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PREFACE

This is the thirty-second in a series of reports growing out of the
study of radar cross sections at The Radiation Laboratory of The University
of Michigan. Titles of the reports already published or presently in
process of publication are listed on the preceding pages.

When the study was first begun, the primary aim was to show that
radar cross sections can be determined theoretically, the results being
in good agreement with experimente. It is believed that by and large this
aim has been achieved.

In continuing this study, the objective is to determine means for
computing the radar cross section of objects in a variety of different
environments. This has led to an extension of the investigation to include
not only the standard boundary-value problems, but also such topics as the
emission and propagation of electromagnetic and acoustic waves, and phenomena
connected with ionized media.

Associated with the theoretical work is an experimental program which |
embraces (a) measurement of antennas and radar scatterers in order to verify
data determined theoretically; (b) investigation of antenna behavior and
cross section problems not amenable to theoretical solution; (c) problems
associated with the design and development of microwave absorbers; and (d)

low and high density ionization phencmena.

Ke Me Siegel
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SUMMARY

The problem is solved by a method somewhat different from those
previously given by other authors. No new results are obtained, but
observations are made on particular aspects not heretofore considered.
The fundamental idea is explained and carried out by means of a Fourier
integral representation, Useful integral expressions for the radiation
part of the scattered field, and for the total scattering cross-section,
are derived rather easily by accepted, though not entirely rigorous,
Fourier techniques. Three devices are then proposed for overcoming the
convergence difficulties which arise in the derivation of useful integral
expressions for the field at a finite distance. Similarities and dis-
tinctions between the present method and those of other authors are

detailed.

ix
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INT RODUCT ION

So many papers have been written on the theory of the diffraction
of monochromatic waves by circular cylinders and spheres in the diffi-
cult case when the radii of the obstacles are large compared to the
wavelength that some justification should perhaps be offered for the
appearance of another. Any justification must be implicit in the
genealogy of the theory, and one line of descent, which also serves
usefully as an introduction, is now described. Only the briefest pos-
sible account is given, and only a few‘key references are mentioned.

A more detailed discussion of previous work of particular relevance
is conveniently reserved for the end of the paper (§ 7), when com-
parison can be made with the present method.

A£ the beginning of this century the success of radio propagation
over the earth stimulated great activity into the theory of diffraction
by a large smooth sphere. The culmination of this effort was a famous
paper by Watson (1918). Watson's work, however, applied explicitly only
to the field well within the shadow region. Early attempts to cater also
for the illuminated region (Bromwich (1920), White (1922)) were not en-
tirely successful, but success was achieved by Van der Pol and Bremmer
(1937) and by Fock (1945). More recently still, Imai (1954) and espe-
cially Franz and collaborators (Franz (1954 ), Franz and Galle (1955),
Franz and Beckmann (1956, 1957)) have reconsidered the theory for the cir-
cular cylinder and sphere, and have persuaded it to yield a remarkable form

of solution useful for calculating the field at any point in space.
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The general mathematical technique in the papers just mentioned,
including those of Imai and Franz, follows very closely that adopted
by Watson (1918), in the sense that it starts from the classical series
solution and rewrites this as a contour integral which is then put into
a useful form by appropriate distortion of the contour of integration.
The innovation consists essentially in treating the illuminated region
by splitting the integrand into two parts, for one of which the contour
of integration is closed around a set of poles to yield exponentially
decaying terms analogous to those found by Watson, whilst for the other
the contour is taken through a saddle-point and evaluated asymptotically
by the method of steepest descents to give a term corresponding to the
directly reflected ray of geometrical optics.

It is hardly to be expected that the form of the solution for the
circular cylinder derived in the papers of Imai and Franz just referred
to can be substantially improved for general purposes. It is physically
illuminating, and numerically tractable even for quite modest values of
the radius. However, the analysis is sufficiently complicated, and the
technique sufficiently in the nature of a dodge, notwithstanding its
long history, for the exploration of alternative approaches, and a closer
examination of certain aspects of the problem, to be worthwhile. Such is
the aim, on a limited front, of the papers by Jones (1956) and Wu (1956);

and likewise of the present paper, in which a new method is given, having,

perhaps, certain advantages.
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In some respects the method is admittedly close to that described
by Friedlander (1954) in a paper chiefly devoted to pulse diffraction
by a circular cylinder, but it is felt that the reader will find here
no unnecessary duplication of Friedlander's work. Attention ought
also to be drawn to the fact that half a century ago Debye* (1908) gave
a not dissimilar mathematical formulation; his development, however,
took a different direction, and in any case was not pursued very far.

