. Original modern models and hypotheses, based on new
principles, are well represented. A comparison of different viewpoints (some-
times orthogonal) will aid further development of the physics of the electron.

More than ten different models of the electron are presented here. More
than twenty models are discussed briefly. Thus, the book gives a complete pic-
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i Preface

ture of contemporary theoretical thinking (traditional and new) about the phys-
ics of the electron.

It must be stressed that the vast majority of the authors do not appeal to
quantum field theory, quantum mechanics or the probabilistic Copenhagen in-
terpretation. The approaches adopted by these authors consist in using “lighter”
mathematics and a “lighter” interpretation than in quantum theory. Some of
them are sound approaches from the methodological point of view.

The editor will not presume to judge the models or the authors. We will
not venture to say which model is better, and why. The reasons are simple. (i)
Readers can reach their own conclusions themselves. (ii) Investigation of the
electron is by no means finished. (iii) My own point of view is presented in my
contribution to the book. So I want my paper to be on an equal footing with
other new models of the electron presented here.

The general analysis of the electron models presented here shows that
they can be classified as follows: corpuscular and wave, classical and quantum,
point and extended, structureless and with structure. The reader can compare
and ponder all these approaches! I would like to thank the authors for their con-
tributions.

It is my hope that this volume will prove worthwhile for readers, and en-
courage them to pursue further investigation of electron models.

Volodimir Simulik

Senior Research Associate

Institute of Electron Physics

Ukrainian National Academy of Science.
Uzhgorod, Ukraine



A Comprehensive Theory of the
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Jaime Keller
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Space and Time are primitive concepts in science, used to describe material ob-
jects in relation with other material objects and the evolution of those relations.
Mathematical description of those relations results in an observer’s geometric
frame of reference. To describe the object’s behaviour, we add one more geo-
metric element: the Action attributed to the system of objects. A fundamental
concept is that of action carriers. The resulting Theory has a deductive character.
A comprehensive (mass, charge, weak charge, spin, magnetic moment) theory of
the electron is presented from this point of view. The main emphasis is given to
the mathematical structures needed and the epistemological issues of the theory.

PACS number(s): 01.55.+b, 31.15.Ew, 71.10.-w, 71.15.Mb

Keywords: Space-Time-Action, Electron, Neutrino, Magnetic Interaction, Weak
Interaction, START.

1. Introduction: space, time and material objects —
mathematical structures

This paper contributes to the construction of a deductive theory of matter, start-
ing from first principles and using a single mathematical tool, geometric analy-
sis. We present a comprehensive theory, where the analysis is centered in the
theory of the electron.

It represents a logical continuation of the material presented in the volume
The Theory of the Electron, A theory of matter from START and a series of pub-
lications [1-5].

We recast here our fundamental philosophical and methodological re-
mark. The theory of the electron developed in the above mentioned book is
based on two main theoretical considerations: the nature of a scientific theory
and the elements used to describe nature. The basic purpose of the theory pre-
sented here is a description of what can be observed, inferred, related and pre-
dicted within the fundamental limitations of experimental and theoretical sci-
ence. We do not go beyond these limitations in any sense, nor seek to derive
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2 Jaime Keller

fundamental concepts from model structures which might be supposed to be
more fundamental.

We use three basic elements of physical objects and phenomena: time,
space, and action density. The first element, a one-dimensional manifold time,
an evolution parameter, (a primitive concept, universally accepted) is defined
by its mathematical properties. The concept of space, frame of reference, is de-
fined, using the same considerations, through its mathematical description; this
requires a three dimensional manifold in agreement with our anthropological
apprehension of nature. The third element of physical nature considered here is
given the unfortunate name of density of action, and describes the existence of
physical objects, assuming action is a one dimensional manifold joined to the
previous four in a geometrical unity. We have refrained from giving this con-
cept a new name because we want to emphasize that we are presenting new
conceptual and mathematical structures (Principia Geometrica Physicae). In
our presentation an action density field is introduced into the space-time frame
of reference to describe matter through the properties of this action density dis-
tribution. The space-time-matter concept is tautological: it is a set of non-
separable concepts in nature.

Geometry is introduced through the use of a quadratic form to give a
quadratic space structure to the variables:

Quadratic Forms from Pythagoras to the XXI Century

Quadratic form Dim/diff. Op | Group
Statics

P=x"+y"+2"  (a) 3-D V.V* )
Galileo
Kinetics

st =(ct) —(x*+y +2%) 4-D D,D’ o
Poincaré
Dynamics

§'=(ety =[x +y7+2 |- [5-D KK | 0
START

- doy _ ¢ —\?
W=K(0)a’ K(0)=%=E(O)’...(a) =Z#afl

When distributions of action in space-time are made to correspond to
physical objects, we conclude that, as time evolves, the permanence of these
objects is related to a set of symmetry constraints on that action distribution.
The presentation used is then both a mathematical and an epistemological ap-
proach to the study of matter, and of physics itself.

1.1 Epistemological approach
The procedure followed in this article is:

1. To define a frame of reference to describe physical objects as a distri-
bution field (carrier), the geometric space-time-action frame allows the
definition of velocities and of energy-momentum as derivatives.

2. To define fields of carriers through a set of properties.



A comprehensive theory of the electron from START 3

3. To describe interaction as the possibility of exchange of energy-
momentum among the carriers (of sets of properties).

4. To find the equations for the interaction fields.

5. To find the sources of the interaction fields.

6. To determine the physical properties of a field of sources in such a
form that those fields can be used as carriers.

7. To find the equations for the (source) carriers.

8. To find the observable properties of those carriers and identify them as
the observed electron and its elementary particle partner, the neutrino.

1.2 Position and localization

Once the sub-frame space-time is defined there is a fundamental difference be-
tween position and localization. Position refers to a mathematical point x in
space (which in general can be described by an anchored vector). The fixing
point is called Coordinate Origin and a Poincaré coordinate transformation in-
cludes a change of this reference point. Localization refers to the possibility of
assigning a restricted, continuous, set of position points o(x)# 0 to a physical
object (or phenomena). Localized objects are those for which a domain of posi-
tion points can be assigned, the size of the domain being defined as the size of
the physical object (or phenomenon). Non-localized objects correspond to
those for which the domain of explicitly considered position points is larger
than some assumed size of the object (or phenomenon).

1.3 Mass, charge, action, space and time

In our theory action, as a fundamental variable, is distributed among a set of
carrier of action fields. An action density w(x,?), action w per unit space-
time hypervolume Ax,Ax,Ax,Ax, at point (x,¢#) with x, =ct, is the fundamen-
tal concept defining space (parameterized by x), time (parameterized by ¢), and
action density (parameterized by a scalar analytical function w(x,¢), as primi-
tive concepts from which all other physical quantities will be derived or at least
related directly or indirectly. The different forms of distributing the action
among these carriers define the carriers themselves. This is fundamental in the
practical use of the four principles below. For an elementary carrier n we will
define w, (x,t) = f, p,(x,¢) . With constant in space f, .

Within our fundamental formulation we will have to define properties of
the fields we call carriers. A carrier will have physical significance through its
set of properties. The density p of an elementary carrier field can be defined
through a set of scalar constants, such that the integral of the product of these
constants, and the density gives the experimentally attributed value of a prop-
erty for that carrier. We will use an example: a carrier field identified with an
electron will have a density p(x,?), and if the property is Q we will define
0= Jq(x,t)dx =J qp(x,t)dx for all ¢z, which determines that Q is a constant
property (in space and time) for that field. The set of properties {Q} character-
izes a carrier field and in turn establishes the conditions for a density field to
correspond to an acceptable carrier.
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The concept of charge appears in the theory first of all from the necessity
to define the objects which exchange action (charges are always relative prop-
erties) in order to give a formal meaning to the principle that action will be ex-
changed in integer units of the Planck constant. In this context for an electron-
like carrier both mass and electric charge belong to the generic name of
‘charges’. This program can obviously not be achieved if the formulation is not
suitable to deduce of the theory of elementary particles, giving a geometric
meaning to this theory.

The definition of w is as a finite analytical action density and, to agree
with standard formulations, the energy density £ =dw/d¢ and the momentum
density p, =0w/0x' are the fundamental rates of change of the primitive con-
cept of action (considering a unit time-like interval Ax, =1).

In our full geometrization scheme a vectorial representation X = x e for
{et,x,y,z;x,,4=0,1,2,3} is used, and from the space-time gradient of w we
recover the positive semi-definite energy-momentum expression

E'/c—p;—p,-p:=P, P=pe", (1)

as well as the space-time ds’ =c’dt’ —dx’ —dy’ ;dzz. Action change
dK = P-dX is introduced through quadratic terms |dK | (see appendix)

ds® —ds* =—|dK|" =-x; {(E* | )c*df’ - pldx’ - pldy* - pldz’}, )

creating a unified geometrical quadratic form dS*. The dK vector, the direc-
tional in space-time change of action, is a new theoretical quantity formally de-
fined by (2). Notice that the generalization ds* = dS” also corresponds to a
(generally curved) generalization of the space-time metric

5 =(1- B 1) ~(1- K22 ) — (127" ~(1- K21

1.4 Hypotheses and principles of START

The set of hypotheses and principles which are explicitly included in our theory
are called START [3]:

Physics is the science which describes the basic phenomena of Nature within
the procedures of the Scientific Method.

We consider that the mathematization of the anthropocentric primary con-
cepts of space, time and the existence of physical objects (action carriers), is
a suitable point of departure for creating intellectual structures which de-
scribe Nature.

We introduce a set of principles: Relativity, Existence, Quantization and
Choice as the operational procedure, and a set of 3 mathematical postulates
to give these principles a formal, useful, structure.

We have derived in this and previous papers some of the fundamental struc-
tures of Physics: General Relativity, Density Functional Theory, Newtonian
Gravitation and the Maxwell formulation of Electromagnetism. A funda-
mental common concept is the definition of energy (action) carriers. Most of
the relations presented here are known, our procedure derives these struc-
tures and theories from START.
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1.5 Energy, momentum and interaction fields

There are in the theory two different forms of studying contribution to energy
and momentum: the quantities defined in the paragraphs above and, second,
quantities that will be called relative energy or relative momentum.

Principle of Space-Time-Action Relativity. In a space-time-action mani-
fold an unstructured observer cannot determine his own state of motion; he can
only determine the relative motion of other bodies in relation to himself and
among the other bodies themselves. Light in the space-time-action manifold is
assigned the “speed” ¢

An observer of a “system of bodies” will describe first each body as in
motion relative to the observer with the concept: motion originated momentum
(p), and, second, the motion of that body in relation to the rest of the system
with the concept: interaction originated momentum (Ap=eA). The interaction
originated momentum is the result of a non-unique description procedure, this
freedom of definition will mathematically appear as a “gauge freedom” in the
formulations below. The total momentum to enter in the descriptions for bodies
in interaction is p + Ap.

1.6 Action carriers in START

Consider a set of scalar field “carriers” in such a form that the total action den-
sity in space-time is the sum of the action attributed to the carriers. Some prop-
erties arise from the START geometry itself, others from the description of a
physical system as a time evolving energy distribution. In stationary systems,
for a given observer, an elementary carrier field c is defined to have an energy
density ¢ p,(x) with & being a constant in space, and an integer number of
carriers N, of type c. The density p (x,t) obeys j p.(x,t) dx = N, in the sys-
tem’s volume V. v

We make a sharp distinction between action density and Lagrangian den-
sity. The Lagrangian contains, in general, prescriptions (and Lagrange multi-
pliers) for the description of the system.

Both the action density function w(X) and the splitting among carrier
fields will be considered analytically well-behaved functions. A description is
introduced when we treat the energy E(7) of a system as a sum of the different
carrier types {c} such that E(f) = ZE (t), a sum of constants E (#) in space
for a given observer.

1.7  Carriers and physical bodies
The charges are to be defined in our theory from a geometrical analysis of the
distribution w(X)when momentum is described in two ways: the amount
which is related to the rate of change of action with respect to relative position,
and the amount, per unit charge, which is pairwise shared, adding to zero,
among the carriers.

The rates of change of relative energy and momentum are called forces. A
carrier for which a current of charges can be defined is by definition a body. A
body corresponds to our hitherto undefined concept of matter.
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Our study below will show that we cannot define an elementary body

unless other properties, in addition to charge, are given to the carrier.
In our presentation the word “particle” is systematically avoided as for many
authors it refers to a “point” body, with no spatial dimensions. The word
body, on the other hand, conveys the idea of spatial distribution. Point-like
distributions can only be introduced as a practical tool for handling a distri-
bution confined to a region of space small in relation to the total system’s
volume.

1.7.1 Maxwell equations from START

In our formalism [3,4] the Maxwell equations in their standard textbook form
are analytical properties of the third derivatives of the action density attributed
to a test carrier (with ‘electric’ charge) as induced by a collection of interacting
carriers. The energy per carrier can be considered the derivative of a scalar
field, but the momentum for interacting carriers cannot be solely considered the
gradient of a scalar field. In this particular case, assume that we describe a set
of carriers as interacting by partitioning an amount of energy (the interaction
energyE (X)) among them, allowing the partitioning to be described as the
sum of the overall momentum (0w, (X)/dx")e’ plus the momentum A, )
induced by interactions among the carriers. These interaction moment ﬁelds
might then have a non-null rotational part.

Consider, in the reference frame of a given observer, the induced action
density (arising from the interaction), denoted by ow,(X), per unit charge
(= p.u.ch) of a test carrier at space-time point X =x"e, . Here the Greek 1nd1-
ces u#=0,1,2,3 and x"=ct whereas the space vectors q=qg'e,=q.c',
e, =¢e, i=1,2,3 are written in bold face letters, and we use the standard
definitions of “dot” and “cross” products. From it define the related energy
density E,(X) and the total (external plus induced) momentum density p,,
per unit charge of the test carrier, as

ow,(X) B i [ Oow,(X)
or ° PeTPuS T (a'

also, by definition, the electric field strength E as the force (p.u.ch) correspond-
ing to these terms

E (X)= +A, pe,i)e[, {def. 1} 3)

OE (X)Jr Pe.;
ox' Ot

] e = VE, (X)+ e (4)
ot

with time dependence
? ’p.. ) 3 O (Mgp.))
8_E= aEe(X)+ pe,z ex=2aae(X)ez+ ( lee,l)el'
ot otox' otot Otox' ot (01)
By definition of interacting carriers, we have added in {def. 1} the term
Agp,.€ as the effect of the conservation of interaction transverse moment be-

tween the fields representing the rest of the carriers with that sort of charges.
This is by definition the origin, in START, of a magnetic field intensity
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B =B,¢" that will appear as the curl of the momentum (p.u.ch) of an interac-
tion field acting on a carrier of type b. The axial vector

0
( P, (X )je ‘e =Vxp.
ox'

with time dependence

aB azpe,i (X) j i
— |€ XC€.
o | orex

Otherwise the space variation of E, including the inferaction transverse mo-
ment,VE =V -E +V x E, will also include a transversal (rotational) term

p. (X)) . .
VxE= L() e xe = _6_B {2nd Maxwell Equation} %)
ox'ot ot

relation which is the direct derivation in START of this well known Maxwell
equation. The scalar term V -E being a divergence of a vector field should be
defined to be proportional to a source density

Ow,(X)) 0, .
V-E= Z[ pNrwEy J Py Vw,(X), {1st Maxwell Equation}
and will be given full physical meaning below.
For the space variation of B we have

VB=V-B+VxB.
The first term vanishes identically in our theory because it corresponds to the
divergence of the curl of a vector field

V-B=0, {3rd Maxwell Equation}

while the last term, using U xV xW =V(U -W)— (U - V)W

VxB=V(V’w,(X))-V’p, = 14, (J +&, aa—Ej, {4th Maxwell Equation}
t

The additional dimensional constant 4 is needed to transform from time units
(used in the conceptual definition of a current J =V(V’a,(X))/y,) into dis-
tance units. The units of &4, are of 7>/D* or inverse velocity squared, in
fact (see below) &,u, =c corresponding to have used above twice the deriva-
tive with respect to # and not to x, =ct .

The (4th Maxwell Equation), defining J, is related to the analog of the
(1st Maxwell Equation) and the analog of the (2nd Maxwell Equation), also to
a Lorentz transformation of the (1st Maxwell Equation).

The Maxwell equations can be formulated in 4-D form (O=¢“0,,)

1 1 =
eOI:I=Z(5t+V=26t+ei8,., J=e'J,, Jy=p, p=0,1,2,3, x,=ct):

F=E+cB,VF=i(p+le_iF,DF:Lj_
& C cot &
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The here derived Maxwell equations are formally equivalent to the original
Maxwell equations, then they are: first local equations and second linear in the
sources (o and J).

Both the (4™ Maxwell Equation), defining J, related to a Lorentz trans-
formation of the (1* Maxwell Equation) defining p, can immediately be inte-
grated using geometric analysis techniques, the standard approach being of
fundamental conceptual consequences in START. The space divergence of a
non-solenoidal vector field like E is immediately interpreted as its ‘source’ us-
ing the standard geometric theorem that the volume integral of a divergence
V-E equals the surface integral of the normal (to the surface) component of
the vector field n - E . Consider:

j (V-E)aV =j4—” p(r)dr = Lo :j E(r)w dS =4zr*E(r),
V V 80 80 N r

E:E(r)£: 0 21, r-n=r.
VY N

That is: the inverse square law of the Newtonian and Coulomb forces are geo-
metrical consequences of the definition of interaction among charged carriers.
Nevertheless this is not a derivation of the value(s) of the (Newtonian and)
Coulomb constant(s) G and ¢, .

For a small (/<r) current source at the origin of coordinates: (in the
sphere 1'(0,¢) -1 =0, (r')’ =)’ =1)

[(vxB)av = j B(r)(t' (0,4) xn)dS =4xr’ fB(r)r,

» . M
I47rﬂ0J§(r')r'2dr' = p, M = 47 fB()r" = B = B(r)r' = -2 —'
v Arr f

and its Amperian inverse square law is also a geometrical consequence of the
definition of transverse interaction among charged carriers.

1.7.2 Beyond Newtonian gravity
The analysis above depends only on the assumption of the decomposition of
the action and of the energy momentum into contributions per carrier. The
analysis above can applied to gravitation considering the mass M = E/c”. The
Newtonian gravitational potential equation per unit test mass m

Vr)= —GM, thatis E = —GMZ,

r r

the usual relations in the textbook formulation of Newtonian gravity. The con-
stant G =1/4ze® . If we define ¢’ (el =1 then u\¥ =42G/c’.

In this approach to gravitation there is no quantization properly, there be-
ing no exchange of action, only a description of the sharing of energy between
a source carrier and a test carrier. We include the transverse momentum in the
interaction between sources of the gravitational field:



A comprehensive theory of the electron from START 9

op¥(Xx) . . 0B
VxE :p’—.()e’xe’=——g, (6)
& ox' ot ot
E, \47G 1 6E
VxB, =V (VW& (X))-V’p® = ,u(()g)[Jg +&f® 6:} Tt

1.8 Formal definition of carrier fields

We follow our presentation in [4] (Keller and Weinberger).

A carrier-domain B is a connected open set whose elements can be put
into bijective correspondence with the points of a region (domain in some in-
stances) B of an Euclidian point space E. B is referred to as a configuration of
B; the point in B to which a given element of B corresponds is said to be “oc-
cupied” by that element. If X denotes a representative element of B and x the
position relative to an origin 0 of the point x occupied by X in B, the preceding
statement implies the existence of a function $: B — B, (B,, stands for the
totality of the positions relative to 0 of the points of B) and its inverse ©:
B, & B such that

x=3(X), X=0(x) (7)
In a motion of a carrier-domain the configuration changes with time
x = #X,1), X=®D(x,) ®)

In a motion of B a typical element X occupies a succession of points which to-
gether form a curve in E. This curve is called the path of X and is given para-
metrically by equation (8). The rate of change v of x in relation to ¢ is called the
velocity of the element X, (our definitions run parallel to those of an extended
body in continuum mechanics; see for example Spencer 1980 [8]). The velocity
and the acceleration of X can be defined as the rates of change with time of po-
sition and velocity respectively as X traverses its path. “Kinematics” is this
study of motion per se, regardless of the description in terms of physical forces
causing it. In space-time a body is a bundle of paths.

Equations (8) depict a motion of a carrier-domain as a sequence of corre-
spondences between elements of B and points identified by their positions rela-
tive to a selected origin 0. At each X a scalar quantity is given, called carrier
density p(X), such that if x = & X,7) then p(X)— p(x,t) defines a scalar field
called local carrier density.

As already mentioned, a carrier will have physical significance through its
set of properties. We used charges as example. The set of properties {Q} char-
acterizes a carrier field and in turn establishes the conditions for a density field
to correspond to an acceptable carrier.

1.9 Carriers in interaction

In B the carrier has existence only, whereas in B the carrier ¢ has a distribution
characterized by the density p, (x,¢) . There is no restriction in defining a refer-
ence space B, where the carrier exists in the points x with constant density p,
occupying a volume V, such that p”V, =1. These two quantities are unob-
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servable as far as any “observation” requires an “interaction,” only then the
distribution acquires meaningful space dependence as a function, by definition,
of an external interaction V(x,t) , which will be defined below. Here it is im-
portant to state that as a result of this interaction, and of the properties attrib-
uted to the carrier, the density evolves into a current: p'” = ;" (x,t) . The den-
sity is characterized by the properties of the carrier and the self-organization of
the carrier, which adapts to the external interactions.

1.10 Composite, decomposable, elementary, average and average
description of carriers
There are several ways to analyze the density. Each allows a physical interpre-
tation. For example:
o A composite carrier is defined as one for which the density

pe(X,0) =Y Ap.(x,0), )

with the definition of each of the p, (x,?) being also meaningful as a descrip-
tion of a carrier.

e Similarly a non-decomposable carrier is defined as one for which (9)
applies but for which the meaning of each of the p, (x,f) cannot be
defined without reference to the global p.(x,?) .

e An (non-decomposable) elementary carrier is one for which a single
p.(x,t) is all it is needed; in this case we emphasize the discrete na-
ture of an elementary carrier, but we do not assume a point-like or any
internal structure for them.

e An average carrier is defined as one for which its density can be de-
scribed as (W =X __, , 47)

puxD = T Aip, (1), (10)

c=1,n
with the definition of each of the p (x,¢) being meaningful as a de-
scription of a carrier itself.
e Similarly an average description of a carrier can be defined either as a
space average over carrier descriptions as in (10) or as a time average

of a description, or sum of descriptions (W = Z 1 I A°(t)dt , the
c=Ln r t=t,
choice W =1 presents less manipulation difficulty)
1 1 t=ty+7
X)=— » — A () p(x,1)dt. 11
p(x) WZ j ()p(x,1) (11)

This paper is centered on the definition of the elementary carriers and
their correspondence with the fields describing the elementary particles, in par-
ticular the electron and its partner particle, the neutrino.
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1.11 The density
For a physically acceptable carrier density:

DI. p.(x,t) is areal function p,(x,f)cR.

D2. The density 0< p (Xx,f)<o in order to represent a finite
amount of charges and of action.

D3. The derivatives of the density —o0 <0, p,(x,t) <+ in order

to represent a finite amount of energy-momentum.

Theorem 1 If W(x,¢) is an analytical quadratic integrable complex or
multivector function, conditions D1, D2 and D3 are fulfilled identically if
p.(x,1)= |‘P (x, t)| Here | f | means the real quadratic form of any more gen-
eral function f; even if f itself is not necessarily a real function and we define: if
fF =71 then 0,/ = @,/ )f+ 1 @1

Condition D1 is fulﬁlled by the deﬁn1t10n p.(x,1)= |‘l’ (x, t)| D2 by the
requirement of quadratic integrability, D3 by the definition & | f |
(0, f")f+f7(0,f) and the analytical properties of ‘¥'(x,?) . It is seen that the
conditions DI, D2, D3 and I p.(x,t)dx =N, correspond to the ¥ (x,7) being
quadratic integrable Hilbert functions.

1.12 Wave function quantum mechanics and density functional
theory from START

We proceed now to establish the basic theoretical aspects of the study of carri-

ers, which result in a stationary state Wave Function Quantum Mechanics and

Density Functional Theory of the carriers.

o The total energy of the system is a functional of the density, which can
be defined in two steps. The first is to establish that there is a ground,
least action, minimum energy, state of the system, which defines the
carriers themselves:

E" = [ EfY ()dx =] pf" (x)edx = Ne, (12)

j AV (x)dx =N (N = number of carriers), (13)

where the density of energy E."’(x) at a given space point x has been
factorized as the product of the energy & per carrier and the carrier
density p". This by itself is the definition of elementary carriers of
a given type: they are indistinguishable, equivalent, and the energy of
the carrier is a constant in space, for all points of the distribution and,
in a given system, the same for all elementary carriers of the given
type.

e The constant defining the energy per carrier is a real functional of the
carrier density and of the auxiliary function W(x).

£=e[ AV (0, ¥(x)]. (14)
Because the reference energy has to be freely defined, this constant

may be positive, negative, or null. The functional may, in some cases,
become a local density functional (LDF).
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The energy density, assuming indistinguishable (independent or inter-
acting) carriers of a given type is now subject to the needs or desires
of the observer describing the system. This defines independent carri-
ers from interacting carriers, in that this energy appears as a property
of the carrier in the system (a pseudo-carrier in condensed matter
physics language), different from an isolated carrier.

Physics studies both the system in itself and, mainly, its response to external
excitations. In the simplest approximation the necessary description is that of
the possible stationary states of the system.

e The study of different excitation energies of the system Av is now
equivalent to the Heisenberg approach to studying a physical system
through its excitation spectra, which was properly termed quantum
mechanics due to the direct use of Planck’s constant /.

e  Density functional theory describes the self-organization of the carrier
system with density po(x) in the presence of some external potential.

1.12.1 The density as the basic variable

It is convenient to define the action in a form that distinguishes the part corre-
sponding to the self-organization of the distribution and the part that corre-
sponds to the ‘external’ influences on the distribution.

The volume (in space) of integration is considered large enough for the
‘kinetic’ energy to be internal; there should be no need to change the integra-
tion domain as a function of time. If the external influence is represented by the
external potential V(X)) we can write for the total (invariant) action

A= i E[p(X)]+ [dxV(X)p(x) | (1)

where the functional £ ,[p(X)] corresponds to the energy of the distribution of
carriers p(X). This functional E , has the interesting property that at a given
time
SE,
op(X)

This is a basic relation in Action-DFT as far as there is an intrinsic definition of
the external potential. This shows the tautological nature of the concept of car-
riers, once they are defined, by E,[p(X )], the external potential is defined
through the density of the carriers themselves. The tautological cycle is closed
when given V(X) and p(X) the kinetic energy and the interaction terms de-
fine £ ;[p(X)]. Reminder: in practice more general forms of V(X) should
also be acceptable.

From the definitions above we can extend the description to consider a set
{b} of types of carriers, each carrier type with density p, . In this case for each
b the ‘external potential’ depends in all types o' # b .

=-V(X). (16)
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1.12.2 Introducing gauge freedom for the description of the action
The density p(X) at space-time point X is required to be gauge invariant,
whereas the description of the energy (action) is gauge dependent. This is
achieved by constructing the energy density as the product of an average en-
ergy per carrier £ with the two conjugated quantities W(X) and W'(X) such
that p(X)=¥Y'(X)¥(X) is gauge invariant. Here we define an auxiliary
quantity: a gauge phase @(.X), similar to that proposed by Klein and by Fock
as early as 1926 [10]:

W(X) = AX) #p(X) e P (17)
where we are restricted (even if ¢(X) can be very general [3] and can repre-
sent electroweak, color and gravitational interactions), by definition, to

p (X0 -4 s
ot
showing the gauge freedom of the description of the energy (action) associated
with the carrier. We have then recovered the equivalent to the Hohenberg-
Kohn Theorems [11] and, with our definition of **“{/p(X) below, the Hartree-
Fock or the Kohn-Sham minimization procedures [12] from

5(E[p]—g{jp(x)dx—zv})=o, (19)
allowing the direct self-consistent determination of p(x) and & (see [5]).

1.13 Least action amplitude functions in START
We can now follow the START definitions and the Schrédinger procedure to
obtain the stationary action states of the elementary carriers system.

1. Let the Schrodinger (1926) definition of action W(x,¢) in terms of an
auxiliary function W(x,¢) be

W(x,t)=KInW¥(x,t)=—KIn P (x,1), (20)
that is: action is considered a sum of terms. The action W(X,?) is re-
quired to correspond to the stationary states of the system to be de-
scribed, if ensured through a variational optimization procedure.

2. Let the carrier density p be the real quantity defined above

p(x,t) =¥ (x,0) ¥ (x,1), (21)
where , p(x,7), W and W' are: unique-valued, continuous and twice-
differentiable and obey the additional condition p(x,t)| pace boundary = 0 .

3. Let the canonically conjugated variables be X =(x,7) and
OW =iKOmY =—KOn W', with O=¢"0 ., the space-time gradient
operator.

4. Let the local energy description be (EO is not a density)

2(D\PT)(D‘P)2_~2_ 2PN 252
K Wc =E"—(Pc) =(E,) =(my”), (22)
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(in the case where an interaction, through a gauge, is assumed to exist
(E-V) —(Pc—-ed)’ =(my’)’) with the Euler-Lagrange (density of
energy and constrain) function

J=K*@¥")-(@¥)c’ - (m,c*)’ ¥y, (23)
and perform the variational search for the extremum energy E (mini-
mum of action for a stationary state system) 6J =0 to obtain from the
standard variational approach the condition ( K* = 7)

KY'@w)+ @O YHY]=mc Y'Y, 24)
and then the equation for the auxiliary function ¥ (the Schrédinger-
Klein-Gordon-like Equation (SKGQG)) is

o oo o 0
W ——| =5 +—5+— |’ |- (m,c?) |¥=0. 25
{ (6:2 [8}62 o o O’ 23
We must emphasize that in the relativistic (and in the non-relativistic) case we
obtain, through the Schrodinger optimization procedure, the ¥ (or ¥') func-
tion which minimizes the action of the system. A geometric factorization of the

operator in the SKG equation transforms it into a Dirac-like equation. The
gauge potentials are to be added.

1.13.1 General case of the auxiliary amplitude function ¥

The auxiliary amplitude function ¥ describing the (set of) carrier(s) is con-
structed from sums of per carrier ¢, contributions _ (sets of sums also). The
space-time distribution y/, of a carrier and its intrinsic properties is given by
the (four factors) functions:

v, = 2o (ORGP, (26)

the first factor, the geometric square root **}p , describes the per carrier local
density, the second, the multivector transformation R(x,?), the carrier local
properties, the third e the observer-relative carrier local motion and the
last, the P, is a projector describing the reference sign of the mass and the

+

reference direction of the spin.

1.13.2 First order equation as a factorization-projection
Consider (here again k* = (moc/h)z, i’ =-1)

1 ¢ ) )
?Wt//—v v+ky=0, 27)
and propose the factorization of the operator in the Dirac sense (O=¢“0,, )
@O+ik)@—ik)y = (y*0,, +ik)(y"0, —ik)y, (28)
defining the projected function
V=", —ik)y, (y“0,+ik)¥ =0 (29)

which obeys, by construction, the well known Dirac equation, showing that the
auxiliary function W, optimized to obtain the least action, is a geometric func-
tion (using a representation y(e”)=y* of the geometry).
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For a massless carrier field £ =0, this factorization is not unique, as
(0“0, +m*)= (D" +mi)(D - mi), (30)
requires that
-D'm+mD=0 and D'D=0"0,=00", (31)

therefore we can have a set of choices, either:
1. any value of m and D' = D (the standard Dirac operator D, =0);
2. or when m = 0 the possibility D' # D also becomes acceptable.

