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PREFACE

Newton’s theory of gravitation is the basic working theory
of astronomers and of all the scientists dealing with space
exploration and celestial mechanics. On the basis of Newton’s
theory of gravitation we determine the motion of planets and their
satellites, predict the existence and celestial coordinates of planets
not previously observed, launch artificial satellites and space
ships. Nevertheless, Newton’s theory of gravitation has serious
defects. As far as its practical applications are concerned, it is
incapable of accounting for certain fine details of planetary
mmotion. As far as its conceptual content is concerned, it is a
theory of ‘"gravitational state” rather than a theory of
"gravitational process," since it does not provide any information
on the temporal aspect of gravitation'. Furthermore, Newton’s
theory of gravitation cannot be reconciled with the principle of
causality and with the law of conservation of momentum when it
is applied to time-dependent gravitational systems.

And yet, the fundamental validity of Newton’s theory of
gravitation is indisputable and its essential reliability has been
established beyond any doubt. It is plausible therefore that
Newton’s theory of gravitation is merely incomplete and requires
a further development. The purpose of this book is to extend and
to generalize Newton’s theory of gravitation so as to make it free
Irom the above defects and to make it fully applicable to all
possible gravitational systems and interactions.

The starting point of the generalization of Newton’s theory of
gravitation presented in this book is the idea that gravitational
interactions in time-dependent gravitational systems are mediated

'T am indebted to Professor Yu. G. Kosarev for an illuminating
discussion of this property of Newton’s theory.
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by two force fields: the gravitational field proper created by all
masses and acting upon all masses, and by the "cogravitational”
field created by moving masses only and acting upon moving
masses only. In accordance with the principle of causality, the two
fields are represented by retarded field integrals, which, for static
or slowly-varying gravitational systems, reduce to the ordinary
Newtonian gravitational field integral. As the readers will see, the
generalized Newtonian theory of gravitation developed on this
basis yields extremely significant and far-reaching results.

An immediate consequence of the generalized Newtonian
theory of gravitation is that gravitational interactions normally
involve not just one single force of gravitational attraction, but at
least four additional forces associated with velocities, accelerations
and rotations of interacting bodies.

Another direct consequence of the generalized theory of
gravitation is an astonishing complexity of gravitational
interactions and a surprising variety of effects of gravitational
interactions. Here are some examples: a fast-moving point mass
passing a spherically-symmetric body causes the latter to rotate;
a mass moving with rapidly-decreasing velocity exerts both an
attractive and a repulsive force on neighboring bodies; a fast-
moving mass passing a stationary mass exerts an explosion-like
force on the latter; a rotating mass that is suddenly stopped causes
neighboring bodies to rotate; the period of revolution of a planet
or satellite is affected by the rotation of the central body.

The generalized theory of gravitation provides a large variety
of methods for calculating gravitational interactions between
bodies of all shapes and sizes. Among these methods are:
calculations using gravitational-cogravitational force equations,
calculations based on the gravitational-cogravitational field energy,
calculations based on gravitational-cogravitational Maxwell’s
stress integral, direct calculations in terms of scalar and vector
potentials without using gravitational or cogravitational fields.

The generalized theory of gravitation is fully compatible with
the laws of conservation of energy and momentum. A very
important result of this compatibility is the definitive explanation
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provided by the generalized theory of gravitation for the process
of conversion of potential energy (field energy) into the kinetic
energy of bodies falling under the action of a gravitational field.

The generalized theory of gravitation provides explanations
for certain peculiarities of the motion of celestial bodies, and for
the differential rotation of the Sun in particular.

The generalized theory of gravitation is compatible with the
special theory of relativity. As a result, gravitational equations for
stationary gravitational systems can be easily converted into the
corresponding equations for moving gravitational systems, thus
providing an additional method for analyzing and computing
gravitational effects associated with moving bodies.

The generalized theory of gravitation predicts the existence of
gravitation-cogravitational waves and explains how such waves
can be generated.

The generalized theory of gravitation indicates the existence
of a link between gravitation and electromagnetism by showing
that beams of electromagnetic radiation (light beams) are deflected
and bent by gravitational fields. This means that a gravitational
field can be regarded as a medium whose index of refraction is
larger than that of a pure vacuum in the absence of a gravitational
field. Since the index of refraction is associated with the
permittivity and permeability of the medium, and since
electromagnetic forces are affected by permittivity and
permeability, electromagnetic forces become weaker in the
presence of gravitational fields, and electromagnetic processes
(such as the rate of electromagnetic clocks, for example) become
slower when taking place in gravitational fields.

The generalized theory of gravitation also indicates the
existence of antigravitational (repulsive) fields and mass
formations. A cosmological consequence of such fields and mass
formations is a periodic expansion and contraction of the
Universe. Another consequence is that the actual mass of the
Universe may be much larger than the mass revealed by analyzing
gravitational attraction in the galaxies, since antigravitational mass
formations do not attract other masses.
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It is natural to compare the various consequences of the
generalized theory of gravitation with the consequences of the
general relativity theory. In this regard the following three
remarks should be made: First, there are no observable
gravitational effects revealed by the general relativity theory that
do not have their counterparts in the generalized theory of
gravitation. Second, the generalized theory of gravitation describes
a vastly larger number of gravitational effects than those described
by the general relativity theory. Third, numerical values for
gravitational effects predicted by the general relativity theory are
usually different from the corresponding values predicted by the
generalized theory of gravitation; the discrepancy is almost always
a consequence of greater complexity and depth of gravitational
interactions revealed by the generalized theory of gravitation.

Although this book presents the results of original research,
it is written in the style of a textbook and contains numerous
illustrative examples demonstrating various applications of the
theory developed in the book.

The book is a sequel to my Electricity and Magnetism, 2nd
ed., (Electret Scientific, Star City, 1989), Causality,
Electromagnetic Induction, and Gravitation, 2nd ed., (Electret
Scientific, Star City, 2000), and Electromagnetic Retardation and
Theory of Relativity, 2nd ed., (Electret Scientific, Star City,
2004). Some of the material presented here closely parallels the
material presented in the three aforementioned books.

I am very grateful to S. W. Durland and D. K. Walker for
reading the manuscript of this book and for their suggestions and
recommendations. Special thanks are due to I. A. Eganova for her
very useful remarks.

My greatest thanks are however to my wife Valentina for
patiently and carefully reading and correcting several versions of
the manuscript, but, most of all, for her ever-present help, advice,
and encouragement.

Oleg D. Jefimenko
August 14, 2006
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NEWTON’S THEORY OF
GRAVITATION AND THE
NEED FOR ITS FURTHER
DEVELOPMENT

In this chapter we shall summarize Newton’s theory of
gravitation and shall analyze it from the viewpoint of causality and
from the viewpoint of the law of conservation of momentum. We
shall find that it has two major defects: when applied to moving
or time-dependent systems, it violates the principle of causality
and violates the conservation of momentum law. We shall then
discuss the means for correcting these defects.

1-1. Newton’s Theory of Gravitation

Newton’s theory of gravitation is based on the gravitational
force law

F-cm"™, (1-1.1)
2
;
where F is the force with which two point masses m and M attract
each other, G is the universal constant of gravitation, and r is the
distance between the two masses. In vector notation, the
gravitational force law, Eq. (1-1.1), can be written as
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Fim = - G%r“, (1-1.2)
where F is the force exerted on the point mass m by the point
mass M, G and r are as before, and r, is the unit vector directed
from M to m; the minus sign indicates that the force is directed
toward the mass exerting the force.

In modern presentations, Newton’s theory of gravitation is
based not on Eq. (1-1.1) or (1-1.2) directly, but on two equations
that formulate his theory as a force-field theory in terms of the
gravitational field vector g. These equations are

Vxg=0 (1-1.3)
and
Veg = - 41Gp. (1-1.4)
The gravitational field vector g is defined as
g = Fim, (1-1.5)

where F is the force exerted by the gravitational field on a test
mass m, which is at rest in an inertial reference frame
("laboratory"). In Eq. (1-1.4), p is the mass density defined as

p = dm/dV’, (1-1.6)

where dm is a mass element contained in the volume element dV’.
With the help of Egs. (1-1.5) and (1-1.6), Eq. (1-1.2) can be
reformulated into a more general equation

g - - Gj_pirdv’, (1-1.7)
r
where g is the gravitational field created by the mass m distributed
in space with density p, r = [(x -x)* + (y -y')* + (z-2))*]" is
the distance from the source point (x', y', z'), where the volume
element of integration dV' is located, to the field point (x, y, 2),
where g is being observed or computed, r is the radius vector
directed from dV' to the field point. The integral is extended over



SECTION 1-2 NEWTON’S THEORY AND CAUSALITY 5

the region of space occupied by the mass m, the minus in front of
the integral indicates that the field g is directed toward the mass
that creates this field.

The force F acting on a mass of density p located in the
gravitational field g is then found from the equation

F - [png, (1-1.8)

where the integration is over the space occupied by the mass
experiencing the force.

For practical applications of Newton’s theory, and in celestial
mechanics in particular, the gravitational field vector g is seldom
computed directly. Instead, one usually computes the gravitational
potential ¢, connected with the field vector g by the equation

g = - Vo, (1-1.9)
and connected with the mass density p by the equation
Vi = 47Gp (1-1.10)

obtained by substituting Eq. (1-1.9) into Eq. (1-1.4). Integrating
Eq. (1-1.10), one obtains the equation

Q= -G[ga'V’, (1-1.11)

from which ¢ can be found directly in terms of p. For a point
mass m, Eq. (1-1.11) reduces to

9o =-G", (1-1.12)
r

1-2. Newton’s Gravitational Theory and Causality

One of the most important tasks of physics is to establish
causal relations between physical phenomena. No physical theory
can be complete unless it provides a clear statement and
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description of causal links involved in the phenomena
encompassed by that theory. In establishing and describing causal
relations it is important not to confuse equations which we call
"basic laws" with "causal equations."” A "basic law" is an equation
(or a system of equations) from which we can derive most
(hopefully all) possible correlations between the various quantities
involved in a particular group of phenomena subject to the "basic
law." A "causal equation,” on the other hand, is an equation that
unambiguously relates a quantity representing an effect to one or
more quantities representing the cause of this effect. Clearly, a
"basic law" need not constitute a causal relation, and an equation
depicting a causal relation may not necessarily be among the
"basic laws" in the above sense.

Causal relations between phenomena are governed by the
principle of causality. According to this principle, all present
phenomena are exclusively determined by past events. Therefore
equations depicting causal relations between physical phenomena
must, in general, be equations where a present-time quantity (the
effect) relates to one or more quantities (causes) that existed at
some previous time. An exception to this rule are equations
constituting causal relations by definition; for example, if force is
defined as the cause of acceleration, then the equation F = ma,
where F is the force and a is the acceleration, is a causal equation
by definition.

In general, then, according to the principle of causality, an
equation between two or more quantities simultaneous in time
cannot represent a causal relation between these quantities
because, according to this principle, the cause must precede its
effect. Therefore the only kind of equations representing causal
relations between physical quantities, other than equations
representing cause and effect by definition, must be equations
involving "retarded" (previous-time) quantities.

Let us apply these considerations to Newton’s law of
gravitation. Since neither of the Egs. (1-1.1)-(1-1.12) is defined
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to be a causal relation, and since all these equations connect
quantities simultaneous in time, neither of these equations
represents a causal relation. In particular, Newton’s gravitational
law Eq. (1-1.1), even though it is a basic law, does not represent
a cause-and-effect relation between the quantities involved. It is
clear therefore that Newton’s gravitational theory has a serious
flaw.

1-3. Newton’s Gravitational Theory and Conservation of
Momentum

One of the most fundamental laws of mechanics is Newton’s
law of action and reaction. It is typically stated as follows:
"Whenever a body exerts a force (action) on a second body, the
second body exerts an equal and opposite force (reaction) on the
first." However, in gravitational systems the law does not always
hold. Consider the following example.

Suppose that a stationary mass is located in the gravitational
field created by another, distant, stationary mass. The two masses
exert upon each other equal and opposite forces, as required by
the law of action and reaction. Suppose now that the first mass is
allowed to move under the action of the field of the second mass
and arrives at a new position. But the second mass, being far
away from the first, does not yet "know" that the first mass has
moved (because, by the principle of causality, a gravitational field
cannot propagate instantaneously) and continues to experience the
same force as before. The forces are now unequal in magnitude
and direction, and the action and reaction law no longer holds!

In two-body systems, the law of action and reaction is
equivalent to the law of the conservation of mechanical
momentum. Therefore, if the law of action and reaction in a
gravitational system involving a moving mass does not hold, then
the mechanical momentum of the system is not conserved. Hence,
Newton’s gravitational law conflicts with the conservation of
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momentum law, which is one of the most fundamental laws of
nature. This conflict constitutes another very serious flaw of
Newton’s theory of gravitation.

1-4. Is Newton’s Gravitational Theory Wrong or Incomplete?

Newton’s theory of gravitation is the basic working theory of
astronomers and of all the scientists dealing with space exploration
and celestial mechanics. The reliability of Newton’s gravitational
theory is indisputable. On the basis of this theory we determine
the motion of planets and of their satellites, predict the existence
and celestial coordinates of planets not previously observed,
launch artificial satellites and space ships. Thus, even though
Newton’s gravitational theory does not agree with the principle of
causality and conflicts with the conservation of momentum law,
the essential validity of the theory has been established beyond
any doubt. It is plausible, therefore, that Newton’s theory of
gravitation is merely incomplete and requires further development,
but does not need to be replaced by another theory of gravitation.
In particular, it must be refined and reformulated so as to satisfy
the principle of causality and to comply with the momentum
conservation law, without destroying the fundamental relations
represented by Eqgs. (1-1.1)-(1-1.12).

In order to reformulate Newton’s gravitational theory in
accordance with the principle of causality, we must establish
causal gravitational equations that agree with Eqgs. (1-1.1)-(1-
1.12). What should be the form of such causal gravitational
equations? Since an effect can be a combined or cumulative result
of several causes, it is plausible that in causal equations a physical
quantity representing an effect should be expressed in terms of
integrals involving physical quantities representing the various
causes of that effect. And since, by the principle of causality, the
cause must precede its effect, the integrals in causal equations
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must be retarded, that is, the integrands in these integrals must
involve quantities as they existed at a time prior to the time for
which the quantity representing the effect is being computed.
Thus, causal gravitational equations must involve retarded
integrals.

However, as was explained above, the reformulated Newton’s
gravitational theory must also satisfy the law of conservation of
momentum. It is well known that there exists a strong similarity
between equations of Newton’s gravitational theory and equations
of electrostatics. It is also well known that in Maxwellian
electromagnetic theory, the momentum conservation law is
satisfied because time-dependent electromagnetic interactions
involve not only the electric field but also the magnetic field. We
may assume therefore that time-dependent gravitational
interactions, just like electromagnetic interactions, involve not
only the gravitational field, but also a second force field, not
taken into account in Newton’s theory. In fact, such a field was
proposed in 1893 by Oliver Heaviside.! According to Heaviside,
this second force field is created by moving masses only and acts
exclusively on moving masses. We shall call it the
“cogravitational,” or “Heaviside’s,” field and shall denote it by
the letter K.

As we shall presently see, by accepting the existence of the
cogravitational field and by expressing the gravitational and
cogravitational fields in terms of retarded integrals, it is possible
to develop and reformulate Newton’s single field theory of
gravitation so that it becomes a special case of the reformulated
theory of gravitation, and so that the reformulated theory satisfies
both the principle of causality and the momentum conservation
law. The reformulated theory basically generalizes Newton’s
original theory to gravitational systems involving moving and
time-dependent masses. Accordingly, we shall call it the
"generalized Newtonian theory of gravitation," or, simply, the
"generalized theory of gravitation."
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1. Oliver Heaviside, "A Gravitational and Electromagnetic
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article is reproduced in Oleg D. Jefimenko, Causaliry,
Electromagnetic Induction and Gravitation, 2nd ed., (Electret
Scientific, Star City, 2000) pp. 189-202.



PHYSICAL AND MATHEMATICAL
BASIS OF THE GENERALIZED
THEORY OF GRAVITATION

In this chapter the conceptual content of the generalized
theory of gravitation is described, the mathematical apparatus used
for the formulations of the theory is explained, and the
fundamental equations of the theory are presented. The main
difference between Newton’s original theory of gravitation and
the generalized theory of gravitation is elucidated.

2-1. Conceptual Content of the Generalized Theory of
Gravitation

The generalized theory of gravitation assumes that
gravitational interactions are mediated by gravitational and
cogravitational force fields.

A gravitational field is a region of space where a mass
experiences a gravitational force. Quantitatively, a gravitational
field is defined in terms of the gravitational field vector g by the
same equation by which it is defined in Newton’s theory:

g =Fm, (1-1.5)

where F is the force exerted by the gravitational field on a
stationary test mass m,.

11
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A cogravitational field is a region of space where a mass
experiences a cogravitational force. Quantitatively, a
cogravitational field is defined in terms of the field vector K by
the equation

F = m(vxK), 2-1.1)

where F is the force exerted by the cogravitational field on a test
mass m, moving with velocity v. As noted in Chapter I,
cogravitational fields are created by moving masses only and act
upon moving masses only."?

It is assumed that both gravitational and cogravitationl fields
propagate in space with finite velocity. This velocity is not yet
known, but is believed to be equal to the velocity of light.
However, the generalized theory of gravitation is compatible with
a propagation velocity of gravitation different than the velocity of
light and is not affected by the actual speed with which gravitation
propagates.’

The generalized theory of gravitation agrees with the principle
of causality because, as we shall presently see, in this theory the
gravitational and cogravitational fields are expressed in terms of
retarded integrals whose integrands are the causative sources of
the fields.

The generalized theory of gravitation agrees also with the law
of conservation of momentum because, according to this theory,
gravitational-cogravitational fields are repositories of gravitational-
cogravitational field momentum, and because mechanical
momentum of a body moving in a gravitational-cogravitational
field can be converted into the field momentum and the field
momentum can be converted into the mechanical momentum of
the body. As a result of this conversion, the sum of the
mechanical and field momentum of the combined field-body
system is always the same, and the total momentum of the system
is thus conserved (see Chapter 8 for a general proof of momentum
conservation in such systems).
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According to the generalized theory of gravitation,
gravitational-cogravitational fields are also repositories of field
energy. Kinetic energy of a body moving in a gravitational-
cogravitational field can be converted into the energy of the field,
and the energy of the field can be converted into the kinetic
energy of the body. As a result of this conversion, the sum of the
mechanical and field energy of the combined field-body system
is always the same, and the total energy of the system is thus
conserved (see Chapter 8 for a general proof of energy
conservation in such systems).

2-2. Fundamental Equations of the Generalized Theory of
Gravitation

The two principal equations of the generalized theory of
gravitation are the equations for the gravitational field g and the
cogravitational field K:

g=- GH@ o L @]}rdv’ + G jl "’("V)}dv’ 2-2.1)
r3  riclot ctlrl o
and
K--6 j{@ oL a[PV]} xrdv’, 2-2.2)
ctltrr rie ot

where G, p, r, r, and dV' are the same as in Eq. (1-1.7), v is the
velocity with which the mass distribution p moves (the product pv
constitutes the "mass-current density"), and c is the velocity of the
propagation of gravitation (usually assumed to be the same as the
velocity of light). The square brackets in these equations are the
retardation symbol indicating that the quantities between the
brackets are to be evaluated for the “retarded” time, t' = ¢ — r/c,
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where ¢ is the time for which g and K are evaluated. The
integration in the integrals of Eqgs. (2-2.1) and (2-2.2) is over all
space (unless stated otherwise, all integrals in this book are over
all space).

According to Egs. (2-2.1) and (2-2.2), the gravitational field
has three causative sources: the mass density p, the time
derivative of p, and the time derivative of the mass-current density
pv; the cogravitational field has two causative sources: the mass-
current density pv and the time derivative of pv.

Let us note that for time-independent stationary masses Eq.
(2-2.2) disappears and Eq. (2-2.1) becomes

g - - GJ%rdV’, (1-1.7)
that is, Egs. (2-2.1) and (2-2.2) reduce to the gravitational field
equation of Newton’s theory of gravitation. Therefore, in the light
of the generalized theory of gravitation, Newton’s gravitational
theory is an approximate theory in which the dependence of the
gravitational interactions on the motion and temporal variations of
interacting masses is not taken into account.

Equations (2-2.1) and (2-2.2) should be preferably considered
as postulates. Therefore it is not necessary to discuss the original
considerations that led to their formulation (these considerations
can be found elsewhere?). The proof of their validity lies not in
the considerations that led to their formulation, but rather in the
agreement of all the known consequences of these equations with
experimental and observational data within the limits of
experimental errors imposed upon these data by the available
techniques of measurements and observations.

It is important to note that although in Eqs. (2-2.1) and (2-
2.2) the mass density, the mass current, and their derivatives are
retarded, retardation can frequently be neglected, in which case
these equations can be used with ordinary (unretarded) mass
density, mass current, and their derivatives. Let us define the
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"characteristic time" of a gravitational-cogravitational system as
the time 7T during which the mass density, the mass current, or
their temporal derivatives experience a significant change. For
example, in the case of periodic variation of mass and mass
current, 7 may be assumed to be the period of the variation; in
the case of planetary motion, 7 may be assumed to be the period
of revolution; and in the case of monotonously changing masses
and mass currents, 7 may be assumed to be the time during which
the mass density, the mass current, or their temporal derivatives
change by a factor of two. Let us now assume that the largest
linear dimensions of the system under consideration is L. If T and
L satisfy the relation

T > Lic, (2-2.3)

then no significant change occurs in the system during the time
that the gravitational or cogravitational "field signal" moves across
the system, and therefore the retardation in the propagation of the
gravitational or cogravitational fields within the system is
negligible.

In addition to Eqs. (2-2.1) and (2-2.2) for the gravitational
and cogravitational fields, the following equations constitute the
mathematical foundation of the generalized theory of gravitation.

The mass conservation equation ("continuity law"):

dp
V. = - , 2
(ov) ' (2-2.4)
or, in the integral form,
N i}
f#pv -dS = - Ejpdv. (2-2.5)

According to these equations, whenever a mass contained in a
region of space diminishes or increases, there is an outflow or
inflow of mass from or into this region.
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Force acting on a mass distribution of density p.
F = Jp(g +vxK)dv, (2-2.6)

where v is the velocity of p and the integral is extended over the
region of space containing the mass under consideration [for a
stationary point mass this equation reduces to Eq. (1-1.8)].

Density of the field energy contained in the gravitational-
cogravitational field:*
1
U = - —_(g* +cK?). (2-2.7)
v 5 B )

Field energy contained in a region of the gravitational-
cogravitational field:*
v--_1 j(g2 + KDV, (2-2.8)
871G
where the integration is extended over the region under
consideration.

Energy flow vector in the gravitational and cogravitational
field (“gravitational Poynting vector”):

C2
P - 47rGK><g. (2-2.9)
This vector represents the direction and rate of gravitational-
cogravitational energy flow per unit area at a point of space under
consideration. Equation (2-2.9) together with Egs. (2-2.1), (2-
2.2), (2-2.4), and (2-2.7) ensures the conservation of energy in
gravitational-cogravitational interactions.

Density of the field momentum contained in the gravitational-
cogravitational field:
1

G,=___Kxg. 2-2.10
vf 47rG g ( )
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Field momentum contained in a region of the gravitational-
cogravitational field:

G ij v, 2211
| o (2-2.11)

where the integration is extended over the region under
consideration.

Correlations between the mechanical momentum, G,,, and the
gravitational-cogravitational field momentum:

R m[ _2_<f (g2+c21<2)ds - (f g(g - dS) —czth(K : dS)] :
22.12)

where g and K are the gravitational and cogravitational fields in
the system under consideration. In this equation, the derivative on
the left represents the rate of change of the momentum of a body
located in a gravitational-cogravitationl field, the volume integral
represents the rate of change of the field momentum in the region
of the field where the body is located, and the surface integrals
represent the flux of the field momentum through the surface
enclosing the region under consideration. Together with Egs. (2-
2.1), (2-2.2), (2-2.4), (2-2.6), and (2-2.10) this equation ensures
the conservation of momentum in gravitational-cogravitational
interactions.

Equations (2-2.4), (2-2.6), (2-2.7), (2-2.9), (2-2.10) and (2-
2.12) should preferably be considered as postulates, although Eq.
(2-2.9) can be derived from Eqs (2-2.1), (2-2.2), (2-2.4), and (2-
2.7) if conservation of energy is assumed to hold for gravitational-
cogravitational interactions. Likewise, Eq. (2-2.12) can be derived
from Egs. (2-2.1), (2-2.2), (2-2.4), (2-2.7) and (2-2.11), if
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conservation of momentum is assumed to hold for gravitational-
cogravitational interactions.

Note on the mathematical apparatus and techniques used in
the generalized theory of gravitation. The mathematical apparatus
used in the generalized theory of gravitation is mainly vector
analysis, as specifically developed for field-theoretical applications
in the author’s book Electricity and Magnetism® and, for operation
with retarded quantities, in the author’s book Electromagnetic
Retardation and Theory of Relativity®. Most of the mathematical
operations used in the generalized theory of gravitation are simply
transformations of vector-analytical expressions by means of
vector identities. The vector identities used in this book are listed
in the Appendix and are identified by the prefix "V".

Mathematical formulation of the generalized theory of
gravitation is very similar to that of Maxwellian electrodynamics.
Because of this similarity, many electromagnetic equations have
their counterparts in the generalized theory of gravitation. As a
result, it is possible to convert many electromagnetic equations to
gravitational and cogravitational equations by a mere substitution
of symbols. A table of corresponding electromagnetic and
gravitational-cogravitational symbols for the substitution is
presented in Chapter 7, and some particularly useful gravitational
and cogravitational equations obtained by the substitution are also
shown there.

v

Example 2-2.1 A thin, heavy circular ring of radius a and cross-
sectional area s has a uniformly distributed mass m. At ¢ = 0 the
ring starts to rotate with constant angular acceleration « about its
symmetry axis which is also the x axis of rectangular coordinates
(Fig. 2.1). Find the gravitational and cogravitational fields at a
point x on the axis for ¢ > 0.
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Fig. 2.1 Calculation of
the gravitational and
cogravitational fields on
the axis of a heavy ring
rotating  with  angular
acceleration «.

For brevity, let us designate the mass-current density of the
ring by the symbol J. We then have for the rotating ring J = pv =
pwal, = patad,, where p is the mass density in the ring, w is the
angular velocity of the ring, and 6, is a unit vector in the circular
direction (right-handed with respect to x). The time derivative of J
is 0J/0t = paal,. In terms of m, the mass-current density and the
derivative are J = (moat/27s)0, and 8J/0t = (ma/27ws)0,.