At this stage the clearest procedure seems to be, first to describe
the new method as a self-contained theory, referring to previous work
only to avoid duplication of specific calculations; and subsequently,
with an explicit statement available, to compare it with other theories.

The incident field is taken to be a plane wave, and for the mosﬁ
part the discussion is presented in terms of the two-dimensional E-polariza-
tion problem, in which the electric vector is parallel to the axis of the
cylinder. In §32, the fundamental idea is stated and expressed mathemati-
cally by means of Fourier integral analysis. In § 3, the radiation field,
including that in the forward direction which gives the total scattering
cross-section, is considered; it is treated with some ease by accepted,
if not entirely rigorous Fourier techniques. | In § L, attention is
turned to the field at any finite distance from the axis of the cylinder;
for this case there is some difficulty in securing the convergence of the

integral representations, and three alternative devices for achieving

#I am indebted to Professor S. Silver for telling me of this reference.
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convergence are proposed. In § 5, the behaviour of the current on the

cylinder is related to that of the field in space. In §6, the closely
analogous case of H-polarization, in which the magnetic vector is paral-
lel to the axis of the cylinder, is briefly discusseds Finally, in § T

the present method is compared with that of other authors.

THE GENERAL NATURE OF THE SOLUTION

The problem discussed is that of the plane wave specified by*

e-lkr cos O 1)

1]

El
Z

falling on the perfectly conducting cylinder r = a, where (r, 8, z) are
cylindrical polar coordinates (see figure 1). The convention adopted

is that the physical space is embraced by the range of values of 6 between
-rand T .

Now the field is, of course, periodic in 6. If, however, it is made
up by the superposition of fundamental solutions of the wave equation which
are individually periodic in 6, the result is the classical series which
is well known to become intractable as a increases much beyond a wavelength.
The possibility must therefore be examined of expressing the solution in

terms of functions which are not themselves periodic in 6,

¥The suppressed time factor is exp(iwt)
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Moreover, it is evidently desirable that such non-periodic functions
should have the following prdperties: they should individually be evaluable
without undue difficulty; and the combination of only a few of them should
approximate closely to the actual field in the physical space -7 <8 7.

How may the suggested aim be achieved?

In the first place, it is easy to find non-periodic functions of ©

which in combination give the actual periodic field. For, by Fourier

integral analysis, the function

w .
iy
s P (el’ 92; V)e dv, (2)
-00 7
where 92
oy o) =k | e ol )
1 2T
e1
is equal to
e-ika cos © for 61< 3] <92,
é e-ika cos © for 6 = el, 8= 62, (4)
0 | for6<61, 6>52,

for arbitrary values of 8, 8, (62> 61). Likewise, the function

00

(e » 653 ) .
_g p ](_ R H)(Jz)(kf‘) elev dy (5)
sz)(ka) .

-00
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has the value minus (4) on r =a. It is thus an outgoing field which on
the surface of the cylinder cancels the incident field for 6 between 61
and 62, and is zero there for © less than 61 or greater than 92., Clearly,
then, an exact representation of the scattered electric vector component
is given by the superposition of all functions (5) corresponding to non-
overlapping ranges [61, 62] which together span the full range -oo to
00,

The next step is to choose the ranges [61, eé] so that the non-
periodic functions (5) have the two desirable properties previously
mentioned. The choice depends somewhat on the position of the point at
waich the field is to be calculated, and is made precise in the particular
cases considered in subsequent sections. These, however, can usefully be
prefaced by one or two remarks which serve to indicate the trend of argu-
ment .

For ka »> 1 it might be expected that the scattered field would be
given to a good approximation by the expression (5) with the range [Gl, eé]
roughly spanning that of physical space, namely':- Iy ﬂ'] ; and that the
further the range [91, 92] is from some such "primary" range, the smaller,
at a given point in physical space, the expression (5) would become. The
expectation is confirmed by the mathematics. For this shows that if the
range [61, 62] is outside the primary range, then (5) essentially decays

exponentially with increasing ’6‘ : and moreover, from (3),

2imny
p(&l-Znn‘,G -2nmwiv)=e p(el: 92;1’), (6)

2
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forn = *1, ¥ 2, % 3, «eey 50 that a decrease of 2n7r in both el and

92 is equivalent in (5) to an increase in © of 2n7vr « Here is indicated
the genesis of an interpretation in terms of rays traveling around the

cylinder and being attenuated in the processe.