The basic requirement D'D = DD" =8"0,, limits the choices of D. Here they
will be written in the Lorentz invariant form. The I'f,) are a generalization (ir-
reducible or reducible representation) of the Dirac y* matrices. The limitation
is so strong that the only possible choice, within the algebra, is when the chiral-
ity generator iy° , which has the same action on all y*, that is iy’ y* = —y*iy’,

is used (see Keller [3]). We define the differential
d i\ . . a\ T
o\ :{1cos(n+t#)3+175 sm(n+tﬂ)5}6ﬂ, (32)

with n and t: integers, a choice which results in the simplest multi-vector.
Here, to take the electron as a reference, we use n = 1.
Then, in a particular frame we have the ‘diagonal’ structure:
w 9, if n+tZ are even,
“ iy°0, if n+1; are odd.
The vectors, which can be represented by the standard y* matrices, correspond
to an irreducible representation of the Clifford algebra C,, useful for writing
the wave equations of the fundamental family of leptons and quarks
(eg,e;,v;,{u;,d,; color}} of elementary particles. The electron requires a
combination of two massless fields e” =(e,,e; ) for the standard phenomenol-

ogy of electroweak-color interactions. The case of the neutrino presented here
is the simplest of these structures.

(33)

1.14 Interaction fields and charges

Consider the particular case of an initial situation without electromagnetic phe-
nomena being present E=0, J=0, B=0 and p=0, and that in the process
of creating a pair of interacting carriers with electric charges O, an initial pulse
of current J(r,#) = Ov(r)d(f,) is assumed to have been generated. This induces
an electric field for ¢ > ¢, from the Maxwell Equations derived above:

0E==J(r,t)/ &, +VxB/g,u, = Ov(1)o(t,)/ &, (34)
E(r,t;t > t,)=-0v(r)/ g, then p(r,t)=-0V -v(1), 35)

and
0,B(r,t;t >t,) ==V xE(1,t;t >1,) = OV x V(1) / &, (36)

showing that this virtual mechanism (in our process to establish a partitioning
of energy and momentum among charged carriers) requires the actual alloca-
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tion of physical properties, to the collection of created carriers, since the diver-
gence of the current pulse creates a charge and the rotational of the current
pulse of velocity field v(r) creates a magnetic dipole. We can see that the defi-
nitions are a circular procedure: sources create fields or fields generate the con-
cept of sources.

In START the charge O corresponds to the rotations (a new type of
“spin”) in the planes generated by the (space axis)-(action axis) basis vectors.
Notice that a charged source with a circular current generates an electric and a
magnetic field, the case of the electron, and the carrier also shows the presence
of the spin associated to the solenoidal current. Within the postulates above the
action of circular currents will have to be quantized in terms of Planck’s 7, a
pair of currents in terms of 7/2 each. The emitted, excess energy-momentum-
angular momentum (electromagnetic wave), is itself (from the Maxwell Equa-
tions) an action carrier traveling at the speed ¢~ =(g,4,). We see that the
concept of electromagnetic (light) wave is basic to the study of action density
and its distribution in space-time, and the quantization condition is also funda-
mental in this case.

2. The experimental electron

The matter fields enter into the theory as charge-current distribution densities
J. = (p,J). The currents J (for example those generated by the electron field)
can, in general, be decomposed into their solenoidal j , and irrotational j
parts. In Dirac’s theory the solenoidal parts analyzed via the Gordon decompo-
sition contain two components: one which is intrinsically solenoidal; and a
second which is solenoidal only with reference to the boundary conditions and
the observer’s frame of reference. Then the electron sources of the electromag-
netic fields, in units of the electron charge e, are described in fact by a set of
seven basic quantities:
PsJisJ s Jis Jisors Jjsol and j_ ., (37)

We have already reminded the reader that an electron cannot exist without
its electromagnetic fields, that is, it exists with an electrostatic field generated
by the electron’s charge, an intrinsic magnetic field generated by its intrinsic
solenoidal current and an additional electromagnetic field generated by the, ex-
trinsic, electric current. A satisfactory theory considers physical entities as con-
stituted by whatever is observable.

The intrinsic solenoidal current of the electron implicates not only a mag-
netic moment but also an angular momentum

S= j S(x) :%h, (38)

then in (39) above j, could also be replaced by an angular moment field
S(x) . Dirac’s theory shows that the magnitude of S(x) is

S(x)=Sp(x), (39)
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then only the direction of S(x) is independent of p(x) but not its magnitude.
This is one of the most important features of the geometrical content of the
electron theory. It says that, even if the analysis of an electron distribution
shows some solenoidal current, there is a curl of the distribution at every point
and, as is well known in vector analysis, the overall intrinsic solenoidal current
is the result of the application of Gauss’ theorem to the ensemble: every point
of the distribution contains the same amount of intrinsic angular momentum
per unit density.

There is no indication whatsoever of a structure giving rise to spin, and in
fact a spin field S =wy,,y* = pwy,w" is one of the most fundamental quanti-
ties of the standard theory.

In all experiments performed up to date an electron appears as a distribu-
tion of charge, currents and electromagnetic (electroweak, in fact) fields. Prob-
lems arise from the attempt to rationalize the experimental facts starting from a
point particle idea as the basis for the interpretation of experiment or for the in-
terpretation of the results of the now standard quantum mechanical calcula-
tions. Experiment shows that there is no internal structure of the electron, but
the experiment does not disagree with the existence of distribution. The ‘inter-
pretation’ of the distribution is a not a question of quantum mechanics, nor of
the electron theory. That is, there is no experiment resolving the electron
‘cloud’ into instantaneous positions of a ‘point’ particle, nor at the same time is
there any evidence at all of a possible excitation of internal structures of an
electron.

We could speak in terms of electromagnetic quantities alone. The densi-
ties, which we commonly refer to the sources, can be substituted by electro-
magnetic quantities through the integral form of the Maxwell equations. For
example, to relate E and V-E

V-EF)r
E() = —— [V E0) Ry (40)
47g, Ky T

ortorelate VxH and V-E for time independent E,
VxH = (V-E)v, (41)
and we can even think of the electromagnetic potentials A as quantities re-

lated to the sources in special forms
vig oy SA_V-D (42)
o g,

We can then assume that besides the field intensities E and H we have a vector
distribution (reminder J = &,(p +J))
V-E— p, (43)
(V-Eyv—>1, (44)
the energy-momentum related to this vector being
E=ym,gV-Ele, (45)
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P=ym,g,(V-E)v'e. (46)
Here m, appears as a parameter providing the correct dimensions and v’ cor-
responds to the relative velocity between the inertial system where V-E has
been computed and that of the observer. Remember that relativistically E and
H cannot be separated, nor do they have a unique formulation; in fact, they can
always be expressed as Lorentz transformations and duality rotation of a refer-
ence bi-vector H=yy,p *.

2.1 Spin, magnetic moment and mass
We now give a meaning to the proposed amplitude function y, in the free par-
ticle approximation. The rest mass parameter m, of the carrier will be directly
related to the amplitude term of the non-dispersive wave packet. This is a con-
sequence of the fact that a non-dispersive wave packet, i, is a solution of the
equation

10
o
Then a non-dispersive wave for a carrier of mass m travelling in the +x direc-
tion with velocity v relative to the observer takes the form [13, 14, 15])

W= g""(’/;(sin kqr ! kyr)expli(wt —kx)P ., (48)

Oy =0, where 0°=V* = 47)

where

1

_vt)? 2

ky=myc/h, r= ()c—z\/l‘)2+y2+x2 s
1-(v°/c%)

w=mc/h, k=mv/h, ko2 =(wlc) =k,
with p(x,?) =constant representing the time average of a steady state. That
(48) is a solution of (47) follows by simple substitution. It is also one form of
the standard spherically symmetrical solution of (47) after it has been subjected
to a Lorentz transformation.

Then a solution of (47) takes the form (we leave out the reference projec-
tor P, in this part of the discussion; note R >0)

yw =« pRexpliS]. (50)
Inserting this y into (47) and then separating real and imaginary parts, the fol-
lowing two equations are obtained:

(49)

DZR—R{(VS)Z _Lz(a_s) }:o, (5D
c \ ot
RO%S + Z{VRVS —iz(a—Rj(a—Sj} - 0. (52)
c \ ot )\ ot

If one takes the exp[iS] to be the de Broglie wave, so that S =t —kx , (52)
now leads directly to the result that
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2 2 2

BR_me (53)
R h

It is well known that equation (48) represents the superposition of two
spherically symmetrical waves, one converging and one diverging, both having
phase velocity ¢ [15], and if the waves are electromagnetic waves, this combi-
nation constitutes a phase-locked cavity similar to that proposed by Jennison
[16], who has also shown that such cavities have many of the inertial properties
of particles. The structure of the field can be associated with the electron. We
now compute the spin of the distribution (48). The momentum P of the field is

P :f[(/ﬁvl// + y/Ta(a”Vﬂ)l//]+ h.c, (54)
i
h T T h T
P=_ly'Vy = (Vyhy + 7 Vxyloy], (55)
and, for £ = 0 corresponding to a particle at rest,

n( k* ) o (sin®kr . .
P=pxt)—| — |—| —— [(=2yx +2xp), 56
o( )4(27#]6;( pER J( yE+2xp) (56)

which represents a circular flow of the field in the plane X A y. The angular
momentum is given by

h B s
V= [exy'Vy = (Vy s [y lopdx, (57)

and again the second term, spin, will be the relevant quantity. If we assume R
to be normalized, then the integral of the spin part would be trivially of magni-
tude 7/2 . As for a de Broglie wave packet k, = mc/# , then the same prefac-
tor R(r) that generates the mass generates the spin of the total wave. This ap-
pears to be the real origin of the structural parts discussed above. Notice that
47r*R(r)=0 as r = 0.

The prefactor R(r) provides, additionally, a connection with the standard
model of elementary particles given that
sinkr " e
ke ikr ke’
and it corresponds to a standing spherical wave: " /kr is an outgoing spheri-
cal wave and e /kr an incoming spherical wave. Given a spin direction they
will have opposite helicities, and the standing spherical wave will be the reali-
zation of the well-known sum of a left-handed and a right handed wave.

R(r)= (58)

ikr

2.1.1 Conserved electromagnetic quantities
The integrated quantities

E= jE(x,t)(dxf, P :j P(x,t)(dx)’, and M= j (Px x)(dx)’ (59)

electromagnetic energy-momentum and angular momentum for a steady cur-
rent J are time independent: dE/dx" =dP/dx’ =dM/dx’ = 0.
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2.2 The basic structural relationship between charge, magnetic
moment, spin and mass

A crucial argument of the present paper is that once we have defined a field of
sources for an electromagnetic field, which contains a static electric and a static
magnetic part, and we have shown that this field carries a spin 1/27#, the field
configurations correspond to a charged “particle” with spin. The charge of this
particle is e and its spin is |M :| = /2. In this case we have (see Appendix)

ge h noe

) or g ee2 = (60)
where @ =e’/hc =7.29735308x107 ~1/137 is the fine structure constant
(above in units where ¢ = 1). The relation e/g is a fundamental dimensionless
structural constant of the formulation of the theory. We now argue that the
usual relationship between a magnetic moment x and a spin s is

U= ap (61)
m

and, as for the carrier field, we have defined that the magnetic moment is
the carrier should be attributed a mass m,, . This being a structural relationship,
which should be obeyed at each point of the distribution with carrier density p.
The space integral of p for one carrier is 1, and then the relation (61) is obeyed
as a relation between physical constants at each and every point of the carrier
distribution, its space integral being g,, e, m, and s. The radius 7, is implic-
itly contained in the definitions.

2.3 Action and energy involved in the interaction
The logical cycle of the interaction structure would close when the energy and
action related to these logical and mathematical structures are determined.
From the definition of the divergence of the interaction fields as the sources
1
0F,, = —g—oJa, (62)

which allows the calculations of the energy given off by the source itself, the
energy of the interaction field.

For this purpose, consider a variation of the four-vector potential 4* and
the scalar product of these o 4" with the source carrier current to obtain, from
(62) after integration in a volume Q of four-dimensional space

[ [G”Faﬁ +iJaJ5A“dQ =0, (63)
)

this quantity refers to the action related to the source and also to the field. No-
tice that where J_, # 0 the integrand vanishes by definition. An integration by
parts, using a boundary condition & A4* (boundary) = 0 and the antisymmetry of
the F,, =-F,, gives

j af’(gﬁ)aA“dQ= j [07(F,,6A4%)—F, 0" (§A*)]dQ = j ~F,,0" (54°)dQ... (64)

aff aff

because 0 4” =0 on the boundary.
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[-F, 0’ (647)d2= %j[—Faﬂaﬁ (647)=F,,0" (547) O

- j[ F,6(00 4" =04 g =— IFa/ﬁ Faﬂ)d9=%j'5(Fa,,F“/’)dQ,

to obtain finally

(65)

j5[ F,F* +—J A“]JQ:O. (66)

The field energy density is

E(X) _—F 7 +iJ A%, (67)
0

We have followed the Huang and Lin [9] analysis in his equivalent work to ob-
tain the Lagrangian of the electromagnetic field. We should remember that in
our approach carriers do not interact with themselves, and the quantity in (67)
should be taken to be zero if J_(x,1)#0.

3. The many-electron problem

The N electron problem (fermions) should solve the set of equations

_ _wpt
p=Np one electron in the N electrons system v

The statistics are the Fermi-Dirac statistics and require:

e The density for the N equivalent fermion carriers system is to be con-
structed as a sum of M independent alternative contributions
p(x,t) =2 (im1.m>n) ol (x, 1,s, )

o There should be at least one linearly independent function (pseudo-
carrier amplitude) contributing to the density for each of the N equiva-
lent carriers in the system. A linear transformation would then give
one different spin-orbital (SO or “state”) per electron, the usual argu-

ment.
M>N )
v.(x,t)= Za 4, (x.1,5,) a =be,
ii'__[' i i <1.ZM 2_
a.a, =-a.a, a,| s1;Q =~ la| =

The total amplitude function should be a sum of single (pseudo-) carrier ampli-
tude functions w,(x,t,s), such that the exchange among two carriers of the
space—time—spin (x,¢,s) descriptions.

¥ =) oy, (x1,s)and Y= > ZD'C'l//j, (x,1,5)

This defines ¥ as a vector, linear form, expressed in the basis {&°} .
The ¥ are defined and the products ordered to obtain

[ fax = [ Wwax =
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j¢1 (X,0,5,)¢,(X,1,5,)dx =3, ; 0@ =—0 & ;also T =5

The 1% condition is double: first the orthonormality among the ¢, functions
(requiring them to be eigenfunctions of the same differential equation operator)
to fulfill the condition of making linear independent combinations y, and sec-
ond the Grassmann character of the a coefficients, to make the local density
per carrier corresponds to the sum of the squares

. 2
ag (x.t.s,)
and the 2™ condition, equivalent to the Pauli principle, defines the @ as
Grassmann variables and the @ as their Grassmann conjugates.

The (stationary state) Hamiltonian for a many-electron atom (or molecule
or solid) may be written in the form

B

¢ Acore(x)w + Z ldx .0 a)c 2/rl,C_’C lwcwc
)

¢ =c+l J

H-= Z

e

b= Z o [ core(x)+I:Iimeraction(x)ch, E=I‘P*1€I‘de

where the core Hamiltonian for the electron ¢, consists of the kinetic-energy
and nuclear attraction terms for electron ¢ with coordinates i. Hamiltonian
Heore (X) + Hinteraction (X) 18 a one-electron operator, even if 1/};./."" , being de-
pendent on the inter-electron distance, is a two-electron operator; ®° and @
act here as projection operators. The energy of the N -electron system is given
by E and we should determine both ¥ and £

There is a total density function p, (x) which should be integrable in a
final volume, and everywhere in that volume should be a finite and non nega-
tive function, corres ondln to a many electron function ¥, ({x, };n=1,...,N)
where p, (x)= |‘P N| Z p.(x)= ZM N Pa (x). This Hermitian square can
be descnbed as both a sum of p.(x)= .| oras asum of SO contributions
p.(x)=

Thll‘d, in the case of the many electron (fermion) system we are studying
all N electrons (fermions) are equivalent. This requires that the density itself
isasum p,(x)= “P v ‘2 =N P ron(X), and each p, . (x) should be generated
by equivalent contributions. Thatis p,, .. (x) =1/N Za p,(x).

As density appears as a sum of densities, then the wave function should
both be the square root of the total density and also provide the square root of
each one of the contributions to the total density. For this we require the use of
geometric (multivector analysis) techniques. In fact the problem is similar to
that of finding the linear form (geometric square root) d = ae, +be, +ce, +...
which corresponds to the quadratic form d* =4 +b> +¢* +....

3.1 Configuration space and real space

A basic concept in the study of a many-electron system (N interacting fer-
mions) is, from the considerations above, the simultaneous, repeated, use of
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real space (the space of the observer) for each one of the fermions of the sys-
tem: configuration space. Then, if x represents a point in real space, it is cus-
tomary to represent by X = {Xa ;a=1,..., N} the set of points in the configura-
tion space X for N fermions.

Here and in the rest of our presentation we use a geometric notation
X=>wox{a=1...N;0,0,=-0,0,} and the projection operators @,
such that @ ,@, = J,, selecting the part of the configuration space which cor-
responds to electron a: @, X =X, . This allows a clear formal definition of the
electrons involved in each part of the calculation. Our geometric procedure in-
troduces the statistics of the fermion system from the beginning because the in-
terchange of two electrons in a given expression will change the sign of the
corresponding terms.

3.2 The energy calculation

In correspondence with our formal definition of configuration space the total
electronic energy operator or Hamiltonian is

A nwv: o ze' 1 ¢
Hyw =Y, 0| ~———-T=+=>, o,—w, @, H 68
KKWw Zn ”[ 2me X 2 Zm¢n m Xnm m n ( ) ( )

n

and the wave function W} is , with o, =-a,¢, and @,,5,
N M>=N
YY" =Y wo, where y =) " had (x,) (WF) (69)

Here the electron, or pair of electrons, under consideration is explicitly se-
lected. Note that a double set of Grassmann numbers {®,;¢;,} has been intro-
duced; this has an analytical analogue in the HF method, where in a determi-
nant the exchange of columns or of rows changes the sign of the determinant.
The exchange terms arise from the definition of the wave function (WF) when
used in (H).

In (H) the core Hamiltonian for the electron n with coordinates i consists
of the kinetic-energy term and the nuclear attraction local potential. In the cal-
culation of i the effective Hamiltonian is H_, (x) +H,oraction (x) where the
second term is a one-electron operator, even if the electron repulsion, being de-
pendent on the inter-electron distance, is a two-electron (i for n, j for m) opera-
tor. The resulting exchange and correlation potential is the same for all compo-
nents of . Orthonormality and equivalence are used

E, = - J v { Zw H"(c)a’ }\dec
N ot

=]1[.|.de l//i (x, )\ZN:(U H" ()’ Za)"(//d (x,)dx.
E, = ﬂ.[l//f(x.)ﬁw(l)l//. (x))dx, = I > 8:“’”(?&,)“%“’& p,(x,)dx,
N i p(x,)

=I &(x,)p,(x,)dx (formal definition)
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For the electron-electron interaction (e-e), because the equivalence of the N
electrons and using the expansion of the i, we obtain

N oo o
E, =20, 00 20,0, 7= 0, 2 9, Detdx i,
i J

x| 5 ,

there are 3 types of e-e terms:

2
e

Considering the property o;/a; =9,

ij 2

I) j=k and i=/ which gives
1 —
I l—f {ZZ @
2 i J#EI | |2|
II) j=[#i and i=Fk (one interchange a,a; =—a;a; is needed!)

] Ej {—Z 5 aa' o @0, <2>i|co,“(l>co, W)/p, (x. >} dx, }p (x)dx,

|x

2/_),(1)dxl = -[Vl (x))p, (x,)dx,

J i
al al

dx,

2
e
X

:,[V”(x])pl (x,)dx (the 6 arises from i# j, spins orthonormal)

IIT) Null terms, where (i #/ and i#k )or ( j#/ and j+#k). The total
electron-electron interaction energy:

” N
E™ [p,¥]= ;J (00 47,50 2,0, = N e (5,00, ),

Then we have two different contributions which will also contribute to the
formal interpretation of the Pauli Exclusion Principle: a given electron is not
interacting with itself and there is an “exchange” term for fermions, where
from a,a, =—a;a; anegative sign appears. Those terms are related, and similar
in structure, to the integrals related to “exchange-correlation” in the HF+CI
sense. Finally the total energy of N equivalent electrons is

E[p]= Nf {£77(x)+ ™ (x))} p,(x,)dx,

8[ p]:gw"f (x,)+&™e (X, )=constant , E] [ p]:N 8[ p],[ p,(x)dx =N¢

In principle it should be written £ = E[ p, ¥ ] . The variational procedure is to be
carried with respect to the y’s. The basic set of equations for our KKW
method, presented in comparison with HF and HF+CI, is as follows:
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KKW HF (HF)+CI
HY = NeW HYS =6, ¥ |HYS = NowsS
R LI W
oo, :”;wm(u” (o ]edetl Y =NV, + ZB: ;P
ey Bl
I;m,l// = oy '?’wisc =0 K\P;c I/—}‘-P‘ZC>—8530} -0
=2 ) o=l pu+ Tlens
= b 2 ' 2 _ _HF B
p,=lb, ¢,’ P =2, P, <\p§f\pff >: 5
4 ,[p.dxz‘b.‘“ P =|p5C 2
! 1 ! i sc|?
T — Py =[¥5]
S &(plp)e N=U14Y e,/
a,=ba, D=N?
617iO!j = é‘ij
al.a/:—a/.ai

Row 1 presents the basic equation, row 2 the structure of the wave function,
row 3 the resulting equation after the variation, energy minimization procedure,
row 4 the definitions for the total density in each method and some auxiliary
conditions.

Appendix: Definitions and Notation

We use the term space to denote the 3-D space of our perception of the distri-
bution of physical objects in Nature and for its mathematical representation as
an R® manifold with a quadratic form. Its points are denoted by the letter x
and represented as a vectorial quantity x = x'e,. We use the traditional indices
i=12,3.

We use the term time to denote the 1-D space of our perception of the
evolution of physical phenomena in Nature and for its mathematical represen-
tation as an R' manifold with a quadratic form. The normal-face letter ¢ de-
notes its points.

We use the term space-time to denote the 4-D Minkowski space of our
perception of the physical world in the sense of relativity theory, and for its
mathematical representation as an R* manifold with a quadratic form:
ds’=g wdxtdx”, (u,v=0,1,2,3). Its points are denoted by the Normal-face
letter X' and represented as a vectorial quantity X = X“e, . We use the tradi-
tional indices 1 =0,1,2,3. The vectors e, in the geometry of space-time gen-
erate the G, 16 dimensional space-time geometry of multivectors. The basis
vectors {e,,e,e,,e,}, with ¢; =—¢] =—e; =—¢; =1 and the definition property
e, =—e.e, generate a Clifford group CI,;. We also use the notation
€, =¢e, =¢, (j=1,2,3) and e, =¢yee,e; =¢,,. A special property of the
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pseudo-scalar (and also hypervolume and inverse hypervolume) in space-time
e; is that ee, =—e e (from e, =—e¢e,, p#v) and then it has the same
commuting properties with the generating vectors of G, as generating vectors
have among themselves.

A vector e, can be used to introduce an additional basis vector, giving

one more dimension (action). We thereby obtain the five dimensional carrier
space spanned by the basic vectors e,, u=0,1,2,3,4 (identified as
e, =e, u=/ and e,) with metric g, =diag(+1,-1,—1,—1,—1). This is used
to construct a geometrical framework for the description of physical processes:
a unified space-time-action geometry G, , mathematically a vector space
with a quadratic form. An auxiliary element j anti-commutes with all
e,: e,j=—je, and j’ =+1.
Multivector Representation. The base space R’ corresponds to the real vari-
ables set {ct,x,y,z,Koa} < {x";u=0,1,2,3,4} , that is, time, 3-D space and ac-
tion (in units of distance introducing the universal speed of light in vacuum ¢
and the system under observation dependent, using the Compton wavelength 4
for a system with energy mc”: Ko= A/h =1/mc). Time is usually an independ-
ent evolution coordinate. Action is distributed in space, then we consider the
functions x(z), y(t),z(t) and w(¢,x,y,z) =Koa(t,x,y,z). The nested vectors

ds=y, di'e;u=01234 5-D
ds=), di'e,;u=0123 4-D
dx=7) dx'e;i=123e =¢e 3-D

are members of a Clifford algebra generated by the definition of a quadratic
form

2 2 u ) START j u j. v
ds® =(ds) =(zy dx euJ =ZW g dxt dx”
g = diag (1,-1,-1,-1,-1) ,e,e, =—e,e,
e=¢eeee,=—e', ee=ee,

This 5-D geometry has two types of rotations: space rotations associated with
angular momentum (in particular spin 4 h and intrinsic magnetic moment) and
“rotations” in the action-space planes, with degeneracy 3 and intrinsic value
@ h/2mc , associated with the electric charge of the field.

Observable objects are extended in space described by an action density
a in space-time. Then a) defining m(x,t)c* = ¢,,,(x,t), b) the inverse of the
space-time volume ¢yee,e,/axayazat, c) the space-time d’Alembertian opera-
tor 00 =2X.e“0. (for a given observer with time vector ¢, the operator O has
the property ¢,0 =(1/¢)d, +V =(1/c)0, +¢0,), d) along b =X,b"e, the direc-
tional change operator is db=2ZX.db"0. (apply for b =cte,,xe,,ye,,ze, to ob-
tain the sum of directed changes of w) to obtain:
m(x)c2at 1 m(xp)c2ar (mx0)/meat
AXAYAZAL © 7 MyC AXAYAZAL T AXAYAZAL

a(x,t)e, = K,a(x,t)e, =K,
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(m(x,1)/m, )cat e w(x,?)

AXAYAZAL AXAYAZAL

edw = z#[(ayw(x, t))dx"]eﬂe

(5] = as)as)'

- [1_(,(0 posz (cdi)® - [ (% pl)zJ(dx)2+[l—(K0 ») jzl(dy)z{l—(lco p3J2](dz)2J

here p,=0,a(x,t) is a momentum density. Notice that w(x,?) is the distance
equivalent to a reduced action density, this makes the approach universal for
all systems.

We use the term action a to denote the 1-D space of our perception of the
objects of physical phenomena in Nature and for its mathematical representa-
tion as an R' manifold with a quadratic form da’.

e) We use the term space-time-action to denote the 5-D space of our perception
of physical phenomena in Nature and for its mathematical representation as an
R’ manifold with a quadratic form

dS? =ds* —i,da’ = g, dx"dx" — kyda® = g pdx"dx”
(4,B=0,1,2,3,4), (u,v=0,1,2,3).

Its points are represented by the set (X,x,a), &, =1/m,c.

f) We use the term description to denote the partitioning of the total action (or

energy-momentum) into carriers c. We use the term theoretical structure for a
set of defining mathematical considerations.

a(x,t)e, = e=w(x,t)e

(70)
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The electron, one of the most fundamental particles in nature, is described in de-
tail in the unified composite model of all fundamental particles and forces, a
candidate for the most fundamental theory in physics.

l. Introduction

In 1897, J.J. Thomson discovered the electron, one of the most fundamental
particles in nature. For more than a century since then, the electron has played
a key role in physics as well as science and technology. What is the electron?
From the remarkable progress in experimental and theoretical physics in the
twentieth century, it has become well known that matter consists of atoms, an
atom consists of a nucleus and electrons, a nucleus consists of nucleons (pro-
tons or neutrons) and a nucleon consists of quarks. There exist at least twenty-
four fundamental fermions, the six flavours of leptons including the electron
and the eighteen (six flavours and three colors) of quarks. In addition, there ex-
ist at least twelve gauge bosons including the photon, the three weak bosons,
and the color-octet of gluons. The quarks have the strong interaction with the
gluons while both the quarks and leptons have the electroweak interactions
with the photon or the weak bosons. In addition, all these fundamental particles
have the gravitational interaction with themselves (or through the graviton).
Furthermore, it has also become clear that the strong and electroweak forces of
these fundamental particles fit the standard model in which the strong interac-
tion can be described by quantum chromodynamics, the Yang-Mills gauge the-
ory of color SU(3), while the electroweak interactions can be described by the
unified gauge theory of weak-isospin SU(2) x hypercharge U(1). The latter
theory assumes the existence of additional fundamental particles, the Higgs
scalars, which should be found in the near future. Since there exist so many
fundamental particles in nature and so many parameters in the standard model
of fundamental forces, it is now hard to believe that all these particles are fun-
damental, and it is rather natural to assume that the standard model is not the
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most fundamental theory, but what can be derived as an effective theory at low
energies from a more (and probably the most) fundamental theory in physics.

In this paper, I shall describe the electron in detail in the unified compos-
ite model of all fundamental particles and forces, a candidate for the most fun-
damental theory in physics. This paper is organized as follows: In Section II, I
will introduce the unified composite model of all fundamental particles and
forces, in which not only all quarks and leptons, including the electron, but also
all gauge bosons including the photon, the weak bosons and even the graviton
as well as the Higgs scalars are taken as composite states of subquarks, the
more (and most) fundamental particles. In Section III, I will explain all proper-
ties of the electron such as the electric charge, the intrinsic spin angular mo-
mentum and the mass in the unified composite model. In Section IV, I will de-
scribe all interactions of the electron such as the electroweak and gravitational
interactions as effective interactions at low energies (or at long distances) in the
unified composite model. Finally, the last Section will be devoted to conclu-
sions and further discussion. Throughout this paper, the natural unit system of
W(=h/27r)=c=1 where h[=6.62606876x107* Js] is the Planck constant
and ¢ (=299792458 m/s) is the speed of light in vacuum should be understood
for simplicity unless otherwise stated. Also, note that electric charges should be
understood as in units of electron charge e [=1.602176462x10™"" C]unless
otherwise stated.

Il Unified composite model of all fundamental parti-
cles and forces

The unified composite model of all fundamental particles and forces consists of
an iso-doublet of spinor subquarks with charges 2, w, and w, (called
“wakems” standing for weak and electromagnetic) [1] and a Pati-Salam color-
quartet of scalar subquarks with charges +2 and -}, C, and C, (i=1,2,3)
(called “chroms” standing for colors) [2]. The spinor and scalar subquarks with
the same charge +72, w, and C,, may form a fundamental multiplet of N =1
supersymmetry [3]. Also, all the six subquarks, w, (i=1,2) and
C, (=0,1,2,3), may have “sub colors,” the additional degrees of freedom
[4], and belong to a fundamental representation of sub color symmetry. Al-
though the sub color symmetry is unknown, a simplest and most likely candi-
date for it is SU(4) . Therefore, for simplicity, all the subquarks are assumed to
be quartet in sub color SU(4) . Also, although the confining force is unknown,
a simplest and most likely candidate for it is the one described by quantum
subchromodynamics (QSCD), the Yang-Mills gauge theory of sub color
SU(4) [4]. Note that the subquark charges satisfy not only the Nishijima-Gell-
Mann rule of Q=1 +(B—-L)/2 but also the “anomaly-free condition” of
20,=20.=0.