To find the gravitational field of the ring, we use Eq. (2-2.1).
Since 3J/0¢ is in the circular direction, and since r is the same for
all points of the ring, the second integral in Eq. (2-2.1) makes no
contribution to the gravitational field on the axis (the contributions
ol any two volume elements on the opposite ends of a diameter
vancel each other). Since the mass density does not depend on time,
the contribution of the first integral is

g = - GJ%rdV’, (2-2.13)
r

which is identical with the expression for the gravitational field

produced by a stationary mass of density p. Integrating Eq. (2-

2.13), we obtain’

_ mx . i
g = Gml. (2-2.14)

To find the cogravitational field, we use Eq. (2-2.2).
Iixpressing [J] and [3J/d¢] in Eq. (2-2.2) in terms of m, «, s, and
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6,, we have
K - - El{moz(t-r/c)ou+ ma 0u}erV,
c? 2mwsr? rlc2ws
= - EH mol g .M 5 . M 0u}><rdV’ (2-2.15)
c2 ) Q2xsr? ric2ws r:c2ws
- - EH maot 0“}>< rdv’.
c?) Q2xsr?

The mass current formed by the ring is filamentary. Its
magnitude is / = Js = maot/2w. Since the mass current is
filamentary, the volume element dV' in Eq. (2-2.15) can be written
as sdl', where dl' is a length element along the circumference of the
ring. Furthermore, we can combine 0, and d!’ into the vector dl' =
dl'd,. Transposing 0, and r, we then have from Eq. (2-2.15)

Gf I

K - Lrxad, (2-2.16)
CZ r3

Integrating Eq. (2-2.16), we obtain

K--2G_la® (2-2.17)
cZ (a2+x2)3/2

or, substituting / = mat/27,

_ maota® )
K = Gwl. (2-2.18)

Note that the cogravitational field is left-handed relative to the
mass current that produces it.

The surprising result of this example is that, once the fields
have reached the point of observation, neither the gravitational nor
the cogravitational field on the axis of the rotating ring is affected
by retardation.

A
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2-3. Gravitational and Cogravitational Forces According to the
Generalized Theory of Gravitation

One of the most important differences between Newton’s
original theory of gravitation and the generalized theory of
pravitation is in the interpretation of the mechanism of
privitational interactions. Whereas in Newton’s original theory of
pravitation gravitational interaction between two bodies involves
one single force of gravitational attraction, in the generalized
theory of gravitation gravitational interaction between two bodies
involves an intricate juxtaposition of several different forces.
Mathematically, these forces result from Eqgs. (2-2.1), (2-2.2) and
(2-2.6). When Eqgs. (2-2.1) and (2-2.2) are written as five separate
imtegrals, they become, using J for pv,

g=—G]£p3_]rdv’—G]_2_@

rdv’ + j : ";J ]dv’ (2-3.1)

N

r ricl ot c
iund
K-- _[ U s rav - G[ LA yrav. (232
ctl r c2dric o

liuch of these integrals represents a force field. Therefore,
according to the generalized theory of gravitation, gravitational
mtcractions between two bodies involve at least five different
lorces. Let us consider the physical sources of these forces.

First let us consider Eq. (2-3.1). The field represented by the
lirst integral of this equation is the ordinary Newtonian
pravitational field created by the mass distribution p corrected for
the finite speed of the propagation of the field, as indicated by the
sinare brackets (the retardation symbol) in the numerator. The
held represented by the second integral is created by a mass
whose density varies with time. Like the ordinary Newtonian
pravitational field, these two fields are directed toward the masses
which create them. The field represented by the last integral in
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Eq. (2-3.1) is created by a mass current whose magnitude and/or
direction varies with time. The direction of this field is parallel to
the direction along which the mass current increases. All three
fields in Eq. (2-3.1) act on stationary as well as on moving
masses.

Consider now Eq. (2-3.2). The first integral in this equation
represents the cogravitational field created by the mass current.
The direction of this field is normal to the mass current vector.
The second integral represents the field created by a time-variable
mass current. The direction of this field is normal to the direction
along which the mass current increases. By Eq. (2-2.6), both
fields in Eq. (2-3.2) act on moving masses only.

If the mass under consideration does not move and does not
change with time, then there is no retardation and no mass
current. In this case both integrals in Eq. (2-3.2) vanish and only
the first integral remains in Eq. (2-3.1). As a result, one simply
obtains the integral representing the ordinary Newtonian
gravitational field. Thus, the ordinary Newtonian gravitational
theory is a special case of the generalized theory, as it should be.

As far as the gravitational interaction between two masses is
concerned, the meaning of the five integrals discussed above can
be explained with the help of Fig. 2.2. The upper part of Fig. 2.2
shows the force which the mass m, experiences under the action
of the mass m, according to the ordinary Newtonian theory. The
lower part of Fig. 2.2 shows five forces which the same mass m,
experiences under the action of the mass m, according to the
generalized theory. The time for which the positions of the two
masses and the force experienced by m, are observed is indicated
by the letter ¢. Let us note first of all that, according to the
ordinary Newtonian theory, the mass m, is subjected to one single
force directed to the mass m, at its present location, that is, to
its location at the time ¢. However, according to the generalized
theory, all forces acting on the mass m, are associated not with
the position of the mass m, at the time of observation, but with
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m
2
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Fig. 2.2 The upper part of this figure shows the force that the mass
I, experiences under the action of the mass m, according to the
ordinary Newtonian theory. The lower part shows five forces which
the same mass m, experiences under the action of the mass m,
according to the generalized Newtonian theory.

the position of m, at an earlier time ¢ < t. Therefore, the
magnitude of the mass m,, its position and its state of motion at
the present time ¢ have no effect at all on the mass m,.

The subscripts identifying the five forces shown in the lower
part of Fig. 2.2 correspond to the five integrals in the Egs. (2-3.1)
ad (2-3.2). The force F, is associated simply with the mass m,
aud differs from the ordinary Newtonian gravitational force only
insofar as it is directed not to the mass m, at its present position,
but to the place where m, was located at the past time ¢'. The
lorce F, is associated with the variation of the density of the mass
m, with time; the direction of this force is the same as that of F,.
The force F, is associated with the time variation of the mass
current produced by m,; this force is directed along the
iucceleration vector a (or along the velocity vector v,) which the
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mass m, had at the time ¢'. The three forces are produced by the
gravitational field g (if m, is a point mass moving at constant
velocity, g and the resultant of the three forces are directed
toward the present position of m,; see Chapter 5).

The forces F, and F; are due to the cogravitational field K.
The force F, is associated with the mass current created by the
mass m, and with the velocity of the mass m,. Its direction is
normal to the velocity vector v, which the mass m, had at the time
t' and normal to the velocity vector v, which the mass m, has at
the present time z. The force F; is associated with the velocity of
the mass m, and with the variation of the mass current of the mass
m, with time; the direction of this force is normal to the
acceleration vector (or to the velocity vector) that the mass m, had
at the time ¢’ and normal to the velocity vector that the mass m,
has at the present time ¢. Although not shown in Fig. 2.2,
additional forces associated with the rotation of m, and m,
(angular velocities w, and w,) are generally involved in the
interaction between the two masses (see Chapters 14 and 15).

The forces F,, F;, F,, and Fs are usually much weaker than
the force F, because of the presence of the speed of gravitation
¢ (usually assumed to be the same as the speed of light) in the
denominators of the integrals representing the fields responsible
for these four forces. This means that only when the translational
or rotational velocity of m, or m, is close to c, are the forces F,,
F;, F,, and F, dominant. Of course, the cumulative effect of these
forces in long-lasting gravitational systems (such as the Solar
system, for example) may be significant regardless of the
velocities of the interacting masses.

References and Remarks for Chapter 2

1. It should be noted that the cogravitational field K has not yet
been actually observed. However, it is very likely that it will be
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revealed by the Gravity Probe B launched in 2004 by NASA in a
polar orbit around the Earth.

2. For the various theoretical considerations demanding the
existence of the cogravitational field see Oleg D. Jefimenko,
Causality, Electromagnetic Induction and Gravitation, 2nd ed.,
(Electret Scientific, Star City, 2000), pp. 80-100.

3. Although we say that gravitational and cogravitational fields
"propagate,” it is not entirely clear what physical entity actually
propagates, since by definition gravitational and cogravitational
liclds are "regions of space.” It is conceivable that what actually
propagates is some particles that somehow create the gravitational
and cogravitational fields. It is possible that these particles have
already been described [see M. R. Edwards, Ed., Pushing Gravity
(Apeiron, Montreal, 2002)], and it is possible that some of their
cffects have already been observed [see 1. A. Eganova, The Nature
of Space-Time (Publishing House of SB RAS, Novosibirsk, 2005),
pp. 137-223]. Yet, there is not enough information about these
particles for making any definite statement about their existence,
nature, composition, or properties.

4. Itis important to note that the gravitational-cogravitational field
cnergy is negative. This means that no energy can be extracted
from the gravitational-cogravitational field by destroying the field.
On the contrary, energy must be delivered to the field in order to
destroy the field.

§. Oleg D. lJefimenko, Electricity and Magnetism, 2nd ed.,
(Electret Scientific, Star City, 1989), pp. 18-62.

6. Oleg D. Jefimenko, Electromagnetic Retardation and Theory of
Relativity, 2nd ed., (Electret Scientific, Star City, 2004), pp. 6-14.
7. Here and throughout this book we use the standard notation i,
J, k for the unit vectors along the x, y and z axis, respectively, of
rectangular system of coordinates.



ALTERNATIVE FORMS OF THE
PRINCIPAL FIELD EQUATIONS
OF THE GENERALIZED THEORY
OF GRAVITATION

The principal field equations of the generalized theory of
gravitation can be converted into several different equations that
may be more useful for practical applications than the original
equations themselves. In this chapter we will present several such
equations, will show their derivations, and will demonstrate some
of their applications.

3-1. Alternative Expressions for the Principal Field Equations
in Terms of Volume Integrals

As will be shown below, the principal equations of the
generalized theory of gravitation, Eqgs. (2-2.1) and (2-2.2), can be
converted into

B [V/p] G Il aJ
g-c| a2V e
and
K -- O [V X34y (3-1.2)
c? r

26
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where, for brevity, the letter J is used for the mass-current density
pv, and where the primed operator V'’ operates on the source-point
coordinates only. The integration, as usual, is over all space.

Furthermore, equations (2-2.1) and (2-2.4) can be combined
into the single equation

g=- Glﬁl‘]rdV’

r N (3-1.3)
2R - B - G G e

Derivation of Eq. (3-1.1). We start with Eq. (2-2.1)

e--of (8- g -2

Using vector identity (V-35) with r, = r/r for replacing the
two terms in the integrand of the first integral of Eq. (2-2.1) by
il single term, we obtain (note that we now use J in place of pv)

g=G] [”]dv' Gl ‘;ﬂdw (3-1.4)

0(ov) | yur
5 ]dV (2-2.1)

‘Transforming the integrand in the first integral of Eq. (3-1.4) by
means of vector identity (V-34), we obtain (note that the ordinary
operator V operates upon the field-point coordinates, whereas the
primed operator V' operates upon the source-point coordinates)

-0 Wav -ofw By S [2av. a1

The second integral in the last equation can be transformed into
u surface integral by means of vector identity (V-20). But this
surface integral vanishes, because p is confined to a finite region
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of space, while the surface of integration is at infinity. We thus
obtain

o - J[V,p]d"/ GJ ZﬂdV’ (-1.1)

Derivation of Eq. (3-1.2). We start with Eq. (2-2.2)

K-=- C_Ci H_[E;Z_] . _1_5 algtv]} xrdv’. (2-2.2)

Applying vector identity (V-35) to Eq. (2-2.2) and noting that

rx = — Xr, we obtain (note that we now use J in place of pv)
K - - E[Vxﬂdv’. (3-1.6)
c? r

Transforming Eq. (3-1.6) by means of vector identity (V-34) and
eliminating V' X ([J]/r) by means of vector identity (V-21) [see
the explanation below Eq. (3-1.5); note that J is confined to a
finite region of space], we obtain for the cogravitational field

/
K- - E]W 1 gy, (3-1.2)
c? r

Derivation of Eq. (3-1.3). We start again with Eq. (2-2.1)

s [{B lahrer ZLS

By Eq. (2-2.4), the contribution that dp/0¢ makes to the first
integral in Eq. (2-2.1) can be expressed as

dv’.(2-2.1)
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/ L]
] ap]rdV’ - - j[V Nrav. (-1.7)
r2cl ot ric

Transforming the last integral by using vector identities (V-31)
and (V-36) with r, = r/r, and using vector identity (V-8), we
obtain

V'3, (V' -[3]. r-[03/01 ) v,
l e rdv _” rc r- P r)dV (3-1.8)
- J(Iv' UMY -Mr)dv’
c r2 ¢ 2 ’

r? ric

Next, using vector identity (V-23), we transform the first term
in the integrand of the last integral of Eq. (3-1.8), obtaining

J%V’ - Blgyr - «H(El -dS’) - ](%] -V’)%dV’. (3-1.9)

r2 r2

Since the integration is over all space, and since there is no mass
current at infinity, the surface integral in Eq. (3-1.9) vanishes.
Applying vector identity (V-4) to the integrand of the remaining
integral on the right of Eq. (3-1.9) and noting that a V' operation
upon r is the negative of the same V operation, we then have

JIV’ By o J[‘” dav’. (3-1.10)
c r? cr?

From Egs. (3-1.7), (3-1.8), (3-1.9), and (3-1.10), we obtain
therefore

[ L[ %]eav - (W -Ipgy.pr L - 2100 gy 111y

or ric ¢ r? ric
Substituting Eq. (3-1.11) into Eq. (2-2.1) and taking into account
that V'(1/7%) = 2r/r*, we finally obtain
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g--G|Brav

r (3-1.3)
1 22

3-2. Expressing the Principal Field Equations in Terms of
Surface Integrals

A remarkable feature of Egs. (3-1.1) and (3-1.2) is that they
correlate the gravitational field with the gradient of the mass
distribution and correlate the cogravitational field with the curl of
the mass-current distribution rather than with the mass and mass-
current distribution as such. Hence, the equations may be
interpreted as indicating that the gravitational and cogravitational
fields are associated not with masses and mass currents, but rather
with the inhomogeneities in the distribution of masses and mass
currents (a homogeneous, or uniform, mass distribution has zero
gradient, and a homogeneous, or uniform, mass-current
distribution has zero curl).

Particularly interesting in this connection is a mass or mass-
current distribution in which the mass or mass-current changes
abruptly from a finite value in the interior of the distribution to
zero outside the distribution. For this type of mass and mass-
current distribution, Eqs. (3-1.1) and (3-1.2) can be transformed
into special forms that are more convenient to use than Eqgs. (3-
1.1) and (3-1.2) themselves.

As is shown below, for the gravitational field the following
equation can be used:

g= -G<f> 0] ys/ +ij[_vﬂdV/+EH[%dv/, 3-2.1)

Boundary 'y r c?
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where the surface integral is extended over the boundary layer of
the mass distribution, and the first volume integral is extended
over the interior of the mass distribution. This equation becomes
especially simple in the case of a constant (uniform) mass
distribution surrounded by a free space. In this case Vp in the
interior of the distribution is zero, and Eq. (3-2.1) simplifies to

- (o] G
g = Ggﬁ Plgs + G

[l[ﬁ!]dw (3-2.2)
Boundary 'y I rlor

For the cogravitational field, the following equations can be
used:

/
K- - Ecﬁ W yasr - Ej N XW gy (323
CZ Interior

Boundary c? r

and, for the special case of V' x J = 0 in the interior of the
mass-current distribution,

K - - ch B yasr (3-2.4)

c? ) Boundary

Derivation of Eq. (3-2.1). We start with Eq. (3-1.1). In this
cquation the integral involving V‘p can be separated into two
integrals: the integral over the boundary layer of the mass
distribution under consideration and the integral over the interior
of the mass distribution:

d A av'= | [V'Pldvuc[ Felayr (32.5)
r Int r

B.layer r

The first integral on the right of Eq. (3-2.5) can be transformed
by using vector identity (V-34):
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/
Gj Vol gy =Gj v Py +Gj v Py -2.6)
B.layer B layer B layer r

In Eq. (3-2.6), the operator V in the first integral on the right
operates upon the field point coordinates only. Therefore it can be
factored out from under the integral sign. The integrand in this
integral will then be [p]/r. Since both [p] and r are finite, while
the integration is over the volume of the boundary layer whose
thickness, and therefore volume, can be assumed to be as small as
we please, the integral vanishes. The second integral on the right
of Eq. (3-2.6) can be transformed into a surface integral by using
vector identity (V-20). Equation (3-2.6) can be written therefore
as

GJ V'o) gy - G(f 0] ysr | (3-2.7)
B.layer

r B layer 1

where the surface integral is extended over both surfaces (exterior
and interior) of the boundary layer.

In Eq. (3-2.7), the surface element vector dS’ of the exterior
surface is directed into the space outside the mass distribution,
while dS’' of the interior surface is directed into the mass
distribution. However, since there is no mass outside the mass
distribution, the integral over the exterior surface vanishes. Since
the boundary layer can be made as thin as we please, we can
make the interior surface of the boundary layer coincide with the
surface of the mass distribution. Reversing the sign in front of the
surface integral, we can write then Eq. (3-2.7) as

6 oayr--cf Dlas, 28
B.layer

r Boundary

where the integration is now over the surface of the mass
distribution, and where the surface element vector dS’ is directed,
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as usual, from the mass distribution into the surrounding space.
From Egs. (3-1.1), (3-2.5) and (3-2.8) we obtain

-Gc_f ﬂdsucjm v’ ”]dw [‘”]dw (3-2.1)

Boundary 1 r

Derivation of Eq. (3-2.3). We start with Eq. (3-1.2). Just as
in the case of Eq. (3-1.1), we can separate the integral in Eq. (3-
1.2) into an integral over the boundary layer of the mass-current
distribution and an integral over the interior of the distribution. By
the same reasoning as that used to simplify Eq. (3-2.5), we find
that the integral over the boundary layer can be written as

/
Sf, ey - &f wx By @29
B.layer B.layer r

c? r c?

Transforming the integral on the right of Eq. (3-2.9) into a
surface integral by means of vector identity (V-21), and taking
into account that there is no mass current in the space outside the
mass-current distribution, we obtain, just as we obtained Eq. (3-
2.8),

CZ

El [V"‘J]dv’ - Gr_f B as, (3:2.10)

B layer Boundary r

where the integration is over the surface of the mass-current

distribution, and the surface element vector dS’ is directed from

the mass-current distribution into the surrounding space.
Equation (3-1.2) can be written therefore as

K- - _G_cf W yas - _G_J VXA 4y (323
Interior

2 J Boundary 'y CZ r
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v

Example 3-2.1 A thin heavy disk of uniform mass density p, radius
a, and thickness b rotates with constant angular acceleration « about
its symmetry axis, which is also the x axis of rectangular
coordinates. The midplane of the disk coincides with the yz plane
of the coordinates, and the rotation of the disk is right-handed
relative to the x axis (Fig. 3.1). Using Eqgs. (3-2.2) and (3-2.3), find
the gravitational and cogravitational fields produced by the disk at
a point of the x axis, if at # = O the angular velocity of the disk is

Fig. 3.1 Calculation of the
gravitational and cogravita-
tional fields on the axis of a
heavy disk rotating with
constant angular acceleration
a.

The disk creates a convection mass-current J = pv = pwRl, =
parRd,, where R is the distance from the center of the disk, and 6,
is a unit vector in the circular direction (right-handed with respect
to «). The time derivative of J is 8J/0t = paRf,. To find V' X J,
we use the relation v = w X R and vector identity (V-12). Taking
into account that w is not a function of coordinates, we then obtain

VixJ=V'x(pwXR)=p[w(V' +R) -(w+ V)R], (3-2.11)
and since R = y‘j + z'k, while w « V' = wd/dx‘, we have
V' xJ =2pw =2par = 2pari. (3-2.12)

Examining now Eq. (3-2.2) and taking into account that 4J/d¢
is in the circular direction, we recognize that the second integral in
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Eq. (3-2.2) vanishes by symmetry (see Example 2-2.1). And since
p does not depend on time, we see from Eq. (3-2.2) that the
gravitational field of the disk is the ordinary Newtonian field given
by

g = - Ggf Pas = - prf s (3213
Boundary

Boundary y r

Let us now evaluate the last surface integral in Eq. (3-2.13). By
the symmetry of the system, only the two flat surfaces of the disk
contribute to the field on the axis. The back surface is located at x’
= — b/2, the front surface is located at x’ = + b/2. The direction
of the surface element vector dS’ is —i for the back surface and +i
for the front surface. We have therefore

°  2mRdR . J 27RdR
0 [R%+(x +b/2)1'2 O [R2+(x-b/2)1'?

27Gpi{[a®+(x+b/2)"1"? - (x+b/2) - [a*+ (x-b/2)"]"*+ (x-b/2)}.

g =GPi[ (3-2.14)

Since b < x, we can use the relation

[a?+(x £b/2)?1? =[a? +x?* £ xb]"? = (@ +x})"[1 +xb/2(a® +x?)].
(3-2.15)

Substituting Eq. (3-2.15) into Eq. (3-2.14), we obtain after
elementary simplifications

X

—_ i (3-2.16)
(@*+x)”

g = - 27erb[1 -

To find the cogravitational field, we use Eq. (3-2.3).
Substituting [J] = paR(t - r/c)8,and [V’ X J] = 2pa(t — r/c)i into
Eq. (3-2.3), we have
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K- _Ef paR(t—r/c)o xdS' _igl Zpa(t—r/c)dv,'
Cz Boundary r u Cz Int r

(3-2.17)
By the symmetry of the system, only the curved surface of the disk
contributes to the first integral. At this surface R = a, r = (a* +
x?)'2, 0, X dS' = — idS’, and the surface itself is S’ = 2mab. In
the second integral r is r = (R* + x?)'? and the volume element is
dV' = b27RdR. The cogravitational field is therefore

K

_; Gpaalr—(a*+x?)'"*/c)2mab _i2Gpa I 1-(R*+x?)"/c
cHa?+x?)\? 2 Jo R
pozta Zb _ paazb _ 2patb(a2 +X 2)1/2 . poa 2b)
Cl(a2+x2)]/2 CJ Cz C3 ’

2wbRAR

=i27G

(3-2.18)
or
K - - i4rGPObH@ + XD
CZ

a’ ] (3-2.19)
2(a?+x?)

It is interesting to note that neither the gravitational nor the
cogravitational field of the rotating disk is retarded, just as was the
case with the fields of the rotating ring discussed in Example 2-2.1.

A

3-3. Expressing Gravitational and Cogravitational Fields in
Terms of Potentials

The calculation of time-dependent gravitational and
cogravitational fields can sometimes be simplified by using
retarded gravitational and cogravitational potentials.

As we shall presently see, the cogravitational field can be
obtained by using the equation
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K =VxA. (3-3.1)

where A is the retarded cogravitational vector potential defined as

a--S8av. (332
Cc r

By vector identity (V-17), Eq. (3-3.1) can be written also as

fa-a - [Kk-as. (3-3.3)

The gravitational field can be obtained by using the equation
0A

= -Vp - 22 (3-3.4)
g ¢ =

where ¢ is the retarded scalar potential defined by the equation
0= - GJ_[p_]dV’. (3-3.5)
r

For time-independent gravitational and cogravitational
systems, the retarded vector potential reduces to

A= - Ejfdv' (3-3.6)
ctlr

and the retarded scalar potential reduces to
Q= - GdeV/. (3-3.7)
r

Thus the scalar potential becomes the familiar scalar potential
of the Newtonian theory of gravitation, once again indicating that
the Newtonian theory is an incomplete theory and constitutes a
special case of the generalized theory of gravitation.

In a mass-free region of space, the gravitational field can also
be expressed in terms of the gravitational vector potential
according to the equation
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g = VXA, (3-3.8)

which, by vector identity (V-17), can be written also as

<]5Ag-dl - [g-ds. (3-3.9)

Likewise, in a mass-free region of space, the cogravitational
field can also be expressed in terms of the cogravitational scalar
potential, according to the equation

iﬁ. (3-3.10)
t

1
K=-Vp + __
@, =73
The validity of Eqs. (3-3.8) and (3-3.10) follows from the fact
that these equations are in accord with Eqgs. (7-1.1)-(7-1.4) (see
Chapter 7), which can be easily verified by direct substitution.?

Derivation of Eqgs. (3-3.1)-(3-3.5). Factoring out the operator
V from under the first integral of Eq. (3-1.4), we immediately
obtain the relation for the retarded gravitational scalar potential ¢

~ G IOJ] ,
= -vp+ G [ L]0 4y, 3.3.11
g=-Vyp Cz[rat (3-3.11)
where
¢=—G[@d1ﬂ. (3-3.5)

Likewise, factoring out the operator V from under the integral
of Eq. (3-1.6), we immediately obtain the relation for the retarded
cogravitational vector potential A

K = VxA, (3-3.1)
where
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a=-SWay (3-3.2)
ctlor

Next, using vector identity (V-36), factoring out the time
derivative from under the integral sign in Eq. (3-3.11), and
eliminating the integral by means of Eq. (3-3.2), we obtain

0A
g Vo & (3-3.4)
v
Example 3-3.1 Show that the retarded potentials ¢ and A satisfy
the relation
vea-- Lo (3-3.12)
c? ot

From Eqgs. (3-3.5) and vector identity (V-36) we have

~ 19y =Eji£]dv’ =£[l@]dv’. (3-3.13)
c2ot clorr ctl) rlot

But according to the continuity law, Eq. (2-2.4), remembering that

we now use J for pv, and noting that p in Eq. (3-3.13) is a function

of primed coordinates |,

ﬁﬂ:qu (3-3.14)
ot
so that
-i%:-ﬁj AP (3-3.15)
c? Ot c? r

Transforming the integral in Eq. (3-3.15) by means of vector
identity (V-34), we have

-iﬁﬁdqWﬂwuﬁpuﬂwaoam
c? ot c? r c? r

The last integral in Eq. (3-3.16) can be transformed into a surface
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integral by means of the vector identity (V-19), and since there is
no mass current at infinity, the surface integral is zero, and so is
the last integral. In the first integral, V can be factored out from
under the integral sign. Therefore we obtain

1oy __yg. ﬁj Dy (3-3.17)
c? Ot ctl r

Eliminating the last integral in Eq. (3-3.17) by means of Eq. (3-
3.2), we obtain Eq. (3-3.12). Note that the analogous equation in
the electromagnetic theory is known as Lorenz’s condition.

Example 3-3.2 Using gravitational and cogravitational potentials,
find gravitational and cogravitational fields at all points of space far
from the rotating ring described in Example 2-2.1 (Fig. 3.2).

oS08
m . r Fig. 3.2 Calculation of the
\ ; gravitational and cogravitational fields
1 \\i\ - far from the heavy ring rotating with
a a,S' X constant angular acceleration. (The
ro>a unit vector ¢, is directed into the
page.)

