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Abstract 
The failure of Maxwell's equations to exhibit invariance under the Gali-

lean transformation was corrected by Hertz through a simple, but today 
largely forgotten, mathematical trick. This involves substituting total (con-
vective) time derivatives for partial time derivatives wherever the latter ap-
pear in Maxwell's equations. By this means Hertz derived a formally Gali-
lean-invariant covering theory of Maxwell's vacuum electrodynamics - 
which, however, was not space-time symmetrical (in view of his tampering 
with the time but not space derivatives). Had Hertz's mathematical accom-
plishment received wider recognition, his invariant covering theory of Max-
well's could have furnished the formal key (almost two decades before Min-
kowski's "covariance") to unification of the "relativistic" properties of elec-
trodynamics and Newtonian mechanics, explanation of the Michelson-
Morley result, etc. The task of finding a viable physical interpretation of the 
Hertzian convective velocity parameter - which Hertz himself did not live to 
accomplish - remains for continuing research. We discuss this and related 
matters and give an explicit proof of invariance. 

Key words: Hertzian electromagnetism, Galilean invariance, Maxwell's 
equations, covariance, total time derivatives  

1. INTRODUCTION 
There is considerable confusion in the literature about invariance and 

covariance of the equations of electromagnetism. For example, a paper by 
Jammer and Stachel( ) 1  states that "if one drops the Faraday induction term 
from Maxwell's equations, they become exactly Galilei invariant." We shall 
demonstrate here, on the contrary, that (1) it is not necessary to drop the 
Faraday induction term, or any other, from Maxwell's vacuum electrody-
namics in order to achieve exact Galilean invariance, provided one exploits a 
mathematical theme due to Hertz( ) 2 ; (2) if one does drop the Faraday induc-
tion term in the manner of Jammer and Stachel, the resulting equations ex-
hibited by them are not "exactly Galilei invariant," but might more properly 
be termed "Galilei covariant." 

For another example, Miller,( ) 3  in an otherwise valuable review of 
Hertz's contribution, states that "his axiomatic assertion of the form invari-
ance of the electromagnetic field equations [or "covariance" as Minkowski 
described this mathematical property] led Hertz to predict new effects whose 
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empirical confirmation could in turn serve to confirm his axiom of covari-
ance." On the contrary. Hertz asserted invariance and meant what he said. 
He was referring, of course, to Galilean invariance, since the Galilean trans-
formation was the only one envisioned in his day. It is the Galilean invari-
ance of Hertz's equations that will be demonstrated in the present paper. 
Modern word usage reflects the received view of covariance as a just-as-
good form of invariance. To dispute this universal opinion appears fruitless; 
but it is completely confusing to represent invariance as an equivalent form 
of covariance. For invariance is what covariance simulates, emulates, or as-
pires to be. There exists a true invariance, distinct from covariance, and the 
distinction is not merely formal. We shall presently show in the case of elec-
tromagnetism that the physics of true invariance is as different from that of 
covariance as is the mathematics. 

The writer has never encountered formal definitions of "invariance" and 
"covariance" that satisfy all requirements of mathematical rigor - and none 
will be attempted here. Loosely, invariant quantities transform in place 
within the expressions containing them, without altering their mathematical 
character in any way. Covariant quantities transform by a rule of (generally 
linear) combination of related quantities, the rule being the same for all 
quantities within the expression containing them. The distinction is best 
shown by example. Since the reader is undoubtedly familiar with relativistic 
covariance, we need illustrate here only invariance to show the difference. 