THE RADIATION FIELD
3.1
THE CASE © #0

In this section the radiation field, that is, the part of the scat-

tered field of order (kr)-% for kr 3> 1, is considered for all directions
other than that in which the incident wave is traveling.

For any fixed v , as kr —> oo,

1/4 im 1. -ik
HfJZ) (kr)w/(zvzr) ST oy I , (7)
Jkr)
and (5) is consequently asymptotic to
o0
i /(_2_) el/b, i -ikr p (81, 65; 1) ej_(e R DI (8)
" e 1(2) (ka)
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The last statement requires some justification, because v runs to
infinity in (5) and (8). This is easily provided. For since (5)
converges, the integration limits may be taken to be finite, s Yy
say, without sensible error if VM  is sufficiently large; the expres-
sion corresponding to (8) then likewise has limits + Y, and is un-
doubtedly valide But the integral (8) is even more rapidly convergent
than (5); again without sensible error, therefore, the infinite limits

may be restored.

Without loss of generality, save for the special case 6 = 0, it
is assumed that 0 < 6 7T »

Now, from (3), p (el, 92; V) is free of singularities throughout
the entire finite part of fhe complex y-plane, and its asymptotic be-
haviour as |V|—»oo is determined predominantly by the value of exp(-iv{)
at the end points §f = 61, 92. Hence, the only singularities in the
complex y -plane of the integrand in (8) are simple poles arising from
the zeros of Hiz) (ka); and, furthermore, the path of integration in (8)
may be replaced by one enclosing the poles in the upper half-plane if
6, < - 7v/2, and by one enclosing the poles in the lower half-plane if
6, > 3 7 /2 (such paths, C, and C,, are shown in figure 5).

For any range[el, 62] outside [ - /2, 3 7T/2] the integral (8)
can therefore be evaluated by the calculation of residues. Moreover,
in view of the remark immediately following equation (6), the correspond-

ing contribution to the scattered field is most simply expressed by taking

successive ranges [61, 92] to be [- /2t 2nmw, 3'n‘/21'2n1T] forn =1, 2, 35000
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The main contribution to the scattered field is contained in the

integral (8) with 6, = - /2, 8, = 37/2. 1In this case the appropriate
method of evaluation is that of steepest descents. In order to apply
this method, p (-7/2, 37m/2; L ) is expressed as the sum of terms whose
individual behaviour can be represented, for the most part, by exponential
functions with comparatively simple exponents. This is achieved by
distorting the @ path of integration in (3) in the way indicated in
ficure 2, where the regions of convergence at infinity are shown shaded.

The contribution to p (-7r/2, 37/2; v ) of the curved portions of the

new @ path of integration is

I

YD ) 1 )] )

Furthemmore, the contributions from the straight portions of the path are

conveniently taken in conjunction with the functions p (-mw/2%2nyv,

3mr/2¥ 2nfr; v )y n=1, 2, 3, «se « In effect, then, these functions

can be replaced respectively by

< 24 )
e Flimwny . ‘glﬂ'V[ (1) (ka) + H(2) (ka)] (10)

The radiation part of the scattered field now appears in the form

-ikr
oy (2) & 5T pg) & (11)
~ V// V/kkr
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where
(ka)

p(g) = - 1 S[u— (2)(ka) ] dow

(12)
00 (l)
(ka) . .
) _J: S [1_’_ (2) a J (e_zlﬁnu+e2iﬂ'nu>816udy.
n:l ~00 HU (ka) '

It is evident that complete rigour has been sacrificed at this point,
because the integrals in (12) are not strictly convergent. They are,
however, of a type familiar in the application of Fourier analysis, and
may be treated in the accepted manner without fear of error. The purely
exponential parts of the integrands are therefore discarded, where, for
the first integral, this involves the assumption 6 #0. If also, for

convenience, the sign of v is reversed in half of the integrals in the

sum, the result is

Hi})(ka)
pe)=-1 ( T oV,
00 H(z)(ka) |
(1) (13)