At large distances from the ring, the ring constitutes a point
mass m, which does not depend on time. Therefore the gravitational
potential of the ring is the ordinary Newtonian potential

o=--G™M. (3-3.18)
r

Since the ring constitutes a filamentary convection mass-current
I = mat/2w, the cogravitational vector potential of the ring is, by
Eq. (3-3.2) with JdV' replaced by Idl' = (mat/2w)dl' and the
volume integral replaced by a line integral,
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A - - G [ ma(t-ric)2w dl = - Gmat(f) dr Gma(f
c? r 27c? 27c3
(3-3.19)

The last integral in Eq. (3-3.19) (closed line integral over vector
length elements) is zero. The remaining integral can be transformed
into a surface integral by means of vector identity (V-18). We then
obtain

Gmat(j; dl’ _ Gmat I x dS’, (3-3.20)
2mc? 2mc2 ) p?

where r’, is a unit vector directed from the point of observation
toward the surface element dS'.

Now, since the point of observation is far from the ring, the
integral can be replaced by the (vector) product of the integrand and
the surface area S’ of the ring, so that the vector potential is

A= - Gmaot I'LXS/ _ Gmout r XS/, (3_321)
2wc?r? 2mwcr? !

where r, is a unit vector directed from the ring toward the point of
observation. The magnitude of the vector S’ is wa?, and the
direction is along the x axis. Designating the angle between r, and
S’ as 8, we then have for the vector potential

A =G0 G64 (3-3.22)
2c%r?
where ¢, is a unit vector in the circular direction left-handed
relative to the x axis.
By Eq. (3-3.1), the cogravitational field associated with this
vector potential is

K-V XA - G;”“ % 2cosdr, +singf) (3-3.23)
C r
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(we do not reproduce the actual calculation of V X A, since it is
not important for the purpose of the present example; the
calculation is done by using the expressions for the curl of a vector
in spherical coordinates'). It is interesting to note that this field is
an ordinary (unretarded) "dipole field." On the x axis (§ = 0) it
reduces to the field found in Example 2-2.1 (for x > a).

Let us now find the gravitational field of the ring. By Egs. (3-
3.4), (3-3.18), and (3-3.22), we have

2
g=-GMr, - sz? %sind g, (3-3.24)
r cr

It is interesting to note that although the gravitational field of
the ring does not depend on ¢, the presence of the ¢, term makes
the field different from the ordinary Newtonian field of the ring.
This term is due to [8J/0f] in Eq. (3-1.1) and represents the
"gravikinetic field" (see Chapter 11). In the case under
consideration, the gravikinetic field is circular and is in the same
direction as the mass current in the ring.

On the x axis, the gravitational field of the ring reduces to the
field found in Example 2-2.1 (for x > a).

A

References and Remarks for Chapter 3

1. See, for example, Oleg D. lJefimenko, Electricity and
Magnetism, 2nd ed., (Electret Scientific, Star City, 1989) p. 55.
2. See also Sections 10.2 and 10.4.



RETARDED INTEGRALS FOR
GRAVITATIONAL AND
COGRAVITATIONAL

FIELDS AND POTENTIALS OF
MOVING MASSES

In this chapter we shall learn how retarded integrals for
gravitational and cogravitational fields and potentials can be used
for finding gravitational and cogravitational fields and potentials
of moving mass distributions. We shall also discover important
relations between the gravitational and cogravitational fields for
two special cases of moving mass distributions: an arbitrary mass
distribution moving with constant velocity and a point mass in
arbitrary motion.

4-1. Using Retarded Integrals for Finding Fields and Potentials
of Moving Mass Distributions

A time-variable mass distribution always involves a movement
of masses. For example, if the density of a mass distribution
changes with time, then some masses change their location within
the mass distribution or move to or from the mass distribution.
Conversely, a moving mass distribution is inevitably a time-

43
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variable mass distribution because it increases mass density in
regions of space which it enters and decreases mass density from
the regions of space which it leaves. Consequently, the
gravitational and cogravitational fields of a moving mass
distribution can be determined from retarded field (or potential)
integrals presented in Chapters 2 and 3 for the general case of
time-dependent mass and mass-current distributions.

To use retarded field integrals for finding gravitational and
cogravitational fields of moving mass distributions, we need to
express the time derivatives dp/0¢ and 4J/0¢t in terms of the
velocity of the mass distribution under consideration. This can be
done as follows. Consider a stationary mass distribution (hereafter
called "mass") of density p as a function of x', y’, 7',

o =px’',yz"). 4-1.1)

If this mass moves with velocity v without changing its density,
the total time derivative of p is

dp _dp , 9p dx'  dp dy' , 9p dz’_@

L P2 P T =P yveVp.
dt 0t ox' dt @9y’ dt 9z dr ot 4-1.2)
Since p remains the same as the mass moves, do/dt = 0, so that
B . _v.vy (4-1.3)
ot

A moving mass constitutes a mass-current whose density is J =
pv. Therefore, differentiating by parts,

aJ _3v) ==(v-Vp)v +p_61 =-(v-V/p)v+pv. (4-1.4)

o ot at
Observe that in the retarded field integrals presented in
Chapters 2 and 3, the denominator r representing the distance
between the volume element dV’ and the point of observation is
not a function of time. Therefore it is not a function of time also
in the case of moving masses. A moving mass must be considered
as moving past different volume elements of space associated with
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different but fixed r’s. The question arises, if dV’ is a volume
element of space, rather than a volume element of a moving mass,
how does one introduce the volume of the mass into the field
integrals? To answer this question, let us examine how the
gravitational and cogravitational fields of a moving mass are
created.

The phenomenon of retardation indicates that time-dependent
masses send out gravitational (and cogravitational) field "signals"
that propagate in all directions with a finite speed ¢ (as stated in
Chapter 2, it is usually assumed that gravitation propagates with
the speed of light). The gravitational or cogravitational field
created by a time-variable mass at the point of observation is the
result of the signals sent out by all the elementary masses within
the mass and simultaneously "received" at the point of observation
at the instant ¢. But different mass elements within the mass are
at different distances from the point of observation, and the times
needed for the signals originating from the different mass elements
to arrive at the point of observation are different. Therefore the
signals that are received at the point of observation simultaneously
at the instant ¢ are sent out from the different mass elements
within the mass at different retarded times ¢ = ¢t — r/c. For a
moving mass these times are different not only because different
mass elements within the mass are located at different distances
from the point of observation, but also because the location of
these mass elements changes as the mass moves. As a result, the
region of space from which the field signals responsible for the
field at the point of observation are sent is not equal to the region
of space, or volume, occupied by the mass when it is at rest.

Consider a mass of length / moving against the x axis with a
constant velocity v. The gravitational field g of the mass is
observed at the point O (Fig. 4.1). A field signal is sent from the
trailing end of the mass when this end is at the distance r; from
the point of observation. A field signal is sent from the leading
end, when this end is at the distance r, from the point of
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observation. Since the leading end is closer to the point of
observation than the trailing end, the field signal from the leading
end must be sent at a later time if it is to arrive at the point of
observation simultaneously with the signal sent from the trailing
end. The difference in the times needed for the two signals to
arrive at the point of observation is r,/c — r,/c. During this time
the mass moves a distance (r,/c — r,/c)v. Hence the distance /*
between the two points from which the two signals are sent is

I*=(r,-r)vic + 1. (4-1.5)

Fig. 4.1 For the two field
signals to arrive simultaneously
at O, the field signal originating
- [ from the leading end of the
moving mass must be sent later

r 7 than the field signal originating

o / from the trailing end of the

mass.

In this chapter we shall be mainly concerned with the special
case of masses for which r,, r, > I*. In this case (see Fig. 4.2),
rn—r = I*cos¢ = I¥r - v)/rv, where r is the distance
between the midpoint of /* and the point of observation, and ¢
is the angle between r and v. Substituting this expression for r,
— r, in Eq. (4-1.5), we have

1* =1*(@r-v)lrc+l, (4-1.6)
or
-t 4-1.7)
1-(r-v)/rc

Therefore, as already mentioned, the region of space from which
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Fig. 4.2 Geomerrical
relations between r,
¢, and I* when ry, r,
> [*. The signifi-
cance of the vector 1*
will  be explained
later.

the moving mass sends out the field signals resulting in the
gravitational and cogravitational fields created at the point of
observation is not equal to the region of space (volume) actually
occupied by the mass. In the case of a mass whose linear
dimensions are small compared with the distance from the mass
to the point of observation, this region of space, usually called the
effective volume, or the retarded volume, AV',, is

ret

/ AV/

AV, = ——~ | 4-1.8
' 1-(r-v)/rc ( )

where AV’ is the actual volume of the mass [this equation is
obtained from Eq. (4-1.7) by noting that the volume dimensions
perpendicular to the direction of motion are not affected by
retardation, and that the dimensions along the direction of motion
change in accordance with Eq. (4-1.7)].

Although the distance /* given by Eq. (4-1.5) or Eq. (4-1.7)
is a distance between two points in space rather than a length of
an object, it is usually called the retarded length. In fact, it is
actually the "visual" length of a rapidly moving body, as the
length of the body would appear to a stationary observer. As
follows from Eq. (4-1.7), the retarded length of a body moving
toward the observer is longer, and the retarded length of a body
moving away from the observer is shorter, than the actual length
of the body.' It should be emphasized that Eqs. (4-1.6)-(4-1.8)
hold only for masses or bodies observed from a distance much
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greater than the linear dimensions of the mass or body. For a
general case, the retarded length or volume of a body cannot be
expressed by a simple formula, but can be calculated in terms of
the actual length of the body once the position of the body at the
time of observation is given (see Section 5-3).

Another effect of retardation that needs to be taken into
account when applying retarded field equations to moving masses
is an apparent distortion of the shape of a moving mass. The
mass appears to change its shape because the retarded times for
different points within the mass are different.

AV |<— v/e — |
T SR
F P P
o) X

Fig. 4.3 Geometrical relations between the "present position
vector" t, and the "retarded position vector" r for a mass moving
with velocity v in the negative x direction.

Consider a mass moving against the x axis with a velocity v
and observed from a point O (Fig. 4.3). The retarded volume
element dV' of the mass is at the point P and is represented by the
vector r. The present position of the same volume element is at
the point P, and is represented by the vector r,. The distance Ax'
from P to P, is the distance that the mass travels during the time
that it takes the field signal to propagate from P to O, that is, Ax’
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= v(r/c). We shall now show that, within the mass, any line
parallel to the y axis when the mass is at rest or at its present
position appears to be slanted when the mass is moving and is at
a retarded position (Fig. 4.4).

First, let us note that, according to Fig. 4.4, the relation
between the x and y components of the retarded position vector r
and the x component of the present position vector r, is (as usual,
we use primes to indicate source-point coordinates)

Ay | «— rv/c —»|
s B

b £

o

X
>

Fig. 4.4 A mass at its retarded position appears to be elongated
and its vertical lines appear to be slanted.

x!' = xg+vrlc, 4-1.9)

or
x! = xp+(x’t+y ) 2. (4-1.10)

Differentiating Eq. (4-1.10) while keeping x,’ constant, we have

&'yl @1.11)
dy!  r[1-(oy(x'Inl’

which can be written as
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dx’ _ y'vic _ y'vlc _ (/o)sing
dy’  r[1-(ccosp]  rl-(@x+-v)/rc] 1-(r-v)irc’
4-1.12)

Thus, according to Eq. (4-1.12), a vertical line (x," = constant,
dx,'/dy,’ = 0) within the mass at the present position appears to
be slanted when the mass is viewed at its retarded position, and
the angle « of the slant is given by

cotor = y'vic . (4-1.13)
r[l = v)/rc]

In the derivations presented later in Chapter 5, we shall
consider a moving mass in the shape of a rectangular prism of
length / and thickness a. For determining the gravitational and
cogravitational field of such a mass we shall make use of two
special vectors shown in Fig. 4.5: the vector I* representing the
retarded length of the mass, given by

P-- b (4-1.14)

1-(r-v)/rc ’

and the vector a* representing the "slanted" thickness of the mass,
given by (note thatr « v = x'v)

. ay'vic

- i- ay'vic . a(r -x'vlc)
r[1-(r - v)/rc] r[1-(r-v)/irc]  r1-(r-v)/rc]”
4-1.15)

We shall also use the following relation derived in Example
4-1.1 for a mass moving with acceleration v = dv/d¢’

v 1 _ r—rv/c+(r-i')r/cz' (4-1.16)
[r-(r-v)/c] 1=« v)/rc]?

Note that if v = 0 (motion with constant velocity), Eq. (4-1.16)
becomes



SECTION 4-1 MOVING MASS DISTRIBUTIONS 51

AY

T<
A
*
nN—»
\

—>| <«— acota

=

Fig. 4.5 Explanation of the vectors 1* and a*. The vector 1*
represents the retarded length of the moving mass, the vector a*
represents the "slanted" thickness of the mass.

/ 1 - r-rvlc
[r-(c-v)/cl Pl-(-v)/rc]

In dealing with retarded integrals for moving masses, we shall
frequently use the expression

r-(r-vlc, (4-1.18)

(4-1.17)

where r is the retarded position vector joining a retarded volume
element dV’ of a moving mass with the point of observation. If
the mass moves with a constant velocity v, this expression can be
converted to the present position of the mass, that is, to the
position occupied by the volume element dV’ of the mass at the
instant for which the gravitational and cogravitational fields are
being determined. This can be done as follows.

First, assuming that the mass moves in the negative x
direction and assuming that dV’ is in the xy plane, we see from
Fig. 4.3 that the present position vector r, of dV' can be
expressed in terms of the retarded position vector r as

r, =r-rvic. 4-1.19)
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Next, we write Eq. (4-1.18) as

[r=(r-v)c]=[r-x"vic] (4-1.20)
=[(r-x"vIcY 12 =[r2-2m'v/c +x"*v¥c "2,

Adding and subtracting x'? and rv*/c? to the right side of Eq. (4-
1.20), we then have

[r-(r-v)/c] (4-1.21)
=[r2-2mc'vic+x"v¥c?+x " -x 2 +rtv¥ct -rvc 2.

Let us now collect the terms on the right of Eq. (4-1.21) into
three groups:

x? - 2;'vic + rv?c? | (4-1.22)
rt -x’?, (4-1.23)

and
x'2?c? - rv¥c?. (4-1.24)

By Eq. (4-1.9), the first group represents x,'?, where x,' is the
distance between the yz plane and the volume element dV' of the
moving mass at its present position. The second group is simply
y'%, where y’ is the (constant) y coordinate of the volume element

dV’. And the third group is —y'?v%c?. We can write therefore
[r-(r - v)/cl=(x)" +y'? -y v¥c?)n (4-1.25)
=+ y )1 -y 2 (xd vy DY,

But, as can be seen from Fig. 4.3, x,”> + y'? = ry?, and y'%/(x¢
+ y'?) = sin? 6, where 6 is the angle between r, and the velocity
vector v. Therefore

[r=(r-v)cl=r[1-(r-v)rc]l=r{l -(v¥/c?)sin’}"*, (4-1.26)

where all the quantities in the last expression are present time
quantities. In obtaining Eqs. (4-1.25) and (4-1.26) we assumed
that the volume element dV' of the moving mass was located in
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the xy plane. Clearly, however, the two equations are valid even
il dV' is not in that plane, provided that we replace in these
cquations y'2 by y'? + z'2

Expressions involving the retarded position vector r and its
magnitude r have a very peculiar and important property which
should be kept in mind when dealing with moving masses and
mass-currents. As already mentioned, a moving mass is assumed
10 move through different but fixed points of space. Therefore
neither the retarded position vector r nor its magnitude r explicitly
appearing in retarded integrals is a function of time. On the other
hand, in the case of moving masses and currents, the distance r
appearing in the retarded time ¢ = ¢ — r/c is variable and
therefore is a function of time. The same applies to Eqs. (4-1.7) -
(4-1.17) presented above and to all similar expressions.

v
Example 4-1.1 Derive Eq. (4-1.16).

Let us arrange a rectangular system of coordinates so that the
acceleration vector of the moving mass is in the xy plane and the
velocity vector is in the negative x direction. Let the point of
observation be at the origin. The position vector of the mass is then

r = — x'i — y'j. Using vector identity (V-7), we have
"y =(r
/ 1 __Vir-« v)/c]‘ (4-1.27)
[r=(r-v)/c] [r=(r+v)/c]?

In differentiating the numerator in Eq. (4-1.27), we should
remember that the numerator is retarded. However, as explained in
Section 4-1, neither the position vector r nor its magnitude r
appearing in retarded integrals is a function of time and therefore
ueither is affected by retardation (the mass moves through different
but fixed points of space). The only quantity in the numerator
affected by retardation is the velocity v which is a function of the
retarded time ¢ — r/c and does change as the mass moves. Hence
we can write, making use of vector identity (V-5),
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, 1 __VIr-v'[(r-v)c]
[r-(r-v)/c] [r-(r-v)/c]?

_ r,=(1/e)V'[r - v]

) [r-(r-v)/ic?

(4-1.28)

To evaluate V'[r - v], we first use vector identity (V-31),
obtaining

V/[r - v] =[V/(l'° V)] + E ar - v)
C

. 4-1.29
T ( )

The first expression on the right can be evaluated with the help of
vector identity (V-6). Note that in this expression V' operates upon
unretarded quantities. Therefore we have

V/(r-v)=(r +V)v+r XV xXv)+(v - V)r +vx(V’ xr). (4-1.30)

Since all the quantities in this equation are unretarded, and since the
unretarded v does not depend on spatial coordinates, the first two
terms on the right of this equation vanish. Since V' X r = 0, the
last term vanishes also. By vector identity (V-4), the remaining
term is simply — v. We thus obtain

Vic-v)=-v. (4-1.31)

Taking into account that r in the last term of Eq. (4-1.29) is not
a function of time, we have

Lo -vy|_Tuf  0v|_Tur . 4-1.32
Ljde ] L W} R

Combining Eqgs. (4-1.28), (4-1.29), (4-1.31), and (4-1.32),
factoring out r in the denominator, and multiplying the numerator
and the denominator by r, we finally obtain

V/ 1 _ l‘-l‘V/C+(l"\.I)l‘/C2' (4‘116)

[r-(r-v)/c] r’[1-(r - v)/rc]?
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Although all quantities in Eq. (4-1.16) refer to the retarded position
ol the mass, to avoid an exceedingly cumbersome notation we do
not place them between the retardation brackets.

A

4-2. Correlation Between the Gravitational and the
(Cogravitational Field of a Moving Mass Distribution

There are two special cases of moving mass distributions for
which there exist simple correlations between the gravitational and
the cogravitational field produced by the distributions. The first
case is that of an arbitrary mass distribution moving with constant
velocity. The second case is that of a point mass moving with
acceleration.

Consider first a mass distribution of arbitrary size and shape
moving with constant velocity v. Let us form the vector product
of v and Eq. (3-1.1) with the two integrals in Eq. (3-1.1)
combined into a single integral. Since v is a constant vector, we
can place it under the integral sign, so that

vV X [V’ p + _1_2 g]
vxg=GJ _ 0 ayr (4-2.1)

If a mass distribution moves with constant velocity v, then by Eq.
(4-1.4) the derivative 8J/0¢ is parallel to v. Therefore the product
v X [3J/0¢] vanishes, and since v is not affected by retardation,
Eq. (4-2.1) simplifies to

/
vxg-= GI[_VX_V_ﬂdV’. (4-2.2)
r

Using now vector identity (V-11), taking into account that v X
V'p = — V'p X v, and taking into account that V' X v = 0 and
that vo = J, we obtain from Eq. (4-2.2)
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/
vxg = - GJ VX gy (4-2.3)
r
which, by Eq. (3-1.2), is equivalent to
K = (vxg/c?. 4-2.4)

Note that K is perpendicular to v and g, and that g in Eq. (4-2.4)
is the gravitational field produced by a moving mass distribution.

It is interesting to note that since, in the present case, the term
0J/0t in Eq. (4-2.1) makes no contribution to v X g, we can write
Eq. (4-2.4), using Eq. (3-1.1), as

/
K =vx Ezj Vool gy (4-2.5)
C r

and, assuming that the velocity is along the x axis, so that vXi
=0, as

K=vXx

/ /
G j & +Vo0l (4-2.6)

c? r

where only the components of V' perpendicular to v occur.
Furthermore, using Eq. (2-2.1) and taking into account that 8J/d¢
makes no contribution to v X g and that v X i = 0, we can
write Eq. (4-2.4) as

K=-vx 9 ]{@ +%E[%]}(yj sZ)dvi . (42.7)

C2 r3

As it follows from Egs. (4-1.7) and (4-1.8), for slowly
moving mass distributions the retardation can be neglected, in
which case Eq. (4-2.4) reduces to
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K = (v X g)lc?, (4-2.8)

where g is the ordinary Newtonian gravitational field of the mass
distribution under consideration. Likewise, Eqgs. (4-2.5)-(4-2.7)
reduce to the corresponding equations involving unretarded mass
densities.

Consider now a point mass moving with acceleration. Let us
assume that the retarded position of the point mass is given by the
vector r, and let us form the cross product of r/cr and Eq. (3-
1.3). Assuming that r for a moving point mass can be considered
the same throughout the entire volume occupied by the mass, we
cun place r/r under the integral signs.’ Noting thatr X r = 0, we
then obtain, transposing r in the integrand,

rxg _ _ GH[J]+ 1
cr PR

OJH /
—lrxrdV’. 4-2.9
i e (4-2.9)

Using now Eq. (2-2.2) with J = pv, and using vector identity (V-
36), we immediately obtain

K-rxe (4-2.10)
cr

where r is the retarded position vector connecting the moving
point mass with the point of observation. Equation (4-2.10) shows
that the cogravitational field of a moving point mass is
perpendicular to the gravitational field produced by the mass and
10 the radius vector joining the retarded position of the mass with
the point of observation.?

It is interesting to note that for a point mass moving with
constant velocity, Eq. (4-2.4) as well as Eq. (4-2.10) hold,
because Eqgs. (4-2.10) is true for any acceleration, including zero
acceleration. However, it is important to remember that Eq. (4-
2.10) involves the retarded position vector r. If the acceleration
is zero, Eq. (4-2.10) reduces to Eq. (4-2.4), as is shown in
Iixample 5-1.1.
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References and Remarks for Chapter 4

1. The retarded length should not be confused with the relativistic
"Lorentz-contracted length;" see Oleg D. Jefimenko, Electro-
magnetic Retardation and Theory of Relativity, 2nd ed., (Electret
Scientific, Star City, 2004), pp. 207-209.

2. This procedure is generally applicable to stationary point
masses only. For moving point masses its applicability depends on
certain parameters of the system under consideration. See Section
5-7 [in particular Eqs. (5-7.1) and (5-7.2)] for details.

3. Itis important to stress that Eq. (4-2.10) is only approximately
correct. See Section 5-7 for details.



GRAVITATIONAL AND
COGRAVITATIONAL

FIELDS AND POTENTIALS OF
MOVING POINT AND LINE
MASSES

The finite propagation speed of gravitational and
cogravitational "signals" has a profound effect on the gravitational
and cogravitational fields and potentials of moving mass
distributions. In this chapter, starting with retarded field integrals,
we shall compute and analyze gravitational and cogravitational
lields and potentials of the two simplest types of moving mass
distributions: a moving point mass and a moving line mass.

§-1. The Gravitational Field of a Uniformly Moving Point
Mass

Any stationary mass distribution viewed from a sufficiently
large distance constitutes a "point mass."' Consider a mass
distribution of total mass m and density p confined to a small
rectangular prism (Fig. 5.1) whose center is located at the point
x', y' in the xy plane of a rectangular system of coordinates, and
whose sides [, a, and b are parallel to the x, y, and z axis,
respectively. Let the point of observation be at the origin of the

59
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Fig. 5.1 A mass of uniform density p is confined to a small
rectangular prism. The mass of the prism is m. The mass constitutes
a point mass when viewed from a distance large compared to the
linear dimensions of the prism.

coordinates, and let the distance between the center of the prism
and the origin be ry, > a, b, l. Viewed from the origin, this
mass distribution constitutes a point mass. Let the mass move with
uniform velocity v = — vi. We want to find the gravitational and
cogravitational fields of this mass at the point of observation.’
To find the gravitational field of this mass, we use Eq. (3-
1.1). First we eliminate from Eq. (3-1.1) the term with the mass-
current density J. We can do so with the help of Eq. (4-1.4).

Since the velocity of our mass is v = v,i = — vi, and since the

mass moves without acceleration so that v = 0, Eq. (4-1.4) gives
9 _ (vxﬂ)v = - vzﬂi. (5-1.1)
ot ax' ox'

Substituting Eq. (5-1.1) into Eq. (3-1.1), we then have for the
gravitational field of the mass
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;o viop.
[Vp _ng_/l

g = GI av’. (5-1.2)

RN

Observe that in this equation V' and 8/dx’ operate on the
unretarded p, so that in computing V'p and dp/dx’ we must use
the ordinary, unretarded, shape and size of the prism. Since p is
constant within the prism, V'p = 0 within it, and the only
contribution to V'p comes from the surface layer of the prism,
where p changes from p (inside the prism) to O (outside the
prism). Let the thickness of the surface layer be w. Taking into
account that V'p represents the rate of change of p in the positive
direction of the greatest rate of change, we then have V'p =
(p/w)n,,, where n,, is a unit vector normal to the surface layer and
pointing into the prism. Hence V'p for the right, left, top, bottom,
front, and back surfaces of the mass (prism) are —(p/w)i, (o/w)i,
—(p/w)j, (p/w)j, —(p/W)k, and (p/w)k, respectively. Likewise,
dp/dx' is zero in the interior of the mass and is different from
zero only in the left and in the right surface layers of the mass,
where dp/dx’ = p/w in the left surface layer and dp/dx' = -
p/w in the right surface layer.