2. HISTORICAL BRIEF 
Let us begin with an overview of the situation in electromagnetism to-

ward the end of the nineteenth century. A dominant figure, in addition to 
Maxwell (1831-1879), was Heinrich Rudolf Hertz (1857-1894) - a physicist 
nowadays chiefly remembered for his experimental validation of Maxwell's 
theoretical prediction of electromagnetic waves. What is less widely recog-
nized, but amply documented in his book,( ) 2  is Hertz's strength as a theorist. 
In the last chapter of that book, which appeared in 1892, he treated the "elec-
trodynamics of moving bodies" by an original set of equations comprising 
what we would call today an "invariant covering theory" of Maxwell's equa-
tions for vacuum electrodynamics. The new equations differed from Max-
well's through the inclusion of an extra velocity-dimensioned parameter, the 
components of which Hertz designated (α, ß, γ). The presence of this extra 
velocity parameter spoiled the space- time symmetry of Maxwell's equa-
tions, but caused them to become rigorously invariant under the Galilean 
transformation of coordinates. Hertz stated this invariance as a fact, but gave 
no proof in his book. We shall supply a proof in the next section. 
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Unfortunately, Hertz obscured his new formulation of electrodynamics 
through such baffling notation (all equations being written in component 
form, unsimplified by the use of vector notation and identities) that it is fair 
to say that few physicists or scholars from then to now have penetrated it. 
Indeed, it is clear from Einstein's reference to "Maxwell- Hertz equations" in 
his 1905 paper( ) 4  that he was unaware of the import of Hertz's invariant 
mathematics (inasmuch as Maxwell's equations are space-time symmetrical, 
whereas Hertz's are not). 

We may conclude this summary by explaining why Hertz's invariant 
covering theory never got into the textbooks. His theory did not become 
physics, because physics is never equations alone but equations plus physi-
cal interpretation. As often as not, and certainly in this case, interpretation 
proves the stumbling block. On the side of interpretation Hertz made a fa-
tally bad guess. A modern mind would recognize that the discovery of a 
Galilean invariant formulation of electromagnetism implies a Galilean mo-
tional relativity principle for electromagnetism as well as for mechanics - 
and thus automatically accounts for the Michelson-Morley outcome and cor-
responding first-order observations by Mascart and others (all of which 
showed "relativity" to be an experimental fact) through formal attributes of 
the mathematics alone, without need to postulate a physical ether in some 
collective state of motion. 

But Maxwell, Hertz, and most other late nineteenth- century physicists 
were fixated on ether... so, when Hertz saw a new velocity parameter un-
avoidably emerging from his invariant mathematics, he automatically identi-
fied it with ether velocity. In fact, he went one fateful step farther and identi-
fied his "ether" with the converted ether of George G. Stokes (1819-1903). 
Such an ether was hypothesized to be carried along (100% convected) by all 
material bodies. By this merciless racking of double-jointed hypothesis, 
Hertz's (α, ß, γ) became the velocity of just any "body" in the laboratory 
(whence his last chapter title,( ) 2  perhaps unconsciously borrowed by Ein-
stein,( ) 4  (referring to the "electrodynamics of moving bodies"). One specu-
lates that Hertz indulged in this dreadful definiteness of physical model be-
cause he distrusted intangibles and wanted to include only measurable quan-
tities in his theory. 

By boldly abandoning the ghostly qualities of nineteenth- century ether 
that protected it from empirical inquiry and making "ether velocity" opera-
tionally definable, Hertz's mathematics plus his Stokesian interpretation ex-
posed themselves to crucial laboratory testing. For example, they predicted 
that a dielectric rotating in the laboratory would produce a magnetic field. 
This effect was looked for( ) 5  soon after Hertz's untimely death and was not 
found. Hence Hertz's invariance was discarded and forgotten in favor of Ein-
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stein-Minkowski covariance. Note, however, that it was not Hertz's mathe-
matics that was empirically discredited, but the combination of that and an 
obviously (in the modem view) unsound physical interpretation. An identical 
interpretational mistake (of staking all the physics on an ether mechanism) 
was made by Maxwell. 

History, ever the joker, forgave Maxwell's errant physics and preserved 
- indeed, virtually sanctified - his mathematics (a noninvariant special case 
of the Hertz equations ... hence in formal terms a comparatively degraded 
breed of mathematics). Said Hertz himself, intending a put-down that can 
only be read now as supreme historical irony: "Maxwell's theory is Max-
well's equations." For history did not show the same courtesy to Hertz. No-
body had the inspired charity to say, "Hertz's theory is Hertz's equations." 
His invariant mathematical baby was ruthlessly thrown out with the ether-
interpretational bathwater. Today we would possess no electromagnetic the-
ory whatsoever if a fairness doctrine had decreed equal treatment for Max-
well. 