00 oo *H (ka)

- % Z S HZ:Z)(ka) €

n=o =00

=2i1v -0y - -
i nv[e i ue i(2w e))jdu

The integral in the first term of (13) can be evaluated by the method

of steepest descents. If the Debye asymptotic forms are used for the i

10
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Hankel functions, the saddle-point is seen to be located at v=ka cos(8/2),
and the steepest descent path is somewhat as shown in figure 3, being
asymptotic at infinity to the lines of zeros of Hﬁ})(ka). The resulting

contribution to P(6) is

1

_ _‘/E’I el/l+ o /[xa sin (% e)] Jika sin (20) +0 [:(ka)—%] , (1)

where some of the higher order terms are given explicitly by Imai (1954)
and Franz and Galle (1955).

The integrals in the sum in (13) can be evaluated by closing the
contour around the poles in the lower half-plane, these being at the
zeros, V=V say, s =1, 2, 3, eeey Of Hsjz)(ka); the new path of

intesration, C,, is shown in figure 5. The resulting contribution to P(8)

is
00 (1)
x Z Hy (ka) 217 v [ 10w, -i(2m-8)
_ﬁZ e [e Ste f}-
nz=o =1 f 4 [(2)q )
" [u a)j V= Vg (15)

The summation over n can, of course, be written in closed form; but the
expression as it stands makes explicit the interpretation in terms of
rays traveling around the cylinder. Detailed investigations of the nature

of the terms in (15) have been given in several of the papers already

referred to.
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342
THE CASE 6 =0

The analysis of the previous section is now supplemented by a
consideration of the radiation field in the forward direction. This

cives the total scattering cross-section, o, through the relation

o= - —‘fk— Im P(0). (16)

The required modification of the analysis of §3.l is quite simple.
In fact it is only necessary to preserve the obvious symmetry now present
in the problem by taking the original primary range for [61, 92] as
[- 37/2, 37‘('/2] rather than [—’IT/Z, 37‘r/2] « The ¢ path of integration
in the integral (3) for p(-3#/2, 37/2; v) is then distorted as shown
in fipure 4, and the rest of the argument proceeds essentially as before,

with the result

o0 : H ' (k
P(O):-% 5 [1+(1+e2”w) -f——-f—)] dy
-00 :

H(Z)(ka)
00 (1) (1)
_i i S [l+ e2i7ru -———HU (ka)] eZian+[l+———--H()/ (ka)]e_z_iwnu dv.
2hn-1 -00 Hiz)(ka) Hf)(ka)

(17)

By a procedure similar to that indicated in the remarks immediately

following equation (12), the contribution to P(0) of the sum in (17)

12
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may be written

© P H0)
- iZ S Z - ATV 4y (18)
) 2’<ka) ’

and by closing the path of integration around the poles V = VS,

s =1, 25 35 sees in the lower half-plane, (18) in turn is seen to be

00

Py Z
n=l1 s=1 {Ed: [Hi,z) (ka)]}u:

a result given by Franz and Beckmann (1957).

51 (ka)
S

g2t TR Vs (19)

The first integral in (17) can be made strictly convergent by taking
the path to infinity along radial directions falling within the first and
third quadrants of the complex P-plane. It is thenin precisely the form
derived by Franz and Beckmann (1957). In view of the asymptotic behaviour

Hl(jl)(ka)/{l(jz)(ka) as ,v/ ——) 00, the corresponding contribution to P(0)

is appropriately written

(1)
. Hu (ka) . Hp (ka)
~ika -1j [l+ ] dy -15 -};(3-)(_1@) dv , (20)

ka

where the path of integration in the first integral is along the real axis,

and in the second integral goes to infinity ultimately along the line of

13
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zeros of Hi})(ka) in the lower half-plane. For both integrals the main
contribution comes from the initial part of the path of integration, and
they can be evaluated asymptotically by using approximations to the
Hankel functions valid when order and argument are nearly equal. Some

details and results of the calculation are given by Franz and Beckmann

(1957) and Wu (1956).