In the unified composite model, we expect at least 36 (= 6x 6) composite
states of a subquark (a)and an antisubquark (a or a) which are sub color-
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singlet. They include: 1) 16 =(4x2x2)spinor states corresponding to one
generation of quarks and leptons and their antiparticles of

Ve = CO*WI’ €= Co*wz’ u, = C[*Wl’ d; = CI*WZ’
and their hermitian conjugates (i =1,2,3); 2) 4 (=2x2) vector states corre-
sponding to the photon and weak bosons of
W =ww;
7, Z=ww, ww,, GG, CC;
W= =ww,;
or 4 (=2x2) scalar states corresponding to the Higgs scalars of
@ =[ ww) (wyw) / omw) (wyw) | (1,7 =1,2);

and 3) 16 =4 x4 vector states corresponding to a) the gluons, “leptogluon” and
“barygluon” of
G, =g(la/2)ij Ci G, =CCy; G,=CC (i,j=123),
where 4, (a=1,2,3,...,8) is the Gell-Mann’s matrix of SU(3) and b) the “vec-
tor leptoquarks” of
X, =C,C,
and the hermitian conjugates (i =1,2,3) or 16 =4 x4 scalar states correspond-

ing to the “scalar gluons,” “scalar leptogluon,” “scalar barygluon” and “scalar
leptoquarks” of

99 ¢

®,=C,C, (a,f=0,123).

Quarks and leptons with the same quantum numbers but in different genera-
tions can be taken as dynamically different composite states of the same con-
stituents. In addition to these “meson-like composite states” of a subquark and
an antisubquark, there may also exist “baryon-like composite states” of 4 sub-
quarks, which are sub color-singlet.

Ill. Quantum numbers and electron mass

In the unified composite model the electron of charge —1 and spin Y% is taken as
a composite S-wave ground state of the spinor subquark w, of charge - and
spin %2 and the scalar antisubquark C, of charge —/% and spin 0. The quantum
numbers of the electron come from those of subquarks, the constituents of the
electron. In order to explain the mass of the electron, we must consider all the
masses of quarks and leptons together, since the electron is not the only iso-
lated member but one of the at least twenty-four fundamental fermions, the
quarks and leptons. By taking the first generation of quarks and leptons as al-
most Nambu-Goldstone fermions [5] due to spontaneous breakdown of ap-
proximate supersymmetry between a wakem and a chrom, and the second gen-
eration of them as quasi Nambu-Goldstone fermions [6], the superpartners of
the Nambu-Goldstone bosons due to spontaneous breakdown of approximate
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global symmetry, we have not only explained the hierarchy of quark and lepton
masses, m, <<m, <<m,, m, <<m,<<m,, m, <<m <<m,, but also ob-
tained the square-root sum rules for quark and lepton masses [7],
m()% = md% - mu% and mﬂ% —m()% = ms% —md%, and the simple relations
among quark and lepton masses [8], m,m’ =m#3 and m,m’m> =m,m’m,’,
all of which are remarkably well satisfied by the experimental values and esti-
mates. By solving a set of these two sum rules and two relations [9], given the
inputs of m,=0.511 MeV, m,=1057MeV, m,=45+14MeV, m. =
1.35£0.05 GeV and m; =5.3£0.1 GeV [10], we can obtain the following
predictions:

m, =1520 MeV (1776.99 +0.29/-0.26 MeV) ,
m, =8.0+1.9 MeV (5 to 8.5MeV),
m, =154+8 Mev (80 to 155 Mev),
m, =187+78 GeV (174.3+5.1 or 178.1+10.4/ -8.3 GeV),

where the values in the parentheses denote either the experimental data or the
phenomenological estimates [10], to which our predicted values should be
compared. Furthermore, if we solve a set of these two sum rules and these two
relations, and the other two sum rules for the /" boson mass m,, and the Higgs
scalar mass (m,, ) derived in the unified composite model of the Nambu-Jona-
Lasinio type [1],

My = (3<mqs/2>)z’

m, = 2(qu,,4/2mq,12 )%,
where m,, [' s are the quark and lepton masses and < > denotes the average
value for all the quarks and leptons, we can predict not only the four quark
and/or lepton masses such as m,, m_, m,, and m_as above but also the Higgs
scalar and weak boson masses as

my, =2m, =366+156GeV,

my, =(3/8)"m, =112+ 24GeV ,

which should be compared to the experimental value of m, =
80.423+£0.039 GeV [10].

What is left for future theoretical investigations is to try to complete the
ambitious program for explaining all the quark and lepton masses by deriving
more sum rules and/or relations among them and by solving a complete set of
the sum rules and relations. To this end, my private concern is to see whether
one can take the r;markable agreement between my prediction of
m, = (m mm,’ / mumf) " =180 GeV and the experimental data as an evidence
for the unified composite model. Recently, I have been more puzzled by the
“new Nambu empirical quark-mass formula” of

M =2"M,
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with his assignment of n =0,1,5,8,10,15 for u, d, s, ¢, b, t [11], which makes
my relation of m m’m> =mm’'m,’ hold exactly. More recently, I have been
even more puzzled by the relations of
m,m, =m} and m,m, =m’
suggested by Davidson, Schwartz and Wali (D-S-W) [12], which can coexist
with my relation and which are exactly satisfied by the Nambu assignment. If
we add the D-S-W relations to a set of our two sum rules, our two relations and
our sum rules for m, and if we solve a set of these seven equations by taking
the experimental values of m,=0.511MeV, m,6 =1057MeV and m, =
80.4 GeV as inputs, we can find the quark and lepton mass spectrum of
m, =1520 MeV (1776.99+0.29/ - 0.26 MeV),

m, =3.8MeV (1.5 to 4.5MeV),
m, =7.2MeV (5 to 8.5MeV),
m_=150MeV (80 to 155MeV)
m, =0.97GeV (1.0 to 1.4GeV),
m, =5.9GeV (4.0 to 4.5GeV),

m, =131GeV (174.3£5.1GeV or 178.1+10.4/ —8.3GeV),

where an agreement between the calculated values and the experimental data or
the phenomenological estimates seems reasonable. This result may be taken as
one of the most elaborate theoretical works in elementary particle physics.

IV. Interactions and coupling constants of the electron

In the unified composite model, the unified gauge theory of Glashow-Salam-
Weinberg for electroweak interactions of the composite quarks and leptons
[13] is not taken as the most fundamental theory, but as an effective theory at
low energies which can be derived from the more (and, probably, most) fun-
damental theory of quantum subchromodynamics for confining forces of ele-
mentary subquarks [4]. It is an elementary exercise to derive the Georgi-
Glashow relations [14],

(sin@,)* =%(1,)’ /£Q* =3/8and

(f/g) =2(L,)" /2(4,/2)" =1,

for the weak-mixing angle 6, , the gluon and weak-boson coupling constants (f
and g), the third component of the isospin (/), the charge (Q) and the color-spin
(/1{1 / 2) of subquarks without depending on the assumption of grand unifica-
tion of strong and electroweak interactions. The experimental value [10] is
[sin 0, (MZ)]2 =0.23113£0.00015 . The disagreement between the value of
3/8 predicted in the subquark model and the experimental value might be ex-
cused by insisting that the predicted value is viable as the running value renor-
malized a la Georgi, Quinn and Weinberg [15] at extremely high energies (as
high as 10 GeV , given the “desert hypothesis.”
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The CKM quark-mixing matrix ¥ [16] is given by the expectation value
of the subquark current between the up and down quark states as [17]

V. :<u‘mw2 >

By using the algebra of subquark currents [18], the unitarity of quark-mixing
matrix V'V =VV" =1 has been demonstrated although the superficial non-
unitarity of ¥ as a possible evidence for the substructure of quarks has also
been discussed by myself [19]. In the first order perturbation of isospin break-
ing, we have derived the relations of V =-V,, V, =-V_,..., which agree
well with the experimental values of

.1=0.219-0.226  and
1=0. 219 0.226 [10] and some  other relations such as
V1= =0.021, which roughly agree with the latest ex-
perimental Value of V | =0. 038 0. 044 [10]. In the second-order perturbation,
the relations of |V, =0.0017 and |V, |=|V,||V.,| = 0.0046
have been predicted. The former relatron agrees remarkably well with the latest
experimental data of |V;b| = (0.0025—-0.0048 [10]. The predictions for ¥, and
V., also agree fairly well with the experimental estimates from the assumed
=0.037-0.044 and |V,,| = 0.004—0.014 [10]. In short, we
have succeeded in predicting all the magnitudes of the CKM matrix elements
except for a single element, say, V. On the contrary, the lepton-mixing has a
different feature.

In 1998, the Super-Kamiokande Collaboration [20] found an evidence for
the neutrino oscillation [21] due to neutrino-mixing among three generations of
neutrinos (ve, Vs vr) in the atmospheric neutrinos. More recently, neutrino-
mixing has been confirmed not only by the K2K Collaboration [22] for long-
base-line neutrino oscillation by neutrino beams from KEK to Super-
Kamiokande, but also by the SNO Collaboration [23] for solar neutrinos at the
Sudbury Neutrino Observatory. They have concluded that the data are consis-
tent with two flavour v,,<_> v, oscillations with (sin 20 ) >0.88 and
Amm2 =2x10" to 5x10~ (eV)* [20]. The neutrino oscﬂlatlon indicates not
only the non-vanishing mass of neutrinos but also the breakdown of lepton
number conservation [24]. | have found a simple model of neutrino masses and
mixings [25], whose predictions are consistent not only with such a large mix-
ing and such a small mass-squared difference between v, and v, suggested by
the Super Kamiokande data but also with a small mixing
((srné’ ) =2x10"to 4x10° and a large mass-squared difference
Am,,"~ =03 1t02. 2(eV)’ between v, and v, suggested by the LSND data [26]
but not with the solar neutrino deﬁ01t [27] However, the LSND data has not
been confirmed by any other experiments [26, 28] but seems to contradict the
latest result from the KamLAND Collaboration [29], which has excluded all
oscillation solutions but the ‘Large Mixing Angle solution to the solar neu-
trino problem with a large mlxmg [(srn26’ )> =0.86 to 1.00] and a small
mass-squared difference (Am =6.9x107 (eV)’). Also note that the
CHOOZ experiment [28] has given the constraints of (siné, )’ <0.15 and
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Am,, .’ <1x107 (eV)’. Furthermore, the Heidelberg-Moscow group has re-
cently reported the first evidence for neutrinoless double beta decay deducing
the effective neutrino mass of 0.11 to 0.56 eV with a best value of 0.39 eV
[30]. On the other hand, very lately, the determination of absolute neutrino
masses from Z-bursts caused by ultrahigh energy neutrinos scattering on relic
neutrinos has predicted the heaviest neutrino mass to be 2.75+1.28/-0.98 eV

for galactic halo and 0.26+0.20/—0.14 eV for extragalactic origin [31]. More
lately, by comparing the power spectrum of fluctuations derived from the Two
Degree Field Galaxy Redshift Survey with power spectra for models with four
components: baryons, cold dark matter, massive neutrinos and a cosmological
constant, an upper limit on the total neutrino mass of 1.8 eV has been obtained
[32]. As it stands now, it seems difficult to make a simple model of neutrino
masses and mixings which is consistent with all the experimental results since
some experimental results contradict others.

In the unified pregauge and pregeometric theory of all fundamental
forces, the gauge-coupling and gravitational constants are related to each other
through the most fundamental length scale of nature. A pregauge theory is a
theory in which a gauge theory appears as an effective and approximate theory
at low energies (lower than a cut-off 4, ) from a more fundamental theory [33],
while a pregeometric theory (or pregeometry) is a theory in which Einstein
theory of general relativity for gravity appears as an effective and approximate
theory at low energies (lower than a cut-off A,) from a more fundamental the-
ory [34]. Let us suppose that the cut-off in electrodynamics 4,, and the cut-off
in geometrodynamics A, are the same or at least related to each other as

Aom = Ay - In moSt pregeometric theories of gravity in which Einstein-Hilbert
action is induced as an effective and approximate action at long distances by
quantum effects of matter fields, the Newtonian gravitational constant is natu-
rally related to the ultra-violet cut-off as G~ A__ . If this is the case, these

two equations lead to the relation -

A, = G”".
This is the famous conjecture by Landau in 1955 [35]: there must be a natural
ultra-violet cut-off at the Planck energy G” where gravity becomes strong. On
the other hand, in most of pregauge theories of electomagnetism, in which the
Maxwell action is induced as an effective and approximate action at long dis-
tances by quantum effects of charged particles, the fine-structure constant is

naturally related to the ultra-violet cut-off as
a~1/In(4,,>/M?),
where M is a parameter of mass dimension. If this is the case, these two rela-
tions lead to the relation of
a=1/In(GM?).
This is the so-called a-G relation first derived by us in 1977 in the unified pre-

gauge and pregeometric theory of all fundamental forces [36]. Note, however,
that in some pregauge and pregeometric theories these fundamental constants
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are determined as G~M*/A* and a~(M/A)* so that the a-G relation be-
comes
a~GM*.
Hereafter, I will concentrate on the a-G relation of the former type, leaving the
o-G relation of the latter type for later discussion.
For definiteness let us write the a-G relation as

a=1/AIn(1/GM?),

where A is a constant parameter depending on a particular unified pregauge and
pregeometric model of all fundamental forces. In our unified pregauge and
pregeometric model of all elementary particle forces including gravity [36], for
example, the constant is simply given by 4 =X0Q”/37, where 0O’ is the sum
of squared charges over all fundamental fermions. For N generations of quarks
and leptons, XQ° =8N /3, so that 4=8N/9x . Also, the mass parameter is
approximately given by M?* =5Nm,*/24x for N generations, so that the a-G
relation approximately becomes a =97 /8N In(247x/5NGm,’), where m,, is
the charged weak boson mass. Furthermore, we also know that for six genera-
tions of quarks and leptons (N = 6) the a-G relation of

a=37/16In(47/5Gm,”)

is very well satisfied by the experimental values of a=1/137,
G”* =122x10”"GeV and m, =80GeV . Therefore, from now on let us as-
sume that there exist six generations of quarks and leptons, or three generations
of quarks and leptons and their mirror particles, or that there exist three genera-
tions of quarks and leptons, their super-partners and more, so that 4=16/37x.

We now suppose that the fundamental length scale 1/ 4 be time-varying
with respect to the mass scale related to the mass parameter M. Then, we ex-
pect that both the fine-structure and gravitational constants a and G are time-
varying [37] and their time-derivatives da/dt and dG/dt may satisfy the re-
lation of

(daldt)a’ = AdG/ dt ,
which can be derived by differentiating the both hand sides of the a-G relation
with respect to time. If instead 1/ 4 stays constant and if M varies, dG/dt
must vanish but the time-derivatives do/dt and dM/dt may satisfy the other re-
lation of
(da/dtya’ =2A(dM /dt)/ M .

For A=16/3r, the above relations become

(dG/dt)/G=Q@Br/16)da/dt)/ o’
and

(dM ] dt)M = (3 /32)(daldt)/ o’ .

Now the first relation together with the latest result of

<daldt>/a=(225+0.56)x10" /yr for redshift of 0.5<z<3.5 by Webb
et al. [38] immediately leads to our prediction of
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(dG/dt)/ G =(0.181£0.045)x107" /yr

We find that this prediction is not only consistent with the most precise limit of
(dG/dt)/ G =(-0.6+2.0)x10"/yr by Thorsett [39] but also feasible for fu-
ture experimental test.
If the a-G relation of the latter type holds instead of the one of the former
type, it leads to either the relation
(dal/dt)/a=(dG/dt)/ G

or
(daldt)/a=2(dM /dt)/ M ,

depending on whether the length scale 1/4 or the mass scale M varies while M

or 1/ stays constant. Then, the first relation together with the result of Webb

et al. [38] immediately leads to another prediction of

(dG1dt)G =(2.25+0.56)x 107" /yr.

We find that this predicted value for (dG/dt)G seems too small to be
feasible for experimental tests in the near future although it is consistent with
the limit of Thorsett [39]. On the other hand either one of the second relations
together with the result of Webb et al. [38] immediately leads to another pre-
diction of

(dM /dt)M =(0.081+0.023)x107" /yr,
or
(dM /dt)M = (1.13+0.28)x107" /yr.

However, I suspect that either one of these predicted values for (dM /dt)M is
too small to be feasible for experimental tests in the near future, although a
prediction for the possible time-varying particle masses seems extremely inter-
esting at least theoretically.

In concluding this Section, I would like to emphasize that the recent result
of Webb et al. [38] suggesting a varying fine-structure constant may indicate
not only a varying gravitational constant but also a varying cosmological con-
stant [40], if our picture for varying constants of nature is right and future ex-
periments to test our predictions for (dG/dt)G in this Section may check not
only the a-G relation but also the unified pregauge and pregeometric theory of
all fundamental forces. A few questions would still remain: What is the origin
of the varying length scale 1/4 or of the varying mass scale M? Is it related to
the mass field [41], the “quintessence” [42] or the Kaluza-Klein extra space in
extra dimensions? Are no “constants” of nature constant? After all, it may be
that nothing is constant or permanent, as emphasized by the Greek and Indian
philosophers some two and a half millennia ago!

V. Conclusions and further discussion

I have explained almost all the properties of the electron including the charge,
spin, mass, mixing-angle and coupling constants in the unified composite
model of all fundamental particles and forces. There remain some other impor-
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tant properties such as the electric and magnetic moments and the possible non-
vanishing size of the electron. First of all, the latest experimental value for the
electron mass is [43]

m, =0.0005485799092 + 0.0000000000004 u ,

where u is the unified atomic mass unit [ =(931.494013 £0.000037) MeV =
(1.66053873 +0.00000013)107*" kg], while that for the electron charge magni-
tude is [10]

e=(1.602176462+ 0.000000063) 107 C
=(4.80320420 +0.00000019) esu.
The fine structure constant is given by [10]
a(=e’/4nhc)=1/(137.03599976 +0.00000050) .

The experimental upper bound on the charge difference between the electron
and the positron is [10]

q,. +4q,. /e§4 x107°.

The experimental upper bound on the mass difference between the electron and
the positron is [10]

/mg<8 x107],

which gives strong constraint on possible violation of CPT invariance. On the
other hand, the current experimental constraint on the electric dipole moment
of the electron is [10, 44]

d, <(0.07 £0.07)x107 e cm,

which may allow a small violation of CP or T invariance in the electron sector.
Furthermore, the experimental value for the electron magnetic moment is [10]

1, =(1.001159652187 + 0.000000000004)6/21’}’!8 ,

which is consistent with the standard model. The experimental data on the dif-
ference between the electron and positron g-factor is [10]

g€+ _ge— /gavemge = (_O'Siz'l)X10712 |’

which gives another strong constraint on possible violation of CPT invariance.
In 1996, the CDF Collaboration at Tevatron [45] released their data on the
inclusive jet differential cross section for jet transverse energies £, from 15 to
440 GeV with the significant excess over current predictions based on pertur-
bative QCD calculations for E, >200Gel , which may indicate the presence
of quark substructure at the compositeness energy scale A. of the order of
1.6T eV. This could be taken as an exciting and intriguing historical discovery
of the substructure of quarks (and leptons), which had been long predicted, or
as the first evidence for the composite model of quarks (and leptons), which
had been proposed since the middle 1970s [1]. It might dramatically change
not only so-called “common sense” in physics or science but also that in phi-
losophy, which often states that quarks (and leptons) are the smallest and most
fundamental forms (or particles) of matter in mother nature. Note that such a

m€+ - mé‘*
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relatively low energy scale for A. of the order of 1 TeV had been anticipated
theoretically [46] or by precise comparison between currently available ex-
perimental data and calculations in the composite model of quarks (and lep-
tons) [47]. In 1997, the H1 and ZEUS Collaborations at HERA [48] reported
their data on the deep inelastic e+ p scattering with a significant excess of
events over the expectation of the standard model of electroweak and strong in-
teractions for high momentum-transfer squared Q°>15000 (GeV)®, which
might indicate new physics beyond the standard model. Although neither one
of these indications have been confirmed by the other experiments and the sig-
nificance of the HERA anomaly has decreased with higher statistics, not only
the substructure of quarks and leptons as well as Higgs scalars and gauge bos-
ons, but also the possible existence of leptoquarks has been extensively re-
investigated [49]. As it stands now, I must emphasize that both the CDF and
HERA anomalies are still with us, and that the explanation of the latter anom-
aly either by the leptoquark with the mass between 280 GeV and 440 GeV, or
by the excited electron with the mass between 300 GeV and 370 GeV [50] is
still very viable. The current lower bound on the mass of the excited electron is
m,*>223GeV [10] while that on the compositeness energy scale of the elec-
tronis A, (eeee)>8.3 TeV and A, (eeee)>10.3 TeV [10], which means that
the size of the electron (1/4,) is smaller than the order of 10™"* c¢m .

The possible substructure of fundamental fermions such as the electron
was considered in some detail by McClure-Drell and Kroll [51] and by Low
and myself [52] already in the middle of nineteen sixties, while that of quarks
was pointed out by Wilson and others [53] in the early nineteen seventies.
Also, the possible substructure of fundamental bosons such as the weak bosons
was discussed in great detail by myself and others [54] in the mid-nineteen
seventies. In conclusion, let me repeat what I said in my talks at the Paris Con-
ference in 1982 [55] and at the Leipzig Conference in 1984 [56]. “It seems to
me that it has taken and will take about a quarter century to go through one
generation of physics: atomic physics in 1900-1925, nuclear physics in 1925-
1950, hadron physics in 1950-1975, quark-lepton physics in 1975-2000, “sub-
quark physics” in 2000-2025 and so on.” “I would like to emphasize that the
idea of composite models of quarks and leptons (and also gauge bosons as well
as Higgs scalars), which was proposed by us, theorists, in the mid-seventies,
has just become a subject of experimental relevance in the mid-eighties.” A
century has past since the discovery of the electron, the “first elementary parti-
cle,” and, hopefully, the compositeness of “elementary particles” will soon be
found.
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Prospects for the Point Electron

Thomas E. Phipps, Jr.
908 South Busey Avenue
Urbana, Illinois 61801

Introduction: the relativity of physical size

Many ingenious models for the electron, perhaps the most stable and funda-
mental of known particles, have been devised. Some of these are discussed
elsewhere in this book. Here we shall examine the advantages and prospects of
the simplest model of all, the mathematical point. It might seem that this could
be dismissed at the outset on general philosophical grounds; e.g., that a point is
“infinitely small,” therefore (like the “infinitely large™) operationally indefin-
able and hence non-physical. This overlooks the fact that models are not to be
confused with that which is modeled, but are to be judged by results rather than
by inferred resemblances to truth. So, I shall not address the imponderable on-
tology of what the electron “is,” but only what a point-particle model of it
might accomplish. As a point of my own philosophy, I claim that this sort of
metaphorical approximation to reality is what the science of physics at best
provides. When it pretends to do more, it trespasses on the territories of phi-
losophy, religion, and faith.

On the scale of Newtonian physics the point particle has done yeoman
service as an approximation to everything from planets to bullets, and has
given us a Newtonian principle of relativity of physical size. Dirac believed
that the granularity of atoms brought an end to this Newtonian relativity. He
wrote:V “So long as big and small are merely relative concepts, it is no help to
explain the big in terms of the small. It is therefore necessary to modify classi-
cal ideas in such a way as to give an absolute meaning to size.” But if we ex-
amine not the words Dirac used but the parameters, we discover that his own
most wildly successful and seminal theory of the electron describes not an ex-
tended particle but a mathematical point! Therefore he himself was the active
agent in saving Newtonian relativity on all size scales. It is upon Dirac’s suc-
cess in describing the point electron that we shall build here in seeking con-
sciously to implement a universal Principle of Relativity of Physical Size. It
will be evident that such a principle by no means implies the physical proposi-
tion that “size does not matter.” It merely implies the hopeful view that the
point-particle approximation can be descriptively useful on all size scales...
and, more cogently, that the form or the parameterization of physical descrip-
tive equations is invariant, i.e., does not abruptly change at some threshold
such as the “atomic” or “nuclear.” Thus, like another better-known relativity
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principle, it implies mathematical form preservation or invariance. Stated in
that modest way, it seems to make a good deal of sense, does it not? For if
there were an abrupt change in parameterization, would this not have to reflect
an (unobserved) abrupt change in the physics? How else than by form preser-
vation are we to make useful inferences from known physics about the topog-
raphy of unknown physical-descriptive territory? With such questions for
clues, we should be able to do a bit of elementary detective work that would
not strain Sherlock. Indeed, the implications of size relativity are the only real
clue we have to guide us in bettering our pretend-knowledge (as embodied in
the Iudicrously over-hyped Standard Theory) of particles on nuclear and sub-
nuclear size scales.

A rigorized formal correspondence

If size relativity is to be a useful guide in physical exploration, it must apply to
the descriptive transition between the Newtonian and atomic descriptive
realms. And it must embody rigorous form preservation. That is the first test
that the principle must pass before its “universality” can be substantiated. Here
an immediate breakdown of the principle occurs, if Dirac” is to be believed.
Exercising equal parts of optimism and scepticism, let us set aside Dirac’s
judgment and look closely at the best that can be done in formally aligning
classical and quantum mechanics ... that is, in setting up a “formal Correspon-
dence” between the two. We need to inquire: “Form preservation” under what
transformation or group? At once we see that our best chance is to improve the
existing formal Correspondence between the Hamilton-Jacobi (H-J) mechanics
(of point particles) and the Schrodinger equation; for these two already bear to
each other a remarkable formal resemblance. Regrettably, it may be that the
reader’s education has been skimped in regard to the H-J formalism and classi-

cal canonical mechanics® in favour of something more trendy, such as string
(3)

theory”’. We shall not attempt a proper tutorial, but merely provide a reminder
that the classical equations of motion of # point particles take the H-J form,
:_a_Sa p/=a_Sa_ /‘=6_S: j=132a"'a3n7 (laabac)
o "' 0q, 00,

where H=H (q o p‘/.,t) is the Hamiltonian or energy function, and
S=S (q j,Qj,t) is a scalar known as Hamilton’s principal function. These
equations completely describe the point-particle mechanics of the classical
domain. Observe that there are two complementary sets of descriptive parame-
ters, apart from time; namely, the so-called “old canonical variables” (qj, pj)
and the “new canonical variables” (Qj P, ) . The transformations between these
two are termed “canonical.” Just as special relativity preserves form under co-
ordinate transformations, we might expect the principle of size relativity to im-
ply “form” preservation under canonical transformations. That is manifestly
impossible if we accept the universal opinion that Schrédinger’s equations,
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h o n o

HY=-=—¥, p¥ iaqij’ ¥ =Y(q,.1), (2a,b)
tell the complete story of mechanics in the quantum domain. For, observe that
there are three differences between the H-J and Schrodinger equations: (a) The
latter contain a wave function or operand ¥ ; hence the “old canonical vari-
ables” have morphed into “dynamical variables” (qj, pj.) that are operators.
(b) The S-function has disappeared and been formally replaced by 7/i. (c) The
“new canonical variables” (Qj,Pj) have disappeared and been replaced by
nothing. It is this latter abrupt disappearance that blocks all possibility of in-
variance under the formal Correspondence transformation—and that must be
corrected if a size relativity principle, implying a rigorized Correspondence, is
to be implemented. How can we formulate operator equations that combine all
features of both (1) and (2), when applied in their appropriate physical do-
mains? The following set of equations does exactly that:

oS oS oS

HY, =——Y,, p¥, =—Y,, -P¥Y, =—Y¥, . (3a,b,c)
0q, 00,

In order to recover quantum mechanics from (3) it is necessary to postulate

S =nh/i,which is equivalent to the Heisenberg postulate in view of

0 0
(g, —a,p ¥, = I:(aj Sq; -4, [—JS}‘PJ. =80,'¥;
k

n
- [ j%‘?f

i

; (4)

where o, is 1 if j=k, O otherwise. Here H =H(q‘/.,pj,t),
Y, :‘P/ (qj,Qj,Pj,t), and in general S.=S(qj.,Qj,t), if we set aside the
specialization S =7/i7 that describes atomic physics. More generally, we shall
find it advantageous to assume

5=25(40,1). )

where s is some real scalar function to be determined... in case we might want
to generalize beyond the atomic case (s - 1) to describe, e.g., point particles
in nuclear states.

The element of “innovation” here, Eq. (3¢), is not really new. It is the res-
toration of an operator analog of (1c)—as is obviously essential in order to
avoid abrupt changes of parameterization of the mechanical formalism—to re-
flect an absence of abrupt discontinuities in the physics. Eq. (3¢) could never
have been dropped from a rigorous formal Correspondence. Eq. (3) constitutes
an operator analog of (1) and thus embodies both the size relativity principle
and a rigorized formal Correspondence. Consequently, in the transition from
“c-numbers” (the commuting real numbers of ordinary arithmetic) to “gq-
numbers” (operators), there is no abrupt change in form or parameterization.
The classical canonical H-J theory is recovered from Eq. (3) by treating the



46 Thomas E. Phipps, Jr.

formal operand ¥, as a constant and cancelling it from all three of (3a,b,c).
Hence the “Correspondence” becomes a two-way one... it works just as well
going from the quantum to the classical side as going the other way. This is not
true of Eq. (2), which allows a transition from classical to quantum, but not the
other way [for no analogs of the new canonical variables (Q j,Pj) are present
in (2), so quantum straw is lacking to make classical bricks—sweeping state-
ments to the contrary by some of the modern era’s most famous physicists to
the contrary notwithstanding]. H-J theory is not a formal limit of accepted
quantum theory.

If we postulate Eq. (3) as holding for all mechanics—classical, quantum,
and beyond—and thus avoid any formal difference among these quite different
physical descriptive realms, how is our theorizing to reflect the vast differences
we know to exist in nature? The answer exploits the fact that Eq. (3), a more
complicated mathematical form than any set of mechanical equations previ-
ously considered by physicists, offers more solution options. Eq. (2), the
Schrédinger equation, is really one equation in one unknown function ¥ . But
in its most general form Eq. (3) is two equations in two unknowns, ‘¥, and S.
Only in the special case of atomic solutions is it permissible to specialize to
S =h/i= constant. In describing nuclear states it may prove advantageous to
treat the “commutator” value S [see Eq. (4)] as a function of space coordinate
values—in particular as a function of distance from a nuclear “force center.”
We see thus that there are three distinct classes of solution of (3):

Class L. W, =constant. The solutions for Hamilton’s principal func-
tion S describe the Newtonian states of motion (continuous
trajectories).

ClassII. ~ S=n/i, ¥, =Y. These are the ordinary quantum states de-
scriptive of atoms.

Class IIl.  Both S and ¥, non-constant. These are states possibly de-
scriptive of point particles within nuclei or “elementary parti-
cles.” (This is speculative.)