Electromagnetic theory as developed by Maxwell's followers proved 
tougher and less frangible than Hertz's theory, precisely because they were 
persistently vague about the physical interpretational side. Maxwell's lumi-
niferous ether faded like the Cheshire cat's smile and was replaced physi-
cally by ... nothing (the most infrangible substance known - with the possible 
exception of mathematical vectors, the material of which the present writer 
was taught that electric and magnetic fields are fabricated). There is little 
doubt that Hertz deliberately sought a frangible theory, because he knew that 
by the breaking of theories, science progresses most rapidly. The post-
Maxwellians avoided frangible theory, perhaps (one speculates) because the 
goal of most rapid scientific progress was even in that day beginning to be 
supplanted by other objectives. 

Although Hertz's invariant equations went down the drain, they depend 
only on certain immutable mathematical facts and thus are subject to contin-
ual rediscovery. (The modem independent rediscoverers include S. 
Kosowski, F.D. Tombe, C.I. Mocanu, and the present writer - all originally 
ignorant of Hertz's priority.) These mathematical facts will be examined in 
the next section. 

3. HERTZ'S ELECTROMAGNETISM: PROOF OF FIRST- 
ORDER INVARIANCE 

Considering a vacuum environment, so that "constitutive" relations do 
not enter, and choosing arbitrarily to designate the field vectors as E  and 
B , we can write Hertz's equations in Gaussian units in the form 
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(1a)  m
1 d 4 0
c dt c

π
∇× − − =

EB j , 

(1b)  1 d 0
c dt

∇× + =
BE , 

(1c)  0∇⋅ =B , 
(1d)  4 0∇⋅ − πρ =E , 
where all symbols have the same meanings (except as will be discussed 
presently) as in the counterpart Maxwell- Lorentz equations. (Actually, 
Hertz's equations were more general in that they allowed for nonzero diver-
gence of B, but we are here more concerned with communicating ideas than 
with historical accuracy.) The total time derivative appearing in these equa-
tions is defined as 

(2)  d
d
dt t

∂
= + ⋅∇
∂

v , 

where vd is a velocity-dimensioned vector [Hertz's (α, β, γ)] whose physical 
interpretation - a crucial issue, since it was what tripped up Hertz - will be 
addressed below. 

It is obvious that Hertz's equations constitute a formal covering theory 
of Maxwell's equations for vacuum electromagnetism; for in the special case 
that the vd parameter assumes the value (vdx, vdy, vdz) = (0, 0, 0), we see from 
Eq. (2) that the total derivative operator d/dt reduces to the partial operator 
d/dt, with the result that Eq. (1) becomes identical to Maxwell's equations. In 
that special case alone does space-time symmetry (in purely mathematical 
terms) obtain. The measured current source term mj  in Eq. (la) differs by 

the effect of a Galilean transformation from the current source term j in 
Maxwell's equations, but this difference also goes to zero in the special case 
mentioned. 

When the new vd parameter does not vanish, the resulting richer para-
metric content of Eq. (1) implies that it constitutes a more general or "cover-
ing" theory. It remains to show that in this case we are dealing with an in-
variant covering theory. Since the present section is limited to considera-
tions of the first-order in v/c, the relevant coordinate transformation is the 
Galilean one. 
(3)  t, t t′ ′= − =r r v , 
where we adopt a velocity sign convention opposite from that of Jammer and 
Stachel.( ) 1

As noted by Jammer and Stachel,( ) 1  Eq. (3) implies that 
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(4)  ,
t t
∂ ∂′∇ = ∇ = + ⋅∇
′∂ ∂

v  

where primed and unprimed quantities refer to two inertial systems in uni-
form relative translatory motion. Observe that the velocity parameters v (in-
ertial frame transformation velocity) and vd (convection velocity) have noth-
ing necessarily to do with each other - and both differ in general from any 
velocity parameter implicit in the source current density j. These distinctions 
being borne in mind, we need not concern ourselves at this prephysical stage 
with operation- ally defining these parameters. 