THE FIELD AT AN ARBITRARY DISTANCE FROM THE CYLINDER

In this section.the problem is considered for unrestricted values
of kr. If kf is not large enough for (5) to be validly approximated by
(8) the analysis is complicated by the fact that the retention of the
factor Hi?)(kr) in the various integrands makes the convergence of the
integrals a somewhat delicate matter. For any given range [91, 62]
the integral (5), as it stands, is comfortably convergent; but it would

become wildly divergent if p (el, .3 v ) were replaced by the function

X
(9), so that an argument precisely parallel to that of $ 3.1 cannot be
sustaineds The final results, nevertheless, are very similar to those
of §13.l; the task is to derive them with adequate rigour. Three alter-

native procedures by which this may be achieved are offered for considera~

tione.

I. Equations (11) and (13) give an exact expression for the radiation

part of the scattered field for 0 < 6 £ T . In (13) the path of integration

14
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for the first integral can be taken as in figure 3, and for the integrals
in the sum can be taken around the poles in the lower half-plane to yield
the residue series (15).

Now consider the expression obtained from (11), (13) and (15) by

writing
-5 iTw
y o2t H(z)(kr), (21)

with the appropriate value of v , in place of

tim  -ikr
e e

e Jle) -

(22) being the asymptotic approximation to (21) as kr —o0o0. The expres-

sion is
o H(l)(ka)
S @ ) eeimy
H) 4 (ka)
o0 00 -kimyg (1) (2)
+i7"z Z e SH) (ka) HY S(kr) -2i7rn us[e-ie u5+e-i(21r-e)u8] ’
n=o s=1 {A—[H(Z)(ka)]}
dv v Y o= us (23)

where the integral is convergent with the path of integration as in figure 3,
provided that 77/2 € 8 < 3 7 /2.

Tt is observed that (23) is an outgoing solution of the wave equation,
free of singularities for all values of r > a, whose asymptotic form for
kr-—)oo is precisely that established in §3.1 for Ei, the z-component of the

actual scattered electric field.

15
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Hence, for 7/2 <6 £ Tv , E: is given by (23), with the path of
integration as in figure 3. It should be noted that the convergence
of the integral is a delicate matter, in that the regions of convergence
at infinity in the complex v -plane are quite restricted, and that for

0 <8 < T /2 there is no common path of convergence for the correspond-

ing integrals in (13) and (23).

II. Another argument is put forward for obtaining the result just es-
tablished.

Referring back to the initial formulation of the solution in terms
of the functions p (8, 6,0 ¥ )s if © is restricted to the range 77/2
to W the primary range [Ol, 92] is [0, 3 71'/2] . For any range |

[91, 62J outside LO, 3 7?'/2] the path of integration in (5) can

be one of the paths Cl’ 02 which respectively enclose the sets of
poles y = - Yoy VY=p 58 =1y 2y 35 eeey as indicated in figure 5.
s
If to the integral taken along Cl is added
n(v) (2) iov
._j "—(5!)-—'—"— Hy (kr) e dy, (21")
H), (ka)
1
where
™/2+1i oo
S ~ika cos -1V
pl(V) = T 5 e Z e y dg, (25)
)

16
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and to the integral taken along 02 is added

(v)
S —(?};—2———- 1 200) o 4w (26)
H\%/(ka)
¢ )Y
2
where
3 m/2-io0
p(¥) = == SHEcod AV, (27)
2T
3m/2

then as far as the residue evaluation is concerned the functions
P (91, 8 o v) may in effect be replaced by Hankel functions in the
manner of § 3.1, and the double summation part of (23) is obtained.

The rest of the solution, however, now appears in the form

(" )' : (v .
S o Nl Hiz)(kr) eleydvi' PalY) H(z)(kr) eleudu

g HU2 (ka) ; Huz)(ka) v
1 2 (28)
) e o)
(0’ 3m/2; v ) s
- g 02) / H(ﬁ)(kr)eleydu,
H,; (ka)
-00

and the aim is to show that (28) is the same as the first term in (23).
This seems not entirely straightforward. It is true that

~imy (1)
b (0, 377/25 1) = py(V) ~pfv) =h e T K (ka)y  (29)

17
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but the integrals in (28) have no common path of convergence; indeed,
none of the paths of integration in (28) may legitimately be deformed
into a path, like that in figure 3, along which the integral in (23)
convergese.