There is an abrupt discontinuity among these three solution-class options.
But it is not a physical discontinuity—it is a descriptive choice discontinuity.
Only in that altered sense can we agree with Dirac that quantum mechanical
discontinuity sets a size scale to the world. The formalism itself, the equations
of motion, set no such size scale. They are size invariant. Only our decision,
our choice to pick one class of solutions or another, reflects a passage from one
descriptive realm to another. And this is a good thing, since every new bit of
empirical knowledge we acquire further blurs the line between quantum and
classical worlds. There are observable particle-wave phenomena in the centi-
metre range, and non-localities of quantum action on the inter-stellar scale. We
simply cannot rely on “size” to distinguish these worlds. One must know
enough physics to use Eq. (3) wisely, to make the right solution choice to
match the particular physical problem at hand—no formalism being foolproof.
Such a necessity to make intelligent choices is nothing new. In treating Max-
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well’s equations, for instance, we need to know enough physics to choose be-
tween advanced and retarded solutions. And such descriptive choices are al-
ways discontinuous, although the physics is not.

Class-ll solutions: atomic-level description

We passed a bit too quickly over the atomic solutions. Let us examine in more
detail how ordinary quantum mechanics is extracted from Eq. (3), the form
postulated for all mechanics. On setting S =7/i in Eq. (3), we see that it can
be written as

ho n o h o

S ioq, - 7160,
The first two of these equations are of the familiar form (2). The third is new.
We recall that in H-J mechanics the new canonical variables (Qj,Pj) are con-
stants of the motion—unlike the old canonical variables (qj, p; ) , which morph
here into “dynamical variable” operators. Naturally, by the arguments we have
already given, there can be no discontinuity in the interpretation of (QI,PI) as
constants; so constants they remain in the operator calculus—constants being
good operators. By inspection Eq. (6¢) has the solution
¥, =e hziQ/P/‘P(qj,t) . 7
[Partially differentiate (7) with respect to Q,, to verify that it satisfies (6¢)].
Thus the wave function W, satisfying Eq. (3) differs from the standard

Schrédinger wave function W only by the constant phase factor
h

% = e_fszij (8)
attached to the Schrddinger function ¥ . After cancelling this phase factor
from both sides of Eqgs. (6a,b), we get exactly Eq. (2), the Schrodinger equa-
tion. So it would appear that the Class-II solutions of Eq. (3) precisely dupli-
cate ordinary quantum mechanics (OQM). (These solutions, then, constitute a
“covering theory” of OQM.) But that is true only in a formal or mathematical
sense. On the interpretational side the (uncancelled) phase factor e* makes a
great difference, through its ability to affect quantum phases by undergoing
abrupt changes. Let us examine this more closely.

Class-ll solutions: quantum measurement theory

Einstein objected that quantum theory is “incomplete.” He probably meant that
it lacked trajectories. Here we have instead asserted the accepted quantum for-
malism to be parametrically incomplete. This is an altogether different affair.
Since we have recovered OQM as a viable class of solutions, it is apparent that
we are just as far as ever from trajectories. But we may be in a position to cor-
rect another more serious loss occasioned by OQM—the loss of objectivity.
Objectivity does not necessarily require trajectories, but it does need event
points. That is, real, localized observable happenings must be described by any
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physically valid theory... and OQM wholly lacks parameters to describe such
objective point events. If we think of a quantum phase space in which a point is
specified by (qj, p; ), we have to recognize that a point so specified is not an
observable event. Rather, (qj, pj) is a running variable describing—if you
like—a virtual event or presence or one of a sequence of virtual events forming
a Feynman-like pseudo-trajectory. But it is not an observable localized happen-
ing in real space or “real” phase space... for the simple reason that the (q 2P j)
are operators. To be observable in real phase space, whose axes are labelled
with ordinary real c-numbers, it is necessary that c-number parameters be in-
cluded in the descriptive formalism. Otherwise the formalism is powerless to
describe observable occurrences, or even to recognize that anything happens in
the world. That is in fact the situation of OQM, based on Eq. (2). Logically, ac-
cording to (2), nothing can happen in the quantum world, because the accepted
formalism lacks c-number parameters to describe point events representing ob-
servable occurrences.

What follows from such a lack? History has witnessed a great prolifera-
tion of ever more ingenious “interpretational” makeshifts, Band-Aids, and sub-
stitutes for a valid formalism. We have had three-quarters of a century of it
now, and counting. This remarkable social phenomenon, only nominally re-
lated to physics, is known as “quantum measurement theory.” It has become a
way of life, a source of steady income, an endless intellectual challenge, for a
whole sub-culture among physicists. Its adherents dedicate their lives to avoid-
ing recognition of the obvious: that OQM is under-parameterized. Their basic
dogma is that mathematically OQM is an immaculate conception that must not
be altered in any way. By contrast, the world (being defenceless) is their play-
thing... the rules of their game allow the world to be distorted into any shape
that will fit their rigidly unyielding mathematics. I wish I could say that the
Many Worlds Interpretation of OQM represents the apogee of their flights of
fancy, but in fact there is no limit... they literally stop at nothing. By now the
amount of professional interest vested in measurement-theory nonsense rivals
that vested in string-theory nonsense®. Indeed, the two groups of theorists
could exchange professional concerns today without any externally detectable
change—in either quality of product or effect on the rest of physics.

In the beginning these interpretational makeshifts were simpler and less
sophisticated than they are today; therefore they were more perspicuous. There
used to be things called “quantum jumps,” and something called “severance of
the von Neumann chain” of phase connections between observer and observed.
Both of these approaches recognized that something had to be done about
quantum phase connections—but both wandered in the wilderness because the
theory had no parameters to do it with. Early on, there was a “Projection Postu-
late,” contrived to do postulationally what needed to be done parametrically.
This has had a phoenix-like rebirth with the latest jargon of obscuration, “quan-
tum (phase) entanglement.” The reason for this rebirth is that in order to make
any connection at all with observation the OQM equation of motion has to be
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discarded in order to let things happen locally in the world. Having postulated
an equation of motion, Eq. (2), the “bold interpreteers” judged it natural to say,
“Oops, that was wrong, we now add a Projection postulate that contradicts our
equation-of-motion postulate by replacing a pure state with a mixture.” At one
time there was even a vogue for carrying this one step farther with a “Selection
Postulate”—via another, “Oops, that was wrong, we further postulate a single-
state Selection from the projected state mixture, thus contradicting our Projec-
tion that contradicted our postulated equations of motion.” But for some reason
this busy postulational first-aid work, perhaps because it produced a structure
resembling The House That Jack Built, fell into desuetude until observational
necessity eventually forced something (anything) to be done about cutting
phase connections. Aided by new jargon, these present-day champions of logic,
mathematicians manqué, are still vying among themselves to build inconsistent
axiomatic systems. The more postulates the merrier... for postulates whose
only logical obligation is to contradict one another are always available in any
number at no charge.

It should be obvious to every child that the only way out of this thicket of
obscuration is to get the equations of motion right in the first place. That is
where and only where the postulational “corrections” should be applied. This
can happen, as a social phenomenon, only if enough children find enough
things laughable about the Emperor’s Parade. The necessary open-eyed inno-
cents are going to have to come from the gene pool of uncommitted physicists.
But with ever-more specialization and ever-more “professionalism” of mutual
back-scratching among specialties, we have seen a steady trend toward less,
rather than more, probability of an outcome favourable to physics as science.
There is just not the requisite laughter in the air. As physics grows less respect-
able, the need of physicists for respect grows more urgent. In these conditions
physics becomes a very serious business, indeed, or rather profession. Look at
other professions. In my youth, when medicine was a calling, doctors made
house calls. They went where needed. Then medicine became a profession. The
word profession says it all.

Well... has Eq. (3) finally got the equations of motion right? If so, it is a
new ballgame, interpretionwise. For there are now extra parameters, constants
of the motion, explicitly present in the theory. Moreover, those c-number con-
stants appear in a phase factor (8) on the wave function (7). That is just where
we should want them to be, if phase-connection severance or the description of
“loss of phase knowledge” is our objective. And that, indeed, is precisely our
objective. It is what all the postulational fuss was about—*“Projection,” “Selec-
tion,” and the rest. But that must now be forgotten, if the new paradigm is to
receive a fair trial. The questions will be the same, but the solutions will be
new and the methods of arriving at them will be somewhat unfamiliar.

Consider quantum particles “basking” in an atomic pure state. They obey
Eq. (6). At some time in the past, we may suppose, this pure state was “pre-
pared.” At that time or earlier the parameters (Qj,Pj) received some fixed
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values, which they maintain throughout the duration of the pure state. They
must stay constant in order that the phase factor ¢, given by Eq. (8), may stay
constant. During this basking period all processes may be considered virtual
and all “time flow” in abeyance (without responsibility to causality), all phase
connections remaining intact. Nothing observable can happen anywhere in the
system. Then something happens. This occurs purely at nature’s initiative.
Human thought or “mind” has nothing to do with it. The job of physics is to
describe the happening, after the fact. The happening is localized—of the na-
ture of a point event—to fit with relativity. But we may push beyond that in
supposing the localization to take place in phase space, so that both O, and P,
acquire numerical values. The result is an abrupt, unknowable change A« in
the phase angle of the wave function. (Heisenberg’s “Uncertainty” is not vio-
lated, since it concerns the old canonical variables, not the new ones.)

The unknowability of A« implies severance of phase connections and
loss of phase “knowledge,” although this is a poor way of speaking, inasmuch
as one cannot lose what one never had. So, here we have the “quantum jump,”
a severance of the von Neumann chain, effected by a jump in numerical values
of the new canonical variables. Something has happened locally in nature, de-
scribed by a sudden change in c-number values of event-descriptive parame-
ters. To accomplish this, the wave function phase discontinuously changes in
an unpredictable way—thus severing the past from the future and ratcheting
time flow at the most basic quantum descriptive level. As long as the pure-state
phase stays constant, we cannot say that time flows at all. But when the phase
jumps in a way we cannot know, it is allowable to say that phase “knowledge”
is lost in an irreversible way, and that time flows irreversibly “forward,” in
conformity with a postulated observance of causality. As an extra dividend for
rigorizing formal Correspondence and thereby “completing” the equations of
motion of quantum mechanics, we gain an accounting for the “arrow of time”
at the quantum level. Like the Scarlet Pimpernel, that arrow has been sought
high and low, even in the farthest reaches of the cosmos... and all the time it
has been hiding in our sub-basement right at home. We also dispose of all
those versions of quantum measurement theory that rest on deep Wignerian
speculations about “mind” intervening as a causal agent in nature. Calling on
mind to sever quantum phase connections is just as silly as calling on mutually
contradictory postulates to do the job. Mind-fans will certainly prefer their “in-
sights” to the more prosaic notion that the job of the mind, as applied to phys-
ics, is to describe nature, not to actuate it. To accomplish the description of na-
ture requires descriptive parameters. Where parameters are lacking, mind and
postulates are equally poor surrogates.

What we have said so far about phase jumps reflecting locally completed
processes applies strictly only to the simplest one-body and one-component
(one-channel) problems. In many experimental situations, or generally in
many-body problems, a quantum system may be described by numerous com-
ponent wave functions, among which may occur only partial reductions of the
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total system wave function. I have suggested® that these partial reductions be
termed “virtual events,” and that they might be used to describe the type of ab-
sorber action whereby some observable effect™ is “frustrated” by the mere
presence of a potential absorber, without any actual localized absorption occur-
ring. (The accepted jargon calls these “interaction-free” or “non-demolition”
measurements. What it amounts to is the introduction of phase incoherence®
into some but not all channels of a multi-channel pure-state process.) By the
view I have suggested, the absorber always absorbs... but not always by a lo-
cally-completed “real” event; possibly by a virtual event that imposes phase in-
coherence on a single component or channel of a many-channel process. That
virtual occurrence is not observable directly because the phase jump does not
affect the quantum system as a whole (quanta by definition act only as a
whole!); but it is indirectly inferred® through the observable aspects of “frus-
tration.” This large and somewhat subtle subject is at present speculative and in
need of development. I have been able to give only the most crude and fallible
introduction to it™®.

In summary concerning measurement theory: OQM endows factual his-
tory with ensemble attributes that have no basis in experience. To correct this,
the theory needs to acquire c-number parameters descriptive of unique, factual
point events. The best way to do this is to rigorize the formal Correspondence
with H-J theory, thereby restoring analogs of the new canonical variables, or
constants of the motion. The same is mandated by a Principle of Relativity of
Physical Size, applied in the context of a point particle model.

Class-ll solutions: the Dirac electron
By linearizing the classical one-body relativistic energy expression,
E*=m’c* +p} +p; +p;, 9)
through use of 4x4 anti-commuting unit matrices (,,a,,a;,2, ), Dirac"
obtained an operator description of the free electron at the atomic level of de-
scription. On introducing electromagnetism via the  potentials,
p,—>p,+(e/c)4,, j=1,2,3 (where e is the unsigned charge of the elec-
tron), he obtained a Hamiltonian (energy function) of the form

H:—ca-(p+£AJ—mczam —-eV , (10)
c

where V' =4, is the scalar potential, efc. This Hamiltonian, which is a per-
fectly good classical one for any point particle, proved fabulously successful
when applied on the quantum side to description of the electron-positron, by
means of the operator identifications p, — (h/i)(a/ﬁq j), in accordance with
Eq. (2b). We need say no more about this, since it forms a cornerstone of mod-
ern physical theory, and is doubtless taught everywhere.

Just one point need detain us. This is that the same formalism (of H-J
pedigree) that on the classical side describes any point particle suddenly turns
out on the quantum side to describe only one species of particle—the electron.
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What could this mean? It seems a very startling constriction of physical de-
scriptive purview. Does it mean that our size relativity principle fails? That a
sudden discontinuity at the quantum boundary is real and reflects an absolute-
ness of physical scale, as Dirac”’ thought? So it would seem... but I have ven-
tured to suggest an alternative'® appraisal that is both simple and drastic. This
is embodied in the beta-structure hypothesis; namely, that all physical particles
and the vacuum are composed of electrons. The steps of reasoning behind this
are simple: (1) If a principle of relativity of physical size is valid, then a single
mechanical equation of motion [viz., Eq. (3)] must govern particle mechanics
on all size scales. (2) If Eq. (3) governs, then its atomic-level specialization
S =nh/i manifestly describes the Dirac electron. (3) If no physical discontinu-
ity marks the transition between classical and atomic levels, as to either equa-
tions of motion or form (10) of the Hamiltonian, then there can be no abrupt
change in physical nature of the particles described. (4) If there is no distinct
boundary between the realms inhabited by “all particles” and by “electrons,”
then all particles must in fact be electrons or their composites. (Here I do not
distinguish between electrons and positrons.)

This idea meets at once certain troubles, such as that protons seem quite
different from positrons. But it is implicit in the beta-structure hypothesis that
positrons (vacant electron states) are somehow captured within protons and
held permanent prisoners there; and that the proton is in fact a very many-body
relativistic system composed ultimately of electrons. Similarly the vacuum, as
Dirac originally thought (“hole theory”) before he was brain-washed, is com-
posed of electrons in negative-energy states. The relativistic very many-body
problem is so difficult, so little explored, and so cleverly dodged (e.g., through
field-theoretical devices such as second quantization), that I do not see how
any prudent physicist, not adept at dodging, can dogmatically reject the beta-
structure hypothesis. Not included among prudent physicists is that vast major-
ity who unhesitatingly bet the farm on field theory. It is my belief, to mix
metaphors, that pure point particle mechanics has still plenty of mileage left in
it. Admittedly, the leap from size relativity and form preservation to the above
wild guess about world structure is a bold one... but the fact that field theory
totally rejects it rather prejudices me in its favour. Is it not high time that a few
physical theorists began to think outside the field-theory box?

Class-lll solutions: formalism
From Egs. (3a) and (5) we get

(1D

The Class-III solutions are those that treat S or s and ¥, as non-constant. This
shows at once that there is a problem: Since s is to be treated as real (Hermi-
tian), and —(7/i)d/0t is known to be Hermitian, we have H represented in
(11) as a product of two Hermitian operators. It is a well-known theorem that
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the product of two Hermitian operators is non-Hermitian. The reader will have
to take my word for it that it is simply not physics to represent a physical en-
ergy as a non-Hermitian operator. That would say energy is unreal, which is
physically incorrect, as far as is known. Fortunately, there is a ready fix for this
that works like magic. We simply introduce a new Hermitian Hamiltonian .£J
in place of the classical-analog Hamiltonian H, a Hermitian momentum p; in
place of p,, and a transformed wave function ¥, by means of the definitions

H=Hs", b= p/s’1 , P=sY, . (12a,b,c)
Here, for the one-body problem, j=1,2,3. This transforms Eq. (3) into
ﬁ\{f_—ﬁgly b, ‘{'_Ei‘I’ —Ps “‘P_Ei‘l’ (13a,b,c)
i ot i 0q, i 00,

From this we see that the basic formalism of OQM is recovered, even for
the Class-III solutions, but with a transformed Hamiltonian and an extra rela-
tion, Eq. (13c). In terms of the Hermitian operator .£) the equation of motion
of a Heisenberg variable X,

dX aX 1

@t o i (Xﬁ ﬁX) (14
is also recovered. Thus all the standard OQM techniques employing Hermitian
operators are applicable [the operators on both sides of (13¢) being Hermitian,
as well as those of (13a,b)]. The formal operand ‘¥, is not useful for calculat-
ing observable probability distributions; but its transformed analog ¥ is [and
is understood as the operand in (14)]. Similarly, any classical-analog Hamilto-
nian H, such as Eq. (10), is not the observable physical energy, but £ is, since
it is the generator of infinitesimal time displacements of the system [Eq. (13a)].
In short, the non-Hermitian classical-analog quantities entering Eq. (3) have
served their purpose of form preservation over the whole physical range, and in
the particular case of Class-III solutions are to be discarded in favour of their
transformed Hermitian counterparts. This has proven a disappointment to
mathematicians, who feel cheated of novelty by this return to familiar forms
[Egs. (13a,b), (14)]. But physicists will recognize that any alteration of the
Hamiltonian [Eq. (12a)] entails “new physics”—which should console them for
the lack of “new math.”

Class-lll solutions: the electron on the nuclear scale

Given Eq. (3) as descriptive of particle mechanics on all size scales, we have
seen that its Class-I solutions describe the motions of any classical point parti-
cles (possessed of trajectories). The Class-II solutions, descriptive of the
atomic realm (without trajectories but with objective point events), given Eq.
(10) as the (relativistic one-body) Hamiltonian, describe only electron-
positrons. We may suppose that the same classical-analog Hamiltonian, with
the help of Class-III solutions, might describe the same particle (electron) on a
still smaller size scale. This is a speculation, but it proves fruitful. We recall
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that the Class-III solutions obey a commutation rule [Eq. (4), left of arrow] that
generalizes the Heisenberg postulate. Thus we are contemplating a new physics
of the nuclear realm, whereby the Heisenberg postulate may be locally dis-
obeyed. That is, the commutator of the position and momentum dynamical
variables may become non-constant in the vicinity of a nuclear force center.
This gives an entirely new meaning to the concept of “nuclear force,” and im-
plies that it is not like other “forces” known from larger-scale (including
atomic-scale) experience.

To probe the general nature of point-electron dynamics in this nuclear or
sub-nuclear domain, let us consider a relativistic central-force one-body prob-
lem. In this case the classical-analog Hamiltonian is given by Eq. (10) with
V =Ze/r , where we allow for Z positive charges on the attractive force center,
assumed to be a fixed point. The mathematics has been given in some detail in
carlier references®™, and will only be summarized here. The Hermitian Hamil-
tonian is [from Egs. (10), (12), (13)]

/] e Ze’
H=Hs" =—ca-(—.V +—As'j—mczams1 -—s". (15)
i c r
We consider the conservative case in Wthh t/}%e Hamiltonian and s are time-
independent, so that the substitution ¥ = 1// reduces (13a) to the ei-
genvalue equation

Py =E'y . (16)
The assumption of spherical symmetry, s=s(r), together with an identity
given by Dirac'", allows this (with A =0) to be reduced to

1 ze’
ﬁ:ihcg(%—i—rj—lthSps }’l’lc25*1p3_765*| , (17)

where j is an operator that commutes with any function of » (hence with s) and
Dirac gives the representations

(0 ) 10 s
e N N e P (18)

The eigenvalue equation (16), with y a two-component wave function, then
yields the two simultaneous equations

. -1 2 ]
v, +J—+1(//2 +{S—[—mc2 —ZLJ—E}V/I =0, (19a)
r fic r fic
L -1 2 ]
—z//l'+J—1(//1 P [ A w,=0, (19b)
r fic r fic

for the two  -components. We need another equation to determine s, and this
is furnished by (13c) with j = 1,2,3. Introducing formal spherical polar coordi-
natess by means of R=,0}+0;+0Q;, O =Rsin(d)cos(9),
0, = Rsin(0)sin(g), O, = Rcos(8) , we find
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5 OoR | O 0 -
OQJ, (aQ J ‘fj(‘ga¢)a—R , j=123, (20)

the &, being direction cosines. Let 6,4 specify an arbitrary fixed direction
from the coordinate origin. Then the &; are constants, and in view of spherical
symmetry we can consider the P, in Eq. (13¢) to obey P, =P¢&,, where P is
some constant. By this means the three relations (13c) are reduced to the single
(two-component) equation

Ps'y =——— 21
sy “RmY (21)

Recall that R is related to the O, and thus is a constant of the motion. Both s
and  may be considered to depend at least implicitly on this constant. How-
ever, we choose to eliminate the explicit appearance of R by seeking a solution
that depends on r and R=(0,,0,,0;) only through the combination |r—R|.
If such a solution exists, we can replace 0/0R by —0/0r, so that (21) be-
comes

Pty =12 (22)
l

For consistency with our assumption of spherical symmetry, it is evidently
necessary to impose a particular initial condition; namely,
R=(0.0,.0,)=(0.0.0) . (23)
This initial condition will unfortunately limit the usefulness of our solution,
since it implies the presence at the coordinate origin of an infinitely massive
force center. (Strictly speaking, we assume the electron to be “found” at an
event point R coincident with the origin.) We accept this limitation and pro-
ceed, because we are here more interested in proving the existence of some so-
lution than in finding the most general one. Since now y =/ (r), we can re-
place all partial derivatives by total ones, so that (22) becomes
sy = zi . (24)
The assumptions that s is some scalar (spin-independent) real function
s =s(r), possessing an inverse, and that P is a constant suffice, with (24), to
establish the equality of logarithmic derivatives of the two i -components.

Thus
v (a]l//1 V/gl(dflfzj—ﬂn L4l =const. >y, =Cy, , (25)
dr dr v,

where C is some constant. Using (24), (25) to eliminate s and y, from (19), we
obtain from the two parts of the latter equation

v {C+im—c lze} w[ £ —UH)C}:O, (26a)

P cP fic r
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imcC iZe’C E'C j-1
" -1- + +y | ———+ 0. 26b
Vi { P cPr } l//'[ fic r } (266)
As can be seen by multiplying (26a) by C, these two equations for y, are
compatible if and only if
= j—1 and zmcC= -/
j+1 P j+1

(27a,b)

In order to recover the Heisenberg postulate (s = 1) at long distances from the
force center, we shall require unity as the asymptotic value of s,

lirgs(r) =1. (28)

From (24) we see that in this limit both components of w behave like
exp(iPr/h). Since the wave function components must be bounded at infinity,
P must have a positive imaginary part. In Dirac’s electron theory the operator j
takes any positive or negative integral eigenvalues. Since j commutes with any
function s(7), we may expect j to have somewhat similar commutation proper-
ties and eigenvalues in the present formalism. However, it is easily seen from
(27) that the eigenvalues +1 must be excluded here. It follows from this exclu-
sion that C is real; thus that P is pure imaginary and positive. Hence P can be
written as P =iK”, where K is real and non-zero. Then Eq. (27) yields

me_ I _ il [i-1 (29a,b)

K 7 j\Jj+1
Eq. (29a) makes it obvious that j =+1 must be forbidden. All other non-zero
integral eigenvalues of j are allowed. Substituting P =iK> and (26a) into (24),
written for the first component i, , we obtain

U 1C 2
PRSI /) P £, (e cymey Ze | (30)
Ky, K°| hc ¥ K° K°r

Applying to this the asymptotic condition (28), we find

. ~ me |l [ E
1glls(r)—1—[C+K2}/[ ch} . 31)

Solved for the energy eigenvalues E', this yields with the help of (29)

2

=243, (32)

E'=E,=-cK’C-mc* =-

as the eigenvalue spectrum. The corresponding eigenfunctions can be found by
integrating Eq. (30). However, it is easier to guess a solution of the form

Vi=y,; = Ajeim (I" + ﬁ)y . (33)
From this we obtain

Vi _ i T r (34)
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On putting (29) and (32) into (30) we evaluate s finally as

7 2 - -2 -1
s:s,(r){lﬂzi} {1—’“]' v/ . (35)
' mcr mc r
Comparison of the ratio y /y, from (30) with (34) then yields the following

evaluation of the constants in (33):

-2
_meN ol gy —1+i 7 (36)
Y
Eq. (33) then evaluates the first eigenfunction component v, . The second, v, ,
follows from (25) and (29b). The multiplier 4, in Eq. (33) is arbitrary and can
be used for wave function normalization.

This completes our formal demonstration of the existence of localized
bound-state Class-III solutions on the sub-atomic scale. These are electron
states, since m is the electron mass. It is seen that « is of the order of the elec-
tron Compton wavelength, and by (33) that this controls the “size” of the elec-
tron wave function. But the fact that the canonical “momentum” parameter P is
pure imaginary [ P=iK”] seems to imply that the point electron cannot be
“found” or “detected” on any size scale larger than a mathematical point—
which according to Eq. (23) is collocated with the force center at the origin. In
other words, any event of “finding” is described by the new canonical variables
0 =0, =0,=0. We know that nucleons have non-zero sizes. Therefore this
solution is of no direct use for describing them. It treats merely an idealized
limiting case of the infinite-mass force center localized at a point. Some of the
simplifications we have pointed out along the way would have to be corrected
in order to describe a finite-mass nucleon. That would ultimately involve solv-
ing a relativistic very many-body problem, and is beyond this writer’s capabili-
ties. Still, the results so far seem encouraging.

Summation

We have seen that point particle mechanics is not dead, and that a nuclear dy-
namics founded on the Class-III solutions, which locally violate the Heisenberg
postulate, lies easily within the realm of formal descriptive possibility. Such an
enhancement of dynamics seems limited on the sub-atomic scale to a descrip-
tion of the electron-positron—a fact that suggests a “beta structure hypothesis,”
viz., that only electrons exist on the finer scales in nature. Our derivation of ei-
genvalues, Eq. (32), and of eigenfunctions, Eq. (33), establishes that stable
bound states exist, beyond any known on the basis of classical (Class-I) or
atomic (Class-II) solutions of our postulated equations of motion for all me-
chanics, Eq. (3). The eigenvalues in question lie within what was termed by
Pauli the “Zwischengebiet”—the region of real mass-energy, but imaginary
momentum, lying between particle total energies +mc” . (That fits also with the
imaginary value P =iK” of the canonical momentum parameter.) This fur-
nishes a ready mechanical explanation for nuclear beta processes and encour-
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ages further speculations, for instance that all heavy particles may be aggre-
gates of many imaginary-momentum electrons in real-mass states, i.e., elec-
tronic states within the Zwischengebiet... and that neutrinos (if found to be of
zero rest mass) may be energy quanta associated with electronic transitions be-
tween states of real and imaginary momentum, as distinguished from photons,
which are zero-mass quanta associated with electronic transitions between
states of real momentum.

The Class-1 (Hamilton-Jacobi) solutions are exact solutions of Eq. (3),
hence are as valid approximate descriptors of nature as the atomic (Class-II)
solutions. Each solution class is available to describe its own appropriate aspect
(and scale) of experience. None is subordinate to any other. Therefore we do
not have to use the de Broglie wavelength of a planet to get a more “accurate”
description of its motion; nor do we have to picture a “wave function of the
universe.” Our basic theme has been a rigorization of formal Correspondence,
motivated by a Principle of Relativity of Physical Size. An immediate conse-
quence has been the parametric restoration of formal analogs of the new ca-
nonical variables (constants of the motion). The parameter count must not
change under formal Correspondence, there being no corresponding disconti-
nuity in nature. The restoration of c-number parameters in the Class-1I equa-
tions of motion clears up all the OQM mysteries that have provided full em-
ployment for quantum measurement theorists (by providing a parametric
mechanism for phase-connection severance that replaces “Projection”). Pros-
pects for a resurgence of the dynamics of the point electron have never been
brighter. Still, I have found during forty years that such ideas are of little inter-
est to professional physicists... who remain supremely assured that quantum
field theory, not particle dynamics, is the mathematical language by which na-
ture communicates her inmost secrets. Thus they conform to the definition of
an expert, as one who makes no small mistakes.
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A classical model for a spinning electron is described. It has been obtained
within a kinematical formalism proposed by the author to describe spinning par-
ticles. The model satisfies Dirac’s equation when quantized. It shows that the
charge of the electron is concentrated at a single point but is never at rest. The
charge moves in circles at the speed of light around the centre of mass. The cen-
tre of mass does not coincide with the position of the charge for any classical
elementary spinning particle. It is this separation and the motion of the charge
that gives rise to the dipole structure of the electron. The spin of the electron
contains two contributions. One comes from the motion of the charge, which
produces a magnetic moment. It is quantized with integer values. The other is
related to the angular velocity and is quantized with half integer values. It is ex-
actly half the first one and points in the opposite direction. When the magnetic
moment is written in terms of the total observable spin. one obtains the g = 2 gy-
romagnetic ratio. A short range interaction between two classical spinning elec-
trons is analysed. It predicts the formation of spin 1 bound states provided some
conditions on their relative velocity and spin orientation are fulfilled, thus sug-
gesting a plausible mechanism for the formation of a Bose-Einstein condensate.

1. Introduction

The spin of the electron has for many years been considered a relativistic and
quantum mechanical property, mainly due to the success of Dirac’s equation
describing a spinning relativistic particle in a quantum context. Nevertheless, in
textbooks and research works one often reads that the spin is neither a relativis-
tic nor a quantum mechanical property of the electron, and that a classical in-
terpretation is also possible. The work by Levy-Leblond [1] and subsequent
papers by Fushchich et al. [2], which show that it is possible to describe spin 2
particles in a pure Galilean framework, with the same g = 2 gyromagnetic ratio,
spin-orbit coupling and Darwin terms as in Dirac’s equation, lead to the idea
that spin is not strictly a relativistic property of the electron.

The spin is the angular momentum of the electron, and the classical and
quantum mechanical description of spin is the main subject of the kinematical
formalism of elementary spinning particles published by the author [3]. This
work presents the main results of this formalism and, in particular, an analysis
of a model of a classical spinning particle whose states are described by
Dirac’s spinors when quantized. Other contributions are also discussed.
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2. Classical elementary particles

To understand what a classical elementary particle is from the mathematical
point of view, we consider first the example of a point particle. It is the sim-
plest geometrical object with which we can build any other geometrical body
of any size and shape. The point particle is the classical elementary particle of
Newtonian mechanics and has no spin. Yet we know today that spin is one of
the intrinsic properties of all known elementary particles. The description of
spin is related to the representation of the generators of the rotation group, and
we know it is an intrinsic property since it is related to one of the Casimir op-
erators of the Galilei and Poincaré groups.