We also borrow from Jammer and Stachel( ) 1  the Galilean source trans-
formation equations 
(5)  ( , t) ( , t)′ ′ρ = ρr r  
and 
(6)  ( , t ) ( , t) ( , t)′ ′ ′ = −ρj r j r r v , 
which are certainly valid at first order. We do not borrow the field vector 
transformations 
(7)  ,′ ′= = − ×E E B B v E  
proposed by them. The first of these satisfactorily connotes Galilean invari-
ance, but the second involves a "scrambling" (linear combination) of electric 
and magnetic field quantities uniquely characteristic of covariance, hence 
properly termed "Galilean covariance." For consistency with the requirement 
of true invariance we demand, with Hertz, that 
(8)  ,′ ′= =E E B B . 

The significance of Eq. (8) will emerge from inquiry into its physical 
meaning - which we postpone to Sec. 5. For the moment we simply take Eq. 
(8) as a formal ansatz and examine its consequences. 

Regardless of what physical object the quantity vd refers to, it must obey 
at first order the Galilean velocity composition law, 
(9)  d d′ = −v v v . 

We also take note of Galilean velocity reciprocity, 
(10)  ′ = −v v , 
although this will not feature in our invariance proof. Suppose we multiply 
Eq. (9) by charge density p and arbitrarily define a formal ''current density" 
jd by 
(11)  d d= −ρj v , 
where a minus sign has been introduced for reasons to be discussed pres-
ently. Then j  transforms as d

d d d d d d( ) ( )′ ′ ′ ′= −ρ = −ρ − = −ρ −ρ = − ρ −ρ = −ρj v v v v v v v j v  



or 
(12)  d d′ d= +ρj j v . 

We further define a "measured" current density jm, the quantity appear-
ing in Eq. (la), as the sum 
(13)  m d= +j j j . 

These are treated as formal definitions of source terms for purposes of 
the proof. They will be justified presently in physical terms. Finally, we as-
sume invariance of the units ratio 
(14)  c' = c. 

All ingredients of the invariance proof are now assembled. We show 
first the invariance of the total time derivative operator: 
(15) 

d d d d
d d( )
dt t t t t dt

′ ′∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ ′= + ⋅∇ = + ⋅∇ = + ⋅∇ + − ⋅∇ = + ⋅∇ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟′∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
v v v v v v

which follows directly from Eqs. (2), (4). (9). Next, we establish invariance 
of the "measured" current density: 
(16)  m d d d d( ) ( ) ( )′ ′ ′ ′ m= + = + = −ρ + +ρ = + =j j j j j j v j v j j j , 
as follows from Eqs. (6), (12), (13). With these preparations it becomes a 
mere matter of inspection to verify invariance of the field equations them-
selves. The simplest is Eq. (1c), which yields 
(17)  ( )′ ′ ′ 0∇⋅ = ∇ ⋅ = ∇ ⋅ =B B B , 
use being made of Eqs. (4), (8). This agrees with Eq. (1c') of Jammer and 
Stachel.( ) 1  By means of Eqs. (4), (5), (8) we verify the invariance of Eq. 
(1d): 
(18)  4 4′ ′ ′ 0∇ ⋅ − πρ = ∇ ⋅ − πρ =E E . 

This agrees with Eq. (la') of Jammer and Stachel. Using Eqs. (4), (8), 
(14), (15) we establish the invariance of Eq. (lb): 

(19)  1 d 1 d 0
c dt c dt

′⎛ ⎞′ ′ ′∇ × + = ∇× + =⎜ ⎟′ ⎝ ⎠

BE B E . 

Finally, application to Eq. (la) of Eqs. (4), (8), (14), (15), (16) yields 
similarly 

(20) m m
1 d 4 1 d 4 0
c dt c c dt c

′ π π⎛ ⎞′ ′ ′ ′∇ × − − = ∇× − − =⎜ ⎟′ ′⎝ ⎠

EB E j B j . 

Thus the Galilean invariance of all four of the Hertz field equations, Eq. 
(1), in conformity with the ansatz of Eq. (8), is established. There is no need 
to drop the Faraday induction term or any other. 



When (as above) each symbol appearing in a physical equation - here 
counting d/dt as one symbol - transforms directly into its primed counterpart, 
we may call this property of an equation "manifest invariance." So, we are 
entitled to speak of the Hertz equations as manifestly invariant at first order. 
This means that they obey a Galilean relativity principle: the laws of elec-
tromagnetism, like those of Newtonian mechanics, are invariant under trans-
formations among different inertial systems (in uniform relative translator 
motion without rotation). 