The volume integral of Eq. (5-1.2) can be split therefore into
six integrals, one over each of the six surface layers
corresponding to the six surfaces of the mass (prism). However,
since the center of the mass is in the xy plane (z' = 0), the
integrals over the two surface layers parallel to the xy plane cancel
each other, because V'p for one of the layers is opposite to that
for the other layer, while r is the same for both layers. Thus only
the four integrals over the layers parallel to the xz and yz planes
remain. Let us designate the retarded distances from these layers
to the point of observation as r,, r,, r;, and r, (see Figs. 5.2 and
5.3). Since the linear dimensions of the mass are much smaller
than r,, r,, r;, and r,, we can replace each integral over a surface
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Fig. 5.2 When the mass shown in Fig. 5.1 is moving and is at a
retarded position, its apparent length, shape, and thickness of its
front and back surface layers are no longer the same as for the
stationary mass. (All r’s meet at the origin).

layer by the product of the integrand and the volume of the
corresponding layer. However, the integration in Eq. (5-1.2) is
over the effective (retarded) volume of the mass, and therefore we
must use not the true volume of the surface layers, but their
effective volume. The effective volume of the surface layers is not
the same as their actual volume, because, in accordance with Eq.
(4-1.7), the length [ of the two layers parallel to the xz plane must
be replaced by

-t (5-1.3)
1-(r-v)/rc

and because, also in accordance with Eq. (4-1.7), the thickness w
of the two layers parallel to the yz plane must be replaced by

wr=__" (5-1.4)
1-(r-v)/rc

Equation (5-1.2) becomes therefore
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~ ~

Fig. 5.3 The relations between r;, r,, and a* for the moving mass
at a retarded position. (The two v’s meet at the origin.)

g= G[p/wabw,*(—i)+plwabw2 i+ 2 b1t w(=i)
r Iy (5-1.5)
+p/Wbl wj +( )(p/wabw i+ p/wabw{(-i))}
r, 2o, r

or, substituting /* and w* from Egs. (5-1.3) and (5-1.4),

=G _p/lv__abw(—i) + Labwi
g
r,-r, +vic r,-r,*vl/c

P gy P i (5-1.6)
r,-ry-vlc r,-r,*vlc

2
. (V_)(_L abwi + — P abw( -i))],
cNr -r = v/c r,-r,*vic

which simplifies to

2
- otf - -
c*\ry-xryevic r-r +vic (5-1.7)

( 1 1 ) ]
+ - 1jl.
r,-r,-vlc r,-ryevl/c
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As can be seen from Figs. 5.2 and 5.3, the differences of the
fractions in these equations are simply the increments of the
function 1/(r - r « v/c) associated with the displacement of the tail
of r over the distances represented by the vector 1* [in the i
component of Eq. (5-1.7)] and by the vector a* [in the j
component of Eq. (5-1.7)]. Therefore we can write Eq. (5-1.7) as®

g = pr{l —__)[V’—_)- l*]ai
r-r-v/c
+ [(V’—l_)-a* lj}.
r-re-v/c
Substituting the gradient from Eq. (4-1.17) (remembering that v

= () and substituting 1* and a* from Eqgs. (4-1.14) and (4-1.15),
we have

/c . la .
S IS
8 P NP1 -revirc) TV

(5-1.8)

+ ( r -rv/c . i) y V/C alj (5_19)
r’(l-revirc> 'r(l-re-v/rc)
+( r-rvic ) r-x'vic J
r’(1-r-vircy* “/r(l-r-virc
Simplifying and taking into account thatr « i = — x', r - j =
—y,vei=—vyv,vej=0,andr - v = x'v, we obtain
2
g = - M_(l —L)(—x’ +rv/o)i
r’[l1-r-v/rc] c?

(5-1.10)

+

/ oy
(cxt i) 2V o oy L

r 2 2
- - %(1-%)(—x'i—w/c) +(1—V_2)(—y)j],
Cc Cc

r3l-re-v/rcl’t

and finally, noting thatr = — x'i — y'j, and that pabl = m,
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g = - g_mL-vicd) [r—ﬁ}. (5-1.11)
r’[l-r-v/rc]? c

Equation (5-1.11) expresses g in terms of the retarded
position of the mass specified by the retarded position vector r
(see Fig. 4.4). Usually it is desirable to express g in terms of the
present position of the mass specified by the present position
vector r, (see Fig. 4.4). We can convert Eq. (5-1.11) from r to
r, by using Egs. (4-1.19) and (4-1.26). According to Eq. (4-1.19),

r-rvic =r,, (5-1.12)

so that the last factor in Eq. (5-1.11) is simply the present position
vector r,. Substituting Eq. (5-1.12) and Eq. (4-1.26) into Eq. (5-
1.11), we obtain the desired equation for the gravitational field of
a uniformly moving point mass expressed in terms of the present
position of the mass (thus without gravitational aberration)

m-vie) (5-1.13)

g=-6G
ro{1 -(v¥/c?)sin?0}>? ‘

This equation (in a different notation) was first derived by Oliver
Heaviside in 1893 on the basis of the analogy between gravitation
and electromagnetism.*

There are two interesting properties of Eq. (5-1.13). First, as
was noted by Heaviside, with increasing velocity of the mass the
gravitational field of the mass concentrates itself more and more
about the equatorial plane, § = /2, and decreases along the line
of motion, § = 0. This effect is shown in Fig. 5.4a. Second, the
gravitational field appears to originate at the mass in its present
position. This, of course, is merely an illusion, because by
supposition the distance between the mass and the point of
observation is much greater than the linear dimensions of the
mass, so that neither Eq. (5-1.11) nor Eq. (5-1.13) gives us any
information concerning the structure of the field close to the mass.
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Fig. 5.4 (a) As first noticed by Heaviside, the gravitational field of
a moving point mass concentrates itself in the direction
perpendicular to the direction of motion of the mass and decreases
along the line of motion. (b) A more accurate way to show the
gravitational field of a moving point mass is to use uniformly spaced
field vectors of different lengths (see also Section 13-3).

Note also that because of the finite speed of the propagation of the
field signals and light signals one can never observe the mass at
its present position. In fact, the mass could have stopped after
sending the field signal from its retarded position, and even then
Eq. (5-1.13) would remain valid, although in this case Eq. (5-
1.13) would apply to the "projected,” or "anticipated," present
position of the mass.

v
Example 5-1.1 Show that for a point mass moving without
acceleration Eq. (4-2.10) reduces to (4-2.4).

According to Eq. (5-1.12), the retarded position vector of the
mass can be expressed in terms of the present position as
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r =r,+rvic. (5-1.14)

Substituting Eq. (5-1.14) into Eq. (4-2.10), we have

rxg _ (ro+rvic) xg _FoX8  (rvlo)xg
cr cr cr cr

K = (5-1.15)

Since, by Eq. (5-1.13), g is directed along ry, ry, X g = 0, and we
obtain [compare with Eq. (4-2.4)]

K = (v X g)/c2. (5-1.16)

Example 5-1.2 Equation (5-1.13) represents a "snapshot" of the
gravitational field of a moving point mass, since it does not express
the field as a function of time. Modify Eq. (5-1.13) so that it shows
how the field changes as the mass moves.

Let the "snapshot" be for ¢+ = 0. If the mass moves in the —x
direction, the functional dependence of g on the x coordinate will
be preserved for 1 #0 if we express Eq. (5-1.13) in terms of x," and
replace x,’ by x,' —vt. From Egs. (4-1.26) and (4-1.25), we have

ro{1 -(v¥cHsin?0}"? = (X(;z"')’/z —y 22y 5117
- [x(;2+(1 _vzlcz)y/2]l/2‘

Replacing in Eq. (5-1.17) x,’ by x,’ — v, we obtain

ro{1 -(v¥c)sin? 32 = [(xg - ve)2 +(1 -v¥cHy ]2, (5-1.18)
where x,' is now the x coordinate of the point mass at t = 0.
Expressing r, in terms of its components and replacing x," by x,' —

vt, we similarly have ry = —(x,’ — v)i — y'j. Therefore Eq. (5-
1.13) can be written as
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_G n(1 -v¥/ed){(xg - vi +y'j}

= , (5-1.19)
{(xg - vy +(1 -v¥c2)y 3}

where the dependence of g on ¢ is shown explicitly. This equation
holds for the mass moving parallel to the x axis in the xy plane. If
it moves parallel to the x axis anywhere in space, y'’ in this
equation should be replaced by (y'* + z'%).

A

5-2. The Cogravitational Field of a Uniformly Moving Point
Mass

Although by using Eq. (3-1.2) or Eq. (2-2.2), we can find the
cogravitational field of a uniformly moving point mass in the same
manner as we found the gravitational field in Section 5-1 (see
Example 5-2.1), it is much easier to find it from the known
gravitational field by using Eq. (4-2.4).

Applying Eq. (4-2.4) to Eq. (5-1.11), we obtain for the
cogravitational field in terms of the retarded position of the mass

m[l-v¥c?

K = -
r’cql-r-v/rcp

[vxr]. (5-2.1)

Applying Eq. (4-2.4) to Eq. (5-1.13), we obtain for the
cogravitational field in terms of the present position of the mass

K=--6___ ™2V yur). (522

rec?{1 -(v¥c?)sin?h}3?

v

Example 5-2.1 Find the cogravitational field of a uniformly
moving point mass shown in Fig. 5.1 by using Eq. (3-1.2),
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/
K - - E[ V' X3 gy (3-1.2)
c? r

To use Eq. (3-1.2), we need to know V' X J associated with
the mass under consideration. The moving mass constitutes a mass-
current density J = pv. Since v is not a function of x', y', 2, we
have V' X J = V'p X v. But p is constant within the mass, and
therefore the only contribution to V' X J comes from the surface
layer of the mass, where p changes from p (inside the mass) to 0
(outside the mass). Using the values for V’'p obtained in Section 5-
1, we then have for V' X J of the top, bottom, front, and back
surface layers of the mass (prism) —pv/wk, pv/iwk, pv/wj, and
—p/wj, respectively; the left and right surface layers make no
contribution to V' X J, because v and V'p are parallel (or
antiparallel) there. Furthermore, since V' X J in the front surface
layer is opposite to V' X J in the back surface layer, while both
surface layers are at the same distance r from the point of
observation, the contributions of these two layers to the integral in
Eq. (3-1.2) cancel each other, so that only the top and the bottom
surface layers contribute to the cogravitational field of the mass.

Since the linear dimensions of the mass are much smaller than
r; and r, (see Figs. 5.1 and 5.3), we can replace the integrals over
the two surface layers by the product of the integrand and the
volumes of the corresponding layers. Using Eq. (3-1.2) and taking
into account the effective volume of the boundary layers (see
Sections 4-1 and 5-1), we have, as in Egs. (5-1.5)-(5-1.7),

K - E[_ﬂwblk . ﬂwbzk]
clry-ry-vlc r,-ryevlc

Gpvbl[ 1 _ 1 }k
ctlry-ry-vic  r,-r,-vlic

(5-2.3)

The difference of the two fractions in the last expression is
simply the increment of the function 1/(r - r + v/c) associated with
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the displacement of the tail of r over the distance represented by the
vector a* (see Fig 5.3). Therefore, using Eqs. (4-1.17) and (4-
1.15), we can write Eq. (5-2.3) as

K - prvl[( r-rvlc -i) y'vlc
c2 U -r - vircy r(l/-r~v/rc) (5-2.4)
+( r-ric ) r-x'vic a]k.
r3 (1 -r - v/rc)? r(l1-r-v/rc)

Simplifying and taking into account thatr <« i = — x',r » j = —
y,vei=—v,vej=0,andr - v = x'v, we obtain
K=G my [(-x"+rvic)y'virc +(-y")(1 -x'virc)lk

r’c[l-r-v/rcp
mv[l-v¥c?y’
ric[l1-r-v/rc]?

(5-2.5)

which, noting that vy'’k = v X r, is the same as Eq. (5-2.1).
A

5-3. Gravitational and Cogravitational Fields of a Linear
Mass Uniformly Moving Along its Length

Consider a linear mass of finite length L, cross-sectional area
S, mass density p, and linear mass density A = pS moving with
constant velocity v parallel to the x axis of a rectangular system
of coordinates in the negative direction of the axis and at a
distance R above the axis (Fig. 5.5). Let the point of observation
O be at the origin. What is the gravitational field at O at the time
t when the leading end of the mass is at a distance L, from the
y axis?

We can find the gravitational field of the moving mass by
using Eq. (3-1.1) or Eq. (2-2.1) if we know its retarded position
corresponding to the time for which the field is computed. We
can determine this position as follows.
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Fig. 5.5 A line mass of linear density \ is moving with constant
velocity v. The retarded positions of the trailing and leading ends
of the mass are x," and x,’, respectively. The present positions of the
two ends are L, and L,, respectively. The distance between the
trajectory of the mass and the x axis is R. The point of observation
O is at the origin. The "retarded, " or "effective, " length of the mass
is longer than its true length.

First, let us determine the retarded position x,’ of the leading
end of the mass corresponding to the time ¢, that is, the position
from which the leading end sends out its field signal which arrives
at O at the time ¢. If the retarded distance between O and the
leading end is r,, then the time it takes for the signal to travel
from the leading end to O is r,/c. During this time the mass
travels a distance w(r,/c). Therefore at the moment when the
leading end sends out its field signal, the position of the leading

end is
x, =L, + rylc. (5-3.1)

Next, let us find the retarded position x," of the trailing end
of the mass corresponding to the time ¢. If the retarded distance
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between O and the trailing end is r,, then the time it takes for the
signal to travel from the trailing end to O is r,/c. During this time
the mass travels a distance v(r,/c). Hence, at the moment when
the trailing end sends out its signal, the position of the trailing end
is

x/ =L, +rylc. (5-3.2)

The x component of the gravitational field. We are now
ready to find the gravitational field of the mass by using Eq. (3-
1.1) or Eq. (2-2.1). The easiest way to find the x component of
the gravitational field of the mass under consideration is to use
Eq. (3-1.1). According to this equation, the x component of the
field is due to the x components of [V'p] and [3J/0¢] of the
moving mass. For the linear mass under consideration, these
components exist only at the leading and trailing ends of the mass
and are the same as for the moving prism discussed in the
preceding sections of this chapter: [V'p], = (p/w)i for the leading
end, and [V'p], = — (p/w)i for the trailing end, [8J/0f], = —
(Vp/w)i for the leading end, and [8J/dr], = (V’o/w)i for the
trailing end, where w is the thickness of the surface layer of the
mass (this is the actual thickness, not the retarded one). Since the
surface layer of the mass may be assumed as thin as one wishes,
the retarded volume integrals in Eq. (3-1.1), as far as the x
component of the field is concerned, reduces to the product of the
integrands and the volume of the surface layers of the leading and
trailing ends of the mass at their retarded positions. By Eq. (5-
1.4), for the leading end this volume is, using the asterisk to
indicate values evaluated at retarded positions,

. S
§=__ " (5-3.3)
b 1-(r,-v)/rc

and for the trailing end it is



SECTION 5-3 UNIFORMLY MOVING LINE MASS 73

wis=___ " (5-3.4)
1-(r, - v)/rc

The x component of the gravitational field is therefore

1 B 1
rl1-(,*v)rcl r[l-(r,-v)/rc]

8=GpS(1 -vz/cz)( ) (5-3.5)

or
11

g, = GN(1-v?*/c?) ; -
r,-xvic  r-xvic

). (5-3.6)

Equation (5-3.6) gives the gravitational field in terms of the
retarded position of the mass. We shall now convert it to the
present position of the mass (that is, the actual position of the
mass at the time 7). The calculations are similar to those used for
deriving Egs. (4-1.20)-(4-1.26). First, we note that, by Eq. (5-
3.1,

L7 = x° - 2xrvic + rpv¥c?, (5-3.7)

Next, we write the denominator of the first fraction inside the
parentheses of Eq. (5-3.6) as

r, =xsvic =[(r, = x; VIc) 12 =(ry = 2rx;vic +x, v¥e)'2. (5-3.8)
Adding and subtracting x'? and r,2v*/c? to the right side of Eq. (5-
3.8), we then have

r,-x,vlc (5-3.9)

=(ry ~2r s vic +x; Ve +x)t —x)t +rvie? - rivicd)'”.
Let us now collect the terms on the right of Eq. (5-3.9) into three

groups:
x;,_'z - 2rzx2'v/c + rpvic? (5-3.10)
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)

L (5-3.11)

and "
V2c? - rvc?. (5-3.12)

By Eq. (5-3.7), the first group represents L,”. The second group
is simply R’ (see Fig. 5.5). And the third group is — R»?/c?.

Similar relations hold for the denominator of the second
fraction inside the parentheses of Eq. (5-3.6). Therefore Eq. (5-
3.6) transforms to

A(1 -v¥/c?) 1 ] |
R (LR +1-v¥cH?  (LE/IR*+1-v¥cH)\2 ’
(5-3.13)

g =G

where only the present time quantities appear.

The y component of the gravitational field. The easiest way
to find the y component of the gravitational field of the mass
under consideration is to use Eq. (2-2.1). Only the first integral
of Eq. (2-2.1) makes a contribution to the y component of the
field, because 4J/9¢ has no y component. Separating this integral
into two integrals, we then have

8, - G[ Ll rav -G L ap]RdV’ (5-3.14)
Y r’ ricl ot

The first integral in Eq. (5-3.14) is the same as for a stationary
mass, except that the integration must be extended over the
retarded (effective) length of the mass. Designating the
contribution of the first integral as g, and noting that r = (x'2 +
RY)'?, we obtain

- 1Y 1 R / 5-3.15
2, G[_r_stv GpSl s (319
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or
/ /
A X X

/ /
X X

8,"G2 : =G§(_'_-_2_). (5-3.16)
RIRy? Ry R

r

N

In order to evaluate the contribution of g, of the second
integral of Eq. (5-3.14) to the total field, we must determine the
value of the derivative [dp/0f]. According to the notation
convention for retarded quantities, this derivative is the ordinary
derivative dp/dt used at the retarded position of the moving mass.
By Eq. (4-1.3), taking into account that for our mass v = — vi,
[0p/0¢] is then simply vdp/dx'. Since p is constant within the line
mass, only the leading and the trailing ends of the mass contribute
to this expression, and the contributions are vp/w and — vp/w,
respectively. The gravitational field g,, is therefore

& = GR[2Mav; - GR[20Mavi, (s3.1)
z rl

Cc r2

where the integration is over the surface layers of the leading and
trailing ends of the mass at the retarded positions of the mass.
Since the thickness of the surface layers is much smaller than r,
and r,, we can replace the integrals, as before for g,, by the
products of the integrands and the volumes of integration (the
volumes of the respective surface layers). Using the relations dV,’
= wy*S, dV,' = w;*S, and using Eqgs. (5-3.3) and (5-3.4) , we
then have

8,y ~ GE[_.____._.__Z velw wS + _-— velw wS]
Clry =r(r,*v)lc ry=r(r,*v)c
(5-3.18)
)\vR[ _ 1 ]
r(r,=x, v/c) r(r, -x]vic)

Adding Egs. (5-3.16) and (5-3.18), we obtain for the y
component of the field
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g =G X RWe _% R
y R7 T TN F T~
Rtr, r(ri-x;vicy r(r,—x, vic) (5-3.19)
=G_)\_[x1/(rl -x]{vic) -R¥lic _ x5 (r, =, v/c) —sz/c]
R r(r, —xll v/c) ry(r, —x2/ v/c)
or
/12 _p2 12 _p2
gv=Gz\. x,r, —x, vic-R*lc N Tx v/ic-R v/c]' (5-3.20)
’ R r(r, -x/vIc) ry(r, -x, vlc)
But x,'>v/c + R*/c = r2vic and x,’>vic + R*Ic = r2vic.
Therefore
/ /
g - GA(XI rllv/c X rlzv/c)‘ (5-3.21)
R ro-xvlc  r,-xvic

Now, by Eq. (5-3.1), x,’ — r,v/c = L,, and by Eq. (5-3.2),
x," — ryv/lc = L,. Substituting L, and L, into Eq. (5-3.21) and
transforming the denominators to the present position quantities by
means of Eqs. (5-3.7)-(5-3.12), just as we did in Eq. (5-3.6), we
finally obtain
g L, _ L, (53.22)
R*U(LYR*+1-v¥c?)'?  (LJ/IR*+1-v?c?)'”?

y

The cogravitational field. Although we could find the
cogravitational field of the moving linear mass from Eq. (3-1.2)
or Eq. (2-2.2), it is much simpler to find it from the gravitational
field of the mass. According to Eq. (4-2.4), the cogravitational
field K of any uniformly moving mass distribution is always

K = (vXxg)/c?, 4-2.49)

where g is the gravitational field of the moving mass distribution.
Since v = — vi, the only non-vanishing component of the cross
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product in Eq. (4-2.4) is the z component involving g, only.
Substituting v and Eq. (5-3.22) into Eq. (4-2.4) and denoting Av
as the mass current /, we obtain

1 L, L,

K=kG - .(5-3.23)
CRPU(LZ/R*+1-v¥c)2  (LE/R?*+1-v¥c?)\?

5-4. The Gravitational Field of a Point Mass in Arbitrary
Motion

As before, we consider a constant mass distribution of total
mass m and density p confined to a small rectangular prism (Fig.
5.6) whose center is located at the point x’, y' in the xy plane of
a rectangular system of coordinates, and whose sides /, a, and b
are parallel to the x, y, and z axis, respectively. The point of
observation is at the origin. The distance of the center of the
prism from the point of observation (the origin) is r, > a, b, [,

Ay m |‘_ ] _.|

§ 0 ﬁ

&"/‘izy' /7
/

ro>>ab,l

0

| A

Fig. 5.6 A mass of uniform density p is confined to a small
rectangular prism. The mass constitutes a point mass when viewed
from a distance large compared to its linear dimensions.



78 CHAPTER 5 MOVING POINT AND LINE MASSES

so that the prism constitutes a point mass.> We shall assume that
at the retarded time ¢’ the center of the prism moves with velocity
v in the negative x direction and has an acceleration v.

For a given present time ¢, the retarded times associated with
different points of the prism are different, corresponding to
different retarded distances of these points from the point of
observation. Therefore the retarded velocities of the different
points of the prism are also different. If the prism is sufficiently
far from the point of observation, which we assume to be the
case, the difference between the retarded times corresponding to
different points of the prism is very small, and therefore the
retarded acceleration of the prism may be assumed to have the
same value v for all points of the prism, even if in reality the
acceleration is variable. Therefore the velocities of the different
points of the prism can be calculated from velocity formulas for
motion with constant acceleration.

As we shall presently see, in addition to the velocity of the
center of the prism, we only need the velocities of the right, left,
top, and bottom surfaces of the prism. Let the distances of these
surfaces from the point of observation be r,, r,, r;, and r,, as
shown in Fig. 5.7. The time interval between the retarded time
for the center of the prism and for its left or right surface is then
approximately (r,—r,)/2c (see Section 4.1), and the time interval
between the retarded time for the center of the prism and for its
top or bottom surface is approximately (r;—r,)/2c. Therefore the
(approximate) retarded velocities of the right, left, top, and
bottom surfaces of the prism are, respectively, v, = v — ¥(r, —
r)/2¢c, v, = v + ¥(ry — r)l2c, vy = v — v(r; — r)/2c, and v,
=v + v(r; — r)/2c.

As was explained in Section 4-1, the apparent size and shape
of the prism in its retarded position is not the same as that of the
prism when it is at rest. In particular, if the prism moves in the
— x direction, the prism appears to be longer, it appears to be
slanted, and the effective volume of the prism and of its surface
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% // " /

Fig. 5.7 When the mass shown in Fig. 5.6 is in a state of
accelerated motion and is at a retarded position, its apparent
length, shape, and thickness of its surface layers are no longer the
same as for the stationary mass. The distances from the center of
the mass and from the four surface layers to the point of
observation are represented by the vectors r, r,, r, r, and r, All
five r’s meet at the point of observation (origin of coordinates). The
acceleration vector is in the xy plane.

layers changes (Fig. 5.7). As a result, the following geometrical
relations hold for the moving prism at its retarded position:
The apparent length of the prism is, by Eq. (4-1.7),

pro- L (5-4.1)
1-r-virc
The apparent volume of the prism is, by Eq. (4-1.8),
@i = L (5-4.2)
1-r-v/rc
By the same equations, the apparent volume of the right surface
layer (distance r, from the origin) is

(abw); = ab» . (5-4.3)
lL-r v/rc

the apparent volume of the left surface layer (distance r, from the
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origin) is

@wy; = ¥ . (5-4.4)
L-r,-v,/rc
the apparent volume of the top surface layer (distance r; from the
origin) is
wy; = v . (5-4.5)
I-r,v,/rc
and the apparent volume of the bottom surface layer (distance r,
from the origin) is
wwy; = Y (5-4.6)
I-r,~v,/rc
We shall find the gravitational field of our accelerating point
mass by using Eq. (3-1.1)

_ [V/p] G I[OJ] ;
=G Pgv+ Z (2|22 lav B
g GJ . +C2]r . 3-1.1)

Consider first the contribution of the gradient of the mass density,
V'p, to the field. Since p is constant within the mass, V'p = 0
within it, so that the only contribution to V'p comes from the
surface layer of the mass, where p changes from O (outside the
mass) to p (inside the mass). Let the actual thickness of the
surface layer of the mass be w. Taking into account that V'p
represents the rate of change of p in the positive direction of the
greatest rate of change, we then have V'p = (o/w)n,, where n,,
is a unit vector normal to the surface layer and pointing into the
mass.’ Since the center of the mass is in the xy plane (z' = 0), the
integrals over the two surface layers parallel to the xy plane cancel
each other, because V'p for one of the layers is opposite to that
for the other layer, while r is the same for both layers. Thus, as
far as V’p is concerned, only the four integrals over the layers
parallel to the xz and yz planes remain. Referring to Figs. 5.6 and
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5.7, they are the right, left, top, and bottom surface layers, and
V'p associated with these surface layers is, respectively —(p/W)i,
(p/wii, —(p/w)j, and (p/w)j (these are the same relations that we
used for finding the gravitational field of a uniformly moving
point mass in Section 5.1).

Assuming that r,, r,, r;, and r, are much larger than [*, we
can replace the integrals over the four layers by the products of
the integrands and the retarded volumes of the layers, which gives

g= G[ p/W (abw)l*(_i) + 0 p/W (ab )2 +T(lbW)3 W(_J)
r, 3 (5-4.7)
DY bw); w, ] - J I v,
C

4
Let us designate the part of Eq. (5-4.7) which explicitly

depends on p as g,. Using Egs. (5-4.3)-(5-4.6) and cancelling w,
we can write then

o =Gp[( 1 ) 1
g ril-r,-v,/rc}y r{l-r -v/rc}
1 1 .
+ - bljl.
(r4{1 -r v re} r{l-ryev,irc} ) J]

)abi (5-4.8)

The differences of the fractions in this equation are simply the
increments of the function 1/(r - r - v/c) associated with the
displacement of the tail of r over a small distance represented by
the vector 1* [in the i component of Eq. (5-4.8)] and by the vector
a* [in the j component of Eq. (5-4.8)]. Therefore, just as we did
in the case of Eq. (5-1.7), we can write Eq. (5-4.8) as

ool el gl 040

Using Egs. (4-1.16), (4-1.14), and (4-1.15), we now have
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-rvic +(r-V)r/c? . la .
=-G b[(r v -1) i
& g r3(1-r - v/rc)? l1-r-v/rc

- .V 2
+(r rvic +(r - V)ric? i) y'vic alj (5-4.10)
r3(1 -r - v/rc)? r(1-r-v/rc)
+(r—rv/c+(r-w")r/c2 ) r-x'vic }
r3(1 -r - v/rc)? r(l-r-v/rc)
Simplifying and taking into account thatr - i = — x', r - j =
—y,vei=—=v,vej=0,andr - v = x'v, we obtain

pabl

3[1___/_7[[—)# +rvic-(r-v)x'/c?i
r’[l-r-virc

gp:—

/
f[=x! +rvic - (r - 9)x'1c 2V
r

o (5-4.11)
+[_y/ ‘(l’“")y//cz] r-x V/Cj}

pabl
r’l-r-v/rcp
+(vyIcHj -y j-(@r - v)y'lc?j].