From the Lagrangian point of view, the initial (and final) state of the point
particle is a point on the continuous space-time manifold. In fact what we fix as
boundary conditions for the variational problem are the position # at time ¢,
and the position r, at the final time¢,. We call kinematical variables of any
mechanical system the variables which define the initial (and final) configura-
tion of the system in this Lagrangian description, and kinematical space the
manifold covered by these variables. The point particle is a system of three de-
grees of freedom with a four-dimensional kinematical space.

In group theory, a homogeneous space of any Lie group is the quotient
structure between the group and any of its continuous subgroups. The impor-
tant property of the kinematical space of a point particle, from the mathemati-
cal viewpoint, is that it is a homogeneous space of the Galilei and Poincaré
groups.

In the example of the point particle, the kinematical space manifold is the
quotient structure between the Poincaré group and the Lorentz group in the
relativistic case, and also the quotient between the Galilei group and the homo-
geneous Galilei group in the non-relativistic one.

We use this idea to arrive at the following definition.

Definition: A classical elementary particle is a mechanical system whose
kinematical space is a homogeneous space of the kinematical group.

The spinless point particle fulfils this definition, but it is not the most
general elementary particle that can be described, because we have larger ho-
mogeneous spaces with a more complex structure. The largest structured parti-
cle is the one for which the kinematical space is either the Galilei or Poincaré
group or any of its maximal homogeneous spaces.

With this definition we have a new formalism, based upon group theory,
to describe elementary particles from a classical point of view. It will be quan-
tized by means of Feynman’s path integral method, where the kinematical vari-
ables are precisely the common end points of all integration paths. The wave
function of any mechanical system will be a complex function defined on the
kinematical space. In this way, the structure of an elementary particle is basi-
cally related to the kinematical group of space-time transformations that im-
plements the Special Relativity Principle. It is within the kinematical group of
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symmetries that we must look for the independent and essential classical vari-
ables to describe an elementary object.

When we consider a larger homogeneous space than the space-time mani-
fold, for both Galilei and Poincaré groups, we have variables additional to time
and space to describe the states of a classical elementary particle. These addi-
tional variables will produce a classical description of spin.

3. Main features of the formalism

When we write the Lagrangian of any mechanical system in terms of the intro-

duced kinematical variables, and the dynamics is expressed in terms of some

arbitrary evolution parameter 7 (not necessarily the time parameter), we get the
following properties:

e The Lagrangian is independent of the evolution parameter 7. The time evo-
lution of the system is obtained by choosing#(7) =7 .

e The Lagrangian is only a function of the kinematical variables x, and their
first 7 derivatives x, .

e The Lagrangian is a homogeneous function of first degree in terms of the
derivatives of the kinematical variables x, and therefore Euler’s theorem
implies that it can be written as L(x,x) = F,(x,x)x,, where F, = 0L/ox, .

e [fsome kinematical variables are time derivatives of any other kinematical
variables, then the Lagrangian is necessarily a generalised Lagrangian de-
pending on higher order derivatives when expressed in terms of the essen-
tial or independent degrees of freedom. Therefore, the dynamical equations
corresponding to these variables are no longer of second order, but, in gen-
eral, of fourth or higher order. This will be the case for the charge position
of a spinning particle.

e The transformation of the Lagrangian under a Lie group that leaves the dy-
namical equations invariant is L(gx,gx) = L(x,%)+da(g;x)/dr, where
a(g;x) is a gauge function for the group G and the kinematical space X. It
only depends on the parameters of the group element and on the kinemati-
cal variables. It is related to the exponents of the group [4].

e When the kinematical space X is a homogeneous space of G, then
a(g;x)=5(g,g,), where £(g,,g,) is an exponent of G.

e  When quantizing the system, Feynman’s kernel is the probability ampli-
tude for the mechanical process between the initial and final state. It will
be a function, or more precisely a distribution, over the X x X manifold.
Feynman’s quantization establishes the link between the description of the
classical states in terms of the kinematical variables and its corresponding
quantum mechanical description in terms of the wave function.

e The wave function of an elementary particle is thus a complex square inte-
grable function defined on the kinematical space.

e The Hilbert space structure of this set of functions is achieved by a suitable
choice of a group invariant measure defined over the kinematical space.
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e The Hilbert space of a classical system, whose kinematical space is a ho-
mogeneous space of the kinematical group, carries a projective, unitary, ir-
reducible representation of the group. In this way, the classical definition
of an elementary particle has a correspondence with Wigner’s definition of
an elementary particle in the quantum case.

4. The classical electron model

The latest LEP experiments at CERN suggest that the electron charge is con-
fined within a region of radius R, <10’ m. Nevertheless, the quantum me-
chanical effects of the electron appear at distances of the order of its Comp-
ton’s wavelength A. =7%/mc=10"m, which are six orders of magnitude lar-
ger.

One possibility to reconcile these features is the assumption, from the
classical viewpoint, that the charge of the electron is a point, but at the same
time this point is never at rest and it is affected by an oscillating motion in a
confined region of size A.. This motion is known in the literature as Zitter-
bewegung. This is the basic structure of spinning particle models that will be
obtained within the proposed kinematical formalism, and also suggested by
Dirac’s analysis of the internal motion of the electron [5]. It is shown that the
charge of the particle is at a single point 7, but this point is not the centre of
mass of the particle. Furthermore, the charge of the particle is moving at the
speed of light, as shown by Dirac’s analysis of the electron velocity operator.
Here, the velocity corresponds to the velocity of the point », which represents
the position of the charge. In general, the point charge satisfies a fourth-order
differential equation, which is the most general differential equation satisfied
by any three-dimensional curve.

We shall see that the charge moves around the centre of mass in a kind of
harmonic or central motion. It is this motion of the charge that gives rise to the
spin and dipole structure of the particle. In particular, the classical relativistic
model that when quantized satisfies Dirac’s equation shows, for the centre of
mass observer, a charge moving at the speed of light in circles of radius
R, ="%/2mc and contained in a plane orthogonal to the spin direction [6,7].
This classical model of electron is what we will obtain when analysing the rela-
tivistic spinning particles.

To describe the dynamics of a classical charged spinning particle, we
must therefore follow just the charge trajectory or, alternatively, the centre of
mass motion and the motion of the charge around the centre of mass. In general
the centre of mass satisfies second-order, Newton-like dynamical equations, in
terms of the total external force. But this force has to be evaluated not at the
centre of mass position, but rather at the position of the charge. We will dem-
onstrate all these features by considering different examples.
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5. Non-relativistic elementary particles

Let us first consider the non-relativistic formalism because the mathematics in-
volved is simpler. In the relativistic case the method is exactly the same, [3,6,7]
and we limit ourselves here to giving only the main results. We start with the
description of the Galilei group to show how we obtain the variables that de-
termine a useful group parameterization. These variables associated with the
group will later be transformed into the kinematical variables of the elementary
particles. We end this section with an analysis of some different kinds of clas-
sical elementary particles.

5.1 Galilei group
The Galilei group is a group of space-time transformations characterised by ten
parameters g = (b,d,v,a). The action of a group element g on a space-time
point x = (¢,7), represented by x' = gx, is considered in the following form
x' = exp(bH )exp(a - P)exp(v - K)exp(@ - J)x
It is a rotation of the point, followed by a pure Galilei transformation, and fi-
nally a space and time translation. Explicitly, the above transformation be-
comes
t'=t+b, @)

F'=R(a)F +Vt +d. 2)
The group action (1)-(2) represents the relationship between the coordinates
(¢,7) of a space-time event, as measured by the inertial observer O, and the
corresponding coordinates (¢',7") of the same space-time event as measured by
another inertial observer O'. Parameter b is a time parameter, ¢ has dimen-
sions of space, v of velocity and @ is dimensionless, and these dimensions
will be shared by the corresponding variables of the different homogeneous
spaces of the group.

The variables b and @ are the time and position of the origin of frame O
at time =0 as measured by observer O'. The variables v and & are respec-
tively the velocity and orientation of frame O as measured by O'.

The composition law of the group g”’=g g is:

b”=b"4b, (3)
a"=R(@"Na+vb+ad, 4)
V' =R(@')W+V, (5)
R(@") = R(@"R(&). (6)

The generators of the group in the realization (1, 2) are the differential opera-
tors

H=0/ot, P=08lox', K,=td/ox', J, =¢g,x 0fox (7)
and the commutation relations of the Galilei Lie algebra are
[jaj]:_ja [j,ﬁ]:—p’ [j’]_é]:_kn [j,H]:O, (8)

[H,P]=0, [H,K]=P, [P,P]=0, [K,P]=0. 9)
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The Galilei group has the non-trivial exponents [4]
g(g,g')=m(%"2b'+v.R(&)a'). (10)

They are characterised by the non-vanishing parameter m. The gauge functions
for the Lagrangians defined on the different homogeneous spaces of the Galilei
group are of the form

a(g;x)= m[%ﬁ% +V- R(ﬁ)?j

They all vanish if the boost parameter v vanishes. This implies that a Galilei
Lagrangian for an elementary particle is invariant under rotations and transla-
tions, but not under Galilei boosts. In the quantum case this means that the Hil-
bert space for this system carries a unitary representation of a central extension
of the Galilei group. In the classical case, the generating functions of the ca-
nonical Galilei transformations, with the Poisson bracket as the Lie operation,
satisfy the commutation relations of the Lie algebra of the central extension of
the Galilei group [4].

The central extension of the Galilei group [8] is an 11-parameter group
with an additional generator / which commutes with the other ten,

[1,H]=[1,P]=[1.K]=[1,J]=0, (1D
while the remaining commutation relations are the same as above (8, 9), the
only exception being the last, which now appears as

(K, P1=-md, 1. (12)
If the following polynomial operators are defined on the group algebra
W:lj—ikxﬁ, U:lH—LPZ, (13)
m 2m

we see that U commutes with all generators of the extended Galilei group and
that /¥ satisfies the commutation relations
W Wl=-IW, [JW]=-W, [W,P]=[W,K]=[W,H]=0.
We find that #7? also commutes with all generators. It turns out that the ex-
tended Galilei group has three functionally independent Casimir operators. In
those representations in which the operator / becomes the unit operator, for in-
stance, in the irreducible representations they are, respectively, interpreted as
the mass, M =ml, the internal energy H,=H —P’/2m, and the absolute
value of the spin
2

VLY Y SN szz(J_ikxﬁj. (14)
m m
In what follows we take the above definition (14) as the definition of the spin
of a nonrelativistic particle. In those representations in which / is the unit op-
erator, the spin operator S satisfies the commutation relations:

[S,81=-S, [J,S]1=-S, [S,P]=[S,K]=[S,H]=0,
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i.e., it is an angular momentum operator, transforms like a vector under rota-
tions and is invariant under space and time translations and under Galilei
boosts, respectively.

Furthermore, it reduces to the total angular momentum operator J in
those frames in which P=K =0 .

5.2 The spinless point particle
The kinematical variables of the point particle are {¢,7}, time and position, re-
spectively. The nonrelativistic Lagrangian written in terms of the 7 derivatives
of the kinematical variables is the first order homogeneous function
mit

R = W =Tt+R-F,
where we define T=0L/0i and R, =0L/&/ . The constants of motion ob-
tained through the application of Noether’s theorem to the different subgroups

of the Galilei group are

energy H=-T= (drj

dt
. O df
linear momentum P=R=
dt
kinematical momentum K = m7F — Pt,
angular momentum J =7 x P.

]_,f
The spin for this particleis S=J - K xP/m=0.

5.3 A spinning elementary particle

According to the definition, the most general nonrelativistic elementary particle
[9] is the mechanical system whose kinematical space X is the whole Galilei
group & . The kinematical variables are, therefore, the ten real variables
x(z) ={t(r), 7(v), ii(r), p(r)}, with domains teR, 7eR’ iecR’ and
p € SO(3). The latter, with p =tana /2, is a particular parameterization of the
rotation group. In this parameterization the composition law of rotations is al-
gebraically simple, as shown below. All these kinematical variables have the
same geometrical dimensions as the corresponding group parameters. The rela-
tionship between the values x'(z) and x(z) take, at any instant z, for two arbi-
trary inertial observers

'(r) =t(z) +b, (15)

7(r) = R(z)F(7) + vt(r) + a, (16)
ii'(t) = R(i)ii(z) + v, (17)
5 )_#+,0(T)+,U><,0(T) (18)

1-p-p()
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The way the kinematical variables transform allows us to interpret them, re-
spectively, as the time (15), position (16), velocity (17) and orientation (18) of
the particle.

There exist three differential constraints among the kinematical variables:
u(r)= 7 (r)/i(r) . These constraints, and the homogeneity condition on the La-
grangian L in terms of the derivatives of the kinematical variables, reduce from
ten to six the essential degrees of freedom of the system. These degrees of
freedom are the position #(¢#) and the orientation P(¢). Since the Lagrangian
depends on the derivative of # it thus depends on the second derivative of
7(t) . For the orientation variables the Lagrangian only depends on the first de-
rivative of p(¢). It can be written as

L=Ti+R-F+U-i+V-p, (19)
where the functions written in capital letters are defined as before as
T=0L/oi, R =0L/0F, U,=0L/ou', V,=0L/0p". In general they will be
functions of the ten kinematical variables (¢, 7, i, p) and homogeneous func-
tions of zero degree of the derivatives (7, 7, i, p). )

If we introduce the angular velocity @ as a linear function of g, then the
last term of the expansion of the Lagrangian (19), V. ,5 , can also be written as
W-@,where W, =L/ 00’ .

The different Noether constants of motion are related to the invariance of
the dynamical equations under the Galilei group, and are obtained by the usual
Lagrangian methods. They are the following observables:

energy H=-T- dU (20)
dt’
linear momentum P =R _a;_U 21
t
kinematical momentum K =mF — Pt -U, (22)
angular momentum J=7FxP+ixU+W. (23)

From K =0, comparing with (21), we find R = mii , and the linear momentum
has the form P =mii —dU/dt. We see that the total linear momentum does
not coincide with the direction of the velocity # . The functions U and W are
what distinguishes this system from the point particle case. The spin structure
is thus directly related to the dependence of the Lagrangian on the acceleration
and angular Velocity

We see that K in (22) differs from the point particle case K =mi —Pt,
in the term —U . If we define the vector k =U /m, with dimensions of length,
then K =0 leads to the equation:
B_m d(i—k) .

dt

The vector § =7 —k , defines the position of the centre of mass of the particle.
It is a different point from 7, whenever k (and thus U ) is different from zero.
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In terms of g the kinematical momentum takes the form

K =mg — Pt,
which looks like the result in the case of the point particle, where the centre of
mass and centre of charge are the same point.

The total angular momentum (23) has three terms. The first term 7 x P
resembles an orbital angular momentum, and the other two Z =iixU + W can
be taken to represent the spin of the system. In fact, the latter observable is an
angular momentum. It is related to the new kinematical variables and satisfies
the dynamical equation dZ /dt = Pxii . Because P and ii are not collinear vec-
tors, Z is not a conserved angular momentum. This is the dynamical equation
satisfied by Dirac’s spin operator in the quantum case. The observable Z is the
classical spin observable equivalent to Dirac’s spin operator.

One important feature of the total angular momentum is that the point 7
is not the centre of mass of the system, and therefore the 7 x P part can no
longer be interpreted as the orbital angular momentum of the particle. The an-
gular momentum Z is the angular momentum of the particle with respect to
the point 7, but not with respect to the centre of mass.

The spin of the system is defined as the difference between the total angu-
lar momentum J and the orbital angular momentum of the centre of mass mo-
tion L =g x P . It can assume the following different expressions:

§=J-GxP=J--RxP=Z+ExP=-mkx" s (24)

m

The second form of the spin S in (24) is exactly expression (14) which leads
to one of the Casimir operators of the extended Galilei group. It is expressed in
terms of the constants of the motion J, K and P, and it is therefore another
constant of motion. Because the particle is free and there are no external
torques acting on it, it is clear that the spin of the system is represented by this
constant angular momentum and not by the other angular momentum observ-
able Z , which is related to Dirac’s spin operator.

The third expression in (24) is the sum of two terms, one Z, coming from
the new kinematical variables, and another k x P, which is the angular mo-
mentum, of the linear momentum located at point 7, with respect to the centre
of mass. Alternatively we can describe the spin according to the last expression
in (24) in which the term —k x mdk / dt suggests a contribution of (anti) orbital
type coming from the motion around the centre of mass. It is related to the Zit-
terbewegung, or more precisely to the function U = mk , which comes from the
dependence of the Lagrangian on acceleration. The term W comes from the
dependence on the other three degrees of freedom p,, and thus on the angular
velocity. This Zitterbewegung is the motion of the centre of charge around the
centre of mass, as we shall see in an example in section 5.6. That the point 7
represents the position of the centre of charge has also been suggested in previ-
ous works for the relativistic electron [10].
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To analyse the different contributions to the spin of the most general ele-
mentary particle we shall consider now two simpler examples. In the first one,
the spin is related to the existence of orientation variables, and in the second, to
the dependence of the Lagrangian on the acceleration.

5.4 Spinning particle with orientation
The kinematical space is 4/ G, , where G, is the three-dimensional subgroup
which consists of the commutative Galilei boosts, or pure Galilei transforma-
tions at a constant velocity. The kinematical variables are now {¢, 7, &}, time,
position and orientation, respectively. The possible Lagrangians are not unique
in this case. They must be functions only of the velocity # = dr/dt and of the
angular velocity @ . They have the general form

L=Ti+R-F+W @,
where T =08L/0i, R=0L/0F, W =0L/0d .

The basic conserved observables are:
energy H=-T,

linear momentum P =
kinematical momentum K =m7 — Pt,

angular momentum J =7x P+ 7.
For such a particle 7 = ¢, the centre of mass and centre of charge coincide and
the spin S =W #0. A particular Lagrangian which describes this system is the
Lagrangian of a spherically symmetric body.

L—lm dr +£w2,
2 dt 2

where the spinis S =W =I@.

5.5 Spinning particle with Zitterbewegung
The kinematical space is the manifold &/SO(@3), where SO(3), is the three-
dimensional subgroup of rotations. The kinematical variables are
x(r)={t, ¥, u}, time, position and velocity, respectively. The possible La-
grangians are not unique as in the previous case, and must be functions of the
velocity i =dr/dt and the acceleration a = dii/ dt .
The Lagrangians have the general form when expressed in terms of the
kinematical variables and their 7-derivatives
L=Ti+R-7+U-i,
where T =0L/6f, R=0L/&F, U=0L/dii . A particular Lagrangian could be,
for example
mit om i
L 24 20 i @)
If we consider that the evolution parameter is dimensionless, all terms in the
Lagrangian have dimensions of action. The parameter m represents the mass of
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the particle while the parameter w, with dimension time™ , represents an inter-
nal frequency: it is the frequency of the internal Zitterbewegung. In terms of
the essential degrees of freedom, which reduce to the three position variables
7, and using the time as the evolution parameter, the Lagrangian can also be

written as
2
ar m (d*F
L= . 26
[ dt j @’ ( ar’ J (26)
The dynamical equations obtained from the Lagrangian (26) are:
1 d'F 7 d 7
— =0, 27
o drdr @7
whose general solution is
7(t)= A+ Bt + C coswt + Dsin o, (28)

in terms of the 12 integration constants A, B, C and D .

We see that the kinematical momentum K in (22) differs from the point
particle case in the term —U . The definition of the vector k =U /m, implies
that K =0 leads to the equation P=md(F —k)/ dt , as before, and g =7 -k
represents the position of the centre of mass of the particle. It is defined in this
example as

1 - 1 d*F
G=F——U=F+—"—"0. 29
1 m o dr’ @)
In terms of the center of mass, the dynamical equations (27) can be separated

into the form

dzq
=0, 30
dr’ (30)
2_.
+ (7F—¢)=0, 31

d 2
where (30) is just equation (27) after twice differentiation of (29), and equation
(31) is (29) after all terms on the left hand side have been collected.

From (30) we see that the point § moves in a straight trajectory at con-
stant velocity while the motion of point 7, given in (31), is an isotropic har-
monic motion of angular frequency @ around the point g .

The spin of the system S is defined as

S:J—qxﬁzj—iléxﬁ, (32)
m
and since it is written in terms of constants of motion it is clearly another con-
stant of motion. Its magnitude S> is also a Galilei invariant quantity which
characterizes the system. From its definition we get

= - - d - dk
S=uxU+kxP=—m(F—g)x—F—-q)=—kxm—, 33
u m(r —q) dt(r 9) m (33)

which appears as the (anti)orbital angular momentum of the relative motion of
the point # around the centre of mass position ¢ at rest, so that the total angu-
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lar momentum can be written as

J=GxP+S=L+S5. (34)
The total angular momentum is the sum of the orbital angular momentum L,
associated with the motion of the centre of mass, and the spin part S. For a
free particle both L and S are separate constants of motion. We use the term
(anti)orbital to suggest that if the vector k represents the position of a point of
mass m, the angular momentum of its motion is in the opposite direction from
what we obtain here for the spin observable. But, as we shall see in a moment,
the vector k represents not the position of the mass m, but the position of the
charge of the particle.

5.6 Interaction with an external electromagnetic field
If the point § represents the position of the centre of mass of the particle, then
what position does point 7 represent? The point 7 represents the position of
the charge of the particle. This can be seen by considering interaction with an
external field. The homogeneity condition of the Lagrangian in terms of the de-
rivatives of the kinematical variables suggests an interaction term of the form
L, = —ed(t,7)i + eA(t,F)-F, (35)
which is linear in the derivatives of the kinematical variables ¢ and 7, and
where the external potentials are only functions of # and 7.
The dynamical equations obtained from the Lagrangian L+ L, are
1 d*F . d’F e
o dtt  dit m
where the electric field E and magnetic field B are expressed in terms of the
potentials in the usual form E =-V¢—034/0t, B=V x A . Because the inter-
action term does not depend on i , the function U = mk has the same expres-
sion as in the free particle case. Therefore the spin and the centre of mass defi-
nitions, (33) and (29) respectively, remain the same as in the previous free
case. Dynamical equations (36) can again be separated into the form

(E@.7)+iix B,7)), (36)

&G e(= .. . = _
sz(E(r,r)mxB(t,r)), (37)
d*F L
" +0’(F-§)=0. (38)

The centre of mass ¢ satisfies Newton’s equations under the action of the total
external Lorentz force, while the point 7 still satisfies the isotropic harmonic
motion of angular frequency @ around the point ¢ . But the external force and
the fields are defined at the point 7 and not at point ¢ . It is the velocity # of
the point # which appears in the magnetic term of the Lorentz force. The point
7 clearly represents the position of the charge. In fact, this minimal coupling
we have considered is the coupling of the electromagnetic potentials with the
particle current, which, in the relativistic case, can be written as j,4“. The
current j, is associated with the motion of a charge e at the point 7 .
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Figure 1: Charge motion in
the C.M. frame.

The charge has an oscillatory motion of very high frequency , which in
the case of the relativistic electron will be @=2mc’/h~1,55x10"'s™", as
shown later. The average position of the charge is the centre of mass, but 1t is
this internal orbital motion which gives rise to the spin structure and also to the
magnetic properties of the particle.

When analysed in the centre of mass frame (see Fig. 1), § =0, 7 =k , and
the system reduces to a point charge whose motion is in general an ellipse. If
we choose C=D, and C-D =0, it reduces to a circle of radius » = C = D, or-
thogonal to the spin. Because the particle has a charge e, it produces a magnetic

moment, which according to the usual classical definition is [11]

ﬁ:ljijd%:—éxﬁ:—iﬁ, (39)
2 dt 2m

where j =ed”(F —k)dk / dt is the vector current associated with the motion of
a charge e located at the point k . The magnetic moment is orthogonal to the
Zitterbewegung plane and opposite to the spin if e > 0. The particle also has a
non-vanishing electric dipole moment with respect to the centre of mass
d = ek . 1t oscillates and is orthogonal to i, and therefore to S, in the centre
of mass frame. Its time average value vanishes for times larger than the natural
period of this internal motion. Although this is a nonrelativistic example, it is
interesting to compare this analysis with Dirac’s relativistic analysis of the
electron, [5] in which both momenta % and d appear, giving rise to two pos-
sible interacting terms in Dirac’s Hamiltonian.

6. Relativistic elementary particles

The Poincaré group can be parameterised in terms of exactly the same ten pa-
rameters {b, d, v, &} as the Galilei group and with the same dimensions as
before. We therefore maintain the interpretation of these variables respectively
as the time, position, velocity and orientation of the particle. The homogeneous
spaces of the Poincaré group can be classified in the same manner, but with
some minor restrictions. For instance, the kinematical space of the example of
the spinning particle with orientation as in section 5.4, X =¢/G,, can no
longer be defined in the Poincaré case, because the three dimensional set G,
of Lorentz boosts is not a subgroup of G; but the most general structure of a
spinning particle still holds.
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The Poincaré group has three different maximal homogeneous spaces
spanned by the variables {b, d, v, @}, which are classified according to the
range of the velocity parameter v. If v<c we have the Poincaré group itself.
When v > ¢, this homogeneous space describes particles whose charge is mov-
ing faster than light. Finally, if v=c, we have a homogeneous space which de-
scribes particles whose position 7 is always moving at the speed of light. This
is the manifold which defines the kinematical space of photons and electrons
[6,7]. The first manifold gives, in the low velocity limit, the same models as in
the nonrelativistic case. It is the Poincaré group manifold, which is transformed
into the Galilei group by the limiting process ¢ — co. But this limit cannot be
applied to the other two manifolds. Accordingly, the Poincaré group describes
a larger set of spinning objects.

6.1 Spinning relativistic elementary particles
We shall review the main points of the relativistic spinning particles whose
kinematical space is the manifold spanned by the variables {¢, 7, u, @}, inter-
preted as the time, position, velocity and orientation of the particle, but with
u =c . This is a homogeneous space homomorphic to the manifold G/V, where
V' is the one-dimensional subgroup of pure Lorentz transformations in a fixed
arbitrary direction.

For these systems the most general form of the Lagrangian is

L=Ti+R-F+U-ii+W -,

where T=0L/0i, R, =0L/o/, U, =0L/ou' and W, =0L/0e' will be, in gen-
eral, functions of the ten kinematical variables {z, 7, u, a} and homogeneous
functions of zero degree in terms of the derivatives {7, 7, i, &} .

The Noether constants of motion are now the following conserved ob-
servables:

ener: H=-T-u-—, 40
gy = (40)
linear momentum P =R — Ci’_(t]’ 41)
kinematical momentum K = HF /¢* — Pt — S xii/c*, (42)
angular momentum J=7FxP+S, (43)
where
S=ixU+W. (44)

The difference from the Galilei case comes from the different behaviour
of the Lagrangian under the Lorentz boosts when compared with the Galilei
boosts. In the nonrelativistic case the Lagrangian is not invariant. However, the
relativistic Lagrangian is invariant and the kinematical variables transform in a
different way. This gives rise to the term Sxii/c? instead of the term U
which appears in the kinematical momentum (42). The angular momentum ob-
servable (44) is not properly speaking the spin of the system, if we define spin
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Figure 2. Motion of the centre
of charge of the electron
around its centre of mass in
the C.M. frame.

as the difference between the total angular momentum and the orbital angular
momentum associated with the centre of mass. It is the angular momentum of
the particle with respect to the point 7, as in the nonrelativistic case. Neverthe-
less, the observable S is the classical equivalent of Dirac’s spin observable be-
cause in the free particle case it satisfies the same dynamical equation,

ﬁ = Pxii,

dt
as Dirac’s spin operator does in the quantum case. It is only a constant of mo-
tion for the centre of mass observer. This can be seen by taking the time deriva-
tive of the constant total angular momentum J given in (43). We shall keep
the notation S for this angular momentum observable, because when the sys-
tem is quantized it gives rise to the usual quantum mechanical spin operator in
terms of the Pauli spin matrices.

6.2 Dirac’s equation
Dirac’s equation is the quantum mechanical expression of the Poincaré invari-
ant linear relationship [6,7] between the energy H and the linear momentum P
H-P-i-S§- (d—uxﬁ) 0,
dt

where i is the velocity of the charge (u=c), dii/dt the acceleration and
S= S’u + ga Dirac’s spin observable (see Figure 2). This expression can be ob-
tained from (42) by making the time derivative of that constant observable and
a final scalar product with the velocityu . The Dirac spin has two parts: one
S =iixU , is related to the orbital motion of the charge, and S =W is due to
the rotation of the particle and is directly related to the angular velocity, as it
corresponds to a spherically symmetric object.

The centre of mass observer is defined as the observer for whom
K = P=0, because this implies that g =0 and dg/dt=0. By analysing the
observable (42) in the centre of mass frame where H = mc’, we get the dy-
namical equation of the point 7,

7 =S xii/mc

where S is a constant vector in this frame. The solution is the circular motion
depicted in Figure 2.
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The radius and angular velocity of the internal classical motion of the
charge are, respectively, R =S/mc, and @=mc’/S . The energy of this sys-
tem is not definite positive. The particle of positive energy has the total spin S
oriented in the same direction as the gu part while the orientation is the oppo-
site for the negative energy particle. This system corresponds to the time re-
versed motion of the other. When the system is quantized, the orbital compo-
nent S, , which is directly related to the magnetic moment, quantizes with inte-
ger values, while the rotational part §0, requires half integer values. For these
particles of spin ', the total spin is half the value of the S‘u part. When ex-
pressing the magnetic moment in terms of the total spin, we thus obtain a pure
kinematical interpretation of the g =2 gyromagnetic ratio [12].

For the centre of mass observer this system appears as a system of three
degrees of freedom. Two represent the x and y coordinates of the point charge,
and the third is the phase of its rotational motion. However this phase is exactly
the same as the phase of the orbital motion of the charge. Because the motion is
at constant radius at constant speed ¢, only one independent degree of freedom
is left—say the x variable. Therefore the system is reduced to a one-
dimensional harmonic oscillator of angular frequency @. When the system is
quantized, the stationary states of a one-dimensional harmonic oscillator have
the energy

E =(n +%)ha), n=0,12,..

But if the system is elementary, then it has no excited states, and in the C.M.
frame it is reduced to the ground state of energy

1
E,=—hwo=mc".
2

If we compare this with the classical result @ =mc’*/S we see that the con-
stant classical parameter S takes the value S =%/2 when quantized. The ra-
dius of the internal motion is R = A./2, half Compton’s wavelength.

We see that all Lagrangian systems with the same kinematical space as
the one considered in this model have exactly the same dynamics for the point
r, describe spin 2 particles and satisfy Dirac’s equation when quantized. The
formalism describes an object whose charge is located at a single point 7, but
it is nevertheless moving in a confined region of radius of order A.. It has a
magnetic moment produced by the motion of the charge, and also an oscillating
electric dipole moment, with respect to the centre of mass, of average value
Zero.

To conclude this section, and with the above model of the electron in
mind, it is convenient to remember some of the features that Dirac obtained for
the motion of a free electron [5]. Let the point 7 be the position vector in terms
of which Dirac’s spinor y(¢,7) is defined. When computing the velocity of the
point 7, Dirac arrives at:
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1. The velocity # =i/h[H,7]=ca , is expressed in terms of the & ma-
trices and he writes, ... “a measurement of a component of the velocity
of a free electron is certain to lead to the result +c.”