4. PHYSICAL INTERPRETATION: THE PARAMETER vd

To possess a set of formally attractive physical equations is not to pos-
sess a physics, as Hertz's experience confirms. Generally, the hard part is to 
find a physical interpretational scheme or appropriate set of operational defi-
nitions. This - one of those bona fide physics problems that can never be 
delegated to mathematicians - we now address ... with reference in this sec-
tion to the Hertzian convective velocity parameter vd and in the following 
section to our field- invariance ansatz, Eq. (8). 

To draw inspiration from a master physicist of the past, we ask, How 
might Maxwell have argued concerning the physical interpretation of Hertz's 
parameter vd? I speculate that he might have addressed this question from 
the stand- point of the equation of continuity... for this was never far from 
his thoughts, since it played a central role in his great discovery, the "dis-
placement current" that led to one of the most dramatic predictions in the 
history of science - the existence of electromagnetic radiation. Making the 
total derivative substitution [for mathematical consistency with Eq. (1)] in 
the continuity equation, and applying Eqs. (4)., (5), (15), (16), we obtain 

(21)  m m
d d 0
dt dt

′⎛ ⎞′ ′ ′∇ ⋅ + ρ = ∇ ⋅ + ρ =⎜ ⎟
⎝ ⎠

j j . 

There is nothing abstruse or even specifically electromagnetic about Eq. 
(21) - it applies in hydrodynamics, acoustics, and any number of familiar 
areas of physical study. In ail cases the meaning of the "convective" velocity 
parameter vd is the same: if we think of a small detection volumes moving 
within some sort of generic "flow," then vd is not the velocity of this flow. It 
is the velocity of the "detector" with respect to the observer. The partial time 
derivative appearing in Eq. (2) describes time changes within the detector (or 
charge-density measuring device in this case) when it is held at rest (v = 0) 
in the flow at a point fixed with respect to the observer, and the convective 
part  of the total time derivative operator describes any additional 
changes measurable within the detector due specifically to its motion (v

d ⋅∇v

d ≠ 
0) with respect to the observer. 
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Given such an interpretation, we can go back to our prior results and 
recognize the physical meaning of such a relation as Eq. (11): the "current 
density" jd is that part of the total current density jm measurable within a de-
tector moving with velocity vd with respect to the observer that is due spe-
cifically to such relative motion. It has a negative sign because detector mo-
tion in one direction is equivalent to a current (of electric charges) flowing in 
the opposite direction. Equation (13) states that the invariant total current jm 
measured by the moving detector is the sum of the Maxwell source current j 
that would be observed if the detector were held stationary in our laboratory 
plus the motion-generated current jd due to any proper motion of the detector 
with respect to our laboratory. 

In this connection I believe Maxwell might have recognized that a detec-
tor's physical degrees of freedom require parametrization in any theory com-
patible with a motional relativity principle. Those degrees of freedom were 
not parametrized in his own equations, since his field detectors were always 
tacitly "frozen" at rest at a "field point" fixed with respect to the observer. 
Given such a recognition with regard to the charge-density detector or "ρ 
meter," he would certainly have applied the same reasoning to detectors of 
the field quantities - that is, "E meters" and "B meters." All such meters can 
be considered instantaneously comoving at the observer's field point (a 
stream of them being involved, over time, passing through the field point, if 
the field point does not share their state of motion). All field detectors are 
compositions of matter having degrees of translatory freedom that need to be 
explicitly parametrized if, as motional relativity implies, the same formal 
mathematics is to describe in more than one inertial system a unique event 
of "detection" occurring in one particular macroscopic detector. 