[=x"i-rvic - (r-V)x'/c?i

Since we are not interested in the acceleration-independent
field g, (this field was found in Section 5-1), we shall drop in Eq.
(5-4.11) the terms that do not contain the acceleration v, and shall
designate the rest of the equations as g,,, with the subscript "4"
standing for "acceleration." Noting thatr = — x'i — y'j, and that
pabl = m, we then obtain

g, = - G__mrr (5-4.12)
ric2(1-r-v/rc)

Consider now the contribution of dJ/dt to the field. By Eq. (4-
1.4), we have
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aJ _d(pv) _

o
lowever, because the retarded velocity is different in different
regions (points) of the mass, we must evaluate Eq. (5-4.13)
scparately for each region under consideration. There are five
such regions: the interior of the mass, the right surface, the left
surface, the top surface, and the bottom surface.

In the interior of the mass, V’'p = 0. Therefore for the
interior we have

~v - Vp)v +p% c (v Vip)vepy. (5-4.13)

J (5-4.14)

At the right surface, V'p=(dp/dx")i=—(p/w)i, and the velocity
is v,. By Eq. (5-4.13), for the right surface we therefore have

aJ, _ v/ o dp v =(o/ ‘
T ~(v - Vip)v, +pv, = —(leg—/)vl oV, =(p/W)v, v, +pv,.
X (5-4.15)
or 5
_a_t' = (p/W) (v, v, + wv), (5-4.16)
and since we can make w as small as we please,
0J
.a_tl = (p/w)v,v,. (5-4.17)

At the left surface, V'p = dp/dx'i = p/wi, and the velocity is
v,.Therefore, by the same reasoning as in the case of Eq. (5-

4.16),
33,
- = PIwv,yv,. (5-4.18)

At the top surface, V'p = dp/dy'j = — p/wj, and the velocity is
v;. Therefore,

aJ
th = (0 /W) vyv;. (5-4.19)
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At the bottom surface, V'p = dp/dy'j=p/wj, and the velocity is
v,. Therefore

aJ

4

- (P/Wyv,v,. (5-4.20)

Let us now designate the integral in Eq. (5-4.7) as g,;. Since,
by supposition, all 7’s for the mass (prism) are much larger than
the linear dimensions of the mass, we can replace the integration
by the product of the respective integrands and the volumes of the
five regions that contribute to 8J/d¢. Using Egs. (5-4.14), (5-
4.17)-(5-4.20) and (5-4.2)-(5-4.6), we then have

¢ g’:"i( abl ) (5-4.21)
G r\l-r-vlrc
p abw p abw
ViV, 1 el T vzrvz—/
rw -r, v, /rcl rw lL-r,-v,/rc
b
+_ﬂ_(3y3 low )—L(v4yv4___—1 o )
r,w l-ry-v,/r,c] rw -r,*v,/rc
or
c’g, _ mv +pab( Vi, ~ v,V, )
G r(1-r-virc) r,-r,evi/c r,-r,ev,lc
+p bl( NI ) (5-4.22)
ry-ryev,/c r,-r,ev,/c

Since the linear dimensions of the mass are very small
compared to the r’s, the difference of the fractions in the last two
terms of Eq. (5-4.22) can be regarded as the total differential
(increment) df = (3f/0x"ydx’ + (8f/dy")dy’ of the functions

e (5-4.23)
r-r-vlc
and
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W (5-4.24)
r-rev/c

corresponding to the displacements of the tail of r by I* and by
u*, respectively (see Fig. 5.7).

Using Eq. (4-1.16), noting that r = — x'i — y’j, noting that
v, = 0 (because v is parallel to the x axis), and remembering that
v and v are functions of the retarded time ¢’ = ¢t — r/c, so that
dv/ax' = (0v/0t')ot'/ax’ = — (Av/dt)x'/lrc = — vx'/rc with
similar expressions for dv/dy’, 0v/dx’, and dv/dy’, we have for the
needed partial derivatives of the two functions

9 | 1A% )_ -x" = /c-(r-¥)x'/c?
Ox/\r[l -(r - v)/rc] * r3[1 -(r- V)/rC]2 (5-4.25)
vy +vyx’

ric[l-(r-v)/rc]’

i(_vvv___) - - vvx! _(5-4.26)
ax/\r[1-(r - v)/rc] ric[l-(r-v)/rc]

and

3 | vV ) _ vyy' (5-4.27)
ay’ \r[1 =(r - v)/rc] rc(l -(r - v)/rc]

In evaluating Eq. (5-4.22) with the help of Egs. (5-4.25)-(5-4.27),
we shall omit from Eq. (5-4.25) the terms not containing v, since
they only contribute to the acceleration-independent field g,
which we already found in Section 5-1. Combining Eqgs. (5-4.22),
(5-4.25)-(5-4.27), (4-1.14), and (4-1.15), we then have, denoting
the acceleration-dependent field as g;,,
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ngJA - mv
G r(l-r-v/rc)
-vy(r-v)x’ Wy+vv)x’ !
+pab[ — "= ]
r’cX(1-re-virc)* r’c(1-r-virc)) (1-r-v/rc)
—pbl[ Vyvx/ . a'y/v/c (5"428)
r’c(1-r-v/rc) r(l-r-v/rc)
vy’ _a(r-r-vlc)

+

1)

ric(l-r-vircy r(l-r-v/rc)

or
2 N
C8u _ mv
G r(1-r-v/rc)
- « x/
. m V(- ¥x yyx! (5429)
rc(l -r - v/irc)*Lrc(1-r - v/rc)
; I,/ ; Iy o
_v‘.’xl~vyvx y v—f/v A (r-v)
x WY t——
rc rc
Sincer « v=1x'v= —x'v,and since — v, x' — v,y =

v - r (see Figs. 5.6 and 5.7), Eq. (5-4.29) reduces to

2 N
C8yu_ mv (5-4.30)
G r(l1-r-viro)

m v(r-v)(r-v)
r’c(l-r-v/rc)*trc(l-r - v/rc)

+ +(r - V)v+(r - v)v|,

which after elementary simplifications becomes

G M LG mE-VV (5431
B4 c*r(1 -r - vire)? crr(1-revire)’

Finally, in accordance with Eq. (5-4.7), adding Eq. (5-4.31) to
Eq. (5-4.12), we obtain for g,
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g =- Gm(r-v)r _ Gm(r-V)v
(A -revirey (1 -revirc) (5-4.32)
Gmv ’

+ -_—
c’r(1 -r - v/rc)?

which can be written in a simpler form as

g, = ~ Gm {rx[(r - Z)xv
ricX(1-r - v/rc) c

} (5-4.33)

The total gravitational field is the sum of the acceleration-
independent field g, given by Eq. (5-1.11) and of g, given by Eq.
(5-4.33). Adding Egs. (5-1.11) and (5-4.33), we obtain for the
lotal gravitational field of a point mass in arbitrary motion

g=—GL{(r-ﬁx1 —V_2)+rx[(r-ﬁ)x l
r}(1-r-virc)’ c c? cl ¢?

(5-4.34)
Note thatr, r, v, v, and Vv in this equation are retarded.

§-5. The Cogravitational Field of a Point Mass in Arbitrary
Motion

Although by using Eq. (3-1.2) or Eq. (2-2.2) we can find the
cogravitational field produced by a point mass in arbitrary motion
in the same manner as we found the gravitational field in Section
5-4 (see Example 5-5.1), it is much easier to find it from the
known gravitational field by using Eq. (4-2.10).

Applying Eq. (4-2.10) to Eq. (5-4.32), we obtain for the
acceleration part of the cogravitational field after elementary
simplifications

K, -G m CXVNEY) L exy| (5-5.1)
A rrc3(1-r - v/rc)*Lrc(1 -r - virc)
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Applying Eq. (4-2.10) to Eq. (5-4.34), we obtain for the total
cogravitational field after elementary simplifications

K=-G m 1—v2/c2+r-i'/c2(r><v)+rxv

ric?(1 -r-virc)*l r(1-r-v/rc)

. (5-5.2)

v

Example 5-5.1 Find the cogravitational field of an accelerating
point mass shown in Figs. 5.6 and 5.7 by using Eq. (3-1.2).

SinceJ =pv, V' XJ=V' Xpv=VpXv+pV Xv. But
v is not a point function (there is no "velocity field"), and therefore
V'Xv=0and V' X J =V'p X v. As we already know from
Sections 5-1 and 5-4, V'p for our mass is only different from zero
at the surface layers of the mass. Therefore the only contribution to
the integral in Eq. (3-1.2) comes from the right, left, top, and
bottom surface layers, where V'p is —(p/w)i, (po/w)i, —(p/w)j, and
(p/w)j, respectively (by symmetry, the contributions of the front and
back surface layers cancel). Since [V' X J] in the integral of Eq.
(3-1.2) is retarded, the velocity in the expression [V'p X v] is the
retarded velocity of each surface under consideration. By
supposition, the distances from the mass to the point of observation
is much larger than /*. Therefore the integral in Eq. (3-1.2) can be
replaced by the product of the integrand and the volume of
integration (the respective volumes of the surface layers).
Substituting into [V’ X J] = [V'p X v] = — [v X V’'p] the above
expressions for V'p, and using Eqs. (3-1.2) and (5-4.3)-(5-4.6), we
then have

K=-G.P abw (v, X1i) _ abw (v, Xi)
we2lr{l-r -v,/rc} r{l-r,-v,/rc}

(5-5.3)
blw (v, X j) blw (v, % j)

r{l-r, v,irc} T{l-t,-v,rc))

or
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o v v, .
K=-G*L - Xiab
ct\[r,-r -v,/c] [r,-r,-V,lc] (5-5.4)
v, v, )
+( - ) ijl].
[ry-ryevy/c] [r,-r,-v,/c]

The differences of the fractions in Eq. (5-5.4), just as before in
lig. (5-4.22), are the increments of the functions given by Egs. (5-
4.23) and (5-4.24), except that v, and v, in the numerators are now
absent. By Eq. (5-4.25), taking into account that v, = 0, the
corresponding partial derivatives are

3 ( v ) x'-rv/jc-(@x-v)x'lc?
=v

ax’\r-r-vic r}(1-r-virc)? (5-5.5)
vx'

ric(1-r-virc)’

and

al v )zv-y’—(r-\")y’/c2
dy’\r-r-vic) r3(1 -r-v/rc)? (5-5.6)
- vy'
ric(1-r-virc)

In evaluating Eq. (5-5.4) with the help of Egs. (5-5.5) and (5-
5.6), we shall omit from Egs. (5-5.5) and (5-5.6) the terms not
containing v, since they only contribute to K, (the cogravitational
field of a uniformly moving mass), which we do not need.
Combining Egs. (5-5.4), (5-5.5), (5-5.6), (4-1.14), and (4-1-15), we
then have for the acceleration-dependent field

K =_G£[( -vr-¥)x’ vx/! )xi. abl
A c?\r3c?(1 -revirc) ri(l-r-v/rc) 1-r-virc
+( -v(r-v)x' vx/ )x.. ably'vic
r’c}(1-revirc) ri*(l-r-v/rc) r(1-r-v/rc)
+( -v(r-v)y' _ vy' )x' _ably'(1 —r-v/rc)]‘
r’c¥(1-re-v/irc) r(1-r-virc) r(1-rev/rc)

(5-5.7)
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Expanding Eq. (5-5.7), taking into account that v X i = 0, and
simplifying, we obtain

< /
K =G m [‘.,xix,+_____v(r-v)y Xj+vXj ’].
T T e onc] (A e Bt A
(5-5.8)
But ix’ + jy' = — r,and v X jy' = — v X r (because v is

parallel to the x axis). Therefore Eq. (5-5.8) can be written as

m
r2c3(1 -r - v/rc)?

A

X+ M] (5-5.9)
rc(l1-r-v/rc)

The total cogravitational field of an accelerating point mass is

the sum of Eq. (5-2.1), representing the cogravitational field of a

uniformly moving point mass, and Eq. (5-5.9), representing the

effect of the acceleration of the mass on the field. Adding Egs. (5-

2.1) and (5-5.9), we obtain [compare with Eq. (5-5.2)]
m [1-vc2+(r-¥)/c?

K=G (rxv)+

rxv
rc2(1-r-virc)’l r(l-r-v/rc) '

(5-5.10)

Observe that Eqgs. (5-5.9) and (5-5.10) express the cogravitational

field in terms of the retarded position of the mass. A

5-6. Gravitational and Cogravitational Potentials of a Moving
Point Mass

Gravitational and cogravitational potentials produced by a
moving point mass m can be easily obtained from Eqs. (3-3.5) and
(3-3.2).

A "point mass"” is a mass distribution viewed from a distance
large compared to the linear dimensions of the mass distribution.
Therefore, for a point mass, the distance r in the integrals of Egs.
(3-3.5) and (3-3.2) may be considered the same for all volume
elements of the mass, and therefore each integral may be replaced
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by the product of the integrand and the retarded volume of the
nss AV’

By Eqgs. (3-3.5) and (4-1.8) we then have for the gravitational
scilar potential of a moving point mass

pAV’

=-GPaAv, = -G__P2Y 5-6.1
¢ r r(1-r-v/rc) ( )

or, replacing pAV' by m,
¢=-G mn (5-6.2)

r(l-r-virc)’

From Egs. (3-3.2) and (4-1.8) we similarly have for the
cogravitational vector potential of a moving point mass

/
A=-6Iav - g J4V

: T T (5-6.3)
rc rc(l-r-v/rc)

and since J = pv,

A=-G mv : (5-6.4)
rcXl1-r-vlrc)

Equations (5-6.2) and (5-6.4) are similar to the Liénard-
Wiechert potentials of electromagnetic theory.®’ They express the
potentials of a moving point mass in terms of the retarded position
of the mass. If the mass moves with constant velocity, these
potentials can be converted to the present position of the mass.
Transforming the denominators of Eqs. (5-6.2) and (5-6.4) with
the help of Eq. (4-1.26), we obtain for a point mass moving with
constant velocity

= -G n (5-6.5)
v r[1 -(v*/c?)sin*6]"

and

A=-G m__ , (5-6.6)
r,c?[1-(v¥c?) sin*4]"?
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where r, is the present position radius vector, and @ is the angle
between v and r,,.

v
Example 5-6.1 Equations (5-6.5) and (5-6.6) represent the

"instantaneous" potential of a uniformly moving point mass. Since
the mass is moving, the potentials change as time goes by. How
should they be written to show explicitly their time dependence?
Assuming that the mass moves in the negative x direction, the
x coordinate of the mass diminishes with time according to x," —
vt, where x,’ is the value of the x coordinate at # = 0. Expressing
the denominators in Eqs. (5-6.5) and (5-6.6) in terms of Cartesian
coordinates by means of Eq. (4-1.26) and (4-1.25), and replacing
x," by x,' — vt, we obtain the time-dependent expressions for the
potentials
¢=-G m (5-6.7)
[(xg - vi)2 +(1 -v¥/c?y'?2

and

A=-G my . (56.8)
CZ[(X(; _ Vt)2+(1 _v2/02)y/2]1/2

A

5-7. How Accurate are the Equations for the Fields and
Potentials Obtained in this Chapter?

In obtaining the expressions for g and K of moving point
masses we used several approximations. Our first approximation
was the replacement of the integrals in Eqs. (3-1.1) and (3-1.2) by
the products of the integrands and the volumes of integration. This
can only be done if the relation r > [* is satisfied. Therefore, by
Eq. (4-1.7), our g and K expressions for moving point masses®
are subject to the restriction

l l
> - , (5-7.1)
" l1-r-v/rc 1-(v/c)cos¢
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where [ is the length of the "point mass,” v is the velocity of the
mnass, r is the retarded position vector joining the mass with the
point of observation, and ¢ is the angle between v and r. Since
[5q. (5-7.1) must hold for all values of ¢, including ¢ = 0, the
velocity of the mass is subject to the restriction

v < c(1-1/7). (5-7.2)

Consider now the approximations that we used for taking into
account the acceleration of the mass. The retarded time intervals
between the center and the right-left and top-bottom surfaces of
the mass are (r, — r,)/2c = (I cos¢)/[2c(1 — r-v/rc)] and (r; —
r)/2c = (a sing)/[2c(1 — r-v/rc)], respectively (see Figs. 5.7,
4.2, and 5.3).° For Eq. (5-7.1) to hold, the increment in the
velocity of the mass during these time intervals must be less than
¢ — v. Hence the restrictions on the acceleration of the mass in
the direction of the x axis is

v(r,-r)l2c < c-v, (5-7.3)

of 2(c -v)(c-vcos¢) .

v, <
lcoso

(5-7.4)

A similar restriction applies to the acceleration in any other
direction. Since the largest possible value for cos ¢ and sin ¢ is
I, we obtain from Eq. (5-7.4) for the general case of the
acceleration v

2(c-v)?

y < , (5-7.5)

where L is the length of the "point mass” in the direction of the
acceleration.

References and Remarks for Chapter 5

1. A "point mass” is by definition any mass distribution viewed
from a distance large compared with the linear dimensions of that
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distribution, similar to the term "light point," which is frequently
used in reference to stars. In neither case does the word "point"
describe the structure or the constitution of the object; instead, it
reflects the attitude of the observer toward this object.

2. One may think that by choosing the mass in the shape of a
rectangular prism we limit the generality of our derivations. This is
not so. Any mass distribution can be regarded as being composed
of masses confined to small rectangular prisms: this is exactly what
we do when we perform integration over a volume element
(rectangular prism!) dV' = dx' dy' dz'.

3. The increment dU of any scalar function U (x, y, z,) associated
with the displacement dl = xi + yj + zk is dU = VU-dl [see, for
example, Oleg D. Jefimenko, Electricity and Magnetism, 2nd ed.,
(Electret Scientific, Star City, 1989) pp. 36-38]. Since in the case
under consideration the displacements 1* and a* are very small
(they represent the length and width of a "point mass"), these
displacements can be treated as differentials.

4. Oliver Heaviside, "A Gravitational and Electromagnetic
Analogy," The Electrician, 31, 281-282 and 359 (1893). This
article is reproduced in modern notation in Oleg D. Jefimenko,
Causality, Electromagnetic Induction and Gravitation, 2nd ed.,
(Electret Scientific, Star City, 2000), pp. 189-202.

5. Equation (3-1.1) contains a retarded gradient of p and retarded
time derivative of J, rather than a gradient of retarded p and time
derivative of retarded J. This means that the gradient and the time
derivative must be determined for the unretarded (stationary) p and
J but must be used at the retarded position of the moving mass.
6. A. Liénard, "Champ électrique et magnetique produit par une
mass électrique concentré en un point et animé d’un mouvement
quelconque," L’Eclairage élect. 16, 5-14, 53-59, 106-112 (1898).
7. E. Wiechert, "Elektrodynamische Elementargesetze," Archives
Néerlanaises (2) 5, 549-573 (1900).

8. These expressions also include Eq. (4-2.10).

9. To simplify the calculations, we assume here that « in Fig. 5.3
is /2.



GRAVITATIONAL AND
COGRAVITATIONAL

FIELDS AND POTENTIALS OF
ARBITRARY MASS
DISTRIBUTIONS MOVING WITH
CONSTANT VELOCITY

Gravitational and cogravitational fields produced by a
time-independent stationary mass and mass-current distribution can
be calculated with relative ease by a variety of methods. But
calculating fields of time-dependent mass and mass-current
distributions, and the fields of moving mass distributions in
particular, is in general a formidable task. In this chapter we shall
obtain formulas that make it possible to determine the fields and
potentials of any uniformly moving mass distribution directly and
simply in terms of present time integrals that are not much
different from the integrals for fields of stationary masses.

6-1. Converting Retarded Field Integrals for Uniformly
Moving Mass Distributions into Present-Time (Present-
Position) Integrals

As we already know from Chapters 3 and 2, gravitational and
cogravitational fields of moving mass distributions can be found

95
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from the retarded integrals

[V’p . iﬂ}

g = Gj rcz 0t gy (6-1.1)

and
K - - Ezj [V/rx‘” v’ (6-1.2)

or from ‘

g = - GH.[%] rlc %‘;]}rdv’ CGZH[%]W/ (6-1.3)

and
K - {”1 [ xrdv'. (614

We shall presently show that for time-independent mass
distributions moving with constant velocity, these integrals can be
converted to the "present" position of the mass distribution, so
that the integration is performed not over the retarded, or
effective, volume (see Section 4-1), but over the real volume that
the mass distribution occupies at the moment ¢ for which the fields
are being determined.

The conversion is based on certain properties and relations
involving retarded integrals and retarded quantities which are
reviewed below.

Although in the retarded integrals the retardation symbol [ ]
usually appears only in the numerators of the integrands, all
quantities in the integrals are retarded. In particular, the volume
element dV' stands for the retarded volume element dV,,,’ = [dV']
= d[x'ldly']ld[z'], r stands for the retarded distance [r], and r
stands for the retarded position vector [r]. Note that [Vp] means
"ordinary Vp used at retarded position," [dp/3f] means "derivative
of ordinary p with respect to ordinary time used at retarded
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position," and [0J/3¢f] means "derivative of ordinary J with respect
to ordinary time used at retarded position. "

In the derivations that follow, we shall assume that the point
of observation is at x = y = z = 0, and we shall only consider
a time-independent mass distribution moving with constant
velocity in the —x direction. For such a mass distribution, because
the mass density is not a function of time, [p] = p, and, because
v is constant, [v] = v. Also, as explained in Section 4-1 [see Egs.
(4-1.8), (4-1.3), (4-1.4), (4-1.25), and (4-1.26)], the following
relations hold for such a mass distribution

@y-_v (6-1.5)
1-[r-v]/rc
%z_v.v/pzv%, (6-1.6)
X
%’t] = - (v.Vp)v = —vzgi, (6-1.7)
X

—Ire 2 12 L 12 (12 45 12Yy, 2/ A 20102
[l -[r-vlc={xq +y*+2"* - (y'* +2'*)v¥c?} (6-1.8)

={xg + "2 +2 (1 -V} = {xg" + ("2 +2 2,
[we are using the standard abbreviation y = 1/(1 — v*/c%"?], and
[r] - Ir « vl/c =r {1 -(v¥/c)sin?0}'2, (6-1.9)

where sin®d = (y2 + z2'9)/(x,”> + y'* + z'») and 6 is the angle
between the velocity vector v and the vector r, joining dV’ with
the point of observation. For clarity, all retarded quantities and
expressions in the above equations are placed between square
brackets; the quantities without brackets, and the quantities
between braces in Eq. (6-1.8) and (6-1.9) in particular, are
present-time quantities. Observe that Eq. (6-1.8) is obtained from
Eq. (4-1.25) by replacing y'? by y'* + z'%; the replacement is
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needed because we no longer deal with a point mass and therefore
cannot assume that the mass is confined to the xy plane.

We can now proceed with the conversion of Eqs. (6-1.1)-(6-
1.4). Once again, we shall only consider a time-independent mass
distribution moving with constant velocity v = — vi.

Converting Eq. (6-1.1). Using Eqgs. (6-1.5) and (6-1.7) and
remembering that p and v are not affected by retardation and that
V'p in Eq. (6-1.1) is the ordinary gradient, we can write Eq. (6-
1.1) as
Vip-(v-Vp)vlic?

g - GJ av'
[r=r-vic (6-1.10)
_ GJ Vip -i(v?/c?)(dplax’) av!
[r-r-v/c] ’

where only the denominator is retarded. Converting the retarded
denominator in Eq. (6-1.10) with the help of Eq. (6-1.8), we
obtain the desired equation (we are omitting the subscript "0" at
x' for simplicity)
g - GJ’ V'p —i(vz/cz)(aplax’)dv,, (6-1.11)
{XI2+(_Y/2 +Z/2)/,YZ}]/2

where the integral is a "present position" integral, and where all
quantities are present-time quantities.

Equation (6-1.11) can be written in an alternative form. Using
Eq. (6-1.9) for converting the denominator of the integrand in Eq.
(6-1.10), we obtain (omitting the subscript "0" at r for simplicity)

¢-G l V'p-i(v*c?)(@p/0x") jvi (6-1.12)
r{l-(v¥c?sin’g}"

An even simpler expression for g of a moving mass
distribution can be obtained from Eq. (6-1.1) if the density of the
mass under consideration is constant within the volume occupied
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by the mass. As was shown in Section 3-2, in this case the mass
gradient exists only at the surface of the mass, and the volume
integral reduces to a surface integral. Equation (6-1.12) becomes
then

g = - das’ ii(vzlcz)dy’dz’ ’ (6-1.13)
r{l -(v¥c*sin’6}'?

where the surface element vector dS' is directed from the mass
distribution into the surrounding space, and the sign in front of i
is the same as that of dp/dx’' .

v

Example 6-1.1. A thin ring of width w, thickness b, and radius a
> b has a uniformly distributed mass m and moves with velocity
v = — i along the x axis, which is also the symmetry axis of the
ring (Fig. 6.1). Find the gravitational field produced by the ring at
the origin of coordinates when the center of the ring is at a distance
x' from the origin.

=¥

Fig. 6.1 A thin ring of mass m moves with velocity v = — vi along
the x axis. Find the gravitational field at the origin.

We can solve this problem by using Eq. (6-1.13). By
symmetry, only the front (leading) and the back (trailing) surface
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of the ring contribute to the gravitational field at the origin. Let the
distances from the front and the back surface of the ring to the
origin be r, and r,. We then have r, = [(x' — w/2)> + @], r, =
[(x" + wi2)* + @', sind, = a/[(x' — w/2)* + a’]'?, sind, =
al[(x’ + w/2)* + a*]'?. Equation (6-1.13) becomes therefore

g=- GP(J' -{1-v¥c¥}dy'dz'i +j’ {1-v?c*}dy'dz'i )
r {1 -(v?*/c?)sin?0 }'? ) r {1-(v*/c?)sin’6,}'"?
(6-1.14)
where the integration is over the two flat surfaces of the ring.
Substituting the above values for r;, r,, sind,, and sind, and taking
into account that the area of each flat surface of the ring is 2mab,
we then have

. -1
=-iGp(1-v?¥c? 27rab(
g ) {(x/ —W/2)2+02—V202/C2}”2
+ 1 ) (6-1.15)
(" +wi2)’ +a* -via?/c} I
or
g - iGm(l -v2/c?) ( 1
w {(x" -wi2)* +(1 -v¥c?)a?}'"?
1 (6-1.16)
{7 +wi2 +(1 -v¥cP)a}? )

Example 6-1.2. A very long, thin, straight ribbon of width a and
thickness b has a mass of uniform density p and moves along its
length with velocity v = — vi (Fig. 6.2). The plane of the ribbon
is in the xz plane of rectangular coordinates and the center line of
the ribbon is on the x axis. Find the gravitational and
cogravitational fields produced by the ribbon at the point P(0, O,
R).