2. The linear momentum does not have the direction of this velocity i ,
but must be related to some average value of it: ... “the x, component
of the velocity, ca,, consists of two parts, a constant part ¢’ p,H"",
connected with the momentum by the classical relativistic formula,
and an oscillatory part, whose frequency is at least 2mc” /' h ,.....”

3. About the position 7 : “The oscillatory part of x, is small... which is
of order of magnitude h/mc....”

And when analyzing the interaction of the electron with an external elec-
tromagnetic field in his original 1928 paper [13], after taking the square of
Dirac’s operator, he obtains two new interaction terms:

U PPN
2mc 2mc
Here Dirac’s spin operator is written as S = #%/2 where

. (6 0
£=| |

in terms of o=Pauli matrices. £ and B are the external electric and magnetic
fields, respectively. He says, “The electron will therefore behave as though it
has a magnetic moment (eh/2mc)Z and an electric moment (ieh/2mc)a . The
magnetic moment is just that assumed in the spinning electron model” (Pauli
model). “The electric moment, being a pure imaginary, we should not expect to
appear in the model.”

In the last sentence it is difficult to understand why Dirac, who did not re-
ject the negative energy solutions, disliked the existence of this electric dipole,
which was obtained from the formalism on an equal footing with the magnetic
dipole term. Properly speaking this electric dipole does not represent the exis-
tence of a particular positive and negative charge distribution for the electron.
The negative charge of the electron is at a single point but because this point is
not the centre of mass, there exists a non-vanishing electric dipole moment
with respect to the centre of mass even in the centre of mass frame. This is the
observable Dirac disliked. It is oscillating at very high frequency and basically
plays no role in low energy electron interactions because its average value van-
ishes, but it is important in high energy processes or in very close electron-
electron interactions.

All real experiments to determine very accurately the gyromagnetic ratio
are based on the determination of precession frequencies. But these precession
frequencies are independent of the spin orientation. However, the difficulty
separating electrons in a Stern-Gerlach type experiment suggests polarization
experiments have to be done to determine in a direct way whether the spin and
magnetic moment for elementary particles are either parallel or antiparallel to
each other. One of the predictions of this formalism is that for both particle and
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the corresponding antiparticle the spin and magnetic moment have to have the
same relative orientation, either parallel or antiparallel.

6.3 Dynamical equation of the relativistic spinning electron

We recall from elementary differential geometry some basic properties of any
arbitrary three-dimensional curve 7(s). If it is expressed in parametric form in
terms of the arc length s as the parameter, it has associated the three orthogonal
unit vectors v, i=1,2,3 called respectively tangent, normal and binormal.
These unit vectors satisfy the so called Frenet-Serret differential equations:

Vi (s) = K(5)¥,(s)
¥, (5) ==K (5)¥,(5) +2(s)%,(s),
V,(s)= ~7(s5)¥,(5)

where x and 7 are respectively the curvature and torsion. Since the unit tangent

. — = —(1 . . . . .
vectoris v, =r = 7, when successive derivatives are taken it yields
=(1) -
7

= \}] .
FO = i,
=(3) _ = = 2 . —
PO =KV, + KV, ==KV, + KV, + KTV,
FO = 3V, + (R — K — KT, + (2KT + K7,

The elimination of the ¥, vectors between these equations implies that the most
general curve in three-dimensional space satisfies the fourth-order ordinary dif-
ferential equation:
7 —(EJrijF“) +[K‘2 +7’ +ﬁ+—2k2 :KEJF(Z) +K° (E—ijf(” =0.

K T KT K K T
All the coefficients in brackets, in front of the s-derivatives 7, can be ex-
pressed in terms of the scalar products 7 -7 i, j=1,2,3. For helical mo-
tions there is a constant relationship x/7 = constant, and therefore the coeffi-
cient of 7 vanishes.

Our example of the nonrelativistic spinning particle also satisfies the
fourth order differential equation (27). Similarly, the point 7 of the relativistic
spinning electron also satisfies a fourth order ordinary differential equation
which has been calculated from invariance principles [14]. It takes the follow-
ing form for any arbitrary inertial observer:

O _ 3’({’7(;?)_ i Z))) FO 4
r - r

(2(,7(3) ,,7(3)) 3(7(2) ,’-;(3))2

(;;(2) . ;;(2)) 4(}7(2) . ;;(2))2

It corresponds to a helical motion since the term in the first derivative 7" is

lacking, and it reduces to circular central motion at constant velocity ¢ in the

centre of mass frame. Here we use space-time units such that the internal radius
R =1 and the Zitterbewegung frequency o =1.
The centre of mass position is defined by

(46)

_ (;:(2) A 7(2))1/2]7(2) =0.

()
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o 2(,-;(2) . ]-;(2))’7(2)
G=F+ T (47)

4(;(2) . ’7:(2))

(’-;(2) . ;:(2))3/2 + (,—;(3) . ;:(3)) _

We can check that both g and g vanish for the centre of mass observer. The
fourth order dynamical equation for the position of the charge (46) can also be
rewritten as a system of two second order ordinary differential equations for

the positions of the points § and 7
1-g® .70

(" ~7)

i.e., a free motion for the centre of mass ¢ and a kind of central motion for the
charge position 7 around the centre of mass. Equation (46) emerges from (47)
after differentiation twice with respect to time. The last equation of (48) is just
(47) written in terms of § and g .

For the relativistic electron, when the centre of mass velocity is small,
G" — 0, and because |G —7|=1 in these units, we obtain the equations of the
Galilei case

G0 =0, F®=

q (G-=7), (48)

§¥ =0, F¥=g-7 (49)
i.e., a free motion for the centre of mass and a harmonic motion around g of

angular frequency w =1, for the position of the charge, as happened in the
nonrelativistic example analysed in (30) and (31).

6.4 Interaction with an external field
The free equation for the centre of mass motion G® =0 represents the conser-
vation of linear momentum dP/dt = 0. But the linear momentum is written in
terms of centre of mass velocity as P =my(q")G", so that the free dynamical
equation (48) in the presence of an external field should be replaced by
- - - 1 O] -’(1) o
P(I) = F’ }”(2) (?—j(q - 7"), (50)
where F is the external force and the second equation is left unchanged. We
consider the same definition of the centre of mass position (47) as in the free
particle case, because it corresponds to the fact that the internal structure of an
elementary particle is not modified by any external interaction, and the charge
moves in the same way around the centre of mass as in the free case. Since
P )\
—r =mr@ g +my("y @ -q*Hg"
it yields
m}/(q(l ) (-'(1) (2)) — _q(l)
and by leaving the highest derivative G'” on the left hand side we finally ob-
tain the differential equations that describe the evolution of a relativistic spin-
ning electron in the presence of an external electromagnetic field:
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mc?(z) _ e(l) |:E+ PO B C—]»(l) ([E+ 0 5 E] . q’(l) ):|’ (51)
7(q")
~ 1— ~) | ";(1) o
7@ :(;_—F)z(q —7). (52)

7. Gyromagnetic ratio

The Hilbert space which describes the wave functions of the spinning electron
is a complex vector space of squared integrable functions w(t,7,i,&) of the
kinematical variables. The general structure of the quantum mechanical angular
momentum operator acting on this Hilbert space, in either the relativistic or
nonrelativistic approach, is
T
J=Fx—-V+S=rxP+S8, (53)
i
where the spin operator takes the form S = Z+W
~ _n -
S=ux—=V, +W. (54)
i
The operator V, is the gradient operator with respect to the velocity variables
and W is a linear differential operator which depends only on the orientation
variables ¢ ; it therefore commutes with V . For example, in the
p =rntan(a/2) parameterization W is written as

- h - —
7 =21V, + XV, 4 5PV, ) &3

where V | is the gradient operator with respect to the o variables.

The first part Z in (54) is related to the Zitterbewegung spin and has only
integer eigenvalues. This is because it has the form of an orbital angular mo-
mentum operator in terms of the # variables. Half-integer eigenvalues come
only from the operator (55). This operator takes into account the change of ori-
entation, i.e., the rotation of the particle.

We have seen, in both relativistic and non-relativistic examples, that if the
only spin content of the particle S is related to the Zitterbewegung part
Z =iixU, then the relationship between the magnetic moment and Zitter-
bewegung spin is given by

a=kx %= 7 (56)

i.e., with a normal gyromagnetic ratio g = 1. If the electron has a gyromagnetic
ratio g = 2, this necessarily implies that another part of the spin arises from the
angular velocity of the body, but makes no contribution to the magnetic mo-
ment.

For the electron, therefore, both parts W and Z contribute to the total
spin. But the ¥ part, which is related to the angular variables that describe its
orientation in space, does not contribute to the separation k between the centre
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Figure 3. Scattering of two spin-
ning electrons with parallel
spins, in their centre of mass
frame. It is also depicted the
scattering of two spinless elec-
trons with the same energy and
linear momentum.

of charge and the centre of mass. It turns out that the magnetic moment of a
general particle is still related to the motion of the charge by the expression
(56), i.e., in terms of the Z part, but not to the W part. It is precisely when we
express the magnetic moment in terms of the total spin S that the concept of
gyromagnetic ratio arises.

We now assume that both Z and W terms contribute to the total spin §
with their lowest admissible values. In the model of the spinning electron Z
and W have opposite orientation.

For Dirac’s particles, the classical Zitterbewegung is a circular motion at
the speed of light of radius R =#/2mc and angular frequency @ =2mc’*/h,
on a plane orthogonal to the total spin. The total spin S and the Z part are
both orthogonal to this plane, and parallel to each other. Let us define the gy-
romagnetic ratio by Z = gS. For the lowest admissible values of the quantized
spins z=1 and w =’ in the opposite direction, this gives rise to a total s =12
perpendicular to the Zitterbewegung plane, and therefore g = 2.

8. Bound motion of two electrons

If we have relativistic and nonrelativistic differential equations satisfied by the
spinning electrons we can analyze the interaction between them by assuming,
for example, a Coulomb interaction between their charges. This leads to a sys-
tem of differential equations of the form (37-38) or (51-52) for each particle.
For example, the external field acting on the charge e, is replaced by the in-
stantaneous Coulomb field created by the other charge e, at the position of e,
and similarly for the other particle. The integration is performed numerically
by means of the numerical integration program Dynamics Solver [15].

Figure 3 represents the scattering of two spinning electrons analysed in
their common centre of mass frame [14]. We send the particles with their spins
parallel and with a non vanishing impact parameter. In addition to the helical
motion of their charges, we can also depict the trajectories of their centre of
mass. If we compare this motion with the Coulomb interaction of two spinless
electrons coming from the same initial position and with the same velocity as
the centre of mass of the spinning electrons, we obtain the solid trajectories
marked with an arrow. Basically, this corresponds to the trajectory of the centre
of mass of each spinning particle, provided the two particles do not approach
each other below the Compton wavelength. This can be understood because the
average position of the centre of charge of each particle approximately coin-
cides with its centre of mass, and if they do not approach each other too closely
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Figure 4: Initial position and velocity of the
centre of mass and charges for a bound
motion of a two-electron system with paral-
lel spins. The circles would correspond to
the trajectories of the charges if considered
free. The interacting Coulomb force F is
computed in terms of the separation dis-
tance between the charges.

the average Coulomb force is the same. The difference comes out when we
consider a very deep interaction or very close initial positions.

Figure 4 represents the initial positions of a pair of particles with parallel
spins. Recall that the radius of the internal motion is half the Compton wave-
length. The initial separation of their centres of mass a is a distance smaller
than the Compton wavelength. The centre of mass of each particle is consid-
ered to be moving with a velocity v, as depicted.

That the spins of the two particles are parallel is reflected by the fact that
the internal motions of the charges, represented by the oriented circles that sur-
round the corresponding centre of mass, have the same orientation. It must be
remarked that the internal motion of the charge around its centre of mass can
always be characterised by a phase. The phases of the particles are chosen op-
posite to one another. We also depict the repulsive Coulomb force F' computed
in terms of the separation of charges. This interaction force F has also been
drawn attached to the corresponding centre of mass, so that the net force acting
on the point m, is directed toward the point m,, and conversely. This external
force determines the motion of each centre of mass. We thus see that a repul-
sive force between the charges represents an attractive force between their cen-
tres of mass when located at such a short distance.

In Figure 5 we depict the evolution of the charges and masses of this two-
electron system for a=0,44. and v=0,004c during a short time interval.
Figure 6 represents only the motions of the centres of mass of both particles for
a longer time. It shows that the centre of mass of each particle remains in a
bound region.

The evolution of the charges is not shown in this last figure because it

Figure 5: Bound motion of two electrons
with parallel spins during a short period of
time

m(0)
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my(0)

- Figure 6. Evolution of the centres of
\_/\ mass of both particles for a longer

time

\

v omy(0)

blurs the picture, but it can be inferred from the previous figure. We have
found bound motions at least for the range 0<a<0,84. and velocity
0<v<0,0lc. We can also obtain similar bound motions if the initial velocity
v has a component along the OX axis. Bound motion can also be obtained for
initial charge positions different from the ones depicted in Figure 4. This range
for the relative phase depends on @ and v, but in general bound motion is more
likely if the initial phases of the charges are opposite to each other. If, instead
of the instantaneous Coulomb interaction between the charges, we consider the
retarded electromagnetic field of each charge, we obtain a similar behaviour for
the bound motion of this electron-electron interaction.

We thus see that if the separation between the centre of mass and centre of
charge of a particle (Zitterbewegung) is responsible of part of the spin struc-
ture, then this attractive effect can be easily interpreted.

A bound motion for classical spinless electrons is not possible. We can
conclude that one of the salient features of the present formalism is the exis-
tence, from the classical viewpoint, of possible bound states for spinning elec-
tron-electron interaction. If the centres of mass of two electrons are separated
by a distance greater than the Compton wavelength, they always repel each
other as in the spinless case. But if the centres of mass of two electrons are
separated by a distance less than the Compton wavelength, then from the clas-
sical viewpoint they can form bound states, provided certain initial conditions
regarding their relative initial spin orientation, position of charges and centre of
mass velocity are fulfilled. The difficulty may be to prepare a pair of electrons
in the initial configuration depicted in Figure 4. A high-energy deep scattering
can bring electrons to a very close approach. At low energy, if we consider the
electrons in the conduction band of a solid, their interaction with the lattice
could do this job. If we have a very thin layer under a huge external magnetic
field perpendicular to the surface, as in the quantum Hall effect measurements,
most of the electrons in this layer will have the spins parallel. If this happens to
be true, we have a mechanism associated with the spin structure of the elemen-
tary particles for the plausible formation of a spin 1 Bose-Einstein condensate.
This is just a classical prediction, not a quantum prediction, associated with a
model which satisfies the Dirac equation when quantized. The possible quan-
tum mechanical bound states must be obtained from the corresponding analysis
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of two interacting quantum Dirac particles, a problem which has not been
solved yet. From the classical viewpoint, bound states for a hydrogen atom can
exist for any negative energy and any arbitrary angular momentum. The quan-
tum analysis of the atom gives the correct answer for the allowed stationary
bound states.
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The Dirac equation is considered the wave equation for a particle with spin .
We write this equation in the frame of real linear spaces. We present the change
resulting from new frames: we can construct new relativistic wave equations,
which may not be equivalent to the Dirac equation. One of these new wave
equations is proposed for neutrinos. The diversity of relativistic waves is con-
nected to with the diversity of particles with spin V5.

Classical electromagnetism itself was not sufficient to explain the electron, be-
cause it predicted neither the electron’s stability, nor quantification of energy
levels, nor the electron’s spin. Louis de Broglie discovered [1] the electron’s
wave. The non-relativistic equation for the electron was introduced by Erwin
Schrodinger. From relativistic considerations the Klein-Gordon relativistic
equation was proposed for the electron’s wave. However, this equation con-
tains two kinds of defects. It gives a conserved current without the probability
density, and it does not give expected quantum numbers and the expected
number of states in the case of the hydrogen atom.

In order to obtain a current with the probability density, Dirac introduced
a relativistic wave equation [2] based on the Pauli equation, and sought a wave
equation with first order derivatives only. This equation lead to interesting re-
sults. In the case of the H atom, the Dirac equation gives the expected quantum
numbers, the expected number of states, and precise energy levels. Moreover,
on the basis of the Pauli principle the Dirac equation (not the Schrédinger
equation) leads to the periodic classification of chemical elements. This equa-
tion also gives a correct calculation of the Zeeman effect and explains the
Lande factors. Consequently, the Dirac equation is the basis for quantum field
theories. Further, when experimental physicists discovered new particles with
spin % (muons, neutrinos and quarks), the Dirac equation was used as the wave
equation for all these particles.

Today it is possible to write the Dirac equation differently. Moreover,
these real formalisms lead to new relativistic wave equations that are not
equivalent to the Dirac equation. The diversity of these wave equations may be
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linked to the diversity of particles. For instance, it is possible to obtain a chiral
relativistic wave equation with a mass term but without the possibility of a
charge term, which corresponds to the neutrino’s properties. It is possible to
derive the different wave equations in triplicate, equivalent, but distinct equa-
tions, and this fact may be related to the existence of three and only three gen-
erations of particles. Thus, a study of relativistic wave equations provides sim-
ple explanations of well-established but not yet understood facts, such as the
insensitivity of leptons and sensitivity of quarks to strong interactions, or the
presence of charged and uncharged leptons in each generation.

1. Classical framework of the Dirac equation

We use the usual matrices here

v,
v o (1 0 i 0 -0, | (1)
l//_ l//3 s }/0_}/ _[O —1]’ 7/]_ }/ _[O_j 0 ’
v,
o (1 0 (01
[:0'0:0':0 1;0'1:—0':1 0;
(2)
, (0 —i , (10
o,=—0"=| ; O, =—0 = ;
i 0 0 -1
Vi = Vil Vs =—Yo1s - (3)
Thus, the Dirac equation reads
[»*(@, +iqA,)+im]y =0, 4)
e m,c
:—’ m:—’ 5
fic h 5

where e is the negative electron’s charge and 4, are the covariant components
of the electromagnetic potential vector. The probability vector current is one of
the tensorial quantities of this theory. These quantities have the form:

Q=yy: w=y'y, (6)
T =yry, (7)

S" =iy Yy, (®)
K" =-yrp'v, 9)

Q, =-ipyy (10)

where ' is the adjoint, Q, is an invariant scalar; J is the probability current,
whose time component

_ 4
J =yr'y =l (11)
i=1

is the probability density. Authors who present the Dirac theory are usually
very happy to get 16 tensorial densities without derivatives, because the 4 x4
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complex matrix algebra is 16-dimensional above the complex field. And we
have 16 densities: the €, scalar, the J, vector, the S, bivector, the K, pseudo-
vector, the (2,, pseudo-scalar, but these densities are real, not complex. More
generally, it is very difficult to adjust the Dirac theory to the quantum theory,
because the Dirac matrices are not Hermitian. We have ;/g =7,, but, on the
contrary, we have y/ =—y, . Many difficulties arise from this fact in terms of
adjusting the Dirac equation to quantum principles derived from non-
relativistic quantum mechanics. We shall see that these sixteen tensorial densi-
ties are not the only existing densities of the theory.

The ymatrices and the y wave are not uniquely defined in the Dirac equa-
tion, and this fact has led some to see the wave only as a tool for calculations,
without physical reality. It is always possible to replace the ¥ matrices and y by

yr=8y'sT w'=Sy; ST=§", (12)
where S is any fixed unitary matrix. The gauge transformations with S = e
are among the gauge transformations (12), where /, is the unitary nxn ma-
trix. This gauge transformation is very important, because it is both global and
local . The gauge (12) can be made local, but the U(4) gauge group is too small
to give an acceptable frame for local gauge invariance of the standard model.

2. Real mathematical frames for the Dirac equation

Due to the fact that each y has a real and an imaginary part, the Dirac spinor
is made of eight real components. Clifford algebras present two kinds of eight-
dimensional algebras over R which can be used to obtain the Dirac equation,
the Clifford algebra CI, of the three-dimensional physical space, and the even
subalgebra of the space-time algebra C/, ;.

A. Space algebra
This Clifford algebra, isomorphic to the Pauli algebra, is generated by the eight
elements 1, 0,, 0,, 0;, 05, Oy, 0,, 0,,;. To get the Dirac equation with
this frame it is sufficient [3] to associate with each y of the Dirac theory the
¢ = f(v), defined by
fW)=9¢=a, +a,0, +a,05 +a,0, +a;0,,, + as0, + 4,0, + a0, (13)
where a; are
¥ :al+i.‘l4; ¥, :_a3_.ia2 (14)
Wy =dytias; YW, =a,t+ia,
The space algebra CI, is isomorphic to the Pauli algebra M, ((), but this iso-
morphism is not an isomorphism of linear space above (, it is only an isomor-
phism of linear space above R , because we get
fGy) = ¢o,, (15)
but not f(iy) = if (). Therefore, only linear spaces and algebras above R are
convenient here.
We chose the notation  * for the complex conjugate of . We also use
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¢=9¢'=a,-a,0, a0, —a,0,, —4;0,, + 4,0, + 4,0, + 4,05, (16)
¢? =a, + 8,03 + a0y, +a,0,, —d50,; =40, — a,0, — 403, (17)
¢ = a4, — a0 — 4,03 —a,0, + 450,53 = ds0) — 4,0, — 403, (18)
and for each 4 and B we get
(AB)' =B'A'; AB=B A4, A=A"; AB=AB. (19)
The f'isomorphism yields for each
f(V/*) =00, f(r'w)= O-;,¢ . (20)
And we get
f()/" [(8/4 +iqAﬂ)+im}l//) =0.
This is
c"0,6+q0" A, g0, + mgo,, =0 21)
Within space algebra we use
V=00, A=0"4,, (22)
? =0, + éj (?: 0,0, + 0,0, + 0,0, 23)
A=A"-4; A=A'c,+A’c,+ Ao,
And the Dirac equation in the space algebra frame is
Vg +qAgo, +mpo, =0 (24)
Tensorial densities without derivatives are
J=¢p" =c"J,, (25)
K=¢o," = o“K,, (26)
R= ¢$ =Q,+0Q,0,,;, 27)
S =¢o,p =50, +S5"0, + 570, + 50, + 70, +5V0,. (28)

If J and R are single, we immediately see that K and S, with o, may be

chosen as a case K=K, §=S5; of

K, =¢o4"s S, =¢o¢ (29)
We therefore get the old 16 tensorial densities without derivatives, and 20 new
tensorial densities without derivatives. More generally, from a spinor with 2"
real components it is possible to construct (2" +1)x2"" tensorial densities
without derivatives. The 16 densities of the classical theory are electric gauge
invariant. Many attempts have been made to reduce the Dirac spinor to its ten-
sorial densities [4] [5]. It is well known that we cannot know the entire wave
from the only 16 gauge invariant tensorial densities, because they tell us noth-
ing about the phase, which changes with the gauge. The gauge transformation
y'=ey;  ¢'=ge™ (30)
induces a rotation between K, and K,  and between S, and S, as

)
K, =¢'c¢" =cos(2a)K,, —sin(2a)K,,, 3D
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K, =¢'o,4" =sin(2a)K ,, +cos(2a)K . (32)

Space algebra also enables us to describe the chirality of relativistic
waves, and that is made, in the complex formalism, by the Weyl spinors. These
spinors are defined by

_(¢). e
UV/—(”), U=U \/5(70+75)

gzi(‘//l"'l/@} UZL(%_’//;J
\/E vV, TV, , \/5 V,—V¥,

But we simply have

$=N2(¢ o) d="2(n o.¢). (34)
Thus, using the matrix representation of the space algebra, £ is simply the left
column of ¢ and 7 is the left column of ¢ . From (21) it is easy to write the

wave equation for £and 7
Vn+igAn +imé =0, (35)
VE+igAE +imn =0 (36)
Chirality in the Dirac theory is linked to the existence of two different repre-

sentations of the proper Lorentz group. If M is an element of the SL(2,()
group, and if V' is a space-time vector

V=c"V, 37
the transformation 7: V = V'=MVM" is a Lorentz rotation, a component of
the restricted Lorentz group L’I . With

(33)

¢' Mg, V' =MVM'; A'=MAM' (38)
wehave M =M™ and M =M™, and we get
V'§o, =mg' +qA'¢ (39)

We notice that the linkage between ¢, £ and 7 is invariant under the re-
stricted Lorentz group Lj , because & and 7 are transformed as

E=M& n'=M"Y'n=Mn;, n"=Mn" =0,Mo,n

- : (40)
oy =Moy;n
The Q, and the €, are invariant:
Q; +Q’20-|23 :¢I¢I:M¢¢M:MM_]¢¢ :Q] +on-|23a (41)
m =g’ o, ¢ =MS M~ : (42)
While the J and K., vectors become
J' =g =MIM"; K, =¢c¢" =MK M (43)

These transformations under a Lorentz rotation are sufficient to prove the ten-

soriality of K, and S, . Therefore we must regard the complex formalism of

the Dirac equation as very deficient.
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B. Space-time algebra

The Clifford algebra CI(1,3) constructed above the space-time with a signature
+——— was used by Hestenes [6], Boudet [7], Lasenby [8] to write a complete
relativistic physics, and particularly the Dirac equation. It is impossible to
summarize these works here. We will simply describe how we can use the ma-
trix representations of space algebra and space-time algebra to go from one to
the other. The space-time vector A reads

0 4] _,
= =y“4 44
( y oj Y'4, (44)
v =rs j=L23% v =y, (45)
The gradient 0 =y“0, reads
0V

0= 46
[V OJ (46)

With each ¢ = f () we associate the W = g(¢) defined by

Y= 0

0 ¢ (47)

= al + a2723 + a}YI} + 04721 + a570123 + a6Y]0 + a7Y20 + a8Y30
We notice that ¥ has value in the even subalgebra of the space-time algebra,
and g is an isomorphism of the space algebra to the even subalgebra. The Dirac
equation takes the Hestenes form

oYy, =m¥y, + gAY (48)
Invariance under the restricted Lorentz group reads
0—>0'=ROR; A— A'=RAR, (49)
¥ ¥ =RY, R:(M OJ, Rz[MT 9j=R" (50)
0 M 0 M
where ~ “tilde” is reversion, defined by
¥.=v.; (4B)=BA. (51)

As fand g are isomorphisms, each result in one of these mathematical frames
may automatically be translated into another.
But we may also use a third mathematical frame, with real matrices.

C. The algebra of real matrices
Quantum mechanics gives great importance to hermiticity and unitarity, be-
cause quantum theory always uses a Hermitian scalar product, which is, for

Dirac spinors
(w|w" W(ZV/ t//]d (52)

This Hermitian scalar product is associated with the norm
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I =) = [ S o = [ (53

Transposition of this norm to real algebras is very easy, because
=8
J'=>a. (54)
i=1

And we get the norm

ol =1 = Jifav= [ S 2

It is always possible to translate something from one formalism to another, so it
is possible to transpose this Hermitian scalar product to the real Clifford alge-
bra, by calculating the real and imaginary parts of the scalar product separately.
But with a linear space above the real field a Hermitian scalar product is pure
nonsense. The only scalar product naturally linked to the norm of ¢ is the
Euclidean scalar product

5o = m@a,.a;]dv. (56)

But we get this scalar product very simply as

p-¢' = [[[ o', (57)
associating with each ¢ of space algebra the real matrix
al
a,
o=| | (58)
ag

With this real matrix the Dirac equation reads

[T%(0,+q4,P), +mP, |@=0, (59)
where the T’ u and P, are
1 0 0
F0=FO=[ 4 j, r‘=—r1=[ 7/013], (60)
0 _14 Yo13 0
0 - 0o -
FZZ—FZZ( 703} F3=—F3:( 701} (61)
Y03 0 Yo 0
0 - 0 - 0
Pl=[7013 ]’ P2=[ Yos j, P3=[ Vi3s ) (62)
0 7 0 Yos 0 Viss
These matrices yield
r“r’ +1'1r* =2g“"1,; F“Pj = le"”. (63)

%1
1

The P, matrix, with square —I, replaces the of the classical formalism.
For example, the gauge invariance of the wave equation now reads
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, 1
A,—>A4,=4, —ga#a, (64)
DD =D, (65)
The real matrix formalism uses
O =T, (66)

Transposing the Dirac equation, and multiplying by Iy by the right, with
P =-P and (I'*)'T, =T, we obtain the equation

) [(ay — AP - mPl =0. (67)
Tensorial densities without derivatives are
Q, =0, (68)
J" =@, (69)
§* ;) = O R, @, (70)
K™, =0 R, (71)
Q, =or"*o. (72)
This formalism immediately shows the similarity between S**,, K*7
of the complex formalism and the new densities S*,, $*,, K*”, and

K*7 ., . But the real formalism yields much more. While with the complex
formalism the algebra generated by the y* and their products is the complete
4 x4 matrix algebra, the matrix algebra generated by the I'* and their prod-
ucts is also 16-dimensional, but it is an algebra above R and the real 8 x8 ma-
trix algebra is 64-dimensional above R, so these two algebras are not identical.
It is possible to establish that any matrix of M,(R) may be written in only one
way under the form
M=M,+MP+M,P,+M,P,, (73)
where the M are linear combinations of the I'* and their products. The P,
commutes with the ', while I3, Py, P,, and P; generate an algebra isomorphic
to the quaternion field.
From the existence of three matrices with square —/; which replace the

indistinct “4” of quantum mechanics results that we may write, in addition to
the Dirac equation, two more equations
[r” (0,+q4,R)+ mPl:|<I> =0, (74)
(1% (0, +q4,P), +mP, |®=0. (75)

And so we get three similar wave equations. These equations are equivalent,
since an arbitrary solution of one can be associated with a single solution of
another. There is a small but very interesting difference between these three
equations. In the case of the hydrogen atom, when the Dirac equation is solved,
the kinetic momentum operators J* and J, are diagonalized. The third axis is
always used. As early as 1934 Louis de Broglie [9] showed this shocking fail-
ure of symmetry, and tried to save the Dirac theory, indicating that with a rota-
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tion it is always possible to put the third axis into any direction. But when a ro-
tation is made (with the Dirac equation) a multiplication is done on 7 or on ¢
with a left-acting matrix, which changes nothing on the third preferred axis.
This number is the index of one P matrix, corresponding to a multiplication of
¢ by the right. After rotation, the third axis is always used again. And this
third axis will always be used when the Zeeman effect is calculated: this calcu-
lation requires a magnetic field in the direction of the third axis. What is the re-
sult of a magnetic field in any other direction, not orthogonal to the plane of the
trajectory? If this calculation is made, the Dirac equation does not give the ex-
perimental results.

The first axis is the preferred axis for equation (74). If we solve the equa-
tion in the case of the hydrogen atom, it will be J* and J, which become di-
agonalized. And to calculate the Zeeman effect, we must take the magnetic
field in the direction of the first axis to obtain the experimental results. Evi-
dently it is the same with (75), where the second axis is the preferred axis.

The P, P, P, matrices are matrices from right multiplication of ¢ by
0y, 0y and o,,. They commute with the I'* matrices, which are matrices
from left multiplication of ¢ by o*. Therefore they commute with I'*",
which are the generators of the Lorentz rotations. The index of the preferred
axis is a relativistic invariant.