Through such reasoning one arrives at an operational definition of the 
Hertzian vd parameter quite different from Hertz's own. Whereas Hertz con-
sidered vd the velocity with respect to the observer of an intangible ether, 
rendered (spuriously) tangible through the Stokesian convective "body" as-
sumption, we suggest that Maxwell (or any comparably objective thinker) 
might have been led by considerations such as those just given to interpret 
Hertz's vd as the velocity with respect to the observer not of any kind of flow 
but of a tangible object - namely, the "field detector," radiation absorber, or 
instrument that measures the numbers corresponding to the Ε and Β field 
component values described by Hertzian field equations. (I trust that even 
the most fanatical of modern idealist-formalists will allow the student the 
option to think of Ε and B in terms of numbers and of numbers in terms of 
instrument readings and of material instruments in terms of specific states of 
motion subject to parametrization - without consigning him to perdition as a 
"discredited positivist.") When vd = 0, the field detector becomes just the 



Maxwellian detector fixed at the field point. Hence this fits exactly with 
Maxwell's equations being the special case of Hertz's equations in which the 
field detector is at rest in the observer's laboratory. 

In summary, it would appear that the most plausible interpretation of the 
Hertzian velocity parameter is that vd is the velocity of the field detector or 
radiation absorber with respect to the observer. This has the advantage of 
designating a tangible object and (unlike Hertz's Stokesian ether interpreta-
tion) of not being in conflict with observation. It has the minor disadvantage 
that no other rediscoverer of Hertz's invariant mathematics agrees with it. 
Probably a poll of such rediscoverers would favor an ether interpretation, but 
an intangible ether not convected by material bodies, hence not subject to 
hostile interrogation under strong lights. 

5. THE CONTRASTING PHYSICS OF INVARIANCE AND 
COVARIANCE 

At this point it is expedient to recognize that there is nothing intrinsi-
cally "right" or "wrong" about definitions in mathematics or science (al-
though there may be overwhelming differences in fruitfulness) - and that 
Hertz's E and B are by definition different quantities from Maxwell's E and 
B. Hertz's field quantities are physically defined in a more general way - via 
measurements made by a detector that can move with respect to the observer 
and his chosen "field point." As a result of this parametrically more compli-
cated definition of E and B, these field quantities acquire simple (manifestly 
invariant) mathematical transformation properties [Eq. (8)] under inertial 
motions. The Maxwell field quantities, by contrast, are physically defined 
very simply - by the readings of field detectors permanently at rest in the 
observer's laboratory. As a result, they have more complicated transforma-
tion properties, discovered by Lorentz and designated by Minkowski a few 
years later as "covariance," in contrast to "invariance." (Latterly the termino-
logical distinction has been dropped by most physicists, but it remains 
mathematically significant ... and also physically significant, as the present 
definitional considerations confirm. Dropping the distinction is not in gen-
eral mere carelessness, but serves as a propaganda trick to bolster covari-
ance. 

What is the physics behind Eq. (8), which asserts the true invariance of 
Hertzian E and B fields? Simply that observers in primed and unprimed iner-
tial systems (or, indeed, arbitrarily moving observers) will read the same 
numbers of the digital readout of a given E meter or B meter at the instant it 
passes through an agreed field point. If two or more differently moving ob-
servers are involved, the field detection instrument in question can be at rest 
with respect to at most one of these observers - but the same instrument, the 
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same readout, and the same numbers displayed on it are visible to all observ-
ers at the event of instrument passage through the field point. The fact that 
all observers thus read the same (field component) numbers is expressed by 
Eq. (8). That is the entire and entirely trivial physical meaning of true 
mathematical invariance. 

The crucial point to keep in mind is: in Hertzian electromagnetism only 
one E meter and one B meter is involved no matter how many observers 
may be present. The instrument is public property - no one observer "owns" 
it, nor are different observers called upon to replicate it. Replication of ex-
periments is not involved. And the states of observer motion are arbitrary, 
not necessarily inertial. The instrument itself - at least until more physics is 
known - must be considered at rest in an inertial system. (Whether detector 
acceleration generates specific observable effects is a question not yet ex-
perimentally addressed, as far as the writer knows.) 

Covariance, by contrast, is subtler to conceptualize physically, in that we 
must picture as many instruments as there are inertial systems under consid-
eration - and must have both E meters and B meters present - say, primed 
meters at rest in the primed system, unprimed at rest in the unprimed system, 
etc. Each observer reads only his own instruments at their instant of passage 
through an agreed field point... and linear combinations of the numbers so 
recorded on both E and B meters by the unprimed observer must be calcu-
lated in order to predict the numbers recorded by the primed observer. From 
this gedanken operational complexity and necessity to introduce a calcula-
tional step in addition to direct readings from measuring instruments, it is 
quite clear why operational definitions- despite a brave beginning by Ein-
stein, as celebrated by Bridgman - have fallen into disuse by relativists. In 
Maxwell-Einstein electromagnetism field detection instruments are private 
property and must be replicated by each observer. Thus experiments must be 
replicated by differently moving observers. And observers must in all cases 
be inertial. 