Without attempting to go into details, some such device as the
following is suggested for completing the proof. First, each path
of integration in (28) is taken to lie as closely as possible to the
path of figure 3. Next, each integrand is multiplied by a factor
exp (‘]”112), where )’is a complex number whose argument, different, if
need be, for each integrand, is such that the paths of integration in
the individual integrals may be distorted into that of figure 3. Fi-

nally, the identification of (28) with the first term in (23) is

completed by allowing each /'FJ to tend to zero.

IIT. In methods I énd II an expression for the field at an arbitrary
distance kr is obtained only for the case T/2 {8 T ; that is, in
effect, for the half-space on the illuminated side of the plane through
the axis of the cylinder perpendicular to the direction of propagation
of the incident wave. The other half-space includes the shadow region,
where the total field can be very small. For its consideration, there-
fore, it seems desirable to discuss the total field rather than the,
scattered field alone; and this device in fact proves effective in

removing convergence difficulties, as emphasized by Franz and Beckmann

(1956).

18
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The appropriate representation of the incident field is obtained
merely by writing r for a in (2), (3), and (4). If 8 is allowed to
be in the range 0 {©® < 7, the primary range for [Gl, 92] is
{;- TU/2, 3 7r/2] , and the corresponding contribution to the total
field is

C B(-1/2, 3T/25 ¥) (5 ™~
S {pr(-'ﬁ/fe, 3w/ V) - ) H,, (kr)} e dwv, (30)
H) (ka)

=-00

where

3m/2

p.(= /25 370/2; V)= 2—17; S
- /2

e—ikr cos e-iug! . (31)

The anélysis can now proceed in a manner closely parallel to that
of §3.1. The § path of integration in p (- /2, 37/2; v ) and
pr(-'ﬂ72, 377/2; v) is distorted as in figure 2, and the contributions
to (30) associated respectively with the curved and straight portions
of the ¢ path can again be treated separately without giving divergent
V integrals. For the fommer, p(-7r/2, 3W/2; v ) in (30) is replaced

by (9), and pr(-ﬂ"/2, 37/2; v) by (9) with r written for a; it is

therefore
© ey
a
%S{Hul)( T S TR CY)
H'\%/(ka)
~00 14

19



THE UNIVERSITY OF MICHIGAN

2778-3-T

The latter is taken in conjunction with the contributions arising from
ranges l:el, 62] outside the primary range, and together they yield
the double summation of (23).

If 7/2< 8 7r » the path of integration in (32) can be distorted
into that of figure 3. Comparison with the first term of (23) then shows

agreement provided

%5 HLl)(kr) ei(e - %’"’)Vdu _ e—ikr cosb i (33)

Equation (33) does, in fact, hold for the range of 8, 7T/2 to 3 ™ /2,
for which the integral converges. This is proved by Franz and Beckmann
(1956); it can also be established by Fourier analysis in conjunction with the
sort.of device explained in the final paragraph of method II.

If 0< 6 < 7r/2_, the path of integration in (32) can be closed
around the line of poles in the lower half of the complex » -plane. Thus
(32) may be written

(1)
1 5 y (ke) 1D () BT O

-4 HL?“)(ka) dv , (34)

taken over 02 (see figure 5) or an equivalent path.

For points of observation well within the shadow region a residue
evaluation is appropriate, and the resulting terms appear as natural
additions to the series in (23).

For points of observation sufficiently far from the shadow region,

(34) can be evaluated by the method of steepest descents. But, as pointed
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out by Franz and Beckmann (1956), the steepest descents path now
traverses two saddle-points; one near v = ka cos (6/2) associated

with the reflected wave, and one near v = kr sin 6 associated with

the incident wavee.

THE CURRENT ON THE CYLINDER

The surface current density on the cylinder at the point (a, @)

has only a z-component which is given by*
JE,
J(@)=-iY—— (r=2a, 8=¢), (35)
z o (kr)
where Ez is the z-component of the electric vector of the total field.
With the help of the expression for the Wronskian of the two Hankel
functions, the contribution of the part (32) of EZ to the right hand

side of (35) is easily seen to be

dv , | (36)

x 7 LG )y
) =

Tv ka
-00 Hy (ka)

and the remaining contribution can be written in the like form

00 o0 _.( _
Y Z S el%‘ﬁ' ¢+2n1'r)u i (37)

n#o -00 Hg.jz)(ka)

*Mkese unitsy Y is the admittance of free spacee.
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Added together, (36) and (37) give the true current Jz(¢) which
generates the scattered field E:' A current distribution made up by
the superposition of (36) and a finite number of terms of (37) would
be a good approximation to JZ(¢), and the field generated by it would
be a good approximation to E:. However, it is instructive to see that
the approximations to E: obtained in this way are closer to the original
forms siven in this paper, which involve the functions p(el, 6, v )s
than to the final forms, such as (32), which involve the related Hankel
functions.