But in experimental physics, a very similar situation exists. We know that
in addition to electrons there are muons and tauons. A muon acts exactly as an
electron, but it is not an electron, does not have the same mass, is not forced by
the Pauli principle into an electron cloud. Absolutely nothing explains the exis-
tence of three kinds of electrons. Nevertheless these three kinds exist, and now
the study of the Z, boson indicates that only three kinds exist.

Well, the simplest hypothesis that we can make is to associate each gen-
eration with one of the three possible indices, with one of these three possible
objects with square —1, which give a Dirac equation. Separately, these objects
will act in a very similar way, as these three equations are equivalent. But to-
gether the three objects will be different, because if we make a rotation, it is
impossible to put a direction into the third and the first axis at the same time.
Therefore, the spin of one cannot be added to the spin of the other.

A muon decays into an electron by emitting two neutrinos: one has the
muonic preferred direction, while the other cartries the preferred direction of the
electron family.

From our hypothesis, we cannot know if the muon’s family is the first, the
second or the third family. But since inversion between a first and a second
axis is a spatial symmetry, we should not be astonished if chirality, the differ-
ence between left and right, plays a fundamental role.

The 64 matrices I'P —where I is a product of matrices ' and where P
is I; or one of the P,—form a basis for M, (R) . This basis splits into two sub-
sets: 36 have square I, yield M' =M =M "' and give the 36 tensorial densi-
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ties ®' M ® ; 28 have square —,, yield M' =-M =M ™", do not give tensorial
densities, but generate the Lie algebra of the orthogonal group SO(8).

This orthogonal group is a global gauge group of the Dirac equation, since
(59) is invariant under the transformations

DD =AD, A'=4, (76)
I >T'™ =AT*4", (77)
P,—> P/=APA™. (78)

In quantum mechanics, replacing unitarity by orthogonality is a heresy, which
should immediately lead to catastrophic results. For example, solving the Dirac
equation in the case of the H atom, we orthonormalize the different solutions
corresponding to the different possible quantum states, and we use this or-
thonormalization when we calculate the Zeeman effect. But there is a particular
coincidence, and the orthonormalization for the Hermitian scalar product is ex-
actly identical to the orthonormalization for the Euclidean scalar product (56)
in this case [10].

3. New relativistic wave equations

A. Chiral wave with mass for the neutrino

One of the most unexpected discoveries of particle physics was parity violation
by weak interactions, and even maximal violation of this parity. This violation
led some to think that a wave of neutrinos is purely chiral and that charge con-
jugation reverses chirality. The charge conjugate of the left neutrino is the right
antineutrino. The chirality of relativistic waves may be described with Weyl
spinors, and we have seen that they transform as

&=M& n'=Mn. (79)
We obtain them in the complex formalism by considering the left part y, and
the right part y, of a Dirac spinor y :

1 1
V/L:E(l4_75)l//; WR:5(14+7/5)¥/‘ (80)

Translation into real formalisms is

P :¢%(1_U3)’ ¢?L :\/5(77 0),

1 (81)

0, =4L(100)= (¢ 0)

1 1
¥, :TE(I_Y30)= ¥ :\PE(HWO)’ (82)
L G L

The Dirac equation gives (35) and (36); the mass term links £ with 7 . Conse-
quently we have only two possibilities: either a mass term exists and the wave
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has a left and a right part, or the wave is purely chiral, with only a left or a right
part, and the mass term must be zero.

It is easy to give a relativistic chiral wave equation, with only a left wave
and a mass term [11]:

Vi, =m¢,o,. (84)
This equation gives for the left column, which is the Weyl spinor 7 :
Vn=mo,n*. (85)
Conjugating, we get
V¢, =-mg,o,. (86)
And for the second order we get
og, =VVg, =—mVg,o, =—m (m;zﬁLO'2 )02 =-m'g,, 87)
(o+m®)g, =0. (88)
To obtain the plane wave solutions we let
4, :cos(pﬂx”)¢1L +sin(p#x”)¢2L, (89)

where ¢, and ¢,, are fixed left terms. With p=c“p,, the wave equation is
equivalent to

_péu =mg,,0, (90)
PP, =mg,0,. 2y
The first equation gives
b, ==L 4,0, (92)
m
and substituting in the second equation we obtain
(pp—m*)d,0, =0. (93)
A not identically null wave results only if
pp=m’, (p") —(p)" =m’, (94)

which is the relativistic condition between mass and impulse. If this condition
is found, ¢, is anything and ¢,, is given by (92).
With space-time algebra, the wave equation (84) reads

0 ¢
It is possible to build a Lagrangian formalism for this wave equation. But
to get this Lagrangian, we must consider in the same time a left wave ¥, and
a right wave ¥ ,. We shall use here the method explained by Lasenby in [12].
<A4> is the scalar part of a multivector 4. The Lagrangian density is

e= (0%, 1, ¥, +m¥,y,¥,). (96)

oY, =m¥,y,; ‘PL=[¢L OJ. (95)

Lagrangian equations are

04,2 =0(0,,2). 97)
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04,2=0(0,4,2). (98)
Here we have
6%2 =o¥,y, +m¥,y,, 88%,5? =0, (99)
6\?;@ =m¥Y,Y,,, GO@LE =Y.y, (100)
so the Lagrangian equations give
o, =m¥,y, (101)
oV, =mV¥,y, (102)

We may consider ¥, the charge conjugate of ‘¥, . The Lagrangian formalism
itself implies equality between particle mass and antiparticle mass.

With ¥, alone we can build only ten tensorial densities without deriva-
tives, which are the components of

J= lIIL'YO\iJL = _\PL'Y}@L =-K (103)
Say =¥, ¥ =YosS)- (104)
The probability current is at the same time conservative and isotropic
J-1=0, (105)
0-1=0 (106)

B. Chiral wave with mass and charge terms

When the Dirac equation is transposed to the space-time algebra, a question in-
evitably arises. Why does the wave has a value only in the even subalgebra of
the space-time algebra? Furthermore, for a chiral wave restriction to even
subalgebra renders the existence of a wave equation with a mass term and a
charge term impossible, because no even term with square —1 commutes with
Yo and v, . But if we do not restrict the wave to the even subalgebra, we can
have electric gauge invariance and a charge term. The wave now reads

1
Y, :‘PE(l_Ym)a Y, =¥ +¥,7,, (107)
V) =a +ayy +ay;+ay, (108)
~ Y013 T Y10 T DY 50 ~ AiY 505
Wy = a5 +agyy, +ay,; +agyy, (109)

&Y o3 T A 10 T Y20 ~ A5Y 305
The chiral wave equation with charge and mass term is

oY, +qAY y, =m¥ Y, (110)
Relativistic invariance of this equation is again (49)-(50). We obtain gauge in-
variance under the transformations

Y, >V, =¥,e"; A—>A’=A—laa (111)
q
We find a Lagrangian formalism for our equation with
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L= <8\PL71\PR + m\PL’YIZ\iJR + qA\PL’YIquR>’ > (112)

which, in addition to (110), gives the equation
oV, +qA¥Y,y, =m¥,y, (113)

Thus, if charge conjugation is given as the exchange L <> Ror if C =P, we
must see this equation as

My + (=AY iy, =m¥,y, (114)
This is equivalent to hypothesizing (with Ziino [13]) that the charge conjuga-
tion, which changes the sign of each charge, must also change the sign of the
resulting electromagnetic potential vector. Here also, the Lagrangian formalism
itself creates equality between the proper mass of the particle and the proper
mass of the antiparticle.

It is possible to solve equation (110) in the case of the hydrogen atom, and
our equation gives exactly the same results as the Dirac equation. In fact, we
can attach a unique solution of the Dirac equation to each solution of our equa-
tion, and vice versa. To see this equivalence we use in addition to (107):

\Plz(@ 0]; ‘PZ:(¢Z O], (115)
0 4 0 ¢
The wave equation (110) is equivalent to the system
Vo —qAd, =mpo,, V4 —qAp, =-mpo,, (116)
Vo, + qAd = m¢,o,, @@ + qA¢ =-m¢,0,, (117)
@ and ¢, are two left spinors, and thus have the form
d=2(m 0), 4=\2(n, 0), (118)
¢ :\5(0 0'13771*), A :\/E(O 0'13772*) (119)
where 7, and 77, are Weyl spinors. The preceding system is equivalent to
Vi, —qAn, =imon’, Vo' —qAon, =imy, (120)
Vi, +qAn, = im013772*’ V613772* + qAO_13771* = imiy,, (121)
If we let
n=mn+mn,, &= _013771* - 0-13772*5 (122)
the preceding system becomes
Vn+igAn+imé =0, (123)
VE+igA& +imn =0, (124)

which is the system (36)-(37), equivalent to the Dirac equation. From this
equivalence and with our equation we obtain exactly the same results as with
the Dirac equation. Because the conjugation ¢? changes the spinor’s parity, we
can associate a left spinor with any right spinor and vice versa. We can there-
fore also assume either (with the Dirac theory) that the wave is made of a right
spinor and a left spinor, or (with equation (110)) that the electron wave is made
of two left spinors, i.e., of two neutrino waves. The electrical interaction which
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links these two spinors is then not of a different nature from the weak interac-
tion linking the left wave of a neutrino to a left wave of an electron.

4. Space-time algebra and real matrices
If ¥ is a wave with value into the full space-time algebra it reads
Y=a +ay,;+a¥; +ay +as¥on +aY,
+ a7Y20 + axY}O + a9YO + alOYOZ} + allYOl3 (125)

+ alZ’YOZl + a13Y132 + a14Y1 + alSYZ + al()’YS
We associate ¥ with the real single-column matrix

al

aZ
X= 7| (126)

al6

The scalar product and associated norm are

X-X'= [[[xXdv, IX[ =[] xXav. (127)
This Euclidean scalar product is invariant under the orthogonal transformations
X ->X'=MX, M =M, (128)

where M is any orthogonal 16x16 matrix.

The linear space M, (R) formed by the matrices of any linear application
from space-time algebra into itself is 256-dimensional above R . It contains the
16 matrices L that are matrices of left multiplication ¥ — y¥ and the 16 ma-
trices R, which are matrices of the right multiplication ¥ — ¥y. We call
L,L,L,,L,,, L, respectively the matrices of left multiplication and
Iy, R,,R,, R, Ry the matrices of right multiplication by
LYus Yuvs Youps Yorrs - We notice that L, =L, L, while R, =R R, .Itis pos-
sible to establish that the 256 matrices M = LR = RL form a basis of M ,(R)
and as with M (R), these 256 matrices split into two subsets: 136 =16x17/2
yield M?=1,, M'=M and give the 136 tensorial densities X'MX.
120=16x15/2 yield M* =-1,,, M'=-M and form the basis of the Lie al-
gebra of the orthogonal group SO(16) . It is possible to compute the 256 matri-
ces M = LR from:

L 0 F# 0,1,2,3 129
‘= F” O s ;u_ 9Ly &9y ( )

0 I 0 r,,.P
R, = l, R, = R i =1,2,3. 130
’ [18 Oj ! [_FOIZSPJ' 0 / ( )

The left and right parts of the wave read
1 1

X, =5(116 —Ry;)X; X, =E(116 +Ry;)X. (131)

The chiral wave equation (110) with real matrices reads
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(0, +94,R, )X, =mR,X,. (132)
With X, = X! L,, transposing the matrices and multiplying by L, from the
right we get

X, (0, —q4,R,) " =—mX,R,. (133)
Multiplying (132) by X, by the left, (133) by X, by the right and adding we
obtain the conservation of the probability vector current

0,J"=0,J" =X I'X,. (134)

The wave equation (132) is invariant under a gauge group comprising the
transformations

X, > X, =MX; M'=M, (135)
X, = X\ =MX,, (136)
I > L" =ML'M™. (137)

This orthogonal gauge group G is a subgroup of SO(16) isomorphic to
SO(8) . The 28 matrices generate the Lie algebra of G:
R1p3’ LORIPS’ L01R1p3’ L02R1p3’ LO3R1p3’ L123R1p3’ R2p3’ L0R2p3’ L01R2p3’ L02R2p3’
LysRyps5 LigsRopss Rips, LyRsps, Ly Ryps, Loy Rips, LosRips, LiysRips, Lips, Lyps,

L;p;, L,ps, LysPs, LyPss LoiaPss LoysPs> LosiPss LoinsDss
where
1 1
Ps =E(Il6_R03); q; =5(Il6+RO3)' (138)

If N = Mp, is one of the 28 generators, we get
“ 0 (aMp )n o0 anMn .
€N=116+Z—n'3 =p,+q;+ Z—n‘ ps =q; +e™ps, (139)
i=l1 . i=l1 .

P X, =0, q;X;=X;, q,X,=0, p,X, =X, (140)

eV X, =X,, e X, =e™X,. (141)

So G leaves the right part of the wave invariant and acts only on the left part,

which remains a left part. We can define an isomorphic group G, by replacing

p; by q;, which leaves invariant the left part of the wave and acts only on the
right part, transformed into a right part.

The electric gauge invariance (111) is one of the preceding gauge invari-
ances, with R,p, as generator. It is one of the 3 generators
{Rp;, R,p;, Ryp,}, which generate an algebra isomorphic to the Lie algebra
of SU(2). We also notice that {Rp;, R,p;, R,p;, L,,;p;} generate an alge-
bra isomorphic to the Lie algebra of U(1)x SU(2).

Finally we notice that the G’ group is isomorphic to SO(8) . But the ad-
joint representation of SU(3) is 8-dimensional, and consequently goes into
SO(8). It is therefore easy to find all the parts of the Lie algebra of the
U1)xSU2)xSU(3) group coming from the standard model into the algebra
of our orthogonal matrices. But here, contrary to the standard model where the
group was built up progressively from experimental results, the structure of the
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wave itself gives the invariance group. And we obtain isomorphic groups if we
replace p, by p, or by p, everywhere. The need to treat the three generations
separately comes from the fact that, if the three gauge groups are isomorphic,
they are not identical, and do not have the same generators.

Previously we supposed that the signature of space-time is +———. It is
also possible to use a space-time with signature —+++ . We get then the Clif-
ford algebra CI, |, which is generated by ¢, ¢, ¢,, e;with e,e, =—¢,¢, and
e, =-1, ¢’ =e’ =¢’ =1.Then we write ¥ as

Y =a, +a,e, +ase, +a,e, +a,e,,;, + a6, +a,e, +ae,; +ae,

(142)
€3 + 4116031 t A€, T A3€; T A6 T4 58, + a6,
And with W we associate the matrix
a,
a,
X=| . (143)
s

If L, is the matrix of left multiplication ¥ — e ¥ and R; the matrix of right
multiplication ¥ — We, , we obtain

, , I 0
L/t = LyS; Ru = SR;A S ==Ly Ry = [S _Igj- (144)

Consequently the set of 256 matrices M'=L'R’ is identical to the set of 256
matrices M = LR . We therefore obtain the same results.

Using this C/;, mathematical frame we have studied [14] the wave equa-
tion

oY =mY¥ +gAV¥e,,,,. (145)

This wave equation cannot be equivalent to the Dirac equation, because the
wave is made up of 16 real components, not just 8. Nevertheless this equation
yields results close to the Dirac theory. For example, we obtain the same en-
ergy levels in the case of the hydrogen atom.

Using the real matrices, it is possible to associate a wave equation written
in Cl, ; with each wave equation written in CL |, and vice versa. For example,
with the real matrices, (145) reads

L0, X=mX +qL" 4,R},; X, (146)
which is equivalent to
IF'o, X =-mSX +qlf A,R, ,; X. (147)
And this equation is the matrix translation of the wave equation
OV +mY g1,V o125 + gAYY 5, = 0. (148)

Now if we solve this equation in the case of the H atom, we will obtain the
same results as with (145). We find the same energy levels as with the Dirac
equation, but for each quantum state we obtain a set of solutions presenting an
internal SO(4) symmetry [14].
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Concluding remarks

Many experimental facts of particle physics can be understood from a study of
the different kinds of relativistic waves. The existence of three generations of
particles comes from the dimension of the physical space, which gives three
kinds of chiral projectors and three equivalent wave equations by permutation
of the index of right multiplication. The three different generations must be
treated separately in weak interactions, because the gauge groups of the three
generations are isomorphic but not identical: they do not have the same genera-
tors.

We know that each generation has two leptons, one charged one and the
other neutral. The neutral lepton, called the neutrino, has no electric charge.
Leptons are insensitive to strong interactions. With weak interactions, parity is
maximally violated. We can easily find this result if we suppose that the differ-
ences between these objects is due to different kinds of relativistic wave. A
neutrino has a wave with value in the even subalgebra, and only left. For the
charged lepton we have a left wave, while quarks have value in the full space-
time algebra. The neutrino’s wave allows only a mass term, but there is no pos-
sible charge. With a left wave, which is not restricted to the even subalgebra,
we obtain a wave equation for the charged lepton, and this minimal coupling
may be extended to the weak interactions. But this wave produces insensitivity
to strong interactions, which acts only on the missing part of the wave. Only a
wave with value in the full space-time algebra shows the full algebra of the
U(Q)xSU(2)xSU(3) Lie algebra from the standard gauge group. This algebra
is a subalgebra of the Lie algebra of the SO(16) gauge group, and arises natu-
rally from the Euclidean scalar product, which is the translation of the Hermi-
tian scalar product of quantum mechanics into Clifford algebra.

For leptons with or without charge, we may identify the P and C symme-
tries or CP with identity: the wave of the particle is purely left and the wave of
the antiparticle is purely right. The gauge group of strong interactions acts only
on the missing part of the lepton wave, leading to total leptons insensitivity to
strong interactions.

The use, in quantum mechanics and quantum field theories, of a unique
and indeterminate “i,” and complex linear spaces makes the existence of three
and only three generations incomprehensible, while three generations are com-
pletely natural if we use real Clifford algebras seriously.

Computers are used intensively in physics today, but computer science
has yet to be fully integrated into physicists’ brains. Computer science has two
main parts, algorithmic and data structures: how to act, what to act on. Quan-
tum theory tells us how to calculate, and (with the Fock space) assumes that the
question “what we calculate on” must not be asked. Nevertheless, this question
is important, because gauge groups coming from a wave with value in a real
Clifford algebra are not the same as when the wave has value in a complex lin-
ear space. As with computer science, progress in physics will come if we also
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ask questions about data structures and properties of objects used in calcula-
tions.
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What is the Electron?

H. Sallhofer
Bahnhofstrasse 36, A-5280
Braunau Austria

1. The hydrogen atom in scalar form

In my youth I often had talks with Erwin Schrodinger (my teacher at that time)
about methods for deriving his famous equation. I tried to simplify the compli-
cated derivation of the time-dependent Schrodinger equation, and showed him
that one only had to insert the Hamilton analogy,

N c2m(U — D)

, 1
U (1)
into the classical equation for light
N? o
A——— |¥=0. 2
[ ctor J )

Then, assuming harmonic solutions, one would obtain the time-dependent
Schrédinger equation

{A —2m (3; —iﬁﬂ\y =0. 3)
W hot

Thus, the classical light equation contains Schrédinger’s wave mechanics.
On the basis of its derivation, equation (1) is simply an equation for light re-
fraction. If light refraction is introduced into a classical light equation, the solu-
tions necessarily describe the light fields. Therefore, it would be most obvious
to treat harmonic solutions of (2) and (3) as the light fields. In this case the Co-
penhagen interpretation of (3) can be dropped. The harmonic solutions of (3)
for the Coulomb potential ® produce the hydrogen spectrum. Since these solu-
tions describe standing waves, they substantiate the interpretation:

Matter is standing light.
Let us visualize this.

Any wave train of light has its energy centre. Let us imagine two wave
trains of light of “equal weight,” e.g., photons, which interact with each other.
They may, for instance, orbit each other in such a way that each one is re-
flected by the field of the other. Their energy centres form a Kepler system that
generates the hydrogen spectrum. This idea thus describes, in general, the light
model of the hydrogen atom. It does not need an electron.
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Using Ehrenfest’s centre-of-gravity theorem in this conception, we see
that the energy centres of the light-hydrogen atom move according to Newto-
nian mechanics [1].

Until his death, Einstein, and with him Lorentz, von Laue, de Broglie,
Dirac, Landé, Hartmann, and others, were of the opinion that Copenhagen in-
terpretation of quantum mechanics is not complete. From that time until re-
cently [2] only Schrodinger changed his mind. In a commentary to a com-
memorative publication celebrating his seventieth birthday in 1949, Einstein
wrote about a quantum mechanics that he could accept. He pointed out that the
established part of conventional quantum theory would be found again in the
desired new theory, and that the new theory most probably had to be of statisti-
cal nature. Then he stated,

Statistical quantum theory—in case such efforts were successful—would
have a status within the framework of classical mechanics. I am rather
firmly convinced that the development of theoretical physics will be such,
but the way will be lengthy and difficult.

The handicap of Einstein induced some colleagues to look for the “miss-
ing link” between statistical mechanics and Schrédinger’s wave mechanics.
One searcher was the U. Hoyer of Munster, who 20 years ago in his book [3]
Wellenmechanik auf Statistischer Grundlage (wave mechanics on a statistical
basis), put forward a precise derivation of Schrédinger’s wave mechanics via
statistical mechanics. On the particle path, Hoyer goes directly from Boltzmann
to Schrodinger, from Vienna to Vienna.

By inserting his statistical theory into the gaping void between Boltzmann
and Schrodinger, Hoyer relieves present theoretical physics from the misery of
paradoxes and other nuances of the Copenhagen interpretation, which include:

1.1  The indeterminism of microphysics caused by the suspension of the
law of causality within its realm.

1.2 The requirement from 1.1 of an extension of classical logic toward one
in which the theorem of the excluded third no longer holds.

1.3 The complementarity of contradicting basic conceptions.

The opportunity for a general amelioration has not induced our physics
community (thus far) to take advantage of the potential for reform offered by
Hoyer. The physicist and philosopher Hoyer remains a voice crying in the wil-
derness.

2. The hydrogen atom in vector form

At first, Schrédinger found my proposal for an abridged derivation of his wave
mechanics, mentioned in section 1, “interesting.” Later on, he retracted de
Broglie’s position by pointing out that with my derivation the Schrodinger
function may be interpreted as light. The latter showed [4] that the “light” in-
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terpretation is not complete. “If you know better,” Schrédinger meant, “you
have to support your ideas vectorially.”

Therefore, I tried at first, on an analogy to the steps in section 1, to derive
the Dirac equation from Maxwell’s equations. That took quite some time. The
breakthrough did not come until the end of the seventies [5]. But at last I was
able to write down the connection between Maxwell’s equation and Dirac’s
theory with breathtaking brevity [6]

G-E=D.
(E: Maxwell's electrodynamics, &: Pauli vector, “4)
D: Dirac equation)

The simplicity of (4) is not accidental. The far-reaching consequences of
this relation inspired hope that the Copenhagen interpretation would finally be
brought down. This equation, which is known today as the “Maxwell-Dirac
isomorphism,” constitutes a new relation in natural science. To me it appears
both alarming and binding, as well as basic and absolutely necessary for quan-
tum physics and philosophy.

To be succinct, we may say the following. On the assumption of harmonic
solutions, source-free electrodynamics may always be put into the amplitude

representation
i el 0
7-V+i2( HW’ = 0. (5)
i c\ 0 ul
If we now compare (5) with Dirac’s amplitude equation,
(OB m002
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we see the following. Just as Schrodinger’s theory (3) is contained in the clas-
sical light equation (2), Dirac’s theory (6) is contained in electrodynamics (5).

Further, some reasons can be suggested why possible radical changes in
the foundations of the theory are sometimes accepted nowadays by contempo-
rary physicists, even leading physicists. Among other things, the cause may be
that scientists busy at cyclotron physics are not listened to as much as before.
This occurred because the Superconducting Super Collider beacon in Waxaha-
chie, Texas was shelved. Nevertheless, scientists sometimes take the view that
it is not their job to take notice of changes in the foundations.

I find myself today in a similar position to Hoyer’s. Whereas I took the
wave path from Maxwell to Dirac, and thereby eliminated the Copenhagen in-
terpretation, Hoyer took the particle route (almost at the same time) from
Boltzmann to Schrédinger, thus eliminating the Danish interpretation for a sec-
ond time. How often does it have to be eliminated?
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3. The electron

3.1 In the Standard Model the electron figures as a basic entity among the
leptons. In the neighbouring section, the quarks, the electron appears
to be broken. What a new super-paradox!

3.2 From the Maxwell-Dirac isomorphism it becomes evident that the
standing electron must have a field equation in electrodynamics.

3.3 The spin of the electron would wind the electron field, normally con-
sidered static, around the spin axis.

34 The electron will lead to an epiphany for physics. Even though still
frequently used in planetary technology, it has remained the most en-
igmatic.
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The electron is described as a system of classical electromagnetic and scalar
fields, i.e., a coupled system of two bosons (photon and massless boson with
spin s = 0). A mathematical proof of electron structure is given. The main prop-
erties of the electron are explained without reference to quantum mechanics or
quantum field theory. The slightly generalized classical Maxwell equations are
proved to be the equations for the electron.

1. Introduction

The 19" century conception that matter is electromagnetic in nature is extended
here to the idea of more a complete bosonic nature of matter. This means that
all bosonic fields (not only photonic or electromagnetic) are treated as sources
of fermionic fields, which, therefore, are the consequence of bosonic fields.

The first elementary particle—the electron—is dealt with here in order to
demonstrate the possibilities of this idea. It must be stressed that the electron is
not an elementary object, but has a structure. The electron is presented as a sys-
tem of classical electromagnetic and scalar fields, a standing electromagnetic-
scalar wave in its stationary states. In other words, the electron is treated as a
coupled system of two bosons (photon and massless boson with spin s = 0).

The proof of this assertion is presented below on the basis of the follow-
ing four arguments: the Maxwell-like equation for the electron, its unitary rela-
tionship with the Dirac theory, the symmetry principle, derivation of atomic
spectra from the new equation.

Our non-quantum-mechanical model of the microworld is a model of the
atom based on slightly generalized Maxwell’s equations, i.e., in the framework
of a moderately extended classical microscopic electrodynamics of media. This
model is free of probability interpretation, and can explain many inner-atomic
phenomena by means of classical physics. Despite the fact that we construct a
classical model, in building it we use essentially an analogy with the Dirac
equation and results achieved on the basis of this equation. It should also be
noted that electrodynamics is considered here in terms of field strengths (with-
out any reference to vector potentials as the initial variables of the theory).
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The first step is to define the unitary relationship (and broad analogy) be-
tween the Dirac equation and slightly generalized Maxwell equations [1,2].

The symmetry principle is the second step. On the basis of this principle
we introduce in [3,4] the most symmetrical form of generalized Maxwell equa-
tions which can now describe both bosons and fermions, because they have
[3,4] both spin 1 and spin % symmetries. Moreover, these equations are unitary
connected with the Dirac equation.

In the third step we refer to Sallhofer, who suggested [5-7] the possibility
of introducing interaction with an external field as interaction with specific
media in the Maxwell theory (a new way of introducing interaction into the
field equations). Nevertheless, our atom (and electron) model [1,2] is essen-
tially different from Sallhofer’s. We have used another, unitary relationship,
with the Dirac theory. On the basis of these three main ideas we are able to
construct an electrodynamic model of the atom and atomic electron.

Interest in the problem of the relationship between the Dirac and Maxwell
equations emerged immediately after the creation of quantum mechanics [8-
18]. However, the authors of these papers considered the simplest example of a
free, massless Dirac equation. Interest has grown in recent years thanks to new
results [5-7], with investigation of the physically meaningful case (the mass
m, # 0, interaction potential @, = 0), and our own research [1-4].

In another approach [19-26], the quadratic relations between the fermionic
and bosonic amplitudes were found and used. In our papers [1-4, 27-36], and
here we discuss linear relations between the fermionic and bosonic amplitudes.

We have found a relationship between the symmetry properties of the
Dirac and Maxwell equations [27-32], the complete set of 8 transformations
linking these equations, a relationship between the conservation laws for elec-
tromagnetic and spinor fields, a relationship between the Lagrangians for these
fields and two possibilities for quantization. We have also laid the foundations
for a classical electrodynamic model of the atom. In recent publications [33-36]
we add a physical interpretation to these mathematical results [1-4, 27-32].
Here I present a review of our results together with new interpretations.

2. The Maxwell-like equations for the electron

In the history of theoretical physics the electron appeared within classical elec-
trodynamics as the particle with minimum elementary electric charge. Yet
there was no place for the electron in the framework of the classical electrody-
namics of the atom; the difficulties of Rutherford’s purely electrodynamic
model of the atom are well known, and the properties of the electron could not
be described in the framework of classical electrodynamics. A quest for an-
other theory seemed necessary. Quantum mechanics and quantum electrody-
namics were much more successful in the microregion. Strangely though, the
theory (classical electrodynamics) could not explain the physical object to
which it gave birth. We must therefore answer the questions: “Why can classi-
cal electrodynamics not describe its principal fundamental object—the elec-
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tron? What could be done better in classical theory in order to bring it into line
with the experimental facts of atomic and electron physics?”

The aim of our investigations [1-4, 33-36], and our starting point, is as
follows: “The electron as the fundamental object of classical electrodynamics
must be described in the framework of this theory without recourse to quantum
mechanics or quantum electrodynamics. The solution should exist within clas-
sical electrodynamics.” The result of our investigations has opened up this pos-
sibility. However, the equations we used were slightly generalized Maxwell
equations. The inneratomic electrodynamics of the microworld appears to re-
quire more general Maxwell-like equations than the ordinary Maxwell equa-
tions of the macroworld. Further, our electron is a wave object, not a particle.

The slightly generalized classical Maxwell equations [1,2] are considered
in a specific medium that models the relativistic atom. It is easily seen that they
differ from the standard Maxwell electrodynamics by the presence of magnetic
sources (in one interpretation), or scalar fields (in another interpretation).

The slightly generalized Maxwell equations in a medium representing a
system of coupled electromagnetic (E,H) and scalar fields (E°,H")

curlH — &0,E = gradE®,  curlE + ud,H = —gradH®,
divE =—ud E°, divH =-&d,H", 0, = %, M
are postulated. We emphasize that equations (1) are not proposed ad hoc. In the
stationary case these Maxwell equations are unitarily connected [1, 2, 33, 34]
with the Dirac equation for a massive particle in an external field ®(x) if the
electric ¢ and magnetic x permeabilities are of the form [5-7]

L@y @@, @

i.e., permeabilities are defined by the parameters m,, w , and the given function
@(X). (Below we will demonstrate this relation in detail, and step by step, all
the reasons for our choice of the form (1) will be explained.) Here the system
of units 7=c=1 is used, and transition to the standard system is fulfilled by the
substitution @ — hiw, m, —> myc’, etc.
Due to the time independence of ¢ and u, equations (1) may be rewritten
in the equivalent form
curlH —d,6E =j,, curlE +d,uH =

&%) =1

_47ma ’
il -0,6E = . : G)
leé‘E = ,06,, d]V,UH = pmag’

where electric and magnetic current and charge densities have the form
jel = gradEO, jmag = gradHO H
P, =—eud,E° + Egrade,  p,., =—&u0,H° + Hgradu.

mag "~

(4)

Due to the presence in equations (1) =(3) of both electric and magnetic
sources, we called them “slightly generalized Maxwell equations.”
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For a compact description of the system (E,H,E°,H") of electromagnetic
and scalar fields, it is useful to introduce the following complex vector and ten-
sor functions:

e=@En=lC

80

= column|E1 —iH',E* —iH*,E* —iH* E° —iH°|, (5)

E=(E"): &7 =" =87

, EM=ig™E 1=0,1,2,3, j=123, (6)
where & =(&/)=(E'-iH’)=E—if is the well-known form for the electro-
magnetic field used by Majorana as early as 1930 (see, e.g., [9]), and
E°=E"—iH° is a complex scalar field.