As to the crucial question of relative fruitfulness of the Hertzian and 
Maxwellian definitions of the field quantities, that can be judged only within 
the context of the whole of physics, past and future. It might be a mistake to 
judge even from the present pinnacle of historical enlightenment. In the era 
of Maxwell and Hertz nothing was known that could have decided the issue 
between the two definitions ... and nothing conclusive emerged for another 
quarter century, in fact, until the advent of quantum mechanics. The latter 
made it clear that events occurring at the quantum level within macroscopic 
apparatus are physically unique - so that only a theory parametrized to de-
scribe the motions of a given, unique macroscopic detector can work consis-
tently at the quantum descriptive level. That is, the idea of detailed "replica-
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tion" of measurements within macroscopic apparatus - an idea that had 
served perfectly well all during the nineteenth century and well past 1905 - 
was finally played out by 1925 and could thenceforth have nothing to do 
with physics at its more refined levels of inquiry. 

As indicated above, it is just this forbidden concept of replication that 
tacitly underlies Maxwell's definition of the field quantities ... for in Max-
well-Einstein electromagnetism each inertial observer has his own labora-
tory, his own fixed field point, and his own field detector at rest at that field 
point. Lacking the descriptive (Hertzian velocity-dimensioned) parameters 
that allow field detectors to move with respect to observers or field points, 
each Maxwellian observer has to possess his own field detector and is forced 
by that circumstance to replicate the observations of other observers - so that 
in a (micro) sense each is measuring a different "field." Hence no two Max-
well observers in relative motion can be talking about the same unique 
quantum detection event occurring in one particular piece of apparatus. 

Einstein's relativity treatment, applied to electromagnetic observations, 
took over Maxwell's formulation unmodified, hence had Maxwellian replica-
tion ineradicably built-in. After 1925 such replication could no longer be 
legitimately applied to single quantum events such as photon absorptions. 
(Curiously, this was not observed by noted investigators such as Bohr and 
Rosenfeld. A strange blindness seems to afflict all students of the "field." 
Perhaps they are blinded by science.) We who have learned the lesson of 
1925 - that measurements cannot be replicated in micro detail - cannot fail to 
recognize that invariance and the Hertzian definitions of the field quantities 
are better adapted to describing the physics of the quantum world. However, 
aspects of Einstein's physics are certainly of permanent value. 

Throughout the course of the twentieth century empirical evidence such 
as the CERN meson observations( ) 6  has steadily accumulated testifying to 
the correctness of Einstein's identification of the timelike invariant of kine-
matics, the ''proper time interval." Therefore, it is evident that Hertz's equa-
tions can be at best a first-order approximation. If they are to have physical 
validity at higher orders their total time derivative d/dt with respect to non-
invariant Newtonian or "frame" time, appearing in Eq. (2), must be replaced 
by a total derivative with respect to the field detector's invariant proper time, 
d/dτd. Such a noncovariant introduction of Einstein's timelike invariant pre-
serves at higher orders the vital mathematical invariance of the Hertz equa-
tions as well as their operational definition in terms of a detector moving 
arbitrarily in the observer's laboratory. (At higher orders the Galilean trans-
formation must be modified for the time coordinate, but need not be modi-
fied on the spatial side, since space-time symmetry has been jettisoned al-
ready at first order. Similar remarks apply to the higher-order modification 



of mechanics. Such considerations have been extensively treated else-
where( ) 7  under the rubric "neo-Hertzian electromagnetism." This need not 
detain us here.)  

Despite the current vogue for covariance, it would thus be premature to 
conclude as we approach the twenty-first century that true invariance is for 
all time discredited and played out. This seems a message of hope for the 
future of physics - for if there is anything that can sap the vitality of a sci-
ence, it is a total lack of "controversy" or intellectual challenge within its 
foundations. 