Attention is confined, for simplicity, to the radiation field.
That generated by the current distribution on the cylinder is given
in terms of P(8), defined in (11), where

1ka cos (§-6) . (38)

p(8) = 1ka S‘ J
-Tv
The current density JZ(¢) is, of course, periodic in @. However,
in view of the form of (36) and (37), it is conveniently represented
as the superposition of two terms, each of which is given by (36), one
with ¢ allowed to run from 77 to -00, the other with § allowed to run

from - r to oo. Consider, then, the contribution to P(8) from a current

density represented by (36) with ¢ running from v to W - ¢1. It is

-i(3 - 3 s (g~
i i 1r¢)u iy e1ka cos (§-8) . (39)

ka)
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If the order of integration is reversed, and the new integration variable

’-V = 97 46 - ¢ introduced in place of @, (39) becomes

00
-i S PO, 0t v ) ei(e+%1r)u dv . (40)

AN

(ka)

Similarly, the contribution to P(8) from a current density represented by

(36) with ¢ running from -qr to -7 + ¢2 is

00
: S (0 -y & ¥) e +im)y
-1 e d

-00 Hf) (ka)

The combination of (40) and (41) gives the approximation

% p(6-g,, 6+ ¢.; : 1
P(e)=-15 e i v ) e1(9+zw)y dv .« (42)
-00 Hiz)(ka)

Evidently the primary range [- /2, 3 17‘/2] associated with the
function p (91, 6, v) in § 3.1 for 0 £ ® < v appears in (42) if ¢2 =m2+ 6,
¢l= 37 /2 - . The approximate forms of solution which are the point of
departure for the present paper can therefore be recovered by integrating
over the standard épproximate forms of the current distribution, but the
requisite range of integration depends, as might be expected, on the posi-

tion of the point of observation.
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THE CASE OF H-POLARIZATION

The foregoing analysis needs only slight modification for the case

when the plane wave incident on the cylinder is specified by

HJZ- ___e-ikr cos 6. (43)

In fact, the contribution to H: analogous to (5) is

00
(9 s 653 ) i
_S T T2 ¥ Hgf)(kr) eley dy (b4)
(2)1 .
HU

-00 (ka)

where the dash denotes differentiation of the Hankel function with

respect to its argument, and

)
$ -ika co iy
R T
T
5

For since YE9= i 0H / 8 (kr), it is clear that on r = a the part of
VA _
E; corresponding to (44) cancels the incident field for 61 <9 (62,

and is zero for 8 <6_., O >92.

1
Furthermore, from (3) and (45),

aleys 0, v)= —— [nley, 00 v)] o (16)

d(ka)
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Evidently, then, the analysis for the case of E~polarization can be
adapted to that of H-polarization merely by replacing HS})(ka),

1)t '
HE?)(ka) throughout by HE,) (ka), HS?) (ka) respectively.

COMPARISON WITH OTHER METHODS

It is emphasized in the Introduction that the method of the present
paper is only offered as an interesting alternative to several other
ways of treating the problems In this final section an attempt is made
to indicate in what respects other discussions are similar to or different
from that given here.

Because of its greater importance in physical applications the sphere
has received a good deal more attention than the cylinder. However, the
two problems have much in common, and in describing methodology in general
terms there is no need to distinguish between them. It should, perhaps,
be remarked that it is hoped to treat the sphere by a method analogous to
that of the present paper with the help of an infinite Legendre integral
transform.