We can solve this problem by using Egs. (6-1.13) and (4-2.4).
According to Eq. (6-1.13), the only contribution to the gravitational
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Fig. 6.2 A very long thin ribbon of mass density p moves with
uniform velocity v .= — vi along the x axis of rectangular
coordinates. Find the gravitational and cogravitational fields
produced by the ribbon at the point P.

field of the ribbon at P comes from the edges of the ribbon located
at z' = a/2 and 7’ = — a/2 (by symmetry, the flat surfaces make
no contribution). Let us assume that the ends of the ribbon are at x’
= — L, and x' = L,. By Egs. (6-1.13), (6-1-9), and (6-1.8), we
then have

g- - Gp“% kbdx’ _I% kbdx’
L {x P+ (R=-al2) 1y )P (R +al2)M iy
= - kab{ln(x’ + {x 2+ (R -al2)y3"7) (6-1.17)
- In(x/ +{x"?+(R +a/2)2/'yz}”2)} : ,
or |

L, +{L}>+(R-al2}y*}'"?
-L,+{L2+(R-al2)}y* }""
L, +{L} +(R +al2)Iy*}'"*
-L,+{L*+R +al2)’Iy }”2] '

g =kGpb [ln
(6-1.18)

- In

Since R —a < L,L,and R + a < L,,L,, we can expand the
expressions in the braces and keep only the leading terms, obtaining
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L,+L,+(R-al2)’/2L,y*
L +L +(R-al2y 2Ly’
2 2
‘I L,+L,+(R+al2)*/2L,y (6-1.19)
=L +L +(R+al2)’2LY*
2L+ (R-al2f2Ly | 2+ (R+al2P 2Ly
(R-al2) 2Ly R+al2 2Ly

g=-kGpb [ln

=-KkGpb |In

and, finally,

g = - kG2pbln g‘;*"gz (6-1.20)
a

To find the cogravitational field, we will use Eq. (4-2.4). By
Egs. (4-2.4) and (6-1.20), we have

K- Lyxg = - (cixk G20V, R+al2) (531
c? c? (R-al2)

or

jG2Jby (R+ald) __;2GI) (R+al) (52

K - - :
T ®-al) ac?  (R-al2)

where J is the mass-current density and I = pvab is the mass-
current formed by the ribbon.

Observe that Eq. (6-1.22) becomes the same as Eq. (5-3.23) if
R > aand, in Eq. (§-3.23), L, = o = — L,. Taking into account
the difference of the methods used for obtaining Eq. (6-1.22) and
Eq. (5-3.23), this result is quite remarkable.

A

Converting Eq. (6-1.3). As before, we assume that the mass
is time independent and moves with constant velocity v = — vi.
Using Eqs. (6-1.6) and (6-1.7), we can write Eq. (6-1.3) as
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g=- GJ_[p_alrdV’ - EJ “Lve Viplr +viv - Viplric yy:
r ¢ r (6-1.23)
Note that V'p in this equation represents the ordinary
gradient, that is, the gradient with respect to the ordinary source-
point coordinates. For the calculations that follow, we need to

convert V'p into the gradient with respect to the retarded
coordinates. According to Eq. (4-1.7),

dx’
dx'] = ——— | (6-1.24)
1-[r-vl/[ric
and therefore

0 1 o (6-1.25)
ax’  1-[r-viilric o]

Since v is along the x axis, the y' and z' are not affected by
retardation, so that 8/dy’ = 8/0[y’'] and 8/dz" = 4/3[z']. Hence

v = V1 [V100] 6-1.26
[v+Vp] T e ( )

Substituting this expression into Eq. (6-1.23), we obtain

g=—G[ ﬂrdv'-ﬁj (vric=nv - V0 4y (6-1.27)
rer 3 C Jrer r2(1 —v-r/rC)

where all the quantities under the integral signs are retarded, and
where we have replaced the retardation brackets in the integrands
by the subscript "ret" at the integral signs.

Let us designate the last term in Eq. (6-1.27) as g,. We have

g=-Zf SHeON Vg (6129)
clra r¥(1-v-rirc)

To convert this integral to the present position of the mass, we
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shall first eliminate V'p from it. To do so, we shall write Eq. (6-
1.28) in terms of its Cartesian components. For the x component

we have, remembering that v = — viand thatr = — (x'i + y'j
+ z2'K),
N\ . O
g2x=£;l vric-xHv V0 4y (6-1.29)
clra r¥1-verirc)

Let us now factor out v+ and, using vector identity (V-5), let us
write the integral as a difference of two integrals

. -/ V/
=GV_] vrle-x)Vp 4y 6-1.30
S ¢ Yt r’(1-v-r/rc) ( )

. —x! !
=GV_{] v _(vrie=xp dv'-] pv/_vrle-x7) av'}.
¢ Y r(1-ver/rc) e rX(1-ver/rc)

The first integral in the last expression can be converted into
a surface integral by means of Gauss’s theorem of vector analysis
[vector identity (V-19)], and since there is no mass outside the
mass distribution under consideration, the integral vanishes.
Differentiating the integrand in the second integral, collecting
terms, reintroducing v+ under the integral sign, and simplifying,
we obtain

av!

_ {vic?-2verirc+(ver/rc)}x'-(v¥c*-1)vric
8= -Gl p 3 5
ret r’(1-ver/rc)
(6-1.31)
Proceeding in the same manner with the y and z components
of Eq. (6-1.28), we obtain

(6-1.32)

2102 . . 2 /
g, = - Gl P {vic?-2verirc+(v-rirc)}}y dv
i ret r3(1 —v-r/rc)2
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and

8=~ G| p W22y wire (v - xiref}2l yyr (6133
ret r’(1-v - r/rc)?

Multiplying Eqgs. (6-1.31)-(6-1.33), respectively, by i, j, and
k and then adding them together, we again obtain a single vector
equation for g,:

g - 'GJ p {2ver/rc -(ver/rcy*-v¥c*r +(v¥c?- l)vr/cdv,
2 ret r3(1 -v-r/rc)? (6-1.34)

Let us now rewrite Eq. (6-1.27) using Eq. (6-1.34) for the
second integral of Eq. (6-1.27). We then have

- Y /
8=-G|[ Lrav (6-135)

_ GJ p {2ver/rc-(ver/rc)>-v¥c?r +(v¥c? - Dyvric v
ret r’(1-v -« r/rc)?

Adding the two integrals, we obtain

g=- GJ' p (1 =-v¥cd(r-vr/c) av' (6-1.36)
ret r3(1 -V r/rc)2

We shall now convert the retarded integral in Eq. (6-1.36) to
the present position of the mass. Replacing the retarded dV' in
Eq. (6-1.36) by the ordinary dV' with the help of Eq. (6-1.5) and
writing 1/9% for 1 — v*/c?, we have

g=-

E[ p([l‘] —v[r]/c) av’ (6-1.37)
v UPA-v-elirey

where, since p, v, v, and ¢ do not depend on time, only r and r
are retarded. But according to Eq. (4-1.19), the present-position
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vector r and the retarded position vector r are connected by the

relation
r, = [r] - v[r]/c, (6-1.38)

so that the numerator in the integrand of Eq. (6-1.37) is simply p
multiplied by the present-position vector r, Furthermore,
according to Eq. (6-1.9), the denominator is simply

ro {1 -(v¥c)sin?8}>? (6-1.39)

where r, is the distance from the present-position volume element
dV' to the point of observation, and @ is the angle between v and
r,. Hence Eq. (6-1.37) can be written as

G [ Py av’ (6-1.40)

g=-
Y {1 -(v¥cYsin?g}3?

where the integration is over the volume of the mass at its present
position [compare with Eq. (5-1.13)]."

v

Example 6-1.3. An irregularly shaped mass distribution of total
mass m moves with constant velocity v = vi. The longest linear
dimension of the distribution is a. Find the gravitational field of the
distribution at a distance r > a from the distribution.

We can solve the problem by using Eq. (6-1.40). Since r > a,
we can assume r and 6 to be the same for all points of the mass.
Therefore we can factor out r and the denominator of the integrand
in Eq. (6-1.40), obtaining [compare with Eq. (5-1.13)]

_ Gr, IpdV’
V2rs {1 - (v¥/c?) sin? 6}

Gmr,

oQ
n

(6-1.41)

vire {1-(v?¥c?Hsin?6}*” '
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Converting Eqs. (6-1.2) and (6-1.4). The retarded integrals for
the cogravitational fields in Eq. (6-1.2) and (6-1.4) can be
converted to the present position of the mass in the same manner
as the integrals in Eqs. (6-1.1) and (6-1.3) for the gravitational
field. However, there is no need to resort to this conversion
process, because by Eq. (4-2.4) the gravitational and
cogravitational fields of any uniformly moving mass distribution
are connected by the relation

K = (vxg)c?. (6-1.42)

From Egs. (6-1.12) and (6-1.42) we then have, noting that v X
i=0,

K-S __"xV0 __av. 6143
c* {1 -(v¥c?)sin?6}"?

From Eqgs. (6-1.13) and (6-1.42) we have

K - - Gﬁcj@ v xds' . (6-1.44)
{1 -(v¥c?)sin’4}"?

And from Egs. (6-1.40) and (6-1.42) we have

- 9 VXK av' . (6-1.45)
A R {1 - e)sin? 032

6-2. Converting Retarded Potential Integrals for Uniformly
Moving Mass Distributions into Present-Time (Present
Position) Integrals

We know from Chapter 3, Egs. (3-3.5) and (3-3.2), that the
gravitational potential ¢ and the cogravitational vector potential A
of time-variable mass and mass-current distributions in a vacuum
can be found from the retarded integrals
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0= - G[[_f].dv' (6-2.1)
and
A-- Elﬂdv’. (6-2.2)
ctl r

As we shall presently see, for time-independent mass distributions
moving with constant velocity, these integrals can be converted to
the present position of the mass, so that the integration is
performed not over the retarded volume, but over the volume that
the mass distribution occupies at the moment ¢ for which the
potentials are being determined.

Converting Eq. (6-2.1). Using Eq. (6-1.5) and remembering
that p and v are not affected by retardation, we can write Eq. (6-
2.1) as

¢=-GL_JL_4W, (6-2.3)
[r-r-v/c]
where only the denominator is retarded. Converting the retarded

denominator in Eq. (6-2.3) with the help of Eq. (6-1.8), we obtain
the desired equation (omitting the subscript "0" for simplicity)

Q= - GJ P av’, (6-2.4)
{xl2+(y/2+zl2)/,),2}l/2

where the integral is a "present position" integral, and where all
quantities are present-time quantities.

Equation (6-2.4) can be written in an alternative form. Using
Egs. (6-1.8) and (6-1.9) for converting the denominator of the
integrand in Eq. (6-2.4), we obtain

0=-G| b _av. (6-2.5)
r{l-(v*c?sin’f}'?
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Equations (6-2.4) and (6-2.5) can be further modified so that
the potential is expressed not in terms of the mass density p as
such, but in terms of Vp (that is, in terms of the "mass
inhomogeneities"). This can be done as follows.

Taking into account that the position vector r is directed

toward the point of observation, so thatr = — x'i — y'j — z'k
and V'- r = — 3, we write [see vector identity (V-8)]
v/ . rp - r . v/
{x/2+(y/2+zl2)/,yz}1/2 {x/2+(y/2 +Z/2)/,Yz}|/2
+pV/ . r
{x/2+(y/2+z/2)/,yz}1/2
= r . V/p - 3p
{x’2+(y 12 +Z/2)/,Yz}|/2 {x/2+(y/2+zl2)/72}1/2
_r-{}i+(@'j 'k} (6-2.6)
{x12+(yl2 +z/2)/,yZ}3/2 '
r-Vp _ 2p

N {x/2+(y/2+zl2)/72}1/2 {x/2+(y/2+zl2)/,yz}1/2'

Using Eq. (6-2.6) and Eq. (6-2.4), we can now express the
potential as

EIV’ . ro av’
2 {x’2+(y’2+z’2)/72}"2
Ej r-ve av’ .

2 {x’2+(y’2 +ZI2)/72}1/2

6-2.7)

The first integral in this equation can be transformed into a
surface integral over all space by means of Gauss’s theorem of
vector analysis [vector identity (V-19)], and, since there are no
masses at infinity, the integral vanishes. Hence the potential can
be written as
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R v/l
Q= - Ej r-vie av’. (6-2.8)
2 {x/2+(y/2 +z/2)/,yz}1/2

or, by using Egs. (6-1.8) and (6-1.9), as

o =- EJ Vo av’. (6-2.9)
20 r{1 -(v¥c?sin’0}'?

Equations (6-2.8) and (6-2.9) can be written in a much
simpler form, if p is constant within the mass distribution. In this
case V'p is different from zero only in the surface layer of the
mass distribution, where the mass changes from p within the
distribution to zero outside the distribution. We then have V'p =
(p/T)n,, where 7 is the thickness of the surface layer of the
distribution, and n, is a unit vector normal to the surface of the
distribution and directed into the distribution. The volume
element dV' in Egs. (6-2.8) and (6-2.9) becomes then 7dS’, where
dS' is a surface area element of the distribution, and therefore
Egs. (6-2.8) and (6-2.9) reduce to

/
0 = _G_&f r - dS , (6-2.10)
2 {x/2+(y/2 +Z/2)/,Yz}1/2

and

Gp r- dem,
0 = _Lf , (6-2.11)
2 ) r{1-(¥c?sin’0}'”

where dS,, is a surface element vector directed from the mass
distribution into the surrounding space.

Converting Eq. (6-2.2). The mass-current density produced
by a uniformly moving mass distribution is J = pv with v =
const. The vector potential A for such a mass distribution is, by
Egs. (6-2.2) and (6-2.1),
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A=Y
C2

Hence, using Eqgs. (6-2.5), (6-2.9), and (6-2.11), we have

(6-2.12)

)

A= - EX] p av'.  (62.13)
c?  r{1-(¥c?sin?4}'
A-- ﬂj r-vip av'.  (6:2.14)
2¢?) r{l -(v¥c?sin%0}'?
and
/
A = Gvw r-dSu (6-2.15)

2¢2 3 r{1-(v¥c¥Hsin?g}2’

and similar expressions corresponding to Eqs. (6-2.4), (6-2.8),
and (6-2.10):

A= - EX] p av'. (6-2.16)
C2 {x/2+(y/2 +Z/2)/,Yz}1/2
A=- _G_vj r-v av’, (6-2.17)
2C2 {x /2+(y/2 +Z/2)/,YZ}1/2
/
A -G S (62.18)
2¢? {x/2+(y/2 +Z/2)/,YZ}I/2
v
Example 6-2.1. An irregularly shaped mass distribution of total
mass m moves with constant velocity v = — vi. The longest linear

dimension of the mass distribution is a. Find the gravitational and
cogravitational potentials produced by the mass at a distance r >
a from the mass.
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We can solve the problem by using Eqs. (6-2.5) and (6-2.13).
Since r > a, we can assume r and 8 to be the same for all points
of the mass. Therefore we can factor out the denominator of the
integrands in Eq. (6-2.5) and (6-2.13), obtaining [compare with
Egs. (5-6.5) and (5-6.6)]

0=-G m , (6-2.19)
r{l-(v?/c?sin*g}'?

A--G vm , (6-2.20)
cir{l -(v¥c?sin?0}'?

A

6-3. Some Peculiarities of the Expressions for the Fields and
Potentials Derived in this Chapter

Three peculiarities of the equations for the gravitational and
cogravitational fields and potentials derived in this chapter should
be noted.

First, in the equations developed in the preceding chapters we
used both retarded and present-time (present position) coordinates,
and therefore we needed to use different notation for the two types
of coordinates. In particular, we designated the present position
vector as r, and the x component of this vector as x,’, while we
designated the retarded position vector as r and its x component
as x'. However, since all the resulting expressions for the fields
and potentials developed in this chapter are for the present
position of the mass distributions, there is no longer a need to use
the subscript "0" at r or x'. Therefore, in the field and potential
equations obtained in this chapter, r and x’ stand for the present-
time (present position) coordinates.

Second, in deriving our equations for the potentials of moving
mass distributions, we assumed that the field point (the point for
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which the potentials are determined) was at the origin. However,
m practical application of the potentials it is usually necessary to
dilferentiate the potentials with respect to the field point. In
particular, for finding gravitational and cogravitational fields from
potentials it is necessary to operate upon the gravitational and
cogravitational potentials with the operator V (which operates
npon the field point coordinates). Therefore, in general, the field
point must be allowed to vary.

We can easily convert our equations for the potentials (and
liclds) into equations with a variable field point. Let us designate
the coordinates of this point as x, y, and z. If we then replace the
v', y', and z' coordinates appearing explicitly or implicitly in our
cquations for potentials or fields by (x — x"), (y — ¥'), and (z —
:'), respectively, the new equations will apply to fields and
potentials determined for the field point x, y, z. However, if the
nass density p within the mass distribution under consideration is
constant, we can differentiate the potentials with respect to the
lield point without actually replacing the x', y’, z' coordinates at
all, because in this case, by vector identity (V-27), the only
difference between the differentiation of the integrands with
respect to x', y', z' and with respect to x, y, z is in the sign of the
resulting expression. Thus, in the case of constant p, we can
compute gravitational and cogravitational fields from the potentials
derived in this chapter without changing the coordinates, provided
that after placing V under the integral sign we replace it by —V’
(see Example 6-3.1).

Third, all the fields and potentials derived in this chapter are
"snapshots" representing only the instantaneous values of the
observed fields and potentials. In reality the fields and potentials
of a moving mass distribution vary as the mass distribution moves
relative to the point of observation. For practical applications it
may be necessary to determine time derivatives of the fields and
potentials. Therefore, in general, the fields and potentials must be
expressed as a function of time. This can be easily done by noting
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that when a mass distribution moves with constant speed parallel
to the x axis, the present position of dV’ (or dS') is x’ + vt (the
minus applies to motion against the x axis, the plus applies to the
motion in the direction of the x axis). Thus all we need to do for
introducing the time dependence into the fields and potentials
derived in this chapter is to replace x' appearing explicitly or
implicitly in our field and potential equations by x' + vr (see
Example 6-3.1, see also Examples 5-1.2 and 5-6.1).

v

Example 6-3.1 A very long hollow cylinder of wall thickness b and
radius a > b has a uniformly distributed mass of density p and
moves with velocity v = — vi along the x axis, which is also the
symmetry axis of the cylinder (Fig. 6.3). Find the gravitational field
produced by the cylinder at the origin of coordinates when the
leading end of the cylinder is at a distance x' from the origin.

AY

Fig. 6.3 A very long cylinder of mass density p moves with uniform
velocity v . = — Vi along the x axis. Find the gravitational field
produced by the cylinder at the origin.

We shall solve this problem by using Eqgs. (6-2.4) and (6-2.16).
Applying the relation g = — Vo — 0A/dr [this is Eq. (3-3.4)
derived in Section 3.3] to Egs. (6-2.4) and (6-2.16), we obtain



SECTION 6-3 PECULIARITIES OF OBTAINED EQUATIONS 115

=-Vv(-G P 4
g ( l {x12+(y/2 +Z/2)/,YZ}1/2 a ) (6_3])

- 3(— _G_V] p dv/),
ot c? {x’2+(y’2+z’2)/72}"2

In Eq. (6-3.1), V operates upon the field point coordinates x,
¥, z, which do not appear in Eq. (6-3.1). However, as explained
above, for constant p we can leave the first integral in Eq. (6-3.1)
as it now is, provided that for the actual differentiation we replace
V by —V'. Placing V under the integral sign and replacing it by
—V'’, we have for the part of the gravitational field due to ¢ (using
g=2g, *8)

g,=-G[v p av'. (632
{x/2 +0)/2 +Z/2)/,Yz}|/2

To differentiate the second integral in Eq. (6-3.1), we must first
express the integrand as a function of ¢. Replacing x' in the
integrand by x’ — w, placing 8/d¢ under the integral sign, and
differentiating the integrand, we then have for the part of the
gravitational field due to A

2,61 | pux’ -y av', (63.3)
C2 {(x/ —Vt)2+(y/2 +z/2)/,YZ}3/2
or, setting ¢t = 0,
g, =G| vx'p av',  (63.4)
4 c? {x/2+(y/2+212)/,yz}3/2

which, as one can easily verify by direct differentiation, is the same
as

FERALTY | /——T R )
{x/ +(yl +Z/)/,YZ}1/2
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The total field is therefore

g = - G]v' p av’
{x/2+(y/2 +z/2)/,y2}1/2 (6-36)
* Gllv : JV/{ /2 (y/2p 12)/ Z}IIZdV/'
C X'+ +2 Y

Using now Gauss’s theorem of vector analysis [vector identity
(V-19)], we can convert the two integrals into integrals over the
surface of the cylinder, obtaining’

dSo“l
g =" Gpﬁ F A
{2+ +2"") v} (6-3.7)

\/ dsow }
- ?v *{x/2+(y/2+z/2)/,),2}1/2 ’

where dS,,, is a surface element vector directed outward from the
volume of the cylinder.

By the symmetry of the system, the gravitational field at the
point of observation has only the x component. The only surfaces
of the cylinder contributing to that component are the surfaces of
the leading and trailing ends of the cylinder. However, since the
cylinder is very long, the contribution of the trailing end is
negligible. Furthermore, since the cylinder’s wall is thin, the
integration over the leading end can be replaced by the
multiplication of the integrand by the surface area S = 2mab of the
leading end’s wall. Taking into account that v = — vi, that for the
leading end y'? + ' = &, dS,, = — dSi, and v - dS,, = vdS,
we finally obtain for the "snapshot" of the gravitational field
produced by the cylinder at the point of observation

2mpab(1-v¥c?) | (6-3.8)

g=G .
{x/2+a2(1 _VZ/CZ)}I/Z
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li’xample 6-3.2 A line mass of length 2L and linear mass density
N moves along its length with constant velocity v = — vi in the xy
plane of a rectangular system of coordinates at a distance y = R
inhove the x axis. The point of observation is at the origin. Find the
pravitational  potential, the gravitational field, and the
cogravitational field at the origin at the moment when the two ends
ol the mass are at equal distances L from the y axis and then obtain
the limiting value of the fields for a very long mass.

To find the gravitational potential, we use Eq. (6-2.4) with
ndV' replaced by Adx'. Integrating over the length of the line mass

we then have
L
Q= - GI S SR
L (xFay 2 )2 (6-3.9)

_ G)\ln{xl +(x’2+y’2/72)"2} Iva

or
0 = - Gain ALy (6-3.10)
{—L+(L2+y/2/72)"2} ’

To find the gravitational field, we differentiate Eq. (6-3.10)
with respect to y’, using the positive derivative (by symmetry, the
vector potential makes no contribution to the gravitational field at
the origin). The result is

g=G {2\ i=G Zh j. (63.11)
yl(l +y/2/,YZL2)l/2 R(l +R2/,Y2L2)I/2

The cogravitational field of the line mass is, by Eqs. (6-3.11)
und (4-2.4),

K=-G 2hv k. (6-3.12)
CZR(I +R2/,YZL2)I/2

For a very long mass, L > R, so that Eqs. (6-3.11) and (6-
1.12) reduce to
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2\ .
= G2 (6-3.13)
Y R J
and
K - - g2Mk. (6-3.14)
c’R

It is interesting to note that the gravitational field given by Eq.
(6-3.13) is the same as that of a stationary infinitely long line mass,
and that the cogravitational field given by Eq. (6-3.14) is the same
as the cogravitational field produced by a mass-current / = A\v
(compare with Example 6-1.2 and Eq. 5-3.23).

A

References and Remarks for Chapter 6

1. As was mentioned in Section 5-1, Eq. (5-1.13) for a moving
point mass was first derived (in a different form) by Oliver
Heaviside. Heaviside noted that his equation provided an
explanation for the absence of gravitational aberration even if
gravitation propagated at a finite speed. Equation (6-1.40) shows
that also in the case of a mass distribution of any shape moving
with a finite speed v there is no gravitational aberration, because the
gravitational field appears to originate at the present position of the
moving mass.

2. When using this method, the volume of integration must be
inside the mass distribution, because only there p is constant. The
surface of integration remains within the mass distribution, just
touching the surface layer of the mass, but not stepping out of the
mass distribution into the space where there is no mass. See Section
3-2.



DIFFERENTIAL EQUATIONS
FOR GRAVITATIONAL AND
COGRAVITATIONAL FIELDS;
ELECTROMAGNETIC ANALOGY

In this chapter we shall derive differential equations for
pravitational and cogravitational fields. As we shall see, these
cquations are similar to Maxwell’s electromagnetic equations,
which makes the generalized theory of gravitation very similar to
Maxwellian electrodynamics. An important consequence of this
similarity is that many methods and techniques originally
developed for solving electromagnetic problems can be used for
solving problems involving gravitational and cogravitational
interactions.

7-1. Differential Equations for Gravitational and
Cogravitational Fields; Analogy with Maxwell’s
Electromagnetic Equations

Practical applications of the principal field equations, Eqgs. (2-
2.1) and (2-2.2), as well as of their special forms derived in
Chapter 3 are rather difficult because they involve retarded
integrals, in which the integrands must be evaluated for a past
time ¢', rather than for the present time ¢ (the time for which the

119
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fields g and K are determined). Therefore, for practical
applications, Egs. (2-2.1), (2-2.2) and their equivalents should be
preferably converted into equations where all the quantities are
evaluated for the present time ¢. In general, converting equations
involving retarded integrals into equations with present-time
integrals is not possible (see Chapters 5 and 6 for several
exceptions). However, as we shall presently see, some equations
containing retarded integrals can be converted into differential and
integral equations involving present-time quantities only.

From the theoretical point of view, particularly important is
the fact that Eqs. (2-2.1) and (2-2.2) can be converted into the
following present-time differential equations:

V-g = - 47['pr (7-11)
V'K =0, (7-1.2)

0K
Vxg = - 9™ (7-1.3)

& 3

and
VxK - - 470y . 108 (7-1.4)
c? c? ot

By applying vector identity (V-19) to Egs. (7-1.1) and (7-1.2)
and by applying vector identity (V-17) to Eqs. (7-1.3) and (7-1.4),
Egs. (7-1.1)-(7-1.4) can be further converted into the following
present-time integral equations:

<f>g-a'S - - 41rG[pdv. (7-1.5)
<fK-ds - 0. (7-1.6)
*g-dl = - %lK-dS. (7-1.7)

and
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+K-d| - - _l-l(4wGJ - E)-ds. (7-1.8)
c? ot

Readers familiar with electromagnetic theory will immediately
recognize that Eqgs. (7-1.1)-(7-1.8) are similar to Maxwell’s
clectromagnetic equations in their differential and integral forms,'
cxcept that the symbols and constants in Egs. (7-1.1)-(7-1.8) are
different from the symbols and constants appearing in Maxwell’s
cquations. It is important to note that, as early as in 1893, Oliver
lleaviside suggested the possibility of an analogy between
gravitation and electromagnetics and the possibility of expressing
gravitational fields and the gravitational "analog of magnetic"
fields by equations similar to Maxwell’s equations.” Heaviside’s
suggestion was entirely intuitive and was not supported by
substantive physical or mathematical arguments. However, as is
now clear, this analogy is actually a rigorous consequence of the
fundamental premises of the generalized theory of gravitation and
of Egs. (2-2.1) and (2-2.2) in particular. It is also clear therefore
that the similarity of Egs. (7-1.1)-(7-1.8) with Maxwell’s
clectromagnetic equations is more than a mere analogy: Egs. (7-
1.1)-(7-1.8) are completely autonomous equations for gravitational
and cogravitational fields reflecting intrinsic properties of these
fields.