6. COMMENTARY 
There has existed in the published literature for one hundred years an 

invariant covering theory of Maxwell's electromagnetism due to Hertz. It 
should be emphasized that a covering theory really "covers." That is, the 
empirically validated electromagnetic "physics of one laboratory," wherein 
field detectors are at rest, is identical in Maxwell's and in Hertz's theories. 
By considering the equation of continuity within the framework of Hertz's 
formulation, we have been led to a view of the Hertzian velocity parameter 
quite different from Hertz's own interpretation. A different path- way to mo-
tional "relativity" thus opens up, based on invariant rather than covariant 
mathematics of electromagnetism. On this new pathway the E and B vectors 
transform invariantly [Eq. (8)], because observers in all states of motion read 
the same numbers from the same instrument. The two types of field remain 
both formally and operationally distinct, with no covariant "scrambling" of 
components. 

To be sure, there are many twists of the actual historical process we 
have not attempted to bring into our discussion. For instance, the Lorentz 
force law, which emerged contemporaneously with Hertz's theory, fits with 
covariance rather than invariance. But present-day empirical evidence is 
mounting heavily against the Lorentz force law and in favor of Ampere's 
original law of forces between current elements (see Refs. 8 to 13 and fur-
ther references given there), which honored Newton's third law but not co-
variance or space- time symmetry. Hence it may be premature to announce a 
final decision between those two similar-sounding, yet profoundly antitheti-
cal, mathematical approaches to the description of an external reality: in-
variance and covariance. Today, almost all physicists consider the issue 
completely and permanently settled in favor of covariance. But we have seen 
that the uniqueness of the quantum detection event within a macroscopic 
piece of apparatus accords perfectly with the Hertzian one-instrument ap-
proach and not at all with Maxwell-Einstein replication of measurements in 
different inertial systems. The way covariance got its start was as best avail-

alan




able substitute for true or manifest invariance - the latter being represented 
as unattainable because Maxwell's equations did not attain it. That was a 
misrepresentation of fact. 

Addendum 
A referee has made the comment, "When the field vectors are truly in-

variant, are we not speaking of a Newtonian force field which could be made 
redundant by dropping the 'field' altogether and return to Newton's simulta-
neous far-actions? This would also remove all confusion regarding the 
ether." I concur with this thought and am personally partial to some Weber-
type velocity-dependent potential( ) 14  that allows the entire purpose of the 
"field" to be accomplished directly by a simple intercharge force law. This 
fits much better with operationalism (and with Ockham) than does field the-
ory. The "field," as an extraneous agent, is actually as objectionable - and for 
the same reason - as "ether." It was not my intention in the present paper to 
defend electromagnetic field theory as physics, merely to get it right on its 
own terms. 

Résumé 
L'incapacité des équations de Maxwell de prouver qu'elles sont inva-

riantes dans des transformations galiléennes a été corrigée par Hertz grâce 
à un artifice mathématique simple mais en grande partie oublié aujourd'hui. 
Get artifice consiste à remplacer les dérivés complètes (de convection) par 
rapport au temps avec les dérivés partielles par rapport au temps partout où 
ces dernières apparaissent dans les équations de Maxwell. Par ce moyen, 
Hertz a derivé une théorie de recouvrement invariante formellement gali-
léenne de l'électrodynamique du vide de Maxwell laquelle théorie n 'était 
toutefois pas symétrique dans l'espace-temps (au égard à son tripotage des 
dérivés par rapport au temps mais pas ceux par rapport à l'espace). Si l'ac-
complissement mathématique de Hertz avait bénéficié d'une reconnaissance 
plus large, sa théorie de recouvrement invariant de la théorie de Maxwell 
aurait pu fournir la clé formelle (presque vingt ans avant la "covariance'' de 
Minkuwski) pour unifier les propriétés "relativistes" de l'électrodynamique 
et la mécanique newtonienne, expliquer le résultat de Michelson-Morley, 
etc. La tâche de trouver une interprétation physique viable du paramètre de 
vitesse de convection hertzienne, que Hertz lui-même n'a pas accompli 
quand il était vivant, est un sujet de recherche continue. Nous discutons cette 
question et des autres connexes et donnons une preuve explicite de l'inva-
riance. 
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