The quantity of literature which could be regarded as relevant is
enormous, so in what follows references are only given to those papers
with which detailed comparison is made. Much more complete lists of

references can be found in the reports by Sensiper (1953) and Weil,

Barasch and Kaplan (1956).
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Probably the most frequently adopted approach is that based
essentially on the Watson technique, with a modification of the type
described briefly in the Introduction. From a strictly mathematical point
of view this cannot be adversely criticizeds. But, in contrast to the
present method, it does seem to the writer to have the following disad-
vantages: a) it starts from an inappropriate form of solution; b) there
is no obvious guide as to what precisely should be split off the integrand
‘before the contour of integration is deformed around the l/HE?)(ka) (or
corresponding) poles (this, in fact, accounts for some of the variations
in the form of solution finally obtained); ¢) the relation of the trans-
formed solution to gthe boundary conditions is obscured; d) the physical
significance of the transformed solution is a matter of a posteriori
interpretations.

Another not uncommonly adopted approach certainly aims at avoiding
these disadvantages. In terms of the cylinder problem, with E-polariza-

tion, this consists in starting from the solution for the total field as a

linear combination of all terms

H(z)(kr) efL V0

Ys

I

(2)

wiere M, 5 =1, 25 35 «esy are zeros of H (ka)s Several discussions
of the problem of radio propagation over the surface of the earth aré¢ on
these lines, though approximations for the purpose of simplifying the

mathematics and clarifying the physics are often introduced at the outset.
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The method raises the question as to whether or not the v form a
complete set, and appears only comparatively recently to have been

made rigorous in this respect. There is some similarity with the

present treatment in that, in the course of the analysis, © is

thought of as a variable which takes all values from -oo to oco. How-
ever, the form of solution adopted in this approach is still, of course,
not applicable to all circumstances; there remains plenty of transforming
to do (see, for example, Kear (1955) and Kodis (1957)), and results
covering all positions of the point of observation do not seem to have
been obtained in this wayf'

A third approach aims explicitly at an approximate determination of
the current density on the surface of the obstacle, with particular refer-
ence to the "penumbra" region. The advantage might be claimed that
bodies of arbitrary shape can be treated, provided they are convex with
large radii of curvature. But for the cylinder and the sphere more
information is obtained more easily from an exact solution; and for
bodies of less simple geometrical shape it is debatable whether the
knowledre furnished by these exact solutions does not itself provide an
equally adequate basis for an approximate treatment.

Two rather recent papers, mentioned in the Introduction, have points
of similarity with the present one. The first, by Jones (1956), is
limited to the derivation of the total scattering cross-section of a
cylinder by an approximate treatment which gives the main correction to

the geometrical optics formula. The idea is to concentrate on finding

# A general mathematical theory developed by Marcuvitz (1951) and Felsen
(1957) which embraces both the methods just described should be noted.
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a field which satisfies the boundary conditions at the surface of the
body in the vicinity of the penumbra region. This is achieved by means
of Fourier analysis, which is the feature common to Jones! and the pres-
ent paper. Unfortunately, however, the resulting integrals are just as
complicated as those arising in the exact treatment.

The second paper, by Wu (1956), has in common with the present
paper the idea of building up the periodiec solution by means of a super-
position of non-periodic solutions. A recipe for doing this is given;
but theré is no explicit recognition that such a process is not unique,
and in fact the resulting representation seems less useful than that
given in §2.

Finally, as mentioned in the Introduction, a paper by Friedlander
(1954) on diffraction of a pulse by a circular cylinder contains ideas
close to those on which the present paper is based. In particular, an in-
finite Fourier transform with respect to © is used. It is used, however,
somewhat differently, being applied to the governing partial differential
equation. This is thereby reduced to an ordinary differential equation
with independent variable r (Bessel's equation, in fact), to which the
appropriate physical solution must be found. There results the expres-
sion of the total field in the form (32) together with terms obtained by

adding to © all integral multiples of 2 TV,
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FIGURE 2, DISTORTION OF THE @ PATH OF INTEGRATION IN
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ka cos (6/2)

Line of zeros
o B (ka) /

FIGURE 3, THE STEEPEST DESCENTS PATH IN THE COMPLEX JJ-PLANE
FOR THE FIRST INTEGRAL IN EQUATION (13)
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FIGURE ), DISTORTION OF THE ¢ PATH OF INTEGRATION IN
p(=3m /2, 377/2; 2) ) DEFINED BY (3)
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Line of poles
of 1/H{2) (ka)

Line of goles
of 1/H(]>°' (ka)

FIGURE 5, PATHS OF INTEGRATION C,, C, ENCLOSING THE POLES OF

1’
1/H§,2)(ka) IN THE COMPLEX ) -PLANE
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