The analogy between gravitational-cogravitational and
electrodynamic equations is not perfect, of course. In particular,
whereas the electric field may be directed to or from the electric
charge by which it is created (depending on whether the charge is
negative or positive), the gravitational field is always directed to
the mass by which it is created. Also, whereas the magnetic field
is always right-handed relative to the electric current by which it
is created, the cogravitational field is always left-handed relative
to the mass current by which it is created, and whereas like
electric currents attract each other and opposite electric currents
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repel each other, like mass currents repel each other and opposite
mass currents attract each other. Furthermore, whereas electric
charges may attract or repel each other, masses always attract
each other (see, however, Chapter 19).

There may also be a difference in the interpretation of the
physical significance of Eq. (7-1.3) and of its electromagnetic
counterpart. Maxwell’s electromagnetic equation similar to Eq. (7-
1.3) was in the past interpreted as representing the phenomenon
of electromagnetic induction and was thought to show that a
changing magnetic field creates an electric field. One may think
therefore that Eq. (7-1.3) likewise represents a gravitational-
cogravitational induction phenomenon. However, it has now been
proved that Maxwell’s electromagnetic equation similar to Eq. (7-
1.3) does not represent electromagnetic induction and that electric
fields are not created by changing magnetic fields.>* Clearly then,
Eq. (7-1.3) does not represent an induction effect either.
Moreover, since the gravitational and cogravitational fields in this
equation are simultaneous in time, the equation does not reveal
any causal relation between these fields. Similar considerations
apply to Eq. (7-1.4), where the cogravitational and gravitational
fields are also simultaneous in time and therefore are not causally
connected with each other.

Derivation of Eq. (7-1.1). We start with Eq. (3-1.1) [which,
as is shown in Chapter 3, is a consequence of Eq. (2-2.1)]

\4 1[6J
g=G[[—r—p]dV’+C—G2[7 Tt]d‘”- (3-1.1)

Multiplying Eq. (3-1.1) by V-, we have

/
v.g=Gv-j@dV/+Ev.jl[ﬂ av'. (7-1.9)
r c? rlot
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The operator V- can be placed under the integral sign because it
operates on the field-point coordinates x, y, z, while the
integration is over the source-point coordinates x', y’, z'. This
pives

V-g-= G[V [V"]dvf CG [‘”]dv’. (7-1.10)

Applying vector identity (V-34) to the first integral of Eq. (7-
1.10), we have

]v- 0l gy - IV’ VOl gy deva (7-1.11)
r r r

‘The first integral on the right of Eq. (7-1.11) can be transformed
into a surface integral by means of vector identity (V-19). But this
surface integral vanishes, because p is confined to a finite region
of space, while the surface of integration is at infinity (as was
cxplained in Section 2-2, unless stated otherwise, all integrals in
this book are over all space). Thus we obtain for the first integral
in Eq. (7-1.10)

IV-L/‘)]dV’ - dev'. (7-1.12)
r r

Using the same considerations, we obtain for the second
integral in Eq. (7-1.10)

[v aJ]dV’ - [v’ }dV’ =lr[av J]dV’ (7-1.13)

ot ot
Thus, Eq. (7-1.10) can be written as

Veg- G[W_V"_]dw [‘W J]dV’.(7-1.14)
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Using now the continuity law, Eq. (2-2.4), with J substituted
for pv,

v.y--% (2-2.4)
ot

we can rewrite Eq. (7-1.14) as

v wn- L0
v-g=Gj 9 gy
r

(7-1.15)

But according to vector identity (V-30), the right side of Eq. (7-
1.15) is simply - 47Gp, and therefore

Vg = - 471Gp. (7-1.1)

Derivation of Eq. (7-1.2). We start with Eq. (3-1.2) [which,
as is shown in Chapter 3, is a consequence of Eq. (2-2.2)]

K - - EI[V’ X9 gy, (3-1.2)
c? r

Multiplying Eq. (3-1.2) by V-, we have

v.K--USy. jMdW (7-1.16)
i r

As in the case of Eq. (7-1.9), the operator V- can be placed under

the integral sign because it operates on the field-point coordinates

X, y, Z, while the integration is over the source-point coordinates

x', y', 2'. This gives

/
VK - -gjv~[v X gy (7-1.17)
C r
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Transforming now the integral in Eq. (7-1.17) just as we
transformed the first integral in Eq. (7-1.11), we obtain

VK-=- ijdva (7-1.18)
c? r
and, since V'- V' X = 0,

V-K = 0. (7-1.2)

Derivation of Eq. (7-1.3). We again start with Eq. (3-1.1)

/
g=GerPldV/+Ezjl %]dw G-1.1)
C r

Multiplying Eq. (3-1.1) by VX , we have

/

vxg -GVx | A ayr. Svx jl[ﬁ]dv/ (7-1.19)
r c? rlot

The operator VX can be placed under the integral sign because it

operates on the field-point coordinates x, y, z, while the

integration is over the source-point coordinates x', y', z'. We then
have

/
Vxg = GJVX Nolgy s G lel[ﬁ]dV’ . (7-1.20)
r c? rlor

Applying vector identity (V-34) to the first integral of Eq. (7-
1.20), we have

va [V/p] av’ =- lv/x [V/p] av’ +J [V/XV/p] av’. (7-121)
r r r
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The first integral on the right of Eq. (7-1.21) can be transformed
into a surface integral by means of vector identity (V-21). But this
surface integral vanishes, because p is confined to a finite region
of space, while the surface of integration is at infinity. Thus we
obtain for the first integral in Eq. (7-1.20)

/ /
[Vx Lrp]dV’ = dev’. (7-1.22)

However, V' x V' = 0, and therefore the last integral vanishes and
so does the first integral in Eq. (7-1.20). Equation (7-1.20)
reduces therefore to

vxg-C G [6J

av’ . ]
- ] (7-1.23)

Let us now differentiate Eq. (3-1.2) with respect to time. We
have

K __ EEIMW. (7-1.24)
ot 2 9t r

Applying vector identity (V-34) to the integral in Eq. (7-1.24) and
eliminating V' x {[V'xJ]/r} by means of vector identity (V-21)
[see the explanation below Eq. (7-1.21); note that J = pv and
therefore J is confined to a finite region of space], we obtain

OK G
a2

OEIVX Way. (7-1.25)

Differentiating under the integral sign, we obtain
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K _ G J 1 [OJ ] /
= - VX2 |dV, -
o = FiT (7-1.26)
which together with Eq. (7-1.23) yields

0K
Vxg = - & (7-1.3
g 3 )

Derivation of Eq. (7-1.4). We start once again with Eq. (3-
1.2)

/
K- - EJ[V I gy (3-1.2)
c? r

Multiplying Eq. (3-1.2) by VX , we have

/
VK - - Sox [ Xy (7-1.27)
c? r

In Eq. (7-1.27) the operator VX can be placed under the integral
sign because it operates on the field-point coordinates x, y, z,
while the integration is over the source-point coordinates x', y’',

Z'. We then have

/
VxK = - EZIVXMdV’. (7-1.28)
C r

Transforming now the integral in Eq. (7-1.28) just as we
transformed the first integral in Eq. (7-1.20), we obtain

VXK = - ijw/. (7-1.29)
c? r

Let us now find the time derivative of g by differentiating Eq.
(3-1.1). We have
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0g=GJOIVp]d ,+Glal aJ]dV,

ot ot r atrlor
) (7-1.30)
=G]l[ a"’]dv' G[ ‘”]dv’
rl ot or?

and, making use of the continuity law, Eq. (2-2.4), we obtain

og _ J[v’(w Mgy . g l r[a J] (I-1.31)

ot or?

Next, let us divide Eq. (7-1.31) by ¢? and subtract it from Eq.
(7-1.29). Combining the three integrals into a single integral, we
obtain

[v'(v’ J)- V’x(V’xJ)-iaJ]
VXK-_I_Z% c? o’ av’.

‘LI Q
S—

r
(7-1.32)

But, according to vector identity (V-28), the integral on the right
in Eq. (7-1.32) is simply —4wGJ/c’. Replacing this integral by
—47GJ/c* and transferring (1/c?)(dg/dr) to the right, we obtain

VxK = - 30y, 108 (7-1.4)
c? c? ot

7-2. Corresponding Gravitational-Cogravitational and
Electromagnetic Equations

The similarity of differential equations for gravitational-
cogravitational fields, Egs. (7-1.1)-(7-1.8), with Maxwell’s
electromagnetic equations indicates that many methods and
techniques originally developed for solving problems involving
electromagnetic fields can be used for solving problems involving
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gravitational and cogravitational fields. This similarity also
indicates that it is possible to convert many equations originally
derived for electromagnetic systems into the corresponding
equations for  gravitational-cogravitational systems. The
corresponding equations are identical except for the symbols and
constants occurring in them. Therefore, in order to convert an
appropriate electromagnetic equation into a gravitational-
cogravitational equation, one only needs to replace symbols and
constants appearing in the electromagnetic equation by the
corresponding gravitational-cogravitational symbols and constants.
The relations between the corresponding symbols and constants
are shown in Table 7-1.°

Table 7-1

Corresponding Electromagnetic and Gravitational-
Cogravitational Symbols and Constants

Electric Gravitational
q (charge) m (mass)
p (volume charge density) p (volume mass density)
o (surface charge density) o (surface mass density)
N (line charge density) A (line mass density)
@ (scalar potential) ¢ (scalar potential)
A (vector potential) A (vector potential)
J (convection current density) J (mass-current density)
I (electric current) I (mass current)
In (magnetic dipole moment) d (cogravitational moment)
E (electric field) g (gravitational field)
B (magnetic field) K(cogravitational field)
&, (permittivity of space) —1/41G
Io (permeability of space) —-47Glc?
—1/4Tey or —p,c/4T G (gravitational constant)

Symbols that are not specific to electromagnetism, such as
those for force, energy, momentum, etc., need not be replaced.
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It is important to keep in mind, however, that only electro-
magnetic equations for fields in a vacuum have their gravitational
counterparts, and only the electromagnetic symbols listed in Table
7-1 can be directly replaced by the corresponding gravitational
symbols. In all other cases the following conversion procedure
should be used:

(1) If an electromagnetic equation is for fields in the presence
of material media, reduce the equation to fields in a vacuum.

(2) If electromagnetic equations contain field vectors D or H,
replace them by E or B, using the relations D = ¢E and B =
poH.

(3) Use Table 7-1 to replace electromagnetic constants by the
corresponding gravitational-cogravitational constants.

7-3. Gravitational-Cogravitational Equations Obtained by
Analogy with Electromagnetic Equations

Listed below are gravitational-cogravitational equations that
have been obtained by converting electromagnetic equations in
accordance with the procedure explained in Section 7-2. The
electromagnetic equations used for conversion were taken from the
author’s book Electricity and Magnetism.' Some readers may want
to examine these electromagnetic equations and their derivations.
For this purpose each gravitational-cogravitational equation
appearing below is provided with the number of the page where
the corresponding electromagnetic equation appears in Electricity
and Magnetism (hereafter abbreviated as EM). The equations are
arranged in three categories: equations for calculating fields and
potentials, equations for calculating energy and forces, and wave
equations. Note that traditionally by far the majority of
electromagnetic equations are derived for static fields or for fields
involving slowly moving charges (conduction currents). In such
fields the retardation does not exist or is ignored. Therefore some
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of the gravitational-cogravitational equations listed below do not
apply to systems involving time-dependent or rapidly moving mass
distributions; consult the derivations presented in this book if in
doubt. Several equations listed below have already been directly
derived in the preceding chapters; nevertheless, it is instructive to
introduce them also as equations analogous to electromagnetic
equations. (Primed fields and potentials indicate fields and
potentials created by external sources.)

(1) Equations for calculating gravitational fields and potentials:

Basic gravitational laws in present-time
differential notation, EM502

V-g = - 47Gp, (7-3.1)
VK =0, (7-3.2)
0K
vxg - - 9K 7-3.3
g 3 ( )
VxK = - 47Gy , 108 (7-3.4)
c? c? ot

Basic gravitational laws in present-time
integral notation, EM502

fa-ds - - 47G [pav. (7-3.5)

<]gK-dS - 0. (7-3.6)
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fg-ar - - %]K-ds. (73.7)

fK-dl - - _1_](41rGJ . a_g)°dS. (7-3.8)
c? ot

Gravitational field of a point mass, EM96
g = - GLn_ru‘ (7-39)
r2

Gravitational field of a mass distribution, EM93

g--G|Lrav. (7-3.10)
r

Gravitational field in terms of mass inhomogeneities
(constant interior mass), EM103

/
g = _Gp(fds ' (7-3.11)
r
Gravitational scalar potential (with respect to o), EM120

0 --G[Lav. (7-3.12)
r
Gravitational potential of a point mass, EM121

o =-GM (7-3.13)
r

Gravitational field in terms of scalar potential, EM111

g =-Vo. (7-3.14)
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Gravitational potential in terms of the field, EM112

0, |gaso. (7-3.15)

Poisson’s equation for scalar potential, EM 142

Vi = 47Gp. (7-3.16)

Gravitational field in terms of vector potential ®
g = VxA,. (7-3.17)
Cogravitational field of a moving point mass, EM390

m(v Xr )

K=-G (7-3.18)

C2 r2
Cogravitational field of a current distribution, EM344

K - - G[“’wvn (7-3.19)

CZ r2

Cogravitational field in terms of current inhomogeneities
(constant mass-current density), EM352

K = - G [ IxdS . (7-3.20)

c? r

Cogravitational vector potential, EM364

A= - Ejidv'. (7-3.21)
ctlr

Cogravitational field in terms of vector potential, EM363

K =VxA. (7-3.22)
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Poisson’s equation for cogravitational
vector potential, EM364

viA = 416y (7-3.23)
C

Cogravitational field in terms of scalar potential, EM373

K - 47szv<p(' (7-3.24)
Cc

Cogravitational dipole moment of filamentary mass current |
(S' is right-handed relative to I), EM381

d-- 20 (7-3.25)
C

Cogravitational dipole field, EM 381

K = _d__cosﬁr” . 4 sind @, . (7-3.26)
27r? 47r3

(2) Equations for calculating gravitational forces and energy:
Gravitational force on a mass distribution, EM208
F - ] og'dv. (7-3.27)

Gravitational force in terms of scalar potential’
(single mass of constant density), EM211

F - - p§¢/ds. (7-3.28)

Gravitational force in terms of vector potential ®’
(single mass of constant density)

F = -pfA;xds. (7-3.29)
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Maxwell’s stress integral for the gravitational
field, EM215

1 1
F-_ feas - L feas). (7330
§7GJ & GG | &)
Cogravitational force on a mass current, EM440
F - [IxK’av. (7-3.31)
Cogravitational force on a mass-current dipole, EM446
F--_% @wk (7-3.32)
anG ' '
Cogravitational torque on a mass-current dipole, EM446
c2
T=-_—-_dxK. (7-3.33)

441G

Cogravitational force in terms of vector potential’
(constant mass-current density), EM453

F - 4}A/-st. (7-3.34)

Cogravitational force in terms of scalar potential ’
(constant mass-current density), EM453

F - 4_”294}¢§de5. (7-3.35)
c
Maxwell’s stress integral for the cogravitational field, EM447

2 2
F-_° $Kus - C_§K(K-dS). (7-3.36)
871G 4G
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Gravitational field energy, EM186

U- - ;ngdv. (7-3.37)
871G

Gravitational energy in terms of potential, EM190

_ 1 7-3.38
U EIcppdV. (7-3.38)

Energy of a system of point masses, EM192

o (7-3.39)

Energy of a mass distribution in an extemal field, EM195

U = ]p¢'dv. (7-3.40)
Energy of a point mass in an external field, EM195

U =my'. (7-3.41)
Cogravitational field energy, EM427

U - ]KZdv (7-3.42)
87rG

Cogravitational energy in terms of vector potential, EM430

U - %]A-Jdv. (7-3.43)

Cogravitational energy of a mass current in an
external field, EM432

Ul = ]J-A'dv. (7-3.44)
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Gravitational Poynting’s vector, EM509

P = 7-3.45
41rG ( )
Gravitational field momentum, EM513
! jK x gdV. (7-3.46)
47rG
Gravitational field angular momentum
1
L- L [rx@xgav. 7.3.47
TG (Kxg) ( )

(3) Equations for gravitational waves (see also Chapter 18):

Direction of field vectors in a plane wave
propagating in the z-direction, EM531

K- lkxg. (7-3.48)
c
Energy density in a gravitational wave, EM533
1 c?
U =-__—__g>=- K2, 7-3.49
T T w6 T ImG (7349)

The analogy between electromagnetic and gravitational-
cogravitational equations is, of course, not limited to the equations
listed above.® Not only basic electromagnetic equations, but also
most equations representing a solution of an electromagnetic
problem for fields or forces not involving conducting, dielectric,
or magnetic bodies have their gravitational counterparts. However,
if the propagation velocity of gravitation is not equal to the
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velocity of light (see Section 9-1), then ¢ appearing in the
gravitational-cogravitational equations should be, in general, the
velocity of the propagation of gravitation rather than the velocity
of light.

Observe, however, that gravitational equations depicting
"nonlinear" gravitational effects (see Chapter 19) do not have their
electromagnetic counterparts.
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ENERGY, ACTION-REACTION,
AND MOMENTUM IN
GRAVITATIONAL AND
COGRAVITATIONAL FIELDS

In this chapter we shall discuss energy and momentum
relations in gravitational and cogravitational fields. We shall
present the proof that energy is always conserved in closed
gravitational-cogravitational systems and is always conserved in
gravitational and cogravitational interactions. We shall also
present the proof that momentum in closed gravitational-
cogravitational systems is always conserved. And we shall prove
that, although the law of action and reaction does not always hold
in gravitational-cogravitational interactions, the law of momentum
conservation is always fulfilled in such interactions.

8-1. Conservation of Energy in Gravitational and
Cogravitational Systems

Let us consider a closed gravitational-cogravitational system.
In such a system there is no inflow or outflow of field energy to
or from the system. By Eq. (2-2.9) we then have

139
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2
fp-ds - c_<fK><g-dS -0, (8-1.1)
4G

where the surface of integration encloses the system under
consideration. Transforming the last surface integral in Eq. (8-1.1)
into a volume integral by using vector identity (V-19), we obtain

_ffK xgds =< jv (Kxg)dV =0. (812)

471G

Expanding the integrand of the last integral in Eq. (8-1.2) by
means of vector identity (V-9), we obtain

V-(Kxg) =g-(VxK) - K-(Vxg). (8-1.3)

Using now Egs. (7-1.4) and (7-1.3), we can write the two
terms on the right of Eq. (8-1.3) as

g-(VxK) = - g- 4Gy . g. L ag (8-1.4)
c? 2°9¢
and
K-(Vxg) = - K-%. (8-1.5)

Substituting Eqs.(8-1.4) and (8-1.5) into Eq. (8-1.3), we
obtain

41rG lag + K- 6K

—_— 1y

(8-1.6)
c? ot

V-Kxg) = -

which can be written as

V-Kxg)-- 4LGg. [1a(g 8, %Za(Ka;K)], (8-1.7)

or

2 2
V-Kxg) - - ﬁgq 1/10g’ ﬂ(_], (8-1.8)
C

C
2127 2 ot
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By Eq. (2-2.8), Eq. (8-1.8) can be written as

U
V-(Kxg) = - 2Cg.y - 4TCT @19
c ct ot

where U, is the energy density in the gravitational and
cogravitational field.

Substituting Eq. (8-1.9) into Eq. (8-1.2) and noting that J =
pv, we obtain

ou
[g.pvav . [-a_tVdv -0, (8-1.10)
or, for constant g,
mg-v + Oa_ltj =0, (8-1.11)

where m is the mass contained in the system under consideration
and U is the gravitational-cogravitational energy of the system.

The first term in Eqs. (8-1.10) and (8-1.11) represents the
rate at which the energy of the moving mass m (its kinetic energy)
increases under the actions of the gravitational field g. The second
term represents the decrease [note that, by Eqgs. (2-2.7) and (2-
2.8), U is negative] of the gravitational-cogravitational field
energy. Thus Eqs.(8-1.10) and (8-1.11) show that the total energy
in a closed gravitational-cogravitational system is conserved:
kinetic energy of a mass (or masses) in the system increases at the
expense of the field energy and vice-versa [the latter is true
because Eqs. (8-1.10) and (8-1.11) remain valid when multiplied
by —1].!

8-2. Conservation of Momentum in Gravitational and
Cogravitational Systems

Let us again consider a closed gravitational-cogravitational
system. In such a system there is no inflow or outflow of field
momentum to or from the system. By Eq. (2-2.11) we then have
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_MI_G[%ﬁ(g“csz)dS-tj;g(g-dS)—cz(f K(K-dS)] -0 (82.1)

and therefore

aG,, 1 la
M- | __(Kxg)dV. (8-2.2
& @mc) <8 )

By Eq. (2-2.11) we then have

Ay 3G, (8-2.3)
dt ot

Thus in a closed gravitational-cogravitational system the

mechanical momentum of the system increases at the expense of

the field momentum, and vice versa [the latter is true because Eq.

(8-2.3) remains valid when multiplied by —1]."

8-3. Action and Reaction in Gravitational-Cogravitational
Systeins

Let us consider a closed gravitational-cogravitational system
consisting of two mass distributions p, and p, producing,
respectively, gravitational fields g, and g, and cogravitational
fields K, and K,. If we apply vector identity (V-22) to the fields
g, and g,, we obtain

fie2)ds - §a,@-a5) - $e (g, a5) -
8-3.1)
J (8,x(VXg) +8,x(VXg) -8,(V'8) ~8,(V-g)ldV,

where the surface of integration encloses the system. Since the
system is closed, the surface integrals vanish (we can assume that
the surface of integration is at infinity, where there are no
gravitational and cogravitational fields). We are thus left with
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[ 18, x(Vxg) +g,x(Vxg) -8,(V-8) ~g,(V-g)ldV =0. (8:3.2)

Let us now assume that the two mass distributions are
stationary and are time independent. In this case, by Eq. (7-1.3),
Vxg = 0, so that the first two terms in the integrand of Eq. (8-
3.2) vanish. Using Eq. (7-1.1) for replacing V- g, and V - g, by
(-47Gp,) and (-47Gp,), respectively, canceling (-4wG), and
expressing the resulting integral as two integrals, we then obtain

[ogoav = - [0.8,av. (8-3.3)

But, by Eq. (2-2.6), [ p,g,dV is the force exerted by p, upon p,
and | p,g, dV is the force exerted by p, upon p,. Hence the forces
acting on the two mass distributions are equal in magnitude and
opposite in direction, as required by the law of action and
reaction. Thus the law of action and reaction holds for
gravitational interactions between constant stationary mass
distributions.

Let us now assume that p, is moving and/or is time
dependent. In this case Vxg, = 0, but, by Eq. (7-1.3), VXg, =
— 0K,/0t. Substituting in Eq. (8-3.2) V-g, V-g,, VXg,, and
Vxg,, we find that now only the second term in the integrand of
Eq. (8-3.2) vanishes. Simplifying, we then obtain

_ 1 0K,
lplgzdv - - Jng,dV R m]g, x ZlaV. (83.4)
Hence, if one of the two interacting mass distributions is time
variable or is moving, the action-reaction law does not hold: the
two forces differ by the value of the integral containing K,.

Let us now assume that both mass distributions are moving
and/or are time dependent. In this case Vxg, = — dK,/dt and
VXE, = — 0K,/dt. Substituting in Eq. (8-3.2) V-g, Vg,
VxK,, and VxK,, we obtain
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] av - L j x I 4y
P&, 47G & “or

oK
= - Ing,dv + 1 ]gl X __2dV.
47G at

(8-3.5)

Thus, when both mass distributions are time variable or are
in motion, the law of action and reaction, in general, does not
hold: the two forces differ by the value of the two integrals
containing K, and K,. However, if the two integrals happen to be
equal in magnitude but have opposite signs, they cancel each
other, so that in this case the law of action and reaction does hold
even when the two masses vary or move.

It should be pointed out that although the law of action and
reaction does mnot hold for certain types of gravitational
interactions, the law of conservation of momentum is valid for all
gravitational and cogravitational interactions, without exceptions.
This will be shown later in this chapter.

We shall now examine what happens to the action and
reaction law in cogravitational interactions.

Consider two constant, stationary mass-current distributions
J, and J, in a closed gravitational-cogravitational system. The
cogravitational fields produced by J, and J, are K, and K,,
respectively. The force exerted by J, on J, is, by Eq. (2-2.6),
§ J,xK, dV and the force exerted by J, on J, is [ J,xK, dV.

Applying vector identity (V-22) to K, and K,, we have

P, -Kds - §K, K -a5) - K (K, ds) -
(8-3.6)
[ &, (7 xKy) K, X (VXK ) -K (VK - K, (VK IV,

As before, the surface integrals vanish. By Eq. (7-1.2), V- K =
0, so that the last two terms in the volume integral vanish also.
Taking into account that, by Eq. (7-1.4), for stationary (time-
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independent) systems VXK = — (47G/c?)J, and simplifying the
two remaining terms in Eq. (8-3.6), we then obtain

Ja,xK,av = - [3,xK,av. (8-3.7)

Thus, for cogravitational interactions between two constant
stationary mass-currents, the two forces are equal in magnitude
and opposite in direction, and the law of action and reaction
holds.

Let us now assume that J, is variable or is in a state of
motion. In this case, by Eq. (7-1.4), VXK, = — 4rG/c)], +
(1/c*)dg,/dt. Noting that the surface integrals of Eq. (8-3.6) still
vanish, and simplifying the volume integral as before, we obtain

9
[3,xK,av = - [3,xKav - _L_[K, x agde (8-3.8)

4G

Hence, when one of the currents is changing or is in motion,
the two forces are not equal and differ by the amount of the
integral containing g,. The law of action and reaction does not
hold.

Let us now assume that J, is also variable. In this case VXK,
= — (47G/cHI, + (1/cH)dg,/dt and VXK, = — (47G/cHI, +
(1/c*)dg,/dt. From Eq. (8-3.6) we now obtain (noting that the
surface integrals vanish as before)

ag,
Ja, xKav+ L[k, x Lav
471G ot
on, (83.9)
- 9, x K av - m[Kl x 2dV.