To illustrate the essence of our generalization of the Maxwell equations
and the group-theoretical foundations of a description of fermions in terms of
bosons, we consider the simplest version of equations (1), ie., the case
&=u=1 (no medium):

GOE = curlH — gradE®, 601:1 = —curlE — gradH°, )
divE =-0,E°, divH =-0,H".
In terms of functions (5), (6) equations (7) can be rewritten in the following
equivalent forms:

0,C =icurle —grad®®,  div€ =-6,E°, (8)
0,6, -0,6, +ie, ,0°€7 =0, 0,E =0, )
0,6 =", (j,=-0,&"), (10)

(i, +5 - p)E +igrad®® =0, 9,E" =0, (11)
740,£(x)=0, (12)

where §=(s’) are the Hermitian generators of irreducible representation D(1)

of the group SU(2), p=(p’)=-id, , matrices 7 contain the operator C of com-
plex conjugation, C& =& *:

100 0 00 0 1
O L P R
001 0 0 i 00
000 -l 10 0 0
(13)
0 0 i 0 0 - 0 0
s |00 0L 00 0,
- 0 0 0 00 0 1
0 -1 00 00 -10

and satisfy the relations of the Clifford-Dirac algebra: 7“7" +7"7* =2g*".

The general solution of equations (8) = (9) = (10) = (11) = (12) was found
[31,32] in the manifold (S(R*)®C*)* of Schwartz’s generalized functions di-
rectly by the Fourier method. In terms of helicity amplitudes ¢“(k) the solution
has the form
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E(x)= Id k /( 7[) {[c e +c (es+e4)Je’”‘“+[c*2 e1+0*4(e3+e4)]e’k‘}, (14)

K,
where 4-component basis vectors e, are taken in the form
e, =column (€,,0), e, = column (0,1). (15)

Here the 3-component basis vectors €, are the eigenvectors of the quantum-
mechanical helicity operator for the spins =1,

~ k . .
Eh S?j =A¢, with A,=%1,0 for j=1,23. (16)
Without loss of generality these vectors can be taken as
: ok’ - k'K’ i
é —ok' -k |, &, =6% & =—. (17)
(0]

= 171 2712
a),/2(kk + Kk ) iR+ k)

It should be noted that if the quantities E°,7° in equations (7) are some given
functions for which the representation

2w ; e
E'—iH’=\|d’k e 4 cte™), 18
] Gy ) (18)
is valid, then equations (7) are the Maxwell equations with the sources
ji=—0,E", ju*=-0,H". (We call these 4 currents gradient-like sources). In
this case the general solution of the Maxwell equations
(7N =(18)=(9)=(10)=(11)=(12) with the given sources, as follows from the
solution (14), has the form
E(x) = [dk |- (c'¢ + "¢, + &) +cc,

2(2 )y (19)

H(x)=ifd'F 2(2 ; — ('8, — %, + ffE,) + e,

where the amplitudes of longitudinal waves € exp(-ikx) are a=c’ +c*,
pB=c’—c* and ¢,¢* are determined by functions E°,H° from equation (18).

Longitudinal electromagnetic waves were investigated by Hvorostenko
[37]. Now we are able: (i) to add to his results the exact solution of the Max-
well equations with gradient-like sources, which contains the longitudinal
waves, and (ii) to identify the location of these waves in the same space-time
domain where the gradient-like sources are located (since the amplitudes
c’, ¢*, which define the waves and the gradient-like sources, are the same).

Note that in the procedure to find the solutions (19), as an arbitrary step
we can make H°=0, or ¢*=0, and easily treat the partial case with only one
scalar field E° =0, corresponding to electric sources.

The procedure by which we have generalized the standard Maxwell equa-
tions involves two steps. We first add the magnetic currents and charges (gen-
eralization). Second, we suppose that electric and magnetic sources are gradi-
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ents of two scalar fields (E°,H°), i.e., we consider the partial case of sources.
In this second step we simplify (rather than generalize) standard Maxwell elec-
trodynamics. Lastly, we deal with the slightly generalized Maxwell equations
for the system (E,H,E°,H") of interacting electromagnetic and scalar fields.

Generalization of the standard Maxwell equations was not undertaken ad
hoc, i.e., without motivation. There is no doubt that the classical Maxwell elec-
trodynamics of the macroworld (without generalization) is sufficient to de-
scribe electrodynamic phenomena in the macroregion. Yet it is well known that
for micro-phenomena (inneratomic region), classical Maxwell electrodynamics
and classical mechanics do not work and must be replaced by quantum theory.
In attempting to extend classical electrodynamics into the inner-atomic region,
we concluded that this could be done by generalizing standard Maxwell classi-
cal electrodynamics via an extension of its symmetry.

We have four reasons for introducing generalized equations (1) to de-
scribe micro phenomena. (i) These equations are directly connected with the
Dirac equation, whose application in atomic and nuclear physics is well
known. (ii) These equations are the maximally symmetrical form among the
possible forms of the Maxwell equations, i.e., they are introduced due to the
symmetry principle (recall the first use of the symmetry principle by Maxwell).
(iii)) We show below that these equations describe the spectra of atoms on the
same level as the Dirac equation does. (iiii) The relationship of these equations
with standard Maxwell theory is evident.

3. Unitary relationship with the Dirac theory
We briefly show the connection between the stationary Maxwell equations
curlH — weE = gradE®,  curlE — ouH = —gradH®,
divE = wuE®, divH =-weH",
[1,2] that follow from Maxwell-like system (1)—below we shall derive (20)—
and the stationary Dirac equation obtained from the ordinary Dirac equation
(ir'0,—my+y'®)¥=0, W=(¥), (21)

(20)

with m, #0 and the interaction potential ® 0.
Assuming the ordinary time dependence
Y(x)=¥(X)e ™ = 0,¥(x)=—io¥(x), (22)
for the stationary states, and using the standard Pauli-Dirac representation for
the » matrices, we obtain the following system of equations for the compo-
nents W“(x) of the spinor ¥ (%) :
—iwe?' + (0, —i0,)¥* +0,¥° =0,
—iwe?’ + (0, +i0,)¥’ —-0,¥* =0,
—io¥’ + (0, —i0,)¥’ +0,¥' =0,
—iou¥* + (8, +i0,)¥' —0,¥* =0,

(23)
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where ¢ and u are the same as in (2). After substitution in equations (23) of
the following column for ¥

¥ = column|-H° +iE>,~E* +E',E* +iH* ,~H’ +iH' (24)
we obtain equations (20). A complete set of 8 transformations with the same
properties was obtained in our papers [27,28] with the help of the Pauli-Gursey
symmetry operators [38].

The relationship (24) may be written in terms of a unitary operator. It is
useful to represent the right-hand side of (24) in terms of components of the
complex function (5). In these representations the connection between the spi-
nor and electromagnetic (together with the scalar) fields has the form

£=UY, vY=U!¢&, (25)
where the unitary operator U,, is the following:
0 iCc. 0 C
U, = ig, _(? CO ’% el z%(C$l), C¥ =W, CE=C*. 26)
iC 0 C. 0

The unitarity of operator U, (26) can easily be verified by noting that

(A0 =c4t, aC=Ca* (aC)*=Ca, 27
hold for an arbitrary matrix 4 and a complex number a. We underline that in
the real algebra (i.e., the algebra over the field of real numbers) and in the Hil-
bert space of quantum mechanical amplitudes, this operator has all the proper-
ties of linearity and U U.' =U,'U,, =1, U;'=U] .

The operator (26) transforms the stationary Dirac equation
[(0-@)y" +ir'0, —m, |¥(%)=0 (28)

from the standard representation (the Pauli-Dirac representation) into the bos-
onic representation

[(0-@)7" +77"8, - m, |€(%)=0 (29)
Here the 7* matrices have the following unusual explicit form
1 00 O 00 i O
oo 010 0 71:900—1’
001 O i 00 O
00 0 -1 010 O
(30)
0 0 0 1 - 0 0 O
L, {00 i 0 _, |0 - 00
"Zlo ioo T Tlo o i o
-1 0 0 O 0 0 0 i

in which, in comparison with (13) only the 7° matrix explicitly contains com-
plex conjugation operator C. We call the representations (13), (30) the bosonic
representations of y matrices. Matrices (13) and (30) are related to one another
by the unitary transformation. Due to the presence of operator C these bosonic
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representations are essentially different from ordinary Pauli-Dirac, Weyl and
other standard representations of » matrices. For example, in bosonic repre-
sentation (30), imaginary unit i is represented by the 4x4 matrix operator:

0 -1 0 0
1 o o0 o
- _ 31
"“lo 0 0 —i (1)
0 0 =i 0

Due to the unitarity of the operator U, (26) the »* matrices (30) (as well as
the matrices (13)) still obey the Clifford-Dirac algebra

Yyt =2g" (32)
and have (together with the matrices (13)) the same Hermitian properties as the
Pauli-Dirac »* matrices:

=y, rt=vn (33)
Formulae (13) and (30) thus give two exotic representations of y matrices.

In vector-scalar form, the equation (29) is as follows

—icur16’—+[(w—(D)C—m0J€—=—grad<€’°,
divgz[(a)—d))CanOJé’o.

Completing the transition to common real field strengths according to formula
& =E-iH and separating real and imaginary parts, we obtain equations (20),
which are mathematically equivalent to equations (1) in the stationary case.
The mathematical facts considered here prove the one-to-one correspon-
dence between the solutions of the stationary Dirac and the stationary Maxwell
equations with gradient-like 4-currents. Hence, using (24), one can write the
hydrogen solutions of the Maxwell equations (1) starting from the well-known
hydrogen solutions of the Dirac equation (21), i.e., without the special proce-
dure of finding solutions of the Maxwell equations [1]. Moreover, all success-
fully solved stationary Dirac problems of atomic physics can easily be refor-
mulated and solved equally well in terms of Maxwell-like equations (1). Yet we
now work in the framework of slightly generalized classical electrodynamics.
We now consider the relationship between the Dirac and Maxwell equa-
tions in the simplest case when m,=0 and ¢=x=1. Equations (8)=(9)=
(10) = (11) = (12) are directly connected with the free massless Dirac equation

(34

iy"0,¥(x)=0. (35)
Substitutiing (the notations are the same as in (26))
E’+iH° 0 0 C C
v E‘3+iE20 _ve, U:Q iC, 0 0 7 (36)
il +E 0 0 C C
—H*+iH" c iC. 0 0

into Dirac equation (35) with y matrices in standard Pauli-Dirac representation
transforms it into the slightly generalized Maxwell equations (7) = (8) =(9) =
(10) = (11) = (12) (the complete set of transformations as in (36) in [27,28]).
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Thus, equation (35) with ¥ in the form (36), as well as (12), may be inter-
preted as the electrodynamic representation of the massless Dirac equation.

The unitarity of the operator (36) can easily be verified with reference to
relations (27). Here, as in the case of operator (26), in the real algebra (i.e., the
algebra over the field of real numbers) and in the Hilbert space of quantum me-
chanical amplitudes, this operator has all the properties of unitarity.

We emphasize that equation (12) has the form of the massless Dirac equa-
tion for the fermionic field. Hence the 7* matrices may be chosen in arbitrary
representation (e.g., in each of the Pauli-Dirac, Majorana, Weyl, etc. represen-
tations). However, only in the exotic representation (13) is equation (12) the
Maxwell equation for the system of interacting electromagnetic ¢ = E —iH
and scalar &° =E"—iH° fields. (We thus call the representation (13) “bos-
onic.”) If equation (12) is treated as bosonic, the representation of the 7* ma-
trices and their explicit form must be fixed in the form (13). In the bosonic in-
terpretation of equation (35) one must fix the explicit form of y* in standard
Pauli-Dirac representation, and the form of ¥ must be fixed as column (36).
Thus, we introduce our generalization of the Maxwell equations on the basis of
the Dirac equation; or more prescisely, on the basis of the Maxwell-Dirac uni-
tary relationship (the first motivation of our generalization).

The Maxwell-Dirac relationship presented here may be seen as the deriva-
tion of our generalized form of the Maxwell equations from the well-defined
Dirac equation. This central conclusion is presented in all our publications.
This relationship may be seen as a derivation of the Dirac equation from classi-
cal electrodynamics, as demonstrated in other work [35].

Finally, knowing the operator U (36), it is easy to obtain the relationship
between the Bose amplitudes ¢“(k) (determining the general solution (14) of
equations (9)) and the Fermi amplitudes a'(k), b"(k), r=1,2, (determining
the well-known general solution of the massless Dirac equation (35), we ex-
plore the Pauli-Dirac representation). This solution has the form:

#0= b Jarkfe ()o@ o () (£)e &7
r=1,2, kxza)t—lzi, a)E\/l?z, keR’,
where
1 0
N 0 D 1
vl(k)zE Vo | vz(k)=3(k1_ikz)/w’
(k' +ik*) /@ —i|w (38)
Klo (k' —ik*) /@
L 1 |(k'+ik))/w .o 1 )
v](k)=$( 1)/ b= 0/
0 1
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Corresponding formulae [31, 32, 36] connecting fermionic and bosonic ampli-
tudes have the form:

d = fiflo-k ) k) (¢ - )~(0-k)e + (w+k)e* |
[
oot o [ e )|
L (39)
b = iflo-k )@k ) (¢ et )+ (w 4k ) +(0-k)e" |
oL i(e i) \/Z;Zzul—\/Zigszﬁk‘+ik2)(c3—c4)}.

In terms of unitary operator V' these formulae have the form:

i\/ﬁ -p —l\/ﬁ q

1 1
a2 —iz"‘\/Z z* —iz*\/Z z* 03
“1=2 P =y (40)

Bl 20| ifpg ¢ ifpg  p||c ’

b* c*
iz \/Z z —iz \/z -z
q p

where p=w-k’, qg=0w+k’, z=k'—ik’, z*=k'+ik*, o=~k The opera-
tor V' (the image of operator U (36) in the space of quantum-mechanical ampli-
tudes ¢ and a, ie, in the rigged Hilbert space S;cHcS,', where
Sy =(S(R*)®C*)* is the space of 4-component generalized Schwartz func-
tions) is linearand V7' =V"'V =1, V' =",

Hence, the fermionic states may be constructed as linear combinations of
bosonic states, i.e., states of the coupled electromagnetic € = E—iH and scalar
&% =E"—iH" fields. The inverse relationship between the bosonic and fer-
mionic states is also valid. We prefer the first possibility which is a new (bos-
onic) realization of the old idea (Thomson, Abraham, efc. [39]) of the electro-
magnetic nature of mass and the material world. Consequently, today on the
basis of (24), (26), (36) (and (70) below) we may speak of the more general
idea of the bosonic field nature of the material world.

On the basis of this relationship, a connection between the quantized sca-
lar-electromagnetic and massless spinor fields has been obtained [31, 32, 36].
The possibility of both Bose and Fermi quantization types for the electromag-
netic-scalar field (and, inversely, for the Dirac spinor field) has been proved.
This is interesting for the development of quantum field theory in general.

We will not touch on the problems of quantization. As in most of our pub-
lications on this subject, we describe the atom and electron without quantiza-
tion. Quantization of the electromagnetic-scalar field is addressed elsewhere
[36].
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4. Derivation of the slightly generalized Maxwell equa-
tions from the symmetry principle

Equation (7)=(8)=(9)=(10)=(11)=(12) is the maximally symmetrical
form of all generalized and non-generalized forms of Maxwell equations. Due
to the fact that equations (9), (10) =(11), (12) are manifestly covariant vector,
tensor-scalar and spinor forms of one and the same equation (7), respectively,
the following theorem is valid.

THEOREM 1. The slightly generalized Maxwell equations (8) =(9) =
(10)=(11) = (12) are invariant with respect to the three different transforma-
tions, which are generated by three different representations P, P™, P® of
the Poincaré group P(1,3) given by the formulae

E@) > & (x)=AE[ A (x—a)],

EX) > E®(x) = FAC[A (x—a)], (41)

EX)—>E5(x) = SA(E’[A’1 (x—a)],
where A is a vector (i.e., (%4,%)),F(A) is a tensor-scalar ((0,1)®(0,0)) and
S(A) is a spinor representation ( (0, 4) ®(%,0) ) of SL(2,C) group. This means
that the equations (8) =(9) = (10) = (11) = (12) have both spin 1 and spin 1/2
symmetries.

Proof. Let us write the infinitesimal transformations, following from (41),
in the form

EVS (x) = (1-a%8, L™ 1) E(x). (42)
Then the generators of the transformations (42) have the form
0 s 5.8
6P:ax_p, ]ZOTS =x,0,-x,0, +s"T (43)
where
(570 ), =080 =000 530 <(5:3), (44)

T
s _ Spo'

po po op mn of

0 .
Oe(o,l)@(o,O), sto=—sl, sho=—ig™s!, sl=s/,  (45)

((sl,sz,s)3 =§ are the same as in (1 1)) and
Snr =477 ]+ 500 €(0.3)@(4.0), (46)
where the 7 matrices in specific bosonic representation are given in (13) and
satisfy standard Clifford-Dirac algebra. The proof of the theorem is now re-
duced to verifying that all generators (43) obey the commutation relations of
the P(1,3) group and commute with the operator of the generalized Maxwell
equations (12) [3,4].
COROLLARY 1. The transition inverse to (36) transforms the equation
(8)=(9)=(10)=(11) = (12) into the massless Dirac equation (35) with matri-
ces 7 in standard Pauli-Dirac representation. This means that the massless
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Dirac equation has the same three different P”, P, P® Poincaré symmetries
as the slightly generalized Maxwell equations (9).

This result for the slightly generalized Maxwell equations (8) = (9) means
that, from a group theoretical point of view, these equations can describe both
bosons and fermions. As a result, there are direct group-theoretical grounds for
applying these equations to describe the electron, as presented below.

A distinctive feature of equation (9) for the system & = (6’ ,& 0) (i.e., for
the system of interacting irreducible (0,1) and (0,0) fields) is that it is the mani-
festly covariant equation with a minimum number of components, i.e., the
equation without redundant components for this system.

Note that each of the three representations (41) of the P(1,3) group is a lo-
cal one, because each matrix part of transformations (41) (matrices A, F(A)
and S(A)) does not depend on coordinates x € R*, and, consequently, the gen-
erators (43) belong to the Lie class of operators. Each of the transformations in
(41) may be understood as connected with special relativity transformations in
the space-time R* =(x), i.e., with transformations in the manifold of inertial
frames of reference. -

It follows from equations (9) = (12) that the field &€ =(£,&°) is massless,
ie, 0"0,6 =0. Therefore it is interesting to note that neither P”, nor P"
symmetries can be extended to the local conformal C(1,3) symmetry. Only the
spinor C° representation of C(1,3) group, obtained from the local P°® repre-
sentation, is the symmetry group for the slightly generalized Maxwell equa-
tions (9). This fact is understandable: the electromagnetic field ¢ = E —iH
obeying equations (9) is not free; it interacts with the scalar field €°.

Consider the particular case of standard (non-generalized) Maxwell equa-
tions, i.e., the case of equations (8) = (9) without magnetic charge and current
densities (when H° =0 but E° #0). The symmetry properties of these stan-
dard electrodynamic equations are tightly restricted in comparison with the
generalized equations (9): they are invariant only with respect to tensor-scalar
(spin 1 or 0) representation of the Poincaré group defined by the corresponding
representation (0,1)®(0,0) of the proper orthochronous Lorentz group
SL(2,C). Other symmetries mentioned in the theorem are lost for this case too.
The proof of this assertion follows from the fact that the vector (%, )4) and the
spinor (0, %4)®(}%,0) transformations of & =(&,£°) mix the ¢’ and &
components of the field €, and only the tensor-scalar (0,1)® (0,0) transforma-
tions do not mix them.

For the free Maxwell equation in vacuum without sources (the case
E° =H" =0) the loss of the symmetries mentioned above is evident, for the
same reasons. Moreover, it is well known that these equations are invariant
only with respect to the tensor (spin 1) representations of the Poincaré and con-
formal groups and with respect to the dual transformation: £ — H, H — —E .
We have obtained the extended 32-dimensional Lie algebra [40] (and the cor-
responding group) of invariance of free Maxwell equations, which is isomor-
phic to C(1,3) ®C(1,3) ®dual algebra. We have proved this by a method ob-
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tained from the Lie class of symmetry operators. The proof also held in a more
general class, namely, in the simplest Lie-Backlund class of operators. The cor-
responding generalization of symmetries of equations (9) presented in the
above theorem leads to a wide 246-dimensional Lie algebra in the class of first
order Lie-Backlund operators.

The Maxwell equations (9) with electric and magnetic gradient-like
sources have the maximum possible symmetry properties of all standard and
generalized equations of classical electrodynamics!!! We therefore introduce
our generalization of the Maxwell equations on the basis of the symmetry prin-
ciple (the second motivation for our generalization).

5. Derivation of atomic spectra from the Maxwell-like
equations

The consideration presented above for the simplest case & = gz =1 furnishes the
group-theoretical basis for the classical electrodynamic (non-quantum-
mechanical) model of the electron and atom based on the Maxwell equations
(1) =(3) in medium with (¢,) #1.
Now we return to the input equations (1) and consider the stationary case.
For the stationary solutions with positive energy @
E°(t,%) = E}(X)cos wt + Ey(¥)sin o,
H(t,%) = H))(X)cos wt + H, (X)sin et,
E(t,%) = E ,(¥)cos ot + E , (X)sin oot
H(t,%) = H ,(¥)cos wt + H,(¥)sin o,
the slightly generalized Maxwell equations (1) in an electrodynamic medium
(2) (which assumes here the role of nuclear field) have the form (20).

Strictly speaking for the 16 time-independent amplitudes, two non-linked
subsystems like (20) [1] are obtained:

curld , —weE, = gradE®,,  curlE, —wuH , = —gradd®,,
divE, = wuE®,, divH , =-wsH",,

(47)

(48)

(49)

curld, + weE , = gradE’,, curlE, + ouH, = —gradH®
divE , = -~wuE’,, divH, = wcH",,
We consider only the first of these, because these subsystems are connected by

the transformations
E—>H, H—>-E, ¢£E—> uH, yH — —¢E,

(50)

51
ED U, U E. Gl
It is useful to separate equations (49) into the following subsystems:
weE, —0,H’, +0,H +0,E" =0,
wcHy) +0,H, +0,H’, +0,H’, =0, 52)

—@uUE', +0,E) +0,E, +0,E; =0,
oul’ —0,E; +0,E, —0,H, =0,
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weEy—0,H +0,H’, +0,E =0,
wsE, -0,H, +0,H,+0,E} =0,
ouH' —0,E, +0,E; —0,H, =0,
wuH’ —0,E, +0,E;, —0,H, =
Assuming the spherical symmetry case, when ®(x)=®(r), r z|i|, we make

the transition into the spherical coordinate system and look for solutions in the
spherical coordinates in the form

(E,H)(F) = R(E,H)(’")f(E,H) (99 ¢), (54)
where E= (E,EO), H= (I:I,HO). We choose for the subsystem (52) the
d’Alembert Ansatz in the form

E :EEz‘RH:‘PZfAeiiﬁM,

E,=C, R, PMe™,

Ey

FIO:@ R P'ﬁ"e—iﬁm’f’ k=152;3- (55)

(33)

C R mk ﬂmk;r) ,

[II
We use the followmg representatlon for the 0,,0,,0, operators in spherical co-
ordinates

Fimg R
a CRPmeiimyﬁ — cos R Pm+1 R Pm+1 +[(mfl)¢CLPm =,
1 1 21+1 ¢( W+ 1+1 ) Sine ! r
Fimg :
m _Fimg __ : m+1 m+1 Fi(m-1)¢ m m E
0,CRE"e™" = o] sing(R B =R g e O BT =, (56)
d,CRP" "™ =—[RM [+m)B"\+ R, (I-m+1)P], .

Subsituting (55) and (56) into subsystem (52), and adopting assumptions
REa =R, lEa =1, RHa =R, lHa =1y,
m =m, =m,—l=m,—1=m,
C, =iC,. C, =-iC,, Cy =-iC,. G, =~iC, .
Ch, =Cp (L, +m+1), C, =-C; =C', C,=C(;—m),
c,’,’z =-C/(lj-m), Cp=-Cp=C", C;=-C.(+m+1),
=0 -1=l', IJ=1+1=1",
ensures the separation of variables in these equations and leads to a pair of
equations for two radial functions R,,R,,:

(57)

eoR; —R;,_, =0, UOR, + Ry ., =0, (58)
big I Vg I _(d  a
coR; — R, ., =0, UOR, +R; =0, R, = E+7 R. (59)

In the case ® =-ze’/r and for the energy region 0<w <myc” the solu-
tions (54) of equations (1) rapidly decrease at the limit |x| =r —> o, and the
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possible values of the energy are discrete and coincide with the Sommerfeld-
Dirac formula

2
yd m,c

(60)

2
a

(n,, +Vk —a? )2

with the notations n, =n—k, k= j+1/2, a=e*/hc [41]. The reason for this
is the coincidence of the radial functions R ,,(r) in (58), (59) with those for
the stationary Dirac equation (28) for the electron with mass m, in the external
field ® = —Ze’ /r . Furthermore, the standard relativistic electron states (the so-
lutions of the Dirac equation (28)) can be obtained from the solutions
(E,H)(F) of the slightly generalized Maxwell equations (1) via the unitary op-
erator (24)-(26).

Nevertheless, (and this is the main result!) here we are only working with
classical Maxwell equations and do not utilize quantum-mechanical equations.

For the subsystem (53) the d’Alembert Ansatz has the form

a1+

+ . P
0 _ my img ¢
E, = C@ Rn4 PzH4 e,

+ + + +
k _ my _im ¢
Ey=Cy R, Be™?,

S o (61)
Hy=C,, Ry B e,
H; = CHA, RHk P,:i‘ e ¢9
and the corresponding assumptions are the following:
RE,, =R, ZE,Z =1, RHa =Ry, lHa =1y,
r;zl—l =m,—1=m, :rr;4 =m,
Cp=iCy, Cp=iCy. Cp=iCp, C, ==iCy,
+ + + + + + + (62)
Cp, =iCy (L +m+1), Cf =-Cj =C', C} =-iC] (li-m),
Cy =—iCy (I —m), Cl=-Cj =C", Cjj ==iCL (I} +m+1),
IL=l-1=0', 1"=1"+1=1".
Again we derive the equations (58), (59) and formula (60).
The complete set of solutions of the equations (1) has the form:
E"" =-C'R},B"" cos(m+1)g, H" =-C'R.P"" sin(m+1)4,
E"=C'R,(I-m+1)P cosmp,  H"=-C'R},(I+m+1)B"sinmg, 63)

E”=-C'R,(I-m+1)B\sinmp, H"”=-C'R},(I+m+1)P cosmg,
E"” =C'RyP!" cos(m+1)4, H" =C'R},P""sin(m+1)g,
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E" =—C"R!P"" cos(m+1)g,
E" =-C"R!(l+m)P" cosmg,
E"™ =C"R"(I +m)P" sinmd,
E" = é”REI_IPIf’fl cos(m+1)g,

E" =C' R/, (I+m+1)P" cosmg,

E" =C' R/P"" cos(m+1)g,

E” =C" RLP"" sin(m+1)g,

E"” =—C'" R[(I-m+1)P", cos mg,
E" =-C" R}l (I-m)P" cosmg,
E™ =C" RIP"" cos(m+1)g,
E" = C" RY P sin(m + 1),

E" =C" R} (I+m)P", cosmg,

H" =—C"R}P"" sin(m+1)¢,
H" =C"R!(I-m)P"sinmg,
H" =C"R!(I-m)P" cosmg,
H"™ =C"R" P sin(m+1)g,

H" =—C" R.(I-m+1)P", sinmg,
H" =C'" R, P"" sin(m+1)g,
H" =-C"R},P"" cos(m+1)¢,

+ +

H" =C' R (I + m+1)P" sinm,

H" =C" R} (I+m)P" sinmg,
H" =C" RYP™ sin(m+1)g,
H" =-C" R P"" cos(m+1)¢,

H™ =—C" R!(1-m)P" sinmg.

(64)

(65)

(66)

In the first possible interpretation the states of the hydrogen atom are described
by these field strength functions (E°,H°,E,H) of electromagnetic and scalar

fields.

It is evident from (1) that scalar fields (E°, H°) generate densities of cur-
rents and charges. Therefore the solutions (63)-(66) may be represented in an-
other form, in which (E°,H") are replaced by the corresponding densities of

currents and charges:

Pl =C'B" cos(m+1)g(£Ry )., »

Py =C"P"" cos(m+ 1)¢(<€‘Rg)

—[+1 2

+

plh==C'(I+m+)P" cosmp (&R} ).,

Py =C"I=mB" cosm@(£Ry! ), ...

Pia = C' B sin(m+D@(uRy, ).

P = C" B sin(m+ Dp( R}y ).,

Piag = C'(I=m+ DB sin(m+1)g(uRy, ).,

Pirg =—=C" (I +m)P", sinmg(uR}; )

o[+1
where the following notations are used:

d [+2 de
¢R% ), ,=¢|—+—— |R, +R, —, etc.
( /})l+2 (dr . j B P dr

(67)

(68)
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In the second possible interpretation the states of the hydrogen atom are de-
scribed by the field strength functions (E,H) generated by the corresponding
currents and charge densities (67).

The solutions of the second subsystem (50) follow from (63)-(66), or (67),
after the application of transformation (51).

As in quantum theory, the numbers n=0,1,2,.. j=k-4=IF}
(k=12,..,n)and m=-[,—-1+1,..] mark both the terms (60) and the corre-
sponding exponentially decreasing field functions E,H (and E°,H") in (63)-
(66), i.e., they mark the different discrete states of the classical electrodynamic
(and scalar) field, which by definition describes the corresponding states of hy-
drogen atom in the model under consideration.

It is evident from this example that the discreteness of the physical system
states (and its characteristics such as energy, efc.) may be a consequence of
both quantum systems (Schrodinger, Dirac) and the classical (Maxwell) equa-
tions for the given system. In the present case, this discreetness is caused by the
properties of the medium, which are given by the electric and magnetic perme-
abilities (2).

Note that the radial equations (58), (59) cannot be obtained if one neglects
the sources in equations (1), or one (electric or magnetic) of these sources.
Moreover, in this case there is no solution, which is effectively concentrated in
the atomic region.

Bohr’s postulates. Now we can show on the basis of this model that the
assertions known as Bohr’s postulates are consequences of equations (1) and
of their classical interpretation: i.e., these assertions can be derived from the
model, and there is no need to postulate them from beyond the framework of
classical physics, as is done in Bohr’s theory. To derive Bohr’s postulates one
can calculate the generalized Poynting vector (and generalized expression for
the energy) for the hydrogen solutions (63)-(66), i.e., for the compound system
of stationary electrom