Thus, when both mass-currents are changing or are moving,
the law of action and reaction, in general, does not hold: the
forces differ by the values of the integrals containing g, and g,.
However, if the two integrals are equal in magnitude but have
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opposite signs, they cancel, and then the law of action and
reaction does hold.

8-4. The Law of Action and Reaction and the Law of
Conservation of Momentum

As we have seen, Newton’s third law, the law of action and
reaction, has only a limited validity in the domain of gravitational
and cogravitational interactions. In general, it holds only for
interactions between constant stationary masses and for
interactions between constant stationary mass currents. However,
it is not necessary to state Newton’s third law as the law of action
and reaction. One can state this law more accurately as the law of
conservation of momentum. If we examine the time dependent
terms appearing in Eqs. (8-3.4), (8-3.5), (8-3.8), and (8-3.9), we
recognize that these terms represent rates of change of
gravitational-cogravitational field momentum, Eq. (2-2.11),

G, - L [Kxgav, (2-2.11)
471G

Therefore these equations show that, although the forces are
different, the total momentum (mechanical plus gravitational-
cogravitational) of the system is always conserved. An exchange
of momentum between a mass or a mass current and the
surrounding field is, of course, necessary since gravitational and
cogravitational fields propagate with finite speed, so that no direct
interactions between field-producing and field-experiencing masses
or mass currents are possible (see Section 16-2).

It is important to note that Eqs. (8-3.4), (8-3.5), (8-3.8), and
(8-3.9) involve only the interaction, or mutual, momentum rather
than the total gravitational-cogravitational momentum of the
systems under consideration. Specifically, in the case of
gravitational systems, the rate of momentum change is expressed
as the cross product of the gravitational field and the time
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derivative of the cogravitational field. And in the case of
cogravitational systems, this rate of momentum change is
expressed as the cross product of the cogravitational field and the
time derivative of the gravitational field. A remarkable feature of
these equations is that they only involve partial fields: g, and K,
or g, and K,. This means that even in a region of space where the
total field g = g, +g, or K = K, +K, is zero, there still can be an
exchange of the gravitational-cogravitational and mechanical
momenturm.

The apparent simplicity of Eq. (8-3.3) for the gravitational
interactions is misleading. Assumed by Newton to hold for all
gravitational interactions, and for the interactions in the Solar
system in particular, it actually holds only for interactions between
stationary time-independent masses. According to the generalized
theory of gravitation, it certainly does not hold for planetary
interactions. As we shall see later (Sections 14.3 and 15.1), the
force with which the Sun acts on a planet is not equal to the force
with which the planet acts on the Sun. In fact, according to the
generalized theory of gravitation, the interaction is actually not
between the Sun and the planet, but between the planet and the
field created by the Sun at the location of the planet and between
the Sun and the field created by the planet at the locations of the
Sun. However, although the law of action and reaction does not
hold for planetary interaction, the law of momentum conservation
does hold without exception.?

References and Remarks for Chapter 8

1. See also Chapter 16.

2. For a related discussion of the action-reaction law and of the
momentum conservation law in electromagnetic systems see O. D.
Jefimenko, Causality, Electromagnetic Induction, and Gravitation,
2nd ed., (Electret Scientific, Star City, 2000), pp. 67-79.



GENERALIZED THEORY OF
GRAVITATION AND THE
SPECIAL RELATIVITY THEORY

As we saw in Chapter 7, many electromagnetic equations
have their gravitational and cogravitational counterparts. In this
chapter we shall explore the analogy between electromagnetism
and gravitation even further, and, on the basis of this analogy,
shall develop a relativistic theory of gravitation analogous to
relativistic electrodynamics. We shall present illustrative examples
demonstrating the use and power of relativistic transformations
applied to gravitational and cogravitational equations. Then we
shall briefly discuss the so-called "covariant formulation" of
gravitational and cogravitational equations.

9-1. Relativistic Transformation Equations for Gravitational
and Cogravitational Fields

Until recently it was believed that the analogy between
electromagnetic and gravitational equations could not apply to fast
moving systems, because the electric charge is not affected by
velocity, but the mass of a moving body was thought to vary with
velocity. It is now generally accepted that mass, just like the
electric charge, does not depend on velocity.' This also means that
transformation equations of the special relativity theory developed
for electromagnetic systems’ have their gravitational and

148
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cogravitational counterparts. In agreement with considerations
presented in Section 7-2, the only essential difference between the
relativistic  gravitational-cogravitational equations and the
corresponding electromagnetic equations is in the symbols and
constants appearing in these equations.

Thus there is no need to derive relativistic gravitational-
cogravitational transformation equations, because we can easily
obtain them by replacing symbols and constants appearing in
relativistic  electromagnetic  equations by the corresponding
pravitational-cogravitational symbols and constants with the help
ol Table 7-1. The basic relativistic gravitational-cogravitational
transformation equations obtained in this way? are listed below. In
these equations, the unprimed quantities are those measured in the
stationary reference frame Y ("laboratory"), and the primed
yuantities are those measured in the moving reference frame X'.

Transformation equations correlating quantities measured im
L with quantities measured in X’':

(a) Equations for space and time coordinates

x =y +w’), 9-1.1)
y =y, (9-1.2)

7z =12z, (9-1.3)

t =@t +wx'lc?). (9-1.4)

(b) Equations for the gravitational field

g =gl (9-1.5)

g, = v + VK, (9-1.6)

8. = Y@ - k). (9-1.7)
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(c) Equations for the cogravitational field

K =K/, (9-1.8)
K, = v(K; - vg./c?), (9-1.9)
K, = y(k! + vglic?). (9-1.10)

(d) Equations for the mass and mass-current densities

p =l + (vic)HJ,], (9-1.11)
J = vJ! + vp'), (9-1.12)
J, =J), (9-1.13)

J =J. (9-1.14)

(e) Equations for gravitational and cogravitational potentials

o =@ +vA)), (9-1.15)
A, = 4] + (VcHe'], (9-1.16)
A, = A, (9-1.17)

A, = A (9-1.18)

Transformation equations correlating quantities measured in
Y’ with quantities measured in X:

(a) Equations for space and time coordinates

x! = y(x-w), (9-1.19)
y' =y, (9-1.20)
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7 =z, (9-1.21)
t' =@ - vxlch). (9-1.22)
(b) Equations for the gravitational field
g =8, (9-1.23)
g =@, - K), (9-1.24)
g =@, *+ K). (9-1.25)
(c) Equations for the cogravitational field
K/ =K, (9-1.26)
K] = ¥, + vg.lc?), (9-1.27)
K! = y(K, - vg,lcY). (9-1.28)
(d) Equations for the mass and mass current densities
p' =l - (v/cH], (9-1.29)
I =y, - w), (9-1.30)
o=J, (9-1.31)
o= (9-1.32)
(e) Equations for gravitational and cogravitational potentials
¢ =Y - VA), (9-1.33)
Al =4 - (vicdHgl, (9-1.34)
A=A, (9-1.35)

Al = 4. (9-1.36)
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Quite clearly, transformation equations for physical quantities
not involving electric and magnetic fields (such as velocity,
acceleration, force, etc.) remain valid for gravitational-
cogravitational systems as well. However, the constant ¢
appearing in the conventional relativistic transformation equations
represents the velocity of propagation of electromagnetic fields in
a vacuum, which is the same as the velocity of light. The velocity
of propagation of gravitational and cogravitational fields is not
known, although it is generally believed to be equal to the velocity
of light. If the velocity of propagation of gravitational fields is not
the same as the velocity of light, our relativistic transformation
equations for gravitation would still remain correct, but the
constant ¢ appearing in them would be different from ¢ appearing
in the corresponding electromagnetic equations. Therefore the
behavior of rapidly moving bodies involved in gravitational
interactions would be different from the behavior of rapidly
moving bodies involved in electromagnetic interactions. In effect,
there would be two different mechanics - the "gravitational-
cogravitational mechanics,” and the "electromagnetic mechanics”
- involving different effective masses, different effective
momenta, and different rest energies.

A possibility exists that our gravitational relativistic
transformation equations are not entirely correct. According to
Einstein’s mass-energy equation, any energy has a certain mass.
But a mass is a source of gravitation. Therefore the gravitational
field of a mass distribution may be caused not only by the mass
of the distribution as such, but also by the gravitational energy of
this distribution.* If this effect is taken into account, the equation
for the divergence of the gravitational field, Eq. (7-1.1) becomes
only approximately correct, and all equations derived with the
help of Eq. (7-1.1) also become only approximately correct. It is
important to note, however, that this energy effect, if it exists, is
typically extremely small.’
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v

Example 9-1.1 The Newtonian equation for the gravitational field
of a stationary point mass is

g=-GMr. (9-1.37)
r

Starting with this equation and using relativistic transformations
obtain the equation for the gravitational field of a point mass
moving with uniform velocity v parallel to the x axis.

For simplicity, let us assume that the gravitational field is in the
xy plane and the point of observation is at the origin. In this case r
in Eq. (9-1.37)is r = (x> + y*)"2

To obtain the gravitational field of the mass when the mass
moves with constant speed parallel to the x axis, we shall assume
that the mass is at rest in a reference frame X' which moves with
velocity v = vi relative to the laboratory (reference frame X). By
Eq. (9-1.37), in the reference frame L' the x component of the
gravitational field is given by

gl = -G___™ __x, (9-1.38)

(x/Z + y/2)3/2
and the y component is given by

g =-G6__" ’ (9-1.39)

(x/2 +y/2)3/2y

Since we are free to choose the time of observation in X
(laboratory), we choose ¢ = 0 for simplicity.® Equation (9-1.5) tells
us that to find g, of the moving mass in X, we must replace g,’ on
the left of Eq. (9-1.38) by g,, while Eq. (9-1.19) tells us that, since
t = 0, we must replace x' in Eq. (9-1.38) by yx [observe that in
Eq. (9-1.38) x appears in the numerator and in the denominator].
Finally, Eq. (9-1.20) tells us that y’ in the denominator of Eq. (9-
1.38) must be replaced by y. Making the substitutions, we obtain
for g, of the moving point mass
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g =-G__— " __yx=-G6__™ & (9140

X [(,yx)z +y2]3/2 ,yZ(x2 +y2/,yZ)3/2

To obtain the y component of the gravitational field of the
moving mass, we shall use Egs. (9-1.6), (9-1.19), and again Eq. (9-
1.20). Since K’ = 0 for the stationary mass, Eq. (9-1.6) tells us
that, to find g/ of the moving mass, we must replace g, on the left
of Eq. (9-1.39) by g,/v, while Egs. (9-1.19) and (9-1.20) tell us that
we must replace x’ in Eq. (9-1.39) by yx and y’ by y. Making the
substitutions, we then obtain for g, of the moving point mass

- - m -
o s O
or
-_— — m -
s L

Replacing now ¥y in Egs. (9-1.40) and (9-1.42) by 1/(1 —
v2/c?)'2, factoring out x> + y* from the denominator, taking into
account that r = xi + yj, where i and j are unit vectors in the
direction of the x and y axes, and noting that y*/(x*> + y?) = sin’4,
where 4 is the angle between v and r, we finally obtain

m(l "VZ/CZ) r. (9_143)
r3[1 -(v?*/c?sin*4)*"

g = -

Equation (9-1.43) is the same as Eq. (5-1.13) (the "Heaviside
equation") that we obtained in Chapter 5 directly from the
fundamental gravitational field equation. Note that r and r in Eq.
(9-1.43) represent the present position of the mass and are therefore
the same as r, and ry in Eq. (5-1.13). Note also that in applying
relativistic transformations we did not transform the mass m. Just
like the electric charge ¢, the mass of a body is invariant under
relativistic transformations.
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Example 9-1.2 The gravitational scalar potential of a stationary
mass distribution p is represented by the Newtonian Eq. (1-1.11)
{which is the same as Eq. (3-3.7)]

Q= - ngdv. (1-1.11)

(we omit the prime on dV so as not to confuse dV referring to the
reference frame ¥ with dV' referring to the reference frame L').
Using relativistic transformation equations, convert Eq. (1-1.11)
into the equation for the cogravitational vector potential produced
by a mass distribution moving with constant velocity v = v i.

Let a mass distribution p’ be at rest in the moving reference
frame X' and let the point of observation be at the origin. By Eq.
(1-1.11), the gravitational potential ¢’ produced by p’ in this
reference frame is

o = - G["_’dv’. (9-1.44)
r/
Observed from the laboratory (reference frame X), the mass
distribution p' moves with velocity v along a line parallel to the x
axis. Like all moving masses, it creates a cogravitational field. To
find the associated cogravitational vector potential, we transform
Eq. (9-1.44) by using appropriate transformation equations listed in
Section 9-1. However, first we express r' and dV' appearing in Eq.
(9-1.44) in terms of x', y’, and z':

0= O] | [ i /! 0149

+),/2 + z/2)1/2

Since we are free to choose the time of observation in the
faboratory, we choose ¢ = 0 for simplicity.® By Egs. (9-1.19), (9-
{.20) and (9-1.21) we then have

x/ =vx, y’:y, z’ =Z. (9-1.46)

By Eq. (9-1.11) (noting that there is no mass current in X’
where the mass is stationary) we have
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By Eq. (9-1.16) (noting that there is no cogravitational vector
potential in £’ where the mass is stationary), we have

¢’ = Aty (9-1.48)

Substituting Eqgs. (9-1.46)-(9-1.48) into Eq. (9-1.45), we obtain

/
A4 =-6Y Py d(yx)dydz
' ¢ J I J (y + y* + 2% (9-1.49)

n

-cY p dxdydz .
CZI II 2+ (¥ + 2] -
and since
14 =1 -v¥c?, (9-1.50)

we obtain upon simplifying the denominator in the last integral of
Eq. (9-1.49) and replacing dxdydz by dV

A, =- Glj p dv, (9-1.51)
C2 r[l _(y2 + ZZ)VZ/’.ZCZ]IIZ
or
A4=-GL j p__ av, (9-1.52)
¢t 1 - (v? /eHsin?]' 2

where @ is the angle between the velocity vector v of the moving
mass distribution and the radius vector r connecting dV with the
point of observation. For the y and z components of the vector
potential we obtain from Eqs. (9-1.17) and (9-1.18)

A, =A,=0. (9-1.53)

Observe that Eqs. (9-1.52) and (9-1.53) are the x, y, and z
components of Eq. (6-2.13) that we previously derived from the
fundamental gravitational and cogravitational laws. It is quite
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remarkable that, by applying relativistic transformations to the
Newtonian equation for the gravitational potential, we have obtained
equations for the cogravitational vector potential, although at first
sight there appears to be no connection whatsoever between the
Newtonian gravitational potential and the cogravitational vector
potential of the generalized theory of gravitation.

Example 9-1.3 The Newtonian gravitational field of a stationary
mass distribution p is represented by Eq. (1-1.7)

g = - Gj P rav, (1-1.7)
r3

Applying relativistic transformation equations to Eq. (1-1.7), find
the cogravitational field produced by a mass distribution moving
with constant velocity v = v i.

As in the preceding example, let a mass distribution p' be at
rest in the moving reference frame E'. Rewriting Eq. (1-1.7) in
terms of its Cartesian components and prime coordinates, we have
for the gravitational field produced by p' in £’

g =-G[” p'x! dx'dy’dz’, (9-1.54)

(x’2 + y/Z +Z/2)3/2

=" oy’ 'dy'dz!. (9-1.55
g ij[(x,2+y,2+z,2)3/zdx dy'dz’, ( )

8 =0 || & O _axdydr’. (9-1.56)

+ y/2 + Z/2)3/2

For the time of observation in the laboratory we choose as
before ¢ = 0, so that Eq. (9-1.46) applies again. Also, since there
is no mass current in X', Eq. (9-1.47) applies. By Eqgs. (9-1.8)-(9-
1.10) (noting that there is no cogravitational field in £’ where the
mass is stationary) we have
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K =0, (9-1.57)
= —vo! -
K, = -yvg./c?, (9-1.58)
K_=vg, Ic. (9-1.59)

Substituting Eqs. (9-1.46), (9-1.47), (9-1.58), and (9-1.59) into
Egs. (9-1.56) and (9-1.55), we obtain

K, -GY [ [ I _ M aywdydz, (9-1.60)
(v

cl 22 4y + )02

K =-GX [ [ [— P atmyaydz. (9-1.61
z c? j j ,[ (,yzxz +yz + )2 (yx)dydz . ( )

Rewriting Eq. (9-1.57) and simplifying Eqs. (9-1.60) and (9-
1.61) just as we simplified Eq. (9-1.49) in Example 9-1.2, we
obtain for the cogravitational field produced by a moving mass
distribution

K =0, (9-1.62)

X

21,2
K =GY[_ PU-vIicHz 4y 9-1.63
' czj r?[1 - (v¥/c?)sin’6)*? ( )

K.=-G%| PA-VICNY 4y (9-1.64)
‘ c2) r[1 - (v¥/c?)sin?)*?

Observe that Egs. (9-1.62), (9-1.63) and (9-1.64) are the x, y,
and z components of Eq. (6-1.45) that we previously derived from
the fundamental gravitational and cogravitational laws. One cannot
help but be impressed by the fact that, by applying relativistic
transformations to the Newtonian equation for the gravitational
field, we have obtained equations for the cogravitational field,
although at first sight there appears to be no connection whatsoever
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between the Newtonian gravitational field and the cogravitational
field of the generalized theory of gravitation.
A

9-2. Covariant Formulation of the Generalized Theory of
Gravitation

Covariant formulation of physical formulas and equations is
considered by some authors to be the most appropriate formulation
for expressing the laws of physics in a frame-independent form.
It is also believed by some authors to be more concise and
occasionally more informative than the conventional formulation.
Since any equation invariant under relativistic transformations
should be expressible in a covariant form, and since the principle
of relativity is considered to be a fundamental law of nature, the
laws of physics that cannot be expressed in a covariant form are
considered by some authors to be incomplete or incorrect.’

Newton’s gravitational law is an example of a physical law
that cannot be expressed in a covariant form. The problem of
finding an invariant form of the law of gravitation was first
considered by Poincaré, but without success.® It is interesting to
note that Poincaré attempted to solve the problem on the basis of
just one gravitational field (the gravitational analog of the
electrostatic field). But even if the theory of gravitation is built
upon two fields, a covariant theory of gravitation is not possible
unless the gravitational mass, just like the electric charge, does
not depend on the velocity with which the mass moves.

As already mentioned in Section 9-1, until recently it was
believed that the mass of a moving body was a function of the
velocity of the body and thus was not invariant under relativistic
transformations. This was the most important reason for
questioning the possibility of a relativistic theory of gravitation
analogous to relativistic electromagnetism. If mass, unlike the
electric charge, is not invariant, then the analogy between
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electromagnetism and gravitation is not sufficiently complete to
allow a construction of a relativistic gravitational theory similar to
relativistic electrodynamics based on the gravitational field vector,
with or without the addition of a second (the cogravitational) field
vector.

However, it is now generally accepted that mass does not
depend on the velocity with which a body moves.' Therefore a
covariant formulation of the theory of gravitation based on
gravitational-cogravitational fields is not only possible but can be
constructed straightaway from the covariant theory of
electromagnetism by a mere substitution of symbols and constants
in accordance with Table 7-1.

In particular, from electromagnetic equations’ we directly
obtain for the covariant "position 4-vector"

ro=(,x,x,x,) = (x,,z,ic), 9-2.1)

where i isV/-1. From the 4-vector electric current® we obtain by
substitutions the covariant expression for the 4-vector mass current

J = (,,J,,0,,0) = J,J,J icp), (9-2.2)
1P20Y 3V Yy

where J,, J,, and J, are the x, y, and z components of mass-
current density. From the electromagnetic field tensor’ we obtain
the gravitational-cogravitational field tensor by replacing, with the
help of Table 7-1, the x, y, and z components of E by the
corresponding components of g and the x, y, and z components of
B by the corresponding components of K

0 K, -K -iglc

4

-k, 0 K -iglc
F = ‘ Tl (9-2.3)
“” K, -K 0 -iglc

ig/c ig lc iglc O

where the subscript p indicates the row (1, 2, 3, 4 top to bottom)
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and the subscript » indicates the column (1, 2, 3, 4 left to right).

Finally, in the same manner, we obtain covariant expressions
of the present-time differential equations for gravitational-
cogravitational fields:

i OF
y e oo o 410, (9-2.4)
v=1 axv Cz #
and
OF,, + OF,, + OF), =0. (9-2.5)
ox, ax“ ox,

It should be kept in mind, however, that ¢ in the gravitational-
cogravitational equations stands for the speed of propagation of
gravitational-cogravitational fields, which is generally assumed to
be the same as the speed of light, but has never been actually
measured. '

v

Example 9-2.1 Show that Eq. (9-2.4) is equivalent to Egs. (7-1.1)
and (7-1.4), and that Eq. (9-2.5) is equivalent to Eqs. (7-1.2) and
(7-1.3).

Replacing in Eq. (9-2.4) F,, by F,,, substituting x, y, z, and ict
for x,, x,, x5, and x,, respectively, using, according to Eq. (9-2.3),
F, = iglc, Fy = iglc, Fi3 = iglc, and Fyy = 0, and using,
according to Eq. (9-2.2), J, = icp, we have

aig /o) lig,/) (ig,Jo) | 90 _ _4xG

- ico,  (9-2.6
o 3y 7 e e 029

which, after cancelling i and ¢, becomes the same as Eq. (7-1.1).

Setting in Eq. (9-2.4) u = 1, and using, according to Eq. (9-
23),F, =0,F,=K,F;=—-K, F, = — ig/c, we similarly
obtain
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90 0K, 0K, gl __4nG; (907
ox 0y 0z a(ict) c? 7
or
oK. _OK, __ 4G, % (9-2.8)
dy 0z c? ' cPor

which is the x component of Eq. (7-1.4). Likewise, setting p = 2
and then ¢ = 3 in Eq. (9-2.4) and using Eq. (9-2.3), we obtain the
y and z components of Eq. (7-1.4).
Setting in Eq. (9-2.5) p = 1, » = 2, A = 3, and using Eq. (9-
2.3), we obtain
oK VIRV Ly, (9-2.9)
0z Ox Oy
which is the same as Eq. (7-1.2).
Setting in Eq. (9-2.5) u = 2, » = 3, A = 4, and using Eq. (9-
2.3), we similarly obtain
0s. _ %, 9K (9-2.10)
ay 0z ot

which is the x component of Eq. (7-1.3). The remaining two
components are obtained in the same manner by setting u = 1, v =

3, N=4andpu =1,» =2, N\ =4,
A
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10

CALCULATION OF
GRAVITATIONAL AND
COGRAVITATIONAL FORCES
FROM POTENTIALS

One of the main problems in the generalized theory of
gravitation is the determination of forces involved in gravitational
and cogravitational interactions. In this chapter we shall present
a new method for calculating these forces based on using
gravitational and cogravitational potentials rather than fields. Since
potentials are frequently easier to compute than the corresponding
fields, this method provides an effective alternative for force
calculations. From the theoretical point of view, this method
reveals a physical significance of gravitational and cogravitational
potentials not heretofore apparent.

10-1. Calculation of Gravitational Forces in Time-Independent
Systeins from Scalar Potentials

The gravitational force on a mass distribution p located in a
gravitational field g is, according to Eq. (2-2.6),

F- lpng. (10-1.1)

165
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Let us write this equation as'
F- IS lﬂyé‘fpgdv * Ilnlerlorpgdv’ (10-1 2)

where the first integral is extended over the surface layer of the
mass distribution, and the second integral is extended over the
interior of the mass distribution. The volume of the surface layer
may be assumed as small as we please, so that the first integral
may be disregarded. We then have

F- jl  pgav, (10-1.3)

In accordance with Eq. (1-1.9) [which for time-independent
systems is the same as Eq. (3-3.4)], let us now replace g in Eq.
(10-1.3) by —Vo, and let us then transform the integrand by
means of vector identity (V-5). We have

F-|, pgav--|  pvoav
Interior Interior

(10-1.4)
B JInlenor‘prdV - Jlmeriorv(p sD)dV .

If we now transform the last integral by means of vector identity
(V-20), we obtain

F - Ilnleriorsovpdv - #Smfacepsods’ (10-15)

where the second integral is extended over the surface of the mass
distribution.> 3

A remarkable feature of Eq. (10-1.5) is that it associates the
force on a mass distribution directly with the potential rather than
with the field. The equation is immediately suspect, because the
potential is determined only to within an additive constant, while
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the force must be a single-valued quantity. However, a closer
examination of Eq. (10-1.5) shows that any additive constant
appearing in ¢ integrates out and has no effect on the force.*

If the mass distribution is constant, the first integral in
Eq.(10-1.5) vanishes, and we have

F=-p§f>sodS- (10-1.6)

If the mass is confined to a thin layer, the surface integral in
Eqgs. (10-1.5) and (10-1.6) can be split into the integrals over the
broad surface of the layer and over the rim of the layer. The
latter integral contributes to the total force an amount

F,, = - foord,, = - food,,. (10-1.7)

where ¢ is the thickness of the layer, ¢ is the surface mass density
of the layer, and dl,, is a vector representing a length element of
the rim directed out of the mass distribution (normal to the rim).

It should be noted that the external potential ¢ appearing in
the above equations can be replaced by the total potential because
a self-potential cannot produce a net force on a mass distribution.

v

Example 10-1.1 A point mass m is located on the axis (x axis) of
a thin-walled cylinder of uniform surface mass (mass per unit
surface area) ¢, length 2L, and radius a. The distance between m
and the center of the cylinder (assumed to be to the right of m) is
x. Find the force exerted on the cylinder by the point mass.

Since the mass distribution is uniform, only the surfaces of the
cylinder contribute to the force experienced by the cylinder, and,
by the symmetry of the system, the only contribution comes from
the two end surfaces (rims) of the cylinder. By Eq. (1-1.12), the
potential produced by m at the rim of the cylinder closest to the
mass is* ¢ = — Gm[(x — L)* + a’]'?, and that at the other end is
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¢ = — Gm[(x + L)* + a*]"*. By Eq. (10-1.7), taking into account
that the integrand is a constant, the force is then (compare with
Example 6-1.1 for v = 0)

F = -iGmo2ra 1 - 1 (10-1.8)
(x —L)2+a2]”2 [(x +L)2+02]”2

Example 10-1.2 A spherical mass m of uniform density p and
radius a consists of two separate hemispheres. Find the force
between the hemispheres.

Since p is constant, we can use Eq. (10-1.6). We shall use it
with the total potential ¢, because the external potential is difficult
to compute in this particular case. The total potential at a distance
r < a from the center of the sphere is (see Example 13-1.3)

- m 2 _ 2 -
Y = G?a_3(3a r’, (10-1.9)

where r is the distance from the center of the sphere. Let us assume
that the hemispheres are separated